Computer Vision and Pattern Recognition 168
☆ Enhancing the Outcome Reward-based RL Training of MLLMs with Self-Consistency Sampling NeurIPS 2025
Outcome-reward reinforcement learning (RL) is a common and increasingly significant way to refine the step-by-step reasoning of multimodal large language models (MLLMs). In the multiple-choice setting - a dominant format for multimodal reasoning benchmarks - the paradigm faces a significant yet often overlooked obstacle: unfaithful trajectories that guess the correct option after a faulty chain of thought receive the same reward as genuine reasoning, which is a flaw that cannot be ignored. We propose Self-Consistency Sampling (SCS) to correct this issue. For each question, SCS (i) introduces small visual perturbations and (ii) performs repeated truncation and resampling of an initial trajectory; agreement among the resulting trajectories yields a differentiable consistency score that down-weights unreliable traces during policy updates. Based on Qwen2.5-VL-7B-Instruct, plugging SCS into RLOO, GRPO, and REINFORCE++ series improves accuracy by up to 7.7 percentage points on six multimodal benchmarks with negligible extra computation. SCS also yields notable gains on both Qwen2.5-VL-3B-Instruct and InternVL3-8B, offering a simple, general remedy for outcome-reward RL in MLLMs.
comment: Accepted to NeurIPS 2025 (The Thirty-Ninth Annual Conference on Neural Information Processing Systems)
☆ Depth Anything 3: Recovering the Visual Space from Any Views
We present Depth Anything 3 (DA3), a model that predicts spatially consistent geometry from an arbitrary number of visual inputs, with or without known camera poses. In pursuit of minimal modeling, DA3 yields two key insights: a single plain transformer (e.g., vanilla DINO encoder) is sufficient as a backbone without architectural specialization, and a singular depth-ray prediction target obviates the need for complex multi-task learning. Through our teacher-student training paradigm, the model achieves a level of detail and generalization on par with Depth Anything 2 (DA2). We establish a new visual geometry benchmark covering camera pose estimation, any-view geometry and visual rendering. On this benchmark, DA3 sets a new state-of-the-art across all tasks, surpassing prior SOTA VGGT by an average of 44.3% in camera pose accuracy and 25.1% in geometric accuracy. Moreover, it outperforms DA2 in monocular depth estimation. All models are trained exclusively on public academic datasets.
comment: https://depth-anything-3.github.io/
☆ One Small Step in Latent, One Giant Leap for Pixels: Fast Latent Upscale Adapter for Your Diffusion Models
Diffusion models struggle to scale beyond their training resolutions, as direct high-resolution sampling is slow and costly, while post-hoc image super-resolution (ISR) introduces artifacts and additional latency by operating after decoding. We present the Latent Upscaler Adapter (LUA), a lightweight module that performs super-resolution directly on the generator's latent code before the final VAE decoding step. LUA integrates as a drop-in component, requiring no modifications to the base model or additional diffusion stages, and enables high-resolution synthesis through a single feed-forward pass in latent space. A shared Swin-style backbone with scale-specific pixel-shuffle heads supports 2x and 4x factors and remains compatible with image-space SR baselines, achieving comparable perceptual quality with nearly 3x lower decoding and upscaling time (adding only +0.42 s for 1024 px generation from 512 px, compared to 1.87 s for pixel-space SR using the same SwinIR architecture). Furthermore, LUA shows strong generalization across the latent spaces of different VAEs, making it easy to deploy without retraining from scratch for each new decoder. Extensive experiments demonstrate that LUA closely matches the fidelity of native high-resolution generation while offering a practical and efficient path to scalable, high-fidelity image synthesis in modern diffusion pipelines.
☆ Querying Labeled Time Series Data with Scenario Programs
Edward Kim, Devan Shanker, Varun Bharadwaj, Hongbeen Park, Jinkyu Kim, Hazem Torfah, Daniel J Fremont, Sanjit A Seshia
Simulation-based testing has become a crucial complement to road testing for ensuring the safety of cyber physical systems (CPS). As a result, significant research efforts have been directed toward identifying failure scenarios within simulation environments. However, a critical question remains. Are the AV failure scenarios discovered in simulation reproducible on actual systems in the real world? The sim-to-real gap caused by differences between simulated and real sensor data means that failure scenarios identified in simulation might either be artifacts of synthetic sensor data or actual issues that also occur with real sensor data. To address this, an effective approach to validating simulated failure scenarios is to locate occurrences of these scenarios within real-world datasets and verify whether the failure persists on the datasets. To this end, we introduce a formal definition of how labeled time series sensor data can match an abstract scenario, represented as a scenario program using the Scenic probabilistic programming language. We present a querying algorithm that, given a scenario program and a labeled dataset, identifies the subset of data that matches the specified scenario. Our experiment shows that our algorithm is more accurate and orders of magnitude faster in querying scenarios than the state-of-the-art commercial vision large language models, and can scale with the duration of queried time series data.
☆ Towards Blind and Low-Vision Accessibility of Lightweight VLMs and Custom LLM-Evals
Shruti Singh Baghel, Yash Pratap Singh Rathore, Sushovan Jena, Anurag Pradhan, Amit Shukla, Arnav Bhavsar, Pawan Goyal
Large Vision-Language Models (VLMs) excel at understanding and generating video descriptions but their high memory, computation, and deployment demands hinder practical use particularly for blind and low-vision (BLV) users who depend on detailed, context-aware descriptions. To study the effect of model size on accessibility-focused description quality, we evaluate SmolVLM2 variants with 500M and 2.2B parameters across two diverse datasets: AVCaps (outdoor), and Charades (indoor). In this work, we introduce two novel evaluation frameworks specifically designed for BLV accessibility assessment: the Multi-Context BLV Framework evaluating spatial orientation, social interaction, action events, and ambience contexts; and the Navigational Assistance Framework focusing on mobility-critical information. Additionally, we conduct a systematic evaluation of four different prompt design strategies and deploy both models on a smartphone, evaluating FP32 and INT8 precision variants to assess real-world performance constraints on resource-limited mobile devices.
comment: 8 pages
☆ Multitask GLocal OBIA-Mamba for Sentinel-2 Landcover Mapping
Zack Dewis, Yimin Zhu, Zhengsen Xu, Mabel Heffring, Saeid Taleghanidoozdoozan, Kaylee Xiao, Motasem Alkayid, Lincoln Linlin Xu
Although Sentinel-2 based land use and land cover (LULC) classification is critical for various environmental monitoring applications, it is a very difficult task due to some key data challenges (e.g., spatial heterogeneity, context information, signature ambiguity). This paper presents a novel Multitask Glocal OBIA-Mamba (MSOM) for enhanced Sentinel-2 classification with the following contributions. First, an object-based image analysis (OBIA) Mamba model (OBIA-Mamba) is designed to reduce redundant computation without compromising fine-grained details by using superpixels as Mamba tokens. Second, a global-local (GLocal) dual-branch convolutional neural network (CNN)-mamba architecture is designed to jointly model local spatial detail and global contextual information. Third, a multitask optimization framework is designed to employ dual loss functions to balance local precision with global consistency. The proposed approach is tested on Sentinel-2 imagery in Alberta, Canada, in comparison with several advanced classification approaches, and the results demonstrate that the proposed approach achieves higher classification accuracy and finer details that the other state-of-the-art methods.
☆ From 2D to 3D Without Extra Baggage: Data-Efficient Cancer Detection in Digital Breast Tomosynthesis
Digital Breast Tomosynthesis (DBT) enhances finding visibility for breast cancer detection by providing volumetric information that reduces the impact of overlapping tissues; however, limited annotated data has constrained the development of deep learning models for DBT. To address data scarcity, existing methods attempt to reuse 2D full-field digital mammography (FFDM) models by either flattening DBT volumes or processing slices individually, thus discarding volumetric information. Alternatively, 3D reasoning approaches introduce complex architectures that require more DBT training data. Tackling these drawbacks, we propose M&M-3D, an architecture that enables learnable 3D reasoning while remaining parameter-free relative to its FFDM counterpart, M&M. M&M-3D constructs malignancy-guided 3D features, and 3D reasoning is learned through repeatedly mixing these 3D features with slice-level information. This is achieved by modifying operations in M&M without adding parameters, thus enabling direct weight transfer from FFDM. Extensive experiments show that M&M-3D surpasses 2D projection and 3D slice-based methods by 11-54% for localization and 3-10% for classification. Additionally, M&M-3D outperforms complex 3D reasoning variants by 20-47% for localization and 2-10% for classification in the low-data regime, while matching their performance in high-data regime. On the popular BCS-DBT benchmark, M&M-3D outperforms previous top baseline by 4% for classification and 10% for localization.
☆ Impact of Layer Norm on Memorization and Generalization in Transformers NeurIPS 2025
Layer Normalization (LayerNorm) is one of the fundamental components in transformers that stabilizes training and improves optimization. In recent times, Pre-LayerNorm transformers have become the preferred choice over Post-LayerNorm transformers due to their stable gradient flow. However, the impact of LayerNorm on learning and memorization across these architectures remains unclear. In this work, we investigate how LayerNorm influences memorization and learning for Pre- and Post-LayerNorm transformers. We identify that LayerNorm serves as a key factor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm transformers, it impacts memorization. Our analysis reveals that eliminating LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and destabilizes learning, while in Post-LayerNorm models, it effectively mitigates memorization by restoring genuine labels. We further precisely identify that early layers LayerNorm are the most critical over middle/later layers and their influence varies across Pre and Post LayerNorm models. We have validated it through 13 models across 6 Vision and Language datasets. These insights shed new light on the role of LayerNorm in shaping memorization and learning in transformers.
comment: NeurIPS 2025
☆ OmniVGGT: Omni-Modality Driven Visual Geometry Grounded
Haosong Peng, Hao Li, Yalun Dai, Yushi Lan, Yihang Luo, Tianyu Qi, Zhengshen Zhang, Yufeng Zhan, Junfei Zhang, Wenchao Xu, Ziwei Liu
General 3D foundation models have started to lead the trend of unifying diverse vision tasks, yet most assume RGB-only inputs and ignore readily available geometric cues (e.g., camera intrinsics, poses, and depth maps). To address this issue, we introduce OmniVGGT, a novel framework that can effectively benefit from an arbitrary number of auxiliary geometric modalities during both training and inference. In our framework, a GeoAdapter is proposed to encode depth and camera intrinsics/extrinsics into a spatial foundation model. It employs zero-initialized convolutions to progressively inject geometric information without disrupting the foundation model's representation space. This design ensures stable optimization with negligible overhead, maintaining inference speed comparable to VGGT even with multiple additional inputs. Additionally, a stochastic multimodal fusion regimen is proposed, which randomly samples modality subsets per instance during training. This enables an arbitrary number of modality inputs during testing and promotes learning robust spatial representations instead of overfitting to auxiliary cues. Comprehensive experiments on monocular/multi-view depth estimation, multi-view stereo, and camera pose estimation demonstrate that OmniVGGT outperforms prior methods with auxiliary inputs and achieves state-of-the-art results even with RGB-only input. To further highlight its practical utility, we integrated OmniVGGT into vision-language-action (VLA) models. The enhanced VLA model by OmniVGGT not only outperforms the vanilla point-cloud-based baseline on mainstream benchmarks, but also effectively leverages accessible auxiliary inputs to achieve consistent gains on robotic tasks.
comment: Project Page: https://livioni.github.io/OmniVGGT-offcial/
☆ A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
comment: 16 pages, 13 figures, 5 tables
☆ Benchmarking Diversity in Image Generation via Attribute-Conditional Human Evaluation
Isabela Albuquerque, Ira Ktena, Olivia Wiles, Ivana Kajić, Amal Rannen-Triki, Cristina Vasconcelos, Aida Nematzadeh
Despite advances in generation quality, current text-to-image (T2I) models often lack diversity, generating homogeneous outputs. This work introduces a framework to address the need for robust diversity evaluation in T2I models. Our framework systematically assesses diversity by evaluating individual concepts and their relevant factors of variation. Key contributions include: (1) a novel human evaluation template for nuanced diversity assessment; (2) a curated prompt set covering diverse concepts with their identified factors of variation (e.g. prompt: An image of an apple, factor of variation: color); and (3) a methodology for comparing models in terms of human annotations via binomial tests.
Furthermore, we rigorously compare various image embeddings for diversity measurement. Notably, our principled approach enables ranking of T2I models by diversity, identifying categories where they particularly struggle. This research offers a robust methodology and insights, paving the way for improvements in T2I model diversity and metric development.
☆ Dynamic Avatar-Scene Rendering from Human-centric Context
Reconstructing dynamic humans interacting with real-world environments from monocular videos is an important and challenging task. Despite considerable progress in 4D neural rendering, existing approaches either model dynamic scenes holistically or model scenes and backgrounds separately aim to introduce parametric human priors. However, these approaches either neglect distinct motion characteristics of various components in scene especially human, leading to incomplete reconstructions, or ignore the information exchange between the separately modeled components, resulting in spatial inconsistencies and visual artifacts at human-scene boundaries. To address this, we propose {\bf Separate-then-Map} (StM) strategy that introduces a dedicated information mapping mechanism to bridge separately defined and optimized models. Our method employs a shared transformation function for each Gaussian attribute to unify separately modeled components, enhancing computational efficiency by avoiding exhaustive pairwise interactions while ensuring spatial and visual coherence between humans and their surroundings. Extensive experiments on monocular video datasets demonstrate that StM significantly outperforms existing state-of-the-art methods in both visual quality and rendering accuracy, particularly at challenging human-scene interaction boundaries.
comment: 13 pages, 8 figures
☆ SemanticVLA: Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation AAAI 2026
Vision-Language-Action (VLA) models have advanced in robotic manipulation, yet practical deployment remains hindered by two key limitations: 1) perceptual redundancy, where irrelevant visual inputs are processed inefficiently, and 2) superficial instruction-vision alignment, which hampers semantic grounding of actions. In this paper, we propose SemanticVLA, a novel VLA framework that performs Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation. Specifically: 1) To sparsify redundant perception while preserving semantic alignment, Semantic-guided Dual Visual Pruner (SD-Pruner) performs: Instruction-driven Pruner (ID-Pruner) extracts global action cues and local semantic anchors in SigLIP; Spatial-aggregation Pruner (SA-Pruner) compacts geometry-rich features into task-adaptive tokens in DINOv2. 2) To exploit sparsified features and integrate semantics with spatial geometry, Semantic-complementary Hierarchical Fuser (SH-Fuser) fuses dense patches and sparse tokens across SigLIP and DINOv2 for coherent representation. 3) To enhance the transformation from perception to action, Semantic-conditioned Action Coupler (SA-Coupler) replaces the conventional observation-to-DoF approach, yielding more efficient and interpretable behavior modeling for manipulation tasks. Extensive experiments on simulation and real-world tasks show that SemanticVLA sets a new SOTA in both performance and efficiency. SemanticVLA surpasses OpenVLA on LIBERO benchmark by 21.1% in success rate, while reducing training cost and inference latency by 3.0-fold and 2.7-fold.SemanticVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/SemanticVLA
comment: Accepted to AAAI 2026 (Oral), Project Page: https://github.com/JiuTian-VL/SemanticVLA
☆ Learnable Total Variation with Lambda Mapping for Low-Dose CT Denoising
Although Total Variation (TV) performs well in noise reduction and edge preservation on images, its dependence on the lambda parameter limits its efficiency and makes it difficult to use effectively. In this study, we present a Learnable Total Variation (LTV) framework that couples an unrolled TV solver with a data-driven Lambda Mapping Network (LambdaNet) predicting a per-pixel regularization map. The pipeline is trained end-to-end so that reconstruction and regularization are optimized jointly, yielding spatially adaptive smoothing: strong in homogeneous regions, relaxed near anatomical boundaries. Experiments on the DeepLesion dataset, using a realistic noise model adapted from the LoDoPaB-CT methodology, show consistent gains over classical TV and FBP+U-Net: +2.9 dB PSNR and +6% SSIM on average. LTV provides an interpretable alternative to black-box CNNs and a basis for 3D and data-consistency-driven reconstruction. Our codes are available at: https://github.com/itu-biai/deep_tv_for_ldct
☆ SPOT: Sparsification with Attention Dynamics via Token Relevance in Vision Transformers SP
While Vision Transformers (ViT) have demonstrated remarkable performance across diverse tasks, their computational demands are substantial, scaling quadratically with the number of processed tokens. Compact attention representations, reflecting token interaction distributions, can guide early detection and reduction of less salient tokens prior to attention computation. Motivated by this, we present SParsification with attentiOn dynamics via Token relevance (SPOT), a framework for early detection of redundant tokens within ViTs that leverages token embeddings, interactions, and attention dynamics across layers to infer token importance, resulting in a more context-aware and interpretable relevance detection process. SPOT informs token sparsification and facilitates the elimination of such tokens, improving computational efficiency without sacrificing performance. SPOT employs computationally lightweight predictors that can be plugged into various ViT architectures and learn to derive effective input-specific token prioritization across layers. Its versatile design supports a range of performance levels adaptable to varying resource constraints. Empirical evaluations demonstrate significant efficiency gains of up to 40% compared to standard ViTs, while maintaining or even improving accuracy. Code and models are available at https://github.com/odedsc/SPOT .
comment: Project repository: https://github.com/odedsc/SPOT
☆ Utility of Pancreas Surface Lobularity as a CT Biomarker for Opportunistic Screening of Type 2 Diabetes IEEE
Tejas Sudharshan Mathai, Anisa V. Prasad, Xinya Wang, Praveen T. S. Balamuralikrishna, Yan Zhuang, Abhinav Suri, Jianfei Liu, Perry J. Pickhardt, Ronald M. Summers
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease that affects millions of people worldwide. Early detection is crucial as it can alter pancreas function through morphological changes and increased deposition of ectopic fat, eventually leading to organ damage. While studies have shown an association between T2DM and pancreas volume and fat content, the role of increased pancreatic surface lobularity (PSL) in patients with T2DM has not been fully investigated. In this pilot work, we propose a fully automated approach to delineate the pancreas and other abdominal structures, derive CT imaging biomarkers, and opportunistically screen for T2DM. Four deep learning-based models were used to segment the pancreas in an internal dataset of 584 patients (297 males, 437 non-diabetic, age: 45$\pm$15 years). PSL was automatically detected and it was higher for diabetic patients (p=0.01) at 4.26 $\pm$ 8.32 compared to 3.19 $\pm$ 3.62 for non-diabetic patients. The PancAP model achieved the highest Dice score of 0.79 $\pm$ 0.17 and lowest ASSD error of 1.94 $\pm$ 2.63 mm (p$<$0.05). For predicting T2DM, a multivariate model trained with CT biomarkers attained 0.90 AUC, 66.7\% sensitivity, and 91.9\% specificity. Our results suggest that PSL is useful for T2DM screening and could potentially help predict the early onset of T2DM.
comment: Submitted to IEEE ISBI 2026
☆ Intrinsic Dimensionality as a Model-Free Measure of Class Imbalance
Imbalance in classification tasks is commonly quantified by the cardinalities of examples across classes. This, however, disregards the presence of redundant examples and inherent differences in the learning difficulties of classes. Alternatively, one can use complex measures such as training loss and uncertainty, which, however, depend on training a machine learning model. Our paper proposes using data Intrinsic Dimensionality (ID) as an easy-to-compute, model-free measure of imbalance that can be seamlessly incorporated into various imbalance mitigation methods. Our results across five different datasets with a diverse range of imbalance ratios show that ID consistently outperforms cardinality-based re-weighting and re-sampling techniques used in the literature. Moreover, we show that combining ID with cardinality can further improve performance. Code: https://github.com/cagries/IDIM.
comment: 45 pages, 11 figures
☆ OpenSR-SRGAN: A Flexible Super-Resolution Framework for Multispectral Earth Observation Data
We present OpenSR-SRGAN, an open and modular framework for single-image super-resolution in Earth Observation. The software provides a unified implementation of SRGAN-style models that is easy to configure, extend, and apply to multispectral satellite data such as Sentinel-2. Instead of requiring users to modify model code, OpenSR-SRGAN exposes generators, discriminators, loss functions, and training schedules through concise configuration files, making it straightforward to switch between architectures, scale factors, and band setups. The framework is designed as a practical tool and benchmark implementation rather than a state-of-the-art model. It ships with ready-to-use configurations for common remote sensing scenarios, sensible default settings for adversarial training, and built-in hooks for logging, validation, and large-scene inference. By turning GAN-based super-resolution into a configuration-driven workflow, OpenSR-SRGAN lowers the entry barrier for researchers and practitioners who wish to experiment with SRGANs, compare models in a reproducible way, and deploy super-resolution pipelines across diverse Earth-observation datasets.
☆ Histology-informed tiling of whole tissue sections improves the interpretability and predictability of cancer relapse and genetic alterations
Willem Bonnaffé, Yang Hu, Andrea Chatrian, Mengran Fan, Stefano Malacrino, Sandy Figiel, CRUK ICGC Prostate Group, Srinivasa R. Rao, Richard Colling, Richard J. Bryant, Freddie C. Hamdy, Dan J. Woodcock, Ian G. Mills, Clare Verrill, Jens Rittscher
Histopathologists establish cancer grade by assessing histological structures, such as glands in prostate cancer. Yet, digital pathology pipelines often rely on grid-based tiling that ignores tissue architecture. This introduces irrelevant information and limits interpretability. We introduce histology-informed tiling (HIT), which uses semantic segmentation to extract glands from whole slide images (WSIs) as biologically meaningful input patches for multiple-instance learning (MIL) and phenotyping. Trained on 137 samples from the ProMPT cohort, HIT achieved a gland-level Dice score of 0.83 +/- 0.17. By extracting 380,000 glands from 760 WSIs across ICGC-C and TCGA-PRAD cohorts, HIT improved MIL models AUCs by 10% for detecting copy number variation (CNVs) in genes related to epithelial-mesenchymal transitions (EMT) and MYC, and revealed 15 gland clusters, several of which were associated with cancer relapse, oncogenic mutations, and high Gleason. Therefore, HIT improved the accuracy and interpretability of MIL predictions, while streamlining computations by focussing on biologically meaningful structures during feature extraction.
comment: 26 pages, 6 figures
☆ RodEpil: A Video Dataset of Laboratory Rodents for Seizure Detection and Benchmark Evaluation
Daniele Perlo, Vladimir Despotovic, Selma Boudissa, Sang-Yoon Kim, Petr Nazarov, Yanrong Zhang, Max Wintermark, Olivier Keunen
We introduce a curated video dataset of laboratory rodents for automatic detection of convulsive events. The dataset contains short (10~s) top-down and side-view video clips of individual rodents, labeled at clip level as normal activity or seizure. It includes 10,101 negative samples and 2,952 positive samples collected from 19 subjects. We describe the data curation, annotation protocol and preprocessing pipeline, and report baseline experiments using a transformer-based video classifier (TimeSformer). Experiments employ five-fold cross-validation with strict subject-wise partitioning to prevent data leakage (no subject appears in more than one fold). Results show that the TimeSformer architecture enables discrimination between seizure and normal activity with an average F1-score of 97%. The dataset and baseline code are publicly released to support reproducible research on non-invasive, video-based monitoring in preclinical epilepsy research. RodEpil Dataset access - DOI: 10.5281/zenodo.17601357
☆ 3DFETUS: Standardizing Fetal Facial Planes in 3D Ultrasound
Alomar Antonia, Rubio Ricardo, Albaiges Gerard, Salort-Benejam Laura, Caminal Julia, Prat Maria, Rueda Carolina, Cortes Berta, Piella Gemma, Sukno Federico
Acquiring standard facial planes during routine fetal ultrasound (US) examinations is often challenging due to fetal movement, variability in orientation, and operator-dependent expertise. These factors contribute to inconsistencies, increased examination time, and potential diagnostic bias.
To address these challenges in the context of facial assessment, we present: 1) GT++, a robust algorithm that estimates standard facial planes from 3D US volumes using annotated anatomical landmarks; and 2) 3DFETUS, a deep learning model that automates and standardizes their localization in 3D fetal US volumes.
We evaluated our methods both qualitatively, through expert clinical review, and quantitatively. The proposed approach achieved a mean translation error of 4.13 mm and a mean rotation error of 7.93 degrees per plane, outperforming other state-of-the-art methods on 3D US volumes. Clinical assessments further confirmed the effectiveness of both GT++ and 3DFETUS, demonstrating statistically significant improvements in plane estimation accuracy.
☆ LLM-YOLOMS: Large Language Model-based Semantic Interpretation and Fault Diagnosis for Wind Turbine Components
The health condition of wind turbine (WT) components is crucial for ensuring stable and reliable operation. However, existing fault detection methods are largely limited to visual recognition, producing structured outputs that lack semantic interpretability and fail to support maintenance decision-making. To address these limitations, this study proposes an integrated framework that combines YOLOMS with a large language model (LLM) for intelligent fault analysis and diagnosis. Specifically, YOLOMS employs multi-scale detection and sliding-window cropping to enhance fault feature extraction, while a lightweight key-value (KV) mapping module bridges the gap between visual outputs and textual inputs. This module converts YOLOMS detection results into structured textual representations enriched with both qualitative and quantitative attributes. A domain-tuned LLM then performs semantic reasoning to generate interpretable fault analyses and maintenance recommendations. Experiments on real-world datasets demonstrate that the proposed framework achieves a fault detection accuracy of 90.6\% and generates maintenance reports with an average accuracy of 89\%, thereby improving the interpretability of diagnostic results and providing practical decision support for the operation and maintenance of wind turbines.
comment: Journal resubmission
☆ GrounDiff: Diffusion-Based Ground Surface Generation from Digital Surface Models WACV 2026
Digital Terrain Models (DTMs) represent the bare-earth elevation and are important in numerous geospatial applications. Such data models cannot be directly measured by sensors and are typically generated from Digital Surface Models (DSMs) derived from LiDAR or photogrammetry. Traditional filtering approaches rely on manually tuned parameters, while learning-based methods require well-designed architectures, often combined with post-processing. To address these challenges, we introduce Ground Diffusion (GrounDiff), the first diffusion-based framework that iteratively removes non-ground structures by formulating the problem as a denoising task. We incorporate a gated design with confidence-guided generation that enables selective filtering. To increase scalability, we further propose Prior-Guided Stitching (PrioStitch), which employs a downsampled global prior automatically generated using GrounDiff to guide local high-resolution predictions. We evaluate our method on the DSM-to-DTM translation task across diverse datasets, showing that GrounDiff consistently outperforms deep learning-based state-of-the-art methods, reducing RMSE by up to 93% on ALS2DTM and up to 47% on USGS benchmarks. In the task of road reconstruction, which requires both high precision and smoothness, our method achieves up to 81% lower distance error compared to specialized techniques on the GeRoD benchmark, while maintaining competitive surface smoothness using only DSM inputs, without task-specific optimization. Our variant for road reconstruction, GrounDiff+, is specifically designed to produce even smoother surfaces, further surpassing state-of-the-art methods. The project page is available at https://deepscenario.github.io/GrounDiff/.
comment: Accepted at WACV 2026
☆ MonkeyOCR v1.5 Technical Report: Unlocking Robust Document Parsing for Complex Patterns
Jiarui Zhang, Yuliang Liu, Zijun Wu, Guosheng Pang, Zhili Ye, Yupei Zhong, Junteng Ma, Tao Wei, Haiyang Xu, Weikai Chen, Zeen Wang, Qiangjun Ji, Fanxi Zhou, Qi Zhang, Yuanrui Hu, Jiahao Liu, Zhang Li, Ziyang Zhang, Qiang Liu, Xiang Bai
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage parsing pipeline. The first stage employs a large multimodal model to jointly predict document layout and reading order, leveraging visual information to ensure structural and sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios.
☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
☆ SAMIRO: Spatial Attention Mutual Information Regularization with a Pre-trained Model as Oracle for Lane Detection
Lane detection is an important topic in the future mobility solutions. Real-world environmental challenges such as background clutter, varying illumination, and occlusions pose significant obstacles to effective lane detection, particularly when relying on data-driven approaches that require substantial effort and cost for data collection and annotation. To address these issues, lane detection methods must leverage contextual and global information from surrounding lanes and objects. In this paper, we propose a Spatial Attention Mutual Information Regularization with a pre-trained model as an Oracle, called SAMIRO. SAMIRO enhances lane detection performance by transferring knowledge from a pretrained model while preserving domain-agnostic spatial information. Leveraging SAMIRO's plug-and-play characteristic, we integrate it into various state-of-the-art lane detection approaches and conduct extensive experiments on major benchmarks such as CULane, Tusimple, and LLAMAS. The results demonstrate that SAMIRO consistently improves performance across different models and datasets. The code will be made available upon publication.
comment: 7 pages, 4 figures, paper in press
☆ Fragile by Design: On the Limits of Adversarial Defenses in Personalized Generation
Personalized AI applications such as DreamBooth enable the generation of customized content from user images, but also raise significant privacy concerns, particularly the risk of facial identity leakage. Recent defense mechanisms like Anti-DreamBooth attempt to mitigate this risk by injecting adversarial perturbations into user photos to prevent successful personalization. However, we identify two critical yet overlooked limitations of these methods. First, the adversarial examples often exhibit perceptible artifacts such as conspicuous patterns or stripes, making them easily detectable as manipulated content. Second, the perturbations are highly fragile, as even a simple, non-learned filter can effectively remove them, thereby restoring the model's ability to memorize and reproduce user identity. To investigate this vulnerability, we propose a novel evaluation framework, AntiDB_Purify, to systematically evaluate existing defenses under realistic purification threats, including both traditional image filters and adversarial purification. Results reveal that none of the current methods maintains their protective effectiveness under such threats. These findings highlight that current defenses offer a false sense of security and underscore the urgent need for more imperceptible and robust protections to safeguard user identity in personalized generation.
☆ MSGNav: Unleashing the Power of Multi-modal 3D Scene Graph for Zero-Shot Embodied Navigation
Xun Huang, Shijia Zhao, Yunxiang Wang, Xin Lu, Wanfa Zhang, Rongsheng Qu, Weixin Li, Yunhong Wang, Chenglu Wen
Embodied navigation is a fundamental capability for robotic agents operating. Real-world deployment requires open vocabulary generalization and low training overhead, motivating zero-shot methods rather than task-specific RL training. However, existing zero-shot methods that build explicit 3D scene graphs often compress rich visual observations into text-only relations, leading to high construction cost, irreversible loss of visual evidence, and constrained vocabularies. To address these limitations, we introduce the Multi-modal 3D Scene Graph (M3DSG), which preserves visual cues by replacing textual relational edges with dynamically assigned images. Built on M3DSG, we propose MSGNav, a zero-shot navigation system that includes a Key Subgraph Selection module for efficient reasoning, an Adaptive Vocabulary Update module for open vocabulary support, and a Closed-Loop Reasoning module for accurate exploration reasoning. Additionally, we further identify the last-mile problem in zero-shot navigation - determining the feasible target location with a suitable final viewpoint, and propose a Visibility-based Viewpoint Decision module to explicitly resolve it. Comprehensive experimental results demonstrate that MSGNav achieves state-of-the-art performance on GOAT-Bench and HM3D-OVON datasets. The open-source code will be publicly available.
comment: 10 pages
☆ SHRUG-FM: Reliability-Aware Foundation Models for Earth Observation
Kai-Hendrik Cohrs, Zuzanna Osika, Maria Gonzalez-Calabuig, Vishal Nedungadi, Ruben Cartuyvels, Steffen Knoblauch, Joppe Massant, Shruti Nath, Patrick Ebel, Vasileios Sitokonstantinou
Geospatial foundation models for Earth observation often fail to perform reliably in environments underrepresented during pretraining. We introduce SHRUG-FM, a framework for reliability-aware prediction that integrates three complementary signals: out-of-distribution (OOD) detection in the input space, OOD detection in the embedding space and task-specific predictive uncertainty. Applied to burn scar segmentation, SHRUG-FM shows that OOD scores correlate with lower performance in specific environmental conditions, while uncertainty-based flags help discard many poorly performing predictions. Linking these flags to land cover attributes from HydroATLAS shows that failures are not random but concentrated in certain geographies, such as low-elevation zones and large river areas, likely due to underrepresentation in pretraining data. SHRUG-FM provides a pathway toward safer and more interpretable deployment of GFMs in climate-sensitive applications, helping bridge the gap between benchmark performance and real-world reliability.
☆ DermAI: Clinical dermatology acquisition through quality-driven image collection for AI classification in mobile
Thales Bezerra, Emanoel Thyago, Kelvin Cunha, Rodrigo Abreu, Fábio Papais, Francisco Mauro, Natália Lopes, Érico Medeiros, Jéssica Guido, Shirley Cruz, Paulo Borba, Tsang Ing Ren
AI-based dermatology adoption remains limited by biased datasets, variable image quality, and limited validation. We introduce DermAI, a lightweight, smartphone-based application that enables real-time capture, annotation, and classification of skin lesions during routine consultations. Unlike prior dermoscopy-focused tools, DermAI performs on-device quality checks, and local model adaptation. The DermAI clinical dataset, encompasses a wide range of skin tones, ethinicity and source devices. In preliminary experiments, models trained on public datasets failed to generalize to our samples, while fine-tuning with local data improved performance. These results highlight the importance of standardized, diverse data collection aligned with healthcare needs and oriented to machine learning development.
comment: 4 pages, 2 figures, 1 table, submitted on ISBI
☆ FOUND: Fourier-based von Mises Distribution for Robust Single Domain Generalization in Object Detection
Single Domain Generalization (SDG) for object detection aims to train a model on a single source domain that can generalize effectively to unseen target domains. While recent methods like CLIP-based semantic augmentation have shown promise, they often overlook the underlying structure of feature distributions and frequency-domain characteristics that are critical for robustness. In this paper, we propose a novel framework that enhances SDG object detection by integrating the von Mises-Fisher (vMF) distribution and Fourier transformation into a CLIP-guided pipeline. Specifically, we model the directional features of object representations using vMF to better capture domain-invariant semantic structures in the embedding space. Additionally, we introduce a Fourier-based augmentation strategy that perturbs amplitude and phase components to simulate domain shifts in the frequency domain, further improving feature robustness. Our method not only preserves the semantic alignment benefits of CLIP but also enriches feature diversity and structural consistency across domains. Extensive experiments on the diverse weather-driving benchmark demonstrate that our approach outperforms the existing state-of-the-art method.
☆ Learning to Tell Apart: Weakly Supervised Video Anomaly Detection via Disentangled Semantic Alignment AAAI 2026
Wenti Yin, Huaxin Zhang, Xiang Wang, Yuqing Lu, Yicheng Zhang, Bingquan Gong, Jialong Zuo, Li Yu, Changxin Gao, Nong Sang
Recent advancements in weakly-supervised video anomaly detection have achieved remarkable performance by applying the multiple instance learning paradigm based on multimodal foundation models such as CLIP to highlight anomalous instances and classify categories. However, their objectives may tend to detect the most salient response segments, while neglecting to mine diverse normal patterns separated from anomalies, and are prone to category confusion due to similar appearance, leading to unsatisfactory fine-grained classification results. Therefore, we propose a novel Disentangled Semantic Alignment Network (DSANet) to explicitly separate abnormal and normal features from coarse-grained and fine-grained aspects, enhancing the distinguishability. Specifically, at the coarse-grained level, we introduce a self-guided normality modeling branch that reconstructs input video features under the guidance of learned normal prototypes, encouraging the model to exploit normality cues inherent in the video, thereby improving the temporal separation of normal patterns and anomalous events. At the fine-grained level, we present a decoupled contrastive semantic alignment mechanism, which first temporally decomposes each video into event-centric and background-centric components using frame-level anomaly scores and then applies visual-language contrastive learning to enhance class-discriminative representations. Comprehensive experiments on two standard benchmarks, namely XD-Violence and UCF-Crime, demonstrate that DSANet outperforms existing state-of-the-art methods.
comment: Accepted to AAAI 2026. Code is available at https://github.com/lessiYin/DSANet
☆ Depth-Consistent 3D Gaussian Splatting via Physical Defocus Modeling and Multi-View Geometric Supervision
Three-dimensional reconstruction in scenes with extreme depth variations remains challenging due to inconsistent supervisory signals between near-field and far-field regions. Existing methods fail to simultaneously address inaccurate depth estimation in distant areas and structural degradation in close-range regions. This paper proposes a novel computational framework that integrates depth-of-field supervision and multi-view consistency supervision to advance 3D Gaussian Splatting. Our approach comprises two core components: (1) Depth-of-field Supervision employs a scale-recovered monocular depth estimator (e.g., Metric3D) to generate depth priors, leverages defocus convolution to synthesize physically accurate defocused images, and enforces geometric consistency through a novel depth-of-field loss, thereby enhancing depth fidelity in both far-field and near-field regions; (2) Multi-View Consistency Supervision employing LoFTR-based semi-dense feature matching to minimize cross-view geometric errors and enforce depth consistency via least squares optimization of reliable matched points. By unifying defocus physics with multi-view geometric constraints, our method achieves superior depth fidelity, demonstrating a 0.8 dB PSNR improvement over the state-of-the-art method on the Waymo Open Dataset. This framework bridges physical imaging principles and learning-based depth regularization, offering a scalable solution for complex depth stratification in urban environments.
☆ CLIP4VI-ReID: Learning Modality-shared Representations via CLIP Semantic Bridge for Visible-Infrared Person Re-identification
This paper proposes a novel CLIP-driven modality-shared representation learning network named CLIP4VI-ReID for VI-ReID task, which consists of Text Semantic Generation (TSG), Infrared Feature Embedding (IFE), and High-level Semantic Alignment (HSA). Specifically, considering the huge gap in the physical characteristics between natural images and infrared images, the TSG is designed to generate text semantics only for visible images, thereby enabling preliminary visible-text modality alignment. Then, the IFE is proposed to rectify the feature embeddings of infrared images using the generated text semantics. This process injects id-related semantics into the shared image encoder, enhancing its adaptability to the infrared modality. Besides, with text serving as a bridge, it enables indirect visible-infrared modality alignment. Finally, the HSA is established to refine the high-level semantic alignment. This process ensures that the fine-tuned text semantics only contain id-related information, thereby achieving more accurate cross-modal alignment and enhancing the discriminability of the learned modal-shared representations. Extensive experimental results demonstrate that the proposed CLIP4VI-ReID achieves superior performance than other state-of-the-art methods on some widely used VI-ReID datasets.
☆ Revisiting Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
☆ Rethinking Visual Information Processing in Multimodal LLMs
Despite the remarkable success of the LLaVA architecture for vision-language tasks, its design inherently struggles to effectively integrate visual features due to the inherent mismatch between text and vision modalities. We tackle this issue from a novel perspective in which the LLM not only serves as a language model but also a powerful vision encoder. To this end, we present LLaViT - Large Language Models as extended Vision Transformers - which enables the LLM to simultaneously function as a vision encoder through three key modifications: (1) learning separate QKV projections for vision modality, (2) enabling bidirectional attention on visual tokens, and (3) incorporating both global and local visual representations. Through extensive controlled experiments on a wide range of LLMs, we demonstrate that LLaViT significantly outperforms the baseline LLaVA method on a multitude of benchmarks, even surpassing models with double its parameter count, establishing a more effective approach to vision-language modeling.
☆ Generalizable Slum Detection from Satellite Imagery with Mixture-of-Experts AAAI 2026
Satellite-based slum segmentation holds significant promise in generating global estimates of urban poverty. However, the morphological heterogeneity of informal settlements presents a major challenge, hindering the ability of models trained on specific regions to generalize effectively to unseen locations. To address this, we introduce a large-scale high-resolution dataset and propose GRAM (Generalized Region-Aware Mixture-of-Experts), a two-phase test-time adaptation framework that enables robust slum segmentation without requiring labeled data from target regions. We compile a million-scale satellite imagery dataset from 12 cities across four continents for source training. Using this dataset, the model employs a Mixture-of-Experts architecture to capture region-specific slum characteristics while learning universal features through a shared backbone. During adaptation, prediction consistency across experts filters out unreliable pseudo-labels, allowing the model to generalize effectively to previously unseen regions. GRAM outperforms state-of-the-art baselines in low-resource settings such as African cities, offering a scalable and label-efficient solution for global slum mapping and data-driven urban planning.
comment: Accepted to AAAI 2026
☆ Adaptive Residual-Update Steering for Low-Overhead Hallucination Mitigation in Large Vision Language Models
Large Vision-Language Models (LVLMs) often suffer from object hallucination, generating text inconsistent with visual inputs, which can critically undermine their reliability. Existing inference-time interventions to mitigate this issue present a challenging trade-off: while methods that steer internal states or adjust output logits can be effective, they often incur substantial computational overhead, typically requiring extra forward passes. This efficiency bottleneck can limit their practicality for real-world, latency-sensitive deployments. In this work, we aim to address this trade-off with Residual-Update Directed DEcoding Regulation (RUDDER), a low-overhead framework that steers LVLMs towards visually-grounded generation. RUDDER is built on two key innovations: (1) Contextual Activation Residual Direction (CARD) vector, a per-sample visual evidence vector extracted from the residual update of a self-attention layer during a single, standard forward pass. (2) A Bayesian-inspired adaptive gate that performs token-wise injection, applying a corrective signal whose strength is conditioned on the model's deviation from the visual context. Extensive experiments on key hallucination benchmarks, including POPE and CHAIR, indicate that RUDDER achieves performance comparable to state-of-the-art methods while introducing negligible computational latency, validating RUDDER as a pragmatic and effective approach for improving LVLMs' reliability without a significant compromise on efficiency.
comment: Under review
☆ PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning
Despite significant progress, Vision-Language Models (VLMs) still struggle with complex visual reasoning, where multi-step dependencies cause early errors to cascade through the reasoning chain. Existing post-training paradigms are limited: Supervised Fine-Tuning (SFT) relies on costly step-level annotations, while Reinforcement Learning with Verifiable Rewards (RLVR) methods like GRPO provide only sparse, outcome-level feedback, hindering stable optimization. We introduce PROPA (Process-level Reasoning Optimization with interleaved Policy Alignment), a novel framework that integrates Monte Carlo Tree Search (MCTS) with GRPO to generate dense, process-level rewards and optimize reasoning at each intermediate step without human annotations. To overcome the cold-start problem, PROPA interleaves GRPO updates with SFT, enabling the model to learn from both successful and failed reasoning trajectories. A Process Reward Model (PRM) is further trained to guide inference-time search, aligning the test-time search with the training signal. Across seven benchmarks and four VLM backbones, PROPA consistently outperforms both SFT- and RLVR-based baselines. It achieves up to 17.0% gains on in-domain tasks and 21.0% gains on out-of-domain tasks compared to existing state-of-the-art, establishing a strong reasoning and generalization capability for visual reasoning tasks. The code isavailable at: https://github.com/YanbeiJiang/PROPA.
☆ H3Former: Hypergraph-based Semantic-Aware Aggregation via Hyperbolic Hierarchical Contrastive Loss for Fine-Grained Visual Classification
Fine-Grained Visual Classification (FGVC) remains a challenging task due to subtle inter-class differences and large intra-class variations. Existing approaches typically rely on feature-selection mechanisms or region-proposal strategies to localize discriminative regions for semantic analysis. However, these methods often fail to capture discriminative cues comprehensively while introducing substantial category-agnostic redundancy. To address these limitations, we propose H3Former, a novel token-to-region framework that leverages high-order semantic relations to aggregate local fine-grained representations with structured region-level modeling. Specifically, we propose the Semantic-Aware Aggregation Module (SAAM), which exploits multi-scale contextual cues to dynamically construct a weighted hypergraph among tokens. By applying hypergraph convolution, SAAM captures high-order semantic dependencies and progressively aggregates token features into compact region-level representations. Furthermore, we introduce the Hyperbolic Hierarchical Contrastive Loss (HHCL), which enforces hierarchical semantic constraints in a non-Euclidean embedding space. The HHCL enhances inter-class separability and intra-class consistency while preserving the intrinsic hierarchical relationships among fine-grained categories. Comprehensive experiments conducted on four standard FGVC benchmarks validate the superiority of our H3Former framework.
☆ Facial-R1: Aligning Reasoning and Recognition for Facial Emotion Analysis AAAI 2026
Facial Emotion Analysis (FEA) extends traditional facial emotion recognition by incorporating explainable, fine-grained reasoning. The task integrates three subtasks: emotion recognition, facial Action Unit (AU) recognition, and AU-based emotion reasoning to model affective states jointly. While recent approaches leverage Vision-Language Models (VLMs) and achieve promising results, they face two critical limitations: (1) hallucinated reasoning, where VLMs generate plausible but inaccurate explanations due to insufficient emotion-specific knowledge; and (2) misalignment between emotion reasoning and recognition, caused by fragmented connections between observed facial features and final labels. We propose Facial-R1, a three-stage alignment framework that effectively addresses both challenges with minimal supervision. First, we employ instruction fine-tuning to establish basic emotional reasoning capability. Second, we introduce reinforcement training guided by emotion and AU labels as reward signals, which explicitly aligns the generated reasoning process with the predicted emotion. Third, we design a data synthesis pipeline that iteratively leverages the prior stages to expand the training dataset, enabling scalable self-improvement of the model. Built upon this framework, we introduce FEA-20K, a benchmark dataset comprising 17,737 training and 1,688 test samples with fine-grained emotion analysis annotations. Extensive experiments across eight standard benchmarks demonstrate that Facial-R1 achieves state-of-the-art performance in FEA, with strong generalization and robust interpretability.
comment: This paper has been accepted by AAAI 2026. 16 pages, 3 figures, 10 tables
☆ FineSkiing: A Fine-grained Benchmark for Skiing Action Quality Assessment
Action Quality Assessment (AQA) aims to evaluate and score sports actions, which has attracted widespread interest in recent years. Existing AQA methods primarily predict scores based on features extracted from the entire video, resulting in limited interpretability and reliability. Meanwhile, existing AQA datasets also lack fine-grained annotations for action scores, especially for deduction items and sub-score annotations. In this paper, we construct the first AQA dataset containing fine-grained sub-score and deduction annotations for aerial skiing, which will be released as a new benchmark. For the technical challenges, we propose a novel AQA method, named JudgeMind, which significantly enhances performance and reliability by simulating the judgment and scoring mindset of professional referees. Our method segments the input action video into different stages and scores each stage to enhance accuracy. Then, we propose a stage-aware feature enhancement and fusion module to boost the perception of stage-specific key regions and enhance the robustness to visual changes caused by frequent camera viewpoints switching. In addition, we propose a knowledge-based grade-aware decoder to incorporate possible deduction items as prior knowledge to predict more accurate and reliable scores. Experimental results demonstrate that our method achieves state-of-the-art performance.
☆ TubeRMC: Tube-conditioned Reconstruction with Mutual Constraints for Weakly-supervised Spatio-Temporal Video Grounding
Spatio-Temporal Video Grounding (STVG) aims to localize a spatio-temporal tube that corresponds to a given language query in an untrimmed video. This is a challenging task since it involves complex vision-language understanding and spatiotemporal reasoning. Recent works have explored weakly-supervised setting in STVG to eliminate reliance on fine-grained annotations like bounding boxes or temporal stamps. However, they typically follow a simple late-fusion manner, which generates tubes independent of the text description, often resulting in failed target identification and inconsistent target tracking. To address this limitation, we propose a Tube-conditioned Reconstruction with Mutual Constraints (\textbf{TubeRMC}) framework that generates text-conditioned candidate tubes with pre-trained visual grounding models and further refine them via tube-conditioned reconstruction with spatio-temporal constraints. Specifically, we design three reconstruction strategies from temporal, spatial, and spatio-temporal perspectives to comprehensively capture rich tube-text correspondences. Each strategy is equipped with a Tube-conditioned Reconstructor, utilizing spatio-temporal tubes as condition to reconstruct the key clues in the query. We further introduce mutual constraints between spatial and temporal proposals to enhance their quality for reconstruction. TubeRMC outperforms existing methods on two public benchmarks VidSTG and HCSTVG. Further visualization shows that TubeRMC effectively mitigates both target identification errors and inconsistent tracking.
☆ Next-Frame Feature Prediction for Multimodal Deepfake Detection and Temporal Localization
Recent multimodal deepfake detection methods designed for generalization conjecture that single-stage supervised training struggles to generalize across unseen manipulations and datasets. However, such approaches that target generalization require pretraining over real samples. Additionally, these methods primarily focus on detecting audio-visual inconsistencies and may overlook intra-modal artifacts causing them to fail against manipulations that preserve audio-visual alignment. To address these limitations, we propose a single-stage training framework that enhances generalization by incorporating next-frame prediction for both uni-modal and cross-modal features. Additionally, we introduce a window-level attention mechanism to capture discrepancies between predicted and actual frames, enabling the model to detect local artifacts around every frame, which is crucial for accurately classifying fully manipulated videos and effectively localizing deepfake segments in partially spoofed samples. Our model, evaluated on multiple benchmark datasets, demonstrates strong generalization and precise temporal localization.
comment: Under Review, Multimodal Deepfake detection
☆ HeatV2X: Scalable Heterogeneous Collaborative Perception via Efficient Alignment and Interaction
Vehicle-to-Everything (V2X) collaborative perception extends sensing beyond single vehicle limits through transmission. However, as more agents participate, existing frameworks face two key challenges: (1) the participating agents are inherently multi-modal and heterogeneous, and (2) the collaborative framework must be scalable to accommodate new agents. The former requires effective cross-agent feature alignment to mitigate heterogeneity loss, while the latter renders full-parameter training impractical, highlighting the importance of scalable adaptation. To address these issues, we propose Heterogeneous Adaptation (HeatV2X), a scalable collaborative framework. We first train a high-performance agent based on heterogeneous graph attention as the foundation for collaborative learning. Then, we design Local Heterogeneous Fine-Tuning and Global Collaborative Fine-Tuning to achieve effective alignment and interaction among heterogeneous agents. The former efficiently extracts modality-specific differences using Hetero-Aware Adapters, while the latter employs the Multi-Cognitive Adapter to enhance cross-agent collaboration and fully exploit the fusion potential. These designs enable substantial performance improvement of the collaborative framework with minimal training cost. We evaluate our approach on the OPV2V-H and DAIR-V2X datasets. Experimental results demonstrate that our method achieves superior perception performance with significantly reduced training overhead, outperforming existing state-of-the-art approaches. Our implementation will be released soon.
comment: 10 pages, 6 figures
☆ LiNeXt: Revisiting LiDAR Completion with Efficient Non-Diffusion Architectures AAAI 2026
3D LiDAR scene completion from point clouds is a fundamental component of perception systems in autonomous vehicles. Previous methods have predominantly employed diffusion models for high-fidelity reconstruction. However, their multi-step iterative sampling incurs significant computational overhead, limiting its real-time applicability. To address this, we propose LiNeXt-a lightweight, non-diffusion network optimized for rapid and accurate point cloud completion. Specifically, LiNeXt first applies the Noise-to-Coarse (N2C) Module to denoise the input noisy point cloud in a single pass, thereby obviating the multi-step iterative sampling of diffusion-based methods. The Refine Module then takes the coarse point cloud and its intermediate features from the N2C Module to perform more precise refinement, further enhancing structural completeness. Furthermore, we observe that LiDAR point clouds exhibit a distance-dependent spatial distribution, being densely sampled at proximal ranges and sparsely sampled at distal ranges. Accordingly, we propose the Distance-aware Selected Repeat strategy to generate a more uniformly distributed noisy point cloud. On the SemanticKITTI dataset, LiNeXt achieves a 199.8x speedup in inference, reduces Chamfer Distance by 50.7%, and uses only 6.1% of the parameters compared with LiDiff. These results demonstrate the superior efficiency and effectiveness of LiNeXt for real-time scene completion.
comment: 18 pages, 13 figures, Accepted to AAAI 2026
☆ VISTA: A Vision and Intent-Aware Social Attention Framework for Multi-Agent Trajectory Prediction WACV 2026
Multi-agent trajectory prediction is crucial for autonomous systems operating in dense, interactive environments. Existing methods often fail to jointly capture agents' long-term goals and their fine-grained social interactions, which leads to unrealistic multi-agent futures. We propose VISTA, a recursive goal-conditioned transformer for multi-agent trajectory forecasting. VISTA combines (i) a cross-attention fusion module that integrates long-horizon intent with past motion, (ii) a social-token attention mechanism for flexible interaction modeling across agents, and (iii) pairwise attention maps that make social influence patterns interpretable at inference time. Our model turns single-agent goal-conditioned prediction into a coherent multi-agent forecasting framework. Beyond standard displacement metrics, we evaluate trajectory collision rates as a measure of joint realism. On the high-density MADRAS benchmark and on SDD, VISTA achieves state-of-the-art accuracy and substantially fewer collisions. On MADRAS, it reduces the average collision rate of strong baselines from 2.14 to 0.03 percent, and on SDD it attains zero collisions while improving ADE, FDE, and minFDE. These results show that VISTA generates socially compliant, goal-aware, and interpretable trajectories, making it promising for safety-critical autonomous systems.
comment: Paper accepted at WACV 2026
☆ Utilizing a Geospatial Foundation Model for Coastline Delineation in Small Sandy Islands
We present an initial evaluation of NASA and IBM's Prithvi-EO-2.0 geospatial foundation model on shoreline delineation of small sandy islands using satellite images. We curated and labeled a dataset of 225 multispectral images of two Maldivian islands, which we publicly release, and fine-tuned both the 300M and 600M parameter versions of Prithvi on training subsets ranging from 5 to 181 images. Our experiments show that even with as few as 5 training images, the models achieve high performance (F1 of 0.94, IoU of 0.79). Our results demonstrate the strong transfer learning capability of Prithvi, underscoring the potential of such models to support coastal monitoring in data-poor regions.
comment: 8 pages, 7 figures
☆ CephRes-MHNet: A Multi-Head Residual Network for Accurate and Robust Cephalometric Landmark Detection IEEE
Ahmed Jaheen, Islam Hassan, Mohanad Abouserie, Abdelaty Rehab, Adham Elasfar, Knzy Elmasry, Mostafa El-Dawlatly, Seif Eldawlatly
Accurate localization of cephalometric landmarks from 2D lateral skull X-rays is vital for orthodontic diagnosis and treatment. Manual annotation is time-consuming and error-prone, whereas automated approaches often struggle with low contrast and anatomical complexity. This paper introduces CephRes-MHNet, a multi-head residual convolutional network for robust and efficient cephalometric landmark detection. The architecture integrates residual encoding, dual-attention mechanisms, and multi-head decoders to enhance contextual reasoning and anatomical precision. Trained on the Aariz Cephalometric dataset of 1,000 radiographs, CephRes-MHNet achieved a mean radial error (MRE) of 1.23 mm and a success detection rate (SDR) @ 2.0 mm of 85.5%, outperforming all evaluated models. In particular, it exceeded the strongest baseline, the attention-driven AFPF-Net (MRE = 1.25 mm, SDR @ 2.0 mm = 84.1%), while using less than 25% of its parameters. These results demonstrate that CephRes-MHNet attains state-of-the-art accuracy through architectural efficiency, providing a practical solution for real-world orthodontic analysis.
comment: 5 Pages, Under Review at The IEEE International Symposium on Biomedical Imaging (ISBI 2026)
☆ Physically Interpretable Multi-Degradation Image Restoration via Deep Unfolding and Explainable Convolution
Although image restoration has advanced significantly, most existing methods target only a single type of degradation. In real-world scenarios, images often contain multiple degradations simultaneously, such as rain, noise, and haze, requiring models capable of handling diverse degradation types. Moreover, methods that improve performance through module stacking often suffer from limited interpretability. In this paper, we propose a novel interpretability-driven approach for multi-degradation image restoration, built upon a deep unfolding network that maps the iterative process of a mathematical optimization algorithm into a learnable network structure. Specifically, we employ an improved second-order semi-smooth Newton algorithm to ensure that each module maintains clear physical interpretability. To further enhance interpretability and adaptability, we design an explainable convolution module inspired by the human brain's flexible information processing and the intrinsic characteristics of images, allowing the network to flexibly leverage learned knowledge and autonomously adjust parameters for different input. The resulting tightly integrated architecture, named InterIR, demonstrates excellent performance in multi-degradation restoration while remaining highly competitive on single-degradation tasks.
☆ GEA: Generation-Enhanced Alignment for Text-to-Image Person Retrieval
Text-to-Image Person Retrieval (TIPR) aims to retrieve person images based on natural language descriptions. Although many TIPR methods have achieved promising results, sometimes textual queries cannot accurately and comprehensively reflect the content of the image, leading to poor cross-modal alignment and overfitting to limited datasets. Moreover, the inherent modality gap between text and image further amplifies these issues, making accurate cross-modal retrieval even more challenging. To address these limitations, we propose the Generation-Enhanced Alignment (GEA) from a generative perspective. GEA contains two parallel modules: (1) Text-Guided Token Enhancement (TGTE), which introduces diffusion-generated images as intermediate semantic representations to bridge the gap between text and visual patterns. These generated images enrich the semantic representation of text and facilitate cross-modal alignment. (2) Generative Intermediate Fusion (GIF), which combines cross-attention between generated images, original images, and text features to generate a unified representation optimized by triplet alignment loss. We conduct extensive experiments on three public TIPR datasets, CUHK-PEDES, RSTPReid, and ICFG-PEDES, to evaluate the performance of GEA. The results justify the effectiveness of our method. More implementation details and extended results are available at https://github.com/sugelamyd123/Sup-for-GEA.
comment: 8pages,3figures
☆ Decoupling Bias, Aligning Distributions: Synergistic Fairness Optimization for Deepfake Detection
Fairness is a core element in the trustworthy deployment of deepfake detection models, especially in the field of digital identity security. Biases in detection models toward different demographic groups, such as gender and race, may lead to systemic misjudgments, exacerbating the digital divide and social inequities. However, current fairness-enhanced detectors often improve fairness at the cost of detection accuracy. To address this challenge, we propose a dual-mechanism collaborative optimization framework. Our proposed method innovatively integrates structural fairness decoupling and global distribution alignment: decoupling channels sensitive to demographic groups at the model architectural level, and subsequently reducing the distance between the overall sample distribution and the distributions corresponding to each demographic group at the feature level. Experimental results demonstrate that, compared with other methods, our framework improves both inter-group and intra-group fairness while maintaining overall detection accuracy across domains.
☆ Split-Layer: Enhancing Implicit Neural Representation by Maximizing the Dimensionality of Feature Space AAAI 2026
Implicit neural representation (INR) models signals as continuous functions using neural networks, offering efficient and differentiable optimization for inverse problems across diverse disciplines. However, the representational capacity of INR defined by the range of functions the neural network can characterize, is inherently limited by the low-dimensional feature space in conventional multilayer perceptron (MLP) architectures. While widening the MLP can linearly increase feature space dimensionality, it also leads to a quadratic growth in computational and memory costs. To address this limitation, we propose the split-layer, a novel reformulation of MLP construction. The split-layer divides each layer into multiple parallel branches and integrates their outputs via Hadamard product, effectively constructing a high-degree polynomial space. This approach significantly enhances INR's representational capacity by expanding the feature space dimensionality without incurring prohibitive computational overhead. Extensive experiments demonstrate that the split-layer substantially improves INR performance, surpassing existing methods across multiple tasks, including 2D image fitting, 2D CT reconstruction, 3D shape representation, and 5D novel view synthesis.
comment: AAAI 2026
☆ Right Looks, Wrong Reasons: Compositional Fidelity in Text-to-Image Generation AAAI 2026
The architectural blueprint of today's leading text-to-image models contains a fundamental flaw: an inability to handle logical composition. This survey investigates this breakdown across three core primitives-negation, counting, and spatial relations. Our analysis reveals a dramatic performance collapse: models that are accurate on single primitives fail precipitously when these are combined, exposing severe interference. We trace this failure to three key factors. First, training data show a near-total absence of explicit negations. Second, continuous attention architectures are fundamentally unsuitable for discrete logic. Third, evaluation metrics reward visual plausibility over constraint satisfaction. By analyzing recent benchmarks and methods, we show that current solutions and simple scaling cannot bridge this gap. Achieving genuine compositionality, we conclude, will require fundamental advances in representation and reasoning rather than incremental adjustments to existing architectures.
comment: Accepted in AAAI 2026
☆ Explicit Temporal-Semantic Modeling for Dense Video Captioning via Context-Aware Cross-Modal Interaction AAAI 2026
Mingda Jia, Weiliang Meng, Zenghuang Fu, Yiheng Li, Qi Zeng, Yifan Zhang, Ju Xin, Rongtao Xu, Jiguang Zhang, Xiaopeng Zhang
Dense video captioning jointly localizes and captions salient events in untrimmed videos. Recent methods primarily focus on leveraging additional prior knowledge and advanced multi-task architectures to achieve competitive performance. However, these pipelines rely on implicit modeling that uses frame-level or fragmented video features, failing to capture the temporal coherence across event sequences and comprehensive semantics within visual contexts. To address this, we propose an explicit temporal-semantic modeling framework called Context-Aware Cross-Modal Interaction (CACMI), which leverages both latent temporal characteristics within videos and linguistic semantics from text corpus. Specifically, our model consists of two core components: Cross-modal Frame Aggregation aggregates relevant frames to extract temporally coherent, event-aligned textual features through cross-modal retrieval; and Context-aware Feature Enhancement utilizes query-guided attention to integrate visual dynamics with pseudo-event semantics. Extensive experiments on the ActivityNet Captions and YouCook2 datasets demonstrate that CACMI achieves the state-of-the-art performance on dense video captioning task.
comment: Accepted to AAAI 2026
☆ RobIA: Robust Instance-aware Continual Test-time Adaptation for Deep Stereo NeurIPS
Stereo Depth Estimation in real-world environments poses significant challenges due to dynamic domain shifts, sparse or unreliable supervision, and the high cost of acquiring dense ground-truth labels. While recent Test-Time Adaptation (TTA) methods offer promising solutions, most rely on static target domain assumptions and input-invariant adaptation strategies, limiting their effectiveness under continual shifts. In this paper, we propose RobIA, a novel Robust, Instance-Aware framework for Continual Test-Time Adaptation (CTTA) in stereo depth estimation. RobIA integrates two key components: (1) Attend-and-Excite Mixture-of-Experts (AttEx-MoE), a parameter-efficient module that dynamically routes input to frozen experts via lightweight self-attention mechanism tailored to epipolar geometry, and (2) Robust AdaptBN Teacher, a PEFT-based teacher model that provides dense pseudo-supervision by complementing sparse handcrafted labels. This strategy enables input-specific flexibility, broad supervision coverage, improving generalization under domain shift. Extensive experiments demonstrate that RobIA achieves superior adaptation performance across dynamic target domains while maintaining computational efficiency.
comment: Accepted by Neural Information Processing Systems (NeurIPS) 2025
☆ MTAttack: Multi-Target Backdoor Attacks against Large Vision-Language Models AAAI2026
Recent advances in Large Visual Language Models (LVLMs) have demonstrated impressive performance across various vision-language tasks by leveraging large-scale image-text pretraining and instruction tuning. However, the security vulnerabilities of LVLMs have become increasingly concerning, particularly their susceptibility to backdoor attacks. Existing backdoor attacks focus on single-target attacks, i.e., targeting a single malicious output associated with a specific trigger. In this work, we uncover multi-target backdoor attacks, where multiple independent triggers corresponding to different attack targets are added in a single pass of training, posing a greater threat to LVLMs in real-world applications. Executing such attacks in LVLMs is challenging since there can be many incorrect trigger-target mappings due to severe feature interference among different triggers. To address this challenge, we propose MTAttack, the first multi-target backdoor attack framework for enforcing accurate multiple trigger-target mappings in LVLMs. The core of MTAttack is a novel optimization method with two constraints, namely Proxy Space Partitioning constraint and Trigger Prototype Anchoring constraint. It jointly optimizes multiple triggers in the latent space, with each trigger independently mapping clean images to a unique proxy class while at the same time guaranteeing their separability. Experiments on popular benchmarks demonstrate a high success rate of MTAttack for multi-target attacks, substantially outperforming existing attack methods. Furthermore, our attack exhibits strong generalizability across datasets and robustness against backdoor defense strategies. These findings highlight the vulnerability of LVLMs to multi-target backdoor attacks and underscore the urgent need for mitigating such threats. Code is available at https://github.com/mala-lab/MTAttack.
comment: AAAI2026, with supplementary material
☆ How does My Model Fail? Automatic Identification and Interpretation of Physical Plausibility Failure Modes with Matryoshka Transcoders
Although recent generative models are remarkably capable of producing instruction-following and realistic outputs, they remain prone to notable physical plausibility failures. Though critical in applications, these physical plausibility errors often escape detection by existing evaluation methods. Furthermore, no framework exists for automatically identifying and interpreting specific physical error patterns in natural language, preventing targeted model improvements. We introduce Matryoshka Transcoders, a novel framework for the automatic discovery and interpretation of physical plausibility features in generative models. Our approach extends the Matryoshka representation learning paradigm to transcoder architectures, enabling hierarchical sparse feature learning at multiple granularity levels. By training on intermediate representations from a physical plausibility classifier and leveraging large multimodal models for interpretation, our method identifies diverse physics-related failure modes without manual feature engineering, achieving superior feature relevance and feature accuracy compared to existing approaches. We utilize the discovered visual patterns to establish a benchmark for evaluating physical plausibility in generative models. Our analysis of eight state-of-the-art generative models provides valuable insights into how these models fail to follow physical constraints, paving the way for further model improvements.
comment: 10 pages, 5 figures
☆ SUGAR: Learning Skeleton Representation with Visual-Motion Knowledge for Action Recognition AAAI 2026
Qilang Ye, Yu Zhou, Lian He, Jie Zhang, Xuanming Guo, Jiayu Zhang, Mingkui Tan, Weicheng Xie, Yue Sun, Tao Tan, Xiaochen Yuan, Ghada Khoriba, Zitong Yu
Large Language Models (LLMs) hold rich implicit knowledge and powerful transferability. In this paper, we explore the combination of LLMs with the human skeleton to perform action classification and description. However, when treating LLM as a recognizer, two questions arise: 1) How can LLMs understand skeleton? 2) How can LLMs distinguish among actions? To address these problems, we introduce a novel paradigm named learning Skeleton representation with visUal-motion knowledGe for Action Recognition (SUGAR). In our pipeline, we first utilize off-the-shelf large-scale video models as a knowledge base to generate visual, motion information related to actions. Then, we propose to supervise skeleton learning through this prior knowledge to yield discrete representations. Finally, we use the LLM with untouched pre-training weights to understand these representations and generate the desired action targets and descriptions. Notably, we present a Temporal Query Projection (TQP) module to continuously model the skeleton signals with long sequences. Experiments on several skeleton-based action classification benchmarks demonstrate the efficacy of our SUGAR. Moreover, experiments on zero-shot scenarios show that SUGAR is more versatile than linear-based methods.
comment: Accepted by AAAI 2026 Main Track
☆ eXIAA: eXplainable Injections for Adversarial Attack
Post-hoc explainability methods are a subset of Machine Learning (ML) that aim to provide a reason for why a model behaves in a certain way. In this paper, we show a new black-box model-agnostic adversarial attack for post-hoc explainable Artificial Intelligence (XAI), particularly in the image domain. The goal of the attack is to modify the original explanations while being undetected by the human eye and maintain the same predicted class. In contrast to previous methods, we do not require any access to the model or its weights, but only to the model's computed predictions and explanations. Additionally, the attack is accomplished in a single step while significantly changing the provided explanations, as demonstrated by empirical evaluation. The low requirements of our method expose a critical vulnerability in current explainability methods, raising concerns about their reliability in safety-critical applications. We systematically generate attacks based on the explanations generated by post-hoc explainability methods (saliency maps, integrated gradients, and DeepLIFT SHAP) for pretrained ResNet-18 and ViT-B16 on ImageNet. The results show that our attacks could lead to dramatically different explanations without changing the predictive probabilities. We validate the effectiveness of our attack, compute the induced change based on the explanation with mean absolute difference, and verify the closeness of the original image and the corrupted one with the Structural Similarity Index Measure (SSIM).
☆ GridPrune: From "Where to Look" to "What to Select" in Visual Token Pruning for MLLMs
Multimodal large language models (MLLMs) have shown remarkable capabilities in a wide range of vision-language tasks. However, the large number of visual tokens introduces significant computational overhead. To address this issue, visual token pruning has emerged as a key technique for enhancing the efficiency of MLLMs. In cognitive science, humans tend to first determine which regions of a scene to attend to ("where to look") before deciding which specific elements within those regions to process in detail ("what to select"). This two-stage strategy enables the visual system to efficiently allocate attention at a coarse spatial level before performing fine-grained selection. However, existing pruning methods primarily focus on directly optimizing "what to select", typically using attention scores or similarity metrics. They rarely consider "where to look", which has been shown to lead to inefficient spatial allocation, positional bias, and the retention of irrelevant or redundant tokens. In this paper, we propose GridPrune, a method that replaces the global Top-K mechanism with a "guide-globally, select-locally" zonal selection system. GridPrune splits the pruning process into two steps: first, it uses text-conditional guidance to dynamically allocate a token budget across spatial zones; and then, it performs local selection within each budgeted zone. Experimental results demonstrate that GridPrune achieves superior performance across various MLLM architectures. On LLaVA-NeXT-7B, GridPrune retains 96.98% of the full performance while using 11.1% of the tokens, outperforming the best-performing baseline by 2.34% at the same pruning rate.
☆ Mitigating Error Accumulation in Co-Speech Motion Generation via Global Rotation Diffusion and Multi-Level Constraints AAAI 2026
Reliable co-speech motion generation requires precise motion representation and consistent structural priors across all joints. Existing generative methods typically operate on local joint rotations, which are defined hierarchically based on the skeleton structure. This leads to cumulative errors during generation, manifesting as unstable and implausible motions at end-effectors. In this work, we propose GlobalDiff, a diffusion-based framework that operates directly in the space of global joint rotations for the first time, fundamentally decoupling each joint's prediction from upstream dependencies and alleviating hierarchical error accumulation. To compensate for the absence of structural priors in global rotation space, we introduce a multi-level constraint scheme. Specifically, a joint structure constraint introduces virtual anchor points around each joint to better capture fine-grained orientation. A skeleton structure constraint enforces angular consistency across bones to maintain structural integrity. A temporal structure constraint utilizes a multi-scale variational encoder to align the generated motion with ground-truth temporal patterns. These constraints jointly regularize the global diffusion process and reinforce structural awareness. Extensive evaluations on standard co-speech benchmarks show that GlobalDiff generates smooth and accurate motions, improving the performance by 46.0 % compared to the current SOTA under multiple speaker identities.
comment: AAAI 2026
☆ VLF-MSC: Vision-Language Feature-Based Multimodal Semantic Communication System NeurIPS 2025
We propose Vision-Language Feature-based Multimodal Semantic Communication (VLF-MSC), a unified system that transmits a single compact vision-language representation to support both image and text generation at the receiver. Unlike existing semantic communication techniques that process each modality separately, VLF-MSC employs a pre-trained vision-language model (VLM) to encode the source image into a vision-language semantic feature (VLF), which is transmitted over the wireless channel. At the receiver, a decoder-based language model and a diffusion-based image generator are both conditioned on the VLF to produce a descriptive text and a semantically aligned image. This unified representation eliminates the need for modality-specific streams or retransmissions, improving spectral efficiency and adaptability. By leveraging foundation models, the system achieves robustness to channel noise while preserving semantic fidelity. Experiments demonstrate that VLF-MSC outperforms text-only and image-only baselines, achieving higher semantic accuracy for both modalities under low SNR with significantly reduced bandwidth.
comment: To appear in the AI4NextG Workshop at NeurIPS 2025
☆ Perceive, Act and Correct: Confidence Is Not Enough for Hyperspectral Classification AAAI 2026
Confidence alone is often misleading in hyperspectral image classification, as models tend to mistake high predictive scores for correctness while lacking awareness of uncertainty. This leads to confirmation bias, especially under sparse annotations or class imbalance, where models overfit confident errors and fail to generalize. We propose CABIN (Cognitive-Aware Behavior-Informed learNing), a semi-supervised framework that addresses this limitation through a closed-loop learning process of perception, action, and correction. CABIN first develops perceptual awareness by estimating epistemic uncertainty, identifying ambiguous regions where errors are likely to occur. It then acts by adopting an Uncertainty-Guided Dual Sampling Strategy, selecting uncertain samples for exploration while anchoring confident ones as stable pseudo-labels to reduce bias. To correct noisy supervision, CABIN introduces a Fine-Grained Dynamic Assignment Strategy that categorizes pseudo-labeled data into reliable, ambiguous, and noisy subsets, applying tailored losses to enhance generalization. Experimental results show that a wide range of state-of-the-art methods benefit from the integration of CABIN, with improved labeling efficiency and performance.
comment: Accepted to AAAI 2026
☆ Multivariate Gaussian Representation Learning for Medical Action Evaluation AAAI 2026
Fine-grained action evaluation in medical vision faces unique challenges due to the unavailability of comprehensive datasets, stringent precision requirements, and insufficient spatiotemporal dynamic modeling of very rapid actions. To support development and evaluation, we introduce CPREval-6k, a multi-view, multi-label medical action benchmark containing 6,372 expert-annotated videos with 22 clinical labels. Using this dataset, we present GaussMedAct, a multivariate Gaussian encoding framework, to advance medical motion analysis through adaptive spatiotemporal representation learning. Multivariate Gaussian Representation projects the joint motions to a temporally scaled multi-dimensional space, and decomposes actions into adaptive 3D Gaussians that serve as tokens. These tokens preserve motion semantics through anisotropic covariance modeling while maintaining robustness to spatiotemporal noise. Hybrid Spatial Encoding, employing a Cartesian and Vector dual-stream strategy, effectively utilizes skeletal information in the form of joint and bone features. The proposed method achieves 92.1% Top-1 accuracy with real-time inference on the benchmark, outperforming the ST-GCN baseline by +5.9% accuracy with only 10% FLOPs. Cross-dataset experiments confirm the superiority of our method in robustness.
comment: Accepted to AAAI 2026
☆ When Eyes and Ears Disagree: Can MLLMs Discern Audio-Visual Confusion? AAAI 2026
Can Multimodal Large Language Models (MLLMs) discern confused objects that are visually present but audio-absent? To study this, we introduce a new benchmark, AV-ConfuseBench, which simulates an ``Audio-Visual Confusion'' scene by modifying the corresponding sound of an object in the video, e.g., mute the sounding object and ask MLLMs Is there a/an muted-object sound''. Experimental results reveal that MLLMs, such as Qwen2.5-Omni and Gemini 2.5, struggle to discriminate non-existent audio due to visually dominated reasoning. Motivated by this observation, we introduce RL-CoMM, a Reinforcement Learning-based Collaborative Multi-MLLM that is built upon the Qwen2.5-Omni foundation. RL-CoMM includes two stages: 1) To alleviate visually dominated ambiguities, we introduce an external model, a Large Audio Language Model (LALM), as the reference model to generate audio-only reasoning. Then, we design a Step-wise Reasoning Reward function that enables MLLMs to self-improve audio-visual reasoning with the audio-only reference. 2) To ensure an accurate answer prediction, we introduce Answer-centered Confidence Optimization to reduce the uncertainty of potential heterogeneous reasoning differences. Extensive experiments on audio-visual question answering and audio-visual hallucination show that RL-CoMM improves the accuracy by 10~30\% over the baseline model with limited training data. Follow: https://github.com/rikeilong/AVConfusion.
comment: Accepted by AAAI 2026
☆ Image Aesthetic Reasoning via HCM-GRPO: Empowering Compact Model for Superior Performance
The performance of image generation has been significantly improved in recent years. However, the study of image screening is rare and its performance with Multimodal Large Language Models (MLLMs) is unsatisfactory due to the lack of data and the weak image aesthetic reasoning ability in MLLMs. In this work, we propose a complete solution to address these problems in terms of data and methodology. For data, we collect a comprehensive image screening dataset with over 128k samples, about 640k images. Each sample consists of an original image, four generated images. The dataset evaluates the image aesthetic reasoning ability under four aspects: appearance deformation, physical shadow, placement layout, and extension rationality. Regarding data annotation, we investigate multiple approaches, including purely manual, fully automated, and answer-driven annotations, to acquire high-quality chains of thought (CoT) data in the most cost-effective manner. Methodologically, we introduce a Hard Cases Mining (HCM) strategy with a Dynamic Proportional Accuracy (DPA) reward into the Group Relative Policy Optimization (GRPO) framework, called HCM-GRPO. This enhanced method demonstrates superior image aesthetic reasoning capabilities compared to the original GRPO. Our experimental results reveal that even state-of-the-art closed-source MLLMs, such as GPT4o and Qwen-VL-Max, exhibit performance akin to random guessing in image aesthetic reasoning. In contrast, by leveraging the HCM-GRPO, we are able to surpass the scores of both large-scale open-source and leading closed-source models with a much smaller model.
☆ Trapped by Their Own Light: Deployable and Stealth Retroreflective Patch Attacks on Traffic Sign Recognition Systems
Go Tsuruoka, Takami Sato, Qi Alfred Chen, Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka, Tatsuya Mori
Traffic sign recognition plays a critical role in ensuring safe and efficient transportation of autonomous vehicles but remain vulnerable to adversarial attacks using stickers or laser projections. While existing attack vectors demonstrate security concerns, they suffer from visual detectability or implementation constraints, suggesting unexplored vulnerability surfaces in TSR systems. We introduce the Adversarial Retroreflective Patch (ARP), a novel attack vector that combines the high deployability of patch attacks with the stealthiness of laser projections by utilizing retroreflective materials activated only under victim headlight illumination. We develop a retroreflection simulation method and employ black-box optimization to maximize attack effectiveness. ARP achieves $\geq$93.4\% success rate in dynamic scenarios at 35 meters and $\geq$60\% success rate against commercial TSR systems in real-world conditions. Our user study demonstrates that ARP attacks maintain near-identical stealthiness to benign signs while achieving $\geq$1.9\% higher stealthiness scores than previous patch attacks. We propose the DPR Shield defense, employing strategically placed polarized filters, which achieves $\geq$75\% defense success rates for stop signs and speed limit signs against micro-prism patches.
☆ MuSc-V2: Zero-Shot Multimodal Industrial Anomaly Classification and Segmentation with Mutual Scoring of Unlabeled Samples
Zero-shot anomaly classification (AC) and segmentation (AS) methods aim to identify and outline defects without using any labeled samples. In this paper, we reveal a key property that is overlooked by existing methods: normal image patches across industrial products typically find many other similar patches, not only in 2D appearance but also in 3D shapes, while anomalies remain diverse and isolated. To explicitly leverage this discriminative property, we propose a Mutual Scoring framework (MuSc-V2) for zero-shot AC/AS, which flexibly supports single 2D/3D or multimodality. Specifically, our method begins by improving 3D representation through Iterative Point Grouping (IPG), which reduces false positives from discontinuous surfaces. Then we use Similarity Neighborhood Aggregation with Multi-Degrees (SNAMD) to fuse 2D/3D neighborhood cues into more discriminative multi-scale patch features for mutual scoring. The core comprises a Mutual Scoring Mechanism (MSM) that lets samples within each modality to assign score to each other, and Cross-modal Anomaly Enhancement (CAE) that fuses 2D and 3D scores to recover modality-specific missing anomalies. Finally, Re-scoring with Constrained Neighborhood (RsCon) suppresses false classification based on similarity to more representative samples. Our framework flexibly works on both the full dataset and smaller subsets with consistently robust performance, ensuring seamless adaptability across diverse product lines. In aid of the novel framework, MuSc-V2 achieves significant performance improvements: a $\textbf{+23.7\%}$ AP gain on the MVTec 3D-AD dataset and a $\textbf{+19.3\%}$ boost on the Eyecandies dataset, surpassing previous zero-shot benchmarks and even outperforming most few-shot methods. The code will be available at The code will be available at \href{https://github.com/HUST-SLOW/MuSc-V2}{https://github.com/HUST-SLOW/MuSc-V2}.
☆ FreDFT: Frequency Domain Fusion Transformer for Visible-Infrared Object Detection
Visible-infrared object detection has gained sufficient attention due to its detection performance in low light, fog, and rain conditions. However, visible and infrared modalities captured by different sensors exist the information imbalance problem in complex scenarios, which can cause inadequate cross-modal fusion, resulting in degraded detection performance. \textcolor{red}{Furthermore, most existing methods use transformers in the spatial domain to capture complementary features, ignoring the advantages of developing frequency domain transformers to mine complementary information.} To solve these weaknesses, we propose a frequency domain fusion transformer, called FreDFT, for visible-infrared object detection. The proposed approach employs a novel multimodal frequency domain attention (MFDA) to mine complementary information between modalities and a frequency domain feed-forward layer (FDFFL) via a mixed-scale frequency feature fusion strategy is designed to better enhance multimodal features. To eliminate the imbalance of multimodal information, a cross-modal global modeling module (CGMM) is constructed to perform pixel-wise inter-modal feature interaction in a spatial and channel manner. Moreover, a local feature enhancement module (LFEM) is developed to strengthen multimodal local feature representation and promote multimodal feature fusion by using various convolution layers and applying a channel shuffle. Extensive experimental results have verified that our proposed FreDFT achieves excellent performance on multiple public datasets compared with other state-of-the-art methods. The code of our FreDFT is linked at https://github.com/WenCongWu/FreDFT.
☆ LoG3D: Ultra-High-Resolution 3D Shape Modeling via Local-to-Global Partitioning
Xinran Yang, Shuichang Lai, Jiangjing Lyu, Hongjie Li, Bowen Pan, Yuanqi Li, Jie Guo, Zhou Zhengkang, Yanwen Guo
Generating high-fidelity 3D contents remains a fundamental challenge due to the complexity of representing arbitrary topologies-such as open surfaces and intricate internal structures-while preserving geometric details. Prevailing methods based on signed distance fields (SDFs) are hampered by costly watertight preprocessing and struggle with non-manifold geometries, while point-cloud representations often suffer from sampling artifacts and surface discontinuities. To overcome these limitations, we propose a novel 3D variational autoencoder (VAE) framework built upon unsigned distance fields (UDFs)-a more robust and computationally efficient representation that naturally handles complex and incomplete shapes. Our core innovation is a local-to-global (LoG) architecture that processes the UDF by partitioning it into uniform subvolumes, termed UBlocks. This architecture couples 3D convolutions for capturing local detail with sparse transformers for enforcing global coherence. A Pad-Average strategy further ensures smooth transitions at subvolume boundaries during reconstruction. This modular design enables seamless scaling to ultra-high resolutions up to 2048^3-a regime previously unattainable for 3D VAEs. Experiments demonstrate state-of-the-art performance in both reconstruction accuracy and generative quality, yielding superior surface smoothness and geometric flexibility.
comment: 11 pages, 6 figures
☆ DGFusion: Dual-guided Fusion for Robust Multi-Modal 3D Object Detection
Feiyang Jia, Caiyan Jia, Ailin Liu, Shaoqing Xu, Qiming Xia, Lin Liu, Lei Yang, Yan Gong, Ziying Song
As a critical task in autonomous driving perception systems, 3D object detection is used to identify and track key objects, such as vehicles and pedestrians. However, detecting distant, small, or occluded objects (hard instances) remains a challenge, which directly compromises the safety of autonomous driving systems. We observe that existing multi-modal 3D object detection methods often follow a single-guided paradigm, failing to account for the differences in information density of hard instances between modalities. In this work, we propose DGFusion, based on the Dual-guided paradigm, which fully inherits the advantages of the Point-guide-Image paradigm and integrates the Image-guide-Point paradigm to address the limitations of the single paradigms. The core of DGFusion, the Difficulty-aware Instance Pair Matcher (DIPM), performs instance-level feature matching based on difficulty to generate easy and hard instance pairs, while the Dual-guided Modules exploit the advantages of both pair types to enable effective multi-modal feature fusion. Experimental results demonstrate that our DGFusion outperforms the baseline methods, with respective improvements of +1.0\% mAP, +0.8\% NDS, and +1.3\% average recall on nuScenes. Extensive experiments demonstrate consistent robustness gains for hard instance detection across ego-distance, size, visibility, and small-scale training scenarios.
☆ Efficient Automated Diagnosis of Retinopathy of Prematurity by Customize CNN Models
This paper encompasses an in-depth examination of Retinopathy of Prematurity (ROP) diagnosis, employing advanced deep learning methodologies. Our focus centers on refining and evaluating CNN-based approaches for precise and efficient ROP detection. We navigate the complexities of dataset curation, preprocessing strategies, and model architecture, aligning with research objectives encompassing model effectiveness, computational cost analysis, and time complexity assessment. Results underscore the supremacy of tailored CNN models over pre-trained counterparts, evident in heightened accuracy and F1-scores. Implementation of a voting system further enhances performance. Additionally, our study reveals the potential of the proposed customized CNN model to alleviate computational burdens associated with deep neural networks. Furthermore, we showcase the feasibility of deploying these models within dedicated software and hardware configurations, highlighting their utility as valuable diagnostic aids in clinical settings. In summary, our discourse significantly contributes to ROP diagnosis, unveiling the efficacy of deep learning models in enhancing diagnostic precision and efficiency.
☆ Anomagic: Crossmodal Prompt-driven Zero-shot Anomaly Generation
We propose Anomagic, a zero-shot anomaly generation method that produces semantically coherent anomalies without requiring any exemplar anomalies. By unifying both visual and textual cues through a crossmodal prompt encoding scheme, Anomagic leverages rich contextual information to steer an inpainting-based generation pipeline. A subsequent contrastive refinement strategy enforces precise alignment between synthesized anomalies and their masks, thereby bolstering downstream anomaly detection accuracy. To facilitate training, we introduce AnomVerse, a collection of 12,987 anomaly-mask-caption triplets assembled from 13 publicly available datasets, where captions are automatically generated by multimodal large language models using structured visual prompts and template-based textual hints. Extensive experiments demonstrate that Anomagic trained on AnomVerse can synthesize more realistic and varied anomalies than prior methods, yielding superior improvements in downstream anomaly detection. Furthermore, Anomagic can generate anomalies for any normal-category image using user-defined prompts, establishing a versatile foundation model for anomaly generation.
☆ AffordBot: 3D Fine-grained Embodied Reasoning via Multimodal Large Language Models NeurIPS 2025
Effective human-agent collaboration in physical environments requires understanding not only what to act upon, but also where the actionable elements are and how to interact with them. Existing approaches often operate at the object level or disjointedly handle fine-grained affordance reasoning, lacking coherent, instruction-driven grounding and reasoning. In this work, we introduce a new task: Fine-grained 3D Embodied Reasoning, which requires an agent to predict, for each referenced affordance element in a 3D scene, a structured triplet comprising its spatial location, motion type, and motion axis, based on a task instruction. To solve this task, we propose AffordBot, a novel framework that integrates Multimodal Large Language Models (MLLMs) with a tailored chain-of-thought (CoT) reasoning paradigm. To bridge the gap between 3D input and 2D-compatible MLLMs, we render surround-view images of the scene and project 3D element candidates into these views, forming a rich visual representation aligned with the scene geometry. Our CoT pipeline begins with an active perception stage, prompting the MLLM to select the most informative viewpoint based on the instruction, before proceeding with step-by-step reasoning to localize affordance elements and infer plausible interaction motions. Evaluated on the SceneFun3D dataset, AffordBot achieves state-of-the-art performance, demonstrating strong generalization and physically grounded reasoning with only 3D point cloud input and MLLMs.
comment: NeurIPS 2025
☆ MIRNet: Integrating Constrained Graph-Based Reasoning with Pre-training for Diagnostic Medical Imaging AAAI-26
Shufeng Kong, Zijie Wang, Nuan Cui, Hao Tang, Yihan Meng, Yuanyuan Wei, Feifan Chen, Yingheng Wang, Zhuo Cai, Yaonan Wang, Yulong Zhang, Yuzheng Li, Zibin Zheng, Caihua Liu
Automated interpretation of medical images demands robust modeling of complex visual-semantic relationships while addressing annotation scarcity, label imbalance, and clinical plausibility constraints. We introduce MIRNet (Medical Image Reasoner Network), a novel framework that integrates self-supervised pre-training with constrained graph-based reasoning. Tongue image diagnosis is a particularly challenging domain that requires fine-grained visual and semantic understanding. Our approach leverages self-supervised masked autoencoder (MAE) to learn transferable visual representations from unlabeled data; employs graph attention networks (GAT) to model label correlations through expert-defined structured graphs; enforces clinical priors via constraint-aware optimization using KL divergence and regularization losses; and mitigates imbalance using asymmetric loss (ASL) and boosting ensembles. To address annotation scarcity, we also introduce TongueAtlas-4K, a comprehensive expert-curated benchmark comprising 4,000 images annotated with 22 diagnostic labels--representing the largest public dataset in tongue analysis. Validation shows our method achieves state-of-the-art performance. While optimized for tongue diagnosis, the framework readily generalizes to broader diagnostic medical imaging tasks.
comment: To appear at AAAI-26
☆ LampQ: Towards Accurate Layer-wise Mixed Precision Quantization for Vision Transformers AAAI 2026
How can we accurately quantize a pre-trained Vision Transformer model? Quantization algorithms compress Vision Transformers (ViTs) into low-bit formats, reducing memory and computation demands with minimal accuracy degradation. However, existing methods rely on uniform precision, ignoring the diverse sensitivity of ViT components to quantization. Metric-based Mixed Precision Quantization (MPQ) is a promising alternative, but previous MPQ methods for ViTs suffer from three major limitations: 1) coarse granularity, 2) mismatch in metric scale across component types, and 3) quantization-unaware bit allocation. In this paper, we propose LampQ (Layer-wise Mixed Precision Quantization for Vision Transformers), an accurate metric-based MPQ method for ViTs to overcome these limitations. LampQ performs layer-wise quantization to achieve both fine-grained control and efficient acceleration, incorporating a type-aware Fisher-based metric to measure sensitivity. Then, LampQ assigns bit-widths optimally through integer linear programming and further updates them iteratively. Extensive experiments show that LampQ provides the state-of-the-art performance in quantizing ViTs pre-trained on various tasks such as image classification, object detection, and zero-shot quantization.
comment: AAAI 2026
☆ DBGroup: Dual-Branch Point Grouping for Weakly Supervised 3D Instance Segmentation
Weakly supervised 3D instance segmentation is essential for 3D scene understanding, especially as the growing scale of data and high annotation costs associated with fully supervised approaches. Existing methods primarily rely on two forms of weak supervision: one-thing-one-click annotations and bounding box annotations, both of which aim to reduce labeling efforts. However, these approaches still encounter limitations, including labor-intensive annotation processes, high complexity, and reliance on expert annotators. To address these challenges, we propose \textbf{DBGroup}, a two-stage weakly supervised 3D instance segmentation framework that leverages scene-level annotations as a more efficient and scalable alternative. In the first stage, we introduce a Dual-Branch Point Grouping module to generate pseudo labels guided by semantic and mask cues extracted from multi-view images. To further improve label quality, we develop two refinement strategies: Granularity-Aware Instance Merging and Semantic Selection and Propagation. The second stage involves multi-round self-training on an end-to-end instance segmentation network using the refined pseudo-labels. Additionally, we introduce an Instance Mask Filter strategy to address inconsistencies within the pseudo labels. Extensive experiments demonstrate that DBGroup achieves competitive performance compared to sparse-point-level supervised 3D instance segmentation methods, while surpassing state-of-the-art scene-level supervised 3D semantic segmentation approaches. Code is available at https://github.com/liuxuexun/DBGroup.
☆ MOBA: A Material-Oriented Backdoor Attack against LiDAR-based 3D Object Detection Systems AAAI 2026
LiDAR-based 3D object detection is widely used in safety-critical systems. However, these systems remain vulnerable to backdoor attacks that embed hidden malicious behaviors during training. A key limitation of existing backdoor attacks is their lack of physical realizability, primarily due to the digital-to-physical domain gap. Digital triggers often fail in real-world settings because they overlook material-dependent LiDAR reflection properties. On the other hand, physically constructed triggers are often unoptimized, leading to low effectiveness or easy detectability.This paper introduces Material-Oriented Backdoor Attack (MOBA), a novel framework that bridges the digital-physical gap by explicitly modeling the material properties of real-world triggers. MOBA tackles two key challenges in physical backdoor design: 1) robustness of the trigger material under diverse environmental conditions, 2) alignment between the physical trigger's behavior and its digital simulation. First, we propose a systematic approach to selecting robust trigger materials, identifying titanium dioxide (TiO_2) for its high diffuse reflectivity and environmental resilience. Second, to ensure the digital trigger accurately mimics the physical behavior of the material-based trigger, we develop a novel simulation pipeline that features: (1) an angle-independent approximation of the Oren-Nayar BRDF model to generate realistic LiDAR intensities, and (2) a distance-aware scaling mechanism to maintain spatial consistency across varying depths. We conduct extensive experiments on state-of-the-art LiDAR-based and Camera-LiDAR fusion models, showing that MOBA achieves a 93.50% attack success rate, outperforming prior methods by over 41%. Our work reveals a new class of physically realizable threats and underscores the urgent need for defenses that account for material-level properties in real-world environments.
comment: Accepted at AAAI 2026 Conference
☆ STELLAR: Scene Text Editor for Low-Resource Languages and Real-World Data AAAI
Scene Text Editing (STE) is the task of modifying text content in an image while preserving its visual style, such as font, color, and background. While recent diffusion-based approaches have shown improvements in visual quality, key limitations remain: lack of support for low-resource languages, domain gap between synthetic and real data, and the absence of appropriate metrics for evaluating text style preservation. To address these challenges, we propose STELLAR (Scene Text Editor for Low-resource LAnguages and Real-world data). STELLAR enables reliable multilingual editing through a language-adaptive glyph encoder and a multi-stage training strategy that first pre-trains on synthetic data and then fine-tunes on real images. We also construct a new dataset, STIPLAR(Scene Text Image Pairs of Low-resource lAnguages and Real-world data), for training and evaluation. Furthermore, we propose Text Appearance Similarity (TAS), a novel metric that assesses style preservation by independently measuring font, color, and background similarity, enabling robust evaluation even without ground truth. Experimental results demonstrate that STELLAR outperforms state-of-the-art models in visual consistency and recognition accuracy, achieving an average TAS improvement of 2.2% across languages over the baselines.
comment: Accepted to AAAI Workshop (Artificial Intelligence with Biased or Scarce Data)
☆ Difference Vector Equalization for Robust Fine-tuning of Vision-Language Models AAAI 2026
Satoshi Suzuki, Shin'ya Yamaguchi, Shoichiro Takeda, Taiga Yamane, Naoki Makishima, Naotaka Kawata, Mana Ihori, Tomohiro Tanaka, Shota Orihashi, Ryo Masumura
Contrastive pre-trained vision-language models, such as CLIP, demonstrate strong generalization abilities in zero-shot classification by leveraging embeddings extracted from image and text encoders. This paper aims to robustly fine-tune these vision-language models on in-distribution (ID) data without compromising their generalization abilities in out-of-distribution (OOD) and zero-shot settings. Current robust fine-tuning methods tackle this challenge by reusing contrastive learning, which was used in pre-training, for fine-tuning. However, we found that these methods distort the geometric structure of the embeddings, which plays a crucial role in the generalization of vision-language models, resulting in limited OOD and zero-shot performance. To address this, we propose Difference Vector Equalization (DiVE), which preserves the geometric structure during fine-tuning. The idea behind DiVE is to constrain difference vectors, each of which is obtained by subtracting the embeddings extracted from the pre-trained and fine-tuning models for the same data sample. By constraining the difference vectors to be equal across various data samples, we effectively preserve the geometric structure. Therefore, we introduce two losses: average vector loss (AVL) and pairwise vector loss (PVL). AVL preserves the geometric structure globally by constraining difference vectors to be equal to their weighted average. PVL preserves the geometric structure locally by ensuring a consistent multimodal alignment. Our experiments demonstrate that DiVE effectively preserves the geometric structure, achieving strong results across ID, OOD, and zero-shot metrics.
comment: Accepted by AAAI 2026
☆ Equivariant Sampling for Improving Diffusion Model-based Image Restoration
Chenxu Wu, Qingpeng Kong, Peiang Zhao, Wendi Yang, Wenxin Ma, Fenghe Tang, Zihang Jiang, S. Kevin Zhou
Recent advances in generative models, especially diffusion models, have significantly improved image restoration (IR) performance. However, existing problem-agnostic diffusion model-based image restoration (DMIR) methods face challenges in fully leveraging diffusion priors, resulting in suboptimal performance. In this paper, we address the limitations of current problem-agnostic DMIR methods by analyzing their sampling process and providing effective solutions. We introduce EquS, a DMIR method that imposes equivariant information through dual sampling trajectories. To further boost EquS, we propose the Timestep-Aware Schedule (TAS) and introduce EquS$^+$. TAS prioritizes deterministic steps to enhance certainty and sampling efficiency. Extensive experiments on benchmarks demonstrate that our method is compatible with previous problem-agnostic DMIR methods and significantly boosts their performance without increasing computational costs. Our code is available at https://github.com/FouierL/EquS.
comment: 12 pages, 9 figures
☆ Robust Object Detection with Pseudo Labels from VLMs using Per-Object Co-teaching
Uday Bhaskar, Rishabh Bhattacharya, Avinash Patel, Sarthak Khoche, Praveen Anil Kulkarni, Naresh Manwani
Foundation models, especially vision-language models (VLMs), offer compelling zero-shot object detection for applications like autonomous driving, a domain where manual labelling is prohibitively expensive. However, their detection latency and tendency to hallucinate predictions render them unsuitable for direct deployment. This work introduces a novel pipeline that addresses this challenge by leveraging VLMs to automatically generate pseudo-labels for training efficient, real-time object detectors. Our key innovation is a per-object co-teaching-based training strategy that mitigates the inherent noise in VLM-generated labels. The proposed per-object coteaching approach filters noisy bounding boxes from training instead of filtering the entire image. Specifically, two YOLO models learn collaboratively, filtering out unreliable boxes from each mini-batch based on their peers' per-object loss values. Overall, our pipeline provides an efficient, robust, and scalable approach to train high-performance object detectors for autonomous driving, significantly reducing reliance on costly human annotation. Experimental results on the KITTI dataset demonstrate that our method outperforms a baseline YOLOv5m model, achieving a significant mAP@0.5 boost ($31.12\%$ to $46.61\%$) while maintaining real-time detection latency. Furthermore, we show that supplementing our pseudo-labelled data with a small fraction of ground truth labels ($10\%$) leads to further performance gains, reaching $57.97\%$ mAP@0.5 on the KITTI dataset. We observe similar performance improvements for the ACDC and BDD100k datasets.
☆ Beyond Cosine Similarity Magnitude-Aware CLIP for No-Reference Image Quality Assessment
Zhicheng Liao, Dongxu Wu, Zhenshan Shi, Sijie Mai, Hanwei Zhu, Lingyu Zhu, Yuncheng Jiang, Baoliang Chen
Recent efforts have repurposed the Contrastive Language-Image Pre-training (CLIP) model for No-Reference Image Quality Assessment (NR-IQA) by measuring the cosine similarity between the image embedding and textual prompts such as "a good photo" or "a bad photo." However, this semantic similarity overlooks a critical yet underexplored cue: the magnitude of the CLIP image features, which we empirically find to exhibit a strong correlation with perceptual quality. In this work, we introduce a novel adaptive fusion framework that complements cosine similarity with a magnitude-aware quality cue. Specifically, we first extract the absolute CLIP image features and apply a Box-Cox transformation to statistically normalize the feature distribution and mitigate semantic sensitivity. The resulting scalar summary serves as a semantically-normalized auxiliary cue that complements cosine-based prompt matching. To integrate both cues effectively, we further design a confidence-guided fusion scheme that adaptively weighs each term according to its relative strength. Extensive experiments on multiple benchmark IQA datasets demonstrate that our method consistently outperforms standard CLIP-based IQA and state-of-the-art baselines, without any task-specific training.
☆ TSPE-GS: Probabilistic Depth Extraction for Semi-Transparent Surface Reconstruction via 3D Gaussian Splatting AAAI26
3D Gaussian Splatting offers a strong speed-quality trade-off but struggles to reconstruct semi-transparent surfaces because most methods assume a single depth per pixel, which fails when multiple surfaces are visible. We propose TSPE-GS (Transparent Surface Probabilistic Extraction for Gaussian Splatting), which uniformly samples transmittance to model a pixel-wise multi-modal distribution of opacity and depth, replacing the prior single-peak assumption and resolving cross-surface depth ambiguity. By progressively fusing truncated signed distance functions, TSPE-GS reconstructs external and internal surfaces separately within a unified framework. The method generalizes to other Gaussian-based reconstruction pipelines without extra training overhead. Extensive experiments on public and self-collected semi-transparent and opaque datasets show TSPE-GS significantly improves semi-transparent geometry reconstruction while maintaining performance on opaque scenes.
comment: AAAI26 Poster
☆ AdaptViG: Adaptive Vision GNN with Exponential Decay Gating WACV 2026
Vision Graph Neural Networks (ViGs) offer a new direction for advancements in vision architectures. While powerful, ViGs often face substantial computational challenges stemming from their graph construction phase, which can hinder their efficiency. To address this issue we propose AdaptViG, an efficient and powerful hybrid Vision GNN that introduces a novel graph construction mechanism called Adaptive Graph Convolution. This mechanism builds upon a highly efficient static axial scaffold and a dynamic, content-aware gating strategy called Exponential Decay Gating. This gating mechanism selectively weighs long-range connections based on feature similarity. Furthermore, AdaptViG employs a hybrid strategy, utilizing our efficient gating mechanism in the early stages and a full Global Attention block in the final stage for maximum feature aggregation. Our method achieves a new state-of-the-art trade-off between accuracy and efficiency among Vision GNNs. For instance, our AdaptViG-M achieves 82.6% top-1 accuracy, outperforming ViG-B by 0.3% while using 80% fewer parameters and 84% fewer GMACs. On downstream tasks, AdaptViG-M obtains 45.8 mIoU, 44.8 APbox, and 41.1 APmask, surpassing the much larger EfficientFormer-L7 by 0.7 mIoU, 2.2 APbox, and 2.1 APmask, respectively, with 78% fewer parameters.
comment: Accepted in 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2026)
☆ Debiased Dual-Invariant Defense for Adversarially Robust Person Re-Identification AAAI 2026
Person re-identification (ReID) is a fundamental task in many real-world applications such as pedestrian trajectory tracking. However, advanced deep learning-based ReID models are highly susceptible to adversarial attacks, where imperceptible perturbations to pedestrian images can cause entirely incorrect predictions, posing significant security threats. Although numerous adversarial defense strategies have been proposed for classification tasks, their extension to metric learning tasks such as person ReID remains relatively unexplored. Moreover, the several existing defenses for person ReID fail to address the inherent unique challenges of adversarially robust ReID. In this paper, we systematically identify the challenges of adversarial defense in person ReID into two key issues: model bias and composite generalization requirements. To address them, we propose a debiased dual-invariant defense framework composed of two main phases. In the data balancing phase, we mitigate model bias using a diffusion-model-based data resampling strategy that promotes fairness and diversity in training data. In the bi-adversarial self-meta defense phase, we introduce a novel metric adversarial training approach incorporating farthest negative extension softening to overcome the robustness degradation caused by the absence of classifier. Additionally, we introduce an adversarially-enhanced self-meta mechanism to achieve dual-generalization for both unseen identities and unseen attack types. Experiments demonstrate that our method significantly outperforms existing state-of-the-art defenses.
comment: Accepted by AAAI 2026
☆ Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers AAAI
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ MosaicDoc: A Large-Scale Bilingual Benchmark for Visually Rich Document Understanding
Despite the rapid progress of Vision-Language Models (VLMs), their capabilities are inadequately assessed by existing benchmarks, which are predominantly English-centric, feature simplistic layouts, and support limited tasks. Consequently, they fail to evaluate model performance for Visually Rich Document Understanding (VRDU), a critical challenge involving complex layouts and dense text. To address this, we introduce DocWeaver, a novel multi-agent pipeline that leverages Large Language Models to automatically generate a new benchmark. The result is MosaicDoc, a large-scale, bilingual (Chinese and English) resource designed to push the boundaries of VRDU. Sourced from newspapers and magazines, MosaicDoc features diverse and complex layouts (including multi-column and non-Manhattan), rich stylistic variety from 196 publishers, and comprehensive multi-task annotations (OCR, VQA, reading order, and localization). With 72K images and over 600K QA pairs, MosaicDoc serves as a definitive benchmark for the field. Our extensive evaluation of state-of-the-art models on this benchmark reveals their current limitations in handling real-world document complexity and charts a clear path for future research.
☆ Simulating Distribution Dynamics: Liquid Temporal Feature Evolution for Single-Domain Generalized Object Detection
In this paper, we focus on Single-Domain Generalized Object Detection (Single-DGOD), aiming to transfer a detector trained on one source domain to multiple unknown domains. Existing methods for Single-DGOD typically rely on discrete data augmentation or static perturbation methods to expand data diversity, thereby mitigating the lack of access to target domain data. However, in real-world scenarios such as changes in weather or lighting conditions, domain shifts often occur continuously and gradually. Discrete augmentations and static perturbations fail to effectively capture the dynamic variation of feature distributions, thereby limiting the model's ability to perceive fine-grained cross-domain differences. To this end, we propose a new method, Liquid Temporal Feature Evolution, which simulates the progressive evolution of features from the source domain to simulated latent distributions by incorporating temporal modeling and liquid neural network-driven parameter adjustment. Specifically, we introduce controllable Gaussian noise injection and multi-scale Gaussian blurring to simulate initial feature perturbations, followed by temporal modeling and a liquid parameter adjustment mechanism to generate adaptive modulation parameters, enabling a smooth and continuous adaptation across domains. By capturing progressive cross-domain feature evolution and dynamically regulating adaptation paths, our method bridges the source-unknown domain distribution gap, significantly boosting generalization and robustness to unseen shifts. Significant performance improvements on the Diverse Weather dataset and Real-to-Art benchmark demonstrate the superiority of our method. Our code is available at https://github.com/2490o/LTFE.
☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Yongxian Wei, Yilin Zhao, Li Shen, Xinrui Chen, Runxi Cheng, Sinan Du, Hao Yu, Gang Liu, Jiahong Yan, Chun Yuan, Dian Li
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data bootstrap problem-design strategies from the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our method achieves an average improvement of 2.5% and generalizes to both language and vision-language models. Moreover, a solver trained on the synthesized data provides improved rewards for continued generator training, enabling co-evolution and yielding a further 0.7% performance gain. Our code will be made publicly available here.
☆ PRISM: Diversifying Dataset Distillation by Decoupling Architectural Priors
Brian B. Moser, Shalini Strode, Federico Raue, Stanislav Frolov, Krzysztof Adamkiewicz, Arundhati Shanbhag, Joachim Folk, Tobias C. Nauen, Andreas Dengel
Dataset distillation (DD) promises compact yet faithful synthetic data, but existing approaches often inherit the inductive bias of a single teacher model. As dataset size increases, this bias drives generation toward overly smooth, homogeneous samples, reducing intra-class diversity and limiting generalization. We present PRISM (PRIors from diverse Source Models), a framework that disentangles architectural priors during synthesis. PRISM decouples the logit-matching and regularization objectives, supervising them with different teacher architectures: a primary model for logits and a stochastic subset for batch-normalization (BN) alignment. On ImageNet-1K, PRISM consistently and reproducibly outperforms single-teacher methods (e.g., SRe2L) and recent multi-teacher variants (e.g., G-VBSM) at low- and mid-IPC regimes. The generated data also show significantly richer intra-class diversity, as reflected by a notable drop in cosine similarity between features. We further analyze teacher selection strategies (pre- vs. intra-distillation) and introduce a scalable cross-class batch formation scheme for fast parallel synthesis. Code will be released after the review period.
☆ EgoEMS: A High-Fidelity Multimodal Egocentric Dataset for Cognitive Assistance in Emergency Medical Services AAAI 2026
Keshara Weerasinghe, Xueren Ge, Tessa Heick, Lahiru Nuwan Wijayasingha, Anthony Cortez, Abhishek Satpathy, John Stankovic, Homa Alemzadeh
Emergency Medical Services (EMS) are critical to patient survival in emergencies, but first responders often face intense cognitive demands in high-stakes situations. AI cognitive assistants, acting as virtual partners, have the potential to ease this burden by supporting real-time data collection and decision making. In pursuit of this vision, we introduce EgoEMS, the first end-to-end, high-fidelity, multimodal, multiperson dataset capturing over 20 hours of realistic, procedural EMS activities from an egocentric view in 233 simulated emergency scenarios performed by 62 participants, including 46 EMS professionals. Developed in collaboration with EMS experts and aligned with national standards, EgoEMS is captured using an open-source, low-cost, and replicable data collection system and is annotated with keysteps, timestamped audio transcripts with speaker diarization, action quality metrics, and bounding boxes with segmentation masks. Emphasizing realism, the dataset includes responder-patient interactions reflecting real-world emergency dynamics. We also present a suite of benchmarks for real-time multimodal keystep recognition and action quality estimation, essential for developing AI support tools for EMS. We hope EgoEMS inspires the research community to push the boundaries of intelligent EMS systems and ultimately contribute to improved patient outcomes.
comment: Accepted to AAAI 2026 (Preprint), 45 pages, 29 figures
☆ Regional Attention-Enhanced Swin Transformer for Clinically Relevant Medical Image Captioning
Zubia Naz, Farhan Asghar, Muhammad Ishfaq Hussain, Yahya Hadadi, Muhammad Aasim Rafique, Wookjin Choi, Moongu Jeon
Automated medical image captioning translates complex radiological images into diagnostic narratives that can support reporting workflows. We present a Swin-BART encoder-decoder system with a lightweight regional attention module that amplifies diagnostically salient regions before cross-attention. Trained and evaluated on ROCO, our model achieves state-of-the-art semantic fidelity while remaining compact and interpretable. We report results as mean$\pm$std over three seeds and include $95\%$ confidence intervals. Compared with baselines, our approach improves ROUGE (proposed 0.603, ResNet-CNN 0.356, BLIP2-OPT 0.255) and BERTScore (proposed 0.807, BLIP2-OPT 0.645, ResNet-CNN 0.623), with competitive BLEU, CIDEr, and METEOR. We further provide ablations (regional attention on/off and token-count sweep), per-modality analysis (CT/MRI/X-ray), paired significance tests, and qualitative heatmaps that visualize the regions driving each description. Decoding uses beam search (beam size $=4$), length penalty $=1.1$, $no\_repeat\_ngram\_size$ $=3$, and max length $=128$. The proposed design yields accurate, clinically phrased captions and transparent regional attributions, supporting safe research use with a human in the loop.
☆ Scale-Aware Relay and Scale-Adaptive Loss for Tiny Object Detection in Aerial Images
Recently, despite the remarkable advancements in object detection, modern detectors still struggle to detect tiny objects in aerial images. One key reason is that tiny objects carry limited features that are inevitably degraded or lost during long-distance network propagation. Another is that smaller objects receive disproportionately greater regression penalties than larger ones during training. To tackle these issues, we propose a Scale-Aware Relay Layer (SARL) and a Scale-Adaptive Loss (SAL) for tiny object detection, both of which are seamlessly compatible with the top-performing frameworks. Specifically, SARL employs a cross-scale spatial-channel attention to progressively enrich the meaningful features of each layer and strengthen the cross-layer feature sharing. SAL reshapes the vanilla IoU-based losses so as to dynamically assign lower weights to larger objects. This loss is able to focus training on tiny objects while reducing the influence on large objects. Extensive experiments are conducted on three benchmarks (\textit{i.e.,} AI-TOD, DOTA-v2.0 and VisDrone2019), and the results demonstrate that the proposed method boosts the generalization ability by 5.5\% Average Precision (AP) when embedded in YOLOv5 (anchor-based) and YOLOx (anchor-free) baselines. Moreover, it also promotes the robust performance with 29.0\% AP on the real-world noisy dataset (\textit{i.e.,} AI-TOD-v2.0).
☆ HCC-3D: Hierarchical Compensatory Compression for 98% 3D Token Reduction in Vision-Language Models
3D understanding has drawn significant attention recently, leveraging Vision-Language Models (VLMs) to enable multi-modal reasoning between point cloud and text data. Current 3D-VLMs directly embed the 3D point clouds into 3D tokens, following large 2D-VLMs with powerful reasoning capabilities. However, this framework has a great computational cost limiting its application, where we identify that the bottleneck lies in processing all 3D tokens in the Large Language Model (LLM) part. This raises the question: how can we reduce the computational overhead introduced by 3D tokens while preserving the integrity of their essential information? To address this question, we introduce Hierarchical Compensatory Compression (HCC-3D) to efficiently compress 3D tokens while maintaining critical detail retention. Specifically, we first propose a global structure compression (GSC), in which we design global queries to compress all 3D tokens into a few key tokens while keeping overall structural information. Then, to compensate for the information loss in GSC, we further propose an adaptive detail mining (ADM) module that selectively recompresses salient but under-attended features through complementary scoring. Extensive experiments demonstrate that HCC-3D not only achieves extreme compression ratios (approximately 98%) compared to previous 3D-VLMs, but also achieves new state-of-the-art performance, showing the great improvements on both efficiency and performance.
☆ RWKV-PCSSC: Exploring RWKV Model for Point Cloud Semantic Scene Completion ACM MM
Semantic Scene Completion (SSC) aims to generate a complete semantic scene from an incomplete input. Existing approaches often employ dense network architectures with a high parameter count, leading to increased model complexity and resource demands. To address these limitations, we propose RWKV-PCSSC, a lightweight point cloud semantic scene completion network inspired by the Receptance Weighted Key Value (RWKV) mechanism. Specifically, we introduce a RWKV Seed Generator (RWKV-SG) module that can aggregate features from a partial point cloud to produce a coarse point cloud with coarse features. Subsequently, the point-wise feature of the point cloud is progressively restored through multiple stages of the RWKV Point Deconvolution (RWKV-PD) modules. By leveraging a compact and efficient design, our method achieves a lightweight model representation. Experimental results demonstrate that RWKV-PCSSC reduces the parameter count by 4.18$\times$ and improves memory efficiency by 1.37$\times$ compared to state-of-the-art methods PointSSC. Furthermore, our network achieves state-of-the-art performance on established indoor (SSC-PC, NYUCAD-PC) and outdoor (PointSSC) scene dataset, as well as on our proposed datasets (NYUCAD-PC-V2, 3D-FRONT-PC).
comment: 13 pages, 8 figures, published to ACM MM
☆ SAM-DAQ: Segment Anything Model with Depth-guided Adaptive Queries for RGB-D Video Salient Object Detection AAAI
Recently segment anything model (SAM) has attracted widespread concerns, and it is often treated as a vision foundation model for universal segmentation. Some researchers have attempted to directly apply the foundation model to the RGB-D video salient object detection (RGB-D VSOD) task, which often encounters three challenges, including the dependence on manual prompts, the high memory consumption of sequential adapters, and the computational burden of memory attention. To address the limitations, we propose a novel method, namely Segment Anything Model with Depth-guided Adaptive Queries (SAM-DAQ), which adapts SAM2 to pop-out salient objects from videos by seamlessly integrating depth and temporal cues within a unified framework. Firstly, we deploy a parallel adapter-based multi-modal image encoder (PAMIE), which incorporates several depth-guided parallel adapters (DPAs) in a skip-connection way. Remarkably, we fine-tune the frozen SAM encoder under prompt-free conditions, where the DPA utilizes depth cues to facilitate the fusion of multi-modal features. Secondly, we deploy a query-driven temporal memory (QTM) module, which unifies the memory bank and prompt embeddings into a learnable pipeline. Concretely, by leveraging both frame-level queries and video-level queries simultaneously, the QTM module can not only selectively extract temporal consistency features but also iteratively update the temporal representations of the queries. Extensive experiments are conducted on three RGB-D VSOD datasets, and the results show that the proposed SAM-DAQ consistently outperforms state-of-the-art methods in terms of all evaluation metrics.
comment: Accepted to 40th AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Remember Me: Bridging the Long-Range Gap in LVLMs with Three-Step Inference-Only Decay Resilience Strategies AAAI 2026
Large Vision-Language Models (LVLMs) have achieved impressive performance across a wide range of multimodal tasks. However, they still face critical challenges in modeling long-range dependencies under the usage of Rotary Positional Encoding (ROPE). Although it can facilitate precise modeling of token positions, it induces progressive attention decay as token distance increases, especially with progressive attention decay over distant token pairs, which severely impairs the model's ability to remember global context. To alleviate this issue, we propose inference-only Three-step Decay Resilience Strategies (T-DRS), comprising (1) Semantic-Driven DRS (SD-DRS), amplifying semantically meaningful but distant signals via content-aware residuals, (2) Distance-aware Control DRS (DC-DRS), which can purify attention by smoothly modulating weights based on positional distances, suppressing noise while preserving locality, and (3) re-Reinforce Distant DRS (reRD-DRS), consolidating the remaining informative remote dependencies to maintain global coherence. Together, the T-DRS recover suppressed long-range token pairs without harming local inductive biases. Extensive experiments on Vision Question Answering (VQA) benchmarks demonstrate that T-DRS can consistently improve performance in a training-free manner. The code can be accessed in https://github.com/labixiaoq-qq/Remember-me
comment: Accepted in AAAI 2026
☆ IPCD: Intrinsic Point-Cloud Decomposition WACV2026
Shogo Sato, Takuhiro Kaneko, Shoichiro Takeda, Tomoyasu Shimada, Kazuhiko Murasaki, Taiga Yoshida, Ryuichi Tanida, Akisato Kimura
Point clouds are widely used in various fields, including augmented reality (AR) and robotics, where relighting and texture editing are crucial for realistic visualization. Achieving these tasks requires accurately separating albedo from shade. However, performing this separation on point clouds presents two key challenges: (1) the non-grid structure of point clouds makes conventional image-based decomposition models ineffective, and (2) point-cloud models designed for other tasks do not explicitly consider global-light direction, resulting in inaccurate shade. In this paper, we introduce \textbf{Intrinsic Point-Cloud Decomposition (IPCD)}, which extends image decomposition to the direct decomposition of colored point clouds into albedo and shade. To overcome challenge (1), we propose \textbf{IPCD-Net} that extends image-based model with point-wise feature aggregation for non-grid data processing. For challenge (2), we introduce \textbf{Projection-based Luminance Distribution (PLD)} with a hierarchical feature refinement, capturing global-light ques via multi-view projection. For comprehensive evaluation, we create a synthetic outdoor-scene dataset. Experimental results demonstrate that IPCD-Net reduces cast shadows in albedo and enhances color accuracy in shade. Furthermore, we showcase its applications in texture editing, relighting, and point-cloud registration under varying illumination. Finally, we verify the real-world applicability of IPCD-Net.
comment: Accepted in WACV2026
☆ CORONA-Fields: Leveraging Foundation Models for Classification of Solar Wind Phenomena
Daniela Martin, Jinsu Hong, Connor O'Brien, Valmir P Moraes Filho, Jasmine R. Kobayashi, Evangelia Samara, Joseph Gallego
Space weather at Earth, driven by the solar activity, poses growing risks to satellites around our planet as well as to critical ground-based technological infrastructure. Major space weather contributors are the solar wind and coronal mass ejections whose variable density, speed, temperature, and magnetic field make the automated classification of those structures challenging. In this work, we adapt a foundation model for solar physics, originally trained on Solar Dynamics Observatory imagery, to create embeddings suitable for solar wind structure analysis. These embeddings are concatenated with the spacecraft position and solar magnetic connectivity encoded using Fourier features which generates a neural field-based model. The full deep learning architecture is fine-tuned bridging the gap between remote sensing and in situ observations. Labels are derived from Parker Solar Probe measurements, forming a downstream classification task that maps plasma properties to solar wind structures. Although overall classification performance is modest, likely due to coarse labeling, class imbalance, and limited transferability of the pretrained model, this study demonstrates the feasibility of leveraging foundation model embeddings for in situ solar wind tasks. As a first proof-of-concept, it lays the groundwork for future improvements toward more reliable space weather predictions. The code and configuration files used in this study are publicly available to support reproducibility.
☆ CertMask: Certifiable Defense Against Adversarial Patches via Theoretically Optimal Mask Coverage
Adversarial patch attacks inject localized perturbations into images to mislead deep vision models. These attacks can be physically deployed, posing serious risks to real-world applications. In this paper, we propose CertMask, a certifiably robust defense that constructs a provably sufficient set of binary masks to neutralize patch effects with strong theoretical guarantees. While the state-of-the-art approach (PatchCleanser) requires two rounds of masking and incurs $O(n^2)$ inference cost, CertMask performs only a single round of masking with $O(n)$ time complexity, where $n$ is the cardinality of the mask set to cover an input image. Our proposed mask set is computed using a mathematically rigorous coverage strategy that ensures each possible patch location is covered at least $k$ times, providing both efficiency and robustness. We offer a theoretical analysis of the coverage condition and prove its sufficiency for certification. Experiments on ImageNet, ImageNette, and CIFAR-10 show that CertMask improves certified robust accuracy by up to +13.4\% over PatchCleanser, while maintaining clean accuracy nearly identical to the vanilla model.
☆ AHA! Animating Human Avatars in Diverse Scenes with Gaussian Splatting
We present a novel framework for animating humans in 3D scenes using 3D Gaussian Splatting (3DGS), a neural scene representation that has recently achieved state-of-the-art photorealistic results for novel-view synthesis but remains under-explored for human-scene animation and interaction. Unlike existing animation pipelines that use meshes or point clouds as the underlying 3D representation, our approach introduces the use of 3DGS as the 3D representation to the problem of animating humans in scenes. By representing humans and scenes as Gaussians, our approach allows for geometry-consistent free-viewpoint rendering of humans interacting with 3D scenes. Our key insight is that the rendering can be decoupled from the motion synthesis and each sub-problem can be addressed independently, without the need for paired human-scene data. Central to our method is a Gaussian-aligned motion module that synthesizes motion without explicit scene geometry, using opacity-based cues and projected Gaussian structures to guide human placement and pose alignment. To ensure natural interactions, we further propose a human-scene Gaussian refinement optimization that enforces realistic contact and navigation. We evaluate our approach on scenes from Scannet++ and the SuperSplat library, and on avatars reconstructed from sparse and dense multi-view human capture. Finally, we demonstrate that our framework allows for novel applications such as geometry-consistent free-viewpoint rendering of edited monocular RGB videos with new animated humans, showcasing the unique advantage of 3DGS for monocular video-based human animation.
♻ ☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
comment: v2: added DeiT, added ablation vs simple copy-paste
♻ ☆ Interpretable and Granular Video-Based Quantification of Motor Characteristics from the Finger Tapping Test in Parkinson Disease
Accurately quantifying motor characteristics in Parkinson disease (PD) is crucial for monitoring disease progression and optimizing treatment strategies. The finger-tapping test is a standard motor assessment. Clinicians visually evaluate a patient's tapping performance and assign an overall severity score based on tapping amplitude, speed, and irregularity. However, this subjective evaluation is prone to inter- and intra-rater variability, and does not offer insights into individual motor characteristics captured during this test. This paper introduces a granular computer vision-based method for quantifying PD motor characteristics from video recordings. Four sets of clinically relevant features are proposed to characterize hypokinesia, bradykinesia, sequence effect, and hesitation-halts. We evaluate our approach on video recordings and clinical evaluations of 74 PD patients from the Personalized Parkinson Project. Principal component analysis with varimax rotation shows that the video-based features corresponded to the four deficits. Additionally, video-based analysis has allowed us to identify further granular distinctions within sequence effect and hesitation-halts deficits. In the following, we have used these features to train machine learning classifiers to estimate the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) finger-tapping score. Compared to state-of-the-art approaches, our method achieves a higher accuracy in MDS-UPDRS score prediction, while still providing an interpretable quantification of individual finger-tapping motor characteristics. In summary, the proposed framework provides a practical solution for the objective assessment of PD motor characteristics, that can potentially be applied in both clinical and remote settings. Future work is needed to assess its responsiveness to symptomatic treatment and disease progression.
♻ ☆ Enhanced Structured Lasso Pruning with Class-wise Information
Xiang Liu, Mingchen Li, Xia Li, Leigang Qu, Guangsu Wang, Zifan Peng, Yijun Song, Zemin Liu, Linshan Jiang, Jialin Li
Modern applications require lightweight neural network models. Most existing neural network pruning methods focus on removing unimportant filters; however, these may result in the loss of statistical information after pruning due to failing to consider the class-wise information. In this paper, we employ the structured lasso from the perspective of utilizing precise class-wise information for model pruning with the help of Information Bottleneck theory, which guides us to ensure the retention of statistical information before and after pruning. With these techniques, we propose two novel adaptive network pruning schemes in parallel: sparse graph-structured lasso pruning with Information Bottleneck (sGLP-IB) and sparse tree-guided lasso pruning with Information Bottleneck (sTLP-IB). The key component is that we prune the model filters utilizing sGLP-IB and sTLP-IB with more precise structured class-wise relatedness. Compared to multiple state-of-the-art methods, our approaches achieve the best performance across three datasets and six model structures on extensive experiments. For example, with the VGG16 model based on the CIFAR-10 dataset, we can reduce the parameters by 85%, decrease the FLOPs by 61%, and maintain an accuracy of 94.10% (0.14% better than the original). For large-scale ImageNet, we can reduce the parameters by 55% while keeping the accuracy at 76.12% (only drop 0.03%) using the ResNet architecture. In summary, we succeed in reducing the model size and computational resource usage while maintaining the effectiveness of accuracy.
comment: 11 pages, 3 figures
♻ ☆ Towards Consistent and Efficient Dataset Distillation via Diffusion-Driven Selection
Dataset distillation provides an effective approach to reduce memory and computational costs by optimizing a compact dataset that achieves performance comparable to the full original. However, for large-scale datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the vast optimization space hinders distillation effectiveness, limiting practical applications. Recent methods leverage pre-trained diffusion models to directly generate informative images, thereby bypassing pixel-level optimization and achieving promising results. Nonetheless, these approaches often suffer from distribution shifts between the pre-trained diffusion prior and target datasets, as well as the need for multiple distillation steps under varying settings. To overcome these challenges, we propose a novel framework that is orthogonal to existing diffusion-based distillation techniques by utilizing the diffusion prior for patch selection rather than generation. Our method predicts noise from the diffusion model conditioned on input images and optional text prompts (with or without label information), and computes the associated loss for each image-patch pair. Based on the loss differences, we identify distinctive regions within the original images. Furthermore, we apply intra-class clustering and ranking on the selected patches to enforce diversity constraints. This streamlined pipeline enables a one-step distillation process. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art methods across various metrics and settings.
♻ ☆ Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Zongyuan Zhang, Qingwen Bu, Tianyang Duan, Zheng Lin, Yuhao Qing, Zihan Fang, Heming Cui, Dong Huang
Deep neural networks (DNNs) are vulnerable to adversarial examples, in which DNNs are misled to false outputs due to inputs containing imperceptible perturbations. Adversarial training, a reliable and effective method of defense, may significantly reduce the vulnerability of neural networks and becomes the de facto standard for robust learning. While many recent works practice the data-centric philosophy, such as how to generate better adversarial examples or use generative models to produce additional training data, we look back to the models themselves and revisit the adversarial robustness from the perspective of deep feature distribution as an insightful complementarity. In this paper, we propose \textit{Branch Orthogonality adveRsarial Training} (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training. To practice our design idea of integrating multiple orthogonal solution spaces, we leverage a simple multi-branch neural network and propose a corresponding loss function, branch-orthogonal loss, to make each solution space of the multi-branch model orthogonal. We evaluate our approach on CIFAR-10, CIFAR-100 and SVHN against $\ell_{\infty}$ norm-bounded perturbations of size $ε= 8/255$, respectively. Exhaustive experiments are conducted to show that our method goes beyond all state-of-the-art methods without any tricks. Compared to all methods that do not use additional data for training, our models achieve 67.3\% and 41.5\% robust accuracy on CIFAR-10 and CIFAR-100 (improving upon the state-of-the-art by +7.23\% and +9.07\%).
comment: Camera-ready version for ICPADS 2025
♻ ☆ Drifting Away from Truth: GenAI-Driven News Diversity Challenges LVLM-Based Misinformation Detection
The proliferation of multimodal misinformation poses growing threats to public discourse and societal trust. While Large Vision-Language Models (LVLMs) have enabled recent progress in multimodal misinformation detection (MMD), the rise of generative AI (GenAI) tools introduces a new challenge: GenAI-driven news diversity, characterized by highly varied and complex content. We show that this diversity induces multi-level drift, comprising (1) model-level misperception drift, where stylistic variations disrupt a model's internal reasoning, and (2) evidence-level drift, where expression diversity degrades the quality or relevance of retrieved external evidence. These drifts significantly degrade the robustness of current LVLM-based MMD systems. To systematically study this problem, we introduce DriftBench, a large-scale benchmark comprising 16,000 news instances across six categories of diversification. We design three evaluation tasks: (1) robustness of truth verification under multi-level drift; (2) susceptibility to adversarial evidence contamination generated by GenAI; and (3) analysis of reasoning consistency across diverse inputs. Experiments with six state-of-the-art LVLM-based detectors show substantial performance drops (average F1 -14.8%) and increasingly unstable reasoning traces, with even more severe failures under adversarial evidence injection. Our findings uncover fundamental vulnerabilities in existing MMD systems and suggest an urgent need for more resilient approaches in the GenAI era.
♻ ☆ vMFCoOp: Towards Equilibrium on a Unified Hyperspherical Manifold for Prompting Biomedical VLMs AAAI 2026
Recent advances in context optimization (CoOp) guided by large language model (LLM)-distilled medical semantic priors offer a scalable alternative to manual prompt engineering and full fine-tuning for adapting biomedical CLIP-based vision-language models (VLMs). However, prompt learning in this context is challenged by semantic misalignment between LLMs and CLIP variants due to divergent training corpora and model architectures; it further lacks scalability across continuously evolving families of foundation models. More critically, pairwise multimodal alignment via conventional Euclidean-space optimization lacks the capacity to model unified representations or apply localized geometric constraints, which tends to amplify modality gaps in complex biomedical imaging and destabilize few-shot adaptation. In this work, we propose vMFCoOp, a framework that inversely estimates von Mises-Fisher (vMF) distributions on a shared Hyperspherical Manifold, aligning semantic biases between arbitrary LLMs and CLIP backbones via Unified Semantic Anchors to achieve robust biomedical prompting and superior few-shot classification. Grounded in three complementary constraints, vMFCoOp demonstrates consistent improvements across 14 medical datasets, 12 medical imaging modalities, and 13 anatomical regions, outperforming state-of-the-art methods in accuracy, generalization, and clinical applicability. This work aims to continuously expand to encompass more downstream applications, and the corresponding resources are intended to be shared through https://github.com/VinyehShaw/UniEqui.
comment: Accepted as an Oral Presentation at AAAI 2026 Main Technical Track (this version is not peer-reviewed; it is the extended version)
♻ ☆ Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Point cloud representation has recently become a research hotspot in the field of computer vision and has been utilized for autonomous vehicles. However, adapting deep learning networks for point cloud data recognition is challenging due to the variability in datasets and sensor technologies. This variability underscores the necessity for adaptive techniques to maintain accuracy under different conditions. In this paper, we present the Multi-View Structural Convolution Network (MSCN) designed for domain-invariant point cloud recognition. MSCN comprises Structural Convolution Layers (SCL) that extract local context geometric features from point clouds and Structural Aggregation Layers (SAL) that extract and aggregate both local and overall context features from point clouds. Furthermore, MSCN enhances feature robustness by training with unseen domain point clouds generated from the source domain, enabling the model to acquire domain-invariant representations. Extensive cross-domain experiments demonstrate that MSCN achieves an average accuracy of 82.0%, surpassing the strong baseline PointTransformer by 15.8%, confirming its effectiveness under real-world domain shifts. Our code is available at https://github.com/MLMLab/MSCN.
comment: 16 pages, 6 figures
♻ ☆ Intraoperative 2D/3D Registration via Spherical Similarity Learning and Inference-Time Differentiable Levenberg-Marquardt Optimization WACV 2026
Intraoperative 2D/3D registration aligns preoperative 3D volumes with real-time 2D radiographs, enabling accurate localization of instruments and implants. A recent fully differentiable similarity learning framework approximates geodesic distances on SE(3), expanding the capture range of registration and mitigating the effects of substantial disturbances, but existing Euclidean approximations distort manifold structure and slow convergence. To address these limitations, we explore similarity learning in non-Euclidean spherical feature spaces to better capture and fit complex manifold structure. We extract feature embeddings using a CNN-Transformer encoder, project them into spherical space, and approximate their geodesic distances with Riemannian distances in the bi-invariant SO(4) space. This enables a more expressive and geometrically consistent deep similarity metric, enhancing the ability to distinguish subtle pose differences. During inference, we replace gradient descent with fully differentiable Levenberg-Marquardt optimization to accelerate convergence. Experiments on real and synthetic datasets show superior accuracy in both patient-specific and patient-agnostic scenarios.
comment: WACV 2026 Accepted
♻ ☆ HD$^2$-SSC: High-Dimension High-Density Semantic Scene Completion for Autonomous Driving AAAI 2026
Camera-based 3D semantic scene completion (SSC) plays a crucial role in autonomous driving, enabling voxelized 3D scene understanding for effective scene perception and decision-making. Existing SSC methods have shown efficacy in improving 3D scene representations, but suffer from the inherent input-output dimension gap and annotation-reality density gap, where the 2D planner view from input images with sparse annotated labels leads to inferior prediction of real-world dense occupancy with a 3D stereoscopic view. In light of this, we propose the corresponding High-Dimension High-Density Semantic Scene Completion (HD$^2$-SSC) framework with expanded pixel semantics and refined voxel occupancies. To bridge the dimension gap, a High-dimension Semantic Decoupling module is designed to expand 2D image features along a pseudo third dimension, decoupling coarse pixel semantics from occlusions, and then identify focal regions with fine semantics to enrich image features. To mitigate the density gap, a High-density Occupancy Refinement module is devised with a "detect-and-refine" architecture to leverage contextual geometric and semantic structures for enhanced semantic density with the completion of missing voxels and correction of erroneous ones. Extensive experiments and analyses on the SemanticKITTI and SSCBench-KITTI-360 datasets validate the effectiveness of our HD$^2$-SSC framework.
comment: 10 pages, 6 figures, accepted by AAAI 2026
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from LDCT
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Boosting Adversarial Transferability via Ensemble Non-Attention AAAI 2026
Ensemble attacks integrate the outputs of surrogate models with diverse architectures, which can be combined with various gradient-based attacks to improve adversarial transferability. However, previous work shows unsatisfactory attack performance when transferring across heterogeneous model architectures. The main reason is that the gradient update directions of heterogeneous surrogate models differ widely, making it hard to reduce the gradient variance of ensemble models while making the best of individual model. To tackle this challenge, we design a novel ensemble attack, NAMEA, which for the first time integrates the gradients from the non-attention areas of ensemble models into the iterative gradient optimization process. Our design is inspired by the observation that the attention areas of heterogeneous models vary sharply, thus the non-attention areas of ViTs are likely to be the focus of CNNs and vice versa. Therefore, we merge the gradients respectively from the attention and non-attention areas of ensemble models so as to fuse the transfer information of CNNs and ViTs. Specifically, we pioneer a new way of decoupling the gradients of non-attention areas from those of attention areas, while merging gradients by meta-learning. Empirical evaluations on ImageNet dataset indicate that NAMEA outperforms AdaEA and SMER, the state-of-the-art ensemble attacks by an average of 15.0% and 9.6%, respectively. This work is the first attempt to explore the power of ensemble non-attention in boosting cross-architecture transferability, providing new insights into launching ensemble attacks.
comment: 16 pages, 11 figures, accepted by AAAI 2026
♻ ☆ Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Automated visual inspection in medical-device manufacturing faces unique challenges, including extremely low defect rates, limited annotated data, hardware restrictions on production lines, and the need for validated, explainable artificial-intelligence systems. This paper presents two attention-guided autoencoder architectures that address these constraints through complementary anomaly-detection strategies. The first employs a multi-scale structural-similarity (4-MS-SSIM) index for inline inspection, enabling interpretable, real-time defect detection on constrained hardware. The second applies a Mahalanobis-distance analysis of randomly reduced latent features for efficient feature-space monitoring and lifecycle verification. Both approaches share a lightweight backbone optimised for high-resolution imagery for typical manufacturing conditions. Evaluations on the Surface Seal Image (SSI) dataset-representing sterile-barrier packaging inspection-demonstrate that the proposed methods outperform reference baselines, including MOCCA, CPCAE, and RAG-PaDiM, under realistic industrial constraints. Cross-domain validation on the MVTec-Zipper benchmark confirms comparable accuracy to state-of-the-art anomaly-detection methods. The dual-mode framework integrates inline anomaly detection and supervisory monitoring, advancing explainable AI architectures toward greater reliability, observability, and lifecycle monitoring in safety-critical manufacturing environments. To facilitate reproducibility, the source code developed for the experiments has been released in the project repository, while the datasets were obtained from publicly available sources.
comment: 12 pages, 3 figures, 3 tables
♻ ☆ Lane Departure Accident Prevention in Foggy Conditions: A Prior-Guided Dynamic Feature Fusion Transformer Framework for Real-Time Lane Detection
Ronghui Zhang, Yuhang Ma, Tengfei Li, Ziyu Lin, Xiao Li, Yueying Wu, Junzhou Chen, Qiang Zeng, Lin Zhang, Jia Hu, Tony Z. Qiu, Konghui Guo
Lane departure accident prevention plays a critical role in enhancing road safety, and lane detection is a core technology to achieve this goal, especially under complex weather conditions. While existing lane detection algorithms perform well under favorable weather conditions, their effectiveness significantly degrades in foggy environments, which increases the risk of traffic accidents. In response to this challenge, we propose PDT-Net, a robust Prior-Guided Dynamic Feature Fusion Transformer framework designed for real-time lane detection in foggy conditions. This framework integrates three key modules: a Global Feature Fusion Module (GFFM) to capture the relationship between local and global features in foggy images, a Dynamic Feature Fusion Module (DFFM) to model the structural and positional relationships of lane instances, and a Prior-Guided Edge Enhancement Module (PEM) to recover lost edge details in foggy environments. Furthermore, we introduce the FoggyLane dataset, a real-world dataset that specifically targets lane detection in foggy conditions, along with two synthesized datasets, FoggyCULane and FoggyTusimple, to address the lack of fog-specific data for lane detection. Extensive experiments show that PDT-Net achieves state-of-the-art performance with F1-scores of 95.04% on FoggyLane, 79.85% on FoggyCULane, and 96.95% on FoggyTusimple. Moreover, with TensorRT acceleration, our method achieves a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capability and robustness in challenging foggy environments. By improving the precision of lane detection, our framework can contribute to active safety warning systems, helping to prevent accidents in foggy conditions.
♻ ☆ SphereDiff: Tuning-free 360° Static and Dynamic Panorama Generation via Spherical Latent Representation AAAI 2026
The increasing demand for AR/VR applications has highlighted the need for high-quality content, such as 360° live wallpapers. However, generating high-quality 360° panoramic contents remains a challenging task due to the severe distortions introduced by equirectangular projection (ERP). Existing approaches either fine-tune pretrained diffusion models on limited ERP datasets or adopt tuning-free methods that still rely on ERP latent representations, often resulting in distracting distortions near the poles. In this paper, we introduce SphereDiff, a novel approach for synthesizing 360° static and live wallpaper with state-of-the-art diffusion models without additional tuning. We define a spherical latent representation that ensures consistent quality across all perspectives, including near the poles. Then, we extend MultiDiffusion to spherical latent representation and propose a dynamic spherical latent sampling method to enable direct use of pretrained diffusion models. Moreover, we introduce distortion-aware weighted averaging to further improve the generation quality. Our method outperforms existing approaches in generating 360° static and live wallpaper, making it a robust solution for immersive AR/VR applications. The code is available here. https://github.com/pmh9960/SphereDiff
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ UniGS: Unified Geometry-Aware Gaussian Splatting for Multimodal Rendering
In this paper, we propose UniGS, a unified map representation and differentiable framework for high-fidelity multimodal 3D reconstruction based on 3D Gaussian Splatting. Our framework integrates a CUDA-accelerated rasterization pipeline capable of rendering photo-realistic RGB images, geometrically accurate depth maps, consistent surface normals, and semantic logits simultaneously. We redesign the rasterization to render depth via differentiable ray-ellipsoid intersection rather than using Gaussian centers, enabling effective optimization of rotation and scale attribute through analytic depth gradients. Furthermore, we derive the analytic gradient formulation for surface normal rendering, ensuring geometric consistency among reconstructed 3D scenes. To improve computational and storage efficiency, we introduce a learnable attribute that enables differentiable pruning of Gaussians with minimal contribution during training. Quantitative and qualitative experiments demonstrate state-of-the-art reconstruction accuracy across all modalities, validating the efficacy of our geometry-aware paradigm. Source code and multimodal viewer will be available on GitHub.
♻ ☆ VADB: A Large-Scale Video Aesthetic Database with Professional and Multi-Dimensional Annotations
Qianqian Qiao, DanDan Zheng, Yihang Bo, Bao Peng, Heng Huang, Longteng Jiang, Huaye Wang, Jingdong Chen, Jun Zhou, Xin Jin
Video aesthetic assessment, a vital area in multimedia computing, integrates computer vision with human cognition. Its progress is limited by the lack of standardized datasets and robust models, as the temporal dynamics of video and multimodal fusion challenges hinder direct application of image-based methods. This study introduces VADB, the largest video aesthetic database with 10,490 diverse videos annotated by 37 professionals across multiple aesthetic dimensions, including overall and attribute-specific aesthetic scores, rich language comments and objective tags. We propose VADB-Net, a dual-modal pre-training framework with a two-stage training strategy, which outperforms existing video quality assessment models in scoring tasks and supports downstream video aesthetic assessment tasks. The dataset and source code are available at https://github.com/BestiVictory/VADB.
♻ ☆ STATIC : Surface Temporal Affine for TIme Consistency in Video Monocular Depth Estimation
Video monocular depth estimation is essential for applications such as autonomous driving, AR/VR, and robotics. Recent transformer-based single-image monocular depth estimation models perform well on single images but struggle with depth consistency across video frames. Traditional methods aim to improve temporal consistency using multi-frame temporal modules or prior information like optical flow and camera parameters. However, these approaches face issues such as high memory use, reduced performance with dynamic or irregular motion, and limited motion understanding. We propose STATIC, a novel model that independently learns temporal consistency in static and dynamic area without additional information. A difference mask from surface normals identifies static and dynamic area by measuring directional variance. For static area, the Masked Static (MS) module enhances temporal consistency by focusing on stable regions. For dynamic area, the Surface Normal Similarity (SNS) module aligns areas and enhances temporal consistency by measuring feature similarity between frames. A final refinement integrates the independently learned static and dynamic area, enabling STATIC to achieve temporal consistency across the entire sequence. Our method achieves state-of-the-art video depth estimation on the KITTI and NYUv2 datasets without additional information.
♻ ☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
comment: This paper is being withdrawn because we have identified a significant error in the implementation of our self-supervised clustering approach. Specifically, our feature aggregation step inadvertently leaked temporal information across frames, which violates the core assumption of our training-free method. We sincerely apologize to the research community
♻ ☆ LPLC: A Dataset for License Plate Legibility Classification
Automatic License Plate Recognition (ALPR) faces a major challenge when dealing with illegible license plates (LPs). While reconstruction methods such as super-resolution (SR) have emerged, the core issue of recognizing these low-quality LPs remains unresolved. To optimize model performance and computational efficiency, image pre-processing should be applied selectively to cases that require enhanced legibility. To support research in this area, we introduce a novel dataset comprising 10,210 images of vehicles with 12,687 annotated LPs for legibility classification (the LPLC dataset). The images span a wide range of vehicle types, lighting conditions, and camera/image quality levels. We adopt a fine-grained annotation strategy that includes vehicle- and LP-level occlusions, four legibility categories (perfect, good, poor, and illegible), and character labels for three categories (excluding illegible LPs). As a benchmark, we propose a classification task using three image recognition networks to determine whether an LP image is good enough, requires super-resolution, or is completely unrecoverable. The overall F1 score, which remained below 80% for all three baseline models (ViT, ResNet, and YOLO), together with the analyses of SR and LP recognition methods, highlights the difficulty of the task and reinforces the need for further research. The proposed dataset is publicly available at https://github.com/lmlwojcik/lplc-dataset.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2025
♻ ☆ Test-Time Reinforcement Learning for GUI Grounding via Region Consistency AAAI2026
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), transforming these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: using only 1,272 unlabeled data, GUI-RCPO achieves 3-6% accuracy improvements across various architectures on ScreenSpot benchmarks. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more data-efficient GUI agents.
comment: [Accepted by AAAI2026] Project Page: https://zju-real.github.io/gui-rcpo Code: https://github.com/zju-real/gui-rcpo
♻ ☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
Tianhao Peng, Haochen Wang, Yuanxing Zhang, Zekun Wang, Zili Wang, Gavin Chang, Jian Yang, Shihao Li, Yanghai Wang, Xintao Wang, Houyi Li, Wei Ji, Pengfei Wan, Steven Huang, Zhaoxiang Zhang, Jiaheng Liu
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
♻ ☆ TUS-REC2024: A Challenge to Reconstruct 3D Freehand Ultrasound Without External Tracker
Qi Li, Shaheer U. Saeed, Yuliang Huang, Mingyuan Luo, Zhongnuo Yan, Jiongquan Chen, Xin Yang, Dong Ni, Nektarios Winter, Phuc Nguyen, Lucas Steinberger, Caelan Haney, Yuan Zhao, Mingjie Jiang, Bowen Ren, SiYeoul Lee, Seonho Kim, MinKyung Seo, MinWoo Kim, Yimeng Dou, Zhiwei Zhang, Yin Li, Tomy Varghese, Dean C. Barratt, Matthew J. Clarkson, Tom Vercauteren, Yipeng Hu
Trackerless freehand ultrasound reconstruction aims to reconstruct 3D volumes from sequences of 2D ultrasound images without relying on external tracking systems. By eliminating the need for optical or electromagnetic trackers, this approach offers a low-cost, portable, and widely deployable alternative to more expensive volumetric ultrasound imaging systems, particularly valuable in resource-constrained clinical settings. However, predicting long-distance transformations and handling complex probe trajectories remain challenging. The TUS-REC2024 Challenge establishes the first benchmark for trackerless 3D freehand ultrasound reconstruction by providing a large publicly available dataset, along with a baseline model and a rigorous evaluation framework. By the submission deadline, the Challenge had attracted 43 registered teams, of which 6 teams submitted 21 valid dockerized solutions. The submitted methods span a wide range of approaches, including the state space model, the recurrent model, the registration-driven volume refinement, the attention mechanism, and the physics-informed model. This paper provides a comprehensive background introduction and literature review in the field, presents an overview of the challenge design and dataset, and offers a comparative analysis of submitted methods across multiple evaluation metrics. These analyses highlight both the progress and the current limitations of state-of-the-art approaches in this domain and provide insights for future research directions. All data and code are publicly available to facilitate ongoing development and reproducibility. As a live and evolving benchmark, it is designed to be continuously iterated and improved. The Challenge was held at MICCAI 2024 and is organised again at MICCAI 2025, reflecting its sustained commitment to advancing this field.
♻ ☆ Remodeling Semantic Relationships in Vision-Language Fine-Tuning
Vision-language fine-tuning has emerged as an efficient paradigm for constructing multimodal foundation models. While textual context often highlights semantic relationships within an image, existing fine-tuning methods typically overlook this information when aligning vision and language, thus leading to suboptimal performance. Toward solving this problem, we propose a method that can improve multimodal alignment and fusion based on both semantics and relationships.Specifically, we first extract multilevel semantic features from different vision encoder to capture more visual cues of the relationships. Then, we learn to project the vision features to group related semantics, among which are more likely to have relationships. Finally, we fuse the visual features with the textual by using inheritable cross-attention, where we globally remove the redundant visual relationships by discarding visual-language feature pairs with low correlation. We evaluate our proposed method on eight foundation models and two downstream tasks, visual question answering and image captioning, and show that it outperforms all existing methods.
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Qifeng Cai, Hao Liang, Hejun Dong, Meiyi Qiang, Ruichuan An, Zhaoyang Han, Zhengzhou Zhu, Bin Cui, Wentao Zhang
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ Generating Attribute-Aware Human Motions from Textual Prompt AAAI 2026
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes-such as age, gender, weight, and height-which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware motion generation. Extensive experiments validate our model's effectiveness.
comment: Accepted by AAAI 2026
♻ ☆ LayerPeeler: Autoregressive Peeling for Layer-wise Image Vectorization
Image vectorization is a powerful technique that converts raster images into vector graphics, enabling enhanced flexibility and interactivity. However, popular image vectorization tools struggle with occluded regions, producing incomplete or fragmented shapes that hinder editability. While recent advancements have explored optimization-based and learning-based layer-wise image vectorization, these methods face limitations in vectorization quality and flexibility. In this paper, we introduce LayerPeeler, a novel layer-wise image vectorization approach that addresses these challenges through a progressive simplification paradigm. The key to LayerPeeler's success lies in its autoregressive peeling strategy: by identifying and removing the topmost non-occluded layers while recovering underlying content, we generate vector graphics with complete paths and coherent layer structures. Our method leverages vision-language models to construct a layer graph that captures occlusion relationships among elements, enabling precise detection and description for non-occluded layers. These descriptive captions are used as editing instructions for a finetuned image diffusion model to remove the identified layers. To ensure accurate removal, we employ localized attention control that precisely guides the model to target regions while faithfully preserving the surrounding content. To support this, we contribute a large-scale dataset specifically designed for layer peeling tasks. Extensive quantitative and qualitative experiments demonstrate that LayerPeeler significantly outperforms existing techniques, producing vectorization results with superior path semantics, geometric regularity, and visual fidelity.
comment: Project Page: https://layerpeeler.github.io/
♻ ☆ Seeing the Unseen in Low-light Spike Streams
Spike camera, a type of neuromorphic sensor with high-temporal resolution, shows great promise for high-speed visual tasks. Unlike traditional cameras, spike camera continuously accumulates photons and fires asynchronous spike streams. Due to unique data modality, spike streams require reconstruction methods to become perceptible to the human eye. However, lots of methods struggle to handle spike streams in low-light high-speed scenarios due to severe noise and sparse information. In this work, we propose Diff-SPK, a diffusion-based reconstruction method. Diff-SPK effectively leverages generative priors to supplement texture information under diverse low-light conditions. Specifically, it first employs an Enhanced Texture from Inter-spike Interval (ETFI) to aggregate sparse information from low-light spike streams. Then, the encoded ETFI by a suitable encoder serve as the input of ControlNet for high-speed scenes generation. To improve the quality of results, we introduce an ETFI-based feature fusion module during the generation process.
♻ ☆ ImageSet2Text: Describing Sets of Images through Text
In the era of large-scale visual data, understanding collections of images is a challenging yet important task. To this end, we introduce ImageSet2Text, a novel method to automatically generate natural language descriptions of image sets. Based on large language models, visual-question answering chains, an external lexical graph, and CLIP-based verification, ImageSet2Text iteratively extracts key concepts from image subsets and organizes them into a structured concept graph. We conduct extensive experiments evaluating the quality of the generated descriptions in terms of accuracy, completeness, and user satisfaction. We also examine the method's behavior through ablation studies, scalability assessments, and failure analyses. Results demonstrate that ImageSet2Text combines data-driven AI and symbolic representations to reliably summarize large image collections for a wide range of applications.
♻ ☆ A Bayesian Approach to Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios, such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground-truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data include label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. However, Bayesian inference for such spatially correlated discrete variables is notoriously intractable. To overcome this fundamental challenge, we introduce a novel class of probabilistic models, which we term the ELBO-Computable Correlated Discrete Distribution (ECCD). By representing the discrete dependencies through a continuous latent Gaussian field with a Kac-Murdock-Szegö (KMS) structured covariance, our framework enables scalable and efficient variational inference for problems previously considered computationally prohibitive. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
♻ ☆ RangeSAM: On the Potential of Visual Foundation Models for Range-View represented LiDAR segmentation
Point cloud segmentation is central to autonomous driving and 3D scene understanding. While voxel- and point-based methods dominate recent research due to their compatibility with deep architectures and ability to capture fine-grained geometry, they often incur high computational cost, irregular memory access, and limited real-time efficiency. In contrast, range-view methods, though relatively underexplored - can leverage mature 2D semantic segmentation techniques for fast and accurate predictions. Motivated by the rapid progress in Visual Foundation Models (VFMs) for captioning, zero-shot recognition, and multimodal tasks, we investigate whether SAM2, the current state-of-the-art VFM for segmentation tasks, can serve as a strong backbone for LiDAR point cloud segmentation in the range view. We present , to our knowledge, the first range-view framework that adapts SAM2 to 3D segmentation, coupling efficient 2D feature extraction with standard projection/back-projection to operate on point clouds. To optimize SAM2 for range-view representations, we implement several architectural modifications to the encoder: (1) a novel module that emphasizes horizontal spatial dependencies inherent in LiDAR range images, (2) a customized configuration of tailored to the geometric properties of spherical projections, and (3) an adapted mechanism in the encoder backbone specifically designed to capture the unique spatial patterns and discontinuities present in range-view pseudo-images. Our approach achieves competitive performance on SemanticKITTI while benefiting from the speed, scalability, and deployment simplicity of 2D-centric pipelines. This work highlights the viability of VFMs as general-purpose backbones for 3D perception and opens a path toward unified, foundation-model-driven LiDAR segmentation. Results lets us conclude that range-view segmentation methods using VFMs leads to promising results.
♻ ☆ Temporal Zoom Networks: Distance Regression and Continuous Depth for Efficient Action Localization
Temporal action localization requires both precise boundary detection and computational efficiency. Current methods apply uniform computation across all temporal positions, wasting resources on easy boundaries while struggling with ambiguous ones. We address this through two complementary innovations: Boundary Distance Regression (BDR), which replaces classification-based boundary detection with signed-distance regression achieving 3.3--16.7$\times$ lower variance; and Adaptive Temporal Refinement (ATR), which allocates transformer depth continuously ($τ\in[0,1]$) to concentrate computation near difficult boundaries. On THUMOS14, our method achieves 56.5\% mAP@0.7 and 58.2\% average mAP@[0.3:0.7] with 151G FLOPs, using 36\% fewer FLOPs than ActionFormer++ (55.7\% mAP@0.7 at 235G). Compared to uniform baselines, we achieve +2.9\% mAP@0.7 (+1.8\% avg mAP, 5.4\% relative) with 24\% fewer FLOPs and 29\% lower latency, with particularly strong gains on short actions (+4.2\%, 8.6\% relative). Training requires 1.29$\times$ baseline FLOPs, but this one-time cost is amortized over many inference runs; knowledge distillation further reduces this to 1.1$\times$ while retaining 99.5\% accuracy. Our contributions include: (i) a theoretically-grounded distance formulation with information-theoretic analysis showing optimal variance scaling; (ii) a continuous depth allocation mechanism avoiding discrete routing complexity; and (iii) consistent improvements across four datasets with gains correlating with boundary heterogeneity.
♻ ☆ VasoMIM: Vascular Anatomy-Aware Masked Image Modeling for Vessel Segmentation AAAI
De-Xing Huang, Xiao-Hu Zhou, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Tian-Yu Xiang, Rui-Ze Ma, Nu-Fang Xiao, Zeng-Guang Hou
Accurate vessel segmentation in X-ray angiograms is crucial for numerous clinical applications. However, the scarcity of annotated data presents a significant challenge, which has driven the adoption of self-supervised learning (SSL) methods such as masked image modeling (MIM) to leverage large-scale unlabeled data for learning transferable representations. Unfortunately, conventional MIM often fails to capture vascular anatomy because of the severe class imbalance between vessel and background pixels, leading to weak vascular representations. To address this, we introduce Vascular anatomy-aware Masked Image Modeling (VasoMIM), a novel MIM framework tailored for X-ray angiograms that explicitly integrates anatomical knowledge into the pre-training process. Specifically, it comprises two complementary components: anatomy-guided masking strategy and anatomical consistency loss. The former preferentially masks vessel-containing patches to focus the model on reconstructing vessel-relevant regions. The latter enforces consistency in vascular semantics between the original and reconstructed images, thereby improving the discriminability of vascular representations. Empirically, VasoMIM achieves state-of-the-art performance across three datasets. These findings highlight its potential to facilitate X-ray angiogram analysis.
comment: Accepted by the Annual AAAI Conference on Artificial Intelligence (AAAI). Extended version
♻ ☆ Self-Supervised Training For Low Dose CT Reconstruction
Ionizing radiation has been the biggest concern in CT imaging. To reduce the dose level without compromising the image quality, low-dose CT reconstruction has been offered with the availability of compressed sensing based reconstruction methods. Recently, data-driven methods got attention with the rise of deep learning, the availability of high computational power, and big datasets. Deep learning based methods have also been used in low-dose CT reconstruction problem in different manners. Usually, the success of these methods depends on labeled data. However, recent studies showed that training can be achieved successfully with noisy datasets. In this study, we defined a training scheme to use low-dose sinograms as their own training targets. We applied the self-supervision principle in the projection domain where the noise is element-wise independent which is a requirement for self-supervised training methods. Using the self-supervised training, the filtering part of the FBP method and the parameters of a denoiser neural network are optimized. We demonstrate that our method outperforms both conventional and compressed sensing based iterative reconstruction methods qualitatively and quantitatively in the reconstruction of analytic CT phantoms and real-world CT images in low-dose CT reconstruction task.
♻ ☆ LLM-Guided Probabilistic Fusion for Label-Efficient Document Layout Analysis
Document layout understanding remains data-intensive despite advances in semi-supervised learning. We present a framework that enhances semi-supervised detection by fusing visual predictions with structural priors from text-pretrained LLMs via principled probabilistic weighting. Given unlabeled documents, an OCR-LLM pipeline infers hierarchical regions which are combined with teacher detector outputs through inverse-variance fusion to generate refined pseudo-labels.Our method demonstrates consistent gains across model scales. With a lightweight SwiftFormer backbone (26M params), we achieve 88.2$\pm$0.3 AP using only 5\% labels on PubLayNet. When applied to document-pretrained LayoutLMv3 (133M params), our fusion framework reaches 89.7$\pm$0.4 AP, surpassing both LayoutLMv3 with standard semi-supervised learning (89.1$\pm$0.4 AP, p=0.02) and matching UDOP~\cite{udop} (89.8 AP) which requires 100M+ pages of multimodal pretraining. This demonstrates that LLM structural priors are complementary to both lightweight and pretrained architectures. Key findings include: (1) learned instance-adaptive gating improves over fixed weights by +0.9 AP with data-dependent PAC bounds correctly predicting convergence; (2) open-source LLMs enable privacy-preserving deployment with minimal loss (Llama-3-70B: 87.1 AP lightweight, 89.4 AP with LayoutLMv3); (3) LLMs provide targeted semantic disambiguation (18.7\% of cases, +3.8 AP gain) beyond simple text heuristics.Total system cost includes \$12 for GPT-4o-mini API or 17 GPU-hours for local Llama-3-70B per 50K pages, amortized across training runs.
♻ ☆ Agent Journey Beyond RGB: Hierarchical Semantic-Spatial Representation Enrichment for Vision-and-Language Navigation AAAI2026
Navigating unseen environments from natural language instructions remains challenging for egocentric agents in Vision-and-Language Navigation (VLN). Humans naturally ground concrete semantic knowledge within spatial layouts during indoor navigation. Although prior work has introduced diverse environment representations to improve reasoning, auxiliary modalities are often naively concatenated with RGB features, which underutilizes each modality's distinct contribution. We propose a hierarchical Semantic Understanding and Spatial Awareness (SUSA) architecture to enable agents to perceive and ground environments at multiple scales. Specifically, the Textual Semantic Understanding (TSU) module supports local action prediction by generating view-level descriptions, capturing fine-grained semantics and narrowing the modality gap between instructions and environments. Complementarily, the Depth Enhanced Spatial Perception (DSP) module incrementally builds a trajectory-level depth exploration map, providing a coarse-grained representation of global spatial layout. Extensive experiments show that the hierarchical representation enrichment of SUSA significantly improves navigation performance over the baseline on discrete VLN benchmarks (REVERIE, R2R, and SOON) and generalizes better to the continuous R2R-CE benchmark.
comment: AAAI2026, I14 pages, 12 figures, 11 tables
♻ ☆ Beyond Frequency: Seeing Subtle Cues Through the Lens of Spatial Decomposition for Fine-Grained Visual Classification
The crux of resolving fine-grained visual classification (FGVC) lies in capturing discriminative and class-specific cues that correspond to subtle visual characteristics. Recently, frequency decomposition/transform based approaches have attracted considerable interests since its appearing discriminative cue mining ability. However, the frequency-domain methods are based on fixed basis functions, lacking adaptability to image content and unable to dynamically adjust feature extraction according to the discriminative requirements of different images. To address this, we propose a novel method for FGVC, named Subtle-Cue Oriented Perception Engine (SCOPE), which adaptively enhances the representational capability of low-level details and high-level semantics in the spatial domain, breaking through the limitations of fixed scales in the frequency domain and improving the flexibility of multi-scale fusion. The core of SCOPE lies in two modules: the Subtle Detail Extractor (SDE), which dynamically enhances subtle details such as edges and textures from shallow features, and the Salient Semantic Refiner (SSR), which learns semantically coherent and structure-aware refinement features from the high-level features guided by the enhanced shallow features. The SDE and SSR are cascaded stage-by-stage to progressively combine local details with global semantics. Extensive experiments demonstrate that our method achieves new state-of-the-art on four popular fine-grained image classification benchmarks.
comment: After supplementary experiments and careful review, minor inconsistencies in prompt template configuration and partial experimental parameter records were identified. To ensure research accuracy, rigor, and reproducibility, we will revise technical descriptions, verify results with standardized parameters, and resubmit a polished version soon. Apologies for any inconvenience
♻ ☆ MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching
Cross-view matching is fundamentally achieved through cross-attention mechanisms. However, matching of high-resolution images remains challenging due to the quadratic complexity and lack of explicit matching constraints in the existing cross-attention. This paper proposes an attention mechanism, MatchAttention, that dynamically matches relative positions. The relative position determines the attention sampling center of the key-value pairs given a query. Continuous and differentiable sliding-window attention sampling is achieved by the proposed BilinearSoftmax. The relative positions are iteratively updated through residual connections across layers by embedding them into the feature channels. Since the relative position is exactly the learning target for cross-view matching, an efficient hierarchical cross-view decoder, MatchDecoder, is designed with MatchAttention as its core component. To handle cross-view occlusions, gated cross-MatchAttention and a consistency-constrained loss are proposed. These two components collectively mitigate the impact of occlusions in both forward and backward passes, allowing the model to focus more on learning matching relationships. When applied to stereo matching, MatchStereo-B ranked 1st in average error on the public Middlebury benchmark and requires only 29ms for KITTI-resolution inference. MatchStereo-T can process 4K UHD images in 0.1 seconds using only 3GB of GPU memory. The proposed models also achieve state-of-the-art performance on KITTI 2012, KITTI 2015, ETH3D, and Spring flow datasets. The combination of high accuracy and low computational complexity makes real-time, high-resolution, and high-accuracy cross-view matching possible. Project page: https://github.com/TingmanYan/MatchAttention.
♻ ☆ Redundant Queries in DETR-Based 3D Detection Methods: Unnecessary and Prunable AAAI 2026
Query-based models are extensively used in 3D object detection tasks, with a wide range of pre-trained checkpoints readily available online. However, despite their popularity, these models often require an excessive number of object queries, far surpassing the actual number of objects to detect. The redundant queries result in unnecessary computational and memory costs. In this paper, we find that not all queries contribute equally -- a significant portion of queries have a much smaller impact compared to others. Based on this observation, we propose an embarrassingly simple approach called Gradually Pruning Queries (GPQ), which prunes queries incrementally based on their classification scores. A key advantage of GPQ is that it requires no additional learnable parameters. It is straightforward to implement in any query-based method, as it can be seamlessly integrated as a fine-tuning step using an existing checkpoint after training. With GPQ, users can easily generate multiple models with fewer queries, starting from a checkpoint with an excessive number of queries. Experiments on various advanced 3D detectors show that GPQ effectively reduces redundant queries while maintaining performance. Using our method, model inference on desktop GPUs can be accelerated by up to 1.35x. Moreover, after deployment on edge devices, it achieves up to a 67.86% reduction in FLOPs and a 65.16% decrease in inference time. The code will be available at https://github.com/iseri27/Gpq.
comment: AAAI 2026
♻ ☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
♻ ☆ PressTrack-HMR: Pressure-Based Top-Down Multi-Person Global Human Mesh Recovery AAAI-2026
Jiayue Yuan, Fangting Xie, Guangwen Ouyang, Changhai Ma, Ziyu Wu, Heyu Ding, Quan Wan, Yi Ke, Yuchen Wu, Xiaohui Cai
Multi-person global human mesh recovery (HMR) is crucial for understanding crowd dynamics and interactions. Traditional vision-based HMR methods sometimes face limitations in real-world scenarios due to mutual occlusions, insufficient lighting, and privacy concerns. Human-floor tactile interactions offer an occlusion-free and privacy-friendly alternative for capturing human motion. Existing research indicates that pressure signals acquired from tactile mats can effectively estimate human pose in single-person scenarios. However, when multiple individuals walk randomly on the mat simultaneously, how to distinguish intermingled pressure signals generated by different persons and subsequently acquire individual temporal pressure data remains a pending challenge for extending pressure-based HMR to the multi-person situation. In this paper, we present \textbf{PressTrack-HMR}, a top-down pipeline that recovers multi-person global human meshes solely from pressure signals. This pipeline leverages a tracking-by-detection strategy to first identify and segment each individual's pressure signal from the raw pressure data, and subsequently performs HMR for each extracted individual signal. Furthermore, we build a multi-person interaction pressure dataset \textbf{MIP}, which facilitates further research into pressure-based human motion analysis in multi-person scenarios. Experimental results demonstrate that our method excels in multi-person HMR using pressure data, with 89.2 $mm$ MPJPE and 112.6 $mm$ WA-MPJPE$_{100}$, and these showcase the potential of tactile mats for ubiquitous, privacy-preserving multi-person action recognition. Our dataset & code are available at https://github.com/Jiayue-Yuan/PressTrack-HMR.
comment: Accepted by AAAI-2026
♻ ☆ TinyDef-DETR: A Transformer-Based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult objects. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous objects.
♻ ☆ Latent Knowledge-Guided Video Diffusion for Scientific Phenomena Generation from a Single Initial Frame
Video diffusion models have achieved impressive results in natural scene generation, yet they struggle to generalize to scientific phenomena such as fluid simulations and meteorological processes, where underlying dynamics are governed by scientific laws. These tasks pose unique challenges, including severe domain gaps, limited training data, and the lack of descriptive language annotations. To handle this dilemma, we extracted the latent scientific phenomena knowledge and further proposed a fresh framework that teaches video diffusion models to generate scientific phenomena from a single initial frame. Particularly, static knowledge is extracted via pre-trained masked autoencoders, while dynamic knowledge is derived from pre-trained optical flow prediction. Subsequently, based on the aligned spatial relations between the CLIP vision and language encoders, the visual embeddings of scientific phenomena, guided by latent scientific phenomena knowledge, are projected to generate the pseudo-language prompt embeddings in both spatial and frequency domains. By incorporating these prompts and fine-tuning the video diffusion model, we enable the generation of videos that better adhere to scientific laws. Extensive experiments on both computational fluid dynamics simulations and real-world typhoon observations demonstrate the effectiveness of our approach, achieving superior fidelity and consistency across diverse scientific scenarios.
♻ ☆ Improving the generalization of gait recognition with limited datasets
Generalized gait recognition remains challenging due to significant domain shifts in viewpoints, appearances, and environments. Mixed-dataset training has recently become a practical route to improve cross-domain robustness, but it introduces underexplored issues: 1) inter-dataset supervision conflicts, which distract identity learning, and 2) redundant or noisy samples, which reduce data efficiency and may reinforce dataset-specific patterns. To address these challenges, we introduce a unified paradigm for cross-dataset gait learning that simultaneously improves motion-signal quality and supervision consistency. We first increase the reliability of training data by suppressing sequences dominated by redundant gait cycles or unstable silhouettes, guided by representation redundancy and prediction uncertainty. This refinement concentrates learning on informative gait dynamics when mixing heterogeneous datasets. In parallel, we stabilize supervision by disentangling metric learning across datasets, forming triplets within each source to prevent destructive cross-domain gradients while preserving transferable identity cues. These components act in synergy to stabilize optimization and strengthen generalization without modifying network architectures or requiring extra annotations. Experiments on CASIA-B, OU-MVLP, Gait3D, and GREW with both GaitBase and DeepGaitV2 backbones consistently show improved cross-domain performance without sacrificing in-domain accuracy. These results demonstrate that data selection and aligning supervision effectively enables scalable mixed-dataset gait learning.
comment: 10 pages, 3 figures
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
Sarcasm in social media, frequently conveyed through the interplay of text and images, presents significant challenges for sentiment analysis and intention mining. Existing multi-modal sarcasm detection approaches have been shown to excessively depend on superficial cues within the textual modality, exhibiting limited capability to accurately discern sarcasm through subtle text-image interactions. To address this limitation, a novel framework, InterCLIP-MEP, is proposed. This framework integrates Interactive CLIP (InterCLIP), which employs an efficient training strategy to derive enriched cross-modal representations by embedding inter-modal information directly into each encoder, while using approximately 20.6$\times$ fewer trainable parameters compared with existing state-of-the-art (SOTA) methods. Furthermore, a Memory-Enhanced Predictor (MEP) is introduced, featuring a dynamic dual-channel memory mechanism that captures and retains valuable knowledge from test samples during inference, serving as a non-parametric classifier to enhance sarcasm detection robustness. Extensive experiments on MMSD, MMSD2.0, and DocMSU show that InterCLIP-MEP achieves SOTA performance, specifically improving accuracy by 1.08% and F1 score by 1.51% on MMSD2.0. Under distributional shift evaluation, it attains 73.96% accuracy, exceeding its memory-free variant by nearly 10% and the previous SOTA by over 15%, demonstrating superior stability and adaptability. The implementation of InterCLIP-MEP is publicly available at https://github.com/CoderChen01/InterCLIP-MEP.
comment: ACM TOMM; Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP
♻ ☆ ManipDreamer3D : Synthesizing Plausible Robotic Manipulation Video with Occupancy-aware 3D Trajectory
Ying Li, Xiaobao Wei, Xiaowei Chi, Yuming Li, Zhongyu Zhao, Hao Wang, Ningning Ma, Ming Lu, Sirui Han, Shanghang Zhang
Data scarcity continues to be a major challenge in the field of robotic manipulation. Although diffusion models provide a promising solution for generating robotic manipulation videos, existing methods largely depend on 2D trajectories, which inherently face issues with 3D spatial ambiguity. In this work, we present a novel framework named ManipDreamer3D for generating plausible 3D-aware robotic manipulation videos from the input image and the text instruction. Our method combines 3D trajectory planning with a reconstructed 3D occupancy map created from a third-person perspective, along with a novel trajectory-to-video diffusion model. Specifically, ManipDreamer3D first reconstructs the 3D occupancy representation from the input image and then computes an optimized 3D end-effector trajectory, minimizing path length while avoiding collisions. Next, we employ a latent editing technique to create video sequences from the initial image latent and the optimized 3D trajectory. This process conditions our specially trained trajectory-to-video diffusion model to produce robotic pick-and-place videos. Our method generates robotic videos with autonomously planned plausible 3D trajectories, significantly reducing human intervention requirements. Experimental results demonstrate superior visual quality compared to existing methods.
comment: 7pages; 7figures; 3 tables
♻ ☆ Graph-Theoretic Consistency for Robust and Topology-Aware Semi-Supervised Histopathology Segmentation AAAI 2026
Semi-supervised semantic segmentation (SSSS) is vital in computational pathology, where dense annotations are costly and limited. Existing methods often rely on pixel-level consistency, which propagates noisy pseudo-labels and produces fragmented or topologically invalid masks. We propose Topology Graph Consistency (TGC), a framework that integrates graph-theoretic constraints by aligning Laplacian spectra, component counts, and adjacency statistics between prediction graphs and references. This enforces global topology and improves segmentation accuracy. Experiments on GlaS and CRAG demonstrate that TGC achieves state-of-the-art performance under 5-10% supervision and significantly narrows the gap to full supervision.
comment: Accepted to the AAAI 2026 Student Abstract and Poster Program
♻ ☆ Image-based Outlier Synthesis With Training Data SC
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications. Deep learning models can often misidentify OOD samples as in-distribution (ID) samples. This vulnerability worsens in the presence of spurious correlation in the training set. Likewise, in fine-grained classification settings, detection of fine-grained OOD samples becomes inherently challenging due to their high similarity to ID samples. However, current research on OOD detection has focused instead largely on relatively easier (conventional) cases. Even the few recent works addressing these challenging cases rely on carefully curated or synthesized outliers, ultimately requiring external data. This motivates our central research question: ``Can we innovate OOD detection training framework for fine-grained and spurious settings \textbf{without requiring any external data at all?}" In this work, we present a unified \textbf{A}pproach to \textbf{S}purious, fine-grained, and \textbf{C}onventional \textbf{OOD D}etection (\textbf{\ASCOOD}) that eliminates the reliance on external data. First, we synthesize virtual outliers from ID data by approximating the destruction of invariant features. Specifically, we propose to add gradient attribution values to ID inputs to disrupt invariant features while amplifying true-class logit, thereby synthesizing challenging near-manifold virtual outliers. Then, we simultaneously incentivize ID classification and predictive uncertainty towards virtual outliers. For this, we further propose to leverage standardized features with z-score normalization. ASCOOD effectively mitigates impact of spurious correlations and encourages capturing fine-grained attributes. Extensive experiments across \textbf{7} datasets and and comparisons with \textbf{30+} methods demonstrate merit of ASCOOD in spurious, fine-grained and conventional settings.
comment: Code: https://github.com/sudarshanregmi/ASCOOD/
♻ ☆ Mitigating Perception Bias: A Training-Free Approach to Enhance LMM for Image Quality Assessment
Despite the impressive performance of large multimodal models (LMMs) in high-level visual tasks, their capacity for image quality assessment (IQA) remains limited. One main reason is that LMMs are primarily trained for high-level tasks (e.g., image captioning), emphasizing unified image semantics extraction under varied quality. Such semantic-aware yet quality-insensitive perception bias inevitably leads to a heavy reliance on image semantics when those LMMs are forced for quality rating. In this paper, instead of retraining or tuning an LMM costly, we propose a training-free debiasing framework, in which the image quality prediction is rectified by mitigating the bias caused by image semantics. Specifically, we first explore several semantic-preserving distortions that can significantly degrade image quality while maintaining identifiable semantics. By applying these specific distortions to the query or test images, we ensure that the degraded images are recognized as poor quality while their semantics mainly remain. During quality inference, both a query image and its corresponding degraded version are fed to the LMM along with a prompt indicating that the query image quality should be inferred under the condition that the degraded one is deemed poor quality. This prior condition effectively aligns the LMM's quality perception, as all degraded images are consistently rated as poor quality, regardless of their semantic variance. Finally, the quality scores of the query image inferred under different prior conditions (degraded versions) are aggregated using a conditional probability model. Extensive experiments on various IQA datasets show that our debiasing framework could consistently enhance the LMM performance.
♻ ☆ Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +3.78 pp top-1 accuracy gain for ViT-B on ImageNet-1k.
comment: 27 pages, maybe final final version
♻ ☆ LISA: A Layer-wise Integration and Suppression Approach for Hallucination Mitigation in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) excel in vision-language tasks such as image captioning but remain prone to object hallucinations, where they describe objects that do not appear in the image. To mitigate this, we propose LISA, a Layer-wise Integration and Suppression Approach. LISA leverages the layer-wise functional roles in MLLMs: shallow layers provide visual grounding, middle layers encode semantics, and deep layers tend to amplify spurious signals. First, layer-wise spectral modulation stabilizes attention by suppressing over-amplified activations in deeper layers while preserving alignment cues in earlier layers. Second, token-level logits from selected layers are fused via anchor-based routing, with token-wise anchor selection and soft logit fusion enabling adaptive integration during decoding. LISA is fully plug-and-play and can be seamlessly integrated into existing MLLMs, including Qwen2.5-VL. Experiments on multiple benchmarks show that LISA reduces hallucinations by up to 53.6% in $\text{CHAIR}_\text{I}$ and improves POPE F1 by up to 5.1%, demonstrating strong generalization across models and tasks. Our code is available at https://github.com/zhlisa1010-eng/LISA.
♻ ☆ Generating Physically Stable and Buildable Brick Structures from Text
We introduce BrickGPT, the first approach for generating physically stable interconnecting brick assembly models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of brick structures, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that BrickGPT produces stable, diverse, and aesthetically pleasing brick structures that align closely with the input text prompts. We also develop a text-based brick texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We release our new dataset, StableText2Brick, containing over 47,000 brick structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/BrickGPT/.
comment: Project page: https://avalovelace1.github.io/BrickGPT/
♻ ☆ Cameras as Relative Positional Encoding
Transformers are increasingly prevalent for multi-view computer vision tasks, where geometric relationships between viewpoints are critical for 3D perception. To leverage these relationships, multi-view transformers must use camera geometry to ground visual tokens in 3D space. In this work, we compare techniques for conditioning transformers on cameras: token-level raymap encodings, attention-level relative pose encodings, and a new relative encoding we propose -- Projective Positional Encoding (PRoPE) -- that captures complete camera frustums, both intrinsics and extrinsics, as a relative positional encoding. Our experiments begin by showing how relative camera conditioning improves performance in feedforward novel view synthesis, with further gains from PRoPE. This holds across settings: scenes with both shared and varying intrinsics, when combining token- and attention-level conditioning, and for generalization to inputs with out-of-distribution sequence lengths and camera intrinsics. We then verify that these benefits persist for different tasks, stereo depth estimation and discriminative spatial cognition, as well as larger model sizes.
comment: Project Page: https://www.liruilong.cn/prope/
♻ ☆ Zero-Shot Referring Expression Comprehension via Vison-Language True/False Verification
Referring Expression Comprehension (REC) is usually addressed with task-trained grounding models. We show that a zero-shot workflow, without any REC-specific training, can achieve competitive or superior performance. Our approach reformulates REC as box-wise visual-language verification: given proposals from a COCO-clean generic detector (YOLO-World), a general-purpose VLM independently answers True/False queries for each region. This simple procedure reduces cross-box interference, supports abstention and multiple matches, and requires no fine-tuning. On RefCOCO, RefCOCO+, and RefCOCOg, our method not only surpasses a zero-shot GroundingDINO baseline but also exceeds reported results for GroundingDINO trained on REC and GroundingDINO+CRG. Controlled studies with identical proposals confirm that verification significantly outperforms selection-based prompting, and results hold with open VLMs. Overall, we show that workflow design, rather than task-specific pretraining, drives strong zero-shot REC performance.
♻ ☆ Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals
Interpretability is crucial for machine learning algorithms in high-stakes medical applications. However, high-performing neural networks typically cannot explain their predictions. Post-hoc explanation methods provide a way to understand neural networks but have been shown to suffer from conceptual problems. Moreover, current research largely focuses on providing local explanations for individual samples rather than global explanations for the model itself. In this paper, we propose Attri-Net, an inherently interpretable model for multi-label classification that provides local and global explanations. Attri-Net first counterfactually generates class-specific attribution maps to highlight the disease evidence, then performs classification with logistic regression classifiers based solely on the attribution maps. Local explanations for each prediction can be obtained by interpreting the attribution maps weighted by the classifiers' weights. Global explanation of whole model can be obtained by jointly considering learned average representations of the attribution maps for each class (called the class centers) and the weights of the linear classifiers. To ensure the model is ``right for the right reason", we further introduce a mechanism to guide the model's explanations to align with human knowledge. Our comprehensive evaluations show that Attri-Net can generate high-quality explanations consistent with clinical knowledge while not sacrificing classification performance.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:028
♻ ☆ Understanding while Exploring: Semantics-driven Active Mapping
Effective robotic autonomy in unknown environments demands proactive exploration and precise understanding of both geometry and semantics. In this paper, we propose ActiveSGM, an active semantic mapping framework designed to predict the informativeness of potential observations before execution. Built upon a 3D Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic and geometric uncertainty quantification, coupled with a sparse semantic representation, to guide exploration. By enabling robots to strategically select the most beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness, accuracy, and robustness to noisy semantic data, ultimately supporting more adaptive scene exploration. Our experiments on the Replica and Matterport3D datasets highlight the effectiveness of ActiveSGM in active semantic mapping tasks.
♻ ☆ Mitigating Multimodal Hallucinations via Gradient-based Self-Reflection
Multimodal large language models achieve strong performance across diverse tasks but remain prone to hallucinations, where outputs are not grounded in visual inputs. This issue can be attributed to two main biases: text-visual bias, the overreliance on prompts and prior outputs, and co-occurrence bias, spurious correlations between frequently paired objects. We propose Gradient-based Influence-Aware Constrained Decoding (GACD), an inference-based method, that addresses both biases without auxiliary models, and is readily applicable to existing models without finetuning. The core of our approach is bias estimation, which uses first-order Taylor gradients to understand the contribution of individual tokens-visual features and text tokens-to the current output. Based on this analysis, GACD mitigates hallucinations through two components: (1) suppressing spurious visual features correlated with the output objects, and (2) rebalancing cross-modal contributions by strengthening visual features relative to text. Experiments across multiple benchmarks demonstrate that GACD effectively reduces hallucinations and improves the visual grounding of MLLM outputs.
♻ ☆ TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding AAAI 2026
Canhui Tang, Zifan Han, Hongbo Sun, Sanping Zhou, Xuchong Zhang, Xin Wei, Ye Yuan, Huayu Zhang, Jinglin Xu, Hao Sun
Multimodal Large Language Models (MLLMs) have demonstrated significant progress in vision-language tasks, yet they still face challenges when processing long-duration video inputs. The limitation arises from MLLMs' context limit and training costs, necessitating sparse frame sampling before feeding videos into MLLMs. However, building a trainable sampling method remains challenging due to the unsupervised and non-differentiable nature of sparse frame sampling in Video-MLLMs. To address these problems, we propose Temporal Sampling Policy Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning. Specifically, we first propose a trainable event-aware temporal agent, which captures event-query correlation for performing probabilistic keyframe selection. Then, we propose the TSPO reinforcement learning paradigm, which models keyframe selection and language generation as a joint decision-making process, enabling end-to-end group relative optimization for the temporal sampling policy. Furthermore, we propose a dual-style long video training data construction pipeline, balancing comprehensive temporal understanding and key segment localization. Finally, we incorporate rule-based answering accuracy and temporal locating reward mechanisms to optimize the temporal sampling policy. Comprehensive experiments show that our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs. Our code is available at https://github.com/Hui-design/TSPO
comment: Accepted by AAAI 2026
♻ ☆ MCM: Multi-layer Concept Map for Efficient Concept Learning from Masked Images
Masking strategies commonly employed in natural language processing are still underexplored in vision tasks such as concept learning, where conventional methods typically rely on full images. However, using masked images diversifies perceptual inputs, potentially offering significant advantages in concept learning with large-scale Transformer models. To this end, we propose Multi-layer Concept Map (MCM), the first work to devise an efficient concept learning method based on masked images. In particular, we introduce an asymmetric concept learning architecture by establishing correlations between different encoder and decoder layers, updating concept tokens using backward gradients from reconstruction tasks. The learned concept tokens at various levels of granularity help either reconstruct the masked image patches by filling in gaps or guide the reconstruction results in a direction that reflects specific concepts. Moreover, we present both quantitative and qualitative results across a wide range of metrics, demonstrating that MCM significantly reduces computational costs by training on fewer than 75% of the total image patches while enhancing concept prediction performance. Additionally, editing specific concept tokens in the latent space enables targeted image generation from masked images, aligning both the visible contextual patches and the provided concepts. By further adjusting the testing time mask ratio, we could produce a range of reconstructions that blend the visible patches with the provided concepts, proportional to the chosen ratios.
♻ ☆ PAN: A World Model for General, Interactable, and Long-Horizon World Simulation
PAN Team, Jiannan Xiang, Yi Gu, Zihan Liu, Zeyu Feng, Qiyue Gao, Yiyan Hu, Benhao Huang, Guangyi Liu, Yichi Yang, Kun Zhou, Davit Abrahamyan, Arif Ahmad, Ganesh Bannur, Junrong Chen, Kimi Chen, Mingkai Deng, Ruobing Han, Xinqi Huang, Haoqiang Kang, Zheqi Li, Enze Ma, Hector Ren, Yashowardhan Shinde, Rohan Shingre, Ramsundar Tanikella, Kaiming Tao, Dequan Yang, Xinle Yu, Cong Zeng, Binglin Zhou, Zhengzhong Liu, Zhiting Hu, Eric P. Xing
A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.
♻ ☆ VisualMimic: Visual Humanoid Loco-Manipulation via Motion Tracking and Generation
Humanoid loco-manipulation in unstructured environments demands tight integration of egocentric perception and whole-body control. However, existing approaches either depend on external motion capture systems or fail to generalize across diverse tasks. We introduce VisualMimic, a visual sim-to-real framework that unifies egocentric vision with hierarchical whole-body control for humanoid robots. VisualMimic combines a task-agnostic low-level keypoint tracker -- trained from human motion data via a teacher-student scheme -- with a task-specific high-level policy that generates keypoint commands from visual and proprioceptive input. To ensure stable training, we inject noise into the low-level policy and clip high-level actions using human motion statistics. VisualMimic enables zero-shot transfer of visuomotor policies trained in simulation to real humanoid robots, accomplishing a wide range of loco-manipulation tasks such as box lifting, pushing, football dribbling, and kicking. Beyond controlled laboratory settings, our policies also generalize robustly to outdoor environments. Videos are available at: https://visualmimic.github.io .
comment: Website: https://visualmimic.github.io
♻ ☆ MAUGIF: Mechanism-Aware Unsupervised General Image Fusion via Dual Cross-Image Autoencoders
Image fusion aims to integrate structural and complementary information from multi-source images. However, existing fusion methods are often either highly task-specific, or general frameworks that apply uniform strategies across diverse tasks, ignoring their distinct fusion mechanisms. To address this issue, we propose a mechanism-aware unsupervised general image fusion (MAUGIF) method based on dual cross-image autoencoders. Initially, we introduce a classification of additive and multiplicative fusion according to the inherent mechanisms of different fusion tasks. Then, dual encoders map source images into a shared latent space, capturing common content while isolating modality-specific details. During the decoding phase, dual decoders act as feature injectors, selectively reintegrating the unique characteristics of each modality into the shared content for reconstruction. The modality-specific features are injected into the source image in the fusion process, generating the fused image that integrates information from both modalities. The architecture of decoders varies according to their fusion mechanisms, enhancing both performance and interpretability. Extensive experiments are conducted on diverse fusion tasks to validate the effectiveness and generalization ability of our method. The code is available at https://anonymous.4open.science/r/MAUGIF.
♻ ☆ WOD-E2E: Waymo Open Dataset for End-to-End Driving in Challenging Long-tail Scenarios
Runsheng Xu, Hubert Lin, Wonseok Jeon, Hao Feng, Yuliang Zou, Liting Sun, John Gorman, Ekaterina Tolstaya, Sarah Tang, Brandyn White, Ben Sapp, Mingxing Tan, Jyh-Jing Hwang, Dragomir Anguelov
Vision-based end-to-end (E2E) driving has garnered significant interest in the research community due to its scalability and synergy with multimodal large language models (MLLMs). However, current E2E driving benchmarks primarily feature nominal scenarios, failing to adequately test the true potential of these systems. Furthermore, existing open-loop evaluation metrics often fall short in capturing the multi-modal nature of driving or effectively evaluating performance in long-tail scenarios. To address these gaps, we introduce the Waymo Open Dataset for End-to-End Driving (WOD-E2E). WOD-E2E contains 4,021 driving segments (approximately 12 hours), specifically curated for challenging long-tail scenarios that that are rare in daily life with an occurring frequency of less than 0.03%. Concretely, each segment in WOD-E2E includes the high-level routing information, ego states, and 360-degree camera views from 8 surrounding cameras. To evaluate the E2E driving performance on these long-tail situations, we propose a novel open-loop evaluation metric: Rater Feedback Score (RFS). Unlike conventional metrics that measure the distance between predicted way points and the logs, RFS measures how closely the predicted trajectory matches rater-annotated trajectory preference labels. We have released rater preference labels for all WOD-E2E validation set segments, while the held out test set labels have been used for the 2025 WOD-E2E Challenge. Through our work, we aim to foster state of the art research into generalizable, robust, and safe end-to-end autonomous driving agents capable of handling complex real-world situations.
♻ ☆ FlashKAT: Understanding and Addressing Performance Bottlenecks in the Kolmogorov-Arnold Transformer AAAI 2026
The Kolmogorov-Arnold Network (KAN) has been gaining popularity as an alternative to the multi-layer perceptron (MLP) with its increased expressiveness and interpretability. Even so, the KAN suffers from being orders of magnitude slower due to its increased computational cost and training instability, limiting its applicability to larger-scale tasks. Recently, the Kolmogorov-Arnold Transformer (KAT) has been proposed, which can achieve FLOPs similar to the traditional Transformer with MLPs by leveraging Group-Rational KAN (GR-KAN). Unfortunately, despite the comparable FLOPs, our testing reveals that the KAT is still 123x slower in training speeds, indicating that there are other performance bottlenecks beyond FLOPs. In this paper, we conduct a series of experiments to understand the root cause of the slowdown in KAT. We uncover that the slowdown can be isolated to memory stalls, linked more specifically to inefficient gradient accumulations in the backward pass of GR-KAN. To address this memory bottleneck, we propose FlashKAT, which minimizes accesses to slow memory and the usage of atomic adds through a restructured kernel. Evaluations demonstrate that FlashKAT can achieve a training speedup of 86.5x compared with the state-of-the-art KAT, while reducing rounding errors in the computation of the gradients.
comment: Accepted at AAAI 2026
♻ ☆ Text-to-Scene with Large Reasoning Models AAAI 2026
Prompt-driven scene synthesis allows users to generate complete 3D environments from textual descriptions. Current text-to-scene methods often struggle with complex geometries and object transformations, and tend to show weak adherence to complex instructions. We address these limitations by introducing Reason-3D, a text-to-scene model powered by large reasoning models (LRMs). Reason-3D integrates object retrieval using captions covering physical, functional, and contextual attributes. Reason-3D then places the selected objects based on implicit and explicit layout constraints, and refines their positions with collision-aware spatial reasoning. Evaluated on instructions ranging from simple to complex indoor configurations, Reason-3D significantly outperforms previous methods in human-rated visual fidelity, adherence to constraints, and asset retrieval quality. Beyond its contribution to the field of text-to-scene generation, our work showcases the advanced spatial reasoning abilities of modern LRMs. Additionally, we release the codebase to further the research in object retrieval and placement with LRMs.
comment: Accepted at AAAI 2026