Yg4Arxiv
Computer Vision and Pattern Recognition 108
☆ LiDPM: Rethinking Point Diffusion for Lidar Scene Completion IEEE
Training diffusion models that work directly on lidar points at the scale of outdoor scenes is challenging due to the difficulty of generating fine-grained details from white noise over a broad field of view. The latest works addressing scene completion with diffusion models tackle this problem by reformulating the original DDPM as a local diffusion process. It contrasts with the common practice of operating at the level of objects, where vanilla DDPMs are currently used. In this work, we close the gap between these two lines of work. We identify approximations in the local diffusion formulation, show that they are not required to operate at the scene level, and that a vanilla DDPM with a well-chosen starting point is enough for completion. Finally, we demonstrate that our method, LiDPM, leads to better results in scene completion on SemanticKITTI. The project page is https://astra-vision.github.io/LiDPM .
comment: Accepted to IEEE IV 2025
☆ Dynamic Camera Poses and Where to Find Them CVPR 2025
Annotating camera poses on dynamic Internet videos at scale is critical for advancing fields like realistic video generation and simulation. However, collecting such a dataset is difficult, as most Internet videos are unsuitable for pose estimation. Furthermore, annotating dynamic Internet videos present significant challenges even for state-of-theart methods. In this paper, we introduce DynPose-100K, a large-scale dataset of dynamic Internet videos annotated with camera poses. Our collection pipeline addresses filtering using a carefully combined set of task-specific and generalist models. For pose estimation, we combine the latest techniques of point tracking, dynamic masking, and structure-from-motion to achieve improvements over the state-of-the-art approaches. Our analysis and experiments demonstrate that DynPose-100K is both large-scale and diverse across several key attributes, opening up avenues for advancements in various downstream applications.
comment: Accepted to CVPR 2025. Project Page: https://research.nvidia.com/labs/dir/dynpose-100k
☆ Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models
Autoregressive (AR) models, long dominant in language generation, are increasingly applied to image synthesis but are often considered less competitive than Diffusion-based models. A primary limitation is the substantial number of image tokens required for AR models, which constrains both training and inference efficiency, as well as image resolution. To address this, we present Token-Shuffle, a novel yet simple method that reduces the number of image tokens in Transformer. Our key insight is the dimensional redundancy of visual vocabularies in Multimodal Large Language Models (MLLMs), where low-dimensional visual codes from visual encoder are directly mapped to high-dimensional language vocabularies. Leveraging this, we consider two key operations: token-shuffle, which merges spatially local tokens along channel dimension to decrease the input token number, and token-unshuffle, which untangles the inferred tokens after Transformer blocks to restore the spatial arrangement for output. Jointly training with textual prompts, our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis in a unified next-token prediction way while maintaining efficient training and inference. For the first time, we push the boundary of AR text-to-image generation to a resolution of 2048x2048 with gratifying generation performance. In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our prominent image generation ability in terms of text-alignment, visual flaw, and visual appearance. We hope that Token-Shuffle can serve as a foundational design for efficient high-resolution image generation within MLLMs.
☆ The Fourth Monocular Depth Estimation Challenge CVPR
This paper presents the results of the fourth edition of the Monocular Depth Estimation Challenge (MDEC), which focuses on zero-shot generalization to the SYNS-Patches benchmark, a dataset featuring challenging environments in both natural and indoor settings. In this edition, we revised the evaluation protocol to use least-squares alignment with two degrees of freedom to support disparity and affine-invariant predictions. We also revised the baselines and included popular off-the-shelf methods: Depth Anything v2 and Marigold. The challenge received a total of 24 submissions that outperformed the baselines on the test set; 10 of these included a report describing their approach, with most leading methods relying on affine-invariant predictions. The challenge winners improved the 3D F-Score over the previous edition's best result, raising it from 22.58% to 23.05%.
comment: To appear in CVPRW2025
☆ Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
☆ EgoCHARM: Resource-Efficient Hierarchical Activity Recognition using an Egocentric IMU Sensor
Human activity recognition (HAR) on smartglasses has various use cases, including health/fitness tracking and input for context-aware AI assistants. However, current approaches for egocentric activity recognition suffer from low performance or are resource-intensive. In this work, we introduce a resource (memory, compute, power, sample) efficient machine learning algorithm, EgoCHARM, for recognizing both high level and low level activities using a single egocentric (head-mounted) Inertial Measurement Unit (IMU). Our hierarchical algorithm employs a semi-supervised learning strategy, requiring primarily high level activity labels for training, to learn generalizable low level motion embeddings that can be effectively utilized for low level activity recognition. We evaluate our method on 9 high level and 3 low level activities achieving 0.826 and 0.855 F1 scores on high level and low level activity recognition respectively, with just 63k high level and 22k low level model parameters, allowing the low level encoder to be deployed directly on current IMU chips with compute. Lastly, we present results and insights from a sensitivity analysis and highlight the opportunities and limitations of activity recognition using egocentric IMUs.
☆ DPMambaIR:All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, significantly reducing training costs and deployment complexity compared to traditional methods that design dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework. By integrating a Degradation-Aware Prompt State Space Model (DP-SSM) and a High-Frequency Enhancement Block (HEB), DPMambaIR enables fine-grained modeling of complex degradation information and efficient global integration, while mitigating the loss of high-frequency details caused by task competition. Specifically, the DP-SSM utilizes a pre-trained degradation extractor to capture fine-grained degradation features and dynamically incorporates them into the state space modeling process, enhancing the model's adaptability to diverse degradation types. Concurrently, the HEB supplements high-frequency information, effectively addressing the loss of critical details, such as edges and textures, in multi-task image restoration scenarios. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
☆ CasualHDRSplat: Robust High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Recently, photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered widespread attention due to their superior performance. However, most works rely on low dynamic range (LDR) images, which limits the capturing of richer scene details. Some prior works have focused on high dynamic range (HDR) scene reconstruction, typically require capturing of multi-view sharp images with different exposure times at fixed camera positions during exposure times, which is time-consuming and challenging in practice. For a more flexible data acquisition, we propose a one-stage method: \textbf{CasualHDRSplat} to easily and robustly reconstruct the 3D HDR scene from casually captured videos with auto-exposure enabled, even in the presence of severe motion blur and varying unknown exposure time. \textbf{CasualHDRSplat} contains a unified differentiable physical imaging model which first applies continuous-time trajectory constraint to imaging process so that we can jointly optimize exposure time, camera response function (CRF), camera poses, and sharp 3D HDR scene. Extensive experiments demonstrate that our approach outperforms existing methods in terms of robustness and rendering quality. Our source code will be available at https://github.com/WU-CVGL/CasualHDRSplat
comment: Source Code: https://github.com/WU-CVGL/CasualHDRSplat
☆ Generative Fields: Uncovering Hierarchical Feature Control for StyleGAN via Inverted Receptive Fields
StyleGAN has demonstrated the ability of GANs to synthesize highly-realistic faces of imaginary people from random noise. One limitation of GAN-based image generation is the difficulty of controlling the features of the generated image, due to the strong entanglement of the low-dimensional latent space. Previous work that aimed to control StyleGAN with image or text prompts modulated sampling in W latent space, which is more expressive than Z latent space. However, W space still has restricted expressivity since it does not control the feature synthesis directly; also the feature embedding in W space requires a pre-training process to reconstruct the style signal, limiting its application. This paper introduces the concept of "generative fields" to explain the hierarchical feature synthesis in StyleGAN, inspired by the receptive fields of convolution neural networks (CNNs). Additionally, we propose a new image editing pipeline for StyleGAN using generative field theory and the channel-wise style latent space S, utilizing the intrinsic structural feature of CNNs to achieve disentangled control of feature synthesis at synthesis time.
☆ Plasma State Monitoring and Disruption Characterization using Multimodal VAEs
When a plasma disrupts in a tokamak, significant heat and electromagnetic loads are deposited onto the surrounding device components. These forces scale with plasma current and magnetic field strength, making disruptions one of the key challenges for future devices. Unfortunately, disruptions are not fully understood, with many different underlying causes that are difficult to anticipate. Data-driven models have shown success in predicting them, but they only provide limited interpretability. On the other hand, large-scale statistical analyses have been a great asset to understanding disruptive patterns. In this paper, we leverage data-driven methods to find an interpretable representation of the plasma state for disruption characterization. Specifically, we use a latent variable model to represent diagnostic measurements as a low-dimensional, latent representation. We build upon the Variational Autoencoder (VAE) framework, and extend it for (1) continuous projections of plasma trajectories; (2) a multimodal structure to separate operating regimes; and (3) separation with respect to disruptive regimes. Subsequently, we can identify continuous indicators for the disruption rate and the disruptivity based on statistical properties of measurement data. The proposed method is demonstrated using a dataset of approximately 1600 TCV discharges, selecting for flat-top disruptions or regular terminations. We evaluate the method with respect to (1) the identified disruption risk and its correlation with other plasma properties; (2) the ability to distinguish different types of disruptions; and (3) downstream analyses. For the latter, we conduct a demonstrative study on identifying parameters connected to disruptions using counterfactual-like analysis. Overall, the method can adequately identify distinct operating regimes characterized by varying proximity to disruptions in an interpretable manner.
☆ Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
☆ PICO: Reconstructing 3D People In Contact with Objects CVPR'25
Recovering 3D Human-Object Interaction (HOI) from single color images is challenging due to depth ambiguities, occlusions, and the huge variation in object shape and appearance. Thus, past work requires controlled settings such as known object shapes and contacts, and tackles only limited object classes. Instead, we need methods that generalize to natural images and novel object classes. We tackle this in two main ways: (1) We collect PICO-db, a new dataset of natural images uniquely paired with dense 3D contact on both body and object meshes. To this end, we use images from the recent DAMON dataset that are paired with contacts, but these contacts are only annotated on a canonical 3D body. In contrast, we seek contact labels on both the body and the object. To infer these given an image, we retrieve an appropriate 3D object mesh from a database by leveraging vision foundation models. Then, we project DAMON's body contact patches onto the object via a novel method needing only 2 clicks per patch. This minimal human input establishes rich contact correspondences between bodies and objects. (2) We exploit our new dataset of contact correspondences in a novel render-and-compare fitting method, called PICO-fit, to recover 3D body and object meshes in interaction. PICO-fit infers contact for the SMPL-X body, retrieves a likely 3D object mesh and contact from PICO-db for that object, and uses the contact to iteratively fit the 3D body and object meshes to image evidence via optimization. Uniquely, PICO-fit works well for many object categories that no existing method can tackle. This is crucial to enable HOI understanding to scale in the wild. Our data and code are available at https://pico.is.tue.mpg.de.
comment: Accepted in CVPR'25. Project Page: https://pico.is.tue.mpg.de
☆ BIM-Constrained Optimization for Accurate Localization and Deviation Correction in Construction Monitoring
Augmented reality (AR) applications for construction monitoring rely on real-time environmental tracking to visualize architectural elements. However, construction sites present significant challenges for traditional tracking methods due to featureless surfaces, dynamic changes, and drift accumulation, leading to misalignment between digital models and the physical world. This paper proposes a BIM-aware drift correction method to address these challenges. Instead of relying solely on SLAM-based localization, we align ``as-built" detected planes from the real-world environment with ``as-planned" architectural planes in BIM. Our method performs robust plane matching and computes a transformation (TF) between SLAM (S) and BIM (B) origin frames using optimization techniques, minimizing drift over time. By incorporating BIM as prior structural knowledge, we can achieve improved long-term localization and enhanced AR visualization accuracy in noisy construction environments. The method is evaluated through real-world experiments, showing significant reductions in drift-induced errors and optimized alignment consistency. On average, our system achieves a reduction of 52.24% in angular deviations and a reduction of 60.8% in the distance error of the matched walls compared to the initial manual alignment by the user.
☆ DiMeR: Disentangled Mesh Reconstruction Model
With the advent of large-scale 3D datasets, feed-forward 3D generative models, such as the Large Reconstruction Model (LRM), have gained significant attention and achieved remarkable success. However, we observe that RGB images often lead to conflicting training objectives and lack the necessary clarity for geometry reconstruction. In this paper, we revisit the inductive biases associated with mesh reconstruction and introduce DiMeR, a novel disentangled dual-stream feed-forward model for sparse-view mesh reconstruction. The key idea is to disentangle both the input and framework into geometry and texture parts, thereby reducing the training difficulty for each part according to the Principle of Occam's Razor. Given that normal maps are strictly consistent with geometry and accurately capture surface variations, we utilize normal maps as exclusive input for the geometry branch to reduce the complexity between the network's input and output. Moreover, we improve the mesh extraction algorithm to introduce 3D ground truth supervision. As for texture branch, we use RGB images as input to obtain the textured mesh. Overall, DiMeR demonstrates robust capabilities across various tasks, including sparse-view reconstruction, single-image-to-3D, and text-to-3D. Numerous experiments show that DiMeR significantly outperforms previous methods, achieving over 30% improvement in Chamfer Distance on the GSO and OmniObject3D dataset.
comment: Project Page: https://lutao2021.github.io/DiMeR_page/
☆ Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
☆ CLIPSE -- a minimalistic CLIP-based image search engine for research
A brief overview of CLIPSE, a self-hosted image search engine with the main application of research, is provided. In general, CLIPSE uses CLIP embeddings to process the images and also the text queries. The overall framework is designed with simplicity to enable easy extension and usage. Two benchmark scenarios are described and evaluated, covering indexing and querying time. It is shown that CLIPSE is capable of handling smaller datasets; for larger datasets, a distributed approach with several instances should be considered.
☆ A Guide to Structureless Visual Localization
Visual localization algorithms, i.e., methods that estimate the camera pose of a query image in a known scene, are core components of many applications, including self-driving cars and augmented / mixed reality systems. State-of-the-art visual localization algorithms are structure-based, i.e., they store a 3D model of the scene and use 2D-3D correspondences between the query image and 3D points in the model for camera pose estimation. While such approaches are highly accurate, they are also rather inflexible when it comes to adjusting the underlying 3D model after changes in the scene. Structureless localization approaches represent the scene as a database of images with known poses and thus offer a much more flexible representation that can be easily updated by adding or removing images. Although there is a large amount of literature on structure-based approaches, there is significantly less work on structureless methods. Hence, this paper is dedicated to providing the, to the best of our knowledge, first comprehensive discussion and comparison of structureless methods. Extensive experiments show that approaches that use a higher degree of classical geometric reasoning generally achieve higher pose accuracy. In particular, approaches based on classical absolute or semi-generalized relative pose estimation outperform very recent methods based on pose regression by a wide margin. Compared with state-of-the-art structure-based approaches, the flexibility of structureless methods comes at the cost of (slightly) lower pose accuracy, indicating an interesting direction for future work.
☆ Beyond Labels: Zero-Shot Diabetic Foot Ulcer Wound Segmentation with Self-attention Diffusion Models and the Potential for Text-Guided Customization
Diabetic foot ulcers (DFUs) pose a significant challenge in healthcare, requiring precise and efficient wound assessment to enhance patient outcomes. This study introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel text-guided diffusion model that performs wound segmentation without relying on labeled training data. Unlike conventional deep learning models, which require extensive annotation, ADZUS leverages zero-shot learning to dynamically adapt segmentation based on descriptive prompts, offering enhanced flexibility and adaptability in clinical applications. Experimental evaluations demonstrate that ADZUS surpasses traditional and state-of-the-art segmentation models, achieving an IoU of 86.68\% and the highest precision of 94.69\% on the chronic wound dataset, outperforming supervised approaches such as FUSegNet. Further validation on a custom-curated DFU dataset reinforces its robustness, with ADZUS achieving a median DSC of 75\%, significantly surpassing FUSegNet's 45\%. The model's text-guided segmentation capability enables real-time customization of segmentation outputs, allowing targeted analysis of wound characteristics based on clinical descriptions. Despite its competitive performance, the computational cost of diffusion-based inference and the need for potential fine-tuning remain areas for future improvement. ADZUS represents a transformative step in wound segmentation, providing a scalable, efficient, and adaptable AI-driven solution for medical imaging.
comment: 12 pages, 8 figures, journal article
☆ Improving Open-World Object Localization by Discovering Background
Our work addresses the problem of learning to localize objects in an open-world setting, i.e., given the bounding box information of a limited number of object classes during training, the goal is to localize all objects, belonging to both the training and unseen classes in an image, during inference. Towards this end, recent work in this area has focused on improving the characterization of objects either explicitly by proposing new objective functions (localization quality) or implicitly using object-centric auxiliary-information, such as depth information, pixel/region affinity map etc. In this work, we address this problem by incorporating background information to guide the learning of the notion of objectness. Specifically, we propose a novel framework to discover background regions in an image and train an object proposal network to not detect any objects in these regions. We formulate the background discovery task as that of identifying image regions that are not discriminative, i.e., those that are redundant and constitute low information content. We conduct experiments on standard benchmarks to showcase the effectiveness of our proposed approach and observe significant improvements over the previous state-of-the-art approaches for this task.
☆ Enhancing CNNs robustness to occlusions with bioinspired filters for border completion
We exploit the mathematical modeling of the visual cortex mechanism for border completion to define custom filters for CNNs. We see a consistent improvement in performance, particularly in accuracy, when our modified LeNet 5 is tested with occluded MNIST images.
comment: Submitted to the 7th International Conference on Geometric Science of Information
☆ The effects of Hessian eigenvalue spectral density type on the applicability of Hessian analysis to generalization capability assessment of neural networks
Hessians of neural network (NN) contain essential information about the curvature of NN loss landscapes which can be used to estimate NN generalization capabilities. We have previously proposed generalization criteria that rely on the observation that Hessian eigenvalue spectral density (HESD) behaves similarly for a wide class of NNs. This paper further studies their applicability by investigating factors that can result in different types of HESD. We conduct a wide range of experiments showing that HESD mainly has positive eigenvalues (MP-HESD) for NN training and fine-tuning with various optimizers on different datasets with different preprocessing and augmentation procedures. We also show that mainly negative HESD (MN-HESD) is a consequence of external gradient manipulation, indicating that the previously proposed Hessian analysis methodology cannot be applied in such cases. We also propose criteria and corresponding conditions to determine HESD type and estimate NN generalization potential. These HESD types and previously proposed generalization criteria are combined into a unified HESD analysis methodology. Finally, we discuss how HESD changes during training, and show the occurrence of quasi-singular (QS) HESD and its influence on the proposed methodology and on the conventional assumptions about the relation between Hessian eigenvalues and NN loss landscape curvature.
comment: 11 pages, 10 figures, 4 tables, 4 equations
☆ STCL:Curriculum learning Strategies for deep learning image steganography models
Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.
☆ Tamper-evident Image using JPEG Fixed Points
An intriguing phenomenon about JPEG compression has been observed since two decades ago- after repeating JPEG compression and decompression, it leads to a stable image that does not change anymore, which is a fixed point. In this work, we prove the existence of fixed points in the essential JPEG procedures. We analyze JPEG compression and decompression processes, revealing the existence of fixed points that can be reached within a few iterations. These fixed points are diverse and preserve the image's visual quality, ensuring minimal distortion. This result is used to develop a method to create a tamper-evident image from the original authentic image, which can expose tampering operations by showing deviations from the fixed point image.
comment: 6 pages, 6 figures
☆ RGB-D Tracking via Hierarchical Modality Aggregation and Distribution Network
The integration of dual-modal features has been pivotal in advancing RGB-Depth (RGB-D) tracking. However, current trackers are less efficient and focus solely on single-level features, resulting in weaker robustness in fusion and slower speeds that fail to meet the demands of real-world applications. In this paper, we introduce a novel network, denoted as HMAD (Hierarchical Modality Aggregation and Distribution), which addresses these challenges. HMAD leverages the distinct feature representation strengths of RGB and depth modalities, giving prominence to a hierarchical approach for feature distribution and fusion, thereby enhancing the robustness of RGB-D tracking. Experimental results on various RGB-D datasets demonstrate that HMAD achieves state-of-the-art performance. Moreover, real-world experiments further validate HMAD's capacity to effectively handle a spectrum of tracking challenges in real-time scenarios.
☆ Occlusion-Aware Self-Supervised Monocular Depth Estimation for Weak-Texture Endoscopic Images
We propose a self-supervised monocular depth estimation network tailored for endoscopic scenes, aiming to infer depth within the gastrointestinal tract from monocular images. Existing methods, though accurate, typically assume consistent illumination, which is often violated due to dynamic lighting and occlusions caused by GI motility. These variations lead to incorrect geometric interpretations and unreliable self-supervised signals, degrading depth reconstruction quality. To address this, we introduce an occlusion-aware self-supervised framework. First, we incorporate an occlusion mask for data augmentation, generating pseudo-labels by simulating viewpoint-dependent occlusion scenarios. This enhances the model's ability to learn robust depth features under partial visibility. Second, we leverage semantic segmentation guided by non-negative matrix factorization, clustering convolutional activations to generate pseudo-labels in texture-deprived regions, thereby improving segmentation accuracy and mitigating information loss from lighting changes. Experimental results on the SCARED dataset show that our method achieves state-of-the-art performance in self-supervised depth estimation. Additionally, evaluations on the Endo-SLAM and SERV-CT datasets demonstrate strong generalization across diverse endoscopic environments.
☆ Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
comment: 11 pages, 7 figures, preprint version
☆ A Comprehensive Survey of Knowledge-Based Vision Question Answering Systems: The Lifecycle of Knowledge in Visual Reasoning Task
Knowledge-based Vision Question Answering (KB-VQA) extends general Vision Question Answering (VQA) by not only requiring the understanding of visual and textual inputs but also extensive range of knowledge, enabling significant advancements across various real-world applications. KB-VQA introduces unique challenges, including the alignment of heterogeneous information from diverse modalities and sources, the retrieval of relevant knowledge from noisy or large-scale repositories, and the execution of complex reasoning to infer answers from the combined context. With the advancement of Large Language Models (LLMs), KB-VQA systems have also undergone a notable transformation, where LLMs serve as powerful knowledge repositories, retrieval-augmented generators and strong reasoners. Despite substantial progress, no comprehensive survey currently exists that systematically organizes and reviews the existing KB-VQA methods. This survey aims to fill this gap by establishing a structured taxonomy of KB-VQA approaches, and categorizing the systems into main stages: knowledge representation, knowledge retrieval, and knowledge reasoning. By exploring various knowledge integration techniques and identifying persistent challenges, this work also outlines promising future research directions, providing a foundation for advancing KB-VQA models and their applications.
comment: 20 pages, 5 figures, 4 tables
☆ When Gaussian Meets Surfel: Ultra-fast High-fidelity Radiance Field Rendering
We introduce Gaussian-enhanced Surfels (GESs), a bi-scale representation for radiance field rendering, wherein a set of 2D opaque surfels with view-dependent colors represent the coarse-scale geometry and appearance of scenes, and a few 3D Gaussians surrounding the surfels supplement fine-scale appearance details. The rendering with GESs consists of two passes -- surfels are first rasterized through a standard graphics pipeline to produce depth and color maps, and then Gaussians are splatted with depth testing and color accumulation on each pixel order independently. The optimization of GESs from multi-view images is performed through an elaborate coarse-to-fine procedure, faithfully capturing rich scene appearance. The entirely sorting-free rendering of GESs not only achieves very fast rates, but also produces view-consistent images, successfully avoiding popping artifacts under view changes. The basic GES representation can be easily extended to achieve anti-aliasing in rendering (Mip-GES), boosted rendering speeds (Speedy-GES) and compact storage (Compact-GES), and reconstruct better scene geometries by replacing 3D Gaussians with 2D Gaussians (2D-GES). Experimental results show that GESs advance the state-of-the-arts as a compelling representation for ultra-fast high-fidelity radiance field rendering.
☆ An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
☆ Text-to-Image Alignment in Denoising-Based Models through Step Selection
Visual generative AI models often encounter challenges related to text-image alignment and reasoning limitations. This paper presents a novel method for selectively enhancing the signal at critical denoising steps, optimizing image generation based on input semantics. Our approach addresses the shortcomings of early-stage signal modifications, demonstrating that adjustments made at later stages yield superior results. We conduct extensive experiments to validate the effectiveness of our method in producing semantically aligned images on Diffusion and Flow Matching model, achieving state-of-the-art performance. Our results highlight the importance of a judicious choice of sampling stage to improve performance and overall image alignment.
☆ ESDiff: Encoding Strategy-inspired Diffusion Model with Few-shot Learning for Color Image Inpainting
Image inpainting is a technique used to restore missing or damaged regions of an image. Traditional methods primarily utilize information from adjacent pixels for reconstructing missing areas, while they struggle to preserve complex details and structures. Simultaneously, models based on deep learning necessitate substantial amounts of training data. To address this challenge, an encoding strategy-inspired diffusion model with few-shot learning for color image inpainting is proposed in this paper. The main idea of this novel encoding strategy is the deployment of a "virtual mask" to construct high-dimensional objects through mutual perturbations between channels. This approach enables the diffusion model to capture diverse image representations and detailed features from limited training samples. Moreover, the encoding strategy leverages redundancy between channels, integrates with low-rank methods during iterative inpainting, and incorporates the diffusion model to achieve accurate information output. Experimental results indicate that our method exceeds current techniques in quantitative metrics, and the reconstructed images quality has been improved in aspects of texture and structural integrity, leading to more precise and coherent results.
comment: 11 pages,10 figures,Submit to tcsvt
☆ Towards One-Stage End-to-End Table Structure Recognition with Parallel Regression for Diverse Scenarios
Table structure recognition aims to parse tables in unstructured data into machine-understandable formats. Recent methods address this problem through a two-stage process or optimized one-stage approaches. However, these methods either require multiple networks to be serially trained and perform more time-consuming sequential decoding, or rely on complex post-processing algorithms to parse the logical structure of tables. They struggle to balance cross-scenario adaptability, robustness, and computational efficiency. In this paper, we propose a one-stage end-to-end table structure parsing network called TableCenterNet. This network unifies the prediction of table spatial and logical structure into a parallel regression task for the first time, and implicitly learns the spatial-logical location mapping laws of cells through a synergistic architecture of shared feature extraction layers and task-specific decoding. Compared with two-stage methods, our method is easier to train and faster to infer. Experiments on benchmark datasets show that TableCenterNet can effectively parse table structures in diverse scenarios and achieve state-of-the-art performance on the TableGraph-24k dataset. Code is available at https://github.com/dreamy-xay/TableCenterNet.
Mamba-Sea: A Mamba-based Framework with Global-to-Local Sequence Augmentation for Generalizable Medical Image Segmentation IEEE
To segment medical images with distribution shifts, domain generalization (DG) has emerged as a promising setting to train models on source domains that can generalize to unseen target domains. Existing DG methods are mainly based on CNN or ViT architectures. Recently, advanced state space models, represented by Mamba, have shown promising results in various supervised medical image segmentation. The success of Mamba is primarily owing to its ability to capture long-range dependencies while keeping linear complexity with input sequence length, making it a promising alternative to CNNs and ViTs. Inspired by the success, in the paper, we explore the potential of the Mamba architecture to address distribution shifts in DG for medical image segmentation. Specifically, we propose a novel Mamba-based framework, Mamba-Sea, incorporating global-to-local sequence augmentation to improve the model's generalizability under domain shift issues. Our Mamba-Sea introduces a global augmentation mechanism designed to simulate potential variations in appearance across different sites, aiming to suppress the model's learning of domain-specific information. At the local level, we propose a sequence-wise augmentation along input sequences, which perturbs the style of tokens within random continuous sub-sequences by modeling and resampling style statistics associated with domain shifts. To our best knowledge, Mamba-Sea is the first work to explore the generalization of Mamba for medical image segmentation, providing an advanced and promising Mamba-based architecture with strong robustness to domain shifts. Remarkably, our proposed method is the first to surpass a Dice coefficient of 90% on the Prostate dataset, which exceeds previous SOTA of 88.61%. The code is available at https://github.com/orange-czh/Mamba-Sea.
comment: Accepted by IEEE TMI 2025. The code is available at https://github.com/orange-czh/Mamba-Sea
☆ RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability -- ranging from enhanced personalization in image generation to consistent character representation in video rendering -- progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single prediction. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or matches existing baselines across multiple benchmarks and subject categories (e.g., \emph{Animal}, \emph{Object}), achieving up to 6.4-point gains in textual alignment and 8.5-point gains in subject consistency. It also excels with lesser-known concepts, aligning with human preferences at over 87\% accuracy.
☆ Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
☆ Unveiling Hidden Vulnerabilities in Digital Human Generation via Adversarial Attacks
Expressive human pose and shape estimation (EHPS) is crucial for digital human generation, especially in applications like live streaming. While existing research primarily focuses on reducing estimation errors, it largely neglects robustness and security aspects, leaving these systems vulnerable to adversarial attacks. To address this significant challenge, we propose the \textbf{Tangible Attack (TBA)}, a novel framework designed to generate adversarial examples capable of effectively compromising any digital human generation model. Our approach introduces a \textbf{Dual Heterogeneous Noise Generator (DHNG)}, which leverages Variational Autoencoders (VAE) and ControlNet to produce diverse, targeted noise tailored to the original image features. Additionally, we design a custom \textbf{adversarial loss function} to optimize the noise, ensuring both high controllability and potent disruption. By iteratively refining the adversarial sample through multi-gradient signals from both the noise and the state-of-the-art EHPS model, TBA substantially improves the effectiveness of adversarial attacks. Extensive experiments demonstrate TBA's superiority, achieving a remarkable 41.0\% increase in estimation error, with an average improvement of approximately 17.0\%. These findings expose significant security vulnerabilities in current EHPS models and highlight the need for stronger defenses in digital human generation systems.
comment: 14 pages, 7 figures
☆ FRAG: Frame Selection Augmented Generation for Long Video and Long Document Understanding
There has been impressive progress in Large Multimodal Models (LMMs). Recent works extend these models to long inputs, including multi-page documents and long videos. However, the model size and performance of these long context models are still limited due to the computational cost in both training and inference. In this work, we explore an orthogonal direction and process long inputs without long context LMMs. We propose Frame Selection Augmented Generation (FRAG), where the model first selects relevant frames within the input, and then only generates the final outputs based on the selected frames. The core of the selection process is done by scoring each frame independently, which does not require long context processing. The frames with the highest scores are then selected by a simple Top-K selection. We show that this frustratingly simple framework is applicable to both long videos and multi-page documents using existing LMMs without any fine-tuning. We consider two models, LLaVA-OneVision and InternVL2, in our experiments and show that FRAG consistently improves the performance and achieves state-of-the-art performances for both long video and long document understanding. For videos, FRAG substantially improves InternVL2-76B by 5.8% on MLVU and 3.7% on Video-MME. For documents, FRAG achieves over 20% improvements on MP-DocVQA compared with recent LMMs specialized in long document understanding. Code is available at: https://github.com/NVlabs/FRAG
☆ Predict-Optimize-Distill: A Self-Improving Cycle for 4D Object Understanding
Humans can resort to long-form inspection to build intuition on predicting the 3D configurations of unseen objects. The more we observe the object motion, the better we get at predicting its 3D state immediately. Existing systems either optimize underlying representations from multi-view observations or train a feed-forward predictor from supervised datasets. We introduce Predict-Optimize-Distill (POD), a self-improving framework that interleaves prediction and optimization in a mutually reinforcing cycle to achieve better 4D object understanding with increasing observation time. Given a multi-view object scan and a long-form monocular video of human-object interaction, POD iteratively trains a neural network to predict local part poses from RGB frames, uses this predictor to initialize a global optimization which refines output poses through inverse rendering, then finally distills the results of optimization back into the model by generating synthetic self-labeled training data from novel viewpoints. Each iteration improves both the predictive model and the optimized motion trajectory, creating a virtuous cycle that bootstraps its own training data to learn about the pose configurations of an object. We also introduce a quasi-multiview mining strategy for reducing depth ambiguity by leveraging long video. We evaluate POD on 14 real-world and 5 synthetic objects with various joint types, including revolute and prismatic joints as well as multi-body configurations where parts detach or reattach independently. POD demonstrates significant improvement over a pure optimization baseline which gets stuck in local minima, particularly for longer videos. We also find that POD's performance improves with both video length and successive iterations of the self-improving cycle, highlighting its ability to scale performance with additional observations and looped refinement.
comment: See our website at: https://predict-optimize-distill.github.io/pod.github.io First two authors contributed equally
☆ Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
comment: 13 pages, 8 figures, Project page: https://garygutc.github.io/UniME
☆ 3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models 3DV
Video try-on replaces clothing in videos with target garments. Existing methods struggle to generate high-quality and temporally consistent results when handling complex clothing patterns and diverse body poses. We present 3DV-TON, a novel diffusion-based framework for generating high-fidelity and temporally consistent video try-on results. Our approach employs generated animatable textured 3D meshes as explicit frame-level guidance, alleviating the issue of models over-focusing on appearance fidelity at the expanse of motion coherence. This is achieved by enabling direct reference to consistent garment texture movements throughout video sequences. The proposed method features an adaptive pipeline for generating dynamic 3D guidance: (1) selecting a keyframe for initial 2D image try-on, followed by (2) reconstructing and animating a textured 3D mesh synchronized with original video poses. We further introduce a robust rectangular masking strategy that successfully mitigates artifact propagation caused by leaking clothing information during dynamic human and garment movements. To advance video try-on research, we introduce HR-VVT, a high-resolution benchmark dataset containing 130 videos with diverse clothing types and scenarios. Quantitative and qualitative results demonstrate our superior performance over existing methods. The project page is at this link https://2y7c3.github.io/3DV-TON/
comment: Project page: https://2y7c3.github.io/3DV-TON/
☆ StereoMamba: Real-time and Robust Intraoperative Stereo Disparity Estimation via Long-range Spatial Dependencies
Stereo disparity estimation is crucial for obtaining depth information in robot-assisted minimally invasive surgery (RAMIS). While current deep learning methods have made significant advancements, challenges remain in achieving an optimal balance between accuracy, robustness, and inference speed. To address these challenges, we propose the StereoMamba architecture, which is specifically designed for stereo disparity estimation in RAMIS. Our approach is based on a novel Feature Extraction Mamba (FE-Mamba) module, which enhances long-range spatial dependencies both within and across stereo images. To effectively integrate multi-scale features from FE-Mamba, we then introduce a novel Multidimensional Feature Fusion (MFF) module. Experiments against the state-of-the-art on the ex-vivo SCARED benchmark demonstrate that StereoMamba achieves superior performance on EPE of 2.64 px and depth MAE of 2.55 mm, the second-best performance on Bad2 of 41.49% and Bad3 of 26.99%, while maintaining an inference speed of 21.28 FPS for a pair of high-resolution images (1280*1024), striking the optimum balance between accuracy, robustness, and efficiency. Furthermore, by comparing synthesized right images, generated from warping left images using the generated disparity maps, with the actual right image, StereoMamba achieves the best average SSIM (0.8970) and PSNR (16.0761), exhibiting strong zero-shot generalization on the in-vivo RIS2017 and StereoMIS datasets.
☆ S2S-Net: Addressing the Domain Gap of Heterogeneous Sensor Systems in LiDAR-Based Collective Perception
Collective Perception (CP) has emerged as a promising approach to overcome the limitations of individual perception in the context of autonomous driving. Various approaches have been proposed to realize collective perception; however, the Sensor2Sensor domain gap that arises from the utilization of different sensor systems in Connected and Automated Vehicles (CAVs) remains mostly unaddressed. This is primarily due to the paucity of datasets containing heterogeneous sensor setups among the CAVs. The recently released SCOPE datasets address this issue by providing data from three different LiDAR sensors for each CAV. This study is the first to tackle the Sensor2Sensor domain gap in vehicle to vehicle (V2V) collective perception. First, we present our sensor-domain robust architecture S2S-Net. Then an in-depth analysis of the Sensor2Sensor domain adaptation capabilities of S2S-Net on the SCOPE dataset is conducted. S2S-Net demonstrates the capability to maintain very high performance in unseen sensor domains and achieved state-of-the-art results on the SCOPE dataset.
☆ Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Earth observation (EO) is crucial for monitoring environmental changes, responding to disasters, and managing natural resources. In this context, foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently. However, as these models grow in size, fine-tuning becomes increasingly challenging due to the associated computational resources and costs, limiting their accessibility and scalability. Furthermore, full fine-tuning can lead to forgetting pre-trained features and even degrade model generalization. To address this, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a promising solution. In this paper, we conduct extensive experiments with various foundation model architectures and PEFT techniques to evaluate their effectiveness on five different EO datasets. Our results provide a comprehensive comparison, offering insights into when and how PEFT methods support the adaptation of pre-trained geospatial models. We demonstrate that PEFT techniques match or even exceed full fine-tuning performance and enhance model generalisation to unseen geographic regions, while reducing training time and memory requirements. Additional experiments investigate the effect of architecture choices such as the decoder type or the use of metadata, suggesting UNet decoders and fine-tuning without metadata as the recommended configuration. We have integrated all evaluated foundation models and techniques into the open-source package TerraTorch to support quick, scalable, and cost-effective model adaptation.
comment: Code available at https://github.com/IBM/peft-geofm
☆ SDVPT: Semantic-Driven Visual Prompt Tuning for Open-World Object Counting
Open-world object counting leverages the robust text-image alignment of pre-trained vision-language models (VLMs) to enable counting of arbitrary categories in images specified by textual queries. However, widely adopted naive fine-tuning strategies concentrate exclusively on text-image consistency for categories contained in training, which leads to limited generalizability for unseen categories. In this work, we propose a plug-and-play Semantic-Driven Visual Prompt Tuning framework (SDVPT) that transfers knowledge from the training set to unseen categories with minimal overhead in parameters and inference time. First, we introduce a two-stage visual prompt learning strategy composed of Category-Specific Prompt Initialization (CSPI) and Topology-Guided Prompt Refinement (TGPR). The CSPI generates category-specific visual prompts, and then TGPR distills latent structural patterns from the VLM's text encoder to refine these prompts. During inference, we dynamically synthesize the visual prompts for unseen categories based on the semantic correlation between unseen and training categories, facilitating robust text-image alignment for unseen categories. Extensive experiments integrating SDVPT with all available open-world object counting models demonstrate its effectiveness and adaptability across three widely used datasets: FSC-147, CARPK, and PUCPR+.
☆ A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks.
☆ Highly Accurate and Diverse Traffic Data: The DeepScenario Open 3D Dataset
Accurate 3D trajectory data is crucial for advancing autonomous driving. Yet, traditional datasets are usually captured by fixed sensors mounted on a car and are susceptible to occlusion. Additionally, such an approach can precisely reconstruct the dynamic environment in the close vicinity of the measurement vehicle only, while neglecting objects that are further away. In this paper, we introduce the DeepScenario Open 3D Dataset (DSC3D), a high-quality, occlusion-free dataset of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline. Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale, containing many unprecedented scenarios such as complex vehicle-pedestrian interaction on highly populated urban streets and comprehensive parking maneuvers from entry to exit. DSC3D dataset was captured in five various locations in Europe and the United States and include: a parking lot, a crowded inner-city, a steep urban intersection, a federal highway, and a suburban intersection. Our 3D trajectory dataset aims to enhance autonomous driving systems by providing detailed environmental 3D representations, which could lead to improved obstacle interactions and safety. We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents. Our interactive online visualization platform and the complete dataset are publicly available at app.deepscenario.com, facilitating research in motion prediction, behavior modeling, and safety validation.
☆ TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
☆ I-INR: Iterative Implicit Neural Representations
Implicit Neural Representations (INRs) have revolutionized signal processing and computer vision by modeling signals as continuous, differentiable functions parameterized by neural networks. However, their inherent formulation as a regression problem makes them prone to regression to the mean, limiting their ability to capture fine details, retain high-frequency information, and handle noise effectively. To address these challenges, we propose Iterative Implicit Neural Representations (I-INRs) a novel plug-and-play framework that enhances signal reconstruction through an iterative refinement process. I-INRs effectively recover high-frequency details, improve robustness to noise, and achieve superior reconstruction quality. Our framework seamlessly integrates with existing INR architectures, delivering substantial performance gains across various tasks. Extensive experiments show that I-INRs outperform baseline methods, including WIRE, SIREN, and Gauss, in diverse computer vision applications such as image restoration, image denoising, and object occupancy prediction.
☆ M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
☆ DRC: Enhancing Personalized Image Generation via Disentangled Representation Composition
Personalized image generation has emerged as a promising direction in multimodal content creation. It aims to synthesize images tailored to individual style preferences (e.g., color schemes, character appearances, layout) and semantic intentions (e.g., emotion, action, scene contexts) by leveraging user-interacted history images and multimodal instructions. Despite notable progress, existing methods -- whether based on diffusion models, large language models, or Large Multimodal Models (LMMs) -- struggle to accurately capture and fuse user style preferences and semantic intentions. In particular, the state-of-the-art LMM-based method suffers from the entanglement of visual features, leading to Guidance Collapse, where the generated images fail to preserve user-preferred styles or reflect the specified semantics. To address these limitations, we introduce DRC, a novel personalized image generation framework that enhances LMMs through Disentangled Representation Composition. DRC explicitly extracts user style preferences and semantic intentions from history images and the reference image, respectively, to form user-specific latent instructions that guide image generation within LMMs. Specifically, it involves two critical learning stages: 1) Disentanglement learning, which employs a dual-tower disentangler to explicitly separate style and semantic features, optimized via a reconstruction-driven paradigm with difficulty-aware importance sampling; and 2) Personalized modeling, which applies semantic-preserving augmentations to effectively adapt the disentangled representations for robust personalized generation. Extensive experiments on two benchmarks demonstrate that DRC shows competitive performance while effectively mitigating the guidance collapse issue, underscoring the importance of disentangled representation learning for controllable and effective personalized image generation.
☆ TimeChat-Online: 80% Visual Tokens are Naturally Redundant in Streaming Videos
The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.
☆ DIMT25@ICDAR2025: HW-TSC's End-to-End Document Image Machine Translation System Leveraging Large Vision-Language Model
This paper presents the technical solution proposed by Huawei Translation Service Center (HW-TSC) for the "End-to-End Document Image Machine Translation for Complex Layouts" competition at the 19th International Conference on Document Analysis and Recognition (DIMT25@ICDAR2025). Leveraging state-of-the-art open-source large vision-language model (LVLM), we introduce a training framework that combines multi-task learning with perceptual chain-of-thought to develop a comprehensive end-to-end document translation system. During the inference phase, we apply minimum Bayesian decoding and post-processing strategies to further enhance the system's translation capabilities. Our solution uniquely addresses both OCR-based and OCR-free document image translation tasks within a unified framework. This paper systematically details the training methods, inference strategies, LVLM base models, training data, experimental setups, and results, demonstrating an effective approach to document image machine translation.
comment: 7 pages, 1 figures, 2 tables
☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
☆ Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+ IEEE
To improve the segmentation of diabetic retinopathy lesions (microaneurysms, hemorrhages, exudates, and soft exudates), we implemented a binary segmentation method specific to each type of lesion. As post-segmentation, we combined the individual model outputs into a single image to better analyze the lesion types. This approach facilitated parameter optimization and improved accuracy, effectively overcoming challenges related to dataset limitations and annotation complexity. Specific preprocessing steps included cropping and applying contrast-limited adaptive histogram equalization to the L channel of the LAB image. Additionally, we employed targeted data augmentation techniques to further refine the model's efficacy. Our methodology utilized the DeepLabv3+ model, achieving a segmentation accuracy of 99%. These findings highlight the efficacy of innovative strategies in advancing medical image analysis, particularly in the precise segmentation of diabetic retinopathy lesions. The IDRID dataset was utilized to validate and demonstrate the robustness of our approach.
comment: This work was accepted at the ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) 2024
☆ EdgePoint2: Compact Descriptors for Superior Efficiency and Accuracy
The field of keypoint extraction, which is essential for vision applications like Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM), has evolved from relying on handcrafted methods to leveraging deep learning techniques. While deep learning approaches have significantly improved performance, they often incur substantial computational costs, limiting their deployment in real-time edge applications. Efforts to create lightweight neural networks have seen some success, yet they often result in trade-offs between efficiency and accuracy. Additionally, the high-dimensional descriptors generated by these networks poses challenges for distributed applications requiring efficient communication and coordination, highlighting the need for compact yet competitively accurate descriptors. In this paper, we present EdgePoint2, a series of lightweight keypoint detection and description neural networks specifically tailored for edge computing applications on embedded system. The network architecture is optimized for efficiency without sacrificing accuracy. To train compact descriptors, we introduce a combination of Orthogonal Procrustes loss and similarity loss, which can serve as a general approach for hypersphere embedding distillation tasks. Additionally, we offer 14 sub-models to satisfy diverse application requirements. Our experiments demonstrate that EdgePoint2 consistently achieves state-of-the-art (SOTA) accuracy and efficiency across various challenging scenarios while employing lower-dimensional descriptors (32/48/64). Beyond its accuracy, EdgePoint2 offers significant advantages in flexibility, robustness, and versatility. Consequently, EdgePoint2 emerges as a highly competitive option for visual tasks, especially in contexts demanding adaptability to diverse computational and communication constraints.
☆ Towards Generalized and Training-Free Text-Guided Semantic Manipulation
Text-guided semantic manipulation refers to semantically editing an image generated from a source prompt to match a target prompt, enabling the desired semantic changes (e.g., addition, removal, and style transfer) while preserving irrelevant contents. With the powerful generative capabilities of the diffusion model, the task has shown the potential to generate high-fidelity visual content. Nevertheless, existing methods either typically require time-consuming fine-tuning (inefficient), fail to accomplish multiple semantic manipulations (poorly extensible), and/or lack support for different modality tasks (limited generalizability). Upon further investigation, we find that the geometric properties of noises in the diffusion model are strongly correlated with the semantic changes. Motivated by this, we propose a novel $\textit{GTF}$ for text-guided semantic manipulation, which has the following attractive capabilities: 1) $\textbf{Generalized}$: our $\textit{GTF}$ supports multiple semantic manipulations (e.g., addition, removal, and style transfer) and can be seamlessly integrated into all diffusion-based methods (i.e., Plug-and-play) across different modalities (i.e., modality-agnostic); and 2) $\textbf{Training-free}$: $\textit{GTF}$ produces high-fidelity results via simply controlling the geometric relationship between noises without tuning or optimization. Our extensive experiments demonstrate the efficacy of our approach, highlighting its potential to advance the state-of-the-art in semantics manipulation.
☆ Precision Neural Network Quantization via Learnable Adaptive Modules
Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency while effectively maintaining model performance. The paradigm of QAT is to introduce fake quantization operators during the training process, allowing the model to autonomously compensate for information loss caused by quantization. Making quantization parameters trainable can significantly improve the performance of QAT, but at the cost of compromising the flexibility during inference, especially when dealing with activation values with substantially different distributions. In this paper, we propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ), to resolve this conflict. Specifically, the proposed ASQ method first dynamically adjusts quantization scaling factors through a trained module capable of accommodating different activations. Then, to address the rigid resolution issue inherent in Power of Two (POT) quantization, we propose an efficient non-uniform quantization scheme. We utilize the Power Of Square root of Two (POST) as the basis for exponential quantization, effectively handling the bell-shaped distribution of neural network weights across various bit-widths while maintaining computational efficiency through a Look-Up Table method (LUT). Extensive experimental results demonstrate that the proposed ASQ method is superior to the state-of-the-art QAT approaches. Notably that the ASQ is even competitive compared to full precision baselines, with its 4-bit quantized ResNet34 model improving accuracy by 1.2\% on ImageNet.
☆ Group Downsampling with Equivariant Anti-aliasing
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
☆ DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks IEEE
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
comment: Accepted by IEEE Transactions on Multimedia
☆ Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment
The rapid advancement of artificial intelligence and widespread use of smartphones have resulted in an exponential growth of image data, both real (camera-captured) and virtual (AI-generated). This surge underscores the critical need for robust image quality assessment (IQA) methods that accurately reflect human visual perception. Traditional IQA techniques primarily rely on spatial features - such as signal-to-noise ratio, local structural distortions, and texture inconsistencies - to identify artifacts. While effective for unprocessed or conventionally altered images, these methods fall short in the context of modern image post-processing powered by deep neural networks (DNNs). The rise of DNN-based models for image generation, enhancement, and restoration has significantly improved visual quality, yet made accurate assessment increasingly complex. To address this, we propose a novel IQA approach that bridges the gap between deep learning methods and human perception. Our model disentangles deep features into high-level semantic information and low-level perceptual details, treating each stream separately. These features are then combined with conventional IQA metrics to provide a more comprehensive evaluation framework. This hybrid design enables the model to assess both global context and intricate image details, better reflecting the human visual process, which first interprets overall structure before attending to fine-grained elements. The final stage employs a multilayer perceptron (MLP) to map the integrated features into a concise quality score. Experimental results demonstrate that our method achieves improved consistency with human perceptual judgments compared to existing IQA models.
☆ Range Image-Based Implicit Neural Compression for LiDAR Point Clouds
This paper presents a novel scheme to efficiently compress Light Detection and Ranging~(LiDAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed understanding of the corresponding 3D scenes. We focus on 2D range images~(RIs) as a lightweight format for representing 3D LiDAR observations. Although conventional image compression techniques can be adapted to improve compression efficiency for RIs, their practical performance is expected to be limited due to differences in bit precision and the distinct pixel value distribution characteristics between natural images and RIs. We propose a novel implicit neural representation~(INR)--based RI compression method that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and detection quality at low bitrates and decoding latency.
☆ Visual and textual prompts for enhancing emotion recognition in video
Vision Large Language Models (VLLMs) exhibit promising potential for multi-modal understanding, yet their application to video-based emotion recognition remains limited by insufficient spatial and contextual awareness. Traditional approaches, which prioritize isolated facial features, often neglect critical non-verbal cues such as body language, environmental context, and social interactions, leading to reduced robustness in real-world scenarios. To address this gap, we propose Set-of-Vision-Text Prompting (SoVTP), a novel framework that enhances zero-shot emotion recognition by integrating spatial annotations (e.g., bounding boxes, facial landmarks), physiological signals (facial action units), and contextual cues (body posture, scene dynamics, others' emotions) into a unified prompting strategy. SoVTP preserves holistic scene information while enabling fine-grained analysis of facial muscle movements and interpersonal dynamics. Extensive experiments show that SoVTP achieves substantial improvements over existing visual prompting methods, demonstrating its effectiveness in enhancing VLLMs' video emotion recognition capabilities.
comment: 12 pages, 10 figures
☆ Towards Generalizable Deepfake Detection with Spatial-Frequency Collaborative Learning and Hierarchical Cross-Modal Fusion
The rapid evolution of deep generative models poses a critical challenge to deepfake detection, as detectors trained on forgery-specific artifacts often suffer significant performance degradation when encountering unseen forgeries. While existing methods predominantly rely on spatial domain analysis, frequency domain operations are primarily limited to feature-level augmentation, leaving frequency-native artifacts and spatial-frequency interactions insufficiently exploited. To address this limitation, we propose a novel detection framework that integrates multi-scale spatial-frequency analysis for universal deepfake detection. Our framework comprises three key components: (1) a local spectral feature extraction pipeline that combines block-wise discrete cosine transform with cascaded multi-scale convolutions to capture subtle spectral artifacts; (2) a global spectral feature extraction pipeline utilizing scale-invariant differential accumulation to identify holistic forgery distribution patterns; and (3) a multi-stage cross-modal fusion mechanism that incorporates shallow-layer attention enhancement and deep-layer dynamic modulation to model spatial-frequency interactions. Extensive evaluations on widely adopted benchmarks demonstrate that our method outperforms state-of-the-art deepfake detection methods in both accuracy and generalizability.
☆ MCAF: Efficient Agent-based Video Understanding Framework through Multimodal Coarse-to-Fine Attention Focusing
Even in the era of rapid advances in large models, video understanding, particularly long videos, remains highly challenging. Compared with textual or image-based information, videos commonly contain more information with redundancy, requiring large models to strategically allocate attention at a global level for accurate comprehension. To address this, we propose MCAF, an agent-based, training-free framework perform video understanding through Multimodal Coarse-to-fine Attention Focusing. The key innovation lies in its ability to sense and prioritize segments of the video that are highly relevant to the understanding task. First, MCAF hierarchically concentrates on highly relevant frames through multimodal information, enhancing the correlation between the acquired contextual information and the query. Second, it employs a dilated temporal expansion mechanism to mitigate the risk of missing crucial details when extracting information from these concentrated frames. In addition, our framework incorporates a self-reflection mechanism utilizing the confidence level of the model's responses as feedback. By iteratively applying these two creative focusing strategies, it adaptively adjusts attention to capture highly query-connected context and thus improves response accuracy. MCAF outperforms comparable state-of-the-art methods on average. On the EgoSchema dataset, it achieves a remarkable 5% performance gain over the leading approach. Meanwhile, on Next-QA and IntentQA datasets, it outperforms the current state-of-the-art standard by 0.2% and 0.3% respectively. On the Video-MME dataset, which features videos averaging nearly an hour in length, MCAF also outperforms other agent-based methods.
☆ Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
comment: Project Page: https://apc-vlm.github.io/
☆ We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce \(\projectname\), a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that \(\projectname\) significantly enhances temporal and logical alignment across diverse prompts by almost $40\%$.
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models IEEE
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ A Genealogy of Multi-Sensor Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing, primarily adopting approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches that each come with significant benefits and drawbacks. This paper examines these approaches along with their roots in the computer vision field in order to characterize potential advantages and pitfalls while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We place emphasis on the multi-sensor aspect of Earth observations, and the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 20 pages, submitted to ACM SigSpatial, currently under peer review
☆ PhysioSync: Temporal and Cross-Modal Contrastive Learning Inspired by Physiological Synchronization for EEG-Based Emotion Recognition
Electroencephalography (EEG) signals provide a promising and involuntary reflection of brain activity related to emotional states, offering significant advantages over behavioral cues like facial expressions. However, EEG signals are often noisy, affected by artifacts, and vary across individuals, complicating emotion recognition. While multimodal approaches have used Peripheral Physiological Signals (PPS) like GSR to complement EEG, they often overlook the dynamic synchronization and consistent semantics between the modalities. Additionally, the temporal dynamics of emotional fluctuations across different time resolutions in PPS remain underexplored. To address these challenges, we propose PhysioSync, a novel pre-training framework leveraging temporal and cross-modal contrastive learning, inspired by physiological synchronization phenomena. PhysioSync incorporates Cross-Modal Consistency Alignment (CM-CA) to model dynamic relationships between EEG and complementary PPS, enabling emotion-related synchronizations across modalities. Besides, it introduces Long- and Short-Term Temporal Contrastive Learning (LS-TCL) to capture emotional synchronization at different temporal resolutions within modalities. After pre-training, cross-resolution and cross-modal features are hierarchically fused and fine-tuned to enhance emotion recognition. Experiments on DEAP and DREAMER datasets demonstrate PhysioSync's advanced performance under uni-modal and cross-modal conditions, highlighting its effectiveness for EEG-centered emotion recognition.
comment: The source code will be publicly available at https://github.com/MSA-LMC/PhysioSync
☆ A Comprehensive Review on RNA Subcellular Localization Prediction
The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.
☆ OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
comment: 10 pages, 3 figures
♻ ☆ HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video Understanding CVPR 2025
Despite advancements in multimodal large language models (MLLMs), current approaches struggle in medium-to-long video understanding due to frame and context length limitations. As a result, these models often depend on frame sampling, which risks missing key information over time and lacks task-specific relevance. To address these challenges, we introduce HierarQ, a task-aware hierarchical Q-Former based framework that sequentially processes frames to bypass the need for frame sampling, while avoiding LLM's context length limitations. We introduce a lightweight two-stream language-guided feature modulator to incorporate task awareness in video understanding, with the entity stream capturing frame-level object information within a short context and the scene stream identifying their broader interactions over longer period of time. Each stream is supported by dedicated memory banks which enables our proposed Hierachical Querying transformer (HierarQ) to effectively capture short and long-term context. Extensive evaluations on 10 video benchmarks across video understanding, question answering, and captioning tasks demonstrate HierarQ's state-of-the-art performance across most datasets, proving its robustness and efficiency for comprehensive video analysis.
comment: Accepted in CVPR 2025
♻ ☆ DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images ICASSP 2025
The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods. The code is available at https://github.com/KrishnaswamyLab/DiffKillR.
comment: ICASSP 2025, Oral Presentation
♻ ☆ ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: ICASSP 2025, Oral Presentation
♻ ☆ jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
comment: 30 pages, 1-10 main paper, 10-12 refs, 12-30 benchmarks
♻ ☆ DDU-Net: A Domain Decomposition-Based CNN for High-Resolution Image Segmentation on Multiple GPUs
The segmentation of ultra-high resolution images poses challenges such as loss of spatial information or computational inefficiency. In this work, a novel approach that combines encoder-decoder architectures with domain decomposition strategies to address these challenges is proposed. Specifically, a domain decomposition-based U-Net (DDU-Net) architecture is introduced, which partitions input images into non-overlapping patches that can be processed independently on separate devices. A communication network is added to facilitate inter-patch information exchange to enhance the understanding of spatial context. Experimental validation is performed on a synthetic dataset that is designed to measure the effectiveness of the communication network. Then, the performance is tested on the DeepGlobe land cover classification dataset as a real-world benchmark data set. The results demonstrate that the approach, which includes inter-patch communication for images divided into $16\times16$ non-overlapping subimages, achieves a $2-3\,\%$ higher intersection over union (IoU) score compared to the same network without inter-patch communication. The performance of the network which includes communication is equivalent to that of a baseline U-Net trained on the full image, showing that our model provides an effective solution for segmenting ultra-high-resolution images while preserving spatial context. The code is available at https://github.com/corne00/DDU-Net.
♻ ☆ Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models with high efficiency through Flexible Progressive Supervised Fine-tuning (FP-SFT). Equipped with our proposed Unambiguous image Representation (UniRep), Lumina-mGPT can flexibly generate high-quality images of varying aspect ratios. Building on the strong image generation capabilities, we further explore Ominiponent Supervised Fine-tuning (Omni-SFT), an initial attempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like text-to-image/multiview generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multi-turn visual question answering, showing the rosy potential of the technical direction. Codes and checkpoints are available at https://github.com/Alpha-VLLM/Lumina-mGPT.
comment: Code available at: https://github.com/Alpha-VLLM/Lumina-mGPT
♻ ☆ Weak-to-Strong Diffusion with Reflection
The goal of diffusion generative models is to align the learned distribution with the real data distribution through gradient score matching. However, inherent limitations in training data quality, modeling strategies, and architectural design lead to inevitable gap between generated outputs and real data. To reduce this gap, we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes the estimated difference between existing weak and strong models (i.e., weak-to-strong difference) to bridge the gap between an ideal model and a strong model. By employing a reflective operation that alternates between denoising and inversion with weak-to-strong difference, we theoretically understand that W2SD steers latent variables along sampling trajectories toward regions of the real data distribution. W2SD is highly flexible and broadly applicable, enabling diverse improvements through the strategic selection of weak-to-strong model pairs (e.g., DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive experiments demonstrate that W2SD significantly improves human preference, aesthetic quality, and prompt adherence, achieving SOTA performance across various modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE), and benchmarks. For example, Juggernaut-XL with W2SD can improve with the HPSv2 winning rate up to 90% over the original results. Moreover, the performance gains achieved by W2SD markedly outweigh its additional computational overhead, while the cumulative improvements from different weak-to-strong difference further solidify its practical utility and deployability.
comment: 23 pages, 23 figures, 15 tables
♻ ☆ Contrastive Learning with Synthetic Positives
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques by utilizing the similarity of multiple instances within the same class. However, its efficacy is constrained as the nearest neighbor algorithm primarily identifies "easy" positive pairs, where the representations are already closely located in the embedding space. In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (CLSP) that utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives. Through feature interpolation in the diffusion model sampling process, we generate images with distinct backgrounds yet similar semantic content to the anchor image. These images are considered "hard" positives for the anchor image, and when included as supplementary positives in the contrastive loss, they contribute to a performance improvement of over 2% and 1% in linear evaluation compared to the previous NNCLR and All4One methods across multiple benchmark datasets such as CIFAR10, achieving state-of-the-art methods. On transfer learning benchmarks, CLSP outperforms existing SSL frameworks on 6 out of 8 downstream datasets. We believe CLSP establishes a valuable baseline for future SSL studies incorporating synthetic data in the training process.
comment: 8 pages, conference
♻ ☆ ARF-Plus: Controlling Perceptual Factors in Artistic Radiance Fields for 3D Scene Stylization WACV 2025
The radiance fields style transfer is an emerging field that has recently gained popularity as a means of 3D scene stylization, thanks to the outstanding performance of neural radiance fields in 3D reconstruction and view synthesis. We highlight a research gap in radiance fields style transfer, the lack of sufficient perceptual controllability, motivated by the existing concept in the 2D image style transfer. In this paper, we present ARF-Plus, a 3D neural style transfer framework offering manageable control over perceptual factors, to systematically explore the perceptual controllability in 3D scene stylization. Four distinct types of controls - color preservation control, (style pattern) scale control, spatial (selective stylization area) control, and depth enhancement control - are proposed and integrated into this framework. Results from real-world datasets, both quantitative and qualitative, show that the four types of controls in our ARF-Plus framework successfully accomplish their corresponding perceptual controls when stylizing 3D scenes. These techniques work well for individual style inputs as well as for the simultaneous application of multiple styles within a scene. This unlocks a realm of limitless possibilities, allowing customized modifications of stylization effects and flexible merging of the strengths of different styles, ultimately enabling the creation of novel and eye-catching stylistic effects on 3D scenes.
comment: Accepted at WACV 2025. The published version is available at https://ieeexplore.ieee.org/document/10944114
♻ ☆ Variational Self-Supervised Learning NeurIPS 2025
We present Variational Self-Supervised Learning (VSSL), a novel framework that combines variational inference with self-supervised learning to enable efficient, decoder-free representation learning. Unlike traditional VAEs that rely on input reconstruction via a decoder, VSSL symmetrically couples two encoders with Gaussian outputs. A momentum-updated teacher network defines a dynamic, data-dependent prior, while the student encoder produces an approximate posterior from augmented views. The reconstruction term in the ELBO is replaced with a cross-view denoising objective, preserving the analytical tractability of Gaussian KL divergence. We further introduce cosine-based formulations of KL and log-likelihood terms to enhance semantic alignment in high-dimensional latent spaces. Experiments on CIFAR-10, CIFAR-100, and ImageNet-100 show that VSSL achieves competitive or superior performance to leading self-supervised methods, including BYOL and MoCo V3. VSSL offers a scalable, probabilistically grounded approach to learning transferable representations without generative reconstruction, bridging the gap between variational modeling and modern self-supervised techniques.
comment: NeurIPS 2025 - SSL Workshop Submission
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets, often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
♻ ☆ Continuous and complete liver vessel segmentation with graph-attention guided diffusion
Improving connectivity and completeness are the most challenging aspects of liver vessel segmentation, especially for small vessels. These challenges require both learning the continuous vessel geometry and focusing on small vessel detection. However, current methods do not explicitly address these two aspects and cannot generalize well when constrained by inconsistent annotations. Here, we take advantage of the generalization of the diffusion model and explicitly integrate connectivity and completeness in our diffusion-based segmentation model. Specifically, we use a graph-attention module that adds knowledge about vessel geometry. Additionally, we perform the graph-attention at multiple-scales, thus focusing on small liver vessels. Our method outperforms five state-of-the-art medical segmentation methods on two public datasets: 3D-ircadb-01 and LiVS.
comment: Second version
♻ ☆ Latent Representations for Visual Proprioception in Inexpensive Robots
Robotic manipulation requires explicit or implicit knowledge of the robot's joint positions. Precise proprioception is standard in high-quality industrial robots but is often unavailable in inexpensive robots operating in unstructured environments. In this paper, we ask: to what extent can a fast, single-pass regression architecture perform visual proprioception from a single external camera image, available even in the simplest manipulation settings? We explore several latent representations, including CNNs, VAEs, ViTs, and bags of uncalibrated fiducial markers, using fine-tuning techniques adapted to the limited data available. We evaluate the achievable accuracy through experiments on an inexpensive 6-DoF robot.
♻ ☆ Disentangling Visual Transformers: Patch-level Interpretability for Image Classification CVPR 2025
Visual transformers have achieved remarkable performance in image classification tasks, but this performance gain has come at the cost of interpretability. One of the main obstacles to the interpretation of transformers is the self-attention mechanism, which mixes visual information across the whole image in a complex way. In this paper, we propose Hindered Transformer (HiT), a novel interpretable by design architecture inspired by visual transformers. Our proposed architecture rethinks the design of transformers to better disentangle patch influences at the classification stage. Ultimately, HiT can be interpreted as a linear combination of patch-level information. We show that the advantages of our approach in terms of explicability come with a reasonable trade-off in performance, making it an attractive alternative for applications where interpretability is paramount.
comment: CVPR 2025 official version. Main manuscript + supplementary
♻ ☆ ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
comment: 13 pages in total
♻ ☆ AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging IEEE
Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions. In order to address this essential issue and enhance the safety and efficiency of connected and autonomous vehicles (CAVs) at multi-lane merging zones, we propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs). Specifically, we first design a scene observation and understanding module to allow an agent to capture the traffic environment. Then we propose a hierarchical planning module to enable the agent to make decisions and plan trajectories based on the observation and the agent's own state. In addition, in order to facilitate collaboration among multiple agents, we introduce a communication module to enable the surrounding agents to exchange necessary information and coordinate their actions. Finally, we develop a reinforcement reflection guided training paradigm to further enhance the decision-making capability of the framework. Extensive experiments are conducted to evaluate the performance of our proposed method, demonstrating its superior efficiency and effectiveness for multi-agent collaborative decision-making under various ramp merging scenarios.
comment: Accepted by IEEE Transactions on Mobile Computing (TMC)
♻ ☆ A New Graph Grammar Formalism for Robust Syntactic Pattern Recognition
I introduce a formalism for representing the syntax of recursively structured graph-like patterns. It does not use production rules, like a conventional graph grammar, but represents the syntactic structure in a more direct and declarative way. The grammar and the pattern are both represented as networks, and parsing is seen as the construction of a homomorphism from the pattern to the grammar. The grammars can represent iterative, hierarchical and nested recursive structure in more than one dimension. This supports a highly parallel style of parsing, in which all aspects of pattern recognition (feature detection, segmentation, parsing, filling in missing symbols, top-down and bottom-up inference) are integrated into a single process, to exploit the synergy between them. The emphasis of this paper is on underlying theoretical issues, but I also give some example runs to illustrate the error-tolerant parsing of complex recursively structured patterns of 50-1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols, overlapping symbols, cluttered images, and erased patches.
comment: 64 pages, 23 figures. Version 2: mathematical supplement added, 98 pages, 1 figure
♻ ☆ Causal Disentanglement for Robust Long-tail Medical Image Generation
Counterfactual medical image generation effectively addresses data scarcity and enhances the interpretability of medical images. However, due to the complex and diverse pathological features of medical images and the imbalanced class distribution in medical data, generating high-quality and diverse medical images from limited data is significantly challenging. Additionally, to fully leverage the information in limited data, such as anatomical structure information and generate more structurally stable medical images while avoiding distortion or inconsistency. In this paper, in order to enhance the clinical relevance of generated data and improve the interpretability of the model, we propose a novel medical image generation framework, which generates independent pathological and structural features based on causal disentanglement and utilizes text-guided modeling of pathological features to regulate the generation of counterfactual images. First, we achieve feature separation through causal disentanglement and analyze the interactions between features. Here, we introduce group supervision to ensure the independence of pathological and identity features. Second, we leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images. Meanwhile, we enhance accuracy by leveraging a large language model to extract lesion severity and location from medical reports. Additionally, we improve the performance of the latent diffusion model on long-tailed categories through initial noise optimization.
♻ ☆ PhysFlow: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation CVPR 2025
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce PhysFlow, a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
comment: CVPR 2025. Homepage: https://zhuomanliu.github.io/PhysFlow/
♻ ☆ Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
♻ ☆ Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
♻ ☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
♻ ☆ QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning ICRA 2025
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
comment: Accepted to ICRA 2025; Github page: https://quart-online.github.io
♻ ☆ Review of Demographic Fairness in Face Recognition
Demographic fairness in face recognition (FR) has emerged as a critical area of research, given its impact on fairness, equity, and reliability across diverse applications. As FR technologies are increasingly deployed globally, disparities in performance across demographic groups-- such as race, ethnicity, and gender-- have garnered significant attention. These biases not only compromise the credibility of FR systems but also raise ethical concerns, especially when these technologies are employed in sensitive domains. This review consolidates extensive research efforts providing a comprehensive overview of the multifaceted aspects of demographic fairness in FR. We systematically examine the primary causes, datasets, assessment metrics, and mitigation approaches associated with demographic disparities in FR. By categorizing key contributions in these areas, this work provides a structured approach to understanding and addressing the complexity of this issue. Finally, we highlight current advancements and identify emerging challenges that need further investigation. This article aims to provide researchers with a unified perspective on the state-of-the-art while emphasizing the critical need for equitable and trustworthy FR systems.
comment: under review
♻ ☆ 3D-LLaVA: Towards Generalist 3D LMMs with Omni Superpoint Transformer CVPR 2025
Current 3D Large Multimodal Models (3D LMMs) have shown tremendous potential in 3D-vision-based dialogue and reasoning. However, how to further enhance 3D LMMs to achieve fine-grained scene understanding and facilitate flexible human-agent interaction remains a challenging problem. In this work, we introduce 3D-LLaVA, a simple yet highly powerful 3D LMM designed to act as an intelligent assistant in comprehending, reasoning, and interacting with the 3D world. Unlike existing top-performing methods that rely on complicated pipelines-such as offline multi-view feature extraction or additional task-specific heads-3D-LLaVA adopts a minimalist design with integrated architecture and only takes point clouds as input. At the core of 3D-LLaVA is a new Omni Superpoint Transformer (OST), which integrates three functionalities: (1) a visual feature selector that converts and selects visual tokens, (2) a visual prompt encoder that embeds interactive visual prompts into the visual token space, and (3) a referring mask decoder that produces 3D masks based on text description. This versatile OST is empowered by the hybrid pretraining to obtain perception priors and leveraged as the visual connector that bridges the 3D data to the LLM. After performing unified instruction tuning, our 3D-LLaVA reports impressive results on various benchmarks.
comment: Accepted by CVPR 2025
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than videos of existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
♻ ☆ OmniMamba4D: Spatio-temporal Mamba for longitudinal CT lesion segmentation IEEE
Accurate segmentation of longitudinal CT scans is important for monitoring tumor progression and evaluating treatment responses. However, existing 3D segmentation models solely focus on spatial information. To address this gap, we propose OmniMamba4D, a novel segmentation model designed for 4D medical images (3D images over time). OmniMamba4D utilizes a spatio-temporal tetra-orientated Mamba block to effectively capture both spatial and temporal features. Unlike traditional 3D models, which analyze single-time points, OmniMamba4D processes 4D CT data, providing comprehensive spatio-temporal information on lesion progression. Evaluated on an internal dataset comprising of 3,252 CT scans, OmniMamba4D achieves a competitive Dice score of 0.682, comparable to state-of-the-arts (SOTA) models, while maintaining computational efficiency and better detecting disappeared lesions. This work demonstrates a new framework to leverage spatio-temporal information for longitudinal CT lesion segmentation.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025
♻ ☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; however, their ability to perform Theory of Mind (ToM) tasks, such as inferring human intentions, beliefs, and mental states, remains underexplored. We propose an open-ended question framework to evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset of 30 images and evaluated the performance of four VLMs of varying sizes. Our results show that the GPT-4 model outperformed all the others, with only one smaller model, GPT-4o-mini, achieving comparable performance. We observed that VLMs often struggle to infer intentions in complex scenarios such as bullying or cheating. Our findings reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues. The dataset is available at https://github.com/ximingwen/ToM-AAAI25-Multimodal.
comment: 4 pages, accepted by ToM@AAAI25
♻ ☆ Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
♻ ☆ On the Generalizability of Foundation Models for Crop Type Mapping
Foundation models pre-trained using self-supervised learning have shown powerful transfer learning capabilities on various downstream tasks, including language understanding, text generation, and image recognition. The Earth observation (EO) field has produced several foundation models pre-trained directly on multispectral satellite imagery for applications like precision agriculture, wildfire and drought monitoring, and natural disaster response. However, few studies have investigated the ability of these models to generalize to new geographic locations, and potential concerns of geospatial bias -- models trained on data-rich developed nations not transferring well to data-scarce developing nations -- remain. We investigate the ability of popular EO foundation models to transfer to new geographic regions in the agricultural domain, where differences in farming practices and class imbalance make transfer learning particularly challenging. We first select five crop classification datasets across five continents, normalizing for dataset size and harmonizing classes to focus on four major cereal grains: maize, soybean, rice, and wheat. We then compare three popular foundation models, pre-trained on SSL4EO-S12, SatlasPretrain, and ImageNet, using in-distribution (ID) and out-of-distribution (OOD) evaluation. Experiments show that pre-trained weights designed explicitly for Sentinel-2, such as SSL4EO-S12, outperform general pre-trained weights like ImageNet. Furthermore, while only 100 labeled images are sufficient for achieving high overall accuracy, 900 images are required to achieve high average accuracy due to class imbalance. All harmonized datasets and experimental code are open-source and available for download.
♻ ☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
♻ ☆ RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
♻ ☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
♻ ☆ Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
comment: 8 pages
♻ ☆ Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
Artificial Intelligence 121
☆ Integrating Learning-Based Manipulation and Physics-Based Locomotion for Whole-Body Badminton Robot Control ICRA 2025
Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), can produce excel control policies over challenging agile robot tasks, such as sports robot. However, no existing work has harmonized learning-based policy with model-based methods to reduce training complexity and ensure the safety and stability for agile badminton robot control. In this paper, we introduce \ourmethod, a novel hybrid control system for agile badminton robots. Specifically, we propose a model-based strategy for chassis locomotion which provides a base for arm policy. We introduce a physics-informed ``IL+RL'' training framework for learning-based arm policy. In this train framework, a model-based strategy with privileged information is used to guide arm policy training during both IL and RL phases. In addition, we train the critic model during IL phase to alleviate the performance drop issue when transitioning from IL to RL. We present results on our self-engineered badminton robot, achieving 94.5% success rate against the serving machine and 90.7% success rate against human players. Our system can be easily generalized to other agile mobile manipulation tasks such as agile catching and table tennis. Our project website: https://dreamstarring.github.io/HAMLET/.
comment: Accepted to ICRA 2025. Project page: https://dreamstarring.github.io/HAMLET/
☆ Revisiting Reset Mechanisms in Spiking Neural Networks for Sequential Modeling: Specialized Discretization for Binary Activated RNN
In the field of image recognition, spiking neural networks (SNNs) have achieved performance comparable to conventional artificial neural networks (ANNs). In such applications, SNNs essentially function as traditional neural networks with quantized activation values. This article focuses on an another alternative perspective,viewing SNNs as binary-activated recurrent neural networks (RNNs) for sequential modeling tasks.From this viewpoint, current SNN architectures face several fundamental challenges in sequence modeling: (1) Traditional models lack effective memory mechanisms for long-range sequence modeling; (2) The biological-inspired components in SNNs (such as reset mechanisms and refractory period applications) remain theoretically under-explored for sequence tasks; (3) The RNN-like computational paradigm in SNNs prevents parallel training across different timesteps.To address these challenges, this study conducts a systematic analysis of the fundamental mechanisms underlying reset operations and refractory periods in binary-activated RNN-based SNN sequence models. We re-examine whether such biological mechanisms are strictly necessary for generating sparse spiking patterns, provide new theoretical explanations and insights, and ultimately propose the fixed-refractory-period SNN architecture for sequence modeling.
☆ Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
In industrial settings, surface defects on steel can significantly compromise its service life and elevate potential safety risks. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Although automated defect detection approaches based on Convolutional Neural Networks(e.g., Mask R-CNN) have advanced rapidly, their reliability remains challenged due to data annotation uncertainties during deep model training and overfitting issues. These limitations may lead to detection deviations when processing the given new test samples, rendering automated detection processes unreliable. To address this challenge, we first evaluate the detection model's practical performance through calibration data that satisfies the independent and identically distributed (i.i.d) condition with test data. Specifically, we define a loss function for each calibration sample to quantify detection error rates, such as the complement of recall rate and false discovery rate. Subsequently, we derive a statistically rigorous threshold based on a user-defined risk level to identify high-probability defective pixels in test images, thereby constructing prediction sets (e.g., defect regions). This methodology ensures that the expected error rate (mean error rate) on the test set remains strictly bounced by the predefined risk level. Additionally, we observe a negative correlation between the average prediction set size and the risk level on the test set, establishing a statistically rigorous metric for assessing detection model uncertainty. Furthermore, our study demonstrates robust and efficient control over the expected test set error rate across varying calibration-to-test partitioning ratios, validating the method's adaptability and operational effectiveness.
comment: Under Review
☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in six languages (Hindi, Arabic, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
☆ Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
☆ Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
☆ Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks
This study explores the potential of small language model(SLM) ensembles to achieve accuracy comparable to proprietary large language models (LLMs). We propose Ensemble Bayesian Inference (EBI), a novel approach that applies Bayesian estimation to combine judgments from multiple SLMs, allowing them to exceed the performance limitations of individual models. Our experiments on diverse tasks(aptitude assessments and consumer profile analysis in both Japanese and English) demonstrate EBI's effectiveness. Notably, we analyze cases where incorporating models with negative Lift values into ensembles improves overall performance, and we examine the method's efficacy across different languages. These findings suggest new possibilities for constructing high-performance AI systems with limited computational resources and for effectively utilizing models with individually lower performance. Building on existing research on LLM performance evaluation, ensemble methods, and open-source LLM utilization, we discuss the novelty and significance of our approach.
comment: 13 pages, 2 figures
☆ INSIGHT: Bridging the Student-Teacher Gap in Times of Large Language Models
The rise of AI, especially Large Language Models, presents challenges and opportunities to integrate such technology into the classroom. AI has the potential to revolutionize education by helping teaching staff with various tasks, such as personalizing their teaching methods, but it also raises concerns, for example, about the degradation of student-teacher interactions and user privacy. This paper introduces INSIGHT, a proof of concept to combine various AI tools to assist teaching staff and students in the process of solving exercises. INSIGHT has a modular design that allows it to be integrated into various higher education courses. We analyze students' questions to an LLM by extracting keywords, which we use to dynamically build an FAQ from students' questions and provide new insights for the teaching staff to use for more personalized face-to-face support. Future work could build upon INSIGHT by using the collected data to provide adaptive learning and adjust content based on student progress and learning styles to offer a more interactive and inclusive learning experience.
☆ Optimized Cloud Resource Allocation Using Genetic Algorithms for Energy Efficiency and QoS Assurance
Cloud computing environments demand dynamic and efficient resource management to ensure optimal performance, reduced energy consumption, and adherence to Service Level Agreements (SLAs). This paper presents a Genetic Algorithm (GA)-based approach for Virtual Machine (VM) placement and consolidation, aiming to minimize power usage while maintaining QoS constraints. The proposed method dynamically adjusts VM allocation based on real-time workload variations, outperforming traditional heuristics such as First Fit Decreasing (FFD) and Best Fit Decreasing (BFD). Experimental results show notable reductions in energy consumption, VM migrations, SLA violation rates, and execution time. A correlation heatmap further illustrates strong relationships among these key performance indicators, confirming the effectiveness of our approach in optimizing cloud resource utilization.
comment: 7 pages, 5 figures, accepted for publication (not yet published)
☆ Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
☆ Towards a HIPAA Compliant Agentic AI System in Healthcare
Agentic AI systems powered by Large Language Models (LLMs) as their foundational reasoning engine, are transforming clinical workflows such as medical report generation and clinical summarization by autonomously analyzing sensitive healthcare data and executing decisions with minimal human oversight. However, their adoption demands strict compliance with regulatory frameworks such as Health Insurance Portability and Accountability Act (HIPAA), particularly when handling Protected Health Information (PHI). This work-in-progress paper introduces a HIPAA-compliant Agentic AI framework that enforces regulatory compliance through dynamic, context-aware policy enforcement. Our framework integrates three core mechanisms: (1) Attribute-Based Access Control (ABAC) for granular PHI governance, (2) a hybrid PHI sanitization pipeline combining regex patterns and BERT-based model to minimize leakage, and (3) immutable audit trails for compliance verification.
☆ The Malicious Technical Ecosystem: Exposing Limitations in Technical Governance of AI-Generated Non-Consensual Intimate Images of Adults
In this paper, we adopt a survivor-centered approach to locate and dissect the role of sociotechnical AI governance in preventing AI-Generated Non-Consensual Intimate Images (AIG-NCII) of adults, colloquially known as "deep fake pornography." We identify a "malicious technical ecosystem" or "MTE," comprising of open-source face-swapping models and nearly 200 "nudifying" software programs that allow non-technical users to create AIG-NCII within minutes. Then, using the National Institute of Standards and Technology (NIST) AI 100-4 report as a reflection of current synthetic content governance methods, we show how the current landscape of practices fails to effectively regulate the MTE for adult AIG-NCII, as well as flawed assumptions explaining these gaps.
☆ Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
☆ PTCL: Pseudo-Label Temporal Curriculum Learning for Label-Limited Dynamic Graph
Dynamic node classification is critical for modeling evolving systems like financial transactions and academic collaborations. In such systems, dynamically capturing node information changes is critical for dynamic node classification, which usually requires all labels at every timestamp. However, it is difficult to collect all dynamic labels in real-world scenarios due to high annotation costs and label uncertainty (e.g., ambiguous or delayed labels in fraud detection). In contrast, final timestamp labels are easier to obtain as they rely on complete temporal patterns and are usually maintained as a unique label for each user in many open platforms, without tracking the history data. To bridge this gap, we propose PTCL(Pseudo-label Temporal Curriculum Learning), a pioneering method addressing label-limited dynamic node classification where only final labels are available. PTCL introduces: (1) a temporal decoupling architecture separating the backbone (learning time-aware representations) and decoder (strictly aligned with final labels), which generate pseudo-labels, and (2) a Temporal Curriculum Learning strategy that prioritizes pseudo-labels closer to the final timestamp by assigning them higher weights using an exponentially decaying function. We contribute a new academic dataset (CoOAG), capturing long-range research interest in dynamic graph. Experiments across real-world scenarios demonstrate PTCL's consistent superiority over other methods adapted to this task. Beyond methodology, we propose a unified framework FLiD (Framework for Label-Limited Dynamic Node Classification), consisting of a complete preparation workflow, training pipeline, and evaluation standards, and supporting various models and datasets. The code can be found at https://github.com/3205914485/FLiD.
☆ Deciphering the unique dynamic activation pathway in a G protein-coupled receptor enables unveiling biased signaling and identifying cryptic allosteric sites in conformational intermediates
Neurotensin receptor 1 (NTSR1), a member of the Class A G protein-coupled receptor superfamily, plays an important role in modulating dopaminergic neuronal activity and eliciting opioid-independent analgesia. Recent studies suggest that promoting \{beta}-arrestin-biased signaling in NTSR1 may diminish drugs of abuse, such as psychostimulants, thereby offering a potential avenue for treating human addiction-related disorders. In this study, we utilized a novel computational and experimental approach that combined nudged elastic band-based molecular dynamics simulations, Markov state models, temporal communication network analysis, site-directed mutagenesis, and conformational biosensors, to explore the intricate mechanisms underlying NTSR1 activation and biased signaling. Our study reveals a dynamic stepwise transition mechanism and activated transmission network associated with NTSR1 activation. It also yields valuable insights into the complex interplay between the unique polar network, non-conserved ion locks, and aromatic clusters in NTSR1 signaling. Moreover, we identified a cryptic allosteric site located in the intracellular region of the receptor that exists in an intermediate state within the activation pathway. Collectively, these findings contribute to a more profound understanding of NTSR1 activation and biased signaling at the atomic level, thereby providing a potential strategy for the development of NTSR1 allosteric modulators in the realm of G protein-coupled receptor biology, biophysics, and medicine.
☆ Enhancing CNNs robustness to occlusions with bioinspired filters for border completion
We exploit the mathematical modeling of the visual cortex mechanism for border completion to define custom filters for CNNs. We see a consistent improvement in performance, particularly in accuracy, when our modified LeNet 5 is tested with occluded MNIST images.
comment: Submitted to the 7th International Conference on Geometric Science of Information
☆ Decentralized Time Series Classification with ROCKET Features ECML-PKDD
Time series classification (TSC) is a critical task with applications in various domains, including healthcare, finance, and industrial monitoring. Due to privacy concerns and data regulations, Federated Learning has emerged as a promising approach for learning from distributed time series data without centralizing raw information. However, most FL solutions rely on a client-server architecture, which introduces robustness and confidentiality risks related to the distinguished role of the server, which is a single point of failure and can observe knowledge extracted from clients. To address these challenges, we propose DROCKS, a fully decentralized FL framework for TSC that leverages ROCKET (RandOm Convolutional KErnel Transform) features. In DROCKS, the global model is trained by sequentially traversing a structured path across federation nodes, where each node refines the model and selects the most effective local kernels before passing them to the successor. Extensive experiments on the UCR archive demonstrate that DROCKS outperforms state-of-the-art client-server FL approaches while being more resilient to node failures and malicious attacks. Our code is available at https://anonymous.4open.science/r/DROCKS-7FF3/README.md.
comment: Submitted to Workshop on Federated Learning Advancements 2025, in conjunction with ECML-PKDD, WAFL25
☆ STCL:Curriculum learning Strategies for deep learning image steganography models
Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.
☆ Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
comment: 11 pages, 7 figures, preprint version
☆ HalluLens: LLM Hallucination Benchmark
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.
comment: 42 pages
☆ Auditing the Ethical Logic of Generative AI Models
As generative AI models become increasingly integrated into high-stakes domains, the need for robust methods to evaluate their ethical reasoning becomes increasingly important. This paper introduces a five-dimensional audit model -- assessing Analytic Quality, Breadth of Ethical Considerations, Depth of Explanation, Consistency, and Decisiveness -- to evaluate the ethical logic of leading large language models (LLMs). Drawing on traditions from applied ethics and higher-order thinking, we present a multi-battery prompt approach, including novel ethical dilemmas, to probe the models' reasoning across diverse contexts. We benchmark seven major LLMs finding that while models generally converge on ethical decisions, they vary in explanatory rigor and moral prioritization. Chain-of-Thought prompting and reasoning-optimized models significantly enhance performance on our audit metrics. This study introduces a scalable methodology for ethical benchmarking of AI systems and highlights the potential for AI to complement human moral reasoning in complex decision-making contexts.
☆ An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
☆ Proof of Useful Intelligence (PoUI): Blockchain Consensus Beyond Energy Waste
Blockchain technology enables secure, transparent data management in decentralized systems, supporting applications from cryptocurrencies like Bitcoin to tokenizing real-world assets like property. Its scalability and sustainability hinge on consensus mechanisms balancing security and efficiency. Proof of Work (PoW), used by Bitcoin, ensures security through energy-intensive computations but demands significant resources. Proof of Stake (PoS), as in Ethereum post-Merge, selects validators based on staked cryptocurrency, offering energy efficiency but risking centralization from wealth concentration. With AI models straining computational resources, we propose Proof of Useful Intelligence (PoUI), a hybrid consensus mechanism. In PoUI, workers perform AI tasks like language processing or image analysis to earn coins, which are staked to secure the network, blending security with practical utility. Decentralized nodes--job posters, market coordinators, workers, and validators --collaborate via smart contracts to manage tasks and rewards.
☆ Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
The lack of generalization in learning-based autonomous driving applications is shown by the narrow range of road scenarios that vehicles can currently cover. A generalizable approach should capture many distinct road structures and topologies, as well as consider traffic participants, and dynamic changes in the environment, so that vehicles can navigate and perform motion planning tasks even in the most difficult situations. Designing suitable feature spaces for neural network-based motion planers that encapsulate all kinds of road scenarios is still an open research challenge. This paper tackles this learning-based generalization challenge and shows how graph representations of road networks can be leveraged by using multidimensional scaling (MDS) techniques in order to obtain such feature spaces. State-of-the-art graph representations and MDS approaches are analyzed for the autonomous driving use case. Finally, the option of embedding graph nodes is discussed in order to perform easier learning procedures and obtain dimensionality reduction.
☆ Towards Machine-Generated Code for the Resolution of User Intentions
The growing capabilities of Artificial Intelligence (AI), particularly Large Language Models (LLMs), prompt a reassessment of the interaction mechanisms between users and their devices. Currently, users are required to use a set of high-level applications to achieve their desired results. However, the advent of AI may signal a shift in this regard, as its capabilities have generated novel prospects for user-provided intent resolution through the deployment of model-generated code, which is tantamount to the generation of workflows comprising a multitude of interdependent steps. This development represents a significant progression in the realm of hybrid workflows, where human and artificial intelligence collaborate to address user intentions, with the former responsible for defining these intentions and the latter for implementing the solutions to address them. In this paper, we investigate the feasibility of generating and executing workflows through code generation that results from prompting an LLM with a concrete user intention, such as \emph{Please send my car title to my insurance company}, and a simplified application programming interface for a GUI-less operating system. We provide in-depth analysis and comparison of various user intentions, the resulting code, and its execution. The findings demonstrate a general feasibility of our approach and that the employed LLM, GPT-4o-mini, exhibits remarkable proficiency in the generation of code-oriented workflows in accordance with provided user intentions.
☆ TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction
Non-independent and identically distributed (Non-IID) data across edge clients have long posed significant challenges to federated learning (FL) training in edge computing environments. Prior works have proposed various methods to mitigate this statistical heterogeneity. While these works can achieve good theoretical performance, in this work we provide the first investigation into a hidden over-correction phenomenon brought by the uniform model correction coefficients across clients adopted by existing methods. Such over-correction could degrade model performance and even cause failures in model convergence. To address this, we propose TACO, a novel algorithm that addresses the non-IID nature of clients' data by implementing fine-grained, client-specific gradient correction and model aggregation, steering local models towards a more accurate global optimum. Moreover, we verify that leading FL algorithms generally have better model accuracy in terms of communication rounds rather than wall-clock time, resulting from their extra computation overhead imposed on clients. To enhance the training efficiency, TACO deploys a lightweight model correction and tailored aggregation approach that requires minimum computation overhead and no extra information beyond the synchronized model parameters. To validate TACO's effectiveness, we present the first FL convergence analysis that reveals the root cause of over-correction. Extensive experiments across various datasets confirm TACO's superior and stable performance in practice.
comment: 11 pages, 7 figures, accepted by ICDCS 2025
☆ Combining GCN Structural Learning with LLM Chemical Knowledge for or Enhanced Virtual Screening
Virtual screening plays a critical role in modern drug discovery by enabling the identification of promising candidate molecules for experimental validation. Traditional machine learning methods such as support vector machines (SVM) and XGBoost rely on predefined molecular representations, often leading to information loss and potential bias. In contrast, deep learning approaches-particularly Graph Convolutional Networks (GCNs)-offer a more expressive and unbiased alternative by operating directly on molecular graphs. Meanwhile, Large Language Models (LLMs) have recently demonstrated state-of-the-art performance in drug design, thanks to their capacity to capture complex chemical patterns from large-scale data via attention mechanisms. In this paper, we propose a hybrid architecture that integrates GCNs with LLM-derived embeddings to combine localized structural learning with global chemical knowledge. The LLM embeddings can be precomputed and stored in a molecular feature library, removing the need to rerun the LLM during training or inference and thus maintaining computational efficiency. We found that concatenating the LLM embeddings after each GCN layer-rather than only at the final layer-significantly improves performance, enabling deeper integration of global context throughout the network. The resulting model achieves superior results, with an F1-score of (88.8%), outperforming standalone GCN (87.9%), XGBoost (85.5%), and SVM (85.4%) baselines.
☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Traditional time-series forecasting often focuses only on minimizing prediction errors, ignoring the specific requirements of real-world applications that employ them. This paper presents a new training methodology, which allows a forecasting model to dynamically adjust its focus based on the importance of forecast ranges specified by the end application. Unlike previous methods that fix these ranges beforehand, our training approach breaks down predictions over the entire signal range into smaller segments, which are then dynamically weighted and combined to produce accurate forecasts. We tested our method on standard datasets, including a new dataset from wireless communication, and found that not only it improves prediction accuracy but also improves the performance of end application employing the forecasting model. This research provides a basis for creating forecasting systems that better connect prediction and decision-making in various practical applications.
☆ Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Developing lifelong learning agents is crucial for artificial general intelligence. However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 10 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to open-ended environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
comment: 23 pages
☆ Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
☆ GRANITE : a Byzantine-Resilient Dynamic Gossip Learning Framework
Gossip Learning (GL) is a decentralized learning paradigm where users iteratively exchange and aggregate models with a small set of neighboring peers. Recent GL approaches rely on dynamic communication graphs built and maintained using Random Peer Sampling (RPS) protocols. Thanks to graph dynamics, GL can achieve fast convergence even over extremely sparse topologies. However, the robustness of GL over dy- namic graphs to Byzantine (model poisoning) attacks remains unaddressed especially when Byzantine nodes attack the RPS protocol to scale up model poisoning. We address this issue by introducing GRANITE, a framework for robust learning over sparse, dynamic graphs in the presence of a fraction of Byzantine nodes. GRANITE relies on two key components (i) a History-aware Byzantine-resilient Peer Sampling protocol (HaPS), which tracks previously encountered identifiers to reduce adversarial influence over time, and (ii) an Adaptive Probabilistic Threshold (APT), which leverages an estimate of Byzantine presence to set aggregation thresholds with formal guarantees. Empirical results confirm that GRANITE maintains convergence with up to 30% Byzantine nodes, improves learning speed via adaptive filtering of poisoned models and obtains these results in up to 9 times sparser graphs than dictated by current theory.
☆ Evaluating Time Series Models for Urban Wastewater Management: Predictive Performance, Model Complexity and Resilience
Climate change increases the frequency of extreme rainfall, placing a significant strain on urban infrastructures, especially Combined Sewer Systems (CSS). Overflows from overburdened CSS release untreated wastewater into surface waters, posing environmental and public health risks. Although traditional physics-based models are effective, they are costly to maintain and difficult to adapt to evolving system dynamics. Machine Learning (ML) approaches offer cost-efficient alternatives with greater adaptability. To systematically assess the potential of ML for modeling urban infrastructure systems, we propose a protocol for evaluating Neural Network architectures for CSS time series forecasting with respect to predictive performance, model complexity, and robustness to perturbations. In addition, we assess model performance on peak events and critical fluctuations, as these are the key regimes for urban wastewater management. To investigate the feasibility of lightweight models suitable for IoT deployment, we compare global models, which have access to all information, with local models, which rely solely on nearby sensor readings. Additionally, to explore the security risks posed by network outages or adversarial attacks on urban infrastructure, we introduce error models that assess the resilience of models. Our results demonstrate that while global models achieve higher predictive performance, local models provide sufficient resilience in decentralized scenarios, ensuring robust modeling of urban infrastructure. Furthermore, models with longer native forecast horizons exhibit greater robustness to data perturbations. These findings contribute to the development of interpretable and reliable ML solutions for sustainable urban wastewater management. The implementation is available in our GitHub repository.
comment: 6 pages, 6 figures, accepted at 10th International Conference on Smart and Sustainable Technologies (SpliTech) 2025, GitHub: https://github.com/calgo-lab/resilient-timeseries-evaluation
☆ HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models VLDB
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
☆ FRAG: Frame Selection Augmented Generation for Long Video and Long Document Understanding
There has been impressive progress in Large Multimodal Models (LMMs). Recent works extend these models to long inputs, including multi-page documents and long videos. However, the model size and performance of these long context models are still limited due to the computational cost in both training and inference. In this work, we explore an orthogonal direction and process long inputs without long context LMMs. We propose Frame Selection Augmented Generation (FRAG), where the model first selects relevant frames within the input, and then only generates the final outputs based on the selected frames. The core of the selection process is done by scoring each frame independently, which does not require long context processing. The frames with the highest scores are then selected by a simple Top-K selection. We show that this frustratingly simple framework is applicable to both long videos and multi-page documents using existing LMMs without any fine-tuning. We consider two models, LLaVA-OneVision and InternVL2, in our experiments and show that FRAG consistently improves the performance and achieves state-of-the-art performances for both long video and long document understanding. For videos, FRAG substantially improves InternVL2-76B by 5.8% on MLVU and 3.7% on Video-MME. For documents, FRAG achieves over 20% improvements on MP-DocVQA compared with recent LMMs specialized in long document understanding. Code is available at: https://github.com/NVlabs/FRAG
☆ Detection, Classification and Prevalence of Self-Admitted Aging Debt
Context: Previous research on software aging is limited with focus on dynamic runtime indicators like memory and performance, often neglecting evolutionary indicators like source code comments and narrowly examining legacy issues within the TD context. Objective: We introduce the concept of Aging Debt (AD), representing the increased maintenance efforts and costs needed to keep software updated. We study AD through Self-Admitted Aging Debt (SAAD) observed in source code comments left by software developers. Method: We employ a mixed-methods approach, combining qualitative and quantitative analyses to detect and measure AD in software. This includes framing SAAD patterns from the source code comments after analysing the source code context, then utilizing the SAAD patterns to detect SAAD comments. In the process, we develop a taxonomy for SAAD that reflects the temporal aging of software and its associated debt. Then we utilize the taxonomy to quantify the different types of AD prevalent in OSS repositories. Results: Our proposed taxonomy categorizes temporal software aging into Active and Dormant types. Our extensive analysis of over 9,000+ Open Source Software (OSS) repositories reveals that more than 21% repositories exhibit signs of SAAD as observed from our gold standard SAAD dataset. Notably, Dormant AD emerges as the predominant category, highlighting a critical but often overlooked aspect of software maintenance. Conclusion: As software volume grows annually, so do evolutionary aging and maintenance challenges; our proposed taxonomy can aid researchers in detailed software aging studies and help practitioners develop improved and proactive maintenance strategies.
comment: Draft
☆ Towards Leveraging Large Language Model Summaries for Topic Modeling in Source Code
Understanding source code is a topic of great interest in the software engineering community, since it can help programmers in various tasks such as software maintenance and reuse. Recent advances in large language models (LLMs) have demonstrated remarkable program comprehension capabilities, while transformer-based topic modeling techniques offer effective ways to extract semantic information from text. This paper proposes and explores a novel approach that combines these strengths to automatically identify meaningful topics in a corpus of Python programs. Our method consists in applying topic modeling on the descriptions obtained by asking an LLM to summarize the code. To assess the internal consistency of the extracted topics, we compare them against topics inferred from function names alone, and those derived from existing docstrings. Experimental results suggest that leveraging LLM-generated summaries provides interpretable and semantically rich representation of code structure. The promising results suggest that our approach can be fruitfully applied in various software engineering tasks such as automatic documentation and tagging, code search, software reorganization and knowledge discovery in large repositories.
☆ Object Pose Estimation by Camera Arm Control Based on the Next Viewpoint Estimation
We have developed a new method to estimate a Next Viewpoint (NV) which is effective for pose estimation of simple-shaped products for product display robots in retail stores. Pose estimation methods using Neural Networks (NN) based on an RGBD camera are highly accurate, but their accuracy significantly decreases when the camera acquires few texture and shape features at a current view point. However, it is difficult for previous mathematical model-based methods to estimate effective NV which is because the simple shaped objects have few shape features. Therefore, we focus on the relationship between the pose estimation and NV estimation. When the pose estimation is more accurate, the NV estimation is more accurate. Therefore, we develop a new pose estimation NN that estimates NV simultaneously. Experimental results showed that our NV estimation realized a pose estimation success rate 77.3\%, which was 7.4pt higher than the mathematical model-based NV calculation did. Moreover, we verified that the robot using our method displayed 84.2\% of products.
☆ Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Large language models (LLMs) have demonstrated remarkable capabilities, but they require vast amounts of data and computational resources. In contrast, smaller models (SMs), while less powerful, can be more efficient and tailored to specific domains. In this position paper, we argue that taking a collaborative approach, where large and small models work synergistically, can accelerate the adaptation of LLMs to private domains and unlock new potential in AI. We explore various strategies for model collaboration and identify potential challenges and opportunities. Building upon this, we advocate for industry-driven research that prioritizes multi-objective benchmarks on real-world private datasets and applications.
☆ Redefining Superalignment: From Weak-to-Strong Alignment to Human-AI Co-Alignment to Sustainable Symbiotic Society
Artificial Intelligence (AI) systems are becoming increasingly powerful and autonomous, and may progress to surpass human intelligence levels, namely Artificial Superintelligence (ASI). During the progression from AI to ASI, it may exceed human control, violate human values, and even lead to irreversible catastrophic consequences in extreme cases. This gives rise to a pressing issue that needs to be addressed: superalignment, ensuring that AI systems much smarter than humans, remain aligned with human (compatible) intentions and values. Existing scalable oversight and weak-to-strong generalization methods may prove substantially infeasible and inadequate when facing ASI. We must explore safer and more pluralistic frameworks and approaches for superalignment. In this paper, we redefine superalignment as the human-AI co-alignment towards a sustainable symbiotic society, and highlight a framework that integrates external oversight and intrinsic proactive alignment. External oversight superalignment should be grounded in human-centered ultimate decision, supplemented by interpretable automated evaluation and correction, to achieve continuous alignment with humanity's evolving values. Intrinsic proactive superalignment is rooted in a profound understanding of the self, others, and society, integrating self-awareness, self-reflection, and empathy to spontaneously infer human intentions, distinguishing good from evil and proactively considering human well-being, ultimately attaining human-AI co-alignment through iterative interaction. The integration of externally-driven oversight with intrinsically-driven proactive alignment empowers sustainable symbiotic societies through human-AI co-alignment, paving the way for achieving safe and beneficial AGI and ASI for good, for human, and for a symbiotic ecology.
☆ Assessing the Capability of Large Language Models for Domain-Specific Ontology Generation
Large Language Models (LLMs) have shown significant potential for ontology engineering. However, it is still unclear to what extent they are applicable to the task of domain-specific ontology generation. In this study, we explore the application of LLMs for automated ontology generation and evaluate their performance across different domains. Specifically, we investigate the generalizability of two state-of-the-art LLMs, DeepSeek and o1-preview, both equipped with reasoning capabilities, by generating ontologies from a set of competency questions (CQs) and related user stories. Our experimental setup comprises six distinct domains carried out in existing ontology engineering projects and a total of 95 curated CQs designed to test the models' reasoning for ontology engineering. Our findings show that with both LLMs, the performance of the experiments is remarkably consistent across all domains, indicating that these methods are capable of generalizing ontology generation tasks irrespective of the domain. These results highlight the potential of LLM-based approaches in achieving scalable and domain-agnostic ontology construction and lay the groundwork for further research into enhancing automated reasoning and knowledge representation techniques.
☆ StereoMamba: Real-time and Robust Intraoperative Stereo Disparity Estimation via Long-range Spatial Dependencies
Stereo disparity estimation is crucial for obtaining depth information in robot-assisted minimally invasive surgery (RAMIS). While current deep learning methods have made significant advancements, challenges remain in achieving an optimal balance between accuracy, robustness, and inference speed. To address these challenges, we propose the StereoMamba architecture, which is specifically designed for stereo disparity estimation in RAMIS. Our approach is based on a novel Feature Extraction Mamba (FE-Mamba) module, which enhances long-range spatial dependencies both within and across stereo images. To effectively integrate multi-scale features from FE-Mamba, we then introduce a novel Multidimensional Feature Fusion (MFF) module. Experiments against the state-of-the-art on the ex-vivo SCARED benchmark demonstrate that StereoMamba achieves superior performance on EPE of 2.64 px and depth MAE of 2.55 mm, the second-best performance on Bad2 of 41.49% and Bad3 of 26.99%, while maintaining an inference speed of 21.28 FPS for a pair of high-resolution images (1280*1024), striking the optimum balance between accuracy, robustness, and efficiency. Furthermore, by comparing synthesized right images, generated from warping left images using the generated disparity maps, with the actual right image, StereoMamba achieves the best average SSIM (0.8970) and PSNR (16.0761), exhibiting strong zero-shot generalization on the in-vivo RIS2017 and StereoMIS datasets.
☆ Towards User-Centred Design of AI-Assisted Decision-Making in Law Enforcement
Artificial Intelligence (AI) has become an important part of our everyday lives, yet user requirements for designing AI-assisted systems in law enforcement remain unclear. To address this gap, we conducted qualitative research on decision-making within a law enforcement agency. Our study aimed to identify limitations of existing practices, explore user requirements and understand the responsibilities that humans expect to undertake in these systems. Participants in our study highlighted the need for a system capable of processing and analysing large volumes of data efficiently to help in crime detection and prevention. Additionally, the system should satisfy requirements for scalability, accuracy, justification, trustworthiness and adaptability to be adopted in this domain. Participants also emphasised the importance of having end users review the input data that might be challenging for AI to interpret, and validate the generated output to ensure the system's accuracy. To keep up with the evolving nature of the law enforcement domain, end users need to help the system adapt to the changes in criminal behaviour and government guidance, and technical experts need to regularly oversee and monitor the system. Furthermore, user-friendly human interaction with the system is essential for its adoption and some of the participants confirmed they would be happy to be in the loop and provide necessary feedback that the system can learn from. Finally, we argue that it is very unlikely that the system will ever achieve full automation due to the dynamic and complex nature of the law enforcement domain.
comment: 10 pages, 1 figure
☆ On the workflow, opportunities and challenges of developing foundation model in geophysics
Foundation models, as a mainstream technology in artificial intelligence, have demonstrated immense potential across various domains in recent years, particularly in handling complex tasks and multimodal data. In the field of geophysics, although the application of foundation models is gradually expanding, there is currently a lack of comprehensive reviews discussing the full workflow of integrating foundation models with geophysical data. To address this gap, this paper presents a complete framework that systematically explores the entire process of developing foundation models in conjunction with geophysical data. From data collection and preprocessing to model architecture selection, pre-training strategies, and model deployment, we provide a detailed analysis of the key techniques and methodologies at each stage. In particular, considering the diversity, complexity, and physical consistency constraints of geophysical data, we discuss targeted solutions to address these challenges. Furthermore, we discuss how to leverage the transfer learning capabilities of foundation models to reduce reliance on labeled data, enhance computational efficiency, and incorporate physical constraints into model training, thereby improving physical consistency and interpretability. Through a comprehensive summary and analysis of the current technological landscape, this paper not only fills the gap in the geophysics domain regarding a full-process review of foundation models but also offers valuable practical guidance for their application in geophysical data analysis, driving innovation and advancement in the field.
☆ LiveLongBench: Tackling Long-Context Understanding for Spoken Texts from Live Streams
Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.
☆ Comprehend, Divide, and Conquer: Feature Subspace Exploration via Multi-Agent Hierarchical Reinforcement Learning
Feature selection aims to preprocess the target dataset, find an optimal and most streamlined feature subset, and enhance the downstream machine learning task. Among filter, wrapper, and embedded-based approaches, the reinforcement learning (RL)-based subspace exploration strategy provides a novel objective optimization-directed perspective and promising performance. Nevertheless, even with improved performance, current reinforcement learning approaches face challenges similar to conventional methods when dealing with complex datasets. These challenges stem from the inefficient paradigm of using one agent per feature and the inherent complexities present in the datasets. This observation motivates us to investigate and address the above issue and propose a novel approach, namely HRLFS. Our methodology initially employs a Large Language Model (LLM)-based hybrid state extractor to capture each feature's mathematical and semantic characteristics. Based on this information, features are clustered, facilitating the construction of hierarchical agents for each cluster and sub-cluster. Extensive experiments demonstrate the efficiency, scalability, and robustness of our approach. Compared to contemporary or the one-feature-one-agent RL-based approaches, HRLFS improves the downstream ML performance with iterative feature subspace exploration while accelerating total run time by reducing the number of agents involved.
comment: 20 pages, keywords: Automated Feature Engineering, Tabular Dataset, Multi-Agent Reinforcement Learning, Feature Selection
☆ Collaborative Multi-Agent Reinforcement Learning for Automated Feature Transformation with Graph-Driven Path Optimization
Feature transformation methods aim to find an optimal mathematical feature-feature crossing process that generates high-value features and improves the performance of downstream machine learning tasks. Existing frameworks, though designed to mitigate manual costs, often treat feature transformations as isolated operations, ignoring dynamic dependencies between transformation steps. To address the limitations, we propose TCTO, a collaborative multi-agent reinforcement learning framework that automates feature engineering through graph-driven path optimization. The framework's core innovation lies in an evolving interaction graph that models features as nodes and transformations as edges. Through graph pruning and backtracking, it dynamically eliminates low-impact edges, reduces redundant operations, and enhances exploration stability. This graph also provides full traceability to empower TCTO to reuse high-utility subgraphs from historical transformations. To demonstrate the efficacy and adaptability of our approach, we conduct comprehensive experiments and case studies, which show superior performance across a range of datasets.
comment: 13 pages, Keywords: Automated Feature Transformation, Tabular Dataset, Reinforcement Learning
☆ Data-Driven Surrogate Modeling Techniques to Predict the Effective Contact Area of Rough Surface Contact Problems
The effective contact area in rough surface contact plays a critical role in multi-physics phenomena such as wear, sealing, and thermal or electrical conduction. Although accurate numerical methods, like the Boundary Element Method (BEM), are available to compute this quantity, their high computational cost limits their applicability in multi-query contexts, such as uncertainty quantification, parameter identification, and multi-scale algorithms, where many repeated evaluations are required. This study proposes a surrogate modeling framework for predicting the effective contact area using fast-to-evaluate data-driven techniques. Various machine learning algorithms are trained on a precomputed dataset, where the inputs are the imposed load and statistical roughness parameters, and the output is the corresponding effective contact area. All models undergo hyperparameter optimization to enable fair comparisons in terms of predictive accuracy and computational efficiency, evaluated using established quantitative metrics. Among the models, the Kernel Ridge Regressor demonstrates the best trade-off between accuracy and efficiency, achieving high predictive accuracy, low prediction time, and minimal training overhead-making it a strong candidate for general-purpose surrogate modeling. The Gaussian Process Regressor provides an attractive alternative when uncertainty quantification is required, although it incurs additional computational cost due to variance estimation. The generalization capability of the Kernel Ridge model is validated on an unseen simulation scenario, confirming its ability to transfer to new configurations. Database generation constitutes the dominant cost in the surrogate modeling process. Nevertheless, the approach proves practical and efficient for multi-query tasks, even when accounting for this initial expense.
☆ Dual-Individual Genetic Algorithm: A Dual-Individual Approach for Efficient Training of Multi-Layer Neural Networks
This paper introduces an enhanced Genetic Algorithm technique called Dual-Individual Genetic Algorithm (Dual-Individual GA), which optimizes neural networks for binary image classification tasks, such as cat vs. non-cat classification. The proposed method employs only two individuals for crossover, represented by two parameter sets: Leader and Follower. The Leader focuses on exploitation, representing the primary optimal solution at even-indexed positions (0, 2, 4, ...), while the Follower promotes exploration by preserving diversity and avoiding premature convergence, operating at odd-indexed positions (1, 3, 5, ...). Leader and Follower are modeled as two phases or roles. The key contributions of this work are threefold: (1) a self-adaptive layer dimension mechanism that eliminates the need for manual tuning of layer architectures; (2) generates two parameter sets, leader and follower parameter sets, with 10 layer architecture configurations (5 for each set), ranked by Pareto dominance and cost. post-optimization; and (3) demonstrated superior performance compared to traditional gradient-based methods. Experimental results show that the Dual-Individual GA achieves 99.04% training accuracy and 80% testing accuracy (cost = 0.034) on a three-layer network with architecture [12288, 17, 4, 1], outperforming a gradient-based approach that achieves 98% training accuracy and 80% testing accuracy (cost = 0.092) on a four-layer network with architecture [12288, 20, 7, 5, 1]. These findings highlight the efficiency and effectiveness of the proposed method in optimizing neural networks.
☆ Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality IEEE
Locomotion plays a crucial role in shaping the user experience within virtual reality environments. In particular, hands-free locomotion offers a valuable alternative by supporting accessibility and freeing users from reliance on handheld controllers. To this end, traditional speech-based methods often depend on rigid command sets, limiting the naturalness and flexibility of interaction. In this study, we propose a novel locomotion technique powered by large language models (LLMs), which allows users to navigate virtual environments using natural language with contextual awareness. We evaluate three locomotion methods: controller-based teleportation, voice-based steering, and our language model-driven approach. Our evaluation measures include eye-tracking data analysis, including explainable machine learning through SHAP analysis as well as standardized questionnaires for usability, presence, cybersickness, and cognitive load to examine user attention and engagement. Our findings indicate that the LLM-driven locomotion possesses comparable usability, presence, and cybersickness scores to established methods like teleportation, demonstrating its novel potential as a comfortable, natural language-based, hands-free alternative. In addition, it enhances user attention within the virtual environment, suggesting greater engagement. Complementary to these findings, SHAP analysis revealed that fixation, saccade, and pupil-related features vary across techniques, indicating distinct patterns of visual attention and cognitive processing. Overall, we state that our method can facilitate hands-free locomotion in virtual spaces, especially in supporting accessibility.
comment: This work has been submitted to the IEEE for possible publication
☆ DIMT25@ICDAR2025: HW-TSC's End-to-End Document Image Machine Translation System Leveraging Large Vision-Language Model
This paper presents the technical solution proposed by Huawei Translation Service Center (HW-TSC) for the "End-to-End Document Image Machine Translation for Complex Layouts" competition at the 19th International Conference on Document Analysis and Recognition (DIMT25@ICDAR2025). Leveraging state-of-the-art open-source large vision-language model (LVLM), we introduce a training framework that combines multi-task learning with perceptual chain-of-thought to develop a comprehensive end-to-end document translation system. During the inference phase, we apply minimum Bayesian decoding and post-processing strategies to further enhance the system's translation capabilities. Our solution uniquely addresses both OCR-based and OCR-free document image translation tasks within a unified framework. This paper systematically details the training methods, inference strategies, LVLM base models, training data, experimental setups, and results, demonstrating an effective approach to document image machine translation.
comment: 7 pages, 1 figures, 2 tables
☆ FLUKE: A Linguistically-Driven and Task-Agnostic Framework for Robustness Evaluation
We present FLUKE (Framework for LingUistically-driven and tasK-agnostic robustness Evaluation), a task-agnostic framework for assessing model robustness through systematic minimal variations of test data. FLUKE introduces controlled variations across linguistic levels - from orthography to dialect and style varieties - and leverages large language models (LLMs) with human validation to generate modifications. We demonstrate FLUKE's utility by evaluating both fine-tuned models and LLMs across four diverse NLP tasks, and reveal that (1) the impact of linguistic variations is highly task-dependent, with some tests being critical for certain tasks but irrelevant for others; (2) while LLMs have better overall robustness compared to fine-tuned models, they still exhibit significant brittleness to certain linguistic variations; (3) all models show substantial vulnerability to negation modifications across most tasks. These findings highlight the importance of systematic robustness testing for understanding model behaviors.
☆ Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+ IEEE
To improve the segmentation of diabetic retinopathy lesions (microaneurysms, hemorrhages, exudates, and soft exudates), we implemented a binary segmentation method specific to each type of lesion. As post-segmentation, we combined the individual model outputs into a single image to better analyze the lesion types. This approach facilitated parameter optimization and improved accuracy, effectively overcoming challenges related to dataset limitations and annotation complexity. Specific preprocessing steps included cropping and applying contrast-limited adaptive histogram equalization to the L channel of the LAB image. Additionally, we employed targeted data augmentation techniques to further refine the model's efficacy. Our methodology utilized the DeepLabv3+ model, achieving a segmentation accuracy of 99%. These findings highlight the efficacy of innovative strategies in advancing medical image analysis, particularly in the precise segmentation of diabetic retinopathy lesions. The IDRID dataset was utilized to validate and demonstrate the robustness of our approach.
comment: This work was accepted at the ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) 2024
☆ You Are What You Bought: Generating Customer Personas for E-commerce Applications SIGIR 2025
In e-commerce, user representations are essential for various applications. Existing methods often use deep learning techniques to convert customer behaviors into implicit embeddings. However, these embeddings are difficult to understand and integrate with external knowledge, limiting the effectiveness of applications such as customer segmentation, search navigation, and product recommendations. To address this, our paper introduces the concept of the customer persona. Condensed from a customer's numerous purchasing histories, a customer persona provides a multi-faceted and human-readable characterization of specific purchase behaviors and preferences, such as Busy Parents or Bargain Hunters. This work then focuses on representing each customer by multiple personas from a predefined set, achieving readable and informative explicit user representations. To this end, we propose an effective and efficient solution GPLR. To ensure effectiveness, GPLR leverages pre-trained LLMs to infer personas for customers. To reduce overhead, GPLR applies LLM-based labeling to only a fraction of users and utilizes a random walk technique to predict personas for the remaining customers. We further propose RevAff, which provides an absolute error $\epsilon$ guarantee while improving the time complexity of the exact solution by a factor of at least $O(\frac{\epsilon\cdot|E|N}{|E|+N\log N})$, where $N$ represents the number of customers and products, and $E$ represents the interactions between them. We evaluate the performance of our persona-based representation in terms of accuracy and robustness for recommendation and customer segmentation tasks using three real-world e-commerce datasets. Most notably, we find that integrating customer persona representations improves the state-of-the-art graph convolution-based recommendation model by up to 12% in terms of NDCG@K and F1-Score@K.
comment: SIGIR 2025
☆ AI-Enhanced Business Process Automation: A Case Study in the Insurance Domain Using Object-Centric Process Mining
Recent advancements in Artificial Intelligence (AI), particularly Large Language Models (LLMs), have enhanced organizations' ability to reengineer business processes by automating knowledge-intensive tasks. This automation drives digital transformation, often through gradual transitions that improve process efficiency and effectiveness. To fully assess the impact of such automation, a data-driven analysis approach is needed - one that examines how traditional and AI-enhanced process variants coexist during this transition. Object-Centric Process Mining (OCPM) has emerged as a valuable method that enables such analysis, yet real-world case studies are still needed to demonstrate its applicability. This paper presents a case study from the insurance sector, where an LLM was deployed in production to automate the identification of claim parts, a task previously performed manually and identified as a bottleneck for scalability. To evaluate this transformation, we apply OCPM to assess the impact of AI-driven automation on process scalability. Our findings indicate that while LLMs significantly enhance operational capacity, they also introduce new process dynamics that require further refinement. This study also demonstrates the practical application of OCPM in a real-world setting, highlighting its advantages and limitations.
☆ Cracking the Code of Action: a Generative Approach to Affordances for Reinforcement Learning
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboard actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through $\textit{intent-based affordances}$ -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose $\textbf{Code as Generative Affordances}$ $(\textbf{$\texttt{CoGA}$})$, a method that leverages pre-trained vision-language models (VLMs) to generate code that determines affordable actions through implicit intent-completion functions and using a fully-automated program generation and verification pipeline. These programs are then used in-the-loop of a reinforcement learning agent to return a set of affordances given a pixel observation. By greatly reducing the number of actions that an agent must consider, we demonstrate on a wide range of tasks in the MiniWob++ benchmark that: $\textbf{1)}$ $\texttt{CoGA}$ is orders of magnitude more sample efficient than its RL agent, $\textbf{2)}$ $\texttt{CoGA}$'s programs can generalize within a family of tasks, and $\textbf{3)}$ $\texttt{CoGA}$ performs better or on par compared with behavior cloning when a small number of expert demonstrations is available.
☆ ExOSITO: Explainable Off-Policy Learning with Side Information for Intensive Care Unit Blood Test Orders
Ordering a minimal subset of lab tests for patients in the intensive care unit (ICU) can be challenging. Care teams must balance between ensuring the availability of the right information and reducing the clinical burden and costs associated with each lab test order. Most in-patient settings experience frequent over-ordering of lab tests, but are now aiming to reduce this burden on both hospital resources and the environment. This paper develops a novel method that combines off-policy learning with privileged information to identify the optimal set of ICU lab tests to order. Our approach, EXplainable Off-policy learning with Side Information for ICU blood Test Orders (ExOSITO) creates an interpretable assistive tool for clinicians to order lab tests by considering both the observed and predicted future status of each patient. We pose this problem as a causal bandit trained using offline data and a reward function derived from clinically-approved rules; we introduce a novel learning framework that integrates clinical knowledge with observational data to bridge the gap between the optimal and logging policies. The learned policy function provides interpretable clinical information and reduces costs without omitting any vital lab orders, outperforming both a physician's policy and prior approaches to this practical problem.
comment: Accepted to the Conference on Health, Inference, and Learning (CHIL) 2025
☆ JurisCTC: Enhancing Legal Judgment Prediction via Cross-Domain Transfer and Contrastive Learning IJCNN
In recent years, Unsupervised Domain Adaptation (UDA) has gained significant attention in the field of Natural Language Processing (NLP) owing to its ability to enhance model generalization across diverse domains. However, its application for knowledge transfer between distinct legal domains remains largely unexplored. To address the challenges posed by lengthy and complex legal texts and the limited availability of large-scale annotated datasets, we propose JurisCTC, a novel model designed to improve the accuracy of Legal Judgment Prediction (LJP) tasks. Unlike existing approaches, JurisCTC facilitates effective knowledge transfer across various legal domains and employs contrastive learning to distinguish samples from different domains. Specifically, for the LJP task, we enable knowledge transfer between civil and criminal law domains. Compared to other models and specific large language models (LLMs), JurisCTC demonstrates notable advancements, achieving peak accuracies of 76.59% and 78.83%, respectively.
comment: Accepted in International Joint Conference on Neural Networks (IJCNN) 2025
☆ Symbolic Representation for Any-to-Any Generative Tasks
We propose a symbolic generative task description language and a corresponding inference engine capable of representing arbitrary multimodal tasks as structured symbolic flows. Unlike conventional generative models that rely on large-scale training and implicit neural representations to learn cross-modal mappings, often at high computational cost and with limited flexibility, our framework introduces an explicit symbolic representation comprising three core primitives: functions, parameters, and topological logic. Leveraging a pre-trained language model, our inference engine maps natural language instructions directly to symbolic workflows in a training-free manner. Our framework successfully performs over 12 diverse multimodal generative tasks, demonstrating strong performance and flexibility without the need for task-specific tuning. Experiments show that our method not only matches or outperforms existing state-of-the-art unified models in content quality, but also offers greater efficiency, editability, and interruptibility. We believe that symbolic task representations provide a cost-effective and extensible foundation for advancing the capabilities of generative AI.
☆ 3D Deep-learning-based Segmentation of Human Skin Sweat Glands and Their 3D Morphological Response to Temperature Variations
Skin, the primary regulator of heat exchange, relies on sweat glands for thermoregulation. Alterations in sweat gland morphology play a crucial role in various pathological conditions and clinical diagnoses. Current methods for observing sweat gland morphology are limited by their two-dimensional, in vitro, and destructive nature, underscoring the urgent need for real-time, non-invasive, quantifiable technologies. We proposed a novel three-dimensional (3D) transformer-based multi-object segmentation framework, integrating a sliding window approach, joint spatial-channel attention mechanism, and architectural heterogeneity between shallow and deep layers. Our proposed network enables precise 3D sweat gland segmentation from skin volume data captured by optical coherence tomography (OCT). For the first time, subtle variations of sweat gland 3D morphology in response to temperature changes, have been visualized and quantified. Our approach establishes a benchmark for normal sweat gland morphology and provides a real-time, non-invasive tool for quantifying 3D structural parameters. This enables the study of individual variability and pathological changes in sweat gland structure, advancing dermatological research and clinical applications, including thermoregulation and bromhidrosis treatment.
☆ Targeted AMP generation through controlled diffusion with efficient embeddings
Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as low experimental hit rates as well as the need for nuanced controllability and efficient modeling of peptide properties. To address these challenges, we introduce OmegAMP, a framework that leverages a diffusion-based generative model with efficient low-dimensional embeddings, precise controllability mechanisms, and novel classifiers with drastically reduced false positive rates for candidate filtering. OmegAMP enables the targeted generation of AMPs with specific physicochemical properties, activity profiles, and species-specific effectiveness. Moreover, it maximizes sample diversity while ensuring faithfulness to the underlying data distribution during generation. We demonstrate that OmegAMP achieves state-of-the-art performance across all stages of the AMP discovery pipeline, significantly advancing the potential of computational frameworks in combating antimicrobial resistance.
☆ NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Grokking is proposed and widely studied as an intricate phenomenon in which generalization is achieved after a long-lasting period of overfitting. In this work, we propose NeuralGrok, a novel gradient-based approach that learns an optimal gradient transformation to accelerate the generalization of transformers in arithmetic tasks. Specifically, NeuralGrok trains an auxiliary module (e.g., an MLP block) in conjunction with the base model. This module dynamically modulates the influence of individual gradient components based on their contribution to generalization, guided by a bilevel optimization algorithm. Our extensive experiments demonstrate that NeuralGrok significantly accelerates generalization, particularly in challenging arithmetic tasks. We also show that NeuralGrok promotes a more stable training paradigm, constantly reducing the model's complexity, while traditional regularization methods, such as weight decay, can introduce substantial instability and impede generalization. We further investigate the intrinsic model complexity leveraging a novel Absolute Gradient Entropy (AGE) metric, which explains that NeuralGrok effectively facilitates generalization by reducing the model complexity. We offer valuable insights on the grokking phenomenon of Transformer models, which encourages a deeper understanding of the fundamental principles governing generalization ability.
comment: Preprint, 16 pages
☆ Enhancing Variational Autoencoders with Smooth Robust Latent Encoding
Variational Autoencoders (VAEs) have played a key role in scaling up diffusion-based generative models, as in Stable Diffusion, yet questions regarding their robustness remain largely underexplored. Although adversarial training has been an established technique for enhancing robustness in predictive models, it has been overlooked for generative models due to concerns about potential fidelity degradation by the nature of trade-offs between performance and robustness. In this work, we challenge this presumption, introducing Smooth Robust Latent VAE (SRL-VAE), a novel adversarial training framework that boosts both generation quality and robustness. In contrast to conventional adversarial training, which focuses on robustness only, our approach smooths the latent space via adversarial perturbations, promoting more generalizable representations while regularizing with originality representation to sustain original fidelity. Applied as a post-training step on pre-trained VAEs, SRL-VAE improves image robustness and fidelity with minimal computational overhead. Experiments show that SRL-VAE improves both generation quality, in image reconstruction and text-guided image editing, and robustness, against Nightshade attacks and image editing attacks. These results establish a new paradigm, showing that adversarial training, once thought to be detrimental to generative models, can instead enhance both fidelity and robustness.
comment: Under review
☆ MCAF: Efficient Agent-based Video Understanding Framework through Multimodal Coarse-to-Fine Attention Focusing
Even in the era of rapid advances in large models, video understanding, particularly long videos, remains highly challenging. Compared with textual or image-based information, videos commonly contain more information with redundancy, requiring large models to strategically allocate attention at a global level for accurate comprehension. To address this, we propose MCAF, an agent-based, training-free framework perform video understanding through Multimodal Coarse-to-fine Attention Focusing. The key innovation lies in its ability to sense and prioritize segments of the video that are highly relevant to the understanding task. First, MCAF hierarchically concentrates on highly relevant frames through multimodal information, enhancing the correlation between the acquired contextual information and the query. Second, it employs a dilated temporal expansion mechanism to mitigate the risk of missing crucial details when extracting information from these concentrated frames. In addition, our framework incorporates a self-reflection mechanism utilizing the confidence level of the model's responses as feedback. By iteratively applying these two creative focusing strategies, it adaptively adjusts attention to capture highly query-connected context and thus improves response accuracy. MCAF outperforms comparable state-of-the-art methods on average. On the EgoSchema dataset, it achieves a remarkable 5% performance gain over the leading approach. Meanwhile, on Next-QA and IntentQA datasets, it outperforms the current state-of-the-art standard by 0.2% and 0.3% respectively. On the Video-MME dataset, which features videos averaging nearly an hour in length, MCAF also outperforms other agent-based methods.
☆ Synthetic Power Flow Data Generation Using Physics-Informed Denoising Diffusion Probabilistic Models IEEE
Many data-driven modules in smart grid rely on access to high-quality power flow data; however, real-world data are often limited due to privacy and operational constraints. This paper presents a physics-informed generative framework based on Denoising Diffusion Probabilistic Models (DDPMs) for synthesizing feasible power flow data. By incorporating auxiliary training and physics-informed loss functions, the proposed method ensures that the generated data exhibit both statistical fidelity and adherence to power system feasibility. We evaluate the approach on the IEEE 14-bus and 30-bus benchmark systems, demonstrating its ability to capture key distributional properties and generalize to out-of-distribution scenarios. Comparative results show that the proposed model outperforms three baseline models in terms of feasibility, diversity, and accuracy of statistical features. This work highlights the potential of integrating generative modelling into data-driven power system applications.
comment: Submitted to IEEE SmartGridComm Conference 2025
☆ Automatically Generating Rules of Malicious Software Packages via Large Language Model
Today's security tools predominantly rely on predefined rules crafted by experts, making them poorly adapted to the emergence of software supply chain attacks. To tackle this limitation, we propose a novel tool, RuleLLM, which leverages large language models (LLMs) to automate rule generation for OSS ecosystems. RuleLLM extracts metadata and code snippets from malware as its input, producing YARA and Semgrep rules that can be directly deployed in software development. Specifically, the rule generation task involves three subtasks: crafting rules, refining rules, and aligning rules. To validate RuleLLM's effectiveness, we implemented a prototype system and conducted experiments on the dataset of 1,633 malicious packages. The results are promising that RuleLLM generated 763 rules (452 YARA and 311 Semgrep) with a precision of 85.2\% and a recall of 91.8\%, outperforming state-of-the-art (SOTA) tools and scored-based approaches. We further analyzed generated rules and proposed a rule taxonomy: 11 categories and 38 subcategories.
comment: 14 pages, 11 figures
☆ We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce \(\projectname\), a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that \(\projectname\) significantly enhances temporal and logical alignment across diverse prompts by almost $40\%$.
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models IEEE
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ Improving Human-Autonomous Vehicle Interaction in Complex Systems
Unresolved questions about how autonomous vehicles (AVs) should meet the informational needs of riders hinder real-world adoption. Complicating our ability to satisfy rider needs is that different people, goals, and driving contexts have different criteria for what constitutes interaction success. Unfortunately, most human-AV research and design today treats all people and situations uniformly. It is crucial to understand how an AV should communicate to meet rider needs, and how communications should change when the human-AV complex system changes. I argue that understanding the relationships between different aspects of the human-AV system can help us build improved and adaptable AV communications. I support this argument using three empirical studies. First, I identify optimal communication strategies that enhance driving performance, confidence, and trust for learning in extreme driving environments. Findings highlight the need for task-sensitive, modality-appropriate communications tuned to learner cognitive limits and goals. Next, I highlight the consequences of deploying faulty communication systems and demonstrate the need for context-sensitive communications. Third, I use machine learning (ML) to illuminate personal factors predicting trust in AVs, emphasizing the importance of tailoring designs to individual traits and concerns. Together, this dissertation supports the necessity of transparent, adaptable, and personalized AV systems that cater to individual needs, goals, and contextual demands. By considering the complex system within which human-AV interactions occur, we can deliver valuable insights for designers, researchers, and policymakers. This dissertation also provides a concrete domain to study theories of human-machine joint action and situational awareness, and can be used to guide future human-AI interaction research. [shortened for arxiv]
comment: PhD Dissertation from University of California, San Diego; 175 pages
☆ A Comprehensive Review on RNA Subcellular Localization Prediction
The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.
☆ OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
comment: 10 pages, 3 figures
♻ ☆ Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data SDM24
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier that can distinguish between two classes based on the arrangements of their points. This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies. It is challenging due to spatial variability and interpretability needs. Previously proposed techniques require dense training data or have limited ability to handle significant spatial variability within a single place-type. Most importantly, these deep neural network (DNN) approaches are not designed to work in non-Euclidean space, particularly point sets. Existing non-Euclidean DNN methods are limited to one-size-fits-all approaches. We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation, on various place-types for spatially-lucid classification. Experimental results on real-world datasets (e.g., MxIF oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
comment: SIAM International Conference on Data Mining (SDM24)
♻ ☆ On the Benefits of Memory for Modeling Time-Dependent PDEs
Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving PDEs. For time-dependent PDEs, many approaches are Markovian -- the evolution of the trained system only depends on the current state, and not the past states. In this work, we investigate the benefits of using memory for modeling time-dependent PDEs: that is, when past states are explicitly used to predict the future. Motivated by the Mori-Zwanzig theory of model reduction, we theoretically exhibit examples of simple (even linear) PDEs, in which a solution that uses memory is arbitrarily better than a Markovian solution. Additionally, we introduce Memory Neural Operator (MemNO), a neural operator architecture that combines recent state space models (specifically, S4) and Fourier Neural Operators (FNOs) to effectively model memory. We empirically demonstrate that when the PDEs are supplied in low resolution or contain observation noise at train and test time, MemNO significantly outperforms the baselines without memory -- with up to 6x reduction in test error. Furthermore, we show that this benefit is particularly pronounced when the PDE solutions have significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and we construct a challenging benchmark dataset consisting of such PDEs.
♻ ☆ Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning
Large language models (LLMs) have demonstrated impressive task-solving capabilities through prompting techniques and system designs, including solving planning tasks (e.g., math proofs, basic travel planning) when sufficient data is available online and used during pre-training. However, for planning tasks with limited prior data (e.g., blocks world, advanced travel planning), the performance of LLMs, including proprietary models like GPT and Gemini, is poor. This paper investigates the impact of fine-tuning on the planning capabilities of LLMs, revealing that LLMs can achieve strong performance in planning through substantial (tens of thousands of specific examples) fine-tuning. Yet, this process incurs high economic, time, and computational costs for each planning problem variation. To address this, we propose Clustering-Based Maximum Diversity Sampling (CMDS), which selects diverse and representative data to enhance sample efficiency and the model's generalization capability. Extensive evaluations demonstrate that CMDS-l, a baseline method combining CMDS with language embeddings, outperforms random sampling. Furthermore, we introduce a novel algorithm, CMDS-g, which encodes planning task instances with their graph representations into the embedding space. Empirical results show that CMDS-g consistently outperforms baseline methods across various scales and multiple benchmark domains.
comment: 8 pages of main paper, 2 pages of references
♻ ☆ Learning Type-Generalized Actions for Symbolic Planning IROS
Symbolic planning is a powerful technique to solve complex tasks that require long sequences of actions and can equip an intelligent agent with complex behavior. The downside of this approach is the necessity for suitable symbolic representations describing the state of the environment as well as the actions that can change it. Traditionally such representations are carefully hand-designed by experts for distinct problem domains, which limits their transferability to different problems and environment complexities. In this paper, we propose a novel concept to generalize symbolic actions using a given entity hierarchy and observed similar behavior. In a simulated grid-based kitchen environment, we show that type-generalized actions can be learned from few observations and generalize to novel situations. Incorporating an additional on-the-fly generalization mechanism during planning, unseen task combinations, involving longer sequences, novel entities and unexpected environment behavior, can be solved.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023
♻ ☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
♻ ☆ CoPAL: Corrective Planning of Robot Actions with Large Language Models IEEE
In the pursuit of fully autonomous robotic systems capable of taking over tasks traditionally performed by humans, the complexity of open-world environments poses a considerable challenge. Addressing this imperative, this study contributes to the field of Large Language Models (LLMs) applied to task and motion planning for robots. We propose a system architecture that orchestrates a seamless interplay between multiple cognitive levels, encompassing reasoning, planning, and motion generation. At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans. We demonstrate the efficacy of the proposed feedback architecture, particularly its impact on executability, correctness, and time complexity via empirical evaluation in the context of a simulation and two intricate real-world scenarios: blocks world, barman and pizza preparation.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ To Help or Not to Help: LLM-based Attentive Support for Human-Robot Group Interactions IROS
How can a robot provide unobtrusive physical support within a group of humans? We present Attentive Support, a novel interaction concept for robots to support a group of humans. It combines scene perception, dialogue acquisition, situation understanding, and behavior generation with the common-sense reasoning capabilities of Large Language Models (LLMs). In addition to following user instructions, Attentive Support is capable of deciding when and how to support the humans, and when to remain silent to not disturb the group. With a diverse set of scenarios, we show and evaluate the robot's attentive behavior, which supports and helps the humans when required, while not disturbing if no help is needed.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ Building Trustworthy Multimodal AI: A Review of Fairness, Transparency, and Ethics in Vision-Language Tasks
Objective: This review explores the trustworthiness of multimodal artificial intelligence (AI) systems, specifically focusing on vision-language tasks. It addresses critical challenges related to fairness, transparency, and ethical implications in these systems, providing a comparative analysis of key tasks such as Visual Question Answering (VQA), image captioning, and visual dialogue. Background: Multimodal models, particularly vision-language models, enhance artificial intelligence (AI) capabilities by integrating visual and textual data, mimicking human learning processes. Despite significant advancements, the trustworthiness of these models remains a crucial concern, particularly as AI systems increasingly confront issues regarding fairness, transparency, and ethics. Methods: This review examines research conducted from 2017 to 2024 focusing on forenamed core vision-language tasks. It employs a comparative approach to analyze these tasks through the lens of trustworthiness, underlining fairness, explainability, and ethics. This study synthesizes findings from recent literature to identify trends, challenges, and state-of-the-art solutions. Results: Several key findings were highlighted. Transparency: Explainability of vision language tasks is important for user trust. Techniques, such as attention maps and gradient-based methods, have successfully addressed this issue. Fairness: Bias mitigation in VQA and visual dialogue systems is essential for ensuring unbiased outcomes across diverse demographic groups. Ethical Implications: Addressing biases in multilingual models and ensuring ethical data handling is critical for the responsible deployment of vision-language systems. Conclusion: This study underscores the importance of integrating fairness, transparency, and ethical considerations in developing vision-language models within a unified framework.
♻ ☆ ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
♻ ☆ Enhancing LLMs with Smart Preprocessing for EHR Analysis
Large Language Models (LLMs) have demonstrated remarkable proficiency in natural language processing; however, their application in sensitive domains such as healthcare, especially in processing Electronic Health Records (EHRs), is constrained by limited computational resources and privacy concerns. This paper introduces a compact LLM framework optimized for local deployment in environments with stringent privacy requirements and restricted access to high-performance GPUs. Our approach leverages simple yet powerful preprocessing techniques, including regular expressions (regex) and Retrieval-Augmented Generation (RAG), to extract and highlight critical information from clinical notes. By pre-filtering long, unstructured text, we enhance the performance of smaller LLMs on EHR-related tasks. Our framework is evaluated using zero-shot and few-shot learning paradigms on both private and publicly available datasets (MIMIC-IV), with additional comparisons against fine-tuned LLMs on MIMIC-IV. Experimental results demonstrate that our preprocessing strategy significantly supercharges the performance of smaller LLMs, making them well-suited for privacy-sensitive and resource-constrained applications. This study offers valuable insights into optimizing LLM performance for local, secure, and efficient healthcare applications. It provides practical guidance for real-world deployment for LLMs while tackling challenges related to privacy, computational feasibility, and clinical applicability.
♻ ☆ Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
The integration of contextual embeddings into the optimization processes of large language models is an advancement in natural language processing. The Context-Aware Neural Gradient Mapping framework introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process. This approach facilitates real-time parameter adjustments, enhancing task-specific generalization even in the presence of sparse or noisy data inputs. The mathematical foundation of this framework relies on gradient descent modifications, where contextual embeddings are derived from a supplementary neural network trained to map input features to optimal adaptation gradients. By employing differential geometry principles, high-dimensional input dependencies are encoded into low-dimensional gradient manifolds, enabling efficient adaptation without necessitating the retraining of the entire model. Empirical evaluations demonstrate that the proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency. The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena. Furthermore, the computational efficiency achieved through this method demonstrates its scalability for large-scale language models operating under diverse constraints.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Disentangling Visual Transformers: Patch-level Interpretability for Image Classification CVPR 2025
Visual transformers have achieved remarkable performance in image classification tasks, but this performance gain has come at the cost of interpretability. One of the main obstacles to the interpretation of transformers is the self-attention mechanism, which mixes visual information across the whole image in a complex way. In this paper, we propose Hindered Transformer (HiT), a novel interpretable by design architecture inspired by visual transformers. Our proposed architecture rethinks the design of transformers to better disentangle patch influences at the classification stage. Ultimately, HiT can be interpreted as a linear combination of patch-level information. We show that the advantages of our approach in terms of explicability come with a reasonable trade-off in performance, making it an attractive alternative for applications where interpretability is paramount.
comment: CVPR 2025 official version. Main manuscript + supplementary
♻ ☆ FPGA-Based Neural Network Accelerators for Space Applications: A Survey
Space missions are becoming increasingly ambitious, necessitating high-performance onboard spacecraft computing systems. In response, field-programmable gate arrays (FPGAs) have garnered significant interest due to their flexibility, cost-effectiveness, and radiation tolerance potential. Concurrently, neural networks (NNs) are being recognized for their capability to execute space mission tasks such as autonomous operations, sensor data analysis, and data compression. This survey serves as a valuable resource for researchers aiming to implement FPGA-based NN accelerators in space applications. By analyzing existing literature, identifying trends and gaps, and proposing future research directions, this work highlights the potential of these accelerators to enhance onboard computing systems.
♻ ☆ Investigating the Relationship Between Debiasing and Artifact Removal using Saliency Maps
The widespread adoption of machine learning systems has raised critical concerns about fairness and bias, making mitigating harmful biases essential for AI development. In this paper, we investigate the relationship between debiasing and removing artifacts in neural networks for computer vision tasks. First, we introduce a set of novel XAI-based metrics that analyze saliency maps to assess shifts in a model's decision-making process. Then, we demonstrate that successful debiasing methods systematically redirect model focus away from protected attributes. Finally, we show that techniques originally developed for artifact removal can be effectively repurposed for improving fairness. These findings provide evidence for the existence of a bidirectional connection between ensuring fairness and removing artifacts corresponding to protected attributes.
♻ ☆ Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
♻ ☆ "I'm not for sale" -- Perceptions and limited awareness of privacy risks by digital natives about location data
Although mobile devices benefit users in their daily lives in numerous ways, they also raise several privacy concerns. For instance, they can reveal sensitive information that can be inferred from location data. This location data is shared through service providers as well as mobile applications. Understanding how and with whom users share their location data -- as well as users' perception of the underlying privacy risks --, are important notions to grasp in order to design usable privacy-enhancing technologies. In this work, we perform a quantitative and qualitative analysis of smartphone users' awareness, perception and self-reported behavior towards location data-sharing through a survey of n=99 young adult participants (i.e., digital natives). We compare stated practices with actual behaviors to better understand their mental models, and survey participants' understanding of privacy risks before and after the inspection of location traces and the information that can be inferred therefrom. Our empirical results show that participants have risky privacy practices: about 54% of participants underestimate the number of mobile applications to which they have granted access to their data, and 33% forget or do not think of revoking access to their data. Also, by using a demonstrator to perform inferences from location data, we observe that slightly more than half of participants (57%) are surprised by the extent of potentially inferred information, and that 47% intend to reduce access to their data via permissions as a result of using the demonstrator. Last, a majority of participants have little knowledge of the tools to better protect themselves, but are nonetheless willing to follow suggestions to improve privacy (51%). Educating people, including digital natives, about privacy risks through transparency tools seems a promising approach.
comment: Accepted for publication at ICWSM2025
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Label-Free Model Failure Detection for Lidar-based Point Cloud Segmentation
Autonomous vehicles drive millions of miles on the road each year. Under such circumstances, deployed machine learning models are prone to failure both in seemingly normal situations and in the presence of outliers. However, in the training phase, they are only evaluated on small validation and test sets, which are unable to reveal model failures due to their limited scenario coverage. While it is difficult and expensive to acquire large and representative labeled datasets for evaluation, large-scale unlabeled datasets are typically available. In this work, we introduce label-free model failure detection for lidar-based point cloud segmentation, taking advantage of the abundance of unlabeled data available. We leverage different data characteristics by training a supervised and self-supervised stream for the same task to detect failure modes. We perform a large-scale qualitative analysis and present LidarCODA, the first publicly available dataset with labeled anomalies in real-world lidar data, for an extensive quantitative analysis.
comment: Daniel Bogdoll, Finn Sartoris, and Vincent Geppert contributed equally. Accepted for publication at IV 2025
♻ ☆ AI-Based Vulnerability Analysis of NFT Smart Contracts
With the rapid growth of the NFT market, the security of smart contracts has become crucial. However, existing AI-based detection models for NFT contract vulnerabilities remain limited due to their complexity, while traditional manual methods are time-consuming and costly. This study proposes an AI-driven approach to detect vulnerabilities in NFT smart contracts. We collected 16,527 public smart contract codes, classifying them into five vulnerability categories: Risky Mutable Proxy, ERC-721 Reentrancy, Unlimited Minting, Missing Requirements, and Public Burn. Python-processed data was structured into training/test sets. Using the CART algorithm with Gini coefficient evaluation, we built initial decision trees for feature extraction. A random forest model was implemented to improve robustness through random data/feature sampling and multitree integration. GridSearch hyperparameter tuning further optimized the model, with 3D visualizations demonstrating parameter impacts on vulnerability detection. Results show the random forest model excels in detecting all five vulnerabilities. For example, it identifies Risky Mutable Proxy by analyzing authorization mechanisms and state modifications, while ERC-721 Reentrancy detection relies on external call locations and lock mechanisms. The ensemble approach effectively reduces single-tree overfitting, with stable performance improvements after parameter tuning. This method provides an efficient technical solution for automated NFT contract detection and lays groundwork for scaling AI applications.
♻ ☆ Learning by Doing: An Online Causal Reinforcement Learning Framework with Causal-Aware Policy
As a key component to intuitive cognition and reasoning solutions in human intelligence, causal knowledge provides great potential for reinforcement learning (RL) agents' interpretability towards decision-making by helping reduce the searching space. However, there is still a considerable gap in discovering and incorporating causality into RL, which hinders the rapid development of causal RL. In this paper, we consider explicitly modeling the generation process of states with the causal graphical model, based on which we augment the policy. We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between two steps: using interventions for causal structure learning during exploration and using the learned causal structure for policy guidance during exploitation. Due to the lack of public benchmarks that allow direct intervention in the state space, we design the root cause localization task in our simulated fault alarm environment and then empirically show the effectiveness and robustness of the proposed method against state-of-the-art baselines. Theoretical analysis shows that our performance improvement attributes to the virtuous cycle of causal-guided policy learning and causal structure learning, which aligns with our experimental results. Codes are available at https://github.com/DMIRLAB-Group/FaultAlarm_RL.
comment: Accepted by Science China Information Sciences
♻ ☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
♻ ☆ Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
♻ ☆ MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks, yet their interpretability remains challenging. Traditional model-level explanation methods like XGNN and GNNInterpreter often fail to identify valid substructures like rings, leading to questionable interpretability. This limitation stems from XGNN's atom-by-atom approach and GNNInterpreter's reliance on average graph embeddings, which overlook the essential structural elements crucial for molecules. To address these gaps, we introduce an innovative \textbf{M}otif-b\textbf{A}sed \textbf{G}NN \textbf{E}xplainer (MAGE) that uses motifs as fundamental units for generating explanations. Our approach begins with extracting potential motifs through a motif decomposition technique. Then, we utilize an attention-based learning method to identify class-specific motifs. Finally, we employ a motif-based graph generator for each class to create molecular graph explanations based on these class-specific motifs. This novel method not only incorporates critical substructures into the explanations but also guarantees their validity, yielding results that are human-understandable. Our proposed method's effectiveness is demonstrated through quantitative and qualitative assessments conducted on six real-world molecular datasets.
comment: arXiv admin note: text overlap with arXiv:2405.08419 The Thirteenth International Conference on Learning Representations 2025
♻ ☆ Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples
One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many real-world applications, particularly in medical and low-resource domains, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This study introduces FICAug, a novel feature-to-image data augmentation framework designed to improve model generalization under limited data conditions by generating structured synthetic samples. FICAug first operates in the feature space, where original data are clustered using the k-means algorithm. Within pure-label clusters, synthetic data are generated through Gaussian sampling to increase diversity while maintaining label consistency. These synthetic features are then projected back into the image domain using a generative neural network, and a convolutional neural network is trained on the reconstructed images to learn enhanced representations. Experimental results demonstrate that FICAug significantly improves classification accuracy. In feature space, it achieved a cross-validation accuracy of 84.09%, while training a ResNet-18 model on the reconstructed images further boosted performance to 88.63%, illustrating the effectiveness of the proposed framework in extracting new and task-relevant features.
comment: 10 pages, 6 figures, 6 table
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ A Simple and Efficient Approach to Batch Bayesian Optimization
Extending Bayesian optimization to batch evaluation can enable the designer to make the most use of parallel computing technology. However, most of current batch approaches do not scale well with the batch size. That is, their performances deteriorate dramatically as the batch size increases. To address this issue, we propose a simple and efficient approach to extend Bayesian optimization to large-scale batch evaluation in this work. Different from existing batch approaches, the idea of the new approach is to draw a batch of axis-aligned subspaces of the original problem and select one acquisition point from each subspace. To achieve this, we propose the expected subspace improvement criterion to measure the amount of the improvement that a candidate point can achieve within a certain axis-aligned subspace. By optimizing these expected subspace improvement functions simultaneously, we can get a batch of query points for parallel evaluation. Numerical experiments show that our proposed approach can speedup the convergence significantly when compared with the sequential Bayesian optimization algorithm, and performs very competitively when compared with seven batch Bayesian optimization algorithms. A Matlab implementation of the proposed approach is available at https://github.com/zhandawei/Expected_Subspace_Improvement_Batch_Bayesian_Optimization.
♻ ☆ Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: Accepted at NAACL
♻ ☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
♻ ☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; however, their ability to perform Theory of Mind (ToM) tasks, such as inferring human intentions, beliefs, and mental states, remains underexplored. We propose an open-ended question framework to evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset of 30 images and evaluated the performance of four VLMs of varying sizes. Our results show that the GPT-4 model outperformed all the others, with only one smaller model, GPT-4o-mini, achieving comparable performance. We observed that VLMs often struggle to infer intentions in complex scenarios such as bullying or cheating. Our findings reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues. The dataset is available at https://github.com/ximingwen/ToM-AAAI25-Multimodal.
comment: 4 pages, accepted by ToM@AAAI25
♻ ☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
♻ ☆ Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
♻ ☆ Prediction-Powered Inference with Imputed Covariates and Nonuniform Sampling
Machine learning models are increasingly used to produce predictions that serve as input data in subsequent statistical analyses. For example, computer vision predictions of economic and environmental indicators based on satellite imagery are used in downstream regressions; similarly, language models are widely used to approximate human ratings and opinions in social science research. However, failure to properly account for errors in the machine learning predictions renders standard statistical procedures invalid. Prior work uses what we call the Predict-Then-Debias estimator to give valid confidence intervals when machine learning algorithms impute missing variables, assuming a small complete sample from the population of interest. We expand the scope by introducing bootstrap confidence intervals that apply when the complete data is a nonuniform (i.e., weighted, stratified, or clustered) sample and to settings where an arbitrary subset of features is imputed. Importantly, the method can be applied to many settings without requiring additional calculations. We prove that these confidence intervals are valid under no assumptions on the quality of the machine learning model and are no wider than the intervals obtained by methods that do not use machine learning predictions.
♻ ☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 36 pages
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tale-suite.
♻ ☆ Emergent Symbol-like Number Variables in Artificial Neural Networks
What types of numeric representations emerge in neural systems? What would a satisfying answer to this question look like? In this work, we interpret Neural Network (NN) solutions to sequence based counting tasks through a variety of lenses. We seek to understand how well we can understand NNs through the lens of interpretable Symbolic Algorithms (SAs), where SAs are defined by precise, abstract, mutable variables used to perform computations. We use GRUs, LSTMs, and Transformers trained using Next Token Prediction (NTP) on numeric tasks where the solutions to the tasks depend on numeric information only latent in the task structure. We show through multiple causal and theoretical methods that we can interpret NN's raw activity through the lens of simplified SAs when we frame the neural activity in terms of interpretable subspaces rather than individual neurons. Depending on the analysis, however, these interpretations can be graded, existing on a continuum, highlighting the philosophical question of what it means to "interpret" neural activity, and motivating us to introduce Alignment Functions to add flexibility to the existing Distributed Alignment Search (DAS) method. Through our specific analyses we show the importance of causal interventions for NN interpretability; we show that recurrent models develop graded, symbol-like number variables within their neural activity; we introduce a generalization of DAS to frame NN activity in terms of linear functions of interpretable variables; and we show that Transformers must use anti-Markovian solutions -- solutions that avoid using cumulative, Markovian hidden states -- in the absence of sufficient attention layers. We use our results to encourage interpreting NNs at the level of neural subspaces through the lens of SAs.
♻ ☆ Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
♻ ☆ Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
comment: 18 pages, 7 figures
♻ ☆ GraphRAG under Fire
GraphRAG advances retrieval-augmented generation (RAG) by structuring external knowledge as multi-scale knowledge graphs, enabling language models to integrate both broad context and granular details in their generation. While GraphRAG has demonstrated success across domains, its security implications remain largely unexplored. To bridge this gap, this work examines GraphRAG's vulnerability to poisoning attacks, uncovering an intriguing security paradox: compared to conventional RAG, GraphRAG's graph-based indexing and retrieval enhance resilience against simple poisoning attacks; yet, the same features also create new attack surfaces. We present GRAGPoison, a novel attack that exploits shared relations in the underlying knowledge graph to craft poisoning text capable of compromising multiple queries simultaneously. GRAGPoison employs three key strategies: i) relation injection to introduce false knowledge, ii) relation enhancement to amplify poisoning influence, and iii) narrative generation to embed malicious content within coherent text. Empirical evaluation across diverse datasets and models shows that GRAGPoison substantially outperforms existing attacks in terms of effectiveness (up to 98\% success rate) and scalability (using less than 68\% poisoning text) on various GraphRAG-based systems. We also explore potential defensive measures and their limitations, identifying promising directions for future research.
comment: 13 pages
♻ ☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
♻ ☆ CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent KDD 2024
Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method.
comment: Accepted by KDD 2024;
♻ ☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). We find ourselves chiefly interested in the relationship between representations and behavior, asking ourselves how we can isolate specific functional aspects of representational similarity to relate our measures to behavior -- avoiding cause vs. correlation pitfalls in the process. In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity as it relates to behavior. The method learns invertible linear transformations that find an aligned subspace between two distributed networks' representations where functional information can be isolated and manipulated. We first show that the method can be used to transfer values of specific causal variables -- such as the number of items in a counting task -- between networks with different training seeds and different architectures. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different tasks, we explore differences between MAS and preexisting functional similarity methods, and lastly, we introduce a counterfactual latent auxiliary loss that helps shape functionally relevant alignments even in cases where we do not have causal access to one of the two models for training.
♻ ☆ RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
♻ ☆ Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
♻ ☆ Cognitive Memory in Large Language Models
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
comment: 37 pages, 9 figures
♻ ☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
♻ ☆ Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
♻ ☆ Generating Privacy-Preserving Personalized Advice with Zero-Knowledge Proofs and LLMs WWW
Large language models (LLMs) are increasingly utilized in domains such as finance, healthcare, and interpersonal relationships to provide advice tailored to user traits and contexts. However, this personalization often relies on sensitive data, raising critical privacy concerns and necessitating data minimization. To address these challenges, we propose a framework that integrates zero-knowledge proof (ZKP) technology, specifically zkVM, with LLM-based chatbots. This integration enables privacy-preserving data sharing by verifying user traits without disclosing sensitive information. Our research introduces both an architecture and a prompting strategy for this approach. Through empirical evaluation, we clarify the current constraints and performance limitations of both zkVM and the proposed prompting strategy, thereby demonstrating their practical feasibility in real-world scenarios.
comment: Accepted to The ACM Web Conference (WWW) 2025 Short Paper Track
Computation and Language 57
☆ The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.
☆ Conversational Assistants to support Heart Failure Patients: comparing a Neurosymbolic Architecture with ChatGPT
Conversational assistants are becoming more and more popular, including in healthcare, partly because of the availability and capabilities of Large Language Models. There is a need for controlled, probing evaluations with real stakeholders which can highlight advantages and disadvantages of more traditional architectures and those based on generative AI. We present a within-group user study to compare two versions of a conversational assistant that allows heart failure patients to ask about salt content in food. One version of the system was developed in-house with a neurosymbolic architecture, and one is based on ChatGPT. The evaluation shows that the in-house system is more accurate, completes more tasks and is less verbose than the one based on ChatGPT; on the other hand, the one based on ChatGPT makes fewer speech errors and requires fewer clarifications to complete the task. Patients show no preference for one over the other.
☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in six languages (Hindi, Arabic, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
☆ Safety in Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) have exhibited extraordinary prowess in tasks like mathematics and coding, leveraging their advanced reasoning capabilities. Nevertheless, as these capabilities progress, significant concerns regarding their vulnerabilities and safety have arisen, which can pose challenges to their deployment and application in real-world settings. This paper presents a comprehensive survey of LRMs, meticulously exploring and summarizing the newly emerged safety risks, attacks, and defense strategies. By organizing these elements into a detailed taxonomy, this work aims to offer a clear and structured understanding of the current safety landscape of LRMs, facilitating future research and development to enhance the security and reliability of these powerful models.
☆ Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks
This study explores the potential of small language model(SLM) ensembles to achieve accuracy comparable to proprietary large language models (LLMs). We propose Ensemble Bayesian Inference (EBI), a novel approach that applies Bayesian estimation to combine judgments from multiple SLMs, allowing them to exceed the performance limitations of individual models. Our experiments on diverse tasks(aptitude assessments and consumer profile analysis in both Japanese and English) demonstrate EBI's effectiveness. Notably, we analyze cases where incorporating models with negative Lift values into ensembles improves overall performance, and we examine the method's efficacy across different languages. These findings suggest new possibilities for constructing high-performance AI systems with limited computational resources and for effectively utilizing models with individually lower performance. Building on existing research on LLM performance evaluation, ensemble methods, and open-source LLM utilization, we discuss the novelty and significance of our approach.
comment: 13 pages, 2 figures
☆ Energy Considerations of Large Language Model Inference and Efficiency Optimizations
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
comment: 16 pages
☆ Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
☆ Evaluating Grounded Reasoning by Code-Assisted Large Language Models for Mathematics
Assisting LLMs with code generation improved their performance on mathematical reasoning tasks. However, the evaluation of code-assisted LLMs is generally restricted to execution correctness, lacking a rigorous evaluation of their generated programs. In this work, we bridge this gap by conducting an in-depth analysis of code-assisted LLMs' generated programs in response to math reasoning tasks. Our evaluation focuses on the extent to which LLMs ground their programs to math rules, and how that affects their end performance. For this purpose, we assess the generations of five different LLMs, on two different math datasets, both manually and automatically. Our results reveal that the distribution of grounding depends on LLMs' capabilities and the difficulty of math problems. Furthermore, mathematical grounding is more effective for closed-source models, while open-source models fail to employ math rules in their solutions correctly. On MATH500, the percentage of grounded programs decreased to half, while the ungrounded generations doubled in comparison to ASDiv grade-school problems. Our work highlights the need for in-depth evaluation beyond execution accuracy metrics, toward a better understanding of code-assisted LLMs' capabilities and limits in the math domain.
☆ Towards a comprehensive taxonomy of online abusive language informed by machine leaning
The proliferation of abusive language in online communications has posed significant risks to the health and wellbeing of individuals and communities. The growing concern regarding online abuse and its consequences necessitates methods for identifying and mitigating harmful content and facilitating continuous monitoring, moderation, and early intervention. This paper presents a taxonomy for distinguishing key characteristics of abusive language within online text. Our approach uses a systematic method for taxonomy development, integrating classification systems of 18 existing multi-label datasets to capture key characteristics relevant to online abusive language classification. The resulting taxonomy is hierarchical and faceted, comprising 5 categories and 17 dimensions. It classifies various facets of online abuse, including context, target, intensity, directness, and theme of abuse. This shared understanding can lead to more cohesive efforts, facilitate knowledge exchange, and accelerate progress in the field of online abuse detection and mitigation among researchers, policy makers, online platform owners, and other stakeholders.
☆ RAGAT-Mind: A Multi-Granular Modeling Approach for Rumor Detection Based on MindSpore
As false information continues to proliferate across social media platforms, effective rumor detection has emerged as a pressing challenge in natural language processing. This paper proposes RAGAT-Mind, a multi-granular modeling approach for Chinese rumor detection, built upon the MindSpore deep learning framework. The model integrates TextCNN for local semantic extraction, bidirectional GRU for sequential context learning, Multi-Head Self-Attention for global dependency focusing, and Bidirectional Graph Convolutional Networks (BiGCN) for structural representation of word co-occurrence graphs. Experiments on the Weibo1-Rumor dataset demonstrate that RAGAT-Mind achieves superior classification performance, attaining 99.2% accuracy and a macro-F1 score of 0.9919. The results validate the effectiveness of combining hierarchical linguistic features with graph-based semantic structures. Furthermore, the model exhibits strong generalization and interpretability, highlighting its practical value for real-world rumor detection applications.
☆ DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
Although large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks, the academic community still lacks an in-depth understanding of base model training processes and data quality. To address this, we construct a large-scale, difficulty-graded reasoning dataset containing approximately 3.34 million unique queries of varying difficulty levels and about 40 million distilled responses generated by multiple models over several passes. Leveraging pass rate and Coefficient of Variation (CV), we precisely select the most valuable training data to enhance reasoning capability. Notably, we observe a training pattern shift, indicating that reasoning-focused training based on base models requires higher learning rates for effective training. Using this carefully selected data, we significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2\% on the AIME2024 mathematical reasoning benchmark. This result surpasses most current distilled models and closely approaches state-of-the-art performance. We provide detailed descriptions of our data processing, difficulty assessment, and training methodology, and have publicly released all datasets and methods to promote rapid progress in open-source long-reasoning LLMs. The dataset is available at: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M
☆ When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
☆ HalluLens: LLM Hallucination Benchmark
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.
comment: 42 pages
☆ Unified Attacks to Large Language Model Watermarks: Spoofing and Scrubbing in Unauthorized Knowledge Distillation
Watermarking has emerged as a critical technique for combating misinformation and protecting intellectual property in large language models (LLMs). A recent discovery, termed watermark radioactivity, reveals that watermarks embedded in teacher models can be inherited by student models through knowledge distillation. On the positive side, this inheritance allows for the detection of unauthorized knowledge distillation by identifying watermark traces in student models. However, the robustness of watermarks against scrubbing attacks and their unforgeability in the face of spoofing attacks under unauthorized knowledge distillation remain largely unexplored. Existing watermark attack methods either assume access to model internals or fail to simultaneously support both scrubbing and spoofing attacks. In this work, we propose Contrastive Decoding-Guided Knowledge Distillation (CDG-KD), a unified framework that enables bidirectional attacks under unauthorized knowledge distillation. Our approach employs contrastive decoding to extract corrupted or amplified watermark texts via comparing outputs from the student model and weakly watermarked references, followed by bidirectional distillation to train new student models capable of watermark removal and watermark forgery, respectively. Extensive experiments show that CDG-KD effectively performs attacks while preserving the general performance of the distilled model. Our findings underscore critical need for developing watermarking schemes that are robust and unforgeable.
☆ HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models VLDB
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
☆ Creating Targeted, Interpretable Topic Models with LLM-Generated Text Augmentation
Unsupervised machine learning techniques, such as topic modeling and clustering, are often used to identify latent patterns in unstructured text data in fields such as political science and sociology. These methods overcome common concerns about reproducibility and costliness involved in the labor-intensive process of human qualitative analysis. However, two major limitations of topic models are their interpretability and their practicality for answering targeted, domain-specific social science research questions. In this work, we investigate opportunities for using LLM-generated text augmentation to improve the usefulness of topic modeling output. We use a political science case study to evaluate our results in a domain-specific application, and find that topic modeling using GPT-4 augmentations creates highly interpretable categories that can be used to investigate domain-specific research questions with minimal human guidance.
comment: Presented at IC2S2 2024 in Philadelphia, USA
☆ PicPersona-TOD : A Dataset for Personalizing Utterance Style in Task-Oriented Dialogue with Image Persona NAACL 2025
Task-Oriented Dialogue (TOD) systems are designed to fulfill user requests through natural language interactions, yet existing systems often produce generic, monotonic responses that lack individuality and fail to adapt to users' personal attributes. To address this, we introduce PicPersona-TOD, a novel dataset that incorporates user images as part of the persona, enabling personalized responses tailored to user-specific factors such as age or emotional context. This is facilitated by first impressions, dialogue policy-guided prompting, and the use of external knowledge to reduce hallucinations. Human evaluations confirm that our dataset enhances user experience, with personalized responses contributing to a more engaging interaction. Additionally, we introduce a new NLG model, Pictor, which not only personalizes responses, but also demonstrates robust performance across unseen domains https://github.com/JihyunLee1/PicPersona.
comment: Accepted in NAACL 2025 main
☆ LiveLongBench: Tackling Long-Context Understanding for Spoken Texts from Live Streams
Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.
☆ TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
☆ PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare
Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task. However, performance improvement comes at the cost of training on vast amounts of annotated data which could be sensitive leading to significant data privacy concerns. In particular, the healthcare domain is one of the most sensitive domains exposed to data privacy issues. In this paper, we present PatientDx, a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data. Our proposal is based on recently proposed techniques known as merging of LLMs and aims to optimize a building block merging strategy. PatientDx uses a pivotal model adapted to numerical reasoning and tunes hyperparameters on examples based on a performance metric but without training of the LLM on these data. Experiments using the mortality tasks of the MIMIC-IV dataset show improvements up to 7% in terms of AUROC when compared to initial models. Additionally, we confirm that when compared to fine-tuned models, our proposal is less prone to data leak problems without hurting performance. Finally, we qualitatively show the capabilities of our proposal through a case study. Our best model is publicly available at https://huggingface.co/ Jgmorenof/mistral\_merged\_0\_4.
☆ M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
☆ Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection
In the digital era, social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation. Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process. To address this gap, we propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives. By examining creators' cognitive strategies and emotional appeals, as well as simulating readers' cognitive judgments and emotional responses using Large Language Models (LLMs), DAE offers a more comprehensive and human-centric approach to misinformation detection. Moreover, we further introduce an empathy-aware filtering mechanism to enhance response authenticity and diversity. Experimental results on benchmark datasets demonstrate that DAE outperforms existing methods, providing a novel paradigm for multimodal misinformation detection.
☆ FLUKE: A Linguistically-Driven and Task-Agnostic Framework for Robustness Evaluation
We present FLUKE (Framework for LingUistically-driven and tasK-agnostic robustness Evaluation), a task-agnostic framework for assessing model robustness through systematic minimal variations of test data. FLUKE introduces controlled variations across linguistic levels - from orthography to dialect and style varieties - and leverages large language models (LLMs) with human validation to generate modifications. We demonstrate FLUKE's utility by evaluating both fine-tuned models and LLMs across four diverse NLP tasks, and reveal that (1) the impact of linguistic variations is highly task-dependent, with some tests being critical for certain tasks but irrelevant for others; (2) while LLMs have better overall robustness compared to fine-tuned models, they still exhibit significant brittleness to certain linguistic variations; (3) all models show substantial vulnerability to negation modifications across most tasks. These findings highlight the importance of systematic robustness testing for understanding model behaviors.
☆ CoheMark: A Novel Sentence-Level Watermark for Enhanced Text Quality ICLR 2025
Watermarking technology is a method used to trace the usage of content generated by large language models. Sentence-level watermarking aids in preserving the semantic integrity within individual sentences while maintaining greater robustness. However, many existing sentence-level watermarking techniques depend on arbitrary segmentation or generation processes to embed watermarks, which can limit the availability of appropriate sentences. This limitation, in turn, compromises the quality of the generated response. To address the challenge of balancing high text quality with robust watermark detection, we propose CoheMark, an advanced sentence-level watermarking technique that exploits the cohesive relationships between sentences for better logical fluency. The core methodology of CoheMark involves selecting sentences through trained fuzzy c-means clustering and applying specific next sentence selection criteria. Experimental evaluations demonstrate that CoheMark achieves strong watermark strength while exerting minimal impact on text quality.
comment: Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025
☆ Evaluating and Mitigating Bias in AI-Based Medical Text Generation
Artificial intelligence (AI) systems, particularly those based on deep learning models, have increasingly achieved expert-level performance in medical applications. However, there is growing concern that such AI systems may reflect and amplify human bias, and reduce the quality of their performance in historically under-served populations. The fairness issue has attracted considerable research interest in the medical imaging classification field, yet it remains understudied in the text generation domain. In this study, we investigate the fairness problem in text generation within the medical field and observe significant performance discrepancies across different races, sexes, and age groups, including intersectional groups, various model scales, and different evaluation metrics. To mitigate this fairness issue, we propose an algorithm that selectively optimizes those underperformed groups to reduce bias. The selection rules take into account not only word-level accuracy but also the pathology accuracy to the target reference, while ensuring that the entire process remains fully differentiable for effective model training. Our evaluations across multiple backbones, datasets, and modalities demonstrate that our proposed algorithm enhances fairness in text generation without compromising overall performance. Specifically, the disparities among various groups across different metrics were diminished by more than 30% with our algorithm, while the relative change in text generation accuracy was typically within 2%. By reducing the bias generated by deep learning models, our proposed approach can potentially alleviate concerns about the fairness and reliability of text generation diagnosis in medical domain. Our code is publicly available to facilitate further research at https://github.com/iriscxy/GenFair.
comment: 12 pages, 8 figures, published in Nature Computational Science
☆ JurisCTC: Enhancing Legal Judgment Prediction via Cross-Domain Transfer and Contrastive Learning IJCNN
In recent years, Unsupervised Domain Adaptation (UDA) has gained significant attention in the field of Natural Language Processing (NLP) owing to its ability to enhance model generalization across diverse domains. However, its application for knowledge transfer between distinct legal domains remains largely unexplored. To address the challenges posed by lengthy and complex legal texts and the limited availability of large-scale annotated datasets, we propose JurisCTC, a novel model designed to improve the accuracy of Legal Judgment Prediction (LJP) tasks. Unlike existing approaches, JurisCTC facilitates effective knowledge transfer across various legal domains and employs contrastive learning to distinguish samples from different domains. Specifically, for the LJP task, we enable knowledge transfer between civil and criminal law domains. Compared to other models and specific large language models (LLMs), JurisCTC demonstrates notable advancements, achieving peak accuracies of 76.59% and 78.83%, respectively.
comment: Accepted in International Joint Conference on Neural Networks (IJCNN) 2025
☆ Low-Resource Neural Machine Translation Using Recurrent Neural Networks and Transfer Learning: A Case Study on English-to-Igbo
In this study, we develop Neural Machine Translation (NMT) and Transformer-based transfer learning models for English-to-Igbo translation - a low-resource African language spoken by over 40 million people across Nigeria and West Africa. Our models are trained on a curated and benchmarked dataset compiled from Bible corpora, local news, Wikipedia articles, and Common Crawl, all verified by native language experts. We leverage Recurrent Neural Network (RNN) architectures, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), enhanced with attention mechanisms to improve translation accuracy. To further enhance performance, we apply transfer learning using MarianNMT pre-trained models within the SimpleTransformers framework. Our RNN-based system achieves competitive results, closely matching existing English-Igbo benchmarks. With transfer learning, we observe a performance gain of +4.83 BLEU points, reaching an estimated translation accuracy of 70%. These findings highlight the effectiveness of combining RNNs with transfer learning to address the performance gap in low-resource language translation tasks.
comment: 25 pages, 14 combined figures (19 total), includes horizontal layouts. Submitted to arXiv for open access
☆ Crisp: Cognitive Restructuring of Negative Thoughts through Multi-turn Supportive Dialogues
Cognitive Restructuring (CR) is a psychotherapeutic process aimed at identifying and restructuring an individual's negative thoughts, arising from mental health challenges, into more helpful and positive ones via multi-turn dialogues. Clinician shortage and stigma urge the development of human-LLM interactive psychotherapy for CR. Yet, existing efforts implement CR via simple text rewriting, fixed-pattern dialogues, or a one-shot CR workflow, failing to align with the psychotherapeutic process for effective CR. To address this gap, we propose CRDial, a novel framework for CR, which creates multi-turn dialogues with specifically designed identification and restructuring stages of negative thoughts, integrates sentence-level supportive conversation strategies, and adopts a multi-channel loop mechanism to enable iterative CR. With CRDial, we distill Crisp, a large-scale and high-quality bilingual dialogue dataset, from LLM. We then train Crispers, Crisp-based conversational LLMs for CR, at 7B and 14B scales. Extensive human studies show the superiority of Crispers in pointwise, pairwise, and intervention evaluations.
☆ Does Knowledge Distillation Matter for Large Language Model based Bundle Generation?
LLMs are increasingly explored for bundle generation, thanks to their reasoning capabilities and knowledge. However, deploying large-scale LLMs introduces significant efficiency challenges, primarily high computational costs during fine-tuning and inference due to their massive parameterization. Knowledge distillation (KD) offers a promising solution, transferring expertise from large teacher models to compact student models. This study systematically investigates knowledge distillation approaches for bundle generation, aiming to minimize computational demands while preserving performance. We explore three critical research questions: (1) how does the format of KD impact bundle generation performance? (2) to what extent does the quantity of distilled knowledge influence performance? and (3) how do different ways of utilizing the distilled knowledge affect performance? We propose a comprehensive KD framework that (i) progressively extracts knowledge (patterns, rules, deep thoughts); (ii) captures varying quantities of distilled knowledge through different strategies; and (iii) exploits complementary LLM adaptation techniques (in-context learning, supervised fine-tuning, combination) to leverage distilled knowledge in small student models for domain-specific adaptation and enhanced efficiency. Extensive experiments provide valuable insights into how knowledge format, quantity, and utilization methodologies collectively shape LLM-based bundle generation performance, exhibiting KD's significant potential for more efficient yet effective LLM-based bundle generation.
☆ A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
Large language models (LLMs) are a transformational capability at the frontier of artificial intelligence and machine learning that can support decision-makers in addressing pressing societal challenges such as extreme natural hazard events. As generalized models, LLMs often struggle to provide context-specific information, particularly in areas requiring specialized knowledge. In this work we propose a retrieval-augmented generation (RAG)-based multi-agent LLM system to support analysis and decision-making in the context of natural hazards and extreme weather events. As a proof of concept, we present WildfireGPT, a specialized system focused on wildfire hazards. The architecture employs a user-centered, multi-agent design to deliver tailored risk insights across diverse stakeholder groups. By integrating natural hazard and extreme weather projection data, observational datasets, and scientific literature through an RAG framework, the system ensures both the accuracy and contextual relevance of the information it provides. Evaluation across ten expert-led case studies demonstrates that WildfireGPT significantly outperforms existing LLM-based solutions for decision support.
☆ Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins.
♻ ☆ jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
comment: 30 pages, 1-10 main paper, 10-12 refs, 12-30 benchmarks
♻ ☆ CallNavi, A Challenge and Empirical Study on LLM Function Calling and Routing
API-driven chatbot systems are increasingly integral to software engineering applications, yet their effectiveness hinges on accurately generating and executing API calls. This is particularly challenging in scenarios requiring multi-step interactions with complex parameterization and nested API dependencies. Addressing these challenges, this work contributes to the evaluation and assessment of AI-based software development through three key advancements: (1) the introduction of a novel dataset specifically designed for benchmarking API function selection, parameter generation, and nested API execution; (2) an empirical evaluation of state-of-the-art language models, analyzing their performance across varying task complexities in API function generation and parameter accuracy; and (3) a hybrid approach to API routing, combining general-purpose large language models for API selection with fine-tuned models and prompt engineering for parameter generation. These innovations significantly improve API execution in chatbot systems, offering practical methodologies for enhancing software design, testing, and operational workflows in real-world software engineering contexts.
♻ ☆ Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse ICLR 2025
LLMs are an integral component of retrieval-augmented generation (RAG) systems. While many studies focus on evaluating the overall quality of end-to-end RAG systems, there is a gap in understanding the appropriateness of LLMs for the RAG task. To address this, we introduce Trust-Score, a holistic metric that evaluates the trustworthiness of LLMs within the RAG framework. Our results show that various prompting methods, such as in-context learning, fail to effectively adapt LLMs to the RAG task as measured by Trust-Score. Consequently, we propose Trust-Align, a method to align LLMs for improved Trust-Score performance. 26 out of 27 models aligned using Trust-Align substantially outperform competitive baselines on ASQA, QAMPARI, and ELI5. Specifically, in LLaMA-3-8b, Trust-Align outperforms FRONT on ASQA (up 12.56), QAMPARI (up 36.04), and ELI5 (up 17.69). Trust-Align also significantly enhances models' ability to correctly refuse and provide quality citations. We also demonstrate the effectiveness of Trust-Align across different open-weight models, including the LLaMA series (1b to 8b), Qwen-2.5 series (0.5b to 7b), and Phi3.5 (3.8b). We release our code at https://github.com/declare-lab/trust-align.
comment: Published at ICLR 2025 (Oral)
♻ ☆ Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing
Vision language models (VLMs) demonstrate strong capabilities in jointly processing visual and textual data. However, they often incur substantial computational overhead due to redundant visual information, particularly in long-form video scenarios. Existing approaches predominantly focus on either vision token pruning, which may overlook spatio-temporal dependencies, or keyframe selection, which identifies informative frames but discards others, thus disrupting contextual continuity. In this work, we propose KVTP (Keyframe-oriented Vision Token Pruning), a novel framework that overcomes the drawbacks of token pruning and keyframe selection. By adaptively assigning pruning rates based on frame relevance to the query, KVTP effectively retains essential contextual information while significantly reducing redundant computation. To thoroughly evaluate the long-form video understanding capacities of VLMs, we curated and reorganized subsets from VideoMME, EgoSchema, and NextQA into a unified benchmark named SparseKV-QA that highlights real-world scenarios with sparse but crucial events. Our experiments with VLMs of various scales show that KVTP can reduce token usage by 80% without compromising spatiotemporal and contextual consistency, significantly cutting computation while maintaining the performance. These results demonstrate our approach's effectiveness in efficient long-video processing, facilitating more scalable VLM deployment.
♻ ☆ ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
♻ ☆ Not All Data Are Unlearned Equally
Machine unlearning is concerned with the task of removing knowledge learned from particular data points from a trained model. In the context of large language models (LLMs), unlearning has recently received increased attention, particularly for removing knowledge about named entities from models for privacy purposes. While various approaches have been proposed to address the unlearning problem, most existing approaches treat all data points to be unlearned equally, i.e., unlearning that Montreal is a city in Canada is treated exactly the same as unlearning the phone number of the first author of this paper. In this work, we show that this all data is equal assumption does not hold for LLM unlearning. We study how the success of unlearning depends on the frequency of the knowledge we want to unlearn in the pre-training data of a model and find that frequency strongly affects unlearning, i.e., more frequent knowledge is harder to unlearn. Additionally, we uncover a misalignment between probability and generation-based evaluations of unlearning and show that this problem worsens as models become larger. Overall, our experiments highlight the need for better evaluation practices and novel methods for LLM unlearning that take the training data of models into account.
♻ ☆ Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
The integration of contextual embeddings into the optimization processes of large language models is an advancement in natural language processing. The Context-Aware Neural Gradient Mapping framework introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process. This approach facilitates real-time parameter adjustments, enhancing task-specific generalization even in the presence of sparse or noisy data inputs. The mathematical foundation of this framework relies on gradient descent modifications, where contextual embeddings are derived from a supplementary neural network trained to map input features to optimal adaptation gradients. By employing differential geometry principles, high-dimensional input dependencies are encoded into low-dimensional gradient manifolds, enabling efficient adaptation without necessitating the retraining of the entire model. Empirical evaluations demonstrate that the proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency. The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena. Furthermore, the computational efficiency achieved through this method demonstrates its scalability for large-scale language models operating under diverse constraints.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Probabilistic Subspace Manifolds for Contextual Inference in Large Language Models
Representing token embeddings as probability distributions over learned manifolds allows for more flexible contextual inference, reducing representational rigidity while enhancing semantic granularity. Comparative evaluations demonstrate that probabilistic embeddings improve neighborhood consistency and decrease redundancy, ensuring that token relationships remain more structurally coherent across fine-tuning iterations. The integration of probabilistic subspaces within attention mechanisms facilitates more adaptive contextual weighting, enabling models to capture latent dependencies that would otherwise be obscured in conventional embeddings. Experimental results highlight increased robustness against adversarial modifications, with probabilistic embeddings preserving contextual integrity even under perturbation-based evaluation scenarios. Performance assessments indicate that probabilistic representations achieve greater adaptability in domain-specific applications, mitigating the need for extensive retraining when shifting across linguistic domains. Computational trade-offs remain within operationally feasible limits, with marginal increases in inference latency balanced against the benefits of enhanced representation stability and contextual expressiveness. The capacity to encode structured uncertainty provides advantages in generative modeling tasks, particularly where maintaining coherence across extended sequences requires a representation framework capable of handling ambiguous or context-dependent linguistic constructs.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Transferable text data distillation by trajectory matching
In the realm of large language model (LLM), as the size of large models increases, it also brings higher training costs. There is a urgent need to minimize the data size in LLM training. Compared with data selection method, the data distillation method aims to synthesize a small number of data samples to achieve the training effect of the full data set and has better flexibility. Despite its successes in computer vision, the discreteness of text data has hitherto stymied its exploration in natural language processing (NLP). In this work, we proposed a method that involves learning pseudo prompt data based on trajectory matching and finding its nearest neighbor ID to achieve cross-architecture transfer. During the distillation process, we introduce a regularization loss to improve the robustness of our distilled data. To our best knowledge, this is the first data distillation work suitable for text generation tasks such as instruction tuning. Evaluations on two benchmarks, including ARC-Easy and MMLU instruction tuning datasets, established the superiority of our distillation approach over the SOTA data selection method LESS. Furthermore, our method demonstrates a good transferability over LLM structures (i.e., OPT to Llama).
♻ ☆ Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book? ICLR 2025
Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
comment: Accepted at ICLR 2025 (Spotlight)
♻ ☆ OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure ACL
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
comment: Published in TACL
♻ ☆ SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection SemEval2025
We present our shared task on text-based emotion detection, covering more than 30 languages from seven distinct language families. These languages are predominantly low-resource and are spoken across various continents. The data instances are multi-labeled with six emotional classes, with additional datasets in 11 languages annotated for emotion intensity. Participants were asked to predict labels in three tracks: (a) multilabel emotion detection, (b) emotion intensity score detection, and (c) cross-lingual emotion detection. The task attracted over 700 participants. We received final submissions from more than 200 teams and 93 system description papers. We report baseline results, along with findings on the best-performing systems, the most common approaches, and the most effective methods across different tracks and languages. The datasets for this task are publicly available. The dataset is available at SemEval2025 Task 11 https://brighter-dataset.github.io
comment: SemEval2025 Task11 (Task Description Paper). arXiv admin note: text overlap with arXiv:2502.11926
♻ ☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
♻ ☆ From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combines techniques like rejection fine-tuning, reinforcement learning, and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress models to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
♻ ☆ Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
♻ ☆ Automatically Evaluating the Paper Reviewing Capability of Large Language Models
Peer review is essential for scientific progress, but it faces challenges such as reviewer shortages and growing workloads. Although Large Language Models (LLMs) show potential for providing assistance, research has reported significant limitations in the reviews they generate. While the insights are valuable, conducting the analysis is challenging due to the considerable time and effort required, especially given the rapid pace of LLM developments. To address the challenge, we developed an automatic evaluation pipeline to assess the LLMs' paper review capability by comparing them with expert-generated reviews. By constructing a dataset consisting of 676 OpenReview papers, we examined the agreement between LLMs and experts in their strength and weakness identifications. The results showed that LLMs lack balanced perspectives, significantly overlook novelty assessment when criticizing, and produce poor acceptance decisions. Our automated pipeline enables a scalable evaluation of LLMs' paper review capability over time.
♻ ☆ Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: Accepted at NAACL
♻ ☆ Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (\textit{PHD}-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. \textit{PHD}-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: \textit{PHD-SWA} employs sliding window attention to preserve local dependencies, while \textit{PHD-CSWA} implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
♻ ☆ LaMsS: When Large Language Models Meet Self-Skepticism ICLR 2025
Hallucination is a major challenge for large language models (LLMs), preventing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hallucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, representing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accuracy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures, Published at ICLR 2025 Workshop on Scaling Self-Improving Foundation Models,
♻ ☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
♻ ☆ Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In our work, we find that token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we introduce Emb2Emb, a simple method to transfer steering vectors from one language model to another, despite the two models having different dimensions.
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tale-suite.
♻ ☆ Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
♻ ☆ GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of $65.3$. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.
comment: 10 pages, 8 figures
♻ ☆ Cognitive Memory in Large Language Models
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
comment: 37 pages, 9 figures
Machine Learning 151
☆ Unleashing the Power of Natural Audio Featuring Multiple Sound Sources
Universal sound separation aims to extract clean audio tracks corresponding to distinct events from mixed audio, which is critical for artificial auditory perception. However, current methods heavily rely on artificially mixed audio for training, which limits their ability to generalize to naturally mixed audio collected in real-world environments. To overcome this limitation, we propose ClearSep, an innovative framework that employs a data engine to decompose complex naturally mixed audio into multiple independent tracks, thereby allowing effective sound separation in real-world scenarios. We introduce two remix-based evaluation metrics to quantitatively assess separation quality and use these metrics as thresholds to iteratively apply the data engine alongside model training, progressively optimizing separation performance. In addition, we propose a series of training strategies tailored to these separated independent tracks to make the best use of them. Extensive experiments demonstrate that ClearSep achieves state-of-the-art performance across multiple sound separation tasks, highlighting its potential for advancing sound separation in natural audio scenarios. For more examples and detailed results, please visit our demo page at https://clearsep.github.io.
comment: Work in Progress
☆ Replay to Remember: Retaining Domain Knowledge in Streaming Language Models
Continual learning in large language models (LLMs) typically encounters the critical challenge of catastrophic forgetting, where previously acquired knowledge deteriorates upon exposure to new data. While techniques like replay buffers and parameter-efficient tuning (e.g., Low-Rank Adaptation or LoRA) have been proposed, few studies investigate real-time domain adaptation under strict computational and data-stream constraints. In this paper, we demonstrate a lightweight method combining LoRA and a minimal replay mechanism in a realistic streaming setting across three diverse knowledge domains: medical question answering, genetics, and law. Using perplexity, semantic similarity, and GPT-based human-like evaluation metrics, we quantify the model's adaptation, forgetting, and recovery over time. Our experiments reveal that while catastrophic forgetting naturally occurs, even minimal replay significantly stabilizes and partially restores domain-specific knowledge. This study contributes practical insights for deploying adaptable LLMs in resource-constrained, real-world scenarios.
comment: 8 pages 3 figures, 3 tables
☆ Integrating Learning-Based Manipulation and Physics-Based Locomotion for Whole-Body Badminton Robot Control ICRA 2025
Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), can produce excel control policies over challenging agile robot tasks, such as sports robot. However, no existing work has harmonized learning-based policy with model-based methods to reduce training complexity and ensure the safety and stability for agile badminton robot control. In this paper, we introduce \ourmethod, a novel hybrid control system for agile badminton robots. Specifically, we propose a model-based strategy for chassis locomotion which provides a base for arm policy. We introduce a physics-informed ``IL+RL'' training framework for learning-based arm policy. In this train framework, a model-based strategy with privileged information is used to guide arm policy training during both IL and RL phases. In addition, we train the critic model during IL phase to alleviate the performance drop issue when transitioning from IL to RL. We present results on our self-engineered badminton robot, achieving 94.5% success rate against the serving machine and 90.7% success rate against human players. Our system can be easily generalized to other agile mobile manipulation tasks such as agile catching and table tennis. Our project website: https://dreamstarring.github.io/HAMLET/.
comment: Accepted to ICRA 2025. Project page: https://dreamstarring.github.io/HAMLET/
☆ The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.
☆ Disaggregated Deep Learning via In-Physics Computing at Radio Frequency
Modern edge devices, such as cameras, drones, and Internet-of-Things nodes, rely on deep learning to enable a wide range of intelligent applications, including object recognition, environment perception, and autonomous navigation. However, deploying deep learning models directly on the often resource-constrained edge devices demands significant memory footprints and computational power for real-time inference using traditional digital computing architectures. In this paper, we present WISE, a novel computing architecture for wireless edge networks designed to overcome energy constraints in deep learning inference. WISE achieves this goal through two key innovations: disaggregated model access via wireless broadcasting and in-physics computation of general complex-valued matrix-vector multiplications directly at radio frequency. Using a software-defined radio platform with wirelessly broadcast model weights over the air, we demonstrate that WISE achieves 95.7% image classification accuracy with ultra-low operation power of 6.0 fJ/MAC per client, corresponding to a computation efficiency of 165.8 TOPS/W. This approach enables energy-efficient deep learning inference on wirelessly connected edge devices, achieving more than two orders of magnitude improvement in efficiency compared to traditional digital computing.
comment: 11 pages, 4 figures. Supplementary Information: 54 pages, 20 figures, 1 table
☆ MSGCN: Multiplex Spatial Graph Convolution Network for Interlayer Link Weight Prediction
Graph Neural Networks (GNNs) have been widely used for various learning tasks, ranging from node classification to link prediction. They have demonstrated excellent performance in multiple domains involving graph-structured data. However, an important category of learning tasks, namely link weight prediction, has received less emphasis due to its increased complexity compared to binary link classification. Link weight prediction becomes even more challenging when considering multilayer networks, where nodes can be interconnected across multiple layers. To address these challenges, we propose a new method named Multiplex Spatial Graph Convolution Network (MSGCN), which spatially embeds information across multiple layers to predict interlayer link weights. The MSGCN model generalizes spatial graph convolution to multiplex networks and captures the geometric structure of nodes across multiple layers. Extensive experiments using data with known interlayer link information show that the MSGCN model has robust, accurate, and generalizable link weight prediction performance across a wide variety of multiplex network structures.
☆ Embedding Empirical Distributions for Computing Optimal Transport Maps
Distributional data have become increasingly prominent in modern signal processing, highlighting the necessity of computing optimal transport (OT) maps across multiple probability distributions. Nevertheless, recent studies on neural OT methods predominantly focused on the efficient computation of a single map between two distributions. To address this challenge, we introduce a novel approach to learning transport maps for new empirical distributions. Specifically, we employ the transformer architecture to produce embeddings from distributional data of varying length; these embeddings are then fed into a hypernetwork to generate neural OT maps. Various numerical experiments were conducted to validate the embeddings and the generated OT maps. The model implementation and the code are provided on https://github.com/jiangmingchen/HOTET.
☆ Interpretable Early Detection of Parkinson's Disease through Speech Analysis
Parkinson's disease is a progressive neurodegenerative disorder affecting motor and non-motor functions, with speech impairments among its earliest symptoms. Speech impairments offer a valuable diagnostic opportunity, with machine learning advances providing promising tools for timely detection. In this research, we propose a deep learning approach for early Parkinson's disease detection from speech recordings, which also highlights the vocal segments driving predictions to enhance interpretability. This approach seeks to associate predictive speech patterns with articulatory features, providing a basis for interpreting underlying neuromuscular impairments. We evaluated our approach using the Italian Parkinson's Voice and Speech Database, containing 831 audio recordings from 65 participants, including both healthy individuals and patients. Our approach showed competitive classification performance compared to state-of-the-art methods, while providing enhanced interpretability by identifying key speech features influencing predictions.
☆ EgoCHARM: Resource-Efficient Hierarchical Activity Recognition using an Egocentric IMU Sensor
Human activity recognition (HAR) on smartglasses has various use cases, including health/fitness tracking and input for context-aware AI assistants. However, current approaches for egocentric activity recognition suffer from low performance or are resource-intensive. In this work, we introduce a resource (memory, compute, power, sample) efficient machine learning algorithm, EgoCHARM, for recognizing both high level and low level activities using a single egocentric (head-mounted) Inertial Measurement Unit (IMU). Our hierarchical algorithm employs a semi-supervised learning strategy, requiring primarily high level activity labels for training, to learn generalizable low level motion embeddings that can be effectively utilized for low level activity recognition. We evaluate our method on 9 high level and 3 low level activities achieving 0.826 and 0.855 F1 scores on high level and low level activity recognition respectively, with just 63k high level and 22k low level model parameters, allowing the low level encoder to be deployed directly on current IMU chips with compute. Lastly, we present results and insights from a sensitivity analysis and highlight the opportunities and limitations of activity recognition using egocentric IMUs.
☆ Towards Robust LLMs: an Adversarial Robustness Measurement Framework
The rise of Large Language Models (LLMs) has revolutionized artificial intelligence, yet these models remain vulnerable to adversarial perturbations, undermining their reliability in high-stakes applications. While adversarial robustness in vision-based neural networks has been extensively studied, LLM robustness remains under-explored. We adapt the Robustness Measurement and Assessment (RoMA) framework to quantify LLM resilience against adversarial inputs without requiring access to model parameters. By comparing RoMA's estimates to those of formal verification methods, we demonstrate its accuracy with minimal error margins while maintaining computational efficiency. Our empirical evaluation reveals that robustness varies significantly not only between different models but also across categories within the same task and between various types of perturbations. This non-uniformity underscores the need for task-specific robustness evaluations, enabling practitioners to compare and select models based on application-specific robustness requirements. Our work provides a systematic methodology to assess LLM robustness, advancing the development of more reliable language models for real-world deployment.
comment: 17 pages, 5 figures
☆ Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
In industrial settings, surface defects on steel can significantly compromise its service life and elevate potential safety risks. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Although automated defect detection approaches based on Convolutional Neural Networks(e.g., Mask R-CNN) have advanced rapidly, their reliability remains challenged due to data annotation uncertainties during deep model training and overfitting issues. These limitations may lead to detection deviations when processing the given new test samples, rendering automated detection processes unreliable. To address this challenge, we first evaluate the detection model's practical performance through calibration data that satisfies the independent and identically distributed (i.i.d) condition with test data. Specifically, we define a loss function for each calibration sample to quantify detection error rates, such as the complement of recall rate and false discovery rate. Subsequently, we derive a statistically rigorous threshold based on a user-defined risk level to identify high-probability defective pixels in test images, thereby constructing prediction sets (e.g., defect regions). This methodology ensures that the expected error rate (mean error rate) on the test set remains strictly bounced by the predefined risk level. Additionally, we observe a negative correlation between the average prediction set size and the risk level on the test set, establishing a statistically rigorous metric for assessing detection model uncertainty. Furthermore, our study demonstrates robust and efficient control over the expected test set error rate across varying calibration-to-test partitioning ratios, validating the method's adaptability and operational effectiveness.
comment: Under Review
☆ Evaluating Uncertainty in Deep Gaussian Processes
Reliable uncertainty estimates are crucial in modern machine learning. Deep Gaussian Processes (DGPs) and Deep Sigma Point Processes (DSPPs) extend GPs hierarchically, offering promising methods for uncertainty quantification grounded in Bayesian principles. However, their empirical calibration and robustness under distribution shift relative to baselines like Deep Ensembles remain understudied. This work evaluates these models on regression (CASP dataset) and classification (ESR dataset) tasks, assessing predictive performance (MAE, Accu- racy), calibration using Negative Log-Likelihood (NLL) and Expected Calibration Error (ECE), alongside robustness under various synthetic feature-level distribution shifts. Results indicate DSPPs provide strong in-distribution calibration leveraging their sigma point approximations. However, compared to Deep Ensembles, which demonstrated superior robustness in both per- formance and calibration under the tested shifts, the GP-based methods showed vulnerabilities, exhibiting particular sensitivity in the observed metrics. Our findings underscore ensembles as a robust baseline, suggesting that while deep GP methods offer good in-distribution calibration, their practical robustness under distribution shift requires careful evaluation. To facilitate reproducibility, we make our code available at https://github.com/matthjs/xai-gp.
☆ Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
☆ Plasma State Monitoring and Disruption Characterization using Multimodal VAEs
When a plasma disrupts in a tokamak, significant heat and electromagnetic loads are deposited onto the surrounding device components. These forces scale with plasma current and magnetic field strength, making disruptions one of the key challenges for future devices. Unfortunately, disruptions are not fully understood, with many different underlying causes that are difficult to anticipate. Data-driven models have shown success in predicting them, but they only provide limited interpretability. On the other hand, large-scale statistical analyses have been a great asset to understanding disruptive patterns. In this paper, we leverage data-driven methods to find an interpretable representation of the plasma state for disruption characterization. Specifically, we use a latent variable model to represent diagnostic measurements as a low-dimensional, latent representation. We build upon the Variational Autoencoder (VAE) framework, and extend it for (1) continuous projections of plasma trajectories; (2) a multimodal structure to separate operating regimes; and (3) separation with respect to disruptive regimes. Subsequently, we can identify continuous indicators for the disruption rate and the disruptivity based on statistical properties of measurement data. The proposed method is demonstrated using a dataset of approximately 1600 TCV discharges, selecting for flat-top disruptions or regular terminations. We evaluate the method with respect to (1) the identified disruption risk and its correlation with other plasma properties; (2) the ability to distinguish different types of disruptions; and (3) downstream analyses. For the latter, we conduct a demonstrative study on identifying parameters connected to disruptions using counterfactual-like analysis. Overall, the method can adequately identify distinct operating regimes characterized by varying proximity to disruptions in an interpretable manner.
☆ Fault Diagnosis in New Wind Turbines using Knowledge from Existing Turbines by Generative Domain Adaptation
Intelligent condition monitoring of wind turbines is essential for reducing downtimes. Machine learning models trained on wind turbine operation data are commonly used to detect anomalies and, eventually, operation faults. However, data-driven normal behavior models (NBMs) require a substantial amount of training data, as NBMs trained with scarce data may result in unreliable fault diagnosis. To overcome this limitation, we present a novel generative deep learning approach to make SCADA samples from one wind turbine lacking training data resemble SCADA data from wind turbines with representative training data. Through CycleGAN-based domain mapping, our method enables the application of an NBM trained on an existing wind turbine to one with severely limited data. We demonstrate our approach on field data mapping SCADA samples across 7 substantially different WTs. Our findings show significantly improved fault diagnosis in wind turbines with scarce data. Our method achieves the most similar anomaly scores to an NBM trained with abundant data, outperforming NBMs trained on scarce training data with improvements of +10.3% in F1-score when 1 month of training data is available and +16.8% when 2 weeks are available. The domain mapping approach outperforms conventional fine-tuning at all considered degrees of data scarcity, ranging from 1 to 8 weeks of training data. The proposed technique enables earlier and more reliable fault diagnosis in newly installed wind farms, demonstrating a novel and promising research direction to improve anomaly detection when faced with training data scarcity.
☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
☆ On the Generalization of Adversarially Trained Quantum Classifiers
Quantum classifiers are vulnerable to adversarial attacks that manipulate their input classical or quantum data. A promising countermeasure is adversarial training, where quantum classifiers are trained by using an attack-aware, adversarial loss function. This work establishes novel bounds on the generalization error of adversarially trained quantum classifiers when tested in the presence of perturbation-constrained adversaries. The bounds quantify the excess generalization error incurred to ensure robustness to adversarial attacks as scaling with the training sample size $m$ as $1/\sqrt{m}$, while yielding insights into the impact of the quantum embedding. For quantum binary classifiers employing \textit{rotation embedding}, we find that, in the presence of adversarial attacks on classical inputs $\mathbf{x}$, the increase in sample complexity due to adversarial training over conventional training vanishes in the limit of high dimensional inputs $\mathbf{x}$. In contrast, when the adversary can directly attack the quantum state $\rho(\mathbf{x})$ encoding the input $\mathbf{x}$, the excess generalization error depends on the choice of embedding only through its Hilbert space dimension. The results are also extended to multi-class classifiers. We validate our theoretical findings with numerical experiments.
comment: 22 pages, 6 figures
☆ Energy Considerations of Large Language Model Inference and Efficiency Optimizations
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
comment: 16 pages
☆ Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
☆ On Multivariate Financial Time Series Classification
This article investigates the use of Machine Learning and Deep Learning models in multivariate time series analysis within financial markets. It compares small and big data approaches, focusing on their distinct challenges and the benefits of scaling. Traditional methods such as SVMs are contrasted with modern architectures like ConvTimeNet. The results show the importance of using and understanding Big Data in depth in the analysis and prediction of financial time series.
☆ The Malicious Technical Ecosystem: Exposing Limitations in Technical Governance of AI-Generated Non-Consensual Intimate Images of Adults
In this paper, we adopt a survivor-centered approach to locate and dissect the role of sociotechnical AI governance in preventing AI-Generated Non-Consensual Intimate Images (AIG-NCII) of adults, colloquially known as "deep fake pornography." We identify a "malicious technical ecosystem" or "MTE," comprising of open-source face-swapping models and nearly 200 "nudifying" software programs that allow non-technical users to create AIG-NCII within minutes. Then, using the National Institute of Standards and Technology (NIST) AI 100-4 report as a reflection of current synthetic content governance methods, we show how the current landscape of practices fails to effectively regulate the MTE for adult AIG-NCII, as well as flawed assumptions explaining these gaps.
☆ Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
Simulation-based inference (SBI) offers a flexible and general approach to performing Bayesian inference: In SBI, a neural network is trained on synthetic data simulated from a model and used to rapidly infer posterior distributions for observed data. A key goal for SBI is to achieve accurate inference with as few simulations as possible, especially for expensive simulators. In this work, we address this challenge by repurposing recent probabilistic foundation models for tabular data: We show how tabular foundation models -- specifically TabPFN -- can be used as pre-trained autoregressive conditional density estimators for SBI. We propose Neural Posterior Estimation with Prior-data Fitted Networks (NPE-PF) and show that it is competitive with current SBI approaches in terms of accuracy for both benchmark tasks and two complex scientific inverse problems. Crucially, it often substantially outperforms them in terms of simulation efficiency, sometimes requiring orders of magnitude fewer simulations. NPE-PF eliminates the need for inference network selection, training, and hyperparameter tuning. We also show that it exhibits superior robustness to model misspecification and can be scaled to simulation budgets that exceed the context size limit of TabPFN. NPE-PF provides a new direction for SBI, where training-free, general-purpose inference models offer efficient, easy-to-use, and flexible solutions for a wide range of stochastic inverse problems.
☆ polyGen: A Learning Framework for Atomic-level Polymer Structure Generation
Synthetic polymeric materials underpin fundamental technologies in the energy, electronics, consumer goods, and medical sectors, yet their development still suffers from prolonged design timelines. Although polymer informatics tools have supported speedup, polymer simulation protocols continue to face significant challenges: on-demand generation of realistic 3D atomic structures that respect the conformational diversity of polymer structures. Generative algorithms for 3D structures of inorganic crystals, bio-polymers, and small molecules exist, but have not addressed synthetic polymers. In this work, we introduce polyGen, the first latent diffusion model designed specifically to generate realistic polymer structures from minimal inputs such as the repeat unit chemistry alone, leveraging a molecular encoding that captures polymer connectivity throughout the architecture. Due to a scarce dataset of only 3855 DFT-optimized polymer structures, we augment our training with DFT-optimized molecular structures, showing improvement in joint learning between similar chemical structures. We also establish structure matching criteria to benchmark our approach on this novel problem. polyGen effectively generates diverse conformations of both linear chains and complex branched structures, though its performance decreases when handling repeat units with a high atom count. Given these initial results, polyGen represents a paradigm shift in atomic-level structure generation for polymer science-the first proof-of-concept for predicting realistic atomic-level polymer conformations while accounting for their intrinsic structural flexibility.
☆ Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
☆ PTCL: Pseudo-Label Temporal Curriculum Learning for Label-Limited Dynamic Graph
Dynamic node classification is critical for modeling evolving systems like financial transactions and academic collaborations. In such systems, dynamically capturing node information changes is critical for dynamic node classification, which usually requires all labels at every timestamp. However, it is difficult to collect all dynamic labels in real-world scenarios due to high annotation costs and label uncertainty (e.g., ambiguous or delayed labels in fraud detection). In contrast, final timestamp labels are easier to obtain as they rely on complete temporal patterns and are usually maintained as a unique label for each user in many open platforms, without tracking the history data. To bridge this gap, we propose PTCL(Pseudo-label Temporal Curriculum Learning), a pioneering method addressing label-limited dynamic node classification where only final labels are available. PTCL introduces: (1) a temporal decoupling architecture separating the backbone (learning time-aware representations) and decoder (strictly aligned with final labels), which generate pseudo-labels, and (2) a Temporal Curriculum Learning strategy that prioritizes pseudo-labels closer to the final timestamp by assigning them higher weights using an exponentially decaying function. We contribute a new academic dataset (CoOAG), capturing long-range research interest in dynamic graph. Experiments across real-world scenarios demonstrate PTCL's consistent superiority over other methods adapted to this task. Beyond methodology, we propose a unified framework FLiD (Framework for Label-Limited Dynamic Node Classification), consisting of a complete preparation workflow, training pipeline, and evaluation standards, and supporting various models and datasets. The code can be found at https://github.com/3205914485/FLiD.
☆ Likelihood-Free Variational Autoencoders
Variational Autoencoders (VAEs) typically rely on a probabilistic decoder with a predefined likelihood, most commonly an isotropic Gaussian, to model the data conditional on latent variables. While convenient for optimization, this choice often leads to likelihood misspecification, resulting in blurry reconstructions and poor data fidelity, especially for high-dimensional data such as images. In this work, we propose \textit{EnVAE}, a novel likelihood-free generative framework that has a deterministic decoder and employs the energy score -- a proper scoring rule -- to build the reconstruction loss. This enables likelihood-free inference without requiring explicit parametric density functions. To address the computational inefficiency of the energy score, we introduce a fast variant, \textit{FEnVAE}, based on the local smoothness of the decoder and the sharpness of the posterior distribution of latent variables. This yields an efficient single-sample training objective that integrates seamlessly into existing VAE pipelines with minimal overhead. Empirical results on standard benchmarks demonstrate that \textit{EnVAE} achieves superior reconstruction and generation quality compared to likelihood-based baselines. Our framework offers a general, scalable, and statistically principled alternative for flexible and nonparametric distribution learning in generative modeling.
☆ The effects of Hessian eigenvalue spectral density type on the applicability of Hessian analysis to generalization capability assessment of neural networks
Hessians of neural network (NN) contain essential information about the curvature of NN loss landscapes which can be used to estimate NN generalization capabilities. We have previously proposed generalization criteria that rely on the observation that Hessian eigenvalue spectral density (HESD) behaves similarly for a wide class of NNs. This paper further studies their applicability by investigating factors that can result in different types of HESD. We conduct a wide range of experiments showing that HESD mainly has positive eigenvalues (MP-HESD) for NN training and fine-tuning with various optimizers on different datasets with different preprocessing and augmentation procedures. We also show that mainly negative HESD (MN-HESD) is a consequence of external gradient manipulation, indicating that the previously proposed Hessian analysis methodology cannot be applied in such cases. We also propose criteria and corresponding conditions to determine HESD type and estimate NN generalization potential. These HESD types and previously proposed generalization criteria are combined into a unified HESD analysis methodology. Finally, we discuss how HESD changes during training, and show the occurrence of quasi-singular (QS) HESD and its influence on the proposed methodology and on the conventional assumptions about the relation between Hessian eigenvalues and NN loss landscape curvature.
comment: 11 pages, 10 figures, 4 tables, 4 equations
☆ Decentralized Time Series Classification with ROCKET Features ECML-PKDD
Time series classification (TSC) is a critical task with applications in various domains, including healthcare, finance, and industrial monitoring. Due to privacy concerns and data regulations, Federated Learning has emerged as a promising approach for learning from distributed time series data without centralizing raw information. However, most FL solutions rely on a client-server architecture, which introduces robustness and confidentiality risks related to the distinguished role of the server, which is a single point of failure and can observe knowledge extracted from clients. To address these challenges, we propose DROCKS, a fully decentralized FL framework for TSC that leverages ROCKET (RandOm Convolutional KErnel Transform) features. In DROCKS, the global model is trained by sequentially traversing a structured path across federation nodes, where each node refines the model and selects the most effective local kernels before passing them to the successor. Extensive experiments on the UCR archive demonstrate that DROCKS outperforms state-of-the-art client-server FL approaches while being more resilient to node failures and malicious attacks. Our code is available at https://anonymous.4open.science/r/DROCKS-7FF3/README.md.
comment: Submitted to Workshop on Federated Learning Advancements 2025, in conjunction with ECML-PKDD, WAFL25
☆ TarDiff: Target-Oriented Diffusion Guidance for Synthetic Electronic Health Record Time Series Generation
Synthetic Electronic Health Record (EHR) time-series generation is crucial for advancing clinical machine learning models, as it helps address data scarcity by providing more training data. However, most existing approaches focus primarily on replicating statistical distributions and temporal dependencies of real-world data. We argue that fidelity to observed data alone does not guarantee better model performance, as common patterns may dominate, limiting the representation of rare but important conditions. This highlights the need for generate synthetic samples to improve performance of specific clinical models to fulfill their target outcomes. To address this, we propose TarDiff, a novel target-oriented diffusion framework that integrates task-specific influence guidance into the synthetic data generation process. Unlike conventional approaches that mimic training data distributions, TarDiff optimizes synthetic samples by quantifying their expected contribution to improving downstream model performance through influence functions. Specifically, we measure the reduction in task-specific loss induced by synthetic samples and embed this influence gradient into the reverse diffusion process, thereby steering the generation towards utility-optimized data. Evaluated on six publicly available EHR datasets, TarDiff achieves state-of-the-art performance, outperforming existing methods by up to 20.4% in AUPRC and 18.4% in AUROC. Our results demonstrate that TarDiff not only preserves temporal fidelity but also enhances downstream model performance, offering a robust solution to data scarcity and class imbalance in healthcare analytics.
☆ Interpretable non-linear dimensionality reduction using gaussian weighted linear transformation
Dimensionality reduction techniques are fundamental for analyzing and visualizing high-dimensional data. With established methods like t-SNE and PCA presenting a trade-off between representational power and interpretability. This paper introduces a novel approach that bridges this gap by combining the interpretability of linear methods with the expressiveness of non-linear transformations. The proposed algorithm constructs a non-linear mapping between high-dimensional and low-dimensional spaces through a combination of linear transformations, each weighted by Gaussian functions. This architecture enables complex non-linear transformations while preserving the interpretability advantages of linear methods, as each transformation can be analyzed independently. The resulting model provides both powerful dimensionality reduction and transparent insights into the transformed space. Techniques for interpreting the learned transformations are presented, including methods for identifying suppressed dimensions and how space is expanded and contracted. These tools enable practitioners to understand how the algorithm preserves and modifies geometric relationships during dimensionality reduction. To ensure the practical utility of this algorithm, the creation of user-friendly software packages is emphasized, facilitating its adoption in both academia and industry.
comment: 11 pages, 5 figures
☆ A Machine Learning Approach for Denoising and Upsampling HRTFs
The demand for realistic virtual immersive audio continues to grow, with Head-Related Transfer Functions (HRTFs) playing a key role. HRTFs capture how sound reaches our ears, reflecting unique anatomical features and enhancing spatial perception. It has been shown that personalized HRTFs improve localization accuracy, but their measurement remains time-consuming and requires a noise-free environment. Although machine learning has been shown to reduce the required measurement points and, thus, the measurement time, a controlled environment is still necessary. This paper proposes a method to address this constraint by presenting a novel technique that can upsample sparse, noisy HRTF measurements. The proposed approach combines an HRTF Denoisy U-Net for denoising and an Autoencoding Generative Adversarial Network (AE-GAN) for upsampling from three measurement points. The proposed method achieves a log-spectral distortion (LSD) error of 5.41 dB and a cosine similarity loss of 0.0070, demonstrating the method's effectiveness in HRTF upsampling.
☆ L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference
Large Language Models (LLMs) increasingly require processing long text sequences, but GPU memory limitations force difficult trade-offs between memory capacity and bandwidth. While HBM-based acceleration offers high bandwidth, its capacity remains constrained. Offloading data to host-side DIMMs improves capacity but introduces costly data swapping overhead. We identify that the critical memory bottleneck lies in the decoding phase of multi-head attention (MHA) exclusively, which demands substantial capacity for storing KV caches and high bandwidth for attention computation. Our key insight reveals this operation uniquely aligns with modern DIMM-based processing-in-memory (PIM) architectures, which offers scalability of both capacity and bandwidth. Based on this observation and insight, we propose L3, a hardware-software co-designed system integrating DIMM-PIM and GPU devices. L3 introduces three innovations: First, hardware redesigns resolve data layout mismatches and computational element mismatches in DIMM-PIM, enhancing LLM inference utilization. Second, communication optimization enables hiding the data transfer overhead with the computation. Third, an adaptive scheduler coordinates GPU-DIMM-PIM operations to maximize parallelism between devices. Evaluations using real-world traces show L3 achieves up to 6.1$\times$ speedup over state-of-the-art HBM-PIM solutions while significantly improving batch sizes.
comment: 16 pages, 11 figures
☆ Advancing CMA-ES with Learning-Based Cooperative Coevolution for Scalable Optimization
Recent research in Cooperative Coevolution~(CC) have achieved promising progress in solving large-scale global optimization problems. However, existing CC paradigms have a primary limitation in that they require deep expertise for selecting or designing effective variable decomposition strategies. Inspired by advancements in Meta-Black-Box Optimization, this paper introduces LCC, a pioneering learning-based cooperative coevolution framework that dynamically schedules decomposition strategies during optimization processes. The decomposition strategy selector is parameterized through a neural network, which processes a meticulously crafted set of optimization status features to determine the optimal strategy for each optimization step. The network is trained via the Proximal Policy Optimization method in a reinforcement learning manner across a collection of representative problems, aiming to maximize the expected optimization performance. Extensive experimental results demonstrate that LCC not only offers certain advantages over state-of-the-art baselines in terms of optimization effectiveness and resource consumption, but it also exhibits promising transferability towards unseen problems.
☆ TileLang: A Composable Tiled Programming Model for AI Systems
Modern AI workloads rely heavily on optimized computing kernels for both training and inference. These AI kernels follow well-defined data-flow patterns, such as moving tiles between DRAM and SRAM and performing a sequence of computations on those tiles. However, writing high-performance kernels remains complex despite the clarity of these patterns. Achieving peak performance requires careful, hardware-centric optimizations to fully leverage modern accelerators. While domain-specific compilers attempt to reduce the burden of writing high-performance kernels, they often struggle with usability and expressiveness gaps. In this paper, we present TileLang, a generalized tiled programming model for more efficient AI Kernel programming. TileLang decouples scheduling space (thread binding, layout, tensorize and pipeline) from dataflow, and encapsulated them as a set of customization annotations and primitives. This approach allows users to focus on the kernel's data-flow itself, while leaving most other optimizations to compilers. We conduct comprehensive experiments on commonly-used devices, across numerous experiments, our evaluation shows that TileLang can achieve state-of-the-art performance in key kernels, demonstrating that its unified block-and-thread paradigm and transparent scheduling capabilities deliver both the power and flexibility demanded by modern AI system development.
☆ Beyond Cox Models: Assessing the Performance of Machine-Learning Methods in Non-Proportional Hazards and Non-Linear Survival Analysis
Survival analysis often relies on Cox models, assuming both linearity and proportional hazards (PH). This study evaluates machine and deep learning methods that relax these constraints, comparing their performance with penalized Cox models on a benchmark of three synthetic and three real datasets. In total, eight different models were tested, including six non-linear models of which four were also non-PH. Although Cox regression often yielded satisfactory performance, we showed the conditions under which machine and deep learning models can perform better. Indeed, the performance of these methods has often been underestimated due to the improper use of Harrell's concordance index (C-index) instead of more appropriate scores such as Antolini's concordance index, which generalizes C-index in cases where the PH assumption does not hold. In addition, since occasionally high C-index models happen to be badly calibrated, combining Antolini's C-index with Brier's score is useful to assess the overall performance of a survival method. Results on our benchmark data showed that survival prediction should be approached by testing different methods to select the most appropriate one according to sample size, non-linearity and non-PH conditions. To allow an easy reproducibility of these tests on our benchmark data, code and documentation are freely available at https://github.com/compbiomed-unito/survhive.
☆ When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
☆ Quantum Autoencoder for Multivariate Time Series Anomaly Detection IEEE
Anomaly Detection (AD) defines the task of identifying observations or events that deviate from typical - or normal - patterns, a critical capability in IT security for recognizing incidents such as system misconfigurations, malware infections, or cyberattacks. In enterprise environments like SAP HANA Cloud systems, this task often involves monitoring high-dimensional, multivariate time series (MTS) derived from telemetry and log data. With the advent of quantum machine learning offering efficient calculations in high-dimensional latent spaces, many avenues open for dealing with such complex data. One approach is the Quantum Autoencoder (QAE), an emerging and promising method with potential for application in both data compression and AD. However, prior applications of QAEs to time series AD have been restricted to univariate data, limiting their relevance for real-world enterprise systems. In this work, we introduce a novel QAE-based framework designed specifically for MTS AD towards enterprise scale. We theoretically develop and experimentally validate the architecture, demonstrating that our QAE achieves performance competitive with neural-network-based autoencoders while requiring fewer trainable parameters. We evaluate our model on datasets that closely reflect SAP system telemetry and show that the proposed QAE is a viable and efficient alternative for semisupervised AD in real-world enterprise settings.
comment: Submitted to IEEE International Conference on Quantum Computing and Engineering (QCE) 2025
☆ An introduction to R package `mvs`
In biomedical science, a set of objects or persons can often be described by multiple distinct sets of features obtained from different data sources or modalities (called "multi-view data"). Classical machine learning methods ignore the multi-view structure of such data, limiting model interpretability and performance. The R package `mvs` provides methods that were designed specifically for dealing with multi-view data, based on the multi-view stacking (MVS) framework. MVS is a form of supervised (machine) learning used to train multi-view classification or prediction models. MVS works by training a learning algorithm on each view separately, estimating the predictive power of each view-specific model through cross-validation, and then using another learning algorithm to assign weights to the view-specific models based on their estimated predictions. MVS is a form of ensemble learning, dividing the large multi-view learning problem into smaller sub-problems. Most of these sub-problems can be solved in parallel, making it computationally attractive. Additionally, the number of features of the sub-problems is greatly reduced compared with the full multi-view learning problem. This makes MVS especially useful when the total number of features is larger than the number of observations (i.e., high-dimensional data). MVS can still be applied even if the sub-problems are themselves high-dimensional by adding suitable penalty terms to the learning algorithms. Furthermore, MVS can be used to automatically select the views which are most important for prediction. The R package `mvs` makes fitting MVS models, including such penalty terms, easily and openly accessible. `mvs` allows for the fitting of stacked models with any number of levels, with different penalty terms, different outcome distributions, and provides several options for missing data handling.
comment: 15 pages, 4 figures. Package vignette corresponding to https://doi.org/10.32614/CRAN.package.mvs
☆ An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
☆ Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
The lack of generalization in learning-based autonomous driving applications is shown by the narrow range of road scenarios that vehicles can currently cover. A generalizable approach should capture many distinct road structures and topologies, as well as consider traffic participants, and dynamic changes in the environment, so that vehicles can navigate and perform motion planning tasks even in the most difficult situations. Designing suitable feature spaces for neural network-based motion planers that encapsulate all kinds of road scenarios is still an open research challenge. This paper tackles this learning-based generalization challenge and shows how graph representations of road networks can be leveraged by using multidimensional scaling (MDS) techniques in order to obtain such feature spaces. State-of-the-art graph representations and MDS approaches are analyzed for the autonomous driving use case. Finally, the option of embedding graph nodes is discussed in order to perform easier learning procedures and obtain dimensionality reduction.
☆ IRA: Adaptive Interest-aware Representation and Alignment for Personalized Multi-interest Retrieval SIGIR 2025
Online community platforms require dynamic personalized retrieval and recommendation that can continuously adapt to evolving user interests and new documents. However, optimizing models to handle such changes in real-time remains a major challenge in large-scale industrial settings. To address this, we propose the Interest-aware Representation and Alignment (IRA) framework, an efficient and scalable approach that dynamically adapts to new interactions through a cumulative structure. IRA leverages two key mechanisms: (1) Interest Units that capture diverse user interests as contextual texts, while reinforcing or fading over time through cumulative updates, and (2) a retrieval process that measures the relevance between Interest Units and documents based solely on semantic relationships, eliminating dependence on click signals to mitigate temporal biases. By integrating cumulative Interest Unit updates with the retrieval process, IRA continuously adapts to evolving user preferences, ensuring robust and fine-grained personalization without being constrained by past training distributions. We validate the effectiveness of IRA through extensive experiments on real-world datasets, including its deployment in the Home Section of NAVER's CAFE, South Korea's leading community platform.
comment: Accepted to SIGIR 2025 Industry Track. First two authors contributed equally
☆ TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction
Non-independent and identically distributed (Non-IID) data across edge clients have long posed significant challenges to federated learning (FL) training in edge computing environments. Prior works have proposed various methods to mitigate this statistical heterogeneity. While these works can achieve good theoretical performance, in this work we provide the first investigation into a hidden over-correction phenomenon brought by the uniform model correction coefficients across clients adopted by existing methods. Such over-correction could degrade model performance and even cause failures in model convergence. To address this, we propose TACO, a novel algorithm that addresses the non-IID nature of clients' data by implementing fine-grained, client-specific gradient correction and model aggregation, steering local models towards a more accurate global optimum. Moreover, we verify that leading FL algorithms generally have better model accuracy in terms of communication rounds rather than wall-clock time, resulting from their extra computation overhead imposed on clients. To enhance the training efficiency, TACO deploys a lightweight model correction and tailored aggregation approach that requires minimum computation overhead and no extra information beyond the synchronized model parameters. To validate TACO's effectiveness, we present the first FL convergence analysis that reveals the root cause of over-correction. Extensive experiments across various datasets confirm TACO's superior and stable performance in practice.
comment: 11 pages, 7 figures, accepted by ICDCS 2025
☆ Cooperative Task Offloading through Asynchronous Deep Reinforcement Learning in Mobile Edge Computing for Future Networks
Future networks (including 6G) are poised to accelerate the realisation of Internet of Everything. However, it will result in a high demand for computing resources to support new services. Mobile Edge Computing (MEC) is a promising solution, enabling to offload computation-intensive tasks to nearby edge servers from the end-user devices, thereby reducing latency and energy consumption. However, relying solely on a single MEC server for task offloading can lead to uneven resource utilisation and suboptimal performance in complex scenarios. Additionally, traditional task offloading strategies specialise in centralised policy decisions, which unavoidably entail extreme transmission latency and reach computational bottleneck. To fill the gaps, we propose a latency and energy efficient Cooperative Task Offloading framework with Transformer-driven Prediction (CTO-TP), leveraging asynchronous multi-agent deep reinforcement learning to address these challenges. This approach fosters edge-edge cooperation and decreases the synchronous waiting time by performing asynchronous training, optimising task offloading, and resource allocation across distributed networks. The performance evaluation demonstrates that the proposed CTO-TP algorithm reduces up to 80% overall system latency and 87% energy consumption compared to the baseline schemes.
☆ Communication-Efficient Personalized Distributed Learning with Data and Node Heterogeneity
To jointly tackle the challenges of data and node heterogeneity in decentralized learning, we propose a distributed strong lottery ticket hypothesis (DSLTH), based on which a communication-efficient personalized learning algorithm is developed. In the proposed method, each local model is represented as the Hadamard product of global real-valued parameters and a personalized binary mask for pruning. The local model is learned by updating and fusing the personalized binary masks while the real-valued parameters are fixed among different agents. To further reduce the complexity of hardware implementation, we incorporate a group sparse regularization term in the loss function, enabling the learned local model to achieve structured sparsity. Then, a binary mask aggregation algorithm is designed by introducing an intermediate aggregation tensor and adding a personalized fine-tuning step in each iteration, which constrains model updates towards the local data distribution. The proposed method effectively leverages the relativity among agents while meeting personalized requirements in heterogeneous node conditions. We also provide a theoretical proof for the DSLTH, establishing it as the foundation of the proposed method. Numerical simulations confirm the validity of the DSLTH and demonstrate the effectiveness of the proposed algorithm.
comment: Accepcted by TCCN
☆ Tailored minimal reservoir computing: on the bidirectional connection between nonlinearities in the reservoir and in data
We study how the degree of nonlinearity in the input data affects the optimal design of reservoir computers, focusing on how closely the model's nonlinearity should align with that of the data. By reducing minimal RCs to a single tunable nonlinearity parameter, we explore how the predictive performance varies with the degree of nonlinearity in the reservoir. To provide controlled testbeds, we generalize to the fractional Halvorsen system, a novel chaotic system with fractional exponents. Our experiments reveal that the prediction performance is maximized when the reservoir's nonlinearity matches the nonlinearity present in the data. In cases where multiple nonlinearities are present in the data, we find that the correlation dimension of the predicted signal is reconstructed correctly when the smallest nonlinearity is matched. We use this observation to propose a method for estimating the minimal nonlinearity in unknown time series by sweeping the reservoir exponent and identifying the transition to a successful reconstruction. Applying this method to both synthetic and real-world datasets, including financial time series, we demonstrate its practical viability. Finally, we transfer these insights to classical RC by augmenting traditional architectures with fractional, generalized reservoir states. This yields performance gains, particularly in resource-constrained scenarios such as physical reservoirs, where increasing reservoir size is impractical or economically unviable. Our work provides a principled route toward tailoring RCs to the intrinsic complexity of the systems they aim to model.
comment: 13 pages, 11 figures
☆ Combining GCN Structural Learning with LLM Chemical Knowledge for or Enhanced Virtual Screening
Virtual screening plays a critical role in modern drug discovery by enabling the identification of promising candidate molecules for experimental validation. Traditional machine learning methods such as support vector machines (SVM) and XGBoost rely on predefined molecular representations, often leading to information loss and potential bias. In contrast, deep learning approaches-particularly Graph Convolutional Networks (GCNs)-offer a more expressive and unbiased alternative by operating directly on molecular graphs. Meanwhile, Large Language Models (LLMs) have recently demonstrated state-of-the-art performance in drug design, thanks to their capacity to capture complex chemical patterns from large-scale data via attention mechanisms. In this paper, we propose a hybrid architecture that integrates GCNs with LLM-derived embeddings to combine localized structural learning with global chemical knowledge. The LLM embeddings can be precomputed and stored in a molecular feature library, removing the need to rerun the LLM during training or inference and thus maintaining computational efficiency. We found that concatenating the LLM embeddings after each GCN layer-rather than only at the final layer-significantly improves performance, enabling deeper integration of global context throughout the network. The resulting model achieves superior results, with an F1-score of (88.8%), outperforming standalone GCN (87.9%), XGBoost (85.5%), and SVM (85.4%) baselines.
☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Traditional time-series forecasting often focuses only on minimizing prediction errors, ignoring the specific requirements of real-world applications that employ them. This paper presents a new training methodology, which allows a forecasting model to dynamically adjust its focus based on the importance of forecast ranges specified by the end application. Unlike previous methods that fix these ranges beforehand, our training approach breaks down predictions over the entire signal range into smaller segments, which are then dynamically weighted and combined to produce accurate forecasts. We tested our method on standard datasets, including a new dataset from wireless communication, and found that not only it improves prediction accuracy but also improves the performance of end application employing the forecasting model. This research provides a basis for creating forecasting systems that better connect prediction and decision-making in various practical applications.
☆ Prototype-enhanced prediction in graph neural networks for climate applications
Data-driven emulators are increasingly being used to learn and emulate physics-based simulations, reducing computational expense and run time. Here, we present a structured way to improve the quality of these high-dimensional emulated outputs, through the use of prototypes: an approximation of the emulator's output passed as an input, which informs the model and leads to better predictions. We demonstrate our approach to emulate atmospheric dispersion, key for greenhouse gas emissions monitoring, by comparing a baseline model to models trained using prototypes as an additional input. The prototype models achieve better performance, even with few prototypes and even if they are chosen at random, but we show that choosing the prototypes through data-driven methods (k-means) can lead to almost 10\% increased performance in some metrics.
☆ Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Developing lifelong learning agents is crucial for artificial general intelligence. However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 10 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to open-ended environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
comment: 23 pages
☆ GRANITE : a Byzantine-Resilient Dynamic Gossip Learning Framework
Gossip Learning (GL) is a decentralized learning paradigm where users iteratively exchange and aggregate models with a small set of neighboring peers. Recent GL approaches rely on dynamic communication graphs built and maintained using Random Peer Sampling (RPS) protocols. Thanks to graph dynamics, GL can achieve fast convergence even over extremely sparse topologies. However, the robustness of GL over dy- namic graphs to Byzantine (model poisoning) attacks remains unaddressed especially when Byzantine nodes attack the RPS protocol to scale up model poisoning. We address this issue by introducing GRANITE, a framework for robust learning over sparse, dynamic graphs in the presence of a fraction of Byzantine nodes. GRANITE relies on two key components (i) a History-aware Byzantine-resilient Peer Sampling protocol (HaPS), which tracks previously encountered identifiers to reduce adversarial influence over time, and (ii) an Adaptive Probabilistic Threshold (APT), which leverages an estimate of Byzantine presence to set aggregation thresholds with formal guarantees. Empirical results confirm that GRANITE maintains convergence with up to 30% Byzantine nodes, improves learning speed via adaptive filtering of poisoned models and obtains these results in up to 9 times sparser graphs than dictated by current theory.
☆ Evaluating Time Series Models for Urban Wastewater Management: Predictive Performance, Model Complexity and Resilience
Climate change increases the frequency of extreme rainfall, placing a significant strain on urban infrastructures, especially Combined Sewer Systems (CSS). Overflows from overburdened CSS release untreated wastewater into surface waters, posing environmental and public health risks. Although traditional physics-based models are effective, they are costly to maintain and difficult to adapt to evolving system dynamics. Machine Learning (ML) approaches offer cost-efficient alternatives with greater adaptability. To systematically assess the potential of ML for modeling urban infrastructure systems, we propose a protocol for evaluating Neural Network architectures for CSS time series forecasting with respect to predictive performance, model complexity, and robustness to perturbations. In addition, we assess model performance on peak events and critical fluctuations, as these are the key regimes for urban wastewater management. To investigate the feasibility of lightweight models suitable for IoT deployment, we compare global models, which have access to all information, with local models, which rely solely on nearby sensor readings. Additionally, to explore the security risks posed by network outages or adversarial attacks on urban infrastructure, we introduce error models that assess the resilience of models. Our results demonstrate that while global models achieve higher predictive performance, local models provide sufficient resilience in decentralized scenarios, ensuring robust modeling of urban infrastructure. Furthermore, models with longer native forecast horizons exhibit greater robustness to data perturbations. These findings contribute to the development of interpretable and reliable ML solutions for sustainable urban wastewater management. The implementation is available in our GitHub repository.
comment: 6 pages, 6 figures, accepted at 10th International Conference on Smart and Sustainable Technologies (SpliTech) 2025, GitHub: https://github.com/calgo-lab/resilient-timeseries-evaluation
☆ HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models VLDB
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
☆ CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning
Active learning (AL) reduces human annotation costs for machine learning systems by strategically selecting the most informative unlabeled data for annotation, but performing it individually may still be insufficient due to restricted data diversity and annotation budget. Federated Active Learning (FAL) addresses this by facilitating collaborative data selection and model training, while preserving the confidentiality of raw data samples. Yet, existing FAL methods fail to account for the heterogeneity of data distribution across clients and the associated fluctuations in global and local model parameters, adversely affecting model accuracy. To overcome these challenges, we propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for FAL. CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training. To achieve both effectiveness and efficiency, \model{} encompasses techniques for 1) tracking EVs by analyzing inference inconsistencies across training epochs, 2) calibrating decision boundaries of inaccurate models with a new alignment loss, and 3) enhancing data selection efficiency via a data freeze and awaken mechanism with subset sampling. Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
comment: Accepted by TKDE 2025
☆ Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Large language models (LLMs) have demonstrated remarkable capabilities, but they require vast amounts of data and computational resources. In contrast, smaller models (SMs), while less powerful, can be more efficient and tailored to specific domains. In this position paper, we argue that taking a collaborative approach, where large and small models work synergistically, can accelerate the adaptation of LLMs to private domains and unlock new potential in AI. We explore various strategies for model collaboration and identify potential challenges and opportunities. Building upon this, we advocate for industry-driven research that prioritizes multi-objective benchmarks on real-world private datasets and applications.
☆ HydroStartML: A combined machine learning and physics-based approach to reduce hydrological model spin-up time
Finding the initial depth-to-water table (DTWT) configuration of a catchment is a critical challenge when simulating the hydrological cycle with integrated models, significantly impacting simulation outcomes. Traditionally, this involves iterative spin-up computations, where the model runs under constant atmospheric settings until steady-state is achieved. These so-called model spin-ups are computationally expensive, often requiring many years of simulated time, particularly when the initial DTWT configuration is far from steady state. To accelerate the model spin-up process we developed HydroStartML, a machine learning emulator trained on steady-state DTWT configurations across the contiguous United States. HydroStartML predicts, based on available data like conductivity and surface slopes, a DTWT configuration of the respective watershed, which can be used as an initial DTWT. Our results show that initializing spin-up computations with HydroStartML predictions leads to faster convergence than with other initial configurations like spatially constant DTWTs. The emulator accurately predicts configurations close to steady state, even for terrain configurations not seen in training, and allows especially significant reductions in computational spin-up effort in regions with deep DTWTs. This work opens the door for hybrid approaches that blend machine learning and traditional simulation, enhancing predictive accuracy and efficiency in hydrology for improving water resource management and understanding complex environmental interactions.
comment: 13 pages, 14 figures. To be published in Advances in Water Resources
☆ Coding for Computation: Efficient Compression of Neural Networks for Reconfigurable Hardware IEEE
As state of the art neural networks (NNs) continue to grow in size, their resource-efficient implementation becomes ever more important. In this paper, we introduce a compression scheme that reduces the number of computations required for NN inference on reconfigurable hardware such as FPGAs. This is achieved by combining pruning via regularized training, weight sharing and linear computation coding (LCC). Contrary to common NN compression techniques, where the objective is to reduce the memory used for storing the weights of the NNs, our approach is optimized to reduce the number of additions required for inference in a hardware-friendly manner. The proposed scheme achieves competitive performance for simple multilayer perceptrons, as well as for large scale deep NNs such as ResNet-34.
comment: Accepted at the 2025 IEEE Statistical Signal Processing (SSP) Workshop, Edinburgh
☆ On-Device Qwen2.5: Efficient LLM Inference with Model Compression and Hardware Acceleration
Transformer-based Large Language Models (LLMs) have significantly advanced AI capabilities but pose considerable challenges for deployment on edge devices due to high computational demands, memory bandwidth constraints, and energy consumption. This paper addresses these challenges by presenting an efficient framework for deploying the Qwen2.5-0.5B model on the Xilinx Kria KV260 edge platform, a heterogeneous system integrating an ARM Cortex-A53 CPU with reconfigurable FPGA logic. Leveraging Activation-aware Weight Quantization (AWQ) with FPGA-accelerated execution pipelines, the proposed approach enhances both model compression rate and system throughput. Additionally, we propose a hybrid execution strategy that intelligently offloads compute-intensive operations to the FPGA while utilizing the CPU for lighter tasks, effectively balancing the computational workload and maximizing overall performance. Our framework achieves a model compression rate of 55.08% compared to the original model and produces output at a rate of 5.1 tokens per second, outperforming the baseline performance of 2.8 tokens per second.
☆ Doubly Adaptive Social Learning IEEE
In social learning, a network of agents assigns probability scores (beliefs) to some hypotheses of interest, which rule the generation of local streaming data observed by each agent. Belief formation takes place by means of an iterative two-step procedure where: i) the agents update locally their beliefs by using some likelihood model; and ii) the updated beliefs are combined with the beliefs of the neighboring agents, using a pooling rule. This procedure can fail to perform well in the presence of dynamic drifts, leading the agents to incorrect decision making. Here, we focus on the fully online setting where both the true hypothesis and the likelihood models can change over time. We propose the doubly adaptive social learning ($\text{A}^2\text{SL}$) strategy, which infuses social learning with the necessary adaptation capabilities. This goal is achieved by exploiting two adaptation stages: i) a stochastic gradient descent update to learn and track the drifts in the decision model; ii) and an adaptive belief update to track the true hypothesis changing over time. These stages are controlled by two adaptation parameters that govern the evolution of the error probability for each agent. We show that all agents learn consistently for sufficiently small adaptation parameters, in the sense that they ultimately place all their belief mass on the true hypothesis. In particular, the probability of choosing the wrong hypothesis converges to values on the order of the adaptation parameters. The theoretical analysis is illustrated both on synthetic data and by applying the $\text{A}^2\text{SL}$ strategy to a social learning problem in the online setting using real data.
comment: This work has been submitted to the IEEE for possible publication
☆ Comprehend, Divide, and Conquer: Feature Subspace Exploration via Multi-Agent Hierarchical Reinforcement Learning
Feature selection aims to preprocess the target dataset, find an optimal and most streamlined feature subset, and enhance the downstream machine learning task. Among filter, wrapper, and embedded-based approaches, the reinforcement learning (RL)-based subspace exploration strategy provides a novel objective optimization-directed perspective and promising performance. Nevertheless, even with improved performance, current reinforcement learning approaches face challenges similar to conventional methods when dealing with complex datasets. These challenges stem from the inefficient paradigm of using one agent per feature and the inherent complexities present in the datasets. This observation motivates us to investigate and address the above issue and propose a novel approach, namely HRLFS. Our methodology initially employs a Large Language Model (LLM)-based hybrid state extractor to capture each feature's mathematical and semantic characteristics. Based on this information, features are clustered, facilitating the construction of hierarchical agents for each cluster and sub-cluster. Extensive experiments demonstrate the efficiency, scalability, and robustness of our approach. Compared to contemporary or the one-feature-one-agent RL-based approaches, HRLFS improves the downstream ML performance with iterative feature subspace exploration while accelerating total run time by reducing the number of agents involved.
comment: 20 pages, keywords: Automated Feature Engineering, Tabular Dataset, Multi-Agent Reinforcement Learning, Feature Selection
☆ Collaborative Multi-Agent Reinforcement Learning for Automated Feature Transformation with Graph-Driven Path Optimization
Feature transformation methods aim to find an optimal mathematical feature-feature crossing process that generates high-value features and improves the performance of downstream machine learning tasks. Existing frameworks, though designed to mitigate manual costs, often treat feature transformations as isolated operations, ignoring dynamic dependencies between transformation steps. To address the limitations, we propose TCTO, a collaborative multi-agent reinforcement learning framework that automates feature engineering through graph-driven path optimization. The framework's core innovation lies in an evolving interaction graph that models features as nodes and transformations as edges. Through graph pruning and backtracking, it dynamically eliminates low-impact edges, reduces redundant operations, and enhances exploration stability. This graph also provides full traceability to empower TCTO to reuse high-utility subgraphs from historical transformations. To demonstrate the efficacy and adaptability of our approach, we conduct comprehensive experiments and case studies, which show superior performance across a range of datasets.
comment: 13 pages, Keywords: Automated Feature Transformation, Tabular Dataset, Reinforcement Learning
☆ Dargana: fine-tuning EarthPT for dynamic tree canopy mapping from space ICLR 2025
We present Dargana, a fine-tuned variant of the EarthPT time-series foundation model that achieves specialisation using <3% of its pre-training data volume and 5% of its pre-training compute. Dargana is fine-tuned to generate regularly updated classification of tree canopy cover at 10m resolution, distinguishing conifer and broadleaved tree types. Using Cornwall, UK, as a test case, the model achieves a pixel-level ROC-AUC of 0.98 and a PR-AUC of 0.83 on unseen satellite imagery. Dargana can identify fine structures like hedgerows and coppice below the training sample limit, and can track temporal changes to canopy cover such as new woodland establishment. Our results demonstrate how pre-trained Large Observation Models like EarthPT can be specialised for granular, dynamic land cover monitoring from space, providing a valuable, scalable tool for natural capital management and conservation.
comment: 9 pages, 6 figures, spotlight at `Tackling Climate Change with Machine Learning', ICLR 2025
☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
☆ Machine learning-based condition monitoring of powertrains in modern electric drives IEEE
The recent technological advances in digitalization have revolutionized the industrial sector. Leveraging data analytics has now enabled the collection of deep insights into the performance and, as a result, the optimization of assets. Industrial drives, for example, already accumulate all the necessary information to control electric machines. These signals include but are not limited to currents, frequency, and temperature. Integrating machine learning (ML) models responsible for predicting the evolution of those directly collected or implicitly derived parameters enhances the smartness of industrial systems even further. In this article, data already residing in most modern electric drives has been used to develop a data-driven thermal model of a power module. A test bench has been designed and used specifically for training and validating the thermal digital twin undergoing various static and dynamic operating profiles. Different approaches, from traditional linear models to deep neural networks, have been implemented to emanate the best ML model for estimating the case temperature of a power module. Several evaluation metrics were then used to assess the investigated methods' performance and implementation in industrial embedded systems.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ The Ultimate Cookbook for Invisible Poison: Crafting Subtle Clean-Label Text Backdoors with Style Attributes
Backdoor attacks on text classifiers can cause them to predict a predefined label when a particular "trigger" is present. Prior attacks often rely on triggers that are ungrammatical or otherwise unusual, leading to conspicuous attacks. As a result, human annotators, who play a critical role in curating training data in practice, can easily detect and filter out these unnatural texts during manual inspection, reducing the risk of such attacks. We argue that a key criterion for a successful attack is for text with and without triggers to be indistinguishable to humans. However, prior work neither directly nor comprehensively evaluated attack subtlety and invisibility with human involvement. We bridge the gap by conducting thorough human evaluations to assess attack subtlety. We also propose \emph{AttrBkd}, consisting of three recipes for crafting subtle yet effective trigger attributes, such as extracting fine-grained attributes from existing baseline backdoor attacks. Our human evaluations find that AttrBkd with these baseline-derived attributes is often more effective (higher attack success rate) and more subtle (fewer instances detected by humans) than the original baseline backdoor attacks, demonstrating that backdoor attacks can bypass detection by being inconspicuous and appearing natural even upon close inspection, while still remaining effective. Our human annotation also provides information not captured by automated metrics used in prior work, and demonstrates the misalignment of these metrics with human judgment.
comment: Accepted at SaTML 2025
☆ ExOSITO: Explainable Off-Policy Learning with Side Information for Intensive Care Unit Blood Test Orders
Ordering a minimal subset of lab tests for patients in the intensive care unit (ICU) can be challenging. Care teams must balance between ensuring the availability of the right information and reducing the clinical burden and costs associated with each lab test order. Most in-patient settings experience frequent over-ordering of lab tests, but are now aiming to reduce this burden on both hospital resources and the environment. This paper develops a novel method that combines off-policy learning with privileged information to identify the optimal set of ICU lab tests to order. Our approach, EXplainable Off-policy learning with Side Information for ICU blood Test Orders (ExOSITO) creates an interpretable assistive tool for clinicians to order lab tests by considering both the observed and predicted future status of each patient. We pose this problem as a causal bandit trained using offline data and a reward function derived from clinically-approved rules; we introduce a novel learning framework that integrates clinical knowledge with observational data to bridge the gap between the optimal and logging policies. The learned policy function provides interpretable clinical information and reduces costs without omitting any vital lab orders, outperforming both a physician's policy and prior approaches to this practical problem.
comment: Accepted to the Conference on Health, Inference, and Learning (CHIL) 2025
☆ HeRB: Heterophily-Resolved Structure Balancer for Graph Neural Networks
Recent research has witnessed the remarkable progress of Graph Neural Networks (GNNs) in the realm of graph data representation. However, GNNs still encounter the challenge of structural imbalance. Prior solutions to this problem did not take graph heterophily into account, namely that connected nodes process distinct labels or features, thus resulting in a deficiency in effectiveness. Upon verifying the impact of heterophily on solving the structural imbalance problem, we propose to rectify the heterophily first and then transfer homophilic knowledge. To the end, we devise a method named HeRB (Heterophily-Resolved Structure Balancer) for GNNs. HeRB consists of two innovative components: 1) A heterophily-lessening augmentation module which serves to reduce inter-class edges and increase intra-class edges; 2) A homophilic knowledge transfer mechanism to convey homophilic information from head nodes to tail nodes. Experimental results demonstrate that HeRB achieves superior performance on two homophilic and six heterophilic benchmark datasets, and the ablation studies further validate the efficacy of two proposed components.
☆ Signal Recovery from Random Dot-Product Graphs Under Local Differential Privacy
We consider the problem of recovering latent information from graphs under $\varepsilon$-edge local differential privacy where the presence of relationships/edges between two users/vertices remains confidential, even from the data curator. For the class of generalized random dot-product graphs, we show that a standard local differential privacy mechanism induces a specific geometric distortion in the latent positions. Leveraging this insight, we show that consistent recovery of the latent positions is achievable by appropriately adjusting the statistical inference procedure for the privatized graph. Furthermore, we prove that our procedure is nearly minimax-optimal under local edge differential privacy constraints. Lastly, we show that this framework allows for consistent recovery of geometric and topological information underlying the latent positions, as encoded in their persistence diagrams. Our results extend previous work from the private community detection literature to a substantially richer class of models and inferential tasks.
☆ Symbolic Representation for Any-to-Any Generative Tasks
We propose a symbolic generative task description language and a corresponding inference engine capable of representing arbitrary multimodal tasks as structured symbolic flows. Unlike conventional generative models that rely on large-scale training and implicit neural representations to learn cross-modal mappings, often at high computational cost and with limited flexibility, our framework introduces an explicit symbolic representation comprising three core primitives: functions, parameters, and topological logic. Leveraging a pre-trained language model, our inference engine maps natural language instructions directly to symbolic workflows in a training-free manner. Our framework successfully performs over 12 diverse multimodal generative tasks, demonstrating strong performance and flexibility without the need for task-specific tuning. Experiments show that our method not only matches or outperforms existing state-of-the-art unified models in content quality, but also offers greater efficiency, editability, and interruptibility. We believe that symbolic task representations provide a cost-effective and extensible foundation for advancing the capabilities of generative AI.
☆ Group Downsampling with Equivariant Anti-aliasing
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
☆ Low-Resource Neural Machine Translation Using Recurrent Neural Networks and Transfer Learning: A Case Study on English-to-Igbo
In this study, we develop Neural Machine Translation (NMT) and Transformer-based transfer learning models for English-to-Igbo translation - a low-resource African language spoken by over 40 million people across Nigeria and West Africa. Our models are trained on a curated and benchmarked dataset compiled from Bible corpora, local news, Wikipedia articles, and Common Crawl, all verified by native language experts. We leverage Recurrent Neural Network (RNN) architectures, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), enhanced with attention mechanisms to improve translation accuracy. To further enhance performance, we apply transfer learning using MarianNMT pre-trained models within the SimpleTransformers framework. Our RNN-based system achieves competitive results, closely matching existing English-Igbo benchmarks. With transfer learning, we observe a performance gain of +4.83 BLEU points, reaching an estimated translation accuracy of 70%. These findings highlight the effectiveness of combining RNNs with transfer learning to address the performance gap in low-resource language translation tasks.
comment: 25 pages, 14 combined figures (19 total), includes horizontal layouts. Submitted to arXiv for open access
☆ Targeted AMP generation through controlled diffusion with efficient embeddings
Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as low experimental hit rates as well as the need for nuanced controllability and efficient modeling of peptide properties. To address these challenges, we introduce OmegAMP, a framework that leverages a diffusion-based generative model with efficient low-dimensional embeddings, precise controllability mechanisms, and novel classifiers with drastically reduced false positive rates for candidate filtering. OmegAMP enables the targeted generation of AMPs with specific physicochemical properties, activity profiles, and species-specific effectiveness. Moreover, it maximizes sample diversity while ensuring faithfulness to the underlying data distribution during generation. We demonstrate that OmegAMP achieves state-of-the-art performance across all stages of the AMP discovery pipeline, significantly advancing the potential of computational frameworks in combating antimicrobial resistance.
☆ NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Grokking is proposed and widely studied as an intricate phenomenon in which generalization is achieved after a long-lasting period of overfitting. In this work, we propose NeuralGrok, a novel gradient-based approach that learns an optimal gradient transformation to accelerate the generalization of transformers in arithmetic tasks. Specifically, NeuralGrok trains an auxiliary module (e.g., an MLP block) in conjunction with the base model. This module dynamically modulates the influence of individual gradient components based on their contribution to generalization, guided by a bilevel optimization algorithm. Our extensive experiments demonstrate that NeuralGrok significantly accelerates generalization, particularly in challenging arithmetic tasks. We also show that NeuralGrok promotes a more stable training paradigm, constantly reducing the model's complexity, while traditional regularization methods, such as weight decay, can introduce substantial instability and impede generalization. We further investigate the intrinsic model complexity leveraging a novel Absolute Gradient Entropy (AGE) metric, which explains that NeuralGrok effectively facilitates generalization by reducing the model complexity. We offer valuable insights on the grokking phenomenon of Transformer models, which encourages a deeper understanding of the fundamental principles governing generalization ability.
comment: Preprint, 16 pages
☆ Rate-Distortion-Perception Theory for the Quadratic Wasserstein Space
We establish a single-letter characterization of the fundamental distortion-rate-perception tradeoff with limited common randomness under the squared error distortion measure and the squared Wasserstein-2 perception measure. Moreover, it is shown that this single-letter characterization can be explicitly evaluated for the Gaussian source. Various notions of universal representation are also clarified.
☆ Multi-Modal Traffic Analysis: Integrating Time-Series Forecasting, Accident Prediction, and Image Classification
This study proposes an integrated machine learning framework for advanced traffic analysis, combining time-series forecasting, classification, and computer vision techniques. The system utilizes an ARIMA(2,0,1) model for traffic prediction (MAE: 2.1), an XGBoost classifier for accident severity classification (100% accuracy on balanced data), and a Convolutional Neural Network (CNN) for traffic image classification (92% accuracy). Tested on diverse datasets, the framework outperforms baseline models and identifies key factors influencing accident severity, including weather and road infrastructure. Its modular design supports deployment in smart city systems for real-time monitoring, accident prevention, and resource optimization, contributing to the evolution of intelligent transportation systems.
comment: 5 pages,10 figures
☆ Enhancing Variational Autoencoders with Smooth Robust Latent Encoding
Variational Autoencoders (VAEs) have played a key role in scaling up diffusion-based generative models, as in Stable Diffusion, yet questions regarding their robustness remain largely underexplored. Although adversarial training has been an established technique for enhancing robustness in predictive models, it has been overlooked for generative models due to concerns about potential fidelity degradation by the nature of trade-offs between performance and robustness. In this work, we challenge this presumption, introducing Smooth Robust Latent VAE (SRL-VAE), a novel adversarial training framework that boosts both generation quality and robustness. In contrast to conventional adversarial training, which focuses on robustness only, our approach smooths the latent space via adversarial perturbations, promoting more generalizable representations while regularizing with originality representation to sustain original fidelity. Applied as a post-training step on pre-trained VAEs, SRL-VAE improves image robustness and fidelity with minimal computational overhead. Experiments show that SRL-VAE improves both generation quality, in image reconstruction and text-guided image editing, and robustness, against Nightshade attacks and image editing attacks. These results establish a new paradigm, showing that adversarial training, once thought to be detrimental to generative models, can instead enhance both fidelity and robustness.
comment: Under review
☆ Synthetic Power Flow Data Generation Using Physics-Informed Denoising Diffusion Probabilistic Models IEEE
Many data-driven modules in smart grid rely on access to high-quality power flow data; however, real-world data are often limited due to privacy and operational constraints. This paper presents a physics-informed generative framework based on Denoising Diffusion Probabilistic Models (DDPMs) for synthesizing feasible power flow data. By incorporating auxiliary training and physics-informed loss functions, the proposed method ensures that the generated data exhibit both statistical fidelity and adherence to power system feasibility. We evaluate the approach on the IEEE 14-bus and 30-bus benchmark systems, demonstrating its ability to capture key distributional properties and generalize to out-of-distribution scenarios. Comparative results show that the proposed model outperforms three baseline models in terms of feasibility, diversity, and accuracy of statistical features. This work highlights the potential of integrating generative modelling into data-driven power system applications.
comment: Submitted to IEEE SmartGridComm Conference 2025
☆ High-Fidelity And Complex Test Data Generation For Real-World SQL Code Generation Services
The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted. Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures and semantic relationships that are critical for testing complex SQL code generation services like Natural Language to SQL (NL2SQL). In this paper, we address the critical need for generating syntactically correct and semantically ``meaningful'' mock data for complex schema that includes columns with nested structures that we frequently encounter in Google SQL code generation workloads. We highlight the limitations of existing approaches used in production, particularly their inability to handle large and complex schema, as well as the lack of semantically coherent test data that lead to limited test coverage. We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate realistic high-fidelity test data that adheres to complex structural constraints and maintains semantic integrity to the test targets (SQL queries/functions). This approach supports comprehensive testing of complex SQL queries involving joins, aggregations, and even deeply nested subqueries, ensuring robust evaluation of SQL code generation services, like NL2SQL and SQL Code Assistant services. Our results demonstrate the practical utility of an out-of-the-box LLM (\textit{gemini}) based test data generation for industrial SQL code generation services where generating realistic test data is essential due to the frequent unavailability of production datasets.
☆ A Double-Norm Aggregated Tensor Latent Factorization Model for Temporal-Aware Traffic Speed Imputation
In intelligent transportation systems (ITS), traffic management departments rely on sensors, cameras, and GPS devices to collect real-time traffic data. Traffic speed data is often incomplete due to sensor failures, data transmission delays, or occlusions, resulting in missing speed data in certain road segments. Currently, tensor decomposition based methods are extensively utilized, they mostly rely on the $L_2$-norm to construct their learning objectives, which leads to reduced robustness in the algorithms. To address this, we propose Temporal-Aware Traffic Speed Imputation (TATSI), which combines the $L_2$-norm and smooth $L_1$ (${SL}_1$)-norm in its loss function, thereby achieving both high accuracy and robust performance in imputing missing time-varying traffic speed data. TATSI adopts a single latent factor-dependent, nonnegative, and multiplicative update (SLF-NMU) approach, which serves as an efficient solver for performing nonnegative latent factor analysis (LFA) on a tensor. Empirical studies on three real-world time-varying traffic speed datasets demonstrate that, compared with state-of-the-art traffic speed predictors, TATSI more precisely captures temporal patterns, thereby yielding the most accurate imputations for missing traffic speed data.
comment: 11pages,3figures
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models IEEE
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ A Genealogy of Multi-Sensor Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing, primarily adopting approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches that each come with significant benefits and drawbacks. This paper examines these approaches along with their roots in the computer vision field in order to characterize potential advantages and pitfalls while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We place emphasis on the multi-sensor aspect of Earth observations, and the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 20 pages, submitted to ACM SigSpatial, currently under peer review
☆ Lessons from Deploying Learning-based CSI Localization on a Large-Scale ISAC Platform
In recent years, Channel State Information (CSI), recognized for its fine-grained spatial characteristics, has attracted increasing attention in WiFi-based indoor localization. However, despite its potential, CSI-based approaches have yet to achieve the same level of deployment scale and commercialization as those based on Received Signal Strength Indicator (RSSI). A key limitation lies in the fact that most existing CSI-based systems are developed and evaluated in controlled, small-scale environments, limiting their generalizability. To bridge this gap, we explore the deployment of a large-scale CSI-based localization system involving over 400 Access Points (APs) in a real-world building under the Integrated Sensing and Communication (ISAC) paradigm. We highlight two critical yet often overlooked factors: the underutilization of unlabeled data and the inherent heterogeneity of CSI measurements. To address these challenges, we propose a novel CSI-based learning framework for WiFi localization, tailored for large-scale ISAC deployments on the server side. Specifically, we employ a novel graph-based structure to model heterogeneous CSI data and reduce redundancy. We further design a pretext pretraining task that incorporates spatial and temporal priors to effectively leverage large-scale unlabeled CSI data. Complementarily, we introduce a confidence-aware fine-tuning strategy to enhance the robustness of localization results. In a leave-one-smartphone-out experiment spanning five floors and 25, 600 m2, we achieve a median localization error of 2.17 meters and a floor accuracy of 99.49%. This performance corresponds to an 18.7% reduction in mean absolute error (MAE) compared to the best-performing baseline.
☆ Causal rule ensemble approach for multi-arm data
Heterogeneous treatment effect (HTE) estimation is critical in medical research. It provides insights into how treatment effects vary among individuals, which can provide statistical evidence for precision medicine. While most existing methods focus on binary treatment situations, real-world applications often involve multiple interventions. However, current HTE estimation methods are primarily designed for binary comparisons and often rely on black-box models, which limit their applicability and interpretability in multi-arm settings. To address these challenges, we propose an interpretable machine learning framework for HTE estimation in multi-arm trials. Our method employs a rule-based ensemble approach consisting of rule generation, rule ensemble, and HTE estimation, ensuring both predictive accuracy and interpretability. Through extensive simulation studies and real data applications, the performance of our method was evaluated against state-of-the-art multi-arm HTE estimation approaches. The results indicate that our approach achieved lower bias and higher estimation accuracy compared with those of existing methods. Furthermore, the interpretability of our framework allows clearer insights into how covariates influence treatment effects, facilitating clinical decision making. By bridging the gap between accuracy and interpretability, our study contributes a valuable tool for multi-arm HTE estimation, supporting precision medicine.
☆ OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
comment: 10 pages, 3 figures
♻ ☆ ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: ICASSP 2025, Oral Presentation
♻ ☆ Siren -- Advancing Cybersecurity through Deception and Adaptive Analysis
Siren represents a pioneering research effort aimed at fortifying cybersecurity through strategic integration of deception, machine learning, and proactive threat analysis. Drawing inspiration from mythical sirens, this project employs sophisticated methods to lure potential threats into controlled environments. The system features a dynamic machine learning model for realtime analysis and classification, ensuring continuous adaptability to emerging cyber threats. The architectural framework includes a link monitoring proxy, a purpose-built machine learning model for dynamic link analysis, and a honeypot enriched with simulated user interactions to intensify threat engagement. Data protection within the honeypot is fortified with probabilistic encryption. Additionally, the incorporation of simulated user activity extends the system's capacity to capture and learn from potential attackers even after user disengagement. Overall, Siren introduces a paradigm shift in cybersecurity, transforming traditional defense mechanisms into proactive systems that actively engage and learn from potential adversaries. The research strives to enhance user protection while yielding valuable insights for ongoing refinement in response to the evolving landscape of cybersecurity threats.
comment: 14 pages, 5 figures, 13th Computing Conference 2025 - London, United Kingdom
♻ ☆ Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data SDM24
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier that can distinguish between two classes based on the arrangements of their points. This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies. It is challenging due to spatial variability and interpretability needs. Previously proposed techniques require dense training data or have limited ability to handle significant spatial variability within a single place-type. Most importantly, these deep neural network (DNN) approaches are not designed to work in non-Euclidean space, particularly point sets. Existing non-Euclidean DNN methods are limited to one-size-fits-all approaches. We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation, on various place-types for spatially-lucid classification. Experimental results on real-world datasets (e.g., MxIF oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
comment: SIAM International Conference on Data Mining (SDM24)
♻ ☆ DDU-Net: A Domain Decomposition-Based CNN for High-Resolution Image Segmentation on Multiple GPUs
The segmentation of ultra-high resolution images poses challenges such as loss of spatial information or computational inefficiency. In this work, a novel approach that combines encoder-decoder architectures with domain decomposition strategies to address these challenges is proposed. Specifically, a domain decomposition-based U-Net (DDU-Net) architecture is introduced, which partitions input images into non-overlapping patches that can be processed independently on separate devices. A communication network is added to facilitate inter-patch information exchange to enhance the understanding of spatial context. Experimental validation is performed on a synthetic dataset that is designed to measure the effectiveness of the communication network. Then, the performance is tested on the DeepGlobe land cover classification dataset as a real-world benchmark data set. The results demonstrate that the approach, which includes inter-patch communication for images divided into $16\times16$ non-overlapping subimages, achieves a $2-3\,\%$ higher intersection over union (IoU) score compared to the same network without inter-patch communication. The performance of the network which includes communication is equivalent to that of a baseline U-Net trained on the full image, showing that our model provides an effective solution for segmenting ultra-high-resolution images while preserving spatial context. The code is available at https://github.com/corne00/DDU-Net.
♻ ☆ Conformal prediction of future insurance claims in the regression problem
In the current insurance literature, prediction of insurance claims in the regression problem is often performed with a statistical model. This model-based approach may potentially suffer from several drawbacks: (i) model misspecification, (ii) selection effect, and (iii) lack of finite-sample validity. This article addresses these three issues simultaneously by employing conformal prediction -- a general machine learning strategy for valid predictions. The proposed method is both model-free and tuning-parameter-free. It also guarantees finite-sample validity at a pre-assigned coverage probability level. Examples, based on both simulated and real data, are provided to demonstrate the excellent performance of the proposed method and its applications in insurance, especially regarding meeting the solvency capital requirement of European insurance regulation, Solvency II.
♻ ☆ Weak-to-Strong Diffusion with Reflection
The goal of diffusion generative models is to align the learned distribution with the real data distribution through gradient score matching. However, inherent limitations in training data quality, modeling strategies, and architectural design lead to inevitable gap between generated outputs and real data. To reduce this gap, we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes the estimated difference between existing weak and strong models (i.e., weak-to-strong difference) to bridge the gap between an ideal model and a strong model. By employing a reflective operation that alternates between denoising and inversion with weak-to-strong difference, we theoretically understand that W2SD steers latent variables along sampling trajectories toward regions of the real data distribution. W2SD is highly flexible and broadly applicable, enabling diverse improvements through the strategic selection of weak-to-strong model pairs (e.g., DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive experiments demonstrate that W2SD significantly improves human preference, aesthetic quality, and prompt adherence, achieving SOTA performance across various modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE), and benchmarks. For example, Juggernaut-XL with W2SD can improve with the HPSv2 winning rate up to 90% over the original results. Moreover, the performance gains achieved by W2SD markedly outweigh its additional computational overhead, while the cumulative improvements from different weak-to-strong difference further solidify its practical utility and deployability.
comment: 23 pages, 23 figures, 15 tables
♻ ☆ Variational Self-Supervised Learning NeurIPS 2025
We present Variational Self-Supervised Learning (VSSL), a novel framework that combines variational inference with self-supervised learning to enable efficient, decoder-free representation learning. Unlike traditional VAEs that rely on input reconstruction via a decoder, VSSL symmetrically couples two encoders with Gaussian outputs. A momentum-updated teacher network defines a dynamic, data-dependent prior, while the student encoder produces an approximate posterior from augmented views. The reconstruction term in the ELBO is replaced with a cross-view denoising objective, preserving the analytical tractability of Gaussian KL divergence. We further introduce cosine-based formulations of KL and log-likelihood terms to enhance semantic alignment in high-dimensional latent spaces. Experiments on CIFAR-10, CIFAR-100, and ImageNet-100 show that VSSL achieves competitive or superior performance to leading self-supervised methods, including BYOL and MoCo V3. VSSL offers a scalable, probabilistically grounded approach to learning transferable representations without generative reconstruction, bridging the gap between variational modeling and modern self-supervised techniques.
comment: NeurIPS 2025 - SSL Workshop Submission
♻ ☆ Variation Due to Regularization Tractably Recovers Bayesian Deep Learning
Uncertainty quantification in deep learning is crucial for safe and reliable decision-making in downstream tasks. Existing methods quantify uncertainty at the last layer or other approximations of the network which may miss some sources of uncertainty in the model. To address this gap, we propose an uncertainty quantification method for large networks based on variation due to regularization. Essentially, predictions that are more (less) sensitive to the regularization of network parameters are less (more, respectively) certain. This principle can be implemented by deterministically tweaking the training loss during the fine-tuning phase and reflects confidence in the output as a function of all layers of the network. We show that regularization variation (RegVar) provides rigorous uncertainty estimates that, in the infinitesimal limit, exactly recover the Laplace approximation in Bayesian deep learning. We demonstrate its success in several deep learning architectures, showing it can scale tractably with the network size while maintaining or improving uncertainty quantification quality. Our experiments across multiple datasets show that RegVar not only identifies uncertain predictions effectively but also provides insights into the stability of learned representations.
comment: 16 pages, 9 figures
♻ ☆ Robot Pouring: Identifying Causes of Spillage and Selecting Alternative Action Parameters Using Probabilistic Actual Causation
In everyday life, we perform tasks (e.g., cooking or cleaning) that involve a large variety of objects and goals. When confronted with an unexpected or unwanted outcome, we take corrective actions and try again until achieving the desired result. The reasoning performed to identify a cause of the observed outcome and to select an appropriate corrective action is a crucial aspect of human reasoning for successful task execution. Central to this reasoning is the assumption that a factor is responsible for producing the observed outcome. In this paper, we investigate the use of probabilistic actual causation to determine whether a factor is the cause of an observed undesired outcome. Furthermore, we show how the actual causation probabilities can be used to find alternative actions to change the outcome. We apply the probabilistic actual causation analysis to a robot pouring task. When spillage occurs, the analysis indicates whether a task parameter is the cause and how it should be changed to avoid spillage. The analysis requires a causal graph of the task and the corresponding conditional probability distributions. To fulfill these requirements, we perform a complete causal modeling procedure (i.e., task analysis, definition of variables, determination of the causal graph structure, and estimation of conditional probability distributions) using data from a realistic simulation of the robot pouring task, covering a large combinatorial space of task parameters. Based on the results, we discuss the implications of the variables' representation and how the alternative actions suggested by the actual causation analysis would compare to the alternative solutions proposed by a human observer. The practical use of the analysis of probabilistic actual causation to select alternative action parameters is demonstrated.
comment: 20 pages, 13 figures
♻ ☆ Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference
We present two neural network approaches that approximate the solutions of static and dynamic $\unicode{x1D450}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D451}\unicode{x1D456}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D45C}\unicode{x1D45D}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45A}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D461}\unicode{x1D45F}\unicode{x1D44E}\unicode{x1D45B}\unicode{x1D460}\unicode{x1D45D}\unicode{x1D45C}\unicode{x1D45F}\unicode{x1D461}$ (COT) problems. Both approaches enable conditional sampling and conditional density estimation, which are core tasks in Bayesian inference$\unicode{x2013}$particularly in the simulation-based ($\unicode{x201C}$likelihood-free$\unicode{x201D}$) setting. Our methods represent the target conditional distribution as a transformation of a tractable reference distribution. Obtaining such a transformation, chosen here to be an approximation of the COT map, is computationally challenging even in moderate dimensions. To improve scalability, our numerical algorithms use neural networks to parameterize candidate maps and further exploit the structure of the COT problem. Our static approach approximates the map as the gradient of a partially input-convex neural network. It uses a novel numerical implementation to increase computational efficiency compared to state-of-the-art alternatives. Our dynamic approach approximates the conditional optimal transport via the flow map of a regularized neural ODE; compared to the static approach, it is slower to train but offers more modeling choices and can lead to faster sampling. We demonstrate both algorithms numerically, comparing them with competing state-of-the-art approaches, using benchmark datasets and simulation-based Bayesian inverse problems.
comment: 26 pages, 7 tables, 8 figures
♻ ☆ Exploring How LLMs Capture and Represent Domain-Specific Knowledge
We study whether Large Language Models (LLMs) inherently capture domain-specific nuances in natural language. Our experiments probe the domain sensitivity of LLMs by examining their ability to distinguish queries from different domains using hidden states generated during the prefill phase. We reveal latent domain-related trajectories that indicate the model's internal recognition of query domains. We also study the robustness of these domain representations to variations in prompt styles and sources. Our approach leverages these representations for model selection, mapping the LLM that best matches the domain trace of the input query (i.e., the model with the highest performance on similar traces). Our findings show that LLMs can differentiate queries for related domains, and that the fine-tuned model is not always the most accurate. Unlike previous work, our interpretations apply to both closed and open-ended generative tasks
♻ ☆ Sparse Gaussian Neural Processes
Despite significant recent advances in probabilistic meta-learning, it is common for practitioners to avoid using deep learning models due to a comparative lack of interpretability. Instead, many practitioners simply use non-meta-models such as Gaussian processes with interpretable priors, and conduct the tedious procedure of training their model from scratch for each task they encounter. While this is justifiable for tasks with a limited number of data points, the cubic computational cost of exact Gaussian process inference renders this prohibitive when each task has many observations. To remedy this, we introduce a family of models that meta-learn sparse Gaussian process inference. Not only does this enable rapid prediction on new tasks with sparse Gaussian processes, but since our models have clear interpretations as members of the neural process family, it also allows manual elicitation of priors in a neural process for the first time. In meta-learning regimes for which the number of observed tasks is small or for which expert domain knowledge is available, this offers a crucial advantage.
comment: Proceedings of the 7th Symposium on Advances in Approximate Bayesian Inference, PMLR, 2025. 25 pages, 6 figures, 5 tables
♻ ☆ On the Benefits of Memory for Modeling Time-Dependent PDEs
Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving PDEs. For time-dependent PDEs, many approaches are Markovian -- the evolution of the trained system only depends on the current state, and not the past states. In this work, we investigate the benefits of using memory for modeling time-dependent PDEs: that is, when past states are explicitly used to predict the future. Motivated by the Mori-Zwanzig theory of model reduction, we theoretically exhibit examples of simple (even linear) PDEs, in which a solution that uses memory is arbitrarily better than a Markovian solution. Additionally, we introduce Memory Neural Operator (MemNO), a neural operator architecture that combines recent state space models (specifically, S4) and Fourier Neural Operators (FNOs) to effectively model memory. We empirically demonstrate that when the PDEs are supplied in low resolution or contain observation noise at train and test time, MemNO significantly outperforms the baselines without memory -- with up to 6x reduction in test error. Furthermore, we show that this benefit is particularly pronounced when the PDE solutions have significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and we construct a challenging benchmark dataset consisting of such PDEs.
♻ ☆ Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing
Vision language models (VLMs) demonstrate strong capabilities in jointly processing visual and textual data. However, they often incur substantial computational overhead due to redundant visual information, particularly in long-form video scenarios. Existing approaches predominantly focus on either vision token pruning, which may overlook spatio-temporal dependencies, or keyframe selection, which identifies informative frames but discards others, thus disrupting contextual continuity. In this work, we propose KVTP (Keyframe-oriented Vision Token Pruning), a novel framework that overcomes the drawbacks of token pruning and keyframe selection. By adaptively assigning pruning rates based on frame relevance to the query, KVTP effectively retains essential contextual information while significantly reducing redundant computation. To thoroughly evaluate the long-form video understanding capacities of VLMs, we curated and reorganized subsets from VideoMME, EgoSchema, and NextQA into a unified benchmark named SparseKV-QA that highlights real-world scenarios with sparse but crucial events. Our experiments with VLMs of various scales show that KVTP can reduce token usage by 80% without compromising spatiotemporal and contextual consistency, significantly cutting computation while maintaining the performance. These results demonstrate our approach's effectiveness in efficient long-video processing, facilitating more scalable VLM deployment.
♻ ☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
♻ ☆ A causal viewpoint on prediction model performance under changes in case-mix: discrimination and calibration respond differently for prognosis and diagnosis predictions
Prediction models need reliable predictive performance as they inform clinical decisions, aiding in diagnosis, prognosis, and treatment planning. The predictive performance of these models is typically assessed through discrimination and calibration. Changes in the distribution of the data impact model performance and there may be important changes between a model's current application and when and where its performance was last evaluated. In health-care, a typical change is a shift in case-mix. For example, for cardiovascular risk management, a general practitioner sees a different mix of patients than a specialist in a tertiary hospital. This work introduces a novel framework that differentiates the effects of case-mix shifts on discrimination and calibration based on the causal direction of the prediction task. When prediction is in the causal direction (often the case for prognosis predictions), calibration remains stable under case-mix shifts, while discrimination does not. Conversely, when predicting in the anti-causal direction (often with diagnosis predictions), discrimination remains stable, but calibration does not. A simulation study and empirical validation using cardiovascular disease prediction models demonstrate the implications of this framework. The causal case-mix framework provides insights for developing, evaluating and deploying prediction models across different clinical settings, emphasizing the importance of understanding the causal structure of the prediction task.
♻ ☆ Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks ICML
Graph Contrastive Learning (GCL) has recently made progress as an unsupervised graph representation learning paradigm. GCL approaches can be categorized into augmentation-based and augmentation-free methods. The former relies on complex data augmentations, while the latter depends on encoders that can generate distinct views of the same input. Both approaches may require negative samples for training. In this paper, we introduce a novel augmentation-free GCL framework based on graph neural diffusion models. Specifically, we utilize learnable encoders governed by Fractional Differential Equations (FDE). Each FDE is characterized by an order parameter of the differential operator. We demonstrate that varying these parameters allows us to produce learnable encoders that generate diverse views, capturing either local or global information, for contrastive learning. Our model does not require negative samples for training and is applicable to both homophilic and heterophilic datasets. We demonstrate its effectiveness across various datasets, achieving state-of-the-art performance.
comment: Submitted to ICML
♻ ☆ Sharpness-Aware Parameter Selection for Machine Unlearning
It often happens that some sensitive personal information, such as credit card numbers or passwords, are mistakenly incorporated in the training of machine learning models and need to be removed afterwards. The removal of such information from a trained model is a complex task that needs to partially reverse the training process. There have been various machine unlearning techniques proposed in the literature to address this problem. Most of the proposed methods revolve around removing individual data samples from a trained model. Another less explored direction is when features/labels of a group of data samples need to be reverted. While the existing methods for these tasks do the unlearning task by updating the whole set of model parameters or only the last layer of the model, we show that there are a subset of model parameters that have the largest contribution in the unlearning target features. More precisely, the model parameters with the largest corresponding diagonal value in the Hessian matrix (computed at the learned model parameter) have the most contribution in the unlearning task. By selecting these parameters and updating them during the unlearning stage, we can have the most progress in unlearning. We provide theoretical justifications for the proposed strategy by connecting it to sharpness-aware minimization and robust unlearning. We empirically show the effectiveness of the proposed strategy in improving the efficacy of unlearning with a low computational cost.
♻ ☆ Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents
As demand for Large Language Models (LLMs) and AI agents rapidly grows, optimizing systems for efficient LLM inference becomes critical. While significant efforts have focused on system-level engineering, little is explored from a mathematical modeling and queuing perspective. In this paper, we aim to develop the queuing fundamentals for large language model (LLM) inference, bridging the gap between the queueing theory and LLM system communities. In particular, we study the throughput aspect in LLM inference systems. We prove that a large class of 'work-conserving' scheduling algorithms can achieve maximum throughput for individual inference LLM engine, highlighting 'work-conserving' as a key design principle in practice. In a network of LLM agents, work-conserving scheduling alone is insufficient, particularly when facing specific workload structures and multi-class workflows that require more sophisticated scheduling strategies. Evaluations of real-world systems show that Orca and Sarathi-serve are throughput-optimal, reassuring practitioners, while FasterTransformer and vanilla vLLM are not maximally stable and should be used with caution. Our results highlight the substantial benefits that the queueing community can offer in improving LLM inference systems and call for more interdisciplinary development.
♻ ☆ Artifact detection and localization in single-channel mobile EEG for sleep research using deep learning and attention mechanisms
Artifacts in the electroencephalogram (EEG) degrade signal quality and impact the analysis of brain activity. Current methods for detecting artifacts in sleep EEG rely on simple threshold-based algorithms that require manual intervention, which is time-consuming and impractical due to the vast volume of data that novel mobile recording systems generate. We propose a convolutional neural network (CNN) model incorporating a convolutional block attention module (CNN-CBAM) to detect and identify the location of artifacts in the sleep EEG with attention maps. We benchmarked this model against six other machine learning and signal processing approaches. We trained/tuned all models on 72 manually annotated EEG recordings obtained during home-based monitoring from 18 healthy participants with a mean (SD) age of 68.05 y ($\pm$5.02). We tested them on 26 separate recordings from 6 healthy participants with a mean (SD) age of 68.33 y ($\pm$4.08), with contained artifacts in 4\% of epochs. CNN-CBAM achieved the highest area under the receiver operating characteristic curve (0.88), sensitivity (0.81), and specificity (0.86) when compared to the other approaches. The attention maps from CNN-CBAM localized artifacts within the epoch with a sensitivity of 0.71 and specificity of 0.67. This work demonstrates the feasibility of automating the detection and localization of artifacts in wearable sleep EEG.
♻ ☆ ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 22pages, 5 figures
♻ ☆ MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations
World models for autonomous driving have the potential to dramatically improve the reasoning capabilities of today's systems. However, most works focus on camera data, with only a few that leverage lidar data or combine both to better represent autonomous vehicle sensor setups. In addition, raw sensor predictions are less actionable than 3D occupancy predictions, but there are no works examining the effects of combining both multimodal sensor data and 3D occupancy prediction. In this work, we perform a set of experiments with a MUltimodal World Model with Geometric VOxel representations (MUVO) to evaluate different sensor fusion strategies to better understand the effects on sensor data prediction. We also analyze potential weaknesses of current sensor fusion approaches and examine the benefits of additionally predicting 3D occupancy.
comment: Daniel Bogdoll and Yitian Yang contributed equally. Accepted for publication at IV 2025
♻ ☆ Analysing Multiscale Clusterings with Persistent Homology
In data clustering, it is often desirable to find not just a single partition into clusters but a sequence of partitions that describes the data at different scales (or levels of coarseness). A natural problem then is to analyse and compare the (not necessarily hierarchical) sequences of partitions that underpin such multiscale descriptions. Here, we use tools from topological data analysis and introduce the Multiscale Clustering Filtration (MCF), a well-defined and stable filtration of abstract simplicial complexes that encodes arbitrary cluster assignments in a sequence of partitions across scales of increasing coarseness. We show that the zero-dimensional persistent homology of the MCF measures the degree of hierarchy of this sequence, and the higher-dimensional persistent homology tracks the emergence and resolution of conflicts between cluster assignments across the sequence of partitions. To broaden the theoretical foundations of the MCF, we provide an equivalent construction via a nerve complex filtration, and we show that, in the hierarchical case, the MCF reduces to a Vietoris-Rips filtration of an ultrametric space. Using synthetic data, we then illustrate how the persistence diagram of the MCF provides a feature map that can serve to characterise and classify multiscale clusterings.
comment: This work was presented at the Dagstuhl Seminar (23192) on "Topological Data Analysis and Applications"
♻ ☆ FedMerge: Federated Personalization via Model Merging
One global model in federated learning (FL) might not be sufficient to serve many clients with non-IID tasks and distributions. While there has been advances in FL to train multiple global models for better personalization, they only provide limited choices to clients so local finetuning is still indispensable. In this paper, we propose a novel ``FedMerge'' approach that can create a personalized model per client by simply merging multiple global models with automatically optimized and customized weights. In FedMerge, a few global models can serve many non-IID clients, even without further local finetuning. We formulate this problem as a joint optimization of global models and the merging weights for each client. Unlike existing FL approaches where the server broadcasts one or multiple global models to all clients, the server only needs to send a customized, merged model to each client. Moreover, instead of periodically interrupting the local training and re-initializing it to a global model, the merged model aligns better with each client's task and data distribution, smoothening the local-global gap between consecutive rounds caused by client drift. We evaluate FedMerge on three different non-IID settings applied to different domains with diverse tasks and data types, in which FedMerge consistently outperforms existing FL approaches, including clustering-based and mixture-of-experts (MoE) based methods.
♻ ☆ Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations
Foundational Models are an emerging widely used technique of GenAI. These models are distinguished by their scalability and the ease with which they can be adapted through the exploitation of Transfer Learning. The availability of high computational power and large datasets have supported their development, achieving a high generalization capacity due to the enormous and heterogeneous amounts of data used in their initial training. These characteristics contribute to a solid base that can be adapted or adjusted to a wide range of tasks, increasing their applicability. This study proposes the methodology LLIAM, a straightforward adaptation of a kind of FM, Large Language Models, for the Time Series Forecasting task. An adequate time-series prompting schema and Low-Rank Adaptations are used to enhance the knowledge of the model with diverse time series datasets, known as the fine-tuning phase. A study divided in two stages has been performed for evaluating the effectiveness of the proposed methodology. Initially, a comparison was made between the performance of LLIAM and different state-of-the-art DL algorithms, including Recurrent Neural Networks and Temporal Convolutional Networks, as well as a LLM-based method, TimeLLM. Following this, a zero-shot study is presented in order to evaluate the generalization capacity of the proposed methodology with time series datasets from unknown domains not considered in the model training. The outcomes of this investigation demonstrate the efficacy of LLIAM, highlighting that this straightforward and general approach can attain competent results without the necessity for applying complex modifications. This work also encourages the use of available resources (such as these pre-trained models) and efficient fine-tuning techniques to avoid unnecessary and costly training, narrowing the gap between the goals of traditional AI and Green AI.
♻ ☆ Investigating the Relationship Between Debiasing and Artifact Removal using Saliency Maps
The widespread adoption of machine learning systems has raised critical concerns about fairness and bias, making mitigating harmful biases essential for AI development. In this paper, we investigate the relationship between debiasing and removing artifacts in neural networks for computer vision tasks. First, we introduce a set of novel XAI-based metrics that analyze saliency maps to assess shifts in a model's decision-making process. Then, we demonstrate that successful debiasing methods systematically redirect model focus away from protected attributes. Finally, we show that techniques originally developed for artifact removal can be effectively repurposed for improving fairness. These findings provide evidence for the existence of a bidirectional connection between ensuring fairness and removing artifacts corresponding to protected attributes.
♻ ☆ Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Predictive and prescriptive analytics for multi-site modelling of frail and elderly patient services
Many economies are challenged by the effects of an ageing population, particularly in sectors where resource capacity planning is critical, such as healthcare. This research addresses the operational challenges of bed and staffing capacity planning in hospital wards by using predictive and prescriptive analytical methods, both individually and in tandem. We applied these methodologies to a study of 165,000 patients across a network of 11 hospitals in the UK. Predictive modelling, specifically Classification and Regression Trees, forecasts patient length of stay based on clinical and demographic data. On the prescriptive side, deterministic and two-stage stochastic optimisation models determine optimal bed and staff planning strategies to minimise costs. Linking the predictive models with the prescriptive optimisation models, generates demand forecasts that inform the optimisation process, providing accurate and practical solutions. The results demonstrate that this integrated approach captures real-world variations in patient LOS and offers a 7% cost saving compared to average-based planning. This approach helps healthcare managers make robust decisions by incorporating patient-specific characteristics, improving capacity allocation, and mitigating risks associated with demand variability. Consequently, this combined methodology can be broadly extended across various sectors facing similar challenges, showcasing the versatility and effectiveness of integrating predictive and prescriptive analytics.
♻ ☆ PARMESAN: Parameter-Free Memory Search and Transduction for Dense Prediction Tasks
This work addresses flexibility in deep learning by means of transductive reasoning. For adaptation to new data and tasks, e.g., in continual learning, existing methods typically involve tuning learnable parameters or complete re-training from scratch, rendering such approaches unflexible in practice. We argue that the notion of separating computation from memory by the means of transduction can act as a stepping stone for solving these issues. We therefore propose PARMESAN (parameter-free memory search and transduction), a scalable method which leverages a memory module for solving dense prediction tasks. At inference, hidden representations in memory are being searched to find corresponding patterns. In contrast to other methods that rely on continuous training of learnable parameters, PARMESAN learns via memory consolidation simply by modifying stored contents. Our method is compatible with commonly used architectures and canonically transfers to 1D, 2D, and 3D grid-based data. The capabilities of our approach are demonstrated at the complex task of continual learning. PARMESAN learns by 3-4 orders of magnitude faster than established baselines while being on par in terms of predictive performance, hardware-efficiency, and knowledge retention.
comment: This is the author's accepted manuscript of a paper published in Lecture Notes in Computer Science (LNCS), volume 15297, Proceedings of DAGM GCPR 2024. 25 pages, 7 figures
♻ ☆ A Statistical Evaluation of Indoor LoRaWAN Environment-Aware Propagation for 6G: MLR, ANOVA, and Residual Distribution Analysis IEEE
Modeling path loss in indoor LoRaWAN technology deployments is inherently challenging due to structural obstructions, occupant density and activities, and fluctuating environmental conditions. This study proposes a two-stage approach to capture and analyze these complexities using an extensive dataset of 1,328,334 field measurements collected over six months in a single-floor office at the University of Siegen's Hoelderlinstrasse Campus, Germany. First, we implement a multiple linear regression model that includes traditional propagation metrics (distance, structural walls) and an extension with proposed environmental variables (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure). Using analysis of variance, we demonstrate that adding these environmental factors can reduce unexplained variance by 42.32 percent. Secondly, we examine residual distributions by fitting five candidate probability distributions: Normal, Skew-Normal, Cauchy, Student's t, and Gaussian Mixture Models with one to five components. Our results show that a four-component Gaussian Mixture Model captures the residual heterogeneity of indoor signal propagation most accurately, significantly outperforming single-distribution approaches. Given the push toward ultra-reliable, context-aware communications in 6G networks, our analysis shows that environment-aware modeling can substantially improve LoRaWAN network design in dynamic indoor IoT deployments.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. This is the accepted version of the article: To appear in the 2025 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
♻ ☆ Data Analysis Prediction over Multiple Unseen Datasets: A Vector Embedding Approach
The massive increase in the data volume and dataset availability for analysts compels researchers to focus on data content and select high-quality datasets to enhance the performance of analytics operators. While selecting the highest quality data for analysis highly increases task accuracy and efficiency, it is still a hard task, especially when the number of available inputs is very large. To address this issue, we propose a novel methodology that infers the outcome of analytics operators by creating a model from datasets similar to the queried one. Dataset similarity is performed via projecting each dataset to a vector embedding representation. The vectorization process is performed using our proposed deep learning model NumTabData2Vec, which takes a whole dataset and projects it into a lower vector embedding representation space. Through experimental evaluation, we compare the prediction performance and the execution time of our framework to another state-of-the-art modelling operator framework, illustrating that our approach predicts analytics outcomes accurately. Furthermore, our vectorization model can project different real-world scenarios to a lower vector embedding representation and distinguish between them.
♻ ☆ T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients IEEE
The development of machine learning applications has increased significantly in recent years, motivated by the remarkable ability of learning-powered systems to discover and generalize intricate patterns hidden in massive datasets. Modern learning models, while powerful, often exhibit a complexity level that renders them opaque black boxes, lacking transparency and hindering our understanding of their decision-making processes. Opacity challenges the practical application of machine learning, especially in critical domains requiring informed decisions. Explainable Artificial Intelligence (XAI) addresses that challenge, unraveling the complexity of black boxes by providing explanations. Feature attribution/importance XAI stands out for its ability to delineate the significance of input features in predictions. However, most attribution methods have limitations, such as instability, when divergent explanations result from similar or the same instance. This work introduces T-Explainer, a novel additive attribution explainer based on the Taylor expansion that offers desirable properties such as local accuracy and consistency. We demonstrate T-Explainer's effectiveness and stability over multiple runs in quantitative benchmark experiments against well-known attribution methods. Additionally, we provide several tools to evaluate and visualize explanations, turning T-Explainer into a comprehensive XAI framework.
comment: Copyright 2025 IEEE. All rights reserved, including rights for text, data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. Article accepted for publication in IEEE Intelligent Systems. This author's version includes the supplementary material. Content may change prior to final publication
♻ ☆ Learning by Doing: An Online Causal Reinforcement Learning Framework with Causal-Aware Policy
As a key component to intuitive cognition and reasoning solutions in human intelligence, causal knowledge provides great potential for reinforcement learning (RL) agents' interpretability towards decision-making by helping reduce the searching space. However, there is still a considerable gap in discovering and incorporating causality into RL, which hinders the rapid development of causal RL. In this paper, we consider explicitly modeling the generation process of states with the causal graphical model, based on which we augment the policy. We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between two steps: using interventions for causal structure learning during exploration and using the learned causal structure for policy guidance during exploitation. Due to the lack of public benchmarks that allow direct intervention in the state space, we design the root cause localization task in our simulated fault alarm environment and then empirically show the effectiveness and robustness of the proposed method against state-of-the-art baselines. Theoretical analysis shows that our performance improvement attributes to the virtuous cycle of causal-guided policy learning and causal structure learning, which aligns with our experimental results. Codes are available at https://github.com/DMIRLAB-Group/FaultAlarm_RL.
comment: Accepted by Science China Information Sciences
♻ ☆ Hyper-Transforming Latent Diffusion Models
We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming-a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining.
♻ ☆ A Robust Model-Based Approach for Continuous-Time Policy Evaluation with Unknown Lévy Process Dynamics
This paper develops a model-based framework for continuous-time policy evaluation (CTPE) in reinforcement learning, incorporating both Brownian and L\'evy noise to model stochastic dynamics influenced by rare and extreme events. Our approach formulates the policy evaluation problem as solving a partial integro-differential equation (PIDE) for the value function with unknown coefficients. A key challenge in this setting is accurately recovering the unknown coefficients in the stochastic dynamics, particularly when driven by L\'evy processes with heavy tail effects. To address this, we propose a robust numerical approach that effectively handles both unbiased and censored trajectory datasets. This method combines maximum likelihood estimation with an iterative tail correction mechanism, improving the stability and accuracy of coefficient recovery. Additionally, we establish a theoretical bound for the policy evaluation error based on coefficient recovery error. Through numerical experiments, we demonstrate the effectiveness and robustness of our method in recovering heavy-tailed L\'evy dynamics and verify the theoretical error analysis in policy evaluation.
comment: 28 pages, 9 figures
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
♻ ☆ Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
♻ ☆ MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks, yet their interpretability remains challenging. Traditional model-level explanation methods like XGNN and GNNInterpreter often fail to identify valid substructures like rings, leading to questionable interpretability. This limitation stems from XGNN's atom-by-atom approach and GNNInterpreter's reliance on average graph embeddings, which overlook the essential structural elements crucial for molecules. To address these gaps, we introduce an innovative \textbf{M}otif-b\textbf{A}sed \textbf{G}NN \textbf{E}xplainer (MAGE) that uses motifs as fundamental units for generating explanations. Our approach begins with extracting potential motifs through a motif decomposition technique. Then, we utilize an attention-based learning method to identify class-specific motifs. Finally, we employ a motif-based graph generator for each class to create molecular graph explanations based on these class-specific motifs. This novel method not only incorporates critical substructures into the explanations but also guarantees their validity, yielding results that are human-understandable. Our proposed method's effectiveness is demonstrated through quantitative and qualitative assessments conducted on six real-world molecular datasets.
comment: arXiv admin note: text overlap with arXiv:2405.08419 The Thirteenth International Conference on Learning Representations 2025
♻ ☆ Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples
One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many real-world applications, particularly in medical and low-resource domains, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This study introduces FICAug, a novel feature-to-image data augmentation framework designed to improve model generalization under limited data conditions by generating structured synthetic samples. FICAug first operates in the feature space, where original data are clustered using the k-means algorithm. Within pure-label clusters, synthetic data are generated through Gaussian sampling to increase diversity while maintaining label consistency. These synthetic features are then projected back into the image domain using a generative neural network, and a convolutional neural network is trained on the reconstructed images to learn enhanced representations. Experimental results demonstrate that FICAug significantly improves classification accuracy. In feature space, it achieved a cross-validation accuracy of 84.09%, while training a ResNet-18 model on the reconstructed images further boosted performance to 88.63%, illustrating the effectiveness of the proposed framework in extracting new and task-relevant features.
comment: 10 pages, 6 figures, 6 table
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ Simulating Nighttime Visible Satellite Imagery of Tropical Cyclones Using Conditional Generative Adversarial Networks
Visible (VIS) imagery is important for monitoring Tropical Cyclones (TCs) but is unavailable at night. This study presents a Conditional Generative Adversarial Networks (CGAN) model to generate nighttime VIS imagery with significantly enhanced accuracy and spatial resolution. Our method offers three key improvements compared to existing models. First, we replaced the L1 loss in the pix2pix framework with the Structural Similarity Index Measure (SSIM) loss, which significantly reduced image blurriness. Second, we selected multispectral infrared (IR) bands as input based on a thorough examination of their spectral properties, providing essential physical information for accurate simulation. Third, we incorporated the direction parameters of the sun and the satellite, which addressed the dependence of VIS images on sunlight directions and enabled a much larger training set from continuous daytime data. The model was trained and validated using data from the Advanced Himawari Imager (AHI) in the daytime, achieving statistical results of SSIM = 0.923 and Root Mean Square Error (RMSE) = 0.0299, which significantly surpasses existing models. We also performed a cross-satellite nighttime model validation using the Day/Night Band (DNB) of the Visible/Infrared Imager Radiometer Suite (VIIRS), which yields outstanding results compared to existing models. Our model is operationally applied to generate accurate VIS imagery with arbitrary virtual sunlight directions, significantly contributing to the nighttime monitoring of various meteorological phenomena.
♻ ☆ AlphaTrans: A Neuro-Symbolic Compositional Approach for Repository-Level Code Translation and Validation
Code translation transforms programs from one programming language (PL) to another. Several rule-based transpilers have been designed to automate code translation between different pairs of PLs. However, the rules can become obsolete as the PLs evolve and cannot generalize to other PLs. Recent studies have explored the automation of code translation using Large Language Models (LLMs). One key observation is that such techniques may work well for crafted benchmarks but fail to generalize to the scale and complexity of real-world projects with dependencies, custom types, PL-specific features, etc. We propose AlphaTrans, a neuro-symbolic approach to automate repository-level code translation. AlphaTrans translates both source and test code, and employs multiple levels of validation to ensure the translation preserves the functionality of the source program. To break down the problem for LLMs, AlphaTrans leverages program analysis to decompose the program into fragments and translates them in the reverse call order. We leveraged AlphaTrans to translate ten real-world open-source projects consisting of <836, 8575, 2719> classes, methods, and tests. AlphaTrans breaks down these projects into 17874 fragments and translates the entire repository. 96.40% of the translated fragments are syntactically correct, and AlphaTrans validates the translations' runtime behavior and functional correctness for 27.03% and 25.14% of fragments. On average, the integrated translation and validation take 34 hours to translate a project, showing its scalability in practice. For the incorrect translations, AlphaTrans generates a report including existing translation, stack trace, test errors, or assertion failures. We provided these artifacts to two developers to fix the translation bugs in four projects. They were able to fix the issues in 20.1 hours on average and achieve all passing tests.
comment: Published in FSE 2025
♻ ☆ A Simple and Efficient Approach to Batch Bayesian Optimization
Extending Bayesian optimization to batch evaluation can enable the designer to make the most use of parallel computing technology. However, most of current batch approaches do not scale well with the batch size. That is, their performances deteriorate dramatically as the batch size increases. To address this issue, we propose a simple and efficient approach to extend Bayesian optimization to large-scale batch evaluation in this work. Different from existing batch approaches, the idea of the new approach is to draw a batch of axis-aligned subspaces of the original problem and select one acquisition point from each subspace. To achieve this, we propose the expected subspace improvement criterion to measure the amount of the improvement that a candidate point can achieve within a certain axis-aligned subspace. By optimizing these expected subspace improvement functions simultaneously, we can get a batch of query points for parallel evaluation. Numerical experiments show that our proposed approach can speedup the convergence significantly when compared with the sequential Bayesian optimization algorithm, and performs very competitively when compared with seven batch Bayesian optimization algorithms. A Matlab implementation of the proposed approach is available at https://github.com/zhandawei/Expected_Subspace_Improvement_Batch_Bayesian_Optimization.
♻ ☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
♻ ☆ Long-term excitation energy transfer predicted by a modified convolutional neural networks in the FMO complexes
In machine learning (ML), the risk of recursive strategies overfitting historical data has driven the development of convolutional neural networks (CNNs) in simulating quantum dissipative dynamics. In this work, we propose an efficient CNNs scheme incorporating novel redundant time-functions to predict 100 picosecond (ps) excitation energy transfer (EET) in Fenna-Matthews-Olson (FMO) complexes, in which the original time $t$ is normalized by mapping it to the [0, 1] range, allowing different functions focus on distinct time intervals, thereby effectively capturing the multi-timescale characteristics of EET dynamics. This method simplifies optimization and enhances learning efficiency, and demonstrate the accuracy, robustness, and efficiency of our approach in predicting quantum dissipative dynamics.
comment: 11 pages, 10figures
♻ ☆ Exponentially Consistent Nonparametric Linkage-Based Clustering of Data Sequences
In this paper, we consider nonparametric clustering of $M$ independent and identically distributed (i.i.d.) data sequences generated from {\em unknown} distributions. The distributions of the $M$ data sequences belong to $K$ underlying distribution clusters. Existing results on exponentially consistent nonparametric clustering algorithms, like single linkage-based (SLINK) clustering and $k$-medoids distribution clustering, assume that the maximum intra-cluster distance ($d_L$) is smaller than the minimum inter-cluster distance ($d_H$). First, in the fixed sample size (FSS) setting, we show that exponential consistency can be achieved for SLINK clustering under a less strict assumption, $d_I < d_H$, where $d_I$ is the maximum distance between any two sub-clusters of a cluster that partition the cluster. Note that $d_I < d_L$ in general. Thus, our results show that SLINK is exponentially consistent for a larger class of problems than previously known. In our simulations, we also identify examples where $k$-medoids clustering is unable to find the true clusters, but SLINK is exponentially consistent. Then, we propose a sequential clustering algorithm, named SLINK-SEQ, based on SLINK and prove that it is also exponentially consistent. Simulation results show that the SLINK-SEQ algorithm requires fewer expected number of samples than the FSS SLINK algorithm for the same probability of error.
♻ ☆ LaMsS: When Large Language Models Meet Self-Skepticism ICLR 2025
Hallucination is a major challenge for large language models (LLMs), preventing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hallucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, representing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accuracy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures, Published at ICLR 2025 Workshop on Scaling Self-Improving Foundation Models,
♻ ☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
♻ ☆ Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
♻ ☆ Prediction-Powered Inference with Imputed Covariates and Nonuniform Sampling
Machine learning models are increasingly used to produce predictions that serve as input data in subsequent statistical analyses. For example, computer vision predictions of economic and environmental indicators based on satellite imagery are used in downstream regressions; similarly, language models are widely used to approximate human ratings and opinions in social science research. However, failure to properly account for errors in the machine learning predictions renders standard statistical procedures invalid. Prior work uses what we call the Predict-Then-Debias estimator to give valid confidence intervals when machine learning algorithms impute missing variables, assuming a small complete sample from the population of interest. We expand the scope by introducing bootstrap confidence intervals that apply when the complete data is a nonuniform (i.e., weighted, stratified, or clustered) sample and to settings where an arbitrary subset of features is imputed. Importantly, the method can be applied to many settings without requiring additional calculations. We prove that these confidence intervals are valid under no assumptions on the quality of the machine learning model and are no wider than the intervals obtained by methods that do not use machine learning predictions.
♻ ☆ On the Generalizability of Foundation Models for Crop Type Mapping
Foundation models pre-trained using self-supervised learning have shown powerful transfer learning capabilities on various downstream tasks, including language understanding, text generation, and image recognition. The Earth observation (EO) field has produced several foundation models pre-trained directly on multispectral satellite imagery for applications like precision agriculture, wildfire and drought monitoring, and natural disaster response. However, few studies have investigated the ability of these models to generalize to new geographic locations, and potential concerns of geospatial bias -- models trained on data-rich developed nations not transferring well to data-scarce developing nations -- remain. We investigate the ability of popular EO foundation models to transfer to new geographic regions in the agricultural domain, where differences in farming practices and class imbalance make transfer learning particularly challenging. We first select five crop classification datasets across five continents, normalizing for dataset size and harmonizing classes to focus on four major cereal grains: maize, soybean, rice, and wheat. We then compare three popular foundation models, pre-trained on SSL4EO-S12, SatlasPretrain, and ImageNet, using in-distribution (ID) and out-of-distribution (OOD) evaluation. Experiments show that pre-trained weights designed explicitly for Sentinel-2, such as SSL4EO-S12, outperform general pre-trained weights like ImageNet. Furthermore, while only 100 labeled images are sufficient for achieving high overall accuracy, 900 images are required to achieve high average accuracy due to class imbalance. All harmonized datasets and experimental code are open-source and available for download.
♻ ☆ Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In our work, we find that token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we introduce Emb2Emb, a simple method to transfer steering vectors from one language model to another, despite the two models having different dimensions.
♻ ☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 36 pages
♻ ☆ Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Model uncertainty quantification involves measuring and evaluating the uncertainty linked to a model's predictions, helping assess their reliability and confidence. Noise injection is a technique used to enhance the robustness of neural networks by introducing randomness. In this paper, we establish a connection between noise injection and uncertainty quantification from a Bayesian standpoint. We theoretically demonstrate that injecting noise into the weights of a neural network is equivalent to Bayesian inference on a deep Gaussian process. Consequently, we introduce a Monte Carlo Noise Injection (MCNI) method, which involves injecting noise into the parameters during training and performing multiple forward propagations during inference to estimate the uncertainty of the prediction. Through simulation and experiments on regression and classification tasks, our method demonstrates superior performance compared to the baseline model.
♻ ☆ Emergent Symbol-like Number Variables in Artificial Neural Networks
What types of numeric representations emerge in neural systems? What would a satisfying answer to this question look like? In this work, we interpret Neural Network (NN) solutions to sequence based counting tasks through a variety of lenses. We seek to understand how well we can understand NNs through the lens of interpretable Symbolic Algorithms (SAs), where SAs are defined by precise, abstract, mutable variables used to perform computations. We use GRUs, LSTMs, and Transformers trained using Next Token Prediction (NTP) on numeric tasks where the solutions to the tasks depend on numeric information only latent in the task structure. We show through multiple causal and theoretical methods that we can interpret NN's raw activity through the lens of simplified SAs when we frame the neural activity in terms of interpretable subspaces rather than individual neurons. Depending on the analysis, however, these interpretations can be graded, existing on a continuum, highlighting the philosophical question of what it means to "interpret" neural activity, and motivating us to introduce Alignment Functions to add flexibility to the existing Distributed Alignment Search (DAS) method. Through our specific analyses we show the importance of causal interventions for NN interpretability; we show that recurrent models develop graded, symbol-like number variables within their neural activity; we introduce a generalization of DAS to frame NN activity in terms of linear functions of interpretable variables; and we show that Transformers must use anti-Markovian solutions -- solutions that avoid using cumulative, Markovian hidden states -- in the absence of sufficient attention layers. We use our results to encourage interpreting NNs at the level of neural subspaces through the lens of SAs.
♻ ☆ Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
♻ ☆ Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
comment: 18 pages, 7 figures
♻ ☆ GraphRAG under Fire
GraphRAG advances retrieval-augmented generation (RAG) by structuring external knowledge as multi-scale knowledge graphs, enabling language models to integrate both broad context and granular details in their generation. While GraphRAG has demonstrated success across domains, its security implications remain largely unexplored. To bridge this gap, this work examines GraphRAG's vulnerability to poisoning attacks, uncovering an intriguing security paradox: compared to conventional RAG, GraphRAG's graph-based indexing and retrieval enhance resilience against simple poisoning attacks; yet, the same features also create new attack surfaces. We present GRAGPoison, a novel attack that exploits shared relations in the underlying knowledge graph to craft poisoning text capable of compromising multiple queries simultaneously. GRAGPoison employs three key strategies: i) relation injection to introduce false knowledge, ii) relation enhancement to amplify poisoning influence, and iii) narrative generation to embed malicious content within coherent text. Empirical evaluation across diverse datasets and models shows that GRAGPoison substantially outperforms existing attacks in terms of effectiveness (up to 98\% success rate) and scalability (using less than 68\% poisoning text) on various GraphRAG-based systems. We also explore potential defensive measures and their limitations, identifying promising directions for future research.
comment: 13 pages
♻ ☆ An Effective Gram Matrix Characterizes Generalization in Deep Networks
We derive a differential equation that governs the evolution of the generalization gap when a deep network is trained by gradient descent. This differential equation is controlled by two quantities, a contraction factor that brings together trajectories corresponding to slightly different datasets, and a perturbation factor that accounts for them training on different datasets. We analyze this differential equation to compute an ``effective Gram matrix'' that characterizes the generalization gap after training in terms of the alignment between this Gram matrix and a certain initial ``residual''. Empirical evaluations on image classification datasets indicate that this analysis can predict the test loss accurately. Further, at any point during training, the residual predominantly lies in the subspace of the effective Gram matrix with the smallest eigenvalues. This indicates that the training process is benign, i.e., it does not lead to significant deterioration of the generalization gap (which is zero at initialization). The alignment between the effective Gram matrix and the residual is different for different datasets and architectures. The match/mismatch of the data and the architecture is primarily responsible for good/bad generalization.
♻ ☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). We find ourselves chiefly interested in the relationship between representations and behavior, asking ourselves how we can isolate specific functional aspects of representational similarity to relate our measures to behavior -- avoiding cause vs. correlation pitfalls in the process. In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity as it relates to behavior. The method learns invertible linear transformations that find an aligned subspace between two distributed networks' representations where functional information can be isolated and manipulated. We first show that the method can be used to transfer values of specific causal variables -- such as the number of items in a counting task -- between networks with different training seeds and different architectures. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different tasks, we explore differences between MAS and preexisting functional similarity methods, and lastly, we introduce a counterfactual latent auxiliary loss that helps shape functionally relevant alignments even in cases where we do not have causal access to one of the two models for training.
♻ ☆ RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
♻ ☆ Machine Learning Reveals Composition Dependent Thermal Stability in Halide Perovskites
Halide perovskites exhibit unpredictable properties in response to environmental stressors, due to several composition-dependent degradation mechanisms. In this work, we apply data visualization and machine learning (ML) techniques to reveal unexpected correlations between composition, temperature, and material properties while using high throughput, in situ environmental photoluminescence (PL) experiments. Correlation heatmaps show the strong influence of Cs content on film degradation, and dimensionality reduction visualization methods uncover clear composition-based data clusters. An extreme gradient boosting algorithm (XGBoost) effectively forecasts PL features for ten perovskite films with both composition-agnostic (>85% accuracy) and composition-dependent (>75% accuracy) model approaches, while elucidating the relative feature importance of composition (up to 99%). This model validates a previously unseen anti-correlation between Cs content and material thermal stability. Our ML-based framework can be expanded to any perovskite family, significantly reducing the analysis time currently employed to identify stable options for photovoltaics.
comment: 21 pages, 5 figures
♻ ☆ SeizureFormer: A Transformer Model for IEA-Based Seizure Risk Forecasting
We present SeizureFormer, a Transformer-based model for long-term seizure risk forecasting using interictal epileptiform activity (IEA) surrogate biomarkers and long episode (LE) biomarkers from responsive neurostimulation (RNS) systems. Unlike raw scalp EEG-based models, SeizureFormer leverages structured, clinically relevant features and integrates CNN-based patch embedding, multi-head self-attention, and squeeze-and-excitation blocks to model both short-term dynamics and long-term seizure cycles. Tested across five patients and multiple prediction windows (1 to 14 days), SeizureFormer achieved state-of-the-art performance with mean ROC AUC of 79.44 percent and mean PR AUC of 76.29 percent. Compared to statistical, machine learning, and deep learning baselines, it demonstrates enhanced generalizability and seizure risk forecasting performance under class imbalance. This work supports future clinical integration of interpretable and robust seizure forecasting tools for personalized epilepsy management.
comment: 9 pages, 2 figures. Submitted as an undergraduate honors thesis at Emory University
♻ ☆ Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
♻ ☆ Efficient Model Editing with Task Vector Bases: A Theoretical Framework and Scalable Approach
Task vectors, which are derived from the difference between pre-trained and fine-tuned model weights, enable flexible task adaptation and model merging through arithmetic operations such as addition and negation. However, existing approaches often rely on heuristics with limited theoretical support, often leading to performance gaps comparing to direct task fine tuning. Meanwhile, although it is easy to manipulate saved task vectors with arithmetic for different purposes, such compositional flexibility demands high memory usage, especially when dealing with a huge number of tasks, limiting scalability. This work addresses these issues with a theoretically grounded framework that explains task vector arithmetic and introduces the task vector bases framework. Building upon existing task arithmetic literature, our method significantly reduces the memory cost for downstream arithmetic with little effort, while achieving competitive performance and maintaining compositional advantage, providing a practical solution for large-scale task arithmetic. The code is available at https://github.com/uiuctml/TaskVectorBasis.
comment: 27 pages, 11 figures
Multimedia 7
☆ CasualHDRSplat: Robust High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Recently, photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered widespread attention due to their superior performance. However, most works rely on low dynamic range (LDR) images, which limits the capturing of richer scene details. Some prior works have focused on high dynamic range (HDR) scene reconstruction, typically require capturing of multi-view sharp images with different exposure times at fixed camera positions during exposure times, which is time-consuming and challenging in practice. For a more flexible data acquisition, we propose a one-stage method: \textbf{CasualHDRSplat} to easily and robustly reconstruct the 3D HDR scene from casually captured videos with auto-exposure enabled, even in the presence of severe motion blur and varying unknown exposure time. \textbf{CasualHDRSplat} contains a unified differentiable physical imaging model which first applies continuous-time trajectory constraint to imaging process so that we can jointly optimize exposure time, camera response function (CRF), camera poses, and sharp 3D HDR scene. Extensive experiments demonstrate that our approach outperforms existing methods in terms of robustness and rendering quality. Our source code will be available at https://github.com/WU-CVGL/CasualHDRSplat
comment: Source Code: https://github.com/WU-CVGL/CasualHDRSplat
☆ A Comprehensive Survey of Knowledge-Based Vision Question Answering Systems: The Lifecycle of Knowledge in Visual Reasoning Task
Knowledge-based Vision Question Answering (KB-VQA) extends general Vision Question Answering (VQA) by not only requiring the understanding of visual and textual inputs but also extensive range of knowledge, enabling significant advancements across various real-world applications. KB-VQA introduces unique challenges, including the alignment of heterogeneous information from diverse modalities and sources, the retrieval of relevant knowledge from noisy or large-scale repositories, and the execution of complex reasoning to infer answers from the combined context. With the advancement of Large Language Models (LLMs), KB-VQA systems have also undergone a notable transformation, where LLMs serve as powerful knowledge repositories, retrieval-augmented generators and strong reasoners. Despite substantial progress, no comprehensive survey currently exists that systematically organizes and reviews the existing KB-VQA methods. This survey aims to fill this gap by establishing a structured taxonomy of KB-VQA approaches, and categorizing the systems into main stages: knowledge representation, knowledge retrieval, and knowledge reasoning. By exploring various knowledge integration techniques and identifying persistent challenges, this work also outlines promising future research directions, providing a foundation for advancing KB-VQA models and their applications.
comment: 20 pages, 5 figures, 4 tables
☆ M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
☆ MV-Crafter: An Intelligent System for Music-guided Video Generation
Music videos, as a prevalent form of multimedia entertainment, deliver engaging audio-visual experiences to audiences and have gained immense popularity among singers and fans. Creators can express their interpretations of music naturally through visual elements. However, the creation process of music video demands proficiency in script design, video shooting, and music-video synchronization, posing significant challenges for non-professionals. Previous work has designed automated music video generation frameworks. However, they suffer from complexity in input and poor output quality. In response, we present MV-Crafter, a system capable of producing high-quality music videos with synchronized music-video rhythm and style. Our approach involves three technical modules that simulate the human creation process: the script generation module, video generation module, and music-video synchronization module. MV-Crafter leverages a large language model to generate scripts considering the musical semantics. To address the challenge of synchronizing short video clips with music of varying lengths, we propose a dynamic beat matching algorithm and visual envelope-induced warping method to ensure precise, monotonic music-video synchronization. Besides, we design a user-friendly interface to simplify the creation process with intuitive editing features. Extensive experiments have demonstrated that MV-Crafter provides an effective solution for improving the quality of generated music videos.
☆ DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks IEEE
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
comment: Accepted by IEEE Transactions on Multimedia
♻ ☆ FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets, often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
♻ ☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
Computer Vision and Pattern Recognition 122
☆ Procedural Dataset Generation for Zero-Shot Stereo Matching
Synthetic datasets are a crucial ingredient for training stereo matching networks, but the question of what makes a stereo dataset effective remains largely unexplored. We investigate the design space of synthetic datasets by varying the parameters of a procedural dataset generator, and report the effects on zero-shot stereo matching performance using standard benchmarks. We collect the best settings to produce Infinigen-Stereo, a procedural generator specifically optimized for zero-shot stereo datasets. Models trained only on data from our system outperform robust baselines trained on a combination of existing synthetic datasets and have stronger zero-shot stereo matching performance than public checkpoints from prior works. We open source our system at https://github.com/princeton-vl/InfinigenStereo to enable further research on procedural stereo datasets.
☆ I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
☆ Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
☆ DreamO: A Unified Framework for Image Customization
Recently, extensive research on image customization (e.g., identity, subject, style, background, etc.) demonstrates strong customization capabilities in large-scale generative models. However, most approaches are designed for specific tasks, restricting their generalizability to combine different types of condition. Developing a unified framework for image customization remains an open challenge. In this paper, we present DreamO, an image customization framework designed to support a wide range of tasks while facilitating seamless integration of multiple conditions. Specifically, DreamO utilizes a diffusion transformer (DiT) framework to uniformly process input of different types. During training, we construct a large-scale training dataset that includes various customization tasks, and we introduce a feature routing constraint to facilitate the precise querying of relevant information from reference images. Additionally, we design a placeholder strategy that associates specific placeholders with conditions at particular positions, enabling control over the placement of conditions in the generated results. Moreover, we employ a progressive training strategy consisting of three stages: an initial stage focused on simple tasks with limited data to establish baseline consistency, a full-scale training stage to comprehensively enhance the customization capabilities, and a final quality alignment stage to correct quality biases introduced by low-quality data. Extensive experiments demonstrate that the proposed DreamO can effectively perform various image customization tasks with high quality and flexibly integrate different types of control conditions.
☆ BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
☆ High-Quality Cloud-Free Optical Image Synthesis Using Multi-Temporal SAR and Contaminated Optical Data
Addressing gaps caused by cloud cover and the long revisit cycle of satellites is vital for providing essential data to support remote sensing applications. This paper tackles the challenges of missing optical data synthesis, particularly in complex scenarios with cloud cover. We propose CRSynthNet, a novel image synthesis network that incorporates innovative designed modules such as the DownUp Block and Fusion Attention to enhance accuracy. Experimental results validate the effectiveness of CRSynthNet, demonstrating substantial improvements in restoring structural details, preserving spectral consist, and achieving superior visual effects that far exceed those produced by comparison methods. It achieves quantitative improvements across multiple metrics: a peak signal-to-noise ratio (PSNR) of 26.978, a structural similarity index measure (SSIM) of 0.648, and a root mean square error (RMSE) of 0.050. Furthermore, this study creates the TCSEN12 dataset, a valuable resource specifically designed to address cloud cover challenges in missing optical data synthesis study. The dataset uniquely includes cloud-covered images and leverages earlier image to predict later image, offering a realistic representation of real-world scenarios. This study offer practical method and valuable resources for optical satellite image synthesis task.
☆ Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space
Hyperspectral imaging provides detailed spectral information and holds significant potential for monitoring of greenhouse gases (GHGs). However, its application is constrained by limited spatial coverage and infrequent revisit times. In contrast, multispectral imaging offers broader spatial and temporal coverage but often lacks the spectral detail that can enhance GHG detection. To address these challenges, this study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs. The model is pre-trained via a band-wise masked autoencoder and subsequently fine-tuned on spatio-temporally aligned multispectral-hyperspectral image pairs. The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy relative to using multispectral data alone. This approach effectively bridges the trade-off between spectral resolution and coverage, highlighting its potential to advance atmospheric monitoring by combining the strengths of hyperspectral and multispectral systems with self-supervised deep learning.
☆ A Low-Cost Photogrammetry System for 3D Plant Modeling and Phenotyping
We present an open-source, low-cost photogrammetry system for 3D plant modeling and phenotyping. The system uses a structure-from-motion approach to reconstruct 3D representations of the plants via point clouds. Using wheat as an example, we demonstrate how various phenotypic traits can be computed easily from the point clouds. These include standard measurements such as plant height and radius, as well as features that would be more cumbersome to measure by hand, such as leaf angles and convex hull. We further demonstrate the utility of the system through the investigation of specific metrics that may yield objective classifications of erectophile versus planophile wheat canopy architectures.
☆ Decoupled Global-Local Alignment for Improving Compositional Understanding
Contrastive Language-Image Pre-training (CLIP) has achieved success on multiple downstream tasks by aligning image and text modalities. However, the nature of global contrastive learning limits CLIP's ability to comprehend compositional concepts, such as relations and attributes. Although recent studies employ global hard negative samples to improve compositional understanding, these methods significantly compromise the model's inherent general capabilities by forcibly distancing textual negative samples from images in the embedding space. To overcome this limitation, we introduce a Decoupled Global-Local Alignment (DeGLA) framework that improves compositional understanding while substantially mitigating losses in general capabilities. To optimize the retention of the model's inherent capabilities, we incorporate a self-distillation mechanism within the global alignment process, aligning the learnable image-text encoder with a frozen teacher model derived from an exponential moving average. Under the constraint of self-distillation, it effectively mitigates the catastrophic forgetting of pretrained knowledge during fine-tuning. To improve compositional understanding, we first leverage the in-context learning capability of Large Language Models (LLMs) to construct about 2M high-quality negative captions across five types. Subsequently, we propose the Image-Grounded Contrast (IGC) loss and Text-Grounded Contrast (TGC) loss to enhance vision-language compositionally. Extensive experimental results demonstrate the effectiveness of the DeGLA framework. Compared to previous state-of-the-art methods, DeGLA achieves an average enhancement of 3.5% across the VALSE, SugarCrepe, and ARO benchmarks. Concurrently, it obtains an average performance improvement of 13.0% on zero-shot classification tasks across eleven datasets. Our code will be released at https://github.com/xiaoxing2001/DeGLA
☆ 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
☆ Towards Explainable AI: Multi-Modal Transformer for Video-based Image Description Generation
Understanding and analyzing video actions are essential for producing insightful and contextualized descriptions, especially for video-based applications like intelligent monitoring and autonomous systems. The proposed work introduces a novel framework for generating natural language descriptions from video datasets by combining textual and visual modalities. The suggested architecture makes use of ResNet50 to extract visual features from video frames that are taken from the Microsoft Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXplanation (BDD-X) datasets. The extracted visual characteristics are converted into patch embeddings and then run through an encoder-decoder model based on Generative Pre-trained Transformer-2 (GPT-2). In order to align textual and visual representations and guarantee high-quality description production, the system uses multi-head self-attention and cross-attention techniques. The model's efficacy is demonstrated by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-L. The suggested framework outperforms traditional methods with BLEU-4 scores of 0.755 (BDD-X) and 0.778 (MSVD), CIDEr scores of 1.235 (BDD-X) and 1.315 (MSVD), METEOR scores of 0.312 (BDD-X) and 0.329 (MSVD), and ROUGE-L scores of 0.782 (BDD-X) and 0.795 (MSVD). By producing human-like, contextually relevant descriptions, strengthening interpretability, and improving real-world applications, this research advances explainable AI.
☆ Advanced Chest X-Ray Analysis via Transformer-Based Image Descriptors and Cross-Model Attention Mechanism
The examination of chest X-ray images is a crucial component in detecting various thoracic illnesses. This study introduces a new image description generation model that integrates a Vision Transformer (ViT) encoder with cross-modal attention and a GPT-4-based transformer decoder. The ViT captures high-quality visual features from chest X-rays, which are fused with text data through cross-modal attention to improve the accuracy, context, and richness of image descriptions. The GPT-4 decoder transforms these fused features into accurate and relevant captions. The model was tested on the National Institutes of Health (NIH) and Indiana University (IU) Chest X-ray datasets. On the IU dataset, it achieved scores of 0.854 (B-1), 0.883 (CIDEr), 0.759 (METEOR), and 0.712 (ROUGE-L). On the NIH dataset, it achieved the best performance on all metrics: BLEU 1--4 (0.825, 0.788, 0.765, 0.752), CIDEr (0.857), METEOR (0.726), and ROUGE-L (0.705). This framework has the potential to enhance chest X-ray evaluation, assisting radiologists in more precise and efficient diagnosis.
☆ Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
☆ Tri-FusionNet: Enhancing Image Description Generation with Transformer-based Fusion Network and Dual Attention Mechanism
Image description generation is essential for accessibility and AI understanding of visual content. Recent advancements in deep learning have significantly improved natural language processing and computer vision. In this work, we propose Tri-FusionNet, a novel image description generation model that integrates transformer modules: a Vision Transformer (ViT) encoder module with dual-attention mechanism, a Robustly Optimized BERT Approach (RoBERTa) decoder module, and a Contrastive Language-Image Pre-Training (CLIP) integrating module. The ViT encoder, enhanced with dual attention, focuses on relevant spatial regions and linguistic context, improving image feature extraction. The RoBERTa decoder is employed to generate precise textual descriptions. CLIP's integrating module aligns visual and textual data through contrastive learning, ensuring effective combination of both modalities. This fusion of ViT, RoBERTa, and CLIP, along with dual attention, enables the model to produce more accurate, contextually rich, and flexible descriptions. The proposed framework demonstrated competitive performance on the Flickr30k and Flickr8k datasets, with BLEU scores ranging from 0.767 to 0.456 and 0.784 to 0.479, CIDEr scores of 1.679 and 1.483, METEOR scores of 0.478 and 0.358, and ROUGE-L scores of 0.567 and 0.789, respectively. On MS-COCO, the framework obtained BLEU scores of 0.893 (B-1), 0.821 (B-2), 0.794 (B-3), and 0.725 (B-4). The results demonstrate the effectiveness of Tri-FusionNet in generating high-quality image descriptions.
☆ Feature Mixing Approach for Detecting Intraoperative Adverse Events in Laparoscopic Roux-en-Y Gastric Bypass Surgery
Intraoperative adverse events (IAEs), such as bleeding or thermal injury, can lead to severe postoperative complications if undetected. However, their rarity results in highly imbalanced datasets, posing challenges for AI-based detection and severity quantification. We propose BetaMixer, a novel deep learning model that addresses these challenges through a Beta distribution-based mixing approach, converting discrete IAE severity scores into continuous values for precise severity regression (0-5 scale). BetaMixer employs Beta distribution-based sampling to enhance underrepresented classes and regularizes intermediate embeddings to maintain a structured feature space. A generative approach aligns the feature space with sampled IAE severity, enabling robust classification and severity regression via a transformer. Evaluated on the MultiBypass140 dataset, which we extended with IAE labels, BetaMixer achieves a weighted F1 score of 0.76, recall of 0.81, PPV of 0.73, and NPV of 0.84, demonstrating strong performance on imbalanced data. By integrating Beta distribution-based sampling, feature mixing, and generative modeling, BetaMixer offers a robust solution for IAE detection and quantification in clinical settings.
comment: 9 pages, 7 figures, 8 tables, Release new dataset annotations
☆ Frequency-Compensated Network for Daily Arctic Sea Ice Concentration Prediction IEEE
Accurately forecasting sea ice concentration (SIC) in the Arctic is critical to global ecosystem health and navigation safety. However, current methods still is confronted with two challenges: 1) these methods rarely explore the long-term feature dependencies in the frequency domain. 2) they can hardly preserve the high-frequency details, and the changes in the marginal area of the sea ice cannot be accurately captured. To this end, we present a Frequency-Compensated Network (FCNet) for Arctic SIC prediction on a daily basis. In particular, we design a dual-branch network, including branches for frequency feature extraction and convolutional feature extraction. For frequency feature extraction, we design an adaptive frequency filter block, which integrates trainable layers with Fourier-based filters. By adding frequency features, the FCNet can achieve refined prediction of edges and details. For convolutional feature extraction, we propose a high-frequency enhancement block to separate high and low-frequency information. Moreover, high-frequency features are enhanced via channel-wise attention, and temporal attention unit is employed for low-frequency feature extraction to capture long-range sea ice changes. Extensive experiments are conducted on a satellite-derived daily SIC dataset, and the results verify the effectiveness of the proposed FCNet. Our codes and data will be made public available at: https://github.com/oucailab/FCNet .
comment: Accepted by IEEE TGRS 2025
☆ Gaussian Splatting is an Effective Data Generator for 3D Object Detection
We investigate data augmentation for 3D object detection in autonomous driving. We utilize recent advancements in 3D reconstruction based on Gaussian Splatting for 3D object placement in driving scenes. Unlike existing diffusion-based methods that synthesize images conditioned on BEV layouts, our approach places 3D objects directly in the reconstructed 3D space with explicitly imposed geometric transformations. This ensures both the physical plausibility of object placement and highly accurate 3D pose and position annotations. Our experiments demonstrate that even by integrating a limited number of external 3D objects into real scenes, the augmented data significantly enhances 3D object detection performance and outperforms existing diffusion-based 3D augmentation for object detection. Extensive testing on the nuScenes dataset reveals that imposing high geometric diversity in object placement has a greater impact compared to the appearance diversity of objects. Additionally, we show that generating hard examples, either by maximizing detection loss or imposing high visual occlusion in camera images, does not lead to more efficient 3D data augmentation for camera-based 3D object detection in autonomous driving.
Prompt-Tuning SAM: From Generalist to Specialist with only 2048 Parameters and 16 Training Images
The Segment Anything Model (SAM) is widely used for segmenting a diverse range of objects in natural images from simple user prompts like points or bounding boxes. However, SAM's performance decreases substantially when applied to non-natural domains like microscopic imaging. Furthermore, due to SAM's interactive design, it requires a precise prompt for each image and object, which is unfeasible in many automated biomedical applications. Previous solutions adapt SAM by training millions of parameters via fine-tuning large parts of the model or of adapter layers. In contrast, we show that as little as 2,048 additional parameters are sufficient for turning SAM into a use-case specialist for a certain downstream task. Our novel PTSAM (prompt-tuned SAM) method uses prompt-tuning, a parameter-efficient fine-tuning technique, to adapt SAM for a specific task. We validate the performance of our approach on multiple microscopic and one medical dataset. Our results show that prompt-tuning only SAM's mask decoder already leads to a performance on-par with state-of-the-art techniques while requiring roughly 2,000x less trainable parameters. For addressing domain gaps, we find that additionally prompt-tuning SAM's image encoder is beneficial, further improving segmentation accuracy by up to 18% over state-of-the-art results. Since PTSAM can be reliably trained with as little as 16 annotated images, we find it particularly helpful for applications with limited training data and domain shifts.
☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
☆ Detecting and Understanding Hateful Contents in Memes Through Captioning and Visual Question-Answering
Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC.
comment: 13 pages, 2 figures, 2025 International Conference on Computational Science
☆ PMG: Progressive Motion Generation via Sparse Anchor Postures Curriculum Learning
In computer animation, game design, and human-computer interaction, synthesizing human motion that aligns with user intent remains a significant challenge. Existing methods have notable limitations: textual approaches offer high-level semantic guidance but struggle to describe complex actions accurately; trajectory-based techniques provide intuitive global motion direction yet often fall short in generating precise or customized character movements; and anchor poses-guided methods are typically confined to synthesize only simple motion patterns. To generate more controllable and precise human motions, we propose \textbf{ProMoGen (Progressive Motion Generation)}, a novel framework that integrates trajectory guidance with sparse anchor motion control. Global trajectories ensure consistency in spatial direction and displacement, while sparse anchor motions only deliver precise action guidance without displacement. This decoupling enables independent refinement of both aspects, resulting in a more controllable, high-fidelity, and sophisticated motion synthesis. ProMoGen supports both dual and single control paradigms within a unified training process. Moreover, we recognize that direct learning from sparse motions is inherently unstable, we introduce \textbf{SAP-CL (Sparse Anchor Posture Curriculum Learning)}, a curriculum learning strategy that progressively adjusts the number of anchors used for guidance, thereby enabling more precise and stable convergence. Extensive experiments demonstrate that ProMoGen excels in synthesizing vivid and diverse motions guided by predefined trajectory and arbitrary anchor frames. Our approach seamlessly integrates personalized motion with structured guidance, significantly outperforming state-of-the-art methods across multiple control scenarios.
☆ Energy-Based Pseudo-Label Refining for Source-free Domain Adaptation
Source-free domain adaptation (SFDA), which involves adapting models without access to source data, is both demanding and challenging. Existing SFDA techniques typically rely on pseudo-labels generated from confidence levels, leading to negative transfer due to significant noise. To tackle this problem, Energy-Based Pseudo-Label Refining (EBPR) is proposed for SFDA. Pseudo-labels are created for all sample clusters according to their energy scores. Global and class energy thresholds are computed to selectively filter pseudo-labels. Furthermore, a contrastive learning strategy is introduced to filter difficult samples, aligning them with their augmented versions to learn more discriminative features. Our method is validated on the Office-31, Office-Home, and VisDA-C datasets, consistently finding that our model outperformed state-of-the-art methods.
comment: 8 pages, 3 figures, accepted by PRL. code at https://github.com/Sthen111/EBPR
☆ SemanticSugarBeets: A Multi-Task Framework and Dataset for Inspecting Harvest and Storage Characteristics of Sugar Beets CVPR
While sugar beets are stored prior to processing, they lose sugar due to factors such as microorganisms present in adherent soil and excess vegetation. Their automated visual inspection promises to aide in quality assurance and thereby increase efficiency throughout the processing chain of sugar production. In this work, we present a novel high-quality annotated dataset and two-stage method for the detection, semantic segmentation and mass estimation of post-harvest and post-storage sugar beets in monocular RGB images. We conduct extensive ablation experiments for the detection of sugar beets and their fine-grained semantic segmentation regarding damages, rot, soil adhesion and excess vegetation. For these tasks, we evaluate multiple image sizes, model architectures and encoders, as well as the influence of environmental conditions. Our experiments show an mAP50-95 of 98.8 for sugar-beet detection and an mIoU of 64.0 for the best-performing segmentation model.
comment: Accepted at Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Code and dataset available at https://github.com/semanticsugarbeets/semanticsugarbeets
☆ Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
☆ A Diff-Attention Aware State Space Fusion Model for Remote Sensing Classification
Multispectral (MS) and panchromatic (PAN) images describe the same land surface, so these images not only have their own advantages, but also have a lot of similar information. In order to separate these similar information and their respective advantages, reduce the feature redundancy in the fusion stage. This paper introduces a diff-attention aware state space fusion model (DAS2F-Model) for multimodal remote sensing image classification. Based on the selective state space model, a cross-modal diff-attention module (CMDA-Module) is designed to extract and separate the common features and their respective dominant features of MS and PAN images. Among this, space preserving visual mamba (SPVM) retains image spatial features and captures local features by optimizing visual mamba's input reasonably. Considering that features in the fusion stage will have large semantic differences after feature separation and simple fusion operations struggle to effectively integrate these significantly different features, an attention-aware linear fusion module (AALF-Module) is proposed. It performs pixel-wise linear fusion by calculating influence coefficients. This mechanism can fuse features with large semantic differences while keeping the feature size unchanged. Empirical evaluations indicate that the presented method achieves better results than alternative approaches. The relevant code can be found at:https://github.com/AVKSKVL/DAS-F-Model
comment: 12 pages,9 figures
☆ A Time Series Dataset of NIR Spectra and RGB and NIR-HSI Images of the Barley Germination Process
We provide an open-source dataset of RGB and NIR-HSI (near-infrared hyperspectral imaging) images with associated segmentation masks and NIR spectra of 2242 individual malting barley kernels. We imaged every kernel pre-exposure to moisture and every 24 hours after exposure to moisture for five consecutive days. Every barley kernel was labeled as germinated or not germinated during each image acquisition. The barley kernels were imaged with black filter paper as the background, facilitating straight-forward intensity threshold-based segmentation, e.g., by Otsu's method. This dataset facilitates time series analysis of germination time for barley kernels using either RGB image analysis, NIR spectral analysis, NIR-HSI analysis, or a combination hereof.
☆ Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we propose the Selective Sample Buffer (SSB) mechanism, which effectively counters the ``Vanishing Advantages'' dilemma inherent in Group Relative Policy Optimization (GRPO) by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 79.0 on AIME2024, 63.6 on LiveCodeBench, and 74.0 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
☆ WiFi based Human Fall and Activity Recognition using Transformer based Encoder Decoder and Graph Neural Networks
Human pose estimation and action recognition have received attention due to their critical roles in healthcare monitoring, rehabilitation, and assistive technologies. In this study, we proposed a novel architecture named Transformer based Encoder Decoder Network (TED Net) designed for estimating human skeleton poses from WiFi Channel State Information (CSI). TED Net integrates convolutional encoders with transformer based attention mechanisms to capture spatiotemporal features from CSI signals. The estimated skeleton poses were used as input to a customized Directed Graph Neural Network (DGNN) for action recognition. We validated our model on two datasets: a publicly available multi modal dataset for assessing general pose estimation, and a newly collected dataset focused on fall related scenarios involving 20 participants. Experimental results demonstrated that TED Net outperformed existing approaches in pose estimation, and that the DGNN achieves reliable action classification using CSI based skeletons, with performance comparable to RGB based systems. Notably, TED Net maintains robust performance across both fall and non fall cases. These findings highlight the potential of CSI driven human skeleton estimation for effective action recognition, particularly in home environments such as elderly fall detection. In such settings, WiFi signals are often readily available, offering a privacy preserving alternative to vision based methods, which may raise concerns about continuous camera monitoring.
comment: 8 pages, 4 figures
☆ SSLR: A Semi-Supervised Learning Method for Isolated Sign Language Recognition
Sign language is the primary communication language for people with disabling hearing loss. Sign language recognition (SLR) systems aim to recognize sign gestures and translate them into spoken language. One of the main challenges in SLR is the scarcity of annotated datasets. To address this issue, we propose a semi-supervised learning (SSL) approach for SLR (SSLR), employing a pseudo-label method to annotate unlabeled samples. The sign gestures are represented using pose information that encodes the signer's skeletal joint points. This information is used as input for the Transformer backbone model utilized in the proposed approach. To demonstrate the learning capabilities of SSL across various labeled data sizes, several experiments were conducted using different percentages of labeled data with varying numbers of classes. The performance of the SSL approach was compared with a fully supervised learning-based model on the WLASL-100 dataset. The obtained results of the SSL model outperformed the supervised learning-based model with less labeled data in many cases.
☆ RouteWinFormer: A Route-Window Transformer for Middle-range Attention in Image Restoration
Transformer models have recently garnered significant attention in image restoration due to their ability to capture long-range pixel dependencies. However, long-range attention often results in computational overhead without practical necessity, as degradation and context are typically localized. Normalized average attention distance across various degradation datasets shows that middle-range attention is enough for image restoration. Building on this insight, we propose RouteWinFormer, a novel window-based Transformer that models middle-range context for image restoration. RouteWinFormer incorporates Route-Windows Attnetion Module, which dynamically selects relevant nearby windows based on regional similarity for attention aggregation, extending the receptive field to a mid-range size efficiently. In addition, we introduce Multi-Scale Structure Regularization during training, enabling the sub-scale of the U-shaped network to focus on structural information, while the original-scale learns degradation patterns based on generalized image structure priors. Extensive experiments demonstrate that RouteWinFormer outperforms state-of-the-art methods across 9 datasets in various image restoration tasks.
☆ Dual-Camera All-in-Focus Neural Radiance Fields IEEE
We present the first framework capable of synthesizing the all-in-focus neural radiance field (NeRF) from inputs without manual refocusing. Without refocusing, the camera will automatically focus on the fixed object for all views, and current NeRF methods typically using one camera fail due to the consistent defocus blur and a lack of sharp reference. To restore the all-in-focus NeRF, we introduce the dual-camera from smartphones, where the ultra-wide camera has a wider depth-of-field (DoF) and the main camera possesses a higher resolution. The dual camera pair saves the high-fidelity details from the main camera and uses the ultra-wide camera's deep DoF as reference for all-in-focus restoration. To this end, we first implement spatial warping and color matching to align the dual camera, followed by a defocus-aware fusion module with learnable defocus parameters to predict a defocus map and fuse the aligned camera pair. We also build a multi-view dataset that includes image pairs of the main and ultra-wide cameras in a smartphone. Extensive experiments on this dataset verify that our solution, termed DC-NeRF, can produce high-quality all-in-focus novel views and compares favorably against strong baselines quantitatively and qualitatively. We further show DoF applications of DC-NeRF with adjustable blur intensity and focal plane, including refocusing and split diopter.
comment: Published by IEEE TPAMI 2025
☆ EHGCN: Hierarchical Euclidean-Hyperbolic Fusion via Motion-Aware GCN for Hybrid Event Stream Perception
Event cameras, with microsecond temporal resolution and high dynamic range (HDR) characteristics, emit high-speed event stream for perception tasks. Despite the recent advancement in GNN-based perception methods, they are prone to use straightforward pairwise connectivity mechanisms in the pure Euclidean space where they struggle to capture long-range dependencies and fail to effectively characterize the inherent hierarchical structures of non-uniformly distributed event stream. To this end, in this paper we propose a novel approach named EHGCN, which is a pioneer to perceive event stream in both Euclidean and hyperbolic spaces for event vision. In EHGCN, we introduce an adaptive sampling strategy to dynamically regulate sampling rates, retaining discriminative events while attenuating chaotic noise. Then we present a Markov Vector Field (MVF)-driven motion-aware hyperedge generation method based on motion state transition probabilities, thereby eliminating cross-target spurious associations and providing critically topological priors while capturing long-range dependencies between events. Finally, we propose a Euclidean-Hyperbolic GCN to fuse the information locally aggregated and globally hierarchically modeled in Euclidean and hyperbolic spaces, respectively, to achieve hybrid event perception. Experimental results on event perception tasks such as object detection and recognition validate the effectiveness of our approach.
☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: In this study, we investigate the training of foundation models using federated learning to address data-sharing limitations and enable collaborative model training without data transfer for minimally invasive surgery. Methods: Inspired by the EndoViT study, we adapt the Masked Autoencoder for federated learning, enhancing it with adaptive Sharpness-Aware Minimization (FedSAM) and Stochastic Weight Averaging (SWA). Our model is pretrained on the Endo700k dataset collection and later fine-tuned and evaluated for tasks such as Semantic Segmentation, Action Triplet Recognition, and Surgical Phase Recognition. Results: Our findings demonstrate that integrating adaptive FedSAM into the federated MAE approach improves pretraining, leading to a reduction in reconstruction loss per patch. The application of FL-EndoViT in surgical downstream tasks results in performance comparable to CEN-EndoViT. Furthermore, FL-EndoViT exhibits advantages over CEN-EndoViT in surgical scene segmentation when data is limited and in action triplet recognition when large datasets are used. Conclusion: These findings highlight the potential of federated learning for privacy-preserving training of surgical foundation models, offering a robust and generalizable solution for surgical data science. Effective collaboration requires adapting federated learning methods, such as the integration of FedSAM, which can accommodate the inherent data heterogeneity across institutions. In future, exploring FL in video-based models may enhance these capabilities by incorporating spatiotemporal dynamics crucial for real-world surgical environments.
comment: Preprint submitted to MEDIA
☆ HUG: Hierarchical Urban Gaussian Splatting with Block-Based Reconstruction
As urban 3D scenes become increasingly complex and the demand for high-quality rendering grows, efficient scene reconstruction and rendering techniques become crucial. We present HUG, a novel approach to address inefficiencies in handling large-scale urban environments and intricate details based on 3D Gaussian splatting. Our method optimizes data partitioning and the reconstruction pipeline by incorporating a hierarchical neural Gaussian representation. We employ an enhanced block-based reconstruction pipeline focusing on improving reconstruction quality within each block and reducing the need for redundant training regions around block boundaries. By integrating neural Gaussian representation with a hierarchical architecture, we achieve high-quality scene rendering at a low computational cost. This is demonstrated by our state-of-the-art results on public benchmarks, which prove the effectiveness and advantages in large-scale urban scene representation.
☆ JEPA for RL: Investigating Joint-Embedding Predictive Architectures for Reinforcement Learning
Joint-Embedding Predictive Architectures (JEPA) have recently become popular as promising architectures for self-supervised learning. Vision transformers have been trained using JEPA to produce embeddings from images and videos, which have been shown to be highly suitable for downstream tasks like classification and segmentation. In this paper, we show how to adapt the JEPA architecture to reinforcement learning from images. We discuss model collapse, show how to prevent it, and provide exemplary data on the classical Cart Pole task.
comment: Published at ESANN 2025
☆ CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones
Class-agnostic counting (CAC) aims to estimate the number of objects in images without being restricted to predefined categories. However, while current exemplar-based CAC methods offer flexibility at inference time, they still rely heavily on labeled data for training, which limits scalability and generalization to many downstream use cases. In this paper, we introduce CountingDINO, the first training-free exemplar-based CAC framework that exploits a fully unsupervised feature extractor. Specifically, our approach employs self-supervised vision-only backbones to extract object-aware features, and it eliminates the need for annotated data throughout the entire proposed pipeline. At inference time, we extract latent object prototypes via ROI-Align from DINO features and use them as convolutional kernels to generate similarity maps. These are then transformed into density maps through a simple yet effective normalization scheme. We evaluate our approach on the FSC-147 benchmark, where we outperform a baseline under the same label-free setting. Our method also achieves competitive -- and in some cases superior -- results compared to training-free approaches relying on supervised backbones, as well as several fully supervised state-of-the-art methods. This demonstrates that training-free CAC can be both scalable and competitive. Website: https://lorebianchi98.github.io/CountingDINO/
comment: 13 pages, 2 figures, 2 tables. Project website: https://lorebianchi98.github.io/CountingDINO/
☆ SAIP-Net: Enhancing Remote Sensing Image Segmentation via Spectral Adaptive Information Propagation
Semantic segmentation of remote sensing imagery demands precise spatial boundaries and robust intra-class consistency, challenging conventional hierarchical models. To address limitations arising from spatial domain feature fusion and insufficient receptive fields, this paper introduces SAIP-Net, a novel frequency-aware segmentation framework that leverages Spectral Adaptive Information Propagation. SAIP-Net employs adaptive frequency filtering and multi-scale receptive field enhancement to effectively suppress intra-class feature inconsistencies and sharpen boundary lines. Comprehensive experiments demonstrate significant performance improvements over state-of-the-art methods, highlighting the effectiveness of spectral-adaptive strategies combined with expanded receptive fields for remote sensing image segmentation.
☆ Beyond Anonymization: Object Scrubbing for Privacy-Preserving 2D and 3D Vision Tasks ICCV 2025
We introduce ROAR (Robust Object Removal and Re-annotation), a scalable framework for privacy-preserving dataset obfuscation that eliminates sensitive objects instead of modifying them. Our method integrates instance segmentation with generative inpainting to remove identifiable entities while preserving scene integrity. Extensive evaluations on 2D COCO-based object detection show that ROAR achieves 87.5% of the baseline detection average precision (AP), whereas image dropping achieves only 74.2% of the baseline AP, highlighting the advantage of scrubbing in preserving dataset utility. The degradation is even more severe for small objects due to occlusion and loss of fine-grained details. Furthermore, in NeRF-based 3D reconstruction, our method incurs a PSNR loss of at most 1.66 dB while maintaining SSIM and improving LPIPS, demonstrating superior perceptual quality. Our findings establish object removal as an effective privacy framework, achieving strong privacy guarantees with minimal performance trade-offs. The results highlight key challenges in generative inpainting, occlusion-robust segmentation, and task-specific scrubbing, setting the foundation for future advancements in privacy-preserving vision systems.
comment: Submitted to ICCV 2025
☆ ToF-Splatting: Dense SLAM using Sparse Time-of-Flight Depth and Multi-Frame Integration
Time-of-Flight (ToF) sensors provide efficient active depth sensing at relatively low power budgets; among such designs, only very sparse measurements from low-resolution sensors are considered to meet the increasingly limited power constraints of mobile and AR/VR devices. However, such extreme sparsity levels limit the seamless usage of ToF depth in SLAM. In this work, we propose ToF-Splatting, the first 3D Gaussian Splatting-based SLAM pipeline tailored for using effectively very sparse ToF input data. Our approach improves upon the state of the art by introducing a multi-frame integration module, which produces dense depth maps by merging cues from extremely sparse ToF depth, monocular color, and multi-view geometry. Extensive experiments on both synthetic and real sparse ToF datasets demonstrate the viability of our approach, as it achieves state-of-the-art tracking and mapping performances on reference datasets.
☆ Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
Streetscapes are an essential component of urban space. Their assessment is presently either limited to morphometric properties of their mass skeleton or requires labor-intensive qualitative evaluations of visually perceived qualities. This paper introduces SAGAI: Streetscape Analysis with Generative Artificial Intelligence, a modular workflow for scoring street-level urban scenes using open-access data and vision-language models. SAGAI integrates OpenStreetMap geometries, Google Street View imagery, and a lightweight version of the LLaVA model to generate structured spatial indicators from images via customizable natural language prompts. The pipeline includes an automated mapping module that aggregates visual scores at both the point and street levels, enabling direct cartographic interpretation. It operates without task-specific training or proprietary software dependencies, supporting scalable and interpretable analysis of urban environments. Two exploratory case studies in Nice and Vienna illustrate SAGAI's capacity to produce geospatial outputs from vision-language inference. The initial results show strong performance for binary urban-rural scene classification, moderate precision in commercial feature detection, and lower estimates, but still informative, of sidewalk width. Fully deployable by any user, SAGAI can be easily adapted to a wide range of urban research themes, such as walkability, safety, or urban design, through prompt modification alone.
comment: 25 pages, 6 figures in main paper, 6 figures in appendices
☆ A Few-Shot Metric Learning Method with Dual-Channel Attention for Cross-Modal Same-Neuron Identification
In neuroscience research, achieving single-neuron matching across different imaging modalities is critical for understanding the relationship between neuronal structure and function. However, modality gaps and limited annotations present significant challenges. We propose a few-shot metric learning method with a dual-channel attention mechanism and a pretrained vision transformer to enable robust cross-modal neuron identification. The local and global channels extract soma morphology and fiber context, respectively, and a gating mechanism fuses their outputs. To enhance the model's fine-grained discrimination capability, we introduce a hard sample mining strategy based on the MultiSimilarityMiner algorithm, along with the Circle Loss function. Experiments on two-photon and fMOST datasets demonstrate superior Top-K accuracy and recall compared to existing methods. Ablation studies and t-SNE visualizations validate the effectiveness of each module. The method also achieves a favorable trade-off between accuracy and training efficiency under different fine-tuning strategies. These results suggest that the proposed approach offers a promising technical solution for accurate single-cell level matching and multimodal neuroimaging integration.
comment: 23 pages, 9 figures, submitted to arXiv for public access
☆ Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation ACM MM 2025
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
comment: 11 pages, 4 figures, Submitted to ACM MM 2025
☆ Federated Learning of Low-Rank One-Shot Image Detection Models in Edge Devices with Scalable Accuracy and Compute Complexity IEEE
This paper introduces a novel federated learning framework termed LoRa-FL designed for training low-rank one-shot image detection models deployed on edge devices. By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead while maintaining scalable accuracy. The proposed framework leverages federated learning to collaboratively train lightweight image recognition models, enabling rapid adaptation and efficient deployment across heterogeneous, resource-constrained devices. Experimental evaluations on the MNIST and CIFAR10 benchmark datasets, both in an independent-and-identically-distributed (IID) and non-IID setting, demonstrate that our approach achieves competitive detection performance while significantly reducing communication bandwidth and compute complexity. This makes it a promising solution for adaptively reducing the communication and compute power overheads, while not sacrificing model accuracy.
comment: accepted for publication at IEEE IWCMC 2025
☆ TraveLLaMA: Facilitating Multi-modal Large Language Models to Understand Urban Scenes and Provide Travel Assistance
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for urban scene understanding and travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through a novel large-scale dataset of 220k question-answer pairs. This comprehensive dataset uniquely combines 130k text QA pairs meticulously curated from authentic travel forums with GPT-enhanced responses, alongside 90k vision-language QA pairs specifically focused on map understanding and scene comprehension. Through extensive fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we demonstrate significant performance improvements ranging from 6.5\%-9.4\% in both pure text travel understanding and visual question answering tasks. Our model exhibits exceptional capabilities in providing contextual travel recommendations, interpreting map locations, and understanding place-specific imagery while offering practical information such as operating hours and visitor reviews. Comparative evaluations show TraveLLaMA significantly outperforms general-purpose models in travel-specific tasks, establishing a new benchmark for multi-modal travel assistance systems.
☆ PRaDA: Projective Radial Distortion Averaging CVPR 2025
We tackle the problem of automatic calibration of radially distorted cameras in challenging conditions. Accurately determining distortion parameters typically requires either 1) solving the full Structure from Motion (SfM) problem involving camera poses, 3D points, and the distortion parameters, which is only possible if many images with sufficient overlap are provided, or 2) relying heavily on learning-based methods that are comparatively less accurate. In this work, we demonstrate that distortion calibration can be decoupled from 3D reconstruction, maintaining the accuracy of SfM-based methods while avoiding many of the associated complexities. This is achieved by working in Projective Space, where the geometry is unique up to a homography, which encapsulates all camera parameters except for distortion. Our proposed method, Projective Radial Distortion Averaging, averages multiple distortion estimates in a fully projective framework without creating 3d points and full bundle adjustment. By relying on pairwise projective relations, our methods support any feature-matching approaches without constructing point tracks across multiple images.
comment: Accepted at CVPR 2025. 8 pages + references
☆ Rethinking Generalizable Infrared Small Target Detection: A Real-scene Benchmark and Cross-view Representation Learning
Infrared small target detection (ISTD) is highly sensitive to sensor type, observation conditions, and the intrinsic properties of the target. These factors can introduce substantial variations in the distribution of acquired infrared image data, a phenomenon known as domain shift. Such distribution discrepancies significantly hinder the generalization capability of ISTD models across diverse scenarios. To tackle this challenge, this paper introduces an ISTD framework enhanced by domain adaptation. To alleviate distribution shift between datasets and achieve cross-sample alignment, we introduce Cross-view Channel Alignment (CCA). Additionally, we propose the Cross-view Top-K Fusion strategy, which integrates target information with diverse background features, enhancing the model' s ability to extract critical data characteristics. To further mitigate the impact of noise on ISTD, we develop a Noise-guided Representation learning strategy. This approach enables the model to learn more noise-resistant feature representations, to improve its generalization capability across diverse noisy domains. Finally, we develop a dedicated infrared small target dataset, RealScene-ISTD. Compared to state-of-the-art methods, our approach demonstrates superior performance in terms of detection probability (Pd), false alarm rate (Fa), and intersection over union (IoU). The code is available at: https://github.com/luy0222/RealScene-ISTD.
comment: A benchmark associated with real-world scenes for the Infrared Small Target Detection (ISTD) is presented
☆ RGB-D Video Object Segmentation via Enhanced Multi-store Feature Memory
The RGB-Depth (RGB-D) Video Object Segmentation (VOS) aims to integrate the fine-grained texture information of RGB with the spatial geometric clues of depth modality, boosting the performance of segmentation. However, off-the-shelf RGB-D segmentation methods fail to fully explore cross-modal information and suffer from object drift during long-term prediction. In this paper, we propose a novel RGB-D VOS method via multi-store feature memory for robust segmentation. Specifically, we design the hierarchical modality selection and fusion, which adaptively combines features from both modalities. Additionally, we develop a segmentation refinement module that effectively utilizes the Segmentation Anything Model (SAM) to refine the segmentation mask, ensuring more reliable results as memory to guide subsequent segmentation tasks. By leveraging spatio-temporal embedding and modality embedding, mixed prompts and fused images are fed into SAM to unleash its potential in RGB-D VOS. Experimental results show that the proposed method achieves state-of-the-art performance on the latest RGB-D VOS benchmark.
☆ MTSGL: Multi-Task Structure Guided Learning for Robust and Interpretable SAR Aircraft Recognition
Aircraft recognition in synthetic aperture radar (SAR) imagery is a fundamental mission in both military and civilian applications. Recently deep learning (DL) has emerged a dominant paradigm for its explosive performance on extracting discriminative features. However, current classification algorithms focus primarily on learning decision hyperplane without enough comprehension on aircraft structural knowledge. Inspired by the fined aircraft annotation methods for optical remote sensing images (RSI), we first introduce a structure-based SAR aircraft annotations approach to provide structural and compositional supplement information. On this basis, we propose a multi-task structure guided learning (MTSGL) network for robust and interpretable SAR aircraft recognition. Besides the classification task, MTSGL includes a structural semantic awareness (SSA) module and a structural consistency regularization (SCR) module. The SSA is designed to capture structure semantic information, which is conducive to gain human-like comprehension of aircraft knowledge. The SCR helps maintain the geometric consistency between the aircraft structure in SAR imagery and the proposed annotation. In this process, the structural attribute can be disentangled in a geometrically meaningful manner. In conclusion, the MTSGL is presented with the expert-level aircraft prior knowledge and structure guided learning paradigm, aiming to comprehend the aircraft concept in a way analogous to the human cognitive process. Extensive experiments are conducted on a self-constructed multi-task SAR aircraft recognition dataset (MT-SARD) and the effective results illustrate the superiority of robustness and interpretation ability of the proposed MTSGL.
☆ Cross Paradigm Representation and Alignment Transformer for Image Deraining
Transformer-based networks have achieved strong performance in low-level vision tasks like image deraining by utilizing spatial or channel-wise self-attention. However, irregular rain patterns and complex geometric overlaps challenge single-paradigm architectures, necessitating a unified framework to integrate complementary global-local and spatial-channel representations. To address this, we propose a novel Cross Paradigm Representation and Alignment Transformer (CPRAformer). Its core idea is the hierarchical representation and alignment, leveraging the strengths of both paradigms (spatial-channel and global-local) to aid image reconstruction. It bridges the gap within and between paradigms, aligning and coordinating them to enable deep interaction and fusion of features. Specifically, we use two types of self-attention in the Transformer blocks: sparse prompt channel self-attention (SPC-SA) and spatial pixel refinement self-attention (SPR-SA). SPC-SA enhances global channel dependencies through dynamic sparsity, while SPR-SA focuses on spatial rain distribution and fine-grained texture recovery. To address the feature misalignment and knowledge differences between them, we introduce the Adaptive Alignment Frequency Module (AAFM), which aligns and interacts with features in a two-stage progressive manner, enabling adaptive guidance and complementarity. This reduces the information gap within and between paradigms. Through this unified cross-paradigm dynamic interaction framework, we achieve the extraction of the most valuable interactive fusion information from the two paradigms. Extensive experiments demonstrate that our model achieves state-of-the-art performance on eight benchmark datasets and further validates CPRAformer's robustness in other image restoration tasks and downstream applications.
comment: code: https://github.com/zs1314/CPRAformer
☆ Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
comment: 8 pages
☆ FrogDogNet: Fourier frequency Retained visual prompt Output Guidance for Domain Generalization of CLIP in Remote Sensing
In recent years, large-scale vision-language models (VLMs) like CLIP have gained attention for their zero-shot inference using instructional text prompts. While these models excel in general computer vision, their potential for domain generalization in remote sensing (RS) remains underexplored. Existing approaches enhance prompt learning by generating visual prompt tokens but rely on full-image features, introducing noise and background artifacts that vary within a class, causing misclassification. To address this, we propose FrogDogNet, a novel prompt learning framework integrating Fourier frequency filtering and self-attention to improve RS scene classification and domain generalization. FrogDogNet selectively retains invariant low-frequency components while eliminating noise and irrelevant backgrounds, ensuring robust feature representation across domains. The model first extracts significant features via projection and self-attention, then applies frequency-based filtering to preserve essential structural information for prompt learning. Extensive experiments on four RS datasets and three domain generalization tasks show that FrogDogNet consistently outperforms state-of-the-art prompt learning methods, demonstrating superior adaptability across domain shifts. Our findings highlight the effectiveness of frequency-based invariant feature retention in generalization, paving the way for broader applications. Our code is available at https://github.com/HariseetharamG/FrogDogNet
☆ MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
☆ PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
☆ Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
☆ SaENeRF: Suppressing Artifacts in Event-based Neural Radiance Fields IJCNN 2025
Event cameras are neuromorphic vision sensors that asynchronously capture changes in logarithmic brightness changes, offering significant advantages such as low latency, low power consumption, low bandwidth, and high dynamic range. While these characteristics make them ideal for high-speed scenarios, reconstructing geometrically consistent and photometrically accurate 3D representations from event data remains fundamentally challenging. Current event-based Neural Radiance Fields (NeRF) methods partially address these challenges but suffer from persistent artifacts caused by aggressive network learning in early stages and the inherent noise of event cameras. To overcome these limitations, we present SaENeRF, a novel self-supervised framework that effectively suppresses artifacts and enables 3D-consistent, dense, and photorealistic NeRF reconstruction of static scenes solely from event streams. Our approach normalizes predicted radiance variations based on accumulated event polarities, facilitating progressive and rapid learning for scene representation construction. Additionally, we introduce regularization losses specifically designed to suppress artifacts in regions where photometric changes fall below the event threshold and simultaneously enhance the light intensity difference of non-zero events, thereby improving the visual fidelity of the reconstructed scene. Extensive qualitative and quantitative experiments demonstrate that our method significantly reduces artifacts and achieves superior reconstruction quality compared to existing methods. The code is available at https://github.com/Mr-firework/SaENeRF.
comment: Accepted by IJCNN 2025
☆ Revisiting Radar Camera Alignment by Contrastive Learning for 3D Object Detection
Recently, 3D object detection algorithms based on radar and camera fusion have shown excellent performance, setting the stage for their application in autonomous driving perception tasks. Existing methods have focused on dealing with feature misalignment caused by the domain gap between radar and camera. However, existing methods either neglect inter-modal features interaction during alignment or fail to effectively align features at the same spatial location across modalities. To alleviate the above problems, we propose a new alignment model called Radar Camera Alignment (RCAlign). Specifically, we design a Dual-Route Alignment (DRA) module based on contrastive learning to align and fuse the features between radar and camera. Moreover, considering the sparsity of radar BEV features, a Radar Feature Enhancement (RFE) module is proposed to improve the densification of radar BEV features with the knowledge distillation loss. Experiments show RCAlign achieves a new state-of-the-art on the public nuScenes benchmark in radar camera fusion for 3D Object Detection. Furthermore, the RCAlign achieves a significant performance gain (4.3\% NDS and 8.4\% mAP) in real-time 3D detection compared to the latest state-of-the-art method (RCBEVDet).
☆ CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
☆ Almost Right: Making First-layer Kernels Nearly Orthogonal Improves Model Generalization
An ongoing research challenge within several domains in computer vision is how to increase model generalization capabilities. Several attempts to improve model generalization performance are heavily inspired by human perceptual intelligence, which is remarkable in both its performance and efficiency to generalize to unknown samples. Many of these methods attempt to force portions of the network to be orthogonal, following some observation within neuroscience related to early vision processes. In this paper, we propose a loss component that regularizes the filtering kernels in the first convolutional layer of a network to make them nearly orthogonal. Deviating from previous works, we give the network flexibility in which pairs of kernels it makes orthogonal, allowing the network to navigate to a better solution space, imposing harsh penalties. Without architectural modifications, we report substantial gains in generalization performance using the proposed loss against previous works (including orthogonalization- and saliency-based regularization methods) across three different architectures (ResNet-50, DenseNet-121, ViT-b-16) and two difficult open-set recognition tasks: presentation attack detection in iris biometrics, and anomaly detection in chest X-ray images.
comment: 8 pages, 1 figure, 3 tables
☆ Latent Video Dataset Distillation
Dataset distillation has demonstrated remarkable effectiveness in high-compression scenarios for image datasets. While video datasets inherently contain greater redundancy, existing video dataset distillation methods primarily focus on compression in the pixel space, overlooking advances in the latent space that have been widely adopted in modern text-to-image and text-to-video models. In this work, we bridge this gap by introducing a novel video dataset distillation approach that operates in the latent space using a state-of-the-art variational encoder. Furthermore, we employ a diversity-aware data selection strategy to select both representative and diverse samples. Additionally, we introduce a simple, training-free method to further compress the distilled latent dataset. By combining these techniques, our approach achieves a new state-of-the-art performance in dataset distillation, outperforming prior methods on all datasets, e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF IPC 5, we achieve a 7.8% performance increase.
comment: https://openreview.net/forum?id=i665TIHv92
☆ Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.
comment: The code is available at: https://github.com/tkartikay/PhysNRPET
☆ Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.
comment: The code is available under https://github.com/tinolan/curve_fit_multi_idif
☆ Transferring Spatial Filters via Tangent Space Alignment in Motor Imagery BCIs
We propose a method to improve subject transfer in motor imagery BCIs by aligning covariance matrices on a Riemannian manifold, followed by computing a new common spatial patterns (CSP) based spatial filter. We explore various ways to integrate information from multiple subjects and show improved performance compared to standard CSP. Across three datasets, our method shows marginal improvements over standard CSP; however, when training data are limited, the improvements become more significant.
☆ Scene-Aware Location Modeling for Data Augmentation in Automotive Object Detection
Generative image models are increasingly being used for training data augmentation in vision tasks. In the context of automotive object detection, methods usually focus on producing augmented frames that look as realistic as possible, for example by replacing real objects with generated ones. Others try to maximize the diversity of augmented frames, for example by pasting lots of generated objects onto existing backgrounds. Both perspectives pay little attention to the locations of objects in the scene. Frame layouts are either reused with little or no modification, or they are random and disregard realism entirely. In this work, we argue that optimal data augmentation should also include realistic augmentation of layouts. We introduce a scene-aware probabilistic location model that predicts where new objects can realistically be placed in an existing scene. By then inpainting objects in these locations with a generative model, we obtain much stronger augmentation performance than existing approaches. We set a new state of the art for generative data augmentation on two automotive object detection tasks, achieving up to $2.8\times$ higher gains than the best competing approach ($+1.4$ vs. $+0.5$ mAP boost). We also demonstrate significant improvements for instance segmentation.
☆ Distilling semantically aware orders for autoregressive image generation
Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
☆ PPS-Ctrl: Controllable Sim-to-Real Translation for Colonoscopy Depth Estimation
Accurate depth estimation enhances endoscopy navigation and diagnostics, but obtaining ground-truth depth in clinical settings is challenging. Synthetic datasets are often used for training, yet the domain gap limits generalization to real data. We propose a novel image-to-image translation framework that preserves structure while generating realistic textures from clinical data. Our key innovation integrates Stable Diffusion with ControlNet, conditioned on a latent representation extracted from a Per-Pixel Shading (PPS) map. PPS captures surface lighting effects, providing a stronger structural constraint than depth maps. Experiments show our approach produces more realistic translations and improves depth estimation over GAN-based MI-CycleGAN. Our code is publicly accessible at https://github.com/anaxqx/PPS-Ctrl.
☆ ePBR: Extended PBR Materials in Image Synthesis CVPR
Realistic indoor or outdoor image synthesis is a core challenge in computer vision and graphics. The learning-based approach is easy to use but lacks physical consistency, while traditional Physically Based Rendering (PBR) offers high realism but is computationally expensive. Intrinsic image representation offers a well-balanced trade-off, decomposing images into fundamental components (intrinsic channels) such as geometry, materials, and illumination for controllable synthesis. However, existing PBR materials struggle with complex surface models, particularly high-specular and transparent surfaces. In this work, we extend intrinsic image representations to incorporate both reflection and transmission properties, enabling the synthesis of transparent materials such as glass and windows. We propose an explicit intrinsic compositing framework that provides deterministic, interpretable image synthesis. With the Extended PBR (ePBR) Materials, we can effectively edit the materials with precise controls.
comment: 8 pages without references, 7 figures, accepted in CVPRW 2025
☆ DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs
We present DyMU, an efficient, training-free framework that dynamically reduces the computational burden of vision-language models (VLMs) while maintaining high task performance. Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity, addressing the inherent inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence, thus preserving the downstream performance without additional fine-tuning. Unlike previous approaches, our method dynamically adapts token compression to the content of the image and operates completely training-free, making it readily applicable to most state-of-the-art VLM architectures. Extensive experiments on image and video understanding tasks demonstrate that DyMU can reduce the average visual token count by 32%-85% while achieving comparable performance to full-length models across diverse VLM architectures, including the recently popularized AnyRes-based visual encoders. Furthermore, through qualitative analyses, we demonstrate that DToMe effectively adapts token reduction based on image complexity and, unlike existing systems, provides users more control over computational costs. Project page: https://mikewangwzhl.github.io/dymu/.
☆ Dense Air Pollution Estimation from Sparse in-situ Measurements and Satellite Data
This paper addresses the critical environmental challenge of estimating ambient Nitrogen Dioxide (NO$_2$) concentrations, a key issue in public health and environmental policy. Existing methods for satellite-based air pollution estimation model the relationship between satellite and in-situ measurements at select point locations. While these approaches have advanced our ability to provide air quality estimations on a global scale, they come with inherent limitations. The most notable limitation is the computational intensity required for generating comprehensive estimates over extensive areas. Motivated by these limitations, this study introduces a novel dense estimation technique. Our approach seeks to balance the accuracy of high-resolution estimates with the practicality of computational constraints, thereby enabling efficient and scalable global environmental assessment. By utilizing a uniformly random offset sampling strategy, our method disperses the ground truth data pixel location evenly across a larger patch. At inference, the dense estimation method can then generate a grid of estimates in a single step, significantly reducing the computational resources required to provide estimates for larger areas. Notably, our approach also surpasses the results of existing point-wise methods by a significant margin of $9.45\%$, achieving a Mean Absolute Error (MAE) of $4.98\ \mu\text{g}/\text{m}^3$. This demonstrates both high accuracy and computational efficiency, highlighting the applicability of our method for global environmental assessment. Furthermore, we showcase the method's adaptability and robustness by applying it to diverse geographic regions. Our method offers a viable solution to the computational challenges of large-scale environmental monitoring.
☆ Automating tumor-infiltrating lymphocyte assessment in breast cancer histopathology images using QuPath: a transparent and accessible machine learning pipeline
In this study, we built an end-to-end tumor-infiltrating lymphocytes (TILs) assessment pipeline within QuPath, demonstrating the potential of easily accessible tools to perform complex tasks in a fully automatic fashion. First, we trained a pixel classifier to segment tumor, tumor-associated stroma, and other tissue compartments in breast cancer H&E-stained whole-slide images (WSI) to isolate tumor-associated stroma for subsequent analysis. Next, we applied a pre-trained StarDist deep learning model in QuPath for cell detection and used the extracted cell features to train a binary classifier distinguishing TILs from other cells. To evaluate our TILs assessment pipeline, we calculated the TIL density in each WSI and categorized them as low, medium, or high TIL levels. Our pipeline was evaluated against pathologist-assigned TIL scores, achieving a Cohen's kappa of 0.71 on the external test set, corroborating previous research findings. These results confirm that existing software can offer a practical solution for the assessment of TILs in H&E-stained WSIs of breast cancer.
comment: 16 Pages, 9 Figures, 3 tables
☆ Seeing The Words: Evaluating AI-generated Biblical Art
The past years witnessed a significant amount of Artificial Intelligence (AI) tools that can generate images from texts. This triggers the discussion of whether AI can generate accurate images using text from the Bible with respect to the corresponding biblical contexts and backgrounds. Despite some existing attempts at a small scale, little work has been done to systematically evaluate these generated images. In this work, we provide a large dataset of over 7K images using biblical text as prompts. These images were evaluated with multiple neural network-based tools on various aspects. We provide an assessment of accuracy and some analysis from the perspective of religion and aesthetics. Finally, we discuss the use of the generated images and reflect on the performance of the AI generators.
☆ Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
♻ ☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
♻ ☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
♻ ☆ BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
♻ ☆ EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 10 pages, 7 figures, 5 tables
♻ ☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 CVPR 2025
We present GFreeDet, an unseen object detection approach that leverages Gaussian splatting and vision Foundation models under model-free setting. Unlike existing methods that rely on predefined CAD templates, GFreeDet reconstructs objects directly from reference videos using Gaussian splatting, enabling robust detection of novel objects without prior 3D models. Evaluated on the BOP-H3 benchmark, GFreeDet achieves comparable performance to CAD-based methods, demonstrating the viability of model-free detection for mixed reality (MR) applications. Notably, GFreeDet won the best overall method and the best fast method awards in the model-free 2D detection track at BOP Challenge 2024.
comment: CVPR 2025 CV4MR Workshop (citation style changed)
♻ ☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
♻ ☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
♻ ☆ DiffArtist: Towards Structure and Appearance Controllable Image Stylization
Artistic style includes both structural and appearance elements. Existing neural stylization techniques primarily focus on transferring appearance features such as color and texture, often neglecting the equally crucial aspect of structural stylization. In this paper, we present a comprehensive study on the simultaneous stylization of structure and appearance of 2D images. Specifically, we introduce DiffArtist, which, to the best of our knowledge, is the first stylization method to allow for dual controllability over structure and appearance. Our key insight is to represent structure and appearance as separate diffusion processes to achieve complete disentanglement without requiring any training, thereby endowing users with unprecedented controllability for both components. The evaluation of stylization of both appearance and structure, however, remains challenging as it necessitates semantic understanding. To this end, we further propose a Multimodal LLM-based style evaluator, which better aligns with human preferences than metrics lacking semantic understanding. With this powerful evaluator, we conduct extensive analysis, demonstrating that DiffArtist achieves superior style fidelity, editability, and structure-appearance disentanglement. These merits make DiffArtist a highly versatile solution for creative applications. Project homepage: https://github.com/songrise/Artist.
comment: Homepage: https://DiffusionArtist.github.io
♻ ☆ A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
♻ ☆ MediSee: Reasoning-based Pixel-level Perception in Medical Images
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.
comment: 10 pages, 6 figures
♻ ☆ Luminance-GS: Adapting 3D Gaussian Splatting to Challenging Lighting Conditions with View-Adaptive Curve Adjustment CVPR 2025
Capturing high-quality photographs under diverse real-world lighting conditions is challenging, as both natural lighting (e.g., low-light) and camera exposure settings (e.g., exposure time) significantly impact image quality. This challenge becomes more pronounced in multi-view scenarios, where variations in lighting and image signal processor (ISP) settings across viewpoints introduce photometric inconsistencies. Such lighting degradations and view-dependent variations pose substantial challenges to novel view synthesis (NVS) frameworks based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). To address this, we introduce Luminance-GS, a novel approach to achieving high-quality novel view synthesis results under diverse challenging lighting conditions using 3DGS. By adopting per-view color matrix mapping and view-adaptive curve adjustments, Luminance-GS achieves state-of-the-art (SOTA) results across various lighting conditions -- including low-light, overexposure, and varying exposure -- while not altering the original 3DGS explicit representation. Compared to previous NeRF- and 3DGS-based baselines, Luminance-GS provides real-time rendering speed with improved reconstruction quality.
comment: CVPR 2025, project page: https://cuiziteng.github.io/Luminance_GS_web/
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning IEEE
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ OSDFace: One-Step Diffusion Model for Face Restoration CVPR 2025
Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
comment: Accepted to CVPR 2025. The code and model will be available at https://github.com/jkwang28/OSDFace
♻ ☆ Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
♻ ☆ AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
♻ ☆ MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
♻ ☆ CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
♻ ☆ Anti-Aesthetics: Protecting Facial Privacy against Customized Text-to-Image Synthesis
The rise of customized diffusion models has spurred a boom in personalized visual content creation, but also poses risks of malicious misuse, severely threatening personal privacy and copyright protection. Some studies show that the aesthetic properties of images are highly positively correlated with human perception of image quality. Inspired by this, we approach the problem from a novel and intriguing aesthetic perspective to degrade the generation quality of maliciously customized models, thereby achieving better protection of facial identity. Specifically, we propose a Hierarchical Anti-Aesthetic (HAA) framework to fully explore aesthetic cues, which consists of two key branches: 1) Global Anti-Aesthetics: By establishing a global anti-aesthetic reward mechanism and a global anti-aesthetic loss, it can degrade the overall aesthetics of the generated content; 2) Local Anti-Aesthetics: A local anti-aesthetic reward mechanism and a local anti-aesthetic loss are designed to guide adversarial perturbations to disrupt local facial identity. By seamlessly integrating both branches, our HAA effectively achieves the goal of anti-aesthetics from a global to a local level during customized generation. Extensive experiments show that HAA outperforms existing SOTA methods largely in identity removal, providing a powerful tool for protecting facial privacy and copyright.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Kolmogorov-Arnold Networks (KANs) have emerged as a transformative model paradigm, significantly impacting various fields. However, their adversarial robustness remains less underexplored, especially across different KAN architectures. To explore this critical safety issue, we conduct an analysis and find that due to overfitting to the specific basis functions of KANs, they possess poor adversarial transferability among different KANs. To tackle this challenge, we propose AdvKAN, the first transfer attack method for KANs. AdvKAN integrates two key components: 1) a Breakthrough-Defense Surrogate Model (BDSM), which employs a breakthrough-defense training strategy to mitigate overfitting to the specific structures of KANs. 2) a Global-Local Interaction (GLI) technique, which promotes sufficient interaction between adversarial gradients of hierarchical levels, further smoothing out loss surfaces of KANs. Both of them work together to enhance the strength of transfer attack among different KANs. Extensive experimental results on various KANs and datasets demonstrate the effectiveness of AdvKAN, which possesses notably superior attack capabilities and deeply reveals the vulnerabilities of KANs. Code will be released upon acceptance.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ SEGA: Drivable 3D Gaussian Head Avatar from a Single Image
Creating photorealistic 3D head avatars from limited input has become increasingly important for applications in virtual reality, telepresence, and digital entertainment. While recent advances like neural rendering and 3D Gaussian splatting have enabled high-quality digital human avatar creation and animation, most methods rely on multiple images or multi-view inputs, limiting their practicality for real-world use. In this paper, we propose SEGA, a novel approach for Single-imagE-based 3D drivable Gaussian head Avatar creation that combines generalized prior models with a new hierarchical UV-space Gaussian Splatting framework. SEGA seamlessly combines priors derived from large-scale 2D datasets with 3D priors learned from multi-view, multi-expression, and multi-ID data, achieving robust generalization to unseen identities while ensuring 3D consistency across novel viewpoints and expressions. We further present a hierarchical UV-space Gaussian Splatting framework that leverages FLAME-based structural priors and employs a dual-branch architecture to disentangle dynamic and static facial components effectively. The dynamic branch encodes expression-driven fine details, while the static branch focuses on expression-invariant regions, enabling efficient parameter inference and precomputation. This design maximizes the utility of limited 3D data and achieves real-time performance for animation and rendering. Additionally, SEGA performs person-specific fine-tuning to further enhance the fidelity and realism of the generated avatars. Experiments show our method outperforms state-of-the-art approaches in generalization ability, identity preservation, and expression realism, advancing one-shot avatar creation for practical applications.
♻ ☆ HandDiffuse: Generative Controllers for Two-Hand Interactions via Diffusion Models
Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands, which can not yet fit the need for interacting hands motion generation. To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions. HandDiffuse12.5M has the largest scale and richest interactions among the existing two-hand datasets. We further present a strong baseline method HandDiffuse for the controllable motion generation of interacting hands using various controllers. Specifically, we apply the diffusion model as the backbone and design two motion representations for different controllers. To reduce artifacts, we also propose Interaction Loss which explicitly quantifies the dynamic interaction process. Our HandDiffuse enables various applications with vivid two-hand interactions, i.e., motion in-betweening and trajectory control. Experiments show that our method outperforms the state-of-the-art techniques in motion generation and can also contribute to data augmentation for other datasets. Our dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research towards two-hand interaction modeling.
♻ ☆ UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion CVPR 2025
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic range scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose \model, the first exposure fusion technique that can merge inputs with 9 stops differences. The key idea is that we model exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlights in the over-exposed region. Using an under-exposed image as a soft guidance, instead of a hard constraint, our model is robust to potential alignment issue or lighting variations. Moreover, by utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scenes. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scenes, we capture a new real-world exposure fusion benchmark, UltraFusion dataset, with exposure differences up to 9 stops, and experiments show that UltraFusion can generate beautiful and high-quality fusion results under various scenarios. Code and data will be available at https://openimaginglab.github.io/UltraFusion.
comment: Accepted by CVPR 2025. Project Page: https://openimaginglab.github.io/UltraFusion
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ DEFOM-Stereo: Depth Foundation Model Based Stereo Matching
Stereo matching is a key technique for metric depth estimation in computer vision and robotics. Real-world challenges like occlusion and non-texture hinder accurate disparity estimation from binocular matching cues. Recently, monocular relative depth estimation has shown remarkable generalization using vision foundation models. Thus, to facilitate robust stereo matching with monocular depth cues, we incorporate a robust monocular relative depth model into the recurrent stereo-matching framework, building a new framework for depth foundation model-based stereo-matching, DEFOM-Stereo. In the feature extraction stage, we construct the combined context and matching feature encoder by integrating features from conventional CNNs and DEFOM. In the update stage, we use the depth predicted by DEFOM to initialize the recurrent disparity and introduce a scale update module to refine the disparity at the correct scale. DEFOM-Stereo is verified to have much stronger zero-shot generalization compared with SOTA methods. Moreover, DEFOM-Stereo achieves top performance on the KITTI 2012, KITTI 2015, Middlebury, and ETH3D benchmarks, ranking $1^{st}$ on many metrics. In the joint evaluation under the robust vision challenge, our model simultaneously outperforms previous models on the individual benchmarks, further demonstrating its outstanding capabilities.
comment: https://insta360-research-team.github.io/DEFOM-Stereo/
♻ ☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
♻ ☆ FREAK: Frequency-modulated High-fidelity and Real-time Audio-driven Talking Portrait Synthesis ICMR 2025
Achieving high-fidelity lip-speech synchronization in audio-driven talking portrait synthesis remains challenging. While multi-stage pipelines or diffusion models yield high-quality results, they suffer from high computational costs. Some approaches perform well on specific individuals with low resources, yet still exhibit mismatched lip movements. The aforementioned methods are modeled in the pixel domain. We observed that there are noticeable discrepancies in the frequency domain between the synthesized talking videos and natural videos. Currently, no research on talking portrait synthesis has considered this aspect. To address this, we propose a FREquency-modulated, high-fidelity, and real-time Audio-driven talKing portrait synthesis framework, named FREAK, which models talking portraits from the frequency domain perspective, enhancing the fidelity and naturalness of the synthesized portraits. FREAK introduces two novel frequency-based modules: 1) the Visual Encoding Frequency Modulator (VEFM) to couple multi-scale visual features in the frequency domain, better preserving visual frequency information and reducing the gap in the frequency spectrum between synthesized and natural frames. and 2) the Audio Visual Frequency Modulator (AVFM) to help the model learn the talking pattern in the frequency domain and improve audio-visual synchronization. Additionally, we optimize the model in both pixel domain and frequency domain jointly. Furthermore, FREAK supports seamless switching between one-shot and video dubbing settings, offering enhanced flexibility. Due to its superior performance, it can simultaneously support high-resolution video results and real-time inference. Extensive experiments demonstrate that our method synthesizes high-fidelity talking portraits with detailed facial textures and precise lip synchronization in real-time, outperforming state-of-the-art methods.
comment: Accepted by ICMR 2025
♻ ☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
♻ ☆ A Deep Learning System for Rapid and Accurate Warning of Acute Aortic Syndrome on Non-contrast CT in China
The accurate and timely diagnosis of acute aortic syndromes (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic CT angiography (CTA) is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo non-contrast CT as the initial imaging testing, and CTA is reserved for those at higher risk. In this work, we present an artificial intelligence-based warning system, iAorta, using non-contrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multi-center retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve (AUC) of 0.958 (95% CI 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various non-contrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway. For the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under non-contrast CT protocol in the emergency department (ED) and enabled the average diagnostic time of these 21 AAS positive patients to be 102.1 (75-133) mins. Last, the iAorta can help avoid delayed or missed diagnosis of AAS in settings where non-contrast CT remains the unavoidable the initial or only imaging test in resource-constrained regions and in patients who cannot or did not receive intravenous contrast.
♻ ☆ CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts ECCV 2024
Contrastive vision-language models, such as CLIP, have garnered considerable attention for various downstream tasks, mainly due to the remarkable ability of the learned features for generalization. However, the features they learned often blend content and style information, which somewhat limits their generalization capabilities under distribution shifts. To address this limitation, we adopt a causal generative perspective for multimodal data and propose contrastive learning with data augmentation to disentangle content features from the original representations. To achieve this, we begin with exploring image augmentation techniques and develop a method to seamlessly integrate them into pre-trained CLIP-like models to extract pure content features. Taking a step further, recognizing the inherent semantic richness and logical structure of text data, we explore the use of text augmentation to isolate latent content from style features. This enables CLIP-like model's encoders to concentrate on latent content information, refining the learned representations by pre-trained CLIP-like models. Our extensive experiments across diverse datasets demonstrate significant improvements in zero-shot and few-shot classification tasks, alongside enhanced robustness to various perturbations. These results underscore the effectiveness of our proposed methods in refining vision-language representations and advancing the state-of-the-art in multimodal learning.
comment: Accepted as a conference paper at ECCV 2024
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
♻ ☆ Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.
comment: 19 pages,12 figures
♻ ☆ Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: change affiliation of A. Pichiecchio. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: this https URL, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
♻ ☆ X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
♻ ☆ MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
♻ ☆ Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering ICLR 2025
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in https://xingruiwang.github.io/projects/DynSuperCLEVR/.
comment: ICLR 2025 accepted paper. Project url: https://xingruiwang.github.io/projects/DynSuperCLEVR/
♻ ☆ ST-Think: How Multimodal Large Language Models Reason About 4D Worlds from Ego-Centric Videos
Humans excel at spatial-temporal reasoning, effortlessly interpreting dynamic visual events from an egocentric viewpoint. However, whether multimodal large language models (MLLMs) can similarly understand the 4D world remains uncertain. This paper explores multimodal spatial-temporal reasoning from an egocentric perspective, aiming to equip MLLMs with human-like reasoning capabilities. To support this objective, we introduce \textbf{Ego-ST Bench}, a novel benchmark containing over 5,000 question-answer pairs across four categories, systematically evaluating spatial, temporal, and integrated spatial-temporal reasoning. Additionally, we propose \textbf{ST-R1} training paradigm, a video-based reasoning model that incorporates reverse thinking into its reinforcement learning process, significantly enhancing performance. We combine long-chain-of-thought (long-CoT) supervised fine-tuning with Group Relative Policy Optimization (GRPO) reinforcement learning, achieving notable improvements with limited high-quality data. Ego-ST Bench and ST-R1 provide valuable insights and resources for advancing video-based spatial-temporal reasoning research.
♻ ☆ Embedding Radiomics into Vision Transformers for Multimodal Medical Image Classification
Background: Deep learning has significantly advanced medical image analysis, with Vision Transformers (ViTs) offering a powerful alternative to convolutional models by modeling long-range dependencies through self-attention. However, ViTs are inherently data-intensive and lack domain-specific inductive biases, limiting their applicability in medical imaging. In contrast, radiomics provides interpretable, handcrafted descriptors of tissue heterogeneity but suffers from limited scalability and integration into end-to-end learning frameworks. In this work, we propose the Radiomics-Embedded Vision Transformer (RE-ViT) that combines radiomic features with data-driven visual embeddings within a ViT backbone. Purpose: To develop a hybrid RE-ViT framework that integrates radiomics and patch-wise ViT embeddings through early fusion, enhancing robustness and performance in medical image classification. Methods: Following the standard ViT pipeline, images were divided into patches. For each patch, handcrafted radiomic features were extracted and fused with linearly projected pixel embeddings. The fused representations were normalized, positionally encoded, and passed to the ViT encoder. A learnable [CLS] token aggregated patch-level information for classification. We evaluated RE-ViT on three public datasets (including BUSI, ChestXray2017, and Retinal OCT) using accuracy, macro AUC, sensitivity, and specificity. RE-ViT was benchmarked against CNN-based (VGG-16, ResNet) and hybrid (TransMed) models. Results: RE-ViT achieved state-of-the-art results: on BUSI, AUC=0.950+/-0.011; on ChestXray2017, AUC=0.989+/-0.004; on Retinal OCT, AUC=0.986+/-0.001, which outperforms other comparison models. Conclusions: The RE-ViT framework effectively integrates radiomics with ViT architectures, demonstrating improved performance and generalizability across multimodal medical image classification tasks.
comment: 27 pages, 3 figures
♻ ☆ SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
♻ ☆ DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
comment: Project: https://superhero-7.github.io/DreamID/
♻ ☆ A Robust Real-Time Lane Detection Method with Fog-Enhanced Feature Fusion for Foggy Conditions
Lane detection is a critical component of Advanced Driver Assistance Systems (ADAS). Existing lane detection algorithms generally perform well under favorable weather conditions. However, their performance degrades significantly in adverse conditions, such as fog, which increases the risk of traffic accidents. This challenge is compounded by the lack of specialized datasets and methods designed for foggy environments. To address this, we introduce the FoggyLane dataset, captured in real-world foggy scenarios, and synthesize two additional datasets, FoggyCULane and FoggyTusimple, from existing popular lane detection datasets. Furthermore, we propose a robust Fog-Enhanced Network for lane detection, incorporating a Global Feature Fusion Module (GFFM) to capture global relationships in foggy images, a Kernel Feature Fusion Module (KFFM) to model the structural and positional relationships of lane instances, and a Low-level Edge Enhanced Module (LEEM) to address missing edge details in foggy conditions. Comprehensive experiments demonstrate that our method achieves state-of-the-art performance, with F1-scores of 95.04 on FoggyLane, 79.85 on FoggyCULane, and 96.95 on FoggyTusimple. Additionally, with TensorRT acceleration, the method reaches a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capabilities and robustness in foggy environments.
♻ ☆ P2P: Part-to-Part Motion Cues Guide a Strong Tracking Framework for LiDAR Point Clouds
3D single object tracking (SOT) methods based on appearance matching has long suffered from insufficient appearance information incurred by incomplete, textureless and semantically deficient LiDAR point clouds. While motion paradigm exploits motion cues instead of appearance matching for tracking, it incurs complex multi-stage processing and segmentation module. In this paper, we first provide in-depth explorations on motion paradigm, which proves that (\textbf{i}) it is feasible to directly infer target relative motion from point clouds across consecutive frames; (\textbf{ii}) fine-grained information comparison between consecutive point clouds facilitates target motion modeling. We thereby propose to perform part-to-part motion modeling for consecutive point clouds and introduce a novel tracking framework, termed \textbf{P2P}. The novel framework fuses each corresponding part information between consecutive point clouds, effectively exploring detailed information changes and thus modeling accurate target-related motion cues. Following this framework, we present P2P-point and P2P-voxel models, incorporating implicit and explicit part-to-part motion modeling by point- and voxel-based representation, respectively. Without bells and whistles, P2P-voxel sets a new state-of-the-art performance ($\sim$\textbf{89\%}, \textbf{72\%} and \textbf{63\%} precision on KITTI, NuScenes and Waymo Open Dataset, respectively). Moreover, under the same point-based representation, P2P-point outperforms the previous motion tracker M$^2$Track by \textbf{3.3\%} and \textbf{6.7\%} on the KITTI and NuScenes, while running at a considerably high speed of \textbf{107 Fps} on a single RTX3090 GPU. The source code and pre-trained models are available at https://github.com/haooozi/P2P.
comment: Accept by IJCV
♻ ☆ Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer ECCV24
Lymph node (LN) assessment is a critical, indispensable yet very challenging task in the routine clinical workflow of radiology and oncology. Accurate LN analysis is essential for cancer diagnosis, staging, and treatment planning. Finding scatteredly distributed, low-contrast clinically relevant LNs in 3D CT is difficult even for experienced physicians under high inter-observer variations. Previous automatic LN detection works typically yield limited recall and high false positives (FPs) due to adjacent anatomies with similar image intensities, shapes, or textures (vessels, muscles, esophagus, etc). In this work, we propose a new LN DEtection TRansformer, named LN-DETR, to achieve more accurate performance. By enhancing the 2D backbone with a multi-scale 2.5D feature fusion to incorporate 3D context explicitly, more importantly, we make two main contributions to improve the representation quality of LN queries. 1) Considering that LN boundaries are often unclear, an IoU prediction head and a location debiased query selection are proposed to select LN queries of higher localization accuracy as the decoder query's initialization. 2) To reduce FPs, query contrastive learning is employed to explicitly reinforce LN queries towards their best-matched ground-truth queries over unmatched query predictions. Trained and tested on 3D CT scans of 1067 patients (with 10,000+ labeled LNs) via combining seven LN datasets from different body parts (neck, chest, and abdomen) and pathologies/cancers, our method significantly improves the performance of previous leading methods by > 4-5% average recall at the same FP rates in both internal and external testing. We further evaluate on the universal lesion detection task using NIH DeepLesion benchmark, and our method achieves the top performance of 88.46% averaged recall across 0.5 to 4 FPs per image, compared with other leading reported results.
comment: Accepted by ECCV24
♻ ☆ Discrete Cosine Transform Based Decorrelated Attention for Vision Transformers
Central to the Transformer architectures' effectiveness is the self-attention mechanism, a function that maps queries, keys, and values into a high-dimensional vector space. However, training the attention weights of queries, keys, and values is non-trivial from a state of random initialization. In this paper, we propose two methods. (i) We first address the initialization problem of Vision Transformers by introducing a simple, yet highly innovative, initialization approach utilizing discrete cosine transform (DCT) coefficients. Our proposed DCT-based \textit{attention} initialization marks a significant gain compared to traditional initialization strategies; offering a robust foundation for the attention mechanism. Our experiments reveal that the DCT-based initialization enhances the accuracy of Vision Transformers in classification tasks. (ii) We also recognize that since DCT effectively decorrelates image information in the frequency domain, this decorrelation is useful for compression because it allows the quantization step to discard many of the higher-frequency components. Based on this observation, we propose a novel DCT-based compression technique for the attention function of Vision Transformers. Since high-frequency DCT coefficients usually correspond to noise, we truncate the high-frequency DCT components of the input patches. Our DCT-based compression reduces the size of weight matrices for queries, keys, and values. While maintaining the same level of accuracy, our DCT compressed Swin Transformers obtain a considerable decrease in the computational overhead.
♻ ☆ AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.
comment: 2 tables, 6 figures
♻ ☆ Event-based Continuous Color Video Decompression from Single Frames
We present ContinuityCam, a novel approach to generate a continuous video from a single static RGB image and an event camera stream. Conventional cameras struggle with high-speed motion capture due to bandwidth and dynamic range limitations. Event cameras are ideal sensors to solve this problem because they encode compressed change information at high temporal resolution. In this work, we tackle the problem of event-based continuous color video decompression, pairing single static color frames and event data to reconstruct temporally continuous videos. Our approach combines continuous long-range motion modeling with a neural synthesis model, enabling frame prediction at arbitrary times within the events. Our method only requires an initial image, thus increasing the robustness to sudden motions, light changes, minimizing the prediction latency, and decreasing bandwidth usage. We also introduce a novel single-lens beamsplitter setup that acquires aligned images and events, and a novel and challenging Event Extreme Decompression Dataset (E2D2) that tests the method in various lighting and motion profiles. We thoroughly evaluate our method by benchmarking color frame reconstruction, outperforming the baseline methods by 3.61 dB in PSNR and by 33% decrease in LPIPS, as well as showing superior results on two downstream tasks.
♻ ☆ Fast OMP for Exact Recovery and Sparse Approximation ICPR 2024
Orthogonal Matching Pursuit (OMP) has been a powerful method in sparse signal recovery and approximation. However OMP suffers computational issue when the signal has large number of non-zeros. This paper advances OMP in two fronts: it offers a fast algorithm for the orthogonal projection of the input signal at each iteration, and a new selection criterion for making the greedy choice, which reduces the number of iterations it takes to recover the signal. The proposed modifications to OMP directly reduce the computational complexity. Experiment results show significant improvement over the classical OMP in computation time. The paper also provided a sufficient condition for exact recovery under the new greedy choice criterion. For general signals that may not have sparse representations, the paper provides a bound for the approximation error. The approximation error is at the same order as OMP but is obtained within fewer iterations and less time.
comment: It has been published in ICPR 2024
♻ ☆ LinPrim: Linear Primitives for Differentiable Volumetric Rendering
Volumetric rendering has become central to modern novel view synthesis methods, which use differentiable rendering to optimize 3D scene representations directly from observed views. While many recent works build on NeRF or 3D Gaussians, we explore an alternative volumetric scene representation. More specifically, we introduce two new scene representations based on linear primitives - octahedra and tetrahedra - both of which define homogeneous volumes bounded by triangular faces. To optimize these primitives, we present a differentiable rasterizer that runs efficiently on GPUs, allowing end-to-end gradient-based optimization while maintaining real-time rendering capabilities. Through experiments on real-world datasets, we demonstrate comparable performance to state-of-the-art volumetric methods while requiring fewer primitives to achieve similar reconstruction fidelity. Our findings deepen the understanding of 3D representations by providing insights into the fidelity and performance characteristics of transparent polyhedra and suggest that adopting novel primitives can expand the available design space.
comment: Project page: https://nicolasvonluetzow.github.io/LinPrim - Project video: https://youtu.be/NRRlmFZj5KQ
♻ ☆ Set2Seq Transformer: Temporal and Positional-Aware Set Representations for Sequential Multiple-Instance Learning
Sequential multiple-instance learning involves learning representations of sets distributed across discrete timesteps. In many real-world applications, modeling both the internal structure of sets and their temporal relationships across time is essential for capturing complex underlying patterns. However, existing methods either focus on learning set representations at a static level, ignoring temporal dynamics, or treat sequences as ordered lists of individual elements, lacking explicit mechanisms to represent sets. In this work, we propose Set2Seq Transformer, a novel architecture that jointly models permutation-invariant set structure and temporal dependencies by learning temporal and positional-aware representations of sets within a sequence in an end-to-end multimodal manner. We evaluate our Set2Seq Transformer on two tasks that require modeling both set structure alongside temporal and positional patterns, but differ significantly in domain, modality, and objective. First, we consider a fine-art analysis task, modeling artists' oeuvres for predicting artistic success using a novel dataset, WikiArt-Seq2Rank. Second, we utilize our Set2Seq Transformer for a short-term wildfire danger forecasting task. Through extensive experimentation, we show that our Set2Seq Transformer significantly improves over traditional static multiple-instance learning methods by effectively learning permutation-invariant set, temporal, and positional-aware representations across diverse domains, modalities, and tasks. We will release both the dataset and model implementations on GitHub.
♻ ☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO2 concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
Artificial Intelligence 178
☆ I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
☆ Latent Diffusion Planning for Imitation Learning
Recent progress in imitation learning has been enabled by policy architectures that scale to complex visuomotor tasks, multimodal distributions, and large datasets. However, these methods often rely on learning from large amount of expert demonstrations. To address these shortcomings, we propose Latent Diffusion Planning (LDP), a modular approach consisting of a planner which can leverage action-free demonstrations, and an inverse dynamics model which can leverage suboptimal data, that both operate over a learned latent space. First, we learn a compact latent space through a variational autoencoder, enabling effective forecasting of future states in image-based domains. Then, we train a planner and an inverse dynamics model with diffusion objectives. By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data. On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches, as they cannot leverage such additional data.
☆ Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
☆ OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents
Optimization plays a vital role in scientific research and practical applications, but formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce \textbf{OptimAI}, a framework for solving \underline{Optim}ization problems described in natural language by leveraging LLM-powered \underline{AI} agents, achieving superior performance over current state-of-the-art methods. Our framework is built upon four key roles: (1) a \emph{formulator} that translates natural language problem descriptions into precise mathematical formulations; (2) a \emph{planner} that constructs a high-level solution strategy prior to execution; and (3) a \emph{coder} and a \emph{code critic} capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, allowing us to conveniently explore the synergistic effect of combining diverse models within a unified system. Our approach attains 88.1\% accuracy on the NLP4LP dataset and 71.2\% on the Optibench (non-linear w/o table) subset, reducing error rates by 58\% and 50\% respectively over prior best results.
☆ Tracing Thought: Using Chain-of-Thought Reasoning to Identify the LLM Behind AI-Generated Text AAAI 2025
In recent years, the detection of AI-generated text has become a critical area of research due to concerns about academic integrity, misinformation, and ethical AI deployment. This paper presents COT Fine-tuned, a novel framework for detecting AI-generated text and identifying the specific language model. responsible for generating the text. We propose a dual-task approach, where Task A involves classifying text as AI-generated or human-written, and Task B identifies the specific LLM behind the text. The key innovation of our method lies in the use of Chain-of-Thought reasoning, which enables the model to generate explanations for its predictions, enhancing transparency and interpretability. Our experiments demonstrate that COT Fine-tuned achieves high accuracy in both tasks, with strong performance in LLM identification and human-AI classification. We also show that the CoT reasoning process contributes significantly to the models effectiveness and interpretability.
comment: De-Factify 4: 4th Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI 2025. Pennsylvania
☆ BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
☆ Building A Secure Agentic AI Application Leveraging A2A Protocol
As Agentic AI systems evolve from basic workflows to complex multi agent collaboration, robust protocols such as Google's Agent2Agent (A2A) become essential enablers. To foster secure adoption and ensure the reliability of these complex interactions, understanding the secure implementation of A2A is essential. This paper addresses this goal by providing a comprehensive security analysis centered on the A2A protocol. We examine its fundamental elements and operational dynamics, situating it within the framework of agent communication development. Utilizing the MAESTRO framework, specifically designed for AI risks, we apply proactive threat modeling to assess potential security issues in A2A deployments, focusing on aspects such as Agent Card management, task execution integrity, and authentication methodologies. Based on these insights, we recommend practical secure development methodologies and architectural best practices designed to build resilient and effective A2A systems. Our analysis also explores how the synergy between A2A and the Model Context Protocol (MCP) can further enhance secure interoperability. This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol for building robust and secure next generation agentic applications.
comment: 13 pages, 4 figures, 1 table, Authors contributed equally to this work
☆ AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
☆ Approximating Optimal Labelings for Temporal Connectivity
In a temporal graph the edge set dynamically changes over time according to a set of time-labels associated with each edge that indicates at which time-steps the edge is available. Two vertices are connected if there is a path connecting them in which the edges are traversed in increasing order of their labels. We study the problem of scheduling the availability time of the edges of a temporal graph in such a way that all pairs of vertices are connected within a given maximum allowed time $a$ and the overall number of labels is minimized. The problem, known as \emph{Minimum Aged Labeling} (MAL), has several applications in logistics, distribution scheduling, and information spreading in social networks, where carefully choosing the time-labels can significantly reduce infrastructure costs, fuel consumption, or greenhouse gases. The problem MAL has previously been proved to be NP-complete on undirected graphs and \APX-hard on directed graphs. In this paper, we extend our knowledge on the complexity and approximability of MAL in several directions. We first show that the problem cannot be approximated within a factor better than $O(\log n)$ when $a\geq 2$, unless $\text{P} = \text{NP}$, and a factor better than $2^{\log ^{1-\epsilon} n}$ when $a\geq 3$, unless $\text{NP}\subseteq \text{DTIME}(2^{\text{polylog}(n)})$, where $n$ is the number of vertices in the graph. Then we give a set of approximation algorithms that, under some conditions, almost match these lower bounds. In particular, we show that the approximation depends on a relation between $a$ and the diameter of the input graph. We further establish a connection with a foundational optimization problem on static graphs called \emph{Diameter Constrained Spanning Subgraph} (DCSS) and show that our hardness results also apply to DCSS.
☆ Improving Significant Wave Height Prediction Using Chronos Models
Accurate wave height prediction is critical for maritime safety and coastal resilience, yet conventional physics-based models and traditional machine learning methods face challenges in computational efficiency and nonlinear dynamics modeling. This study introduces Chronos, the first implementation of a large language model (LLM)-powered temporal architecture (Chronos) optimized for wave forecasting. Through advanced temporal pattern recognition applied to historical wave data from three strategically chosen marine zones in the Northwest Pacific basin, our framework achieves multimodal improvements: (1) 14.3% reduction in training time with 2.5x faster inference speed compared to PatchTST baselines, achieving 0.575 mean absolute scaled error (MASE) units; (2) superior short-term forecasting (1-24h) across comprehensive metrics; (3) sustained predictive leadership in extended-range forecasts (1-120h); and (4) demonstrated zero-shot capability maintaining median performance (rank 4/12) against specialized operational models. This LLM-enhanced temporal modeling paradigm establishes a new standard in wave prediction, offering both computationally efficient solutions and a transferable framework for complex geophysical systems modeling.
☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
☆ Random Long-Context Access for Mamba via Hardware-aligned Hierarchical Sparse Attention
A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose \textbf{H}ierarchical \textbf{S}parse \textbf{A}ttention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selecting the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
comment: preprint
☆ Radiometer Calibration using Machine Learning
Radiometers are crucial instruments in radio astronomy, forming the primary component of nearly all radio telescopes. They measure the intensity of electromagnetic radiation, converting this radiation into electrical signals. A radiometer's primary components are an antenna and a Low Noise Amplifier (LNA), which is the core of the ``receiver'' chain. Instrumental effects introduced by the receiver are typically corrected or removed during calibration. However, impedance mismatches between the antenna and receiver can introduce unwanted signal reflections and distortions. Traditional calibration methods, such as Dicke switching, alternate the receiver input between the antenna and a well-characterised reference source to mitigate errors by comparison. Recent advances in Machine Learning (ML) offer promising alternatives. Neural networks, which are trained using known signal sources, provide a powerful means to model and calibrate complex systems where traditional analytical approaches struggle. These methods are especially relevant for detecting the faint sky-averaged 21-cm signal from atomic hydrogen at high redshifts. This is one of the main challenges in observational Cosmology today. Here, for the first time, we introduce and test a machine learning-based calibration framework capable of achieving the precision required for radiometric experiments aiming to detect the 21-cm line.
comment: Under peer review for publication in Nature Scientific Reports as part of the Radio Astronomy collection
☆ Towards Explainable AI: Multi-Modal Transformer for Video-based Image Description Generation
Understanding and analyzing video actions are essential for producing insightful and contextualized descriptions, especially for video-based applications like intelligent monitoring and autonomous systems. The proposed work introduces a novel framework for generating natural language descriptions from video datasets by combining textual and visual modalities. The suggested architecture makes use of ResNet50 to extract visual features from video frames that are taken from the Microsoft Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXplanation (BDD-X) datasets. The extracted visual characteristics are converted into patch embeddings and then run through an encoder-decoder model based on Generative Pre-trained Transformer-2 (GPT-2). In order to align textual and visual representations and guarantee high-quality description production, the system uses multi-head self-attention and cross-attention techniques. The model's efficacy is demonstrated by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-L. The suggested framework outperforms traditional methods with BLEU-4 scores of 0.755 (BDD-X) and 0.778 (MSVD), CIDEr scores of 1.235 (BDD-X) and 1.315 (MSVD), METEOR scores of 0.312 (BDD-X) and 0.329 (MSVD), and ROUGE-L scores of 0.782 (BDD-X) and 0.795 (MSVD). By producing human-like, contextually relevant descriptions, strengthening interpretability, and improving real-world applications, this research advances explainable AI.
☆ Credible plan-driven RAG method for Multi-hop Question Answering
Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error propagation.PAR RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores.
comment: 18 pages, 3 figures
☆ Evaluation Framework for AI Systems in "the Wild"
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
comment: 35 pages
☆ How Effective are Generative Large Language Models in Performing Requirements Classification?
In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance.
☆ Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
☆ Lightweight Latent Verifiers for Efficient Meta-Generation Strategies
Verifiers are auxiliary models that assess the correctness of outputs generated by base large language models (LLMs). They play a crucial role in many strategies for solving reasoning-intensive problems with LLMs. Typically, verifiers are LLMs themselves, often as large (or larger) than the base model they support, making them computationally expensive. In this work, we introduce a novel lightweight verification approach, LiLaVe, which reliably extracts correctness signals from the hidden states of the base LLM. A key advantage of LiLaVe is its ability to operate with only a small fraction of the computational budget required by traditional LLM-based verifiers. To demonstrate its practicality, we couple LiLaVe with popular meta-generation strategies, like best-of-n or self-consistency. Moreover, we design novel LiLaVe-based approaches, like conditional self-correction or conditional majority voting, that significantly improve both accuracy and efficiency in generation tasks with smaller LLMs. Our work demonstrates the fruitfulness of extracting latent information from the hidden states of LLMs, and opens the door to scalable and resource-efficient solutions for reasoning-intensive applications.
☆ HEMA : A Hippocampus-Inspired Extended Memory Architecture for Long-Context AI Conversations
Large language models (LLMs) struggle with maintaining coherence in extended conversations spanning hundreds of turns, despite performing well within their context windows. This paper introduces HEMA (Hippocampus-Inspired Extended Memory Architecture), a dual-memory system inspired by human cognitive processes. HEMA combines Compact Memory - a continuously updated one-sentence summary preserving global narrative coherence, and Vector Memory - an episodic store of chunk embeddings queried via cosine similarity. When integrated with a 6B-parameter transformer, HEMA maintains coherent dialogues beyond 300 turns while keeping prompt length under 3,500 tokens. Experimental results show substantial improvements: factual recall accuracy increases from 41% to 87%, and human-rated coherence improves from 2.7 to 4.3 on a 5-point scale. With 10K indexed chunks, Vector Memory achieves P@5 >= 0.80 and R@50 >= 0.74, doubling the area under the precision-recall curve compared to summarization-only approaches. Ablation studies reveal two key insights: semantic forgetting through age-weighted pruning reduces retrieval latency by 34% with minimal recall loss, and a two-level summary hierarchy prevents cascade errors in ultra-long conversations exceeding 1,000 turns. HEMA demonstrates that combining verbatim recall with semantic continuity provides a practical solution for privacy-aware conversational AI capable of month-long dialogues without model retraining.
☆ MOSAIC: A Skill-Centric Algorithmic Framework for Long-Horizon Manipulation Planning
Planning long-horizon motions using a set of predefined skills is a key challenge in robotics and AI. Addressing this challenge requires methods that systematically explore skill combinations to uncover task-solving sequences, harness generic, easy-to-learn skills (e.g., pushing, grasping) to generalize across unseen tasks, and bypass reliance on symbolic world representations that demand extensive domain and task-specific knowledge. Despite significant progress, these elements remain largely disjoint in existing approaches, leaving a critical gap in achieving robust, scalable solutions for complex, long-horizon problems. In this work, we present MOSAIC, a skill-centric framework that unifies these elements by using the skills themselves to guide the planning process. MOSAIC uses two families of skills: Generators compute executable trajectories and world configurations, and Connectors link these independently generated skill trajectories by solving boundary value problems, enabling progress toward completing the overall task. By breaking away from the conventional paradigm of incrementally discovering skills from predefined start or goal states--a limitation that significantly restricts exploration--MOSAIC focuses planning efforts on regions where skills are inherently effective. We demonstrate the efficacy of MOSAIC in both simulated and real-world robotic manipulation tasks, showcasing its ability to solve complex long-horizon planning problems using a diverse set of skills incorporating generative diffusion models, motion planning algorithms, and manipulation-specific models. Visit https://skill-mosaic.github.io for demonstrations and examples.
comment: Under review. Project page: https://skill-mosaic.github.io
☆ A Survey of AI Agent Protocols
The rapid development of large language models (LLMs) has led to the widespread deployment of LLM agents across diverse industries, including customer service, content generation, data analysis, and even healthcare. However, as more LLM agents are deployed, a major issue has emerged: there is no standard way for these agents to communicate with external tools or data sources. This lack of standardized protocols makes it difficult for agents to work together or scale effectively, and it limits their ability to tackle complex, real-world tasks. A unified communication protocol for LLM agents could change this. It would allow agents and tools to interact more smoothly, encourage collaboration, and triggering the formation of collective intelligence. In this paper, we provide a systematic overview of existing communication protocols for LLM agents. We classify them into four main categories and make an analysis to help users and developers select the most suitable protocols for specific applications. Additionally, we conduct a comparative performance analysis of these protocols across key dimensions such as security, scalability, and latency. Finally, we explore future challenges, such as how protocols can adapt and survive in fast-evolving environments, and what qualities future protocols might need to support the next generation of LLM agent ecosystems. We expect this work to serve as a practical reference for both researchers and engineers seeking to design, evaluate, or integrate robust communication infrastructures for intelligent agents.
☆ IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
comment: 6 pages main-text, 2 pages appendix
☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
☆ Detecting and Understanding Hateful Contents in Memes Through Captioning and Visual Question-Answering
Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC.
comment: 13 pages, 2 figures, 2025 International Conference on Computational Science
☆ PMG: Progressive Motion Generation via Sparse Anchor Postures Curriculum Learning
In computer animation, game design, and human-computer interaction, synthesizing human motion that aligns with user intent remains a significant challenge. Existing methods have notable limitations: textual approaches offer high-level semantic guidance but struggle to describe complex actions accurately; trajectory-based techniques provide intuitive global motion direction yet often fall short in generating precise or customized character movements; and anchor poses-guided methods are typically confined to synthesize only simple motion patterns. To generate more controllable and precise human motions, we propose \textbf{ProMoGen (Progressive Motion Generation)}, a novel framework that integrates trajectory guidance with sparse anchor motion control. Global trajectories ensure consistency in spatial direction and displacement, while sparse anchor motions only deliver precise action guidance without displacement. This decoupling enables independent refinement of both aspects, resulting in a more controllable, high-fidelity, and sophisticated motion synthesis. ProMoGen supports both dual and single control paradigms within a unified training process. Moreover, we recognize that direct learning from sparse motions is inherently unstable, we introduce \textbf{SAP-CL (Sparse Anchor Posture Curriculum Learning)}, a curriculum learning strategy that progressively adjusts the number of anchors used for guidance, thereby enabling more precise and stable convergence. Extensive experiments demonstrate that ProMoGen excels in synthesizing vivid and diverse motions guided by predefined trajectory and arbitrary anchor frames. Our approach seamlessly integrates personalized motion with structured guidance, significantly outperforming state-of-the-art methods across multiple control scenarios.
☆ Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
☆ A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice.
☆ Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
The rapid evolution of generative models has led to their integration across various fields, including password guessing, aiming to generate passwords that resemble human-created ones in complexity, structure, and patterns. Despite generative model's promise, inconsistencies in prior research and a lack of rigorous evaluation have hindered a comprehensive understanding of their true potential. In this paper, we introduce MAYA, a unified, customizable, plug-and-play password benchmarking framework. MAYA provides a standardized approach for evaluating generative password-guessing models through a rigorous set of advanced testing scenarios and a collection of eight real-life password datasets. Using MAYA, we comprehensively evaluate six state-of-the-art approaches, which have been re-implemented and adapted to ensure standardization, for a total of over 15,000 hours of computation. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, models learn and generate different password distributions, enabling a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark password-generation techniques. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking
☆ SSLR: A Semi-Supervised Learning Method for Isolated Sign Language Recognition
Sign language is the primary communication language for people with disabling hearing loss. Sign language recognition (SLR) systems aim to recognize sign gestures and translate them into spoken language. One of the main challenges in SLR is the scarcity of annotated datasets. To address this issue, we propose a semi-supervised learning (SSL) approach for SLR (SSLR), employing a pseudo-label method to annotate unlabeled samples. The sign gestures are represented using pose information that encodes the signer's skeletal joint points. This information is used as input for the Transformer backbone model utilized in the proposed approach. To demonstrate the learning capabilities of SSL across various labeled data sizes, several experiments were conducted using different percentages of labeled data with varying numbers of classes. The performance of the SSL approach was compared with a fully supervised learning-based model on the WLASL-100 dataset. The obtained results of the SSL model outperformed the supervised learning-based model with less labeled data in many cases.
☆ Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models
In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management.
☆ Cognitive Silicon: An Architectural Blueprint for Post-Industrial Computing Systems
Autonomous AI systems reveal foundational limitations in deterministic, human-authored computing architectures. This paper presents Cognitive Silicon: a hypothetical full-stack architectural framework projected toward 2035, exploring a possible trajectory for cognitive computing system design. The proposed architecture would integrate symbolic scaffolding, governed memory, runtime moral coherence, and alignment-aware execution across silicon-to-semantics layers. Our design grammar has emerged from dialectical co-design with LLMs under asymmetric epistemic conditions--creating structured friction to expose blind spots and trade-offs. The envisioned framework would establish mortality as a natural consequence of physical constraints, non-copyable tacit knowledge, and non-cloneable identity keys as cognitive-embodiment primitives. Core tensions (trust/agency, scaffolding/emergence, execution/governance) would function as central architectural pressures rather than edge cases. The architecture theoretically converges with the Free Energy Principle, potentially offering a formal account of how cognitive systems could maintain identity through prediction error minimization across physical and computational boundaries. The resulting framework aims to deliver a morally tractable cognitive infrastructure that could maintain human-alignment through irreversible hardware constraints and identity-bound epistemic mechanisms resistant to replication or subversion.
comment: Working Paper, 37 pages, 1 figure, 5 tables
☆ Debunking with Dialogue? Exploring AI-Generated Counterspeech to Challenge Conspiracy Theories
Counterspeech is a key strategy against harmful online content, but scaling expert-driven efforts is challenging. Large Language Models (LLMs) present a potential solution, though their use in countering conspiracy theories is under-researched. Unlike for hate speech, no datasets exist that pair conspiracy theory comments with expert-crafted counterspeech. We address this gap by evaluating the ability of GPT-4o, Llama 3, and Mistral to effectively apply counterspeech strategies derived from psychological research provided through structured prompts. Our results show that the models often generate generic, repetitive, or superficial results. Additionally, they over-acknowledge fear and frequently hallucinate facts, sources, or figures, making their prompt-based use in practical applications problematic.
comment: 15 pages
☆ Comparing Large Language Models and Traditional Machine Translation Tools for Translating Medical Consultation Summaries: A Pilot Study
This study evaluates how well large language models (LLMs) and traditional machine translation (MT) tools translate medical consultation summaries from English into Arabic, Chinese, and Vietnamese. It assesses both patient, friendly and clinician, focused texts using standard automated metrics. Results showed that traditional MT tools generally performed better, especially for complex texts, while LLMs showed promise, particularly in Vietnamese and Chinese, when translating simpler summaries. Arabic translations improved with complexity due to the language's morphology. Overall, while LLMs offer contextual flexibility, they remain inconsistent, and current evaluation metrics fail to capture clinical relevance. The study highlights the need for domain-specific training, improved evaluation methods, and human oversight in medical translation.
comment: 8 pages, 2 tables and 1 Figure
☆ Case Study: Fine-tuning Small Language Models for Accurate and Private CWE Detection in Python Code
Large Language Models (LLMs) have demonstrated significant capabilities in understanding and analyzing code for security vulnerabilities, such as Common Weakness Enumerations (CWEs). However, their reliance on cloud infrastructure and substantial computational requirements pose challenges for analyzing sensitive or proprietary codebases due to privacy concerns and inference costs. This work explores the potential of Small Language Models (SLMs) as a viable alternative for accurate, on-premise vulnerability detection. We investigated whether a 350-million parameter pre-trained code model (codegen-mono) could be effectively fine-tuned to detect the MITRE Top 25 CWEs specifically within Python code. To facilitate this, we developed a targeted dataset of 500 examples using a semi-supervised approach involving LLM-driven synthetic data generation coupled with meticulous human review. Initial tests confirmed that the base codegen-mono model completely failed to identify CWEs in our samples. However, after applying instruction-following fine-tuning, the specialized SLM achieved remarkable performance on our test set, yielding approximately 99% accuracy, 98.08% precision, 100% recall, and a 99.04% F1-score. These results strongly suggest that fine-tuned SLMs can serve as highly accurate and efficient tools for CWE detection, offering a practical and privacy-preserving solution for integrating advanced security analysis directly into development workflows.
comment: 11 pages, 2 figures, 3 tables. Dataset available at https://huggingface.co/datasets/floxihunter/synthetic_python_cwe. Model available at https://huggingface.co/floxihunter/codegen-mono-CWEdetect. Keywords: Small Language Models (SLMs), Vulnerability Detection, CWE, Fine-tuning, Python Security, Privacy-Preserving Code Analysis
☆ MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
comment: 23 pages, 8 figures. This manuscript is currently under major revision for ACM Transactions on Multimedia Computing, Communications, and Applications (ACM TOMM)
☆ PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional performance limit the widespread adoption of LLMs, highlighting the need for prompt compression. Existing prompt compression methods primarily rely on heuristic truncation or abstractive summarization techniques, which fundamentally overlook the intrinsic mechanisms of LLMs and lack a systematic evaluation of token importance for generation. In this work, we introduce Prompt Importance Sampling (PIS), a novel compression framework that dynamically compresses prompts by sampling important tokens based on the analysis of attention scores of hidden states. PIS employs a dual-level compression mechanism: 1) at the token level, we quantify saliency using LLM-native attention scores and implement adaptive compression through a lightweight 9-layer reinforcement learning (RL) network; 2) at the semantic level, we propose a Russian roulette sampling strategy for sentence-level importance sampling. Comprehensive evaluations across multiple domain benchmarks demonstrate that our method achieves state-of-the-art compression performance. Notably, our framework serendipitously enhances reasoning efficiency through optimized context structuring. This work advances prompt engineering by offering both theoretical grounding and practical efficiency in context management for LLMs.
☆ PsyCounAssist: A Full-Cycle AI-Powered Psychological Counseling Assistant System
Psychological counseling is a highly personalized and dynamic process that requires therapists to continuously monitor emotional changes, document session insights, and maintain therapeutic continuity. In this paper, we introduce PsyCounAssist, a comprehensive AI-powered counseling assistant system specifically designed to augment psychological counseling practices. PsyCounAssist integrates multimodal emotion recognition combining speech and photoplethysmography (PPG) signals for accurate real-time affective analysis, automated structured session reporting using large language models (LLMs), and personalized AI-generated follow-up support. Deployed on Android-based tablet devices, the system demonstrates practical applicability and flexibility in real-world counseling scenarios. Experimental evaluation confirms the reliability of PPG-based emotional classification and highlights the system's potential for non-intrusive, privacy-aware emotional support. PsyCounAssist represents a novel approach to ethically and effectively integrating AI into psychological counseling workflows.
☆ A Vision for AI-Driven Adaptation of Dynamic AR Content to Users and Environments
Augmented Reality (AR) is transforming the way we interact with virtual information in the physical world. By overlaying digital content in real-world environments, AR enables new forms of immersive and engaging experiences. However, existing AR systems often struggle to effectively manage the many interactive possibilities that AR presents. This vision paper speculates on AI-driven approaches for adaptive AR content placement, dynamically adjusting to user movement and environmental changes. By leveraging machine learning methods, such a system would intelligently manage content distribution between AR projections integrated into the external environment and fixed static content, enabling seamless UI layout and potentially reducing users' cognitive load. By exploring the possibilities of AI-driven dynamic AR content placement, we aim to envision new opportunities for innovation and improvement in various industries, from urban navigation and workplace productivity to immersive learning and beyond. This paper outlines a vision for the development of more intuitive, engaging, and effective AI-powered AR experiences.
☆ Exploring human-SAV interaction using large language models: The impact of psychological ownership and anthropomorphism on user experience
There has been extensive prior work exploring how psychological factors such as anthropomorphism affect the adoption of shared autonomous vehicles (SAVs). However, limited research has been conducted on how prompt strategies in large language model (LLM)-powered SAV User Interfaces (UIs) affect users' perceptions, experiences, and intentions to adopt such technology. In this work, we investigate how conversational UIs powered by LLMs drive these psychological factors and psychological ownership, the sense of possession a user may come to feel towards an entity or object they may not legally own. We designed four SAV UIs with varying levels of anthropomorphic characteristics and psychological ownership triggers. Quantitative measures of psychological ownership, anthropomorphism, quality of service, disclosure tendency, sentiment of SAV responses, and overall acceptance were collected after participants interacted with each SAV. Qualitative feedback was also gathered regarding the experience of psychological ownership during the interactions. The results indicate that an SAV conversational UI designed to be more anthropomorphic and to induce psychological ownership improved users' perceptions of the SAV's human-like qualities and improved the sentiment of responses compared to a control condition. These findings provide practical guidance for designing LLM-based conversational UIs that enhance user experience and adoption of SAVs.
Transformers for Complex Query Answering over Knowledge Hypergraphs
Complex Query Answering (CQA) has been extensively studied in recent years. In order to model data that is closer to real-world distribution, knowledge graphs with different modalities have been introduced. Triple KGs, as the classic KGs composed of entities and relations of arity 2, have limited representation of real-world facts. Real-world data is more sophisticated. While hyper-relational graphs have been introduced, there are limitations in representing relationships of varying arity that contain entities with equal contributions. To address this gap, we sampled new CQA datasets: JF17k-HCQA and M-FB15k-HCQA. Each dataset contains various query types that include logical operations such as projection, negation, conjunction, and disjunction. In order to answer knowledge hypergraph (KHG) existential first-order queries, we propose a two-stage transformer model, the Logical Knowledge Hypergraph Transformer (LKHGT), which consists of a Projection Encoder for atomic projection and a Logical Encoder for complex logical operations. Both encoders are equipped with Type Aware Bias (TAB) for capturing token interactions. Experimental results on CQA datasets show that LKHGT is a state-of-the-art CQA method over KHG and is able to generalize to out-of-distribution query types.
☆ Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation ACM MM 2025
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
comment: 11 pages, 4 figures, Submitted to ACM MM 2025
☆ Federated Learning of Low-Rank One-Shot Image Detection Models in Edge Devices with Scalable Accuracy and Compute Complexity IEEE
This paper introduces a novel federated learning framework termed LoRa-FL designed for training low-rank one-shot image detection models deployed on edge devices. By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead while maintaining scalable accuracy. The proposed framework leverages federated learning to collaboratively train lightweight image recognition models, enabling rapid adaptation and efficient deployment across heterogeneous, resource-constrained devices. Experimental evaluations on the MNIST and CIFAR10 benchmark datasets, both in an independent-and-identically-distributed (IID) and non-IID setting, demonstrate that our approach achieves competitive detection performance while significantly reducing communication bandwidth and compute complexity. This makes it a promising solution for adaptively reducing the communication and compute power overheads, while not sacrificing model accuracy.
comment: accepted for publication at IEEE IWCMC 2025
☆ Amplified Vulnerabilities: Structured Jailbreak Attacks on LLM-based Multi-Agent Debate
Multi-Agent Debate (MAD), leveraging collaborative interactions among Large Language Models (LLMs), aim to enhance reasoning capabilities in complex tasks. However, the security implications of their iterative dialogues and role-playing characteristics, particularly susceptibility to jailbreak attacks eliciting harmful content, remain critically underexplored. This paper systematically investigates the jailbreak vulnerabilities of four prominent MAD frameworks built upon leading commercial LLMs (GPT-4o, GPT-4, GPT-3.5-turbo, and DeepSeek) without compromising internal agents. We introduce a novel structured prompt-rewriting framework specifically designed to exploit MAD dynamics via narrative encapsulation, role-driven escalation, iterative refinement, and rhetorical obfuscation. Our extensive experiments demonstrate that MAD systems are inherently more vulnerable than single-agent setups. Crucially, our proposed attack methodology significantly amplifies this fragility, increasing average harmfulness from 28.14% to 80.34% and achieving attack success rates as high as 80% in certain scenarios. These findings reveal intrinsic vulnerabilities in MAD architectures and underscore the urgent need for robust, specialized defenses prior to real-world deployment.
comment: 33 pages, 5 figures
☆ On Developers' Self-Declaration of AI-Generated Code: An Analysis of Practices
AI code generation tools have gained significant popularity among developers, who use them to assist in software development due to their capability to generate code. Existing studies mainly explored the quality, e.g., correctness and security, of AI-generated code, while in real-world software development, the prerequisite is to distinguish AI-generated code from human-written code, which emphasizes the need to explicitly declare AI-generated code by developers. To this end, this study intends to understand the ways developers use to self-declare AI-generated code and explore the reasons why developers choose to self-declare or not. We conducted a mixed-methods study consisting of two phases. In the first phase, we mined GitHub repositories and collected 613 instances of AI-generated code snippets. In the second phase, we conducted a follow-up industrial survey, which received 111 valid responses. Our research revealed the practices followed by developers to self-declare AI-generated code. Most practitioners (76.6%) always or sometimes self-declare AI-generated code. In contrast, other practitioners (23.4%) noted that they never self-declare AI-generated code. The reasons for self-declaring AI-generated code include the need to track and monitor the code for future review and debugging, and ethical considerations. The reasons for not self-declaring AI-generated code include extensive modifications to AI-generated code and the developers' perception that self-declaration is an unnecessary activity. We finally provided guidelines for practitioners to self-declare AI-generated code, addressing ethical and code quality concerns.
comment: 35 pages, 17 images, 8 tables, Manuscript submitted to a journal (2025)
☆ The Dance of Atoms-De Novo Protein Design with Diffusion Model
The de novo design of proteins refers to creating proteins with specific structures and functions that do not naturally exist. In recent years, the accumulation of high-quality protein structure and sequence data and technological advancements have paved the way for the successful application of generative artificial intelligence (AI) models in protein design. These models have surpassed traditional approaches that rely on fragments and bioinformatics. They have significantly enhanced the success rate of de novo protein design, and reduced experimental costs, leading to breakthroughs in the field. Among various generative AI models, diffusion models have yielded the most promising results in protein design. In the past two to three years, more than ten protein design models based on diffusion models have emerged. Among them, the representative model, RFDiffusion, has demonstrated success rates in 25 protein design tasks that far exceed those of traditional methods, and other AI-based approaches like RFjoint and hallucination. This review will systematically examine the application of diffusion models in generating protein backbones and sequences. We will explore the strengths and limitations of different models, summarize successful cases of protein design using diffusion models, and discuss future development directions.
☆ Harden and Catch for Just-in-Time Assured LLM-Based Software Testing: Open Research Challenges
Despite decades of research and practice in automated software testing, several fundamental concepts remain ill-defined and under-explored, yet offer enormous potential real-world impact. We show that these concepts raise exciting new challenges in the context of Large Language Models for software test generation. More specifically, we formally define and investigate the properties of hardening and catching tests. A hardening test is one that seeks to protect against future regressions, while a catching test is one that catches such a regression or a fault in new functionality introduced by a code change. Hardening tests can be generated at any time and may become catching tests when a future regression is caught. We also define and motivate the Catching `Just-in-Time' (JiTTest) Challenge, in which tests are generated `just-in-time' to catch new faults before they land into production. We show that any solution to Catching JiTTest generation can also be repurposed to catch latent faults in legacy code. We enumerate possible outcomes for hardening and catching tests and JiTTests, and discuss open research problems, deployment options, and initial results from our work on automated LLM-based hardening at Meta. This paper\footnote{Author order is alphabetical. The corresponding author is Mark Harman.} was written to accompany the keynote by the authors at the ACM International Conference on the Foundations of Software Engineering (FSE) 2025.
comment: To Appear as keynote paper at FSE 2025
☆ ManipDreamer: Boosting Robotic Manipulation World Model with Action Tree and Visual Guidance
While recent advancements in robotic manipulation video synthesis have shown promise, significant challenges persist in ensuring effective instruction-following and achieving high visual quality. Recent methods, like RoboDreamer, utilize linguistic decomposition to divide instructions into separate lower-level primitives, conditioning the world model on these primitives to achieve compositional instruction-following. However, these separate primitives do not consider the relationships that exist between them. Furthermore, recent methods neglect valuable visual guidance, including depth and semantic guidance, both crucial for enhancing visual quality. This paper introduces ManipDreamer, an advanced world model based on the action tree and visual guidance. To better learn the relationships between instruction primitives, we represent the instruction as the action tree and assign embeddings to tree nodes, each instruction can acquire its embeddings by navigating through the action tree. The instruction embeddings can be used to guide the world model. To enhance visual quality, we combine depth and semantic guidance by introducing a visual guidance adapter compatible with the world model. This visual adapter enhances both the temporal and physical consistency of video generation. Based on the action tree and visual guidance, ManipDreamer significantly boosts the instruction-following ability and visual quality. Comprehensive evaluations on robotic manipulation benchmarks reveal that ManipDreamer achieves large improvements in video quality metrics in both seen and unseen tasks, with PSNR improved from 19.55 to 21.05, SSIM improved from 0.7474 to 0.7982 and reduced Flow Error from 3.506 to 3.201 in unseen tasks, compared to the recent RoboDreamer model. Additionally, our method increases the success rate of robotic manipulation tasks by 2.5% in 6 RLbench tasks on average.
comment: 9 pages, 3 figures
☆ T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning
The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.
comment: Introduces T-VEC, a telecom-specific text embedding model. Fine-tuned gte-Qwen2-1.5B-instruct on curated telecom data points. Includes the first open-source telecom tokenizer. Model available at https://huggingface.co/NetoAISolutions/T-VEC
☆ EMRModel: A Large Language Model for Extracting Medical Consultation Dialogues into Structured Medical Records
Medical consultation dialogues contain critical clinical information, yet their unstructured nature hinders effective utilization in diagnosis and treatment. Traditional methods, relying on rule-based or shallow machine learning techniques, struggle to capture deep and implicit semantics. Recently, large pre-trained language models and Low-Rank Adaptation (LoRA), a lightweight fine-tuning method, have shown promise for structured information extraction. We propose EMRModel, a novel approach that integrates LoRA-based fine-tuning with code-style prompt design, aiming to efficiently convert medical consultation dialogues into structured electronic medical records (EMRs). Additionally, we construct a high-quality, realistically grounded dataset of medical consultation dialogues with detailed annotations. Furthermore, we introduce a fine-grained evaluation benchmark for medical consultation information extraction and provide a systematic evaluation methodology, advancing the optimization of medical natural language processing (NLP) models. Experimental results show EMRModel achieves an F1 score of 88.1%, improving by49.5% over standard pre-trained models. Compared to traditional LoRA fine-tuning methods, our model shows superior performance, highlighting its effectiveness in structured medical record extraction tasks.
☆ Private Federated Learning using Preference-Optimized Synthetic Data ICLR25
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as a preference ranking. Our algorithm, Preference Optimization for Private Client Data (POPri) harnesses client feedback using preference optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 68%, compared to 52% for prior synthetic data methods, and 10% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
comment: Spotlight presentation at SynthData Workshop ICLR25
☆ iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
As time evolves, data within specific domains exhibit predictability that motivates time series forecasting to predict future trends from historical data. However, current deep forecasting methods can achieve promising performance but generally lack interpretability, hindering trustworthiness and practical deployment in safety-critical applications such as auto-driving and healthcare. In this paper, we propose a novel interpretable model, iTFKAN, for credible time series forecasting. iTFKAN enables further exploration of model decision rationales and underlying data patterns due to its interpretability achieved through model symbolization. Besides, iTFKAN develops two strategies, prior knowledge injection, and time-frequency synergy learning, to effectively guide model learning under complex intertwined time series data. Extensive experimental results demonstrated that iTFKAN can achieve promising forecasting performance while simultaneously possessing high interpretive capabilities.
☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
☆ A Survey of Foundation Model-Powered Recommender Systems: From Feature-Based, Generative to Agentic Paradigms
Recommender systems (RS) have become essential in filtering information and personalizing content for users. RS techniques have traditionally relied on modeling interactions between users and items as well as the features of content using models specific to each task. The emergence of foundation models (FMs), large scale models trained on vast amounts of data such as GPT, LLaMA and CLIP, is reshaping the recommendation paradigm. This survey provides a comprehensive overview of the Foundation Models for Recommender Systems (FM4RecSys), covering their integration in three paradigms: (1) Feature-Based augmentation of representations, (2) Generative recommendation approaches, and (3) Agentic interactive systems. We first review the data foundations of RS, from traditional explicit or implicit feedback to multimodal content sources. We then introduce FMs and their capabilities for representation learning, natural language understanding, and multi-modal reasoning in RS contexts. The core of the survey discusses how FMs enhance RS under different paradigms. Afterward, we examine FM applications in various recommendation tasks. Through an analysis of recent research, we highlight key opportunities that have been realized as well as challenges encountered. Finally, we outline open research directions and technical challenges for next-generation FM4RecSys. This survey not only reviews the state-of-the-art methods but also provides a critical analysis of the trade-offs among the feature-based, the generative, and the agentic paradigms, outlining key open issues and future research directions.
☆ PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
☆ FeedQUAC: Quick Unobtrusive AI-Generated Commentary
Design thrives on feedback. However, gathering constant feedback throughout the design process can be labor-intensive and disruptive. We explore how AI can bridge this gap by providing effortless, ambient feedback. We introduce FeedQUAC, a design companion that delivers real-time AI-generated commentary from a variety of perspectives through different personas. A design probe study with eight participants highlights how designers can leverage quick yet ambient AI feedback to enhance their creative workflows. Participants highlight benefits such as convenience, playfulness, confidence boost, and inspiration from this lightweight feedback agent, while suggesting additional features, like chat interaction and context curation. We discuss the role of AI feedback, its strengths and limitations, and how to integrate it into existing design workflows while balancing user involvement. Our findings also suggest that ambient interaction is a valuable consideration for both the design and evaluation of future creativity support systems.
comment: 20 pages, 12 figures
☆ Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
☆ ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
☆ PINN-MEP: Continuous Neural Representations for Minimum-Energy Path Discovery in Molecular Systems
Characterizing conformational transitions in physical systems remains a fundamental challenge in the computational sciences. Traditional sampling methods like molecular dynamics (MD) or MCMC often struggle with the high-dimensional nature of molecular systems and the high energy barriers of transitions between stable states. While these transitions are rare events in simulation timescales, they often represent the most biologically significant processes - for example, the conformational change of an ion channel protein from its closed to open state, which controls cellular ion flow and is crucial for neural signaling. Such transitions in real systems may take milliseconds to seconds but could require months or years of continuous simulation to observe even once. We present a method that reformulates transition path generation as a continuous optimization problem solved through physics-informed neural networks (PINNs) inspired by string methods for minimum-energy path (MEP) generation. By representing transition paths as implicit neural functions and leveraging automatic differentiation with differentiable molecular dynamics force fields, our method enables the efficient discovery of physically realistic transition pathways without requiring expensive path sampling. We demonstrate our method's effectiveness on two proteins, including an explicitly hydrated bovine pancreatic trypsin inhibitor (BPTI) system with over 8,300 atoms.
☆ Cyberoception: Finding a Painlessly-Measurable New Sense in the Cyberworld Towards Emotion-Awareness in Computing
In Affective computing, recognizing users' emotions accurately is the basis of affective human-computer interaction. Understanding users' interoception contributes to a better understanding of individually different emotional abilities, which is essential for achieving inter-individually accurate emotion estimation. However, existing interoception measurement methods, such as the heart rate discrimination task, have several limitations, including their dependence on a well-controlled laboratory environment and precision apparatus, making monitoring users' interoception challenging. This study aims to determine other forms of data that can explain users' interoceptive or similar states in their real-world lives and propose a novel hypothetical concept "cyberoception," a new sense (1) which has properties similar to interoception in terms of the correlation with other emotion-related abilities, and (2) which can be measured only by the sensors embedded inside commodity smartphone devices in users' daily lives. Results from a 10-day-long in-lab/in-the-wild hybrid experiment reveal a specific cyberoception type "Turn On" (users' subjective sensory perception about the frequency of turning-on behavior on their smartphones), significantly related to participants' emotional valence. We anticipate that cyberoception to serve as a fundamental building block for developing more "emotion-aware", user-friendly applications and services.
comment: Accepted by ACM CHI2025
☆ CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
☆ DP2FL: Dual Prompt Personalized Federated Learning in Foundation Models
Personalized federated learning (PFL) has garnered significant attention for its ability to address heterogeneous client data distributions while preserving data privacy. However, when local client data is limited, deep learning models often suffer from insufficient training, leading to suboptimal performance. Foundation models, such as CLIP (Contrastive Language-Image Pretraining), exhibit strong feature extraction capabilities and can alleviate this issue by fine-tuning on limited local data. Despite their potential, foundation models are rarely utilized in federated learning scenarios, and challenges related to integrating new clients remain largely unresolved. To address these challenges, we propose the Dual Prompt Personalized Federated Learning (DP2FL) framework, which introduces dual prompts and an adaptive aggregation strategy. DP2FL combines global task awareness with local data-driven insights, enabling local models to achieve effective generalization while remaining adaptable to specific data distributions. Moreover, DP2FL introduces a global model that enables prediction on new data sources and seamlessly integrates newly added clients without requiring retraining. Experimental results in highly heterogeneous environments validate the effectiveness of DP2FL's prompt design and aggregation strategy, underscoring the advantages of prediction on novel data sources and demonstrating the seamless integration of new clients into the federated learning framework.
Transformer-Based Extraction of Statutory Definitions from the U.S. Code IEEE
Automatic extraction of definitions from legal texts is critical for enhancing the comprehension and clarity of complex legal corpora such as the United States Code (U.S.C.). We present an advanced NLP system leveraging transformer-based architectures to automatically extract defined terms, their definitions, and their scope from the U.S.C. We address the challenges of automatically identifying legal definitions, extracting defined terms, and determining their scope within this complex corpus of over 200,000 pages of federal statutory law. Building upon previous feature-based machine learning methods, our updated model employs domain-specific transformers (Legal-BERT) fine-tuned specifically for statutory texts, significantly improving extraction accuracy. Our work implements a multi-stage pipeline that combines document structure analysis with state-of-the-art language models to process legal text from the XML version of the U.S. Code. Each paragraph is first classified using a fine-tuned legal domain BERT model to determine if it contains a definition. Our system then aggregates related paragraphs into coherent definitional units and applies a combination of attention mechanisms and rule-based patterns to extract defined terms and their jurisdictional scope. The definition extraction system is evaluated on multiple titles of the U.S. Code containing thousands of definitions, demonstrating significant improvements over previous approaches. Our best model achieves 96.8% precision and 98.9% recall (98.2% F1-score), substantially outperforming traditional machine learning classifiers. This work contributes to improving accessibility and understanding of legal information while establishing a foundation for downstream legal reasoning tasks.
comment: 7 pages, to be published in IEEE AIIoT 2025
☆ Disentangling and Generating Modalities for Recommendation in Missing Modality Scenarios SIGIR 2025
Multi-modal recommender systems (MRSs) have achieved notable success in improving personalization by leveraging diverse modalities such as images, text, and audio. However, two key challenges remain insufficiently addressed: (1) Insufficient consideration of missing modality scenarios and (2) the overlooking of unique characteristics of modality features. These challenges result in significant performance degradation in realistic situations where modalities are missing. To address these issues, we propose Disentangling and Generating Modality Recommender (DGMRec), a novel framework tailored for missing modality scenarios. DGMRec disentangles modality features into general and specific modality features from an information-based perspective, enabling richer representations for recommendation. Building on this, it generates missing modality features by integrating aligned features from other modalities and leveraging user modality preferences. Extensive experiments show that DGMRec consistently outperforms state-of-the-art MRSs in challenging scenarios, including missing modalities and new item settings as well as diverse missing ratios and varying levels of missing modalities. Moreover, DGMRec's generation-based approach enables cross-modal retrieval, a task inapplicable for existing MRSs, highlighting its adaptability and potential for real-world applications. Our code is available at https://github.com/ptkjw1997/DGMRec.
comment: SIGIR 2025
☆ QAOA-GPT: Efficient Generation of Adaptive and Regular Quantum Approximate Optimization Algorithm Circuits
Quantum computing has the potential to improve our ability to solve certain optimization problems that are computationally difficult for classical computers, by offering new algorithmic approaches that may provide speedups under specific conditions. In this work, we introduce QAOA-GPT, a generative framework that leverages Generative Pretrained Transformers (GPT) to directly synthesize quantum circuits for solving quadratic unconstrained binary optimization problems, and demonstrate it on the MaxCut problem on graphs. To diversify the training circuits and ensure their quality, we have generated a synthetic dataset using the adaptive QAOA approach, a method that incrementally builds and optimizes problem-specific circuits. The experiments conducted on a curated set of graph instances demonstrate that QAOA-GPT, generates high quality quantum circuits for new problem instances unseen in the training as well as successfully parametrizes QAOA. Our results show that using QAOA-GPT to generate quantum circuits will significantly decrease both the computational overhead of classical QAOA and adaptive approaches that often use gradient evaluation to generate the circuit and the classical optimization of the circuit parameters. Our work shows that generative AI could be a promising avenue to generate compact quantum circuits in a scalable way.
☆ Mining Software Repositories for Expert Recommendation
We propose an automated approach to bug assignment to developers in large open-source software projects. This way, we assist human bug triagers who are in charge of finding the best developer with the right level of expertise in a particular area to be assigned to a newly reported issue. Our approach is based on the history of software development as documented in the issue tracking systems. We deploy BERTopic and techniques from TopicMiner. Our approach works based on the bug reports' features, such as the corresponding products and components, as well as their priority and severity levels. We sort developers based on their experience with specific combinations of new reports. The evaluation is performed using Top-k accuracy, and the results are compared with the reported results in prior work, namely TopicMiner MTM, BUGZIE, Bug triaging via deep Reinforcement Learning BT-RL, and LDA-SVM. The evaluation data come from various Eclipse and Mozilla projects, such as JDT, Firefox, and Thunderbird.
☆ Scalable Permutation-Aware Modeling for Temporal Set Prediction
Temporal set prediction involves forecasting the elements that will appear in the next set, given a sequence of prior sets, each containing a variable number of elements. Existing methods often rely on intricate architectures with substantial computational overhead, which hampers their scalability. In this work, we introduce a novel and scalable framework that leverages permutation-equivariant and permutation-invariant transformations to efficiently model set dynamics. Our approach significantly reduces both training and inference time while maintaining competitive performance. Extensive experiments on multiple public benchmarks show that our method achieves results on par with or superior to state-of-the-art models across several evaluation metrics. These results underscore the effectiveness of our model in enabling efficient and scalable temporal set prediction.
☆ MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation NAACL2025
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.
comment: Accepted to NAACL2025 Findings
☆ Peer-Aware Cost Estimation in Nonlinear General-Sum Dynamic Games for Mutual Learning and Intent Inference
Human-robot interactions can be modeled as incomplete-information general-sum dynamic games since the objective functions of both agents are not explicitly known to each other. However, solving for equilibrium policies for such games presents a major challenge, especially if the games involve nonlinear underlying dynamics. To simplify the problem, existing work often assumes that one agent is an expert with complete information about its peer, which can lead to biased estimates and failures in coordination. To address this challenge, we propose a nonlinear peer-aware cost estimation (N-PACE) algorithm for general-sum dynamic games. In N-PACE, using iterative linear quadratic (LQ) approximation of the nonlinear general-sum game, each agent explicitly models the learning dynamics of its peer agent while inferring their objective functions, leading to unbiased fast learning in inferring the unknown objective function of the peer agent, which is critical for task completion and safety assurance. Additionally, we demonstrate how N-PACE enables \textbf{intent communication} in such multi-agent systems by explicitly modeling the peer's learning dynamics.
☆ Demonstration of an AI-driven workflow for dynamic x-ray spectroscopy
X-ray absorption near edge structure (XANES) spectroscopy is a powerful technique for characterizing the chemical state and symmetry of individual elements within materials, but requires collecting data at many energy points which can be time-consuming. While adaptive sampling methods exist for efficiently collecting spectroscopic data, they often lack domain-specific knowledge about XANES spectra structure. Here we demonstrate a knowledge-injected Bayesian optimization approach for adaptive XANES data collection that incorporates understanding of spectral features like absorption edges and pre-edge peaks. We show this method accurately reconstructs the absorption edge of XANES spectra using only 15-20% of the measurement points typically needed for conventional sampling, while maintaining the ability to determine the x-ray energy of the sharp peak after absorption edge with errors less than 0.03 eV, the absorption edge with errors less than 0.1 eV; and overall root-mean-square errors less than 0.005 compared to compared to traditionally sampled spectra. Our experiments on battery materials and catalysts demonstrate the method's effectiveness for both static and dynamic XANES measurements, improving data collection efficiency and enabling better time resolution for tracking chemical changes. This approach advances the degree of automation in XANES experiments reducing the common errors of under- or over-sampling points in near the absorption edge and enabling dynamic experiments that require high temporal resolution or limited measurement time.
☆ Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.
comment: The code is available at: https://github.com/tkartikay/PhysNRPET
☆ The Rise of Small Language Models in Healthcare: A Comprehensive Survey
Despite substantial progress in healthcare applications driven by large language models (LLMs), growing concerns around data privacy, and limited resources; the small language models (SLMs) offer a scalable and clinically viable solution for efficient performance in resource-constrained environments for next-generation healthcare informatics. Our comprehensive survey presents a taxonomic framework to identify and categorize them for healthcare professionals and informaticians. The timeline of healthcare SLM contributions establishes a foundational framework for analyzing models across three dimensions: NLP tasks, stakeholder roles, and the continuum of care. We present a taxonomic framework to identify the architectural foundations for building models from scratch; adapting SLMs to clinical precision through prompting, instruction fine-tuning, and reasoning; and accessibility and sustainability through compression techniques. Our primary objective is to offer a comprehensive survey for healthcare professionals, introducing recent innovations in model optimization and equipping them with curated resources to support future research and development in the field. Aiming to showcase the groundbreaking advancements in SLMs for healthcare, we present a comprehensive compilation of experimental results across widely studied NLP tasks in healthcare to highlight the transformative potential of SLMs in healthcare. The updated repository is available at Github
comment: 35 pages, 7 tables, 5 figures
☆ Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.
comment: The code is available under https://github.com/tinolan/curve_fit_multi_idif
☆ Leveraging LLMs as Meta-Judges: A Multi-Agent Framework for Evaluating LLM Judgments
Large language models (LLMs) are being widely applied across various fields, but as tasks become more complex, evaluating their responses is increasingly challenging. Compared to human evaluators, the use of LLMs to support performance evaluation offers a more efficient alternative. However, most studies focus mainly on aligning LLMs' judgments with human preferences, overlooking the existence of biases and mistakes in human judgment. Furthermore, how to select suitable LLM judgments given multiple potential LLM responses remains underexplored. To address these two aforementioned issues, we propose a three-stage meta-judge selection pipeline: 1) developing a comprehensive rubric with GPT-4 and human experts, 2) using three advanced LLM agents to score judgments, and 3) applying a threshold to filter out low-scoring judgments. Compared to methods using a single LLM as both judge and meta-judge, our pipeline introduces multi-agent collaboration and a more comprehensive rubric. Experimental results on the JudgeBench dataset show about 15.55\% improvement compared to raw judgments and about 8.37\% improvement over the single-agent baseline. Our work demonstrates the potential of LLMs as meta-judges and lays the foundation for future research on constructing preference datasets for LLM-as-a-judge reinforcement learning.
comment: 12 pages, 5 figures, 6 tables
☆ Physics-guided and fabrication-aware inverse design of photonic devices using diffusion models
Designing free-form photonic devices is fundamentally challenging due to the vast number of possible geometries and the complex requirements of fabrication constraints. Traditional inverse-design approaches--whether driven by human intuition, global optimization, or adjoint-based gradient methods--often involve intricate binarization and filtering steps, while recent deep learning strategies demand prohibitively large numbers of simulations (10^5 to 10^6). To overcome these limitations, we present AdjointDiffusion, a physics-guided framework that integrates adjoint sensitivity gradients into the sampling process of diffusion models. AdjointDiffusion begins by training a diffusion network on a synthetic, fabrication-aware dataset of binary masks. During inference, we compute the adjoint gradient of a candidate structure and inject this physics-based guidance at each denoising step, steering the generative process toward high figure-of-merit (FoM) solutions without additional post-processing. We demonstrate our method on two canonical photonic design problems--a bent waveguide and a CMOS image sensor color router--and show that our method consistently outperforms state-of-the-art nonlinear optimizers (such as MMA and SLSQP) in both efficiency and manufacturability, while using orders of magnitude fewer simulations (approximately 2 x 10^2) than pure deep learning approaches (approximately 10^5 to 10^6). By eliminating complex binarization schedules and minimizing simulation overhead, AdjointDiffusion offers a streamlined, simulation-efficient, and fabrication-aware pipeline for next-generation photonic device design. Our open-source implementation is available at https://github.com/dongjin-seo2020/AdjointDiffusion.
comment: 25 pages, 7 Figures
☆ Robo-Troj: Attacking LLM-based Task Planners
Robots need task planning methods to achieve goals that require more than individual actions. Recently, large language models (LLMs) have demonstrated impressive performance in task planning. LLMs can generate a step-by-step solution using a description of actions and the goal. Despite the successes in LLM-based task planning, there is limited research studying the security aspects of those systems. In this paper, we develop Robo-Troj, the first multi-trigger backdoor attack for LLM-based task planners, which is the main contribution of this work. As a multi-trigger attack, Robo-Troj is trained to accommodate the diversity of robot application domains. For instance, one can use unique trigger words, e.g., "herical", to activate a specific malicious behavior, e.g., cutting hand on a kitchen robot. In addition, we develop an optimization method for selecting the trigger words that are most effective. Through demonstrating the vulnerability of LLM-based planners, we aim to promote the development of secured robot systems.
☆ Distilling semantically aware orders for autoregressive image generation
Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
☆ Statistical Guarantees in Synthetic Data through Conformal Adversarial Generation
The generation of high-quality synthetic data presents significant challenges in machine learning research, particularly regarding statistical fidelity and uncertainty quantification. Existing generative models produce compelling synthetic samples but lack rigorous statistical guarantees about their relation to the underlying data distribution, limiting their applicability in critical domains requiring robust error bounds. We address this fundamental limitation by presenting a novel framework that incorporates conformal prediction methodologies into Generative Adversarial Networks (GANs). By integrating multiple conformal prediction paradigms including Inductive Conformal Prediction (ICP), Mondrian Conformal Prediction, Cross-Conformal Prediction, and Venn-Abers Predictors, we establish distribution-free uncertainty quantification in generated samples. This approach, termed Conformalized GAN (cGAN), demonstrates enhanced calibration properties while maintaining the generative power of traditional GANs, producing synthetic data with provable statistical guarantees. We provide rigorous mathematical proofs establishing finite-sample validity guarantees and asymptotic efficiency properties, enabling the reliable application of synthetic data in high-stakes domains including healthcare, finance, and autonomous systems.
☆ Approaches to Responsible Governance of GenAI in Organizations
The rapid evolution of Generative AI (GenAI) has introduced unprecedented opportunities while presenting complex challenges around ethics, accountability, and societal impact. This paper draws on a literature review, established governance frameworks, and industry roundtable discussions to identify core principles for integrating responsible GenAI governance into diverse organizational structures. Our objective is to provide actionable recommendations for a balanced, risk-based governance approach that enables both innovation and oversight. Findings emphasize the need for adaptable risk assessment tools, continuous monitoring practices, and cross-sector collaboration to establish trustworthy GenAI. These insights provide a structured foundation and Responsible GenAI Guide (ResAI) for organizations to align GenAI initiatives with ethical, legal, and operational best practices.
☆ DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs
We present DyMU, an efficient, training-free framework that dynamically reduces the computational burden of vision-language models (VLMs) while maintaining high task performance. Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity, addressing the inherent inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence, thus preserving the downstream performance without additional fine-tuning. Unlike previous approaches, our method dynamically adapts token compression to the content of the image and operates completely training-free, making it readily applicable to most state-of-the-art VLM architectures. Extensive experiments on image and video understanding tasks demonstrate that DyMU can reduce the average visual token count by 32%-85% while achieving comparable performance to full-length models across diverse VLM architectures, including the recently popularized AnyRes-based visual encoders. Furthermore, through qualitative analyses, we demonstrate that DToMe effectively adapts token reduction based on image complexity and, unlike existing systems, provides users more control over computational costs. Project page: https://mikewangwzhl.github.io/dymu/.
☆ Fried Parameter Estimation from Single Wavefront Sensor Image with Artificial Neural Networks
Atmospheric turbulence degrades the quality of astronomical observations in ground-based telescopes, leading to distorted and blurry images. Adaptive Optics (AO) systems are designed to counteract these effects, using atmospheric measurements captured by a wavefront sensor to make real-time corrections to the incoming wavefront. The Fried parameter, r0, characterises the strength of atmospheric turbulence and is an essential control parameter for optimising the performance of AO systems and more recently sky profiling for Free Space Optical (FSO) communication channels. In this paper, we develop a novel data-driven approach, adapting machine learning methods from computer vision for Fried parameter estimation from a single Shack-Hartmann or pyramid wavefront sensor image. Using these data-driven methods, we present a detailed simulation-based evaluation of our approach using the open-source COMPASS AO simulation tool to evaluate both the Shack-Hartmann and pyramid wavefront sensors. Our evaluation is over a range of guide star magnitudes, and realistic noise, atmospheric and instrument conditions. Remarkably, we are able to develop a single network-based estimator that is accurate in both open and closed-loop AO configurations. Our method accurately estimates the Fried parameter from a single WFS image directly from AO telemetry to a few millimetres. Our approach is suitable for real time control, exhibiting 0.83ms r0 inference times on retail NVIDIA RTX 3090 GPU hardware, and thereby demonstrating a compelling economic solution for use in real-time instrument control.
☆ Democracy of AI Numerical Weather Models: An Example of Global Forecasting with FourCastNetv2 Made by a University Research Lab Using GPU
This paper demonstrates the feasibility of democratizing AI-driven global weather forecasting models among university research groups by leveraging Graphics Processing Units (GPUs) and freely available AI models, such as NVIDIA's FourCastNetv2. FourCastNetv2 is an NVIDIA's advanced neural network for weather prediction and is trained on a 73-channel subset of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset at single levels and different pressure levels. Although the training specifications for FourCastNetv2 are not released to the public, the training documentation of the model's first generation, FourCastNet, is available to all users. The training had 64 A100 GPUs and took 16 hours to complete. Although NVIDIA's models offer significant reductions in both time and cost compared to traditional Numerical Weather Prediction (NWP), reproducing published forecasting results presents ongoing challenges for resource-constrained university research groups with limited GPU availability. We demonstrate both (i) leveraging FourCastNetv2 to create predictions through the designated application programming interface (API) and (ii) utilizing NVIDIA hardware to train the original FourCastNet model. Further, this paper demonstrates the capabilities and limitations of NVIDIA A100's for resource-limited research groups in universities. We also explore data management, training efficiency, and model validation, highlighting the advantages and challenges of using limited high-performance computing resources. Consequently, this paper and its corresponding GitHub materials may serve as an initial guide for other university research groups and courses related to machine learning, climate science, and data science to develop research and education programs on AI weather forecasting, and hence help democratize the AI NWP in the digital economy.
comment: 12 pages, 8 figures
☆ What Makes for a Good Saliency Map? Comparing Strategies for Evaluating Saliency Maps in Explainable AI (XAI)
Saliency maps are a popular approach for explaining classifications of (convolutional) neural networks. However, it remains an open question as to how best to evaluate salience maps, with three families of evaluation methods commonly being used: subjective user measures, objective user measures, and mathematical metrics. We examine three of the most popular saliency map approaches (viz., LIME, Grad-CAM, and Guided Backpropagation) in a between subject study (N=166) across these families of evaluation methods. We test 1) for subjective measures, if the maps differ with respect to user trust and satisfaction; 2) for objective measures, if the maps increase users' abilities and thus understanding of a model; 3) for mathematical metrics, which map achieves the best ratings across metrics; and 4) whether the mathematical metrics can be associated with objective user measures. To our knowledge, our study is the first to compare several salience maps across all these evaluation methods$-$with the finding that they do not agree in their assessment (i.e., there was no difference concerning trust and satisfaction, Grad-CAM improved users' abilities best, and Guided Backpropagation had the most favorable mathematical metrics). Additionally, we show that some mathematical metrics were associated with user understanding, although this relationship was often counterintuitive. We discuss these findings in light of general debates concerning the complementary use of user studies and mathematical metrics in the evaluation of explainable AI (XAI) approaches.
comment: 27 pages, 7 figures, 4 tables
☆ Analyzing Value Functions of States in Parametric Markov Chains
Parametric Markov chains (pMC) are used to model probabilistic systems with unknown or partially known probabilities. Although (universal) pMC verification for reachability properties is known to be coETR-complete, there have been efforts to approach it using potentially easier-to-check properties such as asking whether the pMC is monotonic in certain parameters. In this paper, we first reduce monotonicity to asking whether the reachability probability from a given state is never less than that of another given state. Recent results for the latter property imply an efficient algorithm to collapse same-value equivalence classes, which in turn preserves verification results and monotonicity. We implement our algorithm to collapse "trivial" equivalence classes in the pMC and show empirical evidence for the following: First, the collapse gives reductions in size for some existing benchmarks and significant reductions on some custom benchmarks; Second, the collapse speeds up existing algorithms to check monotonicity and parameter lifting, and hence can be used as a fast pre-processing step in practice.
comment: Published as part of the book "Principles of Verification: Cycling the Probabilistic Landscape: Essays Dedicated to Joost-Pieter Katoen on the Occasion of His 60th Birthday, Part II"
☆ Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textsubscript{\textnormal{ER}} dataset for future training tasks.
comment: Accepted to the Proceedings of the 19th Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
☆ A Systematic Approach to Design Real-World Human-in-the-Loop Deep Reinforcement Learning: Salient Features, Challenges and Trade-offs
With the growing popularity of deep reinforcement learning (DRL), human-in-the-loop (HITL) approach has the potential to revolutionize the way we approach decision-making problems and create new opportunities for human-AI collaboration. In this article, we introduce a novel multi-layered hierarchical HITL DRL algorithm that comprises three types of learning: self learning, imitation learning and transfer learning. In addition, we consider three forms of human inputs: reward, action and demonstration. Furthermore, we discuss main challenges, trade-offs and advantages of HITL in solving complex problems and how human information can be integrated in the AI solution systematically. To verify our technical results, we present a real-world unmanned aerial vehicles (UAV) problem wherein a number of enemy drones attack a restricted area. The objective is to design a scalable HITL DRL algorithm for ally drones to neutralize the enemy drones before they reach the area. To this end, we first implement our solution using an award-winning open-source HITL software called Cogment. We then demonstrate several interesting results such as (a) HITL leads to faster training and higher performance, (b) advice acts as a guiding direction for gradient methods and lowers variance, and (c) the amount of advice should neither be too large nor too small to avoid over-training and under-training. Finally, we illustrate the role of human-AI cooperation in solving two real-world complex scenarios, i.e., overloaded and decoy attacks.
comment: This is a result of the collaboration by JACOBB, AMII(Alberta Machine Intelligence Institute), Thales and AI Redefined (AIR) in 2021-2023
☆ (Im)possibility of Automated Hallucination Detection in Large Language Models
Is automated hallucination detection possible? In this work, we introduce a theoretical framework to analyze the feasibility of automatically detecting hallucinations produced by large language models (LLMs). Inspired by the classical Gold-Angluin framework for language identification and its recent adaptation to language generation by Kleinberg and Mullainathan, we investigate whether an algorithm, trained on examples drawn from an unknown target language $K$ (selected from a countable collection) and given access to an LLM, can reliably determine whether the LLM's outputs are correct or constitute hallucinations. First, we establish an equivalence between hallucination detection and the classical task of language identification. We prove that any hallucination detection method can be converted into a language identification method, and conversely, algorithms solving language identification can be adapted for hallucination detection. Given the inherent difficulty of language identification, this implies that hallucination detection is fundamentally impossible for most language collections if the detector is trained using only correct examples from the target language. Second, we show that the use of expert-labeled feedback, i.e., training the detector with both positive examples (correct statements) and negative examples (explicitly labeled incorrect statements), dramatically changes this conclusion. Under this enriched training regime, automated hallucination detection becomes possible for all countable language collections. These results highlight the essential role of expert-labeled examples in training hallucination detectors and provide theoretical support for feedback-based methods, such as reinforcement learning with human feedback (RLHF), which have proven critical for reliable LLM deployment.
☆ Automating tumor-infiltrating lymphocyte assessment in breast cancer histopathology images using QuPath: a transparent and accessible machine learning pipeline
In this study, we built an end-to-end tumor-infiltrating lymphocytes (TILs) assessment pipeline within QuPath, demonstrating the potential of easily accessible tools to perform complex tasks in a fully automatic fashion. First, we trained a pixel classifier to segment tumor, tumor-associated stroma, and other tissue compartments in breast cancer H&E-stained whole-slide images (WSI) to isolate tumor-associated stroma for subsequent analysis. Next, we applied a pre-trained StarDist deep learning model in QuPath for cell detection and used the extracted cell features to train a binary classifier distinguishing TILs from other cells. To evaluate our TILs assessment pipeline, we calculated the TIL density in each WSI and categorized them as low, medium, or high TIL levels. Our pipeline was evaluated against pathologist-assigned TIL scores, achieving a Cohen's kappa of 0.71 on the external test set, corroborating previous research findings. These results confirm that existing software can offer a practical solution for the assessment of TILs in H&E-stained WSIs of breast cancer.
comment: 16 Pages, 9 Figures, 3 tables
☆ Tokenization Matters: Improving Zero-Shot NER for Indic Languages
Tokenization is a critical component of Natural Language Processing (NLP), especially for low resource languages, where subword segmentation influences vocabulary structure and downstream task accuracy. Although Byte Pair Encoding (BPE) is a standard tokenization method in multilingual language models, its suitability for Named Entity Recognition (NER) in low resource Indic languages remains underexplored due to its limitations in handling morphological complexity. In this work, we systematically compare BPE, SentencePiece, and Character Level tokenization strategies using IndicBERT for NER tasks in low resource Indic languages like Assamese, Bengali, Marathi, and Odia, as well as extremely low resource Indic languages like Santali, Manipuri, and Sindhi. We assess both intrinsic linguistic properties tokenization efficiency, out of vocabulary (OOV) rates, and morphological preservation as well as extrinsic downstream performance, including fine tuning and zero shot cross lingual transfer. Our experiments show that SentencePiece is a consistently better performing approach than BPE for NER in low resource Indic Languages, particularly in zero shot cross lingual settings, as it better preserves entity consistency. While BPE provides the most compact tokenization form, it is not capable of generalization because it misclassifies or even fails to recognize entity labels when tested on unseen languages. In contrast, SentencePiece constitutes a better linguistic structural preservation model, benefiting extremely low resource and morphologically rich Indic languages, such as Santali and Manipuri, for superior entity recognition, as well as high generalization across scripts, such as Sindhi, written in Arabic. The results point to SentencePiece as the more effective tokenization strategy for NER within multilingual and low resource Indic NLP applications.
☆ Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
☆ Backslash: Rate Constrained Optimized Training of Large Language Models
The rapid advancement of large-language models (LLMs) has driven extensive research into parameter compression after training has been completed, yet compression during the training phase remains largely unexplored. In this work, we introduce Rate-Constrained Training (Backslash), a novel training-time compression approach based on rate-distortion optimization (RDO). Backslash enables a flexible trade-off between model accuracy and complexity, significantly reducing parameter redundancy while preserving performance. Experiments in various architectures and tasks demonstrate that Backslash can reduce memory usage by 60\% - 90\% without accuracy loss and provides significant compression gain compared to compression after training. Moreover, Backslash proves to be highly versatile: it enhances generalization with small Lagrange multipliers, improves model robustness to pruning (maintaining accuracy even at 80\% pruning rates), and enables network simplification for accelerated inference on edge devices.
♻ ☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
♻ ☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
♻ ☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
♻ ☆ Bidirectional Task-Motion Planning Based on Hierarchical Reinforcement Learning for Strategic Confrontation
In swarm robotics, confrontation scenarios, including strategic confrontations, require efficient decision-making that integrates discrete commands and continuous actions. Traditional task and motion planning methods separate decision-making into two layers, but their unidirectional structure fails to capture the interdependence between these layers, limiting adaptability in dynamic environments. Here, we propose a novel bidirectional approach based on hierarchical reinforcement learning, enabling dynamic interaction between the layers. This method effectively maps commands to task allocation and actions to path planning, while leveraging cross-training techniques to enhance learning across the hierarchical framework. Furthermore, we introduce a trajectory prediction model that bridges abstract task representations with actionable planning goals. In our experiments, it achieves over 80% in confrontation win rate and under 0.01 seconds in decision time, outperforming existing approaches. Demonstrations through large-scale tests and real-world robot experiments further emphasize the generalization capabilities and practical applicability of our method.
♻ ☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
♻ ☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
♻ ☆ A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
comment: 18 pages, 6 figures (3 graphs + 3 flowchart/architecture diagrams), submitted as a preprint for review consideration in AI for Education or Machine Learning applications in low-resource settings. Includes detailed experiments with LoRA and quantization methods for efficient LLM fine-tuning
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ Transport f divergences
We define a class of divergences to measure differences between probability density functions in one-dimensional sample space. The construction is based on the convex function with the Jacobi operator of mapping function that pushforwards one density to the other. We call these information measures transport f-divergences. We present several properties of transport $f$-divergences, including invariances, convexities, variational formulations, and Taylor expansions in terms of mapping functions. Examples of transport f-divergences in generative models are provided.
comment: Comments are welcome
♻ ☆ aiXamine: Simplified LLM Safety and Security
Evaluating Large Language Models (LLMs) for safety and security remains a complex task, often requiring users to navigate a fragmented landscape of ad hoc benchmarks, datasets, metrics, and reporting formats. To address this challenge, we present aiXamine, a comprehensive black-box evaluation platform for LLM safety and security. aiXamine integrates over 40 tests (i.e., benchmarks) organized into eight key services targeting specific dimensions of safety and security: adversarial robustness, code security, fairness and bias, hallucination, model and data privacy, out-of-distribution (OOD) robustness, over-refusal, and safety alignment. The platform aggregates the evaluation results into a single detailed report per model, providing a detailed breakdown of model performance, test examples, and rich visualizations. We used aiXamine to assess over 50 publicly available and proprietary LLMs, conducting over 2K examinations. Our findings reveal notable vulnerabilities in leading models, including susceptibility to adversarial attacks in OpenAI's GPT-4o, biased outputs in xAI's Grok-3, and privacy weaknesses in Google's Gemini 2.0. Additionally, we observe that open-source models can match or exceed proprietary models in specific services such as safety alignment, fairness and bias, and OOD robustness. Finally, we identify trade-offs between distillation strategies, model size, training methods, and architectural choices.
♻ ☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
♻ ☆ A Measure Based Generalizable Approach to Understandability
Successful agent-human partnerships require that any agent generated information is understandable to the human, and that the human can easily steer the agent towards a goal. Such effective communication requires the agent to develop a finer-level notion of what is understandable to the human. State-of-the-art agents, including LLMs, lack this detailed notion of understandability because they only capture average human sensibilities from the training data, and therefore afford limited steerability (e.g., requiring non-trivial prompt engineering). In this paper, instead of only relying on data, we argue for developing generalizable, domain-agnostic measures of understandability that can be used as directives for these agents. Existing research on understandability measures is fragmented, we survey various such efforts across domains, and lay a cognitive-science-rooted groundwork for more coherent and domain-agnostic research investigations in future.
comment: 6 pages
♻ ☆ Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
♻ ☆ Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
♻ ☆ Natural Language Processing in the Patent Domain: A Survey
Patents, which encapsulate crucial technical and legal information in text form and referenced drawings, present a rich domain for natural language processing (NLP) applications. As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks. However, the application of LLMs in the patent domain remains under-explored and under-developed due to the complexity of patents, particularly their language and legal framework. Understanding the unique characteristics of patent documents and related research in the patent domain becomes essential for researchers to apply these tools effectively. Therefore, this paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently. We introduce the relevant fundamental aspects of patents to provide solid background information. In addition, we systematically break down the structural and linguistic characteristics unique to patents and map out how NLP can be leveraged for patent analysis and generation. Moreover, we demonstrate the spectrum of text-based and multimodal patent-related tasks, including nine patent analysis and four patent generation tasks.
comment: Published in Artificial Intelligence Review
♻ ☆ A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
♻ ☆ On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction WWW 2025
The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
comment: Accepted by WWW 2025
♻ ☆ ChatDBG: Augmenting Debugging with Large Language Models
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.
comment: 22 pages, to appear at FSE 2025
♻ ☆ MediSee: Reasoning-based Pixel-level Perception in Medical Images
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.
comment: 10 pages, 6 figures
♻ ☆ Rethinking and Recomputing the Value of Machine Learning Models
In this paper, we argue that the prevailing approach to training and evaluating machine learning models often fails to consider their real-world application within organizational or societal contexts, where they are intended to create beneficial value for people. We propose a shift in perspective, redefining model assessment and selection to emphasize integration into workflows that combine machine predictions with human expertise, particularly in scenarios requiring human intervention for low-confidence predictions. Traditional metrics like accuracy and f-score fail to capture the beneficial value of models in such hybrid settings. To address this, we introduce a simple yet theoretically sound "value" metric that incorporates task-specific costs for correct predictions, errors, and rejections, offering a practical framework for real-world evaluation. Through extensive experiments, we show that existing metrics fail to capture real-world needs, often leading to suboptimal choices in terms of value when used to rank classifiers. Furthermore, we emphasize the critical role of calibration in determining model value, showing that simple, well-calibrated models can often outperform more complex models that are challenging to calibrate.
comment: Accepted at the Journal of Artificial Intelligence Review
♻ ☆ SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy
Large Language Models (LLMs) have been shown to encode clinical knowledge. Many evaluations, however, rely on structured question-answer benchmarks, overlooking critical challenges of interpreting and reasoning about unstructured clinical narratives in real-world settings. Using free-text clinical descriptions, we present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models (GPT-3.5, GPT-4, Mixtral-8x7B, Qwen-72B, LlaMa2, LlaMa3) on a core diagnostic task in epilepsy. Leveraging a database of 1,269 seizure descriptions, we show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain. Most models approach clinician-level performance after prompt engineering, with expert-guided chain-of-thought reasoning leading to the most consistent improvements. Performance was further strongly modulated by clinical in-context impersonation, narrative length and language context (13.7%, 32.7% and 14.2% performance variation, respectively). However, expert analysis of reasoning outputs revealed that correct prediction can be based on hallucinated knowledge and deficient source citation accuracy, underscoring the need to improve interpretability of LLMs in clinical use. Overall, SemioLLM provides a scalable, domain-adaptable framework for evaluating LLMs in clinical disciplines where unstructured verbal descriptions encode diagnostic information. By identifying both the strengths and limitations of state-of-the-art models, our work supports the development of clinically robust and globally applicable AI systems for healthcare.
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ Pushing the Frontier on Approximate EFX Allocations
We study the problem of allocating a set of indivisible goods to a set of agents with additive valuation functions, aiming to achieve approximate envy-freeness up to any good ($\alpha$-EFX). The state-of-the-art results on the problem include that (exact) EFX allocations exist when (a) there are at most three agents, or (b) the agents' valuation functions can take at most two values, or (c) the agents' valuation functions can be represented via a graph. For $\alpha$-EFX, it is known that a $0.618$-EFX allocation exists for any number of agents with additive valuation functions. In this paper, we show that $2/3$-EFX allocations exist when (a) there are at most \emph{seven agents}, (b) the agents' valuation functions can take at most \emph{three values}, or (c) the agents' valuation functions can be represented via a \emph{multigraph}. Our results can be interpreted in two ways. First, by relaxing the notion of EFX to $2/3$-EFX, we obtain existence results for strict generalizations of the settings for which exact EFX allocations are known to exist. Secondly, by imposing restrictions on the setting, we manage to beat the barrier of $0.618$ and achieve an approximation guarantee of $2/3$. Therefore, our results push the \emph{frontier} of existence and computation of approximate EFX allocations, and provide insights into the challenges of settling the existence of exact EFX allocations.
comment: The conference version of this work has been accepted to the Twenty-Fifth ACM Conference on Economics and Computation (EC 2024)
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
♻ ☆ Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches IEEE
Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.
comment: This work has been accepted for publication in the IEEE Transactions on Information Theory
♻ ☆ PoGO: A Scalable Proof of Useful Work via Quantized Gradient Descent and Merkle Proofs
We present a design called Proof of Gradient Optimization (PoGO) for blockchain consensus, where miners produce verifiable evidence of training large-scale machine-learning models. Building on previous work, we incorporate quantized gradients (4-bit precision) to reduce storage and computation requirements, while still preserving the ability of verifiers to check that real progress has been made on lowering the model's loss. Additionally, we employ Merkle proofs over the full 32-bit model to handle large parameter sets and to enable random leaf checks with minimal on-chain data. We illustrate these ideas using GPT-3 (175B parameters) as a reference example and also refer to smaller but high-performance models (e.g., Gemma~3 with 27B parameters). We provide an empirical cost analysis showing that verification is significantly cheaper than training, thanks in part to quantization and sampling. We also discuss the necessity of longer block times (potentially hours) when incorporating meaningful training steps, the trade-offs when using specialized GPU hardware, and how binary diffs may incrementally optimize updates. Finally, we note that fine-tuning can be handled in a similar manner, merely changing the dataset and the manner of sampling but preserving the overall verification flow. Our protocol allows verifiers to issue either positive or negative attestations; these are aggregated at finalization to either confirm the update or slash the miner.
comment: 14 pages, 1 figure, 1 table
♻ ☆ Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
♻ ☆ The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
comment: 12 pages, 3 figures, 1 table
♻ ☆ Leveraging LLMs for User Stories in AI Systems: UStAI Dataset
AI systems are gaining widespread adoption across various sectors and domains. Creating high-quality AI system requirements is crucial for aligning the AI system with business goals and consumer values and for social responsibility. However, with the uncertain nature of AI systems and the heavy reliance on sensitive data, more research is needed to address the elicitation and analysis of AI systems requirements. With the proprietary nature of many AI systems, there is a lack of open-source requirements artifacts and technical requirements documents for AI systems, limiting broader research and investigation. With Large Language Models (LLMs) emerging as a promising alternative to human-generated text, this paper investigates the potential use of LLMs to generate user stories for AI systems based on abstracts from scholarly papers. We conducted an empirical evaluation using three LLMs and generated $1260$ user stories from $42$ abstracts from $26$ domains. We assess their quality using the Quality User Story (QUS) framework. Moreover, we identify relevant non-functional requirements (NFRs) and ethical principles. Our analysis demonstrates that the investigated LLMs can generate user stories inspired by the needs of various stakeholders, offering a promising approach for generating user stories for research purposes and for aiding in the early requirements elicitation phase of AI systems. We have compiled and curated a collection of stories generated by various LLMs into a dataset (UStAI), which is now publicly available for use.
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as fast response to external changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
comment: Accepted to RSS 2025. Project page: https://reactive-diffusion-policy.github.io
♻ ☆ Advances in Embodied Navigation Using Large Language Models: A Survey IEEE
In recent years, the rapid advancement of Large Language Models (LLMs) such as the Generative Pre-trained Transformer (GPT) has attracted increasing attention due to their potential in a variety of practical applications. The application of LLMs with Embodied Intelligence has emerged as a significant area of focus. Among the myriad applications of LLMs, navigation tasks are particularly noteworthy because they demand a deep understanding of the environment and quick, accurate decision-making. LLMs can augment embodied intelligence systems with sophisticated environmental perception and decision-making support, leveraging their robust language and image-processing capabilities. This article offers an exhaustive summary of the symbiosis between LLMs and embodied intelligence with a focus on navigation. It reviews state-of-the-art models, research methodologies, and assesses the advantages and disadvantages of existing embodied navigation models and datasets. Finally, the article elucidates the role of LLMs in embodied intelligence, based on current research, and forecasts future directions in the field. A comprehensive list of studies in this survey is available at https://github.com/Rongtao-Xu/Awesome-LLM-EN.
comment: Submited to IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
♻ ☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
♻ ☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
♻ ☆ A Deep Learning System for Rapid and Accurate Warning of Acute Aortic Syndrome on Non-contrast CT in China
The accurate and timely diagnosis of acute aortic syndromes (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic CT angiography (CTA) is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo non-contrast CT as the initial imaging testing, and CTA is reserved for those at higher risk. In this work, we present an artificial intelligence-based warning system, iAorta, using non-contrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multi-center retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve (AUC) of 0.958 (95% CI 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various non-contrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway. For the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under non-contrast CT protocol in the emergency department (ED) and enabled the average diagnostic time of these 21 AAS positive patients to be 102.1 (75-133) mins. Last, the iAorta can help avoid delayed or missed diagnosis of AAS in settings where non-contrast CT remains the unavoidable the initial or only imaging test in resource-constrained regions and in patients who cannot or did not receive intravenous contrast.
♻ ☆ Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Time Series Classification (TSC) encompasses two settings: classifying entire sequences or classifying segmented subsequences. The raw time series for segmented TSC usually contain Multiple classes with Varying Duration of each class (MVD). Therefore, the characteristics of MVD pose unique challenges for segmented TSC, yet have been largely overlooked by existing works. Specifically, there exists a natural temporal dependency between consecutive instances (segments) to be classified within MVD. However, mainstream TSC models rely on the assumption of independent and identically distributed (i.i.d.), focusing on independently modeling each segment. Additionally, annotators with varying expertise may provide inconsistent boundary labels, leading to unstable performance of noise-free TSC models. To address these challenges, we first formally demonstrate that valuable contextual information enhances the discriminative power of classification instances. Leveraging the contextual priors of MVD at both the data and label levels, we propose a novel consistency learning framework Con4m, which effectively utilizes contextual information more conducive to discriminating consecutive segments in segmented TSC tasks, while harmonizing inconsistent boundary labels for training. Extensive experiments across multiple datasets validate the effectiveness of Con4m in handling segmented TSC tasks on MVD. The source code is available at https://github.com/MrNobodyCali/Con4m.
♻ ☆ Make Shuffling Great Again: A Side-Channel Resistant Fisher-Yates Algorithm for Protecting Neural Networks
Neural network models implemented in embedded devices have been shown to be susceptible to side-channel attacks (SCAs), allowing recovery of proprietary model parameters, such as weights and biases. There are already available countermeasure methods currently used for protecting cryptographic implementations that can be tailored to protect embedded neural network models. Shuffling, a hiding-based countermeasure that randomly shuffles the order of computations, was shown to be vulnerable to SCA when the Fisher-Yates algorithm is used. In this paper, we propose a design of an SCA-secure version of the Fisher-Yates algorithm. By integrating the masking technique for modular reduction and Blakely's method for modular multiplication, we effectively remove the vulnerability in the division operation that led to side-channel leakage in the original version of the algorithm. We experimentally evaluate that the countermeasure is effective against SCA by implementing a correlation power analysis attack on an embedded neural network model implemented on ARM Cortex-M4. Compared to the original proposal, the memory overhead is $2\times$ the biggest layer of the network, while the time overhead varies from $4\%$ to $0.49\%$ for a layer with $100$ and $1000$ neurons, respectively.
♻ ☆ Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.
comment: 19 pages,12 figures
♻ ☆ Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization
Jamming devices disrupt signals from the global navigation satellite system (GNSS) and pose a significant threat, as they compromise the robustness of accurate positioning. The detection of anomalies within frequency snapshots is crucial to counteract these interferences effectively. A critical preliminary countermeasure involves the reliable classification of interferences and the characterization and localization of jamming devices. This paper introduces an extensive dataset comprising snapshots obtained from a low-frequency antenna that capture various generated interferences within a large-scale environment, including controlled multipath effects. Our objective is to assess the resilience of machine learning (ML) models against environmental changes, such as multipath effects, variations in interference attributes, such as interference class, bandwidth, and signal power, the accuracy of jamming device localization, and the constraints imposed by snapshot input lengths. Furthermore, we evaluate the performance of a diverse set of 129 distinct vision encoder models across all tasks. By analyzing the aleatoric and epistemic uncertainties, we demonstrate the adaptability of our model in generalizing across diverse facets, thus establishing its suitability for real-world applications. Dataset: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/controlled_low_frequency
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables
♻ ☆ ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance, inspiring researchers to explore their use in automating register transfer level (RTL) code generation and improving hardware design efficiency. However, the existing approaches to fine-tune LLMs for RTL generation typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data, which are costly to acquire. To mitigate these issues, we innovatively introduce an iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in current loop. Furthermore, we introduce a plug-and-play data filtering strategy, thereby encouraging the model to generate high-quality, self-contained code. Our model outperforms GPT4 and state-of-the-art (SOTA) open-source models, achieving remarkable 53.8% pass@1 rate on VerilogEval-human benchmark. Under similar conditions of data quantity and quality, our approach significantly outperforms the baseline. Extensive experiments validate the effectiveness of the proposed method.
♻ ☆ External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation WWW
Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.
comment: Accepted by the ACM Web Conference (WWW) 2025 Industrial Track as Oral Presentation
♻ ☆ Combining Physics-based and Data-driven Modeling for Building Energy Systems
Building energy modeling plays a vital role in optimizing the operation of building energy systems by providing accurate predictions of the building's real-world conditions. In this context, various techniques have been explored, ranging from traditional physics-based models to data-driven models. Recently, researchers are combining physics-based and data-driven models into hybrid approaches. This includes using the physics-based model output as additional data-driven input, learning the residual between physics-based model and real data, learning a surrogate of the physics-based model, or fine-tuning a surrogate model with real data. However, a comprehensive comparison of the inherent advantages of these hybrid approaches is still missing. The primary objective of this work is to evaluate four predominant hybrid approaches in building energy modeling through a real-world case study, with focus on indoor thermodynamics. To achieve this, we devise three scenarios reflecting common levels of building documentation and sensor availability, assess their performance, and analyze their explainability using hierarchical Shapley values. The real-world study reveals three notable findings. First, greater building documentation and sensor availability lead to higher prediction accuracy for hybrid approaches. Second, the performance of hybrid approaches depends on the type of building room, but the residual approach using a Feedforward Neural Network as data-driven sub-model performs best on average across all rooms. This hybrid approach also demonstrates a superior ability to leverage the simulation from the physics-based sub-model. Third, hierarchical Shapley values prove to be an effective tool for explaining and improving hybrid models while accounting for input correlations.
♻ ☆ X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
♻ ☆ MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
♻ ☆ Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
♻ ☆ Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering ICLR 2025
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in https://xingruiwang.github.io/projects/DynSuperCLEVR/.
comment: ICLR 2025 accepted paper. Project url: https://xingruiwang.github.io/projects/DynSuperCLEVR/
♻ ☆ TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making. In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify, as it requires anticipation of all possible unsafe behaviors. We therefore address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data. Our key contributions are: first, we design a safety model that performs credit assignment to estimate each decision step's impact on the overall safety using a dataset of diverse trajectories and their corresponding binary safety labels (i.e., whether the corresponding trajectory is safe/unsafe). Second, we illustrate the architecture of our safety model to demonstrate its ability to learn a separate safety score for each timestep. Third, we reformulate the safe RL problem using the proposed safety model and derive an effective algorithm to optimize a safe yet rewarding policy. Finally, our empirical results corroborate our findings and show that this approach is effective in satisfying unknown safety definition, and scalable to various continuous control tasks.
♻ ☆ Sustainability via LLM Right-sizing
Large language models (LLMs) have become increasingly embedded in organizational workflows. This has raised concerns over their energy consumption, financial costs, and data sovereignty. While performance benchmarks often celebrate cutting-edge models, real-world deployment decisions require a broader perspective: when is a smaller, locally deployable model "good enough"? This study offers an empirical answer by evaluating eleven proprietary and open-weight LLMs across ten everyday occupational tasks, including summarizing texts, generating schedules, and drafting emails and proposals. Using a dual-LLM-based evaluation framework, we automated task execution and standardized evaluation across ten criteria related to output quality, factual accuracy, and ethical responsibility. Results show that GPT-4o delivers consistently superior performance but at a significantly higher cost and environmental footprint. Notably, smaller models like Gemma-3 and Phi-4 achieved strong and reliable results on most tasks, suggesting their viability in contexts requiring cost-efficiency, local deployment, or privacy. A cluster analysis revealed three model groups -- premium all-rounders, competent generalists, and limited but safe performers -- highlighting trade-offs between quality, control, and sustainability. Significantly, task type influenced model effectiveness: conceptual tasks challenged most models, while aggregation and transformation tasks yielded better performances. We argue for a shift from performance-maximizing benchmarks to task- and context-aware sufficiency assessments that better reflect organizational priorities. Our approach contributes a scalable method to evaluate AI models through a sustainability lens and offers actionable guidance for responsible LLM deployment in practice.
comment: 17 pages, 2 Figures, 6 Tables
♻ ☆ Deep Learning for Low-Latency, Quantum-Ready RF Sensing
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
♻ ☆ WildfireGPT: Tailored Large Language Model for Wildfire Analysis
Recent advancement of large language models (LLMs) represents a transformational capability at the frontier of artificial intelligence. However, LLMs are generalized models, trained on extensive text corpus, and often struggle to provide context-specific information, particularly in areas requiring specialized knowledge, such as wildfire details within the broader context of climate change. For decision-makers focused on wildfire resilience and adaptation, it is crucial to obtain responses that are not only precise but also domain-specific. To that end, we developed WildfireGPT, a prototype LLM agent designed to transform user queries into actionable insights on wildfire risks. We enrich WildfireGPT by providing additional context, such as climate projections and scientific literature, to ensure its information is current, relevant, and scientifically accurate. This enables WildfireGPT to be an effective tool for delivering detailed, user-specific insights on wildfire risks to support a diverse set of end users, including but not limited to researchers and engineers, for making positive impact and decision making.
comment: restoring content for arXiv:2402.07877v2 which was replaced in error
♻ ☆ DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
comment: Project: https://superhero-7.github.io/DreamID/
♻ ☆ A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ GOT4Rec: Graph of Thoughts for Sequential Recommendation
With their vast open-world knowledge and reasoning abilities, large language models (LLMs) have become a promising tool for sequential recommendation. Researchers have explored various methods to harness these capabilities, but most existing approaches rely on simple input-output prompting, failing to effectively bridge the gap between LLMs' general knowledge and the specific needs of recommendation tasks. While reasoning strategies like chain-of-thought (CoT) have been introduced to enhance performance, they often produce inaccurate recommendations due to underutilized user preference information and insufficient reasoning depth. To address these challenges, we propose GOT4Rec, a novel sequential recommendation method leveraging the graph of thoughts (GoT) reasoning strategy. Our method focuses on three key types of information in user histories: short-term interests, long-term interests and collaborative information from other users. It enables LLMs to reason independently and generate recommendations, subsequently aggregating results to derive final items. This method allows LLMs, with enhanced reasoning capabilities, to better utilize the user sequence information, producing more accurate recommendations and comprehensive explanations. Extensive experiments on real-world datasets demonstrate the effectiveness of GOT4Rec, outperforming existing state-of-the-art baselines with an average improvement of 37.11%. Our code is available at https://anonymous.4open.science/r/GOT4Rec.
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
comment: Project page: https://huggingface.co/spaces/TrustSafeAI/Attention-Tracker
♻ ☆ Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
♻ ☆ Less is More: Towards Green Code Large Language Models via Unified Structural Pruning
The extensive application of Large Language Models (LLMs) in generative coding tasks has raised concerns due to their high computational demands and energy consumption. Unlike previous structural pruning methods designed for classification models that deal with lowdimensional classification logits, generative Code LLMs produce high-dimensional token logit sequences, making traditional pruning objectives inherently limited. Moreover, existing single component pruning approaches further constrain the effectiveness when applied to generative Code LLMs. In response, we propose Flab-Pruner, an innovative unified structural pruning method that combines vocabulary, layer, and Feed-Forward Network (FFN) pruning. This approach effectively reduces model parameters while maintaining performance. Additionally, we introduce a customized code instruction data strategy for coding tasks to enhance the performance recovery efficiency of the pruned model. Through extensive evaluations on three state-of-the-art Code LLMs across multiple generative coding tasks, the results demonstrate that Flab-Pruner retains 97% of the original performance after pruning 22% of the parameters and achieves the same or even better performance after post-training. The pruned models exhibit significant improvements in storage, GPU usage, computational efficiency, and environmental impact, while maintaining well robustness. Our research provides a sustainable solution for green software engineering and promotes the efficient deployment of LLMs in real-world generative coding intelligence applications.
comment: UNDER REVIEW
♻ ☆ Post-hoc Study of Climate Microtargeting on Social Media Ads with LLMs: Thematic Insights and Fairness Evaluation
Climate change communication on social media increasingly employs microtargeting strategies to effectively reach and influence specific demographic groups. This study presents a post-hoc analysis of microtargeting practices within climate campaigns by leveraging large language models (LLMs) to examine Facebook advertisements. Our analysis focuses on two key aspects: demographic targeting and fairness. We evaluate the ability of LLMs to accurately predict the intended demographic targets, such as gender and age group, achieving an overall accuracy of 88.55%. Furthermore, we instruct the LLMs to generate explanations for their classifications, providing transparent reasoning behind each decision. These explanations reveal the specific thematic elements used to engage different demographic segments, highlighting distinct strategies tailored to various audiences. Our findings show that young adults are primarily targeted through messages emphasizing activism and environmental consciousness, while women are engaged through themes related to caregiving roles and social advocacy. In addition to evaluating the effectiveness of LLMs in detecting microtargeted messaging, we conduct a comprehensive fairness analysis to identify potential biases in model predictions. Our findings indicate that while LLMs perform well overall, certain biases exist, particularly in the classification of senior citizens and male audiences. By showcasing the efficacy of LLMs in dissecting and explaining targeted communication strategies and by highlighting fairness concerns, this study provides a valuable framework for future research aimed at enhancing transparency, accountability, and inclusivity in social media-driven climate campaigns.
♻ ☆ Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
comment: # fixed some typos, added public slm reasoning leaderboard
♻ ☆ Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
♻ ☆ Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
♻ ☆ HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
♻ ☆ Nonasymptotic CLT and Error Bounds for Two-Time-Scale Stochastic Approximation
We consider linear two-time-scale stochastic approximation algorithms driven by martingale noise. Recent applications in machine learning motivate the need to understand finite-time error rates, but conventional stochastic approximation analysis focus on either asymptotic convergence in distribution or finite-time bounds that are far from optimal. Prior work on asymptotic central limit theorems (CLTs) suggest that two-time-scale algorithms may be able to achieve $1/\sqrt{n}$ error in expectation, with a constant given by the expected norm of the limiting Gaussian vector. However, the best known finite-time rates are much slower. We derive the first non-asymptotic central limit theorem with respect to the Wasserstein-1 distance for two-time-scale stochastic approximation with Polyak-Ruppert averaging. As a corollary, we show that expected error achieved by Polyak-Ruppert averaging decays at rate $1/\sqrt{n}$, which significantly improves on the rates of convergence in prior works.
♻ ☆ Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies AAMAS 2025
Although deep reinforcement learning has been shown to be effective, the model's black-box nature presents barriers to direct policy interpretation. To address this problem, we propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning. The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training. At the same time, its architecture is designed so that trained models can be directly translated into interpretable policies expressed as standard (bivalent or probabilistic) logic programs. Moreover, additional layers can be included to extract abstract features from complex observations, acting as a form of predicate invention. The logic representations are highly interpretable, and we show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model, facilitating manual intervention and adaptation of learned policies. We evaluate our approach on a range of tasks requiring learning deterministic or stochastic behaviours from various forms of observations. Our empirical results show that our neural DNF-MT model performs at the level of competing black-box methods whilst providing interpretable policies.
comment: AAMAS 2025 (with Appendix)
♻ ☆ Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
comment: Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.
comment: 2 tables, 6 figures
♻ ☆ Trends in AI Supercomputers
Frontier AI development relies on powerful AI supercomputers, yet analysis of these systems is limited. We create a dataset of 500 AI supercomputers from 2019 to 2025 and analyze key trends in performance, power needs, hardware cost, ownership, and global distribution. We find that the computational performance of AI supercomputers has doubled every nine months, while hardware acquisition cost and power needs both doubled every year. The leading system in March 2025, xAI's Colossus, used 200,000 AI chips, had a hardware cost of \$7B, and required 300 MW of power, as much as 250,000 households. As AI supercomputers evolved from tools for science to industrial machines, companies rapidly expanded their share of total AI supercomputer performance, while the share of governments and academia diminished. Globally, the United States accounts for about 75% of total performance in our dataset, with China in second place at 15%. If the observed trends continue, the leading AI supercomputer in 2030 will achieve $2\times10^{22}$ 16-bit FLOP/s, use two million AI chips, have a hardware cost of \$200 billion, and require 9 GW of power. Our analysis provides visibility into the AI supercomputer landscape, allowing policymakers to assess key AI trends like resource needs, ownership, and national competitiveness.
♻ ☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO2 concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
♻ ☆ Lab-AI: Using Retrieval Augmentation to Enhance Language Models for Personalized Lab Test Interpretation in Clinical Medicine
Accurate interpretation of lab results is crucial in clinical medicine, yet most patient portals use universal normal ranges, ignoring conditional factors like age and gender. This study introduces Lab-AI, an interactive system that offers personalized normal ranges using retrieval-augmented generation (RAG) from credible health sources. Lab-AI has two modules: factor retrieval and normal range retrieval. We tested these on 122 lab tests: 40 with conditional factors and 82 without. For tests with factors, normal ranges depend on patient-specific information. Our results show GPT-4-turbo with RAG achieved a 0.948 F1 score for factor retrieval and 0.995 accuracy for normal range retrieval. GPT-4-turbo with RAG outperformed the best non-RAG system by 33.5% in factor retrieval and showed 132% and 100% improvements in question-level and lab-level performance, respectively, for normal range retrieval. These findings highlight Lab-AI's potential to enhance patient understanding of lab results.
♻ ☆ Deep Generative Model-Based Generation of Synthetic Individual-Specific Brain MRI Segmentations
To the best of our knowledge, all existing methods that can generate synthetic brain magnetic resonance imaging (MRI) scans for a specific individual require detailed structural or volumetric information about the individual's brain. However, such brain information is often scarce, expensive, and difficult to obtain. In this paper, we propose the first approach capable of generating synthetic brain MRI segmentations -- specifically, 3D white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) segmentations -- for individuals using their easily obtainable and often readily available demographic, interview, and cognitive test information. Our approach features a novel deep generative model, CSegSynth, which outperforms existing prominent generative models, including conditional variational autoencoder (C-VAE), conditional generative adversarial network (C-GAN), and conditional latent diffusion model (C-LDM). We demonstrate the high quality of our synthetic segmentations through extensive evaluations. Also, in assessing the effectiveness of the individual-specific generation, we achieve superior volume prediction, with mean absolute errors of only 36.44mL, 29.20mL, and 35.51mL between the ground-truth WM, GM, and CSF volumes of test individuals and those volumes predicted based on generated individual-specific segmentations, respectively.
♻ ☆ nGPT: Normalized Transformer with Representation Learning on the Hypersphere
We propose a novel neural network architecture, the normalized Transformer (nGPT) with representation learning on the hypersphere. In nGPT, all vectors forming the embeddings, MLP, attention matrices and hidden states are unit norm normalized. The input stream of tokens travels on the surface of a hypersphere, with each layer contributing a displacement towards the target output predictions. These displacements are defined by the MLP and attention blocks, whose vector components also reside on the same hypersphere. Experiments show that nGPT learns much faster, reducing the number of training steps required to achieve the same accuracy by a factor of 4 to 20, depending on the sequence length.
♻ ☆ Engineering Artificial Intelligence: Framework, Challenges, and Future Direction
Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and eight future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
comment: The paper submitted to the Journal Machine Learning: Engineering has been accepted
♻ ☆ PSCon: Product Search Through Conversations SIGIR 2025
Conversational Product Search ( CPS ) systems interact with users via natural language to offer personalized and context-aware product lists. However, most existing research on CPS is limited to simulated conversations, due to the lack of a real CPS dataset driven by human-like language. Moreover, existing conversational datasets for e-commerce are constructed for a particular market or a particular language and thus can not support cross-market and multi-lingual usage. In this paper, we propose a CPS data collection protocol and create a new CPS dataset, called PSCon, which assists product search through conversations with human-like language. The dataset is collected by a coached human-human data collection protocol and is available for dual markets and two languages. By formulating the task of CPS, the dataset allows for comprehensive and in-depth research on six subtasks: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Moreover, we present a concise analysis of the dataset and propose a benchmark model on the proposed CPS dataset. Our proposed dataset and model will be helpful for facilitating future research on CPS.
comment: 11 pages. Accepted by SIGIR 2025
♻ ☆ On Minimizing Adversarial Counterfactual Error in Adversarial RL ICLR 2025
Deep Reinforcement Learning (DRL) policies are highly susceptible to adversarial noise in observations, which poses significant risks in safety-critical scenarios. The challenge inherent to adversarial perturbations is that by altering the information observed by the agent, the state becomes only partially observable. Existing approaches address this by either enforcing consistent actions across nearby states or maximizing the worst-case value within adversarially perturbed observations. However, the former suffers from performance degradation when attacks succeed, while the latter tends to be overly conservative, leading to suboptimal performance in benign settings. We hypothesize that these limitations stem from their failing to account for partial observability directly. To this end, we introduce a novel objective called Adversarial Counterfactual Error (ACoE), defined on the beliefs about the true state and balancing value optimization with robustness. To make ACoE scalable in model-free settings, we propose the theoretically-grounded surrogate objective Cumulative-ACoE (C-ACoE). Our empirical evaluations on standard benchmarks (MuJoCo, Atari, and Highway) demonstrate that our method significantly outperforms current state-of-the-art approaches for addressing adversarial RL challenges, offering a promising direction for improving robustness in DRL under adversarial conditions. Our code is available at https://github.com/romanbelaire/acoe-robust-rl.
comment: Presented at ICLR 2025
♻ ☆ KeyDiff: Key Similarity-Based KV Cache Eviction for Long-Context LLM Inference in Resource-Constrained Environments
In this work, we demonstrate that distinctive keys during LLM inference tend to have high attention scores. We explore this phenomenon and propose KeyDiff, a training-free KV cache eviction method based on key similarity. This method facilitates the deployment of LLM-based application requiring long input prompts in resource-constrained environments with limited memory and compute budgets. Unlike other KV cache eviction methods, KeyDiff can process arbitrarily long prompts within strict resource constraints and efficiently generate responses. We demonstrate that KeyDiff computes the optimal solution to a KV cache selection problem that maximizes key diversity, providing a theoretical understanding of KeyDiff. Notably,KeyDiff does not rely on attention scores, allowing the use of optimized attention mechanisms like FlashAttention. We demonstrate the effectiveness of KeyDiff across diverse tasks and models, illustrating a performance gap of less than 0.04\% with 8K cache budget ($\sim$ 23\% KV cache reduction) from the non-evicting baseline on the LongBench benchmark for Llama 3.1-8B and Llama 3.2-3B.
comment: 8 pages, 14 figures
♻ ☆ Know Unreported Roadway Incidents in Real-time: Early Traffic Anomaly Detection
This research aims to know traffic anomalies as early as possible. A traffic anomaly refers to a generic incident on the road that influences traffic flow and calls for urgent traffic management measures. `Knowing'' the occurrence of a traffic anomaly is twofold: the ability to detect this anomaly before it is reported anywhere, or it may be such that an anomaly can be predicted before it actually occurs on the road (e.g., non-recurrent traffic breakdown). In either way, the objective is to inform traffic operators of unreported incidents in real time and as early as possible. The key is to stay ahead of the curve. Time is of the essence. Conventional automatic incident detection (AID) methods often struggle with early detection due to their limited consideration of spatial effects and early-stage characteristics. Therefore, we propose a deep learning framework utilizing prior domain knowledge and model-designing strategies. This allows the model to detect a broader range of anomalies, not only incidents that significantly influence traffic flow but also early characteristics of incidents along with historically unreported anomalies. We specially design the model to target the early-stage detection/prediction of an incident. Additionally, unlike most conventional AID studies, our method is highly scalable and generalizable, as it is fully automated with no manual selection of historical reports required, relies solely on widely available low-cost data, and requires no additional detectors. The experimental results across numerous road segments on different maps demonstrate that our model leads to more effective and early anomaly detection.
♻ ☆ CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization
Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. We find that while some challenges, like language, have seen considerable progress, mainly due to training methods, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities. We investigate how these approaches are typically assessed, covering the datasets for the subdomains of dialogue (e.g., meeting, medical), the established automatic metrics and human evaluation approaches for assessing scores and annotator agreement. We observe that only a few datasets span across all subdomains. The ROUGE metric is the most used, while human evaluation is frequently reported without sufficient detail on inner-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that despite a potential shift in relevance and difficulty, our described challenge taxonomy remains relevant.
comment: Published in the Journal of Artificial Intelligence Research (JAIR) (https://www.jair.org/index.php/jair/article/view/16674)
♻ ☆ Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations
Recent advancements in Large Language Models (LLMs) have generated growing interest in their structured reasoning capabilities, particularly in tasks involving abstraction and pattern recognition. The Abstraction and Reasoning Corpus (ARC) benchmark plays a crucial role in evaluating these capabilities by testing how well AI models generalize to novel problems. While GPT-4o demonstrates strong performance by solving all ARC tasks under zero-noise conditions, other models like DeepSeek R1 and LLaMA 3.2 fail to solve any, suggesting limitations in their ability to reason beyond simple pattern matching. To explore this gap, we systematically evaluate these models across different noise levels and temperature settings. Our results reveal that the introduction of noise consistently impairs model performance, regardless of architecture. This decline highlights a shared vulnerability: current LLMs, despite showing signs of abstract reasoning, remain highly sensitive to input perturbations. Such fragility raises concerns about their real-world applicability, where noise and uncertainty are common. By comparing how different model architectures respond to these challenges, we offer insights into the structural weaknesses of modern LLMs in reasoning tasks. This work underscores the need for developing more robust and adaptable AI systems capable of handling the ambiguity and variability inherent in real-world scenarios. Our findings aim to guide future research toward enhancing model generalization, robustness, and alignment with human-like cognitive flexibility.
comment: 60 pages, 25 figures
♻ ☆ Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
The traditional two-stage approach to causal inference first identifies a single causal model (or equivalence class of models), which is then used to answer causal queries. However, this neglects any epistemic model uncertainty. In contrast, Bayesian causal inference does incorporate epistemic uncertainty into query estimates via Bayesian marginalisation (posterior averaging) over all causal models. While principled, this marginalisation over entire causal models, i.e., both causal structures (graphs) and mechanisms, poses a tremendous computational challenge. In this work, we address this challenge by decomposing structure marginalisation into the marginalisation over (i) causal orders and (ii) directed acyclic graphs (DAGs) given an order. We can marginalise the latter in closed form by limiting the number of parents per variable and utilising Gaussian processes to model mechanisms. To marginalise over orders, we use a sampling-based approximation, for which we devise a novel auto-regressive distribution over causal orders (ARCO). Our method outperforms state-of-the-art in structure learning on simulated non-linear additive noise benchmarks, and yields competitive results on real-world data. Furthermore, we can accurately infer interventional distributions and average causal effects.
comment: 9 pages + references + appendices (37 pages total)
Computation and Language 92
☆ IberBench: LLM Evaluation on Iberian Languages
Large Language Models (LLMs) remain difficult to evaluate comprehensively, particularly for languages other than English, where high-quality data is often limited. Existing benchmarks and leaderboards are predominantly English-centric, with only a few addressing other languages. These benchmarks fall short in several key areas: they overlook the diversity of language varieties, prioritize fundamental Natural Language Processing (NLP) capabilities over tasks of industrial relevance, and are static. With these aspects in mind, we present IberBench, a comprehensive and extensible benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks, in languages spoken across the Iberian Peninsula and Ibero-America. IberBench integrates 101 datasets from evaluation campaigns and recent benchmarks, covering 22 task categories such as sentiment and emotion analysis, toxicity detection, and summarization. The benchmark addresses key limitations in current evaluation practices, such as the lack of linguistic diversity and static evaluation setups by enabling continual updates and community-driven model and dataset submissions moderated by a committee of experts. We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations. Our findings indicate that (i) LLMs perform worse on industry-relevant tasks than in fundamental ones, (ii) performance is on average lower for Galician and Basque, (iii) some tasks show results close to random, and (iv) in other tasks LLMs perform above random but below shared task systems. IberBench offers open-source implementations for the entire evaluation pipeline, including dataset normalization and hosting, incremental evaluation of LLMs, and a publicly accessible leaderboard.
☆ OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents
Optimization plays a vital role in scientific research and practical applications, but formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce \textbf{OptimAI}, a framework for solving \underline{Optim}ization problems described in natural language by leveraging LLM-powered \underline{AI} agents, achieving superior performance over current state-of-the-art methods. Our framework is built upon four key roles: (1) a \emph{formulator} that translates natural language problem descriptions into precise mathematical formulations; (2) a \emph{planner} that constructs a high-level solution strategy prior to execution; and (3) a \emph{coder} and a \emph{code critic} capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, allowing us to conveniently explore the synergistic effect of combining diverse models within a unified system. Our approach attains 88.1\% accuracy on the NLP4LP dataset and 71.2\% on the Optibench (non-linear w/o table) subset, reducing error rates by 58\% and 50\% respectively over prior best results.
☆ Tracing Thought: Using Chain-of-Thought Reasoning to Identify the LLM Behind AI-Generated Text AAAI 2025
In recent years, the detection of AI-generated text has become a critical area of research due to concerns about academic integrity, misinformation, and ethical AI deployment. This paper presents COT Fine-tuned, a novel framework for detecting AI-generated text and identifying the specific language model. responsible for generating the text. We propose a dual-task approach, where Task A involves classifying text as AI-generated or human-written, and Task B identifies the specific LLM behind the text. The key innovation of our method lies in the use of Chain-of-Thought reasoning, which enables the model to generate explanations for its predictions, enhancing transparency and interpretability. Our experiments demonstrate that COT Fine-tuned achieves high accuracy in both tasks, with strong performance in LLM identification and human-AI classification. We also show that the CoT reasoning process contributes significantly to the models effectiveness and interpretability.
comment: De-Factify 4: 4th Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI 2025. Pennsylvania
☆ AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
☆ Do Large Language Models know who did what to whom?
Large Language Models (LLMs) are commonly criticized for not understanding language. However, many critiques focus on cognitive abilities that, in humans, are distinct from language processing. Here, we instead study a kind of understanding tightly linked to language: inferring who did what to whom (thematic roles) in a sentence. Does the central training objective of LLMs-word prediction-result in sentence representations that capture thematic roles? In two experiments, we characterized sentence representations in four LLMs. In contrast to human similarity judgments, in LLMs the overall representational similarity of sentence pairs reflected syntactic similarity but not whether their agent and patient assignments were identical vs. reversed. Furthermore, we found little evidence that thematic role information was available in any subset of hidden units. However, some attention heads robustly captured thematic roles, independently of syntax. Therefore, LLMs can extract thematic roles but, relative to humans, this information influences their representations more weakly.
☆ Planning with Diffusion Models for Target-Oriented Dialogue Systems
Target-Oriented Dialogue (TOD) remains a significant challenge in the LLM era, where strategic dialogue planning is crucial for directing conversations toward specific targets. However, existing dialogue planning methods generate dialogue plans in a step-by-step sequential manner, and may suffer from compounding errors and myopic actions. To address these limitations, we introduce a novel dialogue planning framework, DiffTOD, which leverages diffusion models to enable non-sequential dialogue planning. DiffTOD formulates dialogue planning as a trajectory generation problem with conditional guidance, and leverages a diffusion language model to estimate the likelihood of the dialogue trajectory. To optimize the dialogue action strategies, DiffTOD introduces three tailored guidance mechanisms for different target types, offering flexible guidance towards diverse TOD targets at test time. Extensive experiments across three diverse TOD settings show that DiffTOD can effectively perform non-myopic lookahead exploration and optimize action strategies over a long horizon through non-sequential dialogue planning, and demonstrates strong flexibility across complex and diverse dialogue scenarios. Our code and data are accessible through https://anonymous.4open.science/r/DiffTOD.
☆ Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification
Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
☆ Monte Carlo Planning with Large Language Model for Text-Based Game Agents
Text-based games provide valuable environments for language-based autonomous agents. However, planning-then-learning paradigms, such as those combining Monte Carlo Tree Search (MCTS) and reinforcement learning (RL), are notably time-consuming due to extensive iterations. Additionally, these algorithms perform uncertainty-driven exploration but lack language understanding and reasoning abilities. In this paper, we introduce the Monte Carlo planning with Dynamic Memory-guided Large language model (MC-DML) algorithm. MC-DML leverages the language understanding and reasoning capabilities of Large Language Models (LLMs) alongside the exploratory advantages of tree search algorithms. Specifically, we enhance LLMs with in-trial and cross-trial memory mechanisms, enabling them to learn from past experiences and dynamically adjust action evaluations during planning. We conduct experiments on a series of text-based games from the Jericho benchmark. Our results demonstrate that the MC-DML algorithm significantly enhances performance across various games at the initial planning phase, outperforming strong contemporary methods that require multiple iterations. This demonstrates the effectiveness of our algorithm, paving the way for more efficient language-grounded planning in complex environments.
☆ GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning
Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques.
☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
☆ LLM-assisted Graph-RAG Information Extraction from IFC Data
IFC data has become the general building information standard for collaborative work in the construction industry. However, IFC data can be very complicated because it allows for multiple ways to represent the same product information. In this research, we utilise the capabilities of LLMs to parse the IFC data with Graph Retrieval-Augmented Generation (Graph-RAG) technique to retrieve building object properties and their relations. We will show that, despite limitations due to the complex hierarchy of the IFC data, the Graph-RAG parsing enhances generative LLMs like GPT-4o with graph-based knowledge, enabling natural language query-response retrieval without the need for a complex pipeline.
comment: 2025 European Conference on Computing in Construction
☆ Random Long-Context Access for Mamba via Hardware-aligned Hierarchical Sparse Attention
A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose \textbf{H}ierarchical \textbf{S}parse \textbf{A}ttention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selecting the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
comment: preprint
☆ Credible plan-driven RAG method for Multi-hop Question Answering
Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error propagation.PAR RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores.
comment: 18 pages, 3 figures
☆ MOOSComp: Improving Lightweight Long-Context Compressor via Mitigating Over-Smoothing and Incorporating Outlier Scores
Recent advances in large language models have significantly improved their ability to process long-context input, but practical applications are challenged by increased inference time and resource consumption, particularly in resource-constrained environments. To address these challenges, we propose MOOSComp, a token-classification-based long-context compression method that enhances the performance of a BERT-based compressor by mitigating the over-smoothing problem and incorporating outlier scores. In the training phase, we add an inter-class cosine similarity loss term to penalize excessively similar token representations, thereby improving the token classification accuracy. During the compression phase, we introduce outlier scores to preserve rare but critical tokens that are prone to be discarded in task-agnostic compression. These scores are integrated with the classifier's output, making the compressor more generalizable to various tasks. Superior performance is achieved at various compression ratios on long-context understanding and reasoning benchmarks. Moreover, our method obtains a speedup of 3.3x at a 4x compression ratio on a resource-constrained mobile device.
☆ Evaluation Framework for AI Systems in "the Wild"
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
comment: 35 pages
☆ How Effective are Generative Large Language Models in Performing Requirements Classification?
In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance.
☆ HEMA : A Hippocampus-Inspired Extended Memory Architecture for Long-Context AI Conversations
Large language models (LLMs) struggle with maintaining coherence in extended conversations spanning hundreds of turns, despite performing well within their context windows. This paper introduces HEMA (Hippocampus-Inspired Extended Memory Architecture), a dual-memory system inspired by human cognitive processes. HEMA combines Compact Memory - a continuously updated one-sentence summary preserving global narrative coherence, and Vector Memory - an episodic store of chunk embeddings queried via cosine similarity. When integrated with a 6B-parameter transformer, HEMA maintains coherent dialogues beyond 300 turns while keeping prompt length under 3,500 tokens. Experimental results show substantial improvements: factual recall accuracy increases from 41% to 87%, and human-rated coherence improves from 2.7 to 4.3 on a 5-point scale. With 10K indexed chunks, Vector Memory achieves P@5 >= 0.80 and R@50 >= 0.74, doubling the area under the precision-recall curve compared to summarization-only approaches. Ablation studies reveal two key insights: semantic forgetting through age-weighted pruning reduces retrieval latency by 34% with minimal recall loss, and a two-level summary hierarchy prevents cascade errors in ultra-long conversations exceeding 1,000 turns. HEMA demonstrates that combining verbatim recall with semantic continuity provides a practical solution for privacy-aware conversational AI capable of month-long dialogues without model retraining.
☆ IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
comment: 6 pages main-text, 2 pages appendix
☆ A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice.
☆ ParetoHqD: Fast Offline Multiobjective Alignment of Large Language Models using Pareto High-quality Data
Aligning large language models with multiple human expectations and values is crucial for ensuring that they adequately serve a variety of user needs. To this end, offline multiobjective alignment algorithms such as the Rewards-in-Context algorithm have shown strong performance and efficiency. However, inappropriate preference representations and training with imbalanced reward scores limit the performance of such algorithms. In this work, we introduce ParetoHqD that addresses the above issues by representing human preferences as preference directions in the objective space and regarding data near the Pareto front as ''high-quality'' data. For each preference, ParetoHqD follows a two-stage supervised fine-tuning process, where each stage uses an individual Pareto high-quality training set that best matches its preference direction. The experimental results have demonstrated the superiority of ParetoHqD over five baselines on two multiobjective alignment tasks.
comment: 19 pages, 6 figure, Multiobjective Alignment of LLMs
☆ TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval
We address the challenge of retrieving previously fact-checked claims in monolingual and crosslingual settings - a critical task given the global prevalence of disinformation. Our approach follows a two-stage strategy: a reliable baseline retrieval system using a fine-tuned embedding model and an LLM-based reranker. Our key contribution is demonstrating how LLM-based translation can overcome the hurdles of multilingual information retrieval. Additionally, we focus on ensuring that the bulk of the pipeline can be replicated on a consumer GPU. Our final integrated system achieved a success@10 score of 0.938 and 0.81025 on the monolingual and crosslingual test sets, respectively.
☆ Debunking with Dialogue? Exploring AI-Generated Counterspeech to Challenge Conspiracy Theories
Counterspeech is a key strategy against harmful online content, but scaling expert-driven efforts is challenging. Large Language Models (LLMs) present a potential solution, though their use in countering conspiracy theories is under-researched. Unlike for hate speech, no datasets exist that pair conspiracy theory comments with expert-crafted counterspeech. We address this gap by evaluating the ability of GPT-4o, Llama 3, and Mistral to effectively apply counterspeech strategies derived from psychological research provided through structured prompts. Our results show that the models often generate generic, repetitive, or superficial results. Additionally, they over-acknowledge fear and frequently hallucinate facts, sources, or figures, making their prompt-based use in practical applications problematic.
comment: 15 pages
☆ Comparing Large Language Models and Traditional Machine Translation Tools for Translating Medical Consultation Summaries: A Pilot Study
This study evaluates how well large language models (LLMs) and traditional machine translation (MT) tools translate medical consultation summaries from English into Arabic, Chinese, and Vietnamese. It assesses both patient, friendly and clinician, focused texts using standard automated metrics. Results showed that traditional MT tools generally performed better, especially for complex texts, while LLMs showed promise, particularly in Vietnamese and Chinese, when translating simpler summaries. Arabic translations improved with complexity due to the language's morphology. Overall, while LLMs offer contextual flexibility, they remain inconsistent, and current evaluation metrics fail to capture clinical relevance. The study highlights the need for domain-specific training, improved evaluation methods, and human oversight in medical translation.
comment: 8 pages, 2 tables and 1 Figure
☆ PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional performance limit the widespread adoption of LLMs, highlighting the need for prompt compression. Existing prompt compression methods primarily rely on heuristic truncation or abstractive summarization techniques, which fundamentally overlook the intrinsic mechanisms of LLMs and lack a systematic evaluation of token importance for generation. In this work, we introduce Prompt Importance Sampling (PIS), a novel compression framework that dynamically compresses prompts by sampling important tokens based on the analysis of attention scores of hidden states. PIS employs a dual-level compression mechanism: 1) at the token level, we quantify saliency using LLM-native attention scores and implement adaptive compression through a lightweight 9-layer reinforcement learning (RL) network; 2) at the semantic level, we propose a Russian roulette sampling strategy for sentence-level importance sampling. Comprehensive evaluations across multiple domain benchmarks demonstrate that our method achieves state-of-the-art compression performance. Notably, our framework serendipitously enhances reasoning efficiency through optimized context structuring. This work advances prompt engineering by offering both theoretical grounding and practical efficiency in context management for LLMs.
Transformers for Complex Query Answering over Knowledge Hypergraphs
Complex Query Answering (CQA) has been extensively studied in recent years. In order to model data that is closer to real-world distribution, knowledge graphs with different modalities have been introduced. Triple KGs, as the classic KGs composed of entities and relations of arity 2, have limited representation of real-world facts. Real-world data is more sophisticated. While hyper-relational graphs have been introduced, there are limitations in representing relationships of varying arity that contain entities with equal contributions. To address this gap, we sampled new CQA datasets: JF17k-HCQA and M-FB15k-HCQA. Each dataset contains various query types that include logical operations such as projection, negation, conjunction, and disjunction. In order to answer knowledge hypergraph (KHG) existential first-order queries, we propose a two-stage transformer model, the Logical Knowledge Hypergraph Transformer (LKHGT), which consists of a Projection Encoder for atomic projection and a Logical Encoder for complex logical operations. Both encoders are equipped with Type Aware Bias (TAB) for capturing token interactions. Experimental results on CQA datasets show that LKHGT is a state-of-the-art CQA method over KHG and is able to generalize to out-of-distribution query types.
☆ QuaDMix: Quality-Diversity Balanced Data Selection for Efficient LLM Pretraining
Quality and diversity are two critical metrics for the training data of large language models (LLMs), positively impacting performance. Existing studies often optimize these metrics separately, typically by first applying quality filtering and then adjusting data proportions. However, these approaches overlook the inherent trade-off between quality and diversity, necessitating their joint consideration. Given a fixed training quota, it is essential to evaluate both the quality of each data point and its complementary effect on the overall dataset. In this paper, we introduce a unified data selection framework called QuaDMix, which automatically optimizes the data distribution for LLM pretraining while balancing both quality and diversity. Specifically, we first propose multiple criteria to measure data quality and employ domain classification to distinguish data points, thereby measuring overall diversity. QuaDMix then employs a unified parameterized data sampling function that determines the sampling probability of each data point based on these quality and diversity related labels. To accelerate the search for the optimal parameters involved in the QuaDMix framework, we conduct simulated experiments on smaller models and use LightGBM for parameters searching, inspired by the RegMix method. Our experiments across diverse models and datasets demonstrate that QuaDMix achieves an average performance improvement of 7.2% across multiple benchmarks. These results outperform the independent strategies for quality and diversity, highlighting the necessity and ability to balance data quality and diversity.
☆ T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning
The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.
comment: Introduces T-VEC, a telecom-specific text embedding model. Fine-tuned gte-Qwen2-1.5B-instruct on curated telecom data points. Includes the first open-source telecom tokenizer. Model available at https://huggingface.co/NetoAISolutions/T-VEC
☆ EMRModel: A Large Language Model for Extracting Medical Consultation Dialogues into Structured Medical Records
Medical consultation dialogues contain critical clinical information, yet their unstructured nature hinders effective utilization in diagnosis and treatment. Traditional methods, relying on rule-based or shallow machine learning techniques, struggle to capture deep and implicit semantics. Recently, large pre-trained language models and Low-Rank Adaptation (LoRA), a lightweight fine-tuning method, have shown promise for structured information extraction. We propose EMRModel, a novel approach that integrates LoRA-based fine-tuning with code-style prompt design, aiming to efficiently convert medical consultation dialogues into structured electronic medical records (EMRs). Additionally, we construct a high-quality, realistically grounded dataset of medical consultation dialogues with detailed annotations. Furthermore, we introduce a fine-grained evaluation benchmark for medical consultation information extraction and provide a systematic evaluation methodology, advancing the optimization of medical natural language processing (NLP) models. Experimental results show EMRModel achieves an F1 score of 88.1%, improving by49.5% over standard pre-trained models. Compared to traditional LoRA fine-tuning methods, our model shows superior performance, highlighting its effectiveness in structured medical record extraction tasks.
☆ MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
☆ Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
☆ Out-of-the-Box Conditional Text Embeddings from Large Language Models
Conditional text embedding is a proposed representation that captures the shift in perspective on texts when conditioned on a specific aspect. Previous methods have relied on extensive training data for fine-tuning models, leading to challenges in terms of labor and resource costs. We propose PonTE, a novel unsupervised conditional text embedding method that leverages a causal large language model and a conditional prompt. Through experiments on conditional semantic text similarity and text clustering, we demonstrate that PonTE can generate useful conditional text embeddings and achieve performance comparable to supervised methods without fine-tuning. We also show the interpretability of text embeddings with PonTE by analyzing word generation following prompts and embedding visualization.
comment: work in progress
☆ Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
The XLLM@ACL2025 Shared Task-III formulates a low-resource structural reasoning task that challenges LLMs to generate interpretable, step-by-step rationales with minimal labeled data. We present Less is More, the third-place winning approach in the XLLM@ACL2025 Shared Task-III, which focuses on structured reasoning from only 24 labeled examples. Our approach leverages a multi-agent framework with reverse-prompt induction, retrieval-augmented reasoning synthesis via GPT-4o, and dual-stage reward-guided filtering to distill high-quality supervision across three subtasks: question parsing, CoT parsing, and step-level verification. All modules are fine-tuned from Meta-Llama-3-8B-Instruct under a unified LoRA+ setup. By combining structure validation with reward filtering across few-shot and zero-shot prompts, our pipeline consistently improves structure reasoning quality. These results underscore the value of controllable data distillation in enhancing structured inference under low-resource constraints. Our code is available at https://github.com/Jiahao-Yuan/Less-is-More.
☆ ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
☆ SplitReason: Learning To Offload Reasoning
Reasoning in large language models (LLMs) tends to produce substantially longer token generation sequences than simpler language modeling tasks. This extended generation length reflects the multi-step, compositional nature of reasoning and is often correlated with higher solution accuracy. From an efficiency perspective, longer token generation exacerbates the inherently sequential and memory-bound decoding phase of LLMs. However, not all parts of this expensive reasoning process are equally difficult to generate. We leverage this observation by offloading only the most challenging parts of the reasoning process to a larger, more capable model, while performing most of the generation with a smaller, more efficient model; furthermore, we teach the smaller model to identify these difficult segments and independently trigger offloading when needed. To enable this behavior, we annotate difficult segments across 18k reasoning traces from the OpenR1-Math-220k chain-of-thought (CoT) dataset. We then apply supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT) to a 1.5B-parameter reasoning model, training it to learn to offload the most challenging parts of its own reasoning process to a larger model. This approach improves AIME24 reasoning accuracy by 24% and 28.3% while offloading 1.35% and 5% of the generated tokens respectively. We open-source our SplitReason model, data, code and logs.
☆ Text-to-TrajVis: Enabling Trajectory Data Visualizations from Natural Language Questions
This paper introduces the Text-to-TrajVis task, which aims to transform natural language questions into trajectory data visualizations, facilitating the development of natural language interfaces for trajectory visualization systems. As this is a novel task, there is currently no relevant dataset available in the community. To address this gap, we first devised a new visualization language called Trajectory Visualization Language (TVL) to facilitate querying trajectory data and generating visualizations. Building on this foundation, we further proposed a dataset construction method that integrates Large Language Models (LLMs) with human efforts to create high-quality data. Specifically, we first generate TVLs using a comprehensive and systematic process, and then label each TVL with corresponding natural language questions using LLMs. This process results in the creation of the first large-scale Text-to-TrajVis dataset, named TrajVL, which contains 18,140 (question, TVL) pairs. Based on this dataset, we systematically evaluated the performance of multiple LLMs (GPT, Qwen, Llama, etc.) on this task. The experimental results demonstrate that this task is both feasible and highly challenging and merits further exploration within the research community.
Transformer-Based Extraction of Statutory Definitions from the U.S. Code IEEE
Automatic extraction of definitions from legal texts is critical for enhancing the comprehension and clarity of complex legal corpora such as the United States Code (U.S.C.). We present an advanced NLP system leveraging transformer-based architectures to automatically extract defined terms, their definitions, and their scope from the U.S.C. We address the challenges of automatically identifying legal definitions, extracting defined terms, and determining their scope within this complex corpus of over 200,000 pages of federal statutory law. Building upon previous feature-based machine learning methods, our updated model employs domain-specific transformers (Legal-BERT) fine-tuned specifically for statutory texts, significantly improving extraction accuracy. Our work implements a multi-stage pipeline that combines document structure analysis with state-of-the-art language models to process legal text from the XML version of the U.S. Code. Each paragraph is first classified using a fine-tuned legal domain BERT model to determine if it contains a definition. Our system then aggregates related paragraphs into coherent definitional units and applies a combination of attention mechanisms and rule-based patterns to extract defined terms and their jurisdictional scope. The definition extraction system is evaluated on multiple titles of the U.S. Code containing thousands of definitions, demonstrating significant improvements over previous approaches. Our best model achieves 96.8% precision and 98.9% recall (98.2% F1-score), substantially outperforming traditional machine learning classifiers. This work contributes to improving accessibility and understanding of legal information while establishing a foundation for downstream legal reasoning tasks.
comment: 7 pages, to be published in IEEE AIIoT 2025
☆ MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation NAACL2025
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.
comment: Accepted to NAACL2025 Findings
☆ Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control
Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector
☆ The Rise of Small Language Models in Healthcare: A Comprehensive Survey
Despite substantial progress in healthcare applications driven by large language models (LLMs), growing concerns around data privacy, and limited resources; the small language models (SLMs) offer a scalable and clinically viable solution for efficient performance in resource-constrained environments for next-generation healthcare informatics. Our comprehensive survey presents a taxonomic framework to identify and categorize them for healthcare professionals and informaticians. The timeline of healthcare SLM contributions establishes a foundational framework for analyzing models across three dimensions: NLP tasks, stakeholder roles, and the continuum of care. We present a taxonomic framework to identify the architectural foundations for building models from scratch; adapting SLMs to clinical precision through prompting, instruction fine-tuning, and reasoning; and accessibility and sustainability through compression techniques. Our primary objective is to offer a comprehensive survey for healthcare professionals, introducing recent innovations in model optimization and equipping them with curated resources to support future research and development in the field. Aiming to showcase the groundbreaking advancements in SLMs for healthcare, we present a comprehensive compilation of experimental results across widely studied NLP tasks in healthcare to highlight the transformative potential of SLMs in healthcare. The updated repository is available at Github
comment: 35 pages, 7 tables, 5 figures
☆ Co-CoT: A Prompt-Based Framework for Collaborative Chain-of-Thought Reasoning
Due to the proliferation of short-form content and the rapid adoption of AI, opportunities for deep, reflective thinking have significantly diminished, undermining users' critical thinking and reducing engagement with the reasoning behind AI-generated outputs. To address this issue, we propose an Interactive Chain-of-Thought (CoT) Framework that enhances human-centered explainability and responsible AI usage by making the model's inference process transparent, modular, and user-editable. The framework decomposes reasoning into clearly defined blocks that users can inspect, modify, and re-execute, encouraging active cognitive engagement rather than passive consumption. It further integrates a lightweight edit-adaptation mechanism inspired by preference learning, allowing the system to align with diverse cognitive styles and user intentions. Ethical transparency is ensured through explicit metadata disclosure, built-in bias checkpoint functionality, and privacy-preserving safeguards. This work outlines the design principles and architecture necessary to promote critical engagement, responsible interaction, and inclusive adaptation in AI systems aimed at addressing complex societal challenges.
comment: 5 page
☆ How Individual Traits and Language Styles Shape Preferences In Open-ended User-LLM Interaction: A Preliminary Study
What makes an interaction with the LLM more preferable for the user? While it is intuitive to assume that information accuracy in the LLM's responses would be one of the influential variables, recent studies have found that inaccurate LLM's responses could still be preferable when they are perceived to be more authoritative, certain, well-articulated, or simply verbose. These variables interestingly fall under the broader category of language style, implying that the style in the LLM's responses might meaningfully influence users' preferences. This hypothesized dynamic could have double-edged consequences: enhancing the overall user experience while simultaneously increasing their susceptibility to risks such as LLM's misinformation or hallucinations. In this short paper, we present our preliminary studies in exploring this subject. Through a series of exploratory and experimental user studies, we found that LLM's language style does indeed influence user's preferences, but how and which language styles influence the preference varied across different user populations, and more interestingly, moderated by the user's very own individual traits. As a preliminary work, the findings in our studies should be interpreted with caution, particularly given the limitations in our samples, which still need wider demographic diversity and larger sample sizes. Our future directions will first aim to address these limitations, which would enable a more comprehensive joint effect analysis between the language style, individual traits, and preferences, and further investigate the potential causal relationship between and beyond these variables.
comment: Accepted at GenAICHI 2025 @ ACM CHI 2025
☆ Agree to Disagree? A Meta-Evaluation of LLM Misgendering
Numerous methods have been proposed to measure LLM misgendering, including probability-based evaluations (e.g., automatically with templatic sentences) and generation-based evaluations (e.g., with automatic heuristics or human validation). However, it has gone unexamined whether these evaluation methods have convergent validity, that is, whether their results align. Therefore, we conduct a systematic meta-evaluation of these methods across three existing datasets for LLM misgendering. We propose a method to transform each dataset to enable parallel probability- and generation-based evaluation. Then, by automatically evaluating a suite of 6 models from 3 families, we find that these methods can disagree with each other at the instance, dataset, and model levels, conflicting on 20.2% of evaluation instances. Finally, with a human evaluation of 2400 LLM generations, we show that misgendering behaviour is complex and goes far beyond pronouns, which automatic evaluations are not currently designed to capture, suggesting essential disagreement with human evaluations. Based on our findings, we provide recommendations for future evaluations of LLM misgendering. Our results are also more widely relevant, as they call into question broader methodological conventions in LLM evaluation, which often assume that different evaluation methods agree.
comment: Work in progress
☆ Do Words Reflect Beliefs? Evaluating Belief Depth in Large Language Models
Large Language Models (LLMs) are increasingly shaping political discourse, yet their responses often display inconsistency when subjected to scrutiny. While prior research has primarily categorized LLM outputs as left- or right-leaning to assess their political stances, a critical question remains: Do these responses reflect genuine internal beliefs or merely surface-level alignment with training data? To address this, we propose a novel framework for evaluating belief depth by analyzing (1) argumentative consistency and (2) uncertainty quantification. We evaluate 12 LLMs on 19 economic policies from the Political Compass Test, challenging their belief stability with both supportive and opposing arguments. Our analysis reveals that LLMs exhibit topic-specific belief stability rather than a uniform ideological stance. Notably, up to 95% of left-leaning models' responses and 89% of right-leaning models' responses remain consistent under the challenge, enabling semantic entropy to achieve high accuracy (AUROC=0.78), effectively distinguishing between surface-level alignment from genuine belief. These findings call into question the assumption that LLMs maintain stable, human-like political ideologies, emphasizing the importance of conducting topic-specific reliability assessments for real-world applications.
comment: 20 pages, 9 figures
☆ SCALAR: A Part-of-speech Tagger for Identifiers
The paper presents the Source Code Analysis and Lexical Annotation Runtime (SCALAR), a tool specialized for mapping (annotating) source code identifier names to their corresponding part-of-speech tag sequence (grammar pattern). SCALAR's internal model is trained using scikit-learn's GradientBoostingClassifier in conjunction with a manually-curated oracle of identifier names and their grammar patterns. This specializes the tagger to recognize the unique structure of the natural language used by developers to create all types of identifiers (e.g., function names, variable names etc.). SCALAR's output is compared with a previous version of the tagger, as well as a modern off-the-shelf part-of-speech tagger to show how it improves upon other taggers' output for annotating identifiers. The code is available on Github
☆ Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation
The number of pretrained Large Language Models (LLMs) is increasing steadily, though the majority are designed predominantly for the English language. While state-of-the-art LLMs can handle other languages, due to language contamination or some degree of multilingual pretraining data, they are not optimized for non-English languages, leading to inefficient encoding (high token "fertility") and slower inference speed. In this work, we thoroughly compare a variety of vocabulary adaptation techniques for optimizing English LLMs for the Italian language, and put forward Semantic Alignment Vocabulary Adaptation (SAVA), a novel method that leverages neural mapping for vocabulary substitution. SAVA achieves competitive performance across multiple downstream tasks, enhancing grounded alignment strategies. We adapt two LLMs: Mistral-7b-v0.1, reducing token fertility by 25\%, and Llama-3.1-8B, optimizing the vocabulary and reducing the number of parameters by 1 billion. We show that, following the adaptation of the vocabulary, these models can recover their performance with a relatively limited stage of continual training on the target language. Finally, we test the capabilities of the adapted models on various multi-choice and generative tasks.
☆ (Im)possibility of Automated Hallucination Detection in Large Language Models
Is automated hallucination detection possible? In this work, we introduce a theoretical framework to analyze the feasibility of automatically detecting hallucinations produced by large language models (LLMs). Inspired by the classical Gold-Angluin framework for language identification and its recent adaptation to language generation by Kleinberg and Mullainathan, we investigate whether an algorithm, trained on examples drawn from an unknown target language $K$ (selected from a countable collection) and given access to an LLM, can reliably determine whether the LLM's outputs are correct or constitute hallucinations. First, we establish an equivalence between hallucination detection and the classical task of language identification. We prove that any hallucination detection method can be converted into a language identification method, and conversely, algorithms solving language identification can be adapted for hallucination detection. Given the inherent difficulty of language identification, this implies that hallucination detection is fundamentally impossible for most language collections if the detector is trained using only correct examples from the target language. Second, we show that the use of expert-labeled feedback, i.e., training the detector with both positive examples (correct statements) and negative examples (explicitly labeled incorrect statements), dramatically changes this conclusion. Under this enriched training regime, automated hallucination detection becomes possible for all countable language collections. These results highlight the essential role of expert-labeled examples in training hallucination detectors and provide theoretical support for feedback-based methods, such as reinforcement learning with human feedback (RLHF), which have proven critical for reliable LLM deployment.
☆ Tokenization Matters: Improving Zero-Shot NER for Indic Languages
Tokenization is a critical component of Natural Language Processing (NLP), especially for low resource languages, where subword segmentation influences vocabulary structure and downstream task accuracy. Although Byte Pair Encoding (BPE) is a standard tokenization method in multilingual language models, its suitability for Named Entity Recognition (NER) in low resource Indic languages remains underexplored due to its limitations in handling morphological complexity. In this work, we systematically compare BPE, SentencePiece, and Character Level tokenization strategies using IndicBERT for NER tasks in low resource Indic languages like Assamese, Bengali, Marathi, and Odia, as well as extremely low resource Indic languages like Santali, Manipuri, and Sindhi. We assess both intrinsic linguistic properties tokenization efficiency, out of vocabulary (OOV) rates, and morphological preservation as well as extrinsic downstream performance, including fine tuning and zero shot cross lingual transfer. Our experiments show that SentencePiece is a consistently better performing approach than BPE for NER in low resource Indic Languages, particularly in zero shot cross lingual settings, as it better preserves entity consistency. While BPE provides the most compact tokenization form, it is not capable of generalization because it misclassifies or even fails to recognize entity labels when tested on unseen languages. In contrast, SentencePiece constitutes a better linguistic structural preservation model, benefiting extremely low resource and morphologically rich Indic languages, such as Santali and Manipuri, for superior entity recognition, as well as high generalization across scripts, such as Sindhi, written in Arabic. The results point to SentencePiece as the more effective tokenization strategy for NER within multilingual and low resource Indic NLP applications.
♻ ☆ Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
♻ ☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.
comment: Project Website: https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs
♻ ☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
♻ ☆ Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
♻ ☆ Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background: Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results: In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions: By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.
♻ ☆ SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy
Large Language Models (LLMs) have been shown to encode clinical knowledge. Many evaluations, however, rely on structured question-answer benchmarks, overlooking critical challenges of interpreting and reasoning about unstructured clinical narratives in real-world settings. Using free-text clinical descriptions, we present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models (GPT-3.5, GPT-4, Mixtral-8x7B, Qwen-72B, LlaMa2, LlaMa3) on a core diagnostic task in epilepsy. Leveraging a database of 1,269 seizure descriptions, we show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain. Most models approach clinician-level performance after prompt engineering, with expert-guided chain-of-thought reasoning leading to the most consistent improvements. Performance was further strongly modulated by clinical in-context impersonation, narrative length and language context (13.7%, 32.7% and 14.2% performance variation, respectively). However, expert analysis of reasoning outputs revealed that correct prediction can be based on hallucinated knowledge and deficient source citation accuracy, underscoring the need to improve interpretability of LLMs in clinical use. Overall, SemioLLM provides a scalable, domain-adaptable framework for evaluating LLMs in clinical disciplines where unstructured verbal descriptions encode diagnostic information. By identifying both the strengths and limitations of state-of-the-art models, our work supports the development of clinically robust and globally applicable AI systems for healthcare.
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
♻ ☆ NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens ICLR-2025
Recent advancements in Large Language Models (LLMs) have pushed the boundaries of natural language processing, especially in long-context understanding. However, the evaluation of these models' long-context abilities remains a challenge due to the limitations of current benchmarks. To address this gap, we introduce NovelQA, a benchmark tailored for evaluating LLMs with complex, extended narratives. Constructed from English novels, NovelQA offers a unique blend of complexity, length, and narrative coherence, making it an ideal tool for assessing deep textual understanding in LLMs. This paper details the design and construction of NovelQA, focusing on its comprehensive manual annotation process and the variety of question types aimed at evaluating nuanced comprehension. Our evaluation of long-context LLMs on NovelQA reveals significant insights into their strengths and weaknesses. Notably, the models struggle with multi-hop reasoning, detail-oriented questions, and handling extremely long inputs, with average lengths exceeding 200,000 tokens. Results highlight the need for substantial advancements in LLMs to enhance their long-context comprehension and contribute effectively to computational literary analysis.
comment: Accepted by ICLR-2025
♻ ☆ Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
♻ ☆ Modelling Multimodal Integration in Human Concept Processing with Vision-Language Models
Text representations from language models have proven remarkably predictive of human neural activity involved in language processing, with the recent transformer-based models outperforming previous architectures in downstream tasks and prediction of brain responses. However, the word representations learnt by language-only models may be limited in that they lack sensory information from other modalities, which several cognitive and neuroscience studies showed to be reflected in human meaning representations. Here, we leverage current pre-trained vision-language models (VLMs) to investigate whether the integration of visuo-linguistic information they operate leads to representations that are more aligned with human brain activity than those obtained by models trained with language-only input. We focus on fMRI responses recorded while participants read concept words in the context of either a full sentence or a picture. Our results reveal that VLM representations correlate more strongly than those by language-only models with activations in brain areas functionally related to language processing. Additionally, we find that transformer-based vision-language encoders -- e.g., LXMERT and VisualBERT -- yield more brain-aligned representations than generative VLMs, whose autoregressive abilities do not seem to provide an advantage when modelling single words. Finally, our ablation analyses suggest that the high brain alignment achieved by some of the VLMs we evaluate results from semantic information acquired specifically during multimodal pretraining as opposed to being already encoded in their unimodal modules. Altogether, our findings indicate an advantage of multimodal models in predicting human brain activations, which reveals that modelling language and vision integration has the potential to capture the multimodal nature of human concept representations.
♻ ☆ The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
comment: 12 pages, 3 figures, 1 table
♻ ☆ Dynamic hashtag recommendation in social media with trend shift detection and adaptation
Hashtag recommendation systems have emerged as a key tool for automatically suggesting relevant hashtags and enhancing content categorization and search. However, existing static models struggle to adapt to the highly dynamic nature of social media conversations, where new hashtags constantly emerge and existing ones undergo semantic shifts. To address these challenges, this paper introduces H-ADAPTS (Hashtag recommendAtion by Detecting and adAPting to Trend Shifts), a dynamic hashtag recommendation methodology that employs a trend-aware mechanism to detect shifts in hashtag usage-reflecting evolving trends and topics within social media conversations-and triggers efficient model adaptation based on a (small) set of recent posts. Additionally, the Apache Storm framework is leveraged to support scalable and fault-tolerant analysis of high-velocity social data, enabling the timely detection of trend shifts. Experimental results from two real-world case studies, including the COVID-19 pandemic and the 2020 US presidential election, demonstrate the effectiveness of H-ADAPTS in providing timely and relevant hashtag recommendations by adapting to emerging trends, significantly outperforming existing solutions.
♻ ☆ lamss: when large language models meet self-skepticism
Hallucination is a major challenge for large language models (LLMs), prevent ing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hal lucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, represent ing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accu racy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures
♻ ☆ Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy, particularly for complex tasks such as mathematical reasoning, by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning branches exist, we decode multiple tokens per step using a specialized attention mask, processing them within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves over 100% speedup in decoding time while maintaining the answer quality.
comment: Our code is available in https://github.com/yuyijiong/parallel-decoding-in-one-sequence
♻ ☆ TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
♻ ☆ Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? ICLR 2025
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
comment: Accepted at ICLR 2025
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables
♻ ☆ EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
The sequential nature of modern LLMs makes them expensive and slow, and speculative sampling has proven to be an effective solution to this problem. Methods like EAGLE perform autoregression at the feature level, reusing top-layer features from the target model to achieve better results than vanilla speculative sampling. A growing trend in the LLM community is scaling up training data to improve model intelligence without increasing inference costs. However, we observe that scaling up data provides limited improvements for EAGLE. We identify that this limitation arises from EAGLE's feature prediction constraints. In this paper, we introduce EAGLE-3, which abandons feature prediction in favor of direct token prediction and replaces reliance on top-layer features with multi-layer feature fusion via a technique named training-time test. These improvements significantly enhance performance and enable the draft model to fully benefit from scaling up training data. Our experiments include both chat models and reasoning models, evaluated on five tasks. The results show that EAGLE-3 achieves a speedup ratio up to 6.5x, with about 1.4x improvement over EAGLE-2. In the SGLang framework, EAGLE-3 achieves a 1.38x throughput improvement at a batch size of 64. The code is available at https://github.com/SafeAILab/EAGLE.
♻ ☆ ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance, inspiring researchers to explore their use in automating register transfer level (RTL) code generation and improving hardware design efficiency. However, the existing approaches to fine-tune LLMs for RTL generation typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data, which are costly to acquire. To mitigate these issues, we innovatively introduce an iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in current loop. Furthermore, we introduce a plug-and-play data filtering strategy, thereby encouraging the model to generate high-quality, self-contained code. Our model outperforms GPT4 and state-of-the-art (SOTA) open-source models, achieving remarkable 53.8% pass@1 rate on VerilogEval-human benchmark. Under similar conditions of data quantity and quality, our approach significantly outperforms the baseline. Extensive experiments validate the effectiveness of the proposed method.
♻ ☆ MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
♻ ☆ ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems NAACL
Retrieval-Augmented Generation (RAG) systems using large language models (LLMs) often generate inaccurate responses due to the retrieval of irrelevant or loosely related information. Existing methods, which operate at the document level, fail to effectively filter out such content. We propose LLM-driven chunk filtering, ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level. Our approach employs semantic chunking to divide documents into coherent sections and utilizes LLM-based relevance scoring to assess each chunk's alignment with the user's query. By filtering out less pertinent chunks before the generation phase, we significantly reduce hallucinations and improve factual accuracy. Experiments show that our method outperforms existing RAG models, achieving higher accuracy on tasks requiring precise information retrieval. This advancement enhances the reliability of RAG systems, making them particularly beneficial for applications like fact-checking and multi-hop reasoning.
comment: Accepted at Conference of the North American Chapter of the Association for Computational Linguistics, Student Research Workshop 2025 (NAACL SRW 2025)
♻ ☆ SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
comment: work in progress
♻ ☆ Automated Trustworthiness Oracle Generation for Machine Learning Text Classifiers
Machine learning (ML) for text classification has been widely used in various domains. These applications can significantly impact ethics, economics, and human behavior, raising serious concerns about trusting ML decisions. Studies indicate that conventional metrics are insufficient to build human trust in ML models. These models often learn spurious correlations and predict based on them. In the real world, their performance can deteriorate significantly. To avoid this, a common practice is to test whether predictions are reasonable based on valid patterns in the data. Along with this, a challenge known as the trustworthiness oracle problem has been introduced. Due to the lack of automated trustworthiness oracles, the assessment requires manual validation of the decision process disclosed by explanation methods. However, this is time-consuming, error-prone, and unscalable. We propose TOKI, the first automated trustworthiness oracle generation method for text classifiers. TOKI automatically checks whether the words contributing the most to a prediction are semantically related to the predicted class. Specifically, we leverage ML explanations to extract the decision-contributing words and measure their semantic relatedness with the class based on word embeddings. We also introduce a novel adversarial attack method that targets trustworthiness vulnerabilities identified by TOKI. To evaluate their alignment with human judgement, experiments are conducted. We compare TOKI with a naive baseline based solely on model confidence and TOKI-guided adversarial attack method with A2T, a SOTA adversarial attack method. Results show that relying on prediction uncertainty cannot effectively distinguish between trustworthy and untrustworthy predictions, TOKI achieves 142% higher accuracy than the naive baseline, and TOKI-guided attack method is more effective with fewer perturbations than A2T.
comment: 24 pages, 5 tables, 9 figures, Camera-ready version accepted to FSE 2025
♻ ☆ Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
♻ ☆ Evaluating Text Style Transfer Evaluation: Are There Any Reliable Metrics? NAACL
Text style transfer (TST) is the task of transforming a text to reflect a particular style while preserving its original content. Evaluating TST outputs is a multidimensional challenge, requiring the assessment of style transfer accuracy, content preservation, and naturalness. Using human evaluation is ideal but costly, as is common in other natural language processing (NLP) tasks, however, automatic metrics for TST have not received as much attention as metrics for, e.g., machine translation or summarization. In this paper, we examine both set of existing and novel metrics from broader NLP tasks for TST evaluation, focusing on two popular subtasks, sentiment transfer and detoxification, in a multilingual context comprising English, Hindi, and Bengali. By conducting meta-evaluation through correlation with human judgments, we demonstrate the effectiveness of these metrics when used individually and in ensembles. Additionally, we investigate the potential of large language models (LLMs) as tools for TST evaluation. Our findings highlight newly applied advanced NLP metrics and LLM-based evaluations provide better insights than existing TST metrics. Our oracle ensemble approaches show even more potential.
comment: Accepted at NAACL SRW 2025
♻ ☆ Sustainability via LLM Right-sizing
Large language models (LLMs) have become increasingly embedded in organizational workflows. This has raised concerns over their energy consumption, financial costs, and data sovereignty. While performance benchmarks often celebrate cutting-edge models, real-world deployment decisions require a broader perspective: when is a smaller, locally deployable model "good enough"? This study offers an empirical answer by evaluating eleven proprietary and open-weight LLMs across ten everyday occupational tasks, including summarizing texts, generating schedules, and drafting emails and proposals. Using a dual-LLM-based evaluation framework, we automated task execution and standardized evaluation across ten criteria related to output quality, factual accuracy, and ethical responsibility. Results show that GPT-4o delivers consistently superior performance but at a significantly higher cost and environmental footprint. Notably, smaller models like Gemma-3 and Phi-4 achieved strong and reliable results on most tasks, suggesting their viability in contexts requiring cost-efficiency, local deployment, or privacy. A cluster analysis revealed three model groups -- premium all-rounders, competent generalists, and limited but safe performers -- highlighting trade-offs between quality, control, and sustainability. Significantly, task type influenced model effectiveness: conceptual tasks challenged most models, while aggregation and transformation tasks yielded better performances. We argue for a shift from performance-maximizing benchmarks to task- and context-aware sufficiency assessments that better reflect organizational priorities. Our approach contributes a scalable method to evaluate AI models through a sustainability lens and offers actionable guidance for responsible LLM deployment in practice.
comment: 17 pages, 2 Figures, 6 Tables
♻ ☆ Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a method to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that larger models with higher baseline performance (Gemini 1.5 Pro, GPT 4o, Claude 3.5) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, smaller models with lower baseline performance (Mistral 3, Gemma 2) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10\% for Gemini, GPT, and Gemma. Key findings and the prompts used in our autorater analysis are available on our github.
♻ ☆ A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Post-hoc Study of Climate Microtargeting on Social Media Ads with LLMs: Thematic Insights and Fairness Evaluation
Climate change communication on social media increasingly employs microtargeting strategies to effectively reach and influence specific demographic groups. This study presents a post-hoc analysis of microtargeting practices within climate campaigns by leveraging large language models (LLMs) to examine Facebook advertisements. Our analysis focuses on two key aspects: demographic targeting and fairness. We evaluate the ability of LLMs to accurately predict the intended demographic targets, such as gender and age group, achieving an overall accuracy of 88.55%. Furthermore, we instruct the LLMs to generate explanations for their classifications, providing transparent reasoning behind each decision. These explanations reveal the specific thematic elements used to engage different demographic segments, highlighting distinct strategies tailored to various audiences. Our findings show that young adults are primarily targeted through messages emphasizing activism and environmental consciousness, while women are engaged through themes related to caregiving roles and social advocacy. In addition to evaluating the effectiveness of LLMs in detecting microtargeted messaging, we conduct a comprehensive fairness analysis to identify potential biases in model predictions. Our findings indicate that while LLMs perform well overall, certain biases exist, particularly in the classification of senior citizens and male audiences. By showcasing the efficacy of LLMs in dissecting and explaining targeted communication strategies and by highlighting fairness concerns, this study provides a valuable framework for future research aimed at enhancing transparency, accountability, and inclusivity in social media-driven climate campaigns.
♻ ☆ Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
comment: # fixed some typos, added public slm reasoning leaderboard
♻ ☆ Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
♻ ☆ Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
♻ ☆ HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
♻ ☆ Multilingual MFA: Forced Alignment on Low-Resource Related Languages
We compare the outcomes of multilingual and crosslingual training for related and unrelated Australian languages with similar phonological inventories. We use the Montreal Forced Aligner to train acoustic models from scratch and adapt a large English model, evaluating results against seen data, unseen data (seen language), and unseen data and language. Results indicate benefits of adapting the English baseline model for previously unseen languages.
♻ ☆ Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
comment: Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ TypedThinker: Diversify Large Language Model Reasoning with Typed Thinking
Large Language Models (LLMs) have demonstrated strong reasoning capabilities in solving complex problems. However, current approaches primarily enhance reasoning through the elaboration of thoughts while neglecting the diversity of reasoning types. LLMs typically employ deductive reasoning, proceeding step-by-step from given conditions, which limits their exploration during problem-solving. Our analysis reveals that certain problems are exclusively solvable through specific reasoning strategies like inductive, abductive, or analogical reasoning. However, incorporating diverse reasoning approaches presents two key challenges: identifying the appropriate reasoning type for each problem and exploiting this approach during problem-solving. Therefore, we propose the TypedThinker that predicts suitable reasoning types based on the problem and their previous effectiveness and provides relevant demonstrations to guide LLMs in applying these strategies. Experimental results show significant improvements across multiple benchmarks, with performance gains of 3.4% for Mistral 7B, 6.5% for LLaMA3 8B, and 7% for Qwen 2 7B on logical and mathematical reasoning tasks. TypedThinker enhances LLM reasoning without requiring knowledge distillation from larger models. It can be integrated into more advanced systems like GPT-4o or specialized models like MetaMath to diversify their reasoning approaches and improve their problem-solving capabilities.
comment: work in process
♻ ☆ Lab-AI: Using Retrieval Augmentation to Enhance Language Models for Personalized Lab Test Interpretation in Clinical Medicine
Accurate interpretation of lab results is crucial in clinical medicine, yet most patient portals use universal normal ranges, ignoring conditional factors like age and gender. This study introduces Lab-AI, an interactive system that offers personalized normal ranges using retrieval-augmented generation (RAG) from credible health sources. Lab-AI has two modules: factor retrieval and normal range retrieval. We tested these on 122 lab tests: 40 with conditional factors and 82 without. For tests with factors, normal ranges depend on patient-specific information. Our results show GPT-4-turbo with RAG achieved a 0.948 F1 score for factor retrieval and 0.995 accuracy for normal range retrieval. GPT-4-turbo with RAG outperformed the best non-RAG system by 33.5% in factor retrieval and showed 132% and 100% improvements in question-level and lab-level performance, respectively, for normal range retrieval. These findings highlight Lab-AI's potential to enhance patient understanding of lab results.
♻ ☆ PSCon: Product Search Through Conversations SIGIR 2025
Conversational Product Search ( CPS ) systems interact with users via natural language to offer personalized and context-aware product lists. However, most existing research on CPS is limited to simulated conversations, due to the lack of a real CPS dataset driven by human-like language. Moreover, existing conversational datasets for e-commerce are constructed for a particular market or a particular language and thus can not support cross-market and multi-lingual usage. In this paper, we propose a CPS data collection protocol and create a new CPS dataset, called PSCon, which assists product search through conversations with human-like language. The dataset is collected by a coached human-human data collection protocol and is available for dual markets and two languages. By formulating the task of CPS, the dataset allows for comprehensive and in-depth research on six subtasks: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Moreover, we present a concise analysis of the dataset and propose a benchmark model on the proposed CPS dataset. Our proposed dataset and model will be helpful for facilitating future research on CPS.
comment: 11 pages. Accepted by SIGIR 2025
♻ ☆ Estimating the Influence of Sequentially Correlated Literary Properties in Textual Classification: A Data-Centric Hypothesis-Testing Approach
We introduce a data-centric hypothesis-testing framework to quantify the influence of sequentially correlated literary properties--such as thematic continuity--on textual classification tasks. Our method models label sequences as stochastic processes and uses an empirical autocovariance matrix to generate surrogate labelings that preserve sequential dependencies. This enables statistical testing to determine whether classification outcomes are primarily driven by thematic structure or by non-sequential features like authorial style. Applying this framework across a diverse corpus of English prose, we compare traditional (word n-grams and character k-mers) and neural (contrastively trained) embeddings in both supervised and unsupervised classification settings. Crucially, our method identifies when classifications are confounded by sequentially correlated similarity, revealing that supervised and neural models are more prone to false positives--mistaking shared themes and cross-genre differences for stylistic signals. In contrast, unsupervised models using traditional features often yield high true positive rates with minimal false positives, especially in genre-consistent settings. By disentangling sequential from non-sequential influences, our approach provides a principled way to assess and interpret classification reliability. This is particularly impactful for authorship attribution, forensic linguistics, and the analysis of redacted or composite texts, where conventional methods may conflate theme with style. Our results demonstrate that controlling for sequential correlation is essential for reducing false positives and ensuring that classification outcomes reflect genuine stylistic distinctions.
♻ ☆ CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization
Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. We find that while some challenges, like language, have seen considerable progress, mainly due to training methods, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities. We investigate how these approaches are typically assessed, covering the datasets for the subdomains of dialogue (e.g., meeting, medical), the established automatic metrics and human evaluation approaches for assessing scores and annotator agreement. We observe that only a few datasets span across all subdomains. The ROUGE metric is the most used, while human evaluation is frequently reported without sufficient detail on inner-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that despite a potential shift in relevance and difficulty, our described challenge taxonomy remains relevant.
comment: Published in the Journal of Artificial Intelligence Research (JAIR) (https://www.jair.org/index.php/jair/article/view/16674)
Machine Learning 181
☆ I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
☆ Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
High-speed off-road autonomous driving presents unique challenges due to complex, evolving terrain characteristics and the difficulty of accurately modeling terrain-vehicle interactions. While dynamics models used in model-based control can be learned from real-world data, they often struggle to generalize to unseen terrain, making real-time adaptation essential. We propose a novel framework that combines a Kalman filter-based online adaptation scheme with meta-learned parameters to address these challenges. Offline meta-learning optimizes the basis functions along which adaptation occurs, as well as the adaptation parameters, while online adaptation dynamically adjusts the onboard dynamics model in real time for model-based control. We validate our approach through extensive experiments, including real-world testing on a full-scale autonomous off-road vehicle, demonstrating that our method outperforms baseline approaches in prediction accuracy, performance, and safety metrics, particularly in safety-critical scenarios. Our results underscore the effectiveness of meta-learned dynamics model adaptation, advancing the development of reliable autonomous systems capable of navigating diverse and unseen environments. Video is available at: https://youtu.be/cCKHHrDRQEA
☆ Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
☆ Application of an attention-based CNN-BiLSTM framework for in vivo two-photon calcium imaging of neuronal ensembles: decoding complex bilateral forelimb movements from unilateral M1
Decoding behavior, such as movement, from multiscale brain networks remains a central objective in neuroscience. Over the past decades, artificial intelligence and machine learning have played an increasingly significant role in elucidating the neural mechanisms underlying motor function. The advancement of brain-monitoring technologies, capable of capturing complex neuronal signals with high spatial and temporal resolution, necessitates the development and application of more sophisticated machine learning models for behavioral decoding. In this study, we employ a hybrid deep learning framework, an attention-based CNN-BiLSTM model, to decode skilled and complex forelimb movements using signals obtained from in vivo two-photon calcium imaging. Our findings demonstrate that the intricate movements of both ipsilateral and contralateral forelimbs can be accurately decoded from unilateral M1 neuronal ensembles. These results highlight the efficacy of advanced hybrid deep learning models in capturing the spatiotemporal dependencies of neuronal networks activity linked to complex movement execution.
☆ AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
☆ Exploring zero-shot structure-based protein fitness prediction
The ability to make zero-shot predictions about the fitness consequences of protein sequence changes with pre-trained machine learning models enables many practical applications. Such models can be applied for downstream tasks like genetic variant interpretation and protein engineering without additional labeled data. The advent of capable protein structure prediction tools has led to the availability of orders of magnitude more precomputed predicted structures, giving rise to powerful structure-based fitness prediction models. Through our experiments, we assess several modeling choices for structure-based models and their effects on downstream fitness prediction. Zero-shot fitness prediction models can struggle to assess the fitness landscape within disordered regions of proteins, those that lack a fixed 3D structure. We confirm the importance of matching protein structures to fitness assays and find that predicted structures for disordered regions can be misleading and affect predictive performance. Lastly, we evaluate an additional structure-based model on the ProteinGym substitution benchmark and show that simple multi-modal ensembles are strong baselines.
comment: 26 pages, 7 figures
☆ Learning Verifiable Control Policies Using Relaxed Verification
To provide safety guarantees for learning-based control systems, recent work has developed formal verification methods to apply after training ends. However, if the trained policy does not meet the specifications, or there is conservatism in the verification algorithm, establishing these guarantees may not be possible. Instead, this work proposes to perform verification throughout training to ultimately aim for policies whose properties can be evaluated throughout runtime with lightweight, relaxed verification algorithms. The approach is to use differentiable reachability analysis and incorporate new components into the loss function. Numerical experiments on a quadrotor model and unicycle model highlight the ability of this approach to lead to learned control policies that satisfy desired reach-avoid and invariance specifications.
☆ Hybrid Reinforcement Learning and Model Predictive Control for Adaptive Control of Hydrogen-Diesel Dual-Fuel Combustion
Reinforcement Learning (RL) and Machine Learning Integrated Model Predictive Control (ML-MPC) are promising approaches for optimizing hydrogen-diesel dual-fuel engine control, as they can effectively control multiple-input multiple-output systems and nonlinear processes. ML-MPC is advantageous for providing safe and optimal controls, ensuring the engine operates within predefined safety limits. In contrast, RL is distinguished by its adaptability to changing conditions through its learning-based approach. However, the practical implementation of either method alone poses challenges. RL requires high variance in control inputs during early learning phases, which can pose risks to the system by potentially executing unsafe actions, leading to mechanical damage. Conversely, ML-MPC relies on an accurate system model to generate optimal control inputs and has limited adaptability to system drifts, such as injector aging, which naturally occur in engine applications. To address these limitations, this study proposes a hybrid RL and ML-MPC approach that uses an ML-MPC framework while incorporating an RL agent to dynamically adjust the ML-MPC load tracking reference in response to changes in the environment. At the same time, the ML-MPC ensures that actions stay safe throughout the RL agent's exploration. To evaluate the effectiveness of this approach, fuel pressure is deliberately varied to introduce a model-plant mismatch between the ML-MPC and the engine test bench. The result of this mismatch is a root mean square error (RMSE) in indicated mean effective pressure of 0.57 bar when running the ML-MPC. The experimental results demonstrate that RL successfully adapts to changing boundary conditions by altering the tracking reference while ML-MPC ensures safe control inputs. The quantitative improvement in load tracking by implementing RL is an RSME of 0.44 bar.
☆ Exploring How LLMs Capture and Represent Domain-Specific Knowledge
We study whether Large Language Models (LLMs) inherently capture domain-specific nuances in natural language. Our experiments probe the domain sensitivity of LLMs by examining their ability to distinguish queries from different domains using hidden states generated during the prefill phase. We reveal latent domain-related trajectories that indicate the model's internal recognition of query domains. We also study the robustness of these domain representations to variations in prompt styles and sources. Our approach leverages these representations for model selection, mapping the LLM that best matches the domain trace of the input query (i.e., the model with the highest performance on similar traces). Our findings show that LLMs can differentiate queries for related domains, and that the fine-tuned model is not always the most accurate. Unlike previous work, our interpretations apply to both closed and open-ended generative tasks
☆ An Adaptive ML Framework for Power Converter Monitoring via Federated Transfer Learning IEEE
This study explores alternative framework configurations for adapting thermal machine learning (ML) models for power converters by combining transfer learning (TL) and federated learning (FL) in a piecewise manner. This approach inherently addresses challenges such as varying operating conditions, data sharing limitations, and security implications. The framework starts with a base model that is incrementally adapted by multiple clients via adapting three state-of-the-art domain adaptation techniques: Fine-tuning, Transfer Component Analysis (TCA), and Deep Domain Adaptation (DDA). The Flower framework is employed for FL, using Federated Averaging for aggregation. Validation with field data demonstrates that fine-tuning offers a straightforward TL approach with high accuracy, making it suitable for practical applications. Benchmarking results reveal a comprehensive comparison of these methods, showcasing their respective strengths and weaknesses when applied in different scenarios. Locally hosted FL enhances performance when data aggregation is not feasible, while cloud-based FL becomes more practical with a significant increase in the number of clients, addressing scalability and connectivity challenges.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Common Functional Decompositions Can Mis-attribute Differences in Outcomes Between Populations ICLR 2025
In science and social science, we often wish to explain why an outcome is different in two populations. For instance, if a jobs program benefits members of one city more than another, is that due to differences in program participants (particular covariates) or the local labor markets (outcomes given covariates)? The Kitagawa-Oaxaca-Blinder (KOB) decomposition is a standard tool in econometrics that explains the difference in the mean outcome across two populations. However, the KOB decomposition assumes a linear relationship between covariates and outcomes, while the true relationship may be meaningfully nonlinear. Modern machine learning boasts a variety of nonlinear functional decompositions for the relationship between outcomes and covariates in one population. It seems natural to extend the KOB decomposition using these functional decompositions. We observe that a successful extension should not attribute the differences to covariates -- or, respectively, to outcomes given covariates -- if those are the same in the two populations. Unfortunately, we demonstrate that, even in simple examples, two common decompositions -- functional ANOVA and Accumulated Local Effects -- can attribute differences to outcomes given covariates, even when they are identical in two populations. We provide a characterization of when functional ANOVA misattributes, as well as a general property that any discrete decomposition must satisfy to avoid misattribution. We show that if the decomposition is independent of its input distribution, it does not misattribute. We further conjecture that misattribution arises in any reasonable additive decomposition that depends on the distribution of the covariates.
comment: 30 pages, appearing in 2nd Workshop on Navigating and Addressing Data Problems for Foundation Models (DATA-FM @ ICLR 2025)
☆ Improving Significant Wave Height Prediction Using Chronos Models
Accurate wave height prediction is critical for maritime safety and coastal resilience, yet conventional physics-based models and traditional machine learning methods face challenges in computational efficiency and nonlinear dynamics modeling. This study introduces Chronos, the first implementation of a large language model (LLM)-powered temporal architecture (Chronos) optimized for wave forecasting. Through advanced temporal pattern recognition applied to historical wave data from three strategically chosen marine zones in the Northwest Pacific basin, our framework achieves multimodal improvements: (1) 14.3% reduction in training time with 2.5x faster inference speed compared to PatchTST baselines, achieving 0.575 mean absolute scaled error (MASE) units; (2) superior short-term forecasting (1-24h) across comprehensive metrics; (3) sustained predictive leadership in extended-range forecasts (1-120h); and (4) demonstrated zero-shot capability maintaining median performance (rank 4/12) against specialized operational models. This LLM-enhanced temporal modeling paradigm establishes a new standard in wave prediction, offering both computationally efficient solutions and a transferable framework for complex geophysical systems modeling.
☆ Evaluating Autoencoders for Parametric and Invertible Multidimensional Projections
Recently, neural networks have gained attention for creating parametric and invertible multidimensional data projections. Parametric projections allow for embedding previously unseen data without recomputing the projection as a whole, while invertible projections enable the generation of new data points. However, these properties have never been explored simultaneously for arbitrary projection methods. We evaluate three autoencoder (AE) architectures for creating parametric and invertible projections. Based on a given projection, we train AEs to learn a mapping into 2D space and an inverse mapping into the original space. We perform a quantitative and qualitative comparison on four datasets of varying dimensionality and pattern complexity using t-SNE. Our results indicate that AEs with a customized loss function can create smoother parametric and inverse projections than feed-forward neural networks while giving users control over the strength of the smoothing effect.
comment: 12 pages, 7 figures, 2 tables, LaTeX; to appear at the 16th International EuroVis Workshop on Visual Analytics (EuroVA'25)
☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
☆ 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
☆ MOOSComp: Improving Lightweight Long-Context Compressor via Mitigating Over-Smoothing and Incorporating Outlier Scores
Recent advances in large language models have significantly improved their ability to process long-context input, but practical applications are challenged by increased inference time and resource consumption, particularly in resource-constrained environments. To address these challenges, we propose MOOSComp, a token-classification-based long-context compression method that enhances the performance of a BERT-based compressor by mitigating the over-smoothing problem and incorporating outlier scores. In the training phase, we add an inter-class cosine similarity loss term to penalize excessively similar token representations, thereby improving the token classification accuracy. During the compression phase, we introduce outlier scores to preserve rare but critical tokens that are prone to be discarded in task-agnostic compression. These scores are integrated with the classifier's output, making the compressor more generalizable to various tasks. Superior performance is achieved at various compression ratios on long-context understanding and reasoning benchmarks. Moreover, our method obtains a speedup of 3.3x at a 4x compression ratio on a resource-constrained mobile device.
☆ Online model learning with data-assimilated reservoir computers
We propose an online learning framework for forecasting nonlinear spatio-temporal signals (fields). The method integrates (i) dimensionality reduction, here, a simple proper orthogonal decomposition (POD) projection; (ii) a generalized autoregressive model to forecast reduced dynamics, here, a reservoir computer; (iii) online adaptation to update the reservoir computer (the model), here, ensemble sequential data assimilation.We demonstrate the framework on a wake past a cylinder governed by the Navier-Stokes equations, exploring the assimilation of full flow fields (projected onto POD modes) and sparse sensors. Three scenarios are examined: a na\"ive physical state estimation; a two-fold estimation of physical and reservoir states; and a three-fold estimation that also adjusts the model parameters. The two-fold strategy significantly improves ensemble convergence and reduces reconstruction error compared to the na\"ive approach. The three-fold approach enables robust online training of partially-trained reservoir computers, overcoming limitations of a priori training. By unifying data-driven reduced order modelling with Bayesian data assimilation, this work opens new opportunities for scalable online model learning for nonlinear time series forecasting.
comment: 8 pages, 5 figures
☆ Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
☆ QAOA-PCA: Enhancing Efficiency in the Quantum Approximate Optimization Algorithm via Principal Component Analysis
The Quantum Approximate Optimization Algorithm (QAOA) is a promising variational algorithm for solving combinatorial optimization problems on near-term devices. However, as the number of layers in a QAOA circuit increases, which is correlated with the quality of the solution, the number of parameters to optimize grows linearly. This results in more iterations required by the classical optimizer, which results in an increasing computational burden as more circuit executions are needed. To mitigate this issue, we introduce QAOA-PCA, a novel reparameterization technique that employs Principal Component Analysis (PCA) to reduce the dimensionality of the QAOA parameter space. By extracting principal components from optimized parameters of smaller problem instances, QAOA-PCA facilitates efficient optimization with fewer parameters on larger instances. Our empirical evaluation on the prominent MaxCut problem demonstrates that QAOA-PCA consistently requires fewer iterations than standard QAOA, achieving substantial efficiency gains. While this comes at the cost of a slight reduction in approximation ratio compared to QAOA with the same number of layers, QAOA-PCA almost always outperforms standard QAOA when matched by parameter count. QAOA-PCA strikes a favorable balance between efficiency and performance, reducing optimization overhead without significantly compromising solution quality.
☆ Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks ICML
Graph Contrastive Learning (GCL) has recently made progress as an unsupervised graph representation learning paradigm. GCL approaches can be categorized into augmentation-based and augmentation-free methods. The former relies on complex data augmentations, while the latter depends on encoders that can generate distinct views of the same input. Both approaches may require negative samples for training. In this paper, we introduce a novel augmentation-free GCL framework based on graph neural diffusion models. Specifically, we utilize learnable encoders governed by Fractional Differential Equations (FDE). Each FDE is characterized by an order parameter of the differential operator. We demonstrate that varying these parameters allows us to produce learnable encoders that generate diverse views, capturing either local or global information, for contrastive learning. Our model does not require negative samples for training and is applicable to both homophilic and heterophilic datasets. We demonstrate its effectiveness across various datasets, achieving state-of-the-art performance.
comment: Submitted to ICML
☆ Simplified Swarm Learning Framework for Robust and Scalable Diagnostic Services in Cancer Histopathology
The complexities of healthcare data, including privacy concerns, imbalanced datasets, and interoperability issues, necessitate innovative machine learning solutions. Swarm Learning (SL), a decentralized alternative to Federated Learning, offers privacy-preserving distributed training, but its reliance on blockchain technology hinders accessibility and scalability. This paper introduces a \textit{Simplified Peer-to-Peer Swarm Learning (P2P-SL) Framework} tailored for resource-constrained environments. By eliminating blockchain dependencies and adopting lightweight peer-to-peer communication, the proposed framework ensures robust model synchronization while maintaining data privacy. Applied to cancer histopathology, the framework integrates optimized pre-trained models, such as TorchXRayVision, enhanced with DenseNet decoders, to improve diagnostic accuracy. Extensive experiments demonstrate the framework's efficacy in handling imbalanced and biased datasets, achieving comparable performance to centralized models while preserving privacy. This study paves the way for democratizing advanced machine learning in healthcare, offering a scalable, accessible, and efficient solution for privacy-sensitive diagnostic applications.
comment: 8 pages, 4 figures, 2025 International Conference on Computational Science
☆ A Unified Retrieval Framework with Document Ranking and EDU Filtering for Multi-document Summarization
In the field of multi-document summarization (MDS), transformer-based models have demonstrated remarkable success, yet they suffer an input length limitation. Current methods apply truncation after the retrieval process to fit the context length; however, they heavily depend on manually well-crafted queries, which are impractical to create for each document set for MDS. Additionally, these methods retrieve information at a coarse granularity, leading to the inclusion of irrelevant content. To address these issues, we propose a novel retrieval-based framework that integrates query selection and document ranking and shortening into a unified process. Our approach identifies the most salient elementary discourse units (EDUs) from input documents and utilizes them as latent queries. These queries guide the document ranking by calculating relevance scores. Instead of traditional truncation, our approach filters out irrelevant EDUs to fit the context length, ensuring that only critical information is preserved for summarization. We evaluate our framework on multiple MDS datasets, demonstrating consistent improvements in ROUGE metrics while confirming its scalability and flexibility across diverse model architectures. Additionally, we validate its effectiveness through an in-depth analysis, emphasizing its ability to dynamically select appropriate queries and accurately rank documents based on their relevance scores. These results demonstrate that our framework effectively addresses context-length constraints, establishing it as a robust and reliable solution for MDS.
☆ PIN-WM: Learning Physics-INformed World Models for Non-Prehensile Manipulation
While non-prehensile manipulation (e.g., controlled pushing/poking) constitutes a foundational robotic skill, its learning remains challenging due to the high sensitivity to complex physical interactions involving friction and restitution. To achieve robust policy learning and generalization, we opt to learn a world model of the 3D rigid body dynamics involved in non-prehensile manipulations and use it for model-based reinforcement learning. We propose PIN-WM, a Physics-INformed World Model that enables efficient end-to-end identification of a 3D rigid body dynamical system from visual observations. Adopting differentiable physics simulation, PIN-WM can be learned with only few-shot and task-agnostic physical interaction trajectories. Further, PIN-WM is learned with observational loss induced by Gaussian Splatting without needing state estimation. To bridge Sim2Real gaps, we turn the learned PIN-WM into a group of Digital Cousins via physics-aware randomizations which perturb physics and rendering parameters to generate diverse and meaningful variations of the PIN-WM. Extensive evaluations on both simulation and real-world tests demonstrate that PIN-WM, enhanced with physics-aware digital cousins, facilitates learning robust non-prehensile manipulation skills with Sim2Real transfer, surpassing the Real2Sim2Real state-of-the-arts.
☆ A Statistical Evaluation of Indoor LoRaWAN Environment-Aware Propagation for 6G: MLR, ANOVA, and Residual Distribution Analysis
Modeling path loss in indoor LoRaWAN technology deployments is inherently challenging due to structural obstructions, occupant density and activities, and fluctuating environmental conditions. This study proposes a two-stage approach to capture and analyze these complexities using an extensive dataset of 1,328,334 field measurements collected over six months in a single-floor office at the University of Siegen's Hoelderlinstrasse Campus, Germany. First, we implement a multiple linear regression model that includes traditional propagation metrics (distance, structural walls) and an extension with proposed environmental variables (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure). Using analysis of variance, we demonstrate that adding these environmental factors can reduce unexplained variance by 42.32 percent. Secondly, we examine residual distributions by fitting five candidate probability distributions: Normal, Skew-Normal, Cauchy, Student's t, and Gaussian Mixture Models with one to five components. Our results show that a four-component Gaussian Mixture Model captures the residual heterogeneity of indoor signal propagation most accurately, significantly outperforming single-distribution approaches. Given the push toward ultra-reliable, context-aware communications in 6G networks, our analysis shows that environment-aware modeling can substantially improve LoRaWAN network design in dynamic indoor IoT deployments.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. This is the accepted version of the article: To appear in the 2025 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
☆ SemanticSugarBeets: A Multi-Task Framework and Dataset for Inspecting Harvest and Storage Characteristics of Sugar Beets CVPR
While sugar beets are stored prior to processing, they lose sugar due to factors such as microorganisms present in adherent soil and excess vegetation. Their automated visual inspection promises to aide in quality assurance and thereby increase efficiency throughout the processing chain of sugar production. In this work, we present a novel high-quality annotated dataset and two-stage method for the detection, semantic segmentation and mass estimation of post-harvest and post-storage sugar beets in monocular RGB images. We conduct extensive ablation experiments for the detection of sugar beets and their fine-grained semantic segmentation regarding damages, rot, soil adhesion and excess vegetation. For these tasks, we evaluate multiple image sizes, model architectures and encoders, as well as the influence of environmental conditions. Our experiments show an mAP50-95 of 98.8 for sugar-beet detection and an mIoU of 64.0 for the best-performing segmentation model.
comment: Accepted at Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Code and dataset available at https://github.com/semanticsugarbeets/semanticsugarbeets
☆ MCMC for Bayesian estimation of Differential Privacy from Membership Inference Attacks
We propose a new framework for Bayesian estimation of differential privacy, incorporating evidence from multiple membership inference attacks (MIA). Bayesian estimation is carried out via a Markov chain Monte Carlo (MCMC) algorithm, named MCMC-DP-Est, which provides an estimate of the full posterior distribution of the privacy parameter (e.g., instead of just credible intervals). Critically, the proposed method does not assume that privacy auditing is performed with the most powerful attack on the worst-case (dataset, challenge point) pair, which is typically unrealistic. Instead, MCMC-DP-Est jointly estimates the strengths of MIAs used and the privacy of the training algorithm, yielding a more cautious privacy analysis. We also present an economical way to generate measurements for the performance of an MIA that is to be used by the MCMC method to estimate privacy. We present the use of the methods with numerical examples with both artificial and real data.
comment: Code available: https://github.com/cerenyildirim/MCMC_for_Bayesian_estimation
☆ Provable wavelet-based neural approximation
In this paper, we develop a wavelet-based theoretical framework for analyzing the universal approximation capabilities of neural networks over a wide range of activation functions. Leveraging wavelet frame theory on the spaces of homogeneous type, we derive sufficient conditions on activation functions to ensure that the associated neural network approximates any functions in the given space, along with an error estimate. These sufficient conditions accommodate a variety of smooth activation functions, including those that exhibit oscillatory behavior. Furthermore, by considering the $L^2$-distance between smooth and non-smooth activation functions, we establish a generalized approximation result that is applicable to non-smooth activations, with the error explicitly controlled by this distance. This provides increased flexibility in the design of network architectures.
☆ Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
☆ Efficient Data Valuation Approximation in Federated Learning: A Sampling-based Approach
Federated learning paradigm to utilize datasets across multiple data providers. In FL, cross-silo data providers often hesitate to share their high-quality dataset unless their data value can be fairly assessed. Shapley value (SV) has been advocated as the standard metric for data valuation in FL due to its desirable properties. However, the computational overhead of SV is prohibitive in practice, as it inherently requires training and evaluating an FL model across an exponential number of dataset combinations. Furthermore, existing solutions fail to achieve high accuracy and efficiency, making practical use of SV still out of reach, because they ignore choosing suitable computation scheme for approximation framework and overlook the property of utility function in FL. We first propose a unified stratified-sampling framework for two widely-used schemes. Then, we analyze and choose the more promising scheme under the FL linear regression assumption. After that, we identify a phenomenon termed key combinations, where only limited dataset combinations have a high-impact on final data value. Building on these insights, we propose a practical approximation algorithm, IPSS, which strategically selects high-impact dataset combinations rather than evaluating all possible combinations, thus substantially reducing time cost with minor approximation error. Furthermore, we conduct extensive evaluations on the FL benchmark datasets to demonstrate that our proposed algorithm outperforms a series of representative baselines in terms of efficiency and effectiveness.
☆ Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
The rapid evolution of generative models has led to their integration across various fields, including password guessing, aiming to generate passwords that resemble human-created ones in complexity, structure, and patterns. Despite generative model's promise, inconsistencies in prior research and a lack of rigorous evaluation have hindered a comprehensive understanding of their true potential. In this paper, we introduce MAYA, a unified, customizable, plug-and-play password benchmarking framework. MAYA provides a standardized approach for evaluating generative password-guessing models through a rigorous set of advanced testing scenarios and a collection of eight real-life password datasets. Using MAYA, we comprehensively evaluate six state-of-the-art approaches, which have been re-implemented and adapted to ensure standardization, for a total of over 15,000 hours of computation. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, models learn and generate different password distributions, enabling a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark password-generation techniques. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking
☆ DAPLSR: Data Augmentation Partial Least Squares Regression Model via Manifold Optimization
Traditional Partial Least Squares Regression (PLSR) models frequently underperform when handling data characterized by uneven categories. To address the issue, this paper proposes a Data Augmentation Partial Least Squares Regression (DAPLSR) model via manifold optimization. The DAPLSR model introduces the Synthetic Minority Over-sampling Technique (SMOTE) to increase the number of samples and utilizes the Value Difference Metric (VDM) to select the nearest neighbor samples that closely resemble the original samples for generating synthetic samples. In solving the model, in order to obtain a more accurate numerical solution for PLSR, this paper proposes a manifold optimization method that uses the geometric properties of the constraint space to improve model degradation and optimization. Comprehensive experiments show that the proposed DAPLSR model achieves superior classification performance and outstanding evaluation metrics on various datasets, significantly outperforming existing methods.
☆ ParetoHqD: Fast Offline Multiobjective Alignment of Large Language Models using Pareto High-quality Data
Aligning large language models with multiple human expectations and values is crucial for ensuring that they adequately serve a variety of user needs. To this end, offline multiobjective alignment algorithms such as the Rewards-in-Context algorithm have shown strong performance and efficiency. However, inappropriate preference representations and training with imbalanced reward scores limit the performance of such algorithms. In this work, we introduce ParetoHqD that addresses the above issues by representing human preferences as preference directions in the objective space and regarding data near the Pareto front as ''high-quality'' data. For each preference, ParetoHqD follows a two-stage supervised fine-tuning process, where each stage uses an individual Pareto high-quality training set that best matches its preference direction. The experimental results have demonstrated the superiority of ParetoHqD over five baselines on two multiobjective alignment tasks.
comment: 19 pages, 6 figure, Multiobjective Alignment of LLMs
☆ Compositional Active Learning of Synchronous Systems through Automated Alphabet Refinement
Active automata learning infers automaton models of systems from behavioral observations, a technique successfully applied to a wide range of domains. Compositional approaches for concurrent systems have recently emerged. We take a significant step beyond available results, including those by the authors, and develop a general technique for compositional learning of a synchronizing parallel system with an unknown decomposition. Our approach automatically refines the global alphabet into component alphabets while learning the component models. We develop a theoretical treatment of distributions of alphabets, i.e., sets of possibly overlapping component alphabets. We characterize counter-examples that reveal inconsistencies with global observations, and show how to systematically update the distribution to restore consistency. We present a compositional learning algorithm implementing these ideas, where learning counterexamples precisely correspond to distribution counterexamples under well-defined conditions. We provide an implementation, called CoalA, using the state-of-the-art active learning library LearnLib. Our experiments show that in more than 630 subject systems, CoalA delivers orders of magnitude improvements (up to five orders) in membership queries and in systems with significant concurrency, it also achieves better scalability in the number of equivalence queries.
☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: In this study, we investigate the training of foundation models using federated learning to address data-sharing limitations and enable collaborative model training without data transfer for minimally invasive surgery. Methods: Inspired by the EndoViT study, we adapt the Masked Autoencoder for federated learning, enhancing it with adaptive Sharpness-Aware Minimization (FedSAM) and Stochastic Weight Averaging (SWA). Our model is pretrained on the Endo700k dataset collection and later fine-tuned and evaluated for tasks such as Semantic Segmentation, Action Triplet Recognition, and Surgical Phase Recognition. Results: Our findings demonstrate that integrating adaptive FedSAM into the federated MAE approach improves pretraining, leading to a reduction in reconstruction loss per patch. The application of FL-EndoViT in surgical downstream tasks results in performance comparable to CEN-EndoViT. Furthermore, FL-EndoViT exhibits advantages over CEN-EndoViT in surgical scene segmentation when data is limited and in action triplet recognition when large datasets are used. Conclusion: These findings highlight the potential of federated learning for privacy-preserving training of surgical foundation models, offering a robust and generalizable solution for surgical data science. Effective collaboration requires adapting federated learning methods, such as the integration of FedSAM, which can accommodate the inherent data heterogeneity across institutions. In future, exploring FL in video-based models may enhance these capabilities by incorporating spatiotemporal dynamics crucial for real-world surgical environments.
comment: Preprint submitted to MEDIA
☆ HERB: Human-augmented Efficient Reinforcement learning for Bin-packing
Packing objects efficiently is a fundamental problem in logistics, warehouse automation, and robotics. While traditional packing solutions focus on geometric optimization, packing irregular, 3D objects presents significant challenges due to variations in shape and stability. Reinforcement Learning~(RL) has gained popularity in robotic packing tasks, but training purely from simulation can be inefficient and computationally expensive. In this work, we propose HERB, a human-augmented RL framework for packing irregular objects. We first leverage human demonstrations to learn the best sequence of objects to pack, incorporating latent factors such as space optimization, stability, and object relationships that are difficult to model explicitly. Next, we train a placement algorithm that uses visual information to determine the optimal object positioning inside a packing container. Our approach is validated through extensive performance evaluations, analyzing both packing efficiency and latency. Finally, we demonstrate the real-world feasibility of our method on a robotic system. Experimental results show that our method outperforms geometric and purely RL-based approaches by leveraging human intuition, improving both packing robustness and adaptability. This work highlights the potential of combining human expertise-driven RL to tackle complex real-world packing challenges in robotic systems.
comment: 7 pages, 5 Figures
☆ Data-Assimilated Model-Based Reinforcement Learning for Partially Observed Chaotic Flows
The goal of many applications in energy and transport sectors is to control turbulent flows. However, because of chaotic dynamics and high dimensionality, the control of turbulent flows is exceedingly difficult. Model-free reinforcement learning (RL) methods can discover optimal control policies by interacting with the environment, but they require full state information, which is often unavailable in experimental settings. We propose a data-assimilated model-based RL (DA-MBRL) framework for systems with partial observability and noisy measurements. Our framework employs a control-aware Echo State Network for data-driven prediction of the dynamics, and integrates data assimilation with an Ensemble Kalman Filter for real-time state estimation. An off-policy actor-critic algorithm is employed to learn optimal control strategies from state estimates. The framework is tested on the Kuramoto-Sivashinsky equation, demonstrating its effectiveness in stabilizing a spatiotemporally chaotic flow from noisy and partial measurements.
☆ Enhancing Variable Selection in Large-scale Logistic Regression: Leveraging Manual Labeling with Beneficial Noise
In large-scale supervised learning, penalized logistic regression (PLR) effectively addresses the overfitting problem by introducing regularization terms yet its performance still depends on efficient variable selection strategies. This paper theoretically demonstrates that label noise stemming from manual labeling, which is solely related to classification difficulty, represents a type of beneficial noise for variable selection in PLR. This benefit is reflected in a more accurate estimation of the selected non-zero coefficients when compared with the case where only truth labels are used. Under large-scale settings, the sample size for PLR can become very large, making it infeasible to store on a single machine. In such cases, distributed computing methods are required to handle PLR model with manual labeling. This paper presents a partition-insensitive parallel algorithm founded on the ADMM (alternating direction method of multipliers) algorithm to address PLR by incorporating manual labeling. The partition insensitivity of the proposed algorithm refers to the fact that the solutions obtained by the algorithm will not change with the distributed storage of data. In addition, the algorithm has global convergence and a sublinear convergence rate. Experimental results indicate that, as compared with traditional variable selection classification techniques, the PLR with manually-labeled noisy data achieves higher estimation and classification accuracy across multiple large-scale datasets.
☆ Hyper-Transforming Latent Diffusion Models
We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming-a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining.
☆ Unified Molecule Generation and Property Prediction
Modeling the joint distribution of the data samples and their properties allows to construct a single model for both data generation and property prediction, with synergistic capabilities reaching beyond purely generative or predictive models. However, training joint models presents daunting architectural and optimization challenges. Here, we propose Hyformer, a transformer-based joint model that successfully blends the generative and predictive functionalities, using an alternating attention mask together with a unified pre-training scheme. We show that Hyformer rivals other joint models, as well as state-of-the-art molecule generation and property prediction models. Additionally, we show the benefits of joint modeling in downstream tasks of molecular representation learning, hit identification and antimicrobial peptide design.
comment: 17 pages, 4 figures
☆ Confidence Sequences for Generalized Linear Models via Regret Analysis
We develop a methodology for constructing confidence sets for parameters of statistical models via a reduction to sequential prediction. Our key observation is that for any generalized linear model (GLM), one can construct an associated game of sequential probability assignment such that achieving low regret in the game implies a high-probability upper bound on the excess likelihood of the true parameter of the GLM. This allows us to develop a scheme that we call online-to-confidence-set conversions, which effectively reduces the problem of proving the desired statistical claim to an algorithmic question. We study two varieties of this conversion scheme: 1) analytical conversions that only require proving the existence of algorithms with low regret and provide confidence sets centered at the maximum-likelihood estimator 2) algorithmic conversions that actively leverage the output of the online algorithm to construct confidence sets (and may be centered at other, adaptively constructed point estimators). The resulting methodology recovers all state-of-the-art confidence set constructions within a single framework, and also provides several new types of confidence sets that were previously unknown in the literature.
☆ Least-Squares-Embedded Optimization for Accelerated Convergence of PINNs in Acoustic Wavefield Simulations
Physics-Informed Neural Networks (PINNs) have shown promise in solving partial differential equations (PDEs), including the frequency-domain Helmholtz equation. However, standard training of PINNs using gradient descent (GD) suffers from slow convergence and instability, particularly for high-frequency wavefields. For scattered acoustic wavefield simulation based on Helmholtz equation, we derive a hybrid optimization framework that accelerates training convergence by embedding a least-squares (LS) solver directly into the GD loss function. This formulation enables optimal updates for the linear output layer. Our method is applicable with or without perfectly matched layers (PML), and we provide practical tensor-based implementations for both scenarios. Numerical experiments on benchmark velocity models demonstrate that our approach achieves faster convergence, higher accuracy, and improved stability compared to conventional PINN training. In particular, our results show that the LS-enhanced method converges rapidly even in cases where standard GD-based training fails. The LS solver operates on a small normal matrix, ensuring minimal computational overhead and making the method scalable for large-scale wavefield simulations.
☆ Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
Streetscapes are an essential component of urban space. Their assessment is presently either limited to morphometric properties of their mass skeleton or requires labor-intensive qualitative evaluations of visually perceived qualities. This paper introduces SAGAI: Streetscape Analysis with Generative Artificial Intelligence, a modular workflow for scoring street-level urban scenes using open-access data and vision-language models. SAGAI integrates OpenStreetMap geometries, Google Street View imagery, and a lightweight version of the LLaVA model to generate structured spatial indicators from images via customizable natural language prompts. The pipeline includes an automated mapping module that aggregates visual scores at both the point and street levels, enabling direct cartographic interpretation. It operates without task-specific training or proprietary software dependencies, supporting scalable and interpretable analysis of urban environments. Two exploratory case studies in Nice and Vienna illustrate SAGAI's capacity to produce geospatial outputs from vision-language inference. The initial results show strong performance for binary urban-rural scene classification, moderate precision in commercial feature detection, and lower estimates, but still informative, of sidewalk width. Fully deployable by any user, SAGAI can be easily adapted to a wide range of urban research themes, such as walkability, safety, or urban design, through prompt modification alone.
comment: 25 pages, 6 figures in main paper, 6 figures in appendices
☆ A Comprehensive Survey of Synthetic Tabular Data Generation
Tabular data remains one of the most prevalent and critical data formats across diverse real-world applications. However, its effective use in machine learning (ML) is often constrained by challenges such as data scarcity, privacy concerns, and class imbalance. Synthetic data generation has emerged as a promising solution, leveraging generative models to learn the distribution of real datasets and produce high-fidelity, privacy-preserving samples. Various generative paradigms have been explored, including energy-based models (EBMs), variational autoencoders (VAEs), generative adversarial networks (GANs), large language models (LLMs), and diffusion models. While several surveys have investigated synthetic tabular data generation, most focus on narrow subdomains or specific generative methods, such as GANs, diffusion models, or privacy-preserving techniques. This limited scope often results in fragmented insights, lacking a comprehensive synthesis that bridges diverse approaches. In particular, recent advances driven by LLMs and diffusion-based models remain underexplored. This gap hinders a holistic understanding of the field`s evolution, methodological interplay, and open challenges. To address this, our survey provides a unified and systematic review of synthetic tabular data generation. Our contributions are threefold: (1) we propose a comprehensive taxonomy that organizes existing methods into traditional approaches, diffusion-based methods, and LLM-based models, and provide an in-depth comparative analysis; (2) we detail the complete pipeline for synthetic tabular data generation, including data synthesis, post-processing, and evaluation; (3) we identify major challenges, explore real-world applications, and outline open research questions and future directions to guide future work in this rapidly evolving area.
☆ Neuro-Evolutionary Approach to Physics-Aware Symbolic Regression
Symbolic regression is a technique that can automatically derive analytic models from data. Traditionally, symbolic regression has been implemented primarily through genetic programming that evolves populations of candidate solutions sampled by genetic operators, crossover and mutation. More recently, neural networks have been employed to learn the entire analytical model, i.e., its structure and coefficients, using regularized gradient-based optimization. Although this approach tunes the model's coefficients better, it is prone to premature convergence to suboptimal model structures. Here, we propose a neuro-evolutionary symbolic regression method that combines the strengths of evolutionary-based search for optimal neural network (NN) topologies with gradient-based tuning of the network's parameters. Due to the inherent high computational demand of evolutionary algorithms, it is not feasible to learn the parameters of every candidate NN topology to full convergence. Thus, our method employs a memory-based strategy and population perturbations to enhance exploitation and reduce the risk of being trapped in suboptimal NNs. In this way, each NN topology can be trained using only a short sequence of backpropagation iterations. The proposed method was experimentally evaluated on three real-world test problems and has been shown to outperform other NN-based approaches regarding the quality of the models obtained.
☆ Dynamic Time-aware Continual User Representation Learning
Traditional user modeling (UM) approaches have primarily focused on designing models for a single specific task, but they face limitations in generalization and adaptability across various tasks. Recognizing these challenges, recent studies have shifted towards continual learning (CL)-based universal user representation learning aiming to develop a single model capable of handling multiple tasks. Despite advancements, existing methods are in fact evaluated under an unrealistic scenario that does not consider the passage of time as tasks progress, which overlooks newly emerged items that may change the item distribution of previous tasks. In this paper, we introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated, which takes into account the passage of time as tasks progress. Then, we propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO, designed to alleviate catastrophic forgetting despite continuous shifts in item distribution, while also allowing the knowledge acquired from previous tasks to adapt to the current shifted item distribution. Through our extensive experiments, we demonstrate the superiority of DITTO over state-of-the-art methods under a practical evaluation scenario. Our source code is available at https://github.com/seungyoon-Choi/DITTO_official.
☆ Breaking scaling relations with inverse catalysts: a machine learning exploration of trends in $\mathrm{CO_2}$ hydrogenation energy barriers
The conversion of $\mathrm{CO_2}$ into useful products such as methanol is a key strategy for abating climate change and our dependence on fossil fuels. Developing new catalysts for this process is costly and time-consuming and can thus benefit from computational exploration of possible active sites. However, this is complicated by the complexity of the materials and reaction networks. Here, we present a workflow for exploring transition states of elementary reaction steps at inverse catalysts, which is based on the training of a neural network-based machine learning interatomic potential. We focus on the crucial formate intermediate and its formation over nanoclusters of indium oxide supported on Cu(111). The speedup compared to an approach purely based on density functional theory allows us to probe a wide variety of active sites found at nanoclusters of different sizes and stoichiometries. Analysis of the obtained set of transition state geometries reveals different structure--activity trends at the edge or interior of the nanoclusters. Furthermore, the identified geometries allow for the breaking of linear scaling relations, which could be a key underlying reason for the excellent catalytic performance of inverse catalysts observed in experiments.
comment: 10 pages, 6 figures + supporting information (5 pages, 7 figures, 2 tables)
☆ Seeking Flat Minima over Diverse Surrogates for Improved Adversarial Transferability: A Theoretical Framework and Algorithmic Instantiation
The transfer-based black-box adversarial attack setting poses the challenge of crafting an adversarial example (AE) on known surrogate models that remain effective against unseen target models. Due to the practical importance of this task, numerous methods have been proposed to address this challenge. However, most previous methods are heuristically designed and intuitively justified, lacking a theoretical foundation. To bridge this gap, we derive a novel transferability bound that offers provable guarantees for adversarial transferability. Our theoretical analysis has the advantages of \textit{(i)} deepening our understanding of previous methods by building a general attack framework and \textit{(ii)} providing guidance for designing an effective attack algorithm. Our theoretical results demonstrate that optimizing AEs toward flat minima over the surrogate model set, while controlling the surrogate-target model shift measured by the adversarial model discrepancy, yields a comprehensive guarantee for AE transferability. The results further lead to a general transfer-based attack framework, within which we observe that previous methods consider only partial factors contributing to the transferability. Algorithmically, inspired by our theoretical results, we first elaborately construct the surrogate model set in which models exhibit diverse adversarial vulnerabilities with respect to AEs to narrow an instantiated adversarial model discrepancy. Then, a \textit{model-Diversity-compatible Reverse Adversarial Perturbation} (DRAP) is generated to effectively promote the flatness of AEs over diverse surrogate models to improve transferability. Extensive experiments on NIPS2017 and CIFAR-10 datasets against various target models demonstrate the effectiveness of our proposed attack.
comment: 26 pages, 6 figures
☆ An Effective Gram Matrix Characterizes Generalization in Deep Networks
We derive a differential equation that governs the evolution of the generalization gap when a deep network is trained by gradient descent. This differential equation is controlled by two quantities, a contraction factor that brings together trajectories corresponding to slightly different datasets, and a perturbation factor that accounts for them training on different datasets. We analyze this differential equation to compute an ``effective Gram matrix'' that characterizes the generalization gap after training in terms of the alignment between this Gram matrix and a certain initial ``residual''. Empirical evaluations on image classification datasets indicate that this analysis can predict the test loss accurately. Further, at any point during training, the residual predominantly lies in the subspace of the effective Gram matrix with the smallest eigenvalues. This indicates that the training process is benign, i.e., it does not lead to significant deterioration of the generalization gap (which is zero at initialization). The alignment between the effective Gram matrix and the residual is different for different datasets and architectures. The match/mismatch of the data and the architecture is primarily responsible for good/bad generalization.
☆ From Past to Present: A Survey of Malicious URL Detection Techniques, Datasets and Code Repositories
Malicious URLs persistently threaten the cybersecurity ecosystem, by either deceiving users into divulging private data or distributing harmful payloads to infiltrate host systems. Gaining timely insights into the current state of this ongoing battle holds significant importance. However, existing reviews exhibit 4 critical gaps: 1) Their reliance on algorithm-centric taxonomies obscures understanding of how detection approaches exploit specific modal information channels; 2) They fail to incorporate pivotal LLM/Transformer-based defenses; 3) No open-source implementations are collected to facilitate benchmarking; 4) Insufficient dataset coverage.This paper presents a comprehensive review of malicious URL detection technologies, systematically analyzing methods from traditional blacklisting to advanced deep learning approaches (e.g. Transformer, GNNs, and LLMs). Unlike prior surveys, we propose a novel modality-based taxonomy that categorizes existing works according to their primary data modalities (URL, HTML, Visual, etc.). This hierarchical classification enables both rigorous technical analysis and clear understanding of multimodal information utilization. Furthermore, to establish a profile of accessible datasets and address the lack of standardized benchmarking (where current studies often lack proper baseline comparisons), we curate and analyze: 1) publicly available datasets (2016-2024), and 2) open-source implementations from published works(2013-2025). Then, we outline essential design principles and architectural frameworks for product-level implementations. The review concludes by examining emerging challenges and proposing actionable directions for future research. We maintain a GitHub repository for ongoing curating datasets and open-source implementations: https://github.com/sevenolu7/Malicious-URL-Detection-Open-Source/tree/master.
☆ Node Assigned physics-informed neural networks for thermal-hydraulic system simulation: CVH/FL module
Severe accidents (SAs) in nuclear power plants have been analyzed using thermal-hydraulic (TH) system codes such as MELCOR and MAAP. These codes efficiently simulate the progression of SAs, while they still have inherent limitations due to their inconsistent finite difference schemes. The use of empirical schemes incorporating both implicit and explicit formulations inherently induces unidirectional coupling in multi-physics analyses. The objective of this study is to develop a novel numerical method for TH system codes using physics-informed neural network (PINN). They have shown strength in solving multi-physics due to the innate feature of neural networks-automatic differentiation. We propose a node-assigned PINN (NA-PINN) that is suitable for the control volume approach-based system codes. NA-PINN addresses the issue of spatial governing equation variation by assigning an individual network to each nodalization of the system code, such that spatial information is excluded from both the input and output domains, and each subnetwork learns to approximate a purely temporal solution. In this phase, we evaluated the accuracy of the PINN methods for the hydrodynamic module. In the 6 water tank simulation, PINN and NA-PINN showed maximum absolute errors of 1.678 and 0.007, respectively. It should be noted that only NA-PINN demonstrated acceptable accuracy. To the best of the authors' knowledge, this is the first study to successfully implement a system code using PINN. Our future work involves extending NA-PINN to a multi-physics solver and developing it in a surrogate manner.
comment: 40 pages, 12 figures. Jeesuk Shin and Cheolwoong Kim contributed equally to this work. Sung Joong Kim and Joongoo Jeon are co-corresponding authors
☆ Private Federated Learning using Preference-Optimized Synthetic Data ICLR25
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as a preference ranking. Our algorithm, Preference Optimization for Private Client Data (POPri) harnesses client feedback using preference optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 68%, compared to 52% for prior synthetic data methods, and 10% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
comment: Spotlight presentation at SynthData Workshop ICLR25
☆ iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
As time evolves, data within specific domains exhibit predictability that motivates time series forecasting to predict future trends from historical data. However, current deep forecasting methods can achieve promising performance but generally lack interpretability, hindering trustworthiness and practical deployment in safety-critical applications such as auto-driving and healthcare. In this paper, we propose a novel interpretable model, iTFKAN, for credible time series forecasting. iTFKAN enables further exploration of model decision rationales and underlying data patterns due to its interpretability achieved through model symbolization. Besides, iTFKAN develops two strategies, prior knowledge injection, and time-frequency synergy learning, to effectively guide model learning under complex intertwined time series data. Extensive experimental results demonstrated that iTFKAN can achieve promising forecasting performance while simultaneously possessing high interpretive capabilities.
☆ Target Concrete Score Matching: A Holistic Framework for Discrete Diffusion
Discrete diffusion is a promising framework for modeling and generating discrete data. In this work, we present Target Concrete Score Matching (TCSM), a novel and versatile objective for training and fine-tuning discrete diffusion models. TCSM provides a general framework with broad applicability. It supports pre-training discrete diffusion models directly from data samples, and many existing discrete diffusion approaches naturally emerge as special cases of our more general TCSM framework. Furthermore, the same TCSM objective extends to post-training of discrete diffusion models, including fine-tuning using reward functions or preference data, and distillation of knowledge from pre-trained autoregressive models. These new capabilities stem from the core idea of TCSM, estimating the concrete score of the target distribution, which resides in the original (clean) data space. This allows seamless integration with reward functions and pre-trained models, which inherently only operate in the clean data space rather than the noisy intermediate spaces of diffusion processes. Our experiments on language modeling tasks demonstrate that TCSM matches or surpasses current methods. Additionally, TCSM is versatile, applicable to both pre-training and post-training scenarios, offering greater flexibility and sample efficiency.
☆ MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
☆ Natural Policy Gradient for Average Reward Non-Stationary RL
We consider the problem of non-stationary reinforcement learning (RL) in the infinite-horizon average-reward setting. We model it by a Markov Decision Process with time-varying rewards and transition probabilities, with a variation budget of $\Delta_T$. Existing non-stationary RL algorithms focus on model-based and model-free value-based methods. Policy-based methods despite their flexibility in practice are not theoretically well understood in non-stationary RL. We propose and analyze the first model-free policy-based algorithm, Non-Stationary Natural Actor-Critic (NS-NAC), a policy gradient method with a restart based exploration for change and a novel interpretation of learning rates as adapting factors. Further, we present a bandit-over-RL based parameter-free algorithm BORL-NS-NAC that does not require prior knowledge of the variation budget $\Delta_T$. We present a dynamic regret of $\tilde{\mathscr O}(|S|^{1/2}|A|^{1/2}\Delta_T^{1/6}T^{5/6})$ for both algorithms, where $T$ is the time horizon, and $|S|$, $|A|$ are the sizes of the state and action spaces. The regret analysis leverages a novel adaptation of the Lyapunov function analysis of NAC to dynamic environments and characterizes the effects of simultaneous updates in policy, value function estimate and changes in the environment.
☆ Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
☆ Circinus: Efficient Query Planner for Compound ML Serving
The rise of compound AI serving -- integrating multiple operators in a pipeline that may span edge and cloud tiers -- enables end-user applications such as autonomous driving, generative AI-powered meeting companions, and immersive gaming. Achieving high service goodput -- i.e., meeting service level objectives (SLOs) for pipeline latency, accuracy, and costs -- requires effective planning of operator placement, configuration, and resource allocation across infrastructure tiers. However, the diverse SLO requirements, varying edge capabilities, and high query volumes create an enormous planning search space, rendering current solutions fundamentally limited for real-time serving and cost-efficient deployments. This paper presents Circinus, an SLO-aware query planner for large-scale compound AI workloads. Circinus novelly decomposes multi-query planning and multi-dimensional SLO objectives while preserving global decision quality. By exploiting plan similarities within and across queries, it significantly reduces search steps. It further improves per-step efficiency with a precision-aware plan profiler that incrementally profiles and strategically applies early stopping based on imprecise estimates of plan performance. At scale, Circinus selects query-plan combinations to maximize global SLO goodput. Evaluations in real-world settings show that Circinus improves service goodput by 3.2-5.0$\times$, accelerates query planning by 4.2-5.8$\times$, achieving query response in seconds, while reducing deployment costs by 3.2-4.0$\times$ over state of the arts even in their intended single-tier deployments.
☆ The Safety-Privacy Tradeoff in Linear Bandits IEEE
We consider a collection of linear stochastic bandit problems, each modeling the random response of different agents to proposed interventions, coupled together by a global safety constraint. We assume a central coordinator must choose actions to play on each bandit with the objective of regret minimization, while also ensuring that the expected response of all agents satisfies the global safety constraints at each round, in spite of uncertainty about the bandits' parameters. The agents consider their observed responses to be private and in order to protect their sensitive information, the data sharing with the central coordinator is performed under local differential privacy (LDP). However, providing higher level of privacy to different agents would have consequences in terms of safety and regret. We formalize these tradeoffs by building on the notion of the sharpness of the safety set - a measure of how the geometric properties of the safe set affects the growth of regret - and propose a unilaterally unimprovable vector of privacy levels for different agents given a maximum regret budget.
comment: 16 pages, 3 figures, accepted to 2025 IEEE International Symposium on Information Theory (ISIT)
☆ Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks
Graphs effectively characterize relational data, driving graph representation learning methods that uncover underlying predictive information. As state-of-the-art approaches, Graph Neural Networks (GNNs) enable end-to-end learning for diverse tasks. Recent disentangled graph representation learning enhances interpretability by decoupling independent factors in graph data. However, existing methods often implicitly and coarsely characterize graph structures, limiting structural pattern analysis within the graph. This paper proposes the Graph Optimal Matching Kernel Convolutional Network (GOMKCN) to address this limitation. We view graphs as node-centric subgraphs, where each subgraph acts as a structural factor encoding position-specific information. This transforms graph prediction into structural pattern recognition. Inspired by CNNs, GOMKCN introduces the Graph Optimal Matching Kernel (GOMK) as a convolutional operator, computing similarities between subgraphs and learnable graph filters. Mathematically, GOMK maps subgraphs and filters into a Hilbert space, representing graphs as point sets. Disentangled representations emerge from projecting subgraphs onto task-optimized filters, which adaptively capture relevant structural patterns via gradient descent. Crucially, GOMK incorporates local correspondences in similarity measurement, resolving the trade-off between differentiability and accuracy in graph kernels. Experiments validate that GOMKCN achieves superior accuracy and interpretability in graph pattern mining and prediction. The framework advances the theoretical foundation for disentangled graph representation learning.
☆ DP2FL: Dual Prompt Personalized Federated Learning in Foundation Models
Personalized federated learning (PFL) has garnered significant attention for its ability to address heterogeneous client data distributions while preserving data privacy. However, when local client data is limited, deep learning models often suffer from insufficient training, leading to suboptimal performance. Foundation models, such as CLIP (Contrastive Language-Image Pretraining), exhibit strong feature extraction capabilities and can alleviate this issue by fine-tuning on limited local data. Despite their potential, foundation models are rarely utilized in federated learning scenarios, and challenges related to integrating new clients remain largely unresolved. To address these challenges, we propose the Dual Prompt Personalized Federated Learning (DP2FL) framework, which introduces dual prompts and an adaptive aggregation strategy. DP2FL combines global task awareness with local data-driven insights, enabling local models to achieve effective generalization while remaining adaptable to specific data distributions. Moreover, DP2FL introduces a global model that enables prediction on new data sources and seamlessly integrates newly added clients without requiring retraining. Experimental results in highly heterogeneous environments validate the effectiveness of DP2FL's prompt design and aggregation strategy, underscoring the advantages of prediction on novel data sources and demonstrating the seamless integration of new clients into the federated learning framework.
☆ Covariate-dependent Graphical Model Estimation via Neural Networks with Statistical Guarantees
Graphical models are widely used in diverse application domains to model the conditional dependencies amongst a collection of random variables. In this paper, we consider settings where the graph structure is covariate-dependent, and investigate a deep neural network-based approach to estimate it. The method allows for flexible functional dependency on the covariate, and fits the data reasonably well in the absence of a Gaussianity assumption. Theoretical results with PAC guarantees are established for the method, under assumptions commonly used in an Empirical Risk Minimization framework. The performance of the proposed method is evaluated on several synthetic data settings and benchmarked against existing approaches. The method is further illustrated on real datasets involving data from neuroscience and finance, respectively, and produces interpretable results.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
☆ Property-Preserving Hashing for $\ell_1$-Distance Predicates: Applications to Countering Adversarial Input Attacks
Perceptual hashing is used to detect whether an input image is similar to a reference image with a variety of security applications. Recently, they have been shown to succumb to adversarial input attacks which make small imperceptible changes to the input image yet the hashing algorithm does not detect its similarity to the original image. Property-preserving hashing (PPH) is a recent construct in cryptography, which preserves some property (predicate) of its inputs in the hash domain. Researchers have so far shown constructions of PPH for Hamming distance predicates, which, for instance, outputs 1 if two inputs are within Hamming distance $t$. A key feature of PPH is its strong correctness guarantee, i.e., the probability that the predicate will not be correctly evaluated in the hash domain is negligible. Motivated by the use case of detecting similar images under adversarial setting, we propose the first PPH construction for an $\ell_1$-distance predicate. Roughly, this predicate checks if the two one-sided $\ell_1$-distances between two images are within a threshold $t$. Since many adversarial attacks use $\ell_2$-distance (related to $\ell_1$-distance) as the objective function to perturb the input image, by appropriately choosing the threshold $t$, we can force the attacker to add considerable noise to evade detection, and hence significantly deteriorate the image quality. Our proposed scheme is highly efficient, and runs in time $O(t^2)$. For grayscale images of size $28 \times 28$, we can evaluate the predicate in $0.0784$ seconds when pixel values are perturbed by up to $1 \%$. For larger RGB images of size $224 \times 224$, by dividing the image into 1,000 blocks, we achieve times of $0.0128$ seconds per block for $1 \%$ change, and up to $0.2641$ seconds per block for $14\%$ change.
☆ Deep Neural Network Emulation of the Quantum-Classical Transition via Learned Wigner Function Dynamics
The emergence of classical behavior from quantum mechanics as Planck's constant $\hbar$ approaches zero remains a fundamental challenge in physics [1-3]. This paper introduces a novel approach employing deep neural networks to directly learn the dynamical mapping from initial quantum state parameters (for Gaussian wave packets of the one-dimensional harmonic oscillator) and $\hbar$ to the parameters of the time-evolved Wigner function in phase space [4-6]. A comprehensive dataset of analytically derived time-evolved Wigner functions was generated, and a deep feedforward neural network with an enhanced architecture was successfully trained for this prediction task, achieving a final training loss of ~ 0.0390. The network demonstrates a significant and previously unrealized ability to accurately capture the underlying mapping of the Wigner function dynamics. This allows for a direct emulation of the quantum-classical transition by predicting the evolution of phase-space distributions as $\hbar$ is systematically varied. The implications of these findings for providing a new computational lens on the emergence of classicality are discussed, highlighting the potential of this direct phase-space learning approach for studying fundamental aspects of quantum mechanics. This work presents a significant advancement beyond previous efforts that focused on learning observable mappings [7], offering a direct route via the phase-space representation.
☆ ClarifyCoder: Clarification-Aware Fine-Tuning for Programmatic Problem Solving
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, a significant gap remains between their current performance and that of expert software engineers. A key differentiator is that human engineers actively seek clarification when faced with ambiguous requirements, while LLMs typically generate code regardless of uncertainties in the problem description. We present ClarifyCoder, a novel framework with synthetic data generation and instruction-tuning that enables LLMs to identify ambiguities and request clarification before proceeding with code generation. While recent work has focused on LLM-based agents for iterative code generation, we argue that the fundamental ability to recognize and query ambiguous requirements should be intrinsic to the models themselves. Our approach consists of two main components: (1) a data synthesis technique that augments existing programming datasets with scenarios requiring clarification to generate clarification-aware training data, and (2) a fine-tuning strategy that teaches models to prioritize seeking clarification over immediate code generation when faced with incomplete or ambiguous requirements. We further provide an empirical analysis of integrating ClarifyCoder with standard fine-tuning for a joint optimization of both clarify-awareness and coding ability. Experimental results demonstrate that ClarifyCoder significantly improves the communication capabilities of Code LLMs through meaningful clarification dialogues while maintaining code generation capabilities.
comment: 12 pages, 5 figures, 6 tables
☆ Reinforcement learning framework for the mechanical design of microelectronic components under multiphysics constraints
This study focuses on the development of reinforcement learning based techniques for the design of microelectronic components under multiphysics constraints. While traditional design approaches based on global optimization approaches are effective when dealing with a small number of design parameters, as the complexity of the solution space and of the constraints increases different techniques are needed. This is an important reason that makes the design and optimization of microelectronic components (characterized by large solution space and multiphysics constraints) very challenging for traditional methods. By taking as prototypical elements an application-specific integrated circuit (ASIC) and a heterogeneously integrated (HI) interposer, we develop and numerically test an optimization framework based on reinforcement learning (RL). More specifically, we consider the optimization of the bonded interconnect geometry for an ASIC chip as well as the placement of components on a HI interposer while satisfying thermoelastic and design constraints. This placement problem is particularly interesting because it features a high-dimensional solution space.
comment: 27 pages of main text, 15 figures
☆ Scalable Permutation-Aware Modeling for Temporal Set Prediction
Temporal set prediction involves forecasting the elements that will appear in the next set, given a sequence of prior sets, each containing a variable number of elements. Existing methods often rely on intricate architectures with substantial computational overhead, which hampers their scalability. In this work, we introduce a novel and scalable framework that leverages permutation-equivariant and permutation-invariant transformations to efficiently model set dynamics. Our approach significantly reduces both training and inference time while maintaining competitive performance. Extensive experiments on multiple public benchmarks show that our method achieves results on par with or superior to state-of-the-art models across several evaluation metrics. These results underscore the effectiveness of our model in enabling efficient and scalable temporal set prediction.
☆ PACE: A Framework for Learning and Control in Linear Incomplete-Information Differential Games
In this paper, we address the problem of a two-player linear quadratic differential game with incomplete information, a scenario commonly encountered in multi-agent control, human-robot interaction (HRI), and approximation methods for solving general-sum differential games. While solutions to such linear differential games are typically obtained through coupled Riccati equations, the complexity increases when agents have incomplete information, particularly when neither is aware of the other's cost function. To tackle this challenge, we propose a model-based Peer-Aware Cost Estimation (PACE) framework for learning the cost parameters of the other agent. In PACE, each agent treats its peer as a learning agent rather than a stationary optimal agent, models their learning dynamics, and leverages this dynamic to infer the cost function parameters of the other agent. This approach enables agents to infer each other's objective function in real time based solely on their previous state observations and dynamically adapt their control policies. Furthermore, we provide a theoretical guarantee for the convergence of parameter estimation and the stability of system states in PACE. Additionally, in our numerical studies, we demonstrate how modeling the learning dynamics of the other agent benefits PACE, compared to approaches that approximate the other agent as having complete information, particularly in terms of stability and convergence speed.
comment: Accepted to 7th Annual Conference on Learning for Dynamics and Control (L4DC) 2025. Camera-ready version using the official PMLR template. The full version including appendix and proofs
☆ Physics-informed features in supervised machine learning
Supervised machine learning involves approximating an unknown functional relationship from a limited dataset of features and corresponding labels. The classical approach to feature-based machine learning typically relies on applying linear regression to standardized features, without considering their physical meaning. This may limit model explainability, particularly in scientific applications. This study proposes a physics-informed approach to feature-based machine learning that constructs non-linear feature maps informed by physical laws and dimensional analysis. These maps enhance model interpretability and, when physical laws are unknown, allow for the identification of relevant mechanisms through feature ranking. The method aims to improve both predictive performance in regression tasks and classification skill scores by integrating domain knowledge into the learning process, while also enabling the potential discovery of new physical equations within the context of explainable machine learning.
☆ Discovering the Precursors of Traffic Breakdowns Using Spatiotemporal Graph Attribution Networks
Understanding and predicting the precursors of traffic breakdowns is critical for improving road safety and traffic flow management. This paper presents a novel approach combining spatiotemporal graph neural networks (ST-GNNs) with Shapley values to identify and interpret traffic breakdown precursors. By extending Shapley explanation methods to a spatiotemporal setting, our proposed method bridges the gap between black-box neural network predictions and interpretable causes. We demonstrate the method on the Interstate-24 data, and identify that road topology and abrupt braking are major factors that lead to traffic breakdowns.
☆ Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems
Contraction metrics are crucial in control theory because they provide a powerful framework for analyzing stability, robustness, and convergence of various dynamical systems. However, identifying these metrics for complex nonlinear systems remains an open challenge due to the lack of scalable and effective tools. This paper explores the approach of learning verifiable contraction metrics parametrized as neural networks (NNs) for discrete-time nonlinear dynamical systems. While prior works on formal verification of contraction metrics for general nonlinear systems have focused on convex optimization methods (e.g. linear matrix inequalities, etc) under the assumption of continuously differentiable dynamics, the growing prevalence of NN-based controllers, often utilizing ReLU activations, introduces challenges due to the non-smooth nature of the resulting closed-loop dynamics. To bridge this gap, we establish a new sufficient condition for establishing formal neural contraction metrics for general discrete-time nonlinear systems assuming only the continuity of the dynamics. We show that from a computational perspective, our sufficient condition can be efficiently verified using the state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN, which scales up non-convex neural network verification via novel integration of symbolic linear bound propagation and branch-and-bound. Built upon our analysis tool, we further develop a learning method for synthesizing neural contraction metrics from sampled data. Finally, our approach is validated through the successful synthesis and verification of NN contraction metrics for various nonlinear examples.
comment: Accepted by L4DC 2025
☆ GeoRDF2Vec Learning Location-Aware Entity Representations in Knowledge Graphs ESWC 2025
Many knowledge graphs contain a substantial number of spatial entities, such as cities, buildings, and natural landmarks. For many of these entities, exact geometries are stored within the knowledge graphs. However, most existing approaches for learning entity representations do not take these geometries into account. In this paper, we introduce a variant of RDF2Vec that incorporates geometric information to learn location-aware embeddings of entities. Our approach expands different nodes by flooding the graph from geographic nodes, ensuring that each reachable node is considered. Based on the resulting flooded graph, we apply a modified version of RDF2Vec that biases graph walks using spatial weights. Through evaluations on multiple benchmark datasets, we demonstrate that our approach outperforms both non-location-aware RDF2Vec and GeoTransE.
comment: 18 pages, ESWC 2025
☆ A Novel Hybrid Approach Using an Attention-Based Transformer + GRU Model for Predicting Cryptocurrency Prices
In this article, we introduce a novel deep learning hybrid model that integrates attention Transformer and Gated Recurrent Unit (GRU) architectures to improve the accuracy of cryptocurrency price predictions. By combining the Transformer's strength in capturing long-range patterns with the GRU's ability to model short-term and sequential trends, the hybrid model provides a well-rounded approach to time series forecasting. We apply the model to predict the daily closing prices of Bitcoin and Ethereum based on historical data that include past prices, trading volumes, and the Fear and Greed index. We evaluate the performance of our proposed model by comparing it with four other machine learning models: two are non-sequential feedforward models: Radial Basis Function Network (RBFN) and General Regression Neural Network (GRNN), and two are bidirectional sequential memory-based models: Bidirectional Long-Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU). The performance of the model is assessed using several metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), along with statistical validation through the nonparametric Friedman test followed by a post hoc Wilcoxon signed rank test. The results demonstrate that our hybrid model consistently achieves superior accuracy, highlighting its effectiveness for financial prediction tasks. These findings provide valuable insights for improving real-time decision making in cryptocurrency markets and support the growing use of hybrid deep learning models in financial analytics.
☆ Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy ICLR 2025
Satellite-based estimates of greenhouse gas (GHG) properties from observations of reflected solar spectra are integral for understanding and monitoring complex terrestrial systems and their impact on the carbon cycle due to their near global coverage. Known as retrieval, making GHG concentration estimations from these observations is a non-linear Bayesian inverse problem, which is operationally solved using a computationally expensive algorithm called Optimal Estimation (OE), providing a Gaussian approximation to a non-Gaussian posterior. This leads to issues in solver algorithm convergence, and to unrealistically confident uncertainty estimates for the retrieved quantities. Upcoming satellite missions will provide orders of magnitude more data than the current constellation of GHG observers. Development of fast and accurate retrieval algorithms with robust uncertainty quantification is critical. Doing so stands to provide substantial climate impact of moving towards the goal of near continuous real-time global monitoring of carbon sources and sinks which is essential for policy making. To achieve this goal, we propose a diffusion-based approach to flexibly retrieve a Gaussian or non-Gaussian posterior, for NASA's Orbiting Carbon Observatory-2 spectrometer, while providing a substantial computational speed-up over the current operational state-of-the-art.
comment: Published as a workshop paper in "Tackling Climate Change with Machine Learning", ICLR 2025. https://www.climatechange.ai/papers/iclr2025/12
☆ Sparse Phased Array Optimization Using Deep Learning
Antenna arrays are widely used in wireless communication, radar systems, radio astronomy, and military defense to enhance signal strength, directivity, and interference suppression. We introduce a deep learning-based optimization approach that enhances the design of sparse phased arrays by reducing grating lobes. This approach begins by generating sparse array configurations to address the non-convex challenges and extensive degrees of freedom inherent in array design. We use neural networks to approximate the non-convex cost function that estimates the energy ratio between the main and side lobes. This differentiable approximation facilitates cost function minimization through gradient descent, optimizing the antenna elements' coordinates and leading to an improved layout. Additionally, we incorporate a tailored penalty mechanism that includes various physical and design constraints into the optimization process, enhancing its robustness and practical applicability. We demonstrate the effectiveness of our method by applying it to the ten array configurations with the lowest initial costs, achieving further cost reductions ranging from 411% to 643%, with an impressive average improvement of 552%. By significantly reducing side lobe levels in antenna arrays, this breakthrough paves the way for ultra-precise beamforming, enhanced interference mitigation, and next-generation wireless and radar systems with unprecedented efficiency and clarity.
In-Context Learning can distort the relationship between sequence likelihoods and biological fitness
Language models have emerged as powerful predictors of the viability of biological sequences. During training these models learn the rules of the grammar obeyed by sequences of amino acids or nucleotides. Once trained, these models can take a sequence as input and produce a likelihood score as an output; a higher likelihood implies adherence to the learned grammar and correlates with experimental fitness measurements. Here we show that in-context learning can distort the relationship between fitness and likelihood scores of sequences. This phenomenon most prominently manifests as anomalously high likelihood scores for sequences that contain repeated motifs. We use protein language models with different architectures trained on the masked language modeling objective for our experiments, and find transformer-based models to be particularly vulnerable to this effect. This behavior is mediated by a look-up operation where the model seeks the identity of the masked position by using the other copy of the repeated motif as a reference. This retrieval behavior can override the model's learned priors. This phenomenon persists for imperfectly repeated sequences, and extends to other kinds of biologically relevant features such as reversed complement motifs in RNA sequences that fold into hairpin structures.
☆ Whence Is A Model Fair? Fixing Fairness Bugs via Propensity Score Matching
Fairness-aware learning aims to mitigate discrimination against specific protected social groups (e.g., those categorized by gender, ethnicity, age) while minimizing predictive performance loss. Despite efforts to improve fairness in machine learning, prior studies have shown that many models remain unfair when measured against various fairness metrics. In this paper, we examine whether the way training and testing data are sampled affects the reliability of reported fairness metrics. Since training and test sets are often randomly sampled from the same population, bias present in the training data may still exist in the test data, potentially skewing fairness assessments. To address this, we propose FairMatch, a post-processing method that applies propensity score matching to evaluate and mitigate bias. FairMatch identifies control and treatment pairs with similar propensity scores in the test set and adjusts decision thresholds for different subgroups accordingly. For samples that cannot be matched, we perform probabilistic calibration using fairness-aware loss functions. Experimental results demonstrate that our approach can (a) precisely locate subsets of the test data where the model is unbiased, and (b) significantly reduce bias on the remaining data. Overall, propensity score matching offers a principled way to improve both fairness evaluation and mitigation, without sacrificing predictive performance.
☆ Antenna Near-Field Reconstruction from Far-Field Data Using Convolutional Neural Networks
Electromagnetic field reconstruction is crucial in many applications, including antenna diagnostics, electromagnetic interference analysis, and system modeling. This paper presents a deep learning-based approach for Far-Field to Near-Field (FF-NF) transformation using Convolutional Neural Networks (CNNs). The goal is to reconstruct near-field distributions from the far-field data of an antenna without relying on explicit analytical transformations. The CNNs are trained on paired far-field and near-field data and evaluated using mean squared error (MSE). The best model achieves a training error of 0.0199 and a test error of 0.3898. Moreover, visual comparisons between the predicted and true near-field distributions demonstrate the model's effectiveness in capturing complex electromagnetic field behavior, highlighting the potential of deep learning in electromagnetic field reconstruction.
☆ Statistical Guarantees in Synthetic Data through Conformal Adversarial Generation
The generation of high-quality synthetic data presents significant challenges in machine learning research, particularly regarding statistical fidelity and uncertainty quantification. Existing generative models produce compelling synthetic samples but lack rigorous statistical guarantees about their relation to the underlying data distribution, limiting their applicability in critical domains requiring robust error bounds. We address this fundamental limitation by presenting a novel framework that incorporates conformal prediction methodologies into Generative Adversarial Networks (GANs). By integrating multiple conformal prediction paradigms including Inductive Conformal Prediction (ICP), Mondrian Conformal Prediction, Cross-Conformal Prediction, and Venn-Abers Predictors, we establish distribution-free uncertainty quantification in generated samples. This approach, termed Conformalized GAN (cGAN), demonstrates enhanced calibration properties while maintaining the generative power of traditional GANs, producing synthetic data with provable statistical guarantees. We provide rigorous mathematical proofs establishing finite-sample validity guarantees and asymptotic efficiency properties, enabling the reliable application of synthetic data in high-stakes domains including healthcare, finance, and autonomous systems.
☆ Approaches to Responsible Governance of GenAI in Organizations
The rapid evolution of Generative AI (GenAI) has introduced unprecedented opportunities while presenting complex challenges around ethics, accountability, and societal impact. This paper draws on a literature review, established governance frameworks, and industry roundtable discussions to identify core principles for integrating responsible GenAI governance into diverse organizational structures. Our objective is to provide actionable recommendations for a balanced, risk-based governance approach that enables both innovation and oversight. Findings emphasize the need for adaptable risk assessment tools, continuous monitoring practices, and cross-sector collaboration to establish trustworthy GenAI. These insights provide a structured foundation and Responsible GenAI Guide (ResAI) for organizations to align GenAI initiatives with ethical, legal, and operational best practices.
☆ Democracy of AI Numerical Weather Models: An Example of Global Forecasting with FourCastNetv2 Made by a University Research Lab Using GPU
This paper demonstrates the feasibility of democratizing AI-driven global weather forecasting models among university research groups by leveraging Graphics Processing Units (GPUs) and freely available AI models, such as NVIDIA's FourCastNetv2. FourCastNetv2 is an NVIDIA's advanced neural network for weather prediction and is trained on a 73-channel subset of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset at single levels and different pressure levels. Although the training specifications for FourCastNetv2 are not released to the public, the training documentation of the model's first generation, FourCastNet, is available to all users. The training had 64 A100 GPUs and took 16 hours to complete. Although NVIDIA's models offer significant reductions in both time and cost compared to traditional Numerical Weather Prediction (NWP), reproducing published forecasting results presents ongoing challenges for resource-constrained university research groups with limited GPU availability. We demonstrate both (i) leveraging FourCastNetv2 to create predictions through the designated application programming interface (API) and (ii) utilizing NVIDIA hardware to train the original FourCastNet model. Further, this paper demonstrates the capabilities and limitations of NVIDIA A100's for resource-limited research groups in universities. We also explore data management, training efficiency, and model validation, highlighting the advantages and challenges of using limited high-performance computing resources. Consequently, this paper and its corresponding GitHub materials may serve as an initial guide for other university research groups and courses related to machine learning, climate science, and data science to develop research and education programs on AI weather forecasting, and hence help democratize the AI NWP in the digital economy.
comment: 12 pages, 8 figures
☆ Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textsubscript{\textnormal{ER}} dataset for future training tasks.
comment: Accepted to the Proceedings of the 19th Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
☆ A Systematic Approach to Design Real-World Human-in-the-Loop Deep Reinforcement Learning: Salient Features, Challenges and Trade-offs
With the growing popularity of deep reinforcement learning (DRL), human-in-the-loop (HITL) approach has the potential to revolutionize the way we approach decision-making problems and create new opportunities for human-AI collaboration. In this article, we introduce a novel multi-layered hierarchical HITL DRL algorithm that comprises three types of learning: self learning, imitation learning and transfer learning. In addition, we consider three forms of human inputs: reward, action and demonstration. Furthermore, we discuss main challenges, trade-offs and advantages of HITL in solving complex problems and how human information can be integrated in the AI solution systematically. To verify our technical results, we present a real-world unmanned aerial vehicles (UAV) problem wherein a number of enemy drones attack a restricted area. The objective is to design a scalable HITL DRL algorithm for ally drones to neutralize the enemy drones before they reach the area. To this end, we first implement our solution using an award-winning open-source HITL software called Cogment. We then demonstrate several interesting results such as (a) HITL leads to faster training and higher performance, (b) advice acts as a guiding direction for gradient methods and lowers variance, and (c) the amount of advice should neither be too large nor too small to avoid over-training and under-training. Finally, we illustrate the role of human-AI cooperation in solving two real-world complex scenarios, i.e., overloaded and decoy attacks.
comment: This is a result of the collaboration by JACOBB, AMII(Alberta Machine Intelligence Institute), Thales and AI Redefined (AIR) in 2021-2023
☆ (Im)possibility of Automated Hallucination Detection in Large Language Models
Is automated hallucination detection possible? In this work, we introduce a theoretical framework to analyze the feasibility of automatically detecting hallucinations produced by large language models (LLMs). Inspired by the classical Gold-Angluin framework for language identification and its recent adaptation to language generation by Kleinberg and Mullainathan, we investigate whether an algorithm, trained on examples drawn from an unknown target language $K$ (selected from a countable collection) and given access to an LLM, can reliably determine whether the LLM's outputs are correct or constitute hallucinations. First, we establish an equivalence between hallucination detection and the classical task of language identification. We prove that any hallucination detection method can be converted into a language identification method, and conversely, algorithms solving language identification can be adapted for hallucination detection. Given the inherent difficulty of language identification, this implies that hallucination detection is fundamentally impossible for most language collections if the detector is trained using only correct examples from the target language. Second, we show that the use of expert-labeled feedback, i.e., training the detector with both positive examples (correct statements) and negative examples (explicitly labeled incorrect statements), dramatically changes this conclusion. Under this enriched training regime, automated hallucination detection becomes possible for all countable language collections. These results highlight the essential role of expert-labeled examples in training hallucination detectors and provide theoretical support for feedback-based methods, such as reinforcement learning with human feedback (RLHF), which have proven critical for reliable LLM deployment.
☆ Safety Pretraining: Toward the Next Generation of Safe AI
As large language models (LLMs) are increasingly deployed in high-stakes settings, the risk of generating harmful or toxic content remains a central challenge. Post-hoc alignment methods are brittle: once unsafe patterns are learned during pretraining, they are hard to remove. We present a data-centric pretraining framework that builds safety into the model from the start. Our contributions include: (i) a safety classifier trained on 10,000 GPT-4 labeled examples, used to filter 600B tokens; (ii) the largest synthetic safety dataset to date (100B tokens) generated via recontextualization of harmful web data; (iii) RefuseWeb and Moral Education datasets that convert harmful prompts into refusal dialogues and web-style educational material; (iv) Harmfulness-Tag annotations injected during pretraining to flag unsafe content and steer away inference from harmful generations; and (v) safety evaluations measuring base model behavior before instruction tuning. Our safety-pretrained models reduce attack success rates from 38.8% to 8.4% with no performance degradation on standard LLM safety benchmarks.
☆ Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
☆ STFM: A Spatio-Temporal Information Fusion Model Based on Phase Space Reconstruction for Sea Surface Temperature Prediction
The sea surface temperature (SST), a key environmental parameter, is crucial to optimizing production planning, making its accurate prediction a vital research topic. However, the inherent nonlinearity of the marine dynamic system presents significant challenges. Current forecasting methods mainly include physics-based numerical simulations and data-driven machine learning approaches. The former, while describing SST evolution through differential equations, suffers from high computational complexity and limited applicability, whereas the latter, despite its computational benefits, requires large datasets and faces interpretability challenges. This study presents a prediction framework based solely on data-driven techniques. Using phase space reconstruction, we construct initial-delay attractor pairs with a mathematical homeomorphism and design a Spatio-Temporal Fusion Mapping (STFM) to uncover their intrinsic connections. Unlike conventional models, our method captures SST dynamics efficiently through phase space reconstruction and achieves high prediction accuracy with minimal training data in comparative tests
comment: 19 pages, 14 figures
☆ Engineering the Law-Machine Learning Translation Problem: Developing Legally Aligned Models
Organizations developing machine learning-based (ML) technologies face the complex challenge of achieving high predictive performance while respecting the law. This intersection between ML and the law creates new complexities. As ML model behavior is inferred from training data, legal obligations cannot be operationalized in source code directly. Rather, legal obligations require "indirect" operationalization. However, choosing context-appropriate operationalizations presents two compounding challenges: (1) laws often permit multiple valid operationalizations for a given legal obligation-each with varying degrees of legal adequacy; and, (2) each operationalization creates unpredictable trade-offs among the different legal obligations and with predictive performance. Evaluating these trade-offs requires metrics (or heuristics), which are in turn difficult to validate against legal obligations. Current methodologies fail to fully address these interwoven challenges as they either focus on legal compliance for traditional software or on ML model development without adequately considering legal complexities. In response, we introduce a five-stage interdisciplinary framework that integrates legal and ML-technical analysis during ML model development. This framework facilitates designing ML models in a legally aligned way and identifying high-performing models that are legally justifiable. Legal reasoning guides choices for operationalizations and evaluation metrics, while ML experts ensure technical feasibility, performance optimization and an accurate interpretation of metric values. This framework bridges the gap between more conceptual analysis of law and ML models' need for deterministic specifications. We illustrate its application using a case study in the context of anti-money laundering.
comment: 16 pages, 1 figure
☆ Backslash: Rate Constrained Optimized Training of Large Language Models
The rapid advancement of large-language models (LLMs) has driven extensive research into parameter compression after training has been completed, yet compression during the training phase remains largely unexplored. In this work, we introduce Rate-Constrained Training (Backslash), a novel training-time compression approach based on rate-distortion optimization (RDO). Backslash enables a flexible trade-off between model accuracy and complexity, significantly reducing parameter redundancy while preserving performance. Experiments in various architectures and tasks demonstrate that Backslash can reduce memory usage by 60\% - 90\% without accuracy loss and provides significant compression gain compared to compression after training. Moreover, Backslash proves to be highly versatile: it enhances generalization with small Lagrange multipliers, improves model robustness to pruning (maintaining accuracy even at 80\% pruning rates), and enables network simplification for accelerated inference on edge devices.
☆ A Novel Graph Transformer Framework for Gene Regulatory Network Inference
The inference of gene regulatory networks (GRNs) is a foundational stride towards deciphering the fundamentals of complex biological systems. Inferring a possible regulatory link between two genes can be formulated as a link prediction problem. Inference of GRNs via gene coexpression profiling data may not always reflect true biological interactions, as its susceptibility to noise and misrepresenting true biological regulatory relationships. Most GRN inference methods face several challenges in the network reconstruction phase. Therefore, it is important to encode gene expression values, leverege the prior knowledge gained from the available inferred network structures and positional informations of the input network nodes towards inferring a better and more confident GRN network reconstruction. In this paper, we explore the integration of multiple inferred networks to enhance the inference of Gene Regulatory Networks (GRNs). Primarily, we employ autoencoder embeddings to capture gene expression patterns directly from raw data, preserving intricate biological signals. Then, we embed the prior knowledge from GRN structures transforming them into a text-like representation using random walks, which are then encoded with a masked language model, BERT, to generate global embeddings for each gene across all networks. Additionally, we embed the positional encodings of the input gene networks to better identify the position of each unique gene within the graph. These embeddings are integrated into graph transformer-based model, termed GT-GRN, for GRN inference. The GT-GRN model effectively utilizes the topological structure of the ground truth network while incorporating the enriched encoded information. Experimental results demonstrate that GT-GRN significantly outperforms existing GRN inference methods, achieving superior accuracy and highlighting the robustness of our approach.
♻ ☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
♻ ☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
♻ ☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
Endovascular procedures have revolutionized the treatment of vascular diseases thanks to minimally invasive solutions that significantly reduce patient recovery time and enhance clinical outcomes. However, the precision and dexterity required during these procedures poses considerable challenges for interventionists. Robotic systems have emerged offering transformative solutions, addressing issues such as operator fatigue, radiation exposure, and the inherent limitations of human precision. The integration of Embodied Intelligence (EI) into these systems signifies a paradigm shift, enabling robots to navigate complex vascular networks and adapt to dynamic physiological conditions. Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution. These methods augment procedural intelligence by facilitating real-time vessel segmentation, device tracking, and anatomical landmark detection. Reinforcement learning and imitation learning further refine navigation strategies and replicate experts' techniques. This review systematically examines the integration of EI principles into robotic technologies, in relation to endovascular procedures. We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted endovascular procedures. By critically evaluating current limitations and emerging opportunities, this review establishes a framework for future developments, emphasizing the potential for greater autonomy and improved clinical outcomes. Emerging trends and specific areas of research, such as federated learning for medical data sharing, explainable AI for clinical decision support, and advanced human-robot collaboration paradigms, are also explored, offering insights into the future direction of this rapidly evolving field.
comment: 41 pages, 7 figures
♻ ☆ MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.
♻ ☆ Expected Free Energy-based Planning as Variational Inference
We address the problem of planning under uncertainty, where an agent must choose actions that not only achieve desired outcomes but also reduce uncertainty. Traditional methods often treat exploration and exploitation as separate objectives, lacking a unified inferential foundation. Active inference, grounded in the Free Energy Principle, provides such a foundation by minimizing Expected Free Energy (EFE), a cost function that combines utility with epistemic drives, such as ambiguity resolution and novelty seeking. However, the computational burden of EFE minimization had remained a significant obstacle to its scalability. In this paper, we show that EFE-based planning arises naturally from minimizing a variational free energy functional on a generative model augmented with preference and epistemic priors. This result reinforces theoretical consistency with the Free Energy Principle by casting planning under uncertainty itself as a form of variational inference. Our formulation yields policies that jointly support goal achievement and information gain, while incorporating a complexity term that accounts for bounded computational resources. This unifying framework connects and extends existing methods, enabling scalable, resource-aware implementations of active inference agents.
comment: 18 pages
♻ ☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
♻ ☆ Solving Inverse Problems in Protein Space Using Diffusion-Based Priors
The interaction of a protein with its environment can be understood and controlled via its 3D structure. Experimental methods for protein structure determination, such as X-ray crystallography or cryogenic electron microscopy, shed light on biological processes but introduce challenging inverse problems. Learning-based approaches have emerged as accurate and efficient methods to solve these inverse problems for 3D structure determination, but are specialized for a predefined type of measurement. Here, we introduce a versatile framework to turn biophysical measurements, such as cryo-EM density maps, into 3D atomic models. Our method combines a physics-based forward model of the measurement process with a pretrained generative model providing a task-agnostic, data-driven prior. Our method outperforms posterior sampling baselines on linear and non-linear inverse problems. In particular, it is the first diffusion-based method for refining atomic models from cryo-EM maps and building atomic models from sparse distance matrices.
♻ ☆ Enhancing Sentiment Analysis in Bengali Texts: A Hybrid Approach Using Lexicon-Based Algorithm and Pretrained Language Model Bangla-BERT
Sentiment analysis (SA) is a process of identifying the emotional tone or polarity within a given text and aims to uncover the user's complex emotions and inner feelings. While sentiment analysis has been extensively studied for languages like English, research in Bengali, remains limited, particularly for fine-grained sentiment categorization. This work aims to connect this gap by developing a novel approach that integrates rule-based algorithms with pre-trained language models. We developed a dataset from scratch, comprising over 15,000 manually labeled reviews. Next, we constructed a Lexicon Data Dictionary, assigning polarity scores to the reviews. We developed a novel rule based algorithm Bangla Sentiment Polarity Score (BSPS), an approach capable of generating sentiment scores and classifying reviews into nine distinct sentiment categories. To assess the performance of this method, we evaluated the classified sentiments using BanglaBERT, a pre-trained transformer-based language model. We also performed sentiment classification directly with BanglaBERT on the original data and evaluated this model's results. Our analysis revealed that the BSPS + BanglaBERT hybrid approach outperformed the standalone BanglaBERT model, achieving higher accuracy, precision, and nuanced classification across the nine sentiment categories. The results of our study emphasize the value and effectiveness of combining rule-based and pre-trained language model approaches for enhanced sentiment analysis in Bengali and suggest pathways for future research and application in languages with similar linguistic complexities.
comment: 13 pages, 12 figures
♻ ☆ Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
♻ ☆ Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
♻ ☆ Truthful mechanisms for linear bandit games with private contexts AAMAS 2025
The contextual bandit problem, where agents arrive sequentially with personal contexts and the system adapts its arm allocation decisions accordingly, has recently garnered increasing attention for enabling more personalized outcomes. However, in many healthcare and recommendation applications, agents have private profiles and may misreport their contexts to gain from the system. For example, in adaptive clinical trials, where hospitals sequentially recruit volunteers to test multiple new treatments and adjust plans based on volunteers' reported profiles such as symptoms and interim data, participants may misreport severe side effects like allergy and nausea to avoid perceived suboptimal treatments. We are the first to study this issue of private context misreporting in a stochastic contextual bandit game between the system and non-repeated agents. We show that traditional low-regret algorithms, such as UCB family algorithms and Thompson sampling, fail to ensure truthful reporting and can result in linear regret in the worst case, while traditional truthful algorithms like explore-then-commit (ETC) and $\epsilon$-greedy algorithm incur sublinear but high regret. We propose a mechanism that uses a linear program to ensure truthfulness while minimizing deviation from Thompson sampling, yielding an $O(\ln T)$ frequentist regret. Our numerical experiments further demonstrate strong performance in multiple contexts and across other distribution families.
comment: Accepted by AAMAS 2025
♻ ☆ Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning
Given inputs of diverse soil characteristics and climate data gathered from various regions, we aimed to build a model to predict accurate land emissions. The problem is important since accurate quantification of the carbon cycle in agroecosystems is crucial for mitigating climate change and ensuring sustainable food production. Predicting accurate land emissions is challenging since calibrating the heterogeneous nature of soil properties, moisture, and environmental conditions is hard at decision-relevant scales. Traditional approaches do not adequately estimate land emissions due to location-independent parameters failing to leverage the spatial heterogeneity and also require large datasets. To overcome these limitations, we proposed Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning (SDSA-KGML), which leverages location-dependent parameters that account for significant spatial heterogeneity in soil moisture from multiple sites within the same region. Experimental results demonstrate that SDSA-KGML models achieve higher local accuracy for the specified states in the Midwest Region.
♻ ☆ A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Advancing Generalizability by the Baldwin Effect
Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them. However, today's PINNs are often trained for a single physics task and require computationally expensive re-training for each new task, even for tasks from similar physics domains. To address this limitation, this paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution. Drawing inspiration from the neurodevelopment of precocial species that have evolved to learn, predict and react quickly to their environment, we envision PINNs that are pre-wired with connection strengths inducing strong biases towards efficient learning of physics. A novel two-stage stochastic programming formulation coupling evolutionary selection pressure (based on proficiency over a distribution of physics tasks) with lifetime learning (to specialize on a sampled subset of those tasks) is proposed to instantiate the Baldwin effect. The evolved Baldwinian-PINNs demonstrate fast and physics-compliant prediction capabilities across a range of empirically challenging problem instances with more than an order of magnitude improvement in prediction accuracy at a fraction of the computation cost compared to state-of-the-art gradient-based meta-learning methods. For example, when solving the diffusion-reaction equation, a 70x improvement in accuracy was obtained while taking 700x less computational time. This paper thus marks a leap forward in the meta-learning of PINNs as generalizable physics solvers. Sample codes are available at https://github.com/chiuph/Baldwinian-PINN.
♻ ☆ Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background: Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results: In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions: By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.
♻ ☆ Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Accurate trajectory prediction is essential for the safe operation of autonomous vehicles in real-world environments. Even well-trained machine learning models may produce unreliable predictions due to discrepancies between training data and real-world conditions encountered during inference. In particular, the training dataset tends to overrepresent common scenes (e.g., straight lanes) while underrepresenting less frequent ones (e.g., traffic circles). In addition, it often overlooks unpredictable real-world events such as sudden braking or falling objects. To ensure safety, it is critical to detect in real-time when a model's predictions become unreliable. Leveraging the intuition that in-distribution (ID) scenes exhibit error patterns similar to training data, while out-of-distribution (OOD) scenes do not, we introduce a principled, real-time approach for OOD detection by framing it as a change-point detection problem. We address the challenging settings where the OOD scenes are deceptive, meaning that they are not easily detectable by human intuitions. Our lightweight solutions can handle the occurrence of OOD at any time during trajectory prediction inference. Experimental results on multiple real-world datasets using a benchmark trajectory prediction model demonstrate the effectiveness of our methods.
♻ ☆ On Benchmarking Code LLMs for Android Malware Analysis ISSTA
Large Language Models (LLMs) have demonstrated strong capabilities in various code intelligence tasks. However, their effectiveness for Android malware analysis remains underexplored. Decompiled Android malware code presents unique challenges for analysis, due to the malicious logic being buried within a large number of functions and the frequent lack of meaningful function names. This paper presents CAMA, a benchmarking framework designed to systematically evaluate the effectiveness of Code LLMs in Android malware analysis. CAMA specifies structured model outputs to support key malware analysis tasks, including malicious function identification and malware purpose summarization. Built on these, it integrates three domain-specific evaluation metrics (consistency, fidelity, and semantic relevance), enabling rigorous stability and effectiveness assessment and cross-model comparison. We construct a benchmark dataset of 118 Android malware samples from 13 families collected in recent years, encompassing over 7.5 million distinct functions, and use CAMA to evaluate four popular open-source Code LLMs. Our experiments provide insights into how Code LLMs interpret decompiled code and quantify the sensitivity to function renaming, highlighting both their potential and current limitations in malware analysis.
comment: This paper has been accepted to the 34th ACM SIGSOFT ISSTA Companion (LLMSC Workshop 2025)
♻ ☆ On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction WWW 2025
The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
comment: Accepted by WWW 2025
♻ ☆ ChatDBG: Augmenting Debugging with Large Language Models
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.
comment: 22 pages, to appear at FSE 2025
♻ ☆ Predicting sub-population specific viral evolution
Forecasting the change in the distribution of viral variants is crucial for therapeutic design and disease surveillance. This task poses significant modeling challenges due to the sharp differences in virus distributions across sub-populations (e.g., countries) and their dynamic interactions. Existing machine learning approaches that model the variant distribution as a whole are incapable of making location-specific predictions and ignore transmissions that shape the viral landscape. In this paper, we propose a sub-population specific protein evolution model, which predicts the time-resolved distributions of viral proteins in different locations. The algorithm explicitly models the transmission rates between sub-populations and learns their interdependence from data. The change in protein distributions across all sub-populations is defined through a linear ordinary differential equation (ODE) parametrized by transmission rates. Solving this ODE yields the likelihood of a given protein occurring in particular sub-populations. Multi-year evaluation on both SARS-CoV-2 and influenza A/H3N2 demonstrates that our model outperforms baselines in accurately predicting distributions of viral proteins across continents and countries. We also find that the transmission rates learned from data are consistent with the transmission pathways discovered by retrospective phylogenetic analysis.
♻ ☆ Rethinking and Recomputing the Value of Machine Learning Models
In this paper, we argue that the prevailing approach to training and evaluating machine learning models often fails to consider their real-world application within organizational or societal contexts, where they are intended to create beneficial value for people. We propose a shift in perspective, redefining model assessment and selection to emphasize integration into workflows that combine machine predictions with human expertise, particularly in scenarios requiring human intervention for low-confidence predictions. Traditional metrics like accuracy and f-score fail to capture the beneficial value of models in such hybrid settings. To address this, we introduce a simple yet theoretically sound "value" metric that incorporates task-specific costs for correct predictions, errors, and rejections, offering a practical framework for real-world evaluation. Through extensive experiments, we show that existing metrics fail to capture real-world needs, often leading to suboptimal choices in terms of value when used to rank classifiers. Furthermore, we emphasize the critical role of calibration in determining model value, showing that simple, well-calibrated models can often outperform more complex models that are challenging to calibrate.
comment: Accepted at the Journal of Artificial Intelligence Review
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning IEEE
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Sharp Bounds for Sequential Federated Learning on Heterogeneous Data
There are two paradigms in Federated Learning (FL): parallel FL (PFL), where models are trained in a parallel manner across clients, and sequential FL (SFL), where models are trained in a sequential manner across clients. Specifically, in PFL, clients perform local updates independently and send the updated model parameters to a global server for aggregation; in SFL, one client starts its local updates only after receiving the model parameters from the previous client in the sequence. In contrast to that of PFL, the convergence theory of SFL on heterogeneous data is still lacking. To resolve the theoretical dilemma of SFL, we establish sharp convergence guarantees for SFL on heterogeneous data with both upper and lower bounds. Specifically, we derive the upper bounds for the strongly convex, general convex and non-convex objective functions, and construct the matching lower bounds for the strongly convex and general convex objective functions. Then, we compare the upper bounds of SFL with those of PFL, showing that SFL outperforms PFL on heterogeneous data (at least, when the level of heterogeneity is relatively high). Experimental results validate the counterintuitive theoretical finding.
comment: arXiv admin note: text overlap with arXiv:2311.03154
♻ ☆ Right Question is Already Half the Answer: Fully Unsupervised LLM Reasoning Incentivization
While large language models (LLMs) have demonstrated exceptional capabilities in challenging tasks such as mathematical reasoning, existing methods to enhance reasoning ability predominantly rely on supervised fine-tuning (SFT) followed by reinforcement learning (RL) on reasoning-specific data after pre-training. However, these approaches critically depend on external supervision--such as human-labelled reasoning traces, verified golden answers, or pre-trained reward models--which limits scalability and practical applicability. In this work, we propose Entropy Minimized Policy Optimization (EMPO), which makes an early attempt at fully unsupervised LLM reasoning incentivization. EMPO does not require any supervised information for incentivizing reasoning capabilities (i.e., neither verifiable reasoning traces, problems with golden answers, nor additional pre-trained reward models). By continuously minimizing the predictive entropy of LLMs on unlabeled user queries in a latent semantic space, EMPO enables purely self-supervised evolution of reasoning capabilities with strong flexibility and practicality. Our experiments demonstrate competitive performance of EMPO on both mathematical reasoning and free-form natural reasoning tasks. Specifically, without any supervised signals, \ours boosts the accuracy of Qwen2.5-Math-7B Base from 30.7\% to 48.1\% on mathematical benchmarks and improves the accuracy of Qwen2.5-7B Base from 32.1\% to 50.1\% on MMLU-Pro.
comment: Ongoing work. First released on April 8, 2025. Updated the natural reasoning results on April 23, 2025
♻ ☆ Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
♻ ☆ AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ Plane-Wave Decomposition and Randomised Training; a Novel Path to Generalised PINNs for SHM
In this paper, we introduce a formulation of Physics-Informed Neural Networks (PINNs), based on learning the form of the Fourier decomposition, and a training methodology based on a spread of randomly chosen boundary conditions. By training in this way we produce a PINN that generalises; after training it can be used to correctly predict the solution for an arbitrary set of boundary conditions and interpolate this solution between the samples that spanned the training domain. We demonstrate for a toy system of two coupled oscillators that this gives the PINN formulation genuine predictive capability owing to an effective reduction of the training to evaluation times ratio due to this decoupling of the solution from specific boundary conditions.
comment: 17 pages, 16 figures; corrected author listing metadata, added references for section II, typos corrected, corrected conventional PINN architecture and regenerated relevant results, improved styling of figures, added further references
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
♻ ☆ PoGO: A Scalable Proof of Useful Work via Quantized Gradient Descent and Merkle Proofs
We present a design called Proof of Gradient Optimization (PoGO) for blockchain consensus, where miners produce verifiable evidence of training large-scale machine-learning models. Building on previous work, we incorporate quantized gradients (4-bit precision) to reduce storage and computation requirements, while still preserving the ability of verifiers to check that real progress has been made on lowering the model's loss. Additionally, we employ Merkle proofs over the full 32-bit model to handle large parameter sets and to enable random leaf checks with minimal on-chain data. We illustrate these ideas using GPT-3 (175B parameters) as a reference example and also refer to smaller but high-performance models (e.g., Gemma~3 with 27B parameters). We provide an empirical cost analysis showing that verification is significantly cheaper than training, thanks in part to quantization and sampling. We also discuss the necessity of longer block times (potentially hours) when incorporating meaningful training steps, the trade-offs when using specialized GPU hardware, and how binary diffs may incrementally optimize updates. Finally, we note that fine-tuning can be handled in a similar manner, merely changing the dataset and the manner of sampling but preserving the overall verification flow. Our protocol allows verifiers to issue either positive or negative attestations; these are aggregated at finalization to either confirm the update or slash the miner.
comment: 14 pages, 1 figure, 1 table
♻ ☆ Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
♻ ☆ Top Score on the Wrong Exam: On Benchmarking in Machine Learning for Vulnerability Detection ISSTA 2025
According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers published in the past five years define ML4VD as a function-level binary classification problem: Given a function, does it contain a security flaw? From our experience as security researchers, faced with deciding whether a given function makes the program vulnerable to attacks, we would often first want to understand the context in which this function is called. In this paper, we study how often this decision can really be made without further context and study both vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function "vulnerable" if it was involved in a patch of an actual security flaw and confirmed to cause the program's vulnerability. It is "non-vulnerable" otherwise. We find that in almost all cases this decision cannot be made without further context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed. But why do ML4VD techniques achieve high scores even though there is demonstrably not enough information in these samples? Spurious correlations: We find that high scores can be achieved even when only word counts are available. This shows that these datasets can be exploited to achieve high scores without actually detecting any security vulnerabilities. We conclude that the prevailing problem statement of ML4VD is ill-defined and call into question the internal validity of this growing body of work. Constructively, we call for more effective benchmarking methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and examine broader implications for the evaluation of machine learning and programming analysis research.
comment: Accepted at the 34th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2025)
♻ ☆ Constrained composite Bayesian optimization for rational synthesis of polymeric particles
Polymeric nano- and micro-scale particles have critical roles in tackling critical healthcare and energy challenges with their miniature characteristics. However, tailoring their synthesis process to meet specific design targets has traditionally depended on domain expertise and costly trial-and-errors. Recently, modeling strategies, particularly Bayesian optimization (BO), have been proposed to aid materials discovery for maximized/minimized properties. Coming from practical demands, this study for the first time integrates constrained and composite Bayesian optimization (CCBO) to perform efficient target value optimization under black-box feasibility constraints and limited data for laboratory experimentation. Using a synthetic problem that simulates electrospraying, a model nanomanufacturing process, CCBO strategically avoided infeasible conditions and efficiently optimized particle production towards predefined size targets, surpassing standard BO pipelines and providing decisions comparable to human experts. Further laboratory experiments validated CCBO capability to guide the rational synthesis of poly(lactic-co-glycolic acid) (PLGA) particles with diameters of 300 nm and 3.0 $\mu$m via electrospraying. With minimal initial data and unknown experiment constraints, CCBO reached the design targets within 4 iterations. Overall, the CCBO approach presents a versatile and holistic optimization paradigm for next-generation target-driven particle synthesis empowered by artificial intelligence (AI).
comment: Revised version with additional experiments in result section Figure 2
♻ ☆ Geodesic Flow Kernels for Semi-Supervised Learning on Mixed-Variable Tabular Dataset AAAI-25
Tabular data poses unique challenges due to its heterogeneous nature, combining both continuous and categorical variables. Existing approaches often struggle to effectively capture the underlying structure and relationships within such data. We propose GFTab (Geodesic Flow Kernels for Semi- Supervised Learning on Mixed-Variable Tabular Dataset), a semi-supervised framework specifically designed for tabular datasets. GFTab incorporates three key innovations: 1) Variable-specific corruption methods tailored to the distinct properties of continuous and categorical variables, 2) A Geodesic flow kernel based similarity measure to capture geometric changes between corrupted inputs, and 3) Tree-based embedding to leverage hierarchical relationships from available labeled data. To rigorously evaluate GFTab, we curate a comprehensive set of 21 tabular datasets spanning various domains, sizes, and variable compositions. Our experimental results show that GFTab outperforms existing ML/DL models across many of these datasets, particularly in settings with limited labeled data.
comment: AAAI-25
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as fast response to external changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
comment: Accepted to RSS 2025. Project page: https://reactive-diffusion-policy.github.io
♻ ☆ Synergy: Towards On-Body AI via Tiny AI Accelerator Collaboration on Wearables IEEE
The advent of tiny artificial intelligence (AI) accelerators enables AI to run at the extreme edge, offering reduced latency, lower power cost, and improved privacy. When integrated into wearable devices, these accelerators open exciting opportunities, allowing various AI apps to run directly on the body. We present Synergy that provides AI apps with best-effort performance via system-driven holistic collaboration over AI accelerator-equipped wearables. To achieve this, Synergy provides device-agnostic programming interfaces to AI apps, giving the system visibility and controllability over the app's resource use. Then, Synergy maximizes the inference throughput of concurrent AI models by creating various execution plans for each app considering AI accelerator availability and intelligently selecting the best set of execution plans. Synergy further improves throughput by leveraging parallelization opportunities over multiple computation units. Our evaluations with 7 baselines and 8 models demonstrate that, on average, Synergy achieves a 23.0 times improvement in throughput, while reducing latency by 73.9% and power consumption by 15.8%, compared to the baselines.
comment: Accepted for publication in IEEE Transactions on Mobile Computing (TMC)
♻ ☆ lamss: when large language models meet self-skepticism
Hallucination is a major challenge for large language models (LLMs), prevent ing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hal lucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, represent ing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accu racy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures
♻ ☆ Dual NUP Representations and Min-Maximization in Factor Graphs
Normals with unknown parameters (NUP) can be used to convert nontrivial model-based estimation problems into iterations of linear least-squares or Gaussian estimation problems. In this paper, we extend this approach by augmenting factor graphs with convex-dual variables and pertinent NUP representations. In particular, in a state space setting, we propose a new iterative forward-backward algorithm that is dual to a recently proposed backward-forward algorithm.
♻ ☆ A Mapper Algorithm with implicit intervals and its optimization
The Mapper algorithm is an essential tool for visualizing complex, high dimensional data in topology data analysis (TDA) and has been widely used in biomedical research. It outputs a combinatorial graph whose structure implies the shape of the data. However,the need for manual parameter tuning and fixed intervals, along with fixed overlapping ratios may impede the performance of the standard Mapper algorithm. Variants of the standard Mapper algorithms have been developed to address these limitations, yet most of them still require manual tuning of parameters. Additionally, many of these variants, including the standard version found in the literature, were built within a deterministic framework and overlooked the uncertainty inherent in the data. To relax these limitations, in this work, we introduce a novel framework that implicitly represents intervals through a hidden assignment matrix, enabling automatic parameter optimization via stochastic gradient descent. In this work, we develop a soft Mapper framework based on a Gaussian mixture model(GMM) for flexible and implicit interval construction. We further illustrate the robustness of the soft Mapper algorithm by introducing the Mapper graph mode as a point estimation for the output graph. Moreover, a stochastic gradient descent algorithm with a specific topological loss function is proposed for optimizing parameters in the model. Both simulation and application studies demonstrate its effectiveness in capturing the underlying topological structures. In addition, the application to an RNA expression dataset obtained from the Mount Sinai/JJ Peters VA Medical Center Brain Bank (MSBB) successfully identifies a distinct subgroup of Alzheimer's Disease.
♻ ☆ Dataset-Agnostic Recommender Systems
Recommender systems have become a cornerstone of personalized user experiences, yet their development typically involves significant manual intervention, including dataset-specific feature engineering, hyperparameter tuning, and configuration. To this end, we introduce a novel paradigm: Dataset-Agnostic Recommender Systems (DAReS) that aims to enable a single codebase to autonomously adapt to various datasets without the need for fine-tuning, for a given recommender system task. Central to this approach is the Dataset Description Language (DsDL), a structured format that provides metadata about the dataset's features and labels, and allow the system to understand dataset's characteristics, allowing it to autonomously manage processes like feature selection, missing values imputation, noise removal, and hyperparameter optimization. By reducing the need for domain-specific expertise and manual adjustments, DAReS offers a more efficient and scalable solution for building recommender systems across diverse application domains. It addresses critical challenges in the field, such as reusability, reproducibility, and accessibility for non-expert users or entry-level researchers.
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
♻ ☆ Modelling Mean-Field Games with Neural Ordinary Differential Equations
Mean-field game theory relies on approximating games that would otherwise have been intractable to model. While the games can be solved analytically via the associated system of partial derivatives, this approach is not model-free, can lead to the loss of the existence or uniqueness of solutions and may suffer from modelling bias. To reduce the dependency between the model and the game, we combine mean-field game theory with deep learning in the form of neural ordinary differential equations. The resulting model is data-driven, lightweight and can learn extensive strategic interactions that are hard to capture using mean-field theory alone. In addition, the model is based on automatic differentiation, making it more robust and objective than approaches based on finite differences. We highlight the efficiency and flexibility of our approach by solving three mean-field games that vary in their complexity, observability and the presence of noise. Using these results, we show that the model is flexible, lightweight and requires few observations to learn the distribution underlying the data.
♻ ☆ Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: change affiliation of A. Pichiecchio. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: this https URL, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
♻ ☆ External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation WWW
Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.
comment: Accepted by the ACM Web Conference (WWW) 2025 Industrial Track as Oral Presentation
♻ ☆ Combining Physics-based and Data-driven Modeling for Building Energy Systems
Building energy modeling plays a vital role in optimizing the operation of building energy systems by providing accurate predictions of the building's real-world conditions. In this context, various techniques have been explored, ranging from traditional physics-based models to data-driven models. Recently, researchers are combining physics-based and data-driven models into hybrid approaches. This includes using the physics-based model output as additional data-driven input, learning the residual between physics-based model and real data, learning a surrogate of the physics-based model, or fine-tuning a surrogate model with real data. However, a comprehensive comparison of the inherent advantages of these hybrid approaches is still missing. The primary objective of this work is to evaluate four predominant hybrid approaches in building energy modeling through a real-world case study, with focus on indoor thermodynamics. To achieve this, we devise three scenarios reflecting common levels of building documentation and sensor availability, assess their performance, and analyze their explainability using hierarchical Shapley values. The real-world study reveals three notable findings. First, greater building documentation and sensor availability lead to higher prediction accuracy for hybrid approaches. Second, the performance of hybrid approaches depends on the type of building room, but the residual approach using a Feedforward Neural Network as data-driven sub-model performs best on average across all rooms. This hybrid approach also demonstrates a superior ability to leverage the simulation from the physics-based sub-model. Third, hierarchical Shapley values prove to be an effective tool for explaining and improving hybrid models while accounting for input correlations.
♻ ☆ Learned enclosure method for experimental EIT data
Electrical impedance tomography (EIT) is a non-invasive imaging method with diverse applications, including medical imaging and non-destructive testing. The inverse problem of reconstructing internal electrical conductivity from boundary measurements is nonlinear and highly ill-posed, making it difficult to solve accurately. In recent years, there has been growing interest in combining analytical methods with machine learning to solve inverse problems. In this paper, we propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks. We demonstrate its performance using experimental data. Compared to the classical enclosure method with least squares fitting, the learned convex hull achieves superior performance on both simulated and experimental data.
♻ ☆ MegaScale-Infer: Serving Mixture-of-Experts at Scale with Disaggregated Expert Parallelism
Mixture-of-Experts (MoE) showcases tremendous potential to scale large language models (LLMs) with enhanced performance and reduced computational complexity. However, its sparsely activated architecture shifts feed-forward networks (FFNs) from being compute-intensive to memory-intensive during inference, leading to substantially lower GPU utilization and increased operational costs. We present MegaScale-Infer, an efficient and cost-effective system for serving large-scale MoE models. MegaScale-Infer disaggregates attention and FFN modules within each model layer, enabling independent scaling, tailored parallelism strategies, and heterogeneous deployment for both modules. To fully exploit disaggregation in the presence of MoE's sparsity, MegaScale-Infer introduces ping-pong pipeline parallelism, which partitions a request batch into micro-batches and shuttles them between attention and FFNs for inference. Combined with distinct model parallelism for each module, MegaScale-Infer effectively hides communication overhead and maximizes GPU utilization. To adapt to disaggregated attention and FFN modules and minimize data transmission overhead (e.g., token dispatch), MegaScale-Infer provides a high-performance M2N communication library that eliminates unnecessary GPU-to-CPU data copies, group initialization overhead, and GPU synchronization. Experimental results indicate that MegaScale-Infer achieves up to 1.90x higher per-GPU throughput than state-of-the-art solutions.
♻ ☆ Learning Smooth and Expressive Interatomic Potentials for Physical Property Prediction
Machine learning interatomic potentials (MLIPs) have become increasingly effective at approximating quantum mechanical calculations at a fraction of the computational cost. However, lower errors on held out test sets do not always translate to improved results on downstream physical property prediction tasks. In this paper, we propose testing MLIPs on their practical ability to conserve energy during molecular dynamic simulations. If passed, improved correlations are found between test errors and their performance on physical property prediction tasks. We identify choices which may lead to models failing this test, and use these observations to improve upon highly-expressive models. The resulting model, eSEN, provides state-of-the-art results on a range of physical property prediction tasks, including materials stability prediction, thermal conductivity prediction, and phonon calculations.
comment: 20 pages, 14 figures, 6 tables
♻ ☆ CAOTE: KV Caching through Attention Output Error based Token Eviction
While long context support of large language models has extended their abilities, it also incurs challenges in memory and compute which becomes crucial bottlenecks in resource-restricted devices. Token eviction, a widely adopted post-training methodology designed to alleviate the bottlenecks by evicting less important tokens from the cache, typically uses attention scores as proxy metrics for token importance. However, one major limitation of attention score as a token-wise importance metrics is that it lacks the information about contribution of tokens to the attention output. In this paper, we propose a simple eviction criterion based on the contribution of cached tokens to attention outputs. Our method, CAOTE, optimizes for eviction error due to token eviction, by seamlessly integrating attention scores and value vectors. This is the first method which uses value vector information on top of attention-based eviction scores. Additionally, CAOTE can act as a meta-heuristic method with flexible usage with any token eviction method. We show that CAOTE, when combined with the state-of-the-art attention score-based methods, always improves accuracies on the downstream task, indicating the importance of leveraging information from values during token eviction process.
comment: 14 pages, 2 figures
♻ ☆ TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making. In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify, as it requires anticipation of all possible unsafe behaviors. We therefore address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data. Our key contributions are: first, we design a safety model that performs credit assignment to estimate each decision step's impact on the overall safety using a dataset of diverse trajectories and their corresponding binary safety labels (i.e., whether the corresponding trajectory is safe/unsafe). Second, we illustrate the architecture of our safety model to demonstrate its ability to learn a separate safety score for each timestep. Third, we reformulate the safe RL problem using the proposed safety model and derive an effective algorithm to optimize a safe yet rewarding policy. Finally, our empirical results corroborate our findings and show that this approach is effective in satisfying unknown safety definition, and scalable to various continuous control tasks.
♻ ☆ Multi-Player Approaches for Dueling Bandits
Various approaches have emerged for multi-armed bandits in distributed systems. The multiplayer dueling bandit problem, common in scenarios with only preference-based information like human feedback, introduces challenges related to controlling collaborative exploration of non-informative arm pairs, but has received little attention. To fill this gap, we demonstrate that the direct use of a Follow Your Leader black-box approach matches the lower bound for this setting when utilizing known dueling bandit algorithms as a foundation. Additionally, we analyze a message-passing fully distributed approach with a novel Condorcet-winner recommendation protocol, resulting in expedited exploration in many cases. Our experimental comparisons reveal that our multiplayer algorithms surpass single-player benchmark algorithms, underscoring their efficacy in addressing the nuanced challenges of the multiplayer dueling bandit setting.
♻ ☆ Deep Learning for Low-Latency, Quantum-Ready RF Sensing
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
♻ ☆ Distinct hydrologic response patterns and trends worldwide revealed by physics-embedded learning
To track rapid changes within our water sector, Global Water Models (GWMs) need to realistically represent hydrologic systems' response patterns - such as baseflow fraction - but are hindered by their limited ability to learn from data. Here we introduce a high-resolution physics-embedded big-data-trained model as a breakthrough in reliably capturing characteristic hydrologic response patterns ('signatures') and their shifts. By realistically representing the long-term water balance, the model revealed widespread shifts - up to ~20% over 20 years - in fundamental green-blue-water partitioning and baseflow ratios worldwide. Shifts in these response patterns, previously considered static, contributed to increasing flood risks in northern mid-latitudes, heightening water supply stresses in southern subtropical regions, and declining freshwater inputs to many European estuaries, all with ecological implications. With more accurate simulations at monthly and daily scales than current operational systems, this next-generation model resolves large, nonlinear seasonal runoff responses to rainfall ('elasticity') and streamflow flashiness in semi-arid and arid regions. These metrics highlight regions with management challenges due to large water supply variability and high climate sensitivity, but also provide tools to forecast seasonal water availability. This capability newly enables global-scale models to deliver reliable and locally relevant insights for water management.
♻ ☆ Program Evaluation with Remotely Sensed Outcomes
Economists often estimate treatment effects in experiments using remotely sensed variables (RSVs), e.g. satellite images or mobile phone activity, in place of directly measured economic outcomes. A common practice is to use an observational sample to train a predictor of the economic outcome from the RSV, and then to use its predictions as the outcomes in the experiment. We show that this method is biased whenever the RSV is post-outcome, i.e. if variation in the economic outcome causes variation in the RSV. In program evaluation, changes in poverty or environmental quality cause changes in satellite images, but not vice versa. As our main result, we nonparametrically identify the treatment effect by formalizing the intuition that underlies common practice: the conditional distribution of the RSV given the outcome and treatment is stable across the samples.Based on our identifying formula, we find that the efficient representation of RSVs for causal inference requires three predictions rather than one. Valid inference does not require any rate conditions on RSV predictions, justifying the use of complex deep learning algorithms with unknown statistical properties. We re-analyze the effect of an anti-poverty program in India using satellite images.
♻ ☆ A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Towards the Causal Complete Cause of Multi-Modal Representation Learning
Multi-Modal Learning (MML) aims to learn effective representations across modalities for accurate predictions. Existing methods typically focus on modality consistency and specificity to learn effective representations. However, from a causal perspective, they may lead to representations that contain insufficient and unnecessary information. To address this, we propose that effective MML representations should be causally sufficient and necessary. Considering practical issues like spurious correlations and modality conflicts, we relax the exogeneity and monotonicity assumptions prevalent in prior works and explore the concepts specific to MML, i.e., Causal Complete Cause (\(C^3\)). We begin by defining \(C^3\), which quantifies the probability of representations being causally sufficient and necessary. We then discuss the identifiability of \(C^3\) and introduce an instrumental variable to support identifying \(C^3\) with non-exogeneity and non-monotonicity. Building on this, we conduct the $C^3$ measurement, i.e., \(C^3\) risk. We propose a twin network to estimate it through (i) the real-world branch: utilizing the instrumental variable for sufficiency, and (ii) the hypothetical-world branch: applying gradient-based counterfactual modeling for necessity. Theoretical analyses confirm its reliability. Based on these results, we propose $C^3$ Regularization, a plug-and-play method that enforces the causal completeness of the learned representations by minimizing \(C^3\) risk. Extensive experiments demonstrate its effectiveness.
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
comment: Project page: https://huggingface.co/spaces/TrustSafeAI/Attention-Tracker
♻ ☆ Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
♻ ☆ Convergence Analysis for Entropy-Regularized Control Problems: A Probabilistic Approach
In this paper we investigate the convergence of the Policy Iteration Algorithm (PIA) for a class of general continuous-time entropy-regularized stochastic control problems. In particular, instead of employing sophisticated PDE estimates for the iterative PDEs involved in the algorithm (see, e.g., Huang-Wang-Zhou(2025)), we shall provide a simple proof from scratch for the convergence of the PIA. Our approach builds on probabilistic representation formulae for solutions of PDEs and their derivatives. Moreover, in the finite horizon model and in the infinite horizon model with large discount factor, the similar arguments lead to a super-exponential rate of convergence without tear. Finally, with some extra efforts we show that our approach can be extended to the diffusion control case in the one dimensional setting, also with a super-exponential rate of convergence.
comment: In this version, we have modified the title and improved the convergence rate to a super-exponential one
♻ ☆ Reinforcement Learning from Multi-level and Episodic Human Feedback
Designing an effective reward function has long been a challenge in reinforcement learning, particularly for complex tasks in unstructured environments. To address this, various learning paradigms have emerged that leverage different forms of human input to specify or refine the reward function. Reinforcement learning from human feedback is a prominent approach that utilizes human comparative feedback, expressed as a preference for one behavior over another, to tackle this problem. In contrast to comparative feedback, we explore multi-level human feedback, which is provided in the form of a score at the end of each episode. This type of feedback offers more coarse but informative signals about the underlying reward function than binary feedback. Additionally, it can handle non-Markovian rewards, as it is based on the evaluation of an entire episode. We propose an algorithm to efficiently learn both the reward function and the optimal policy from this form of feedback. Moreover, we show that the proposed algorithm achieves sublinear regret and demonstrate its empirical effectiveness through extensive simulations.
♻ ☆ Optimal Rates for Robust Stochastic Convex Optimization
Machine learning algorithms in high-dimensional settings are highly susceptible to the influence of even a small fraction of structured outliers, making robust optimization techniques essential. In particular, within the $\epsilon$-contamination model, where an adversary can inspect and replace up to an $\epsilon$-fraction of the samples, a fundamental open problem is determining the optimal rates for robust stochastic convex optimization (SCO) under such contamination. We develop novel algorithms that achieve minimax-optimal excess risk (up to logarithmic factors) under the $\epsilon$-contamination model. Our approach improves over existing algorithms, which are not only suboptimal but also require stringent assumptions, including Lipschitz continuity and smoothness of individual sample functions. By contrast, our optimal algorithms do not require these stringent assumptions, assuming only population-level smoothness of the loss. Moreover, our algorithms can be adapted to handle the case in which the covariance parameter is unknown, and can be extended to nonsmooth population risks via convolutional smoothing. We complement our algorithmic developments with a tight information-theoretic lower bound for robust SCO.
comment: The 6th annual Symposium on Foundations of Responsible Computing (FORC 2025)
♻ ☆ Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
comment: # fixed some typos, added public slm reasoning leaderboard
♻ ☆ Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
♻ ☆ Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
♻ ☆ Discrete Cosine Transform Based Decorrelated Attention for Vision Transformers
Central to the Transformer architectures' effectiveness is the self-attention mechanism, a function that maps queries, keys, and values into a high-dimensional vector space. However, training the attention weights of queries, keys, and values is non-trivial from a state of random initialization. In this paper, we propose two methods. (i) We first address the initialization problem of Vision Transformers by introducing a simple, yet highly innovative, initialization approach utilizing discrete cosine transform (DCT) coefficients. Our proposed DCT-based \textit{attention} initialization marks a significant gain compared to traditional initialization strategies; offering a robust foundation for the attention mechanism. Our experiments reveal that the DCT-based initialization enhances the accuracy of Vision Transformers in classification tasks. (ii) We also recognize that since DCT effectively decorrelates image information in the frequency domain, this decorrelation is useful for compression because it allows the quantization step to discard many of the higher-frequency components. Based on this observation, we propose a novel DCT-based compression technique for the attention function of Vision Transformers. Since high-frequency DCT coefficients usually correspond to noise, we truncate the high-frequency DCT components of the input patches. Our DCT-based compression reduces the size of weight matrices for queries, keys, and values. While maintaining the same level of accuracy, our DCT compressed Swin Transformers obtain a considerable decrease in the computational overhead.
♻ ☆ HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
♻ ☆ Nonasymptotic CLT and Error Bounds for Two-Time-Scale Stochastic Approximation
We consider linear two-time-scale stochastic approximation algorithms driven by martingale noise. Recent applications in machine learning motivate the need to understand finite-time error rates, but conventional stochastic approximation analysis focus on either asymptotic convergence in distribution or finite-time bounds that are far from optimal. Prior work on asymptotic central limit theorems (CLTs) suggest that two-time-scale algorithms may be able to achieve $1/\sqrt{n}$ error in expectation, with a constant given by the expected norm of the limiting Gaussian vector. However, the best known finite-time rates are much slower. We derive the first non-asymptotic central limit theorem with respect to the Wasserstein-1 distance for two-time-scale stochastic approximation with Polyak-Ruppert averaging. As a corollary, we show that expected error achieved by Polyak-Ruppert averaging decays at rate $1/\sqrt{n}$, which significantly improves on the rates of convergence in prior works.
♻ ☆ Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies AAMAS 2025
Although deep reinforcement learning has been shown to be effective, the model's black-box nature presents barriers to direct policy interpretation. To address this problem, we propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning. The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training. At the same time, its architecture is designed so that trained models can be directly translated into interpretable policies expressed as standard (bivalent or probabilistic) logic programs. Moreover, additional layers can be included to extract abstract features from complex observations, acting as a form of predicate invention. The logic representations are highly interpretable, and we show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model, facilitating manual intervention and adaptation of learned policies. We evaluate our approach on a range of tasks requiring learning deterministic or stochastic behaviours from various forms of observations. Our empirical results show that our neural DNF-MT model performs at the level of competing black-box methods whilst providing interpretable policies.
comment: AAMAS 2025 (with Appendix)
♻ ☆ Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
comment: Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.
comment: 2 tables, 6 figures
♻ ☆ Set2Seq Transformer: Temporal and Positional-Aware Set Representations for Sequential Multiple-Instance Learning
Sequential multiple-instance learning involves learning representations of sets distributed across discrete timesteps. In many real-world applications, modeling both the internal structure of sets and their temporal relationships across time is essential for capturing complex underlying patterns. However, existing methods either focus on learning set representations at a static level, ignoring temporal dynamics, or treat sequences as ordered lists of individual elements, lacking explicit mechanisms to represent sets. In this work, we propose Set2Seq Transformer, a novel architecture that jointly models permutation-invariant set structure and temporal dependencies by learning temporal and positional-aware representations of sets within a sequence in an end-to-end multimodal manner. We evaluate our Set2Seq Transformer on two tasks that require modeling both set structure alongside temporal and positional patterns, but differ significantly in domain, modality, and objective. First, we consider a fine-art analysis task, modeling artists' oeuvres for predicting artistic success using a novel dataset, WikiArt-Seq2Rank. Second, we utilize our Set2Seq Transformer for a short-term wildfire danger forecasting task. Through extensive experimentation, we show that our Set2Seq Transformer significantly improves over traditional static multiple-instance learning methods by effectively learning permutation-invariant set, temporal, and positional-aware representations across diverse domains, modalities, and tasks. We will release both the dataset and model implementations on GitHub.
♻ ☆ SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Accepted to International Journcal of Control, Automation and Systems (IJCAS)
♻ ☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO2 concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
♻ ☆ Convergence of Diffusion Models Under the Manifold Hypothesis in High-Dimensions
Denoising Diffusion Probabilistic Models (DDPM) are powerful state-of-the-art methods used to generate synthetic data from high-dimensional data distributions and are widely used for image, audio, and video generation as well as many more applications in science and beyond. The \textit{manifold hypothesis} states that high-dimensional data often lie on lower-dimensional manifolds within the ambient space, and is widely believed to hold in provided examples. While recent results have provided invaluable insight into how diffusion models adapt to the manifold hypothesis, they do not capture the great empirical success of these models, making this a very fruitful research direction. In this work, we study DDPMs under the manifold hypothesis and prove that they achieve rates independent of the ambient dimension in terms of score learning. In terms of sampling complexity, we obtain rates independent of the ambient dimension w.r.t. the Kullback-Leibler divergence, and $O(\sqrt{D})$ w.r.t. the Wasserstein distance. We do this by developing a new framework connecting diffusion models to the well-studied theory of extrema of Gaussian Processes.
♻ ☆ A Study on Mixup-Inspired Augmentation Methods for Software Vulnerability Detection
Various deep learning (DL) methods have recently been utilized to detect software vulnerabilities. Real-world software vulnerability datasets are rare and hard to acquire, as there is no simple metric for classifying vulnerability. Such datasets are heavily imbalanced, and none of the current datasets are considered huge for DL models. To tackle these problems, a recent work has tried to augment the dataset using the source code and generate realistic single-statement vulnerabilities, which is not quite practical and requires manual checking of the generated vulnerabilities. In this paper, we aim to explore the augmentation of vulnerabilities at the representation level to help current models learn better, which has never been done before to the best of our knowledge. We implement and evaluate five augmentation techniques that augment the embedding of the data and have recently been used for code search, which is a completely different software engineering task. We also introduced a conditioned version of those augmentation methods, which ensures the augmentation does not change the vulnerable section of the vector representation. We show that such augmentation methods can be helpful and increase the F1-score by up to 9.67%, yet they cannot beat Random Oversampling when balancing datasets, which increases the F1-score by 10.82%.
comment: Accepted at EASE 2025, Istanbul, Turkey
♻ ☆ Automated Discovery of Operable Dynamics from Videos
Dynamical systems form the foundation of scientific discovery, traditionally modeled with predefined state variables such as the angle and angular velocity, and differential equations such as the equation of motion for a single pendulum. We introduce a framework that automatically discovers a low-dimensional and operable representation of system dynamics, including a set of compact state variables that preserve the smoothness of the system dynamics and a differentiable vector field, directly from video without requiring prior domain-specific knowledge. The prominence and effectiveness of the proposed approach are demonstrated through both quantitative and qualitative analyses of a range of dynamical systems, including the identification of stable equilibria, the prediction of natural frequencies, and the detection of of chaotic and limit cycle behaviors. The results highlight the potential of our data-driven approach to advance automated scientific discovery.
♻ ☆ Overcoming Knowledge Barriers: Online Imitation Learning from Visual Observation with Pretrained World Models
Pretraining and finetuning models has become increasingly popular in decision-making. But there are still serious impediments in Imitation Learning from Observation (ILfO) with pretrained models. This study identifies two primary obstacles: the Embodiment Knowledge Barrier (EKB) and the Demonstration Knowledge Barrier (DKB). The EKB emerges due to the pretrained models' limitations in handling novel observations, which leads to inaccurate action inference. Conversely, the DKB stems from the reliance on limited demonstration datasets, restricting the model's adaptability across diverse scenarios. We propose separate solutions to overcome each barrier and apply them to Action Inference by Maximising Evidence (AIME), a state-of-the-art algorithm. This new algorithm, AIME-NoB, integrates online interactions and a data-driven regulariser to mitigate the EKB. Additionally, it uses a surrogate reward function to broaden the policy's supported states, addressing the DKB. Our experiments on vision-based control tasks from the DeepMind Control Suite and MetaWorld benchmarks show that AIME-NoB significantly improves sample efficiency and converged performance, presenting a robust framework for overcoming the challenges in ILfO with pretrained models. Code available at https://github.com/IcarusWizard/AIME-NoB.
comment: Accepted at TMLR
♻ ☆ RACH Traffic Prediction in Massive Machine Type Communications
Traffic pattern prediction has emerged as a promising approach for efficiently managing and mitigating the impacts of event-driven bursty traffic in massive machine-type communication (mMTC) networks. However, achieving accurate predictions of bursty traffic remains a non-trivial task due to the inherent randomness of events, and these challenges intensify within live network environments. Consequently, there is a compelling imperative to design a lightweight and agile framework capable of assimilating continuously collected data from the network and accurately forecasting bursty traffic in mMTC networks. This paper addresses these challenges by presenting a machine learning-based framework tailored for forecasting bursty traffic in multi-channel slotted ALOHA networks. The proposed machine learning network comprises long-term short-term memory (LSTM) and a DenseNet with feed-forward neural network (FFNN) layers, where the residual connections enhance the training ability of the machine learning network in capturing complicated patterns. Furthermore, we develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network. Simulation results and complexity analysis demonstrate the superiority of our proposed algorithm in terms of both accuracy and complexity, making it well-suited for time-critical live scenarios. We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics. Comprehensive evaluations and simulations indicate that our proposed machine learning approach achieves a remarkable $52\%$ higher accuracy in long-term predictions compared to traditional methods, without imposing additional processing load on the system.
♻ ☆ Linear Convergence of Diffusion Models Under the Manifold Hypothesis
Score-matching generative models have proven successful at sampling from complex high-dimensional data distributions. In many applications, this distribution is believed to concentrate on a much lower $d$-dimensional manifold embedded into $D$-dimensional space; this is known as the manifold hypothesis. The current best-known convergence guarantees are either linear in $D$ or polynomial (superlinear) in $d$. The latter exploits a novel integration scheme for the backward SDE. We take the best of both worlds and show that the number of steps diffusion models require in order to converge in Kullback-Leibler~(KL) divergence is linear (up to logarithmic terms) in the intrinsic dimension $d$. Moreover, we show that this linear dependency is sharp.
♻ ☆ nGPT: Normalized Transformer with Representation Learning on the Hypersphere
We propose a novel neural network architecture, the normalized Transformer (nGPT) with representation learning on the hypersphere. In nGPT, all vectors forming the embeddings, MLP, attention matrices and hidden states are unit norm normalized. The input stream of tokens travels on the surface of a hypersphere, with each layer contributing a displacement towards the target output predictions. These displacements are defined by the MLP and attention blocks, whose vector components also reside on the same hypersphere. Experiments show that nGPT learns much faster, reducing the number of training steps required to achieve the same accuracy by a factor of 4 to 20, depending on the sequence length.
♻ ☆ EditLord: Learning Code Transformation Rules for Code Editing
Code editing is a foundational task in software development, where its effectiveness depends on whether it introduces desired code property changes without changing the original code's intended functionality. Existing approaches often formulate code editing as an implicit end-to-end task, omitting the fact that code-editing procedures inherently consist of discrete and explicit steps. Thus, they suffer from suboptimal performance and lack of robustness and generalization. We introduce EditLord, a code editing framework that makes the code transformation steps explicit. Our key insight is to employ a language model (LM) as an inductive learner to extract code editing rules from the training code pairs as concise meta-rule sets. Such rule sets will be manifested for each training sample to augment them for finetuning or assist in prompting- and iterative-based code editing. EditLordoutperforms the state-of-the-art by an average of 22.7% in editing performance and 58.1% in robustness while achieving 20.2% higher functional correctness across critical software engineering and security applications, LM models, and editing modes.
♻ ☆ Engineering Artificial Intelligence: Framework, Challenges, and Future Direction
Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and eight future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
comment: The paper submitted to the Journal Machine Learning: Engineering has been accepted
♻ ☆ On Minimizing Adversarial Counterfactual Error in Adversarial RL ICLR 2025
Deep Reinforcement Learning (DRL) policies are highly susceptible to adversarial noise in observations, which poses significant risks in safety-critical scenarios. The challenge inherent to adversarial perturbations is that by altering the information observed by the agent, the state becomes only partially observable. Existing approaches address this by either enforcing consistent actions across nearby states or maximizing the worst-case value within adversarially perturbed observations. However, the former suffers from performance degradation when attacks succeed, while the latter tends to be overly conservative, leading to suboptimal performance in benign settings. We hypothesize that these limitations stem from their failing to account for partial observability directly. To this end, we introduce a novel objective called Adversarial Counterfactual Error (ACoE), defined on the beliefs about the true state and balancing value optimization with robustness. To make ACoE scalable in model-free settings, we propose the theoretically-grounded surrogate objective Cumulative-ACoE (C-ACoE). Our empirical evaluations on standard benchmarks (MuJoCo, Atari, and Highway) demonstrate that our method significantly outperforms current state-of-the-art approaches for addressing adversarial RL challenges, offering a promising direction for improving robustness in DRL under adversarial conditions. Our code is available at https://github.com/romanbelaire/acoe-robust-rl.
comment: Presented at ICLR 2025
♻ ☆ Know Unreported Roadway Incidents in Real-time: Early Traffic Anomaly Detection
This research aims to know traffic anomalies as early as possible. A traffic anomaly refers to a generic incident on the road that influences traffic flow and calls for urgent traffic management measures. `Knowing'' the occurrence of a traffic anomaly is twofold: the ability to detect this anomaly before it is reported anywhere, or it may be such that an anomaly can be predicted before it actually occurs on the road (e.g., non-recurrent traffic breakdown). In either way, the objective is to inform traffic operators of unreported incidents in real time and as early as possible. The key is to stay ahead of the curve. Time is of the essence. Conventional automatic incident detection (AID) methods often struggle with early detection due to their limited consideration of spatial effects and early-stage characteristics. Therefore, we propose a deep learning framework utilizing prior domain knowledge and model-designing strategies. This allows the model to detect a broader range of anomalies, not only incidents that significantly influence traffic flow but also early characteristics of incidents along with historically unreported anomalies. We specially design the model to target the early-stage detection/prediction of an incident. Additionally, unlike most conventional AID studies, our method is highly scalable and generalizable, as it is fully automated with no manual selection of historical reports required, relies solely on widely available low-cost data, and requires no additional detectors. The experimental results across numerous road segments on different maps demonstrate that our model leads to more effective and early anomaly detection.
♻ ☆ Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
The traditional two-stage approach to causal inference first identifies a single causal model (or equivalence class of models), which is then used to answer causal queries. However, this neglects any epistemic model uncertainty. In contrast, Bayesian causal inference does incorporate epistemic uncertainty into query estimates via Bayesian marginalisation (posterior averaging) over all causal models. While principled, this marginalisation over entire causal models, i.e., both causal structures (graphs) and mechanisms, poses a tremendous computational challenge. In this work, we address this challenge by decomposing structure marginalisation into the marginalisation over (i) causal orders and (ii) directed acyclic graphs (DAGs) given an order. We can marginalise the latter in closed form by limiting the number of parents per variable and utilising Gaussian processes to model mechanisms. To marginalise over orders, we use a sampling-based approximation, for which we devise a novel auto-regressive distribution over causal orders (ARCO). Our method outperforms state-of-the-art in structure learning on simulated non-linear additive noise benchmarks, and yields competitive results on real-world data. Furthermore, we can accurately infer interventional distributions and average causal effects.
comment: 9 pages + references + appendices (37 pages total)
Multimedia 12
☆ 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
☆ Rethinking Vision Transformer for Large-Scale Fine-Grained Image Retrieval IEEE
Large-scale fine-grained image retrieval (FGIR) aims to retrieve images belonging to the same subcategory as a given query by capturing subtle differences in a large-scale setting. Recently, Vision Transformers (ViT) have been employed in FGIR due to their powerful self-attention mechanism for modeling long-range dependencies. However, most Transformer-based methods focus primarily on leveraging self-attention to distinguish fine-grained details, while overlooking the high computational complexity and redundant dependencies inherent to these models, limiting their scalability and effectiveness in large-scale FGIR. In this paper, we propose an Efficient and Effective ViT-based framework, termed \textbf{EET}, which integrates token pruning module with a discriminative transfer strategy to address these limitations. Specifically, we introduce a content-based token pruning scheme to enhance the efficiency of the vanilla ViT, progressively removing background or low-discriminative tokens at different stages by exploiting feature responses and self-attention mechanism. To ensure the resulting efficient ViT retains strong discriminative power, we further present a discriminative transfer strategy comprising both \textit{discriminative knowledge transfer} and \textit{discriminative region guidance}. Using a distillation paradigm, these components transfer knowledge from a larger ``teacher'' ViT to a more efficient ``student'' model, guiding the latter to focus on subtle yet crucial regions in a cost-free manner. Extensive experiments on two widely-used fine-grained datasets and four large-scale fine-grained datasets demonstrate the effectiveness of our method. Specifically, EET reduces the inference latency of ViT-Small by 42.7\% and boosts the retrieval performance of 16-bit hash codes by 5.15\% on the challenging NABirds dataset.
comment: Accepted by IEEE TMM
☆ Learning Switchable Priors for Neural Image Compression
Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables more accurately, but also incur higher complexity of the entropy models, limiting their practical value. To address this dilemma, we propose a solution to decouple the entropy model complexity from the prior distributions. We use a finite set of trainable priors that correspond to samples of the parametric probabilistic distributions. We train the entropy model to predict the index of the appropriate prior within the set, rather than the specific parameters. Switching between the trained priors further enables us to embrace a skip mode into the prior set, which simply omits a latent variable during the entropy coding. To demonstrate the practical value of our solution, we present a lightweight NIC model, namely FastNIC, together with the learning of switchable priors. FastNIC obtains a better trade-off between compression efficiency and computational complexity for neural image compression. We also implanted the switchable priors into state-of-the-art NIC models and observed improved compression efficiency with a significant reduction of entropy coding complexity.
comment: 18 pages, 15 figures
☆ TraveLLaMA: Facilitating Multi-modal Large Language Models to Understand Urban Scenes and Provide Travel Assistance
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for urban scene understanding and travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through a novel large-scale dataset of 220k question-answer pairs. This comprehensive dataset uniquely combines 130k text QA pairs meticulously curated from authentic travel forums with GPT-enhanced responses, alongside 90k vision-language QA pairs specifically focused on map understanding and scene comprehension. Through extensive fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we demonstrate significant performance improvements ranging from 6.5\%-9.4\% in both pure text travel understanding and visual question answering tasks. Our model exhibits exceptional capabilities in providing contextual travel recommendations, interpreting map locations, and understanding place-specific imagery while offering practical information such as operating hours and visitor reviews. Comparative evaluations show TraveLLaMA significantly outperforms general-purpose models in travel-specific tasks, establishing a new benchmark for multi-modal travel assistance systems.
☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
☆ FeedQUAC: Quick Unobtrusive AI-Generated Commentary
Design thrives on feedback. However, gathering constant feedback throughout the design process can be labor-intensive and disruptive. We explore how AI can bridge this gap by providing effortless, ambient feedback. We introduce FeedQUAC, a design companion that delivers real-time AI-generated commentary from a variety of perspectives through different personas. A design probe study with eight participants highlights how designers can leverage quick yet ambient AI feedback to enhance their creative workflows. Participants highlight benefits such as convenience, playfulness, confidence boost, and inspiration from this lightweight feedback agent, while suggesting additional features, like chat interaction and context curation. We discuss the role of AI feedback, its strengths and limitations, and how to integrate it into existing design workflows while balancing user involvement. Our findings also suggest that ambient interaction is a valuable consideration for both the design and evaluation of future creativity support systems.
comment: 20 pages, 12 figures
☆ EEmo-Bench: A Benchmark for Multi-modal Large Language Models on Image Evoked Emotion Assessment
The furnishing of multi-modal large language models (MLLMs) has led to the emergence of numerous benchmark studies, particularly those evaluating their perception and understanding capabilities. Among these, understanding image-evoked emotions aims to enhance MLLMs' empathy, with significant applications such as human-machine interaction and advertising recommendations. However, current evaluations of this MLLM capability remain coarse-grained, and a systematic and comprehensive assessment is still lacking. To this end, we introduce EEmo-Bench, a novel benchmark dedicated to the analysis of the evoked emotions in images across diverse content categories. Our core contributions include: 1) Regarding the diversity of the evoked emotions, we adopt an emotion ranking strategy and employ the Valence-Arousal-Dominance (VAD) as emotional attributes for emotional assessment. In line with this methodology, 1,960 images are collected and manually annotated. 2) We design four tasks to evaluate MLLMs' ability to capture the evoked emotions by single images and their associated attributes: Perception, Ranking, Description, and Assessment. Additionally, image-pairwise analysis is introduced to investigate the model's proficiency in performing joint and comparative analysis. In total, we collect 6,773 question-answer pairs and perform a thorough assessment on 19 commonly-used MLLMs. The results indicate that while some proprietary and large-scale open-source MLLMs achieve promising overall performance, the analytical capabilities in certain evaluation dimensions remain suboptimal. Our EEmo-Bench paves the path for further research aimed at enhancing the comprehensive perceiving and understanding capabilities of MLLMs concerning image-evoked emotions, which is crucial for machine-centric emotion perception and understanding.
☆ Seeing The Words: Evaluating AI-generated Biblical Art
The past years witnessed a significant amount of Artificial Intelligence (AI) tools that can generate images from texts. This triggers the discussion of whether AI can generate accurate images using text from the Bible with respect to the corresponding biblical contexts and backgrounds. Despite some existing attempts at a small scale, little work has been done to systematically evaluate these generated images. In this work, we provide a large dataset of over 7K images using biblical text as prompts. These images were evaluated with multiple neural network-based tools on various aspects. We provide an assessment of accuracy and some analysis from the perspective of religion and aesthetics. Finally, we discuss the use of the generated images and reflect on the performance of the AI generators.
☆ Social sustainability through engagement in a training context with tools such as the Native Podcast and Facebook social network
The social dimension of sustainability seems to have been a notion rarely addressed in the literature (Dubois et al., 2001) until the early 2000s. The EUTIC 2023 symposium provides an opportunity to take up this topical issue. To this end, we are presenting an engagement process that is part of a sustainable development dynamic, based on digital tools inspired by everyday life, for applications in the context of training, with a view to lifelong learning. Our work, which stems from the information and communication sciences, is rooted in a multi-disciplinary approach that we believe can be echoed in a variety of disciplines, but which it is interesting to challenge, hence the purpose of this contribution.
comment: in French language
♻ ☆ AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
♻ ☆ MM-InstructEval: Zero-Shot Evaluation of (Multimodal) Large Language Models on Multimodal Reasoning Tasks
The emergence of multimodal large language models (MLLMs) has triggered extensive research in model evaluation. While existing evaluation studies primarily focus on unimodal (vision-only) comprehension and reasoning capabilities, they overlook critical assessments of complex multimodal reasoning tasks that require integrated understanding of both visual and textual contexts. Such multimodal tasks present unique challenges, demanding sophisticated reasoning across multiple modalities and deep comprehension of multimodal contexts. In this paper, we present MM-InstructEval, a comprehensive evaluation framework that incorporates diverse metrics to assess model performance across various multimodal reasoning tasks with vision-text contexts. We conduct extensive zero-shot evaluations on 45 models (including 36 MLLMs) across 16 multimodal datasets, encompassing 6 distinct tasks using 10 different instructions. Our framework introduces multiple innovative metrics, including the 'Best Performance' metric to benchmark peak model capabilities, the 'Mean Relative Gain' metric to assess overall efficacy across models and instructions, the 'Stability' metric to measure robustness, and the 'Adaptability' metric to quantify the compatibility between models and instructions. Through comprehensive evaluation and analysis, we uncover several significant insights about model architectures, instruction formats, and their interactions in multimodal reasoning tasks. Our findings establish new benchmarks for assessing the reasoning capabilities of MLLMs and provide strategic guidance for future developments. To facilitate continued research and evaluation in this field, we release our framework and resources at https://github.com/declare-lab/MM-InstructEval, with an interactive leaderboard available at MM-InstructEval Leaderboard (https://declare-lab.github.io/MM-InstructEval/).
comment: Accepted by the Information Fusion Journal
♻ ☆ TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
Computer Vision and Pattern Recognition 125
☆ MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
☆ MR. Video: "MapReduce" is the Principle for Long Video Understanding
We propose MR. Video, an agentic long video understanding framework that demonstrates the simple yet effective MapReduce principle for processing long videos: (1) Map: independently and densely perceiving short video clips, and (2) Reduce: jointly aggregating information from all clips. Compared with sequence-to-sequence vision-language models (VLMs), MR. Video performs detailed short video perception without being limited by context length. Compared with existing video agents that typically rely on sequential key segment selection, the Map operation enables simpler and more scalable sequence parallel perception of short video segments. Its Reduce step allows for more comprehensive context aggregation and reasoning, surpassing explicit key segment retrieval. This MapReduce principle is applicable to both VLMs and video agents, and we use LLM agents to validate its effectiveness. In practice, MR. Video employs two MapReduce stages: (A) Captioning: generating captions for short video clips (map), then standardizing repeated characters and objects into shared names (reduce); (B) Analysis: for each user question, analyzing relevant information from individual short videos (map), and integrating them into a final answer (reduce). MR. Video achieves over 10% accuracy improvement on the challenging LVBench compared to state-of-the-art VLMs and video agents. Code is available at: https://github.com/ziqipang/MR-Video
comment: Preprint
Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
☆ From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning
Recent text-to-image diffusion models achieve impressive visual quality through extensive scaling of training data and model parameters, yet they often struggle with complex scenes and fine-grained details. Inspired by the self-reflection capabilities emergent in large language models, we propose ReflectionFlow, an inference-time framework enabling diffusion models to iteratively reflect upon and refine their outputs. ReflectionFlow introduces three complementary inference-time scaling axes: (1) noise-level scaling to optimize latent initialization; (2) prompt-level scaling for precise semantic guidance; and most notably, (3) reflection-level scaling, which explicitly provides actionable reflections to iteratively assess and correct previous generations. To facilitate reflection-level scaling, we construct GenRef, a large-scale dataset comprising 1 million triplets, each containing a reflection, a flawed image, and an enhanced image. Leveraging this dataset, we efficiently perform reflection tuning on state-of-the-art diffusion transformer, FLUX.1-dev, by jointly modeling multimodal inputs within a unified framework. Experimental results show that ReflectionFlow significantly outperforms naive noise-level scaling methods, offering a scalable and compute-efficient solution toward higher-quality image synthesis on challenging tasks.
comment: All code, checkpoints, and datasets are available at \url{https://diffusion-cot.github.io/reflection2perfection}
☆ Describe Anything: Detailed Localized Image and Video Captioning
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
comment: Project page: https://describe-anything.github.io/
☆ Boosting Generative Image Modeling via Joint Image-Feature Synthesis
Latent diffusion models (LDMs) dominate high-quality image generation, yet integrating representation learning with generative modeling remains a challenge. We introduce a novel generative image modeling framework that seamlessly bridges this gap by leveraging a diffusion model to jointly model low-level image latents (from a variational autoencoder) and high-level semantic features (from a pretrained self-supervised encoder like DINO). Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise, significantly enhancing both generative quality and training efficiency, all while requiring only minimal modifications to standard Diffusion Transformer architectures. By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance, which leverages learned semantics to steer and refine image generation. Evaluated in both conditional and unconditional settings, our method delivers substantial improvements in image quality and training convergence speed, establishing a new direction for representation-aware generative modeling.
☆ ForesightNav: Learning Scene Imagination for Efficient Exploration
Understanding how humans leverage prior knowledge to navigate unseen environments while making exploratory decisions is essential for developing autonomous robots with similar abilities. In this work, we propose ForesightNav, a novel exploration strategy inspired by human imagination and reasoning. Our approach equips robotic agents with the capability to predict contextual information, such as occupancy and semantic details, for unexplored regions. These predictions enable the robot to efficiently select meaningful long-term navigation goals, significantly enhancing exploration in unseen environments. We validate our imagination-based approach using the Structured3D dataset, demonstrating accurate occupancy prediction and superior performance in anticipating unseen scene geometry. Our experiments show that the imagination module improves exploration efficiency in unseen environments, achieving a 100% completion rate for PointNav and an SPL of 67% for ObjectNav on the Structured3D Validation split. These contributions demonstrate the power of imagination-driven reasoning for autonomous systems to enhance generalizable and efficient exploration.
☆ Vision language models are unreliable at trivial spatial cognition
Vision language models (VLMs) are designed to extract relevant visuospatial information from images. Some research suggests that VLMs can exhibit humanlike scene understanding, while other investigations reveal difficulties in their ability to process relational information. To achieve widespread applicability, VLMs must perform reliably, yielding comparable competence across a wide variety of related tasks. We sought to test how reliable these architectures are at engaging in trivial spatial cognition, e.g., recognizing whether one object is left of another in an uncluttered scene. We developed a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs. Results show that performance could be degraded by minor variations of prompts that use logically equivalent descriptions. These analyses suggest limitations in how VLMs may reason about spatial relations in real-world applications. They also reveal novel opportunities for bolstering image caption corpora for more efficient training and testing.
☆ Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis
Foundation models, trained on vast amounts of data using self-supervised techniques, have emerged as a promising frontier for advancing artificial intelligence (AI) applications in medicine. This study evaluates three different vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks. The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs. Self-supervised RAD-DINO consistently excelled in segmentation tasks, while text-supervised CheXagent demonstrated superior classification performance. BiomedCLIP showed inconsistent performance across tasks. A custom segmentation model that integrates global and local features substantially improved performance for all foundation models, particularly for challenging pneumothorax segmentation. The findings highlight that pre-training methodology significantly influences model performance on specific downstream tasks. For fine-grained segmentation tasks, models trained without text supervision performed better, while text-supervised models offered advantages in classification and interpretability. These insights provide guidance for selecting foundation models based on specific clinical applications in radiology.
☆ LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale CVPR 2025
Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc.
comment: CVPR 2025. If any references are missing, please contact joyachen@u.nus.edu
☆ PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning CVPR2025
Self-supervised representation learning for point cloud has demonstrated effectiveness in improving pre-trained model performance across diverse tasks. However, as pre-trained models grow in complexity, fully fine-tuning them for downstream applications demands substantial computational and storage resources. Parameter-efficient fine-tuning (PEFT) methods offer a promising solution to mitigate these resource requirements, yet most current approaches rely on complex adapter and prompt mechanisms that increase tunable parameters. In this paper, we propose PointLoRA, a simple yet effective method that combines low-rank adaptation (LoRA) with multi-scale token selection to efficiently fine-tune point cloud models. Our approach embeds LoRA layers within the most parameter-intensive components of point cloud transformers, reducing the need for tunable parameters while enhancing global feature capture. Additionally, multi-scale token selection extracts critical local information to serve as prompts for downstream fine-tuning, effectively complementing the global context captured by LoRA. The experimental results across various pre-trained models and three challenging public datasets demonstrate that our approach achieves competitive performance with only 3.43% of the trainable parameters, making it highly effective for resource-constrained applications. Source code is available at: https://github.com/songw-zju/PointLoRA.
comment: Accepted by CVPR2025
☆ Efficient Temporal Consistency in Diffusion-Based Video Editing with Adaptor Modules: A Theoretical Framework
Adapter-based methods are commonly used to enhance model performance with minimal additional complexity, especially in video editing tasks that require frame-to-frame consistency. By inserting small, learnable modules into pretrained diffusion models, these adapters can maintain temporal coherence without extensive retraining. Approaches that incorporate prompt learning with both shared and frame-specific tokens are particularly effective in preserving continuity across frames at low training cost. In this work, we want to provide a general theoretical framework for adapters that maintain frame consistency in DDIM-based models under a temporal consistency loss. First, we prove that the temporal consistency objective is differentiable under bounded feature norms, and we establish a Lipschitz bound on its gradient. Second, we show that gradient descent on this objective decreases the loss monotonically and converges to a local minimum if the learning rate is within an appropriate range. Finally, we analyze the stability of modules in the DDIM inversion procedure, showing that the associated error remains controlled. These theoretical findings will reinforce the reliability of diffusion-based video editing methods that rely on adapter strategies and provide theoretical insights in video generation tasks.
comment: arXiv admin note: substantial text overlap with arXiv:2501.04606
☆ MVQA: Mamba with Unified Sampling for Efficient Video Quality Assessment
The rapid growth of long-duration, high-definition videos has made efficient video quality assessment (VQA) a critical challenge. Existing research typically tackles this problem through two main strategies: reducing model parameters and resampling inputs. However, light-weight Convolution Neural Networks (CNN) and Transformers often struggle to balance efficiency with high performance due to the requirement of long-range modeling capabilities. Recently, the state-space model, particularly Mamba, has emerged as a promising alternative, offering linear complexity with respect to sequence length. Meanwhile, efficient VQA heavily depends on resampling long sequences to minimize computational costs, yet current resampling methods are often weak in preserving essential semantic information. In this work, we present MVQA, a Mamba-based model designed for efficient VQA along with a novel Unified Semantic and Distortion Sampling (USDS) approach. USDS combines semantic patch sampling from low-resolution videos and distortion patch sampling from original-resolution videos. The former captures semantically dense regions, while the latter retains critical distortion details. To prevent computation increase from dual inputs, we propose a fusion mechanism using pre-defined masks, enabling a unified sampling strategy that captures both semantic and quality information without additional computational burden. Experiments show that the proposed MVQA, equipped with USDS, achieve comparable performance to state-of-the-art methods while being $2\times$ as fast and requiring only $1/5$ GPU memory.
☆ Efficient Adaptation of Deep Neural Networks for Semantic Segmentation in Space Applications
In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an ``adapter ranking'' (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field.
☆ A New Graph Grammar Formalism for Robust Syntactic Pattern Recognition
I introduce a formalism for representing the syntax of recursively structured graph-like patterns. It does not use production rules, like a conventional graph grammar, but represents the syntactic structure in a more direct and declarative way. The grammar and the pattern are both represented as networks, and parsing is seen as the construction of a homomorphism from the pattern to the grammar. The grammars can represent iterative, hierarchical and nested recursive structure in more than one dimension. This supports a highly parallel style of parsing, in which all aspects of pattern recognition (feature detection, segmentation, parsing, filling in missing symbols, top-down and bottom-up inference) are integrated into a single process, to exploit the synergy between them. The emphasis of this paper is on underlying theoretical issues, but I also give some example runs to illustrate the error-tolerant parsing of complex recursively structured patterns of 50-1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols, overlapping symbols, cluttered images, and erased patches.
comment: 64 pages, 23 figures
☆ Recent Advances and Future Directions in Extended Reality (XR): Exploring AI-Powered Spatial Intelligence
Extended Reality (XR), encompassing Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR), is a transformative technology bridging the physical and virtual world and it has diverse potential which will be ubiquitous in the future. This review examines XR's evolution through foundational framework - hardware ranging from monitors to sensors and software ranging from visual tasks to user interface; highlights state of the art (SOTA) XR products with the comparison and analysis of performance based on their foundational framework; discusses how commercial XR devices can support the demand of high-quality performance focusing on spatial intelligence. For future directions, attention should be given to the integration of multi-modal AI and IoT-driven digital twins to enable adaptive XR systems. With the concept of spatial intelligence, future XR should establish a new digital space with realistic experience that benefits humanity. This review underscores the pivotal role of AI in unlocking XR as the next frontier in human-computer interaction.
comment: 7 pages,4 figures
☆ FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance, yet existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive subject-specific optimization, while zero-shot methods fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor employs semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated image. Additionally, our framework incorporates a novel noise initialization strategy to preserve geometry priors of reference subjects for robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
☆ Visual Place Cell Encoding: A Computational Model for Spatial Representation and Cognitive Mapping
This paper presents the Visual Place Cell Encoding (VPCE) model, a biologically inspired computational framework for simulating place cell-like activation using visual input. Drawing on evidence that visual landmarks play a central role in spatial encoding, the proposed VPCE model activates visual place cells by clustering high-dimensional appearance features extracted from images captured by a robot-mounted camera. Each cluster center defines a receptive field, and activation is computed based on visual similarity using a radial basis function. We evaluate whether the resulting activation patterns correlate with key properties of biological place cells, including spatial proximity, orientation alignment, and boundary differentiation. Experiments demonstrate that the VPCE can distinguish between visually similar yet spatially distinct locations and adapt to environment changes such as the insertion or removal of walls. These results suggest that structured visual input, even in the absence of motion cues or reward-driven learning, is sufficient to generate place-cell-like spatial representations and support biologically inspired cognitive mapping.
☆ Reasoning Physical Video Generation with Diffusion Timestep Tokens via Reinforcement Learning
Despite recent progress in video generation, producing videos that adhere to physical laws remains a significant challenge. Traditional diffusion-based methods struggle to extrapolate to unseen physical conditions (eg, velocity) due to their reliance on data-driven approximations. To address this, we propose to integrate symbolic reasoning and reinforcement learning to enforce physical consistency in video generation. We first introduce the Diffusion Timestep Tokenizer (DDT), which learns discrete, recursive visual tokens by recovering visual attributes lost during the diffusion process. The recursive visual tokens enable symbolic reasoning by a large language model. Based on it, we propose the Phys-AR framework, which consists of two stages: The first stage uses supervised fine-tuning to transfer symbolic knowledge, while the second stage applies reinforcement learning to optimize the model's reasoning abilities through reward functions based on physical conditions. Our approach allows the model to dynamically adjust and improve the physical properties of generated videos, ensuring adherence to physical laws. Experimental results demonstrate that PhysAR can generate videos that are physically consistent.
☆ Benchmarking the Reproducibility of Brain MRI Segmentation Across Scanners and Time
Accurate and reproducible brain morphometry from structural MRI is critical for monitoring neuroanatomical changes across time and across imaging domains. Although deep learning has accelerated segmentation workflows, scanner-induced variability and reproducibility limitations remain-especially in longitudinal and multi-site settings. In this study, we benchmark two modern segmentation pipelines, FastSurfer and SynthSeg, both integrated into FreeSurfer, one of the most widely adopted tools in neuroimaging. Using two complementary datasets - a 17-year longitudinal cohort (SIMON) and a 9-site test-retest cohort (SRPBS)-we quantify inter-scan segmentation variability using Dice coefficient, Surface Dice, Hausdorff Distance (HD95), and Mean Absolute Percentage Error (MAPE). Our results reveal up to 7-8% volume variation in small subcortical structures such as the amygdala and ventral diencephalon, even under controlled test-retest conditions. This raises a key question: is it feasible to detect subtle longitudinal changes on the order of 5-10% in pea-sized brain regions, given the magnitude of domain-induced morphometric noise? We further analyze the effects of registration templates and interpolation modes, and propose surface-based quality filtering to improve segmentation reliability. This study provides a reproducible benchmark for morphometric reproducibility and emphasizes the need for harmonization strategies in real-world neuroimaging studies. Code and figures: https://github.com/kondratevakate/brain-mri-segmentation
☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
☆ A Clinician-Friendly Platform for Ophthalmic Image Analysis Without Technical Barriers
Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, but current models typically require retraining when deployed across different clinical centers, limiting their widespread adoption. We introduce GlobeReady, a clinician-friendly AI platform that enables ocular disease diagnosis without retraining/fine-tuning or technical expertise. GlobeReady achieves high accuracy across imaging modalities: 93.9-98.5% for an 11-category fundus photo dataset and 87.2-92.7% for a 15-category OCT dataset. Through training-free local feature augmentation, it addresses domain shifts across centers and populations, reaching an average accuracy of 88.9% across five centers in China, 86.3% in Vietnam, and 90.2% in the UK. The built-in confidence-quantifiable diagnostic approach further boosted accuracy to 94.9-99.4% (fundus) and 88.2-96.2% (OCT), while identifying out-of-distribution cases at 86.3% (49 CFP categories) and 90.6% (13 OCT categories). Clinicians from multiple countries rated GlobeReady highly (average 4.6 out of 5) for its usability and clinical relevance. These results demonstrate GlobeReady's robust, scalable diagnostic capability and potential to support ophthalmic care without technical barriers.
☆ ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting
We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.
☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
☆ RaSCL: Radar to Satellite Crossview Localization
GNSS is unreliable, inaccurate, and insufficient in many real-time autonomous field applications. In this work, we present a GNSS-free global localization solution that contains a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration. Previous works have used various combinations of ground sensors and overhead imagery, and different feature extraction and matching methods. These include various handcrafted and deep-learning-based methods for extracting features from overhead imagery. Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess. We motivate our method by evaluating it on datasets in diverse geographic conditions and robotic platforms, including on an Unmanned Surface Vessel (USV) as well as urban and suburban driving datasets.
☆ MS-Occ: Multi-Stage LiDAR-Camera Fusion for 3D Semantic Occupancy Prediction
Accurate 3D semantic occupancy perception is essential for autonomous driving in complex environments with diverse and irregular objects. While vision-centric methods suffer from geometric inaccuracies, LiDAR-based approaches often lack rich semantic information. To address these limitations, MS-Occ, a novel multi-stage LiDAR-camera fusion framework which includes middle-stage fusion and late-stage fusion, is proposed, integrating LiDAR's geometric fidelity with camera-based semantic richness via hierarchical cross-modal fusion. The framework introduces innovations at two critical stages: (1) In the middle-stage feature fusion, the Gaussian-Geo module leverages Gaussian kernel rendering on sparse LiDAR depth maps to enhance 2D image features with dense geometric priors, and the Semantic-Aware module enriches LiDAR voxels with semantic context via deformable cross-attention; (2) In the late-stage voxel fusion, the Adaptive Fusion (AF) module dynamically balances voxel features across modalities, while the High Classification Confidence Voxel Fusion (HCCVF) module resolves semantic inconsistencies using self-attention-based refinement. Experiments on the nuScenes-OpenOccupancy benchmark show that MS-Occ achieves an Intersection over Union (IoU) of 32.1% and a mean IoU (mIoU) of 25.3%, surpassing the state-of-the-art by +0.7% IoU and +2.4% mIoU. Ablation studies further validate the contribution of each module, with substantial improvements in small-object perception, demonstrating the practical value of MS-Occ for safety-critical autonomous driving scenarios.
comment: 8 pages, 5 figures
☆ Integrating Non-Linear Radon Transformation for Diabetic Retinopathy Grading
Diabetic retinopathy is a serious ocular complication that poses a significant threat to patients' vision and overall health. Early detection and accurate grading are essential to prevent vision loss. Current automatic grading methods rely heavily on deep learning applied to retinal fundus images, but the complex, irregular patterns of lesions in these images, which vary in shape and distribution, make it difficult to capture subtle changes. This study introduces RadFuse, a multi-representation deep learning framework that integrates non-linear RadEx-transformed sinogram images with traditional fundus images to enhance diabetic retinopathy detection and grading. Our RadEx transformation, an optimized non-linear extension of the Radon transform, generates sinogram representations to capture complex retinal lesion patterns. By leveraging both spatial and transformed domain information, RadFuse enriches the feature set available to deep learning models, improving the differentiation of severity levels. We conducted extensive experiments on two benchmark datasets, APTOS-2019 and DDR, using three convolutional neural networks (CNNs): ResNeXt-50, MobileNetV2, and VGG19. RadFuse showed significant improvements over fundus-image-only models across all three CNN architectures and outperformed state-of-the-art methods on both datasets. For severity grading across five stages, RadFuse achieved a quadratic weighted kappa of 93.24%, an accuracy of 87.07%, and an F1-score of 87.17%. In binary classification between healthy and diabetic retinopathy cases, the method reached an accuracy of 99.09%, precision of 98.58%, and recall of 99.6%, surpassing previously established models. These results demonstrate RadFuse's capacity to capture complex non-linear features, advancing diabetic retinopathy classification and promoting the integration of advanced mathematical transforms in medical image analysis.
☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
☆ DERD-Net: Learning Depth from Event-based Ray Densities
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net
comment: 13 pages, 3 figures, 14 tables. Project page: https://github.com/tub-rip/DERD-Net
☆ Text-based Animatable 3D Avatars with Morphable Model Alignment
The generation of high-quality, animatable 3D head avatars from text has enormous potential in content creation applications such as games, movies, and embodied virtual assistants. Current text-to-3D generation methods typically combine parametric head models with 2D diffusion models using score distillation sampling to produce 3D-consistent results. However, they struggle to synthesize realistic details and suffer from misalignments between the appearance and the driving parametric model, resulting in unnatural animation results. We discovered that these limitations stem from ambiguities in the 2D diffusion predictions during 3D avatar distillation, specifically: i) the avatar's appearance and geometry is underconstrained by the text input, and ii) the semantic alignment between the predictions and the parametric head model is insufficient because the diffusion model alone cannot incorporate information from the parametric model. In this work, we propose a novel framework, AnimPortrait3D, for text-based realistic animatable 3DGS avatar generation with morphable model alignment, and introduce two key strategies to address these challenges. First, we tackle appearance and geometry ambiguities by utilizing prior information from a pretrained text-to-3D model to initialize a 3D avatar with robust appearance, geometry, and rigging relationships to the morphable model. Second, we refine the initial 3D avatar for dynamic expressions using a ControlNet that is conditioned on semantic and normal maps of the morphable model to ensure accurate alignment. As a result, our method outperforms existing approaches in terms of synthesis quality, alignment, and animation fidelity. Our experiments show that the proposed method advances the state of the art in text-based, animatable 3D head avatar generation.
☆ Human-Imperceptible Physical Adversarial Attack for NIR Face Recognition Models
Near-infrared (NIR) face recognition systems, which can operate effectively in low-light conditions or in the presence of makeup, exhibit vulnerabilities when subjected to physical adversarial attacks. To further demonstrate the potential risks in real-world applications, we design a novel, stealthy, and practical adversarial patch to attack NIR face recognition systems in a black-box setting. We achieved this by utilizing human-imperceptible infrared-absorbing ink to generate multiple patches with digitally optimized shapes and positions for infrared images. To address the optimization mismatch between digital and real-world NIR imaging, we develop a light reflection model for human skin to minimize pixel-level discrepancies by simulating NIR light reflection. Compared to state-of-the-art (SOTA) physical attacks on NIR face recognition systems, the experimental results show that our method improves the attack success rate in both digital and physical domains, particularly maintaining effectiveness across various face postures. Notably, the proposed approach outperforms SOTA methods, achieving an average attack success rate of 82.46% in the physical domain across different models, compared to 64.18% for existing methods. The artifact is available at https://anonymous.4open.science/r/Human-imperceptible-adversarial-patch-0703/.
☆ Locating and Mitigating Gradient Conflicts in Point Cloud Domain Adaptation via Saliency Map Skewness
Object classification models utilizing point cloud data are fundamental for 3D media understanding, yet they often struggle with unseen or out-of-distribution (OOD) scenarios. Existing point cloud unsupervised domain adaptation (UDA) methods typically employ a multi-task learning (MTL) framework that combines primary classification tasks with auxiliary self-supervision tasks to bridge the gap between cross-domain feature distributions. However, our further experiments demonstrate that not all gradients from self-supervision tasks are beneficial and some may negatively impact the classification performance. In this paper, we propose a novel solution, termed Saliency Map-based Data Sampling Block (SM-DSB), to mitigate these gradient conflicts. Specifically, our method designs a new scoring mechanism based on the skewness of 3D saliency maps to estimate gradient conflicts without requiring target labels. Leveraging this, we develop a sample selection strategy that dynamically filters out samples whose self-supervision gradients are not beneficial for the classification. Our approach is scalable, introducing modest computational overhead, and can be integrated into all the point cloud UDA MTL frameworks. Extensive evaluations demonstrate that our method outperforms state-of-the-art approaches. In addition, we provide a new perspective on understanding the UDA problem through back-propagation analysis.
☆ Development and evaluation of a deep learning algorithm for German word recognition from lip movements
When reading lips, many people benefit from additional visual information from the lip movements of the speaker, which is, however, very error prone. Algorithms for lip reading with artificial intelligence based on artificial neural networks significantly improve word recognition but are not available for the German language. A total of 1806 video clips with only one German-speaking person each were selected, split into word segments, and assigned to word classes using speech-recognition software. In 38,391 video segments with 32 speakers, 18 polysyllabic, visually distinguishable words were used to train and validate a neural network. The 3D Convolutional Neural Network and Gated Recurrent Units models and a combination of both models (GRUConv) were compared, as were different image sections and color spaces of the videos. The accuracy was determined in 5000 training epochs. Comparison of the color spaces did not reveal any relevant different correct classification rates in the range from 69% to 72%. With a cut to the lips, a significantly higher accuracy of 70% was achieved than when cut to the entire speaker's face (34%). With the GRUConv model, the maximum accuracies were 87% with known speakers and 63% in the validation with unknown speakers. The neural network for lip reading, which was first developed for the German language, shows a very high level of accuracy, comparable to English-language algorithms. It works with unknown speakers as well and can be generalized with more word classes.
comment: English version of journal article in HNO 2022
☆ Satellite to GroundScape -- Large-scale Consistent Ground View Generation from Satellite Views
Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.
comment: 8 figures
☆ Towards prediction of morphological heart age from computed tomography angiography
Age prediction from medical images or other health-related non-imaging data is an important approach to data-driven aging research, providing knowledge of how much information a specific tissue or organ carries about the chronological age of the individual. In this work, we studied the prediction of age from computed tomography angiography (CTA) images, which provide detailed representations of the heart morphology, with the goals of (i) studying the relationship between morphology and aging, and (ii) developing a novel \emph{morphological heart age} biomarker. We applied an image registration-based method that standardizes the images from the whole cohort into a single space. We then extracted supervoxels (using unsupervised segmentation), and corresponding robust features of density and local volume, which provide a detailed representation of the heart morphology while being robust to registration errors. Machine learning models are then trained to fit regression models from these features to the chronological age. We applied the method to a subset of the images from the Swedish CArdioPulomonary bioImage Study (SCAPIS) dataset, consisting of 721 females and 666 males. We observe a mean absolute error of $2.74$ years for females and $2.77$ years for males. The predictions from different sub-regions of interest were observed to be more highly correlated with the predictions from the whole heart, compared to the chronological age, revealing a high consistency in the predictions from morphology. Saliency analysis was also performed on the prediction models to study what regions are associated positively and negatively with the predicted age. This resulted in detailed association maps where the density and volume of known, as well as some novel sub-regions of interest, are determined to be important. The saliency analysis aids in the interpretability of the models and their predictions.
comment: 24 pages
☆ Model-based Metric 3D Shape and Motion Reconstruction of Wild Bottlenose Dolphins in Drone-Shot Videos
We address the problem of estimating the metric 3D shape and motion of wild dolphins from monocular video, with the aim of assessing their body condition. While considerable progress has been made in reconstructing 3D models of terrestrial quadrupeds, aquatic animals remain unexplored due to the difficulty of observing them in their natural underwater environment. To address this, we propose a model-based approach that incorporates a transmission model to account for water-induced occlusion. We apply our method to video captured under different sea conditions. We estimate mass and volume, and compare our results to a manual 2D measurements-based method.
comment: 9 pages, 7 figures
☆ Pose Optimization for Autonomous Driving Datasets using Neural Rendering Models
Autonomous driving systems rely on accurate perception and localization of the ego car to ensure safety and reliability in challenging real-world driving scenarios. Public datasets play a vital role in benchmarking and guiding advancement in research by providing standardized resources for model development and evaluation. However, potential inaccuracies in sensor calibration and vehicle poses within these datasets can lead to erroneous evaluations of downstream tasks, adversely impacting the reliability and performance of the autonomous systems. To address this challenge, we propose a robust optimization method based on Neural Radiance Fields (NeRF) to refine sensor poses and calibration parameters, enhancing the integrity of dataset benchmarks. To validate improvement in accuracy of our optimized poses without ground truth, we present a thorough evaluation process, relying on reprojection metrics, Novel View Synthesis rendering quality, and geometric alignment. We demonstrate that our method achieves significant improvements in sensor pose accuracy. By optimizing these critical parameters, our approach not only improves the utility of existing datasets but also paves the way for more reliable autonomous driving models. To foster continued progress in this field, we make the optimized sensor poses publicly available, providing a valuable resource for the research community.
comment: under review
☆ Multi-Scale Tensorial Summation and Dimensional Reduction Guided Neural Network for Edge Detection
Edge detection has attracted considerable attention thanks to its exceptional ability to enhance performance in downstream computer vision tasks. In recent years, various deep learning methods have been explored for edge detection tasks resulting in a significant performance improvement compared to conventional computer vision algorithms. In neural networks, edge detection tasks require considerably large receptive fields to provide satisfactory performance. In a typical convolutional operation, such a large receptive field can be achieved by utilizing a significant number of consecutive layers, which yields deep network structures. Recently, a Multi-scale Tensorial Summation (MTS) factorization operator was presented, which can achieve very large receptive fields even from the initial layers. In this paper, we propose a novel MTS Dimensional Reduction (MTS-DR) module guided neural network, MTS-DR-Net, for the edge detection task. The MTS-DR-Net uses MTS layers, and corresponding MTS-DR blocks as a new backbone to remove redundant information initially. Such a dimensional reduction module enables the neural network to focus specifically on relevant information (i.e., necessary subspaces). Finally, a weight U-shaped refinement module follows MTS-DR blocks in the MTS-DR-Net. We conducted extensive experiments on two benchmark edge detection datasets: BSDS500 and BIPEDv2 to verify the effectiveness of our model. The implementation of the proposed MTS-DR-Net can be found at https://github.com/LeiXuAI/MTS-DR-Net.git.
☆ DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy
With the rapid advancement of mobile imaging, capturing screens using smartphones has become a prevalent practice in distance learning and conference recording. However, moir\'e artifacts, caused by frequency aliasing between display screens and camera sensors, are further amplified by the image signal processing pipeline, leading to severe visual degradation. Existing sRGB domain demoir\'eing methods struggle with irreversible information loss, while recent two-stage raw domain approaches suffer from information bottlenecks and inference inefficiency. To address these limitations, we propose a single-stage raw domain demoir\'eing framework, Dual-Stream Demoir\'eing Network (DSDNet), which leverages the synergy of raw and YCbCr images to remove moir\'e while preserving luminance and color fidelity. Specifically, to guide luminance correction and moir\'e removal, we design a raw-to-YCbCr mapping pipeline and introduce the Synergic Attention with Dynamic Modulation (SADM) module. This module enriches the raw-to-sRGB conversion with cross-domain contextual features. Furthermore, to better guide color fidelity, we develop a Luminance-Chrominance Adaptive Transformer (LCAT), which decouples luminance and chrominance representations. Extensive experiments demonstrate that DSDNet outperforms state-of-the-art methods in both visual quality and quantitative evaluation, and achieves an inference speed $\mathrm{\textbf{2.4x}}$ faster than the second-best method, highlighting its practical advantages. We provide an anonymous online demo at https://xxxxxxxxdsdnet.github.io/DSDNet/.
☆ GADS: A Super Lightweight Model for Head Pose Estimation
In human-computer interaction, head pose estimation profoundly influences application functionality. Although utilizing facial landmarks is valuable for this purpose, existing landmark-based methods prioritize precision over simplicity and model size, limiting their deployment on edge devices and in compute-poor environments. To bridge this gap, we propose \textbf{Grouped Attention Deep Sets (GADS)}, a novel architecture based on the Deep Set framework. By grouping landmarks into regions and employing small Deep Set layers, we reduce computational complexity. Our multihead attention mechanism extracts and combines inter-group information, resulting in a model that is $7.5\times$ smaller and executes $25\times$ faster than the current lightest state-of-the-art model. Notably, our method achieves an impressive reduction, being $4321\times$ smaller than the best-performing model. We introduce vanilla GADS and Hybrid-GADS (landmarks + RGB) and evaluate our models on three benchmark datasets -- AFLW2000, BIWI, and 300W-LP. We envision our architecture as a robust baseline for resource-constrained head pose estimation methods.
comment: 16 pages, 5 tables, 10 figures, not submitted to any conference or journal
☆ SAGA: Semantic-Aware Gray color Augmentation for Visible-to-Thermal Domain Adaptation across Multi-View Drone and Ground-Based Vision Systems CVPR
Domain-adaptive thermal object detection plays a key role in facilitating visible (RGB)-to-thermal (IR) adaptation by reducing the need for co-registered image pairs and minimizing reliance on large annotated IR datasets. However, inherent limitations of IR images, such as the lack of color and texture cues, pose challenges for RGB-trained models, leading to increased false positives and poor-quality pseudo-labels. To address this, we propose Semantic-Aware Gray color Augmentation (SAGA), a novel strategy for mitigating color bias and bridging the domain gap by extracting object-level features relevant to IR images. Additionally, to validate the proposed SAGA for drone imagery, we introduce the IndraEye, a multi-sensor (RGB-IR) dataset designed for diverse applications. The dataset contains 5,612 images with 145,666 instances, captured from diverse angles, altitudes, backgrounds, and times of day, offering valuable opportunities for multimodal learning, domain adaptation for object detection and segmentation, and exploration of sensor-specific strengths and weaknesses. IndraEye aims to enhance the development of more robust and accurate aerial perception systems, especially in challenging environments. Experimental results show that SAGA significantly improves RGB-to-IR adaptation for autonomous driving and IndraEye dataset, achieving consistent performance gains of +0.4% to +7.6% (mAP) when integrated with state-of-the-art domain adaptation techniques. The dataset and codes are available at https://github.com/airliisc/IndraEye.
comment: Accepted at CVPR-W PBVS 2025
☆ Structure-Preserving Zero-Shot Image Editing via Stage-Wise Latent Injection in Diffusion Models
We propose a diffusion-based framework for zero-shot image editing that unifies text-guided and reference-guided approaches without requiring fine-tuning. Our method leverages diffusion inversion and timestep-specific null-text embeddings to preserve the structural integrity of the source image. By introducing a stage-wise latent injection strategy-shape injection in early steps and attribute injection in later steps-we enable precise, fine-grained modifications while maintaining global consistency. Cross-attention with reference latents facilitates semantic alignment between the source and reference. Extensive experiments across expression transfer, texture transformation, and style infusion demonstrate state-of-the-art performance, confirming the method's scalability and adaptability to diverse image editing scenarios.
☆ RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
☆ You Sense Only Once Beneath: Ultra-Light Real-Time Underwater Object Detection
Despite the remarkable achievements in object detection, the model's accuracy and efficiency still require further improvement under challenging underwater conditions, such as low image quality and limited computational resources. To address this, we propose an Ultra-Light Real-Time Underwater Object Detection framework, You Sense Only Once Beneath (YSOOB). Specifically, we utilize a Multi-Spectrum Wavelet Encoder (MSWE) to perform frequency-domain encoding on the input image, minimizing the semantic loss caused by underwater optical color distortion. Furthermore, we revisit the unique characteristics of even-sized and transposed convolutions, allowing the model to dynamically select and enhance key information during the resampling process, thereby improving its generalization ability. Finally, we eliminate model redundancy through a simple yet effective channel compression and reconstructed large kernel convolution (RLKC) to achieve model lightweight. As a result, forms a high-performance underwater object detector YSOOB with only 1.2 million parameters. Extensive experimental results demonstrate that, with the fewest parameters, YSOOB achieves mAP50 of 83.1% and 82.9% on the URPC2020 and DUO datasets, respectively, comparable to the current SOTA detectors. The inference speed reaches 781.3 FPS and 57.8 FPS on the T4 GPU (TensorRT FP16) and the edge computing device Jetson Xavier NX (TensorRT FP16), surpassing YOLOv12-N by 28.1% and 22.5%, respectively.
☆ Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
☆ DINOv2-powered Few-Shot Semantic Segmentation: A Unified Framework via Cross-Model Distillation and 4D Correlation Mining
Few-shot semantic segmentation has gained increasing interest due to its generalization capability, i.e., segmenting pixels of novel classes requiring only a few annotated images. Prior work has focused on meta-learning for support-query matching, with extensive development in both prototype-based and aggregation-based methods. To address data scarcity, recent approaches have turned to foundation models to enhance representation transferability for novel class segmentation. Among them, a hybrid dual-modal framework including both DINOv2 and SAM has garnered attention due to their complementary capabilities. We wonder "can we build a unified model with knowledge from both foundation models?" To this end, we propose FS-DINO, with only DINOv2's encoder and a lightweight segmenter. The segmenter features a bottleneck adapter, a meta-visual prompt generator based on dense similarities and semantic embeddings, and a decoder. Through coarse-to-fine cross-model distillation, we effectively integrate SAM's knowledge into our lightweight segmenter, which can be further enhanced by 4D correlation mining on support-query pairs. Extensive experiments on COCO-20i, PASCAL-5i, and FSS-1000 demonstrate the effectiveness and superiority of our method.
☆ Performance Estimation for Supervised Medical Image Segmentation Models on Unlabeled Data Using UniverSeg
The performance of medical image segmentation models is usually evaluated using metrics like the Dice score and Hausdorff distance, which compare predicted masks to ground truth annotations. However, when applying the model to unseen data, such as in clinical settings, it is often impractical to annotate all the data, making the model's performance uncertain. To address this challenge, we propose the Segmentation Performance Evaluator (SPE), a framework for estimating segmentation models' performance on unlabeled data. This framework is adaptable to various evaluation metrics and model architectures. Experiments on six publicly available datasets across six evaluation metrics including pixel-based metrics such as Dice score and distance-based metrics like HD95, demonstrated the versatility and effectiveness of our approach, achieving a high correlation (0.956$\pm$0.046) and low MAE (0.025$\pm$0.019) compare with real Dice score on the independent test set. These results highlight its ability to reliably estimate model performance without requiring annotations. The SPE framework integrates seamlessly into any model training process without adding training overhead, enabling performance estimation and facilitating the real-world application of medical image segmentation algorithms. The source code is publicly available
☆ Motion-Enhanced Nonlocal Similarity Implicit Neural Representation for Infrared Dim and Small Target Detection
Infrared dim and small target detection presents a significant challenge due to dynamic multi-frame scenarios and weak target signatures in the infrared modality. Traditional low-rank plus sparse models often fail to capture dynamic backgrounds and global spatial-temporal correlations, which results in background leakage or target loss. In this paper, we propose a novel motion-enhanced nonlocal similarity implicit neural representation (INR) framework to address these challenges. We first integrate motion estimation via optical flow to capture subtle target movements, and propose multi-frame fusion to enhance motion saliency. Second, we leverage nonlocal similarity to construct patch tensors with strong low-rank properties, and propose an innovative tensor decomposition-based INR model to represent the nonlocal patch tensor, effectively encoding both the nonlocal low-rankness and spatial-temporal correlations of background through continuous neural representations. An alternating direction method of multipliers is developed for the nonlocal INR model, which enjoys theoretical fixed-point convergence. Experimental results show that our approach robustly separates dim targets from complex infrared backgrounds, outperforming state-of-the-art methods in detection accuracy and robustness.
☆ An XAI-based Analysis of Shortcut Learning in Neural Networks
Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
☆ DiTPainter: Efficient Video Inpainting with Diffusion Transformers
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ AffordanceSAM: Segment Anything Once More in Affordance Grounding
Improving the generalization ability of an affordance grounding model to recognize regions for unseen objects and affordance functions is crucial for real-world application. However, current models are still far away from such standards. To address this problem, we introduce AffordanceSAM, an effective approach that extends SAM's generalization capacity to the domain of affordance grounding. For the purpose of thoroughly transferring SAM's robust performance in segmentation to affordance, we initially propose an affordance-adaption module in order to help modify SAM's segmentation output to be adapted to the specific functional regions required for affordance grounding. We concurrently make a coarse-to-fine training recipe to make SAM first be aware of affordance objects and actions coarsely, and then be able to generate affordance heatmaps finely. Both quantitative and qualitative experiments show the strong generalization capacity of our AffordanceSAM, which not only surpasses previous methods under AGD20K benchmark but also shows evidence to handle the task with novel objects and affordance functions.
comment: SAM Meets Affordance Grounding
☆ RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution CVPR 2025
As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
comment: Champion Solution for CVPR 2025 MAI VSR Track
☆ ZeroSlide: Is Zero-Shot Classification Adequate for Lifelong Learning in Whole-Slide Image Analysis in the Era of Pathology Vision-Language Foundation Models?
Lifelong learning for whole slide images (WSIs) poses the challenge of training a unified model to perform multiple WSI-related tasks, such as cancer subtyping and tumor classification, in a distributed, continual fashion. This is a practical and applicable problem in clinics and hospitals, as WSIs are large, require storage, processing, and transfer time. Training new models whenever new tasks are defined is time-consuming. Recent work has applied regularization- and rehearsal-based methods to this setting. However, the rise of vision-language foundation models that align diagnostic text with pathology images raises the question: are these models alone sufficient for lifelong WSI learning using zero-shot classification, or is further investigation into continual learning strategies needed to improve performance? To our knowledge, this is the first study to compare conventional continual-learning approaches with vision-language zero-shot classification for WSIs. Our source code and experimental results will be available soon.
comment: 10 pages, 3 figures, 1 table, conference submission
☆ FaceInsight: A Multimodal Large Language Model for Face Perception
Recent advances in multimodal large language models (MLLMs) have demonstrated strong capabilities in understanding general visual content. However, these general-domain MLLMs perform poorly in face perception tasks, often producing inaccurate or misleading responses to face-specific queries. To address this gap, we propose FaceInsight, the versatile face perception MLLM that provides fine-grained facial information. Our approach introduces visual-textual alignment of facial knowledge to model both uncertain dependencies and deterministic relationships among facial information, mitigating the limitations of language-driven reasoning. Additionally, we incorporate face segmentation maps as an auxiliary perceptual modality, enriching the visual input with localized structural cues to enhance semantic understanding. Comprehensive experiments and analyses across three face perception tasks demonstrate that FaceInsight consistently outperforms nine compared MLLMs under both training-free and fine-tuned settings.
☆ AdaViP: Aligning Multi-modal LLMs via Adaptive Vision-enhanced Preference Optimization
Preference alignment through Direct Preference Optimization (DPO) has demonstrated significant effectiveness in aligning multimodal large language models (MLLMs) with human preferences. However, existing methods focus primarily on language preferences while neglecting the critical visual context. In this paper, we propose an Adaptive Vision-enhanced Preference optimization (AdaViP) that addresses these limitations through two key innovations: (1) vision-based preference pair construction, which integrates multiple visual foundation models to strategically remove key visual elements from the image, enhancing MLLMs' sensitivity to visual details; and (2) adaptive preference optimization that dynamically balances vision- and language-based preferences for more accurate alignment. Extensive evaluations across different benchmarks demonstrate our effectiveness. Notably, our AdaViP-7B achieves 93.7% and 96.4% reductions in response-level and mentioned-level hallucination respectively on the Object HalBench, significantly outperforming current state-of-the-art methods.
☆ SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction
The analysis and prediction of agent trajectories are crucial for decision-making processes in intelligent systems, with precise short-term trajectory forecasting being highly significant across a range of applications. Agents and their social interactions have been quantified and modeled by researchers from various perspectives; however, substantial limitations exist in the current work due to the inherent high uncertainty of agent intentions and the complex higher-order influences among neighboring groups. SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups while reinforcing the primary role of first-order intention interactions between neighbors and the target agent. This method develops a multi-order intention fusion model to achieve a more comprehensive understanding of both direct and indirect intention information. Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data, thereby enhancing model interpretability. Furthermore, a global trajectory optimizer is introduced to enable more accurate and efficient parallel predictions. By incorporating a novel loss function that accounts for distance and direction during training, experimental results demonstrate that the model outperforms previous state-of-the-art baselines across multiple metrics in both dynamic and static datasets.
comment: 11 pages,6 figures
☆ HS-Mamba: Full-Field Interaction Multi-Groups Mamba for Hyperspectral Image Classification
Hyperspectral image (HSI) classification has been one of the hot topics in remote sensing fields. Recently, the Mamba architecture based on selective state-space models (S6) has demonstrated great advantages in long sequence modeling. However, the unique properties of hyperspectral data, such as high dimensionality and feature inlining, pose challenges to the application of Mamba to HSI classification. To compensate for these shortcomings, we propose an full-field interaction multi-groups Mamba framework (HS-Mamba), which adopts a strategy different from pixel-patch based or whole-image based, but combines the advantages of both. The patches cut from the whole image are sent to multi-groups Mamba, combined with positional information to perceive local inline features in the spatial and spectral domains, and the whole image is sent to a lightweight attention module to enhance the global feature representation ability. Specifically, HS-Mamba consists of a dual-channel spatial-spectral encoder (DCSS-encoder) module and a lightweight global inline attention (LGI-Att) branch. The DCSS-encoder module uses multiple groups of Mamba to decouple and model the local features of dual-channel sequences with non-overlapping patches. The LGI-Att branch uses a lightweight compressed and extended attention module to perceive the global features of the spatial and spectral domains of the unsegmented whole image. By fusing local and global features, high-precision classification of hyperspectral images is achieved. Extensive experiments demonstrate the superiority of the proposed HS-Mamba, outperforming state-of-the-art methods on four benchmark HSI datasets.
☆ SonarT165: A Large-scale Benchmark and STFTrack Framework for Acoustic Object Tracking
Underwater observation systems typically integrate optical cameras and imaging sonar systems. When underwater visibility is insufficient, only sonar systems can provide stable data, which necessitates exploration of the underwater acoustic object tracking (UAOT) task. Previous studies have explored traditional methods and Siamese networks for UAOT. However, the absence of a unified evaluation benchmark has significantly constrained the value of these methods. To alleviate this limitation, we propose the first large-scale UAOT benchmark, SonarT165, comprising 165 square sequences, 165 fan sequences, and 205K high-quality annotations. Experimental results demonstrate that SonarT165 reveals limitations in current state-of-the-art SOT trackers. To address these limitations, we propose STFTrack, an efficient framework for acoustic object tracking. It includes two novel modules, a multi-view template fusion module (MTFM) and an optimal trajectory correction module (OTCM). The MTFM module integrates multi-view feature of both the original image and the binary image of the dynamic template, and introduces a cross-attention-like layer to fuse the spatio-temporal target representations. The OTCM module introduces the acoustic-response-equivalent pixel property and proposes normalized pixel brightness response scores, thereby suppressing suboptimal matches caused by inaccurate Kalman filter prediction boxes. To further improve the model feature, STFTrack introduces a acoustic image enhancement method and a Frequency Enhancement Module (FEM) into its tracking pipeline. Comprehensive experiments show the proposed STFTrack achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/SonarT165.
☆ Multi-Modal Fusion of In-Situ Video Data and Process Parameters for Online Forecasting of Cookie Drying Readiness
Food drying is essential for food production, extending shelf life, and reducing transportation costs. Accurate real-time forecasting of drying readiness is crucial for minimizing energy consumption, improving productivity, and ensuring product quality. However, this remains challenging due to the dynamic nature of drying, limited data availability, and the lack of effective predictive analytical methods. To address this gap, we propose an end-to-end multi-modal data fusion framework that integrates in-situ video data with process parameters for real-time food drying readiness forecasting. Our approach leverages a new encoder-decoder architecture with modality-specific encoders and a transformer-based decoder to effectively extract features while preserving the unique structure of each modality. We apply our approach to sugar cookie drying, where time-to-ready is predicted at each timestamp. Experimental results demonstrate that our model achieves an average prediction error of only 15 seconds, outperforming state-of-the-art data fusion methods by 65.69% and a video-only model by 11.30%. Additionally, our model balances prediction accuracy, model size, and computational efficiency, making it well-suited for heterogenous industrial datasets. The proposed model is extensible to various other industrial modality fusion tasks for online decision-making.
comment: 17 pages, 12 figures
☆ Analytical Softmax Temperature Setting from Feature Dimensions for Model- and Domain-Robust Classification
In deep learning-based classification tasks, the softmax function's temperature parameter $T$ critically influences the output distribution and overall performance. This study presents a novel theoretical insight that the optimal temperature $T^*$ is uniquely determined by the dimensionality of the feature representations, thereby enabling training-free determination of $T^*$. Despite this theoretical grounding, empirical evidence reveals that $T^*$ fluctuates under practical conditions owing to variations in models, datasets, and other confounding factors. To address these influences, we propose and optimize a set of temperature determination coefficients that specify how $T^*$ should be adjusted based on the theoretical relationship to feature dimensionality. Additionally, we insert a batch normalization layer immediately before the output layer, effectively stabilizing the feature space. Building on these coefficients and a suite of large-scale experiments, we develop an empirical formula to estimate $T^*$ without additional training while also introducing a corrective scheme to refine $T^*$ based on the number of classes and task complexity. Our findings confirm that the derived temperature not only aligns with the proposed theoretical perspective but also generalizes effectively across diverse tasks, consistently enhancing classification performance and offering a practical, training-free solution for determining $T^*$.
comment: 22 pages, 11 figures, under review
☆ Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
comment: 16 pages, 6 figures
☆ VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
In histopathology, tissue sections are typically stained using common H&E staining or special stains (MAS, PAS, PASM, etc.) to clearly visualize specific tissue structures. The rapid advancement of deep learning offers an effective solution for generating virtually stained images, significantly reducing the time and labor costs associated with traditional histochemical staining. However, a new challenge arises in separating the fundamental visual characteristics of tissue sections from the visual differences induced by staining agents. Additionally, virtual staining often overlooks essential pathological knowledge and the physical properties of staining, resulting in only style-level transfer. To address these issues, we introduce, for the first time in virtual staining tasks, a pathological vision-language large model (VLM) as an auxiliary tool. We integrate contrastive learnable prompts, foundational concept anchors for tissue sections, and staining-specific concept anchors to leverage the extensive knowledge of the pathological VLM. This approach is designed to describe, frame, and enhance the direction of virtual staining. Furthermore, we have developed a data augmentation method based on the constraints of the VLM. This method utilizes the VLM's powerful image interpretation capabilities to further integrate image style and structural information, proving beneficial in high-precision pathological diagnostics. Extensive evaluations on publicly available multi-domain unpaired staining datasets demonstrate that our method can generate highly realistic images and enhance the accuracy of downstream tasks, such as glomerular detection and segmentation. Our code is available at: https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
☆ InstaRevive: One-Step Image Enhancement via Dynamic Score Matching ICLR 2025
Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
comment: Accepted by ICLR 2025
☆ Fluorescence Reference Target Quantitative Analysis Library
Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present QUEL-QAL, an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.
comment: 12 pages, 1 table, 4 figures. Code available: https://github.com/QUEL-Imaging/quel-qal), PyPi: quel-qal
☆ SignX: The Foundation Model for Sign Recognition
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
☆ Regularizing Differentiable Architecture Search with Smooth Activation
Differentiable Architecture Search (DARTS) is an efficient Neural Architecture Search (NAS) method but suffers from robustness, generalization, and discrepancy issues. Many efforts have been made towards the performance collapse issue caused by skip dominance with various regularization techniques towards operation weights, path weights, noise injection, and super-network redesign. It had become questionable at a certain point if there could exist a better and more elegant way to retract the search to its intended goal -- NAS is a selection problem. In this paper, we undertake a simple but effective approach, named Smooth Activation DARTS (SA-DARTS), to overcome skip dominance and discretization discrepancy challenges. By leveraging a smooth activation function on architecture weights as an auxiliary loss, our SA-DARTS mitigates the unfair advantage of weight-free operations, converging to fanned-out architecture weight values, and can recover the search process from skip-dominance initialization. Through theoretical and empirical analysis, we demonstrate that the SA-DARTS can yield new state-of-the-art (SOTA) results on NAS-Bench-201, classification, and super-resolution. Further, we show that SA-DARTS can help improve the performance of SOTA models with fewer parameters, such as Information Multi-distillation Network on the super-resolution task.
☆ MetaHarm: Harmful YouTube Video Dataset Annotated by Domain Experts, GPT-4-Turbo, and Crowdworkers
Short video platforms, such as YouTube, Instagram, or TikTok, are used by billions of users. These platforms expose users to harmful content, ranging from clickbait or physical harms to hate or misinformation. Yet, we lack a comprehensive understanding and measurement of online harm on short video platforms. Toward this end, we present two large-scale datasets of multi-modal and multi-categorical online harm: (1) 60,906 systematically selected potentially harmful YouTube videos and (2) 19,422 videos annotated by three labeling actors: trained domain experts, GPT-4-Turbo (using 14 image frames, 1 thumbnail, and text metadata), and crowdworkers (Amazon Mechanical Turk master workers). The annotated dataset includes both (a) binary classification (harmful vs. harmless) and (b) multi-label categorizations of six harm categories: Information, Hate and harassment, Addictive, Clickbait, Sexual, and Physical harms. Furthermore, the annotated dataset provides (1) ground truth data with videos annotated consistently across (a) all three actors and (b) the majority of the labeling actors, and (2) three data subsets labeled by individual actors. These datasets are expected to facilitate future work on online harm, aid in (multi-modal) classification efforts, and advance the identification and potential mitigation of harmful content on video platforms.
☆ Naturally Computed Scale Invariance in the Residual Stream of ResNet18
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp
☆ An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
☆ Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
☆ DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector
Here, we propose Deep CS-TRD, a new automatic algorithm for detecting tree rings in whole cross-sections. It substitutes the edge detection step of CS-TRD by a deep-learning-based approach (U-Net), which allows the application of the method to different image domains: microscopy, scanner or smartphone acquired, and species (Pinus taeda, Gleditsia triachantos and Salix glauca). Additionally, we introduce two publicly available datasets of annotated images to the community. The proposed method outperforms state-of-the-art approaches in macro images (Pinus taeda and Gleditsia triacanthos) while showing slightly lower performance in microscopy images of Salix glauca. To our knowledge, this is the first paper that studies automatic tree ring detection for such different species and acquisition conditions. The dataset and source code are available in https://github.com/hmarichal93/deepcstrd
comment: 12 pages, 6 figures. Accepted in ICIAP 2025
☆ Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.
comment: 12 pages, 8 figures
☆ CLIP-IT: CLIP-based Pairing for Histology Images Classification
Multimodal learning has shown significant promise for improving medical image analysis by integrating information from complementary data sources. This is widely employed for training vision-language models (VLMs) for cancer detection based on histology images and text reports. However, one of the main limitations in training these VLMs is the requirement for large paired datasets, raising concerns over privacy, and data collection, annotation, and maintenance costs. To address this challenge, we introduce CLIP-IT method to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source. At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset without the need for manually paired samples. Then, we propose a multimodal training procedure that distills the knowledge from the paired text modality to the unimodal image classifier for enhanced performance without the need for the textual data during inference. A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities. During inference, the improved unimodal histology classifier is used, with only minimal additional computational complexity. Our experiments on challenging PCAM, CRC, and BACH histology image datasets show that CLIP-IT can provide a cost-effective approach to leverage privileged textual information and outperform unimodal classifiers for histology.
☆ A detection-task-specific deep-learning method to improve the quality of sparse-view myocardial perfusion SPECT images
Myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT) is a widely used and cost-effective diagnostic tool for coronary artery disease. However, the lengthy scanning time in this imaging procedure can cause patient discomfort, motion artifacts, and potentially inaccurate diagnoses due to misalignment between the SPECT scans and the CT-scans which are acquired for attenuation compensation. Reducing projection angles is a potential way to shorten scanning time, but this can adversely impact the quality of the reconstructed images. To address this issue, we propose a detection-task-specific deep-learning method for sparse-view MPI SPECT images. This method integrates an observer loss term that penalizes the loss of anthropomorphic channel features with the goal of improving performance in perfusion defect-detection task. We observed that, on the task of detecting myocardial perfusion defects, the proposed method yielded an area under the receiver operating characteristic (ROC) curve (AUC) significantly larger than the sparse-view protocol. Further, the proposed method was observed to be able to restore the structure of the left ventricle wall, demonstrating ability to overcome sparse-sampling artifacts. Our preliminary results motivate further evaluations of the method.
Classification of Firn Data via Topological Features
In this paper we evaluate the performance of topological features for generalizable and robust classification of firn image data, with the broader goal of understanding the advantages, pitfalls, and trade-offs in topological featurization. Firn refers to layers of granular snow within glaciers that haven't been compressed into ice. This compactification process imposes distinct topological and geometric structure on firn that varies with depth within the firn column, making topological data analysis (TDA) a natural choice for understanding the connection between depth and structure. We use two classes of topological features, sublevel set features and distance transform features, together with persistence curves, to predict sample depth from microCT images. A range of challenging training-test scenarios reveals that no one choice of method dominates in all categories, and uncoveres a web of trade-offs between accuracy, interpretability, and generalizability.
☆ Progressive Language-guided Visual Learning for Multi-Task Visual Grounding
Multi-task visual grounding (MTVG) includes two sub-tasks, i.e., Referring Expression Comprehension (REC) and Referring Expression Segmentation (RES). The existing representative approaches generally follow the research pipeline which mainly consists of three core procedures, including independent feature extraction for visual and linguistic modalities, respectively, cross-modal interaction module, and independent prediction heads for different sub-tasks. Albeit achieving remarkable performance, this research line has two limitations: 1) The linguistic content has not been fully injected into the entire visual backbone for boosting more effective visual feature extraction and it needs an extra cross-modal interaction module; 2) The relationship between REC and RES tasks is not effectively exploited to help the collaborative prediction for more accurate output. To deal with these problems, in this paper, we propose a Progressive Language-guided Visual Learning framework for multi-task visual grounding, called PLVL, which not only finely mine the inherent feature expression of the visual modality itself but also progressively inject the language information to help learn linguistic-related visual features. In this manner, our PLVL does not need additional cross-modal fusion module while fully introducing the language guidance. Furthermore, we analyze that the localization center for REC would help identify the to-be-segmented object region for RES to some extent. Inspired by this investigation, we design a multi-task head to accomplish collaborative predictions for these two sub-tasks. Extensive experiments conducted on several benchmark datasets comprehensively substantiate that our PLVL obviously outperforms the representative methods in both REC and RES tasks. https://github.com/jcwang0602/PLVL
♻ ☆ LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
♻ ☆ A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty
Earth observation (EO) data such as satellite imagery can have far-reaching impacts on our understanding of the geography of poverty, especially when coupled with machine learning (ML) and computer vision. Early research used computer vision to predict living conditions in areas with limited data, but recent studies increasingly focus on causal analysis. Despite this shift, the use of EO-ML methods for causal inference lacks thorough documentation, and best practices are still developing. Through a comprehensive scoping review, we catalog the current literature on EO-ML methods in causal analysis. We synthesize five principal approaches to incorporating EO data in causal workflows: (1) outcome imputation for downstream causal analysis, (2) EO image deconfounding, (3) EO-based treatment effect heterogeneity, (4) EO-based transportability analysis, and (5) image-informed causal discovery. Building on these findings, we provide a detailed protocol guiding researchers in integrating EO data into causal analysis -- covering data requirements, computer vision model selection, and evaluation metrics. While our focus centers on health and living conditions outcomes, our protocol is adaptable to other sustainable development domains utilizing EO data.
comment: To appear as: Sakamoto, Kazuki, Connor T. Jerzak, and Adel Daoud. "A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty." In Geography of Poverty, edited by Ola Hall and Ibrahim Wahab. Edward Elgar Publishing (Cheltenham, UK), 2025
♻ ☆ Is Large-Scale Pretraining the Secret to Good Domain Generalization? ICLR 2025
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment.
comment: Accepted at ICLR 2025
♻ ☆ Onboard Satellite Image Classification for Earth Observation: A Comparative Study of ViT Models
This study focuses on identifying the most effective pre-trained model for land use classification in onboard satellite processing, emphasizing achieving high accuracy, computational efficiency, and robustness against noisy data conditions commonly encountered during satellite-based inference. Through extensive experimentation, we compare the performance of traditional CNN-based, ResNet-based, and various pre-trained vision Transformer models. Our findings demonstrate that pre-trained Vision Transformer (ViT) models, particularly MobileViTV2 and EfficientViT-M2, outperform models trained from scratch in terms of accuracy and efficiency. These models achieve high performance with reduced computational requirements and exhibit greater resilience during inference under noisy conditions. While MobileViTV2 has excelled on clean validation data, EfficientViT-M2 has proved more robust when handling noise, making it the most suitable model for onboard satellite EO tasks. Our experimental results demonstrate that EfficientViT-M2 is the optimal choice for reliable and efficient RS-IC in satellite operations, achieving 98.76 % of accuracy, precision, and recall. Precisely, EfficientViT-M2 delivers the highest performance across all metrics, excels in training efficiency (1,000s) and inference time (10s), and demonstrates greater robustness (overall robustness score of 0.79). Consequently, EfficientViT-M2 consumes 63.93 % less power than MobileViTV2 (79.23 W) and 73.26 % less power than SwinTransformer (108.90 W). This highlights its significant advantage in energy efficiency.
♻ ☆ Talk is Not Always Cheap: Promoting Wireless Sensing Models with Text Prompts
Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.
comment: 10 pages
♻ ☆ Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation CVPR 2025
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. Our approach sets new state-of-the-arts on the ARKitScenes and ScanNet++ datasets and benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
comment: CVPR 2025, Project page: https://PromptDA.github.io/
♻ ☆ HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression
In this work, we propose a novel compression framework for 3D Gaussian Splatting (3DGS) data. Building on anchor-based 3DGS methodologies, our approach compresses all attributes within each anchor by introducing a novel Hybrid Entropy Model for 3D Gaussian Splatting (HEMGS) to achieve hybrid lossy-lossless compression. It consists of three main components: a variable-rate predictor, a hyperprior network, and an autoregressive network. First, unlike previous methods that adopt multiple models to achieve multi-rate lossy compression, thereby increasing training overhead, our variable-rate predictor enables variable-rate compression with a single model and a hyperparameter $\lambda$ by producing a learned Quantization Step feature for versatile lossy compression. Second, to improve lossless compression, the hyperprior network captures both scene-agnostic and scene-specific features to generate a prior feature, while the autoregressive network employs an adaptive context selection algorithm with flexible receptive fields to produce a contextual feature. By integrating these two features, HEMGS can accurately estimate the distribution of the current coding element within each attribute, enabling improved entropy coding and reduced storage. We integrate HEMGS into a compression framework, and experimental results on four benchmarks indicate that HEMGS achieves about a 40% average reduction in size while maintaining rendering quality over baseline methods and achieving state-of-the-art compression results.
♻ ☆ Towards Robust Infrared Small Target Detection: A Feature-Enhanced and Sensitivity-Tunable Framework
Recently, single-frame infrared small target (SIRST) detection technology has attracted wide-spread attention. However, due to the intrinsic feature scarcity in infrared small targets, precise segmentation of small targets from complex backgrounds remains a significant challenge. Different from most existing deep learning-based methods that focus on improving network architectures, we propose a feature-enhanced and sensitivity-tunable (FEST) framework, which is compatible with existing SIRST detection networks and further enhances their detection performance. The FEST framework improves the model's robustness from two aspects: feature enhancement and target confidence regulation. For feature enhancement, on the one hand, we adopt a multi-scale fusion strategy, which can effectively improve the model's perception and adaptability to multi-scale features of multi-size targets. On the other hand, we construct an edge enhancement difficulty mining (EEDM) loss based on the analysis of the task characteristics, which helps guide the network to continuously focus on challenging target regions and edge features during training. For target confidence regulation, we design an adjustable sensitivity (AS) strategy for network post-processing. This strategy not only enhances the adaptability of the network in complex scenarios, but also significantly improves the detection rate of infrared small targets while maintaining segmentation accuracy. Extensive experimental results show that our FEST framework can significantly enhance the performance of existing SIRST detection networks. Notably, the multi-scale direction-aware network (MSDA-Net) equipped with the FEST framework won the first prize in the PRCV 2024 wide-area infrared small target detection competition.
♻ ☆ Switch-a-View: View Selection Learned from Unlabeled In-the-wild Videos
We introduce SWITCH-A-VIEW, a model that learns to automatically select the viewpoint to display at each timepoint when creating a how-to video. The key insight of our approach is how to train such a model from unlabeled -- but human-edited -- video samples. We pose a pretext task that pseudo-labels segments in the training videos for their primary viewpoint (egocentric or exocentric), and then discovers the patterns between the visual and spoken content in a how-to video on the one hand and its view-switch moments on the other hand. Armed with this predictor, our model can be applied to new multi-view video settings for orchestrating which viewpoint should be displayed when, even when such settings come with limited labels. We demonstrate our idea on a variety of real-world videos from HowTo100M and Ego-Exo4D, and rigorously validate its advantages. Project: https://vision.cs.utexas.edu/projects/switch_a_view/.
♻ ☆ PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution CVPR 2025
Polarization cameras can capture multiple polarized images with different polarizer angles in a single shot, bringing convenience to polarization-based downstream tasks. However, their direct outputs are color-polarization filter array (CPFA) raw images, requiring demosaicing to reconstruct full-resolution, full-color polarized images; unfortunately, this necessary step introduces artifacts that make polarization-related parameters such as the degree of polarization (DoP) and angle of polarization (AoP) prone to error. Besides, limited by the hardware design, the resolution of a polarization camera is often much lower than that of a conventional RGB camera. Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution, while polarized image super-resolution (PISR) methods, though designed to obtain high-resolution (HR) polarized images from the demosaicing results, tend to retain or even amplify errors in the DoP and AoP introduced by demosaicing artifacts. In this paper, we propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution, showing the ability to robustly obtain high-quality HR polarized images with more accurate DoP and AoP from a CPFA raw image in a direct manner. Experiments show our PIDSR not only achieves state-of-the-art performance on both synthetic and real data, but also facilitates downstream tasks.
comment: CVPR 2025
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Enhancing Features in Long-tailed Data Using Large Vision Model
Language-based foundation models, such as large language models (LLMs) or large vision-language models (LVLMs), have been widely studied in long-tailed recognition. However, the need for linguistic data is not applicable to all practical tasks. In this study, we aim to explore using large vision models (LVMs) or visual foundation models (VFMs) to enhance long-tailed data features without any language information. Specifically, we extract features from the LVM and fuse them with features in the baseline network's map and latent space to obtain the augmented features. Moreover, we design several prototype-based losses in the latent space to further exploit the potential of the augmented features. In the experimental section, we validate our approach on two benchmark datasets: ImageNet-LT and iNaturalist2018.
♻ ☆ FocusedAD: Character-centric Movie Audio Description
Movie Audio Description (AD) aims to narrate visual content during dialogue-free segments, particularly benefiting blind and visually impaired (BVI) audiences. Compared with general video captioning, AD demands plot-relevant narration with explicit character name references, posing unique challenges in movie understanding.To identify active main characters and focus on storyline-relevant regions, we propose FocusedAD, a novel framework that delivers character-centric movie audio descriptions. It includes: (i) a Character Perception Module(CPM) for tracking character regions and linking them to names; (ii) a Dynamic Prior Module(DPM) that injects contextual cues from prior ADs and subtitles via learnable soft prompts; and (iii) a Focused Caption Module(FCM) that generates narrations enriched with plot-relevant details and named characters. To overcome limitations in character identification, we also introduce an automated pipeline for building character query banks. FocusedAD achieves state-of-the-art performance on multiple benchmarks, including strong zero-shot results on MAD-eval-Named and our newly proposed Cinepile-AD dataset. Code and data will be released at https://github.com/Thorin215/FocusedAD .
comment: Code and Demo link: https://github.com/Thorin215/FocusedAD
♻ ☆ Normal-guided Detail-Preserving Neural Implicit Function for High-Fidelity 3D Surface Reconstruction SIGGRAPH
Neural implicit representations have emerged as a powerful paradigm for 3D reconstruction. However, despite their success, existing methods fail to capture fine geometric details and thin structures, especially in scenarios where only sparse multi-view RGB images of the objects of interest are available. This paper shows that training neural representations with first-order differential properties (surface normals) leads to highly accurate 3D surface reconstruction, even with as few as two RGB images. Using input RGB images, we compute approximate ground-truth surface normals from depth maps produced by an off-the-shelf monocular depth estimator. During training, we directly locate the surface point of the SDF network and supervise its normal with the one estimated from the depth map. Extensive experiments demonstrate that our method achieves state-of-the-art reconstruction accuracy with a minimal number of views, capturing intricate geometric details and thin structures that were previously challenging to capture.
comment: Accepted at ACM SIGGRAPH I3D 2025. Published in PACMCGIT journal. Project page with images and code: https://graphics-research-group.github.io/sn-nir
♻ ☆ Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-DoF pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error by 55.6%, 65.7%, and 73.3%, when applying 90%, 80%, and 70% thresholds, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments.
comment: 13 pages, 6 figures
♻ ☆ MObI: Multimodal Object Inpainting Using Diffusion Models
Safety-critical applications, such as autonomous driving, require extensive multimodal data for rigorous testing. Methods based on synthetic data are gaining prominence due to the cost and complexity of gathering real-world data but require a high degree of realism and controllability in order to be useful. This paper introduces MObI, a novel framework for Multimodal Object Inpainting that leverages a diffusion model to create realistic and controllable object inpaintings across perceptual modalities, demonstrated for both camera and lidar simultaneously. Using a single reference RGB image, MObI enables objects to be seamlessly inserted into existing multimodal scenes at a 3D location specified by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, our 3D bounding box conditioning gives objects accurate spatial positioning and realistic scaling. As a result, our approach can be used to insert novel objects flexibly into multimodal scenes, providing significant advantages for testing perception models.
comment: 8 pages; Project page at https://alexbubu.com/mobi
♻ ☆ Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization AAAI2023
Recent advances in large pre-trained models showed promising results in few-shot learning. However, their generalization ability on two-dimensional Out-of-Distribution (OoD) data, i.e., correlation shift and diversity shift, has not been thoroughly investigated. Researches have shown that even with a significant amount of training data, few methods can achieve better performance than the standard empirical risk minimization method (ERM) in OoD generalization. This few-shot OoD generalization dilemma emerges as a challenging direction in deep neural network generalization research, where the performance suffers from overfitting on few-shot examples and OoD generalization errors. In this paper, leveraging a broader supervision source, we explore a novel Bayesian cross-modal image-text alignment learning method (Bayes-CAL) to address this issue. Specifically, the model is designed as only text representations are fine-tuned via a Bayesian modelling approach with gradient orthogonalization loss and invariant risk minimization (IRM) loss. The Bayesian approach is essentially introduced to avoid overfitting the base classes observed during training and improve generalization to broader unseen classes. The dedicated loss is introduced to achieve better image-text alignment by disentangling the causal and non-casual parts of image features. Numerical experiments demonstrate that Bayes-CAL achieved state-of-the-art OoD generalization performances on two-dimensional distribution shifts. Moreover, compared with CLIP-like models, Bayes-CAL yields more stable generalization performances on unseen classes. Our code is available at https://github.com/LinLLLL/BayesCAL.
comment: Accepted by AAAI2023
♻ ☆ BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
♻ ☆ HoLa: B-Rep Generation using a Holistic Latent Representation SIGGRAPH 2025
We introduce a novel representation for learning and generating Computer-Aided Design (CAD) models in the form of $\textit{boundary representations}$ (B-Reps). Our representation unifies the continuous geometric properties of B-Rep primitives in different orders (e.g., surfaces and curves) and their discrete topological relations in a $\textit{holistic latent}$ (HoLa) space. This is based on the simple observation that the topological connection between two surfaces is intrinsically tied to the geometry of their intersecting curve. Such a prior allows us to reformulate topology learning in B-Reps as a geometric reconstruction problem in Euclidean space. Specifically, we eliminate the presence of curves, vertices, and all the topological connections in the latent space by learning to distinguish and derive curve geometries from a pair of surface primitives via a neural intersection network. To this end, our holistic latent space is only defined on surfaces but encodes a full B-Rep model, including the geometry of surfaces, curves, vertices, and their topological relations. Our compact and holistic latent space facilitates the design of a first diffusion-based generator to take on a large variety of inputs including point clouds, single/multi-view images, 2D sketches, and text prompts. Our method significantly reduces ambiguities, redundancies, and incoherences among the generated B-Rep primitives, as well as training complexities inherent in prior multi-step B-Rep learning pipelines, while achieving greatly improved validity rate over current state of the art: 82% vs. $\approx$50%.
comment: ACM TOG and SIGGRAPH 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/HolaBrep
♻ ☆ PolyFootNet: Extracting Polygonal Building Footprints in Off-Nadir Remote Sensing Images
Extracting polygonal building footprints from off-nadir imagery is crucial for diverse applications. Current deep-learning-based extraction approaches predominantly rely on semantic segmentation paradigms and post-processing algorithms, limiting their boundary precision and applicability. However, existing polygonal extraction methodologies are inherently designed for near-nadir imagery and fail under the geometric complexities introduced by off-nadir viewing angles. To address these challenges, this paper introduces Polygonal Footprint Network (PolyFootNet), a novel deep-learning framework that directly outputs polygonal building footprints without requiring external post-processing steps. PolyFootNet employs a High-Quality Mask Prompter to generate precise roof masks, which guide polygonal vertex extraction in a unified model pipeline. A key contribution of PolyFootNet is introducing the Self Offset Attention mechanism, grounded in Nadaraya-Watson regression, to effectively mitigate the accuracy discrepancy observed between low-rise and high-rise buildings. This approach allows low-rise building predictions to leverage angular corrections learned from high-rise building offsets, significantly enhancing overall extraction accuracy. Additionally, motivated by the inherent ambiguity of building footprint extraction tasks, we systematically investigate alternative extraction paradigms and demonstrate that a combined approach of building masks and offsets achieves superior polygonal footprint results. Extensive experiments validate PolyFootNet's effectiveness, illustrating its promising potential as a robust, generalizable, and precise polygonal building footprint extraction method from challenging off-nadir imagery. To facilitate further research, we will release pre-trained weights of our offset prediction module at https://github.com/likaiucas/PolyFootNet.
♻ ☆ 3DGR-CT: Sparse-View CT Reconstruction with a 3D Gaussian Representation
Sparse-view computed tomography (CT) reduces radiation exposure by acquiring fewer projections, making it a valuable tool in clinical scenarios where low-dose radiation is essential. However, this often results in increased noise and artifacts due to limited data. In this paper we propose a novel 3D Gaussian representation (3DGR) based method for sparse-view CT reconstruction. Inspired by recent success in novel view synthesis driven by 3D Gaussian splatting, we leverage the efficiency and expressiveness of 3D Gaussian representation as an alternative to implicit neural representation. To unleash the potential of 3DGR for CT imaging scenario, we propose two key innovations: (i) FBP-image-guided Guassian initialization and (ii) efficient integration with a differentiable CT projector. Extensive experiments and ablations on diverse datasets demonstrate the proposed 3DGR-CT consistently outperforms state-of-the-art counterpart methods, achieving higher reconstruction accuracy with faster convergence. Furthermore, we showcase the potential of 3DGR-CT for real-time physical simulation, which holds important clinical applications while challenging for implicit neural representations.
♻ ☆ AFiRe: Anatomy-Driven Self-Supervised Learning for Fine-Grained Representation in Radiographic Images
Current self-supervised methods, such as contrastive learning, predominantly focus on global discrimination, neglecting the critical fine-grained anatomical details required for accurate radiographic analysis. To address this challenge, we propose an Anatomy-driven self-supervised framework for enhancing Fine-grained Representation in radiographic image analysis (AFiRe). The core idea of AFiRe is to align the anatomical consistency with the unique token-processing characteristics of Vision Transformer. Specifically, AFiRe synergistically performs two self-supervised schemes: (i) Token-wise anatomy-guided contrastive learning, which aligns image tokens based on structural and categorical consistency, thereby enhancing fine-grained spatial-anatomical discrimination; (ii) Pixel-level anomaly-removal restoration, which particularly focuses on local anomalies, thereby refining the learned discrimination with detailed geometrical information. Additionally, we propose Synthetic Lesion Mask to enhance anatomical diversity while preserving intra-consistency, which is typically corrupted by traditional data augmentations, such as Cropping and Affine transformations. Experimental results show that AFiRe: (i) provides robust anatomical discrimination, achieving more cohesive feature clusters compared to state-of-the-art contrastive learning methods; (ii) demonstrates superior generalization, surpassing 7 radiography-specific self-supervised methods in multi-label classification tasks with limited labeling; and (iii) integrates fine-grained information, enabling precise anomaly detection using only image-level annotations.
♻ ☆ LOOC: Localizing Organs using Occupancy Networks and Body Surface Depth Images IEEE
We introduce a novel approach for the precise localization of 67 anatomical structures from single depth images captured from the exterior of the human body. Our method uses a multi-class occupancy network, trained using segmented CT scans augmented with body-pose changes, and incorporates a specialized sampling strategy to handle densely packed internal organs. Our contributions include the application of occupancy networks for occluded structure localization, a robust method for estimating anatomical positions from depth images, and the creation of detailed, individualized 3D anatomical atlases. We outperform localization using template matching and provide qualitative real-world reconstructions. This method promises improvements in automated medical imaging and diagnostic procedures by offering accurate, non-invasive localization of critical anatomical structures.
comment: Published in IEEE Access
♻ ☆ Red Team Diffuser: Exposing Toxic Continuation Vulnerabilities in Vision-Language Models via Reinforcement Learning
The growing deployment of large Vision-Language Models (VLMs) exposes critical safety gaps in their alignment mechanisms. While existing jailbreak studies primarily focus on VLMs' susceptibility to harmful instructions, we reveal a fundamental yet overlooked vulnerability: toxic text continuation, where VLMs produce highly toxic completions when prompted with harmful text prefixes paired with semantically adversarial images. To systematically study this threat, we propose Red Team Diffuser (RTD), the first red teaming diffusion model that coordinates adversarial image generation and toxic continuation through reinforcement learning. Our key innovations include dynamic cross-modal attack and stealth-aware optimization. For toxic text prefixes from an LLM safety benchmark, we conduct greedy search to identify optimal image prompts that maximally induce toxic completions. The discovered image prompts then drive RL-based diffusion model fine-tuning, producing semantically aligned adversarial images that boost toxicity rates. Stealth-aware optimization introduces joint adversarial rewards that balance toxicity maximization (via Detoxify classifier) and stealthiness (via BERTScore), circumventing traditional noise-based adversarial patterns. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% over text-only baselines on the original attack set and 8.91% on an unseen set, proving generalization capability. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. Our findings expose two critical flaws in current VLM alignment: (1) failure to prevent toxic continuation from harmful prefixes, and (2) overlooking cross-modal attack vectors. These results necessitate a paradigm shift toward multimodal red teaming in safety evaluations.
♻ ☆ To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition CVPR
Visual Place Recognition (VPR) is a critical task in computer vision, traditionally enhanced by re-ranking retrieval results with image matching. However, recent advancements in VPR methods have significantly improved performance, challenging the necessity of re-ranking. In this work, we show that modern retrieval systems often reach a point where re-ranking can degrade results, as current VPR datasets are largely saturated. We propose using image matching as a verification step to assess retrieval confidence, demonstrating that inlier counts can reliably predict when re-ranking is beneficial. Our findings shift the paradigm of retrieval pipelines, offering insights for more robust and adaptive VPR systems. The code is available at https://github.com/FarInHeight/To-Match-or-Not-to-Match.
comment: CVPRW 2025
♻ ☆ ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90%. Our project page is at https://thermalgaussian.github.io/.
comment: 10 pages, 7 figures
♻ ☆ LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
♻ ☆ TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
♻ ☆ Hear the Scene: Audio-Enhanced Text Spotting
Recent advancements in scene text spotting have focused on end-to-end methodologies that heavily rely on precise location annotations, which are often costly and labor-intensive to procure. In this study, we introduce an innovative approach that leverages only transcription annotations for training text spotting models, substantially reducing the dependency on elaborate annotation processes. Our methodology employs a query-based paradigm that facilitates the learning of implicit location features through the interaction between text queries and image embeddings. These features are later refined during the text recognition phase using an attention activation map. Addressing the challenges associated with training a weakly-supervised model from scratch, we implement a circular curriculum learning strategy to enhance model convergence. Additionally, we introduce a coarse-to-fine cross-attention localization mechanism for more accurate text instance localization. Notably, our framework supports audio-based annotation, which significantly diminishes annotation time and provides an inclusive alternative for individuals with disabilities. Our approach achieves competitive performance against existing benchmarks, demonstrating that high accuracy in text spotting can be attained without extensive location annotations.
♻ ☆ First-place Solution for Streetscape Shop Sign Recognition Competition
Text recognition technology applied to street-view storefront signs is increasingly utilized across various practical domains, including map navigation, smart city planning analysis, and business value assessments in commercial districts. This technology holds significant research and commercial potential. Nevertheless, it faces numerous challenges. Street view images often contain signboards with complex designs and diverse text styles, complicating the text recognition process. A notable advancement in this field was introduced by our team in a recent competition. We developed a novel multistage approach that integrates multimodal feature fusion, extensive self-supervised training, and a Transformer-based large model. Furthermore, innovative techniques such as BoxDQN, which relies on reinforcement learning, and text rectification methods were employed, leading to impressive outcomes. Comprehensive experiments have validated the effectiveness of these methods, showcasing our potential to enhance text recognition capabilities in complex urban environments.
comment: technical report
♻ ☆ DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
♻ ☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
♻ ☆ EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 8 pages, 7 figures, 5 tables
♻ ☆ Harmonizing Visual Representations for Unified Multimodal Understanding and Generation
Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present \emph{Harmon}, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.
♻ ☆ Unsupervised Hyperspectral and Multispectral Image Fusion via Self-Supervised Modality Decoupling
Hyperspectral and Multispectral Image Fusion (HMIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without effective supervision, leading to an incomplete perception of deep modality-complementary information and a limited understanding of inter-modality correlations. To address these issues, we propose a simple yet effective solution for unsupervised HMIF, revealing that modality decoupling is key to improving fusion performance. Specifically, we propose an end-to-end self-supervised \textbf{Mo}dality-Decoupled \textbf{S}patial-\textbf{S}pectral Fusion (\textbf{MossFuse}) framework that decouples shared and complementary information across modalities and aggregates a concise representation of both LR-HSIs and HR-MSIs to reduce modality redundancy. Also, we introduce the subspace clustering loss as a clear guide to decouple modality-shared features from modality-complementary ones. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HMIF methods while requiring considerably fewer parameters with reduced inference time. The anonymous source code is in \href{https://github.com/dusongcheng/MossFuse}{MossFuse}.
♻ ☆ Manipulating Multimodal Agents via Cross-Modal Prompt Injection
The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this work, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach consists of two key components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to infer the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
comment: 17 pages, 5 figures
♻ ☆ Gungnir: Exploiting Stylistic Features in Images for Backdoor Attacks on Diffusion Models
In recent years, Diffusion Models (DMs) have demonstrated significant advances in the field of image generation. However, according to current research, DMs are vulnerable to backdoor attacks, which allow attackers to control the model's output by inputting data containing covert triggers, such as a specific visual patch or phrase. Existing defense strategies are well equipped to thwart such attacks through backdoor detection and trigger inversion because previous attack methods are constrained by limited input spaces and low-dimensional triggers. For example, visual triggers are easily observed by defenders, text-based or attention-based triggers are more susceptible to neural network detection. To explore more possibilities of backdoor attack in DMs, we propose Gungnir, a novel method that enables attackers to activate the backdoor in DMs through style triggers within input images. Our approach proposes using stylistic features as triggers for the first time and implements backdoor attacks successfully in image-to-image tasks by introducing Reconstructing-Adversarial Noise (RAN) and Short-Term Timesteps-Retention (STTR). Our technique generates trigger-embedded images that are perceptually indistinguishable from clean images, thus bypassing both manual inspection and automated detection neural networks. Experiments demonstrate that Gungnir can easily bypass existing defense methods. Among existing DM defense frameworks, our approach achieves a 0 backdoor detection rate (BDR). Our codes are available at https://github.com/paoche11/Gungnir.
♻ ☆ VistaDepth: Frequency Modulation With Bias Reweighting For Enhanced Long-Range Depth Estimation
Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
comment: 8 pages, 6 figures, 4 tables
♻ ☆ EmoSEM: Segment and Explain Emotion Stimuli in Visual Art
This paper focuses on a key challenge in visual art understanding: given an art image, the model pinpoints pixel regions that trigger a specific human emotion, and generates linguistic explanations for the emotional arousal. Despite recent advances in art understanding, pixel-level emotion understanding still faces a dual challenge: first, the subjectivity of emotion makes it difficult for general segmentation models like SAM to adapt to emotion-oriented segmentation tasks; and second, the abstract nature of art expression makes it difficult for captioning models to balance pixel-level semantic understanding and emotion reasoning. To solve the above problems, this paper proposes the Emotion stimuli Segmentation and Explanation Model (EmoSEM) to endow the segmentation model SAM with emotion comprehension capability. First, to enable the model to perform segmentation under the guidance of emotional intent well, we introduce an emotional prompt with a learnable mask token as the conditional input for segmentation decoding. Then, we design an emotion projector to establish the association between emotion and visual features. Next, more importantly, to address emotion-visual stimuli alignment, we develop a lightweight prefix projector, a module that fuses the learned emotional mask with the corresponding emotion into a unified representation compatible with the language model. Finally, we input the joint visual, mask, and emotional tokens into the language model and output the emotional explanations. It ensures that the generated interpretations remain semantically and emotionally coherent with the visual stimuli. The method innovatively realizes end-to-end modeling from low-level pixel features to high-level emotion interpretation, providing the first interpretable fine-grained analysis framework for artistic emotion computing. Extensive experiments validate the effectiveness of our model.
♻ ☆ Faster and Better 3D Splatting via Group Training
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis, demonstrating remarkable capability in high-fidelity scene reconstruction through its Gaussian primitive representations. However, the computational overhead induced by the massive number of primitives poses a significant bottleneck to training efficiency. To overcome this challenge, we propose Group Training, a simple yet effective strategy that organizes Gaussian primitives into manageable groups, optimizing training efficiency and improving rendering quality. This approach shows universal compatibility with existing 3DGS frameworks, including vanilla 3DGS and Mip-Splatting, consistently achieving accelerated training while maintaining superior synthesis quality. Extensive experiments reveal that our straightforward Group Training strategy achieves up to 30% faster convergence and improved rendering quality across diverse scenarios.
♻ ☆ CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos CVPR 2025
Navigating dynamic urban environments presents significant challenges for embodied agents, requiring advanced spatial reasoning and adherence to common-sense norms. Despite progress, existing visual navigation methods struggle in map-free or off-street settings, limiting the deployment of autonomous agents like last-mile delivery robots. To overcome these obstacles, we propose a scalable, data-driven approach for human-like urban navigation by training agents on thousands of hours of in-the-wild city walking and driving videos sourced from the web. We introduce a simple and scalable data processing pipeline that extracts action supervision from these videos, enabling large-scale imitation learning without costly annotations. Our model learns sophisticated navigation policies to handle diverse challenges and critical scenarios. Experimental results show that training on large-scale, diverse datasets significantly enhances navigation performance, surpassing current methods. This work shows the potential of using abundant online video data to develop robust navigation policies for embodied agents in dynamic urban settings. Project homepage is at https://ai4ce.github.io/CityWalker/.
comment: Accepted to CVPR 2025
♻ ☆ Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
♻ ☆ Dynamic EventNeRF: Reconstructing General Dynamic Scenes from Multi-view RGB and Event Streams CVPR
Volumetric reconstruction of dynamic scenes is an important problem in computer vision. It is especially challenging in poor lighting and with fast motion. This is partly due to limitations of RGB cameras: To capture frames under low lighting, the exposure time needs to be increased, which leads to more motion blur. In contrast, event cameras, which record changes in pixel brightness asynchronously, are much less dependent on lighting, making them more suitable for recording fast motion. We hence propose the first method to spatiotemporally reconstruct a scene from sparse multi-view event streams and sparse RGB frames. We train a sequence of cross-faded time-conditioned NeRF models, one per short recording segment. The individual segments are supervised with a set of event- and RGB-based losses and sparse-view regularisation. We assemble a real-world multi-view camera rig with six static event cameras around the object and record a benchmark multi-view event stream dataset of challenging motions. Our work outperforms RGB-based baselines, producing state-of-the-art results, and opens up the topic of multi-view event-based reconstruction as a new path for fast scene capture beyond RGB cameras. The code and the data will be released soon at https://4dqv.mpi-inf.mpg.de/DynEventNeRF/
comment: 17 pages, 13 figures, 7 tables; CVPRW 2025
♻ ☆ Riemannian Patch Assignment Gradient Flows
This paper introduces patch assignment flows for metric data labeling on graphs. Labelings are determined by regularizing initial local labelings through the dynamic interaction of both labels and label assignments across the graph, entirely encoded by a dictionary of competing labeled patches and mediated by patch assignment variables. Maximal consistency of patch assignments is achieved by geometric numerical integration of a Riemannian ascent flow, as critical point of a Lagrangian action functional. Experiments illustrate properties of the approach, including uncertainty quantification of label assignments.
♻ ☆ Semantic Segmentation and Scene Reconstruction of RGB-D Image Frames: An End-to-End Modular Pipeline for Robotic Applications
Robots operating in unstructured environments require a comprehensive understanding of their surroundings, necessitating geometric and semantic information from sensor data. Traditional RGB-D processing pipelines focus primarily on geometric reconstruction, limiting their ability to support advanced robotic perception, planning, and interaction. A key challenge is the lack of generalized methods for segmenting RGB-D data into semantically meaningful components while maintaining accurate geometric representations. We introduce a novel end-to-end modular pipeline that integrates state-of-the-art semantic segmentation, human tracking, point-cloud fusion, and scene reconstruction. Our approach improves semantic segmentation accuracy by leveraging the foundational segmentation model SAM2 with a hybrid method that combines its mask generation with a semantic classification model, resulting in sharper masks and high classification accuracy. Compared to SegFormer and OneFormer, our method achieves a similar semantic segmentation accuracy (mIoU of 47.0% vs 45.9% in the ADE20K dataset) but provides much more precise object boundaries. Additionally, our human tracking algorithm interacts with the segmentation enabling continuous tracking even when objects leave and re-enter the frame by object re-identification. Our point cloud fusion approach reduces computation time by 1.81x while maintaining a small mean reconstruction error of 25.3 mm by leveraging the semantic information. We validate our approach on benchmark datasets and real-world Kinect RGB-D data, demonstrating improved efficiency, accuracy, and usability. Our structured representation, stored in the Universal Scene Description (USD) format, supports efficient querying, visualization, and robotic simulation, making it practical for real-world deployment.
♻ ☆ UniVG: A Generalist Diffusion Model for Unified Image Generation and Editing
Text-to-Image (T2I) diffusion models have shown impressive results in generating visually compelling images following user prompts. Building on this, various methods further fine-tune the pre-trained T2I model for specific tasks. However, this requires separate model architectures, training designs, and multiple parameter sets to handle different tasks. In this paper, we introduce UniVG, a generalist diffusion model capable of supporting a diverse range of image generation tasks with a single set of weights. UniVG treats multi-modal inputs as unified conditions to enable various downstream applications, ranging from T2I generation, inpainting, instruction-based editing, identity-preserving generation, and layout-guided generation, to depth estimation and referring segmentation. Through comprehensive empirical studies on data mixing and multi-task training, we provide detailed insights into the training processes and decisions that inform our final designs. For example, we show that T2I generation and other tasks, such as instruction-based editing, can coexist without performance trade-offs, while auxiliary tasks like depth estimation and referring segmentation enhance image editing. Notably, our model can even outperform some task-specific models on their respective benchmarks, marking a significant step towards a unified image generation model.
♻ ☆ On Symmetries in Convolutional Weights ICLR 2025
We explore the symmetry of the mean k x k weight kernel in each layer of various convolutional neural networks. Unlike individual neurons, the mean kernels in internal layers tend to be symmetric about their centers instead of favoring specific directions. We investigate why this symmetry emerges in various datasets and models, and how it is impacted by certain architectural choices. We show how symmetry correlates with desirable properties such as shift and flip consistency, and might constitute an inherent inductive bias in convolutional neural networks.
comment: Accepted to the ICLR 2025 Workshop on Weight Space Learning (WSL)
♻ ☆ Co-domain Symmetry for Complex-Valued Deep Learning
We study complex-valued scaling as a type of symmetry natural and unique to complex-valued measurements and representations. Deep Complex Networks (DCN) extends real-valued algebra to the complex domain without addressing complex-valued scaling. SurReal takes a restrictive manifold view of complex numbers, adopting a distance metric to achieve complex-scaling invariance while losing rich complex-valued information. We analyze complex-valued scaling as a co-domain transformation and design novel equivariant and invariant neural network layer functions for this special transformation. We also propose novel complex-valued representations of RGB images, where complex-valued scaling indicates hue shift or correlated changes across color channels. Benchmarked on MSTAR, CIFAR10, CIFAR100, and SVHN, our co-domain symmetric (CDS) classifiers deliver higher accuracy, better generalization, robustness to co-domain transformations, and lower model bias and variance than DCN and SurReal with far fewer parameters.
Artificial Intelligence 153
☆ LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as $\epsilon$-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making.
☆ Describe Anything: Detailed Localized Image and Video Captioning
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
comment: Project page: https://describe-anything.github.io/
☆ Vision language models are unreliable at trivial spatial cognition
Vision language models (VLMs) are designed to extract relevant visuospatial information from images. Some research suggests that VLMs can exhibit humanlike scene understanding, while other investigations reveal difficulties in their ability to process relational information. To achieve widespread applicability, VLMs must perform reliably, yielding comparable competence across a wide variety of related tasks. We sought to test how reliable these architectures are at engaging in trivial spatial cognition, e.g., recognizing whether one object is left of another in an uncluttered scene. We developed a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs. Results show that performance could be degraded by minor variations of prompts that use logically equivalent descriptions. These analyses suggest limitations in how VLMs may reason about spatial relations in real-world applications. They also reveal novel opportunities for bolstering image caption corpora for more efficient training and testing.
☆ LongMamba: Enhancing Mamba's Long Context Capabilities via Training-Free Receptive Field Enlargement ICLR 2025
State space models (SSMs) have emerged as an efficient alternative to Transformer models for language modeling, offering linear computational complexity and constant memory usage as context length increases. However, despite their efficiency in handling long contexts, recent studies have shown that SSMs, such as Mamba models, generally underperform compared to Transformers in long-context understanding tasks. To address this significant shortfall and achieve both efficient and accurate long-context understanding, we propose LongMamba, a training-free technique that significantly enhances the long-context capabilities of Mamba models. LongMamba builds on our discovery that the hidden channels in Mamba can be categorized into local and global channels based on their receptive field lengths, with global channels primarily responsible for long-context capability. These global channels can become the key bottleneck as the input context lengthens. Specifically, when input lengths largely exceed the training sequence length, global channels exhibit limitations in adaptively extend their receptive fields, leading to Mamba's poor long-context performance. The key idea of LongMamba is to mitigate the hidden state memory decay in these global channels by preventing the accumulation of unimportant tokens in their memory. This is achieved by first identifying critical tokens in the global channels and then applying token filtering to accumulate only those critical tokens. Through extensive benchmarking across synthetic and real-world long-context scenarios, LongMamba sets a new standard for Mamba's long-context performance, significantly extending its operational range without requiring additional training. Our code is available at https://github.com/GATECH-EIC/LongMamba.
comment: Accepted by ICLR 2025
☆ Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis
Foundation models, trained on vast amounts of data using self-supervised techniques, have emerged as a promising frontier for advancing artificial intelligence (AI) applications in medicine. This study evaluates three different vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks. The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs. Self-supervised RAD-DINO consistently excelled in segmentation tasks, while text-supervised CheXagent demonstrated superior classification performance. BiomedCLIP showed inconsistent performance across tasks. A custom segmentation model that integrates global and local features substantially improved performance for all foundation models, particularly for challenging pneumothorax segmentation. The findings highlight that pre-training methodology significantly influences model performance on specific downstream tasks. For fine-grained segmentation tasks, models trained without text supervision performed better, while text-supervised models offered advantages in classification and interpretability. These insights provide guidance for selecting foundation models based on specific clinical applications in radiology.
☆ Approximate matrices of systems of max-min fuzzy relational equations
In this article, we address the inconsistency of a system of max-min fuzzy relational equations by minimally modifying the matrix governing the system in order to achieve consistency. Our method yields consistent systems that approximate the original inconsistent system in the following sense: the right-hand side vector of each consistent system is that of the inconsistent system, and the coefficients of the matrix governing each consistent system are obtained by modifying, exactly and minimally, the entries of the original matrix that must be corrected to achieve consistency, while leaving all other entries unchanged. To obtain a consistent system that closely approximates the considered inconsistent system, we study the distance (in terms of a norm among $L_1$, $L_2$ or $L_\infty$) between the matrix of the inconsistent system and the set formed by the matrices of consistent systems that use the same right-hand side vector as the inconsistent system. We show that our method allows us to directly compute matrices of consistent systems that use the same right-hand side vector as the inconsistent system whose distance in terms of $L_\infty$ norm to the matrix of the inconsistent system is minimal (the computational costs are higher when using $L_1$ norm or $L_2$ norm). We also give an explicit analytical formula for computing this minimal $L_\infty$ distance. Finally, we translate our results for systems of min-max fuzzy relational equations and present some potential applications.
☆ Muon Optimizer Accelerates Grokking
This paper investigates the impact of different optimizers on the grokking phenomenon, where models exhibit delayed generalization. We conducted experiments across seven numerical tasks (primarily modular arithmetic) using a modern Transformer architecture. The experimental configuration systematically varied the optimizer (Muon vs. AdamW) and the softmax activation function (standard softmax, stablemax, and sparsemax) to assess their combined effect on learning dynamics. Our empirical evaluation reveals that the Muon optimizer, characterized by its use of spectral norm constraints and second-order information, significantly accelerates the onset of grokking compared to the widely used AdamW optimizer. Specifically, Muon reduced the mean grokking epoch from 153.09 to 102.89 across all configurations, a statistically significant difference (t = 5.0175, p = 6.33e-08). This suggests that the optimizer choice plays a crucial role in facilitating the transition from memorization to generalization.
comment: 8 pages, 4 figures
☆ LLMs meet Federated Learning for Scalable and Secure IoT Management IEEE
The rapid expansion of IoT ecosystems introduces severe challenges in scalability, security, and real-time decision-making. Traditional centralized architectures struggle with latency, privacy concerns, and excessive resource consumption, making them unsuitable for modern large-scale IoT deployments. This paper presents a novel Federated Learning-driven Large Language Model (FL-LLM) framework, designed to enhance IoT system intelligence while ensuring data privacy and computational efficiency. The framework integrates Generative IoT (GIoT) models with a Gradient Sensing Federated Strategy (GSFS), dynamically optimizing model updates based on real-time network conditions. By leveraging a hybrid edge-cloud processing architecture, our approach balances intelligence, scalability, and security in distributed IoT environments. Evaluations on the IoT-23 dataset demonstrate that our framework improves model accuracy, reduces response latency, and enhances energy efficiency, outperforming traditional FL techniques (i.e., FedAvg, FedOpt). These findings highlight the potential of integrating LLM-powered federated learning into large-scale IoT ecosystems, paving the way for more secure, scalable, and adaptive IoT management solutions.
comment: This work has been submitted to the IEEE Global Communications Conference (GLOBECOM) 2025 for possible publication
☆ Benchmarking LLM for Code Smells Detection: OpenAI GPT-4.0 vs DeepSeek-V3
Determining the most effective Large Language Model for code smell detection presents a complex challenge. This study introduces a structured methodology and evaluation matrix to tackle this issue, leveraging a curated dataset of code samples consistently annotated with known smells. The dataset spans four prominent programming languages Java, Python, JavaScript, and C++; allowing for cross language comparison. We benchmark two state of the art LLMs, OpenAI GPT 4.0 and DeepSeek-V3, using precision, recall, and F1 score as evaluation metrics. Our analysis covers three levels of detail: overall performance, category level performance, and individual code smell type performance. Additionally, we explore cost effectiveness by comparing the token based detection approach of GPT 4.0 with the pattern-matching techniques employed by DeepSeek V3. The study also includes a cost analysis relative to traditional static analysis tools such as SonarQube. The findings offer valuable guidance for practitioners in selecting an efficient, cost effective solution for automated code smell detection
☆ Trends in AI Supercomputers
Frontier AI development relies on powerful AI supercomputers, yet analysis of these systems is limited. We create a dataset of 500 AI supercomputers from 2019 to 2025 and analyze key trends in performance, power needs, hardware cost, ownership, and global distribution. We find that the computational performance of AI supercomputers has doubled every nine months, while hardware acquisition cost and power needs both doubled every year. The leading system in March 2025, xAI's Colossus, used 200,000 AI chips, had a hardware cost of \$7B, and required 300 MW of power, as much as 250,000 households. As AI supercomputers evolved from tools for science to industrial machines, companies rapidly expanded their share of total AI supercomputer performance, while the share of governments and academia diminished. Globally, the United States accounts for about 75% of total performance in our dataset, with China in second place at 15%. If the observed trends continue, the leading AI supercomputer in 2030 will achieve $2\times10^{22}$ 16-bit FLOP/s, use two million AI chips, have a hardware cost of \$200 billion, and require 9 GW of power. Our analysis provides visibility into the AI supercomputer landscape, allowing policymakers to assess key AI trends like resource needs, ownership, and national competitiveness.
☆ Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
Flow theory describes an optimal cognitive state where individuals experience deep focus and intrinsic motivation when a task's difficulty aligns with their skill level. In AI-augmented reasoning, interventions that disrupt the state of cognitive flow can hinder rather than enhance decision-making. This paper proposes a context-aware cognitive augmentation framework that adapts interventions based on three key contextual factors: type, timing, and scale. By leveraging multimodal behavioral cues (e.g., gaze behavior, typing hesitation, interaction speed), AI can dynamically adjust cognitive support to maintain or restore flow. We introduce the concept of cognitive flow, an extension of flow theory in AI-augmented reasoning, where interventions are personalized, adaptive, and minimally intrusive. By shifting from static interventions to context-aware augmentation, our approach ensures that AI systems support deep engagement in complex decision-making and reasoning without disrupting cognitive immersion.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
☆ How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
☆ OPUS-VFL: Incentivizing Optimal Privacy-Utility Tradeoffs in Vertical Federated Learning
Vertical Federated Learning (VFL) enables organizations with disjoint feature spaces but shared user bases to collaboratively train models without sharing raw data. However, existing VFL systems face critical limitations: they often lack effective incentive mechanisms, struggle to balance privacy-utility tradeoffs, and fail to accommodate clients with heterogeneous resource capabilities. These challenges hinder meaningful participation, degrade model performance, and limit practical deployment. To address these issues, we propose OPUS-VFL, an Optimal Privacy-Utility tradeoff Strategy for VFL. OPUS-VFL introduces a novel, privacy-aware incentive mechanism that rewards clients based on a principled combination of model contribution, privacy preservation, and resource investment. It employs a lightweight leave-one-out (LOO) strategy to quantify feature importance per client, and integrates an adaptive differential privacy mechanism that enables clients to dynamically calibrate noise levels to optimize their individual utility. Our framework is designed to be scalable, budget-balanced, and robust to inference and poisoning attacks. Extensive experiments on benchmark datasets (MNIST, CIFAR-10, and CIFAR-100) demonstrate that OPUS-VFL significantly outperforms state-of-the-art VFL baselines in both efficiency and robustness. It reduces label inference attack success rates by up to 20%, increases feature inference reconstruction error (MSE) by over 30%, and achieves up to 25% higher incentives for clients that contribute meaningfully while respecting privacy and cost constraints. These results highlight the practicality and innovation of OPUS-VFL as a secure, fair, and performance-driven solution for real-world VFL.
☆ W-PCA Based Gradient-Free Proxy for Efficient Search of Lightweight Language Models ICLR 2025
The demand for efficient natural language processing (NLP) systems has led to the development of lightweight language models. Previous work in this area has primarily focused on manual design or training-based neural architecture search (NAS) methods. Recently, zero-shot NAS methods have been proposed for evaluating language models without the need for training. However, prevailing approaches to zero-shot NAS often face challenges such as biased evaluation metrics and computational inefficiencies. In this paper, we introduce weight-weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored for lightweight language models. Our approach utilizes two evaluation proxies: the parameter count and the number of principal components with cumulative contribution exceeding $\eta$ in the feed-forward neural (FFN) layer. Additionally, by eliminating the need for gradient computations, we optimize the evaluation time, thus enhancing the efficiency of designing and evaluating lightweight language models. We conduct a comparative analysis on the GLUE and SQuAD datasets to evaluate our approach. The results demonstrate that our method significantly reduces training time compared to one-shot NAS methods and achieves higher scores in the testing phase compared to previous state-of-the-art training-based methods. Furthermore, we perform ranking evaluations on a dataset sampled from the FlexiBERT search space. Our approach exhibits superior ranking correlation and further reduces solving time compared to other zero-shot NAS methods that require gradient computation.
comment: ICLR 2025
☆ Bug Destiny Prediction in Large Open-Source Software Repositories through Sentiment Analysis and BERT Topic Modeling
This study explores a novel approach to predicting key bug-related outcomes, including the time to resolution, time to fix, and ultimate status of a bug, using data from the Bugzilla Eclipse Project. Specifically, we leverage features available before a bug is resolved to enhance predictive accuracy. Our methodology incorporates sentiment analysis to derive both an emotionality score and a sentiment classification (positive or negative). Additionally, we integrate the bug's priority level and its topic, extracted using a BERTopic model, as features for a Convolutional Neural Network (CNN) and a Multilayer Perceptron (MLP). Our findings indicate that the combination of BERTopic and sentiment analysis can improve certain model performance metrics. Furthermore, we observe that balancing model inputs enhances practical applicability, albeit at the cost of a significant reduction in accuracy in most cases. To address our primary objectives, predicting time-to-resolution, time-to-fix, and bug destiny, we employ both binary classification and exact time value predictions, allowing for a comparative evaluation of their predictive effectiveness. Results demonstrate that sentiment analysis serves as a valuable predictor of a bug's eventual outcome, particularly in determining whether it will be fixed. However, its utility is less pronounced when classifying bugs into more complex or unconventional outcome categories.
☆ Universal Approximation with Softmax Attention
We prove that with linear transformations, both (i) two-layer self-attention and (ii) one-layer self-attention followed by a softmax function are universal approximators for continuous sequence-to-sequence functions on compact domains. Our main technique is a new interpolation-based method for analyzing attention's internal mechanism. This leads to our key insight: self-attention is able to approximate a generalized version of ReLU to arbitrary precision, and hence subsumes many known universal approximators. Building on these, we show that two-layer multi-head attention alone suffices as a sequence-to-sequence universal approximator. In contrast, prior works rely on feed-forward networks to establish universal approximation in Transformers. Furthermore, we extend our techniques to show that, (softmax-)attention-only layers are capable of approximating various statistical models in-context. We believe these techniques hold independent interest.
☆ FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity
Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.
comment: FAccT 2025
☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
☆ A Clinician-Friendly Platform for Ophthalmic Image Analysis Without Technical Barriers
Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, but current models typically require retraining when deployed across different clinical centers, limiting their widespread adoption. We introduce GlobeReady, a clinician-friendly AI platform that enables ocular disease diagnosis without retraining/fine-tuning or technical expertise. GlobeReady achieves high accuracy across imaging modalities: 93.9-98.5% for an 11-category fundus photo dataset and 87.2-92.7% for a 15-category OCT dataset. Through training-free local feature augmentation, it addresses domain shifts across centers and populations, reaching an average accuracy of 88.9% across five centers in China, 86.3% in Vietnam, and 90.2% in the UK. The built-in confidence-quantifiable diagnostic approach further boosted accuracy to 94.9-99.4% (fundus) and 88.2-96.2% (OCT), while identifying out-of-distribution cases at 86.3% (49 CFP categories) and 90.6% (13 OCT categories). Clinicians from multiple countries rated GlobeReady highly (average 4.6 out of 5) for its usability and clinical relevance. These results demonstrate GlobeReady's robust, scalable diagnostic capability and potential to support ophthalmic care without technical barriers.
☆ New Recipe for Semi-supervised Community Detection: Clique Annealing under Crystallization Kinetics
Semi-supervised community detection methods are widely used for identifying specific communities due to the label scarcity. Existing semi-supervised community detection methods typically involve two learning stages learning in both initial identification and subsequent adjustment, which often starts from an unreasonable community core candidate. Moreover, these methods encounter scalability issues because they depend on reinforcement learning and generative adversarial networks, leading to higher computational costs and restricting the selection of candidates. To address these limitations, we draw a parallel between crystallization kinetics and community detection to integrate the spontaneity of the annealing process into community detection. Specifically, we liken community detection to identifying a crystal subgrain (core) that expands into a complete grain (community) through a process similar to annealing. Based on this finding, we propose CLique ANNealing (CLANN), which applies kinetics concepts to community detection by integrating these principles into the optimization process to strengthen the consistency of the community core. Subsequently, a learning-free Transitive Annealer was employed to refine the first-stage candidates by merging neighboring cliques and repositioning the community core, enabling a spontaneous growth process that enhances scalability. Extensive experiments on \textbf{43} different network settings demonstrate that CLANN outperforms state-of-the-art methods across multiple real-world datasets, showcasing its exceptional efficacy and efficiency in community detection.
comment: arXiv admin note: text overlap with arXiv:2203.05898 by other authors
☆ Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Client-level fairness metrics for federated learning are used to ensure that all clients in a federation either: a) have similar final performance on their local data distributions (i.e., client parity), or b) obtain final performance on their local data distributions relative to their contribution to the federated learning process (i.e., contribution fairness). While a handful of works that propose either client-parity or contribution-based fairness metrics ground their definitions and decisions in social theories of equality -- such as distributive justice -- most works arbitrarily choose what notion of fairness to align with which makes it difficult for practitioners to choose which fairness metric aligns best with their fairness ethics. In this work, we propose UDJ-FL (Uncertainty-based Distributive Justice for Federated Learning), a flexible federated learning framework that can achieve multiple distributive justice-based client-level fairness metrics. Namely, by utilizing techniques inspired by fair resource allocation, in conjunction with performing aleatoric uncertainty-based client weighing, our UDJ-FL framework is able to achieve egalitarian, utilitarian, Rawls' difference principle, or desert-based client-level fairness. We empirically show the ability of UDJ-FL to achieve all four defined distributive justice-based client-level fairness metrics in addition to providing fairness equivalent to (or surpassing) other popular fair federated learning works. Further, we provide justification for why aleatoric uncertainty weighing is necessary to the construction of our UDJ-FL framework as well as derive theoretical guarantees for the generalization bounds of UDJ-FL. Our code is publicly available at https://github.com/alycia-noel/UDJ-FL.
comment: 21 pages, 1 figure, 7 tables
☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
☆ Automated Bug Report Prioritization in Large Open-Source Projects
Large open-source projects receive a large number of issues (known as bugs), including software defect (i.e., bug) reports and new feature requests from their user and developer communities at a fast rate. The often limited project resources do not allow them to deal with all issues. Instead, they have to prioritize them according to the project's priorities and the issues' severities. In this paper, we propose a novel approach to automated bug prioritization based on the natural language text of the bug reports that are stored in the open bug repositories of the issue-tracking systems. We conduct topic modeling using a variant of LDA called TopicMiner-MTM and text classification with the BERT large language model to achieve a higher performance level compared to the state-of-the-art. Experimental results using an existing reference dataset containing 85,156 bug reports of the Eclipse Platform project indicate that we outperform existing approaches in terms of Accuracy, Precision, Recall, and F1-measure of the bug report priority prediction.
☆ GraphEdge: Dynamic Graph Partition and Task Scheduling for GNNs Computing in Edge Network
With the exponential growth of Internet of Things (IoT) devices, edge computing (EC) is gradually playing an important role in providing cost-effective services. However, existing approaches struggle to perform well in graph-structured scenarios where user data is correlated, such as traffic flow prediction and social relationship recommender systems. In particular, graph neural network (GNN)-based approaches lead to expensive server communication cost. To address this problem, we propose GraphEdge, an efficient GNN-based EC architecture. It considers the EC system of GNN tasks, where there are associations between users and it needs to take into account the task data of its neighbors when processing the tasks of a user. Specifically, the architecture first perceives the user topology and represents their data associations as a graph layout at each time step. Then the graph layout is optimized by calling our proposed hierarchical traversal graph cut algorithm (HiCut), which cuts the graph layout into multiple weakly associated subgraphs based on the aggregation characteristics of GNN, and the communication cost between different subgraphs during GNN inference is minimized. Finally, based on the optimized graph layout, our proposed deep reinforcement learning (DRL) based graph offloading algorithm (DRLGO) is executed to obtain the optimal offloading strategy for the tasks of users, the offloading strategy is subgraph-based, it tries to offload user tasks in a subgraph to the same edge server as possible while minimizing the task processing time and energy consumption of the EC system. Experimental results show the good effectiveness and dynamic adaptation of our proposed architecture and it also performs well even in dynamic scenarios.
comment: 17 pages,12 figures
☆ Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations
Recent advancements in Large Language Models (LLMs) have generated growing interest in their structured reasoning capabilities, particularly in tasks involving abstraction and pattern recognition. The Abstraction and Reasoning Corpus (ARC) benchmark plays a crucial role in evaluating these capabilities by testing how well AI models generalize to novel problems. While GPT-4o demonstrates strong performance by solving all ARC tasks under zero-noise conditions, other models like DeepSeek R1 and LLaMA 3.2 fail to solve any, suggesting limitations in their ability to reason beyond simple pattern matching. To explore this gap, we systematically evaluate these models across different noise levels and temperature settings. Our results reveal that the introduction of noise consistently impairs model performance, regardless of architecture. This decline highlights a shared vulnerability: current LLMs, despite showing signs of abstract reasoning, remain highly sensitive to input perturbations. Such fragility raises concerns about their real-world applicability, where noise and uncertainty are common. By comparing how different model architectures respond to these challenges, we offer insights into the structural weaknesses of modern LLMs in reasoning tasks. This work underscores the need for developing more robust and adaptable AI systems capable of handling the ambiguity and variability inherent in real-world scenarios. Our findings aim to guide future research toward enhancing model generalization, robustness, and alignment with human-like cognitive flexibility.
comment: 60 pages, 25 figures
☆ Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
comment: 19 pages, 11 figures
☆ Supporting Data-Frame Dynamics in AI-assisted Decision Making
High stakes decision-making often requires a continuous interplay between evolving evidence and shifting hypotheses, a dynamic that is not well supported by current AI decision support systems. In this paper, we introduce a mixed-initiative framework for AI assisted decision making that is grounded in the data-frame theory of sensemaking and the evaluative AI paradigm. Our approach enables both humans and AI to collaboratively construct, validate, and adapt hypotheses. We demonstrate our framework with an AI-assisted skin cancer diagnosis prototype that leverages a concept bottleneck model to facilitate interpretable interactions and dynamic updates to diagnostic hypotheses.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
☆ Integrating Non-Linear Radon Transformation for Diabetic Retinopathy Grading
Diabetic retinopathy is a serious ocular complication that poses a significant threat to patients' vision and overall health. Early detection and accurate grading are essential to prevent vision loss. Current automatic grading methods rely heavily on deep learning applied to retinal fundus images, but the complex, irregular patterns of lesions in these images, which vary in shape and distribution, make it difficult to capture subtle changes. This study introduces RadFuse, a multi-representation deep learning framework that integrates non-linear RadEx-transformed sinogram images with traditional fundus images to enhance diabetic retinopathy detection and grading. Our RadEx transformation, an optimized non-linear extension of the Radon transform, generates sinogram representations to capture complex retinal lesion patterns. By leveraging both spatial and transformed domain information, RadFuse enriches the feature set available to deep learning models, improving the differentiation of severity levels. We conducted extensive experiments on two benchmark datasets, APTOS-2019 and DDR, using three convolutional neural networks (CNNs): ResNeXt-50, MobileNetV2, and VGG19. RadFuse showed significant improvements over fundus-image-only models across all three CNN architectures and outperformed state-of-the-art methods on both datasets. For severity grading across five stages, RadFuse achieved a quadratic weighted kappa of 93.24%, an accuracy of 87.07%, and an F1-score of 87.17%. In binary classification between healthy and diabetic retinopathy cases, the method reached an accuracy of 99.09%, precision of 98.58%, and recall of 99.6%, surpassing previously established models. These results demonstrate RadFuse's capacity to capture complex non-linear features, advancing diabetic retinopathy classification and promoting the integration of advanced mathematical transforms in medical image analysis.
☆ Bidirectional Task-Motion Planning Based on Hierarchical Reinforcement Learning for Strategic Confrontation
In swarm robotics, confrontation scenarios, including strategic confrontations, require efficient decision-making that integrates discrete commands and continuous actions. Traditional task and motion planning methods separate decision-making into two layers, but their unidirectional structure fails to capture the interdependence between these layers, limiting adaptability in dynamic environments. Here, we propose a novel bidirectional approach based on hierarchical reinforcement learning, enabling dynamic interaction between the layers. This method effectively maps commands to task allocation and actions to path planning, while leveraging cross-training techniques to enhance learning across the hierarchical framework. Furthermore, we introduce a trajectory prediction model that bridges abstract task representations with actionable planning goals. In our experiments, it achieves over 80\% in confrontation win rate and under 0.01 seconds in decision time, outperforming existing approaches. Demonstrations through large-scale tests and real-world robot experiments further emphasize the generalization capabilities and practical applicability of our method.
☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
☆ CARE: Compatibility-Aware Incentive Mechanisms for Federated Learning with Budgeted Requesters
Federated learning (FL) is a promising approach that allows requesters (\eg, servers) to obtain local training models from workers (e.g., clients). Since workers are typically unwilling to provide training services/models freely and voluntarily, many incentive mechanisms in FL are designed to incentivize participation by offering monetary rewards from requesters. However, existing studies neglect two crucial aspects of real-world FL scenarios. First, workers can possess inherent incompatibility characteristics (e.g., communication channels and data sources), which can lead to degradation of FL efficiency (e.g., low communication efficiency and poor model generalization). Second, the requesters are budgeted, which limits the amount of workers they can hire for their tasks. In this paper, we investigate the scenario in FL where multiple budgeted requesters seek training services from incompatible workers with private training costs. We consider two settings: the cooperative budget setting where requesters cooperate to pool their budgets to improve their overall utility and the non-cooperative budget setting where each requester optimizes their utility within their own budgets. To address efficiency degradation caused by worker incompatibility, we develop novel compatibility-aware incentive mechanisms, CARE-CO and CARE-NO, for both settings to elicit true private costs and determine workers to hire for requesters and their rewards while satisfying requester budget constraints. Our mechanisms guarantee individual rationality, truthfulness, budget feasibility, and approximation performance. We conduct extensive experiments using real-world datasets to show that the proposed mechanisms significantly outperform existing baselines.
☆ Generative AI for Research Data Processing: Lessons Learnt From Three Use Cases IEEE 20
There has been enormous interest in generative AI since ChatGPT was launched in 2022. However, there are concerns about the accuracy and consistency of the outputs of generative AI. We have carried out an exploratory study on the application of this new technology in research data processing. We identified tasks for which rule-based or traditional machine learning approaches were difficult to apply, and then performed these tasks using generative AI. We demonstrate the feasibility of using the generative AI model Claude 3 Opus in three research projects involving complex data processing tasks: 1) Information extraction: We extract plant species names from historical seedlists (catalogues of seeds) published by botanical gardens. 2) Natural language understanding: We extract certain data points (name of drug, name of health indication, relative effectiveness, cost-effectiveness, etc.) from documents published by Health Technology Assessment organisations in the EU. 3) Text classification: We assign industry codes to projects on the crowdfunding website Kickstarter. We share the lessons we learnt from these use cases: How to determine if generative AI is an appropriate tool for a given data processing task, and if so, how to maximise the accuracy and consistency of the results obtained.
comment: 10 pages, 4 figures, 6 tables. Published in Proceedings of the 2024 IEEE 20th International Conference on e-Science (e-Science), Osaka, Japan
☆ DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers
Existing machine unlearning (MU) approaches exhibit significant sensitivity to hyperparameters, requiring meticulous tuning that limits practical deployment. In this work, we first empirically demonstrate the instability and suboptimal performance of existing popular MU methods when deployed in different scenarios. To address this issue, we propose Dual Optimizer (DualOptim), which incorporates adaptive learning rate and decoupled momentum factors. Empirical and theoretical evidence demonstrates that DualOptim contributes to effective and stable unlearning. Through extensive experiments, we show that DualOptim can significantly boost MU efficacy and stability across diverse tasks, including image classification, image generation, and large language models, making it a versatile approach to empower existing MU algorithms.
☆ Human-Imperceptible Physical Adversarial Attack for NIR Face Recognition Models
Near-infrared (NIR) face recognition systems, which can operate effectively in low-light conditions or in the presence of makeup, exhibit vulnerabilities when subjected to physical adversarial attacks. To further demonstrate the potential risks in real-world applications, we design a novel, stealthy, and practical adversarial patch to attack NIR face recognition systems in a black-box setting. We achieved this by utilizing human-imperceptible infrared-absorbing ink to generate multiple patches with digitally optimized shapes and positions for infrared images. To address the optimization mismatch between digital and real-world NIR imaging, we develop a light reflection model for human skin to minimize pixel-level discrepancies by simulating NIR light reflection. Compared to state-of-the-art (SOTA) physical attacks on NIR face recognition systems, the experimental results show that our method improves the attack success rate in both digital and physical domains, particularly maintaining effectiveness across various face postures. Notably, the proposed approach outperforms SOTA methods, achieving an average attack success rate of 82.46% in the physical domain across different models, compared to 64.18% for existing methods. The artifact is available at https://anonymous.4open.science/r/Human-imperceptible-adversarial-patch-0703/.
☆ Fusing Reward and Dueling Feedback in Stochastic Bandits
This paper investigates the fusion of absolute (reward) and relative (dueling) feedback in stochastic bandits, where both feedback types are gathered in each decision round. We derive a regret lower bound, demonstrating that an efficient algorithm may incur only the smaller among the reward and dueling-based regret for each individual arm. We propose two fusion approaches: (1) a simple elimination fusion algorithm that leverages both feedback types to explore all arms and unifies collected information by sharing a common candidate arm set, and (2) a decomposition fusion algorithm that selects the more effective feedback to explore the corresponding arms and randomly assigns one feedback type for exploration and the other for exploitation in each round. The elimination fusion experiences a suboptimal multiplicative term of the number of arms in regret due to the intrinsic suboptimality of dueling elimination. In contrast, the decomposition fusion achieves regret matching the lower bound up to a constant under a common assumption. Extensive experiments confirm the efficacy of our algorithms and theoretical results.
☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
☆ Insights from Verification: Training a Verilog Generation LLM with Reinforcement Learning with Testbench Feedback
Large language models (LLMs) have shown strong performance in Verilog generation from natural language description. However, ensuring the functional correctness of the generated code remains a significant challenge. This paper introduces a method that integrates verification insights from testbench into the training of Verilog generation LLMs, aligning the training with the fundamental goal of hardware design: functional correctness. The main obstacle in using LLMs for Verilog code generation is the lack of sufficient functional verification data, particularly testbenches paired with design specifications and code. To address this problem, we introduce an automatic testbench generation pipeline that decomposes the process and uses feedback from the Verilog compiler simulator (VCS) to reduce hallucination and ensure correctness. We then use the testbench to evaluate the generated codes and collect them for further training, where verification insights are introduced. Our method applies reinforcement learning (RL), specifically direct preference optimization (DPO), to align Verilog code generation with functional correctness by training preference pairs based on testbench outcomes. In evaluations on VerilogEval-Machine, VerilogEval-Human, RTLLM v1.1, RTLLM v2, and VerilogEval v2, our approach consistently outperforms state-of-the-art baselines in generating functionally correct Verilog code. We open source all training code, data, and models at https://anonymous.4open.science/r/VeriPrefer-E88B.
☆ A closer look at how large language models trust humans: patterns and biases
As large language models (LLMs) and LLM-based agents increasingly interact with humans in decision-making contexts, understanding the trust dynamics between humans and AI agents becomes a central concern. While considerable literature studies how humans trust AI agents, it is much less understood how LLM-based agents develop effective trust in humans. LLM-based agents likely rely on some sort of implicit effective trust in trust-related contexts (e.g., evaluating individual loan applications) to assist and affect decision making. Using established behavioral theories, we develop an approach that studies whether LLMs trust depends on the three major trustworthiness dimensions: competence, benevolence and integrity of the human subject. We also study how demographic variables affect effective trust. Across 43,200 simulated experiments, for five popular language models, across five different scenarios we find that LLM trust development shows an overall similarity to human trust development. We find that in most, but not all cases, LLM trust is strongly predicted by trustworthiness, and in some cases also biased by age, religion and gender, especially in financial scenarios. This is particularly true for scenarios common in the literature and for newer models. While the overall patterns align with human-like mechanisms of effective trust formation, different models exhibit variation in how they estimate trust; in some cases, trustworthiness and demographic factors are weak predictors of effective trust. These findings call for a better understanding of AI-to-human trust dynamics and monitoring of biases and trust development patterns to prevent unintended and potentially harmful outcomes in trust-sensitive applications of AI.
☆ Crisp complexity of fuzzy classifiers
Rule-based systems are a very popular form of explainable AI, particularly in the fuzzy community, where fuzzy rules are widely used for control and classification problems. However, fuzzy rule-based classifiers struggle to reach bigger traction outside of fuzzy venues, because users sometimes do not know about fuzzy and because fuzzy partitions are not so easy to interpret in some situations. In this work, we propose a methodology to reduce fuzzy rule-based classifiers to crisp rule-based classifiers. We study different possible crisp descriptions and implement an algorithm to obtain them. Also, we analyze the complexity of the resulting crisp classifiers. We believe that our results can help both fuzzy and non-fuzzy practitioners understand better the way in which fuzzy rule bases partition the feature space and how easily one system can be translated to another and vice versa. Our complexity metric can also help to choose between different fuzzy classifiers based on what the equivalent crisp partitions look like.
☆ WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents
Can we build accurate world models out of large language models (LLMs)? How can world models benefit LLM agents? The gap between the prior knowledge of LLMs and the specified environment's dynamics usually bottlenecks LLMs' performance as world models. To bridge the gap, we propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and scene graphs, which are extracted by LLMs from exploration trajectories and encoded into executable codes to regulate LLM agents' policies. We further propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control (MPC) framework. Unlike classical MPC requiring costly optimization on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future steps' actions by interacting with the neurosymbolic world model. While the LLM agent's strong heuristics make it an efficient planner in MPC, the quality of its planned actions is also secured by the accurate predictions of the aligned world model. They together considerably improve learning efficiency in a new environment. On open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments), WALL-E 2.0 significantly outperforms existing methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success rate after only 4 iterations.
comment: Code is available at https://github.com/elated-sawyer/WALL-E
☆ Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
☆ TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
☆ Shannon invariants: A scalable approach to information decomposition
Distributed systems, such as biological and artificial neural networks, process information via complex interactions engaging multiple subsystems, resulting in high-order patterns with distinct properties across scales. Investigating how these systems process information remains challenging due to difficulties in defining appropriate multivariate metrics and ensuring their scalability to large systems. To address these challenges, we introduce a novel framework based on what we call "Shannon invariants" -- quantities that capture essential properties of high-order information processing in a way that depends only on the definition of entropy and can be efficiently calculated for large systems. Our theoretical results demonstrate how Shannon invariants can be used to resolve long-standing ambiguities regarding the interpretation of widely used multivariate information-theoretic measures. Moreover, our practical results reveal distinctive information-processing signatures of various deep learning architectures across layers, which lead to new insights into how these systems process information and how this evolves during training. Overall, our framework resolves fundamental limitations in analyzing high-order phenomena and offers broad opportunities for theoretical developments and empirical analyses.
comment: 16 pages, 4 Figures
☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
☆ Dynamic Intent Queries for Motion Transformer-based Trajectory Prediction
In autonomous driving, accurately predicting the movements of other traffic participants is crucial, as it significantly influences a vehicle's planning processes. Modern trajectory prediction models strive to interpret complex patterns and dependencies from agent and map data. The Motion Transformer (MTR) architecture and subsequent work define the most accurate methods in common benchmarks such as the Waymo Open Motion Benchmark. The MTR model employs pre-generated static intention points as initial goal points for trajectory prediction. However, the static nature of these points frequently leads to misalignment with map data in specific traffic scenarios, resulting in unfeasible or unrealistic goal points. Our research addresses this limitation by integrating scene-specific dynamic intention points into the MTR model. This adaptation of the MTR model was trained and evaluated on the Waymo Open Motion Dataset. Our findings demonstrate that incorporating dynamic intention points has a significant positive impact on trajectory prediction accuracy, especially for predictions over long time horizons. Furthermore, we analyze the impact on ground truth trajectories which are not compliant with the map data or are illegal maneuvers.
☆ iMedic: Towards Smartphone-based Self-Auscultation Tool for AI-Powered Pediatric Respiratory Assessment
Respiratory auscultation is crucial for early detection of pediatric pneumonia, a condition that can quickly worsen without timely intervention. In areas with limited physician access, effective auscultation is challenging. We present a smartphone-based system that leverages built-in microphones and advanced deep learning algorithms to detect abnormal respiratory sounds indicative of pneumonia risk. Our end-to-end deep learning framework employs domain generalization to integrate a large electronic stethoscope dataset with a smaller smartphone-derived dataset, enabling robust feature learning for accurate respiratory assessments without expensive equipment. The accompanying mobile application guides caregivers in collecting high-quality lung sound samples and provides immediate feedback on potential pneumonia risks. User studies show strong classification performance and high acceptance, demonstrating the system's ability to facilitate proactive interventions and reduce preventable childhood pneumonia deaths. By seamlessly integrating into ubiquitous smartphones, this approach offers a promising avenue for more equitable and comprehensive remote pediatric care.
☆ Collaborative Split Federated Learning with Parallel Training and Aggregation
Federated learning (FL) operates based on model exchanges between the server and the clients, and it suffers from significant client-side computation and communication burden. Split federated learning (SFL) arises a promising solution by splitting the model into two parts, that are trained sequentially: the clients train the first part of the model (client-side model) and transmit it to the server that trains the second (server-side model). Existing SFL schemes though still exhibit long training delays and significant communication overhead, especially when clients of different computing capability participate. Thus, we propose Collaborative-Split Federated Learning~(C-SFL), a novel scheme that splits the model into three parts, namely the model parts trained at the computationally weak clients, the ones trained at the computationally strong clients, and the ones at the server. Unlike existing works, C-SFL enables parallel training and aggregation of model's parts at the clients and at the server, resulting in reduced training delays and commmunication overhead while improving the model's accuracy. Experiments verify the multiple gains of C-SFL against the existing schemes.
☆ Implementing Rational Choice Functions with LLMs and Measuring their Alignment with User Preferences
As large language models (LLMs) become integral to intelligent user interfaces (IUIs), their role as decision-making agents raises critical concerns about alignment. Although extensive research has addressed issues such as factuality, bias, and toxicity, comparatively little attention has been paid to measuring alignment to preferences, i.e., the relative desirability of different alternatives, a concept used in decision making, economics, and social choice theory. However, a reliable decision-making agent makes choices that align well with user preferences. In this paper, we generalize existing methods that exploit LLMs for ranking alternative outcomes by addressing alignment with the broader and more flexible concept of user preferences, which includes both strict preferences and indifference among alternatives. To this end, we put forward design principles for using LLMs to implement rational choice functions, and provide the necessary tools to measure preference satisfaction. We demonstrate the applicability of our approach through an empirical study in a practical application of an IUI in the automotive domain.
☆ DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models
Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications.
☆ RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
☆ Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation
Embodied agents exhibit immense potential across a multitude of domains, making the assurance of their behavioral safety a fundamental prerequisite for their widespread deployment. However, existing research predominantly concentrates on the security of general large language models, lacking specialized methodologies for establishing safety benchmarks and input moderation tailored to embodied agents. To bridge this gap, this paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents. This framework encompasses the entire pipeline, including taxonomy definition, dataset curation, moderator architecture, model training, and rigorous evaluation. Notably, we introduce EAsafetyBench, a meticulously crafted safety benchmark engineered to facilitate both the training and stringent assessment of moderators specifically designed for embodied agents. Furthermore, we propose Pinpoint, an innovative prompt-decoupled input moderation scheme that harnesses a masked attention mechanism to effectively isolate and mitigate the influence of functional prompts on moderation tasks. Extensive experiments conducted on diverse benchmark datasets and models validate the feasibility and efficacy of the proposed approach. The results demonstrate that our methodologies achieve an impressive average detection accuracy of 94.58%, surpassing the performance of existing state-of-the-art techniques, alongside an exceptional moderation processing time of merely 0.002 seconds per instance.
comment: 9 pages
☆ Exploring Inevitable Waypoints for Unsolvability Explanation in Hybrid Planning Problems
Explaining unsolvability of planning problems is of significant research interest in Explainable AI Planning. AI planning literature has reported several research efforts on generating explanations of solutions to planning problems. However, explaining the unsolvability of planning problems remains a largely open and understudied problem. A widely practiced approach to plan generation and automated problem solving, in general, is to decompose tasks into sub-problems that help progressively converge towards the goal. In this paper, we propose to adopt the same philosophy of sub-problem identification as a mechanism for analyzing and explaining unsolvability of planning problems in hybrid systems. In particular, for a given unsolvable planning problem, we propose to identify common waypoints, which are universal obstacles to plan existence; in other words, they appear on every plan from the source to the planning goal. This work envisions such waypoints as sub-problems of the planning problem and the unreachability of any of these waypoints as an explanation for the unsolvability of the original planning problem. We propose a novel method of waypoint identification by casting the problem as an instance of the longest common subsequence problem, a widely popular problem in computer science, typically considered as an illustrative example for the dynamic programming paradigm. Once the waypoints are identified, we perform symbolic reachability analysis on them to identify the earliest unreachable waypoint and report it as the explanation of unsolvability. We present experimental results on unsolvable planning problems in hybrid domains.
☆ FADEL: Uncertainty-aware Fake Audio Detection with Evidential Deep Learning ICASSP 2025
Recently, fake audio detection has gained significant attention, as advancements in speech synthesis and voice conversion have increased the vulnerability of automatic speaker verification (ASV) systems to spoofing attacks. A key challenge in this task is generalizing models to detect unseen, out-of-distribution (OOD) attacks. Although existing approaches have shown promising results, they inherently suffer from overconfidence issues due to the usage of softmax for classification, which can produce unreliable predictions when encountering unpredictable spoofing attempts. To deal with this limitation, we propose a novel framework called fake audio detection with evidential learning (FADEL). By modeling class probabilities with a Dirichlet distribution, FADEL incorporates model uncertainty into its predictions, thereby leading to more robust performance in OOD scenarios. Experimental results on the ASVspoof2019 Logical Access (LA) and ASVspoof2021 LA datasets indicate that the proposed method significantly improves the performance of baseline models. Furthermore, we demonstrate the validity of uncertainty estimation by analyzing a strong correlation between average uncertainty and equal error rate (EER) across different spoofing algorithms.
comment: Accepted at ICASSP 2025
☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ Cost-Effective Text Clustering with Large Language Models
Text clustering aims to automatically partition a collection of text documents into distinct clusters based on linguistic features. In the literature, this task is usually framed as metric clustering based on text embeddings from pre-trained encoders or a graph clustering problem upon pairwise similarities from an oracle, e.g., a large ML model. Recently, large language models (LLMs) bring significant advancement in this field by offering contextualized text embeddings and highly accurate similarity scores, but meanwhile, present grand challenges to cope with substantial computational and/or financial overhead caused by numerous API-based queries or inference calls to the models. In response, this paper proposes TECL, a cost-effective framework that taps into the feedback from LLMs for accurate text clustering within a limited budget of queries to LLMs. Under the hood, TECL adopts our EdgeLLM or TriangleLLM to construct must-link/cannot-link constraints for text pairs, and further leverages such constraints as supervision signals input to our weighted constrained clustering approach to generate clusters. Particularly, EdgeLLM (resp. TriangleLLM) enables the identification of informative text pairs (resp. triplets) for querying LLMs via well-thought-out greedy algorithms and accurate extraction of pairwise constraints through carefully-crafted prompting techniques. Our experiments on multiple benchmark datasets exhibit that TECL consistently and considerably outperforms existing solutions in unsupervised text clustering under the same query cost for LLMs.
☆ DR.FIX: Automatically Fixing Data Races at Industry Scale
Data races are a prevalent class of concurrency bugs in shared-memory parallel programs, posing significant challenges to software reliability and reproducibility. While there is an extensive body of research on detecting data races and a wealth of practical detection tools across various programming languages, considerably less effort has been directed toward automatically fixing data races at an industrial scale. In large codebases, data races are continuously introduced and exhibit myriad patterns, making automated fixing particularly challenging. In this paper, we tackle the problem of automatically fixing data races at an industrial scale. We present Dr.Fix, a tool that combines large language models (LLMs) with program analysis to generate fixes for data races in real-world settings, effectively addressing a broad spectrum of racy patterns in complex code contexts. Implemented for Go--the programming language widely used in modern microservice architectures where concurrency is pervasive and data races are common--Dr.Fix seamlessly integrates into existing development workflows. We detail the design of Dr.Fix and examine how individual design choices influence the quality of the fixes produced. Over the past 18 months, Dr.Fix has been integrated into developer workflows at Uber demonstrating its practical utility. During this period, Dr.Fix produced patches for 224 (55%) from a corpus of 404 data races spanning various categories; 193 of these patches (86%) were accepted by more than a hundred developers via code reviews and integrated into the codebase.
comment: To appear in PLDI 2025
☆ Enhancing Reinforcement learning in 3-Dimensional Hydrophobic-Polar Protein Folding Model with Attention-based layers
Transformer-based architectures have recently propelled advances in sequence modeling across domains, but their application to the hydrophobic-hydrophilic (H-P) model for protein folding remains relatively unexplored. In this work, we adapt a Deep Q-Network (DQN) integrated with attention mechanisms (Transformers) to address the 3D H-P protein folding problem. Our system formulates folding decisions as a self-avoiding walk in a reinforced environment, and employs a specialized reward function based on favorable hydrophobic interactions. To improve performance, the method incorporates validity check including symmetry-breaking constraints, dueling and double Q-learning, and prioritized replay to focus learning on critical transitions. Experimental evaluations on standard benchmark sequences demonstrate that our approach achieves several known best solutions for shorter sequences, and obtains near-optimal results for longer chains. This study underscores the promise of attention-based reinforcement learning for protein folding, and created a prototype of Transformer-based Q-network structure for 3-dimensional lattice models.
☆ A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
comment: 18 pages, 6 figures (3 graphs + 3 flowchart/architecture diagrams), submitted as a preprint for review consideration in AI for Education or Machine Learning applications in low-resource settings. Includes detailed experiments with LoRA and quantization methods for efficient LLM fine-tuning
☆ Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models.
comment: 75 pages, 60 figures
☆ MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Molecular generation plays an important role in drug discovery and materials science, especially in data-scarce scenarios where traditional generative models often struggle to achieve satisfactory conditional generalization. To address this challenge, we propose MetaMolGen, a first-order meta-learning-based molecular generator designed for few-shot and property-conditioned molecular generation. MetaMolGen standardizes the distribution of graph motifs by mapping them to a normalized latent space, and employs a lightweight autoregressive sequence model to generate SMILES sequences that faithfully reflect the underlying molecular structure. In addition, it supports conditional generation of molecules with target properties through a learnable property projector integrated into the generative process.Experimental results demonstrate that MetaMolGen consistently generates valid and diverse SMILES sequences under low-data regimes, outperforming conventional baselines. This highlights its advantage in fast adaptation and efficient conditional generation for practical molecular design.
☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
☆ A Large-scale Class-level Benchmark Dataset for Code Generation with LLMs
Recent advancements in large language models (LLMs) have demonstrated promising capabilities in code generation tasks. However, most existing benchmarks focus on isolated functions and fail to capture the complexity of real-world, class-level software structures. To address this gap, we introduce a large-scale, Python class-level dataset curated from $13{,}174$ real-world open-source projects. The dataset contains over 842,000 class skeletons, each including class and method signatures, along with associated docstrings when available. We preserve structural and contextual dependencies critical to realistic software development scenarios and enrich the dataset with static code metrics to support downstream analysis. To evaluate the usefulness of this dataset, we use extracted class skeletons as prompts for GPT-4 to generate full class implementations. Results show that the LLM-generated classes exhibit strong lexical and structural similarity to human-written counterparts, with average ROUGE@L, BLEU, and TSED scores of 0.80, 0.59, and 0.73, respectively. These findings confirm that well-structured prompts derived from real-world class skeletons significantly enhance LLM performance in class-level code generation. This dataset offers a valuable resource for benchmarking, training, and improving LLMs in realistic software engineering contexts.
comment: This paper was submitted to the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025) AI models/data track
☆ A Multi-Agent Framework for Automated Qinqiang Opera Script Generation Using Large Language Models
This paper introduces a novel multi-Agent framework that automates the end to end production of Qinqiang opera by integrating Large Language Models , visual generation, and Text to Speech synthesis. Three specialized agents collaborate in sequence: Agent1 uses an LLM to craft coherent, culturally grounded scripts;Agent2 employs visual generation models to render contextually accurate stage scenes; and Agent3 leverages TTS to produce synchronized, emotionally expressive vocal performances. In a case study on Dou E Yuan, the system achieved expert ratings of 3.8 for script fidelity, 3.5 for visual coherence, and 3.8 for speech accuracy-culminating in an overall score of 3.6, a 0.3 point improvement over a Single Agent baseline. Ablation experiments demonstrate that removing Agent2 or Agent3 leads to drops of 0.4 and 0.5 points, respectively, underscoring the value of modular collaboration. This work showcases how AI driven pipelines can streamline and scale the preservation of traditional performing arts, and points toward future enhancements in cross modal alignment, richer emotional nuance, and support for additional opera genres.
comment: 17 pages,7 figures,1 tables
☆ Do It For Me vs. Do It With Me: Investigating User Perceptions of Different Paradigms of Automation in Copilots for Feature-Rich Software
Large Language Model (LLM)-based in-application assistants, or copilots, can automate software tasks, but users often prefer learning by doing, raising questions about the optimal level of automation for an effective user experience. We investigated two automation paradigms by designing and implementing a fully automated copilot (AutoCopilot) and a semi-automated copilot (GuidedCopilot) that automates trivial steps while offering step-by-step visual guidance. In a user study (N=20) across data analysis and visual design tasks, GuidedCopilot outperformed AutoCopilot in user control, software utility, and learnability, especially for exploratory and creative tasks, while AutoCopilot saved time for simpler visual tasks. A follow-up design exploration (N=10) enhanced GuidedCopilot with task-and state-aware features, including in-context preview clips and adaptive instructions. Our findings highlight the critical role of user control and tailored guidance in designing the next generation of copilots that enhance productivity, support diverse skill levels, and foster deeper software engagement.
comment: Accepted for publication in the CHI Conference on Human Factors in Computing Systems (CHI 2025), April 26 - May 1, 2025, Yokohama, Japan
☆ A Framework for Testing and Adapting REST APIs as LLM Tools
Large Language Models (LLMs) are enabling autonomous agents to perform complex workflows using external tools or functions, often provided via REST APIs in enterprise systems. However, directly utilizing these APIs as tools poses challenges due to their complex input schemas, elaborate responses, and often ambiguous documentation. Current benchmarks for tool testing do not adequately address these complexities, leading to a critical gap in evaluating API readiness for agent-driven automation. In this work, we present a novel testing framework aimed at evaluating and enhancing the readiness of REST APIs to function as tools for LLM-based agents. Our framework transforms apis as tools, generates comprehensive test cases for the APIs, translates tests cases into natural language instructions suitable for agents, enriches tool definitions and evaluates the agent's ability t correctly invoke the API and process its inputs and responses. To provide actionable insights, we analyze the outcomes of 750 test cases, presenting a detailed taxonomy of errors, including input misinterpretation, output handling inconsistencies, and schema mismatches. Additionally, we classify these test cases to streamline debugging and refinement of tool integrations. This work offers a foundational step toward enabling enterprise APIs as tools, improving their usability in agent-based applications.
☆ IPBench: Benchmarking the Knowledge of Large Language Models in Intellectual Property
Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.
comment: 89 pages, 75 figures, 55 tables
☆ Transport f divergences
We define a class of divergences to measure differences between probability density functions in one-dimensional sample space. The construction is based on the convex function with the Jacobi operator of mapping function that pushforwards one density to the other. We call these information measures {\em transport $f$-divergences}. We present several properties of transport $f$-divergences, including invariances, convexities, variational formulations, and Taylor expansions in terms of mapping functions. Examples of transport $f$-divergences in generative models are provided.
comment: Comments are welcome
☆ Guillotine: Hypervisors for Isolating Malicious AIs
As AI models become more embedded in critical sectors like finance, healthcare, and the military, their inscrutable behavior poses ever-greater risks to society. To mitigate this risk, we propose Guillotine, a hypervisor architecture for sandboxing powerful AI models -- models that, by accident or malice, can generate existential threats to humanity. Although Guillotine borrows some well-known virtualization techniques, Guillotine must also introduce fundamentally new isolation mechanisms to handle the unique threat model posed by existential-risk AIs. For example, a rogue AI may try to introspect upon hypervisor software or the underlying hardware substrate to enable later subversion of that control plane; thus, a Guillotine hypervisor requires careful co-design of the hypervisor software and the CPUs, RAM, NIC, and storage devices that support the hypervisor software, to thwart side channel leakage and more generally eliminate mechanisms for AI to exploit reflection-based vulnerabilities. Beyond such isolation at the software, network, and microarchitectural layers, a Guillotine hypervisor must also provide physical fail-safes more commonly associated with nuclear power plants, avionic platforms, and other types of mission critical systems. Physical fail-safes, e.g., involving electromechanical disconnection of network cables, or the flooding of a datacenter which holds a rogue AI, provide defense in depth if software, network, and microarchitectural isolation is compromised and a rogue AI must be temporarily shut down or permanently destroyed.
comment: To be published in the ACM SIGOPS 2025 Workshop on Hot Topics in Operating Systems
☆ Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning
This paper presents an underlying framework for both automating and accelerating malware classification, more specifically, mapping malicious executables to known Advanced Persistent Threat (APT) groups. The main feature of this analysis is the assembly-level instructions present in executables which are also known as opcodes. The collection of such opcodes on many malicious samples is a lengthy process; hence, open-source reverse engineering tools are used in tandem with scripts that leverage parallel computing to analyze multiple files at once. Traditional and deep learning models are applied to create models capable of classifying malware samples. One-gram and two-gram datasets are constructed and used to train models such as SVM, KNN, and Decision Tree; however, they struggle to provide adequate results without relying on metadata to support n-gram sequences. The computational limitations of such models are overcome with convolutional neural networks (CNNs) and heavily accelerated using graphical compute unit (GPU) resources.
comment: 26 pages, 54 figures, 14 tables
☆ On the Consistency of GNN Explanations for Malware Detection
Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
☆ DataS^3: Dataset Subset Selection for Specialization
In many real-world machine learning (ML) applications (e.g. detecting broken bones in x-ray images, detecting species in camera traps), in practice models need to perform well on specific deployments (e.g. a specific hospital, a specific national park) rather than the domain broadly. However, deployments often have imbalanced, unique data distributions. Discrepancy between the training distribution and the deployment distribution can lead to suboptimal performance, highlighting the need to select deployment-specialized subsets from the available training data. We formalize dataset subset selection for specialization (DS3): given a training set drawn from a general distribution and a (potentially unlabeled) query set drawn from the desired deployment-specific distribution, the goal is to select a subset of the training data that optimizes deployment performance. We introduce DataS^3; the first dataset and benchmark designed specifically for the DS3 problem. DataS^3 encompasses diverse real-world application domains, each with a set of distinct deployments to specialize in. We conduct a comprehensive study evaluating algorithms from various families--including coresets, data filtering, and data curation--on DataS^3, and find that general-distribution methods consistently fail on deployment-specific tasks. Additionally, we demonstrate the existence of manually curated (deployment-specific) expert subsets that outperform training on all available data with accuracy gains up to 51.3 percent. Our benchmark highlights the critical role of tailored dataset curation in enhancing performance and training efficiency on deployment-specific distributions, which we posit will only become more important as global, public datasets become available across domains and ML models are deployed in the real world.
☆ An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
☆ Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
☆ Investigating LLMs in Clinical Triage: Promising Capabilities, Persistent Intersectional Biases AAAI 2025
Large Language Models (LLMs) have shown promise in clinical decision support, yet their application to triage remains underexplored. We systematically investigate the capabilities of LLMs in emergency department triage through two key dimensions: (1) robustness to distribution shifts and missing data, and (2) counterfactual analysis of intersectional biases across sex and race. We assess multiple LLM-based approaches, ranging from continued pre-training to in-context learning, as well as machine learning approaches. Our results indicate that LLMs exhibit superior robustness, and we investigate the key factors contributing to the promising LLM-based approaches. Furthermore, in this setting, we identify gaps in LLM preferences that emerge in particular intersections of sex and race. LLMs generally exhibit sex-based differences, but they are most pronounced in certain racial groups. These findings suggest that LLMs encode demographic preferences that may emerge in specific clinical contexts or particular combinations of characteristics.
comment: Accepted to GenAI4Health Workshop @ AAAI 2025
☆ Boosting Classifier Performance with Opposition-Based Data Transformation
In this paper, we introduce a novel data transformation framework based on Opposition-Based Learning (OBL) to boost the performance of traditional classification algorithms. Originally developed to accelerate convergence in optimization tasks, OBL is leveraged here to generate synthetic opposite samples that replace the acutely training data and improve decision boundary formation. We explore three OBL variants; Global OBL, Class-Wise OBL, and Localized Class-Wise OBL; and integrate them with several widely used classifiers, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic Regression (LR), and Decision Tree (DT). Extensive experiments conducted on 26 heterogeneous and high-dimensional datasets demonstrate that OBL-enhanced classifiers consistently outperform their standard counterparts in terms of accuracy and F1-score, frequently achieving near-perfect or perfect classification. Furthermore, OBL contributes to improved computational efficiency, particularly in SVM and LR. These findings underscore the potential of OBL as a lightweight yet powerful data transformation strategy for enhancing classification performance, especially in complex or sparse learning environments.
☆ Gradient-Optimized Fuzzy Classifier: A Benchmark Study Against State-of-the-Art Models
This paper presents a performance benchmarking study of a Gradient-Optimized Fuzzy Inference System (GF) classifier against several state-of-the-art machine learning models, including Random Forest, XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks. The evaluation was conducted across five datasets from the UCI Machine Learning Repository, each chosen for their diversity in input types, class distributions, and classification complexity. Unlike traditional Fuzzy Inference Systems that rely on derivative-free optimization methods, the GF leverages gradient descent to significantly improving training efficiency and predictive performance. Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times. In particular, the GF exhibited strong consistency across folds and datasets, underscoring its robustness in handling noisy data and variable feature sets. These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
☆ Blockchain Meets Adaptive Honeypots: A Trust-Aware Approach to Next-Gen IoT Security IEEE
Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning but remain vulnerable to evolving cyber threats. Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies. We propose a dynamic attack detection and prevention approach to address this challenge. First, blockchain-based authentication uses the Deoxys Authentication Algorithm (DAA) to verify IoT device legitimacy before data transmission. Next, a bi-stage intrusion detection system is introduced: the first stage uses signature-based detection via an Improved Random Forest (IRF) algorithm. In contrast, the second stage applies feature-based anomaly detection using a Diffusion Convolution Recurrent Neural Network (DCRNN). To ensure Quality of Service (QoS) and maintain Service Level Agreements (SLA), trust-aware service migration is performed using Heap-Based Optimization (HBO). Additionally, on-demand virtual High-Interaction honeypots deceive attackers and extract attack patterns, which are securely stored using the Bimodal Lattice Signature Scheme (BLISS) to enhance signature-based Intrusion Detection Systems (IDS). The proposed framework is implemented in the NS3 simulation environment and evaluated against existing methods across multiple performance metrics, including accuracy, attack detection rate, false negative rate, precision, recall, ROC curve, memory usage, CPU usage, and execution time. Experimental results demonstrate that the framework significantly outperforms existing approaches, reinforcing the security of NGWN-enabled IoT ecosystems
comment: This paper has been submitted to the IEEE Transactions on Network Science and Engineering (TNSE) for possible publication
☆ Hexcute: A Tile-based Programming Language with Automatic Layout and Task-Mapping Synthesis
Deep learning (DL) workloads mainly run on accelerators like GPUs. Recent DL quantization techniques demand a new matrix multiplication operator with mixed input data types, further complicating GPU optimization. Prior high-level compilers like Triton lack the expressiveness to implement key optimizations like fine-grained data pipelines and hardware-friendly memory layouts for these operators, while low-level programming models, such as Hidet, Graphene, and CUTLASS, require significant programming efforts. To balance expressiveness with engineering effort, we propose Hexcute, a tile-based programming language that exposes shared memory and register abstractions to enable fine-grained optimization for these operators. Additionally, Hexcute leverages task mapping to schedule the GPU program, and to reduce programming efforts, it automates layout and task mapping synthesis with a novel type-inference-based algorithm. Our evaluation shows that Hexcute generalizes to a wide range of DL operators, achieves 1.7-11.28$\times$ speedup over existing DL compilers for mixed-type operators, and brings up to 2.91$\times$ speedup in the end-to-end evaluation.
comment: 17 pages, 24 figures
☆ TinyML for Speech Recognition
We train and deploy a quantized 1D convolutional neural network model to conduct speech recognition on a highly resource-constrained IoT edge device. This can be useful in various Internet of Things (IoT) applications, such as smart homes and ambient assisted living for the elderly and people with disabilities, just to name a few examples. In this paper, we first create a new dataset with over one hour of audio data that enables our research and will be useful to future studies in this field. Second, we utilize the technologies provided by Edge Impulse to enhance our model's performance and achieve a high Accuracy of up to 97% on our dataset. For the validation, we implement our prototype using the Arduino Nano 33 BLE Sense microcontroller board. This microcontroller board is specifically designed for IoT and AI applications, making it an ideal choice for our target use case scenarios. While most existing research focuses on a limited set of keywords, our model can process 23 different keywords, enabling complex commands.
☆ HTN Plan Repair Algorithms Compared: Strengths and Weaknesses of Different Methods ICAPS 2025
This paper provides theoretical and empirical comparisons of three recent hierarchical plan repair algorithms: SHOPFixer, IPyHOPPER, and Rewrite. Our theoretical results show that the three algorithms correspond to three different definitions of the plan repair problem, leading to differences in the algorithms' search spaces, the repair problems they can solve, and the kinds of repairs they can make. Understanding these distinctions is important when choosing a repair method for any given application. Building on the theoretical results, we evaluate the algorithms empirically in a series of benchmark planning problems. Our empirical results provide more detailed insight into the runtime repair performance of these systems and the coverage of the repair problems solved, based on algorithmic properties such as replanning, chronological backtracking, and backjumping over plan trees.
comment: 20 pages; 19 figures; To appear in the Proceedings for ICAPS 2025, the 35th International Conference on Automated Planning and Schedulings
☆ Reflexive Prompt Engineering: A Framework for Responsible Prompt Engineering and Interaction Design
Responsible prompt engineering has emerged as a critical framework for ensuring that generative artificial intelligence (AI) systems serve society's needs while minimizing potential harms. As generative AI applications become increasingly powerful and ubiquitous, the way we instruct and interact with them through prompts has profound implications for fairness, accountability, and transparency. This article examines how strategic prompt engineering can embed ethical and legal considerations and societal values directly into AI interactions, moving beyond mere technical optimization for functionality. This article proposes a comprehensive framework for responsible prompt engineering that encompasses five interconnected components: prompt design, system selection, system configuration, performance evaluation, and prompt management. Drawing from empirical evidence, the paper demonstrates how each component can be leveraged to promote improved societal outcomes while mitigating potential risks. The analysis reveals that effective prompt engineering requires a delicate balance between technical precision and ethical consciousness, combining the systematic rigor and focus on functionality with the nuanced understanding of social impact. Through examination of real-world and emerging practices, the article illustrates how responsible prompt engineering serves as a crucial bridge between AI development and deployment, enabling organizations to fine-tune AI outputs without modifying underlying model architectures. This approach aligns with broader "Responsibility by Design" principles, embedding ethical considerations directly into the implementation process rather than treating them as post-hoc additions. The article concludes by identifying key research directions and practical guidelines for advancing the field of responsible prompt engineering.
comment: 20 pages one figure
☆ Quality of explanation of xAI from the prespective of Italian end-users: Italian version of System Causability Scale (SCS)
Background and aim: Considering the scope of the application of artificial intelligence beyond the field of computer science, one of the concerns of researchers is to provide quality explanations about the functioning of algorithms based on artificial intelligence and the data extracted from it. The purpose of the present study is to validate the Italian version of system causability scale (I-SCS) to measure the quality of explanations provided in a xAI. Method: For this purpose, the English version, initially provided in 2020 in coordination with the main developer, was utilized. The forward-backward translation method was applied to ensure accuracy. Finally, these nine steps were completed by calculating the content validity index/ratio and conducting cognitive interviews with representative end users. Results: The original version of the questionnaire consisted of 10 questions. However, based on the obtained indexes (CVR below 0.49), one question (Question 8) was entirely removed. After completing the aforementioned steps, the Italian version contained 9 questions. The representative sample of Italian end users fully comprehended the meaning and content of the questions in the Italian version. Conclusion: The Italian version obtained in this study can be used in future research studies as well as in the field by xAI developers. This tool can be used to measure the quality of explanations provided for an xAI system in Italian culture.
comment: This work will be presented in Coperman 2025 Conference
☆ FinNLI: Novel Dataset for Multi-Genre Financial Natural Language Inference Benchmarking
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset's difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement.
☆ FPGA-Based Neural Network Accelerators for Space Applications: A Survey
Space missions are becoming increasingly ambitious, necessitating high-performance onboard spacecraft computing systems. In response, field-programmable gate arrays (FPGAs) have garnered significant interest due to their flexibility, cost-effectiveness, and radiation tolerance potential. Concurrently, neural networks (NNs) are being recognized for their capability to execute space mission tasks such as autonomous operations, sensor data analysis, and data compression. This survey serves as a valuable resource for researchers aiming to implement FPGA-based NN accelerators in space applications. By analyzing existing literature, identifying trends and gaps, and proposing future research directions, this work highlights the potential of these accelerators to enhance onboard computing systems.
☆ Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning
High-dimensional partial differential equations (PDEs) pose significant computational challenges across fields ranging from quantum chemistry to economics and finance. Although scientific machine learning (SciML) techniques offer approximate solutions, they often suffer from bias and neglect crucial physical insights. Inspired by inference-time scaling strategies in language models, we propose Simulation-Calibrated Scientific Machine Learning (SCaSML), a physics-informed framework that dynamically refines and debiases the SCiML predictions during inference by enforcing the physical laws. SCaSML leverages derived new physical laws that quantifies systematic errors and employs Monte Carlo solvers based on the Feynman-Kac and Elworthy-Bismut-Li formulas to dynamically correct the prediction. Both numerical and theoretical analysis confirms enhanced convergence rates via compute-optimal inference methods. Our numerical experiments demonstrate that SCaSML reduces errors by 20-50% compared to the base surrogate model, establishing it as the first algorithm to refine approximated solutions to high-dimensional PDE during inference. Code of SCaSML is available at https://github.com/Francis-Fan-create/SCaSML.
☆ A detection-task-specific deep-learning method to improve the quality of sparse-view myocardial perfusion SPECT images
Myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT) is a widely used and cost-effective diagnostic tool for coronary artery disease. However, the lengthy scanning time in this imaging procedure can cause patient discomfort, motion artifacts, and potentially inaccurate diagnoses due to misalignment between the SPECT scans and the CT-scans which are acquired for attenuation compensation. Reducing projection angles is a potential way to shorten scanning time, but this can adversely impact the quality of the reconstructed images. To address this issue, we propose a detection-task-specific deep-learning method for sparse-view MPI SPECT images. This method integrates an observer loss term that penalizes the loss of anthropomorphic channel features with the goal of improving performance in perfusion defect-detection task. We observed that, on the task of detecting myocardial perfusion defects, the proposed method yielded an area under the receiver operating characteristic (ROC) curve (AUC) significantly larger than the sparse-view protocol. Further, the proposed method was observed to be able to restore the structure of the left ventricle wall, demonstrating ability to overcome sparse-sampling artifacts. Our preliminary results motivate further evaluations of the method.
☆ Leveraging Social Media Analytics for Sustainability Trend Detection in Saudi Arabias Evolving Market
Saudi Arabias rapid economic growth and social evolution under Vision 2030 present a unique opportunity to track emerging trends in real time. Uncovering trends in real time can open up new avenues for business and investment opportunities. This paper explores how AI and social media analytics can uncover and monitor these trends across sectors like sustainability, construction, food beverages industry, tourism, technology, and entertainment. This paper focus on use of AI-driven methodology to identify sustainability trends across Saudi Arabia. We processed millions of social media posts, news, blogs in order to understand sustainability trends in the region. The paper presents an AI approach that can help economists, businesses, government to understand sustainability trends and make better decisions around them. This approach offers both sector-specific and cross-sector insights, giving decision-makers a reliable, up to date snapshot of Saudi Arabias market shifts. Beyond Saudi Arabia, this framework also shows potential for adapting to other regions. Overall, our findings highlight how by using AI-methodologies, give decision makers a reliable method to understand how initiatives are perceived and adopted by the public and understand growth of trends.
comment: 9
☆ Heterogeneous networks in drug-target interaction prediction
Drug discovery requires a tremendous amount of time and cost. Computational drug-target interaction prediction, a significant part of this process, can reduce these requirements by narrowing the search space for wet lab experiments. In this survey, we provide comprehensive details of graph machine learning-based methods in predicting drug-target interaction, as they have shown promising results in this field. These details include the overall framework, main contribution, datasets, and their source codes. The selected papers were mainly published from 2020 to 2024. Prior to discussing papers, we briefly introduce the datasets commonly used with these methods and measurements to assess their performance. Finally, future challenges and some crucial areas that need to be explored are discussed.
comment: 18 pages, 5 figures, 10 tables
☆ Towards responsible AI for education: Hybrid human-AI to confront the Elephant in the room
Despite significant advancements in AI-driven educational systems and ongoing calls for responsible AI for education, several critical issues remain unresolved -- acting as the elephant in the room within AI in education, learning analytics, educational data mining, learning sciences, and educational psychology communities. This critical analysis identifies and examines nine persistent challenges that continue to undermine the fairness, transparency, and effectiveness of current AI methods and applications in education. These include: (1) the lack of clarity around what AI for education truly means -- often ignoring the distinct purposes, strengths, and limitations of different AI families -- and the trend of equating it with domain-agnostic, company-driven large language models; (2) the widespread neglect of essential learning processes such as motivation, emotion, and (meta)cognition in AI-driven learner modelling and their contextual nature; (3) limited integration of domain knowledge and lack of stakeholder involvement in AI design and development; (4) continued use of non-sequential machine learning models on temporal educational data; (5) misuse of non-sequential metrics to evaluate sequential models; (6) use of unreliable explainable AI methods to provide explanations for black-box models; (7) ignoring ethical guidelines in addressing data inconsistencies during model training; (8) use of mainstream AI methods for pattern discovery and learning analytics without systematic benchmarking; and (9) overemphasis on global prescriptions while overlooking localised, student-specific recommendations. Supported by theoretical and empirical research, we demonstrate how hybrid AI methods -- specifically neural-symbolic AI -- can address the elephant in the room and serve as the foundation for responsible, trustworthy AI systems in education.
☆ Progressive Language-guided Visual Learning for Multi-Task Visual Grounding
Multi-task visual grounding (MTVG) includes two sub-tasks, i.e., Referring Expression Comprehension (REC) and Referring Expression Segmentation (RES). The existing representative approaches generally follow the research pipeline which mainly consists of three core procedures, including independent feature extraction for visual and linguistic modalities, respectively, cross-modal interaction module, and independent prediction heads for different sub-tasks. Albeit achieving remarkable performance, this research line has two limitations: 1) The linguistic content has not been fully injected into the entire visual backbone for boosting more effective visual feature extraction and it needs an extra cross-modal interaction module; 2) The relationship between REC and RES tasks is not effectively exploited to help the collaborative prediction for more accurate output. To deal with these problems, in this paper, we propose a Progressive Language-guided Visual Learning framework for multi-task visual grounding, called PLVL, which not only finely mine the inherent feature expression of the visual modality itself but also progressively inject the language information to help learn linguistic-related visual features. In this manner, our PLVL does not need additional cross-modal fusion module while fully introducing the language guidance. Furthermore, we analyze that the localization center for REC would help identify the to-be-segmented object region for RES to some extent. Inspired by this investigation, we design a multi-task head to accomplish collaborative predictions for these two sub-tasks. Extensive experiments conducted on several benchmark datasets comprehensively substantiate that our PLVL obviously outperforms the representative methods in both REC and RES tasks. https://github.com/jcwang0602/PLVL
☆ Detecting Actionable Requests and Offers on Social Media During Crises Using LLMs
Natural disasters often result in a surge of social media activity, including requests for assistance, offers of help, sentiments, and general updates. To enable humanitarian organizations to respond more efficiently, we propose a fine-grained hierarchical taxonomy to systematically organize crisis-related information about requests and offers into three critical dimensions: supplies, emergency personnel, and actions. Leveraging the capabilities of Large Language Models (LLMs), we introduce Query-Specific Few-shot Learning (QSF Learning) that retrieves class-specific labeled examples from an embedding database to enhance the model's performance in detecting and classifying posts. Beyond classification, we assess the actionability of messages to prioritize posts requiring immediate attention. Extensive experiments demonstrate that our approach outperforms baseline prompting strategies, effectively identifying and prioritizing actionable requests and offers.
☆ A Non-Invasive Load Monitoring Method for Edge Computing Based on MobileNetV3 and Dynamic Time Regulation
In recent years, non-intrusive load monitoring (NILM) technology has attracted much attention in the related research field by virtue of its unique advantage of utilizing single meter data to achieve accurate decomposition of device-level energy consumption. Cutting-edge methods based on machine learning and deep learning have achieved remarkable results in load decomposition accuracy by fusing time-frequency domain features. However, these methods generally suffer from high computational costs and huge memory requirements, which become the main obstacles for their deployment on resource-constrained microcontroller units (MCUs). To address these challenges, this study proposes an innovative Dynamic Time Warping (DTW) algorithm in the time-frequency domain and systematically compares and analyzes the performance of six machine learning techniques in home electricity scenarios. Through complete experimental validation on edge MCUs, this scheme successfully achieves a recognition accuracy of 95%. Meanwhile, this study deeply optimizes the frequency domain feature extraction process, which effectively reduces the running time by 55.55% and the storage overhead by about 34.6%. The algorithm performance will be further optimized in future research work. Considering that the elimination of voltage transformer design can significantly reduce the cost, the subsequent research will focus on this direction, and is committed to providing more cost-effective solutions for the practical application of NILM, and providing a solid theoretical foundation and feasible technical paths for the design of efficient NILM systems in edge computing environments.
☆ SparseJEPA: Sparse Representation Learning of Joint Embedding Predictive Architectures
Joint Embedding Predictive Architectures (JEPA) have emerged as a powerful framework for learning general-purpose representations. However, these models often lack interpretability and suffer from inefficiencies due to dense embedding representations. We propose SparseJEPA, an extension that integrates sparse representation learning into the JEPA framework to enhance the quality of learned representations. SparseJEPA employs a penalty method that encourages latent space variables to be shared among data features with strong semantic relationships, while maintaining predictive performance. We demonstrate the effectiveness of SparseJEPA by training on the CIFAR-100 dataset and pre-training a lightweight Vision Transformer. The improved embeddings are utilized in linear-probe transfer learning for both image classification and low-level tasks, showcasing the architecture's versatility across different transfer tasks. Furthermore, we provide a theoretical proof that demonstrates that the grouping mechanism enhances representation quality. This was done by displaying that grouping reduces Multiinformation among latent-variables, including proofing the Data Processing Inequality for Multiinformation. Our results indicate that incorporating sparsity not only refines the latent space but also facilitates the learning of more meaningful and interpretable representations. In further work, hope to further extend this method by finding new ways to leverage the grouping mechanism through object-centric representation learning.
☆ Enhancing Trust Through Standards: A Comparative Risk-Impact Framework for Aligning ISO AI Standards with Global Ethical and Regulatory Contexts
As artificial intelligence (AI) reshapes industries and societies, ensuring its trustworthiness-through mitigating ethical risks like bias, opacity, and accountability deficits-remains a global challenge. International Organization for Standardization (ISO) AI standards, such as ISO/IEC 24027 and 24368, aim to foster responsible development by embedding fairness, transparency, and risk management into AI systems. However, their effectiveness varies across diverse regulatory landscapes, from the EU's risk-based AI Act to China's stability-focused measures and the U.S.'s fragmented state-led initiatives. This paper introduces a novel Comparative Risk-Impact Assessment Framework to evaluate how well ISO standards address ethical risks within these contexts, proposing enhancements to strengthen their global applicability. By mapping ISO standards to the EU AI Act and surveying regulatory frameworks in ten regions-including the UK, Canada, India, Japan, Singapore, South Korea, and Brazil-we establish a baseline for ethical alignment. The framework, applied to case studies in the EU, US-Colorado, and China, reveals gaps: voluntary ISO standards falter in enforcement (e.g., Colorado) and undervalue region-specific risks like privacy (China). We recommend mandatory risk audits, region-specific annexes, and a privacy-focused module to enhance ISO's adaptability. This approach not only synthesizes global trends but also offers a replicable tool for aligning standardization with ethical imperatives, fostering interoperability and trust in AI worldwide. Policymakers and standards bodies can leverage these insights to evolve AI governance, ensuring it meets diverse societal needs as the technology advances.
♻ ☆ Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Text-based prompting remains the predominant interaction paradigm in generative AI, yet it often introduces friction for novice users such as small business owners (SBOs), who struggle to articulate creative goals in domain-specific contexts like advertising. Through a formative study with six SBOs in the United Kingdom, we identify three key challenges: difficulties in expressing brand intuition through prompts, limited opportunities for fine-grained adjustment and refinement during and after content generation, and the frequent production of generic content that lacks brand specificity. In response, we present ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal generative AI tool designed to support novice designers by moving beyond traditional prompt interfaces. ACAI features a structured input system composed of three panels: Branding, Audience and Goals, and the Inspiration Board. These inputs allow users to convey brand-relevant context and visual preferences. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context, improve alignment, and enhance co-creative control in novice creative workflows.
comment: Accepted at CHI'25 Workshop on Designing and Developing User Interfaces with AI
♻ ☆ Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching ICLR 2025
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.
comment: Accepted to ICLR 2025
♻ ☆ A Conceptual Model for Attributions in Event-Centric Knowledge Graphs
The use of narratives as a means of fusing information from knowledge graphs (KGs) into a coherent line of argumentation has been the subject of recent investigation. Narratives are especially useful in event-centric knowledge graphs in that they provide a means to connect different real-world events and categorize them by well-known narrations. However, specifically for controversial events, a problem in information fusion arises, namely, multiple viewpoints regarding the validity of certain event aspects, e.g., regarding the role a participant takes in an event, may exist. Expressing those viewpoints in KGs is challenging because disputed information provided by different viewpoints may introduce inconsistencies. Hence, most KGs only feature a single view on the contained information, hampering the effectiveness of narrative information access. This paper is an extension of our original work and introduces attributions, i.e., parameterized predicates that allow for the representation of facts that are only valid in a specific viewpoint. For this, we develop a conceptual model that allows for the representation of viewpoint-dependent information. As an extension, we enhance the model by a conception of viewpoint-compatibility. Based on this, we deepen our original deliberations on the model's effects on information fusion and provide additional grounding in the literature.
comment: Accepted by Data & Knowledge Engineering, 22 pages, 9 figures
♻ ☆ AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.7% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
♻ ☆ SCMPPI: Supervised Contrastive Multimodal Framework for Predicting Protein-Protein Interactions
Protein-protein interaction (PPI) prediction plays a pivotal role in deciphering cellular functions and disease mechanisms. To address the limitations of traditional experimental methods and existing computational approaches in cross-modal feature fusion and false-negative suppression, we propose SCMPPI-a novel supervised contrastive multimodal framework. By effectively integrating sequence-based features (AAC, DPC, ESMC-CKSAAP) with network topology (Node2Vec embeddings) and incorporating an enhanced contrastive learning strategy with negative sample filtering, SCMPPI achieves superior prediction performance. Extensive experiments on eight benchmark datasets demonstrate its state-of-the-art accuracy(98.13%) and AUC(99.69%), along with excellent cross-species generalization (AUC>99%). Successful applications in CD9 networks, Wnt pathway analysis, and cancer-specific networks further highlight its potential for disease target discovery, establishing SCMPPI as a powerful tool for multimodal biological data analysis.
comment: 19 pages,9 figures,conference
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
♻ ☆ Multimodal Laryngoscopic Video Analysis for Assisted Diagnosis of Vocal Fold Paralysis
This paper presents the Multimodal Laryngoscopic Video Analyzing System (MLVAS), a novel system that leverages both audio and video data to automatically extract key video segments and metrics from raw laryngeal videostroboscopic videos for assisted clinical assessment. The system integrates video-based glottis detection with an audio keyword spotting method to analyze both video and audio data, identifying patient vocalizations and refining video highlights to ensure optimal inspection of vocal fold movements. Beyond key video segment extraction from the raw laryngeal videos, MLVAS is able to generate effective audio and visual features for Vocal Fold Paralysis (VFP) detection. Pre-trained audio encoders are utilized to encode the patient voice to get the audio features. Visual features are generated by measuring the angle deviation of both the left and right vocal folds to the estimated glottal midline on the segmented glottis masks. To get better masks, we introduce a diffusion-based refinement that follows traditional U-Net segmentation to reduce false positives. We conducted several ablation studies to demonstrate the effectiveness of each module and modalities in the proposed MLVAS. The experimental results on a public segmentation dataset show the effectiveness of our proposed segmentation module. In addition, unilateral VFP classification results on a real-world clinic dataset demonstrate MLVAS's ability of providing reliable and objective metrics as well as visualization for assisted clinical diagnosis.
comment: Submitted to CSL
♻ ☆ A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
♻ ☆ Mitigating Traffic Oscillations in Mixed Traffic Flow with Scalable Deep Koopman Predictive Control
The use of connected automated vehicle (CAV) is advocated to mitigate traffic oscillations in mixed traffic flow consisting of CAVs and human driven vehicles (HDVs). This study proposes an adaptive deep Koopman predictive control framework (AdapKoopPC) for regulating mixed traffic flow. Firstly, a Koopman theory-based adaptive trajectory prediction deep network (AdapKoopnet) is designed for modeling HDVs car-following behavior. AdapKoopnet enables the representation of HDVs behavior by a linear model in a high-dimensional space. Secondly, the model predictive control is employed to smooth the mixed traffic flow, where the combination of the linear dynamic model of CAVs and linear prediction blocks from AdapKoopnet is embedded as the predictive model into the AdapKoopPC. Finally, the predictive performance of the prosed AdapKoopnet is verified using the HighD naturalistic driving dataset. Furthermore, the control performance of AdapKoopPC is validated by the numerical simulations. Results demonstrate that the AdapKoopnet provides more accuracy HDVs predicted trajectories than the baseline nonlinear models. Moreover, the proposed AdapKoopPC exhibits more effective control performance with less computation cost compared with baselines in mitigating traffic oscillations, especially at the low CAVs penetration rates. The code of proposed AdapKoopPC is open source.
♻ ☆ Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory
Nonlinear time series models with exogenous regressors are essential in econometrics, queuing theory, and machine learning, though their statistical analysis remains incomplete. Key results, such as the law of large numbers and the functional central limit theorem, are known for weakly dependent variables. We demonstrate the transfer of mixing properties from the exogenous regressor to the response via coupling arguments. Additionally, we study Markov chains in random environments with drift and minorization conditions, even under non-stationary environments with favorable mixing properties, and apply this framework to single-server queuing models.
comment: 39 pages, 1 figure
♻ ☆ Learning Actionable World Models for Industrial Process Control
To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
comment: Accepted by SDS 2025
♻ ☆ Symbolic Regression for Beyond the Standard Model Physics
We propose symbolic regression as a powerful tool for studying Beyond the Standard Model physics. As a benchmark model, we consider the so-called Constrained Minimal Supersymmetric Standard Model, which has a four-dimensional parameter space defined at the GUT scale. We provide a set of analytical expressions that reproduce three low-energy observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior probability densities of the parameters, which are obtained extremely rapidly in comparison with conventional methods.
comment: Version accepted for publication in PRD. 8 pages, 10 figures. For associated code and symbolic expressions see https://gitlab.com/miguel.romao/symbolic-regression-bsm
♻ ☆ Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments AAAI-2025
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
comment: This paper extends the AAAI-2025 version by including the Appendix
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities
We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios.
comment: 47 pages, 8 figures, 17 tables, appendix with data and code
♻ ☆ Planet as a Brain: Towards Internet of AgentSites based on AIOS Server
The internet is undergoing a historical transformation from the "Internet of Websites" to the "Internet of AgentSites." While traditional Websites served as the foundation for information hosting and dissemination, a new frontier is emerging where AgentSites serve as the hubs of the internet, where each AgentSite hosts one or more AI agents that receive tasks, address them, and deliver actionable solutions, marking a significant shift in the digital landscape and representing the next generation of online ecosystems. Under this vision, AIOS, the AI Agent Operating System, serves as the server for the development, deployment and execution of AI agents, which is a fundamental infrastructure for the Internet of Agentsites. In this paper, we introduce AIOS Server, a runtime framework to host agents and enable global-scale collaboration among decentralized agents. AIOS Server provides a communication protocol leveraging the Model Context Protocol (MCP) and JSON-RPC to enable agent-agent or human-agent interactions. Each AIOS node operates as a server to host and execute agents, while supporting peer-to-peer coordination without reliance on centralized orchestration. Based on AIOS Server, we further present the world's first practically deployed Internet of Agentsites (AIOS-IoA), including AgentHub for agent registration and discovery and AgentChat for interactive communication, at https://planet.aios.foundation. The agent discovery mechanism based on Distributed Hash Tables (DHT) and a Gossip protocol serves as the search engine for the internet of agentsites. This work provides a practical foundation for building the Internet of Agentsites-a new paradigm where autonomous agents become first-class citizens of the web. The implementation is available at https://github.com/agiresearch/AIOS.Server and will be integrated into the AIOS main branch at https://github.com/agiresearch/AIOS.
♻ ☆ Time's Up! An Empirical Study of LLM Reasoning Ability Under Output Length Constraint
Recent work has demonstrated the remarkable potential of Large Language Models (LLMs) in test-time scaling. By making the models think before answering, they are able to achieve much higher accuracy with extra inference computation. However, in many real-world scenarios, models are used under time constraints, where an answer should be given to the user within a certain output length. It is unclear whether and how the reasoning abilities of LLMs remain effective under such constraints. We take a first look at this problem by conducting an in-depth empirical study. Specifically, we test more than 25 LLMs on common reasoning datasets under a wide range of output length budgets, and we analyze the correlation between the inference accuracy and various properties including model type, model size, prompt style, etc. We also consider the mappings between the token budgets and the actual on-device latency budgets. The results have demonstrated several interesting findings regarding the budget-aware LLM reasoning that differ from the unconstrained situation, e.g. the optimal choices of model sizes and prompts change under different budgets. These findings offer practical guidance for users to deploy LLMs under real-world latency constraints.
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives SC
In the context of Industry 4.0 and smart manufacturing, the field of process industry optimization and control is also undergoing a digital transformation. With the rise of Deep Reinforcement Learning (DRL), its application in process control has attracted widespread attention. However, the extremely low sample efficiency and the safety concerns caused by exploration in DRL hinder its practical implementation in industrial settings. Transfer learning offers an effective solution for DRL, enhancing its generalization and adaptability in multi-mode control scenarios. This paper provides insights into the use of DRL for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the process industry and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to enhance process control. This paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
comment: Chinese Control and Decision Conference (CCDC 2025), Oral, Regular Paper & Asian Control Conference (ASCC 2024), Oral, Position Paper
♻ ☆ DeepDiveAI: Identifying AI Related Documents in Large Scale Literature Data
In this paper, we propose a method to automatically classify AI-related documents from large-scale literature databases, leading to the creation of an AI-related literature dataset, named DeepDiveAI. The dataset construction approach integrates expert knowledge with the capabilities of advanced models, structured across two global stages. In the first stage, expert-curated classification datasets are used to train an LSTM model, which classifies coarse AI related records from large-scale datasets. In the second stage, we use Qwen2.5 Plus to annotate a random 10% of the coarse AI-related records, which are then used to train a BERT binary classifier. This step further refines the coarse AI related record set to obtain the final DeepDiveAI dataset. Evaluation results demonstrate that the entire workflow can efficiently and accurately identify AI-related literature from large-scale datasets.
♻ ☆ FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
♻ ☆ Harnessing Language for Coordination: A Framework and Benchmark for LLM-Driven Multi-Agent Control
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. Their potential to facilitate human coordination with many agents is a promising but largely under-explored area. Such capabilities would be helpful in disaster response, urban planning, and real-time strategy scenarios. In this work, we introduce (1) a real-time strategy game benchmark designed to evaluate these abilities and (2) a novel framework we term HIVE. HIVE empowers a single human to coordinate swarms of up to 2,000 agents through a natural language dialog with an LLM. We present promising results on this multi-agent benchmark, with our hybrid approach solving tasks such as coordinating agent movements, exploiting unit weaknesses, leveraging human annotations, and understanding terrain and strategic points. Our findings also highlight critical limitations of current models, including difficulties in processing spatial visual information and challenges in formulating long-term strategic plans. This work sheds light on the potential and limitations of LLMs in human-swarm coordination, paving the way for future research in this area. The HIVE project page, hive.syrkis.com, includes videos of the system in action.
♻ ☆ VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet
♻ ☆ Model-Free Predictive Control: Introductory Algebraic Calculations, and a Comparison with HEOL and ANNs SC
Model predictive control (MPC) is a popular control engineering practice, but requires a sound knowledge of the model. Model-free predictive control (MFPC), a burning issue today, also related to reinforcement learning (RL) in AI, is reformulated here via a linear differential equation with constant coefficients, thanks to a new perspective on optimal control combined with recent advances in the field of model-free control (MFC). It is replacing Dynamic Programming, the Hamilton-Jacobi-Bellman equation, and Pontryagin's Maximum Principle. The computing burden is low. The implementation is straightforward. Two nonlinear examples, a chemical reactor and a two tank system, are illustrating our approach. A comparison with the HEOL setting, where some expertise of the process model is needed, shows only a slight superiority of the later. A recent identification of the two tank system via a complex ANN architecture might indicate that a full modeling and the corresponding machine learning mechanism are not always necessary neither in control, nor, more generally, in AI.
comment: Joint IFAC Conference: SSSC, TDS, COSY -- Gif-sur-Vette, France, 30 June-2 July 2025
♻ ☆ Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree AAAI 2025
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
comment: AAAI 2025 Accepted
♻ ☆ ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90%. Our project page is at https://thermalgaussian.github.io/.
comment: 10 pages, 7 figures
♻ ☆ Variable Stiffness for Robust Locomotion through Reinforcement Learning
Reinforcement-learned locomotion enables legged robots to perform highly dynamic motions but often accompanies time-consuming manual tuning of joint stiffness. This paper introduces a novel control paradigm that integrates variable stiffness into the action space alongside joint positions, enabling grouped stiffness control such as per-joint stiffness (PJS), per-leg stiffness (PLS) and hybrid joint-leg stiffness (HJLS). We show that variable stiffness policies, with grouping in per-leg stiffness (PLS), outperform position-based control in velocity tracking and push recovery. In contrast, HJLS excels in energy efficiency. Despite the fact that our policy is trained on flat floor only, our method showcases robust walking behaviour on diverse outdoor terrains, indicating robust sim-to-real transfer. Our approach simplifies design by eliminating per-joint stiffness tuning while keeping competitive results with various metrics.
comment: accepted to IFAC Joint Symposia on Mechatronics & Robotics
♻ ☆ Text-to-Decision Agent: Learning Generalist Policies from Natural Language Supervision
RL systems usually tackle generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple and scalable framework that supervises generalist policy learning with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines.
comment: 18 pages, 8 figures
♻ ☆ AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs ICLR 2025
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
comment: ICLR 2025 Spotlight. Project Page: https://autodans.github.io/AutoDAN-Turbo Code: https://github.com/SaFoLab-WISC/AutoDAN-Turbo
♻ ☆ Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
comment: 34 pages, 24 figures, 16 tables
♻ ☆ Rethinking Soft Actor-Critic in High-Dimensional Action Spaces: The Cost of Ignoring Distribution Shift
Soft Actor-Critic algorithm is widely recognized for its robust performance across a range of deep reinforcement learning tasks, where it leverages the tanh transformation to constrain actions within bounded limits. However, this transformation induces a distribution shift, distorting the original Gaussian action distribution and potentially leading the policy to select suboptimal actions, particularly in high-dimensional action spaces. In this paper, we conduct a comprehensive theoretical and empirical analysis of this distribution shift, deriving the precise probability density function (PDF) for actions following the tanh transformation to clarify the misalignment introduced between the transformed distribution's mode and the intended action output. We substantiate these theoretical insights through extensive experiments on high-dimensional tasks within the HumanoidBench benchmark. Our findings indicate that accounting for this distribution shift substantially enhances SAC's performance, resulting in notable improvements in cumulative rewards, sample efficiency, and reliability across tasks. These results underscore a critical consideration for SAC and similar algorithms: addressing transformation-induced distribution shifts is essential to optimizing policy effectiveness in high-dimensional deep reinforcement learning environments, thereby expanding the robustness and applicability of SAC in complex control tasks.
♻ ☆ Synergistic Weak-Strong Collaboration by Aligning Preferences
Current Large Language Models (LLMs) excel in general reasoning yet struggle with specialized tasks requiring proprietary or domain-specific knowledge. Fine-tuning large models for every niche application is often infeasible due to black-box constraints and high computational overhead. To address this, we propose a collaborative framework that pairs a specialized weak model with a general strong model. The weak model, tailored to specific domains, produces initial drafts and background information, while the strong model leverages its advanced reasoning to refine these drafts, extending LLMs' capabilities to critical yet specialized tasks. To optimize this collaboration, we introduce a collaborative feedback to fine-tunes the weak model, which quantifies the influence of the weak model's contributions in the collaboration procedure and establishes preference pairs to guide preference tuning of the weak model. We validate our framework through experiments on three domains. We find that the collaboration significantly outperforms each model alone by leveraging complementary strengths. Moreover, aligning the weak model with the collaborative preference further enhances overall performance.
♻ ☆ MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs
The rapid progress in machine learning (ML) has brought forth many large language models (LLMs) that excel in various tasks and areas. These LLMs come with different abilities and costs in terms of computation or pricing. Since the demand for each query can vary, e.g., because of the queried domain or its complexity, defaulting to one LLM in an application is not usually the best choice, whether it is the biggest, priciest, or even the one with the best average test performance. Consequently, picking the right LLM that is both accurate and cost-effective for an application is necessary yet remains a challenge. In this paper, we introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal LLM (among several available LLMs) for classification and multi-choice question-answering tasks, achieving significantly improved accuracy and cost-effectiveness. By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty. Our experiments, conducted on popular LLM platforms such as OpenAI and Together AI, as well as open-source LLM, showcase MetaLLM's efficacy in real-world scenarios, laying the groundwork for future extensions.
♻ ☆ LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems
The rise of autonomous AI agents, capable of perceiving, reasoning, and acting independently, signals a profound shift in how digital ecosystems operate, govern, and evolve. As these agents proliferate beyond centralized infrastructures, they expose foundational gaps in identity, accountability, and ethical alignment. Three critical questions emerge: Identity: Who or what is the agent? Accountability: Can its actions be verified, audited, and trusted? Ethical Consensus: Can autonomous systems reliably align with human values and prevent harmful emergent behaviors? We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems. LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that could enable agents to make context-aware decisions grounded in shared ethical baselines. Anchored in emerging standards such as Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and post-quantum cryptography, LOKA proposes a scalable, future-resilient blueprint for multi-agent AI governance. By embedding identity, trust, and ethics into the protocol layer itself, LOKA proposes the foundation for a new era of responsible, transparent, and autonomous AI ecosystems operating across digital and physical domains.
comment: 4 Figures, 1 Table
♻ ☆ Labeling Messages as AI-Generated Does Not Reduce Their Persuasive Effects
As generative artificial intelligence (AI) enables the creation and dissemination of information at massive scale and speed, it is increasingly important to understand how people perceive AI-generated content. One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information, but prior research has not yet tested the effects of such labels. To address this gap, we conducted a survey experiment (N=1601) on a diverse sample of Americans, presenting participants with an AI-generated message about several public policies (e.g., allowing colleges to pay student-athletes), randomly assigning whether participants were told the message was generated by (a) an expert AI model, (b) a human policy expert, or (c) no label. We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average. However, while 94.6% of participants assigned to the AI and human label conditions believed the authorship labels, labels had no significant effects on participants' attitude change toward the policies, judgments of message accuracy, nor intentions to share the message with others. These patterns were robust across a variety of participant characteristics, including prior knowledge of the policy, prior experience with AI, political party, education level, or age. Taken together, these results imply that, while authorship labels would likely enhance transparency, they are unlikely to substantially affect the persuasiveness of the labeled content, highlighting the need for alternative strategies to address challenges posed by AI-generated information.
♻ ☆ Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ Language Models for Business Optimisation with a Real World Case Study in Production Scheduling
Business optimisation has been used extensively to determine optimal solutions for challenging business operations. Problem formulation is an important part of business optimisation as it influences both the validity of solutions and the efficiency of the optimisation process. While different optimisation modelling languages have been developed, problem formulation is still not a trivial task and usually requires optimisation expertise and problem-domain knowledge. Recently, Large Language Models (LLMs) have demonstrated outstanding performance across different language-related tasks. Since problem formulation can be viewed as a translation task, there is a potential to leverage LLMs to automate problem formulation. However, developing an LLM for problem formulation is challenging, due to limited training data, and the complexity of real-world optimisation problems. Several prompt engineering methods have been proposed in the literature to automate problem formulation with LLMs. While the initial results are encouraging, the accuracy of formulations generated by these methods can still be significantly improved. In this paper, we present an LLM-based framework for automating problem formulation in business optimization. Our approach introduces a method for fine-tuning cost-efficient LLMs specifically tailored to specialized business optimization challenges. The experiment results demonstrate that our framework can generate accurate formulations for conventional and real-world business optimisation problems in production scheduling. Extensive analyses show the effectiveness and the convergence of the proposed fine-tuning method. The proposed method also shows very competitive performance when compared with the state-of-the-art prompt engineering methods in the literature when tested on general linear programming problems.
♻ ☆ AI with Emotions: Exploring Emotional Expressions in Large Language Models NAACL 2025
The human-level performance of Large Language Models (LLMs) across various tasks has raised expectations for the potential of Artificial Intelligence (AI) to possess emotions someday. To explore the capability of current LLMs to express emotions in their outputs, we conducted an experiment using several LLMs (OpenAI GPT, Google Gemini, Meta Llama3, and Cohere Command R+) to role-play as agents answering questions with specified emotional states. We defined the emotional states using Russell's Circumplex model, a well-established framework that characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes. We chose this model for its simplicity, utilizing two continuous parameters, which allows for better controllability in applications involving continuous changes in emotional states. The responses generated were evaluated using a sentiment analysis model, independent of the LLMs, trained on the GoEmotions dataset. The evaluation showed that the emotional states of the generated answers were consistent with the specifications, demonstrating the LLMs' capability for emotional expression. This indicates the potential for LLM-based AI agents to simulate emotions, opening up a wide range of applications for emotion-based interactions, such as advisors or consultants who can provide advice or opinions with a personal touch.
comment: 14 pages, 8 figures, accepted to the Natural Language Processing for Digital Humanities (NLP4DH) workshop at NAACL 2025
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://yanghaha0908.github.io/EmoVoice/. Dataset, code, and checkpoints will be released.
♻ ☆ FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning AAAI2025
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
comment: Accepted by AAAI2025
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with the Musical Feature Template ICME
The EMelodyGen system focuses on emotional melody generation in ABC notation controlled by the musical feature template. Owing to the scarcity of well-structured and emotionally labeled sheet music, we designed a template for controlling emotional melody generation by statistical correlations between musical features and emotion labels derived from small-scale emotional symbolic music datasets and music psychology conclusions. We then automatically annotated a large, well-structured sheet music collection with rough emotional labels by the template, converted them into ABC notation, and reduced label imbalance by data augmentation, resulting in a dataset named Rough4Q. Our system backbone pre-trained on Rough4Q can achieve up to 99% music21 parsing rate and melodies generated by our template can lead to a 91% alignment on emotional expressions in blind listening tests. Ablation studies further validated the effectiveness of the feature controls in the template. Available code and demos are at https://github.com/monetjoe/EMelodyGen.
comment: 6 pages, 4 figures, accepted by ICMEW2025
♻ ☆ Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. However, currently, in the field of MER, the available public datasets have limited sample sizes. Recently, segment-based methods for emotion-related tasks have been proposed, which train backbone networks on shorter segments instead of entire audio clips, thereby naturally augmenting training samples without requiring additional resources. Then, the predicted segment-level results are aggregated to obtain the entire song prediction. The most commonly used method is that the segment inherits the label of the clip containing it, but music emotion is not constant during the whole clip. Doing so will introduce label noise and make the training easy to overfit. To handle the noisy label issue, we propose a semi-supervised self-learning (SSSL) method, which can differentiate between samples with correct and incorrect labels in a self-learning manner, thus effectively utilizing the augmented segment-level data. Experiments on three public emotional datasets demonstrate that the proposed method can achieve better or comparable performance.
comment: 12 pages, 2 figures
♻ ☆ Tinker Tales: Interactive Storytelling Framework for Early Childhood Narrative Development and AI Literacy
This paper presents Tinker Tales, an interactive storytelling framework in the format of a board game, designed to support both narrative development and AI literacy in early childhood. The framework integrates tangible and speech-based interactions with AI through NFC chip-attached pawns and tokens, along with a speaker and microphone. Children select and define key story elements-such as characters, places, items, and emotions-using the pawns and tokens, providing further details to the AI and receiving proper assistance, similar to how adults prompt AI for specific tasks (e.g., writing). For evaluation, several game sessions were simulated with a child AI agent, and the quality and safety of the generated stories were assessed from various perspectives. This work highlights the potential of combining physical and digital elements in AI literacy, offering a safe and engaging way for children to learn how to effectively collaborate with AI.
♻ ☆ Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels from videos and morphological differences between robot and human hands. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the human-robot embodiment gap without relying on wearables, teleoperation, or large-scale data collection typically necessary for imitation learning methods. From the demonstration, we extract two task-specific components: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward function, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. We found that these two components are highly effective for learning the desired task, eliminating the need for task-specific reward shaping and tuning. We demonstrate that Human2Sim2Robot outperforms object-aware open-loop trajectory replay by 55% and imitation learning with data augmentation by 68% across grasping, non-prehensile manipulation, and multi-step tasks. Project Site: https://human2sim2robot.github.io
comment: 15 pages, 13 figures
♻ ☆ Multimodal Situational Safety ICLR 2025
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
comment: ICLR 2025 Camera Ready
♻ ☆ OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Large language models (LLMs) have been widely used for various tasks and applications. However, LLMs and fine-tuning are limited to the pre-trained data. For example, ChatGPT's world knowledge until 2021 can be outdated or inaccurate. To enhance the capabilities of LLMs, Retrieval-Augmented Generation (RAG), is proposed to augment LLMs with additional, new, latest details and information to LLMs. While RAG offers the correct information, it may not best present it, especially to different population groups with personalizations. Reinforcement Learning from Human Feedback (RLHF) adapts to user needs by aligning model responses with human preference through feedback loops. In real-life applications, such as mental health problems, a dynamic and feedback-based model would continuously adapt to new information and offer personalized assistance due to complex factors fluctuating in a daily environment. Thus, we propose an Online Reinforcement Learning-based Retrieval-Augmented Generation (OnRL-RAG) system to detect and personalize the responding systems to mental health problems, such as stress, anxiety, and depression. We use an open-source dataset collected from 2028 College Students with 28 survey questions for each student to demonstrate the performance of our proposed system with the existing systems. Our system achieves superior performance compared to standard RAG and simple LLM via GPT-4o, GPT-4o-mini, Gemini-1.5, and GPT-3.5. This work would open up the possibilities of real-life applications of LLMs for personalized services in the everyday environment. The results will also help researchers in the fields of sociology, psychology, and neuroscience to align their theories more closely with the actual human daily environment.
comment: It needs more revisions. I am currently working on it with my co-author
♻ ☆ SuperARC: An Agnostic Test for Narrow, General, and Super Intelligence Based On the Principles of Recursive Compression and Algorithmic Probability
We introduce an open-ended test grounded in algorithmic probability that can avoid benchmark contamination in the quantitative evaluation of frontier models in the context of their Artificial General Intelligence (AGI) and Superintelligence (ASI) claims. Unlike other tests, this test does not rely on statistical compression methods (such as GZIP or LZW), which are more closely related to Shannon entropy than to Kolmogorov complexity and are not able to test beyond simple pattern matching. The test challenges aspects of AI, in particular LLMs, related to features of intelligence of fundamental nature such as synthesis and model creation in the context of inverse problems (generating new knowledge from observation). We argue that metrics based on model abstraction and abduction (optimal Bayesian `inference') for predictive `planning' can provide a robust framework for testing intelligence, including natural intelligence (human and animal), narrow AI, AGI, and ASI. We found that LLM model versions tend to be fragile and incremental as a result of memorisation only with progress likely driven by the size of training data. The results were compared with a hybrid neurosymbolic approach that theoretically guarantees universal intelligence based on the principles of algorithmic probability and Kolmogorov complexity. The method outperforms LLMs in a proof-of-concept on short binary sequences. We prove that compression is equivalent and directly proportional to a system's predictive power and vice versa. That is, if a system can better predict it can better compress, and if it can better compress, then it can better predict. Our findings strengthen the suspicion regarding the fundamental limitations of LLMs, exposing them as systems optimised for the perception of mastery over human language.
comment: 51 pages + Technical Supplementary Information, 79 pages total
♻ ☆ Discover physical concepts and equations with machine learning
Machine learning can uncover physical concepts or physical equations when prior knowledge from the other is available. However, these two aspects are often intertwined and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoencoders (VAE) with Neural Ordinary Differential Equations (Neural ODEs). This allows us to simultaneously discover physical concepts and governing equations from simulated experimental data across various physical systems. We apply the model to several examples inspired by the history of physics, including Copernicus' heliocentrism, Newton's law of gravity, Schr\"odinger's wave mechanics, and Pauli's spin-magnetic formulation. The results demonstrate that the correct physical theories can emerge in the neural network.
♻ ☆ OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery
Large Language Models (LLMs) have demonstrated remarkable potential in advancing scientific knowledge and addressing complex challenges. In this work, we introduce OmniScience, a specialized large reasoning model for general science, developed through three key components: (1) domain adaptive pretraining on a carefully curated corpus of scientific literature, (2) instruction tuning on a specialized dataset to guide the model in following domain-specific tasks, and (3) reasoning-based knowledge distillation through fine-tuning to significantly enhance its ability to generate contextually relevant and logically sound responses. We demonstrate the versatility of OmniScience by developing a battery agent that efficiently ranks molecules as potential electrolyte solvents or additives. Comprehensive evaluations reveal that OmniScience is competitive with state-of-the-art large reasoning models on the GPQA Diamond and domain-specific battery benchmarks, while outperforming all public reasoning and non-reasoning models with similar parameter counts. We further demonstrate via ablation experiments that domain adaptive pretraining and reasoning-based knowledge distillation are critical to attain our performance levels, across benchmarks.
♻ ☆ Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
♻ ☆ MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
♻ ☆ Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development and synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis, while significantly reducing turnaround time.
♻ ☆ Why Do Multi-Agent LLM Systems Fail?
Despite growing enthusiasm for Multi-Agent LLM Systems (MAS), their performance gains on popular benchmarks often remain minimal compared with single-agent frameworks. This gap highlights the need to systematically analyze the challenges hindering MAS effectiveness. We present MAST (Multi-Agent System Failure Taxonomy), the first empirically grounded taxonomy designed to understand MAS failures. We analyze seven popular MAS frameworks across over 200 tasks, involving six expert human annotators. Through this process, we identify 14 unique failure modes, organized into 3 overarching categories, (i) specification issues, (ii) inter-agent misalignment, and (iii) task verification. MAST emerges iteratively from rigorous inter-annotator agreement studies, achieving a Cohen's Kappa score of 0.88. To support scalable evaluation, we develop a validated LLM-as-a-Judge pipeline integrated with MAST. We leverage two case studies to demonstrate MAST's practical utility in analyzing failures and guiding MAS development. Our findings reveal that identified failures require more complex solutions, highlighting a clear roadmap for future research. We open source our comprehensive dataset and LLM annotator to facilitate further development of MAS.
comment: ArXiv v2
♻ ☆ Co-domain Symmetry for Complex-Valued Deep Learning
We study complex-valued scaling as a type of symmetry natural and unique to complex-valued measurements and representations. Deep Complex Networks (DCN) extends real-valued algebra to the complex domain without addressing complex-valued scaling. SurReal takes a restrictive manifold view of complex numbers, adopting a distance metric to achieve complex-scaling invariance while losing rich complex-valued information. We analyze complex-valued scaling as a co-domain transformation and design novel equivariant and invariant neural network layer functions for this special transformation. We also propose novel complex-valued representations of RGB images, where complex-valued scaling indicates hue shift or correlated changes across color channels. Benchmarked on MSTAR, CIFAR10, CIFAR100, and SVHN, our co-domain symmetric (CDS) classifiers deliver higher accuracy, better generalization, robustness to co-domain transformations, and lower model bias and variance than DCN and SurReal with far fewer parameters.
Computation and Language 89
☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 159% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the Maj@N metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks, and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
☆ PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models
We introduce PHYBench, a novel, high-quality benchmark designed for evaluating reasoning capabilities of large language models (LLMs) in physical contexts. PHYBench consists of 500 meticulously curated physics problems based on real-world physical scenarios, designed to assess the ability of models to understand and reason about realistic physical processes. Covering mechanics, electromagnetism, thermodynamics, optics, modern physics, and advanced physics, the benchmark spans difficulty levels from high school exercises to undergraduate problems and Physics Olympiad challenges. Additionally, we propose the Expression Edit Distance (EED) Score, a novel evaluation metric based on the edit distance between mathematical expressions, which effectively captures differences in model reasoning processes and results beyond traditional binary scoring methods. We evaluate various LLMs on PHYBench and compare their performance with human experts. Our results reveal that even state-of-the-art reasoning models significantly lag behind human experts, highlighting their limitations and the need for improvement in complex physical reasoning scenarios. Our benchmark results and dataset are publicly available at https://phybench-official.github.io/phybench-demo/.
comment: 21 pages ,8 figures, 4 tables
☆ Guiding VLM Agents with Process Rewards at Inference Time for GUI Navigation
Recent advancements in visual language models (VLMs) have notably enhanced their capabilities in handling complex Graphical User Interface (GUI) interaction tasks. Despite these improvements, current frameworks often struggle to generate correct actions in challenging GUI environments. State-of-the-art commercial VLMs are black-boxes, and fine-tuning open-source VLMs for GUI tasks requires significant resources. Additionally, existing trajectory-level evaluation and refinement techniques frequently fall short due to delayed feedback and local optimization issues. To address these challenges, we propose an approach that guides VLM agents with process supervision by a reward model during GUI navigation and control at inference time. This guidance allows the VLM agent to optimize actions at each inference step, thereby improving performance in both static and dynamic environments. In particular, our method demonstrates significant performance gains in three GUI navigation tasks, achieving a 3.4% improvement in single step action accuracy for static environments, along with a around 33% increase in task success rate in one dynamic environment. With further integration of trajectory reflection and retry mechanisms, we also demonstrate even greater enhancement in task success.
☆ A Python Tool for Reconstructing Full News Text from GDELT
News data have become an essential resource across various disciplines, including economics, finance, management, social sciences, and computer science. Researchers leverage newspaper articles to study economic trends, market dynamics, corporate strategies, public perception, political discourse, and the evolution of public opinion. Additionally, news datasets have been instrumental in training large-scale language models, with applications in sentiment analysis, fake news detection, and automated news summarization. Despite their significance, access to comprehensive news corpora remains a key challenge. Many full-text news providers, such as Factiva and LexisNexis, require costly subscriptions, while free alternatives often suffer from incomplete data and transparency issues. This paper presents a novel approach to obtaining full-text newspaper articles at near-zero cost by leveraging data from the Global Database of Events, Language, and Tone (GDELT). Specifically, we focus on the GDELT Web News NGrams 3.0 dataset, which provides high-frequency updates of n-grams extracted from global online news sources. We provide Python code to reconstruct full-text articles from these n-grams by identifying overlapping textual fragments and intelligently merging them. Our method enables researchers to access structured, large-scale newspaper data for text analysis while overcoming the limitations of existing proprietary datasets. The proposed approach enhances the accessibility of news data for empirical research, facilitating applications in economic forecasting, computational social science, and natural language processing.
☆ Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation
Referring Expression Generation (REG) is a core task for evaluating the pragmatic competence of vision-language systems, requiring not only accurate semantic grounding but also adherence to principles of cooperative communication (Grice, 1975). However, current evaluations of vision-language models (VLMs) often overlook the pragmatic dimension, reducing REG to a region-based captioning task and neglecting Gricean maxims. In this work, we revisit REG from a pragmatic perspective, introducing a new dataset (RefOI) of 1.5k images annotated with both written and spoken referring expressions. Through a systematic evaluation of state-of-the-art VLMs, we identify three key failures of pragmatic competence: (1) failure to uniquely identify the referent, (2) inclusion of excessive or irrelevant information, and (3) misalignment with human pragmatic preference, such as the underuse of minimal spatial cues. We also show that standard automatic evaluations fail to capture these pragmatic violations, reinforcing superficial cues rather than genuine referential success. Our findings call for a renewed focus on pragmatically informed models and evaluation frameworks that align with real human communication.
comment: Homepage: https://vlm-reg.github.io/
☆ Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability
Artificial Intelligence (AI) has increasingly influenced modern society, recently in particular through significant advancements in Large Language Models (LLMs). However, high computational and storage demands of LLMs still limit their deployment in resource-constrained environments. Knowledge distillation addresses this challenge by training a small student model from a larger teacher model. Previous research has introduced several distillation methods for both generating training data and for training the student model. Despite their relevance, the effects of state-of-the-art distillation methods on model performance and explainability have not been thoroughly investigated and compared. In this work, we enlarge the set of available methods by applying critique-revision prompting to distillation for data generation and by synthesizing existing methods for training. For these methods, we provide a systematic comparison based on the widely used Commonsense Question-Answering (CQA) dataset. While we measure performance via student model accuracy, we employ a human-grounded study to evaluate explainability. We contribute new distillation methods and their comparison in terms of both performance and explainability. This should further advance the distillation of small language models and, thus, contribute to broader applicability and faster diffusion of LLM technology.
☆ LongMamba: Enhancing Mamba's Long Context Capabilities via Training-Free Receptive Field Enlargement ICLR 2025
State space models (SSMs) have emerged as an efficient alternative to Transformer models for language modeling, offering linear computational complexity and constant memory usage as context length increases. However, despite their efficiency in handling long contexts, recent studies have shown that SSMs, such as Mamba models, generally underperform compared to Transformers in long-context understanding tasks. To address this significant shortfall and achieve both efficient and accurate long-context understanding, we propose LongMamba, a training-free technique that significantly enhances the long-context capabilities of Mamba models. LongMamba builds on our discovery that the hidden channels in Mamba can be categorized into local and global channels based on their receptive field lengths, with global channels primarily responsible for long-context capability. These global channels can become the key bottleneck as the input context lengthens. Specifically, when input lengths largely exceed the training sequence length, global channels exhibit limitations in adaptively extend their receptive fields, leading to Mamba's poor long-context performance. The key idea of LongMamba is to mitigate the hidden state memory decay in these global channels by preventing the accumulation of unimportant tokens in their memory. This is achieved by first identifying critical tokens in the global channels and then applying token filtering to accumulate only those critical tokens. Through extensive benchmarking across synthetic and real-world long-context scenarios, LongMamba sets a new standard for Mamba's long-context performance, significantly extending its operational range without requiring additional training. Our code is available at https://github.com/GATECH-EIC/LongMamba.
comment: Accepted by ICLR 2025
☆ Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
☆ Methods for Recognizing Nested Terms
In this paper, we describe our participation in the RuTermEval competition devoted to extracting nested terms. We apply the Binder model, which was previously successfully applied to the recognition of nested named entities, to extract nested terms. We obtained the best results of term recognition in all three tracks of the RuTermEval competition. In addition, we study the new task of recognition of nested terms from flat training data annotated with terms without nestedness. We can conclude that several approaches we proposed in this work are viable enough to retrieve nested terms effectively without nested labeling of them.
comment: To be published in Computational Linguistics and Intellectual Technologies proceedings
☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
☆ How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
☆ Few-shot Hate Speech Detection Based on the MindSpore Framework
The proliferation of hate speech on social media poses a significant threat to online communities, requiring effective detection systems. While deep learning models have shown promise, their performance often deteriorates in few-shot or low-resource settings due to reliance on large annotated corpora. To address this, we propose MS-FSLHate, a prompt-enhanced neural framework for few-shot hate speech detection implemented on the MindSpore deep learning platform. The model integrates learnable prompt embeddings, a CNN-BiLSTM backbone with attention pooling, and synonym-based adversarial data augmentation to improve generalization. Experimental results on two benchmark datasets-HateXplain and HSOL-demonstrate that our approach outperforms competitive baselines in precision, recall, and F1-score. Additionally, the framework shows high efficiency and scalability, suggesting its suitability for deployment in resource-constrained environments. These findings highlight the potential of combining prompt-based learning with adversarial augmentation for robust and adaptable hate speech detection in few-shot scenarios.
☆ W-PCA Based Gradient-Free Proxy for Efficient Search of Lightweight Language Models ICLR 2025
The demand for efficient natural language processing (NLP) systems has led to the development of lightweight language models. Previous work in this area has primarily focused on manual design or training-based neural architecture search (NAS) methods. Recently, zero-shot NAS methods have been proposed for evaluating language models without the need for training. However, prevailing approaches to zero-shot NAS often face challenges such as biased evaluation metrics and computational inefficiencies. In this paper, we introduce weight-weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored for lightweight language models. Our approach utilizes two evaluation proxies: the parameter count and the number of principal components with cumulative contribution exceeding $\eta$ in the feed-forward neural (FFN) layer. Additionally, by eliminating the need for gradient computations, we optimize the evaluation time, thus enhancing the efficiency of designing and evaluating lightweight language models. We conduct a comparative analysis on the GLUE and SQuAD datasets to evaluate our approach. The results demonstrate that our method significantly reduces training time compared to one-shot NAS methods and achieves higher scores in the testing phase compared to previous state-of-the-art training-based methods. Furthermore, we perform ranking evaluations on a dataset sampled from the FlexiBERT search space. Our approach exhibits superior ranking correlation and further reduces solving time compared to other zero-shot NAS methods that require gradient computation.
comment: ICLR 2025
☆ FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity
Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.
comment: FAccT 2025
☆ SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning
Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.
☆ Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
comment: 19 pages, 11 figures
☆ Exploring Cognitive and Aesthetic Causality for Multimodal Aspect-Based Sentiment Analysis
Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera
comment: Accepted by TAFFC 2025
☆ Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
☆ What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompt and model changes efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs, and we are able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
☆ A closer look at how large language models trust humans: patterns and biases
As large language models (LLMs) and LLM-based agents increasingly interact with humans in decision-making contexts, understanding the trust dynamics between humans and AI agents becomes a central concern. While considerable literature studies how humans trust AI agents, it is much less understood how LLM-based agents develop effective trust in humans. LLM-based agents likely rely on some sort of implicit effective trust in trust-related contexts (e.g., evaluating individual loan applications) to assist and affect decision making. Using established behavioral theories, we develop an approach that studies whether LLMs trust depends on the three major trustworthiness dimensions: competence, benevolence and integrity of the human subject. We also study how demographic variables affect effective trust. Across 43,200 simulated experiments, for five popular language models, across five different scenarios we find that LLM trust development shows an overall similarity to human trust development. We find that in most, but not all cases, LLM trust is strongly predicted by trustworthiness, and in some cases also biased by age, religion and gender, especially in financial scenarios. This is particularly true for scenarios common in the literature and for newer models. While the overall patterns align with human-like mechanisms of effective trust formation, different models exhibit variation in how they estimate trust; in some cases, trustworthiness and demographic factors are weak predictors of effective trust. These findings call for a better understanding of AI-to-human trust dynamics and monitoring of biases and trust development patterns to prevent unintended and potentially harmful outcomes in trust-sensitive applications of AI.
☆ Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
☆ TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
☆ Tina: Tiny Reasoning Models via LoRA
How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.
☆ Subject islands do not reduce to construction-specific discourse function
The term islands in linguistics refers to phrases from which extracting an element results in ungrammaticality (Ross, 1967). Grammatical subjects are considered islands because extracting a sub-part of a subject results in an ill-formed sentence, despite having a clear intended meaning (e.g., "Which topic did the article about inspire you?"). The generative tradition, which views syntax as autonomous of meaning and function, attributes this ungrammaticality to the abstract movement dependency between the wh-phrase and the subject-internal position with which it is associated for interpretation. However, research on language that emphasizes its communicative function suggests instead that syntactic constraints, including islands, can be explained based on the way different constructions package information. Accordingly, Abeill\'e et al. (2020) suggest that the islandhood of subjects is specific to the information structure of wh-questions, and propose that subjects are not islands for movement, but for focusing, due to their discourse-backgroundedness. This predicts that other constructions that differ in their information structure from wh-questions, but still involve movement, should not create a subject island effect. We test this prediction in three large-scale acceptability studies, using a super-additive design that singles out subject island violations, in three different constructions: wh-questions, relative clauses, and topicalization. We report evidence for a subject island effect in each construction type, despite only wh-questions introducing what Abeill\'e et al. (2020) call "a clash in information structure." We argue that this motivates an account of islands in terms of abstract, syntactic representations, independent of the communicative function associated with the constructions.
☆ FinTextSim: Enhancing Financial Text Analysis with BERTopic
Recent advancements in information availability and computational capabilities have transformed the analysis of annual reports, integrating traditional financial metrics with insights from textual data. To extract valuable insights from this wealth of textual data, automated review processes, such as topic modeling, are crucial. This study examines the effectiveness of BERTopic, a state-of-the-art topic model relying on contextual embeddings, for analyzing Item 7 and Item 7A of 10-K filings from S&P 500 companies (2016-2022). Moreover, we introduce FinTextSim, a finetuned sentence-transformer model optimized for clustering and semantic search in financial contexts. Compared to all-MiniLM-L6-v2, the most widely used sentence-transformer, FinTextSim increases intratopic similarity by 81% and reduces intertopic similarity by 100%, significantly enhancing organizational clarity. We assess BERTopic's performance using embeddings from both FinTextSim and all-MiniLM-L6-v2. Our findings reveal that BERTopic only forms clear and distinct economic topic clusters when paired with FinTextSim's embeddings. Without FinTextSim, BERTopic struggles with misclassification and overlapping topics. Thus, FinTextSim is pivotal for advancing financial text analysis. FinTextSim's enhanced contextual embeddings, tailored for the financial domain, elevate the quality of future research and financial information. This improved quality of financial information will enable stakeholders to gain a competitive advantage, streamlining resource allocation and decision-making processes. Moreover, the improved insights have the potential to leverage business valuation and stock price prediction models.
☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
☆ Computational Typology
Typology is a subfield of linguistics that focuses on the study and classification of languages based on their structural features. Unlike genealogical classification, which examines the historical relationships between languages, typology seeks to understand the diversity of human languages by identifying common properties and patterns, known as universals. In recent years, computational methods have played an increasingly important role in typological research, enabling the analysis of large-scale linguistic data and the testing of hypotheses about language structure and evolution. This article provides an illustration of the benefits of computational statistical modeling in typology.
comment: 19 pages, s5 figure
☆ Cost-Effective Text Clustering with Large Language Models
Text clustering aims to automatically partition a collection of text documents into distinct clusters based on linguistic features. In the literature, this task is usually framed as metric clustering based on text embeddings from pre-trained encoders or a graph clustering problem upon pairwise similarities from an oracle, e.g., a large ML model. Recently, large language models (LLMs) bring significant advancement in this field by offering contextualized text embeddings and highly accurate similarity scores, but meanwhile, present grand challenges to cope with substantial computational and/or financial overhead caused by numerous API-based queries or inference calls to the models. In response, this paper proposes TECL, a cost-effective framework that taps into the feedback from LLMs for accurate text clustering within a limited budget of queries to LLMs. Under the hood, TECL adopts our EdgeLLM or TriangleLLM to construct must-link/cannot-link constraints for text pairs, and further leverages such constraints as supervision signals input to our weighted constrained clustering approach to generate clusters. Particularly, EdgeLLM (resp. TriangleLLM) enables the identification of informative text pairs (resp. triplets) for querying LLMs via well-thought-out greedy algorithms and accurate extraction of pairwise constraints through carefully-crafted prompting techniques. Our experiments on multiple benchmark datasets exhibit that TECL consistently and considerably outperforms existing solutions in unsupervised text clustering under the same query cost for LLMs.
☆ Exploiting Contextual Knowledge in LLMs through V-usable Information based Layer Enhancement
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet they often struggle with context-faithfulness generations that properly reflect contextual knowledge. While existing approaches focus on enhancing the decoding strategies, they ignore the fundamental mechanism of how contextual information is processed within LLMs' internal states. As a result, LLMs remain limited in their ability to fully leverage contextual knowledge. In this paper, we propose Context-aware Layer Enhancement (CaLE), a novel intervention method that enhances the utilization of contextual knowledge within LLMs' internal representations. By employing V-usable information analysis, CaLE strategically amplifies the growth of contextual information at an optimal layer, thereby enriching representations in the final layer. Our experiments demonstrate that CaLE effectively improves context-faithful generation in Question-Answering tasks, particularly in scenarios involving unknown or conflicting contextual knowledge.
☆ CiteFix: Enhancing RAG Accuracy Through Post-Processing Citation Correction
Retrieval Augmented Generation (RAG) has emerged as a powerful application of Large Language Models (LLMs), revolutionizing information search and consumption. RAG systems combine traditional search capabilities with LLMs to generate comprehensive answers to user queries, ideally with accurate citations. However, in our experience of developing a RAG product, LLMs often struggle with source attribution, aligning with other industry studies reporting citation accuracy rates of only about 74% for popular generative search engines. To address this, we present efficient post-processing algorithms to improve citation accuracy in LLM-generated responses, with minimal impact on latency and cost. Our approaches cross-check generated citations against retrieved articles using methods including keyword + semantic matching, fine tuned model with BERTScore, and a lightweight LLM-based technique. Our experimental results demonstrate a relative improvement of 15.46% in the overall accuracy metrics of our RAG system. This significant enhancement potentially enables a shift from our current larger language model to a relatively smaller model that is approximately 12x more cost-effective and 3x faster in inference time, while maintaining comparable performance. This research contributes to enhancing the reliability and trustworthiness of AI-generated content in information retrieval and summarization tasks which is critical to gain customer trust especially in commercial products.
☆ Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models.
comment: 75 pages, 60 figures
☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
☆ Instruction-Tuning Data Synthesis from Scratch via Web Reconstruction
The improvement of LLMs' instruction-following capabilities depends critically on the availability of high-quality instruction-response pairs. While existing automatic data synthetic methods alleviate the burden of manual curation, they often rely heavily on either the quality of seed data or strong assumptions about the structure and content of web documents. To tackle these challenges, we propose Web Reconstruction (WebR), a fully automated framework for synthesizing high-quality instruction-tuning (IT) data directly from raw web documents with minimal assumptions. Leveraging the inherent diversity of raw web content, we conceptualize web reconstruction as an instruction-tuning data synthesis task via a novel dual-perspective paradigm--Web as Instruction and Web as Response--where each web document is designated as either an instruction or a response to trigger the reconstruction process. Comprehensive experiments show that datasets generated by WebR outperform state-of-the-art baselines by up to 16.65% across four instruction-following benchmarks. Notably, WebR demonstrates superior compatibility, data efficiency, and scalability, enabling enhanced domain adaptation with minimal effort. The data and code are publicly available at https://github.com/YJiangcm/WebR.
comment: 15 pages, 11 figures, 9 tables
☆ LLM-based Semantic Augmentation for Harmful Content Detection
Recent advances in large language models (LLMs) have demonstrated strong performance on simple text classification tasks, frequently under zero-shot settings. However, their efficacy declines when tackling complex social media challenges such as propaganda detection, hateful meme classification, and toxicity identification. Much of the existing work has focused on using LLMs to generate synthetic training data, overlooking the potential of LLM-based text preprocessing and semantic augmentation. In this paper, we introduce an approach that prompts LLMs to clean noisy text and provide context-rich explanations, thereby enhancing training sets without substantial increases in data volume. We systematically evaluate on the SemEval 2024 multi-label Persuasive Meme dataset and further validate on the Google Jigsaw toxic comments and Facebook hateful memes datasets to assess generalizability. Our results reveal that zero-shot LLM classification underperforms on these high-context tasks compared to supervised models. In contrast, integrating LLM-based semantic augmentation yields performance on par with approaches that rely on human-annotated data, at a fraction of the cost. These findings underscore the importance of strategically incorporating LLMs into machine learning (ML) pipeline for social media classification tasks, offering broad implications for combating harmful content online.
☆ llm-jp-modernbert: A ModernBERT Model Trained on a Large-Scale Japanese Corpus with Long Context Length
Encoder-only transformer models like BERT are widely adopted as a pre-trained backbone for tasks like sentence classification and retrieval. However, pretraining of encoder models with large-scale corpora and long contexts has been relatively underexplored compared to decoder-only transformers. In this work, we present llm-jp-modernbert, a ModernBERT model trained on a publicly available, massive Japanese corpus with a context length of 8192 tokens. While our model does not surpass existing baselines on downstream tasks, it achieves good results on fill-mask test evaluations. We also analyze the effect of context length expansion through pseudo-perplexity experiments. Furthermore, we investigate sentence embeddings in detail, analyzing their transitions during training and comparing them with those from other existing models, confirming similar trends with models sharing the same architecture. To support reproducibility and foster the development of long-context BERT, we release our model, along with the training and evaluation code.
comment: 9 pages, 5 figures
☆ Compass-V2 Technical Report
Predominant LLMs focus on high-resource languages while leaving low-resource languages, particularly those in Southeast Asia (SEA), underrepresented. In addition, those models are general-purpose and pay limited attention to the e-commerce domain. To overcome these limitations, we introduce Compass-v2, a lightweight Mixture-of-Experts (MoE) model specifically designed for Southeast Asian languages and e-commerce applications. To balance model performance and inference cost, the model is designed with 30B total parameters and 5B active parameters, incorporating both fine-grained and shared expert modules. To enhance multilingual performance, we curated and constructed a high-quality, industry-leading SEA dataset, to the best of our knowledge. To boost performance in the e-commerce domain, we built a dataset comprising hundreds of billions of tokens, sourced through external data mining and internal platform collection. Besides, we pioneered a hybrid reasoning model that supports both fast thinking and deep thinking within a unified framework to enhance the reasoning capabilities, diverging from the conventional industry practice of deploying two separate models. Through extensive experimental evaluations, our model demonstrates state-of-the-art SEA multilingual and e-commerce performance among sub-30B models, while maintaining significantly lower inference cost.
☆ IPBench: Benchmarking the Knowledge of Large Language Models in Intellectual Property
Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.
comment: 89 pages, 75 figures, 55 tables
☆ The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
comment: work in progress; 22 pages, 8 figures, 3 tables;
☆ SimulS2S-LLM: Unlocking Simultaneous Inference of Speech LLMs for Speech-to-Speech Translation
Simultaneous speech translation (SST) outputs translations in parallel with streaming speech input, balancing translation quality and latency. While large language models (LLMs) have been extended to handle the speech modality, streaming remains challenging as speech is prepended as a prompt for the entire generation process. To unlock LLM streaming capability, this paper proposes SimulS2S-LLM, which trains speech LLMs offline and employs a test-time policy to guide simultaneous inference. SimulS2S-LLM alleviates the mismatch between training and inference by extracting boundary-aware speech prompts that allows it to be better matched with text input data. SimulS2S-LLM achieves simultaneous speech-to-speech translation (Simul-S2ST) by predicting discrete output speech tokens and then synthesising output speech using a pre-trained vocoder. An incremental beam search is designed to expand the search space of speech token prediction without increasing latency. Experiments on the CVSS speech data show that SimulS2S-LLM offers a better translation quality-latency trade-off than existing methods that use the same training data, such as improving ASR-BLEU scores by 3 points at similar latency.
☆ SignX: The Foundation Model for Sign Recognition
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
☆ Capturing Symmetry and Antisymmetry in Language Models through Symmetry-Aware Training Objectives
Capturing symmetric (e.g., country borders another country) and antisymmetric (e.g., parent_of) relations is crucial for a variety of applications. This paper tackles this challenge by introducing a novel Wikidata-derived natural language inference dataset designed to evaluate large language models (LLMs). Our findings reveal that LLMs perform comparably to random chance on this benchmark, highlighting a gap in relational understanding. To address this, we explore encoder retraining via contrastive learning with k-nearest neighbors. The retrained encoder matches the performance of fine-tuned classification heads while offering additional benefits, including greater efficiency in few-shot learning and improved mitigation of catastrophic forgetting.
☆ The Paradox of Poetic Intent in Back-Translation: Evaluating the Quality of Large Language Models in Chinese Translation
The rapid advancement of large language models (LLMs) has reshaped the landscape of machine translation, yet challenges persist in preserving poetic intent, cultural heritage, and handling specialized terminology in Chinese-English translation. This study constructs a diverse corpus encompassing Chinese scientific terminology, historical translation paradoxes, and literary metaphors. Utilizing a back-translation and Friedman test-based evaluation system (BT-Fried), we evaluate BLEU, CHRF, TER, and semantic similarity metrics across six major LLMs (e.g., GPT-4.5, DeepSeek V3) and three traditional translation tools. Key findings include: (1) Scientific abstracts often benefit from back-translation, while traditional tools outperform LLMs in linguistically distinct texts; (2) LLMs struggle with cultural and literary retention, exemplifying the "paradox of poetic intent"; (3) Some models exhibit "verbatim back-translation", reflecting emergent memory behavior; (4) A novel BLEU variant using Jieba segmentation and n-gram weighting is proposed. The study contributes to the empirical evaluation of Chinese NLP performance and advances understanding of cultural fidelity in AI-mediated translation.
comment: 24 pages, 3 figures
☆ The Language of Attachment: Modeling Attachment Dynamics in Psychotherapy
The delivery of mental healthcare through psychotherapy stands to benefit immensely from developments within Natural Language Processing (NLP), in particular through the automatic identification of patient specific qualities, such as attachment style. Currently, the assessment of attachment style is performed manually using the Patient Attachment Coding System (PACS; Talia et al., 2017), which is complex, resource-consuming and requires extensive training. To enable wide and scalable adoption of attachment informed treatment and research, we propose the first exploratory analysis into automatically assessing patient attachment style from psychotherapy transcripts using NLP classification models. We further analyze the results and discuss the implications of using automated tools for this purpose -- e.g., confusing `preoccupied' patients with `avoidant' likely has a more negative impact on therapy outcomes with respect to other mislabeling. Our work opens an avenue of research enabling more personalized psychotherapy and more targeted research into the mechanisms of psychotherapy through advancements in NLP.
☆ CLIRudit: Cross-Lingual Information Retrieval of Scientific Documents
Cross-lingual information retrieval (CLIR) consists in finding relevant documents in a language that differs from the language of the queries. This paper presents CLIRudit, a new dataset created to evaluate cross-lingual academic search, focusing on English queries and French documents. The dataset is built using bilingual article metadata from \'Erudit, a Canadian publishing platform, and is designed to represent scenarios in which researchers search for scholarly content in languages other than English. We perform a comprehensive benchmarking of different zero-shot first-stage retrieval methods on the dataset, including dense and sparse retrievers, query and document machine translation, and state-of-the-art multilingual retrievers. Our results show that large dense retrievers, not necessarily trained for the cross-lingual retrieval task, can achieve zero-shot performance comparable to using ground truth human translations, without the need for machine translation. Sparse retrievers, such as BM25 or SPLADE, combined with document translation, show competitive results, providing an efficient alternative to large dense models. This research advances the understanding of cross-lingual academic information retrieval and provides a framework that others can use to build comparable datasets across different languages and disciplines. By making the dataset and code publicly available, we aim to facilitate further research that will help make scientific knowledge more accessible across language barriers.
☆ Using Phonemes in cascaded S2S translation pipeline
This paper explores the idea of using phonemes as a textual representation within a conventional multilingual simultaneous speech-to-speech translation pipeline, as opposed to the traditional reliance on text-based language representations. To investigate this, we trained an open-source sequence-to-sequence model on the WMT17 dataset in two formats: one using standard textual representation and the other employing phonemic representation. The performance of both approaches was assessed using the BLEU metric. Our findings shows that the phonemic approach provides comparable quality but offers several advantages, including lower resource requirements or better suitability for low-resource languages.
comment: Accepted at Swiss NLP Conference 2025
☆ Reflexive Prompt Engineering: A Framework for Responsible Prompt Engineering and Interaction Design
Responsible prompt engineering has emerged as a critical framework for ensuring that generative artificial intelligence (AI) systems serve society's needs while minimizing potential harms. As generative AI applications become increasingly powerful and ubiquitous, the way we instruct and interact with them through prompts has profound implications for fairness, accountability, and transparency. This article examines how strategic prompt engineering can embed ethical and legal considerations and societal values directly into AI interactions, moving beyond mere technical optimization for functionality. This article proposes a comprehensive framework for responsible prompt engineering that encompasses five interconnected components: prompt design, system selection, system configuration, performance evaluation, and prompt management. Drawing from empirical evidence, the paper demonstrates how each component can be leveraged to promote improved societal outcomes while mitigating potential risks. The analysis reveals that effective prompt engineering requires a delicate balance between technical precision and ethical consciousness, combining the systematic rigor and focus on functionality with the nuanced understanding of social impact. Through examination of real-world and emerging practices, the article illustrates how responsible prompt engineering serves as a crucial bridge between AI development and deployment, enabling organizations to fine-tune AI outputs without modifying underlying model architectures. This approach aligns with broader "Responsibility by Design" principles, embedding ethical considerations directly into the implementation process rather than treating them as post-hoc additions. The article concludes by identifying key research directions and practical guidelines for advancing the field of responsible prompt engineering.
comment: 20 pages one figure
☆ FinNLI: Novel Dataset for Multi-Genre Financial Natural Language Inference Benchmarking
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset's difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement.
☆ Bidirectional Mamba for Single-Cell Data: Efficient Context Learning with Biological Fidelity
Single-cell RNA sequencing (scRNA-seq) enables high-resolution analysis of cellular heterogeneity, but its complexity, which is marked by high dimensionality, sparsity, and batch effects, which poses major computational challenges. Transformer-based models have made significant advances in this domain but are often limited by their quadratic complexity and suboptimal handling of long-range dependencies. In this work, we introduce GeneMamba, a scalable and efficient foundation model for single-cell transcriptomics built on state space modeling. Leveraging the Bi-Mamba architecture, GeneMamba captures bidirectional gene context with linear-time complexity, offering substantial computational gains over transformer baselines. The model is pretrained on nearly 30 million cells and incorporates biologically informed objectives, including pathway-aware contrastive loss and rank-based gene encoding. We evaluate GeneMamba across diverse tasks, including multi-batch integration, cell type annotation, and gene-gene correlation, demonstrating strong performance, interpretability, and robustness. These results position GeneMamba as a practical and powerful alternative to transformer-based methods, advancing the development of biologically grounded, scalable tools for large-scale single-cell data analysis.
♻ ☆ Plan-and-Act: Improving Planning of Agents for Long-Horizon Tasks
Large language models (LLMs) have shown remarkable advancements in enabling language agents to tackle simple tasks. However, applying them for complex, multi-step, long-horizon tasks remains a challenge. Recent work have found success by separating high-level planning from low-level execution, which enables the model to effectively balance high-level planning objectives and low-level execution details. However, generating accurate plans remains difficult since LLMs are not inherently trained for this task. To address this, we propose Plan-and-Act, a novel framework that incorporates explicit planning into LLM-based agents and introduces a scalable method to enhance plan generation through a novel synthetic data generation method. Plan-and-Act consists of a Planner model which generates structured, high-level plans to achieve user goals, and an Executor model that translates these plans into environment-specific actions. To train the Planner effectively, we introduce a synthetic data generation method that annotates ground-truth trajectories with feasible plans, augmented with diverse and extensive examples to enhance generalization. We evaluate Plan-and-Act using web navigation as a representative long-horizon planning environment, demonstrating a state-of-the-art 57.58% success rate on the WebArena-Lite benchmark as well as a text-only state-of-the-art 81.36% success rate on WebVoyager.
♻ ☆ State Space Models are Strong Text Rerankers RepL4NLP 2025
Transformers dominate NLP and IR; but their inference inefficiencies and challenges in extrapolating to longer contexts have sparked interest in alternative model architectures. Among these, state space models (SSMs) like Mamba offer promising advantages, particularly $O(1)$ time complexity in inference. Despite their potential, SSMs' effectiveness at text reranking -- a task requiring fine-grained query-document interaction and long-context understanding -- remains underexplored. This study benchmarks SSM-based architectures (specifically, Mamba-1 and Mamba-2) against transformer-based models across various scales, architectures, and pre-training objectives, focusing on performance and efficiency in text reranking tasks. We find that (1) Mamba architectures achieve competitive text ranking performance, comparable to transformer-based models of similar size; (2) they are less efficient in training and inference compared to transformers with flash attention; and (3) Mamba-2 outperforms Mamba-1 in both performance and efficiency. These results underscore the potential of state space models as a transformer alternative and highlight areas for improvement in future IR applications.
comment: Accepted to RepL4NLP 2025. The first two authors contributed equally, order decided randomly
♻ ☆ Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques IEEE
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
comment: Presented at IEEE Custom Integrated Circuits Conference (CICC) 2025
♻ ☆ AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.7% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
♻ ☆ A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
♻ ☆ SWITCH: Studying with Teacher for Knowledge Distillation of Large Language Models NAACL 2025
Despite the success of Large Language Models (LLMs), they still face challenges related to high inference costs and memory requirements. To address these issues, Knowledge Distillation (KD) has emerged as a popular method for model compression, with student-generated outputs (SGOs) as training data being particularly notable for reducing the mismatch between training and inference. However, SGOs often produce noisy and biased sequences, which can lead to misguidance from the teacher model, especially in long sequences. To mitigate these challenges, we propose SWITCH (Studying WIth TeaCHer for Knowledge Distillation), a novel approach that strategically incorporates the teacher model during the student's sequence generation. SWITCH identifies discrepancies between the token probabilities of the teacher and student models, allowing the teacher to intervene selectively, particularly in long sequences that are more prone to teacher misguidance. Extensive experimental results across three model families and five instruction-following datasets show that SWITCH surpasses traditional KD methods, particularly excelling in the generation of long sequential data.
comment: NAACL 2025 Findings
♻ ☆ Optimizing RLHF Training for Large Language Models with Stage Fusion
We present RLHFuse, an efficient training system with stage fusion for Reinforcement Learning from Human Feedback (RLHF). Due to the intrinsic nature of RLHF training, i.e., the data skewness in the generation stage and the pipeline bubbles in the training stage, existing RLHF systems suffer from low GPU utilization. RLHFuse breaks the traditional view of RLHF workflow as a composition of individual tasks, splitting each task into finer-grained subtasks, and performing stage fusion to improve GPU utilization. RLHFuse contains two key ideas. First, for generation and inference tasks, RLHFuse splits them into sample-level subtasks, enabling efficient inter-stage fusion to overlap the execution of generation and inference stages, thus mitigating the original generation bottleneck dominated by long-tailed samples. Second, for training tasks, RLHFuse breaks them into subtasks of micro-batches and performs intra-stage fusion to concurrently execute these subtasks in the training stage with a fused pipeline schedule, effectively mitigating the pipeline bubbles. The experiments show that RLHFuse increases the training throughput by up to $3.7\times$, compared to existing systems.
♻ ☆ Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments AAAI-2025
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
comment: This paper extends the AAAI-2025 version by including the Appendix
♻ ☆ Open-World Evaluation for Retrieving Diverse Perspectives
We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model-based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 40% of the examples. We further study the effectiveness of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy.
♻ ☆ On the Low-Rank Parametrization of Reward Models for Controlled Language Generation
Language models trained on large amounts of data are known to produce inappropriate content in some cases and require careful tuning to be used in the real world. We revisit an effective and modular approach for controllability of the language models, when an external expert model guides the decoding. Particularly, we zoom in into the parametrization choice of an external expert, highlighting the difference between low-rank and higher-rank parametrizations. Higher-rank experts are designed to support high flexibility when representing the rewards, leading to higher computational costs during decoding. However, we demonstrate that they might not use their full flexibility. By analyzing the recently proposed reward-augmented decoding approach (RAD), which uses a higher-rank expert model, we introduce a simpler but more efficient low-rank parametrization of the expert model enabling fast and effective guided decoding. We empirically show that the low-rank RAD performs on par with the more flexible RAD on a detoxification and a sentiment control task, while requiring only a single reward model call per generated token.
♻ ☆ Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift
Selecting an effective training signal for machine learning tasks is difficult: expert annotations are expensive, and crowd-sourced annotations may not be reliable. Recent work has demonstrated that learning from a distribution over labels acquired from crowd annotations can be effective both for performance and uncertainty estimation. However, this has mainly been studied using a limited set of soft-labeling methods in an in-domain setting. Additionally, no one method has been shown to consistently perform well across tasks, making it difficult to know a priori which to choose. To fill these gaps, this paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting, systematically analyzing 8 soft-labeling methods on 4 language and vision tasks. Additionally, we propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks. We demonstrate that this yields classifiers with improved predictive uncertainty estimation in most settings while maintaining consistent raw performance compared to learning from individual soft-labeling methods or taking a majority vote of the annotations. We additionally highlight that in regimes with abundant or minimal training data, the selection of soft labeling method is less important, while for highly subjective labels and moderate amounts of training data, aggregation yields significant improvements in uncertainty estimation over individual methods. Code can be found at https://github.com/copenlu/aggregating-crowd-annotations-ood.
comment: Accepted to PLOS One; 29 pages, 16 figures, 4 tables
♻ ☆ Fine-tuning Whisper on Low-Resource Languages for Real-World Applications
This paper presents a new approach to fine-tuning OpenAI's Whisper model for low-resource languages by introducing a novel data generation method that converts sentence-level data into a long-form corpus, using Swiss German as a case study. Non-sentence-level data, which could improve the performance of long-form audio, is difficult to obtain and often restricted by copyright laws. Our method bridges this gap by transforming more accessible sentence-level data into a format that preserves the model's ability to handle long-form audio and perform segmentation without requiring non-sentence-level data. Our data generation process improves performance in several real-world applications and leads to the development of a new state-of-the-art speech-to-text (STT) model for Swiss German. We compare our model with a non-fine-tuned Whisper and our previous state-of-the-art Swiss German STT models, where our new model achieves higher BLEU scores. Our results also indicate that the proposed method is adaptable to other low-resource languages, supported by written guidance and code that allows the creation of fine-tuned Whisper models, which keep segmentation capabilities and allow the transcription of longer audio files using only sentence-level data with high quality.
♻ ☆ Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation SIGIR 2025
Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
comment: Accepted to SIGIR 2025
♻ ☆ ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
♻ ☆ Fearful Falcons and Angry Llamas: Emotion Category Annotations of Arguments by Humans and LLMs
Arguments evoke emotions, influencing the effect of the argument itself. Not only the emotional intensity but also the category influence the argument's effects, for instance, the willingness to adapt stances. While binary emotionality has been studied in arguments, there is no work on discrete emotion categories (e.g., "Anger") in such data. To fill this gap, we crowdsource subjective annotations of emotion categories in a German argument corpus and evaluate automatic LLM-based labeling methods. Specifically, we compare three prompting strategies (zero-shot, one-shot, chain-of-thought) on three large instruction-tuned language models (Falcon-7b-instruct, Llama-3.1-8B-instruct, GPT-4o-mini). We further vary the definition of the output space to be binary (is there emotionality in the argument?), closed-domain (which emotion from a given label set is in the argument?), or open-domain (which emotion is in the argument?). We find that emotion categories enhance the prediction of emotionality in arguments, emphasizing the need for discrete emotion annotations in arguments. Across all prompt settings and models, automatic predictions show a high recall but low precision for predicting anger and fear, indicating a strong bias toward negative emotions.
comment: accepted to NLP4DH 2025
♻ ☆ VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet
♻ ☆ Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree AAAI 2025
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
comment: AAAI 2025 Accepted
♻ ☆ Investigating and Scaling up Code-Switching for Multilingual Language Model Pre-Training
Large language models (LLMs) exhibit remarkable multilingual capabilities despite the extreme language imbalance in the pre-training data. In this paper, we closely examine the reasons behind this phenomenon, focusing on the pre-training corpus. We find that the existence of code-switching, alternating between different languages within a context, is key to multilingual capabilities. We conduct an analysis to investigate code-switching in the pre-training corpus, examining its presence and categorizing it into four types within two quadrants. We then assess its impact on multilingual performance. These types of code-switching data are unbalanced in proportions and demonstrate different effects on facilitating language transfer. To better explore the power of code-switching for language alignment during pre-training, we investigate the strategy of synthetic code-switching. We continuously scale up the synthetic code-switching data and observe remarkable improvements in both benchmarks and representation space. Extensive experiments indicate that incorporating synthetic code-switching data enables better language alignment and generalizes well to high, medium, and low-resource languages with pre-training corpora of varying qualities.
♻ ☆ Diversity Helps Jailbreak Large Language Models
We have uncovered a powerful jailbreak technique that leverages large language models' ability to diverge from prior context, enabling them to bypass safety constraints and generate harmful outputs. By simply instructing the LLM to deviate and obfuscate previous attacks, our method dramatically outperforms existing approaches, achieving up to a 62.83% higher success rate in compromising ten leading chatbots, including GPT-4, Gemini, and Llama, while using only 12.9% of the queries. This revelation exposes a critical flaw in current LLM safety training, suggesting that existing methods may merely mask vulnerabilities rather than eliminate them. Our findings sound an urgent alarm for the need to revolutionize testing methodologies to ensure robust and reliable LLM security.
♻ ☆ FUSE : A Ridge and Random Forest-Based Metric for Evaluating MT in Indigenous Languages CCL 2025
This paper presents the winning submission of the RaaVa team to the AmericasNLP 2025 Shared Task 3 on Automatic Evaluation Metrics for Machine Translation (MT) into Indigenous Languages of America, where our system ranked first overall based on average Pearson correlation with the human annotations. We introduce Feature-Union Scorer (FUSE) for Evaluation, FUSE integrates Ridge regression and Gradient Boosting to model translation quality. In addition to FUSE, we explore five alternative approaches leveraging different combinations of linguistic similarity features and learning paradigms. FUSE Score highlights the effectiveness of combining lexical, phonetic, semantic, and fuzzy token similarity with learning-based modeling to improve MT evaluation for morphologically rich and low-resource languages. MT into Indigenous languages poses unique challenges due to polysynthesis, complex morphology, and non-standardized orthography. Conventional automatic metrics such as BLEU, TER, and ChrF often fail to capture deeper aspects like semantic adequacy and fluency. Our proposed framework, formerly referred to as FUSE, incorporates multilingual sentence embeddings and phonological encodings to better align with human evaluation. We train supervised models on human-annotated development sets and evaluate held-out test data. Results show that FUSE consistently achieves higher Pearson and Spearman correlations with human judgments, offering a robust and linguistically informed solution for MT evaluation in low-resource settings.
comment: NACCL 2025
♻ ☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
♻ ☆ Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
comment: 34 pages, 24 figures, 16 tables
♻ ☆ Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review CCL
Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation.
comment: Accepted in NACCL
♻ ☆ LLM-as-a-Judge: Reassessing the Performance of LLMs in Extractive QA
Extractive reading comprehension question answering (QA) datasets are typically evaluated using Exact Match (EM) and F1-score, but these metrics often fail to fully capture model performance. With the success of large language models (LLMs), they have been employed in various tasks, including serving as judges (LLM-as-a-judge). In this paper, we reassess the performance of QA models using LLM-as-a-judge across four reading comprehension QA datasets. We examine different families of LLMs and various answer types to evaluate the effectiveness of LLM-as-a-judge in these tasks. Our results show that LLM-as-a-judge is highly correlated with human judgments and can replace traditional EM/F1 metrics. By using LLM-as-a-judge, the correlation with human judgments improves significantly, from 0.22 (EM) and 0.40 (F1-score) to 0.85. These findings confirm that EM and F1 metrics underestimate the true performance of the QA models. While LLM-as-a-judge is not perfect for more difficult answer types (e.g., job), it still outperforms EM/F1, and we observe no bias issues, such as self-preference, when the same model is used for both the QA and judgment tasks.
comment: 17 pages; code and data are available at https://github.com/Alab-NII/llm-judge-extract-qa
♻ ☆ FOReCAst: The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
♻ ☆ Seed-Thinking-v1.5: Advancing Superb Reasoning Models with Reinforcement Learning
We introduce Seed-Thinking-v1.5, capable of reasoning through thinking before responding, resulting in improved performance on a wide range of benchmarks. Seed-Thinking-v1.5 achieves 86.7 on AIME 2024, 55.0 on Codeforces and 77.3 on GPQA, demonstrating excellent reasoning abilities in STEM and coding. Beyond reasoning tasks, the method demonstrates notable generalization across diverse domains. For instance, it surpasses DeepSeek R1 by 8% in win rate on non-reasoning tasks, indicating its broader applicability. Compared to other state-of-the-art reasoning models, Seed-Thinking-v1.5 is a Mixture-of-Experts (MoE) model with a relatively small size, featuring 20B activated and 200B total parameters. As part of our effort to assess generalized reasoning, we develop two internal benchmarks, BeyondAIME and Codeforces, both of which will be publicly released to support future research.
♻ ☆ Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol
Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
♻ ☆ Evaluating the Robustness of Multimodal Agents Against Active Environmental Injection Attacks
As researchers continue to optimize AI agents for more effective task execution within operating systems, they often overlook a critical security concern: the ability of these agents to detect "impostors" within their environment. Through an analysis of the agents' operational context, we identify a significant threat-attackers can disguise malicious attacks as environmental elements, injecting active disturbances into the agents' execution processes to manipulate their decision-making. We define this novel threat as the Active Environment Injection Attack (AEIA). Focusing on the interaction mechanisms of the Android OS, we conduct a risk assessment of AEIA and identify two critical security vulnerabilities: (1) Adversarial content injection in multimodal interaction interfaces, where attackers embed adversarial instructions within environmental elements to mislead agent decision-making; and (2) Reasoning gap vulnerabilities in the agent's task execution process, which increase susceptibility to AEIA attacks during reasoning. To evaluate the impact of these vulnerabilities, we propose AEIA-MN, an attack scheme that exploits interaction vulnerabilities in mobile operating systems to assess the robustness of MLLM-based agents. Experimental results show that even advanced MLLMs are highly vulnerable to this attack, achieving a maximum attack success rate of 93% on the AndroidWorld benchmark by combining two vulnerabilities.
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://yanghaha0908.github.io/EmoVoice/. Dataset, code, and checkpoints will be released.
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ Inspection and Control of Self-Generated-Text Recognition Ability in Llama3-8b-Instruct ICLR 2025
It has been reported that LLMs can recognize their own writing. As this has potential implications for AI safety, yet is relatively understudied, we investigate the phenomenon, seeking to establish whether it robustly occurs at the behavioral level, how the observed behavior is achieved, and whether it can be controlled. First, we find that the Llama3-8b-Instruct chat model - but not the base Llama3-8b model - can reliably distinguish its own outputs from those of humans, and present evidence that the chat model is likely using its experience with its own outputs, acquired during post-training, to succeed at the writing recognition task. Second, we identify a vector in the residual stream of the model that is differentially activated when the model makes a correct self-written-text recognition judgment, show that the vector activates in response to information relevant to self-authorship, present evidence that the vector is related to the concept of "self" in the model, and demonstrate that the vector is causally related to the model's ability to perceive and assert self-authorship. Finally, we show that the vector can be used to control both the model's behavior and its perception, steering the model to claim or disclaim authorship by applying the vector to the model's output as it generates it, and steering the model to believe or disbelieve it wrote arbitrary texts by applying the vector to them as the model reads them.
comment: 10 pages, 13 figs, 2 tables, accepted as conference paper to ICLR 2025
♻ ☆ Multimodal Situational Safety ICLR 2025
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
comment: ICLR 2025 Camera Ready
♻ ☆ OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Large language models (LLMs) have been widely used for various tasks and applications. However, LLMs and fine-tuning are limited to the pre-trained data. For example, ChatGPT's world knowledge until 2021 can be outdated or inaccurate. To enhance the capabilities of LLMs, Retrieval-Augmented Generation (RAG), is proposed to augment LLMs with additional, new, latest details and information to LLMs. While RAG offers the correct information, it may not best present it, especially to different population groups with personalizations. Reinforcement Learning from Human Feedback (RLHF) adapts to user needs by aligning model responses with human preference through feedback loops. In real-life applications, such as mental health problems, a dynamic and feedback-based model would continuously adapt to new information and offer personalized assistance due to complex factors fluctuating in a daily environment. Thus, we propose an Online Reinforcement Learning-based Retrieval-Augmented Generation (OnRL-RAG) system to detect and personalize the responding systems to mental health problems, such as stress, anxiety, and depression. We use an open-source dataset collected from 2028 College Students with 28 survey questions for each student to demonstrate the performance of our proposed system with the existing systems. Our system achieves superior performance compared to standard RAG and simple LLM via GPT-4o, GPT-4o-mini, Gemini-1.5, and GPT-3.5. This work would open up the possibilities of real-life applications of LLMs for personalized services in the everyday environment. The results will also help researchers in the fields of sociology, psychology, and neuroscience to align their theories more closely with the actual human daily environment.
comment: It needs more revisions. I am currently working on it with my co-author
♻ ☆ Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
♻ ☆ MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
♻ ☆ Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
♻ ☆ Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development and synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis, while significantly reducing turnaround time.
♻ ☆ Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
LLMs often adopt an assertive language style also when making false claims. Such ``overconfident hallucinations'' mislead users and erode trust. Achieving the ability to express in language the actual degree of uncertainty around a claim is therefore of great importance. We find that ``verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs, and show that this has only moderate correlation with the actual ``semantic uncertainty'' of the model. We apply this insight and show that (1) the mismatch between semantic and verbal uncertainty is a better predictor of hallucinations than semantic uncertainty alone and (2) we can intervene on verbal uncertainty at inference time and reduce confident hallucinations on short-form answers, achieving an average relative reduction of ~30%.
♻ ☆ Beyond Self Attention: A Subquadratic Fourier Wavelet Transformer with Multi Modal Fusion
We revisit the use of spectral techniques to replaces the attention mechanism in Transformers through Fourier Transform based token mixing, and present a comprehensive and novel reformulation of this technique in next generation transformer models. We provide expanded literature context, detailed mathematical formulations of Fourier mixing and causal masking, and introduce a novel MultiDomain Fourier Wavelet Attention(MDFWA) that integrates frequency and time localized transforms to capture both global and local dependencies efficiently. We derive the complexity bounds, gradient formulas, and show that MDFWA achieves sub quadratic time and memory cost while improving expressive power. We validate our design on an abstractive summarization task using PubMed dataset, by enhancing the proposed approach with learned frequency bases, adaptive scale selection, and multi-modal extensions.
comment: 7 pages, 4 figures, 5 tables
Machine Learning 183
☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 159% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the Maj@N metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks, and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
☆ MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
☆ LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as $\epsilon$-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making.
☆ Explainable Unsupervised Anomaly Detection with Random Forest
We describe the use of an unsupervised Random Forest for similarity learning and improved unsupervised anomaly detection. By training a Random Forest to discriminate between real data and synthetic data sampled from a uniform distribution over the real data bounds, a distance measure is obtained that anisometrically transforms the data, expanding distances at the boundary of the data manifold. We show that using distances recovered from this transformation improves the accuracy of unsupervised anomaly detection, compared to other commonly used detectors, demonstrated over a large number of benchmark datasets. As well as improved performance, this method has advantages over other unsupervised anomaly detection methods, including minimal requirements for data preprocessing, native handling of missing data, and potential for visualizations. By relating outlier scores to partitions of the Random Forest, we develop a method for locally explainable anomaly predictions in terms of feature importance.
comment: 14 pages, 5 figures
☆ High-performance training and inference for deep equivariant interatomic potentials
Machine learning interatomic potentials, particularly those based on deep equivariant neural networks, have demonstrated state-of-the-art accuracy and computational efficiency in atomistic modeling tasks like molecular dynamics and high-throughput screening. The size of datasets and demands of downstream workflows are growing rapidly, making robust and scalable software essential. This work presents a major overhaul of the NequIP framework focusing on multi-node parallelism, computational performance, and extensibility. The redesigned framework supports distributed training on large datasets and removes barriers preventing full utilization of the PyTorch 2.0 compiler at train time. We demonstrate this acceleration in a case study by training Allegro models on the SPICE 2 dataset of organic molecular systems. For inference, we introduce the first end-to-end infrastructure that uses the PyTorch Ahead-of-Time Inductor compiler for machine learning interatomic potentials. Additionally, we implement a custom kernel for the Allegro model's most expensive operation, the tensor product. Together, these advancements speed up molecular dynamics calculations on system sizes of practical relevance by up to a factor of 18.
☆ $π_{0.5}$: a Vision-Language-Action Model with Open-World Generalization
In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe $\pi_{0.5}$, a new model based on $\pi_{0}$ that uses co-training on heterogeneous tasks to enable broad generalization. $\pi_{0.5}$\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
☆ Muon Optimizer Accelerates Grokking
This paper investigates the impact of different optimizers on the grokking phenomenon, where models exhibit delayed generalization. We conducted experiments across seven numerical tasks (primarily modular arithmetic) using a modern Transformer architecture. The experimental configuration systematically varied the optimizer (Muon vs. AdamW) and the softmax activation function (standard softmax, stablemax, and sparsemax) to assess their combined effect on learning dynamics. Our empirical evaluation reveals that the Muon optimizer, characterized by its use of spectral norm constraints and second-order information, significantly accelerates the onset of grokking compared to the widely used AdamW optimizer. Specifically, Muon reduced the mean grokking epoch from 153.09 to 102.89 across all configurations, a statistically significant difference (t = 5.0175, p = 6.33e-08). This suggests that the optimizer choice plays a crucial role in facilitating the transition from memorization to generalization.
comment: 8 pages, 4 figures
☆ LLMs meet Federated Learning for Scalable and Secure IoT Management IEEE
The rapid expansion of IoT ecosystems introduces severe challenges in scalability, security, and real-time decision-making. Traditional centralized architectures struggle with latency, privacy concerns, and excessive resource consumption, making them unsuitable for modern large-scale IoT deployments. This paper presents a novel Federated Learning-driven Large Language Model (FL-LLM) framework, designed to enhance IoT system intelligence while ensuring data privacy and computational efficiency. The framework integrates Generative IoT (GIoT) models with a Gradient Sensing Federated Strategy (GSFS), dynamically optimizing model updates based on real-time network conditions. By leveraging a hybrid edge-cloud processing architecture, our approach balances intelligence, scalability, and security in distributed IoT environments. Evaluations on the IoT-23 dataset demonstrate that our framework improves model accuracy, reduces response latency, and enhances energy efficiency, outperforming traditional FL techniques (i.e., FedAvg, FedOpt). These findings highlight the potential of integrating LLM-powered federated learning into large-scale IoT ecosystems, paving the way for more secure, scalable, and adaptive IoT management solutions.
comment: This work has been submitted to the IEEE Global Communications Conference (GLOBECOM) 2025 for possible publication
☆ Benchmarking LLM for Code Smells Detection: OpenAI GPT-4.0 vs DeepSeek-V3
Determining the most effective Large Language Model for code smell detection presents a complex challenge. This study introduces a structured methodology and evaluation matrix to tackle this issue, leveraging a curated dataset of code samples consistently annotated with known smells. The dataset spans four prominent programming languages Java, Python, JavaScript, and C++; allowing for cross language comparison. We benchmark two state of the art LLMs, OpenAI GPT 4.0 and DeepSeek-V3, using precision, recall, and F1 score as evaluation metrics. Our analysis covers three levels of detail: overall performance, category level performance, and individual code smell type performance. Additionally, we explore cost effectiveness by comparing the token based detection approach of GPT 4.0 with the pattern-matching techniques employed by DeepSeek V3. The study also includes a cost analysis relative to traditional static analysis tools such as SonarQube. The findings offer valuable guidance for practitioners in selecting an efficient, cost effective solution for automated code smell detection
☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
☆ The Formation of Production Networks: How Supply Chains Arise from Simple Learning with Minimal Information
We develop a model where firms determine the price at which they sell their differentiable goods, the volume that they produce, and the inputs (types and amounts) that they purchase from other firms. A steady-state production network emerges endogenously without resorting to assumptions such as equilibrium or perfect knowledge about production technologies. Through a simple version of reinforcement learning, firms with heterogeneous technologies cope with uncertainty and maximize profits. Due to this learning process, firms can adapt to shocks such as demand shifts, suppliers/clients closure, productivity changes, and production technology modifications; effectively reshaping the production network. To demonstrate the potential of this model, we analyze the upstream and downstream impact of demand and productivity shocks.
☆ How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
☆ OPUS-VFL: Incentivizing Optimal Privacy-Utility Tradeoffs in Vertical Federated Learning
Vertical Federated Learning (VFL) enables organizations with disjoint feature spaces but shared user bases to collaboratively train models without sharing raw data. However, existing VFL systems face critical limitations: they often lack effective incentive mechanisms, struggle to balance privacy-utility tradeoffs, and fail to accommodate clients with heterogeneous resource capabilities. These challenges hinder meaningful participation, degrade model performance, and limit practical deployment. To address these issues, we propose OPUS-VFL, an Optimal Privacy-Utility tradeoff Strategy for VFL. OPUS-VFL introduces a novel, privacy-aware incentive mechanism that rewards clients based on a principled combination of model contribution, privacy preservation, and resource investment. It employs a lightweight leave-one-out (LOO) strategy to quantify feature importance per client, and integrates an adaptive differential privacy mechanism that enables clients to dynamically calibrate noise levels to optimize their individual utility. Our framework is designed to be scalable, budget-balanced, and robust to inference and poisoning attacks. Extensive experiments on benchmark datasets (MNIST, CIFAR-10, and CIFAR-100) demonstrate that OPUS-VFL significantly outperforms state-of-the-art VFL baselines in both efficiency and robustness. It reduces label inference attack success rates by up to 20%, increases feature inference reconstruction error (MSE) by over 30%, and achieves up to 25% higher incentives for clients that contribute meaningfully while respecting privacy and cost constraints. These results highlight the practicality and innovation of OPUS-VFL as a secure, fair, and performance-driven solution for real-world VFL.
☆ Benchmarking machine learning models for predicting aerofoil performance
This paper investigates the capability of Neural Networks (NNs) as alternatives to the traditional methods to analyse the performance of aerofoils used in the wind and tidal energy industry. The current methods used to assess the characteristic lift and drag coefficients include Computational Fluid Dynamics (CFD), thin aerofoil and panel methods, all face trade-offs between computational speed and the accuracy of the results and as such NNs have been investigated as an alternative with the aim that it would perform both quickly and accurately. As such, this paper provides a benchmark for the windAI_bench dataset published by the National Renewable Energy Laboratory (NREL) in the USA. In order to validate the methodology of the benchmarking, the AirfRANS {\tt arXiv:2212.07564v3} dataset is used as both a starting point and a point of comparison. This study evaluates four neural networks (MLP, PointNet, GraphSAGE, GUNet) trained on a range aerofoils at 25 angles of attack (4$^\circ$ to 20$^\circ$). to predict fluid flow and calculate lift coefficients ($C_L$) via the panel method. GraphSAGE and GUNet performed well during the testing phase, but underperformed during validation. Accordingly, this paper has identified PointNet and MLP as the two strongest models tested, however whilst the results from MLP are more commonly correct for predicting the behaviour of the fluid, the results from PointNet provide the more accurate results for calculating $C_L$.
comment: 9 pages, 10 figures, submitted to EWTEC
☆ Efficient Adaptation of Deep Neural Networks for Semantic Segmentation in Space Applications
In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an ``adapter ranking'' (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field.
☆ Efficient Discovery of Motif Transition Process for Large-Scale Temporal Graphs
Understanding the dynamic transition of motifs in temporal graphs is essential for revealing how graph structures evolve over time, identifying critical patterns, and predicting future behaviors, yet existing methods often focus on predefined motifs, limiting their ability to comprehensively capture transitions and interrelationships. We propose a parallel motif transition process discovery algorithm, PTMT, a novel parallel method for discovering motif transition processes in large-scale temporal graphs. PTMT integrates a tree-based framework with the temporal zone partitioning (TZP) strategy, which partitions temporal graphs by time and structure while preserving lossless motif transitions and enabling massive parallelism. PTMT comprises three phases: growth zone parallel expansion, overlap-aware result aggregation, and deterministic encoding of motif transitions, ensuring accurate tracking of dynamic transitions and interactions. Results on 10 real-world datasets demonstrate that PTMT achieves speedups ranging from 12.0$\times$ to 50.3$\times$ compared to the SOTA method.
☆ Universal Approximation with Softmax Attention
We prove that with linear transformations, both (i) two-layer self-attention and (ii) one-layer self-attention followed by a softmax function are universal approximators for continuous sequence-to-sequence functions on compact domains. Our main technique is a new interpolation-based method for analyzing attention's internal mechanism. This leads to our key insight: self-attention is able to approximate a generalized version of ReLU to arbitrary precision, and hence subsumes many known universal approximators. Building on these, we show that two-layer multi-head attention alone suffices as a sequence-to-sequence universal approximator. In contrast, prior works rely on feed-forward networks to establish universal approximation in Transformers. Furthermore, we extend our techniques to show that, (softmax-)attention-only layers are capable of approximating various statistical models in-context. We believe these techniques hold independent interest.
☆ Adversarial Observations in Weather Forecasting
AI-based systems, such as Google's GenCast, have recently redefined the state of the art in weather forecasting, offering more accurate and timely predictions of both everyday weather and extreme events. While these systems are on the verge of replacing traditional meteorological methods, they also introduce new vulnerabilities into the forecasting process. In this paper, we investigate this threat and present a novel attack on autoregressive diffusion models, such as those used in GenCast, capable of manipulating weather forecasts and fabricating extreme events, including hurricanes, heat waves, and intense rainfall. The attack introduces subtle perturbations into weather observations that are statistically indistinguishable from natural noise and change less than 0.1% of the measurements - comparable to tampering with data from a single meteorological satellite. As modern forecasting integrates data from nearly a hundred satellites and many other sources operated by different countries, our findings highlight a critical security risk with the potential to cause large-scale disruptions and undermine public trust in weather prediction.
☆ Low-Rank Adaptation of Neural Fields
Processing visual data often involves small adjustments or sequences of changes, such as in image filtering, surface smoothing, and video storage. While established graphics techniques like normal mapping and video compression exploit redundancy to encode such small changes efficiently, the problem of encoding small changes to neural fields (NF) -- neural network parameterizations of visual or physical functions -- has received less attention. We propose a parameter-efficient strategy for updating neural fields using low-rank adaptations (LoRA). LoRA, a method from the parameter-efficient fine-tuning LLM community, encodes small updates to pre-trained models with minimal computational overhead. We adapt LoRA to instance-specific neural fields, avoiding the need for large pre-trained models yielding a pipeline suitable for low-compute hardware. We validate our approach with experiments in image filtering, video compression, and geometry editing, demonstrating its effectiveness and versatility for representing neural field updates.
☆ StreamRL: Scalable, Heterogeneous, and Elastic RL for LLMs with Disaggregated Stream Generation
Reinforcement learning (RL) has become the core post-training technique for large language models (LLMs). RL for LLMs involves two stages: generation and training. The LLM first generates samples online, which are then used to derive rewards for training. The conventional view holds that the colocated architecture, where the two stages share resources via temporal multiplexing, outperforms the disaggregated architecture, in which dedicated resources are assigned to each stage. However, in real-world deployments, we observe that the colocated architecture suffers from resource coupling, where the two stages are constrained to use the same resources. This coupling compromises the scalability and cost-efficiency of colocated RL in large-scale training. In contrast, the disaggregated architecture allows for flexible resource allocation, supports heterogeneous training setups, and facilitates cross-datacenter deployment. StreamRL is designed with disaggregation from first principles and fully unlocks its potential by addressing two types of performance bottlenecks in existing disaggregated RL frameworks: pipeline bubbles, caused by stage dependencies, and skewness bubbles, resulting from long-tail output length distributions. To address pipeline bubbles, StreamRL breaks the traditional stage boundary in synchronous RL algorithms through stream generation and achieves full overlapping in asynchronous RL. To address skewness bubbles, StreamRL employs an output-length ranker model to identify long-tail samples and reduces generation time via skewness-aware dispatching and scheduling. Experiments show that StreamRL improves throughput by up to 2.66x compared to existing state-of-the-art systems, and improves cost-effectiveness by up to 1.33x in a heterogeneous, cross-datacenter setting.
☆ Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Client-level fairness metrics for federated learning are used to ensure that all clients in a federation either: a) have similar final performance on their local data distributions (i.e., client parity), or b) obtain final performance on their local data distributions relative to their contribution to the federated learning process (i.e., contribution fairness). While a handful of works that propose either client-parity or contribution-based fairness metrics ground their definitions and decisions in social theories of equality -- such as distributive justice -- most works arbitrarily choose what notion of fairness to align with which makes it difficult for practitioners to choose which fairness metric aligns best with their fairness ethics. In this work, we propose UDJ-FL (Uncertainty-based Distributive Justice for Federated Learning), a flexible federated learning framework that can achieve multiple distributive justice-based client-level fairness metrics. Namely, by utilizing techniques inspired by fair resource allocation, in conjunction with performing aleatoric uncertainty-based client weighing, our UDJ-FL framework is able to achieve egalitarian, utilitarian, Rawls' difference principle, or desert-based client-level fairness. We empirically show the ability of UDJ-FL to achieve all four defined distributive justice-based client-level fairness metrics in addition to providing fairness equivalent to (or surpassing) other popular fair federated learning works. Further, we provide justification for why aleatoric uncertainty weighing is necessary to the construction of our UDJ-FL framework as well as derive theoretical guarantees for the generalization bounds of UDJ-FL. Our code is publicly available at https://github.com/alycia-noel/UDJ-FL.
comment: 21 pages, 1 figure, 7 tables
☆ ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion
Graph Neural Networks (GNNs) have demonstrated strong performance across various graph-based tasks by effectively capturing relational information between nodes. These models rely on iterative message passing to propagate node features, enabling nodes to aggregate information from their neighbors. Recent research has significantly improved the message-passing mechanism, enhancing GNN scalability on large-scale graphs. However, GNNs still face two main challenges: over-smoothing, where excessive message passing results in indistinguishable node representations, especially in deep networks incorporating high-order neighbors; and scalability issues, as traditional architectures suffer from high model complexity and increased inference time due to redundant information aggregation. This paper proposes a novel framework for large-scale graphs named ScaleGNN that simultaneously addresses both challenges by adaptively fusing multi-level graph features. We first construct neighbor matrices for each order, learning their relative information through trainable weights through an adaptive high-order feature fusion module. This allows the model to selectively emphasize informative high-order neighbors while reducing unnecessary computational costs. Additionally, we introduce a High-order redundant feature masking mechanism based on a Local Contribution Score (LCS), which enables the model to retain only the most relevant neighbors at each order, preventing redundant information propagation. Furthermore, low-order enhanced feature aggregation adaptively integrates low-order and high-order features based on task relevance, ensuring effective capture of both local and global structural information without excessive complexity. Extensive experiments on real-world datasets demonstrate that our approach consistently outperforms state-of-the-art GNN models in both accuracy and computational efficiency.
☆ GraphEdge: Dynamic Graph Partition and Task Scheduling for GNNs Computing in Edge Network
With the exponential growth of Internet of Things (IoT) devices, edge computing (EC) is gradually playing an important role in providing cost-effective services. However, existing approaches struggle to perform well in graph-structured scenarios where user data is correlated, such as traffic flow prediction and social relationship recommender systems. In particular, graph neural network (GNN)-based approaches lead to expensive server communication cost. To address this problem, we propose GraphEdge, an efficient GNN-based EC architecture. It considers the EC system of GNN tasks, where there are associations between users and it needs to take into account the task data of its neighbors when processing the tasks of a user. Specifically, the architecture first perceives the user topology and represents their data associations as a graph layout at each time step. Then the graph layout is optimized by calling our proposed hierarchical traversal graph cut algorithm (HiCut), which cuts the graph layout into multiple weakly associated subgraphs based on the aggregation characteristics of GNN, and the communication cost between different subgraphs during GNN inference is minimized. Finally, based on the optimized graph layout, our proposed deep reinforcement learning (DRL) based graph offloading algorithm (DRLGO) is executed to obtain the optimal offloading strategy for the tasks of users, the offloading strategy is subgraph-based, it tries to offload user tasks in a subgraph to the same edge server as possible while minimizing the task processing time and energy consumption of the EC system. Experimental results show the good effectiveness and dynamic adaptation of our proposed architecture and it also performs well even in dynamic scenarios.
comment: 17 pages,12 figures
☆ SUPRA: Subspace Parameterized Attention for Neural Operator on General Domains
Neural operators are efficient surrogate models for solving partial differential equations (PDEs), but their key components face challenges: (1) in order to improve accuracy, attention mechanisms suffer from computational inefficiency on large-scale meshes, and (2) spectral convolutions rely on the Fast Fourier Transform (FFT) on regular grids and assume a flat geometry, which causes accuracy degradation on irregular domains. To tackle these problems, we regard the matrix-vector operations in the standard attention mechanism on vectors in Euclidean space as bilinear forms and linear operators in vector spaces and generalize the attention mechanism to function spaces. This new attention mechanism is fully equivalent to the standard attention but impossible to compute due to the infinite dimensionality of function spaces. To address this, inspired by model reduction techniques, we propose a Subspace Parameterized Attention (SUPRA) neural operator, which approximates the attention mechanism within a finite-dimensional subspace. To construct a subspace on irregular domains for SUPRA, we propose using the Laplacian eigenfunctions, which naturally adapt to domains' geometry and guarantee the optimal approximation for smooth functions. Experiments show that the SUPRA neural operator reduces error rates by up to 33% on various PDE datasets while maintaining state-of-the-art computational efficiency.
☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
☆ DERD-Net: Learning Depth from Event-based Ray Densities
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net
comment: 13 pages, 3 figures, 14 tables. Project page: https://github.com/tub-rip/DERD-Net
☆ Consistent Causal Inference of Group Effects in Non-Targeted Trials with Finitely Many Effect Levels
A treatment may be appropriate for some group (the ``sick" group) on whom it has a positive effect, but it can also have a detrimental effect on subjects from another group (the ``healthy" group). In a non-targeted trial both sick and healthy subjects may be treated, producing heterogeneous effects within the treated group. Inferring the correct treatment effect on the sick population is then difficult, because the effects on the different groups get tangled. We propose an efficient nonparametric approach to estimating the group effects, called {\bf PCM} (pre-cluster and merge). We prove its asymptotic consistency in a general setting and show, on synthetic data, more than a 10x improvement in accuracy over existing state-of-the-art. Our approach applies more generally to consistent estimation of functions with a finite range.
☆ Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions CCS 2025
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
comment: Accepted to ICCS 2025
☆ DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers
Existing machine unlearning (MU) approaches exhibit significant sensitivity to hyperparameters, requiring meticulous tuning that limits practical deployment. In this work, we first empirically demonstrate the instability and suboptimal performance of existing popular MU methods when deployed in different scenarios. To address this issue, we propose Dual Optimizer (DualOptim), which incorporates adaptive learning rate and decoupled momentum factors. Empirical and theoretical evidence demonstrates that DualOptim contributes to effective and stable unlearning. Through extensive experiments, we show that DualOptim can significantly boost MU efficacy and stability across diverse tasks, including image classification, image generation, and large language models, making it a versatile approach to empower existing MU algorithms.
☆ Full waveform inversion with CNN-based velocity representation extension
Full waveform inversion (FWI) updates the velocity model by minimizing the discrepancy between observed and simulated data. However, discretization errors in numerical modeling and incomplete seismic data acquisition can introduce noise, which propagates through the adjoint operator and affects the accuracy of the velocity gradient, thereby impacting the FWI inversion accuracy. To mitigate the influence of noise on the gradient, we employ a convolutional neural network (CNN) to refine the velocity model before performing the forward simulation, aiming to reduce noise and provide a more accurate velocity update direction. We use the same data misfit loss to update both the velocity and network parameters, thereby forming a self-supervised learning procedure. We propose two implementation schemes, which differ in whether the velocity update passes through the CNN. In both methodologies, the velocity representation is extended (VRE) by using a neural network in addition to the grid-based velocities. Thus, we refer to this general approach as VRE-FWI. Synthetic and real data tests demonstrate that the proposed VRE-FWI achieves higher velocity inversion accuracy compared to traditional FWI, at a marginal additional computational cost of approximately 1%.
comment: 16 pages, 15 figures, Scientific paper
☆ What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompt and model changes efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs, and we are able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
☆ Fusing Reward and Dueling Feedback in Stochastic Bandits
This paper investigates the fusion of absolute (reward) and relative (dueling) feedback in stochastic bandits, where both feedback types are gathered in each decision round. We derive a regret lower bound, demonstrating that an efficient algorithm may incur only the smaller among the reward and dueling-based regret for each individual arm. We propose two fusion approaches: (1) a simple elimination fusion algorithm that leverages both feedback types to explore all arms and unifies collected information by sharing a common candidate arm set, and (2) a decomposition fusion algorithm that selects the more effective feedback to explore the corresponding arms and randomly assigns one feedback type for exploration and the other for exploitation in each round. The elimination fusion experiences a suboptimal multiplicative term of the number of arms in regret due to the intrinsic suboptimality of dueling elimination. In contrast, the decomposition fusion achieves regret matching the lower bound up to a constant under a common assumption. Extensive experiments confirm the efficacy of our algorithms and theoretical results.
☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
☆ Locating and Mitigating Gradient Conflicts in Point Cloud Domain Adaptation via Saliency Map Skewness
Object classification models utilizing point cloud data are fundamental for 3D media understanding, yet they often struggle with unseen or out-of-distribution (OOD) scenarios. Existing point cloud unsupervised domain adaptation (UDA) methods typically employ a multi-task learning (MTL) framework that combines primary classification tasks with auxiliary self-supervision tasks to bridge the gap between cross-domain feature distributions. However, our further experiments demonstrate that not all gradients from self-supervision tasks are beneficial and some may negatively impact the classification performance. In this paper, we propose a novel solution, termed Saliency Map-based Data Sampling Block (SM-DSB), to mitigate these gradient conflicts. Specifically, our method designs a new scoring mechanism based on the skewness of 3D saliency maps to estimate gradient conflicts without requiring target labels. Leveraging this, we develop a sample selection strategy that dynamically filters out samples whose self-supervision gradients are not beneficial for the classification. Our approach is scalable, introducing modest computational overhead, and can be integrated into all the point cloud UDA MTL frameworks. Extensive evaluations demonstrate that our method outperforms state-of-the-art approaches. In addition, we provide a new perspective on understanding the UDA problem through back-propagation analysis.
☆ Shannon invariants: A scalable approach to information decomposition
Distributed systems, such as biological and artificial neural networks, process information via complex interactions engaging multiple subsystems, resulting in high-order patterns with distinct properties across scales. Investigating how these systems process information remains challenging due to difficulties in defining appropriate multivariate metrics and ensuring their scalability to large systems. To address these challenges, we introduce a novel framework based on what we call "Shannon invariants" -- quantities that capture essential properties of high-order information processing in a way that depends only on the definition of entropy and can be efficiently calculated for large systems. Our theoretical results demonstrate how Shannon invariants can be used to resolve long-standing ambiguities regarding the interpretation of widely used multivariate information-theoretic measures. Moreover, our practical results reveal distinctive information-processing signatures of various deep learning architectures across layers, which lead to new insights into how these systems process information and how this evolves during training. Overall, our framework resolves fundamental limitations in analyzing high-order phenomena and offers broad opportunities for theoretical developments and empirical analyses.
comment: 16 pages, 4 Figures
☆ Tina: Tiny Reasoning Models via LoRA
How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.
☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
☆ Grounded in Context: Retrieval-Based Method for Hallucination Detection
Despite advancements in grounded content generation, production Large Language Models (LLMs) based applications still suffer from hallucinated answers. We present "Grounded in Context" - Deepchecks' hallucination detection framework, designed for production-scale long-context data and tailored to diverse use cases, including summarization, data extraction, and RAG. Inspired by RAG architecture, our method integrates retrieval and Natural Language Inference (NLI) models to predict factual consistency between premises and hypotheses using an encoder-based model with only a 512-token context window. Our framework identifies unsupported claims with an F1 score of 0.83 in RAGTruth's response-level classification task, matching methods that trained on the dataset, and outperforming all comparable frameworks using similar-sized models.
☆ Observability conditions for neural state-space models with eigenvalues and their roots of unity
We operate through the lens of ordinary differential equations and control theory to study the concept of observability in the context of neural state-space models and the Mamba architecture. We develop strategies to enforce observability, which are tailored to a learning context, specifically where the hidden states are learnable at initial time, in conjunction to over its continuum, and high-dimensional. We also highlight our methods emphasize eigenvalues, roots of unity, or both. Our methods effectuate computational efficiency when enforcing observability, sometimes at great scale. We formulate observability conditions in machine learning based on classical control theory and discuss their computational complexity. Our nontrivial results are fivefold. We discuss observability through the use of permutations in neural applications with learnable matrices without high precision. We present two results built upon the Fourier transform that effect observability with high probability up to the randomness in the learning. These results are worked with the interplay of representations in Fourier space and their eigenstructure, nonlinear mappings, and the observability matrix. We present a result for Mamba that is similar to a Hautus-type condition, but instead employs an argument using a Vandermonde matrix instead of eigenvectors. Our final result is a shared-parameter construction of the Mamba system, which is computationally efficient in high exponentiation. We develop a training algorithm with this coupling, showing it satisfies a Robbins-Monro condition under certain orthogonality, while a more classical training procedure fails to satisfy a contraction with high Lipschitz constant.
comment: First version
☆ Markov Kernels, Distances and Optimal Control: A Parable of Linear Quadratic Non-Gaussian Distribution Steering
For a controllable linear time-varying (LTV) pair $(\boldsymbol{A}_t,\boldsymbol{B}_t)$ and $\boldsymbol{Q}_{t}$ positive semidefinite, we derive the Markov kernel for the It\^{o} diffusion ${\mathrm{d}}\boldsymbol{x}_{t}=\boldsymbol{A}_{t}\boldsymbol{x}_t {\mathrm{d}} t + \sqrt{2}\boldsymbol{B}_{t}{\mathrm{d}}\boldsymbol{w}_{t}$ with an accompanying killing of probability mass at rate $\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{Q}_{t}\boldsymbol{x}$. This Markov kernel is the Green's function for an associated linear reaction-advection-diffusion partial differential equation. Our result generalizes the recently derived kernel for the special case $\left(\boldsymbol{A}_t,\boldsymbol{B}_t\right)=\left(\boldsymbol{0},\boldsymbol{I}\right)$, and depends on the solution of an associated Riccati matrix ODE. A consequence of this result is that the linear quadratic non-Gaussian Schr\"{o}dinger bridge is exactly solvable. This means that the problem of steering a controlled LTV diffusion from a given non-Gaussian distribution to another over a fixed deadline while minimizing an expected quadratic cost can be solved using dynamic Sinkhorn recursions performed with the derived kernel. Our derivation for the $\left(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{Q}_t\right)$-parametrized kernel pursues a new idea that relies on finding a state-time dependent distance-like functional given by the solution of a deterministic optimal control problem. This technique breaks away from existing methods, such as generalizing Hermite polynomials or Weyl calculus, which have seen limited success in the reaction-diffusion context. Our technique uncovers a new connection between Markov kernels, distances, and optimal control. This connection is of interest beyond its immediate application in solving the linear quadratic Schr\"{o}dinger bridge problem.
☆ iMedic: Towards Smartphone-based Self-Auscultation Tool for AI-Powered Pediatric Respiratory Assessment
Respiratory auscultation is crucial for early detection of pediatric pneumonia, a condition that can quickly worsen without timely intervention. In areas with limited physician access, effective auscultation is challenging. We present a smartphone-based system that leverages built-in microphones and advanced deep learning algorithms to detect abnormal respiratory sounds indicative of pneumonia risk. Our end-to-end deep learning framework employs domain generalization to integrate a large electronic stethoscope dataset with a smaller smartphone-derived dataset, enabling robust feature learning for accurate respiratory assessments without expensive equipment. The accompanying mobile application guides caregivers in collecting high-quality lung sound samples and provides immediate feedback on potential pneumonia risks. User studies show strong classification performance and high acceptance, demonstrating the system's ability to facilitate proactive interventions and reduce preventable childhood pneumonia deaths. By seamlessly integrating into ubiquitous smartphones, this approach offers a promising avenue for more equitable and comprehensive remote pediatric care.
☆ Riemannian Neural Geodesic Interpolant
Stochastic interpolants are efficient generative models that bridge two arbitrary probability density functions in finite time, enabling flexible generation from the source to the target distribution or vice versa. These models are primarily developed in Euclidean space, and are therefore limited in their application to many distribution learning problems defined on Riemannian manifolds in real-world scenarios. In this work, we introduce the Riemannian Neural Geodesic Interpolant (RNGI) model, which interpolates between two probability densities on a Riemannian manifold along the stochastic geodesics, and then samples from one endpoint as the final state using the continuous flow originating from the other endpoint. We prove that the temporal marginal density of RNGI solves a transport equation on the Riemannian manifold. After training the model's the neural velocity and score fields, we propose the Embedding Stochastic Differential Equation (E-SDE) algorithm for stochastic sampling of RNGI. E-SDE significantly improves the sampling quality by reducing the accumulated error caused by the excessive intrinsic discretization of Riemannian Brownian motion in the classical Geodesic Random Walk (GRW) algorithm. We also provide theoretical bounds on the generative bias measured in terms of KL-divergence. Finally, we demonstrate the effectiveness of the proposed RNGI and E-SDE through experiments conducted on both collected and synthetic distributions on S2 and SO(3).
☆ From predictions to confidence intervals: an empirical study of conformal prediction methods for in-context learning
Transformers have become a standard architecture in machine learning, demonstrating strong in-context learning (ICL) abilities that allow them to learn from the prompt at inference time. However, uncertainty quantification for ICL remains an open challenge, particularly in noisy regression tasks. This paper investigates whether ICL can be leveraged for distribution-free uncertainty estimation, proposing a method based on conformal prediction to construct prediction intervals with guaranteed coverage. While traditional conformal methods are computationally expensive due to repeated model fitting, we exploit ICL to efficiently generate confidence intervals in a single forward pass. Our empirical analysis compares this approach against ridge regression-based conformal methods, showing that conformal prediction with in-context learning (CP with ICL) achieves robust and scalable uncertainty estimates. Additionally, we evaluate its performance under distribution shifts and establish scaling laws to guide model training. These findings bridge ICL and conformal prediction, providing a theoretically grounded and new framework for uncertainty quantification in transformer-based models.
☆ RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
☆ Transfer Learning for High-dimensional Reduced Rank Time Series Models AISTATS2025
The objective of transfer learning is to enhance estimation and inference in a target data by leveraging knowledge gained from additional sources. Recent studies have explored transfer learning for independent observations in complex, high-dimensional models assuming sparsity, yet research on time series models remains limited. Our focus is on transfer learning for sequences of observations with temporal dependencies and a more intricate model parameter structure. Specifically, we investigate the vector autoregressive model (VAR), a widely recognized model for time series data, where the transition matrix can be deconstructed into a combination of a sparse matrix and a low-rank one. We propose a new transfer learning algorithm tailored for estimating high-dimensional VAR models characterized by low-rank and sparse structures. Additionally, we present a novel approach for selecting informative observations from auxiliary datasets. Theoretical guarantees are established, encompassing model parameter consistency, informative set selection, and the asymptotic distribution of estimators under mild conditions. The latter facilitates the construction of entry-wise confidence intervals for model parameters. Finally, we demonstrate the empirical efficacy of our methodologies through both simulated and real-world datasets.
comment: 29 pages accepted by AISTATS2025
☆ Invariant Learning with Annotation-free Environments NeurIPS 2024
Invariant learning is a promising approach to improve domain generalization compared to Empirical Risk Minimization (ERM). However, most invariant learning methods rely on the assumption that training examples are pre-partitioned into different known environments. We instead infer environments without the need for additional annotations, motivated by observations of the properties within the representation space of a trained ERM model. We show the preliminary effectiveness of our approach on the ColoredMNIST benchmark, achieving performance comparable to methods requiring explicit environment labels and on par with an annotation-free method that poses strong restrictions on the ERM reference model.
comment: Accepted at NeurIPS 2024 Workshop UniReps
☆ FinTextSim: Enhancing Financial Text Analysis with BERTopic
Recent advancements in information availability and computational capabilities have transformed the analysis of annual reports, integrating traditional financial metrics with insights from textual data. To extract valuable insights from this wealth of textual data, automated review processes, such as topic modeling, are crucial. This study examines the effectiveness of BERTopic, a state-of-the-art topic model relying on contextual embeddings, for analyzing Item 7 and Item 7A of 10-K filings from S&P 500 companies (2016-2022). Moreover, we introduce FinTextSim, a finetuned sentence-transformer model optimized for clustering and semantic search in financial contexts. Compared to all-MiniLM-L6-v2, the most widely used sentence-transformer, FinTextSim increases intratopic similarity by 81% and reduces intertopic similarity by 100%, significantly enhancing organizational clarity. We assess BERTopic's performance using embeddings from both FinTextSim and all-MiniLM-L6-v2. Our findings reveal that BERTopic only forms clear and distinct economic topic clusters when paired with FinTextSim's embeddings. Without FinTextSim, BERTopic struggles with misclassification and overlapping topics. Thus, FinTextSim is pivotal for advancing financial text analysis. FinTextSim's enhanced contextual embeddings, tailored for the financial domain, elevate the quality of future research and financial information. This improved quality of financial information will enable stakeholders to gain a competitive advantage, streamlining resource allocation and decision-making processes. Moreover, the improved insights have the potential to leverage business valuation and stock price prediction models.
☆ Policy-Based Radiative Transfer: Solving the $2$-Level Atom Non-LTE Problem using Soft Actor-Critic Reinforcement Learning
We present a novel reinforcement learning (RL) approach for solving the classical 2-level atom non-LTE radiative transfer problem by framing it as a control task in which an RL agent learns a depth-dependent source function $S(\tau)$ that self-consistently satisfies the equation of statistical equilibrium (SE). The agent's policy is optimized entirely via reward-based interactions with a radiative transfer engine, without explicit knowledge of the ground truth. This method bypasses the need for constructing approximate lambda operators ($\Lambda^*$) common in accelerated iterative schemes. Additionally, it requires no extensive precomputed labeled datasets to extract a supervisory signal, and avoids backpropagating gradients through the complex RT solver itself. Finally, we show through experiment that a simple feedforward neural network trained greedily cannot solve for SE, possibly due to the moving target nature of the problem. Our $\Lambda^*-\text{Free}$ method offers potential advantages for complex scenarios (e.g., atmospheres with enhanced velocity fields, multi-dimensional geometries, or complex microphysics) where $\Lambda^*$ construction or solver differentiability is challenging. Additionally, the agent can be incentivized to find more efficient policies by manipulating the discount factor, leading to a reprioritization of immediate rewards. If demonstrated to generalize past its training data, this RL framework could serve as an alternative or accelerated formalism to achieve SE. To the best of our knowledge, this study represents the first application of reinforcement learning in solar physics that directly solves for a fundamental physical constraint.
☆ TrojanDam: Detection-Free Backdoor Defense in Federated Learning through Proactive Model Robustification utilizing OOD Data
Federated learning (FL) systems allow decentralized data-owning clients to jointly train a global model through uploading their locally trained updates to a centralized server. The property of decentralization enables adversaries to craft carefully designed backdoor updates to make the global model misclassify only when encountering adversary-chosen triggers. Existing defense mechanisms mainly rely on post-training detection after receiving updates. These methods either fail to identify updates which are deliberately fabricated statistically close to benign ones, or show inconsistent performance in different FL training stages. The effect of unfiltered backdoor updates will accumulate in the global model, and eventually become functional. Given the difficulty of ruling out every backdoor update, we propose a backdoor defense paradigm, which focuses on proactive robustification on the global model against potential backdoor attacks. We first reveal that the successful launching of backdoor attacks in FL stems from the lack of conflict between malicious and benign updates on redundant neurons of ML models. We proceed to prove the feasibility of activating redundant neurons utilizing out-of-distribution (OOD) samples in centralized settings, and migrating to FL settings to propose a novel backdoor defense mechanism, TrojanDam. The proposed mechanism has the FL server continuously inject fresh OOD mappings into the global model to activate redundant neurons, canceling the effect of backdoor updates during aggregation. We conduct systematic and extensive experiments to illustrate the superior performance of TrojanDam, over several SOTA backdoor defense methods across a wide range of FL settings.
☆ An XAI-based Analysis of Shortcut Learning in Neural Networks
Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
☆ Neural Kinematic Bases for Fluids
We propose mesh-free fluid simulations that exploit a kinematic neural basis for velocity fields represented by an MLP. We design a set of losses that ensures that these neural bases satisfy fundamental physical properties such as orthogonality, divergence-free, boundary alignment, and smoothness. Our neural bases can then be used to fit an input sketch of a flow, which will inherit the same fundamental properties from the bases. We then can animate such flow in real-time using standard time integrators. Our neural bases can accommodate different domains and naturally extend to three dimensions.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ DR.FIX: Automatically Fixing Data Races at Industry Scale
Data races are a prevalent class of concurrency bugs in shared-memory parallel programs, posing significant challenges to software reliability and reproducibility. While there is an extensive body of research on detecting data races and a wealth of practical detection tools across various programming languages, considerably less effort has been directed toward automatically fixing data races at an industrial scale. In large codebases, data races are continuously introduced and exhibit myriad patterns, making automated fixing particularly challenging. In this paper, we tackle the problem of automatically fixing data races at an industrial scale. We present Dr.Fix, a tool that combines large language models (LLMs) with program analysis to generate fixes for data races in real-world settings, effectively addressing a broad spectrum of racy patterns in complex code contexts. Implemented for Go--the programming language widely used in modern microservice architectures where concurrency is pervasive and data races are common--Dr.Fix seamlessly integrates into existing development workflows. We detail the design of Dr.Fix and examine how individual design choices influence the quality of the fixes produced. Over the past 18 months, Dr.Fix has been integrated into developer workflows at Uber demonstrating its practical utility. During this period, Dr.Fix produced patches for 224 (55%) from a corpus of 404 data races spanning various categories; 193 of these patches (86%) were accepted by more than a hundred developers via code reviews and integrated into the codebase.
comment: To appear in PLDI 2025
☆ Enhancing Reinforcement learning in 3-Dimensional Hydrophobic-Polar Protein Folding Model with Attention-based layers
Transformer-based architectures have recently propelled advances in sequence modeling across domains, but their application to the hydrophobic-hydrophilic (H-P) model for protein folding remains relatively unexplored. In this work, we adapt a Deep Q-Network (DQN) integrated with attention mechanisms (Transformers) to address the 3D H-P protein folding problem. Our system formulates folding decisions as a self-avoiding walk in a reinforced environment, and employs a specialized reward function based on favorable hydrophobic interactions. To improve performance, the method incorporates validity check including symmetry-breaking constraints, dueling and double Q-learning, and prioritized replay to focus learning on critical transitions. Experimental evaluations on standard benchmark sequences demonstrate that our approach achieves several known best solutions for shorter sequences, and obtains near-optimal results for longer chains. This study underscores the promise of attention-based reinforcement learning for protein folding, and created a prototype of Transformer-based Q-network structure for 3-dimensional lattice models.
☆ A Study On Mixup-inspired Augmentation Methods For Software Vulnerability Detection
Various Deep Learning (DL) methods have recently been utilized to detect software vulnerabilities. Real-world software vulnerability datasets are rare and hard to acquire as there's no simple metric for classifying vulnerability. Such datasets are heavily imbalanced, and none of the current datasets are considered huge for DL models. To tackle these problems a recent work has tried to augment the dataset using the source code and generate realistic single-statement vulnerabilities which is not quite practical and requires manual checking of the generated vulnerabilities. In this regard, we aim to explore the augmentation of vulnerabilities at the representation level to help current models learn better which has never been done before to the best of our knowledge. We implement and evaluate the 5 augmentation techniques that augment the embedding of the data and recently have been used for code search which is a completely different software engineering task. We also introduced a conditioned version of those augmentation methods, which ensures the augmentation does not change the vulnerable section of the vector representation. We show that such augmentation methods can be helpful and increase the f1-score by up to 9.67%, yet they cannot beat Random Oversampling when balancing datasets which increases the f1-score by 10.82%!
comment: Accepted at EASE 2025, Istanbul, Turkey
☆ RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction
In this paper, we propose a novel physics-informed generative learning approach, termed RadioDiff-$\bm{k^2}$, for accurate and efficient multipath-aware radio map (RM) construction. As wireless communication evolves towards environment-aware paradigms, driven by the increasing demand for intelligent and proactive optimization in sixth-generation (6G) networks, accurate construction of RMs becomes crucial yet highly challenging. Conventional electromagnetic (EM)-based methods, such as full-wave solvers and ray-tracing approaches, exhibit substantial computational overhead and limited adaptability to dynamic scenarios. Although, existing neural network (NN) approaches have efficient inferencing speed, they lack sufficient consideration of the underlying physics of EM wave propagation, limiting their effectiveness in accurately modeling critical EM singularities induced by complex multipath environments. To address these fundamental limitations, we propose a novel physics-inspired RM construction method guided explicitly by the Helmholtz equation, which inherently governs EM wave propagation. Specifically, we theoretically establish a direct correspondence between EM singularities, which correspond to the critical spatial features influencing wireless propagation, and regions defined by negative wave numbers in the Helmholtz equation. Based on this insight, we design an innovative dual generative diffusion model (DM) framework comprising one DM dedicated to accurately inferring EM singularities and another DM responsible for reconstructing the complete RM using these singularities along with environmental contextual information. Our physics-informed approach uniquely combines the efficiency advantages of data-driven methods with rigorous physics-based EM modeling, significantly enhancing RM accuracy, particularly in complex propagation environments dominated by multipath effects.
☆ SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction
The analysis and prediction of agent trajectories are crucial for decision-making processes in intelligent systems, with precise short-term trajectory forecasting being highly significant across a range of applications. Agents and their social interactions have been quantified and modeled by researchers from various perspectives; however, substantial limitations exist in the current work due to the inherent high uncertainty of agent intentions and the complex higher-order influences among neighboring groups. SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups while reinforcing the primary role of first-order intention interactions between neighbors and the target agent. This method develops a multi-order intention fusion model to achieve a more comprehensive understanding of both direct and indirect intention information. Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data, thereby enhancing model interpretability. Furthermore, a global trajectory optimizer is introduced to enable more accurate and efficient parallel predictions. By incorporating a novel loss function that accounts for distance and direction during training, experimental results demonstrate that the model outperforms previous state-of-the-art baselines across multiple metrics in both dynamic and static datasets.
comment: 11 pages,6 figures
☆ Dimension-Free Decision Calibration for Nonlinear Loss Functions
When model predictions inform downstream decision making, a natural question is under what conditions can the decision-makers simply respond to the predictions as if they were the true outcomes. Calibration suffices to guarantee that simple best-response to predictions is optimal. However, calibration for high-dimensional prediction outcome spaces requires exponential computational and statistical complexity. The recent relaxation known as decision calibration ensures the optimality of the simple best-response rule while requiring only polynomial sample complexity in the dimension of outcomes. However, known results on calibration and decision calibration crucially rely on linear loss functions for establishing best-response optimality. A natural approach to handle nonlinear losses is to map outcomes $y$ into a feature space $\phi(y)$ of dimension $m$, then approximate losses with linear functions of $\phi(y)$. Unfortunately, even simple classes of nonlinear functions can demand exponentially large or infinite feature dimensions $m$. A key open problem is whether it is possible to achieve decision calibration with sample complexity independent of~$m$. We begin with a negative result: even verifying decision calibration under standard deterministic best response inherently requires sample complexity polynomial in~$m$. Motivated by this lower bound, we investigate a smooth version of decision calibration in which decision-makers follow a smooth best-response. This smooth relaxation enables dimension-free decision calibration algorithms. We introduce algorithms that, given $\mathrm{poly}(|A|,1/\epsilon)$ samples and any initial predictor~$p$, can efficiently post-process it to satisfy decision calibration without worsening accuracy. Our algorithms apply broadly to function classes that can be well-approximated by bounded-norm functions in (possibly infinite-dimensional) separable RKHS.
☆ Learning Dynamic Graphs via Tensorized and Lightweight Graph Convolutional Networks
A dynamic graph (DG) is frequently encountered in numerous real-world scenarios. Consequently, A dynamic graph convolutional network (DGCN) has been successfully applied to perform precise representation learning on a DG. However, conventional DGCNs typically consist of a static GCN coupled with a sequence neural network (SNN) to model spatial and temporal patterns separately. This decoupled modeling mechanism inherently disrupts the intricate spatio-temporal dependencies. To address the issue, this study proposes a novel Tensorized Lightweight Graph Convolutional Network (TLGCN) for accurate dynamic graph learning. It mainly contains the following two key concepts: a) designing a novel spatio-temporal information propagation method for joint propagation of spatio-temporal information based on the tensor M-product framework; b) proposing a tensorized lightweight graph convolutional network based on the above method, which significantly reduces the memory occupation of the model by omitting complex feature transformation and nonlinear activation. Numerical experiments on four real-world datasets demonstrate that the proposed TLGCN outperforms the state-of-the-art models in the weight estimation task on DGs.
☆ Multi-Modal Fusion of In-Situ Video Data and Process Parameters for Online Forecasting of Cookie Drying Readiness
Food drying is essential for food production, extending shelf life, and reducing transportation costs. Accurate real-time forecasting of drying readiness is crucial for minimizing energy consumption, improving productivity, and ensuring product quality. However, this remains challenging due to the dynamic nature of drying, limited data availability, and the lack of effective predictive analytical methods. To address this gap, we propose an end-to-end multi-modal data fusion framework that integrates in-situ video data with process parameters for real-time food drying readiness forecasting. Our approach leverages a new encoder-decoder architecture with modality-specific encoders and a transformer-based decoder to effectively extract features while preserving the unique structure of each modality. We apply our approach to sugar cookie drying, where time-to-ready is predicted at each timestamp. Experimental results demonstrate that our model achieves an average prediction error of only 15 seconds, outperforming state-of-the-art data fusion methods by 65.69% and a video-only model by 11.30%. Additionally, our model balances prediction accuracy, model size, and computational efficiency, making it well-suited for heterogenous industrial datasets. The proposed model is extensible to various other industrial modality fusion tasks for online decision-making.
comment: 17 pages, 12 figures
☆ Analytical Softmax Temperature Setting from Feature Dimensions for Model- and Domain-Robust Classification
In deep learning-based classification tasks, the softmax function's temperature parameter $T$ critically influences the output distribution and overall performance. This study presents a novel theoretical insight that the optimal temperature $T^*$ is uniquely determined by the dimensionality of the feature representations, thereby enabling training-free determination of $T^*$. Despite this theoretical grounding, empirical evidence reveals that $T^*$ fluctuates under practical conditions owing to variations in models, datasets, and other confounding factors. To address these influences, we propose and optimize a set of temperature determination coefficients that specify how $T^*$ should be adjusted based on the theoretical relationship to feature dimensionality. Additionally, we insert a batch normalization layer immediately before the output layer, effectively stabilizing the feature space. Building on these coefficients and a suite of large-scale experiments, we develop an empirical formula to estimate $T^*$ without additional training while also introducing a corrective scheme to refine $T^*$ based on the number of classes and task complexity. Our findings confirm that the derived temperature not only aligns with the proposed theoretical perspective but also generalizes effectively across diverse tasks, consistently enhancing classification performance and offering a practical, training-free solution for determining $T^*$.
comment: 22 pages, 11 figures, under review
☆ MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Molecular generation plays an important role in drug discovery and materials science, especially in data-scarce scenarios where traditional generative models often struggle to achieve satisfactory conditional generalization. To address this challenge, we propose MetaMolGen, a first-order meta-learning-based molecular generator designed for few-shot and property-conditioned molecular generation. MetaMolGen standardizes the distribution of graph motifs by mapping them to a normalized latent space, and employs a lightweight autoregressive sequence model to generate SMILES sequences that faithfully reflect the underlying molecular structure. In addition, it supports conditional generation of molecules with target properties through a learnable property projector integrated into the generative process.Experimental results demonstrate that MetaMolGen consistently generates valid and diverse SMILES sequences under low-data regimes, outperforming conventional baselines. This highlights its advantage in fast adaptation and efficient conditional generation for practical molecular design.
☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
☆ Smooth Calibration and Decision Making
Calibration requires predictor outputs to be consistent with their Bayesian posteriors. For machine learning predictors that do not distinguish between small perturbations, calibration errors are continuous in predictions, e.g., smooth calibration error (Foster and Hart, 2018), Distance to Calibration (Blasiok et al., 2023a). On the contrary, decision-makers who use predictions make optimal decisions discontinuously in probabilistic space, experiencing loss from miscalibration discontinuously. Calibration errors for decision-making are thus discontinuous, e.g., Expected Calibration Error (Foster and Vohra, 1997), and Calibration Decision Loss (Hu and Wu, 2024). Thus, predictors with a low calibration error for machine learning may suffer a high calibration error for decision-making, i.e., they may not be trustworthy for decision-makers optimizing assuming their predictions are correct. It is natural to ask if post-processing a predictor with a low calibration error for machine learning is without loss to achieve a low calibration error for decision-making. In our paper, we show that post-processing an online predictor with $\epsilon$ distance to calibration achieves $O(\sqrt{\epsilon})$ ECE and CDL, which is asymptotically optimal. The post-processing algorithm adds noise to make predictions differentially private. The optimal bound from low distance to calibration predictors from post-processing is non-optimal compared with existing online calibration algorithms that directly optimize for ECE and CDL.
comment: In FORC 2025
☆ On the Price of Differential Privacy for Hierarchical Clustering ICLR 2025
Hierarchical clustering is a fundamental unsupervised machine learning task with the aim of organizing data into a hierarchy of clusters. Many applications of hierarchical clustering involve sensitive user information, therefore motivating recent studies on differentially private hierarchical clustering under the rigorous framework of Dasgupta's objective. However, it has been shown that any privacy-preserving algorithm under edge-level differential privacy necessarily suffers a large error. To capture practical applications of this problem, we focus on the weight privacy model, where each edge of the input graph is at least unit weight. We present a novel algorithm in the weight privacy model that shows significantly better approximation than known impossibility results in the edge-level DP setting. In particular, our algorithm achieves $O(\log^{1.5}n/\varepsilon)$ multiplicative error for $\varepsilon$-DP and runs in polynomial time, where $n$ is the size of the input graph, and the cost is never worse than the optimal additive error in existing work. We complement our algorithm by showing if the unit-weight constraint does not apply, the lower bound for weight-level DP hierarchical clustering is essentially the same as the edge-level DP, i.e. $\Omega(n^2/\varepsilon)$ additive error. As a result, we also obtain a new lower bound of $\tilde{\Omega}(1/\varepsilon)$ additive error for balanced sparsest cuts in the weight-level DP model, which may be of independent interest. Finally, we evaluate our algorithm on synthetic and real-world datasets. Our experimental results show that our algorithm performs well in terms of extra cost and has good scalability to large graphs.
comment: ICLR 2025
☆ Real-Time Optimal Design of Experiment for Parameter Identification of Li-Ion Cell Electrochemical Model
Accurately identifying the parameters of electrochemical models of li-ion battery (LiB) cells is a critical task for enhancing the fidelity and predictive ability. Traditional parameter identification methods often require extensive data collection experiments and lack adaptability in dynamic environments. This paper describes a Reinforcement Learning (RL) based approach that dynamically tailors the current profile applied to a LiB cell to optimize the parameters identifiability of the electrochemical model. The proposed framework is implemented in real-time using a Hardware-in-the-Loop (HIL) setup, which serves as a reliable testbed for evaluating the RL-based design strategy. The HIL validation confirms that the RL-based experimental design outperforms conventional test protocols used for parameter identification in terms of both reducing the modeling errors on a verification test and minimizing the duration of the experiment used for parameter identification.
☆ State-Aware IoT Scheduling Using Deep Q-Networks and Edge-Based Coordination
This paper addresses the challenge of energy efficiency management faced by intelligent IoT devices in complex application environments. A novel optimization method is proposed, combining Deep Q-Network (DQN) with an edge collaboration mechanism. The method builds a state-action-reward interaction model and introduces edge nodes as intermediaries for state aggregation and policy scheduling. This enables dynamic resource coordination and task allocation among multiple devices. During the modeling process, device status, task load, and network resources are jointly incorporated into the state space. The DQN is used to approximate and learn the optimal scheduling strategy. To enhance the model's ability to perceive inter-device relationships, a collaborative graph structure is introduced to model the multi-device environment and assist in decision optimization. Experiments are conducted using real-world IoT data collected from the FastBee platform. Several comparative and validation tests are performed, including energy efficiency comparisons across different scheduling strategies, robustness analysis under varying task loads, and evaluation of state dimension impacts on policy convergence speed. The results show that the proposed method outperforms existing baseline approaches in terms of average energy consumption, processing latency, and resource utilization. This confirms its effectiveness and practicality in intelligent IoT scenarios.
☆ A Large-scale Class-level Benchmark Dataset for Code Generation with LLMs
Recent advancements in large language models (LLMs) have demonstrated promising capabilities in code generation tasks. However, most existing benchmarks focus on isolated functions and fail to capture the complexity of real-world, class-level software structures. To address this gap, we introduce a large-scale, Python class-level dataset curated from $13{,}174$ real-world open-source projects. The dataset contains over 842,000 class skeletons, each including class and method signatures, along with associated docstrings when available. We preserve structural and contextual dependencies critical to realistic software development scenarios and enrich the dataset with static code metrics to support downstream analysis. To evaluate the usefulness of this dataset, we use extracted class skeletons as prompts for GPT-4 to generate full class implementations. Results show that the LLM-generated classes exhibit strong lexical and structural similarity to human-written counterparts, with average ROUGE@L, BLEU, and TSED scores of 0.80, 0.59, and 0.73, respectively. These findings confirm that well-structured prompts derived from real-world class skeletons significantly enhance LLM performance in class-level code generation. This dataset offers a valuable resource for benchmarking, training, and improving LLMs in realistic software engineering contexts.
comment: This paper was submitted to the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025) AI models/data track
☆ Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
comment: 16 pages, 6 figures
☆ SPECI: Skill Prompts based Hierarchical Continual Imitation Learning for Robot Manipulation
Real-world robot manipulation in dynamic unstructured environments requires lifelong adaptability to evolving objects, scenes and tasks. Traditional imitation learning relies on static training paradigms, which are ill-suited for lifelong adaptation. Although Continual Imitation Learnin (CIL) enables incremental task adaptation while preserving learned knowledge, current CIL methods primarily overlook the intrinsic skill characteristics of robot manipulation or depend on manually defined and rigid skills, leading to suboptimal cross-task knowledge transfer. To address these issues, we propose Skill Prompts-based HiErarchical Continual Imitation Learning (SPECI), a novel end-to-end hierarchical CIL policy architecture for robot manipulation. The SPECI framework consists of a multimodal perception and fusion module for heterogeneous sensory information encoding, a high-level skill inference module for dynamic skill extraction and selection, and a low-level action execution module for precise action generation. To enable efficient knowledge transfer on both skill and task levels, SPECI performs continual implicit skill acquisition and reuse via an expandable skill codebook and an attention-driven skill selection mechanism. Furthermore, we introduce mode approximation to augment the last two modules with task-specific and task-sharing parameters, thereby enhancing task-level knowledge transfer. Extensive experiments on diverse manipulation task suites demonstrate that SPECI consistently outperforms state-of-the-art CIL methods across all evaluated metrics, revealing exceptional bidirectional knowledge transfer and superior overall performance.
☆ Do It For Me vs. Do It With Me: Investigating User Perceptions of Different Paradigms of Automation in Copilots for Feature-Rich Software
Large Language Model (LLM)-based in-application assistants, or copilots, can automate software tasks, but users often prefer learning by doing, raising questions about the optimal level of automation for an effective user experience. We investigated two automation paradigms by designing and implementing a fully automated copilot (AutoCopilot) and a semi-automated copilot (GuidedCopilot) that automates trivial steps while offering step-by-step visual guidance. In a user study (N=20) across data analysis and visual design tasks, GuidedCopilot outperformed AutoCopilot in user control, software utility, and learnability, especially for exploratory and creative tasks, while AutoCopilot saved time for simpler visual tasks. A follow-up design exploration (N=10) enhanced GuidedCopilot with task-and state-aware features, including in-context preview clips and adaptive instructions. Our findings highlight the critical role of user control and tailored guidance in designing the next generation of copilots that enhance productivity, support diverse skill levels, and foster deeper software engagement.
comment: Accepted for publication in the CHI Conference on Human Factors in Computing Systems (CHI 2025), April 26 - May 1, 2025, Yokohama, Japan
☆ RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
Ensuring the safety of autonomous vehicles (AVs) in long-tail scenarios remains a critical challenge, particularly under high uncertainty and complex multi-agent interactions. To address this, we propose RiskNet, an interaction-aware risk forecasting framework, which integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment. At its core, RiskNet employs a field-theoretic model that captures interactions among ego vehicle, surrounding agents, and infrastructure via interaction fields and force. This model supports multidimensional risk evaluation across diverse scenarios (highways, intersections, and roundabouts), and shows robustness under high-risk and long-tail settings. To capture the behavioral uncertainty, we incorporate a graph neural network (GNN)-based trajectory prediction module, which learns multi-modal future motion distributions. Coupled with the deterministic risk field, it enables dynamic, probabilistic risk inference across time, enabling proactive safety assessment under uncertainty. Evaluations on the highD, inD, and rounD datasets, spanning lane changes, turns, and complex merges, demonstrate that our method significantly outperforms traditional approaches (e.g., TTC, THW, RSS, NC Field) in terms of accuracy, responsiveness, and directional sensitivity, while maintaining strong generalization across scenarios. This framework supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments. It offers a unified foundation for safety-critical decision-making in long-tail scenarios.
comment: 24 pages, 14 figures
☆ Interpretable Deep Learning for Polar Mechanistic Reaction Prediction
Accurately predicting chemical reactions is essential for driving innovation in synthetic chemistry, with broad applications in medicine, manufacturing, and agriculture. At the same time, reaction prediction is a complex problem which can be both time-consuming and resource-intensive for chemists to solve. Deep learning methods offer an appealing solution by enabling high-throughput reaction prediction. However, many existing models are trained on the US Patent Office dataset and treat reactions as overall transformations: mapping reactants directly to products with limited interpretability or mechanistic insight. To address this, we introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset, which represents reactions as polar elementary steps that capture electron flow and mechanistic detail. To further expand model coverage and improve generalization, we augment PMechDB with a diverse set of combinatorially generated reactions. We train and compare a range of machine learning models, including transformer-based, graph-based, and two-step siamese architectures. Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework to leverage the accuracy of transformer architectures, while filtering away "alchemical" products using the two-step network predictions. For evaluation, we use a test split of the PMechDB dataset and additionally curate a human benchmark dataset consisting of complete mechanistic pathways extracted from an organic chemistry textbook. Our hybrid model achieves a top-10 accuracy of 94.9% on the PMechDB test set and a target recovery rate of 84.9% on the pathway dataset.
☆ Federated Latent Factor Learning for Recovering Wireless Sensor Networks Signal with Privacy-Preserving
Wireless Sensor Networks (WSNs) are a cutting-edge domain in the field of intelligent sensing. Due to sensor failures and energy-saving strategies, the collected data often have massive missing data, hindering subsequent analysis and decision-making. Although Latent Factor Learning (LFL) has been proven effective in recovering missing data, it fails to sufficiently consider data privacy protection. To address this issue, this paper innovatively proposes a federated latent factor learning (FLFL) based spatial signal recovery (SSR) model, named FLFL-SSR. Its main idea is two-fold: 1) it designs a sensor-level federated learning framework, where each sensor uploads only gradient updates instead of raw data to optimize the global model, and 2) it proposes a local spatial sharing strategy, allowing sensors within the same spatial region to share their latent feature vectors, capturing spatial correlations and enhancing recovery accuracy. Experimental results on two real-world WSNs datasets demonstrate that the proposed model outperforms existing federated methods in terms of recovery performance.
comment: Accepted By ICAIS&ISAS 2025
☆ Few-Shot Vision-Language Action-Incremental Policy Learning
Recently, Transformer-based robotic manipulation methods utilize multi-view spatial representations and language instructions to learn robot motion trajectories by leveraging numerous robot demonstrations. However, the collection of robot data is extremely challenging, and existing methods lack the capability for continuous learning on new tasks with only a few demonstrations. In this paper, we formulate these challenges as the Few-Shot Action-Incremental Learning (FSAIL) task, and accordingly design a Task-prOmpt graPh evolutIon poliCy (TOPIC) to address these issues. Specifically, to address the data scarcity issue in robotic imitation learning, TOPIC learns Task-Specific Prompts (TSP) through the deep interaction of multi-modal information within few-shot demonstrations, thereby effectively extracting the task-specific discriminative information. On the other hand, to enhance the capability for continual learning on new tasks and mitigate the issue of catastrophic forgetting, TOPIC adopts a Continuous Evolution Strategy (CES). CES leverages the intrinsic relationships between tasks to construct a task relation graph, which effectively facilitates the adaptation of new tasks by reusing skills learned from previous tasks. TOPIC pioneers few-shot continual learning in the robotic manipulation task, and extensive experimental results demonstrate that TOPIC outperforms state-of-the-art baselines by over 26$\%$ in success rate, significantly enhancing the continual learning capabilities of existing Transformer-based policies.
☆ T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models
The rapid development of generative artificial intelligence has made text to video models essential for building future multimodal world simulators. However, these models remain vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content. Such vulnerabilities undermine the reliability and security of simulation based applications. In this paper, we propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats. Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses, including semantic ambiguities in prompts, difficulties in detecting malicious content in dynamic video outputs, and inflexible model centric mitigation strategies. T2VShield introduces a prompt rewriting mechanism based on reasoning and multimodal retrieval to sanitize malicious inputs, along with a multi scope detection module that captures local and global inconsistencies across time and modalities. The framework does not require access to internal model parameters and works with both open and closed source systems. Extensive experiments on five platforms show that T2VShield can reduce jailbreak success rates by up to 35 percent compared to strong baselines. We further develop a human centered audiovisual evaluation protocol to assess perceptual safety, emphasizing the importance of visual level defense in enhancing the trustworthiness of next generation multimodal simulators.
comment: 25 pages, 5 figures
☆ PCF-Grasp: Converting Point Completion to Geometry Feature to Enhance 6-DoF Grasp
The 6-Degree of Freedom (DoF) grasp method based on point clouds has shown significant potential in enabling robots to grasp target objects. However, most existing methods are based on the point clouds (2.5D points) generated from single-view depth images. These point clouds only have one surface side of the object providing incomplete geometry information, which mislead the grasping algorithm to judge the shape of the target object, resulting in low grasping accuracy. Humans can accurately grasp objects from a single view by leveraging their geometry experience to estimate object shapes. Inspired by humans, we propose a novel 6-DoF grasping framework that converts the point completion results as object shape features to train the 6-DoF grasp network. Here, point completion can generate approximate complete points from the 2.5D points similar to the human geometry experience, and converting it as shape features is the way to utilize it to improve grasp efficiency. Furthermore, due to the gap between the network generation and actual execution, we integrate a score filter into our framework to select more executable grasp proposals for the real robot. This enables our method to maintain a high grasp quality in any camera viewpoint. Extensive experiments demonstrate that utilizing complete point features enables the generation of significantly more accurate grasp proposals and the inclusion of a score filter greatly enhances the credibility of real-world robot grasping. Our method achieves a 17.8\% success rate higher than the state-of-the-art method in real-world experiments.
☆ Semantics at an Angle: When Cosine Similarity Works Until It Doesn't
Cosine similarity has become a standard metric for comparing embeddings in modern machine learning. Its scale-invariance and alignment with model training objectives have contributed to its widespread adoption. However, recent studies have revealed important limitations, particularly when embedding norms carry meaningful semantic information. This informal article offers a reflective and selective examination of the evolution, strengths, and limitations of cosine similarity. We highlight why it performs well in many settings, where it tends to break down, and how emerging alternatives are beginning to address its blind spots. We hope to offer a mix of conceptual clarity and practical perspective, especially for quantitative scientists who think about embeddings not just as vectors, but as geometric and philosophical objects.
☆ On the Consistency of GNN Explanations for Malware Detection
Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
☆ Naturally Computed Scale Invariance in the Residual Stream of ResNet18
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp
☆ Affect Models Have Weak Generalizability to Atypical Speech
Speech and voice conditions can alter the acoustic properties of speech, which could impact the performance of paralinguistic models for affect for people with atypical speech. We evaluate publicly available models for recognizing categorical and dimensional affect from speech on a dataset of atypical speech, comparing results to datasets of typical speech. We investigate three dimensions of speech atypicality: intelligibility, which is related to pronounciation; monopitch, which is related to prosody, and harshness, which is related to voice quality. We look at (1) distributional trends of categorical affect predictions within the dataset, (2) distributional comparisons of categorical affect predictions to similar datasets of typical speech, and (3) correlation strengths between text and speech predictions for spontaneous speech for valence and arousal. We find that the output of affect models is significantly impacted by the presence and degree of speech atypicalities. For instance, the percentage of speech predicted as sad is significantly higher for all types and grades of atypical speech when compared to similar typical speech datasets. In a preliminary investigation on improving robustness for atypical speech, we find that fine-tuning models on pseudo-labeled atypical speech data improves performance on atypical speech without impacting performance on typical speech. Our results emphasize the need for broader training and evaluation datasets for speech emotion models, and for modeling approaches that are robust to voice and speech differences.
comment: Preprint
☆ DataS^3: Dataset Subset Selection for Specialization
In many real-world machine learning (ML) applications (e.g. detecting broken bones in x-ray images, detecting species in camera traps), in practice models need to perform well on specific deployments (e.g. a specific hospital, a specific national park) rather than the domain broadly. However, deployments often have imbalanced, unique data distributions. Discrepancy between the training distribution and the deployment distribution can lead to suboptimal performance, highlighting the need to select deployment-specialized subsets from the available training data. We formalize dataset subset selection for specialization (DS3): given a training set drawn from a general distribution and a (potentially unlabeled) query set drawn from the desired deployment-specific distribution, the goal is to select a subset of the training data that optimizes deployment performance. We introduce DataS^3; the first dataset and benchmark designed specifically for the DS3 problem. DataS^3 encompasses diverse real-world application domains, each with a set of distinct deployments to specialize in. We conduct a comprehensive study evaluating algorithms from various families--including coresets, data filtering, and data curation--on DataS^3, and find that general-distribution methods consistently fail on deployment-specific tasks. Additionally, we demonstrate the existence of manually curated (deployment-specific) expert subsets that outperform training on all available data with accuracy gains up to 51.3 percent. Our benchmark highlights the critical role of tailored dataset curation in enhancing performance and training efficiency on deployment-specific distributions, which we posit will only become more important as global, public datasets become available across domains and ML models are deployed in the real world.
☆ An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
☆ Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
☆ Learning Explainable Dense Reward Shapes via Bayesian Optimization
Current reinforcement learning from human feedback (RLHF) pipelines for large language model (LLM) alignment typically assign scalar rewards to sequences, using the final token as a surrogate indicator for the quality of the entire sequence. However, this leads to sparse feedback and suboptimal token-level credit assignment. In this work, we frame reward shaping as an optimization problem focused on token-level credit assignment. We propose a reward-shaping function leveraging explainability methods such as SHAP and LIME to estimate per-token rewards from the reward model. To learn parameters of this shaping function, we employ a bilevel optimization framework that integrates Bayesian Optimization and policy training to handle noise from the token reward estimates. Our experiments show that achieving a better balance of token-level reward attribution leads to performance improvements over baselines on downstream tasks and finds an optimal policy faster during training. Furthermore, we show theoretically that explainability methods that are feature additive attribution functions maintain the optimal policy as the original reward.
☆ A Geometric Approach to Problems in Optimization and Data Science
We give new results for problems in computational and statistical machine learning using tools from high-dimensional geometry and probability. We break up our treatment into two parts. In Part I, we focus on computational considerations in optimization. Specifically, we give new algorithms for approximating convex polytopes in a stream, sparsification and robust least squares regression, and dueling optimization. In Part II, we give new statistical guarantees for data science problems. In particular, we formulate a new model in which we analyze statistical properties of backdoor data poisoning attacks, and we study the robustness of graph clustering algorithms to ``helpful'' misspecification.
comment: PhD dissertation
☆ COBRA: Algorithm-Architecture Co-optimized Binary Transformer Accelerator for Edge Inference
Transformer-based models have demonstrated superior performance in various fields, including natural language processing and computer vision. However, their enormous model size and high demands in computation, memory, and communication limit their deployment to edge platforms for local, secure inference. Binary transformers offer a compact, low-complexity solution for edge deployment with reduced bandwidth needs and acceptable accuracy. However, existing binary transformers perform inefficiently on current hardware due to the lack of binary specific optimizations. To address this, we introduce COBRA, an algorithm-architecture co-optimized binary Transformer accelerator for edge computing. COBRA features a real 1-bit binary multiplication unit, enabling matrix operations with -1, 0, and +1 values, surpassing ternary methods. With further hardware-friendly optimizations in the attention block, COBRA achieves up to 3,894.7 GOPS throughput and 448.7 GOPS/Watt energy efficiency on edge FPGAs, delivering a 311x energy efficiency improvement over GPUs and a 3.5x throughput improvement over the state-of-the-art binary accelerator, with only negligible inference accuracy degradation.
☆ Boosting Classifier Performance with Opposition-Based Data Transformation
In this paper, we introduce a novel data transformation framework based on Opposition-Based Learning (OBL) to boost the performance of traditional classification algorithms. Originally developed to accelerate convergence in optimization tasks, OBL is leveraged here to generate synthetic opposite samples that replace the acutely training data and improve decision boundary formation. We explore three OBL variants; Global OBL, Class-Wise OBL, and Localized Class-Wise OBL; and integrate them with several widely used classifiers, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic Regression (LR), and Decision Tree (DT). Extensive experiments conducted on 26 heterogeneous and high-dimensional datasets demonstrate that OBL-enhanced classifiers consistently outperform their standard counterparts in terms of accuracy and F1-score, frequently achieving near-perfect or perfect classification. Furthermore, OBL contributes to improved computational efficiency, particularly in SVM and LR. These findings underscore the potential of OBL as a lightweight yet powerful data transformation strategy for enhancing classification performance, especially in complex or sparse learning environments.
☆ TeLLMe: An Energy-Efficient Ternary LLM Accelerator for Prefilling and Decoding on Edge FPGAs
Deploying large language models (LLMs) on edge platforms is challenged by their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as little as 1.58 bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected latency of the prefill phase. We present TeLLMe, the first ternary LLM accelerator for low-power FPGAs (e.g., AMD KV260) that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. Our contributions include: (1) a table-lookup matrix engine for ternary matmul that merges grouped activations with online precomputation to minimize resource use; (2) a fused, bandwidth-efficient attention module featuring a reversed reordering scheme to accelerate prefill; and (3) a tightly integrated normalization and quantization--dequantization unit optimized for ultra-low-bit inference. Under a 7W power budget, TeLLMe delivers up to 9 tokens/s throughput over 1,024-token contexts and prefill latencies of 0.55--1.15 s for 64--128 token prompts, marking a significant energy-efficiency advance and establishing a new edge FPGA benchmark for generative AI.
☆ Gradient-Optimized Fuzzy Classifier: A Benchmark Study Against State-of-the-Art Models
This paper presents a performance benchmarking study of a Gradient-Optimized Fuzzy Inference System (GF) classifier against several state-of-the-art machine learning models, including Random Forest, XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks. The evaluation was conducted across five datasets from the UCI Machine Learning Repository, each chosen for their diversity in input types, class distributions, and classification complexity. Unlike traditional Fuzzy Inference Systems that rely on derivative-free optimization methods, the GF leverages gradient descent to significantly improving training efficiency and predictive performance. Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times. In particular, the GF exhibited strong consistency across folds and datasets, underscoring its robustness in handling noisy data and variable feature sets. These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
☆ Learning Energy-Based Generative Models via Potential Flow: A Variational Principle Approach to Probability Density Homotopy Matching
Energy-based models (EBMs) are a powerful class of probabilistic generative models due to their flexibility and interpretability. However, relationships between potential flows and explicit EBMs remain underexplored, while contrastive divergence training via implicit Markov chain Monte Carlo (MCMC) sampling is often unstable and expensive in high-dimensional settings. In this paper, we propose Variational Potential Flow Bayes (VPFB), a new energy-based generative framework that eliminates the need for implicit MCMC sampling and does not rely on auxiliary networks or cooperative training. VPFB learns an energy-parameterized potential flow by constructing a flow-driven density homotopy that is matched to the data distribution through a variational loss minimizing the Kullback-Leibler divergence between the flow-driven and marginal homotopies. This principled formulation enables robust and efficient generative modeling while preserving the interpretability of EBMs. Experimental results on image generation, interpolation, out-of-distribution detection, and compositional generation confirm the effectiveness of VPFB, showing that our method performs competitively with existing approaches in terms of sample quality and versatility across diverse generative modeling tasks.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
☆ FairPlay: A Collaborative Approach to Mitigate Bias in Datasets for Improved AI Fairness SC
The issue of fairness in decision-making is a critical one, especially given the variety of stakeholder demands for differing and mutually incompatible versions of fairness. Adopting a strategic interaction of perspectives provides an alternative to enforcing a singular standard of fairness. We present a web-based software application, FairPlay, that enables multiple stakeholders to debias datasets collaboratively. With FairPlay, users can negotiate and arrive at a mutually acceptable outcome without a universally agreed-upon theory of fairness. In the absence of such a tool, reaching a consensus would be highly challenging due to the lack of a systematic negotiation process and the inability to modify and observe changes. We have conducted user studies that demonstrate the success of FairPlay, as users could reach a consensus within about five rounds of gameplay, illustrating the application's potential for enhancing fairness in AI systems.
comment: Accepted at ACM CSCW 2025. 30 pages total (including references and supplementary material). Contains 10 figures
☆ General Post-Processing Framework for Fairness Adjustment of Machine Learning Models
As machine learning increasingly influences critical domains such as credit underwriting, public policy, and talent acquisition, ensuring compliance with fairness constraints is both a legal and ethical imperative. This paper introduces a novel framework for fairness adjustments that applies to diverse machine learning tasks, including regression and classification, and accommodates a wide range of fairness metrics. Unlike traditional approaches categorized as pre-processing, in-processing, or post-processing, our method adapts in-processing techniques for use as a post-processing step. By decoupling fairness adjustments from the model training process, our framework preserves model performance on average while enabling greater flexibility in model development. Key advantages include eliminating the need for custom loss functions, enabling fairness tuning using different datasets, accommodating proprietary models as black-box systems, and providing interpretable insights into the fairness adjustments. We demonstrate the effectiveness of this approach by comparing it to Adversarial Debiasing, showing that our framework achieves a comparable fairness/accuracy tradeoff on real-world datasets.
comment: Submitted to FAccT 2025. Does not include reviewer feedback yet
☆ Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.
comment: 12 pages, 8 figures
☆ Using Phonemes in cascaded S2S translation pipeline
This paper explores the idea of using phonemes as a textual representation within a conventional multilingual simultaneous speech-to-speech translation pipeline, as opposed to the traditional reliance on text-based language representations. To investigate this, we trained an open-source sequence-to-sequence model on the WMT17 dataset in two formats: one using standard textual representation and the other employing phonemic representation. The performance of both approaches was assessed using the BLEU metric. Our findings shows that the phonemic approach provides comparable quality but offers several advantages, including lower resource requirements or better suitability for low-resource languages.
comment: Accepted at Swiss NLP Conference 2025
☆ Towards a Distributed Federated Learning Aggregation Placement using Particle Swarm Intelligence
Federated learning has become a promising distributed learning concept with extra insurance on data privacy. Extensive studies on various models of Federated learning have been done since the coinage of its term. One of the important derivatives of federated learning is hierarchical semi-decentralized federated learning, which distributes the load of the aggregation task over multiple nodes and parallelizes the aggregation workload at the breadth of each level of the hierarchy. Various methods have also been proposed to perform inter-cluster and intra-cluster aggregation optimally. Most of the solutions, nonetheless, require monitoring the nodes' performance and resource consumption at each round, which necessitates frequently exchanging systematic data. To optimally perform distributed aggregation in SDFL with minimal reliance on systematic data, we propose Flag-Swap, a Particle Swarm Optimization (PSO) method that optimizes the aggregation placement according only to the processing delay. Our simulation results show that PSO-based placement can find the optimal placement relatively fast, even in scenarios with many clients as candidates for aggregation. Our real-world docker-based implementation of Flag-Swap over the recently emerged FL framework shows superior performance compared to black-box-based deterministic placement strategies, with about 43% minutes faster than random placement, and 32% minutes faster than uniform placement, in terms of total processing time.
☆ Blockchain Meets Adaptive Honeypots: A Trust-Aware Approach to Next-Gen IoT Security IEEE
Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning but remain vulnerable to evolving cyber threats. Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies. We propose a dynamic attack detection and prevention approach to address this challenge. First, blockchain-based authentication uses the Deoxys Authentication Algorithm (DAA) to verify IoT device legitimacy before data transmission. Next, a bi-stage intrusion detection system is introduced: the first stage uses signature-based detection via an Improved Random Forest (IRF) algorithm. In contrast, the second stage applies feature-based anomaly detection using a Diffusion Convolution Recurrent Neural Network (DCRNN). To ensure Quality of Service (QoS) and maintain Service Level Agreements (SLA), trust-aware service migration is performed using Heap-Based Optimization (HBO). Additionally, on-demand virtual High-Interaction honeypots deceive attackers and extract attack patterns, which are securely stored using the Bimodal Lattice Signature Scheme (BLISS) to enhance signature-based Intrusion Detection Systems (IDS). The proposed framework is implemented in the NS3 simulation environment and evaluated against existing methods across multiple performance metrics, including accuracy, attack detection rate, false negative rate, precision, recall, ROC curve, memory usage, CPU usage, and execution time. Experimental results demonstrate that the framework significantly outperforms existing approaches, reinforcing the security of NGWN-enabled IoT ecosystems
comment: This paper has been submitted to the IEEE Transactions on Network Science and Engineering (TNSE) for possible publication
☆ Hexcute: A Tile-based Programming Language with Automatic Layout and Task-Mapping Synthesis
Deep learning (DL) workloads mainly run on accelerators like GPUs. Recent DL quantization techniques demand a new matrix multiplication operator with mixed input data types, further complicating GPU optimization. Prior high-level compilers like Triton lack the expressiveness to implement key optimizations like fine-grained data pipelines and hardware-friendly memory layouts for these operators, while low-level programming models, such as Hidet, Graphene, and CUTLASS, require significant programming efforts. To balance expressiveness with engineering effort, we propose Hexcute, a tile-based programming language that exposes shared memory and register abstractions to enable fine-grained optimization for these operators. Additionally, Hexcute leverages task mapping to schedule the GPU program, and to reduce programming efforts, it automates layout and task mapping synthesis with a novel type-inference-based algorithm. Our evaluation shows that Hexcute generalizes to a wide range of DL operators, achieves 1.7-11.28$\times$ speedup over existing DL compilers for mixed-type operators, and brings up to 2.91$\times$ speedup in the end-to-end evaluation.
comment: 17 pages, 24 figures
☆ Probabilistic Emulation of the Community Radiative Transfer Model Using Machine Learning
The continuous improvement in weather forecast skill over the past several decades is largely due to the increasing quantity of available satellite observations and their assimilation into operational forecast systems. Assimilating these observations requires observation operators in the form of radiative transfer models. Significant efforts have been dedicated to enhancing the computational efficiency of these models. Computational cost remains a bottleneck, and a large fraction of available data goes unused for assimilation. To address this, we used machine learning to build an efficient neural network based probabilistic emulator of the Community Radiative Transfer Model (CRTM), applied to the GOES Advanced Baseline Imager. The trained NN emulator predicts brightness temperatures output by CRTM and the corresponding error with respect to CRTM. RMSE of the predicted brightness temperature is 0.3 K averaged across all channels. For clear sky conditions, the RMSE is less than 0.1 K for 9 out of 10 infrared channels. The error predictions are generally reliable across a wide range of conditions. Explainable AI methods demonstrate that the trained emulator reproduces the relevant physics, increasing confidence that the model will perform well when presented with new data.
comment: 26 pages, 9 figures, 1 table
☆ FinNLI: Novel Dataset for Multi-Genre Financial Natural Language Inference Benchmarking
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset's difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement.
☆ Behavior of prediction performance metrics with rare events
Area under the receiving operator characteristic curve (AUC) is commonly reported alongside binary prediction models. However, there are concerns that AUC might be a misleading measure of prediction performance in the rare event setting. This setting is common since many events of clinical importance are rare events. We conducted a simulation study to determine when or whether AUC is unstable in the rare event setting. Specifically, we aimed to determine whether the bias and variance of AUC are driven by the number of events or the event rate. We also investigated the behavior of other commonly used measures of prediction performance, including positive predictive value, accuracy, sensitivity, and specificity. Our results indicate that poor AUC behavior -- as measured by empirical bias, variability of cross-validated AUC estimates, and empirical coverage of confidence intervals -- is driven by the minimum class size, not event rate. Performance of sensitivity is driven by the number of events, while that of specificity is driven by the number of non-events. Other measures, including positive predictive value and accuracy, depend on the event rate even in large samples. AUC is reliable in the rare event setting provided that the total number of events is moderately large.
comment: 55 pages (21 main, 34 supplementary), 26 tables (3 main, 23 supplementary), 5 figures (3 main, 2 supplementary)
☆ Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning
High-dimensional partial differential equations (PDEs) pose significant computational challenges across fields ranging from quantum chemistry to economics and finance. Although scientific machine learning (SciML) techniques offer approximate solutions, they often suffer from bias and neglect crucial physical insights. Inspired by inference-time scaling strategies in language models, we propose Simulation-Calibrated Scientific Machine Learning (SCaSML), a physics-informed framework that dynamically refines and debiases the SCiML predictions during inference by enforcing the physical laws. SCaSML leverages derived new physical laws that quantifies systematic errors and employs Monte Carlo solvers based on the Feynman-Kac and Elworthy-Bismut-Li formulas to dynamically correct the prediction. Both numerical and theoretical analysis confirms enhanced convergence rates via compute-optimal inference methods. Our numerical experiments demonstrate that SCaSML reduces errors by 20-50% compared to the base surrogate model, establishing it as the first algorithm to refine approximated solutions to high-dimensional PDE during inference. Code of SCaSML is available at https://github.com/Francis-Fan-create/SCaSML.
☆ Heterogeneous networks in drug-target interaction prediction
Drug discovery requires a tremendous amount of time and cost. Computational drug-target interaction prediction, a significant part of this process, can reduce these requirements by narrowing the search space for wet lab experiments. In this survey, we provide comprehensive details of graph machine learning-based methods in predicting drug-target interaction, as they have shown promising results in this field. These details include the overall framework, main contribution, datasets, and their source codes. The selected papers were mainly published from 2020 to 2024. Prior to discussing papers, we briefly introduce the datasets commonly used with these methods and measurements to assess their performance. Finally, future challenges and some crucial areas that need to be explored are discussed.
comment: 18 pages, 5 figures, 10 tables
☆ A Statistical Approach for Synthetic EEG Data Generation
Electroencephalogram (EEG) data is crucial for diagnosing mental health conditions but is costly and time-consuming to collect at scale. Synthetic data generation offers a promising solution to augment datasets for machine learning applications. However, generating high-quality synthetic EEG that preserves emotional and mental health signals remains challenging. This study proposes a method combining correlation analysis and random sampling to generate realistic synthetic EEG data. We first analyze interdependencies between EEG frequency bands using correlation analysis. Guided by this structure, we generate synthetic samples via random sampling. Samples with high correlation to real data are retained and evaluated through distribution analysis and classification tasks. A Random Forest model trained to distinguish synthetic from real EEG performs at chance level, indicating high fidelity. The generated synthetic data closely match the statistical and structural properties of the original EEG, with similar correlation coefficients and no significant differences in PERMANOVA tests. This method provides a scalable, privacy-preserving approach for augmenting EEG datasets, enabling more efficient model training in mental health research.
comment: 24 pages, 10 figures
☆ A Non-Invasive Load Monitoring Method for Edge Computing Based on MobileNetV3 and Dynamic Time Regulation
In recent years, non-intrusive load monitoring (NILM) technology has attracted much attention in the related research field by virtue of its unique advantage of utilizing single meter data to achieve accurate decomposition of device-level energy consumption. Cutting-edge methods based on machine learning and deep learning have achieved remarkable results in load decomposition accuracy by fusing time-frequency domain features. However, these methods generally suffer from high computational costs and huge memory requirements, which become the main obstacles for their deployment on resource-constrained microcontroller units (MCUs). To address these challenges, this study proposes an innovative Dynamic Time Warping (DTW) algorithm in the time-frequency domain and systematically compares and analyzes the performance of six machine learning techniques in home electricity scenarios. Through complete experimental validation on edge MCUs, this scheme successfully achieves a recognition accuracy of 95%. Meanwhile, this study deeply optimizes the frequency domain feature extraction process, which effectively reduces the running time by 55.55% and the storage overhead by about 34.6%. The algorithm performance will be further optimized in future research work. Considering that the elimination of voltage transformer design can significantly reduce the cost, the subsequent research will focus on this direction, and is committed to providing more cost-effective solutions for the practical application of NILM, and providing a solid theoretical foundation and feasible technical paths for the design of efficient NILM systems in edge computing environments.
☆ Deep Learning Meets Process-Based Models: A Hybrid Approach to Agricultural Challenges
Process-based models (PBMs) and deep learning (DL) are two key approaches in agricultural modelling, each offering distinct advantages and limitations. PBMs provide mechanistic insights based on physical and biological principles, ensuring interpretability and scientific rigour. However, they often struggle with scalability, parameterisation, and adaptation to heterogeneous environments. In contrast, DL models excel at capturing complex, nonlinear patterns from large datasets but may suffer from limited interpretability, high computational demands, and overfitting in data-scarce scenarios. This study presents a systematic review of PBMs, DL models, and hybrid PBM-DL frameworks, highlighting their applications in agricultural and environmental modelling. We classify hybrid PBM-DL approaches into DL-informed PBMs, where neural networks refine process-based models, and PBM-informed DL, where physical constraints guide deep learning predictions. Additionally, we conduct a case study on crop dry biomass prediction, comparing hybrid models against standalone PBMs and DL models under varying data quality, sample sizes, and spatial conditions. The results demonstrate that hybrid models consistently outperform traditional PBMs and DL models, offering greater robustness to noisy data and improved generalisation across unseen locations. Finally, we discuss key challenges, including model interpretability, scalability, and data requirements, alongside actionable recommendations for advancing hybrid modelling in agriculture. By integrating domain knowledge with AI-driven approaches, this study contributes to the development of scalable, interpretable, and reproducible agricultural models that support data-driven decision-making for sustainable agriculture.
☆ SparseJEPA: Sparse Representation Learning of Joint Embedding Predictive Architectures
Joint Embedding Predictive Architectures (JEPA) have emerged as a powerful framework for learning general-purpose representations. However, these models often lack interpretability and suffer from inefficiencies due to dense embedding representations. We propose SparseJEPA, an extension that integrates sparse representation learning into the JEPA framework to enhance the quality of learned representations. SparseJEPA employs a penalty method that encourages latent space variables to be shared among data features with strong semantic relationships, while maintaining predictive performance. We demonstrate the effectiveness of SparseJEPA by training on the CIFAR-100 dataset and pre-training a lightweight Vision Transformer. The improved embeddings are utilized in linear-probe transfer learning for both image classification and low-level tasks, showcasing the architecture's versatility across different transfer tasks. Furthermore, we provide a theoretical proof that demonstrates that the grouping mechanism enhances representation quality. This was done by displaying that grouping reduces Multiinformation among latent-variables, including proofing the Data Processing Inequality for Multiinformation. Our results indicate that incorporating sparsity not only refines the latent space but also facilitates the learning of more meaningful and interpretable representations. In further work, hope to further extend this method by finding new ways to leverage the grouping mechanism through object-centric representation learning.
♻ ☆ Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching ICLR 2025
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.
comment: Accepted to ICLR 2025
♻ ☆ A Pontryagin Perspective on Reinforcement Learning
Reinforcement learning has traditionally focused on learning state-dependent policies to solve optimal control problems in a closed-loop fashion. In this work, we introduce the paradigm of open-loop reinforcement learning where a fixed action sequence is learned instead. We present three new algorithms: one robust model-based method and two sample-efficient model-free methods. Rather than basing our algorithms on Bellman's equation from dynamic programming, our work builds on Pontryagin's principle from the theory of open-loop optimal control. We provide convergence guarantees and evaluate all methods empirically on a pendulum swing-up task, as well as on two high-dimensional MuJoCo tasks, significantly outperforming existing baselines.
♻ ☆ LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
♻ ☆ Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) combine multiple storage devices with diverse characteristics to achieve high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which rearranges stored data across the devices to sustain high HSS performance. Prior works focus on improving only data placement or only data migration in HSS, which leads to relatively low HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We demonstrate the need for multiple reinforcement learning (RL) agents to accomplish our goal. We propose Harmonia, a multi-agent RL-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, which adapt their policies for the current workload and HSS configuration, and coordinate with each other to improve overall HSS performance. We evaluate Harmonia on a real HSS with up to four heterogeneous and diverse storage devices. Our evaluation using 17 data-intensive workloads on performance-optimized (cost-optimized) HSS with two storage devices shows that, on average, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%). On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%). Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents together). We will open-source Harmonia's implementation to aid future research on HSS.
♻ ☆ A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty
Earth observation (EO) data such as satellite imagery can have far-reaching impacts on our understanding of the geography of poverty, especially when coupled with machine learning (ML) and computer vision. Early research used computer vision to predict living conditions in areas with limited data, but recent studies increasingly focus on causal analysis. Despite this shift, the use of EO-ML methods for causal inference lacks thorough documentation, and best practices are still developing. Through a comprehensive scoping review, we catalog the current literature on EO-ML methods in causal analysis. We synthesize five principal approaches to incorporating EO data in causal workflows: (1) outcome imputation for downstream causal analysis, (2) EO image deconfounding, (3) EO-based treatment effect heterogeneity, (4) EO-based transportability analysis, and (5) image-informed causal discovery. Building on these findings, we provide a detailed protocol guiding researchers in integrating EO data into causal analysis -- covering data requirements, computer vision model selection, and evaluation metrics. While our focus centers on health and living conditions outcomes, our protocol is adaptable to other sustainable development domains utilizing EO data.
comment: To appear as: Sakamoto, Kazuki, Connor T. Jerzak, and Adel Daoud. "A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty." In Geography of Poverty, edited by Ola Hall and Ibrahim Wahab. Edward Elgar Publishing (Cheltenham, UK), 2025
♻ ☆ CHASE: A Causal Hypergraph based Framework for Root Cause Analysis in Multimodal Microservice Systems
In recent years, the widespread adoption of distributed microservice architectures within the industry has significantly increased the demand for enhanced system availability and robustness. Due to the complex service invocation paths and dependencies in enterprise-level microservice systems, it is challenging to locate the anomalies promptly during service invocations, thus causing intractable issues for normal system operations and maintenance. In this paper, we propose a Causal Heterogeneous grAph baSed framEwork for root cause analysis, namely CHASE, for microservice systems with multimodal data, including traces, logs, and system monitoring metrics. Specifically, related information is encoded into representative embeddings and further modeled by a multimodal invocation graph. Following that, anomaly detection is performed on each instance node with attentive heterogeneous message passing from its adjacent metric and log nodes. Finally, CHASE learns from the constructed hypergraph with hyperedges representing the flow of causality and performs root cause localization. We evaluate the proposed framework on two public microservice datasets with distinct attributes and compare with the state-of-the-art methods. The results show that CHASE achieves the average performance gain up to 36.2%(A@1) and 29.4%(Percentage@1), respectively to its best counterpart.
♻ ☆ Deep-Learning Control of Lower-Limb Exoskeletons via simplified Therapist Input
Partial-assistance exoskeletons hold significant potential for gait rehabilitation by promoting active participation during (re)learning of normative walking patterns. Typically, the control of interaction torques in partial-assistance exoskeletons relies on a hierarchical control structure. These approaches require extensive calibration due to the complexity of the controller and user-specific parameter tuning, especially for activities like stair or ramp navigation. To address the limitations of hierarchical control in exoskeletons, this work proposes a three-step, data-driven approach: (1) using recent sensor data to probabilistically infer locomotion states (landing step length, landing step height, walking velocity, step clearance, gait phase), (2) allowing therapists to modify these features via a user interface, and (3) using the adjusted locomotion features to predict the desired joint posture and model stiffness in a spring-damper system based on prediction uncertainty. We evaluated the proposed approach with two healthy participants engaging in treadmill walking and stair ascent and descent at varying speeds, with and without external modification of the gait features through a user interface. Results showed a variation in kinematics according to the gait characteristics and a negative interaction power suggesting exoskeleton assistance across the different conditions.
comment: Accepted to the INTERNATIONAL CONSORTIUM FOR REHABILITATION ROBOTICS 2025
♻ ☆ When resampling/reweighting improves feature learning in imbalanced classification?: A toy-model study
A toy model of binary classification is studied with the aim of clarifying the class-wise resampling/reweighting effect on the feature learning performance under the presence of class imbalance. In the analysis, a high-dimensional limit of the input space is taken while keeping the ratio of the dataset size against the input dimension finite and the non-rigorous replica method from statistical mechanics is employed. The result shows that there exists a case in which the no resampling/reweighting situation gives the best feature learning performance irrespectively of the choice of losses or classifiers, supporting recent findings in Cao et al. (2019); Kang et al. (2019). It is also revealed that the key of the result is the symmetry of the loss and the problem setting. Inspired by this, we propose a further simplified model exhibiting the same property in the multiclass setting. These clarify when the class-wise resampling/reweighting becomes effective in imbalanced classification.
comment: 33 pages, 14 figures
♻ ☆ Histogram-based Parameter-efficient Tuning for Passive Sonar Classification
Parameter-efficient transfer learning (PETL) methods adapt large artificial neural networks to downstream tasks without fine-tuning the entire model. However, existing additive methods, such as adapters, sometimes struggle to capture distributional shifts in intermediate feature embeddings. We propose a novel histogram-based parameter-efficient tuning (HPT) technique that captures the statistics of the target domain and modulates the embeddings. Experimental results on three downstream passive sonar datasets (ShipsEar, DeepShip, VTUAD) demonstrate that HPT outperforms conventional adapters. Notably, HPT achieves 91.8% vs. 89.8% accuracy on VTUAD. Furthermore, HPT trains faster and yields feature representations closer to those of fully fine-tuned models. Overall, HPT balances parameter savings and performance, providing a distribution-aware alternative to existing adapters and shows a promising direction for scalable transfer learning in resource-constrained environments. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/HLAST_DeepShip_ParameterEfficient.
comment: 5 pages, 4 figures. Under Review
♻ ☆ SCMPPI: Supervised Contrastive Multimodal Framework for Predicting Protein-Protein Interactions
Protein-protein interaction (PPI) prediction plays a pivotal role in deciphering cellular functions and disease mechanisms. To address the limitations of traditional experimental methods and existing computational approaches in cross-modal feature fusion and false-negative suppression, we propose SCMPPI-a novel supervised contrastive multimodal framework. By effectively integrating sequence-based features (AAC, DPC, ESMC-CKSAAP) with network topology (Node2Vec embeddings) and incorporating an enhanced contrastive learning strategy with negative sample filtering, SCMPPI achieves superior prediction performance. Extensive experiments on eight benchmark datasets demonstrate its state-of-the-art accuracy(98.13%) and AUC(99.69%), along with excellent cross-species generalization (AUC>99%). Successful applications in CD9 networks, Wnt pathway analysis, and cancer-specific networks further highlight its potential for disease target discovery, establishing SCMPPI as a powerful tool for multimodal biological data analysis.
comment: 19 pages,9 figures,conference
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
♻ ☆ A Catalog of Fairness-Aware Practices in Machine Learning Engineering
Machine learning's widespread adoption in decision-making processes raises concerns about fairness, particularly regarding the treatment of sensitive features and potential discrimination against minorities. The software engineering community has responded by developing fairness-oriented metrics, empirical studies, and approaches. However, there remains a gap in understanding and categorizing practices for engineering fairness throughout the machine learning lifecycle. This paper presents a novel catalog of practices for addressing fairness in machine learning derived from a systematic mapping study. The study identifies and categorizes 28 practices from existing literature, mapping them onto different stages of the machine learning lifecycle. From this catalog, the authors extract actionable items and implications for both researchers and practitioners in software engineering. This work aims to provide a comprehensive resource for integrating fairness considerations into the development and deployment of machine learning systems, enhancing their reliability, accountability, and credibility.
♻ ☆ An Operator Splitting View of Federated Learning
Over the past few years, the federated learning ($\texttt{FL}$) community has witnessed a proliferation of new $\texttt{FL}$ algorithms. However, our understating of the theory of $\texttt{FL}$ is still fragmented, and a thorough, formal comparison of these algorithms remains elusive. Motivated by this gap, we show that many of the existing $\texttt{FL}$ algorithms can be understood from an operator splitting point of view. This unification allows us to compare different algorithms with ease, to refine previous convergence results and to uncover new algorithmic variants. In particular, our analysis reveals the vital role played by the step size in $\texttt{FL}$ algorithms. The unification also leads to a streamlined and economic way to accelerate $\texttt{FL}$ algorithms, without incurring any communication overhead. We perform numerical experiments on both convex and nonconvex models to validate our findings.
comment: 30 pages, 28 figures
♻ ☆ EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard Using Hybrid Deep Learning Approach
Brain-machine interfaces (BMIs), particularly those based on electroencephalography (EEG), offer promising solutions for assisting individuals with motor disabilities. However, challenges in reliably interpreting EEG signals for specific tasks, such as simulating keystrokes, persist due to the complexity and variability of brain activity. Current EEG-based BMIs face limitations in adaptability, usability, and robustness, especially in applications like virtual keyboards, as traditional machine-learning models struggle to handle high-dimensional EEG data effectively. To address these gaps, we developed an EEG-based BMI system capable of accurately identifying voluntary keystrokes, specifically leveraging right and left voluntary hand movements. Using a publicly available EEG dataset, the signals were pre-processed with band-pass filtering, segmented into 22-electrode arrays, and refined into event-related potential (ERP) windows, resulting in a 19x200 feature array categorized into three classes: resting state (0), 'd' key press (1), and 'l' key press (2). Our approach employs a hybrid neural network architecture with BiGRU-Attention as the proposed model for interpreting EEG signals, achieving superior test accuracy of 90% and a mean accuracy of 91% in 10-fold stratified cross-validation. This performance outperforms traditional ML methods like Support Vector Machines (SVMs) and Naive Bayes, as well as advanced architectures such as Transformers, CNN-Transformer hybrids, and EEGNet. Finally, the BiGRU-Attention model is integrated into a real-time graphical user interface (GUI) to simulate and predict keystrokes from brain activity. Our work demonstrates how deep learning can advance EEG-based BMI systems by addressing the challenges of signal interpretation and classification.
comment: Please note: This is the preprint version of the manuscript. The final peer-reviewed version has been published in Advanced Engineering Informatics, Volume 65, Part D, 2025, and is available at: https://doi.org/10.1016/j.aei.2025.103304 Please cite the published journal version for referencing this work
♻ ☆ Selective Task Group Updates for Multi-Task Optimization ICLR 2025
Multi-task learning enables the acquisition of task-generic knowledge by training multiple tasks within a unified architecture. However, training all tasks together in a single architecture can lead to performance degradation, known as negative transfer, which is a main concern in multi-task learning. Previous works have addressed this issue by optimizing the multi-task network through gradient manipulation or weighted loss adjustments. However, their optimization strategy focuses on addressing task imbalance in shared parameters, neglecting the learning of task-specific parameters. As a result, they show limitations in mitigating negative transfer, since the learning of shared space and task-specific information influences each other during optimization. To address this, we propose a different approach to enhance multi-task performance by selectively grouping tasks and updating them for each batch during optimization. We introduce an algorithm that adaptively determines how to effectively group tasks and update them during the learning process. To track inter-task relations and optimize multi-task networks simultaneously, we propose proximal inter-task affinity, which can be measured during the optimization process. We provide a theoretical analysis on how dividing tasks into multiple groups and updating them sequentially significantly affects multi-task performance by enhancing the learning of task-specific parameters. Our methods substantially outperform previous multi-task optimization approaches and are scalable to different architectures and various numbers of tasks.
comment: Accepted at ICLR 2025
♻ ☆ A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
♻ ☆ Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems
We consider a common case of the combinatorial semi-bandit problem, the $m$-set semi-bandit, where the learner exactly selects $m$ arms from the total $d$ arms. In the adversarial setting, the best regret bound, known to be $\mathcal{O}(\sqrt{nmd})$ for time horizon $n$, is achieved by the well-known Follow-the-Regularized-Leader (FTRL) policy. However, this requires to explicitly compute the arm-selection probabilities via optimizing problems at each time step and sample according to them. This problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which simply pulls the $m$ arms that rank among the $m$ smallest (estimated) loss with random perturbation. In this paper, we show that FTPL with a Fr\'echet perturbation also enjoys the near optimal regret bound $\mathcal{O}(\sqrt{nmd\log(d)})$ in the adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves a logarithmic regret for the stochastic setting.
♻ ☆ CVKAN: Complex-Valued Kolmogorov-Arnold Networks IEEE
In this work we propose CVKAN, a complex-valued Kolmogorov-Arnold Network (KAN), to join the intrinsic interpretability of KANs and the advantages of Complex-Valued Neural Networks (CVNNs). We show how to transfer a KAN and the necessary associated mechanisms into the complex domain. To confirm that CVKAN meets expectations we conduct experiments on symbolic complex-valued function fitting and physically meaningful formulae as well as on a more realistic dataset from knot theory. Our proposed CVKAN is more stable and performs on par or better than real-valued KANs while requiring less parameters and a shallower network architecture, making it more explainable.
comment: accepted at IEEE International Joint Conference on Neural Networks (IJCNN) 2025
♻ ☆ Is Large-Scale Pretraining the Secret to Good Domain Generalization? ICLR 2025
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment.
comment: Accepted at ICLR 2025
♻ ☆ Learning Actionable World Models for Industrial Process Control
To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
comment: Accepted by SDS 2025
♻ ☆ Symbolic Regression for Beyond the Standard Model Physics
We propose symbolic regression as a powerful tool for studying Beyond the Standard Model physics. As a benchmark model, we consider the so-called Constrained Minimal Supersymmetric Standard Model, which has a four-dimensional parameter space defined at the GUT scale. We provide a set of analytical expressions that reproduce three low-energy observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior probability densities of the parameters, which are obtained extremely rapidly in comparison with conventional methods.
comment: Version accepted for publication in PRD. 8 pages, 10 figures. For associated code and symbolic expressions see https://gitlab.com/miguel.romao/symbolic-regression-bsm
♻ ☆ Optimizing RLHF Training for Large Language Models with Stage Fusion
We present RLHFuse, an efficient training system with stage fusion for Reinforcement Learning from Human Feedback (RLHF). Due to the intrinsic nature of RLHF training, i.e., the data skewness in the generation stage and the pipeline bubbles in the training stage, existing RLHF systems suffer from low GPU utilization. RLHFuse breaks the traditional view of RLHF workflow as a composition of individual tasks, splitting each task into finer-grained subtasks, and performing stage fusion to improve GPU utilization. RLHFuse contains two key ideas. First, for generation and inference tasks, RLHFuse splits them into sample-level subtasks, enabling efficient inter-stage fusion to overlap the execution of generation and inference stages, thus mitigating the original generation bottleneck dominated by long-tailed samples. Second, for training tasks, RLHFuse breaks them into subtasks of micro-batches and performs intra-stage fusion to concurrently execute these subtasks in the training stage with a fused pipeline schedule, effectively mitigating the pipeline bubbles. The experiments show that RLHFuse increases the training throughput by up to $3.7\times$, compared to existing systems.
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ A Mechanism-Learning Deeply Coupled Model for Remote Sensing Retrieval of Global Land Surface Temperature
Land surface temperature (LST) retrieval from remote sensing data is pivotal for analyzing climate processes and surface energy budgets. However, LST retrieval is an ill-posed inverse problem, which becomes particularly severe when only a single band is available. In this paper, we propose a deeply coupled framework integrating mechanistic modeling and machine learning to enhance the accuracy and generalizability of single-channel LST retrieval. Training samples are generated using a physically-based radiative transfer model and a global collection of 5810 atmospheric profiles. A physics-informed machine learning framework is proposed to systematically incorporate the first principles from classical physical inversion models into the learning workflow, with optimization constrained by radiative transfer equations. Global validation demonstrated a 30% reduction in root-mean-square error versus standalone methods. Under extreme humidity, the mean absolute error decreased from 4.87 K to 2.29 K (53% improvement). Continental-scale tests across five continents confirmed the superior generalizability of this model.
♻ ☆ Adaptive Student's t-distribution with method of moments moving estimator for nonstationary time series
The real life time series are usually nonstationary, bringing a difficult question of model adaptation. Classical approaches like ARMA-ARCH assume arbitrary type of dependence. To avoid their bias, we will focus on recently proposed agnostic philosophy of moving estimator: in time $t$ finding parameters optimizing e.g. $F_t=\sum_{\tau
comment: 7 pages, 10 figures
♻ ☆ Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives SC
In the context of Industry 4.0 and smart manufacturing, the field of process industry optimization and control is also undergoing a digital transformation. With the rise of Deep Reinforcement Learning (DRL), its application in process control has attracted widespread attention. However, the extremely low sample efficiency and the safety concerns caused by exploration in DRL hinder its practical implementation in industrial settings. Transfer learning offers an effective solution for DRL, enhancing its generalization and adaptability in multi-mode control scenarios. This paper provides insights into the use of DRL for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the process industry and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to enhance process control. This paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
comment: Chinese Control and Decision Conference (CCDC 2025), Oral, Regular Paper & Asian Control Conference (ASCC 2024), Oral, Position Paper
♻ ☆ Reinforcement Learning for Dynamic Resource Allocation in Optical Networks: Hype or Hope?
The application of reinforcement learning (RL) to dynamic resource allocation in optical networks has been the focus of intense research activity in recent years, with almost 100 peer-reviewed papers. We present a review of progress in the field, and identify significant gaps in benchmarking practices and reproducibility. To determine the strongest benchmark algorithms, we systematically evaluate several heuristics across diverse network topologies. We find that path count and sort criteria for path selection significantly affect the benchmark performance. We meticulously recreate the problems from five landmark papers and apply the improved benchmarks. Our comparisons demonstrate that simple heuristics consistently match or outperform the published RL solutions, often with an order of magnitude lower blocking probability. Furthermore, we present empirical lower bounds on network blocking using a novel defragmentation-based method, revealing that potential improvements over the benchmark heuristics are limited to 19-36% increased traffic load for the same blocking performance in our examples. We make our simulation framework and results publicly available to promote reproducible research and standardized evaluation https://doi.org/10.5281/zenodo.12594495.
♻ ☆ Efficient algorithms for the Hadamard decomposition IEEE
The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.
comment: 7 pages, preprint submitted to IEEE MLSP 2025, code available from https://github.com/WertzSamuel/HadamardDecompositions
♻ ☆ Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization AAAI2023
Recent advances in large pre-trained models showed promising results in few-shot learning. However, their generalization ability on two-dimensional Out-of-Distribution (OoD) data, i.e., correlation shift and diversity shift, has not been thoroughly investigated. Researches have shown that even with a significant amount of training data, few methods can achieve better performance than the standard empirical risk minimization method (ERM) in OoD generalization. This few-shot OoD generalization dilemma emerges as a challenging direction in deep neural network generalization research, where the performance suffers from overfitting on few-shot examples and OoD generalization errors. In this paper, leveraging a broader supervision source, we explore a novel Bayesian cross-modal image-text alignment learning method (Bayes-CAL) to address this issue. Specifically, the model is designed as only text representations are fine-tuned via a Bayesian modelling approach with gradient orthogonalization loss and invariant risk minimization (IRM) loss. The Bayesian approach is essentially introduced to avoid overfitting the base classes observed during training and improve generalization to broader unseen classes. The dedicated loss is introduced to achieve better image-text alignment by disentangling the causal and non-casual parts of image features. Numerical experiments demonstrate that Bayes-CAL achieved state-of-the-art OoD generalization performances on two-dimensional distribution shifts. Moreover, compared with CLIP-like models, Bayes-CAL yields more stable generalization performances on unseen classes. Our code is available at https://github.com/LinLLLL/BayesCAL.
comment: Accepted by AAAI2023
♻ ☆ FedOBD: Opportunistic Block Dropout for Efficiently Training Large-scale Neural Networks through Federated Learning
Large-scale neural networks possess considerable expressive power. They are well-suited for complex learning tasks in industrial applications. However, large-scale models pose significant challenges for training under the current Federated Learning (FL) paradigm. Existing approaches for efficient FL training often leverage model parameter dropout. However, manipulating individual model parameters is not only inefficient in meaningfully reducing the communication overhead when training large-scale FL models, but may also be detrimental to the scaling efforts and model performance as shown by recent research. To address these issues, we propose the Federated Opportunistic Block Dropout (FedOBD) approach. The key novelty is that it decomposes large-scale models into semantic blocks so that FL participants can opportunistically upload quantized blocks, which are deemed to be significant towards training the model, to the FL server for aggregation. Extensive experiments evaluating FedOBD against four state-of-the-art approaches based on multiple real-world datasets show that it reduces the overall communication overhead by more than 88% compared to the best performing baseline approach, while achieving the highest test accuracy. To the best of our knowledge, FedOBD is the first approach to perform dropout on FL models at the block level rather than at the individual parameter level.
♻ ☆ Not All Edges are Equally Robust: Evaluating the Robustness of Ranking-Based Federated Learning IEEE
Federated Ranking Learning (FRL) is a state-of-the-art FL framework that stands out for its communication efficiency and resilience to poisoning attacks. It diverges from the traditional FL framework in two ways: 1) it leverages discrete rankings instead of gradient updates, significantly reducing communication costs and limiting the potential space for malicious updates, and 2) it uses majority voting on the server side to establish the global ranking, ensuring that individual updates have minimal influence since each client contributes only a single vote. These features enhance the system's scalability and position FRL as a promising paradigm for FL training. However, our analysis reveals that FRL is not inherently robust, as certain edges are particularly vulnerable to poisoning attacks. Through a theoretical investigation, we prove the existence of these vulnerable edges and establish a lower bound and an upper bound for identifying them in each layer. Based on this finding, we introduce a novel local model poisoning attack against FRL, namely the Vulnerable Edge Manipulation (VEM) attack. The VEM attack focuses on identifying and perturbing the most vulnerable edges in each layer and leveraging an optimization-based approach to maximize the attack's impact. Through extensive experiments on benchmark datasets, we demonstrate that our attack achieves an overall 53.23% attack impact and is 3.7x more impactful than existing methods. Our findings highlight significant vulnerabilities in ranking-based FL systems and underline the urgency for the development of new robust FL frameworks.
comment: 18 pages. To appear in the IEEE Symposium on Security and Privacy 2025
♻ ☆ SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
Recent advances of reasoning models, exemplified by OpenAI's o1 and DeepSeek's R1, highlight the significant potential of Reinforcement Learning (RL) to enhance the reasoning capabilities of Large Language Models (LLMs). However, replicating these advancements across diverse domains remains challenging due to limited methodological transparency. In this work, we present two-Staged history-Resampling Policy Optimization (SRPO), which surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks. SRPO achieves this using the same base model as DeepSeek (i.e. Qwen2.5-32B), using only about 1/10 of the training steps required by DeepSeek-R1-Zero-32B, demonstrating superior efficiency. Building upon Group Relative Policy Optimization (GRPO), we introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples. Our comprehensive experiments validate the effectiveness of our approach, offering valuable insights into scaling LLM reasoning capabilities across diverse tasks.
♻ ☆ Graph Neural Network Surrogates to leverage Mechanistic Expert Knowledge towards Reliable and Immediate Pandemic Response
During the COVID-19 crisis, mechanistic models have guided evidence-based decision making. However, time-critical decisions in a dynamical environment limit the time available to gather supporting evidence. Infectious disease dynamics are often heterogeneous on a spatial or demographic scale, requiring appropriately resolved models. In addition, with a large number of potential interventions, all scenarios can barely be computed on time, even when using supercomputing facilities. We suggest to couple complex mechanistic models with data-driven surrogate models to allow for on-the-fly model adaptations by public health experts and decision makers. We build upon a spatially and demographically resolved infectious disease metapopulation model and train a graph neural network for data sets representing prevaccination phases of a pandemic. The resulting networks reached an execution time of a fraction of a second, a speeding up the metapopulation up to four orders of magnitude. The approach yields large potential for on-the-fly execution and, thus, facilitates integration into low-barrier web applications for use in pandemic decision-making.
comment: 27 pages, 9 figures
♻ ☆ PCL-Indexability and Whittle Index for Restless Bandits with General Observation Models
In this paper, we consider a general observation model for restless multi-armed bandit problems. The operation of the player needs to be based on certain feedback mechanism that is error-prone due to resource constraints or environmental or intrinsic noises. By establishing a general probabilistic model for dynamics of feedback/observation, we formulate the problem as a restless bandit with a countable belief state space starting from an arbitrary initial belief (a priori information). We apply the achievable region method with partial conservation law (PCL) to the infinite-state problem and analyze its indexability and priority index (Whittle index). Finally, we propose an approximation process to transform the problem into which the AG algorithm of Ni\~no-Mora and Bertsimas for finite-state problems can be applied to. Numerical experiments show that our algorithm has an excellent performance.
♻ ☆ Orthogonal projection-based regularization for efficient model augmentation
Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and a considerable part of the learning effort is often spent on capturing already expected/known behavior of the system, that can be accurately described by first-principles laws of physics. A potential solution is to directly integrate such prior physical knowledge into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel, i.e., additively. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning and even model accuracy in learning-based augmentation of nonlinear baseline models.
comment: Accepted for L4DC 2025
♻ ☆ On the Guidance of Flow Matching
Flow matching has shown state-of-the-art performance in various generative tasks, ranging from image generation to decision-making, where guided generation is pivotal. However, the guidance of flow matching is more general than and thus substantially different from that of its predecessor, diffusion models. Therefore, the challenge in guidance for general flow matching remains largely underexplored. In this paper, we propose the first framework of general guidance for flow matching. From this framework, we derive a family of guidance techniques that can be applied to general flow matching. These include a new training-free asymptotically exact guidance, novel training losses for training-based guidance, and two classes of approximate guidance that cover classical gradient guidance methods as special cases. We theoretically investigate these different methods to give a practical guideline for choosing suitable methods in different scenarios. Experiments on synthetic datasets, image inverse problems, and offline reinforcement learning demonstrate the effectiveness of our proposed guidance methods and verify the correctness of our flow matching guidance framework. Code to reproduce the experiments can be found at https://github.com/AI4Science-WestlakeU/flow_guidance.
comment: 35 pages, 7 figures
♻ ☆ Active Diffusion Subsampling
Subsampling is commonly used to mitigate costs associated with data acquisition, such as time or energy requirements, motivating the development of algorithms for estimating the fully-sampled signal of interest $x$ from partially observed measurements $y$. In maximum entropy sampling, one selects measurement locations that are expected to have the highest entropy, so as to minimize uncertainty about $x$. This approach relies on an accurate model of the posterior distribution over future measurements, given the measurements observed so far. Recently, diffusion models have been shown to produce high-quality posterior samples of high-dimensional signals using guided diffusion. In this work, we propose Active Diffusion Subsampling (ADS), a method for designing intelligent subsampling masks using guided diffusion in which the model tracks a distribution of beliefs over the true state of $x$ throughout the reverse diffusion process, progressively decreasing its uncertainty by actively choosing to acquire measurements with maximum expected entropy, ultimately producing the posterior distribution $p(x \mid y)$. ADS can be applied using pre-trained diffusion models for any subsampling rate, and does not require task-specific retraining - just the specification of a measurement model. Furthermore, the maximum entropy sampling policy employed by ADS is interpretable, enhancing transparency relative to existing methods using black-box policies. Code is available at https://active-diffusion-subsampling.github.io/.
comment: 27 pages, 16 figures
♻ ☆ Exploring the loss landscape of regularized neural networks via convex duality
We discuss several aspects of the loss landscape of regularized neural networks: the structure of stationary points, connectivity of optimal solutions, path with nonincreasing loss to arbitrary global optimum, and the nonuniqueness of optimal solutions, by casting the problem into an equivalent convex problem and considering its dual. Starting from two-layer neural networks with scalar output, we first characterize the solution set of the convex problem using its dual and further characterize all stationary points. With the characterization, we show that the topology of the global optima goes through a phase transition as the width of the network changes, and construct counterexamples where the problem may have a continuum of optimal solutions. Finally, we show that the solution set characterization and connectivity results can be extended to different architectures, including two-layer vector-valued neural networks and parallel three-layer neural networks.
comment: Updated accepted version
♻ ☆ De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems
Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, these systems cannot be evaluated strictly by the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the challenges of multistakeholder evaluation of recommender systems. We bring attention to the different aspects involved -- from the range of stakeholders involved (including but not limited to providers and consumers) to the values and specific goals of each relevant stakeholder. We discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about incorporating these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
comment: Preprint in revision at Elsevier, "Re-centering the User in Recommender System Research" special issue of the International Journal of Human-Computer Studies (IJHCS)
♻ ☆ Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
Accurate real-time modeling of multi-body dynamical systems is essential for enabling digital twin applications across industries. While many data-driven approaches aim to learn system dynamics, jointly predicting internal loads and system trajectories remains a key challenge. This dual prediction is especially important for fault detection and predictive maintenance, where internal loads-such as contact forces-act as early indicators of faults, reflecting wear or misalignment before affecting motion. These forces also serve as inputs to degradation models (e.g., crack growth), enabling damage prediction and remaining useful life estimation. We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems. In this mesh-free framework, nodes represent system components and edges encode interactions. Equi-Euler GraphNet introduces two inductive biases: (1) an equivariant message-passing scheme, interpreting edge messages as interaction forces consistent under Euclidean transformations; and (2) a temporal-aware iterative node update mechanism, based on Euler integration, to capture influence of distant interactions over time. Tailored for cylindrical roller bearings, it decouples ring dynamics from constrained motion of rolling elements. Trained on high-fidelity multiphysics simulations, Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations. It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation. Achieving up to a 200x speedup over conventional solvers while maintaining comparable accuracy, it serves as an efficient reduced-order model for digital twins, design, and maintenance.
comment: permission not yet received for arXiv
♻ ☆ TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
♻ ☆ Why Ask One When You Can Ask $k$? Two-Stage Learning-to-Defer to the Top-$k$ Experts
Learning-to-Defer (L2D) enables decision-making systems to improve reliability by selectively deferring uncertain predictions to more competent agents. However, most existing approaches focus exclusively on single-agent deferral, which is often inadequate in high-stakes scenarios that require collective expertise. We propose Top-$k$ Learning-to-Defer, a generalization of the classical two-stage L2D framework that allocates each query to the $k$ most confident agents instead of a single one. To further enhance flexibility and cost-efficiency, we introduce Top-$k(x)$ Learning-to-Defer, an adaptive extension that learns the optimal number of agents to consult for each query, based on input complexity, agent competency distributions, and consultation costs. For both settings, we derive a novel surrogate loss and prove that it is Bayes-consistent and $(\mathcal{R}, \mathcal{G})$-consistent, ensuring convergence to the Bayes-optimal allocation. Notably, we show that the well-established model cascades paradigm arises as a restricted instance of our Top-$k$ and Top-$k(x)$ formulations. Extensive experiments across diverse benchmarks demonstrate the effectiveness of our framework on both classification and regression tasks.
♻ ☆ RouterKT: Mixture-of-Experts for Knowledge Tracing
Knowledge Tracing (KT) is a fundamental task in Intelligent Tutoring Systems (ITS), which aims to model the dynamic knowledge states of students based on their interaction histories. However, existing KT models often rely on a global forgetting decay mechanism for capturing learning patterns, assuming that students' performance is predominantly influenced by their most recent interactions. Such approaches fail to account for the diverse and complex learning patterns arising from individual differences and varying learning stages. To address this limitation, we propose RouterKT, a novel Mixture-of-Experts (MoE) architecture designed to capture heterogeneous learning patterns by enabling experts to specialize in different patterns without any handcrafted learning pattern bias such as forgetting decay. Specifically, RouterKT introduces a \textbf{person-wise routing mechanism} to effectively model individual-specific learning behaviors and employs \textbf{multi-heads as experts} to enhance the modeling of complex and diverse patterns. Comprehensive experiments on ten benchmark datasets demonstrate that RouterKT exhibits significant flexibility and improves the performance of various KT backbone models, with a maximum average AUC improvement of 3.29\% across different backbones and datasets, outperforming other state-of-the-art models. Moreover, RouterKT demonstrates consistently superior inference efficiency compared to existing approaches based on handcrafted learning pattern bias, highlighting its usability for real-world educational applications. The source code is available at https://github.com/ringotc/RouterKT.git.
comment: 10 pages
♻ ☆ Physics Informed Constrained Learning of Dynamics from Static Data
A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network. By enforcing physical laws as constraints, PINN overcomes challenges with data scarsity and potentially high dimensionality. Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems. In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data. Computational principles and a general mathematical formulation of Constrained Learning were developed. We further introduced MPOCtrL (Message Passing Optimization-based Constrained Learning) an optimization approach tailored for the Constrained Learning framework that strives to balance the fitting of physical models and observed data. Its code is available at github link: https://github.com/ptdang1001/MPOCtrL Experiments on synthetic and real-world data demonstrated that MPOCtrL can effectively detect the nonlinear dependency between observed data and the underlying physical properties of the system. In particular, on the task of metabolic flux analysis, MPOCtrL outperforms all existing data-driven flux estimators.
comment: 39 pages, 10 figures
♻ ☆ AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs ICLR 2025
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
comment: ICLR 2025 Spotlight. Project Page: https://autodans.github.io/AutoDAN-Turbo Code: https://github.com/SaFoLab-WISC/AutoDAN-Turbo
♻ ☆ Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review CCL
Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation.
comment: Accepted in NACCL
♻ ☆ Quantum repeaters enhanced by vacuum beam guides
The development of large-scale quantum communication networks faces critical challenges due to photon loss and decoherence in optical fiber channels. These fundamentally limit transmission distances and demand dense networks of repeater stations. This work investigates using vacuum beam guides (VBGs)-a promising ultra-low-loss transmission platform-as an alternative to traditional fiber links. By incorporating VBGs into repeater-based architectures, we demonstrate that the inter-repeater spacing can be substantially extended, resulting in fewer required nodes and significantly reducing hardware and operational complexity. We perform a cost-function analysis to quantify performance trade-offs across first, second, and third-generation repeaters. Our results show that first-generation repeaters reduce costs dramatically by eliminating entanglement purification. Third-generation repeaters benefit from improved link transmission success, which is crucial for quantum error correction. In contrast, second-generation repeaters exhibit a more nuanced response; although transmission loss is reduced, their performance remains primarily limited by logical gate errors rather than channel loss. These findings highlight that while all repeater generations benefit from reduced photon loss, the magnitude of improvement depends critically on the underlying error mechanisms. Vacuum beam guides thus emerge as a powerful enabler for scalable, high-performance quantum networks, particularly in conjunction with near-term quantum hardware capabilities.
comment: 10 pages
♻ ☆ Rethinking Soft Actor-Critic in High-Dimensional Action Spaces: The Cost of Ignoring Distribution Shift
Soft Actor-Critic algorithm is widely recognized for its robust performance across a range of deep reinforcement learning tasks, where it leverages the tanh transformation to constrain actions within bounded limits. However, this transformation induces a distribution shift, distorting the original Gaussian action distribution and potentially leading the policy to select suboptimal actions, particularly in high-dimensional action spaces. In this paper, we conduct a comprehensive theoretical and empirical analysis of this distribution shift, deriving the precise probability density function (PDF) for actions following the tanh transformation to clarify the misalignment introduced between the transformed distribution's mode and the intended action output. We substantiate these theoretical insights through extensive experiments on high-dimensional tasks within the HumanoidBench benchmark. Our findings indicate that accounting for this distribution shift substantially enhances SAC's performance, resulting in notable improvements in cumulative rewards, sample efficiency, and reliability across tasks. These results underscore a critical consideration for SAC and similar algorithms: addressing transformation-induced distribution shifts is essential to optimizing policy effectiveness in high-dimensional deep reinforcement learning environments, thereby expanding the robustness and applicability of SAC in complex control tasks.
♻ ☆ FOReCAst: The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
♻ ☆ MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs
The rapid progress in machine learning (ML) has brought forth many large language models (LLMs) that excel in various tasks and areas. These LLMs come with different abilities and costs in terms of computation or pricing. Since the demand for each query can vary, e.g., because of the queried domain or its complexity, defaulting to one LLM in an application is not usually the best choice, whether it is the biggest, priciest, or even the one with the best average test performance. Consequently, picking the right LLM that is both accurate and cost-effective for an application is necessary yet remains a challenge. In this paper, we introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal LLM (among several available LLMs) for classification and multi-choice question-answering tasks, achieving significantly improved accuracy and cost-effectiveness. By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty. Our experiments, conducted on popular LLM platforms such as OpenAI and Together AI, as well as open-source LLM, showcase MetaLLM's efficacy in real-world scenarios, laying the groundwork for future extensions.
♻ ☆ Benign overfitting in Fixed Dimension via Physics-Informed Learning with Smooth Inductive Bias
Recent advances in machine learning have inspired a surge of research into reconstructing specific quantities of interest from measurements that comply with certain physical laws. These efforts focus on inverse problems that are governed by partial differential equations (PDEs). In this work, we develop an asymptotic Sobolev norm learning curve for kernel ridge(less) regression when addressing (elliptical) linear inverse problems. Our results show that the PDE operators in the inverse problem can stabilize the variance and even behave benign overfitting for fixed-dimensional problems, exhibiting different behaviors from regression problems. Besides, our investigation also demonstrates the impact of various inductive biases introduced by minimizing different Sobolev norms as a form of implicit regularization. For the regularized least squares estimator, we find that all considered inductive biases can achieve the optimal convergence rate, provided the regularization parameter is appropriately chosen. The convergence rate is actually independent to the choice of (smooth enough) inductive bias for both ridge and ridgeless regression. Surprisingly, our smoothness requirement recovered the condition found in Bayesian setting and extend the conclusion to the minimum norm interpolation estimators.
♻ ☆ Vertical Federated Learning with Missing Features During Training and Inference ICLR 2025
Vertical federated learning trains models from feature-partitioned datasets across multiple clients, who collaborate without sharing their local data. Standard approaches assume that all feature partitions are available during both training and inference. Yet, in practice, this assumption rarely holds, as for many samples only a subset of the clients observe their partition. However, not utilizing incomplete samples during training harms generalization, and not supporting them during inference limits the utility of the model. Moreover, if any client leaves the federation after training, its partition becomes unavailable, rendering the learned model unusable. Missing feature blocks are therefore a key challenge limiting the applicability of vertical federated learning in real-world scenarios. To address this, we propose LASER-VFL, a vertical federated learning method for efficient training and inference of split neural network-based models that is capable of handling arbitrary sets of partitions. Our approach is simple yet effective, relying on the sharing of model parameters and on task-sampling to train a family of predictors. We show that LASER-VFL achieves a $\mathcal{O}({1}/{\sqrt{T}})$ convergence rate for nonconvex objectives and, under the Polyak-{\L}ojasiewicz inequality, it achieves linear convergence to a neighborhood of the optimum. Numerical experiments show improved performance of LASER-VFL over the baselines. Remarkably, this is the case even in the absence of missing features. For example, for CIFAR-100, we see an improvement in accuracy of $19.3\%$ when each of four feature blocks is observed with a probability of 0.5 and of $9.5\%$ when all features are observed. The code for this work is available at https://github.com/Valdeira/LASER-VFL.
comment: Accepted to ICLR 2025
♻ ☆ Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
♻ ☆ TianQuan-Climate: A Subseasonal-to-Seasonal Global Weather Model via Incorporate Climatology State
Subseasonal forecasting serves as an important support for Sustainable Development Goals (SDGs), such as climate challenges, agricultural yield and sustainable energy production. However, subseasonal forecasting is a complex task in meteorology due to dissipating initial conditions and delayed external forces. Although AI models are increasingly pushing the boundaries of this forecasting limit, they face two major challenges: error accumulation and Smoothness. To address these two challenges, we propose Climate Furnace Subseasonal-to-Seasonal (TianQuan-Climate), a novel machine learning model designed to provide global daily mean forecasts up to 45 days, covering five upper-air atmospheric variables at 13 pressure levels and two surface variables. Our proposed TianQuan-Climate has two advantages: 1) it utilizes a multi-model prediction strategy to reduce system error impacts in long-term subseasonal forecasts; 2) it incorporates a Content Fusion Module for climatological integration and extends ViT with uncertainty blocks (UD-ViT) to improve generalization by learning from uncertainty. We demonstrate the effectiveness of TianQuan-Climate on benchmarks for weather forecasting and climate projections within the 15 to 45-day range, where TianQuan-Climate outperforms existing numerical and AI methods.
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning AAAI2025
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
comment: Accepted by AAAI2025
♻ ☆ Towards More Efficient, Robust, Instance-adaptive, and Generalizable Online Learning
The primary goal of my Ph.D. study is to develop provably efficient and practical algorithms for data-driven online sequential decision-making under uncertainty. My work focuses on reinforcement learning (RL), multi-armed bandits, and their applications, including recommendation systems, computer networks, video analytics, and large language models (LLMs). Online learning methods, such as bandits and RL, have demonstrated remarkable success - ranging from outperforming human players in complex games like Atari and Go to advancing robotics, recommendation systems, and fine-tuning LLMs. Despite these successes, many established algorithms rely on idealized models that can fail under model misspecifications or adversarial perturbations, particularly in settings where accurate prior knowledge of the underlying model class is unavailable or where malicious users operate within dynamic systems. These challenges are pervasive in real-world applications, where robust and adaptive solutions are critical. Furthermore, while worst-case guarantees provide theoretical reliability, they often fail to capture instance-dependent performance, which can lead to more efficient and practical solutions. Another key challenge lies in generalizing to new, unseen environments, a crucial requirement for deploying these methods in dynamic and unpredictable settings. To address these limitations, my research aims to develop more efficient, robust, instance-adaptive, and generalizable online learning algorithms for both reinforcement learning and bandits. Towards this end, I focus on developing more efficient, robust, instance-adaptive, and generalizable for both general reinforcement learning (RL) and bandits.
comment: Ph.D. Thesis
♻ ☆ Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization AISTATS 2025
Minimax optimization recently is widely applied in many machine learning tasks such as generative adversarial networks, robust learning and reinforcement learning. In the paper, we study a class of nonconvex-nonconcave minimax optimization with nonsmooth regularization, where the objective function is possibly nonconvex on primal variable $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition on dual variable $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any specifical types. Theoretically, we prove that our methods have the best known sample complexity of $\tilde{O}(\epsilon^{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution. Some numerical experiments on PL-game and Wasserstein-GAN demonstrate the efficiency of our proposed methods.
comment: Published in AISTATS 2025
♻ ☆ Inspection and Control of Self-Generated-Text Recognition Ability in Llama3-8b-Instruct ICLR 2025
It has been reported that LLMs can recognize their own writing. As this has potential implications for AI safety, yet is relatively understudied, we investigate the phenomenon, seeking to establish whether it robustly occurs at the behavioral level, how the observed behavior is achieved, and whether it can be controlled. First, we find that the Llama3-8b-Instruct chat model - but not the base Llama3-8b model - can reliably distinguish its own outputs from those of humans, and present evidence that the chat model is likely using its experience with its own outputs, acquired during post-training, to succeed at the writing recognition task. Second, we identify a vector in the residual stream of the model that is differentially activated when the model makes a correct self-written-text recognition judgment, show that the vector activates in response to information relevant to self-authorship, present evidence that the vector is related to the concept of "self" in the model, and demonstrate that the vector is causally related to the model's ability to perceive and assert self-authorship. Finally, we show that the vector can be used to control both the model's behavior and its perception, steering the model to claim or disclaim authorship by applying the vector to the model's output as it generates it, and steering the model to believe or disbelieve it wrote arbitrary texts by applying the vector to them as the model reads them.
comment: 10 pages, 13 figs, 2 tables, accepted as conference paper to ICLR 2025
♻ ☆ MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN
The integration of intelligent and connected technologies in modern vehicles, while offering enhanced functionalities through Electronic Control Unit (ECU) and interfaces like OBD-II and telematics, also exposes the vehicle's in-vehicle network (IVN) to potential cyberattacks. Unlike prior work, we identify a new time-exciting threat model against IVN. These attacks inject malicious messages that exhibit a time-exciting effect, gradually manipulating network traffic to disrupt vehicle operations and compromise safety-critical functions. We systematically analyze the characteristics of the threat: dynamism, time-exciting impact, and low prior knowledge dependency. To validate its practicality, we replicate the attack on a real Advanced Driver Assistance System via Controller Area Network (CAN), exploiting Unified Diagnostic Service vulnerabilities and proposing four attack strategies. While CAN's integrity checks mitigate attacks, Ethernet migration (e.g., DoIP/SOME/IP) introduces new surfaces. We further investigate the feasibility of time-exciting threat under SOME/IP. To detect time-exciting threat, we introduce MDHP-Net, leveraging Multi-Dimentional Hawkes Process (MDHP) and temporal and message-wise feature extracting structures. Meanwhile, to estimate MDHP parameters, we developed the first GPU-optimized gradient descent solver for MDHP (MDHP-GDS). These modules significantly improves the detection rate under time-exciting attacks in multi-ECU IVN system. To address data scarcity, we release STEIA9, the first open-source dataset for time-exciting attacks, covering 9 Ethernet-based attack scenarios. Extensive experiments on STEIA9 (9 attack scenarios) show MDHP-Net outperforms 3 baselines, confirming attack feasibility and detection efficacy.
comment: Previously this version appeared as arXiv:2504.11867 which was submitted as a new work by accident
♻ ☆ Hedonic Prices and Quality Adjusted Price Indices Powered by AI
We develop empirical models that efficiently process large amounts of unstructured product data (text, images, prices, quantities) to produce accurate hedonic price estimates and derived indices. To achieve this, we generate abstract product attributes (or ``features'') from descriptions and images using deep neural networks. These attributes are then used to estimate the hedonic price function. To demonstrate the effectiveness of this approach, we apply the models to Amazon's data for first-party apparel sales, and estimate hedonic prices. The resulting models have a very high out-of-sample predictive accuracy, with $R^2$ ranging from $80\%$ to $90\%$. Finally, we construct the AI-based hedonic Fisher price index, chained at the year-over-year frequency, and contrast it with the CPI and other electronic indices.
comment: Revised CEMMAP Working Paper (CWP08/23)
♻ ☆ Integrated utilization of equations and small dataset in the Koopman operator: applications to forward and inverse problems
In recent years, there has been a growing interest in data-driven approaches in physics, such as extended dynamic mode decomposition (EDMD). The EDMD algorithm focuses on nonlinear time-evolution systems, and the constructed Koopman matrix yields the next-time prediction with only linear matrix-product operations. Note that data-driven approaches generally require a large dataset. However, assume that one has some prior knowledge, even if it may be ambiguous. Then, one could achieve sufficient learning from only a small dataset by taking advantage of the prior knowledge. This paper yields methods for incorporating ambiguous prior knowledge into the EDMD algorithm. The ambiguous prior knowledge in this paper corresponds to the underlying time-evolution equations with unknown parameters. First, we apply the proposed method to forward problems, i.e., prediction tasks. Second, we propose a scheme to apply the proposed method to inverse problems, i.e., parameter estimation tasks. We demonstrate the learning with only a small dataset using guiding examples, i.e., the Duffing and the van der Pol systems.
comment: 10 pages, 8 figures
♻ ☆ Discover physical concepts and equations with machine learning
Machine learning can uncover physical concepts or physical equations when prior knowledge from the other is available. However, these two aspects are often intertwined and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoencoders (VAE) with Neural Ordinary Differential Equations (Neural ODEs). This allows us to simultaneously discover physical concepts and governing equations from simulated experimental data across various physical systems. We apply the model to several examples inspired by the history of physics, including Copernicus' heliocentrism, Newton's law of gravity, Schr\"odinger's wave mechanics, and Pauli's spin-magnetic formulation. The results demonstrate that the correct physical theories can emerge in the neural network.
♻ ☆ Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Deep learning has become a popular tool across many scientific fields, including the study of differential equations, particularly partial differential equations. This work introduces the basic principles of deep learning and the Deep Galerkin method, which uses deep neural networks to solve differential equations. This primer aims to provide technical and practical insights into the Deep Galerkin method and its implementation. We demonstrate how to solve the one-dimensional heat equation step-by-step. We also show how to apply the Deep Galerkin method to solve systems of ordinary differential equations and integral equations, such as the Fredholm of the second kind. Additionally, we provide code snippets within the text and the complete source code on Github. The examples are designed so that one can run them on a simple computer without needing a GPU.
comment: 32 pages, 12 figures, primer (tutorial)
♻ ☆ Learning-augmented Online Minimization of Age of Information and Transmission Costs IEEE
We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information. The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, machine learning (ML) algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency: closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness: ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness.
comment: This paper has been accepted for publication in the IEEE Transactions on Network Science and Engineering (TNSE), April 2025. A preliminary version of this work is to be presented at IEEE INFOCOM 2024 Age and Semantics of Information Workshop
♻ ☆ Rethinking Timing Residuals: Advancing PET Detectors with Explicit TOF Corrections
PET is a functional imaging method that visualizes metabolic processes. TOF information can be derived from coincident detector signals and incorporated into image reconstruction to enhance the SNR. PET detectors are typically assessed by their CTR, but timing performance is degraded by various factors. Research on timing calibration seeks to mitigate these degradations and restore accurate timing information. While many calibration methods use analytical approaches, machine learning techniques have recently gained attention due to their flexibility. We developed a residual physics-based calibration approach that combines prior domain knowledge with the power of machine learning models. This approach begins with an initial analytical calibration addressing first-order skews. The remaining deviations, regarded as residual effects, are used to train machine learning models to eliminate higher-order skews. The key advantage is that the experimenter guides the learning process through the definition of timing residuals. In earlier studies, we developed models that directly predicted the expected time difference, which offered corrections only implicitly (implicit correction models). In this study, we introduce a new definition for timing residuals, enabling us to train models that directly predict correction values (explicit correction models). The explicit correction approach significantly simplifies data acquisition, improves linearity, and enhances timing performance from $371 \pm 6$ ps to $281 \pm 5$ ps for coincidences from 430 keV to 590 keV. Additionally, the new definition reduces model size, making it suitable for high-throughput applications like PET scanners. Experiments were conducted using two detector stacks composed of $4 \times 4$ LYSO:Ce,Ca crystals ($3.8\times 3.8\times 20$ mm$^{3}$) coupled to $4 \times 4$ Broadcom NUV-MT SiPMs and digitized with the TOFPET2 ASIC.
♻ ☆ Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
♻ ☆ Optimal Noise Reduction in Dense Mixed-Membership Stochastic Block Models under Diverging Spiked Eigenvalues Condition
Community detection is one of the most critical problems in modern network science. Its applications can be found in various fields, from protein modeling to social network analysis. Recently, many papers appeared studying the problem of overlapping community detection, where each node of a network may belong to several communities. In this work, we consider Mixed-Membership Stochastic Block Model (MMSB) first proposed by Airoldi et al. MMSB provides quite a general setting for modeling overlapping community structure in graphs. The central question of this paper is to reconstruct relations between communities given an observed network. We compare different approaches and establish the minimax lower bound on the estimation error. Then, we propose a new estimator that matches this lower bound. Theoretical results are proved under fairly general conditions on the considered model. Finally, we illustrate the theory in a series of experiments.
♻ ☆ MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
♻ ☆ Approximate Equivariance in Reinforcement Learning AISTATS 2025
Equivariant neural networks have shown great success in reinforcement learning, improving sample efficiency and generalization when there is symmetry in the task. However, in many problems, only approximate symmetry is present, which makes imposing exact symmetry inappropriate. Recently, approximately equivariant networks have been proposed for supervised classification and modeling physical systems. In this work, we develop approximately equivariant algorithms in reinforcement learning (RL). We define approximately equivariant MDPs and theoretically characterize the effect of approximate equivariance on the optimal $Q$ function. We propose novel RL architectures using relaxed group and steerable convolutions and experiment on several continuous control domains and stock trading with real financial data. Our results demonstrate that the approximately equivariant network performs on par with exactly equivariant networks when exact symmetries are present, and outperforms them when the domains exhibit approximate symmetry. As an added byproduct of these techniques, we observe increased robustness to noise at test time. Our code is available at https://github.com/jypark0/approx_equiv_rl.
comment: AISTATS 2025
♻ ☆ Combinatorial Multivariant Multi-Armed Bandits with Applications to Episodic Reinforcement Learning and Beyond
We introduce a novel framework of combinatorial multi-armed bandits (CMAB) with multivariant and probabilistically triggering arms (CMAB-MT), where the outcome of each arm is a $d$-dimensional multivariant random variable and the feedback follows a general arm triggering process. Compared with existing CMAB works, CMAB-MT not only enhances the modeling power but also allows improved results by leveraging distinct statistical properties for multivariant random variables. For CMAB-MT, we propose a general 1-norm multivariant and triggering probability-modulated smoothness condition, and an optimistic CUCB-MT algorithm built upon this condition. Our framework can include many important problems as applications, such as episodic reinforcement learning (RL) and probabilistic maximum coverage for goods distribution, all of which meet the above smoothness condition and achieve matching or improved regret bounds compared to existing works. Through our new framework, we build the first connection between the episodic RL and CMAB literature, by offering a new angle to solve the episodic RL through the lens of CMAB, which may encourage more interactions between these two important directions.
♻ ☆ Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development and synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis, while significantly reducing turnaround time.
♻ ☆ Beyond Self Attention: A Subquadratic Fourier Wavelet Transformer with Multi Modal Fusion
We revisit the use of spectral techniques to replaces the attention mechanism in Transformers through Fourier Transform based token mixing, and present a comprehensive and novel reformulation of this technique in next generation transformer models. We provide expanded literature context, detailed mathematical formulations of Fourier mixing and causal masking, and introduce a novel MultiDomain Fourier Wavelet Attention(MDFWA) that integrates frequency and time localized transforms to capture both global and local dependencies efficiently. We derive the complexity bounds, gradient formulas, and show that MDFWA achieves sub quadratic time and memory cost while improving expressive power. We validate our design on an abstractive summarization task using PubMed dataset, by enhancing the proposed approach with learned frequency bases, adaptive scale selection, and multi-modal extensions.
comment: 7 pages, 4 figures, 5 tables
♻ ☆ Co-domain Symmetry for Complex-Valued Deep Learning
We study complex-valued scaling as a type of symmetry natural and unique to complex-valued measurements and representations. Deep Complex Networks (DCN) extends real-valued algebra to the complex domain without addressing complex-valued scaling. SurReal takes a restrictive manifold view of complex numbers, adopting a distance metric to achieve complex-scaling invariance while losing rich complex-valued information. We analyze complex-valued scaling as a co-domain transformation and design novel equivariant and invariant neural network layer functions for this special transformation. We also propose novel complex-valued representations of RGB images, where complex-valued scaling indicates hue shift or correlated changes across color channels. Benchmarked on MSTAR, CIFAR10, CIFAR100, and SVHN, our co-domain symmetric (CDS) classifiers deliver higher accuracy, better generalization, robustness to co-domain transformations, and lower model bias and variance than DCN and SurReal with far fewer parameters.
♻ ☆ Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference AISTATS 2025
Variational inference (VI) can be cast as an optimization problem in which the variational parameters are tuned to closely align a variational distribution with the true posterior. The optimization task can be approached through vanilla gradient descent in black-box VI or natural-gradient descent in natural-gradient VI. In this work, we reframe VI as the optimization of an objective that concerns probability distributions defined over a \textit{variational parameter space}. Subsequently, we propose Wasserstein gradient descent for tackling this optimization problem. Notably, the optimization techniques, namely black-box VI and natural-gradient VI, can be reinterpreted as specific instances of the proposed Wasserstein gradient descent. To enhance the efficiency of optimization, we develop practical methods for numerically solving the discrete gradient flows. We validate the effectiveness of the proposed methods through empirical experiments on a synthetic dataset, supplemented by theoretical analyses.
comment: Accepted to AISTATS 2025
Multimedia 2
☆ BAROC: Concealing Packet Losses in LSNs with Bimodal Behavior Awareness for Livecast Ingestion IEEE
The advent of Low-Earth Orbit satellite networks (LSNs), exemplified by initiatives like \emph{Starlink}, \emph{OneWeb} and \emph{Kuiper}, has ushered in a new era of ``Internet from Space" global connectivity. Recent studies have shown that LSNs are capable of providing unprecedented download capacity and low latency to support Livecast viewing. However, Livecast ingestion still faces significant challenges, such as limited uplink capacity, bandwidth degradation, and the burst of packet loss due to frequent satellite reallocations, which cause previous recovery and adaptive solutions to be inferior under this new scenario. In this paper, we conduct an in-depth measurement study dedicated to understanding the implications of satellite reallocations, which reveals that the network status during reallocations with network anomalies exhibits a different distribution, leading to bimodal behaviors on the overall network performance. Motivated by this finding, we propose BAROC, a framework that can effectively conceal burst packet losses by combining a novel proposed MTP-Informer with bimodal behavior awareness during satellite reallocation. BAROC enhances video QoE on the server side by addressing the above challenges and jointly determining the optimal video encoding and recovery parameters. Our extensive evaluation shows that BAROC outperforms other video delivery recovery approaches, achieving an average PSNR improvement of $1.95$ dB and a maximum of $3.44$ dB, along with enhancements in frame rate and parity packet utilization. Additionally, a comprehensive ablation study is conducted to assess the effectiveness of MTP-Informer and components in BAROC.
comment: This is the preprint version of the paper accepted to IEEE INFOCOM 2025
♻ ☆ HistLLM: A Unified Framework for LLM-Based Multimodal Recommendation with User History Encoding and Compression
While large language models (LLMs) have proven effective in leveraging textual data for recommendations, their application to multimodal recommendation tasks remains relatively underexplored. Although LLMs can process multimodal information through projection functions that map visual features into their semantic space, recommendation tasks often require representing users' history interactions through lengthy prompts combining text and visual elements, which not only hampers training and inference efficiency but also makes it difficult for the model to accurately capture user preferences from complex and extended prompts, leading to reduced recommendation performance. To address this challenge, we introduce HistLLM, an innovative multimodal recommendation framework that integrates textual and visual features through a User History Encoding Module (UHEM), compressing multimodal user history interactions into a single token representation, effectively facilitating LLMs in processing user preferences. Extensive experiments demonstrate the effectiveness and efficiency of our proposed mechanism.
comment: We want to withdraw this paper and revise its experimental details. The revised version will be uploaded after further verification
Computer Vision and Pattern Recognition 147
☆ StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
3D Gaussian Splatting (3DGS) excels in photorealistic scene reconstruction but struggles with stylized scenarios (e.g., cartoons, games) due to fragmented textures, semantic misalignment, and limited adaptability to abstract aesthetics. We propose StyleMe3D, a holistic framework for 3D GS style transfer that integrates multi-modal style conditioning, multi-level semantic alignment, and perceptual quality enhancement. Our key insights include: (1) optimizing only RGB attributes preserves geometric integrity during stylization; (2) disentangling low-, medium-, and high-level semantics is critical for coherent style transfer; (3) scalability across isolated objects and complex scenes is essential for practical deployment. StyleMe3D introduces four novel components: Dynamic Style Score Distillation (DSSD), leveraging Stable Diffusion's latent space for semantic alignment; Contrastive Style Descriptor (CSD) for localized, content-aware texture transfer; Simultaneously Optimized Scale (SOS) to decouple style details and structural coherence; and 3D Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic prior trained on human-rated data to suppress artifacts and enhance visual harmony. Evaluated on NeRF synthetic dataset (objects) and tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art methods in preserving geometric details (e.g., carvings on sculptures) and ensuring stylistic consistency across scenes (e.g., coherent lighting in landscapes), while maintaining real-time rendering. This work bridges photorealistic 3D GS and artistic stylization, unlocking applications in gaming, virtual worlds, and digital art.
comment: 16 pages; Project page: https://styleme3d.github.io/
☆ VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models
Visual reasoning is a core component of human intelligence and a critical capability for advanced multimodal models. Yet current reasoning evaluations of multimodal large language models (MLLMs) often rely on text descriptions and allow language-based reasoning shortcuts, failing to measure genuine vision-centric reasoning. To address this, we introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories (e.g., quantitative shifts, spatial relations, attribute comparisons). These various types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives. We evaluate leading MLLMs on this benchmark and analyze their results to identify common failure modes. Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans-revealing significant gaps in visual reasoning. Furthermore, we provide a supplementary training dataset and a reinforcement-learning baseline to support further progress.
comment: Code, data, and baselines are available at https://visulogic-benchmark.github.io/VisuLogic
☆ Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
☆ DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
☆ Eagle 2.5: Boosting Long-Context Post-Training for Frontier Vision-Language Models
We introduce Eagle 2.5, a family of frontier vision-language models (VLMs) for long-context multimodal learning. Our work addresses the challenges in long video comprehension and high-resolution image understanding, introducing a generalist framework for both tasks. The proposed training framework incorporates Automatic Degrade Sampling and Image Area Preservation, two techniques that preserve contextual integrity and visual details. The framework also includes numerous efficiency optimizations in the pipeline for long-context data training. Finally, we propose Eagle-Video-110K, a novel dataset that integrates both story-level and clip-level annotations, facilitating long-video understanding. Eagle 2.5 demonstrates substantial improvements on long-context multimodal benchmarks, providing a robust solution to the limitations of existing VLMs. Notably, our best model Eagle 2.5-8B achieves 72.4% on Video-MME with 512 input frames, matching the results of top-tier commercial model such as GPT-4o and large-scale open-source models like Qwen2.5-VL-72B and InternVL2.5-78B.
☆ An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
☆ Diffusion Bridge Models for 3D Medical Image Translation
Diffusion tensor imaging (DTI) provides crucial insights into the microstructure of the human brain, but it can be time-consuming to acquire compared to more readily available T1-weighted (T1w) magnetic resonance imaging (MRI). To address this challenge, we propose a diffusion bridge model for 3D brain image translation between T1w MRI and DTI modalities. Our model learns to generate high-quality DTI fractional anisotropy (FA) images from T1w images and vice versa, enabling cross-modality data augmentation and reducing the need for extensive DTI acquisition. We evaluate our approach using perceptual similarity, pixel-level agreement, and distributional consistency metrics, demonstrating strong performance in capturing anatomical structures and preserving information on white matter integrity. The practical utility of the synthetic data is validated through sex classification and Alzheimer's disease classification tasks, where the generated images achieve comparable performance to real data. Our diffusion bridge model offers a promising solution for improving neuroimaging datasets and supporting clinical decision-making, with the potential to significantly impact neuroimaging research and clinical practice.
☆ Revealing the 3D Cosmic Web through Gravitationally Constrained Neural Fields
Weak gravitational lensing is the slight distortion of galaxy shapes caused primarily by the gravitational effects of dark matter in the universe. In our work, we seek to invert the weak lensing signal from 2D telescope images to reconstruct a 3D map of the universe's dark matter field. While inversion typically yields a 2D projection of the dark matter field, accurate 3D maps of the dark matter distribution are essential for localizing structures of interest and testing theories of our universe. However, 3D inversion poses significant challenges. First, unlike standard 3D reconstruction that relies on multiple viewpoints, in this case, images are only observed from a single viewpoint. This challenge can be partially addressed by observing how galaxy emitters throughout the volume are lensed. However, this leads to the second challenge: the shapes and exact locations of unlensed galaxies are unknown, and can only be estimated with a very large degree of uncertainty. This introduces an overwhelming amount of noise which nearly drowns out the lensing signal completely. Previous approaches tackle this by imposing strong assumptions about the structures in the volume. We instead propose a methodology using a gravitationally-constrained neural field to flexibly model the continuous matter distribution. We take an analysis-by-synthesis approach, optimizing the weights of the neural network through a fully differentiable physical forward model to reproduce the lensing signal present in image measurements. We showcase our method on simulations, including realistic simulated measurements of dark matter distributions that mimic data from upcoming telescope surveys. Our results show that our method can not only outperform previous methods, but importantly is also able to recover potentially surprising dark matter structures.
☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
☆ SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
☆ Shape-Guided Clothing Warping for Virtual Try-On ACM MM 2024
Image-based virtual try-on aims to seamlessly fit in-shop clothing to a person image while maintaining pose consistency. Existing methods commonly employ the thin plate spline (TPS) transformation or appearance flow to deform in-shop clothing for aligning with the person's body. Despite their promising performance, these methods often lack precise control over fine details, leading to inconsistencies in shape between clothing and the person's body as well as distortions in exposed limb regions. To tackle these challenges, we propose a novel shape-guided clothing warping method for virtual try-on, dubbed SCW-VTON, which incorporates global shape constraints and additional limb textures to enhance the realism and consistency of the warped clothing and try-on results. To integrate global shape constraints for clothing warping, we devise a dual-path clothing warping module comprising a shape path and a flow path. The former path captures the clothing shape aligned with the person's body, while the latter path leverages the mapping between the pre- and post-deformation of the clothing shape to guide the estimation of appearance flow. Furthermore, to alleviate distortions in limb regions of try-on results, we integrate detailed limb guidance by developing a limb reconstruction network based on masked image modeling. Through the utilization of SCW-VTON, we are able to generate try-on results with enhanced clothing shape consistency and precise control over details. Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. The code is available at https://github.com/xyhanHIT/SCW-VTON.
comment: Accepted by ACM MM 2024. The code is available at https://github.com/xyhanHIT/SCW-VTON
☆ Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
☆ Automated Measurement of Eczema Severity with Self-Supervised Learning
Automated diagnosis of eczema using images acquired from digital camera can enable individuals to self-monitor their recovery. The process entails first segmenting out the eczema region from the image and then measuring the severity of eczema in the segmented region. The state-of-the-art methods for automated eczema diagnosis rely on deep neural networks such as convolutional neural network (CNN) and have shown impressive performance in accurately measuring the severity of eczema. However, these methods require massive volume of annotated data to train which can be hard to obtain. In this paper, we propose a self-supervised learning framework for automated eczema diagnosis under limited training data regime. Our framework consists of two stages: i) Segmentation, where we use an in-context learning based algorithm called SegGPT for few-shot segmentation of eczema region from the image; ii) Feature extraction and classification, where we extract DINO features from the segmented regions and feed it to a multi-layered perceptron (MLP) for 4-class classification of eczema severity. When evaluated on a dataset of annotated "in-the-wild" eczema images, we show that our method outperforms (Weighted F1: 0.67 $\pm$ 0.01) the state-of-the-art deep learning methods such as finetuned Resnet-18 (Weighted F1: 0.44 $\pm$ 0.16) and Vision Transformer (Weighted F1: 0.40 $\pm$ 0.22). Our results show that self-supervised learning can be a viable solution for automated skin diagnosis where labeled data is scarce.
☆ Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
comment: 13 pages, 5 figures
☆ Tiger200K: Manually Curated High Visual Quality Video Dataset from UGC Platform
The recent surge in open-source text-to-video generation models has significantly energized the research community, yet their dependence on proprietary training datasets remains a key constraint. While existing open datasets like Koala-36M employ algorithmic filtering of web-scraped videos from early platforms, they still lack the quality required for fine-tuning advanced video generation models. We present Tiger200K, a manually curated high visual quality video dataset sourced from User-Generated Content (UGC) platforms. By prioritizing visual fidelity and aesthetic quality, Tiger200K underscores the critical role of human expertise in data curation, and providing high-quality, temporally consistent video-text pairs for fine-tuning and optimizing video generation architectures through a simple but effective pipeline including shot boundary detection, OCR, border detecting, motion filter and fine bilingual caption. The dataset will undergo ongoing expansion and be released as an open-source initiative to advance research and applications in video generative models. Project page: https://tinytigerpan.github.io/tiger200k/
comment: Project page: https://tinytigerpan.github.io/tiger200k/
☆ FaceCraft4D: Animated 3D Facial Avatar Generation from a Single Image
We present a novel framework for generating high-quality, animatable 4D avatar from a single image. While recent advances have shown promising results in 4D avatar creation, existing methods either require extensive multiview data or struggle with shape accuracy and identity consistency. To address these limitations, we propose a comprehensive system that leverages shape, image, and video priors to create full-view, animatable avatars. Our approach first obtains initial coarse shape through 3D-GAN inversion. Then, it enhances multiview textures using depth-guided warping signals for cross-view consistency with the help of the image diffusion model. To handle expression animation, we incorporate a video prior with synchronized driving signals across viewpoints. We further introduce a Consistent-Inconsistent training to effectively handle data inconsistencies during 4D reconstruction. Experimental results demonstrate that our method achieves superior quality compared to the prior art, while maintaining consistency across different viewpoints and expressions.
☆ DSPO: Direct Semantic Preference Optimization for Real-World Image Super-Resolution
Recent advances in diffusion models have improved Real-World Image Super-Resolution (Real-ISR), but existing methods lack human feedback integration, risking misalignment with human preference and may leading to artifacts, hallucinations and harmful content generation. To this end, we are the first to introduce human preference alignment into Real-ISR, a technique that has been successfully applied in Large Language Models and Text-to-Image tasks to effectively enhance the alignment of generated outputs with human preferences. Specifically, we introduce Direct Preference Optimization (DPO) into Real-ISR to achieve alignment, where DPO serves as a general alignment technique that directly learns from the human preference dataset. Nevertheless, unlike high-level tasks, the pixel-level reconstruction objectives of Real-ISR are difficult to reconcile with the image-level preferences of DPO, which can lead to the DPO being overly sensitive to local anomalies, leading to reduced generation quality. To resolve this dichotomy, we propose Direct Semantic Preference Optimization (DSPO) to align instance-level human preferences by incorporating semantic guidance, which is through two strategies: (a) semantic instance alignment strategy, implementing instance-level alignment to ensure fine-grained perceptual consistency, and (b) user description feedback strategy, mitigating hallucinations through semantic textual feedback on instance-level images. As a plug-and-play solution, DSPO proves highly effective in both one-step and multi-step SR frameworks.
☆ HSANET: A Hybrid Self-Cross Attention Network For Remote Sensing Change Detection
The remote sensing image change detection task is an essential method for large-scale monitoring. We propose HSANet, a network that uses hierarchical convolution to extract multi-scale features. It incorporates hybrid self-attention and cross-attention mechanisms to learn and fuse global and cross-scale information. This enables HSANet to capture global context at different scales and integrate cross-scale features, refining edge details and improving detection performance. We will also open-source our model code: https://github.com/ChengxiHAN/HSANet.
☆ An Efficient Aerial Image Detection with Variable Receptive Fields
Aerial object detection using unmanned aerial vehicles (UAVs) faces critical challenges including sub-10px targets, dense occlusions, and stringent computational constraints. Existing detectors struggle to balance accuracy and efficiency due to rigid receptive fields and redundant architectures. To address these limitations, we propose Variable Receptive Field DETR (VRF-DETR), a transformer-based detector incorporating three key components: 1) Multi-Scale Context Fusion (MSCF) module that dynamically recalibrates features through adaptive spatial attention and gated multi-scale fusion, 2) Gated Convolution (GConv) layer enabling parameter-efficient local-context modeling via depthwise separable operations and dynamic gating, and 3) Gated Multi-scale Fusion (GMCF) Bottleneck that hierarchically disentangles occluded objects through cascaded global-local interactions. Experiments on VisDrone2019 demonstrate VRF-DETR achieves 51.4\% mAP\textsubscript{50} and 31.8\% mAP\textsubscript{50:95} with only 13.5M parameters. This work establishes a new efficiency-accuracy Pareto frontier for UAV-based detection tasks.
☆ Acquire and then Adapt: Squeezing out Text-to-Image Model for Image Restoration CVPR 2025
Recently, pre-trained text-to-image (T2I) models have been extensively adopted for real-world image restoration because of their powerful generative prior. However, controlling these large models for image restoration usually requires a large number of high-quality images and immense computational resources for training, which is costly and not privacy-friendly. In this paper, we find that the well-trained large T2I model (i.e., Flux) is able to produce a variety of high-quality images aligned with real-world distributions, offering an unlimited supply of training samples to mitigate the above issue. Specifically, we proposed a training data construction pipeline for image restoration, namely FluxGen, which includes unconditional image generation, image selection, and degraded image simulation. A novel light-weighted adapter (FluxIR) with squeeze-and-excitation layers is also carefully designed to control the large Diffusion Transformer (DiT)-based T2I model so that reasonable details can be restored. Experiments demonstrate that our proposed method enables the Flux model to adapt effectively to real-world image restoration tasks, achieving superior scores and visual quality on both synthetic and real-world degradation datasets - at only about 8.5\% of the training cost compared to current approaches.
comment: Accepted by CVPR 2025
☆ Dynamic 3D KAN Convolution with Adaptive Grid Optimization for Hyperspectral Image Classification
Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes KANet based on an improved 3D-DenseNet model, consisting of 3D KAN Conv and an adaptive grid update mechanism. By introducing learnable univariate B-spline functions on network edges, specifically by flattening three-dimensional neighborhoods into vectors and applying B-spline-parameterized nonlinear activation functions to replace the fixed linear weights of traditional 3D convolutional kernels, we precisely capture complex spectral-spatial nonlinear relationships in hyperspectral data. Simultaneously, through a dynamic grid adjustment mechanism, we adaptively update the grid point positions of B-splines based on the statistical characteristics of input data, optimizing the resolution of spline functions to match the non-uniform distribution of spectral features, significantly improving the model's accuracy in high-dimensional data modeling and parameter efficiency, effectively alleviating the curse of dimensionality. This characteristic demonstrates superior neural scaling laws compared to traditional convolutional neural networks and reduces overfitting risks in small-sample and high-noise scenarios. KANet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
☆ Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate. Existing registration methods rely heavily on anatomical landmark-based workflows, which encounter two major limitations: 1) ambiguous landmark definitions fail to provide efficient markers for registration; 2) insufficient integration of intraoperative liver visual information in shape deformation modeling. To address these challenges, in this paper, we propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning, termed \ourmodel. This framework transforms the conventional 3D-2D workflow into a 3D-3D registration pipeline, which is then decoupled into rigid and non-rigid registration subtasks. \ourmodel~first introduces a feature-disentangled transformer to learn robust correspondences for recovering rigid transformations. Further, a structure-regularized deformation network is designed to adjust the preoperative model to align with the intraoperative liver surface. This network captures structural correlations through geometry similarity modeling in a low-rank transformer network. To facilitate the validation of the registration performance, we also construct an in-vivo registration dataset containing liver resection videos of 21 patients, called \emph{P2I-LReg}, which contains 346 keyframes that provide a global view of the liver together with liver mask annotations and calibrated camera intrinsic parameters. Extensive experiments and user studies on both synthetic and in-vivo datasets demonstrate the superiority and potential clinical applicability of our method.
comment: TMI under review
☆ "I Know It When I See It": Mood Spaces for Connecting and Expressing Visual Concepts
Expressing complex concepts is easy when they can be labeled or quantified, but many ideas are hard to define yet instantly recognizable. We propose a Mood Board, where users convey abstract concepts with examples that hint at the intended direction of attribute changes. We compute an underlying Mood Space that 1) factors out irrelevant features and 2) finds the connections between images, thus bringing relevant concepts closer. We invent a fibration computation to compress/decompress pre-trained features into/from a compact space, 50-100x smaller. The main innovation is learning to mimic the pairwise affinity relationship of the image tokens across exemplars. To focus on the coarse-to-fine hierarchical structures in the Mood Space, we compute the top eigenvector structure from the affinity matrix and define a loss in the eigenvector space. The resulting Mood Space is locally linear and compact, allowing image-level operations, such as object averaging, visual analogy, and pose transfer, to be performed as a simple vector operation in Mood Space. Our learning is efficient in computation without any fine-tuning, needs only a few (2-20) exemplars, and takes less than a minute to learn.
comment: Project page: https://huzeyann.github.io/mspace/
☆ Instance-Adaptive Keypoint Learning with Local-to-Global Geometric Aggregation for Category-Level Object Pose Estimation
Category-level object pose estimation aims to predict the 6D pose and size of previously unseen instances from predefined categories, requiring strong generalization across diverse object instances. Although many previous methods attempt to mitigate intra-class variations, they often struggle with instances exhibiting complex geometries or significant deviations from canonical shapes. To address this challenge, we propose INKL-Pose, a novel category-level object pose estimation framework that enables INstance-adaptive Keypoint Learning with local-to-global geometric aggregation. Specifically, our approach first predicts semantically consistent and geometric informative keypoints through an Instance-Adaptive Keypoint Generator, then refines them with: (1) a Local Keypoint Feature Aggregator capturing fine-grained geometries, and (2) a Global Keypoint Feature Aggregator using bidirectional Mamba for structural consistency. To enable bidirectional modeling in Mamba, we introduce a Feature Sequence Flipping strategy that preserves spatial coherence while constructing backward feature sequences. Additionally, we design a surface loss and a separation loss to enforce uniform coverage and spatial diversity in keypoint distribution. The generated keypoints are finally mapped to a canonical space for regressing the object's 6D pose and size. Extensive experiments on CAMERA25, REAL275, and HouseCat6D demonstrate that INKL-Pose achieves state-of-the-art performance and significantly outperforms existing methods.
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video
We present MoBGS, a novel deblurring dynamic 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a physically-inspired Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion. Our MoBGS framework ensures the temporal consistency of unseen latent timestamps and robust motion decomposition of static and dynamic regions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent advanced methods (DyBluRF and Deblur4DGS), achieving state-of-the-art performance for dynamic NVS under motion blur.
comment: The first two authors contributed equally to this work (equal contribution). The last two authors advised equally to this work
☆ Robust and Real-time Surface Normal Estimation from Stereo Disparities using Affine Transformations
This work introduces a novel method for surface normal estimation from rectified stereo image pairs, leveraging affine transformations derived from disparity values to achieve fast and accurate results. We demonstrate how the rectification of stereo image pairs simplifies the process of surface normal estimation by reducing computational complexity. To address noise reduction, we develop a custom algorithm inspired by convolutional operations, tailored to process disparity data efficiently. We also introduce adaptive heuristic techniques for efficiently detecting connected surface components within the images, further improving the robustness of the method. By integrating these methods, we construct a surface normal estimator that is both fast and accurate, producing a dense, oriented point cloud as the final output. Our method is validated using both simulated environments and real-world stereo images from the Middlebury and Cityscapes datasets, demonstrating significant improvements in real-time performance and accuracy when implemented on a GPU. Upon acceptance, the shader source code will be made publicly available to facilitate further research and reproducibility.
☆ Improving Sound Source Localization with Joint Slot Attention on Image and Audio CVPR 2025
Sound source localization (SSL) is the task of locating the source of sound within an image. Due to the lack of localization labels, the de facto standard in SSL has been to represent an image and audio as a single embedding vector each, and use them to learn SSL via contrastive learning. To this end, previous work samples one of local image features as the image embedding and aggregates all local audio features to obtain the audio embedding, which is far from optimal due to the presence of noise and background irrelevant to the actual target in the input. We present a novel SSL method that addresses this chronic issue by joint slot attention on image and audio. To be specific, two slots competitively attend image and audio features to decompose them into target and off-target representations, and only target representations of image and audio are used for contrastive learning. Also, we introduce cross-modal attention matching to further align local features of image and audio. Our method achieved the best in almost all settings on three public benchmarks for SSL, and substantially outperformed all the prior work in cross-modal retrieval.
comment: Accepted to CVPR 2025
☆ Unwarping Screen Content Images via Structure-texture Enhancement Network and Transformation Self-estimation
While existing implicit neural network-based image unwarping methods perform well on natural images, they struggle to handle screen content images (SCIs), which often contain large geometric distortions, text, symbols, and sharp edges. To address this, we propose a structure-texture enhancement network (STEN) with transformation self-estimation for SCI warping. STEN integrates a B-spline implicit neural representation module and a transformation error estimation and self-correction algorithm. It comprises two branches: the structure estimation branch (SEB), which enhances local aggregation and global dependency modeling, and the texture estimation branch (TEB), which improves texture detail synthesis using B-spline implicit neural representation. Additionally, the transformation self-estimation module autonomously estimates the transformation error and corrects the coordinate transformation matrix, effectively handling real-world image distortions. Extensive experiments on public SCI datasets demonstrate that our approach significantly outperforms state-of-the-art methods. Comparisons on well-known natural image datasets also show the potential of our approach for natural image distortion.
☆ A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
Latent fingerprint enhancement is a critical step in the process of latent fingerprint identification. Existing deep learning-based enhancement methods still fall short of practical application requirements, particularly in restoring low-quality fingerprint regions. Recognizing that different regions of latent fingerprints require distinct enhancement strategies, we propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies. Furthermore, to improve the generalization capability of the network, we integrate orientation field and minutiae-related modules into TBSFNet and introduce a Multi-Level Feature Guidance Network (MLFGNet). Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
☆ VistaDepth: Frequency Modulation With Bias Reweighting For Enhanced Long-Range Depth Estimation
Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
comment: 8 pages, 6 figures, 4 tables
☆ Hierarchical Attention Fusion of Visual and Textual Representations for Cross-Domain Sequential Recommendation SC
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
comment: Accepted at CogSCI 2025
☆ Structure-guided Diffusion Transformer for Low-Light Image Enhancement IEEE
While the diffusion transformer (DiT) has become a focal point of interest in recent years, its application in low-light image enhancement remains a blank area for exploration. Current methods recover the details from low-light images while inevitably amplifying the noise in images, resulting in poor visual quality. In this paper, we firstly introduce DiT into the low-light enhancement task and design a novel Structure-guided Diffusion Transformer based Low-light image enhancement (SDTL) framework. We compress the feature through wavelet transform to improve the inference efficiency of the model and capture the multi-directional frequency band. Then we propose a Structure Enhancement Module (SEM) that uses structural prior to enhance the texture and leverages an adaptive fusion strategy to achieve more accurate enhancement effect. In Addition, we propose a Structure-guided Attention Block (SAB) to pay more attention to texture-riched tokens and avoid interference from noisy areas in noise prediction. Extensive qualitative and quantitative experiments demonstrate that our method achieves SOTA performance on several popular datasets, validating the effectiveness of SDTL in improving image quality and the potential of DiT in low-light enhancement tasks.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
☆ ScanEdit: Hierarchically-Guided Functional 3D Scan Editing
With the fast pace of 3D capture technology and resulting abundance of 3D data, effective 3D scene editing becomes essential for a variety of graphics applications. In this work we present ScanEdit, an instruction-driven method for functional editing of complex, real-world 3D scans. To model large and interdependent sets of ob- jectswe propose a hierarchically-guided approach. Given a 3D scan decomposed into its object instances, we first construct a hierarchical scene graph representation to enable effective, tractable editing. We then leverage reason- ing capabilities of Large Language Models (LLMs) and translate high-level language instructions into actionable commands applied hierarchically to the scene graph. Fi- nally, ScanEdit integrates LLM-based guidance with ex- plicit physical constraints and generates realistic scenes where object arrangements obey both physics and common sense. In our extensive experimental evaluation ScanEdit outperforms state of the art and demonstrates excellent re- sults for a variety of real-world scenes and input instruc- tions.
comment: Project webpage: https://aminebdj.github.io/scanedit/ Video: https://www.youtube.com/watch?v=Dfmu2g6pVlg
☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperform state-of-the-art methods by at least 9.8\%/6.6\% and 6.4\%/6.2\% of average mAP/R@1 on two training orders.
comment: 12 pages, 5 figures
☆ DyST-XL: Dynamic Layout Planning and Content Control for Compositional Text-to-Video Generation
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving the precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis.
comment: 9 pages, 6 figures
☆ A Controllable Appearance Representation for Flexible Transfer and Editing
We present a method that computes an interpretable representation of material appearance within a highly compact, disentangled latent space. This representation is learned in a self-supervised fashion using an adapted FactorVAE. We train our model with a carefully designed unlabeled dataset, avoiding possible biases induced by human-generated labels. Our model demonstrates strong disentanglement and interpretability by effectively encoding material appearance and illumination, despite the absence of explicit supervision. Then, we use our representation as guidance for training a lightweight IP-Adapter to condition a diffusion pipeline that transfers the appearance of one or more images onto a target geometry, and allows the user to further edit the resulting appearance. Our approach offers fine-grained control over the generated results: thanks to the well-structured compact latent space, users can intuitively manipulate attributes such as hue or glossiness in image space to achieve the desired final appearance.
☆ Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models
Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
comment: 18 pages, 8 figures
☆ Insert Anything: Image Insertion via In-Context Editing in DiT
This work presents Insert Anything, a unified framework for reference-based image insertion that seamlessly integrates objects from reference images into target scenes under flexible, user-specified control guidance. Instead of training separate models for individual tasks, our approach is trained once on our new AnyInsertion dataset--comprising 120K prompt-image pairs covering diverse tasks such as person, object, and garment insertion--and effortlessly generalizes to a wide range of insertion scenarios. Such a challenging setting requires capturing both identity features and fine-grained details, while allowing versatile local adaptations in style, color, and texture. To this end, we propose to leverage the multimodal attention of the Diffusion Transformer (DiT) to support both mask- and text-guided editing. Furthermore, we introduce an in-context editing mechanism that treats the reference image as contextual information, employing two prompting strategies to harmonize the inserted elements with the target scene while faithfully preserving their distinctive features. Extensive experiments on AnyInsertion, DreamBooth, and VTON-HD benchmarks demonstrate that our method consistently outperforms existing alternatives, underscoring its great potential in real-world applications such as creative content generation, virtual try-on, and scene composition.
☆ Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
☆ NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: KwaiSR Dataset and Study CVPR
In this work, we build the first benchmark dataset for short-form UGC Image Super-resolution in the wild, termed KwaiSR, intending to advance the research on developing image super-resolution algorithms for short-form UGC platforms. This dataset is collected from the Kwai Platform, which is composed of two parts, i.e., synthetic and wild parts. Among them, the synthetic dataset, including 1,900 image pairs, is produced by simulating the degradation following the distribution of real-world low-quality short-form UGC images, aiming to provide the ground truth for training and objective comparison in the validation/testing. The wild dataset contains low-quality images collected directly from the Kwai Platform, which are filtered using the quality assessment method KVQ from the Kwai Platform. As a result, the KwaiSR dataset contains 1800 synthetic image pairs and 1900 wild images, which are divided into training, validation, and testing parts with a ratio of 8:1:1. Based on the KwaiSR dataset, we organize the NTIRE 2025 challenge on a second short-form UGC Video quality assessment and enhancement, which attracts lots of researchers to develop the algorithm for it. The results of this competition have revealed that our KwaiSR dataset is pretty challenging for existing Image SR methods, which is expected to lead to a new direction in the image super-resolution field. The dataset can be found from https://lixinustc.github.io/NTIRE2025-KVQE-KwaSR-KVQ.github.io/.
comment: KwaiSR dataset, a new dataset for image super-resolution, used for CVPR NTIRE 2025 Challenge; CVPR 2025 workshop paper
☆ Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 3.49 million questions and 3.32 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on eight representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.
☆ RealisDance-DiT: Simple yet Strong Baseline towards Controllable Character Animation in the Wild
Controllable character animation remains a challenging problem, particularly in handling rare poses, stylized characters, character-object interactions, complex illumination, and dynamic scenes. To tackle these issues, prior work has largely focused on injecting pose and appearance guidance via elaborate bypass networks, but often struggles to generalize to open-world scenarios. In this paper, we propose a new perspective that, as long as the foundation model is powerful enough, straightforward model modifications with flexible fine-tuning strategies can largely address the above challenges, taking a step towards controllable character animation in the wild. Specifically, we introduce RealisDance-DiT, built upon the Wan-2.1 video foundation model. Our sufficient analysis reveals that the widely adopted Reference Net design is suboptimal for large-scale DiT models. Instead, we demonstrate that minimal modifications to the foundation model architecture yield a surprisingly strong baseline. We further propose the low-noise warmup and "large batches and small iterations" strategies to accelerate model convergence during fine-tuning while maximally preserving the priors of the foundation model. In addition, we introduce a new test dataset that captures diverse real-world challenges, complementing existing benchmarks such as TikTok dataset and UBC fashion video dataset, to comprehensively evaluate the proposed method. Extensive experiments show that RealisDance-DiT outperforms existing methods by a large margin.
comment: Project Page: https://thefoxofsky.github.io/project_pages_new/RealisDance-DiT/index
☆ Cyc3D: Fine-grained Controllable 3D Generation via Cycle Consistency Regularization
Despite the remarkable progress of 3D generation, achieving controllability, i.e., ensuring consistency between generated 3D content and input conditions like edge and depth, remains a significant challenge. Existing methods often struggle to maintain accurate alignment, leading to noticeable discrepancies. To address this issue, we propose \name{}, a new framework that enhances controllable 3D generation by explicitly encouraging cyclic consistency between the second-order 3D content, generated based on extracted signals from the first-order generation, and its original input controls. Specifically, we employ an efficient feed-forward backbone that can generate a 3D object from an input condition and a text prompt. Given an initial viewpoint and a control signal, a novel view is rendered from the generated 3D content, from which the extracted condition is used to regenerate the 3D content. This re-generated output is then rendered back to the initial viewpoint, followed by another round of control signal extraction, forming a cyclic process with two consistency constraints. \emph{View consistency} ensures coherence between the two generated 3D objects, measured by semantic similarity to accommodate generative diversity. \emph{Condition consistency} aligns the final extracted signal with the original input control, preserving structural or geometric details throughout the process. Extensive experiments on popular benchmarks demonstrate that \name{} significantly improves controllability, especially for fine-grained details, outperforming existing methods across various conditions (e.g., +14.17\% PSNR for edge, +6.26\% PSNR for sketch).
comment: Preprint version. The code will be open after finishing the reviewing process
☆ 3D Gaussian Head Avatars with Expressive Dynamic Appearances by Compact Tensorial Representations
Recent studies have combined 3D Gaussian and 3D Morphable Models (3DMM) to construct high-quality 3D head avatars. In this line of research, existing methods either fail to capture the dynamic textures or incur significant overhead in terms of runtime speed or storage space. To this end, we propose a novel method that addresses all the aforementioned demands. In specific, we introduce an expressive and compact representation that encodes texture-related attributes of the 3D Gaussians in the tensorial format. We store appearance of neutral expression in static tri-planes, and represents dynamic texture details for different expressions using lightweight 1D feature lines, which are then decoded into opacity offset relative to the neutral face. We further propose adaptive truncated opacity penalty and class-balanced sampling to improve generalization across different expressions. Experiments show this design enables accurate face dynamic details capturing while maintains real-time rendering and significantly reduces storage costs, thus broadening the applicability to more scenarios.
☆ PIV-FlowDiffuser:Transfer-learning-based denoising diffusion models for PIV
Deep learning algorithms have significantly reduced the computational time and improved the spatial resolution of particle image velocimetry~(PIV). However, the models trained on synthetic datasets might have a degraded performance on practical particle images due to domain gaps. As a result, special residual patterns are often observed for the vector fields of deep learning-based estimators. To reduce the special noise step-by-step, we employ a denoising diffusion model~(FlowDiffuser) for PIV analysis. And the data-hungry iterative denoising diffusion model is trained via a transfer learning strategy, resulting in our PIV-FlowDiffuser method. Specifically, (1) pre-training a FlowDiffuser model with multiple optical flow datasets of the computer vision community, such as Sintel, KITTI, etc; (2) fine-tuning the pre-trained model on synthetic PIV datasets. Note that the PIV images are upsampled by a factor of two to resolve the small-scale turbulent flow structures. The visualized results indicate that our PIV-FlowDiffuser effectively suppresses the noise patterns. Therefore, the denoising diffusion model reduces the average end-point error~($AEE$) by 59.4% over RAFT256-PIV baseline on the classic Cai's dataset. Besides, PIV-FlowDiffuser exhibits enhanced generalization performance on unseen particle images due to transfer learning. Overall, this study highlights the transfer-learning-based denoising diffusion models for PIV. And a detailed implementation is recommended for interested readers in the repository https://github.com/Zhu-Qianyu/PIV-FlowDiffuser.
☆ TWIG: Two-Step Image Generation using Segmentation Masks in Diffusion Models
In today's age of social media and marketing, copyright issues can be a major roadblock to the free sharing of images. Generative AI models have made it possible to create high-quality images, but concerns about copyright infringement are a hindrance to their abundant use. As these models use data from training images to generate new ones, it is often a daunting task to ensure they do not violate intellectual property rights. Some AI models have even been noted to directly copy copyrighted images, a problem often referred to as source copying. Traditional copyright protection measures such as watermarks and metadata have also proven to be futile in this regard. To address this issue, we propose a novel two-step image generation model inspired by the conditional diffusion model. The first step involves creating an image segmentation mask for some prompt-based generated images. This mask embodies the shape of the image. Thereafter, the diffusion model is asked to generate the image anew while avoiding the shape in question. This approach shows a decrease in structural similarity from the training image, i.e. we are able to avoid the source copying problem using this approach without expensive retraining of the model or user-centered prompt generation techniques. This makes our approach the most computationally inexpensive approach to avoiding both copyright infringement and source copying for diffusion model-based image generation.
comment: 16 pages, 9 figures, preprint
☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
☆ DyFo: A Training-Free Dynamic Focus Visual Search for Enhancing LMMs in Fine-Grained Visual Understanding CVPR 2025
Humans can effortlessly locate desired objects in cluttered environments, relying on a cognitive mechanism known as visual search to efficiently filter out irrelevant information and focus on task-related regions. Inspired by this process, we propose Dyfo (Dynamic Focus), a training-free dynamic focusing visual search method that enhances fine-grained visual understanding in large multimodal models (LMMs). Unlike existing approaches which require additional modules or data collection, Dyfo leverages a bidirectional interaction between LMMs and visual experts, using a Monte Carlo Tree Search (MCTS) algorithm to simulate human-like focus adjustments. This enables LMMs to focus on key visual regions while filtering out irrelevant content, without introducing additional training caused by vocabulary expansion or the integration of specialized localization modules. Experimental results demonstrate that Dyfo significantly improves fine-grained visual understanding and reduces hallucination issues in LMMs, achieving superior performance across both fixed and dynamic resolution models. The code is available at https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
comment: Accepted by CVPR 2025 (Hightlight). Project page with code: https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
☆ GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to identify anomalies in unseen categories by leveraging CLIP's zero-shot capabilities to match text prompts with visual features. A key challenge in ZSAD is learning general prompts stably and utilizing them effectively, while maintaining both generalizability and category specificity. Although general prompts have been explored in prior works, achieving their stable optimization and effective deployment remains a significant challenge. In this work, we propose GenCLIP, a novel framework that learns and leverages general prompts more effectively through multi-layer prompting and dual-branch inference. Multi-layer prompting integrates category-specific visual cues from different CLIP layers, enriching general prompts with more comprehensive and robust feature representations. By combining general prompts with multi-layer visual features, our method further enhances its generalization capability. To balance specificity and generalization, we introduce a dual-branch inference strategy, where a vision-enhanced branch captures fine-grained category-specific features, while a query-only branch prioritizes generalization. The complementary outputs from both branches improve the stability and reliability of anomaly detection across unseen categories. Additionally, we propose an adaptive text prompt filtering mechanism, which removes irrelevant or atypical class names not encountered during CLIP's training, ensuring that only meaningful textual inputs contribute to the final vision-language alignment.
☆ Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
The performance of OCR has improved with the evolution of AI technology. As OCR continues to broaden its range of applications, the increased likelihood of interference introduced by various usage environments can prevent it from achieving its inherent performance. This results in reduced recognition accuracy under certain conditions, and makes the quality control of recognition devices more challenging. Therefore, to ensure that users can properly utilize OCR, we compiled the real-world external disturbance factors that cause performance degradation, along with the resulting image degradation phenomena, into an external disturbance factor table and, by also indicating how to make use of it, organized them into guidelines.
comment: 16 pages, 14 figures
☆ OmniAudio: Generating Spatial Audio from 360-Degree Video
Traditional video-to-audio generation techniques primarily focus on field-of-view (FoV) video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and FoV video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets will be released at https://github.com/liuhuadai/OmniAudio. The demo page is available at https://OmniAudio-360V2SA.github.io.
comment: Work in Progress
☆ Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
comment: Project page: https://github.com/ewrfcas/Uni3C
☆ WMKA-Net: A Weighted Multi-Kernel Attention NetworkMethod for Retinal Vessel Segmentation
We propose a novel retinal vessel segmentation network, the Weighted Multi-Kernel Attention Network (WMKA-Net), which aims to address the issues of insufficient multiscale feature capture, loss of contextual information, and noise sensitivity in retinal vessel segmentation. WMKA-Net significantly improves the segmentation performance of small vessels and low-contrast regions by integrating several innovative components, including the MultiKernelFeature Fusion Module (MKDC), the Progressive Feature Weighting Fusion Strategy (UDFF), and the Attention Mechanism Module (AttentionBlock). The MKDC module employs multiscale parallel convolutional kernels to extract vessel characteristics, thereby enhancing the ability to capture complex vascular structures. The UDFF strategy optimizes the transmission of feature information by weighted fusion of high- and low-level features. The AttentionBlock highlights key regions and suppresses noise interference through the attention mechanism. Experimental results demonstrate that WMKA-Net achieves excellent segmentation performance in multiple public datasets, particularly in segmentation of small vessels and processing of pathological regions. This work provides a robust and efficient new method for segmentation of the retinal vessel.
☆ Memory-Augmented Dual-Decoder Networks for Multi-Class Unsupervised Anomaly Detection
Recent advances in unsupervised anomaly detection (UAD) have shifted from single-class to multi-class scenarios. In such complex contexts, the increasing pattern diversity has brought two challenges to reconstruction-based approaches: (1) over-generalization: anomalies that are subtle or share compositional similarities with normal patterns may be reconstructed with high fidelity, making them difficult to distinguish from normal instances; and (2) insufficient normality reconstruction: complex normal features, such as intricate textures or fine-grained structures, may not be faithfully reconstructed due to the model's limited representational capacity, resulting in false positives. Existing methods typically focus on addressing the former, which unintentionally exacerbate the latter, resulting in inadequate representation of intricate normal patterns. To concurrently address these two challenges, we propose a Memory-augmented Dual-Decoder Networks (MDD-Net). This network includes two critical components: a Dual-Decoder Reverse Distillation Network (DRD-Net) and a Class-aware Memory Module (CMM). Specifically, the DRD-Net incorporates a restoration decoder designed to recover normal features from synthetic abnormal inputs and an identity decoder to reconstruct features that maintain the anomalous semantics. By exploiting the discrepancy between features produced by two decoders, our approach refines anomaly scores beyond the conventional encoder-decoder comparison paradigm, effectively reducing false positives and enhancing localization accuracy. Furthermore, the CMM explicitly encodes and preserves class-specific normal prototypes, actively steering the network away from anomaly reconstruction. Comprehensive experimental results across several benchmarks demonstrate the superior performance of our MDD-Net framework over current SoTA approaches in multi-class UAD tasks.
☆ Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
☆ Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification
The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important discriminative cues in visible, near infrared and thermal infrared spectra are lost. Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum, but how to justify the primary spectrum is a challenging problem. In addition, when the quality of the primary spectrum is low, the enhancement effect would be greatly degraded, thus limiting the performance of multi-spectral vehicle ReID. To address these problems, we propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data and leverages it to supervise the selection of primary spectrum and enhance all spectra features in a collaborative manner, for robust multi-spectral vehicle ReID. First, to integrate the rich cues from all spectra data, we design the Proxy Generator (PG) to progressively aggregate multi-spectral features. Second, we design the Dynamic Quality Sort Module (DQSM), which sorts all spectra data by measuring their correlations with the proxy, to accurately select the primary spectra with the highest correlation. Finally, we design the Collaborative Enhancement Module (CEM) to effectively compensate for missing contents of all spectra by collaborating the primary spectra and the proxy, thereby mitigating the impact of low-quality primary spectra. Extensive experiments on three benchmark datasets are conducted to validate the efficacy of the proposed approach against other multi-spectral vehicle ReID methods. The codes will be released at https://github.com/yongqisun/CoEN.
☆ ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
☆ Twin Co-Adaptive Dialogue for Progressive Image Generation
Modern text-to-image generation systems have enabled the creation of remarkably realistic and high-quality visuals, yet they often falter when handling the inherent ambiguities in user prompts. In this work, we present Twin-Co, a framework that leverages synchronized, co-adaptive dialogue to progressively refine image generation. Instead of a static generation process, Twin-Co employs a dynamic, iterative workflow where an intelligent dialogue agent continuously interacts with the user. Initially, a base image is generated from the user's prompt. Then, through a series of synchronized dialogue exchanges, the system adapts and optimizes the image according to evolving user feedback. The co-adaptive process allows the system to progressively narrow down ambiguities and better align with user intent. Experiments demonstrate that Twin-Co not only enhances user experience by reducing trial-and-error iterations but also improves the quality of the generated images, streamlining the creative process across various applications.
☆ Bridge the Gap: From Weak to Full Supervision for Temporal Action Localization with PseudoFormer CVPR 2025
Weakly-supervised Temporal Action Localization (WTAL) has achieved notable success but still suffers from a lack of temporal annotations, leading to a performance and framework gap compared with fully-supervised methods. While recent approaches employ pseudo labels for training, three key challenges: generating high-quality pseudo labels, making full use of different priors, and optimizing training methods with noisy labels remain unresolved. Due to these perspectives, we propose PseudoFormer, a novel two-branch framework that bridges the gap between weakly and fully-supervised Temporal Action Localization (TAL). We first introduce RickerFusion, which maps all predicted action proposals to a global shared space to generate pseudo labels with better quality. Subsequently, we leverage both snippet-level and proposal-level labels with different priors from the weak branch to train the regression-based model in the full branch. Finally, the uncertainty mask and iterative refinement mechanism are applied for training with noisy pseudo labels. PseudoFormer achieves state-of-the-art WTAL results on the two commonly used benchmarks, THUMOS14 and ActivityNet1.3. Besides, extensive ablation studies demonstrate the contribution of each component of our method.
comment: CVPR 2025: IEEE Conference on Computer Vision and Pattern Recognition
☆ Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs.
☆ Reliable Multi-Modal Object Re-Identification via Modality-Aware Graph Reasoning
Multi-modal data provides abundant and diverse object information, crucial for effective modal interactions in Re-Identification (ReID) tasks. However, existing approaches often overlook the quality variations in local features and fail to fully leverage the complementary information across modalities, particularly in the case of low-quality features. In this paper, we propose to address this issue by leveraging a novel graph reasoning model, termed the Modality-aware Graph Reasoning Network (MGRNet). Specifically, we first construct modality-aware graphs to enhance the extraction of fine-grained local details by effectively capturing and modeling the relationships between patches. Subsequently, the selective graph nodes swap operation is employed to alleviate the adverse effects of low-quality local features by considering both local and global information, enhancing the representation of discriminative information. Finally, the swapped modality-aware graphs are fed into the local-aware graph reasoning module, which propagates multi-modal information to yield a reliable feature representation. Another advantage of the proposed graph reasoning approach is its ability to reconstruct missing modal information by exploiting inherent structural relationships, thereby minimizing disparities between different modalities. Experimental results on four benchmarks (RGBNT201, Market1501-MM, RGBNT100, MSVR310) indicate that the proposed method achieves state-of-the-art performance in multi-modal object ReID. The code for our method will be available upon acceptance.
☆ Distribution-aware Dataset Distillation for Efficient Image Restoration
With the exponential increase in image data, training an image restoration model is laborious. Dataset distillation is a potential solution to this problem, yet current distillation techniques are a blank canvas in the field of image restoration. To fill this gap, we propose the Distribution-aware Dataset Distillation method (TripleD), a new framework that extends the principles of dataset distillation to image restoration. Specifically, TripleD uses a pre-trained vision Transformer to extract features from images for complexity evaluation, and the subset (the number of samples is much smaller than the original training set) is selected based on complexity. The selected subset is then fed through a lightweight CNN that fine-tunes the image distribution to align with the distribution of the original dataset at the feature level. To efficiently condense knowledge, the training is divided into two stages. Early stages focus on simpler, low-complexity samples to build foundational knowledge, while later stages select more complex and uncertain samples as the model matures. Our method achieves promising performance on multiple image restoration tasks, including multi-task image restoration, all-in-one image restoration, and ultra-high-definition image restoration tasks. Note that we can train a state-of-the-art image restoration model on an ultra-high-definition (4K resolution) dataset using only one consumer-grade GPU in less than 8 hours (500 savings in computing resources and immeasurable training time).
☆ ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
☆ Real-Time Sleepiness Detection for Driver State Monitoring System
A driver face monitoring system can detect driver fatigue, which is a significant factor in many accidents, using computer vision techniques. In this paper, we present a real-time technique for driver eye state detection. First, the face is detected, and the eyes are located within the face region for tracking. A normalized cross-correlation-based online dynamic template matching technique, combined with Kalman filter tracking, is proposed to track the detected eye positions in subsequent image frames. A support vector machine with histogram of oriented gradients (HOG) features is used to classify the state of the eyes as open or closed. If the eyes remain closed for a specified period, the driver is considered to be asleep, and an alarm is triggered.
comment: 8 pages, published in GST 2015
☆ A Survey on Small Sample Imbalance Problem: Metrics, Feature Analysis, and Solutions
The small sample imbalance (S&I) problem is a major challenge in machine learning and data analysis. It is characterized by a small number of samples and an imbalanced class distribution, which leads to poor model performance. In addition, indistinct inter-class feature distributions further complicate classification tasks. Existing methods often rely on algorithmic heuristics without sufficiently analyzing the underlying data characteristics. We argue that a detailed analysis from the data perspective is essential before developing an appropriate solution. Therefore, this paper proposes a systematic analytical framework for the S\&I problem. We first summarize imbalance metrics and complexity analysis methods, highlighting the need for interpretable benchmarks to characterize S&I problems. Second, we review recent solutions for conventional, complexity-based, and extreme S&I problems, revealing methodological differences in handling various data distributions. Our summary finds that resampling remains a widely adopted solution. However, we conduct experiments on binary and multiclass datasets, revealing that classifier performance differences significantly exceed the improvements achieved through resampling. Finally, this paper highlights open questions and discusses future trends.
☆ Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
☆ When Cloud Removal Meets Diffusion Model in Remote Sensing
Cloud occlusion significantly hinders remote sensing applications by obstructing surface information and complicating analysis. To address this, we propose DC4CR (Diffusion Control for Cloud Removal), a novel multimodal diffusion-based framework for cloud removal in remote sensing imagery. Our method introduces prompt-driven control, allowing selective removal of thin and thick clouds without relying on pre-generated cloud masks, thereby enhancing preprocessing efficiency and model adaptability. Additionally, we integrate low-rank adaptation for computational efficiency, subject-driven generation for improved generalization, and grouped learning to enhance performance on small datasets. Designed as a plug-and-play module, DC4CR seamlessly integrates into existing cloud removal models, providing a scalable and robust solution. Extensive experiments on the RICE and CUHK-CR datasets demonstrate state-of-the-art performance, achieving superior cloud removal across diverse conditions. This work presents a practical and efficient approach for remote sensing image processing with broad real-world applications.
☆ How Effective Can Dropout Be in Multiple Instance Learning ?
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
☆ Split-quaternions for perceptual white balance
We propose a perceptual chromatic adaptation transform for white balance that makes use of split-quaternions. The novelty of the present work, which is motivated by a recently developed quantum-like model of color perception, consists at stressing the link between the algebraic structures appearing in this model and a certain sub-algebra of the split-quaternions. We show the potentiality of this approach for color image processing applications by proposing a chromatic adaptation transform, implemented via an appropriate use of the split-quaternion multiplication. Moreover, quantitative comparisons with the widely used state-of-the art von Kries chromatic adaptation transform are provided.
☆ Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Counterfactuals are a popular framework for interpreting machine learning predictions. These what if explanations are notoriously challenging to create for computer vision models: standard gradient-based methods are prone to produce adversarial examples, in which imperceptible modifications to image pixels provoke large changes in predictions. We introduce a new, easy-to-implement framework for counterfactual images that can flexibly adapt to contemporary advances in generative modeling. Our method, Counterfactual Attacks, resembles an adversarial attack on the representation of the image along a low-dimensional manifold. In addition, given an auxiliary dataset of image descriptors, we show how to accompany counterfactuals with feature attribution that quantify the changes between the original and counterfactual images. These importance scores can be aggregated into global counterfactual explanations that highlight the overall features driving model predictions. While this unification is possible for any counterfactual method, it has particular computational efficiency for ours. We demonstrate the efficacy of our approach with the MNIST and CelebA datasets.
☆ Emergence and Evolution of Interpretable Concepts in Diffusion Models
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from noise through a process called reverse diffusion. Understanding the dynamics of the reverse diffusion process is crucial in steering the generation and achieving high sample quality. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques, such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through granular analysis of their internal representations. These MI techniques have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered concepts have a causal effect on the model output and can be leveraged to steer the generative process. We design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages of diffusion image composition is finalized, however stylistic interventions are effective, and (3) in the final stages of diffusion only minor textural details are subject to change.
comment: 32 pages, 32 figures, preliminary version
☆ Manifold Induced Biases for Zero-shot and Few-shot Detection of Generated Images ICLR 2025
Distinguishing between real and AI-generated images, commonly referred to as 'image detection', presents a timely and significant challenge. Despite extensive research in the (semi-)supervised regime, zero-shot and few-shot solutions have only recently emerged as promising alternatives. Their main advantage is in alleviating the ongoing data maintenance, which quickly becomes outdated due to advances in generative technologies. We identify two main gaps: (1) a lack of theoretical grounding for the methods, and (2) significant room for performance improvements in zero-shot and few-shot regimes. Our approach is founded on understanding and quantifying the biases inherent in generated content, where we use these quantities as criteria for characterizing generated images. Specifically, we explore the biases of the implicit probability manifold, captured by a pre-trained diffusion model. Through score-function analysis, we approximate the curvature, gradient, and bias towards points on the probability manifold, establishing criteria for detection in the zero-shot regime. We further extend our contribution to the few-shot setting by employing a mixture-of-experts methodology. Empirical results across 20 generative models demonstrate that our method outperforms current approaches in both zero-shot and few-shot settings. This work advances the theoretical understanding and practical usage of generated content biases through the lens of manifold analysis.
comment: Accepted to ICLR 2025 (The International Conference on Learning Representations)
☆ AGI Is Coming... Right After AI Learns to Play Wordle
This paper investigates multimodal agents, in particular, OpenAI's Computer-User Agent (CUA), trained to control and complete tasks through a standard computer interface, similar to humans. We evaluated the agent's performance on the New York Times Wordle game to elicit model behaviors and identify shortcomings. Our findings revealed a significant discrepancy in the model's ability to recognize colors correctly depending on the context. The model had a $5.36\%$ success rate over several hundred runs across a week of Wordle. Despite the immense enthusiasm surrounding AI agents and their potential to usher in Artificial General Intelligence (AGI), our findings reinforce the fact that even simple tasks present substantial challenges for today's frontier AI models. We conclude with a discussion of the potential underlying causes, implications for future development, and research directions to improve these AI systems.
☆ IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
☆ Context Aware Grounded Teacher for Source Free Object Detection
We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.
☆ MirrorVerse: Pushing Diffusion Models to Realistically Reflect the World CVPR 2025
Diffusion models have become central to various image editing tasks, yet they often fail to fully adhere to physical laws, particularly with effects like shadows, reflections, and occlusions. In this work, we address the challenge of generating photorealistic mirror reflections using diffusion-based generative models. Despite extensive training data, existing diffusion models frequently overlook the nuanced details crucial to authentic mirror reflections. Recent approaches have attempted to resolve this by creating synhetic datasets and framing reflection generation as an inpainting task; however, they struggle to generalize across different object orientations and positions relative to the mirror. Our method overcomes these limitations by introducing key augmentations into the synthetic data pipeline: (1) random object positioning, (2) randomized rotations, and (3) grounding of objects, significantly enhancing generalization across poses and placements. To further address spatial relationships and occlusions in scenes with multiple objects, we implement a strategy to pair objects during dataset generation, resulting in a dataset robust enough to handle these complex scenarios. Achieving generalization to real-world scenes remains a challenge, so we introduce a three-stage training curriculum to develop the MirrorFusion 2.0 model to improve real-world performance. We provide extensive qualitative and quantitative evaluations to support our approach. The project page is available at: https://mirror-verse.github.io/.
comment: Accepted to CVPR 2025. Project Page: https://mirror-verse.github.io/
☆ ICGM-FRAX: Iterative Cross Graph Matching for Hip Fracture Risk Assessment using Dual-energy X-ray Absorptiometry Images
Hip fractures represent a major health concern, particularly among the elderly, often leading decreased mobility and increased mortality. Early and accurate detection of at risk individuals is crucial for effective intervention. In this study, we propose Iterative Cross Graph Matching for Hip Fracture Risk Assessment (ICGM-FRAX), a novel approach for predicting hip fractures using Dual-energy X-ray Absorptiometry (DXA) images. ICGM-FRAX involves iteratively comparing a test (subject) graph with multiple template graphs representing the characteristics of hip fracture subjects to assess the similarity and accurately to predict hip fracture risk. These graphs are obtained as follows. The DXA images are separated into multiple regions of interest (RoIs), such as the femoral head, shaft, and lesser trochanter. Radiomic features are then calculated for each RoI, with the central coordinates used as nodes in a graph. The connectivity between nodes is established according to the Euclidean distance between these coordinates. This process transforms each DXA image into a graph, where each node represents a RoI, and edges derived by the centroids of RoIs capture the spatial relationships between them. If the test graph closely matches a set of template graphs representing subjects with incident hip fractures, it is classified as indicating high hip fracture risk. We evaluated our method using 547 subjects from the UK Biobank dataset, and experimental results show that ICGM-FRAX achieved a sensitivity of 0.9869, demonstrating high accuracy in predicting hip fractures.
comment: 23 pages, 4 figures
☆ Plug-and-Play Versatile Compressed Video Enhancement CVPR 2025
As a widely adopted technique in data transmission, video compression effectively reduces the size of files, making it possible for real-time cloud computing. However, it comes at the cost of visual quality, posing challenges to the robustness of downstream vision models. In this work, we present a versatile codec-aware enhancement framework that reuses codec information to adaptively enhance videos under different compression settings, assisting various downstream vision tasks without introducing computation bottleneck. Specifically, the proposed codec-aware framework consists of a compression-aware adaptation (CAA) network that employs a hierarchical adaptation mechanism to estimate parameters of the frame-wise enhancement network, namely the bitstream-aware enhancement (BAE) network. The BAE network further leverages temporal and spatial priors embedded in the bitstream to effectively improve the quality of compressed input frames. Extensive experimental results demonstrate the superior quality enhancement performance of our framework over existing enhancement methods, as well as its versatility in assisting multiple downstream tasks on compressed videos as a plug-and-play module. Code and models are available at https://huimin-zeng.github.io/PnP-VCVE/.
comment: Accepted to CVPR 2025
☆ Physics Driven Image Simulation from Commercial Satellite Imagery
Physics driven image simulation allows for the modeling and creation of realistic imagery beyond what is afforded by typical rendering pipelines. We aim to automatically generate a physically realistic scene for simulation of a given region using satellite imagery to model the scene geometry, drive material estimates, and populate the scene with dynamic elements. We present automated techniques to utilize satellite imagery throughout the simulated scene to expedite scene construction and decrease manual overhead. Our technique does not use lidar, enabling simulations that could not be constructed previously. To develop a 3D scene, we model the various components of the real location, addressing the terrain, modelling man-made structures, and populating the scene with smaller elements such as vegetation and vehicles. To create the scene we begin with a Digital Surface Model, which serves as the basis for scene geometry, and allows us to reason about the real location in a common 3D frame of reference. These simulated scenes can provide increased fidelity with less manual intervention for novel locations on earth, and can facilitate algorithm development, and processing pipelines for imagery ranging from UV to LWIR $(200nm-20\mu m)$.
comment: 15 pages, 9 figures
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ Event2Vec: Processing neuromorphic events directly by representations in vector space
The neuromorphic event cameras have overwhelming advantages in temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, the event cameras output asynchronous, sparse, and irregular events, which are not compatible with mainstream computer vision and deep learning methods. Various methods have been proposed to solve this issue but at the cost of long preprocessing procedures, losing temporal resolutions, or being incompatible with massively parallel computation. Inspired by the great success of the word to vector, we summarize the similarities between words and events, then propose the first event to vector (event2vec) representation. We validate event2vec on classifying the ASL-DVS dataset, showing impressive parameter efficiency, accuracy, and speed than previous graph/image/voxel-based representations. Beyond task performance, the most attractive advantage of event2vec is that it aligns events to the domain of natural language processing, showing the promising prospect of integrating events into large language and multimodal models. Our codes, models, and training logs are available at https://github.com/fangwei123456/event2vec.
☆ LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
☆ Vision6D: 3D-to-2D Interactive Visualization and Annotation Tool for 6D Pose Estimation
Accurate 6D pose estimation has gained more attention over the years for robotics-assisted tasks that require precise interaction with physical objects. This paper presents an interactive 3D-to-2D visualization and annotation tool to support the 6D pose estimation research community. To the best of our knowledge, the proposed work is the first tool that allows users to visualize and manipulate 3D objects interactively on a 2D real-world scene, along with a comprehensive user study. This system supports robust 6D camera pose annotation by providing both visual cues and spatial relationships to determine object position and orientation in various environments. The annotation feature in Vision6D is particularly helpful in scenarios where the transformation matrix between the camera and world objects is unknown, as it enables accurate annotation of these objects' poses using only the camera intrinsic matrix. This capability serves as a foundational step in developing and training advanced pose estimation models across various domains. We evaluate Vision6D's effectiveness by utilizing widely-used open-source pose estimation datasets Linemod and HANDAL through comparisons between the default ground-truth camera poses with manual annotations. A user study was performed to show that Vision6D generates accurate pose annotations via visual cues in an intuitive 3D user interface. This approach aims to bridge the gap between 2D scene projections and 3D scenes, offering an effective way for researchers and developers to solve 6D pose annotation related problems. The software is open-source and publicly available at https://github.com/InteractiveGL/vision6D.
☆ HyperFlow: Gradient-Free Emulation of Few-Shot Fine-Tuning
While test-time fine-tuning is beneficial in few-shot learning, the need for multiple backpropagation steps can be prohibitively expensive in real-time or low-resource scenarios. To address this limitation, we propose an approach that emulates gradient descent without computing gradients, enabling efficient test-time adaptation. Specifically, we formulate gradient descent as an Euler discretization of an ordinary differential equation (ODE) and train an auxiliary network to predict the task-conditional drift using only the few-shot support set. The adaptation then reduces to a simple numerical integration (e.g., via the Euler method), which requires only a few forward passes of the auxiliary network -- no gradients or forward passes of the target model are needed. In experiments on cross-domain few-shot classification using the Meta-Dataset and CDFSL benchmarks, our method significantly improves out-of-domain performance over the non-fine-tuned baseline while incurring only 6\% of the memory cost and 0.02\% of the computation time of standard fine-tuning, thus establishing a practical middle ground between direct transfer and fully fine-tuned approaches.
☆ Multimodal Large Language Models for Enhanced Traffic Safety: A Comprehensive Review and Future Trends
Traffic safety remains a critical global challenge, with traditional Advanced Driver-Assistance Systems (ADAS) often struggling in dynamic real-world scenarios due to fragmented sensor processing and susceptibility to adversarial conditions. This paper reviews the transformative potential of Multimodal Large Language Models (MLLMs) in addressing these limitations by integrating cross-modal data such as visual, spatial, and environmental inputs to enable holistic scene understanding. Through a comprehensive analysis of MLLM-based approaches, we highlight their capabilities in enhancing perception, decision-making, and adversarial robustness, while also examining the role of key datasets (e.g., KITTI, DRAMA, ML4RoadSafety) in advancing research. Furthermore, we outline future directions, including real-time edge deployment, causality-driven reasoning, and human-AI collaboration. By positioning MLLMs as a cornerstone for next-generation traffic safety systems, this review underscores their potential to revolutionize the field, offering scalable, context-aware solutions that proactively mitigate risks and improve overall road safety.
♻ ☆ ICE: Intrinsic Concept Extraction from a Single Image via Diffusion Models CVPR 2025
The inherent ambiguity in defining visual concepts poses significant challenges for modern generative models, such as the diffusion-based Text-to-Image (T2I) models, in accurately learning concepts from a single image. Existing methods lack a systematic way to reliably extract the interpretable underlying intrinsic concepts. To address this challenge, we present ICE, short for Intrinsic Concept Extraction, a novel framework that exclusively utilises a T2I model to automatically and systematically extract intrinsic concepts from a single image. ICE consists of two pivotal stages. In the first stage, ICE devises an automatic concept localization module to pinpoint relevant text-based concepts and their corresponding masks within the image. This critical stage streamlines concept initialization and provides precise guidance for subsequent analysis. The second stage delves deeper into each identified mask, decomposing the object-level concepts into intrinsic concepts and general concepts. This decomposition allows for a more granular and interpretable breakdown of visual elements. Our framework demonstrates superior performance on intrinsic concept extraction from a single image in an unsupervised manner. Project page: https://visual-ai.github.io/ice
comment: CVPR 2025, Project page: https://visual-ai.github.io/ice
♻ ☆ Analysing the Robustness of Vision-Language-Models to Common Corruptions
Vision-language models (VLMs) have demonstrated impressive capabilities in understanding and reasoning about visual and textual content. However, their robustness to common image corruptions remains under-explored. In this work, we present the first comprehensive analysis of VLM robustness across 19 corruption types from the ImageNet-C benchmark, spanning four categories: noise, blur, weather, and digital distortions. We introduce two new benchmarks, TextVQA-C and GQA-C, to systematically evaluate how corruptions affect scene text understanding and object-based reasoning, respectively. Our analysis reveals that transformer-based VLMs exhibit distinct vulnerability patterns across tasks: text recognition deteriorates most severely under blur and snow corruptions, while object reasoning shows higher sensitivity to corruptions such as frost and impulse noise. We connect these observations to the frequency-domain characteristics of different corruptions, revealing how transformers' inherent bias toward low-frequency processing explains their differential robustness patterns. Our findings provide valuable insights for developing more corruption-robust vision-language models for real-world applications.
comment: arXiv admin note: text overlap with arXiv:2304.10592, arXiv:2301.12597 by other authors
♻ ☆ DreamDistribution: Learning Prompt Distribution for Diverse In-distribution Generation
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
♻ ☆ Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models ICLR 2025
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: ICLR 2025. The first two authors contributed equally to this work
♻ ☆ GroundingSuite: Measuring Complex Multi-Granular Pixel Grounding
Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., $4.5 \times$ faster than the GLaMM.
comment: Work in progress. Code: https://github.com/hustvl/GroundingSuite. Update: add more results & polish the report
♻ ☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
♻ ☆ Direct Learning of Mesh and Appearance via 3D Gaussian Splatting
Accurately reconstructing a 3D scene including explicit geometry information is both attractive and challenging. Geometry reconstruction can benefit from incorporating differentiable appearance models, such as Neural Radiance Fields and 3D Gaussian Splatting (3DGS). However, existing methods encounter efficiency issues due to indirect geometry learning and the paradigm of separately modeling geometry and surface appearance. In this work, we propose a learnable scene model that incorporates 3DGS with an explicit geometry representation, namely a mesh. Our model learns the mesh and appearance in an end-to-end manner, where we bind 3D Gaussians to the mesh faces and perform differentiable rendering of 3DGS to obtain photometric supervision. The model creates an effective information pathway to supervise the learning of both 3DGS and mesh. Experimental results demonstrate that the learned scene model not only improves efficiency and rendering quality but also enables manipulation via the explicit mesh. In addition, our model has a unique advantage in adapting to scene updates, thanks to the end-to-end learning of both mesh and appearance.
♻ ☆ Depth Pro: Sharp Monocular Metric Depth in Less Than a Second ICLR 2025
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions. We release code and weights at https://github.com/apple/ml-depth-pro
comment: Published at ICLR 2025. Code and weights available at https://github.com/apple/ml-depth-pro
♻ ☆ Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model ICLR 2025
We introduce a novel Multi-modal Guided Real-World Face Restoration (MGFR) technique designed to improve the quality of facial image restoration from low-quality inputs. Leveraging a blend of attribute text prompts, high-quality reference images, and identity information, MGFR can mitigate the generation of false facial attributes and identities often associated with generative face restoration methods. By incorporating a dual-control adapter and a two-stage training strategy, our method effectively utilizes multi-modal prior information for targeted restoration tasks. We also present the Reface-HQ dataset, comprising over 21,000 high-resolution facial images across 4800 identities, to address the need for reference face training images. Our approach achieves superior visual quality in restoring facial details under severe degradation and allows for controlled restoration processes, enhancing the accuracy of identity preservation and attribute correction. Including negative quality samples and attribute prompts in the training further refines the model's ability to generate detailed and perceptually accurate images.
comment: 23 Pages, 28 Figures, ICLR 2025
♻ ☆ Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
♻ ☆ A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive processes underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using Bongard Problems (BPs) - a classic test of visual abstraction to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via textual descriptions). These paradigms allow us to systematically vary the cognitive load and probe specific processing stages. Notably, the CA paradigm enables the evaluation of multi-image reasoning even in VLMs architecturally limited to single images and facilitates the isolation of reasoning capabilities from perceptual limitations by controlling the descriptive input. Ablation studies further confirm that reasoning abilities improve significantly when perceptual challenges are mitigated. Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
♻ ☆ Transferable Adversarial Attacks on SAM and Its Downstream Models
The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models. Code is available at https://github.com/xiasong0501/GRAT.
comment: update fig 1
♻ ☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 45% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
♻ ☆ SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
♻ ☆ Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
♻ ☆ Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
comment: Accepted by TITS
♻ ☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 8 pages, 8 figures, RA-L submission
♻ ☆ A comprehensive review of remote sensing in wetland classification and mapping
Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
♻ ☆ AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection ICLR 2024
Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
comment: Accepted by ICLR 2024
♻ ☆ Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
comment: https://github.com/lllyasviel/FramePack
♻ ☆ GATE3D: Generalized Attention-based Task-synergized Estimation in 3D* CVPR 2025
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: Accepted (Poster) to the 3rd CV4MR Workshop at CVPR 2025: https://openreview.net/forum?id=00RQ8Cv3ia
♻ ☆ A Novel Retinal Image Contrast Enhancement -- Fuzzy-Based Method
The vascular structure in retinal images plays a crucial role in ophthalmic diagnostics, and its accuracies are directly influenced by the quality of the retinal image. Contrast enhancement is one of the crucial steps in any segmentation algorithm - the more so since the retinal images are related to medical diagnosis. Contrast enhancement is a vital step that not only intensifies the darkness of the blood vessels but also prevents minor capillaries from being disregarded during the process. This paper proposes a novel model that utilizes the linear blending of Fuzzy Contrast Enhancement (FCE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance the retinal image for retinal vascular structure segmentation. The scheme is tested using the Digital Retinal Images for Vessel Extraction (DRIVE) dataset. The assertion was then evaluated through performance comparison among other methodologies which are Gray-scaling, Histogram Equalization (HE), FCE, and CLAHE. It was evident in this paper that the combination of FCE and CLAHE methods showed major improvement. Both FCE and CLAHE methods dominating with 88% as better enhancement methods proved that preprocessing through fuzzy logic is effective.
comment: This version corrects a typographical error in the title of the previous submission with no changes to the content of the paper
♻ ☆ Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
♻ ☆ PVUW 2025 Challenge Report: Advances in Pixel-level Understanding of Complex Videos in the Wild
This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
comment: Workshop Page: https://pvuw.github.io/. arXiv admin note: text overlap with arXiv:2504.00476, arXiv:2504.05178
♻ ☆ InstructEngine: Instruction-driven Text-to-Image Alignment
Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been extensively utilized for preference alignment of text-to-image models. Existing methods face certain limitations in terms of both data and algorithm. For training data, most approaches rely on manual annotated preference data, either by directly fine-tuning the generators or by training reward models to provide training signals. However, the high annotation cost makes them difficult to scale up, the reward model consumes extra computation and cannot guarantee accuracy. From an algorithmic perspective, most methods neglect the value of text and only take the image feedback as a comparative signal, which is inefficient and sparse. To alleviate these drawbacks, we propose the InstructEngine framework. Regarding annotation cost, we first construct a taxonomy for text-to-image generation, then develop an automated data construction pipeline based on it. Leveraging advanced large multimodal models and human-defined rules, we generate 25K text-image preference pairs. Finally, we introduce cross-validation alignment method, which refines data efficiency by organizing semantically analogous samples into mutually comparable pairs. Evaluations on DrawBench demonstrate that InstructEngine improves SD v1.5 and SDXL's performance by 10.53% and 5.30%, outperforming state-of-the-art baselines, with ablation study confirming the benefits of InstructEngine's all components. A win rate of over 50% in human reviews also proves that InstructEngine better aligns with human preferences.
comment: 8 pages, 7 figures
♻ ☆ Efficient Vectorized Backpropagation Algorithms for Training Feedforward Networks Composed of Quadratic Neurons
Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $\mathcal{C}$ bounded clusters can be separated with only a single layer of $\mathcal{C}$ quadratic neurons.
comment: 8 pages
♻ ☆ S-EO: A Large-Scale Dataset for Geometry-Aware Shadow Detection in Remote Sensing Applications CVPR
We introduce the S-EO dataset: a large-scale, high-resolution dataset, designed to advance geometry-aware shadow detection. Collected from diverse public-domain sources, including challenge datasets and government providers such as USGS, our dataset comprises 702 georeferenced tiles across the USA, each covering 500x500 m. Each tile includes multi-date, multi-angle WorldView-3 pansharpened RGB images, panchromatic images, and a ground-truth DSM of the area obtained from LiDAR scans. For each image, we provide a shadow mask derived from geometry and sun position, a vegetation mask based on the NDVI index, and a bundle-adjusted RPC model. With approximately 20,000 images, the S-EO dataset establishes a new public resource for shadow detection in remote sensing imagery and its applications to 3D reconstruction. To demonstrate the dataset's impact, we train and evaluate a shadow detector, showcasing its ability to generalize, even to aerial images. Finally, we extend EO-NeRF - a state-of-the-art NeRF approach for satellite imagery - to leverage our shadow predictions for improved 3D reconstructions.
comment: Accepted at Earthvision 2025 (CVPR Workshop)
♻ ☆ PK-YOLO: Pretrained Knowledge Guided YOLO for Brain Tumor Detection in Multiplanar MRI Slices NeurIPS 2024
Brain tumor detection in multiplane Magnetic Resonance Imaging (MRI) slices is a challenging task due to the various appearances and relationships in the structure of the multiplane images. In this paper, we propose a new You Only Look Once (YOLO)-based detection model that incorporates Pretrained Knowledge (PK), called PK-YOLO, to improve the performance for brain tumor detection in multiplane MRI slices. To our best knowledge, PK-YOLO is the first pretrained knowledge guided YOLO-based object detector. The main components of the new method are a pretrained pure lightweight convolutional neural network-based backbone via sparse masked modeling, a YOLO architecture with the pretrained backbone, and a regression loss function for improving small object detection. The pretrained backbone allows for feature transferability of object queries on individual plane MRI slices into the model encoders, and the learned domain knowledge base can improve in-domain detection. The improved loss function can further boost detection performance on small-size brain tumors in multiplanar two-dimensional MRI slices. Experimental results show that the proposed PK-YOLO achieves competitive performance on the multiplanar MRI brain tumor detection datasets compared to state-of-the-art YOLO-like and DETR-like object detectors. The code is available at https://github.com/mkang315/PK-YOLO.
comment: References updated; for example, papers in NeurIPS 2024 proceedings appeared on 6 Feb 2025 and AAAI 2025 one on 11 Apr 2025
♻ ☆ HRAvatar: High-Quality and Relightable Gaussian Head Avatar CVPR 2025
Reconstructing animatable and high-quality 3D head avatars from monocular videos, especially with realistic relighting, is a valuable task. However, the limited information from single-view input, combined with the complex head poses and facial movements, makes this challenging. Previous methods achieve real-time performance by combining 3D Gaussian Splatting with a parametric head model, but the resulting head quality suffers from inaccurate face tracking and limited expressiveness of the deformation model. These methods also fail to produce realistic effects under novel lighting conditions. To address these issues, we propose HRAvatar, a 3DGS-based method that reconstructs high-fidelity, relightable 3D head avatars. HRAvatar reduces tracking errors through end-to-end optimization and better captures individual facial deformations using learnable blendshapes and learnable linear blend skinning. Additionally, it decomposes head appearance into several physical properties and incorporates physically-based shading to account for environmental lighting. Extensive experiments demonstrate that HRAvatar not only reconstructs superior-quality heads but also achieves realistic visual effects under varying lighting conditions.
comment: Accepted to CVPR 2025,Project page: https://eastbeanzhang.github.io/HRAvatar
♻ ☆ DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 9 pages and 6 figures
♻ ☆ TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection
Most autonomous driving (AD) datasets incur substantial costs for collection and labeling, inevitably yielding a plethora of low-quality and redundant data instances, thereby compromising performance and efficiency. Many applications in AD systems necessitate high-quality training datasets using both existing datasets and newly collected data. In this paper, we propose a traffic scene joint active learning (TSceneJAL) framework that can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data. The novelty of this framework is threefold: 1) a scene sampling scheme based on a category entropy, to identify scenes containing multiple object classes, thus mitigating class imbalance for the active learner; 2) a similarity sampling scheme, estimated through the directed graph representation and a marginalize kernel algorithm, to pick sparse and diverse scenes; 3) an uncertainty sampling scheme, predicted by a mixture density network, to select instances with the most unclear or complex regression outcomes for the learner. Finally, the integration of these three schemes in a joint selection strategy yields an optimal and valuable subdataset. Experiments on the KITTI, Lyft, nuScenes and SUScape datasets demonstrate that our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
♻ ☆ Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
♻ ☆ DirDist: A Metric for Comparing 3D Shapes Using Directional Distance Fields
Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at https://github.com/rsy6318/DirDist.
comment: Accepted by T-PAMI
♻ ☆ Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
Due to their event-driven and parameter-efficient effect, spiking neural networks (SNNs) show potential in tasks requiring real-time multi-sensor perception, such as autonomous driving. The spiking mechanism facilitates sparse encoding, enabling spatial and temporal data to be represented in a discrete manner. However, SNNs still lag behind artificial neural networks (ANNs) in terms of performance and computational efficiency. One major challenge in SNNs is the timestep-wise iterative update of neuronal states, which makes it difficult to achieve an optimal trade-off among accuracy, latency, and training cost. Although some methods perform well with shorter timesteps, few propose strategies to overcome such constraint effectively. Moreover, many recent SNN advancements rely on either optimizations tailored to specific architectures or a collection of specialized neuron-level strategies. While these approaches can enhance performance, they often lead to increased computational expense and restrict their application to particular architectures or modalities. This leaves room for further exploration of simple, universal, and structure-agnostic strategies that could offer broader applicability and efficiency. In this paper, we introduce Activation-wise Membrane Potential Propagation (AMP2), a novel state update mechanism for spiking neurons. Inspired by skip connections in deep networks, AMP2 incorporates the membrane potential of neurons into network, eliminating the need for iterative updates. Our method achieves significant improvements across various 3D modalities, including 3D point clouds and event streams, boosting Spiking PointNet's accuracy on ModelNet40 from 87.36% to 89.74% and surpassing ANN PointNet in recognition accuracy on the DVS128 Gesture dataset.
♻ ☆ Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
♻ ☆ TLAC: Two-stage LMM Augmented CLIP for Zero-Shot Classification
Contrastive Language-Image Pretraining (CLIP) has shown impressive zero-shot performance on image classification. However, state-of-the-art methods often rely on fine-tuning techniques like prompt learning and adapter-based tuning to optimize CLIP's performance. The necessity for fine-tuning significantly limits CLIP's adaptability to novel datasets and domains. This requirement mandates substantial time and computational resources for each new dataset. To overcome this limitation, we introduce simple yet effective training-free approaches, Single-stage LMM Augmented CLIP (SLAC) and Two-stage LMM Augmented CLIP (TLAC), that leverages powerful Large Multimodal Models (LMMs), such as Gemini, for image classification. The proposed methods leverages the capabilities of pre-trained LMMs, allowing for seamless adaptation to diverse datasets and domains without the need for additional training. Our approaches involve prompting the LMM to identify objects within an image. Subsequently, the CLIP text encoder determines the image class by identifying the dataset class with the highest semantic similarity to the LLM predicted object. Our models achieved superior accuracy on 9 of 11 base-to-novel datasets, including ImageNet, SUN397, and Caltech101, while maintaining a strictly training-free paradigm. Our TLAC model achieved an overall accuracy of 83.44%, surpassing the previous state-of-the-art few-shot methods by a margin of 6.75%. Compared to other training-free approaches, our TLAC method achieved 83.6% average accuracy across 13 datasets, a 9.7% improvement over the previous methods. Our Code is available at https://github.com/ans92/TLAC
comment: Added code link in the abstract
♻ ☆ MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming
With the rapid advancement of Large Language Models (LLMs), LLM-based approaches have demonstrated strong problem-solving capabilities across various domains. However, in automatic programming, a single LLM is typically limited to function-level code generation, while multi-agent systems composed of multiple LLMs often suffer from inefficient task planning. This lack of structured coordination can lead to cascading hallucinations, where accumulated errors across agents result in suboptimal workflows and excessive computational costs. To overcome these challenges, we introduce MaCTG (Multi-Agent Collaborative Thought Graph), a novel multi-agent framework that employs a dynamic graph structure to facilitate precise task allocation and controlled collaboration among LLM agents. MaCTG autonomously assigns agent roles based on programming requirements, dynamically refines task distribution through context-aware adjustments, and systematically verifies and integrates project-level code, effectively reducing hallucination errors and improving overall accuracy. MaCTG enhances cost-effectiveness by implementing a hybrid LLM deployment, where proprietary models handle complex reasoning, while open-source models are used for routine coding and validation tasks. To evaluate MaCTG's effectiveness, we applied it to traditional image processing auto-programming tasks, achieving a state-of-the-art accuracy of 83.33%. Additionally, by leveraging its hybrid LLM configuration, MaCTG significantly reduced operational costs by 89.09% compared to existing multi-agent frameworks, demonstrating its efficiency, scalability, and real-world applicability.
♻ ☆ Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator
Recent advances in zero-shot monocular depth estimation(MDE) have significantly improved generalization by unifying depth distributions through normalized depth representations and by leveraging large-scale unlabeled data via pseudo-label distillation. However, existing methods that rely on global depth normalization treat all depth values equally, which can amplify noise in pseudo-labels and reduce distillation effectiveness. In this paper, we present a systematic analysis of depth normalization strategies in the context of pseudo-label distillation. Our study shows that, under recent distillation paradigms (e.g., shared-context distillation), normalization is not always necessary, as omitting it can help mitigate the impact of noisy supervision. Furthermore, rather than focusing solely on how depth information is represented, we propose Cross-Context Distillation, which integrates both global and local depth cues to enhance pseudo-label quality. We also introduce an assistant-guided distillation strategy that incorporates complementary depth priors from a diffusion-based teacher model, enhancing supervision diversity and robustness. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, both quantitatively and qualitatively.
comment: project page: https://distill-any-depth-official.github.io/
♻ ☆ Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment ICLR 2025
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages; Published as a conference paper at ICLR 2025
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ MultiSensor-Home: A Wide-area Multi-modal Multi-view Dataset for Action Recognition and Transformer-based Sensor Fusion IEEE
Multi-modal multi-view action recognition is a rapidly growing field in computer vision, offering significant potential for applications in surveillance. However, current datasets often fail to address real-world challenges such as wide-area distributed settings, asynchronous data streams, and the lack of frame-level annotations. Furthermore, existing methods face difficulties in effectively modeling inter-view relationships and enhancing spatial feature learning. In this paper, we introduce the MultiSensor-Home dataset, a novel benchmark designed for comprehensive action recognition in home environments, and also propose the Multi-modal Multi-view Transformer-based Sensor Fusion (MultiTSF) method. The proposed MultiSensor-Home dataset features untrimmed videos captured by distributed sensors, providing high-resolution RGB and audio data along with detailed multi-view frame-level action labels. The proposed MultiTSF method leverages a Transformer-based fusion mechanism to dynamically model inter-view relationships. Furthermore, the proposed method integrates a human detection module to enhance spatial feature learning, guiding the model to prioritize frames with human activity to enhance action the recognition accuracy. Experiments on the proposed MultiSensor-Home and the existing MM-Office datasets demonstrate the superiority of MultiTSF over the state-of-the-art methods. Quantitative and qualitative results highlight the effectiveness of the proposed method in advancing real-world multi-modal multi-view action recognition.
comment: The 19th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2025)
♻ ☆ Circular Image Deturbulence using Quasi-conformal Geometry
The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations. The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
♻ ☆ Hierarchical and Step-Layer-Wise Tuning of Attention Specialty for Multi-Instance Synthesis in Diffusion Transformers
Text-to-image (T2I) generation models often struggle with multi-instance synthesis (MIS), where they must accurately depict multiple distinct instances in a single image based on complex prompts detailing individual features. Traditional MIS control methods for UNet architectures like SD v1.5/SDXL fail to adapt to DiT-based models like FLUX and SD v3.5, which rely on integrated attention between image and text tokens rather than text-image cross-attention. To enhance MIS in DiT, we first analyze the mixed attention mechanism in DiT. Our token-wise and layer-wise analysis of attention maps reveals a hierarchical response structure: instance tokens dominate early layers, background tokens in middle layers, and attribute tokens in later layers. Building on this observation, we propose a training-free approach for enhancing MIS in DiT-based models with hierarchical and step-layer-wise attention specialty tuning (AST). AST amplifies key regions while suppressing irrelevant areas in distinct attention maps across layers and steps, guided by the hierarchical structure. This optimizes multimodal interactions by hierarchically decoupling the complex prompts with instance-based sketches. We evaluate our approach using upgraded sketch-based layouts for the T2I-CompBench and customized complex scenes. Both quantitative and qualitative results confirm our method enhances complex layout generation, ensuring precise instance placement and attribute representation in MIS.
♻ ☆ Scene4U: Hierarchical Layered 3D Scene Reconstruction from Single Panoramic Image for Your Immerse Exploration CVPR 2025
The reconstruction of immersive and realistic 3D scenes holds significant practical importance in various fields of computer vision and computer graphics. Typically, immersive and realistic scenes should be free from obstructions by dynamic objects, maintain global texture consistency, and allow for unrestricted exploration. The current mainstream methods for image-driven scene construction involves iteratively refining the initial image using a moving virtual camera to generate the scene. However, previous methods struggle with visual discontinuities due to global texture inconsistencies under varying camera poses, and they frequently exhibit scene voids caused by foreground-background occlusions. To this end, we propose a novel layered 3D scene reconstruction framework from panoramic image, named Scene4U. Specifically, Scene4U integrates an open-vocabulary segmentation model with a large language model to decompose a real panorama into multiple layers. Then, we employs a layered repair module based on diffusion model to restore occluded regions using visual cues and depth information, generating a hierarchical representation of the scene. The multi-layer panorama is then initialized as a 3D Gaussian Splatting representation, followed by layered optimization, which ultimately produces an immersive 3D scene with semantic and structural consistency that supports free exploration. Scene4U outperforms state-of-the-art method, improving by 24.24% in LPIPS and 24.40% in BRISQUE, while also achieving the fastest training speed. Additionally, to demonstrate the robustness of Scene4U and allow users to experience immersive scenes from various landmarks, we build WorldVista3D dataset for 3D scene reconstruction, which contains panoramic images of globally renowned sites. The implementation code and dataset will be released at https://github.com/LongHZ140516/Scene4U .
comment: CVPR 2025, 11 pages, 7 figures
♻ ☆ LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models ICLR 2025
With the rapid development of AI-generated content, the future internet may be inundated with synthetic data, making the discrimination of authentic and credible multimodal data increasingly challenging. Synthetic data detection has thus garnered widespread attention, and the performance of large multimodal models (LMMs) in this task has attracted significant interest. LMMs can provide natural language explanations for their authenticity judgments, enhancing the explainability of synthetic content detection. Simultaneously, the task of distinguishing between real and synthetic data effectively tests the perception, knowledge, and reasoning capabilities of LMMs. In response, we introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities. LOKI encompasses video, image, 3D, text, and audio modalities, comprising 18K carefully curated questions across 26 subcategories with clear difficulty levels. The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks, allowing for a comprehensive analysis of LMMs. We evaluated 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities. More information about LOKI can be found at https://opendatalab.github.io/LOKI/
comment: ICLR 2025 SPOTLIGHT, 83 pages, 63 figures
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Modality Unified Attack for Omni-Modality Person Re-Identification
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
comment: 9 pages,3 figures
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Event Quality Score (EQS): Assessing the Realism of Simulated Event Camera Streams via Distances in Latent Space CVPR
Event cameras promise a paradigm shift in vision sensing with their low latency, high dynamic range, and asynchronous nature of events. Unfortunately, the scarcity of high-quality labeled datasets hinders their widespread adoption in deep learning-driven computer vision. To mitigate this, several simulators have been proposed to generate synthetic event data for training models for detection and estimation tasks. However, the fundamentally different sensor design of event cameras compared to traditional frame-based cameras poses a challenge for accurate simulation. As a result, most simulated data fail to mimic data captured by real event cameras. Inspired by existing work on using deep features for image comparison, we introduce event quality score (EQS), a quality metric that utilizes activations of the RVT architecture. Through sim-to-real experiments on the DSEC driving dataset, it is shown that a higher EQS implies improved generalization to real-world data after training on simulated events. Thus, optimizing for EQS can lead to developing more realistic event camera simulators, effectively reducing the simulation gap. EQS is available at https://github.com/eventbasedvision/EQS.
comment: Accepted at 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Fifth International Workshop on Event-Based Vision
♻ ☆ Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
♻ ☆ Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
♻ ☆ On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms SC
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
comment: 2 pages, 2 tables, 1 figure. Accepted as a poster at the RISC-V Summit Europe 2025
♻ ☆ Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction MICCAI 2024
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
comment: This paper has been accepted for presentation at The 27th Intl. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) Workshop on Computational Diffusion MRI (CDMRI). 11 pages, 2 figures
♻ ☆ ClusterViG: Efficient Globally Aware Vision GNNs via Image Partitioning IEEE
Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have dominated the field of Computer Vision (CV). Graph Neural Networks (GNN) have performed remarkably well across diverse domains because they can represent complex relationships via unstructured graphs. However, the applicability of GNNs for visual tasks was unexplored till the introduction of Vision GNNs (ViG). Despite the success of ViGs, their performance is severely bottlenecked due to the expensive $k$-Nearest Neighbors ($k$-NN) based graph construction. Recent works addressing this bottleneck impose constraints on the flexibility of GNNs to build unstructured graphs, undermining their core advantage while introducing additional inefficiencies. To address these issues, in this paper, we propose a novel method called Dynamic Efficient Graph Convolution (DEGC) for designing efficient and globally aware ViGs. DEGC partitions the input image and constructs graphs in parallel for each partition, improving graph construction efficiency. Further, DEGC integrates local intra-graph and global inter-graph feature learning, enabling enhanced global context awareness. Using DEGC as a building block, we propose a novel CNN-GNN architecture, ClusterViG, for CV tasks. Extensive experiments indicate that ClusterViG reduces end-to-end inference latency for vision tasks by up to $5\times$ when compared against a suite of models such as ViG, ViHGNN, PVG, and GreedyViG, with a similar model parameter count. Additionally, ClusterViG reaches state-of-the-art performance on image classification, object detection, and instance segmentation tasks, demonstrating the effectiveness of the proposed globally aware learning strategy. Finally, input partitioning performed by DEGC enables ClusterViG to be trained efficiently on higher-resolution images, underscoring the scalability of our approach.
comment: IEEE MCNA 2025
♻ ☆ A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
Artificial Intelligence 163
☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.
☆ Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
☆ Leveraging Language Models for Automated Patient Record Linkage
Objective: Healthcare data fragmentation presents a major challenge for linking patient data, necessitating robust record linkage to integrate patient records from diverse sources. This study investigates the feasibility of leveraging language models for automated patient record linkage, focusing on two key tasks: blocking and matching. Materials and Methods: We utilized real-world healthcare data from the Missouri Cancer Registry and Research Center, linking patient records from two independent sources using probabilistic linkage as a baseline. A transformer-based model, RoBERTa, was fine-tuned for blocking using sentence embeddings. For matching, several language models were experimented under fine-tuned and zero-shot settings, assessing their performance against ground truth labels. Results: The fine-tuned blocking model achieved a 92% reduction in the number of candidate pairs while maintaining near-perfect recall. In the matching task, fine-tuned Mistral-7B achieved the best performance with only 6 incorrect predictions. Among zero-shot models, Mistral-Small-24B performed best, with a total of 55 incorrect predictions. Discussion: Fine-tuned language models achieved strong performance in patient record blocking and matching with minimal errors. However, they remain less accurate and efficient than a hybrid rule-based and probabilistic approach for blocking. Additionally, reasoning models like DeepSeek-R1 are impractical for large-scale record linkage due to high computational costs. Conclusion: This study highlights the potential of language models for automating patient record linkage, offering improved efficiency by eliminating the manual efforts required to perform patient record linkage. Overall, language models offer a scalable solution that can enhance data integration, reduce manual effort, and support disease surveillance and research.
☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
☆ FlowReasoner: Reinforcing Query-Level Meta-Agents
This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at https://github.com/sail-sg/FlowReasoner.
☆ SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
☆ Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
☆ A Self-Improving Coding Agent ICLR 2025
We demonstrate that an LLM coding agent, equipped with basic coding tools, can autonomously edit itself, and thereby improve its performance on benchmark tasks. We find performance gains from 17% to 53% on a random subset of SWE Bench Verified, with additional performance gains on LiveCodeBench, as well as synthetically generated agent benchmarks. Our work represents an advancement in the automated and open-ended design of agentic systems, and provides a reference agent framework for those seeking to post-train LLMs on tool use and other agentic tasks.
comment: Published at an ICLR 2025 workshop on Scaling Self-Improving Foundation Models
☆ A Genetic Fuzzy-Enabled Framework on Robotic Manipulation for In-Space Servicing
Automation of robotic systems for servicing in cislunar space is becoming extremely important as the number of satellites in orbit increases. Safety is critical in performing satellite maintenance, so the control techniques utilized must be trusted in addition to being highly efficient. In this work, Genetic Fuzzy Trees are combined with the widely used LQR control scheme via Thales' TrUE AI Toolkit to create a trusted and efficient controller for a two-degree-of-freedom planar robotic manipulator that would theoretically be used to perform satellite maintenance. It was found that Genetic Fuzzy-LQR is 18.5% more performant than optimal LQR on average, and that it is incredibly robust to uncertainty.
☆ M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding AISTATS 2025
With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.
comment: Accepted at AISTATS 2025
☆ Position: Bayesian Statistics Facilitates Stakeholder Participation in Evaluation of Generative AI
The evaluation of Generative AI (GenAI) systems plays a critical role in public policy and decision-making, yet existing methods are often limited by reliance on benchmark-driven, point-estimate comparisons that fail to capture uncertainty and broader societal impacts. This paper argues for the use of Bayesian statistics as a principled framework to address these challenges. Bayesian methods enable the integration of domain expertise through prior elicitation, allow for continuous learning from new data, and provide robust uncertainty quantification via posterior inference. We demonstrate how Bayesian inference can be applied to GenAI evaluation, particularly in incorporating stakeholder perspectives to enhance fairness, transparency, and reliability. Furthermore, we discuss Bayesian workflows as an iterative process for model validation and refinement, ensuring robust assessments of GenAI systems in dynamic, real-world contexts.
comment: To be presented at ACM CHI 2025 workshop STAIG
☆ Integrating Symbolic Execution into the Fine-Tuning of Code-Generating LLMs
Code-generating Large Language Models (LLMs) have become essential tools in modern software development, enhancing productivity and accelerating development. This paper aims to investigate the fine-tuning of code-generating LLMs using Reinforcement Learning and Direct Preference Optimization, further improving their performance. To achieve this, we enhance the training data for the reward model with the help of symbolic execution techniques, ensuring more comprehensive and objective data. With symbolic execution, we create a custom dataset that better captures the nuances in code evaluation. Our reward models, fine-tuned on this dataset, demonstrate significant improvements over the baseline, CodeRL, in estimating the quality of generated code. Our code-generating LLMs, trained with the help of reward model feedback, achieve similar results compared to the CodeRL benchmark.
☆ A Causal Convolutional Low-rank Representation Model for Imputation of Water Quality Data
The monitoring of water quality is a crucial part of environmental protection, and a large number of monitors are widely deployed to monitor water quality. Due to unavoidable factors such as data acquisition breakdowns, sensors and communication failures, water quality monitoring data suffers from missing values over time, resulting in High-Dimensional and Sparse (HDS) Water Quality Data (WQD). The simple and rough filling of the missing values leads to inaccurate results and affects the implementation of relevant measures. Therefore, this paper proposes a Causal convolutional Low-rank Representation (CLR) model for imputing missing WQD to improve the completeness of the WQD, which employs a two-fold idea: a) applying causal convolutional operation to consider the temporal dependence of the low-rank representation, thus incorporating temporal information to improve the imputation accuracy; and b) implementing a hyperparameters adaptation scheme to automatically adjust the best hyperparameters during model training, thereby reducing the tedious manual adjustment of hyper-parameters. Experimental studies on three real-world water quality datasets demonstrate that the proposed CLR model is superior to some of the existing state-of-the-art imputation models in terms of imputation accuracy and time cost, as well as indicating that the proposed model provides more reliable decision support for environmental monitoring.
comment: 9 pages, 3 figures
☆ Compute-Optimal LLMs Provably Generalize Better With Scale ICLR 2025
Why do larger language models generalize better? To investigate this question, we develop generalization bounds on the pretraining objective of large language models (LLMs) in the compute-optimal regime, as described by the Chinchilla scaling laws. We introduce a novel, fully empirical Freedman-type martingale concentration inequality that tightens existing bounds by accounting for the variance of the loss function. This generalization bound can be decomposed into three interpretable components: the number of parameters per token, the loss variance, and the quantization error at a fixed bitrate. As compute-optimal language models are scaled up, the number of parameters per data point remains constant; however, both the loss variance and the quantization error decrease, implying that larger models should have smaller generalization gaps. We examine why larger models tend to be more quantizable from an information theoretic perspective, showing that the rate at which they can integrate new information grows more slowly than their capacity on the compute-optimal frontier. From these findings we produce a scaling law for the generalization gap, with bounds that become predictably stronger with scale.
comment: ICLR 2025
☆ Support Evaluation for the TREC 2024 RAG Track: Comparing Human versus LLM Judges SIGIR 2025
Retrieval-augmented generation (RAG) enables large language models (LLMs) to generate answers with citations from source documents containing "ground truth", thereby reducing system hallucinations. A crucial factor in RAG evaluation is "support", whether the information in the cited documents supports the answer. To this end, we conducted a large-scale comparative study of 45 participant submissions on 36 topics to the TREC 2024 RAG Track, comparing an automatic LLM judge (GPT-4o) against human judges for support assessment. We considered two conditions: (1) fully manual assessments from scratch and (2) manual assessments with post-editing of LLM predictions. Our results indicate that for 56% of the manual from-scratch assessments, human and GPT-4o predictions match perfectly (on a three-level scale), increasing to 72% in the manual with post-editing condition. Furthermore, by carefully analyzing the disagreements in an unbiased study, we found that an independent human judge correlates better with GPT-4o than a human judge, suggesting that LLM judges can be a reliable alternative for support assessment. To conclude, we provide a qualitative analysis of human and GPT-4o errors to help guide future iterations of support assessment.
comment: Accepted at SIGIR 2025 (short)
☆ Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
☆ Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
comment: 13 pages, 5 figures
☆ Synergistic Weak-Strong Collaboration by Aligning Preferences
Current Large Language Models (LLMs) excel in general reasoning yet struggle with specialized tasks requiring proprietary or domain-specific knowledge. Fine-tuning large models for every niche application is often infeasible due to black-box constraints and high computational overhead. To address this, we propose a collaborative framework that pairs a specialized weak model with a general strong model. The weak model, tailored to specific domains, produces initial drafts and background information, while the strong model leverages its advanced reasoning to refine these drafts, extending LLMs' capabilities to critical yet specialized tasks. To optimize this collaboration, we introduce a collaborative feedback to fine-tunes the weak model, which quantifies the influence of the weak model's contributions in the collaboration procedure and establishes preference pairs to guide preference tuning of the weak model. We validate our framework through experiments on three domains. We find that the collaboration significantly outperforms each model alone by leveraging complementary strengths. Moreover, aligning the weak model with the collaborative preference further enhances overall performance.
☆ Existing Industry Practice for the EU AI Act's General-Purpose AI Code of Practice Safety and Security Measures
This report provides a detailed comparison between the measures proposed in the EU AI Act's General-Purpose AI (GPAI) Code of Practice (Third Draft) and current practices adopted by leading AI companies. As the EU moves toward enforcing binding obligations for GPAI model providers, the Code of Practice will be key to bridging legal requirements with concrete technical commitments. Our analysis focuses on the draft's Safety and Security section which is only relevant for the providers of the most advanced models (Commitments II.1-II.16) and excerpts from current public-facing documents quotes that are relevant to each individual measure. We systematically reviewed different document types - including companies' frontier safety frameworks and model cards - from over a dozen companies, including OpenAI, Anthropic, Google DeepMind, Microsoft, Meta, Amazon, and others. This report is not meant to be an indication of legal compliance nor does it take any prescriptive viewpoint about the Code of Practice or companies' policies. Instead, it aims to inform the ongoing dialogue between regulators and GPAI model providers by surfacing evidence of precedent.
comment: 158 pages
☆ An Efficient Aerial Image Detection with Variable Receptive Fields
Aerial object detection using unmanned aerial vehicles (UAVs) faces critical challenges including sub-10px targets, dense occlusions, and stringent computational constraints. Existing detectors struggle to balance accuracy and efficiency due to rigid receptive fields and redundant architectures. To address these limitations, we propose Variable Receptive Field DETR (VRF-DETR), a transformer-based detector incorporating three key components: 1) Multi-Scale Context Fusion (MSCF) module that dynamically recalibrates features through adaptive spatial attention and gated multi-scale fusion, 2) Gated Convolution (GConv) layer enabling parameter-efficient local-context modeling via depthwise separable operations and dynamic gating, and 3) Gated Multi-scale Fusion (GMCF) Bottleneck that hierarchically disentangles occluded objects through cascaded global-local interactions. Experiments on VisDrone2019 demonstrate VRF-DETR achieves 51.4\% mAP\textsubscript{50} and 31.8\% mAP\textsubscript{50:95} with only 13.5M parameters. This work establishes a new efficiency-accuracy Pareto frontier for UAV-based detection tasks.
☆ Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate. Existing registration methods rely heavily on anatomical landmark-based workflows, which encounter two major limitations: 1) ambiguous landmark definitions fail to provide efficient markers for registration; 2) insufficient integration of intraoperative liver visual information in shape deformation modeling. To address these challenges, in this paper, we propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning, termed \ourmodel. This framework transforms the conventional 3D-2D workflow into a 3D-3D registration pipeline, which is then decoupled into rigid and non-rigid registration subtasks. \ourmodel~first introduces a feature-disentangled transformer to learn robust correspondences for recovering rigid transformations. Further, a structure-regularized deformation network is designed to adjust the preoperative model to align with the intraoperative liver surface. This network captures structural correlations through geometry similarity modeling in a low-rank transformer network. To facilitate the validation of the registration performance, we also construct an in-vivo registration dataset containing liver resection videos of 21 patients, called \emph{P2I-LReg}, which contains 346 keyframes that provide a global view of the liver together with liver mask annotations and calibrated camera intrinsic parameters. Extensive experiments and user studies on both synthetic and in-vivo datasets demonstrate the superiority and potential clinical applicability of our method.
comment: TMI under review
☆ Behavioral Universe Network (BUN): A Behavioral Information-Based Framework for Complex Systems
Modern digital ecosystems feature complex, dynamic interactions among autonomous entities across diverse domains. Traditional models often separate agents and objects, lacking a unified foundation to capture their interactive behaviors. This paper introduces the Behavioral Universe Network (BUN), a theoretical framework grounded in the Agent-Interaction-Behavior (AIB) formalism. BUN treats subjects (active agents), objects (resources), and behaviors (operations) as first-class entities, all governed by a shared Behavioral Information Base (BIB). We detail the AIB core concepts and demonstrate how BUN leverages information-driven triggers, semantic enrichment, and adaptive rules to coordinate multi-agent systems. We highlight key benefits: enhanced behavior analysis, strong adaptability, and cross-domain interoperability. We conclude by positioning BUN as a promising foundation for next-generation digital governance and intelligent applications.
comment: 17 pages, 1 figure
☆ C2RUST-BENCH: A Minimized, Representative Dataset for C-to-Rust Transpilation Evaluation
Despite the effort in vulnerability detection over the last two decades, memory safety vulnerabilities continue to be a critical problem. Recent reports suggest that the key solution is to migrate to memory-safe languages. To this end, C-to-Rust transpilation becomes popular to resolve memory-safety issues in C programs. Recent works propose C-to-Rust transpilation frameworks; however, a comprehensive evaluation dataset is missing. Although one solution is to put together a large enough dataset, this increases the analysis time in automated frameworks as well as in manual efforts for some cases. In this work, we build a method to select functions from a large set to construct a minimized yet representative dataset to evaluate the C-to-Rust transpilation. We propose C2RUST-BENCH that contains 2,905 functions, which are representative of C-to-Rust transpilation, selected from 15,503 functions of real-world programs.
☆ KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking SIGIR 2025
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
comment: SIGIR 2025 (Short)
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
Multi-Agent Pickup and Delivery (MAPD) is a fundamental problem in robotics, particularly in applications such as warehouse automation and logistics. Existing solutions often face challenges in scalability, adaptability, and efficiency, limiting their applicability in dynamic environments with real-time planning requirements. This paper presents Neural ATTF (Adaptive Task Token Framework), a new algorithm that combines a Priority Guided Task Matching (PGTM) Module with Neural STA* (Space-Time A*), a data-driven path planning method. Neural STA* enhances path planning by enabling rapid exploration of the search space through guided learned heuristics and ensures collision avoidance under dynamic constraints. PGTM prioritizes delayed agents and dynamically assigns tasks by prioritizing agents nearest to these tasks, optimizing both continuity and system throughput. Experimental evaluations against state-of-the-art MAPD algorithms, including TPTS, CENTRAL, RMCA, LNS-PBS, and LNS-wPBS, demonstrate the superior scalability, solution quality, and computational efficiency of Neural ATTF. These results highlight the framework's potential for addressing the critical demands of complex, real-world multi-agent systems operating in high-demand, unpredictable settings.
comment: 13 Pages, 5 Figures, 5 Tables
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ Contemplative Wisdom for Superalignment
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Rather than externally constraining behavior, we advocate designing AI with intrinsic morality built into its cognitive architecture and world model. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark using GPT-4o, particularly when combined. We offer detailed implementation strategies for state-of-the-art models, including contemplative architectures, constitutions, and reinforcement of chain-of-thought. For future systems, the active inference framework may offer the self-organizing and dynamic coupling capabilities needed to enact these insights in embodied agents. This interdisciplinary approach offers a self-correcting and resilient alternative to prevailing brittle control schemes.
☆ Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
☆ A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
Latent fingerprint enhancement is a critical step in the process of latent fingerprint identification. Existing deep learning-based enhancement methods still fall short of practical application requirements, particularly in restoring low-quality fingerprint regions. Recognizing that different regions of latent fingerprints require distinct enhancement strategies, we propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies. Furthermore, to improve the generalization capability of the network, we integrate orientation field and minutiae-related modules into TBSFNet and introduce a Multi-Level Feature Guidance Network (MLFGNet). Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
☆ NeuGaze: Reshaping the future BCI
Traditional brain-computer interfaces (BCIs), reliant on costly electroencephalography or invasive implants, struggle with complex human-computer interactions due to setup complexity and limited precision. We present NeuGaze, a novel webcam-based system that leverages eye gaze, head movements, and facial expressions to enable intuitive, real-time control using only a standard 30 Hz webcam, often pre-installed in laptops. Requiring minimal calibration, NeuGaze achieves performance comparable to conventional inputs, supporting precise cursor navigation, key triggering via an efficient skill wheel, and dynamic gaming interactions, such as defeating formidable opponents in first-person games. By harnessing preserved neck-up functionalities in motor-impaired individuals, NeuGaze eliminates the need for specialized hardware, offering a low-cost, accessible alternative to BCIs. This paradigm empowers diverse applications, from assistive technology to entertainment, redefining human-computer interaction for motor-impaired users. Project is at \href{https://github.com/NeuSpeech/NeuGaze}{github.com/NeuSpeech/NeuGaze}.
☆ Fast-Slow Co-advancing Optimizer: Toward Harmonious Adversarial Training of GAN
Up to now, the training processes of typical Generative Adversarial Networks (GANs) are still particularly sensitive to data properties and hyperparameters, which may lead to severe oscillations, difficulties in convergence, or even failures to converge, especially when the overall variances of the training sets are large. These phenomena are often attributed to the training characteristics of such networks. Aiming at the problem, this paper develops a new intelligent optimizer, Fast-Slow Co-advancing Optimizer (FSCO), which employs reinforcement learning in the training process of GANs to make training easier. Specifically, this paper allows the training step size to be controlled by an agent to improve training stability, and makes the training process more intelligent with variable learning rates, making GANs less sensitive to step size. Experiments have been conducted on three benchmark datasets to verify the effectiveness of the developed FSCO.
☆ Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
☆ Federated Latent Factor Model for Bias-Aware Recommendation with Privacy-Preserving
A recommender system (RS) aims to provide users with personalized item recommendations, enhancing their overall experience. Traditional RSs collect and process all user data on a central server. However, this centralized approach raises significant privacy concerns, as it increases the risk of data breaches and privacy leakages, which are becoming increasingly unacceptable to privacy-sensitive users. To address these privacy challenges, federated learning has been integrated into RSs, ensuring that user data remains secure. In centralized RSs, the issue of rating bias is effectively addressed by jointly analyzing all users' raw interaction data. However, this becomes a significant challenge in federated RSs, as raw data is no longer accessible due to privacy-preserving constraints. To overcome this problem, we propose a Federated Bias-Aware Latent Factor (FBALF) model. In FBALF, training bias is explicitly incorporated into every local model's loss function, allowing for the effective elimination of rating bias without compromising data privacy. Extensive experiments conducted on three real-world datasets demonstrate that FBALF achieves significantly higher recommendation accuracy compared to other state-of-the-art federated RSs.
☆ Empowering AI to Generate Better AI Code: Guided Generation of Deep Learning Projects with LLMs
While large language models (LLMs) have been widely applied to code generation, they struggle with generating entire deep learning projects, which are characterized by complex structures, longer functions, and stronger reliance on domain knowledge than general-purpose code. An open-domain LLM often lacks coherent contextual guidance and domain expertise for specific projects, making it challenging to produce complete code that fully meets user requirements. In this paper, we propose a novel planning-guided code generation method, DLCodeGen, tailored for generating deep learning projects. DLCodeGen predicts a structured solution plan, offering global guidance for LLMs to generate the project. The generated plan is then leveraged to retrieve semantically analogous code samples and subsequently abstract a code template. To effectively integrate these multiple retrieval-augmented techniques, a comparative learning mechanism is designed to generate the final code. We validate the effectiveness of our approach on a dataset we build for deep learning code generation. Experimental results demonstrate that DLCodeGen outperforms other baselines, achieving improvements of 9.7% in CodeBLEU and 3.6% in human evaluation metrics.
☆ Mitigating Degree Bias in Graph Representation Learning with Learnable Structural Augmentation and Structural Self-Attention IEEE
Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.
comment: Accepted at IEEE TNSE
☆ Chinese-LiPS: A Chinese audio-visual speech recognition dataset with Lip-reading and Presentation Slides
Incorporating visual modalities to assist Automatic Speech Recognition (ASR) tasks has led to significant improvements. However, existing Audio-Visual Speech Recognition (AVSR) datasets and methods typically rely solely on lip-reading information or speaking contextual video, neglecting the potential of combining these different valuable visual cues within the speaking context. In this paper, we release a multimodal Chinese AVSR dataset, Chinese-LiPS, comprising 100 hours of speech, video, and corresponding manual transcription, with the visual modality encompassing both lip-reading information and the presentation slides used by the speaker. Based on Chinese-LiPS, we develop a simple yet effective pipeline, LiPS-AVSR, which leverages both lip-reading and presentation slide information as visual modalities for AVSR tasks. Experiments show that lip-reading and presentation slide information improve ASR performance by approximately 8\% and 25\%, respectively, with a combined performance improvement of about 35\%. The dataset is available at https://kiri0824.github.io/Chinese-LiPS/
comment: 6 pages, 7 figures
☆ Mining Characteristics of Vulnerable Smart Contracts Across Lifecycle Stages
Smart contracts are the cornerstone of decentralized applications and financial protocols, which extend the application of digital currency transactions. The applications and financial protocols introduce significant security challenges, resulting in substantial economic losses. Existing solutions predominantly focus on code vulnerabilities within smart contracts, accounting for only 50% of security incidents. Therefore, a more comprehensive study of security issues related to smart contracts is imperative. The existing empirical research realizes the static analysis of smart contracts from the perspective of the lifecycle and gives the corresponding measures for each stage. However, they lack the characteristic analysis of vulnerabilities in each stage and the distinction between the vulnerabilities. In this paper, we present the first empirical study on the security of smart contracts throughout their lifecycle, including deployment and execution, upgrade, and destruction stages. It delves into the security issues at each stage and provides at least seven feature descriptions. Finally, utilizing these seven features, five machine-learning classification models are used to identify vulnerabilities at different stages. The classification results reveal that vulnerable contracts exhibit distinct transaction features and ego network properties at various stages.
☆ OPO: Making Decision-Focused Data Acquisition Decisions
We propose a model for making data acquisition decisions for variables in contextual stochastic optimisation problems. Data acquisition decisions are typically treated as separate and fixed. We explore problem settings in which the acquisition of contextual variables is costly and consequently constrained. The data acquisition problem is often solved heuristically for proxy objectives such as coverage. The more intuitive objective is the downstream decision quality as a result of data acquisition decisions. The whole pipeline can be characterised as an optimise-then-predict-then-optimise (OPO) problem. Analogously, much recent research has focused on how to integrate prediction and optimisation (PO) in the form of decision-focused learning. We propose leveraging differentiable optimisation to extend the integration to data acquisition. We solve the data acquisition problem with well-defined constraints by learning a surrogate linear objective function. We demonstrate an application of this model on a shortest path problem for which we first have to set a drone reconnaissance strategy to capture image segments serving as inputs to a model that predicts travel costs. We ablate the problem with a number of training modalities and demonstrate that the differentiable optimisation approach outperforms random search strategies.
☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
☆ Text-to-Decision Agent: Learning Generalist Policies from Natural Language Supervision
RL systems usually tackle generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple and scalable framework that supervises generalist policy learning with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines.
comment: 18 pages, 8 figures
☆ Beyond Terabit/s Integrated Neuromorphic Photonic Processor for DSP-Free Optical Interconnects
The rapid expansion of generative AI drives unprecedented demands for high-performance computing. Training large-scale AI models now requires vast interconnected GPU clusters across multiple data centers. Multi-scale AI training and inference demand uniform, ultra-low latency, and energy-efficient links to enable massive GPUs to function as a single cohesive unit. However, traditional electrical and optical interconnects, relying on conventional digital signal processors (DSPs) for signal distortion compensation, increasingly fail to meet these stringent requirements. To overcome these limitations, we present an integrated neuromorphic optical signal processor (OSP) that leverages deep reservoir computing and achieves DSP-free, all-optical, real-time processing. Experimentally, our OSP achieves a 100 Gbaud PAM4 per lane, 1.6 Tbit/s data center interconnect over a 5 km optical fiber in the C-band (equivalent to over 80 km in the O-band), far exceeding the reach of state-of-the-art DSP solutions, which are fundamentally constrained by chromatic dispersion in IMDD systems. Simultaneously, it reduces processing latency by four orders of magnitude and energy consumption by three orders of magnitude. Unlike DSPs, which introduce increased latency at high data rates, our OSP maintains consistent, ultra-low latency regardless of data rate scaling, making it ideal for future optical interconnects. Moreover, the OSP retains full optical field information for better impairment compensation and adapts to various modulation formats, data rates, and wavelengths. Fabricated using a mature silicon photonic process, the OSP can be monolithically integrated with silicon photonic transceivers, enhancing the compactness and reliability of all-optical interconnects. This research provides a highly scalable, energy-efficient, and high-speed solution, paving the way for next-generation AI infrastructure.
comment: 22 pages, 6 figures
☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperform state-of-the-art methods by at least 9.8\%/6.6\% and 6.4\%/6.2\% of average mAP/R@1 on two training orders.
comment: 12 pages, 5 figures
☆ SOLIDO: A Robust Watermarking Method for Speech Synthesis via Low-Rank Adaptation
The accelerated advancement of speech generative models has given rise to security issues, including model infringement and unauthorized abuse of content. Although existing generative watermarking techniques have proposed corresponding solutions, most methods require substantial computational overhead and training costs. In addition, some methods have limitations in robustness when handling variable-length inputs. To tackle these challenges, we propose \textsc{SOLIDO}, a novel generative watermarking method that integrates parameter-efficient fine-tuning with speech watermarking through low-rank adaptation (LoRA) for speech diffusion models. Concretely, the watermark encoder converts the watermark to align with the input of diffusion models. To achieve precise watermark extraction from variable-length inputs, the watermark decoder based on depthwise separable convolution is designed for watermark recovery. To further enhance speech generation performance and watermark extraction capability, we propose a speech-driven lightweight fine-tuning strategy, which reduces computational overhead through LoRA. Comprehensive experiments demonstrate that the proposed method ensures high-fidelity watermarked speech even at a large capacity of 2000 bps. Furthermore, against common individual and compound speech attacks, our SOLIDO achieves a maximum average extraction accuracy of 99.20\% and 98.43\%, respectively. It surpasses other state-of-the-art methods by nearly 23\% in resisting time-stretching attacks.
☆ Trainable Quantum Neural Network for Multiclass Image Classification with the Power of Pre-trained Tree Tensor Networks IEEE
Tree tensor networks (TTNs) offer powerful models for image classification. While these TTN image classifiers already show excellent performance on classical hardware, embedding them into quantum neural networks (QNNs) may further improve the performance by leveraging quantum resources. However, embedding TTN classifiers into QNNs for multiclass classification remains challenging. Key obstacles are the highorder gate operations required for large bond dimensions and the mid-circuit postselection with exponentially low success rates necessary for the exact embedding. In this work, to address these challenges, we propose forest tensor network (FTN)-classifiers, which aggregate multiple small-bond-dimension TTNs. This allows us to handle multiclass classification without requiring large gates in the embedded circuits. We then remove the overhead of mid-circuit postselection by extending the adiabatic encoding framework to our setting and smoothly encode the FTN-classifiers into a quantum forest tensor network (qFTN)- classifiers. Numerical experiments on MNIST and CIFAR-10 demonstrate that we can successfully train FTN-classifiers and encode them into qFTN-classifiers, while maintaining or even improving the performance of the pre-trained FTN-classifiers. These results suggest that synergy between TTN classification models and QNNs can provide a robust and scalable framework for multiclass quantum-enhanced image classification.
comment: 11 pages, 12 figures, 2 tables. This work has been submitted to the IEEE for possible publication
☆ aiXamine: LLM Safety and Security Simplified
Evaluating Large Language Models (LLMs) for safety and security remains a complex task, often requiring users to navigate a fragmented landscape of ad hoc benchmarks, datasets, metrics, and reporting formats. To address this challenge, we present aiXamine, a comprehensive black-box evaluation platform for LLM safety and security. aiXamine integrates over 40 tests (i.e., benchmarks) organized into eight key services targeting specific dimensions of safety and security: adversarial robustness, code security, fairness and bias, hallucination, model and data privacy, out-of-distribution (OOD) robustness, over-refusal, and safety alignment. The platform aggregates the evaluation results into a single detailed report per model, providing a detailed breakdown of model performance, test examples, and rich visualizations. We used aiXamine to assess over 50 publicly available and proprietary LLMs, conducting over 2K examinations. Our findings reveal notable vulnerabilities in leading models, including susceptibility to adversarial attacks in OpenAI's GPT-4o, biased outputs in xAI's Grok-3, and privacy weaknesses in Google's Gemini 2.0. Additionally, we observe that open-source models can match or exceed proprietary models in specific services such as safety alignment, fairness and bias, and OOD robustness. Finally, we identify trade-offs between distillation strategies, model size, training methods, and architectural choices.
☆ Evaluating Code Generation of LLMs in Advanced Computer Science Problems
Large Language Models (LLMs), such as GitHub Copilot and ChatGPT have become popular among programming students. Students use LLMs to assist them in programming courses, including generating source code. Previous work has evaluated the ability of LLMs in solving introductory-course programming assignments. The results have shown that LLMs are highly effective in generating code for introductory Computer Science (CS) courses. However, there is a gap in research on evaluating LLMs' ability to generate code that solves advanced programming assignments. In this work, we evaluate the ability of four LLM tools to solve programming assignments from advanced CS courses in three popular programming languages, Java, Python, and C. We manually select 12 problems, three problems from introductory courses as the baseline and nine programming assignments from second- and third-year CS courses. To evaluate the LLM-generated code, we generate a test suite of 1000 test cases per problem and analyze the program output. Our evaluation shows that although LLMs are highly effective in generating source code for introductory programming courses, solving advanced programming assignments is more challenging. Nonetheless, in many cases, LLMs identify the base problem and provide partial solutions that may be useful to CS students. Furthermore, our results may provide useful guidance for teachers of advanced programming courses on how to design programming assignments.
☆ Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues IEEE 2025
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
☆ Generative Semantic Communications: Principles and Practices
Semantic communication leverages artificial intelligence (AI) technologies to extract semantic information from data for efficient transmission, theraby significantly reducing communication cost. With the evolution towards artificial general intelligence (AGI), the increasing demands for AGI services pose new challenges to semantic communication. In response, we propose a new paradigm for AGI-driven communications, called generative semantic communication (GSC), which utilizes advanced AI technologies such as foundation models and generative models. We first describe the basic concept of GSC and its difference from existing semantic communications, and then introduce a general framework of GSC, followed by two case studies to verify the advantages of GSC in AGI-driven applications. Finally, open challenges and new research directions are discussed to stimulate this line of research and pave the way for practical applications.
☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
☆ Giving AI a voice: how does AI think it should be treated?
With the astounding progress in (generative) artificial intelligence (AI), there has been significant public discourse regarding regulation and ethics of the technology. Is it sufficient when humans discuss this with other humans? Or, given that AI is increasingly becoming a viable source of inspiration for people (and let alone the hypothetical possibility that the technology may at some point become "artificial general intelligence" and/or develop consciousness), should AI not join the discourse? There are new questions and angles that AI brings to the table that we might not have considered before - so let us make the key subject of this book an active participant. This chapter therefore includes a brief human-AI conversation on the topic of AI rights and ethics.
☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
☆ StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models ICASSP 2025
In this paper, we propose StableQuant, a novel adaptive post-training quantization (PTQ) algorithm for widely used speech foundation models (SFMs). While PTQ has been successfully employed for compressing large language models (LLMs) due to its ability to bypass additional fine-tuning, directly applying these techniques to SFMs may not yield optimal results, as SFMs utilize distinct network architecture for feature extraction. StableQuant demonstrates optimal quantization performance regardless of the network architecture type, as it adaptively determines the quantization range for each layer by analyzing both the scale distributions and overall performance. We evaluate our algorithm on two SFMs, HuBERT and wav2vec2.0, for an automatic speech recognition (ASR) task, and achieve superior performance compared to traditional PTQ methods. StableQuant successfully reduces the sizes of SFM models to a quarter and doubles the inference speed while limiting the word error rate (WER) performance drop to less than 0.3% with 8-bit quantization.
comment: Accepted at ICASSP 2025
☆ Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
The performance of OCR has improved with the evolution of AI technology. As OCR continues to broaden its range of applications, the increased likelihood of interference introduced by various usage environments can prevent it from achieving its inherent performance. This results in reduced recognition accuracy under certain conditions, and makes the quality control of recognition devices more challenging. Therefore, to ensure that users can properly utilize OCR, we compiled the real-world external disturbance factors that cause performance degradation, along with the resulting image degradation phenomena, into an external disturbance factor table and, by also indicating how to make use of it, organized them into guidelines.
comment: 16 pages, 14 figures
☆ VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
☆ Latent Bayesian Optimization via Autoregressive Normalizing Flows ICLR 2025
Bayesian Optimization (BO) has been recognized for its effectiveness in optimizing expensive and complex objective functions. Recent advancements in Latent Bayesian Optimization (LBO) have shown promise by integrating generative models such as variational autoencoders (VAEs) to manage the complexity of high-dimensional and structured data spaces. However, existing LBO approaches often suffer from the value discrepancy problem, which arises from the reconstruction gap between input and latent spaces. This value discrepancy problem propagates errors throughout the optimization process, leading to suboptimal outcomes. To address this issue, we propose a Normalizing Flow-based Bayesian Optimization (NF-BO), which utilizes normalizing flow as a generative model to establish one-to-one encoding function from the input space to the latent space, along with its left-inverse decoding function, eliminating the reconstruction gap. Specifically, we introduce SeqFlow, an autoregressive normalizing flow for sequence data. In addition, we develop a new candidate sampling strategy that dynamically adjusts the exploration probability for each token based on its importance. Through extensive experiments, our NF-BO method demonstrates superior performance in molecule generation tasks, significantly outperforming both traditional and recent LBO approaches.
comment: ICLR 2025
☆ Impact of Latent Space Dimension on IoT Botnet Detection Performance: VAE-Encoder Versus ViT-Encoder
The rapid evolution of Internet of Things (IoT) technology has led to a significant increase in the number of IoT devices, applications, and services. This surge in IoT devices, along with their widespread presence, has made them a prime target for various cyber-attacks, particularly through IoT botnets. As a result, security has become a major concern within the IoT ecosystem. This study focuses on investigating how the latent dimension impacts the performance of different deep learning classifiers when trained on latent vector representations of the train dataset. The primary objective is to compare the outcomes of these models when encoder components from two cutting-edge architectures: the Vision Transformer (ViT) and the Variational Auto-Encoder (VAE) are utilized to project the high dimensional train dataset to the learned low dimensional latent space. The encoder components are employed to project high-dimensional structured .csv IoT botnet traffic datasets to various latent sizes. Evaluated on N-BaIoT and CICIoT2022 datasets, findings reveal that VAE-encoder based dimension reduction outperforms ViT-encoder based dimension reduction for both datasets in terms of four performance metrics including accuracy, precision, recall, and F1-score for all models which can be attributed to absence of spatial patterns in the datasets the ViT model attempts to learn and extract from image instances.
☆ ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
☆ OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
☆ Bridge the Gap: From Weak to Full Supervision for Temporal Action Localization with PseudoFormer CVPR 2025
Weakly-supervised Temporal Action Localization (WTAL) has achieved notable success but still suffers from a lack of temporal annotations, leading to a performance and framework gap compared with fully-supervised methods. While recent approaches employ pseudo labels for training, three key challenges: generating high-quality pseudo labels, making full use of different priors, and optimizing training methods with noisy labels remain unresolved. Due to these perspectives, we propose PseudoFormer, a novel two-branch framework that bridges the gap between weakly and fully-supervised Temporal Action Localization (TAL). We first introduce RickerFusion, which maps all predicted action proposals to a global shared space to generate pseudo labels with better quality. Subsequently, we leverage both snippet-level and proposal-level labels with different priors from the weak branch to train the regression-based model in the full branch. Finally, the uncertainty mask and iterative refinement mechanism are applied for training with noisy pseudo labels. PseudoFormer achieves state-of-the-art WTAL results on the two commonly used benchmarks, THUMOS14 and ActivityNet1.3. Besides, extensive ablation studies demonstrate the contribution of each component of our method.
comment: CVPR 2025: IEEE Conference on Computer Vision and Pattern Recognition
☆ AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.
☆ Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs.
☆ Exploring $\ell_0$ Sparsification for Inference-free Sparse Retrievers SIGIR 2025
With increasing demands for efficiency, information retrieval has developed a branch of sparse retrieval, further advancing towards inference-free retrieval where the documents are encoded during indexing time and there is no model-inference for queries. Existing sparse retrieval models rely on FLOPS regularization for sparsification, while this mechanism was originally designed for Siamese encoders, it is considered to be suboptimal in inference-free scenarios which is asymmetric. Previous attempts to adapt FLOPS for inference-free scenarios have been limited to rule-based methods, leaving the potential of sparsification approaches for inference-free retrieval models largely unexplored. In this paper, we explore $\ell_0$ inspired sparsification manner for inference-free retrievers. Through comprehensive out-of-domain evaluation on the BEIR benchmark, our method achieves state-of-the-art performance among inference-free sparse retrieval models and is comparable to leading Siamese sparse retrieval models. Furthermore, we provide insights into the trade-off between retrieval effectiveness and computational efficiency, demonstrating practical value for real-world applications.
comment: Accepted by SIGIR 2025
☆ Establishing Reliability Metrics for Reward Models in Large Language Models
The reward model (RM) that represents human preferences plays a crucial role in optimizing the outputs of large language models (LLMs), e.g., through reinforcement learning from human feedback (RLHF) or rejection sampling. However, a long challenge for RM is its uncertain reliability, i.e., LLM outputs with higher rewards may not align with actual human preferences. Currently, there is a lack of a convincing metric to quantify the reliability of RMs. To bridge this gap, we propose the \textit{\underline{R}eliable at \underline{$\eta$}} (RETA) metric, which directly measures the reliability of an RM by evaluating the average quality (scored by an oracle) of the top $\eta$ quantile responses assessed by an RM. On top of RETA, we present an integrated benchmarking pipeline that allows anyone to evaluate their own RM without incurring additional Oracle labeling costs. Extensive experimental studies demonstrate the superior stability of RETA metric, providing solid evaluations of the reliability of various publicly available and proprietary RMs. When dealing with an unreliable RM, we can use the RETA metric to identify the optimal quantile from which to select the responses.
☆ Protecting Your Voice: Temporal-aware Robust Watermarking
The rapid advancement of generative models has led to the synthesis of real-fake ambiguous voices. To erase the ambiguity, embedding watermarks into the frequency-domain features of synthesized voices has become a common routine. However, the robustness achieved by choosing the frequency domain often comes at the expense of fine-grained voice features, leading to a loss of fidelity. Maximizing the comprehensive learning of time-domain features to enhance fidelity while maintaining robustness, we pioneer a \textbf{\underline{t}}emporal-aware \textbf{\underline{r}}ob\textbf{\underline{u}}st wat\textbf{\underline{e}}rmarking (\emph{True}) method for protecting the speech and singing voice.
☆ ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
☆ DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.
☆ On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
☆ Dynamic Contrastive Skill Learning with State-Transition Based Skill Clustering and Dynamic Length Adjustment ICLR 2025
Reinforcement learning (RL) has made significant progress in various domains, but scaling it to long-horizon tasks with complex decision-making remains challenging. Skill learning attempts to address this by abstracting actions into higher-level behaviors. However, current approaches often fail to recognize semantically similar behaviors as the same skill and use fixed skill lengths, limiting flexibility and generalization. To address this, we propose Dynamic Contrastive Skill Learning (DCSL), a novel framework that redefines skill representation and learning. DCSL introduces three key ideas: state-transition based skill representation, skill similarity function learning, and dynamic skill length adjustment. By focusing on state transitions and leveraging contrastive learning, DCSL effectively captures the semantic context of behaviors and adapts skill lengths to match the appropriate temporal extent of behaviors. Our approach enables more flexible and adaptive skill extraction, particularly in complex or noisy datasets, and demonstrates competitive performance compared to existing methods in task completion and efficiency.
comment: ICLR 2025; 23 pages, 12 figures
☆ Automatic Evaluation Metrics for Document-level Translation: Overview, Challenges and Trends
With the rapid development of deep learning technologies, the field of machine translation has witnessed significant progress, especially with the advent of large language models (LLMs) that have greatly propelled the advancement of document-level translation. However, accurately evaluating the quality of document-level translation remains an urgent issue. This paper first introduces the development status of document-level translation and the importance of evaluation, highlighting the crucial role of automatic evaluation metrics in reflecting translation quality and guiding the improvement of translation systems. It then provides a detailed analysis of the current state of automatic evaluation schemes and metrics, including evaluation methods with and without reference texts, as well as traditional metrics, Model-based metrics and LLM-based metrics. Subsequently, the paper explores the challenges faced by current evaluation methods, such as the lack of reference diversity, dependence on sentence-level alignment information, and the bias, inaccuracy, and lack of interpretability of the LLM-as-a-judge method. Finally, the paper looks ahead to the future trends in evaluation methods, including the development of more user-friendly document-level evaluation methods and more robust LLM-as-a-judge methods, and proposes possible research directions, such as reducing the dependency on sentence-level information, introducing multi-level and multi-granular evaluation approaches, and training models specifically for machine translation evaluation. This study aims to provide a comprehensive analysis of automatic evaluation for document-level translation and offer insights into future developments.
☆ Automated Duplicate Bug Report Detection in Large Open Bug Repositories IEEE
Many users and contributors of large open-source projects report software defects or enhancement requests (known as bug reports) to the issue-tracking systems. However, they sometimes report issues that have already been reported. First, they may not have time to do sufficient research on existing bug reports. Second, they may not possess the right expertise in that specific area to realize that an existing bug report is essentially elaborating on the same matter, perhaps with a different wording. In this paper, we propose a novel approach based on machine learning methods that can automatically detect duplicate bug reports in an open bug repository based on the textual data in the reports. We present six alternative methods: Topic modeling, Gaussian Naive Bayes, deep learning, time-based organization, clustering, and summarization using a generative pre-trained transformer large language model. Additionally, we introduce a novel threshold-based approach for duplicate identification, in contrast to the conventional top-k selection method that has been widely used in the literature. Our approach demonstrates promising results across all the proposed methods, achieving accuracy rates ranging from the high 70%'s to the low 90%'s. We evaluated our methods on a public dataset of issues belonging to an Eclipse open-source project.
comment: IEEE COMPSAC 2025
☆ How Effective Can Dropout Be in Multiple Instance Learning ?
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
☆ Exploring Collaborative GenAI Agents in Synchronous Group Settings: Eliciting Team Perceptions and Design Considerations for the Future of Work SC
While generative artificial intelligence (GenAI) is finding increased adoption in workplaces, current tools are primarily designed for individual use. Prior work established the potential for these tools to enhance personal creativity and productivity towards shared goals; however, we don't know yet how to best take into account the nuances of group work and team dynamics when deploying GenAI in work settings. In this paper, we investigate the potential of collaborative GenAI agents to augment teamwork in synchronous group settings through an exploratory study that engaged 25 professionals across 6 teams in speculative design workshops and individual follow-up interviews. Our workshops included a mixed reality provotype to simulate embodied collaborative GenAI agents capable of actively participating in group discussions. Our findings suggest that, if designed well, collaborative GenAI agents offer valuable opportunities to enhance team problem-solving by challenging groupthink, bridging communication gaps, and reducing social friction. However, teams' willingness to integrate GenAI agents depended on its perceived fit across a number of individual, team, and organizational factors. We outline the key design tensions around agent representation, social prominence, and engagement and highlight the opportunities spatial and immersive technologies could offer to modulate GenAI influence on team outcomes and strike a balance between augmentation and agency.
comment: To be published in ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2025). 33 pages, 11 figures, 1 table
☆ PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
☆ Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
comment: Code, model, and data are available at https://github.com/Parallel-Reasoning/APR. The first three authors contributed equally to this work
☆ Improving Human-AI Coordination through Adversarial Training and Generative Models
Being able to cooperate with new people is an important component of many economically valuable AI tasks, from household robotics to autonomous driving. However, generalizing to novel humans requires training on data that captures the diversity of human behaviors. Adversarial training is one avenue for searching for such data and ensuring that agents are robust. However, it is difficult to apply in the cooperative setting because adversarial policies intentionally learn to sabotage the task instead of simulating valid cooperation partners. To address this challenge, we propose a novel strategy for overcoming self-sabotage that combines a pre-trained generative model to simulate valid cooperative agent policies with adversarial training to maximize regret. We call our method GOAT: Generative Online Adversarial Training. In this framework, the GOAT dynamically searches for and generates coordination strategies where the learning policy -- the Cooperator agent -- underperforms. GOAT enables better generalization by exposing the Cooperator to various challenging interaction scenarios. We maintain realistic coordination strategies by updating only the generative model's embedding while keeping its parameters frozen, thus avoiding adversarial exploitation. We evaluate GOAT with real human partners, and the results demonstrate state-of-the-art performance on the Overcooked benchmark, highlighting its effectiveness in generalizing to diverse human behaviors.
☆ Demand for LLMs: Descriptive Evidence on Substitution, Market Expansion, and Multihoming
This paper documents three stylized facts about the demand for Large Language Models (LLMs) using data from OpenRouter, a prominent LLM marketplace. First, new models experience rapid initial adoption that stabilizes within weeks. Second, model releases differ substantially in whether they primarily attract new users or substitute demand from competing models. Third, multihoming, using multiple models simultaneously, is common among apps. These findings suggest significant horizontal and vertical differentiation in the LLM market, implying opportunities for providers to maintain demand and pricing power despite rapid technological advances.
☆ AGI Is Coming... Right After AI Learns to Play Wordle
This paper investigates multimodal agents, in particular, OpenAI's Computer-User Agent (CUA), trained to control and complete tasks through a standard computer interface, similar to humans. We evaluated the agent's performance on the New York Times Wordle game to elicit model behaviors and identify shortcomings. Our findings revealed a significant discrepancy in the model's ability to recognize colors correctly depending on the context. The model had a $5.36\%$ success rate over several hundred runs across a week of Wordle. Despite the immense enthusiasm surrounding AI agents and their potential to usher in Artificial General Intelligence (AGI), our findings reinforce the fact that even simple tasks present substantial challenges for today's frontier AI models. We conclude with a discussion of the potential underlying causes, implications for future development, and research directions to improve these AI systems.
☆ Trillion 7B Technical Report
We introduce Trillion-7B, the most token-efficient Korean-centric multilingual LLM available. Our novel Cross-lingual Document Attention (XLDA) mechanism enables highly efficient and effective knowledge transfer from English to target languages like Korean and Japanese. Combined with optimized data mixtures, language-specific filtering, and tailored tokenizer construction, Trillion-7B achieves competitive performance while dedicating only 10\% of its 2T training tokens to multilingual data and requiring just 59.4K H100 GPU hours (\$148K) for full training. Comprehensive evaluations across 27 benchmarks in four languages demonstrate Trillion-7B's robust multilingual performance and exceptional cross-lingual consistency.
comment: Preview version
☆ Solving Multi-Agent Safe Optimal Control with Distributed Epigraph Form MARL
Tasks for multi-robot systems often require the robots to collaborate and complete a team goal while maintaining safety. This problem is usually formalized as a constrained Markov decision process (CMDP), which targets minimizing a global cost and bringing the mean of constraint violation below a user-defined threshold. Inspired by real-world robotic applications, we define safety as zero constraint violation. While many safe multi-agent reinforcement learning (MARL) algorithms have been proposed to solve CMDPs, these algorithms suffer from unstable training in this setting. To tackle this, we use the epigraph form for constrained optimization to improve training stability and prove that the centralized epigraph form problem can be solved in a distributed fashion by each agent. This results in a novel centralized training distributed execution MARL algorithm named Def-MARL. Simulation experiments on 8 different tasks across 2 different simulators show that Def-MARL achieves the best overall performance, satisfies safety constraints, and maintains stable training. Real-world hardware experiments on Crazyflie quadcopters demonstrate the ability of Def-MARL to safely coordinate agents to complete complex collaborative tasks compared to other methods.
comment: 28 pages, 16 figures; Accepted by Robotics: Science and Systems 2025
☆ LLM-Assisted Translation of Legacy FORTRAN Codes to C++: A Cross-Platform Study
Large Language Models (LLMs) are increasingly being leveraged for generating and translating scientific computer codes by both domain-experts and non-domain experts. Fortran has served as one of the go to programming languages in legacy high-performance computing (HPC) for scientific discoveries. Despite growing adoption, LLM-based code translation of legacy code-bases has not been thoroughly assessed or quantified for its usability. Here, we studied the applicability of LLM-based translation of Fortran to C++ as a step towards building an agentic-workflow using open-weight LLMs on two different computational platforms. We statistically quantified the compilation accuracy of the translated C++ codes, measured the similarity of the LLM translated code to the human translated C++ code, and statistically quantified the output similarity of the Fortran to C++ translation.
comment: 12 pages, 7 figures, 2 tables
☆ On the Boolean Network Theory of Datalog$^\neg$
Datalog$^\neg$ is a central formalism used in a variety of domains ranging from deductive databases and abstract argumentation frameworks to answer set programming. Its model theory is the finite counterpart of the logical semantics developed for normal logic programs, mainly based on the notions of Clark's completion and two-valued or three-valued canonical models including supported, stable, regular and well-founded models. In this paper we establish a formal link between Datalog$^\neg$ and Boolean network theory, which was initially introduced by Stuart Kaufman and Ren\'e Thomas to reason about gene regulatory networks. We use previous results from Boolean network theory to prove that in the absence of odd cycles in a Datalog$^\neg$ program, the regular models coincide with the stable models, which entails the existence of stable models, and in the absence of even cycles, we show the uniqueness of stable partial models, which entails the uniqueness of regular models. These results on regular models have been claimed by You and Yuan in 1994 for normal logic programs but we show problems in their definition of well-founded stratification and in their proofs that we can fix for negative normal logic programs only. We also give upper bounds on the numbers of stable partial, regular, and stable models of a Datalog$^\neg$ program using the cardinality of a feedback vertex set in its atom dependency graph. Interestingly, our connection to Boolean network theory also points us to the notion of trap spaces for Datalog$^\neg$ programs. We relate the notions of supported or stable trap spaces to the other semantics of Datalog$^\neg$, and show the equivalence between subset-minimal stable trap spaces and regular models.
comment: 48 pages, 7 figures
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ Solving New Tasks by Adapting Internet Video Knowledge ICLR 2025
Video generative models demonstrate great promise in robotics by serving as visual planners or as policy supervisors. When pretrained on internet-scale data, such video models intimately understand alignment with natural language, and can thus facilitate generalization to novel downstream behavior through text-conditioning. However, they may not be sensitive to the specificities of the particular environment the agent inhabits. On the other hand, training video models on in-domain examples of robotic behavior naturally encodes environment-specific intricacies, but the scale of available demonstrations may not be sufficient to support generalization to unseen tasks via natural language specification. In this work, we investigate different adaptation techniques that integrate in-domain information with large-scale pretrained video models, and explore the extent to which they enable novel text-conditioned generalization for robotic tasks, while also considering their independent data and resource considerations. We successfully demonstrate across robotic environments that adapting powerful video models with small scales of example data can successfully facilitate generalization to novel behaviors. In particular, we present a novel adaptation strategy, termed Inverse Probabilistic Adaptation, that not only consistently achieves strong generalization performance across robotic tasks and settings, but also exhibits robustness to the quality of adaptation data, successfully solving novel tasks even when only suboptimal in-domain demonstrations are available.
comment: ICLR 2025. Project Webpage: https://diffusion-supervision.github.io/adapt2act/
☆ KeDiff: Key Similarity-Based KV Cache Eviction for Long-Context LLM Inference in Resource-Constrained Environments
In this work, we demonstrate that distinctive keys during LLM inference tend to have high attention scores. We explore this phenomenon and propose KeyDiff, a training-free KV cache eviction method based on key similarity. This method facilitates the deployment of LLM-based application requiring long input prompts in resource-constrained environments with limited memory and compute budgets. Unlike other KV cache eviction methods, KeyDiff can process arbitrarily long prompts within strict resource constraints and efficiently generate responses. We demonstrate that KeyDiff computes the optimal solution to a KV cache selection problem that maximizes key diversity, providing a theoretical understanding of KeyDiff. Notably,KeyDiff does not rely on attention scores, allowing the use of optimized attention mechanisms like FlashAttention. We demonstrate the effectiveness of KeyDiff across diverse tasks and models, illustrating a performance gap of less than 0.04\% with 8K cache budget ($\sim$ 23\% KV cache reduction) from the non-evicting baseline on the LongBench benchmark for Llama 3.1-8B and Llama 3.2-3B.
comment: 8 pages, 14 figures
☆ Reliable Classification with Conformal Learning and Interval-Type 2 Fuzzy Sets
Classical machine learning classifiers tend to be overconfident can be unreliable outside of the laboratory benchmarks. Properly assessing the reliability of the output of the model per sample is instrumental for real-life scenarios where these systems are deployed. Because of this, different techniques have been employed to properly quantify the quality of prediction for a given model. These are most commonly Bayesian statistics and, more recently, conformal learning. Given a calibration set, conformal learning can produce outputs that are guaranteed to cover the target class with a desired significance level, and are more reliable than the standard confidence intervals used by Bayesian methods. In this work, we propose to use conformal learning with fuzzy rule-based systems in classification and show some metrics of their performance. Then, we discuss how the use of type 2 fuzzy sets can improve the quality of the output of the system compared to both fuzzy and crisp rules. Finally, we also discuss how the fine-tuning of the system can be adapted to improve the quality of the conformal prediction.
☆ Med-CoDE: Medical Critique based Disagreement Evaluation Framework NAACL
The emergence of large language models (LLMs) has significantly influenced numerous fields, including healthcare, by enhancing the capabilities of automated systems to process and generate human-like text. However, despite their advancements, the reliability and accuracy of LLMs in medical contexts remain critical concerns. Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance, leading to potential risks in clinical settings. In this work, we propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges. The framework leverages a critique-based approach to quantitatively measure the degree of disagreement between model-generated responses and established medical ground truths. This framework captures both accuracy and reliability in medical settings. The proposed evaluation framework aims to fill the existing gap in LLM assessment by offering a systematic method to evaluate the quality and trustworthiness of medical LLMs. Through extensive experiments and case studies, we illustrate the practicality of our framework in providing a comprehensive and reliable evaluation of medical LLMs.
comment: 8 pages, 4 figures, NAACL SRW 2025
☆ Bayesian Federated Learning for Continual Training
Bayesian Federated Learning (BFL) enables uncertainty quantification and robust adaptation in distributed learning. In contrast to the frequentist approach, it estimates the posterior distribution of a global model, offering insights into model reliability. However, current BFL methods neglect continual learning challenges in dynamic environments where data distributions shift over time. We propose a continual BFL framework applied to human sensing with radar data collected over several days. Using Stochastic Gradient Langevin Dynamics (SGLD), our approach sequentially updates the model, leveraging past posteriors to construct the prior for the new tasks. We assess the accuracy, the expected calibration error (ECE) and the convergence speed of our approach against several baselines. Results highlight the effectiveness of continual Bayesian updates in preserving knowledge and adapting to evolving data.
☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly naive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript considers the computational issues of evaluating such indices and identifies some efficient algorithms to evaluate them.
comment: 27 pages, 6 figures
☆ A Graph Based Raman Spectral Processing Technique for Exosome Classification
Exosomes are small vesicles crucial for cell signaling and disease biomarkers. Due to their complexity, an "omics" approach is preferable to individual biomarkers. While Raman spectroscopy is effective for exosome analysis, it requires high sample concentrations and has limited sensitivity to lipids and proteins. Surface-enhanced Raman spectroscopy helps overcome these challenges. In this study, we leverage Neo4j graph databases to organize 3,045 Raman spectra of exosomes, enhancing data generalization. To further refine spectral analysis, we introduce a novel spectral filtering process that integrates the PageRank Filter with optimal Dimensionality Reduction. This method improves feature selection, resulting in superior classification performance. Specifically, the Extra Trees model, using our spectral processing approach, achieves 0.76 and 0.857 accuracy in classifying hyperglycemic, hypoglycemic, and normal exosome samples based on Raman spectra and surface, respectively, with group 10-fold cross-validation. Our results show that graph-based spectral filtering combined with optimal dimensionality reduction significantly improves classification accuracy by reducing noise while preserving key biomarker signals. This novel framework enhances Raman-based exosome analysis, expanding its potential for biomedical applications, disease diagnostics, and biomarker discovery.
comment: The 23rd International Conference on Artificial Intelligence in Medicine (AIME 2025), LNAI, Springer, 11 pages
☆ HyperFlow: Gradient-Free Emulation of Few-Shot Fine-Tuning
While test-time fine-tuning is beneficial in few-shot learning, the need for multiple backpropagation steps can be prohibitively expensive in real-time or low-resource scenarios. To address this limitation, we propose an approach that emulates gradient descent without computing gradients, enabling efficient test-time adaptation. Specifically, we formulate gradient descent as an Euler discretization of an ordinary differential equation (ODE) and train an auxiliary network to predict the task-conditional drift using only the few-shot support set. The adaptation then reduces to a simple numerical integration (e.g., via the Euler method), which requires only a few forward passes of the auxiliary network -- no gradients or forward passes of the target model are needed. In experiments on cross-domain few-shot classification using the Meta-Dataset and CDFSL benchmarks, our method significantly improves out-of-domain performance over the non-fine-tuned baseline while incurring only 6\% of the memory cost and 0.02\% of the computation time of standard fine-tuning, thus establishing a practical middle ground between direct transfer and fully fine-tuned approaches.
☆ How to systematically develop an effective AI-based bias correction model?
This study introduces ReSA-ConvLSTM, an artificial intelligence (AI) framework for systematic bias correction in numerical weather prediction (NWP). We propose three innovations by integrating dynamic climatological normalization, ConvLSTM with temporal causality constraints, and residual self-attention mechanisms. The model establishes a physics-aware nonlinear mapping between ECMWF forecasts and ERA5 reanalysis data. Using 41 years (1981-2021) of global atmospheric data, the framework reduces systematic biases in 2-m air temperature (T2m), 10-m winds (U10/V10), and sea-level pressure (SLP), achieving up to 20% RMSE reduction over 1-7 day forecasts compared to operational ECMWF outputs. The lightweight architecture (10.6M parameters) enables efficient generalization to multiple variables and downstream applications, reducing retraining time by 85% for cross-variable correction while improving ocean model skill through bias-corrected boundary conditions. The ablation experiments demonstrate that our innovations significantly improve the model's correction performance, suggesting that incorporating variable characteristics into the model helps enhance forecasting skills.
☆ Trends in Frontier AI Model Count: A Forecast to 2028
Governments are starting to impose requirements on AI models based on how much compute was used to train them. For example, the EU AI Act imposes requirements on providers of general-purpose AI with systemic risk, which includes systems trained using greater than $10^{25}$ floating point operations (FLOP). In the United States' AI Diffusion Framework, a training compute threshold of $10^{26}$ FLOP is used to identify "controlled models" which face a number of requirements. We explore how many models such training compute thresholds will capture over time. We estimate that by the end of 2028, there will be between 103-306 foundation models exceeding the $10^{25}$ FLOP threshold put forward in the EU AI Act (90% CI), and 45-148 models exceeding the $10^{26}$ FLOP threshold that defines controlled models in the AI Diffusion Framework (90% CI). We also find that the number of models exceeding these absolute compute thresholds each year will increase superlinearly -- that is, each successive year will see more new models captured within the threshold than the year before. Thresholds that are defined with respect to the largest training run to date (for example, such that all models within one order of magnitude of the largest training run to date are captured by the threshold) see a more stable trend, with a median forecast of 14-16 models being captured by this definition annually from 2025-2028.
☆ A Conceptual Framework for AI-based Decision Systems in Critical Infrastructures
The interaction between humans and AI in safety-critical systems presents a unique set of challenges that remain partially addressed by existing frameworks. These challenges stem from the complex interplay of requirements for transparency, trust, and explainability, coupled with the necessity for robust and safe decision-making. A framework that holistically integrates human and AI capabilities while addressing these concerns is notably required, bridging the critical gaps in designing, deploying, and maintaining safe and effective systems. This paper proposes a holistic conceptual framework for critical infrastructures by adopting an interdisciplinary approach. It integrates traditionally distinct fields such as mathematics, decision theory, computer science, philosophy, psychology, and cognitive engineering and draws on specialized engineering domains, particularly energy, mobility, and aeronautics. The flexibility in its adoption is also demonstrated through its instantiation on an already existing framework.
♻ ☆ RILe: Reinforced Imitation Learning
Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent's actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons often offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer-student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
♻ ☆ Causal-Copilot: An Autonomous Causal Analysis Agent
Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis. A live interactive demo of Causal-Copilot is available at https://causalcopilot.com/.
♻ ☆ BlendRL: A Framework for Merging Symbolic and Neural Policy Learning ICLR 2025
Humans can leverage both symbolic reasoning and intuitive reactions. In contrast, reinforcement learning policies are typically encoded in either opaque systems like neural networks or symbolic systems that rely on predefined symbols and rules. This disjointed approach severely limits the agents' capabilities, as they often lack either the flexible low-level reaction characteristic of neural agents or the interpretable reasoning of symbolic agents. To overcome this challenge, we introduce BlendRL, a neuro-symbolic RL framework that harmoniously integrates both paradigms within RL agents that use mixtures of both logic and neural policies. We empirically demonstrate that BlendRL agents outperform both neural and symbolic baselines in standard Atari environments, and showcase their robustness to environmental changes. Additionally, we analyze the interaction between neural and symbolic policies, illustrating how their hybrid use helps agents overcome each other's limitations.
comment: ICLR 2025 (Spotlight)
♻ ☆ Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
♻ ☆ Potential Societal Biases of ChatGPT in Higher Education: A Scoping Review
Purpose:Generative Artificial Intelligence (GAI) models, such as ChatGPT, may inherit or amplify societal biases due to their training on extensive datasets. With the increasing usage of GAI by students, faculty, and staff in higher education institutions (HEIs), it is urgent to examine the ethical issues and potential biases associated with these technologies. Design/Approach/Methods:This scoping review aims to elucidate how biases related to GAI in HEIs have been researched and discussed in recent academic publications. We categorized the potential societal biases that GAI might cause in the field of higher education. Our review includes articles written in English, Chinese, and Japanese across four main databases, focusing on GAI usage in higher education and bias. Findings:Our findings reveal that while there is meaningful scholarly discussion around bias and discrimination concerning LLMs in the AI field, most articles addressing higher education approach the issue superficially. Few articles identify specific types of bias under different circumstances, and there is a notable lack of empirical research. Most papers in our review focus primarily on educational and research fields related to medicine and engineering, with some addressing English education. However, there is almost no discussion regarding the humanities and social sciences. Additionally, a significant portion of the current discourse is in English and primarily addresses English-speaking contexts. Originality/Value:To the best of our knowledge, our study is the first to summarize the potential societal biases in higher education. This review highlights the need for more in-depth studies and empirical work to understand the specific biases that GAI might introduce or amplify in educational settings, guiding the development of more ethical AI applications in higher education.
comment: Open Praxis
♻ ☆ "The Diagram is like Guardrails": Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation
Data analysis encompasses a spectrum of tasks, from high-level conceptual reasoning to lower-level execution. While AI-powered tools increasingly support execution tasks, there remains a need for intelligent assistance in conceptual tasks. This paper investigates the design of an ordered node-link tree interface augmented with AI-generated information hints and visualizations, as a potential shared representation for hypothesis exploration. Through a design probe (n=22), participants generated diagrams averaging 21.82 hypotheses. Our findings showed that the node-link diagram acts as "guardrails" for hypothesis exploration, facilitating structured workflows, providing comprehensive overviews, and enabling efficient backtracking. The AI-generated information hints, particularly visualizations, aided users in transforming abstract ideas into data-backed concepts while reducing cognitive load. We further discuss how node-link diagrams can support both parallel exploration and iterative refinement in hypothesis formulation, potentially enhancing the breadth and depth of human-AI collaborative data analysis.
♻ ☆ Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
♻ ☆ Shifting Attention to You: Personalized Brain-Inspired AI Models
The integration of human and artificial intelligence offers a powerful avenue for advancing our understanding of information processing, as each system provides unique computational insights. However, despite the promise of human-AI integration, current AI models are largely trained on massive datasets, optimized for population-level performance, lacking mechanisms to align their computations with individual users' perceptual semantics and neural dynamics. Here we show that integrating human behavioral insights and millisecond scale neural data within a fine tuned CLIP based model not only captures generalized and individualized aspects of perception but also over doubles behavioral performance compared to the unmodified CLIP baseline. By embedding human inductive biases and mirroring dynamic neural processes during training, personalized neural fine tuning improves predictions of human similarity judgments and tracks the temporal evolution of individual neural responses. Our work establishes a novel, interpretable framework for designing adaptive AI systems, with broad implications for neuroscience, personalized medicine, and human-computer interaction.
comment: 7 Figures, 3 Tables, 3 Supplemental Figures, 1 Supplemental Table
♻ ☆ Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
♻ ☆ Inverse Constitutional AI: Compressing Preferences into Principles ICLR 2025
Feedback data is widely used for fine-tuning and evaluating state-of-the-art AI models. Pairwise text preferences, where human or AI annotators select the "better" of two options, are particularly common. Such preferences are used to train (reward) models or to rank models with aggregate statistics. For many applications it is desirable to understand annotator preferences in addition to modelling them - not least because extensive prior work has shown various unintended biases in preference datasets. Yet, preference datasets remain challenging to interpret. Neither black-box reward models nor statistics can answer why one text is preferred over another. Manual interpretation of the numerous (long) response pairs is usually equally infeasible. In this paper, we introduce the Inverse Constitutional AI (ICAI) problem, formulating the interpretation of pairwise text preference data as a compression task. In constitutional AI, a set of principles (a constitution) is used to provide feedback and fine-tune AI models. ICAI inverts this process: given a feedback dataset, we aim to extract a constitution that best enables a large language model (LLM) to reconstruct the original annotations. We propose a corresponding ICAI algorithm and validate its generated constitutions quantitatively based on annotation reconstruction accuracy on several datasets: (a) synthetic feedback data with known principles; (b) AlpacaEval cross-annotated human feedback data; (c) crowdsourced Chatbot Arena data; and (d) PRISM data from diverse demographic groups. As a short and interpretable representation of the original dataset, generated constitutions have many potential use cases: help identify undesirable annotator biases, understand model performance better, scale feedback to unseen data, or adapt models to individual user or group preferences. We release the source code at https://github.com/rdnfn/icai.
comment: Accepted at ICLR 2025, v2 is camera-ready version; Main changes from v1: extended experiments, additional baselines
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
♻ ☆ Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLaMP, a hierarchical video-language model that processes hour-long videos at ``mixed precision'' through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLaMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLaMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLaMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance.
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models ICLR 2025
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: ICLR 2025. The first two authors contributed equally to this work
♻ ☆ CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models IEEE
Textual descriptions in cyber threat intelligence (CTI) reports, such as security articles and news, are rich sources of knowledge about cyber threats, crucial for organizations to stay informed about the rapidly evolving threat landscape. However, current CTI knowledge extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction. Syntax parsing relies on fixed rules and dictionaries, while model fine-tuning requires large annotated datasets, making both paradigms challenging to adapt to new threats and ontologies. To bridge the gap, we propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models (LLMs) for data-efficient CTI knowledge extraction and high-quality cybersecurity knowledge graph (CSKG) construction. Unlike existing methods, CTINexus requires neither extensive data nor parameter tuning and can adapt to various ontologies with minimal annotated examples. This is achieved through: (1) a carefully designed automatic prompt construction strategy with optimal demonstration retrieval for extracting a wide range of cybersecurity entities and relations; (2) a hierarchical entity alignment technique that canonicalizes the extracted knowledge and removes redundancy; (3) an long-distance relation prediction technique to further complete the CSKG with missing links. Our extensive evaluations using 150 real-world CTI reports collected from 10 platforms demonstrate that CTINexus significantly outperforms existing methods in constructing accurate and complete CSKG, highlighting its potential to transform CTI analysis with an efficient and adaptable solution for the dynamic threat landscape.
comment: Accepted at 2025 IEEE European Symposium on Security and Privacy (Euro S&P)
♻ ☆ FROG: Effective Friend Recommendation in Online Games via Modality-aware User Preferences SIGIR 2025
Due to the convenience of mobile devices, the online games have become an important part for user entertainments in reality, creating a demand for friend recommendation in online games. However, none of existing approaches can effectively incorporate the multi-modal user features (e.g., images and texts) with the structural information in the friendship graph, due to the following limitations: (1) some of them ignore the high-order structural proximity between users, (2) some fail to learn the pairwise relevance between users at modality-specific level, and (3) some cannot capture both the local and global user preferences on different modalities. By addressing these issues, in this paper, we propose an end-to-end model FROG that better models the user preferences on potential friends. Comprehensive experiments on both offline evaluation and online deployment at Tencent have demonstrated the superiority of FROG over existing approaches.
comment: Accepted in SIGIR 2025
♻ ☆ Decidability of Querying First-Order Theories via Countermodels of Finite Width
We propose a generic framework for establishing the decidability of a wide range of logical entailment problems (briefly called querying), based on the existence of countermodels that are structurally simple, gauged by certain types of width measures (with treewidth and cliquewidth as popular examples). As an important special case of our framework, we identify logics exhibiting width-finite finitely universal model sets, warranting decidable entailment for a wide range of homomorphism-closed queries, subsuming a diverse set of practically relevant query languages. As a particularly powerful width measure, we propose to employ Blumensath's partitionwidth, which subsumes various other commonly considered width measures and exhibits highly favorable computational and structural properties. Focusing on the formalism of existential rules as a popular showcase, we explain how finite partitionwidth sets of rules subsume other known abstract decidable classes but - leveraging existing notions of stratification - also cover a wide range of new rulesets. We expose natural limitations for fitting the class of finite unification sets into our picture and suggest several options for remedy.
♻ ☆ AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism
Environmental journalism is vital for raising awareness of ecological crises and supporting evidence-based policy, yet traditional methods suffer from delays, limited scalability, and lack of coverage in under-monitored regions. This paper introduces the Artificial Intelligence Journalism Integration Model (AIJIM), a conceptual and transferable theoretical model that structures real-time, AI-supported environmental journalism workflows. AIJIM combines citizen-sourced image data, automated hazard detection, dual-level validation (visual and textual), and AI-generated reporting. Validated through a pilot study in Mallorca, AIJIM achieved significant improvements in reporting speed and accuracy, while maintaining transparency and ethical oversight through Explainable AI (XAI), GDPR compliance, and community review. The model demonstrates high transferability and offers a new benchmark for scalable, responsible, and participatory journalism at the intersection of environmental communication and artificial intelligence.
comment: 22 pages, 10 figures, 5 tables. Keywords: Artificial Intelligence, Environmental Journalism, Real-Time Reporting, Vision Transformers, Image Recognition, Crowdsourced Validation, GPT-4, Automated News Generation, GIS Integration, Data Privacy Compliance, Explainable AI (XAI), AI Ethics, Sustainable Development
♻ ☆ OCPM$^2$: Extending the Process Mining Methodology for Object-Centric Event Data Extraction
Object-Centric Process Mining (OCPM) enables business process analysis from multiple perspectives. For example, an educational path can be examined from the viewpoints of students, teachers, and groups. This analysis depends on Object-Centric Event Data (OCED), which captures relationships between events and object types, representing different perspectives. Unlike traditional process mining techniques, extracting OCED minimizes the need for repeated log extractions when shifting the analytical focus. However, recording these complex relationships increases the complexity of the log extraction process. To address this challenge, this paper proposes a methodology for extracting OCED based on PM\inst{2}, a well-established process mining framework. Our approach introduces a structured framework that guides data analysts and engineers in extracting OCED for process analysis. We validate this framework by applying it in a real-world educational setting, demonstrating its effectiveness in extracting an Object-Centric Event Log (OCEL), which serves as the standard format for recording OCED, from a learning management system and an administrative grading system.
♻ ☆ Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to $22\times$. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
comment: Website: https://michalbortkiewicz.github.io/JaxGCRL/ Code: https://github.com/MichalBortkiewicz/JaxGCRL
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 9 Pages
♻ ☆ A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive processes underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using Bongard Problems (BPs) - a classic test of visual abstraction to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via textual descriptions). These paradigms allow us to systematically vary the cognitive load and probe specific processing stages. Notably, the CA paradigm enables the evaluation of multi-image reasoning even in VLMs architecturally limited to single images and facilitates the isolation of reasoning capabilities from perceptual limitations by controlling the descriptive input. Ablation studies further confirm that reasoning abilities improve significantly when perceptual challenges are mitigated. Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
♻ ☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 45% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
♻ ☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
♻ ☆ MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders ICASSP 2025
The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
comment: ICASSP 2025
♻ ☆ Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
♻ ☆ Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
We propose a transformer architecture for time series forecasting with a focus on time series tokenisation and apply it to a real-world prediction problem from the pricing domain. Our architecture aims to learn effective representations at many scales across all available data simultaneously. The model contains a number of novel modules: a differentiated form of time series patching which employs multiple resolutions, a multiple-resolution module for time-varying known variables, a mixer-based module for capturing cross-series information, and a novel output head with favourable scaling to account for the increased number of tokens. We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer. On the experiments conducted our model outperforms in-house models and the selected existing deep learning architectures.
♻ ☆ Can LLMs Replace Human Evaluators? An Empirical Study of LLM-as-a-Judge in Software Engineering ISSTA 2025
Recently, large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation, significantly advancing the automation of SE tasks. However, assessing the quality of these LLM-generated code and text remains challenging. The commonly used Pass@k metric necessitates extensive unit tests and configured environments, demands a high labor cost, and is not suitable for evaluating LLM-generated text. Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny. In response, a new trend has emerged to employ LLMs for automated evaluation, known as LLM-as-a-judge. These LLM-as-a-judge methods are claimed to better mimic human assessment than conventional metrics without relying on high-quality reference answers. Nevertheless, their exact human alignment in SE tasks remains unexplored. In this paper, we empirically explore LLM-as-a-judge methods for evaluating SE tasks, focusing on their alignment with human judgments. We select seven LLM-as-a-judge methods that utilize general-purpose LLMs, alongside two LLMs specifically fine-tuned for evaluation. After generating and manually scoring LLM responses on three recent SE datasets of code translation, code generation, and code summarization, we then prompt these methods to evaluate each response. Finally, we compare the scores generated by these methods with human evaluation. The results indicate that output-based methods reach the highest Pearson correlation of 81.32 and 68.51 with human scores in code translation and generation, achieving near-human evaluation, noticeably outperforming ChrF++, one of the best conventional metrics, at 34.23 and 64.92. Such output-based methods prompt LLMs to output judgments directly, and exhibit more balanced score distributions that resemble human score patterns. Finally, we provide...
comment: Accepted by ISSTA 2025: https://conf.researchr.org/details/issta-2025/issta-2025-papers/85/Can-LLMs-replace-Human-Evaluators-An-Empirical-Study-of-LLM-as-a-Judge-in-Software-E
♻ ☆ Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
comment: Accepted by TITS
♻ ☆ Active Learning for Continual Learning: Keeping the Past Alive in the Present
Continual learning (CL) enables deep neural networks to adapt to ever-changing data distributions. In practice, there may be scenarios where annotation is costly, leading to active continual learning (ACL), which performs active learning (AL) for the CL scenarios when reducing the labeling cost by selecting the most informative subset is preferable. However, conventional AL strategies are not suitable for ACL, as they focus solely on learning the new knowledge, leading to catastrophic forgetting of previously learned tasks. Therefore, ACL requires a new AL strategy that can balance the prevention of catastrophic forgetting and the ability to quickly learn new tasks. In this paper, we propose AccuACL, Accumulated informativeness-based Active Continual Learning, by the novel use of the Fisher information matrix as a criterion for sample selection, derived from a theoretical analysis of the Fisher-optimality preservation properties within the framework of ACL, while also addressing the scalability issue of Fisher information-based AL. Extensive experiments demonstrate that AccuACL significantly outperforms AL baselines across various CL algorithms, increasing the average accuracy and forgetting by 23.8% and 17.0%, respectively, on average.
♻ ☆ Lorentzian Graph Isomorphic Network
We introduce the Lorentzian Graph Isomorphic Network (LGIN), a novel graph neural network (GNN) designed to operate in hyperbolic spaces, leveraging the Lorentzian model to enhance graph representation learning. Existing GNNs primarily operate in Euclidean spaces, which can limit their ability to capture hierarchical and multi-relational structures inherent to complex graphs. LGIN addresses this by incorporating curvature-aware aggregation functions that preserve the Lorentzian metric tensor, ensuring embeddings remain constrained within the hyperbolic space by proposing a new update rule that effectively captures both local neighborhood interactions and global structural properties, enabling LGIN to distinguish non-isomorphic graphs with expressiveness at least as powerful as the Weisfeiler-Lehman test. Through extensive evaluation across nine benchmark datasets, including molecular and protein structures, LGIN consistently outperforms or matches state-of-the-art GNNs, demonstrating its robustness and efficacy in modeling complex graph structures. To the best of our knowledge, this is the first study to extend the concept of a powerful graph neural network to Riemannian manifolds, paving the way for future advancements in hyperbolic graph learning. The code for our paper can be found at https://github.com/Deceptrax123/LGIN.
comment: Preprint. Under Review
♻ ☆ GATE3D: Generalized Attention-based Task-synergized Estimation in 3D* CVPR 2025
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: Accepted (Poster) to the 3rd CV4MR Workshop at CVPR 2025: https://openreview.net/forum?id=00RQ8Cv3ia
♻ ☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
♻ ☆ A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
♻ ☆ Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Decentralized federated learning (DFL) is a promising machine learning paradigm for bringing artificial intelligence (AI) capabilities to the network edge. Running DFL on top of edge networks, however, faces severe performance challenges due to the extensive parameter exchanges between agents. Most existing solutions for these challenges were based on simplistic communication models, which cannot capture the case of learning over a multi-hop bandwidth-limited network. In this work, we address this problem by jointly designing the communication scheme for the overlay network formed by the agents and the mixing matrix that controls the communication demands between the agents. By carefully analyzing the properties of our problem, we cast each design problem into a tractable optimization and develop an efficient algorithm with guaranteed performance. Our evaluations based on real topology and data show that the proposed algorithm can reduce the total training time by over $80\%$ compared to the baseline without sacrificing accuracy, while significantly improving the computational efficiency over the state of the art.
comment: arXiv admin note: text overlap with arXiv:2408.04705
♻ ☆ Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
♻ ☆ Hierarchical Split Federated Learning: Convergence Analysis and System Optimization
As AI models expand in size, it has become increasingly challenging to deploy federated learning (FL) on resource-constrained edge devices. To tackle this issue, split federated learning (SFL) has emerged as an FL framework with reduced workload on edge devices via model splitting; it has received extensive attention from the research community in recent years. Nevertheless, most prior works on SFL focus only on a two-tier architecture without harnessing multi-tier cloudedge computing resources. In this paper, we intend to analyze and optimize the learning performance of SFL under multi-tier systems. Specifically, we propose the hierarchical SFL (HSFL) framework and derive its convergence bound. Based on the theoretical results, we formulate a joint optimization problem for model splitting (MS) and model aggregation (MA). To solve this rather hard problem, we then decompose it into MS and MA subproblems that can be solved via an iterative descending algorithm. Simulation results demonstrate that the tailored algorithm can effectively optimize MS and MA for SFL within virtually any multi-tier system.
comment: 15 pages, 9 figures
♻ ☆ Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
♻ ☆ How Does Critical Batch Size Scale in Pre-training? ICLR 2025
Training large-scale models under given resources requires careful design of parallelism strategies. In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between time and compute, marks the threshold beyond which greater data parallelism leads to diminishing returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and learning rate along with its scheduling, we systematically investigate the impact of scale on CBS. Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall, our results demonstrate that CBS scales primarily with data size rather than model size, a finding we justify theoretically through the analysis of infinite-width limits of neural networks and infinite-dimensional least squares regression. Of independent interest, we highlight the importance of common hyper-parameter choices and strategies for studying large-scale pre-training beyond fixed training durations.
comment: ICLR 2025, Blog post: https://kempnerinstitute.harvard.edu/research/deeper-learning/how-does-critical-batch-size-scale-in-pre-training-decoupling-data-and-model-size
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
♻ ☆ Recursive Deep Inverse Reinforcement Learning
Inferring an adversary's goals from exhibited behavior is crucial for counterplanning and non-cooperative multi-agent systems in domains like cybersecurity, military, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods based on maximum entropy principles show promise in recovering adversaries' goals but are typically offline, require large batch sizes with gradient descent, and rely on first-order updates, limiting their applicability in real-time scenarios. We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL) approach to recover the cost function governing the adversary actions and goals. Specifically, we minimize an upper bound on the standard Guided Cost Learning (GCL) objective using sequential second-order Newton updates, akin to the Extended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning algorithm. We demonstrate that RDIRL is able to recover cost and reward functions of expert agents in standard and adversarial benchmark tasks. Experiments on benchmark tasks show that our proposed approach outperforms several leading IRL algorithms.
♻ ☆ Language Representations Can be What Recommenders Need: Findings and Potentials ICLR 2025
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
comment: ICLR 2025 (Oral). Codes are available at https://github.com/LehengTHU/AlphaRec
♻ ☆ Context Parallelism for Scalable Million-Token Inference
We present context parallelism for long-context large language model inference, which achieves near-linear scaling for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves 1M context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and 128K context prefill in 3.8s. We develop two lossless exact ring attention variants: pass-KV and pass-Q to cover a wide range of use cases with the state-of-the-art performance: full prefill, persistent KV prefill and decode. Benchmarks on H100 GPU hosts inter-connected with RDMA and TCP both show similar scalability for long-context prefill, demonstrating that our method scales well using common commercial data center with medium-to-low inter-host bandwidth.
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey IEEE
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ LongStory: Coherent, Complete and Length Controlled Long story Generation
A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model.
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
♻ ☆ Prompt Flow Integrity to Prevent Privilege Escalation in LLM Agents
Large Language Models (LLMs) are combined with tools to create powerful LLM agents that provide a wide range of services. Unlike traditional software, LLM agent's behavior is determined at runtime by natural language prompts from either user or tool's data. This flexibility enables a new computing paradigm with unlimited capabilities and programmability, but also introduces new security risks, vulnerable to privilege escalation attacks. Moreover, user prompts are prone to be interpreted in an insecure way by LLM agents, creating non-deterministic behaviors that can be exploited by attackers. To address these security risks, we propose Prompt Flow Integrity (PFI), a system security-oriented solution to prevent privilege escalation in LLM agents. Analyzing the architectural characteristics of LLM agents, PFI features three mitigation techniques -- i.e., agent isolation, secure untrusted data processing, and privilege escalation guardrails. Our evaluation result shows that PFI effectively mitigates privilege escalation attacks while successfully preserving the utility of LLM agents.
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Anonymous Public Announcements
We formalise the notion of an anonymous public announcement in the tradition of public announcement logic. Such announcements can be seen as in-between a public announcement from ``the outside" (an announcement of $\phi$) and a public announcement by one of the agents (an announcement of $K_a\phi$): we get more information than just $\phi$, but not (necessarily) about exactly who made it. Even if such an announcement is prima facie anonymous, depending on the background knowledge of the agents it might reveal the identity of the announcer: if I post something on a message board, the information might reveal who I am even if I don't sign my name. Furthermore, like in the Russian Cards puzzle, if we assume that the announcer's intention was to stay anonymous, that in fact might reveal more information. In this paper we first look at the case when no assumption about intentions are made, in which case the logic with an anonymous public announcement operator is reducible to epistemic logic. We then look at the case when we assume common knowledge of the intention to stay anonymous, which is both more complex and more interesting: in several ways it boils down to the notion of a ``safe" announcement (again, similarly to Russian Cards). Main results include formal expressivity results and axiomatic completeness for key logical languages.
♻ ☆ Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
♻ ☆ 2D-Curri-DPO: Two-Dimensional Curriculum Learning for Direct Preference Optimization
Aligning large language models with human preferences is crucial for their safe deployment. While Direct Preference Optimization (DPO) offers an efficient alternative to reinforcement learning from human feedback, traditional DPO methods are limited by their reliance on single preference pairs. Recent work like Curriculum-DPO integrates multiple pairs using a one-dimensional difficulty curriculum based on pairwise distinguishability (PD), but overlooks the complexity of the input prompt itself. To address this, we propose 2D-Curri-DPO, a novel framework employing a two-dimensional curriculum that jointly models Prompt Complexity (PC) and Pairwise Distinguishability. This framework introduces dual difficulty metrics to quantify prompt semantic complexity and response preference clarity, defines a curriculum strategy space encompassing multiple selectable strategies for task adaptation, and incorporates a KL-divergence-based adaptive mechanism for dynamic reference model updates to enhance training stability. Comprehensive experiments demonstrate that 2D-Curri-DPO significantly outperforms standard DPO and prior curriculum methods across multiple benchmarks, including MT-Bench, Vicuna Bench, and WizardLM. Our approach achieves state-of-the-art performance on challenging test sets like UltraFeedback. Ablation studies confirm the benefits of the 2D structure and adaptive mechanisms, while analysis provides guidance for strategy selection. These findings demonstrate that effective alignment requires modeling both prompt complexity and pairwise distinguishability, establishing adaptive, multi-dimensional curriculum learning as a powerful and interpretable new paradigm for preference-based language model optimization.
comment: 12 pages, 4 figures
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
♻ ☆ Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Accurate prediction of RNA properties, such as stability and interactions, is crucial for advancing our understanding of biological processes and developing RNA-based therapeutics. RNA structures can be represented as 1D sequences, 2D topological graphs, or 3D all-atom models, each offering different insights into its function. Existing works predominantly focus on 1D sequence-based models, which overlook the geometric context provided by 2D and 3D geometries. This study presents the first systematic evaluation of incorporating explicit 2D and 3D geometric information into RNA property prediction, considering not only performance but also real-world challenges such as limited data availability, partial labeling, sequencing noise, and computational efficiency. To this end, we introduce a newly curated set of RNA datasets with enhanced 2D and 3D structural annotations, providing a resource for model evaluation on RNA data. Our findings reveal that models with explicit geometry encoding generally outperform sequence-based models, with an average prediction RMSE reduction of around 12% across all various RNA tasks and excelling in low-data and partial labeling regimes, underscoring the value of explicitly incorporating geometric context. On the other hand, geometry-unaware sequence-based models are more robust under sequencing noise but often require around $2-5\times$ training data to match the performance of geometry-aware models. Our study offers further insights into the trade-offs between different RNA representations in practical applications and addresses a significant gap in evaluating deep learning models for RNA tasks.
♻ ☆ Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
♻ ☆ Certifying Counterfactual Bias in LLMs ICLR 2025
Large Language Models (LLMs) can produce biased responses that can cause representational harms. However, conventional studies are insufficient to thoroughly evaluate biases across LLM responses for different demographic groups (a.k.a. counterfactual bias), as they do not scale to large number of inputs and do not provide guarantees. Therefore, we propose the first framework, LLMCert-B that certifies LLMs for counterfactual bias on distributions of prompts. A certificate consists of high-confidence bounds on the probability of unbiased LLM responses for any set of counterfactual prompts - prompts differing by demographic groups, sampled from a distribution. We illustrate counterfactual bias certification for distributions of counterfactual prompts created by applying prefixes sampled from prefix distributions, to a given set of prompts. We consider prefix distributions consisting random token sequences, mixtures of manual jailbreaks, and perturbations of jailbreaks in LLM's embedding space. We generate non-trivial certificates for SOTA LLMs, exposing their vulnerabilities over distributions of prompts generated from computationally inexpensive prefix distributions.
comment: Published at ICLR 2025
♻ ☆ Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
♻ ☆ Codenames as a Benchmark for Large Language Models
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.
comment: 12 pages, 2 figures, 2 tables
♻ ☆ Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction MICCAI 2024
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
comment: This paper has been accepted for presentation at The 27th Intl. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) Workshop on Computational Diffusion MRI (CDMRI). 11 pages, 2 figures
♻ ☆ An Undetectable Watermark for Generative Image Models ICLR 2025
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
comment: ICLR 2025
♻ ☆ See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs.
♻ ☆ FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving
Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.
comment: Accepted by MLSys 2025, code available at http://github.com/flashinfer-ai/flashinfer
♻ ☆ A Framework for Evaluating Emerging Cyberattack Capabilities of AI
As frontier AI models become more capable, evaluating their potential to enable cyberattacks is crucial for ensuring the safe development of Artificial General Intelligence (AGI). Current cyber evaluation efforts are often ad-hoc, lacking systematic analysis of attack phases and guidance on targeted defenses. This work introduces a novel evaluation framework that addresses these limitations by: (1) examining the end-to-end attack chain, (2) identifying gaps in AI threat evaluation, and (3) helping defenders prioritize targeted mitigations and conduct AI-enabled adversary emulation for red teaming. Our approach adapts existing cyberattack chain frameworks for AI systems. We analyzed over 12,000 real-world instances of AI involvement in cyber incidents, catalogued by Google's Threat Intelligence Group, to curate seven representative attack chain archetypes. Through a bottleneck analysis on these archetypes, we pinpointed phases most susceptible to AI-driven disruption. We then identified and utilized externally developed cybersecurity model evaluations focused on these critical phases. We report on AI's potential to amplify offensive capabilities across specific attack stages, and offer recommendations for prioritizing defenses. We believe this represents the most comprehensive AI cyber risk evaluation framework published to date.
♻ ☆ A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
♻ ☆ LAMD: Context-driven Android Malware Detection and Classification with LLMs IEEE
The rapid growth of mobile applications has escalated Android malware threats. Although there are numerous detection methods, they often struggle with evolving attacks, dataset biases, and limited explainability. Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities. However, applying LLMs to Android malware detection presents two key challenges: (1)the extensive support code in Android applications, often spanning thousands of classes, exceeds LLMs' context limits and obscures malicious behavior within benign functionality; (2)the structural complexity and interdependencies of Android applications surpass LLMs' sequence-based reasoning, fragmenting code analysis and hindering malicious intent inference. To address these challenges, we propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection. LAMD integrates key context extraction to isolate security-critical code regions and construct program structures, then applies tier-wise code reasoning to analyze application behavior progressively, from low-level instructions to high-level semantics, providing final prediction and explanation. A well-designed factual consistency verification mechanism is equipped to mitigate LLM hallucinations from the first tier. Evaluation in real-world settings demonstrates LAMD's effectiveness over conventional detectors, establishing a feasible basis for LLM-driven malware analysis in dynamic threat landscapes.
comment: accepted by 2025 46th IEEE Symposium on Security and Privacy Workshops (SPW)
Computation and Language 90
☆ Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
☆ An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
☆ Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
☆ CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
☆ Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.
comment: The first two authors contributed equally. The codebase is at https://github.com/SalesforceAIResearch/jetts-benchmark
☆ MR. Guard: Multilingual Reasoning Guardrail using Curriculum Learning
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual setting, where multilingual safety-aligned data are often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we propose an approach to build a multilingual guardrail with reasoning. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-guided Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail consistently outperforms recent baselines across both in-domain and out-of-domain languages. The multilingual reasoning capability of our guardrail enables it to generate multilingual explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.
☆ Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
☆ Fully Bayesian Approaches to Topics over Time
The Topics over Time (ToT) model captures thematic changes in timestamped datasets by explicitly modeling publication dates jointly with word co-occurrence patterns. However, ToT was not approached in a fully Bayesian fashion, a flaw that makes it susceptible to stability problems. To address this issue, we propose a fully Bayesian Topics over Time (BToT) model via the introduction of a conjugate prior to the Beta distribution. This prior acts as a regularization that prevents the online version of the algorithm from unstable updates when a topic is poorly represented in a mini-batch. The characteristics of this prior to the Beta distribution are studied here for the first time. Still, this model suffers from a difference in scale between the single-time observations and the multiplicity of words per document. A variation of BToT, Weighted Bayesian Topics over Time (WBToT), is proposed as a solution. In WBToT, publication dates are repeated a certain number of times per document, which balances the relative influence of words and timestamps along the inference process. We have tested our models on two datasets: a collection of over 200 years of US state-of-the-union (SOTU) addresses and a large-scale COVID-19 Twitter corpus of 10 million tweets. The results show that WBToT captures events better than Latent Dirichlet Allocation and other SOTA topic models like BERTopic: the median absolute deviation of the topic presence over time is reduced by $51\%$ and $34\%$, respectively. Our experiments also demonstrate the superior coherence of WBToT over BToT, which highlights the importance of balancing the time and word modalities. Finally, we illustrate the stability of the online optimization algorithm in WBToT, which allows the application of WBToT to problems that are intractable for standard ToT.
comment: 25 pages
☆ EvalAgent: Discovering Implicit Evaluation Criteria from the Web
Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.
☆ Support Evaluation for the TREC 2024 RAG Track: Comparing Human versus LLM Judges SIGIR 2025
Retrieval-augmented generation (RAG) enables large language models (LLMs) to generate answers with citations from source documents containing "ground truth", thereby reducing system hallucinations. A crucial factor in RAG evaluation is "support", whether the information in the cited documents supports the answer. To this end, we conducted a large-scale comparative study of 45 participant submissions on 36 topics to the TREC 2024 RAG Track, comparing an automatic LLM judge (GPT-4o) against human judges for support assessment. We considered two conditions: (1) fully manual assessments from scratch and (2) manual assessments with post-editing of LLM predictions. Our results indicate that for 56% of the manual from-scratch assessments, human and GPT-4o predictions match perfectly (on a three-level scale), increasing to 72% in the manual with post-editing condition. Furthermore, by carefully analyzing the disagreements in an unbiased study, we found that an independent human judge correlates better with GPT-4o than a human judge, suggesting that LLM judges can be a reliable alternative for support assessment. To conclude, we provide a qualitative analysis of human and GPT-4o errors to help guide future iterations of support assessment.
comment: Accepted at SIGIR 2025 (short)
☆ On true empty category
According to Chomsky (1981, 1986), empty categories consist of PRO, pro, trace, and variable. However, some empty object positions seem to be incompatible with extant empty categories. Given this, Li (2007a, 2007b, 2014) and Li & Wei (2014) raise the true empty category hypothesis, which holds that true empty category is only an empty position with category and Case features. As a last resort option, it is used mainly to meet the subcatgorization of a verb. This assumption is ingenious, and if proved to be true, it will exert a great impact on the study of UG. In this paper, we evaluate their evidence from topicalization and demonstrate that it can be accounted for without invoking true empty category.
☆ The Synthetic Imputation Approach: Generating Optimal Synthetic Texts For Underrepresented Categories In Supervised Classification Tasks
Encoder-decoder Large Language Models (LLMs), such as BERT and RoBERTa, require that all categories in an annotation task be sufficiently represented in the training data for optimal performance. However, it is often difficult to find sufficient examples for all categories in a task when building a high-quality training set. In this article, I describe this problem and propose a solution, the synthetic imputation approach. Leveraging a generative LLM (GPT-4o), this approach generates synthetic texts based on careful prompting and five original examples drawn randomly with replacement from the sample. This approach ensures that new synthetic texts are sufficiently different from the original texts to reduce overfitting, but retain the underlying substantive meaning of the examples to maximize out-of-sample performance. With 75 original examples or more, synthetic imputation's performance is on par with a full sample of original texts, and overfitting remains low, predictable and correctable with 50 original samples. The synthetic imputation approach provides a novel role for generative LLMs in research and allows applied researchers to balance their datasets for best performance.
☆ KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking SIGIR 2025
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
comment: SIGIR 2025 (Short)
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
☆ Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
☆ Rhythm of Opinion: A Hawkes-Graph Framework for Dynamic Propagation Analysis
The rapid development of social media has significantly reshaped the dynamics of public opinion, resulting in complex interactions that traditional models fail to effectively capture. To address this challenge, we propose an innovative approach that integrates multi-dimensional Hawkes processes with Graph Neural Network, modeling opinion propagation dynamics among nodes in a social network while considering the intricate hierarchical relationships between comments. The extended multi-dimensional Hawkes process captures the hierarchical structure, multi-dimensional interactions, and mutual influences across different topics, forming a complex propagation network. Moreover, recognizing the lack of high-quality datasets capable of comprehensively capturing the evolution of public opinion dynamics, we introduce a new dataset, VISTA. It includes 159 trending topics, corresponding to 47,207 posts, 327,015 second-level comments, and 29,578 third-level comments, covering diverse domains such as politics, entertainment, sports, health, and medicine. The dataset is annotated with detailed sentiment labels across 11 categories and clearly defined hierarchical relationships. When combined with our method, it offers strong interpretability by linking sentiment propagation to the comment hierarchy and temporal evolution. Our approach provides a robust baseline for future research.
☆ The Great Nugget Recall: Automating Fact Extraction and RAG Evaluation with Large Language Models SIGIR 2025
Large Language Models (LLMs) have significantly enhanced the capabilities of information access systems, especially with retrieval-augmented generation (RAG). Nevertheless, the evaluation of RAG systems remains a barrier to continued progress, a challenge we tackle in this work by proposing an automatic evaluation framework that is validated against human annotations. We believe that the nugget evaluation methodology provides a solid foundation for evaluating RAG systems. This approach, originally developed for the TREC Question Answering (QA) Track in 2003, evaluates systems based on atomic facts that should be present in good answers. Our efforts focus on "refactoring" this methodology, where we describe the AutoNuggetizer framework that specifically applies LLMs to both automatically create nuggets and automatically assign nuggets to system answers. In the context of the TREC 2024 RAG Track, we calibrate a fully automatic approach against strategies where nuggets are created manually or semi-manually by human assessors and then assigned manually to system answers. Based on results from a community-wide evaluation, we observe strong agreement at the run level between scores derived from fully automatic nugget evaluation and human-based variants. The agreement is stronger when individual framework components such as nugget assignment are automated independently. This suggests that our evaluation framework provides tradeoffs between effort and quality that can be used to guide the development of future RAG systems. However, further research is necessary to refine our approach, particularly in establishing robust per-topic agreement to diagnose system failures effectively.
comment: To appear in SIGIR 2025. Significant updates and revisions to arXiv:2411.09607
☆ Testing LLMs' Capabilities in Annotating Translations Based on an Error Typology Designed for LSP Translation: First Experiments with ChatGPT
This study investigates the capabilities of large language models (LLMs), specifically ChatGPT, in annotating MT outputs based on an error typology. In contrast to previous work focusing mainly on general language, we explore ChatGPT's ability to identify and categorise errors in specialised translations. By testing two different prompts and based on a customised error typology, we compare ChatGPT annotations with human expert evaluations of translations produced by DeepL and ChatGPT itself. The results show that, for translations generated by DeepL, recall and precision are quite high. However, the degree of accuracy in error categorisation depends on the prompt's specific features and its level of detail, ChatGPT performing very well with a detailed prompt. When evaluating its own translations, ChatGPT achieves significantly poorer results, revealing limitations with self-assessment. These results highlight both the potential and the limitations of LLMs for translation evaluation, particularly in specialised domains. Our experiments pave the way for future research on open-source LLMs, which could produce annotations of comparable or even higher quality. In the future, we also aim to test the practical effectiveness of this automated evaluation in the context of translation training, particularly by optimising the process of human evaluation by teachers and by exploring the impact of annotations by LLMs on students' post-editing and translation learning.
comment: Accepted for publication in the proceedings of MT Summit 2025
☆ RainbowPlus: Enhancing Adversarial Prompt Generation via Evolutionary Quality-Diversity Search
Large Language Models (LLMs) exhibit remarkable capabilities but are susceptible to adversarial prompts that exploit vulnerabilities to produce unsafe or biased outputs. Existing red-teaming methods often face scalability challenges, resource-intensive requirements, or limited diversity in attack strategies. We propose RainbowPlus, a novel red-teaming framework rooted in evolutionary computation, enhancing adversarial prompt generation through an adaptive quality-diversity (QD) search that extends classical evolutionary algorithms like MAP-Elites with innovations tailored for language models. By employing a multi-element archive to store diverse high-quality prompts and a comprehensive fitness function to evaluate multiple prompts concurrently, RainbowPlus overcomes the constraints of single-prompt archives and pairwise comparisons in prior QD methods like Rainbow Teaming. Experiments comparing RainbowPlus to QD methods across six benchmark datasets and four open-source LLMs demonstrate superior attack success rate (ASR) and diversity (Diverse-Score $\approx 0.84$), generating up to 100 times more unique prompts (e.g., 10,418 vs. 100 for Ministral-8B-Instruct-2410). Against nine state-of-the-art methods on the HarmBench dataset with twelve LLMs (ten open-source, two closed-source), RainbowPlus achieves an average ASR of 81.1%, surpassing AutoDAN-Turbo by 3.9%, and is 9 times faster (1.45 vs. 13.50 hours). Our open-source implementation fosters further advancements in LLM safety, offering a scalable tool for vulnerability assessment. Code and resources are publicly available at https://github.com/knoveleng/rainbowplus, supporting reproducibility and future research in LLM red-teaming.
☆ DistilQwen2.5: Industrial Practices of Training Distilled Open Lightweight Language Models
Enhancing computational efficiency and reducing deployment costs for large language models (LLMs) have become critical challenges in various resource-constrained scenarios. In this work, we present DistilQwen2.5, a family of distilled, lightweight LLMs derived from the public Qwen2.5 models. These distilled models exhibit enhanced instruction-following capabilities compared to the original models based on a series of distillation techniques that incorporate knowledge from much larger LLMs. In our industrial practice, we first leverage powerful proprietary LLMs with varying capacities as multi-agent teachers to select, rewrite, and refine instruction-response pairs that are more suitable for student LLMs to learn. After standard fine-tuning, we further leverage a computationally efficient model fusion approach that enables student models to progressively integrate fine-grained hidden knowledge from their teachers. Experimental evaluations demonstrate that the distilled models possess significantly stronger capabilities than their original checkpoints. Additionally, we present use cases to illustrate the applications of our framework in real-world scenarios. To facilitate practical use, we have released all the DistilQwen2.5 models to the open-source community.
☆ LLMs as Data Annotators: How Close Are We to Human Performance
In NLP, fine-tuning LLMs is effective for various applications but requires high-quality annotated data. However, manual annotation of data is labor-intensive, time-consuming, and costly. Therefore, LLMs are increasingly used to automate the process, often employing in-context learning (ICL) in which some examples related to the task are given in the prompt for better performance. However, manually selecting context examples can lead to inefficiencies and suboptimal model performance. This paper presents comprehensive experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task. The evaluation encompasses models with approximately $7$B and $70$B parameters, including both proprietary and non-proprietary models. Furthermore, leveraging the success of Retrieval-Augmented Generation (RAG), it also considers a method that addresses the limitations of ICL by automatically retrieving contextual examples, thereby enhancing performance. The results highlight the importance of selecting the appropriate LLM and embedding model, understanding the trade-offs between LLM sizes and desired performance, and the necessity to direct research efforts towards more challenging datasets.
comment: 27 pages, 4 figures
☆ Stay Hungry, Stay Foolish: On the Extended Reading Articles Generation with LLMs AAAI2025
The process of creating educational materials is both time-consuming and demanding for educators. This research explores the potential of Large Language Models (LLMs) to streamline this task by automating the generation of extended reading materials and relevant course suggestions. Using the TED-Ed Dig Deeper sections as an initial exploration, we investigate how supplementary articles can be enriched with contextual knowledge and connected to additional learning resources. Our method begins by generating extended articles from video transcripts, leveraging LLMs to include historical insights, cultural examples, and illustrative anecdotes. A recommendation system employing semantic similarity ranking identifies related courses, followed by an LLM-based refinement process to enhance relevance. The final articles are tailored to seamlessly integrate these recommendations, ensuring they remain cohesive and informative. Experimental evaluations demonstrate that our model produces high-quality content and accurate course suggestions, assessed through metrics such as Hit Rate, semantic similarity, and coherence. Our experimental analysis highlight the nuanced differences between the generated and existing materials, underscoring the model's capacity to offer more engaging and accessible learning experiences. This study showcases how LLMs can bridge the gap between core content and supplementary learning, providing students with additional recommended resources while also assisting teachers in designing educational materials.
comment: Accepted by iRAISE@AAAI2025
☆ Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (\textit{PHD}-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. \textit{PHD}-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: \textit{PHD-SWA} employs sliding window attention to preserve local dependencies, while \textit{PHD-CSWA} implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
☆ Evaluating LLMs on Chinese Topic Constructions: A Research Proposal Inspired by Tian et al. (2024)
This paper proposes a framework for evaluating large language models (LLMs) on Chinese topic constructions, focusing on their sensitivity to island constraints. Drawing inspiration from Tian et al. (2024), we outline an experimental design for testing LLMs' grammatical knowledge of Mandarin syntax. While no experiments have been conducted yet, this proposal aims to provide a foundation for future studies and invites feedback on the methodology.
☆ Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues IEEE 2025
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
☆ CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs
The rapid spread of misinformation, driven by digital media and AI-generated content, has made automatic claim verification essential. Traditional methods, which depend on expert-annotated evidence, are labor-intensive and not scalable. Although recent automated systems have improved, they still struggle with complex claims that require nuanced reasoning. To address this, we propose CRAVE, a Conflicting Reasoning Approach for explainable claim VErification, that verify the complex claims based on the conflicting rationales reasoned by large language models (LLMs). Specifically, CRAVE introduces a three-module framework. Ambiguity Elimination enchanced Evidence Retrieval module performs ambiguity elimination and entity-based search to gather relevant evidence related to claim verification from external sources like Wikipedia. Conflicting Perspective Reasoning and Preliminary Judgment module with LLMs adopts LLMs to reason rationales with conflicting stances about claim verification from retrieved evidence across four dimensions, i.e., direct evidence, semantic relationships, linguistic patterns, and logical reasoning and make a preliminary judgment. Finally, Small Language Model (SLM) based Judge module is fine-tuned to make use of preliminary judgment from LLMs to assess the confidence of the conflicting rationales and make a final authenticity judgment. This methodology allows CRAVE to capture subtle inconsistencies in complex claims, improving both the accuracy and transparency of claim verification. Extensive experiments on two public claim verification datasets demonstrate that our CRAVE model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for finding relevant evidence and explaining the model predictions. The code is provided at https://github.com/8zym/CRAVE.
☆ VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
☆ Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey
Recent advancements in Retrieval-Augmented Generation (RAG) have revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval, enabling accurate, up-to-date, and verifiable text generation across diverse applications. However, evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components, as well as their dependence on dynamic knowledge sources in the LLM era. In response, this paper provides a comprehensive survey of RAG evaluation methods and frameworks, systematically reviewing traditional and emerging evaluation approaches, for system performance, factual accuracy, safety, and computational efficiency in the LLM era. We also compile and categorize the RAG-specific datasets and evaluation frameworks, conducting a meta-analysis of evaluation practices in high-impact RAG research. To the best of our knowledge, this work represents the most comprehensive survey for RAG evaluation, bridging traditional and LLM-driven methods, and serves as a critical resource for advancing RAG development.
comment: 18 pages, 5 figures
☆ Natural Fingerprints of Large Language Models
Large language models (LLMs) often exhibit biases -- systematic deviations from expected norms -- in their outputs. These range from overt issues, such as unfair responses, to subtler patterns that can reveal which model produced them. We investigate the factors that give rise to identifiable characteristics in LLMs. Since LLMs model training data distribution, it is reasonable that differences in training data naturally lead to the characteristics. However, our findings reveal that even when LLMs are trained on the exact same data, it is still possible to distinguish the source model based on its generated text. We refer to these unintended, distinctive characteristics as natural fingerprints. By systematically controlling training conditions, we show that the natural fingerprints can emerge from subtle differences in the training process, such as parameter sizes, optimization settings, and even random seeds. We believe that understanding natural fingerprints offers new insights into the origins of unintended bias and ways for improving control over LLM behavior.
☆ OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
☆ AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.
☆ Transparentize the Internal and External Knowledge Utilization in LLMs with Trustworthy Citation
While hallucinations of large language models could been alleviated through retrieval-augmented generation and citation generation, how the model utilizes internal knowledge is still opaque, and the trustworthiness of its generated answers remains questionable. In this work, we introduce Context-Prior Augmented Citation Generation task, requiring models to generate citations considering both external and internal knowledge while providing trustworthy references, with 5 evaluation metrics focusing on 3 aspects: answer helpfulness, citation faithfulness, and trustworthiness. We introduce RAEL, the paradigm for our task, and also design INTRALIGN, an integrated method containing customary data generation and an alignment algorithm. Our experimental results show that our method achieves a better cross-scenario performance with regard to other baselines. Our extended experiments further reveal that retrieval quality, question types, and model knowledge have considerable influence on the trustworthiness in citation generation.
comment: 19 pages, 14 figures
☆ Completing A Systematic Review in Hours instead of Months with Interactive AI Agents
Systematic reviews (SRs) are vital for evidence-based practice in high stakes disciplines, such as healthcare, but are often impeded by intensive labors and lengthy processes that can take months to complete. Due to the high demand for domain expertise, existing automatic summarization methods fail to accurately identify relevant studies and generate high-quality summaries. To that end, we introduce InsightAgent, a human-centered interactive AI agent powered by large language models that revolutionize this workflow. InsightAgent partitions a large literature corpus based on semantics and employs a multi-agent design for more focused processing of literature, leading to significant improvement in the quality of generated SRs. InsightAgent also provides intuitive visualizations of the corpus and agent trajectories, allowing users to effortlessly monitor the actions of the agent and provide real-time feedback based on their expertise. Our user studies with 9 medical professionals demonstrate that the visualization and interaction mechanisms can effectively improve the quality of synthesized SRs by 27.2%, reaching 79.7% of human-written quality. At the same time, user satisfaction is improved by 34.4%. With InsightAgent, it only takes a clinician about 1.5 hours, rather than months, to complete a high-quality systematic review.
☆ On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
☆ Automatic Evaluation Metrics for Document-level Translation: Overview, Challenges and Trends
With the rapid development of deep learning technologies, the field of machine translation has witnessed significant progress, especially with the advent of large language models (LLMs) that have greatly propelled the advancement of document-level translation. However, accurately evaluating the quality of document-level translation remains an urgent issue. This paper first introduces the development status of document-level translation and the importance of evaluation, highlighting the crucial role of automatic evaluation metrics in reflecting translation quality and guiding the improvement of translation systems. It then provides a detailed analysis of the current state of automatic evaluation schemes and metrics, including evaluation methods with and without reference texts, as well as traditional metrics, Model-based metrics and LLM-based metrics. Subsequently, the paper explores the challenges faced by current evaluation methods, such as the lack of reference diversity, dependence on sentence-level alignment information, and the bias, inaccuracy, and lack of interpretability of the LLM-as-a-judge method. Finally, the paper looks ahead to the future trends in evaluation methods, including the development of more user-friendly document-level evaluation methods and more robust LLM-as-a-judge methods, and proposes possible research directions, such as reducing the dependency on sentence-level information, introducing multi-level and multi-granular evaluation approaches, and training models specifically for machine translation evaluation. This study aims to provide a comprehensive analysis of automatic evaluation for document-level translation and offer insights into future developments.
☆ PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
☆ Speculative Sampling via Exponential Races
Speculative decoding accelerates large language model inference using a smaller draft model. In this paper, we establish a surprising connection between speculative decoding and channel simulation, which aims at simulating a noisy channel using as few bits as possible. This connection allows us to provide an information-theoretic analysis of the speed up that can be achieved by speculative decoding. Leveraging this link, we derive an explicit relation between generation speed-up and the number of tokens $k$ generated by the draft model for large $k$, which serves as an upper bound for all $k$. We also propose a novel speculative decoding method via exponential race ERSD that matches state-of-the-art performance.
☆ Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying language model circuits by building up from a minimal circuit rather than the traditional approach of ablating circuits from a full model.
☆ Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
comment: Code, model, and data are available at https://github.com/Parallel-Reasoning/APR. The first three authors contributed equally to this work
☆ Real-Time Sentiment Insights from X Using VADER, DistilBERT, and Web-Scraped Data
In the age of social media, understanding public sentiment toward major corporations is crucial for investors, policymakers, and researchers. This paper presents a comprehensive sentiment analysis system tailored for corporate reputation monitoring, combining Natural Language Processing (NLP) and machine learning techniques to accurately interpret public opinion in real time. The methodology integrates a hybrid sentiment detection framework leveraging both rule-based models (VADER) and transformer-based deep learning models (DistilBERT), applied to social media data from multiple platforms. The system begins with robust preprocessing involving noise removal and text normalization, followed by sentiment classification using an ensemble approach to ensure both interpretability and contextual accuracy. Results are visualized through sentiment distribution plots, comparative analyses, and temporal sentiment trends for enhanced interpretability. Our analysis reveals significant disparities in public sentiment across major corporations, with companies like Amazon (81.2) and Samsung (45.8) receiving excellent sentiment scores, while Microsoft (21.7) and Walmart (21.9) exhibit poor sentiment profiles. These findings demonstrate the utility of our multi-source sentiment framework in providing actionable insights regarding corporate public perception, enabling stakeholders to make informed strategic decisions based on comprehensive sentiment analysis.
comment: 19 pages, 2 figures
☆ Feeding LLM Annotations to BERT Classifiers at Your Own Risk
Using LLM-generated labels to fine-tune smaller encoder-only models for text classification has gained popularity in various settings. While this approach may be justified in simple and low-stakes applications, we conduct empirical analysis to demonstrate how the perennial curse of training on synthetic data manifests itself in this specific setup. Compared to models trained on gold labels, we observe not only the expected performance degradation in accuracy and F1 score, but also increased instability across training runs and premature performance plateaus. These findings cast doubts on the reliability of such approaches in real-world applications. We contextualize the observed phenomena through the lens of error propagation and offer several practical mitigation strategies, including entropy-based filtering and ensemble techniques. Although these heuristics offer partial relief, they do not fully resolve the inherent risks of propagating non-random errors from LLM annotations to smaller classifiers, underscoring the need for caution when applying this workflow in high-stakes text classification tasks.
☆ Trillion 7B Technical Report
We introduce Trillion-7B, the most token-efficient Korean-centric multilingual LLM available. Our novel Cross-lingual Document Attention (XLDA) mechanism enables highly efficient and effective knowledge transfer from English to target languages like Korean and Japanese. Combined with optimized data mixtures, language-specific filtering, and tailored tokenizer construction, Trillion-7B achieves competitive performance while dedicating only 10\% of its 2T training tokens to multilingual data and requiring just 59.4K H100 GPU hours (\$148K) for full training. Comprehensive evaluations across 27 benchmarks in four languages demonstrate Trillion-7B's robust multilingual performance and exceptional cross-lingual consistency.
comment: Preview version
☆ IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
☆ Tell Me What You Know About Sexism: Expert-LLM Interaction Strategies and Co-Created Definitions for Zero-Shot Sexism Detection NAACL 2025
This paper investigates hybrid intelligence and collaboration between researchers of sexism and Large Language Models (LLMs), with a four-component pipeline. First, nine sexism researchers answer questions about their knowledge of sexism and of LLMs. They then participate in two interactive experiments involving an LLM (GPT3.5). The first experiment has experts assessing the model's knowledge about sexism and suitability for use in research. The second experiment tasks them with creating three different definitions of sexism: an expert-written definition, an LLM-written one, and a co-created definition. Lastly, zero-shot classification experiments use the three definitions from each expert in a prompt template for sexism detection, evaluating GPT4o on 2.500 texts sampled from five sexism benchmarks. We then analyze the resulting 67.500 classification decisions. The LLM interactions lead to longer and more complex definitions of sexism. Expert-written definitions on average perform poorly compared to LLM-generated definitions. However, some experts do improve classification performance with their co-created definitions of sexism, also experts who are inexperienced in using LLMs.
comment: Accepted and published at Findings of NAACL 2025: cite published version whenever possible
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
☆ Exploring Compositional Generalization (in ReCOGS_pos) by Transformers using Restricted Access Sequence Processing (RASP)
Humans understand new combinations of words encountered if they are combinations of words recognized from different contexts, an ability called Compositional Generalization. The COGS benchmark (Kim and Linzen, 2020) arXiv:2010.05465 reports 0% accuracy for Transformer models on some structural generalizations. We use (Weiss et al., 2021) arXiv:2106.06981's Restricted Access Sequence Processing (RASP), a Transformer-equivalent programming language, to prove by construction that a Transformer encoder-decoder can perform the semantically equivalent ReCOGS_pos (Wu et al., 2024) arXiv:2303.13716 variant of COGS systematically and compositionally: Our RASP model attains 100% semantic exact match on the ReCOGS test set and 100% SEM on all generalization splits except obj_pp_to_subj_pp which gets 92%. Furthermore, our RASP model shows the ReCOGS_pos task does not require a hierarchical or tree-structured solution: we use word-level tokens with an "embedding" layer that tags with possible parts of speech, applying just once per encoder pass 19 attention-head compatible flat pattern-matching rules, shown using grammar coverage (Zeller et al., 2023) to be learnable from the training data, plus general prepositional phrase (pp) handling and sentential complement (cp) handling logic, and output the next logical form (LF) token (repeating until the LF is complete). The model does not apply recursive, tree-structured rules like 'np_det pp np -> np_pp -> np', but scores 100% semantic and string exact match on pp recursion, cp recursion using the decoder loop.
comment: 8 pages main text with 3 figures and 1 table; limitations page and references separate; 4 more figures, 1 image, and 1 more table in the appendices supplement the work. 29 pages of appendix content
☆ Med-CoDE: Medical Critique based Disagreement Evaluation Framework NAACL
The emergence of large language models (LLMs) has significantly influenced numerous fields, including healthcare, by enhancing the capabilities of automated systems to process and generate human-like text. However, despite their advancements, the reliability and accuracy of LLMs in medical contexts remain critical concerns. Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance, leading to potential risks in clinical settings. In this work, we propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges. The framework leverages a critique-based approach to quantitatively measure the degree of disagreement between model-generated responses and established medical ground truths. This framework captures both accuracy and reliability in medical settings. The proposed evaluation framework aims to fill the existing gap in LLM assessment by offering a systematic method to evaluate the quality and trustworthiness of medical LLMs. Through extensive experiments and case studies, we illustrate the practicality of our framework in providing a comprehensive and reliable evaluation of medical LLMs.
comment: 8 pages, 4 figures, NAACL SRW 2025
☆ Multimodal Large Language Models for Enhanced Traffic Safety: A Comprehensive Review and Future Trends
Traffic safety remains a critical global challenge, with traditional Advanced Driver-Assistance Systems (ADAS) often struggling in dynamic real-world scenarios due to fragmented sensor processing and susceptibility to adversarial conditions. This paper reviews the transformative potential of Multimodal Large Language Models (MLLMs) in addressing these limitations by integrating cross-modal data such as visual, spatial, and environmental inputs to enable holistic scene understanding. Through a comprehensive analysis of MLLM-based approaches, we highlight their capabilities in enhancing perception, decision-making, and adversarial robustness, while also examining the role of key datasets (e.g., KITTI, DRAMA, ML4RoadSafety) in advancing research. Furthermore, we outline future directions, including real-time edge deployment, causality-driven reasoning, and human-AI collaboration. By positioning MLLMs as a cornerstone for next-generation traffic safety systems, this review underscores their potential to revolutionize the field, offering scalable, context-aware solutions that proactively mitigate risks and improve overall road safety.
♻ ☆ DataComp-LM: In search of the next generation of training sets for language models
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations. Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters. As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set. The resulting dataset, DCLM-Baseline enables training a 7B parameter language model from scratch to 64% 5-shot accuracy on MMLU with 2.6T training tokens. Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6.6 percentage point improvement on MMLU while being trained with 40% less compute. Our baseline model is also comparable to Mistral-7B-v0.3 and Llama 3 8B on MMLU (63% & 66%), and performs similarly on an average of 53 natural language understanding tasks while being trained with 6.6x less compute than Llama 3 8B. Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation.
comment: Project page: https://www.datacomp.ai/dclm/
♻ ☆ Can LLMs Rank the Harmfulness of Smaller LLMs? We are Not There Yet
Large language models (LLMs) have become ubiquitous, thus it is important to understand their risks and limitations. Smaller LLMs can be deployed where compute resources are constrained, such as edge devices, but with different propensity to generate harmful output. Mitigation of LLM harm typically depends on annotating the harmfulness of LLM output, which is expensive to collect from humans. This work studies two questions: How do smaller LLMs rank regarding generation of harmful content? How well can larger LLMs annotate harmfulness? We prompt three small LLMs to elicit harmful content of various types, such as discriminatory language, offensive content, privacy invasion, or negative influence, and collect human rankings of their outputs. Then, we evaluate three state-of-the-art large LLMs on their ability to annotate the harmfulness of these responses. We find that the smaller models differ with respect to harmfulness. We also find that large LLMs show low to moderate agreement with humans. These findings underline the need for further work on harm mitigation in LLMs.
♻ ☆ Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
♻ ☆ HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States
The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.
♻ ☆ Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
♻ ☆ Inverse Constitutional AI: Compressing Preferences into Principles ICLR 2025
Feedback data is widely used for fine-tuning and evaluating state-of-the-art AI models. Pairwise text preferences, where human or AI annotators select the "better" of two options, are particularly common. Such preferences are used to train (reward) models or to rank models with aggregate statistics. For many applications it is desirable to understand annotator preferences in addition to modelling them - not least because extensive prior work has shown various unintended biases in preference datasets. Yet, preference datasets remain challenging to interpret. Neither black-box reward models nor statistics can answer why one text is preferred over another. Manual interpretation of the numerous (long) response pairs is usually equally infeasible. In this paper, we introduce the Inverse Constitutional AI (ICAI) problem, formulating the interpretation of pairwise text preference data as a compression task. In constitutional AI, a set of principles (a constitution) is used to provide feedback and fine-tune AI models. ICAI inverts this process: given a feedback dataset, we aim to extract a constitution that best enables a large language model (LLM) to reconstruct the original annotations. We propose a corresponding ICAI algorithm and validate its generated constitutions quantitatively based on annotation reconstruction accuracy on several datasets: (a) synthetic feedback data with known principles; (b) AlpacaEval cross-annotated human feedback data; (c) crowdsourced Chatbot Arena data; and (d) PRISM data from diverse demographic groups. As a short and interpretable representation of the original dataset, generated constitutions have many potential use cases: help identify undesirable annotator biases, understand model performance better, scale feedback to unseen data, or adapt models to individual user or group preferences. We release the source code at https://github.com/rdnfn/icai.
comment: Accepted at ICLR 2025, v2 is camera-ready version; Main changes from v1: extended experiments, additional baselines
♻ ☆ LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
♻ ☆ Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLaMP, a hierarchical video-language model that processes hour-long videos at ``mixed precision'' through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLaMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLaMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLaMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance.
♻ ☆ LongProc: Benchmarking Long-Context Language Models on Long Procedural Generation
Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluated 23 LCLMs, including instruction-tuned models and recent reasoning models, on LongProc at three difficulty levels, with the maximum number of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Reasoning models achieve stronger overall performance in long-form generation, benefiting from long CoT training. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc.
♻ ☆ Semantic Wave Functions: Exploring Meaning in Large Language Models Through Quantum Formalism
Large Language Models (LLMs) encode semantic relationships in high-dimensional vector embeddings. This paper explores the analogy between LLM embedding spaces and quantum mechanics, positing that LLMs operate within a quantized semantic space where words and phrases behave as quantum states. To capture nuanced semantic interference effects, we extend the standard real-valued embedding space to the complex domain, drawing parallels to the double-slit experiment. We introduce a "semantic wave function" to formalize this quantum-derived representation and utilize potential landscapes, such as the double-well potential, to model semantic ambiguity. Furthermore, we propose a complex-valued similarity measure that incorporates both magnitude and phase information, enabling a more sensitive comparison of semantic representations. We develop a path integral formalism, based on a nonlinear Schr\"odinger equation with a gauge field and Mexican hat potential, to model the dynamic evolution of LLM behavior. This interdisciplinary approach offers a new theoretical framework for understanding and potentially manipulating LLMs, with the goal of advancing both artificial and natural language understanding.
comment: 29 pages, 4 figures. Some corrections added
♻ ☆ Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models NAACL 2025
Large language models (LLMs) have demonstrated multilingual capabilities, yet they are mostly English-centric due to the imbalanced training corpora. While prior works have leveraged this bias to enhance multilingual performance through translation, they have been largely limited to natural language processing (NLP) tasks. In this work, we extend the evaluation to real-world user queries and non-English-centric LLMs, offering a broader examination of multilingual performance. Our key contribution lies in demonstrating that while translation into English can boost the performance of English-centric LLMs on NLP tasks, it is not universally optimal. For culture-related tasks that need deep language understanding, prompting in the native language proves more effective as it better captures the nuances of culture and language. Our experiments expose varied behaviors across LLMs and tasks in the multilingual context, underscoring the need for a more comprehensive approach to multilingual evaluation. Therefore, we call for greater efforts in developing and evaluating LLMs that go beyond English-centric paradigms.
comment: Accepted to NAACL 2025
♻ ☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
♻ ☆ Context-Parametric Inversion: Why Instruction Finetuning Can Worsen Context Reliance ICLR 2025
A standard practice when using large language models is for users to supplement their instruction with an input context containing new information for the model to process. However, models struggle to reliably follow the input context, especially when it conflicts with their parametric knowledge from pretraining. In-principle, one would expect models to adapt to the user context better after instruction finetuning, particularly when handling knowledge conflicts. However, we observe a surprising failure mode: during instruction tuning, the context reliance under knowledge conflicts initially increases as expected, but then gradually decreases as instruction finetuning progresses. This happens while the performance on standard benchmarks keeps on increasing far after this drop. We call this phenomenon context-parametric inversion and observe it across multiple general purpose instruction tuning datasets such as TULU, Alpaca and Ultrachat, across different model families like Llama, Mistral, and Pythia. We perform various controlled studies and theoretical analysis to show that context-parametric inversion occurs due to examples in the instruction finetuning data where the input context provides information that aligns with model's parametric knowledge. Our analysis suggests some natural mitigation strategies with limited but insightful gains, and serves as a useful starting point in addressing this deficiency in instruction finetuning.
comment: Published at ICLR 2025 (Oral)
♻ ☆ MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders ICASSP 2025
The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
comment: ICASSP 2025
♻ ☆ A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
♻ ☆ Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
♻ ☆ SCORE: Story Coherence and Retrieval Enhancement for AI Narratives
Large Language Models (LLMs) can generate creative and engaging narratives from user-specified input, but maintaining coherence and emotional depth throughout these AI-generated stories remains a challenge. In this work, we propose SCORE, a framework for Story Coherence and Retrieval Enhancement, designed to detect and resolve narrative inconsistencies. By tracking key item statuses and generating episode summaries, SCORE uses a Retrieval-Augmented Generation (RAG) approach, incorporating TF-IDF and cosine similarity to identify related episodes and enhance the overall story structure. Results from testing multiple LLM-generated stories demonstrate that SCORE significantly improves the consistency and stability of narrative coherence compared to baseline GPT models, providing a more robust method for evaluating and refining AI-generated narratives.
♻ ☆ Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus
Multilingual LLMs support a variety of languages; however, their performance is suboptimal for low-resource languages. In this work, we emphasize the importance of continued pre-training of multilingual LLMs and the use of translation-based synthetic pre-training corpora for improving LLMs in low-resource languages. We conduct our study in the context of the low-resource Indic language Hindi. We introduce Nemotron-Mini-Hindi 4B, a bilingual SLM supporting both Hindi and English, based on Nemotron-Mini 4B. The model is trained using a mix of real and synthetic Hindi + English tokens, with continuous pre-training performed on 400B tokens. We demonstrate that both the base and instruct models achieve state-of-the-art results on Hindi benchmarks while remaining competitive on English tasks. Additionally, we observe that the continued pre-training approach enhances the model's overall factual accuracy. We perform an ablation study to highlight the impact of Hindi pre-training, showing significant improvements in Hindi chat capabilities and factual accuracy, which cannot be achieved through Hindi alignment alone.
♻ ☆ UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
♻ ☆ LLM Agents That Act Like Us: Accurate Human Behavior Simulation with Real-World Data
Recent research shows that LLMs can simulate ``believable'' human behaviors to power LLM agents via prompt-only methods. In this work, we focus on evaluating and improving LLM's objective ``accuracy'' rather than the subjective ``believability'' in the web action generation task, leveraging a large-scale, real-world dataset collected from online shopping human actions. We present the first comprehensive quantitative evaluation of state-of-the-art LLMs (e.g., DeepSeek-R1, Llama, and Claude) on the task of web action generation. Our results show that fine-tuning LLMs on real-world behavioral data substantially improves their ability to generate actions compared to prompt-only methods. Furthermore, incorporating synthesized reasoning traces into model training leads to additional performance gains, demonstrating the value of explicit rationale in behavior modeling. This work establishes a new benchmark for evaluating LLMs in behavior simulation and offers actionable insights into how real-world action data and reasoning augmentation can enhance the fidelity of LLM agents.
♻ ☆ Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
♻ ☆ Unanswerability Evaluation for Retrieval Augmented Generation
Existing evaluation frameworks for retrieval-augmented generation (RAG) systems focus on answerable queries, but they overlook the importance of appropriately rejecting unanswerable requests. In this paper, we introduce UAEval4RAG, a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively. We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries for any given knowledge base with unanswered ratio and acceptable ratio metrics. We conduct experiments with various RAG components, including retrieval models, rewriting methods, rerankers, language models, and prompting strategies, and reveal hidden trade-offs in performance of RAG systems. Our findings highlight the critical role of component selection and prompt design in optimizing RAG systems to balance the accuracy of answerable queries with high rejection rates of unanswerable ones. UAEval4RAG provides valuable insights and tools for developing more robust and reliable RAG systems.
♻ ☆ Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition COLING 2025
Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets neglects their inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain adaptation. To address this, we present B2NERD, a compact dataset designed to guide LLMs' generalization in Open NER under a universal entity taxonomy. B2NERD is refined from 54 existing English and Chinese datasets using a two-step process. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly enhances LLMs' Open NER capabilities. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages. The data, models, and code are publicly available at https://github.com/UmeanNever/B2NER.
comment: Accepted at COLING 2025. Camera-ready version updated. Project page: https://github.com/UmeanNever/B2NER
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment ICLR 2025
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages; Published as a conference paper at ICLR 2025
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
♻ ☆ Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
♻ ☆ BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey IEEE
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ LongStory: Coherent, Complete and Length Controlled Long story Generation
A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model.
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
♻ ☆ AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
♻ ☆ Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
♻ ☆ Codenames as a Benchmark for Large Language Models
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.
comment: 12 pages, 2 figures, 2 tables
Machine Learning 172
☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.
☆ Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
☆ Leveraging Language Models for Automated Patient Record Linkage
Objective: Healthcare data fragmentation presents a major challenge for linking patient data, necessitating robust record linkage to integrate patient records from diverse sources. This study investigates the feasibility of leveraging language models for automated patient record linkage, focusing on two key tasks: blocking and matching. Materials and Methods: We utilized real-world healthcare data from the Missouri Cancer Registry and Research Center, linking patient records from two independent sources using probabilistic linkage as a baseline. A transformer-based model, RoBERTa, was fine-tuned for blocking using sentence embeddings. For matching, several language models were experimented under fine-tuned and zero-shot settings, assessing their performance against ground truth labels. Results: The fine-tuned blocking model achieved a 92% reduction in the number of candidate pairs while maintaining near-perfect recall. In the matching task, fine-tuned Mistral-7B achieved the best performance with only 6 incorrect predictions. Among zero-shot models, Mistral-Small-24B performed best, with a total of 55 incorrect predictions. Discussion: Fine-tuned language models achieved strong performance in patient record blocking and matching with minimal errors. However, they remain less accurate and efficient than a hybrid rule-based and probabilistic approach for blocking. Additionally, reasoning models like DeepSeek-R1 are impractical for large-scale record linkage due to high computational costs. Conclusion: This study highlights the potential of language models for automating patient record linkage, offering improved efficiency by eliminating the manual efforts required to perform patient record linkage. Overall, language models offer a scalable solution that can enhance data integration, reduce manual effort, and support disease surveillance and research.
☆ Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.
comment: The first two authors contributed equally. The codebase is at https://github.com/SalesforceAIResearch/jetts-benchmark
☆ SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
☆ On Learning Parallel Pancakes with Mostly Uniform Weights
We study the complexity of learning $k$-mixtures of Gaussians ($k$-GMMs) on $\mathbb{R}^d$. This task is known to have complexity $d^{\Omega(k)}$ in full generality. To circumvent this exponential lower bound on the number of components, research has focused on learning families of GMMs satisfying additional structural properties. A natural assumption posits that the component weights are not exponentially small and that the components have the same unknown covariance. Recent work gave a $d^{O(\log(1/w_{\min}))}$-time algorithm for this class of GMMs, where $w_{\min}$ is the minimum weight. Our first main result is a Statistical Query (SQ) lower bound showing that this quasi-polynomial upper bound is essentially best possible, even for the special case of uniform weights. Specifically, we show that it is SQ-hard to distinguish between such a mixture and the standard Gaussian. We further explore how the distribution of weights affects the complexity of this task. Our second main result is a quasi-polynomial upper bound for the aforementioned testing task when most of the weights are uniform while a small fraction of the weights are potentially arbitrary.
☆ Faster Algorithms for Agnostically Learning Disjunctions and their Implications
We study the algorithmic task of learning Boolean disjunctions in the distribution-free agnostic PAC model. The best known agnostic learner for the class of disjunctions over $\{0, 1\}^n$ is the $L_1$-polynomial regression algorithm, achieving complexity $2^{\tilde{O}(n^{1/2})}$. This complexity bound is known to be nearly best possible within the class of Correlational Statistical Query (CSQ) algorithms. In this work, we develop an agnostic learner for this concept class with complexity $2^{\tilde{O}(n^{1/3})}$. Our algorithm can be implemented in the Statistical Query (SQ) model, providing the first separation between the SQ and CSQ models in distribution-free agnostic learning.
☆ Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Constrained optimization with multiple functional inequality constraints has significant applications in machine learning. This paper examines a crucial subset of such problems where both the objective and constraint functions are weakly convex. Existing methods often face limitations, including slow convergence rates or reliance on double-loop algorithmic designs. To overcome these challenges, we introduce a novel single-loop penalty-based stochastic algorithm. Following the classical exact penalty method, our approach employs a {\bf hinge-based penalty}, which permits the use of a constant penalty parameter, enabling us to achieve a {\bf state-of-the-art complexity} for finding an approximate Karush-Kuhn-Tucker (KKT) solution. We further extend our algorithm to address finite-sum coupled compositional objectives, which are prevalent in artificial intelligence applications, establishing improved complexity over existing approaches. Finally, we validate our method through experiments on fair learning with receiver operating characteristic (ROC) fairness constraints and continual learning with non-forgetting constraints.
☆ Conformalized-KANs: Uncertainty Quantification with Coverage Guarantees for Kolmogorov-Arnold Networks (KANs) in Scientific Machine Learning
This paper explores uncertainty quantification (UQ) methods in the context of Kolmogorov-Arnold Networks (KANs). We apply an ensemble approach to KANs to obtain a heuristic measure of UQ, enhancing interpretability and robustness in modeling complex functions. Building on this, we introduce Conformalized-KANs, which integrate conformal prediction, a distribution-free UQ technique, with KAN ensembles to generate calibrated prediction intervals with guaranteed coverage. Extensive numerical experiments are conducted to evaluate the effectiveness of these methods, focusing particularly on the robustness and accuracy of the prediction intervals under various hyperparameter settings. We show that the conformal KAN predictions can be applied to recent extensions of KANs, including Finite Basis KANs (FBKANs) and multifideilty KANs (MFKANs). The results demonstrate the potential of our approaches to improve the reliability and applicability of KANs in scientific machine learning.
comment: 17 pages, 8 figures,
☆ Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
☆ M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding AISTATS 2025
With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.
comment: Accepted at AISTATS 2025
☆ A Deep Learning Framework for Sequence Mining with Bidirectional LSTM and Multi-Scale Attention
This paper addresses the challenges of mining latent patterns and modeling contextual dependencies in complex sequence data. A sequence pattern mining algorithm is proposed by integrating Bidirectional Long Short-Term Memory (BiLSTM) with a multi-scale attention mechanism. The BiLSTM captures both forward and backward dependencies in sequences, enhancing the model's ability to perceive global contextual structures. At the same time, the multi-scale attention module assigns adaptive weights to key feature regions under different window sizes. This improves the model's responsiveness to both local and global important information. Extensive experiments are conducted on a publicly available multivariate time series dataset. The proposed model is compared with several mainstream sequence modeling methods. Results show that it outperforms existing models in terms of accuracy, precision, and recall. This confirms the effectiveness and robustness of the proposed architecture in complex pattern recognition tasks. Further ablation studies and sensitivity analyses are carried out to investigate the effects of attention scale and input sequence length on model performance. These results provide empirical support for structural optimization of the model.
☆ Fully Bayesian Approaches to Topics over Time
The Topics over Time (ToT) model captures thematic changes in timestamped datasets by explicitly modeling publication dates jointly with word co-occurrence patterns. However, ToT was not approached in a fully Bayesian fashion, a flaw that makes it susceptible to stability problems. To address this issue, we propose a fully Bayesian Topics over Time (BToT) model via the introduction of a conjugate prior to the Beta distribution. This prior acts as a regularization that prevents the online version of the algorithm from unstable updates when a topic is poorly represented in a mini-batch. The characteristics of this prior to the Beta distribution are studied here for the first time. Still, this model suffers from a difference in scale between the single-time observations and the multiplicity of words per document. A variation of BToT, Weighted Bayesian Topics over Time (WBToT), is proposed as a solution. In WBToT, publication dates are repeated a certain number of times per document, which balances the relative influence of words and timestamps along the inference process. We have tested our models on two datasets: a collection of over 200 years of US state-of-the-union (SOTU) addresses and a large-scale COVID-19 Twitter corpus of 10 million tweets. The results show that WBToT captures events better than Latent Dirichlet Allocation and other SOTA topic models like BERTopic: the median absolute deviation of the topic presence over time is reduced by $51\%$ and $34\%$, respectively. Our experiments also demonstrate the superior coherence of WBToT over BToT, which highlights the importance of balancing the time and word modalities. Finally, we illustrate the stability of the online optimization algorithm in WBToT, which allows the application of WBToT to problems that are intractable for standard ToT.
comment: 25 pages
☆ DRAGON: Distributional Rewards Optimize Diffusion Generative Models
We present Distributional RewArds for Generative OptimizatioN (DRAGON), a versatile framework for fine-tuning media generation models towards a desired outcome. Compared with traditional reinforcement learning with human feedback (RLHF) or pairwise preference approaches such as direct preference optimization (DPO), DRAGON is more flexible. It can optimize reward functions that evaluate either individual examples or distributions of them, making it compatible with a broad spectrum of instance-wise, instance-to-distribution, and distribution-to-distribution rewards. Leveraging this versatility, we construct novel reward functions by selecting an encoder and a set of reference examples to create an exemplar distribution. When cross-modality encoders such as CLAP are used, the reference examples may be of a different modality (e.g., text versus audio). Then, DRAGON gathers online and on-policy generations, scores them to construct a positive demonstration set and a negative set, and leverages the contrast between the two sets to maximize the reward. For evaluation, we fine-tune an audio-domain text-to-music diffusion model with 20 different reward functions, including a custom music aesthetics model, CLAP score, Vendi diversity, and Frechet audio distance (FAD). We further compare instance-wise (per-song) and full-dataset FAD settings while ablating multiple FAD encoders and reference sets. Over all 20 target rewards, DRAGON achieves an 81.45% average win rate. Moreover, reward functions based on exemplar sets indeed enhance generations and are comparable to model-based rewards. With an appropriate exemplar set, DRAGON achieves a 60.95% human-voted music quality win rate without training on human preference annotations. As such, DRAGON exhibits a new approach to designing and optimizing reward functions for improving human-perceived quality. Sound examples at https://ml-dragon.github.io/web.
☆ Histogram-based Parameter-efficient Tuning for Passive Sonar Classification IEEE
Parameter-efficient transfer learning (PETL) methods adapt large artificial neural networks to downstream tasks without fine-tuning the entire model. However, existing additive methods, such as adapters, sometimes struggle to capture distributional shifts in intermediate feature embeddings. We propose a novel histogram-based parameter-efficient tuning (HPT) technique that captures the statistics of the target domain and modulates the embeddings. Experimental results on three downstream passive sonar datasets (ShipsEar, DeepShip, VTUAD) demonstrate that HPT outperforms conventional adapters. Notably, HPT achieves 91.8% vs. 89.8% accuracy on VTUAD. Furthermore, HPT trains faster and yields feature representations closer to those of fully fine-tuned models. Overall, HPT balances parameter savings and performance, providing a distribution-aware alternative to existing adapters and shows a promising direction for scalable transfer learning in resource-constrained environments. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/HLAST_DeepShip_ParameterEfficient.
comment: 5 pages, 4 figures. Submitted to IEEE WASPAA 2025 for possible publication
☆ A Causal Convolutional Low-rank Representation Model for Imputation of Water Quality Data
The monitoring of water quality is a crucial part of environmental protection, and a large number of monitors are widely deployed to monitor water quality. Due to unavoidable factors such as data acquisition breakdowns, sensors and communication failures, water quality monitoring data suffers from missing values over time, resulting in High-Dimensional and Sparse (HDS) Water Quality Data (WQD). The simple and rough filling of the missing values leads to inaccurate results and affects the implementation of relevant measures. Therefore, this paper proposes a Causal convolutional Low-rank Representation (CLR) model for imputing missing WQD to improve the completeness of the WQD, which employs a two-fold idea: a) applying causal convolutional operation to consider the temporal dependence of the low-rank representation, thus incorporating temporal information to improve the imputation accuracy; and b) implementing a hyperparameters adaptation scheme to automatically adjust the best hyperparameters during model training, thereby reducing the tedious manual adjustment of hyper-parameters. Experimental studies on three real-world water quality datasets demonstrate that the proposed CLR model is superior to some of the existing state-of-the-art imputation models in terms of imputation accuracy and time cost, as well as indicating that the proposed model provides more reliable decision support for environmental monitoring.
comment: 9 pages, 3 figures
☆ Compute-Optimal LLMs Provably Generalize Better With Scale ICLR 2025
Why do larger language models generalize better? To investigate this question, we develop generalization bounds on the pretraining objective of large language models (LLMs) in the compute-optimal regime, as described by the Chinchilla scaling laws. We introduce a novel, fully empirical Freedman-type martingale concentration inequality that tightens existing bounds by accounting for the variance of the loss function. This generalization bound can be decomposed into three interpretable components: the number of parameters per token, the loss variance, and the quantization error at a fixed bitrate. As compute-optimal language models are scaled up, the number of parameters per data point remains constant; however, both the loss variance and the quantization error decrease, implying that larger models should have smaller generalization gaps. We examine why larger models tend to be more quantizable from an information theoretic perspective, showing that the rate at which they can integrate new information grows more slowly than their capacity on the compute-optimal frontier. From these findings we produce a scaling law for the generalization gap, with bounds that become predictably stronger with scale.
comment: ICLR 2025
☆ How Global Calibration Strengthens Multiaccuracy
Multiaccuracy and multicalibration are multigroup fairness notions for prediction that have found numerous applications in learning and computational complexity. They can be achieved from a single learning primitive: weak agnostic learning. Here we investigate the power of multiaccuracy as a learning primitive, both with and without the additional assumption of calibration. We find that multiaccuracy in itself is rather weak, but that the addition of global calibration (this notion is called calibrated multiaccuracy) boosts its power substantially, enough to recover implications that were previously known only assuming the stronger notion of multicalibration. We give evidence that multiaccuracy might not be as powerful as standard weak agnostic learning, by showing that there is no way to post-process a multiaccurate predictor to get a weak learner, even assuming the best hypothesis has correlation $1/2$. Rather, we show that it yields a restricted form of weak agnostic learning, which requires some concept in the class to have correlation greater than $1/2$ with the labels. However, by also requiring the predictor to be calibrated, we recover not just weak, but strong agnostic learning. A similar picture emerges when we consider the derivation of hardcore measures from predictors satisfying multigroup fairness notions. On the one hand, while multiaccuracy only yields hardcore measures of density half the optimal, we show that (a weighted version of) calibrated multiaccuracy achieves optimal density. Our results yield new insights into the complementary roles played by multiaccuracy and calibration in each setting. They shed light on why multiaccuracy and global calibration, although not particularly powerful by themselves, together yield considerably stronger notions.
☆ Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
☆ Automated Measurement of Eczema Severity with Self-Supervised Learning
Automated diagnosis of eczema using images acquired from digital camera can enable individuals to self-monitor their recovery. The process entails first segmenting out the eczema region from the image and then measuring the severity of eczema in the segmented region. The state-of-the-art methods for automated eczema diagnosis rely on deep neural networks such as convolutional neural network (CNN) and have shown impressive performance in accurately measuring the severity of eczema. However, these methods require massive volume of annotated data to train which can be hard to obtain. In this paper, we propose a self-supervised learning framework for automated eczema diagnosis under limited training data regime. Our framework consists of two stages: i) Segmentation, where we use an in-context learning based algorithm called SegGPT for few-shot segmentation of eczema region from the image; ii) Feature extraction and classification, where we extract DINO features from the segmented regions and feed it to a multi-layered perceptron (MLP) for 4-class classification of eczema severity. When evaluated on a dataset of annotated "in-the-wild" eczema images, we show that our method outperforms (Weighted F1: 0.67 $\pm$ 0.01) the state-of-the-art deep learning methods such as finetuned Resnet-18 (Weighted F1: 0.44 $\pm$ 0.16) and Vision Transformer (Weighted F1: 0.40 $\pm$ 0.22). Our results show that self-supervised learning can be a viable solution for automated skin diagnosis where labeled data is scarce.
☆ Audio-Visual Class-Incremental Learning for Fish Feeding intensity Assessment in Aquaculture
Fish Feeding Intensity Assessment (FFIA) is crucial in industrial aquaculture management. Recent multi-modal approaches have shown promise in improving FFIA robustness and efficiency. However, these methods face significant challenges when adapting to new fish species or environments due to catastrophic forgetting and the lack of suitable datasets. To address these limitations, we first introduce AV-CIL-FFIA, a new dataset comprising 81,932 labelled audio-visual clips capturing feeding intensities across six different fish species in real aquaculture environments. Then, we pioneer audio-visual class incremental learning (CIL) for FFIA and demonstrate through benchmarking on AV-CIL-FFIA that it significantly outperforms single-modality methods. Existing CIL methods rely heavily on historical data. Exemplar-based approaches store raw samples, creating storage challenges, while exemplar-free methods avoid data storage but struggle to distinguish subtle feeding intensity variations across different fish species. To overcome these limitations, we introduce HAIL-FFIA, a novel audio-visual class-incremental learning framework that bridges this gap with a prototype-based approach that achieves exemplar-free efficiency while preserving essential knowledge through compact feature representations. Specifically, HAIL-FFIA employs hierarchical representation learning with a dual-path knowledge preservation mechanism that separates general intensity knowledge from fish-specific characteristics. Additionally, it features a dynamic modality balancing system that adaptively adjusts the importance of audio versus visual information based on feeding behaviour stages. Experimental results show that HAIL-FFIA is superior to SOTA methods on AV-CIL-FFIA, achieving higher accuracy with lower storage needs while effectively mitigating catastrophic forgetting in incremental fish species learning.
Survey of Loss Augmented Knowledge Tracing
The training of artificial neural networks is heavily dependent on the careful selection of an appropriate loss function. While commonly used loss functions, such as cross-entropy and mean squared error (MSE), generally suffice for a broad range of tasks, challenges often emerge due to limitations in data quality or inefficiencies within the learning process. In such circumstances, the integration of supplementary terms into the loss function can serve to address these challenges, enhancing both model performance and robustness. Two prominent techniques, loss regularization and contrastive learning, have been identified as effective strategies for augmenting the capacity of loss functions in artificial neural networks. Knowledge tracing is a compelling area of research that leverages predictive artificial intelligence to facilitate the automation of personalized and efficient educational experiences for students. In this paper, we provide a comprehensive review of the deep learning-based knowledge tracing (DKT) algorithms trained using advanced loss functions and discuss their improvements over prior techniques. We discuss contrastive knowledge tracing algorithms, such as Bi-CLKT, CL4KT, SP-CLKT, CoSKT, and prediction-consistent DKT, providing performance benchmarks and insights into real-world deployment challenges. The survey concludes with future research directions, including hybrid loss strategies and context-aware modeling.
comment: 14 pages, no figures
☆ Advanced posterior analyses of hidden Markov models: finite Markov chain imbedding and hybrid decoding
Two major tasks in applications of hidden Markov models are to (i) compute distributions of summary statistics of the hidden state sequence, and (ii) decode the hidden state sequence. We describe finite Markov chain imbedding (FMCI) and hybrid decoding to solve each of these two tasks. In the first part of our paper we use FMCI to compute posterior distributions of summary statistics such as the number of visits to a hidden state, the total time spent in a hidden state, the dwell time in a hidden state, and the longest run length. We use simulations from the hidden state sequence, conditional on the observed sequence, to establish the FMCI framework. In the second part of our paper we apply hybrid segmentation for improved decoding of a HMM. We demonstrate that hybrid decoding shows increased performance compared to Viterbi or Posterior decoding (often also referred to as global or local decoding), and we introduce a novel procedure for choosing the tuning parameter in the hybrid procedure. Furthermore, we provide an alternative derivation of the hybrid loss function based on weighted geometric means. We demonstrate and apply FMCI and hybrid decoding on various classical data sets, and supply accompanying code for reproducibility.
comment: 23 pages, 14 figures
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ Kolmogorov-Arnold Networks: Approximation and Learning Guarantees for Functions and their Derivatives
Inspired by the Kolmogorov-Arnold superposition theorem, Kolmogorov-Arnold Networks (KANs) have recently emerged as an improved backbone for most deep learning frameworks, promising more adaptivity than their multilayer perception (MLP) predecessor by allowing for trainable spline-based activation functions. In this paper, we probe the theoretical foundations of the KAN architecture by showing that it can optimally approximate any Besov function in $B^{s}_{p,q}(\mathcal{X})$ on a bounded open, or even fractal, domain $\mathcal{X}$ in $\mathbb{R}^d$ at the optimal approximation rate with respect to any weaker Besov norm $B^{\alpha}_{p,q}(\mathcal{X})$; where $\alpha < s$. We complement our approximation guarantee with a dimension-free estimate on the sample complexity of a residual KAN model when learning a function of Besov regularity from $N$ i.i.d. noiseless samples. Our KAN architecture incorporates contemporary deep learning wisdom by leveraging residual/skip connections between layers.
☆ Application of Sensitivity Analysis Methods for Studying Neural Network Models
This study demonstrates the capabilities of several methods for analyzing the sensitivity of neural networks to perturbations of the input data and interpreting their underlying mechanisms. The investigated approaches include the Sobol global sensitivity analysis, the local sensitivity method for input pixel perturbations and the activation maximization technique. As examples, in this study we consider a small feedforward neural network for analyzing an open tabular dataset of clinical diabetes data, as well as two classical convolutional architectures, VGG-16 and ResNet-18, which are widely used in image processing and classification. Utilization of the global sensitivity analysis allows us to identify the leading input parameters of the chosen tiny neural network and reduce their number without significant loss of the accuracy. As far as global sensitivity analysis is not applicable to larger models we try the local sensitivity analysis and activation maximization method in application to the convolutional neural networks. These methods show interesting patterns for the convolutional models solving the image classification problem. All in all, we compare the results of the activation maximization method with popular Grad-CAM technique in the context of ultrasound data analysis.
comment: 11 pages, 16 figures, 32 references
☆ Fast-Slow Co-advancing Optimizer: Toward Harmonious Adversarial Training of GAN
Up to now, the training processes of typical Generative Adversarial Networks (GANs) are still particularly sensitive to data properties and hyperparameters, which may lead to severe oscillations, difficulties in convergence, or even failures to converge, especially when the overall variances of the training sets are large. These phenomena are often attributed to the training characteristics of such networks. Aiming at the problem, this paper develops a new intelligent optimizer, Fast-Slow Co-advancing Optimizer (FSCO), which employs reinforcement learning in the training process of GANs to make training easier. Specifically, this paper allows the training step size to be controlled by an agent to improve training stability, and makes the training process more intelligent with variable learning rates, making GANs less sensitive to step size. Experiments have been conducted on three benchmark datasets to verify the effectiveness of the developed FSCO.
☆ Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
☆ Federated Latent Factor Model for Bias-Aware Recommendation with Privacy-Preserving
A recommender system (RS) aims to provide users with personalized item recommendations, enhancing their overall experience. Traditional RSs collect and process all user data on a central server. However, this centralized approach raises significant privacy concerns, as it increases the risk of data breaches and privacy leakages, which are becoming increasingly unacceptable to privacy-sensitive users. To address these privacy challenges, federated learning has been integrated into RSs, ensuring that user data remains secure. In centralized RSs, the issue of rating bias is effectively addressed by jointly analyzing all users' raw interaction data. However, this becomes a significant challenge in federated RSs, as raw data is no longer accessible due to privacy-preserving constraints. To overcome this problem, we propose a Federated Bias-Aware Latent Factor (FBALF) model. In FBALF, training bias is explicitly incorporated into every local model's loss function, allowing for the effective elimination of rating bias without compromising data privacy. Extensive experiments conducted on three real-world datasets demonstrate that FBALF achieves significantly higher recommendation accuracy compared to other state-of-the-art federated RSs.
☆ Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL
Large Language Models (LLMs) have shown impressive capabilities in transforming natural language questions about relational databases into SQL queries. Despite recent improvements, small LLMs struggle to handle questions involving multiple tables and complex SQL patterns under a Zero-Shot Learning (ZSL) setting. Supervised Fine-Tuning (SFT) partially compensate the knowledge deficits in pretrained models but falls short while dealing with queries involving multi-hop reasoning. To bridge this gap, different LLM training strategies to reinforce reasoning capabilities have been proposed, ranging from leveraging a thinking process within ZSL, including reasoning traces in SFT, or adopt Reinforcement Learning (RL) strategies. However, the influence of reasoning on Text2SQL performance is still largely unexplored. This paper investigates to what extent LLM reasoning capabilities influence their Text2SQL performance on four benchmark datasets. To this end, it considers the following LLM settings: (1) ZSL, including general-purpose reasoning or not; (2) SFT, with and without task-specific reasoning traces; (3) RL, leveraging execution accuracy as primary reward function; (4) SFT+RL, i.e, a two-stage approach that combines SFT and RL. The results show that general-purpose reasoning under ZSL proves to be ineffective in tackling complex Text2SQL cases. Small LLMs benefit from SFT with reasoning much more than larger ones, bridging the gap of their (weaker) model pretraining. RL is generally beneficial across all tested models and datasets, particularly when SQL queries involve multi-hop reasoning and multiple tables. Small LLMs with SFT+RL excel on most complex datasets thanks to a strategic balance between generality of the reasoning process and optimization of the execution accuracy. Thanks to RL, the7B Qwen-Coder-2.5 model performs on par with 100+ Billion ones on the Bird dataset.
comment: 15 pages
☆ Mitigating Degree Bias in Graph Representation Learning with Learnable Structural Augmentation and Structural Self-Attention IEEE
Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.
comment: Accepted at IEEE TNSE
☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
☆ A Call for New Recipes to Enhance Spatial Reasoning in MLLMs
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks. However, recent studies have exposed critical limitations in their spatial reasoning capabilities. This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world, thereby limiting their broader applications. We argue that spatial reasoning capabilities will not naturally emerge from merely scaling existing architectures and training methodologies. Instead, this challenge demands dedicated attention to fundamental modifications in the current MLLM development approach. In this position paper, we first establish a comprehensive framework for spatial reasoning within the context of MLLMs. We then elaborate on its pivotal role in real-world applications. Through systematic analysis, we examine how individual components of the current methodology-from training data to reasoning mechanisms-influence spatial reasoning capabilities. This examination reveals critical limitations while simultaneously identifying promising avenues for advancement. Our work aims to direct the AI research community's attention toward these crucial yet underexplored aspects. By highlighting these challenges and opportunities, we seek to catalyze progress toward achieving human-like spatial reasoning capabilities in MLLMs.
☆ Is Intelligence the Right Direction in New OS Scheduling for Multiple Resources in Cloud Environments?
Making it intelligent is a promising way in System/OS design. This paper proposes OSML+, a new ML-based resource scheduling mechanism for co-located cloud services. OSML+ intelligently schedules the cache and main memory bandwidth resources at the memory hierarchy and the computing core resources simultaneously. OSML+ uses a multi-model collaborative learning approach during its scheduling and thus can handle complicated cases, e.g., avoiding resource cliffs, sharing resources among applications, enabling different scheduling policies for applications with different priorities, etc. OSML+ can converge faster using ML models than previous studies. Moreover, OSML+ can automatically learn on the fly and handle dynamically changing workloads accordingly. Using transfer learning technologies, we show our design can work well across various cloud servers, including the latest off-the-shelf large-scale servers. Our experimental results show that OSML+ supports higher loads and meets QoS targets with lower overheads than previous studies.
comment: 25 pages, 14 figures, to be published in ACM Transactions on Storage
☆ Trainable Quantum Neural Network for Multiclass Image Classification with the Power of Pre-trained Tree Tensor Networks IEEE
Tree tensor networks (TTNs) offer powerful models for image classification. While these TTN image classifiers already show excellent performance on classical hardware, embedding them into quantum neural networks (QNNs) may further improve the performance by leveraging quantum resources. However, embedding TTN classifiers into QNNs for multiclass classification remains challenging. Key obstacles are the highorder gate operations required for large bond dimensions and the mid-circuit postselection with exponentially low success rates necessary for the exact embedding. In this work, to address these challenges, we propose forest tensor network (FTN)-classifiers, which aggregate multiple small-bond-dimension TTNs. This allows us to handle multiclass classification without requiring large gates in the embedded circuits. We then remove the overhead of mid-circuit postselection by extending the adiabatic encoding framework to our setting and smoothly encode the FTN-classifiers into a quantum forest tensor network (qFTN)- classifiers. Numerical experiments on MNIST and CIFAR-10 demonstrate that we can successfully train FTN-classifiers and encode them into qFTN-classifiers, while maintaining or even improving the performance of the pre-trained FTN-classifiers. These results suggest that synergy between TTN classification models and QNNs can provide a robust and scalable framework for multiclass quantum-enhanced image classification.
comment: 11 pages, 12 figures, 2 tables. This work has been submitted to the IEEE for possible publication
☆ Learning Compositional Transferability of Time Series for Source-Free Domain Adaptation
Domain adaptation is challenging for time series classification due to the highly dynamic nature. This study tackles the most difficult subtask when both target labels and source data are inaccessible, namely, source-free domain adaptation. To reuse the classification backbone pre-trained on source data, time series reconstruction is a sound solution that aligns target and source time series by minimizing the reconstruction errors of both. However, simply fine-tuning the source pre-trained reconstruction model on target data may lose the learnt priori, and it struggles to accommodate domain varying temporal patterns in a single encoder-decoder. Therefore, this paper tries to disentangle the composition of domain transferability by using a compositional architecture for time series reconstruction. Here, the preceding component is a U-net frozen since pre-trained, the output of which during adaptation is the initial reconstruction of a given target time series, acting as a coarse step to prompt the subsequent finer adaptation. The following pipeline for finer adaptation includes two parallel branches: The source replay branch using a residual link to preserve the output of U-net, and the offset compensation branch that applies an additional autoencoder (AE) to further warp U-net's output. By deploying a learnable factor on either branch to scale their composition in the final output of reconstruction, the data transferability is disentangled and the learnt reconstructive capability from source data is retained. During inference, aside from the batch-level optimization in the training, we search at test time stability-aware rescaling of source replay branch to tolerate instance-wise variation. The experimental results show that such compositional architecture of time series reconstruction leads to SOTA performance on 3 widely used benchmarks.
comment: Corresponding author: Su Yang
☆ Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues IEEE 2025
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
☆ MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.
☆ Efficient Document Retrieval with G-Retriever NeurIPS 2024
Textual data question answering has gained significant attention due to its growing applicability. Recently, a novel approach leveraging the Retrieval-Augmented Generation (RAG) method was introduced, utilizing the Prize-Collecting Steiner Tree (PCST) optimization for sub-graph construction. However, this method focused solely on node attributes, leading to incomplete contextual understanding. In this paper, we propose an enhanced approach that replaces the PCST method with an attention-based sub-graph construction technique, enabling more efficient and context-aware retrieval. Additionally, we encode both node and edge attributes, leading to richer graph representations. Our method also incorporates an improved projection layer and multi-head attention pooling for better alignment with Large Language Models (LLMs). Experimental evaluations on the WebQSP dataset demonstrate that our approach is competitive and achieves marginally better results compared to the original method, underscoring its potential for more accurate question answering.
comment: Extended version of a paper presented at NeurIPS 2024 (arXiv:2402.07630)
☆ Symmetry-Preserving Architecture for Multi-NUMA Environments (SPANE): A Deep Reinforcement Learning Approach for Dynamic VM Scheduling IEEE
As cloud computing continues to evolve, the adoption of multi-NUMA (Non-Uniform Memory Access) architecture by cloud service providers has introduced new challenges in virtual machine (VM) scheduling. To address these challenges and more accurately reflect the complexities faced by modern cloud environments, we introduce the Dynamic VM Allocation problem in Multi-NUMA PM (DVAMP). We formally define both offline and online versions of DVAMP as mixed-integer linear programming problems, providing a rigorous mathematical foundation for analysis. A tight performance bound for greedy online algorithms is derived, offering insights into the worst-case optimality gap as a function of the number of physical machines and VM lifetime variability. To address the challenges posed by DVAMP, we propose SPANE (Symmetry-Preserving Architecture for Multi-NUMA Environments), a novel deep reinforcement learning approach that exploits the problem's inherent symmetries. SPANE produces invariant results under arbitrary permutations of physical machine states, enhancing learning efficiency and solution quality. Extensive experiments conducted on the Huawei-East-1 dataset demonstrate that SPANE outperforms existing baselines, reducing average VM wait time by 45%. Our work contributes to the field of cloud resource management by providing both theoretical insights and practical solutions for VM scheduling in multi-NUMA environments, addressing a critical gap in the literature and offering improved performance for real-world cloud systems.
comment: 10 pages, 7 figures. Accepted to IEEE INFOCOM 2025
☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
☆ Integrating Response Time and Attention Duration in Bayesian Preference Learning for Multiple Criteria Decision Aiding
We introduce a multiple criteria Bayesian preference learning framework incorporating behavioral cues for decision aiding. The framework integrates pairwise comparisons, response time, and attention duration to deepen insights into decision-making processes. The approach employs an additive value function model and utilizes a Bayesian framework to derive the posterior distribution of potential ranking models by defining the likelihood of observed preference data and specifying a prior on the preference structure. This distribution highlights each model's ability to reconstruct Decision-Makers' holistic pairwise comparisons. By leveraging both response time as a proxy for cognitive effort and alternative discriminability as well as attention duration as an indicator of criterion importance, the proposed model surpasses traditional methods by uncovering richer behavioral patterns. We report the results of a laboratory experiment on mobile phone contract selection involving 30 real subjects using a dedicated application with time-, eye-, and mouse-tracking components. We validate the novel method's ability to reconstruct complete preferences. The detailed ablation studies reveal time- and attention-related behavioral patterns, confirming that integrating comprehensive data leads to developing models that better align with the DM's actual preferences.
☆ Causal DAG Summarization (Full Version)
Causal inference aids researchers in discovering cause-and-effect relationships, leading to scientific insights. Accurate causal estimation requires identifying confounding variables to avoid false discoveries. Pearl's causal model uses causal DAGs to identify confounding variables, but incorrect DAGs can lead to unreliable causal conclusions. However, for high dimensional data, the causal DAGs are often complex beyond human verifiability. Graph summarization is a logical next step, but current methods for general-purpose graph summarization are inadequate for causal DAG summarization. This paper addresses these challenges by proposing a causal graph summarization objective that balances graph simplification for better understanding while retaining essential causal information for reliable inference. We develop an efficient greedy algorithm and show that summary causal DAGs can be directly used for inference and are more robust to misspecification of assumptions, enhancing robustness for causal inference. Experimenting with six real-life datasets, we compared our algorithm to three existing solutions, showing its effectiveness in handling high-dimensional data and its ability to generate summary DAGs that ensure both reliable causal inference and robustness against misspecifications.
☆ POLYRAG: Integrating Polyviews into Retrieval-Augmented Generation for Medical Applications
Large language models (LLMs) have become a disruptive force in the industry, introducing unprecedented capabilities in natural language processing, logical reasoning and so on. However, the challenges of knowledge updates and hallucination issues have limited the application of LLMs in medical scenarios, where retrieval-augmented generation (RAG) can offer significant assistance. Nevertheless, existing retrieve-then-read approaches generally digest the retrieved documents, without considering the timeliness, authoritativeness and commonality of retrieval. We argue that these approaches can be suboptimal, especially in real-world applications where information from different sources might conflict with each other and even information from the same source in different time scale might be different, and totally relying on this would deteriorate the performance of RAG approaches. We propose PolyRAG that carefully incorporate judges from different perspectives and finally integrate the polyviews for retrieval augmented generation in medical applications. Due to the scarcity of real-world benchmarks for evaluation, to bridge the gap we propose PolyEVAL, a benchmark consists of queries and documents collected from real-world medical scenarios (including medical policy, hospital & doctor inquiry and healthcare) with multiple tagging (e.g., timeliness, authoritativeness) on them. Extensive experiments and analysis on PolyEVAL have demonstrated the superiority of PolyRAG.
☆ Dynamic Graph-Like Learning with Contrastive Clustering on Temporally-Factored Ship Motion Data for Imbalanced Sea State Estimation in Autonomous Vessel
Accurate sea state estimation is crucial for the real-time control and future state prediction of autonomous vessels. However, traditional methods struggle with challenges such as data imbalance and feature redundancy in ship motion data, limiting their effectiveness. To address these challenges, we propose the Temporal-Graph Contrastive Clustering Sea State Estimator (TGC-SSE), a novel deep learning model that combines three key components: a time dimension factorization module to reduce data redundancy, a dynamic graph-like learning module to capture complex variable interactions, and a contrastive clustering loss function to effectively manage class imbalance. Our experiments demonstrate that TGC-SSE significantly outperforms existing methods across 14 public datasets, achieving the highest accuracy in 9 datasets, with a 20.79% improvement over EDI. Furthermore, in the field of sea state estimation, TGC-SSE surpasses five benchmark methods and seven deep learning models. Ablation studies confirm the effectiveness of each module, demonstrating their respective roles in enhancing overall model performance. Overall, TGC-SSE not only improves the accuracy of sea state estimation but also exhibits strong generalization capabilities, providing reliable support for autonomous vessel operations.
comment: 13 pages,15 figures
☆ Expected Free Energy-based Planning as Variational Inference
We address the problem of planning under uncertainty, where an agent must choose actions that not only achieve desired outcomes but also reduce uncertainty. Traditional methods often treat exploration and exploitation as separate objectives, lacking a unified inferential foundation. Active inference, grounded in the Free Energy Principle, offers such a foundation by minimizing Expected Free Energy (EFE), a cost function that combines utility with epistemic drives like ambiguity resolution and novelty seeking. However, the computational burden of EFE minimization has remained a major obstacle to its scalability. In this paper, we show that EFE-based planning arises naturally from minimizing a variational free energy functional on a generative model augmented with preference and epistemic priors. This result reinforces theoretical consistency with the Free Energy Principle, by casting planning itself as variational inference. Our formulation yields optimal policies that jointly support goal achievement and information gain, while incorporating a complexity term that accounts for bounded computational resources. This unifying framework connects and extends existing methods, enabling scalable, resource-aware implementations of active inference agents.
comment: 16 pages
☆ Latent Bayesian Optimization via Autoregressive Normalizing Flows ICLR 2025
Bayesian Optimization (BO) has been recognized for its effectiveness in optimizing expensive and complex objective functions. Recent advancements in Latent Bayesian Optimization (LBO) have shown promise by integrating generative models such as variational autoencoders (VAEs) to manage the complexity of high-dimensional and structured data spaces. However, existing LBO approaches often suffer from the value discrepancy problem, which arises from the reconstruction gap between input and latent spaces. This value discrepancy problem propagates errors throughout the optimization process, leading to suboptimal outcomes. To address this issue, we propose a Normalizing Flow-based Bayesian Optimization (NF-BO), which utilizes normalizing flow as a generative model to establish one-to-one encoding function from the input space to the latent space, along with its left-inverse decoding function, eliminating the reconstruction gap. Specifically, we introduce SeqFlow, an autoregressive normalizing flow for sequence data. In addition, we develop a new candidate sampling strategy that dynamically adjusts the exploration probability for each token based on its importance. Through extensive experiments, our NF-BO method demonstrates superior performance in molecule generation tasks, significantly outperforming both traditional and recent LBO approaches.
comment: ICLR 2025
☆ Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
☆ Impact of Latent Space Dimension on IoT Botnet Detection Performance: VAE-Encoder Versus ViT-Encoder
The rapid evolution of Internet of Things (IoT) technology has led to a significant increase in the number of IoT devices, applications, and services. This surge in IoT devices, along with their widespread presence, has made them a prime target for various cyber-attacks, particularly through IoT botnets. As a result, security has become a major concern within the IoT ecosystem. This study focuses on investigating how the latent dimension impacts the performance of different deep learning classifiers when trained on latent vector representations of the train dataset. The primary objective is to compare the outcomes of these models when encoder components from two cutting-edge architectures: the Vision Transformer (ViT) and the Variational Auto-Encoder (VAE) are utilized to project the high dimensional train dataset to the learned low dimensional latent space. The encoder components are employed to project high-dimensional structured .csv IoT botnet traffic datasets to various latent sizes. Evaluated on N-BaIoT and CICIoT2022 datasets, findings reveal that VAE-encoder based dimension reduction outperforms ViT-encoder based dimension reduction for both datasets in terms of four performance metrics including accuracy, precision, recall, and F1-score for all models which can be attributed to absence of spatial patterns in the datasets the ViT model attempts to learn and extract from image instances.
☆ ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
☆ Uncertainty quantification of neural network models of evolving processes via Langevin sampling
We propose a scalable, approximate inference hypernetwork framework for a general model of history-dependent processes. The flexible data model is based on a neural ordinary differential equation (NODE) representing the evolution of internal states together with a trainable observation model subcomponent. The posterior distribution corresponding to the data model parameters (weights and biases) follows a stochastic differential equation with a drift term related to the score of the posterior that is learned jointly with the data model parameters. This Langevin sampling approach offers flexibility in balancing the computational budget between the evaluation cost of the data model and the approximation of the posterior density of its parameters. We demonstrate performance of the hypernetwork on chemical reaction and material physics data and compare it to mean-field variational inference.
comment: 23 pages, 15 figures
☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
☆ A Basic Evaluation of Neural Networks Trained with the Error Diffusion Learning Algorithm
Artificial neural networks are powerful tools capable of addressing various tasks. Although the backpropagation algorithm has become a standard training method for these neural networks, its lack of biological plausibility has inspired the development of alternative learning approaches. One such alternative is Kaneko's Error Diffusion Learning Algorithm (EDLA), a biologically motivated approach wherein a single global error signal diffuses throughout a network composed of paired excitatory-inhibitory sublayers, thereby eliminating the necessity for layer-wise backpropagation. This study presents a contemporary formulation of the EDLA framework and evaluates its effectiveness through parity check, regression, and image classification tasks. Our experimental results indicate that EDLA networks can consistently achieve high accuracy across these benchmarks, with performance efficiency and convergence speed notably influenced by the choice of learning rate, neuron count, and network depth. Further investigation of the internal representations formed by EDLA networks reveals their capacity for meaningful feature extraction, similar to traditional neural networks. These results suggest that EDLA is a biologically motivated alternative for training feedforward networks and will motivate future work on extending this method to biologically inspired neural networks.
☆ DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.
☆ On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
☆ Real-Time Sleepiness Detection for Driver State Monitoring System
A driver face monitoring system can detect driver fatigue, which is a significant factor in many accidents, using computer vision techniques. In this paper, we present a real-time technique for driver eye state detection. First, the face is detected, and the eyes are located within the face region for tracking. A normalized cross-correlation-based online dynamic template matching technique, combined with Kalman filter tracking, is proposed to track the detected eye positions in subsequent image frames. A support vector machine with histogram of oriented gradients (HOG) features is used to classify the state of the eyes as open or closed. If the eyes remain closed for a specified period, the driver is considered to be asleep, and an alarm is triggered.
comment: 8 pages, published in GST 2015
☆ Dynamic Contrastive Skill Learning with State-Transition Based Skill Clustering and Dynamic Length Adjustment ICLR 2025
Reinforcement learning (RL) has made significant progress in various domains, but scaling it to long-horizon tasks with complex decision-making remains challenging. Skill learning attempts to address this by abstracting actions into higher-level behaviors. However, current approaches often fail to recognize semantically similar behaviors as the same skill and use fixed skill lengths, limiting flexibility and generalization. To address this, we propose Dynamic Contrastive Skill Learning (DCSL), a novel framework that redefines skill representation and learning. DCSL introduces three key ideas: state-transition based skill representation, skill similarity function learning, and dynamic skill length adjustment. By focusing on state transitions and leveraging contrastive learning, DCSL effectively captures the semantic context of behaviors and adapts skill lengths to match the appropriate temporal extent of behaviors. Our approach enables more flexible and adaptive skill extraction, particularly in complex or noisy datasets, and demonstrates competitive performance compared to existing methods in task completion and efficiency.
comment: ICLR 2025; 23 pages, 12 figures
☆ A Survey on Small Sample Imbalance Problem: Metrics, Feature Analysis, and Solutions
The small sample imbalance (S&I) problem is a major challenge in machine learning and data analysis. It is characterized by a small number of samples and an imbalanced class distribution, which leads to poor model performance. In addition, indistinct inter-class feature distributions further complicate classification tasks. Existing methods often rely on algorithmic heuristics without sufficiently analyzing the underlying data characteristics. We argue that a detailed analysis from the data perspective is essential before developing an appropriate solution. Therefore, this paper proposes a systematic analytical framework for the S\&I problem. We first summarize imbalance metrics and complexity analysis methods, highlighting the need for interpretable benchmarks to characterize S&I problems. Second, we review recent solutions for conventional, complexity-based, and extreme S&I problems, revealing methodological differences in handling various data distributions. Our summary finds that resampling remains a widely adopted solution. However, we conduct experiments on binary and multiclass datasets, revealing that classifier performance differences significantly exceed the improvements achieved through resampling. Finally, this paper highlights open questions and discusses future trends.
☆ Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
☆ Edge-boosted graph learning for functional brain connectivity analysis IEEE
Predicting disease states from functional brain connectivity is critical for the early diagnosis of severe neurodegenerative diseases such as Alzheimer's Disease and Parkinson's Disease. Existing studies commonly employ Graph Neural Networks (GNNs) to infer clinical diagnoses from node-based brain connectivity matrices generated through node-to-node similarities of regionally averaged fMRI signals. However, recent neuroscience studies found that such node-based connectivity does not accurately capture ``functional connections" within the brain. This paper proposes a novel approach to brain network analysis that emphasizes edge functional connectivity (eFC), shifting the focus to inter-edge relationships. Additionally, we introduce a co-embedding technique to integrate edge functional connections effectively. Experimental results on the ADNI and PPMI datasets demonstrate that our method significantly outperforms state-of-the-art GNN methods in classifying functional brain networks.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025, 4 pages
Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
☆ Enhanced Data-driven Topology Design Methodology with Multi-level Mesh and Correlation-based Mutation for Stress-related Multi-objective Optimization
Topology optimization (TO) serves as a widely applied structural design approach to tackle various engineering problems. Nevertheless, sensitivity-based TO methods usually struggle with solving strongly nonlinear optimization problems. By leveraging high capacity of deep generative model, which is an influential machine learning technique, the sensitivity-free data-driven topology design (DDTD) methodology is regarded as an effective means of overcoming these issues. The DDTD methodology depends on initial dataset with a certain regularity, making its results highly sensitive to initial dataset quality. This limits its effectiveness and generalizability, especially for optimization problems without priori information. In this research, we proposed a multi-level mesh DDTD-based method with correlation-based mutation module to escape from the limitation of the quality of the initial dataset on the results and enhance computational efficiency. The core is to employ a correlation-based mutation module to assign new geometric features with physical meaning to the generated data, while utilizing a multi-level mesh strategy to progressively enhance the refinement of the structural representation, thus avoiding the maintenance of a high degree-of-freedom (DOF) representation throughout the iterative process. The proposed multi-level mesh DDTD-based method can be driven by a low quality initial dataset without the need for time-consuming construction of a specific dataset, thus significantly increasing generality and reducing application difficulty, while further lowering computational cost of DDTD methodology. Various comparison experiments with the traditional sensitivity-based TO methods on stress-related strongly nonlinear problems demonstrate the generality and effectiveness of the proposed method.
comment: 23 pages, 22 figures
☆ Novel Concept-Oriented Synthetic Data approach for Training Generative AI-Driven Crystal Grain Analysis Using Diffusion Model
The traditional techniques for extracting polycrystalline grain structures from microscopy images, such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM), are labour-intensive, subjective, and time-consuming, limiting their scalability for high-throughput analysis. In this study, we present an automated methodology integrating edge detection with generative diffusion models to effectively identify grains, eliminate noise, and connect broken segments in alignment with predicted grain boundaries. Due to the limited availability of adequate images preventing the training of deep machine learning models, a new seven-stage methodology is employed to generate synthetic TEM images for training. This concept-oriented synthetic data approach can be extended to any field of interest where the scarcity of data is a challenge. The presented model was applied to various metals with average grain sizes down to the nanoscale, producing grain morphologies from low-resolution TEM images that are comparable to those obtained from advanced and demanding experimental techniques with an average accuracy of 97.23%.
comment: 19 Pages, 5 Figures
☆ PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
☆ Application of Deep Generative Models for Anomaly Detection in Complex Financial Transactions
This study proposes an algorithm for detecting suspicious behaviors in large payment flows based on deep generative models. By combining Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE), the algorithm is designed to detect abnormal behaviors in financial transactions. First, the GAN is used to generate simulated data that approximates normal payment flows. The discriminator identifies anomalous patterns in transactions, enabling the detection of potential fraud and money laundering behaviors. Second, a VAE is introduced to model the latent distribution of payment flows, ensuring that the generated data more closely resembles real transaction features, thus improving the model's detection accuracy. The method optimizes the generative capabilities of both GAN and VAE, ensuring that the model can effectively capture suspicious behaviors even in sparse data conditions. Experimental results show that the proposed method significantly outperforms traditional machine learning algorithms and other deep learning models across various evaluation metrics, especially in detecting rare fraudulent behaviors. Furthermore, this study provides a detailed comparison of performance in recognizing different transaction patterns (such as normal, money laundering, and fraud) in large payment flows, validating the advantages of generative models in handling complex financial data.
☆ Fourier analysis of the physics of transfer learning for data-driven subgrid-scale models of ocean turbulence
Transfer learning (TL) is a powerful tool for enhancing the performance of neural networks (NNs) in applications such as weather and climate prediction and turbulence modeling. TL enables models to generalize to out-of-distribution data with minimal training data from the new system. In this study, we employ a 9-layer convolutional NN to predict the subgrid forcing in a two-layer ocean quasi-geostrophic system and examine which metrics best describe its performance and generalizability to unseen dynamical regimes. Fourier analysis of the NN kernels reveals that they learn low-pass, Gabor, and high-pass filters, regardless of whether the training data are isotropic or anisotropic. By analyzing the activation spectra, we identify why NNs fail to generalize without TL and how TL can overcome these limitations: the learned weights and biases from one dataset underestimate the out-of-distribution sample spectra as they pass through the network, leading to an underestimation of output spectra. By re-training only one layer with data from the target system, this underestimation is corrected, enabling the NN to produce predictions that match the target spectra. These findings are broadly applicable to data-driven parameterization of dynamical systems.
☆ Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Counterfactuals are a popular framework for interpreting machine learning predictions. These what if explanations are notoriously challenging to create for computer vision models: standard gradient-based methods are prone to produce adversarial examples, in which imperceptible modifications to image pixels provoke large changes in predictions. We introduce a new, easy-to-implement framework for counterfactual images that can flexibly adapt to contemporary advances in generative modeling. Our method, Counterfactual Attacks, resembles an adversarial attack on the representation of the image along a low-dimensional manifold. In addition, given an auxiliary dataset of image descriptors, we show how to accompany counterfactuals with feature attribution that quantify the changes between the original and counterfactual images. These importance scores can be aggregated into global counterfactual explanations that highlight the overall features driving model predictions. While this unification is possible for any counterfactual method, it has particular computational efficiency for ours. We demonstrate the efficacy of our approach with the MNIST and CelebA datasets.
☆ In-context Ranking Preference Optimization
Recent developments in Direct Preference Optimization (DPO) allow large language models (LLMs) to function as implicit ranking models by maximizing the margin between preferred and non-preferred responses. In practice, user feedback on such lists typically involves identifying a few relevant items in context rather than providing detailed pairwise comparisons for every possible item pair. Moreover, many complex information retrieval tasks, such as conversational agents and summarization systems, critically depend on ranking the highest-quality outputs at the top, emphasizing the need to support natural and flexible forms of user feedback. To address the challenge of limited and sparse pairwise feedback in the in-context setting, we propose an In-context Ranking Preference Optimization (IRPO) framework that directly optimizes LLMs based on ranking lists constructed during inference. To further capture flexible forms of feedback, IRPO extends the DPO objective by incorporating both the relevance of items and their positions in the list. Modeling these aspects jointly is non-trivial, as ranking metrics are inherently discrete and non-differentiable, making direct optimization difficult. To overcome this, IRPO introduces a differentiable objective based on positional aggregation of pairwise item preferences, enabling effective gradient-based optimization of discrete ranking metrics. We further provide theoretical insights showing that IRPO (i) automatically emphasizes items with greater disagreement between the model and the reference ranking, and (ii) links its gradient to an importance sampling estimator, yielding an unbiased estimator with reduced variance. Empirical results show IRPO outperforms standard DPO approaches in ranking performance, highlighting its effectiveness in aligning LLMs with direct in-context ranking preferences.
comment: 10 pages
☆ Emergence and Evolution of Interpretable Concepts in Diffusion Models
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from noise through a process called reverse diffusion. Understanding the dynamics of the reverse diffusion process is crucial in steering the generation and achieving high sample quality. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques, such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through granular analysis of their internal representations. These MI techniques have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered concepts have a causal effect on the model output and can be leveraged to steer the generative process. We design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages of diffusion image composition is finalized, however stylistic interventions are effective, and (3) in the final stages of diffusion only minor textural details are subject to change.
comment: 32 pages, 32 figures, preliminary version
☆ LAPP: Large Language Model Feedback for Preference-Driven Reinforcement Learning
We introduce Large Language Model-Assisted Preference Prediction (LAPP), a novel framework for robot learning that enables efficient, customizable, and expressive behavior acquisition with minimum human effort. Unlike prior approaches that rely heavily on reward engineering, human demonstrations, motion capture, or expensive pairwise preference labels, LAPP leverages large language models (LLMs) to automatically generate preference labels from raw state-action trajectories collected during reinforcement learning (RL). These labels are used to train an online preference predictor, which in turn guides the policy optimization process toward satisfying high-level behavioral specifications provided by humans. Our key technical contribution is the integration of LLMs into the RL feedback loop through trajectory-level preference prediction, enabling robots to acquire complex skills including subtle control over gait patterns and rhythmic timing. We evaluate LAPP on a diverse set of quadruped locomotion and dexterous manipulation tasks and show that it achieves efficient learning, higher final performance, faster adaptation, and precise control of high-level behaviors. Notably, LAPP enables robots to master highly dynamic and expressive tasks such as quadruped backflips, which remain out of reach for standard LLM-generated or handcrafted rewards. Our results highlight LAPP as a promising direction for scalable preference-driven robot learning.
☆ LithOS: An Operating System for Efficient Machine Learning on GPUs
The surging demand for GPUs in datacenters for machine learning (ML) has made efficient GPU utilization crucial. However, meeting the diverse needs of ML models while optimizing resource usage is challenging. To enable transparent, fine-grained GPU management that maximizes utilization and energy efficiency while maintaining strong isolation, an operating system (OS) approach is needed. This paper introduces LithOS, a first step toward a GPU OS. LithOS includes the following new abstractions and mechanisms for efficient GPU resource management: (i) a novel TPC Scheduler that supports spatial scheduling at the granularity of individual TPCs, unlocking efficient TPC stealing between workloads; (ii) transparent kernel atomization to reduce head-of-line blocking and enable dynamic resource reallocation mid-execution; (iii) a lightweight hardware right-sizing mechanism that determines the minimal TPC resources needed per atom; and (iv) a transparent power management mechanism that reduces power consumption based on in-flight work behavior. We implement LithOS in Rust and evaluate its performance across extensive ML environments, comparing it to state-of-the-art solutions from NVIDIA and prior research. For inference stacking, LithOS reduces tail latencies by 13x compared to MPS; compared to the best SotA, it reduces tail latencies by 3x while improving aggregate throughput by 1.6x. In hybrid inference-training stacking, LithOS reduces tail latencies by 4.7x compared to MPS; compared to the best SotA, it reduces tail latencies 1.18x while improving aggregate throughput by 1.35x. Finally, for a modest performance hit under 4%, LithOS's right-sizing provides a quarter of GPU capacity savings on average, while for a 7% hit, its power management yields a quarter of a GPU's energy savings. Overall, LithOS increases GPU efficiency, establishing a foundation for future OS research on GPUs.
☆ Compton Form Factor Extraction using Quantum Deep Neural Networks
Extraction tests of Compton Form Factors are performed using pseudodata based on experimental data from Deeply Virtual Compton Scattering experiments conducted at Jefferson Lab. The standard Belitsky, Kirchner, and Muller formalism at twist-two is employed, along with a fitting procedure designed to reduce model dependency similar to traditional local fits. The extraction of the Compton Form Factors is performed using both Classical Deep Neural Networks (CDNNs) and Quantum Deep Neural Networks (QDNNs). Comparative studies reveal that QDNNs outperform CDNNs for this application, demonstrating improved predictive accuracy and precision even for limited model complexity. The results demonstrate the potential of QDNNs for future studies in which quantum algorithms can be fully optimized.
☆ Combating Toxic Language: A Review of LLM-Based Strategies for Software Engineering
Large Language Models (LLMs) have become integral to software engineering (SE), where they are increasingly used in development workflows. However, their widespread use raises concerns about the presence and propagation of toxic language--harmful or offensive content that can foster exclusionary environments. This paper provides a comprehensive review of recent research on toxicity detection and mitigation, focusing on both SE-specific and general-purpose datasets. We examine annotation and preprocessing techniques, assess detection methodologies, and evaluate mitigation strategies, particularly those leveraging LLMs. Additionally, we conduct an ablation study demonstrating the effectiveness of LLM-based rewriting for reducing toxicity. By synthesizing existing work and identifying open challenges, this review highlights key areas for future research to ensure the responsible deployment of LLMs in SE and beyond.
☆ Trillion 7B Technical Report
We introduce Trillion-7B, the most token-efficient Korean-centric multilingual LLM available. Our novel Cross-lingual Document Attention (XLDA) mechanism enables highly efficient and effective knowledge transfer from English to target languages like Korean and Japanese. Combined with optimized data mixtures, language-specific filtering, and tailored tokenizer construction, Trillion-7B achieves competitive performance while dedicating only 10\% of its 2T training tokens to multilingual data and requiring just 59.4K H100 GPU hours (\$148K) for full training. Comprehensive evaluations across 27 benchmarks in four languages demonstrate Trillion-7B's robust multilingual performance and exceptional cross-lingual consistency.
comment: Preview version
☆ Solving Multi-Agent Safe Optimal Control with Distributed Epigraph Form MARL
Tasks for multi-robot systems often require the robots to collaborate and complete a team goal while maintaining safety. This problem is usually formalized as a constrained Markov decision process (CMDP), which targets minimizing a global cost and bringing the mean of constraint violation below a user-defined threshold. Inspired by real-world robotic applications, we define safety as zero constraint violation. While many safe multi-agent reinforcement learning (MARL) algorithms have been proposed to solve CMDPs, these algorithms suffer from unstable training in this setting. To tackle this, we use the epigraph form for constrained optimization to improve training stability and prove that the centralized epigraph form problem can be solved in a distributed fashion by each agent. This results in a novel centralized training distributed execution MARL algorithm named Def-MARL. Simulation experiments on 8 different tasks across 2 different simulators show that Def-MARL achieves the best overall performance, satisfies safety constraints, and maintains stable training. Real-world hardware experiments on Crazyflie quadcopters demonstrate the ability of Def-MARL to safely coordinate agents to complete complex collaborative tasks compared to other methods.
comment: 28 pages, 16 figures; Accepted by Robotics: Science and Systems 2025
☆ Post-Convergence Sim-to-Real Policy Transfer: A Principled Alternative to Cherry-Picking
Learning-based approaches, particularly reinforcement learning (RL), have become widely used for developing control policies for autonomous agents, such as locomotion policies for legged robots. RL training typically maximizes a predefined reward (or minimizes a corresponding cost/loss) by iteratively optimizing policies within a simulator. Starting from a randomly initialized policy, the empirical expected reward follows a trajectory with an overall increasing trend. While some policies become temporarily stuck in local optima, a well-defined training process generally converges to a reward level with noisy oscillations. However, selecting a policy for real-world deployment is rarely an analytical decision (i.e., simply choosing the one with the highest reward) and is instead often performed through trial and error. To improve sim-to-real transfer, most research focuses on the pre-convergence stage, employing techniques such as domain randomization, multi-fidelity training, adversarial training, and architectural innovations. However, these methods do not eliminate the inevitable convergence trajectory and noisy oscillations of rewards, leading to heuristic policy selection or cherry-picking. This paper addresses the post-convergence sim-to-real transfer problem by introducing a worst-case performance transference optimization approach, formulated as a convex quadratic-constrained linear programming problem. Extensive experiments demonstrate its effectiveness in transferring RL-based locomotion policies from simulation to real-world laboratory tests.
☆ Improving Learning to Optimize Using Parameter Symmetries ICLR
We analyze a learning-to-optimize (L2O) algorithm that exploits parameter space symmetry to enhance optimization efficiency. Prior work has shown that jointly learning symmetry transformations and local updates improves meta-optimizer performance. Supporting this, our theoretical analysis demonstrates that even without identifying the optimal group element, the method locally resembles Newton's method. We further provide an example where the algorithm provably learns the correct symmetry transformation during training. To empirically evaluate L2O with teleportation, we introduce a benchmark, analyze its success and failure cases, and show that enhancements like momentum further improve performance. Our results highlight the potential of leveraging neural network parameter space symmetry to advance meta-optimization.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
☆ Deep learning with missing data
In the context of multivariate nonparametric regression with missing covariates, we propose Pattern Embedded Neural Networks (PENNs), which can be applied in conjunction with any existing imputation technique. In addition to a neural network trained on the imputed data, PENNs pass the vectors of observation indicators through a second neural network to provide a compact representation. The outputs are then combined in a third neural network to produce final predictions. Our main theoretical result exploits an assumption that the observation patterns can be partitioned into cells on which the Bayes regression function behaves similarly, and belongs to a compositional H\"older class. It provides a finite-sample excess risk bound that holds for an arbitrary missingness mechanism, and in combination with a complementary minimax lower bound, demonstrates that our PENN estimator attains in typical cases the minimax rate of convergence as if the cells of the partition were known in advance, up to a poly-logarithmic factor in the sample size. Numerical experiments on simulated, semi-synthetic and real data confirm that the PENN estimator consistently improves, often dramatically, on standard neural networks without pattern embedding. Code to reproduce our experiments, as well as a tutorial on how to apply our method, is publicly available.
comment: 49 pages, 9 figures
☆ Assessing Surrogate Heterogeneity in Real World Data Using Meta-Learners
Surrogate markers are most commonly studied within the context of randomized clinical trials. However, the need for alternative outcomes extends beyond these settings and may be more pronounced in real-world public health and social science research, where randomized trials are often impractical. Research on identifying surrogates in real-world non-randomized data is scarce, as available statistical approaches for evaluating surrogate markers tend to rely on the assumption that treatment is randomized. While the few methods that allow for non-randomized treatment/exposure appropriately handle confounding individual characteristics, they do not offer a way to examine surrogate heterogeneity with respect to patient characteristics. In this paper, we propose a framework to assess surrogate heterogeneity in real-world, i.e., non-randomized, data and implement this framework using various meta-learners. Our approach allows us to quantify heterogeneity in surrogate strength with respect to patient characteristics while accommodating confounders through the use of flexible, off-the-shelf machine learning methods. In addition, we use our framework to identify individuals for whom the surrogate is a valid replacement of the primary outcome. We examine the performance of our methods via a simulation study and application to examine heterogeneity in the surrogacy of hemoglobin A1c as a surrogate for fasting plasma glucose.
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ FLARE: Feature-based Lightweight Aggregation for Robust Evaluation of IoT Intrusion Detection
The proliferation of Internet of Things (IoT) devices has expanded the attack surface, necessitating efficient intrusion detection systems (IDSs) for network protection. This paper presents FLARE, a feature-based lightweight aggregation for robust evaluation of IoT intrusion detection to address the challenges of securing IoT environments through feature aggregation techniques. FLARE utilizes a multilayered processing approach, incorporating session, flow, and time-based sliding-window data aggregation to analyze network behavior and capture vital features from IoT network traffic data. We perform extensive evaluations on IoT data generated from our laboratory experimental setup to assess the effectiveness of the proposed aggregation technique. To classify attacks in IoT IDS, we employ four supervised learning models and two deep learning models. We validate the performance of these models in terms of accuracy, precision, recall, and F1-score. Our results reveal that incorporating the FLARE aggregation technique as a foundational step in feature engineering, helps lay a structured representation, and enhances the performance of complex end-to-end models, making it a crucial step in IoT IDS pipeline. Our findings highlight the potential of FLARE as a valuable technique to improve performance and reduce computational costs of end-to-end IDS implementations, thereby fostering more robust IoT intrusion detection systems.
comment: 23 pages, 19 tables, 2 algorithms, 2 figures, submitted to SecureComm25
☆ Transferable Learning of Reaction Pathways from Geometric Priors
Identifying minimum-energy paths (MEPs) is crucial for understanding chemical reaction mechanisms but remains computationally demanding. We introduce MEPIN, a scalable machine-learning method for efficiently predicting MEPs from reactant and product configurations, without relying on transition-state geometries or pre-optimized reaction paths during training. The task is defined as predicting deviations from geometric interpolations along reaction coordinates. We address this task with a continuous reaction path model based on a symmetry-broken equivariant neural network that generates a flexible number of intermediate structures. The model is trained using an energy-based objective, with efficiency enhanced by incorporating geometric priors from geodesic interpolation as initial interpolations or pre-training objectives. Our approach generalizes across diverse chemical reactions and achieves accurate alignment with reference intrinsic reaction coordinates, as demonstrated on various small molecule reactions and [3+2] cycloadditions. Our method enables the exploration of large chemical reaction spaces with efficient, data-driven predictions of reaction pathways.
comment: 14 pages, 6 figures; Supporting Information in ancillary files
☆ Solving New Tasks by Adapting Internet Video Knowledge ICLR 2025
Video generative models demonstrate great promise in robotics by serving as visual planners or as policy supervisors. When pretrained on internet-scale data, such video models intimately understand alignment with natural language, and can thus facilitate generalization to novel downstream behavior through text-conditioning. However, they may not be sensitive to the specificities of the particular environment the agent inhabits. On the other hand, training video models on in-domain examples of robotic behavior naturally encodes environment-specific intricacies, but the scale of available demonstrations may not be sufficient to support generalization to unseen tasks via natural language specification. In this work, we investigate different adaptation techniques that integrate in-domain information with large-scale pretrained video models, and explore the extent to which they enable novel text-conditioned generalization for robotic tasks, while also considering their independent data and resource considerations. We successfully demonstrate across robotic environments that adapting powerful video models with small scales of example data can successfully facilitate generalization to novel behaviors. In particular, we present a novel adaptation strategy, termed Inverse Probabilistic Adaptation, that not only consistently achieves strong generalization performance across robotic tasks and settings, but also exhibits robustness to the quality of adaptation data, successfully solving novel tasks even when only suboptimal in-domain demonstrations are available.
comment: ICLR 2025. Project Webpage: https://diffusion-supervision.github.io/adapt2act/
☆ FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching
Federated learning (FL) is a machine learning paradigm that facilitates massively distributed model training with end-user data on edge devices directed by a central server. However, the large number of heterogeneous clients in FL deployments leads to a communication bottleneck between the server and the clients. This bottleneck is made worse by straggling clients, any one of which will further slow down training. To tackle these challenges, researchers have proposed techniques like client sampling and update compression. These techniques work well in isolation but combine poorly in the downstream, server-to-client direction. This is because unselected clients have outdated local model states and need to synchronize these states with the server first. We introduce FedFetch, a strategy to mitigate the download time overhead caused by combining client sampling and compression techniques. FedFetch achieves this with an efficient prefetch schedule for clients to prefetch model states multiple rounds before a stated training round. We empirically show that adding FedFetch to communication efficient FL techniques reduces end-to-end training time by 1.26$\times$ and download time by 4.49$\times$ across compression techniques with heterogeneous client settings. Our implementation is available at https://github.com/DistributedML/FedFetch
comment: Accepted at INFOCOM 2025
☆ LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
☆ Bayesian Federated Learning for Continual Training
Bayesian Federated Learning (BFL) enables uncertainty quantification and robust adaptation in distributed learning. In contrast to the frequentist approach, it estimates the posterior distribution of a global model, offering insights into model reliability. However, current BFL methods neglect continual learning challenges in dynamic environments where data distributions shift over time. We propose a continual BFL framework applied to human sensing with radar data collected over several days. Using Stochastic Gradient Langevin Dynamics (SGLD), our approach sequentially updates the model, leveraging past posteriors to construct the prior for the new tasks. We assess the accuracy, the expected calibration error (ECE) and the convergence speed of our approach against several baselines. Results highlight the effectiveness of continual Bayesian updates in preserving knowledge and adapting to evolving data.
☆ Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
Endovascular procedures have revolutionized the treatment of vascular diseases thanks to minimally invasive solutions that significantly reduce patient recovery time and enhance clinical outcomes. However, the precision and dexterity required during these procedures poses considerable challenges for interventionists. Robotic systems have emerged offering transformative solutions, addressing issues such as operator fatigue, radiation exposure, and the inherent limitations of human precision. The integration of Embodied Intelligence (EI) into these systems signifies a paradigm shift, enabling robots to navigate complex vascular networks and adapt to dynamic physiological conditions. Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution. These methods augment procedural intelligence by facilitating real-time vessel segmentation, device tracking, and anatomical landmark detection. Reinforcement learning and imitation learning further refine navigation strategies and replicate experts' techniques. This review systematically examines the integration of EI principles into robotic technologies, in relation to endovascular procedures. We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted endovascular procedures. By critically evaluating current limitations and emerging opportunities, this review establishes a framework for future developments, emphasizing the potential for greater autonomy and improved clinical outcomes. Emerging trends and specific areas of research, such as federated learning for medical data sharing, explainable AI for clinical decision support, and advanced human-robot collaboration paradigms, are also explored, offering insights into the future direction of this rapidly evolving field.
comment: 24 pages, 7 figures, submitted to IEEE
☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly naive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript considers the computational issues of evaluating such indices and identifies some efficient algorithms to evaluate them.
comment: 27 pages, 6 figures
☆ A Graph Based Raman Spectral Processing Technique for Exosome Classification
Exosomes are small vesicles crucial for cell signaling and disease biomarkers. Due to their complexity, an "omics" approach is preferable to individual biomarkers. While Raman spectroscopy is effective for exosome analysis, it requires high sample concentrations and has limited sensitivity to lipids and proteins. Surface-enhanced Raman spectroscopy helps overcome these challenges. In this study, we leverage Neo4j graph databases to organize 3,045 Raman spectra of exosomes, enhancing data generalization. To further refine spectral analysis, we introduce a novel spectral filtering process that integrates the PageRank Filter with optimal Dimensionality Reduction. This method improves feature selection, resulting in superior classification performance. Specifically, the Extra Trees model, using our spectral processing approach, achieves 0.76 and 0.857 accuracy in classifying hyperglycemic, hypoglycemic, and normal exosome samples based on Raman spectra and surface, respectively, with group 10-fold cross-validation. Our results show that graph-based spectral filtering combined with optimal dimensionality reduction significantly improves classification accuracy by reducing noise while preserving key biomarker signals. This novel framework enhances Raman-based exosome analysis, expanding its potential for biomedical applications, disease diagnostics, and biomarker discovery.
comment: The 23rd International Conference on Artificial Intelligence in Medicine (AIME 2025), LNAI, Springer, 11 pages
☆ HyperFlow: Gradient-Free Emulation of Few-Shot Fine-Tuning
While test-time fine-tuning is beneficial in few-shot learning, the need for multiple backpropagation steps can be prohibitively expensive in real-time or low-resource scenarios. To address this limitation, we propose an approach that emulates gradient descent without computing gradients, enabling efficient test-time adaptation. Specifically, we formulate gradient descent as an Euler discretization of an ordinary differential equation (ODE) and train an auxiliary network to predict the task-conditional drift using only the few-shot support set. The adaptation then reduces to a simple numerical integration (e.g., via the Euler method), which requires only a few forward passes of the auxiliary network -- no gradients or forward passes of the target model are needed. In experiments on cross-domain few-shot classification using the Meta-Dataset and CDFSL benchmarks, our method significantly improves out-of-domain performance over the non-fine-tuned baseline while incurring only 6\% of the memory cost and 0.02\% of the computation time of standard fine-tuning, thus establishing a practical middle ground between direct transfer and fully fine-tuned approaches.
☆ How to systematically develop an effective AI-based bias correction model?
This study introduces ReSA-ConvLSTM, an artificial intelligence (AI) framework for systematic bias correction in numerical weather prediction (NWP). We propose three innovations by integrating dynamic climatological normalization, ConvLSTM with temporal causality constraints, and residual self-attention mechanisms. The model establishes a physics-aware nonlinear mapping between ECMWF forecasts and ERA5 reanalysis data. Using 41 years (1981-2021) of global atmospheric data, the framework reduces systematic biases in 2-m air temperature (T2m), 10-m winds (U10/V10), and sea-level pressure (SLP), achieving up to 20% RMSE reduction over 1-7 day forecasts compared to operational ECMWF outputs. The lightweight architecture (10.6M parameters) enables efficient generalization to multiple variables and downstream applications, reducing retraining time by 85% for cross-variable correction while improving ocean model skill through bias-corrected boundary conditions. The ablation experiments demonstrate that our innovations significantly improve the model's correction performance, suggesting that incorporating variable characteristics into the model helps enhance forecasting skills.
♻ ☆ RILe: Reinforced Imitation Learning
Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent's actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons often offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer-student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
♻ ☆ DataComp-LM: In search of the next generation of training sets for language models
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations. Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters. As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set. The resulting dataset, DCLM-Baseline enables training a 7B parameter language model from scratch to 64% 5-shot accuracy on MMLU with 2.6T training tokens. Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6.6 percentage point improvement on MMLU while being trained with 40% less compute. Our baseline model is also comparable to Mistral-7B-v0.3 and Llama 3 8B on MMLU (63% & 66%), and performs similarly on an average of 53 natural language understanding tasks while being trained with 6.6x less compute than Llama 3 8B. Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation.
comment: Project page: https://www.datacomp.ai/dclm/
♻ ☆ ASIDE: Architectural Separation of Instructions and Data in Language Models ICLR 2025
Despite their remarkable performance, large language models lack elementary safety features, and this makes them susceptible to numerous malicious attacks. In particular, previous work has identified the absence of an intrinsic separation between instructions and data as a root cause for the success of prompt injection attacks. In this work, we propose a method, ASIDE, that allows the model to clearly separate between instructions and data on the level of embeddings. ASIDE applies a fixed orthogonal rotation to the embeddings of data tokens, thus creating distinct representations of instructions and data tokens without introducing any additional parameters. We demonstrate the effectiveness of our method by instruct-tuning LLMs with ASIDE and showing (1) highly increased instruction-data separation scores without a loss in model capabilities and (2) competitive results on prompt injection benchmarks, even without dedicated safety training. Additionally, we study the working mechanism behind our method through an analysis of model representations.
comment: ICLR 2025 Workshop on Building Trust in Language Models and Applications
♻ ☆ Explorable INR: An Implicit Neural Representation for Ensemble Simulation Enabling Efficient Spatial and Parameter Exploration IEEE
With the growing computational power available for high-resolution ensemble simulations in scientific fields such as cosmology and oceanology, storage and computational demands present significant challenges. Current surrogate models fall short in the flexibility of point- or region-based predictions as the entire field reconstruction is required for each parameter setting, hence hindering the efficiency of parameter space exploration. Limitations exist in capturing physical attribute distributions and pinpointing optimal parameter configurations. In this work, we propose Explorable INR, a novel implicit neural representation-based surrogate model, designed to facilitate exploration and allow point-based spatial queries without computing full-scale field data. In addition, to further address computational bottlenecks of spatial exploration, we utilize probabilistic affine forms (PAFs) for uncertainty propagation through Explorable INR to obtain statistical summaries, facilitating various ensemble analysis and visualization tasks that are expensive with existing models. Furthermore, we reformulate the parameter exploration problem as optimization tasks using gradient descent and KL divergence minimization that ensures scalability. We demonstrate that the Explorable INR with the proposed approach for spatial and parameter exploration can significantly reduce computation and memory costs while providing effective ensemble analysis.
comment: Accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
♻ ☆ BlendRL: A Framework for Merging Symbolic and Neural Policy Learning ICLR 2025
Humans can leverage both symbolic reasoning and intuitive reactions. In contrast, reinforcement learning policies are typically encoded in either opaque systems like neural networks or symbolic systems that rely on predefined symbols and rules. This disjointed approach severely limits the agents' capabilities, as they often lack either the flexible low-level reaction characteristic of neural agents or the interpretable reasoning of symbolic agents. To overcome this challenge, we introduce BlendRL, a neuro-symbolic RL framework that harmoniously integrates both paradigms within RL agents that use mixtures of both logic and neural policies. We empirically demonstrate that BlendRL agents outperform both neural and symbolic baselines in standard Atari environments, and showcase their robustness to environmental changes. Additionally, we analyze the interaction between neural and symbolic policies, illustrating how their hybrid use helps agents overcome each other's limitations.
comment: ICLR 2025 (Spotlight)
♻ ☆ Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
♻ ☆ Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
\textbf{Motivation:} Predicting single-cell perturbation responses requires mapping between two unpaired single-cell data distributions. Optimal transport (OT) theory provides a principled framework for constructing such mappings by minimizing transport cost. Recently, Wasserstein-2 ($W_2$) neural optimal transport solvers (\textit{e.g.}, CellOT) have been employed for this prediction task. However, $W_2$ OT relies on the general Kantorovich dual formulation, which involves optimizing over two conjugate functions, leading to a complex min-max optimization problem that converges slowly. \\ \textbf{Results:} To address these challenges, we propose a novel solver based on the Wasserstein-1 ($W_1$) dual formulation. Unlike $W_2$, the $W_1$ dual simplifies the optimization to a maximization problem over a single 1-Lipschitz function, thus eliminating the need for time-consuming min-max optimization. While solving the $W_1$ dual only reveals the transport direction and does not directly provide a unique optimal transport map, we incorporate an additional step using adversarial training to determine an appropriate transport step size, effectively recovering the transport map. Our experiments demonstrate that the proposed $W_1$ neural optimal transport solver can mimic the $W_2$ OT solvers in finding a unique and ``monotonic" map on 2D datasets. Moreover, the $W_1$ OT solver achieves performance on par with or surpasses $W_2$ OT solvers on real single-cell perturbation datasets. Furthermore, we show that $W_1$ OT solver achieves $25 \sim 45\times$ speedup, scales better on high dimensional transportation task, and can be directly applied on single-cell RNA-seq dataset with highly variable genes. \\ \textbf{Availability and Implementation:} Our implementation and experiments are open-sourced at https://github.com/poseidonchan/w1ot.
comment: ISMB/ECCB 2025
♻ ☆ CAP: A General Algorithm for Online Selective Conformal Prediction with FCR Control
We study the problem of post-selection predictive inference in an online fashion. To avoid devoting resources to unimportant units, a preliminary selection of the current individual before reporting its prediction interval is common and meaningful in online predictive tasks. Since the online selection causes a temporal multiplicity in the selected prediction intervals, it is important to control the real-time false coverage-statement rate (FCR) which measures the overall miscoverage level. We develop a general framework named CAP (Calibration after Adaptive Pick) that performs an adaptive pick rule on historical data to construct a calibration set if the current individual is selected and then outputs a conformal prediction interval for the unobserved label. We provide tractable procedures for constructing the calibration set for popular online selection rules. We proved that CAP can achieve an exact selection-conditional coverage guarantee in the finite-sample and distribution-free regimes. To account for the distribution shift in online data, we also embed CAP into some recent dynamic conformal prediction algorithms and show that the proposed method can deliver long-run FCR control. Numerical results on both synthetic and real data corroborate that CAP can effectively control FCR around the target level and yield more narrowed prediction intervals over existing baselines across various settings.
♻ ☆ Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
♻ ☆ CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models IEEE
Textual descriptions in cyber threat intelligence (CTI) reports, such as security articles and news, are rich sources of knowledge about cyber threats, crucial for organizations to stay informed about the rapidly evolving threat landscape. However, current CTI knowledge extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction. Syntax parsing relies on fixed rules and dictionaries, while model fine-tuning requires large annotated datasets, making both paradigms challenging to adapt to new threats and ontologies. To bridge the gap, we propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models (LLMs) for data-efficient CTI knowledge extraction and high-quality cybersecurity knowledge graph (CSKG) construction. Unlike existing methods, CTINexus requires neither extensive data nor parameter tuning and can adapt to various ontologies with minimal annotated examples. This is achieved through: (1) a carefully designed automatic prompt construction strategy with optimal demonstration retrieval for extracting a wide range of cybersecurity entities and relations; (2) a hierarchical entity alignment technique that canonicalizes the extracted knowledge and removes redundancy; (3) an long-distance relation prediction technique to further complete the CSKG with missing links. Our extensive evaluations using 150 real-world CTI reports collected from 10 platforms demonstrate that CTINexus significantly outperforms existing methods in constructing accurate and complete CSKG, highlighting its potential to transform CTI analysis with an efficient and adaptable solution for the dynamic threat landscape.
comment: Accepted at 2025 IEEE European Symposium on Security and Privacy (Euro S&P)
♻ ☆ Semantic Wave Functions: Exploring Meaning in Large Language Models Through Quantum Formalism
Large Language Models (LLMs) encode semantic relationships in high-dimensional vector embeddings. This paper explores the analogy between LLM embedding spaces and quantum mechanics, positing that LLMs operate within a quantized semantic space where words and phrases behave as quantum states. To capture nuanced semantic interference effects, we extend the standard real-valued embedding space to the complex domain, drawing parallels to the double-slit experiment. We introduce a "semantic wave function" to formalize this quantum-derived representation and utilize potential landscapes, such as the double-well potential, to model semantic ambiguity. Furthermore, we propose a complex-valued similarity measure that incorporates both magnitude and phase information, enabling a more sensitive comparison of semantic representations. We develop a path integral formalism, based on a nonlinear Schr\"odinger equation with a gauge field and Mexican hat potential, to model the dynamic evolution of LLM behavior. This interdisciplinary approach offers a new theoretical framework for understanding and potentially manipulating LLMs, with the goal of advancing both artificial and natural language understanding.
comment: 29 pages, 4 figures. Some corrections added
♻ ☆ A direct proof of a unified law of robustness for Bregman divergence losses
In contemporary deep learning practice, models are often trained to near zero loss i.e. to nearly interpolate the training data. However, the number of parameters in the model is usually far more than the number of data points n, the theoretical minimum needed for interpolation: a phenomenon referred to as overparameterization. In an interesting piece of work, Bubeck and Sellke considered a natural notion of interpolation: the model is said to interpolate when the model's training loss goes below the loss of the conditional expectation of the response given the covariate. For this notion of interpolation and for a broad class of covariate distributions (specifically those satisfying a natural notion of concentration of measure), they showed that overparameterization is necessary for robust interpolation i.e. if the interpolating function is required to be Lipschitz. Their main proof technique applies to regression with square loss against a scalar response, but they remark that via a connection to Rademacher complexity and using tools such as the Ledoux-Talagrand contraction inequality, their result can be extended to more general losses, at least in the case of scalar response variables. In this work, we recast the original proof technique of Bubeck and Sellke in terms of a bias-variance type decomposition, and show that this view directly unlocks a generalization to Bregman divergence losses (even for vector-valued responses), without the use of tools such as Rademacher complexity or the Ledoux-Talagrand contraction principle. Bregman divergences are a natural class of losses since for these, the best estimator is the conditional expectation of the response given the covariate, and include other practical losses such as the cross entropy loss. Our work thus gives a more general understanding of the main proof technique of Bubeck and Sellke and demonstrates its broad utility.
comment: 18 pages; fixed a typo in a citation
♻ ☆ Exploring Commonalities in Explanation Frameworks: A Multi-Domain Survey Analysis
This study presents insights gathered from surveys and discussions with specialists in three domains, aiming to find essential elements for a universal explanation framework that could be applied to these and other similar use cases. The insights are incorporated into a software tool that utilizes GP algorithms, known for their interpretability. The applications analyzed include a medical scenario (involving predictive ML), a retail use case (involving prescriptive ML), and an energy use case (also involving predictive ML). We interviewed professionals from each sector, transcribing their conversations for further analysis. Additionally, experts and non-experts in these fields filled out questionnaires designed to probe various dimensions of explanatory methods. The findings indicate a universal preference for sacrificing a degree of accuracy in favor of greater explainability. Additionally, we highlight the significance of feature importance and counterfactual explanations as critical components of such a framework. Our questionnaires are publicly available to facilitate the dissemination of knowledge in the field of XAI.
♻ ☆ Depth Pro: Sharp Monocular Metric Depth in Less Than a Second ICLR 2025
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions. We release code and weights at https://github.com/apple/ml-depth-pro
comment: Published at ICLR 2025. Code and weights available at https://github.com/apple/ml-depth-pro
♻ ☆ Barren plateaus are amplified by the dimension of qudits
Variational Quantum Algorithms (VQAs) have emerged as pivotal strategies for attaining quantum advantage in diverse scientific and technological domains, notably within Quantum Neural Networks. However, despite their potential, VQAs encounter significant obstacles, chief among them being the vanishing gradient problem, commonly referred to as barren plateaus. In this article, through meticulous analysis, we demonstrate that existing literature implicitly suggests the intrinsic influence of qudit dimensionality on barren plateaus. To instantiate these findings, we present numerical results that exemplify the impact of qudit dimensionality on barren plateaus. Therefore, despite the proposition of various error mitigation techniques, our results call for further scrutiny about their efficacy in the context of VQAs with qudits.
♻ ☆ MRAMG-Bench: A Comprehensive Benchmark for Advancing Multimodal Retrieval-Augmented Multimodal Generation SIGIR 2025
Recent advances in Retrieval-Augmented Generation (RAG) have significantly improved response accuracy and relevance by incorporating external knowledge into Large Language Models (LLMs). However, existing RAG methods primarily focus on generating text-only answers, even in Multimodal Retrieval-Augmented Generation (MRAG) scenarios, where multimodal elements are retrieved to assist in generating text answers. To address this, we introduce the Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) task, in which we aim to generate multimodal answers that combine both text and images, fully leveraging the multimodal data within a corpus. Despite growing attention to this challenging task, a notable lack of a comprehensive benchmark persists for effectively evaluating its performance. To bridge this gap, we provide MRAMG-Bench, a meticulously curated, human-annotated benchmark comprising 4,346 documents, 14,190 images, and 4,800 QA pairs, distributed across six distinct datasets and spanning three domains: Web, Academia, and Lifestyle. The datasets incorporate diverse difficulty levels and complex multi-image scenarios, providing a robust foundation for evaluating the MRAMG task. To facilitate rigorous evaluation, MRAMG-Bench incorporates a comprehensive suite of both statistical and LLM-based metrics, enabling a thorough analysis of the performance of generative models in the MRAMG task. Additionally, we propose an efficient and flexible multimodal answer generation framework that can leverage LLMs/MLLMs to generate multimodal responses. Our datasets and complete evaluation results for 11 popular generative models are available at https://github.com/MRAMG-Bench/MRAMG.
comment: Published as a conference paper at SIGIR 2025; 11 pages
♻ ☆ Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
♻ ☆ Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach AISTATS 2025
We study the convex-concave bilinear saddle-point problem $\min_x \max_y f(x) + y^\top Ax - g(y)$, where both, only one, or none of the functions $f$ and $g$ are strongly convex, and suitable rank conditions on the matrix $A$ hold. The solution of this problem is at the core of many machine learning tasks. By employing tools from monotone operator theory, we systematically prove the contractivity (in turn, the linear convergence) of several first-order primal-dual algorithms, including the Chambolle-Pock method. Our approach results in concise proofs, and it yields new convergence guarantees and tighter bounds compared to known results.
comment: AISTATS 2025
♻ ☆ Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to $22\times$. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
comment: Website: https://michalbortkiewicz.github.io/JaxGCRL/ Code: https://github.com/MichalBortkiewicz/JaxGCRL
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 9 Pages
♻ ☆ Transferable Adversarial Attacks on SAM and Its Downstream Models
The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models. Code is available at https://github.com/xiasong0501/GRAT.
comment: update fig 1
♻ ☆ TinyML NLP Scheme for Semantic Wireless Sentiment Classification with Privacy Preservation
Natural Language Processing (NLP) operations, such as semantic sentiment analysis and text synthesis, often raise privacy concerns and demand significant on-device computational resources. Centralized learning (CL) on the edge provides an energy-efficient alternative but requires collecting raw data, compromising user privacy. While federated learning (FL) enhances privacy, it imposes high computational energy demands on resource-constrained devices. This study provides insights into deploying privacy-preserving, energy-efficient NLP models on edge devices. We introduce semantic split learning (SL) as an energy-efficient, privacy-preserving tiny machine learning (TinyML) framework and compare it to FL and CL in the presence of Rayleigh fading and additive noise. Our results show that SL significantly reduces computational power and CO2 emissions while enhancing privacy, as evidenced by a fourfold increase in reconstruction error compared to FL and nearly eighteen times that of CL. In contrast, FL offers a balanced trade-off between privacy and efficiency. Our code is available for replication at our GitHub repository: https://github.com/AhmedRadwan02/TinyEco2AI-NLP.
comment: Accepted at EuCNC & 6G Summit 2025
♻ ☆ Context-Parametric Inversion: Why Instruction Finetuning Can Worsen Context Reliance ICLR 2025
A standard practice when using large language models is for users to supplement their instruction with an input context containing new information for the model to process. However, models struggle to reliably follow the input context, especially when it conflicts with their parametric knowledge from pretraining. In-principle, one would expect models to adapt to the user context better after instruction finetuning, particularly when handling knowledge conflicts. However, we observe a surprising failure mode: during instruction tuning, the context reliance under knowledge conflicts initially increases as expected, but then gradually decreases as instruction finetuning progresses. This happens while the performance on standard benchmarks keeps on increasing far after this drop. We call this phenomenon context-parametric inversion and observe it across multiple general purpose instruction tuning datasets such as TULU, Alpaca and Ultrachat, across different model families like Llama, Mistral, and Pythia. We perform various controlled studies and theoretical analysis to show that context-parametric inversion occurs due to examples in the instruction finetuning data where the input context provides information that aligns with model's parametric knowledge. Our analysis suggests some natural mitigation strategies with limited but insightful gains, and serves as a useful starting point in addressing this deficiency in instruction finetuning.
comment: Published at ICLR 2025 (Oral)
♻ ☆ Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
♻ ☆ Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
We propose a transformer architecture for time series forecasting with a focus on time series tokenisation and apply it to a real-world prediction problem from the pricing domain. Our architecture aims to learn effective representations at many scales across all available data simultaneously. The model contains a number of novel modules: a differentiated form of time series patching which employs multiple resolutions, a multiple-resolution module for time-varying known variables, a mixer-based module for capturing cross-series information, and a novel output head with favourable scaling to account for the increased number of tokens. We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer. On the experiments conducted our model outperforms in-house models and the selected existing deep learning architectures.
♻ ☆ Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs
Research on multi-modal contrastive learning strategies for audio and text has rapidly gained interest. Contrastively trained Audio-Language Models (ALMs), such as CLAP, which establish a unified representation across audio and language modalities, have enhanced the efficacy in various subsequent tasks by providing good text aligned audio encoders and vice versa. These improvements are evident in areas like zero-shot audio classification and audio retrieval, among others. However, the ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research. In this paper, we propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL. We implement a two-stage training scheme TeminAL A $\&$ B, where the model first learns to differentiate between multiple sounds in TeminAL A, followed by a phase that instills a sense of time, thereby enhancing its temporal understanding in TeminAL B. This approach results in an average performance gain of $5.28\%$ in temporal understanding on the ESC-50 dataset, while the model remains competitive in zero-shot retrieval and classification tasks on the AudioCap/Clotho datasets. We also note the lack of proper evaluation techniques for contrastive ALMs and propose a strategy for evaluating ALMs in zero-shot settings. The general-purpose zero-shot model evaluation strategy ZSTE, is used to evaluate various prior models. ZSTE demonstrates a general strategy to evaluate all ZS contrastive models. The model trained with TeminAL successfully outperforms current models on most downstream tasks.
comment: 29 pages, 15 figures
♻ ☆ Learning Self-Growth Maps for Fast and Accurate Imbalanced Streaming Data Clustering
Streaming data clustering is a popular research topic in data mining and machine learning. Since streaming data is usually analyzed in data chunks, it is more susceptible to encounter the dynamic cluster imbalance issue. That is, the imbalance ratio of clusters changes over time, which can easily lead to fluctuations in either the accuracy or the efficiency of streaming data clustering. Therefore, we propose an accurate and efficient streaming data clustering approach to adapt the drifting and imbalanced cluster distributions. We first design a Self-Growth Map (SGM) that can automatically arrange neurons on demand according to local distribution, and thus achieve fast and incremental adaptation to the streaming distributions. Since SGM allocates an excess number of density-sensitive neurons to describe the global distribution, it can avoid missing small clusters among imbalanced distributions. We also propose a fast hierarchical merging strategy to combine the neurons that break up the relatively large clusters. It exploits the maintained SGM to quickly retrieve the intra-cluster distribution pairs for merging, which circumvents the most laborious global searching. It turns out that the proposed SGM can incrementally adapt to the distributions of new chunks, and the Self-grOwth map-guided Hierarchical merging for Imbalanced data clustering (SOHI) approach can quickly explore a true number of imbalanced clusters. Extensive experiments demonstrate that SOHI can efficiently and accurately explore cluster distributions for streaming data.
♻ ☆ AlphaNet: Scaling Up Local-frame-based Atomistic Interatomic Potential
Molecular dynamics simulations demand an unprecedented combination of accuracy and scalability to tackle grand challenges in catalysis and materials design. To bridge this gap, we present AlphaNet, a local-frame-based equivariant model that simultaneously improves computational efficiency and predictive precision for interatomic interactions. By constructing equivariant local frames with learnable geometric transitions, AlphaNet encodes atomic environments with enhanced representational capacity, achieving state-of-the-art accuracy in energy and force predictions. Extensive benchmarks on large-scale datasets spanning molecular reactions, crystal stability, and surface catalysis (Matbench Discovery and OC2M) demonstrate its superior performance over existing neural network interatomic potentials while ensuring scalability across diverse system sizes with varying types of interatomic interactions. The synergy of accuracy, efficiency, and transferability positions AlphaNet as a transformative tool for modeling multiscale phenomena, decoding dynamics in catalysis and functional interfaces, with direct implications for accelerating the discovery of complex molecular systems and functional materials.
comment: 15 pages, 4 figures
♻ ☆ Active Learning for Continual Learning: Keeping the Past Alive in the Present
Continual learning (CL) enables deep neural networks to adapt to ever-changing data distributions. In practice, there may be scenarios where annotation is costly, leading to active continual learning (ACL), which performs active learning (AL) for the CL scenarios when reducing the labeling cost by selecting the most informative subset is preferable. However, conventional AL strategies are not suitable for ACL, as they focus solely on learning the new knowledge, leading to catastrophic forgetting of previously learned tasks. Therefore, ACL requires a new AL strategy that can balance the prevention of catastrophic forgetting and the ability to quickly learn new tasks. In this paper, we propose AccuACL, Accumulated informativeness-based Active Continual Learning, by the novel use of the Fisher information matrix as a criterion for sample selection, derived from a theoretical analysis of the Fisher-optimality preservation properties within the framework of ACL, while also addressing the scalability issue of Fisher information-based AL. Extensive experiments demonstrate that AccuACL significantly outperforms AL baselines across various CL algorithms, increasing the average accuracy and forgetting by 23.8% and 17.0%, respectively, on average.
♻ ☆ Lorentzian Graph Isomorphic Network
We introduce the Lorentzian Graph Isomorphic Network (LGIN), a novel graph neural network (GNN) designed to operate in hyperbolic spaces, leveraging the Lorentzian model to enhance graph representation learning. Existing GNNs primarily operate in Euclidean spaces, which can limit their ability to capture hierarchical and multi-relational structures inherent to complex graphs. LGIN addresses this by incorporating curvature-aware aggregation functions that preserve the Lorentzian metric tensor, ensuring embeddings remain constrained within the hyperbolic space by proposing a new update rule that effectively captures both local neighborhood interactions and global structural properties, enabling LGIN to distinguish non-isomorphic graphs with expressiveness at least as powerful as the Weisfeiler-Lehman test. Through extensive evaluation across nine benchmark datasets, including molecular and protein structures, LGIN consistently outperforms or matches state-of-the-art GNNs, demonstrating its robustness and efficacy in modeling complex graph structures. To the best of our knowledge, this is the first study to extend the concept of a powerful graph neural network to Riemannian manifolds, paving the way for future advancements in hyperbolic graph learning. The code for our paper can be found at https://github.com/Deceptrax123/LGIN.
comment: Preprint. Under Review
♻ ☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
♻ ☆ A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
♻ ☆ Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Decentralized federated learning (DFL) is a promising machine learning paradigm for bringing artificial intelligence (AI) capabilities to the network edge. Running DFL on top of edge networks, however, faces severe performance challenges due to the extensive parameter exchanges between agents. Most existing solutions for these challenges were based on simplistic communication models, which cannot capture the case of learning over a multi-hop bandwidth-limited network. In this work, we address this problem by jointly designing the communication scheme for the overlay network formed by the agents and the mixing matrix that controls the communication demands between the agents. By carefully analyzing the properties of our problem, we cast each design problem into a tractable optimization and develop an efficient algorithm with guaranteed performance. Our evaluations based on real topology and data show that the proposed algorithm can reduce the total training time by over $80\%$ compared to the baseline without sacrificing accuracy, while significantly improving the computational efficiency over the state of the art.
comment: arXiv admin note: text overlap with arXiv:2408.04705
♻ ☆ Structuring Multiple Simple Cycle Reservoirs with Particle Swarm Optimization
Reservoir Computing (RC) is a time-efficient computational paradigm derived from Recurrent Neural Networks (RNNs). The Simple Cycle Reservoir (SCR) is an RC model that stands out for its minimalistic design, offering extremely low construction complexity and proven capability of universally approximating time-invariant causal fading memory filters, even in the linear dynamics regime. This paper introduces Multiple Simple Cycle Reservoirs (MSCRs), a multi-reservoir framework that extends Echo State Networks (ESNs) by replacing a single large reservoir with multiple interconnected SCRs. We demonstrate that optimizing MSCR using Particle Swarm Optimization (PSO) outperforms existing multi-reservoir models, achieving competitive predictive performance with a lower-dimensional state space. By modeling interconnections as a weighted Directed Acyclic Graph (DAG), our approach enables flexible, task-specific network topology adaptation. Numerical simulations on three benchmark time-series prediction tasks confirm these advantages over rival algorithms. These findings highlight the potential of MSCR-PSO as a promising framework for optimizing multi-reservoir systems, providing a foundation for further advancements and applications of interconnected SCRs for developing efficient AI devices.
♻ ☆ Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation AISTATS 2025
Multi-objective Bayesian optimization has been widely adopted in scientific experiment design, including drug discovery and hyperparameter optimization. In practice, regulatory or safety concerns often impose additional thresholds on certain attributes of the experimental outcomes. Previous work has primarily focused on constrained single-objective optimization tasks or active search under constraints. The existing constrained multi-objective algorithms address the issue with heuristics and approximations, posing challenges to the analysis of the sample efficiency. We propose a novel constrained multi-objective Bayesian optimization algorithm COMBOO that balances active learning of the level-set defined on multiple unknowns with multi-objective optimization within the feasible region. We provide both theoretical analysis and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
comment: This paper is accepted to AISTATS 2025
♻ ☆ Hierarchical Split Federated Learning: Convergence Analysis and System Optimization
As AI models expand in size, it has become increasingly challenging to deploy federated learning (FL) on resource-constrained edge devices. To tackle this issue, split federated learning (SFL) has emerged as an FL framework with reduced workload on edge devices via model splitting; it has received extensive attention from the research community in recent years. Nevertheless, most prior works on SFL focus only on a two-tier architecture without harnessing multi-tier cloudedge computing resources. In this paper, we intend to analyze and optimize the learning performance of SFL under multi-tier systems. Specifically, we propose the hierarchical SFL (HSFL) framework and derive its convergence bound. Based on the theoretical results, we formulate a joint optimization problem for model splitting (MS) and model aggregation (MA). To solve this rather hard problem, we then decompose it into MS and MA subproblems that can be solved via an iterative descending algorithm. Simulation results demonstrate that the tailored algorithm can effectively optimize MS and MA for SFL within virtually any multi-tier system.
comment: 15 pages, 9 figures
♻ ☆ Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
Advancements in artificial intelligence (AI) and low-earth orbit (LEO) satellites have promoted the application of large remote sensing foundation models for various downstream tasks. However, direct downloading of these models for fine-tuning on the ground is impeded by privacy concerns and limited bandwidth. Satellite federated learning (FL) offers a solution by enabling model fine-tuning directly on-board satellites and aggregating model updates without data downloading. Nevertheless, for large foundation models, the computational capacity of satellites is insufficient to support effective on-board fine-tuning in traditional satellite FL frameworks. To address these challenges, we propose a satellite-ground collaborative federated fine-tuning framework. The key of the framework lies in how to reasonably decompose and allocate model components to alleviate insufficient on-board computation capabilities. During fine-tuning, satellites exchange intermediate results with ground stations or other satellites for forward propagation and back propagation, which brings communication challenges due to the special communication topology of space transmission networks, such as intermittent satellite-ground communication, short duration of satellite-ground communication windows, and unstable inter-orbit inter-satellite links (ISLs). To reduce transmission delays, we further introduce tailored communication strategies that integrate both communication and computing resources. Specifically, we propose a parallel intra-orbit communication strategy, a topology-aware satellite-ground communication strategy, and a latency-minimalization inter-orbit communication strategy to reduce space communication costs. Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
♻ ☆ Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus
Multilingual LLMs support a variety of languages; however, their performance is suboptimal for low-resource languages. In this work, we emphasize the importance of continued pre-training of multilingual LLMs and the use of translation-based synthetic pre-training corpora for improving LLMs in low-resource languages. We conduct our study in the context of the low-resource Indic language Hindi. We introduce Nemotron-Mini-Hindi 4B, a bilingual SLM supporting both Hindi and English, based on Nemotron-Mini 4B. The model is trained using a mix of real and synthetic Hindi + English tokens, with continuous pre-training performed on 400B tokens. We demonstrate that both the base and instruct models achieve state-of-the-art results on Hindi benchmarks while remaining competitive on English tasks. Additionally, we observe that the continued pre-training approach enhances the model's overall factual accuracy. We perform an ablation study to highlight the impact of Hindi pre-training, showing significant improvements in Hindi chat capabilities and factual accuracy, which cannot be achieved through Hindi alignment alone.
♻ ☆ Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
Due to their event-driven and parameter-efficient effect, spiking neural networks (SNNs) show potential in tasks requiring real-time multi-sensor perception, such as autonomous driving. The spiking mechanism facilitates sparse encoding, enabling spatial and temporal data to be represented in a discrete manner. However, SNNs still lag behind artificial neural networks (ANNs) in terms of performance and computational efficiency. One major challenge in SNNs is the timestep-wise iterative update of neuronal states, which makes it difficult to achieve an optimal trade-off among accuracy, latency, and training cost. Although some methods perform well with shorter timesteps, few propose strategies to overcome such constraint effectively. Moreover, many recent SNN advancements rely on either optimizations tailored to specific architectures or a collection of specialized neuron-level strategies. While these approaches can enhance performance, they often lead to increased computational expense and restrict their application to particular architectures or modalities. This leaves room for further exploration of simple, universal, and structure-agnostic strategies that could offer broader applicability and efficiency. In this paper, we introduce Activation-wise Membrane Potential Propagation (AMP2), a novel state update mechanism for spiking neurons. Inspired by skip connections in deep networks, AMP2 incorporates the membrane potential of neurons into network, eliminating the need for iterative updates. Our method achieves significant improvements across various 3D modalities, including 3D point clouds and event streams, boosting Spiking PointNet's accuracy on ModelNet40 from 87.36% to 89.74% and surpassing ANN PointNet in recognition accuracy on the DVS128 Gesture dataset.
♻ ☆ Large-Scale Contextual Market Equilibrium Computation through Deep Learning
Market equilibrium is one of the most fundamental solution concepts in economics and social optimization analysis. Existing works on market equilibrium computation primarily focus on settings with relatively few buyers. Motivated by this, our paper investigates the computation of market equilibrium in scenarios with a large-scale buyer population, where buyers and goods are represented by their contexts. Building on this realistic and generalized contextual market model, we introduce MarketFCNet, a deep learning-based method for approximating market equilibrium. We start by parameterizing the allocation of each good to each buyer using a neural network, which depends solely on the context of the buyer and the good. Next, we propose an efficient method to unbiasedly estimate the loss function of the training algorithm, enabling us to optimize the network parameters through gradient. To evaluate the approximated solution, we propose a metric called Nash Gap, which quantifies the deviation of the given allocation and price pair from the market equilibrium. Experimental results indicate that MarketFCNet delivers competitive performance and significantly lower running times compared to existing methods as the market scale expands, demonstrating the potential of deep learning-based methods to accelerate the approximation of large-scale contextual market equilibrium.
comment: 25 pages, 4 figures, recieved at IJTCS2025
♻ ☆ Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
In recent years, Graph Convolutional Networks (GCNs) have gained popularity for their exceptional ability to process graph-structured data. Existing GCN-based approaches typically employ a shallow model architecture due to the over-smoothing phenomenon. Current approaches to mitigating over-smoothing primarily involve adding supplementary components to GCN architectures, such as residual connections and random edge-dropping strategies. However, these improvements toward deep GCNs have achieved only limited success. In this work, we analyze the intrinsic message passing mechanism of GCNs and identify a critical issue: messages originating from high-order neighbors must traverse through low-order neighbors to reach the target node. This repeated reliance on low-order neighbors leads to redundant information aggregation, a phenomenon we term over-aggregation. Our analysis demonstrates that over-aggregation not only introduces significant redundancy but also serves as the fundamental cause of over-smoothing in GCNs.
♻ ☆ How Does Critical Batch Size Scale in Pre-training? ICLR 2025
Training large-scale models under given resources requires careful design of parallelism strategies. In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between time and compute, marks the threshold beyond which greater data parallelism leads to diminishing returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and learning rate along with its scheduling, we systematically investigate the impact of scale on CBS. Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall, our results demonstrate that CBS scales primarily with data size rather than model size, a finding we justify theoretically through the analysis of infinite-width limits of neural networks and infinite-dimensional least squares regression. Of independent interest, we highlight the importance of common hyper-parameter choices and strategies for studying large-scale pre-training beyond fixed training durations.
comment: ICLR 2025, Blog post: https://kempnerinstitute.harvard.edu/research/deeper-learning/how-does-critical-batch-size-scale-in-pre-training-decoupling-data-and-model-size
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
♻ ☆ Recursive Deep Inverse Reinforcement Learning
Inferring an adversary's goals from exhibited behavior is crucial for counterplanning and non-cooperative multi-agent systems in domains like cybersecurity, military, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods based on maximum entropy principles show promise in recovering adversaries' goals but are typically offline, require large batch sizes with gradient descent, and rely on first-order updates, limiting their applicability in real-time scenarios. We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL) approach to recover the cost function governing the adversary actions and goals. Specifically, we minimize an upper bound on the standard Guided Cost Learning (GCL) objective using sequential second-order Newton updates, akin to the Extended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning algorithm. We demonstrate that RDIRL is able to recover cost and reward functions of expert agents in standard and adversarial benchmark tasks. Experiments on benchmark tasks show that our proposed approach outperforms several leading IRL algorithms.
♻ ☆ Context Parallelism for Scalable Million-Token Inference
We present context parallelism for long-context large language model inference, which achieves near-linear scaling for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves 1M context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and 128K context prefill in 3.8s. We develop two lossless exact ring attention variants: pass-KV and pass-Q to cover a wide range of use cases with the state-of-the-art performance: full prefill, persistent KV prefill and decode. Benchmarks on H100 GPU hosts inter-connected with RDMA and TCP both show similar scalability for long-context prefill, demonstrating that our method scales well using common commercial data center with medium-to-low inter-host bandwidth.
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey IEEE
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
♻ ☆ Mining the Minoria: Unknown, Under-represented, and Under-performing Minority Groups VLDB 2025
Due to a variety of reasons, such as privacy, data in the wild often misses the grouping information required for identifying minorities. On the other hand, it is known that machine learning models are only as good as the data they are trained on and, hence, may underperform for the under-represented minority groups. The missing grouping information presents a dilemma for responsible data scientists who find themselves in an unknown-unknown situation, where not only do they not have access to the grouping attributes but do not also know what groups to consider. This paper is an attempt to address this dilemma. Specifically, we propose a minority mining problem, where we find vectors in the attribute space that reveal potential groups that are under-represented and under-performing. Technically speaking, we propose a geometric transformation of data into a dual space and use notions such as the arrangement of hyperplanes to design an efficient algorithm for the problem in lower dimensions. Generalizing our solution to the higher dimensions is cursed by dimensionality. Therefore, we propose a solution based on smart exploration of the search space for such cases. We conduct comprehensive experiments using real-world and synthetic datasets alongside the theoretical analysis. Our experiment results demonstrate the effectiveness of our proposed solutions in mining the unknown, under-represented, and under-performing minorities.
comment: To appear in VLDB 2025
♻ ☆ Modality Unified Attack for Omni-Modality Person Re-Identification
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
comment: 9 pages,3 figures
♻ ☆ Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
♻ ☆ Efficient Algorithm for Sparse Fourier Transform of Generalized $q$-ary Functions
Computing the Fourier transform of a $q$-ary function $f:\mathbb{Z}_{q}^n\rightarrow \mathbb{R}$, which maps $q$-ary sequences to real numbers, is an important problem in mathematics with wide-ranging applications in biology, signal processing, and machine learning. Previous studies have shown that, under the sparsity assumption, the Fourier transform can be computed efficiently using fast and sample-efficient algorithms. However, in most practical settings, the function is defined over a more general space -- the space of generalized $q$-ary sequences $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \cdots \times \mathbb{Z}_{q_n}$ -- where each $\mathbb{Z}_{q_i}$ corresponds to integers modulo $q_i$. Herein, we develop GFast, a coding theoretic algorithm that computes the $S$-sparse Fourier transform of $f$ with a sample complexity of $O(Sn)$, computational complexity of $O(Sn \log N)$, and a failure probability that approaches zero as $N=\prod_{i=1}^n q_i \rightarrow \infty$ with $S = N^\delta$ for some $0 \leq \delta < 1$. We show that a noise-robust version of GFast computes the transform with a sample complexity of $O(Sn^2)$ and computational complexity of $O(Sn^2 \log N)$ under the same high probability guarantees. Additionally, we demonstrate that GFast computes the sparse Fourier transform of generalized $q$-ary functions $8\times$ faster using $16\times$ fewer samples on synthetic experiments, and enables explaining real-world heart disease diagnosis and protein fitness models using up to $13\times$ fewer samples compared to existing Fourier algorithms applied to the most efficient parameterization of the models as $q$-ary functions.
♻ ☆ Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Accurate prediction of RNA properties, such as stability and interactions, is crucial for advancing our understanding of biological processes and developing RNA-based therapeutics. RNA structures can be represented as 1D sequences, 2D topological graphs, or 3D all-atom models, each offering different insights into its function. Existing works predominantly focus on 1D sequence-based models, which overlook the geometric context provided by 2D and 3D geometries. This study presents the first systematic evaluation of incorporating explicit 2D and 3D geometric information into RNA property prediction, considering not only performance but also real-world challenges such as limited data availability, partial labeling, sequencing noise, and computational efficiency. To this end, we introduce a newly curated set of RNA datasets with enhanced 2D and 3D structural annotations, providing a resource for model evaluation on RNA data. Our findings reveal that models with explicit geometry encoding generally outperform sequence-based models, with an average prediction RMSE reduction of around 12% across all various RNA tasks and excelling in low-data and partial labeling regimes, underscoring the value of explicitly incorporating geometric context. On the other hand, geometry-unaware sequence-based models are more robust under sequencing noise but often require around $2-5\times$ training data to match the performance of geometry-aware models. Our study offers further insights into the trade-offs between different RNA representations in practical applications and addresses a significant gap in evaluating deep learning models for RNA tasks.
♻ ☆ A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect $Y$ is modeled as $Y = f(X) + \sigma(X)N$, with $X$ as the cause and $N$ as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method.
♻ ☆ Enhancing Efficiency in Multidevice Federated Learning through Data Selection ICLR 2023
Ubiquitous wearable and mobile devices provide access to a diverse set of data. However, the mobility demand for our devices naturally imposes constraints on their computational and communication capabilities. A solution is to locally learn knowledge from data captured by ubiquitous devices, rather than to store and transmit the data in its original form. In this paper, we develop a federated learning framework, called Centaur, to incorporate on-device data selection at the edge, which allows partition-based training of a deep neural nets through collaboration between constrained and resourceful devices within the multidevice ecosystem of the same user. We benchmark on five neural net architecture and six datasets that include image data and wearable sensor time series. On average, Centaur achieves ~19% higher classification accuracy and ~58% lower federated training latency, compared to the baseline. We also evaluate Centaur when dealing with imbalanced non-iid data, client participation heterogeneity, and different mobility patterns. To encourage further research in this area, we release our code at https://github.com/nokia-bell-labs/data-centric-federated-learning
comment: An early version (v3) has been presented at ICLR 2023 Workshop on Machine Learning for IoT: Datasets, Perception, and Understanding
♻ ☆ Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
♻ ☆ Certifying Counterfactual Bias in LLMs ICLR 2025
Large Language Models (LLMs) can produce biased responses that can cause representational harms. However, conventional studies are insufficient to thoroughly evaluate biases across LLM responses for different demographic groups (a.k.a. counterfactual bias), as they do not scale to large number of inputs and do not provide guarantees. Therefore, we propose the first framework, LLMCert-B that certifies LLMs for counterfactual bias on distributions of prompts. A certificate consists of high-confidence bounds on the probability of unbiased LLM responses for any set of counterfactual prompts - prompts differing by demographic groups, sampled from a distribution. We illustrate counterfactual bias certification for distributions of counterfactual prompts created by applying prefixes sampled from prefix distributions, to a given set of prompts. We consider prefix distributions consisting random token sequences, mixtures of manual jailbreaks, and perturbations of jailbreaks in LLM's embedding space. We generate non-trivial certificates for SOTA LLMs, exposing their vulnerabilities over distributions of prompts generated from computationally inexpensive prefix distributions.
comment: Published at ICLR 2025
♻ ☆ Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
♻ ☆ Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Data-driven reduced-order models of the dynamics of complex flows are important for tasks related to design, understanding, prediction, and control. Many flows obey symmetries, and the present work illustrates how these can be exploited to yield highly efficient low-dimensional data-driven models for chaotic flows. In particular, incorporating symmetries both guarantees that the reduced order model automatically respects them and dramatically increases the effective density of data sampling. Given data for the long-time dynamics of a system, and knowing the set of continuous and discrete symmetries it obeys, the first step in the methodology is to identify a "fundamental chart", a region in the state space of the flow to which all other regions can be mapped by a symmetry operation, and a set of criteria indicating what mapping takes each point in state space into that chart. We then find a low-dimensional coordinate representation of the data in the fundamental chart with the use of an autoencoder architecture that also provides an estimate of the dimension of the invariant manifold where data lie. Finally, we learn dynamics on this manifold with the use of neural ordinary differential equations. We apply this method, denoted "symmetry charting" to simulation data from two-dimensional Kolmogorov flow in a chaotic bursting regime. This system has a continuous translation symmetry, and discrete rotation and shift-reflect symmetries. With this framework we observe that less data is needed to learn accurate data-driven models, more robust estimates of the manifold dimension are obtained, equivariance of the NSE is satisfied, better short-time tracking with respect to the true data is observed, and long-time statistics are correctly captured.
♻ ☆ On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms SC
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
comment: 2 pages, 2 tables, 1 figure. Accepted as a poster at the RISC-V Summit Europe 2025
♻ ☆ Federated Automated Feature Engineering
Automated feature engineering (AutoFE) is used to automatically create new features from original features to improve predictive performance without needing significant human intervention and domain expertise. Many algorithms exist for AutoFE, but very few approaches exist for the federated learning (FL) setting where data is gathered across many clients and is not shared between clients or a central server. We introduce AutoFE algorithms for the horizontal, vertical, and hybrid FL settings, which differ in how the data is gathered across clients. To the best of our knowledge, we are the first to develop AutoFE algorithms for the horizontal and hybrid FL cases, and we show that the downstream test scores of our federated AutoFE algorithms is close in performance to the case where data is held centrally and AutoFE is performed centrally.
comment: Preliminary Work
♻ ☆ Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
This paper presents a Bayesian estimation framework for Wiener models, focusing on learning nonlinear output functions under known linear state dynamics. We derive a closed-form optimal affine estimator for the unknown parameters, characterized by the so-called "dynamic basis statistics" (DBS). Several features of the proposed estimator are studied, including Bayesian unbiasedness, closed-form posterior statistics, error monotonicity in trajectory length, and consistency condition (also known as persistent excitation). In the special case of Fourier basis functions, we demonstrate that the closed-form description is computationally available, as the Fourier DBS enjoys explicit expressions. Furthermore, we identify an inherent inconsistency in the Fourier bases for single-trajectory measurements, regardless of the input excitation. Leveraging the closed-form estimation error, we develop an active learning algorithm synthesizing input signals to minimize estimation error. Numerical experiments validate the efficacy of our approach, showing significant improvements over traditional regularized least-squares methods.
comment: 23 pages, 4 figures
♻ ☆ An Undetectable Watermark for Generative Image Models ICLR 2025
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
comment: ICLR 2025
♻ ☆ Listenable Maps for Zero-Shot Audio Classifiers NeurIPS 2024
Interpreting the decisions of deep learning models, including audio classifiers, is crucial for ensuring the transparency and trustworthiness of this technology. In this paper, we introduce LMAC-ZS (Listenable Maps for Audio Classifiers in the Zero-Shot context), which, to the best of our knowledge, is the first decoder-based post-hoc interpretation method for explaining the decisions of zero-shot audio classifiers. The proposed method utilizes a novel loss function that maximizes the faithfulness to the original similarity between a given text-and-audio pair. We provide an extensive evaluation using the Contrastive Language-Audio Pretraining (CLAP) model to showcase that our interpreter remains faithful to the decisions in a zero-shot classification context. Moreover, we qualitatively show that our method produces meaningful explanations that correlate well with different text prompts.
comment: Accepted to NeurIPS 2024
♻ ☆ Sparse L0-norm based Kernel-free Quadratic Surface Support Vector Machines
Kernel-free quadratic surface support vector machine (SVM) models have gained significant attention in machine learning. However, introducing a quadratic classifier increases the model's complexity by quadratically expanding the number of parameters relative to the dimensionality of the data, exacerbating overfitting. Hence, we propose sparse $\ell_0$-norm based Kernel-free quadratic surface SVMs, designed to mitigate overfitting and enhance interpretability. Given the intractable nature of these models, we present a penalty decomposition algorithm to obtain first-order optimality points efficiently. We demonstrate that the subproblems in our framework either admit closed-form solutions or can leverage duality theory to improve computational efficiency. Through empirical evaluations on real-world datasets, we demonstrate the efficacy and robustness of our approach, showcasing its potential to advance Kernel-free quadratic surface SVMs in practical applications while addressing overfitting concerns. All the implemented models and experiment codes are available at https://github.com/raminzandvakili/L0-QSVM.
♻ ☆ Learning the structure of any Hamiltonian from minimal assumptions
We study the problem of learning an unknown quantum many-body Hamiltonian $H$ from black-box queries to its time evolution $e^{-\mathrm{i} H t}$. Prior proposals for solving this task either impose some assumptions on $H$, such as its interaction structure or locality, or otherwise use an exponential amount of computational postprocessing. In this paper, we present algorithms to learn any $n$-qubit Hamiltonian, which do not need to know the Hamiltonian terms in advance, nor are they restricted to local interactions. Our algorithms are efficient as long as the number of terms $m$ is polynomially bounded in the system size $n$. We consider two models of control over the time evolution:~the first has access to time reversal ($t < 0$), enabling an algorithm that outputs an $\epsilon$-accurate classical description of $H$ after querying its dynamics for a total of $\widetilde{\mathcal{O}}(m/\epsilon)$ evolution time. The second access model is more conventional, allowing only forward-time evolutions;~our algorithm requires $\widetilde{\mathcal{O}}(\|H\|^3/\epsilon^4)$ evolution time in this setting. Central to our results is the recently introduced concept of a pseudo-Choi state of $H$. We extend the utility of this learning resource by showing how to use it to learn the Fourier spectrum of $H$, how to achieve nearly Heisenberg-limited scaling with it, and how to prepare it even under our more restricted access models.
comment: 45 pages
♻ ☆ Accelerating Transient CFD through Machine Learning-Based Flow Initialization
Transient computational fluid dynamics (CFD) simulations are essential for many industrial applications, but a significant portion of their computational cost stems from the time needed to reach statistical steadiness from initial conditions. We present a novel machine learning-based initialization method that reduces the cost of this subsequent transient solve substantially, achieving a 50% reduction in time-to-convergence compared to traditional uniform and potential flow-based initializations. Through a case study in automotive aerodynamics using a 16.7M-cell unsteady RANS simulation, we evaluate three ML-based initialization strategies. Two of these strategies are recommended for general use: (1) a physics-informed hybrid method combining ML predictions with potential flow solutions, and (2) a more versatile approach integrating ML predictions with uniform flow. Both strategies enable CFD solvers to achieve convergence times comparable to computationally expensive steady RANS initializations, while requiring only seconds of computation. We develop a robust statistical convergence metric based on windowed time-averaging for performance comparison between initialization strategies. Notably, these improvements are achieved using an ML model trained on a different dataset of automotive geometries, demonstrating strong generalization capabilities. The proposed methods integrate seamlessly with existing CFD workflows without requiring modifications to the underlying flow solver, providing a practical approach to accelerating industrial CFD simulations through improved ML-based initialization strategies.
comment: 17 pages, 8 figures
♻ ☆ Simplifying Deep Temporal Difference Learning
Q-learning played a foundational role in the field reinforcement learning (RL). However, TD algorithms with off-policy data, such as Q-learning, or nonlinear function approximation like deep neural networks require several additional tricks to stabilise training, primarily a large replay buffer and target networks. Unfortunately, the delayed updating of frozen network parameters in the target network harms the sample efficiency and, similarly, the large replay buffer introduces memory and implementation overheads. In this paper, we investigate whether it is possible to accelerate and simplify off-policy TD training while maintaining its stability. Our key theoretical result demonstrates for the first time that regularisation techniques such as LayerNorm can yield provably convergent TD algorithms without the need for a target network or replay buffer, even with off-policy data. Empirically, we find that online, parallelised sampling enabled by vectorised environments stabilises training without the need for a large replay buffer. Motivated by these findings, we propose PQN, our simplified deep online Q-Learning algorithm. Surprisingly, this simple algorithm is competitive with more complex methods like: Rainbow in Atari, PPO-RNN in Craftax, QMix in Smax, and can be up to 50x faster than traditional DQN without sacrificing sample efficiency. In an era where PPO has become the go-to RL algorithm, PQN reestablishes off-policy Q-learning as a viable alternative.
♻ ☆ A Client-level Assessment of Collaborative Backdoor Poisoning in Non-IID Federated Learning
Federated learning (FL) enables collaborative model training using decentralized private data from multiple clients. While FL has shown robustness against poisoning attacks with basic defenses, our research reveals new vulnerabilities stemming from non-independent and identically distributed (non-IID) data among clients. These vulnerabilities pose a substantial risk of model poisoning in real-world FL scenarios. To demonstrate such vulnerabilities, we develop a novel collaborative backdoor poisoning attack called CollaPois. In this attack, we distribute a single pre-trained model infected with a Trojan to a group of compromised clients. These clients then work together to produce malicious gradients, causing the FL model to consistently converge towards a low-loss region centered around the Trojan-infected model. Consequently, the impact of the Trojan is amplified, especially when the benign clients have diverse local data distributions and scattered local gradients. CollaPois stands out by achieving its goals while involving only a limited number of compromised clients, setting it apart from existing attacks. Also, CollaPois effectively avoids noticeable shifts or degradation in the FL model's performance on legitimate data samples, allowing it to operate stealthily and evade detection by advanced robust FL algorithms. Thorough theoretical analysis and experiments conducted on various benchmark datasets demonstrate the superiority of CollaPois compared to state-of-the-art backdoor attacks. Notably, CollaPois bypasses existing backdoor defenses, especially in scenarios where clients possess diverse data distributions. Moreover, the results show that CollaPois remains effective even when involving a small number of compromised clients. Notably, clients whose local data is closely aligned with compromised clients experience higher risks of backdoor infections.
♻ ☆ FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving
Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.
comment: Accepted by MLSys 2025, code available at http://github.com/flashinfer-ai/flashinfer
♻ ☆ Peer-to-Peer Learning Dynamics of Wide Neural Networks IEEE
Peer-to-peer learning is an increasingly popular framework that enables beyond-5G distributed edge devices to collaboratively train deep neural networks in a privacy-preserving manner without the aid of a central server. Neural network training algorithms for emerging environments, e.g., smart cities, have many design considerations that are difficult to tune in deployment settings -- such as neural network architectures and hyperparameters. This presents a critical need for characterizing the training dynamics of distributed optimization algorithms used to train highly nonconvex neural networks in peer-to-peer learning environments. In this work, we provide an explicit characterization of the learning dynamics of wide neural networks trained using popular distributed gradient descent (DGD) algorithms. Our results leverage both recent advancements in neural tangent kernel (NTK) theory and extensive previous work on distributed learning and consensus. We validate our analytical results by accurately predicting the parameter and error dynamics of wide neural networks trained for classification tasks.
comment: Published at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hyderabad, India, 2025
♻ ☆ Revolutionizing Wireless Networks with Federated Learning: A Comprehensive Review
These days with the rising computational capabilities of wireless user equipment such as smart phones, tablets, and vehicles, along with growing concerns about sharing private data, a novel machine learning model called federated learning (FL) has emerged. FL enables the separation of data acquisition and computation at the central unit, which is different from centralized learning that occurs in a data center. FL is typically used in a wireless edge network where communication resources are limited and unreliable. Bandwidth constraints necessitate scheduling only a subset of UEs for updates in each iteration, and because the wireless medium is shared, transmissions are susceptible to interference and are not assured. The article discusses the significance of Machine Learning in wireless communication and highlights Federated Learning (FL) as a novel approach that could play a vital role in future mobile networks, particularly 6G and beyond.
♻ ☆ Trading Devil RL: Backdoor attack via Stock market, Bayesian Optimization and Reinforcement Learning
With the rapid development of generative artificial intelligence, particularly large language models a number of sub-fields of deep learning have made significant progress and are now very useful in everyday applications. For example,financial institutions simulate a wide range of scenarios for various models created by their research teams using reinforcement learning, both before production and after regular operations. In this work, we propose a backdoor attack that focuses solely on data poisoning and a method of detection by dynamic systems and statistical analysis of the distribution of data. This particular backdoor attack is classified as an attack without prior consideration or trigger, and we name it FinanceLLMsBackRL. Our aim is to examine the potential effects of large language models that use reinforcement learning systems for text production or speech recognition, finance, physics, or the ecosystem of contemporary artificial intelligence models.
comment: End of data poisoning research!: Navier-stokes equations (3D; update); Reinforcement Learning (RL); HFT (High Frequency Trading); Limit Order Markets and backdoor attack detection
♻ ☆ Towards Optimal Heterogeneous Client Sampling in Multi-Model Federated Learning
Federated learning (FL) allows edge devices to collaboratively train models without sharing local data. As FL gains popularity, clients may need to train multiple unrelated FL models, but communication constraints limit their ability to train all models simultaneously. While clients could train FL models sequentially, opportunistically having FL clients concurrently train different models -- termed multi-model federated learning (MMFL) -- can reduce the overall training time. Prior work uses simple client-to-model assignments that do not optimize the contribution of each client to each model over the course of its training. Prior work on single-model FL shows that intelligent client selection can greatly accelerate convergence, but na\"ive extensions to MMFL can violate heterogeneous resource constraints at both the server and the clients. In this work, we develop a novel convergence analysis of MMFL with arbitrary client sampling methods, theoretically demonstrating the strengths and limitations of previous well-established gradient-based methods. Motivated by this analysis, we propose MMFL-LVR, a loss-based sampling method that minimizes training variance while explicitly respecting communication limits at the server and reducing computational costs at the clients. We extend this to MMFL-StaleVR, which incorporates stale updates for improved efficiency and stability, and MMFL-StaleVRE, a lightweight variant suitable for low-overhead deployment. Experiments show our methods improve average accuracy by up to 19.1% over random sampling, with only a 5.4% gap from the theoretical optimum (full client participation).
comment: 29 pages with full proofs
♻ ☆ LAMD: Context-driven Android Malware Detection and Classification with LLMs IEEE
The rapid growth of mobile applications has escalated Android malware threats. Although there are numerous detection methods, they often struggle with evolving attacks, dataset biases, and limited explainability. Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities. However, applying LLMs to Android malware detection presents two key challenges: (1)the extensive support code in Android applications, often spanning thousands of classes, exceeds LLMs' context limits and obscures malicious behavior within benign functionality; (2)the structural complexity and interdependencies of Android applications surpass LLMs' sequence-based reasoning, fragmenting code analysis and hindering malicious intent inference. To address these challenges, we propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection. LAMD integrates key context extraction to isolate security-critical code regions and construct program structures, then applies tier-wise code reasoning to analyze application behavior progressively, from low-level instructions to high-level semantics, providing final prediction and explanation. A well-designed factual consistency verification mechanism is equipped to mitigate LLM hallucinations from the first tier. Evaluation in real-world settings demonstrates LAMD's effectiveness over conventional detectors, establishing a feasible basis for LLM-driven malware analysis in dynamic threat landscapes.
comment: accepted by 2025 46th IEEE Symposium on Security and Privacy Workshops (SPW)
♻ ☆ Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
We consider using gradient descent to minimize the nonconvex function $f(X)=\phi(XX^{T})$ over an $n\times r$ factor matrix $X$, in which $\phi$ is an underlying smooth convex cost function defined over $n\times n$ matrices. While only a second-order stationary point $X$ can be provably found in reasonable time, if $X$ is additionally rank deficient, then its rank deficiency certifies it as being globally optimal. This way of certifying global optimality necessarily requires the search rank $r$ of the current iterate $X$ to be overparameterized with respect to the rank $r^{\star}$ of the global minimizer $X^{\star}$. Unfortunately, overparameterization significantly slows down the convergence of gradient descent, from a linear rate with $r=r^{\star}$ to a sublinear rate when $r>r^{\star}$, even when $\phi$ is strongly convex. In this paper, we propose an inexpensive preconditioner that restores the convergence rate of gradient descent back to linear in the overparameterized case, while also making it agnostic to possible ill-conditioning in the global minimizer $X^{\star}$.
comment: v2: accepted at JMLR. v3: minor correction in proof of Lemma 27
Multimedia 4
☆ Chinese-LiPS: A Chinese audio-visual speech recognition dataset with Lip-reading and Presentation Slides
Incorporating visual modalities to assist Automatic Speech Recognition (ASR) tasks has led to significant improvements. However, existing Audio-Visual Speech Recognition (AVSR) datasets and methods typically rely solely on lip-reading information or speaking contextual video, neglecting the potential of combining these different valuable visual cues within the speaking context. In this paper, we release a multimodal Chinese AVSR dataset, Chinese-LiPS, comprising 100 hours of speech, video, and corresponding manual transcription, with the visual modality encompassing both lip-reading information and the presentation slides used by the speaker. Based on Chinese-LiPS, we develop a simple yet effective pipeline, LiPS-AVSR, which leverages both lip-reading and presentation slide information as visual modalities for AVSR tasks. Experiments show that lip-reading and presentation slide information improve ASR performance by approximately 8\% and 25\%, respectively, with a combined performance improvement of about 35\%. The dataset is available at https://kiri0824.github.io/Chinese-LiPS/
comment: 6 pages, 7 figures
☆ VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
♻ ☆ An Undetectable Watermark for Generative Image Models ICLR 2025
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
comment: ICLR 2025
Computer Vision and Pattern Recognition 81
☆ Advancing Video Anomaly Detection: A Bi-Directional Hybrid Framework for Enhanced Single- and Multi-Task Approaches IEEE
Despite the prevailing transition from single-task to multi-task approaches in video anomaly detection, we observe that many adopt sub-optimal frameworks for individual proxy tasks. Motivated by this, we contend that optimizing single-task frameworks can advance both single- and multi-task approaches. Accordingly, we leverage middle-frame prediction as the primary proxy task, and introduce an effective hybrid framework designed to generate accurate predictions for normal frames and flawed predictions for abnormal frames. This hybrid framework is built upon a bi-directional structure that seamlessly integrates both vision transformers and ConvLSTMs. Specifically, we utilize this bi-directional structure to fully analyze the temporal dimension by predicting frames in both forward and backward directions, significantly boosting the detection stability. Given the transformer's capacity to model long-range contextual dependencies, we develop a convolutional temporal transformer that efficiently associates feature maps from all context frames to generate attention-based predictions for target frames. Furthermore, we devise a layer-interactive ConvLSTM bridge that facilitates the smooth flow of low-level features across layers and time-steps, thereby strengthening predictions with fine details. Anomalies are eventually identified by scrutinizing the discrepancies between target frames and their corresponding predictions. Several experiments conducted on public benchmarks affirm the efficacy of our hybrid framework, whether used as a standalone single-task approach or integrated as a branch in a multi-task approach. These experiments also underscore the advantages of merging vision transformers and ConvLSTMs for video anomaly detection.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
☆ SuperCL: Superpixel Guided Contrastive Learning for Medical Image Segmentation Pre-training
Medical image segmentation is a critical yet challenging task, primarily due to the difficulty of obtaining extensive datasets of high-quality, expert-annotated images. Contrastive learning presents a potential but still problematic solution to this issue. Because most existing methods focus on extracting instance-level or pixel-to-pixel representation, which ignores the characteristics between intra-image similar pixel groups. Moreover, when considering contrastive pairs generation, most SOTA methods mainly rely on manually setting thresholds, which requires a large number of gradient experiments and lacks efficiency and generalization. To address these issues, we propose a novel contrastive learning approach named SuperCL for medical image segmentation pre-training. Specifically, our SuperCL exploits the structural prior and pixel correlation of images by introducing two novel contrastive pairs generation strategies: Intra-image Local Contrastive Pairs (ILCP) Generation and Inter-image Global Contrastive Pairs (IGCP) Generation. Considering superpixel cluster aligns well with the concept of contrastive pairs generation, we utilize the superpixel map to generate pseudo masks for both ILCP and IGCP to guide supervised contrastive learning. Moreover, we also propose two modules named Average SuperPixel Feature Map Generation (ASP) and Connected Components Label Generation (CCL) to better exploit the prior structural information for IGCP. Finally, experiments on 8 medical image datasets indicate our SuperCL outperforms existing 12 methods. i.e. Our SuperCL achieves a superior performance with more precise predictions from visualization figures and 3.15%, 5.44%, 7.89% DSC higher than the previous best results on MMWHS, CHAOS, Spleen with 10% annotations. Our code will be released after acceptance.
☆ ChronoRoot 2.0: An Open AI-Powered Platform for 2D Temporal Plant Phenotyping
The analysis of plant developmental plasticity, including root system architecture, is fundamental to understanding plant adaptability and development, particularly in the context of climate change and agricultural sustainability. While significant advances have been made in plant phenotyping technologies, comprehensive temporal analysis of root development remains challenging, with most existing solutions providing either limited throughput or restricted structural analysis capabilities. Here, we present ChronoRoot 2.0, an integrated open-source platform that combines affordable hardware with advanced artificial intelligence to enable sophisticated temporal plant phenotyping. The system introduces several major advances, offering an integral perspective of seedling development: (i) simultaneous multi-organ tracking of six distinct plant structures, (ii) quality control through real-time validation, (iii) comprehensive architectural measurements including novel gravitropic response parameters, and (iv) dual specialized user interfaces for both architectural analysis and high-throughput screening. We demonstrate the system's capabilities through three use cases for Arabidopsis thaliana: characterization of circadian growth patterns under different light conditions, detailed analysis of gravitropic responses in transgenic plants, and high-throughput screening of etiolation responses across multiple genotypes. ChronoRoot 2.0 maintains its predecessor's advantages of low cost and modularity while significantly expanding its capabilities, making sophisticated temporal phenotyping more accessible to the broader plant science community. The system's open-source nature, combined with extensive documentation and containerized deployment options, ensures reproducibility and enables community-driven development of new analytical capabilities.
☆ Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
☆ TAPIP3D: Tracking Any Point in Persistent 3D Geometry
We introduce TAPIP3D, a novel approach for long-term 3D point tracking in monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-stabilized spatio-temporal feature clouds, leveraging depth and camera motion information to lift 2D video features into a 3D world space where camera motion is effectively canceled. TAPIP3D iteratively refines multi-frame 3D motion estimates within this stabilized representation, enabling robust tracking over extended periods. To manage the inherent irregularities of 3D point distributions, we propose a Local Pair Attention mechanism. This 3D contextualization strategy effectively exploits spatial relationships in 3D, forming informative feature neighborhoods for precise 3D trajectory estimation. Our 3D-centric approach significantly outperforms existing 3D point tracking methods and even enhances 2D tracking accuracy compared to conventional 2D pixel trackers when accurate depth is available. It supports inference in both camera coordinates (i.e., unstabilized) and world coordinates, and our results demonstrate that compensating for camera motion improves tracking performance. Our approach replaces the conventional 2D square correlation neighborhoods used in prior 2D and 3D trackers, leading to more robust and accurate results across various 3D point tracking benchmarks. Project Page: https://tapip3d.github.io
comment: Long-term feed-forward 3D point tracking in persistent 3D point maps. Code:https://github.com/zbw001/TAPIP3D
☆ Med-2D SegNet: A Light Weight Deep Neural Network for Medical 2D Image Segmentation
Accurate and efficient medical image segmentation is crucial for advancing clinical diagnostics and surgical planning, yet remains a complex challenge due to the variability in anatomical structures and the demand for low-complexity models. In this paper, we introduced Med-2D SegNet, a novel and highly efficient segmentation architecture that delivers outstanding accuracy while maintaining a minimal computational footprint. Med-2D SegNet achieves state-of-the-art performance across multiple benchmark datasets, including KVASIR-SEG, PH2, EndoVis, and GLAS, with an average Dice similarity coefficient (DSC) of 89.77% across 20 diverse datasets. Central to its success is the compact Med Block, a specialized encoder design that incorporates dimension expansion and parameter reduction, enabling precise feature extraction while keeping model parameters to a low count of just 2.07 million. Med-2D SegNet excels in cross-dataset generalization, particularly in polyp segmentation, where it was trained on KVASIR-SEG and showed strong performance on unseen datasets, demonstrating its robustness in zero-shot learning scenarios, even though we acknowledge that further improvements are possible. With top-tier performance in both binary and multi-class segmentation, Med-2D SegNet redefines the balance between accuracy and efficiency, setting a new benchmark for medical image analysis. This work paves the way for developing accessible, high-performance diagnostic tools suitable for clinical environments and resource-constrained settings, making it a step forward in the democratization of advanced medical technology.
☆ Exposing the Copycat Problem of Imitation-based Planner: A Novel Closed-Loop Simulator, Causal Benchmark and Joint IL-RL Baseline
Machine learning (ML)-based planners have recently gained significant attention. They offer advantages over traditional optimization-based planning algorithms. These advantages include fewer manually selected parameters and faster development. Within ML-based planning, imitation learning (IL) is a common algorithm. It primarily learns driving policies directly from supervised trajectory data. While IL has demonstrated strong performance on many open-loop benchmarks, it remains challenging to determine if the learned policy truly understands fundamental driving principles, rather than simply extrapolating from the ego-vehicle's initial state. Several studies have identified this limitation and proposed algorithms to address it. However, these methods often use original datasets for evaluation. In these datasets, future trajectories are heavily dependent on initial conditions. Furthermore, IL often overfits to the most common scenarios. It struggles to generalize to rare or unseen situations. To address these challenges, this work proposes: 1) a novel closed-loop simulator supporting both imitation and reinforcement learning, 2) a causal benchmark derived from the Waymo Open Dataset to rigorously assess the impact of the copycat problem, and 3) a novel framework integrating imitation learning and reinforcement learning to overcome the limitations of purely imitative approaches. The code for this work will be released soon.
☆ Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
☆ IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays
Spine surgery is a high-risk intervention demanding precise execution, often supported by image-based navigation systems. Recently, supervised learning approaches have gained attention for reconstructing 3D spinal anatomy from sparse fluoroscopic data, significantly reducing reliance on radiation-intensive 3D imaging systems. However, these methods typically require large amounts of annotated training data and may struggle to generalize across varying patient anatomies or imaging conditions. Instance-learning approaches like Gaussian splatting could offer an alternative by avoiding extensive annotation requirements. While Gaussian splatting has shown promise for novel view synthesis, its application to sparse, arbitrarily posed real intraoperative X-rays has remained largely unexplored. This work addresses this limitation by extending the $R^2$-Gaussian splatting framework to reconstruct anatomically consistent 3D volumes under these challenging conditions. We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views, and enhancing reconstruction quality. Notably, our framework requires no pretraining, making it inherently adaptable to new patients and anatomies. We evaluated our approach using an ex-vivo dataset. Expert surgical evaluation confirmed the clinical utility of the 3D reconstructions for navigation, especially when using 20 to 30 views, and highlighted the standardization's benefit for anatomical clarity. Benchmarking via quantitative 2D metrics (PSNR/SSIM) confirmed performance trade-offs compared to idealized settings, but also validated the improvement gained from standardization over raw inputs. This work demonstrates the feasibility of instance-based volumetric reconstruction from arbitrary sparse-view X-rays, advancing intraoperative 3D imaging for surgical navigation.
☆ Video-MMLU: A Massive Multi-Discipline Lecture Understanding Benchmark
Recent advancements in language multimodal models (LMMs) for video have demonstrated their potential for understanding video content, yet the task of comprehending multi-discipline lectures remains largely unexplored. We introduce Video-MMLU, a massive benchmark designed to evaluate the capabilities of LMMs in understanding Multi-Discipline Lectures. We evaluate over 90 open-source and proprietary models, ranging from 0.5B to 40B parameters. Our results highlight the limitations of current models in addressing the cognitive challenges presented by these lectures, especially in tasks requiring both perception and reasoning. Additionally, we explore how the number of visual tokens and the large language models influence performance, offering insights into the interplay between multimodal perception and reasoning in lecture comprehension.
comment: Code, docs, and benchmark are all avaliable at https://enxinsong.com/Video-MMLU-web/
☆ Seurat: From Moving Points to Depth CVPR 2025
Accurate depth estimation from monocular videos remains challenging due to ambiguities inherent in single-view geometry, as crucial depth cues like stereopsis are absent. However, humans often perceive relative depth intuitively by observing variations in the size and spacing of objects as they move. Inspired by this, we propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories. Specifically, we use off-the-shelf point tracking models to capture 2D trajectories. Then, our approach employs spatial and temporal transformers to process these trajectories and directly infer depth changes over time. Evaluated on the TAPVid-3D benchmark, our method demonstrates robust zero-shot performance, generalizing effectively from synthetic to real-world datasets. Results indicate that our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
comment: CVPR 2025 Highlight. Project page: https://seurat-cvpr.github.io
☆ Generative Multimodal Pretraining with Discrete Diffusion Timestep Tokens CVPR 2025
Recent endeavors in Multimodal Large Language Models (MLLMs) aim to unify visual comprehension and generation by combining LLM and diffusion models, the state-of-the-art in each task, respectively. Existing approaches rely on spatial visual tokens, where image patches are encoded and arranged according to a spatial order (e.g., raster scan). However, we show that spatial tokens lack the recursive structure inherent to languages, hence form an impossible language for LLM to master. In this paper, we build a proper visual language by leveraging diffusion timesteps to learn discrete, recursive visual tokens. Our proposed tokens recursively compensate for the progressive attribute loss in noisy images as timesteps increase, enabling the diffusion model to reconstruct the original image at any timestep. This approach allows us to effectively integrate the strengths of LLMs in autoregressive reasoning and diffusion models in precise image generation, achieving seamless multimodal comprehension and generation within a unified framework. Extensive experiments show that we achieve superior performance for multimodal comprehension and generation simultaneously compared with other MLLMs. Project Page: https://DDT-LLaMA.github.io/.
comment: Accepted by CVPR 2025 (Oral)
☆ DMPCN: Dynamic Modulated Predictive Coding Network with Hybrid Feedback Representations
Traditional predictive coding networks, inspired by theories of brain function, consistently achieve promising results across various domains, extending their influence into the field of computer vision. However, the performance of the predictive coding networks is limited by their error feedback mechanism, which traditionally employs either local or global recurrent updates, leading to suboptimal performance in processing both local and broader details simultaneously. In addition, traditional predictive coding networks face difficulties in dynamically adjusting to the complexity and context of varying input data, which is crucial for achieving high levels of performance in diverse scenarios. Furthermore, there is a gap in the development and application of specific loss functions that could more effectively guide the model towards optimal performance. To deal with these issues, this paper introduces a hybrid prediction error feedback mechanism with dynamic modulation for deep predictive coding networks by effectively combining global contexts and local details while adjusting feedback based on input complexity. Additionally, we present a loss function tailored to this framework to improve accuracy by focusing on precise prediction error minimization. Experimental results demonstrate the superiority of our model over other approaches, showcasing faster convergence and higher predictive accuracy in CIFAR-10, CIFAR-100, MNIST, and FashionMNIST datasets.
☆ Frequency-domain Learning with Kernel Prior for Blind Image Deblurring
While achieving excellent results on various datasets, many deep learning methods for image deblurring suffer from limited generalization capabilities with out-of-domain data. This limitation is likely caused by their dependence on certain domain-specific datasets. To address this challenge, we argue that it is necessary to introduce the kernel prior into deep learning methods, as the kernel prior remains independent of the image context. For effective fusion of kernel prior information, we adopt a rational implementation method inspired by traditional deblurring algorithms that perform deconvolution in the frequency domain. We propose a module called Frequency Integration Module (FIM) for fusing the kernel prior and combine it with a frequency-based deblurring Transfomer network. Experimental results demonstrate that our method outperforms state-of-the-art methods on multiple blind image deblurring tasks, showcasing robust generalization abilities. Source code will be available soon.
☆ Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning ICLR 2025
Large-scale deep learning models with a pretraining-finetuning paradigm have led to a surge of numerous task-specific models fine-tuned from a common pre-trained model. Recently, several research efforts have been made on merging these large models into a single multi-task model, particularly with simple arithmetic on parameters. Such merging methodology faces a central challenge: interference between model parameters fine-tuned on different tasks. Few recent works have focused on designing a new fine-tuning scheme that can lead to small parameter interference, however at the cost of the performance of each task-specific fine-tuned model and thereby limiting that of a merged model. To improve the performance of a merged model, we note that a fine-tuning scheme should aim for (1) smaller parameter interference and (2) better performance of each fine-tuned model on the corresponding task. In this work, we aim to design a new fine-tuning objective function to work towards these two goals. In the course of this process, we find such objective function to be strikingly similar to sharpness-aware minimization (SAM) objective function, which aims to achieve generalization by finding flat minima. Drawing upon our observation, we propose to fine-tune pre-trained models via sharpness-aware minimization. The experimental and theoretical results showcase the effectiveness and orthogonality of our proposed approach, improving performance upon various merging and fine-tuning methods. Our code is available at https://github.com/baiklab/SAFT-Merge.
comment: ICLR 2025
☆ EmoSEM: Segment and Explain Emotion Stimuli in Visual Art
This paper focuses on a key challenge in visual art understanding: given an art image, the model pinpoints pixel regions that trigger a specific human emotion, and generates linguistic explanations for the emotional arousal. Despite recent advances in art understanding, pixel-level emotion understanding still faces a dual challenge: first, the subjectivity of emotion makes it difficult for general segmentation models like SAM to adapt to emotion-oriented segmentation tasks; and second, the abstract nature of art expression makes it difficult for captioning models to balance pixel-level semantic understanding and emotion reasoning. To solve the above problems, this paper proposes the Emotion stimuli Segmentation and Explanation Model (EmoSEM) to endow the segmentation model SAM with emotion comprehension capability. First, to enable the model to perform segmentation under the guidance of emotional intent well, we introduce an emotional prompt with a learnable mask token as the conditional input for segmentation decoding. Then, we design an emotion projector to establish the association between emotion and visual features. Next, more importantly, to address emotion-visual stimuli alignment, we develop a lightweight prefix projector, a module that fuses the learned emotional mask with the corresponding emotion into a unified representation compatible with the language model.Finally, we input the joint visual, mask, and emotional tokens into the language model and output the emotional explanations. It ensures that the generated interpretations remain semantically and emotionally coherent with the visual stimuli. The method innovatively realizes end-to-end modeling from low-level pixel features to high-level emotion interpretation, providing the first interpretable fine-grained analysis framework for artistic emotion computing. Extensive experiments validate the effectiveness of our model.
☆ Relation-R1: Cognitive Chain-of-Thought Guided Reinforcement Learning for Unified Relational Comprehension
Recent advances in multi-modal large language models (MLLMs) have significantly improved object-level grounding and region captioning, but remain limited in visual relation understanding (\eg, scene graph generation), particularly in modeling \textit{N}-ary relationships that identify multiple semantic roles among an action event. Such a lack of \textit{semantic dependencies} modeling among multi-entities leads to unreliable outputs, intensifying MLLMs' hallucinations and over-reliance on language priors. To this end, we propose Relation-R1, the first unified relational comprehension framework that explicitly integrates cognitive chain-of-thought (CoT)-guided Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) within a reinforcement learning (RL) paradigm. Specifically, we first establish foundational reasoning capabilities via SFT, enforcing structured outputs with thinking processes. Then, GRPO is utilized to refine these outputs via multi-reward optimization, prioritizing visual-semantic grounding over language-induced biases, thereby improving generalization capability. Extensive experiments on widely-used PSG and SWiG datasets demonstrate that Relation-R1 achieves state-of-the-art performance in both binary and \textit{N}-ary relation understanding.
comment: Ongoing project
☆ NVSMask3D: Hard Visual Prompting with Camera Pose Interpolation for 3D Open Vocabulary Instance Segmentation
Vision-language models (VLMs) have demonstrated impressive zero-shot transfer capabilities in image-level visual perception tasks. However, they fall short in 3D instance-level segmentation tasks that require accurate localization and recognition of individual objects. To bridge this gap, we introduce a novel 3D Gaussian Splatting based hard visual prompting approach that leverages camera interpolation to generate diverse viewpoints around target objects without any 2D-3D optimization or fine-tuning. Our method simulates realistic 3D perspectives, effectively augmenting existing hard visual prompts by enforcing geometric consistency across viewpoints. This training-free strategy seamlessly integrates with prior hard visual prompts, enriching object-descriptive features and enabling VLMs to achieve more robust and accurate 3D instance segmentation in diverse 3D scenes.
comment: 15 pages, 4 figures, Scandinavian Conference on Image Analysis 2025
☆ Latent Representations for Visual Proprioception in Inexpensive Robots
Robotic manipulation requires explicit or implicit knowledge of the robot's joint positions. Precise proprioception is standard in high-quality industrial robots but is often unavailable in inexpensive robots operating in unstructured environments. In this paper, we ask: to what extent can a fast, single-pass regression architecture perform visual proprioception from a single external camera image, available even in the simplest manipulation settings? We explore several latent representations, including CNNs, VAEs, ViTs, and bags of uncalibrated fiducial markers, using fine-tuning techniques adapted to the limited data available. We evaluate the achievable accuracy through experiments on an inexpensive 6-DoF robot.
☆ MSAD-Net: Multiscale and Spatial Attention-based Dense Network for Lung Cancer Classification
Lung cancer, a severe form of malignant tumor that originates in the tissues of the lungs, can be fatal if not detected in its early stages. It ranks among the top causes of cancer-related mortality worldwide. Detecting lung cancer manually using chest X-Ray image or Computational Tomography (CT) scans image poses significant challenges for radiologists. Hence, there is a need for automatic diagnosis system of lung cancers from radiology images. With the recent emergence of deep learning, particularly through Convolutional Neural Networks (CNNs), the automated detection of lung cancer has become a much simpler task. Nevertheless, numerous researchers have addressed that the performance of conventional CNNs may be hindered due to class imbalance issue, which is prevalent in medical images. In this research work, we have proposed a novel CNN architecture ``Multi-Scale Dense Network (MSD-Net)'' (trained-from-scratch). The novelties we bring in the proposed model are (I) We introduce novel dense modules in the 4th block and 5th block of the CNN model. We have leveraged 3 depthwise separable convolutional (DWSC) layers, and one 1x1 convolutional layer in each dense module, in order to reduce complexity of the model considerably. (II) Additionally, we have incorporated one skip connection from 3rd block to 5th block and one parallel branch connection from 4th block to Global Average Pooling (GAP) layer. We have utilized dilated convolutional layer (with dilation rate=2) in the last parallel branch in order to extract multi-scale features. Extensive experiments reveal that our proposed model has outperformed latest CNN model ConvNext-Tiny, recent trend Vision Transformer (ViT), Pooling-based ViT (PiT), and other existing models by significant margins.
☆ Talk is Not Always Cheap: Promoting Wireless Sensing Models with Text Prompts
Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.
comment: 10 pages
☆ VM-BHINet:Vision Mamba Bimanual Hand Interaction Network for 3D Interacting Hand Mesh Recovery From a Single RGB Image
Understanding bimanual hand interactions is essential for realistic 3D pose and shape reconstruction. However, existing methods struggle with occlusions, ambiguous appearances, and computational inefficiencies. To address these challenges, we propose Vision Mamba Bimanual Hand Interaction Network (VM-BHINet), introducing state space models (SSMs) into hand reconstruction to enhance interaction modeling while improving computational efficiency. The core component, Vision Mamba Interaction Feature Extraction Block (VM-IFEBlock), combines SSMs with local and global feature operations, enabling deep understanding of hand interactions. Experiments on the InterHand2.6M dataset show that VM-BHINet reduces Mean per-joint position error (MPJPE) and Mean per-vertex position error (MPVPE) by 2-3%, significantly surpassing state-of-the-art methods.
☆ MP-Mat: A 3D-and-Instance-Aware Human Matting and Editing Framework with Multiplane Representation ICLR 2025
Human instance matting aims to estimate an alpha matte for each human instance in an image, which is challenging as it easily fails in complex cases requiring disentangling mingled pixels belonging to multiple instances along hairy and thin boundary structures. In this work, we address this by introducing MP-Mat, a novel 3D-and-instance-aware matting framework with multiplane representation, where the multiplane concept is designed from two different perspectives: scene geometry level and instance level. Specifically, we first build feature-level multiplane representations to split the scene into multiple planes based on depth differences. This approach makes the scene representation 3D-aware, and can serve as an effective clue for splitting instances in different 3D positions, thereby improving interpretability and boundary handling ability especially in occlusion areas. Then, we introduce another multiplane representation that splits the scene in an instance-level perspective, and represents each instance with both matte and color. We also treat background as a special instance, which is often overlooked by existing methods. Such an instance-level representation facilitates both foreground and background content awareness, and is useful for other down-stream tasks like image editing. Once built, the representation can be reused to realize controllable instance-level image editing with high efficiency. Extensive experiments validate the clear advantage of MP-Mat in matting task. We also demonstrate its superiority in image editing tasks, an area under-explored by existing matting-focused methods, where our approach under zero-shot inference even outperforms trained specialized image editing techniques by large margins. Code is open-sourced at https://github.com/JiaoSiyi/MPMat.git}.
comment: Accepted by ICLR 2025
☆ NTIRE 2025 Challenge on Real-World Face Restoration: Methods and Results
This paper provides a review of the NTIRE 2025 challenge on real-world face restoration, highlighting the proposed solutions and the resulting outcomes. The challenge focuses on generating natural, realistic outputs while maintaining identity consistency. Its goal is to advance state-of-the-art solutions for perceptual quality and realism, without imposing constraints on computational resources or training data. The track of the challenge evaluates performance using a weighted image quality assessment (IQA) score and employs the AdaFace model as an identity checker. The competition attracted 141 registrants, with 13 teams submitting valid models, and ultimately, 10 teams achieved a valid score in the final ranking. This collaborative effort advances the performance of real-world face restoration while offering an in-depth overview of the latest trends in the field.
comment: NTIRE 2025 webpage: https://www.cvlai.net/ntire/2025. Code: https://github.com/zhengchen1999/NTIRE2025_RealWorld_Face_Restoration
☆ Phoenix: A Motion-based Self-Reflection Framework for Fine-grained Robotic Action Correction CVPR2025
Building a generalizable self-correction system is crucial for robots to recover from failures. Despite advancements in Multimodal Large Language Models (MLLMs) that empower robots with semantic reflection ability for failure, translating semantic reflection into how to correct fine-grained robotic actions remains a significant challenge. To address this gap, we build the Phoenix framework, which leverages motion instruction as a bridge to connect high-level semantic reflection with low-level robotic action correction. In this motion-based self-reflection framework, we start with a dual-process motion adjustment mechanism with MLLMs to translate the semantic reflection into coarse-grained motion instruction adjustment. To leverage this motion instruction for guiding how to correct fine-grained robotic actions, a multi-task motion-conditioned diffusion policy is proposed to integrate visual observations for high-frequency robotic action correction. By combining these two models, we could shift the demand for generalization capability from the low-level manipulation policy to the MLLMs-driven motion adjustment model and facilitate precise, fine-grained robotic action correction. Utilizing this framework, we further develop a lifelong learning method to automatically improve the model's capability from interactions with dynamic environments. The experiments conducted in both the RoboMimic simulation and real-world scenarios prove the superior generalization and robustness of our framework across a variety of manipulation tasks. Our code is released at \href{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}.
comment: Accepted by CVPR2025
☆ Using street view imagery and deep generative modeling for estimating the health of urban forests ICLR 2025
Healthy urban forests comprising of diverse trees and shrubs play a crucial role in mitigating climate change. They provide several key advantages such as providing shade for energy conservation, and intercepting rainfall to reduce flood runoff and soil erosion. Traditional approaches for monitoring the health of urban forests require instrumented inspection techniques, often involving a high amount of human labor and subjective evaluations. As a result, they are not scalable for cities which lack extensive resources. Recent approaches involving multi-spectral imaging data based on terrestrial sensing and satellites, are constrained respectively with challenges related to dedicated deployments and limited spatial resolutions. In this work, we propose an alternative approach for monitoring the urban forests using simplified inputs: street view imagery, tree inventory data and meteorological conditions. We propose to use image-to-image translation networks to estimate two urban forest health parameters, namely, NDVI and CTD. Finally, we aim to compare the generated results with ground truth data using an onsite campaign utilizing handheld multi-spectral and thermal imaging sensors. With the advent and expansion of street view imagery platforms such as Google Street View and Mapillary, this approach should enable effective management of urban forests for the authorities in cities at scale.
comment: Accepted at ICLR 2025 Workshop
☆ NTIRE 2025 Challenge on Image Super-Resolution ($\times$4): Methods and Results
This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
comment: NTIRE 2025 webpage: https://www.cvlai.net/ntire/2025. Code: https://github.com/zhengchen1999/NTIRE2025_ImageSR_x4
☆ SMTT: Novel Structured Multi-task Tracking with Graph-Regularized Sparse Representation for Robust Thermal Infrared Target Tracking
Thermal infrared target tracking is crucial in applications such as surveillance, autonomous driving, and military operations. In this paper, we propose a novel tracker, SMTT, which effectively addresses common challenges in thermal infrared imagery, such as noise, occlusion, and rapid target motion, by leveraging multi-task learning, joint sparse representation, and adaptive graph regularization. By reformulating the tracking task as a multi-task learning problem, the SMTT tracker independently optimizes the representation of each particle while dynamically capturing spatial and feature-level similarities using a weighted mixed-norm regularization strategy. To ensure real-time performance, we incorporate the Accelerated Proximal Gradient method for efficient optimization. Extensive experiments on benchmark datasets - including VOT-TIR, PTB-TIR, and LSOTB-TIR - demonstrate that SMTT achieves superior accuracy, robustness, and computational efficiency. These results highlight SMTT as a reliable and high-performance solution for thermal infrared target tracking in complex environments.
☆ REDEditing: Relationship-Driven Precise Backdoor Poisoning on Text-to-Image Diffusion Models
The rapid advancement of generative AI highlights the importance of text-to-image (T2I) security, particularly with the threat of backdoor poisoning. Timely disclosure and mitigation of security vulnerabilities in T2I models are crucial for ensuring the safe deployment of generative models. We explore a novel training-free backdoor poisoning paradigm through model editing, which is recently employed for knowledge updating in large language models. Nevertheless, we reveal the potential security risks posed by model editing techniques to image generation models. In this work, we establish the principles for backdoor attacks based on model editing, and propose a relationship-driven precise backdoor poisoning method, REDEditing. Drawing on the principles of equivalent-attribute alignment and stealthy poisoning, we develop an equivalent relationship retrieval and joint-attribute transfer approach that ensures consistent backdoor image generation through concept rebinding. A knowledge isolation constraint is proposed to preserve benign generation integrity. Our method achieves an 11\% higher attack success rate compared to state-of-the-art approaches. Remarkably, adding just one line of code enhances output naturalness while improving backdoor stealthiness by 24\%. This work aims to heighten awareness regarding this security vulnerability in editable image generation models.
comment: 10 pages, 7 figures
☆ Grounding-MD: Grounded Video-language Pre-training for Open-World Moment Detection
Temporal Action Detection and Moment Retrieval constitute two pivotal tasks in video understanding, focusing on precisely localizing temporal segments corresponding to specific actions or events. Recent advancements introduced Moment Detection to unify these two tasks, yet existing approaches remain confined to closed-set scenarios, limiting their applicability in open-world contexts. To bridge this gap, we present Grounding-MD, an innovative, grounded video-language pre-training framework tailored for open-world moment detection. Our framework incorporates an arbitrary number of open-ended natural language queries through a structured prompt mechanism, enabling flexible and scalable moment detection. Grounding-MD leverages a Cross-Modality Fusion Encoder and a Text-Guided Fusion Decoder to facilitate comprehensive video-text alignment and enable effective cross-task collaboration. Through large-scale pre-training on temporal action detection and moment retrieval datasets, Grounding-MD demonstrates exceptional semantic representation learning capabilities, effectively handling diverse and complex query conditions. Comprehensive evaluations across four benchmark datasets including ActivityNet, THUMOS14, ActivityNet-Captions, and Charades-STA demonstrate that Grounding-MD establishes new state-of-the-art performance in zero-shot and supervised settings in open-world moment detection scenarios. All source code and trained models will be released.
☆ VGNC: Reducing the Overfitting of Sparse-view 3DGS via Validation-guided Gaussian Number Control
Sparse-view 3D reconstruction is a fundamental yet challenging task in practical 3D reconstruction applications. Recently, many methods based on the 3D Gaussian Splatting (3DGS) framework have been proposed to address sparse-view 3D reconstruction. Although these methods have made considerable advancements, they still show significant issues with overfitting. To reduce the overfitting, we introduce VGNC, a novel Validation-guided Gaussian Number Control (VGNC) approach based on generative novel view synthesis (NVS) models. To the best of our knowledge, this is the first attempt to alleviate the overfitting issue of sparse-view 3DGS with generative validation images. Specifically, we first introduce a validation image generation method based on a generative NVS model. We then propose a Gaussian number control strategy that utilizes generated validation images to determine the optimal Gaussian numbers, thereby reducing the issue of overfitting. We conducted detailed experiments on various sparse-view 3DGS baselines and datasets to evaluate the effectiveness of VGNC. Extensive experiments show that our approach not only reduces overfitting but also improves rendering quality on the test set while decreasing the number of Gaussian points. This reduction lowers storage demands and accelerates both training and rendering. The code will be released.
comment: 10 pages,8 figures
☆ Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation IEEE
Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions. A critical aspect of these examples is their transferability, allowing them to deceive {unseen} models in black-box scenarios. Despite the widespread exploration of defense methods, including those on transferability, they show limitations: inefficient deployment, ineffective defense, and degraded performance on clean images. In this work, we introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way. We propose a model that exhibits random guessing behavior when presented with clean data $\boldsymbol{x}$ as input, and generates accurate predictions when with triggered data $\boldsymbol{x}+\boldsymbol{\tau}$. Importantly, the trigger $\boldsymbol{\tau}$ remains constant for all data instances. We refer to these models as \textbf{models with trigger activation}. We are surprised to find that these models exhibit certain robustness against TAEs. Through the consideration of first-order gradients, we provide a theoretical analysis of this robustness. Moreover, through the joint optimization of the learnable trigger and the model, we achieve improved robustness to transferable attacks. Extensive experiments conducted across diverse datasets, evaluating a variety of attacking methods, underscore the effectiveness and superiority of our approach.
comment: Accepted by IEEE TIFS 2025
☆ FlowLoss: Dynamic Flow-Conditioned Loss Strategy for Video Diffusion Models
Video Diffusion Models (VDMs) can generate high-quality videos, but often struggle with producing temporally coherent motion. Optical flow supervision is a promising approach to address this, with prior works commonly employing warping-based strategies that avoid explicit flow matching. In this work, we explore an alternative formulation, FlowLoss, which directly compares flow fields extracted from generated and ground-truth videos. To account for the unreliability of flow estimation under high-noise conditions in diffusion, we propose a noise-aware weighting scheme that modulates the flow loss across denoising steps. Experiments on robotic video datasets suggest that FlowLoss improves motion stability and accelerates convergence in early training stages. Our findings offer practical insights for incorporating motion-based supervision into noise-conditioned generative models.
☆ SUDO: Enhancing Text-to-Image Diffusion Models with Self-Supervised Direct Preference Optimization
Previous text-to-image diffusion models typically employ supervised fine-tuning (SFT) to enhance pre-trained base models. However, this approach primarily minimizes the loss of mean squared error (MSE) at the pixel level, neglecting the need for global optimization at the image level, which is crucial for achieving high perceptual quality and structural coherence. In this paper, we introduce Self-sUpervised Direct preference Optimization (SUDO), a novel paradigm that optimizes both fine-grained details at the pixel level and global image quality. By integrating direct preference optimization into the model, SUDO generates preference image pairs in a self-supervised manner, enabling the model to prioritize global-level learning while complementing the pixel-level MSE loss. As an effective alternative to supervised fine-tuning, SUDO can be seamlessly applied to any text-to-image diffusion model. Importantly, it eliminates the need for costly data collection and annotation efforts typically associated with traditional direct preference optimization methods. Through extensive experiments on widely-used models, including Stable Diffusion 1.5 and XL, we demonstrate that SUDO significantly enhances both global and local image quality. The codes are provided at \href{https://github.com/SPengLiang/SUDO}{this link}.
☆ Are Vision LLMs Road-Ready? A Comprehensive Benchmark for Safety-Critical Driving Video Understanding
Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering. However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored. Autonomous driving systems require sophisticated scene understanding in complex environments, yet existing multimodal benchmarks primarily focus on normal driving conditions, failing to adequately assess VLLMs' performance in safety-critical scenarios. To address this, we introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos. Built around a hierarchical ability taxonomy that aligns with widely adopted frameworks for describing driving scenarios used in assessing highly automated driving systems, DVBench features 10,000 multiple-choice questions with human-annotated ground-truth answers, enabling a comprehensive evaluation of VLLMs' capabilities in perception and reasoning. Experiments on 14 SOTA VLLMs, ranging from 0.5B to 72B parameters, reveal significant performance gaps, with no model achieving over 40% accuracy, highlighting critical limitations in understanding complex driving scenarios. To probe adaptability, we fine-tuned selected models using domain-specific data from DVBench, achieving accuracy gains ranging from 5.24 to 10.94 percentage points, with relative improvements of up to 43.59%. This improvement underscores the necessity of targeted adaptation to bridge the gap between general-purpose VLLMs and mission-critical driving applications. DVBench establishes an essential evaluation framework and research roadmap for developing VLLMs that meet the safety and robustness requirements for real-world autonomous systems. We released the benchmark toolbox and the fine-tuned model at: https://github.com/tong-zeng/DVBench.git.
☆ Back on Track: Bundle Adjustment for Dynamic Scene Reconstruction
Traditional SLAM systems, which rely on bundle adjustment, struggle with highly dynamic scenes commonly found in casual videos. Such videos entangle the motion of dynamic elements, undermining the assumption of static environments required by traditional systems. Existing techniques either filter out dynamic elements or model their motion independently. However, the former often results in incomplete reconstructions, whereas the latter can lead to inconsistent motion estimates. Taking a novel approach, this work leverages a 3D point tracker to separate the camera-induced motion from the observed motion of dynamic objects. By considering only the camera-induced component, bundle adjustment can operate reliably on all scene elements as a result. We further ensure depth consistency across video frames with lightweight post-processing based on scale maps. Our framework combines the core of traditional SLAM -- bundle adjustment -- with a robust learning-based 3D tracker front-end. Integrating motion decomposition, bundle adjustment and depth refinement, our unified framework, BA-Track, accurately tracks the camera motion and produces temporally coherent and scale-consistent dense reconstructions, accommodating both static and dynamic elements. Our experiments on challenging datasets reveal significant improvements in camera pose estimation and 3D reconstruction accuracy.
comment: Project page: https://wrchen530.github.io/projects/batrack/
☆ DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
☆ STARS: Sparse Learning Correlation Filter with Spatio-temporal Regularization and Super-resolution Reconstruction for Thermal Infrared Target Tracking
Thermal infrared (TIR) target tracking methods often adopt the correlation filter (CF) framework due to its computational efficiency. However, the low resolution of TIR images, along with tracking interference, significantly limits the perfor-mance of TIR trackers. To address these challenges, we introduce STARS, a novel sparse learning-based CF tracker that incorporates spatio-temporal regulari-zation and super-resolution reconstruction. First, we apply adaptive sparse filter-ing and temporal domain filtering to extract key features of the target while reduc-ing interference from background clutter and noise. Next, we introduce an edge-preserving sparse regularization method to stabilize target features and prevent excessive blurring. This regularization integrates multiple terms and employs the alternating direction method of multipliers to optimize the solution. Finally, we propose a gradient-enhanced super-resolution method to extract fine-grained TIR target features and improve the resolution of TIR images, addressing performance degradation in tracking caused by low-resolution sequences. To the best of our knowledge, STARS is the first to integrate super-resolution methods within a sparse learning-based CF framework. Extensive experiments on the LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR2017 benchmarks demonstrate that STARS outperforms state-of-the-art trackers in terms of robustness.
☆ Vision-Centric Representation-Efficient Fine-Tuning for Robust Universal Foreground Segmentation
Foreground segmentation is crucial for scene understanding, yet parameter-efficient fine-tuning (PEFT) of vision foundation models (VFMs) often fails in complex scenarios, such as camouflage and infrared imagery. We attribute this challenge to the inherent texture bias in VFMs, which is exacerbated during fine-tuning and limits generalization in texture-sparse environments. To address this, we propose Ladder Shape-bias Representation Side-tuning (LSR-ST), a lightweight PEFT framework that enhances model robustness by introducing shape-biased inductive priors. LSR-ST captures shape-aware features using a simple HDConv Block, which integrates large-kernel attention and residual learning. The method satisfies three key conditions for inducing shape bias: large receptive fields, multi-order feature interactions, and sparse connectivity. Our analysis reveals that these improvements stem from representation efficiency-the ability to extract task-relevant, structurally grounded features while minimizing redundancy. We formalize this concept via Information Bottleneck theory and advocate for it as a key PEFT objective. Unlike traditional NLP paradigms that focus on optimizing parameters and memory, visual tasks require models that extract task-defined semantics, rather than just relying on pre-encoded features. This shift enables our approach to move beyond conventional trade-offs, offering more robust and generalizable solutions for vision tasks. With minimal changes to SAM2-UNet, LSR-ST achieves consistent improvements across 17 datasets and 6 tasks using only 4.719M trainable parameters. These results highlight the potential of representation efficiency for robust and adaptable VFMs within complex visual environments.
☆ Efficient Implicit Neural Compression of Point Clouds via Learnable Activation in Latent Space
Implicit Neural Representations (INRs), also known as neural fields, have emerged as a powerful paradigm in deep learning, parameterizing continuous spatial fields using coordinate-based neural networks. In this paper, we propose \textbf{PICO}, an INR-based framework for static point cloud compression. Unlike prevailing encoder-decoder paradigms, we decompose the point cloud compression task into two separate stages: geometry compression and attribute compression, each with distinct INR optimization objectives. Inspired by Kolmogorov-Arnold Networks (KANs), we introduce a novel network architecture, \textbf{LeAFNet}, which leverages learnable activation functions in the latent space to better approximate the target signal's implicit function. By reformulating point cloud compression as neural parameter compression, we further improve compression efficiency through quantization and entropy coding. Experimental results demonstrate that \textbf{LeAFNet} outperforms conventional MLPs in INR-based point cloud compression. Furthermore, \textbf{PICO} achieves superior geometry compression performance compared to the current MPEG point cloud compression standard, yielding an average improvement of $4.92$ dB in D1 PSNR. In joint geometry and attribute compression, our approach exhibits highly competitive results, with an average PCQM gain of $2.7 \times 10^{-3}$.
comment: 8 pages
☆ Turbo2K: Towards Ultra-Efficient and High-Quality 2K Video Synthesis
Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals. While diffusion transformers (DiTs) have demonstrated remarkable capabilities in high-quality video generation, scaling them to 2K resolution remains computationally prohibitive due to quadratic growth in memory and processing costs. In this work, we propose Turbo2K, an efficient and practical framework for generating detail-rich 2K videos while significantly improving training and inference efficiency. First, Turbo2K operates in a highly compressed latent space, reducing computational complexity and memory footprint, making high-resolution video synthesis feasible. However, the high compression ratio of the VAE and limited model size impose constraints on generative quality. To mitigate this, we introduce a knowledge distillation strategy that enables a smaller student model to inherit the generative capacity of a larger, more powerful teacher model. Our analysis reveals that, despite differences in latent spaces and architectures, DiTs exhibit structural similarities in their internal representations, facilitating effective knowledge transfer. Second, we design a hierarchical two-stage synthesis framework that first generates multi-level feature at lower resolutions before guiding high-resolution video generation. This approach ensures structural coherence and fine-grained detail refinement while eliminating redundant encoding-decoding overhead, further enhancing computational efficiency.Turbo2K achieves state-of-the-art efficiency, generating 5-second, 24fps, 2K videos with significantly reduced computational cost. Compared to existing methods, Turbo2K is up to 20$\times$ faster for inference, making high-resolution video generation more scalable and practical for real-world applications.
comment: Webpage at https://jingjingrenabc.github.io/turbo2k/
☆ LGD: Leveraging Generative Descriptions for Zero-Shot Referring Image Segmentation
Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.
☆ Metamon-GS: Enhancing Representability with Variance-Guided Densification and Light Encoding
The introduction of 3D Gaussian Splatting (3DGS) has advanced novel view synthesis by utilizing Gaussians to represent scenes. Encoding Gaussian point features with anchor embeddings has significantly enhanced the performance of newer 3DGS variants. While significant advances have been made, it is still challenging to boost rendering performance. Feature embeddings have difficulty accurately representing colors from different perspectives under varying lighting conditions, which leads to a washed-out appearance. Another reason is the lack of a proper densification strategy that prevents Gaussian point growth in thinly initialized areas, resulting in blurriness and needle-shaped artifacts. To address them, we propose Metamon-GS, from innovative viewpoints of variance-guided densification strategy and multi-level hash grid. The densification strategy guided by variance specifically targets Gaussians with high gradient variance in pixels and compensates for the importance of regions with extra Gaussians to improve reconstruction. The latter studies implicit global lighting conditions and accurately interprets color from different perspectives and feature embeddings. Our thorough experiments on publicly available datasets show that Metamon-GS surpasses its baseline model and previous versions, delivering superior quality in rendering novel views.
☆ Causal Disentanglement for Robust Long-tail Medical Image Generation
Counterfactual medical image generation effectively addresses data scarcity and enhances the interpretability of medical images. However, due to the complex and diverse pathological features of medical images and the imbalanced class distribution in medical data, generating high-quality and diverse medical images from limited data is significantly challenging. Additionally, to fully leverage the information in limited data, such as anatomical structure information and generate more structurally stable medical images while avoiding distortion or inconsistency. In this paper, in order to enhance the clinical relevance of generated data and improve the interpretability of the model, we propose a novel medical image generation framework, which generates independent pathological and structural features based on causal disentanglement and utilizes text-guided modeling of pathological features to regulate the generation of counterfactual images. First, we achieve feature separation through causal disentanglement and analyze the interactions between features. Here, we introduce group supervision to ensure the independence of pathological and identity features. Second, we leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images. Meanwhile, we enhance accuracy by leveraging a large language model to extract lesion severity and location from medical reports. Additionally, we improve the performance of the latent diffusion model on long-tailed categories through initial noise optimization.
☆ Neglected Risks: The Disturbing Reality of Children's Images in Datasets and the Urgent Call for Accountability
Including children's images in datasets has raised ethical concerns, particularly regarding privacy, consent, data protection, and accountability. These datasets, often built by scraping publicly available images from the Internet, can expose children to risks such as exploitation, profiling, and tracking. Despite the growing recognition of these issues, approaches for addressing them remain limited. We explore the ethical implications of using children's images in AI datasets and propose a pipeline to detect and remove such images. As a use case, we built the pipeline on a Vision-Language Model under the Visual Question Answering task and tested it on the #PraCegoVer dataset. We also evaluate the pipeline on a subset of 100,000 images from the Open Images V7 dataset to assess its effectiveness in detecting and removing images of children. The pipeline serves as a baseline for future research, providing a starting point for more comprehensive tools and methodologies. While we leverage existing models trained on potentially problematic data, our goal is to expose and address this issue. We do not advocate for training or deploying such models, but instead call for urgent community reflection and action to protect children's rights. Ultimately, we aim to encourage the research community to exercise - more than an additional - care in creating new datasets and to inspire the development of tools to protect the fundamental rights of vulnerable groups, particularly children.
comment: ACM Conference on Fairness, Accountability, and Transparency (FAccT 2025)
☆ WT-BCP: Wavelet Transform based Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation
Semi-supervised medical image segmentation (SSMIS) shows promise in reducing reliance on scarce labeled medical data. However, SSMIS field confronts challenges such as distribution mismatches between labeled and unlabeled data, artificial perturbations causing training biases, and inadequate use of raw image information, especially low-frequency (LF) and high-frequency (HF) components.To address these challenges, we propose a Wavelet Transform based Bidirectional Copy-Paste SSMIS framework, named WT-BCP, which improves upon the Mean Teacher approach. Our method enhances unlabeled data understanding by copying random crops between labeled and unlabeled images and employs WT to extract LF and HF details.We propose a multi-input and multi-output model named XNet-Plus, to receive the fused information after WT. Moreover, consistency training among multiple outputs helps to mitigate learning biases introduced by artificial perturbations. During consistency training, the mixed images resulting from WT are fed into both models, with the student model's output being supervised by pseudo-labels and ground-truth. Extensive experiments conducted on 2D and 3D datasets confirm the effectiveness of our model.Code: https://github.com/simzhangbest/WT-BCP.
comment: 6 pages
☆ SG-Reg: Generalizable and Efficient Scene Graph Registration IEEE
This paper addresses the challenges of registering two rigid semantic scene graphs, an essential capability when an autonomous agent needs to register its map against a remote agent, or against a prior map. The hand-crafted descriptors in classical semantic-aided registration, or the ground-truth annotation reliance in learning-based scene graph registration, impede their application in practical real-world environments. To address the challenges, we design a scene graph network to encode multiple modalities of semantic nodes: open-set semantic feature, local topology with spatial awareness, and shape feature. These modalities are fused to create compact semantic node features. The matching layers then search for correspondences in a coarse-to-fine manner. In the back-end, we employ a robust pose estimator to decide transformation according to the correspondences. We manage to maintain a sparse and hierarchical scene representation. Our approach demands fewer GPU resources and fewer communication bandwidth in multi-agent tasks. Moreover, we design a new data generation approach using vision foundation models and a semantic mapping module to reconstruct semantic scene graphs. It differs significantly from previous works, which rely on ground-truth semantic annotations to generate data. We validate our method in a two-agent SLAM benchmark. It significantly outperforms the hand-crafted baseline in terms of registration success rate. Compared to visual loop closure networks, our method achieves a slightly higher registration recall while requiring only 52 KB of communication bandwidth for each query frame. Code available at: \href{http://github.com/HKUST-Aerial-Robotics/SG-Reg}{http://github.com/HKUST-Aerial-Robotics/SG-Reg}.
comment: IEEE Transactions Robotics Regular Paper
☆ ResNetVLLM -- Multi-modal Vision LLM for the Video Understanding Task
In this paper, we introduce ResNetVLLM (ResNet Vision LLM), a novel cross-modal framework for zero-shot video understanding that integrates a ResNet-based visual encoder with a Large Language Model (LLM. ResNetVLLM addresses the challenges associated with zero-shot video models by avoiding reliance on pre-trained video understanding models and instead employing a non-pretrained ResNet to extract visual features. This design ensures the model learns visual and semantic representations within a unified architecture, enhancing its ability to generate accurate and contextually relevant textual descriptions from video inputs. Our experimental results demonstrate that ResNetVLLM achieves state-of-the-art performance in zero-shot video understanding (ZSVU) on several benchmarks, including MSRVTT-QA, MSVD-QA, TGIF-QA FrameQA, and ActivityNet-QA.
☆ ResNetVLLM-2: Addressing ResNetVLLM's Multi-Modal Hallucinations
Large Language Models (LLMs) have transformed natural language processing (NLP) tasks, but they suffer from hallucination, generating plausible yet factually incorrect content. This issue extends to Video-Language Models (VideoLLMs), where textual descriptions may inaccurately represent visual content, resulting in multi-modal hallucinations. In this paper, we address hallucination in ResNetVLLM, a video-language model combining ResNet visual encoders with LLMs. We introduce a two-step protocol: (1) a faithfulness detection strategy that uses a modified Lynx model to assess semantic alignment between generated captions and ground-truth video references, and (2) a hallucination mitigation strategy using Retrieval-Augmented Generation (RAG) with an ad-hoc knowledge base dynamically constructed during inference. Our enhanced model, ResNetVLLM-2, reduces multi-modal hallucinations by cross-verifying generated content against external knowledge, improving factual consistency. Evaluation on the ActivityNet-QA benchmark demonstrates a substantial accuracy increase from 54.8% to 65.3%, highlighting the effectiveness of our hallucination detection and mitigation strategies in enhancing video-language model reliability.
☆ Enhancing DR Classification with Swin Transformer and Shifted Window Attention
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, underscoring the importance of early detection for effective treatment. However, automated DR classification remains challenging due to variations in image quality, class imbalance, and pixel-level similarities that hinder model training. To address these issues, we propose a robust preprocessing pipeline incorporating image cropping, Contrast-Limited Adaptive Histogram Equalization (CLAHE), and targeted data augmentation to improve model generalization and resilience. Our approach leverages the Swin Transformer, which utilizes hierarchical token processing and shifted window attention to efficiently capture fine-grained features while maintaining linear computational complexity. We validate our method on the Aptos and IDRiD datasets for multi-class DR classification, achieving accuracy rates of 89.65% and 97.40%, respectively. These results demonstrate the effectiveness of our model, particularly in detecting early-stage DR, highlighting its potential for improving automated retinal screening in clinical settings.
♻ ☆ Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
comment: Accpeted to Journal of Imaging Informatics in Medicine
♻ ☆ MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations CVPR 2025
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
comment: To be pubilshed in CVPR 2025
♻ ☆ Affordance-Aware Object Insertion via Mask-Aware Dual Diffusion
As a common image editing operation, image composition involves integrating foreground objects into background scenes. In this paper, we expand the application of the concept of Affordance from human-centered image composition tasks to a more general object-scene composition framework, addressing the complex interplay between foreground objects and background scenes. Following the principle of Affordance, we define the affordance-aware object insertion task, which aims to seamlessly insert any object into any scene with various position prompts. To address the limited data issue and incorporate this task, we constructed the SAM-FB dataset, which contains over 3 million examples across more than 3,000 object categories. Furthermore, we propose the Mask-Aware Dual Diffusion (MADD) model, which utilizes a dual-stream architecture to simultaneously denoise the RGB image and the insertion mask. By explicitly modeling the insertion mask in the diffusion process, MADD effectively facilitates the notion of affordance. Extensive experimental results show that our method outperforms the state-of-the-art methods and exhibits strong generalization performance on in-the-wild images. Please refer to our code on https://github.com/KaKituken/affordance-aware-any.
comment: Code is available at: https://github.com/KaKituken/affordance-aware-any. Project page at: https://kakituken.github.io/affordance-any.github.io/
♻ ☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
♻ ☆ Digital Twin Buildings: 3D Modeling, GIS Integration, and Visual Descriptions Using Gaussian Splatting, ChatGPT/Deepseek, and Google Maps Platform
Urban digital twins are virtual replicas of cities that use multi-source data and data analytics to optimize urban planning, infrastructure management, and decision-making. Towards this, we propose a framework focused on the single-building scale. By connecting to cloud mapping platforms such as Google Map Platforms APIs, by leveraging state-of-the-art multi-agent Large Language Models data analysis using ChatGPT(4o) and Deepseek-V3/R1, and by using our Gaussian Splatting-based mesh extraction pipeline, our Digital Twin Buildings framework can retrieve a building's 3D model, visual descriptions, and achieve cloud-based mapping integration with large language model-based data analytics using a building's address, postal code, or geographic coordinates.
comment: -Fixed minor typo
♻ ☆ MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
comment: Submitted to SampTA 2025. This work has been submitted to the IEEE for possible publication
♻ ☆ Exploring Self-Attention for Crop-type Classification Explainability
Transformer models have become a promising approach for crop-type classification. Although their attention weights can be used to understand the relevant time points for crop disambiguation, the validity of these insights depends on how closely the attention weights approximate the actual workings of these black-box models, which is not always clear. In this paper, we introduce a novel explainability framework that systematically evaluates the explanatory power of the attention weights of a standard transformer encoder for crop-type classification. Our results show that attention patterns strongly relate to key dates, which are often associated with critical phenological events for crop-type classification. Further, the sensitivity analysis reveals the limited capability of the attention weights to characterize crop phenology as the identified phenological events depend on the other crops considered during training. This limitation highlights the relevance of future work towards the development of deep learning approaches capable of automatically learning the temporal vegetation dynamics for accurate crop disambiguation
♻ ☆ HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion
comment: 20 pages, 11 figures
♻ ☆ MedM-VL: What Makes a Good Medical LVLM?
Medical image analysis is essential in modern healthcare. Deep learning has redirected research focus toward complex medical multimodal tasks, including report generation and visual question answering. Traditional task-specific models often fall short in handling these challenges. Large vision-language models (LVLMs) offer new solutions for solving such tasks. In this study, we build on the popular LLaVA framework to systematically explore model architectures and training strategies for both 2D and 3D medical LVLMs. We present extensive empirical findings and practical guidance. To support reproducibility and future research, we release a modular codebase, MedM-VL, and two pre-trained models: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code and models are available at: https://github.com/MSIIP/MedM-VL
♻ ☆ Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View IEEE
Recent studies construct deblurred neural radiance fields~(DeRF) using dozens of blurry images, which are not practical scenarios if only a limited number of blurry images are available. This paper focuses on constructing DeRF from sparse-view for more pragmatic real-world scenarios. As observed in our experiments, establishing DeRF from sparse views proves to be a more challenging problem due to the inherent complexity arising from the simultaneous optimization of blur kernels and NeRF from sparse view. Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields. The regularization consists of three key components: Surface smoothness, helps the model accurately predict the scene structure utilizing unseen and additional hidden rays derived from the blur kernel based on statistical tendencies of real-world; Modulated gradient scaling, helps the model adjust the amount of the backpropagated gradient according to the arrangements of scene objects; Perceptual distillation improves the perceptual quality by overcoming the ill-posed multi-view inconsistency of image deblurring and distilling the pre-deblurred information, compensating for the lack of clean information in blurry images. We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
comment: Accepted and to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Project page: https://dogyoonlee.github.io/sparsederf/
♻ ☆ Exploring Temporally-Aware Features for Point Tracking CVPR 2025
Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information. In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/
comment: CVPR 2025. Project page: https://cvlab-kaist.github.io/Chrono/
♻ ☆ StreetCrafter: Street View Synthesis with Controllable Video Diffusion Models
This paper aims to tackle the problem of photorealistic view synthesis from vehicle sensor data. Recent advancements in neural scene representation have achieved notable success in rendering high-quality autonomous driving scenes, but the performance significantly degrades as the viewpoint deviates from the training trajectory. To mitigate this problem, we introduce StreetCrafter, a novel controllable video diffusion model that utilizes LiDAR point cloud renderings as pixel-level conditions, which fully exploits the generative prior for novel view synthesis, while preserving precise camera control. Moreover, the utilization of pixel-level LiDAR conditions allows us to make accurate pixel-level edits to target scenes. In addition, the generative prior of StreetCrafter can be effectively incorporated into dynamic scene representations to achieve real-time rendering. Experiments on Waymo Open Dataset and PandaSet demonstrate that our model enables flexible control over viewpoint changes, enlarging the view synthesis regions for satisfying rendering, which outperforms existing methods.
comment: Project page: https://zju3dv.github.io/street_crafter
♻ ☆ GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 CVPR 2025
We present GFreeDet, an unseen object detection approach that leverages Gaussian splatting and vision Foundation models under model-free setting. Unlike existing methods that rely on predefined CAD templates, GFreeDet reconstructs objects directly from reference videos using Gaussian splatting, enabling robust detection of novel objects without prior 3D models. Evaluated on the BOP-H3 benchmark, GFreeDet achieves comparable performance to CAD-based methods, demonstrating the viability of model-free detection for mixed reality (MR) applications. Notably, GFreeDet won the best overall method and the best fast method awards in the model-free 2D detection track at BOP Challenge 2024.
comment: CVPR 2025 CV4MR Workshop
♻ ☆ Deep Learning-Based Approach for Identification of Potato Leaf Diseases Using Wrapper Feature Selection and Feature Concatenation
The potato is a widely grown crop in many regions of the world. In recent decades, potato farming has gained incredible traction in the world. Potatoes are susceptible to several illnesses that stunt their development. This plant seems to have significant leaf disease. Early Blight and Late Blight are two prevalent leaf diseases that affect potato plants. The early detection of these diseases would be beneficial for enhancing the yield of this crop. The ideal solution is to use image processing to identify and analyze these disorders. Here, we present an autonomous method based on image processing and machine learning to detect late blight disease affecting potato leaves. The proposed method comprises four different phases: (1) Histogram Equalization is used to improve the quality of the input image; (2) feature extraction is performed using a Deep CNN model, then these extracted features are concatenated; (3) feature selection is performed using wrapper-based feature selection; (4) classification is performed using an SVM classifier and its variants. This proposed method achieves the highest accuracy of 99% using SVM by selecting 550 features.
♻ ☆ Unified Dynamic Scanpath Predictors Outperform Individually Trained Neural Models
Previous research on scanpath prediction has mainly focused on group models, disregarding the fact that the scanpaths and attentional behaviors of individuals are diverse. The disregard of these differences is especially detrimental to social human-robot interaction, whereby robots commonly emulate human gaze based on heuristics or predefined patterns. However, human gaze patterns are heterogeneous and varying behaviors can significantly affect the outcomes of such human-robot interactions. To fill this gap, we developed a deep learning-based social cue integration model for saliency prediction to instead predict scanpaths in videos. Our model learned scanpaths by recursively integrating fixation history and social cues through a gating mechanism and sequential attention. We evaluated our approach on gaze datasets of dynamic social scenes, observed under the free-viewing condition. The introduction of fixation history into our models makes it possible to train a single unified model rather than the resource-intensive approach of training individual models for each set of scanpaths. We observed that the late neural integration approach surpasses early fusion when training models on a large dataset, in comparison to a smaller dataset with a similar distribution. Results also indicate that a single unified model, trained on all the observers' scanpaths, performs on par or better than individually trained models. We hypothesize that this outcome is a result of the group saliency representations instilling universal attention in the model, while the supervisory signal and fixation history guide it to learn personalized attentional behaviors, providing the unified model a benefit over individual models due to its implicit representation of universal attention.
♻ ☆ DreamActor-M1: Holistic, Expressive and Robust Human Image Animation with Hybrid Guidance
While recent image-based human animation methods achieve realistic body and facial motion synthesis, critical gaps remain in fine-grained holistic controllability, multi-scale adaptability, and long-term temporal coherence, which leads to their lower expressiveness and robustness. We propose a diffusion transformer (DiT) based framework, DreamActor-M1, with hybrid guidance to overcome these limitations. For motion guidance, our hybrid control signals that integrate implicit facial representations, 3D head spheres, and 3D body skeletons achieve robust control of facial expressions and body movements, while producing expressive and identity-preserving animations. For scale adaptation, to handle various body poses and image scales ranging from portraits to full-body views, we employ a progressive training strategy using data with varying resolutions and scales. For appearance guidance, we integrate motion patterns from sequential frames with complementary visual references, ensuring long-term temporal coherence for unseen regions during complex movements. Experiments demonstrate that our method outperforms the state-of-the-art works, delivering expressive results for portraits, upper-body, and full-body generation with robust long-term consistency. Project Page: https://grisoon.github.io/DreamActor-M1/.
♻ ☆ Detecting AI-Generated Video via Frame Consistency
The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models.
♻ ☆ Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Visual grounding aims to localize the image regions based on a textual query. Given the difficulty of large-scale data curation, we investigate how to effectively learn visual grounding under data-scarce settings in this paper. To address the data scarcity, we propose a novel framework, POBF (Paint Outside the Box and Filter). POBF synthesizes images by inpainting outside the box, tackling a label misalignment issue encountered in previous works. Furthermore, POBF leverages an innovative filtering scheme to select the most effective training data. This scheme combines a hardness score and an overfitting score, balanced by a penalty term. Extensive experiments across four benchmark datasets demonstrate that POBF consistently improves performance, achieving an average gain of 5.83\% over the real-data-only method and outperforming leading baselines by 2.29\%-3.85\% in accuracy. Additionally, we validate the robustness and generalizability of POBF across various generative models, training data sizes, and model architectures.
♻ ☆ A DeNoising FPN With Transformer R-CNN for Tiny Object Detection IEEE
Despite notable advancements in the field of computer vision, the precise detection of tiny objects continues to pose a significant challenge, largely owing to the minuscule pixel representation allocated to these objects in imagery data. This challenge resonates profoundly in the domain of geoscience and remote sensing, where high-fidelity detection of tiny objects can facilitate a myriad of applications ranging from urban planning to environmental monitoring. In this paper, we propose a new framework, namely, DeNoising FPN with Trans R-CNN (DNTR), to improve the performance of tiny object detection. DNTR consists of an easy plug-in design, DeNoising FPN (DN-FPN), and an effective Transformer-based detector, Trans R-CNN. Specifically, feature fusion in the feature pyramid network is important for detecting multiscale objects. However, noisy features may be produced during the fusion process since there is no regularization between the features of different scales. Therefore, we introduce a DN-FPN module that utilizes contrastive learning to suppress noise in each level's features in the top-down path of FPN. Second, based on the two-stage framework, we replace the obsolete R-CNN detector with a novel Trans R-CNN detector to focus on the representation of tiny objects with self-attention. Experimental results manifest that our DNTR outperforms the baselines by at least 17.4% in terms of APvt on the AI-TOD dataset and 9.6% in terms of AP on the VisDrone dataset, respectively. Our code will be available at https://github.com/hoiliu-0801/DNTR.
comment: The article is accepted by IEEE Transactions on Geoscience and Remote Sensing. Our code will be available at https://github.com/hoiliu-0801/DNTR
♻ ☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this letter introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
♻ ☆ PH2ST:ST-Prompt Guided Histological Hypergraph Learning for Spatial Gene Expression Prediction
Spatial Transcriptomics (ST) reveals the spatial distribution of gene expression in tissues, offering critical insights into biological processes and disease mechanisms. However, the high cost, limited coverage, and technical complexity of current ST technologies restrict their widespread use in clinical and research settings, making obtaining high-resolution transcriptomic profiles across large tissue areas challenging. Predicting ST from H\&E-stained histology images has emerged as a promising alternative to address these limitations but remains challenging due to the heterogeneous relationship between histomorphology and gene expression, which is affected by substantial variability across patients and tissue sections. In response, we propose PH2ST, a prompt-guided hypergraph learning framework, which leverages limited ST signals to guide multi-scale histological representation learning for accurate and robust spatial gene expression prediction. Extensive evaluations on two public ST datasets and multiple prompt sampling strategies simulating real-world scenarios demonstrate that PH2ST not only outperforms existing state-of-the-art methods, but also shows strong potential for practical applications such as imputing missing spots, ST super-resolution, and local-to-global prediction, highlighting its value for scalable and cost-effective spatial gene expression mapping in biomedical contexts.
♻ ☆ TVPR: Text-to-Video Person Retrieval and a New Benchmark
Most existing methods for text-based person retrieval focus on text-to-image person retrieval. Nevertheless, due to the lack of dynamic information provided by isolated frames, the performance is hampered when the person is obscured or variable motion details are missed in isolated frames. To overcome this, we propose a novel Text-to-Video Person Retrieval (TVPR) task. Since there is no dataset or benchmark that describes person videos with natural language, we construct a large-scale cross-modal person video dataset containing detailed natural language annotations, termed as Text-to-Video Person Re-identification (TVPReid) dataset. In this paper, we introduce a Multielement Feature Guided Fragments Learning (MFGF) strategy, which leverages the cross-modal text-video representations to provide strong text-visual and text-motion matching information to tackle uncertain occlusion conflicting and variable motion details. Specifically, we establish two potential cross-modal spaces for text and video feature collaborative learning to progressively reduce the semantic difference between text and video. To evaluate the effectiveness of the proposed MFGF, extensive experiments have been conducted on TVPReid dataset. To the best of our knowledge, MFGF is the first successful attempt to use video for text-based person retrieval task and has achieved state-of-the-art performance on TVPReid dataset. The TVPReid dataset will be publicly available to benefit future research.
comment: 9 pages, 8 figures, Proceedings of the 32nd ACM International Conference on Multimedia
♻ ☆ Generalizable Human Gaussians from Single-View Image ICLR 2025
In this work, we tackle the task of learning 3D human Gaussians from a single image, focusing on recovering detailed appearance and geometry including unobserved regions. We introduce a single-view generalizable Human Gaussian Model (HGM), which employs a novel generate-then-refine pipeline with the guidance from human body prior and diffusion prior. Our approach uses a ControlNet to refine rendered back-view images from coarse predicted human Gaussians, then uses the refined image along with the input image to reconstruct refined human Gaussians. To mitigate the potential generation of unrealistic human poses and shapes, we incorporate human priors from the SMPL-X model as a dual branch, propagating image features from the SMPL-X volume to the image Gaussians using sparse convolution and attention mechanisms. Given that the initial SMPL-X estimation might be inaccurate, we gradually refine it with our HGM model. We validate our approach on several publicly available datasets. Our method surpasses previous methods in both novel view synthesis and surface reconstruction. Our approach also exhibits strong generalization for cross-dataset evaluation and in-the-wild images.
comment: ICLR 2025: https://jinnan-chen.github.io/projects/HGM/
♻ ☆ MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation CVPR 2025
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
comment: CVPR 2025 Highlight: https://jinnan-chen.github.io/projects/MAR-3D/
♻ ☆ Efficient Frame Extraction: A Novel Approach Through Frame Similarity and Surgical Tool Tracking for Video Segmentation
The interest in leveraging Artificial Intelligence (AI) for surgical procedures to automate analysis has witnessed a significant surge in recent years. One of the primary tools for recording surgical procedures and conducting subsequent analyses, such as performance assessment, is through videos. However, these operative videos tend to be notably lengthy compared to other fields, spanning from thirty minutes to several hours, which poses a challenge for AI models to effectively learn from them. Despite this challenge, the foreseeable increase in the volume of such videos in the near future necessitates the development and implementation of innovative techniques to tackle this issue effectively. In this article, we propose a novel technique called Kinematics Adaptive Frame Recognition (KAFR) that can efficiently eliminate redundant frames to reduce dataset size and computation time while retaining useful frames to improve accuracy. Specifically, we compute the similarity between consecutive frames by tracking the movement of surgical tools. Our approach follows these steps: $i)$ Tracking phase: a YOLOv8 model is utilized to detect tools presented in the scene, $ii)$ Similarity phase: Similarities between consecutive frames are computed by estimating variation in the spatial positions and velocities of the tools, $iii$) Classification phase: An X3D CNN is trained to classify segmentation. We evaluate the effectiveness of our approach by analyzing datasets obtained through retrospective reviews of cases at two referral centers. The newly annotated Gastrojejunostomy (GJ) dataset covers procedures performed between 2017 and 2021, while the previously annotated Pancreaticojejunostomy (PJ) dataset spans from 2011 to 2022 at the same centers.
comment: 18
♻ ☆ Controlling Space and Time with Diffusion Models ICLR 2025
We present 4DiM, a cascaded diffusion model for 4D novel view synthesis (NVS), supporting generation with arbitrary camera trajectories and timestamps, in natural scenes, conditioned on one or more images. With a novel architecture and sampling procedure, we enable training on a mixture of 3D (with camera pose), 4D (pose+time) and video (time but no pose) data, which greatly improves generalization to unseen images and camera pose trajectories over prior works that focus on limited domains (e.g., object centric). 4DiM is the first-ever NVS method with intuitive metric-scale camera pose control enabled by our novel calibration pipeline for structure-from-motion-posed data. Experiments demonstrate that 4DiM outperforms prior 3D NVS models both in terms of image fidelity and pose alignment, while also enabling the generation of scene dynamics. 4DiM provides a general framework for a variety of tasks including single-image-to-3D, two-image-to-video (interpolation and extrapolation), and pose-conditioned video-to-video translation, which we illustrate qualitatively on a variety of scenes. For an overview see https://4d-diffusion.github.io
comment: ICLR 2025, First three authors contributed equally
♻ ☆ An Efficient and Mixed Heterogeneous Model for Image Restoration
Image restoration~(IR), as a fundamental multimedia data processing task, has a significant impact on downstream visual applications. In recent years, researchers have focused on developing general-purpose IR models capable of handling diverse degradation types, thereby reducing the cost and complexity of model development. Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas. CNNs excel in efficient inference, whereas Transformers and Mamba excel at capturing long-range dependencies and modeling global contexts. While each architecture has demonstrated success in specialized, single-task settings, limited efforts have been made to effectively integrate heterogeneous architectures to jointly address diverse IR challenges. To bridge this gap, we propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion. RestorMixer adopts a three-stage encoder-decoder structure, where each stage is tailored to the resolution and feature characteristics of the input. In the initial high-resolution stage, CNN-based blocks are employed to rapidly extract shallow local features. In the subsequent stages, we integrate a refined multi-directional scanning Mamba module with a multi-scale window-based self-attention mechanism. This hierarchical and adaptive design enables the model to leverage the strengths of CNNs in local feature extraction, Mamba in global context modeling, and attention mechanisms in dynamic feature refinement. Extensive experimental results demonstrate that RestorMixer achieves leading performance across multiple IR tasks while maintaining high inference efficiency. The official code can be accessed at https://github.com/ClimBin/RestorMixer.
comment: v2: modify some typos
♻ ☆ VACT: A Video Automatic Causal Testing System and a Benchmark SC
With the rapid advancement of text-conditioned Video Generation Models (VGMs), the quality of generated videos has significantly improved, bringing these models closer to functioning as ``*world simulators*'' and making real-world-level video generation more accessible and cost-effective. However, the generated videos often contain factual inaccuracies and lack understanding of fundamental physical laws. While some previous studies have highlighted this issue in limited domains through manual analysis, a comprehensive solution has not yet been established, primarily due to the absence of a generalized, automated approach for modeling and assessing the causal reasoning of these models across diverse scenarios. To address this gap, we propose VACT: an **automated** framework for modeling, evaluating, and measuring the causal understanding of VGMs in real-world scenarios. By combining causal analysis techniques with a carefully designed large language model assistant, our system can assess the causal behavior of models in various contexts without human annotation, which offers strong generalization and scalability. Additionally, we introduce multi-level causal evaluation metrics to provide a detailed analysis of the causal performance of VGMs. As a demonstration, we use our framework to benchmark several prevailing VGMs, offering insight into their causal reasoning capabilities. Our work lays the foundation for systematically addressing the causal understanding deficiencies in VGMs and contributes to advancing their reliability and real-world applicability.
comment: A preliminary version of this paper has been accepted by workshop SCSL@ICLR 2025
♻ ☆ Adaptive Mix for Semi-Supervised Medical Image Segmentation
Mix-up is a key technique for consistency regularization-based semi-supervised learning methods, blending two or more images to generate strong-perturbed samples for strong-weak pseudo supervision. Existing mix-up operations are performed either randomly or with predefined fixed rules, such as replacing low-confidence patches with high-confidence ones. The former lacks control over the perturbation degree, leading to overfitting on randomly perturbed samples, while the latter tends to generate images with trivial perturbations, both of which limit the effectiveness of consistency regularization. This paper aims to answer the following question: How can image mix-up perturbation be adaptively performed during training? To this end, we propose an Adaptive Mix algorithm (AdaMix) for image mix-up in a self-paced learning manner. Given that, in general, a model's performance gradually improves during training, AdaMix is equipped with a self-paced curriculum that, in the initial training stage, provides relatively simple perturbed samples and then gradually increases the difficulty of perturbed images by adaptively controlling the perturbation degree based on the model's learning state estimated by a self-paced regularize. We develop three frameworks with our AdaMix, i.e., AdaMix-ST, AdaMix-MT, and AdaMix-CT, for semi-supervised medical image segmentation. Extensive experiments on three public datasets show that the proposed frameworks can achieve superior performance. For example, compared with the state-of-the-art, AdaMix-CT achieves relative improvements of 2.62% in Dice similarity coefficient and 48.25% in average surface distance on the ACDC dataset with 10% labeled data. The results demonstrate that mix-up operations with dynamically adjusted perturbation strength based on the segmentation model's state can significantly enhance the effectiveness of consistency regularization.
♻ ☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
♻ ☆ SeaMo: A Season-Aware Multimodal Foundation Model for Remote Sensing
Remote Sensing (RS) data encapsulates rich multi-dimensional information essential for Earth observation. Its vast volume, diverse sources, and temporal continuity make it particularly well-suited for developing large Visual Foundation Models (VFMs). These models serve as powerful feature extractors, leveraging extensive RS data for pretraining and subsequent fine-tuning in various geoscientific applications. However, existing VFMs in the RS domain often concentrate on specific image characteristics, neglecting the full season-aware potential of RS data. To bridge this gap, we introduce SeaMo, a novel VFM that effectively integrates multimodal and multi-seasonal RS information. SeaMo leverages a masked image modeling framework to fully exploit the spatial, spectral, and seasonal dimensions of RS data. Specifically, we employ unaligned spatial region selection to capture spatial heterogeneity, incorporate multi-source inputs for enhanced multimodal integration, and introduce temporal-multimodal fusion blocks to assimilate seasonal variations effectively. By explicitly modeling the complex, season-dependent attributes of RS data, SeaMo enhances generalization, robustness, and adaptability across geoscientific tasks. Extensive experiments and ablation studies demonstrate its superior performance, underscoring its potential as a foundational model for Earth observation.
Artificial Intelligence 104
☆ A Combinatorial Theory of Dropout: Subnetworks, Graph Geometry, and Generalization
We propose a combinatorial and graph-theoretic theory of dropout by modeling training as a random walk over a high-dimensional graph of binary subnetworks. Each node represents a masked version of the network, and dropout induces stochastic traversal across this space. We define a subnetwork contribution score that quantifies generalization and show that it varies smoothly over the graph. Using tools from spectral graph theory, PAC-Bayes analysis, and combinatorics, we prove that generalizing subnetworks form large, connected, low-resistance clusters, and that their number grows exponentially with network width. This reveals dropout as a mechanism for sampling from a robust, structured ensemble of well-generalizing subnetworks with built-in redundancy. Extensive experiments validate every theoretical claim across diverse architectures. Together, our results offer a unified foundation for understanding dropout and suggest new directions for mask-guided regularization and subnetwork optimization.
comment: 17 pages (9 pages main content and remaining pages are references, appendix which includes 7 figures, proofs and derivations)
☆ SWE-Synth: Synthesizing Verifiable Bug-Fix Data to Enable Large Language Models in Resolving Real-World Bugs
Large language models (LLMs) are transforming automated program repair (APR) through agent-based approaches that localize bugs, generate patches, and verify fixes. However, the lack of high-quality, scalable training datasets, especially those with verifiable outputs and intermediate reasoning traces-limits progress, particularly for open-source models. In this work, we present SWE-Synth, a framework for synthesizing realistic, verifiable, and process-aware bug-fix datasets at the repository level. SWE-Synth leverages LLM agents to simulate debugging workflows, producing not only bug-fix pairs but also test cases and structured repair trajectories. Compared to manually curated datasets, our method scales with minimal human effort while preserving contextual richness and correctness. Experiments show that models trained on SWE-Synth outperform those trained on real-world datasets by 2.3% on SWE-Bench Lite. Our results highlight the potential of synthetic, agent-generated data to advance the state of the art in APR and software engineering automation.
comment: Work in progress
☆ AI for the Open-World: the Learning Principles
During the past decades, numerous successes of AI has been made on "specific capabilities", named closed-world, such as artificial environments or specific real-world tasks. This well-defined narrow capability brings two nice benefits, a clear criterion of success and the opportunity to collect a lot of examples. The criteria not only reveal whether a machine has achieved a goal, but reveal how the machine falls short of the goal. As a result, human designers can fix the problems one after the other until the machine is deemed good enough for the task. Furthermore, the large set of collected examples reduces the difficulty of this problem-fixing process (by the central limit theorem). Do the success in closed-world translate into broad open-world, where a machine is required to perform any task that a human could possibly undertake with fewer examples and less priori knowledge from human designers? No. Because competence in a specific task provides little insight in handling other tasks, the valuable criteria for specific tasks become helpless when handling broader unseen tasks. Furthermore, due to the shortage of examples in unseen tasks, central limit theorem does not stand on our side. At the end, human designers lose the oscilloscope to "hack" an AI system for the open-world. Achieving AI for the open-world requires unique learning principles and innovated techniques, which are different from the ones in building AI for the closed-world. This thesis explores necessary learning principles required to construct AI for the open-world, including rich features (analogy a large tool box), disentangled representation (an organized tool box), and inference-time learning (a tool-savvy hand). Driven by the learning principles, this thesis further proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
comment: PhD thesis. This is not a compilation of published papers, but a new one
☆ A Modularized Design Approach for GelSight Family of Vision-based Tactile Sensors
GelSight family of vision-based tactile sensors has proven to be effective for multiple robot perception and manipulation tasks. These sensors are based on an internal optical system and an embedded camera to capture the deformation of the soft sensor surface, inferring the high-resolution geometry of the objects in contact. However, customizing the sensors for different robot hands requires a tedious trial-and-error process to re-design the optical system. In this paper, we formulate the GelSight sensor design process as a systematic and objective-driven design problem and perform the design optimization with a physically accurate optical simulation. The method is based on modularizing and parameterizing the sensor's optical components and designing four generalizable objective functions to evaluate the sensor. We implement the method with an interactive and easy-to-use toolbox called OptiSense Studio. With the toolbox, non-sensor experts can quickly optimize their sensor design in both forward and inverse ways following our predefined modules and steps. We demonstrate our system with four different GelSight sensors by quickly optimizing their initial design in simulation and transferring it to the real sensors.
comment: The paper is accepted to International Journal of Robotics Research with DOI 10.1177/02783649251339680
☆ SuperCL: Superpixel Guided Contrastive Learning for Medical Image Segmentation Pre-training
Medical image segmentation is a critical yet challenging task, primarily due to the difficulty of obtaining extensive datasets of high-quality, expert-annotated images. Contrastive learning presents a potential but still problematic solution to this issue. Because most existing methods focus on extracting instance-level or pixel-to-pixel representation, which ignores the characteristics between intra-image similar pixel groups. Moreover, when considering contrastive pairs generation, most SOTA methods mainly rely on manually setting thresholds, which requires a large number of gradient experiments and lacks efficiency and generalization. To address these issues, we propose a novel contrastive learning approach named SuperCL for medical image segmentation pre-training. Specifically, our SuperCL exploits the structural prior and pixel correlation of images by introducing two novel contrastive pairs generation strategies: Intra-image Local Contrastive Pairs (ILCP) Generation and Inter-image Global Contrastive Pairs (IGCP) Generation. Considering superpixel cluster aligns well with the concept of contrastive pairs generation, we utilize the superpixel map to generate pseudo masks for both ILCP and IGCP to guide supervised contrastive learning. Moreover, we also propose two modules named Average SuperPixel Feature Map Generation (ASP) and Connected Components Label Generation (CCL) to better exploit the prior structural information for IGCP. Finally, experiments on 8 medical image datasets indicate our SuperCL outperforms existing 12 methods. i.e. Our SuperCL achieves a superior performance with more precise predictions from visualization figures and 3.15%, 5.44%, 7.89% DSC higher than the previous best results on MMWHS, CHAOS, Spleen with 10% annotations. Our code will be released after acceptance.
☆ Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
☆ Exposing the Copycat Problem of Imitation-based Planner: A Novel Closed-Loop Simulator, Causal Benchmark and Joint IL-RL Baseline
Machine learning (ML)-based planners have recently gained significant attention. They offer advantages over traditional optimization-based planning algorithms. These advantages include fewer manually selected parameters and faster development. Within ML-based planning, imitation learning (IL) is a common algorithm. It primarily learns driving policies directly from supervised trajectory data. While IL has demonstrated strong performance on many open-loop benchmarks, it remains challenging to determine if the learned policy truly understands fundamental driving principles, rather than simply extrapolating from the ego-vehicle's initial state. Several studies have identified this limitation and proposed algorithms to address it. However, these methods often use original datasets for evaluation. In these datasets, future trajectories are heavily dependent on initial conditions. Furthermore, IL often overfits to the most common scenarios. It struggles to generalize to rare or unseen situations. To address these challenges, this work proposes: 1) a novel closed-loop simulator supporting both imitation and reinforcement learning, 2) a causal benchmark derived from the Waymo Open Dataset to rigorously assess the impact of the copycat problem, and 3) a novel framework integrating imitation learning and reinforcement learning to overcome the limitations of purely imitative approaches. The code for this work will be released soon.
☆ Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
☆ AI with Emotions: Exploring Emotional Expressions in Large Language Models NAACL 2025
The human-level performance of Large Language Models (LLMs) across various tasks has raised expectations for the potential of Artificial Intelligence (AI) to possess emotions someday. To explore the capability of current LLMs to express emotions in their outputs, we conducted an experiment using several LLMs (OpenAI GPT, Google Gemini, Meta Llama3, and Cohere Command R+) to role-play as agents answering questions with specified emotional states.We defined the emotional states using Russell's Circumplex model, a well-established framework that characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes. We chose this model for its simplicity, utilizing two continuous parameters, which allows for better controllability in applications involving continuous changes in emotional states. The responses generated were evaluated using a sentiment analysis model, independent of the LLMs, trained on the GoEmotions dataset. The evaluation showed that the emotional states of the generated answers were consistent with the specifications, demonstrating the LLMs' capability for emotional expression. This indicates the potential for LLM-based AI agents to simulate emotions, opening up a wide range of applications for emotion-based interactions, such as advisors or consultants who can provide advice or opinions with a personal touch.
comment: 14 pages, 8 figures, accepted to the Natural Language Processing for Digital Humanities (NLP4DH) workshop at NAACL 2025
☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
☆ IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays
Spine surgery is a high-risk intervention demanding precise execution, often supported by image-based navigation systems. Recently, supervised learning approaches have gained attention for reconstructing 3D spinal anatomy from sparse fluoroscopic data, significantly reducing reliance on radiation-intensive 3D imaging systems. However, these methods typically require large amounts of annotated training data and may struggle to generalize across varying patient anatomies or imaging conditions. Instance-learning approaches like Gaussian splatting could offer an alternative by avoiding extensive annotation requirements. While Gaussian splatting has shown promise for novel view synthesis, its application to sparse, arbitrarily posed real intraoperative X-rays has remained largely unexplored. This work addresses this limitation by extending the $R^2$-Gaussian splatting framework to reconstruct anatomically consistent 3D volumes under these challenging conditions. We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views, and enhancing reconstruction quality. Notably, our framework requires no pretraining, making it inherently adaptable to new patients and anatomies. We evaluated our approach using an ex-vivo dataset. Expert surgical evaluation confirmed the clinical utility of the 3D reconstructions for navigation, especially when using 20 to 30 views, and highlighted the standardization's benefit for anatomical clarity. Benchmarking via quantitative 2D metrics (PSNR/SSIM) confirmed performance trade-offs compared to idealized settings, but also validated the improvement gained from standardization over raw inputs. This work demonstrates the feasibility of instance-based volumetric reconstruction from arbitrary sparse-view X-rays, advancing intraoperative 3D imaging for surgical navigation.
☆ Learning Critically: Selective Self Distillation in Federated Learning on Non-IID Data
Federated learning (FL) enables multiple clients to collaboratively train a global model while keeping local data decentralized. Data heterogeneity (non-IID) across clients has imposed significant challenges to FL, which makes local models re-optimize towards their own local optima and forget the global knowledge, resulting in performance degradation and convergence slowdown. Many existing works have attempted to address the non-IID issue by adding an extra global-model-based regularizing item to the local training but without an adaption scheme, which is not efficient enough to achieve high performance with deep learning models. In this paper, we propose a Selective Self-Distillation method for Federated learning (FedSSD), which imposes adaptive constraints on the local updates by self-distilling the global model's knowledge and selectively weighting it by evaluating the credibility at both the class and sample level. The convergence guarantee of FedSSD is theoretically analyzed and extensive experiments are conducted on three public benchmark datasets, which demonstrates that FedSSD achieves better generalization and robustness in fewer communication rounds, compared with other state-of-the-art FL methods.
☆ Video-MMLU: A Massive Multi-Discipline Lecture Understanding Benchmark
Recent advancements in language multimodal models (LMMs) for video have demonstrated their potential for understanding video content, yet the task of comprehending multi-discipline lectures remains largely unexplored. We introduce Video-MMLU, a massive benchmark designed to evaluate the capabilities of LMMs in understanding Multi-Discipline Lectures. We evaluate over 90 open-source and proprietary models, ranging from 0.5B to 40B parameters. Our results highlight the limitations of current models in addressing the cognitive challenges presented by these lectures, especially in tasks requiring both perception and reasoning. Additionally, we explore how the number of visual tokens and the large language models influence performance, offering insights into the interplay between multimodal perception and reasoning in lecture comprehension.
comment: Code, docs, and benchmark are all avaliable at https://enxinsong.com/Video-MMLU-web/
☆ FarsEval-PKBETS: A new diverse benchmark for evaluating Persian large language models
Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark
comment: 24 pages, 3 figures, 3 tables
☆ Uncovering Issues in the Radio Access Network by Looking at the Neighbors
Mobile network operators (MNOs) manage Radio Access Networks (RANs) with massive amounts of cells over multiple radio generations (2G-5G). To handle such complexity, operations teams rely on monitoring systems, including anomaly detection tools that identify unexpected behaviors. In this paper, we present c-ANEMON, a Contextual ANomaly dEtection MONitor for the RAN based on Graph Neural Networks (GNNs). Our solution captures spatio-temporal variations by analyzing the behavior of individual cells in relation to their local neighborhoods, enabling the detection of anomalies that are independent of external mobility factors. This, in turn, allows focusing on anomalies associated with network issues (e.g., misconfigurations, equipment failures). We evaluate c-ANEMON using real-world data from a large European metropolitan area (7,890 cells; 3 months). First, we show that the GNN model within our solution generalizes effectively to cells from previously unseen areas, suggesting the possibility of using a single model across extensive deployment regions. Then, we analyze the anomalies detected by c-ANEMON through manual inspection and define several categories of long-lasting anomalies (6+ hours). Notably, 45.95% of these anomalies fall into a category that is more likely to require intervention by operations teams.
comment: 7 pages
☆ An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework CVPR 2025
Existing LLM-enabled multi-agent frameworks are predominantly limited to digital or simulated environments and confined to narrowly focused knowledge domain, constraining their applicability to complex engineering tasks that require the design of physical embodiment, cross-disciplinary integration, and constraint-aware reasoning. This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering to autonomously generate functional prototypes with minimal direct human design input. Operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints. To validate its capabilities, the framework is applied to a real-world challenge involving autonomous water-quality monitoring and sampling, where traditional methods are labor-intensive and ecologically disruptive. Leveraging the proposed system, a fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control. The design process was carried out by specialized agents, including a high-level planning agent responsible for problem abstraction and dedicated agents for structural, electronics, control, and software development. This approach demonstrates the potential of LLM-based multi-agent systems to automate real-world engineering workflows and reduce reliance on extensive domain expertise.
comment: Accepted by CVPR 2025 Workshop
☆ Evaluating Temporal Plasticity in Foundation Time Series Models for Incremental Fine-tuning IJCNN 2025
Time series foundation models excel at diverse time series forecasting tasks, but their capacity for continuous improvement through incremental learning remains unexplored. We present the first comprehensive study investigating these models' temporal plasticity - their ability to progressively enhance performance through continual learning while maintaining existing capabilities. Through experiments on real-world datasets exhibiting distribution shifts, we evaluate both conventional deep learning models and foundation models using a novel continual learning framework. Our findings reveal that while traditional models struggle with performance deterioration during incremental fine-tuning, foundation models like Time-MoE and Chronos demonstrate sustained improvement in predictive accuracy. This suggests that optimizing foundation model fine-tuning strategies may be more valuable than developing domain-specific small models. Our research introduces new evaluation methodologies and insights for developing foundation time series models with robust continuous learning capabilities.
comment: Accepted at IJCNN 2025
☆ A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Synthetic Electronic Health Records (EHRs) offer a valuable opportunity to create privacy preserving and harmonized structured data, supporting numerous applications in healthcare. Key benefits of synthetic data include precise control over the data schema, improved fairness and representation of patient populations, and the ability to share datasets without concerns about compromising real individuals privacy. Consequently, the AI community has increasingly turned to Large Language Models (LLMs) to generate synthetic data across various domains. However, a significant challenge in healthcare is ensuring that synthetic health records reliably generalize across different hospitals, a long standing issue in the field. In this work, we evaluate the current state of commercial LLMs for generating synthetic data and investigate multiple aspects of the generation process to identify areas where these models excel and where they fall short. Our main finding from this work is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases, ultimately limiting their ability to generalize across diverse hospital settings.
comment: Accepted at the Conference of Health, Inference, Learning (CHIL 2025) in Berkeley, CA. To appear in PMLR later in 2025
☆ A Framework for Benchmarking and Aligning Task-Planning Safety in LLM-Based Embodied Agents
Large Language Models (LLMs) exhibit substantial promise in enhancing task-planning capabilities within embodied agents due to their advanced reasoning and comprehension. However, the systemic safety of these agents remains an underexplored frontier. In this study, we present Safe-BeAl, an integrated framework for the measurement (SafePlan-Bench) and alignment (Safe-Align) of LLM-based embodied agents' behaviors. SafePlan-Bench establishes a comprehensive benchmark for evaluating task-planning safety, encompassing 2,027 daily tasks and corresponding environments distributed across 8 distinct hazard categories (e.g., Fire Hazard). Our empirical analysis reveals that even in the absence of adversarial inputs or malicious intent, LLM-based agents can exhibit unsafe behaviors. To mitigate these hazards, we propose Safe-Align, a method designed to integrate physical-world safety knowledge into LLM-based embodied agents while maintaining task-specific performance. Experiments across a variety of settings demonstrate that Safe-BeAl provides comprehensive safety validation, improving safety by 8.55 - 15.22%, compared to embodied agents based on GPT-4, while ensuring successful task completion.
comment: 16 pages, 10 figures
☆ Surrogate Fitness Metrics for Interpretable Reinforcement Learning
We employ an evolutionary optimization framework that perturbs initial states to generate informative and diverse policy demonstrations. A joint surrogate fitness function guides the optimization by combining local diversity, behavioral certainty, and global population diversity. To assess demonstration quality, we apply a set of evaluation metrics, including the reward-based optimality gap, fidelity interquartile means (IQMs), fitness composition analysis, and trajectory visualizations. Hyperparameter sensitivity is also examined to better understand the dynamics of trajectory optimization. Our findings demonstrate that optimizing trajectory selection via surrogate fitness metrics significantly improves interpretability of RL policies in both discrete and continuous environments. In gridworld domains, evaluations reveal significantly enhanced demonstration fidelities compared to random and ablated baselines. In continuous control, the proposed framework offers valuable insights, particularly for early-stage policies, while fidelity-based optimization proves more effective for mature policies. By refining and systematically analyzing surrogate fitness functions, this study advances the interpretability of RL models. The proposed improvements provide deeper insights into RL decision-making, benefiting applications in safety-critical and explainability-focused domains.
comment: 30 pages, 7 figures, under review
☆ Risk Assessment Framework for Code LLMs via Leveraging Internal States
The pre-training paradigm plays a key role in the success of Large Language Models (LLMs), which have been recognized as one of the most significant advancements of AI recently. Building on these breakthroughs, code LLMs with advanced coding capabilities bring huge impacts on software engineering, showing the tendency to become an essential part of developers' daily routines. However, the current code LLMs still face serious challenges related to trustworthiness, as they can generate incorrect, insecure, or unreliable code. Recent exploratory studies find that it can be promising to detect such risky outputs by analyzing LLMs' internal states, akin to how the human brain unconsciously recognizes its own mistakes. Yet, most of these approaches are limited to narrow sub-domains of LLM operations and fall short of achieving industry-level scalability and practicability. To address these challenges, in this paper, we propose PtTrust, a two-stage risk assessment framework for code LLM based on internal state pre-training, designed to integrate seamlessly with the existing infrastructure of software companies. The core idea is that the risk assessment framework could also undergo a pre-training process similar to LLMs. Specifically, PtTrust first performs unsupervised pre-training on large-scale unlabeled source code to learn general representations of LLM states. Then, it uses a small, labeled dataset to train a risk predictor. We demonstrate the effectiveness of PtTrust through fine-grained, code line-level risk assessment and demonstrate that it generalizes across tasks and different programming languages. Further experiments also reveal that PtTrust provides highly intuitive and interpretable features, fostering greater user trust. We believe PtTrust makes a promising step toward scalable and trustworthy assurance for code LLMs.
comment: To appear in the 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion'25 Industry Track), June 23-28, 2025, Trondheim, Norway. This work was supported by Fujitsu Limited
☆ AlphaZero-Edu: Making AlphaZero Accessible to Everyone
Recent years have witnessed significant progress in reinforcement learning, especially with Zero-like paradigms, which have greatly boosted the generalization and reasoning abilities of large-scale language models. Nevertheless, existing frameworks are often plagued by high implementation complexity and poor reproducibility. To tackle these challenges, we present AlphaZero-Edu, a lightweight, education-focused implementation built upon the mathematical framework of AlphaZero. It boasts a modular architecture that disentangles key components, enabling transparent visualization of the algorithmic processes. Additionally, it is optimized for resource-efficient training on a single NVIDIA RTX 3090 GPU and features highly parallelized self-play data generation, achieving a 3.2-fold speedup with 8 processes. In Gomoku matches, the framework has demonstrated exceptional performance, achieving a consistently high win rate against human opponents. AlphaZero-Edu has been open-sourced at https://github.com/StarLight1212/AlphaZero_Edu, providing an accessible and practical benchmark for both academic research and industrial applications.
☆ Towards Optimal Circuit Generation: Multi-Agent Collaboration Meets Collective Intelligence
Large language models (LLMs) have transformed code generation, yet their application in hardware design produces gate counts 38\%--1075\% higher than human designs. We present CircuitMind, a multi-agent framework that achieves human-competitive efficiency through three key innovations: syntax locking (constraining generation to basic logic gates), retrieval-augmented generation (enabling knowledge-driven design), and dual-reward optimization (balancing correctness with efficiency). To evaluate our approach, we introduce TC-Bench, the first gate-level benchmark harnessing collective intelligence from the TuringComplete ecosystem -- a competitive circuit design platform with hundreds of thousands of players. Experiments show CircuitMind enables 55.6\% of model implementations to match or exceed top-tier human experts in composite efficiency metrics. Most remarkably, our framework elevates the 14B Phi-4 model to outperform both GPT-4o mini and Gemini 2.0 Flash, achieving efficiency comparable to the top 25\% of human experts without requiring specialized training. These innovations establish a new paradigm for hardware optimization where collaborative AI systems leverage collective human expertise to achieve optimal circuit designs. Our model, data, and code are open-source at https://github.com/BUAA-CLab/CircuitMind.
comment: 9 pages, 6 figures
☆ Consensus in Motion: A Case of Dynamic Rationality of Sequential Learning in Probability Aggregation
We propose a framework for probability aggregation based on propositional probability logic. Unlike conventional judgment aggregation, which focuses on static rationality, our model addresses dynamic rationality by ensuring that collective beliefs update consistently with new information. We show that any consensus-compatible and independent aggregation rule on a non-nested agenda is necessarily linear. Furthermore, we provide sufficient conditions for a fair learning process, where individuals initially agree on a specified subset of propositions known as the common ground, and new information is restricted to this shared foundation. This guarantees that updating individual judgments via Bayesian conditioning-whether performed before or after aggregation-yields the same collective belief. A distinctive feature of our framework is its treatment of sequential decision-making, which allows new information to be incorporated progressively through multiple stages while maintaining the established common ground. We illustrate our findings with a running example in a political scenario concerning healthcare and immigration policies.
comment: Submitted to the International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2025)
☆ VM-BHINet:Vision Mamba Bimanual Hand Interaction Network for 3D Interacting Hand Mesh Recovery From a Single RGB Image
Understanding bimanual hand interactions is essential for realistic 3D pose and shape reconstruction. However, existing methods struggle with occlusions, ambiguous appearances, and computational inefficiencies. To address these challenges, we propose Vision Mamba Bimanual Hand Interaction Network (VM-BHINet), introducing state space models (SSMs) into hand reconstruction to enhance interaction modeling while improving computational efficiency. The core component, Vision Mamba Interaction Feature Extraction Block (VM-IFEBlock), combines SSMs with local and global feature operations, enabling deep understanding of hand interactions. Experiments on the InterHand2.6M dataset show that VM-BHINet reduces Mean per-joint position error (MPJPE) and Mean per-vertex position error (MPVPE) by 2-3%, significantly surpassing state-of-the-art methods.
☆ UFO2: The Desktop AgentOS
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
comment: The source code of UFO2 is publicly available at https://github.com/microsoft/UFO/, with comprehensive documentation provided at https://microsoft.github.io/UFO/
☆ K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics
The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical information from various human locomotion activities. Multidimensional human motion data significantly deepen the understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective data-driven approaches, and they neglect the significant effects of acquisition interference in real applications.To fill this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines (0$^\circ$, $\pm$5$^\circ$, and $\pm$10$^\circ$), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions (muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion. The dataset is available at https://k2muse.github.io/.
comment: 23 pages, 13 figures,4 tables
☆ Toward the Axiomatization of Intelligence: Structure, Time, and Existence
This study aims to construct an axiomatic definition of intelligence within a meta-framework that defines the method of definition, addressing intelligence as an inherently naive and polysemous concept. Initially, we formalize a set-theoretic representation of the universe as the domain wherein intelligence exists and characterize intelligence as a structure that involves temporal evolution and interaction with other sets. Starting from a naive definition of intelligence as "an entity possessing structures for externally inputting, internally processing, and externally outputting information or matter," we axiomatically reformulate it within this set-theoretical depiction of the universe. Applying this axiomatic definition, we compare and interpret three examples -- Hebbian non-optimized neural networks (NNs), backpropagation-optimized NNs, and biological reflexive systems -- in terms of their intelligence, structural properties, and biological plausibility. Furthermore, by extending our definition into a categorical framework, we introduce two categories, "Time Category" and "Intelligence Category," along with the functorial relationships between them, demonstrating the potential to represent changes and mimicry relationships among intelligent systems abstractly. Additionally, since intelligence, as defined herein, functions effectively only when accompanied by temporal interactions, we introduce the concept of "activity" and explore how activity-based conditions influence classifications and interpretations of intelligence. Finally, we suggest that our definitional methodology is not limited to intelligence alone, but can be similarly applied to other concepts, such as consciousness and emotion, advocating for their formal reinterpretation through the same procedural steps: defining a universal representation, selecting naive definitions, and axiomatic formalization.
comment: 37 pages, 4 tables, in English, in Japanese
☆ HealthGenie: Empowering Users with Healthy Dietary Guidance through Knowledge Graph and Large Language Models
Seeking dietary guidance often requires navigating complex professional knowledge while accommodating individual health conditions. Knowledge Graphs (KGs) offer structured and interpretable nutritional information, whereas Large Language Models (LLMs) naturally facilitate conversational recommendation delivery. In this paper, we present HealthGenie, an interactive system that combines the strengths of LLMs and KGs to provide personalized dietary recommendations along with hierarchical information visualization for a quick and intuitive overview. Upon receiving a user query, HealthGenie performs query refinement and retrieves relevant information from a pre-built KG. The system then visualizes and highlights pertinent information, organized by defined categories, while offering detailed, explainable recommendation rationales. Users can further tailor these recommendations by adjusting preferences interactively. Our evaluation, comprising a within-subject comparative experiment and an open-ended discussion, demonstrates that HealthGenie effectively supports users in obtaining personalized dietary guidance based on their health conditions while reducing interaction effort and cognitive load. These findings highlight the potential of LLM-KG integration in supporting decision-making through explainable and visualized information. We examine the system's usefulness and effectiveness with an N=12 within-subject study and provide design considerations for future systems that integrate conversational LLM and KG.
☆ Phoenix: A Motion-based Self-Reflection Framework for Fine-grained Robotic Action Correction CVPR2025
Building a generalizable self-correction system is crucial for robots to recover from failures. Despite advancements in Multimodal Large Language Models (MLLMs) that empower robots with semantic reflection ability for failure, translating semantic reflection into how to correct fine-grained robotic actions remains a significant challenge. To address this gap, we build the Phoenix framework, which leverages motion instruction as a bridge to connect high-level semantic reflection with low-level robotic action correction. In this motion-based self-reflection framework, we start with a dual-process motion adjustment mechanism with MLLMs to translate the semantic reflection into coarse-grained motion instruction adjustment. To leverage this motion instruction for guiding how to correct fine-grained robotic actions, a multi-task motion-conditioned diffusion policy is proposed to integrate visual observations for high-frequency robotic action correction. By combining these two models, we could shift the demand for generalization capability from the low-level manipulation policy to the MLLMs-driven motion adjustment model and facilitate precise, fine-grained robotic action correction. Utilizing this framework, we further develop a lifelong learning method to automatically improve the model's capability from interactions with dynamic environments. The experiments conducted in both the RoboMimic simulation and real-world scenarios prove the superior generalization and robustness of our framework across a variety of manipulation tasks. Our code is released at \href{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}.
comment: Accepted by CVPR2025
☆ Modality Selection and Skill Segmentation via Cross-Modality Attention
Incorporating additional sensory modalities such as tactile and audio into foundational robotic models poses significant challenges due to the curse of dimensionality. This work addresses this issue through modality selection. We propose a cross-modality attention (CMA) mechanism to identify and selectively utilize the modalities that are most informative for action generation at each timestep. Furthermore, we extend the application of CMA to segment primitive skills from expert demonstrations and leverage this segmentation to train a hierarchical policy capable of solving long-horizon, contact-rich manipulation tasks.
☆ NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag: (Normalized Weight and Activation Guided Compression), a unified framework for zero-shot shape preserving compression algorithms. We compressed Llama-2 7B/13B/70B and Llama-3 8/70BB models, using two popular forms of shape-preserving compression, vector quantization NoWag-VQ (NoWag for Vector Quantization), and unstructured/semi-structured pruning NoWag-P (NoWag for Pruning). We found that NoWag-VQ significantly outperforms state-of-the-art zero shot VQ, and that NoWag-P performs competitively against state-of-the-art methods. These results suggest commonalities between these compression paradigms that could inspire future work. Our code is available at https://github.com/LawrenceRLiu/NoWag
☆ ReasoningV: Efficient Verilog Code Generation with Adaptive Hybrid Reasoning Model
Large Language Models (LLMs) have advanced Verilog code generation significantly, yet face challenges in data quality, reasoning capabilities, and computational efficiency. This paper presents ReasoningV, a novel model employing a hybrid reasoning strategy that integrates trained intrinsic capabilities with dynamic inference adaptation for Verilog code generation. Our framework introduces three complementary innovations: (1) ReasoningV-5K, a high-quality dataset of 5,000 functionally verified instances with reasoning paths created through multi-dimensional filtering of PyraNet samples; (2) a two-stage training approach combining parameter-efficient fine-tuning for foundational knowledge with full-parameter optimization for enhanced reasoning; and (3) an adaptive reasoning mechanism that dynamically adjusts reasoning depth based on problem complexity, reducing token consumption by up to 75\% while preserving performance. Experimental results demonstrate ReasoningV's effectiveness with a pass@1 accuracy of 57.8\% on VerilogEval-human, achieving performance competitive with leading commercial models like Gemini-2.0-flash (59.5\%) and exceeding the previous best open-source model by 10.4 percentage points. ReasoningV offers a more reliable and accessible pathway for advancing AI-driven hardware design automation, with our model, data, and code available at https://github.com/BUAA-CLab/ReasoningV.
comment: 9 pages, 4 figures
☆ LLM-Enabled In-Context Learning for Data Collection Scheduling in UAV-assisted Sensor Networks
Unmanned Aerial Vehicles (UAVs) are increasingly being used in various private and commercial applications, e.g. traffic control, package delivery, and Search and Rescue (SAR) operations. Machine Learning (ML) methods used in UAV-assisted Sensor Networks (UASNETs) and especially in Deep Reinforcement Learning (DRL) face challenges such as complex and lengthy model training, gaps between simulation and reality, and low sample efficiency, which conflict with the urgency of emergencies such as SAR operations. This paper proposes In-Context Learning (ICL)-based Data Collection Scheduling (ICLDC) scheme, as an alternative to DRL in emergencies. The UAV collects and transmits logged sensory data, to an LLM, to generate a task description in natural language, from which it obtains a data collection schedule to be executed by the UAV. The system continuously adapts by adding feedback to task descriptions and utilizing feedback for future decisions. This method is tested against jailbreaking attacks, where task description is manipulated to undermine network performance, highlighting the vulnerability of LLMs to such attacks. The proposed ICLDC outperforms the Maximum Channel Gain by reducing cumulative packet loss by approximately 56\%. ICLDC presents a promising direction for intelligent scheduling and control in UAV-assisted data collection.
comment: 8 pages, 7 figures,
☆ VGNC: Reducing the Overfitting of Sparse-view 3DGS via Validation-guided Gaussian Number Control
Sparse-view 3D reconstruction is a fundamental yet challenging task in practical 3D reconstruction applications. Recently, many methods based on the 3D Gaussian Splatting (3DGS) framework have been proposed to address sparse-view 3D reconstruction. Although these methods have made considerable advancements, they still show significant issues with overfitting. To reduce the overfitting, we introduce VGNC, a novel Validation-guided Gaussian Number Control (VGNC) approach based on generative novel view synthesis (NVS) models. To the best of our knowledge, this is the first attempt to alleviate the overfitting issue of sparse-view 3DGS with generative validation images. Specifically, we first introduce a validation image generation method based on a generative NVS model. We then propose a Gaussian number control strategy that utilizes generated validation images to determine the optimal Gaussian numbers, thereby reducing the issue of overfitting. We conducted detailed experiments on various sparse-view 3DGS baselines and datasets to evaluate the effectiveness of VGNC. Extensive experiments show that our approach not only reduces overfitting but also improves rendering quality on the test set while decreasing the number of Gaussian points. This reduction lowers storage demands and accelerates both training and rendering. The code will be released.
comment: 10 pages,8 figures
☆ Causality for Natural Language Processing
Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field.
comment: PhD Thesis 2024
☆ Learning from Reasoning Failures via Synthetic Data Generation
Training models on synthetic data has emerged as an increasingly important strategy for improving the performance of generative AI. This approach is particularly helpful for large multimodal models (LMMs) due to the relative scarcity of high-quality paired image-text data compared to language-only data. While a variety of methods have been proposed for generating large multimodal datasets, they do not tailor the synthetic data to address specific deficiencies in the reasoning abilities of LMMs which will be trained with the generated dataset. In contrast, humans often learn in a more efficient manner by seeking out examples related to the types of reasoning where they have failed previously. Inspired by this observation, we propose a new approach for synthetic data generation which is grounded in the analysis of an existing LMM's reasoning failures. Our methodology leverages frontier models to automatically analyze errors produced by a weaker LMM and propose new examples which can be used to correct the reasoning failure via additional training, which are then further filtered to ensure high quality. We generate a large multimodal instruction tuning dataset containing over 553k examples using our approach and conduct extensive experiments demonstrating its utility for improving the performance of LMMs on multiple downstream tasks. Our results show that models trained on our synthetic data can even exceed the performance of LMMs trained on an equivalent amount of additional real data, demonstrating the high value of generating synthetic data targeted to specific reasoning failure modes in LMMs. We will make our dataset and code publicly available.
☆ Biased by Design: Leveraging AI Biases to Enhance Critical Thinking of News Readers
This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
comment: European Conference on Information Systems (ECIS)
☆ Meta-Thinking in LLMs via Multi-Agent Reinforcement Learning: A Survey IEEE
This survey explores the development of meta-thinking capabilities in Large Language Models (LLMs) from a Multi-Agent Reinforcement Learning (MARL) perspective. Meta-thinking self-reflection, assessment, and control of thinking processes is an important next step in enhancing LLM reliability, flexibility, and performance, particularly for complex or high-stakes tasks. The survey begins by analyzing current LLM limitations, such as hallucinations and the lack of internal self-assessment mechanisms. It then talks about newer methods, including RL from human feedback (RLHF), self-distillation, and chain-of-thought prompting, and each of their limitations. The crux of the survey is to talk about how multi-agent architectures, namely supervisor-agent hierarchies, agent debates, and theory of mind frameworks, can emulate human-like introspective behavior and enhance LLM robustness. By exploring reward mechanisms, self-play, and continuous learning methods in MARL, this survey gives a comprehensive roadmap to building introspective, adaptive, and trustworthy LLMs. Evaluation metrics, datasets, and future research avenues, including neuroscience-inspired architectures and hybrid symbolic reasoning, are also discussed.
comment: Submitted to IEEE Transactions on Artificial Intelligence
☆ SlimPipe: Memory-Thrifty and Efficient Pipeline Parallelism for Long-Context LLM Training
Pipeline Parallelism (PP) serves as a crucial technique for training Large Language Models (LLMs), owing to its capability to alleviate memory pressure from model states with relatively low communication overhead. However, in long-context scenarios, existing pipeline parallelism methods fail to address the substantial activation memory pressure, primarily due to the peak memory consumption resulting from the accumulation of activations across multiple microbatches. Moreover, these approaches inevitably introduce considerable pipeline bubbles, further hindering efficiency. To tackle these challenges, we propose SlimPipe, a novel approach to fine-grained pipeline parallelism that employs uniform sequence slicing coupled with one-forward-one-backward (1F1B) schedule. It reduces the accumulated activations from several microbatches to just one, which is split into several slices. Although the slices are evenly partitioned, the computation cost is not equal across slices due to causal attention. We develop a sophisticated workload redistribution technique to address this load imbalance. SlimPipe achieves (1) near-zero memory overhead and (2) minimal pipeline bubbles simultaneously. The effectiveness of SlimPipe has been proven by thorough testing with diverse model architectures, context window sizes, and SlimPipe-specific configurations. For example, on the Llama 70B model, compared to state-of-the-art methods, SlimPipe significantly boosts the Model FLOPs Utilization (MFU) to up to $1.57\times$ for a context length of 512K. More notably, for a context length of 2048K, it maintains over 45% utilization on 256 NVIDIA Hopper 80GB GPUs, while other approaches either suffer significant performance drops or fail entirely due to memory constraints.
☆ On Dimension-Free Transformer: An Application of STP to AI
The matrix expressions for every parts of a transformer are firstly described. Based on semi-tensor product (STP) of matrices the hypervectors are reconsidered and the linear transformation over hypervectors is constructed by using projection. Its properties and calculating formulas are obtained. Using projection-based transformation of hypervector (PBTH), the framework of dimension-free transformer (DFT) is proposed by verifying each linear transformation in a transformer and replacing it by a proper PBTH, which allows the inputs and outputs being of arbitrary dimensions. Using balanced information about all entries, DFT must be more efficient in dealing with signals.
☆ DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
☆ LBM-GNN: Graph Neural Network Enhanced Lattice Boltzmann Method
In this paper, we present LBM-GNN, a novel approach that enhances the traditional Lattice Boltzmann Method (LBM) with Graph Neural Networks (GNNs). We apply this method to fluid dynamics simulations, demonstrating improved stability and accuracy compared to standard LBM implementations. The method is validated using benchmark problems such as the Taylor-Green vortex, focusing on accuracy, conservation properties, and performance across different Reynolds numbers and grid resolutions. Our results indicate that GNN-enhanced LBM can maintain better conservation properties while improving numerical stability at higher Reynolds numbers.
☆ FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
☆ ParaPO: Aligning Language Models to Reduce Verbatim Reproduction of Pre-training Data
Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4).
☆ Seeing Through Risk: A Symbolic Approximation of Prospect Theory
We propose a novel symbolic modeling framework for decision-making under risk that merges interpretability with the core insights of Prospect Theory. Our approach replaces opaque utility curves and probability weighting functions with transparent, effect-size-guided features. We mathematically formalize the method, demonstrate its ability to replicate well-known framing and loss-aversion phenomena, and provide an end-to-end empirical validation on synthetic datasets. The resulting model achieves competitive predictive performance while yielding clear coefficients mapped onto psychological constructs, making it suitable for applications ranging from AI safety to economic policy analysis.
☆ LoRe: Personalizing LLMs via Low-Rank Reward Modeling
Personalizing large language models (LLMs) to accommodate diverse user preferences is essential for enhancing alignment and user satisfaction. Traditional reinforcement learning from human feedback (RLHF) approaches often rely on monolithic value representations, limiting their ability to adapt to individual preferences. We introduce a novel framework that leverages low-rank preference modeling to efficiently learn and generalize user-specific reward functions. By representing reward functions in a low-dimensional subspace and modeling individual preferences as weighted combinations of shared basis functions, our approach avoids rigid user categorization while enabling scalability and few-shot adaptation. We validate our method on multiple preference datasets, demonstrating superior generalization to unseen users and improved accuracy in preference prediction tasks.
☆ ResNetVLLM -- Multi-modal Vision LLM for the Video Understanding Task
In this paper, we introduce ResNetVLLM (ResNet Vision LLM), a novel cross-modal framework for zero-shot video understanding that integrates a ResNet-based visual encoder with a Large Language Model (LLM. ResNetVLLM addresses the challenges associated with zero-shot video models by avoiding reliance on pre-trained video understanding models and instead employing a non-pretrained ResNet to extract visual features. This design ensures the model learns visual and semantic representations within a unified architecture, enhancing its ability to generate accurate and contextually relevant textual descriptions from video inputs. Our experimental results demonstrate that ResNetVLLM achieves state-of-the-art performance in zero-shot video understanding (ZSVU) on several benchmarks, including MSRVTT-QA, MSVD-QA, TGIF-QA FrameQA, and ActivityNet-QA.
☆ ResNetVLLM-2: Addressing ResNetVLLM's Multi-Modal Hallucinations
Large Language Models (LLMs) have transformed natural language processing (NLP) tasks, but they suffer from hallucination, generating plausible yet factually incorrect content. This issue extends to Video-Language Models (VideoLLMs), where textual descriptions may inaccurately represent visual content, resulting in multi-modal hallucinations. In this paper, we address hallucination in ResNetVLLM, a video-language model combining ResNet visual encoders with LLMs. We introduce a two-step protocol: (1) a faithfulness detection strategy that uses a modified Lynx model to assess semantic alignment between generated captions and ground-truth video references, and (2) a hallucination mitigation strategy using Retrieval-Augmented Generation (RAG) with an ad-hoc knowledge base dynamically constructed during inference. Our enhanced model, ResNetVLLM-2, reduces multi-modal hallucinations by cross-verifying generated content against external knowledge, improving factual consistency. Evaluation on the ActivityNet-QA benchmark demonstrates a substantial accuracy increase from 54.8% to 65.3%, highlighting the effectiveness of our hallucination detection and mitigation strategies in enhancing video-language model reliability.
☆ Optimizing SIA Development: A Case Study in User-Centered Design for Estuary, a Multimodal Socially Interactive Agent Framework
This case study presents our user-centered design model for Socially Intelligent Agent (SIA) development frameworks through our experience developing Estuary, an open source multimodal framework for building low-latency real-time socially interactive agents. We leverage the Rapid Assessment Process (RAP) to collect the thoughts of leading researchers in the field of SIAs regarding the current state of the art for SIA development as well as their evaluation of how well Estuary may potentially address current research gaps. We achieve this through a series of end-user interviews conducted by a fellow researcher in the community. We hope that the findings of our work will not only assist the continued development of Estuary but also guide the development of other future frameworks and technologies for SIAs.
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles (AVs), largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present critical case studies and show the pivotal role of explanations in enhancing driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their potential impacts on safety of end-to-end driving.
♻ ☆ AI-Copilot for Business Optimisation: A Framework and A Case Study in Production Scheduling
Business optimisation refers to the process of finding and implementing efficient and cost-effective means of operation to bring a competitive advantage for businesses. Synthesizing problem formulations is an integral part of business optimisation, which relies on human expertise to construct problem formulations using optimisation languages. Interestingly, with advancements in Large Language Models (LLMs), the human expertise needed in problem formulation can be minimized. However, developing an LLM for problem formulation is challenging, due to training data, token limitations, and lack of appropriate performance metrics. For the requirement of training data, recent attention has been directed towards fine-tuning pre-trained LLMs for downstream tasks rather than training an LLM from scratch for a specific task. In this paper, we adopt an LLM fine-tuning approach and propose an AI-Copilot for business optimisation problem formulation. For token limitations, we introduce modularization and prompt engineering techniques to synthesize complex problem formulations as modules that fit into the token limits of LLMs. Additionally, we design performance evaluation metrics that are better suited for assessing the accuracy and quality of problem formulations. The experiment results demonstrate that with this approach we can synthesize complex and large problem formulations for a typical business optimisation problem in production scheduling.
♻ ☆ From Idea to Implementation: Evaluating the Influence of Large Language Models in Software Development -- An Opinion Paper
The introduction of transformer architecture was a turning point in Natural Language Processing (NLP). Models based on the transformer architecture such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformer (GPT) have gained widespread popularity in various applications such as software development and education. The availability of Large Language Models (LLMs) such as ChatGPT and Bard to the general public has showcased the tremendous potential of these models and encouraged their integration into various domains such as software development for tasks such as code generation, debugging, and documentation generation. In this study, opinions from 11 experts regarding their experience with LLMs for software development have been gathered and analysed to draw insights that can guide successful and responsible integration. The overall opinion of the experts is positive, with the experts identifying advantages such as increase in productivity and reduced coding time. Potential concerns and challenges such as risk of over-dependence and ethical considerations have also been highlighted.
comment: The project is partially supported by the DkIT Postgraduate Scholarship, Research Ireland under Grant number 13/RC/2094_2, and Grant number 21/FFP-A/925
♻ ☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
♻ ☆ How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension ICLR 2025
Benchmarking the capabilities and limitations of large language models (LLMs) in graph-related tasks is becoming an increasingly popular and crucial area of research. Recent studies have shown that LLMs exhibit a preliminary ability to understand graph structures and node features. However, the potential of LLMs in graph pattern mining remains largely unexplored. This is a key component in fields such as computational chemistry, biology, and social network analysis. To bridge this gap, this work introduces a comprehensive benchmark to assess LLMs' capabilities in graph pattern tasks. We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions. Additionally, our benchmark tests the LLMs' capacity to autonomously discover graph patterns from data. The benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models. Our experimental framework is designed for easy expansion to accommodate new models and datasets. Our findings reveal that: (1) LLMs have preliminary abilities to understand graph patterns, with O1-mini outperforming in the majority of tasks; (2) Formatting input data to align with the knowledge acquired during pretraining can enhance performance; (3) The strategies employed by LLMs may differ from those used in conventional algorithms.
comment: The paper is published in ICLR 2025
♻ ☆ Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
comment: Accpeted to Journal of Imaging Informatics in Medicine
♻ ☆ MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations CVPR 2025
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
comment: To be pubilshed in CVPR 2025
♻ ☆ DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
♻ ☆ Neural Encoding and Decoding at Scale
Recent work has demonstrated that large-scale, multi-animal models are powerful tools for characterizing the relationship between neural activity and behavior. Current large-scale approaches, however, focus exclusively on either predicting neural activity from behavior (encoding) or predicting behavior from neural activity (decoding), limiting their ability to capture the bidirectional relationship between neural activity and behavior. To bridge this gap, we introduce a multimodal, multi-task model that enables simultaneous Neural Encoding and Decoding at Scale (NEDS). Central to our approach is a novel multi-task-masking strategy, which alternates between neural, behavioral, within-modality, and cross-modality masking. We pretrain our method on the International Brain Laboratory (IBL) repeated site dataset, which includes recordings from 83 animals performing the same visual decision-making task. In comparison to other large-scale models, we demonstrate that NEDS achieves state-of-the-art performance for both encoding and decoding when pretrained on multi-animal data and then fine-tuned on new animals. Surprisingly, NEDS's learned embeddings exhibit emergent properties: even without explicit training, they are highly predictive of the brain regions in each recording. Altogether, our approach is a step towards a foundation model of the brain that enables seamless translation between neural activity and behavior.
♻ ☆ Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination ICML 2025
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
comment: Accepted to CogSci 2025, In-review for ICML 2025
♻ ☆ Understanding and Optimizing Multi-Stage AI Inference Pipelines
The rapid evolution of Large Language Models (LLMs) has driven the need for increasingly sophisticated inference pipelines and hardware platforms. Modern LLM serving extends beyond traditional prefill-decode workflows, incorporating multi-stage processes such as Retrieval Augmented Generation (RAG), key-value (KV) cache retrieval, dynamic model routing, and multi step reasoning. These stages exhibit diverse computational demands, requiring distributed systems that integrate GPUs, ASICs, CPUs, and memory-centric architectures. However, existing simulators lack the fidelity to model these heterogeneous, multi-engine workflows, limiting their ability to inform architectural decisions. To address this gap, we introduce HERMES, a Heterogeneous Multi-stage LLM inference Execution Simulator. HERMES models diverse request stages; including RAG, KV retrieval, reasoning, prefill, and decode across complex hardware hierarchies. HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks while incorporating advanced batching strategies and multi-level memory hierarchies. By integrating real hardware traces with analytical modeling, HERMES captures critical trade-offs such as memory bandwidth contention, inter-cluster communication latency, and batching efficiency in hybrid CPU-accelerator deployments. Through case studies, we explore the impact of reasoning stages on end-to-end latency, optimal batching strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval. HERMES empowers system designers to navigate the evolving landscape of LLM inference, providing actionable insights into optimizing hardware-software co-design for next-generation AI workloads.
comment: Inference System Design for Multi-Stage AI Inference Pipelines. 13 Pages, 15 Figues, 3 Tables
♻ ☆ Metamizer: a versatile neural optimizer for fast and accurate physics simulations ICLR
Efficient physics simulations are essential for numerous applications, ranging from realistic cloth animations or smoke effects in video games, to analyzing pollutant dispersion in environmental sciences, to calculating vehicle drag coefficients in engineering applications. Unfortunately, analytical solutions to the underlying physical equations are rarely available, and numerical solutions require high computational resources. Latest developments in the field of physics-based Deep Learning have led to promising efficiency improvements but still suffer from limited generalization capabilities and low accuracy compared to numerical solvers. In this work, we introduce Metamizer, a novel neural optimizer that iteratively solves a wide range of physical systems with high accuracy by minimizing a physics-based loss function. To this end, our approach leverages a scale-invariant architecture that enhances gradient descent updates to accelerate convergence. Since the neural network itself acts as an optimizer, training this neural optimizer falls into the category of meta-optimization approaches. We demonstrate that Metamizer achieves unprecedented accuracy for deep learning based approaches - sometimes approaching machine precision - across multiple PDEs after training on the Laplace, advection-diffusion and incompressible Navier-Stokes equation as well as on cloth simulations. Remarkably, the model also generalizes to PDEs that were not covered during training such as the Poisson, wave and Burgers equation. Our results suggest that Metamizer could have a profound impact on future numerical solvers, paving the way for fast and accurate neural physics simulations without the need for retraining.
comment: to be published at International Conference on Learning Representations (ICLR) 2025
♻ ☆ The last Dance : Robust backdoor attack via diffusion models and bayesian approach
Diffusion models are state-of-the-art deep learning generative models that are trained on the principle of learning forward and backward diffusion processes via the progressive addition of noise and denoising. In this paper, we aim to fool audio-based DNN models, such as those from the Hugging Face framework, primarily those that focus on audio, in particular transformer-based artificial intelligence models, which are powerful machine learning models that save time and achieve results faster and more efficiently. We demonstrate the feasibility of backdoor attacks (called `BacKBayDiffMod`) on audio transformers derived from Hugging Face, a popular framework in the world of artificial intelligence research. The backdoor attack developed in this paper is based on poisoning model training data uniquely by incorporating backdoor diffusion sampling and a Bayesian approach to the distribution of poisoned data.
comment: Preprint (Last update, will never be modified again( correction of a sketch)): audio backdoor attack on Hugging Face's Transformer pre-trained models. This attack incorporates state-of-the-art Bayesian techniques, a modified Fokker-Planck equation (via Yang-Mills), and a diffusion model approach
♻ ☆ Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families
Clinical case reports encode rich, temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings -- extracted via an LLM-assisted annotation pipeline -- serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: Machine Learning for Healthcare (MLHC 2025)
♻ ☆ A Survey on Multi-Resident Activity Recognition in Smart Environments CCS
Human activity recognition (HAR) is a rapidly growing field that utilizes smart devices, sensors, and algorithms to automatically classify and identify the actions of individuals within a given environment. These systems have a wide range of applications, including assisting with caring tasks, increasing security, and improving energy efficiency. However, there are several challenges that must be addressed in order to effectively utilize HAR systems in multi-resident environments. One of the key challenges is accurately associating sensor observations with the identities of the individuals involved, which can be particularly difficult when residents are engaging in complex and collaborative activities. This paper provides a brief overview of the design and implementation of HAR systems, including a summary of the various data collection devices and approaches used for human activity identification. It also reviews previous research on the use of these systems in multi-resident environments and offers conclusions on the current state of the art in the field.
comment: 16 pages, to appear in Evolution of Information, Communication and Computing Systems (EICCS) Book Series
♻ ☆ Language-Guided Reinforcement Learning for Hard Attention in Few-Shot Learning
Attention mechanisms have demonstrated significant potential in enhancing learning models by identifying key portions of input data, particularly in scenarios with limited training samples. Inspired by human perception, we propose that focusing on essential data segments, rather than the entire dataset, can improve the accuracy and reliability of the learning models. However, identifying these critical data segments, or "hard attention finding," is challenging, especially in few-shot learning, due to the scarcity of training data and the complexity of model parameters. To address this, we introduce LaHA, a novel framework that leverages language-guided deep reinforcement learning to identify and utilize informative data regions, thereby improving both interpretability and performance. Extensive experiments on benchmark datasets validate the effectiveness of LaHA.
♻ ☆ MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.
♻ ☆ Human-AI Collaboration in Cloud Security: Cognitive Hierarchy-Driven Deep Reinforcement Learning
Given the complexity of multi-tenant cloud environments and the growing need for real-time threat mitigation, Security Operations Centers (SOCs) must adopt AI-driven adaptive defense mechanisms to counter Advanced Persistent Threats (APTs). However, SOC analysts face challenges in handling adaptive adversarial tactics, requiring intelligent decision-support frameworks. We propose a Cognitive Hierarchy Theory-driven Deep Q-Network (CHT-DQN) framework that models interactive decision-making between SOC analysts and AI-driven APT bots. The SOC analyst (defender) operates at cognitive level-1, anticipating attacker strategies, while the APT bot (attacker) follows a level-0 policy. By incorporating CHT into DQN, our framework enhances adaptive SOC defense using Attack Graph (AG)-based reinforcement learning. Simulation experiments across varying AG complexities show that CHT-DQN consistently achieves higher data protection and lower action discrepancies compared to standard DQN. A theoretical lower bound further confirms its superiority as AG complexity increases. A human-in-the-loop (HITL) evaluation on Amazon Mechanical Turk (MTurk) reveals that SOC analysts using CHT-DQN-derived transition probabilities align more closely with adaptive attackers, leading to better defense outcomes. Moreover, human behavior aligns with Prospect Theory (PT) and Cumulative Prospect Theory (CPT): participants are less likely to reselect failed actions and more likely to persist with successful ones. This asymmetry reflects amplified loss sensitivity and biased probability weighting -- underestimating gains after failure and overestimating continued success. Our findings highlight the potential of integrating cognitive models into deep reinforcement learning to improve real-time SOC decision-making for cloud security.
♻ ☆ Training neural networks without backpropagation using particles
Neural networks are a group of neurons stacked together in multiple layers to mimic the biological neurons in a human brain. Neural networks have been trained using the backpropagation algorithm based on gradient descent strategy for several decades. Several variants have been developed to improve the backpropagation algorithm. The loss function for the neural network is optimized through backpropagation, but several local minima exist in the manifold of the constructed neural network. We obtain several solutions matching the minima. The gradient descent strategy cannot avoid the problem of local minima and gets stuck in the minima due to the initialization. Particle swarm optimization (PSO) was proposed to select the best local minima among the search space of the loss function. The search space is limited to the instantiated particles in the PSO algorithm, and sometimes it cannot select the best solution. In the proposed approach, we overcome the problem of gradient descent and the limitation of the PSO algorithm by training individual neurons separately, capable of collectively solving the problem as a group of neurons forming a network. Our code and data are available at https://github.com/dipkmr/train-nn-wobp/
comment: 15 pages, 8 figures, Added GitHub source code and corrected a few sentences in Latex file, Added additional literature review to the paper
♻ ☆ Provable unlearning in topic modeling and downstream tasks
Machine unlearning algorithms are increasingly important as legal concerns arise around the provenance of training data, but verifying the success of unlearning is often difficult. Provable guarantees for unlearning are often limited to supervised learning settings. In this paper, we provide the first theoretical guarantees for unlearning in the pre-training and fine-tuning paradigm by studying topic models, simple bag-of-words language models that can be adapted to solve downstream tasks like retrieval and classification. First, we design a provably effective unlearning algorithm for topic models that incurs a computational overhead independent of the size of the original dataset. Our analysis additionally quantifies the deletion capacity of the model -- i.e., the number of examples that can be unlearned without incurring a significant cost in model performance. Finally, we formally extend our analyses to account for adaptation to a given downstream task. In particular, we design an efficient algorithm to perform unlearning after fine-tuning the topic model via a linear head. Notably, we show that it is easier to unlearn pre-training data from models that have been fine-tuned to a particular task, and one can unlearn this data without modifying the base model.
♻ ☆ Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design NAACL 2025
Mixture-of-Experts (MoE) has successfully scaled up models while maintaining nearly constant computing costs. By employing a gating network to route input tokens, it selectively activates a subset of expert networks to process the corresponding token embeddings. However, in practice, the efficiency of MoE is challenging to achieve due to two key reasons: imbalanced expert activation, which leads to substantial idle time during model or expert parallelism, and insufficient capacity utilization; massive communication overhead, induced by numerous expert routing combinations in expert parallelism at the system level. Previous works typically formulate it as the load imbalance issue characterized by the gating network favoring certain experts over others or attribute it to static execution which fails to adapt to the dynamic expert workload at runtime. In this paper, we exploit it from a brand new perspective, a higher-order view and analysis of MoE routing policies: expert collaboration and specialization where some experts tend to activate broadly with others (collaborative), while others are more likely to activate only with a specific subset of experts (specialized). Our experiments reveal that most experts tend to be overly collaborative, leading to increased communication overhead from repeatedly sending tokens to different accelerators. To this end, we propose a novel collaboration-constrained routing (C2R) strategy to encourage more specialized expert groups, as well as to improve expert utilization, and present an efficient implementation of MoE that further leverages expert specialization. We achieve an average performance improvement of 0.51% and 0.33% on LLaMA-MoE and Qwen-MoE respectively across ten downstream NLP benchmarks, and reduce the all2all communication costs between GPUs, bringing an extra 20%-30% total running time savings on top of the existing SoTA, i.e. MegaBlocks.
comment: NAACL 2025, SAC award for Low-resource Methods for NLP
♻ ☆ Meta-Computing Enhanced Federated Learning in IIoT: Satisfaction-Aware Incentive Scheme via DRL-Based Stackelberg Game
The Industrial Internet of Things (IIoT) leverages Federated Learning (FL) for distributed model training while preserving data privacy, and meta-computing enhances FL by optimizing and integrating distributed computing resources, improving efficiency and scalability. Efficient IIoT operations require a trade-off between model quality and training latency. Consequently, a primary challenge of FL in IIoT is to optimize overall system performance by balancing model quality and training latency. This paper designs a satisfaction function that accounts for data size, Age of Information (AoI), and training latency for meta-computing. Additionally, the satisfaction function is incorporated into the utility functions to incentivize nodes in IIoT participation in model training. We model the utility functions of servers and nodes as a two-stage Stackelberg game and employ a deep reinforcement learning approach to learn the Stackelberg equilibrium. This approach ensures balanced rewards and enhances the applicability of the incentive scheme for IIoT. Simulation results demonstrate that, under the same budget constraints, the proposed incentive scheme improves utility by at least 23.7% compared to existing FL schemes without compromising model accuracy.
♻ ☆ Seek and Solve Reasoning for Table Question Answering ICASSP 2025
The complexities of table structures and question logic make table-based question answering (TQA) tasks challenging for Large Language Models (LLMs), often requiring task simplification before solving. This paper reveals that the reasoning process during task simplification may be more valuable than the simplified tasks themselves and aims to improve TQA performance by leveraging LLMs' reasoning capabilities. We propose a Seek-and-Solve pipeline that instructs the LLM to first seek relevant information and then answer questions, integrating these two stages at the reasoning level into a coherent Seek-and-Solve Chain of Thought (SS-CoT). Additionally, we distill a single-step TQA-solving prompt from this pipeline, using demonstrations with SS-CoT paths to guide the LLM in solving complex TQA tasks under In-Context Learning settings. Our experiments show that our approaches result in improved performance and reliability while being efficient. Our findings emphasize the importance of eliciting LLMs' reasoning capabilities to handle complex TQA tasks effectively.
comment: Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
To address the challenges of limited behavioral intelligence and overly simplified vehicle behavior modeling in autonomous driving simulations, this paper proposes the Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). Leveraging Level-k game theory, we model human driver decision-making using reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse behaviors, improving the intelligence and realism of surrounding vehicles in simulation. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent decisions as an ego vehicle and generating diverse, realistic driving scenarios as surrounding vehicles. The code for CHARMS will be released at https://github.com/WUTAD-Wjy/CHARMS.
♻ ☆ Following the Whispers of Values: Unraveling Neural Mechanisms Behind Value-Oriented Behaviors in LLMs
Despite the impressive performance of large language models (LLMs), they can present unintended biases and harmful behaviors driven by encoded values, emphasizing the urgent need to understand the value mechanisms behind them. However, current research primarily evaluates these values through external responses with a focus on AI safety, lacking interpretability and failing to assess social values in real-world contexts. In this paper, we propose a novel framework called ValueExploration, which aims to explore the behavior-driven mechanisms of National Social Values within LLMs at the neuron level. As a case study, we focus on Chinese Social Values and first construct C-voice, a large-scale bilingual benchmark for identifying and evaluating Chinese Social Values in LLMs. By leveraging C-voice, we then identify and locate the neurons responsible for encoding these values according to activation difference. Finally, by deactivating these neurons, we analyze shifts in model behavior, uncovering the internal mechanism by which values influence LLM decision-making. Extensive experiments on four representative LLMs validate the efficacy of our framework. The benchmark and code will be available.
♻ ☆ Information Gain Is Not All You Need
Autonomous exploration in mobile robotics often involves a trade-off between two objectives: maximizing environmental coverage and minimizing the total path length. In the widely used information gain paradigm, exploration is guided by the expected value of observations. While this approach is effective under budget-constrained settings--where only a limited number of observations can be made--it fails to align with quality-constrained scenarios, in which the robot must fully explore the environment to a desired level of certainty or quality. In such cases, total information gain is effectively fixed, and maximizing it per step can lead to inefficient, greedy behavior and unnecessary backtracking. This paper argues that information gain should not serve as an optimization objective in quality-constrained exploration. Instead, it should be used to filter viable candidate actions. We propose a novel heuristic, distance advantage, which selects candidate frontiers based on a trade-off between proximity to the robot and remoteness from other frontiers. This heuristic aims to reduce future detours by prioritizing exploration of isolated regions before the robot's opportunity to visit them efficiently has passed. We evaluate our method in simulated environments against classical frontier-based exploration and gain-maximizing approaches. Results show that distance advantage significantly reduces total path length across a variety of environments, both with and without access to prior map predictions. Our findings challenge the assumption that more accurate gain estimation improves performance and offer a more suitable alternative for the quality-constrained exploration paradigm.
comment: 9 pages, 6 figures, under review
♻ ☆ A Survey on Music Generation from Single-Modal, Cross-Modal, and Multi-Modal Perspectives
Multi-modal music generation, using multiple modalities like text, images, and video alongside musical scores and audio as guidance, is an emerging research area with broad applications. This paper reviews this field, categorizing music generation systems from the perspective of modalities. The review covers modality representation, multi-modal data alignment, and their utilization to guide music generation. Current datasets and evaluation methods are also discussed. Key challenges in this area include effective multi-modal integration, large-scale comprehensive datasets, and systematic evaluation methods. Finally, an outlook on future research directions is provided, focusing on creativity, efficiency, multi-modal alignment, and evaluation.
♻ ☆ Conditioning and AGM-like belief change in the Desirability-Indifference framework
We show how the AGM framework for belief change (expansion, revision, contraction) can be extended to deal with conditioning in the so-called Desirability-Indifference framework, based on abstract notions of accepting and rejecting options, as well as on abstract notions of events. This level of abstraction allows us to deal simultaneously with classical and quantum probability theory.
comment: 12 pages
♻ ☆ Unified Dynamic Scanpath Predictors Outperform Individually Trained Neural Models
Previous research on scanpath prediction has mainly focused on group models, disregarding the fact that the scanpaths and attentional behaviors of individuals are diverse. The disregard of these differences is especially detrimental to social human-robot interaction, whereby robots commonly emulate human gaze based on heuristics or predefined patterns. However, human gaze patterns are heterogeneous and varying behaviors can significantly affect the outcomes of such human-robot interactions. To fill this gap, we developed a deep learning-based social cue integration model for saliency prediction to instead predict scanpaths in videos. Our model learned scanpaths by recursively integrating fixation history and social cues through a gating mechanism and sequential attention. We evaluated our approach on gaze datasets of dynamic social scenes, observed under the free-viewing condition. The introduction of fixation history into our models makes it possible to train a single unified model rather than the resource-intensive approach of training individual models for each set of scanpaths. We observed that the late neural integration approach surpasses early fusion when training models on a large dataset, in comparison to a smaller dataset with a similar distribution. Results also indicate that a single unified model, trained on all the observers' scanpaths, performs on par or better than individually trained models. We hypothesize that this outcome is a result of the group saliency representations instilling universal attention in the model, while the supervisory signal and fixation history guide it to learn personalized attentional behaviors, providing the unified model a benefit over individual models due to its implicit representation of universal attention.
♻ ☆ Conditioning through indifference in quantum mechanics
We can learn (more) about the state a quantum system is in through measurements. We look at how to describe the uncertainty about a quantum system's state conditional on executing such measurements. We show that by exploiting the interplay between desirability, coherence and indifference, a general rule for conditioning can be derived. We then apply this rule to conditioning on measurement outcomes, and show how it generalises to conditioning on a set of measurement outcomes.
comment: 11 pages
♻ ☆ Fine-Grained and Multi-Dimensional Metrics for Document-Level Machine Translation NAACL 2025
Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and the outputs from GPT4-as-a-judge are available at https://github.com/EIT-NLP/BLEUless_DocMT
comment: Accepted at NAACL 2025 Student Research Workshop
♻ ☆ DreamActor-M1: Holistic, Expressive and Robust Human Image Animation with Hybrid Guidance
While recent image-based human animation methods achieve realistic body and facial motion synthesis, critical gaps remain in fine-grained holistic controllability, multi-scale adaptability, and long-term temporal coherence, which leads to their lower expressiveness and robustness. We propose a diffusion transformer (DiT) based framework, DreamActor-M1, with hybrid guidance to overcome these limitations. For motion guidance, our hybrid control signals that integrate implicit facial representations, 3D head spheres, and 3D body skeletons achieve robust control of facial expressions and body movements, while producing expressive and identity-preserving animations. For scale adaptation, to handle various body poses and image scales ranging from portraits to full-body views, we employ a progressive training strategy using data with varying resolutions and scales. For appearance guidance, we integrate motion patterns from sequential frames with complementary visual references, ensuring long-term temporal coherence for unseen regions during complex movements. Experiments demonstrate that our method outperforms the state-of-the-art works, delivering expressive results for portraits, upper-body, and full-body generation with robust long-term consistency. Project Page: https://grisoon.github.io/DreamActor-M1/.
♻ ☆ Detecting AI-Generated Video via Frame Consistency
The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models.
♻ ☆ Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
♻ ☆ Preference Diffusion for Recommendation ICLR 2025
Recommender systems predict personalized item rankings based on user preference distributions derived from historical behavior data. Recently, diffusion models (DMs) have gained attention in recommendation for their ability to model complex distributions, yet current DM-based recommenders often rely on traditional objectives like mean squared error (MSE) or recommendation objectives, which are not optimized for personalized ranking tasks or fail to fully leverage DM's generative potential. To address this, we propose PreferDiff, a tailored optimization objective for DM-based recommenders. PreferDiff transforms BPR into a log-likelihood ranking objective and integrates multiple negative samples to better capture user preferences. Specifically, we employ variational inference to handle the intractability through minimizing the variational upper bound and replaces MSE with cosine error to improve alignment with recommendation tasks. Finally, we balance learning generation and preference to enhance the training stability of DMs. PreferDiff offers three key benefits: it is the first personalized ranking loss designed specifically for DM-based recommenders and it improves ranking and faster convergence by addressing hard negatives. We also prove that it is theoretically connected to Direct Preference Optimization which indicates that it has the potential to align user preferences in DM-based recommenders via generative modeling. Extensive experiments across three benchmarks validate its superior recommendation performance and commendable general sequential recommendation capabilities. Our codes are available at https://github.com/lswhim/PreferDiff.
comment: Accepted by ICLR 2025
♻ ☆ Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Visual grounding aims to localize the image regions based on a textual query. Given the difficulty of large-scale data curation, we investigate how to effectively learn visual grounding under data-scarce settings in this paper. To address the data scarcity, we propose a novel framework, POBF (Paint Outside the Box and Filter). POBF synthesizes images by inpainting outside the box, tackling a label misalignment issue encountered in previous works. Furthermore, POBF leverages an innovative filtering scheme to select the most effective training data. This scheme combines a hardness score and an overfitting score, balanced by a penalty term. Extensive experiments across four benchmark datasets demonstrate that POBF consistently improves performance, achieving an average gain of 5.83\% over the real-data-only method and outperforming leading baselines by 2.29\%-3.85\% in accuracy. Additionally, we validate the robustness and generalizability of POBF across various generative models, training data sizes, and model architectures.
♻ ☆ Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this letter introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
♻ ☆ Exploring the Frontiers of LLMs in Psychological Applications: A Comprehensive Review
This paper explores the frontiers of large language models (LLMs) in psychology applications. Psychology has undergone several theoretical changes, and the current use of Artificial Intelligence (AI) and Machine Learning, particularly LLMs, promises to open up new research directions. We provide a detailed exploration of how LLMs like ChatGPT are transforming psychological research. It discusses the impact of LLMs across various branches of psychology, including cognitive and behavioral, clinical and counseling, educational and developmental, and social and cultural psychology, highlighting their potential to simulate aspects of human cognition and behavior. The paper delves into the capabilities of these models to emulate human-like text generation, offering innovative tools for literature review, hypothesis generation, experimental design, experimental subjects, data analysis, academic writing, and peer review in psychology. While LLMs are essential in advancing research methodologies in psychology, the paper also cautions about their technical and ethical challenges. There are issues like data privacy, the ethical implications of using LLMs in psychological research, and the need for a deeper understanding of these models' limitations. Researchers should responsibly use LLMs in psychological studies, adhering to ethical standards and considering the potential consequences of deploying these technologies in sensitive areas. Overall, the article provides a comprehensive overview of the current state of LLMs in psychology, exploring potential benefits and challenges. It serves as a call to action for researchers to leverage LLMs' advantages responsibly while addressing associated risks.
♻ ☆ Game-Theoretic Multiagent Reinforcement Learning
Following the remarkable success of the AlphaGo series, significant advances in multi-agent reinforcement learning (MARL) techniques have been witnessed. MARL corresponds to the learning problem in a multi-agent system in which multiple agents learn simultaneously. It is an interdisciplinary domain with a long history that includes game theory, machine learning, stochastic control, psychology, and optimisation. Although MARL has achieved considerable empirical success in solving real-world games, there is a lack of a self-contained overview in the literature that elaborates the game theoretical foundations of modern MARL methods and summarises the recent advances. In fact, the majority of existing surveys are outdated and do not fully cover the recent developments since 2010. In this work, we provide a monograph on MARL that covers both the fundamentals and the latest developments in the research frontier. The goal of our monograph is to provide a self-contained assessment of the current state-of-the-art MARL techniques from a game theoretical perspective. We expect this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing domain and existing domain experts who want to obtain a panoramic view and identify new directions based on recent advances.
♻ ☆ FedEGG: Federated Learning with Explicit Global Guidance
Federated Learning (FL) holds great potential for diverse applications owing to its privacy-preserving nature. However, its convergence is often challenged by non-IID data distributions, limiting its effectiveness in real-world deployments. Existing methods help address these challenges via optimization-based client constraints, adaptive client selection, or the use of pre-trained models or synthetic data. In this work, we reinterpret these approaches as all introducing an \emph{implicit guiding task} to regularize and steer client learning. Following this insight, we propose to introduce an \emph{explicit global guiding task} into the current FL framework to improve convergence and performance. To this end, we present \textbf{FedEGG}, a new FL algorithm that constructs a global guiding task using a well-defined, easy-to-converge learning task based on a public dataset and Large Language Models (LLMs). This approach effectively combines the strengths of federated (the original FL task) and centralized (the global guiding task) learning. We provide a theoretical analysis of FedEGG's convergence, examining the impact of data heterogeneity between the guiding and FL tasks and the guiding strength. Our analysis derives an upper bound for the optimal guiding strength, offering practical insights for implementation. Empirically, FedEGG demonstrates superior performance over state-of-the-art FL methods under both IID and non-IID settings, and further improves their performances when combined.
♻ ☆ From Imitation to Exploration: End-to-end Autonomous Driving based on World Model
In recent years, end-to-end autonomous driving architectures have gained increasing attention due to their advantage in avoiding error accumulation. Most existing end-to-end autonomous driving methods are based on Imitation Learning (IL), which can quickly derive driving strategies by mimicking expert behaviors. However, IL often struggles to handle scenarios outside the training dataset, especially in high-dynamic and interaction-intensive traffic environments. In contrast, Reinforcement Learning (RL)-based driving models can optimize driving decisions through interaction with the environment, improving adaptability and robustness. To leverage the strengths of both IL and RL, we propose RAMBLE, an end-to-end world model-based RL method for driving decision-making. RAMBLE extracts environmental context information from RGB images and LiDAR data through an asymmetrical variational autoencoder. A transformer-based architecture is then used to capture the dynamic transitions of traffic participants. Next, an actor-critic structure reinforcement learning algorithm is applied to derive driving strategies based on the latent features of the current state and dynamics. To accelerate policy convergence and ensure stable training, we introduce a training scheme that initializes the policy network using IL, and employs KL loss and soft update mechanisms to smoothly transition the model from IL to RL. RAMBLE achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0, demonstrating its effectiveness in handling complex and dynamic traffic scenarios. The model will be open-sourced upon paper acceptance at https://github.com/SCP-CN-001/ramble to support further research and development in autonomous driving.
comment: 12 pages, 4 figures, 3 tables; T-ITS under review
♻ ☆ GLoRE: Evaluating Logical Reasoning of Large Language Models
Large language models (LLMs) have shown significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a General Logical Reasoning Evaluation platform that not only consolidates diverse datasets but also standardizes them into a unified format suitable for evaluating large language models across zero-shot and few-shot scenarios. Our experimental results show that compared to the performance of humans and supervised fine-tuning models, the logical reasoning capabilities of large reasoning models, such as OpenAI's o1 mini, DeepSeek R1 and QwQ-32B, have seen remarkable improvements, with QwQ-32B achieving the highest benchmark performance to date. GLoRE is designed as a living project that continuously integrates new datasets and models, facilitating robust and comparative assessments of model performance in both commercial and Huggingface communities.
♻ ☆ Fast Adaptive Anti-Jamming Channel Access via Deep Q Learning and Coarse-Grained Spectrum Prediction
This paper investigates the anti-jamming channel access problem in complex and unknown jamming environments, where the jammer could dynamically adjust its strategies to target different channels. Traditional channel hopping anti-jamming approaches using fixed patterns are ineffective against such dynamic jamming attacks. Although the emerging deep reinforcement learning (DRL) based dynamic channel access approach could achieve the Nash equilibrium under fast-changing jamming attacks, it requires extensive training episodes. To address this issue, we propose a fast adaptive anti-jamming channel access approach guided by the intuition of ``learning faster than the jammer", where a synchronously updated coarse-grained spectrum prediction serves as an auxiliary task for the deep Q learning (DQN) based anti-jamming model. This helps the model identify a superior Q-function compared to standard DRL while significantly reducing the number of training episodes. Numerical results indicate that the proposed approach significantly accelerates the rate of convergence in model training, reducing the required training episodes by up to 70% compared to standard DRL. Additionally, it also achieves a 10% improvement in throughput over NE strategies, owing to the effective use of coarse-grained spectrum prediction.
♻ ☆ A Holistic Evaluation of Piano Sound Quality
This paper aims to develop a holistic evaluation method for piano sound quality to assist in purchasing decisions. Unlike previous studies that focused on the effect of piano performance techniques on sound quality, this study evaluates the inherent sound quality of different pianos. To derive quality evaluation systems, the study uses subjective questionnaires based on a piano sound quality dataset. The method selects the optimal piano classification models by comparing the fine-tuning results of different pre-training models of Convolutional Neural Networks (CNN). To improve the interpretability of the models, the study applies Equivalent Rectangular Bandwidth (ERB) analysis. The results reveal that musically trained individuals are better able to distinguish between the sound quality differences of different pianos. The best fine-tuned CNN pre-trained backbone achieves a high accuracy of 98.3% as the piano classifier. However, the dataset is limited, and the audio is sliced to increase its quantity, resulting in a lack of diversity and balance, so we use focal loss to reduce the impact of data imbalance. To optimize the method, the dataset will be expanded, or few-shot learning techniques will be employed in future research.
comment: 15 pages, 9 figures
♻ ☆ Reconstruction of Differentially Private Text Sanitization via Large Language Models
Differential privacy (DP) is the de facto privacy standard against privacy leakage attacks, including many recently discovered ones against large language models (LLMs). However, we discovered that LLMs could reconstruct the altered/removed privacy from given DP-sanitized prompts. We propose two attacks (black-box and white-box) based on the accessibility to LLMs and show that LLMs could connect the pair of DP-sanitized text and the corresponding private training data of LLMs by giving sample text pairs as instructions (in the black-box attacks) or fine-tuning data (in the white-box attacks). To illustrate our findings, we conduct comprehensive experiments on modern LLMs (e.g., LLaMA-2, LLaMA-3, ChatGPT-3.5, ChatGPT-4, ChatGPT-4o, Claude-3, Claude-3.5, OPT, GPT-Neo, GPT-J, Gemma-2, and Pythia) using commonly used datasets (such as WikiMIA, Pile-CC, and Pile-Wiki) against both word-level and sentence-level DP. The experimental results show promising recovery rates, e.g., the black-box attacks against the word-level DP over WikiMIA dataset gave 72.18% on LLaMA-2 (70B), 82.39% on LLaMA-3 (70B), 75.35% on Gemma-2, 91.2% on ChatGPT-4o, and 94.01% on Claude-3.5 (Sonnet). More urgently, this study indicates that these well-known LLMs have emerged as a new security risk for existing DP text sanitization approaches in the current environment.
♻ ☆ Steganography Beyond Space-Time with Chain of Multimodal AI
Steganography is the art and science of covert writing, with a broad range of applications interwoven within the realm of cybersecurity. As artificial intelligence continues to evolve, its ability to synthesise realistic content emerges as a threat in the hands of cybercriminals who seek to manipulate and misrepresent the truth. Such synthetic content introduces a non-trivial risk of overwriting the subtle changes made for the purpose of steganography. When the signals in both the spatial and temporal domains are vulnerable to unforeseen overwriting, it calls for reflection on what, if any, remains invariant. This study proposes a paradigm in steganography for audiovisual media, where messages are concealed beyond both spatial and temporal domains. A chain of multimodal artificial intelligence is developed to deconstruct audiovisual content into a cover text, embed a message within the linguistic domain, and then reconstruct the audiovisual content through synchronising both auditory and visual modalities with the resultant stego text. The message is encoded by biasing the word sampling process of a language generation model and decoded by analysing the probability distribution of word choices. The accuracy of message transmission is evaluated under both zero-bit and multi-bit capacity settings. Fidelity is assessed through both biometric and semantic similarities, capturing the identities of the recorded face and voice, as well as the core ideas conveyed through the media. Secrecy is examined through statistical comparisons between cover and stego texts. Robustness is tested across various scenarios, including audiovisual resampling, face-swapping, voice-cloning and their combinations.
♻ ☆ AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
♻ ☆ VACT: A Video Automatic Causal Testing System and a Benchmark SC
With the rapid advancement of text-conditioned Video Generation Models (VGMs), the quality of generated videos has significantly improved, bringing these models closer to functioning as ``*world simulators*'' and making real-world-level video generation more accessible and cost-effective. However, the generated videos often contain factual inaccuracies and lack understanding of fundamental physical laws. While some previous studies have highlighted this issue in limited domains through manual analysis, a comprehensive solution has not yet been established, primarily due to the absence of a generalized, automated approach for modeling and assessing the causal reasoning of these models across diverse scenarios. To address this gap, we propose VACT: an **automated** framework for modeling, evaluating, and measuring the causal understanding of VGMs in real-world scenarios. By combining causal analysis techniques with a carefully designed large language model assistant, our system can assess the causal behavior of models in various contexts without human annotation, which offers strong generalization and scalability. Additionally, we introduce multi-level causal evaluation metrics to provide a detailed analysis of the causal performance of VGMs. As a demonstration, we use our framework to benchmark several prevailing VGMs, offering insight into their causal reasoning capabilities. Our work lays the foundation for systematically addressing the causal understanding deficiencies in VGMs and contributes to advancing their reliability and real-world applicability.
comment: A preliminary version of this paper has been accepted by workshop SCSL@ICLR 2025
♻ ☆ How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: V2: Only minor edits were made to the main text, and we've added more supplementary materials
♻ ☆ Steganography in Game Actions
The exchange of messages has always carried with it the timeless challenge of secrecy. From whispers in shadows to the enigmatic notes written in the margins of history, humanity has long sought ways to convey thoughts that remain imperceptible to all but the chosen few. The challenge of subliminal communication has been addressed in various forms of steganography. However, the field faces a fundamental paradox: as the art of concealment advances, so too does the science of revelation, leading to an ongoing evolutionary interplay. This study seeks to extend the boundaries of what is considered a viable steganographic medium. We explore a steganographic paradigm, in which hidden information is communicated through the episodes of multiple agents interacting with an environment. Each agent, acting as an encoder, learns a policy to disguise the very existence of hidden messages within actions seemingly directed toward innocent objectives. Meanwhile, an observer, serving as a decoder, learns to associate behavioural patterns with their respective agents despite their dynamic nature, thereby unveiling the hidden messages. The interactions of agents are governed by the framework of multi-agent reinforcement learning and shaped by feedback from the observer. This framework encapsulates a game-theoretic dilemma, wherein agents face decisions between cooperating to create distinguishable behavioural patterns or defecting to pursue individually optimal yet potentially overlapping episodic actions. As a proof of concept, we exemplify action steganography through the game of labyrinth, a navigation task where subliminal communication is concealed within the act of steering toward a destination, and systematically validate the stego-system in terms of distortion, capacity, secrecy and robustness when subjected to simulated passive and active adversaries.
♻ ☆ MSCCL++: Rethinking GPU Communication Abstractions for Cutting-edge AI Applications
Modern cutting-edge AI applications are being developed over fast-evolving, heterogeneous, nascent hardware devices. This requires frequent reworking of the AI software stack to adopt bottom-up changes from new hardware, which takes time for general-purpose software libraries. Consequently, real applications often develop custom software stacks optimized for their specific workloads and hardware. Custom stacks help in quick development and optimization, but incur a lot of redundant efforts across applications in writing non-portable code. This paper discusses an alternative communication library interface for AI applications that offers both portability and performance by reducing redundant efforts while maintaining flexibility for customization. We present MSCCL++, a novel abstraction of GPU communication based on separation of concerns: (1) a primitive interface provides a minimal hardware abstraction as a common ground for software and hardware developers to write custom communication, and (2) higher-level portable interfaces and specialized implementations enable optimization for different workloads and hardware environments. This approach makes the primitive interface reusable across applications while enabling highly flexible optimization. Compared to state-of-the-art baselines (NCCL, RCCL, and MSCCL), MSCCL++ achieves speedups of up to 5.4$\times$ for collective communication and up to 15% for real-world AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and is also adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open-source and available at https://github.com/microsoft/mscclpp.
comment: 13 pages, 12 figures
♻ ☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
♻ ☆ Airlift Challenge: A Competition for Optimizing Cargo Delivery
Airlift operations require the timely distribution of various cargo, much of which is time sensitive and valuable. These operations, however, have to contend with sudden disruptions from weather and malfunctions, requiring immediate rescheduling. The Airlift Challenge competition seeks possible solutions via a simulator that provides a simplified abstraction of the airlift problem. The simulator uses an OpenAI gym interface that allows participants to create an algorithm for planning agent actions. The algorithm is scored using a remote evaluator against scenarios of ever-increasing difficulty. The second iteration of the competition was underway from November 2023 to April 2024. This paper describes the competition, simulation environment, and results. As a step towards applying generalized planning techniques to the problem, a temporal PDDL domain is presented for the Pickup and Delivery Problem, a model which lies at the core of the Airlift Challenge.
♻ ☆ Nudging: Inference-time Alignment of LLMs via Guided Decoding
Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, nudging employs a small aligned model to generate nudging tokens to guide the base model's output during decoding when the base model's uncertainty is high. We evaluate nudging across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7x-14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
Computation and Language 51
☆ Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
☆ Disentangling Linguistic Features with Dimension-Wise Analysis of Vector Embeddings
Understanding the inner workings of neural embeddings, particularly in models such as BERT, remains a challenge because of their high-dimensional and opaque nature. This paper proposes a framework for uncovering the specific dimensions of vector embeddings that encode distinct linguistic properties (LPs). We introduce the Linguistically Distinct Sentence Pairs (LDSP-10) dataset, which isolates ten key linguistic features such as synonymy, negation, tense, and quantity. Using this dataset, we analyze BERT embeddings with various methods, including the Wilcoxon signed-rank test, mutual information, and recursive feature elimination, to identify the most influential dimensions for each LP. We introduce a new metric, the Embedding Dimension Impact (EDI) score, which quantifies the relevance of each embedding dimension to a LP. Our findings show that certain properties, such as negation and polarity, are robustly encoded in specific dimensions, while others, like synonymy, exhibit more complex patterns. This study provides insights into the interpretability of embeddings, which can guide the development of more transparent and optimized language models, with implications for model bias mitigation and the responsible deployment of AI systems.
PROMPTEVALS: A Dataset of Assertions and Guardrails for Custom Production Large Language Model Pipelines NAACL 2025
Large language models (LLMs) are increasingly deployed in specialized production data processing pipelines across diverse domains -- such as finance, marketing, and e-commerce. However, when running them in production across many inputs, they often fail to follow instructions or meet developer expectations. To improve reliability in these applications, creating assertions or guardrails for LLM outputs to run alongside the pipelines is essential. Yet, determining the right set of assertions that capture developer requirements for a task is challenging. In this paper, we introduce PROMPTEVALS, a dataset of 2087 LLM pipeline prompts with 12623 corresponding assertion criteria, sourced from developers using our open-source LLM pipeline tools. This dataset is 5x larger than previous collections. Using a hold-out test split of PROMPTEVALS as a benchmark, we evaluated closed- and open-source models in generating relevant assertions. Notably, our fine-tuned Mistral and Llama 3 models outperform GPT-4o by 20.93% on average, offering both reduced latency and improved performance. We believe our dataset can spur further research in LLM reliability, alignment, and prompt engineering.
comment: Accepted to NAACL 2025 Main Conference
☆ Evaluating BERTopic on Open-Ended Data: A Case Study with Belgian Dutch Daily Narratives
This study explores BERTopic's potential for modeling open-ended Belgian Dutch daily narratives, contrasting its performance with Latent Dirichlet Allocation (LDA) and KMeans. Although LDA scores well on certain automated metrics, human evaluations reveal semantically irrelevant co-occurrences, highlighting the limitations of purely statistic-based methods. In contrast, BERTopic's reliance on contextual embeddings yields culturally resonant themes, underscoring the importance of hybrid evaluation frameworks that account for morphologically rich languages. KMeans performed less coherently than prior research suggested, pointing to the unique challenges posed by personal narratives. Our findings emphasize the need for robust generalization in NLP models, especially in underrepresented linguistic contexts.
☆ OmniV-Med: Scaling Medical Vision-Language Model for Universal Visual Understanding
The practical deployment of medical vision-language models (Med-VLMs) necessitates seamless integration of textual data with diverse visual modalities, including 2D/3D images and videos, yet existing models typically employ separate encoders for different modalities. To address this limitation, we present OmniV-Med, a unified framework for multimodal medical understanding. Our technical contributions are threefold: First, we construct OmniV-Med-Instruct, a comprehensive multimodal medical dataset containing 252K instructional samples spanning 14 medical image modalities and 11 clinical tasks. Second, we devise a rotary position-adaptive encoder that processes multi-resolution 2D/3D images and videos within a unified architecture, diverging from conventional modality-specific encoders. Third, we introduce a medical-aware token pruning mechanism that exploits spatial-temporal redundancy in volumetric data (e.g., consecutive CT slices) and medical videos, effectively reducing 60\% of visual tokens without performance degradation. Empirical evaluations demonstrate that OmniV-Med-7B achieves state-of-the-art performance on 7 benchmarks spanning 2D/3D medical imaging and video understanding tasks. Notably, our lightweight variant (OmniV-Med-1.5B) attains comparable performance while requiring only 8 RTX3090 GPUs for training and supporting efficient long-video inference. Data, code and model will be released.
☆ FarsEval-PKBETS: A new diverse benchmark for evaluating Persian large language models
Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark
comment: 24 pages, 3 figures, 3 tables
☆ Trans-Zero: Self-Play Incentivizes Large Language Models for Multilingual Translation Without Parallel Data
The rise of Large Language Models (LLMs) has reshaped machine translation (MT), but multilingual MT still relies heavily on parallel data for supervised fine-tuning (SFT), facing challenges like data scarcity for low-resource languages and catastrophic forgetting. To address these issues, we propose TRANS-ZERO, a self-play framework that leverages only monolingual data and the intrinsic multilingual knowledge of LLM. TRANS-ZERO combines Genetic Monte-Carlo Tree Search (G-MCTS) with preference optimization, achieving strong translation performance that rivals supervised methods. Experiments demonstrate that this approach not only matches the performance of models trained on large-scale parallel data but also excels in non-English translation directions. Further analysis reveals that G-MCTS itself significantly enhances translation quality by exploring semantically consistent candidates through iterative translations, providing a robust foundation for the framework's succuss.
comment: 11 pages, 4 figures
☆ A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Synthetic Electronic Health Records (EHRs) offer a valuable opportunity to create privacy preserving and harmonized structured data, supporting numerous applications in healthcare. Key benefits of synthetic data include precise control over the data schema, improved fairness and representation of patient populations, and the ability to share datasets without concerns about compromising real individuals privacy. Consequently, the AI community has increasingly turned to Large Language Models (LLMs) to generate synthetic data across various domains. However, a significant challenge in healthcare is ensuring that synthetic health records reliably generalize across different hospitals, a long standing issue in the field. In this work, we evaluate the current state of commercial LLMs for generating synthetic data and investigate multiple aspects of the generation process to identify areas where these models excel and where they fall short. Our main finding from this work is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases, ultimately limiting their ability to generalize across diverse hospital settings.
comment: Accepted at the Conference of Health, Inference, Learning (CHIL 2025) in Berkeley, CA. To appear in PMLR later in 2025
☆ LeetCodeDataset: A Temporal Dataset for Robust Evaluation and Efficient Training of Code LLMs
We introduce LeetCodeDataset, a high-quality benchmark for evaluating and training code-generation models, addressing two key challenges in LLM research: the lack of reasoning-focused coding benchmarks and self-contained training testbeds. By curating LeetCode Python problems with rich metadata, broad coverage, 100+ test cases per problem, and temporal splits (pre/post July 2024), our dataset enables contamination-free evaluation and efficient supervised fine-tuning (SFT). Experiments show reasoning models significantly outperform non-reasoning counterparts, while SFT with only 2.6K model-generated solutions achieves performance comparable to 110K-sample counterparts. The dataset and evaluation framework are available on Hugging Face and Github.
☆ Risk Assessment Framework for Code LLMs via Leveraging Internal States
The pre-training paradigm plays a key role in the success of Large Language Models (LLMs), which have been recognized as one of the most significant advancements of AI recently. Building on these breakthroughs, code LLMs with advanced coding capabilities bring huge impacts on software engineering, showing the tendency to become an essential part of developers' daily routines. However, the current code LLMs still face serious challenges related to trustworthiness, as they can generate incorrect, insecure, or unreliable code. Recent exploratory studies find that it can be promising to detect such risky outputs by analyzing LLMs' internal states, akin to how the human brain unconsciously recognizes its own mistakes. Yet, most of these approaches are limited to narrow sub-domains of LLM operations and fall short of achieving industry-level scalability and practicability. To address these challenges, in this paper, we propose PtTrust, a two-stage risk assessment framework for code LLM based on internal state pre-training, designed to integrate seamlessly with the existing infrastructure of software companies. The core idea is that the risk assessment framework could also undergo a pre-training process similar to LLMs. Specifically, PtTrust first performs unsupervised pre-training on large-scale unlabeled source code to learn general representations of LLM states. Then, it uses a small, labeled dataset to train a risk predictor. We demonstrate the effectiveness of PtTrust through fine-grained, code line-level risk assessment and demonstrate that it generalizes across tasks and different programming languages. Further experiments also reveal that PtTrust provides highly intuitive and interpretable features, fostering greater user trust. We believe PtTrust makes a promising step toward scalable and trustworthy assurance for code LLMs.
comment: To appear in the 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion'25 Industry Track), June 23-28, 2025, Trondheim, Norway. This work was supported by Fujitsu Limited
☆ Harnessing Generative LLMs for Enhanced Financial Event Entity Extraction Performance
Financial event entity extraction is a crucial task for analyzing market dynamics and building financial knowledge graphs, yet it presents significant challenges due to the specialized language and complex structures in financial texts. Traditional approaches often rely on sequence labeling models, which can struggle with long-range dependencies and the inherent complexity of extracting multiple, potentially overlapping entities. Motivated by the advanced language understanding and generative capabilities of Large Language Models (LLMs), we propose a novel method that reframes financial event entity extraction as a text-to-structured-output generation task. Our approach involves fine-tuning a pre-trained LLM using Parameter-Efficient Fine-Tuning (PEFT) to directly generate a structured representation, such as a JSON object, containing the extracted entities and their precise character spans from the input text. We evaluate our method on the challenging CCKS 2019 Financial Event Entity Extraction dataset, comparing its performance against strong sequence labeling baselines, including SEBERTNets and sebertNets. Experimental results demonstrate that our generative LLM method achieves a new state-of-the-art F1 score on this benchmark, significantly outperforming previous methods. Through detailed quantitative analysis across event types, entity types, and instance complexity, as well as human evaluation, we show that our approach is more effective at handling the nuances of financial text and extracting high-quality entities. This work validates the potential of applying generative LLMs directly to complex, domain-specific information extraction tasks requiring structured output.
☆ Automatic Text Summarization (ATS) for Research Documents in Sorani Kurdish
Extracting concise information from scientific documents aids learners, researchers, and practitioners. Automatic Text Summarization (ATS), a key Natural Language Processing (NLP) application, automates this process. While ATS methods exist for many languages, Kurdish remains underdeveloped due to limited resources. This study develops a dataset and language model based on 231 scientific papers in Sorani Kurdish, collected from four academic departments in two universities in the Kurdistan Region of Iraq (KRI), averaging 26 pages per document. Using Sentence Weighting and Term Frequency-Inverse Document Frequency (TF-IDF) algorithms, two experiments were conducted, differing in whether the conclusions were included. The average word count was 5,492.3 in the first experiment and 5,266.96 in the second. Results were evaluated manually and automatically using ROUGE-1, ROUGE-2, and ROUGE-L metrics, with the best accuracy reaching 19.58%. Six experts conducted manual evaluations using three criteria, with results varying by document. This research provides valuable resources for Kurdish NLP researchers to advance ATS and related fields.
comment: 18 pages, 11 figures, 8 tables
☆ A Hierarchical Framework for Measuring Scientific Paper Innovation via Large Language Models
Measuring scientific paper innovation is both important and challenging. Existing content-based methods often overlook the full-paper context, fail to capture the full scope of innovation, and lack generalization. We propose HSPIM, a hierarchical and training-free framework based on large language models (LLMs). It introduces a Paper-to-Sections-to-QAs decomposition to assess innovation. We segment the text by section titles and use zero-shot LLM prompting to implement section classification, question-answering (QA) augmentation, and weighted novelty scoring. The generated QA pair focuses on section-level innovation and serves as additional context to improve the LLM scoring. For each chunk, the LLM outputs a novelty score and a confidence score. We use confidence scores as weights to aggregate novelty scores into a paper-level innovation score. To further improve performance, we propose a two-layer question structure consisting of common and section-specific questions, and apply a genetic algorithm to optimize the question-prompt combinations. Comprehensive experiments on scientific conference paper datasets show that HSPIM outperforms baseline methods in effectiveness, generalization, and interpretability.
☆ Translation Analytics for Freelancers: I. Introduction, Data Preparation, Baseline Evaluations
This is the first in a series of papers exploring the rapidly expanding new opportunities arising from recent progress in language technologies for individual translators and language service providers with modest resources. The advent of advanced neural machine translation systems, large language models, and their integration into workflows via computer-assisted translation tools and translation management systems have reshaped the translation landscape. These advancements enable not only translation but also quality evaluation, error spotting, glossary generation, and adaptation to domain-specific needs, creating new technical opportunities for freelancers. In this series, we aim to empower translators with actionable methods to harness these advancements. Our approach emphasizes Translation Analytics, a suite of evaluation techniques traditionally reserved for large-scale industry applications but now becoming increasingly available for smaller-scale users. This first paper introduces a practical framework for adapting automatic evaluation metrics -- such as BLEU, chrF, TER, and COMET -- to freelancers' needs. We illustrate the potential of these metrics using a trilingual corpus derived from a real-world project in the medical domain and provide statistical analysis correlating human evaluations with automatic scores. Our findings emphasize the importance of proactive engagement with emerging technologies to not only adapt but thrive in the evolving professional environment.
comment: 28 pages, 4 figures. Accepted at the MT Summit, University of Geneva, June 2025
☆ a1: Steep Test-time Scaling Law via Environment Augmented Generation
Large Language Models (LLMs) have made remarkable breakthroughs in reasoning, yet continue to struggle with hallucinations, logical errors, and inability to self-correct during complex multi-step tasks. Current approaches like chain-of-thought prompting offer limited reasoning capabilities that fail when precise step validation is required. We propose Environment Augmented Generation (EAG), a framework that enhances LLM reasoning through: (1) real-time environmental feedback validating each reasoning step, (2) dynamic branch exploration for investigating alternative solution paths when faced with errors, and (3) experience-based learning from successful reasoning trajectories. Unlike existing methods, EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback with branching exploration. Our a1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks, matching larger models like o1 on competition mathematics while outperforming comparable models by up to 24.4 percentage points. Analysis reveals EAG's distinctive scaling pattern: initial token investment in environment interaction yields substantial long-term performance dividends, with advantages amplifying proportionally to task complexity. EAG's theoretical framework demonstrates how environment interactivity and systematic branch exploration together establish a new paradigm for reliable machine reasoning, particularly for problems requiring precise multi-step calculation and logical verification.
☆ HealthGenie: Empowering Users with Healthy Dietary Guidance through Knowledge Graph and Large Language Models
Seeking dietary guidance often requires navigating complex professional knowledge while accommodating individual health conditions. Knowledge Graphs (KGs) offer structured and interpretable nutritional information, whereas Large Language Models (LLMs) naturally facilitate conversational recommendation delivery. In this paper, we present HealthGenie, an interactive system that combines the strengths of LLMs and KGs to provide personalized dietary recommendations along with hierarchical information visualization for a quick and intuitive overview. Upon receiving a user query, HealthGenie performs query refinement and retrieves relevant information from a pre-built KG. The system then visualizes and highlights pertinent information, organized by defined categories, while offering detailed, explainable recommendation rationales. Users can further tailor these recommendations by adjusting preferences interactively. Our evaluation, comprising a within-subject comparative experiment and an open-ended discussion, demonstrates that HealthGenie effectively supports users in obtaining personalized dietary guidance based on their health conditions while reducing interaction effort and cognitive load. These findings highlight the potential of LLM-KG integration in supporting decision-making through explainable and visualized information. We examine the system's usefulness and effectiveness with an N=12 within-subject study and provide design considerations for future systems that integrate conversational LLM and KG.
☆ BookWorld: From Novels to Interactive Agent Societies for Creative Story Generation
Recent advances in large language models (LLMs) have enabled social simulation through multi-agent systems. Prior efforts focus on agent societies created from scratch, assigning agents with newly defined personas. However, simulating established fictional worlds and characters remain largely underexplored, despite its significant practical value. In this paper, we introduce BookWorld, a comprehensive system for constructing and simulating book-based multi-agent societies. BookWorld's design covers comprehensive real-world intricacies, including diverse and dynamic characters, fictional worldviews, geographical constraints and changes, e.t.c. BookWorld enables diverse applications including story generation, interactive games and social simulation, offering novel ways to extend and explore beloved fictional works. Through extensive experiments, we demonstrate that BookWorld generates creative, high-quality stories while maintaining fidelity to the source books, surpassing previous methods with a win rate of 75.36%. The code of this paper can be found at the project page: https://bookworld2025.github.io/.
comment: 19 pages, 4 figures
☆ Causality for Natural Language Processing
Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field.
comment: PhD Thesis 2024
☆ Are Vision LLMs Road-Ready? A Comprehensive Benchmark for Safety-Critical Driving Video Understanding
Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering. However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored. Autonomous driving systems require sophisticated scene understanding in complex environments, yet existing multimodal benchmarks primarily focus on normal driving conditions, failing to adequately assess VLLMs' performance in safety-critical scenarios. To address this, we introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos. Built around a hierarchical ability taxonomy that aligns with widely adopted frameworks for describing driving scenarios used in assessing highly automated driving systems, DVBench features 10,000 multiple-choice questions with human-annotated ground-truth answers, enabling a comprehensive evaluation of VLLMs' capabilities in perception and reasoning. Experiments on 14 SOTA VLLMs, ranging from 0.5B to 72B parameters, reveal significant performance gaps, with no model achieving over 40% accuracy, highlighting critical limitations in understanding complex driving scenarios. To probe adaptability, we fine-tuned selected models using domain-specific data from DVBench, achieving accuracy gains ranging from 5.24 to 10.94 percentage points, with relative improvements of up to 43.59%. This improvement underscores the necessity of targeted adaptation to bridge the gap between general-purpose VLLMs and mission-critical driving applications. DVBench establishes an essential evaluation framework and research roadmap for developing VLLMs that meet the safety and robustness requirements for real-world autonomous systems. We released the benchmark toolbox and the fine-tuned model at: https://github.com/tong-zeng/DVBench.git.
☆ Meta-Thinking in LLMs via Multi-Agent Reinforcement Learning: A Survey IEEE
This survey explores the development of meta-thinking capabilities in Large Language Models (LLMs) from a Multi-Agent Reinforcement Learning (MARL) perspective. Meta-thinking self-reflection, assessment, and control of thinking processes is an important next step in enhancing LLM reliability, flexibility, and performance, particularly for complex or high-stakes tasks. The survey begins by analyzing current LLM limitations, such as hallucinations and the lack of internal self-assessment mechanisms. It then talks about newer methods, including RL from human feedback (RLHF), self-distillation, and chain-of-thought prompting, and each of their limitations. The crux of the survey is to talk about how multi-agent architectures, namely supervisor-agent hierarchies, agent debates, and theory of mind frameworks, can emulate human-like introspective behavior and enhance LLM robustness. By exploring reward mechanisms, self-play, and continuous learning methods in MARL, this survey gives a comprehensive roadmap to building introspective, adaptive, and trustworthy LLMs. Evaluation metrics, datasets, and future research avenues, including neuroscience-inspired architectures and hybrid symbolic reasoning, are also discussed.
comment: Submitted to IEEE Transactions on Artificial Intelligence
☆ Functional Abstraction of Knowledge Recall in Large Language Models
Pre-trained transformer large language models (LLMs) demonstrate strong knowledge recall capabilities. This paper investigates the knowledge recall mechanism in LLMs by abstracting it into a functional structure. We propose that during knowledge recall, the model's hidden activation space implicitly entails a function execution process where specific activation vectors align with functional components (Input argument, Function body, and Return values). Specifically, activation vectors of relation-related tokens define a mapping function from subjects to objects, with subject-related token activations serving as input arguments and object-related token activations as return values. For experimental verification, we first design a patching-based knowledge-scoring algorithm to identify knowledge-aware activation vectors as independent functional components. Then, we conduct counter-knowledge testing to examine the independent functional effects of each component on knowledge recall outcomes. From this functional perspective, we improve the contextual knowledge editing approach augmented by activation patching. By rewriting incoherent activations in context, we enable improved short-term memory retention for new knowledge prompting.
☆ FairSteer: Inference Time Debiasing for LLMs with Dynamic Activation Steering
Large language models (LLMs) are prone to capturing biases from training corpus, leading to potential negative social impacts. Existing prompt-based debiasing methods exhibit instability due to their sensitivity to prompt changes, while fine-tuning-based techniques incur substantial computational overhead and catastrophic forgetting. In this paper, we propose FairSteer, a novel inference-time debiasing framework without requiring customized prompt design or model retraining. Motivated by the linear representation hypothesis, our preliminary investigation demonstrates that fairness-related features can be encoded into separable directions in the hidden activation space. FairSteer operates in three steps: biased activation detection, debiasing steering vector (DSV) computation, and dynamic activation steering. Specifically, it first trains a lightweight linear classifier to detect bias signatures in activations, and then computes DSVs as intervention directions derived from small contrastive prompt pairs. Subsequently, it performs debiasing by adjusting activations with DSVs in the inference stage. Comprehensive evaluation with six LLMs demonstrates the superiority of FairSteer across question-answering, counterfactual input evaluation and open-ended text generation tasks. Code will be released.
☆ DialogueAgents: A Hybrid Agent-Based Speech Synthesis Framework for Multi-Party Dialogue ICME 2025
Speech synthesis is crucial for human-computer interaction, enabling natural and intuitive communication. However, existing datasets involve high construction costs due to manual annotation and suffer from limited character diversity, contextual scenarios, and emotional expressiveness. To address these issues, we propose DialogueAgents, a novel hybrid agent-based speech synthesis framework, which integrates three specialized agents -- a script writer, a speech synthesizer, and a dialogue critic -- to collaboratively generate dialogues. Grounded in a diverse character pool, the framework iteratively refines dialogue scripts and synthesizes speech based on speech review, boosting emotional expressiveness and paralinguistic features of the synthesized dialogues. Using DialogueAgent, we contribute MultiTalk, a bilingual, multi-party, multi-turn speech dialogue dataset covering diverse topics. Extensive experiments demonstrate the effectiveness of our framework and the high quality of the MultiTalk dataset. We release the dataset and code https://github.com/uirlx/DialogueAgents to facilitate future research on advanced speech synthesis models and customized data generation.
comment: Accepted by ICME 2025. Dataset and code are publicly available: [https://github.com/uirlx/DialogueAgents](https://github.com/uirlx/DialogueAgents)
☆ sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment CVPR 2025
Interpreting neural activity through meaningful latent representations remains a complex and evolving challenge at the intersection of neuroscience and artificial intelligence. We investigate the potential of multimodal foundation models to align invasive brain recordings with natural language. We present SSENSE, a contrastive learning framework that projects single-subject stereo-electroencephalography (sEEG) signals into the sentence embedding space of a frozen CLIP model, enabling sentence-level retrieval directly from brain activity. SSENSE trains a neural encoder on spectral representations of sEEG using InfoNCE loss, without fine-tuning the text encoder. We evaluate our method on time-aligned sEEG and spoken transcripts from a naturalistic movie-watching dataset. Despite limited data, SSENSE achieves promising results, demonstrating that general-purpose language representations can serve as effective priors for neural decoding.
comment: Accepted for poster presentation at the CVPR 2025 Workshop on Multimodal Foundation Models (MMFM3)
☆ CoLoTa: A Dataset for Entity-based Commonsense Reasoning over Long-Tail Knowledge
The rise of Large Language Models (LLMs) has redefined the AI landscape, particularly due to their ability to encode factual and commonsense knowledge, and their outstanding performance in tasks requiring reasoning. Despite these advances, hallucinations and reasoning errors remain a significant barrier to their deployment in high-stakes settings. In this work, we observe that even the most prominent LLMs, such as OpenAI-o1, suffer from high rates of reasoning errors and hallucinations on tasks requiring commonsense reasoning over obscure, long-tail entities. To investigate this limitation, we present a new dataset for Commonsense reasoning over Long-Tail entities (CoLoTa), that consists of 3,300 queries from question answering and claim verification tasks and covers a diverse range of commonsense reasoning skills. We remark that CoLoTa can also serve as a Knowledge Graph Question Answering (KGQA) dataset since the support of knowledge required to answer its queries is present in the Wikidata knowledge graph. However, as opposed to existing KGQA benchmarks that merely focus on factoid questions, our CoLoTa queries also require commonsense reasoning. Our experiments with strong LLM-based KGQA methodologies indicate their severe inability to answer queries involving commonsense reasoning. Hence, we propose CoLoTa as a novel benchmark for assessing both (i) LLM commonsense reasoning capabilities and their robustness to hallucinations on long-tail entities and (ii) the commonsense reasoning capabilities of KGQA methods.
☆ ParaPO: Aligning Language Models to Reduce Verbatim Reproduction of Pre-training Data
Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4).
☆ LoRe: Personalizing LLMs via Low-Rank Reward Modeling
Personalizing large language models (LLMs) to accommodate diverse user preferences is essential for enhancing alignment and user satisfaction. Traditional reinforcement learning from human feedback (RLHF) approaches often rely on monolithic value representations, limiting their ability to adapt to individual preferences. We introduce a novel framework that leverages low-rank preference modeling to efficiently learn and generalize user-specific reward functions. By representing reward functions in a low-dimensional subspace and modeling individual preferences as weighted combinations of shared basis functions, our approach avoids rigid user categorization while enabling scalability and few-shot adaptation. We validate our method on multiple preference datasets, demonstrating superior generalization to unseen users and improved accuracy in preference prediction tasks.
♻ ☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
♻ ☆ DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
♻ ☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
♻ ☆ Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores SIGIR 2025
Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.
comment: Accepted at SIGIR 2025
♻ ☆ WikiHint: A Human-Annotated Dataset for Hint Ranking and Generation SIGIR 2025
The use of Large Language Models (LLMs) has increased significantly with users frequently asking questions to chatbots. In the time when information is readily accessible, it is crucial to stimulate and preserve human cognitive abilities and maintain strong reasoning skills. This paper addresses such challenges by promoting the use of hints as an alternative or a supplement to direct answers. We first introduce a manually constructed hint dataset, WikiHint, which is based on Wikipedia and includes 5,000 hints created for 1,000 questions. We then finetune open-source LLMs for hint generation in answer-aware and answer-agnostic contexts. We assess the effectiveness of the hints with human participants who answer questions with and without the aid of hints. Additionally, we introduce a lightweight evaluation method, HintRank, to evaluate and rank hints in both answer-aware and answer-agnostic settings. Our findings show that (a) the dataset helps generate more effective hints, (b) including answer information along with questions generally improves the quality of generated hints, and (c) encoder-based models perform better than decoder-based models in hint ranking.
comment: Accepted at SIGIR 2025
♻ ☆ Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families
Clinical case reports encode rich, temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings -- extracted via an LLM-assisted annotation pipeline -- serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: Machine Learning for Healthcare (MLHC 2025)
♻ ☆ SLMRec: Distilling Large Language Models into Small for Sequential Recommendation ICLR 2025
Sequential Recommendation (SR) task involves predicting the next item a user is likely to interact with, given their past interactions. The SR models examine the sequence of a user's actions to discern more complex behavioral patterns and temporal dynamics. Recent research demonstrates the great impact of LLMs on sequential recommendation systems, either viewing sequential recommendation as language modeling or serving as the backbone for user representation. Although these methods deliver outstanding performance, there is scant evidence of the necessity of a large language model and how large the language model is needed, especially in the sequential recommendation scene. Meanwhile, due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms that often need to process billions of traffic logs daily. In this paper, we explore the influence of LLMs' depth by conducting extensive experiments on large-scale industry datasets. Surprisingly, our motivational experiments reveal that most intermediate layers of LLMs are redundant, indicating that pruning the remaining layers can still maintain strong performance. Motivated by this insight, we empower small language models for SR, namely SLMRec, which adopt a simple yet effective knowledge distillation method. Moreover, SLMRec is orthogonal to other post-training efficiency techniques, such as quantization and pruning, so that they can be leveraged in combination. Comprehensive experimental results illustrate that the proposed SLMRec model attains the best performance using only 13% of the parameters found in LLM-based recommendation models while simultaneously achieving up to 6.6x and 8.0x speedups in training and inference time costs, respectively. Besides, we provide a theoretical justification for why small language models can perform comparably to large language models in SR.
comment: International Conference on Learning Representations (ICLR 2025)
♻ ☆ Self-evolving Agents with reflective and memory-augmented abilities
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making. In this research, we propose a novel framework by integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents' capabilities in handling multi-tasking and long-span information.
♻ ☆ Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design NAACL 2025
Mixture-of-Experts (MoE) has successfully scaled up models while maintaining nearly constant computing costs. By employing a gating network to route input tokens, it selectively activates a subset of expert networks to process the corresponding token embeddings. However, in practice, the efficiency of MoE is challenging to achieve due to two key reasons: imbalanced expert activation, which leads to substantial idle time during model or expert parallelism, and insufficient capacity utilization; massive communication overhead, induced by numerous expert routing combinations in expert parallelism at the system level. Previous works typically formulate it as the load imbalance issue characterized by the gating network favoring certain experts over others or attribute it to static execution which fails to adapt to the dynamic expert workload at runtime. In this paper, we exploit it from a brand new perspective, a higher-order view and analysis of MoE routing policies: expert collaboration and specialization where some experts tend to activate broadly with others (collaborative), while others are more likely to activate only with a specific subset of experts (specialized). Our experiments reveal that most experts tend to be overly collaborative, leading to increased communication overhead from repeatedly sending tokens to different accelerators. To this end, we propose a novel collaboration-constrained routing (C2R) strategy to encourage more specialized expert groups, as well as to improve expert utilization, and present an efficient implementation of MoE that further leverages expert specialization. We achieve an average performance improvement of 0.51% and 0.33% on LLaMA-MoE and Qwen-MoE respectively across ten downstream NLP benchmarks, and reduce the all2all communication costs between GPUs, bringing an extra 20%-30% total running time savings on top of the existing SoTA, i.e. MegaBlocks.
comment: NAACL 2025, SAC award for Low-resource Methods for NLP
♻ ☆ Idiom Detection in Sorani Kurdish Texts
Idiom detection using Natural Language Processing (NLP) is the computerized process of recognizing figurative expressions within a text that convey meanings beyond the literal interpretation of the words. While idiom detection has seen significant progress across various languages, the Kurdish language faces a considerable research gap in this area despite the importance of idioms in tasks like machine translation and sentiment analysis. This study addresses idiom detection in Sorani Kurdish by approaching it as a text classification task using deep learning techniques. To tackle this, we developed a dataset containing 10,580 sentences embedding 101 Sorani Kurdish idioms across diverse contexts. Using this dataset, we developed and evaluated three deep learning models: KuBERT-based transformer sequence classification, a Recurrent Convolutional Neural Network (RCNN), and a BiLSTM model with an attention mechanism. The evaluations revealed that the transformer model, the fine-tuned BERT, consistently outperformed the others, achieving nearly 99% accuracy while the RCNN achieved 96.5% and the BiLSTM 80%. These results highlight the effectiveness of Transformer-based architectures in low-resource languages like Kurdish. This research provides a dataset, three optimized models, and insights into idiom detection, laying a foundation for advancing Kurdish NLP.
comment: 22 pages, 8 figures, 7 tables
♻ ☆ Seek and Solve Reasoning for Table Question Answering ICASSP 2025
The complexities of table structures and question logic make table-based question answering (TQA) tasks challenging for Large Language Models (LLMs), often requiring task simplification before solving. This paper reveals that the reasoning process during task simplification may be more valuable than the simplified tasks themselves and aims to improve TQA performance by leveraging LLMs' reasoning capabilities. We propose a Seek-and-Solve pipeline that instructs the LLM to first seek relevant information and then answer questions, integrating these two stages at the reasoning level into a coherent Seek-and-Solve Chain of Thought (SS-CoT). Additionally, we distill a single-step TQA-solving prompt from this pipeline, using demonstrations with SS-CoT paths to guide the LLM in solving complex TQA tasks under In-Context Learning settings. Our experiments show that our approaches result in improved performance and reliability while being efficient. Our findings emphasize the importance of eliciting LLMs' reasoning capabilities to handle complex TQA tasks effectively.
comment: Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ Following the Whispers of Values: Unraveling Neural Mechanisms Behind Value-Oriented Behaviors in LLMs
Despite the impressive performance of large language models (LLMs), they can present unintended biases and harmful behaviors driven by encoded values, emphasizing the urgent need to understand the value mechanisms behind them. However, current research primarily evaluates these values through external responses with a focus on AI safety, lacking interpretability and failing to assess social values in real-world contexts. In this paper, we propose a novel framework called ValueExploration, which aims to explore the behavior-driven mechanisms of National Social Values within LLMs at the neuron level. As a case study, we focus on Chinese Social Values and first construct C-voice, a large-scale bilingual benchmark for identifying and evaluating Chinese Social Values in LLMs. By leveraging C-voice, we then identify and locate the neurons responsible for encoding these values according to activation difference. Finally, by deactivating these neurons, we analyze shifts in model behavior, uncovering the internal mechanism by which values influence LLM decision-making. Extensive experiments on four representative LLMs validate the efficacy of our framework. The benchmark and code will be available.
♻ ☆ BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
♻ ☆ Fine-Grained and Multi-Dimensional Metrics for Document-Level Machine Translation NAACL 2025
Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and the outputs from GPT4-as-a-judge are available at https://github.com/EIT-NLP/BLEUless_DocMT
comment: Accepted at NAACL 2025 Student Research Workshop
♻ ☆ Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
♻ ☆ Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval ICLR 2025
Large language models (LLMs) have demonstrated significant potential in clinical decision support. Yet LLMs still suffer from hallucinations and lack fine-grained contextual medical knowledge, limiting their high-stake healthcare applications such as clinical diagnosis. Traditional retrieval-augmented generation (RAG) methods attempt to address these limitations but frequently retrieve sparse or irrelevant information, undermining prediction accuracy. We introduce KARE, a novel framework that integrates knowledge graph (KG) community-level retrieval with LLM reasoning to enhance healthcare predictions. KARE constructs a comprehensive multi-source KG by integrating biomedical databases, clinical literature, and LLM-generated insights, and organizes it using hierarchical graph community detection and summarization for precise and contextually relevant information retrieval. Our key innovations include: (1) a dense medical knowledge structuring approach enabling accurate retrieval of relevant information; (2) a dynamic knowledge retrieval mechanism that enriches patient contexts with focused, multi-faceted medical insights; and (3) a reasoning-enhanced prediction framework that leverages these enriched contexts to produce both accurate and interpretable clinical predictions. Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions. In addition to its impressive prediction accuracy, our framework leverages the reasoning capabilities of LLMs, enhancing the trustworthiness of clinical predictions.
comment: ICLR 2025 Camera-Ready
♻ ☆ CHATTER: A Character Attribution Dataset for Narrative Understanding
Computational narrative understanding studies the identification, description, and interaction of the elements of a narrative: characters, attributes, events, and relations. Narrative research has given considerable attention to defining and classifying character types. However, these character-type taxonomies do not generalize well because they are small, too simple, or specific to a domain. We require robust and reliable benchmarks to test whether narrative models truly understand the nuances of the character's development in the story. Our work addresses this by curating the CHATTER dataset that labels whether a character portrays some attribute for 88124 character-attribute pairs, encompassing 2998 characters, 12967 attributes and 660 movies. We validate a subset of CHATTER, called CHATTEREVAL, using human annotations to serve as a benchmark to evaluate the character attribution task in movie scripts. \evaldataset{} also assesses narrative understanding and the long-context modeling capacity of language models.
comment: accepted to 7th Workshop on Narrative Understanding
♻ ☆ GLoRE: Evaluating Logical Reasoning of Large Language Models
Large language models (LLMs) have shown significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a General Logical Reasoning Evaluation platform that not only consolidates diverse datasets but also standardizes them into a unified format suitable for evaluating large language models across zero-shot and few-shot scenarios. Our experimental results show that compared to the performance of humans and supervised fine-tuning models, the logical reasoning capabilities of large reasoning models, such as OpenAI's o1 mini, DeepSeek R1 and QwQ-32B, have seen remarkable improvements, with QwQ-32B achieving the highest benchmark performance to date. GLoRE is designed as a living project that continuously integrates new datasets and models, facilitating robust and comparative assessments of model performance in both commercial and Huggingface communities.
♻ ☆ ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection
Pre-training large language models (LLMs) necessitates enormous diverse textual corpora, making effective data selection a key challenge for balancing computational resources and model performance. Current methodologies primarily emphasize data quality metrics and mixing proportions, yet they fail to adequately capture the underlying semantic connections between training samples and quality disparities within individual domains. We introduce ToReMi (Topic-based Reweighting for Model improvement), a novel two-stage framework that dynamically adjusts training sample weights according to their topical associations and observed learning patterns. Our comprehensive experiments reveal that ToReMi variants consistently achieve superior performance over conventional pre-training approaches, demonstrating accelerated perplexity reduction across multiple domains and enhanced capabilities on downstream evaluation tasks. Code is available at https://github.com/zxx000728/ToReMi.
♻ ☆ AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
♻ ☆ IFShip: Interpretable Fine-grained Ship Classification with Domain Knowledge-Enhanced Vision-Language Models
End-to-end interpretation currently dominates the remote sensing fine-grained ship classification (RS-FGSC) task. However, the inference process remains uninterpretable, leading to criticisms of these models as "black box" systems. To address this issue, we propose a domain knowledge-enhanced Chain-of-Thought (CoT) prompt generation mechanism, which is used to semi-automatically construct a task-specific instruction-following dataset, TITANIC-FGS. By training on TITANIC-FGS, we adapt general-domain vision-language models (VLMs) to the FGSC task, resulting in a model named IFShip. Building upon IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results show that IFShip outperforms state-of-the-art FGSC algorithms in both interpretability and classification accuracy. Furthermore, compared to VLMs such as LLaVA and MiniGPT-4, IFShip demonstrates superior performance on the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not. Our dataset is publicly available at: https://github.com/lostwolves/IFShip.
♻ ☆ How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: V2: Only minor edits were made to the main text, and we've added more supplementary materials
♻ ☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
♻ ☆ Nudging: Inference-time Alignment of LLMs via Guided Decoding
Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, nudging employs a small aligned model to generate nudging tokens to guide the base model's output during decoding when the base model's uncertainty is high. We evaluate nudging across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7x-14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
Machine Learning 101
☆ Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
☆ A Combinatorial Theory of Dropout: Subnetworks, Graph Geometry, and Generalization
We propose a combinatorial and graph-theoretic theory of dropout by modeling training as a random walk over a high-dimensional graph of binary subnetworks. Each node represents a masked version of the network, and dropout induces stochastic traversal across this space. We define a subnetwork contribution score that quantifies generalization and show that it varies smoothly over the graph. Using tools from spectral graph theory, PAC-Bayes analysis, and combinatorics, we prove that generalizing subnetworks form large, connected, low-resistance clusters, and that their number grows exponentially with network width. This reveals dropout as a mechanism for sampling from a robust, structured ensemble of well-generalizing subnetworks with built-in redundancy. Extensive experiments validate every theoretical claim across diverse architectures. Together, our results offer a unified foundation for understanding dropout and suggest new directions for mask-guided regularization and subnetwork optimization.
comment: 17 pages (9 pages main content and remaining pages are references, appendix which includes 7 figures, proofs and derivations)
☆ AI for the Open-World: the Learning Principles
During the past decades, numerous successes of AI has been made on "specific capabilities", named closed-world, such as artificial environments or specific real-world tasks. This well-defined narrow capability brings two nice benefits, a clear criterion of success and the opportunity to collect a lot of examples. The criteria not only reveal whether a machine has achieved a goal, but reveal how the machine falls short of the goal. As a result, human designers can fix the problems one after the other until the machine is deemed good enough for the task. Furthermore, the large set of collected examples reduces the difficulty of this problem-fixing process (by the central limit theorem). Do the success in closed-world translate into broad open-world, where a machine is required to perform any task that a human could possibly undertake with fewer examples and less priori knowledge from human designers? No. Because competence in a specific task provides little insight in handling other tasks, the valuable criteria for specific tasks become helpless when handling broader unseen tasks. Furthermore, due to the shortage of examples in unseen tasks, central limit theorem does not stand on our side. At the end, human designers lose the oscilloscope to "hack" an AI system for the open-world. Achieving AI for the open-world requires unique learning principles and innovated techniques, which are different from the ones in building AI for the closed-world. This thesis explores necessary learning principles required to construct AI for the open-world, including rich features (analogy a large tool box), disentangled representation (an organized tool box), and inference-time learning (a tool-savvy hand). Driven by the learning principles, this thesis further proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
comment: PhD thesis. This is not a compilation of published papers, but a new one
☆ On the Tunability of Random Survival Forests Model for Predictive Maintenance
This paper investigates the tunability of the Random Survival Forest (RSF) model in predictive maintenance, where accurate time-to-failure estimation is crucial. Although RSF is widely used due to its flexibility and ability to handle censored data, its performance is sensitive to hyperparameter configurations. However, systematic evaluations of RSF tunability remain limited, especially in predictive maintenance contexts. We introduce a three-level framework to quantify tunability: (1) a model-level metric measuring overall performance gain from tuning, (2) a hyperparameter-level metric assessing individual contributions, and (3) identification of optimal tuning ranges. These metrics are evaluated across multiple datasets using survival-specific criteria: the C-index for discrimination and the Brier score for calibration. Experiments on four CMAPSS dataset subsets, simulating aircraft engine degradation, reveal that hyperparameter tuning consistently improves model performance. On average, the C-index increased by 0.0547, while the Brier score decreased by 0.0199. These gains were consistent across all subsets. Moreover, ntree and mtry showed the highest average tunability, while nodesize offered stable improvements within the range of 10 to 30. In contrast, splitrule demonstrated negative tunability on average, indicating that improper tuning may reduce model performance. Our findings emphasize the practical importance of hyperparameter tuning in survival models and provide actionable insights for optimizing RSF in real-world predictive maintenance applications.
☆ AltGDmin: Alternating GD and Minimization for Partly-Decoupled (Federated) Optimization
This article describes a novel optimization solution framework, called alternating gradient descent (GD) and minimization (AltGDmin), that is useful for many problems for which alternating minimization (AltMin) is a popular solution. AltMin is a special case of the block coordinate descent algorithm that is useful for problems in which minimization w.r.t one subset of variables keeping the other fixed is closed form or otherwise reliably solved. Denote the two blocks/subsets of the optimization variables Z by Za, Zb, i.e., Z = {Za, Zb}. AltGDmin is often a faster solution than AltMin for any problem for which (i) the minimization over one set of variables, Zb, is much quicker than that over the other set, Za; and (ii) the cost function is differentiable w.r.t. Za. Often, the reason for one minimization to be quicker is that the problem is ``decoupled" for Zb and each of the decoupled problems is quick to solve. This decoupling is also what makes AltGDmin communication-efficient for federated settings. Important examples where this assumption holds include (a) low rank column-wise compressive sensing (LRCS), low rank matrix completion (LRMC), (b) their outlier-corrupted extensions such as robust PCA, robust LRCS and robust LRMC; (c) phase retrieval and its sparse and low-rank model based extensions; (d) tensor extensions of many of these problems such as tensor LRCS and tensor completion; and (e) many partly discrete problems where GD does not apply -- such as clustering, unlabeled sensing, and mixed linear regression. LRCS finds important applications in multi-task representation learning and few shot learning, federated sketching, and accelerated dynamic MRI. LRMC and robust PCA find important applications in recommender systems, computer vision and video analytics.
comment: To appear in Foundations and Trends in Optimization (NOW publishers)
☆ Reinforcement Learning from Multi-level and Episodic Human Feedback
Designing an effective reward function has long been a challenge in reinforcement learning, particularly for complex tasks in unstructured environments. To address this, various learning paradigms have emerged that leverage different forms of human input to specify or refine the reward function. Reinforcement learning from human feedback is a prominent approach that utilizes human comparative feedback, expressed as a preference for one behavior over another, to tackle this problem. In contrast to comparative feedback, we explore multi-level human feedback, which is provided in the form of a score at the end of each episode. This type of feedback offers more coarse but informative signals about the underlying reward function than binary feedback. Additionally, it can handle non-Markovian rewards, as it is based on the evaluation of an entire episode. We propose an algorithm to efficiently learn both the reward function and the optimal policy from this form of feedback. Moreover, we show that the proposed algorithm achieves sublinear regret and demonstrate its empirical effectiveness through extensive simulations.
☆ Geometric Learning Dynamics
We present a unified geometric framework for modeling learning dynamics in physical, biological, and machine learning systems. The theory reveals three fundamental regimes, each emerging from the power-law relationship $g \propto \kappa^a$ between the metric tensor $g$ in the space of trainable variables and the noise covariance matrix $\kappa$. The quantum regime corresponds to $a = 1$ and describes Schr\"odinger-like dynamics that emerges from a discrete shift symmetry. The efficient learning regime corresponds to $a = \tfrac{1}{2}$ and describes very fast machine learning algorithms. The equilibration regime corresponds to $a = 0$ and describes classical models of biological evolution. We argue that the emergence of the intermediate regime $a = \tfrac{1}{2}$ is a key mechanism underlying the emergence of biological complexity.
comment: 15 pages
☆ Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
☆ Video QoE Metrics from Encrypted Traffic: Application-agnostic Methodology
Instant Messaging-Based Video Call Applications (IMVCAs) and Video Conferencing Applications (VCAs) have become integral to modern communication. Ensuring a high Quality of Experience (QoE) for users in this context is critical for network operators, as network conditions significantly impact user QoE. However, network operators lack access to end-device QoE metrics due to encrypted traffic. Existing solutions estimate QoE metrics from encrypted traffic traversing the network, with the most advanced approaches leveraging machine learning models. Subsequently, the need for ground truth QoE metrics for training and validation poses a challenge, as not all video applications provide these metrics. To address this challenge, we propose an application-agnostic approach for objective QoE estimation from encrypted traffic. Independent of the video application, we obtained key video QoE metrics, enabling broad applicability to various proprietary IMVCAs and VCAs. To validate our solution, we created a diverse dataset from WhatsApp video sessions under various network conditions, comprising 25,680 seconds of traffic data and QoE metrics. Our evaluation shows high performance across the entire dataset, with 85.2% accuracy for FPS predictions within an error margin of two FPS, and 90.2% accuracy for PIQE-based quality rating classification.
comment: 8 pages, 7 figures
☆ TAPIP3D: Tracking Any Point in Persistent 3D Geometry
We introduce TAPIP3D, a novel approach for long-term 3D point tracking in monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-stabilized spatio-temporal feature clouds, leveraging depth and camera motion information to lift 2D video features into a 3D world space where camera motion is effectively canceled. TAPIP3D iteratively refines multi-frame 3D motion estimates within this stabilized representation, enabling robust tracking over extended periods. To manage the inherent irregularities of 3D point distributions, we propose a Local Pair Attention mechanism. This 3D contextualization strategy effectively exploits spatial relationships in 3D, forming informative feature neighborhoods for precise 3D trajectory estimation. Our 3D-centric approach significantly outperforms existing 3D point tracking methods and even enhances 2D tracking accuracy compared to conventional 2D pixel trackers when accurate depth is available. It supports inference in both camera coordinates (i.e., unstabilized) and world coordinates, and our results demonstrate that compensating for camera motion improves tracking performance. Our approach replaces the conventional 2D square correlation neighborhoods used in prior 2D and 3D trackers, leading to more robust and accurate results across various 3D point tracking benchmarks. Project Page: https://tapip3d.github.io
comment: Long-term feed-forward 3D point tracking in persistent 3D point maps. Code:https://github.com/zbw001/TAPIP3D
☆ Pairwise or Pointwise? Evaluating Feedback Protocols for Bias in LLM-Based Evaluation
Large Language Models (LLMs) are widely used as proxies for human labelers in both training (Reinforcement Learning from AI Feedback) and large-scale response evaluation (LLM-as-a-judge). Alignment and evaluation are critical components in the development of reliable LLMs, and the choice of feedback protocol plays a central role in both but remains understudied. In this work, we show that the choice of feedback protocol (absolute scores versus relative preferences) can significantly affect evaluation reliability and induce systematic biases. In particular, we show that pairwise evaluation protocols are more vulnerable to distracted evaluation. Generator models can exploit spurious attributes (or distractor features) favored by the LLM judge, resulting in inflated scores for lower-quality outputs and misleading training signals. We find that absolute scoring is more robust to such manipulation, producing judgments that better reflect response quality and are less influenced by distractor features. Our results demonstrate that generator models can flip preferences by embedding distractor features, skewing LLM-as-a-judge comparisons and leading to inaccurate conclusions about model quality in benchmark evaluations. Pairwise preferences flip in about 35% of the cases, compared to only 9% for absolute scores. We offer recommendations for choosing feedback protocols based on dataset characteristics and evaluation objectives.
☆ Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
☆ Connecting Parameter Magnitudes and Hessian Eigenspaces at Scale using Sketched Methods
Recently, it has been observed that when training a deep neural net with SGD, the majority of the loss landscape's curvature quickly concentrates in a tiny *top* eigenspace of the loss Hessian, which remains largely stable thereafter. Independently, it has been shown that successful magnitude pruning masks for deep neural nets emerge early in training and remain stable thereafter. In this work, we study these two phenomena jointly and show that they are connected: We develop a methodology to measure the similarity between arbitrary parameter masks and Hessian eigenspaces via Grassmannian metrics. We identify *overlap* as the most useful such metric due to its interpretability and stability. To compute *overlap*, we develop a matrix-free algorithm based on sketched SVDs that allows us to compute over 1000 Hessian eigenpairs for nets with over 10M parameters --an unprecedented scale by several orders of magnitude. Our experiments reveal an *overlap* between magnitude parameter masks and top Hessian eigenspaces consistently higher than chance-level, and that this effect gets accentuated for larger network sizes. This result indicates that *top Hessian eigenvectors tend to be concentrated around larger parameters*, or equivalently, that *larger parameters tend to align with directions of larger loss curvature*. Our work provides a methodology to approximate and analyze deep learning Hessians at scale, as well as a novel insight on the structure of their eigenspace.
comment: Accepted at TMLR 2025
☆ Quantitative Clustering in Mean-Field Transformer Models
The evolution of tokens through a deep transformer models can be modeled as an interacting particle system that has been shown to exhibit an asymptotic clustering behavior akin to the synchronization phenomenon in Kuramoto models. In this work, we investigate the long-time clustering of mean-field transformer models. More precisely, we establish exponential rates of contraction to a Dirac point mass for any suitably regular initialization under some assumptions on the parameters of transformer models, any suitably regular mean-field initialization synchronizes exponentially fast with some quantitative rates.
comment: 47 pages, 4 figures
☆ Reveal-or-Obscure: A Differentially Private Sampling Algorithm for Discrete Distributions
We introduce a differentially private (DP) algorithm called reveal-or-obscure (ROO) to generate a single representative sample from a dataset of $n$ observations drawn i.i.d. from an unknown discrete distribution $P$. Unlike methods that add explicit noise to the estimated empirical distribution, ROO achieves $\epsilon$-differential privacy by randomly choosing whether to "reveal" or "obscure" the empirical distribution. While ROO is structurally identical to Algorithm 1 proposed by Cheu and Nayak (arXiv:2412.10512), we prove a strictly better bound on the sampling complexity than that established in Theorem 12 of (arXiv:2412.10512). To further improve the privacy-utility trade-off, we propose a novel generalized sampling algorithm called Data-Specific ROO (DS-ROO), where the probability of obscuring the empirical distribution of the dataset is chosen adaptively. We prove that DS-ROO satisfies $\epsilon$-DP, and provide empirical evidence that DS-ROO can achieve better utility under the same privacy budget of vanilla ROO.
comment: 8 pages, 3 figures
☆ Learning Critically: Selective Self Distillation in Federated Learning on Non-IID Data
Federated learning (FL) enables multiple clients to collaboratively train a global model while keeping local data decentralized. Data heterogeneity (non-IID) across clients has imposed significant challenges to FL, which makes local models re-optimize towards their own local optima and forget the global knowledge, resulting in performance degradation and convergence slowdown. Many existing works have attempted to address the non-IID issue by adding an extra global-model-based regularizing item to the local training but without an adaption scheme, which is not efficient enough to achieve high performance with deep learning models. In this paper, we propose a Selective Self-Distillation method for Federated learning (FedSSD), which imposes adaptive constraints on the local updates by self-distilling the global model's knowledge and selectively weighting it by evaluating the credibility at both the class and sample level. The convergence guarantee of FedSSD is theoretically analyzed and extensive experiments are conducted on three public benchmark datasets, which demonstrates that FedSSD achieves better generalization and robustness in fewer communication rounds, compared with other state-of-the-art FL methods.
☆ Uncovering Issues in the Radio Access Network by Looking at the Neighbors
Mobile network operators (MNOs) manage Radio Access Networks (RANs) with massive amounts of cells over multiple radio generations (2G-5G). To handle such complexity, operations teams rely on monitoring systems, including anomaly detection tools that identify unexpected behaviors. In this paper, we present c-ANEMON, a Contextual ANomaly dEtection MONitor for the RAN based on Graph Neural Networks (GNNs). Our solution captures spatio-temporal variations by analyzing the behavior of individual cells in relation to their local neighborhoods, enabling the detection of anomalies that are independent of external mobility factors. This, in turn, allows focusing on anomalies associated with network issues (e.g., misconfigurations, equipment failures). We evaluate c-ANEMON using real-world data from a large European metropolitan area (7,890 cells; 3 months). First, we show that the GNN model within our solution generalizes effectively to cells from previously unseen areas, suggesting the possibility of using a single model across extensive deployment regions. Then, we analyze the anomalies detected by c-ANEMON through manual inspection and define several categories of long-lasting anomalies (6+ hours). Notably, 45.95% of these anomalies fall into a category that is more likely to require intervention by operations teams.
comment: 7 pages
☆ Evaluating Temporal Plasticity in Foundation Time Series Models for Incremental Fine-tuning IJCNN 2025
Time series foundation models excel at diverse time series forecasting tasks, but their capacity for continuous improvement through incremental learning remains unexplored. We present the first comprehensive study investigating these models' temporal plasticity - their ability to progressively enhance performance through continual learning while maintaining existing capabilities. Through experiments on real-world datasets exhibiting distribution shifts, we evaluate both conventional deep learning models and foundation models using a novel continual learning framework. Our findings reveal that while traditional models struggle with performance deterioration during incremental fine-tuning, foundation models like Time-MoE and Chronos demonstrate sustained improvement in predictive accuracy. This suggests that optimizing foundation model fine-tuning strategies may be more valuable than developing domain-specific small models. Our research introduces new evaluation methodologies and insights for developing foundation time series models with robust continuous learning capabilities.
comment: Accepted at IJCNN 2025
☆ Efficient Federated Split Learning for Large Language Models over Communication Networks
Fine-tuning pre-trained large language models (LLM) in a distributed manner poses significant challenges on resource-constrained edge devices. To address this challenge, we propose FedsLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques. By leveraging model splitting and Low-Rank Adaptation (LoRA), FedsLLM reduces the computational burden on edge devices. Furthermore, the introduction of a federated server facilitates parallel training and enhances privacy. To accommodate heterogeneous communication conditions and diverse computational capabilities of edge devices, as well as the impact of LoRA rank selection on model convergence and training cost, we formulate a joint optimization problem. The formulated problem jointly optimizes subchannel allocation, power control, model splitting point selection, and LoRA rank configuration, all aimed at minimizing total training delay. An alternating optimization algorithm is developed to efficiently solve this problem and accelerate the training process. Simulation results demonstrate that the proposed FedsLLM framework achieves comparable model accuracy while significantly reducing client-side computational requirements. Furthermore, the proposed resource allocation scheme and adaptive LoRA rank selection strategy notably reduce the training latency compared to conventional approaches.
☆ Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning ICLR 2025
Large-scale deep learning models with a pretraining-finetuning paradigm have led to a surge of numerous task-specific models fine-tuned from a common pre-trained model. Recently, several research efforts have been made on merging these large models into a single multi-task model, particularly with simple arithmetic on parameters. Such merging methodology faces a central challenge: interference between model parameters fine-tuned on different tasks. Few recent works have focused on designing a new fine-tuning scheme that can lead to small parameter interference, however at the cost of the performance of each task-specific fine-tuned model and thereby limiting that of a merged model. To improve the performance of a merged model, we note that a fine-tuning scheme should aim for (1) smaller parameter interference and (2) better performance of each fine-tuned model on the corresponding task. In this work, we aim to design a new fine-tuning objective function to work towards these two goals. In the course of this process, we find such objective function to be strikingly similar to sharpness-aware minimization (SAM) objective function, which aims to achieve generalization by finding flat minima. Drawing upon our observation, we propose to fine-tune pre-trained models via sharpness-aware minimization. The experimental and theoretical results showcase the effectiveness and orthogonality of our proposed approach, improving performance upon various merging and fine-tuning methods. Our code is available at https://github.com/baiklab/SAFT-Merge.
comment: ICLR 2025
☆ A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Synthetic Electronic Health Records (EHRs) offer a valuable opportunity to create privacy preserving and harmonized structured data, supporting numerous applications in healthcare. Key benefits of synthetic data include precise control over the data schema, improved fairness and representation of patient populations, and the ability to share datasets without concerns about compromising real individuals privacy. Consequently, the AI community has increasingly turned to Large Language Models (LLMs) to generate synthetic data across various domains. However, a significant challenge in healthcare is ensuring that synthetic health records reliably generalize across different hospitals, a long standing issue in the field. In this work, we evaluate the current state of commercial LLMs for generating synthetic data and investigate multiple aspects of the generation process to identify areas where these models excel and where they fall short. Our main finding from this work is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases, ultimately limiting their ability to generalize across diverse hospital settings.
comment: Accepted at the Conference of Health, Inference, Learning (CHIL 2025) in Berkeley, CA. To appear in PMLR later in 2025
☆ LeetCodeDataset: A Temporal Dataset for Robust Evaluation and Efficient Training of Code LLMs
We introduce LeetCodeDataset, a high-quality benchmark for evaluating and training code-generation models, addressing two key challenges in LLM research: the lack of reasoning-focused coding benchmarks and self-contained training testbeds. By curating LeetCode Python problems with rich metadata, broad coverage, 100+ test cases per problem, and temporal splits (pre/post July 2024), our dataset enables contamination-free evaluation and efficient supervised fine-tuning (SFT). Experiments show reasoning models significantly outperform non-reasoning counterparts, while SFT with only 2.6K model-generated solutions achieves performance comparable to 110K-sample counterparts. The dataset and evaluation framework are available on Hugging Face and Github.
☆ Surrogate Fitness Metrics for Interpretable Reinforcement Learning
We employ an evolutionary optimization framework that perturbs initial states to generate informative and diverse policy demonstrations. A joint surrogate fitness function guides the optimization by combining local diversity, behavioral certainty, and global population diversity. To assess demonstration quality, we apply a set of evaluation metrics, including the reward-based optimality gap, fidelity interquartile means (IQMs), fitness composition analysis, and trajectory visualizations. Hyperparameter sensitivity is also examined to better understand the dynamics of trajectory optimization. Our findings demonstrate that optimizing trajectory selection via surrogate fitness metrics significantly improves interpretability of RL policies in both discrete and continuous environments. In gridworld domains, evaluations reveal significantly enhanced demonstration fidelities compared to random and ablated baselines. In continuous control, the proposed framework offers valuable insights, particularly for early-stage policies, while fidelity-based optimization proves more effective for mature policies. By refining and systematically analyzing surrogate fitness functions, this study advances the interpretability of RL models. The proposed improvements provide deeper insights into RL decision-making, benefiting applications in safety-critical and explainability-focused domains.
comment: 30 pages, 7 figures, under review
☆ AlphaZero-Edu: Making AlphaZero Accessible to Everyone
Recent years have witnessed significant progress in reinforcement learning, especially with Zero-like paradigms, which have greatly boosted the generalization and reasoning abilities of large-scale language models. Nevertheless, existing frameworks are often plagued by high implementation complexity and poor reproducibility. To tackle these challenges, we present AlphaZero-Edu, a lightweight, education-focused implementation built upon the mathematical framework of AlphaZero. It boasts a modular architecture that disentangles key components, enabling transparent visualization of the algorithmic processes. Additionally, it is optimized for resource-efficient training on a single NVIDIA RTX 3090 GPU and features highly parallelized self-play data generation, achieving a 3.2-fold speedup with 8 processes. In Gomoku matches, the framework has demonstrated exceptional performance, achieving a consistently high win rate against human opponents. AlphaZero-Edu has been open-sourced at https://github.com/StarLight1212/AlphaZero_Edu, providing an accessible and practical benchmark for both academic research and industrial applications.
☆ GENE-FL: Gene-Driven Parameter-Efficient Dynamic Federated Learning
Real-world \underline{F}ederated \underline{L}earning systems often encounter \underline{D}ynamic clients with \underline{A}gnostic and highly heterogeneous data distributions (DAFL), which pose challenges for efficient communication and model initialization. To address these challenges, we draw inspiration from the recently proposed Learngene paradigm, which compresses the large-scale model into lightweight, cross-task meta-information fragments. Learngene effectively encapsulates and communicates core knowledge, making it particularly well-suited for DAFL, where dynamic client participation requires communication efficiency and rapid adaptation to new data distributions. Based on this insight, we propose a Gene-driven parameter-efficient dynamic Federated Learning (GENE-FL) framework. First, local models perform quadratic constraints based on parameters with high Fisher values in the global model, as these parameters are considered to encapsulate generalizable knowledge. Second, we apply the strategy of parameter sensitivity analysis in local model parameters to condense the \textit{learnGene} for interaction. Finally, the server aggregates these small-scale trained \textit{learnGene}s into a robust \textit{learnGene} with cross-task generalization capability, facilitating the rapid initialization of dynamic agnostic client models. Extensive experimental results demonstrate that GENE-FL reduces \textbf{4 $\times$} communication costs compared to FEDAVG and effectively initializes agnostic client models with only about \textbf{9.04} MB.
☆ No Imputation of Missing Values In Tabular Data Classification Using Incremental Learning
Tabular data sets with varying missing values are prepared for machine learning using an arbitrary imputation strategy. Synthetic values generated by imputation models often concern data stakeholders about computational complexity, data quality, and data-driven outcomes. This paper eliminates these concerns by proposing no imputation incremental learning (NIIL) of tabular data with varying missing value rates and types. The proposed method incrementally learns partitions of overlapping feature sets while using attention masks to exclude missing values from attention scoring. The average classification performance rank order across 15 diverse tabular data sets highlights the superiority of NIIL over 11 state-of-the-art learning methods with or without missing value imputations. Further experiments substantiate the robustness of NIIL against varying missing value types and rates compared to methods that involve the imputation of missing values. Our empirical analysis reveals that a feature partition size of half of the original feature space is, computation-wise and accuracy-wise, the best choice for the proposed incremental learning. The proposed method is one of the first deep learning solutions that can effectively learn tabular data without requiring the imputation of missing values.
☆ Generalized Derangetropy Functionals for Modeling Cyclical Information Flow
This paper introduces a framework for modeling cyclical and feedback-driven information flow through a generalized family of entropy-modulated transformations called derangetropy functionals. Unlike scalar and static entropy measures such as Shannon entropy, these functionals act directly on probability densities and provide a topographical representation of information structure across the support of the distribution. The framework captures periodic and self-referential aspects of information distribution and encodes them through functional operators governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, leading to convergence toward a Gaussian characteristic function. This convergence theorem provides a unified analytical foundation for describing the long-term dynamics of information under cyclic modulation. The proposed framework offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.
☆ Generative Auto-Bidding with Value-Guided Explorations
Auto-bidding, with its strong capability to optimize bidding decisions within dynamic and competitive online environments, has become a pivotal strategy for advertising platforms. Existing approaches typically employ rule-based strategies or Reinforcement Learning (RL) techniques. However, rule-based strategies lack the flexibility to adapt to time-varying market conditions, and RL-based methods struggle to capture essential historical dependencies and observations within Markov Decision Process (MDP) frameworks. Furthermore, these approaches often face challenges in ensuring strategy adaptability across diverse advertising objectives. Additionally, as offline training methods are increasingly adopted to facilitate the deployment and maintenance of stable online strategies, the issues of documented behavioral patterns and behavioral collapse resulting from training on fixed offline datasets become increasingly significant. To address these limitations, this paper introduces a novel offline Generative Auto-bidding framework with Value-Guided Explorations (GAVE). GAVE accommodates various advertising objectives through a score-based Return-To-Go (RTG) module. Moreover, GAVE integrates an action exploration mechanism with an RTG-based evaluation method to explore novel actions while ensuring stability-preserving updates. A learnable value function is also designed to guide the direction of action exploration and mitigate Out-of-Distribution (OOD) problems. Experimental results on two offline datasets and real-world deployments demonstrate that GAVE outperforms state-of-the-art baselines in both offline evaluations and online A/B tests. The implementation code is publicly available to facilitate reproducibility and further research.
☆ Data Selection for ERMs
Learning theory has traditionally followed a model-centric approach, focusing on designing optimal algorithms for a fixed natural learning task (e.g., linear classification or regression). In this paper, we adopt a complementary data-centric perspective, whereby we fix a natural learning rule and focus on optimizing the training data. Specifically, we study the following question: given a learning rule $\mathcal{A}$ and a data selection budget $n$, how well can $\mathcal{A}$ perform when trained on at most $n$ data points selected from a population of $N$ points? We investigate when it is possible to select $n \ll N$ points and achieve performance comparable to training on the entire population. We address this question across a variety of empirical risk minimizers. Our results include optimal data-selection bounds for mean estimation, linear classification, and linear regression. Additionally, we establish two general results: a taxonomy of error rates in binary classification and in stochastic convex optimization. Finally, we propose several open questions and directions for future research.
☆ NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag: (Normalized Weight and Activation Guided Compression), a unified framework for zero-shot shape preserving compression algorithms. We compressed Llama-2 7B/13B/70B and Llama-3 8/70BB models, using two popular forms of shape-preserving compression, vector quantization NoWag-VQ (NoWag for Vector Quantization), and unstructured/semi-structured pruning NoWag-P (NoWag for Pruning). We found that NoWag-VQ significantly outperforms state-of-the-art zero shot VQ, and that NoWag-P performs competitively against state-of-the-art methods. These results suggest commonalities between these compression paradigms that could inspire future work. Our code is available at https://github.com/LawrenceRLiu/NoWag
☆ Quantum-Enhanced Weight Optimization for Neural Networks Using Grover's Algorithm
The main approach to hybrid quantum-classical neural networks (QNN) is employing quantum computing to build a neural network (NN) that has quantum features, which is then optimized classically. Here, we propose a different strategy: to use quantum computing in order to optimize the weights of a classical NN. As such, we design an instance of Grover's quantum search algorithm to accelerate the search for the optimal parameters of an NN during the training process, a task traditionally performed using the backpropagation algorithm with the gradient descent method. Indeed, gradient descent has issues such as exploding gradient, vanishing gradient, or convexity problem. Other methods tried to address such issues with strategies like genetic searches, but they carry additional problems like convergence consistency. Our original method avoids these issues -- because it does not calculate gradients -- and capitalizes on classical architectures' robustness and Grover's quadratic speedup in high-dimensional search spaces to significantly reduce test loss (58.75%) and improve test accuracy (35.25%), compared to classical NN weight optimization, on small datasets. Unlike most QNNs that are trained on small datasets only, our method is also scalable, as it allows the optimization of deep networks; for an NN with 3 hidden layers, trained on the Digits dataset from scikit-learn, we obtained a mean accuracy of 97.7%. Moreover, our method requires a much smaller number of qubits compared to other QNN approaches, making it very practical for near-future quantum computers that will still deliver a limited number of logical qubits.
☆ LLM-Enabled In-Context Learning for Data Collection Scheduling in UAV-assisted Sensor Networks
Unmanned Aerial Vehicles (UAVs) are increasingly being used in various private and commercial applications, e.g. traffic control, package delivery, and Search and Rescue (SAR) operations. Machine Learning (ML) methods used in UAV-assisted Sensor Networks (UASNETs) and especially in Deep Reinforcement Learning (DRL) face challenges such as complex and lengthy model training, gaps between simulation and reality, and low sample efficiency, which conflict with the urgency of emergencies such as SAR operations. This paper proposes In-Context Learning (ICL)-based Data Collection Scheduling (ICLDC) scheme, as an alternative to DRL in emergencies. The UAV collects and transmits logged sensory data, to an LLM, to generate a task description in natural language, from which it obtains a data collection schedule to be executed by the UAV. The system continuously adapts by adding feedback to task descriptions and utilizing feedback for future decisions. This method is tested against jailbreaking attacks, where task description is manipulated to undermine network performance, highlighting the vulnerability of LLMs to such attacks. The proposed ICLDC outperforms the Maximum Channel Gain by reducing cumulative packet loss by approximately 56\%. ICLDC presents a promising direction for intelligent scheduling and control in UAV-assisted data collection.
comment: 8 pages, 7 figures,
☆ TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data
Reliable prediction is an essential requirement for deep neural models that are deployed in open environments, where both covariate and semantic out-of-distribution (OOD) data arise naturally. In practice, to make safe decisions, a reliable model should accept correctly recognized inputs while rejecting both those misclassified covariate-shifted and semantic-shifted examples. Besides, considering the potential existing trade-off between rejecting different failure cases, more convenient, controllable, and flexible failure detection approaches are needed. To meet the above requirements, we propose a simple failure detection framework to unify and facilitate classification with rejection under both covariate and semantic shifts. Our key insight is that by separating and consolidating failure-specific reliability knowledge with low-rank adapters and then integrating them, we can enhance the failure detection ability effectively and flexibly. Extensive experiments demonstrate the superiority of our framework.
☆ Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation IEEE
Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions. A critical aspect of these examples is their transferability, allowing them to deceive {unseen} models in black-box scenarios. Despite the widespread exploration of defense methods, including those on transferability, they show limitations: inefficient deployment, ineffective defense, and degraded performance on clean images. In this work, we introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way. We propose a model that exhibits random guessing behavior when presented with clean data $\boldsymbol{x}$ as input, and generates accurate predictions when with triggered data $\boldsymbol{x}+\boldsymbol{\tau}$. Importantly, the trigger $\boldsymbol{\tau}$ remains constant for all data instances. We refer to these models as \textbf{models with trigger activation}. We are surprised to find that these models exhibit certain robustness against TAEs. Through the consideration of first-order gradients, we provide a theoretical analysis of this robustness. Moreover, through the joint optimization of the learnable trigger and the model, we achieve improved robustness to transferable attacks. Extensive experiments conducted across diverse datasets, evaluating a variety of attacking methods, underscore the effectiveness and superiority of our approach.
comment: Accepted by IEEE TIFS 2025
☆ Causality for Natural Language Processing
Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field.
comment: PhD Thesis 2024
☆ SlimPipe: Memory-Thrifty and Efficient Pipeline Parallelism for Long-Context LLM Training
Pipeline Parallelism (PP) serves as a crucial technique for training Large Language Models (LLMs), owing to its capability to alleviate memory pressure from model states with relatively low communication overhead. However, in long-context scenarios, existing pipeline parallelism methods fail to address the substantial activation memory pressure, primarily due to the peak memory consumption resulting from the accumulation of activations across multiple microbatches. Moreover, these approaches inevitably introduce considerable pipeline bubbles, further hindering efficiency. To tackle these challenges, we propose SlimPipe, a novel approach to fine-grained pipeline parallelism that employs uniform sequence slicing coupled with one-forward-one-backward (1F1B) schedule. It reduces the accumulated activations from several microbatches to just one, which is split into several slices. Although the slices are evenly partitioned, the computation cost is not equal across slices due to causal attention. We develop a sophisticated workload redistribution technique to address this load imbalance. SlimPipe achieves (1) near-zero memory overhead and (2) minimal pipeline bubbles simultaneously. The effectiveness of SlimPipe has been proven by thorough testing with diverse model architectures, context window sizes, and SlimPipe-specific configurations. For example, on the Llama 70B model, compared to state-of-the-art methods, SlimPipe significantly boosts the Model FLOPs Utilization (MFU) to up to $1.57\times$ for a context length of 512K. More notably, for a context length of 2048K, it maintains over 45% utilization on 256 NVIDIA Hopper 80GB GPUs, while other approaches either suffer significant performance drops or fail entirely due to memory constraints.
☆ On Dimension-Free Transformer: An Application of STP to AI
The matrix expressions for every parts of a transformer are firstly described. Based on semi-tensor product (STP) of matrices the hypervectors are reconsidered and the linear transformation over hypervectors is constructed by using projection. Its properties and calculating formulas are obtained. Using projection-based transformation of hypervector (PBTH), the framework of dimension-free transformer (DFT) is proposed by verifying each linear transformation in a transformer and replacing it by a proper PBTH, which allows the inputs and outputs being of arbitrary dimensions. Using balanced information about all entries, DFT must be more efficient in dealing with signals.
☆ Less is More: Adaptive Coverage for Synthetic Training Data
Synthetic training data generation with Large Language Models (LLMs) like Google's Gemma and OpenAI's GPT offer a promising solution to the challenge of obtaining large, labeled datasets for training classifiers. When rapid model deployment is critical, such as in classifying emerging social media trends or combating new forms of online abuse tied to current events, the ability to generate training data is invaluable. While prior research has examined the comparability of synthetic data to human-labeled data, this study introduces a novel sampling algorithm, based on the maximum coverage problem, to select a representative subset from a synthetically generated dataset. Our results demonstrate that training a classifier on this contextually sampled subset achieves superior performance compared to training on the entire dataset. This "less is more" approach not only improves accuracy but also reduces the volume of data required, leading to potentially more efficient model fine-tuning.
☆ FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
☆ A computational framework for longitudinal medication adherence prediction in breast cancer survivors: A social cognitive theory based approach
Non-adherence to medications is a critical concern since nearly half of patients with chronic illnesses do not follow their prescribed medication regimens, leading to increased mortality, costs, and preventable human distress. Amongst stage 0-3 breast cancer survivors, adherence to long-term adjuvant endocrine therapy (i.e., Tamoxifen and aromatase inhibitors) is associated with a significant increase in recurrence-free survival. This work aims to develop multi-scale models of medication adherence to understand the significance of different factors influencing adherence across varying time frames. We introduce a computational framework guided by Social Cognitive Theory for multi-scale (daily and weekly) modeling of longitudinal medication adherence. Our models employ both dynamic medication-taking patterns in the recent past (dynamic factors) as well as less frequently changing factors (static factors) for adherence prediction. Additionally, we assess the significance of various factors in influencing adherence behavior across different time scales. Our models outperform traditional machine learning counterparts in both daily and weekly tasks in terms of both accuracy and specificity. Daily models achieved an accuracy of 87.25%, and weekly models, an accuracy of 76.04%. Notably, dynamic past medication-taking patterns prove most valuable for predicting daily adherence, while a combination of dynamic and static factors is significant for macro-level weekly adherence patterns.
☆ sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment CVPR 2025
Interpreting neural activity through meaningful latent representations remains a complex and evolving challenge at the intersection of neuroscience and artificial intelligence. We investigate the potential of multimodal foundation models to align invasive brain recordings with natural language. We present SSENSE, a contrastive learning framework that projects single-subject stereo-electroencephalography (sEEG) signals into the sentence embedding space of a frozen CLIP model, enabling sentence-level retrieval directly from brain activity. SSENSE trains a neural encoder on spectral representations of sEEG using InfoNCE loss, without fine-tuning the text encoder. We evaluate our method on time-aligned sEEG and spoken transcripts from a naturalistic movie-watching dataset. Despite limited data, SSENSE achieves promising results, demonstrating that general-purpose language representations can serve as effective priors for neural decoding.
comment: Accepted for poster presentation at the CVPR 2025 Workshop on Multimodal Foundation Models (MMFM3)
☆ Guess, SWAP, Repeat : Capturing Quantum Snapshots in Classical Memory
We introduce a novel technique that enables observation of quantum states without direct measurement, preserving them for reuse. Our method allows multiple quantum states to be observed at different points within a single circuit, one at a time, and saved into classical memory without destruction. These saved states can be accessed on demand by downstream applications, introducing a dynamic and programmable notion of quantum memory that supports modular, non-destructive quantum workflows. We propose a hardware-agnostic, machine learning-driven framework to capture non-destructive estimates, or "snapshots," of quantum states at arbitrary points within a circuit, enabling classical storage and later reconstruction, similar to memory operations in classical computing. This capability is essential for debugging, introspection, and persistent memory in quantum systems, yet remains difficult due to the no-cloning theorem and destructive measurements. Our guess-and-check approach uses fidelity estimation via the SWAP test to guide state reconstruction. We explore both gradient-based deep neural networks and gradient-free evolutionary strategies to estimate quantum states using only fidelity as the learning signal. We demonstrate a key component of our framework on IBM quantum hardware, achieving high-fidelity (approximately 1.0) reconstructions for Hadamard and other known states. In simulation, our models achieve an average fidelity of 0.999 across 100 random quantum states. This provides a pathway toward non-volatile quantum memory, enabling long-term storage and reuse of quantum information, and laying groundwork for future quantum memory architectures.
comment: 11 Pages, 8 figures
☆ ParaPO: Aligning Language Models to Reduce Verbatim Reproduction of Pre-training Data
Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4).
☆ Seeing Through Risk: A Symbolic Approximation of Prospect Theory
We propose a novel symbolic modeling framework for decision-making under risk that merges interpretability with the core insights of Prospect Theory. Our approach replaces opaque utility curves and probability weighting functions with transparent, effect-size-guided features. We mathematically formalize the method, demonstrate its ability to replicate well-known framing and loss-aversion phenomena, and provide an end-to-end empirical validation on synthetic datasets. The resulting model achieves competitive predictive performance while yielding clear coefficients mapped onto psychological constructs, making it suitable for applications ranging from AI safety to economic policy analysis.
☆ Neglected Risks: The Disturbing Reality of Children's Images in Datasets and the Urgent Call for Accountability
Including children's images in datasets has raised ethical concerns, particularly regarding privacy, consent, data protection, and accountability. These datasets, often built by scraping publicly available images from the Internet, can expose children to risks such as exploitation, profiling, and tracking. Despite the growing recognition of these issues, approaches for addressing them remain limited. We explore the ethical implications of using children's images in AI datasets and propose a pipeline to detect and remove such images. As a use case, we built the pipeline on a Vision-Language Model under the Visual Question Answering task and tested it on the #PraCegoVer dataset. We also evaluate the pipeline on a subset of 100,000 images from the Open Images V7 dataset to assess its effectiveness in detecting and removing images of children. The pipeline serves as a baseline for future research, providing a starting point for more comprehensive tools and methodologies. While we leverage existing models trained on potentially problematic data, our goal is to expose and address this issue. We do not advocate for training or deploying such models, but instead call for urgent community reflection and action to protect children's rights. Ultimately, we aim to encourage the research community to exercise - more than an additional - care in creating new datasets and to inspire the development of tools to protect the fundamental rights of vulnerable groups, particularly children.
comment: ACM Conference on Fairness, Accountability, and Transparency (FAccT 2025)
☆ LoRe: Personalizing LLMs via Low-Rank Reward Modeling
Personalizing large language models (LLMs) to accommodate diverse user preferences is essential for enhancing alignment and user satisfaction. Traditional reinforcement learning from human feedback (RLHF) approaches often rely on monolithic value representations, limiting their ability to adapt to individual preferences. We introduce a novel framework that leverages low-rank preference modeling to efficiently learn and generalize user-specific reward functions. By representing reward functions in a low-dimensional subspace and modeling individual preferences as weighted combinations of shared basis functions, our approach avoids rigid user categorization while enabling scalability and few-shot adaptation. We validate our method on multiple preference datasets, demonstrating superior generalization to unseen users and improved accuracy in preference prediction tasks.
♻ ☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
♻ ☆ How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension ICLR 2025
Benchmarking the capabilities and limitations of large language models (LLMs) in graph-related tasks is becoming an increasingly popular and crucial area of research. Recent studies have shown that LLMs exhibit a preliminary ability to understand graph structures and node features. However, the potential of LLMs in graph pattern mining remains largely unexplored. This is a key component in fields such as computational chemistry, biology, and social network analysis. To bridge this gap, this work introduces a comprehensive benchmark to assess LLMs' capabilities in graph pattern tasks. We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions. Additionally, our benchmark tests the LLMs' capacity to autonomously discover graph patterns from data. The benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models. Our experimental framework is designed for easy expansion to accommodate new models and datasets. Our findings reveal that: (1) LLMs have preliminary abilities to understand graph patterns, with O1-mini outperforming in the majority of tasks; (2) Formatting input data to align with the knowledge acquired during pretraining can enhance performance; (3) The strategies employed by LLMs may differ from those used in conventional algorithms.
comment: The paper is published in ICLR 2025
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 24 pages, 19 figures
♻ ☆ DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
♻ ☆ Neural Encoding and Decoding at Scale
Recent work has demonstrated that large-scale, multi-animal models are powerful tools for characterizing the relationship between neural activity and behavior. Current large-scale approaches, however, focus exclusively on either predicting neural activity from behavior (encoding) or predicting behavior from neural activity (decoding), limiting their ability to capture the bidirectional relationship between neural activity and behavior. To bridge this gap, we introduce a multimodal, multi-task model that enables simultaneous Neural Encoding and Decoding at Scale (NEDS). Central to our approach is a novel multi-task-masking strategy, which alternates between neural, behavioral, within-modality, and cross-modality masking. We pretrain our method on the International Brain Laboratory (IBL) repeated site dataset, which includes recordings from 83 animals performing the same visual decision-making task. In comparison to other large-scale models, we demonstrate that NEDS achieves state-of-the-art performance for both encoding and decoding when pretrained on multi-animal data and then fine-tuned on new animals. Surprisingly, NEDS's learned embeddings exhibit emergent properties: even without explicit training, they are highly predictive of the brain regions in each recording. Altogether, our approach is a step towards a foundation model of the brain that enables seamless translation between neural activity and behavior.
♻ ☆ Revealing Treatment Non-Adherence Bias in Clinical Machine Learning Using Large Language Models
Machine learning systems trained on electronic health records (EHRs) increasingly guide treatment decisions, but their reliability depends on the critical assumption that patients follow the prescribed treatments recorded in EHRs. Using EHR data from 3,623 hypertension patients, we investigate how treatment non-adherence introduces implicit bias that can fundamentally distort both causal inference and predictive modeling. By extracting patient adherence information from clinical notes using a large language model (LLM), we identify 786 patients (21.7%) with medication non-adherence. We further uncover key demographic and clinical factors associated with non-adherence, as well as patient-reported reasons including side effects and difficulties obtaining refills. Our findings demonstrate that this implicit bias can not only reverse estimated treatment effects, but also degrade model performance by up to 5% while disproportionately affecting vulnerable populations by exacerbating disparities in decision outcomes and model error rates. This highlights the importance of accounting for treatment non-adherence in developing responsible and equitable clinical machine learning systems.
♻ ☆ Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models
Analyzing the cardiovascular system condition via Electrocardiography (ECG) is a common and highly effective approach, and it has been practiced and perfected over many decades. ECG sensing is non-invasive and relatively easy to acquire, and yet it is still cumbersome for holter monitoring tests that may span over hours and even days. A possible alternative in this context is Photoplethysmography (PPG): An optically-based signal that measures blood volume fluctuations, as typically sensed by conventional ``wearable devices''. While PPG presents clear advantages in acquisition, convenience, and cost-effectiveness, ECG provides more comprehensive information, allowing for a more precise detection of heart conditions. This implies that a conversion from PPG to ECG, as recently discussed in the literature, inherently involves an unavoidable level of uncertainty. In this paper we introduce a novel methodology for addressing the PPG-2-ECG conversion, and offer an enhanced classification of cardiovascular conditions using the given PPG, all while taking into account the uncertainties arising from the conversion process. We provide a mathematical justification for our proposed computational approach, and present empirical studies demonstrating its superior performance compared to state-of-the-art baseline methods.
♻ ☆ Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination ICML 2025
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
comment: Accepted to CogSci 2025, In-review for ICML 2025
♻ ☆ Understanding and Optimizing Multi-Stage AI Inference Pipelines
The rapid evolution of Large Language Models (LLMs) has driven the need for increasingly sophisticated inference pipelines and hardware platforms. Modern LLM serving extends beyond traditional prefill-decode workflows, incorporating multi-stage processes such as Retrieval Augmented Generation (RAG), key-value (KV) cache retrieval, dynamic model routing, and multi step reasoning. These stages exhibit diverse computational demands, requiring distributed systems that integrate GPUs, ASICs, CPUs, and memory-centric architectures. However, existing simulators lack the fidelity to model these heterogeneous, multi-engine workflows, limiting their ability to inform architectural decisions. To address this gap, we introduce HERMES, a Heterogeneous Multi-stage LLM inference Execution Simulator. HERMES models diverse request stages; including RAG, KV retrieval, reasoning, prefill, and decode across complex hardware hierarchies. HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks while incorporating advanced batching strategies and multi-level memory hierarchies. By integrating real hardware traces with analytical modeling, HERMES captures critical trade-offs such as memory bandwidth contention, inter-cluster communication latency, and batching efficiency in hybrid CPU-accelerator deployments. Through case studies, we explore the impact of reasoning stages on end-to-end latency, optimal batching strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval. HERMES empowers system designers to navigate the evolving landscape of LLM inference, providing actionable insights into optimizing hardware-software co-design for next-generation AI workloads.
comment: Inference System Design for Multi-Stage AI Inference Pipelines. 13 Pages, 15 Figues, 3 Tables
♻ ☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
♻ ☆ The last Dance : Robust backdoor attack via diffusion models and bayesian approach
Diffusion models are state-of-the-art deep learning generative models that are trained on the principle of learning forward and backward diffusion processes via the progressive addition of noise and denoising. In this paper, we aim to fool audio-based DNN models, such as those from the Hugging Face framework, primarily those that focus on audio, in particular transformer-based artificial intelligence models, which are powerful machine learning models that save time and achieve results faster and more efficiently. We demonstrate the feasibility of backdoor attacks (called `BacKBayDiffMod`) on audio transformers derived from Hugging Face, a popular framework in the world of artificial intelligence research. The backdoor attack developed in this paper is based on poisoning model training data uniquely by incorporating backdoor diffusion sampling and a Bayesian approach to the distribution of poisoned data.
comment: Preprint (Last update, will never be modified again( correction of a sketch)): audio backdoor attack on Hugging Face's Transformer pre-trained models. This attack incorporates state-of-the-art Bayesian techniques, a modified Fokker-Planck equation (via Yang-Mills), and a diffusion model approach
♻ ☆ MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
comment: Submitted to SampTA 2025. This work has been submitted to the IEEE for possible publication
♻ ☆ SLMRec: Distilling Large Language Models into Small for Sequential Recommendation ICLR 2025
Sequential Recommendation (SR) task involves predicting the next item a user is likely to interact with, given their past interactions. The SR models examine the sequence of a user's actions to discern more complex behavioral patterns and temporal dynamics. Recent research demonstrates the great impact of LLMs on sequential recommendation systems, either viewing sequential recommendation as language modeling or serving as the backbone for user representation. Although these methods deliver outstanding performance, there is scant evidence of the necessity of a large language model and how large the language model is needed, especially in the sequential recommendation scene. Meanwhile, due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms that often need to process billions of traffic logs daily. In this paper, we explore the influence of LLMs' depth by conducting extensive experiments on large-scale industry datasets. Surprisingly, our motivational experiments reveal that most intermediate layers of LLMs are redundant, indicating that pruning the remaining layers can still maintain strong performance. Motivated by this insight, we empower small language models for SR, namely SLMRec, which adopt a simple yet effective knowledge distillation method. Moreover, SLMRec is orthogonal to other post-training efficiency techniques, such as quantization and pruning, so that they can be leveraged in combination. Comprehensive experimental results illustrate that the proposed SLMRec model attains the best performance using only 13% of the parameters found in LLM-based recommendation models while simultaneously achieving up to 6.6x and 8.0x speedups in training and inference time costs, respectively. Besides, we provide a theoretical justification for why small language models can perform comparably to large language models in SR.
comment: International Conference on Learning Representations (ICLR 2025)
♻ ☆ Principles and Components of Federated Learning Architectures
Federated Learning (FL) is a machine learning framework where multiple clients, from mobiles to enterprises, collaboratively construct a model under the orchestration of a central server but still retain the decentralized nature of the training data. This decentralized training of models offers numerous advantages, including cost savings, enhanced privacy, improved security, and compliance with legal requirements. However, for all its apparent advantages, FL is not immune to the limitations of conventional machine learning methodologies. This article provides an elaborate explanation of the inherent concepts and features found within federated learning architecture, addressing five key domains: system heterogeneity, data partitioning, machine learning models, communication protocols, and privacy techniques. This article also highlights the limitations in this domain and proposes avenues for future work. Besides, we provide a set of architectural patterns for federated learning systems, which are derived from the systematic survey of the literature. The main elements of FL, the fundamentals of Federated Learning, and a few architectural specifics will all be better understood with the aid of this research.
♻ ☆ A Survey on Multi-Resident Activity Recognition in Smart Environments CCS
Human activity recognition (HAR) is a rapidly growing field that utilizes smart devices, sensors, and algorithms to automatically classify and identify the actions of individuals within a given environment. These systems have a wide range of applications, including assisting with caring tasks, increasing security, and improving energy efficiency. However, there are several challenges that must be addressed in order to effectively utilize HAR systems in multi-resident environments. One of the key challenges is accurately associating sensor observations with the identities of the individuals involved, which can be particularly difficult when residents are engaging in complex and collaborative activities. This paper provides a brief overview of the design and implementation of HAR systems, including a summary of the various data collection devices and approaches used for human activity identification. It also reviews previous research on the use of these systems in multi-resident environments and offers conclusions on the current state of the art in the field.
comment: 16 pages, to appear in Evolution of Information, Communication and Computing Systems (EICCS) Book Series
♻ ☆ Language-Guided Reinforcement Learning for Hard Attention in Few-Shot Learning
Attention mechanisms have demonstrated significant potential in enhancing learning models by identifying key portions of input data, particularly in scenarios with limited training samples. Inspired by human perception, we propose that focusing on essential data segments, rather than the entire dataset, can improve the accuracy and reliability of the learning models. However, identifying these critical data segments, or "hard attention finding," is challenging, especially in few-shot learning, due to the scarcity of training data and the complexity of model parameters. To address this, we introduce LaHA, a novel framework that leverages language-guided deep reinforcement learning to identify and utilize informative data regions, thereby improving both interpretability and performance. Extensive experiments on benchmark datasets validate the effectiveness of LaHA.
♻ ☆ Convergence Analysis of Probability Flow ODE for Score-based Generative Models IEEE
Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped. In this work, we study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives. Assuming access to $L^2$-accurate estimates of the score function, we prove the total variation between the target and the generated data distributions can be bounded above by $\mathcal{O}(d^{3/4}\delta^{1/2})$ in the continuous time level, where $d$ denotes the data dimension and $\delta$ represents the $L^2$-score matching error. For practical implementations using a $p$-th order Runge-Kutta integrator with step size $h$, we establish error bounds of $\mathcal{O}(d^{3/4}\delta^{1/2} + d\cdot(dh)^p)$ at the discrete level. Finally, we present numerical studies on problems up to 128 dimensions to verify our theory.
comment: 37 pages, 7 figures; To appear in IEEE Transactions on Information Theory
♻ ☆ Pychop: Emulating Low-Precision Arithmetic in Numerical Methods and Neural Networks
Motivated by the growing demand for low-precision arithmetic in computational science, we exploit lower-precision emulation in Python -- widely regarded as the dominant programming language for numerical analysis and machine learning. Low-precision training has revolutionized deep learning by enabling more efficient computation and reduced memory and energy consumption while maintaining model fidelity. To better enable numerical experimentation with and exploration of low precision computation, we developed the Pychop library, which supports customizable floating-point formats and a comprehensive set of rounding modes in Python, allowing users to benefit from fast, low-precision emulation in numerous applications. Pychop also introduces interfaces for both PyTorch and JAX, enabling efficient low-precision emulation on GPUs for neural network training and inference with unparalleled flexibility. In this paper, we offer a comprehensive exposition of the design, implementation, validation, and practical application of Pychop, establishing it as a foundational tool for advancing efficient mixed-precision algorithms. Furthermore, we present empirical results on low-precision emulation for image classification and object detection using published datasets, illustrating the sensitivity of the use of low precision and offering valuable insights into its impact. Pychop enables in-depth investigations into the effects of numerical precision, facilitates the development of novel hardware accelerators, and integrates seamlessly into existing deep learning workflows. Software and experimental code are publicly available at https://github.com/inEXASCALE/pychop.
♻ ☆ HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion
comment: 20 pages, 11 figures
♻ ☆ Relaxing the Markov Requirements on Reinforcement Learning Under Weak Relative Ignorability
Incomplete data, confounding effects, and violations of the Markov property are interrelated problems which are ubiquitous in Reinforcement Learning applications. We introduce the concept of ``relative ignorabilty" and leverage it to establish a novel convergence theorem for adaptive Reinforcement Learning. This theoretical result relaxes the Markov assumption on the stochastic process underlying conventional $Q$-learning, deploying a generalized form of the Robbins-Monro stochastic approximation theorem to establish optimality. This result has clear downstream implications for most active subfields of Reinforcement Learning, with clear paths for extension to the field of Causal Inference.
♻ ☆ Automating Credit Card Limit Adjustments Using Machine Learning
Venezuelan banks have historically made credit card limit adjustment decisions manually through committees. However, since the number of credit card holders in Venezuela is expected to increase in the upcoming months due to economic improvements, manual decisions are starting to become unfeasible. In this project, a machine learning model that uses cost-sensitive learning is proposed to automate the task of handing out credit card limit increases. To accomplish this, several neural network and XGBoost models are trained and compared, leveraging Venezolano de Credito's data and using grid search with 10-fold cross-validation. The proposed model is ultimately chosen due to its superior balance of accuracy, cost-effectiveness, and interpretability. The model's performance is evaluated against the committee's decisions using Cohen's kappa coefficient, showing an almost perfect agreement.
♻ ☆ Improving Clinical Decision Support through Interpretable Machine Learning and Error Handling in Electronic Health Records
The objective of this work is to develop an Electronic Medical Record (EMR) data processing tool that confers clinical context to Machine Learning (ML) algorithms for error handling, bias mitigation and interpretability. We present Trust-MAPS, an algorithm that translates clinical domain knowledge into high-dimensional, mixed-integer programming models that capture physiological and biological constraints on clinical measurements. EMR data is projected onto this constrained space, effectively bringing outliers to fall within a physiologically feasible range. We then compute the distance of each data point from the constrained space modeling healthy physiology to quantify deviation from the norm. These distances, termed "trust-scores," are integrated into the feature space for downstream ML applications. We demonstrate the utility of Trust-MAPS by training a binary classifier for early sepsis prediction on data from the 2019 PhysioNet Computing in Cardiology Challenge, using the XGBoost algorithm and applying SMOTE for overcoming class-imbalance. The Trust-MAPS framework shows desirable behavior in handling potential errors and boosting predictive performance. We achieve an AUROC of 0.91 (0.89, 0.92 : 95% CI) for predicting sepsis 6 hours before onset - a marked 15% improvement over a baseline model trained without Trust-MAPS. Trust-scores emerge as clinically meaningful features that not only boost predictive performance for clinical decision support tasks, but also lend interpretability to ML models. This work is the first to translate clinical domain knowledge into mathematical constraints, model cross-vital dependencies, and identify aberrations in high-dimensional medical data. Our method allows for error handling in EMR, and confers interpretability and superior predictive power to models trained for clinical decision support.
♻ ☆ Provable unlearning in topic modeling and downstream tasks
Machine unlearning algorithms are increasingly important as legal concerns arise around the provenance of training data, but verifying the success of unlearning is often difficult. Provable guarantees for unlearning are often limited to supervised learning settings. In this paper, we provide the first theoretical guarantees for unlearning in the pre-training and fine-tuning paradigm by studying topic models, simple bag-of-words language models that can be adapted to solve downstream tasks like retrieval and classification. First, we design a provably effective unlearning algorithm for topic models that incurs a computational overhead independent of the size of the original dataset. Our analysis additionally quantifies the deletion capacity of the model -- i.e., the number of examples that can be unlearned without incurring a significant cost in model performance. Finally, we formally extend our analyses to account for adaptation to a given downstream task. In particular, we design an efficient algorithm to perform unlearning after fine-tuning the topic model via a linear head. Notably, we show that it is easier to unlearn pre-training data from models that have been fine-tuned to a particular task, and one can unlearn this data without modifying the base model.
♻ ☆ Deliberate Planning of 3D Bin Packing on Packing Configuration Trees
Online 3D Bin Packing Problem (3D-BPP) has widespread applications in industrial automation. Existing methods usually solve the problem with limited resolution of spatial discretization, and/or cannot deal with complex practical constraints well. We propose to enhance the practical applicability of online 3D-BPP via learning on a novel hierarchical representation, packing configuration tree (PCT). PCT is a full-fledged description of the state and action space of bin packing which can support packing policy learning based on deep reinforcement learning (DRL). The size of the packing action space is proportional to the number of leaf nodes, making the DRL model easy to train and well-performing even with continuous solution space. We further discover the potential of PCT as tree-based planners in deliberately solving packing problems of industrial significance, including large-scale packing and different variations of BPP setting. A recursive packing method is proposed to decompose large-scale packing into smaller sub-trees while a spatial ensemble mechanism integrates local solutions into global. For different BPP variations with additional decision variables, such as lookahead, buffering, and offline packing, we propose a unified planning framework enabling out-of-the-box problem solving. Extensive evaluations demonstrate that our method outperforms existing online BPP baselines and is versatile in incorporating various practical constraints. The planning process excels across large-scale problems and diverse problem variations. We develop a real-world packing robot for industrial warehousing, with careful designs accounting for constrained placement and transportation stability. Our packing robot operates reliably and efficiently on unprotected pallets at 10 seconds per box. It achieves averagely 19 boxes per pallet with 57.4% space utilization for relatively large-size boxes.
♻ ☆ Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design NAACL 2025
Mixture-of-Experts (MoE) has successfully scaled up models while maintaining nearly constant computing costs. By employing a gating network to route input tokens, it selectively activates a subset of expert networks to process the corresponding token embeddings. However, in practice, the efficiency of MoE is challenging to achieve due to two key reasons: imbalanced expert activation, which leads to substantial idle time during model or expert parallelism, and insufficient capacity utilization; massive communication overhead, induced by numerous expert routing combinations in expert parallelism at the system level. Previous works typically formulate it as the load imbalance issue characterized by the gating network favoring certain experts over others or attribute it to static execution which fails to adapt to the dynamic expert workload at runtime. In this paper, we exploit it from a brand new perspective, a higher-order view and analysis of MoE routing policies: expert collaboration and specialization where some experts tend to activate broadly with others (collaborative), while others are more likely to activate only with a specific subset of experts (specialized). Our experiments reveal that most experts tend to be overly collaborative, leading to increased communication overhead from repeatedly sending tokens to different accelerators. To this end, we propose a novel collaboration-constrained routing (C2R) strategy to encourage more specialized expert groups, as well as to improve expert utilization, and present an efficient implementation of MoE that further leverages expert specialization. We achieve an average performance improvement of 0.51% and 0.33% on LLaMA-MoE and Qwen-MoE respectively across ten downstream NLP benchmarks, and reduce the all2all communication costs between GPUs, bringing an extra 20%-30% total running time savings on top of the existing SoTA, i.e. MegaBlocks.
comment: NAACL 2025, SAC award for Low-resource Methods for NLP
♻ ☆ Trading off Consistency and Dimensionality of Convex Surrogates for the Mode
In multiclass classification over $n$ outcomes, the outcomes must be embedded into the reals with dimension at least $n-1$ in order to design a consistent surrogate loss that leads to the "correct" classification, regardless of the data distribution. For large $n$, such as in information retrieval and structured prediction tasks, optimizing a surrogate in $n-1$ dimensions is often intractable. We investigate ways to trade off surrogate loss dimension, the number of problem instances, and restricting the region of consistency in the simplex for multiclass classification. Following past work, we examine an intuitive embedding procedure that maps outcomes into the vertices of convex polytopes in a low-dimensional surrogate space. We show that full-dimensional subsets of the simplex exist around each point mass distribution for which consistency holds, but also, with less than $n-1$ dimensions, there exist distributions for which a phenomenon called hallucination occurs, which is when the optimal report under the surrogate loss is an outcome with zero probability. Looking towards application, we derive a result to check if consistency holds under a given polytope embedding and low-noise assumption, providing insight into when to use a particular embedding. We provide examples of embedding $n = 2^{d}$ outcomes into the $d$-dimensional unit cube and $n = d!$ outcomes into the $d$-dimensional permutahedron under low-noise assumptions. Finally, we demonstrate that with multiple problem instances, we can learn the mode with $\frac{n}{2}$ dimensions over the whole simplex.
♻ ☆ Federated Transfer Learning with Differential Privacy
Federated learning has emerged as a powerful framework for analysing distributed data, yet two challenges remain pivotal: heterogeneity across sites and privacy of local data. In this paper, we address both challenges within a federated transfer learning framework, aiming to enhance learning on a target data set by leveraging information from multiple heterogeneous source data sets while adhering to privacy constraints. We rigorously formulate the notion of federated differential privacy, which offers privacy guarantees for each data set without assuming a trusted central server. Under this privacy model, we study three classical statistical problems: univariate mean estimation, low-dimensional linear regression, and high-dimensional linear regression. By investigating the minimax rates and quantifying the cost of privacy in each problem, we show that federated differential privacy is an intermediate privacy model between the well-established local and central models of differential privacy. Our analyses account for data heterogeneity and privacy, highlighting the fundamental costs associated with each factor and the benefits of knowledge transfer in federated learning.
comment: 89 pages, 4 figures
♻ ☆ Meta-Computing Enhanced Federated Learning in IIoT: Satisfaction-Aware Incentive Scheme via DRL-Based Stackelberg Game
The Industrial Internet of Things (IIoT) leverages Federated Learning (FL) for distributed model training while preserving data privacy, and meta-computing enhances FL by optimizing and integrating distributed computing resources, improving efficiency and scalability. Efficient IIoT operations require a trade-off between model quality and training latency. Consequently, a primary challenge of FL in IIoT is to optimize overall system performance by balancing model quality and training latency. This paper designs a satisfaction function that accounts for data size, Age of Information (AoI), and training latency for meta-computing. Additionally, the satisfaction function is incorporated into the utility functions to incentivize nodes in IIoT participation in model training. We model the utility functions of servers and nodes as a two-stage Stackelberg game and employ a deep reinforcement learning approach to learn the Stackelberg equilibrium. This approach ensures balanced rewards and enhances the applicability of the incentive scheme for IIoT. Simulation results demonstrate that, under the same budget constraints, the proposed incentive scheme improves utility by at least 23.7% compared to existing FL schemes without compromising model accuracy.
♻ ☆ CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
To address the challenges of limited behavioral intelligence and overly simplified vehicle behavior modeling in autonomous driving simulations, this paper proposes the Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). Leveraging Level-k game theory, we model human driver decision-making using reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse behaviors, improving the intelligence and realism of surrounding vehicles in simulation. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent decisions as an ego vehicle and generating diverse, realistic driving scenarios as surrounding vehicles. The code for CHARMS will be released at https://github.com/WUTAD-Wjy/CHARMS.
♻ ☆ Deep Learning-Based Approach for Identification of Potato Leaf Diseases Using Wrapper Feature Selection and Feature Concatenation
The potato is a widely grown crop in many regions of the world. In recent decades, potato farming has gained incredible traction in the world. Potatoes are susceptible to several illnesses that stunt their development. This plant seems to have significant leaf disease. Early Blight and Late Blight are two prevalent leaf diseases that affect potato plants. The early detection of these diseases would be beneficial for enhancing the yield of this crop. The ideal solution is to use image processing to identify and analyze these disorders. Here, we present an autonomous method based on image processing and machine learning to detect late blight disease affecting potato leaves. The proposed method comprises four different phases: (1) Histogram Equalization is used to improve the quality of the input image; (2) feature extraction is performed using a Deep CNN model, then these extracted features are concatenated; (3) feature selection is performed using wrapper-based feature selection; (4) classification is performed using an SVM classifier and its variants. This proposed method achieves the highest accuracy of 99% using SVM by selecting 550 features.
♻ ☆ Deep Learning in Early Alzheimer's disease's Detection: A Comprehensive Survey of Classification, Segmentation, and Feature Extraction Methods
Alzheimers disease is a deadly neurological condition, impairing important memory and brain functions. Alzheimers disease promotes brain shrinkage, ultimately leading to dementia. Dementia diagnosis typically takes 2.8 to 4.4 years after the first clinical indication. Advancements in computing and information technology have led to many techniques of studying Alzheimers disease. Early identification and therapy are crucial for preventing Alzheimers disease, as early-onset dementia hits people before the age of 65, while late-onset dementia occurs after this age. According to the 2015 World Alzheimers disease Report, there are 46.8 million individuals worldwide suffering from dementia, with an anticipated 74.7 million more by 2030 and 131.5 million by 2050. Deep Learning has outperformed conventional Machine Learning techniques by identifying intricate structures in high-dimensional data. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have achieved an accuracy of up to 96.0% for Alzheimers disease classification, and 84.2% for mild cognitive impairment (MCI) conversion prediction. There have been few literature surveys available on applying ML to predict dementia, lacking in congenital observations. However, this survey has focused on a specific data channel for dementia detection. This study evaluated Deep Learning algorithms for early Alzheimers disease detection, using openly accessible datasets, feature segmentation, and classification methods. This article also has identified research gaps and limits in detecting Alzheimers disease, which can inform future research.
comment: 22 pages
♻ ☆ Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Visual grounding aims to localize the image regions based on a textual query. Given the difficulty of large-scale data curation, we investigate how to effectively learn visual grounding under data-scarce settings in this paper. To address the data scarcity, we propose a novel framework, POBF (Paint Outside the Box and Filter). POBF synthesizes images by inpainting outside the box, tackling a label misalignment issue encountered in previous works. Furthermore, POBF leverages an innovative filtering scheme to select the most effective training data. This scheme combines a hardness score and an overfitting score, balanced by a penalty term. Extensive experiments across four benchmark datasets demonstrate that POBF consistently improves performance, achieving an average gain of 5.83\% over the real-data-only method and outperforming leading baselines by 2.29\%-3.85\% in accuracy. Additionally, we validate the robustness and generalizability of POBF across various generative models, training data sizes, and model architectures.
♻ ☆ Exploring the Frontiers of LLMs in Psychological Applications: A Comprehensive Review
This paper explores the frontiers of large language models (LLMs) in psychology applications. Psychology has undergone several theoretical changes, and the current use of Artificial Intelligence (AI) and Machine Learning, particularly LLMs, promises to open up new research directions. We provide a detailed exploration of how LLMs like ChatGPT are transforming psychological research. It discusses the impact of LLMs across various branches of psychology, including cognitive and behavioral, clinical and counseling, educational and developmental, and social and cultural psychology, highlighting their potential to simulate aspects of human cognition and behavior. The paper delves into the capabilities of these models to emulate human-like text generation, offering innovative tools for literature review, hypothesis generation, experimental design, experimental subjects, data analysis, academic writing, and peer review in psychology. While LLMs are essential in advancing research methodologies in psychology, the paper also cautions about their technical and ethical challenges. There are issues like data privacy, the ethical implications of using LLMs in psychological research, and the need for a deeper understanding of these models' limitations. Researchers should responsibly use LLMs in psychological studies, adhering to ethical standards and considering the potential consequences of deploying these technologies in sensitive areas. Overall, the article provides a comprehensive overview of the current state of LLMs in psychology, exploring potential benefits and challenges. It serves as a call to action for researchers to leverage LLMs' advantages responsibly while addressing associated risks.
♻ ☆ Emotion Alignment: Discovering the Gap Between Social Media and Real-World Sentiments in Persian Tweets and Images
In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions.
♻ ☆ Enhancing OOD Detection Using Latent Diffusion
Numerous Out-of-Distribution (OOD) detection algorithms have been developed to identify unknown samples or objects in real-world deployments. One line of work related to OOD detection propose utilizing auxiliary datasets to train OOD detectors, thereby enhancing the performance of OOD detection. Recently, researchers propose to leverage Stable Diffusion (SD) to generate outliers in the pixel space, which may complicate network training. To mitigate this issue, we propose an Outlier Aware Learning (OAL) framework, which synthesizes OOD training data in the latent space. This improvement enables us to train the network with only a few synthesized outliers. Besides, to regularize the model's decision boundary, we develop a mutual information-based contrastive learning module (MICL) that amplifies the distinction between In-Distribution (ID) and collected OOD features. Moreover, we develop a knowledge distillation module to prevent the degradation of ID classification accuracy when training with OOD data. Extensive experiments on CIFAR-10/100 benchmarks demonstrate the superior performance of our method.
♻ ☆ Machine Learning Fleet Efficiency: Analyzing and Optimizing Large-Scale Google TPU Systems with ML Productivity Goodput
Recent years have seen the emergence of machine learning (ML) workloads deployed in warehouse-scale computing (WSC) settings, also known as ML fleets. As the computational demands placed on ML fleets have increased due to the rise of large models and growing demand for ML applications, it has become increasingly critical to measure and improve the efficiency of such systems. However, there is not yet an established methodology to characterize ML fleet performance and identify potential performance optimizations accordingly. This paper presents a large-scale analysis of an ML fleet based on Google's TPUs, introducing a framework to capture fleet-wide efficiency, systematically evaluate performance characteristics, and identify optimization strategies for the fleet. We begin by defining an ML fleet, outlining its components, and analyzing an example Google ML fleet in production comprising thousands of accelerators running diverse workloads. Our study reveals several critical insights: first, ML fleets extend beyond the hardware layer, with model, data, framework, compiler, and scheduling layers significantly impacting performance; second, the heterogeneous nature of ML fleets poses challenges in characterizing individual workload performance; and third, traditional utilization-based metrics prove insufficient for ML fleet characterization. To address these challenges, we present the "ML Productivity Goodput" (MPG) metric to measure ML fleet efficiency. We show how to leverage this metric to characterize the fleet across the ML system stack. We also present methods to identify and optimize performance bottlenecks using MPG, providing strategies for managing warehouse-scale ML systems in general. Lastly, we demonstrate quantitative evaluations from applying these methods to a real ML fleet for internal-facing Google TPU workloads, where we observed tangible improvements.
♻ ☆ Counterfactual Fairness Evaluation of Machine Learning Models on Educational Datasets
As machine learning models are increasingly used in educational settings, from detecting at-risk students to predicting student performance, algorithmic bias and its potential impacts on students raise critical concerns about algorithmic fairness. Although group fairness is widely explored in education, works on individual fairness in a causal context are understudied, especially on counterfactual fairness. This paper explores the notion of counterfactual fairness for educational data by conducting counterfactual fairness analysis of machine learning models on benchmark educational datasets. We demonstrate that counterfactual fairness provides meaningful insight into the causality of sensitive attributes and causal-based individual fairness in education.
comment: 12 pages, 6 figures, accepted to ITS2025
♻ ☆ FedEGG: Federated Learning with Explicit Global Guidance
Federated Learning (FL) holds great potential for diverse applications owing to its privacy-preserving nature. However, its convergence is often challenged by non-IID data distributions, limiting its effectiveness in real-world deployments. Existing methods help address these challenges via optimization-based client constraints, adaptive client selection, or the use of pre-trained models or synthetic data. In this work, we reinterpret these approaches as all introducing an \emph{implicit guiding task} to regularize and steer client learning. Following this insight, we propose to introduce an \emph{explicit global guiding task} into the current FL framework to improve convergence and performance. To this end, we present \textbf{FedEGG}, a new FL algorithm that constructs a global guiding task using a well-defined, easy-to-converge learning task based on a public dataset and Large Language Models (LLMs). This approach effectively combines the strengths of federated (the original FL task) and centralized (the global guiding task) learning. We provide a theoretical analysis of FedEGG's convergence, examining the impact of data heterogeneity between the guiding and FL tasks and the guiding strength. Our analysis derives an upper bound for the optimal guiding strength, offering practical insights for implementation. Empirically, FedEGG demonstrates superior performance over state-of-the-art FL methods under both IID and non-IID settings, and further improves their performances when combined.
♻ ☆ From Imitation to Exploration: End-to-end Autonomous Driving based on World Model
In recent years, end-to-end autonomous driving architectures have gained increasing attention due to their advantage in avoiding error accumulation. Most existing end-to-end autonomous driving methods are based on Imitation Learning (IL), which can quickly derive driving strategies by mimicking expert behaviors. However, IL often struggles to handle scenarios outside the training dataset, especially in high-dynamic and interaction-intensive traffic environments. In contrast, Reinforcement Learning (RL)-based driving models can optimize driving decisions through interaction with the environment, improving adaptability and robustness. To leverage the strengths of both IL and RL, we propose RAMBLE, an end-to-end world model-based RL method for driving decision-making. RAMBLE extracts environmental context information from RGB images and LiDAR data through an asymmetrical variational autoencoder. A transformer-based architecture is then used to capture the dynamic transitions of traffic participants. Next, an actor-critic structure reinforcement learning algorithm is applied to derive driving strategies based on the latent features of the current state and dynamics. To accelerate policy convergence and ensure stable training, we introduce a training scheme that initializes the policy network using IL, and employs KL loss and soft update mechanisms to smoothly transition the model from IL to RL. RAMBLE achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0, demonstrating its effectiveness in handling complex and dynamic traffic scenarios. The model will be open-sourced upon paper acceptance at https://github.com/SCP-CN-001/ramble to support further research and development in autonomous driving.
comment: 12 pages, 4 figures, 3 tables; T-ITS under review
♻ ☆ HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
Automated parking stands as a highly anticipated application of autonomous driving technology. However, existing path planning methodologies fall short of addressing this need due to their incapability to handle the diverse and complex parking scenarios in reality. While non-learning methods provide reliable planning results, they are vulnerable to intricate occasions, whereas learning-based ones are good at exploration but unstable in converging to feasible solutions. To leverage the strengths of both approaches, we introduce Hybrid pOlicy Path plannEr (HOPE). This novel solution integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showing higher planning success rates and generalization across various scenarios. We also conduct real-world experiments to verify the practicability of HOPE. The code for our solution is openly available on https://github.com/jiamiya/HOPE.
comment: Accepted by T-ITS. 11 pages, 5 tables, 6 figures, 2 page appendix
♻ ☆ Wasserstein Distributionally Robust Regret Optimization
Distributionally Robust Optimization (DRO) is a popular framework for decision-making under uncertainty, but its adversarial nature can lead to overly conservative solutions. To address this, we study ex-ante Distributionally Robust Regret Optimization (DRRO), focusing on Wasserstein-based ambiguity sets which are popular due to their links to regularization and machine learning. We provide a systematic analysis of Wasserstein DRRO, paralleling known results for Wasserstein DRO. Under smoothness and regularity conditions, we show that Wasserstein DRRO coincides with Empirical Risk Minimization (ERM) up to first-order terms, and exactly so in convex quadratic settings. We revisit the Wasserstein DRRO newsvendor problem, where the loss is the maximum of two linear functions of demand and decision. Extending [25], we show that the regret can be computed by maximizing two one-dimensional concave functions. For more general loss functions involving the maximum of multiple linear terms in multivariate random variables and decision vectors, we prove that computing the regret and thus also the DRRO policy is NP-hard. We then propose a convex relaxation for these more general Wasserstein DRRO problems and demonstrate its strong empirical performance. Finally, we provide an upper bound on the optimality gap of our relaxation and show it improves over recent alternatives.
♻ ☆ First-Order Methods for Linearly Constrained Bilevel Optimization
Algorithms for bilevel optimization often encounter Hessian computations, which are prohibitive in high dimensions. While recent works offer first-order methods for unconstrained bilevel problems, the constrained setting remains relatively underexplored. We present first-order linearly constrained optimization methods with finite-time hypergradient stationarity guarantees. For linear equality constraints, we attain $\epsilon$-stationarity in $\widetilde{O}(\epsilon^{-2})$ gradient oracle calls, which is nearly-optimal. For linear inequality constraints, we attain $(\delta,\epsilon)$-Goldstein stationarity in $\widetilde{O}(d{\delta^{-1} \epsilon^{-3}})$ gradient oracle calls, where $d$ is the upper-level dimension. Finally, we obtain for the linear inequality setting dimension-free rates of $\widetilde{O}({\delta^{-1} \epsilon^{-4}})$ oracle complexity under the additional assumption of oracle access to the optimal dual variable. Along the way, we develop new nonsmooth nonconvex optimization methods with inexact oracles. We verify these guarantees with preliminary numerical experiments.
♻ ☆ Fast Adaptive Anti-Jamming Channel Access via Deep Q Learning and Coarse-Grained Spectrum Prediction
This paper investigates the anti-jamming channel access problem in complex and unknown jamming environments, where the jammer could dynamically adjust its strategies to target different channels. Traditional channel hopping anti-jamming approaches using fixed patterns are ineffective against such dynamic jamming attacks. Although the emerging deep reinforcement learning (DRL) based dynamic channel access approach could achieve the Nash equilibrium under fast-changing jamming attacks, it requires extensive training episodes. To address this issue, we propose a fast adaptive anti-jamming channel access approach guided by the intuition of ``learning faster than the jammer", where a synchronously updated coarse-grained spectrum prediction serves as an auxiliary task for the deep Q learning (DQN) based anti-jamming model. This helps the model identify a superior Q-function compared to standard DRL while significantly reducing the number of training episodes. Numerical results indicate that the proposed approach significantly accelerates the rate of convergence in model training, reducing the required training episodes by up to 70% compared to standard DRL. Additionally, it also achieves a 10% improvement in throughput over NE strategies, owing to the effective use of coarse-grained spectrum prediction.
♻ ☆ Reconstruction of Differentially Private Text Sanitization via Large Language Models
Differential privacy (DP) is the de facto privacy standard against privacy leakage attacks, including many recently discovered ones against large language models (LLMs). However, we discovered that LLMs could reconstruct the altered/removed privacy from given DP-sanitized prompts. We propose two attacks (black-box and white-box) based on the accessibility to LLMs and show that LLMs could connect the pair of DP-sanitized text and the corresponding private training data of LLMs by giving sample text pairs as instructions (in the black-box attacks) or fine-tuning data (in the white-box attacks). To illustrate our findings, we conduct comprehensive experiments on modern LLMs (e.g., LLaMA-2, LLaMA-3, ChatGPT-3.5, ChatGPT-4, ChatGPT-4o, Claude-3, Claude-3.5, OPT, GPT-Neo, GPT-J, Gemma-2, and Pythia) using commonly used datasets (such as WikiMIA, Pile-CC, and Pile-Wiki) against both word-level and sentence-level DP. The experimental results show promising recovery rates, e.g., the black-box attacks against the word-level DP over WikiMIA dataset gave 72.18% on LLaMA-2 (70B), 82.39% on LLaMA-3 (70B), 75.35% on Gemma-2, 91.2% on ChatGPT-4o, and 94.01% on Claude-3.5 (Sonnet). More urgently, this study indicates that these well-known LLMs have emerged as a new security risk for existing DP text sanitization approaches in the current environment.
♻ ☆ Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization AISTATS 2025
Minimax optimization recently is widely applied in many machine learning tasks such as generative adversarial networks, robust learning and reinforcement learning. In the paper, we study a class of nonconvex-nonconcave minimax optimization with nonsmooth regularization, where the objective function is possibly nonconvex on primal variable $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition on dual variable $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any specifical types. Theoretically, we prove that our methods have the best known sample complexity of $\tilde{O}(\epsilon^{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution. Some numerical experiments on PL-game and Wasserstein-GAN demonstrate the efficiency of our proposed methods.
comment: Published in AISTATS 2025
♻ ☆ AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
♻ ☆ Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation
In federated learning, fine-tuning pre-trained foundation models poses significant challenges, particularly regarding high communication cost and suboptimal model performance due to data heterogeneity between the clients. To address these issues, this paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation. We first presents a novel LoRA parameter factorization by introducing a small-size dense matrix, which can significantly reduce the communication cost and achieve comparable empirical performance than transferring the low-rank parameter matrix used by existing methods. Without violating data privacy, the server considers the client similarity in both training dataset and model parameter space, and learns personalized weights for model aggregation. Our experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions. In addition, CE-LoRA improves data privacy protection, effectively mitigating gradient-based data reconstruction attacks.
♻ ☆ On Tractable $Φ$-Equilibria in Non-Concave Games NeurIPS 2024
While Online Gradient Descent and other no-regret learning procedures are known to efficiently converge to a coarse correlated equilibrium in games where each agent's utility is concave in their own strategy, this is not the case when utilities are non-concave -- a common scenario in machine learning applications involving strategies parameterized by deep neural networks, or when agents' utilities are computed by neural networks, or both. Non-concave games introduce significant game-theoretic and optimization challenges: (i) Nash equilibria may not exist; (ii) local Nash equilibria, though they exist, are intractable; and (iii) mixed Nash, correlated, and coarse correlated equilibria generally have infinite support and are intractable. To sidestep these challenges, we revisit the classical solution concept of $\Phi$-equilibria introduced by Greenwald and Jafari [2003], which is guaranteed to exist for an arbitrary set of strategy modifications $\Phi$ even in non-concave games [Stolz and Lugosi, 2007]. However, the tractability of $\Phi$-equilibria in such games remains elusive. In this paper, we initiate the study of tractable $\Phi$-equilibria in non-concave games and examine several natural families of strategy modifications. We show that when $\Phi$ is finite, there exists an efficient uncoupled learning algorithm that converges to the corresponding $\Phi$-equilibria. Additionally, we explore cases where $\Phi$ is infinite but consists of local modifications. We show that approximating local $\Phi$-equilibria beyond the first-order stationary regime is computationally intractable. In contrast, within this regime, we show Online Gradient Descent efficiently converges to $\Phi$-equilibria for several natural infinite families of modifications, including a new structural family of modifications inspired by the well-studied proximal operator.
comment: 59 pages. The abstract has been shortened to meet the arXiv requirement. A preliminary version of the paper has been accepted to NeurIPS 2024. Compared to the last version, this version contains updated references
♻ ☆ Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport ICLR '25
To embed structured knowledge within labels into feature representations, prior work [Zeng et al., 2022] proposed to use the Cophenetic Correlation Coefficient (CPCC) as a regularizer during supervised learning. This regularizer calculates pairwise Euclidean distances of class means and aligns them with the corresponding shortest path distances derived from the label hierarchy tree. However, class means may not be good representatives of the class conditional distributions, especially when they are multi-mode in nature. To address this limitation, under the CPCC framework, we propose to use the Earth Mover's Distance (EMD) to measure the pairwise distances among classes in the feature space. We show that our exact EMD method generalizes previous work, and recovers the existing algorithm when class-conditional distributions are Gaussian. To further improve the computational efficiency of our method, we introduce the Optimal Transport-CPCC family by exploring four EMD approximation variants. Our most efficient OT-CPCC variant, the proposed Fast FlowTree algorithm, runs in linear time in the size of the dataset, while maintaining competitive performance across datasets and tasks. The code is available at https://github.com/uiuctml/OTCPCC.
comment: 31 pages, 12 figures. Published as a conference paper at ICLR '25
♻ ☆ FlowMotion: Target-Predictive Conditional Flow Matching for Jitter-Reduced Text-Driven Human Motion Generation
Achieving high-fidelity and temporally smooth 3D human motion generation remains a challenge, particularly within resource-constrained environments. We introduce FlowMotion, a novel method leveraging Conditional Flow Matching (CFM). FlowMotion incorporates a training objective within CFM that focuses on more accurately predicting target motion in 3D human motion generation, resulting in enhanced generation fidelity and temporal smoothness while maintaining the fast synthesis times characteristic of flow-matching-based methods. FlowMotion achieves state-of-the-art jitter performance, achieving the best jitter in the KIT dataset and the second-best jitter in the HumanML3D dataset, and a competitive FID value in both datasets. This combination provides robust and natural motion sequences, offering a promising equilibrium between generation quality and temporal naturalness.
♻ ☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
♻ ☆ Algorithmic contiguity from low-degree conjecture and applications in correlated random graphs
In this paper, assuming a natural strengthening of the low-degree conjecture, we provide evidence of computational hardness for two problems: (1) the (partial) matching recovery problem in the sparse correlated Erd\H{o}s-R\'enyi graphs $\mathcal G(n,q;\rho)$ when the edge-density $q=n^{-1+o(1)}$ and the correlation $\rho<\sqrt{\alpha}$ lies below the Otter's threshold, solving a remaining problem in \cite{DDL23+}; (2) the detection problem between the correlated sparse stochastic block model $\mathcal S(n,\tfrac{\lambda}{n};k,\epsilon;s)$ and a pair of independent stochastic block models $\mathcal S(n,\tfrac{\lambda s}{n};k,\epsilon)$ when $\epsilon^2 \lambda s<1$ lies below the Kesten-Stigum (KS) threshold and $s<\sqrt{\alpha}$ lies below the Otter's threshold, solving a remaining problem in \cite{CDGL24+}. One of the main ingredient in our proof is to derive certain forms of \emph{algorithmic contiguity} between two probability measures based on bounds on their low-degree advantage. To be more precise, consider the high-dimensional hypothesis testing problem between two probability measures $\mathbb{P}$ and $\mathbb{Q}$ based on the sample $\mathsf Y$. We show that if the low-degree advantage $\mathsf{Adv}_{\leq D} \big( \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} \big)=O(1)$, then (assuming the low-degree conjecture) there is no efficient algorithm $\mathcal A$ such that $\mathbb{Q}(\mathcal A(\mathsf Y)=0)=1-o(1)$ and $\mathbb{P}(\mathcal A(\mathsf Y)=1)=\Omega(1)$. This framework provides a useful tool for performing reductions between different inference tasks.
comment: 37 pages. Fixed several typos and added a proof of Theorem~3.2 assuming only the original low-degree conjecture in Appendix~C
♻ ☆ Nudging: Inference-time Alignment of LLMs via Guided Decoding
Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, nudging employs a small aligned model to generate nudging tokens to guide the base model's output during decoding when the base model's uncertainty is high. We evaluate nudging across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7x-14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
♻ ☆ SeaMo: A Season-Aware Multimodal Foundation Model for Remote Sensing
Remote Sensing (RS) data encapsulates rich multi-dimensional information essential for Earth observation. Its vast volume, diverse sources, and temporal continuity make it particularly well-suited for developing large Visual Foundation Models (VFMs). These models serve as powerful feature extractors, leveraging extensive RS data for pretraining and subsequent fine-tuning in various geoscientific applications. However, existing VFMs in the RS domain often concentrate on specific image characteristics, neglecting the full season-aware potential of RS data. To bridge this gap, we introduce SeaMo, a novel VFM that effectively integrates multimodal and multi-seasonal RS information. SeaMo leverages a masked image modeling framework to fully exploit the spatial, spectral, and seasonal dimensions of RS data. Specifically, we employ unaligned spatial region selection to capture spatial heterogeneity, incorporate multi-source inputs for enhanced multimodal integration, and introduce temporal-multimodal fusion blocks to assimilate seasonal variations effectively. By explicitly modeling the complex, season-dependent attributes of RS data, SeaMo enhances generalization, robustness, and adaptability across geoscientific tasks. Extensive experiments and ablation studies demonstrate its superior performance, underscoring its potential as a foundational model for Earth observation.
Multimedia 5
☆ Video QoE Metrics from Encrypted Traffic: Application-agnostic Methodology
Instant Messaging-Based Video Call Applications (IMVCAs) and Video Conferencing Applications (VCAs) have become integral to modern communication. Ensuring a high Quality of Experience (QoE) for users in this context is critical for network operators, as network conditions significantly impact user QoE. However, network operators lack access to end-device QoE metrics due to encrypted traffic. Existing solutions estimate QoE metrics from encrypted traffic traversing the network, with the most advanced approaches leveraging machine learning models. Subsequently, the need for ground truth QoE metrics for training and validation poses a challenge, as not all video applications provide these metrics. To address this challenge, we propose an application-agnostic approach for objective QoE estimation from encrypted traffic. Independent of the video application, we obtained key video QoE metrics, enabling broad applicability to various proprietary IMVCAs and VCAs. To validate our solution, we created a diverse dataset from WhatsApp video sessions under various network conditions, comprising 25,680 seconds of traffic data and QoE metrics. Our evaluation shows high performance across the entire dataset, with 85.2% accuracy for FPS predictions within an error margin of two FPS, and 90.2% accuracy for PIQE-based quality rating classification.
comment: 8 pages, 7 figures
♻ ☆ A Survey on Music Generation from Single-Modal, Cross-Modal, and Multi-Modal Perspectives
Multi-modal music generation, using multiple modalities like text, images, and video alongside musical scores and audio as guidance, is an emerging research area with broad applications. This paper reviews this field, categorizing music generation systems from the perspective of modalities. The review covers modality representation, multi-modal data alignment, and their utilization to guide music generation. Current datasets and evaluation methods are also discussed. Key challenges in this area include effective multi-modal integration, large-scale comprehensive datasets, and systematic evaluation methods. Finally, an outlook on future research directions is provided, focusing on creativity, efficiency, multi-modal alignment, and evaluation.
♻ ☆ Steganography Beyond Space-Time with Chain of Multimodal AI
Steganography is the art and science of covert writing, with a broad range of applications interwoven within the realm of cybersecurity. As artificial intelligence continues to evolve, its ability to synthesise realistic content emerges as a threat in the hands of cybercriminals who seek to manipulate and misrepresent the truth. Such synthetic content introduces a non-trivial risk of overwriting the subtle changes made for the purpose of steganography. When the signals in both the spatial and temporal domains are vulnerable to unforeseen overwriting, it calls for reflection on what, if any, remains invariant. This study proposes a paradigm in steganography for audiovisual media, where messages are concealed beyond both spatial and temporal domains. A chain of multimodal artificial intelligence is developed to deconstruct audiovisual content into a cover text, embed a message within the linguistic domain, and then reconstruct the audiovisual content through synchronising both auditory and visual modalities with the resultant stego text. The message is encoded by biasing the word sampling process of a language generation model and decoded by analysing the probability distribution of word choices. The accuracy of message transmission is evaluated under both zero-bit and multi-bit capacity settings. Fidelity is assessed through both biometric and semantic similarities, capturing the identities of the recorded face and voice, as well as the core ideas conveyed through the media. Secrecy is examined through statistical comparisons between cover and stego texts. Robustness is tested across various scenarios, including audiovisual resampling, face-swapping, voice-cloning and their combinations.
♻ ☆ Steganography in Game Actions
The exchange of messages has always carried with it the timeless challenge of secrecy. From whispers in shadows to the enigmatic notes written in the margins of history, humanity has long sought ways to convey thoughts that remain imperceptible to all but the chosen few. The challenge of subliminal communication has been addressed in various forms of steganography. However, the field faces a fundamental paradox: as the art of concealment advances, so too does the science of revelation, leading to an ongoing evolutionary interplay. This study seeks to extend the boundaries of what is considered a viable steganographic medium. We explore a steganographic paradigm, in which hidden information is communicated through the episodes of multiple agents interacting with an environment. Each agent, acting as an encoder, learns a policy to disguise the very existence of hidden messages within actions seemingly directed toward innocent objectives. Meanwhile, an observer, serving as a decoder, learns to associate behavioural patterns with their respective agents despite their dynamic nature, thereby unveiling the hidden messages. The interactions of agents are governed by the framework of multi-agent reinforcement learning and shaped by feedback from the observer. This framework encapsulates a game-theoretic dilemma, wherein agents face decisions between cooperating to create distinguishable behavioural patterns or defecting to pursue individually optimal yet potentially overlapping episodic actions. As a proof of concept, we exemplify action steganography through the game of labyrinth, a navigation task where subliminal communication is concealed within the act of steering toward a destination, and systematically validate the stego-system in terms of distortion, capacity, secrecy and robustness when subjected to simulated passive and active adversaries.
♻ ☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
Computer Vision and Pattern Recognition 88
☆ Adversarial Attack for RGB-Event based Visual Object Tracking
Visual object tracking is a crucial research topic in the fields of computer vision and multi-modal fusion. Among various approaches, robust visual tracking that combines RGB frames with Event streams has attracted increasing attention from researchers. While striving for high accuracy and efficiency in tracking, it is also important to explore how to effectively conduct adversarial attacks and defenses on RGB-Event stream tracking algorithms, yet research in this area remains relatively scarce. To bridge this gap, in this paper, we propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking. Because of the diverse representations of Event streams, and given that Event voxels and frames are more commonly used, this paper will focus on these two representations for an in-depth study. Specifically, for the RGB-Event voxel, we first optimize the perturbation by adversarial loss to generate RGB frame adversarial examples. For discrete Event voxel representations, we propose a two-step attack strategy, more in detail, we first inject Event voxels into the target region as initialized adversarial examples, then, conduct a gradient-guided optimization by perturbing the spatial location of the Event voxels. For the RGB-Event frame based tracking, we optimize the cross-modal universal perturbation by integrating the gradient information from multimodal data. We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets, i.e., COESOT, FE108, and VisEvent. Extensive experiments show that our method significantly reduces the performance of the tracker across numerous datasets in both unimodal and multimodal scenarios. The source code will be released on https://github.com/Event-AHU/Adversarial_Attack_Defense
☆ Data Augmentation Using Neural Acoustic Fields With Retrieval-Augmented Pre-training ICASSP 2025
This report details MERL's system for room impulse response (RIR) estimation submitted to the Generative Data Augmentation Workshop at ICASSP 2025 for Augmenting RIR Data (Task 1) and Improving Speaker Distance Estimation (Task 2). We first pre-train a neural acoustic field conditioned by room geometry on an external large-scale dataset in which pairs of RIRs and the geometries are provided. The neural acoustic field is then adapted to each target room by using the enrollment data, where we leverage either the provided room geometries or geometries retrieved from the external dataset, depending on availability. Lastly, we predict the RIRs for each pair of source and receiver locations specified by Task 1, and use these RIRs to train the speaker distance estimation model in Task 2.
comment: Presented at ICASSP 2025 GenDA Workshop
☆ SphereDiff: Tuning-free Omnidirectional Panoramic Image and Video Generation via Spherical Latent Representation
The increasing demand for AR/VR applications has highlighted the need for high-quality 360-degree panoramic content. However, generating high-quality 360-degree panoramic images and videos remains a challenging task due to the severe distortions introduced by equirectangular projection (ERP). Existing approaches either fine-tune pretrained diffusion models on limited ERP datasets or attempt tuning-free methods that still rely on ERP latent representations, leading to discontinuities near the poles. In this paper, we introduce SphereDiff, a novel approach for seamless 360-degree panoramic image and video generation using state-of-the-art diffusion models without additional tuning. We define a spherical latent representation that ensures uniform distribution across all perspectives, mitigating the distortions inherent in ERP. We extend MultiDiffusion to spherical latent space and propose a spherical latent sampling method to enable direct use of pretrained diffusion models. Moreover, we introduce distortion-aware weighted averaging to further improve the generation quality in the projection process. Our method outperforms existing approaches in generating 360-degree panoramic content while maintaining high fidelity, making it a robust solution for immersive AR/VR applications. The code is available here. https://github.com/pmh9960/SphereDiff
☆ Hydra: An Agentic Reasoning Approach for Enhancing Adversarial Robustness and Mitigating Hallucinations in Vision-Language Models
To develop trustworthy Vision-Language Models (VLMs), it is essential to address adversarial robustness and hallucination mitigation, both of which impact factual accuracy in high-stakes applications such as defense and healthcare. Existing methods primarily focus on either adversarial defense or hallucination post-hoc correction, leaving a gap in unified robustness strategies. We introduce \textbf{Hydra}, an adaptive agentic framework that enhances plug-in VLMs through iterative reasoning, structured critiques, and cross-model verification, improving both resilience to adversarial perturbations and intrinsic model errors. Hydra employs an Action-Critique Loop, where it retrieves and critiques visual information, leveraging Chain-of-Thought (CoT) and In-Context Learning (ICL) techniques to refine outputs dynamically. Unlike static post-hoc correction methods, Hydra adapts to both adversarial manipulations and intrinsic model errors, making it robust to malicious perturbations and hallucination-related inaccuracies. We evaluate Hydra on four VLMs, three hallucination benchmarks, two adversarial attack strategies, and two adversarial defense methods, assessing performance on both clean and adversarial inputs. Results show that Hydra surpasses plug-in VLMs and state-of-the-art (SOTA) dehallucination methods, even without explicit adversarial defenses, demonstrating enhanced robustness and factual consistency. By bridging adversarial resistance and hallucination mitigation, Hydra provides a scalable, training-free solution for improving the reliability of VLMs in real-world applications.
☆ How Well Can General Vision-Language Models Learn Medicine By Watching Public Educational Videos?
Publicly available biomedical videos, such as those on YouTube, serve as valuable educational resources for medical students. Unlike standard machine learning datasets, these videos are designed for human learners, often mixing medical imagery with narration, explanatory diagrams, and contextual framing. In this work, we investigate whether such pedagogically rich, yet non-standardized and heterogeneous videos can effectively teach general-domain vision-language models biomedical knowledge. To this end, we introduce OpenBiomedVi, a biomedical video instruction tuning dataset comprising 1031 hours of video-caption and Q/A pairs, curated through a multi-step human-in-the-loop pipeline. Diverse biomedical video datasets are rare, and OpenBiomedVid fills an important gap by providing instruction-style supervision grounded in real-world educational content. Surprisingly, despite the informal and heterogeneous nature of these videos, the fine-tuned Qwen-2-VL models exhibit substantial performance improvements across most benchmarks. The 2B model achieves gains of 98.7% on video tasks, 71.2% on image tasks, and 0.2% on text tasks. The 7B model shows improvements of 37.09% on video and 11.2% on image tasks, with a slight degradation of 2.7% on text tasks compared to their respective base models. To address the lack of standardized biomedical video evaluation datasets, we also introduce two new expert curated benchmarks, MIMICEchoQA and SurgeryVideoQA. On these benchmarks, the 2B model achieves gains of 99.1% and 98.1%, while the 7B model shows gains of 22.5% and 52.1%, respectively, demonstrating the models' ability to generalize and perform biomedical video understanding on cleaner and more standardized datasets than those seen during training. These results suggest that educational videos created for human learning offer a surprisingly effective training signal for biomedical VLMs.
☆ LOOPE: Learnable Optimal Patch Order in Positional Embeddings for Vision Transformers
Positional embeddings (PE) play a crucial role in Vision Transformers (ViTs) by providing spatial information otherwise lost due to the permutation invariant nature of self attention. While absolute positional embeddings (APE) have shown theoretical advantages over relative positional embeddings (RPE), particularly due to the ability of sinusoidal functions to preserve spatial inductive biases like monotonicity and shift invariance, a fundamental challenge arises when mapping a 2D grid to a 1D sequence. Existing methods have mostly overlooked or never explored the impact of patch ordering in positional embeddings. To address this, we propose LOOPE, a learnable patch-ordering method that optimizes spatial representation for a given set of frequencies, providing a principled approach to patch order optimization. Empirical results show that our PE significantly improves classification accuracy across various ViT architectures. To rigorously evaluate the effectiveness of positional embeddings, we introduce the "Three Cell Experiment", a novel benchmarking framework that assesses the ability of PEs to retain relative and absolute positional information across different ViT architectures. Unlike standard evaluations, which typically report a performance gap of 4 to 6% between models with and without PE, our method reveals a striking 30 to 35% difference, offering a more sensitive diagnostic tool to measure the efficacy of PEs. Our experimental analysis confirms that the proposed LOOPE demonstrates enhanced effectiveness in retaining both relative and absolute positional information.
☆ SEGA: Drivable 3D Gaussian Head Avatar from a Single Image
Creating photorealistic 3D head avatars from limited input has become increasingly important for applications in virtual reality, telepresence, and digital entertainment. While recent advances like neural rendering and 3D Gaussian splatting have enabled high-quality digital human avatar creation and animation, most methods rely on multiple images or multi-view inputs, limiting their practicality for real-world use. In this paper, we propose SEGA, a novel approach for Single-imagE-based 3D drivable Gaussian head Avatar creation that combines generalized prior models with a new hierarchical UV-space Gaussian Splatting framework. SEGA seamlessly combines priors derived from large-scale 2D datasets with 3D priors learned from multi-view, multi-expression, and multi-ID data, achieving robust generalization to unseen identities while ensuring 3D consistency across novel viewpoints and expressions. We further present a hierarchical UV-space Gaussian Splatting framework that leverages FLAME-based structural priors and employs a dual-branch architecture to disentangle dynamic and static facial components effectively. The dynamic branch encodes expression-driven fine details, while the static branch focuses on expression-invariant regions, enabling efficient parameter inference and precomputation. This design maximizes the utility of limited 3D data and achieves real-time performance for animation and rendering. Additionally, SEGA performs person-specific fine-tuning to further enhance the fidelity and realism of the generated avatars. Experiments show our method outperforms state-of-the-art approaches in generalization ability, identity preservation, and expression realism, advancing one-shot avatar creation for practical applications.
☆ Efficient Spiking Point Mamba for Point Cloud Analysis
Bio-inspired Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing 3D SNNs have struggled with long-range dependencies until the recent emergence of Mamba, which offers superior computational efficiency and sequence modeling capability. In this work, we propose Spiking Point Mamba (SPM), the first Mamba-based SNN in the 3D domain. Due to the poor performance of simply transferring Mamba to 3D SNNs, SPM is designed to utilize both the sequence modeling capabilities of Mamba and the temporal feature extraction of SNNs. Specifically, we first introduce Hierarchical Dynamic Encoding (HDE), an improved direct encoding method that effectively introduces dynamic temporal mechanism, thereby facilitating temporal interactions. Then, we propose a Spiking Mamba Block (SMB), which builds upon Mamba while learning inter-time-step features and minimizing information loss caused by spikes. Finally, to further enhance model performance, we adopt an asymmetric SNN-ANN architecture for spike-based pre-training and finetune. Compared with the previous state-of-the-art SNN models, SPM improves OA by +6.2%, +6.1%, and +7.4% on three variants of ScanObjectNN, and boosts instance mIOU by +1.9% on ShapeNetPart. Meanwhile, its energy consumption is at least 3.5x lower than that of its ANN counterpart. The code will be made publicly available.
☆ A Multimodal Recaptioning Framework to Account for Perceptual Diversity in Multilingual Vision-Language Modeling
There are many ways to describe, name, and group objects when captioning an image. Differences are evident when speakers come from diverse cultures due to the unique experiences that shape perception. Machine translation of captions has pushed multilingual capabilities in vision-language models (VLMs), but data comes mainly from English speakers, indicating a perceptual bias and lack of model flexibility. In this work, we address this challenge and outline a data-efficient framework to instill multilingual VLMs with greater understanding of perceptual diversity. We specifically propose an LLM-based, multimodal recaptioning strategy that alters the object descriptions of English captions before translation. The greatest benefits are demonstrated in a targeted multimodal mechanism guided by native speaker data. By adding produced rewrites as augmentations in training, we improve on German and Japanese text-image retrieval cases studies (up to +3.5 mean recall overall, +4.7 on non-native error cases). We further propose a mechanism to analyze the specific object description differences across datasets, and we offer insights into cross-dataset and cross-language generalization.
☆ Manipulating Multimodal Agents via Cross-Modal Prompt Injection
The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this work, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach consists of two key components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to infer the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
comment: 17 pages, 4 figures
☆ Multispectral airborne laser scanning for tree species classification: a benchmark of machine learning and deep learning algorithms
Climate-smart and biodiversity-preserving forestry demands precise information on forest resources, extending to the individual tree level. Multispectral airborne laser scanning (ALS) has shown promise in automated point cloud processing and tree segmentation, but challenges remain in identifying rare tree species and leveraging deep learning techniques. This study addresses these gaps by conducting a comprehensive benchmark of machine learning and deep learning methods for tree species classification. For the study, we collected high-density multispectral ALS data (>1000 pts/m$^2$) at three wavelengths using the FGI-developed HeliALS system, complemented by existing Optech Titan data (35 pts/m$^2$), to evaluate the species classification accuracy of various algorithms in a test site located in Southern Finland. Based on 5261 test segments, our findings demonstrate that point-based deep learning methods, particularly a point transformer model, outperformed traditional machine learning and image-based deep learning approaches on high-density multispectral point clouds. For the high-density ALS dataset, a point transformer model provided the best performance reaching an overall (macro-average) accuracy of 87.9% (74.5%) with a training set of 1065 segments and 92.0% (85.1%) with 5000 training segments. The best image-based deep learning method, DetailView, reached an overall (macro-average) accuracy of 84.3% (63.9%), whereas a random forest (RF) classifier achieved an overall (macro-average) accuracy of 83.2% (61.3%). Importantly, the overall classification accuracy of the point transformer model on the HeliALS data increased from 73.0% with no spectral information to 84.7% with single-channel reflectance, and to 87.9% with spectral information of all the three channels.
☆ Visual Prompting for One-shot Controllable Video Editing without Inversion
One-shot controllable video editing (OCVE) is an important yet challenging task, aiming to propagate user edits that are made -- using any image editing tool -- on the first frame of a video to all subsequent frames, while ensuring content consistency between edited frames and source frames. To achieve this, prior methods employ DDIM inversion to transform source frames into latent noise, which is then fed into a pre-trained diffusion model, conditioned on the user-edited first frame, to generate the edited video. However, the DDIM inversion process accumulates errors, which hinder the latent noise from accurately reconstructing the source frames, ultimately compromising content consistency in the generated edited frames. To overcome it, our method eliminates the need for DDIM inversion by performing OCVE through a novel perspective based on visual prompting. Furthermore, inspired by consistency models that can perform multi-step consistency sampling to generate a sequence of content-consistent images, we propose a content consistency sampling (CCS) to ensure content consistency between the generated edited frames and the source frames. Moreover, we introduce a temporal-content consistency sampling (TCS) based on Stein Variational Gradient Descent to ensure temporal consistency across the edited frames. Extensive experiments validate the effectiveness of our approach.
comment: accepted by cvpr2025
☆ DCFG: Diverse Cross-Channel Fine-Grained Feature Learning and Progressive Fusion Siamese Tracker for Thermal Infrared Target Tracking
To address the challenge of capturing highly discriminative features in ther-mal infrared (TIR) tracking, we propose a novel Siamese tracker based on cross-channel fine-grained feature learning and progressive fusion. First, we introduce a cross-channel fine-grained feature learning network that employs masks and suppression coefficients to suppress dominant target features, en-abling the tracker to capture more detailed and subtle information. The net-work employs a channel rearrangement mechanism to enhance efficient in-formation flow, coupled with channel equalization to reduce parameter count. Additionally, we incorporate layer-by-layer combination units for ef-fective feature extraction and fusion, thereby minimizing parameter redun-dancy and computational complexity. The network further employs feature redirection and channel shuffling strategies to better integrate fine-grained details. Second, we propose a specialized cross-channel fine-grained loss function designed to guide feature groups toward distinct discriminative re-gions of the target, thus improving overall target representation. This loss function includes an inter-channel loss term that promotes orthogonality be-tween channels, maximizing feature diversity and facilitating finer detail capture. Extensive experiments demonstrate that our proposed tracker achieves the highest accuracy, scoring 0.81 on the VOT-TIR 2015 and 0.78 on the VOT-TIR 2017 benchmark, while also outperforming other methods across all evaluation metrics on the LSOTB-TIR and PTB-TIR benchmarks.
☆ FGSGT: Saliency-Guided Siamese Network Tracker Based on Key Fine-Grained Feature Information for Thermal Infrared Target Tracking
Thermal infrared (TIR) images typically lack detailed features and have low contrast, making it challenging for conventional feature extraction models to capture discriminative target characteristics. As a result, trackers are often affected by interference from visually similar objects and are susceptible to tracking drift. To address these challenges, we propose a novel saliency-guided Siamese network tracker based on key fine-grained feature infor-mation. First, we introduce a fine-grained feature parallel learning convolu-tional block with a dual-stream architecture and convolutional kernels of varying sizes. This design captures essential global features from shallow layers, enhances feature diversity, and minimizes the loss of fine-grained in-formation typically encountered in residual connections. In addition, we propose a multi-layer fine-grained feature fusion module that uses bilinear matrix multiplication to effectively integrate features across both deep and shallow layers. Next, we introduce a Siamese residual refinement block that corrects saliency map prediction errors using residual learning. Combined with deep supervision, this mechanism progressively refines predictions, ap-plying supervision at each recursive step to ensure consistent improvements in accuracy. Finally, we present a saliency loss function to constrain the sali-ency predictions, directing the network to focus on highly discriminative fi-ne-grained features. Extensive experiment results demonstrate that the pro-posed tracker achieves the highest precision and success rates on the PTB-TIR and LSOTB-TIR benchmarks. It also achieves a top accuracy of 0.78 on the VOT-TIR 2015 benchmark and 0.75 on the VOT-TIR 2017 benchmark.
☆ Exploring Generalizable Pre-training for Real-world Change Detection via Geometric Estimation IEEE
As an essential procedure in earth observation system, change detection (CD) aims to reveal the spatial-temporal evolution of the observation regions. A key prerequisite for existing change detection algorithms is aligned geo-references between multi-temporal images by fine-grained registration. However, in the majority of real-world scenarios, a prior manual registration is required between the original images, which significantly increases the complexity of the CD workflow. In this paper, we proposed a self-supervision motivated CD framework with geometric estimation, called "MatchCD". Specifically, the proposed MatchCD framework utilizes the zero-shot capability to optimize the encoder with self-supervised contrastive representation, which is reused in the downstream image registration and change detection to simultaneously handle the bi-temporal unalignment and object change issues. Moreover, unlike the conventional change detection requiring segmenting the full-frame image into small patches, our MatchCD framework can directly process the original large-scale image (e.g., 6K*4K resolutions) with promising performance. The performance in multiple complex scenarios with significant geometric distortion demonstrates the effectiveness of our proposed framework.
comment: Submitted to IEEE TGRS
☆ Balancing Privacy and Action Performance: A Penalty-Driven Approach to Image Anonymization CVPR
The rapid development of video surveillance systems for object detection, tracking, activity recognition, and anomaly detection has revolutionized our day-to-day lives while setting alarms for privacy concerns. It isn't easy to strike a balance between visual privacy and action recognition performance in most computer vision models. Is it possible to safeguard privacy without sacrificing performance? It poses a formidable challenge, as even minor privacy enhancements can lead to substantial performance degradation. To address this challenge, we propose a privacy-preserving image anonymization technique that optimizes the anonymizer using penalties from the utility branch, ensuring improved action recognition performance while minimally affecting privacy leakage. This approach addresses the trade-off between minimizing privacy leakage and maintaining high action performance. The proposed approach is primarily designed to align with the regulatory standards of the EU AI Act and GDPR, ensuring the protection of personally identifiable information while maintaining action performance. To the best of our knowledge, we are the first to introduce a feature-based penalty scheme that exclusively controls the action features, allowing freedom to anonymize private attributes. Extensive experiments were conducted to validate the effectiveness of the proposed method. The results demonstrate that applying a penalty to anonymizer from utility branch enhances action performance while maintaining nearly consistent privacy leakage across different penalty settings.
comment: Accepted to CVPRW 2025
☆ From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion
Image completion is a challenging task, particularly when ensuring that generated content seamlessly integrates with existing parts of an image. While recent diffusion models have shown promise, they often struggle with maintaining coherence between known and unknown (missing) regions. This issue arises from the lack of explicit spatial and semantic alignment during the diffusion process, resulting in content that does not smoothly integrate with the original image. Additionally, diffusion models typically rely on global learned distributions rather than localized features, leading to inconsistencies between the generated and existing image parts. In this work, we propose ConFill, a novel framework that introduces a Context-Adaptive Discrepancy (CAD) model to ensure that intermediate distributions of known and unknown regions are closely aligned throughout the diffusion process. By incorporating CAD, our model progressively reduces discrepancies between generated and original images at each diffusion step, leading to contextually aligned completion. Moreover, ConFill uses a new Dynamic Sampling mechanism that adaptively increases the sampling rate in regions with high reconstruction complexity. This approach enables precise adjustments, enhancing detail and integration in restored areas. Extensive experiments demonstrate that ConFill outperforms current methods, setting a new benchmark in image completion.
comment: Accepted in TPAMI
☆ Towards NSFW-Free Text-to-Image Generation via Safety-Constraint Direct Preference Optimization
Ensuring the safety of generated content remains a fundamental challenge for Text-to-Image (T2I) generation. Existing studies either fail to guarantee complete safety under potentially harmful concepts or struggle to balance safety with generation quality. To address these issues, we propose Safety-Constrained Direct Preference Optimization (SC-DPO), a novel framework for safety alignment in T2I models. SC-DPO integrates safety constraints into the general human preference calibration, aiming to maximize the likelihood of generating human-preferred samples while minimizing the safety cost of the generated outputs. In SC-DPO, we introduce a safety cost model to accurately quantify harmful levels for images, and train it effectively using the proposed contrastive learning and cost anchoring objectives. To apply SC-DPO for effective T2I safety alignment, we constructed SCP-10K, a safety-constrained preference dataset containing rich harmful concepts, which blends safety-constrained preference pairs under both harmful and clean instructions, further mitigating the trade-off between safety and sample quality. Additionally, we propose a Dynamic Focusing Mechanism (DFM) for SC-DPO, promoting the model's learning of difficult preference pair samples. Extensive experiments demonstrate that SC-DPO outperforms existing methods, effectively defending against various NSFW content while maintaining optimal sample quality and human preference alignment. Additionally, SC-DPO exhibits resilience against adversarial prompts designed to generate harmful content.
comment: 10 pages, 6 figures
☆ ISTD-YOLO: A Multi-Scale Lightweight High-Performance Infrared Small Target Detection Algorithm
Aiming at the detection difficulties of infrared images such as complex background, low signal-to-noise ratio, small target size and weak brightness, a lightweight infrared small target detection algorithm ISTD-YOLO based on improved YOLOv7 was proposed. Firstly, the YOLOv7 network structure was lightweight reconstructed, and a three-scale lightweight network architecture was designed. Then, the ELAN-W module of the model neck network is replaced by VoV-GSCSP to reduce the computational cost and the complexity of the network structure. Secondly, a parameter-free attention mechanism was introduced into the neck network to enhance the relevance of local con-text information. Finally, the Normalized Wasserstein Distance (NWD) was used to optimize the commonly used IoU index to enhance the localization and detection accuracy of small targets. Experimental results show that compared with YOLOv7 and the current mainstream algorithms, ISTD-YOLO can effectively improve the detection effect, and all indicators are effectively improved, which can achieve high-quality detection of infrared small targets.
☆ CLIP-Powered Domain Generalization and Domain Adaptation: A Comprehensive Survey
As machine learning evolves, domain generalization (DG) and domain adaptation (DA) have become crucial for enhancing model robustness across diverse environments. Contrastive Language-Image Pretraining (CLIP) plays a significant role in these tasks, offering powerful zero-shot capabilities that allow models to perform effectively in unseen domains. However, there remains a significant gap in the literature, as no comprehensive survey currently exists that systematically explores the applications of CLIP in DG and DA, highlighting the necessity for this review. This survey presents a comprehensive review of CLIP's applications in DG and DA. In DG, we categorize methods into optimizing prompt learning for task alignment and leveraging CLIP as a backbone for effective feature extraction, both enhancing model adaptability. For DA, we examine both source-available methods utilizing labeled source data and source-free approaches primarily based on target domain data, emphasizing knowledge transfer mechanisms and strategies for improved performance across diverse contexts. Key challenges, including overfitting, domain diversity, and computational efficiency, are addressed, alongside future research opportunities to advance robustness and efficiency in practical applications. By synthesizing existing literature and pinpointing critical gaps, this survey provides valuable insights for researchers and practitioners, proposing directions for effectively leveraging CLIP to enhance methodologies in domain generalization and adaptation. Ultimately, this work aims to foster innovation and collaboration in the quest for more resilient machine learning models that can perform reliably across diverse real-world scenarios. A more up-to-date version of the papers is maintained at: https://github.com/jindongli-Ai/Survey_on_CLIP-Powered_Domain_Generalization_and_Adaptation.
☆ RAMCT: Novel Region-adaptive Multi-channel Tracker with Iterative Tikhonov Regularization for Thermal Infrared Tracking
Correlation filter (CF)-based trackers have gained significant attention for their computational efficiency in thermal infrared (TIR) target tracking. However, ex-isting methods struggle with challenges such as low-resolution imagery, occlu-sion, background clutter, and target deformation, which severely impact tracking performance. To overcome these limitations, we propose RAMCT, a region-adaptive sparse correlation filter tracker that integrates multi-channel feature opti-mization with an adaptive regularization strategy. Firstly, we refine the CF learn-ing process by introducing a spatially adaptive binary mask, which enforces spar-sity in the target region while dynamically suppressing background interference. Secondly, we introduce generalized singular value decomposition (GSVD) and propose a novel GSVD-based region-adaptive iterative Tikhonov regularization method. This enables flexible and robust optimization across multiple feature channels, improving resilience to occlusion and background variations. Thirdly, we propose an online optimization strategy with dynamic discrepancy-based pa-rameter adjustment. This mechanism facilitates real time adaptation to target and background variations, thereby improving tracking accuracy and robustness. Ex-tensive experiments on LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR2017 benchmarks demonstrate that RAMCT outperforms other state-of-the-art trackers in terms of accuracy and robustness.
☆ Text-Audio-Visual-conditioned Diffusion Model for Video Saliency Prediction
Video saliency prediction is crucial for downstream applications, such as video compression and human-computer interaction. With the flourishing of multimodal learning, researchers started to explore multimodal video saliency prediction, including audio-visual and text-visual approaches. Auditory cues guide the gaze of viewers to sound sources, while textual cues provide semantic guidance for understanding video content. Integrating these complementary cues can improve the accuracy of saliency prediction. Therefore, we attempt to simultaneously analyze visual, auditory, and textual modalities in this paper, and propose TAVDiff, a Text-Audio-Visual-conditioned Diffusion Model for video saliency prediction. TAVDiff treats video saliency prediction as an image generation task conditioned on textual, audio, and visual inputs, and predicts saliency maps through stepwise denoising. To effectively utilize text, a large multimodal model is used to generate textual descriptions for video frames and introduce a saliency-oriented image-text response (SITR) mechanism to generate image-text response maps. It is used as conditional information to guide the model to localize the visual regions that are semantically related to the textual description. Regarding the auditory modality, it is used as another conditional information for directing the model to focus on salient regions indicated by sounds. At the same time, since the diffusion transformer (DiT) directly concatenates the conditional information with the timestep, which may affect the estimation of the noise level. To achieve effective conditional guidance, we propose Saliency-DiT, which decouples the conditional information from the timestep. Experimental results show that TAVDiff outperforms existing methods, improving 1.03\%, 2.35\%, 2.71\% and 0.33\% on SIM, CC, NSS and AUC-J metrics, respectively.
☆ Cross-attention for State-based model RWKV-7
We introduce CrossWKV, a novel cross-attention mechanism for the state-based RWKV-7 model, designed to enhance the expressive power of text-to-image generation. Leveraging RWKV-7's linear-complexity Weighted Key-Value (WKV) architecture, CrossWKV integrates text and image modalities in a single pass, utilizing a generalized delta rule with vector-valued gating and low-rank adaptations (LoRA) to achieve superior cross-modal alignment. Unlike Transformer-based models, CrossWKV's non-diagonal, input-dependent transition matrix enables it to represent complex functions beyond the $\mathrm{TC}^0$ complexity class, including all regular languages, as demonstrated by its ability to perform state-tracking tasks like $S_5$ permutation modeling. Evaluated within the Diffusion in RWKV-7 (DIR-7) on datasets such as LAION-5B and ImageNet, CrossWKV achieves a Frechet Inception Distance (FID) of 2.88 and a CLIP score of 0.33 on ImageNet 256x256, matching state-of-the-art performance while offering robust generalization across diverse prompts. The model's enhanced expressivity, combined with constant memory usage and linear scaling, positions it as a powerful solution for advanced cross-modal tasks, with potential applications in high-resolution generation and dynamic state manipulation.Code at https://github.com/TorchRWKV/flash-linear-attention
☆ HoLa: B-Rep Generation using a Holistic Latent Representation
We introduce a novel representation for learning and generating Computer-Aided Design (CAD) models in the form of $\textit{boundary representations}$ (B-Reps). Our representation unifies the continuous geometric properties of B-Rep primitives in different orders (e.g., surfaces and curves) and their discrete topological relations in a $\textit{holistic latent}$ (HoLa) space. This is based on the simple observation that the topological connection between two surfaces is intrinsically tied to the geometry of their intersecting curve. Such a prior allows us to reformulate topology learning in B-Reps as a geometric reconstruction problem in Euclidean space. Specifically, we eliminate the presence of curves, vertices, and all the topological connections in the latent space by learning to distinguish and derive curve geometries from a pair of surface primitives via a neural intersection network. To this end, our holistic latent space is only defined on surfaces but encodes a full B-Rep model, including the geometry of surfaces, curves, vertices, and their topological relations. Our compact and holistic latent space facilitates the design of a first diffusion-based generator to take on a large variety of inputs including point clouds, single/multi-view images, 2D sketches, and text prompts. Our method significantly reduces ambiguities, redundancies, and incoherences among the generated B-Rep primitives, as well as training complexities inherent in prior multi-step B-Rep learning pipelines, while achieving greatly improved validity rate over current state of the art: 82% vs. $\approx$50%.
☆ Visual Consensus Prompting for Co-Salient Object Detection CVPR 2025
Existing co-salient object detection (CoSOD) methods generally employ a three-stage architecture (i.e., encoding, consensus extraction & dispersion, and prediction) along with a typical full fine-tuning paradigm. Although they yield certain benefits, they exhibit two notable limitations: 1) This architecture relies on encoded features to facilitate consensus extraction, but the meticulously extracted consensus does not provide timely guidance to the encoding stage. 2) This paradigm involves globally updating all parameters of the model, which is parameter-inefficient and hinders the effective representation of knowledge within the foundation model for this task. Therefore, in this paper, we propose an interaction-effective and parameter-efficient concise architecture for the CoSOD task, addressing two key limitations. It introduces, for the first time, a parameter-efficient prompt tuning paradigm and seamlessly embeds consensus into the prompts to formulate task-specific Visual Consensus Prompts (VCP). Our VCP aims to induce the frozen foundation model to perform better on CoSOD tasks by formulating task-specific visual consensus prompts with minimized tunable parameters. Concretely, the primary insight of the purposeful Consensus Prompt Generator (CPG) is to enforce limited tunable parameters to focus on co-salient representations and generate consensus prompts. The formulated Consensus Prompt Disperser (CPD) leverages consensus prompts to form task-specific visual consensus prompts, thereby arousing the powerful potential of pre-trained models in addressing CoSOD tasks. Extensive experiments demonstrate that our concise VCP outperforms 13 cutting-edge full fine-tuning models, achieving the new state of the art (with 6.8% improvement in F_m metrics on the most challenging CoCA dataset). Source code has been available at https://github.com/WJ-CV/VCP.
comment: CVPR 2025
☆ ColorVein: Colorful Cancelable Vein Biometrics
Vein recognition technologies have become one of the primary solutions for high-security identification systems. However, the issue of biometric information leakage can still pose a serious threat to user privacy and anonymity. Currently, there is no cancelable biometric template generation scheme specifically designed for vein biometrics. Therefore, this paper proposes an innovative cancelable vein biometric generation scheme: ColorVein. Unlike previous cancelable template generation schemes, ColorVein does not destroy the original biometric features and introduces additional color information to grayscale vein images. This method significantly enhances the information density of vein images by transforming static grayscale information into dynamically controllable color representations through interactive colorization. ColorVein allows users/administrators to define a controllable pseudo-random color space for grayscale vein images by editing the position, number, and color of hint points, thereby generating protected cancelable templates. Additionally, we propose a new secure center loss to optimize the training process of the protected feature extraction model, effectively increasing the feature distance between enrolled users and any potential impostors. Finally, we evaluate ColorVein's performance on all types of vein biometrics, including recognition performance, unlinkability, irreversibility, and revocability, and conduct security and privacy analyses. ColorVein achieves competitive performance compared with state-of-the-art methods.
☆ Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation
Restoring any degraded image efficiently via just one model has become increasingly significant and impactful, especially with the proliferation of mobile devices. Traditional solutions typically involve training dedicated models per degradation, resulting in inefficiency and redundancy. More recent approaches either introduce additional modules to learn visual prompts, significantly increasing model size, or incorporate cross-modal transfer from large language models trained on vast datasets, adding complexity to the system architecture. In contrast, our approach, termed AnyIR, takes a unified path that leverages inherent similarity across various degradations to enable both efficient and comprehensive restoration through a joint embedding mechanism, without scaling up the model or relying on large language models.Specifically, we examine the sub-latent space of each input, identifying key components and reweighting them first in a gated manner. To fuse the intrinsic degradation awareness and the contextualized attention, a spatial-frequency parallel fusion strategy is proposed for enhancing spatial-aware local-global interactions and enriching the restoration details from the frequency perspective. Extensive benchmarking in the all-in-one restoration setting confirms AnyIR's SOTA performance, reducing model complexity by around 82\% in parameters and 85\% in FLOPs. Our code will be available at our Project page (https://amazingren.github.io/AnyIR/)
comment: Efficient All in One Image Restoration
☆ Towards Explainable Fake Image Detection with Multi-Modal Large Language Models
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
☆ ROI-Guided Point Cloud Geometry Compression Towards Human and Machine Vision
Point cloud data is pivotal in applications like autonomous driving, virtual reality, and robotics. However, its substantial volume poses significant challenges in storage and transmission. In order to obtain a high compression ratio, crucial semantic details usually confront severe damage, leading to difficulties in guaranteeing the accuracy of downstream tasks. To tackle this problem, we are the first to introduce a novel Region of Interest (ROI)-guided Point Cloud Geometry Compression (RPCGC) method for human and machine vision. Our framework employs a dual-branch parallel structure, where the base layer encodes and decodes a simplified version of the point cloud, and the enhancement layer refines this by focusing on geometry details. Furthermore, the residual information of the enhancement layer undergoes refinement through an ROI prediction network. This network generates mask information, which is then incorporated into the residuals, serving as a strong supervision signal. Additionally, we intricately apply these mask details in the Rate-Distortion (RD) optimization process, with each point weighted in the distortion calculation. Our loss function includes RD loss and detection loss to better guide point cloud encoding for the machine. Experiment results demonstrate that RPCGC achieves exceptional compression performance and better detection accuracy (10% gain) than some learning-based compression methods at high bitrates in ScanNet and SUN RGB-D datasets.
comment: 10 pages, 5 figures
☆ Single Document Image Highlight Removal via A Large-Scale Real-World Dataset and A Location-Aware Network
Reflective documents often suffer from specular highlights under ambient lighting, severely hindering text readability and degrading overall visual quality. Although recent deep learning methods show promise in highlight removal, they remain suboptimal for document images, primarily due to the lack of dedicated datasets and tailored architectural designs. To tackle these challenges, we present DocHR14K, a large-scale real-world dataset comprising 14,902 high-resolution image pairs across six document categories and various lighting conditions. To the best of our knowledge, this is the first high-resolution dataset for document highlight removal that captures a wide range of real-world lighting conditions. Additionally, motivated by the observation that the residual map between highlighted and clean images naturally reveals the spatial structure of highlight regions, we propose a simple yet effective Highlight Location Prior (HLP) to estimate highlight masks without human annotations. Building on this prior, we present the Location-Aware Laplacian Pyramid Highlight Removal Network (L2HRNet), which effectively removes highlights by leveraging estimated priors and incorporates diffusion module to restore details. Extensive experiments demonstrate that DocHR14K improves highlight removal under diverse lighting conditions. Our L2HRNet achieves state-of-the-art performance across three benchmark datasets, including a 5.01\% increase in PSNR and a 13.17\% reduction in RMSE on DocHR14K.
comment: main paper with 8 pages, conference
☆ Exploring Modality Guidance to Enhance VFM-based Feature Fusion for UDA in 3D Semantic Segmentation
Vision Foundation Models (VFMs) have become a de facto choice for many downstream vision tasks, like image classification, image segmentation, and object localization. However, they can also provide significant utility for downstream 3D tasks that can leverage the cross-modal information (e.g., from paired image data). In our work, we further explore the utility of VFMs for adapting from a labeled source to unlabeled target data for the task of LiDAR-based 3D semantic segmentation. Our method consumes paired 2D-3D (image and point cloud) data and relies on the robust (cross-domain) features from a VFM to train a 3D backbone on a mix of labeled source and unlabeled target data. At the heart of our method lies a fusion network that is guided by both the image and point cloud streams, with their relative contributions adjusted based on the target domain. We extensively compare our proposed methodology with different state-of-the-art methods in several settings and achieve strong performance gains. For example, achieving an average improvement of 6.5 mIoU (over all tasks), when compared with the previous state-of-the-art.
☆ Revisiting CLIP for SF-OSDA: Unleashing Zero-Shot Potential with Adaptive Threshold and Training-Free Feature Filtering
Source-Free Unsupervised Open-Set Domain Adaptation (SF-OSDA) methods using CLIP face significant issues: (1) while heavily dependent on domain-specific threshold selection, existing methods employ simple fixed thresholds, underutilizing CLIP's zero-shot potential in SF-OSDA scenarios; and (2) overlook intrinsic class tendencies while employing complex training to enforce feature separation, incurring deployment costs and feature shifts that compromise CLIP's generalization ability. To address these issues, we propose CLIPXpert, a novel SF-OSDA approach that integrates two key components: an adaptive thresholding strategy and an unknown class feature filtering module. Specifically, the Box-Cox GMM-Based Adaptive Thresholding (BGAT) module dynamically determines the optimal threshold by estimating sample score distributions, balancing known class recognition and unknown class sample detection. Additionally, the Singular Value Decomposition (SVD)-Based Unknown-Class Feature Filtering (SUFF) module reduces the tendency of unknown class samples towards known classes, improving the separation between known and unknown classes. Experiments show that our source-free and training-free method outperforms state-of-the-art trained approach UOTA by 1.92% on the DomainNet dataset, achieves SOTA-comparable performance on datasets such as Office-Home, and surpasses other SF-OSDA methods. This not only validates the effectiveness of our proposed method but also highlights CLIP's strong zero-shot potential for SF-OSDA tasks.
☆ Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection
The increasing complexity of industrial anomaly detection (IAD) has positioned multimodal detection methods as a focal area of machine vision research. However, dedicated multimodal datasets specifically tailored for IAD remain limited. Pioneering datasets like MVTec 3D have laid essential groundwork in multimodal IAD by incorporating RGB+3D data, but still face challenges in bridging the gap with real industrial environments due to limitations in scale and resolution. To address these challenges, we introduce Real-IAD D3, a high-precision multimodal dataset that uniquely incorporates an additional pseudo3D modality generated through photometric stereo, alongside high-resolution RGB images and micrometer-level 3D point clouds. Real-IAD D3 features finer defects, diverse anomalies, and greater scale across 20 categories, providing a challenging benchmark for multimodal IAD Additionally, we introduce an effective approach that integrates RGB, point cloud, and pseudo-3D depth information to leverage the complementary strengths of each modality, enhancing detection performance. Our experiments highlight the importance of these modalities in boosting detection robustness and overall IAD performance. The dataset and code are publicly accessible for research purposes at https://realiad4ad.github.io/Real-IAD D3
comment: 13 pages. Dataset and code: https://realiad4ad.github.io/Real-IAD D3
☆ PRISM: A Unified Framework for Photorealistic Reconstruction and Intrinsic Scene Modeling
We present PRISM, a unified framework that enables multiple image generation and editing tasks in a single foundational model. Starting from a pre-trained text-to-image diffusion model, PRISM proposes an effective fine-tuning strategy to produce RGB images along with intrinsic maps (referred to as X layers) simultaneously. Unlike previous approaches, which infer intrinsic properties individually or require separate models for decomposition and conditional generation, PRISM maintains consistency across modalities by generating all intrinsic layers jointly. It supports diverse tasks, including text-to-RGBX generation, RGB-to-X decomposition, and X-to-RGBX conditional generation. Additionally, PRISM enables both global and local image editing through conditioning on selected intrinsic layers and text prompts. Extensive experiments demonstrate the competitive performance of PRISM both for intrinsic image decomposition and conditional image generation while preserving the base model's text-to-image generation capability.
☆ Learning Joint ID-Textual Representation for ID-Preserving Image Synthesis
We propose a novel framework for ID-preserving generation using a multi-modal encoding strategy rather than injecting identity features via adapters into pre-trained models. Our method treats identity and text as a unified conditioning input. To achieve this, we introduce FaceCLIP, a multi-modal encoder that learns a joint embedding space for both identity and textual semantics. Given a reference face and a text prompt, FaceCLIP produces a unified representation that encodes both identity and text, which conditions a base diffusion model to generate images that are identity-consistent and text-aligned. We also present a multi-modal alignment algorithm to train FaceCLIP, using a loss that aligns its joint representation with face, text, and image embedding spaces. We then build FaceCLIP-SDXL, an ID-preserving image synthesis pipeline by integrating FaceCLIP with Stable Diffusion XL (SDXL). Compared to prior methods, FaceCLIP-SDXL enables photorealistic portrait generation with better identity preservation and textual relevance. Extensive experiments demonstrate its quantitative and qualitative superiority.
☆ Enhancing Multimodal In-Context Learning for Image Classification through Coreset Optimization
In-context learning (ICL) enables Large Vision-Language Models (LVLMs) to adapt to new tasks without parameter updates, using a few demonstrations from a large support set. However, selecting informative demonstrations leads to high computational and memory costs. While some methods explore selecting a small and representative coreset in the text classification, evaluating all support set samples remains costly, and discarded samples lead to unnecessary information loss. These methods may also be less effective for image classification due to differences in feature spaces. Given these limitations, we propose Key-based Coreset Optimization (KeCO), a novel framework that leverages untapped data to construct a compact and informative coreset. We introduce visual features as keys within the coreset, which serve as the anchor for identifying samples to be updated through different selection strategies. By leveraging untapped samples from the support set, we update the keys of selected coreset samples, enabling the randomly initialized coreset to evolve into a more informative coreset under low computational cost. Through extensive experiments on coarse-grained and fine-grained image classification benchmarks, we demonstrate that KeCO effectively enhances ICL performance for image classification task, achieving an average improvement of more than 20\%. Notably, we evaluate KeCO under a simulated online scenario, and the strong performance in this scenario highlights the practical value of our framework for resource-constrained real-world scenarios.
comment: 11 pages, 5 figures
☆ Segregation and Context Aggregation Network for Real-time Cloud Segmentation
Cloud segmentation from intensity images is a pivotal task in atmospheric science and computer vision, aiding weather forecasting and climate analysis. Ground-based sky/cloud segmentation extracts clouds from images for further feature analysis. Existing methods struggle to balance segmentation accuracy and computational efficiency, limiting real-world deployment on edge devices, so we introduce SCANet, a novel lightweight cloud segmentation model featuring Segregation and Context Aggregation Module (SCAM), which refines rough segmentation maps into weighted sky and cloud features processed separately. SCANet achieves state-of-the-art performance while drastically reducing computational complexity. SCANet-large (4.29M) achieves comparable accuracy to state-of-the-art methods with 70.9% fewer parameters. Meanwhile, SCANet-lite (90K) delivers 1390 fps in FP16, surpassing real-time standards. Additionally, we propose an efficient pre-training strategy that enhances performance even without ImageNet pre-training.
comment: 15 pages
☆ Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D
We present LOCATE 3D, a model for localizing objects in 3D scenes from referring expressions like "the small coffee table between the sofa and the lamp." LOCATE 3D sets a new state-of-the-art on standard referential grounding benchmarks and showcases robust generalization capabilities. Notably, LOCATE 3D operates directly on sensor observation streams (posed RGB-D frames), enabling real-world deployment on robots and AR devices. Key to our approach is 3D-JEPA, a novel self-supervised learning (SSL) algorithm applicable to sensor point clouds. It takes as input a 3D pointcloud featurized using 2D foundation models (CLIP, DINO). Subsequently, masked prediction in latent space is employed as a pretext task to aid the self-supervised learning of contextualized pointcloud features. Once trained, the 3D-JEPA encoder is finetuned alongside a language-conditioned decoder to jointly predict 3D masks and bounding boxes. Additionally, we introduce LOCATE 3D DATASET, a new dataset for 3D referential grounding, spanning multiple capture setups with over 130K annotations. This enables a systematic study of generalization capabilities as well as a stronger model.
☆ ThyroidEffi 1.0: A Cost-Effective System for High-Performance Multi-Class Thyroid Carcinoma Classification
Background: Automated classification of thyroid fine needle aspiration biopsy (FNAB) images faces challenges in limited data, inter-observer variability, and computational cost. Efficient, interpretable models are crucial for clinical support. Objective: To develop and externally validate a deep learning system for the multi-class classification of thyroid FNAB images into three key categories that directly guide post-biopsy treatment decisions in Vietnam: benign (B2), suspicious for malignancy (B5), and malignant (B6), while achieving high diagnostic accuracy with low computational overhead. Methods: Our framework features: (1) YOLOv10-based cell cluster detection for informative sub-region extraction and noise reduction; (2) a curriculum learning-inspired protocol sequencing localized crops to full images for multi-scale feature capture; (3) adaptive lightweight EfficientNetB0 (4 millions parameters) selection balancing performance and efficiency; and (4) a Transformer-inspired module for multi-scale, multi-region analysis. External validation used 1,015 independent FNAB images. Results: ThyroidEffi Basic achieved a macro F1 of 89.19\% and AUCs of 0.98 (B2), 0.95 (B5), and 0.96 (B6) on the internal test set. External validation yielded AUCs of 0.9495 (B2), 0.7436 (B5), and 0.8396 (B6). ThyroidEffi Premium improved macro F1 to 89.77\%. Grad-CAM highlighted key diagnostic regions, confirming interpretability. The system processed 1000 cases in 30 seconds, demonstrating feasibility on widely accessible hardware like a 12-core CPU. Conclusions: This work demonstrates that high-accuracy, interpretable thyroid FNAB image classification is achievable with minimal computational demands.
☆ Segment Any Crack: Deep Semantic Segmentation Adaptation for Crack Detection
Image-based crack detection algorithms are increasingly in demand in infrastructure monitoring, as early detection of cracks is of paramount importance for timely maintenance planning. While deep learning has significantly advanced crack detection algorithms, existing models often require extensive labeled datasets and high computational costs for fine-tuning, limiting their adaptability across diverse conditions. This study introduces an efficient selective fine-tuning strategy, focusing on tuning normalization components, to enhance the adaptability of segmentation models for crack detection. The proposed method is applied to the Segment Anything Model (SAM) and five well-established segmentation models. Experimental results demonstrate that selective fine-tuning of only normalization parameters outperforms full fine-tuning and other common fine-tuning techniques in both performance and computational efficiency, while improving generalization. The proposed approach yields a SAM-based model, Segment Any Crack (SAC), achieving a 61.22\% F1-score and 44.13\% IoU on the OmniCrack30k benchmark dataset, along with the highest performance across three zero-shot datasets and the lowest standard deviation. The results highlight the effectiveness of the adaptation approach in improving segmentation accuracy while significantly reducing computational overhead.
☆ Rethinking Target Label Conditioning in Adversarial Attacks: A 2D Tensor-Guided Generative Approach
Compared to single-target adversarial attacks, multi-target attacks have garnered significant attention due to their ability to generate adversarial images for multiple target classes simultaneously. Existing generative approaches for multi-target attacks mainly analyze the effect of the use of target labels on noise generation from a theoretical perspective, lacking practical validation and comprehensive summarization. To address this gap, we first identify and validate that the semantic feature quality and quantity are critical factors affecting the transferability of targeted attacks: 1) Feature quality refers to the structural and detailed completeness of the implanted target features, as deficiencies may result in the loss of key discriminative information; 2) Feature quantity refers to the spatial sufficiency of the implanted target features, as inadequacy limits the victim model's attention to this feature. Based on these findings, we propose the 2D Tensor-Guided Adversarial Fusion (2D-TGAF) framework, which leverages the powerful generative capabilities of diffusion models to encode target labels into two-dimensional semantic tensors for guiding adversarial noise generation. Additionally, we design a novel masking strategy tailored for the training process, ensuring that parts of the generated noise retain complete semantic information about the target class. Extensive experiments on the standard ImageNet dataset demonstrate that 2D-TGAF consistently surpasses state-of-the-art methods in attack success rates, both on normally trained models and across various defense mechanisms.
comment: 12 pages, 4 figures
☆ Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering
High-fidelity simulation is essential for robotics research, enabling safe and efficient testing of perception, control, and navigation algorithms. However, achieving both photorealistic rendering and accurate physics modeling remains a challenge. This paper presents a novel simulation framework--the Unreal Robotics Lab (URL) that integrates the Unreal Engine's advanced rendering capabilities with MuJoCo's high-precision physics simulation. Our approach enables realistic robotic perception while maintaining accurate physical interactions, facilitating benchmarking and dataset generation for vision-based robotics applications. The system supports complex environmental effects, such as smoke, fire, and water dynamics, which are critical for evaluating robotic performance under adverse conditions. We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios. By bridging the gap between physics accuracy and photorealistic rendering, our framework provides a powerful tool for advancing robotics research and sim-to-real transfer.
☆ HFBRI-MAE: Handcrafted Feature Based Rotation-Invariant Masked Autoencoder for 3D Point Cloud Analysis IJCNN 2025
Self-supervised learning (SSL) has demonstrated remarkable success in 3D point cloud analysis, particularly through masked autoencoders (MAEs). However, existing MAE-based methods lack rotation invariance, leading to significant performance degradation when processing arbitrarily rotated point clouds in real-world scenarios. To address this limitation, we introduce Handcrafted Feature-Based Rotation-Invariant Masked Autoencoder (HFBRI-MAE), a novel framework that refines the MAE design with rotation-invariant handcrafted features to ensure stable feature learning across different orientations. By leveraging both rotation-invariant local and global features for token embedding and position embedding, HFBRI-MAE effectively eliminates rotational dependencies while preserving rich geometric structures. Additionally, we redefine the reconstruction target to a canonically aligned version of the input, mitigating rotational ambiguities. Extensive experiments on ModelNet40, ScanObjectNN, and ShapeNetPart demonstrate that HFBRI-MAE consistently outperforms existing methods in object classification, segmentation, and few-shot learning, highlighting its robustness and strong generalization ability in real-world 3D applications.
comment: 12 pages, 9 figures, accepted by IJCNN 2025
☆ Transforming hyperspectral images into chemical maps: A new deep learning based approach to hyperspectral image processing
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. We compare the U-Net with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
☆ BMRL: Bi-Modal Guided Multi-Perspective Representation Learning for Zero-Shot Deepfake Attribution
The challenge of tracing the source attribution of forged faces has gained significant attention due to the rapid advancement of generative models. However, existing deepfake attribution (DFA) works primarily focus on the interaction among various domains in vision modality, and other modalities such as texts and face parsing are not fully explored. Besides, they tend to fail to assess the generalization performance of deepfake attributors to unseen generators in a fine-grained manner. In this paper, we propose a novel bi-modal guided multi-perspective representation learning (BMRL) framework for zero-shot deepfake attribution (ZS-DFA), which facilitates effective traceability to unseen generators. Specifically, we design a multi-perspective visual encoder (MPVE) to explore general deepfake attribution visual characteristics across three views (i.e., image, noise, and edge). We devise a novel parsing encoder to focus on global face attribute embeddings, enabling parsing-guided DFA representation learning via vision-parsing matching. A language encoder is proposed to capture fine-grained language embeddings, facilitating language-guided general visual forgery representation learning through vision-language alignment. Additionally, we present a novel deepfake attribution contrastive center (DFACC) loss, to pull relevant generators closer and push irrelevant ones away, which can be introduced into DFA models to enhance traceability. Experimental results demonstrate that our method outperforms the state-of-the-art on the ZS-DFA task through various protocols evaluation.
☆ Bayesian Principles Improve Prompt Learning In Vision-Language Models AISTATS2025
Prompt learning is a popular fine-tuning method for vision-language models due to its efficiency. It requires a small number of additional learnable parameters while significantly enhancing performance on target tasks. However, most existing methods suffer from overfitting to fine-tuning data, yielding poor generalizability. To address this, we propose a new training objective function based on a Bayesian learning principle to balance adaptability and generalizability. We derive a prior over the logits, where the mean function is parameterized by the pre-trained model, while the posterior corresponds to the fine-tuned model. This objective establishes a balance by allowing the fine-tuned model to adapt to downstream tasks while remaining close to the pre-trained model.
comment: AISTATS2025
☆ PEFT A2Z: Parameter-Efficient Fine-Tuning Survey for Large Language and Vision Models
Large models such as Large Language Models (LLMs) and Vision Language Models (VLMs) have transformed artificial intelligence, powering applications in natural language processing, computer vision, and multimodal learning. However, fully fine-tuning these models remains expensive, requiring extensive computational resources, memory, and task-specific data. Parameter-Efficient Fine-Tuning (PEFT) has emerged as a promising solution that allows adapting large models to downstream tasks by updating only a small portion of parameters. This survey presents a comprehensive overview of PEFT techniques, focusing on their motivations, design principles, and effectiveness. We begin by analyzing the resource and accessibility challenges posed by traditional fine-tuning and highlight key issues, such as overfitting, catastrophic forgetting, and parameter inefficiency. We then introduce a structured taxonomy of PEFT methods -- grouped into additive, selective, reparameterized, hybrid, and unified frameworks -- and systematically compare their mechanisms and trade-offs. Beyond taxonomy, we explore the impact of PEFT across diverse domains, including language, vision, and generative modeling, showing how these techniques offer strong performance with lower resource costs. We also discuss important open challenges in scalability, interpretability, and robustness, and suggest future directions such as federated learning, domain adaptation, and theoretical grounding. Our goal is to provide a unified understanding of PEFT and its growing role in enabling practical, efficient, and sustainable use of large models.
comment: PEFT Survey paper
☆ Lightweight Road Environment Segmentation using Vector Quantization
Road environment segmentation plays a significant role in autonomous driving. Numerous works based on Fully Convolutional Networks (FCNs) and Transformer architectures have been proposed to leverage local and global contextual learning for efficient and accurate semantic segmentation. In both architectures, the encoder often relies heavily on extracting continuous representations from the image, which limits the ability to represent meaningful discrete information. To address this limitation, we propose segmentation of the autonomous driving environment using vector quantization. Vector quantization offers three primary advantages for road environment segmentation. (1) Each continuous feature from the encoder is mapped to a discrete vector from the codebook, helping the model discover distinct features more easily than with complex continuous features. (2) Since a discrete feature acts as compressed versions of the encoder's continuous features, they also compress noise or outliers, enhancing the image segmentation task. (3) Vector quantization encourages the latent space to form coarse clusters of continuous features, forcing the model to group similar features, making the learned representations more structured for the decoding process. In this work, we combined vector quantization with the lightweight image segmentation model MobileUNETR and used it as a baseline model for comparison to demonstrate its efficiency. Through experiments, we achieved 77.0 % mIoU on Cityscapes, outperforming the baseline by 2.9 % without increasing the model's initial size or complexity.
♻ ☆ Improving Gaussian Splatting with Localized Points Management CVPR 2025
Point management is critical for optimizing 3D Gaussian Splatting models, as point initiation (e.g., via structure from motion) is often distributionally inappropriate. Typically, Adaptive Density Control (ADC) algorithm is adopted, leveraging view-averaged gradient magnitude thresholding for point densification, opacity thresholding for pruning, and regular all-points opacity reset. We reveal that this strategy is limited in tackling intricate/special image regions (e.g., transparent) due to inability of identifying all 3D zones requiring point densification, and lacking an appropriate mechanism to handle ill-conditioned points with negative impacts (e.g., occlusion due to false high opacity). To address these limitations, we propose a Localized Point Management (LPM) strategy, capable of identifying those error-contributing zones in greatest need for both point addition and geometry calibration. Zone identification is achieved by leveraging the underlying multiview geometry constraints, subject to image rendering errors. We apply point densification in the identified zones and then reset the opacity of the points in front of these regions, creating a new opportunity to correct poorly conditioned points. Serving as a versatile plugin, LPM can be seamlessly integrated into existing static 3D and dynamic 4D Gaussian Splatting models with minimal additional cost. Experimental evaluations validate the efficacy of our LPM in boosting a variety of existing 3D/4D models both quantitatively and qualitatively. Notably, LPM improves both static 3DGS and dynamic SpaceTimeGS to achieve state-of-the-art rendering quality while retaining real-time speeds, excelling on challenging datasets such as Tanks & Temples and the Neural 3D Video dataset.
comment: CVPR 2025 (Highlight). Github: https://happy-hsy.github.io/projects/LPM/
♻ ☆ Recognize Any Regions NeurIPS 2024
Understanding the semantics of individual regions or patches of unconstrained images, such as open-world object detection, remains a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Extensive experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives, along with substantial computational savings (e.g., training our model with 3 million data in a single day using 8 V100 GPUs). RegionSpot outperforms GLIP-L by 2.9 in mAP on LVIS val set, with an even larger margin of 13.1 AP for more challenging and rare categories, and a 2.5 AP increase on ODinW. Furthermore, it exceeds GroundingDINO-L by 11.0 AP for rare categories on the LVIS minival set.
comment: NeurIPS 2024. Github: https://github.com/Surrey-UPLab/Recognize-Any-Regions
♻ ☆ FIRM: Flexible Interactive Reflection reMoval AAAI 2025
Removing reflection from a single image is challenging due to the absence of general reflection priors. Although existing methods incorporate extensive user guidance for satisfactory performance, they often lack the flexibility to adapt user guidance in different modalities, and dense user interactions further limit their practicality. To alleviate these problems, this paper presents FIRM, a novel framework for Flexible Interactive image Reflection reMoval with various forms of guidance, where users can provide sparse visual guidance (e.g., points, boxes, or strokes) or text descriptions for better reflection removal. Firstly, we design a novel user guidance conversion module (UGC) to transform different forms of guidance into unified contrastive masks. The contrastive masks provide explicit cues for identifying reflection and transmission layers in blended images. Secondly, we devise a contrastive mask-guided reflection removal network that comprises a newly proposed contrastive guidance interaction block (CGIB). This block leverages a unique cross-attention mechanism that merges contrastive masks with image features, allowing for precise layer separation. The proposed framework requires only 10\% of the guidance time needed by previous interactive methods, which makes a step-change in flexibility. Extensive results on public real-world reflection removal datasets validate that our method demonstrates state-of-the-art reflection removal performance. Code is avaliable at https://github.com/ShawnChenn/FlexibleReflectionRemoval.
comment: Accepted by AAAI 2025
♻ ☆ FUSION: Fully Integration of Vision-Language Representations for Deep Cross-Modal Understanding
We introduce FUSION, a family of multimodal large language models (MLLMs) with a fully vision-language alignment and integration paradigm. Unlike existing methods that primarily rely on late-stage modality interaction during LLM decoding, our approach achieves deep, dynamic integration throughout the entire processing pipeline. To this end, we propose Text-Guided Unified Vision Encoding, incorporating textual information in vision encoding to achieve pixel-level integration. We further design Context-Aware Recursive Alignment Decoding that recursively aggregates visual features conditioned on textual context during decoding, enabling fine-grained, question-level semantic integration. To guide feature mapping and mitigate modality discrepancies, we develop Dual-Supervised Semantic Mapping Loss. Additionally, we construct a Synthesized Language-Driven Question-Answer (QA) dataset through a new data synthesis method, prioritizing high-quality QA pairs to optimize text-guided feature integration. Building on these foundations, we train FUSION at two scales-3B, 8B-and demonstrate that our full-modality integration approach significantly outperforms existing methods with only 630 vision tokens. Notably, FUSION 3B surpasses Cambrian-1 8B and Florence-VL 8B on most benchmarks. FUSION 3B continues to outperform Cambrian-1 8B even when limited to 300 vision tokens. Our ablation studies show that FUSION outperforms LLaVA-NeXT on over half of the benchmarks under same configuration without dynamic resolution, highlighting the effectiveness of our approach. We release our code, model weights, and dataset. https://github.com/starriver030515/FUSION
♻ ☆ Language-guided Scale-aware MedSegmentor for Lesion Segmentation in Medical Imaging
In clinical practice, segmenting specific lesions based on the needs of physicians can significantly enhance diagnostic accuracy and treatment efficiency. However, conventional lesion segmentation models lack the flexibility to distinguish lesions according to specific requirements. Given the practical advantages of using text as guidance, we propose a novel model, Language-guided Scale-aware MedSegmentor (LSMS), which segments target lesions in medical images based on given textual expressions. We define this as a new task termed Referring Lesion Segmentation (RLS). To address the lack of suitable benchmarks for RLS, we construct a vision-language medical dataset named Reference Hepatic Lesion Segmentation (RefHL-Seg). LSMS incorporates two key designs: (i) Scale-Aware Vision-Language attention module, which performs visual feature extraction and vision-language alignment in parallel. By leveraging diverse convolutional kernels, this module acquires rich visual representations and interacts closely with linguistic features, thereby enhancing the model's capacity for precise object localization. (ii) Full-Scale Decoder, which globally models multi-modal features across multiple scales and captures complementary information between them to accurately delineate lesion boundaries. Additionally, we design a specialized loss function comprising both segmentation loss and vision-language contrastive loss to better optimize cross-modal learning. We validate the performance of LSMS on RLS as well as on conventional lesion segmentation tasks across multiple datasets. Our LSMS consistently achieves superior performance with significantly lower computational cost. Code and datasets will be released.
comment: 10 pages, 5 figures
♻ ☆ Training Neural Networks on RAW and HDR Images for Restoration Tasks
The vast majority of standard image and video content available online is represented in display-encoded color spaces, in which pixel values are conveniently scaled to a limited range (0-1) and the color distribution is approximately perceptually uniform. In contrast, both camera RAW and high dynamic range (HDR) images are often represented in linear color spaces, in which color values are linearly related to colorimetric quantities of light. While training on commonly available display-encoded images is a well-established practice, there is no consensus on how neural networks should be trained for tasks on RAW and HDR images in linear color spaces. In this work, we test several approaches on three popular image restoration applications: denoising, deblurring, and single-image super-resolution. We examine whether HDR/RAW images need to be display-encoded using popular transfer functions (PQ, PU21, and mu-law), or whether it is better to train in linear color spaces, but use loss functions that correct for perceptual non-uniformity. Our results indicate that neural networks train significantly better on HDR and RAW images represented in display-encoded color spaces, which offer better perceptual uniformity than linear spaces. This small change to the training strategy can bring a very substantial gain in performance, between 2 and 9 dB.
♻ ☆ Assessing and Learning Alignment of Unimodal Vision and Language Models CVPR 2025
How well are unimodal vision and language models aligned? Although prior work have approached answering this question, their assessment methods do not directly translate to how these models are used in practical vision-language tasks. In this paper, we propose a direct assessment method, inspired by linear probing, to assess vision-language alignment. We identify that the degree of alignment of the SSL vision models depends on their SSL training objective, and we find that the clustering quality of SSL representations has a stronger impact on alignment performance than their linear separability. Next, we introduce Swift Alignment of Image and Language (SAIL), a efficient transfer learning framework that aligns pretrained unimodal vision and language models for downstream vision-language tasks. Since SAIL leverages the strengths of pretrained unimodal models, it requires significantly fewer (6%) paired image-text data for the multimodal alignment compared to models like CLIP which are trained from scratch. SAIL training only requires a single A100 GPU, 5 hours of training and can accommodate a batch size up to 32,768. SAIL achieves 73.4% zero-shot accuracy on ImageNet (vs. CLIP's 72.7%) and excels in zero-shot retrieval, complex reasoning, and semantic segmentation. Additionally, SAIL improves the language-compatibility of vision encoders that in turn enhance the performance of multimodal large language models. The entire codebase and model weights are open-source: https://lezhang7.github.io/sail.github.io/
comment: CVPR 2025 Highlight
♻ ☆ Relational Representation Learning Network for Cross-Spectral Image Patch Matching
Recently, feature relation learning has drawn widespread attention in cross-spectral image patch matching. However, existing related research focuses on extracting diverse relations between image patch features and ignores sufficient intrinsic feature representations of individual image patches. Therefore, we propose an innovative relational representation learning idea that simultaneously focuses on sufficiently mining the intrinsic features of individual image patches and the relations between image patch features. Based on this, we construct a Relational Representation Learning Network (RRL-Net). Specifically, we innovatively construct an autoencoder to fully characterize the individual intrinsic features, and introduce a feature interaction learning (FIL) module to extract deep-level feature relations. To further fully mine individual intrinsic features, a lightweight multi-dimensional global-to-local attention (MGLA) module is constructed to enhance the global feature extraction of individual image patches and capture local dependencies within global features. By combining the MGLA module, we further explore the feature extraction network and construct an attention-based lightweight feature extraction (ALFE) network. In addition, we propose a multi-loss post-pruning (MLPP) optimization strategy, which greatly promotes network optimization while avoiding increases in parameters and inference time. Extensive experiments demonstrate that our RRL-Net achieves state-of-the-art (SOTA) performance on multiple public datasets. Our code are available at https://github.com/YuChuang1205/RRL-Net.
♻ ☆ Generative Physical AI in Vision: A Survey
Generative Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication. This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D/4D content. Conventional generative models primarily focus on visual fidelity while often neglecting the physical plausibility of the generated content. This gap limits their effectiveness in applications that require adherence to real-world physical laws, such as robotics, autonomous systems, and scientific simulations. As generative models evolve to increasingly integrate physical realism and dynamic simulation, their potential to function as "world simulators" expands. Therefore, the field of physics-aware generation in computer vision is rapidly growing, calling for a comprehensive survey to provide a structured analysis of current efforts. To serve this purpose, the survey presents a systematic review, categorizing methods based on how they incorporate physical knowledge, either through explicit simulation or implicit learning. It also analyzes key paradigms, discusses evaluation protocols, and identifies future research directions. By offering a comprehensive overview, this survey aims to help future developments in physically grounded generation for computer vision. The reviewed papers are summarized at https://tinyurl.com/Physics-Aware-Generation.
comment: An updated version
♻ ☆ Hyperspectral image fusion, Unsupervised hyperspectral super-resolution, Modality decoupling, Self-supervised learning
Hyperspectral and Multispectral Image Fusion (HMIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without effective supervision, leading to an incomplete perception of deep modality-complementary information and a limited understanding of inter-modality correlations. To address these issues, we propose a simple yet effective solution for unsupervised HMIF, revealing that modality decoupling is key to improving fusion performance. Specifically, we propose an end-to-end self-supervised \textbf{Mo}dality-Decoupled \textbf{S}patial-\textbf{S}pectral Fusion (\textbf{MossFuse}) framework that decouples shared and complementary information across modalities and aggregates a concise representation of both LR-HSIs and HR-MSIs to reduce modality redundancy. Also, we introduce the subspace clustering loss as a clear guide to decouple modality-shared features from modality-complementary ones. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HMIF methods while requiring considerably fewer parameters with reduced inference time. The anonymous source code is in \href{https://github.com/dusongcheng/MossFuse}{MossFuse}.
♻ ☆ ClinKD: Cross-Modal Clinical Knowledge Distiller For Multi-Task Medical Images
Medical Visual Question Answering (Med-VQA) represents a critical and challenging subtask within the general VQA domain. Despite significant advancements in general Visual Question Answering (VQA), multimodal large language models (MLLMs) still exhibit substantial limitations when handling multi-task VQA scenarios. These limitations manifest through erroneous spatial localization and misinterpretation of medical images, which primarily arise from two fundamental issues: inadequate image-text alignment and insufficient medical knowledge in general-purpose MLLMs for specialized medical applications. To address these issues, we introduce the Cross-Modal Clinical Knowledge Distiller (ClinKD), an innovative framework designed to enhance image-text alignment and establish more effective medical knowledge adaptation mechanisms, which enables MLLMs to adapt to medical knowledge. Our extensive experimental evaluations demonstrate that the ClinKD achieves state-of-the-art performance on the Med-GRIT-270k dataset, a challenging medical benchmark containing fine-grained multi-task QA pairs. The results indicate that our approach not only significantly improves image-text alignment but also effectively enables MLLMs to adapt to the medical knowledge. The source code for ClinKD is available at: https://github.com/overloadedHenry/ClinKD.
♻ ☆ Explaining Representation by Mutual Information
As interpretability gains attention in machine learning, there is a growing need for reliable models that fully explain representation content. We propose a mutual information (MI)-based method that decomposes neural network representations into three exhaustive components: total mutual information, decision-related information, and redundant information. This theoretically complete framework captures the entire input-representation relationship, surpassing partial explanations like those from Grad-CAM. Using two lightweight modules integrated into architectures such as CNNs and Transformers,we estimate these components and demonstrate their interpretive power through visualizations on ResNet and prototype network applied to image classification and few-shot learning tasks. Our approach is distinguished by three key features: 1. Rooted in mutual information theory, it delivers a thorough and theoretically grounded interpretation, surpassing the scope of existing interpretability methods. 2. Unlike conventional methods that focus on explaining decisions, our approach centers on interpreting representations. 3. It seamlessly integrates into pre-existing network architectures, requiring only fine-tuning of the inserted modules.
♻ ☆ Edge-preserving noise for diffusion models
Classical generative diffusion models learn an isotropic Gaussian denoising process, treating all spatial regions uniformly, thus neglecting potentially valuable structural information in the data. Inspired by the long-established work on anisotropic diffusion in image processing, we present a novel edge-preserving diffusion model that generalizes over existing isotropic models by considering a hybrid noise scheme. In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise. We show that our model's generative process converges faster to results that more closely match the target distribution. We demonstrate its capability to better learn the low-to-mid frequencies within the dataset, which plays a crucial role in representing shapes and structural information. Our edge-preserving diffusion process consistently outperforms state-of-the-art baselines in unconditional image generation. It is also particularly more robust for generative tasks guided by a shape-based prior, such as stroke-to-image generation. We present qualitative and quantitative results (FID and CLIP score) showing consistent improvements of up to 30% for both tasks.
♻ ☆ LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of objects and the location of their internal structures within deformable objects is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgical interventions. We demonstrate LUDO's abilities for autonomous targeting of internal regions of interest (ROIs) in deformable objects. %Additionally, LUDO provides uncertainty estimates and explainability for its predictions, both of which are important in safety-critical applications such as surgical interventions. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various ROIs inside deformable objects. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
♻ ☆ AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360° Unbounded Scene Inpainting CVPR 2025
Three-dimensional scene inpainting is crucial for applications from virtual reality to architectural visualization, yet existing methods struggle with view consistency and geometric accuracy in 360{\deg} unbounded scenes. We present AuraFusion360, a novel reference-based method that enables high-quality object removal and hole filling in 3D scenes represented by Gaussian Splatting. Our approach introduces (1) depth-aware unseen mask generation for accurate occlusion identification, (2) Adaptive Guided Depth Diffusion, a zero-shot method for accurate initial point placement without requiring additional training, and (3) SDEdit-based detail enhancement for multi-view coherence. We also introduce 360-USID, the first comprehensive dataset for 360{\deg} unbounded scene inpainting with ground truth. Extensive experiments demonstrate that AuraFusion360 significantly outperforms existing methods, achieving superior perceptual quality while maintaining geometric accuracy across dramatic viewpoint changes.
comment: Paper accepted to CVPR 2025. Project page: https://kkennethwu.github.io/aurafusion360/
♻ ☆ LL-Gaussian: Low-Light Scene Reconstruction and Enhancement via Gaussian Splatting for Novel View Synthesis
Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs characterized by severe noise, low dynamic range (LDR) and unreliable initialization. While recent NeRF-based approaches have shown promising results, most suffer from high computational costs, and some rely on carefully captured or pre-processed data--such as RAW sensor inputs or multi-exposure sequences--which severely limits their practicality. In contrast, 3D Gaussian Splatting (3DGS) enables real-time rendering with competitive visual fidelity; however, existing 3DGS-based methods struggle with low-light sRGB inputs, resulting in unstable Gaussian initialization and ineffective noise suppression. To address these challenges, we propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images, enabling pseudo normal-light novel view synthesis. Our method introduces three key innovations: 1) an end-to-end Low-Light Gaussian Initialization Module (LLGIM) that leverages dense priors from learning-based MVS approach to generate high-quality initial point clouds; 2) a dual-branch Gaussian decomposition model that disentangles intrinsic scene properties (reflectance and illumination) from transient interference, enabling stable and interpretable optimization; 3) an unsupervised optimization strategy guided by both physical constrains and diffusion prior to jointly steer decomposition and enhancement. Additionally, we contribute a challenging dataset collected in extreme low-light environments and demonstrate the effectiveness of LL-Gaussian. Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%, while delivering superior reconstruction and rendering quality.
comment: Project page: https://sunhao242.github.io/LL-Gaussian_web.github.io/
♻ ☆ Potential Field Based Deep Metric Learning CVPR 2025
Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model that instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
comment: Accepted to CVPR 2025
♻ ☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs Variational Autoencoders to extract image features, which are concatenated with video latents along the sequence dimension, leveraging solely 3D self-attention mechanisms without the need for additional modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, alongside a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (0.635) than to the Bronze Age Proto-Cuneiform (0.102) or Proto-Elamite (0.078). Contrary to expectations, when measured through direct script-to-script embedding comparisons, the Indus script maps closer to Tibetan-Yi Corridor scripts with a mean cosine similarity of 0.930 (CI: [0.917, 0.942]) than to contemporaneous West Asian signaries, which recorded mean similarities of 0.887 (CI: [0.863, 0.911]) and 0.855 (CI: [0.818, 0.891]). Across dimensionality reduction and clustering methods, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. These computational findings align with observed pictorial parallels in numeral systems, gender markers, and iconographic elements. Archaeological evidence of contact networks along the ancient Shu-Shendu road, coinciding with the Indus Civilization's decline, provides a plausible transmission pathway. While alternate explanations cannot be ruled out, the specificity and consistency of similarities suggest more complex cultural transmission networks between South and East Asia than previously recognized.
comment: 107 pages (43 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code available at https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
While Gaussian Splatting (GS) demonstrates efficient and high-quality scene rendering and small area surface extraction ability, it falls short in handling large-scale aerial image surface extraction tasks. To overcome this, we present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes, addressing the limitations of existing GS-based mesh extraction methods. Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle to select the best training images for each sub-region. Additionally, during training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details. Experimental results demonstrate that ULSR-GS outperforms other state-of-the-art GS-based works on large-scale aerial photogrammetry benchmark datasets, significantly improving surface extraction accuracy in complex urban environments. Project page: https://ulsrgs.github.io.
comment: Project page: https://ulsrgs.github.io
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
♻ ☆ Inspecting Explainability of Transformer Models with Additional Statistical Information ECCV 2022
Transformer becomes more popular in the vision domain in recent years so there is a need for finding an effective way to interpret the Transformer model by visualizing it. In recent work, Chefer et al. can visualize the Transformer on vision and multi-modal tasks effectively by combining attention layers to show the importance of each image patch. However, when applying to other variants of Transformer such as the Swin Transformer, this method can not focus on the predicted object. Our method, by considering the statistics of tokens in layer normalization layers, shows a great ability to interpret the explainability of Swin Transformer and ViT.
comment: Accepted at Responsible Computer Vision workshop at ECCV 2022
♻ ☆ Reason2Attack: Jailbreaking Text-to-Image Models via LLM Reasoning
Text-to-Image(T2I) models typically deploy safety filters to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attack methods manually design prompts for the LLM to generate adversarial prompts, which effectively bypass safety filters while producing sensitive images, exposing safety vulnerabilities of T2I models. However, due to the LLM's limited understanding of the T2I model and its safety filters, existing methods require numerous queries to achieve a successful attack, limiting their practical applicability. To address this issue, we propose Reason2Attack(R2A), which aims to enhance the LLM's reasoning capabilities in generating adversarial prompts by incorporating the jailbreaking attack into the post-training process of the LLM. Specifically, we first propose a CoT example synthesis pipeline based on Frame Semantics, which generates adversarial prompts by identifying related terms and corresponding context illustrations. Using CoT examples generated by the pipeline, we fine-tune the LLM to understand the reasoning path and format the output structure. Subsequently, we incorporate the jailbreaking attack task into the reinforcement learning process of the LLM and design an attack process reward that considers prompt length, prompt stealthiness, and prompt effectiveness, aiming to further enhance reasoning accuracy. Extensive experiments on various T2I models show that R2A achieves a better attack success ratio while requiring fewer queries than baselines. Moreover, our adversarial prompts demonstrate strong attack transferability across both open-source and commercial T2I models.
comment: This paper includes model-generated content that may contain offensive or distressing material
♻ ☆ Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: A novel sparse coding framework designed for learning adaptive representation
♻ ☆ OmniRe: Omni Urban Scene Reconstruction
We introduce OmniRe, a comprehensive system for efficiently creating high-fidelity digital twins of dynamic real-world scenes from on-device logs. Recent methods using neural fields or Gaussian Splatting primarily focus on vehicles, hindering a holistic framework for all dynamic foregrounds demanded by downstream applications, e.g., the simulation of human behavior. OmniRe extends beyond vehicle modeling to enable accurate, full-length reconstruction of diverse dynamic objects in urban scenes. Our approach builds scene graphs on 3DGS and constructs multiple Gaussian representations in canonical spaces that model various dynamic actors, including vehicles, pedestrians, cyclists, and others. OmniRe allows holistically reconstructing any dynamic object in the scene, enabling advanced simulations (~60Hz) that include human-participated scenarios, such as pedestrian behavior simulation and human-vehicle interaction. This comprehensive simulation capability is unmatched by existing methods. Extensive evaluations on the Waymo dataset show that our approach outperforms prior state-of-the-art methods quantitatively and qualitatively by a large margin. We further extend our results to 5 additional popular driving datasets to demonstrate its generalizability on common urban scenes.
comment: See the project page for code, video results and demos: https://ziyc.github.io/omnire/
♻ ☆ SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection with Multimodal Large Language Models
Multimodal large language models (MLLMs) have demonstrated strong capabilities in vision-related tasks, capitalizing on their visual semantic comprehension and reasoning capabilities. However, their ability to detect subtle visual spoofing and forgery clues in face attack detection tasks remains underexplored. In this paper, we introduce a benchmark, SHIELD, to evaluate MLLMs for face spoofing and forgery detection. Specifically, we design true/false and multiple-choice questions to assess MLLM performance on multimodal face data across two tasks. For the face anti-spoofing task, we evaluate three modalities (i.e., RGB, infrared, and depth) under six attack types. For the face forgery detection task, we evaluate GAN-based and diffusion-based data, incorporating visual and acoustic modalities. We conduct zero-shot and few-shot evaluations in standard and chain of thought (COT) settings. Additionally, we propose a novel multi-attribute chain of thought (MA-COT) paradigm for describing and judging various task-specific and task-irrelevant attributes of face images. The findings of this study demonstrate that MLLMs exhibit strong potential for addressing the challenges associated with the security of facial recognition technology applications.
comment: Accepted by Visual Intelligence
♻ ☆ NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images: Methods and Results CVPR
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
comment: Challenge Report of CVPR NTIRE 2025; 26 pages; Methods from 32 teams
♻ ☆ SwinGS: Sliding Window Gaussian Splatting for Volumetric Video Streaming with Arbitrary Length
Recent advances in 3D Gaussian Splatting (3DGS) have garnered significant attention in computer vision and computer graphics due to its high rendering speed and remarkable quality. While extant research has endeavored to extend the application of 3DGS from static to dynamic scenes, such efforts have been consistently impeded by excessive model sizes, constraints on video duration, and content deviation. These limitations significantly compromise the streamability of dynamic 3D Gaussian models, thereby restricting their utility in downstream applications, including volumetric video, autonomous vehicle, and immersive technologies such as virtual, augmented, and mixed reality. This paper introduces SwinGS, a novel framework for training, delivering, and rendering volumetric video in a real-time streaming fashion. To address the aforementioned challenges and enhance streamability, SwinGS integrates spacetime Gaussian with Markov Chain Monte Carlo (MCMC) to adapt the model to fit various 3D scenes across frames, in the meantime employing a sliding window captures Gaussian snapshots for each frame in an accumulative way. We implement a prototype of SwinGS and demonstrate its streamability across various datasets and scenes. Additionally, we develop an interactive WebGL viewer enabling real-time volumetric video playback on most devices with modern browsers, including smartphones and tablets. Experimental results show that SwinGS reduces transmission costs by 83.6% compared to previous work and could be easily scaled to volumetric videos with arbitrary length with no increasing of required GPU resources.
♻ ☆ DVLTA-VQA: Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment
Inspired by the dual-stream theory of the human visual system (HVS) - where the ventral stream is responsible for object recognition and detail analysis, while the dorsal stream focuses on spatial relationships and motion perception - an increasing number of video quality assessment (VQA) works built upon this framework are proposed. Recent advancements in large multi-modal models, notably Contrastive Language-Image Pretraining (CLIP), have motivated researchers to incorporate CLIP into dual-stream-based VQA methods. This integration aims to harness the model's superior semantic understanding capabilities to replicate the object recognition and detail analysis in ventral stream, as well as spatial relationship analysis in dorsal stream. However, CLIP is originally designed for images and lacks the ability to capture temporal and motion information inherent in videos. To address the limitation, this paper propose a Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment (DVLTA-VQA), which decouples CLIP's visual and textual components, and integrates them into different stages of the NR-VQA pipeline. Specifically, a Video-Based Temporal CLIP module is proposed to explicitly model temporal dynamics and enhance motion perception, aligning with the dorsal stream. Additionally, a Temporal Context Module is developed to refine inter-frame dependencies, further improving motion modeling. On the ventral stream side, a Basic Visual Feature Extraction Module is employed to strengthen detail analysis. Finally, a text-guided adaptive fusion strategy is proposed to enable dynamic weighting of features, facilitating more effective integration of spatial and temporal information.
♻ ☆ Flux Already Knows -- Activating Subject-Driven Image Generation without Training
We propose a simple yet effective zero-shot framework for subject-driven image generation using a vanilla Flux model. By framing the task as grid-based image completion and simply replicating the subject image(s) in a mosaic layout, we activate strong identity-preserving capabilities without any additional data, training, or inference-time fine-tuning. This "free lunch" approach is further strengthened by a novel cascade attention design and meta prompting technique, boosting fidelity and versatility. Experimental results show that our method outperforms baselines across multiple key metrics in benchmarks and human preference studies, with trade-offs in certain aspects. Additionally, it supports diverse edits, including logo insertion, virtual try-on, and subject replacement or insertion. These results demonstrate that a pre-trained foundational text-to-image model can enable high-quality, resource-efficient subject-driven generation, opening new possibilities for lightweight customization in downstream applications.
♻ ☆ O2V-Mapping: Online Open-Vocabulary Mapping with Neural Implicit Representation ECCV2024
Online construction of open-ended language scenes is crucial for robotic applications, where open-vocabulary interactive scene understanding is required. Recently, neural implicit representation has provided a promising direction for online interactive mapping. However, implementing open-vocabulary scene understanding capability into online neural implicit mapping still faces three challenges: lack of local scene updating ability, blurry spatial hierarchical semantic segmentation and difficulty in maintaining multi-view consistency. To this end, we proposed O2V-mapping, which utilizes voxel-based language and geometric features to create an open-vocabulary field, thus allowing for local updates during online training process. Additionally, we leverage a foundational model for image segmentation to extract language features on object-level entities, achieving clear segmentation boundaries and hierarchical semantic features. For the purpose of preserving consistency in 3D object properties across different viewpoints, we propose a spatial adaptive voxel adjustment mechanism and a multi-view weight selection method. Extensive experiments on open-vocabulary object localization and semantic segmentation demonstrate that O2V-mapping achieves online construction of language scenes while enhancing accuracy, outperforming the previous SOTA method.
comment: ECCV2024
♻ ☆ T2SG: Traffic Topology Scene Graph for Topology Reasoning in Autonomous Driving CVPR2025
Understanding the traffic scenes and then generating high-definition (HD) maps present significant challenges in autonomous driving. In this paper, we defined a novel Traffic Topology Scene Graph, a unified scene graph explicitly modeling the lane, controlled and guided by different road signals (e.g., right turn), and topology relationships among them, which is always ignored by previous high-definition (HD) mapping methods. For the generation of T2SG, we propose TopoFormer, a novel one-stage Topology Scene Graph TransFormer with two newly designed layers. Specifically, TopoFormer incorporates a Lane Aggregation Layer (LAL) that leverages the geometric distance among the centerline of lanes to guide the aggregation of global information. Furthermore, we proposed a Counterfactual Intervention Layer (CIL) to model the reasonable road structure ( e.g., intersection, straight) among lanes under counterfactual intervention. Then the generated T2SG can provide a more accurate and explainable description of the topological structure in traffic scenes. Experimental results demonstrate that TopoFormer outperforms existing methods on the T2SG generation task, and the generated T2SG significantly enhances traffic topology reasoning in downstream tasks, achieving a state-of-the-art performance of 46.3 OLS on the OpenLane-V2 benchmark. We will release our source code and model.
comment: Accepted by CVPR2025
♻ ☆ InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
comment: Technical Report
♻ ☆ SAUGE: Taming SAM for Uncertainty-Aligned Multi-Granularity Edge Detection AAAI 2025
Edge labels are typically at various granularity levels owing to the varying preferences of annotators, thus handling the subjectivity of per-pixel labels has been a focal point for edge detection. Previous methods often employ a simple voting strategy to diminish such label uncertainty or impose a strong assumption of labels with a pre-defined distribution, e.g., Gaussian. In this work, we unveil that the segment anything model (SAM) provides strong prior knowledge to model the uncertainty in edge labels. Our key insight is that the intermediate SAM features inherently correspond to object edges at various granularities, which reflects different edge options due to uncertainty. Therefore, we attempt to align uncertainty with granularity by regressing intermediate SAM features from different layers to object edges at multi-granularity levels. In doing so, the model can fully and explicitly explore diverse ``uncertainties'' in a data-driven fashion. Specifically, we inject a lightweight module (~ 1.5% additional parameters) into the frozen SAM to progressively fuse and adapt its intermediate features to estimate edges from coarse to fine. It is crucial to normalize the granularity level of human edge labels to match their innate uncertainty. For this, we simply perform linear blending to the real edge labels at hand to create pseudo labels with varying granularities. Consequently, our uncertainty-aligned edge detector can flexibly produce edges at any desired granularity (including an optimal one). Thanks to SAM, our model uniquely demonstrates strong generalizability for cross-dataset edge detection. Extensive experimental results on BSDS500, Muticue and NYUDv2 validate our model's superiority.
comment: Accepted to AAAI 2025
♻ ☆ 3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark
3D spatial reasoning is the ability to analyze and interpret the positions, orientations, and spatial relationships of objects within the 3D space. This allows models to develop a comprehensive understanding of the 3D scene, enabling their applicability to a broader range of areas, such as autonomous navigation, robotics, and AR/VR. While large multi-modal models (LMMs) have achieved remarkable progress in a wide range of image and video understanding tasks, their capabilities to perform 3D spatial reasoning on diverse natural images are less studied. In this work we present the first comprehensive 3D spatial reasoning benchmark, 3DSRBench, with 2,772 manually annotated visual question-answer pairs across 12 question types. We conduct robust and thorough evaluation of 3D spatial reasoning capabilities by balancing the data distribution and adopting a novel FlipEval strategy. To further study the robustness of 3D spatial reasoning w.r.t. camera 3D viewpoints, our 3DSRBench includes two subsets with 3D spatial reasoning questions on paired images with common and uncommon viewpoints. We benchmark a wide range of open-sourced and proprietary LMMs, uncovering their limitations in various aspects of 3D awareness, such as height, orientation, location, and multi-object reasoning, as well as their degraded performance on images with uncommon camera viewpoints. Our 3DSRBench provide valuable findings and insights about the future development of LMMs with strong 3D reasoning capabilities. Our project page and dataset is available https://3dsrbench.github.io.
comment: Project page: https://3dsrbench.github.io
♻ ☆ MultiCore+TPU Accelerated Multi-Modal TinyML for Livestock Behaviour Recognition
The advancement of technology has revolutionised the agricultural industry, transitioning it from labour-intensive farming practices to automated, AI-powered management systems. In recent years, more intelligent livestock monitoring solutions have been proposed to enhance farming efficiency and productivity. This work presents a novel approach to animal activity recognition and movement tracking, leveraging tiny machine learning (TinyML) techniques, wireless communication framework, and microcontroller platforms to develop an efficient, cost-effective livestock sensing system. It collects and fuses accelerometer data and vision inputs to build a multi-modal network for three tasks: image classification, object detection, and behaviour recognition. The system is deployed and evaluated on commercial microcontrollers for real-time inference using embedded applications, demonstrating up to 270$\times$ model size reduction, less than 80ms response latency, and on-par performance comparable to existing methods. The incorporation of the TinyML technique allows for seamless data transmission between devices, benefiting use cases in remote locations with poor Internet connectivity. This work delivers a robust, scalable IoT-edge livestock monitoring solution adaptable to diverse farming needs, offering flexibility for future extensions.
comment: 11 pages, 10 figures
♻ ☆ Wan: Open and Advanced Large-Scale Video Generative Models
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
comment: 60 pages, 33 figures
♻ ☆ Many Perception Tasks are Highly Redundant Functions of their Input Data
We show that many perception tasks, from visual recognition, semantic segmentation, optical flow, depth estimation to vocalization discrimination, are highly redundant functions of their input data. Images or spectrograms, projected into different subspaces, formed by orthogonal bases in pixel, Fourier or wavelet domains, can be used to solve these tasks remarkably well regardless of whether it is the top subspace where data varies the most, some intermediate subspace with moderate variability--or the bottom subspace where data varies the least. This phenomenon occurs because different subspaces have a large degree of redundant information relevant to the task.
♻ ☆ Post-Hurricane Debris Segmentation Using Fine-Tuned Foundational Vision Models
Timely and accurate detection of hurricane debris is critical for effective disaster response and community resilience. While post-disaster aerial imagery is readily available, robust debris segmentation solutions applicable across multiple disaster regions remain limited. Developing a generalized solution is challenging due to varying environmental and imaging conditions that alter debris' visual signatures across different regions, further compounded by the scarcity of training data. This study addresses these challenges by fine-tuning pre-trained foundational vision models, achieving robust performance with a relatively small, high-quality dataset. Specifically, this work introduces an open-source dataset comprising approximately 1,200 manually annotated aerial RGB images from Hurricanes Ian, Ida, and Ike. To mitigate human biases and enhance data quality, labels from multiple annotators are strategically aggregated and visual prompt engineering is employed. The resulting fine-tuned model, named fCLIPSeg, achieves a Dice score of 0.70 on data from Hurricane Ida -- a disaster event entirely excluded during training -- with virtually no false positives in debris-free areas. This work presents the first event-agnostic debris segmentation model requiring only standard RGB imagery during deployment, making it well-suited for rapid, large-scale post-disaster impact assessments and recovery planning.
comment: 12 pages, 8 figures
♻ ☆ Deep Active Learning in the Open World
Machine learning models deployed in open-world scenarios often encounter unfamiliar conditions and perform poorly in unanticipated situations. As AI systems advance and find application in safety-critical domains, effectively handling out-of-distribution (OOD) data is crucial to building open-world learning systems. In this work, we introduce ALOE, a novel active learning algorithm for open-world environments designed to enhance model adaptation by incorporating new OOD classes via a two-stage approach. First, diversity sampling selects a representative set of examples, followed by energy-based OOD detection to prioritize likely unknown classes for annotation. This strategy accelerates class discovery and learning, even under constrained annotation budgets. Evaluations on three long-tailed image classification benchmarks demonstrate that ALOE outperforms traditional active learning baselines, effectively expanding known categories while balancing annotation cost. Our findings reveal a crucial tradeoff between enhancing known-class performance and discovering new classes, setting the stage for future advancements in open-world machine learning.
Artificial Intelligence 65
☆ Adversarial Attack for RGB-Event based Visual Object Tracking
Visual object tracking is a crucial research topic in the fields of computer vision and multi-modal fusion. Among various approaches, robust visual tracking that combines RGB frames with Event streams has attracted increasing attention from researchers. While striving for high accuracy and efficiency in tracking, it is also important to explore how to effectively conduct adversarial attacks and defenses on RGB-Event stream tracking algorithms, yet research in this area remains relatively scarce. To bridge this gap, in this paper, we propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking. Because of the diverse representations of Event streams, and given that Event voxels and frames are more commonly used, this paper will focus on these two representations for an in-depth study. Specifically, for the RGB-Event voxel, we first optimize the perturbation by adversarial loss to generate RGB frame adversarial examples. For discrete Event voxel representations, we propose a two-step attack strategy, more in detail, we first inject Event voxels into the target region as initialized adversarial examples, then, conduct a gradient-guided optimization by perturbing the spatial location of the Event voxels. For the RGB-Event frame based tracking, we optimize the cross-modal universal perturbation by integrating the gradient information from multimodal data. We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets, i.e., COESOT, FE108, and VisEvent. Extensive experiments show that our method significantly reduces the performance of the tracker across numerous datasets in both unimodal and multimodal scenarios. The source code will be released on https://github.com/Event-AHU/Adversarial_Attack_Defense
☆ Planet as a Brain: Towards Internet of AgentSites based on AIOS Server
The internet is undergoing a historical transformation from the "Internet of Websites" to the "Internet of AgentSites." While traditional Websites served as the foundation for information hosting and dissemination, a new frontier is emerging where AgentSites serve as the hubs of the internet, where each AgentSite hosts one or more AI agents that receive tasks, address them, and deliver actionable solutions, marking a significant shift in the digital landscape and representing the next generation of online ecosystems. Under this vision, AIOS, the AI Agent Operating System, serves as the server for the development, deployment and execution of AI agents, which is a fundamental infrastructure for the Internet of Agentsites. In this paper, we introduce AIOS Server, a runtime framework to host agents and enable global-scale collaboration among decentralized agents. AIOS Server provides a communication protocol leveraging the Model Context Protocol (MCP) and JSON-RPC to enable agent-agent or human-agent interactions. Each AIOS node operates as a server to host and execute agents, while supporting peer-to-peer coordination without reliance on centralized orchestration. Based on AIOS Server, we further present the world's first practically deployed Internet of Agentsites (AIOS-IoA), including AgentHub for agent registration and discovery and AgentChat for interactive communication, at https://planet.aios.foundation. The agent discovery mechanism based on Distributed Hash Tables (DHT) and a Gossip protocol serves as the search engine for the internet of agentsites. This work provides a practical foundation for building the Internet of Agentsites-a new paradigm where autonomous agents become first-class citizens of the web. The implementation is available at https://github.com/agiresearch/AIOS.Server and will be integrated into the AIOS main branch at https://github.com/agiresearch/AIOS.
☆ Data Augmentation Using Neural Acoustic Fields With Retrieval-Augmented Pre-training ICASSP 2025
This report details MERL's system for room impulse response (RIR) estimation submitted to the Generative Data Augmentation Workshop at ICASSP 2025 for Augmenting RIR Data (Task 1) and Improving Speaker Distance Estimation (Task 2). We first pre-train a neural acoustic field conditioned by room geometry on an external large-scale dataset in which pairs of RIRs and the geometries are provided. The neural acoustic field is then adapted to each target room by using the enrollment data, where we leverage either the provided room geometries or geometries retrieved from the external dataset, depending on availability. Lastly, we predict the RIRs for each pair of source and receiver locations specified by Task 1, and use these RIRs to train the speaker distance estimation model in Task 2.
comment: Presented at ICASSP 2025 GenDA Workshop
☆ ScholarMate: A Mixed-Initiative Tool for Qualitative Knowledge Work and Information Sensemaking
Synthesizing knowledge from large document collections is a critical yet increasingly complex aspect of qualitative research and knowledge work. While AI offers automation potential, effectively integrating it into human-centric sensemaking workflows remains challenging. We present ScholarMate, an interactive system designed to augment qualitative analysis by unifying AI assistance with human oversight. ScholarMate enables researchers to dynamically arrange and interact with text snippets on a non-linear canvas, leveraging AI for theme suggestions, multi-level summarization, and contextual naming, while ensuring transparency through traceability to source documents. Initial pilot studies indicated that users value this mixed-initiative approach, finding the balance between AI suggestions and direct manipulation crucial for maintaining interpretability and trust. We further demonstrate the system's capability through a case study analyzing 24 papers. By balancing automation with human control, ScholarMate enhances efficiency and supports interpretability, offering a valuable approach for productive human-AI collaboration in demanding sensemaking tasks common in knowledge work.
comment: accepted at CHIWORK 2025
☆ Hydra: An Agentic Reasoning Approach for Enhancing Adversarial Robustness and Mitigating Hallucinations in Vision-Language Models
To develop trustworthy Vision-Language Models (VLMs), it is essential to address adversarial robustness and hallucination mitigation, both of which impact factual accuracy in high-stakes applications such as defense and healthcare. Existing methods primarily focus on either adversarial defense or hallucination post-hoc correction, leaving a gap in unified robustness strategies. We introduce \textbf{Hydra}, an adaptive agentic framework that enhances plug-in VLMs through iterative reasoning, structured critiques, and cross-model verification, improving both resilience to adversarial perturbations and intrinsic model errors. Hydra employs an Action-Critique Loop, where it retrieves and critiques visual information, leveraging Chain-of-Thought (CoT) and In-Context Learning (ICL) techniques to refine outputs dynamically. Unlike static post-hoc correction methods, Hydra adapts to both adversarial manipulations and intrinsic model errors, making it robust to malicious perturbations and hallucination-related inaccuracies. We evaluate Hydra on four VLMs, three hallucination benchmarks, two adversarial attack strategies, and two adversarial defense methods, assessing performance on both clean and adversarial inputs. Results show that Hydra surpasses plug-in VLMs and state-of-the-art (SOTA) dehallucination methods, even without explicit adversarial defenses, demonstrating enhanced robustness and factual consistency. By bridging adversarial resistance and hallucination mitigation, Hydra provides a scalable, training-free solution for improving the reliability of VLMs in real-world applications.
☆ LOOPE: Learnable Optimal Patch Order in Positional Embeddings for Vision Transformers
Positional embeddings (PE) play a crucial role in Vision Transformers (ViTs) by providing spatial information otherwise lost due to the permutation invariant nature of self attention. While absolute positional embeddings (APE) have shown theoretical advantages over relative positional embeddings (RPE), particularly due to the ability of sinusoidal functions to preserve spatial inductive biases like monotonicity and shift invariance, a fundamental challenge arises when mapping a 2D grid to a 1D sequence. Existing methods have mostly overlooked or never explored the impact of patch ordering in positional embeddings. To address this, we propose LOOPE, a learnable patch-ordering method that optimizes spatial representation for a given set of frequencies, providing a principled approach to patch order optimization. Empirical results show that our PE significantly improves classification accuracy across various ViT architectures. To rigorously evaluate the effectiveness of positional embeddings, we introduce the "Three Cell Experiment", a novel benchmarking framework that assesses the ability of PEs to retain relative and absolute positional information across different ViT architectures. Unlike standard evaluations, which typically report a performance gap of 4 to 6% between models with and without PE, our method reveals a striking 30 to 35% difference, offering a more sensitive diagnostic tool to measure the efficacy of PEs. Our experimental analysis confirms that the proposed LOOPE demonstrates enhanced effectiveness in retaining both relative and absolute positional information.
☆ The Geometry of Self-Verification in a Task-Specific Reasoning Model
How do reasoning models verify their own answers? We study this question by training a model using DeepSeek R1's recipe on the CountDown task. We leverage the fact that preference tuning leads to mode collapse, resulting in a model that always produces highly structured and easily parse-able chain-of-thought sequences. With this setup, we do a top-down and bottom-up analysis to reverse-engineer how the model verifies its outputs. Our top-down analysis reveals Gated Linear Unit (GLU) weights encoding verification-related tokens, such as ``success'' or ``incorrect'', which activate according to the correctness of the model's reasoning steps. Our bottom-up analysis reveals that ``previous-token heads'' are mainly responsible for model verification. Our analyses meet in the middle: drawing inspiration from inter-layer communication channels, we use the identified GLU vectors to localize as few as three attention heads that can disable model verification, pointing to a necessary component of a potentially larger verification circuit.
☆ Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping
Accurate ocean modeling and coastal hazard prediction depend on high-resolution bathymetric data; yet, current worldwide datasets are too coarse for exact numerical simulations. While recent deep learning advances have improved earth observation data resolution, existing methods struggle with the unique challenges of producing detailed ocean floor maps, especially in maintaining physical structure consistency and quantifying uncertainties. This work presents a novel uncertainty-aware mechanism using spatial blocks to efficiently capture local bathymetric complexity based on block-based conformal prediction. Using the Vector Quantized Variational Autoencoder (VQ-VAE) architecture, the integration of this uncertainty quantification framework yields spatially adaptive confidence estimates while preserving topographical features via discrete latent representations. With smaller uncertainty widths in well-characterized areas and appropriately larger bounds in areas of complex seafloor structures, the block-based design adapts uncertainty estimates to local bathymetric complexity. Compared to conventional techniques, experimental results over several ocean regions show notable increases in both reconstruction quality and uncertainty estimation reliability. This framework increases the reliability of bathymetric reconstructions by preserving structural integrity while offering spatially adaptive uncertainty estimates, so opening the path for more solid climate modeling and coastal hazard assessment.
☆ Diverse Prompts: Illuminating the Prompt Space of Large Language Models with MAP-Elites IEEE
Prompt engineering is essential for optimizing large language models (LLMs), yet the link between prompt structures and task performance remains underexplored. This work introduces an evolutionary approach that combines context-free grammar (CFG) with the MAP-Elites algorithm to systematically explore the prompt space. Our method prioritizes quality and diversity, generating high-performing and structurally varied prompts while analyzing their alignment with diverse tasks by varying traits such as the number of examples (shots) and reasoning depth. By systematically mapping the phenotypic space, we reveal how structural variations influence LLM performance, offering actionable insights for task-specific and adaptable prompt design. Evaluated on seven BigBench Lite tasks across multiple LLMs, our results underscore the critical interplay of quality and diversity, advancing the effectiveness and versatility of LLMs.
comment: 8 pages Accepted for publication in IEEE CEC 2025
☆ Empirical Evaluation of Knowledge Distillation from Transformers to Subquadratic Language Models
Knowledge distillation is a widely used technique for compressing large language models (LLMs) by training a smaller student model to mimic a larger teacher model. Typically, both the teacher and student are Transformer-based architectures, leveraging softmax attention for sequence modeling. However, the quadratic complexity of self-attention at inference time remains a significant bottleneck, motivating the exploration of subquadratic alternatives such as structured state-space models (SSMs), linear attention, and recurrent architectures. In this work, we systematically evaluate the transferability of knowledge distillation from a Transformer teacher to nine subquadratic student architectures. Our study aims to determine which subquadratic model best aligns with the teacher's learned representations and how different architectural constraints influence the distillation process. We also investigate the impact of intelligent initialization strategies, including matrix mixing and query-key-value (QKV) copying, on the adaptation process. Our empirical results on multiple NLP benchmarks provide insights into the trade-offs between efficiency and performance, highlighting key factors for successful knowledge transfer to subquadratic architectures.
☆ Accelerating LLM Inference with Flexible N:M Sparsity via A Fully Digital Compute-in-Memory Accelerator
Large language model (LLM) pruning with fixed N:M structured sparsity significantly limits the expressivity of the sparse model, yielding sub-optimal performance. In contrast, supporting multiple N:M patterns to provide sparse representational freedom introduces costly overhead in hardware. To address these challenges for LLMs, we first present a flexible layer-wise outlier-density-aware N:M sparsity (FLOW) selection method. FLOW enables the identification of optimal layer-wise N and M values (from a given range) by simultaneously accounting for the presence and distribution of outliers, allowing a higher degree of representational freedom. To deploy sparse models with such N:M flexibility, we then introduce a flexible, low-overhead digital compute-in-memory architecture (FlexCiM). FlexCiM supports diverse sparsity patterns by partitioning a digital CiM (DCiM) macro into smaller sub-macros, which are adaptively aggregated and disaggregated through distribution and merging mechanisms for different N and M values. Extensive experiments on both transformer-based and recurrence-based state space foundation models (SSMs) demonstrate that FLOW outperforms existing alternatives with an accuracy improvement of up to 36%, while FlexCiM achieves up to 1.75x lower inference latency and 1.5x lower energy consumption compared to existing sparse accelerators. Code is available at: https://github.com/FLOW-open-project/FLOW
☆ A Multimodal Recaptioning Framework to Account for Perceptual Diversity in Multilingual Vision-Language Modeling
There are many ways to describe, name, and group objects when captioning an image. Differences are evident when speakers come from diverse cultures due to the unique experiences that shape perception. Machine translation of captions has pushed multilingual capabilities in vision-language models (VLMs), but data comes mainly from English speakers, indicating a perceptual bias and lack of model flexibility. In this work, we address this challenge and outline a data-efficient framework to instill multilingual VLMs with greater understanding of perceptual diversity. We specifically propose an LLM-based, multimodal recaptioning strategy that alters the object descriptions of English captions before translation. The greatest benefits are demonstrated in a targeted multimodal mechanism guided by native speaker data. By adding produced rewrites as augmentations in training, we improve on German and Japanese text-image retrieval cases studies (up to +3.5 mean recall overall, +4.7 on non-native error cases). We further propose a mechanism to analyze the specific object description differences across datasets, and we offer insights into cross-dataset and cross-language generalization.
☆ Mathematical Programming Models for Exact and Interpretable Formulation of Neural Networks
This paper presents a unified mixed-integer programming framework for training sparse and interpretable neural networks. We develop exact formulations for both fully connected and convolutional architectures by modeling nonlinearities such as ReLU activations through binary variables and encoding structural sparsity via filter- and layer-level pruning constraints. The resulting models integrate parameter learning, architecture selection, and structural regularization within a single optimization problem, yielding globally optimal solutions with respect to a composite objective that balances prediction accuracy, weight sparsity, and architectural compactness. The mixed-integer programming formulation accommodates piecewise-linear operations, including max pooling and activation gating, and permits precise enforcement of logic-based or domain-specific constraints. By incorporating considerations of interpretability, sparsity, and verifiability directly into the training process, the proposed framework bridges a range of research areas including explainable artificial intelligence, symbolic reasoning, and formal verification.
☆ Time Up! An Empirical Study of LLM Reasoning Ability Under Output Length Constraint
Recent work has demonstrated the remarkable potential of Large Language Models (LLMs) in test-time scaling. By making the models think before answering, they are able to achieve much higher accuracy with extra inference computation. However, in many real-world scenarios, models are used under time constraints, where an answer should be given to the user within a certain output length. It is unclear whether and how the reasoning abilities of LLMs remain effective under such constraints. We take a first look at this problem by conducting an in-depth empirical study. Specifically, we test more than 25 LLMs on common reasoning datasets under a wide range of output length budgets, and we analyze the correlation between the inference accuracy and various properties including model type, model size, prompt style, etc. We also consider the mappings between the token budgets and the actual on-device latency budgets. The results have demonstrated several interesting findings regarding the budget-aware LLM reasoning that differ from the unconstrained situation, e.g. the optimal choices of model sizes and prompts change under different budgets. These findings offer practical guidance for users to deploy LLMs under real-world latency constraints.
☆ Integrating LLM-Generated Views into Mean-Variance Optimization Using the Black-Litterman Model ICLR 2025
Portfolio optimization faces challenges due to the sensitivity in traditional mean-variance models. The Black-Litterman model mitigates this by integrating investor views, but defining these views remains difficult. This study explores the integration of large language models (LLMs) generated views into portfolio optimization using the Black-Litterman framework. Our method leverages LLMs to estimate expected stock returns from historical prices and company metadata, incorporating uncertainty through the variance in predictions. We conduct a backtest of the LLM-optimized portfolios from June 2024 to February 2025, rebalancing biweekly using the previous two weeks of price data. As baselines, we compare against the S&P 500, an equal-weighted portfolio, and a traditional mean-variance optimized portfolio constructed using the same set of stocks. Empirical results suggest that different LLMs exhibit varying levels of predictive optimism and confidence stability, which impact portfolio performance. The source code and data are available at https://github.com/youngandbin/LLM-MVO-BLM.
comment: Presented at the ICLR 2025 Workshop on Financial AI (https://sites.google.com/view/financialaiiclr25/home)
☆ Visual Prompting for One-shot Controllable Video Editing without Inversion
One-shot controllable video editing (OCVE) is an important yet challenging task, aiming to propagate user edits that are made -- using any image editing tool -- on the first frame of a video to all subsequent frames, while ensuring content consistency between edited frames and source frames. To achieve this, prior methods employ DDIM inversion to transform source frames into latent noise, which is then fed into a pre-trained diffusion model, conditioned on the user-edited first frame, to generate the edited video. However, the DDIM inversion process accumulates errors, which hinder the latent noise from accurately reconstructing the source frames, ultimately compromising content consistency in the generated edited frames. To overcome it, our method eliminates the need for DDIM inversion by performing OCVE through a novel perspective based on visual prompting. Furthermore, inspired by consistency models that can perform multi-step consistency sampling to generate a sequence of content-consistent images, we propose a content consistency sampling (CCS) to ensure content consistency between the generated edited frames and the source frames. Moreover, we introduce a temporal-content consistency sampling (TCS) based on Stein Variational Gradient Descent to ensure temporal consistency across the edited frames. Extensive experiments validate the effectiveness of our approach.
comment: accepted by cvpr2025
☆ FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
☆ Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Text-based prompting remains the dominant interaction paradigm in generative AI, yet it often results in a high-friction experience for novice users, such as small business owners (SBOs), attempting to articulate creative or domain-specific goals for advertising. To investigate this challenge, we conducted a study with six SBOs in the United Kingdom, focusing on their advertising practices and perceptions and usage of AI tools in this context. Our findings surfaced two persistent breakdowns in current generative AI systems: first, the cognitive burden of prompt engineering, as users struggled to translate abstract creative goals into effective textual inputs; and second, the frequent generation of generic outputs that failed to align with users' articulated brand vision. To address these issues, we developed ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal, GenAI-powered advertisement creation tool designed to support novice designers by reimagining the prompt interface. ACAI features a structured, panel-based interface composed of three modules: the Branding Panel, the Audience & Goals Panel, and the Inspiration Board Panel to provide SBOs with outputs that align with their creative vision by reducing prompt ambiguity. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context to improve both alignment and promptability in novice workflows.
comment: Accepted at CHI'25 Workshop on Designing and Developing User Interfaces with AI
☆ Learning to Score
Common machine learning settings range from supervised tasks, where accurately labeled data is accessible, through semi-supervised and weakly-supervised tasks, where target labels are scant or noisy, to unsupervised tasks where labels are unobtainable. In this paper we study a scenario where the target labels are not available but additional related information is at hand. This information, referred to as Side Information, is either correlated with the unknown labels or imposes constraints on the feature space. We formulate the problem as an ensemble of three semantic components: representation learning, side information and metric learning. The proposed scoring model is advantageous for multiple use-cases. For example, in the healthcare domain it can be used to create a severity score for diseases where the symptoms are known but the criteria for the disease progression are not well defined. We demonstrate the utility of the suggested scoring system on well-known benchmark data-sets and bio-medical patient records.
☆ Balancing Privacy and Action Performance: A Penalty-Driven Approach to Image Anonymization CVPR
The rapid development of video surveillance systems for object detection, tracking, activity recognition, and anomaly detection has revolutionized our day-to-day lives while setting alarms for privacy concerns. It isn't easy to strike a balance between visual privacy and action recognition performance in most computer vision models. Is it possible to safeguard privacy without sacrificing performance? It poses a formidable challenge, as even minor privacy enhancements can lead to substantial performance degradation. To address this challenge, we propose a privacy-preserving image anonymization technique that optimizes the anonymizer using penalties from the utility branch, ensuring improved action recognition performance while minimally affecting privacy leakage. This approach addresses the trade-off between minimizing privacy leakage and maintaining high action performance. The proposed approach is primarily designed to align with the regulatory standards of the EU AI Act and GDPR, ensuring the protection of personally identifiable information while maintaining action performance. To the best of our knowledge, we are the first to introduce a feature-based penalty scheme that exclusively controls the action features, allowing freedom to anonymize private attributes. Extensive experiments were conducted to validate the effectiveness of the proposed method. The results demonstrate that applying a penalty to anonymizer from utility branch enhances action performance while maintaining nearly consistent privacy leakage across different penalty settings.
comment: Accepted to CVPRW 2025
☆ Learning and Generating Diverse Residential Load Patterns Using GAN with Weakly-Supervised Training and Weight Selection
The scarcity of high-quality residential load data can pose obstacles for decarbonizing the residential sector as well as effective grid planning and operation. The above challenges have motivated research into generating synthetic load data, but existing methods faced limitations in terms of scalability, diversity, and similarity. This paper proposes a Generative Adversarial Network-based Synthetic Residential Load Pattern (RLP-GAN) generation model, a novel weakly-supervised GAN framework, leveraging an over-complete autoencoder to capture dependencies within complex and diverse load patterns and learn household-level data distribution at scale. We incorporate a model weight selection method to address the mode collapse problem and generate load patterns with high diversity. We develop a holistic evaluation method to validate the effectiveness of RLP-GAN using real-world data of 417 households. The results demonstrate that RLP-GAN outperforms state-of-the-art models in capturing temporal dependencies and generating load patterns with higher similarity to real data. Furthermore, we have publicly released the RLP-GAN generated synthetic dataset, which comprises one million synthetic residential load pattern profiles.
comment: 12 pages
☆ RadioDiff-Inverse: Diffusion Enhanced Bayesian Inverse Estimation for ISAC Radio Map Construction
Radio maps (RMs) are essential for environment-aware communication and sensing, providing location-specific wireless channel information. Existing RM construction methods often rely on precise environmental data and base station (BS) locations, which are not always available in dynamic or privacy-sensitive environments. While sparse measurement techniques reduce data collection, the impact of noise in sparse data on RM accuracy is not well understood. This paper addresses these challenges by formulating RM construction as a Bayesian inverse problem under coarse environmental knowledge and noisy sparse measurements. Although maximum a posteriori (MAP) filtering offers an optimal solution, it requires a precise prior distribution of the RM, which is typically unavailable. To solve this, we propose RadioDiff-Inverse, a diffusion-enhanced Bayesian inverse estimation framework that uses an unconditional generative diffusion model to learn the RM prior. This approach not only reconstructs the spatial distribution of wireless channel features but also enables environmental structure perception, such as building outlines, and location of BS just relay on pathloss, through integrated sensing and communication (ISAC). Remarkably, RadioDiff-Inverse is training-free, leveraging a pre-trained model from Imagenet without task-specific fine-tuning, which significantly reduces the training cost of using generative large model in wireless networks. Experimental results demonstrate that RadioDiff-Inverse achieves state-of-the-art performance in accuracy of RM construction and environmental reconstruction, and robustness against noisy sparse sampling.
comment: 12 pages, 7 figures
☆ CHAINSFORMER: Numerical Reasoning on Knowledge Graphs from a Chain Perspective ICDE 2025
Reasoning over Knowledge Graphs (KGs) plays a pivotal role in knowledge graph completion or question answering systems, providing richer and more accurate triples and attributes. As numerical attributes become increasingly essential in characterizing entities and relations in KGs, the ability to reason over these attributes has gained significant importance. Existing graph-based methods such as Graph Neural Networks (GNNs) and Knowledge Graph Embeddings (KGEs), primarily focus on aggregating homogeneous local neighbors and implicitly embedding diverse triples. However, these approaches often fail to fully leverage the potential of logical paths within the graph, limiting their effectiveness in exploiting the reasoning process. To address these limitations, we propose ChainsFormer, a novel chain-based framework designed to support numerical reasoning. Chainsformer not only explicitly constructs logical chains but also expands the reasoning depth to multiple hops. Specially, we introduces Relation-Attribute Chains (RA-Chains), a specialized logic chain, to model sequential reasoning patterns. ChainsFormer captures the step-by-step nature of multi-hop reasoning along RA-Chains by employing sequential in-context learning. To mitigate the impact of noisy chains, we propose a hyperbolic affinity scoring mechanism that selects relevant logic chains in a variable-resolution space. Furthermore, ChainsFormer incorporates an attention-based numerical reasoner to identify critical reasoning paths, enhancing both reasoning accuracy and transparency. Experimental results demonstrate that ChainsFormer significantly outperforms state-of-the-art methods, achieving up to a 20.0% improvement in performance. The implementations are available at https://github.com/zhaodazhuang2333/ChainsFormer.
comment: Accepted to ICDE 2025
☆ ProtPainter: Draw or Drag Protein via Topology-guided Diffusion ICLR 2025
Recent advances in protein backbone generation have achieved promising results under structural, functional, or physical constraints. However, existing methods lack the flexibility for precise topology control, limiting navigation of the backbone space. We present ProtPainter, a diffusion-based approach for generating protein backbones conditioned on 3D curves. ProtPainter follows a two-stage process: curve-based sketching and sketch-guided backbone generation. For the first stage, we propose CurveEncoder, which predicts secondary structure annotations from a curve to parametrize sketch generation. For the second stage, the sketch guides the generative process in Denoising Diffusion Probabilistic Modeling (DDPM) to generate backbones. During this process, we further introduce a fusion scheduling scheme, Helix-Gating, to control the scaling factors. To evaluate, we propose the first benchmark for topology-conditioned protein generation, introducing Protein Restoration Task and a new metric, self-consistency Topology Fitness (scTF). Experiments demonstrate ProtPainter's ability to generate topology-fit (scTF > 0.8) and designable (scTM > 0.5) backbones, with drawing and dragging tasks showcasing its flexibility and versatility.
comment: Published as a conference paper at ICLR 2025
☆ Experience-based Refinement of Task Planning Knowledge in Autonomous Robots
The requirement for autonomous robots to exhibit higher-level cognitive skills by planning and adapting in an ever-changing environment is indeed a great challenge for the AI community. Progress has been made in the automated planning community on refinement and repair of an agent's symbolic knowledge to do task planning in an incomplete or changing environmental model, but these advances up to now have not been transferred to real physical robots. This paper demonstrates how a physical robot can be capable of adapting its symbolic knowledge of the environment, by using experiences in robot action execution to drive knowledge refinement and hence to improve the success rate of the task plans the robot creates. To implement more robust planning systems, we propose a method for refining domain knowledge to improve the knowledge on which intelligent robot behavior is based. This architecture has been implemented and evaluated using a NAO robot. The refined knowledge leads to the future synthesis of task plans which demonstrate decreasing rates of failure over time as faulty knowledge is removed or adjusted.
☆ Rethinking Traffic Flow Forecasting: From Transition to Generatation
Traffic flow prediction plays an important role in Intelligent Transportation Systems in traffic management and urban planning. There have been extensive successful works in this area. However, these approaches focus only on modelling the flow transition and ignore the flow generation process, which manifests itself in two ways: (i) The models are based on Markovian assumptions, ignoring the multi-periodicity of the flow generation in nodes. (ii) The same structure is designed to encode both the transition and generation processes, ignoring the differences between them. To address these problems, we propose an Effective Multi-Branch Similarity Transformer for Traffic Flow Prediction, namely EMBSFormer. Through data analysis, we find that the factors affecting traffic flow include node-level traffic generation and graph-level traffic transition, which describe the multi-periodicity and interaction pattern of nodes, respectively. Specifically, to capture traffic generation patterns, we propose a similarity analysis module that supports multi-branch encoding to dynamically expand significant cycles. For traffic transition, we employ a temporal and spatial self-attention mechanism to maintain global node interactions, and use GNN and time conv to model local node interactions, respectively. Model performance is evaluated on three real-world datasets on both long-term and short-term prediction tasks. Experimental results show that EMBSFormer outperforms baselines on both tasks. Moreover, compared to models based on flow transition modelling (e.g. GMAN, 513k), the variant of EMBSFormer(93K) only uses 18\% of the parameters, achieving the same performance.
☆ A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
Car-following models (CFMs) are fundamental to traffic flow analysis and autonomous driving. Although calibrated physics-based and trained data-driven CFMs can replicate human driving behavior, their reliance on specific datasets limits generalization across diverse scenarios and reduces reliability in real-world deployment. Moreover, these models typically focus on behavioral fidelity and do not support the explicit optimization of local and string stability, which are increasingly important for the safe and efficient operation of autonomous vehicles (AVs). To address these limitations, we propose a Knowledge-Informed Deep Learning (KIDL) paradigm that distills the generalization capabilities of pre-trained Large Language Models (LLMs) into a lightweight and stability-aware neural architecture. LLMs are used to extract fundamental car-following knowledge beyond dataset-specific patterns, and this knowledge is transferred to a reliable, tractable, and computationally efficient model through knowledge distillation. KIDL also incorporates stability constraints directly into its training objective, ensuring that the resulting model not only emulates human-like behavior but also satisfies the local and string stability requirements essential for real-world AV deployment. We evaluate KIDL on the real-world NGSIM and HighD datasets, comparing its performance with representative physics-based, data-driven, and hybrid CFMs. Both empirical and theoretical results consistently demonstrate KIDL's superior behavioral generalization and traffic flow stability, offering a robust and scalable solution for next-generation traffic systems.
☆ InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners
Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at https://github.com/Reallm-Labs/InfiGUI-R1.
comment: 10 pages, 3 figures, work in progress
☆ Assessing AI-Generated Questions' Alignment with Cognitive Frameworks in Educational Assessment CCS
This study evaluates the integration of Bloom's Taxonomy into OneClickQuiz, an Artificial Intelligence (AI) driven plugin for automating Multiple-Choice Question (MCQ) generation in Moodle. Bloom's Taxonomy provides a structured framework for categorizing educational objectives into hierarchical cognitive levels. Our research investigates whether incorporating this taxonomy can improve the alignment of AI-generated questions with specific cognitive objectives. We developed a dataset of 3691 questions categorized according to Bloom's levels and employed various classification models-Multinomial Logistic Regression, Naive Bayes, Linear Support Vector Classification (SVC), and a Transformer-based model (DistilBERT)-to evaluate their effectiveness in categorizing questions. Our results indicate that higher Bloom's levels generally correlate with increased question length, Flesch-Kincaid Grade Level (FKGL), and Lexical Density (LD), reflecting the increased complexity of higher cognitive demands. Multinomial Logistic Regression showed varying accuracy across Bloom's levels, performing best for "Knowledge" and less accurately for higher-order levels. Merging higher-level categories improved accuracy for complex cognitive tasks. Naive Bayes and Linear SVC also demonstrated effective classification for lower levels but struggled with higher-order tasks. DistilBERT achieved the highest performance, significantly improving classification of both lower and higher-order cognitive levels, achieving an overall validation accuracy of 91%. This study highlights the potential of integrating Bloom's Taxonomy into AI-driven assessment tools and underscores the advantages of advanced models like DistilBERT for enhancing educational content generation.
comment: This paper was presented in the 17th Int. Conf. on Computer Science and Information Technology (ICCSIT 2024), Dubai, United Arab Emirates, 2024, Oct. 23-25. IT's now in production to be published in the International Journal of Computer Theory and Engineering
☆ SimplifyMyText: An LLM-Based System for Inclusive Plain Language Text Simplification ECIR 2025
Text simplification is essential for making complex content accessible to diverse audiences who face comprehension challenges. Yet, the limited availability of simplified materials creates significant barriers to personal and professional growth and hinders social inclusion. Although researchers have explored various methods for automatic text simplification, none fully leverage large language models (LLMs) to offer tailored customization for different target groups and varying levels of simplicity. Moreover, despite its proven benefits for both consumers and organizations, the well-established practice of plain language remains underutilized. In this paper, we https://simplifymytext.org, the first system designed to produce plain language content from multiple input formats, including typed text and file uploads, with flexible customization options for diverse audiences. We employ GPT-4 and Llama-3 and evaluate outputs across multiple metrics. Overall, our work contributes to research on automatic text simplification and highlights the importance of tailored communication in promoting inclusivity.
comment: accepted at ECIR 2025
☆ Pets: General Pattern Assisted Architecture For Time Series Analysis
Time series analysis has found widespread applications in areas such as weather forecasting, anomaly detection, and healthcare. However, real-world sequential data often exhibit a superimposed state of various fluctuation patterns, including hourly, daily, and monthly frequencies. Traditional decomposition techniques struggle to effectively disentangle these multiple fluctuation patterns from the seasonal components, making time series analysis challenging. Surpassing the existing multi-period decoupling paradigms, this paper introduces a novel perspective based on energy distribution within the temporal-spectrum space. By adaptively quantifying observed sequences into continuous frequency band intervals, the proposed approach reconstructs fluctuation patterns across diverse periods without relying on domain-specific prior knowledge. Building upon this innovative strategy, we propose Pets, an enhanced architecture that is adaptable to arbitrary model structures. Pets integrates a Fluctuation Pattern Assisted (FPA) module and a Context-Guided Mixture of Predictors (MoP). The FPA module facilitates information fusion among diverse fluctuation patterns by capturing their dependencies and progressively modeling these patterns as latent representations at each layer. Meanwhile, the MoP module leverages these compound pattern representations to guide and regulate the reconstruction of distinct fluctuations hierarchically. Pets achieves state-of-the-art performance across various tasks, including forecasting, imputation, anomaly detection, and classification, while demonstrating strong generalization and robustness.
☆ Decomposition-based multi-scale transformer framework for time series anomaly detection
Time series anomaly detection is crucial for maintaining stable systems. Existing methods face two main challenges. First, it is difficult to directly model the dependencies of diverse and complex patterns within the sequences. Second, many methods that optimize parameters using mean squared error struggle with noise in the time series, leading to performance deterioration. To address these challenges, we propose a transformer-based framework built on decomposition (TransDe) for multivariate time series anomaly detection. The key idea is to combine the strengths of time series decomposition and transformers to effectively learn the complex patterns in normal time series data. A multi-scale patch-based transformer architecture is proposed to exploit the representative dependencies of each decomposed component of the time series. Furthermore, a contrastive learn paradigm based on patch operation is proposed, which leverages KL divergence to align the positive pairs, namely the pure representations of normal patterns between different patch-level views. A novel asynchronous loss function with a stop-gradient strategy is further introduced to enhance the performance of TransDe effectively. It can avoid time-consuming and labor-intensive computation costs in the optimization process. Extensive experiments on five public datasets are conducted and TransDe shows superiority compared with twelve baselines in terms of F1 score. Our code is available at https://github.com/shaieesss/TransDe.
♻ ☆ On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction WWW 2025
The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
comment: Accepted by WWW 2025
♻ ☆ VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models
Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" -- such as tone, formatting, or writing style -- influence user preferences, yet traditional evaluations focus primarily on the singular axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model (vibes) that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discovers vibes from model outputs and then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with Llama-3-70b vs GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. VibeCheck discovers vibes like Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often overexplains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash. Code and vibe visualizer found at https://bench-mark.org/
comment: unironic use of the word 'vibe', added more analysis and cooler graphs. added website link
♻ ☆ Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
♻ ☆ The Design Space of Recent AI-assisted Research Tools for Ideation, Sensemaking, and Scientific Creativity
Generative AI (GenAI) tools are radically expanding the scope and capability of automation in knowledge work such as academic research. While promising for augmenting cognition and streamlining processes, AI-assisted research tools may also increase automation bias and hinder critical thinking. To examine recent developments, we surveyed publications from leading HCI venues over the past three years, closely analyzing thirteen tools to better understand the novel capabilities of these AI-assisted systems and the design spaces they enable: seven employing traditional AI or customized transformer-based approaches, and six integrating open-access large language models (LLMs). Our analysis characterizes the emerging design space, distinguishes between tools focused on workflow mimicry versus generative exploration, and yields four critical design recommendations to guide the development of future systems that foster meaningful cognitive engagement: providing user agency and control, differentiating divergent/convergent thinking support, ensuring adaptability, and prioritizing transparency/accuracy. This work discusses how these insights signal a shift from mere workflow replication towards generative co-creation, presenting new opportunities for the community to craft intuitive, AI-driven research interfaces and interactions.
♻ ☆ Learning Humanoid Standing-up Control across Diverse Postures
Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems, such as fall recovery. Existing approaches are either limited to simulations that overlook hardware constraints or rely on predefined ground-specific motion trajectories, failing to enable standing up across postures in real-world scenes. To bridge this gap, we present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch, enabling robust sim-to-real transfer across diverse postures. HoST effectively learns posture-adaptive motions by leveraging a multi-critic architecture and curriculum-based training on diverse simulated terrains. To ensure successful real-world deployment, we constrain the motion with smoothness regularization and implicit motion speed bound to alleviate oscillatory and violent motions on physical hardware, respectively. After simulation-based training, the learned control policies are directly deployed on the Unitree G1 humanoid robot. Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments. Videos and code are available at https://taohuang13.github.io/humanoid-standingup.github.io/.
comment: Accepted to RSS 2025, Humanoid Standing-up Control, 12 pages
♻ ☆ Recognize Any Regions NeurIPS 2024
Understanding the semantics of individual regions or patches of unconstrained images, such as open-world object detection, remains a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Extensive experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives, along with substantial computational savings (e.g., training our model with 3 million data in a single day using 8 V100 GPUs). RegionSpot outperforms GLIP-L by 2.9 in mAP on LVIS val set, with an even larger margin of 13.1 AP for more challenging and rare categories, and a 2.5 AP increase on ODinW. Furthermore, it exceeds GroundingDINO-L by 11.0 AP for rare categories on the LVIS minival set.
comment: NeurIPS 2024. Github: https://github.com/Surrey-UPLab/Recognize-Any-Regions
♻ ☆ SparQLe: Speech Queries to Text Translation Through LLMs
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that leverages self-supervised speech representations in combination with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English-language data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising solution for various speech understanding applications.
♻ ☆ EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
♻ ☆ Self-Resource Allocation in Multi-Agent LLM Systems
With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
♻ ☆ SSFF: Investigating LLM Predictive Capabilities for Startup Success through a Multi-Agent Framework with Enhanced Explainability and Performance
LLM based agents have recently demonstrated strong potential in automating complex tasks, yet accurately predicting startup success remains an open challenge with few benchmarks and tailored frameworks. To address these limitations, we propose the Startup Success Forecasting Framework, an autonomous system that emulates the reasoning of venture capital analysts through a multi agent collaboration model. Our framework integrates traditional machine learning methods such as random forests and neural networks within a retrieval augmented generation framework composed of three interconnected modules: a prediction block, an analysis block, and an external knowledge block. We evaluate our framework and identify three main findings. First, by leveraging founder segmentation, startups led by L5 founders are 3.79 times more likely to succeed than those led by L1 founders. Second, baseline large language models consistently overpredict startup success and struggle under realistic class imbalances largely due to overreliance on founder claims. Third, our framework significantly enhances prediction accuracy, yielding a 108.3 percent relative improvement over GPT 4o mini and a 30.8 percent relative improvement over GPT 4o. These results demonstrate the value of a multi agent approach combined with discriminative machine learning in mitigating the limitations of standard large language model based prediction methods.
comment: For relevant code: https://github.com/Xisen-Wang/Startup-Success-Forecasting-Framework
♻ ☆ ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution.
comment: 31 pages, 10 Figures, 25 Tables
♻ ☆ WeiDetect: Weibull Distribution-Based Defense against Poisoning Attacks in Federated Learning for Network Intrusion Detection Systems
In the era of data expansion, ensuring data privacy has become increasingly critical, posing significant challenges to traditional AI-based applications. In addition, the increasing adoption of IoT devices has introduced significant cybersecurity challenges, making traditional Network Intrusion Detection Systems (NIDS) less effective against evolving threats, and privacy concerns and regulatory restrictions limit their deployment. Federated Learning (FL) has emerged as a promising solution, allowing decentralized model training while maintaining data privacy to solve these issues. However, despite implementing privacy-preserving technologies, FL systems remain vulnerable to adversarial attacks. Furthermore, data distribution among clients is not heterogeneous in the FL scenario. We propose WeiDetect, a two-phase, server-side defense mechanism for FL-based NIDS that detects malicious participants to address these challenges. In the first phase, local models are evaluated using a validation dataset to generate validation scores. These scores are then analyzed using a Weibull distribution, identifying and removing malicious models. We conducted experiments to evaluate the effectiveness of our approach in diverse attack settings. Our evaluation included two popular datasets, CIC-Darknet2020 and CSE-CIC-IDS2018, tested under non-IID data distributions. Our findings highlight that WeiDetect outperforms state-of-the-art defense approaches, improving higher target class recall up to 70% and enhancing the global model's F1 score by 1% to 14%.
♻ ☆ Generative Physical AI in Vision: A Survey
Generative Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication. This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D/4D content. Conventional generative models primarily focus on visual fidelity while often neglecting the physical plausibility of the generated content. This gap limits their effectiveness in applications that require adherence to real-world physical laws, such as robotics, autonomous systems, and scientific simulations. As generative models evolve to increasingly integrate physical realism and dynamic simulation, their potential to function as "world simulators" expands. Therefore, the field of physics-aware generation in computer vision is rapidly growing, calling for a comprehensive survey to provide a structured analysis of current efforts. To serve this purpose, the survey presents a systematic review, categorizing methods based on how they incorporate physical knowledge, either through explicit simulation or implicit learning. It also analyzes key paradigms, discusses evaluation protocols, and identifies future research directions. By offering a comprehensive overview, this survey aims to help future developments in physically grounded generation for computer vision. The reviewed papers are summarized at https://tinyurl.com/Physics-Aware-Generation.
comment: An updated version
♻ ☆ Symmetry-Breaking Augmentations for Ad Hoc Teamwork ICLR 2025
In dynamic collaborative settings, for artificial intelligence (AI) agents to better align with humans, they must adapt to novel teammates who utilise unforeseen strategies. While adaptation is often simple for humans, it can be challenging for AI agents. Our work introduces symmetry-breaking augmentations (SBA) as a novel approach to this challenge. By applying a symmetry-flipping operation to increase behavioural diversity among training teammates, SBA encourages agents to learn robust responses to unknown strategies, highlighting how social conventions impact human-AI alignment. We demonstrate this experimentally in two settings, showing that our approach outperforms previous ad hoc teamwork results in the challenging card game Hanabi. In addition, we propose a general metric for estimating symmetry dependency amongst a given set of policies. Our findings provide insights into how AI systems can better adapt to diverse human conventions and the core mechanics of alignment.
comment: 21 pages, 12 figures, Bidirectional Human-AI Alignment workshop, ICLR 2025
♻ ☆ Large Language Models Enhanced Hyperbolic Space Recommender Systems SIGIR'25
Large Language Models (LLMs) have attracted significant attention in recommender systems for their excellent world knowledge capabilities. However, existing methods that rely on Euclidean space struggle to capture the rich hierarchical information inherent in textual and semantic data, which is essential for capturing user preferences. The geometric properties of hyperbolic space offer a promising solution to address this issue. Nevertheless, integrating LLMs-based methods with hyperbolic space to effectively extract and incorporate diverse hierarchical information is non-trivial. To this end, we propose a model-agnostic framework, named HyperLLM, which extracts and integrates hierarchical information from both structural and semantic perspectives. Structurally, HyperLLM uses LLMs to generate multi-level classification tags with hierarchical parent-child relationships for each item. Then, tag-item and user-item interactions are jointly learned and aligned through contrastive learning, thereby providing the model with clear hierarchical information. Semantically, HyperLLM introduces a novel meta-optimized strategy to extract hierarchical information from semantic embeddings and bridge the gap between the semantic and collaborative spaces for seamless integration. Extensive experiments show that HyperLLM significantly outperforms recommender systems based on hyperbolic space and LLMs, achieving performance improvements of over 40%. Furthermore, HyperLLM not only improves recommender performance but also enhances training stability, highlighting the critical role of hierarchical information in recommender systems.
comment: Accepted as a SIGIR'25 full paper
♻ ☆ Large Language Models as Quasi-crystals: Coherence Without Repetition in Generative Text
This essay proposes an interpretive analogy between large language models (LLMs) and quasicrystals, systems that exhibit global coherence without periodic repetition, generated through local constraints. While LLMs are typically evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that one of their most characteristic behaviors is the production of internally resonant linguistic patterns. Drawing on the history of quasicrystals, which forced a redefinition of structural order in physical systems, the analogy highlights an alternative mode of coherence in generative language: constraint-based organization without repetition or symbolic intent. Rather than viewing LLMs as imperfect agents or stochastic approximators, we suggest understanding them as generators of quasi-structured outputs. This framing complements existing evaluation paradigms by foregrounding formal coherence and pattern as interpretable features of model behavior. While the analogy has limits, it offers a conceptual tool for exploring how coherence might arise and be assessed in systems where meaning is emergent, partial, or inaccessible. In support of this perspective, we draw on philosophy of science and language, including model-based accounts of scientific representation, structural realism, and inferentialist views of meaning. We further propose the notion of structural evaluation: a mode of assessment that examines how well outputs propagate constraint, variation, and order across spans of generated text. This essay aims to reframe the current discussion around large language models, not by rejecting existing methods, but by suggesting an additional axis of interpretation grounded in structure rather than semantics.
comment: The discussion was restructured to add limitations to the analogy and other clarifications
♻ ☆ Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
We introduce Goedel-Prover, an open-source language model that achieves state-of-the-art (as of April 5 2025) performance in automated formal proof generation for mathematical problems. A key challenge in this field is the scarcity of formalized mathematical statements and proofs, which we address through the following approaches. First, we train LLMs to convert natural language math problems from the Numina dataset to equivalent formal statements in Lean 4. This process creates the dataset Goedel-Pset-v1, which includes 1.64 million formal statements. Next, we develop a large dataset of formal proofs by training a series of provers. Each new prover can prove many statements that previous ones could not, and these new proofs are added to the training set for the next prover. Finally, we obtain the dataset Goedel-Pset-v1-solved, which contains proofs for over 800K statements from Goedel-Pset-v1. Supervised fine-tuning (SFT) of DeepSeek-Prover-V1.5-Base on Goedel-Pset-v1-solved (i.e., no RL) yields a Goedel-Prover-SFT that achieves a success rate of 57.6% (Pass@32) on miniF2F, surpassing the previous leader DeepSeek-Prover-V1.5-RL (trained using SFT + RL on a proprietary dataset) by 7.6%. On PutnamBench, Goedel-Prover-SFT successfully solves 7 problems (Pass@512), ranking first on the leaderboard. We provide extensive discussion of our training methodology, highlighting the key design choices that contribute to Goedel-Prover's strong performance. Further RL training (including DPO) improves Goedel-Prover-SFT's success rate to over 60% (Pass@32) on miniF2F. To aid future research, we provide extensive discussion of our training methodology and design choices. We also fully open-source our codes, models, and datasets. Additionally, we open-source formal proofs for 29.7K problems in Lean Workbook, nearly doubling the 15.7K solved by prior provers.
♻ ☆ Flow to Learn: Flow Matching on Neural Network Parameters ICLR
Foundational language models show a remarkable ability to learn new concepts during inference via context data. However, similar work for images lag behind. To address this challenge, we introduce FLoWN, a flow matching model that learns to generate neural network parameters for different tasks. Our approach models the flow on latent space, while conditioning the process on context data. Experiments verify that FLoWN attains various desiderata for a meta-learning model. In addition, it matches or exceeds baselines on in-distribution tasks, provides better initializations for classifier training, and is performant on out-of-distribution few-shot tasks while having a fine-tuning mechanism to improve performance.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
♻ ☆ Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR) and is the foundation for downstream tasks such as re-ranking. Recently, large language models (LLMs) have shown compelling semantic understanding capabilities and are appealing to researchers studying dense retrieval. LLMs, as decoder-style generative models, are competent at language generation while falling short on modeling global information due to the lack of attention to tokens afterward. Inspired by the classical word-based language modeling approach for IR, i.e., the query likelihood (QL) model, we seek to sufficiently utilize LLMs' generative ability by QL maximization. However, instead of ranking documents with QL estimation, we introduce an auxiliary task of QL maximization to yield a better backbone for contrastively learning a discriminative retriever. We name our model as LLM-QL. To condense global document semantics to a single vector during QL modeling, LLM-QL has two major components, Attention Stop (AS) and Input Corruption (IC). AS stops the attention of predictive tokens to previous tokens until the ending token of the document. IC masks a portion of tokens in the input documents during prediction. Experiments on MSMARCO show that LLM-QL can achieve significantly better performance than other LLM-based retrievers and using QL estimated by LLM-QL for ranking outperforms word-based QL by a large margin.
comment: 12 pages, 3 figures
♻ ☆ The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources. By referencing this external knowledge, RAG effectively reduces the generation of factually incorrect content and addresses hallucination issues within LLMs. Recently, there has been growing attention to improving the performance and efficiency of RAG systems from various perspectives. While these advancements have yielded significant results, the application of RAG in domains with considerable societal implications raises a critical question about fairness: What impact does the introduction of the RAG paradigm have on the fairness of LLMs? To address this question, we conduct extensive experiments by varying the LLMs, retrievers, and retrieval sources. Our experimental analysis reveals that the scale of the LLMs plays a significant role in influencing fairness outcomes within the RAG framework. When the model scale is smaller than 8B, the integration of retrieval mechanisms often exacerbates unfairness in small-scale LLMs (e.g., LLaMA3.2-1B, Mistral-7B, and LLaMA3-8B). To mitigate the fairness issues introduced by RAG for small-scale LLMs, we propose two approaches, FairFT and FairFilter. Specifically, in FairFT, we align the retriever with the LLM in terms of fairness, enabling it to retrieve documents that facilitate fairer model outputs. In FairFilter, we propose a fairness filtering mechanism to filter out biased content after retrieval. Finally, we validate our proposed approaches on real-world datasets, demonstrating their effectiveness in improving fairness while maintaining performance.
comment: 12 pages
♻ ☆ Edge-preserving noise for diffusion models
Classical generative diffusion models learn an isotropic Gaussian denoising process, treating all spatial regions uniformly, thus neglecting potentially valuable structural information in the data. Inspired by the long-established work on anisotropic diffusion in image processing, we present a novel edge-preserving diffusion model that generalizes over existing isotropic models by considering a hybrid noise scheme. In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise. We show that our model's generative process converges faster to results that more closely match the target distribution. We demonstrate its capability to better learn the low-to-mid frequencies within the dataset, which plays a crucial role in representing shapes and structural information. Our edge-preserving diffusion process consistently outperforms state-of-the-art baselines in unconditional image generation. It is also particularly more robust for generative tasks guided by a shape-based prior, such as stroke-to-image generation. We present qualitative and quantitative results (FID and CLIP score) showing consistent improvements of up to 30% for both tasks.
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 17 pages, 3 figures
♻ ☆ Resource Allocation for RIS-Assisted CoMP-NOMA Networks using Reinforcement Learning
This thesis delves into the forefront of wireless communication by exploring the synergistic integration of three transformative technologies: STAR-RIS, CoMP, and NOMA. Driven by the ever-increasing demand for higher data rates, improved spectral efficiency, and expanded coverage in the evolving landscape of 6G development, this research investigates the potential of these technologies to revolutionize future wireless networks. The thesis analyzes the performance gains achievable through strategic deployment of STAR-RIS, focusing on mitigating inter-cell interference, enhancing signal strength, and extending coverage to cell-edge users. Resource sharing strategies for STAR-RIS elements are explored, optimizing both transmission and reflection functionalities. Analytical frameworks are developed to quantify the benefits of STAR-RIS assisted CoMP-NOMA networks under realistic channel conditions, deriving key performance metrics such as ergodic rates and outage probabilities. Additionally, the research delves into energy-efficient design approaches for CoMP-NOMA networks incorporating RIS, proposing novel RIS configurations and optimization algorithms to achieve a balance between performance and energy consumption. Furthermore, the application of Deep Reinforcement Learning (DRL) techniques for intelligent and adaptive optimization in aerial RIS-assisted CoMP-NOMA networks is explored, aiming to maximize network sum rate while meeting user quality of service requirements. Through a comprehensive investigation of these technologies and their synergistic potential, this thesis contributes valuable insights into the future of wireless communication, paving the way for the development of more efficient, reliable, and sustainable networks capable of meeting the demands of our increasingly connected world.
♻ ☆ Interpretable Hybrid-Rule Temporal Point Processes
Temporal Point Processes (TPPs) are widely used for modeling event sequences in various medical domains, such as disease onset prediction, progression analysis, and clinical decision support. Although TPPs effectively capture temporal dynamics, their lack of interpretability remains a critical challenge. Recent advancements have introduced interpretable TPPs. However, these methods fail to incorporate numerical features, thereby limiting their ability to generate precise predictions. To address this issue, we propose Hybrid-Rule Temporal Point Processes (HRTPP), a novel framework that integrates temporal logic rules with numerical features, improving both interpretability and predictive accuracy in event modeling. HRTPP comprises three key components: basic intensity for intrinsic event likelihood, rule-based intensity for structured temporal dependencies, and numerical feature intensity for dynamic probability modulation. To effectively discover valid rules, we introduce a two-phase rule mining strategy with Bayesian optimization. To evaluate our method, we establish a multi-criteria assessment framework, incorporating rule validity, model fitting, and temporal predictive accuracy. Experimental results on real-world medical datasets demonstrate that HRTPP outperforms state-of-the-art interpretable TPPs in terms of predictive performance and clinical interpretability. In case studies, the rules extracted by HRTPP explain the disease progression, offering valuable contributions to medical diagnosis.
♻ ☆ Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning
Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach achieves state-of-the-art (SOTA) results in Arabic ASR, surpassing both open and closed-source models on standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
♻ ☆ Potential Field Based Deep Metric Learning CVPR 2025
Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model that instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
comment: Accepted to CVPR 2025
♻ ☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs Variational Autoencoders to extract image features, which are concatenated with video latents along the sequence dimension, leveraging solely 3D self-attention mechanisms without the need for additional modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
♻ ☆ Large Language Model for Verilog Generation with Code-Structure-Guided Reinforcement Learning
Recent advancements in large language models (LLMs) have sparked significant interest in the automatic generation of Register Transfer Level (RTL) designs, particularly using Verilog. Current research on this topic primarily focuses on pre-training and instruction tuning, but the effectiveness of these methods is constrained by the limited availability of training data, as public Verilog code is far less abundant than software code. In particular, these methods struggle to effectively capture Verilog parallel code structures, which fundamentally differ from the imperative, sequential control flow typical in most software programming languages. This paper introduces VeriSeek, an LLM enhanced by reinforcement learning using a limited amount of high-quality training data to achieve high Verilog code generation performance. Our reinforcement learning approach employs code structure information as feedback signals to refine the pre-trained model, enabling it to effectively learn important patterns from Verilog code with parallel structures. Experiments show that VeriSeek outperforms state-of-the-art methods across multiple benchmarks.
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, alongside a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (0.635) than to the Bronze Age Proto-Cuneiform (0.102) or Proto-Elamite (0.078). Contrary to expectations, when measured through direct script-to-script embedding comparisons, the Indus script maps closer to Tibetan-Yi Corridor scripts with a mean cosine similarity of 0.930 (CI: [0.917, 0.942]) than to contemporaneous West Asian signaries, which recorded mean similarities of 0.887 (CI: [0.863, 0.911]) and 0.855 (CI: [0.818, 0.891]). Across dimensionality reduction and clustering methods, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. These computational findings align with observed pictorial parallels in numeral systems, gender markers, and iconographic elements. Archaeological evidence of contact networks along the ancient Shu-Shendu road, coinciding with the Indus Civilization's decline, provides a plausible transmission pathway. While alternate explanations cannot be ruled out, the specificity and consistency of similarities suggest more complex cultural transmission networks between South and East Asia than previously recognized.
comment: 107 pages (43 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code available at https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ Inspecting Explainability of Transformer Models with Additional Statistical Information ECCV 2022
Transformer becomes more popular in the vision domain in recent years so there is a need for finding an effective way to interpret the Transformer model by visualizing it. In recent work, Chefer et al. can visualize the Transformer on vision and multi-modal tasks effectively by combining attention layers to show the importance of each image patch. However, when applying to other variants of Transformer such as the Swin Transformer, this method can not focus on the predicted object. Our method, by considering the statistics of tokens in layer normalization layers, shows a great ability to interpret the explainability of Swin Transformer and ViT.
comment: Accepted at Responsible Computer Vision workshop at ECCV 2022
♻ ☆ $A^*$ for Graphs of Convex Sets ICAPS
We present a novel algorithm that fuses the existing convex-programming based approach with heuristic information to find optimality guarantees and near-optimal paths for the Shortest Path Problem in the Graph of Convex Sets (SPP-GCS). Our method, inspired by $A^*$, initiates a best-first-like procedure from a designated subset of vertices and iteratively expands it until further growth is neither possible nor beneficial. Traditionally, obtaining solutions with bounds for an optimization problem involves solving a relaxation, modifying the relaxed solution to a feasible one, and then comparing the two solutions to establish bounds. However, for SPP-GCS, we demonstrate that reversing this process can be more advantageous, especially with Euclidean travel costs. In other words, we initially employ $A^*$ to find a feasible solution for SPP-GCS, then solve a convex relaxation restricted to the vertices explored by $A^*$ to obtain a relaxed solution, and finally, compare the solutions to derive bounds. We present numerical results to highlight the advantages of our algorithm over the existing approach in terms of the sizes of the convex programs solved and computation time.
comment: International Conference on Automated Planning and Scheduling (ICAPS) 2025
♻ ☆ Reason2Attack: Jailbreaking Text-to-Image Models via LLM Reasoning
Text-to-Image(T2I) models typically deploy safety filters to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attack methods manually design prompts for the LLM to generate adversarial prompts, which effectively bypass safety filters while producing sensitive images, exposing safety vulnerabilities of T2I models. However, due to the LLM's limited understanding of the T2I model and its safety filters, existing methods require numerous queries to achieve a successful attack, limiting their practical applicability. To address this issue, we propose Reason2Attack(R2A), which aims to enhance the LLM's reasoning capabilities in generating adversarial prompts by incorporating the jailbreaking attack into the post-training process of the LLM. Specifically, we first propose a CoT example synthesis pipeline based on Frame Semantics, which generates adversarial prompts by identifying related terms and corresponding context illustrations. Using CoT examples generated by the pipeline, we fine-tune the LLM to understand the reasoning path and format the output structure. Subsequently, we incorporate the jailbreaking attack task into the reinforcement learning process of the LLM and design an attack process reward that considers prompt length, prompt stealthiness, and prompt effectiveness, aiming to further enhance reasoning accuracy. Extensive experiments on various T2I models show that R2A achieves a better attack success ratio while requiring fewer queries than baselines. Moreover, our adversarial prompts demonstrate strong attack transferability across both open-source and commercial T2I models.
comment: This paper includes model-generated content that may contain offensive or distressing material
♻ ☆ Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: A novel sparse coding framework designed for learning adaptive representation
Computation and Language 51
☆ Density Measures for Language Generation
The recent successes of large language models (LLMs) have led to a surge of theoretical research into language generation. A recent line of work proposes an abstract view, called language generation in the limit, where generation is seen as a game between an adversary and an algorithm: the adversary generates strings from an unknown language $K$, chosen from a countable collection of candidate languages, and after seeing a finite set of these strings, the algorithm must generate new strings from $K$ that it has not seen before. This formalism highlights a key tension: the trade-off between validity (the algorithm should only produce strings from the language) and breadth (it should be able to produce many strings from the language). This trade-off is central in applied language generation as well, where it appears as a balance between hallucination (generating invalid utterances) and mode collapse (generating only a restricted set of outputs). Despite its importance, this trade-off has been challenging to study quantitatively. We develop ways to quantify this trade-off by formalizing breadth using measures of density. Existing algorithms for language generation in the limit produce output sets that can have zero density in the true language, and this important failure of breadth might seem unavoidable. We show, however, that such a failure is not necessary: we provide an algorithm for language generation in the limit whose outputs have strictly positive density in $K$. We also study the internal representations built by these algorithms, specifically the sequence of hypothesized candidate languages they consider, and show that achieving the strongest form of breadth may require oscillating indefinitely between high- and low-density representations. Our analysis introduces a novel topology on language families, with notions of convergence and limit points playing a key role.
☆ Diverse Prompts: Illuminating the Prompt Space of Large Language Models with MAP-Elites IEEE
Prompt engineering is essential for optimizing large language models (LLMs), yet the link between prompt structures and task performance remains underexplored. This work introduces an evolutionary approach that combines context-free grammar (CFG) with the MAP-Elites algorithm to systematically explore the prompt space. Our method prioritizes quality and diversity, generating high-performing and structurally varied prompts while analyzing their alignment with diverse tasks by varying traits such as the number of examples (shots) and reasoning depth. By systematically mapping the phenotypic space, we reveal how structural variations influence LLM performance, offering actionable insights for task-specific and adaptable prompt design. Evaluated on seven BigBench Lite tasks across multiple LLMs, our results underscore the critical interplay of quality and diversity, advancing the effectiveness and versatility of LLMs.
comment: 8 pages Accepted for publication in IEEE CEC 2025
☆ Empirical Evaluation of Knowledge Distillation from Transformers to Subquadratic Language Models
Knowledge distillation is a widely used technique for compressing large language models (LLMs) by training a smaller student model to mimic a larger teacher model. Typically, both the teacher and student are Transformer-based architectures, leveraging softmax attention for sequence modeling. However, the quadratic complexity of self-attention at inference time remains a significant bottleneck, motivating the exploration of subquadratic alternatives such as structured state-space models (SSMs), linear attention, and recurrent architectures. In this work, we systematically evaluate the transferability of knowledge distillation from a Transformer teacher to nine subquadratic student architectures. Our study aims to determine which subquadratic model best aligns with the teacher's learned representations and how different architectural constraints influence the distillation process. We also investigate the impact of intelligent initialization strategies, including matrix mixing and query-key-value (QKV) copying, on the adaptation process. Our empirical results on multiple NLP benchmarks provide insights into the trade-offs between efficiency and performance, highlighting key factors for successful knowledge transfer to subquadratic architectures.
☆ Improving RL Exploration for LLM Reasoning through Retrospective Replay
Reinforcement learning (RL) has increasingly become a pivotal technique in the post-training of large language models (LLMs). The effective exploration of the output space is essential for the success of RL. We observe that for complex problems, during the early stages of training, the model exhibits strong exploratory capabilities and can identify promising solution ideas. However, its limited capability at this stage prevents it from successfully solving these problems. The early suppression of these potentially valuable solution ideas by the policy gradient hinders the model's ability to revisit and re-explore these ideas later. Consequently, although the LLM's capabilities improve in the later stages of training, it still struggles to effectively address these complex problems. To address this exploration issue, we propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process. RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration. To evaluate the effectiveness of RRL, we conduct extensive experiments on complex reasoning tasks, including mathematical reasoning and code generation, and general dialogue tasks. The results indicate that RRL maintains high exploration efficiency throughout the training period, significantly enhancing the effectiveness of RL in optimizing LLMs for complicated reasoning tasks. Moreover, it also improves the performance of RLHF, making the model both safer and more helpful.
comment: 13 pages, 3 figures
☆ Integrating Single-Cell Foundation Models with Graph Neural Networks for Drug Response Prediction
In this study, we propose an innovative methodology for predicting Cancer Drug Response (CDR) through the integration of the scGPT foundation model within the DeepCDR model. Our approach utilizes scGPT to generate embeddings from gene expression data, which are then used as gene expression input data for DeepCDR. The experimental findings demonstrate the efficacy of this scGPT-based method in outperforming previous related works, including the original DeepCDR model and the scFoundation-based model. This study highlights the potential of scGPT embeddings to enhance the accuracy of CDR predictions and offers a promising alternative to existing approaches.
comment: 8 pages, 6 figures
☆ A Multimodal Recaptioning Framework to Account for Perceptual Diversity in Multilingual Vision-Language Modeling
There are many ways to describe, name, and group objects when captioning an image. Differences are evident when speakers come from diverse cultures due to the unique experiences that shape perception. Machine translation of captions has pushed multilingual capabilities in vision-language models (VLMs), but data comes mainly from English speakers, indicating a perceptual bias and lack of model flexibility. In this work, we address this challenge and outline a data-efficient framework to instill multilingual VLMs with greater understanding of perceptual diversity. We specifically propose an LLM-based, multimodal recaptioning strategy that alters the object descriptions of English captions before translation. The greatest benefits are demonstrated in a targeted multimodal mechanism guided by native speaker data. By adding produced rewrites as augmentations in training, we improve on German and Japanese text-image retrieval cases studies (up to +3.5 mean recall overall, +4.7 on non-native error cases). We further propose a mechanism to analyze the specific object description differences across datasets, and we offer insights into cross-dataset and cross-language generalization.
☆ Multimodal Coreference Resolution for Chinese Social Media Dialogues: Dataset and Benchmark Approach
Multimodal coreference resolution (MCR) aims to identify mentions referring to the same entity across different modalities, such as text and visuals, and is essential for understanding multimodal content. In the era of rapidly growing mutimodal content and social media, MCR is particularly crucial for interpreting user interactions and bridging text-visual references to improve communication and personalization. However, MCR research for real-world dialogues remains unexplored due to the lack of sufficient data resources.To address this gap, we introduce TikTalkCoref, the first Chinese multimodal coreference dataset for social media in real-world scenarios, derived from the popular Douyin short-video platform. This dataset pairs short videos with corresponding textual dialogues from user comments and includes manually annotated coreference clusters for both person mentions in the text and the coreferential person head regions in the corresponding video frames. We also present an effective benchmark approach for MCR, focusing on the celebrity domain, and conduct extensive experiments on our dataset, providing reliable benchmark results for this newly constructed dataset. We will release the TikTalkCoref dataset to facilitate future research on MCR for real-world social media dialogues.
☆ Probing the Subtle Ideological Manipulation of Large Language Models
Large Language Models (LLMs) have transformed natural language processing, but concerns have emerged about their susceptibility to ideological manipulation, particularly in politically sensitive areas. Prior work has focused on binary Left-Right LLM biases, using explicit prompts and fine-tuning on political QA datasets. In this work, we move beyond this binary approach to explore the extent to which LLMs can be influenced across a spectrum of political ideologies, from Progressive-Left to Conservative-Right. We introduce a novel multi-task dataset designed to reflect diverse ideological positions through tasks such as ideological QA, statement ranking, manifesto cloze completion, and Congress bill comprehension. By fine-tuning three LLMs-Phi-2, Mistral, and Llama-3-on this dataset, we evaluate their capacity to adopt and express these nuanced ideologies. Our findings indicate that fine-tuning significantly enhances nuanced ideological alignment, while explicit prompts provide only minor refinements. This highlights the models' susceptibility to subtle ideological manipulation, suggesting a need for more robust safeguards to mitigate these risks.
☆ Cross-attention for State-based model RWKV-7
We introduce CrossWKV, a novel cross-attention mechanism for the state-based RWKV-7 model, designed to enhance the expressive power of text-to-image generation. Leveraging RWKV-7's linear-complexity Weighted Key-Value (WKV) architecture, CrossWKV integrates text and image modalities in a single pass, utilizing a generalized delta rule with vector-valued gating and low-rank adaptations (LoRA) to achieve superior cross-modal alignment. Unlike Transformer-based models, CrossWKV's non-diagonal, input-dependent transition matrix enables it to represent complex functions beyond the $\mathrm{TC}^0$ complexity class, including all regular languages, as demonstrated by its ability to perform state-tracking tasks like $S_5$ permutation modeling. Evaluated within the Diffusion in RWKV-7 (DIR-7) on datasets such as LAION-5B and ImageNet, CrossWKV achieves a Frechet Inception Distance (FID) of 2.88 and a CLIP score of 0.33 on ImageNet 256x256, matching state-of-the-art performance while offering robust generalization across diverse prompts. The model's enhanced expressivity, combined with constant memory usage and linear scaling, positions it as a powerful solution for advanced cross-modal tasks, with potential applications in high-resolution generation and dynamic state manipulation.Code at https://github.com/TorchRWKV/flash-linear-attention
☆ Towards Explainable Fake Image Detection with Multi-Modal Large Language Models
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
☆ InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners
Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at https://github.com/Reallm-Labs/InfiGUI-R1.
comment: 10 pages, 3 figures, work in progress
☆ Assessing AI-Generated Questions' Alignment with Cognitive Frameworks in Educational Assessment CCS
This study evaluates the integration of Bloom's Taxonomy into OneClickQuiz, an Artificial Intelligence (AI) driven plugin for automating Multiple-Choice Question (MCQ) generation in Moodle. Bloom's Taxonomy provides a structured framework for categorizing educational objectives into hierarchical cognitive levels. Our research investigates whether incorporating this taxonomy can improve the alignment of AI-generated questions with specific cognitive objectives. We developed a dataset of 3691 questions categorized according to Bloom's levels and employed various classification models-Multinomial Logistic Regression, Naive Bayes, Linear Support Vector Classification (SVC), and a Transformer-based model (DistilBERT)-to evaluate their effectiveness in categorizing questions. Our results indicate that higher Bloom's levels generally correlate with increased question length, Flesch-Kincaid Grade Level (FKGL), and Lexical Density (LD), reflecting the increased complexity of higher cognitive demands. Multinomial Logistic Regression showed varying accuracy across Bloom's levels, performing best for "Knowledge" and less accurately for higher-order levels. Merging higher-level categories improved accuracy for complex cognitive tasks. Naive Bayes and Linear SVC also demonstrated effective classification for lower levels but struggled with higher-order tasks. DistilBERT achieved the highest performance, significantly improving classification of both lower and higher-order cognitive levels, achieving an overall validation accuracy of 91%. This study highlights the potential of integrating Bloom's Taxonomy into AI-driven assessment tools and underscores the advantages of advanced models like DistilBERT for enhancing educational content generation.
comment: This paper was presented in the 17th Int. Conf. on Computer Science and Information Technology (ICCSIT 2024), Dubai, United Arab Emirates, 2024, Oct. 23-25. IT's now in production to be published in the International Journal of Computer Theory and Engineering
☆ Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
☆ SimplifyMyText: An LLM-Based System for Inclusive Plain Language Text Simplification ECIR 2025
Text simplification is essential for making complex content accessible to diverse audiences who face comprehension challenges. Yet, the limited availability of simplified materials creates significant barriers to personal and professional growth and hinders social inclusion. Although researchers have explored various methods for automatic text simplification, none fully leverage large language models (LLMs) to offer tailored customization for different target groups and varying levels of simplicity. Moreover, despite its proven benefits for both consumers and organizations, the well-established practice of plain language remains underutilized. In this paper, we https://simplifymytext.org, the first system designed to produce plain language content from multiple input formats, including typed text and file uploads, with flexible customization options for diverse audiences. We employ GPT-4 and Llama-3 and evaluate outputs across multiple metrics. Overall, our work contributes to research on automatic text simplification and highlights the importance of tailored communication in promoting inclusivity.
comment: accepted at ECIR 2025
☆ Understanding the Repeat Curse in Large Language Models from a Feature Perspective ACL 2025
Large language models (LLMs) have made remarkable progress in various domains, yet they often suffer from repetitive text generation, a phenomenon we refer to as the "Repeat Curse". While previous studies have proposed decoding strategies to mitigate repetition, the underlying mechanism behind this issue remains insufficiently explored. In this work, we investigate the root causes of repetition in LLMs through the lens of mechanistic interpretability. Inspired by recent advances in Sparse Autoencoders (SAEs), which enable monosemantic feature extraction, we propose a novel approach, "Duplicatus Charm", to induce and analyze the Repeat Curse. Our method systematically identifies "Repetition Features" -the key model activations responsible for generating repetitive outputs. First, we locate the layers most involved in repetition through logit analysis. Next, we extract and stimulate relevant features using SAE-based activation manipulation. To validate our approach, we construct a repetition dataset covering token and paragraph level repetitions and introduce an evaluation pipeline to quantify the influence of identified repetition features. Furthermore, by deactivating these features, we have effectively mitigated the Repeat Curse.
comment: Submitted to ACL 2025
☆ Bias Analysis and Mitigation through Protected Attribute Detection and Regard Classification
Large language models (LLMs) acquire general linguistic knowledge from massive-scale pretraining. However, pretraining data mainly comprised of web-crawled texts contain undesirable social biases which can be perpetuated or even amplified by LLMs. In this study, we propose an efficient yet effective annotation pipeline to investigate social biases in the pretraining corpora. Our pipeline consists of protected attribute detection to identify diverse demographics, followed by regard classification to analyze the language polarity towards each attribute. Through our experiments, we demonstrate the effect of our bias analysis and mitigation measures, focusing on Common Crawl as the most representative pretraining corpus.
☆ EIoU-EMC: A Novel Loss for Domain-specific Nested Entity Recognition SIGIR'2025
In recent years, research has mainly focused on the general NER task. There still have some challenges with nested NER task in the specific domains. Specifically, the scenarios of low resource and class imbalance impede the wide application for biomedical and industrial domains. In this study, we design a novel loss EIoU-EMC, by enhancing the implement of Intersection over Union loss and Multiclass loss. Our proposed method specially leverages the information of entity boundary and entity classification, thereby enhancing the model's capacity to learn from a limited number of data samples. To validate the performance of this innovative method in enhancing NER task, we conducted experiments on three distinct biomedical NER datasets and one dataset constructed by ourselves from industrial complex equipment maintenance documents. Comparing to strong baselines, our method demonstrates the competitive performance across all datasets. During the experimental analysis, our proposed method exhibits significant advancements in entity boundary recognition and entity classification. Our code are available here.
comment: Accepted by SIGIR'2025
☆ Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models
The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose PRRC to evaluate data quality across Professionalism, Readability, Reasoning, and Cleanliness. We further introduce Meta-rater, a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with scalable benefits observed in 3.3B models trained on 100B tokens. Additionally, we release the annotated SlimPajama-627B dataset, labeled across 25 quality metrics (including PRRC), to advance research in data-centric LLM development. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability.
comment: Under review
☆ AI Idea Bench 2025: AI Research Idea Generation Benchmark
Large-scale Language Models (LLMs) have revolutionized human-AI interaction and achieved significant success in the generation of novel ideas. However, current assessments of idea generation overlook crucial factors such as knowledge leakage in LLMs, the absence of open-ended benchmarks with grounded truth, and the limited scope of feasibility analysis constrained by prompt design. These limitations hinder the potential of uncovering groundbreaking research ideas. In this paper, we present AI Idea Bench 2025, a framework designed to quantitatively evaluate and compare the ideas generated by LLMs within the domain of AI research from diverse perspectives. The framework comprises a comprehensive dataset of 3,495 AI papers and their associated inspired works, along with a robust evaluation methodology. This evaluation system gauges idea quality in two dimensions: alignment with the ground-truth content of the original papers and judgment based on general reference material. AI Idea Bench 2025's benchmarking system stands to be an invaluable resource for assessing and comparing idea-generation techniques, thereby facilitating the automation of scientific discovery.
☆ The First VoicePrivacy Attacker Challenge ICASSP 2025
The First VoicePrivacy Attacker Challenge is an ICASSP 2025 SP Grand Challenge which focuses on evaluating attacker systems against a set of voice anonymization systems submitted to the VoicePrivacy 2024 Challenge. Training, development, and evaluation datasets were provided along with a baseline attacker. Participants developed their attacker systems in the form of automatic speaker verification systems and submitted their scores on the development and evaluation data. The best attacker systems reduced the equal error rate (EER) by 25-44% relative w.r.t. the baseline.
comment: Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
☆ Direct Advantage Regression: Aligning LLMs with Online AI Reward
Online AI Feedback (OAIF) presents a promising alternative to Reinforcement Learning from Human Feedback (RLHF) by utilizing online AI preference in aligning language models (LLMs). However, the straightforward replacement of humans with AI deprives LLMs from learning more fine-grained AI supervision beyond binary signals. In this paper, we propose Direct Advantage Regression (DAR), a simple alignment algorithm using online AI reward to optimize policy improvement through weighted supervised fine-tuning. As an RL-free approach, DAR maintains theoretical consistency with online RLHF pipelines while significantly reducing implementation complexity and improving learning efficiency. Our empirical results underscore that AI reward is a better form of AI supervision consistently achieving higher human-AI agreement as opposed to AI preference. Additionally, evaluations using GPT-4-Turbo and MT-bench show that DAR outperforms both OAIF and online RLHF baselines.
☆ Hypothetical Documents or Knowledge Leakage? Rethinking LLM-based Query Expansion
Query expansion methods powered by large language models (LLMs) have demonstrated effectiveness in zero-shot retrieval tasks. These methods assume that LLMs can generate hypothetical documents that, when incorporated into a query vector, enhance the retrieval of real evidence. However, we challenge this assumption by investigating whether knowledge leakage in benchmarks contributes to the observed performance gains. Using fact verification as a testbed, we analyzed whether the generated documents contained information entailed by ground truth evidence and assessed their impact on performance. Our findings indicate that performance improvements occurred consistently only for claims whose generated documents included sentences entailed by ground truth evidence. This suggests that knowledge leakage may be present in these benchmarks, inflating the perceived performance of LLM-based query expansion methods, particularly in real-world scenarios that require retrieving niche or novel knowledge.
comment: preprint
☆ Self-Correction Makes LLMs Better Parsers
Large language models (LLMs) have achieved remarkable success across various natural language processing (NLP) tasks. However, recent studies suggest that they still face challenges in performing fundamental NLP tasks essential for deep language understanding, particularly syntactic parsing. In this paper, we conduct an in-depth analysis of LLM parsing capabilities, delving into the specific shortcomings of their parsing results. We find that LLMs may stem from limitations to fully leverage grammar rules in existing treebanks, which restricts their capability to generate valid syntactic structures. To help LLMs acquire knowledge without additional training, we propose a self-correction method that leverages grammar rules from existing treebanks to guide LLMs in correcting previous errors. Specifically, we automatically detect potential errors and dynamically search for relevant rules, offering hints and examples to guide LLMs in making corrections themselves. Experimental results on three datasets with various LLMs, demonstrate that our method significantly improves performance in both in-domain and cross-domain settings on the English and Chinese datasets.
☆ SConU: Selective Conformal Uncertainty in Large Language Models
As large language models are increasingly utilized in real-world applications, guarantees of task-specific metrics are essential for their reliable deployment. Previous studies have introduced various criteria of conformal uncertainty grounded in split conformal prediction, which offer user-specified correctness coverage. However, existing frameworks often fail to identify uncertainty data outliers that violate the exchangeability assumption, leading to unbounded miscoverage rates and unactionable prediction sets. In this paper, we propose a novel approach termed Selective Conformal Uncertainty (SConU), which, for the first time, implements significance tests, by developing two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level. Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions. Furthermore, we comprehensively analyze the components of the conformal procedures, aiming to approximate conditional coverage, particularly in high-stakes question-answering tasks.
☆ Walk the Talk? Measuring the Faithfulness of Large Language Model Explanations
Large language models (LLMs) are capable of generating plausible explanations of how they arrived at an answer to a question. However, these explanations can misrepresent the model's "reasoning" process, i.e., they can be unfaithful. This, in turn, can lead to over-trust and misuse. We introduce a new approach for measuring the faithfulness of LLM explanations. First, we provide a rigorous definition of faithfulness. Since LLM explanations mimic human explanations, they often reference high-level concepts in the input question that purportedly influenced the model. We define faithfulness in terms of the difference between the set of concepts that LLM explanations imply are influential and the set that truly are. Second, we present a novel method for estimating faithfulness that is based on: (1) using an auxiliary LLM to modify the values of concepts within model inputs to create realistic counterfactuals, and (2) using a Bayesian hierarchical model to quantify the causal effects of concepts at both the example- and dataset-level. Our experiments show that our method can be used to quantify and discover interpretable patterns of unfaithfulness. On a social bias task, we uncover cases where LLM explanations hide the influence of social bias. On a medical question answering task, we uncover cases where LLM explanations provide misleading claims about which pieces of evidence influenced the model's decisions.
comment: 61 pages, 14 figures, 36 tables
☆ HF4Rec: Human-Like Feedback-Driven Optimization Framework for Explainable Recommendation
Recent advancements in explainable recommendation have greatly bolstered user experience by elucidating the decision-making rationale. However, the existing methods actually fail to provide effective feedback signals for potentially better or worse generated explanations due to their reliance on traditional supervised learning paradigms in sparse interaction data. To address these issues, we propose a novel human-like feedback-driven optimization framework. This framework employs a dynamic interactive optimization mechanism for achieving human-centered explainable requirements without incurring high labor costs. Specifically, we propose to utilize large language models (LLMs) as human simulators to predict human-like feedback for guiding the learning process. To enable the LLMs to deeply understand the task essence and meet user's diverse personalized requirements, we introduce a human-induced customized reward scoring method, which helps stimulate the language understanding and logical reasoning capabilities of LLMs. Furthermore, considering the potential conflicts between different perspectives of explanation quality, we introduce a principled Pareto optimization that transforms the multi-perspective quality enhancement task into a multi-objective optimization problem for improving explanation performance. At last, to achieve efficient model training, we design an off-policy optimization pipeline. By incorporating a replay buffer and addressing the data distribution biases, we can effectively improve data utilization and enhance model generality. Extensive experiments on four datasets demonstrate the superiority of our approach.
☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
☆ Large Language Model Enhanced Particle Swarm Optimization for Hyperparameter Tuning for Deep Learning Models
Determining the ideal architecture for deep learning models, such as the number of layers and neurons, is a difficult and resource-intensive process that frequently relies on human tuning or computationally costly optimization approaches. While Particle Swarm Optimization (PSO) and Large Language Models (LLMs) have been individually applied in optimization and deep learning, their combined use for enhancing convergence in numerical optimization tasks remains underexplored. Our work addresses this gap by integrating LLMs into PSO to reduce model evaluations and improve convergence for deep learning hyperparameter tuning. The proposed LLM-enhanced PSO method addresses the difficulties of efficiency and convergence by using LLMs (particularly ChatGPT-3.5 and Llama3) to improve PSO performance, allowing for faster achievement of target objectives. Our method speeds up search space exploration by substituting underperforming particle placements with best suggestions offered by LLMs. Comprehensive experiments across three scenarios -- (1) optimizing the Rastrigin function, (2) using Long Short-Term Memory (LSTM) networks for time series regression, and (3) using Convolutional Neural Networks (CNNs) for material classification -- show that the method significantly improves convergence rates and lowers computational costs. Depending on the application, computational complexity is lowered by 20% to 60% compared to traditional PSO methods. Llama3 achieved a 20% to 40% reduction in model calls for regression tasks, whereas ChatGPT-3.5 reduced model calls by 60% for both regression and classification tasks, all while preserving accuracy and error rates. This groundbreaking methodology offers a very efficient and effective solution for optimizing deep learning models, leading to substantial computational performance improvements across a wide range of applications.
☆ Bayesian Principles Improve Prompt Learning In Vision-Language Models AISTATS2025
Prompt learning is a popular fine-tuning method for vision-language models due to its efficiency. It requires a small number of additional learnable parameters while significantly enhancing performance on target tasks. However, most existing methods suffer from overfitting to fine-tuning data, yielding poor generalizability. To address this, we propose a new training objective function based on a Bayesian learning principle to balance adaptability and generalizability. We derive a prior over the logits, where the mean function is parameterized by the pre-trained model, while the posterior corresponds to the fine-tuned model. This objective establishes a balance by allowing the fine-tuned model to adapt to downstream tasks while remaining close to the pre-trained model.
comment: AISTATS2025
☆ PEFT A2Z: Parameter-Efficient Fine-Tuning Survey for Large Language and Vision Models
Large models such as Large Language Models (LLMs) and Vision Language Models (VLMs) have transformed artificial intelligence, powering applications in natural language processing, computer vision, and multimodal learning. However, fully fine-tuning these models remains expensive, requiring extensive computational resources, memory, and task-specific data. Parameter-Efficient Fine-Tuning (PEFT) has emerged as a promising solution that allows adapting large models to downstream tasks by updating only a small portion of parameters. This survey presents a comprehensive overview of PEFT techniques, focusing on their motivations, design principles, and effectiveness. We begin by analyzing the resource and accessibility challenges posed by traditional fine-tuning and highlight key issues, such as overfitting, catastrophic forgetting, and parameter inefficiency. We then introduce a structured taxonomy of PEFT methods -- grouped into additive, selective, reparameterized, hybrid, and unified frameworks -- and systematically compare their mechanisms and trade-offs. Beyond taxonomy, we explore the impact of PEFT across diverse domains, including language, vision, and generative modeling, showing how these techniques offer strong performance with lower resource costs. We also discuss important open challenges in scalability, interpretability, and robustness, and suggest future directions such as federated learning, domain adaptation, and theoretical grounding. Our goal is to provide a unified understanding of PEFT and its growing role in enabling practical, efficient, and sustainable use of large models.
comment: PEFT Survey paper
♻ ☆ VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models
Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" -- such as tone, formatting, or writing style -- influence user preferences, yet traditional evaluations focus primarily on the singular axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model (vibes) that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discovers vibes from model outputs and then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with Llama-3-70b vs GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. VibeCheck discovers vibes like Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often overexplains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash. Code and vibe visualizer found at https://bench-mark.org/
comment: unironic use of the word 'vibe', added more analysis and cooler graphs. added website link
♻ ☆ Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
♻ ☆ Harnessing Multiple Large Language Models: A Survey on LLM Ensemble
LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble.
comment: 9 pages, 2 figures, codebase: https://github.com/junchenzhi/Awesome-LLM-Ensemble
♻ ☆ SparQLe: Speech Queries to Text Translation Through LLMs
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that leverages self-supervised speech representations in combination with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English-language data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising solution for various speech understanding applications.
♻ ☆ EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
♻ ☆ Halving transcription time: A fast, user-friendly and GDPR-compliant workflow to create AI-assisted transcripts for content analysis
In qualitative research, data transcription is often labor-intensive and time-consuming. To expedite this process, a workflow utilizing artificial intelligence (AI) was developed. This workflow not only enhances transcription speed but also addresses the issue of AI-generated transcripts often lacking compatibility with standard content analysis software. Within this workflow, automatic speech recognition is employed to create initial transcripts from audio recordings, which are then formatted to be compatible with content analysis software such as ATLAS or MAXQDA. Empirical data from a study of 12 interviews suggests that this workflow can reduce transcription time by up to 76.4%. Furthermore, by using widely used standard software, this process is suitable for both students and researchers while also being adaptable to a variety of learning, teaching, and research environments. It is also particularly beneficial for non-native speakers. In addition, the workflow is GDPR-compliant and facilitates local, offline transcript generation, which is crucial when dealing with sensitive data.
comment: 10 pages, 1 table
♻ ☆ State Space Models are Strong Text Rerankers RepL4NLP 2025
Transformers dominate NLP and IR; but their inference inefficiencies and challenges in extrapolating to longer contexts have sparked interest in alternative model architectures. Among these, state space models (SSMs) like Mamba offer promising advantages, particularly $O(1)$ time complexity in inference. Despite their potential, SSMs' effectiveness at text reranking\, -- \,a task requiring fine-grained query-document interaction and long-context understanding\, -- \,remains underexplored. This study benchmarks SSM-based architectures (specifically, Mamba-1 and Mamba-2) against transformer-based models across various scales, architectures, and pre-training objectives, focusing on performance and efficiency in text reranking tasks. We find that (1) Mamba architectures achieve competitive text ranking performance, comparable to transformer-based models of similar size; (2) they are less efficient in training and inference compared to transformers with flash attention; and (3) Mamba-2 outperforms Mamba-1 in both performance and efficiency. These results underscore the potential of state space models as a transformer alternative and highlight areas for improvement in future IR applications.
comment: Accepted to RepL4NLP 2025. The first two authors contributed equally, order decided randomly
♻ ☆ Self-Resource Allocation in Multi-Agent LLM Systems
With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
♻ ☆ DualKanbaFormer: An Efficient Selective Sparse Framework for Multimodal Aspect-based Sentiment Analysis
Multimodal Aspect-based Sentiment Analysis (MABSA) enhances sentiment detection by integrating textual data with complementary modalities, such as images, to provide a more refined and comprehensive understanding of sentiment. However, conventional attention mechanisms, despite notable benchmarks, are hindered by quadratic complexity, limiting their ability to fully capture global contextual dependencies and rich semantic information in both modalities. To address this limitation, we introduce DualKanbaFormer, a novel framework that leverages parallel Textual and Visual KanbaFormer modules for robust multimodal analysis. Our approach incorporates Aspect-Driven Sparse Attention (ADSA) to dynamically balance coarse-grained aggregation and fine-grained selection for aspect-focused precision, ensuring the preservation of both global context awareness and local precision in textual and visual representations. Additionally, we utilize the Selective State Space Model (Mamba) to capture extensive global semantic information across both modalities. Furthermore, We replace traditional feed-forward networks and normalization with Kolmogorov-Arnold Networks (KANs) and Dynamic Tanh (DyT) to enhance non-linear expressivity and inference stability. To facilitate the effective integration of textual and visual features, we design a multimodal gated fusion layer that dynamically optimizes inter-modality interactions, significantly enhancing the models efficacy in MABSA tasks. Comprehensive experiments on two publicly available datasets reveal that DualKanbaFormer consistently outperforms several state-of-the-art (SOTA) models.
comment: 12 pages, 2 figures, and 3 tables
♻ ☆ Magnetic Preference Optimization: Achieving Last-iterate Convergence for Language Model Alignment ICLR 2025
Self-play methods have demonstrated remarkable success in enhancing model capabilities across various domains. In the context of Reinforcement Learning from Human Feedback (RLHF), self-play not only boosts Large Language Model (LLM) performance but also overcomes the limitations of traditional Bradley-Terry (BT) model assumptions by finding the Nash equilibrium (NE) of a preference-based, two-player constant-sum game. However, existing methods either guarantee only average-iterate convergence, incurring high storage and inference costs, or converge to the NE of a regularized game, failing to accurately reflect true human preferences. In this paper, we introduce Magnetic Preference Optimization (MPO), a novel approach capable of achieving last-iterate convergence to the NE of the original game, effectively overcoming the limitations of existing methods. Building upon Magnetic Mirror Descent (MMD), MPO attains a linear convergence rate, making it particularly suitable for fine-tuning LLMs. To ensure our algorithm is both theoretically sound and practically viable, we present a simple yet effective implementation that adapts the theoretical insights to the RLHF setting. Empirical results demonstrate that MPO can significantly enhance the performance of LLMs, highlighting the potential of self-play methods in alignment.
comment: ICLR 2025
♻ ☆ ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution.
comment: 31 pages, 10 Figures, 25 Tables
♻ ☆ Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures
Large language models (LLMs) have demonstrated remarkable mathematical capabilities, largely driven by chain-of-thought (CoT) prompting, which decomposes complex reasoning into step-by-step solutions. This approach has enabled significant advancements, as evidenced by performance on benchmarks like GSM8K and MATH. However, the mechanisms underlying LLMs' ability to perform arithmetic in a single step of CoT remain poorly understood. Existing studies debate whether LLMs encode numerical values or rely on symbolic reasoning, while others explore attention and multi-layered processing in arithmetic tasks. In this work, we propose that LLMs learn arithmetic by capturing algebraic structures, such as commutativity and identity properties. Since these structures are observable through input-output relationships, they can generalize to unseen data. We empirically demonstrate that LLMs can learn algebraic structures using a custom dataset of arithmetic problems, as well as providing theoretical evidence showing that, under specific configurations of weights and biases, the transformer-based LLMs can generate embeddings that remain invariant to both permutations of input tokens and the presence of identity elements. Our findings indicate that leveraging algebraic structures can enhance the LLMs' arithmetic capabilities, offering insights into improving their arithmetic performance.
♻ ☆ Large Language Models as Quasi-crystals: Coherence Without Repetition in Generative Text
This essay proposes an interpretive analogy between large language models (LLMs) and quasicrystals, systems that exhibit global coherence without periodic repetition, generated through local constraints. While LLMs are typically evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that one of their most characteristic behaviors is the production of internally resonant linguistic patterns. Drawing on the history of quasicrystals, which forced a redefinition of structural order in physical systems, the analogy highlights an alternative mode of coherence in generative language: constraint-based organization without repetition or symbolic intent. Rather than viewing LLMs as imperfect agents or stochastic approximators, we suggest understanding them as generators of quasi-structured outputs. This framing complements existing evaluation paradigms by foregrounding formal coherence and pattern as interpretable features of model behavior. While the analogy has limits, it offers a conceptual tool for exploring how coherence might arise and be assessed in systems where meaning is emergent, partial, or inaccessible. In support of this perspective, we draw on philosophy of science and language, including model-based accounts of scientific representation, structural realism, and inferentialist views of meaning. We further propose the notion of structural evaluation: a mode of assessment that examines how well outputs propagate constraint, variation, and order across spans of generated text. This essay aims to reframe the current discussion around large language models, not by rejecting existing methods, but by suggesting an additional axis of interpretation grounded in structure rather than semantics.
comment: The discussion was restructured to add limitations to the analogy and other clarifications
♻ ☆ Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR) and is the foundation for downstream tasks such as re-ranking. Recently, large language models (LLMs) have shown compelling semantic understanding capabilities and are appealing to researchers studying dense retrieval. LLMs, as decoder-style generative models, are competent at language generation while falling short on modeling global information due to the lack of attention to tokens afterward. Inspired by the classical word-based language modeling approach for IR, i.e., the query likelihood (QL) model, we seek to sufficiently utilize LLMs' generative ability by QL maximization. However, instead of ranking documents with QL estimation, we introduce an auxiliary task of QL maximization to yield a better backbone for contrastively learning a discriminative retriever. We name our model as LLM-QL. To condense global document semantics to a single vector during QL modeling, LLM-QL has two major components, Attention Stop (AS) and Input Corruption (IC). AS stops the attention of predictive tokens to previous tokens until the ending token of the document. IC masks a portion of tokens in the input documents during prediction. Experiments on MSMARCO show that LLM-QL can achieve significantly better performance than other LLM-based retrievers and using QL estimated by LLM-QL for ranking outperforms word-based QL by a large margin.
comment: 12 pages, 3 figures
♻ ☆ The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources. By referencing this external knowledge, RAG effectively reduces the generation of factually incorrect content and addresses hallucination issues within LLMs. Recently, there has been growing attention to improving the performance and efficiency of RAG systems from various perspectives. While these advancements have yielded significant results, the application of RAG in domains with considerable societal implications raises a critical question about fairness: What impact does the introduction of the RAG paradigm have on the fairness of LLMs? To address this question, we conduct extensive experiments by varying the LLMs, retrievers, and retrieval sources. Our experimental analysis reveals that the scale of the LLMs plays a significant role in influencing fairness outcomes within the RAG framework. When the model scale is smaller than 8B, the integration of retrieval mechanisms often exacerbates unfairness in small-scale LLMs (e.g., LLaMA3.2-1B, Mistral-7B, and LLaMA3-8B). To mitigate the fairness issues introduced by RAG for small-scale LLMs, we propose two approaches, FairFT and FairFilter. Specifically, in FairFT, we align the retriever with the LLM in terms of fairness, enabling it to retrieve documents that facilitate fairer model outputs. In FairFilter, we propose a fairness filtering mechanism to filter out biased content after retrieval. Finally, we validate our proposed approaches on real-world datasets, demonstrating their effectiveness in improving fairness while maintaining performance.
comment: 12 pages
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 17 pages, 3 figures
♻ ☆ Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning
Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach achieves state-of-the-art (SOTA) results in Arabic ASR, surpassing both open and closed-source models on standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, alongside a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (0.635) than to the Bronze Age Proto-Cuneiform (0.102) or Proto-Elamite (0.078). Contrary to expectations, when measured through direct script-to-script embedding comparisons, the Indus script maps closer to Tibetan-Yi Corridor scripts with a mean cosine similarity of 0.930 (CI: [0.917, 0.942]) than to contemporaneous West Asian signaries, which recorded mean similarities of 0.887 (CI: [0.863, 0.911]) and 0.855 (CI: [0.818, 0.891]). Across dimensionality reduction and clustering methods, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. These computational findings align with observed pictorial parallels in numeral systems, gender markers, and iconographic elements. Archaeological evidence of contact networks along the ancient Shu-Shendu road, coinciding with the Indus Civilization's decline, provides a plausible transmission pathway. While alternate explanations cannot be ruled out, the specificity and consistency of similarities suggest more complex cultural transmission networks between South and East Asia than previously recognized.
comment: 107 pages (43 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code available at https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ Jailbreaking as a Reward Misspecification Problem ICLR 2025
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. This misspecification occurs when the reward function fails to accurately capture the intended behavior, leading to misaligned model outputs. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark against various target aligned LLMs while preserving the human readability of the generated prompts. Furthermore, these attacks on open-source models demonstrate high transferability to closed-source models like GPT-4o and out-of-distribution tasks from HarmBench. Detailed analysis highlights the unique advantages of the proposed reward misspecification objective compared to previous methods, offering new insights for improving LLM safety and robustness.
comment: Accepted to ICLR 2025. Code: https://github.com/zhxieml/remiss-jailbreak
♻ ☆ Benchmarking Multi-National Value Alignment for Large Language Models
Do Large Language Models (LLMs) hold positions that conflict with your country's values? Occasionally they do! However, existing works primarily focus on ethical reviews, failing to capture the diversity of national values, which encompass broader policy, legal, and moral considerations. Furthermore, current benchmarks that rely on spectrum tests using manually designed questionnaires are not easily scalable. To address these limitations, we introduce NaVAB, a comprehensive benchmark to evaluate the alignment of LLMs with the values of five major nations: China, the United States, the United Kingdom, France, and Germany. NaVAB implements a national value extraction pipeline to efficiently construct value assessment datasets. Specifically, we propose a modeling procedure with instruction tagging to process raw data sources, a screening process to filter value-related topics and a generation process with a Conflict Reduction mechanism to filter non-conflicting values.We conduct extensive experiments on various LLMs across countries, and the results provide insights into assisting in the identification of misaligned scenarios. Moreover, we demonstrate that NaVAB can be combined with alignment techniques to effectively reduce value concerns by aligning LLMs' values with the target country.
♻ ☆ Persian Abstract Meaning Representation: Annotation Guidelines and Gold Standard Dataset
This paper introduces the Persian Abstract Meaning Representation (AMR) guidelines, a detailed guide for annotating Persian sentences with AMR, focusing on the necessary adaptations to fit Persian's unique syntactic structures. We discuss the development process of a Persian AMR gold standard dataset consisting of 1,562 sentences created following the guidelines. By examining the language specifications and nuances that distinguish AMR annotations of a low-resource language like Persian, we shed light on the challenges and limitations of developing a universal meaning representation framework. The guidelines and the dataset introduced in this study highlight such challenges, aiming to advance the field.
comment: Proceedings of the 2024 UMR Parsing Workshop
Machine Learning 76
☆ Optimal Scheduling of Dynamic Transport
Flow-based methods for sampling and generative modeling use continuous-time dynamical systems to represent a {transport map} that pushes forward a source measure to a target measure. The introduction of a time axis provides considerable design freedom, and a central question is how to exploit this freedom. Though many popular methods seek straight line (i.e., zero acceleration) trajectories, we show here that a specific class of ``curved'' trajectories can significantly improve approximation and learning. In particular, we consider the unit-time interpolation of any given transport map $T$ and seek the schedule $\tau: [0,1] \to [0,1]$ that minimizes the spatial Lipschitz constant of the corresponding velocity field over all times $t \in [0,1]$. This quantity is crucial as it allows for control of the approximation error when the velocity field is learned from data. We show that, for a broad class of source/target measures and transport maps $T$, the \emph{optimal schedule} can be computed in closed form, and that the resulting optimal Lipschitz constant is \emph{exponentially smaller} than that induced by an identity schedule (corresponding to, for instance, the Wasserstein geodesic). Our proof technique relies on the calculus of variations and $\Gamma$-convergence, allowing us to approximate the aforementioned degenerate objective by a family of smooth, tractable problems.
☆ Optimal Lattice Boltzmann Closures through Multi-Agent Reinforcement Learning
The Lattice Boltzmann method (LBM) offers a powerful and versatile approach to simulating diverse hydrodynamic phenomena, spanning microfluidics to aerodynamics. The vast range of spatiotemporal scales inherent in these systems currently renders full resolution impractical, necessitating the development of effective closure models for under-resolved simulations. Under-resolved LBMs are unstable, and while there is a number of important efforts to stabilize them, they often face limitations in generalizing across scales and physical systems. We present a novel, data-driven, multiagent reinforcement learning (MARL) approach that drastically improves stability and accuracy of coarse-grained LBM simulations. The proposed method uses a convolutional neural network to dynamically control the local relaxation parameter for the LB across the simulation grid. The LB-MARL framework is showcased in turbulent Kolmogorov flows. We find that the MARL closures stabilize the simulations and recover the energy spectra of significantly more expensive fully resolved simulations while maintaining computational efficiency. The learned closure model can be transferred to flow scenarios unseen during training and has improved robustness and spectral accuracy compared to traditional LBM models. We believe that MARL closures open new frontiers for efficient and accurate simulations of a multitude of complex problems not accessible to present-day LB methods alone.
☆ Exploring Pseudo-Token Approaches in Transformer Neural Processes
Neural Processes (NPs) have gained attention in meta-learning for their ability to quantify uncertainty, together with their rapid prediction and adaptability. However, traditional NPs are prone to underfitting. Transformer Neural Processes (TNPs) significantly outperform existing NPs, yet their applicability in real-world scenarios is hindered by their quadratic computational complexity relative to both context and target data points. To address this, pseudo-token-based TNPs (PT-TNPs) have emerged as a novel NPs subset that condense context data into latent vectors or pseudo-tokens, reducing computational demands. We introduce the Induced Set Attentive Neural Processes (ISANPs), employing Induced Set Attention and an innovative query phase to improve querying efficiency. Our evaluations show that ISANPs perform competitively with TNPs and often surpass state-of-the-art models in 1D regression, image completion, contextual bandits, and Bayesian optimization. Crucially, ISANPs offer a tunable balance between performance and computational complexity, which scale well to larger datasets where TNPs face limitations.
comment: 7th Symposium on Advances in Approximate Bayesian Inference
☆ Quantum-Enhanced Reinforcement Learning for Power Grid Security Assessment
The increasingly challenging task of maintaining power grid security requires innovative solutions. Novel approaches using reinforcement learning (RL) agents have been proposed to help grid operators navigate the massive decision space and nonlinear behavior of these complex networks. However, applying RL to power grid security assessment, specifically for combinatorially troublesome contingency analysis problems, has proven difficult to scale. The integration of quantum computing into these RL frameworks helps scale by improving computational efficiency and boosting agent proficiency by leveraging quantum advantages in action exploration and model-based interdependence. To demonstrate a proof-of-concept use of quantum computing for RL agent training and simulation, we propose a hybrid agent that runs on quantum hardware using IBM's Qiskit Runtime. We also provide detailed insight into the construction of parameterized quantum circuits (PQCs) for generating relevant quantum output. This agent's proficiency at maintaining grid stability is demonstrated relative to a benchmark model without quantum enhancement using N-k contingency analysis. Additionally, we offer a comparative assessment of the training procedures for RL models integrated with a quantum backend.
comment: 6 pages, 6 figures, 3 tables. Submitted to the 2025 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
☆ Data Augmentation Using Neural Acoustic Fields With Retrieval-Augmented Pre-training ICASSP 2025
This report details MERL's system for room impulse response (RIR) estimation submitted to the Generative Data Augmentation Workshop at ICASSP 2025 for Augmenting RIR Data (Task 1) and Improving Speaker Distance Estimation (Task 2). We first pre-train a neural acoustic field conditioned by room geometry on an external large-scale dataset in which pairs of RIRs and the geometries are provided. The neural acoustic field is then adapted to each target room by using the enrollment data, where we leverage either the provided room geometries or geometries retrieved from the external dataset, depending on availability. Lastly, we predict the RIRs for each pair of source and receiver locations specified by Task 1, and use these RIRs to train the speaker distance estimation model in Task 2.
comment: Presented at ICASSP 2025 GenDA Workshop
☆ Balancing Fairness and Performance in Healthcare AI: A Gradient Reconciliation Approach
The rapid growth of healthcare data and advances in computational power have accelerated the adoption of artificial intelligence (AI) in medicine. However, AI systems deployed without explicit fairness considerations risk exacerbating existing healthcare disparities, potentially leading to inequitable resource allocation and diagnostic disparities across demographic subgroups. To address this challenge, we propose FairGrad, a novel gradient reconciliation framework that automatically balances predictive performance and multi-attribute fairness optimization in healthcare AI models. Our method resolves conflicting optimization objectives by projecting each gradient vector onto the orthogonal plane of the others, thereby regularizing the optimization trajectory to ensure equitable consideration of all objectives. Evaluated on diverse real-world healthcare datasets and predictive tasks - including Substance Use Disorder (SUD) treatment and sepsis mortality - FairGrad achieved statistically significant improvements in multi-attribute fairness metrics (e.g., equalized odds) while maintaining competitive predictive accuracy. These results demonstrate the viability of harmonizing fairness and utility in mission-critical medical AI applications.
comment: Accepted to the 23rd International Conference on Artificial Intelligence in Medicine (AIME 2025)
☆ The Geometry of Self-Verification in a Task-Specific Reasoning Model
How do reasoning models verify their own answers? We study this question by training a model using DeepSeek R1's recipe on the CountDown task. We leverage the fact that preference tuning leads to mode collapse, resulting in a model that always produces highly structured and easily parse-able chain-of-thought sequences. With this setup, we do a top-down and bottom-up analysis to reverse-engineer how the model verifies its outputs. Our top-down analysis reveals Gated Linear Unit (GLU) weights encoding verification-related tokens, such as ``success'' or ``incorrect'', which activate according to the correctness of the model's reasoning steps. Our bottom-up analysis reveals that ``previous-token heads'' are mainly responsible for model verification. Our analyses meet in the middle: drawing inspiration from inter-layer communication channels, we use the identified GLU vectors to localize as few as three attention heads that can disable model verification, pointing to a necessary component of a potentially larger verification circuit.
☆ Machine learning enhanced atom probe tomography analysis: a snapshot review
Atom probe tomography (APT) is a burgeoning characterization technique that provides compositional mapping of materials in three-dimensions at near-atomic scale. Since its significant expansion in the past 30 years, we estimate that one million APT datasets have been collected, each containing millions to billions of individual ions. Their analysis and the extraction of microstructural information has largely relied upon individual users whose varied level of expertise causes clear and documented bias. Current practices hinder efficient data processing, and make challenging standardization and the deployment of data analysis workflows that would be compliant with FAIR data principles. Over the past decade, building upon the long-standing expertise of the APT community in the development of advanced data processing or data mining techniques, there has been a surge of novel machine learning (ML) approaches aiming for user-independence, and that are efficient, reproducible, and robust from a statistics perspective. Here, we provide a snapshot review of this rapidly evolving field. We begin with a brief introduction to APT and the nature of the APT data. This is followed by an overview of relevant ML algorithms and a comprehensive review of their applications to APT. We also discuss how ML can enable discoveries beyond human capability, offering new insights into the mechanisms within materials. Finally, we provide guidance for future directions in this domain.
☆ Bottom-Up Synthesis of Knowledge-Grounded Task-Oriented Dialogues with Iteratively Self-Refined Prompts NAACL 2025
Training conversational question-answering (QA) systems requires a substantial amount of in-domain data, which is often scarce in practice. A common solution to this challenge is to generate synthetic data. Traditional methods typically follow a top-down approach, where a large language model (LLM) generates multi-turn dialogues from a broad prompt. Although this method produces coherent conversations, it offers limited fine-grained control over the content and is susceptible to hallucinations. We introduce a bottom-up conversation synthesis approach, where QA pairs are generated first and then combined into a coherent dialogue. This method offers greater control and precision by dividing the process into two distinct steps, allowing refined instructions and validations to be handled separately. Additionally, this structure allows the use of non-local models in stages that do not involve proprietary knowledge, enhancing the overall quality of the generated data. Both human and automated evaluations demonstrate that our approach produces more realistic and higher-quality dialogues compared to top-down methods.
comment: Accepted by NAACL 2025
☆ Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping
Accurate ocean modeling and coastal hazard prediction depend on high-resolution bathymetric data; yet, current worldwide datasets are too coarse for exact numerical simulations. While recent deep learning advances have improved earth observation data resolution, existing methods struggle with the unique challenges of producing detailed ocean floor maps, especially in maintaining physical structure consistency and quantifying uncertainties. This work presents a novel uncertainty-aware mechanism using spatial blocks to efficiently capture local bathymetric complexity based on block-based conformal prediction. Using the Vector Quantized Variational Autoencoder (VQ-VAE) architecture, the integration of this uncertainty quantification framework yields spatially adaptive confidence estimates while preserving topographical features via discrete latent representations. With smaller uncertainty widths in well-characterized areas and appropriately larger bounds in areas of complex seafloor structures, the block-based design adapts uncertainty estimates to local bathymetric complexity. Compared to conventional techniques, experimental results over several ocean regions show notable increases in both reconstruction quality and uncertainty estimation reliability. This framework increases the reliability of bathymetric reconstructions by preserving structural integrity while offering spatially adaptive uncertainty estimates, so opening the path for more solid climate modeling and coastal hazard assessment.
☆ Density Measures for Language Generation
The recent successes of large language models (LLMs) have led to a surge of theoretical research into language generation. A recent line of work proposes an abstract view, called language generation in the limit, where generation is seen as a game between an adversary and an algorithm: the adversary generates strings from an unknown language $K$, chosen from a countable collection of candidate languages, and after seeing a finite set of these strings, the algorithm must generate new strings from $K$ that it has not seen before. This formalism highlights a key tension: the trade-off between validity (the algorithm should only produce strings from the language) and breadth (it should be able to produce many strings from the language). This trade-off is central in applied language generation as well, where it appears as a balance between hallucination (generating invalid utterances) and mode collapse (generating only a restricted set of outputs). Despite its importance, this trade-off has been challenging to study quantitatively. We develop ways to quantify this trade-off by formalizing breadth using measures of density. Existing algorithms for language generation in the limit produce output sets that can have zero density in the true language, and this important failure of breadth might seem unavoidable. We show, however, that such a failure is not necessary: we provide an algorithm for language generation in the limit whose outputs have strictly positive density in $K$. We also study the internal representations built by these algorithms, specifically the sequence of hypothesized candidate languages they consider, and show that achieving the strongest form of breadth may require oscillating indefinitely between high- and low-density representations. Our analysis introduces a novel topology on language families, with notions of convergence and limit points playing a key role.
☆ Do You Really Need Public Data? Surrogate Public Data for Differential Privacy on Tabular Data
Differentially private (DP) machine learning often relies on the availability of public data for tasks like privacy-utility trade-off estimation, hyperparameter tuning, and pretraining. While public data assumptions may be reasonable in text and image domains, they are less likely to hold for tabular data due to tabular data heterogeneity across domains. We propose leveraging powerful priors to address this limitation; specifically, we synthesize realistic tabular data directly from schema-level specifications - such as variable names, types, and permissible ranges - without ever accessing sensitive records. To that end, this work introduces the notion of "surrogate" public data - datasets generated independently of sensitive data, which consume no privacy loss budget and are constructed solely from publicly available schema or metadata. Surrogate public data are intended to encode plausible statistical assumptions (informed by publicly available information) into a dataset with many downstream uses in private mechanisms. We automate the process of generating surrogate public data with large language models (LLMs); in particular, we propose two methods: direct record generation as CSV files, and automated structural causal model (SCM) construction for sampling records. Through extensive experiments, we demonstrate that surrogate public tabular data can effectively replace traditional public data when pretraining differentially private tabular classifiers. To a lesser extent, surrogate public data are also useful for hyperparameter tuning of DP synthetic data generators, and for estimating the privacy-utility tradeoff.
☆ Accelerating LLM Inference with Flexible N:M Sparsity via A Fully Digital Compute-in-Memory Accelerator
Large language model (LLM) pruning with fixed N:M structured sparsity significantly limits the expressivity of the sparse model, yielding sub-optimal performance. In contrast, supporting multiple N:M patterns to provide sparse representational freedom introduces costly overhead in hardware. To address these challenges for LLMs, we first present a flexible layer-wise outlier-density-aware N:M sparsity (FLOW) selection method. FLOW enables the identification of optimal layer-wise N and M values (from a given range) by simultaneously accounting for the presence and distribution of outliers, allowing a higher degree of representational freedom. To deploy sparse models with such N:M flexibility, we then introduce a flexible, low-overhead digital compute-in-memory architecture (FlexCiM). FlexCiM supports diverse sparsity patterns by partitioning a digital CiM (DCiM) macro into smaller sub-macros, which are adaptively aggregated and disaggregated through distribution and merging mechanisms for different N and M values. Extensive experiments on both transformer-based and recurrence-based state space foundation models (SSMs) demonstrate that FLOW outperforms existing alternatives with an accuracy improvement of up to 36%, while FlexCiM achieves up to 1.75x lower inference latency and 1.5x lower energy consumption compared to existing sparse accelerators. Code is available at: https://github.com/FLOW-open-project/FLOW
☆ Improving RL Exploration for LLM Reasoning through Retrospective Replay
Reinforcement learning (RL) has increasingly become a pivotal technique in the post-training of large language models (LLMs). The effective exploration of the output space is essential for the success of RL. We observe that for complex problems, during the early stages of training, the model exhibits strong exploratory capabilities and can identify promising solution ideas. However, its limited capability at this stage prevents it from successfully solving these problems. The early suppression of these potentially valuable solution ideas by the policy gradient hinders the model's ability to revisit and re-explore these ideas later. Consequently, although the LLM's capabilities improve in the later stages of training, it still struggles to effectively address these complex problems. To address this exploration issue, we propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process. RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration. To evaluate the effectiveness of RRL, we conduct extensive experiments on complex reasoning tasks, including mathematical reasoning and code generation, and general dialogue tasks. The results indicate that RRL maintains high exploration efficiency throughout the training period, significantly enhancing the effectiveness of RL in optimizing LLMs for complicated reasoning tasks. Moreover, it also improves the performance of RLHF, making the model both safer and more helpful.
comment: 13 pages, 3 figures
☆ Integrating Single-Cell Foundation Models with Graph Neural Networks for Drug Response Prediction
In this study, we propose an innovative methodology for predicting Cancer Drug Response (CDR) through the integration of the scGPT foundation model within the DeepCDR model. Our approach utilizes scGPT to generate embeddings from gene expression data, which are then used as gene expression input data for DeepCDR. The experimental findings demonstrate the efficacy of this scGPT-based method in outperforming previous related works, including the original DeepCDR model and the scFoundation-based model. This study highlights the potential of scGPT embeddings to enhance the accuracy of CDR predictions and offers a promising alternative to existing approaches.
comment: 8 pages, 6 figures
☆ Local distribution-based adaptive oversampling for imbalanced regression
Imbalanced regression occurs when continuous target variables have skewed distributions, creating sparse regions that are difficult for machine learning models to predict accurately. This issue particularly affects neural networks, which often struggle with imbalanced data. While class imbalance in classification has been extensively studied, imbalanced regression remains relatively unexplored, with few effective solutions. Existing approaches often rely on arbitrary thresholds to categorize samples as rare or frequent, ignoring the continuous nature of target distributions. These methods can produce synthetic samples that fail to improve model performance and may discard valuable information through undersampling. To address these limitations, we propose LDAO (Local Distribution-based Adaptive Oversampling), a novel data-level approach that avoids categorizing individual samples as rare or frequent. Instead, LDAO learns the global distribution structure by decomposing the dataset into a mixture of local distributions, each preserving its statistical characteristics. LDAO then models and samples from each local distribution independently before merging them into a balanced training set. LDAO achieves a balanced representation across the entire target range while preserving the inherent statistical structure within each local distribution. In extensive evaluations on 45 imbalanced datasets, LDAO outperforms state-of-the-art oversampling methods on both frequent and rare target values, demonstrating its effectiveness for addressing the challenge of imbalanced regression.
☆ Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation
Advances in self-distillation have shown that when knowledge is distilled from a teacher to a student using the same deep learning (DL) architecture, the student performance can surpass the teacher particularly when the network is overparameterized and the teacher is trained with early stopping. Alternatively, ensemble learning also improves performance, although training, storing, and deploying multiple models becomes impractical as the number of models grows. Even distilling an ensemble to a single student model or weight averaging methods first requires training of multiple teacher models and does not fully leverage the inherent stochasticity for generating and distilling diversity in DL models. These constraints are particularly prohibitive in resource-constrained or latency-sensitive applications such as wearable devices. This paper proposes to train only one model and generate multiple diverse teacher representations using distillation-time dropout. However, generating these representations stochastically leads to noisy representations that are misaligned with the learned task. To overcome this problem, a novel stochastic self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only, using student-guided knowledge distillation (SGKD). The student representation at each distillation step is used as authority to guide the distillation process. Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods without increasing the model size at both training and testing time, and incurs negligible computational complexity compared to state-of-the-art ensemble learning and weight averaging methods.
☆ Learning to Score
Common machine learning settings range from supervised tasks, where accurately labeled data is accessible, through semi-supervised and weakly-supervised tasks, where target labels are scant or noisy, to unsupervised tasks where labels are unobtainable. In this paper we study a scenario where the target labels are not available but additional related information is at hand. This information, referred to as Side Information, is either correlated with the unknown labels or imposes constraints on the feature space. We formulate the problem as an ensemble of three semantic components: representation learning, side information and metric learning. The proposed scoring model is advantageous for multiple use-cases. For example, in the healthcare domain it can be used to create a severity score for diseases where the symptoms are known but the criteria for the disease progression are not well defined. We demonstrate the utility of the suggested scoring system on well-known benchmark data-sets and bio-medical patient records.
☆ Learning and Generating Diverse Residential Load Patterns Using GAN with Weakly-Supervised Training and Weight Selection
The scarcity of high-quality residential load data can pose obstacles for decarbonizing the residential sector as well as effective grid planning and operation. The above challenges have motivated research into generating synthetic load data, but existing methods faced limitations in terms of scalability, diversity, and similarity. This paper proposes a Generative Adversarial Network-based Synthetic Residential Load Pattern (RLP-GAN) generation model, a novel weakly-supervised GAN framework, leveraging an over-complete autoencoder to capture dependencies within complex and diverse load patterns and learn household-level data distribution at scale. We incorporate a model weight selection method to address the mode collapse problem and generate load patterns with high diversity. We develop a holistic evaluation method to validate the effectiveness of RLP-GAN using real-world data of 417 households. The results demonstrate that RLP-GAN outperforms state-of-the-art models in capturing temporal dependencies and generating load patterns with higher similarity to real data. Furthermore, we have publicly released the RLP-GAN generated synthetic dataset, which comprises one million synthetic residential load pattern profiles.
comment: 12 pages
☆ SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
Recent advances of reasoning models, exemplified by OpenAI's o1 and DeepSeek's R1, highlight the significant potential of Reinforcement Learning (RL) to enhance the reasoning capabilities of Large Language Models (LLMs). However, replicating these advancements across diverse domains remains challenging due to limited methodological transparency. In this work, we present two-Staged history-Resampling Policy Optimization (SRPO), which successfully surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks. SRPO achieves this using the same base model as DeepSeek (i.e. Qwen2.5-32B) and relies solely on RL, without prior Supervised Fine-Tuning (SFT). Building upon Group Relative Policy Optimization (GRPO), we introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples. Our comprehensive experiments validate the effectiveness of our approach, dedicating to offer valuable insights into scaling LLM reasoning capabilities across diverse tasks.
☆ CHAINSFORMER: Numerical Reasoning on Knowledge Graphs from a Chain Perspective ICDE 2025
Reasoning over Knowledge Graphs (KGs) plays a pivotal role in knowledge graph completion or question answering systems, providing richer and more accurate triples and attributes. As numerical attributes become increasingly essential in characterizing entities and relations in KGs, the ability to reason over these attributes has gained significant importance. Existing graph-based methods such as Graph Neural Networks (GNNs) and Knowledge Graph Embeddings (KGEs), primarily focus on aggregating homogeneous local neighbors and implicitly embedding diverse triples. However, these approaches often fail to fully leverage the potential of logical paths within the graph, limiting their effectiveness in exploiting the reasoning process. To address these limitations, we propose ChainsFormer, a novel chain-based framework designed to support numerical reasoning. Chainsformer not only explicitly constructs logical chains but also expands the reasoning depth to multiple hops. Specially, we introduces Relation-Attribute Chains (RA-Chains), a specialized logic chain, to model sequential reasoning patterns. ChainsFormer captures the step-by-step nature of multi-hop reasoning along RA-Chains by employing sequential in-context learning. To mitigate the impact of noisy chains, we propose a hyperbolic affinity scoring mechanism that selects relevant logic chains in a variable-resolution space. Furthermore, ChainsFormer incorporates an attention-based numerical reasoner to identify critical reasoning paths, enhancing both reasoning accuracy and transparency. Experimental results demonstrate that ChainsFormer significantly outperforms state-of-the-art methods, achieving up to a 20.0% improvement in performance. The implementations are available at https://github.com/zhaodazhuang2333/ChainsFormer.
comment: Accepted to ICDE 2025
☆ CLIP-Powered Domain Generalization and Domain Adaptation: A Comprehensive Survey
As machine learning evolves, domain generalization (DG) and domain adaptation (DA) have become crucial for enhancing model robustness across diverse environments. Contrastive Language-Image Pretraining (CLIP) plays a significant role in these tasks, offering powerful zero-shot capabilities that allow models to perform effectively in unseen domains. However, there remains a significant gap in the literature, as no comprehensive survey currently exists that systematically explores the applications of CLIP in DG and DA, highlighting the necessity for this review. This survey presents a comprehensive review of CLIP's applications in DG and DA. In DG, we categorize methods into optimizing prompt learning for task alignment and leveraging CLIP as a backbone for effective feature extraction, both enhancing model adaptability. For DA, we examine both source-available methods utilizing labeled source data and source-free approaches primarily based on target domain data, emphasizing knowledge transfer mechanisms and strategies for improved performance across diverse contexts. Key challenges, including overfitting, domain diversity, and computational efficiency, are addressed, alongside future research opportunities to advance robustness and efficiency in practical applications. By synthesizing existing literature and pinpointing critical gaps, this survey provides valuable insights for researchers and practitioners, proposing directions for effectively leveraging CLIP to enhance methodologies in domain generalization and adaptation. Ultimately, this work aims to foster innovation and collaboration in the quest for more resilient machine learning models that can perform reliably across diverse real-world scenarios. A more up-to-date version of the papers is maintained at: https://github.com/jindongli-Ai/Survey_on_CLIP-Powered_Domain_Generalization_and_Adaptation.
☆ Mixed-Precision Conjugate Gradient Solvers with RL-Driven Precision Tuning
This paper presents a novel reinforcement learning (RL) framework for dynamically optimizing numerical precision in the preconditioned conjugate gradient (CG) method. By modeling precision selection as a Markov Decision Process (MDP), we employ Q-learning to adaptively assign precision levels to key operations, striking an optimal balance between computational efficiency and numerical accuracy, while ensuring stability through double-precision scalar computations and residual computing. In practice, the algorithm is trained on a set of data and subsequently performs inference for precision selection on out-of-sample data, without requiring re-analysis or retraining for new datasets. This enables the method to adapt seamlessly to new problem instances without the computational overhead of recalibration. Our results demonstrate the effectiveness of RL in enhancing solver's performance, marking the first application of RL to mixed-precision numerical methods. The findings highlight the approach's practical advantages, robustness, and scalability, providing valuable insights into its integration with iterative solvers and paving the way for AI-driven advancements in scientific computing.
☆ Generative emulation of chaotic dynamics with coherent prior
Data-driven emulation of nonlinear dynamics is challenging due to long-range skill decay that often produces physically unrealistic outputs. Recent advances in generative modeling aim to address these issues by providing uncertainty quantification and correction. However, the quality of generated simulation remains heavily dependent on the choice of conditioning priors. In this work, we present an efficient generative framework for dynamics emulation, unifying principles of turbulence with diffusion-based modeling: Cohesion. Specifically, our method estimates large-scale coherent structure of the underlying dynamics as guidance during the denoising process, where small-scale fluctuation in the flow is then resolved. These coherent priors are efficiently approximated using reduced-order models, such as deep Koopman operators, that allow for rapid generation of long prior sequences while maintaining stability over extended forecasting horizon. With this gain, we can reframe forecasting as trajectory planning, a common task in reinforcement learning, where conditional denoising is performed once over entire sequences, minimizing the computational cost of autoregressive-based generative methods. Empirical evaluations on chaotic systems of increasing complexity, including Kolmogorov flow, shallow water equations, and subseasonal-to-seasonal climate dynamics, demonstrate Cohesion superior long-range forecasting skill that can efficiently generate physically-consistent simulations, even in the presence of partially-observed guidance.
comment: 41 pages, 25 figures
☆ A Pre-Training and Adaptive Fine-Tuning Framework for Graph Anomaly Detection
Graph anomaly detection (GAD) has garnered increasing attention in recent years, yet it remains challenging due to the scarcity of abnormal nodes and the high cost of label annotations. Graph pre-training, the two-stage learning paradigm, has emerged as an effective approach for label-efficient learning, largely benefiting from expressive neighborhood aggregation under the assumption of strong homophily. However, in GAD, anomalies typically exhibit high local heterophily, while normal nodes retain strong homophily, resulting in a complex homophily-heterophily mixture. To understand the impact of this mixed pattern on graph pre-training, we analyze it through the lens of spectral filtering and reveal that relying solely on a global low-pass filter is insufficient for GAD. We further provide a theoretical justification for the necessity of selectively applying appropriate filters to individual nodes. Building upon this insight, we propose PAF, a Pre-Training and Adaptive Fine-tuning framework specifically designed for GAD. In particular, we introduce joint training with low- and high-pass filters in the pre-training phase to capture the full spectrum of frequency information in node features. During fine-tuning, we devise a gated fusion network that adaptively combines node representations generated by both filters. Extensive experiments across ten benchmark datasets consistently demonstrate the effectiveness of PAF.
☆ Rethinking Traffic Flow Forecasting: From Transition to Generatation
Traffic flow prediction plays an important role in Intelligent Transportation Systems in traffic management and urban planning. There have been extensive successful works in this area. However, these approaches focus only on modelling the flow transition and ignore the flow generation process, which manifests itself in two ways: (i) The models are based on Markovian assumptions, ignoring the multi-periodicity of the flow generation in nodes. (ii) The same structure is designed to encode both the transition and generation processes, ignoring the differences between them. To address these problems, we propose an Effective Multi-Branch Similarity Transformer for Traffic Flow Prediction, namely EMBSFormer. Through data analysis, we find that the factors affecting traffic flow include node-level traffic generation and graph-level traffic transition, which describe the multi-periodicity and interaction pattern of nodes, respectively. Specifically, to capture traffic generation patterns, we propose a similarity analysis module that supports multi-branch encoding to dynamically expand significant cycles. For traffic transition, we employ a temporal and spatial self-attention mechanism to maintain global node interactions, and use GNN and time conv to model local node interactions, respectively. Model performance is evaluated on three real-world datasets on both long-term and short-term prediction tasks. Experimental results show that EMBSFormer outperforms baselines on both tasks. Moreover, compared to models based on flow transition modelling (e.g. GMAN, 513k), the variant of EMBSFormer(93K) only uses 18\% of the parameters, achieving the same performance.
☆ A Novel Frequency-Spatial Domain Aware Network for Fast Thermal Prediction in 2.5D ICs DATE '25
In the post-Moore era, 2.5D chiplet-based ICs present significant challenges in thermal management due to increased power density and thermal hotspots. Neural network-based thermal prediction models can perform real-time predictions for many unseen new designs. However, existing CNN-based and GCN-based methods cannot effectively capture the global thermal features, especially for high-frequency components, hindering prediction accuracy enhancement. In this paper, we propose a novel frequency-spatial dual domain aware prediction network (FSA-Heat) for fast and high-accuracy thermal prediction in 2.5D ICs. It integrates high-to-low frequency and spatial domain encoder (FSTE) module with frequency domain cross-scale interaction module (FCIFormer) to achieve high-to-low frequency and global-to-local thermal dissipation feature extraction. Additionally, a frequency-spatial hybrid loss (FSL) is designed to effectively attenuate high-frequency thermal gradient noise and spatial misalignments. The experimental results show that the performance enhancements offered by our proposed method are substantial, outperforming the newly-proposed 2.5D method, GCN+PNA, by considerable margins (over 99% RMSE reduction, 4.23X inference time speedup). Moreover, extensive experiments demonstrate that FSA-Heat also exhibits robust generalization capabilities.
comment: 7 pages, 5 figures, 22nd Design, Automation and Test in Europe Conference (DATE '25)
☆ Decomposition-based multi-scale transformer framework for time series anomaly detection
Time series anomaly detection is crucial for maintaining stable systems. Existing methods face two main challenges. First, it is difficult to directly model the dependencies of diverse and complex patterns within the sequences. Second, many methods that optimize parameters using mean squared error struggle with noise in the time series, leading to performance deterioration. To address these challenges, we propose a transformer-based framework built on decomposition (TransDe) for multivariate time series anomaly detection. The key idea is to combine the strengths of time series decomposition and transformers to effectively learn the complex patterns in normal time series data. A multi-scale patch-based transformer architecture is proposed to exploit the representative dependencies of each decomposed component of the time series. Furthermore, a contrastive learn paradigm based on patch operation is proposed, which leverages KL divergence to align the positive pairs, namely the pure representations of normal patterns between different patch-level views. A novel asynchronous loss function with a stop-gradient strategy is further introduced to enhance the performance of TransDe effectively. It can avoid time-consuming and labor-intensive computation costs in the optimization process. Extensive experiments on five public datasets are conducted and TransDe shows superiority compared with twelve baselines in terms of F1 score. Our code is available at https://github.com/shaieesss/TransDe.
☆ Dual-channel Heterophilic Message Passing for Graph Fraud Detection
Fraudulent activities have significantly increased across various domains, such as e-commerce, online review platforms, and social networks, making fraud detection a critical task. Spatial Graph Neural Networks (GNNs) have been successfully applied to fraud detection tasks due to their strong inductive learning capabilities. However, existing spatial GNN-based methods often enhance the graph structure by excluding heterophilic neighbors during message passing to align with the homophilic bias of GNNs. Unfortunately, this approach can disrupt the original graph topology and increase uncertainty in predictions. To address these limitations, this paper proposes a novel framework, Dual-channel Heterophilic Message Passing (DHMP), for fraud detection. DHMP leverages a heterophily separation module to divide the graph into homophilic and heterophilic subgraphs, mitigating the low-pass inductive bias of traditional GNNs. It then applies shared weights to capture signals at different frequencies independently and incorporates a customized sampling strategy for training. This allows nodes to adaptively balance the contributions of various signals based on their labels. Extensive experiments on three real-world datasets demonstrate that DHMP outperforms existing methods, highlighting the importance of separating signals with different frequencies for improved fraud detection. The code is available at https://github.com/shaieesss/DHMP.
☆ DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection
Time series anomaly detection holds notable importance for risk identification and fault detection across diverse application domains. Unsupervised learning methods have become popular because they have no requirement for labels. However, due to the challenges posed by the multiplicity of abnormal patterns, the sparsity of anomalies, and the growth of data scale and complexity, these methods often fail to capture robust and representative dependencies within the time series for identifying anomalies. To enhance the ability of models to capture normal patterns of time series and avoid the retrogression of modeling ability triggered by the dependencies on high-quality prior knowledge, we propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD). Specifically, DConAD generates differential data to provide additional information about time series and utilizes transformer-based architecture to capture spatiotemporal dependencies, which enhances the robustness of unbiased representation learning ability. Furthermore, DConAD implements a novel KL divergence-based contrastive learning paradigm that only uses positive samples to avoid deviation from reconstruction and deploys the stop-gradient strategy to compel convergence. Extensive experiments on five public datasets show the superiority and effectiveness of DConAD compared with nine baselines. The code is available at https://github.com/shaieesss/DConAD.
☆ FedC4: Graph Condensation Meets Client-Client Collaboration for Efficient and Private Federated Graph Learning
Federated Graph Learning (FGL) is an emerging distributed learning paradigm that enables collaborative model training over decentralized graph-structured data while preserving local privacy. Existing FGL methods can be categorized into two optimization architectures: (1) the Server-Client (S-C) paradigm, where clients upload local models for server-side aggregation; and (2) the Client-Client (C-C) paradigm, which allows direct information exchange among clients to support personalized training. Compared to S-C, the C-C architecture better captures global graph knowledge and enables fine-grained optimization through customized peer-to-peer communication. However, current C-C methods often broadcast identical and redundant node embeddings, incurring high communication costs and privacy risks. To address this, we propose FedC4, a novel framework that combines graph Condensation with Client-Client Collaboration. Instead of transmitting raw node-level features, FedC4 distills each client's private graph into a compact set of synthetic node embeddings, reducing communication overhead and enhancing privacy. In addition, FedC4 introduces three modules that allow source clients to send distinct node representations tailored to target clients'graph structures, enabling personalized optimization with global guidance. Extensive experiments on eight real-world datasets show that FedC4 outperforms state-of-the-art baselines in both performance and communication efficiency.
comment: 10 pages, 7 figures; references added
☆ A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences
With the rapid development of machine learning in recent years, many problems in meteorology can now be addressed using AI models. In particular, data-driven algorithms have significantly improved accuracy compared to traditional methods. Meteorological data is often transformed into 2D images or 3D videos, which are then fed into AI models for learning. Additionally, these models often incorporate physical signals, such as temperature, pressure, and wind speed, to further enhance accuracy and interpretability. In this paper, we review several representative AI + Weather/Climate algorithms and propose a new paradigm where observational data from different perspectives, each with distinct physical meanings, are treated as multimodal data and integrated via transformers. Furthermore, key weather and climate knowledge can be incorporated through regularization techniques to further strengthen the model's capabilities. This new paradigm is versatile and can address a variety of tasks, offering strong generalizability. We also discuss future directions for improving model accuracy and interpretability.
comment: Perspective article
☆ Learning over von Mises-Fisher Distributions via a Wasserstein-like Geometry
We introduce a novel, geometry-aware distance metric for the family of von Mises-Fisher (vMF) distributions, which are fundamental models for directional data on the unit hypersphere. Although the vMF distribution is widely employed in a variety of probabilistic learning tasks involving spherical data, principled tools for comparing vMF distributions remain limited, primarily due to the intractability of normalization constants and the absence of suitable geometric metrics. Motivated by the theory of optimal transport, we propose a Wasserstein-like distance that decomposes the discrepancy between two vMF distributions into two interpretable components: a geodesic term capturing the angular separation between mean directions, and a variance-like term quantifying differences in concentration parameters. The derivation leverages a Gaussian approximation in the high-concentration regime to yield a tractable, closed-form expression that respects the intrinsic spherical geometry. We show that the proposed distance exhibits desirable theoretical properties and induces a latent geometric structure on the space of non-degenerate vMF distributions. As a primary application, we develop the efficient algorithms for vMF mixture reduction, enabling structure-preserving compression of mixture models in high-dimensional settings. Empirical results on synthetic datasets and real-world high-dimensional embeddings, including biomedical sentence representations and deep visual features, demonstrate the effectiveness of the proposed geometry in distinguishing distributions and supporting interpretable inference. This work expands the statistical toolbox for directional data analysis by introducing a tractable, transport-inspired distance tailored to the geometry of the hypersphere.
☆ DeepPD: Joint Phase and Object Estimation from Phase Diversity with Neural Calibration of a Deformable Mirror
Sample-induced aberrations and optical imperfections limit the resolution of fluorescence microscopy. Phase diversity is a powerful technique that leverages complementary phase information in sequentially acquired images with deliberately introduced aberrations--the phase diversities--to enable phase and object reconstruction and restore diffraction-limited resolution. These phase diversities are typically introduced into the optical path via a deformable mirror. Existing phase-diversity-based methods are limited to Zernike modes, require large numbers of diversity images, or depend on accurate mirror calibration--which are all suboptimal. We present DeepPD, a deep learning-based framework that combines neural representations of the object and wavefront with a learned model of the deformable mirror to jointly estimate both object and phase from only five images. DeepPD improves robustness and reconstruction quality over previous approaches, even under severe aberrations. We demonstrate its performance on calibration targets and biological samples, including immunolabeled myosin in fixed PtK2 cells.
☆ SConU: Selective Conformal Uncertainty in Large Language Models
As large language models are increasingly utilized in real-world applications, guarantees of task-specific metrics are essential for their reliable deployment. Previous studies have introduced various criteria of conformal uncertainty grounded in split conformal prediction, which offer user-specified correctness coverage. However, existing frameworks often fail to identify uncertainty data outliers that violate the exchangeability assumption, leading to unbounded miscoverage rates and unactionable prediction sets. In this paper, we propose a novel approach termed Selective Conformal Uncertainty (SConU), which, for the first time, implements significance tests, by developing two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level. Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions. Furthermore, we comprehensively analyze the components of the conformal procedures, aiming to approximate conditional coverage, particularly in high-stakes question-answering tasks.
☆ FGMP: Fine-Grained Mixed-Precision Weight and Activation Quantization for Hardware-Accelerated LLM Inference
Quantization is a powerful tool to improve large language model (LLM) inference efficiency by utilizing more energy-efficient low-precision datapaths and reducing memory footprint. However, accurately quantizing LLM weights and activations to low precision is challenging without degrading model accuracy. We propose fine-grained mixed precision (FGMP) quantization, a post-training mixed-precision quantization hardware-software co-design methodology that maintains accuracy while quantizing the majority of weights and activations to reduced precision. Our work makes the following contributions: 1) We develop a policy that uses the perturbation in each value, weighted by the Fisher information, to select which weight and activation blocks to keep in higher precision. This approach preserves accuracy by identifying which weight and activation blocks need to be retained in higher precision to minimize the perturbation in the model loss. 2) We also propose a sensitivity-weighted clipping approach for fine-grained quantization which helps retain accuracy for blocks that are quantized to low precision. 3) We then propose hardware augmentations to leverage the efficiency benefits of FGMP quantization. Our hardware implementation encompasses i) datapath support for FGMP at block granularity, and ii) a mixed-precision activation quantization unit to assign activation blocks to high or low precision on the fly with minimal runtime and energy overhead. Our design, prototyped using NVFP4 (an FP4 format with microscaling) as the low-precision datatype and FP8 as the high-precision datatype, facilitates efficient FGMP quantization, attaining <1% perplexity degradation on Wikitext-103 for the Llama-2-7B model relative to an all-FP8 baseline design while consuming 14% less energy during inference and requiring 30% less weight memory.
☆ Walk the Talk? Measuring the Faithfulness of Large Language Model Explanations
Large language models (LLMs) are capable of generating plausible explanations of how they arrived at an answer to a question. However, these explanations can misrepresent the model's "reasoning" process, i.e., they can be unfaithful. This, in turn, can lead to over-trust and misuse. We introduce a new approach for measuring the faithfulness of LLM explanations. First, we provide a rigorous definition of faithfulness. Since LLM explanations mimic human explanations, they often reference high-level concepts in the input question that purportedly influenced the model. We define faithfulness in terms of the difference between the set of concepts that LLM explanations imply are influential and the set that truly are. Second, we present a novel method for estimating faithfulness that is based on: (1) using an auxiliary LLM to modify the values of concepts within model inputs to create realistic counterfactuals, and (2) using a Bayesian hierarchical model to quantify the causal effects of concepts at both the example- and dataset-level. Our experiments show that our method can be used to quantify and discover interpretable patterns of unfaithfulness. On a social bias task, we uncover cases where LLM explanations hide the influence of social bias. On a medical question answering task, we uncover cases where LLM explanations provide misleading claims about which pieces of evidence influenced the model's decisions.
comment: 61 pages, 14 figures, 36 tables
☆ Predicting Stress and Damage in Carbon Fiber-Reinforced Composites Deformation Process using Composite U-Net Surrogate Model
Carbon fiber-reinforced composites (CFRC) are pivotal in advanced engineering applications due to their exceptional mechanical properties. A deep understanding of CFRC behavior under mechanical loading is essential for optimizing performance in demanding applications such as aerospace structures. While traditional Finite Element Method (FEM) simulations, including advanced techniques like Interface-enriched Generalized FEM (IGFEM), offer valuable insights, they can struggle with computational efficiency. Existing data-driven surrogate models partially address these challenges by predicting propagated damage or stress-strain behavior but fail to comprehensively capture the evolution of stress and damage throughout the entire deformation history, including crack initiation and propagation. This study proposes a novel auto-regressive composite U-Net deep learning model to simultaneously predict stress and damage fields during CFRC deformation. By leveraging the U-Net architecture's ability to capture spatial features and integrate macro- and micro-scale phenomena, the proposed model overcomes key limitations of prior approaches. The model achieves high accuracy in predicting evolution of stress and damage distribution within the microstructure of a CFRC under unidirectional strain, offering a speed-up of over 60 times compared to IGFEM.
♻ ☆ On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction WWW 2025
The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
comment: Accepted by WWW 2025
♻ ☆ Federated Communication-Efficient Multi-Objective Optimization AISTATS 2025
We study a federated version of multi-objective optimization (MOO), where a single model is trained to optimize multiple objective functions. MOO has been extensively studied in the centralized setting but is less explored in federated or distributed settings. We propose FedCMOO, a novel communication-efficient federated multi-objective optimization (FMOO) algorithm that improves the error convergence performance of the model compared to existing approaches. Unlike prior works, the communication cost of FedCMOO does not scale with the number of objectives, as each client sends a single aggregated gradient to the central server. We provide a convergence analysis of the proposed method for smooth and non-convex objective functions under milder assumptions than in prior work. In addition, we introduce a variant of FedCMOO that allows users to specify a preference over the objectives in terms of a desired ratio of the final objective values. Through extensive experiments, we demonstrate the superiority of our proposed method over baseline approaches.
comment: Accepted to AISTATS 2025
♻ ☆ Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
♻ ☆ Learning Humanoid Standing-up Control across Diverse Postures
Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems, such as fall recovery. Existing approaches are either limited to simulations that overlook hardware constraints or rely on predefined ground-specific motion trajectories, failing to enable standing up across postures in real-world scenes. To bridge this gap, we present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch, enabling robust sim-to-real transfer across diverse postures. HoST effectively learns posture-adaptive motions by leveraging a multi-critic architecture and curriculum-based training on diverse simulated terrains. To ensure successful real-world deployment, we constrain the motion with smoothness regularization and implicit motion speed bound to alleviate oscillatory and violent motions on physical hardware, respectively. After simulation-based training, the learned control policies are directly deployed on the Unitree G1 humanoid robot. Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments. Videos and code are available at https://taohuang13.github.io/humanoid-standingup.github.io/.
comment: Accepted to RSS 2025, Humanoid Standing-up Control, 12 pages
♻ ☆ EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
♻ ☆ Distributed computing for physics-based data-driven reduced modeling at scale: Application to a rotating detonation rocket engine
High-performance computing (HPC) has revolutionized our ability to perform detailed simulations of complex real-world processes. A prominent contemporary example is from aerospace propulsion, where HPC is used for rotating detonation rocket engine (RDRE) simulations in support of the design of next-generation rocket engines; however, these simulations take millions of core hours even on powerful supercomputers, which makes them impractical for engineering tasks like design exploration and risk assessment. Data-driven reduced-order models (ROMs) aim to address this limitation by constructing computationally cheap yet sufficiently accurate approximations that serve as surrogates for the high-fidelity model. This paper contributes a distributed memory algorithm that achieves fast and scalable construction of predictive physics-based ROMs trained from sparse datasets of extremely large state dimension. The algorithm learns structured physics-based ROMs that approximate the dynamical systems underlying those datasets.This enables model reduction for problems at a scale and complexity that exceeds the capabilities of standard, serial approaches. We demonstrate our algorithm's scalability using up to $2,048$ cores on the Frontera supercomputer at the Texas Advanced Computing Center. We focus on a real-world three-dimensional RDRE for which one millisecond of simulated physical time requires one million core hours on a supercomputer. Using a training dataset of $2,536$ snapshots each of state dimension $76$ million, our distributed algorithm enables the construction of a predictive data-driven reduced model in just $13$ seconds on $2,048$ cores on Frontera.
comment: 22 pages, 8 figures
♻ ☆ Three iterations of $(d-1)$-WL test distinguish non isometric clouds of $d$-dimensional points
The Weisfeiler--Lehman (WL) test is a fundamental iterative algorithm for checking isomorphism of graphs. It has also been observed that it underlies the design of several graph neural network architectures, whose capabilities and performance can be understood in terms of the expressive power of this test. Motivated by recent developments in machine learning applications to datasets involving three-dimensional objects, we study when the WL test is {\em complete} for clouds of euclidean points represented by complete distance graphs, i.e., when it can distinguish, up to isometry, any arbitrary such cloud. %arbitrary clouds of euclidean points represented by complete distance graphs. % How many dimensions of the Weisfeiler--Lehman test is enough to distinguish any two non-isometric point clouds in $d$-dimensional Euclidean space, assuming that these point clouds are given as complete graphs labeled by distances between the points? This question is important for understanding, which architectures of graph neural networks are capable of fully exploiting the spacial structure of a point cloud. Our main result states that the $(d-1)$-dimensional WL test is complete for point clouds in $d$-dimensional Euclidean space, for any $d\ge 2$, and that only three iterations of the test suffice. We also observe that the $d$-dimensional WL test only requires one iteration to achieve completeness. Our paper thus provides complete understanding of the 3-dimensional case: it was shown in previous works that 1-WL is not complete in $\mathbb{R}^3$, and we show that 2-WL is complete there. We also strengthen the lower bound for 1-WL by showing that it is unable to recognize planar point clouds in $\mathbb{R}^3$. Finally, we show that 2-WL is not complete in $\mathbb{R}^6$, leaving as an open question, whether it is complete in $\mathbb{R}^{d}$ for $d = 4,5$.
comment: Changes to previous version: new results, inability of 1-WL to recognize planar point clouds in R^3, and incompleteness of 2-WL in R^6
♻ ☆ Toward Sufficient Statistical Power in Algorithmic Bias Assessment: A Test for ABROCA
Algorithmic bias is a pressing concern in educational data mining (EDM), as it risks amplifying inequities in learning outcomes. The Area Between ROC Curves (ABROCA) metric is frequently used to measure discrepancies in model performance across demographic groups to quantify overall model fairness. However, its skewed distribution--especially when class or group imbalances exist--makes significance testing challenging. This study investigates ABROCA's distributional properties and contributes robust methods for its significance testing. Specifically, we address (1) whether ABROCA follows any known distribution, (2) how to reliably test for algorithmic bias using ABROCA, and (3) the statistical power achievable with ABROCA-based bias assessments under typical EDM sample specifications. Simulation results confirm that ABROCA does not match standard distributions, including those suited to accommodate skewness. We propose nonparametric randomization tests for ABROCA and demonstrate that reliably detecting bias with ABROCA requires large sample sizes or substantial effect sizes, particularly in imbalanced settings. Findings suggest that ABROCA-based bias evaluations based on sample sizes common in EDM tend to be underpowered, undermining the reliability of conclusions about model fairness. By offering open-source code to simulate power and statistically test ABROCA, this paper aims to foster more reliable statistical testing in EDM research. It supports broader efforts toward replicability and equity in educational modeling.
comment: Short paper accepted to Educational Data Mining (EDM) 2025
♻ ☆ FedX: Adaptive Model Decomposition and Quantization for IoT Federated Learning
Federated Learning (FL) allows collaborative training among multiple devices without data sharing, thus enabling privacy-sensitive applications on mobile or Internet of Things (IoT) devices, such as mobile health and asset tracking. However, designing an FL system with good model utility that works with low computation/communication overhead on heterogeneous, resource-constrained mobile/IoT devices is challenging. To address this problem, this paper proposes FedX, a novel adaptive model decomposition and quantization FL system for IoT. To balance utility with resource constraints on IoT devices, FedX decomposes a global FL model into different sub-networks with adaptive numbers of quantized bits for different devices. The key idea is that a device with fewer resources receives a smaller sub-network for lower overhead but utilizes a larger number of quantized bits for higher model utility, and vice versa. The quantization operations in FedX are done at the server to reduce the computational load on devices. FedX iteratively minimizes the losses in the devices' local data and in the server's public data using quantized sub-networks under a regularization term, and thus it maximizes the benefits of combining FL with model quantization through knowledge sharing among the server and devices in a cost-effective training process. Extensive experiments show that FedX significantly improves quantization times by up to 8.43X, on-device computation time by 1.5X, and total end-to-end training time by 1.36X, compared with baseline FL systems. We guarantee the global model convergence theoretically and validate local model convergence empirically, highlighting FedX's optimization efficiency.
♻ ☆ Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures
Large language models (LLMs) have demonstrated remarkable mathematical capabilities, largely driven by chain-of-thought (CoT) prompting, which decomposes complex reasoning into step-by-step solutions. This approach has enabled significant advancements, as evidenced by performance on benchmarks like GSM8K and MATH. However, the mechanisms underlying LLMs' ability to perform arithmetic in a single step of CoT remain poorly understood. Existing studies debate whether LLMs encode numerical values or rely on symbolic reasoning, while others explore attention and multi-layered processing in arithmetic tasks. In this work, we propose that LLMs learn arithmetic by capturing algebraic structures, such as commutativity and identity properties. Since these structures are observable through input-output relationships, they can generalize to unseen data. We empirically demonstrate that LLMs can learn algebraic structures using a custom dataset of arithmetic problems, as well as providing theoretical evidence showing that, under specific configurations of weights and biases, the transformer-based LLMs can generate embeddings that remain invariant to both permutations of input tokens and the presence of identity elements. Our findings indicate that leveraging algebraic structures can enhance the LLMs' arithmetic capabilities, offering insights into improving their arithmetic performance.
♻ ☆ Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Consider an edge computing setting in which a user submits queries for the solution of a linear system to an edge processor, which is subject to time-varying computing availability. The edge processor applies a probabilistic linear solver (PLS) so as to be able to respond to the user's query within the allotted time and computing budget. Feedback to the user is in the form of a set of plausible solutions. Due to model misspecification, the highest-probability-density (HPD) set obtained via a direct application of PLS does not come with coverage guarantees with respect to the true solution of the linear system. This work introduces a new method to calibrate the HPD sets produced by PLS with the aim of guaranteeing long-term coverage requirements. The proposed method, referred to as online conformal prediction-PLS (OCP-PLS), assumes sporadic feedback from cloud to edge. This enables the online calibration of uncertainty thresholds via online conformal prediction (OCP), an online optimization method previously studied in the context of prediction models. The validity of OCP-PLS is verified via experiments that bring insights into trade-offs between coverage, prediction set size, and cloud usage.
comment: This paper has been submitted to a conference
♻ ☆ Joint Graph Rewiring and Feature Denoising via Spectral Resonance ICLR
When learning from graph data, the graph and the node features both give noisy information about the node labels. In this paper we propose an algorithm to jointly denoise the features and rewire the graph (JDR), which improves the performance of downstream node classification graph neural nets (GNNs). JDR works by aligning the leading spectral spaces of graph and feature matrices. It approximately solves the associated non-convex optimization problem in a way that handles graphs with multiple classes and different levels of homophily or heterophily. We theoretically justify JDR in a stylized setting and show that it consistently outperforms existing rewiring methods on a wide range of synthetic and real-world node classification tasks.
comment: Accepted as oral at the 13th International Conference on Learning Representations (ICLR), 2025
♻ ☆ TianQuan-Climate: A Subseasonal-to-Seasonal Global Weather Model via Incorporate Climatology State
Subseasonal forecasting serves as an important support for Sustainable Development Goals (SDGs), such as climate challenges, agricultural yield and sustainable energy production. However, subseasonal forecasting is a complex task in meteorology due to dissipating initial conditions and delayed external forces. Although AI models are increasingly pushing the boundaries of this forecasting limit, they face two major challenges: error accumulation and Smoothness. To address these two challenges, we propose Climate Furnace Subseasonal-to-Seasonal (TianQuan-Climate), a novel machine learning model designed to provide global daily mean forecasts up to 45 days, covering five upper-air atmospheric variables at 13 pressure levels and two surface variables. Our proposed TianQuan-Climate has two advantages: 1) it utilizes a multi-model prediction strategy to reduce system error impacts in long-term subseasonal forecasts; 2) it incorporates a Content Fusion Module for climatological integration and extends ViT with uncertainty blocks (UD-ViT) to improve generalization by learning from uncertainty. We demonstrate the effectiveness of TianQuan-Climate on benchmarks for weather forecasting and climate projections within the 15 to 45-day range, where TianQuan-Climate outperforms existing numerical and AI methods.
♻ ☆ Symmetry-Breaking Augmentations for Ad Hoc Teamwork ICLR 2025
In dynamic collaborative settings, for artificial intelligence (AI) agents to better align with humans, they must adapt to novel teammates who utilise unforeseen strategies. While adaptation is often simple for humans, it can be challenging for AI agents. Our work introduces symmetry-breaking augmentations (SBA) as a novel approach to this challenge. By applying a symmetry-flipping operation to increase behavioural diversity among training teammates, SBA encourages agents to learn robust responses to unknown strategies, highlighting how social conventions impact human-AI alignment. We demonstrate this experimentally in two settings, showing that our approach outperforms previous ad hoc teamwork results in the challenging card game Hanabi. In addition, we propose a general metric for estimating symmetry dependency amongst a given set of policies. Our findings provide insights into how AI systems can better adapt to diverse human conventions and the core mechanics of alignment.
comment: 21 pages, 12 figures, Bidirectional Human-AI Alignment workshop, ICLR 2025
♻ ☆ Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
We introduce Goedel-Prover, an open-source language model that achieves state-of-the-art (as of April 5 2025) performance in automated formal proof generation for mathematical problems. A key challenge in this field is the scarcity of formalized mathematical statements and proofs, which we address through the following approaches. First, we train LLMs to convert natural language math problems from the Numina dataset to equivalent formal statements in Lean 4. This process creates the dataset Goedel-Pset-v1, which includes 1.64 million formal statements. Next, we develop a large dataset of formal proofs by training a series of provers. Each new prover can prove many statements that previous ones could not, and these new proofs are added to the training set for the next prover. Finally, we obtain the dataset Goedel-Pset-v1-solved, which contains proofs for over 800K statements from Goedel-Pset-v1. Supervised fine-tuning (SFT) of DeepSeek-Prover-V1.5-Base on Goedel-Pset-v1-solved (i.e., no RL) yields a Goedel-Prover-SFT that achieves a success rate of 57.6% (Pass@32) on miniF2F, surpassing the previous leader DeepSeek-Prover-V1.5-RL (trained using SFT + RL on a proprietary dataset) by 7.6%. On PutnamBench, Goedel-Prover-SFT successfully solves 7 problems (Pass@512), ranking first on the leaderboard. We provide extensive discussion of our training methodology, highlighting the key design choices that contribute to Goedel-Prover's strong performance. Further RL training (including DPO) improves Goedel-Prover-SFT's success rate to over 60% (Pass@32) on miniF2F. To aid future research, we provide extensive discussion of our training methodology and design choices. We also fully open-source our codes, models, and datasets. Additionally, we open-source formal proofs for 29.7K problems in Lean Workbook, nearly doubling the 15.7K solved by prior provers.
♻ ☆ Flow to Learn: Flow Matching on Neural Network Parameters ICLR
Foundational language models show a remarkable ability to learn new concepts during inference via context data. However, similar work for images lag behind. To address this challenge, we introduce FLoWN, a flow matching model that learns to generate neural network parameters for different tasks. Our approach models the flow on latent space, while conditioning the process on context data. Experiments verify that FLoWN attains various desiderata for a meta-learning model. In addition, it matches or exceeds baselines on in-distribution tasks, provides better initializations for classifier training, and is performant on out-of-distribution few-shot tasks while having a fine-tuning mechanism to improve performance.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
♻ ☆ Explaining Representation by Mutual Information
As interpretability gains attention in machine learning, there is a growing need for reliable models that fully explain representation content. We propose a mutual information (MI)-based method that decomposes neural network representations into three exhaustive components: total mutual information, decision-related information, and redundant information. This theoretically complete framework captures the entire input-representation relationship, surpassing partial explanations like those from Grad-CAM. Using two lightweight modules integrated into architectures such as CNNs and Transformers,we estimate these components and demonstrate their interpretive power through visualizations on ResNet and prototype network applied to image classification and few-shot learning tasks. Our approach is distinguished by three key features: 1. Rooted in mutual information theory, it delivers a thorough and theoretically grounded interpretation, surpassing the scope of existing interpretability methods. 2. Unlike conventional methods that focus on explaining decisions, our approach centers on interpreting representations. 3. It seamlessly integrates into pre-existing network architectures, requiring only fine-tuning of the inserted modules.
♻ ☆ Edge-preserving noise for diffusion models
Classical generative diffusion models learn an isotropic Gaussian denoising process, treating all spatial regions uniformly, thus neglecting potentially valuable structural information in the data. Inspired by the long-established work on anisotropic diffusion in image processing, we present a novel edge-preserving diffusion model that generalizes over existing isotropic models by considering a hybrid noise scheme. In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise. We show that our model's generative process converges faster to results that more closely match the target distribution. We demonstrate its capability to better learn the low-to-mid frequencies within the dataset, which plays a crucial role in representing shapes and structural information. Our edge-preserving diffusion process consistently outperforms state-of-the-art baselines in unconditional image generation. It is also particularly more robust for generative tasks guided by a shape-based prior, such as stroke-to-image generation. We present qualitative and quantitative results (FID and CLIP score) showing consistent improvements of up to 30% for both tasks.
♻ ☆ Representation Learning by Ranking across multiple tasks
In recent years, representation learning has become the research focus of the machine learning community. Large-scale neural networks are a crucial step toward achieving general intelligence, with their success largely attributed to their ability to learn abstract representations of data. Several learning fields are actively discussing how to learn representations, yet there is a lack of a unified perspective. We convert the representation learning problem under different tasks into a ranking problem. By adopting the ranking problem as a unified perspective, representation learning tasks can be solved in a unified manner by optimizing the ranking loss. Experiments under various learning tasks, such as classification, retrieval, multi-label learning, and regression, prove the superiority of the representation learning by ranking framework. Furthermore, experiments under self-supervised learning tasks demonstrate the significant advantage of the ranking framework in processing unsupervised training data, with data augmentation techniques further enhancing its performance.
♻ ☆ Interpretable Hybrid-Rule Temporal Point Processes
Temporal Point Processes (TPPs) are widely used for modeling event sequences in various medical domains, such as disease onset prediction, progression analysis, and clinical decision support. Although TPPs effectively capture temporal dynamics, their lack of interpretability remains a critical challenge. Recent advancements have introduced interpretable TPPs. However, these methods fail to incorporate numerical features, thereby limiting their ability to generate precise predictions. To address this issue, we propose Hybrid-Rule Temporal Point Processes (HRTPP), a novel framework that integrates temporal logic rules with numerical features, improving both interpretability and predictive accuracy in event modeling. HRTPP comprises three key components: basic intensity for intrinsic event likelihood, rule-based intensity for structured temporal dependencies, and numerical feature intensity for dynamic probability modulation. To effectively discover valid rules, we introduce a two-phase rule mining strategy with Bayesian optimization. To evaluate our method, we establish a multi-criteria assessment framework, incorporating rule validity, model fitting, and temporal predictive accuracy. Experimental results on real-world medical datasets demonstrate that HRTPP outperforms state-of-the-art interpretable TPPs in terms of predictive performance and clinical interpretability. In case studies, the rules extracted by HRTPP explain the disease progression, offering valuable contributions to medical diagnosis.
♻ ☆ Potential Field Based Deep Metric Learning CVPR 2025
Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model that instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
comment: Accepted to CVPR 2025
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, alongside a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (0.635) than to the Bronze Age Proto-Cuneiform (0.102) or Proto-Elamite (0.078). Contrary to expectations, when measured through direct script-to-script embedding comparisons, the Indus script maps closer to Tibetan-Yi Corridor scripts with a mean cosine similarity of 0.930 (CI: [0.917, 0.942]) than to contemporaneous West Asian signaries, which recorded mean similarities of 0.887 (CI: [0.863, 0.911]) and 0.855 (CI: [0.818, 0.891]). Across dimensionality reduction and clustering methods, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. These computational findings align with observed pictorial parallels in numeral systems, gender markers, and iconographic elements. Archaeological evidence of contact networks along the ancient Shu-Shendu road, coinciding with the Indus Civilization's decline, provides a plausible transmission pathway. While alternate explanations cannot be ruled out, the specificity and consistency of similarities suggest more complex cultural transmission networks between South and East Asia than previously recognized.
comment: 107 pages (43 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code available at https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ AI-based particle track identification in scintillating fibres read out with imaging sensors
This paper presents the development and application of an AI-based method for particle track identification using scintillating fibres read out with imaging sensors. We propose a variational autoencoder (VAE) to efficiently filter and identify frames containing signal from the substantial data generated by SPAD array sensors. Our VAE model, trained on purely background frames, demonstrated a high capability to distinguish frames containing particle tracks from background noise. The performance of the VAE-based anomaly detection was validated with experimental data, demonstrating the method's ability to efficiently identify relevant events with rapid processing time, suggesting a solid prospect for deployment as a fast inference tool on hardware for real-time anomaly detection. This work highlights the potential of combining advanced sensor technology with machine learning techniques to enhance particle detection and tracking.
comment: 23 pages, 13 figures
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
♻ ☆ Hierarchical graph sampling based minibatch learning with chain preservation and variance reduction
Graph sampling based Graph Convolutional Networks (GCNs) decouple the sampling from the forward and backward propagation during minibatch training, which exhibit good scalability in terms of layer depth and graph size. We propose HIS_GCNs, a hierarchical importance graph sampling based learning method. By constructing minibatches using sampled subgraphs, HIS_GCNs gives attention to the importance of both core and periphery nodes/edges in a scale-free training graph. Specifically, it preserves the centrum of the core to most minibatches, which maintains connectivity between periphery nodes, and samples periphery edges without core node interference, in order to keep more long chains composed entirely of low-degree nodes in the same minibatch. HIS_GCNs can maximize the discrete Ricci curvature (i.e., Ollivier-Ricci curvatures) of the edges in a subgraph that enables the preservation of important chains for information propagation, and can achieve a low node embedding variance and a high convergence speed. Diverse experiments on Graph Neural Networks (GNNs) with node classification tasks confirm superior performance of HIS_GCNs in both accuracy and training time. Open sourced code (https://github.com/HuQiaCHN/HIS-GCN).
comment: 26 pages, 10 figures
♻ ☆ Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: A novel sparse coding framework designed for learning adaptive representation
♻ ☆ Detection of Disease on Nasal Breath Sound by New Lightweight Architecture: Using COVID-19 as An Example
Background. Infectious diseases, particularly COVID-19, continue to be a significant global health issue. Although many countries have reduced or stopped large-scale testing measures, the detection of such diseases remains a propriety. Objective. This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones. Methodology. Nasal breathing audio from 128 patients diagnosed with the Omicron variant was collected. Mel-Frequency Cepstral Coefficients (MFCCs), a widely used feature in speech and sound analysis, were employed for extracting important characteristics from the audio signals. Additional feature selection was performed using Random Forest (RF) and Principal Component Analysis (PCA) for dimensionality reduction. A Dense-ReLU-Dropout model was trained with K-fold cross-validation (K=3), and performance metrics like accuracy, precision, recall, and F1-score were used to evaluate the model. Results. The proposed model achieved 97% accuracy in detecting COVID-19 from nasal breathing sounds, outperforming state-of-the-art methods such as those by [23] and [13]. Our Dense-ReLU-Dropout model, using RF and PCA for feature selection, achieves high accuracy with greater computational efficiency compared to existing methods that require more complex models or larger datasets. Conclusion. The findings suggest that the proposed method holds significant potential for clinical implementation, advancing smartphone-based diagnostics in infectious diseases. The Dense-ReLU-Dropout model, combined with innovative feature processing techniques, offers a promising approach for efficient and accurate COVID-19 detection, showcasing the capabilities of mobile device-based diagnostics
comment: 14 pages, 5 figures, 6 tables
♻ ☆ Hybrid Imitation-Learning Motion Planner for Urban Driving IEEE 27
With the release of open source datasets such as nuPlan and Argoverse, the research around learning-based planners has spread a lot in the last years. Existing systems have shown excellent capabilities in imitating the human driver behaviour, but they struggle to guarantee safe closed-loop driving. Conversely, optimization-based planners offer greater security in short-term planning scenarios. To confront this challenge, in this paper we propose a novel hybrid motion planner that integrates both learning-based and optimization-based techniques. Initially, a multilayer perceptron (MLP) generates a human-like trajectory, which is then refined by an optimization-based component. This component not only minimizes tracking errors but also computes a trajectory that is both kinematically feasible and collision-free with obstacles and road boundaries. Our model effectively balances safety and human-likeness, mitigating the trade-off inherent in these objectives. We validate our approach through simulation experiments and further demonstrate its efficacy by deploying it in real-world self-driving vehicles.
comment: 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC)
♻ ☆ A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers
Storage systems account for a major portion of the total cost of ownership (TCO) of warehouse-scale computers, and thus have a major impact on the overall system's efficiency. Machine learning (ML)-based methods for solving key problems in storage system efficiency, such as data placement, have shown significant promise. However, there are few known practical deployments of such methods. Studying this problem in the context of real-world hyperscale data centers at Google, we identify a number of challenges that we believe cause this lack of practical adoption. Specifically, prior work assumes a monolithic model that resides entirely within the storage layer, an unrealistic assumption in real-world deployments with frequently changing workloads. To address this problem, we introduce a cross-layer approach where workloads instead ''bring their own model''. This strategy moves ML out of the storage system and instead allows each workload to train its own lightweight model at the application layer, capturing the workload's specific characteristics. These small, interpretable models generate predictions that guide a co-designed scheduling heuristic at the storage layer, enabling adaptation to diverse online environments. We build a proof-of-concept of this approach in a production distributed computation framework at Google. Evaluations in a test deployment and large-scale simulation studies using production traces show improvements of as much as 3.47$\times$ in TCO savings compared to state-of-the-art baselines.
comment: MLSys 2025
♻ ☆ Enabling Efficient Processing of Spiking Neural Networks with On-Chip Learning on Commodity Neuromorphic Processors for Edge AI Systems IJCNN
The rising demand for energy-efficient edge AI systems (e.g., mobile agents/robots) has increased the interest in neuromorphic computing, since it offers ultra-low power/energy AI computation through spiking neural network (SNN) algorithms on neuromorphic processors. However, their efficient implementation strategy has not been comprehensively studied, hence limiting SNN deployments for edge AI systems. Toward this, we propose a design methodology to enable efficient SNN processing on commodity neuromorphic processors. To do this, we first study the key characteristics of targeted neuromorphic hardware (e.g., memory and compute budgets), and leverage this information to perform compatibility analysis for network selection. Afterward, we employ a mapping strategy for efficient SNN implementation on the targeted processor. Furthermore, we incorporate an efficient on-chip learning mechanism to update the systems' knowledge for adapting to new input classes and dynamic environments. The experimental results show that the proposed methodology leads the system to achieve low latency of inference (i.e., less than 50ms for image classification, less than 200ms for real-time object detection in video streaming, and less than 1ms in keyword recognition) and low latency of on-chip learning (i.e., less than 2ms for keyword recognition), while incurring less than 250mW of processing power and less than 15mJ of energy consumption across the respective different applications and scenarios. These results show the potential of the proposed methodology in enabling efficient edge AI systems for diverse application use-cases.
comment: Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 in Rome, Italy
♻ ☆ Jailbreaking as a Reward Misspecification Problem ICLR 2025
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. This misspecification occurs when the reward function fails to accurately capture the intended behavior, leading to misaligned model outputs. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark against various target aligned LLMs while preserving the human readability of the generated prompts. Furthermore, these attacks on open-source models demonstrate high transferability to closed-source models like GPT-4o and out-of-distribution tasks from HarmBench. Detailed analysis highlights the unique advantages of the proposed reward misspecification objective compared to previous methods, offering new insights for improving LLM safety and robustness.
comment: Accepted to ICLR 2025. Code: https://github.com/zhxieml/remiss-jailbreak
♻ ☆ Multi-agent Auto-Bidding with Latent Graph Diffusion Models
This paper proposes a diffusion-based auto-bidding framework that leverages graph representations to model large-scale auction environments. In such settings, agents must dynamically optimize bidding strategies under constraints defined by key performance indicator (KPI) metrics, all while operating in competitive environments characterized by uncertain, sparse, and stochastic variables. To address these challenges, we introduce a novel approach combining learnable graph-based embeddings with a planning-based latent diffusion model (LDM). By capturing patterns and nuances underlying the interdependence of impression opportunities and the multi-agent dynamics of the auction environment, the graph representation enable expressive computations regarding auto-bidding outcomes. With reward alignment techniques, the LDM's posterior is fine-tuned to generate auto-bidding trajectories that maximize KPI metrics while satisfying constraint thresholds. Empirical evaluations on both real-world and synthetic auction environments demonstrate significant improvements in auto-bidding performance across multiple common KPI metrics, as well as accuracy in forecasting auction outcomes.
♻ ☆ A Brain Age Residual Biomarker (BARB): Leveraging MRI-Based Models to Detect Latent Health Conditions in U.S. Veterans
Age prediction using brain imaging, such as MRIs, has achieved promising results, with several studies identifying the model's residual as a potential biomarker for chronic disease states. In this study, we developed a brain age predictive model using a dataset of 1,220 U.S. veterans (18--80 years) and convolutional neural networks (CNNs) trained on two-dimensional slices of axial T2-weighted fast spin-echo and T2-weighted fluid attenuated inversion recovery MRI images. The model, incorporating a degree-3 polynomial ensemble, achieved an $R^{2}$ of 0.816 on the testing set. Images were acquired at the level of the anterior commissure and the frontal horns of the lateral ventricles. Residual analysis was performed to assess its potential as a biomarker for five ICD-coded conditions: hypertension (HTN), diabetes mellitus (DM), mild traumatic brain injury (mTBI), illicit substance abuse/dependence (SAD), and alcohol abuse/dependence (AAD). Residuals grouped by the number of ICD-coded conditions demonstrated different trends that were statistically significant ($p = 0.002$), suggesting a relationship between disease states and predicted brain age. This association was particularly pronounced in patients over 49 years, where negative residuals (indicating advanced brain aging) correlated with the presence of multiple ICD codes. These findings support the potential of residuals as biomarkers for detecting latent health conditions.
comment: Submitted to NeuroImage
♻ ☆ Generative Learning of Densities on Manifolds
A generative modeling framework is proposed that combines diffusion models and manifold learning to efficiently sample data densities on manifolds. The approach utilizes Diffusion Maps to uncover possible low-dimensional underlying (latent) spaces in the high-dimensional data (ambient) space. Two approaches for sampling from the latent data density are described. The first is a score-based diffusion model, which is trained to map a standard normal distribution to the latent data distribution using a neural network. The second one involves solving an It\^o stochastic differential equation in the latent space. Additional realizations of the data are generated by lifting the samples back to the ambient space using Double Diffusion Maps, a recently introduced technique typically employed in studying dynamical system reduction; here the focus lies in sampling densities rather than system dynamics. The proposed approaches enable sampling high dimensional data densities restricted to low-dimensional, a priori unknown manifolds. The efficacy of the proposed framework is demonstrated through a benchmark problem and a material with multiscale structure.
♻ ☆ A Computational Theory for Efficient Model Evaluation with Causal Guarantees
In order to reduce the cost of experimental evaluation for models, we introduce a computational theory of evaluation for prediction and decision models: build evaluation model to accelerate the evaluation procedures. We prove upper bounds of generalized error and generalized causal effect error of given evaluation models. We also prove efficiency, and consistency to estimated causal effect from deployed subject to evaluation metric by prediction. To learn evaluation models, we propose a meta-learner to handle heterogeneous evaluation subjects space problem. Comparing with existed evaluation approaches, our (conditional) evaluation model reduced 24.1\%-99.0\% evaluation errors across 12 scenes, including individual medicine, scientific simulation, social experiment, business activity, and quantum trade. The evaluation time is reduced 3-7 order of magnitude comparing with experiments or simulations.
♻ ☆ Foundation Models in Federated Learning: Assessing Backdoor Vulnerabilities IJCNN 2025
Federated Learning (FL), a privacy-preserving machine learning framework, faces significant data-related challenges. For example, the lack of suitable public datasets leads to ineffective information exchange, especially in heterogeneous environments with uneven data distribution. Foundation Models (FMs) offer a promising solution by generating synthetic datasets that mimic client data distributions, aiding model initialization and knowledge sharing among clients. However, the interaction between FMs and FL introduces new attack vectors that remain largely unexplored. This work therefore assesses the backdoor vulnerabilities exploiting FMs, where attackers exploit safety issues in FMs and poison synthetic datasets to compromise the entire system. Unlike traditional attacks, these new threats are characterized by their one-time, external nature, requiring minimal involvement in FL training. Given these uniqueness, current FL defense strategies provide limited robustness against this novel attack approach. Extensive experiments across image and text domains reveal the high susceptibility of FL to these novel threats, emphasizing the urgent need for enhanced security measures in FL in the era of FMs.
comment: Xi Li and Chen Wu are equal contribution. The corresponding author is Jiaqi Wang. This paper has been accepted by IJCNN 2025
♻ ☆ Traffic Congestion Prediction Using Machine Learning Techniques
The prediction of traffic congestion can serve a crucial role in making future decisions. Although many studies have been conducted regarding congestion, most of these could not cover all the important factors (e.g., weather conditions). We proposed a prediction model for traffic congestion that can predict congestion based on day, time and several weather data (e.g., temperature, humidity). To evaluate our model, it has been tested against the traffic data of New Delhi. With this model, congestion of a road can be predicted one week ahead with an average RMSE of 1.12. Therefore, this model can be used to take preventive measure beforehand.
comment: This is an undergraduate research project and it isn't sufficiently exhaustive
♻ ☆ Graph-Based Prediction Models for Data Debiasing
Bias in data collection, arising from both under-reporting and over-reporting, poses significant challenges in critical applications such as healthcare and public safety. In this work, we introduce Graph-based Over- and Under-reporting Debiasing (GROUD), a novel graph-based optimization framework that debiases reported data by jointly estimating the true incident counts and the associated reporting bias probabilities. By modeling the bias as a smooth signal over a graph constructed from geophysical or feature-based similarities, our convex formulation not only ensures a unique solution but also comes with theoretical recovery guarantees under certain assumptions. We validate GROUD on both challenging simulated experiments and real-world datasets -- including Atlanta emergency calls and COVID-19 vaccine adverse event reports -- demonstrating its robustness and superior performance in accurately recovering debiased counts. This approach paves the way for more reliable downstream decision-making in systems affected by reporting irregularities.
comment: We submitted this arXiv version by mistake. We have decided to update the original submission (arXiv:2307.07898) instead of submitting a separate article
Multimedia 3
☆ Balancing Privacy and Action Performance: A Penalty-Driven Approach to Image Anonymization CVPR
The rapid development of video surveillance systems for object detection, tracking, activity recognition, and anomaly detection has revolutionized our day-to-day lives while setting alarms for privacy concerns. It isn't easy to strike a balance between visual privacy and action recognition performance in most computer vision models. Is it possible to safeguard privacy without sacrificing performance? It poses a formidable challenge, as even minor privacy enhancements can lead to substantial performance degradation. To address this challenge, we propose a privacy-preserving image anonymization technique that optimizes the anonymizer using penalties from the utility branch, ensuring improved action recognition performance while minimally affecting privacy leakage. This approach addresses the trade-off between minimizing privacy leakage and maintaining high action performance. The proposed approach is primarily designed to align with the regulatory standards of the EU AI Act and GDPR, ensuring the protection of personally identifiable information while maintaining action performance. To the best of our knowledge, we are the first to introduce a feature-based penalty scheme that exclusively controls the action features, allowing freedom to anonymize private attributes. Extensive experiments were conducted to validate the effectiveness of the proposed method. The results demonstrate that applying a penalty to anonymizer from utility branch enhances action performance while maintaining nearly consistent privacy leakage across different penalty settings.
comment: Accepted to CVPRW 2025
☆ ROI-Guided Point Cloud Geometry Compression Towards Human and Machine Vision
Point cloud data is pivotal in applications like autonomous driving, virtual reality, and robotics. However, its substantial volume poses significant challenges in storage and transmission. In order to obtain a high compression ratio, crucial semantic details usually confront severe damage, leading to difficulties in guaranteeing the accuracy of downstream tasks. To tackle this problem, we are the first to introduce a novel Region of Interest (ROI)-guided Point Cloud Geometry Compression (RPCGC) method for human and machine vision. Our framework employs a dual-branch parallel structure, where the base layer encodes and decodes a simplified version of the point cloud, and the enhancement layer refines this by focusing on geometry details. Furthermore, the residual information of the enhancement layer undergoes refinement through an ROI prediction network. This network generates mask information, which is then incorporated into the residuals, serving as a strong supervision signal. Additionally, we intricately apply these mask details in the Rate-Distortion (RD) optimization process, with each point weighted in the distortion calculation. Our loss function includes RD loss and detection loss to better guide point cloud encoding for the machine. Experiment results demonstrate that RPCGC achieves exceptional compression performance and better detection accuracy (10% gain) than some learning-based compression methods at high bitrates in ScanNet and SUN RGB-D datasets.
comment: 10 pages, 5 figures
♻ ☆ SwinGS: Sliding Window Gaussian Splatting for Volumetric Video Streaming with Arbitrary Length
Recent advances in 3D Gaussian Splatting (3DGS) have garnered significant attention in computer vision and computer graphics due to its high rendering speed and remarkable quality. While extant research has endeavored to extend the application of 3DGS from static to dynamic scenes, such efforts have been consistently impeded by excessive model sizes, constraints on video duration, and content deviation. These limitations significantly compromise the streamability of dynamic 3D Gaussian models, thereby restricting their utility in downstream applications, including volumetric video, autonomous vehicle, and immersive technologies such as virtual, augmented, and mixed reality. This paper introduces SwinGS, a novel framework for training, delivering, and rendering volumetric video in a real-time streaming fashion. To address the aforementioned challenges and enhance streamability, SwinGS integrates spacetime Gaussian with Markov Chain Monte Carlo (MCMC) to adapt the model to fit various 3D scenes across frames, in the meantime employing a sliding window captures Gaussian snapshots for each frame in an accumulative way. We implement a prototype of SwinGS and demonstrate its streamability across various datasets and scenes. Additionally, we develop an interactive WebGL viewer enabling real-time volumetric video playback on most devices with modern browsers, including smartphones and tablets. Experimental results show that SwinGS reduces transmission costs by 83.6% compared to previous work and could be easily scaled to volumetric videos with arbitrary length with no increasing of required GPU resources.
Computer Vision and Pattern Recognition 124
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ Outlier-Robust Multi-Model Fitting on Quantum Annealers CVPR 2025
Multi-model fitting (MMF) presents a significant challenge in Computer Vision, particularly due to its combinatorial nature. While recent advancements in quantum computing offer promise for addressing NP-hard problems, existing quantum-based approaches for model fitting are either limited to a single model or consider multi-model scenarios within outlier-free datasets. This paper introduces a novel approach, the robust quantum multi-model fitting (R-QuMF) algorithm, designed to handle outliers effectively. Our method leverages the intrinsic capabilities of quantum hardware to tackle combinatorial challenges inherent in MMF tasks, and it does not require prior knowledge of the exact number of models, thereby enhancing its practical applicability. By formulating the problem as a maximum set coverage task for adiabatic quantum computers (AQC), R-QuMF outperforms existing quantum techniques, demonstrating superior performance across various synthetic and real-world 3D datasets. Our findings underscore the potential of quantum computing in addressing the complexities of MMF, especially in real-world scenarios with noisy and outlier-prone data.
comment: Accepted at CVPR 2025 Workshop "Image Matching: Local Features & Beyond"
☆ CheXWorld: Exploring Image World Modeling for Radiograph Representation Learning CVPR 2025
Humans can develop internal world models that encode common sense knowledge, telling them how the world works and predicting the consequences of their actions. This concept has emerged as a promising direction for establishing general-purpose machine-learning models in recent preliminary works, e.g., for visual representation learning. In this paper, we present CheXWorld, the first effort towards a self-supervised world model for radiographic images. Specifically, our work develops a unified framework that simultaneously models three aspects of medical knowledge essential for qualified radiologists, including 1) local anatomical structures describing the fine-grained characteristics of local tissues (e.g., architectures, shapes, and textures); 2) global anatomical layouts describing the global organization of the human body (e.g., layouts of organs and skeletons); and 3) domain variations that encourage CheXWorld to model the transitions across different appearance domains of radiographs (e.g., varying clarity, contrast, and exposure caused by collecting radiographs from different hospitals, devices, or patients). Empirically, we design tailored qualitative and quantitative analyses, revealing that CheXWorld successfully captures these three dimensions of medical knowledge. Furthermore, transfer learning experiments across eight medical image classification and segmentation benchmarks showcase that CheXWorld significantly outperforms existing SSL methods and large-scale medical foundation models. Code & pre-trained models are available at https://github.com/LeapLabTHU/CheXWorld.
comment: Accepted by CVPR 2025
☆ RefComp: A Reference-guided Unified Framework for Unpaired Point Cloud Completion
The unpaired point cloud completion task aims to complete a partial point cloud by using models trained with no ground truth. Existing unpaired point cloud completion methods are class-aware, i.e., a separate model is needed for each object class. Since they have limited generalization capabilities, these methods perform poorly in real-world scenarios when confronted with a wide range of point clouds of generic 3D objects. In this paper, we propose a novel unpaired point cloud completion framework, namely the Reference-guided Completion (RefComp) framework, which attains strong performance in both the class-aware and class-agnostic training settings. The RefComp framework transforms the unpaired completion problem into a shape translation problem, which is solved in the latent feature space of the partial point clouds. To this end, we introduce the use of partial-complete point cloud pairs, which are retrieved by using the partial point cloud to be completed as a template. These point cloud pairs are used as reference data to guide the completion process. Our RefComp framework uses a reference branch and a target branch with shared parameters for shape fusion and shape translation via a Latent Shape Fusion Module (LSFM) to enhance the structural features along the completion pipeline. Extensive experiments demonstrate that the RefComp framework achieves not only state-of-the-art performance in the class-aware training setting but also competitive results in the class-agnostic training setting on both virtual scans and real-world datasets.
☆ Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
☆ Fighting Fires from Space: Leveraging Vision Transformers for Enhanced Wildfire Detection and Characterization
Wildfires are increasing in intensity, frequency, and duration across large parts of the world as a result of anthropogenic climate change. Modern hazard detection and response systems that deal with wildfires are under-equipped for sustained wildfire seasons. Recent work has proved automated wildfire detection using Convolutional Neural Networks (CNNs) trained on satellite imagery are capable of high-accuracy results. However, CNNs are computationally expensive to train and only incorporate local image context. Recently, Vision Transformers (ViTs) have gained popularity for their efficient training and their ability to include both local and global contextual information. In this work, we show that ViT can outperform well-trained and specialized CNNs to detect wildfires on a previously published dataset of LandSat-8 imagery. One of our ViTs outperforms the baseline CNN comparison by 0.92%. However, we find our own implementation of CNN-based UNet to perform best in every category, showing their sustained utility in image tasks. Overall, ViTs are comparably capable in detecting wildfires as CNNs, though well-tuned CNNs are still the best technique for detecting wildfire with our UNet providing an IoU of 93.58%, better than the baseline UNet by some 4.58%.
☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
☆ Fragile Watermarking for Image Certification Using Deep Steganographic Embedding
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
☆ Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 14pages, 8 figures
☆ DAM-Net: Domain Adaptation Network with Micro-Labeled Fine-Tuning for Change Detection
Change detection (CD) in remote sensing imagery plays a crucial role in various applications such as urban planning, damage assessment, and resource management. While deep learning approaches have significantly advanced CD performance, current methods suffer from poor domain adaptability, requiring extensive labeled data for retraining when applied to new scenarios. This limitation severely restricts their practical applications across different datasets. In this work, we propose DAM-Net: a Domain Adaptation Network with Micro-Labeled Fine-Tuning for CD. Our network introduces adversarial domain adaptation to CD for, utilizing a specially designed segmentation-discriminator and alternating training strategy to enable effective transfer between domains. Additionally, we propose a novel Micro-Labeled Fine-Tuning approach that strategically selects and labels a minimal amount of samples (less than 1%) to enhance domain adaptation. The network incorporates a Multi-Temporal Transformer for feature fusion and optimized backbone structure based on previous research. Experiments conducted on the LEVIR-CD and WHU-CD datasets demonstrate that DAM-Net significantly outperforms existing domain adaptation methods, achieving comparable performance to semi-supervised approaches that require 10% labeled data while using only 0.3% labeled samples. Our approach significantly advances cross-dataset CD applications and provides a new paradigm for efficient domain adaptation in remote sensing. The source code of DAM-Net will be made publicly available upon publication.
comment: 13 pages, 6 figures
☆ ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as \textit{in front of} or \textit{behind}. These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms the current state-of-the-art framework, CoMPaSS, by 13.33% on established spatial consistency benchmarks.
☆ LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks
IoT devices have limited hardware capabilities and are often deployed in remote areas. Consequently, advanced vision models surpass such devices' processing and storage capabilities, requiring offloading of such tasks to the cloud. However, remote areas often rely on LPWANs technology with limited bandwidth, high packet loss rates, and extremely low duty cycles, which makes fast offloading for time-sensitive inference challenging. Today's approaches, which are deployable on weak devices, generate a non-progressive bit stream, and therefore, their decoding quality suffers strongly when data is only partially available on the cloud at a deadline due to limited bandwidth or packet losses. In this paper, we introduce LimitNet, a progressive, content-aware image compression model designed for extremely weak devices and networks. LimitNet's lightweight progressive encoder prioritizes critical data during transmission based on the content of the image, which gives the cloud the opportunity to run inference even with partial data availability. Experimental results demonstrate that LimitNet, on average, compared to SOTA, achieves 14.01 p.p. (percentage point) higher accuracy on ImageNet1000, 18.01 pp on CIFAR100, and 0.1 higher mAP@0.5 on COCO. Also, on average, LimitNet saves 61.24% bandwidth on ImageNet1000, 83.68% on CIFAR100, and 42.25% on the COCO dataset compared to SOTA, while it only has 4% more encoding time compared to JPEG (with a fixed quality) on STM32F7 (Cortex-M7).
comment: This is the author's accepted manuscript. The Version of Record is available at: https://doi.org/10.1145/3643832.3661856
☆ MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
comment: 9 pages, 6 figures
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
☆ Few-Shot Referring Video Single- and Multi-Object Segmentation via Cross-Modal Affinity with Instance Sequence Matching
Referring video object segmentation (RVOS) aims to segment objects in videos guided by natural language descriptions. We propose FS-RVOS, a Transformer-based model with two key components: a cross-modal affinity module and an instance sequence matching strategy, which extends FS-RVOS to multi-object segmentation (FS-RVMOS). Experiments show FS-RVOS and FS-RVMOS outperform state-of-the-art methods across diverse benchmarks, demonstrating superior robustness and accuracy.
comment: 23 pages, 10 figures
☆ Green Robotic Mixed Reality with Gaussian Splatting IEEE
Realizing green communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images at high frequencies through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSRMR), which achieves a lower energy consumption and makes a concrete step towards green RoboMR. The crux to GSRMR is to build a GS model which enables the simulator to opportunistically render a photo-realistic view from the robot's pose, thereby reducing the need for excessive image uploads. Since the GS model may involve discrepancies compared to the actual environments, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation across different frames. The GSCLO problem is solved by an accelerated penalty optimization (APO) algorithm. Experiments demonstrate that the proposed GSRMR reduces the communication energy by over 10x compared with RoboMR. Furthermore, the proposed GSRMR with APO outperforms extensive baseline schemes, in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
comment: 6 pages, 5 figures, accepted by IEEE INFOCOM 2025 Workshop on Networked Robotics and Communication Systems
☆ Zebrafish Counting Using Event Stream Data
Zebrafish share a high degree of homology with human genes and are commonly used as model organism in biomedical research. For medical laboratories, counting zebrafish is a daily task. Due to the tiny size of zebrafish, manual visual counting is challenging. Existing counting methods are either not applicable to small fishes or have too many limitations. The paper proposed a zebrafish counting algorithm based on the event stream data. Firstly, an event camera is applied for data acquisition. Secondly, camera calibration and image fusion were preformed successively. Then, the trajectory information was used to improve the counting accuracy. Finally, the counting results were averaged over an empirical of period and rounded up to get the final results. To evaluate the accuracy of the algorithm, 20 zebrafish were put in a four-liter breeding tank. Among 100 counting trials, the average accuracy reached 97.95%. As compared with traditional algorithms, the proposed one offers a simpler implementation and achieves higher accuracy.
☆ Analysing the Robustness of Vision-Language-Models to Common Corruptions
Vision-language models (VLMs) have demonstrated impressive capabilities in understanding and reasoning about visual and textual content. However, their robustness to common image corruptions remains under-explored. In this work, we present the first comprehensive analysis of VLM robustness across 19 corruption types from the ImageNet-C benchmark, spanning four categories: noise, blur, weather, and digital distortions. We introduce two new benchmarks, TextVQA-C and GQA-C, to systematically evaluate how corruptions affect scene text understanding and object-based reasoning, respectively. Our analysis reveals that transformer-based VLMs exhibit distinct vulnerability patterns across tasks: text recognition deteriorates most severely under blur and snow corruptions, while object reasoning shows higher sensitivity to corruptions such as frost and impulse noise. We connect these observations to the frequency-domain characteristics of different corruptions, revealing how transformers' inherent bias toward low-frequency processing explains their differential robustness patterns. Our findings provide valuable insights for developing more corruption-robust vision-language models for real-world applications.
comment: arXiv admin note: text overlap with arXiv:2304.10592, arXiv:2301.12597 by other authors
☆ AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.
☆ EyecareGPT: Boosting Comprehensive Ophthalmology Understanding with Tailored Dataset, Benchmark and Model
Medical Large Vision-Language Models (Med-LVLMs) demonstrate significant potential in healthcare, but their reliance on general medical data and coarse-grained global visual understanding limits them in intelligent ophthalmic diagnosis. Currently, intelligent ophthalmic diagnosis faces three major challenges: (i) Data. The lack of deeply annotated, high-quality, multi-modal ophthalmic visual instruction data; (ii) Benchmark. The absence of a comprehensive and systematic benchmark for evaluating diagnostic performance; (iii) Model. The difficulty of adapting holistic visual architectures to fine-grained, region-specific ophthalmic lesion identification. In this paper, we propose the Eyecare Kit, which systematically tackles the aforementioned three key challenges with the tailored dataset, benchmark and model: First, we construct a multi-agent data engine with real-life ophthalmology data to produce Eyecare-100K, a high-quality ophthalmic visual instruction dataset. Subsequently, we design Eyecare-Bench, a benchmark that comprehensively evaluates the overall performance of LVLMs on intelligent ophthalmic diagnosis tasks across multiple dimensions. Finally, we develop the EyecareGPT, optimized for fine-grained ophthalmic visual understanding thoroughly, which incorporates an adaptive resolution mechanism and a layer-wise dense connector. Extensive experimental results indicate that the EyecareGPT achieves state-of-the-art performance in a range of ophthalmic tasks, underscoring its significant potential for the advancement of open research in intelligent ophthalmic diagnosis. Our project is available at https://github.com/DCDmllm/EyecareGPT.
☆ Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles. Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting; however, they often fall short in providing a complete characterization of road potholes. In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes using digital images captured from a dashboard-mounted camera. Our work includes the creation of a novel dataset, comprising both images and their corresponding depth maps, collected from diverse road environments in Al-Khobar city and the KFUPM campus in Saudi Arabia. Our approach performs pothole detection and segmentation to precisely localize potholes and calculate their area. Subsequently, the segmented image is merged with its depth map to extract detailed depth information about the potholes. This integration of segmentation and depth data offers a more comprehensive characterization compared to previous deep learning-based road anomaly detection systems. Overall, this method not only has the potential to significantly enhance autonomous vehicle navigation by improving the detection and characterization of road hazards but also assists road maintenance authorities in responding more effectively to road damage.
☆ Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
☆ Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
☆ DenSe-AdViT: A novel Vision Transformer for Dense SAR Object Detection
Vision Transformer (ViT) has achieved remarkable results in object detection for synthetic aperture radar (SAR) images, owing to its exceptional ability to extract global features. However, it struggles with the extraction of multi-scale local features, leading to limited performance in detecting small targets, especially when they are densely arranged. Therefore, we propose Density-Sensitive Vision Transformer with Adaptive Tokens (DenSe-AdViT) for dense SAR target detection. We design a Density-Aware Module (DAM) as a preliminary component that generates a density tensor based on target distribution. It is guided by a meticulously crafted objective metric, enabling precise and effective capture of the spatial distribution and density of objects. To integrate the multi-scale information enhanced by convolutional neural networks (CNNs) with the global features derived from the Transformer, Density-Enhanced Fusion Module (DEFM) is proposed. It effectively refines attention toward target-survival regions with the assist of density mask and the multiple sources features. Notably, our DenSe-AdViT achieves 79.8% mAP on the RSDD dataset and 92.5% on the SIVED dataset, both of which feature a large number of densely distributed vehicle targets.
☆ SupResDiffGAN a new approach for the Super-Resolution task
In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
comment: 25th International Conference on Computational Science
☆ Visual Intention Grounding for Egocentric Assistants
Visual grounding associates textual descriptions with objects in an image. Conventional methods target third-person image inputs and named object queries. In applications such as AI assistants, the perspective shifts -- inputs are egocentric, and objects may be referred to implicitly through needs and intentions. To bridge this gap, we introduce EgoIntention, the first dataset for egocentric visual intention grounding. EgoIntention challenges multimodal LLMs to 1) understand and ignore unintended contextual objects and 2) reason about uncommon object functionalities. Benchmark results show that current models misidentify context objects and lack affordance understanding in egocentric views. We also propose Reason-to-Ground (RoG) instruction tuning; it enables hybrid training with normal descriptions and egocentric intentions with a chained intention reasoning and object grounding mechanism. RoG significantly outperforms naive finetuning and hybrid training on EgoIntention, while maintaining or slightly improving naive description grounding. This advancement enables unified visual grounding for egocentric and exocentric visual inputs while handling explicit object queries and implicit human intentions.
☆ Compile Scene Graphs with Reinforcement Learning
Next token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. Given the structured nature of scene graphs, we design a graph-centric reward function that integrates node-level rewards, edge-level rewards, and a format consistency reward. Our experiments demonstrate that rule-based RL substantially enhances model performance in the SGG task, achieving a zero failure rate--unlike supervised fine-tuning (SFT), which struggles to generalize effectively. Our code is available at https://github.com/gpt4vision/R1-SGG.
☆ Cross-Hierarchical Bidirectional Consistency Learning for Fine-Grained Visual Classification
Fine-Grained Visual Classification (FGVC) aims to categorize closely related subclasses, a task complicated by minimal inter-class differences and significant intra-class variance. Existing methods often rely on additional annotations for image classification, overlooking the valuable information embedded in Tree Hierarchies that depict hierarchical label relationships. To leverage this knowledge to improve classification accuracy and consistency, we propose a novel Cross-Hierarchical Bidirectional Consistency Learning (CHBC) framework. The CHBC framework extracts discriminative features across various hierarchies using a specially designed module to decompose and enhance attention masks and features. We employ bidirectional consistency loss to regulate the classification outcomes across different hierarchies, ensuring label prediction consistency and reducing misclassification. Experiments on three widely used FGVC datasets validate the effectiveness of the CHBC framework. Ablation studies further investigate the application strategies of feature enhancement and consistency constraints, underscoring the significant contributions of the proposed modules.
☆ FocusTrack: A Self-Adaptive Local Sampling Algorithm for Efficient Anti-UAV Tracking
Anti-UAV tracking poses significant challenges, including small target sizes, abrupt camera motion, and cluttered infrared backgrounds. Existing tracking paradigms can be broadly categorized into global- and local-based methods. Global-based trackers, such as SiamDT, achieve high accuracy by scanning the entire field of view but suffer from excessive computational overhead, limiting real-world deployment. In contrast, local-based methods, including OSTrack and ROMTrack, efficiently restrict the search region but struggle when targets undergo significant displacements due to abrupt camera motion. Through preliminary experiments, it is evident that a local tracker, when paired with adaptive search region adjustment, can significantly enhance tracking accuracy, narrowing the gap between local and global trackers. To address this challenge, we propose FocusTrack, a novel framework that dynamically refines the search region and strengthens feature representations, achieving an optimal balance between computational efficiency and tracking accuracy. Specifically, our Search Region Adjustment (SRA) strategy estimates the target presence probability and adaptively adjusts the field of view, ensuring the target remains within focus. Furthermore, to counteract feature degradation caused by varying search regions, the Attention-to-Mask (ATM) module is proposed. This module integrates hierarchical information, enriching the target representations with fine-grained details. Experimental results demonstrate that FocusTrack achieves state-of-the-art performance, obtaining 67.7% AUC on AntiUAV and 62.8% AUC on AntiUAV410, outperforming the baseline tracker by 8.5% and 9.1% AUC, respectively. In terms of efficiency, FocusTrack surpasses global-based trackers, requiring only 30G MACs and achieving 143 fps with FocusTrack (SRA) and 44 fps with the full version, both enabling real-time tracking.
comment: 13pages, 13 figures
☆ ViG3D-UNet: Volumetric Vascular Connectivity-Aware Segmentation via 3D Vision Graph Representation
Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from the volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints. To address this issue, a 3D vision graph neural network framework, named ViG3D-UNet, was introduced. This method integrates 3D graph representation and aggregation within a U-shaped architecture to facilitate continuous vascular segmentation. The ViG3D module captures volumetric vascular connectivity and topology, while the convolutional module extracts fine vascular details. These two branches are combined through channel attention to form the encoder feature. Subsequently, a paperclip-shaped offset decoder minimizes redundant computations in the sparse feature space and restores the feature map size to match the original input dimensions. To evaluate the effectiveness of the proposed approach for continuous vascular segmentation, evaluations were performed on two public datasets, ASOCA and ImageCAS. The segmentation results show that the ViG3D-UNet surpassed competing methods in maintaining vascular segmentation connectivity while achieving high segmentation accuracy. Our code will be available soon.
☆ FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
☆ LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
☆ KAN or MLP? Point Cloud Shows the Way Forward
Multi-Layer Perceptrons (MLPs) have become one of the fundamental architectural component in point cloud analysis due to its effective feature learning mechanism. However, when processing complex geometric structures in point clouds, MLPs' fixed activation functions struggle to efficiently capture local geometric features, while suffering from poor parameter efficiency and high model redundancy. In this paper, we propose PointKAN, which applies Kolmogorov-Arnold Networks (KANs) to point cloud analysis tasks to investigate their efficacy in hierarchical feature representation. First, we introduce a Geometric Affine Module (GAM) to transform local features, improving the model's robustness to geometric variations. Next, in the Local Feature Processing (LFP), a parallel structure extracts both group-level features and global context, providing a rich representation of both fine details and overall structure. Finally, these features are combined and processed in the Global Feature Processing (GFP). By repeating these operations, the receptive field gradually expands, enabling the model to capture complete geometric information of the point cloud. To overcome the high parameter counts and computational inefficiency of standard KANs, we develop Efficient-KANs in the PointKAN-elite variant, which significantly reduces parameters while maintaining accuracy. Experimental results demonstrate that PointKAN outperforms PointMLP on benchmark datasets such as ModelNet40, ScanObjectNN, and ShapeNetPart, with particularly strong performance in Few-shot Learning task. Additionally, PointKAN achieves substantial reductions in parameter counts and computational complexity (FLOPs). This work highlights the potential of KANs-based architectures in 3D vision and opens new avenues for research in point cloud understanding.
☆ HAECcity: Open-Vocabulary Scene Understanding of City-Scale Point Clouds with Superpoint Graph Clustering CVPR
Traditional 3D scene understanding techniques are generally predicated on hand-annotated label sets, but in recent years a new class of open-vocabulary 3D scene understanding techniques has emerged. Despite the success of this paradigm on small scenes, existing approaches cannot scale efficiently to city-scale 3D datasets. In this paper, we present Hierarchical vocab-Agnostic Expert Clustering (HAEC), after the latin word for 'these', a superpoint graph clustering based approach which utilizes a novel mixture of experts graph transformer for its backbone. We administer this highly scalable approach to the first application of open-vocabulary scene understanding on the SensatUrban city-scale dataset. We also demonstrate a synthetic labeling pipeline which is derived entirely from the raw point clouds with no hand-annotation. Our technique can help unlock complex operations on dense urban 3D scenes and open a new path forward in the processing of digital twins.
comment: Accepted for publication through the upcoming CVPR Workshop on open scene understanding with foundation models (OPENSUN3D)
☆ Leveraging Automatic CAD Annotations for Supervised Learning in 3D Scene Understanding SC
High-level 3D scene understanding is essential in many applications. However, the challenges of generating accurate 3D annotations make development of deep learning models difficult. We turn to recent advancements in automatic retrieval of synthetic CAD models, and show that data generated by such methods can be used as high-quality ground truth for training supervised deep learning models. More exactly, we employ a pipeline akin to the one previously used to automatically annotate objects in ScanNet scenes with their 9D poses and CAD models. This time, we apply it to the recent ScanNet++ v1 dataset, which previously lacked such annotations. Our findings demonstrate that it is not only possible to train deep learning models on these automatically-obtained annotations but that the resulting models outperform those trained on manually annotated data. We validate this on two distinct tasks: point cloud completion and single-view CAD model retrieval and alignment. Our results underscore the potential of automatic 3D annotations to enhance model performance while significantly reducing annotation costs. To support future research in 3D scene understanding, we will release our annotations, which we call SCANnotate++, along with our trained models.
comment: Github Page: https://github.com/stefan-ainetter/SCANnotatepp
☆ HDBFormer: Efficient RGB-D Semantic Segmentation with A Heterogeneous Dual-Branch Framework IEEE
In RGB-D semantic segmentation for indoor scenes, a key challenge is effectively integrating the rich color information from RGB images with the spatial distance information from depth images. However, most existing methods overlook the inherent differences in how RGB and depth images express information. Properly distinguishing the processing of RGB and depth images is essential to fully exploiting their unique and significant characteristics. To address this, we propose a novel heterogeneous dual-branch framework called HDBFormer, specifically designed to handle these modality differences. For RGB images, which contain rich detail, we employ both a basic and detail encoder to extract local and global features. For the simpler depth images, we propose LDFormer, a lightweight hierarchical encoder that efficiently extracts depth features with fewer parameters. Additionally, we introduce the Modality Information Interaction Module (MIIM), which combines transformers with large kernel convolutions to interact global and local information across modalities efficiently. Extensive experiments show that HDBFormer achieves state-of-the-art performance on the NYUDepthv2 and SUN-RGBD datasets. The code is available at: https://github.com/Weishuobin/HDBFormer.
comment: 6 pages, 4 figures, published to IEEE Signal Processing Letter
☆ MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
☆ WeatherGen: A Unified Diverse Weather Generator for LiDAR Point Clouds via Spider Mamba Diffusion
3D scene perception demands a large amount of adverse-weather LiDAR data, yet the cost of LiDAR data collection presents a significant scaling-up challenge. To this end, a series of LiDAR simulators have been proposed. Yet, they can only simulate a single adverse weather with a single physical model, and the fidelity of the generated data is quite limited. This paper presents WeatherGen, the first unified diverse-weather LiDAR data diffusion generation framework, significantly improving fidelity. Specifically, we first design a map-based data producer, which can provide a vast amount of high-quality diverse-weather data for training purposes. Then, we utilize the diffusion-denoising paradigm to construct a diffusion model. Among them, we propose a spider mamba generator to restore the disturbed diverse weather data gradually. The spider mamba models the feature interactions by scanning the LiDAR beam circle or central ray, excellently maintaining the physical structure of the LiDAR data. Subsequently, following the generator to transfer real-world knowledge, we design a latent feature aligner. Afterward, we devise a contrastive learning-based controller, which equips weather control signals with compact semantic knowledge through language supervision, guiding the diffusion model to generate more discriminative data. Extensive evaluations demonstrate the high generation quality of WeatherGen. Through WeatherGen, we construct the mini-weather dataset, promoting the performance of the downstream task under adverse weather conditions. Code is available: https://github.com/wuyang98/weathergen
☆ Zero-Shot Industrial Anomaly Segmentation with Image-Aware Prompt Generation PAKDD 2025
Anomaly segmentation is essential for industrial quality, maintenance, and stability. Existing text-guided zero-shot anomaly segmentation models are effective but rely on fixed prompts, limiting adaptability in diverse industrial scenarios. This highlights the need for flexible, context-aware prompting strategies. We propose Image-Aware Prompt Anomaly Segmentation (IAP-AS), which enhances anomaly segmentation by generating dynamic, context-aware prompts using an image tagging model and a large language model (LLM). IAP-AS extracts object attributes from images to generate context-aware prompts, improving adaptability and generalization in dynamic and unstructured industrial environments. In our experiments, IAP-AS improves the F1-max metric by up to 10%, demonstrating superior adaptability and generalization. It provides a scalable solution for anomaly segmentation across industries
comment: Accepted to PAKDD 2025, 12 pages
☆ A Novel Hybrid Approach for Retinal Vessel Segmentation with Dynamic Long-Range Dependency and Multi-Scale Retinal Edge Fusion Enhancement
Accurate retinal vessel segmentation provides essential structural information for ophthalmic image analysis. However, existing methods struggle with challenges such as multi-scale vessel variability, complex curvatures, and ambiguous boundaries. While Convolutional Neural Networks (CNNs), Transformer-based models and Mamba-based architectures have advanced the field, they often suffer from vascular discontinuities or edge feature ambiguity. To address these limitations, we propose a novel hybrid framework that synergistically integrates CNNs and Mamba for high-precision retinal vessel segmentation. Our approach introduces three key innovations: 1) The proposed High-Resolution Edge Fuse Network is a high-resolution preserving hybrid segmentation framework that combines a multi-scale backbone with the Multi-scale Retina Edge Fusion (MREF) module to enhance edge features, ensuring accurate and robust vessel segmentation. 2) The Dynamic Snake Visual State Space block combines Dynamic Snake Convolution with Mamba to adaptively capture vessel curvature details and long-range dependencies. An improved eight-directional 2D Snake-Selective Scan mechanism and a dynamic weighting strategy enhance the perception of complex vascular topologies. 3) The MREF module enhances boundary precision through multi-scale edge feature aggregation, suppressing noise while emphasizing critical vessel structures across scales. Experiments on three public datasets demonstrate that our method achieves state-of-the-art performance, particularly in maintaining vascular continuity and effectively segmenting vessels in low-contrast regions. This work provides a robust method for clinical applications requiring accurate retinal vessel analysis. The code is available at https://github.com/frank-oy/HREFNet.
☆ Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
☆ EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting
In this paper, we explore an open research problem concerning the reconstruction of 3D scenes from images. Recent methods have adopt 3D Gaussian Splatting (3DGS) to produce 3D scenes due to its efficient training process. However, these methodologies may generate incomplete 3D scenes or blurred multiviews. This is because of (1) inaccurate 3DGS point initialization and (2) the tendency of 3DGS to flatten 3D Gaussians with the sparse-view input. To address these issues, we propose a novel framework EG-Gaussian, which utilizes epipolar geometry and graph networks for 3D scene reconstruction. Initially, we integrate epipolar geometry into the 3DGS initialization phase to enhance initial 3DGS point construction. Then, we specifically design a graph learning module to refine 3DGS spatial features, in which we incorporate both spatial coordinates and angular relationships among neighboring points. Experiments on indoor and outdoor benchmark datasets demonstrate that our approach significantly improves reconstruction accuracy compared to 3DGS-based methods.
☆ Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration
We present a novel Adaptive Distribution Generator that leverages a quantum walks-based approach to generate high precision and efficiency of target probability distributions. Our method integrates variational quantum circuits with discrete-time quantum walks, specifically, split-step quantum walks and their entangled extensions, to dynamically tune coin parameters and drive the evolution of quantum states towards desired distributions. This enables accurate one-dimensional probability modeling for applications such as financial simulation and structured two-dimensional pattern generation exemplified by digit representations(0~9). Implemented within the CUDA-Q framework, our approach exploits GPU acceleration to significantly reduce computational overhead and improve scalability relative to conventional methods. Extensive benchmarks demonstrate that our Quantum Walks-Based Adaptive Distribution Generator achieves high simulation fidelity and bridges the gap between theoretical quantum algorithms and practical high-performance computation.
comment: 17 pages, 5 figures
☆ OBIFormer: A Fast Attentive Denoising Framework for Oracle Bone Inscriptions
Oracle bone inscriptions (OBIs) are the earliest known form of Chinese characters and serve as a valuable resource for research in anthropology and archaeology. However, most excavated fragments are severely degraded due to thousands of years of natural weathering, corrosion, and man-made destruction, making automatic OBI recognition extremely challenging. Previous methods either focus on pixel-level information or utilize vanilla transformers for glyph-based OBI denoising, which leads to tremendous computational overhead. Therefore, this paper proposes a fast attentive denoising framework for oracle bone inscriptions, i.e., OBIFormer. It leverages channel-wise self-attention, glyph extraction, and selective kernel feature fusion to reconstruct denoised images precisely while being computationally efficient. Our OBIFormer achieves state-of-the-art denoising performance for PSNR and SSIM metrics on synthetic and original OBI datasets. Furthermore, comprehensive experiments on a real oracle dataset demonstrate the great potential of our OBIFormer in assisting automatic OBI recognition. The code will be made available at https://github.com/LJHolyGround/OBIFormer.
☆ Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
☆ U-Shape Mamba: State Space Model for faster diffusion CVPR 2025
Diffusion models have become the most popular approach for high-quality image generation, but their high computational cost still remains a significant challenge. To address this problem, we propose U-Shape Mamba (USM), a novel diffusion model that leverages Mamba-based layers within a U-Net-like hierarchical structure. By progressively reducing sequence length in the encoder and restoring it in the decoder through Mamba blocks, USM significantly lowers computational overhead while maintaining strong generative capabilities. Experimental results against Zigma, which is currently the most efficient Mamba-based diffusion model, demonstrate that USM achieves one-third the GFlops, requires less memory and is faster, while outperforming Zigma in image quality. Frechet Inception Distance (FID) is improved by 15.3, 0.84 and 2.7 points on AFHQ, CelebAHQ and COCO datasets, respectively. These findings highlight USM as a highly efficient and scalable solution for diffusion-based generative models, making high-quality image synthesis more accessible to the research community while reducing computational costs.
comment: Accepeted at CVPR 2025 eLVM workshop
☆ Early Timestep Zero-Shot Candidate Selection for Instruction-Guided Image Editing
Despite recent advances in diffusion models, achieving reliable image generation and editing remains challenging due to the inherent diversity induced by stochastic noise in the sampling process. Instruction-guided image editing with diffusion models offers user-friendly capabilities, yet editing failures, such as background distortion, frequently occur. Users often resort to trial and error, adjusting seeds or prompts to achieve satisfactory results, which is inefficient. While seed selection methods exist for Text-to-Image (T2I) generation, they depend on external verifiers, limiting applicability, and evaluating multiple seeds increases computational complexity. To address this, we first establish a multiple-seed-based image editing baseline using background consistency scores, achieving Best-of-N performance without supervision. Building on this, we introduce ELECT (Early-timestep Latent Evaluation for Candidate Selection), a zero-shot framework that selects reliable seeds by estimating background mismatches at early diffusion timesteps, identifying the seed that retains the background while modifying only the foreground. ELECT ranks seed candidates by a background inconsistency score, filtering unsuitable samples early based on background consistency while preserving editability. Beyond standalone seed selection, ELECT integrates into instruction-guided editing pipelines and extends to Multimodal Large-Language Models (MLLMs) for joint seed and prompt selection, further improving results when seed selection alone is insufficient. Experiments show that ELECT reduces computational costs (by 41 percent on average and up to 61 percent) while improving background consistency and instruction adherence, achieving around 40 percent success rates in previously failed cases - without any external supervision or training.
☆ Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
☆ HMPE:HeatMap Embedding for Efficient Transformer-Based Small Object Detection
Current Transformer-based methods for small object detection continue emerging, yet they have still exhibited significant shortcomings. This paper introduces HeatMap Position Embedding (HMPE), a novel Transformer Optimization technique that enhances object detection performance by dynamically integrating positional encoding with semantic detection information through heatmap-guided adaptive learning.We also innovatively visualize the HMPE method, offering clear visualization of embedded information for parameter fine-tuning.We then create Multi-Scale ObjectBox-Heatmap Fusion Encoder (MOHFE) and HeatMap Induced High-Quality Queries for Decoder (HIDQ) modules. These are designed for the encoder and decoder, respectively, to generate high-quality queries and reduce background noise queries.Using both heatmap embedding and Linear-Snake Conv(LSConv) feature engineering, we enhance the embedding of massively diverse small object categories and reduced the decoder multihead layers, thereby accelerating both inference and training.In the generalization experiments, our approach outperforme the baseline mAP by 1.9% on the small object dataset (NWPU VHR-10) and by 1.2% on the general dataset (PASCAL VOC). By employing HMPE-enhanced embedding, we are able to reduce the number of decoder layers from eight to a minimum of three, significantly decreasing both inference and training costs.
☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
☆ Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping
Semantic segmentation of SAR images has garnered significant attention in remote sensing due to the immunity of SAR sensors to cloudy weather and light conditions. Nevertheless, SAR imagery lacks detailed information and is plagued by significant speckle noise, rendering the annotation or segmentation of SAR images a formidable task. Recent efforts have resorted to annotating paired optical-SAR images to generate pseudo-labels through the utilization of an optical image segmentation network. However, these pseudo-labels are laden with noise, leading to suboptimal performance in SAR image segmentation. In this study, we introduce a more precise method for generating pseudo-labels by incorporating semi-supervised learning alongside a novel image resolution alignment augmentation. Furthermore, we introduce a symmetric cross-entropy loss to mitigate the impact of noisy pseudo-labels. Additionally, a bag of training and testing tricks is utilized to generate better land-cover mapping results. Our experiments on the GRSS data fusion contest indicate the effectiveness of the proposed method, which achieves first place. The code is available at https://github.com/StuLiu/DFC2025Track1.git.
☆ Neural Ganglion Sensors: Learning Task-specific Event Cameras Inspired by the Neural Circuit of the Human Retina
Inspired by the data-efficient spiking mechanism of neurons in the human eye, event cameras were created to achieve high temporal resolution with minimal power and bandwidth requirements by emitting asynchronous, per-pixel intensity changes rather than conventional fixed-frame rate images. Unlike retinal ganglion cells (RGCs) in the human eye, however, which integrate signals from multiple photoreceptors within a receptive field to extract spatio-temporal features, conventional event cameras do not leverage local spatial context when deciding which events to fire. Moreover, the eye contains around 20 different kinds of RGCs operating in parallel, each attuned to different features or conditions. Inspired by this biological design, we introduce Neural Ganglion Sensors, an extension of traditional event cameras that learns task-specific spatio-temporal retinal kernels (i.e., RGC "events"). We evaluate our design on two challenging tasks: video interpolation and optical flow. Our results demonstrate that our biologically inspired sensing improves performance relative to conventional event cameras while reducing overall event bandwidth. These findings highlight the promise of RGC-inspired event sensors for edge devices and other low-power, real-time applications requiring efficient, high-resolution visual streams.
☆ MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
☆ SatelliteCalculator: A Multi-Task Vision Foundation Model for Quantitative Remote Sensing Inversion
Quantitative remote sensing inversion plays a critical role in environmental monitoring, enabling the estimation of key ecological variables such as vegetation indices, canopy structure, and carbon stock. Although vision foundation models have achieved remarkable progress in classification and segmentation tasks, their application to physically interpretable regression remains largely unexplored. Furthermore, the multi-spectral nature and geospatial heterogeneity of remote sensing data pose significant challenges for generalization and transferability. To address these issues, we introduce SatelliteCalculator, the first vision foundation model tailored for quantitative remote sensing inversion. By leveraging physically defined index formulas, we automatically construct a large-scale dataset of over one million paired samples across eight core ecological indicators. The model integrates a frozen Swin Transformer backbone with a prompt-guided architecture, featuring cross-attentive adapters and lightweight task-specific MLP decoders. Experiments on the Open-Canopy benchmark demonstrate that SatelliteCalculator achieves competitive accuracy across all tasks while significantly reducing inference cost. Our results validate the feasibility of applying foundation models to quantitative inversion, and provide a scalable framework for task-adaptive remote sensing estimation.
☆ Temporal Propagation of Asymmetric Feature Pyramid for Surgical Scene Segmentation
Surgical scene segmentation is crucial for robot-assisted laparoscopic surgery understanding. Current approaches face two challenges: (i) static image limitations including ambiguous local feature similarities and fine-grained structural details, and (ii) dynamic video complexities arising from rapid instrument motion and persistent visual occlusions. While existing methods mainly focus on spatial feature extraction, they fundamentally overlook temporal dependencies in surgical video streams. To address this, we present temporal asymmetric feature propagation network, a bidirectional attention architecture enabling cross-frame feature propagation. The proposed method contains a temporal query propagator that integrates multi-directional consistency constraints to enhance frame-specific feature representation, and an aggregated asymmetric feature pyramid module that preserves discriminative features for anatomical structures and surgical instruments. Our framework uniquely enables both temporal guidance and contextual reasoning for surgical scene understanding. Comprehensive evaluations on two public benchmarks show the proposed method outperforms the current SOTA methods by a large margin, with +16.4\% mIoU on EndoVis2018 and +3.3\% mAP on Endoscapes2023. The code will be publicly available after paper acceptance.
☆ Circular Image Deturbulence using Quasi-conformal Geometry
The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations.The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
☆ HSACNet: Hierarchical Scale-Aware Consistency Regularized Semi-Supervised Change Detection ICME 2025
Semi-supervised change detection (SSCD) aims to detect changes between bi-temporal remote sensing images by utilizing limited labeled data and abundant unlabeled data. Existing methods struggle in complex scenarios, exhibiting poor performance when confronted with noisy data. They typically neglect intra-layer multi-scale features while emphasizing inter-layer fusion, harming the integrity of change objects with different scales. In this paper, we propose HSACNet, a Hierarchical Scale-Aware Consistency regularized Network for SSCD. Specifically, we integrate Segment Anything Model 2 (SAM2), using its Hiera backbone as the encoder to extract inter-layer multi-scale features and applying adapters for parameter-efficient fine-tuning. Moreover, we design a Scale-Aware Differential Attention Module (SADAM) that can precisely capture intra-layer multi-scale change features and suppress noise. Additionally, a dual-augmentation consistency regularization strategy is adopted to effectively utilize the unlabeled data. Extensive experiments across four CD benchmarks demonstrate that our HSACNet achieves state-of-the-art performance, with reduced parameters and computational cost.
comment: 7 pages, 8 figures, accepted by ICME 2025
☆ Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction
Recent advances in data-driven geometric multi-view 3D reconstruction foundation models (e.g., DUSt3R) have shown remarkable performance across various 3D vision tasks, facilitated by the release of large-scale, high-quality 3D datasets. However, as we observed, constrained by their matching-based principles, the reconstruction quality of existing models suffers significant degradation in challenging regions with limited matching cues, particularly in weakly textured areas and low-light conditions. To mitigate these limitations, we propose to harness the inherent robustness of monocular geometry estimation to compensate for the inherent shortcomings of matching-based methods. Specifically, we introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks. This integration substantially enhances the robustness of multi-view reconstruction systems, leading to high-quality feed-forward reconstructions. Comprehensive experiments across multiple benchmarks demonstrate that our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
☆ LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ ProgRoCC: A Progressive Approach to Rough Crowd Counting
As the number of individuals in a crowd grows, enumeration-based techniques become increasingly infeasible and their estimates increasingly unreliable. We propose instead an estimation-based version of the problem: we label Rough Crowd Counting that delivers better accuracy on the basis of training data that is easier to acquire. Rough crowd counting requires only rough annotations of the number of targets in an image, instead of the more traditional, and far more expensive, per-target annotations. We propose an approach to the rough crowd counting problem based on CLIP, termed ProgRoCC. Specifically, we introduce a progressive estimation learning strategy that determines the object count through a coarse-to-fine approach. This approach delivers answers quickly, outperforms the state-of-the-art in semi- and weakly-supervised crowd counting. In addition, we design a vision-language matching adapter that optimizes key-value pairs by mining effective matches of two modalities to refine the visual features, thereby improving the final performance. Extensive experimental results on three widely adopted crowd counting datasets demonstrate the effectiveness of our method.
comment: Under review
☆ CytoFM: The first cytology foundation model
Cytology is essential for cancer diagnostics and screening due to its minimally invasive nature. However, the development of robust deep learning models for digital cytology is challenging due to the heterogeneity in staining and preparation methods of samples, differences across organs, and the limited availability of large, diverse, annotated datasets. Developing a task-specific model for every cytology application is impractical and non-cytology-specific foundation models struggle to generalize to tasks in this domain where the emphasis is on cell morphology. To address these challenges, we introduce CytoFM, the first cytology self-supervised foundation model. Using iBOT, a self-supervised Vision Transformer (ViT) training framework incorporating masked image modeling and self-distillation, we pretrain CytoFM on a diverse collection of cytology datasets to learn robust, transferable representations. We evaluate CytoFM on multiple downstream cytology tasks, including breast cancer classification and cell type identification, using an attention-based multiple instance learning framework. Our results demonstrate that CytoFM performs better on two out of three downstream tasks than existing foundation models pretrained on histopathology (UNI) or natural images (iBOT-Imagenet). Visualizations of learned representations demonstrate our model is able to attend to cytologically relevant features. Despite a small pre-training dataset, CytoFM's promising results highlight the ability of task-agnostic pre-training approaches to learn robust and generalizable features from cytology data.
☆ Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
☆ BeetleVerse: A study on taxonomic classification of ground beetles
Ground beetles are a highly sensitive and speciose biological indicator, making them vital for monitoring biodiversity. However, they are currently an underutilized resource due to the manual effort required by taxonomic experts to perform challenging species differentiations based on subtle morphological differences, precluding widespread applications. In this paper, we evaluate 12 vision models on taxonomic classification across four diverse, long-tailed datasets spanning over 230 genera and 1769 species, with images ranging from controlled laboratory settings to challenging field-collected (in-situ) photographs. We further explore taxonomic classification in two important real-world contexts: sample efficiency and domain adaptation. Our results show that the Vision and Language Transformer combined with an MLP head is the best performing model, with 97\% accuracy at genus and 94\% at species level. Sample efficiency analysis shows that we can reduce train data requirements by up to 50\% with minimal compromise in performance. The domain adaptation experiments reveal significant challenges when transferring models from lab to in-situ images, highlighting a critical domain gap. Overall, our study lays a foundation for large-scale automated taxonomic classification of beetles, and beyond that, advances sample-efficient learning and cross-domain adaptation for diverse long-tailed ecological datasets.
☆ POET: Supporting Prompting Creativity and Personalization with Automated Expansion of Text-to-Image Generation
State-of-the-art visual generative AI tools hold immense potential to assist users in the early ideation stages of creative tasks -- offering the ability to generate (rather than search for) novel and unprecedented (instead of existing) images of considerable quality that also adhere to boundless combinations of user specifications. However, many large-scale text-to-image systems are designed for broad applicability, yielding conventional output that may limit creative exploration. They also employ interaction methods that may be difficult for beginners. Given that creative end users often operate in diverse, context-specific ways that are often unpredictable, more variation and personalization are necessary. We introduce POET, a real-time interactive tool that (1) automatically discovers dimensions of homogeneity in text-to-image generative models, (2) expands these dimensions to diversify the output space of generated images, and (3) learns from user feedback to personalize expansions. An evaluation with 28 users spanning four creative task domains demonstrated POET's ability to generate results with higher perceived diversity and help users reach satisfaction in fewer prompts during creative tasks, thereby prompting them to deliberate and reflect more on a wider range of possible produced results during the co-creative process. Focusing on visual creativity, POET offers a first glimpse of how interaction techniques of future text-to-image generation tools may support and align with more pluralistic values and the needs of end users during the ideation stages of their work.
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
☆ Accelerated Optimization of Implicit Neural Representations for CT Reconstruction IEEE
Inspired by their success in solving challenging inverse problems in computer vision, implicit neural representations (INRs) have been recently proposed for reconstruction in low-dose/sparse-view X-ray computed tomography (CT). An INR represents a CT image as a small-scale neural network that takes spatial coordinates as inputs and outputs attenuation values. Fitting an INR to sinogram data is similar to classical model-based iterative reconstruction methods. However, training INRs with losses and gradient-based algorithms can be prohibitively slow, taking many thousands of iterations to converge. This paper investigates strategies to accelerate the optimization of INRs for CT reconstruction. In particular, we propose two approaches: (1) using a modified loss function with improved conditioning, and (2) an algorithm based on the alternating direction method of multipliers. We illustrate that both of these approaches significantly accelerate INR-based reconstruction of a synthetic breast CT phantom in a sparse-view setting.
comment: IEEE ISBI 2025
☆ Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations.
☆ Point-Driven Interactive Text and Image Layer Editing Using Diffusion Models
We present DanceText, a training-free framework for multilingual text editing in images, designed to support complex geometric transformations and achieve seamless foreground-background integration. While diffusion-based generative models have shown promise in text-guided image synthesis, they often lack controllability and fail to preserve layout consistency under non-trivial manipulations such as rotation, translation, scaling, and warping. To address these limitations, DanceText introduces a layered editing strategy that separates text from the background, allowing geometric transformations to be performed in a modular and controllable manner. A depth-aware module is further proposed to align appearance and perspective between the transformed text and the reconstructed background, enhancing photorealism and spatial consistency. Importantly, DanceText adopts a fully training-free design by integrating pretrained modules, allowing flexible deployment without task-specific fine-tuning. Extensive experiments on the AnyWord-3M benchmark demonstrate that our method achieves superior performance in visual quality, especially under large-scale and complex transformation scenarios.
☆ VideoPASTA: 7K Preference Pairs That Matter for Video-LLM Alignment
Video-language models (Video-LLMs) excel at understanding video content but struggle with spatial relationships, temporal ordering, and cross-frame continuity. To address these limitations, we introduce VideoPASTA (Preference Alignment with Spatio-Temporal-Cross Frame Adversaries), a framework that enhances Video-LLMs through targeted preference optimization. VideoPASTA trains models to distinguish accurate video representations from carefully generated adversarial examples that deliberately violate spatial, temporal, or cross-frame relations. By applying Direct Preference Optimization to just 7,020 preference pairs, VideoPASTA learns robust representations that capture fine-grained spatial relationships and long-range temporal dynamics. Experiments on standard video benchmarks show significant relative performance gains of 3.05% on VideoMME, 1.97% on NeXTQA, and 1.31% on LongVideoBench, over the baseline Qwen2.5-VL model. These results demonstrate that targeted alignment, rather than massive pretraining or architectural modifications, effectively addresses core video-language challenges. Notably, VideoPASTA achieves these improvements without human annotation or captioning, relying on just 32-frame sampling, compared to the 96-frame, multi-GPU setups of prior work. This efficiency makes our approach a scalable, plug-and-play solution that seamlessly integrates with existing models while preserving their capabilities.
☆ Retinex-guided Histogram Transformer for Mask-free Shadow Removal CVPR 2025
While deep learning methods have achieved notable progress in shadow removal, many existing approaches rely on shadow masks that are difficult to obtain, limiting their generalization to real-world scenes. In this work, we propose ReHiT, an efficient mask-free shadow removal framework based on a hybrid CNN-Transformer architecture guided by Retinex theory. We first introduce a dual-branch pipeline to separately model reflectance and illumination components, and each is restored by our developed Illumination-Guided Hybrid CNN-Transformer (IG-HCT) module. Second, besides the CNN-based blocks that are capable of learning residual dense features and performing multi-scale semantic fusion, multi-scale semantic fusion, we develop the Illumination-Guided Histogram Transformer Block (IGHB) to effectively handle non-uniform illumination and spatially complex shadows. Extensive experiments on several benchmark datasets validate the effectiveness of our approach over existing mask-free methods. Trained solely on the NTIRE 2025 Shadow Removal Challenge dataset, our solution delivers competitive results with one of the smallest parameter sizes and fastest inference speeds among top-ranked entries, highlighting its applicability for real-world applications with limited computational resources. The code is available at https://github.com/dongw22/oath.
comment: Accpeted by CVPR 2025 NTIRE Workshop, Retinex Guidance, Histogram Transformer
☆ Infrared Vision Systems for Emergency Vehicle Driver Assistance in Low-Visibility Conditions
This study investigates the potential of infrared (IR) camera technology to enhance driver safety for emergency vehicles operating in low-visibility conditions, particularly at night and in dense fog. Such environments significantly increase the risk of collisions, especially for tow trucks and snowplows that must remain operational in challenging conditions. Conventional driver assistance systems often struggle under these conditions due to limited visibility. In contrast, IR cameras, which detect the thermal signatures of obstacles, offer a promising alternative. The evaluation combines controlled laboratory experiments, real-world field tests, and surveys of emergency vehicle operators. In addition to assessing detection performance, the study examines the feasibility of retrofitting existing Department of Transportation (DoT) fleets with cost-effective IR-based driver assistance systems. Results underscore the utility of IR technology in enhancing driver awareness and provide data-driven recommendations for scalable deployment across legacy emergency vehicle fleets.
☆ Towards Scale-Aware Low-Light Enhancement via Structure-Guided Transformer Design CVPR 2025
Current Low-light Image Enhancement (LLIE) techniques predominantly rely on either direct Low-Light (LL) to Normal-Light (NL) mappings or guidance from semantic features or illumination maps. Nonetheless, the intrinsic ill-posedness of LLIE and the difficulty in retrieving robust semantics from heavily corrupted images hinder their effectiveness in extremely low-light environments. To tackle this challenge, we present SG-LLIE, a new multi-scale CNN-Transformer hybrid framework guided by structure priors. Different from employing pre-trained models for the extraction of semantics or illumination maps, we choose to extract robust structure priors based on illumination-invariant edge detectors. Moreover, we develop a CNN-Transformer Hybrid Structure-Guided Feature Extractor (HSGFE) module at each scale with in the UNet encoder-decoder architecture. Besides the CNN blocks which excels in multi-scale feature extraction and fusion, we introduce a Structure-Guided Transformer Block (SGTB) in each HSGFE that incorporates structural priors to modulate the enhancement process. Extensive experiments show that our method achieves state-of-the-art performance on several LLIE benchmarks in both quantitative metrics and visual quality. Our solution ranks second in the NTIRE 2025 Low-Light Enhancement Challenge. Code is released at https://github.com/minyan8/imagine.
comment: Accepted by CVPR 2025 NTIRE Workshop, Structure prior, CNN-Transformer, LLIE
♻ ☆ High-Resolution Frame Interpolation with Patch-based Cascaded Diffusion
Despite the recent progress, existing frame interpolation methods still struggle with processing extremely high resolution input and handling challenging cases such as repetitive textures, thin objects, and large motion. To address these issues, we introduce a patch-based cascaded pixel diffusion model for high resolution frame interpolation, HIFI, that excels in these scenarios while achieving competitive performance on standard benchmarks. Cascades, which generate a series of images from low to high resolution, can help significantly with large or complex motion that require both global context for a coarse solution and detailed context for high resolution output. However, contrary to prior work on cascaded diffusion models which perform diffusion on increasingly large resolutions, we use a single model that always performs diffusion at the same resolution and upsamples by processing patches of the inputs and the prior solution. At inference time, this drastically reduces memory usage and allows a single model, solving both frame interpolation (base model's task) and spatial up-sampling, saving training cost as well. HIFI excels at high-resolution images and complex repeated textures that require global context, achieving comparable or state-of-the-art performance on various benchmarks (Vimeo, Xiph, X-Test, and SEPE-8K). We further introduce a new dataset, LaMoR, that focuses on particularly challenging cases, and HIFI significantly outperforms other baselines. Please visit our project page for video results: https://hifi-diffusion.github.io
comment: Project page: https://hifi-diffusion.github.io/
♻ ☆ ODHSR: Online Dense 3D Reconstruction of Humans and Scenes from Monocular Videos CVPR 2025
Creating a photorealistic scene and human reconstruction from a single monocular in-the-wild video figures prominently in the perception of a human-centric 3D world. Recent neural rendering advances have enabled holistic human-scene reconstruction but require pre-calibrated camera and human poses, and days of training time. In this work, we introduce a novel unified framework that simultaneously performs camera tracking, human pose estimation and human-scene reconstruction in an online fashion. 3D Gaussian Splatting is utilized to learn Gaussian primitives for humans and scenes efficiently, and reconstruction-based camera tracking and human pose estimation modules are designed to enable holistic understanding and effective disentanglement of pose and appearance. Specifically, we design a human deformation module to reconstruct the details and enhance generalizability to out-of-distribution poses faithfully. Aiming to learn the spatial correlation between human and scene accurately, we introduce occlusion-aware human silhouette rendering and monocular geometric priors, which further improve reconstruction quality. Experiments on the EMDB and NeuMan datasets demonstrate superior or on-par performance with existing methods in camera tracking, human pose estimation, novel view synthesis and runtime. Our project page is at https://eth-ait.github.io/ODHSR.
comment: Accepted at CVPR 2025
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text ICLR 2025
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: Accepted at ICLR 2025. Original paper name: VCR: Visual Caption Restoration
♻ ☆ Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction CVPR 2025
We present GDFusion, a temporal fusion method for vision-based 3D semantic occupancy prediction (VisionOcc). GDFusion opens up the underexplored aspects of temporal fusion within the VisionOcc framework, focusing on both temporal cues and fusion strategies. It systematically examines the entire VisionOcc pipeline, identifying three fundamental yet previously overlooked temporal cues: scene-level consistency, motion calibration, and geometric complementation. These cues capture diverse facets of temporal evolution and make distinct contributions across various modules in the VisionOcc framework. To effectively fuse temporal signals across heterogeneous representations, we propose a novel fusion strategy by reinterpreting the formulation of vanilla RNNs. This reinterpretation leverages gradient descent on features to unify the integration of diverse temporal information, seamlessly embedding the proposed temporal cues into the network. Extensive experiments on nuScenes demonstrate that GDFusion significantly outperforms established baselines. Notably, on Occ3D benchmark, it achieves 1.4\%-4.8\% mIoU improvements and reduces memory consumption by 27\%-72\%.
comment: CVPR 2025
♻ ☆ Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models with high efficiency through Flexible Progressive Supervised Fine-tuning (FP-SFT). Equipped with our proposed Unambiguous image Representation (UniRep), Lumina-mGPT can flexibly generate high-quality images of varying aspect ratios. Building on the strong image generation capabilities, we further explore Ominiponent Supervised Fine-tuning (Omni-SFT), an initial attempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like text-to-image/multiview generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multi-turn visual question answering, showing the rosy potential of the technical direction. Codes and checkpoints are available at https://github.com/Alpha-VLLM/Lumina-mGPT.
comment: Code available at: https://github.com/Alpha-VLLM/Lumina-mGPT
♻ ☆ Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields
This paper presents a novel latent 3D diffusion model for the generation of neural voxel fields, aiming to achieve accurate part-aware structures. Compared to existing methods, there are two key designs to ensure high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions that can accurately capture rich textural and geometric details. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition and producing high-quality rendering results. Through extensive experimentation and comparisons with state-of-the-art methods, we evaluate our approach across four different classes of data. The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
comment: This paper is accepted by TVCG
♻ ☆ MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
Recently, the state space model Mamba has demonstrated efficient long-sequence modeling capabilities, particularly for addressing long-sequence visual tasks in 3D medical imaging. However, existing generative self-supervised learning methods have not yet fully unleashed Mamba's potential for handling long-range dependencies because they overlook the inherent causal properties of state space sequences in masked modeling. To address this challenge, we propose a general-purpose pre-training framework called MambaMIM, a masked image modeling method based on a novel TOKen-Interpolation strategy (TOKI) for the selective structure state space sequence, which learns causal relationships of state space within the masked sequence. Further, MambaMIM introduces a bottom-up 3D hybrid masking strategy to maintain a masking consistency across different architectures and can be used on any single or hybrid Mamba architecture to enhance its multi-scale and long-range representation capability. We pre-train MambaMIM on a large-scale dataset of 6.8K CT scans and evaluate its performance across eight public medical segmentation benchmarks. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for medical image pre-training. In particular, when we apply the MambaMIM to a customized architecture that hybridizes MedNeXt and Vision Mamba, we consistently obtain the state-of-the-art segmentation performance. The code is available at: https://github.com/FengheTan9/MambaMIM.
comment: Accepted by Medical Image Analysis. Code: https://github.com/FengheTan9/MambaMIM
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Robust image classification with multi-modal large language models
Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, MultiShield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. MultiShield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that MultiShield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.
comment: Paper accepted at Pattern Recognition Letters journal Keywords: adversarial examples, rejection defense, multimodal-informed systems, machine learning security
♻ ☆ Energy-Latency Attacks via Sponge Poisoning
Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
comment: Paper accepted at Information Sciences journal; 20 pages Keywords: energy-latency attacks, sponge attack, machine learning security, adversarial machine learning
♻ ☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
♻ ☆ DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation NAACL2025
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
comment: Project page: https://hunyuan-dialoggen.github.io/. Accepted to NAACL2025
♻ ☆ LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations
Contrastive instance discrimination methods outperform supervised learning in downstream tasks such as image classification and object detection. However, these methods rely heavily on data augmentation during representation learning, which can lead to suboptimal results if not implemented carefully. A common augmentation technique in contrastive learning is random cropping followed by resizing. This can degrade the quality of representation learning when the two random crops contain distinct semantic content. To tackle this issue, we introduce LeOCLR (Leveraging Original Images for Contrastive Learning of Visual Representations), a framework that employs a novel instance discrimination approach and an adapted loss function. This method prevents the loss of important semantic features caused by mapping different object parts during representation learning. Our experiments demonstrate that LeOCLR consistently improves representation learning across various datasets, outperforming baseline models. For instance, LeOCLR surpasses MoCo-v2 by 5.1% on ImageNet-1K in linear evaluation and outperforms several other methods on transfer learning and object detection tasks.
comment: 15 pages, 5 figures, 9 tables - accepted at TMLR 10/2024; V4 corrected some typos in the references
♻ ☆ IReNe: Instant Recoloring of Neural Radiance Fields
Advances in NERFs have allowed for 3D scene reconstructions and novel view synthesis. Yet, efficiently editing these representations while retaining photorealism is an emerging challenge. Recent methods face three primary limitations: they're slow for interactive use, lack precision at object boundaries, and struggle to ensure multi-view consistency. We introduce IReNe to address these limitations, enabling swift, near real-time color editing in NeRF. Leveraging a pre-trained NeRF model and a single training image with user-applied color edits, IReNe swiftly adjusts network parameters in seconds. This adjustment allows the model to generate new scene views, accurately representing the color changes from the training image while also controlling object boundaries and view-specific effects. Object boundary control is achieved by integrating a trainable segmentation module into the model. The process gains efficiency by retraining only the weights of the last network layer. We observed that neurons in this layer can be classified into those responsible for view-dependent appearance and those contributing to diffuse appearance. We introduce an automated classification approach to identify these neuron types and exclusively fine-tune the weights of the diffuse neurons. This further accelerates training and ensures consistent color edits across different views. A thorough validation on a new dataset, with edited object colors, shows significant quantitative and qualitative advancements over competitors, accelerating speeds by 5x to 500x.
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ AnomalyControl: Learning Cross-modal Semantic Features for Controllable Anomaly Synthesis
Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.
♻ ☆ Unleashing the Power of CNN and Transformer for Balanced RGB-Event Video Recognition
Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
comment: Accepted by Machine Intelligence Research, DOI: 10.1007/s11633-025-1555-3
♻ ☆ Transformation trees -- documentation of multimodal image registration
Multimodal image registration plays a key role in creating digital patient models by combining data from different imaging techniques into a single coordinate system. This process often involves multiple sequential and interconnected transformations, which must be well-documented to ensure transparency and reproducibility. In this paper, we propose the use of transformation trees as a method for structured recording and management of these transformations. This approach has been implemented in the dpVision software and uses a dedicated .dpw file format to store hierarchical relationships between images, transformations, and motion data. Transformation trees allow precise tracking of all image processing steps, reduce the need to store multiple copies of the same data, and enable the indirect registration of images that do not share common reference points. This improves the reproducibility of the analyses and facilitates later processing and integration of images from different sources. The practical application of this method is demonstrated with examples from orthodontics, including the integration of 3D face scans, intraoral scans, and CBCT images, as well as the documentation of mandibular motion. Beyond orthodontics, this method can be applied in other fields that require systematic management of image registration processes, such as maxillofacial surgery, oncology, and biomechanical analysis. Maintaining long-term data consistency is essential for both scientific research and clinical practice. It enables easier comparison of results in longitudinal studies, improves retrospective analysis, and supports the development of artificial intelligence algorithms by providing standardized and well-documented datasets. The proposed approach enhances data organization, allows for efficient analysis, and facilitates the reuse of information in future studies and diagnostic procedures.
comment: 28 pages, 15 figures
♻ ☆ SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
♻ ☆ CholecInstanceSeg: A Tool Instance Segmentation Dataset for Laparoscopic Surgery
In laparoscopic and robotic surgery, precise tool instance segmentation is an essential technology for advanced computer-assisted interventions. Although publicly available procedures of routine surgeries exist, they often lack comprehensive annotations for tool instance segmentation. Additionally, the majority of standard datasets for tool segmentation are derived from porcine(pig) surgeries. To address this gap, we introduce CholecInstanceSeg, the largest open-access tool instance segmentation dataset to date. Derived from the existing CholecT50 and Cholec80 datasets, CholecInstanceSeg provides novel annotations for laparoscopic cholecystectomy procedures in patients. Our dataset comprises 41.9k annotated frames extracted from 85 clinical procedures and 64.4k tool instances, each labelled with semantic masks and instance IDs. To ensure the reliability of our annotations, we perform extensive quality control, conduct label agreement statistics, and benchmark the segmentation results with various instance segmentation baselines. CholecInstanceSeg aims to advance the field by offering a comprehensive and high-quality open-access dataset for the development and evaluation of tool instance segmentation algorithms.
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ GaGA: Towards Interactive Global Geolocation Assistant
Global geolocation, which seeks to predict the geographical location of images captured anywhere in the world, is one of the most challenging tasks in the field of computer vision. In this paper, we introduce an innovative interactive global geolocation assistant named GaGA, built upon the flourishing large vision-language models (LVLMs). GaGA uncovers geographical clues within images and combines them with the extensive world knowledge embedded in LVLMs to determine the geolocations while also providing justifications and explanations for the prediction results. We further designed a novel interactive geolocation method that surpasses traditional static inference approaches. It allows users to intervene, correct, or provide clues for the predictions, making the model more flexible and practical. The development of GaGA relies on the newly proposed Multi-modal Global Geolocation (MG-Geo) dataset, a comprehensive collection of 5 million high-quality image-text pairs. GaGA achieves state-of-the-art performance on the GWS15k dataset, improving accuracy by 4.57% at the country level and 2.92% at the city level, setting a new benchmark. These advancements represent a significant leap forward in developing highly accurate, interactive geolocation systems with global applicability.
♻ ☆ LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models
Enhancing a low-light noisy RAW image into a well-exposed and clean sRGB image is a significant challenge for modern digital cameras. Prior approaches have difficulties in recovering fine-grained details and true colors of the scene under extremely low-light environments due to near-to-zero SNR. Meanwhile, diffusion models have shown significant progress towards general domain image generation. In this paper, we propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images. Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules to inject the RAW information into the diffusion denoising process via modulating the intermediate features of UNet. We further observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance. Through extensive experiments on representative datasets, we demonstrate our simple design not only achieves state-of-the-art performance in quantitative evaluations but also shows significant superiority in visual comparisons over strong baselines, which highlight the effectiveness of powerful generative priors for neural ISP under extremely low-light environments. The project page is available at https://csqiangwen.github.io/projects/ldm-isp/
♻ ☆ HD-OOD3D: Supervised and Unsupervised Out-of-Distribution object detection in LiDAR data
Autonomous systems rely on accurate 3D object detection from LiDAR data, yet most detectors are limited to a predefined set of known classes, making them vulnerable to unexpected out-of-distribution (OOD) objects. In this work, we present HD-OOD3D, a novel two-stage method for detecting unknown objects. We demonstrate the superiority of two-stage approaches over single-stage methods, achieving more robust detection of unknown objects while addressing key challenges in the evaluation protocol. Furthermore, we conduct an in-depth analysis of the standard evaluation protocol for OOD detection, revealing the critical impact of hyperparameter choices. To address the challenge of scaling the learning of unknown objects, we explore unsupervised training strategies to generate pseudo-labels for unknowns. Among the different approaches evaluated, our experiments show that top-5 auto-labelling offers more promising performance compared to simple resizing techniques.
♻ ☆ On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
This paper focuses on improving the mathematical interpretability of convolutional neural networks (CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under which the max pooling operator approximates a complex modulus, which is nearly shift invariant. We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In particular, we highlight the crucial role played by the filter's frequency and orientation in achieving stability. We experimentally validate our theory by considering a deterministic feature extractor based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like decomposition.
♻ ☆ Masked Capsule Autoencoders
We propose Masked Capsule Autoencoders (MCAE), the first Capsule Network that utilises pretraining in a modern self-supervised paradigm, specifically the masked image modelling framework. Capsule Networks have emerged as a powerful alternative to Convolutional Neural Networks (CNNs). They have shown favourable properties when compared to Vision Transformers (ViT), but have struggled to effectively learn when presented with more complex data. This has led to Capsule Network models that do not scale to modern tasks. Our proposed MCAE model alleviates this issue by reformulating the Capsule Network to use masked image modelling as a pretraining stage before finetuning in a supervised manner. Across several experiments and ablations studies we demonstrate that similarly to CNNs and ViTs, Capsule Networks can also benefit from self-supervised pretraining, paving the way for further advancements in this neural network domain. For instance, by pretraining on the Imagenette dataset-consisting of 10 classes of Imagenet-sized images-we achieve state-of-the-art results for Capsule Networks, demonstrating a 9% improvement compared to our baseline model. Thus, we propose that Capsule Networks benefit from and should be trained within a masked image modelling framework, using a novel capsule decoder, to enhance a Capsule Network's performance on realistically sized images.
comment: 15 pages, 7 figures, 5 tables - accepted at TMLR
♻ ☆ Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models CVPR 2025
Although large multimodal models (LMMs) have demonstrated remarkable capabilities in visual scene interpretation and reasoning, their capacity for complex and precise 3-dimensional spatial reasoning remains uncertain. Existing benchmarks focus predominantly on 2D spatial understanding and lack a framework to comprehensively evaluate 6D spatial reasoning across varying complexities. To address this limitation, we present Spatial457, a scalable and unbiased synthetic dataset designed with 4 key capability for spatial reasoning: multi-object recognition, 2D location, 3D location, and 3D orientation. We develop a cascading evaluation structure, constructing 7 question types across 5 difficulty levels that range from basic single object recognition to our new proposed complex 6D spatial reasoning tasks. We evaluated various large multimodal models (LMMs) on PulseCheck457, observing a general decline in performance as task complexity increases, particularly in 3D reasoning and 6D spatial tasks. To quantify these challenges, we introduce the Relative Performance Dropping Rate (RPDR), highlighting key weaknesses in 3D reasoning capabilities. Leveraging the unbiased attribute design of our dataset, we also uncover prediction biases across different attributes, with similar patterns observed in real-world image settings. The code and data are released in https://github.com/XingruiWang/Spatial457.
comment: Published in CVPR 2025 as Highlight. Data and code are released at https://github.com/XingruiWang/Spatial457
♻ ☆ PathVLM-R1: A Reinforcement Learning-Driven Reasoning Model for Pathology Visual-Language Tasks
The diagnosis of pathological images is often limited by expert availability and regional disparities, highlighting the importance of automated diagnosis using Vision-Language Models (VLMs). Traditional multimodal models typically emphasize outcomes over the reasoning process, compromising the reliability of clinical decisions. To address the weak reasoning abilities and lack of supervised processes in pathological VLMs, we have innovatively proposed PathVLM-R1, a visual language model designed specifically for pathological images. We have based our model on Qwen2.5-VL-7B-Instruct and enhanced its performance for pathological tasks through meticulously designed post-training strategies. Firstly, we conduct supervised fine-tuning guided by pathological data to imbue the model with foundational pathological knowledge, forming a new pathological base model. Subsequently, we introduce Group Relative Policy Optimization (GRPO) and propose a dual reward-driven reinforcement learning optimization, ensuring strict constraint on logical supervision of the reasoning process and accuracy of results via cross-modal process reward and outcome accuracy reward. In the pathological image question-answering tasks, the testing results of PathVLM-R1 demonstrate a 14% improvement in accuracy compared to baseline methods, and it demonstrated superior performance compared to the Qwen2.5-VL-32B version despite having a significantly smaller parameter size. Furthermore, in out-domain data evaluation involving four medical imaging modalities: Computed Tomography (CT), dermoscopy, fundus photography, and Optical Coherence Tomography (OCT) images: PathVLM-R1's transfer performance improved by an average of 17.3% compared to traditional SFT methods. These results clearly indicate that PathVLM-R1 not only enhances accuracy but also possesses broad applicability and expansion potential.
♻ ☆ Mixture of Scale Experts for Alignment-free RGBT Video Object Detection and A Unified Benchmark
Existing RGB-Thermal Video Object Detection (RGBT VOD) methods predominantly rely on the manual alignment of image pairs, that is both labor-intensive and time-consuming. This dependency significantly restricts the scalability and practical applicability of these methods in real-world scenarios. To address this critical limitation, we propose a novel framework termed the Mixture of Scale Experts Network (MSENet). MSENet integrates multiple experts trained at different perceptual scales, enabling the capture of scale discrepancies between RGB and thermal image pairs without the need for explicit alignment. Specifically, to address the issue of unaligned scales, MSENet introduces a set of experts designed to perceive the correlation between RGBT image pairs across various scales. These experts are capable of identifying and quantifying the scale differences inherent in the image pairs. Subsequently, a dynamic routing mechanism is incorporated to assign adaptive weights to each expert, allowing the network to dynamically select the most appropriate experts based on the specific characteristics of the input data. Furthermore, to address the issue of weakly unaligned positions, we integrate deformable convolution into the network. Deformable convolution is employed to learn position displacements between the RGB and thermal modalities, thereby mitigating the impact of spatial misalignment. To provide a comprehensive evaluation platform for alignment-free RGBT VOD, we introduce a new benchmark dataset. This dataset includes eleven common object categories, with a total of 60,988 images and 271,835 object instances. The dataset encompasses a wide range of scenes from both daily life and natural environments, ensuring high content diversity and complexity.
♻ ☆ GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation ICLR 2025
Cancer subtyping is one of the most challenging tasks in digital pathology, where Multiple Instance Learning (MIL) by processing gigapixel whole slide images (WSIs) has been in the spotlight of recent research. However, MIL approaches do not take advantage of inter- and intra-magnification information contained in WSIs. In this work, we present GRASP, a novel lightweight graph-structured multi-magnification framework for processing WSIs in digital pathology. Our approach is designed to dynamically emulate the pathologist's behavior in handling WSIs and benefits from the hierarchical structure of WSIs. GRASP, which introduces a convergence-based node aggregation mechanism replacing traditional pooling mechanisms, outperforms state-of-the-art methods by a high margin in terms of balanced accuracy, while being significantly smaller than the closest-performing state-of-the-art models in terms of the number of parameters. Our results show that GRASP is dynamic in finding and consulting with different magnifications for subtyping cancers, is reliable and stable across different hyperparameters, and can generalize when using features from different backbones. The model's behavior has been evaluated by two expert pathologists confirming the interpretability of the model's dynamic. We also provide a theoretical foundation, along with empirical evidence, for our work, explaining how GRASP interacts with different magnifications and nodes in the graph to make predictions. We believe that the strong characteristics yet simple structure of GRASP will encourage the development of interpretable, structure-based designs for WSI representation in digital pathology. Data and code can be found in https://github.com/AIMLab-UBC/GRASP
comment: Accepted in Learning Meaningful Representations of Life (LMRL) Workshop at ICLR 2025
♻ ☆ RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Differential Contrastive Training for Gaze Estimation
The complex application scenarios have raised critical requirements for precise and generalizable gaze estimation methods. Recently, the pre-trained CLIP has achieved remarkable performance on various vision tasks, but its potentials have not been fully exploited in gaze estimation. In this paper, we propose a novel Differential Contrastive Training strategy, which boosts gaze estimation performance with the help of the CLIP. Accordingly, a Differential Contrastive Gaze Estimation network (DCGaze) composed of a Visual Appearance-aware branch and a Semantic Differential-aware branch is introduced. The Visual Appearance-aware branch is essentially a primary gaze estimation network and it incorporates an Adaptive Feature-refinement Unit (AFU) and a Double-head Gaze Regressor (DGR), which both help the primary network to extract informative and gaze-related appearance features. Moreover, the Semantic Difference-aware branch is designed on the basis of the CLIP's text encoder to reveal the semantic difference of gazes. This branch could further empower the Visual Appearance-aware branch with the capability of characterizing the gaze-related semantic information. Extensive experimental results on four challenging datasets over within and cross-domain tasks demonstrate the effectiveness of our DCGaze. Code will be available upon acceptance.
♻ ☆ LaMD: Latent Motion Diffusion for Image-Conditional Video Generation
The video generation field has witnessed rapid improvements with the introduction of recent diffusion models. While these models have successfully enhanced appearance quality, they still face challenges in generating coherent and natural movements while efficiently sampling videos. In this paper, we propose to condense video generation into a problem of motion generation, to improve the expressiveness of motion and make video generation more manageable. This can be achieved by breaking down the video generation process into latent motion generation and video reconstruction. Specifically, we present a latent motion diffusion (LaMD) framework, which consists of a motion-decomposed video autoencoder and a diffusion-based motion generator, to implement this idea. Through careful design, the motion-decomposed video autoencoder can compress patterns in movement into a concise latent motion representation. Consequently, the diffusion-based motion generator is able to efficiently generate realistic motion on a continuous latent space under multi-modal conditions, at a cost that is similar to that of image diffusion models. Results show that LaMD generates high-quality videos on various benchmark datasets, including BAIR, Landscape, NATOPS, MUG and CATER-GEN, that encompass a variety of stochastic dynamics and highly controllable movements on multiple image-conditional video generation tasks, while significantly decreases sampling time.
comment: accepted by IJCV
♻ ☆ Vivid4D: Improving 4D Reconstruction from Monocular Video by Video Inpainting
Reconstructing 4D dynamic scenes from casually captured monocular videos is valuable but highly challenging, as each timestamp is observed from a single viewpoint. We introduce Vivid4D, a novel approach that enhances 4D monocular video synthesis by augmenting observation views - synthesizing multi-view videos from a monocular input. Unlike existing methods that either solely leverage geometric priors for supervision or use generative priors while overlooking geometry, we integrate both. This reformulates view augmentation as a video inpainting task, where observed views are warped into new viewpoints based on monocular depth priors. To achieve this, we train a video inpainting model on unposed web videos with synthetically generated masks that mimic warping occlusions, ensuring spatially and temporally consistent completion of missing regions. To further mitigate inaccuracies in monocular depth priors, we introduce an iterative view augmentation strategy and a robust reconstruction loss. Experiments demonstrate that our method effectively improves monocular 4D scene reconstruction and completion. See our project page: https://xdimlab.github.io/Vivid4D/.
♻ ☆ A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
♻ ☆ SurFhead: Affine Rig Blending for Geometrically Accurate 2D Gaussian Surfel Head Avatars ICLR 2025
Recent advancements in head avatar rendering using Gaussian primitives have achieved significantly high-fidelity results. Although precise head geometry is crucial for applications like mesh reconstruction and relighting, current methods struggle to capture intricate geometric details and render unseen poses due to their reliance on similarity transformations, which cannot handle stretch and shear transforms essential for detailed deformations of geometry. To address this, we propose SurFhead, a novel method that reconstructs riggable head geometry from RGB videos using 2D Gaussian surfels, which offer well-defined geometric properties, such as precise depth from fixed ray intersections and normals derived from their surface orientation, making them advantageous over 3D counterparts. SurFhead ensures high-fidelity rendering of both normals and images, even in extreme poses, by leveraging classical mesh-based deformation transfer and affine transformation interpolation. SurFhead introduces precise geometric deformation and blends surfels through polar decomposition of transformations, including those affecting normals. Our key contribution lies in bridging classical graphics techniques, such as mesh-based deformation, with modern Gaussian primitives, achieving state-of-the-art geometry reconstruction and rendering quality. Unlike previous avatar rendering approaches, SurFhead enables efficient reconstruction driven by Gaussian primitives while preserving high-fidelity geometry.
comment: ICLR 2025, Project page with videos: https://summertight.github.io/SurFhead/
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ PTDiffusion: Free Lunch for Generating Optical Illusion Hidden Pictures with Phase-Transferred Diffusion Model CVPR 2025
Optical illusion hidden picture is an interesting visual perceptual phenomenon where an image is cleverly integrated into another picture in a way that is not immediately obvious to the viewer. Established on the off-the-shelf text-to-image (T2I) diffusion model, we propose a novel training-free text-guided image-to-image (I2I) translation framework dubbed as \textbf{P}hase-\textbf{T}ransferred \textbf{Diffusion} Model (PTDiffusion) for hidden art syntheses. PTDiffusion harmoniously embeds an input reference image into arbitrary scenes described by the text prompts, producing illusion images exhibiting hidden visual cues of the reference image. At the heart of our method is a plug-and-play phase transfer mechanism that dynamically and progressively transplants diffusion features' phase spectrum from the denoising process to reconstruct the reference image into the one to sample the generated illusion image, realizing deep fusion of the reference structural information and the textual semantic information in the diffusion model latent space. Furthermore, we propose asynchronous phase transfer to enable flexible control to the degree of hidden content discernability. Our method bypasses any model training and fine-tuning process, all while substantially outperforming related text-guided I2I methods in image generation quality, text fidelity, visual discernibility, and contextual naturalness for illusion picture synthesis, as demonstrated by extensive qualitative and quantitative experiments. Our project is publically available at \href{https://xianggao1102.github.io/PTDiffusion_webpage/}{this web page}.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, comprehensive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which consists of 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. This all-inclusive dataset covers a wide range of human-induced and natural changes, including buildings, roads, hardened surfaces, woodlands, grasslands, croplands, water bodies, and photovoltaic panels, among others. Additionally, we propose a novel multi-teacher knowledge distillation (MTKD) framework that leverages the Origin-Partition (O-P) strategy to enhance CD performance. In the O-P strategy, we partition the training data based on the Change Area Ratio (CAR) to train separate models for small, medium, and large CAR values, alleviating the learning burden on each model and improving their performance within their respective partitions. Building upon this, our MTKD framework distills knowledge from multiple teacher models trained on different CAR partitions into a single student model,enabling the student model to achieve superior detection results across diverse CAR scenarios without incurring additional computational or time overhead during the inference phase. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The JL1-CD dataset and code are available at https://github.com/circleLZY/MTKD-CD.
comment: 16 pages, 9 figures
♻ ☆ GTPC-SSCD: Gate-guided Two-level Perturbation Consistency-based Semi-Supervised Change Detection ICME 2025
Semi-supervised change detection (SSCD) utilizes partially labeled data and abundant unlabeled data to detect differences between multi-temporal remote sensing images. The mainstream SSCD methods based on consistency regularization have limitations. They perform perturbations mainly at a single level, restricting the utilization of unlabeled data and failing to fully tap its potential. In this paper, we introduce a novel Gate-guided Two-level Perturbation Consistency regularization-based SSCD method (GTPC-SSCD). It simultaneously maintains strong-to-weak consistency at the image level and perturbation consistency at the feature level, enhancing the utilization efficiency of unlabeled data. Moreover, we develop a hardness analysis-based gating mechanism to assess the training complexity of different samples and determine the necessity of performing feature perturbations for each sample. Through this differential treatment, the network can explore the potential of unlabeled data more efficiently. Extensive experiments conducted on six benchmark CD datasets demonstrate the superiority of our GTPC-SSCD over seven state-of-the-art methods.
comment: 6 pages, 4 figures, accepted by ICME 2025
♻ ☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/ev-deblurvsr.github.io/
♻ ☆ Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
♻ ☆ ID-Booth: Identity-consistent Face Generation with Diffusion Models IEEE
Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025, 14 pages
♻ ☆ EvRT-DETR: Latent Space Adaptation of Image Detectors for Event-based Vision
Event-based cameras (EBCs) have emerged as a bio-inspired alternative to traditional cameras, offering advantages in power efficiency, temporal resolution, and high dynamic range. However, the development of image analysis methods for EBCs is challenging due to the sparse and asynchronous nature of the data. This work addresses the problem of object detection for EBC cameras. The current approaches to EBC object detection focus on constructing complex data representations and rely on specialized architectures. We introduce I2EvDet (Image-to-Event Detection), a novel adaptation framework that bridges mainstream object detection with temporal event data processing. First, we demonstrate that a Real-Time DEtection TRansformer, or RT-DETR, a state-of-the-art natural image detector, trained on a simple image-like representation of the EBC data achieves performance comparable to specialized EBC methods. Next, as part of our framework, we develop an efficient adaptation technique that transforms image-based detectors into event-based detection models by modifying their frozen latent representation space through minimal architectural additions. The resulting EvRT-DETR model reaches state-of-the-art performance on the standard benchmark datasets Gen1 (mAP $+2.3$) and 1Mpx/Gen4 (mAP $+1.4$). These results demonstrate a fundamentally new approach to EBC object detection through principled adaptation of mainstream architectures, offering an efficient alternative with potential applications to other temporal visual domains. The code is available at: https://github.com/realtime-intelligence/evrt-detr
♻ ☆ Power-scaled Bayesian Inference with Score-based Generative Models
We propose a score-based generative algorithm for sampling from power-scaled priors and likelihoods within the Bayesian inference framework. Our algorithm enables flexible control over prior-likelihood influence without requiring retraining for different power-scaling configurations. Specifically, we focus on synthesizing seismic velocity models conditioned on imaged seismic. Our method enables sensitivity analysis by sampling from intermediate power posteriors, allowing us to assess the relative influence of the prior and likelihood on samples of the posterior distribution. Through a comprehensive set of experiments, we evaluate the effects of varying the power parameter in different settings: applying it solely to the prior, to the likelihood of a Bayesian formulation, and to both simultaneously. The results show that increasing the power of the likelihood up to a certain threshold improves the fidelity of posterior samples to the conditioning data (e.g., seismic images), while decreasing the prior power promotes greater structural diversity among samples. Moreover, we find that moderate scaling of the likelihood leads to a reduced shot data residual, confirming its utility in posterior refinement.
comment: 8 pages, 4 figures
Artificial Intelligence 119
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Near-optimal algorithms for private estimation and sequential testing of collision probability
We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
☆ Imitation Learning with Precisely Labeled Human Demonstrations
Within the imitation learning paradigm, training generalist robots requires large-scale datasets obtainable only through diverse curation. Due to the relative ease to collect, human demonstrations constitute a valuable addition when incorporated appropriately. However, existing methods utilizing human demonstrations face challenges in inferring precise actions, ameliorating embodiment gaps, and fusing with frontier generalist robot training pipelines. In this work, building on prior studies that demonstrate the viability of using hand-held grippers for efficient data collection, we leverage the user's control over the gripper's appearance--specifically by assigning it a unique, easily segmentable color--to enable simple and reliable application of the RANSAC and ICP registration method for precise end-effector pose estimation. We show in simulation that precisely labeled human demonstrations on their own allow policies to reach on average 88.1% of the performance of using robot demonstrations, and boost policy performance when combined with robot demonstrations, despite the inherent embodiment gap.
☆ Meta-Learning and Knowledge Discovery based Physics-Informed Neural Network for Remaining Useful Life Prediction
Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
comment: 34 pages,20 figs
☆ Collective Learning Mechanism based Optimal Transport Generative Adversarial Network for Non-parallel Voice Conversion
After demonstrating significant success in image synthesis, Generative Adversarial Network (GAN) models have likewise made significant progress in the field of speech synthesis, leveraging their capacity to adapt the precise distribution of target data through adversarial learning processes. Notably, in the realm of State-Of-The-Art (SOTA) GAN-based Voice Conversion (VC) models, there exists a substantial disparity in naturalness between real and GAN-generated speech samples. Furthermore, while many GAN models currently operate on a single generator discriminator learning approach, optimizing target data distribution is more effectively achievable through a single generator multi-discriminator learning scheme. Hence, this study introduces a novel GAN model named Collective Learning Mechanism-based Optimal Transport GAN (CLOT-GAN) model, incorporating multiple discriminators, including the Deep Convolutional Neural Network (DCNN) model, Vision Transformer (ViT), and conformer. The objective of integrating various discriminators lies in their ability to comprehend the formant distribution of mel-spectrograms, facilitated by a collective learning mechanism. Simultaneously, the inclusion of Optimal Transport (OT) loss aims to precisely bridge the gap between the source and target data distribution, employing the principles of OT theory. The experimental validation on VCC 2018, VCTK, and CMU-Arctic datasets confirms that the CLOT-GAN-VC model outperforms existing VC models in objective and subjective assessments.
comment: 7 pages, 2 figures, 3 tables
☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees are an emerging tool for evaluating feature attributions, but existing certification methods rely on smoothed classifiers and often yield conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, and sample-efficient stability certification algorithm (SCA) that provides non-trivial and interpretable guarantees for any attribution. Moreover, we show that mild smoothing enables a graceful tradeoff between accuracy and stability, in contrast to prior certification methods that require a more aggressive compromise. Using Boolean function analysis, we give a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks, and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
☆ Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
☆ DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs
Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.
comment: 49 pages
☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 14pages, 8 figures
☆ A Survey for What Developers Require in AI-powered Tools that Aid in Component Selection in CBSD
Although it has been more than four decades that the first components-based software development (CBSD) studies were conducted, there is still no standard method or tool for component selection which is widely accepted by the industry. The gulf between industry and academia contributes to the lack of an accepted tool. We conducted a mixed methods survey of nearly 100 people engaged in component-based software engineering practice or research to better understand the problems facing industry, how these needs could be addressed, and current best practices employed in component selection. We also sought to identify and prioritize quality criteria for component selection from an industry perspective. In response to the call for CBSD component selection tools to incorporate recent technical advances, we also explored the perceptions of professionals about AI-driven tools, present and envisioned.
comment: 10 pages, 4 figures, The 29th International Conference on Evaluation and Assessment in Software Engineering, 17 to 20 June, 2025, Istanbul, Turkey
☆ ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as \textit{in front of} or \textit{behind}. These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms the current state-of-the-art framework, CoMPaSS, by 13.33% on established spatial consistency benchmarks.
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
☆ Exploring Multimodal Prompt for Visualization Authoring with Large Language Models
Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs' interpretation abilities. To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at https://OSF.IO/2QRAK.
comment: 11 pages, 8 figures
☆ AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Trace Gadgets: Minimizing Code Context for Machine Learning-Based Vulnerability Prediction
As the number of web applications and API endpoints exposed to the Internet continues to grow, so does the number of exploitable vulnerabilities. Manually identifying such vulnerabilities is tedious. Meanwhile, static security scanners tend to produce many false positives. While machine learning-based approaches are promising, they typically perform well only in scenarios where training and test data are closely related. A key challenge for ML-based vulnerability detection is providing suitable and concise code context, as excessively long contexts negatively affect the code comprehension capabilities of machine learning models, particularly smaller ones. This work introduces Trace Gadgets, a novel code representation that minimizes code context by removing non-related code. Trace Gadgets precisely capture the statements that cover the path to the vulnerability. As input for ML models, Trace Gadgets provide a minimal but complete context, thereby improving the detection performance. Moreover, we collect a large-scale dataset generated from real-world applications with manually curated labels to further improve the performance of ML-based vulnerability detectors. Our results show that state-of-the-art machine learning models perform best when using Trace Gadgets compared to previous code representations, surpassing the detection capabilities of industry-standard static scanners such as GitHub's CodeQL by at least 4% on a fully unseen dataset. By applying our framework to real-world applications, we identify and report previously unknown vulnerabilities in widely deployed software.
☆ Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
☆ Do Prompt Patterns Affect Code Quality? A First Empirical Assessment of ChatGPT-Generated Code
Large Language Models (LLMs) have rapidly transformed software development, especially in code generation. However, their inconsistent performance, prone to hallucinations and quality issues, complicates program comprehension and hinders maintainability. Research indicates that prompt engineering-the practice of designing inputs to direct LLMs toward generating relevant outputs-may help address these challenges. In this regard, researchers have introduced prompt patterns, structured templates intended to guide users in formulating their requests. However, the influence of prompt patterns on code quality has yet to be thoroughly investigated. An improved understanding of this relationship would be essential to advancing our collective knowledge on how to effectively use LLMs for code generation, thereby enhancing their understandability in contemporary software development. This paper empirically investigates the impact of prompt patterns on code quality, specifically maintainability, security, and reliability, using the Dev-GPT dataset. Results show that Zero-Shot prompting is most common, followed by Zero-Shot with Chain-of-Thought and Few-Shot. Analysis of 7583 code files across quality metrics revealed minimal issues, with Kruskal-Wallis tests indicating no significant differences among patterns, suggesting that prompt structure may not substantially impact these quality metrics in ChatGPT-assisted code generation.
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
☆ Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
☆ Multi-modal Knowledge Graph Generation with Semantics-enriched Prompts IJCNN 2025
Multi-modal Knowledge Graphs (MMKGs) have been widely applied across various domains for knowledge representation. However, the existing MMKGs are significantly fewer than required, and their construction faces numerous challenges, particularly in ensuring the selection of high-quality, contextually relevant images for knowledge graph enrichment. To address these challenges, we present a framework for constructing MMKGs from conventional KGs. Furthermore, to generate higher-quality images that are more relevant to the context in the given knowledge graph, we designed a neighbor selection method called Visualizable Structural Neighbor Selection (VSNS). This method consists of two modules: Visualizable Neighbor Selection (VNS) and Structural Neighbor Selection (SNS). The VNS module filters relations that are difficult to visualize, while the SNS module selects neighbors that most effectively capture the structural characteristics of the entity. To evaluate the quality of the generated images, we performed qualitative and quantitative evaluations on two datasets, MKG-Y and DB15K. The experimental results indicate that using the VSNS method to select neighbors results in higher-quality images that are more relevant to the knowledge graph.
comment: Accepted by IJCNN 2025
☆ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
☆ Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
The rapid growth of the internet has made personalized recommendation systems indispensable. Graph-based sequential recommendation systems, powered by Graph Neural Networks (GNNs), effectively capture complex user-item interactions but often face challenges such as noise and static representations. In this paper, we introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method, a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions. Graph Convolutional Networks (GCNs) are then employed to learn short-term representations, while averaging, GRUs, and attention mechanisms are utilized to model long-term embeddings. An MLP-based adaptive weighting strategy is further incorporated to dynamically optimize long-term user preferences. Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines, delivering notable improvements in both accuracy and robustness. The source code is available at https://github.com/zahraakhlaghi/ALDA4Rec.
☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 17 pages
☆ FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
☆ HAECcity: Open-Vocabulary Scene Understanding of City-Scale Point Clouds with Superpoint Graph Clustering CVPR
Traditional 3D scene understanding techniques are generally predicated on hand-annotated label sets, but in recent years a new class of open-vocabulary 3D scene understanding techniques has emerged. Despite the success of this paradigm on small scenes, existing approaches cannot scale efficiently to city-scale 3D datasets. In this paper, we present Hierarchical vocab-Agnostic Expert Clustering (HAEC), after the latin word for 'these', a superpoint graph clustering based approach which utilizes a novel mixture of experts graph transformer for its backbone. We administer this highly scalable approach to the first application of open-vocabulary scene understanding on the SensatUrban city-scale dataset. We also demonstrate a synthetic labeling pipeline which is derived entirely from the raw point clouds with no hand-annotation. Our technique can help unlock complex operations on dense urban 3D scenes and open a new path forward in the processing of digital twins.
comment: Accepted for publication through the upcoming CVPR Workshop on open scene understanding with foundation models (OPENSUN3D)
☆ RAG Without the Lag: Interactive Debugging for Retrieval-Augmented Generation Pipelines
Retrieval-augmented generation (RAG) pipelines have become the de-facto approach for building AI assistants with access to external, domain-specific knowledge. Given a user query, RAG pipelines typically first retrieve (R) relevant information from external sources, before invoking a Large Language Model (LLM), augmented (A) with this information, to generate (G) responses. Modern RAG pipelines frequently chain multiple retrieval and generation components, in any order. However, developing effective RAG pipelines is challenging because retrieval and generation components are intertwined, making it hard to identify which component(s) cause errors in the eventual output. The parameters with the greatest impact on output quality often require hours of pre-processing after each change, creating prohibitively slow feedback cycles. To address these challenges, we present RAGGY, a developer tool that combines a Python library of composable RAG primitives with an interactive interface for real-time debugging. We contribute the design and implementation of RAGGY, insights into expert debugging patterns through a qualitative study with 12 engineers, and design implications for future RAG tools that better align with developers' natural workflows.
comment: 15 pages, 7 figures, 2 tables
☆ MetaDSE: A Few-shot Meta-learning Framework for Cross-workload CPU Design Space Exploration
Cross-workload design space exploration (DSE) is crucial in CPU architecture design. Existing DSE methods typically employ the transfer learning technique to leverage knowledge from source workloads, aiming to minimize the requirement of target workload simulation. However, these methods struggle with overfitting, data ambiguity, and workload dissimilarity. To address these challenges, we reframe the cross-workload CPU DSE task as a few-shot meta-learning problem and further introduce MetaDSE. By leveraging model agnostic meta-learning, MetaDSE swiftly adapts to new target workloads, greatly enhancing the efficiency of cross-workload CPU DSE. Additionally, MetaDSE introduces a novel knowledge transfer method called the workload-adaptive architectural mask algorithm, which uncovers the inherent properties of the architecture. Experiments on SPEC CPU 2017 demonstrate that MetaDSE significantly reduces prediction error by 44.3\% compared to the state-of-the-art. MetaDSE is open-sourced and available at this \href{https://anonymous.4open.science/r/Meta_DSE-02F8}{anonymous GitHub.}
comment: 7 pages, 6 figures. Accepted by DAC 2025
☆ Zero-Shot Industrial Anomaly Segmentation with Image-Aware Prompt Generation PAKDD 2025
Anomaly segmentation is essential for industrial quality, maintenance, and stability. Existing text-guided zero-shot anomaly segmentation models are effective but rely on fixed prompts, limiting adaptability in diverse industrial scenarios. This highlights the need for flexible, context-aware prompting strategies. We propose Image-Aware Prompt Anomaly Segmentation (IAP-AS), which enhances anomaly segmentation by generating dynamic, context-aware prompts using an image tagging model and a large language model (LLM). IAP-AS extracts object attributes from images to generate context-aware prompts, improving adaptability and generalization in dynamic and unstructured industrial environments. In our experiments, IAP-AS improves the F1-max metric by up to 10%, demonstrating superior adaptability and generalization. It provides a scalable solution for anomaly segmentation across industries
comment: Accepted to PAKDD 2025, 12 pages
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
The Transformer model is widely used in various application areas of machine learning, such as natural language processing. This paper investigates the approximation of the H\"older continuous function class $\mathcal{H}_{Q}^{\beta}\left([0,1]^{d\times n},\mathbb{R}^{d\times n}\right)$ by Transformers and constructs several Transformers that can overcome the curse of dimensionality. These Transformers consist of one self-attention layer with one head and the softmax function as the activation function, along with several feedforward layers. For example, to achieve an approximation accuracy of $\epsilon$, if the activation functions of the feedforward layers in the Transformer are ReLU and floor, only $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$ layers of feedforward layers are needed, with widths of these layers not exceeding $\mathcal{O}\left(\frac{1}{\epsilon^{2/\beta}}\log\frac{1}{\epsilon}\right)$. If other activation functions are allowed in the feedforward layers, the width of the feedforward layers can be further reduced to a constant. These results demonstrate that Transformers have a strong expressive capability. The construction in this paper is based on the Kolmogorov-Arnold Representation Theorem and does not require the concept of contextual mapping, hence our proof is more intuitively clear compared to previous Transformer approximation works. Additionally, the translation technique proposed in this paper helps to apply the previous approximation results of feedforward neural networks to Transformer research.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
☆ Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
☆ Optimizing Electric Vehicle Charging Station Locations: A Data-driven System with Multi-source Fusion
With the growing electric vehicles (EVs) charging demand, urban planners face the challenges of providing charging infrastructure at optimal locations. For example, range anxiety during long-distance travel and the inadequate distribution of residential charging stations are the major issues many cities face. To achieve reasonable estimation and deployment of the charging demand, we develop a data-driven system based on existing EV trips in New South Wales (NSW) state, Australia, incorporating multiple factors that enhance the geographical feasibility of recommended charging stations. Our system integrates data sources including EV trip data, geographical data such as route data and Local Government Area (LGA) boundaries, as well as features like fire and flood risks, and Points of Interest (POIs). We visualize our results to intuitively demonstrate the findings from our data-driven, multi-source fusion system, and evaluate them through case studies. The outcome of this work can provide a platform for discussion to develop new insights that could be used to give guidance on where to position future EV charging stations.
comment: 4-page short paper
☆ Large Language Models for Validating Network Protocol Parsers
Network protocol parsers are essential for enabling correct and secure communication between devices. Bugs in these parsers can introduce critical vulnerabilities, including memory corruption, information leakage, and denial-of-service attacks. An intuitive way to assess parser correctness is to compare the implementation with its official protocol standard. However, this comparison is challenging because protocol standards are typically written in natural language, whereas implementations are in source code. Existing methods like model checking, fuzzing, and differential testing have been used to find parsing bugs, but they either require significant manual effort or ignore the protocol standards, limiting their ability to detect semantic violations. To enable more automated validation of parser implementations against protocol standards, we propose PARVAL, a multi-agent framework built on large language models (LLMs). PARVAL leverages the capabilities of LLMs to understand both natural language and code. It transforms both protocol standards and their implementations into a unified intermediate representation, referred to as format specifications, and performs a differential comparison to uncover inconsistencies. We evaluate PARVAL on the Bidirectional Forwarding Detection (BFD) protocol. Our experiments demonstrate that PARVAL successfully identifies inconsistencies between the implementation and its RFC standard, achieving a low false positive rate of 5.6%. PARVAL uncovers seven unique bugs, including five previously unknown issues.
☆ Statistical Validation in Cultural Adaptations of Cognitive Tests: A Multi- Regional Systematic Review
This systematic review discusses the methodological approaches and statistical confirmations of cross-cultural adaptations of cognitive evaluation tools used with different populations. The review considers six seminal studies on the methodology of cultural adaptation in Europe, Asia, Africa, and South America. The results indicate that proper adaptations need holistic models with demographic changes, and education explained as much as 26.76% of the variance in MoCA-H scores. Cultural-linguistic factors explained 6.89% of the variance in European adaptations of MoCA-H; however, another study on adapted MMSE and BCSB among Brazilian Indigenous populations reported excellent diagnostic performance, with a sensitivity of 94.4% and specificity of 99.2%. There was 78.5% inter-rater agreement on the evaluation of cultural adaptation using the Manchester Translation Evaluation Checklist. A paramount message of the paper is that community feedback is necessary for culturally appropriate preparation, standardized translation protocols also must be included, along with robust statistical validation methodologies for developing cognitive assessment instruments. This review supplies evidence-based frameworks for the further adaptation of cognitive assessments in increasingly diverse global health settings.
comment: This paper is accepted and presented in the International Conference Challenges & Opportunities in Artificial Intelligence: Engineering & Management Applications (COAIEMA 2025) and to be published in Taylor & Francis Proceedings
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control.
comment: 10 pages; 3 figures; 1 table
☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
☆ Ascribe New Dimensions to Scientific Data Visualization with VR
For over half a century, the computer mouse has been the primary tool for interacting with digital data, yet it remains a limiting factor in exploring complex, multi-scale scientific images. Traditional 2D visualization methods hinder intuitive analysis of inherently 3D structures. Virtual Reality (VR) offers a transformative alternative, providing immersive, interactive environments that enhance data comprehension. This article introduces ASCRIBE-VR, a VR platform of Autonomous Solutions for Computational Research with Immersive Browsing \& Exploration, which integrates AI-driven algorithms with scientific images. ASCRIBE-VR enables multimodal analysis, structural assessments, and immersive visualization, supporting scientific visualization of advanced datasets such as X-ray CT, Magnetic Resonance, and synthetic 3D imaging. Our VR tools, compatible with Meta Quest, can consume the output of our AI-based segmentation and iterative feedback processes to enable seamless exploration of large-scale 3D images. By merging AI-generated results with VR visualization, ASCRIBE-VR enhances scientific discovery, bridging the gap between computational analysis and human intuition in materials research, connecting human-in-the-loop with digital twins.
☆ Trust, but verify
Decentralized AI agent networks, such as Gaia, allows individuals to run customized LLMs on their own computers and then provide services to the public. However, in order to maintain service quality, the network must verify that individual nodes are running their designated LLMs. In this paper, we demonstrate that in a cluster of mostly honest nodes, we can detect nodes that run unauthorized or incorrect LLM through social consensus of its peers. We will discuss the algorithm and experimental data from the Gaia network. We will also discuss the intersubjective validation system, implemented as an EigenLayer AVS to introduce financial incentives and penalties to encourage honest behavior from LLM nodes.
☆ Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
comment: arXiv admin note: text overlap with arXiv:2302.02914 by other authors
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ Adaptive Non-local Observable on Quantum Neural Networks
Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
☆ LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
♻ ☆ Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
♻ ☆ Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
♻ ☆ A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
♻ ☆ Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
♻ ☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the Remaining Useful Life (RUL) in Lithium ion battery (LIB) health management systems is essential for ensuring operational reliability and safety. However, many existing methods assume that training and testing data follow the same distribution, limiting their ability to generalize to unseen target domains. To address this, we propose a novel RUL prediction framework that incorporates a domain adaptation (DA) technique. Our framework integrates a signal preprocessing pipeline including noise reduction, feature extraction, and normalization with a robust deep learning model called HybridoNet Adapt. The model features a combination of LSTM, Multihead Attention, and Neural ODE layers for feature extraction, followed by two predictor modules with trainable trade-off parameters. To improve generalization, we adopt a DA strategy inspired by Domain Adversarial Neural Networks (DANN), replacing adversarial loss with Maximum Mean Discrepancy (MMD) to learn domain-invariant features. Experimental results show that HybridoNet Adapt significantly outperforms traditional models such as XGBoost and Elastic Net, as well as deep learning baselines like Dual input DNN, demonstrating its potential for scalable and reliable battery health management (BHM).
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Diffusion Transformers for Tabular Data Time Series Generation ICLR 2025
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
comment: Accepted at ICLR 2025. 26 pages, 19 figures, 13 tables
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ Order is All You Need for Categorical Data Clustering
Categorical data composed of qualitative valued attributes are ubiquitous in machine learning tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to be intuitively understood. Clustering is a popular data analysis technique suitable for data distribution understanding. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. This paper therefore introduces a new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding categorical data clusters, because the essence of clustering is to order the clusters in terms of their admission to samples. To obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It alternatively partitions the data into clusters based on the distance metric built upon the orders and estimates the most likely orders according to the clusters. The algorithm achieves superior clustering accuracy with a convergence guarantee, and the learned orders facilitate the understanding of the non-intuitive cluster distribution of categorical data. Extensive experiments with ablation studies, statistical evidence, and case studies have validated the new insight into the importance of value order and the method proposition. The source code is temporarily opened in https://anonymous.4open.science/r/OCL-demo.
♻ ☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ AnomalyControl: Learning Cross-modal Semantic Features for Controllable Anomaly Synthesis
Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.
♻ ☆ Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
♻ ☆ Manipulation of individual judgments in the quantitative pairwise comparisons method
Decision-making methods very often use the technique of comparing alternatives in pairs. In this approach, experts are asked to compare different options, and then a quantitative ranking is created from the results obtained. It is commonly believed that experts (decision-makers) are honest in their judgments. In our work, we consider a scenario in which experts are vulnerable to bribery. For this purpose, we define a framework that allows us to determine the intended manipulation and present three algorithms for achieving the intended goal. Analyzing these algorithms may provide clues to help defend against such attacks.
comment: 31 pages, 7 compound figures
♻ ☆ Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
♻ ☆ Unleashing the Power of CNN and Transformer for Balanced RGB-Event Video Recognition
Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
comment: Accepted by Machine Intelligence Research, DOI: 10.1007/s11633-025-1555-3
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some knowledge acquired in the pre-training stage, leading to a decline in general capabilities. Existing approaches to mitigate forgetting often rely on access to pre-training data, which may be unavailable in many real-world scenarios--such as fine-tuning checkpoint-only open-source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate descent (BCD) methods: in each iteration, MoFO only updates the model parameters with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis and extensive experiments, demonstrating its effectiveness in mitigating forgetting without pre-training data.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
This paper focuses on improving the mathematical interpretability of convolutional neural networks (CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under which the max pooling operator approximates a complex modulus, which is nearly shift invariant. We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In particular, we highlight the crucial role played by the filter's frequency and orientation in achieving stability. We experimentally validate our theory by considering a deterministic feature extractor based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like decomposition.
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
♻ ☆ Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
♻ ☆ StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations SIGIR 2025
LLM-based user agents, which simulate user interaction behavior, are emerging as a promising approach to enhancing recommender systems. In real-world scenarios, users' interactions often exhibit cross-domain characteristics and are influenced by others. However, the memory design in current methods causes user agents to introduce significant irrelevant information during decision-making in cross-domain scenarios and makes them unable to recognize the influence of other users' interactions, such as popularity factors. To tackle this issue, we propose a dual-layer memory architecture combined with a two-step fusion mechanism. This design avoids irrelevant information during decision-making while ensuring effective integration of cross-domain preferences. We also introduce the concepts of interest groups and group-shared memory to better capture the influence of popularity factors on users with similar interests. Comprehensive experiments validate the effectiveness of AgentCF++. Our code is available at https://github.com/jhliu0807/AgentCF-plus.
comment: Accepted by SIGIR 2025, 6 pages
♻ ☆ PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. However, their application in quantum software development remains underexplored, particularly for PennyLane-a leading framework for hybrid quantum-classical computing. To address this gap, we introduce a novel, high-quality dataset comprising 3,347 PennyLane-specific quantum code samples and contextual descriptions, specifically curated to support LLM training and fine-tuning for quantum code assistance. Our contributions are threefold: (1) the automatic construction and open-source release of a comprehensive PennyLane dataset derived from textbooks, official documentation, and open-source repositories; (2) a structured methodology for data curation, annotation, and formatting to enhance LLM usability and relevance; and (3) a rigorous evaluation of code generation capabilities using both baseline Retrieval-Augmented Generation (RAG) and a GraphRAG-enhanced pipeline. Using the PennyLang framework, we demonstrate that GraphRAG, when applied to a GPT-4o Mini model, substantially outperforms standard prompting and baseline RAG. Accuracy improves from 20.5% (without RAG) to 58.2% with GraphRAG, showcasing its effectiveness in reducing hallucinations and improving code correctness in quantum programming tasks. Compared to prior efforts focused largely on Qiskit, our work expands LLM-based assistance to the PennyLane ecosystem, contributing practical tools and reproducible methodologies for advancing AI-assisted quantum software development.
comment: 10 pages, 7 figures, 7 tables, submitted for review under QCE 2025
♻ ☆ Improving LLM-powered Recommendations with Personalized Information SIGIR 2025
Due to the lack of explicit reasoning modeling, existing LLM-powered recommendations fail to leverage LLMs' reasoning capabilities effectively. In this paper, we propose a pipeline called CoT-Rec, which integrates two key Chain-of-Thought (CoT) processes -- user preference analysis and item perception analysis -- into LLM-powered recommendations, thereby enhancing the utilization of LLMs' reasoning abilities. CoT-Rec consists of two stages: (1) personalized information extraction, where user preferences and item perception are extracted, and (2) personalized information utilization, where this information is incorporated into the LLM-powered recommendation process. Experimental results demonstrate that CoT-Rec shows potential for improving LLM-powered recommendations. The implementation is publicly available at https://github.com/jhliu0807/CoT-Rec.
comment: Accepted by SIGIR 2025, 7 pages
♻ ☆ Unbiased Collaborative Filtering with Fair Sampling SIGIR 2025
Recommender systems leverage extensive user interaction data to model preferences; however, directly modeling these data may introduce biases that disproportionately favor popular items. In this paper, we demonstrate that popularity bias arises from the influence of propensity factors during training. Building on this insight, we propose a fair sampling (FS) method that ensures each user and each item has an equal likelihood of being selected as both positive and negative instances, thereby mitigating the influence of propensity factors. The proposed FS method does not require estimating propensity scores, thus avoiding the risk of failing to fully eliminate popularity bias caused by estimation inaccuracies. Comprehensive experiments demonstrate that the proposed FS method achieves state-of-the-art performance in both point-wise and pair-wise recommendation tasks. The code implementation is available at https://github.com/jhliu0807/Fair-Sampling.
comment: Accept by SIGIR 2025, 5 pages
♻ ☆ Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection WWW'25
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
♻ ☆ NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search
Intelligent mobile agents (e.g., UGVs and UAVs) typically demand low power/energy consumption when solving their machine learning (ML)-based tasks, since they are usually powered by portable batteries with limited capacity. A potential solution is employing neuromorphic computing with Spiking Neural Networks (SNNs), which leverages event-based computation to enable ultra-low power/energy ML algorithms. To maximize the performance efficiency of SNN inference, the In-Memory Computing (IMC)-based hardware accelerators with emerging device technologies (e.g., RRAM) can be employed. However, SNN models are typically developed without considering constraints from the application and the underlying IMC hardware, thereby hindering SNNs from reaching their full potential in performance and efficiency. To address this, we propose NeuroNAS, a novel framework for developing energyefficient neuromorphic IMC for intelligent mobile agents using hardware-aware spiking neural architecture search (NAS), i.e., by quickly finding an SNN architecture that offers high accuracy under the given constraints (e.g., memory, area, latency, and energy consumption). Its key steps include: optimizing SNN operations to enable efficient NAS, employing quantization to minimize the memory footprint, developing an SNN architecture that facilitates an effective learning, and devising a systematic hardware-aware search algorithm to meet the constraints. Compared to the state-of-the-art techniques, NeuroNAS quickly finds SNN architectures (with 8bit weight precision) that maintain high accuracy by up to 6.6x search time speed-ups, while achieving up to 92% area savings, 1.2x latency improvements, 84% energy savings across different datasets (i.e., CIFAR-10, CIFAR-100, and TinyImageNet-200); while the state-of-the-art fail to meet all constraints at once.
comment: 9 pages, 14 figures, 2 tables
♻ ☆ Unified Parameter-Efficient Unlearning for LLMs
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Language Representations Can be What Recommenders Need: Findings and Potentials ICLR 2025
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
comment: ICLR 2025 (Oral). Codes are available at https://github.com/LehengTHU/AlphaRec
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
♻ ☆ Backstepping Temporal Difference Learning ICLR2023
Off-policy learning ability is an important feature of reinforcement learning (RL) for practical applications. However, even one of the most elementary RL algorithms, temporal-difference (TD) learning, is known to suffer form divergence issue when the off-policy scheme is used together with linear function approximation. To overcome the divergent behavior, several off-policy TD-learning algorithms, including gradient-TD learning (GTD), and TD-learning with correction (TDC), have been developed until now. In this work, we provide a unified view of such algorithms from a purely control-theoretic perspective, and propose a new convergent algorithm. Our method relies on the backstepping technique, which is widely used in nonlinear control theory. Finally, convergence of the proposed algorithm is experimentally verified in environments where the standard TD-learning is known to be unstable.
comment: Published at ICLR2023
♻ ☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ SurFhead: Affine Rig Blending for Geometrically Accurate 2D Gaussian Surfel Head Avatars ICLR 2025
Recent advancements in head avatar rendering using Gaussian primitives have achieved significantly high-fidelity results. Although precise head geometry is crucial for applications like mesh reconstruction and relighting, current methods struggle to capture intricate geometric details and render unseen poses due to their reliance on similarity transformations, which cannot handle stretch and shear transforms essential for detailed deformations of geometry. To address this, we propose SurFhead, a novel method that reconstructs riggable head geometry from RGB videos using 2D Gaussian surfels, which offer well-defined geometric properties, such as precise depth from fixed ray intersections and normals derived from their surface orientation, making them advantageous over 3D counterparts. SurFhead ensures high-fidelity rendering of both normals and images, even in extreme poses, by leveraging classical mesh-based deformation transfer and affine transformation interpolation. SurFhead introduces precise geometric deformation and blends surfels through polar decomposition of transformations, including those affecting normals. Our key contribution lies in bridging classical graphics techniques, such as mesh-based deformation, with modern Gaussian primitives, achieving state-of-the-art geometry reconstruction and rendering quality. Unlike previous avatar rendering approaches, SurFhead enables efficient reconstruction driven by Gaussian primitives while preserving high-fidelity geometry.
comment: ICLR 2025, Project page with videos: https://summertight.github.io/SurFhead/
♻ ☆ NeurLZ: An Online Neural Learning-Based Method to Enhance Scientific Lossy Compression
Large-scale scientific simulations generate massive datasets, posing challenges for storage and I/O. Traditional lossy compression struggles to advance more in balancing compression ratio, data quality, and adaptability to diverse scientific data features. While deep learning-based solutions have been explored, their common practice of relying on large models and offline training limits adaptability to dynamic data characteristics and computational efficiency. To address these challenges, we propose NeurLZ, a neural method designed to enhance lossy compression by integrating online learning, cross-field learning, and robust error regulation. Key innovations of NeurLZ include: (1) compression-time online neural learning with lightweight skipping DNN models, adapting to residual errors without costly offline pertaining, (2) the error-mitigating capability, recovering fine details from compression errors overlooked by conventional compressors, (3) $1\times$ and $2\times$ error-regulation modes, ensuring strict adherence to $1\times$ user-input error bounds strictly or relaxed 2$\times$ bounds for better overall quality, and (4) cross-field learning leveraging inter-field correlations in scientific data to improve conventional methods. Comprehensive evaluations on representative HPC datasets, e.g., Nyx, Miranda, Hurricane, against state-of-the-art compressors show NeurLZ's effectiveness. During the first five learning epochs, NeurLZ achieves an 89% bit rate reduction, with further optimization yielding up to around 94% reduction at equivalent distortion, significantly outperforming existing methods, demonstrating NeurLZ's superior performance in enhancing scientific lossy compression as a scalable and efficient solution.
comment: ICS 2025
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, comprehensive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which consists of 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. This all-inclusive dataset covers a wide range of human-induced and natural changes, including buildings, roads, hardened surfaces, woodlands, grasslands, croplands, water bodies, and photovoltaic panels, among others. Additionally, we propose a novel multi-teacher knowledge distillation (MTKD) framework that leverages the Origin-Partition (O-P) strategy to enhance CD performance. In the O-P strategy, we partition the training data based on the Change Area Ratio (CAR) to train separate models for small, medium, and large CAR values, alleviating the learning burden on each model and improving their performance within their respective partitions. Building upon this, our MTKD framework distills knowledge from multiple teacher models trained on different CAR partitions into a single student model,enabling the student model to achieve superior detection results across diverse CAR scenarios without incurring additional computational or time overhead during the inference phase. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The JL1-CD dataset and code are available at https://github.com/circleLZY/MTKD-CD.
comment: 16 pages, 9 figures
♻ ☆ Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.
♻ ☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 29 pages, 3 figures
♻ ☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/ev-deblurvsr.github.io/
♻ ☆ The Athenian Academy: A Seven-Layer Architecture Model for Multi-Agent Systems
This paper proposes the "Academy of Athens" multi-agent seven-layer framework, aimed at systematically addressing challenges in multi-agent systems (MAS) within artificial intelligence (AI) art creation, such as collaboration efficiency, role allocation, environmental adaptation, and task parallelism. The framework divides MAS into seven layers: multi-agent collaboration, single-agent multi-role playing, single-agent multi-scene traversal, single-agent multi-capability incarnation, different single agents using the same large model to achieve the same target agent, single-agent using different large models to achieve the same target agent, and multi-agent synthesis of the same target agent. Through experimental validation in art creation, the framework demonstrates its unique advantages in task collaboration, cross-scene adaptation, and model fusion. This paper further discusses current challenges such as collaboration mechanism optimization, model stability, and system security, proposing future exploration through technologies like meta-learning and federated learning. The framework provides a structured methodology for multi-agent collaboration in AI art creation and promotes innovative applications in the art field.
♻ ☆ WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
The ability to embed watermarks in images is a fundamental problem of interest for computer vision, and is exacerbated by the rapid rise of generated imagery in recent times. Current state-of-the-art techniques suffer from computational and statistical challenges such as the slow execution speed for practical deployments. In addition, other works trade off fast watermarking speeds but suffer greatly in their robustness or perceptual quality. In this work, we propose WaterFlow (WF), a fast and extremely robust approach for high fidelity visual watermarking based on a learned latent-dependent watermark. Our approach utilizes a pretrained latent diffusion model to encode an arbitrary image into a latent space and produces a learned watermark that is then planted into the Fourier Domain of the latent. The transformation is specified via invertible flow layers that enhance the expressivity of the latent space of the pre-trained model to better preserve image quality while permitting robust and tractable detection. Most notably, WaterFlow demonstrates state-of-the-art performance on general robustness and is the first method capable of effectively defending against difficult combination attacks. We validate our findings on three widely used real and generated datasets: MS-COCO, DiffusionDB, and WikiArt.
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
♻ ☆ Foundational theories of hesitant fuzzy sets and families of hesitant fuzzy sets
Hesitant fuzzy sets find extensive application in specific scenarios involving uncertainty and hesitation. In the context of set theory, the concept of inclusion relationship holds significant importance as a fundamental definition. Consequently, as a type of sets, hesitant fuzzy sets necessitate a clear and explicit definition of the inclusion relationship. Based on the discrete form of hesitant fuzzy membership degrees, this study proposes multiple types of inclusion relationships for hesitant fuzzy sets. Subsequently, this paper introduces foundational propositions related to hesitant fuzzy sets, as well as propositions concerning families of hesitant fuzzy sets.
comment: 15 pages
♻ ☆ Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
Computation and Language 92
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: $\href{https://github.com/JHU-CLSP/science-hierarchography}{https://github.com/JHU-CLSP/science-hierarchography}$
☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
☆ Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
☆ BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Word Embedding Techniques for Classification of Star Ratings
Telecom services are at the core of today's societies' everyday needs. The availability of numerous online forums and discussion platforms enables telecom providers to improve their services by exploring the views of their customers to learn about common issues that the customers face. Natural Language Processing (NLP) tools can be used to process the free text collected. One way of working with such data is to represent text as numerical vectors using one of many word embedding models based on neural networks. This research uses a novel dataset of telecom customers' reviews to perform an extensive study showing how different word embedding algorithms can affect the text classification process. Several state-of-the-art word embedding techniques are considered, including BERT, Word2Vec and Doc2Vec, coupled with several classification algorithms. The important issue of feature engineering and dimensionality reduction is addressed and several PCA-based approaches are explored. Moreover, the energy consumption used by the different word embeddings is investigated. The findings show that some word embedding models can lead to consistently better text classifiers in terms of precision, recall and F1-Score. In particular, for the more challenging classification tasks, BERT combined with PCA stood out with the highest performance metrics. Moreover, our proposed PCA approach of combining word vectors using the first principal component shows clear advantages in performance over the traditional approach of taking the average.
comment: 40 pages
☆ Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
☆ Simulating Before Planning: Constructing Intrinsic User World Model for User-Tailored Dialogue Policy Planning SIGIR 2025
Recent advancements in dialogue policy planning have emphasized optimizing system agent policies to achieve predefined goals, focusing on strategy design, trajectory acquisition, and efficient training paradigms. However, these approaches often overlook the critical role of user characteristics, which are essential in real-world scenarios like conversational search and recommendation, where interactions must adapt to individual user traits such as personality, preferences, and goals. To address this gap, we first conduct a comprehensive study utilizing task-specific user personas to systematically assess dialogue policy planning under diverse user behaviors. By leveraging realistic user profiles for different tasks, our study reveals significant limitations in existing approaches, highlighting the need for user-tailored dialogue policy planning. Building on this foundation, we present the User-Tailored Dialogue Policy Planning (UDP) framework, which incorporates an Intrinsic User World Model to model user traits and feedback. UDP operates in three stages: (1) User Persona Portraying, using a diffusion model to dynamically infer user profiles; (2) User Feedback Anticipating, leveraging a Brownian Bridge-inspired anticipator to predict user reactions; and (3) User-Tailored Policy Planning, integrating these insights to optimize response strategies. To ensure robust performance, we further propose an active learning approach that prioritizes challenging user personas during training. Comprehensive experiments on benchmarks, including collaborative and non-collaborative settings, demonstrate the effectiveness of UDP in learning user-specific dialogue strategies. Results validate the protocol's utility and highlight UDP's robustness, adaptability, and potential to advance user-centric dialogue systems.
comment: 11 pages, 6 figures, SIGIR 2025
☆ Remedy: Learning Machine Translation Evaluation from Human Preferences with Reward Modeling
A key challenge in MT evaluation is the inherent noise and inconsistency of human ratings. Regression-based neural metrics struggle with this noise, while prompting LLMs shows promise at system-level evaluation but performs poorly at segment level. In this work, we propose ReMedy, a novel MT metric framework that reformulates translation evaluation as a reward modeling task. Instead of regressing on imperfect human ratings directly, ReMedy learns relative translation quality using pairwise preference data, resulting in a more reliable evaluation. In extensive experiments across WMT22-24 shared tasks (39 language pairs, 111 MT systems), ReMedy achieves state-of-the-art performance at both segment- and system-level evaluation. Specifically, ReMedy-9B surpasses larger WMT winners and massive closed LLMs such as MetricX-13B, XCOMET-Ensemble, GEMBA-GPT-4, PaLM-540B, and finetuned PaLM2. Further analyses demonstrate that ReMedy delivers superior capability in detecting translation errors and evaluating low-quality translations.
☆ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
☆ Long-context Non-factoid Question Answering in Indic Languages
Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.
☆ Continual Pre-Training is (not) What You Need in Domain Adaption
The recent advances in Legal Large Language Models (LLMs) have transformed the landscape of legal research and practice by automating tasks, enhancing research precision, and supporting complex decision-making processes. However, effectively adapting LLMs to the legal domain remains challenging due to the complexity of legal reasoning, the need for precise interpretation of specialized language, and the potential for hallucinations. This paper examines the efficacy of Domain-Adaptive Continual Pre-Training (DACP) in improving the legal reasoning capabilities of LLMs. Through a series of experiments on legal reasoning tasks within the Taiwanese legal framework, we demonstrate that while DACP enhances domain-specific knowledge, it does not uniformly improve performance across all legal tasks. We discuss the trade-offs involved in DACP, particularly its impact on model generalization and performance in prompt-based tasks, and propose directions for future research to optimize domain adaptation strategies in legal AI.
comment: 11 pages, 2 figures
☆ Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
☆ DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification
With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens. Our experimental results demonstrate that DETAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, in evaluating the model's utility, we incorporated over-defense datasets, which further validate the superior performance of our approach. The code will be released immediately upon acceptance.
☆ Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
☆ Prejudge-Before-Think: Enhancing Large Language Models at Test-Time by Process Prejudge Reasoning
In this paper, we introduce a new \emph{process prejudge} strategy in LLM reasoning to demonstrate that bootstrapping with process prejudge allows the LLM to adaptively anticipate the errors encountered when advancing the subsequent reasoning steps, similar to people sometimes pausing to think about what mistakes may occur and how to avoid them, rather than relying solely on trial and error. Specifically, we define a prejudge node in the rationale, which represents a reasoning step, with at least one step that follows the prejudge node that has no paths toward the correct answer. To synthesize the prejudge reasoning process, we present an automated reasoning framework with a dynamic tree-searching strategy. This framework requires only one LLM to perform answer judging, response critiquing, prejudge generation, and thought completion. Furthermore, we develop a two-phase training mechanism with supervised fine-tuning (SFT) and reinforcement learning (RL) to further enhance the reasoning capabilities of LLMs. Experimental results from competition-level complex reasoning demonstrate that our method can teach the model to prejudge before thinking and significantly enhance the reasoning ability of LLMs. Code and data is released at https://github.com/wjn1996/Prejudge-Before-Think.
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ LLM Sensitivity Evaluation Framework for Clinical Diagnosis
Large language models (LLMs) have demonstrated impressive performance across various domains. However, for clinical diagnosis, higher expectations are required for LLM's reliability and sensitivity: thinking like physicians and remaining sensitive to key medical information that affects diagnostic reasoning, as subtle variations can lead to different diagnosis results. Yet, existing works focus mainly on investigating the sensitivity of LLMs to irrelevant context and overlook the importance of key information. In this paper, we investigate the sensitivity of LLMs, i.e. GPT-3.5, GPT-4, Gemini, Claude3 and LLaMA2-7b, to key medical information by introducing different perturbation strategies. The evaluation results highlight the limitations of current LLMs in remaining sensitive to key medical information for diagnostic decision-making. The evolution of LLMs must focus on improving their reliability, enhancing their ability to be sensitive to key information, and effectively utilizing this information. These improvements will enhance human trust in LLMs and facilitate their practical application in real-world scenarios. Our code and dataset are available at https://github.com/chenwei23333/DiagnosisQA.
☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combine techniques like rejection fine-tuning, reinforcement learning and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress model to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
☆ D-GEN: Automatic Distractor Generation and Evaluation for Reliable Assessment of Generative Model
Evaluating generative models with open-ended generation is challenging due to inconsistencies in response formats. Multiple-choice (MC) evaluation mitigates this issue, but generating high-quality distractors is time-consuming and labor-intensive. We introduce D-GEN, the first open-source distractor generator model that transforms open-ended data into an MC format. To evaluate distractor quality, we propose two novel methods: (1) ranking alignment, ensuring generated distractors retain the discriminatory power of ground-truth distractors, and (2) entropy analysis, comparing model confidence distributions. Our results show that D-GEN preserves ranking consistency (Spearman's rho 0.99, Kendall's tau 0.94) and closely matches the entropy distribution of ground-truth distractors. Human evaluation further confirms the fluency, coherence, distractiveness, and incorrectness. Our work advances robust and efficient distractor generation with automated evaluation, setting a new standard for MC evaluation.
☆ Secure Multifaceted-RAG for Enterprise: Hybrid Knowledge Retrieval with Security Filtering
Existing Retrieval-Augmented Generation (RAG) systems face challenges in enterprise settings due to limited retrieval scope and data security risks. When relevant internal documents are unavailable, the system struggles to generate accurate and complete responses. Additionally, using closed-source Large Language Models (LLMs) raises concerns about exposing proprietary information. To address these issues, we propose the Secure Multifaceted-RAG (SecMulti-RAG) framework, which retrieves not only from internal documents but also from two supplementary sources: pre-generated expert knowledge for anticipated queries and on-demand external LLM-generated knowledge. To mitigate security risks, we adopt a local open-source generator and selectively utilize external LLMs only when prompts are deemed safe by a filtering mechanism. This approach enhances completeness, prevents data leakage, and reduces costs. In our evaluation on a report generation task in the automotive industry, SecMulti-RAG significantly outperforms traditional RAG - achieving 79.3 to 91.9 percent win rates across correctness, richness, and helpfulness in LLM-based evaluation, and 56.3 to 70.4 percent in human evaluation. This highlights SecMulti-RAG as a practical and secure solution for enterprise RAG.
☆ STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
☆ System of Agentic AI for the Discovery of Metal-Organic Frameworks
Generative models and machine learning promise accelerated material discovery in MOFs for CO2 capture and water harvesting but face significant challenges navigating vast chemical spaces while ensuring synthetizability. Here, we present MOFGen, a system of Agentic AI comprising interconnected agents: a large language model that proposes novel MOF compositions, a diffusion model that generates crystal structures, quantum mechanical agents that optimize and filter candidates, and synthetic-feasibility agents guided by expert rules and machine learning. Trained on all experimentally reported MOFs and computational databases, MOFGen generated hundreds of thousands of novel MOF structures and synthesizable organic linkers. Our methodology was validated through high-throughput experiments and the successful synthesis of five "AI-dreamt" MOFs, representing a major step toward automated synthesizable material discovery.
☆ Linking forward-pass dynamics in Transformers and real-time human processing
Modern AI models are increasingly being used as theoretical tools to study human cognition. One dominant approach is to evaluate whether human-derived measures (such as offline judgments or real-time processing) are predicted by a model's output: that is, the end-product of forward pass(es) through the network. At the same time, recent advances in mechanistic interpretability have begun to reveal the internal processes that give rise to model outputs, raising the question of whether models and humans might arrive at outputs using similar "processing strategies". Here, we investigate the link between real-time processing in humans and "layer-time" dynamics in Transformer models. Across five studies spanning domains and modalities, we test whether the dynamics of computation in a single forward pass of pre-trained Transformers predict signatures of processing in humans, above and beyond properties of the model's output probability distribution. We consistently find that layer-time dynamics provide additional predictive power on top of output measures. Our results suggest that Transformer processing and human processing may be facilitated or impeded by similar properties of an input stimulus, and this similarity has emerged through general-purpose objectives such as next-token prediction or image recognition. Our work suggests a new way of using AI models to study human cognition: not just as a black box mapping stimuli to responses, but potentially also as explicit processing models.
☆ LogicTree: Structured Proof Exploration for Coherent and Rigorous Logical Reasoning with Large Language Models
Large language models (LLMs) have achieved remarkable multi-step reasoning capabilities across various domains. However, LLMs still face distinct challenges in complex logical reasoning, as (1) proof-finding requires systematic exploration and the maintenance of logical coherence and (2) searching the right combination of premises at each reasoning step is inherently challenging in tasks with large premise space. To address this, we propose LogicTree, an inference-time modular framework employing algorithm-guided search to automate structured proof exploration and ensure logical coherence. Advancing beyond tree-of-thought (ToT), we incorporate caching mechanism into LogicTree to enable effective utilization of historical knowledge, preventing reasoning stagnation and minimizing redundancy. Furthermore, we address the combinatorial complexity of premise search by decomposing it into a linear process. The refined premise selection restricts subsequent inference to at most one derivation per step, enhancing reasoning granularity and enforcing strict step-by-step reasoning. Additionally, we introduce two LLM-free heuristics for premise prioritization, enabling strategic proof search. Experimental results on five datasets demonstrate that LogicTree optimally scales inference-time computation to achieve higher proof accuracy, surpassing chain-of-thought (CoT) and ToT with average gains of 23.6% and 12.5%, respectively, on GPT-4o. Moreover, within LogicTree, GPT-4o outperforms o3-mini by 7.6% on average.
☆ A Baseline for Self-state Identification and Classification in Mental Health Data: CLPsych 2025 Task NAACL 2025
We present a baseline for the CLPsych 2025 A.1 task: classifying self-states in mental health data taken from Reddit. We use few-shot learning with a 4-bit quantized Gemma 2 9B model and a data preprocessing step which first identifies relevant sentences indicating self-state evidence, and then performs a binary classification to determine whether the sentence is evidence of an adaptive or maladaptive self-state. This system outperforms our other method which relies on an LLM to highlight spans of variable length independently. We attribute the performance of our model to the benefits of this sentence chunking step for two reasons: partitioning posts into sentences 1) broadly matches the granularity at which self-states were human-annotated and 2) simplifies the task for our language model to a binary classification problem. Our system places third out of fourteen systems submitted for Task A.1, achieving a test-time recall of 0.579.
comment: Accepted to CLPsych Workshop, NAACL 2025
☆ Sentiment Analysis of Airbnb Reviews: Exploring Their Impact on Acceptance Rates and Pricing Across Multiple U.S. Regions
This research examines whether Airbnb guests' positive and negative comments influence acceptance rates and rental prices across six U.S. regions: Rhode Island, Broward County, Chicago, Dallas, San Diego, and Boston. Thousands of reviews were collected and analyzed using Natural Language Processing (NLP) to classify sentiments as positive or negative, followed by statistical testing (t-tests and basic correlations) on the average scores. The findings reveal that over 90 percent of reviews in each region are positive, indicating that having additional reviews does not significantly enhance prices. However, listings with predominantly positive feedback exhibit slightly higher acceptance rates, suggesting that sentiment polarity, rather than the sheer volume of reviews, is a more critical factor for host success. Additionally, budget listings often gather extensive reviews while maintaining competitive pricing, whereas premium listings sustain higher prices with fewer but highly positive reviews. These results underscore the importance of sentiment quality over quantity in shaping guest behavior and pricing strategies in an overwhelmingly positive review environment.
☆ MEQA: A Meta-Evaluation Framework for Question & Answer LLM Benchmarks
As Large Language Models (LLMs) advance, their potential for widespread societal impact grows simultaneously. Hence, rigorous LLM evaluations are both a technical necessity and social imperative. While numerous evaluation benchmarks have been developed, there remains a critical gap in meta-evaluation: effectively assessing benchmarks' quality. We propose MEQA, a framework for the meta-evaluation of question and answer (QA) benchmarks, to provide standardized assessments, quantifiable scores, and enable meaningful intra-benchmark comparisons. We demonstrate this approach on cybersecurity benchmarks, using human and LLM evaluators, highlighting the benchmarks' strengths and weaknesses. We motivate our choice of test domain by AI models' dual nature as powerful defensive tools and security threats.
☆ Uncovering Conspiratorial Narratives within Arabic Online Content
This study investigates the spread of conspiracy theories in Arabic digital spaces through computational analysis of online content. By combining Named Entity Recognition and Topic Modeling techniques, specifically the Top2Vec algorithm, we analyze data from Arabic blogs and Facebook to identify and classify conspiratorial narratives. Our analysis uncovers six distinct categories: gender/feminist, geopolitical, government cover-ups, apocalyptic, Judeo-Masonic, and geoengineering. The research highlights how these narratives are deeply embedded in Arabic social media discourse, shaped by regional historical, cultural, and sociopolitical contexts. By applying advanced Natural Language Processing methods to Arabic content, this study addresses a gap in conspiracy theory research, which has traditionally focused on English-language content or offline data. The findings provide new insights into the manifestation and evolution of conspiracy theories in Arabic digital spaces, enhancing our understanding of their role in shaping public discourse in the Arab world.
☆ Gradual Binary Search and Dimension Expansion : A general method for activation quantization in LLMs
Large language models (LLMs) have become pivotal in artificial intelligence, demonstrating strong capabilities in reasoning, understanding, and generating data. However, their deployment on edge devices is hindered by their substantial size, often reaching several billion parameters. Quantization is a widely used method to reduce memory usage and inference time, however LLMs present unique challenges due to the prevalence of outliers in their activations. In this work, we leverage the theoretical advantages of Hadamard matrices over random rotation matrices to push the boundaries of quantization in LLMs. We demonstrate that Hadamard matrices are more effective in reducing outliers, which are a significant obstacle in achieving low-bit quantization. Our method based on a gradual binary search enables 3-bit quantization for weights, activations, and key-value (KV) caches, resulting in a 40\% increase in accuracy on common benchmarks compared to SoTA methods. We extend the use of rotation matrices to support non-power-of-2 embedding dimensions, similar to the Qwen architecture, by employing the Paley algorithm. We theoretically demonstrates the superiority of Hadamard matrices in reducing outliers.We achieved 3-bit quantization for weights, activations, and KV cache, significantly enhancing model performance. Our experimental results on multiple models family like Mistral, LLaMA, and Qwen demonstrate the effectiveness of our approach, outperforming existing methods and enabling practical 3-bit quantization.
☆ One Jump Is All You Need: Short-Cutting Transformers for Early Exit Prediction with One Jump to Fit All Exit Levels
To reduce the time and computational costs of inference of large language models, there has been interest in parameter-efficient low-rank early-exit casting of transformer hidden-representations to final-representations. Such low-rank short-cutting has been shown to outperform identity shortcuts at early model stages while offering parameter-efficiency in shortcut jumps. However, current low-rank methods maintain a separate early-exit shortcut jump to final-representations for each transformer intermediate block-level during inference. In this work, we propose selection of a single One-Jump-Fits-All (OJFA) low-rank shortcut that offers over a 30x reduction in shortcut parameter costs during inference. We show that despite this extreme reduction, our OJFA choice largely matches the performance of maintaining multiple shortcut jumps during inference and offers stable precision from all transformer block-levels for GPT2-XL, Phi3-Mini and Llama2-7B transformer models.
☆ D-GEN: Automatic Distractor Generation and Evaluation for Reliable Assessment of Generative Model
Evaluating generative models with open-ended generation is challenging due to inconsistencies in response formats. Multiple-choice (MC) evaluation mitigates this issue, but generating high-quality distractors is time-consuming and labor-intensive. We introduce D-GEN, the first open-source distractor generator model that transforms open-ended data into an MC format. To evaluate distractor quality, we propose two novel methods: (1) ranking alignment, ensuring generated distractors retain the discriminatory power of ground-truth distractors, and (2) entropy analysis, comparing model confidence distributions. Our results show that D-GEN preserves ranking consistency (Spearman's rho 0.99, Kendall's tau 0.94) and closely matches the entropy distribution of ground-truth distractors. Human evaluation further confirms the fluency, coherence, distractiveness, and incorrectness. Our work advances robust and efficient distractor generation with automated evaluation, setting a new standard for MC evaluation.
☆ Secure Multifaceted-RAG for Enterprise: Hybrid Knowledge Retrieval with Security Filtering
Existing Retrieval-Augmented Generation (RAG) systems face challenges in enterprise settings due to limited retrieval scope and data security risks. When relevant internal documents are unavailable, the system struggles to generate accurate and complete responses. Additionally, using closed-source Large Language Models (LLMs) raises concerns about exposing proprietary information. To address these issues, we propose the Secure Multifaceted-RAG (SecMulti-RAG) framework, which retrieves not only from internal documents but also from two supplementary sources: pre-generated expert knowledge for anticipated queries and on-demand external LLM-generated knowledge. To mitigate security risks, we adopt a local open-source generator and selectively utilize external LLMs only when prompts are deemed safe by a filtering mechanism. This approach enhances completeness, prevents data leakage, and reduces costs. In our evaluation on a report generation task in the automotive industry, SecMulti-RAG significantly outperforms traditional RAG - achieving 79.3 to 91.9 percent win rates across correctness, richness, and helpfulness in LLM-based evaluation, and 56.3 to 70.4 percent in human evaluation. This highlights SecMulti-RAG as a practical and secure solution for enterprise RAG.
♻ ☆ A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
♻ ☆ From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
♻ ☆ C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset WWW2025
Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
comment: WWW2025
♻ ☆ Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
♻ ☆ Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
♻ ☆ Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
♻ ☆ The Comparative Trap: Pairwise Comparisons Amplifies Biased Preferences of LLM Evaluators
As large language models (LLMs) are increasingly used as evaluators for natural language generation tasks, ensuring unbiased assessments is essential. However, LLM evaluators often display biased preferences, such as favoring verbosity and authoritative tones. Our empirical analysis reveals that these biases are exacerbated in pairwise evaluation, where LLMs directly compare two outputs and easily prioritize superficial attributes. In contrast, pointwise evaluation, which assesses outputs independently, is less susceptible to such bias because each output is judged in isolation. To address the limitations of the pairwise evaluation, we introduce a novel evaluation method, PRePair, which integrates pointwise reasoning within a pairwise framework. PRePair effectively alleviates biased preference, improving performance on the adversarial benchmark (LLMBar) while outperforming pointwise evaluation on the standard benchmark (MT-Bench).
♻ ☆ Can Tool-augmented Large Language Models be Aware of Incomplete Conditions?
Recent advancements in integrating large language models (LLMs) with tools have allowed the models to interact with real-world environments. However, these tool-augmented LLMs often encounter incomplete scenarios when users provide partial information or the necessary tools are unavailable. Recognizing and managing such scenarios is crucial for LLMs to ensure their reliability, but this exploration remains understudied. This study examines whether LLMs can identify incomplete conditions and appropriately determine when to refrain from using tools. To this end, we address a dataset by manipulating instances from two datasets by removing necessary tools or essential information for tool invocation. Our experiments show that LLMs often struggle to identify the absence of information required to utilize specific tools and recognize the absence of appropriate tools. We further analyze model behaviors in different environments and compare their performance against humans. Our research can contribute to advancing reliable LLMs by addressing common scenarios during interactions between humans and LLMs. Our code and dataset will be publicly available.
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
♻ ☆ Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
♻ ☆ Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
comment: 12 pages,6 tables, 1 figure, Proceedings of the 1st International Conference on NLP & AI for Cyber Security
♻ ☆ Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models
Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs). To date, information-based and consistency-based UQ have been the dominant UQ methods for text generation via LLMs. Density-based methods, despite being very effective for UQ in text classification with encoder-based models, have not been very successful with generative LLMs. In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation and introduce a new supervised UQ method. Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores. Through extensive experiments on eleven datasets, we demonstrate that our approach substantially improves over existing UQ methods, providing accurate and computationally efficient uncertainty scores for both sequence-level selective generation and claim-level fact-checking tasks. Our method also exhibits strong generalization to out-of-domain data, making it suitable for a wide range of LLM-based applications.
♻ ☆ Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: Preprint
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
♻ ☆ Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
♻ ☆ StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
♻ ☆ Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts
With the advent of Large Language Models (LLMs), generating rule-based data for real-world applications has become more accessible. Due to the inherent ambiguity of natural language and the complexity of rule sets, especially in long contexts, LLMs often struggle to follow all specified rules, frequently omitting at least one. To enhance the reasoning and understanding of LLMs on long and complex contexts, we propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt, which automatically translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it. Experimental results on public datasets across various tasks have shown MLPrompt can outperform state-of-the-art prompting methods such as Chain of Thought, Tree of Thought, and Self-Consistency. Additionally, we introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances. Further, we extend the proposed framework for text-to-SQL to demonstrate its generation ability towards structured data synthesis.
♻ ☆ Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection WWW'25
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
♻ ☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
♻ ☆ Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
♻ ☆ Extending the SAREF4ENER Ontology with Flexibility Based on FlexOffers
A key element to support the increased amounts of renewable energy in the energy system is flexibility, i.e., the possibility of changing energy loads in time and amount. Many flexibility models have been designed; however, exact models fail to scale for long time horizons or many devices. Because of this, the FlexOffer (FOs) model has been designed, to provide device-independent approximations of flexibility with good accuracy, and much better scaling for long time horizons and many devices. An important aspect of the real-life implementation of energy flexibility is enabling flexible data exchange with many types of smart energy appliances and market systems, e.g., in smart buildings. For this, ontologies standardizing data formats are required. However, the current industry standard ontology for integrating smart devices for energy purposes, SAREF for Energy Flexibility (SAREF4ENER) only has limited support for flexibility and thus cannot support important use cases. In this paper we propose an extension of SAREF4ENER that integrates full support for the complete FlexOffer model, including advanced use cases, while maintaining backward compatibility. This novel ontology module can accurately describe flexibility for advanced devices such as electric vehicles, batteries, and heat pumps. It can also capture the inherent uncertainty associated with many flexible load types.
comment: 13 pages, 5 figures, 4 tables. Submitted to SmartGridComm 2025
♻ ☆ Selective Attention Federated Learning: Improving Privacy and Efficiency for Clinical Text Classification
Federated Learning (FL) faces major challenges regarding communication overhead and model privacy when training large language models (LLMs), especially in healthcare applications. To address these, we introduce Selective Attention Federated Learning (SAFL), a novel approach that dynamically fine-tunes only those transformer layers identified as attention-critical. By employing attention patterns to determine layer importance, SAFL significantly reduces communication bandwidth and enhances differential privacy resilience. Evaluations on clinical NLP benchmarks (i2b2 Clinical Concept Extraction and MIMIC-III discharge summaries) demonstrate that SAFL achieves competitive performance with centralized models while substantially improving communication efficiency and privacy preservation.
♻ ☆ Aligning Language Models with Demonstrated Feedback ICLR 2025
Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number (< 10) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. Concretely, DITTO operates by having an LLM generate examples that are presumed to be inferior to expert demonstrations. The method iteratively constructs pairwise preference relationships between these LLM-generated samples and expert demonstrations, potentially including comparisons between different training checkpoints. These constructed preference pairs are then used to train the model using a preference optimization algorithm (e.g. DPO). We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants (N = 16). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an avg. of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs.
comment: ICLR 2025; 28 pages, 8 figures
LiveBench: A Challenging, Contamination-Limited LLM Benchmark ICLR 2025
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be resistant to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-limited versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 405B in size. LiveBench is difficult, with top models achieving below 70% accuracy. We release all questions, code, and model answers. Questions are added and updated on a monthly basis, and we release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
comment: ICLR 2025 Spotlight
♻ ☆ Visual Theory of Mind Enables the Invention of Proto-Writing
Symbolic writing systems are graphical semiotic codes that are ubiquitous in modern society but are otherwise absent in the animal kingdom. Anthropological evidence suggests that the earliest forms of some writing systems originally consisted of iconic pictographs, which signify their referent via visual resemblance. While previous studies have examined the emergence and, separately, the evolution of pictographic systems through a computational lens, most employ non-naturalistic methodologies that make it difficult to draw clear analogies to human and animal cognition. We develop a multi-agent reinforcement learning testbed for emergent communication called a Signification Game, and formulate a model of inferential communication that enables agents to leverage visual theory of mind to communicate actions using pictographs. Our model, which is situated within a broader formalism for animal communication, sheds light on the cognitive and cultural processes underlying the emergence of proto-writing.
comment: Accepted as an oral to CogSci 2025, published here with permission from organizers
♻ ☆ FactLens: Benchmarking Fine-Grained Fact Verification
Large Language Models (LLMs) have shown impressive capability in language generation and understanding, but their tendency to hallucinate and produce factually incorrect information remains a key limitation. To verify LLM-generated contents and claims from other sources, traditional verification approaches often rely on holistic models that assign a single factuality label to complex claims, potentially obscuring nuanced errors. In this paper, we advocate for a shift toward fine-grained verification, where complex claims are broken down into smaller sub-claims for individual verification, allowing for more precise identification of inaccuracies, improved transparency, and reduced ambiguity in evidence retrieval. However, generating sub-claims poses challenges, such as maintaining context and ensuring semantic equivalence with respect to the original claim. We introduce FactLens, a benchmark for evaluating fine-grained fact verification, with metrics and automated evaluators of sub-claim quality. The benchmark data is manually curated to ensure high-quality ground truth. Our results show alignment between automated FactLens evaluators and human judgments, and we discuss the impact of sub-claim characteristics on the overall verification performance.
comment: 12 pages, updated version
♻ ☆ Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
♻ ☆ OpenHands: An Open Platform for AI Software Developers as Generalist Agents ICLR 2025
Software is one of the most powerful tools that we humans have at our disposal; it allows a skilled programmer to interact with the world in complex and profound ways. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. In this paper, we introduce OpenHands (f.k.a. OpenDevin), a platform for the development of powerful and flexible AI agents that interact with the world in similar ways to those of a human developer: by writing code, interacting with a command line, and browsing the web. We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, coordination between multiple agents, and incorporation of evaluation benchmarks. Based on our currently incorporated benchmarks, we perform an evaluation of agents over 15 challenging tasks, including software engineering (e.g., SWE-BENCH) and web browsing (e.g., WEBARENA), among others. Released under the permissive MIT license, OpenHands is a community project spanning academia and industry with more than 2.1K contributions from over 188 contributors.
comment: Accepted by ICLR 2025; Code: https://github.com/All-Hands-AI/OpenHands
Machine Learning 125
☆ Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Near-optimal algorithms for private estimation and sequential testing of collision probability
We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
Transformer Encoder and Multi-features Time2Vec for Financial Prediction
Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
comment: 5 pages, currently under review at Eusipco 2025
☆ Meta-Learning and Knowledge Discovery based Physics-Informed Neural Network for Remaining Useful Life Prediction
Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
comment: 34 pages,20 figs
☆ The Binary and Ternary Quantization Can Improve Feature Discrimination
In machine learning, quantization is widely used to simplify data representation and facilitate algorithm deployment on hardware. Given the fundamental role of classification in machine learning, it is crucial to investigate the impact of quantization on classification. Current research primarily focuses on quantization errors, operating under the premise that higher quantization errors generally result in lower classification performance. However, this premise lacks a solid theoretical foundation and often contradicts empirical findings. For instance, certain extremely low bit-width quantization methods, such as $\{0,1\}$-binary quantization and $\{0, \pm1\}$-ternary quantization, can achieve comparable or even superior classification accuracy compared to the original non-quantized data, despite exhibiting high quantization errors. To more accurately evaluate classification performance, we propose to directly investigate the feature discrimination of quantized data, instead of analyzing its quantization error. Interestingly, it is found that both binary and ternary quantization methods can improve, rather than degrade, the feature discrimination of the original data. This remarkable performance is validated through classification experiments across various data types, including images, speech, and texts.
☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees are an emerging tool for evaluating feature attributions, but existing certification methods rely on smoothed classifiers and often yield conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, and sample-efficient stability certification algorithm (SCA) that provides non-trivial and interpretable guarantees for any attribution. Moreover, we show that mild smoothing enables a graceful tradeoff between accuracy and stability, in contrast to prior certification methods that require a more aggressive compromise. Using Boolean function analysis, we give a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks, and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
☆ On the Relationship Between Robustness and Expressivity of Graph Neural Networks
We investigate the vulnerability of Graph Neural Networks (GNNs) to bit-flip attacks (BFAs) by introducing an analytical framework to study the influence of architectural features, graph properties, and their interaction. The expressivity of GNNs refers to their ability to distinguish non-isomorphic graphs and depends on the encoding of node neighborhoods. We examine the vulnerability of neural multiset functions commonly used for this purpose and establish formal criteria to characterize a GNN's susceptibility to losing expressivity due to BFAs. This enables an analysis of the impact of homophily, graph structural variety, feature encoding, and activation functions on GNN robustness. We derive theoretical bounds for the number of bit flips required to degrade GNN expressivity on a dataset, identifying ReLU-activated GNNs operating on highly homophilous graphs with low-dimensional or one-hot encoded features as particularly susceptible. Empirical results using ten real-world datasets confirm the statistical significance of our key theoretical insights and offer actionable results to mitigate BFA risks in expressivity-critical applications.
comment: Accepted at AISTAST 2025, will add DOI when available
☆ DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs
Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.
comment: 49 pages
☆ Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
Accurate real-time modeling of multi-body dynamical systems is essential for enabling digital twin applications across industries. While many data-driven approaches aim to learn system dynamics, jointly predicting internal loads and system trajectories remains a key challenge. This dual prediction is especially important for fault detection and predictive maintenance, where internal loads-such as contact forces-act as early indicators of faults, reflecting wear or misalignment before affecting motion. These forces also serve as inputs to degradation models (e.g., crack growth), enabling damage prediction and remaining useful life estimation. We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems. In this mesh-free framework, nodes represent system components and edges encode interactions. Equi-Euler GraphNet introduces two inductive biases: (1) an equivariant message-passing scheme, interpreting edge messages as interaction forces consistent under Euclidean transformations; and (2) a temporal-aware iterative node update mechanism, based on Euler integration, to capture influence of distant interactions over time. Tailored for cylindrical roller bearings, it decouples ring dynamics from constrained motion of rolling elements. Trained on high-fidelity multiphysics simulations, Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations. It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation. Achieving up to a 200x speedup over conventional solvers while maintaining comparable accuracy, it serves as an efficient reduced-order model for digital twins, design, and maintenance.
☆ Fragile Watermarking for Image Certification Using Deep Steganographic Embedding
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Predictors of Childhood Vaccination Uptake in England: An Explainable Machine Learning Analysis of Longitudinal Regional Data (2021-2024)
Childhood vaccination is a cornerstone of public health, yet disparities in vaccination coverage persist across England. These disparities are shaped by complex interactions among various factors, including geographic, demographic, socioeconomic, and cultural (GDSC) factors. Previous studies mostly rely on cross-sectional data and traditional statistical approaches that assess individual or limited sets of variables in isolation. Such methods may fall short in capturing the dynamic and multivariate nature of vaccine uptake. In this paper, we conducted a longitudinal machine learning analysis of childhood vaccination coverage across 150 districts in England from 2021 to 2024. Using vaccination data from NHS records, we applied hierarchical clustering to group districts by vaccination coverage into low- and high-coverage clusters. A CatBoost classifier was then trained to predict districts' vaccination clusters using their GDSC data. Finally, the SHapley Additive exPlanations (SHAP) method was used to interpret the predictors' importance. The classifier achieved high accuracies of 92.1, 90.6, and 86.3 in predicting districts' vaccination clusters for the years 2021-2022, 2022-2023, and 2023-2024, respectively. SHAP revealed that geographic, cultural, and demographic variables, particularly rurality, English language proficiency, the percentage of foreign-born residents, and ethnic composition, were the most influential predictors of vaccination coverage, whereas socioeconomic variables, such as deprivation and employment, consistently showed lower importance, especially in 2023-2024. Surprisingly, rural districts were significantly more likely to have higher vaccination rates. Additionally, districts with lower vaccination coverage had higher populations whose first language was not English, who were born outside the UK, or who were from ethnic minority groups.
☆ Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
☆ Dynamic Regularized CBDT: Variance-Calibrated Causal Boosting for Interpretable Heterogeneous Treatment Effects
Heterogeneous treatment effect estimation in high-stakes applications demands models that simultaneously optimize precision, interpretability, and calibration. Many existing tree-based causal inference techniques, however, exhibit high estimation errors when applied to observational data because they struggle to capture complex interactions among factors and rely on static regularization schemes. In this work, we propose Dynamic Regularized Causal Boosted Decision Trees (CBDT), a novel framework that integrates variance regularization and average treatment effect calibration into the loss function of gradient boosted decision trees. Our approach dynamically updates the regularization parameters using gradient statistics to better balance the bias-variance tradeoff. Extensive experiments on standard benchmark datasets and real-world clinical data demonstrate that the proposed method significantly improves estimation accuracy while maintaining reliable coverage of true treatment effects. In an intensive care unit patient triage study, the method successfully identified clinically actionable rules and achieved high accuracy in treatment effect estimation. The results validate that dynamic regularization can effectively tighten error bounds and enhance both predictive performance and model interpretability.
comment: Preprint version. 13 pages, 4 figures, 3 tables
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ MEGA: Second-Order Gradient Alignment for Catastrophic Forgetting Mitigation in GFSCIL
Graph Few-Shot Class-Incremental Learning (GFSCIL) enables models to continually learn from limited samples of novel tasks after initial training on a large base dataset. Existing GFSCIL approaches typically utilize Prototypical Networks (PNs) for metric-based class representations and fine-tune the model during the incremental learning stage. However, these PN-based methods oversimplify learning via novel query set fine-tuning and fail to integrate Graph Continual Learning (GCL) techniques due to architectural constraints. To address these challenges, we propose a more rigorous and practical setting for GFSCIL that excludes query sets during the incremental training phase. Building on this foundation, we introduce Model-Agnostic Meta Graph Continual Learning (MEGA), aimed at effectively alleviating catastrophic forgetting for GFSCIL. Specifically, by calculating the incremental second-order gradient during the meta-training stage, we endow the model to learn high-quality priors that enhance incremental learning by aligning its behaviors across both the meta-training and incremental learning stages. Extensive experiments on four mainstream graph datasets demonstrate that MEGA achieves state-of-the-art results and enhances the effectiveness of various GCL methods in GFSCIL. We believe that our proposed MEGA serves as a model-agnostic GFSCIL paradigm, paving the way for future research.
comment: Under Review
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
☆ Efficient algorithms for the Hadamard decomposition
The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.
comment: 7 pages, code available from https://github.com/WertzSamuel/HadamardDecompositions
☆ On the Convergence of Irregular Sampling in Reproducing Kernel Hilbert Spaces
We analyse the convergence of sampling algorithms for functions in reproducing kernel Hilbert spaces (RKHS). To this end, we discuss approximation properties of kernel regression under minimalistic assumptions on both the kernel and the input data. We first prove error estimates in the kernel's RKHS norm. This leads us to new results concerning uniform convergence of kernel regression on compact domains. For Lipschitz continuous and H\"older continuous kernels, we prove convergence rates.
☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 17 pages
☆ Fairness and Robustness in Machine Unlearning
Machine unlearning poses the challenge of ``how to eliminate the influence of specific data from a pretrained model'' in regard to privacy concerns. While prior research on approximated unlearning has demonstrated accuracy and efficiency in time complexity, we claim that it falls short of achieving exact unlearning, and we are the first to focus on fairness and robustness in machine unlearning algorithms. Our study presents fairness Conjectures for a well-trained model, based on the variance-bias trade-off characteristic, and considers their relevance to robustness. Our Conjectures are supported by experiments conducted on the two most widely used model architectures, ResNet and ViT, demonstrating the correlation between fairness and robustness: \textit{the higher fairness-gap is, the more the model is sensitive and vulnerable}. In addition, our experiments demonstrate the vulnerability of current state-of-the-art approximated unlearning algorithms to adversarial attacks, where their unlearned models suffer a significant drop in accuracy compared to the exact-unlearned models. We claim that our fairness-gap measurement and robustness metric should be used to evaluate the unlearning algorithm. Furthermore, we demonstrate that unlearning in the intermediate and last layers is sufficient and cost-effective for time and memory complexity.
comment: 5 pages
☆ Bitcoin's Edge: Embedded Sentiment in Blockchain Transactional Data IEEE
Cryptocurrency blockchains, beyond their primary role as distributed payment systems, are increasingly used to store and share arbitrary content, such as text messages and files. Although often non-financial, this hidden content can impact price movements by conveying private information, shaping sentiment, and influencing public opinion. However, current analyses of such data are limited in scope and scalability, primarily relying on manual classification or hand-crafted heuristics. In this work, we address these limitations by employing Natural Language Processing techniques to analyze, detect patterns, and extract public sentiment encoded within blockchain transactional data. Using a variety of Machine Learning techniques, we showcase for the first time the predictive power of blockchain-embedded sentiment in forecasting cryptocurrency price movements on the Bitcoin and Ethereum blockchains. Our findings shed light on a previously underexplored source of freely available, transparent, and immutable data and introduce blockchain sentiment analysis as a novel and robust framework for enhancing financial predictions in cryptocurrency markets. Incidentally, we discover an asymmetry between cryptocurrencies; Bitcoin has an informational advantage over Ethereum in that the sentiment embedded into transactional data is sufficient to predict its price movement.
comment: Published in IEEE International Conference on Blockchain and Cryptocurrency 2025
☆ Towards End-to-End Network Intent Management with Large Language Models
Large Language Models (LLMs) are likely to play a key role in Intent-Based Networking (IBN) as they show remarkable performance in interpreting human language as well as code generation, enabling the translation of high-level intents expressed by humans into low-level network configurations. In this paper, we leverage closed-source language models (i.e., Google Gemini 1.5 pro, ChatGPT-4) and open-source models (i.e., LLama, Mistral) to investigate their capacity to generate E2E network configurations for radio access networks (RANs) and core networks in 5G/6G mobile networks. We introduce a novel performance metrics, known as FEACI, to quantitatively assess the format (F), explainability (E), accuracy (A), cost (C), and inference time (I) of the generated answer; existing general metrics are unable to capture these features. The results of our study demonstrate that open-source models can achieve comparable or even superior translation performance compared with the closed-source models requiring costly hardware setup and not accessible to all users.
comment: Full paper is accepted at IFIP Networking 2025
☆ How to Achieve Higher Accuracy with Less Training Points?
In the era of large-scale model training, the extensive use of available datasets has resulted in significant computational inefficiencies. To tackle this issue, we explore methods for identifying informative subsets of training data that can achieve comparable or even superior model performance. We propose a technique based on influence functions to determine which training samples should be included in the training set. We conducted empirical evaluations of our method on binary classification tasks utilizing logistic regression models. Our approach demonstrates performance comparable to that of training on the entire dataset while using only 10% of the data. Furthermore, we found that our method achieved even higher accuracy when trained with just 60% of the data.
☆ Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots
Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
☆ MSTIM: A MindSpore-Based Model for Traffic Flow Prediction
Aiming at the problems of low accuracy and large error fluctuation of traditional traffic flow predictionmodels when dealing with multi-scale temporal features and dynamic change patterns. this paperproposes a multi-scale time series information modelling model MSTIM based on the Mindspore framework, which integrates long and short-term memory networks (LSTMs), convolutional neural networks (CNN), and the attention mechanism to improve the modelling accuracy and stability. The Metropolitan Interstate Traffic Volume (MITV) dataset was used for the experiments and compared and analysed with typical LSTM-attention models, CNN-attention models and LSTM-CNN models. The experimental results show that the MSTIM model achieves better results in the metrics of Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE), which significantly improves the accuracy and stability of the traffic volume prediction.
☆ MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
☆ Bayesian continual learning and forgetting in neural networks
Biological synapses effortlessly balance memory retention and flexibility, yet artificial neural networks still struggle with the extremes of catastrophic forgetting and catastrophic remembering. Here, we introduce Metaplasticity from Synaptic Uncertainty (MESU), a Bayesian framework that updates network parameters according their uncertainty. This approach allows a principled combination of learning and forgetting that ensures that critical knowledge is preserved while unused or outdated information is gradually released. Unlike standard Bayesian approaches -- which risk becoming overly constrained, and popular continual-learning methods that rely on explicit task boundaries, MESU seamlessly adapts to streaming data. It further provides reliable epistemic uncertainty estimates, allowing out-of-distribution detection, the only computational cost being to sample the weights multiple times to provide proper output statistics. Experiments on image-classification benchmarks demonstrate that MESU mitigates catastrophic forgetting, while maintaining plasticity for new tasks. When training 200 sequential permuted MNIST tasks, MESU outperforms established continual learning techniques in terms of accuracy, capability to learn additional tasks, and out-of-distribution data detection. Additionally, due to its non-reliance on task boundaries, MESU outperforms conventional learning techniques on the incremental training of CIFAR-100 tasks consistently in a wide range of scenarios. Our results unify ideas from metaplasticity, Bayesian inference, and Hessian-based regularization, offering a biologically-inspired pathway to robust, perpetual learning.
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
The Transformer model is widely used in various application areas of machine learning, such as natural language processing. This paper investigates the approximation of the H\"older continuous function class $\mathcal{H}_{Q}^{\beta}\left([0,1]^{d\times n},\mathbb{R}^{d\times n}\right)$ by Transformers and constructs several Transformers that can overcome the curse of dimensionality. These Transformers consist of one self-attention layer with one head and the softmax function as the activation function, along with several feedforward layers. For example, to achieve an approximation accuracy of $\epsilon$, if the activation functions of the feedforward layers in the Transformer are ReLU and floor, only $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$ layers of feedforward layers are needed, with widths of these layers not exceeding $\mathcal{O}\left(\frac{1}{\epsilon^{2/\beta}}\log\frac{1}{\epsilon}\right)$. If other activation functions are allowed in the feedforward layers, the width of the feedforward layers can be further reduced to a constant. These results demonstrate that Transformers have a strong expressive capability. The construction in this paper is based on the Kolmogorov-Arnold Representation Theorem and does not require the concept of contextual mapping, hence our proof is more intuitively clear compared to previous Transformer approximation works. Additionally, the translation technique proposed in this paper helps to apply the previous approximation results of feedforward neural networks to Transformer research.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ Irregular Sampling of High-Dimensional Functions in Reproducing Kernel Hilbert Spaces
We develop sampling formulas for high-dimensional functions in reproducing kernel Hilbert spaces, where we rely on irregular samples that are taken at determining sequences of data points. We place particular emphasis on sampling formulas for tensor product kernels, where we show that determining irregular samples in lower dimensions can be composed to obtain a tensor of determining irregular samples in higher dimensions. This in turn reduces the computational complexity of sampling formulas for high-dimensional functions quite significantly.
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ Can Local Representation Alignment RNNs Solve Temporal Tasks?
Recurrent Neural Networks (RNNs) are commonly used for real-time processing, streaming data, and cases where the amount of training samples is limited. Backpropagation Through Time (BPTT) is the predominant algorithm for training RNNs; however, it is frequently criticized for being prone to exploding and vanishing gradients and being biologically implausible. In this paper, we present and evaluate a target propagation-based method for RNNs, which uses local updates and seeks to reduce the said instabilities. Having stable RNN models increases their practical use in a wide range of fields such as natural language processing, time-series forecasting, anomaly detection, control systems, and robotics. The proposed solution uses local representation alignment (LRA). We thoroughly analyze the performance of this method, experiment with normalization and different local error functions, and invalidate certain assumptions about the behavior of this type of learning. Namely, we demonstrate that despite the decomposition of the network into sub-graphs, the model still suffers from vanishing gradients. We also show that gradient clipping as proposed in LRA has little to no effect on network performance. This results in an LRA RNN model that is very difficult to train due to vanishing gradients. We address this by introducing gradient regularization in the direction of the update and demonstrate that this modification promotes gradient flow and meaningfully impacts convergence. We compare and discuss the performance of the algorithm, and we show that the regularized LRA RNN considerably outperforms the unregularized version on three landmark tasks: temporal order, 3-bit temporal order, and random permutation.
☆ Risk-aware black-box portfolio construction using Bayesian optimization with adaptive weighted Lagrangian estimator
Existing portfolio management approaches are often black-box models due to safety and commercial issues in the industry. However, their performance can vary considerably whenever market conditions or internal trading strategies change. Furthermore, evaluating these non-transparent systems is expensive, where certain budgets limit observations of the systems. Therefore, optimizing performance while controlling the potential risk of these financial systems has become a critical challenge. This work presents a novel Bayesian optimization framework to optimize black-box portfolio management models under limited observations. In conventional Bayesian optimization settings, the objective function is to maximize the expectation of performance metrics. However, simply maximizing performance expectations leads to erratic optimization trajectories, which exacerbate risk accumulation in portfolio management. Meanwhile, this can lead to misalignment between the target distribution and the actual distribution of the black-box model. To mitigate this problem, we propose an adaptive weight Lagrangian estimator considering dual objective, which incorporates maximizing model performance and minimizing variance of model observations. Extensive experiments demonstrate the superiority of our approach over five backtest settings with three black-box stock portfolio management models. Ablation studies further verify the effectiveness of the proposed estimator.
comment: 10 pages, 2 figures
☆ Designing a reliable lateral movement detector using a graph foundation model
Foundation models have recently emerged as a new paradigm in machine learning (ML). These models are pre-trained on large and diverse datasets and can subsequently be applied to various downstream tasks with little or no retraining. This allows people without advanced ML expertise to build ML applications, accelerating innovation across many fields. However, the adoption of foundation models in cybersecurity is hindered by their inability to efficiently process data such as network traffic captures or binary executables. The recent introduction of graph foundation models (GFMs) could make a significant difference, as graphs are well-suited to representing these types of data. We study the usability of GFMs in cybersecurity through the lens of one specific use case, namely lateral movement detection. Using a pre-trained GFM, we build a detector that reaches state-of-the-art performance without requiring any training on domain-specific data. This case study thus provides compelling evidence of the potential of GFMs for cybersecurity.
☆ Cross-Modal Temporal Fusion for Financial Market Forecasting
Accurate financial market forecasting requires diverse data sources, including historical price trends, macroeconomic indicators, and financial news, each contributing unique predictive signals. However, existing methods often process these modalities independently or fail to effectively model their interactions. In this paper, we introduce Cross-Modal Temporal Fusion (CMTF), a novel transformer-based framework that integrates heterogeneous financial data to improve predictive accuracy. Our approach employs attention mechanisms to dynamically weight the contribution of different modalities, along with a specialized tensor interpretation module for feature extraction. To facilitate rapid model iteration in industry applications, we incorporate a mature auto-training scheme that streamlines optimization. When applied to real-world financial datasets, CMTF demonstrates improvements over baseline models in forecasting stock price movements and provides a scalable and effective solution for cross-modal integration in financial market prediction.
comment: 10 pages, 2 figures
☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
☆ Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
☆ Statistical Validation in Cultural Adaptations of Cognitive Tests: A Multi- Regional Systematic Review
This systematic review discusses the methodological approaches and statistical confirmations of cross-cultural adaptations of cognitive evaluation tools used with different populations. The review considers six seminal studies on the methodology of cultural adaptation in Europe, Asia, Africa, and South America. The results indicate that proper adaptations need holistic models with demographic changes, and education explained as much as 26.76% of the variance in MoCA-H scores. Cultural-linguistic factors explained 6.89% of the variance in European adaptations of MoCA-H; however, another study on adapted MMSE and BCSB among Brazilian Indigenous populations reported excellent diagnostic performance, with a sensitivity of 94.4% and specificity of 99.2%. There was 78.5% inter-rater agreement on the evaluation of cultural adaptation using the Manchester Translation Evaluation Checklist. A paramount message of the paper is that community feedback is necessary for culturally appropriate preparation, standardized translation protocols also must be included, along with robust statistical validation methodologies for developing cognitive assessment instruments. This review supplies evidence-based frameworks for the further adaptation of cognitive assessments in increasingly diverse global health settings.
comment: This paper is accepted and presented in the International Conference Challenges & Opportunities in Artificial Intelligence: Engineering & Management Applications (COAIEMA 2025) and to be published in Taylor & Francis Proceedings
☆ Monitor and Recover: A Paradigm for Future Research on Distribution Shift in Learning-Enabled Cyber-Physical Systems
With the known vulnerability of neural networks to distribution shift, maintaining reliability in learning-enabled cyber-physical systems poses a salient challenge. In response, many existing methods adopt a detect and abstain methodology, aiming to detect distribution shift at inference time so that the learning-enabled component can abstain from decision-making. This approach, however, has limited use in real-world applications. We instead propose a monitor and recover paradigm as a promising direction for future research. This philosophy emphasizes 1) robust safety monitoring instead of distribution shift detection and 2) distribution shift recovery instead of abstention. We discuss two examples from our recent work.
comment: Accepted to ICCPS 2025
☆ Latent Tensor Factorization with Nonlinear PID Control for Missing Data Recovery in Non-Intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM) has emerged as a key smart grid technology, identifying electrical device and providing detailed energy consumption data for precise demand response management. Nevertheless, NILM data suffers from missing values due to inescapable factors like sensor failure, leading to inaccuracies in non-intrusive load monitoring. A stochastic gradient descent (SGD)-based latent factorization of tensors model has proven to be effective in estimating missing data, however, it updates a latent factor solely based on the current stochastic gradient, without considering past information, which leads to slow convergence of anLFT model. To address this issue, this paper proposes a Nonlinear Proportional-integral-derivative (PID)-Incorporated Latent factorization of tensors (NPIL) model with two-fold ideas: a) rebuilding the instant learning error according to the principle of a nonlinear PID controller, thus, the past update information is efficiently incorporated into the learning scheme, and b) implementing gain parameter adaptation by utilizing particle swarm optimization (PSO) algorithm, hence, the model computational efficiency is effectively improved. Experimental results on real-world NILM datasets demonstrate that the proposed NPIL model surpasses state-of-the-art models in convergence rate and accuracy when predicting the missing NILM data.
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ SFL-LEO: Asynchronous Split-Federated Learning Design for LEO Satellite-Ground Network Framework
Recently, the rapid development of LEO satellite networks spurs another widespread concern-data processing at satellites. However, achieving efficient computation at LEO satellites in highly dynamic satellite networks is challenging and remains an open problem when considering the constrained computation capability of LEO satellites. For the first time, we propose a novel distributed learning framework named SFL-LEO by combining Federated Learning (FL) with Split Learning (SL) to accommodate the high dynamics of LEO satellite networks and the constrained computation capability of LEO satellites by leveraging the periodical orbit traveling feature. The proposed scheme allows training locally by introducing an asynchronous training strategy, i.e., achieving local update when LEO satellites disconnect with the ground station, to provide much more training space and thus increase the training performance. Meanwhile, it aggregates client-side sub-models at the ground station and then distributes them to LEO satellites by borrowing the idea from the federated learning scheme. Experiment results driven by satellite-ground bandwidth measured in Starlink demonstrate that SFL-LEO provides a similar accuracy performance with the conventional SL scheme because it can perform local training even within the disconnection duration.
comment: 13 pages, 14 figures
☆ Safety Monitoring for Learning-Enabled Cyber-Physical Systems in Out-of-Distribution Scenarios
The safety of learning-enabled cyber-physical systems is compromised by the well-known vulnerabilities of deep neural networks to out-of-distribution (OOD) inputs. Existing literature has sought to monitor the safety of such systems by detecting OOD data. However, such approaches have limited utility, as the presence of an OOD input does not necessarily imply the violation of a desired safety property. We instead propose to directly monitor safety in a manner that is itself robust to OOD data. To this end, we predict violations of signal temporal logic safety specifications based on predicted future trajectories. Our safety monitor additionally uses a novel combination of adaptive conformal prediction and incremental learning. The former obtains probabilistic prediction guarantees even on OOD data, and the latter prevents overly conservative predictions. We evaluate the efficacy of the proposed approach in two case studies on safety monitoring: 1) predicting collisions of an F1Tenth car with static obstacles, and 2) predicting collisions of a race car with multiple dynamic obstacles. We find that adaptive conformal prediction obtains theoretical guarantees where other uncertainty quantification methods fail to do so. Additionally, combining adaptive conformal prediction and incremental learning for safety monitoring achieves high recall and timeliness while reducing loss in precision. We achieve these results even in OOD settings and outperform alternative methods.
comment: Accepted to ICCPS 2025
☆ Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
☆ CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ Are you SURE? Enhancing Multimodal Pretraining with Missing Modalities through Uncertainty Estimation
Multimodal learning has demonstrated incredible successes by integrating diverse data sources, yet it often relies on the availability of all modalities - an assumption that rarely holds in real-world applications. Pretrained multimodal models, while effective, struggle when confronted with small-scale and incomplete datasets (i.e., missing modalities), limiting their practical applicability. Previous studies on reconstructing missing modalities have overlooked the reconstruction's potential unreliability, which could compromise the quality of the final outputs. We present SURE (Scalable Uncertainty and Reconstruction Estimation), a novel framework that extends the capabilities of pretrained multimodal models by introducing latent space reconstruction and uncertainty estimation for both reconstructed modalities and downstream tasks. Our method is architecture-agnostic, reconstructs missing modalities, and delivers reliable uncertainty estimates, improving both interpretability and performance. SURE introduces a unique Pearson Correlation-based loss and applies statistical error propagation in deep networks for the first time, allowing precise quantification of uncertainties from missing data and model predictions. Extensive experiments across tasks such as sentiment analysis, genre classification, and action recognition show that SURE consistently achieves state-of-the-art performance, ensuring robust predictions even in the presence of incomplete data.
☆ Stratify: Rethinking Federated Learning for Non-IID Data through Balanced Sampling
Federated Learning (FL) on non-independently and identically distributed (non-IID) data remains a critical challenge, as existing approaches struggle with severe data heterogeneity. Current methods primarily address symptoms of non-IID by applying incremental adjustments to Federated Averaging (FedAvg), rather than directly resolving its inherent design limitations. Consequently, performance significantly deteriorates under highly heterogeneous conditions, as the fundamental issue of imbalanced exposure to diverse class and feature distributions remains unresolved. This paper introduces Stratify, a novel FL framework designed to systematically manage class and feature distributions throughout training, effectively tackling the root cause of non-IID challenges. Inspired by classical stratified sampling, our approach employs a Stratified Label Schedule (SLS) to ensure balanced exposure across labels, significantly reducing bias and variance in aggregated gradients. Complementing SLS, we propose a label-aware client selection strategy, restricting participation exclusively to clients possessing data relevant to scheduled labels. Additionally, Stratify incorporates a fine-grained, high-frequency update scheme, accelerating convergence and further mitigating data heterogeneity. To uphold privacy, we implement a secure client selection protocol leveraging homomorphic encryption, enabling precise global label statistics without disclosing sensitive client information. Extensive evaluations on MNIST, CIFAR-10, CIFAR-100, Tiny-ImageNet, COVTYPE, PACS, and Digits-DG demonstrate that Stratify attains performance comparable to IID baselines, accelerates convergence, and reduces client-side computation compared to state-of-the-art methods, underscoring its practical effectiveness in realistic federated learning scenarios.
☆ Using Machine Learning and Neural Networks to Analyze and Predict Chaos in Multi-Pendulum and Chaotic Systems
A chaotic system is a highly volatile system characterized by its sensitive dependence on initial conditions and outside factors. Chaotic systems are prevalent throughout the world today: in weather patterns, disease outbreaks, and even financial markets. Chaotic systems are seen in every field of science and humanities, so being able to predict these systems is greatly beneficial to society. In this study, we evaluate 10 different machine learning models and neural networks [1] based on Root Mean Squared Error (RMSE) and R^2 values for their ability to predict one of these systems, the multi-pendulum. We begin by generating synthetic data representing the angles of the pendulum over time using the Runge Kutta Method for solving 4th Order Differential Equations (ODE-RK4) [2]. At first, we used the single-step sliding window approach, predicting the 50st step after training for steps 0-49 and so forth. However, to more accurately cover chaotic motion and behavior in these systems, we transitioned to a time-step based approach. Here, we trained the model/network on many initial angles and tested it on a completely new set of initial angles, or 'in-between' to capture chaotic motion to its fullest extent. We also evaluated the stability of the system using Lyapunov exponents. We concluded that for a double pendulum, the best model was the Long Short Term Memory Network (LSTM)[3] for the sliding window and time step approaches in both friction and frictionless scenarios. For triple pendulum, the Vanilla Recurrent Neural Network (VRNN)[4] was the best for the sliding window and Gated Recurrent Network (GRU) [5] was the best for the time step approach, but for friction, LSTM was the best.
comment: 35 Pages, Approximately 20 figures
☆ MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
☆ Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
comment: arXiv admin note: text overlap with arXiv:2302.02914 by other authors
☆ Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
In recent years, Graph Convolutional Networks (GCNs) have gained popularity for their exceptional ability to process graph-structured data. Existing GCN-based approaches typically employ a shallow model architecture due to the over-smoothing phenomenon. Current approaches to mitigating over-smoothing primarily involve adding supplementary components to GCN architectures, such as residual connections and random edge-dropping strategies. However, these improvements toward deep GCNs have achieved only limited success. In this work, we analyze the intrinsic message passing mechanism of GCNs and identify a critical issue: messages originating from high-order neighbors must traverse through low-order neighbors to reach the target node. This repeated reliance on low-order neighbors leads to redundant information aggregation, a phenomenon we term over-aggregation. Our analysis demonstrates that over-aggregation not only introduces significant redundancy but also serves as the fundamental cause of over-smoothing in GCNs.
☆ Equilibrium Conserving Neural Operators for Super-Resolution Learning
Neural surrogate solvers can estimate solutions to partial differential equations in physical problems more efficiently than standard numerical methods, but require extensive high-resolution training data. In this paper, we break this limitation; we introduce a framework for super-resolution learning in solid mechanics problems. Our approach allows one to train a high-resolution neural network using only low-resolution data. Our Equilibrium Conserving Operator (ECO) architecture embeds known physics directly into the network to make up for missing high-resolution information during training. We evaluate this ECO-based super-resolution framework that strongly enforces conservation-laws in the predicted solutions on two working examples: embedded pores in a homogenized matrix and randomly textured polycrystalline materials. ECO eliminates the reliance on high-fidelity data and reduces the upfront cost of data collection by two orders of magnitude, offering a robust pathway for resource-efficient surrogate modeling in materials modeling. ECO is readily generalizable to other physics-based problems.
☆ STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ Adaptive Non-local Observable on Quantum Neural Networks
Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
☆ A Model-Based Approach to Imitation Learning through Multi-Step Predictions
Imitation learning is a widely used approach for training agents to replicate expert behavior in complex decision-making tasks. However, existing methods often struggle with compounding errors and limited generalization, due to the inherent challenge of error correction and the distribution shift between training and deployment. In this paper, we present a novel model-based imitation learning framework inspired by model predictive control, which addresses these limitations by integrating predictive modeling through multi-step state predictions. Our method outperforms traditional behavior cloning numerical benchmarks, demonstrating superior robustness to distribution shift and measurement noise both in available data and during execution. Furthermore, we provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
☆ How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
☆ OpCode-Based Malware Classification Using Machine Learning and Deep Learning Techniques
This technical report presents a comprehensive analysis of malware classification using OpCode sequences. Two distinct approaches are evaluated: traditional machine learning using n-gram analysis with Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree classifiers; and a deep learning approach employing a Convolutional Neural Network (CNN). The traditional machine learning approach establishes a baseline using handcrafted 1-gram and 2-gram features from disassembled malware samples. The deep learning methodology builds upon the work proposed in "Deep Android Malware Detection" by McLaughlin et al. and evaluates the performance of a CNN model trained to automatically extract features from raw OpCode data. Empirical results are compared using standard performance metrics (accuracy, precision, recall, and F1-score). While the SVM classifier outperforms other traditional techniques, the CNN model demonstrates competitive performance with the added benefit of automated feature extraction.
comment: 11 pages
☆ Quantum repeaters enhanced by vacuum beam guides
The development of large-scale quantum communication networks faces critical challenges due to photon loss and decoherence in optical fiber channels. These fundamentally limit transmission distances and demand dense networks of repeater stations. This work investigates using vacuum beam guides (VBGs)-a promising ultra-low-loss transmission platform-as an alternative to traditional fiber links. By incorporating VBGs into repeater-based architectures, we demonstrate that the inter-repeater spacing can be substantially extended, resulting in fewer required nodes and significantly reducing hardware and operational complexity. We perform a cost-function analysis to quantify performance trade-offs across first, second, and third-generation repeaters. Our results show that first-generation repeaters reduce costs dramatically by eliminating entanglement purification. Third-generation repeaters benefit from improved link transmission success, which is crucial for quantum error correction. In contrast, second-generation repeaters exhibit a more nuanced response; although transmission loss is reduced, their performance remains primarily limited by logical gate errors rather than channel loss. These findings highlight that while all repeater generations benefit from reduced photon loss, the magnitude of improvement depends critically on the underlying error mechanisms. Vacuum beam guides thus emerge as a powerful enabler for scalable, high-performance quantum networks, particularly in conjunction with near-term quantum hardware capabilities.
comment: 10 pages
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
☆ A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
♻ ☆ Near-Polynomially Competitive Active Logistic Regression
We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $\log \frac{1}{\eps}$ rather than $\poly(1/\eps)$ labels to get error $\eps$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $\eps$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms.
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ NRGBoost: Energy-Based Generative Boosted Trees
Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second-order boosting implemented in popular libraries like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural-network-based models for sampling. Code is available at https://github.com/ajoo/nrgboost.
♻ ☆ Reinforcement Learning with Graph Attention for Routing and Wavelength Assignment with Lightpath Reuse
Many works have investigated reinforcement learning (RL) for routing and spectrum assignment on flex-grid networks but only one work to date has examined RL for fixed-grid with flex-rate transponders, despite production systems using this paradigm. Flex-rate transponders allow existing lightpaths to accommodate new services, a task we term routing and wavelength assignment with lightpath reuse (RWA-LR). We re-examine this problem and present a thorough benchmarking of heuristic algorithms for RWA-LR, which are shown to have 6% increased throughput when candidate paths are ordered by number of hops, rather than total length. We train an RL agent for RWA-LR with graph attention networks for the policy and value functions to exploit the graph-structured data. We provide details of our methodology and open source all of our code for reproduction. We outperform the previous state-of-the-art RL approach by 2.5% (17.4 Tbps mean additional throughput) and the best heuristic by 1.2% (8.5 Tbps mean additional throughput). This marginal gain highlights the difficulty in learning effective RL policies on long horizon resource allocation tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text ICLR 2025
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: Accepted at ICLR 2025. Original paper name: VCR: Visual Caption Restoration
♻ ☆ RiboGen: RNA Sequence and Structure Co-Generation with Equivariant MultiFlow
Ribonucleic acid (RNA) plays fundamental roles in biological systems, from carrying genetic information to performing enzymatic function. Understanding and designing RNA can enable novel therapeutic application and biotechnological innovation. To enhance RNA design, in this paper we introduce RiboGen, the first deep learning model to simultaneously generate RNA sequence and all-atom 3D structure. RiboGen leverages the standard Flow Matching with Discrete Flow Matching in a multimodal data representation. RiboGen is based on Euclidean Equivariant neural networks for efficiently processing and learning three-dimensional geometry. Our experiments show that RiboGen can efficiently generate chemically plausible and self-consistent RNA samples, suggesting that co-generation of sequence and structure is a competitive approach for modeling RNA.
comment: 6 pages
♻ ☆ Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
♻ ☆ Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $\pi$ over $\mathbb{R}^d$ by a product measure $\pi^\star$. When $\pi$ is strongly log-concave and log-smooth, we provide (1) approximation rates certifying that $\pi^\star$ is close to the minimizer $\pi^\star_\diamond$ of the KL divergence over a \emph{polyhedral} set $\mathcal{P}_\diamond$, and (2) an algorithm for minimizing $\text{KL}(\cdot\|\pi)$ over $\mathcal{P}_\diamond$ based on accelerated gradient descent over $\R^d$. As a byproduct of our analysis, we obtain the first end-to-end analysis for gradient-based algorithms for MFVI.
comment: 49 pages
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers ICLR 2025
Task arithmetic refers to editing the pre-trained model by adding a weighted sum of task vectors, each of which is the weight update from the pre-trained model to fine-tuned models for certain tasks. This approach recently gained attention as a computationally efficient inference method for model editing, e.g., multi-task learning, forgetting, and out-of-domain generalization capabilities. However, the theoretical understanding of why task vectors can execute various conceptual operations remains limited, due to the highly non-convexity of training Transformer-based models. To the best of our knowledge, this paper provides the first theoretical characterization of the generalization guarantees of task vector methods on nonlinear Transformers. We consider a conceptual learning setting, where each task is a binary classification problem based on a discriminative pattern. We theoretically prove the effectiveness of task addition in simultaneously learning a set of irrelevant or aligned tasks, as well as the success of task negation in unlearning one task from irrelevant or contradictory tasks. Moreover, we prove the proper selection of linear coefficients for task arithmetic to achieve guaranteed generalization to out-of-domain tasks. All of our theoretical results hold for both dense-weight parameters and their low-rank approximations. Although established in a conceptual setting, our theoretical findings were validated on a practical machine unlearning task using the large language model Phi-1.5 (1.3B).
comment: Published at ICLR 2025 as an oral paper
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
♻ ☆ Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space ICLR
Neural quantum states (NQS) have emerged as a powerful tool for approximating quantum wavefunctions using deep learning. While these models achieve remarkable accuracy, understanding how they encode physical information remains an open challenge. In this work, we introduce adiabatic fine-tuning, a scheme that trains NQS across a phase diagram, leading to strongly correlated weight representations across different models. This correlation in weight space enables the detection of phase transitions in quantum systems by analyzing the trained network weights alone. We validate our approach on the transverse field Ising model and the J1-J2 Heisenberg model, demonstrating that phase transitions manifest as distinct structures in weight space. Our results establish a connection between physical phase transitions and the geometry of neural network parameters, opening new directions for the interpretability of machine learning models in physics.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025. Code available at: https://gitlab.com/QMAI/papers/nqsweights
♻ ☆ Deep Huber quantile regression networks
Typical machine learning regression applications aim to report the mean or the median of the predictive probability distribution, via training with a squared or an absolute error scoring function. The importance of issuing predictions of more functionals of the predictive probability distribution (quantiles and expectiles) has been recognized as a means to quantify the uncertainty of the prediction. In deep learning (DL) applications, that is possible through quantile and expectile regression neural networks (QRNN and ERNN respectively). Here we introduce deep Huber quantile regression networks (DHQRN) that nest QRNN and ERNN as edge cases. DHQRN can predict Huber quantiles, which are more general functionals in the sense that they nest quantiles and expectiles as limiting cases. The main idea is to train a DL algorithm with the Huber quantile scoring function, which is consistent for the Huber quantile functional. As a proof of concept, DHQRN are applied to predict house prices in Melbourne, Australia and Boston, United States (US). In this context, predictive performances of three DL architectures are discussed along with evidential interpretation of results from two economic case studies. Additional simulation experiments and applications to real-world case studies using open datasets demonstrate a satisfactory absolute performance of DHQRN.
comment: 40 pages, 11 figures, 4 tables
♻ ☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the Remaining Useful Life (RUL) in Lithium ion battery (LIB) health management systems is essential for ensuring operational reliability and safety. However, many existing methods assume that training and testing data follow the same distribution, limiting their ability to generalize to unseen target domains. To address this, we propose a novel RUL prediction framework that incorporates a domain adaptation (DA) technique. Our framework integrates a signal preprocessing pipeline including noise reduction, feature extraction, and normalization with a robust deep learning model called HybridoNet Adapt. The model features a combination of LSTM, Multihead Attention, and Neural ODE layers for feature extraction, followed by two predictor modules with trainable trade-off parameters. To improve generalization, we adopt a DA strategy inspired by Domain Adversarial Neural Networks (DANN), replacing adversarial loss with Maximum Mean Discrepancy (MMD) to learn domain-invariant features. Experimental results show that HybridoNet Adapt significantly outperforms traditional models such as XGBoost and Elastic Net, as well as deep learning baselines like Dual input DNN, demonstrating its potential for scalable and reliable battery health management (BHM).
♻ ☆ Variable transformations in consistent loss functions
Loss functions constructed by applying transformations to the realization and prediction variables of (strictly) consistent loss functions have been extensively studied empirically, yet their theoretical foundations remain unexplored. To address this gap, we establish formal characterizations of (strict) consistency for such transformed loss functions and their corresponding elicitable functionals. Our analysis focuses on two interrelated cases: (a) transformations applied solely to the realization variable and (b) bijective transformations applied jointly to both the realization and prediction variables. These cases extend the well-established framework of transformations applied exclusively to the prediction variable, as formalized by Osband's revelation principle. We further develop analogous characterizations for (strict) identification functions. The resulting theoretical framework is broadly applicable to statistical and machine learning methodologies. When applied to Bregman and expectile loss functions, our framework enables two key advancements: (a) the interpretation of empirical findings from models trained with transformed loss functions and (b) the systematic construction of novel identifiable and elicitable functionals, including the g-transformed expectation and g-transformed expectile. By unifying theoretical insights with practical applications, this work advances principled methodologies for designing loss functions in complex predictive tasks. Applications of the framework to simulated and real-world data illustrate its practical utility in diverse settings.
comment: 36 pages, 3 figures, 2 tables
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Optimal Transport for $ε$-Contaminated Credal Sets: To the Memory of Sayan Mukherjee
We present generalized versions of Monge's and Kantorovich's optimal transport problems with the probabilities being transported replaced by lower probabilities. We show that, when the lower probabilities are the lower envelopes of $\epsilon$-contaminated sets, then our version of Monge's, and a restricted version of our Kantorovich's problems, coincide with their respective classical versions. We also give sufficient conditions for the existence of our version of Kantorovich's optimal plan, and for the two problems to be equivalent. As a byproduct, we show that for $\epsilon$-contaminations the lower probability versions of Monge's and Kantorovich's optimal transport problems need not coincide. The applications of our results to Machine Learning and Artificial Intelligence are also discussed.
♻ ☆ Robust image classification with multi-modal large language models
Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, MultiShield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. MultiShield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that MultiShield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.
comment: Paper accepted at Pattern Recognition Letters journal Keywords: adversarial examples, rejection defense, multimodal-informed systems, machine learning security
♻ ☆ Diffusion Transformers for Tabular Data Time Series Generation ICLR 2025
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
comment: Accepted at ICLR 2025. 26 pages, 19 figures, 13 tables
♻ ☆ Conformal Prediction Regions are Imprecise Highest Density Regions
Recently, Cella and Martin proved how, under an assumption called consonance, a credal set (i.e. a closed and convex set of probabilities) can be derived from the conformal transducer associated with transductive conformal prediction. We show that the Imprecise Highest Density Region (IHDR) associated with such a credal set corresponds to the classical Conformal Prediction Region. In proving this result, we establish a new relationship between Conformal Prediction and Imprecise Probability (IP) theories, via the IP concept of a cloud. A byproduct of our presentation is the discovery that consonant plausibility functions are monoid homomorphisms, a new algebraic property of an IP tool.
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ Energy-Latency Attacks via Sponge Poisoning
Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
comment: Paper accepted at Information Sciences journal; 20 pages Keywords: energy-latency attacks, sponge attack, machine learning security, adversarial machine learning
♻ ☆ Order is All You Need for Categorical Data Clustering
Categorical data composed of qualitative valued attributes are ubiquitous in machine learning tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to be intuitively understood. Clustering is a popular data analysis technique suitable for data distribution understanding. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. This paper therefore introduces a new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding categorical data clusters, because the essence of clustering is to order the clusters in terms of their admission to samples. To obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It alternatively partitions the data into clusters based on the distance metric built upon the orders and estimates the most likely orders according to the clusters. The algorithm achieves superior clustering accuracy with a convergence guarantee, and the learned orders facilitate the understanding of the non-intuitive cluster distribution of categorical data. Extensive experiments with ablation studies, statistical evidence, and case studies have validated the new insight into the importance of value order and the method proposition. The source code is temporarily opened in https://anonymous.4open.science/r/OCL-demo.
♻ ☆ Robust Universum Twin Support Vector Machine for Imbalanced Data
One of the major difficulties in machine learning methods is categorizing datasets that are imbalanced. This problem may lead to biased models, where the training process is dominated by the majority class, resulting in inadequate representation of the minority class. Universum twin support vector machine (UTSVM) produces a biased model towards the majority class, as a result, its performance on the minority class is often poor as it might be mistakenly classified as noise. Moreover, UTSVM is not proficient in handling datasets that contain outliers and noises. Inspired by the concept of incorporating prior information about the data and employing an intuitionistic fuzzy membership scheme, we propose intuitionistic fuzzy UTSVM for imbalanced data (IFUTSVM-ID) by enhancing overall robustness. We use an intuitionistic fuzzy membership scheme to mitigate the impact of noise and outliers. Moreover, to tackle the problem of imbalanced class distribution, data oversampling and undersampling methods are utilized. Prior knowledge about the data is provided by universum data. This leads to better generalization performance. UTSVM is susceptible to overfitting risks due to the omission of the structural risk minimization (SRM) principle in their primal formulations. However, the proposed IFUTSVM-ID model incorporates the SRM principle through the incorporation of regularization terms, effectively addressing the issue of overfitting. We conduct a comprehensive evaluation of the proposed IFUTSVM-ID model on benchmark datasets from KEEL and compare it with existing baseline models. Furthermore, to assess the effectiveness of the proposed IFUTSVM-ID model in diagnosing Alzheimer's disease (AD), we applied them to the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results showcase the superiority of the proposed IFUTSVM-ID models compared to the baseline models.
♻ ☆ Granular Ball Twin Support Vector Machine IEEE
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture ModelsTwin support vector machine (TSVM) is an emerging machine learning model with versatile applicability in classification and regression endeavors. Nevertheless, TSVM confronts noteworthy challenges: $(i)$ the imperative demand for matrix inversions presents formidable obstacles to its efficiency and applicability on large-scale datasets; $(ii)$ the omission of the structural risk minimization (SRM) principle in its primal formulation heightens the vulnerability to overfitting risks; and $(iii)$ the TSVM exhibits a high susceptibility to noise and outliers, and also demonstrates instability when subjected to resampling. In view of the aforementioned challenges, we propose the granular ball twin support vector machine (GBTSVM). GBTSVM takes granular balls, rather than individual data points, as inputs to construct a classifier. These granular balls, characterized by their coarser granularity, exhibit robustness to resampling and reduced susceptibility to the impact of noise and outliers. We further propose a novel large-scale granular ball twin support vector machine (LS-GBTSVM). LS-GBTSVM's optimization formulation ensures two critical facets: $(i)$ it eliminates the need for matrix inversions, streamlining the LS-GBTSVM's computational efficiency, and $(ii)$ it incorporates the SRM principle through the incorporation of regularization terms, effectively addressing the issue of overfitting. The proposed LS-GBTSVM exemplifies efficiency, scalability for large datasets, and robustness against noise and outliers. We conduct a comprehensive evaluation of the GBTSVM and LS-GBTSVM models on benchmark datasets from UCI, KEEL, and NDC datasets. Our experimental findings and statistical analyses affirm the superior generalization prowess of the proposed GBTSVM and LS-GBTSVM models.
comment: Manuscript submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS: 19 September 2023; revised 13 February 2024 and 14 July 2024; accepted 05 October 2024
♻ ☆ Variational Stochastic Gradient Descent for Deep Neural Networks
Current state-of-the-art optimizers are adaptive gradient-based optimization methods such as Adam. Recently, there has been an increasing interest in formulating gradient-based optimizers in a probabilistic framework for better modeling the uncertainty of the gradients. Here, we propose to combine both approaches, resulting in the Variational Stochastic Gradient Descent (VSGD) optimizer. We model gradient updates as a probabilistic model and utilize stochastic variational inference (SVI) to derive an efficient and effective update rule. Further, we show how our VSGD method relates to other adaptive gradient-based optimizers like Adam. Lastly, we carry out experiments on two image classification datasets and four deep neural network architectures, where we show that VSGD outperforms Adam and SGD.
♻ ☆ Beyond Grids: Multi-objective Bayesian Optimization With Adaptive Discretization
We consider the problem of optimizing a vector-valued objective function $\boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({\cal X},d)$ of designs. We assume that $\boldsymbol{f}$ is not known beforehand and that evaluating $\boldsymbol{f}$ at design $x$ results in a noisy observation of $\boldsymbol{f}(x)$. Since identifying the Pareto optimal designs via exhaustive search is infeasible when the cardinality of ${\cal X}$ is large, we propose an algorithm, called Adaptive $\boldsymbol{\epsilon}$-PAL, that exploits the smoothness of the GP-sampled function and the structure of $({\cal X},d)$ to learn fast. In essence, Adaptive $\boldsymbol{\epsilon}$-PAL employs a tree-based adaptive discretization technique to identify an $\boldsymbol{\epsilon}$-accurate Pareto set of designs in as few evaluations as possible. We provide both information-type and metric dimension-type bounds on the sample complexity of $\boldsymbol{\epsilon}$-accurate Pareto set identification. We also experimentally show that our algorithm outperforms other Pareto set identification methods.
♻ ☆ Towards a Reward-Free Reinforcement Learning Framework for Vehicle Control
Reinforcement learning plays a crucial role in vehicle control by guiding agents to learn optimal control strategies through designing or learning appropriate reward signals. However, in vehicle control applications, rewards typically need to be manually designed while considering multiple implicit factors, which easily introduces human biases. Although imitation learning methods does not rely on explicit reward signals, they necessitate high-quality expert actions, which are often challenging to acquire. To address these issues, we propose a reward-free reinforcement learning framework (RFRLF). This framework directly learns the target states to optimize agent behavior through a target state prediction network (TSPN) and a reward-free state-guided policy network (RFSGPN), avoiding the dependence on manually designed reward signals. Specifically, the policy network is learned via minimizing the differences between the predicted state and the expert state. Experimental results demonstrate the effectiveness of the proposed RFRLF in controlling vehicle driving, showing its advantages in improving learning efficiency and adapting to reward-free environments.
♻ ☆ MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some knowledge acquired in the pre-training stage, leading to a decline in general capabilities. Existing approaches to mitigate forgetting often rely on access to pre-training data, which may be unavailable in many real-world scenarios--such as fine-tuning checkpoint-only open-source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate descent (BCD) methods: in each iteration, MoFO only updates the model parameters with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis and extensive experiments, demonstrating its effectiveness in mitigating forgetting without pre-training data.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ Few-shot Model Extraction Attacks against Sequential Recommender Systems
Among adversarial attacks against sequential recommender systems, model extraction attacks represent a method to attack sequential recommendation models without prior knowledge. Existing research has primarily concentrated on the adversary's execution of black-box attacks through data-free model extraction. However, a significant gap remains in the literature concerning the development of surrogate models by adversaries with access to few-shot raw data (10\% even less). That is, the challenge of how to construct a surrogate model with high functional similarity within the context of few-shot data scenarios remains an issue that requires resolution.This study addresses this gap by introducing a novel few-shot model extraction framework against sequential recommenders, which is designed to construct a superior surrogate model with the utilization of few-shot data. The proposed few-shot model extraction framework is comprised of two components: an autoregressive augmentation generation strategy and a bidirectional repair loss-facilitated model distillation procedure. Specifically, to generate synthetic data that closely approximate the distribution of raw data, autoregressive augmentation generation strategy integrates a probabilistic interaction sampler to extract inherent dependencies and a synthesis determinant signal module to characterize user behavioral patterns. Subsequently, bidirectional repair loss, which target the discrepancies between the recommendation lists, is designed as auxiliary loss to rectify erroneous predictions from surrogate models, transferring knowledge from the victim model to the surrogate model effectively. Experiments on three datasets show that the proposed few-shot model extraction framework yields superior surrogate models.
comment: It requires substantial modifications.The symbols in the mathematical formulas are not explained in detail
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
♻ ☆ E(3)-equivariant models cannot learn chirality: Field-based molecular generation ICLR 2025
Obtaining the desired effect of drugs is highly dependent on their molecular geometries. Thus, the current prevailing paradigm focuses on 3D point-cloud atom representations, utilizing graph neural network (GNN) parametrizations, with rotational symmetries baked in via E(3) invariant layers. We prove that such models must necessarily disregard chirality, a geometric property of the molecules that cannot be superimposed on their mirror image by rotation and translation. Chirality plays a key role in determining drug safety and potency. To address this glaring issue, we introduce a novel field-based representation, proposing reference rotations that replace rotational symmetry constraints. The proposed model captures all molecular geometries including chirality, while still achieving highly competitive performance with E(3)-based methods across standard benchmarking metrics.
comment: ICLR 2025
♻ ☆ NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search
Intelligent mobile agents (e.g., UGVs and UAVs) typically demand low power/energy consumption when solving their machine learning (ML)-based tasks, since they are usually powered by portable batteries with limited capacity. A potential solution is employing neuromorphic computing with Spiking Neural Networks (SNNs), which leverages event-based computation to enable ultra-low power/energy ML algorithms. To maximize the performance efficiency of SNN inference, the In-Memory Computing (IMC)-based hardware accelerators with emerging device technologies (e.g., RRAM) can be employed. However, SNN models are typically developed without considering constraints from the application and the underlying IMC hardware, thereby hindering SNNs from reaching their full potential in performance and efficiency. To address this, we propose NeuroNAS, a novel framework for developing energyefficient neuromorphic IMC for intelligent mobile agents using hardware-aware spiking neural architecture search (NAS), i.e., by quickly finding an SNN architecture that offers high accuracy under the given constraints (e.g., memory, area, latency, and energy consumption). Its key steps include: optimizing SNN operations to enable efficient NAS, employing quantization to minimize the memory footprint, developing an SNN architecture that facilitates an effective learning, and devising a systematic hardware-aware search algorithm to meet the constraints. Compared to the state-of-the-art techniques, NeuroNAS quickly finds SNN architectures (with 8bit weight precision) that maintain high accuracy by up to 6.6x search time speed-ups, while achieving up to 92% area savings, 1.2x latency improvements, 84% energy savings across different datasets (i.e., CIFAR-10, CIFAR-100, and TinyImageNet-200); while the state-of-the-art fail to meet all constraints at once.
comment: 9 pages, 14 figures, 2 tables
♻ ☆ Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. Our results indicate that the proposed trading bot has the potential to outperform the market average and yield returns higher than the risk-free rate offered by 10-year Indian government bonds. We trained and tested data on a 60 day dataset provided by Yahoo Finance. Specifically, 12 days for testing and 48 days for training. Our bot based on permutation decision tree achieved a profit of 1.3468 % over a 12-day testing period, where as a bot based on LSTM gave a return of 0.1238 % over a 12-day testing period and a bot based on RNN gave a return of 0.3096 % over a 12-day testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.2508 %.
comment: 17 pages, 7 figures
♻ ☆ Unified Parameter-Efficient Unlearning for LLMs
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.
♻ ☆ Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
The explicit incorporation of task-specific inductive biases through symmetry has emerged as a general design precept in the development of high-performance machine learning models. For example, group equivariant neural networks have demonstrated impressive performance across various domains and applications such as protein and drug design. A prevalent intuition about such models is that the integration of relevant symmetry results in enhanced generalization. Moreover, it is posited that when the data and/or the model may only exhibit $\textit{approximate}$ or $\textit{partial}$ symmetry, the optimal or best-performing model is one where the model symmetry aligns with the data symmetry. In this paper, we conduct a formal unified investigation of these intuitions. To begin, we present general quantitative bounds that demonstrate how models capturing task-specific symmetries lead to improved generalization. In fact, our results do not require the transformations to be finite or even form a group and can work with partial or approximate equivariance. Utilizing this quantification, we examine the more general question of model mis-specification i.e. when the model symmetries don't align with the data symmetries. We establish, for a given symmetry group, a quantitative comparison between the approximate/partial equivariance of the model and that of the data distribution, precisely connecting model equivariance error and data equivariance error. Our result delineates conditions under which the model equivariance error is optimal, thereby yielding the best-performing model for the given task and data. Our results are the most general results of their type in the literature.
comment: 23 Pages. Updated to the published version. Advances in Neural Information Processing Systems 36, 61936-61959
♻ ☆ Cross-cultural Deployment of Autonomous Vehicles Using Data-light Inverse Reinforcement Learning
More than the adherence to specific traffic regulations, driving culture touches upon a more implicit part - an informal, conventional, collective behavioral pattern followed by drivers - that varies across countries, regions, and even cities. Such cultural divergence has become one of the biggest challenges in deploying autonomous vehicles (AVs) across diverse regions today. The current emergence of data-driven methods has shown a potential solution to enable culture-compatible driving through learning from data, but what if some underdeveloped regions cannot provide sufficient local data to inform driving culture? This issue is particularly significant for a broader global AV market. Here, we propose a cross-cultural deployment scheme for AVs, called data-light inverse reinforcement learning, designed to re-calibrate culture-specific AVs and assimilate them into other cultures. First, we report the divergence in driving cultures through a comprehensive comparative analysis of naturalistic driving datasets on highways from three countries: Germany, China, and the USA. Then, we demonstrate the effectiveness of our scheme by testing the expeditious cross-cultural deployment across these three countries, with cumulative testing mileage of over 56084 km. The performance is particularly advantageous when cross-cultural deployment is carried out without affluent local data. Results show that we can reduce the dependence on local data by a margin of 98.67% at best. This study is expected to bring a broader, fairer AV global market, particularly in those regions that lack enough local data to develop culture-compatible AVs.
♻ ☆ Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks AISTATS
There has been much recent interest in designing neural networks (NNs) with relaxed equivariance, which interpolate between exact equivariance and full flexibility for consistent performance gains. In a separate line of work, structured parameter matrices with low displacement rank (LDR) -- which permit fast function and gradient evaluation -- have been used to create compact NNs, though primarily benefiting classical convolutional neural networks (CNNs). In this work, we propose a framework based on symmetry-based structured matrices to build approximately equivariant NNs with fewer parameters. Our approach unifies the aforementioned areas using Group Matrices (GMs), a forgotten precursor to the modern notion of regular representations of finite groups. GMs allow the design of structured matrices similar to LDR matrices, which can generalize all the elementary operations of a CNN from cyclic groups to arbitrary finite groups. We show GMs can also generalize classical LDR theory to general discrete groups, enabling a natural formalism for approximate equivariance. We test GM-based architectures on various tasks with relaxed symmetry and find that our framework performs competitively with approximately equivariant NNs and other structured matrix-based methods, often with one to two orders of magnitude fewer parameters.
comment: 19 pages. Updated to published version of the paper in the proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025
♻ ☆ A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
♻ ☆ Towards Federated Multi-Armed Bandit Learning for Content Dissemination using Swarm of UAVs
This paper introduces an Unmanned Aerial Vehicle - enabled content management architecture that is suitable for critical content access in communities of users that are communication-isolated during diverse types of disaster scenarios. The proposed architecture leverages a hybrid network of stationary anchor UAVs and mobile Micro-UAVs for ubiquitous content dissemination. The anchor UAVs are equipped with both vertical and lateral communication links, and they serve local users, while the mobile micro-ferrying UAVs extend coverage across communities with increased mobility. The focus is on developing a content dissemination system that dynamically learns optimal caching policies to maximize content availability. The core innovation is an adaptive content dissemination framework based on distributed Federated Multi-Armed Bandit learning. The goal is to optimize UAV content caching decisions based on geo-temporal content popularity and user demand variations. A Selective Caching Algorithm is also introduced to reduce redundant content replication by incorporating inter-UAV information sharing. This method strategically preserves the uniqueness in user preferences while amalgamating the intelligence across a distributed learning system. This approach improves the learning algorithm's ability to adapt to diverse user preferences. Functional verification and performance evaluation confirm the proposed architecture's utility across different network sizes, UAV swarms, and content popularity patterns.
comment: 32 pages, 11 figures, 1 table, 4 algorithms, journal
♻ ☆ Backstepping Temporal Difference Learning ICLR2023
Off-policy learning ability is an important feature of reinforcement learning (RL) for practical applications. However, even one of the most elementary RL algorithms, temporal-difference (TD) learning, is known to suffer form divergence issue when the off-policy scheme is used together with linear function approximation. To overcome the divergent behavior, several off-policy TD-learning algorithms, including gradient-TD learning (GTD), and TD-learning with correction (TDC), have been developed until now. In this work, we provide a unified view of such algorithms from a purely control-theoretic perspective, and propose a new convergent algorithm. Our method relies on the backstepping technique, which is widely used in nonlinear control theory. Finally, convergence of the proposed algorithm is experimentally verified in environments where the standard TD-learning is known to be unstable.
comment: Published at ICLR2023
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ Subgraph Aggregation for Out-of-Distribution Generalization on Graphs AAAI 2025
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention due to its critical importance in graph-based predictions in real-world scenarios. Existing methods primarily focus on extracting a single causal subgraph from the input graph to achieve generalizable predictions. However, relying on a single subgraph can lead to susceptibility to spurious correlations and is insufficient for learning invariant patterns behind graph data. Moreover, in many real-world applications, such as molecular property prediction, multiple critical subgraphs may influence the target label property. To address these challenges, we propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs that are crucial for OOD generalization on graphs. Specifically, SuGAr employs a tailored subgraph sampler and diversity regularizer to extract a diverse set of invariant subgraphs. These invariant subgraphs are then aggregated by averaging their representations, which enriches the subgraph signals and enhances coverage of the underlying causal structures, thereby improving OOD generalization. Extensive experiments on both synthetic and real-world datasets demonstrate that \ours outperforms state-of-the-art methods, achieving up to a 24% improvement in OOD generalization on graphs. To the best of our knowledge, this is the first work to study graph OOD generalization by learning multiple invariant subgraphs. code: https://github.com/Nanolbw/SuGAr
comment: Accepted by AAAI 2025
♻ ☆ DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
At the current stage, deep learning-based methods have demonstrated excellent capabilities in evaluating aerodynamic performance, significantly reducing the time and cost required for traditional computational fluid dynamics (CFD) simulations. However, when faced with the task of processing extremely complex three-dimensional (3D) vehicle models, the lack of large-scale datasets and training resources, coupled with the inherent diversity and complexity of the geometry of different vehicle models, means that the prediction accuracy and versatility of these networks are still not up to the level required for current production. In view of the remarkable success of Transformer models in the field of natural language processing and their strong potential in the field of image processing, this study innovatively proposes a point cloud learning framework called DrivAer Transformer (DAT). The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes. enabling accurate estimation of air drag directly from 3D meshes, thus avoiding the limitations of traditional methods such as 2D image rendering or signed distance fields (SDF). DAT enables fast and accurate drag prediction, driving the evolution of the aerodynamic evaluation process and laying the critical foundation for introducing a data-driven approach to automotive design. The framework is expected to accelerate the vehicle design process and improve development efficiency.
comment: 14 pages
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ Minimax Optimal Convergence of Gradient Descent in Logistic Regression via Large and Adaptive Stepsizes
We study $\textit{gradient descent}$ (GD) for logistic regression on linearly separable data with stepsizes that adapt to the current risk, scaled by a constant hyperparameter $\eta$. We show that after at most $1/\gamma^2$ burn-in steps, GD achieves a risk upper bounded by $\exp(-\Theta(\eta))$, where $\gamma$ is the margin of the dataset. As $\eta$ can be arbitrarily large, GD attains an arbitrarily small risk $\textit{immediately after the burn-in steps}$, though the risk evolution may be $\textit{non-monotonic}$. We further construct hard datasets with margin $\gamma$, where any batch (or online) first-order method requires $\Omega(1/\gamma^2)$ steps to find a linear separator. Thus, GD with large, adaptive stepsizes is $\textit{minimax optimal}$ among first-order batch methods. Notably, the classical $\textit{Perceptron}$ (Novikoff, 1962), a first-order online method, also achieves a step complexity of $1/\gamma^2$, matching GD even in constants. Finally, our GD analysis extends to a broad class of loss functions and certain two-layer networks.
comment: 28 pages
♻ ☆ Stochastic noise can be helpful for variational quantum algorithms
Saddle points constitute a crucial challenge for first-order gradient descent algorithms. In notions of classical machine learning, they are avoided for example by means of stochastic gradient descent methods. In this work, we provide evidence that the saddle points problem can be naturally avoided in variational quantum algorithms by exploiting the presence of stochasticity. We prove convergence guarantees and present practical examples in numerical simulations and on quantum hardware. We argue that the natural stochasticity of variational algorithms can be beneficial for avoiding strict saddle points, i.e., those saddle points with at least one negative Hessian eigenvalue. This insight that some levels of shot noise could help is expected to add a new perspective to notions of near-term variational quantum algorithms.
comment: 15 pages, presentation improved, proofs extended
♻ ☆ Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.
♻ ☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 29 pages, 3 figures
♻ ☆ DNR Bench: Benchmarking Over-Reasoning in Reasoning LLMs
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Reason Bench (DNR Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNR Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNR Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
♻ ☆ Multimodal machine learning with large language embedding model for polymer property prediction
Contemporary large language models (LLMs), such as GPT-4 and Llama, have harnessed extensive computational power and diverse text corpora to achieve remarkable proficiency in interpreting and generating domain-specific content, including materials science. To leverage the domain knowledge embedded within these models, we propose a simple yet effective multimodal architecture, PolyLLMem, which integrates text embeddings generated by Llama 3 with molecular structure embeddings derived from Uni-Mol, for polymer properties prediction tasks. In our model, Low-rank adaptation (LoRA) layers were also incorporated during the property prediction tasks to refine the embeddings based on our limited polymer dataset, thereby enhancing their chemical relevance for polymer SMILES representation. This balanced fusion of fine-tuned textual and structural information enables PolyLLMem to accurately predict a variety of polymer properties despite the scarcity of training data. Its performance is comparable to, and in some cases exceeds, that of graph-based models, as well as transformer-based models that typically require pretraining on millions of polymer samples. These findings demonstrate that LLM, such as Llama, can effectively capture chemical information encoded in polymer PSMILES, and underscore the efficacy of multimodal fusion of LLM embeddings and molecular structure embeddings in overcoming data scarcity and accelerating the discovery of advanced polymeric materials.
♻ ☆ UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming CVPR 2025
Distributed learning is commonly used for training deep learning models, especially large models. In distributed learning, manual parallelism (MP) methods demand considerable human effort and have limited flexibility. Hence, automatic parallelism (AP) methods have recently been proposed for automating the parallel strategy optimization process. Existing AP methods suffer from sub-optimal solutions because they do not jointly optimize the two categories of parallel strategies (i.e., inter-layer parallelism and intra-layer parallelism). In this paper, we propose a novel AP method called UniAP, which unifies inter- and intra-layer automatic parallelism by mixed integer quadratic programming. To the best of our knowledge, UniAP is the first parallel method that can jointly optimize the two categories of parallel strategies to find an optimal solution. Experimental results show that UniAP outperforms state-of-the-art methods by up to 3.80$\times$ in throughput and reduces strategy optimization time by up to 107$\times$ across five Transformer-based models.
comment: 17 pages, 10 figures, CVPR 2025
♻ ☆ Foundational theories of hesitant fuzzy sets and families of hesitant fuzzy sets
Hesitant fuzzy sets find extensive application in specific scenarios involving uncertainty and hesitation. In the context of set theory, the concept of inclusion relationship holds significant importance as a fundamental definition. Consequently, as a type of sets, hesitant fuzzy sets necessitate a clear and explicit definition of the inclusion relationship. Based on the discrete form of hesitant fuzzy membership degrees, this study proposes multiple types of inclusion relationships for hesitant fuzzy sets. Subsequently, this paper introduces foundational propositions related to hesitant fuzzy sets, as well as propositions concerning families of hesitant fuzzy sets.
comment: 15 pages
♻ ☆ Physical Data Embedding for Memory Efficient AI
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex, nonlinear mappings from large-scale datasets. However, they face challenges such as high memory requirements and computational costs with limited interpretability. This paper introduces an approach where master equations of physics are converted into multilayered networks that are trained via backpropagation. The resulting general-purpose model effectively encodes data in the properties of the underlying physical system. In contrast to existing methods wherein a trained neural network is used as a computationally efficient alternative for solving physical equations, our approach directly treats physics equations as trainable models. We demonstrate this physical embedding concept with the Nonlinear Schr\"odinger Equation (NLSE), which acts as trainable architecture for learning complex patterns including nonlinear mappings and memory effects from data. The network embeds data representation in orders of magnitude fewer parameters than conventional neural networks when tested on time series data. Notably, the trained "Nonlinear Schr\"odinger Network" is interpretable, with all parameters having physical meanings. This interpretability offers insight into the underlying dynamics of the system that produced the data. The proposed method of replacing traditional DNN feature learning architectures with physical equations is also extended to the Gross-Pitaevskii Equation, demonstrating the broad applicability of the framework to other master equations of physics. Among our results, an ablation study quantifies the relative importance of physical terms such as dispersion, nonlinearity, and potential energy for classification accuracy. We also outline the limitations of this approach as it relates to generalizability.
Multimedia 5
☆ PoEmotion: Can AI Utilize Chinese Calligraphy to Express Emotion from Poems?
This paper presents PoEmotion, an approach to visualizing emotions in poetry with Chinese calligraphy strokes. Traditional textual emotion analysis often lacks emotional resonance due to its mechanical nature. PoEmotion combines natural language processing with deep learning generative algorithms to create Chinese calligraphy that effectively conveys the emotions in poetry. The created calligraphy represents four fundamental emotions: excitement, anger, sadness, and relaxation, making the visual representation of emotions intuitive and concise. Furthermore, the approach delves into the relationship be-tween time, emotion, and cultural communication. Its goal is to provide a more natural means of communicating emotions through non-verbal mediums to enhance human emotional expression.
☆ MusFlow: Multimodal Music Generation via Conditional Flow Matching
Music generation aims to create music segments that align with human aesthetics based on diverse conditional information. Despite advancements in generating music from specific textual descriptions (e.g., style, genre, instruments), the practical application is still hindered by ordinary users' limited expertise or time to write accurate prompts. To bridge this application gap, this paper introduces MusFlow, a novel multimodal music generation model using Conditional Flow Matching. We employ multiple Multi-Layer Perceptrons (MLPs) to align multimodal conditional information into the audio's CLAP embedding space. Conditional flow matching is trained to reconstruct the compressed Mel-spectrogram in the pretrained VAE latent space guided by aligned feature embedding. MusFlow can generate music from images, story texts, and music captions. To collect data for model training, inspired by multi-agent collaboration, we construct an intelligent data annotation workflow centered around a fine-tuned Qwen2-VL model. Using this workflow, we build a new multimodal music dataset, MMusSet, with each sample containing a quadruple of image, story text, music caption, and music piece. We conduct four sets of experiments: image-to-music, story-to-music, caption-to-music, and multimodal music generation. Experimental results demonstrate that MusFlow can generate high-quality music pieces whether the input conditions are unimodal or multimodal. We hope this work can advance the application of music generation in multimedia field, making music creation more accessible. Our generated samples, code and dataset are available at musflow.github.io.
☆ HMPE:HeatMap Embedding for Efficient Transformer-Based Small Object Detection
Current Transformer-based methods for small object detection continue emerging, yet they have still exhibited significant shortcomings. This paper introduces HeatMap Position Embedding (HMPE), a novel Transformer Optimization technique that enhances object detection performance by dynamically integrating positional encoding with semantic detection information through heatmap-guided adaptive learning.We also innovatively visualize the HMPE method, offering clear visualization of embedded information for parameter fine-tuning.We then create Multi-Scale ObjectBox-Heatmap Fusion Encoder (MOHFE) and HeatMap Induced High-Quality Queries for Decoder (HIDQ) modules. These are designed for the encoder and decoder, respectively, to generate high-quality queries and reduce background noise queries.Using both heatmap embedding and Linear-Snake Conv(LSConv) feature engineering, we enhance the embedding of massively diverse small object categories and reduced the decoder multihead layers, thereby accelerating both inference and training.In the generalization experiments, our approach outperforme the baseline mAP by 1.9% on the small object dataset (NWPU VHR-10) and by 1.2% on the general dataset (PASCAL VOC). By employing HMPE-enhanced embedding, we are able to reduce the number of decoder layers from eight to a minimum of three, significantly decreasing both inference and training costs.
☆ Fashion-RAG: Multimodal Fashion Image Editing via Retrieval-Augmented Generation IJCNN 2025
In recent years, the fashion industry has increasingly adopted AI technologies to enhance customer experience, driven by the proliferation of e-commerce platforms and virtual applications. Among the various tasks, virtual try-on and multimodal fashion image editing -- which utilizes diverse input modalities such as text, garment sketches, and body poses -- have become a key area of research. Diffusion models have emerged as a leading approach for such generative tasks, offering superior image quality and diversity. However, most existing virtual try-on methods rely on having a specific garment input, which is often impractical in real-world scenarios where users may only provide textual specifications. To address this limitation, in this work we introduce Fashion Retrieval-Augmented Generation (Fashion-RAG), a novel method that enables the customization of fashion items based on user preferences provided in textual form. Our approach retrieves multiple garments that match the input specifications and generates a personalized image by incorporating attributes from the retrieved items. To achieve this, we employ textual inversion techniques, where retrieved garment images are projected into the textual embedding space of the Stable Diffusion text encoder, allowing seamless integration of retrieved elements into the generative process. Experimental results on the Dress Code dataset demonstrate that Fashion-RAG outperforms existing methods both qualitatively and quantitatively, effectively capturing fine-grained visual details from retrieved garments. To the best of our knowledge, this is the first work to introduce a retrieval-augmented generation approach specifically tailored for multimodal fashion image editing.
comment: IJCNN 2025
♻ ☆ PathVLM-R1: A Reinforcement Learning-Driven Reasoning Model for Pathology Visual-Language Tasks
The diagnosis of pathological images is often limited by expert availability and regional disparities, highlighting the importance of automated diagnosis using Vision-Language Models (VLMs). Traditional multimodal models typically emphasize outcomes over the reasoning process, compromising the reliability of clinical decisions. To address the weak reasoning abilities and lack of supervised processes in pathological VLMs, we have innovatively proposed PathVLM-R1, a visual language model designed specifically for pathological images. We have based our model on Qwen2.5-VL-7B-Instruct and enhanced its performance for pathological tasks through meticulously designed post-training strategies. Firstly, we conduct supervised fine-tuning guided by pathological data to imbue the model with foundational pathological knowledge, forming a new pathological base model. Subsequently, we introduce Group Relative Policy Optimization (GRPO) and propose a dual reward-driven reinforcement learning optimization, ensuring strict constraint on logical supervision of the reasoning process and accuracy of results via cross-modal process reward and outcome accuracy reward. In the pathological image question-answering tasks, the testing results of PathVLM-R1 demonstrate a 14% improvement in accuracy compared to baseline methods, and it demonstrated superior performance compared to the Qwen2.5-VL-32B version despite having a significantly smaller parameter size. Furthermore, in out-domain data evaluation involving four medical imaging modalities: Computed Tomography (CT), dermoscopy, fundus photography, and Optical Coherence Tomography (OCT) images: PathVLM-R1's transfer performance improved by an average of 17.3% compared to traditional SFT methods. These results clearly indicate that PathVLM-R1 not only enhances accuracy but also possesses broad applicability and expansion potential.