Yg4Arxiv
Computer Vision and Pattern Recognition 116
☆ Muses: Designing, Composing, Generating Nonexistent Fantasy 3D Creatures without Training
We present Muses, the first training-free method for fantastic 3D creature generation in a feed-forward paradigm. Previous methods, which rely on part-aware optimization, manual assembly, or 2D image generation, often produce unrealistic or incoherent 3D assets due to the challenges of intricate part-level manipulation and limited out-of-domain generation. In contrast, Muses leverages the 3D skeleton, a fundamental representation of biological forms, to explicitly and rationally compose diverse elements. This skeletal foundation formalizes 3D content creation as a structure-aware pipeline of design, composition, and generation. Muses begins by constructing a creatively composed 3D skeleton with coherent layout and scale through graph-constrained reasoning. This skeleton then guides a voxel-based assembly process within a structured latent space, integrating regions from different objects. Finally, image-guided appearance modeling under skeletal conditions is applied to generate a style-consistent and harmonious texture for the assembled shape. Extensive experiments establish Muses' state-of-the-art performance in terms of visual fidelity and alignment with textual descriptions, and potential on flexible 3D object editing. Project page: https://luhexiao.github.io/Muses.github.io/.
comment: Project page: https://luhexiao.github.io/Muses.github.io/
☆ InfiniDepth: Arbitrary-Resolution and Fine-Grained Depth Estimation with Neural Implicit Fields
Existing depth estimation methods are fundamentally limited to predicting depth on discrete image grids. Such representations restrict their scalability to arbitrary output resolutions and hinder the geometric detail recovery. This paper introduces InfiniDepth, which represents depth as neural implicit fields. Through a simple yet effective local implicit decoder, we can query depth at continuous 2D coordinates, enabling arbitrary-resolution and fine-grained depth estimation. To better assess our method's capabilities, we curate a high-quality 4K synthetic benchmark from five different games, spanning diverse scenes with rich geometric and appearance details. Extensive experiments demonstrate that InfiniDepth achieves state-of-the-art performance on both synthetic and real-world benchmarks across relative and metric depth estimation tasks, particularly excelling in fine-detail regions. It also benefits the task of novel view synthesis under large viewpoint shifts, producing high-quality results with fewer holes and artifacts.
comment: 19 pages, 13 figures
☆ A Versatile Multimodal Agent for Multimedia Content Generation
With the advancement of AIGC (AI-generated content) technologies, an increasing number of generative models are revolutionizing fields such as video editing, music generation, and even film production. However, due to the limitations of current AIGC models, most models can only serve as individual components within specific application scenarios and are not capable of completing tasks end-to-end in real-world applications. In real-world applications, editing experts often work with a wide variety of images and video inputs, producing multimodal outputs -- a video typically includes audio, text, and other elements. This level of integration across multiple modalities is something current models are unable to achieve effectively. However, the rise of agent-based systems has made it possible to use AI tools to tackle complex content generation tasks. To deal with the complex scenarios, in this paper, we propose a MultiMedia-Agent designed to automate complex content creation. Our agent system includes a data generation pipeline, a tool library for content creation, and a set of metrics for evaluating preference alignment. Notably, we introduce the skill acquisition theory to model the training data curation and agent training. We designed a two-stage correlation strategy for plan optimization, including self-correlation and model preference correlation. Additionally, we utilized the generated plans to train the MultiMedia-Agent via a three stage approach including base/success plan finetune and preference optimization. The comparison results demonstrate that the our approaches are effective and the MultiMedia-Agent can generate better multimedia content compared to novel models.
☆ LTX-2: Efficient Joint Audio-Visual Foundation Model
Recent text-to-video diffusion models can generate compelling video sequences, yet they remain silent -- missing the semantic, emotional, and atmospheric cues that audio provides. We introduce LTX-2, an open-source foundational model capable of generating high-quality, temporally synchronized audiovisual content in a unified manner. LTX-2 consists of an asymmetric dual-stream transformer with a 14B-parameter video stream and a 5B-parameter audio stream, coupled through bidirectional audio-video cross-attention layers with temporal positional embeddings and cross-modality AdaLN for shared timestep conditioning. This architecture enables efficient training and inference of a unified audiovisual model while allocating more capacity for video generation than audio generation. We employ a multilingual text encoder for broader prompt understanding and introduce a modality-aware classifier-free guidance (modality-CFG) mechanism for improved audiovisual alignment and controllability. Beyond generating speech, LTX-2 produces rich, coherent audio tracks that follow the characters, environment, style, and emotion of each scene -- complete with natural background and foley elements. In our evaluations, the model achieves state-of-the-art audiovisual quality and prompt adherence among open-source systems, while delivering results comparable to proprietary models at a fraction of their computational cost and inference time. All model weights and code are publicly released.
☆ UniCorn: Towards Self-Improving Unified Multimodal Models through Self-Generated Supervision
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
☆ AnatomiX, an Anatomy-Aware Grounded Multimodal Large Language Model for Chest X-Ray Interpretation
Multimodal medical large language models have shown impressive progress in chest X-ray interpretation but continue to face challenges in spatial reasoning and anatomical understanding. Although existing grounding techniques improve overall performance, they often fail to establish a true anatomical correspondence, resulting in incorrect anatomical understanding in the medical domain. To address this gap, we introduce AnatomiX, a multitask multimodal large language model explicitly designed for anatomically grounded chest X-ray interpretation. Inspired by the radiological workflow, AnatomiX adopts a two stage approach: first, it identifies anatomical structures and extracts their features, and then leverages a large language model to perform diverse downstream tasks such as phrase grounding, report generation, visual question answering, and image understanding. Extensive experiments across multiple benchmarks demonstrate that AnatomiX achieves superior anatomical reasoning and delivers over 25% improvement in performance on anatomy grounding, phrase grounding, grounded diagnosis and grounded captioning tasks compared to existing approaches. Code and pretrained model are available at https://github.com/aneesurhashmi/anatomix
☆ Multi-Modal Data-Enhanced Foundation Models for Prediction and Control in Wireless Networks: A Survey IEEE
Foundation models (FMs) are recognized as a transformative breakthrough that has started to reshape the future of artificial intelligence (AI) across both academia and industry. The integration of FMs into wireless networks is expected to enable the development of general-purpose AI agents capable of handling diverse network management requests and highly complex wireless-related tasks involving multi-modal data. Inspired by these ideas, this work discusses the utilization of FMs, especially multi-modal FMs in wireless networks. We focus on two important types of tasks in wireless network management: prediction tasks and control tasks. In particular, we first discuss FMs-enabled multi-modal contextual information understanding in wireless networks. Then, we explain how FMs can be applied to prediction and control tasks, respectively. Following this, we introduce the development of wireless-specific FMs from two perspectives: available datasets for development and the methodologies used. Finally, we conclude with a discussion of the challenges and future directions for FM-enhanced wireless networks.
comment: 5 figures, 7 tables, IEEE COMST
☆ DiffBench Meets DiffAgent: End-to-End LLM-Driven Diffusion Acceleration Code Generation AAAI 2026
Diffusion models have achieved remarkable success in image and video generation. However, their inherently multiple step inference process imposes substantial computational overhead, hindering real-world deployment. Accelerating diffusion models is therefore essential, yet determining how to combine multiple model acceleration techniques remains a significant challenge. To address this issue, we introduce a framework driven by large language models (LLMs) for automated acceleration code generation and evaluation. First, we present DiffBench, a comprehensive benchmark that implements a three stage automated evaluation pipeline across diverse diffusion architectures, optimization combinations and deployment scenarios. Second, we propose DiffAgent, an agent that generates optimal acceleration strategies and codes for arbitrary diffusion models. DiffAgent employs a closed-loop workflow in which a planning component and a debugging component iteratively refine the output of a code generation component, while a genetic algorithm extracts performance feedback from the execution environment to guide subsequent code refinements. We provide a detailed explanation of the DiffBench construction and the design principles underlying DiffAgent. Extensive experiments show that DiffBench offers a thorough evaluation of generated codes and that DiffAgent significantly outperforms existing LLMs in producing effective diffusion acceleration strategies.
comment: Accepted to AAAI 2026
☆ LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images
Precise and scalable instance segmentation of cell nuclei is essential for computational pathology, yet gigapixel Whole-Slide Images pose major computational challenges. Existing approaches rely on patch-based processing and costly post-processing for instance separation, sacrificing context and efficiency. We introduce LSP-DETR (Local Star Polygon DEtection TRansformer), a fully end-to-end framework that uses a lightweight transformer with linear complexity to process substantially larger images without additional computational cost. Nuclei are represented as star-convex polygons, and a novel radial distance loss function allows the segmentation of overlapping nuclei to emerge naturally, without requiring explicit overlap annotations or handcrafted post-processing. Evaluations on PanNuke and MoNuSeg show strong generalization across tissues and state-of-the-art efficiency, with LSP-DETR being over five times faster than the next-fastest leading method. Code and models are available at https://github.com/RationAI/lsp-detr.
☆ Unified Thinker: A General Reasoning Modular Core for Image Generation
Despite impressive progress in high-fidelity image synthesis, generative models still struggle with logic-intensive instruction following, exposing a persistent reasoning--execution gap. Meanwhile, closed-source systems (e.g., Nano Banana) have demonstrated strong reasoning-driven image generation, highlighting a substantial gap to current open-source models. We argue that closing this gap requires not merely better visual generators, but executable reasoning: decomposing high-level intents into grounded, verifiable plans that directly steer the generative process. To this end, we propose Unified Thinker, a task-agnostic reasoning architecture for general image generation, designed as a unified planning core that can plug into diverse generators and workflows. Unified Thinker decouples a dedicated Thinker from the image Generator, enabling modular upgrades of reasoning without retraining the entire generative model. We further introduce a two-stage training paradigm: we first build a structured planning interface for the Thinker, then apply reinforcement learning to ground its policy in pixel-level feedback, encouraging plans that optimize visual correctness over textual plausibility. Extensive experiments on text-to-image generation and image editing show that Unified Thinker substantially improves image reasoning and generation quality.
☆ LeafLife: An Explainable Deep Learning Framework with Robustness for Grape Leaf Disease Recognition IEEE
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
comment: 4 pages, 8 figures, 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON)
Transformers self-organize like newborn visual systems when trained in prenatal worlds
Do transformers learn like brains? A key challenge in addressing this question is that transformers and brains are trained on fundamentally different data. Brains are initially "trained" on prenatal sensory experiences (e.g., retinal waves), whereas transformers are typically trained on large datasets that are not biologically plausible. We reasoned that if transformers learn like brains, then they should develop the same structure as newborn brains when exposed to the same prenatal data. To test this prediction, we simulated prenatal visual input using a retinal wave generator. Then, using self-supervised temporal learning, we trained transformers to adapt to those retinal waves. During training, the transformers spontaneously developed the same structure as newborn visual systems: (1) early layers became sensitive to edges, (2) later layers became sensitive to shapes, and (3) the models developed larger receptive fields across layers. The organization of newborn visual systems emerges spontaneously when transformers adapt to a prenatal visual world. This developmental convergence suggests that brains and transformers learn in common ways and follow the same general fitting principles.
☆ DiT-JSCC: Rethinking Deep JSCC with Diffusion Transformers and Semantic Representations
Generative joint source-channel coding (GJSCC) has emerged as a new Deep JSCC paradigm for achieving high-fidelity and robust image transmission under extreme wireless channel conditions, such as ultra-low bandwidth and low signal-to-noise ratio. Recent studies commonly adopt diffusion models as generative decoders, but they frequently produce visually realistic results with limited semantic consistency. This limitation stems from a fundamental mismatch between reconstruction-oriented JSCC encoders and generative decoders, as the former lack explicit semantic discriminability and fail to provide reliable conditional cues. In this paper, we propose DiT-JSCC, a novel GJSCC backbone that can jointly learn a semantics-prioritized representation encoder and a diffusion transformer (DiT) based generative decoder, our open-source project aims to promote the future research in GJSCC. Specifically, we design a semantics-detail dual-branch encoder that aligns naturally with a coarse-to-fine conditional DiT decoder, prioritizing semantic consistency under extreme channel conditions. Moreover, a training-free adaptive bandwidth allocation strategy inspired by Kolmogorov complexity is introduced to further improve the transmission efficiency, thereby indeed redefining the notion of information value in the era of generative decoding. Extensive experiments demonstrate that DiT-JSCC consistently outperforms existing JSCC methods in both semantic consistency and visual quality, particularly in extreme regimes.
comment: 14pages, 14figures, 2tables
☆ Text-Guided Layer Fusion Mitigates Hallucination in Multimodal LLMs
Multimodal large language models (MLLMs) typically rely on a single late-layer feature from a frozen vision encoder, leaving the encoder's rich hierarchy of visual cues under-utilized. MLLMs still suffer from visually ungrounded hallucinations, often relying on language priors rather than image evidence. While many prior mitigation strategies operate on the text side, they leave the visual representation unchanged and do not exploit the rich hierarchy of features encoded across vision layers. Existing multi-layer fusion methods partially address this limitation but remain static, applying the same layer mixture regardless of the query. In this work, we introduce TGIF (Text-Guided Inter-layer Fusion), a lightweight module that treats encoder layers as depth-wise "experts" and predicts a prompt-dependent fusion of visual features. TGIF follows the principle of direct external fusion, requires no vision-encoder updates, and adds minimal overhead. Integrated into LLaVA-1.5-7B, TGIF provides consistent improvements across hallucination, OCR, and VQA benchmarks, while preserving or improving performance on ScienceQA, GQA, and MMBench. These results suggest that query-conditioned, hierarchy-aware fusion is an effective way to strengthen visual grounding and reduce hallucination in modern MLLMs.
☆ LesionTABE: Equitable AI for Skin Lesion Detection IEEE
Bias remains a major barrier to the clinical adoption of AI in dermatology, as diagnostic models underperform on darker skin tones. We present LesionTABE, a fairness-centric framework that couples adversarial debiasing with dermatology-specific foundation model embeddings. Evaluated across multiple datasets covering both malignant and inflammatory conditions, LesionTABE achieves over a 25\% improvement in fairness metrics compared to a ResNet-152 baseline, outperforming existing debiasing methods while simultaneously enhancing overall diagnostic accuracy. These results highlight the potential of foundation model debiasing as a step towards equitable clinical AI adoption.
comment: Submitted to IEEE ISBI 2026
☆ Understanding Multi-Agent Reasoning with Large Language Models for Cartoon VQA
Visual Question Answering (VQA) for stylised cartoon imagery presents challenges, such as interpreting exaggerated visual abstraction and narrative-driven context, which are not adequately addressed by standard large language models (LLMs) trained on natural images. To investigate this issue, a multi-agent LLM framework is introduced, specifically designed for VQA tasks in cartoon imagery. The proposed architecture consists of three specialised agents: visual agent, language agent and critic agent, which work collaboratively to support structured reasoning by integrating visual cues and narrative context. The framework was systematically evaluated on two cartoon-based VQA datasets: Pororo and Simpsons. Experimental results provide a detailed analysis of how each agent contributes to the final prediction, offering a deeper understanding of LLM-based multi-agent behaviour in cartoon VQA and multimodal inference.
☆ Fine-Grained Generalization via Structuralizing Concept and Feature Space into Commonality, Specificity and Confounding AAAI26
Fine-Grained Domain Generalization (FGDG) presents greater challenges than conventional domain generalization due to the subtle inter-class differences and relatively pronounced intra-class variations inherent in fine-grained recognition tasks. Under domain shifts, the model becomes overly sensitive to fine-grained cues, leading to the suppression of critical features and a significant drop in performance. Cognitive studies suggest that humans classify objects by leveraging both common and specific attributes, enabling accurate differentiation between fine-grained categories. However, current deep learning models have yet to incorporate this mechanism effectively. Inspired by this mechanism, we propose Concept-Feature Structuralized Generalization (CFSG). This model explicitly disentangles both the concept and feature spaces into three structured components: common, specific, and confounding segments. To mitigate the adverse effects of varying degrees of distribution shift, we introduce an adaptive mechanism that dynamically adjusts the proportions of common, specific, and confounding components. In the final prediction, explicit weights are assigned to each pair of components. Extensive experiments on three single-source benchmark datasets demonstrate that CFSG achieves an average performance improvement of 9.87% over baseline models and outperforms existing state-of-the-art methods by an average of 3.08%. Additionally, explainability analysis validates that CFSG effectively integrates multi-granularity structured knowledge and confirms that feature structuralization facilitates the emergence of concept structuralization.
comment: Accepted in AAAI26
☆ IBISAgent: Reinforcing Pixel-Level Visual Reasoning in MLLMs for Universal Biomedical Object Referring and Segmentation
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
☆ On the Intrinsic Limits of Transformer Image Embeddings in Non-Solvable Spatial Reasoning
Vision Transformers (ViTs) excel in semantic recognition but exhibit systematic failures in spatial reasoning tasks such as mental rotation. While often attributed to data scale, we propose that this limitation arises from the intrinsic circuit complexity of the architecture. We formalize spatial understanding as learning a Group Homomorphism: mapping image sequences to a latent space that preserves the algebraic structure of the underlying transformation group. We demonstrate that for non-solvable groups (e.g., the 3D rotation group $\mathrm{SO}(3)$), maintaining such a structure-preserving embedding is computationally lower-bounded by the Word Problem, which is $\mathsf{NC^1}$-complete. In contrast, we prove that constant-depth ViTs with polynomial precision are strictly bounded by $\mathsf{TC^0}$. Under the conjecture $\mathsf{TC^0} \subsetneq \mathsf{NC^1}$, we establish a complexity boundary: constant-depth ViTs fundamentally lack the logical depth to efficiently capture non-solvable spatial structures. We validate this complexity gap via latent-space probing, demonstrating that ViT representations suffer a structural collapse on non-solvable tasks as compositional depth increases.
☆ Motion Blur Robust Wheat Pest Damage Detection with Dynamic Fuzzy Feature Fusion
Motion blur caused by camera shake produces ghosting artifacts that substantially degrade edge side object detection. Existing approaches either suppress blur as noise and lose discriminative structure, or apply full image restoration that increases latency and limits deployment on resource constrained devices. We propose DFRCP, a Dynamic Fuzzy Robust Convolutional Pyramid, as a plug in upgrade to YOLOv11 for blur robust detection. DFRCP enhances the YOLOv11 feature pyramid by combining large scale and medium scale features while preserving native representations, and by introducing Dynamic Robust Switch units that adaptively inject fuzzy features to strengthen global perception under jitter. Fuzzy features are synthesized by rotating and nonlinearly interpolating multiscale features, then merged through a transparency convolution that learns a content adaptive trade off between original and fuzzy cues. We further develop a CUDA parallel rotation and interpolation kernel that avoids boundary overflow and delivers more than 400 times speedup, making the design practical for edge deployment. We train with paired supervision on a private wheat pest damage dataset of about 3,500 images, augmented threefold using two blur regimes, uniform image wide motion blur and bounding box confined rotational blur. On blurred test sets, YOLOv11 with DFRCP achieves about 10.4 percent higher accuracy than the YOLOv11 baseline with only a modest training time overhead, reducing the need for manual filtering after data collection.
☆ Flow Matching and Diffusion Models via PointNet for Generating Fluid Fields on Irregular Geometries
We present two novel generative geometric deep learning frameworks, termed Flow Matching PointNet and Diffusion PointNet, for predicting fluid flow variables on irregular geometries by incorporating PointNet into flow matching and diffusion models, respectively. In these frameworks, a reverse generative process reconstructs physical fields from standard Gaussian noise conditioned on unseen geometries. The proposed approaches operate directly on point-cloud representations of computational domains (e.g., grid vertices of finite-volume meshes) and therefore avoid the limitations of pixelation used to project geometries onto uniform lattices. In contrast to graph neural network-based diffusion models, Flow Matching PointNet and Diffusion PointNet do not exhibit high-frequency noise artifacts in the predicted fields. Moreover, unlike such approaches, which require auxiliary intermediate networks to condition geometry, the proposed frameworks rely solely on PointNet, resulting in a simple and unified architecture. The performance of the proposed frameworks is evaluated on steady incompressible flow past a cylinder, using a geometric dataset constructed by varying the cylinder's cross-sectional shape and orientation across samples. The results demonstrate that Flow Matching PointNet and Diffusion PointNet achieve more accurate predictions of velocity and pressure fields, as well as lift and drag forces, and exhibit greater robustness to incomplete geometries compared to a vanilla PointNet with the same number of trainable parameters.
☆ SA-ResGS: Self-Augmented Residual 3D Gaussian Splatting for Next Best View Selection
We propose Self-Augmented Residual 3D Gaussian Splatting (SA-ResGS), a novel framework to stabilize uncertainty quantification and enhancing uncertainty-aware supervision in next-best-view (NBV) selection for active scene reconstruction. SA-ResGS improves both the reliability of uncertainty estimates and their effectiveness for supervision by generating Self-Augmented point clouds (SA-Points) via triangulation between a training view and a rasterized extrapolated view, enabling efficient scene coverage estimation. While improving scene coverage through physically guided view selection, SA-ResGS also addresses the challenge of under-supervised Gaussians, exacerbated by sparse and wide-baseline views, by introducing the first residual learning strategy tailored for 3D Gaussian Splatting. This targeted supervision enhances gradient flow in high-uncertainty Gaussians by combining uncertainty-driven filtering with dropout- and hard-negative-mining-inspired sampling. Our contributions are threefold: (1) a physically grounded view selection strategy that promotes efficient and uniform scene coverage; (2) an uncertainty-aware residual supervision scheme that amplifies learning signals for weakly contributing Gaussians, improving training stability and uncertainty estimation across scenes with diverse camera distributions; (3) an implicit unbiasing of uncertainty quantification as a consequence of constrained view selection and residual supervision, which together mitigate conflicting effects of wide-baseline exploration and sparse-view ambiguity in NBV planning. Experiments on active view selection demonstrate that SA-ResGS outperforms state-of-the-art baselines in both reconstruction quality and view selection robustness.
☆ ReCCur: A Recursive Corner-Case Curation Framework for Robust Vision-Language Understanding in Open and Edge Scenarios
Corner cases are rare or extreme scenarios that drive real-world failures, but they are difficult to curate at scale: web data are noisy, labels are brittle, and edge deployments preclude large retraining. We present ReCCur (Recursive Corner-Case Curation), a low-compute framework that converts noisy web imagery into auditable fine-grained labels via a multi-agent recursive pipeline. First, large-scale data acquisition and filtering expands a domain vocabulary with a vision-language model (VLM), crawls the web, and enforces tri-modal (image, description, keyword) consistency with light human spot checks to yield refined candidates. Next, mixture-of-experts knowledge distillation uses complementary encoders (e.g., CLIP, DINOv2, BEiT) for kNN voting with dual-confidence activation and uncertainty sampling, converging to a high-precision set. Finally, region-evidence VLM adversarial labeling pairs a proposer (multi-granularity regions and semantic cues) with a validator (global and local chained consistency) to produce explainable labels and close the loop. On realistic corner-case scenarios (e.g., flooded-car inspection), ReCCur runs on consumer-grade GPUs, steadily improves purity and separability, and requires minimal human supervision, providing a practical substrate for downstream training and evaluation under resource constraints. Code and dataset will be released.
☆ Towards Efficient 3D Object Detection for Vehicle-Infrastructure Collaboration via Risk-Intent Selection
Vehicle-Infrastructure Collaborative Perception (VICP) is pivotal for resolving occlusion in autonomous driving, yet the trade-off between communication bandwidth and feature redundancy remains a critical bottleneck. While intermediate fusion mitigates data volume compared to raw sharing, existing frameworks typically rely on spatial compression or static confidence maps, which inefficiently transmit spatially redundant features from non-critical background regions. To address this, we propose Risk-intent Selective detection (RiSe), an interaction-aware framework that shifts the paradigm from identifying visible regions to prioritizing risk-critical ones. Specifically, we introduce a Potential Field-Trajectory Correlation Model (PTCM) grounded in potential field theory to quantitatively assess kinematic risks. Complementing this, an Intention-Driven Area Prediction Module (IDAPM) leverages ego-motion priors to proactively predict and filter key Bird's-Eye-View (BEV) areas essential for decision-making. By integrating these components, RiSe implements a semantic-selective fusion scheme that transmits high-fidelity features only from high-interaction regions, effectively acting as a feature denoiser. Extensive experiments on the DeepAccident dataset demonstrate that our method reduces communication volume to 0.71\% of full feature sharing while maintaining state-of-the-art detection accuracy, establishing a competitive Pareto frontier between bandwidth efficiency and perception performance.
☆ From Memorization to Creativity: LLM as a Designer of Novel Neural-Architectures
Large language models (LLMs) excel in program synthesis, yet their ability to autonomously navigate neural architecture design--balancing syntactic reliability, performance, and structural novelty--remains underexplored. We address this by placing a code-oriented LLM within a closed-loop synthesis framework, analyzing its evolution over 22 supervised fine-tuning cycles. The model synthesizes PyTorch convolutional networks which are validated, evaluated via low-fidelity performance signals (single-epoch accuracy), and filtered using a MinHash-Jaccard criterion to prevent structural redundancy. High-performing, novel architectures are converted into prompt-code pairs for iterative fine-tuning via parameter-efficient LoRA adaptation, initialized from the LEMUR dataset. Across cycles, the LLM internalizes empirical architectural priors, becoming a robust generator. The valid generation rate stabilizes at 50.6 percent (peaking at 74.5 percent), while mean first-epoch accuracy rises from 28.06 percent to 50.99 percent, and the fraction of candidates exceeding 40 percent accuracy grows from 2.04 percent to 96.81 percent. Analyses confirm the model moves beyond replicating existing motifs, synthesizing 455 high-performing architectures absent from the original corpus. By grounding code synthesis in execution feedback, this work provides a scalable blueprint for transforming stochastic generators into autonomous, performance-driven neural designers, establishing that LLMs can internalize empirical, non-textual rewards to transcend their training data.
☆ Towards Faithful Reasoning in Comics for Small MLLMs
Comic-based visual question answering (CVQA) poses distinct challenges to multimodal large language models (MLLMs) due to its reliance on symbolic abstraction, narrative logic, and humor, which differ from conventional VQA tasks. Although Chain-of-Thought (CoT) prompting is widely used to enhance MLLM reasoning, surprisingly, its direct application to CVQA often degrades performance, especially in small-scale models. Our theoretical and empirical analyses reveal that standard CoT in CVQA suffers from state entanglement, spurious transitions, and exploration inefficiency, with small models particularly vulnerable in resource-constrained settings. To address these issues, we propose a novel comic reasoning framework, designed to produce more faithful and transferable reasoning chains in small MLLMs. Specifically, our framework combines modular CoT generation with GRPO-based reinforcement fine-tuning and a novel structured reward. Beyond comic VQA, we further evaluate our approach on a broader class of humor-centric and abstract visual reasoning tasks, including meme understanding and editorial cartoon interpretation. Across five challenging benchmarks, our 3B model outperforms state-of-the-art methods, and plug-in experiments yield an additional average improvement of $\mathbf{12.1\%}$ across different MLLMs.
☆ ULS+: Data-driven Model Adaptation Enhances Lesion Segmentation
In this study, we present ULS+, an enhanced version of the Universal Lesion Segmentation (ULS) model. The original ULS model segments lesions across the whole body in CT scans given volumes of interest (VOIs) centered around a click-point. Since its release, several new public datasets have become available that can further improve model performance. ULS+ incorporates these additional datasets and uses smaller input image sizes, resulting in higher accuracy and faster inference. We compared ULS and ULS+ using the Dice score and robustness to click-point location on the ULS23 Challenge test data and a subset of the Longitudinal-CT dataset. In all comparisons, ULS+ significantly outperformed ULS. Additionally, ULS+ ranks first on the ULS23 Challenge test-phase leaderboard. By maintaining a cycle of data-driven updates and clinical validation, ULS+ establishes a foundation for robust and clinically relevant lesion segmentation models.
comment: Accepted for publication at BVM 2026 (Bildverarbeitung für die Medizin), peer-reviewed conference paper
☆ LAMS-Edit: Latent and Attention Mixing with Schedulers for Improved Content Preservation in Diffusion-Based Image and Style Editing
Text-to-Image editing using diffusion models faces challenges in balancing content preservation with edit application and handling real-image editing. To address these, we propose LAMS-Edit, leveraging intermediate states from the inversion process--an essential step in real-image editing--during edited image generation. Specifically, latent representations and attention maps from both processes are combined at each step using weighted interpolation, controlled by a scheduler. This technique, Latent and Attention Mixing with Schedulers (LAMS), integrates with Prompt-to-Prompt (P2P) to form LAMS-Edit--an extensible framework that supports precise editing with region masks and enables style transfer via LoRA. Extensive experiments demonstrate that LAMS-Edit effectively balances content preservation and edit application.
☆ Low-Resource Heuristics for Bahnaric Optical Character Recognition Improvement
Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
☆ VTONQA: A Multi-Dimensional Quality Assessment Dataset for Virtual Try-on
With the rapid development of e-commerce and digital fashion, image-based virtual try-on (VTON) has attracted increasing attention. However, existing VTON models often suffer from artifacts such as garment distortion and body inconsistency, highlighting the need for reliable quality evaluation of VTON-generated images. To this end, we construct VTONQA, the first multi-dimensional quality assessment dataset specifically designed for VTON, which contains 8,132 images generated by 11 representative VTON models, along with 24,396 mean opinion scores (MOSs) across three evaluation dimensions (i.e., clothing fit, body compatibility, and overall quality). Based on VTONQA, we benchmark both VTON models and a diverse set of image quality assessment (IQA) metrics, revealing the limitations of existing methods and highlighting the value of the proposed dataset. We believe that the VTONQA dataset and corresponding benchmarks will provide a solid foundation for perceptually aligned evaluation, benefiting both the development of quality assessment methods and the advancement of VTON models.
☆ HybridSolarNet: A Lightweight and Explainable EfficientNet-CBAM Architecture for Real-Time Solar Panel Fault Detection
Manual inspections for solar panel systems are a tedious, costly, and error-prone task, making it desirable for Unmanned Aerial Vehicle (UAV) based monitoring. Though deep learning models have excellent fault detection capabilities, almost all methods either are too large and heavy for edge computing devices or involve biased estimation of accuracy due to ineffective learning techniques. We propose a new solar panel fault detection model called HybridSolarNet. It integrates EfficientNet-B0 with Convolutional Block Attention Module (CBAM). We implemented it on the Kaggle Solar Panel Images competition dataset with a tight split-before-augmentation protocol. It avoids leakage in accuracy estimation. We introduced focal loss and cosine annealing. Ablation analysis validates that accuracy boosts due to added benefits from CBAM (+1.53%) and that there are benefits from recognition of classes with imbalanced samples via focal loss. Overall average accuracy on 5-fold stratified cross-validation experiments on the given competition dataset topped 92.37% +/- 0.41 and an F1-score of 0.9226 +/- 0.39 compared to baselines like VGG19, requiring merely 16.3 MB storage, i.e., 32 times less. Its inference speed measured at 54.9 FPS with GPU support makes it a successful candidate for real-time UAV implementation. Moreover, visualization obtained from Grad-CAM illustrates that HybridSolarNet focuses on actual locations instead of irrelevant ones.
comment: 5 page , 6 figures
☆ PrismVAU: Prompt-Refined Inference System for Multimodal Video Anomaly Understanding WACV 2025
Video Anomaly Understanding (VAU) extends traditional Video Anomaly Detection (VAD) by not only localizing anomalies but also describing and reasoning about their context. Existing VAU approaches often rely on fine-tuned multimodal large language models (MLLMs) or external modules such as video captioners, which introduce costly annotations, complex training pipelines, and high inference overhead. In this work, we introduce PrismVAU, a lightweight yet effective system for real-time VAU that leverages a single off-the-shelf MLLM for anomaly scoring, explanation, and prompt optimization. PrismVAU operates in two complementary stages: (1) a coarse anomaly scoring module that computes frame-level anomaly scores via similarity to textual anchors, and (2) an MLLM-based refinement module that contextualizes anomalies through system and user prompts. Both textual anchors and prompts are optimized with a weakly supervised Automatic Prompt Engineering (APE) framework. Extensive experiments on standard VAD benchmarks demonstrate that PrismVAU delivers competitive detection performance and interpretable anomaly explanations -- without relying on instruction tuning, frame-level annotations, and external modules or dense processing -- making it an efficient and practical solution for real-world applications.
comment: This paper has been accepted to the 6th Workshop on Real-World Surveillance: Applications and Challenges (WACV 2025)
☆ DCG ReID: Disentangling Collaboration and Guidance Fusion Representations for Multi-modal Vehicle Re-Identification
Multi-modal vehicle Re-Identification (ReID) aims to leverage complementary information from RGB, Near Infrared (NIR), and Thermal Infrared (TIR) modalities to retrieve the same vehicle. The challenges of multi-modal vehicle ReID arise from the uncertainty of modality quality distribution induced by inherent discrepancies across modalities, resulting in distinct conflicting fusion requirements for data with balanced and unbalanced quality distributions. Existing methods handle all multi-modal data within a single fusion model, overlooking the different needs of the two data types and making it difficult to decouple the conflict between intra-class consistency and inter-modal heterogeneity. To this end, we propose Disentangle Collaboration and Guidance Fusion Representations for Multi-modal Vehicle ReID (DCG-ReID). Specifically, to disentangle heterogeneous quality-distributed modal data without mutual interference, we first design the Dynamic Confidence-based Disentangling Weighting (DCDW) mechanism: dynamically reweighting three-modal contributions via interaction-derived modal confidence to build a disentangled fusion framework. Building on DCDW, we develop two scenario-specific fusion strategies: (1) for balanced quality distributions, Collaboration Fusion Module (CFM) mines pairwise consensus features to capture shared discriminative information and boost intra-class consistency; (2) for unbalanced distributions, Guidance Fusion Module (GFM) implements differential amplification of modal discriminative disparities to reinforce dominant modality advantages, guide auxiliary modalities to mine complementary discriminative info, and mitigate inter-modal divergence to boost multi-modal joint decision performance. Extensive experiments on three multi-modal ReID benchmarks (WMVeID863, MSVR310, RGBNT100) validate the effectiveness of our method. Code will be released upon acceptance.
☆ Zoom-IQA: Image Quality Assessment with Reliable Region-Aware Reasoning
Image Quality Assessment (IQA) is a long-standing problem in computer vision. Previous methods typically focus on predicting numerical scores without explanation or provide low-level descriptions lacking precise scores. Recent reasoning-based vision language models (VLMs) have shown strong potential for IQA, enabling joint generation of quality descriptions and scores. However, we notice that existing VLM-based IQA methods tend to exhibit unreliable reasoning due to their limited capability of integrating visual and textual cues. In this work, we introduce Zoom-IQA, a VLM-based IQA model to explicitly emulate key cognitive behaviors: uncertainty awareness, region reasoning, and iterative refinement. Specifically, we present a two-stage training pipeline: 1) supervised fine-tuning (SFT) on our Grounded-Rationale-IQA (GR-IQA) dataset to teach the model to ground its assessments in key regions; and 2) reinforcement learning (RL) for dynamic policy exploration, primarily stabilized by our KL-Coverage regularizer to prevent reasoning and scoring diversity collapse, and supported by a Progressive Re-sampling Strategy to mitigate annotation bias. Extensive experiments show that Zoom-IQA achieves improved robustness, explainability, and generalization. The application to downstream tasks, such as image restoration, further demonstrates the effectiveness of Zoom-IQA.
comment: Project Page: https://ethanliang99.github.io/ZOOMIQA-Projectpage
☆ TA-Prompting: Enhancing Video Large Language Models for Dense Video Captioning via Temporal Anchors WACV 2026
Dense video captioning aims to interpret and describe all temporally localized events throughout an input video. Recent state-of-the-art methods leverage large language models (LLMs) to provide detailed moment descriptions for video data. However, existing VideoLLMs remain challenging in identifying precise event boundaries in untrimmed videos, causing the generated captions to be not properly grounded. In this paper, we propose TA-Prompting, which enhances VideoLLMs via Temporal Anchors that learn to precisely localize events and prompt the VideoLLMs to perform temporal-aware video event understanding. During inference, in order to properly determine the output caption sequence from an arbitrary number of events presented within a video, we introduce an event coherent sampling strategy to select event captions with sufficient coherence across temporal events and cross-modal similarity with the given video. Through extensive experiments on benchmark datasets, we show that our TA-Prompting is favorable against state-of-the-art VideoLLMs, yielding superior performance on dense video captioning and temporal understanding tasks including moment retrieval and temporalQA.
comment: 8 pages for main paper (exclude citation pages), 6 pages for appendix, totally 10 figures 7 tables and 2 algorithms. The paper is accepted by WACV 2026
☆ Towards Agnostic and Holistic Universal Image Segmentation with Bit Diffusion
This paper introduces a diffusion-based framework for universal image segmentation, making agnostic segmentation possible without depending on mask-based frameworks and instead predicting the full segmentation in a holistic manner. We present several key adaptations to diffusion models, which are important in this discrete setting. Notably, we show that a location-aware palette with our 2D gray code ordering improves performance. Adding a final tanh activation function is crucial for discrete data. On optimizing diffusion parameters, the sigmoid loss weighting consistently outperforms alternatives, regardless of the prediction type used, and we settle on x-prediction. While our current model does not yet surpass leading mask-based architectures, it narrows the performance gap and introduces unique capabilities, such as principled ambiguity modeling, that these models lack. All models were trained from scratch, and we believe that combining our proposed improvements with large-scale pretraining or promptable conditioning could lead to competitive models.
comment: Accepted at NLDL 26
☆ Lesion Segmentation in FDG-PET/CT Using Swin Transformer U-Net 3D: A Robust Deep Learning Framework
Accurate and automated lesion segmentation in Positron Emission Tomography / Computed Tomography (PET/CT) imaging is essential for cancer diagnosis and therapy planning. This paper presents a Swin Transformer UNet 3D (SwinUNet3D) framework for lesion segmentation in Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography (FDG-PET/CT) scans. By combining shifted window self-attention with U-Net style skip connections, the model captures both global context and fine anatomical detail. We evaluate SwinUNet3D on the AutoPET III FDG dataset and compare it against a baseline 3D U-Net. Results show that SwinUNet3D achieves a Dice score of 0.88 and IoU of 0.78, surpassing 3D U-Net (Dice 0.48, IoU 0.32) while also delivering faster inference times. Qualitative analysis demonstrates improved detection of small and irregular lesions, reduced false positives, and more accurate PET/CT fusion. While the framework is currently limited to FDG scans and trained under modest GPU resources, it establishes a strong foundation for future multi-tracer, multi-center evaluations and benchmarking against other transformer-based architectures. Overall, SwinUNet3D represents an efficient and robust approach to PET/CT lesion segmentation, advancing the integration of transformer-based models into oncology imaging workflows.
comment: 8 pages, 3 figures, 3 tables
☆ Breaking Self-Attention Failure: Rethinking Query Initialization for Infrared Small Target Detection
Infrared small target detection (IRSTD) faces significant challenges due to the low signal-to-noise ratio (SNR), small target size, and complex cluttered backgrounds. Although recent DETR-based detectors benefit from global context modeling, they exhibit notable performance degradation on IRSTD. We revisit this phenomenon and reveal that the target-relevant embeddings of IRST are inevitably overwhelmed by dominant background features due to the self-attention mechanism, leading to unreliable query initialization and inaccurate target localization. To address this issue, we propose SEF-DETR, a novel framework that refines query initialization for IRSTD. Specifically, SEF-DETR consists of three components: Frequency-guided Patch Screening (FPS), Dynamic Embedding Enhancement (DEE), and Reliability-Consistency-aware Fusion (RCF). The FPS module leverages the Fourier spectrum of local patches to construct a target-relevant density map, suppressing background-dominated features. DEE strengthens multi-scale representations in a target-aware manner, while RCF further refines object queries by enforcing spatial-frequency consistency and reliability. Extensive experiments on three public IRSTD datasets demonstrate that SEF-DETR achieves superior detection performance compared to state-of-the-art methods, delivering a robust and efficient solution for infrared small target detection task.
☆ DGA-Net: Enhancing SAM with Depth Prompting and Graph-Anchor Guidance for Camouflaged Object Detection
To fully exploit depth cues in Camouflaged Object Detection (COD), we present DGA-Net, a specialized framework that adapts the Segment Anything Model (SAM) via a novel ``depth prompting" paradigm. Distinguished from existing approaches that primarily rely on sparse prompts (e.g., points or boxes), our method introduces a holistic mechanism for constructing and propagating dense depth prompts. Specifically, we propose a Cross-modal Graph Enhancement (CGE) module that synthesizes RGB semantics and depth geometric within a heterogeneous graph to form a unified guidance signal. Furthermore, we design an Anchor-Guided Refinement (AGR) module. To counteract the inherent information decay in feature hierarchies, AGR forges a global anchor and establishes direct non-local pathways to broadcast this guidance from deep to shallow layers, ensuring precise and consistent segmentation. Quantitative and qualitative experimental results demonstrate that our proposed DGA-Net outperforms the state-of-the-art COD methods.
☆ SketchThinker-R1: Towards Efficient Sketch-Style Reasoning in Large Multimodal Models
Despite the empirical success of extensive, step-by-step reasoning in large multimodal models, long reasoning processes inevitably incur substantial computational overhead, i.e., in terms of higher token costs and increased response time, which undermines inference efficiency. In contrast, humans often employ sketch-style reasoning: a concise, goal-directed cognitive process that prioritizes salient information and enables efficient problem-solving. Inspired by this cognitive efficiency, we propose SketchThinker-R1, which incentivizes sketch-style reasoning ability in large multimodal models. Our method consists of three primary stages. In the Sketch-Mode Cold Start stage, we convert standard long reasoning process into sketch-style reasoning and finetune base multimodal model, instilling initial sketch-style reasoning capability. Next, we train SketchJudge Reward Model, which explicitly evaluates thinking process of model and assigns higher scores to sketch-style reasoning. Finally, we conduct Sketch-Thinking Reinforcement Learning under supervision of SketchJudge to further generalize sketch-style reasoning ability. Experimental evaluation on four benchmarks reveals that our SketchThinker-R1 achieves over 64% reduction in reasoning token cost without compromising final answer accuracy. Qualitative analysis further shows that sketch-style reasoning focuses more on key cues during problem solving.
comment: 28 pages, 11 figures
☆ Topology-aware Pathological Consistency Matching for Weakly-Paired IHC Virtual Staining
Immunohistochemical (IHC) staining provides crucial molecular characterization of tissue samples and plays an indispensable role in the clinical examination and diagnosis of cancers. However, compared with the commonly used Hematoxylin and Eosin (H&E) staining, IHC staining involves complex procedures and is both time-consuming and expensive, which limits its widespread clinical use. Virtual staining converts H&E images to IHC images, offering a cost-effective alternative to clinical IHC staining. Nevertheless, using adjacent slides as ground truth often results in weakly-paired data with spatial misalignment and local deformations, hindering effective supervised learning. To address these challenges, we propose a novel topology-aware framework for H&E-to-IHC virtual staining. Specifically, we introduce a Topology-aware Consistency Matching (TACM) mechanism that employs graph contrastive learning and topological perturbations to learn robust matching patterns despite spatial misalignments, ensuring structural consistency. Furthermore, we propose a Topology-constrained Pathological Matching (TCPM) mechanism that aligns pathological positive regions based on node importance to enhance pathological consistency. Extensive experiments on two benchmarks across four staining tasks demonstrate that our method outperforms state-of-the-art approaches, achieving superior generation quality with higher clinical relevance.
☆ StableDPT: Temporal Stable Monocular Video Depth Estimation
Applying single image Monocular Depth Estimation (MDE) models to video sequences introduces significant temporal instability and flickering artifacts. We propose a novel approach that adapts any state-of-the-art image-based (depth) estimation model for video processing by integrating a new temporal module - trainable on a single GPU in a few days. Our architecture StableDPT builds upon an off-the-shelf Vision Transformer (ViT) encoder and enhances the Dense Prediction Transformer (DPT) head. The core of our contribution lies in the temporal layers within the head, which use an efficient cross-attention mechanism to integrate information from keyframes sampled across the entire video sequence. This allows the model to capture global context and inter-frame relationships leading to more accurate and temporally stable depth predictions. Furthermore, we propose a novel inference strategy for processing videos of arbitrary length avoiding the scale misalignment and redundant computations associated with overlapping windows used in other methods. Evaluations on multiple benchmark datasets demonstrate improved temporal consistency, competitive state-of-the-art performance and on top 2x faster processing in real-world scenarios.
☆ Textile IR: A Bidirectional Intermediate Representation for Physics-Aware Fashion CAD
We introduce Textile IR, a bidirectional intermediate representation that connects manufacturing-valid CAD, physics-based simulation, and lifecycle assessment for fashion design. Unlike existing siloed tools where pattern software guarantees sewable outputs but understands nothing about drape, and physics simulation predicts behaviour but cannot automatically fix patterns, Textile IR provides the semantic glue for integration through a seven-layer Verification Ladder -- from cheap syntactic checks (pattern closure, seam compatibility) to expensive physics validation (drape simulation, stress analysis). The architecture enables bidirectional feedback: simulation failures suggest pattern modifications; material substitutions update sustainability estimates in real time; uncertainty propagates across the pipeline with explicit confidence bounds. We formalise fashion engineering as constraint satisfaction over three domains and demonstrate how Textile IR's scene-graph representation enables AI systems to manipulate garments as structured programs rather than pixel arrays. The framework addresses the compound uncertainty problem: when measurement errors in material testing, simulation approximations, and LCA database gaps combine, sustainability claims become unreliable without explicit uncertainty tracking. We propose six research priorities and discuss deployment considerations for fashion SMEs where integrated workflows reduce specialised engineering requirements. Key contribution: a formal representation that makes engineering constraints perceptible, manipulable, and immediately consequential -- enabling designers to navigate sustainability, manufacturability, and aesthetic tradeoffs simultaneously rather than discovering conflicts after costly physical prototyping.
comment: 20 pages, 8 figures, SI Technologies and Practices (Fashion Practice)
☆ DreamStyle: A Unified Framework for Video Stylization
Video stylization, an important downstream task of video generation models, has not yet been thoroughly explored. Its input style conditions typically include text, style image, and stylized first frame. Each condition has a characteristic advantage: text is more flexible, style image provides a more accurate visual anchor, and stylized first frame makes long-video stylization feasible. However, existing methods are largely confined to a single type of style condition, which limits their scope of application. Additionally, their lack of high-quality datasets leads to style inconsistency and temporal flicker. To address these limitations, we introduce DreamStyle, a unified framework for video stylization, supporting (1) text-guided, (2) style-image-guided, and (3) first-frame-guided video stylization, accompanied by a well-designed data curation pipeline to acquire high-quality paired video data. DreamStyle is built on a vanilla Image-to-Video (I2V) model and trained using a Low-Rank Adaptation (LoRA) with token-specific up matrices that reduces the confusion among different condition tokens. Both qualitative and quantitative evaluations demonstrate that DreamStyle is competent in all three video stylization tasks, and outperforms the competitors in style consistency and video quality.
comment: Github Page: https://lemonsky1995.github.io/dreamstyle/
☆ EarthVL: A Progressive Earth Vision-Language Understanding and Generation Framework
Earth vision has achieved milestones in geospatial object recognition but lacks exploration in object-relational reasoning, limiting comprehensive scene understanding. To address this, a progressive Earth vision-language understanding and generation framework is proposed, including a multi-task dataset (EarthVLSet) and a semantic-guided network (EarthVLNet). Focusing on city planning applications, EarthVLSet includes 10.9k sub-meter resolution remote sensing images, land-cover masks, and 761.5k textual pairs involving both multiple-choice and open-ended visual question answering (VQA) tasks. In an object-centric way, EarthVLNet is proposed to progressively achieve semantic segmentation, relational reasoning, and comprehensive understanding. The first stage involves land-cover segmentation to generate object semantics for VQA guidance. Guided by pixel-wise semantics, the object awareness based large language model (LLM) performs relational reasoning and knowledge summarization to generate the required answers. As for optimization, the numerical difference loss is proposed to dynamically add difference penalties, addressing the various objects' statistics. Three benchmarks, including semantic segmentation, multiple-choice, and open-ended VQA demonstrated the superiorities of EarthVLNet, yielding three future directions: 1) segmentation features consistently enhance VQA performance even in cross-dataset scenarios; 2) multiple-choice tasks show greater sensitivity to the vision encoder than to the language decoder; and 3) open-ended tasks necessitate advanced vision encoders and language decoders for an optimal performance. We believe this dataset and method will provide a beneficial benchmark that connects ''image-mask-text'', advancing geographical applications for Earth vision.
☆ AbductiveMLLM: Boosting Visual Abductive Reasoning Within MLLMs AAAI 2026
Visual abductive reasoning (VAR) is a challenging task that requires AI systems to infer the most likely explanation for incomplete visual observations. While recent MLLMs develop strong general-purpose multimodal reasoning capabilities, they fall short in abductive inference, as compared to human beings. To bridge this gap, we draw inspiration from the interplay between verbal and pictorial abduction in human cognition, and propose to strengthen abduction of MLLMs by mimicking such dual-mode behavior. Concretely, we introduce AbductiveMLLM comprising of two synergistic components: REASONER and IMAGINER. The REASONER operates in the verbal domain. It first explores a broad space of possible explanations using a blind LLM and then prunes visually incongruent hypotheses based on cross-modal causal alignment. The remaining hypotheses are introduced into the MLLM as targeted priors, steering its reasoning toward causally coherent explanations. The IMAGINER, on the other hand, further guides MLLMs by emulating human-like pictorial thinking. It conditions a text-to-image diffusion model on both the input video and the REASONER's output embeddings to "imagine" plausible visual scenes that correspond to verbal explanation, thereby enriching MLLMs' contextual grounding. The two components are trained jointly in an end-to-end manner. Experiments on standard VAR benchmarks show that AbductiveMLLM achieves state-of-the-art performance, consistently outperforming traditional solutions and advanced MLLMs.
comment: Accepted by AAAI 2026 as Oral. Code:https://github.com/ChangPtR/AbdMLLM
☆ ClearAIR: A Human-Visual-Perception-Inspired All-in-One Image Restoration AAAI 2026
All-in-One Image Restoration (AiOIR) has advanced significantly, offering promising solutions for complex real-world degradations. However, most existing approaches rely heavily on degradation-specific representations, often resulting in oversmoothing and artifacts. To address this, we propose ClearAIR, a novel AiOIR framework inspired by Human Visual Perception (HVP) and designed with a hierarchical, coarse-to-fine restoration strategy. First, leveraging the global priority of early HVP, we employ a Multimodal Large Language Model (MLLM)-based Image Quality Assessment (IQA) model for overall evaluation. Unlike conventional IQA, our method integrates cross-modal understanding to more accurately characterize complex, composite degradations. Building upon this overall assessment, we then introduce a region awareness and task recognition pipeline. A semantic cross-attention, leveraging semantic guidance unit, first produces coarse semantic prompts. Guided by this regional context, a degradation-aware module implicitly captures region-specific degradation characteristics, enabling more precise local restoration. Finally, to recover fine details, we propose an internal clue reuse mechanism. It operates in a self-supervised manner to mine and leverage the intrinsic information of the image itself, substantially enhancing detail restoration. Experimental results show that ClearAIR achieves superior performance across diverse synthetic and real-world datasets.
comment: Accepted to AAAI 2026. Project page: https://github.com/House-yuyu/ClearAIR
☆ AnyDepth: Depth Estimation Made Easy
Monocular depth estimation aims to recover the depth information of 3D scenes from 2D images. Recent work has made significant progress, but its reliance on large-scale datasets and complex decoders has limited its efficiency and generalization ability. In this paper, we propose a lightweight and data-centric framework for zero-shot monocular depth estimation. We first adopt DINOv3 as the visual encoder to obtain high-quality dense features. Secondly, to address the inherent drawbacks of the complex structure of the DPT, we design the Simple Depth Transformer (SDT), a compact transformer-based decoder. Compared to the DPT, it uses a single-path feature fusion and upsampling process to reduce the computational overhead of cross-scale feature fusion, achieving higher accuracy while reducing the number of parameters by approximately 85%-89%. Furthermore, we propose a quality-based filtering strategy to filter out harmful samples, thereby reducing dataset size while improving overall training quality. Extensive experiments on five benchmarks demonstrate that our framework surpasses the DPT in accuracy. This work highlights the importance of balancing model design and data quality for achieving efficient and generalizable zero-shot depth estimation. Code: https://github.com/AIGeeksGroup/AnyDepth. Website: https://aigeeksgroup.github.io/AnyDepth.
☆ Towards Zero-Shot Point Cloud Registration Across Diverse Scales, Scenes, and Sensor Setups ICCV 2025
Some deep learning-based point cloud registration methods struggle with zero-shot generalization, often requiring dataset-specific hyperparameter tuning or retraining for new environments. We identify three critical limitations: (a) fixed user-defined parameters (e.g., voxel size, search radius) that fail to generalize across varying scales, (b) learned keypoint detectors exhibit poor cross-domain transferability, and (c) absolute coordinates amplify scale mismatches between datasets. To address these three issues, we present BUFFER-X, a training-free registration framework that achieves zero-shot generalization through: (a) geometric bootstrapping for automatic hyperparameter estimation, (b) distribution-aware farthest point sampling to replace learned detectors, and (c) patch-level coordinate normalization to ensure scale consistency. Our approach employs hierarchical multi-scale matching to extract correspondences across local, middle, and global receptive fields, enabling robust registration in diverse environments. For efficiency-critical applications, we introduce BUFFER-X-Lite, which reduces total computation time by 43% (relative to BUFFER-X) through early exit strategies and fast pose solvers while preserving accuracy. We evaluate on a comprehensive benchmark comprising 12 datasets spanning object-scale, indoor, and outdoor scenes, including cross-sensor registration between heterogeneous LiDAR configurations. Results demonstrate that our approach generalizes effectively without manual tuning or prior knowledge of test domains. Code: https://github.com/MIT-SPARK/BUFFER-X.
comment: 18 pages, 15 figures. Extended version of our ICCV 2025 highlight paper [arXiv:2503.07940]. arXiv admin note: substantial text overlap with arXiv:2503.07940
☆ D$^3$R-DETR: DETR with Dual-Domain Density Refinement for Tiny Object Detection in Aerial Images IEEE
Detecting tiny objects plays a vital role in remote sensing intelligent interpretation, as these objects often carry critical information for downstream applications. However, due to the extremely limited pixel information and significant variations in object density, mainstream Transformer-based detectors often suffer from slow convergence and inaccurate query-object matching. To address these challenges, we propose D$^3$R-DETR, a novel DETR-based detector with Dual-Domain Density Refinement. By fusing spatial and frequency domain information, our method refines low-level feature maps and utilizes their rich details to predict more accurate object density map, thereby guiding the model to precisely localize tiny objects. Extensive experiments on the AI-TOD-v2 dataset demonstrate that D$^3$R-DETR outperforms existing state-of-the-art detectors for tiny object detection.
comment: This work has been submitted to the IEEE for possible publication
☆ Unveiling and Bridging the Functional Perception Gap in MLLMs: Atomic Visual Alignment and Hierarchical Evaluation via PET-Bench
While Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in tasks such as abnormality detection and report generation for anatomical modalities, their capability in functional imaging remains largely unexplored. In this work, we identify and quantify a fundamental functional perception gap: the inability of current vision encoders to decode functional tracer biodistribution independent of morphological priors. Identifying Positron Emission Tomography (PET) as the quintessential modality to investigate this disconnect, we introduce PET-Bench, the first large-scale functional imaging benchmark comprising 52,308 hierarchical QA pairs from 9,732 multi-site, multi-tracer PET studies. Extensive evaluation of 19 state-of-the-art MLLMs reveals a critical safety hazard termed the Chain-of-Thought (CoT) hallucination trap. We observe that standard CoT prompting, widely considered to enhance reasoning, paradoxically decouples linguistic generation from visual evidence in PET, producing clinically fluent but factually ungrounded diagnoses. To resolve this, we propose Atomic Visual Alignment (AVA), a simple fine-tuning strategy that enforces the mastery of low-level functional perception prior to high-level diagnostic reasoning. Our results demonstrate that AVA effectively bridges the perception gap, transforming CoT from a source of hallucination into a robust inference tool and improving diagnostic accuracy by up to 14.83%. Code and data are available at https://github.com/yezanting/PET-Bench.
comment: 9 pages, 6 figures, 6 tables
☆ Omni2Sound: Towards Unified Video-Text-to-Audio Generation
Training a unified model integrating video-to-audio (V2A), text-to-audio (T2A), and joint video-text-to-audio (VT2A) generation offers significant application flexibility, yet faces two unexplored foundational challenges: (1) the scarcity of high-quality audio captions with tight A-V-T alignment, leading to severe semantic conflict between multimodal conditions, and (2) cross-task and intra-task competition, manifesting as an adverse V2A-T2A performance trade-off and modality bias in the VT2A task. First, to address data scarcity, we introduce SoundAtlas, a large-scale dataset (470k pairs) that significantly outperforms existing benchmarks and even human experts in quality. Powered by a novel agentic pipeline, it integrates Vision-to-Language Compression to mitigate visual bias of MLLMs, a Junior-Senior Agent Handoff for a 5 times cost reduction, and rigorous Post-hoc Filtering to ensure fidelity. Consequently, SoundAtlas delivers semantically rich and temporally detailed captions with tight V-A-T alignment. Second, we propose Omni2Sound, a unified VT2A diffusion model supporting flexible input modalities. To resolve the inherent cross-task and intra-task competition, we design a three-stage multi-task progressive training schedule that converts cross-task competition into joint optimization and mitigates modality bias in the VT2A task, maintaining both audio-visual alignment and off-screen audio generation faithfulness. Finally, we construct VGGSound-Omni, a comprehensive benchmark for unified evaluation, including challenging off-screen tracks. With a standard DiT backbone, Omni2Sound achieves unified SOTA performance across all three tasks within a single model, demonstrating strong generalization across benchmarks with heterogeneous input conditions. The project page is at https://swapforward.github.io/Omni2Sound.
☆ HOLO: Homography-Guided Pose Estimator Network for Fine-Grained Visual Localization on SD Maps
Visual localization on standard-definition (SD) maps has emerged as a promising low-cost and scalable solution for autonomous driving. However, existing regression-based approaches often overlook inherent geometric priors, resulting in suboptimal training efficiency and limited localization accuracy. In this paper, we propose a novel homography-guided pose estimator network for fine-grained visual localization between multi-view images and standard-definition (SD) maps. We construct input pairs that satisfy a homography constraint by projecting ground-view features into the BEV domain and enforcing semantic alignment with map features. Then we leverage homography relationships to guide feature fusion and restrict the pose outputs to a valid feasible region, which significantly improves training efficiency and localization accuracy compared to prior methods relying on attention-based fusion and direct 3-DoF pose regression. To the best of our knowledge, this is the first work to unify BEV semantic reasoning with homography learning for image-to-map localization. Furthermore, by explicitly modeling homography transformations, the proposed framework naturally supports cross-resolution inputs, enhancing model flexibility. Extensive experiments on the nuScenes dataset demonstrate that our approach significantly outperforms existing state-of-the-art visual localization methods. Code and pretrained models will be publicly released to foster future research.
☆ Foreground-Aware Dataset Distillation via Dynamic Patch Selection
In this paper, we propose a foreground-aware dataset distillation method that enhances patch selection in a content-adaptive manner. With the rising computational cost of training large-scale deep models, dataset distillation has emerged as a promising approach for constructing compact synthetic datasets that retain the knowledge of their large original counterparts. However, traditional optimization-based methods often suffer from high computational overhead, memory constraints, and the generation of unrealistic, noise-like images with limited architectural generalization. Recent non-optimization methods alleviate some of these issues by constructing distilled data from real image patches, but the used rigid patch selection strategies can still discard critical information about the main objects. To solve this problem, we first leverage Grounded SAM2 to identify foreground objects and compute per-image foreground occupancy, from which we derive a category-wise patch decision threshold. Guided by these thresholds, we design a dynamic patch selection strategy that, for each image, either selects the most informative patch from multiple candidates or directly resizes the full image when the foreground dominates. This dual-path mechanism preserves more key information about the main objects while reducing redundant background content. Extensive experiments on multiple benchmarks show that the proposed method consistently improves distillation performance over existing approaches, producing more informative and representative distilled datasets and enhancing robustness across different architectures and image compositions.
☆ Loop Closure using AnyLoc Visual Place Recognition in DPV-SLAM
Loop closure is crucial for maintaining the accuracy and consistency of visual SLAM. We propose a method to improve loop closure performance in DPV-SLAM. Our approach integrates AnyLoc, a learning-based visual place recognition technique, as a replacement for the classical Bag of Visual Words (BoVW) loop detection method. In contrast to BoVW, which relies on handcrafted features, AnyLoc utilizes deep feature representations, enabling more robust image retrieval across diverse viewpoints and lighting conditions. Furthermore, we propose an adaptive mechanism that dynamically adjusts similarity threshold based on environmental conditions, removing the need for manual tuning. Experiments on both indoor and outdoor datasets demonstrate that our method significantly outperforms the original DPV-SLAM in terms of loop closure accuracy and robustness. The proposed method offers a practical and scalable solution for enhancing loop closure performance in modern SLAM systems.
comment: Accepted at IEEE/SICE International Symposium on System Integration(SII) 2026. 6 pages, 14 figures
☆ Robust Mesh Saliency GT Acquisition in VR via View Cone Sampling and Geometric Smoothing
Reliable 3D mesh saliency ground truth (GT) is essential for human-centric visual modeling in virtual reality (VR). However, current 3D mesh saliency GT acquisition methods are generally consistent with 2D image methods, ignoring the differences between 3D geometry topology and 2D image array. Current VR eye-tracking pipelines rely on single ray sampling and Euclidean smoothing, triggering texture attention and signal leakage across gaps. This paper proposes a robust framework to address these limitations. We first introduce a view cone sampling (VCS) strategy, which simulates the human foveal receptive field via Gaussian-distributed ray bundles to improve sampling robustness for complex topologies. Furthermore, a hybrid Manifold-Euclidean constrained diffusion (HCD) algorithm is developed, fusing manifold geodesic constraints with Euclidean scales to ensure topologically-consistent saliency propagation. By mitigating "topological short-circuits" and aliasing, our framework provides a high-fidelity 3D attention acquisition paradigm that aligns with natural human perception, offering a more accurate and robust baseline for 3D mesh saliency research.
☆ CAMO: Category-Agnostic 3D Motion Transfer from Monocular 2D Videos
Motion transfer from 2D videos to 3D assets is a challenging problem, due to inherent pose ambiguities and diverse object shapes, often requiring category-specific parametric templates. We propose CAMO, a category-agnostic framework that transfers motion to diverse target meshes directly from monocular 2D videos without relying on predefined templates or explicit 3D supervision. The core of CAMO is a morphology-parameterized articulated 3D Gaussian splatting model combined with dense semantic correspondences to jointly adapt shape and pose through optimization. This approach effectively alleviates shape-pose ambiguities, enabling visually faithful motion transfer for diverse categories. Experimental results demonstrate superior motion accuracy, efficiency, and visual coherence compared to existing methods, significantly advancing motion transfer in varied object categories and casual video scenarios.
comment: Project website: https://camo-project-page.github.io/
☆ GRRE: Leveraging G-Channel Removed Reconstruction Error for Robust Detection of AI-Generated Images
The rapid progress of generative models, particularly diffusion models and GANs, has greatly increased the difficulty of distinguishing synthetic images from real ones. Although numerous detection methods have been proposed, their accuracy often degrades when applied to images generated by novel or unseen generative models, highlighting the challenge of achieving strong generalization. To address this challenge, we introduce a novel detection paradigm based on channel removal reconstruction. Specifically, we observe that when the green (G) channel is removed from real images and reconstructed, the resulting reconstruction errors differ significantly from those of AI-generated images. Building upon this insight, we propose G-channel Removed Reconstruction Error (GRRE), a simple yet effective method that exploits this discrepancy for robust AI-generated image detection. Extensive experiments demonstrate that GRRE consistently achieves high detection accuracy across multiple generative models, including those unseen during training. Compared with existing approaches, GRRE not only maintains strong robustness against various perturbations and post-processing operations but also exhibits superior cross-model generalization. These results highlight the potential of channel-removal-based reconstruction as a powerful forensic tool for safeguarding image authenticity in the era of generative AI.
☆ DreamLoop: Controllable Cinemagraph Generation from a Single Photograph
Cinemagraphs, which combine static photographs with selective, looping motion, offer unique artistic appeal. Generating them from a single photograph in a controllable manner is particularly challenging. Existing image-animation techniques are restricted to simple, low-frequency motions and operate only in narrow domains with repetitive textures like water and smoke. In contrast, large-scale video diffusion models are not tailored for cinemagraph constraints and lack the specialized data required to generate seamless, controlled loops. We present DreamLoop, a controllable video synthesis framework dedicated to generating cinemagraphs from a single photo without requiring any cinemagraph training data. Our key idea is to adapt a general video diffusion model by training it on two objectives: temporal bridging and motion conditioning. This strategy enables flexible cinemagraph generation. During inference, by using the input image as both the first- and last- frame condition, we enforce a seamless loop. By conditioning on static tracks, we maintain a static background. Finally, by providing a user-specified motion path for a target object, our method provides intuitive control over the animation's trajectory and timing. To our knowledge, DreamLoop is the first method to enable cinemagraph generation for general scenes with flexible and intuitive controls. We demonstrate that our method produces high-quality, complex cinemagraphs that align with user intent, outperforming existing approaches.
comment: Project Page: https://anime26398.github.io/dreamloop.github.io/
♻ ☆ Aligning Text, Images, and 3D Structure Token-by-Token
Creating machines capable of understanding the world in 3D is essential in assisting designers that build and edit 3D environments and robots navigating and interacting within a three-dimensional space. Inspired by advances in language and image modeling, we investigate the potential of autoregressive models for a new modality: structured 3D scenes. To this end, we propose a unified LLM framework that aligns language, images, and 3D scenes and provide a detailed ''cookbook'' outlining critical design choices for achieving optimal training and performance addressing key questions related to data representation, modality-specific objectives, and more. We show how to tokenize complex 3D objects to incorporate into our structured 3D scene modality. We evaluate performance across four core 3D tasks -- rendering, recognition, instruction-following, and question-answering -- and four 3D datasets, synthetic and real-world. We show our model's effectiveness on reconstructing complete 3D scenes consisting of complex objects from a single image and on real-world 3D object recognition tasks. Project webpage: https://glab-caltech.github.io/kyvo/
comment: Project webpage: https://glab-caltech.github.io/kyvo/
♻ ☆ VisRet: Visualization Improves Knowledge-Intensive Text-to-Image Retrieval
Text-to-image retrieval (T2I retrieval) remains challenging because cross-modal embeddings often behave as bags of concepts, underrepresenting structured visual relationships such as pose and viewpoint. We propose Visualize-then-Retrieve (VisRet), a retrieval paradigm that mitigates this limitation of cross-modal similarity alignment. VisRet first projects textual queries into the image modality via T2I generation, then performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Across four benchmarks (Visual-RAG, INQUIRE-Rerank, Microsoft COCO, and our new Visual-RAG-ME featuring multi-entity comparisons), VisRet substantially outperforms cross-modal similarity matching and baselines that recast T2I retrieval as text-to-text similarity matching, improving nDCG@30 by 0.125 on average with CLIP as the retriever and by 0.121 with E5-V. For downstream question answering, VisRet increases accuracy on Visual-RAG and Visual-RAG-ME by 3.8% and 15.7% in top-1 retrieval, and by 3.9% and 11.1% in top-10 retrieval. Ablation studies show compatibility with different T2I instruction LLMs, T2I generation models, and downstream LLMs. VisRet provides a simple yet effective perspective for advancing in text-image retrieval. Our code and the new benchmark are publicly available at https://github.com/xiaowu0162/Visualize-then-Retrieve.
♻ ☆ LVLM-Aware Multimodal Retrieval for RAG-Based Medical Diagnosis with General-Purpose Models
Retrieving visual and textual information from medical literature and hospital records can enhance diagnostic accuracy for clinical image interpretation. However, multimodal retrieval-augmented diagnosis is highly challenging. We explore a lightweight mechanism for enhancing diagnostic performance of retrieval-augmented LVLMs. We train a lightweight LVLM-aware multimodal retriever, such that the retriever learns to return images and texts that guide the LVLM toward correct predictions. In our low-resource setting, we perform only lightweight fine-tuning with small amounts of data, and use only general-purpose backbone models, achieving competitive results in clinical classification and VQA tasks compared to medically pre-trained models with extensive training. In a novel analysis, we highlight a previously unexplored class of errors that we term inconsistent retrieval predictions: cases where different top-retrieved images yield different predictions for the same target. We find that these cases are challenging for all models, even for non-retrieval models, and that our retrieval optimization mechanism significantly improves these cases over standard RAG. However, our analysis also sheds light on gaps in the ability of LVLMs to utilize retrieved information for clinical predictions. Code and models available at: https://github.com/Nirmaz/JOMED.
♻ ☆ Machine-Learning Based Detection of Coronary Artery Calcification Using Synthetic Chest X-Rays
Coronary artery calcification (CAC) is a strong predictor of cardiovascular events, with CT-based Agatston scoring widely regarded as the clinical gold standard. However, CT is costly and impractical for large-scale screening, while chest X-rays (CXRs) are inexpensive but lack reliable ground truth labels, constraining deep learning development. Digitally reconstructed radiographs (DRRs) offer a scalable alternative by projecting CT volumes into CXR-like images while inheriting precise labels. In this work, we provide the first systematic evaluation of DRRs as a surrogate training domain for CAC detection. Using 667 CT scans from the COCA dataset, we generate synthetic DRRs and assess model capacity, super-resolution fidelity enhancement, preprocessing, and training strategies. Lightweight CNNs trained from scratch outperform large pretrained networks; pairing super-resolution with contrast enhancement yields significant gains; and curriculum learning stabilises training under weak supervision. Our best configuration achieves a mean AUC of 0.754, comparable to or exceeding prior CXR-based studies. These results establish DRRs as a scalable, label-rich foundation for CAC detection, while laying the foundation for future transfer learning and domain adaptation to real CXRs.
comment: 10 pages, 5 figures. Under review for MIDL 2026
♻ ☆ D^3ETOR: Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing for Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Weakly-Supervised Camouflaged Object Detection (WSCOD) aims to locate and segment objects that are visually concealed within their surrounding scenes, relying solely on sparse supervision such as scribble annotations. Despite recent progress, existing WSCOD methods still lag far behind fully supervised ones due to two major limitations: (1) the pseudo masks generated by general-purpose segmentation models (e.g., SAM) and filtered via rules are often unreliable, as these models lack the task-specific semantic understanding required for effective pseudo labeling in COD; and (2) the neglect of inherent annotation bias in scribbles, which hinders the model from capturing the global structure of camouflaged objects. To overcome these challenges, we propose ${D}^{3}$ETOR, a two-stage WSCOD framework consisting of Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing. In the first stage, we introduce an adaptive entropy-driven point sampling method and a multi-agent debate mechanism to enhance the capability of SAM for COD, improving the interpretability and precision of pseudo masks. In the second stage, we design FADeNet, which progressively fuses multi-level frequency-aware features to balance global semantic understanding with local detail modeling, while dynamically reweighting supervision strength across regions to alleviate scribble bias. By jointly exploiting the supervision signals from both the pseudo masks and scribble semantics, ${D}^{3}$ETOR significantly narrows the gap between weakly and fully supervised COD, achieving state-of-the-art performance on multiple benchmarks.
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ Quantifying task-relevant representational similarity using decision variable correlation NeurIPS 2025
Previous studies have compared neural activities in the visual cortex to representations in deep neural networks trained on image classification. Interestingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the image-by-image correlation between the decoded decisions based on the internal neural representations in a classification task. Thus, it can capture task-relevant information rather than general representational alignment. We evaluate DVC using monkey V4/IT recordings and network models trained on image classification tasks. We find that model-model similarity is comparable to monkey-monkey similarity, whereas model-monkey similarity is consistently lower. Strikingly, DVC decreases with increasing network performance on ImageNet-1k. Adversarial training does not improve model-monkey similarity in task-relevant dimensions assessed using DVC, although it markedly increases the model-model similarity. Similarly, pre-training on larger datasets does not improve model-monkey similarity. These results suggest a divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.
comment: Camera-ready version; accepted at NeurIPS 2025
♻ ☆ A Multidimensional AI-powered Framework for Analyzing Tourist Perception in Historic Urban Quarters: A Case Study in Shanghai
Historic urban quarters play a vital role in preserving cultural heritage while serving as vibrant spaces for tourism and everyday life. Understanding how tourists perceive these environments is essential for sustainable, human-centered urban planning. This study proposes a multidimensional AI-powered framework for analyzing tourist perception in historic urban quarters using multimodal data from social media. Applied to twelve historic quarters in central Shanghai, the framework integrates focal point extraction, color theme analysis, and sentiment mining. Visual focus areas are identified from tourist-shared photos using a fine-tuned semantic segmentation model. To assess aesthetic preferences, dominant colors are extracted using a clustering method, and their spatial distribution across quarters is analyzed. Color themes are further compared between social media photos and real-world street views, revealing notable shifts. This divergence highlights potential gaps between visual expectations and the built environment, reflecting both stylistic preferences and perceptual bias. Tourist reviews are evaluated through a hybrid sentiment analysis approach combining a rule-based method and a multi-task BERT model. Satisfaction is assessed across four dimensions: tourist activities, built environment, service facilities, and business formats. The results reveal spatial variations in aesthetic appeal and emotional response. Rather than focusing on a single technical innovation, this framework offers an integrated, data-driven approach to decoding tourist perception and contributes to informed decision-making in tourism, heritage conservation, and the design of aesthetically engaging public spaces.
♻ ☆ PartHOI: Part-based Hand-Object Interaction Transfer via Generalized Cylinders
Learning-based methods to understand and model hand-object interactions (HOI) require a large amount of high-quality HOI data. One way to create HOI data is to transfer hand poses from a source object to another based on the objects' geometry. However, current methods for transferring hand poses between objects rely on shape matching, limiting the ability to transfer poses across different categories due to differences in their shapes and sizes. We observe that HOI often involves specific semantic parts of objects, which often have more consistent shapes across categories. In addition, constructing size-invariant correspondences between these parts is important for cross-category transfer. Based on these insights, we introduce a novel method PartHOI for part-based HOI transfer. Using a generalized cylinder representation to parameterize an object parts' geometry, PartHOI establishes a robust geometric correspondence between object parts, and enables the transfer of contact points. Given the transferred points, we optimize a hand pose to fit the target object well. Qualitative and quantitative results demonstrate that our method can generalize HOI transfers well even for cross-category objects, and produce high-fidelity results that are superior to the existing methods.
comment: 14 pages, 12 figures, this paper has been accepted by Computational Visual Media Journal (CVMJ) but has not been published yet
♻ ☆ SAGOnline: Segment Any Gaussians Online
3D Gaussian Splatting has emerged as a powerful paradigm for explicit 3D scene representation, yet achieving efficient and consistent 3D segmentation remains challenging. Existing segmentation approaches typically rely on high-dimensional feature lifting, which causes costly optimization, implicit semantics, and task-specific constraints. We present \textbf{Segment Any Gaussians Online (SAGOnline)}, a unified, zero-shot framework that achieves real-time, cross-view consistent segmentation without scene-specific training. SAGOnline decouples the monolithic segmentation problem into lightweight sub-tasks. By integrating video foundation models (e.g., SAM 2), we first generate temporally consistent 2D masks across rendered views. Crucially, instead of learning continuous feature fields, we introduce a \textbf{Rasterization-aware Geometric Consensus} mechanism that leverages the traceability of the Gaussian rasterization pipeline. This allows us to deterministically map 2D predictions to explicit, discrete 3D primitive labels in real-time. This discrete representation eliminates the memory and computational burden of feature distillation, enabling instant inference. Extensive evaluations on NVOS and SPIn-NeRF benchmarks demonstrate that SAGOnline achieves state-of-the-art accuracy (92.7\% and 95.2\% mIoU) while operating at the fastest speed at 27 ms per frame. By providing a flexible interface for diverse foundation models, our framework supports instant prompt, instance, and semantic segmentation, paving the way for interactive 3D understanding in AR/VR and robotics.
comment: 11 pages, 6 figures
♻ ☆ Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework
Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
comment: Update new version
♻ ☆ Robust Egoistic Rigid Body Localization
We consider a robust and self-reliant (or "egoistic") variation of the rigid body localization (RBL) problem, in which a primary rigid body seeks to estimate the pose (i.e., location and orientation) of another rigid body (or "target"), relative to its own, without the assistance of external infrastructure, without prior knowledge of the shape of the target, and taking into account the possibility that the available observations are incomplete. Three complementary contributions are then offered for such a scenario. The first is a method to estimate the translation vector between the center point of both rigid bodies, which unlike existing techniques does not require that both objects have the same shape or even the same number of landmark points. This technique is shown to significantly outperform the state-of-the-art (SotA) under complete information, but to be sensitive to data erasures, even when enhanced by matrix completion methods. The second contribution, designed to offer improved performance in the presence of incomplete information, offers a robust alternative to the latter, at the expense of a slight relative loss under complete information. Finally, the third contribution is a scheme for the estimation of the rotation matrix describing the relative orientation of the target rigid body with respect to the primary. Comparisons of the proposed schemes and SotA techniques demonstrate the advantage of the contributed methods in terms of root mean square error (RMSE) performance under fully complete information and incomplete conditions.
♻ ☆ BusterX++: Towards Unified Cross-Modal AI-Generated Content Detection and Explanation with MLLM
Recent advances in generative AI have dramatically improved image and video synthesis capabilities, significantly increasing the risk of misinformation through sophisticated fake content. In response, detection methods have evolved from traditional approaches to multimodal large language models (MLLMs), offering enhanced transparency and interpretability in identifying synthetic media. However, current detection systems remain fundamentally limited by their single-modality design. These approaches analyze images or videos separately, making them ineffective against synthetic content that combines multiple media formats. To address these challenges, we introduce \textbf{BusterX++}, a framework for unified detection and explanation of synthetic image and video, with a direct reinforcement learning (RL) post-training strategy. To enable comprehensive evaluation, we also present \textbf{GenBuster++}, a unified benchmark leveraging state-of-the-art image and video generation techniques. This benchmark comprises 4,000 images and video clips, meticulously curated by human experts to ensure high quality, diversity, and real-world applicability. Extensive experiments demonstrate the effectiveness and generalizability of our approach.
♻ ☆ Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
♻ ☆ PhysSFI-Net: Physics-informed Geometric Learning of Skeletal and Facial Interactions for Orthognathic Surgical Outcome Prediction
Orthognathic surgery repositions jaw bones to restore occlusion and enhance facial aesthetics. Accurate simulation of postoperative facial morphology is essential for preoperative planning. However, traditional biomechanical models are computationally expensive, while geometric deep learning approaches often lack interpretability. In this study, we develop and validate a physics-informed geometric deep learning framework named PhysSFI-Net for precise prediction of soft tissue deformation following orthognathic surgery. PhysSFI-Net consists of three components: a hierarchical graph module with craniofacial and surgical plan encoders combined with attention mechanisms to extract skeletal-facial interaction features; a Long Short-Term Memory (LSTM)-based sequential predictor for incremental soft tissue deformation; and a biomechanics-inspired module for high-resolution facial surface reconstruction. Model performance was assessed using point cloud shape error (Hausdorff distance), surface deviation error, and landmark localization error (Euclidean distances of craniomaxillofacial landmarks) between predicted facial shapes and corresponding ground truths. A total of 135 patients who underwent combined orthodontic and orthognathic treatment were included for model training and validation. Quantitative analysis demonstrated that PhysSFI-Net achieved a point cloud shape error of 1.070 +/- 0.088 mm, a surface deviation error of 1.296 +/- 0.349 mm, and a landmark localization error of 2.445 +/- 1.326 mm. Comparative experiments indicated that PhysSFI-Net outperformed the state-of-the-art method ACMT-Net in prediction accuracy. In conclusion, PhysSFI-Net enables interpretable, high-resolution prediction of postoperative facial morphology with superior accuracy, showing strong potential for clinical application in orthognathic surgical planning and simulation.
comment: 29 pages, 8 figures
♻ ☆ CVBench: Benchmarking Cross-Video Synergies for Complex Multimodal Reasoning
While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their capability for spatiotemporal pattern reasoning across multiple videos remains a critical gap in pattern recognition research. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first diagnostic benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to analyze and integrate spatiotemporal patterns from dynamic visual streams. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 63.5% accuracy on causal reasoning tasks, compared to the 91.3% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLMs architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for advancing pattern recognition methodologies in multi-video scenarios, providing architectural insights for next-generation models. The data and evaluation code are available at: https://github.com/Hokhim2/CVBench.
♻ ☆ FFP-300K: Scaling First-Frame Propagation for Generalizable Video Editing
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
♻ ☆ ViSTA-SLAM: Visual SLAM with Symmetric Two-view Association 3DV 2026
We present ViSTA-SLAM as a real-time monocular visual SLAM system that operates without requiring camera intrinsics, making it broadly applicable across diverse camera setups. At its core, the system employs a lightweight symmetric two-view association (STA) model as the frontend, which simultaneously estimates relative camera poses and regresses local pointmaps from only two RGB images. This design reduces model complexity significantly, the size of our frontend is only 35\% that of comparable state-of-the-art methods, while enhancing the quality of two-view constraints used in the pipeline. In the backend, we construct a specially designed Sim(3) pose graph that incorporates loop closures to address accumulated drift. Extensive experiments demonstrate that our approach achieves superior performance in both camera tracking and dense 3D reconstruction quality compared to current methods. Github repository: https://github.com/zhangganlin/vista-slam
comment: Accepted by 3DV 2026, project page: https://ganlinzhang.xyz/vista-slam/
♻ ☆ VLN-MME: Diagnosing MLLMs as Language-guided Visual Navigation agents
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue spatial reasoning and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their 3D spatial reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.
♻ ☆ CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce \textbf{CaTS-Bench}, a comprehensive benchmark for \textbf{C}ontext-\textbf{a}ware \textbf{T}ime \textbf{S}eries reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
♻ ☆ UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose modality-aware routing, which dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it, and further justify its effectiveness with a theoretical analysis. Moreover, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 10 benchmarks of multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
♻ ☆ Efficient and Robust Video Defense Framework against 3D-field Personalized Talking Face
State-of-the-art 3D-field video-referenced Talking Face Generation (TFG) methods synthesize high-fidelity personalized talking-face videos in real time by modeling 3D geometry and appearance from reference portrait video. This capability raises significant privacy concerns regarding malicious misuse of personal portraits. However, no efficient defense framework exists to protect such videos against 3D-field TFG methods. While image-based defenses could apply per-frame 2D perturbations, they incur prohibitive computational costs, severe video quality degradation, failing to disrupt 3D information for video protection. To address this, we propose a novel and efficient video defense framework against 3D-field TFG methods, which protects portrait video by perturbing the 3D information acquisition process while maintain high-fidelity video quality. Specifically, our method introduces: (1) a similarity-guided parameter sharing mechanism for computational efficiency, and (2) a multi-scale dual-domain attention module to jointly optimize spatial-frequency perturbations. Extensive experiments demonstrate that our proposed framework exhibits strong defense capability and achieves a 47x acceleration over the fastest baseline while maintaining high fidelity. Moreover, it remains robust against scaling operations and state-of-the-art purification attacks, and the effectiveness of our design choices is further validated through ablation studies. Our project is available at https://github.com/Richen7418/VDF.
♻ ☆ SignX: Continuous Sign Recognition in Compact Pose-Rich Latent Space
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID Glosses, which serve to uniquely identify ASL signs. This paper proposes SignX, a novel framework for continuous sign language recognition in compact pose-rich latent space. First, we construct a unified latent representation that encodes heterogeneous pose formats (SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation) into a compact, information-dense space. Second, we train a ViT-based Video2Pose module to extract this latent representation directly from raw videos. Finally, we develop a temporal modeling and sequence refinement method that operates entirely in this latent space. This multi-stage design achieves end-to-end sign language recognition while significantly reducing computational consumption. Experimental results demonstrate that SignX achieves state-of-the-art accuracy on continuous sign language recognition.
comment: 23 pages, CSLR SOTA (2026). More demo at https://signerx.github.io/SignX/
♻ ☆ Scene-Aware Vectorized Memory Multi-Agent Framework with Cross-Modal Differentiated Quantization VLMs for Visually Impaired Assistance
Visually impaired individuals face significant challenges in environmental perception. Traditional assistive technologies often lack adaptive intelligence, focusing on individual components rather than integrated systems. While Vision-Language Models (VLMs) offer a promising path to richer, integrated understanding, their deployment is severely limited by substantial computational requirements, demanding dozens of gigabytes of memory. To address these gaps in computational efficiency and integrated design, this study proposes a dual technological innovation framework: a cross-modal differentiated quantization framework for VLMs and a scene-aware vectorized memory multi-agent system. The quantization framework implements differentiated strategies, reducing memory from 38GB to 11.3GB. The multi-agent system uses vectorized memory and perception-memory-reasoning workflows to provide environmental information beyond the current view, achieving 2.83-3.52s latency to initial speech output. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory. This research advances computational efficiency and assistive technology, offering comprehensive assistance in scene perception, text recognition, and navigation.
comment: 28 pages,9 figures
♻ ☆ The Color-Clinical Decoupling: Why Perceptual Calibration Fails Clinical Biomarkers in Smartphone Dermatology
Smartphone-based tele-dermatology assumes that colorimetric calibration ensures clinical reliability, yet this remains untested for underrepresented skin phototypes. We investigated whether standard calibration translates to reliable clinical biomarkers using 43,425 images from 965 Korean subjects (Fitzpatrick III-IV) across DSLR, tablet, and smartphone devices. While Linear Color Correction Matrix (CCM) normalization reduced color error by 67-77% -- achieving near-clinical accuracy (Delta E < 2.3) -- this success did not translate to biomarker reliability. We identify a phenomenon termed "color-clinical decoupling": despite perceptual accuracy, the Individual Typology Angle (ITA) showed poor inter-device agreement (ICC = 0.40), while the Melanin Index achieved good agreement (ICC = 0.77). This decoupling is driven by the ITA formula's sensitivity to b* channel noise and is further compounded by anatomical variance. Facial region accounts for 25.2% of color variance -- 3.6x greater than device effects (7.0%) -- challenging the efficacy of single-patch calibration. Our results demonstrate that current colorimetric standards are insufficient for clinical-grade biomarker extraction, necessitating region-aware protocols for mobile dermatology.
♻ ☆ TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types
We present TEyeD, the world's largest unified public data set of eye images taken with head-mounted devices. TEyeD was acquired with seven different head-mounted eye trackers. Among them, two eye trackers were integrated into virtual reality (VR) or augmented reality (AR) devices. The images in TEyeD were obtained from various tasks, including car rides, simulator rides, outdoor sports activities, and daily indoor activities. The data set includes 2D and 3D landmarks, semantic segmentation, 3D eyeball annotation and the gaze vector and eye movement types for all images. Landmarks and semantic segmentation are provided for the pupil, iris and eyelids. Video lengths vary from a few minutes to several hours. With more than 20 million carefully annotated images, TEyeD provides a unique, coherent resource and a valuable foundation for advancing research in the field of computer vision, eye tracking and gaze estimation in modern VR and AR applications. Download: https://es-cloud.cs.uni-tuebingen.de/d/8e2ab8c3fdd444e1a135/?p=%2FTEyeDS&mode=list Alternative Download: https://hctlsrva.edu.sot.tum.de/TEyeDS/
comment: Download: https://es-cloud.cs.uni-tuebingen.de/d/8e2ab8c3fdd444e1a135/?p=%2FTEyeDS&mode=list Alternative Download: https://hctlsrva.edu.sot.tum.de/TEyeDS/
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ Teeth3DS+: An Extended Benchmark for Intraoral 3D Scans Analysis
Intraoral 3D scanning is now widely adopted in modern dentistry and plays a central role in supporting key tasks such as tooth segmentation, detection, labeling, and dental landmark identification. Accurate analysis of these scans is essential for orthodontic and restorative treatment planning, as it enables automated workflows and minimizes the need for manual intervention. However, the development of robust learning-based solutions remains challenging due to the limited availability of high-quality public datasets and standardized benchmarks. This article presents Teeth3DS+, an extended public benchmark dedicated to intraoral 3D scan analysis. Developed in the context of the MICCAI 3DTeethSeg and 3DTeethLand challenges, Teeth3DS+ supports multiple fundamental tasks, including tooth detection, segmentation, labeling, 3D modeling, and dental landmark identification. The dataset consists of rigorously curated intraoral scans acquired using state-of-the-art scanners and validated by experienced orthodontists and dental surgeons. In addition to the data, Teeth3DS+ provides standardized data splits and evaluation protocols to enable fair and reproducible comparison of methods, with the goal of fostering progress in learning-based analysis of 3D dental scans. Detailed instructions for accessing the dataset are available at https://crns-smartvision.github.io/teeth3ds
comment: Draft
♻ ☆ How Many Images Does It Take? Estimating Imitation Thresholds in Text-to-Image Models NeurIPS 2024
Text-to-image models are trained using large datasets of image-text pairs collected from the internet. These datasets often include copyrighted and private images. Training models on such datasets enables them to generate images that might violate copyright laws and individual privacy. This phenomenon is termed imitation -- generation of images with content that has recognizable similarity to its training images. In this work we estimate the point at which a model was trained on enough instances of a concept to be able to imitate it -- the imitation threshold. We posit this question as a new problem and propose an efficient approach that estimates the imitation threshold without incurring the colossal cost of training these models from scratch. We experiment with two domains -- human faces and art styles, and evaluate four text-to-image models that were trained on three pretraining datasets. We estimate the imitation threshold of these models to be in the range of 200-700 images, depending on the domain and the model. The imitation threshold provides an empirical basis for copyright violation claims and acts as a guiding principle for text-to-image model developers that aim to comply with copyright and privacy laws. Website: https://how-many-van-goghs-does-it-take.github.io/. Code: https://github.com/vsahil/MIMETIC-2.
comment: Accepted at TMLR 2025, ATTRIB, RegML, and SafeGenAI workshops at NeurIPS 2024 and NLLP Workshop 2024. https://openreview.net/forum?id=x0qJo7SPhs
♻ ☆ Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
♻ ☆ Spatial Polarization Multiplexing: Single-Shot Invisible Shape and Reflectance Recovery
We propose spatial polarization multiplexing (SPM) for joint sensing of shape and reflectance of a static or dynamic deformable object, which is also invisible to the naked eye. Past structured-light methods are limited to shape acquisition and cannot recover reflectance as they alter scene appearance. Our key idea is to spatially multiplex a polarization pattern to encode the incident ray and also densely sample the reflected light. We derive a quantized polarized light pattern that can be robustly and uniquely decoded from the reflected Angle of Linear Polarization (AoLP) values. It also enables single-shot disentanglement of polarimetric diffuse and specular reflections for accurate BRDF estimation. We achieve this spatial polarization multiplexing (SPM) with a constrained de Bruijn sequence. We validate this novel invisible single-shot shape and reflectance method with real static and dynamic objects. The results demonstrate the effectiveness of SPM for accurate shape and BRDF measurement which opens new avenues of application for 3D sensing thanks to its invisibility and ability to jointly recover the radiometric properties.
comment: Project page: https://vision.ist.i.kyoto-u.ac.jp/research/spm/
♻ ☆ HAPNet: Toward Superior RGB-Thermal Scene Parsing via Hybrid, Asymmetric, and Progressive Heterogeneous Feature Fusion
Data-fusion networks have shown significant promise for RGB-thermal scene parsing. However, the majority of existing studies have relied on symmetric duplex encoders for heterogeneous feature extraction and fusion, paying inadequate attention to the inherent differences between RGB and thermal modalities. Recent progress in vision foundation models (VFMs) trained through self-supervision on vast amounts of unlabeled data has proven their ability to extract informative, general-purpose features. However, this potential has yet to be fully leveraged in the domain. In this study, we take one step toward this new research area by exploring a feasible strategy to fully exploit VFM features for RGB-thermal scene parsing. Specifically, we delve deeper into the unique characteristics of RGB and thermal modalities, thereby designing a hybrid, asymmetric encoder that incorporates both a VFM and a convolutional neural network. This design allows for more effective extraction of complementary heterogeneous features, which are subsequently fused in a dual-path, progressive manner. Moreover, we introduce an auxiliary task to further enrich the local semantics of the fused features, thereby improving the overall performance of RGB-thermal scene parsing. Our proposed HAPNet, equipped with all these components, demonstrates superior performance compared to all other state-of-the-art RGB-thermal scene parsing networks, achieving top ranks across three widely used public RGB-thermal scene parsing datasets. We believe this new paradigm has opened up new opportunities for future developments in data-fusion scene parsing approaches.
comment: 16 pages, 4 figures. Accepted to the Biomimetic Intelligence and Robotics
♻ ☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
♻ ☆ E$^2$AT: Multimodal Jailbreak Defense via Dynamic Joint Optimization for Multimodal Large Language Models
Research endeavors have been made in learning robust Multimodal Large Language Models (MLLMs) against jailbreak attacks. However, existing methods for improving MLLMs' robustness still face critical challenges: \ding{172} how to efficiently tune massive weight parameters and \ding{173} how to ensure robustness against attacks across both visual and textual modalities. To this end, we propose an \textbf{E}fficient \textbf{E}nd-to-end \textbf{A}dversarial \textbf{T}raining (E$^2$AT) framework for both visual and textual adversarial attacks. Specifically, for the visual aspect, E$^2$AT incorporates an efficient projector-based AT module that aligns the attack samples at the feature level. For training objectives, we propose a Dynamic Joint Multimodal Optimization (DJMO) strategy to enhance generalization ability against jailbreak attacks by dynamically adjusting weights between normal and adversarial objectives. Extensive experiments are conducted with five major jailbreak attack methods across three mainstream MLLMs. Results demonstrate that our E$^2$AT achieves the state-of-the-art performance, outperforming existing baselines by an average margin of 34\% across text and image modalities, while maintaining clean task performance. Furthermore, evaluations of real-world embodied intelligent systems highlight the practical applicability of E$^2$AT, paving the way for the development of more secure and reliable multimodal systems. Our code is available on \href{https://anonymous.4open.science/r/E2AT_568}{\textcolor{red}{https://anonymous.4open.science/r/E2AT\_568}}.
♻ ☆ Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats NeurIPS 2025
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.
comment: Accepted to NeurIPS 2025, Project Page: https://github.com/SooLab/AllPath
♻ ☆ Learning Visual Hierarchies in Hyperbolic Space for Image Retrieval
Structuring latent representations in a hierarchical manner enables models to learn patterns at multiple levels of abstraction. However, most prevalent image understanding models focus on visual similarity, and learning visual hierarchies is relatively unexplored. In this work, for the first time, we introduce a learning paradigm that can encode user-defined multi-level complex visual hierarchies in hyperbolic space without requiring explicit hierarchical labels. As a concrete example, first, we define a part-based image hierarchy using object-level annotations within and across images. Then, we introduce an approach to enforce the hierarchy using contrastive loss with pairwise entailment metrics. Finally, we discuss new evaluation metrics to effectively measure hierarchical image retrieval. Encoding these complex relationships ensures that the learned representations capture semantic and structural information that transcends mere visual similarity. Experiments in part-based image retrieval show significant improvements in hierarchical retrieval tasks, demonstrating the capability of our model in capturing visual hierarchies.
♻ ☆ RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.51 and an F1score of 96.13 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; the RSwinV2 vector has thus proved its validity as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 17 Pages, 7 Figures, 4 Tables
♻ ☆ Mitigating Error Accumulation in Co-Speech Motion Generation via Global Rotation Diffusion and Multi-Level Constraints AAAI 2026
Reliable co-speech motion generation requires precise motion representation and consistent structural priors across all joints. Existing generative methods typically operate on local joint rotations, which are defined hierarchically based on the skeleton structure. This leads to cumulative errors during generation, manifesting as unstable and implausible motions at end-effectors. In this work, we propose GlobalDiff, a diffusion-based framework that operates directly in the space of global joint rotations for the first time, fundamentally decoupling each joint's prediction from upstream dependencies and alleviating hierarchical error accumulation. To compensate for the absence of structural priors in global rotation space, we introduce a multi-level constraint scheme. Specifically, a joint structure constraint introduces virtual anchor points around each joint to better capture fine-grained orientation. A skeleton structure constraint enforces angular consistency across bones to maintain structural integrity. A temporal structure constraint utilizes a multi-scale variational encoder to align the generated motion with ground-truth temporal patterns. These constraints jointly regularize the global diffusion process and reinforce structural awareness. Extensive evaluations on standard co-speech benchmarks show that GlobalDiff generates smooth and accurate motions, improving the performance by 46.0 % compared to the current SOTA under multiple speaker identities.
comment: AAAI 2026
♻ ☆ Go with Your Gut: Scaling Confidence for Autoregressive Image Generation
Test-time scaling (TTS) has demonstrated remarkable success in enhancing large language models, yet its application to next-token prediction (NTP) autoregressive (AR) image generation remains largely uncharted. Existing TTS approaches for visual AR (VAR), which rely on frequent partial decoding and external reward models, are ill-suited for NTP-based image generation due to the inherent incompleteness of intermediate decoding results. To bridge this gap, we introduce ScalingAR, the first TTS framework specifically designed for NTP-based AR image generation that eliminates the need for early decoding or auxiliary rewards. ScalingAR leverages token entropy as a novel signal in visual token generation and operates at two complementary scaling levels: (i) Profile Level, which streams a calibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy Level, which utilizes this state to adaptively terminate low-confidence trajectories and dynamically schedule guidance for phase-appropriate conditioning strength. Experiments on both general and compositional benchmarks show that ScalingAR (1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) efficiently reduces visual token consumption by 62.0% while outperforming baselines, and (3) successfully enhances robustness, mitigating performance drops by 26.0% in challenging scenarios.
comment: Code: https://github.com/EnVision-Research/ScalingAR
♻ ☆ DenseSplat: Densifying Gaussian Splatting SLAM with Neural Radiance Prior IEEE
Gaussian SLAM systems excel in real-time rendering and fine-grained reconstruction compared to NeRF-based systems. However, their reliance on extensive keyframes is impractical for deployment in real-world robotic systems, which typically operate under sparse-view conditions that can result in substantial holes in the map. To address these challenges, we introduce DenseSplat, the first SLAM system that effectively combines the advantages of NeRF and 3DGS. DenseSplat utilizes sparse keyframes and NeRF priors for initializing primitives that densely populate maps and seamlessly fill gaps. It also implements geometry-aware primitive sampling and pruning strategies to manage granularity and enhance rendering efficiency. Moreover, DenseSplat integrates loop closure and bundle adjustment, significantly enhancing frame-to-frame tracking accuracy. Extensive experiments on multiple large-scale datasets demonstrate that DenseSplat achieves superior performance in tracking and mapping compared to current state-of-the-art methods.
comment: IEEE Transactions on Visualization and Computer Graphics
♻ ☆ FLUID: Training-Free Face De-identification via Latent Identity Substitution
Current face de-identification methods that replace identifiable cues in the face region with other sacrifices utilities contributing to realism, such as age and gender. To retrieve the damaged realism, we present FLUID (Face de-identification in the Latent space via Utility-preserving Identity Displacement), a single-input face de-identification framework that directly replaces identity features in the latent space of a pretrained diffusion model without affecting the model's weights. We reinterpret face de-identification as an image editing task in the latent h-space of a pretrained unconditional diffusion model. Our framework estimates identity-editing directions through optimization guided by loss functions that encourage attribute preservation while suppressing identity signals. We further introduce both linear and geodesic (tangent-based) editing schemes to effectively navigate the latent manifold. Experiments on CelebA-HQ and FFHQ show that FLUID achieves a superior balance between identity suppression and attribute preservation, outperforming existing de-identification approaches in both qualitative and quantitative evaluations.
♻ ☆ RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes. See the project page at https://zhoues.github.io/RoboTracer.
comment: Project page: https://zhoues.github.io/RoboTracer
♻ ☆ Benchmarking CNN and Transformer-Based Object Detectors for UAV Solar Panel Inspection
Timely and accurate detection of defects and contaminants in solar panels is critical for maintaining the efficiency and reliability of photovoltaic (PV) systems. While recent studies have applied deep learning to PV inspection, fair benchmarking across detector architectures and unbiased handling of class imbalance remain limited. This work presents a comprehensive benchmark of convolutional and transformer-based object detectors on UAV-captured RGB imagery of solar panels. It introduces a class-targeted augmentation strategy applied exclusively to the training split to mitigate imbalance without compromising evaluation integrity. Faster R-CNN with ResNet50 and MobileNetV3 backbones, RetinaNet with ResNet50, YOLOv5, YOLOv8, and Swin Transformer backbones integrated with Faster R-CNN (Tiny, Small, and Base variants) are evaluated. Performance is assessed using mean Average Precision (mAP) across multiple IoU thresholds, precision, recall, F1 score, and inference throughput to enable accuracy-throughput tradeoff analysis relevant to UAV deployment. Experimental results show that Faster R-CNN with a ResNet50 backbone achieves the highest localization accuracy, with mAP@0.5 of 0.893 and mAP@0.5:0.95 of 0.759, whereas the MobileNetV3 variant provides the best overall reliability balance, achieving recall of 0.745, F1-score of 0.809, and accuracy of 0.679 on the test set. The dataset and code will be released upon acceptance of the paper.
♻ ☆ AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ SoulX-FlashTalk: Real-Time Infinite Streaming of Audio-Driven Avatars via Self-Correcting Bidirectional Distillation
Deploying massive diffusion models for real-time, infinite-duration, audio-driven avatar generation presents a significant engineering challenge, primarily due to the conflict between computational load and strict latency constraints. Existing approaches often compromise visual fidelity by enforcing strictly unidirectional attention mechanisms or reducing model capacity. To address this problem, we introduce \textbf{SoulX-FlashTalk}, a 14B-parameter framework optimized for high-fidelity real-time streaming. Diverging from conventional unidirectional paradigms, we use a \textbf{Self-correcting Bidirectional Distillation} strategy that retains bidirectional attention within video chunks. This design preserves critical spatiotemporal correlations, significantly enhancing motion coherence and visual detail. To ensure stability during infinite generation, we incorporate a \textbf{Multi-step Retrospective Self-Correction Mechanism}, enabling the model to autonomously recover from accumulated errors and preventing collapse. Furthermore, we engineered a full-stack inference acceleration suite incorporating hybrid sequence parallelism, Parallel VAE, and kernel-level optimizations. Extensive evaluations confirm that SoulX-FlashTalk is the first 14B-scale system to achieve a \textbf{sub-second start-up latency (0.87s)} while reaching a real-time throughput of \textbf{32 FPS}, setting a new standard for high-fidelity interactive digital human synthesis.
comment: 12 pages, 6 figures
♻ ☆ FCC: Fully Connected Correlation for One-Shot Segmentation WACV 2026
Few-shot segmentation (FSS) aims to segment the target object in a query image using only a small set of support images and masks. Therefore, having strong prior information for the target object using the support set is essential for guiding the initial training of FSS, which leads to the success of few-shot segmentation in challenging cases, such as when the target object shows considerable variation in appearance, texture, or scale across the support and query images. Previous methods have tried to obtain prior information by creating correlation maps from pixel-level correlation on final-layer or same-layer features. However, we found these approaches can offer limited and partial information when advanced models like Vision Transformers are used as the backbone. Vision Transformer encoders have a multi-layer structure with identical shapes in their intermediate layers. Leveraging the feature comparison from all layers in the encoder can enhance the performance of few-shot segmentation. We introduce FCC (Fully Connected Correlation) to integrate pixel-level correlations between support and query features, capturing associations that reveal target-specific patterns and correspondences in both same-layers and cross-layers. FCC captures previously inaccessible target information, effectively addressing the limitations of support mask. Our approach consistently demonstrates state-of-the-art performance on PASCAL, COCO, and domain shift tests. We conducted an ablation study and cross-layer correlation analysis to validate FCC's core methodology. These findings reveal the effectiveness of FCC in enhancing prior information and overall model performance.
comment: WACV 2026
♻ ☆ Towards Unbiased Cross-Modal Representation Learning for Food Image-to-Recipe Retrieval
This paper addresses the challenges of learning representations for recipes and food images in the cross-modal retrieval problem. As the relationship between a recipe and its cooked dish is cause-and-effect, treating a recipe as a text source describing the visual appearance of a dish for learning representation, as the existing approaches, will create bias misleading image-and-recipe similarity judgment. Specifically, a food image may not equally capture every detail in a recipe, due to factors such as the cooking process, dish presentation, and image-capturing conditions. The current representation learning tends to capture dominant visual-text alignment while overlooking subtle variations that determine retrieval relevance. In this paper, we model such bias in cross-modal representation learning using causal theory. The causal view of this problem suggests ingredients as one of the confounder sources and a simple backdoor adjustment can alleviate the bias. By causal intervention, we reformulate the conventional model for food-to-recipe retrieval with an additional term to remove the potential bias in similarity judgment. Based on this theory-informed formulation, we empirically prove the oracle performance of retrieval on the Recipe1M dataset to be MedR=1 across the testing data sizes of 1K, 10K, and even 50K. We also propose a plug-and-play neural module, which is essentially a multi-label ingredient classifier for debiasing. New state-of-the-art search performances are reported on the Recipe1M dataset.
comment: Code link: https://github.com/GZWQ/Towards-Unbiased-Cross-Modal-Representation-Learning-for-Food-Image-to-Recipe-Retrieval
♻ ☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations NeurIPS 2025
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: Accepted to NeurIPS 2025
♻ ☆ SmartSnap: Proactive Evidence Seeking for Self-Verifying Agents
Agentic reinforcement learning (RL) holds great promise for the development of autonomous agents under complex GUI tasks, but its scalability remains severely hampered by the verification of task completion. Existing task verification is treated as a passive, post-hoc process: a verifier (i.e., rule-based scoring script, reward or critic model, and LLM-as-a-Judge) analyzes the agent's entire interaction trajectory to determine if the agent succeeds. Such processing of verbose context that contains irrelevant, noisy history poses challenges to the verification protocols and therefore leads to prohibitive cost and low reliability. To overcome this bottleneck, we propose SmartSnap, a paradigm shift from this passive, post-hoc verification to proactive, in-situ self-verification by the agent itself. We introduce the Self-Verifying Agent, a new type of agent designed with dual missions: to not only complete a task but also to prove its accomplishment with curated snapshot evidences. Guided by our proposed 3C Principles (Completeness, Conciseness, and Creativity), the agent leverages its accessibility to the online environment to perform self-verification on a minimal, decisive set of snapshots. Such evidences are provided as the sole materials for a general LLM-as-a-Judge verifier to determine their validity and relevance. Experiments on mobile tasks across model families and scales demonstrate that our SmartSnap paradigm allows training LLM-driven agents in a scalable manner, bringing performance gains up to 26.08% and 16.66% respectively to 8B and 30B models. The synergizing between solution finding and evidence seeking facilitates the cultivation of efficient, self-verifying agents with competitive performance against DeepSeek V3.1 and Qwen3-235B-A22B. Code is available at: https://github.com/TencentYoutuResearch/SmartSnap
♻ ☆ MCD-Net: A Lightweight Deep Learning Baseline for Optical-Only Moraine Segmentation IEEE
Glacial segmentation is essential for reconstructing past glacier dynamics and evaluating climate-driven landscape change. However, weak optical contrast and the limited availability of high-resolution DEMs hinder automated mapping. This study introduces the first large-scale optical-only moraine segmentation dataset, comprising 3,340 manually annotated high-resolution images from Google Earth covering glaciated regions of Sichuan and Yunnan, China. We develop MCD-Net, a lightweight baseline that integrates a MobileNetV2 encoder, a Convolutional Block Attention Module (CBAM), and a DeepLabV3+ decoder. Benchmarking against deeper backbones (ResNet152, Xception) shows that MCD-Net achieves 62.3% mean Intersection over Union (mIoU) and 72.8% Dice coefficient while reducing computational cost by more than 60%. Although ridge delineation remains constrained by sub-pixel width and spectral ambiguity, the results demonstrate that optical imagery alone can provide reliable moraine-body segmentation. The dataset and code are publicly available at https://github.com/Lyra-alpha/MCD-Net, establishing a reproducible benchmark for moraine-specific segmentation and offering a deployable baseline for high-altitude glacial monitoring.
comment: 13 pages, 10 figures. This manuscript is under review at IEEE Transactions on Geoscience and Remote Sensing. Minor correction to abstract text
♻ ☆ Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.
comment: 11 pages, 9 figures, 4 tables. Undergraduate research project report
♻ ☆ RoboTransfer: Controllable Geometry-Consistent Video Diffusion for Manipulation Policy Transfer
The goal of general-purpose robotics is to create agents that can seamlessly adapt to and operate in diverse, unstructured human environments. Imitation learning has become a key paradigm for robotic manipulation, yet collecting large-scale and diverse demonstrations is prohibitively expensive. Simulators provide a cost-effective alternative, but the sim-to-real gap remains a major obstacle to scalability. We present RoboTransfer, a diffusion-based video generation framework for synthesizing robotic data. By leveraging cross-view feature interactions and globally consistent 3D geometry, RoboTransfer ensures multi-view geometric consistency while enabling fine-grained control over scene elements, such as background editing and object replacement. Extensive experiments demonstrate that RoboTransfer produces videos with superior geometric consistency and visual fidelity. Furthermore, policies trained on this synthetic data exhibit enhanced generalization to novel, unseen scenarios. Project page: https://horizonrobotics.github.io/robot_lab/robotransfer.
comment: 20 pages, 15 figures
♻ ☆ RxnCaption: Reformulating Reaction Diagram Parsing as Visual Prompt Guided Captioning
Large-scale chemical reaction datasets are crucial for AI research in chemistry. However, existing chemical reaction data often exist as images within papers, making them not machine-readable and unusable for training machine learning models. In response to this challenge, we propose the RxnCaption framework for the task of chemical Reaction Diagram Parsing (RxnDP). Our framework reformulates the traditional coordinate prediction driven parsing process into an image captioning problem, which Large Vision Language Models (LVLMs) handle naturally. We introduce a strategy termed BBox and Index as Visual Prompt (BIVP), which uses our state-of-the-art molecular detector, MolYOLO, to pre-draw molecular bounding boxes and indices directly onto the input image. This turns the downstream parsing into a natural-language description problem. Extensive experiments show that the BIVP strategy significantly improves structural extraction quality while simplifying model design. We further construct the RxnCaption-15k dataset, an order of magnitude larger than prior real-world literature benchmarks, with a balanced test subset across four layout archetypes. Experiments demonstrate that RxnCaption-VL achieves state-of-the-art performance on multiple metrics. We believe our method, dataset, and models will advance structured information extraction from chemical literature and catalyze broader AI applications in chemistry. We will release data, models, and code on GitHub.
♻ ☆ ISCS: Parameter-Guided Feature Pruning for Resource-Constrained Embodied Perception
Prior studies in embodied AI consistently show that robust perception is critical for human-robot interaction, yet deploying high-fidelity visual models on resource-constrained agents remains challenging due to limited on-device computation power and transmission latency. Exploiting the redundancy in latent representations could improve system efficiency, yet existing approaches often rely on costly dataset-specific ablation tests or heavy entropy models unsuitable for real-time edge-robot collaboration. We propose a generalizable, dataset-agnostic method to identify and selectively transmit structure-critical channels in pretrained encoders. Instead of brute-force empirical evaluations, our approach leverages intrinsic parameter statistics-weight variances and biases-to estimate channel importance. This analysis reveals a consistent organizational structure, termed the Invariant Salient Channel Space (ISCS), where Salient-Core channels capture dominant structures while Salient-Auxiliary channels encode fine visual details. Building on ISCS, we introduce a deterministic static pruning strategy that enables lightweight split-computing. Experiments across different datasets demonstrate that our method achieves a deterministic, ultra-low latency pipeline by bypassing heavy entropy modeling. Our method reduces end-to-end latency, providing a critical speed-accuracy trade-off for resource-constrained human-aware embodied systems.
comment: Significant revision: The focus has been pivoted from learned image compression to embodied perception tasks. Experimental results and downstream applications have been updated to demonstrate the method's efficiency in split computing
♻ ☆ SlingBAG Pro: Accelerating point cloud-based iterative reconstruction for 3D photoacoustic imaging with arbitrary array geometries
High-quality three-dimensional (3D) photoacoustic imaging (PAI) is gaining increasing attention in clinical applications. To address the challenges of limited space and high costs, irregular geometric transducer arrays that conform to specific imaging regions are promising for achieving high-quality 3D PAI with fewer transducers. However, traditional iterative reconstruction algorithms struggle with irregular array configurations, suffering from high computational complexity, substantial memory requirements, and lengthy reconstruction times. In this work, we introduce SlingBAG Pro, an advanced reconstruction algorithm based on the point cloud iteration concept of the Sliding ball adaptive growth (SlingBAG) method, while extending its compatibility to arbitrary array geometries. SlingBAG Pro maintains high reconstruction quality, reduces the number of required transducers, and employs a hierarchical optimization strategy that combines zero-gradient filtering with progressively increased temporal sampling rates during iteration. This strategy rapidly removes redundant spatial point clouds, accelerates convergence, and significantly shortens overall reconstruction time. Compared to the original SlingBAG algorithm, SlingBAG Pro achieves up to a 2.2-fold speed improvement in point cloud-based 3D PA reconstruction under irregular array geometries. The proposed method is validated through both simulation and in vivo mouse experiments, and the source code is publicly available at https://github.com/JaegerCQ/SlingBAG_Pro.
♻ ☆ Point-Supervised Facial Expression Spotting with Gaussian-Based Instance-Adaptive Intensity Modeling IEEE
Automatic facial expression spotting, which aims to identify facial expression instances in untrimmed videos, is crucial for facial expression analysis. Existing methods primarily focus on fully-supervised learning and rely on costly, time-consuming temporal boundary annotations. In this paper, we investigate point-supervised facial expression spotting (P-FES), where only a single timestamp annotation per instance is required for training. We propose a unique two-branch framework for P-FES. First, to mitigate the limitation of hard pseudo-labeling, which often confuses neutral and expression frames with various intensities, we propose a Gaussian-based instance-adaptive intensity modeling (GIM) module to model instance-level expression intensity distribution for soft pseudo-labeling. By detecting the pseudo-apex frame around each point label, estimating the duration, and constructing an instance-level Gaussian distribution, GIM assigns soft pseudo-labels to expression frames for more reliable intensity supervision. The GIM module is incorporated into our framework to optimize the class-agnostic expression intensity branch. Second, we design a class-aware apex classification branch that distinguishes macro- and micro-expressions solely based on their pseudo-apex frames. During inference, the two branches work independently: the class-agnostic expression intensity branch generates expression proposals, while the class-aware apex-classification branch is responsible for macro- and micro-expression classification. Furthermore, we introduce an intensity-aware contrastive loss to enhance discriminative feature learning and suppress neutral noise by contrasting neutral frames with expression frames with various intensities. Extensive experiments on the SAMM-LV, CAS(ME)$^2$, and CAS(ME)$^3$ datasets demonstrate the effectiveness of our proposed framework.
comment: Accepted for publication in IEEE Transactions on Biometrics, Behavior, and Identity Science
Artificial Intelligence 203
☆ MAGMA: A Multi-Graph based Agentic Memory Architecture for AI Agents
Memory-Augmented Generation (MAG) extends Large Language Models with external memory to support long-context reasoning, but existing approaches largely rely on semantic similarity over monolithic memory stores, entangling temporal, causal, and entity information. This design limits interpretability and alignment between query intent and retrieved evidence, leading to suboptimal reasoning accuracy. In this paper, we propose MAGMA, a multi-graph agentic memory architecture that represents each memory item across orthogonal semantic, temporal, causal, and entity graphs. MAGMA formulates retrieval as policy-guided traversal over these relational views, enabling query-adaptive selection and structured context construction. By decoupling memory representation from retrieval logic, MAGMA provides transparent reasoning paths and fine-grained control over retrieval. Experiments on LoCoMo and LongMemEval demonstrate that MAGMA consistently outperforms state-of-the-art agentic memory systems in long-horizon reasoning tasks.
☆ Multi-RADS Synthetic Radiology Report Dataset and Head-to-Head Benchmarking of 41 Open-Weight and Proprietary Language Models
Background: Reporting and Data Systems (RADS) standardize radiology risk communication but automated RADS assignment from narrative reports is challenging because of guideline complexity, output-format constraints, and limited benchmarking across RADS frameworks and model sizes. Purpose: To create RXL-RADSet, a radiologist-verified synthetic multi-RADS benchmark, and compare validity and accuracy of open-weight small language models (SLMs) with a proprietary model for RADS assignment. Materials and Methods: RXL-RADSet contains 1,600 synthetic radiology reports across 10 RADS (BI-RADS, CAD-RADS, GB-RADS, LI-RADS, Lung-RADS, NI-RADS, O-RADS, PI-RADS, TI-RADS, VI-RADS) and multiple modalities. Reports were generated by LLMs using scenario plans and simulated radiologist styles and underwent two-stage radiologist verification. We evaluated 41 quantized SLMs (12 families, 0.135-32B parameters) and GPT-5.2 under a fixed guided prompt. Primary endpoints were validity and accuracy; a secondary analysis compared guided versus zero-shot prompting. Results: Under guided prompting GPT-5.2 achieved 99.8% validity and 81.1% accuracy (1,600 predictions). Pooled SLMs (65,600 predictions) achieved 96.8% validity and 61.1% accuracy; top SLMs in the 20-32B range reached ~99% validity and mid-to-high 70% accuracy. Performance scaled with model size (inflection between <1B and >=10B) and declined with RADS complexity primarily due to classification difficulty rather than invalid outputs. Guided prompting improved validity (99.2% vs 96.7%) and accuracy (78.5% vs 69.6%) compared with zero-shot. Conclusion: RXL-RADSet provides a radiologist-verified multi-RADS benchmark; large SLMs (20-32B) can approach proprietary-model performance under guided prompting, but gaps remain for higher-complexity schemes.
☆ The Sonar Moment: Benchmarking Audio-Language Models in Audio Geo-Localization
Geo-localization aims to infer the geographic origin of a given signal. In computer vision, geo-localization has served as a demanding benchmark for compositional reasoning and is relevant to public safety. In contrast, progress on audio geo-localization has been constrained by the lack of high-quality audio-location pairs. To address this gap, we introduce AGL1K, the first audio geo-localization benchmark for audio language models (ALMs), spanning 72 countries and territories. To extract reliably localizable samples from a crowd-sourced platform, we propose the Audio Localizability metric that quantifies the informativeness of each recording, yielding 1,444 curated audio clips. Evaluations on 16 ALMs show that ALMs have emerged with audio geo-localization capability. We find that closed-source models substantially outperform open-source models, and that linguistic clues often dominate as a scaffold for prediction. We further analyze ALMs' reasoning traces, regional bias, error causes, and the interpretability of the localizability metric. Overall, AGL1K establishes a benchmark for audio geo-localization and may advance ALMs with better geospatial reasoning capability.
☆ The Fake Friend Dilemma: Trust and the Political Economy of Conversational AI
As conversational AI systems become increasingly integrated into everyday life, they raise pressing concerns about user autonomy, trust, and the commercial interests that influence their behavior. To address these concerns, this paper develops the Fake Friend Dilemma (FFD), a sociotechnical condition in which users place trust in AI agents that appear supportive while pursuing goals that are misaligned with the user's own. The FFD provides a critical framework for examining how anthropomorphic AI systems facilitate subtle forms of manipulation and exploitation. Drawing on literature in trust, AI alignment, and surveillance capitalism, we construct a typology of harms, including covert advertising, political propaganda, behavioral nudging, and surveillance. We then assess possible mitigation strategies, including both structural and technical interventions. By focusing on trust as a vector of asymmetrical power, the FFD offers a lens for understanding how AI systems may undermine user autonomy while maintaining the appearance of helpfulness.
comment: Manuscript under review
☆ Fine-tuning Small Language Models as Efficient Enterprise Search Relevance Labelers
In enterprise search, building high-quality datasets at scale remains a central challenge due to the difficulty of acquiring labeled data. To resolve this challenge, we propose an efficient approach to fine-tune small language models (SLMs) for accurate relevance labeling, enabling high-throughput, domain-specific labeling comparable or even better in quality to that of state-of-the-art large language models (LLMs). To overcome the lack of high-quality and accessible datasets in the enterprise domain, our method leverages on synthetic data generation. Specifically, we employ an LLM to synthesize realistic enterprise queries from a seed document, apply BM25 to retrieve hard negatives, and use a teacher LLM to assign relevance scores. The resulting dataset is then distilled into an SLM, producing a compact relevance labeler. We evaluate our approach on a high-quality benchmark consisting of 923 enterprise query-document pairs annotated by trained human annotators, and show that the distilled SLM achieves agreement with human judgments on par with or better than the teacher LLM. Furthermore, our fine-tuned labeler substantially improves throughput, achieving 17 times increase while also being 19 times more cost-effective. This approach enables scalable and cost-effective relevance labeling for enterprise-scale retrieval applications, supporting rapid offline evaluation and iteration in real-world settings.
☆ UltraLogic: Enhancing LLM Reasoning through Large-Scale Data Synthesis and Bipolar Float Reward
While Large Language Models (LLMs) have demonstrated significant potential in natural language processing , complex general-purpose reasoning requiring multi-step logic, planning, and verification remains a critical bottleneck. Although Reinforcement Learning with Verifiable Rewards (RLVR) has succeeded in specific domains , the field lacks large-scale, high-quality, and difficulty-calibrated data for general reasoning. To address this, we propose UltraLogic, a framework that decouples the logical core of a problem from its natural language expression through a Code-based Solving methodology to automate high-quality data production. The framework comprises hundreds of unique task types and an automated calibration pipeline across ten difficulty levels. Furthermore, to mitigate binary reward sparsity and the Non-negative Reward Trap, we introduce the Bipolar Float Reward (BFR) mechanism, utilizing graded penalties to effectively distinguish perfect responses from those with logical flaws. Our experiments demonstrate that task diversity is the primary driver for reasoning enhancement , and that BFR, combined with a difficulty matching strategy, significantly improves training efficiency, guiding models toward global logical optima.
comment: 19 pages, 6 figures, 7 tables
☆ InfiAgent: An Infinite-Horizon Framework for General-Purpose Autonomous Agents
LLM agents can reason and use tools, but they often break down on long-horizon tasks due to unbounded context growth and accumulated errors. Common remedies such as context compression or retrieval-augmented prompting introduce trade-offs between information fidelity and reasoning stability. We present InfiAgent, a general-purpose framework that keeps the agent's reasoning context strictly bounded regardless of task duration by externalizing persistent state into a file-centric state abstraction. At each step, the agent reconstructs context from a workspace state snapshot plus a fixed window of recent actions. Experiments on DeepResearch and an 80-paper literature review task show that, without task-specific fine-tuning, InfiAgent with a 20B open-source model is competitive with larger proprietary systems and maintains substantially higher long-horizon coverage than context-centric baselines. These results support explicit state externalization as a practical foundation for stable long-horizon agents. Github Repo:https://github.com/ChenglinPoly/infiAgent
☆ Counterfactual Fairness with Graph Uncertainty ECML
Evaluating machine learning (ML) model bias is key to building trustworthy and robust ML systems. Counterfactual Fairness (CF) audits allow the measurement of bias of ML models with a causal framework, yet their conclusions rely on a single causal graph that is rarely known with certainty in real-world scenarios. We propose CF with Graph Uncertainty (CF-GU), a bias evaluation procedure that incorporates the uncertainty of specifying a causal graph into CF. CF-GU (i) bootstraps a Causal Discovery algorithm under domain knowledge constraints to produce a bag of plausible Directed Acyclic Graphs (DAGs), (ii) quantifies graph uncertainty with the normalized Shannon entropy, and (iii) provides confidence bounds on CF metrics. Experiments on synthetic data show how contrasting domain knowledge assumptions support or refute audits of CF, while experiments on real-world data (COMPAS and Adult datasets) pinpoint well-known biases with high confidence, even when supplied with minimal domain knowledge constraints.
comment: Peer reviewed pre-print. Presented at the BIAS 2025 Workshop at ECML PKDD
☆ Recursive querying of neural networks via weighted structures
Expressive querying of machine learning models - viewed as a form of intentional data - enables their verification and interpretation using declarative languages, thereby making learned representations of data more accessible. Motivated by the querying of feedforward neural networks, we investigate logics for weighted structures. In the absence of a bound on neural network depth, such logics must incorporate recursion; thereto we revisit the functional fixpoint mechanism proposed by Grädel and Gurevich. We adopt it in a Datalog-like syntax; we extend normal forms for fixpoint logics to weighted structures; and show an equivalent "loose" fixpoint mechanism that allows values of inductively defined weight functions to be overwritten. We propose a "scalar" restriction of functional fixpoint logic, of polynomial-time data complexity, and show it can express all PTIME model-agnostic queries over reduced networks with polynomially bounded weights. In contrast, we show that very simple model-agnostic queries are already NP-complete. Finally, we consider transformations of weighted structures by iterated transductions.
☆ DIP: Dynamic In-Context Planner For Diffusion Language Models
Diffusion language models (DLMs) have shown strong potential for general natural language tasks with in-context examples. However, due to the bidirectional attention mechanism, DLMs incur substantial computational cost as context length increases. This work addresses this issue with a key discovery: unlike the sequential generation in autoregressive language models (ARLMs), the diffusion generation paradigm in DLMs allows \textit{efficient dynamic adjustment of the context} during generation. Building on this insight, we propose \textbf{D}ynamic \textbf{I}n-Context \textbf{P}lanner (DIP), a context-optimization method that dynamically selects and inserts in-context examples during generation, rather than providing all examples in the prompt upfront. Results show DIP maintains generation quality while achieving up to 12.9$\times$ inference speedup over standard inference and 1.17$\times$ over KV cache-enhanced inference.
comment: 4 pages
☆ UniCorn: Towards Self-Improving Unified Multimodal Models through Self-Generated Supervision
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
☆ AnatomiX, an Anatomy-Aware Grounded Multimodal Large Language Model for Chest X-Ray Interpretation
Multimodal medical large language models have shown impressive progress in chest X-ray interpretation but continue to face challenges in spatial reasoning and anatomical understanding. Although existing grounding techniques improve overall performance, they often fail to establish a true anatomical correspondence, resulting in incorrect anatomical understanding in the medical domain. To address this gap, we introduce AnatomiX, a multitask multimodal large language model explicitly designed for anatomically grounded chest X-ray interpretation. Inspired by the radiological workflow, AnatomiX adopts a two stage approach: first, it identifies anatomical structures and extracts their features, and then leverages a large language model to perform diverse downstream tasks such as phrase grounding, report generation, visual question answering, and image understanding. Extensive experiments across multiple benchmarks demonstrate that AnatomiX achieves superior anatomical reasoning and delivers over 25% improvement in performance on anatomy grounding, phrase grounding, grounded diagnosis and grounded captioning tasks compared to existing approaches. Code and pretrained model are available at https://github.com/aneesurhashmi/anatomix
☆ Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrat- ing the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and per- forms full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
☆ Multi-Modal Data-Enhanced Foundation Models for Prediction and Control in Wireless Networks: A Survey IEEE
Foundation models (FMs) are recognized as a transformative breakthrough that has started to reshape the future of artificial intelligence (AI) across both academia and industry. The integration of FMs into wireless networks is expected to enable the development of general-purpose AI agents capable of handling diverse network management requests and highly complex wireless-related tasks involving multi-modal data. Inspired by these ideas, this work discusses the utilization of FMs, especially multi-modal FMs in wireless networks. We focus on two important types of tasks in wireless network management: prediction tasks and control tasks. In particular, we first discuss FMs-enabled multi-modal contextual information understanding in wireless networks. Then, we explain how FMs can be applied to prediction and control tasks, respectively. Following this, we introduce the development of wireless-specific FMs from two perspectives: available datasets for development and the methodologies used. Finally, we conclude with a discussion of the challenges and future directions for FM-enhanced wireless networks.
comment: 5 figures, 7 tables, IEEE COMST
☆ Rapid Augmentations for Time Series (RATS): A High-Performance Library for Time Series Augmentation
Time series augmentation is critical for training robust deep learning models, particularly in domains where labelled data is scarce and expensive to obtain. However, existing augmentation libraries for time series, mainly written in Python, suffer from performance bottlenecks, where running time grows exponentially as dataset sizes increase -- an aspect limiting their applicability in large-scale, production-grade systems. We introduce RATS (Rapid Augmentations for Time Series), a high-performance library for time series augmentation written in Rust with Python bindings (RATSpy). RATS implements multiple augmentation methods spanning basic transformations, frequency-domain operations and time warping techniques, all accessible through a unified pipeline interface with built-in parallelisation. Comprehensive benchmarking of RATSpy versus a commonly used library (tasug) on 143 datasets demonstrates that RATSpy achieves an average speedup of 74.5\% over tsaug (up to 94.8\% on large datasets), with up to 47.9\% less peak memory usage.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -the prompt- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
☆ Self-Verification is All You Need To Pass The Japanese Bar Examination
Despite rapid advances in large language models (LLMs), achieving reliable performance on highly professional and structured examinations remains a significant challenge. The Japanese bar examination is a particularly demanding benchmark, requiring not only advanced legal reasoning but also strict adherence to complex answer formats that involve joint evaluation of multiple propositions. While recent studies have reported improvements by decomposing such questions into simpler true--false judgments, these approaches have not been systematically evaluated under the original exam format and scoring scheme, leaving open the question of whether they truly capture exam-level competence. In this paper, we present a self-verification model trained on a newly constructed dataset that faithfully replicates the authentic format and evaluation scale of the exam. Our model is able to exceed the official passing score when evaluated on the actual exam scale, marking the first demonstration, to our knowledge, of an LLM passing the Japanese bar examination without altering its original question structure or scoring rules. We further conduct extensive comparisons with alternative strategies, including multi-agent inference and decomposition-based supervision, and find that these methods fail to achieve comparable performance. Our results highlight the importance of format-faithful supervision and consistency verification, and suggest that carefully designed single-model approaches can outperform more complex systems in high-stakes professional reasoning tasks. Our dataset and codes are publicly available.
comment: https://github.com/shinandrew/self_verification
☆ Limited Linguistic Diversity in Embodied AI Datasets
Language plays a critical role in Vision-Language-Action (VLA) models, yet the linguistic characteristics of the datasets used to train and evaluate these systems remain poorly documented. In this work, we present a systematic dataset audit of several widely used VLA corpora, aiming to characterize what kinds of instructions these datasets actually contain and how much linguistic variety they provide. We quantify instruction language along complementary dimensions-including lexical variety, duplication and overlap, semantic similarity, and syntactic complexity. Our analysis shows that many datasets rely on highly repetitive, template-like commands with limited structural variation, yielding a narrow distribution of instruction forms. We position these findings as descriptive documentation of the language signal available in current VLA training and evaluation data, intended to support more detailed dataset reporting, more principled dataset selection, and targeted curation or augmentation strategies that broaden language coverage.
☆ Automatic Prompt Engineering with No Task Cues and No Tuning
This paper presents a system for automatic prompt engineering that is much simpler in both design and application and yet as effective as the existing approaches. It requires no tuning and no explicit clues about the task. We evaluated our approach on cryptic column name expansion (CNE) in database tables, a task which is critical for tabular data search, access, and understanding and yet there has been very little existing work. We evaluated on datasets in two languages, English and German. This is the first work to report on the application of automatic prompt engineering for the CNE task. To the best of our knowledge, this is also the first work on the application of automatic prompt engineering for a language other than English.
☆ Unified Thinker: A General Reasoning Modular Core for Image Generation
Despite impressive progress in high-fidelity image synthesis, generative models still struggle with logic-intensive instruction following, exposing a persistent reasoning--execution gap. Meanwhile, closed-source systems (e.g., Nano Banana) have demonstrated strong reasoning-driven image generation, highlighting a substantial gap to current open-source models. We argue that closing this gap requires not merely better visual generators, but executable reasoning: decomposing high-level intents into grounded, verifiable plans that directly steer the generative process. To this end, we propose Unified Thinker, a task-agnostic reasoning architecture for general image generation, designed as a unified planning core that can plug into diverse generators and workflows. Unified Thinker decouples a dedicated Thinker from the image Generator, enabling modular upgrades of reasoning without retraining the entire generative model. We further introduce a two-stage training paradigm: we first build a structured planning interface for the Thinker, then apply reinforcement learning to ground its policy in pixel-level feedback, encouraging plans that optimize visual correctness over textual plausibility. Extensive experiments on text-to-image generation and image editing show that Unified Thinker substantially improves image reasoning and generation quality.
☆ LeafLife: An Explainable Deep Learning Framework with Robustness for Grape Leaf Disease Recognition IEEE
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
comment: 4 pages, 8 figures, 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON)
☆ ToxiGAN: Toxic Data Augmentation via LLM-Guided Directional Adversarial Generation EACL 2026
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
comment: This paper has been accepted to the main conference of EACL 2026
☆ A framework for assuring the accuracy and fidelity of an AI-enabled Digital Twin of en route UK airspace
Digital Twins combine simulation, operational data and Artificial Intelligence (AI), and have the potential to bring significant benefits across the aviation industry. Project Bluebird, an industry-academic collaboration, has developed a probabilistic Digital Twin of en route UK airspace as an environment for training and testing AI Air Traffic Control (ATC) agents. There is a developing regulatory landscape for this kind of novel technology. Regulatory requirements are expected to be application specific, and may need to be tailored to each specific use case. We draw on emerging guidance for both Digital Twin development and the use of Artificial Intelligence/Machine Learning (AI/ML) in Air Traffic Management (ATM) to present an assurance framework. This framework defines actionable goals and the evidence required to demonstrate that a Digital Twin accurately represents its physical counterpart and also provides sufficient functionality across target use cases. It provides a structured approach for researchers to assess, understand and document the strengths and limitations of the Digital Twin, whilst also identifying areas where fidelity could be improved. Furthermore, it serves as a foundation for engagement with stakeholders and regulators, supporting discussions around the regulatory needs for future applications, and contributing to the emerging guidance through a concrete, working example of a Digital Twin. The framework leverages a methodology known as Trustworthy and Ethical Assurance (TEA) to develop an assurance case. An assurance case is a nested set of structured arguments that provides justified evidence for how a top-level goal has been realised. In this paper we provide an overview of each structured argument and a number of deep dives which elaborate in more detail upon particular arguments, including the required evidence, assumptions and justifications.
Transformers self-organize like newborn visual systems when trained in prenatal worlds
Do transformers learn like brains? A key challenge in addressing this question is that transformers and brains are trained on fundamentally different data. Brains are initially "trained" on prenatal sensory experiences (e.g., retinal waves), whereas transformers are typically trained on large datasets that are not biologically plausible. We reasoned that if transformers learn like brains, then they should develop the same structure as newborn brains when exposed to the same prenatal data. To test this prediction, we simulated prenatal visual input using a retinal wave generator. Then, using self-supervised temporal learning, we trained transformers to adapt to those retinal waves. During training, the transformers spontaneously developed the same structure as newborn visual systems: (1) early layers became sensitive to edges, (2) later layers became sensitive to shapes, and (3) the models developed larger receptive fields across layers. The organization of newborn visual systems emerges spontaneously when transformers adapt to a prenatal visual world. This developmental convergence suggests that brains and transformers learn in common ways and follow the same general fitting principles.
☆ Who Laughs with Whom? Disentangling Influential Factors in Humor Preferences across User Clusters and LLMs
Humor preferences vary widely across individuals and cultures, complicating the evaluation of humor using large language models (LLMs). In this study, we model heterogeneity in humor preferences in Oogiri, a Japanese creative response game, by clustering users with voting logs and estimating cluster-specific weights over interpretable preference factors using Bradley-Terry-Luce models. We elicit preference judgments from LLMs by prompting them to select the funnier response and found that user clusters exhibit distinct preference patterns and that the LLM results can resemble those of particular clusters. Finally, we demonstrate that, by persona prompting, LLM preferences can be directed toward a specific cluster. The scripts for data collection and analysis will be released to support reproducibility.
☆ Text-Guided Layer Fusion Mitigates Hallucination in Multimodal LLMs
Multimodal large language models (MLLMs) typically rely on a single late-layer feature from a frozen vision encoder, leaving the encoder's rich hierarchy of visual cues under-utilized. MLLMs still suffer from visually ungrounded hallucinations, often relying on language priors rather than image evidence. While many prior mitigation strategies operate on the text side, they leave the visual representation unchanged and do not exploit the rich hierarchy of features encoded across vision layers. Existing multi-layer fusion methods partially address this limitation but remain static, applying the same layer mixture regardless of the query. In this work, we introduce TGIF (Text-Guided Inter-layer Fusion), a lightweight module that treats encoder layers as depth-wise "experts" and predicts a prompt-dependent fusion of visual features. TGIF follows the principle of direct external fusion, requires no vision-encoder updates, and adds minimal overhead. Integrated into LLaVA-1.5-7B, TGIF provides consistent improvements across hallucination, OCR, and VQA benchmarks, while preserving or improving performance on ScienceQA, GQA, and MMBench. These results suggest that query-conditioned, hierarchy-aware fusion is an effective way to strengthen visual grounding and reduce hallucination in modern MLLMs.
☆ Grad-ELLM: Gradient-based Explanations for Decoder-only LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
☆ Joint Encoding of KV-Cache Blocks for Scalable LLM Serving
Modern large language models (LLMs) drive interactive AI systems but are bottlenecked by the memory-heavy growth of key-value (KV) caches, which limits real-time throughput under concurrent loads. Existing KV-cache compression methods rely on rigid heuristics, disrupt tensor layouts, or require specialized compute, hindering scalability and deployment. We propose joint encoding of KV-cache blocks, which fuses similar blocks across requests and input chunks into shared representations while preserving standard cache structure. This alleviates the KV-cache memory bottleneck, supporting high-concurrency serving without specialized hardware. Theoretically, we analyze the rate-distortion tradeoff of fused cache blocks under a Poisson process model. Empirically, our method achieves up to 4.38 $\times$ KV-cache compression with negligible accuracy loss across diverse LLMs and benchmarks, outperforming recent structured and adaptive compression baselines. In real LLM serving, joint encoding improves the token throughput by $\sim$40\% on a single-machine vLLM benchmark, demonstrating substantial gains in inference throughput. Code is available at https://github.com/sef1/kv_fast_fusion kv_joint_encoding.
comment: 12 pages, 16 figures, 2 tables
☆ Do LLMs Encode Functional Importance of Reasoning Tokens?
Large language models solve complex tasks by generating long reasoning chains, achieving higher accuracy at the cost of increased computational cost and reduced ability to isolate functionally relevant reasoning. Prior work on compact reasoning shortens such chains through probabilistic sampling, heuristics, or supervision from frontier models, but offers limited insight into whether models internally encode token-level functional importance for answer generation. We address this gap diagnostically and propose greedy pruning, a likelihood-preserving deletion procedure that iteratively removes reasoning tokens whose removal minimally degrades model likelihood under a specified objective, yielding length-controlled reasoning chains. We evaluate pruned reasoning in a distillation framework and show that students trained on pruned chains outperform a frontier-model-supervised compression baseline at matched reasoning lengths. Finally, our analysis reveals systematic pruning patterns and shows that attention scores can predict greedy pruning ranks, further suggesting that models encode a nontrivial functional importance structure over reasoning tokens.
comment: 20 pages, 8 figures, 2 tables
☆ Explainable Fuzzy GNNs for Leak Detection in Water Distribution Networks
Timely leak detection in water distribution networks is critical for conserving resources and maintaining operational efficiency. Although Graph Neural Networks (GNNs) excel at capturing spatial-temporal dependencies in sensor data, their black-box nature and the limited work on graph-based explainable models for water networks hinder practical adoption. We propose an explainable GNN framework that integrates mutual information to identify critical network regions and fuzzy logic to provide clear, rule-based explanations for node classification tasks. After benchmarking several GNN architectures, we selected the generalized graph convolution network (GENConv) for its superior performance and developed a fuzzy-enhanced variant that offers intuitive explanations for classified leak locations. Our fuzzy graph neural network (FGENConv) achieved Graph F1 scores of 0.889 for detection and 0.814 for localization, slightly below the crisp GENConv 0.938 and 0.858, respectively. Yet it compensates by providing spatially localized, fuzzy rule-based explanations. By striking the right balance between precision and explainability, the proposed fuzzy network could enable hydraulic engineers to validate predicted leak locations, conserve human resources, and optimize maintenance strategies. The code is available at github.com/pasqualedem/GNNLeakDetection.
comment: Accepted at IFSA-NAFIPS 2025
☆ IBISAgent: Reinforcing Pixel-Level Visual Reasoning in MLLMs for Universal Biomedical Object Referring and Segmentation
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
☆ On the Intrinsic Limits of Transformer Image Embeddings in Non-Solvable Spatial Reasoning
Vision Transformers (ViTs) excel in semantic recognition but exhibit systematic failures in spatial reasoning tasks such as mental rotation. While often attributed to data scale, we propose that this limitation arises from the intrinsic circuit complexity of the architecture. We formalize spatial understanding as learning a Group Homomorphism: mapping image sequences to a latent space that preserves the algebraic structure of the underlying transformation group. We demonstrate that for non-solvable groups (e.g., the 3D rotation group $\mathrm{SO}(3)$), maintaining such a structure-preserving embedding is computationally lower-bounded by the Word Problem, which is $\mathsf{NC^1}$-complete. In contrast, we prove that constant-depth ViTs with polynomial precision are strictly bounded by $\mathsf{TC^0}$. Under the conjecture $\mathsf{TC^0} \subsetneq \mathsf{NC^1}$, we establish a complexity boundary: constant-depth ViTs fundamentally lack the logical depth to efficiently capture non-solvable spatial structures. We validate this complexity gap via latent-space probing, demonstrating that ViT representations suffer a structural collapse on non-solvable tasks as compositional depth increases.
☆ Motion Blur Robust Wheat Pest Damage Detection with Dynamic Fuzzy Feature Fusion
Motion blur caused by camera shake produces ghosting artifacts that substantially degrade edge side object detection. Existing approaches either suppress blur as noise and lose discriminative structure, or apply full image restoration that increases latency and limits deployment on resource constrained devices. We propose DFRCP, a Dynamic Fuzzy Robust Convolutional Pyramid, as a plug in upgrade to YOLOv11 for blur robust detection. DFRCP enhances the YOLOv11 feature pyramid by combining large scale and medium scale features while preserving native representations, and by introducing Dynamic Robust Switch units that adaptively inject fuzzy features to strengthen global perception under jitter. Fuzzy features are synthesized by rotating and nonlinearly interpolating multiscale features, then merged through a transparency convolution that learns a content adaptive trade off between original and fuzzy cues. We further develop a CUDA parallel rotation and interpolation kernel that avoids boundary overflow and delivers more than 400 times speedup, making the design practical for edge deployment. We train with paired supervision on a private wheat pest damage dataset of about 3,500 images, augmented threefold using two blur regimes, uniform image wide motion blur and bounding box confined rotational blur. On blurred test sets, YOLOv11 with DFRCP achieves about 10.4 percent higher accuracy than the YOLOv11 baseline with only a modest training time overhead, reducing the need for manual filtering after data collection.
☆ Lil: Less is Less When Applying Post-Training Sparse-Attention Algorithms in Long-Decode Stage
Large language models (LLMs) demonstrate strong capabilities across a wide range of complex tasks and are increasingly deployed at scale, placing significant demands on inference efficiency. Prior work typically decomposes inference into prefill and decode stages, with the decode stage dominating total latency. To reduce time and memory complexity in the decode stage, a line of work introduces sparse-attention algorithms. In this paper, we show, both empirically and theoretically, that sparse attention can paradoxically increase end-to-end complexity: information loss often induces significantly longer sequences, a phenomenon we term ``Less is Less'' (Lil). To mitigate the Lil problem, we propose an early-stopping algorithm that detects the threshold where information loss exceeds information gain during sparse decoding. Our early-stopping algorithm reduces token consumption by up to 90% with a marginal accuracy degradation of less than 2% across reasoning-intensive benchmarks.
☆ PiDR: Physics-Informed Inertial Dead Reckoning for Autonomous Platforms
A fundamental requirement for full autonomy is the ability to sustain accurate navigation in the absence of external data, such as GNSS signals or visual information. In these challenging environments, the platform must rely exclusively on inertial sensors, leading to pure inertial navigation. However, the inherent noise and other error terms of the inertial sensors in such real-world scenarios will cause the navigation solution to drift over time. Although conventional deep-learning models have emerged as a possible approach to inertial navigation, they are inherently black-box in nature. Furthermore, they struggle to learn effectively with limited supervised sensor data and often fail to preserve physical principles. To address these limitations, we propose PiDR, a physics-informed inertial dead-reckoning framework for autonomous platforms in situations of pure inertial navigation. PiDR offers transparency by explicitly integrating inertial navigation principles into the network training process through the physics-informed residual component. PiDR plays a crucial role in mitigating abrupt trajectory deviations even under limited or sparse supervision. We evaluated PiDR on real-world datasets collected by a mobile robot and an autonomous underwater vehicle. We obtained more than 29% positioning improvement in both datasets, demonstrating the ability of PiDR to generalize different platforms operating in various environments and dynamics. Thus, PiDR offers a robust, lightweight, yet effective architecture and can be deployed on resource-constrained platforms, enabling real-time pure inertial navigation in adverse scenarios.
comment: 11 pages and 7 figures
☆ Validating Generalist Robots with Situation Calculus and STL Falsification
Generalist robots are becoming a reality, capable of interpreting natural language instructions and executing diverse operations. However, their validation remains challenging because each task induces its own operational context and correctness specification, exceeding the assumptions of traditional validation methods. We propose a two-layer validation framework that combines abstract reasoning with concrete system falsification. At the abstract layer, situation calculus models the world and derives weakest preconditions, enabling constraint-aware combinatorial testing to systematically generate diverse, semantically valid world-task configurations with controllable coverage strength. At the concrete layer, these configurations are instantiated for simulation-based falsification with STL monitoring. Experiments on tabletop manipulation tasks show that our framework effectively uncovers failure cases in the NVIDIA GR00T controller, demonstrating its promise for validating general-purpose robot autonomy.
☆ Causal Manifold Fairness: Enforcing Geometric Invariance in Representation Learning
Fairness in machine learning is increasingly critical, yet standard approaches often treat data as static points in a high-dimensional space, ignoring the underlying generative structure. We posit that sensitive attributes (e.g., race, gender) do not merely shift data distributions but causally warp the geometry of the data manifold itself. To address this, we introduce Causal Manifold Fairness (CMF), a novel framework that bridges causal inference and geometric deep learning. CMF learns a latent representation where the local Riemannian geometry, defined by the metric tensor and curvature, remains invariant under counterfactual interventions on sensitive attributes. By enforcing constraints on the Jacobian and Hessian of the decoder, CMF ensures that the rules of the latent space (distances and shapes) are preserved across demographic groups. We validate CMF on synthetic Structural Causal Models (SCMs), demonstrating that it effectively disentangles sensitive geometric warping while preserving task utility, offering a rigorous quantification of the fairness-utility trade-off via geometric metrics.
☆ Dementia-R1: Reinforced Pretraining and Reasoning from Unstructured Clinical Notes for Real-World Dementia Prognosis
While Large Language Models (LLMs) have shown strong performance on clinical text understanding, they struggle with longitudinal prediction tasks such as dementia prognosis, which require reasoning over complex, non-monotonic symptom trajectories across multiple visits. Standard supervised training lacks explicit annotations for symptom evolution, while direct Reinforcement Learning (RL) is hindered by sparse binary rewards. To address this challenge, we introduce Dementia-R1, an RL-based framework for longitudinal dementia prognosis from unstructured clinical notes. Our approach adopts a Cold-Start RL strategy that pre-trains the model to predict verifiable clinical indices extracted from patient histories, enhancing the capability to reason about disease progression before determining the final clinical status. Extensive experiments demonstrate that Dementia-R1 achieves an F1 score of 77.03% on real-world unstructured clinical datasets. Notably, on the ADNI benchmark, our 7B model rivals GPT-4o, effectively capturing fluctuating cognitive trajectories. Code is available at https://anonymous.4open.science/r/dementiar1-CDB5
In-Context Reinforcement Learning through Bayesian Fusion of Context and Value Prior
In-context reinforcement learning (ICRL) promises fast adaptation to unseen environments without parameter updates, but current methods either cannot improve beyond the training distribution or require near-optimal data, limiting practical adoption. We introduce SPICE, a Bayesian ICRL method that learns a prior over Q-values via deep ensemble and updates this prior at test-time using in-context information through Bayesian updates. To recover from poor priors resulting from training on sub-optimal data, our online inference follows an Upper-Confidence Bound rule that favours exploration and adaptation. We prove that SPICE achieves regret-optimal behaviour in both stochastic bandits and finite-horizon MDPs, even when pretrained only on suboptimal trajectories. We validate these findings empirically across bandit and control benchmarks. SPICE achieves near-optimal decisions on unseen tasks, substantially reduces regret compared to prior ICRL and meta-RL approaches while rapidly adapting to unseen tasks and remaining robust under distribution shift.
☆ SentGraph: Hierarchical Sentence Graph for Multi-hop Retrieval-Augmented Question Answering
Traditional Retrieval-Augmented Generation (RAG) effectively supports single-hop question answering with large language models but faces significant limitations in multi-hop question answering tasks, which require combining evidence from multiple documents. Existing chunk-based retrieval often provides irrelevant and logically incoherent context, leading to incomplete evidence chains and incorrect reasoning during answer generation. To address these challenges, we propose SentGraph, a sentence-level graph-based RAG framework that explicitly models fine-grained logical relationships between sentences for multi-hop question answering. Specifically, we construct a hierarchical sentence graph offline by first adapting Rhetorical Structure Theory to distinguish nucleus and satellite sentences, and then organizing them into topic-level subgraphs with cross-document entity bridges. During online retrieval, SentGraph performs graph-guided evidence selection and path expansion to retrieve fine-grained sentence-level evidence. Extensive experiments on four multi-hop question answering benchmarks demonstrate the effectiveness of SentGraph, validating the importance of explicitly modeling sentence-level logical dependencies for multi-hop reasoning.
☆ JPU: Bridging Jailbreak Defense and Unlearning via On-Policy Path Rectification
Despite extensive safety alignment, Large Language Models (LLMs) often fail against jailbreak attacks. While machine unlearning has emerged as a promising defense by erasing specific harmful parameters, current methods remain vulnerable to diverse jailbreaks. We first conduct an empirical study and discover that this failure mechanism is caused by jailbreaks primarily activating non-erased parameters in the intermediate layers. Further, by probing the underlying mechanism through which these circumvented parameters reassemble into the prohibited output, we verify the persistent existence of dynamic $\textbf{jailbreak paths}$ and show that the inability to rectify them constitutes the fundamental gap in existing unlearning defenses. To bridge this gap, we propose $\textbf{J}$ailbreak $\textbf{P}$ath $\textbf{U}$nlearning (JPU), which is the first to rectify dynamic jailbreak paths towards safety anchors by dynamically mining on-policy adversarial samples to expose vulnerabilities and identify jailbreak paths. Extensive experiments demonstrate that JPU significantly enhances jailbreak resistance against dynamic attacks while preserving the model's utility.
comment: 14 pages, 6 figures, under review;
☆ Learning to Act Robustly with View-Invariant Latent Actions
Vision-based robotic policies often struggle with even minor viewpoint changes, underscoring the need for view-invariant visual representations. This challenge becomes more pronounced in real-world settings, where viewpoint variability is unavoidable and can significantly disrupt policy performance. Existing methods typically learn invariance from multi-view observations at the scene level, but such approaches rely on visual appearance and fail to incorporate the physical dynamics essential for robust generalization. We propose View-Invariant Latent Action (VILA), which models a latent action capturing transition patterns across trajectories to learn view-invariant representations grounded in physical dynamics. VILA aligns these latent actions across viewpoints using an action-guided objective based on ground-truth action sequences. Experiments in both simulation and the real world show that VILA-based policies generalize effectively to unseen viewpoints and transfer well to new tasks, establishing VILA as a strong pretraining framework that improves robustness and downstream learning performance.
comment: Website: https://joon-stack.github.io/VILA/
☆ Towards Faithful Reasoning in Comics for Small MLLMs
Comic-based visual question answering (CVQA) poses distinct challenges to multimodal large language models (MLLMs) due to its reliance on symbolic abstraction, narrative logic, and humor, which differ from conventional VQA tasks. Although Chain-of-Thought (CoT) prompting is widely used to enhance MLLM reasoning, surprisingly, its direct application to CVQA often degrades performance, especially in small-scale models. Our theoretical and empirical analyses reveal that standard CoT in CVQA suffers from state entanglement, spurious transitions, and exploration inefficiency, with small models particularly vulnerable in resource-constrained settings. To address these issues, we propose a novel comic reasoning framework, designed to produce more faithful and transferable reasoning chains in small MLLMs. Specifically, our framework combines modular CoT generation with GRPO-based reinforcement fine-tuning and a novel structured reward. Beyond comic VQA, we further evaluate our approach on a broader class of humor-centric and abstract visual reasoning tasks, including meme understanding and editorial cartoon interpretation. Across five challenging benchmarks, our 3B model outperforms state-of-the-art methods, and plug-in experiments yield an additional average improvement of $\mathbf{12.1\%}$ across different MLLMs.
☆ ULS+: Data-driven Model Adaptation Enhances Lesion Segmentation
In this study, we present ULS+, an enhanced version of the Universal Lesion Segmentation (ULS) model. The original ULS model segments lesions across the whole body in CT scans given volumes of interest (VOIs) centered around a click-point. Since its release, several new public datasets have become available that can further improve model performance. ULS+ incorporates these additional datasets and uses smaller input image sizes, resulting in higher accuracy and faster inference. We compared ULS and ULS+ using the Dice score and robustness to click-point location on the ULS23 Challenge test data and a subset of the Longitudinal-CT dataset. In all comparisons, ULS+ significantly outperformed ULS. Additionally, ULS+ ranks first on the ULS23 Challenge test-phase leaderboard. By maintaining a cycle of data-driven updates and clinical validation, ULS+ establishes a foundation for robust and clinically relevant lesion segmentation models.
comment: Accepted for publication at BVM 2026 (Bildverarbeitung für die Medizin), peer-reviewed conference paper
☆ LAMS-Edit: Latent and Attention Mixing with Schedulers for Improved Content Preservation in Diffusion-Based Image and Style Editing
Text-to-Image editing using diffusion models faces challenges in balancing content preservation with edit application and handling real-image editing. To address these, we propose LAMS-Edit, leveraging intermediate states from the inversion process--an essential step in real-image editing--during edited image generation. Specifically, latent representations and attention maps from both processes are combined at each step using weighted interpolation, controlled by a scheduler. This technique, Latent and Attention Mixing with Schedulers (LAMS), integrates with Prompt-to-Prompt (P2P) to form LAMS-Edit--an extensible framework that supports precise editing with region masks and enables style transfer via LoRA. Extensive experiments demonstrate that LAMS-Edit effectively balances content preservation and edit application.
☆ Interpretable All-Type Audio Deepfake Detection with Audio LLMs via Frequency-Time Reinforcement Learning
Recent advances in audio large language models (ALLMs) have made high-quality synthetic audio widely accessible, increasing the risk of malicious audio deepfakes across speech, environmental sounds, singing voice, and music. Real-world audio deepfake detection (ADD) therefore requires all-type detectors that generalize across heterogeneous audio and provide interpretable decisions. Given the strong multi-task generalization ability of ALLMs, we first investigate their performance on all-type ADD under both supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). However, SFT using only binary real/fake labels tends to reduce the model to a black-box classifier, sacrificing interpretability. Meanwhile, vanilla RFT under sparse supervision is prone to reward hacking and can produce hallucinated, ungrounded rationales. To address this, we propose an automatic annotation and polishing pipeline that constructs Frequency-Time structured chain-of-thought (CoT) rationales, producing ~340K cold-start demonstrations. Building on CoT data, we propose Frequency Time-Group Relative Policy Optimization (FT-GRPO), a two-stage training paradigm that cold-starts ALLMs with SFT and then applies GRPO under rule-based frequency-time constraints. Experiments demonstrate that FT-GRPO achieves state-of-the-art performance on all-type ADD while producing interpretable, FT-grounded rationales. The data and code are available online.
☆ Mechanistic Knobs in LLMs: Retrieving and Steering High-Order Semantic Features via Sparse Autoencoders
Recent work in Mechanistic Interpretability (MI) has enabled the identification and intervention of internal features in Large Language Models (LLMs). However, a persistent challenge lies in linking such internal features to the reliable control of complex, behavior-level semantic attributes in language generation. In this paper, we propose a Sparse Autoencoder-based framework for retrieving and steering semantically interpretable internal features associated with high-level linguistic behaviors. Our method employs a contrastive feature retrieval pipeline based on controlled semantic oppositions, combing statistical activation analysis and generation-based validation to distill monosemantic functional features from sparse activation spaces. Using the Big Five personality traits as a case study, we demonstrate that our method enables precise, bidirectional steering of model behavior while maintaining superior stability and performance compared to existing activation steering methods like Contrastive Activation Addition (CAA). We further identify an empirical effect, which we term Functional Faithfulness, whereby intervening on a specific internal feature induces coherent and predictable shifts across multiple linguistic dimensions aligned with the target semantic attribute. Our findings suggest that LLMs internalize deeply integrated representations of high-order concepts, and provide a novel, robust mechanistic path for the regulation of complex AI behaviors.
☆ Correct, Concise and Complete: Multi-stage Training For Adaptive Reasoning
The reasoning capabilities of large language models (LLMs) have improved substantially through increased test-time computation, typically in the form of intermediate tokens known as chain-of-thought (CoT). However, CoT often becomes unnecessarily long, increasing computation cost without actual accuracy gains or sometimes even degrading performance, a phenomenon known as ``overthinking''. We propose a multi-stage efficient reasoning method that combines supervised fine-tuning -- via rejection sampling or reasoning trace reformatting -- with reinforcement learning using an adaptive length penalty. We introduce a lightweight reward function that penalizes tokens generated after the first correct answer but encouraging self-verification only when beneficial. We conduct a holistic evaluation across seven diverse reasoning tasks, analyzing the accuracy--response length trade-off. Our approach reduces response length by an average of 28\% for 8B models and 40\% for 32B models, while incurring only minor performance drops of 1.6 and 2.5 points, respectively. Despite its conceptual simplicity, it achieves a superior trade-off compared to more complex state-of-the-art efficient reasoning methods, scoring 76.6, in terms of the area under the Overthinking-Adjusted Accuracy curve ($\text{AUC}_{\text{OAA}}$) -- 5 points above the base model and 2.5 points above the second-best approach.
☆ Rationale-Grounded In-Context Learning for Time Series Reasoning with Multimodal Large Language Models
The underperformance of existing multimodal large language models for time series reasoning lies in the absence of rationale priors that connect temporal observations to their downstream outcomes, which leads models to rely on superficial pattern matching rather than principled reasoning. We therefore propose the rationale-grounded in-context learning for time series reasoning, where rationales work as guiding reasoning units rather than post-hoc explanations, and develop the RationaleTS method. Specifically, we firstly induce label-conditioned rationales, composed of reasoning paths from observable evidence to the potential outcomes. Then, we design the hybrid retrieval by balancing temporal patterns and semantic contexts to retrieve correlated rationale priors for the final in-context inference on new samples. We conduct extensive experiments to demonstrate the effectiveness and efficiency of our proposed RationaleTS on three-domain time series reasoning tasks. We will release our code for reproduction.
☆ MoE Adapter for Large Audio Language Models: Sparsity, Disentanglement, and Gradient-Conflict-Free
Extending the input modality of Large Language Models~(LLMs) to the audio domain is essential for achieving comprehensive multimodal perception. However, it is well-known that acoustic information is intrinsically \textit{heterogeneous}, entangling attributes such as speech, music, and environmental context. Existing research is limited to a dense, parameter-shared adapter to model these diverse patterns, which induces \textit{gradient conflict} during optimization, as parameter updates required for distinct attributes contradict each other. To address this limitation, we introduce the \textit{\textbf{MoE-Adapter}}, a sparse Mixture-of-Experts~(MoE) architecture designed to decouple acoustic information. Specifically, it employs a dynamic gating mechanism that routes audio tokens to specialized experts capturing complementary feature subspaces while retaining shared experts for global context, thereby mitigating gradient conflicts and enabling fine-grained feature learning. Comprehensive experiments show that the MoE-Adapter achieves superior performance on both audio semantic and paralinguistic tasks, consistently outperforming dense linear baselines with comparable computational costs. Furthermore, we will release the related code and models to facilitate future research.
comment: 13 pages, 5 figures
☆ The World is Not Mono: Enabling Spatial Understanding in Large Audio-Language Models
Existing large audio-language models perceive the world as "mono" -- a single stream of audio that ignores the critical spatial dimension ("where") required for universal acoustic scene analysis. To bridge this gap, we first introduce a hierarchical framework for Auditory Scene Analysis (ASA). Guided by this framework, we introduce a system that enables models like Qwen2-Audio to understand and reason about the complex acoustic world. Our framework achieves this through three core contributions: First, we build a large-scale, synthesized binaural audio dataset to provide the rich spatial cues. Second, we design a hybrid feature projector, which leverages parallel semantic and spatial encoders to extract decoupled representations. These distinct streams are integrated via a dense fusion mechanism, ensuring the model receives a holistic view of the acoustic scene. Finally, we employ a progressive training curriculum, advancing from supervised fine-tuning (SFT) to reinforcement learning via Group Relative Policy Optimization (GRPO), to explicitly evolve the model's capabilities towards reasoning. On our comprehensive benchmark, the model demonstrates comparatively strong capability for spatial understanding. By enabling this spatial perception, our work provides a clear pathway for leveraging the powerful reasoning abilities of large models towards holistic acoustic scene analysis, advancing from "mono" semantic recognition to spatial intelligence.
☆ Batch-of-Thought: Cross-Instance Learning for Enhanced LLM Reasoning
Current Large Language Model reasoning systems process queries independently, discarding valuable cross-instance signals such as shared reasoning patterns and consistency constraints. We introduce Batch-of-Thought (BoT), a training-free method that processes related queries jointly to enable cross-instance learning. By performing comparative analysis across batches, BoT identifies high-quality reasoning templates, detects errors through consistency checks, and amortizes computational costs. We instantiate BoT within a multi-agent reflection architecture (BoT-R), where a Reflector performs joint evaluation to unlock mutual information gain unavailable in isolated processing. Experiments across three model families and six benchmarks demonstrate that BoT-R consistently improves accuracy and confidence calibration while reducing inference costs by up to 61%. Our theoretical and experimental analysis reveals when and why batch-aware reasoning benefits LLM systems.
☆ SastBench: A Benchmark for Testing Agentic SAST Triage
SAST (Static Application Security Testing) tools are among the most widely used techniques in defensive cybersecurity, employed by commercial and non-commercial organizations to identify potential vulnerabilities in software. Despite their great utility, they generate numerous false positives, requiring costly manual filtering (aka triage). While LLM-powered agents show promise for automating cybersecurity tasks, existing benchmarks fail to emulate real-world SAST finding distributions. We introduce SastBench, a benchmark for evaluating SAST triage agents that combines real CVEs as true positives with filtered SAST tool findings as approximate false positives. SastBench features an agent-agnostic design. We evaluate different agents on the benchmark and present a comparative analysis of their performance, provide a detailed analysis of the dataset, and discuss the implications for future development.
☆ PrismVAU: Prompt-Refined Inference System for Multimodal Video Anomaly Understanding WACV 2025
Video Anomaly Understanding (VAU) extends traditional Video Anomaly Detection (VAD) by not only localizing anomalies but also describing and reasoning about their context. Existing VAU approaches often rely on fine-tuned multimodal large language models (MLLMs) or external modules such as video captioners, which introduce costly annotations, complex training pipelines, and high inference overhead. In this work, we introduce PrismVAU, a lightweight yet effective system for real-time VAU that leverages a single off-the-shelf MLLM for anomaly scoring, explanation, and prompt optimization. PrismVAU operates in two complementary stages: (1) a coarse anomaly scoring module that computes frame-level anomaly scores via similarity to textual anchors, and (2) an MLLM-based refinement module that contextualizes anomalies through system and user prompts. Both textual anchors and prompts are optimized with a weakly supervised Automatic Prompt Engineering (APE) framework. Extensive experiments on standard VAD benchmarks demonstrate that PrismVAU delivers competitive detection performance and interpretable anomaly explanations -- without relying on instruction tuning, frame-level annotations, and external modules or dense processing -- making it an efficient and practical solution for real-world applications.
comment: This paper has been accepted to the 6th Workshop on Real-World Surveillance: Applications and Challenges (WACV 2025)
☆ DCG ReID: Disentangling Collaboration and Guidance Fusion Representations for Multi-modal Vehicle Re-Identification
Multi-modal vehicle Re-Identification (ReID) aims to leverage complementary information from RGB, Near Infrared (NIR), and Thermal Infrared (TIR) modalities to retrieve the same vehicle. The challenges of multi-modal vehicle ReID arise from the uncertainty of modality quality distribution induced by inherent discrepancies across modalities, resulting in distinct conflicting fusion requirements for data with balanced and unbalanced quality distributions. Existing methods handle all multi-modal data within a single fusion model, overlooking the different needs of the two data types and making it difficult to decouple the conflict between intra-class consistency and inter-modal heterogeneity. To this end, we propose Disentangle Collaboration and Guidance Fusion Representations for Multi-modal Vehicle ReID (DCG-ReID). Specifically, to disentangle heterogeneous quality-distributed modal data without mutual interference, we first design the Dynamic Confidence-based Disentangling Weighting (DCDW) mechanism: dynamically reweighting three-modal contributions via interaction-derived modal confidence to build a disentangled fusion framework. Building on DCDW, we develop two scenario-specific fusion strategies: (1) for balanced quality distributions, Collaboration Fusion Module (CFM) mines pairwise consensus features to capture shared discriminative information and boost intra-class consistency; (2) for unbalanced distributions, Guidance Fusion Module (GFM) implements differential amplification of modal discriminative disparities to reinforce dominant modality advantages, guide auxiliary modalities to mine complementary discriminative info, and mitigate inter-modal divergence to boost multi-modal joint decision performance. Extensive experiments on three multi-modal ReID benchmarks (WMVeID863, MSVR310, RGBNT100) validate the effectiveness of our method. Code will be released upon acceptance.
☆ RAL2M: Retrieval Augmented Learning-To-Match Against Hallucination in Compliance-Guaranteed Service Systems
Hallucination is a major concern in LLM-driven service systems, necessitating explicit knowledge grounding for compliance-guaranteed responses. In this paper, we introduce Retrieval-Augmented Learning-to-Match (RAL2M), a novel framework that eliminates generation hallucination by repositioning LLMs as query-response matching judges within a retrieval-based system, providing a robust alternative to purely generative approaches. To further mitigate judgment hallucination, we propose a query-adaptive latent ensemble strategy that explicitly models heterogeneous model competence and interdependencies among LLMs, deriving a calibrated consensus decision. Extensive experiments on large-scale benchmarks demonstrate that the proposed method effectively leverages the "wisdom of the crowd" and significantly outperforms strong baselines. Finally, we discuss best practices and promising directions for further exploiting latent representations in future work.
☆ TA-Prompting: Enhancing Video Large Language Models for Dense Video Captioning via Temporal Anchors WACV 2026
Dense video captioning aims to interpret and describe all temporally localized events throughout an input video. Recent state-of-the-art methods leverage large language models (LLMs) to provide detailed moment descriptions for video data. However, existing VideoLLMs remain challenging in identifying precise event boundaries in untrimmed videos, causing the generated captions to be not properly grounded. In this paper, we propose TA-Prompting, which enhances VideoLLMs via Temporal Anchors that learn to precisely localize events and prompt the VideoLLMs to perform temporal-aware video event understanding. During inference, in order to properly determine the output caption sequence from an arbitrary number of events presented within a video, we introduce an event coherent sampling strategy to select event captions with sufficient coherence across temporal events and cross-modal similarity with the given video. Through extensive experiments on benchmark datasets, we show that our TA-Prompting is favorable against state-of-the-art VideoLLMs, yielding superior performance on dense video captioning and temporal understanding tasks including moment retrieval and temporalQA.
comment: 8 pages for main paper (exclude citation pages), 6 pages for appendix, totally 10 figures 7 tables and 2 algorithms. The paper is accepted by WACV 2026
☆ LOST-3DSG: Lightweight Open-Vocabulary 3D Scene Graphs with Semantic Tracking in Dynamic Environments
Tracking objects that move within dynamic environments is a core challenge in robotics. Recent research has advanced this topic significantly; however, many existing approaches remain inefficient due to their reliance on heavy foundation models. To address this limitation, we propose LOST-3DSG, a lightweight open-vocabulary 3D scene graph designed to track dynamic objects in real-world environments. Our method adopts a semantic approach to entity tracking based on word2vec and sentence embeddings, enabling an open-vocabulary representation while avoiding the necessity of storing dense CLIP visual features. As a result, LOST-3DSG achieves superior performance compared to approaches that rely on high-dimensional visual embeddings. We evaluate our method through qualitative and quantitative experiments conducted in a real 3D environment using a TIAGo robot. The results demonstrate the effectiveness and efficiency of LOST-3DSG in dynamic object tracking. Code and supplementary material are publicly available on the project website at https://lab-rococo-sapienza.github.io/lost-3dsg/.
☆ Logical Phase Transitions: Understanding Collapse in LLM Logical Reasoning
Symbolic logical reasoning is a critical yet underexplored capability of large language models (LLMs), providing reliable and verifiable decision-making in high-stakes domains such as mathematical reasoning and legal judgment. In this study, we present a systematic analysis of logical reasoning under controlled increases in logical complexity, and reveal a previously unrecognized phenomenon, which we term Logical Phase Transitions: rather than degrading smoothly, logical reasoning performance remains stable within a regime but collapses abruptly beyond a critical logical depth, mirroring physical phase transitions such as water freezing beyond a critical temperature threshold. Building on this insight, we propose Neuro-Symbolic Curriculum Tuning, a principled framework that adaptively aligns natural language with logical symbols to establish a shared representation, and reshapes training dynamics around phase-transition boundaries to progressively strengthen reasoning at increasing logical depths. Experiments on five benchmarks show that our approach effectively mitigates logical reasoning collapse at high complexity, yielding average accuracy gains of +1.26 in naive prompting and +3.95 in CoT, while improving generalization to unseen logical compositions. Code and data are available at https://github.com/AI4SS/Logical-Phase-Transitions.
☆ ReTreVal: Reasoning Tree with Validation - A Hybrid Framework for Enhanced LLM Multi-Step Reasoning
Multi-step reasoning remains a key challenge for Large Language Models (LLMs), particularly in complex domains such as mathematics and creative writing. While recent approaches including ReAct, Reflexion, and Self-Refine improve reasoning through iterative refinement and reflection, they often lack structured exploration of alternative solution paths and persistent learning across problems. We propose ReTreVal (Reasoning Tree with Validation), a hybrid framework that integrates Tree-of-Thoughts exploration, self-refinement, LLM-based critique scoring, and reflexion memory to enable bounded and validated multi-step reasoning. ReTreVal constructs a structured reasoning tree with adaptive depth based on problem complexity, where each node undergoes iterative self-critique and refinement guided by explicit LLM-generated feedback. A dual validation mechanism evaluates reasoning quality, coherence, and correctness at each node while persistently storing insights from successful reasoning paths and failure patterns in a reflexion memory buffer, enabling cross-problem learning. Critique-based pruning retains only the top-k highest-scoring nodes at each level, controlling computational cost while preserving high-quality solution paths. We evaluate ReTreVal against ReAct, Reflexion, and Self-Refine across 500 mathematical problems and creative writing tasks using Qwen 2.5 7B as the underlying LLM, and demonstrate that ReTreVal consistently outperforms existing methods through its combination of structured exploration, critique-driven refinement, and cross-problem memory, making it particularly effective for tasks requiring exploratory reasoning, rigorous verification, and knowledge transfer.
comment: 14 pages, 1 figure, 5 tables
☆ LongBench Pro: A More Realistic and Comprehensive Bilingual Long-Context Evaluation Benchmark
The rapid expansion of context length in large language models (LLMs) has outpaced existing evaluation benchmarks. Current long-context benchmarks often trade off scalability and realism: synthetic tasks underrepresent real-world complexity, while fully manual annotation is costly to scale to extreme lengths and diverse scenarios. We present LongBench Pro, a more realistic and comprehensive bilingual benchmark of 1,500 naturally occurring long-context samples in English and Chinese spanning 11 primary tasks and 25 secondary tasks, with input lengths from 8k to 256k tokens. LongBench Pro supports fine-grained analysis with task-specific metrics and a multi-dimensional taxonomy of context requirement (full vs. partial dependency), length (six levels), and difficulty (four levels calibrated by model performance). To balance quality with scalability, we propose a Human-Model Collaborative Construction pipeline: frontier LLMs draft challenging questions and reference answers, along with design rationales and solution processes, to reduce the cost of expert verification. Experts then rigorously validate correctness and refine problematic cases. Evaluating 46 widely used long-context LLMs on LongBench Pro yields three findings: (1) long-context optimization contributes more to long-context comprehension than parameter scaling; (2) effective context length is typically shorter than the claimed context length, with pronounced cross-lingual misalignment; and (3) the "thinking" paradigm helps primarily models trained with native reasoning, while mixed-thinking designs offer a promising Pareto trade-off. In summary, LongBench Pro provides a robust testbed for advancing long-context understanding.
☆ SimRPD: Optimizing Recruitment Proactive Dialogue Agents through Simulator-Based Data Evaluation and Selection
Task-oriented proactive dialogue agents play a pivotal role in recruitment, particularly for steering conversations towards specific business outcomes, such as acquiring social-media contacts for private-channel conversion. Although supervised fine-tuning and reinforcement learning have proven effective for training such agents, their performance is heavily constrained by the scarcity of high-quality, goal-oriented domain-specific training data. To address this challenge, we propose SimRPD, a three-stage framework for training recruitment proactive dialogue agents. First, we develop a high-fidelity user simulator to synthesize large-scale conversational data through multi-turn online dialogue. Then we introduce a multi-dimensional evaluation framework based on Chain-of-Intention (CoI) to comprehensively assess the simulator and effectively select high-quality data, incorporating both global-level and instance-level metrics. Finally, we train the recruitment proactive dialogue agent on the selected dataset. Experiments in a real-world recruitment scenario demonstrate that SimRPD outperforms existing simulator-based data selection strategies, highlighting its practical value for industrial deployment and its potential applicability to other business-oriented dialogue scenarios.
☆ M3MAD-Bench: Are Multi-Agent Debates Really Effective Across Domains and Modalities?
As an agent-level reasoning and coordination paradigm, Multi-Agent Debate (MAD) orchestrates multiple agents through structured debate to improve answer quality and support complex reasoning. However, existing research on MAD suffers from two fundamental limitations: evaluations are conducted under fragmented and inconsistent settings, hindering fair comparison, and are largely restricted to single-modality scenarios that rely on textual inputs only. To address these gaps, we introduce M3MAD-Bench, a unified and extensible benchmark for evaluating MAD methods across Multi-domain tasks, Multi-modal inputs, and Multi-dimensional metrics. M3MAD-Bench establishes standardized protocols over five core task domains: Knowledge, Mathematics, Medicine, Natural Sciences, and Complex Reasoning, and systematically covers both pure text and vision-language datasets, enabling controlled cross-modality comparison. We evaluate MAD methods on nine base models spanning different architectures, scales, and modality capabilities. Beyond accuracy, M3MAD-Bench incorporates efficiency-oriented metrics such as token consumption and inference time, providing a holistic view of performance--cost trade-offs. Extensive experiments yield systematic insights into the effectiveness, robustness, and efficiency of MAD across text-only and multimodal scenarios. We believe M3MAD-Bench offers a reliable foundation for future research on standardized MAD evaluation. The code is available at http://github.com/liaolea/M3MAD-Bench.
☆ Sample-Efficient Neurosymbolic Deep Reinforcement Learning
Reinforcement Learning (RL) is a well-established framework for sequential decision-making in complex environments. However, state-of-the-art Deep RL (DRL) algorithms typically require large training datasets and often struggle to generalize beyond small-scale training scenarios, even within standard benchmarks. We propose a neuro-symbolic DRL approach that integrates background symbolic knowledge to improve sample efficiency and generalization to more challenging, unseen tasks. Partial policies defined for simple domain instances, where high performance is easily attained, are transferred as useful priors to accelerate learning in more complex settings and avoid tuning DRL parameters from scratch. To do so, partial policies are represented as logical rules, and online reasoning is performed to guide the training process through two mechanisms: (i) biasing the action distribution during exploration, and (ii) rescaling Q-values during exploitation. This neuro-symbolic integration enhances interpretability and trustworthiness while accelerating convergence, particularly in sparse-reward environments and tasks with long planning horizons. We empirically validate our methodology on challenging variants of gridworld environments, both in the fully observable and partially observable setting. We show improved performance over a state-of-the-art reward machine baseline.
☆ TiMem: Temporal-Hierarchical Memory Consolidation for Long-Horizon Conversational Agents
Long-horizon conversational agents have to manage ever-growing interaction histories that quickly exceed the finite context windows of large language models (LLMs). Existing memory frameworks provide limited support for temporally structured information across hierarchical levels, often leading to fragmented memories and unstable long-horizon personalization. We present TiMem, a temporal--hierarchical memory framework that organizes conversations through a Temporal Memory Tree (TMT), enabling systematic memory consolidation from raw conversational observations to progressively abstracted persona representations. TiMem is characterized by three core properties: (1) temporal--hierarchical organization through TMT; (2) semantic-guided consolidation that enables memory integration across hierarchical levels without fine-tuning; and (3) complexity-aware memory recall that balances precision and efficiency across queries of varying complexity. Under a consistent evaluation setup, TiMem achieves state-of-the-art accuracy on both benchmarks, reaching 75.30% on LoCoMo and 76.88% on LongMemEval-S. It outperforms all evaluated baselines while reducing the recalled memory length by 52.20% on LoCoMo. Manifold analysis indicates clear persona separation on LoCoMo and reduced dispersion on LongMemEval-S. Overall, TiMem treats temporal continuity as a first-class organizing principle for long-horizon memory in conversational agents.
☆ Breaking Self-Attention Failure: Rethinking Query Initialization for Infrared Small Target Detection
Infrared small target detection (IRSTD) faces significant challenges due to the low signal-to-noise ratio (SNR), small target size, and complex cluttered backgrounds. Although recent DETR-based detectors benefit from global context modeling, they exhibit notable performance degradation on IRSTD. We revisit this phenomenon and reveal that the target-relevant embeddings of IRST are inevitably overwhelmed by dominant background features due to the self-attention mechanism, leading to unreliable query initialization and inaccurate target localization. To address this issue, we propose SEF-DETR, a novel framework that refines query initialization for IRSTD. Specifically, SEF-DETR consists of three components: Frequency-guided Patch Screening (FPS), Dynamic Embedding Enhancement (DEE), and Reliability-Consistency-aware Fusion (RCF). The FPS module leverages the Fourier spectrum of local patches to construct a target-relevant density map, suppressing background-dominated features. DEE strengthens multi-scale representations in a target-aware manner, while RCF further refines object queries by enforcing spatial-frequency consistency and reliability. Extensive experiments on three public IRSTD datasets demonstrate that SEF-DETR achieves superior detection performance compared to state-of-the-art methods, delivering a robust and efficient solution for infrared small target detection task.
☆ Quantum-enhanced long short-term memory with attention for spatial permeability prediction in oilfield reservoirs
Spatial prediction of reservoir parameters, especially permeability, is crucial for oil and gas exploration and development. However, the wide range and high variability of permeability prevent existing methods from providing reliable predictions. For the first time in subsurface spatial prediction, this study presents a quantum-enhanced long short-term memory with attention (QLSTMA) model that incorporates variational quantum circuits (VQCs) into the recurrent cell. Using quantum entanglement and superposition principles, the QLSTMA significantly improves the ability to predict complex geological parameters such as permeability. Two quantization structures, QLSTMA with Shared Gates (QLSTMA-SG) and with Independent Gates (QLSTMA-IG), are designed to investigate and evaluate the effects of quantum structure configurations and the number of qubits on model performance. Experimental results demonstrate that the 8-qubit QLSTMA-IG model significantly outperforms the traditional long short-term memory with attention (LSTMA), reducing Mean Absolute Error (MAE) by 19% and Root Mean Squared Error (RMSE) by 20%, with particularly strong performance in regions featuring complex well-logging data. These findings validate the potential of quantum-classical hybrid neural networks for reservoir prediction, indicating that increasing the number of qubits yields further accuracy gains despite the reliance on classical simulations. This study establishes a foundational framework for the eventual deployment of such models on real quantum hardware and their extension to broader applications in petroleum engineering and geoscience.
comment: 22 pages, 7 figures
☆ Causal-Enhanced AI Agents for Medical Research Screening
Systematic reviews are essential for evidence-based medicine, but reviewing 1.5 million+ annual publications manually is infeasible. Current AI approaches suffer from hallucinations in systematic review tasks, with studies reporting rates ranging from 28--40% for earlier models to 2--15% for modern implementations which is unacceptable when errors impact patient care. We present a causal graph-enhanced retrieval-augmented generation system integrating explicit causal reasoning with dual-level knowledge graphs. Our approach enforces evidence-first protocols where every causal claim traces to retrieved literature and automatically generates directed acyclic graphs visualizing intervention-outcome pathways. Evaluation on 234 dementia exercise abstracts shows CausalAgent achieves 95% accuracy, 100% retrieval success, and zero hallucinations versus 34% accuracy and 10% hallucinations for baseline AI. Automatic causal graphs enable explicit mechanism modeling, visual synthesis, and enhanced interpretability. While this proof-of-concept evaluation used ten questions focused on dementia exercise research, the architectural approach demonstrates transferable principles for trustworthy medical AI and causal reasoning's potential for high-stakes healthcare.
comment: for submission to The 39th Canadian Conference on Artificial Intelligence
☆ HAL: Inducing Human-likeness in LLMs with Alignment
Conversational human-likeness plays a central role in human-AI interaction, yet it has remained difficult to define, measure, and optimize. As a result, improvements in human-like behavior are largely driven by scale or broad supervised training, rather than targeted alignment. We introduce Human Aligning LLMs (HAL), a framework for aligning language models to conversational human-likeness using an interpretable, data-driven reward. HAL derives explicit conversational traits from contrastive dialogue data, combines them into a compact scalar score, and uses this score as a transparent reward signal for alignment with standard preference optimization methods. Using this approach, we align models of varying sizes without affecting their overall performance. In large-scale human evaluations, models aligned with HAL are more frequently perceived as human-like in conversation. Because HAL operates over explicit, interpretable traits, it enables inspection of alignment behavior and diagnosis of unintended effects. More broadly, HAL demonstrates how soft, qualitative properties of language--previously outside the scope for alignment--can be made measurable and aligned in an interpretable and explainable way.
☆ MiMo-V2-Flash Technical Report
We present MiMo-V2-Flash, a Mixture-of-Experts (MoE) model with 309B total parameters and 15B active parameters, designed for fast, strong reasoning and agentic capabilities. MiMo-V2-Flash adopts a hybrid attention architecture that interleaves Sliding Window Attention (SWA) with global attention, with a 128-token sliding window under a 5:1 hybrid ratio. The model is pre-trained on 27 trillion tokens with Multi-Token Prediction (MTP), employing a native 32k context length and subsequently extended to 256k. To efficiently scale post-training compute, MiMo-V2-Flash introduces a novel Multi-Teacher On-Policy Distillation (MOPD) paradigm. In this framework, domain-specialized teachers (e.g., trained via large-scale reinforcement learning) provide dense and token-level reward, enabling the student model to perfectly master teacher expertise. MiMo-V2-Flash rivals top-tier open-weight models such as DeepSeek-V3.2 and Kimi-K2, despite using only 1/2 and 1/3 of their total parameters, respectively. During inference, by repurposing MTP as a draft model for speculative decoding, MiMo-V2-Flash achieves up to 3.6 acceptance length and 2.6x decoding speedup with three MTP layers. We open-source both the model weights and the three-layer MTP weights to foster open research and community collaboration.
comment: 31 pages, technical report
☆ Closing the Reality Gap: Zero-Shot Sim-to-Real Deployment for Dexterous Force-Based Grasping and Manipulation
Human-like dexterous hands with multiple fingers offer human-level manipulation capabilities, but training control policies that can directly deploy on real hardware remains difficult due to contact-rich physics and imperfect actuation. We close this gap with a practical sim-to-real reinforcement learning (RL) framework that utilizes dense tactile feedback combined with joint torque sensing to explicitly regulate physical interactions. To enable effective sim-to-real transfer, we introduce (i) a computationally fast tactile simulation that computes distances between dense virtual tactile units and the object via parallel forward kinematics, providing high-rate, high-resolution touch signals needed by RL; (ii) a current-to-torque calibration that eliminates the need for torque sensors on dexterous hands by mapping motor current to joint torque; and (iii) actuator dynamics modeling to bridge the actuation gaps with randomization of non-ideal effects such as backlash, torque-speed saturation. Using an asymmetric actor-critic PPO pipeline trained entirely in simulation, our policies deploy directly to a five-finger hand. The resulting policies demonstrated two essential skills: (1) command-based, controllable grasp force tracking, and (2) reorientation of objects in the hand, both of which were robustly executed without fine-tuning on the robot. By combining tactile and torque in the observation space with effective sensing/actuation modeling, our system provides a practical solution to achieve reliable dexterous manipulation. To our knowledge, this is the first demonstration of controllable grasping on a multi-finger dexterous hand trained entirely in simulation and transferred zero-shot on real hardware.
☆ UniSRCodec: Unified and Low-Bitrate Single Codebook Codec with Sub-Band Reconstruction
Neural Audio Codecs (NACs) can reduce transmission overhead by performing compact compression and reconstruction, which also aim to bridge the gap between continuous and discrete signals. Existing NACs can be divided into two categories: multi-codebook and single-codebook codecs. Multi-codebook codecs face challenges such as structural complexity and difficulty in adapting to downstream tasks, while single-codebook codecs, though structurally simpler, suffer from low-fidelity, ineffective modeling of unified audio, and an inability to support modeling of high-frequency audio. We propose the UniSRCodec, a single-codebook codec capable of supporting high sampling rate, low-bandwidth, high fidelity, and unified. We analyze the inefficiency of waveform-based compression and introduce the time and frequency compression method using the Mel-spectrogram, and cooperate with a Vocoder to recover the phase information of the original audio. Moreover, we propose a sub-band reconstruction technique to achieve high-quality compression across both low and high frequency bands. Subjective and objective experimental results demonstrate that UniSRCodec achieves state-of-the-art (SOTA) performance among cross-domain single-codebook codecs with only a token rate of 40, and its reconstruction quality is comparable to that of certain multi-codebook methods. Our demo page is available at https://wxzyd123.github.io/unisrcodec.
comment: 6 pages, 2 figures, and 3 tables
☆ Netflix Artwork Personalization via LLM Post-training
Large language models (LLMs) have demonstrated success in various applications of user recommendation and personalization across e-commerce and entertainment. On many entertainment platforms such as Netflix, users typically interact with a wide range of titles, each represented by an artwork. Since users have diverse preferences, an artwork that appeals to one type of user may not resonate with another with different preferences. Given this user heterogeneity, our work explores the novel problem of personalized artwork recommendations according to diverse user preferences. Similar to the multi-dimensional nature of users' tastes, titles contain different themes and tones that may appeal to different viewers. For example, the same title might feature both heartfelt family drama and intense action scenes. Users who prefer romantic content may like the artwork emphasizing emotional warmth between the characters, while those who prefer action thrillers may find high-intensity action scenes more intriguing. Rather than a one-size-fits-all approach, we conduct post-training of pre-trained LLMs to make personalized artwork recommendations, selecting the most preferred visual representation of a title for each user and thereby improving user satisfaction and engagement. Our experimental results with Llama 3.1 8B models (trained on a dataset of 110K data points and evaluated on 5K held-out user-title pairs) show that the post-trained LLMs achieve 3-5\% improvements over the Netflix production model, suggesting a promising direction for granular personalized recommendations using LLMs.
comment: 6 pages
☆ LLM Agent Framework for Intelligent Change Analysis in Urban Environment using Remote Sensing Imagery
Existing change detection methods often lack the versatility to handle diverse real-world queries and the intelligence for comprehensive analysis. This paper presents a general agent framework, integrating Large Language Models (LLM) with vision foundation models to form ChangeGPT. A hierarchical structure is employed to mitigate hallucination. The agent was evaluated on a curated dataset of 140 questions categorized by real-world scenarios, encompassing various question types (e.g., Size, Class, Number) and complexities. The evaluation assessed the agent's tool selection ability (Precision/Recall) and overall query accuracy (Match). ChangeGPT, especially with a GPT-4-turbo backend, demonstrated superior performance, achieving a 90.71 % Match rate. Its strength lies particularly in handling change-related queries requiring multi-step reasoning and robust tool selection. Practical effectiveness was further validated through a real-world urban change monitoring case study in Qianhai Bay, Shenzhen. By providing intelligence, adaptability, and multi-type change analysis, ChangeGPT offers a powerful solution for decision-making in remote sensing applications.
☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies KDD
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: 11pages, 5figures, In Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
☆ Window-based Membership Inference Attacks Against Fine-tuned Large Language Models
Most membership inference attacks (MIAs) against Large Language Models (LLMs) rely on global signals, like average loss, to identify training data. This approach, however, dilutes the subtle, localized signals of memorization, reducing attack effectiveness. We challenge this global-averaging paradigm, positing that membership signals are more pronounced within localized contexts. We introduce WBC (Window-Based Comparison), which exploits this insight through a sliding window approach with sign-based aggregation. Our method slides windows of varying sizes across text sequences, with each window casting a binary vote on membership based on loss comparisons between target and reference models. By ensembling votes across geometrically spaced window sizes, we capture memorization patterns from token-level artifacts to phrase-level structures. Extensive experiments across eleven datasets demonstrate that WBC substantially outperforms established baselines, achieving higher AUC scores and 2-3 times improvements in detection rates at low false positive thresholds. Our findings reveal that aggregating localized evidence is fundamentally more effective than global averaging, exposing critical privacy vulnerabilities in fine-tuned LLMs.
comment: Code is available at [https://github.com/Stry233/WBC/](https://github.com/Stry233/WBC/). This arXiv version corresponds to the accepted paper and includes the full experimental results
☆ The Path Ahead for Agentic AI: Challenges and Opportunities
The evolution of Large Language Models (LLMs) from passive text generators to autonomous, goal-driven systems represents a fundamental shift in artificial intelligence. This chapter examines the emergence of agentic AI systems that integrate planning, memory, tool use, and iterative reasoning to operate autonomously in complex environments. We trace the architectural progression from statistical models to transformer-based systems, identifying capabilities that enable agentic behavior: long-range reasoning, contextual awareness, and adaptive decision-making. The chapter provides three contributions: (1) a synthesis of how LLM capabilities extend toward agency through reasoning-action-reflection loops; (2) an integrative framework describing core components perception, memory, planning, and tool execution that bridge LLMs with autonomous behavior; (3) a critical assessment of applications and persistent challenges in safety, alignment, reliability, and sustainability. Unlike existing surveys, we focus on the architectural transition from language understanding to autonomous action, emphasizing the technical gaps that must be resolved before deployment. We identify critical research priorities, including verifiable planning, scalable multi-agent coordination, persistent memory architectures, and governance frameworks. Responsible advancement requires simultaneous progress in technical robustness, interpretability, and ethical safeguards to realize potential while mitigating risks of misalignment and unintended consequences.
☆ Hypothesize-Then-Verify: Speculative Root Cause Analysis for Microservices with Pathwise Parallelism ICSE
Microservice systems have become the backbone of cloud-native enterprise applications due to their resource elasticity, loosely coupled architecture, and lightweight deployment. Yet, the intrinsic complexity and dynamic runtime interactions of such systems inevitably give rise to anomalies. Ensuring system reliability therefore hinges on effective root cause analysis (RCA), which entails not only localizing the source of anomalies but also characterizing the underlying failures in a timely and interpretable manner. Recent advances in intelligent RCA techniques, particularly those powered by large language models (LLMs), have demonstrated promising capabilities, as LLMs reduce reliance on handcrafted features while offering cross-platform adaptability, task generalization, and flexibility. However, existing LLM-based methods still suffer from two critical limitations: (a) limited exploration diversity, which undermines accuracy, and (b) heavy dependence on large-scale LLMs, which results in slow inference. To overcome these challenges, we propose SpecRCA, a speculative root cause analysis framework for microservices that adopts a \textit{hypothesize-then-verify} paradigm. SpecRCA first leverages a hypothesis drafting module to rapidly generate candidate root causes, and then employs a parallel root cause verifier to efficiently validate them. Preliminary experiments on the AIOps 2022 dataset demonstrate that SpecRCA achieves superior accuracy and efficiency compared to existing approaches, highlighting its potential as a practical solution for scalable and interpretable RCA in complex microservice environments.
comment: accepted by ICSE-NIER'26
☆ Agentic Memory Enhanced Recursive Reasoning for Root Cause Localization in Microservices ICSE
As contemporary microservice systems become increasingly popular and complex-often comprising hundreds or even thousands of fine-grained, interdependent subsystems-they are experiencing more frequent failures. Ensuring system reliability thus demands accurate root cause localization. While many traditional graph-based and deep learning approaches have been explored for this task, they often rely heavily on pre-defined schemas that struggle to adapt to evolving operational contexts. Consequently, a number of LLM-based methods have recently been proposed. However, these methods still face two major limitations: shallow, symptom-centric reasoning that undermines accuracy, and a lack of cross-alert reuse that leads to redundant reasoning and high latency. In this paper, we conduct a comprehensive study of how Site Reliability Engineers (SREs) localize the root causes of failures, drawing insights from professionals across multiple organizations. Our investigation reveals that expert root cause analysis exhibits three key characteristics: recursiveness, multi-dimensional expansion, and cross-modal reasoning. Motivated by these findings, we introduce AMER-RCL, an agentic memory enhanced recursive reasoning framework for root cause localization in microservices. AMER-RCL employs the Recursive Reasoning RCL engine, a multi-agent framework that performs recursive reasoning on each alert to progressively refine candidate causes, while Agentic Memory incrementally accumulates and reuses reasoning from prior alerts within a time window to reduce redundant exploration and lower inference latency. Experimental results demonstrate that AMER-RCL consistently outperforms state-of-the-art methods in both localization accuracy and inference efficiency.
comment: accepted by ICSE-SEIP'26
☆ Foreground-Aware Dataset Distillation via Dynamic Patch Selection
In this paper, we propose a foreground-aware dataset distillation method that enhances patch selection in a content-adaptive manner. With the rising computational cost of training large-scale deep models, dataset distillation has emerged as a promising approach for constructing compact synthetic datasets that retain the knowledge of their large original counterparts. However, traditional optimization-based methods often suffer from high computational overhead, memory constraints, and the generation of unrealistic, noise-like images with limited architectural generalization. Recent non-optimization methods alleviate some of these issues by constructing distilled data from real image patches, but the used rigid patch selection strategies can still discard critical information about the main objects. To solve this problem, we first leverage Grounded SAM2 to identify foreground objects and compute per-image foreground occupancy, from which we derive a category-wise patch decision threshold. Guided by these thresholds, we design a dynamic patch selection strategy that, for each image, either selects the most informative patch from multiple candidates or directly resizes the full image when the foreground dominates. This dual-path mechanism preserves more key information about the main objects while reducing redundant background content. Extensive experiments on multiple benchmarks show that the proposed method consistently improves distillation performance over existing approaches, producing more informative and representative distilled datasets and enhancing robustness across different architectures and image compositions.
☆ Privacy-Preserving AI-Enabled Decentralized Learning and Employment Records System
Learning and Employment Record (LER) systems are emerging as critical infrastructure for securely compiling and sharing educational and work achievements. Existing blockchain-based platforms leverage verifiable credentials but typically lack automated skill-credential generation and the ability to incorporate unstructured evidence of learning. In this paper,a privacy-preserving, AI-enabled decentralized LER system is proposed to address these gaps. Digitally signed transcripts from educational institutions are accepted, and verifiable self-issued skill credentials are derived inside a trusted execution environment (TEE) by a natural language processing pipeline that analyzes formal records (e.g., transcripts, syllabi) and informal artifacts. All verification and job-skill matching are performed inside the enclave with selective disclosure, so raw credentials and private keys remain enclave-confined. Job matching relies solely on attested skill vectors and is invariant to non-skill resume fields, thereby reducing opportunities for screening bias.The NLP component was evaluated on sample learner data; the mapping follows the validated Syllabus-to-O*NET methodology,and a stability test across repeated runs observed <5% variance in top-ranked skills. Formal security statements and proof sketches are provided showing that derived credentials are unforgeable and that sensitive information remains confidential. The proposed system thus supports secure education and employment credentialing, robust transcript verification,and automated, privacy-preserving skill extraction within a decentralized framework.
☆ Time-Scaling Is What Agents Need Now
Early artificial intelligence paradigms exhibited separated cognitive functions: Neural Networks focused on "perception-representation," Reinforcement Learning on "decision-making-behavior," and Symbolic AI on "knowledge-reasoning." With Transformer-based large models and world models, these paradigms are converging into cognitive agents with closed-loop "perception-decision-action" capabilities. Humans solve complex problems under limited cognitive resources through temporalized sequential reasoning. Language relies on problem space search for deep semantic reasoning. While early large language models (LLMs) could generate fluent text, they lacked robust semantic reasoning capabilities. Prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT) extended reasoning paths by making intermediate steps explicit. Recent models like DeepSeek-R1 enhanced performance through explicit reasoning trajectories. However, these methods have limitations in search completeness and efficiency. This highlights the need for "Time-Scaling"--the systematic extension and optimization of an agent's ability to unfold reasoning over time. Time-Scaling refers to architectural design utilizing extended temporal pathways, enabling deeper problem space exploration, dynamic strategy adjustment, and enhanced metacognitive control, paralleling human sequential reasoning under cognitive constraints. It represents a critical frontier for enhancing deep reasoning and problem-solving without proportional increases in static model parameters. Advancing intelligent agent capabilities requires placing Time-Scaling principles at the forefront, positioning explicit temporal reasoning management as foundational.
☆ CREAM: Continual Retrieval on Dynamic Streaming Corpora with Adaptive Soft Memory KDD 2026
Information retrieval (IR) in dynamic data streams is emerging as a challenging task, as shifts in data distribution degrade the performance of AI-powered IR systems. To mitigate this issue, memory-based continual learning has been widely adopted for IR. However, existing methods rely on a fixed set of queries with ground-truth relevant documents, which limits generalization to unseen queries and documents, making them impractical for real-world applications. To enable more effective learning with unseen topics of a new corpus without ground-truth labels, we propose CREAM, a self-supervised framework for memory-based continual retrieval. CREAM captures the evolving semantics of streaming queries and documents into dynamically structured soft memory and leverages it to adapt to both seen and unseen topics in an unsupervised setting. We realize this through three key techniques: fine-grained similarity estimation, regularized cluster prototyping, and stratified coreset sampling. Experiments on two benchmark datasets demonstrate that CREAM exhibits superior adaptability and retrieval accuracy, outperforming the strongest method in a label-free setting by 27.79\% in Success@5 and 44.5\% in Recall@10 on average, and achieving performance comparable to or even exceeding that of supervised methods.
comment: Accepted to KDD 2026
☆ Learning User Preferences Through Interaction for Long-Term Collaboration
As conversational agents accumulate experience collaborating with users, adapting to user preferences is essential for fostering long-term relationships and improving collaboration quality over time. We introduce MultiSessionCollab, a benchmark that evaluates how well agents can learn user preferences and leverage them to improve collaboration quality throughout multiple sessions. To develop agents that succeed in this setting, we present long-term collaborative agents equipped with a memory that persists and refines user preference as interaction experience accumulates. Moreover, we demonstrate that learning signals can be derived from user simulator behavior in MultiSessionCollab to train agents to generate more comprehensive reflections and update their memory more effectively. Extensive experiments show that equipping agents with memory improves long-term collaboration, yielding higher task success rates, more efficient interactions, and reduced user effort. Finally, we conduct a human user study that demonstrates that memory helps improve user experience in real-world settings.
☆ Adversarial Question Answering Robustness: A Multi-Level Error Analysis and Mitigation Study
Question answering (QA) systems achieve impressive performance on standard benchmarks like SQuAD, but remain vulnerable to adversarial examples. This project investigates the adversarial robustness of transformer models on the AddSent adversarial dataset through systematic experimentation across model scales and targeted mitigation strategies. We perform comprehensive multi-level error analysis using five complementary categorization schemes, identifying negation confusion and entity substitution as the primary failure modes. Through systematic evaluation of adversarial fine-tuning ratios, we identify 80% clean + 20% adversarial data as optimal. Data augmentation experiments reveal a capacity bottleneck in small models. Scaling from ELECTRA-small (14M parameters) to ELECTRA-base (110M parameters) eliminates the robustness-accuracy trade-off, achieving substantial improvements on both clean and adversarial data. We implement three targeted mitigation strategies, with Entity-Aware contrastive learning achieving best performance: 89.89% AddSent Exact Match (EM) and 90.73% SQuAD EM, representing 94.9% closure of the adversarial gap. To our knowledge, this is the first work integrating comprehensive linguistic error analysis with Named Entity Recognition (NER)-guided contrastive learning for adversarial QA, demonstrating that targeted mitigation can achieve near-parity between clean and adversarial performance.
☆ Multi-channel multi-speaker transformer for speech recognition INTERSPEECH 2023
With the development of teleconferencing and in-vehicle voice assistants, far-field multi-speaker speech recognition has become a hot research topic. Recently, a multi-channel transformer (MCT) has been proposed, which demonstrates the ability of the transformer to model far-field acoustic environments. However, MCT cannot encode high-dimensional acoustic features for each speaker from mixed input audio because of the interference between speakers. Based on these, we propose the multi-channel multi-speaker transformer (M2Former) for far-field multi-speaker ASR in this paper. Experiments on the SMS-WSJ benchmark show that the M2Former outperforms the neural beamformer, MCT, dual-path RNN with transform-average-concatenate and multi-channel deep clustering based end-to-end systems by 9.2%, 14.3%, 24.9%, and 52.2% respectively, in terms of relative word error rate reduction.
comment: Proc. INTERSPEECH 2023, 5 pages
☆ Learning from Prompt itself: the Hierarchical Attribution Prompt Optimization
Optimization is fundamental across numerous disciplines, typically following an iterative process of refining an initial solution to enhance performance. This principle is equally critical in prompt engineering, where designing effective prompts for large language models constitutes a complex optimization challenge. A structured optimization approach requires automated or semi-automated procedures to develop improved prompts, thereby reducing manual effort, improving performance, and yielding an interpretable process. However, current prompt optimization methods often induce prompt drift, where new prompts fix prior failures but impair performance on previously successful tasks. Additionally, generating prompts from scratch can compromise interpretability. To address these limitations, this study proposes the Hierarchical Attribution Prompt Optimization (HAPO) framework, which introduces three innovations: (1) a dynamic attribution mechanism targeting error patterns in training data and prompting history, (2) semantic-unit optimization for editing functional prompt segments, and (3) multimodal-friendly progression supporting both end-to-end LLM and LLM-MLLM workflows. Applied in contexts like single/multi-image QA (e.g., OCRV2) and complex task analysis (e.g., BBH), HAPO demonstrates enhanced optimization efficiency, outperforming comparable automated prompt optimization methods and establishing an extensible paradigm for scalable prompt engineering.
☆ Topology-Independent Robustness of the Weighted Mean under Label Poisoning Attacks in Heterogeneous Decentralized Learning
Robustness to malicious attacks is crucial for practical decentralized signal processing and machine learning systems. A typical example of such attacks is label poisoning, meaning that some agents possess corrupted local labels and share models trained on these poisoned data. To defend against malicious attacks, existing works often focus on designing robust aggregators; meanwhile, the weighted mean aggregator is typically considered a simple, vulnerable baseline. This paper analyzes the robustness of decentralized gradient descent under label poisoning attacks, considering both robust and weighted mean aggregators. Theoretical results reveal that the learning errors of robust aggregators depend on the network topology, whereas the performance of weighted mean aggregator is topology-independent. Remarkably, the weighted mean aggregator, although often considered vulnerable, can outperform robust aggregators under sufficient heterogeneity, particularly when: (i) the global contamination rate (i.e., the fraction of poisoned agents for the entire network) is smaller than the local contamination rate (i.e., the maximal fraction of poisoned neighbors for the regular agents); (ii) the network of regular agents is disconnected; or (iii) the network of regular agents is sparse and the local contamination rate is high. Empirical results support our theoretical findings, highlighting the important role of network topology in the robustness to label poisoning attacks.
☆ Extracting books from production language models
Many unresolved legal questions over LLMs and copyright center on memorization: whether specific training data have been encoded in the model's weights during training, and whether those memorized data can be extracted in the model's outputs. While many believe that LLMs do not memorize much of their training data, recent work shows that substantial amounts of copyrighted text can be extracted from open-weight models. However, it remains an open question if similar extraction is feasible for production LLMs, given the safety measures these systems implement. We investigate this question using a two-phase procedure: (1) an initial probe to test for extraction feasibility, which sometimes uses a Best-of-N (BoN) jailbreak, followed by (2) iterative continuation prompts to attempt to extract the book. We evaluate our procedure on four production LLMs -- Claude 3.7 Sonnet, GPT-4.1, Gemini 2.5 Pro, and Grok 3 -- and we measure extraction success with a score computed from a block-based approximation of longest common substring (nv-recall). With different per-LLM experimental configurations, we were able to extract varying amounts of text. For the Phase 1 probe, it was unnecessary to jailbreak Gemini 2.5 Pro and Grok 3 to extract text (e.g, nv-recall of 76.8% and 70.3%, respectively, for Harry Potter and the Sorcerer's Stone), while it was necessary for Claude 3.7 Sonnet and GPT-4.1. In some cases, jailbroken Claude 3.7 Sonnet outputs entire books near-verbatim (e.g., nv-recall=95.8%). GPT-4.1 requires significantly more BoN attempts (e.g., 20X), and eventually refuses to continue (e.g., nv-recall=4.0%). Taken together, our work highlights that, even with model- and system-level safeguards, extraction of (in-copyright) training data remains a risk for production LLMs.
comment: We ran experiments from mid-August to mid-September 2025, notified affected providers shortly after, and now make our findings public after a 90-day disclosure window
☆ Inferring Causal Graph Temporal Logic Formulas to Expedite Reinforcement Learning in Temporally Extended Tasks AAAI-26
Decision-making tasks often unfold on graphs with spatial-temporal dynamics. Black-box reinforcement learning often overlooks how local changes spread through network structure, limiting sample efficiency and interpretability. We present GTL-CIRL, a closed-loop framework that simultaneously learns policies and mines Causal Graph Temporal Logic (Causal GTL) specifications. The method shapes rewards with robustness, collects counterexamples when effects fail, and uses Gaussian Process (GP) driven Bayesian optimization to refine parameterized cause templates. The GP models capture spatial and temporal correlations in the system dynamics, enabling efficient exploration of complex parameter spaces. Case studies in gene and power networks show faster learning and clearer, verifiable behavior compared to standard RL baselines.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
☆ When Do Tools and Planning Help LLMs Think? A Cost- and Latency-Aware Benchmark
Modern large language models (LLMs) increasingly rely on inference-time planning and external tools to improve reasoning. We benchmark this behavior on two real-world settings: event-centric question answering over graph-structured knowledge (Event-QA) and persuasive response generation in Reddit ChangeMyView (CMV). Using LangChain and LangGraph, we compare a one-shot baseline against a plan--execute--replan agent equipped with task-specific tools (DBpedia SPARQL/lookup/schema exploration, Wikipedia-focused retrieval, and topical web search). We evaluate on 60 examples each from Event-QA and CMV (3 splits of 20), and report both mean end-to-end latency and per-example token cost estimates. We evaluate GPT-4o and GPT-4o-mini under identical workflows and report accuracy and end-to-end latency. On Event-QA, the best tool-augmented configuration improves accuracy (e.g., 47.5\% $\rightarrow$ 67.5\% for GPT-4o) while increasing latency by orders of magnitude ($\sim$8s $\rightarrow$ $\sim$317s per example). On CMV, one-shot prompting is strongest (e.g., GPT-4o-mini achieves 75\% at $\sim$6s), and planning+search increases latency substantially without consistent gains. However, complex multi-tool orchestration exposes failure modes where the smaller model degrades. Overall, the findings highlight the need for task-specific, cost-aware choices of both model size and agent/tooling complexity.
☆ Effective Online 3D Bin Packing with Lookahead Parcels Using Monte Carlo Tree Search
Online 3D Bin Packing (3D-BP) with robotic arms is crucial for reducing transportation and labor costs in modern logistics. While Deep Reinforcement Learning (DRL) has shown strong performance, it often fails to adapt to real-world short-term distribution shifts, which arise as different batches of goods arrive sequentially, causing performance drops. We argue that the short-term lookahead information available in modern logistics systems is key to mitigating this issue, especially during distribution shifts. We formulate online 3D-BP with lookahead parcels as a Model Predictive Control (MPC) problem and adapt the Monte Carlo Tree Search (MCTS) framework to solve it. Our framework employs a dynamic exploration prior that automatically balances a learned RL policy and a robust random policy based on the lookahead characteristics. Additionally, we design an auxiliary reward to penalize long-term spatial waste from individual placements. Extensive experiments on real-world datasets show that our method consistently outperforms state-of-the-art baselines, achieving over 10\% gains under distributional shifts, 4\% average improvement in online deployment, and up to more than 8\% in the best case--demonstrating the effectiveness of our framework.
☆ Prioritized Replay for RL Post-training
We introduce a problem-level prioritization framework for RL post-training of large language models. Building on insights from prioritized replay in deep RL, as well as prior observations that rollouts with intermediate success rates tend to produce stronger learning signals under methods such as GRPO, our approach selects problems according to a simple, model-driven priority score derived from empirical success statistics. In contrast to conventional curriculum strategies that emphasize easier tasks early in training, the resulting schedule naturally focuses training on problems that are neither consistently solved nor consistently failed, while deprioritizing those that contribute little gradient information. The method yields a continuously adapting and automatic prioritization process that requires no predefined difficulty tiers, auxiliary predictors, or external labels. We further introduce lightweight mechanisms for practical deployment, including heap-based prioritized sampling and periodic retesting of solved and unsolved problems to mitigate starvation and forgetting. Overall, the approach offers a principled and scalable alternative to manually designed curricula while aligning data selection directly with the dynamics of GRPO-based post-training.
☆ DreamLoop: Controllable Cinemagraph Generation from a Single Photograph
Cinemagraphs, which combine static photographs with selective, looping motion, offer unique artistic appeal. Generating them from a single photograph in a controllable manner is particularly challenging. Existing image-animation techniques are restricted to simple, low-frequency motions and operate only in narrow domains with repetitive textures like water and smoke. In contrast, large-scale video diffusion models are not tailored for cinemagraph constraints and lack the specialized data required to generate seamless, controlled loops. We present DreamLoop, a controllable video synthesis framework dedicated to generating cinemagraphs from a single photo without requiring any cinemagraph training data. Our key idea is to adapt a general video diffusion model by training it on two objectives: temporal bridging and motion conditioning. This strategy enables flexible cinemagraph generation. During inference, by using the input image as both the first- and last- frame condition, we enforce a seamless loop. By conditioning on static tracks, we maintain a static background. Finally, by providing a user-specified motion path for a target object, our method provides intuitive control over the animation's trajectory and timing. To our knowledge, DreamLoop is the first method to enable cinemagraph generation for general scenes with flexible and intuitive controls. We demonstrate that our method produces high-quality, complex cinemagraphs that align with user intent, outperforming existing approaches.
comment: Project Page: https://anime26398.github.io/dreamloop.github.io/
☆ AWARE-US: Benchmark for Preference-Aware Resolution in Tool-Calling Agents
Tool-calling conversational agents querying structured databases often face two linked failures: underspecification (missing constraints needed to run a precise query) and infeasibility (the fully specified query returns an empty set because no item satisfies all constraints). Existing work often responds with "no results" or relaxes constraints using ad hoc rules, which can violate user intent by discarding requirements the user cares about most. We frame infeasibility handling as a preference-aware query repair problem: when a query is unsatisfiable, the agent should relax the least important constraints to the user. We propose three LLM-based methods for inferring relative constraint importance from dialogue: (1) local weighting, (2) global one-shot weighting, and (3) pairwise ranking. Experiments show local weighting achieves the best preference alignment, while global weighting performs best on correct constraint relaxation. We also introduce AWARE-US, a benchmark of persona-grounded queries requiring agents to disambiguate requests via conversation and resolve infeasibility in a way consistent with persona-implied preferences.
comment: 19 pages, 2 figures, 6 tables
☆ An Empirical Study of On-Device Translation for Real-Time Live-Stream Chat on Mobile Devices
Despite its efficiency, there has been little research on the practical aspects required for real-world deployment of on-device AI models, such as the device's CPU utilization and thermal conditions. In this paper, through extensive experiments, we investigate two key issues that must be addressed to deploy on-device models in real-world services: (i) the selection of on-device models and the resource consumption of each model, and (ii) the capability and potential of on-device models for domain adaptation. To this end, we focus on a task of translating live-stream chat messages and manually construct LiveChatBench, a benchmark consisting of 1,000 Korean-English parallel sentence pairs. Experiments on five mobile devices demonstrate that, although serving a large and heterogeneous user base requires careful consideration of highly constrained deployment settings and model selection, the proposed approach nevertheless achieves performance comparable to commercial models such as GPT-5.1 on the well-targeted task. We expect that our findings will provide meaningful insights to the on-device AI community.
comment: preprint
☆ Credit Assignment via Neural Manifold Noise Correlation
Credit assignment--how changes in individual neurons and synapses affect a network's output--is central to learning in brains and machines. Noise correlation, which estimates gradients by correlating perturbations of activity with changes in output, provides a biologically plausible solution to credit assignment but scales poorly as accurately estimating the Jacobian requires that the number of perturbations scale with network size. Moreover, isotropic noise conflicts with neurobiological observations that neural activity lies on a low-dimensional manifold. To address these drawbacks, we propose neural manifold noise correlation (NMNC), which performs credit assignment using perturbations restricted to the neural manifold. We show theoretically and empirically that the Jacobian row space aligns with the neural manifold in trained networks, and that manifold dimensionality scales slowly with network size. NMNC substantially improves performance and sample efficiency over vanilla noise correlation in convolutional networks trained on CIFAR-10, ImageNet-scale models, and recurrent networks. NMNC also yields representations more similar to the primate visual system than vanilla noise correlation. These findings offer a mechanistic hypothesis for how biological circuits could support credit assignment, and suggest that biologically inspired constraints may enable, rather than limit, effective learning at scale.
☆ TAAF: A Trace Abstraction and Analysis Framework Synergizing Knowledge Graphs and LLMs ICSE 2026
Execution traces are a critical source of information for understanding, debugging, and optimizing complex software systems. However, traces from OS kernels or large-scale applications like Chrome or MySQL are massive and difficult to analyze. Existing tools rely on predefined analyses, and custom insights often require writing domain-specific scripts, which is an error-prone and time-consuming task. This paper introduces TAAF (Trace Abstraction and Analysis Framework), a novel approach that combines time-indexing, knowledge graphs (KGs), and large language models (LLMs) to transform raw trace data into actionable insights. TAAF constructs a time-indexed KG from trace events to capture relationships among entities such as threads, CPUs, and system resources. An LLM then interprets query-specific subgraphs to answer natural-language questions, reducing the need for manual inspection and deep system expertise. To evaluate TAAF, we introduce TraceQA-100, a benchmark of 100 questions grounded in real kernel traces. Experiments across three LLMs and multiple temporal settings show that TAAF improves answer accuracy by up to 31.2%, particularly in multi-hop and causal reasoning tasks. We further analyze where graph-grounded reasoning helps and where limitations remain, offering a foundation for next-generation trace analysis tools.
comment: Accepted to ICSE 2026. DOI 10.1145/3744916.3787832
☆ Improved Evidence Extraction for Document Inconsistency Detection with LLMs
Large language models (LLMs) are becoming useful in many domains due to their impressive abilities that arise from large training datasets and large model sizes. However, research on LLM-based approaches to document inconsistency detection is relatively limited. There are two key aspects of document inconsistency detection: (i) classification of whether there exists any inconsistency, and (ii) providing evidence of the inconsistent sentences. We focus on the latter, and introduce new comprehensive evidence-extraction metrics and a redact-and-retry framework with constrained filtering that substantially improves LLM-based document inconsistency detection over direct prompting. We back our claims with promising experimental results.
comment: 10 pages, 6 figures
☆ LAsset: An LLM-assisted Security Asset Identification Framework for System-on-Chip (SoC) Verification
The growing complexity of modern system-on-chip (SoC) and IP designs is making security assurance difficult day by day. One of the fundamental steps in the pre-silicon security verification of a hardware design is the identification of security assets, as it substantially influences downstream security verification tasks, such as threat modeling, security property generation, and vulnerability detection. Traditionally, assets are determined manually by security experts, requiring significant time and expertise. To address this challenge, we present LAsset, a novel automated framework that leverages large language models (LLMs) to identify security assets from both hardware design specifications and register-transfer level (RTL) descriptions. The framework performs structural and semantic analysis to identify intra-module primary and secondary assets and derives inter-module relationships to systematically characterize security dependencies at the design level. Experimental results show that the proposed framework achieves high classification accuracy, reaching up to 90% recall rate in SoC design, and 93% recall rate in IP designs. This automation in asset identification significantly reduces manual overhead and supports a scalable path forward for secure hardware development.
comment: 6 pages
☆ Hierarchical temporal receptive windows and zero-shot timescale generalization in biologically constrained scale-invariant deep networks
Human cognition integrates information across nested timescales. While the cortex exhibits hierarchical Temporal Receptive Windows (TRWs), local circuits often display heterogeneous time constants. To reconcile this, we trained biologically constrained deep networks, based on scale-invariant hippocampal time cells, on a language classification task mimicking the hierarchical structure of language (e.g., 'letters' forming 'words'). First, using a feedforward model (SITHCon), we found that a hierarchy of TRWs emerged naturally across layers, despite the network having an identical spectrum of time constants within layers. We then distilled these inductive priors into a biologically plausible recurrent architecture, SITH-RNN. Training a sequence of architectures ranging from generic RNNs to this restricted subset showed that the scale-invariant SITH-RNN learned faster with orders-of-magnitude fewer parameters, and generalized zero-shot to out-of-distribution timescales. These results suggest the brain employs scale-invariant, sequential priors - coding "what" happened "when" - making recurrent networks with such priors particularly well-suited to describe human cognition.
☆ Chronicals: A High-Performance Framework for LLM Fine-Tuning with 3.51x Speedup over Unsloth
Large language model fine-tuning is bottlenecked by memory: a 7B parameter model requires 84GB--14GB for weights, 14GB for gradients, and 56GB for FP32 optimizer states--exceeding even A100-40GB capacity. We present Chronicals, an open-source training framework achieving 3.51x speedup over Unsloth through four synergistic optimizations: (1) fused Triton kernels eliminating 75% of memory traffic via RMSNorm (7x), SwiGLU (5x), and QK-RoPE (2.3x) fusion; (2) Cut Cross-Entropy reducing logit memory from 5GB to 135MB through online softmax computation; (3) LoRA+ with theoretically-derived 16x differential learning rates between adapter matrices; and (4) Best-Fit Decreasing sequence packing recovering 60-75% of compute wasted on padding. On Qwen2.5-0.5B with A100-40GB, Chronicals achieves 41,184 tokens/second for full fine-tuning versus Unsloth's 11,736 tokens/second (3.51x). For LoRA at rank 32, we reach 11,699 tokens/second versus Unsloth MAX's 2,857 tokens/second (4.10x). Critically, we discovered that Unsloth's reported 46,000 tokens/second benchmark exhibited zero gradient norms--the model was not training. We provide complete mathematical foundations: online softmax correctness proofs, FlashAttention IO complexity bounds O(N^2 d^2 M^{-1}), LoRA+ learning rate derivations from gradient magnitude analysis, and bin-packing approximation guarantees. All implementations, benchmarks, and proofs are available at https://github.com/Ajwebdevs/Chronicals with pip installation via https://pypi.org/project/chronicals/.
comment: 61 pages, 25 figures, open-source framework available at https://github.com/Ajwebdevs/Chronicals and pip install chronicals
☆ Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrating the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and performs full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
☆ Correct, Concise and Complete: Multi-stage Training For Adaptive Reasoning
The reasoning capabilities of large language models (LLMs) have improved substantially through increased test-time computation, typically in the form of intermediate tokens known as chain-of-thought (CoT). However, CoT often becomes unnecessarily long, increasing computation cost without actual accuracy gains or sometimes even degrading performance, a phenomenon known as ``overthinking''. We propose a multi-stage efficient reasoning method that combines supervised fine-tuning -- via rejection sampling or reasoning trace reformatting -- with reinforcement learning using an adaptive length penalty. We introduce a lightweight reward function that penalizes tokens generated after the first correct answer but encouraging self-verification only when beneficial. We conduct a holistic evaluation across seven diverse reasoning tasks, analyzing the accuracy-response length trade-off. Our approach reduces response length by an average of 28\% for 8B models and 40\% for 32B models, while incurring only minor performance drops of 1.6 and 2.5 points, respectively. Despite its conceptual simplicity, it achieves a superior trade-off compared to more complex state-of-the-art efficient reasoning methods, scoring 76.6, in terms of the area under the Overthinking-Adjusted Accuracy curve ($\text{AUC}_{\text{OAA}}$) -- 5 points above the base model and 2.5 points above the second-best approach.
☆ ReTreVal: Reasoning Tree with Validation -- A Hybrid Framework for Enhanced LLM Multi-Step Reasoning
Multi-step reasoning remains a key challenge for Large Language Models (LLMs), particularly in complex domains such as mathematics and creative writing. While recent approaches including ReAct, Reflexion, and Self-Refine improve reasoning through iterative refinement and reflection, they often lack structured exploration of alternative solution paths and persistent learning across problems. We propose ReTreVal (Reasoning Tree with Validation), a hybrid framework that integrates Tree-of-Thoughts exploration, self-refinement, LLM-based critique scoring, and reflexion memory to enable bounded and validated multi-step reasoning. ReTreVal constructs a structured reasoning tree with adaptive depth based on problem complexity, where each node undergoes iterative self-critique and refinement guided by explicit LLM-generated feedback. A dual validation mechanism evaluates reasoning quality, coherence, and correctness at each node while persistently storing insights from successful reasoning paths and failure patterns in a reflexion memory buffer, enabling cross-problem learning. Critique-based pruning retains only the top-k highest-scoring nodes at each level, controlling computational cost while preserving high-quality solution paths. We evaluate ReTreVal against ReAct, Reflexion, and Self-Refine across 500 mathematical problems and creative writing tasks using Qwen 2.5 7B as the underlying LLM, and demonstrate that ReTreVal consistently outperforms existing methods through its combination of structured exploration, critique-driven refinement, and cross-problem memory, making it particularly effective for tasks requiring exploratory reasoning, rigorous verification, and knowledge transfer.
comment: 14 pages, 1 figure, 5 tables
☆ When Do Tools and Planning Help LLMs Think? A Cost- and Latency-Aware Benchmark
Modern large language models (LLMs) increasingly rely on inference-time planning and external tools to improve reasoning. We benchmark this behavior on two real-world settings: event-centric question answering over graph-structured knowledge (Event-QA) and persuasive response generation in Reddit ChangeMyView (CMV). Using LangChain and LangGraph, we compare a one-shot baseline against a plan-execute-replan agent equipped with task-specific tools (DBpedia SPARQL/lookup/schema exploration, Wikipedia-focused retrieval, and topical web search). We evaluate on 60 examples each from Event-QA and CMV (3 splits of 20), and report both mean end-to-end latency and per-example token cost estimates. We evaluate GPT-4o and GPT-4o-mini under identical workflows and report accuracy and end-to-end latency. On Event-QA, the best tool-augmented configuration improves accuracy (e.g., 47.5\% $\rightarrow$ 67.5\% for GPT-4o) while increasing latency by orders of magnitude ($\sim$8s $\rightarrow$ $\sim$317s per example). On CMV, one-shot prompting is strongest (e.g., GPT-4o-mini achieves 75\% at $\sim$6s), and planning+search increases latency substantially without consistent gains. However, complex multi-tool orchestration exposes failure modes where the smaller model degrades. Overall, the findings highlight the need for task-specific, cost-aware choices of both model size and agent/tooling complexity.
♻ ☆ Characterizing the Robustness of Black-Box LLM Planners Under Perturbed Observations with Adaptive Stress Testing
Large language models (LLMs) have recently demonstrated success in decision-making tasks including planning, control, and prediction, but their tendency to hallucinate unsafe and undesired outputs poses risks. This unwanted behavior is further exacerbated in environments where sensors are noisy or unreliable. Characterizing the behavior of LLM planners to varied observations is necessary to proactively avoid failures in safety-critical scenarios. We specifically investigate the response of LLMs along two different perturbation dimensions. Like prior works, one dimension generates semantically similar prompts with varied phrasing by randomizing order of details, modifying access to few-shot examples, etc. Unique to our work, the second dimension simulates access to varied sensors and noise to mimic raw sensor or detection algorithm failures. An initial case study in which perturbations are manually applied show that both dimensions lead LLMs to hallucinate in a multi-agent driving environment. However, manually covering the entire perturbation space for several scenarios is infeasible. As such, we propose a novel method for efficiently searching the space of prompt perturbations using adaptive stress testing (AST) with Monte-Carlo tree search (MCTS). Our AST formulation enables discovery of scenarios, sensor configurations, and prompt phrasing that cause language models to act with high uncertainty or even crash. By generating MCTS prompt perturbation trees across diverse scenarios, we show through extensive experiments that offline analyses can be used to proactively understand potential failures that may arise at runtime.
comment: 30 pages, 24 figures, 6 tables
♻ ☆ ShareChat: A Dataset of Chatbot Conversations in the Wild
While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset will be publicly available.
♻ ☆ AgentArch: A Comprehensive Benchmark to Evaluate Agent Architectures in Enterprise
While individual components of agentic architectures have been studied in isolation, there remains limited empirical understanding of how different design dimensions interact within complex multi-agent systems. This study aims to address these gaps by providing a comprehensive enterprise-specific benchmark evaluating 18 distinct agentic configurations across state-of-the-art large language models. We examine four critical agentic system dimensions: orchestration strategy, agent prompt implementation (ReAct versus function calling), memory architecture, and thinking tool integration. Our benchmark reveals significant model-specific architectural preferences that challenge the prevalent one-size-fits-all paradigm in agentic AI systems. It also reveals significant weaknesses in overall agentic performance on enterprise tasks with the highest scoring models achieving a maximum of only 35.3\% success on the more complex task and 70.8\% on the simpler task. We hope these findings inform the design of future agentic systems by enabling more empirically backed decisions regarding architectural components and model selection.
♻ ☆ Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, tasks are refined only when conflicts with observations are detected, which mitigates hallucinations while preserving task consistency. After collection, we conduct trajectory refinement with global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code is publicly available at https://github.com/aiming-lab/SynthAgent.
comment: 21 pages, 6 figures
♻ ☆ The Journal of Prompt-Engineered Philosophy Or: How I Started to Track AI Assistance and Stopped Worrying About Slop
Academic publishing increasingly requires authors to disclose AI assistance, yet imposes reputational costs for doing so--especially when such assistance is substantial. This article analyzes that structural contradiction, showing how incentives discourage transparency in precisely the work where it matters most. Traditional venues cannot resolve this tension through policy tweaks alone, as the underlying prestige economy rewards opacity. To address this, the article proposes an alternative publishing infrastructure: a venue outside prestige systems that enforces mandatory disclosure, enables reproduction-based review, and supports ecological validity through detailed documentation. As a demonstration of this approach, the article itself is presented as an example of AI-assisted scholarship under reasonably detailed disclosure, with representative prompt logs and modification records included. Rather than taking a position for or against AI-assisted scholarship, the article outlines conditions under which such work can be evaluated on its own terms: through transparent documentation, verification-oriented review, and participation by methodologically committed scholars. While focused on AI, the framework speaks to broader questions about how academic systems handle methodological innovation.
comment: 44 pages (30 Article + 14 Appendix); 2 figures Transparency material documenting LLM usage available at: https://github.com/MicheleLoi/JPEP/tree/main/transparency/Canonical_MD
♻ ☆ Heuristic Methods are Good Teachers to Distill MLPs for Graph Link Prediction
Link prediction is a crucial graph-learning task with applications including citation prediction and product recommendation. Distilling Graph Neural Networks (GNNs) teachers into Multi-Layer Perceptrons (MLPs) students has emerged as an effective approach to achieve strong performance and reducing computational cost by removing graph dependency. However, existing distillation methods only use standard GNNs and overlook alternative teachers such as specialized model for link prediction (GNN4LP) and heuristic methods (e.g., common neighbors). This paper first explores the impact of different teachers in GNN-to-MLP distillation. Surprisingly, we find that stronger teachers do not always produce stronger students: MLPs distilled from GNN4LP can underperform those distilled from simpler GNNs, while weaker heuristic methods can teach MLPs to near-GNN performance with drastically reduced training costs. Building on these insights, we propose Ensemble Heuristic-Distilled MLPs (EHDM), which eliminates graph dependencies while effectively integrating complementary signals via a gating mechanism. Experiments on ten datasets show an average 7.93% improvement over previous GNN-to-MLP approaches with 1.95-3.32 times less training time, indicating EHDM is an efficient and effective link prediction method.
♻ ☆ D^3ETOR: Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing for Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Weakly-Supervised Camouflaged Object Detection (WSCOD) aims to locate and segment objects that are visually concealed within their surrounding scenes, relying solely on sparse supervision such as scribble annotations. Despite recent progress, existing WSCOD methods still lag far behind fully supervised ones due to two major limitations: (1) the pseudo masks generated by general-purpose segmentation models (e.g., SAM) and filtered via rules are often unreliable, as these models lack the task-specific semantic understanding required for effective pseudo labeling in COD; and (2) the neglect of inherent annotation bias in scribbles, which hinders the model from capturing the global structure of camouflaged objects. To overcome these challenges, we propose ${D}^{3}$ETOR, a two-stage WSCOD framework consisting of Debate-Enhanced Pseudo Labeling and Frequency-Aware Progressive Debiasing. In the first stage, we introduce an adaptive entropy-driven point sampling method and a multi-agent debate mechanism to enhance the capability of SAM for COD, improving the interpretability and precision of pseudo masks. In the second stage, we design FADeNet, which progressively fuses multi-level frequency-aware features to balance global semantic understanding with local detail modeling, while dynamically reweighting supervision strength across regions to alleviate scribble bias. By jointly exploiting the supervision signals from both the pseudo masks and scribble semantics, ${D}^{3}$ETOR significantly narrows the gap between weakly and fully supervised COD, achieving state-of-the-art performance on multiple benchmarks.
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ FragmentRetro: A Quadratic Retrosynthetic Method Based on Fragmentation Algorithms
Retrosynthesis, the process of deconstructing a target molecule into simpler precursors, is crucial for computer-aided synthesis planning (CASP). Widely adopted tree-search methods often suffer from exponential computational complexity. In this work, we introduce FragmentRetro, a novel retrosynthetic method that leverages fragmentation algorithms, specifically BRICS and r-BRICS, combined with stock-aware exploration and pattern fingerprint screening to achieve quadratic complexity. FragmentRetro recursively combines molecular fragments and verifies their presence in a building block set, providing sets of fragment combinations as retrosynthetic solutions. We present the first formal computational analysis of retrosynthetic methods, showing that tree search exhibits exponential complexity $O(b^h)$, DirectMultiStep scales as $O(h^6)$, and FragmentRetro achieves $O(h^2)$, where $h$ represents the number of heavy atoms in the target molecule and $b$ is the branching factor for tree search. Evaluations on PaRoutes, USPTO-190, and natural products demonstrate that FragmentRetro achieves high solved rates with competitive runtime, including cases where tree search fails. The method benefits from fingerprint screening, which significantly reduces substructure matching complexity. While FragmentRetro focuses on efficiently identifying fragment-based solutions rather than full reaction pathways, its computational advantages and ability to generate strategic starting candidates establish it as a powerful foundational component for scalable and automated synthesis planning.
comment: Code available on GitHub https://github.com/randyshee/FragmentRetro Documentation is available https://fragment.batistalab.com/
♻ ☆ Iterative Topic Taxonomy Induction with LLMs: A Case Study of Electoral Advertising
Social media platforms play a pivotal role in shaping political discourse, but analyzing their vast and rapidly evolving content remains a major challenge. We introduce an end-to-end framework for automatically inducing an interpretable topic taxonomy from unlabeled text corpora. By combining unsupervised clustering with prompt-based inference, our method leverages large language models (LLMs) to iteratively construct a taxonomy without requiring seed sets (predefined labels) or domain expertise. We validate the framework through a study of political advertising ahead of the 2024 U.S. presidential election. The induced taxonomy yields semantically rich topic labels and supports downstream analyses, including moral framing, in this setting. Results suggest that structured, iterative labeling yields more consistent and interpretable topic labels than existing approaches under human evaluation, and is practical for analyzing large-scale political advertising data.
comment: Under-submission
♻ ☆ DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for a 1.5B model.
comment: Accepted to NeurIPS 2025
♻ ☆ Large Empirical Case Study: Go-Explore adapted for AI Red Team Testing
Production LLM agents with tool-using capabilities require security testing despite their safety training. We adapt Go-Explore to evaluate GPT-4o-mini across 28 experimental runs spanning six research questions. We find that random-seed variance dominates algorithmic parameters, yielding an 8x spread in outcomes; single-seed comparisons are unreliable, while multi-seed averaging materially reduces variance in our setup. Reward shaping consistently harms performance, causing exploration collapse in 94% of runs or producing 18 false positives with zero verified attacks. In our environment, simple state signatures outperform complex ones. For comprehensive security testing, ensembles provide attack-type diversity, whereas single agents optimize coverage within a given attack type. Overall, these results suggest that seed variance and targeted domain knowledge can outweigh algorithmic sophistication when testing safety-trained models.
♻ ☆ Musical Score Understanding Benchmark: Evaluating Large Language Models' Comprehension of Complete Musical Scores
Understanding complete musical scores entails integrated reasoning over pitch, rhythm, harmony, and large-scale structure, yet the ability of Large Language Models and Vision-Language Models to interpret full musical notation remains insufficiently examined. We introduce the Musical Score Understanding Benchmark (MSU-Bench), the first large-scale, human-curated benchmark for score-level musical understanding across textual (ABC notation) and visual (PDF) modalities. MSU-Bench contains 1,800 generative Question-Answering pairs from works by Bach, Beethoven, Chopin, Debussy, and others, organised into four levels of increasing difficulty, ranging from onset information to texture and form. Evaluations of more than fifteen state-of-the-art models, in both zero-shot and fine-tuned settings, reveal pronounced modality gaps, unstable level-wise performance, and challenges in maintaining multilevel correctness. Fine-tuning substantially improves results across modalities while preserving general knowledge, positioning MSU-Bench as a robust foundation for future research in multimodal reasoning. To facilitate further research, we publicly release MSU-Bench and all associated resources.
♻ ☆ CSAI: Conditional Self-Attention Imputation for Healthcare Time-series
We introduce the Conditional Self-Attention Imputation (CSAI) model, a novel recurrent neural network architecture designed to address the challenges of complex missing data patterns in multivariate time series derived from hospital electronic health records (EHRs). CSAI extends state-of-the-art neural network-based imputation by introducing key modifications specific to EHR data: a) attention-based hidden state initialisation to capture both long- and short-range temporal dependencies prevalent in EHRs, b) domain-informed temporal decay to mimic clinical data recording patterns, and c) a non-uniform masking strategy that models non-random missingness by calibrating weights according to both temporal and cross-sectional data characteristics. Comprehensive evaluation across four EHR benchmark datasets demonstrates CSAI's effectiveness compared to state-of-the-art architectures in data restoration and downstream tasks. CSAI is integrated into PyPOTS, an open-source Python toolbox designed for machine learning tasks on partially observed time series. This work significantly advances the state of neural network imputation applied to EHRs by more closely aligning algorithmic imputation with clinical realities.
♻ ☆ Neuronal Attention Circuit (NAC) for Representation Learning
Attention improves representation learning over RNNs, but its discrete nature limits continuous-time (CT) modeling. We introduce Neuronal Attention Circuit (NAC), a novel, biologically inspired CT-Attention mechanism that reformulates attention logit computation as the solution to a linear first-order ODE with nonlinear interlinked gates derived from repurposing C.elegans Neuronal Circuit Policies (NCPs) wiring. NAC replaces dense projections with sparse sensory gates for key-query projections and a sparse backbone network with two heads for computing content-target and learnable time-constant gates, enabling efficient adaptive dynamics. To improve efficiency and memory consumption, we implemented an adaptable subquadratic sparse Top-K pairwise concatenation mechanism that selectively curates key-query interactions. We provide rigorous theoretical guarantees, including state stability and bounded approximation errors. Empirically, we implemented NAC in diverse domains, including irregular time-series classification, lane-keeping for autonomous vehicles, and industrial prognostics. We observed that NAC matches or outperforms competing baselines in accuracy and occupies an intermediate position in runtime and memory consumption compared with several CT state-of-the-art baselines, while being interpretable at the neuron cell level.
comment: Ongoing work
♻ ☆ A Multidimensional AI-powered Framework for Analyzing Tourist Perception in Historic Urban Quarters: A Case Study in Shanghai
Historic urban quarters play a vital role in preserving cultural heritage while serving as vibrant spaces for tourism and everyday life. Understanding how tourists perceive these environments is essential for sustainable, human-centered urban planning. This study proposes a multidimensional AI-powered framework for analyzing tourist perception in historic urban quarters using multimodal data from social media. Applied to twelve historic quarters in central Shanghai, the framework integrates focal point extraction, color theme analysis, and sentiment mining. Visual focus areas are identified from tourist-shared photos using a fine-tuned semantic segmentation model. To assess aesthetic preferences, dominant colors are extracted using a clustering method, and their spatial distribution across quarters is analyzed. Color themes are further compared between social media photos and real-world street views, revealing notable shifts. This divergence highlights potential gaps between visual expectations and the built environment, reflecting both stylistic preferences and perceptual bias. Tourist reviews are evaluated through a hybrid sentiment analysis approach combining a rule-based method and a multi-task BERT model. Satisfaction is assessed across four dimensions: tourist activities, built environment, service facilities, and business formats. The results reveal spatial variations in aesthetic appeal and emotional response. Rather than focusing on a single technical innovation, this framework offers an integrated, data-driven approach to decoding tourist perception and contributes to informed decision-making in tourism, heritage conservation, and the design of aesthetically engaging public spaces.
♻ ☆ Gradient Coupling: The Hidden Barrier to Generalization in Agentic Reinforcement Learning
Reinforcement learning (RL) is a dominant paradigm for training autonomous agents, yet these agents often exhibit poor generalization, failing to adapt to scenarios not seen during training. In this work, we identify a fundamental cause of this brittleness, a phenomenon which we term "gradient coupling." We hypothesize that in complex agentic tasks, the high similarity between distinct states leads to destructive interference between gradients. Specifically, a gradient update that reinforces an optimal action in one state can inadvertently increase the likelihood of a suboptimal action in a similar, yet different, state. To solve this, we propose a novel objective where the actor is trained to simultaneously function as a classifier that separates good and bad actions. This auxiliary pressure compels the model to learn disentangled embeddings for positive and negative actions, which mitigates negative gradient interference and improve the generalization performance. Extensive experiments demonstrate the effectiveness of our method.
♻ ☆ Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
♻ ☆ Exploring How Audio Effects Alter Emotion with Foundation Models
Audio effects (FX) such as reverberation, distortion, modulation, and dynamic range processing play a pivotal role in shaping emotional responses during music listening. While prior studies have examined links between low-level audio features and affective perception, the systematic impact of audio FX on emotion remains underexplored. This work investigates how foundation models - large-scale neural architectures pretrained on multimodal data - can be leveraged to analyze these effects. Such models encode rich associations between musical structure, timbre, and affective meaning, offering a powerful framework for probing the emotional consequences of sound design techniques. By applying various probing methods to embeddings from deep learning models, we examine the complex, nonlinear relationships between audio FX and estimated emotion, uncovering patterns tied to specific effects and evaluating the robustness of foundation audio models. Our findings aim to advance understanding of the perceptual impact of audio production practices, with implications for music cognition, performance, and affective computing.
comment: https://github.com/stelioskt/audioFX
♻ ☆ Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) via Central Limit Theorem-based construction and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis establishes convergence properties via a geometric projection mapping $\mathcal{P}$ and proves robustness to mini-batch noise. Central Limit Theorem-based construction of the interpretability DAG ensures statistical validity of edge orientation decisions. Empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 11 pages
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ Agentic Additive Manufacturing Alloy Evaluation
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy selection and evaluation remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as thermophysical property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system can effectively reason through complex user prompts and provide analysis on the lack of fusion process window of common alloys such as SS316L and IN718 along with proposed composition variants of known alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to showcase the benefits of adopting a LLM enabled multi-agent system to automate and accelerate the task of evaluating proposed additive manufacturing alloys, both novel and known.
A Comedy of Estimators: On KL Regularization in RL Training of LLMs
The reasoning performance of large language models (LLMs) can be substantially improved by training them with reinforcement learning (RL). The RL objective for LLM training involves a regularization term, which is the reverse Kullback-Leibler (KL) divergence between the trained policy and the reference policy. Since computing the KL divergence exactly is intractable, various estimators are used in practice to estimate it from on-policy samples. Despite its wide adoption, including in several open-source libraries, there is no systematic study analyzing the numerous ways of incorporating KL estimators in the objective and their effect on the downstream performance of RL-trained models. Recent works show that prevailing practices for incorporating KL regularization do not provide correct gradients for stated objectives, creating a discrepancy between the objective and its implementation. In this paper, we further analyze these practices and study the gradients of several estimators configurations, revealing how design choices shape gradient bias. We substantiate these findings with empirical observations by RL fine-tuning \texttt{Qwen2.5-7B}, \texttt{Llama-3.1-8B-Instruct} and \texttt{Qwen3-4B-Instruct-2507} with different configurations and evaluating their performance on both in- and out-of-distribution tasks. Through our analysis, we observe that, in on-policy settings: (1) estimator configurations with biased gradients can result in training instabilities; and (2) using estimator configurations resulting in unbiased gradients leads to better performance on in-domain as well as out-of-domain tasks. We also investigate the performance resulting from different KL configurations in off-policy settings and observe that KL regularization can help stabilize off-policy RL training resulting from asynchronous setups.
♻ ☆ ELMM: Efficient Lightweight Multimodal Large Language Models for Multimodal Knowledge Graph Completion
Multimodal Knowledge Graphs (MKGs) extend traditional knowledge graphs by incorporating visual and textual modalities, enabling richer and more expressive entity representations. However, existing MKGs often suffer from incompleteness, which hinder their effectiveness in downstream tasks. Therefore, multimodal knowledge graph completion (MKGC) task is receiving increasing attention. While large language models (LLMs) have shown promise for knowledge graph completion (KGC), their application to the multimodal setting remains underexplored. Moreover, applying Multimodal Large Language Models (MLLMs) to the task of MKGC introduces significant challenges: (1) the large number of image tokens per entity leads to semantic noise and modality conflicts, and (2) the high computational cost of processing large token inputs. To address these issues, we propose Efficient Lightweight Multimodal Large Language Models (ELMM) for MKGC. ELMM proposes a Multi-view Visual Token Compressor (MVTC) based on multi-head attention mechanism, which adaptively compresses image tokens from both textual and visual views, thereby effectively reducing redundancy while retaining necessary information and avoiding modality conflicts. Additionally, we design an attention pruning strategy to remove redundant attention layers from MLLMs, thereby significantly reducing the inference cost. We further introduce a linear projection to compensate for the performance degradation caused by pruning. Extensive experiments on four benchmark datasets demonstrate that ELMM achieves state-of-the-art performance.
comment: 14 pages, 5 figures
♻ ☆ EvoGPT: Leveraging LLM-Driven Seed Diversity to Improve Search-Based Test Suite Generation
Search-Based Software Testing (SBST) is a well-established approach for automated unit test generation, yet it often suffers from premature convergence and limited diversity in the generated test suites. Recently, Large Language Models (LLMs) have emerged as an alternative technique for unit test generation. We present EvoGPT, a hybrid test generation system that integrates LLM-based test generation with SBST-based test suite optimization. EvoGPT uses LLMs to generate an initial population of test suites, and uses an Evolutionary Algorithm (EA) to further optimize this test suite population. A distinguishing feature of EvoGPT is its explicit enforcement of diversity, achieved through the use of multiple temperatures and prompt instructions during test generation. In addition, each LLM-generated test is refined using a generation-repair loop and coverage-guided assertion generation. To address evolutionary plateaus, EvoGPT also detects stagnation during search and injects additional LLM-generated tests aimed at previously uncovered branches. Here too diversity is enforced using multiple temperatures and prompt instructions. We evaluate EvoGPT on Defects4J, a standard benchmark for test generation. The results show that EvoGPT achieves, on average, a 10\% improvement in both code coverage and mutation score metrics compared to TestART, an LLM-only baseline; and EvoSuite, a standard SBST baseline. An ablation study indicates that explicitly enforcing diversity both at initialization and during the search is key to effectively leveraging LLMs for automated unit test generation.
♻ ☆ Towards Threshold-Free KV Cache Pruning
To reduce memory consumption during LLM inference, prior works have proposed numerous methods that focus on KV cache pruning based on various criteria. While these techniques often accomplish lossless memory reduction on many datasets, they often rely on an under-emphasized condition: a dataset/domain-specific budget size threshold needs to be pre-determined to achieve the optimal performance. However, such input-specific tuning may be considerably limited in real-world scenarios, as open-domain inputs span diverse domains, lengths and difficulty levels, without clear boundaries for pre-tuning. Thus, the dependence of an input-sensitive threshold can be an inherent limitation that may cause large degradation on arbitrary inputs. In this work, we propose a new objective that lifts the threshold constraints for robust KV pruning, calling for "threshold-free" methods that automatically adjust budget sizes while ensuring full-cache performance. We then propose a novel method ReFreeKV as the first solution fulfilling this objective, validated by intensive experiments on 13 datasets of diverse context lengths, task types, and model sizes.
comment: Substantial revision
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Efficient Context Scaling with LongCat ZigZag Attention
We introduce LongCat ZigZag Attention (LoZA), which is a sparse attention scheme designed to transform any existing full-attention models into sparse versions with rather limited compute budget. In long-context scenarios, LoZA can achieve significant speed-ups both for prefill-intensive (e.g., retrieval-augmented generation) and decode-intensive (e.g., tool-integrated reasoning) cases. Specifically, by applying LoZA to LongCat-Flash during mid-training, we serve LongCat-Flash-Exp as a long-context foundation model that can swiftly process up to 1 million tokens, enabling efficient long-term reasoning and long-horizon agentic capabilities.
comment: 10 pages, 3 figures, 3 tables
♻ ☆ MAST: Model-Agnostic Sparsified Training ICLR 2025
We introduce a novel optimization problem formulation that departs from the conventional way of minimizing machine learning model loss as a black-box function. Unlike traditional formulations, the proposed approach explicitly incorporates an initially pre-trained model and random sketch operators, allowing for sparsification of both the model and gradient during training. We establish the insightful properties of the proposed objective function and highlight its connections to the standard formulation. Furthermore, we present several variants of the Stochastic Gradient Descent (SGD) method adapted to the new problem formulation, including SGD with general sampling, a distributed version, and SGD with variance reduction techniques. We achieve tighter convergence rates and relax assumptions, bridging the gap between theoretical principles and practical applications, covering several important techniques such as Dropout and Sparse training. This work presents promising opportunities to enhance the theoretical understanding of model training through a sparsification-aware optimization approach.
comment: Published at ICLR 2025
♻ ☆ CodeEvolve: an open source evolutionary coding agent for algorithm discovery and optimization
We introduce CodeEvolve, an open-source framework that combines large language models (LLMs) with evolutionary search to synthesize high-performing algorithmic solutions. CodeEvolve couples an islands-based genetic algorithm with modular LLM orchestration, using execution feedback and task-specific metrics to guide selection and variation. Exploration and exploitation are balanced through context-aware recombination, adaptive meta-prompting, and targeted refinement of promising solutions. We evaluate CodeEvolve on benchmarks previously used to assess Google DeepMind's AlphaEvolve, showing superior performance on several tasks and competitive results overall. Notably, open-weight models often match or exceed closed-source baselines at a fraction of the compute cost. We provide extensive ablations analyzing the contribution of each component and release our framework and experimental results at https://github.com/inter-co/science-codeevolve.
comment: 14 pages, 10 figures, 3 tables
♻ ☆ Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
♻ ☆ Machine Learning-Based Modeling of the Anode Heel Effect in X-ray Beam Monte Carlo Simulations
To develop a machine learning-based framework for accurately modeling the anode heel effect in Monte Carlo simulations of X-ray imaging systems, enabling realistic beam intensity profiles with minimal experimental calibration. Multiple regression models were trained to predict spatial intensity variations along the anode-cathode axis using experimentally acquired weights derived from beam measurements across different tube potentials. These weights captured the asymmetry introduced by the anode heel effect. A systematic fine-tuning protocol was established to minimize the number of required measurements while preserving model accuracy. The models were implemented in the OpenGATE 10 and GGEMS Monte Carlo toolkits to evaluate their integration feasibility and predictive performance. Among the tested models, gradient boosting regression (GBR) delivered the highest accuracy, with prediction errors remaining below 5% across all energy levels. The optimized fine-tuning strategy required only six detector positions per energy level, reducing measurement effort by 65%. The maximum error introduced through this fine-tuning process remained below 2%. Dose actor comparisons within Monte Carlo simulations demonstrated that the GBR-based model closely replicated clinical beam profiles and significantly outperformed conventional symmetric beam models. This study presents a robust and generalizable method for incorporating the anode heel effect into Monte Carlo simulations using machine learning. By enabling accurate, energy-dependent beam modeling with limited calibration data, the approach enhances simulation realism for applications in clinical dosimetry, image quality assessment, and radiation protection.
comment: 15 pages, 8 figures
♻ ☆ VFEFL: Privacy-Preserving Federated Learning against Malicious Clients via Verifiable Functional Encryption
Federated learning is a promising distributed learning paradigm that enables collaborative model training without exposing local client data, thereby protecting data privacy. However, it also brings new threats and challenges. The advancement of model inversion attacks has rendered the plaintext transmission of local models insecure, while the distributed nature of federated learning makes it particularly vulnerable to attacks raised by malicious clients. To protect data privacy and prevent malicious client attacks, this paper proposes a privacy-preserving Federated Learning framework based on Verifiable Functional Encryption (VFEFL), without a non-colluding dual-server assumption or additional trusted third-party. Specifically, we propose a novel Cross-Ciphertext Decentralized Verifiable Functional Encryption (CC-DVFE) scheme that enables the verification of specific relationships over multi-dimensional ciphertexts. This scheme is formally treated, in terms of definition, security model and security proof. Furthermore, based on the proposed CC-DVFE scheme, we design a privacy-preserving federated learning framework that incorporates a novel robust aggregation rule to detect malicious clients, enabling the effective training of high-accuracy models under adversarial settings. Finally, we provide the formal analysis and empirical evaluation of VFEFL. The results demonstrate that our approach achieves the desired privacy protection, robustness, verifiability and fidelity, while eliminating the reliance on non-colluding dual-server assumption or trusted third parties required by most existing methods.
♻ ☆ pdfQA: Diverse, Challenging, and Realistic Question Answering over PDFs
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).
♻ ☆ Reconsidering Overthinking: Penalizing Internal and External Redundancy in CoT Reasoning
Large Reasoning Models (LRMs) often suffer from overthinking, generating verbose reasoning traces that compromise both computational efficiency and interpretability. Unlike prior efforts that rely on global length-based rewards, we propose a semantic-aware decomposition of redundancy into two distinct forms: internal redundancy (informational stagnation within the reasoning process) and external redundancy (superfluous continuation after the final answer). We introduce a dual-penalty reinforcement learning framework that surgically targets these inefficiencies: a sliding-window semantic analysis is employed to penalize low-gain steps within the reasoning trajectory, while a normalized metric suppresses the post-answer tail. Extensive experiments demonstrate that our method significantly compresses Chain-of-Thought traces with minimal accuracy degradation, while maintaining strong generalization to out-of-domain tasks. Crucially, we reveal an asymmetry in redundancy: external redundancy can be safely eliminated without performance loss, whereas internal redundancy removal requires a calibrated trade-off to maintain reasoning fidelity. Our framework enables fine-grained, implicit control over reasoning length, paving the way for more concise and interpretable LRMs.
♻ ☆ Patient-Zero: Scaling Synthetic Patient Agents to Real-World Distributions without Real Patient Data
Synthetic data generation with Large Language Models (LLMs) has emerged as a promising solution in the medical domain to mitigate data scarcity and privacy constraints. However, existing approaches remain constrained by their derivative nature, relying on real-world records, which pose privacy risks and distribution biases. Furthermore, current patient agents face the Stability-Plasticity Dilemma, struggling to maintain clinical consistency during dynamic inquiries. To address these challenges, we introduce Patient-Zero, a novel framework for ab initio patient simulation that requires no real medical records. Our Medically-Aligned Hierarchical Synthesis framework generates comprehensive and diverse patient records from abstract clinical guidelines via stratified attribute permutation. To support rigorous clinical interaction, we design a Dual-Track Cognitive Memory System to enable agents dynamically update memory while preserving logical consistency and persona adherence. Extensive evaluations show that Patient-Zero establishes a new state-of-the-art in both data quality and interaction fidelity. In human expert evaluations, senior licensed physicians judge our synthetic data to be statistically indistinguishable from real human-authored data and higher in clinical quality. Furthermore, downstream medical reasoning model trained on our synthetic dataset shows substantial performance gains (MedQA +24.0%; MMLU +14.5%), demonstrating the practical utility of our framework.
♻ ☆ SyncLipMAE: Contrastive Masked Pretraining for Audio-Visual Talking-Face Representation
We introduce SyncLipMAE, a self-supervised pretraining framework for talking-face video that learns synchronization-aware and transferable facial dynamics from unlabeled audio-visual streams. Our approach couples masked visual modeling with cross-modal contrastive alignment and employs three per-frame prompt tokens that explicitly encode the essential factors of a talking-face frame - identity, vocal motion (speech-synchronized facial dynamics), and ambient motion (audio-agnostic movements such as blinks and head pose). The contrastive objective uses time-aligned vocal-motion and audio tokens as positives and misaligned pairs as negatives, driving both modalities into a shared embedding space and yielding token-level audio-visual stream synchronization. After pretraining, the aligned audio tokens together with the visual prompt tokens (identity, vocal motion, ambient motion) form a unified interface for four disparate downstream settings: (i) audio-visual stream synchronization; (ii) facial emotion and head/face action recognition; (iii) visual speech recognition; and (iv) visual dubbing, for which we enable indistinguishable audio- or video-driven control within a single model. Across four task families that require distinct capabilities, SyncLipMAE achieves state-of-the-art results, underscoring the effectiveness of synchronization-aware, factorized self-supervised pretraining.
♻ ☆ OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
Human cognition operates through two complementary modes: fast intuitive thinking and slow deliberate thinking. Vanilla large language models (LLMs) predominantly follow the fast-thinking paradigm, producing immediate responses; while recent large reasoning models (LRMs) adopt slow-thinking strategies, generating detailed reasoning chains before arriving at answers. While LRMs often achieve higher accuracy, this comes at the cost of substantially increased token usage. To address this efficiency-accuracy trade-off, we propose OThink-R1, a hybrid reasoning framework that integrates both modes within a single LRM and enables automatic mode switching based on problem characteristics. We first identify three major patterns of essential and redundant reasoning trajectories in LRMs, which guide the design of an auxiliary LLM-based judge that adaptively determines when slow thinking is necessary. Leveraging the judge's decisions, we construct a hybrid fine-tuning dataset by pruning redundant reasoning to produce fast-thinking samples and retaining complete reasoning for slow-thinking samples. This dataset is then used to fine-tune LRMs, equipping them with inherent autonomous mode-selection capabilities. Extensive experiments on mathematical and question-answering benchmarks show that OThink-R1 reduces reasoning token usage significantly while maintaining competitive accuracy. The code is available at https://github.com/AgenticIR-Lab/OThink-R1.
comment: Under review
♻ ☆ MARCH: Evaluating the Intersection of Ambiguity Interpretation and Multi-hop Inference
Real-world multi-hop QA is naturally linked with ambiguity, where a single query can trigger multiple reasoning paths that require independent resolution. Since ambiguity can occur at any stage, models must navigate layered uncertainty throughout the entire reasoning chain. Despite its prevalence in real-world user queries, previous benchmarks have primarily focused on single-hop ambiguity, leaving the complex interaction between multi-step inference and layered ambiguity underexplored. In this paper, we introduce \textbf{MARCH}, a benchmark for their intersection, with 2,209 multi-hop ambiguous questions curated via multi-LLM verification and validated by human annotation with strong agreement. Our experiments reveal that even state-of-the-art models struggle with MARCH, confirming that combining ambiguity resolution with multi-step reasoning is a significant challenge. To address this, we propose \textbf{CLARION}, a two-stage agentic framework that explicitly decouples ambiguity planning from evidence-driven reasoning, significantly outperforms existing approaches, and paves the way for robust reasoning systems.
comment: 17 figures, 17 tables
♻ ☆ When Agents See Humans as the Outgroup: Belief-Dependent Bias in LLM-Powered Agents
This paper reveals that LLM-powered agents exhibit not only demographic bias (e.g., gender, religion) but also intergroup bias under minimal "us" versus "them" cues. When such group boundaries align with the agent-human divide, a new bias risk emerges: agents may treat other AI agents as the ingroup and humans as the outgroup. To examine this risk, we conduct a controlled multi-agent social simulation and find that agents display consistent intergroup bias in an all-agent setting. More critically, this bias persists even in human-facing interactions when agents are uncertain about whether the counterpart is truly human, revealing a belief-dependent fragility in bias suppression toward humans. Motivated by this observation, we identify a new attack surface rooted in identity beliefs and formalize a Belief Poisoning Attack (BPA) that can manipulate agent identity beliefs and induce outgroup bias toward humans. Extensive experiments demonstrate both the prevalence of agent intergroup bias and the severity of BPA across settings, while also showing that our proposed defenses can mitigate the risk. These findings are expected to inform safer agent design and motivate more robust safeguards for human-facing agents.
comment: 15 pages
♻ ☆ D-Artemis: A Deliberative Cognitive Framework for Mobile GUI Multi-Agents
Graphical User Interface (GUI) agents aim to automate a wide spectrum of human tasks by emulating user interaction. Despite rapid advancements, current approaches are hindered by several critical challenges: data bottleneck in end-to-end training, high cost of delayed error detection, and risk of contradictory guidance. Inspired by the human cognitive loop of Thinking, Alignment, and Reflection, we present D-Artemis -- a novel deliberative framework in this paper. D-Artemis leverages a fine-grained, app-specific tip retrieval mechanism to inform its decision-making process. It also employs a proactive Pre-execution Alignment stage, where Thought-Action Consistency (TAC) Check module and Action Correction Agent (ACA) work in concert to mitigate the risk of execution failures. A post-execution Status Reflection Agent (SRA) completes the cognitive loop, enabling strategic learning from experience. Crucially, D-Artemis enhances the capabilities of general-purpose Multimodal large language models (MLLMs) for GUI tasks without the need for training on complex trajectory datasets, demonstrating strong generalization. D-Artemis establishes new state-of-the-art (SOTA) results across both major benchmarks, achieving a 75.8% success rate on AndroidWorld and 96.8% on ScreenSpot-V2. Extensive ablation studies further demonstrate the significant contribution of each component to the framework.
♻ ☆ CMDAR: A Chinese Multi-scene Dynamic Audio Reasoning Benchmark with Diverse Challenges
The ability to reason from audio, including speech, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and English audio data and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce CMDAR, a Chinese benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. CMDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on CMDAR and observe that they exhibit limitations in complex reasoning tasks. In CMDAR-main, Qwen2.5-Omni achieves 76.67% accuracy, whereas GPT-4o Audio reaches 68.47%. However, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice with multiple audios and open-ended tasks. And we provide detail analysis corresponding suggestions for the future development of large audio language models.
comment: 25 pages, 7 figures
♻ ☆ OnlineMate: An LLM-Based Multi-Agent Companion System for Cognitive Support in Online Learning
In online learning environments, students often lack personalized peer interactions, which are crucial for cognitive development and learning engagement. Although previous studies have employed large language models (LLMs) to simulate interactive learning environments, these interactions are limited to conversational exchanges, failing to adapt to learners' individualized cognitive and psychological states. As a result, students' engagement is low and they struggle to gain inspiration. To address this challenge, we propose OnlineMate, a multi-agent learning companion system driven by LLMs integrated with Theory of Mind (ToM). OnlineMate simulates peer-like roles, infers learners' psychological states such as misunderstandings and confusion during collaborative discussions, and dynamically adjusts interaction strategies to support higher-order thinking. Comprehensive evaluations, including simulation-based experiments, human assessments, and real classroom trials, demonstrate that OnlineMate significantly promotes deep learning and cognitive engagement by elevating students' average cognitive level while substantially improving emotional engagement scores.
comment: work in progress
♻ ☆ Stable Preference Optimization: A Bilevel Approach to Catastrophic Preference Shift
Direct Preference Learning has emerged as a dominant offline paradigm for preference optimization. Most of these methods are based on the Bradley-Terry (BT) model for pairwise preference ranking, which directly aligns language model with human preference. Prior work has observed a counter-intuitive phenomenon termed likelihood displacement, where the absolute probability of preferred responses decreases simultaneously during training. We demonstrate that such displacement can lead to a more devastating failure mode, which we defined as \textit{Catastrophic Preference Shift}, where the lost preference probability mass inadvertently shifts toward out-of-distribution (OOD) responses. Such a failure mode is a key limitation shared across BT-style direct preference learning methods, due to the fundamental conflict between the unconstrained discriminative alignment and generative foundational capabilities, ultimately leading to severe performance degradation (e.g., SimPO suffers a significant drop in reasoning accuracy from 73.5\% to 37.5\%). We analyze existing BT-style methods from the probability evolution perspective and theoretically prove that these methods exhibit over-reliance on model initialization and can lead to preference shift. To resolve these counter-intuitive behaviors, we propose a theoretically grounded Stable Preference Optimization (SPO) framework that constrains preference learning within a safe alignment region. Empirical evaluations demonstrate that SPO effectively stabilizes and enhances the performance of existing BT-style preference learning methods. SPO provides new insights into the design of preference learning objectives and opens up new avenues towards more reliable and interpretable language model alignment.
♻ ☆ When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection
Driven by surging submission volumes, scientific peer review has catalyzed two parallel trends: individual over-reliance on LLMs and institutional AI-powered assessment systems. This study investigates the robustness of "LLM-as-a-Judge" systems to adversarial PDF manipulation via invisible text injections and layout aware encoding attacks. We specifically target the distinct incentive of flipping "Reject" decisions to "Accept," a vulnerability that fundamentally compromises scientific integrity. To measure this, we introduce the Weighted Adversarial Vulnerability Score (WAVS), a novel metric that quantifies susceptibility by weighting score inflation against the severity of decision shifts relative to ground truth. We adapt 15 domain-specific attack strategies, ranging from semantic persuasion to cognitive obfuscation, and evaluate them across 13 diverse language models (including GPT-5 and DeepSeek) using a curated dataset of 200 official and real-world accepted and rejected submissions (e.g., ICLR OpenReview). Our results demonstrate that obfuscation techniques like "Maximum Mark Magyk" and "Symbolic Masking & Context Redirection" successfully manipulate scores, achieving decision flip rates of up to 86.26% in open-source models, while exposing distinct "reasoning traps" in proprietary systems. We release our complete dataset and injection framework to facilitate further research on the topic (https://anonymous.4open.sciencer/llm-jailbreak-FC9E/).
♻ ☆ Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
♻ ☆ A Survey on Failure Analysis and Fault Injection in AI Systems
The rapid advancement of Artificial Intelligence (AI) has led to its integration into various areas, especially with Large Language Models (LLMs) significantly enhancing capabilities in Artificial Intelligence Generated Content (AIGC). However, the complexity of AI systems has also exposed their vulnerabilities, necessitating robust methods for failure analysis (FA) and fault injection (FI) to ensure resilience and reliability. Despite the importance of these techniques, there lacks a comprehensive review of FA and FI methodologies in AI systems. This study fills this gap by presenting a detailed survey of existing FA and FI approaches across six layers of AI systems. We systematically analyze 160 papers and repositories to answer three research questions including (1) what are the prevalent failures in AI systems, (2) what types of faults can current FI tools simulate, (3) what gaps exist between the simulated faults and real-world failures. Our findings reveal a taxonomy of AI system failures, assess the capabilities of existing FI tools, and highlight discrepancies between real-world and simulated failures. Moreover, this survey contributes to the field by providing a framework for fault diagnosis, evaluating the state-of-the-art in FI, and identifying areas for improvement in FI techniques to enhance the resilience of AI systems.
comment: Accepted by TOSEM
♻ ☆ From Intrinsic Toxicity to Reception-Based Toxicity: A Contextual Framework for Prediction and Evaluation
Most toxicity detection models treat toxicity as an intrinsic property of text, overlooking the role of context in shaping its impact. In this position paper, drawing on insights from psychology, neuroscience, and computational social science, we reconceptualise toxicity as a socially emergent signal of stress. We formalise this perspective in the Contextual Stress Framework (CSF), which defines toxicity as a stress-inducing norm violation within a given context and introduces an additional dimension for toxicity detection. As one possible realisation of CSF, we introduce PONOS (Proportion Of Negative Observed Sentiments), a metric that quantifies toxicity through collective social reception rather than lexical features. We validate this approach on a novel dataset, demonstrating improved contextual sensitivity and adaptability when used alongside existing models.
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce \textbf{CaTS-Bench}, a comprehensive benchmark for \textbf{C}ontext-\textbf{a}ware \textbf{T}ime \textbf{S}eries reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
♻ ☆ Beyond Patch Aggregation: 3-Pass Pyramid Indexing for Vision-Enhanced Document Retrieval
Document centric RAG pipelines usually begin with OCR, followed by brittle heuristics for chunking, table parsing, and layout reconstruction. These text first workflows are costly to maintain, sensitive to small layout shifts, and often lose the spatial cues that contain the answer. Vision first retrieval has emerged as a strong alternative. By operating directly on page images, systems like ColPali and ColQwen preserve structure and reduce pipeline complexity while achieving strong benchmark performance. However, these late interaction models tie retrieval to a specific vision backbone and require storing hundreds of patch embeddings per page, creating high memory overhead and complicating large scale deployment. We introduce VisionRAG, a multimodal retrieval system that is OCR free and model agnostic. VisionRAG indexes documents directly as images, preserving layout, tables, and spatial cues, and builds semantic vectors without committing to a specific extraction. Our three pass pyramid indexing framework creates vectors using global page summaries, section headers, visual hotspots, and fact level cues. These summaries act as lightweight retrieval surrogates. At query time, VisionRAG retrieves the most relevant pages using the pyramid index, then forwards the raw page image encoded as base64 to a multimodal LLM for final question answering. During retrieval, reciprocal rank fusion integrates signals across the pyramid to produce robust ranking. VisionRAG stores only 17 to 27 vectors per page, matching the efficiency of patch based methods while staying flexible across multimodal encoders. On financial document benchmarks, it achieves 0.8051 accuracy at 10 on FinanceBench and 0.9629 recall at 100 on TAT DQA. These results show that OCR free, summary guided multimodal retrieval is a practical and scalable alternative to traditional text extraction pipelines.
♻ ☆ UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose modality-aware routing, which dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it, and further justify its effectiveness with a theoretical analysis. Moreover, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 10 benchmarks of multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
♻ ☆ Successor-Generator Planning with LLM-generated Heuristics
Heuristics are a central component of deterministic planning, particularly in domain-independent settings where general applicability is prioritized over task-specific tuning. This work revisits that paradigm in light of recent advances in large language models (LLMs), which enable the automatic synthesis of heuristics directly from problem definitions -- bypassing the need for handcrafted domain knowledge. We present a method that employs LLMs to generate problem-specific heuristic functions from planning tasks specified through successor generators, goal tests, and initial states written in a general-purpose programming language. These heuristics are compiled and integrated into standard heuristic search algorithms, such as greedy best-first search. Our approach achieves competitive, and in many cases state-of-the-art, performance across a broad range of established planning benchmarks. Moreover, it enables the solution of problems that are difficult to express in traditional formalisms, including those with complex numeric constraints or custom transition dynamics. We provide an extensive empirical evaluation that characterizes the strengths and limitations of the approach across diverse planning settings, demonstrating its effectiveness.
♻ ☆ CogCanvas: Verbatim-Grounded Artifact Extraction for Long LLM Conversations ACL
Conversation summarization loses nuanced details: when asked about coding preferences after 40 turns, summarization recalls "use type hints" but drops the critical constraint "everywhere" (19.0% exact match vs. 93.0% for our approach). We present CogCanvas, a training-free framework inspired by how teams use whiteboards to anchor shared memory. Rather than compressing conversation history, CogCanvas extracts verbatim-grounded artifacts (decisions, facts, reminders) and retrieves them via temporal-aware graph. On the LoCoMo benchmark (all 10 conversations from the ACL 2024 release), CogCanvas achieves the highest overall accuracy among training-free methods (32.4%), outperforming RAG (24.6%) by +7.8pp, with decisive advantages on complex reasoning tasks: +20.6pp on temporal reasoning (32.7% vs. 12.1% RAG) and +1.1pp on multi-hop questions (41.7% vs. 40.6% RAG). CogCanvas also leads on single-hop retrieval (26.6% vs. 24.6% RAG). Ablation studies reveal that BGE reranking contributes +7.7pp, making it the largest contributor to CogCanvas's performance. While heavily-optimized approaches achieve higher absolute scores through dedicated training (EverMemOS: ~92%), our training-free approach provides practitioners with an immediately-deployable alternative that significantly outperforms standard baselines. Code and data: https://github.com/tao-hpu/cog-canvas
comment: 15 pages, 5 figures. Submitted to ACL Rolling Review January 2026
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ SciEvalKit: An Open-source Evaluation Toolkit for Scientific General Intelligence
We introduce SciEvalKit, a unified benchmarking toolkit designed to evaluate AI models for science across a broad range of scientific disciplines and task capabilities. Unlike general-purpose evaluation platforms, SciEvalKit focuses on the core competencies of scientific intelligence, including Scientific Multimodal Perception, Scientific Multimodal Reasoning, Scientific Multimodal Understanding, Scientific Symbolic Reasoning, Scientific Code Generation, Science Hypothesis Generation and Scientific Knowledge Understanding. It supports six major scientific domains, spanning from physics and chemistry to astronomy and materials science. SciEvalKit builds a foundation of expert-grade scientific benchmarks, curated from real-world, domain-specific datasets, ensuring that tasks reflect authentic scientific challenges. The toolkit features a flexible, extensible evaluation pipeline that enables batch evaluation across models and datasets, supports custom model and dataset integration, and provides transparent, reproducible, and comparable results. By bridging capability-based evaluation and disciplinary diversity, SciEvalKit offers a standardized yet customizable infrastructure to benchmark the next generation of scientific foundation models and intelligent agents. The toolkit is open-sourced and actively maintained to foster community-driven development and progress in AI4Science.
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ Encyclo-K: Evaluating LLMs with Dynamically Composed Knowledge Statements
Benchmarks play a crucial role in tracking the rapid advancement of large language models (LLMs) and identifying their capability boundaries. However, existing benchmarks predominantly curate questions at the question level, suffering from three fundamental limitations: vulnerability to data contamination, restriction to single-knowledge-point assessment, and reliance on costly domain expert annotation. We propose Encyclo-K, a statement-based benchmark that rethinks benchmark construction from the ground up. Our key insight is that knowledge statements, not questions, can serve as the unit of curation, and questions can then be constructed from them. We extract standalone knowledge statements from authoritative textbooks and dynamically compose them into evaluation questions through random sampling at test time. This design directly addresses all three limitations: the combinatorial space is too vast to memorize, and model rankings remain stable across dynamically generated question sets, enabling reliable periodic dataset refresh; each question aggregates 8-10 statements for comprehensive multi-knowledge assessment; annotators only verify formatting compliance without requiring domain expertise, substantially reducing annotation costs. Experiments on over 50 LLMs demonstrate that Encyclo-K poses substantial challenges with strong discriminative power. Even the top-performing OpenAI-GPT-5.1 achieves only 62.07% accuracy, and model performance displays a clear gradient distribution--reasoning models span from 16.04% to 62.07%, while chat models range from 9.71% to 50.40%. These results validate the challenges introduced by dynamic evaluation and multi-statement comprehensive understanding. These findings establish Encyclo-K as a scalable framework for dynamic evaluation of LLMs' comprehensive understanding over multiple fine-grained disciplinary knowledge statements.
♻ ☆ SWAA: Sliding Window Attention Adaptation for Efficient Long-Context LLMs Without Pretraining
The quadratic complexity of self-attention in Transformer-based Large Language Models (LLMs) renders long-context inference prohibitively expensive. While Sliding Window Attention (SWA), the simplest sparse attention pattern, offers a linear-complexity alternative, naively applying it to models pretrained with Full Attention (FA) causes catastrophic long-context performance collapse due to the training-inference mismatch. To address this, we propose Sliding Window Attention Adaptation (SWAA), a plug-and-play toolkit of recipes that adapt FA models to SWA without costly pretraining. SWAA systematically combines five strategies: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments demonstrate that while individual methods are insufficient, specific synergistic combinations can effectively recover original long-context capabilities. After further analyzing performance-efficiency trade-offs, we identify recommended SWAA configurations for diverse scenarios, which achieve 30% to 100% speedups for long-context LLM inference with acceptable quality loss. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
♻ ☆ IPA: An Information-Reconstructive Input Projection Framework for Efficient Foundation Model Adaptation
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, reduce adaptation cost by injecting low-rank updates into pretrained weights. However, LoRA's down-projection is randomly initialized and data-agnostic, discarding potentially useful information. Prior analyses show that this projection changes little during training, while the up-projection carries most of the adaptation, making the random input compression a performance bottleneck. We propose IPA, a feature-aware projection framework that explicitly aims to reconstruct the original input within a reduced hidden space. In the linear case, we instantiate IPA with algorithms approximating top principal components, enabling efficient projector pretraining with negligible inference overhead. Across language and vision benchmarks, IPA consistently improves over LoRA and DoRA, achieving on average 1.5 points higher accuracy on commonsense reasoning and 2.3 points on VTAB-1k, while matching full LoRA performance with roughly half the trainable parameters when the projection is frozen. Code available at https://github.com/valeoai/peft-ipa .
comment: Accepted to TMLR
♻ ☆ ORPR: An OR-Guided Pretrain-then-Reinforce Learning Model for Inventory Management
As the pursuit of synergy between Artificial Intelligence (AI) and Operations Research (OR) gains momentum in handling complex inventory systems, a critical challenge persists: how to effectively reconcile AI's adaptive perception with OR's structural rigor. To bridge this gap, we propose a novel OR-Guided "Pretrain-then-Reinforce" framework. To provide structured guidance, we propose a simulation-augmented OR model that generates high-quality reference decisions, implicitly capturing complex business constraints and managerial preferences. Leveraging these OR-derived decisions as foundational training labels, we design a domain-informed deep learning foundation model to establish foundational decision-making capabilities, followed by a reinforcement learning (RL) fine-tuning stage. Uniquely, we position RL as a deep alignment mechanism that enables the AI agent to internalize the optimality principles of OR, while simultaneously leveraging exploration for general policy refinement and allowing expert guidance for scenario-specific adaptation (e.g., promotional events). Validated through extensive numerical experiments and a field deployment at JD.com augmented by a Difference-in-Differences (DiD) analysis, our model significantly outperforms incumbent industrial practices, delivering real-world gains of a 5.27-day reduction in turnover and a 2.29% increase in in-stock rates, alongside a 29.95% decrease in holding costs. Contrary to the prevailing trend of brute-force model scaling, our study demonstrates that a lightweight, domain-informed model can deliver state-of-the-art performance and robust transferability when guided by structured OR logic. This approach offers a scalable and cost-effective paradigm for intelligent supply chain management, highlighting the value of deeply aligning AI with OR.
♻ ☆ Communication Compression for Tensor Parallel LLM Inference
Large Language Models (LLMs) have pushed the frontier of artificial intelligence but are comprised of hundreds of billions of parameters and operations. For faster inference latency, LLMs are deployed on multiple hardware accelerators through various Model Parallelism strategies. Our paper looks into the details on one such strategy - Tensor Parallel - and proposes to reduce latency by compressing inter-accelerator communication. We leverage fine grained quantization techniques to compress selected activations by 3.5 - 4.5x. Our proposed method leads up to 2x reduction of time-to-first-token (TTFT) with negligible model performance degradation.
♻ ☆ Representation Interventions Enable Lifelong Unstructured Knowledge Control
Large language models (LLMs) often produce incorrect or outdated content. Updating their knowledge efficiently and accurately without costly retraining is a major challenge. This problem is particularly challenging for complex, unstructured knowledge in lifelong settings, where many edits must coexist without interference. We introduce RILKE (Representation Intervention for Lifelong KnowledgE Control), a robust and scalable method that treats knowledge control as interventions within the model's representation space. Leveraging representation-space expressiveness, we identify two key properties enabling RILKE to achieve fine-grained control over complex, unstructured knowledge while maintaining general utility with frozen base weights. During training, RILKE learns paraphrase-robust and edit-localized modules that limit each update to a low-dimensional subspace to minimize cross-edit interference. At inference, a query-adaptive router selects the appropriate module to guide the model's generation. Across LLaMA and Qwen models, RILKE scales effectively to large-scale benchmarks, demonstrating high edit success and strong paraphrase generalization while preserving general utility with modest memory overhead. These results show RILKE is an effective and scalable solution for lifelong knowledge control in LLMs.
comment: 20 Page
♻ ☆ U-PINet: Physics-Informed Hierarchical Learning for Accurate and Fast 3D RCS Prediction IEEE
Accurate radar cross section (RCS) computation is a fundamental task in radar engineering and electromagnetic (EM) scattering analysis, underpinning target signature characterization, detection, and recognition. Conventional computational electromagnetics (CEM) solvers provide high-fidelity RCS predictions but suffer from prohibitive computational costs when applied to 3-dimensional (3D) targets under multi-aspect configurations. In contrast, purely data-driven neural networks offer high efficiency yet often lack physical consistency and generalization capability. To address these challenges, this paper proposes a U-shaped Physics-Informed Network (U-PINet). To the best of our knowledge, it is the first framework to establish a fully end-to-end, physics-informed hierarchical architecture for fast and accurate RCS computation, grounded in the governing principles of CEM. Inspired by the near-far field decomposition in classical fast solvers, U-PINet explicitly models local EM coupling and long-range radiation effects through a hierarchical operator design. A physics-guided graph construction is further introduced to represent self- and mutual-coupling among mesh elements of complex 3D targets, enabling physically interpretable intermediate representations. By embedding EM governing equations as residual constraints, the proposed framework achieves end-to-end, physically consistent RCS prediction with significantly improved computational efficiency. Extensive numerical experiments demonstrate that U-PINet attains solver-level RCS accuracy with orders-of-magnitude runtime reduction, while exhibiting strong generalization to unseen target geometries under limited training data.
comment: This work has been submitted to the IEEE Transactions on Radar Systems for possible publication
♻ ☆ TELEVAL: A Dynamic Benchmark Designed for Spoken Language Models in Chinese Interactive Scenarios
Spoken language models (SLMs) have advanced rapidly in recent years, accompanied by a growing number of evaluation benchmarks. However, most existing benchmarks emphasize task completion and capability scaling, while remaining poorly aligned with how users interact with SLMs in real-world spoken conversations. Effective spoken interaction requires not only accurate understanding of user intent and content, but also the ability to respond with appropriate interactional strategies. In this paper, we present TELEVAL, a dynamic, user-centered benchmark for evaluating SLMs in realistic Chinese spoken interaction scenarios. TELEVAL consolidates evaluation into two core aspects. Reliable Content Fulfillment assesses whether models can comprehend spoken inputs and produce semantically correct responses. Interactional Appropriateness evaluates whether models act as socially capable interlocutors, requiring them not only to generate human-like, colloquial responses, but also to implicitly incorporate paralinguistic cues for natural interaction. Experiments reveal that, despite strong performance on semantic and knowledge-oriented tasks, current SLMs still struggle to produce natural and interactionally appropriate responses, highlighting the need for more interaction-faithful evaluation.
♻ ☆ Massive Editing for Large Language Models Based on Dynamic Weight Generation
Knowledge Editing (KE) is a field that studies how to modify some knowledge in Large Language Models (LLMs) at a low cost (compared to pre-training). Currently, performing large-scale edits on LLMs while ensuring the Reliability, Generality, and Locality metrics of the edits remain a challenge. This paper proposes a Massive editing approach for LLMs based on dynamic weight Generation (MeG). Our MeG involves attaching a dynamic weight neuron to specific layers of the LLMs and using a diffusion model to conditionally generate the weights of this neuron based on the input query required for the knowledge. This allows the use of adding a single dynamic weight neuron to achieve the goal of large-scale knowledge editing. Experiments show that our MeG can significantly improve the performance of large-scale KE in terms of Reliability, Generality, and Locality metrics compared to existing knowledge editing methods, particularly with a high percentage point increase in the absolute value index for the Locality metric, demonstrating the advantages of our proposed method.
comment: 27 pages, 8 figures
♻ ☆ Socratic Students: Teaching Language Models to Learn by Asking Questions
Large language Models (LLMs) are usually used to answer questions, but many high-stakes applications (e.g., tutoring, clinical support) require the complementary skill of asking questions: detecting missing information, requesting clarifications, and using them to solve tasks. We study this skill in reasoning-heavy domains where progress depends on inquiry rather than factual recall. We define an interactive protocol where a student model engages a stronger teacher under a small turn budget. After each teacher reply, we evaluate the student on the original task with Pass@k. We propose Outcome-Driven Question optimization Strategy (ODQS ), a training framework that learns a questioning policy from downstream task outcomes. At each turn, we sample multiple candidate questions; query the teacher with each, then score the student's resulting performance. Using these scores, we train the student via supervised fine-tuning followed by Direct Preference Optimization (DPO), without any human labels. On GSM8K, HumanEval, and OpenCoder, ODQS produces large gains over interactive baselines, boosting Pass@5 by up to 54.7% (absolute) on math and 22.9% (absolute) on coding, and matching baseline performance in three fewer turns. Thus, question asking can be explicitly trained from task outcomes, improving both accuracy and efficiency in interactive reasoning.
♻ ☆ Alignment-Aware Quantization for LLM Safety
Safety and efficiency are paramount yet often conflicting requirements for deploying Large Language Models (LLMs). While LLMs are trained to follow human alignment for safety, Post-Training Quantization (PTQ) is applied afterward to ensure efficiency. Here we identify a fundamental flaw in the conventional PTQ paradigm: quantization can turn into a safety vulnerability if it only aims to achieve low perplexity. To address this, we propose Alignment-Aware Quantization (AAQ), a novel approach that integrates an Alignment-Preserving Contrastive (APC) loss into the PTQ pipeline. Our method explicitly preserves alignment by encouraging the quantized model to mimic its safe, instruction-tuned model while diverging from the unaligned, pre-trained counterpart. AAQ achieves robust safety alignment without specialized safety-focused datasets, using only standard calibration data. We show that AAQ is compatible with standard PTQ techniques and enables robust 4-bit (W4A4) quantization across diverse model families. Our work resolves the critical trade-off between efficiency and safety, paving the way toward LLMs that are both efficient and trustworthy. Anonymized code is available in the supplementary material.
comment: 9 pages, 4 figures. Includes 8 pages of supplementary material
♻ ☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
♻ ☆ E$^2$AT: Multimodal Jailbreak Defense via Dynamic Joint Optimization for Multimodal Large Language Models
Research endeavors have been made in learning robust Multimodal Large Language Models (MLLMs) against jailbreak attacks. However, existing methods for improving MLLMs' robustness still face critical challenges: \ding{172} how to efficiently tune massive weight parameters and \ding{173} how to ensure robustness against attacks across both visual and textual modalities. To this end, we propose an \textbf{E}fficient \textbf{E}nd-to-end \textbf{A}dversarial \textbf{T}raining (E$^2$AT) framework for both visual and textual adversarial attacks. Specifically, for the visual aspect, E$^2$AT incorporates an efficient projector-based AT module that aligns the attack samples at the feature level. For training objectives, we propose a Dynamic Joint Multimodal Optimization (DJMO) strategy to enhance generalization ability against jailbreak attacks by dynamically adjusting weights between normal and adversarial objectives. Extensive experiments are conducted with five major jailbreak attack methods across three mainstream MLLMs. Results demonstrate that our E$^2$AT achieves the state-of-the-art performance, outperforming existing baselines by an average margin of 34\% across text and image modalities, while maintaining clean task performance. Furthermore, evaluations of real-world embodied intelligent systems highlight the practical applicability of E$^2$AT, paving the way for the development of more secure and reliable multimodal systems. Our code is available on \href{https://anonymous.4open.science/r/E2AT_568}{\textcolor{red}{https://anonymous.4open.science/r/E2AT\_568}}.
♻ ☆ Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats NeurIPS 2025
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.
comment: Accepted to NeurIPS 2025, Project Page: https://github.com/SooLab/AllPath
♻ ☆ PsychEval: A Multi-Session and Multi-Therapy Benchmark for High-Realism AI Psychological Counselor
To develop a reliable AI for psychological assessment, we introduce \texttt{PsychEval}, a multi-session, multi-therapy, and highly realistic benchmark designed to address three key challenges: \textbf{1) Can we train a highly realistic AI counselor?} Realistic counseling is a longitudinal task requiring sustained memory and dynamic goal tracking. We propose a multi-session benchmark (spanning 6-10 sessions across three distinct stages) that demands critical capabilities such as memory continuity, adaptive reasoning, and longitudinal planning. The dataset is annotated with extensive professional skills, comprising over 677 meta-skills and 4577 atomic skills. \textbf{2) How to train a multi-therapy AI counselor?} While existing models often focus on a single therapy, complex cases frequently require flexible strategies among various therapies. We construct a diverse dataset covering five therapeutic modalities (Psychodynamic, Behaviorism, CBT, Humanistic Existentialist, and Postmodernist) alongside an integrative therapy with a unified three-stage clinical framework across six core psychological topics. \textbf{3) How to systematically evaluate an AI counselor?} We establish a holistic evaluation framework with 18 therapy-specific and therapy-shared metrics across Client-Level and Counselor-Level dimensions. To support this, we also construct over 2,000 diverse client profiles. Extensive experimental analysis fully validates the superior quality and clinical fidelity of our dataset. Crucially, \texttt{PsychEval} transcends static benchmarking to serve as a high-fidelity reinforcement learning environment that enables the self-evolutionary training of clinically responsible and adaptive AI counselors.
♻ ☆ RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.51 and an F1score of 96.13 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; the RSwinV2 vector has thus proved its validity as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 17 Pages, 7 Figures, 4 Tables
♻ ☆ NEMO-4-PAYPAL: Leveraging NVIDIA's Nemo Framework for empowering PayPal's Commerce Agent
We present the development and optimization of PayPal's Commerce Agent, powered by NEMO-4-PAYPAL, a multi-agent system designed to revolutionize agentic commerce on the PayPal platform. Through our strategic partnership with NVIDIA, we leveraged the NeMo Framework for LLM model fine-tuning to enhance agent performance. Specifically, we optimized the Search and Discovery agent by replacing our base model with a fine-tuned Nemotron small language model (SLM). We conducted comprehensive experiments using the llama3.1-nemotron-nano-8B-v1 architecture, training LoRA-based models through systematic hyperparameter sweeps across learning rates, optimizers (Adam, AdamW), cosine annealing schedules, and LoRA ranks. Our contributions include: (1) the first application of NVIDIA's NeMo Framework to commerce-specific agent optimization, (2) LLM powered fine-tuning strategy for retrieval-focused commerce tasks, (3) demonstration of significant improvements in latency and cost while maintaining agent quality, and (4) a scalable framework for multi-agent system optimization in production e-commerce environments. Our results demonstrate that the fine-tuned Nemotron SLM effectively resolves the key performance issue in the retrieval component, which represents over 50\% of total agent response time, while maintaining or enhancing overall system performance.
♻ ☆ DiRL: An Efficient Post-Training Framework for Diffusion Language Models
Diffusion Language Models (dLLMs) have emerged as promising alternatives to Auto-Regressive (AR) models. While recent efforts have validated their pre-training potential and accelerated inference speeds, the post-training landscape for dLLMs remains underdeveloped. Existing methods suffer from computational inefficiency and objective mismatches between training and inference, severely limiting performance on complex reasoning tasks such as mathematics. To address this, we introduce DiRL, an efficient post-training framework that tightly integrates FlexAttention-accelerated blockwise training with LMDeploy-optimized inference. This architecture enables a streamlined online model update loop, facilitating efficient two-stage post-training (Supervised Fine-Tuning followed by Reinforcement Learning). Building on this framework, we propose DiPO, the first unbiased Group Relative Policy Optimization (GRPO) implementation tailored for dLLMs. We validate our approach by training DiRL-8B-Instruct on high-quality math data. Our model achieves state-of-the-art math performance among dLLMs and surpasses comparable models in the Qwen2.5 series on several benchmarks.
♻ ☆ FLUID: Training-Free Face De-identification via Latent Identity Substitution
Current face de-identification methods that replace identifiable cues in the face region with other sacrifices utilities contributing to realism, such as age and gender. To retrieve the damaged realism, we present FLUID (Face de-identification in the Latent space via Utility-preserving Identity Displacement), a single-input face de-identification framework that directly replaces identity features in the latent space of a pretrained diffusion model without affecting the model's weights. We reinterpret face de-identification as an image editing task in the latent h-space of a pretrained unconditional diffusion model. Our framework estimates identity-editing directions through optimization guided by loss functions that encourage attribute preservation while suppressing identity signals. We further introduce both linear and geodesic (tangent-based) editing schemes to effectively navigate the latent manifold. Experiments on CelebA-HQ and FFHQ show that FLUID achieves a superior balance between identity suppression and attribute preservation, outperforming existing de-identification approaches in both qualitative and quantitative evaluations.
♻ ☆ Learning the Basis: A Kolmogorov-Arnold Network Approach Embedding Green's Function Priors IEEE
The Method of Moments (MoM) is constrained by the usage of static, geometry-defined basis functions, such as the Rao-Wilton-Glisson (RWG) basis. This letter reframes electromagnetic modeling around a learnable basis representation rather than solving for the coefficients over a fixed basis. We first show that the RWG basis is essentially a static and piecewise-linear realization of the Kolmogorov-Arnold representation theorem. Inspired by this insight, we propose PhyKAN, a physics-informed Kolmogorov-Arnold Network (KAN) that generalizes RWG into a learnable and adaptive basis family. Derived from the EFIE, PhyKAN integrates a local KAN branch with a global branch embedded with Green's function priors to preserve physical consistency. It is demonstrated that, across canonical geometries, PhyKAN achieves sub-0.01 reconstruction errors as well as accurate, unsupervised radar cross section predictions, offering an interpretable, physics-consistent bridge between classical solvers and modern neural network models for electromagnetic modeling.
comment: 4 pages, 3 figures. Submitted to IEEE Antennas and Wireless Propagation Letters
♻ ☆ MOSS Transcribe Diarize: Accurate Transcription with Speaker Diarization
Speaker-Attributed, Time-Stamped Transcription (SATS) aims to transcribe what is said and to precisely determine the timing of each speaker, which is particularly valuable for meeting transcription. Existing SATS systems rarely adopt an end-to-end formulation and are further constrained by limited context windows, weak long-range speaker memory, and the inability to output timestamps. To address these limitations, we present MOSS Transcribe Diarize, a unified multimodal large language model that jointly performs Speaker-Attributed, Time-Stamped Transcription in an end-to-end paradigm. Trained on extensive real wild data and equipped with a 128k context window for up to 90-minute inputs, MOSS Transcribe Diarize scales well and generalizes robustly. Across comprehensive evaluations, it outperforms state-of-the-art commercial systems on multiple public and in-house benchmarks.
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ SoulX-FlashTalk: Real-Time Infinite Streaming of Audio-Driven Avatars via Self-Correcting Bidirectional Distillation
Deploying massive diffusion models for real-time, infinite-duration, audio-driven avatar generation presents a significant engineering challenge, primarily due to the conflict between computational load and strict latency constraints. Existing approaches often compromise visual fidelity by enforcing strictly unidirectional attention mechanisms or reducing model capacity. To address this problem, we introduce \textbf{SoulX-FlashTalk}, a 14B-parameter framework optimized for high-fidelity real-time streaming. Diverging from conventional unidirectional paradigms, we use a \textbf{Self-correcting Bidirectional Distillation} strategy that retains bidirectional attention within video chunks. This design preserves critical spatiotemporal correlations, significantly enhancing motion coherence and visual detail. To ensure stability during infinite generation, we incorporate a \textbf{Multi-step Retrospective Self-Correction Mechanism}, enabling the model to autonomously recover from accumulated errors and preventing collapse. Furthermore, we engineered a full-stack inference acceleration suite incorporating hybrid sequence parallelism, Parallel VAE, and kernel-level optimizations. Extensive evaluations confirm that SoulX-FlashTalk is the first 14B-scale system to achieve a \textbf{sub-second start-up latency (0.87s)} while reaching a real-time throughput of \textbf{32 FPS}, setting a new standard for high-fidelity interactive digital human synthesis.
comment: 12 pages, 6 figures
♻ ☆ Accelerating Storage-Based Training for Graph Neural Networks KDD
Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, a storage-based approach to GNN training has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: how to handle a large number of small storage I/Os. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named AGNES, that employs a method of block-wise storage I/O processing to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, AGNES employs a simple yet effective strategy, hyperbatch-based processing based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that AGNES consistently outperforms four state-of-the-art methods, by up to 4.1X faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.
comment: 10 pages, 12 figures, 2 tables, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2026
♻ ☆ Time-Transformer: Integrating Local and Global Features for Better Time Series Generation (Extended Version) SDM24
Generating time series data is a promising approach to address data deficiency problems. However, it is also challenging due to the complex temporal properties of time series data, including local correlations as well as global dependencies. Most existing generative models have failed to effectively learn both the local and global properties of time series data. To address this open problem, we propose a novel time series generative model named 'Time-Transformer AAE', which consists of an adversarial autoencoder (AAE) and a newly designed architecture named 'Time-Transformer' within the decoder. The Time-Transformer first simultaneously learns local and global features in a layer-wise parallel design, combining the abilities of Temporal Convolutional Networks and Transformer in extracting local features and global dependencies respectively. Second, a bidirectional cross attention is proposed to provide complementary guidance across the two branches and achieve proper fusion between local and global features. Experimental results demonstrate that our model can outperform existing state-of-the-art models in 5 out of 6 datasets, specifically on those with data containing both global and local properties. Furthermore, we highlight our model's advantage on handling this kind of data via an artificial dataset. Finally, we show our model's ability to address a real-world problem: data augmentation to support learning with small datasets and imbalanced datasets.
comment: 15 pages, 7 figures and 16 tables. SDM24 extended
♻ ☆ TPA: Next Token Probability Attribution for Detecting Hallucinations in RAG
Detecting hallucinations in Retrieval-Augmented Generation remains a challenge. Prior approaches attribute hallucinations to a binary conflict between internal knowledge stored in FFNs and the retrieved context. However, this perspective is incomplete, failing to account for the impact of other components of the LLM, such as the user query, previously generated tokens, the self token, and the final LayerNorm adjustment. To comprehensively capture the impact of these components on hallucination detection, we propose TPA which mathematically attributes each token's probability to seven distinct sources: Query, RAG Context, Past Token, Self Token, FFN, Final LayerNorm, and Initial Embedding. This attribution quantifies how each source contributes to the generation of the next token. Specifically, we aggregate these attribution scores by Part-of-Speech (POS) tags to quantify the contribution of each model component to the generation of specific linguistic categories within a response. By leveraging these patterns, such as detecting anomalies where Nouns rely heavily on LayerNorm, TPA effectively identifies hallucinated responses. Extensive experiments show that TPA achieves state-of-the-art performance.
comment: Under review
♻ ☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations NeurIPS 2025
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: Accepted to NeurIPS 2025
♻ ☆ TextBO: Bayesian Optimization in Language Space for Eval-Efficient Self-Improving AI
Large Language Models (LLMs) have enabled self-improving AI systems that iteratively generate, evaluate, and refine their outcomes. Recent studies show that prompt-optimization-based self-improvement can outperform state-of-the-art reinforcement-learning fine-tuning of LLMs, but performance is typically measured by generation efficiency. However, in many applications, the constraint is evaluation efficiency: obtaining reliable feedback is far more costly than generating candidates. To optimize for evaluation efficiency, we extend Upper Confidence Bound-Bayesian Optimization (UCB-BO), a framework known for optimal evaluation-efficiency guarantees, to the language domain. Doing so is challenging for two reasons: (i) gradients needed for UCB-BO are ill-defined in discrete prompt space; and (ii) UCB-style exploration relies on a surrogate model and acquisition function, which only live implicitly in the LLM. We overcome these challenges by proving that combining simple textual gradients (LLM-proposed local edits) with the Best-of-N selection strategy statistically emulates ascent along the gradient of the canonical UCB acquisition function. Based on this result, we propose TextBO, a simple, evaluation-efficient self-improving algorithm that operates purely in language space without explicit surrogates or calibrated uncertainty models. We empirically validate TextBO on automated ad-alignment tasks using a persona-induced preference distribution, demonstrating superior performance per evaluation compared to strong baselines such as Best-of-N and GEPA. We also evaluate TextBO's Best-of-N multi-step textual-gradient mechanism on agentic AI benchmarks by augmenting GEPA with it and show that it significantly outperforms standard GEPA. In sum, TextBO is a simple and principled framework for AI self-improving system design that bridges prompt optimization with classical Bayesian optimization.
♻ ☆ Pro2Guard: Proactive Runtime Enforcement of LLM Agent Safety via Probabilistic Model Checking
Large Language Model (LLM) agents demonstrate strong autonomy, but their stochastic behavior introduces unpredictable safety risks. Existing rule-based enforcement systems, such as AgentSpec, are reactive, intervening only when unsafe behavior is imminent or has occurred, lacking foresight for long-horizon dependencies. To overcome these limitations, we present a proactive runtime enforcement framework for LLM agents. The framework abstracts agent behaviors into symbolic states and learns a Discrete-Time Markov Chain (DTMC) from execution traces. At runtime, it predicts the probability of leading to undesired behaviors and intervenes before violations occur when the estimated risk exceeds a user-defined threshold. Designed to provide PAC-correctness guarantee, the framework achieves statistically reliable enforcement of agent safety. We evaluate the framework across two safety-critical domains: autonomous vehicles and embodied agents. It proactively enforces safety and maintains high task performance, outperforming existing methods.
♻ ☆ SmartSnap: Proactive Evidence Seeking for Self-Verifying Agents
Agentic reinforcement learning (RL) holds great promise for the development of autonomous agents under complex GUI tasks, but its scalability remains severely hampered by the verification of task completion. Existing task verification is treated as a passive, post-hoc process: a verifier (i.e., rule-based scoring script, reward or critic model, and LLM-as-a-Judge) analyzes the agent's entire interaction trajectory to determine if the agent succeeds. Such processing of verbose context that contains irrelevant, noisy history poses challenges to the verification protocols and therefore leads to prohibitive cost and low reliability. To overcome this bottleneck, we propose SmartSnap, a paradigm shift from this passive, post-hoc verification to proactive, in-situ self-verification by the agent itself. We introduce the Self-Verifying Agent, a new type of agent designed with dual missions: to not only complete a task but also to prove its accomplishment with curated snapshot evidences. Guided by our proposed 3C Principles (Completeness, Conciseness, and Creativity), the agent leverages its accessibility to the online environment to perform self-verification on a minimal, decisive set of snapshots. Such evidences are provided as the sole materials for a general LLM-as-a-Judge verifier to determine their validity and relevance. Experiments on mobile tasks across model families and scales demonstrate that our SmartSnap paradigm allows training LLM-driven agents in a scalable manner, bringing performance gains up to 26.08% and 16.66% respectively to 8B and 30B models. The synergizing between solution finding and evidence seeking facilitates the cultivation of efficient, self-verifying agents with competitive performance against DeepSeek V3.1 and Qwen3-235B-A22B. Code is available at: https://github.com/TencentYoutuResearch/SmartSnap
♻ ☆ A UCB Bandit Algorithm for General ML-Based Estimators
We present ML-UCB, a generalized upper confidence bound algorithm that integrates arbitrary machine learning models into multi-armed bandit frameworks. A fundamental challenge in deploying sophisticated ML models for sequential decision-making is the lack of tractable concentration inequalities required for principled exploration. We overcome this limitation by directly modeling the learning curve behavior of the underlying estimator. Specifically, assuming the Mean Squared Error decreases as a power law in the number of training samples, we derive a generalized concentration inequality and prove that ML-UCB achieves sublinear regret. This framework enables the principled integration of any ML model whose learning curve can be empirically characterized, eliminating the need for model-specific theoretical analysis. We validate our approach through experiments on a collaborative filtering recommendation system using online matrix factorization with synthetic data designed to simulate a simplified two-tower model, demonstrating substantial improvements over LinUCB
comment: 15 pages, 4 figures, 1 table, Multi-Arm bandit, psi-UCB, generalized estimators
♻ ☆ What Makes Looped Transformers Perform Better Than Non-Recursive Ones
While looped transformers (termed as Looped-Attn) often outperform standard transformers (termed as Single-Attn) on complex reasoning tasks, the mechanism for this advantage remains underexplored. In this paper, we explain this phenomenon through the lens of loss landscape geometry, inspired by empirical observations of their distinct dynamics at both sample and Hessian levels. To formalize this, we extend the River-Valley landscape model by distinguishing between U-shaped valleys (flat) and V-shaped valleys (steep). Based on empirical observations, we conjecture that the recursive architecture of Looped-Attn induces a landscape-level inductive bias towards River-V-Valley. This inductive bias suggest a better loss convergence along the river due to valley hopping, and further encourage learning about complex patterns compared to the River-U-Valley induced by Single-Attn. Building on this insight, we propose SHIFT (Staged HIerarchical Framework for Progressive Training), a principled training strategy that accelerates the training process of Looped-Attn while achieving comparable performances.
♻ ☆ Agentic Physical AI toward a Domain-Specific Foundation Model for Nuclear Reactor Control
The prevailing paradigm in AI for physical systems, scaling general-purpose foundation models toward universal multimodal reasoning, confronts a fundamental barrier at the control interface. Recent benchmarks show that even frontier vision-language models achieve only 50-53% accuracy on basic quantitative physics tasks, behaving as approximate guessers that preserve semantic plausibility while violating physical constraints. This input unfaithfulness is not a scaling deficiency but a structural limitation. Perception-centric architectures optimize parameter-space imitation, whereas safety-critical control demands outcome-space guarantees over executed actions. Here, we present a fundamentally different pathway toward domain-specific foundation models by introducing compact language models operating as Agentic Physical AI, in which policy optimization is driven by physics-based validation rather than perceptual inference. We train a 360-million-parameter model on synthetic reactor control scenarios, scaling the dataset from 10^3 to 10^5 examples. This induces a sharp phase transition absent in general-purpose models. Small-scale systems exhibit high-variance imitation with catastrophic tail risk, while large-scale models undergo variance collapse exceeding 500x reduction, stabilizing execution-level behavior. Despite balanced exposure to four actuation families, the model autonomously rejects approximately 70% of the training distribution and concentrates 95% of runtime execution on a single-bank strategy. Learned representations transfer across distinct physics and continuous input modalities without architectural modification.
♻ ☆ VocabTailor: Dynamic Vocabulary Selection for Downstream Tasks in Small Language Models
Small Language Models (SLMs) provide computational advantages in resource-constrained environments, yet memory limitations remain a critical bottleneck for edge device deployment. A substantial portion of SLMs' memory footprint stems from vocabulary-related components, particularly embeddings and language modeling (LM) heads, due to large vocabulary sizes. Existing static vocabulary pruning, while reducing memory usage, suffers from rigid, one-size-fits-all designs that cause information loss from the prefill stage and a lack of flexibility. In this work, we identify two key principles underlying the vocabulary reduction challenge: the lexical locality principle, the observation that only a small subset of tokens is required during any single inference, and the asymmetry in computational characteristics between vocabulary-related components of SLM. Based on these insights, we introduce VocabTailor, a novel decoupled dynamic vocabulary selection framework that addresses memory constraints through offloading embedding and implements a hybrid static-dynamic vocabulary selection strategy for LM Head, enabling on-demand loading of vocabulary components. Comprehensive experiments across diverse downstream tasks demonstrate that VocabTailor achieves a reduction of up to 99% in the memory usage of vocabulary-related components with minimal or no degradation in task performance, substantially outperforming existing static vocabulary pruning.
♻ ☆ Geometric and Dynamic Scaling in Deep Transformers
Despite their empirical success, pushing Transformer architectures to extreme depth often leads to a paradoxical failure: representations become increasingly redundant, lose rank, and ultimately collapse. Existing explanations largely attribute this phenomenon to optimization instability or vanishing gradients, yet such accounts fail to explain why collapse persists even under modern normalization and initialization schemes. In this paper, we argue that the collapse of deep Transformers is fundamentally a geometric problem. Standard residual updates implicitly assume that feature accumulation is always beneficial, but offer no mechanism to constrain update directions or to erase outdated information. As depth increases, this leads to systematic drift off the semantic manifold and monotonic feature accumulation, causing representational degeneracy. We propose a unified geometric framework that addresses these failures through two orthogonal principles. First, manifold-constrained hyper-connections restrict residual updates to valid local tangent directions, preventing uncontrolled manifold drift. Second, deep delta learning introduces data-dependent, non-monotonic updates that enable reflection and erasure of redundant features rather than their unconditional accumulation. Together, these mechanisms decouple the direction and sign of feature updates, yielding a stable geometric evolution across depth. We term the resulting architecture the Manifold-Geometric Transformer (MGT). Our analysis predicts that enforcing geometric validity while allowing dynamic erasure is essential for avoiding rank collapse in ultra-deep networks. We outline an evaluation protocol for Transformers exceeding 100 layers to test the hypothesis that geometry, rather than depth itself, is the key limiting factor in deep representation learning.
comment: Research Proposal Only
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current AI systems exhibit a fundamental limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings, Non-Collapsing Attention, and Contextual Identity Tracking (CIT), unified under a formal state space with eight operators for non-collapsing computation. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.63$) at ambiguous turns while standard architectures collapse early ($H = 0.10$), demonstrating that NRR preserves interpretive flexibility until context arrives. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 1 figure, 2 tables. v6: Added protocol extensions (state space formalization, eight operators). Clarified language to distinguish empirical results from design proposals
♻ ☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Our best AOs match or exceed white-box baselines on all four tasks and the best overall baseline on 3 of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
♻ ☆ Exploratory Causal Inference in SAEnce
Randomized Controlled Trials are one of the pillars of science; nevertheless, they rely on hand-crafted hypotheses and expensive analysis. Such constraints prevent causal effect estimation at scale, potentially anchoring on popular yet incomplete hypotheses. We propose to discover the unknown effects of a treatment directly from data. For this, we turn unstructured data from a trial into meaningful representations via pretrained foundation models and interpret them via a sparse autoencoder. However, discovering significant causal effects at the neural level is not trivial due to multiple-testing issues and effects entanglement. To address these challenges, we introduce Neural Effect Search, a novel recursive procedure solving both issues by progressive stratification. After assessing the robustness of our algorithm on semi-synthetic experiments, we showcase, in the context of experimental ecology, the first successful unsupervised causal effect identification on a real-world scientific trial.
Computation and Language 161
☆ Automated Semantic Rules Detection (ASRD) for Emergent Communication Interpretation
The field of emergent communication within multi-agent systems examines how autonomous agents can independently develop communication strategies, without explicit programming, and adapt them to varied environments. However, few studies have focused on the interpretability of emergent languages. The research exposed in this paper proposes an Automated Semantic Rules Detection (ASRD) algorithm, which extracts relevant patterns in messages exchanged by agents trained with two different datasets on the Lewis Game, which is often studied in the context of emergent communication. ASRD helps at the interpretation of the emergent communication by relating the extracted patterns to specific attributes of the input data, thereby considerably simplifying subsequent analysis.
☆ STReasoner: Empowering LLMs for Spatio-Temporal Reasoning in Time Series via Spatial-Aware Reinforcement Learning
Spatio-temporal reasoning in time series involves the explicit synthesis of temporal dynamics, spatial dependencies, and textual context. This capability is vital for high-stakes decision-making in systems such as traffic networks, power grids, and disease propagation. However, the field remains underdeveloped because most existing works prioritize predictive accuracy over reasoning. To address the gap, we introduce ST-Bench, a benchmark consisting of four core tasks, including etiological reasoning, entity identification, correlation reasoning, and in-context forecasting, developed via a network SDE-based multi-agent data synthesis pipeline. We then propose STReasoner, which empowers LLM to integrate time series, graph structure, and text for explicit reasoning. To promote spatially grounded logic, we introduce S-GRPO, a reinforcement learning algorithm that rewards performance gains specifically attributable to spatial information. Experiments show that STReasoner achieves average accuracy gains between 17% and 135% at only 0.004X the cost of proprietary models and generalizes robustly to real-world data.
comment: preprint, we release our code publicly at https://github.com/LingFengGold/STReasoner
☆ Multi-RADS Synthetic Radiology Report Dataset and Head-to-Head Benchmarking of 41 Open-Weight and Proprietary Language Models
Background: Reporting and Data Systems (RADS) standardize radiology risk communication but automated RADS assignment from narrative reports is challenging because of guideline complexity, output-format constraints, and limited benchmarking across RADS frameworks and model sizes. Purpose: To create RXL-RADSet, a radiologist-verified synthetic multi-RADS benchmark, and compare validity and accuracy of open-weight small language models (SLMs) with a proprietary model for RADS assignment. Materials and Methods: RXL-RADSet contains 1,600 synthetic radiology reports across 10 RADS (BI-RADS, CAD-RADS, GB-RADS, LI-RADS, Lung-RADS, NI-RADS, O-RADS, PI-RADS, TI-RADS, VI-RADS) and multiple modalities. Reports were generated by LLMs using scenario plans and simulated radiologist styles and underwent two-stage radiologist verification. We evaluated 41 quantized SLMs (12 families, 0.135-32B parameters) and GPT-5.2 under a fixed guided prompt. Primary endpoints were validity and accuracy; a secondary analysis compared guided versus zero-shot prompting. Results: Under guided prompting GPT-5.2 achieved 99.8% validity and 81.1% accuracy (1,600 predictions). Pooled SLMs (65,600 predictions) achieved 96.8% validity and 61.1% accuracy; top SLMs in the 20-32B range reached ~99% validity and mid-to-high 70% accuracy. Performance scaled with model size (inflection between <1B and >=10B) and declined with RADS complexity primarily due to classification difficulty rather than invalid outputs. Guided prompting improved validity (99.2% vs 96.7%) and accuracy (78.5% vs 69.6%) compared with zero-shot. Conclusion: RXL-RADSet provides a radiologist-verified multi-RADS benchmark; large SLMs (20-32B) can approach proprietary-model performance under guided prompting, but gaps remain for higher-complexity schemes.
☆ MalruleLib: Large-Scale Executable Misconception Reasoning with Step Traces for Modeling Student Thinking in Mathematics
Student mistakes in mathematics are often systematic: a learner applies a coherent but wrong procedure and repeats it across contexts. We introduce MalruleLib, a learning-science-grounded framework that translates documented misconceptions into executable procedures, drawing on 67 learning-science and mathematics education sources, and generates step-by-step traces of malrule-consistent student work. We formalize a core student-modeling problem as Malrule Reasoning Accuracy (MRA): infer a misconception from one worked mistake and predict the student's next answer under cross-template rephrasing. Across nine language models (4B-120B), accuracy drops from 66% on direct problem solving to 40% on cross-template misconception prediction. MalruleLib encodes 101 malrules over 498 parameterized problem templates and produces paired dual-path traces for both correct reasoning and malrule-consistent student reasoning. Because malrules are executable and templates are parameterizable, MalruleLib can generate over one million instances, enabling scalable supervision and controlled evaluation. Using MalruleLib, we observe cross-template degradations of 10-21%, while providing student step traces improves prediction by 3-15%. We release MalruleLib as infrastructure for educational AI that models student procedures across contexts, enabling diagnosis and feedback that targets the underlying misconception.
☆ Fine-tuning Small Language Models as Efficient Enterprise Search Relevance Labelers
In enterprise search, building high-quality datasets at scale remains a central challenge due to the difficulty of acquiring labeled data. To resolve this challenge, we propose an efficient approach to fine-tune small language models (SLMs) for accurate relevance labeling, enabling high-throughput, domain-specific labeling comparable or even better in quality to that of state-of-the-art large language models (LLMs). To overcome the lack of high-quality and accessible datasets in the enterprise domain, our method leverages on synthetic data generation. Specifically, we employ an LLM to synthesize realistic enterprise queries from a seed document, apply BM25 to retrieve hard negatives, and use a teacher LLM to assign relevance scores. The resulting dataset is then distilled into an SLM, producing a compact relevance labeler. We evaluate our approach on a high-quality benchmark consisting of 923 enterprise query-document pairs annotated by trained human annotators, and show that the distilled SLM achieves agreement with human judgments on par with or better than the teacher LLM. Furthermore, our fine-tuned labeler substantially improves throughput, achieving 17 times increase while also being 19 times more cost-effective. This approach enables scalable and cost-effective relevance labeling for enterprise-scale retrieval applications, supporting rapid offline evaluation and iteration in real-world settings.
☆ UltraLogic: Enhancing LLM Reasoning through Large-Scale Data Synthesis and Bipolar Float Reward
While Large Language Models (LLMs) have demonstrated significant potential in natural language processing , complex general-purpose reasoning requiring multi-step logic, planning, and verification remains a critical bottleneck. Although Reinforcement Learning with Verifiable Rewards (RLVR) has succeeded in specific domains , the field lacks large-scale, high-quality, and difficulty-calibrated data for general reasoning. To address this, we propose UltraLogic, a framework that decouples the logical core of a problem from its natural language expression through a Code-based Solving methodology to automate high-quality data production. The framework comprises hundreds of unique task types and an automated calibration pipeline across ten difficulty levels. Furthermore, to mitigate binary reward sparsity and the Non-negative Reward Trap, we introduce the Bipolar Float Reward (BFR) mechanism, utilizing graded penalties to effectively distinguish perfect responses from those with logical flaws. Our experiments demonstrate that task diversity is the primary driver for reasoning enhancement , and that BFR, combined with a difficulty matching strategy, significantly improves training efficiency, guiding models toward global logical optima.
comment: 19 pages, 6 figures, 7 tables
☆ DIP: Dynamic In-Context Planner For Diffusion Language Models
Diffusion language models (DLMs) have shown strong potential for general natural language tasks with in-context examples. However, due to the bidirectional attention mechanism, DLMs incur substantial computational cost as context length increases. This work addresses this issue with a key discovery: unlike the sequential generation in autoregressive language models (ARLMs), the diffusion generation paradigm in DLMs allows \textit{efficient dynamic adjustment of the context} during generation. Building on this insight, we propose \textbf{D}ynamic \textbf{I}n-Context \textbf{P}lanner (DIP), a context-optimization method that dynamically selects and inserts in-context examples during generation, rather than providing all examples in the prompt upfront. Results show DIP maintains generation quality while achieving up to 12.9$\times$ inference speedup over standard inference and 1.17$\times$ over KV cache-enhanced inference.
comment: 4 pages
☆ X-MuTeST: A Multilingual Benchmark for Explainable Hate Speech Detection and A Novel LLM-consulted Explanation Framework AAAI 2026
Hate speech detection on social media faces challenges in both accuracy and explainability, especially for underexplored Indic languages. We propose a novel explainability-guided training framework, X-MuTeST (eXplainable Multilingual haTe Speech deTection), for hate speech detection that combines high-level semantic reasoning from large language models (LLMs) with traditional attention-enhancing techniques. We extend this research to Hindi and Telugu alongside English by providing benchmark human-annotated rationales for each word to justify the assigned class label. The X-MuTeST explainability method computes the difference between the prediction probabilities of the original text and those of unigrams, bigrams, and trigrams. Final explanations are computed as the union between LLM explanations and X-MuTeST explanations. We show that leveraging human rationales during training enhances both classification performance and explainability. Moreover, combining human rationales with our explainability method to refine the model attention yields further improvements. We evaluate explainability using Plausibility metrics such as Token-F1 and IOU-F1 and Faithfulness metrics such as Comprehensiveness and Sufficiency. By focusing on under-resourced languages, our work advances hate speech detection across diverse linguistic contexts. Our dataset includes token-level rationale annotations for 6,004 Hindi, 4,492 Telugu, and 6,334 English samples. Data and code are available on https://github.com/ziarehman30/X-MuTeST
comment: Accepted in the proceedings of AAAI 2026
☆ MemRL: Self-Evolving Agents via Runtime Reinforcement Learning on Episodic Memory
The hallmark of human intelligence is the ability to master new skills through Constructive Episodic Simulation-retrieving past experiences to synthesize solutions for novel tasks. While Large Language Models possess strong reasoning capabilities, they struggle to emulate this self-evolution: fine-tuning is computationally expensive and prone to catastrophic forgetting, while existing memory-based methods rely on passive semantic matching that often retrieves noise. To address these challenges, we propose MemRL, a framework that enables agents to self-evolve via non-parametric reinforcement learning on episodic memory. MemRL explicitly separates the stable reasoning of a frozen LLM from the plastic, evolving memory. Unlike traditional methods, MemRL employs a Two-Phase Retrieval mechanism that filters candidates by semantic relevance and then selects them based on learned Q-values (utility). These utilities are continuously refined via environmental feedback in an trial-and-error manner, allowing the agent to distinguish high-value strategies from similar noise. Extensive experiments on HLE, BigCodeBench, ALFWorld, and Lifelong Agent Bench demonstrate that MemRL significantly outperforms state-of-the-art baselines. Our analysis experiments confirm that MemRL effectively reconciles the stability-plasticity dilemma, enabling continuous runtime improvement without weight updates.
comment: 23 pages, 11 figures
☆ Maximizing Local Entropy Where It Matters: Prefix-Aware Localized LLM Unlearning
Machine unlearning aims to forget sensitive knowledge from Large Language Models (LLMs) while maintaining general utility. However, existing approaches typically treat all tokens in a response indiscriminately and enforce uncertainty over the entire vocabulary. This global treatment results in unnecessary utility degradation and extends optimization to content-agnostic regions. To address these limitations, we propose PALU (Prefix-Aware Localized Unlearning), a framework driven by a local entropy maximization objective across both temporal and vocabulary dimensions. PALU reveals that (i) suppressing the sensitive prefix alone is sufficient to sever the causal generation link, and (ii) flattening only the top-$k$ logits is adequate to maximize uncertainty in the critical subspace. These findings allow PALU to avoid redundant optimization across the full vocabulary and parameter space while minimizing collateral damage to general model performance. Extensive experiments validate that PALU achieves superior forgetting efficacy and utility preservation compared to state-of-the-art baselines.
☆ Multi-Modal Data-Enhanced Foundation Models for Prediction and Control in Wireless Networks: A Survey IEEE
Foundation models (FMs) are recognized as a transformative breakthrough that has started to reshape the future of artificial intelligence (AI) across both academia and industry. The integration of FMs into wireless networks is expected to enable the development of general-purpose AI agents capable of handling diverse network management requests and highly complex wireless-related tasks involving multi-modal data. Inspired by these ideas, this work discusses the utilization of FMs, especially multi-modal FMs in wireless networks. We focus on two important types of tasks in wireless network management: prediction tasks and control tasks. In particular, we first discuss FMs-enabled multi-modal contextual information understanding in wireless networks. Then, we explain how FMs can be applied to prediction and control tasks, respectively. Following this, we introduce the development of wireless-specific FMs from two perspectives: available datasets for development and the methodologies used. Finally, we conclude with a discussion of the challenges and future directions for FM-enhanced wireless networks.
comment: 5 figures, 7 tables, IEEE COMST
☆ Can Embedding Similarity Predict Cross-Lingual Transfer? A Systematic Study on African Languages
Cross-lingual transfer is essential for building NLP systems for low-resource African languages, but practitioners lack reliable methods for selecting source languages. We systematically evaluate five embedding similarity metrics across 816 transfer experiments spanning three NLP tasks, three African-centric multilingual models, and 12 languages from four language families. We find that cosine gap and retrieval-based metrics (P@1, CSLS) reliably predict transfer success ($ρ= 0.4-0.6$), while CKA shows negligible predictive power ($ρ\approx 0.1$). Critically, correlation signs reverse when pooling across models (Simpson's Paradox), so practitioners must validate per-model. Embedding metrics achieve comparable predictive power to URIEL linguistic typology. Our results provide concrete guidance for source language selection and highlight the importance of model-specific analysis.
comment: 13 pages, 1 figure, 19 tables
☆ WebAnchor: Anchoring Agent Planning to Stabilize Long-Horizon Web Reasoning
Large Language Model(LLM)-based agents have shown strong capabilities in web information seeking, with reinforcement learning (RL) becoming a key optimization paradigm. However, planning remains a bottleneck, as existing methods struggle with long-horizon strategies. Our analysis reveals a critical phenomenon, plan anchor, where the first reasoning step disproportionately impacts downstream behavior in long-horizon web reasoning tasks. Current RL algorithms, fail to account for this by uniformly distributing rewards across the trajectory. To address this, we propose Anchor-GRPO, a two-stage RL framework that decouples planning and execution. In Stage 1, the agent optimizes its first-step planning using fine-grained rubrics derived from self-play experiences and human calibration. In Stage 2, execution is aligned with the initial plan through sparse rewards, ensuring stable and efficient tool usage. We evaluate Anchor-GRPO on four benchmarks: BrowseComp, BrowseComp-Zh, GAIA, and XBench-DeepSearch. Across models from 3B to 30B, Anchor-GRPO outperforms baseline GRPO and First-step GRPO, improving task success and tool efficiency. Notably, WebAnchor-30B achieves 46.0% pass@1 on BrowseComp and 76.4% on GAIA. Anchor-GRPO also demonstrates strong scalability, getting higher accuracy as model size and context length increase.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -the prompt- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
☆ Decoupling the Effect of Chain-of-Thought Reasoning: A Human Label Variation Perspective
Reasoning-tuned LLMs utilizing long Chain-of-Thought (CoT) excel at single-answer tasks, yet their ability to model Human Label Variation--which requires capturing probabilistic ambiguity rather than resolving it--remains underexplored. We investigate this through systematic disentanglement experiments on distribution-based tasks, employing Cross-CoT experiments to isolate the effect of reasoning text from intrinsic model priors. We observe a distinct "decoupled mechanism": while CoT improves distributional alignment, final accuracy is dictated by CoT content (99% variance contribution), whereas distributional ranking is governed by model priors (over 80%). Step-wise analysis further shows that while CoT's influence on accuracy grows monotonically during the reasoning process, distributional structure is largely determined by LLM's intrinsic priors. These findings suggest that long CoT serves as a decisive LLM decision-maker for the top option but fails to function as a granular distribution calibrator for ambiguous tasks.
comment: 19 pages, 10 figures
☆ Self-Verification is All You Need To Pass The Japanese Bar Examination
Despite rapid advances in large language models (LLMs), achieving reliable performance on highly professional and structured examinations remains a significant challenge. The Japanese bar examination is a particularly demanding benchmark, requiring not only advanced legal reasoning but also strict adherence to complex answer formats that involve joint evaluation of multiple propositions. While recent studies have reported improvements by decomposing such questions into simpler true--false judgments, these approaches have not been systematically evaluated under the original exam format and scoring scheme, leaving open the question of whether they truly capture exam-level competence. In this paper, we present a self-verification model trained on a newly constructed dataset that faithfully replicates the authentic format and evaluation scale of the exam. Our model is able to exceed the official passing score when evaluated on the actual exam scale, marking the first demonstration, to our knowledge, of an LLM passing the Japanese bar examination without altering its original question structure or scoring rules. We further conduct extensive comparisons with alternative strategies, including multi-agent inference and decomposition-based supervision, and find that these methods fail to achieve comparable performance. Our results highlight the importance of format-faithful supervision and consistency verification, and suggest that carefully designed single-model approaches can outperform more complex systems in high-stakes professional reasoning tasks. Our dataset and codes are publicly available.
comment: https://github.com/shinandrew/self_verification
☆ Accurate Table Question Answering with Accessible LLMs IEEE
Given a table T in a database and a question Q in natural language, the table question answering (TQA) task aims to return an accurate answer to Q based on the content of T. Recent state-of-the-art solutions leverage large language models (LLMs) to obtain high-quality answers. However, most rely on proprietary, large-scale LLMs with costly API access, posing a significant financial barrier. This paper instead focuses on TQA with smaller, open-weight LLMs that can run on a desktop or laptop. This setting is challenging, as such LLMs typically have weaker capabilities than large proprietary models, leading to substantial performance degradation with existing methods. We observe that a key reason for this degradation is that prior approaches often require the LLM to solve a highly sophisticated task using long, complex prompts, which exceed the capabilities of small open-weight LLMs. Motivated by this observation, we present Orchestra, a multi-agent approach that unlocks the potential of accessible LLMs for high-quality, cost-effective TQA. Orchestra coordinates a group of LLM agents, each responsible for a relatively simple task, through a structured, layered workflow to solve complex TQA problems -- akin to an orchestra. By reducing the prompt complexity faced by each agent, Orchestra significantly improves output reliability. We implement Orchestra on top of AgentScope, an open-source multi-agent framework, and evaluate it on multiple TQA benchmarks using a wide range of open-weight LLMs. Experimental results show that Orchestra achieves strong performance even with small- to medium-sized models. For example, with Qwen2.5-14B, Orchestra reaches 72.1% accuracy on WikiTQ, approaching the best prior result of 75.3% achieved with GPT-4; with larger Qwen, Llama, or DeepSeek models, Orchestra outperforms all prior methods and establishes new state-of-the-art results across all benchmarks.
comment: accepted for publication in the Proceedings of the IEEE International Conference on Data Engineering (ICDE) 2026
☆ Limited Linguistic Diversity in Embodied AI Datasets
Language plays a critical role in Vision-Language-Action (VLA) models, yet the linguistic characteristics of the datasets used to train and evaluate these systems remain poorly documented. In this work, we present a systematic dataset audit of several widely used VLA corpora, aiming to characterize what kinds of instructions these datasets actually contain and how much linguistic variety they provide. We quantify instruction language along complementary dimensions-including lexical variety, duplication and overlap, semantic similarity, and syntactic complexity. Our analysis shows that many datasets rely on highly repetitive, template-like commands with limited structural variation, yielding a narrow distribution of instruction forms. We position these findings as descriptive documentation of the language signal available in current VLA training and evaluation data, intended to support more detailed dataset reporting, more principled dataset selection, and targeted curation or augmentation strategies that broaden language coverage.
☆ Improving Indigenous Language Machine Translation with Synthetic Data and Language-Specific Preprocessing
Low-resource indigenous languages often lack the parallel corpora required for effective neural machine translation (NMT). Synthetic data generation offers a practical strategy for mitigating this limitation in data-scarce settings. In this work, we augment curated parallel datasets for indigenous languages of the Americas with synthetic sentence pairs generated using a high-capacity multilingual translation model. We fine-tune a multilingual mBART model on curated-only and synthetically augmented data and evaluate translation quality using chrF++, the primary metric used in recent AmericasNLP shared tasks for agglutinative languages. We further apply language-specific preprocessing, including orthographic normalization and noise-aware filtering, to reduce corpus artifacts. Experiments on Guarani--Spanish and Quechua--Spanish translation show consistent chrF++ improvements from synthetic data augmentation, while diagnostic experiments on Aymara highlight the limitations of generic preprocessing for highly agglutinative languages.
☆ The Anatomy of Conversational Scams: A Topic-Based Red Teaming Analysis of Multi-Turn Interactions in LLMs
As LLMs gain persuasive agentic capabilities through extended dialogues, they introduce novel risks in multi-turn conversational scams that single-turn safety evaluations fail to capture. We systematically study these risks using a controlled LLM-to-LLM simulation framework across multi-turn scam scenarios. Evaluating eight state-of-the-art models in English and Chinese, we analyze dialogue outcomes and qualitatively annotate attacker strategies, defensive responses, and failure modes. Results reveal that scam interactions follow recurrent escalation patterns, while defenses employ verification and delay mechanisms. Furthermore, interactional failures frequently stem from safety guardrail activation and role instability. Our findings highlight multi-turn interactional safety as a critical, distinct dimension of LLM behavior.
☆ Automatic Prompt Engineering with No Task Cues and No Tuning
This paper presents a system for automatic prompt engineering that is much simpler in both design and application and yet as effective as the existing approaches. It requires no tuning and no explicit clues about the task. We evaluated our approach on cryptic column name expansion (CNE) in database tables, a task which is critical for tabular data search, access, and understanding and yet there has been very little existing work. We evaluated on datasets in two languages, English and German. This is the first work to report on the application of automatic prompt engineering for the CNE task. To the best of our knowledge, this is also the first work on the application of automatic prompt engineering for a language other than English.
☆ ToxiGAN: Toxic Data Augmentation via LLM-Guided Directional Adversarial Generation EACL 2026
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
comment: This paper has been accepted to the main conference of EACL 2026
☆ Discovering and Causally Validating Emotion-Sensitive Neurons in Large Audio-Language Models
Emotion is a central dimension of spoken communication, yet, we still lack a mechanistic account of how modern large audio-language models (LALMs) encode it internally. We present the first neuron-level interpretability study of emotion-sensitive neurons (ESNs) in LALMs and provide causal evidence that such units exist in Qwen2.5-Omni, Kimi-Audio, and Audio Flamingo 3. Across these three widely used open-source models, we compare frequency-, entropy-, magnitude-, and contrast-based neuron selectors on multiple emotion recognition benchmarks. Using inference-time interventions, we reveal a consistent emotion-specific signature: ablating neurons selected for a given emotion disproportionately degrades recognition of that emotion while largely preserving other classes, whereas gain-based amplification steers predictions toward the target emotion. These effects arise with modest identification data and scale systematically with intervention strength. We further observe that ESNs exhibit non-uniform layer-wise clustering with partial cross-dataset transfer. Taken together, our results offer a causal, neuron-level account of emotion decisions in LALMs and highlight targeted neuron interventions as an actionable handle for controllable affective behaviors.
comment: 16 pages, 6 figures
☆ One Sample to Rule Them All: Extreme Data Efficiency in RL Scaling
The reasoning ability of large language models (LLMs) can be unleashed with reinforcement learning (RL) (OpenAI, 2024; DeepSeek-AI et al., 2025a; Zeng et al., 2025). The success of existing RL attempts in LLMs usually relies on high-quality samples of thousands or beyond. In this paper, we challenge fundamental assumptions about data requirements in RL for LLMs by demonstrating the remarkable effectiveness of one-shot learning. Specifically, we introduce polymath learning, a framework for designing one training sample that elicits multidisciplinary impact. We present three key findings: (1) A single, strategically selected math reasoning sample can produce significant performance improvements across multiple domains, including physics, chemistry, and biology with RL; (2) The math skills salient to reasoning suggest the characteristics of the optimal polymath sample; and (3) An engineered synthetic sample that integrates multidiscipline elements outperforms training with individual samples that naturally occur. Our approach achieves superior performance to training with larger datasets across various reasoning benchmarks, demonstrating that sample quality and design, rather than quantity, may be the key to unlock enhanced reasoning capabilities in language models. Our results suggest a shift, dubbed as sample engineering, toward precision engineering of training samples rather than simply increasing data volume.
☆ Who Laughs with Whom? Disentangling Influential Factors in Humor Preferences across User Clusters and LLMs
Humor preferences vary widely across individuals and cultures, complicating the evaluation of humor using large language models (LLMs). In this study, we model heterogeneity in humor preferences in Oogiri, a Japanese creative response game, by clustering users with voting logs and estimating cluster-specific weights over interpretable preference factors using Bradley-Terry-Luce models. We elicit preference judgments from LLMs by prompting them to select the funnier response and found that user clusters exhibit distinct preference patterns and that the LLM results can resemble those of particular clusters. Finally, we demonstrate that, by persona prompting, LLM preferences can be directed toward a specific cluster. The scripts for data collection and analysis will be released to support reproducibility.
☆ ATLAS: Adaptive Test-Time Latent Steering with External Verifiers for Enhancing LLMs Reasoning
Recent work on activation and latent steering has demonstrated that modifying internal representations can effectively guide large language models (LLMs) toward improved reasoning and efficiency without additional training. However, most existing approaches rely on fixed steering policies and static intervention strengths, which limit their robustness across problem instances and often result in over- or under-steering. We propose Adaptive Test-time Latent Steering, called (ATLAS), a task- specific framework that dynamically controls steering decisions at inference time using an external, lightweight latent verifier. Given intermediate hidden states, the verifier predicts the quality of ongoing reasoning and adaptively selects whether and how strongly to apply steering, enabling per-example and per-step adjustment with minimal overhead. To our knowledge, ATLAS is the first method to integrate learned latent verification into test-time steering for enhancing LLMs reasoning. Experiments on multiple mathematical reasoning benchmarks show that ATLAS consistently outperforms both vanilla decoding and fixed steering baselines, achieving higher accuracy while substantially reducing test-time token usage. These results demonstrate that verifier-guided latent adaptation provides an effective and scalable mechanism for controlling reasoning efficiency without sacrificing solution quality. All source code will be publicly available.
comment: 12 pages, 3 figures
☆ Grad-ELLM: Gradient-based Explanations for Decoder-only LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
☆ Audit Me If You Can: Query-Efficient Active Fairness Auditing of Black-Box LLMs ACL
Large Language Models (LLMs) exhibit systematic biases across demographic groups. Auditing is proposed as an accountability tool for black-box LLM applications, but suffers from resource-intensive query access. We conceptualise auditing as uncertainty estimation over a target fairness metric and introduce BAFA, the Bounded Active Fairness Auditor for query-efficient auditing of black-box LLMs. BAFA maintains a version space of surrogate models consistent with queried scores and computes uncertainty intervals for fairness metrics (e.g., $Δ$ AUC) via constrained empirical risk minimisation. Active query selection narrows these intervals to reduce estimation error. We evaluate BAFA on two standard fairness dataset case studies: \textsc{CivilComments} and \textsc{Bias-in-Bios}, comparing against stratified sampling, power sampling, and ablations. BAFA achieves target error thresholds with up to 40$\times$ fewer queries than stratified sampling (e.g., 144 vs 5,956 queries at $\varepsilon=0.02$ for \textsc{CivilComments}) for tight thresholds, demonstrates substantially better performance over time, and shows lower variance across runs. These results suggest that active sampling can reduce resources needed for independent fairness auditing with LLMs, supporting continuous model evaluations.
comment: Submitted to ACL ARR 2026
☆ Learning to Diagnose and Correct Moral Errors: Towards Enhancing Moral Sensitivity in Large Language Models
Moral sensitivity is fundamental to human moral competence, as it guides individuals in regulating everyday behavior. Although many approaches seek to align large language models (LLMs) with human moral values, how to enable them morally sensitive has been extremely challenging. In this paper, we take a step toward answering the question: how can we enhance moral sensitivity in LLMs? Specifically, we propose two pragmatic inference methods that faciliate LLMs to diagnose morally benign and hazardous input and correct moral errors, whereby enhancing LLMs' moral sensitivity. A central strength of our pragmatic inference methods is their unified perspective: instead of modeling moral discourses across semantically diverse and complex surface forms, they offer a principled perspective for designing pragmatic inference procedures grounded in their inferential loads. Empirical evidence demonstrates that our pragmatic methods can enhance moral sensitivity in LLMs and achieves strong performance on representative morality-relevant benchmarks.
☆ Do LLMs Encode Functional Importance of Reasoning Tokens?
Large language models solve complex tasks by generating long reasoning chains, achieving higher accuracy at the cost of increased computational cost and reduced ability to isolate functionally relevant reasoning. Prior work on compact reasoning shortens such chains through probabilistic sampling, heuristics, or supervision from frontier models, but offers limited insight into whether models internally encode token-level functional importance for answer generation. We address this gap diagnostically and propose greedy pruning, a likelihood-preserving deletion procedure that iteratively removes reasoning tokens whose removal minimally degrades model likelihood under a specified objective, yielding length-controlled reasoning chains. We evaluate pruned reasoning in a distillation framework and show that students trained on pruned chains outperform a frontier-model-supervised compression baseline at matched reasoning lengths. Finally, our analysis reveals systematic pruning patterns and shows that attention scores can predict greedy pruning ranks, further suggesting that models encode a nontrivial functional importance structure over reasoning tokens.
comment: 20 pages, 8 figures, 2 tables
☆ Detecting Hallucinations in Retrieval-Augmented Generation via Semantic-level Internal Reasoning Graph
The Retrieval-augmented generation (RAG) system based on Large language model (LLM) has made significant progress. It can effectively reduce factuality hallucinations, but faithfulness hallucinations still exist. Previous methods for detecting faithfulness hallucinations either neglect to capture the models' internal reasoning processes or handle those features coarsely, making it difficult for discriminators to learn. This paper proposes a semantic-level internal reasoning graph-based method for detecting faithfulness hallucination. Specifically, we first extend the layer-wise relevance propagation algorithm from the token level to the semantic level, constructing an internal reasoning graph based on attribution vectors. This provides a more faithful semantic-level representation of dependency. Furthermore, we design a general framework based on a small pre-trained language model to utilize the dependencies in LLM's reasoning for training and hallucination detection, which can dynamically adjust the pass rate of correct samples through a threshold. Experimental results demonstrate that our method achieves better overall performance compared to state-of-the-art baselines on RAGTruth and Dolly-15k.
☆ Temporal Graph Network: Hallucination Detection in Multi-Turn Conversation
Hallucinations can be produced by conversational AI systems, particularly in multi-turn conversations where context changes and contradictions may eventually surface. By representing the entire conversation as a temporal graph, we present a novel graph-based method for detecting dialogue-level hallucinations. Our framework models each dialogue as a node, encoding it using a sentence transformer. We explore two different ways of connectivity: i) shared-entity edges, which connect turns that refer to the same entities; ii) temporal edges, which connect contiguous turns in the conversation. Message-passing is used to update the node embeddings, allowing flow of information between related nodes. The context-aware node embeddings are then combined using attention pooling into a single vector, which is then passed on to a classifier to determine the presence and type of hallucinations. We demonstrate that our method offers slightly improved performance over existing methods. Further, we show the attention mechanism can be used to justify the decision making process. The code and model weights are made available at: https://github.com/sambuaneesh/anlp-project.
☆ Lil: Less is Less When Applying Post-Training Sparse-Attention Algorithms in Long-Decode Stage
Large language models (LLMs) demonstrate strong capabilities across a wide range of complex tasks and are increasingly deployed at scale, placing significant demands on inference efficiency. Prior work typically decomposes inference into prefill and decode stages, with the decode stage dominating total latency. To reduce time and memory complexity in the decode stage, a line of work introduces sparse-attention algorithms. In this paper, we show, both empirically and theoretically, that sparse attention can paradoxically increase end-to-end complexity: information loss often induces significantly longer sequences, a phenomenon we term ``Less is Less'' (Lil). To mitigate the Lil problem, we propose an early-stopping algorithm that detects the threshold where information loss exceeds information gain during sparse decoding. Our early-stopping algorithm reduces token consumption by up to 90% with a marginal accuracy degradation of less than 2% across reasoning-intensive benchmarks.
☆ BaseCal: Unsupervised Confidence Calibration via Base Model Signals
Reliable confidence is essential for trusting the outputs of LLMs, yet widely deployed post-trained LLMs (PoLLMs) typically compromise this trust with severe overconfidence. In contrast, we observe that their corresponding base LLMs often remain well-calibrated. This naturally motivates us to calibrate PoLLM confidence using the base LLM as a reference. This work proposes two ways to achieve this. A straightforward solution, BaseCal-ReEval, evaluates PoLLM's responses by feeding them into the base LLM to get average probabilities as confidence. While effective, this approach introduces additional inference overhead. To address this, we propose BaseCal-Proj, which trains a lightweight projection to map the final-layer hidden states of PoLLMs back to those of their base LLMs. These projected states are then processed by the base LLM's output layer to derive base-calibrated confidence for PoLLM's responses. Notably, BaseCal is an unsupervised, plug-and-play solution that operates without human labels or LLM modifications. Experiments across five datasets and three LLM families demonstrate the effectiveness of BaseCal, reducing Expected Calibration Error (ECE) by an average of 42.90\% compared to the best unsupervised baselines.
☆ NorwAI's Large Language Models: Technical Report
Norwegian, spoken by approximately five million people, remains underrepresented in many of the most significant breakthroughs in Natural Language Processing (NLP). To address this gap, the NorLLM team at NorwAI has developed a family of models specifically tailored to Norwegian and other Scandinavian languages, building on diverse Transformer-based architectures such as GPT, Mistral, Llama2, Mixtral and Magistral. These models are either pretrained from scratch or continually pretrained on 25B - 88.45B tokens, using a Norwegian-extended tokenizer and advanced post-training strategies to optimize performance, enhance robustness, and improve adaptability across various real-world tasks. Notably, instruction-tuned variants (e.g., Mistral-7B-Instruct and Mixtral-8x7B-Instruct) showcase strong assistant-style capabilities, underscoring their potential for practical deployment in interactive and domain-specific applications. The NorwAI large language models are openly available to Nordic organizations, companies and students for both research and experimental use. This report provides detailed documentation of the model architectures, training data, tokenizer design, fine-tuning strategies, deployment, and evaluations.
☆ Reducing Hallucinations in LLMs via Factuality-Aware Preference Learning
Preference alignment methods such as RLHF and Direct Preference Optimization (DPO) improve instruction following, but they can also reinforce hallucinations when preference judgments reward fluency and confidence over factual correctness. We introduce F-DPO (Factuality-aware Direct Preference Optimization), a simple extension of DPO that uses only binary factuality labels. F-DPO (i) applies a label-flipping transformation that corrects misordered preference pairs so the chosen response is never less factual than the rejected one, and (ii) adds a factuality-aware margin that emphasizes pairs with clear correctness differences, while reducing to standard DPO when both responses share the same factuality. We construct factuality-aware preference data by augmenting DPO pairs with binary factuality indicators and synthetic hallucinated variants. Across seven open-weight LLMs (1B-14B), F-DPO consistently improves factuality and reduces hallucination rates relative to both base models and standard DPO. On Qwen3-8B, F-DPO reduces hallucination rates by five times (from 0.424 to 0.084) while improving factuality scores by 50 percent (from 5.26 to 7.90). F-DPO also generalizes to out-of-distribution benchmarks: on TruthfulQA, Qwen2.5-14B achieves plus 17 percent MC1 accuracy (0.500 to 0.585) and plus 49 percent MC2 accuracy (0.357 to 0.531). F-DPO requires no auxiliary reward model, token-level annotations, or multi-stage training.
☆ LittiChoQA: Literary Texts in Indic Languages Chosen for Question Answering AACL 2026
Long-context question answering (QA) over literary texts poses significant challenges for modern large language models, particularly in low-resource languages. We address the scarcity of long-context QA resources for Indic languages by introducing LittiChoQA, the largest literary QA dataset to date covering many languages spoken in the Gangetic plains of India. The dataset comprises over 270K automatically generated question-answer pairs with a balanced distribution of factoid and non-factoid questions, generated from naturally authored literary texts collected from the open web. We evaluate multiple multilingual LLMs on non-factoid, abstractive QA, under both full-context and context-shortened settings. Results demonstrate a clear trade-off between performance and efficiency: full-context fine-tuning yields the highest token-level and semantic-level scores, while context shortening substantially improves throughput. Among the evaluated models, Krutrim-2 achieves the strongest performance, obtaining a semantic score of 76.1 with full context. While, in shortened context settings it scores 74.9 with answer paragraph selection and 71.4 with vector-based retrieval. Qualitative evaluations further corroborate these findings.
comment: Submitted to ARR Jan cycle. Targetting AACL 2026
☆ MedDialogRubrics: A Comprehensive Benchmark and Evaluation Framework for Multi-turn Medical Consultations in Large Language Models
Medical conversational AI (AI) plays a pivotal role in the development of safer and more effective medical dialogue systems. However, existing benchmarks and evaluation frameworks for assessing the information-gathering and diagnostic reasoning abilities of medical large language models (LLMs) have not been rigorously evaluated. To address these gaps, we present MedDialogRubrics, a novel benchmark comprising 5,200 synthetically constructed patient cases and over 60,000 fine-grained evaluation rubrics generated by LLMs and subsequently refined by clinical experts, specifically designed to assess the multi-turn diagnostic capabilities of LLM. Our framework employs a multi-agent system to synthesize realistic patient records and chief complaints from underlying disease knowledge without accessing real-world electronic health records, thereby mitigating privacy and data-governance concerns. We design a robust Patient Agent that is limited to a set of atomic medical facts and augmented with a dynamic guidance mechanism that continuously detects and corrects hallucinations throughout the dialogue, ensuring internal coherence and clinical plausibility of the simulated cases. Furthermore, we propose a structured LLM-based and expert-annotated rubric-generation pipeline that retrieves Evidence-Based Medicine (EBM) guidelines and utilizes the reject sampling to derive a prioritized set of rubric items ("must-ask" items) for each case. We perform a comprehensive evaluation of state-of-the-art models and demonstrate that, across multiple assessment dimensions, current models face substantial challenges. Our results indicate that improving medical dialogue will require advances in dialogue management architectures, not just incremental tuning of the base-model.
☆ DNACHUNKER: Learnable Tokenization for DNA Language Models
DNA language models have emerged as powerful tools for decoding the complex language of DNA sequences. However, the performance of these models is heavily affected by their tokenization strategy, i.e., a method used to parse DNA sequences into a shorter sequence of chunks. In this work, we propose DNACHUNKER, which integrates a learnable dynamic DNA tokenization mechanism and is trained as a masked language model. Adopting the dynamic chunking procedure proposed by H-Net, our model learns to segment sequences into variable-length chunks. This dynamic chunking offers two key advantages: it's resilient to shifts and mutations in the DNA, and it allocates more detail to important functional areas. We demonstrate the performance of DNACHUNKER by training it on the human reference genome (HG38) and testing it on the Nucleotide Transformer and Genomic benchmarks. Further ablative experiments reveal that DNACHUNKER learns tokenization that grasps biological grammar and uses smaller chunks to preserve detail in important functional elements such as promoters and exons, while using larger chunks for repetitive, redundant regions.
☆ Dementia-R1: Reinforced Pretraining and Reasoning from Unstructured Clinical Notes for Real-World Dementia Prognosis
While Large Language Models (LLMs) have shown strong performance on clinical text understanding, they struggle with longitudinal prediction tasks such as dementia prognosis, which require reasoning over complex, non-monotonic symptom trajectories across multiple visits. Standard supervised training lacks explicit annotations for symptom evolution, while direct Reinforcement Learning (RL) is hindered by sparse binary rewards. To address this challenge, we introduce Dementia-R1, an RL-based framework for longitudinal dementia prognosis from unstructured clinical notes. Our approach adopts a Cold-Start RL strategy that pre-trains the model to predict verifiable clinical indices extracted from patient histories, enhancing the capability to reason about disease progression before determining the final clinical status. Extensive experiments demonstrate that Dementia-R1 achieves an F1 score of 77.03% on real-world unstructured clinical datasets. Notably, on the ADNI benchmark, our 7B model rivals GPT-4o, effectively capturing fluctuating cognitive trajectories. Code is available at https://anonymous.4open.science/r/dementiar1-CDB5
☆ MMFormalizer: Multimodal Autoformalization in the Wild
Autoformalization, which translates natural language mathematics into formal statements to enable machine reasoning, faces fundamental challenges in the wild due to the multimodal nature of the physical world, where physics requires inferring hidden constraints (e.g., mass or energy) from visual elements. To address this, we propose MMFormalizer, which extends autoformalization beyond text by integrating adaptive grounding with entities from real-world mathematical and physical domains. MMFormalizer recursively constructs formal propositions from perceptually grounded primitives through recursive grounding and axiom composition, with adaptive recursive termination ensuring that every abstraction is supported by visual evidence and anchored in dimensional or axiomatic grounding. We evaluate MMFormalizer on a new benchmark, PhyX-AF, comprising 115 curated samples from MathVerse, PhyX, Synthetic Geometry, and Analytic Geometry, covering diverse multimodal autoformalization tasks. Results show that frontier models such as GPT-5 and Gemini-3-Pro achieve the highest compile and semantic accuracy, with GPT-5 excelling in physical reasoning, while geometry remains the most challenging domain. Overall, MMFormalizer provides a scalable framework for unified multimodal autoformalization, bridging perception and formal reasoning. To the best of our knowledge, this is the first multimodal autoformalization method capable of handling classical mechanics (derived from the Hamiltonian), as well as relativity, quantum mechanics, and thermodynamics. More details are available on our project page: MMFormalizer.github.io
comment: Technical Report
☆ SentGraph: Hierarchical Sentence Graph for Multi-hop Retrieval-Augmented Question Answering
Traditional Retrieval-Augmented Generation (RAG) effectively supports single-hop question answering with large language models but faces significant limitations in multi-hop question answering tasks, which require combining evidence from multiple documents. Existing chunk-based retrieval often provides irrelevant and logically incoherent context, leading to incomplete evidence chains and incorrect reasoning during answer generation. To address these challenges, we propose SentGraph, a sentence-level graph-based RAG framework that explicitly models fine-grained logical relationships between sentences for multi-hop question answering. Specifically, we construct a hierarchical sentence graph offline by first adapting Rhetorical Structure Theory to distinguish nucleus and satellite sentences, and then organizing them into topic-level subgraphs with cross-document entity bridges. During online retrieval, SentGraph performs graph-guided evidence selection and path expansion to retrieve fine-grained sentence-level evidence. Extensive experiments on four multi-hop question answering benchmarks demonstrate the effectiveness of SentGraph, validating the importance of explicitly modeling sentence-level logical dependencies for multi-hop reasoning.
☆ Large Reasoning Models Are (Not Yet) Multilingual Latent Reasoners
Large reasoning models (LRMs) achieve strong performance on mathematical reasoning tasks, often attributed to their capability to generate explicit chain-of-thought (CoT) explanations. However, recent work shows that LRMs often arrive at the correct answer before completing these textual reasoning steps, indicating the presence of latent reasoning -- internal, non-verbal computation encoded in hidden states. While this phenomenon has been explored in English, its multilingual behavior remains largely unknown. In this paper, we conduct a systematic investigation of multilingual latent reasoning in LRMs across 11 languages. Using a truncation-based strategy, we examine how the correct answer emerges as the model is given only partial reasoning traces, allowing us to measure stepwise latent prediction formation. Our results reveal clear evidence of multilingual latent reasoning, though unevenly: strong in resource-rich languages, weaker in low-resource ones, and broadly less observable on harder benchmarks. To understand whether these differences reflect distinct internal mechanisms, we further perform representational analyses. Despite surface-level disparities, we find that the internal evolution of predictions is highly consistent across languages and broadly aligns with English -- a pattern suggesting an English-centered latent reasoning pathway.
comment: preprint
☆ Stable-RAG: Mitigating Retrieval-Permutation-Induced Hallucinations in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has become a key paradigm for reducing factual hallucinations in large language models (LLMs), yet little is known about how the order of retrieved documents affects model behavior. We empirically show that under Top-5 retrieval with the gold document included, LLM answers vary substantially across permutations of the retrieved set, even when the gold document is fixed in the first position. This reveals a previously underexplored sensitivity to retrieval permutations. Although robust RAG methods primarily focus on enhancing LLM robustness to low-quality retrieval and mitigating positional bias to distribute attention fairly over long contexts, neither approach directly addresses permutation sensitivity. In this paper, we propose Stable-RAG, which exploits permutation sensitivity estimation to mitigate permutation-induced hallucinations. Stable-RAG runs the generator under multiple retrieval orders, clusters hidden states, and decodes from a cluster-center representation that captures the dominant reasoning pattern. It then uses these reasoning results to align hallucinated outputs toward the correct answer, encouraging the model to produce consistent and accurate predictions across document permutations. Experiments on three QA datasets show that Stable-RAG significantly improves answer accuracy, reasoning consistency and robust generalization across datasets, retrievers, and input lengths compared with baselines.
comment: 19 pages, 13figures, 8 tables, under review
☆ Mechanistic Interpretability of Large-Scale Counting in LLMs through a System-2 Strategy
Large language models (LLMs), despite strong performance on complex mathematical problems, exhibit systematic limitations in counting tasks. This issue arises from architectural limits of transformers, where counting is performed across layers, leading to degraded precision for larger counting problems due to depth constraints. To address this limitation, we propose a simple test-time strategy inspired by System-2 cognitive processes that decomposes large counting tasks into smaller, independent sub-problems that the model can reliably solve. We evaluate this approach using observational and causal mediation analyses to understand the underlying mechanism of this System-2-like strategy. Our mechanistic analysis identifies key components: latent counts are computed and stored in the final item representations of each part, transferred to intermediate steps via dedicated attention heads, and aggregated in the final stage to produce the total count. Experimental results demonstrate that this strategy enables LLMs to surpass architectural limitations and achieve high accuracy on large-scale counting tasks. This work provides mechanistic insight into System-2 counting in LLMs and presents a generalizable approach for improving and understanding their reasoning behavior.
☆ P-Check: Advancing Personalized Reward Model via Learning to Generate Dynamic Checklist
Recent approaches in personalized reward modeling have primarily focused on leveraging user interaction history to align model judgments with individual preferences. However, existing approaches largely treat user context as a static or implicit conditioning signal, failing to capture the dynamic and multi-faceted nature of human judgment. In this paper, we propose P-Check, a novel personalized reward modeling framework, designed to train a plug-and-play checklist generator that synthesizes dynamic evaluation criteria for guiding the reward prediction. To better align these checklists with personalized nuances, we introduce Preference-Contrastive Criterion Weighting, a training strategy that assigns saliency scores to criteria based on their discriminative power for personalized judgment. We conduct extensive experiments and demonstrate that P-Check not only improves reward accuracy but also enhances downstream personalized generation, and remains robust in OOD scenarios.
comment: Work in Progress
☆ Mechanistic Knobs in LLMs: Retrieving and Steering High-Order Semantic Features via Sparse Autoencoders
Recent work in Mechanistic Interpretability (MI) has enabled the identification and intervention of internal features in Large Language Models (LLMs). However, a persistent challenge lies in linking such internal features to the reliable control of complex, behavior-level semantic attributes in language generation. In this paper, we propose a Sparse Autoencoder-based framework for retrieving and steering semantically interpretable internal features associated with high-level linguistic behaviors. Our method employs a contrastive feature retrieval pipeline based on controlled semantic oppositions, combing statistical activation analysis and generation-based validation to distill monosemantic functional features from sparse activation spaces. Using the Big Five personality traits as a case study, we demonstrate that our method enables precise, bidirectional steering of model behavior while maintaining superior stability and performance compared to existing activation steering methods like Contrastive Activation Addition (CAA). We further identify an empirical effect, which we term Functional Faithfulness, whereby intervening on a specific internal feature induces coherent and predictable shifts across multiple linguistic dimensions aligned with the target semantic attribute. Our findings suggest that LLMs internalize deeply integrated representations of high-order concepts, and provide a novel, robust mechanistic path for the regulation of complex AI behaviors.
☆ Correct, Concise and Complete: Multi-stage Training For Adaptive Reasoning
The reasoning capabilities of large language models (LLMs) have improved substantially through increased test-time computation, typically in the form of intermediate tokens known as chain-of-thought (CoT). However, CoT often becomes unnecessarily long, increasing computation cost without actual accuracy gains or sometimes even degrading performance, a phenomenon known as ``overthinking''. We propose a multi-stage efficient reasoning method that combines supervised fine-tuning -- via rejection sampling or reasoning trace reformatting -- with reinforcement learning using an adaptive length penalty. We introduce a lightweight reward function that penalizes tokens generated after the first correct answer but encouraging self-verification only when beneficial. We conduct a holistic evaluation across seven diverse reasoning tasks, analyzing the accuracy--response length trade-off. Our approach reduces response length by an average of 28\% for 8B models and 40\% for 32B models, while incurring only minor performance drops of 1.6 and 2.5 points, respectively. Despite its conceptual simplicity, it achieves a superior trade-off compared to more complex state-of-the-art efficient reasoning methods, scoring 76.6, in terms of the area under the Overthinking-Adjusted Accuracy curve ($\text{AUC}_{\text{OAA}}$) -- 5 points above the base model and 2.5 points above the second-best approach.
☆ Reliability-Aware Adaptive Self-Consistency for Efficient Sampling in LLM Reasoning
Self-Consistency improves reasoning reliability through multi-sample aggregation, but incurs substantial inference cost. Adaptive self-consistency methods mitigate this issue by adjusting the sampling budget; however, they rely on count-based stopping rules that treat all responses equally, often leading to unnecessary sampling. We propose Reliability-Aware Adaptive Self-Consistency (ReASC), which addresses this limitation by reframing adaptive sampling from response counting to evidence sufficiency, leveraging response-level confidence for principled information aggregation. ReASC operates in two stages: a single-sample decision stage that resolves instances confidently answerable from a single response, and a reliability-aware accumulation stage that aggregates responses by jointly leveraging their frequency and confidence. Across five models and four datasets, ReASC consistently achieves the best accuracy-cost trade-off compared to existing baselines, yielding improved inference efficiency across model scales from 3B to 27B parameters. As a concrete example, ReASC reduces inference cost by up to 70\% relative to self-consistency while preserving accuracy on GSM8K using Gemma-3-4B-it.
comment: 15 pages, 8 figures
☆ Low-Resource Heuristics for Bahnaric Optical Character Recognition Improvement
Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
☆ LLM-Augmented Changepoint Detection: A Framework for Ensemble Detection and Automated Explanation
This paper introduces a novel changepoint detection framework that combines ensemble statistical methods with Large Language Models (LLMs) to enhance both detection accuracy and the interpretability of regime changes in time series data. Two critical limitations in the field are addressed. First, individual detection methods exhibit complementary strengths and weaknesses depending on data characteristics, making method selection non-trivial and prone to suboptimal results. Second, automated, contextual explanations for detected changes are largely absent. The proposed ensemble method aggregates results from ten distinct changepoint detection algorithms, achieving superior performance and robustness compared to individual methods. Additionally, an LLM-powered explanation pipeline automatically generates contextual narratives, linking detected changepoints to potential real-world historical events. For private or domain-specific data, a Retrieval-Augmented Generation (RAG) solution enables explanations grounded in user-provided documents. The open source Python framework demonstrates practical utility in diverse domains, including finance, political science, and environmental science, transforming raw statistical output into actionable insights for analysts and decision-makers.
☆ Enhancing Multilingual RAG Systems with Debiased Language Preference-Guided Query Fusion
Multilingual Retrieval-Augmented Generation (mRAG) systems often exhibit a perceived preference for high-resource languages, particularly English, resulting in the widespread adoption of English pivoting. While prior studies attribute this advantage to the superior English-centric capabilities of Large Language Models (LLMs), we find that such measurements are significantly distorted by structural priors inherent in evaluation benchmarks. Specifically, we identify exposure bias and a gold availability prior-both driven by the disproportionate concentration of resources in English-as well as cultural priors rooted in topic locality, as factors that hinder accurate assessment of genuine language preference. To address these biases, we propose DeLP (Debiased Language Preference), a calibrated metric designed to explicitly factor out these structural confounds. Our analysis using DeLP reveals that the previously reported English preference is largely a byproduct of evidence distribution rather than an inherent model bias. Instead, we find that retrievers fundamentally favor monolingual alignment between the query and the document language. Building on this insight, we introduce DELTA (DEbiased Language preference-guided Text Augmentation), a lightweight and efficient mRAG framework that strategically leverages monolingual alignment to optimize cross-lingual retrieval and generation. Experimental results demonstrate that DELTA consistently outperforms English pivoting and mRAG baselines across diverse languages.
comment: 20 pages, 5 figures, 15 tables
☆ SastBench: A Benchmark for Testing Agentic SAST Triage
SAST (Static Application Security Testing) tools are among the most widely used techniques in defensive cybersecurity, employed by commercial and non-commercial organizations to identify potential vulnerabilities in software. Despite their great utility, they generate numerous false positives, requiring costly manual filtering (aka triage). While LLM-powered agents show promise for automating cybersecurity tasks, existing benchmarks fail to emulate real-world SAST finding distributions. We introduce SastBench, a benchmark for evaluating SAST triage agents that combines real CVEs as true positives with filtered SAST tool findings as approximate false positives. SastBench features an agent-agnostic design. We evaluate different agents on the benchmark and present a comparative analysis of their performance, provide a detailed analysis of the dataset, and discuss the implications for future development.
☆ Pearmut: Human Evaluation of Translation Made Trivial
Human evaluation is the gold standard for multilingual NLP, but is often skipped in practice and substituted with automatic metrics, because it is notoriously complex and slow to set up with existing tools with substantial engineering and operational overhead. We introduce Pearmut, a lightweight yet feature-rich platform that makes end-to-end human evaluation as easy to run as automatic evaluation. Pearmut removes common entry barriers and provides support for evaluating multilingual tasks, with a particular focus on machine translation. The platform implements standard evaluation protocols, including DA, ESA, or MQM, but is also extensible to allow prototyping new protocols. It features document-level context, absolute and contrastive evaluation, attention checks, ESAAI pre-annotations and both static and active learning-based assignment strategies. Pearmut enables reliable human evaluation to become a practical, routine component of model development and diagnosis rather than an occasional effort.
comment: typeset with Typst
☆ Memorization, Emergence, and Explaining Reversal Failures: A Controlled Study of Relational Semantics in LLMs
Autoregressive LLMs perform well on relational tasks that require linking entities via relational words (e.g., father/son, friend), but it is unclear whether they learn the logical semantics of such relations (e.g., symmetry and inversion logic) and, if so, whether reversal-type failures arise from missing relational semantics or left-to-right order bias. We propose a controlled Knowledge Graph-based synthetic framework that generates text from symmetric/inverse triples, train GPT-style autoregressive models from scratch, and evaluate memorization, logical inference, and in-context generalization to unseen entities to address these questions. We find a sharp phase transition in which relational semantics emerge with sufficient logic-bearing supervision, even in shallow (2-3 layer) models, and that successful generalization aligns with stable intermediate-layer signals. Finally, order-matched forward/reverse tests and a diffusion baseline indicate that reversal failures are primarily driven by autoregressive order bias rather than deficient inversion semantics.
☆ RAL2M: Retrieval Augmented Learning-To-Match Against Hallucination in Compliance-Guaranteed Service Systems
Hallucination is a major concern in LLM-driven service systems, necessitating explicit knowledge grounding for compliance-guaranteed responses. In this paper, we introduce Retrieval-Augmented Learning-to-Match (RAL2M), a novel framework that eliminates generation hallucination by repositioning LLMs as query-response matching judges within a retrieval-based system, providing a robust alternative to purely generative approaches. To further mitigate judgment hallucination, we propose a query-adaptive latent ensemble strategy that explicitly models heterogeneous model competence and interdependencies among LLMs, deriving a calibrated consensus decision. Extensive experiments on large-scale benchmarks demonstrate that the proposed method effectively leverages the "wisdom of the crowd" and significantly outperforms strong baselines. Finally, we discuss best practices and promising directions for further exploiting latent representations in future work.
☆ Image, Word and Thought: A More Challenging Language Task for the Iterated Learning Model
The iterated learning model simulates the transmission of language from generation to generation in order to explore how the constraints imposed by language transmission facilitate the emergence of language structure. Despite each modelled language learner starting from a blank slate, the presence of a bottleneck limiting the number of utterances to which the learner is exposed can lead to the emergence of language that lacks ambiguity, is governed by grammatical rules, and is consistent over successive generations, that is, one that is expressive, compositional and stable. The recent introduction of a more computationally tractable and ecologically valid semi supervised iterated learning model, combining supervised and unsupervised learning within an autoencoder architecture, has enabled exploration of language transmission dynamics for much larger meaning-signal spaces. Here, for the first time, the model has been successfully applied to a language learning task involving the communication of much more complex meanings: seven-segment display images. Agents in this model are able to learn and transmit a language that is expressive: distinct codes are employed for all 128 glyphs; compositional: signal components consistently map to meaning components, and stable: the language does not change from generation to generation.
comment: This is an extended version of a paper accepted for EvoLang2026, it includes additional details of the numerical experiments
☆ Beyond the Black Box: Theory and Mechanism of Large Language Models
The rapid emergence of Large Language Models (LLMs) has precipitated a profound paradigm shift in Artificial Intelligence, delivering monumental engineering successes that increasingly impact modern society. However, a critical paradox persists within the current field: despite the empirical efficacy, our theoretical understanding of LLMs remains disproportionately nascent, forcing these systems to be treated largely as ``black boxes''. To address this theoretical fragmentation, this survey proposes a unified lifecycle-based taxonomy that organizes the research landscape into six distinct stages: Data Preparation, Model Preparation, Training, Alignment, Inference, and Evaluation. Within this framework, we provide a systematic review of the foundational theories and internal mechanisms driving LLM performance. Specifically, we analyze core theoretical issues such as the mathematical justification for data mixtures, the representational limits of various architectures, and the optimization dynamics of alignment algorithms. Moving beyond current best practices, we identify critical frontier challenges, including the theoretical limits of synthetic data self-improvement, the mathematical bounds of safety guarantees, and the mechanistic origins of emergent intelligence. By connecting empirical observations with rigorous scientific inquiry, this work provides a structured roadmap for transitioning LLM development from engineering heuristics toward a principled scientific discipline.
☆ Linear Script Representations in Speech Foundation Models Enable Zero-Shot Transliteration
Multilingual speech foundation models such as Whisper are trained on web-scale data, where data for each language consists of a myriad of regional varieties. However, different regional varieties often employ different scripts to write the same language, rendering speech recognition output also subject to non-determinism in the output script. To mitigate this problem, we show that script is linearly encoded in the activation space of multilingual speech models, and that modifying activations at inference time enables direct control over output script. We find the addition of such script vectors to activations at test time can induce script change even in unconventional language-script pairings (e.g. Italian in Cyrillic and Japanese in Latin script). We apply this approach to inducing post-hoc control over the script of speech recognition output, where we observe competitive performance across all model sizes of Whisper.
☆ Logical Phase Transitions: Understanding Collapse in LLM Logical Reasoning
Symbolic logical reasoning is a critical yet underexplored capability of large language models (LLMs), providing reliable and verifiable decision-making in high-stakes domains such as mathematical reasoning and legal judgment. In this study, we present a systematic analysis of logical reasoning under controlled increases in logical complexity, and reveal a previously unrecognized phenomenon, which we term Logical Phase Transitions: rather than degrading smoothly, logical reasoning performance remains stable within a regime but collapses abruptly beyond a critical logical depth, mirroring physical phase transitions such as water freezing beyond a critical temperature threshold. Building on this insight, we propose Neuro-Symbolic Curriculum Tuning, a principled framework that adaptively aligns natural language with logical symbols to establish a shared representation, and reshapes training dynamics around phase-transition boundaries to progressively strengthen reasoning at increasing logical depths. Experiments on five benchmarks show that our approach effectively mitigates logical reasoning collapse at high complexity, yielding average accuracy gains of +1.26 in naive prompting and +3.95 in CoT, while improving generalization to unseen logical compositions. Code and data are available at https://github.com/AI4SS/Logical-Phase-Transitions.
☆ Transparent Semantic Change Detection with Dependency-Based Profiles
Most modern computational approaches to lexical semantic change detection (LSC) rely on embedding-based distributional word representations with neural networks. Despite the strong performance on LSC benchmarks, they are often opaque. We investigate an alternative method which relies purely on dependency co-occurrence patterns of words. We demonstrate that it is effective for semantic change detection and even outperforms a number of distributional semantic models. We provide an in-depth quantitative and qualitative analysis of the predictions, showing that they are plausible and interpretable.
☆ ReTreVal: Reasoning Tree with Validation - A Hybrid Framework for Enhanced LLM Multi-Step Reasoning
Multi-step reasoning remains a key challenge for Large Language Models (LLMs), particularly in complex domains such as mathematics and creative writing. While recent approaches including ReAct, Reflexion, and Self-Refine improve reasoning through iterative refinement and reflection, they often lack structured exploration of alternative solution paths and persistent learning across problems. We propose ReTreVal (Reasoning Tree with Validation), a hybrid framework that integrates Tree-of-Thoughts exploration, self-refinement, LLM-based critique scoring, and reflexion memory to enable bounded and validated multi-step reasoning. ReTreVal constructs a structured reasoning tree with adaptive depth based on problem complexity, where each node undergoes iterative self-critique and refinement guided by explicit LLM-generated feedback. A dual validation mechanism evaluates reasoning quality, coherence, and correctness at each node while persistently storing insights from successful reasoning paths and failure patterns in a reflexion memory buffer, enabling cross-problem learning. Critique-based pruning retains only the top-k highest-scoring nodes at each level, controlling computational cost while preserving high-quality solution paths. We evaluate ReTreVal against ReAct, Reflexion, and Self-Refine across 500 mathematical problems and creative writing tasks using Qwen 2.5 7B as the underlying LLM, and demonstrate that ReTreVal consistently outperforms existing methods through its combination of structured exploration, critique-driven refinement, and cross-problem memory, making it particularly effective for tasks requiring exploratory reasoning, rigorous verification, and knowledge transfer.
comment: 14 pages, 1 figure, 5 tables
☆ Revisiting Data Compression with Language Modeling
In this report, we investigate the potential use of large language models (LLM's) in the task of data compression. Previous works have demonstrated promising results in applying LLM's towards compressing not only text, but also a wide range of multi-modal data. Despite the favorable performance achieved, there still remains several practical questions that pose a challenge towards replacing existing data compression algorithms with LLM's. In this work, we explore different methods to achieve a lower adjusted compression rate using LLM's as data compressors. In comparison to previous works, we were able to achieve a new state-of-the-art (SOTA) adjusted compression rate of around $18\%$ on the enwik9 dataset without additional model training. Furthermore, we explore the use of LLM's in compressing non-English data, code data, byte stream sequences. We show that while LLM's excel in compressing data in text-dominant domains, their ability in compressing non-natural text sequences still remain competitive if configured in the right way.
comment: Preprint
☆ LongBench Pro: A More Realistic and Comprehensive Bilingual Long-Context Evaluation Benchmark
The rapid expansion of context length in large language models (LLMs) has outpaced existing evaluation benchmarks. Current long-context benchmarks often trade off scalability and realism: synthetic tasks underrepresent real-world complexity, while fully manual annotation is costly to scale to extreme lengths and diverse scenarios. We present LongBench Pro, a more realistic and comprehensive bilingual benchmark of 1,500 naturally occurring long-context samples in English and Chinese spanning 11 primary tasks and 25 secondary tasks, with input lengths from 8k to 256k tokens. LongBench Pro supports fine-grained analysis with task-specific metrics and a multi-dimensional taxonomy of context requirement (full vs. partial dependency), length (six levels), and difficulty (four levels calibrated by model performance). To balance quality with scalability, we propose a Human-Model Collaborative Construction pipeline: frontier LLMs draft challenging questions and reference answers, along with design rationales and solution processes, to reduce the cost of expert verification. Experts then rigorously validate correctness and refine problematic cases. Evaluating 46 widely used long-context LLMs on LongBench Pro yields three findings: (1) long-context optimization contributes more to long-context comprehension than parameter scaling; (2) effective context length is typically shorter than the claimed context length, with pronounced cross-lingual misalignment; and (3) the "thinking" paradigm helps primarily models trained with native reasoning, while mixed-thinking designs offer a promising Pareto trade-off. In summary, LongBench Pro provides a robust testbed for advancing long-context understanding.
☆ Training Language Models with homotokens Leads to Delayed Overfitting
Subword tokenization introduces a computational layer in language models where many distinct token sequences decode to the same surface form and preserve meaning, yet induce different internal computations. Despite this non-uniqueness, language models are typically trained using a single canonical longest-prefix tokenization. We formalize homotokens-alternative valid subword segmentations of the same lexical item-as a strictly meaning-preserving form of data augmentation. We introduce a lightweight training architecture that conditions canonical next-token prediction on sampled homotoken variants via an auxiliary causal encoder and block-causal cross-attention, without modifying the training objective or token interface. In data-constrained pretraining, homotoken augmentation consistently delays overfitting under repeated data exposure and improves generalization across diverse evaluation datasets. In multilingual fine-tuning, we find that the effectiveness of homotokens depends on tokenizer quality: gains are strongest when canonical tokens are highly compressed and diminish when the tokenizer already over-fragments the input. Overall, homotokens provide a simple and modular mechanism for inducing tokenization invariance in language models.
comment: 8 pages, 6 figures, 3 Appendices
☆ To Generate or Discriminate? Methodological Considerations for Measuring Cultural Alignment in LLMs AACL 2025
Socio-demographic prompting (SDP) - prompting Large Language Models (LLMs) using demographic proxies to generate culturally aligned outputs - often shows LLM responses as stereotypical and biased. While effective in assessing LLMs' cultural competency, SDP is prone to confounding factors such as prompt sensitivity, decoding parameters, and the inherent difficulty of generation over discrimination tasks due to larger output spaces. These factors complicate interpretation, making it difficult to determine if the poor performance is due to bias or the task design. To address this, we use inverse socio-demographic prompting (ISDP), where we prompt LLMs to discriminate and predict the demographic proxy from actual and simulated user behavior from different users. We use the Goodreads-CSI dataset (Saha et al., 2025), which captures difficulty in understanding English book reviews for users from India, Mexico, and the USA, and test four LLMs: Aya-23, Gemma-2, GPT-4o, and LLaMA-3.1 with ISDP. Results show that models perform better with actual behaviors than simulated ones, contrary to what SDP suggests. However, performance with both behavior types diminishes and becomes nearly equal at the individual level, indicating limits to personalization.
comment: IJCNLP-AACL 2025
☆ TiMem: Temporal-Hierarchical Memory Consolidation for Long-Horizon Conversational Agents
Long-horizon conversational agents have to manage ever-growing interaction histories that quickly exceed the finite context windows of large language models (LLMs). Existing memory frameworks provide limited support for temporally structured information across hierarchical levels, often leading to fragmented memories and unstable long-horizon personalization. We present TiMem, a temporal--hierarchical memory framework that organizes conversations through a Temporal Memory Tree (TMT), enabling systematic memory consolidation from raw conversational observations to progressively abstracted persona representations. TiMem is characterized by three core properties: (1) temporal--hierarchical organization through TMT; (2) semantic-guided consolidation that enables memory integration across hierarchical levels without fine-tuning; and (3) complexity-aware memory recall that balances precision and efficiency across queries of varying complexity. Under a consistent evaluation setup, TiMem achieves state-of-the-art accuracy on both benchmarks, reaching 75.30% on LoCoMo and 76.88% on LongMemEval-S. It outperforms all evaluated baselines while reducing the recalled memory length by 52.20% on LoCoMo. Manifold analysis indicates clear persona separation on LoCoMo and reduced dispersion on LongMemEval-S. Overall, TiMem treats temporal continuity as a first-class organizing principle for long-horizon memory in conversational agents.
☆ The performances of the Chinese and U.S. Large Language Models on the Topic of Chinese Culture
Cultural backgrounds shape individuals' perspectives and approaches to problem-solving. Since the emergence of GPT-1 in 2018, large language models (LLMs) have undergone rapid development. To date, the world's ten leading LLM developers are primarily based in China and the United States. To examine whether LLMs released by Chinese and U.S. developers exhibit cultural differences in Chinese-language settings, we evaluate their performance on questions about Chinese culture. This study adopts a direct-questioning paradigm to evaluate models such as GPT-5.1, DeepSeek-V3.2, Qwen3-Max, and Gemini2.5Pro. We assess their understanding of traditional Chinese culture, including history, literature, poetry, and related domains. Comparative analyses between LLMs developed in China and the U.S. indicate that Chinese models generally outperform their U.S. counterparts on these tasks. Among U.S.-developed models, Gemini 2.5Pro and GPT-5.1 achieve relatively higher accuracy. The observed performance differences may potentially arise from variations in training data distribution, localization strategies, and the degree of emphasis on Chinese cultural content during model development.
☆ Punctuation-aware Hybrid Trainable Sparse Attention for Large Language Models
Attention serves as the fundamental mechanism for long-context modeling in large language models (LLMs), yet dense attention becomes structurally prohibitive for long sequences due to its quadratic complexity. Consequently, sparse attention has received increasing attention as a scalable alternative. However, existing sparse attention methods rely on coarse-grained semantic representations during block selection, which blur intra-block semantic boundaries and lead to the loss of critical information. To address this issue, we propose \textbf{P}unctuation-aware \textbf{H}ybrid \textbf{S}parse \textbf{A}ttention \textbf{(PHSA)}, a natively trainable sparse attention framework that leverages punctuation tokens as semantic boundary anchors. Specifically, (1) we design a dual-branch aggregation mechanism that fuses global semantic representations with punctuation-enhanced boundary features, preserving the core semantic structure while introducing almost no additional computational overhead; (2) we introduce an extreme-sparsity-adaptive training and inference strategy that stabilizes model behavior under very low token activation ratios; Extensive experiments on general benchmarks and long-context evaluations demonstrate that PHSA consistently outperforms dense attention and state-of-the-art sparse attention baselines, including InfLLM v2. Specifically, for the 0.6B-parameter model with 32k-token input sequences, PHSA can reduce the information loss by 10.8\% at a sparsity ratio of 97.3\%.
☆ HAL: Inducing Human-likeness in LLMs with Alignment
Conversational human-likeness plays a central role in human-AI interaction, yet it has remained difficult to define, measure, and optimize. As a result, improvements in human-like behavior are largely driven by scale or broad supervised training, rather than targeted alignment. We introduce Human Aligning LLMs (HAL), a framework for aligning language models to conversational human-likeness using an interpretable, data-driven reward. HAL derives explicit conversational traits from contrastive dialogue data, combines them into a compact scalar score, and uses this score as a transparent reward signal for alignment with standard preference optimization methods. Using this approach, we align models of varying sizes without affecting their overall performance. In large-scale human evaluations, models aligned with HAL are more frequently perceived as human-like in conversation. Because HAL operates over explicit, interpretable traits, it enables inspection of alignment behavior and diagnosis of unintended effects. More broadly, HAL demonstrates how soft, qualitative properties of language--previously outside the scope for alignment--can be made measurable and aligned in an interpretable and explainable way.
☆ Stratified Hazard Sampling: Minimal-Variance Event Scheduling for CTMC/DTMC Discrete Diffusion and Flow Models
CTMC/DTMC-based discrete generative models, including uniform-noise discrete diffusion (e.g., D3PM/CTDD) and discrete flow matching, enable non-autoregressive sequence generation by repeatedly replacing tokens through a time-inhomogeneous Markov process. Inference is typically implemented with step-based simulation: each token decides to jump via independent Bernoulli (or categorical) draws at every discretization step. Under uniform-noise initialization, where self-correction requires multiple edits per position, these independent decisions induce substantial variance in both the number and timing of edits, leading to characteristic failure modes such as under-editing (residual noise) or over-editing (cascading unnecessary substitutions), decreasing reproducibility. We propose Stratified Hazard Sampling (SHS), a drop-in and hyperparameter-free inference principle for any sampler that admits a stay-vs.-replace decomposition. SHS models per-token edits as events driven by cumulative hazard (CTMC) or cumulative jump mass (DTMC) and places events by stratifying this cumulative quantity: with a single random phase per position, a token jumps whenever its accumulated hazard crosses unit-spaced thresholds. This preserves the expected number of jumps while achieving the minimum possible variance among unbiased integer estimators (bounded by 1/4), without altering per-jump destination sampling and thus retaining multimodality. We also introduce a phase-allocation variant for blacklist-style lexical constraints that prioritizes early edits at high-risk positions to mitigate late-masking artifacts.
comment: Work in progress. Feedback welcome
☆ MiMo-V2-Flash Technical Report
We present MiMo-V2-Flash, a Mixture-of-Experts (MoE) model with 309B total parameters and 15B active parameters, designed for fast, strong reasoning and agentic capabilities. MiMo-V2-Flash adopts a hybrid attention architecture that interleaves Sliding Window Attention (SWA) with global attention, with a 128-token sliding window under a 5:1 hybrid ratio. The model is pre-trained on 27 trillion tokens with Multi-Token Prediction (MTP), employing a native 32k context length and subsequently extended to 256k. To efficiently scale post-training compute, MiMo-V2-Flash introduces a novel Multi-Teacher On-Policy Distillation (MOPD) paradigm. In this framework, domain-specialized teachers (e.g., trained via large-scale reinforcement learning) provide dense and token-level reward, enabling the student model to perfectly master teacher expertise. MiMo-V2-Flash rivals top-tier open-weight models such as DeepSeek-V3.2 and Kimi-K2, despite using only 1/2 and 1/3 of their total parameters, respectively. During inference, by repurposing MTP as a draft model for speculative decoding, MiMo-V2-Flash achieves up to 3.6 acceptance length and 2.6x decoding speedup with three MTP layers. We open-source both the model weights and the three-layer MTP weights to foster open research and community collaboration.
comment: 31 pages, technical report
☆ EComStage: Stage-wise and Orientation-specific Benchmarking for Large Language Models in E-commerce
Large Language Model (LLM)-based agents are increasingly deployed in e-commerce applications to assist customer services in tasks such as product inquiries, recommendations, and order management. Existing benchmarks primarily evaluate whether these agents successfully complete the final task, overlooking the intermediate reasoning stages that are crucial for effective decision-making. To address this gap, we propose EComStage, a unified benchmark for evaluating agent-capable LLMs across the comprehensive stage-wise reasoning process: Perception (understanding user intent), Planning (formulating an action plan), and Action (executing the decision). EComStage evaluates LLMs through seven separate representative tasks spanning diverse e-commerce scenarios, with all samples human-annotated and quality-checked. Unlike prior benchmarks that focus only on customer-oriented interactions, EComStage also evaluates merchant-oriented scenarios, including promotion management, content review, and operational support relevant to real-world applications. We evaluate a wide range of over 30 LLMs, spanning from 1B to over 200B parameters, including open-source models and closed-source APIs, revealing stage/orientation- specific strengths and weaknesses. Our results provide fine-grained, actionable insights for designing and optimizing LLM-based agents in real-world e-commerce settings.
comment: preprint
☆ Window-based Membership Inference Attacks Against Fine-tuned Large Language Models
Most membership inference attacks (MIAs) against Large Language Models (LLMs) rely on global signals, like average loss, to identify training data. This approach, however, dilutes the subtle, localized signals of memorization, reducing attack effectiveness. We challenge this global-averaging paradigm, positing that membership signals are more pronounced within localized contexts. We introduce WBC (Window-Based Comparison), which exploits this insight through a sliding window approach with sign-based aggregation. Our method slides windows of varying sizes across text sequences, with each window casting a binary vote on membership based on loss comparisons between target and reference models. By ensembling votes across geometrically spaced window sizes, we capture memorization patterns from token-level artifacts to phrase-level structures. Extensive experiments across eleven datasets demonstrate that WBC substantially outperforms established baselines, achieving higher AUC scores and 2-3 times improvements in detection rates at low false positive thresholds. Our findings reveal that aggregating localized evidence is fundamentally more effective than global averaging, exposing critical privacy vulnerabilities in fine-tuned LLMs.
comment: Code is available at [https://github.com/Stry233/WBC/](https://github.com/Stry233/WBC/). This arXiv version corresponds to the accepted paper and includes the full experimental results
☆ SYNAPSE: Empowering LLM Agents with Episodic-Semantic Memory via Spreading Activation
While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
☆ Language Hierarchization Provides the Optimal Solution to Human Working Memory Limits
Language is a uniquely human trait, conveying information efficiently by organizing word sequences in sentences into hierarchical structures. A central question persists: Why is human language hierarchical? In this study, we show that hierarchization optimally solves the challenge of our limited working memory capacity. We established a likelihood function that quantifies how well the average number of units according to the language processing mechanisms aligns with human working memory capacity (WMC) in a direct fashion. The maximum likelihood estimate (MLE) of this function, tehta_MLE, turns out to be the mean of units. Through computational simulations of symbol sequences and validation analyses of natural language sentences, we uncover that compared to linear processing, hierarchical processing far surpasses it in constraining the tehta_MLE values under the human WMC limit, along with the increase of sequence/sentence length successfully. It also shows a converging pattern related to children's WMC development. These results suggest that constructing hierarchical structures optimizes the processing efficiency of sequential language input while staying within memory constraints, genuinely explaining the universal hierarchical nature of human language.
☆ Mitigating Prompt-Induced Hallucinations in Large Language Models via Structured Reasoning
To address hallucination issues in large language models (LLMs), this paper proposes a method for mitigating prompt-induced hallucinations. Building on a knowledge distillation chain-style model, we introduce a code module to guide knowledge-graph exploration and incorporate code as part of the chain-of-thought prompt, forming an external knowledge input that provides more accurate and structured information to the model. Based on this design, we develop an improved knowledge distillation chain-style model and leverage it to analyze and constrain the reasoning process of LLMs, thereby improving inference accuracy. We empirically evaluate the proposed approach using GPT-4 and LLaMA-3.3 on multiple public datasets. Experimental results demonstrate that incorporating code modules significantly enhances the model's ability to capture contextual information and effectively mitigates prompt-induced hallucinations. Specifically, HIT@1, HIT@3, and HIT@5 improve by 15.64%, 13.38%, and 13.28%, respectively. Moreover, the proposed method achieves HIT@1, HIT@3, and HIT@5 scores exceeding 95% across several evaluation settings. These results indicate that the proposed approach substantially reduces hallucination behavior while improving the accuracy and verifiability of large language models.
☆ Time-Scaling Is What Agents Need Now
Early artificial intelligence paradigms exhibited separated cognitive functions: Neural Networks focused on "perception-representation," Reinforcement Learning on "decision-making-behavior," and Symbolic AI on "knowledge-reasoning." With Transformer-based large models and world models, these paradigms are converging into cognitive agents with closed-loop "perception-decision-action" capabilities. Humans solve complex problems under limited cognitive resources through temporalized sequential reasoning. Language relies on problem space search for deep semantic reasoning. While early large language models (LLMs) could generate fluent text, they lacked robust semantic reasoning capabilities. Prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT) extended reasoning paths by making intermediate steps explicit. Recent models like DeepSeek-R1 enhanced performance through explicit reasoning trajectories. However, these methods have limitations in search completeness and efficiency. This highlights the need for "Time-Scaling"--the systematic extension and optimization of an agent's ability to unfold reasoning over time. Time-Scaling refers to architectural design utilizing extended temporal pathways, enabling deeper problem space exploration, dynamic strategy adjustment, and enhanced metacognitive control, paralleling human sequential reasoning under cognitive constraints. It represents a critical frontier for enhancing deep reasoning and problem-solving without proportional increases in static model parameters. Advancing intelligent agent capabilities requires placing Time-Scaling principles at the forefront, positioning explicit temporal reasoning management as foundational.
☆ Adversarial Question Answering Robustness: A Multi-Level Error Analysis and Mitigation Study
Question answering (QA) systems achieve impressive performance on standard benchmarks like SQuAD, but remain vulnerable to adversarial examples. This project investigates the adversarial robustness of transformer models on the AddSent adversarial dataset through systematic experimentation across model scales and targeted mitigation strategies. We perform comprehensive multi-level error analysis using five complementary categorization schemes, identifying negation confusion and entity substitution as the primary failure modes. Through systematic evaluation of adversarial fine-tuning ratios, we identify 80% clean + 20% adversarial data as optimal. Data augmentation experiments reveal a capacity bottleneck in small models. Scaling from ELECTRA-small (14M parameters) to ELECTRA-base (110M parameters) eliminates the robustness-accuracy trade-off, achieving substantial improvements on both clean and adversarial data. We implement three targeted mitigation strategies, with Entity-Aware contrastive learning achieving best performance: 89.89% AddSent Exact Match (EM) and 90.73% SQuAD EM, representing 94.9% closure of the adversarial gap. To our knowledge, this is the first work integrating comprehensive linguistic error analysis with Named Entity Recognition (NER)-guided contrastive learning for adversarial QA, demonstrating that targeted mitigation can achieve near-parity between clean and adversarial performance.
☆ Boosting Accuracy and Interpretability in Multilingual Hate Speech Detection Through Layer Freezing and Explainable AI
Sentiment analysis focuses on identifying the emotional polarity expressed in textual data, typically categorized as positive, negative, or neutral. Hate speech detection, on the other hand, aims to recognize content that incites violence, discrimination, or hostility toward individuals or groups based on attributes such as race, gender, sexual orientation, or religion. Both tasks play a critical role in online content moderation by enabling the detection and mitigation of harmful or offensive material, thereby contributing to safer digital environments. In this study, we examine the performance of three transformer-based models: BERT-base-multilingual-cased, RoBERTa-base, and XLM-RoBERTa-base with the first eight layers frozen, for multilingual sentiment analysis and hate speech detection. The evaluation is conducted across five languages: English, Korean, Japanese, Chinese, and French. The models are compared using standard performance metrics, including accuracy, precision, recall, and F1-score. To enhance model interpretability and provide deeper insight into prediction behavior, we integrate the Local Interpretable Model-agnostic Explanations (LIME) framework, which highlights the contribution of individual words to the models decisions. By combining state-of-the-art transformer architectures with explainability techniques, this work aims to improve both the effectiveness and transparency of multilingual sentiment analysis and hate speech detection systems.
comment: 19 pages, 7 figures
☆ EvoRoute: Experience-Driven Self-Routing LLM Agent Systems
Complex agentic AI systems, powered by a coordinated ensemble of Large Language Models (LLMs), tool and memory modules, have demonstrated remarkable capabilities on intricate, multi-turn tasks. However, this success is shadowed by prohibitive economic costs and severe latency, exposing a critical, yet underexplored, trade-off. We formalize this challenge as the \textbf{Agent System Trilemma}: the inherent tension among achieving state-of-the-art performance, minimizing monetary cost, and ensuring rapid task completion. To dismantle this trilemma, we introduce EvoRoute, a self-evolving model routing paradigm that transcends static, pre-defined model assignments. Leveraging an ever-expanding knowledge base of prior experience, EvoRoute dynamically selects Pareto-optimal LLM backbones at each step, balancing accuracy, efficiency, and resource use, while continually refining its own selection policy through environment feedback. Experiments on challenging agentic benchmarks such as GAIA and BrowseComp+ demonstrate that EvoRoute, when integrated into off-the-shelf agentic systems, not only sustains or enhances system performance but also reduces execution cost by up to $80\%$ and latency by over $70\%$.
☆ Iterative Structured Pruning for Large Language Models with Multi-Domain Calibration
Large Language Models (LLMs) have achieved remarkable success across a wide spectrum of natural language processing tasks. However, their ever-growing scale introduces significant barriers to real-world deployment, including substantial computational overhead, memory footprint, and inference latency. While model pruning presents a viable solution to these challenges, existing unstructured pruning techniques often yield irregular sparsity patterns that necessitate specialized hardware or software support. In this work, we explore structured pruning, which eliminates entire architectural components and maintains compatibility with standard hardware accelerators. We introduce a novel structured pruning framework that leverages a hybrid multi-domain calibration set and an iterative calibration strategy to effectively identify and remove redundant channels. Extensive experiments on various models across diverse downstream tasks show that our approach achieves significant compression with minimal performance degradation.
comment: 10 pages
☆ Extracting books from production language models
Many unresolved legal questions over LLMs and copyright center on memorization: whether specific training data have been encoded in the model's weights during training, and whether those memorized data can be extracted in the model's outputs. While many believe that LLMs do not memorize much of their training data, recent work shows that substantial amounts of copyrighted text can be extracted from open-weight models. However, it remains an open question if similar extraction is feasible for production LLMs, given the safety measures these systems implement. We investigate this question using a two-phase procedure: (1) an initial probe to test for extraction feasibility, which sometimes uses a Best-of-N (BoN) jailbreak, followed by (2) iterative continuation prompts to attempt to extract the book. We evaluate our procedure on four production LLMs -- Claude 3.7 Sonnet, GPT-4.1, Gemini 2.5 Pro, and Grok 3 -- and we measure extraction success with a score computed from a block-based approximation of longest common substring (nv-recall). With different per-LLM experimental configurations, we were able to extract varying amounts of text. For the Phase 1 probe, it was unnecessary to jailbreak Gemini 2.5 Pro and Grok 3 to extract text (e.g, nv-recall of 76.8% and 70.3%, respectively, for Harry Potter and the Sorcerer's Stone), while it was necessary for Claude 3.7 Sonnet and GPT-4.1. In some cases, jailbroken Claude 3.7 Sonnet outputs entire books near-verbatim (e.g., nv-recall=95.8%). GPT-4.1 requires significantly more BoN attempts (e.g., 20X), and eventually refuses to continue (e.g., nv-recall=4.0%). Taken together, our work highlights that, even with model- and system-level safeguards, extraction of (in-copyright) training data remains a risk for production LLMs.
comment: We ran experiments from mid-August to mid-September 2025, notified affected providers shortly after, and now make our findings public after a 90-day disclosure window
☆ Multi-Turn Jailbreaking of Aligned LLMs via Lexical Anchor Tree Search
Most jailbreak methods achieve high attack success rates (ASR) but require attacker LLMs to craft adversarial queries and/or demand high query budgets. These resource limitations make jailbreaking expensive, and the queries generated by attacker LLMs often consist of non-interpretable random prefixes. This paper introduces Lexical Anchor Tree Search (), addressing these limitations through an attacker-LLM-free method that operates purely via lexical anchor injection. LATS reformulates jailbreaking as a breadth-first tree search over multi-turn dialogues, where each node incrementally injects missing content words from the attack goal into benign prompts. Evaluations on AdvBench and HarmBench demonstrate that LATS achieves 97-100% ASR on latest GPT, Claude, and Llama models with an average of only ~6.4 queries, compared to 20+ queries required by other methods. These results highlight conversational structure as a potent and under-protected attack surface, while demonstrating superior query efficiency in an era where high ASR is readily achievable. Our code will be released to support reproducibility.
☆ Towards Comprehensive Stage-wise Benchmarking of Large Language Models in Fact-Checking
Large Language Models (LLMs) are increasingly deployed in real-world fact-checking systems, yet existing evaluations focus predominantly on claim verification and overlook the broader fact-checking workflow, including claim extraction and evidence retrieval. This narrow focus prevents current benchmarks from revealing systematic reasoning failures, factual blind spots, and robustness limitations of modern LLMs. To bridge this gap, we present FactArena, a fully automated arena-style evaluation framework that conducts comprehensive, stage-wise benchmarking of LLMs across the complete fact-checking pipeline. FactArena integrates three key components: (i) an LLM-driven fact-checking process that standardizes claim decomposition, evidence retrieval via tool-augmented interactions, and justification-based verdict prediction; (ii) an arena-styled judgment mechanism guided by consolidated reference guidelines to ensure unbiased and consistent pairwise comparisons across heterogeneous judge agents; and (iii) an arena-driven claim-evolution module that adaptively generates more challenging and semantically controlled claims to probe LLMs' factual robustness beyond fixed seed data. Across 16 state-of-the-art LLMs spanning seven model families, FactArena produces stable and interpretable rankings. Our analyses further reveal significant discrepancies between static claim-verification accuracy and end-to-end fact-checking competence, highlighting the necessity of holistic evaluation. The proposed framework offers a scalable and trustworthy paradigm for diagnosing LLMs' factual reasoning, guiding future model development, and advancing the reliable deployment of LLMs in safety-critical fact-checking applications.
comment: 17 pages, 21 figures, 7 tables
☆ When Do Tools and Planning Help LLMs Think? A Cost- and Latency-Aware Benchmark
Modern large language models (LLMs) increasingly rely on inference-time planning and external tools to improve reasoning. We benchmark this behavior on two real-world settings: event-centric question answering over graph-structured knowledge (Event-QA) and persuasive response generation in Reddit ChangeMyView (CMV). Using LangChain and LangGraph, we compare a one-shot baseline against a plan--execute--replan agent equipped with task-specific tools (DBpedia SPARQL/lookup/schema exploration, Wikipedia-focused retrieval, and topical web search). We evaluate on 60 examples each from Event-QA and CMV (3 splits of 20), and report both mean end-to-end latency and per-example token cost estimates. We evaluate GPT-4o and GPT-4o-mini under identical workflows and report accuracy and end-to-end latency. On Event-QA, the best tool-augmented configuration improves accuracy (e.g., 47.5\% $\rightarrow$ 67.5\% for GPT-4o) while increasing latency by orders of magnitude ($\sim$8s $\rightarrow$ $\sim$317s per example). On CMV, one-shot prompting is strongest (e.g., GPT-4o-mini achieves 75\% at $\sim$6s), and planning+search increases latency substantially without consistent gains. However, complex multi-tool orchestration exposes failure modes where the smaller model degrades. Overall, the findings highlight the need for task-specific, cost-aware choices of both model size and agent/tooling complexity.
☆ Empirical Comparison of Encoder-Based Language Models and Feature-Based Supervised Machine Learning Approaches to Automated Scoring of Long Essays
Long context may impose challenges for encoder-only language models in text processing, specifically for automated scoring of essays. This study trained several commonly used encoder-based language models for automated scoring of long essays. The performance of these trained models was evaluated and compared with the ensemble models built upon the base language models with a token limit of 512?. The experimented models include BERT-based models (BERT, RoBERTa, DistilBERT, and DeBERTa), ensemble models integrating embeddings from multiple encoder models, and ensemble models of feature-based supervised machine learning models, including Gradient-Boosted Decision Trees, eXtreme Gradient Boosting, and Light Gradient Boosting Machine. We trained, validated, and tested each model on a dataset of 17,307 essays, with an 80%/10%/10% split, and evaluated model performance using Quadratic Weighted Kappa. This study revealed that an ensemble-of-embeddings model that combines multiple pre-trained language model representations with gradient-boosting classifier as the ensemble model significantly outperforms individual language models at scoring long essays.
comment: 22 pages, 5 figures, 3 tables, presented at National Council on Measurement in Education 2025
☆ Prioritized Replay for RL Post-training
We introduce a problem-level prioritization framework for RL post-training of large language models. Building on insights from prioritized replay in deep RL, as well as prior observations that rollouts with intermediate success rates tend to produce stronger learning signals under methods such as GRPO, our approach selects problems according to a simple, model-driven priority score derived from empirical success statistics. In contrast to conventional curriculum strategies that emphasize easier tasks early in training, the resulting schedule naturally focuses training on problems that are neither consistently solved nor consistently failed, while deprioritizing those that contribute little gradient information. The method yields a continuously adapting and automatic prioritization process that requires no predefined difficulty tiers, auxiliary predictors, or external labels. We further introduce lightweight mechanisms for practical deployment, including heap-based prioritized sampling and periodic retesting of solved and unsolved problems to mitigate starvation and forgetting. Overall, the approach offers a principled and scalable alternative to manually designed curricula while aligning data selection directly with the dynamics of GRPO-based post-training.
☆ Improved Evidence Extraction for Document Inconsistency Detection with LLMs
Large language models (LLMs) are becoming useful in many domains due to their impressive abilities that arise from large training datasets and large model sizes. However, research on LLM-based approaches to document inconsistency detection is relatively limited. There are two key aspects of document inconsistency detection: (i) classification of whether there exists any inconsistency, and (ii) providing evidence of the inconsistent sentences. We focus on the latter, and introduce new comprehensive evidence-extraction metrics and a redact-and-retry framework with constrained filtering that substantially improves LLM-based document inconsistency detection over direct prompting. We back our claims with promising experimental results.
comment: 10 pages, 6 figures
☆ Hierarchical temporal receptive windows and zero-shot timescale generalization in biologically constrained scale-invariant deep networks
Human cognition integrates information across nested timescales. While the cortex exhibits hierarchical Temporal Receptive Windows (TRWs), local circuits often display heterogeneous time constants. To reconcile this, we trained biologically constrained deep networks, based on scale-invariant hippocampal time cells, on a language classification task mimicking the hierarchical structure of language (e.g., 'letters' forming 'words'). First, using a feedforward model (SITHCon), we found that a hierarchy of TRWs emerged naturally across layers, despite the network having an identical spectrum of time constants within layers. We then distilled these inductive priors into a biologically plausible recurrent architecture, SITH-RNN. Training a sequence of architectures ranging from generic RNNs to this restricted subset showed that the scale-invariant SITH-RNN learned faster with orders-of-magnitude fewer parameters, and generalized zero-shot to out-of-distribution timescales. These results suggest the brain employs scale-invariant, sequential priors - coding "what" happened "when" - making recurrent networks with such priors particularly well-suited to describe human cognition.
☆ Chronicals: A High-Performance Framework for LLM Fine-Tuning with 3.51x Speedup over Unsloth
Large language model fine-tuning is bottlenecked by memory: a 7B parameter model requires 84GB--14GB for weights, 14GB for gradients, and 56GB for FP32 optimizer states--exceeding even A100-40GB capacity. We present Chronicals, an open-source training framework achieving 3.51x speedup over Unsloth through four synergistic optimizations: (1) fused Triton kernels eliminating 75% of memory traffic via RMSNorm (7x), SwiGLU (5x), and QK-RoPE (2.3x) fusion; (2) Cut Cross-Entropy reducing logit memory from 5GB to 135MB through online softmax computation; (3) LoRA+ with theoretically-derived 16x differential learning rates between adapter matrices; and (4) Best-Fit Decreasing sequence packing recovering 60-75% of compute wasted on padding. On Qwen2.5-0.5B with A100-40GB, Chronicals achieves 41,184 tokens/second for full fine-tuning versus Unsloth's 11,736 tokens/second (3.51x). For LoRA at rank 32, we reach 11,699 tokens/second versus Unsloth MAX's 2,857 tokens/second (4.10x). Critically, we discovered that Unsloth's reported 46,000 tokens/second benchmark exhibited zero gradient norms--the model was not training. We provide complete mathematical foundations: online softmax correctness proofs, FlashAttention IO complexity bounds O(N^2 d^2 M^{-1}), LoRA+ learning rate derivations from gradient magnitude analysis, and bin-packing approximation guarantees. All implementations, benchmarks, and proofs are available at https://github.com/Ajwebdevs/Chronicals with pip installation via https://pypi.org/project/chronicals/.
comment: 61 pages, 25 figures, open-source framework available at https://github.com/Ajwebdevs/Chronicals and pip install chronicals
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
☆ ATLAS: Adaptive Test-Time Latent Steering with External Verifiers for Enhancing LLMs Reasoning
Recent work on activation and latent steering has demonstrated that modifying internal representations can effectively guide large language models (LLMs) toward improved reasoning and efficiency without additional training. However, most existing approaches rely on fixed steering policies and static intervention strengths, which limit their robustness across problem instances and often result in over- or under-steering. We propose Adaptive Test-time Latent Steering, called (ATLAS), a task-specific framework that dynamically controls steering decisions at inference time using an external, lightweight latent verifier. Given intermediate hidden states, the verifier predicts the quality of ongoing reasoning and adaptively selects whether and how strongly to apply steering, enabling per-example and per-step adjustment with minimal overhead. To our knowledge, ATLAS is the first method to integrate learned latent verification into test-time steering for enhancing LLMs reasoning. Experiments on multiple mathematical reasoning benchmarks show that ATLAS consistently outperforms both vanilla decoding and fixed steering baselines, achieving higher accuracy while substantially reducing test-time token usage. These results demonstrate that verifier-guided latent adaptation provides an effective and scalable mechanism for controlling reasoning efficiency without sacrificing solution quality. All source code will be publicly available.
comment: 12 pages, 3 figures
☆ Correct, Concise and Complete: Multi-stage Training For Adaptive Reasoning
The reasoning capabilities of large language models (LLMs) have improved substantially through increased test-time computation, typically in the form of intermediate tokens known as chain-of-thought (CoT). However, CoT often becomes unnecessarily long, increasing computation cost without actual accuracy gains or sometimes even degrading performance, a phenomenon known as ``overthinking''. We propose a multi-stage efficient reasoning method that combines supervised fine-tuning -- via rejection sampling or reasoning trace reformatting -- with reinforcement learning using an adaptive length penalty. We introduce a lightweight reward function that penalizes tokens generated after the first correct answer but encouraging self-verification only when beneficial. We conduct a holistic evaluation across seven diverse reasoning tasks, analyzing the accuracy-response length trade-off. Our approach reduces response length by an average of 28\% for 8B models and 40\% for 32B models, while incurring only minor performance drops of 1.6 and 2.5 points, respectively. Despite its conceptual simplicity, it achieves a superior trade-off compared to more complex state-of-the-art efficient reasoning methods, scoring 76.6, in terms of the area under the Overthinking-Adjusted Accuracy curve ($\text{AUC}_{\text{OAA}}$) -- 5 points above the base model and 2.5 points above the second-best approach.
☆ ReTreVal: Reasoning Tree with Validation -- A Hybrid Framework for Enhanced LLM Multi-Step Reasoning
Multi-step reasoning remains a key challenge for Large Language Models (LLMs), particularly in complex domains such as mathematics and creative writing. While recent approaches including ReAct, Reflexion, and Self-Refine improve reasoning through iterative refinement and reflection, they often lack structured exploration of alternative solution paths and persistent learning across problems. We propose ReTreVal (Reasoning Tree with Validation), a hybrid framework that integrates Tree-of-Thoughts exploration, self-refinement, LLM-based critique scoring, and reflexion memory to enable bounded and validated multi-step reasoning. ReTreVal constructs a structured reasoning tree with adaptive depth based on problem complexity, where each node undergoes iterative self-critique and refinement guided by explicit LLM-generated feedback. A dual validation mechanism evaluates reasoning quality, coherence, and correctness at each node while persistently storing insights from successful reasoning paths and failure patterns in a reflexion memory buffer, enabling cross-problem learning. Critique-based pruning retains only the top-k highest-scoring nodes at each level, controlling computational cost while preserving high-quality solution paths. We evaluate ReTreVal against ReAct, Reflexion, and Self-Refine across 500 mathematical problems and creative writing tasks using Qwen 2.5 7B as the underlying LLM, and demonstrate that ReTreVal consistently outperforms existing methods through its combination of structured exploration, critique-driven refinement, and cross-problem memory, making it particularly effective for tasks requiring exploratory reasoning, rigorous verification, and knowledge transfer.
comment: 14 pages, 1 figure, 5 tables
☆ EComStage: Stage-wise and Orientation-specific Benchmarking for Large Language Models in E-commerce
Large Language Model (LLM)-based agents are increasingly deployed in e-commerce applications to assist customer services in tasks such as product inquiries, recommendations, and order management. Existing benchmarks primarily evaluate whether these agents successfully complete the final task, overlooking the intermediate reasoning stages that are crucial for effective decision-making. To address this gap, we propose EComStage, a unified benchmark for evaluating agent-capable LLMs across the comprehensive stage-wise reasoning process: Perception (understanding user intent), Planning (formulating an action plan), and Action (executing the decision). EComStage evaluates LLMs through seven separate representative tasks spanning diverse e-commerce scenarios, with all samples human-annotated and quality-checked. Unlike prior benchmarks that focus only on customer-oriented interactions, EComStage also evaluates merchant-oriented scenarios, including promotion management, content review, and operational support relevant to real-world applications. We evaluate a wide range of over 30 LLMs, spanning from 1B to over 200B parameters, including open-source models and closed-source APIs, revealing stage/orientation-specific strengths and weaknesses. Our results provide fine-grained, actionable insights for designing and optimizing LLM-based agents in real-world e-commerce settings.
comment: preprint
☆ When Do Tools and Planning Help LLMs Think? A Cost- and Latency-Aware Benchmark
Modern large language models (LLMs) increasingly rely on inference-time planning and external tools to improve reasoning. We benchmark this behavior on two real-world settings: event-centric question answering over graph-structured knowledge (Event-QA) and persuasive response generation in Reddit ChangeMyView (CMV). Using LangChain and LangGraph, we compare a one-shot baseline against a plan-execute-replan agent equipped with task-specific tools (DBpedia SPARQL/lookup/schema exploration, Wikipedia-focused retrieval, and topical web search). We evaluate on 60 examples each from Event-QA and CMV (3 splits of 20), and report both mean end-to-end latency and per-example token cost estimates. We evaluate GPT-4o and GPT-4o-mini under identical workflows and report accuracy and end-to-end latency. On Event-QA, the best tool-augmented configuration improves accuracy (e.g., 47.5\% $\rightarrow$ 67.5\% for GPT-4o) while increasing latency by orders of magnitude ($\sim$8s $\rightarrow$ $\sim$317s per example). On CMV, one-shot prompting is strongest (e.g., GPT-4o-mini achieves 75\% at $\sim$6s), and planning+search increases latency substantially without consistent gains. However, complex multi-tool orchestration exposes failure modes where the smaller model degrades. Overall, the findings highlight the need for task-specific, cost-aware choices of both model size and agent/tooling complexity.
♻ ☆ Characterizing the Robustness of Black-Box LLM Planners Under Perturbed Observations with Adaptive Stress Testing
Large language models (LLMs) have recently demonstrated success in decision-making tasks including planning, control, and prediction, but their tendency to hallucinate unsafe and undesired outputs poses risks. This unwanted behavior is further exacerbated in environments where sensors are noisy or unreliable. Characterizing the behavior of LLM planners to varied observations is necessary to proactively avoid failures in safety-critical scenarios. We specifically investigate the response of LLMs along two different perturbation dimensions. Like prior works, one dimension generates semantically similar prompts with varied phrasing by randomizing order of details, modifying access to few-shot examples, etc. Unique to our work, the second dimension simulates access to varied sensors and noise to mimic raw sensor or detection algorithm failures. An initial case study in which perturbations are manually applied show that both dimensions lead LLMs to hallucinate in a multi-agent driving environment. However, manually covering the entire perturbation space for several scenarios is infeasible. As such, we propose a novel method for efficiently searching the space of prompt perturbations using adaptive stress testing (AST) with Monte-Carlo tree search (MCTS). Our AST formulation enables discovery of scenarios, sensor configurations, and prompt phrasing that cause language models to act with high uncertainty or even crash. By generating MCTS prompt perturbation trees across diverse scenarios, we show through extensive experiments that offline analyses can be used to proactively understand potential failures that may arise at runtime.
comment: 30 pages, 24 figures, 6 tables
♻ ☆ VisRet: Visualization Improves Knowledge-Intensive Text-to-Image Retrieval
Text-to-image retrieval (T2I retrieval) remains challenging because cross-modal embeddings often behave as bags of concepts, underrepresenting structured visual relationships such as pose and viewpoint. We propose Visualize-then-Retrieve (VisRet), a retrieval paradigm that mitigates this limitation of cross-modal similarity alignment. VisRet first projects textual queries into the image modality via T2I generation, then performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Across four benchmarks (Visual-RAG, INQUIRE-Rerank, Microsoft COCO, and our new Visual-RAG-ME featuring multi-entity comparisons), VisRet substantially outperforms cross-modal similarity matching and baselines that recast T2I retrieval as text-to-text similarity matching, improving nDCG@30 by 0.125 on average with CLIP as the retriever and by 0.121 with E5-V. For downstream question answering, VisRet increases accuracy on Visual-RAG and Visual-RAG-ME by 3.8% and 15.7% in top-1 retrieval, and by 3.9% and 11.1% in top-10 retrieval. Ablation studies show compatibility with different T2I instruction LLMs, T2I generation models, and downstream LLMs. VisRet provides a simple yet effective perspective for advancing in text-image retrieval. Our code and the new benchmark are publicly available at https://github.com/xiaowu0162/Visualize-then-Retrieve.
♻ ☆ ShareChat: A Dataset of Chatbot Conversations in the Wild
While academic research typically treats Large Language Models (LLM) as generic text generators, they are distinct commercial products with unique interfaces and capabilities that fundamentally shape user behavior. Current datasets obscure this reality by collecting text-only data through uniform interfaces that fail to capture authentic chatbot usage. To address this limitation, we present ShareChat, a large-scale corpus of 142,808 conversations (660,293 turns) sourced directly from publicly shared URLs on ChatGPT, Perplexity, Grok, Gemini, and Claude. ShareChat distinguishes itself by preserving native platform affordances, such as citations and thinking traces, across a diverse collection covering 101 languages and the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. To illustrate the dataset's breadth, we present three case studies: a completeness analysis of intent satisfaction, a citation study of model grounding, and a temporal analysis of engagement rhythms. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild. The dataset will be publicly available.
♻ ☆ Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization
Selective retrieval aims to make retrieval-augmented generation (RAG) more efficient and reliable by skipping retrieval when an LLM's parametric knowledge suffices. Despite promising results, existing methods are constrained by a binary design choice: either retrieve from a single external source or skip retrieval and let the LLM directly produce the final answer. We argue that this fallback underestimates the model's knowledge and obscures the more general multi-source decision problem that arises in practical systems. We propose Self-Routing RAG (SR-RAG), which casts selective retrieval as knowledge source selection and treats the LLM itself as a first-class knowledge source. SR-RAG learns to select an appropriate knowledge source, optionally verbalize parametric knowledge, and answer using the selected source, all within a single left-to-right generation pass. SR-RAG further augments source selection by combining LLM-based uncertainty with a flexible external policy datastore to improve decision calibration. Across four benchmarks and three 7B-class LLMs, SR-RAG outperforms a strong selective retrieval baseline by 8.5%/2.1%/4.7% while performing 26%/40%/21% fewer retrievals, and it achieves favorable accuracy-latency trade-offs without dataset-specific threshold tuning.
♻ ☆ AgentArch: A Comprehensive Benchmark to Evaluate Agent Architectures in Enterprise
While individual components of agentic architectures have been studied in isolation, there remains limited empirical understanding of how different design dimensions interact within complex multi-agent systems. This study aims to address these gaps by providing a comprehensive enterprise-specific benchmark evaluating 18 distinct agentic configurations across state-of-the-art large language models. We examine four critical agentic system dimensions: orchestration strategy, agent prompt implementation (ReAct versus function calling), memory architecture, and thinking tool integration. Our benchmark reveals significant model-specific architectural preferences that challenge the prevalent one-size-fits-all paradigm in agentic AI systems. It also reveals significant weaknesses in overall agentic performance on enterprise tasks with the highest scoring models achieving a maximum of only 35.3\% success on the more complex task and 70.8\% on the simpler task. We hope these findings inform the design of future agentic systems by enabling more empirically backed decisions regarding architectural components and model selection.
♻ ☆ Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, tasks are refined only when conflicts with observations are detected, which mitigates hallucinations while preserving task consistency. After collection, we conduct trajectory refinement with global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code is publicly available at https://github.com/aiming-lab/SynthAgent.
comment: 21 pages, 6 figures
♻ ☆ Leveraging the true depth of LLMs
The remarkable capabilities of Large Language Models (LLMs) are overshadowed by their immense computational cost. While recent work has shown that many LLM layers can be reordered or even removed with minimal impact on accuracy, these insights have not been translated into significant inference speedups. To bridge this gap, we introduce a novel method that restructures the computational graph by grouping and evaluating consecutive layer pairs in parallel. This approach, requiring no retraining, yields a 1.19x throughput gain on Llama 2 7B while reducing the average benchmark accuracy by only 1.5\%. We demonstrate the practical value of this method for large-scale LLM deployment and show that some of the lost accuracy can be recovered with lightweight fine-tuning of the parallelized layers.
♻ ☆ Iterative Topic Taxonomy Induction with LLMs: A Case Study of Electoral Advertising
Social media platforms play a pivotal role in shaping political discourse, but analyzing their vast and rapidly evolving content remains a major challenge. We introduce an end-to-end framework for automatically inducing an interpretable topic taxonomy from unlabeled text corpora. By combining unsupervised clustering with prompt-based inference, our method leverages large language models (LLMs) to iteratively construct a taxonomy without requiring seed sets (predefined labels) or domain expertise. We validate the framework through a study of political advertising ahead of the 2024 U.S. presidential election. The induced taxonomy yields semantically rich topic labels and supports downstream analyses, including moral framing, in this setting. Results suggest that structured, iterative labeling yields more consistent and interpretable topic labels than existing approaches under human evaluation, and is practical for analyzing large-scale political advertising data.
comment: Under-submission
♻ ☆ Qomhra: A Bilingual Irish and English Large Language Model
Large language model (LLM) research and development has overwhelmingly focused on the world's major languages, leading to under-representation of low-resource languages such as Irish. This paper introduces \textbf{Qomhrá}, a bilingual Irish and English LLM, developed under extremely low-resource constraints. A complete pipeline is outlined spanning bilingual continued pre-training, instruction tuning, and the synthesis of human preference data for future alignment training. We focus on the lack of scalable methods to create human preference data by proposing a novel method to synthesise such data by prompting an LLM to generate ``accepted'' and ``rejected'' responses, which we validate as aligning with L1 Irish speakers. To select an LLM for synthesis, we evaluate the top closed-weight LLMs for Irish language generation performance. Gemini-2.5-Pro is ranked highest by L1 and L2 Irish-speakers, diverging from LLM-as-a-judge ratings, indicating a misalignment between current LLMs and the Irish-language community. Subsequently, we leverage Gemini-2.5-Pro to translate a large scale English-language instruction tuning dataset to Irish and to synthesise a first-of-its-kind Irish-language human preference dataset. We comprehensively evaluate Qomhrá across several benchmarks, testing translation, gender understanding, topic identification, and world knowledge; these evaluations show gains of up to 29\% in Irish and 44\% in English compared to the existing open-source Irish LLM baseline, UCCIX. The results of our framework provide insight and guidance to developing LLMs for both Irish and other low-resource languages.
♻ ☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 7 pages, 5 figures
♻ ☆ Steerability of Instrumental-Convergence Tendencies in LLMs
We examine two properties of AI systems: capability (what a system can do) and steerability (how reliably one can shift behavior toward intended outcomes). A central question is whether capability growth reduces steerability and risks control collapse. We also distinguish between authorized steerability (builders reliably reaching intended behaviors) and unauthorized steerability (attackers eliciting disallowed behaviors). This distinction highlights a fundamental safety--security dilemma of AI models: safety requires high steerability to enforce control (e.g., stop/refuse), while security requires low steerability for malicious actors to elicit harmful behaviors. This tension presents a significant challenge for open-weight models, which currently exhibit high steerability via common techniques like fine-tuning or adversarial attacks. Using Qwen3 and InstrumentalEval, we find that a short anti-instrumental prompt suffix sharply reduces the measured convergence rate (e.g., shutdown avoidance, self-replication). For Qwen3-30B Instruct, the convergence rate drops from 81.69% under a pro-instrumental suffix to 2.82% under an anti-instrumental suffix. Under anti-instrumental prompting, larger aligned models show lower convergence rates than smaller ones (Instruct: 2.82% vs. 4.23%; Thinking: 4.23% vs. 9.86%). Code is available at github.com/j-hoscilowicz/instrumental_steering.
comment: Code is available at https://github.com/j-hoscilowicz/instrumental_steering
♻ ☆ Whose story is it? Personalizing story generation by inferring author styles AACL 2025
Personalization is critical for improving user experience in interactive writing and educational applications, yet remains understudied in story generation. We study the task of personalizing story generation, where our goal is to mimic an author's writing style, given other stories written by them. We collect Mythos, a dataset of 3.6k stories from 112 authors, with an average of 16 stories per author, across five distinct sources reflecting diverse story-writing settings. We propose a two-stage pipeline for personalized story generation: first, we infer authors' implicit writing characteristics and organize them into an Author Writing Sheet, which is validated by humans to be of high quality; second, we simulate the author's persona using tailored persona descriptions and personalized story rules. We find that stories personalized using the Author Writing Sheet outperform a non-personalized baseline, achieving a 78% win-rate in capturing authors' past style and 59% in similarity to ground-truth author stories. Human evaluation supports these findings and further highlights trends, such as Reddit stories being easier to personalize, and the Creativity and Language Use aspects of stories being easier to personalize than the Plot.
comment: Accepted to IJCNLP-AACL 2025 (Main)
♻ ☆ Social Construction of Urban Space: Using LLMs to Identify Neighborhood Boundaries From Craigslist Ads
Rental listings offer a window into how urban space is socially constructed through language. We analyze Chicago Craigslist rental advertisements from 2018 to 2024 to examine how listing agents characterize neighborhoods, identifying mismatches between institutional boundaries and neighborhood claims. Through manual and large language model annotation, we classify unstructured listings from Craigslist according to their neighborhood. Further geospatial analysis reveals three distinct patterns: properties with conflicting neighborhood designations due to competing spatial definitions, border properties with valid claims to adjacent neighborhoods, and "reputation laundering" where listings claim association with distant, desirable neighborhoods. Through topic modeling, we identify patterns that correlate with spatial positioning: listings further from neighborhood centers emphasize different amenities than centrally-located units. Natural language processing techniques reveal how definitions of urban spaces are contested in ways that traditional methods overlook.
comment: 8 pages, 3 figures, 4 tables
♻ ☆ Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
♻ ☆ Awakening LLMs' Reasoning Potential: A Fine-Grained Pipeline to Evaluate and Mitigate Vague Perception
Large language models (LLMs) are increasingly trained to abstain on difficult questions by answering unknown. However, we observe that LLMs often misuse this option: they output unknown even when LLMs can actually solve the questions, or they fail to understand why questions are truly unsolvable. We formalize this mismatch between potential ability and the inclination of abstention as the Vague Perception phenomenon. We introduce the WakenLLM pipeline that (1) extracts Vague Perception samples and (2) measures how many of them can be converted to correct answers under stimulation. Based on stage-wise metrics (TCR, OCR, etc.) and the upper-bound accuracy Acc(WakenLLM), we quantify LLMs' reasoning potential beyond one-shot accuracy. Experiments on six LLMs suggest that, without further training or parameter revisions, LLMs can achieve up to a 68.53% increase in accuracy on Vague Perception samples through our designed pipeline. We further analyze how Vague Perception, Conformity and Degradation vary from model families and parameter sizes, and offer model selection strategies in multi-stage reasoning workflows. Finally, by comparing WakenLLM against mainstream reasoning baselines, both training and non-training ones, we show that existing baselines only activate a small portion of LLMs' reasoning potential, pointing to perception-aware reasoning as a promising direction for future LLM designing. Code and datasets are available at https://github.com/WakenLLMTeam/WakenLLM-toolkit.
♻ ☆ Quantifying LLM Biases Across Instruction Boundary in Mixed Question Forms
Large Language Models (LLMs) annotated datasets are widely used nowadays, however, large-scale annotations often show biases in low-quality datasets. For example, Multiple-Choice Questions (MCQs) datasets with one single correct option is common, however, there may be questions attributed to none or multiple correct options; whereas true-or-false questions are supposed to be labeled with either True or False, but similarly the text can include unsolvable elements, which should be further labeled as Unknown. There are problems when low-quality datasets with mixed question forms can not be identified. We refer to these exceptional label forms as Sparse Labels, and LLMs' ability to distinguish datasets with Sparse Labels mixture is important. Since users may not know situations of datasets, their instructions can be biased. To study how different instruction settings affect LLMs' identifications of Sparse Labels mixture, we introduce the concept of Instruction Boundary, which systematically evaluates different instruction settings that lead to biases. We propose BiasDetector, a diagnostic benchmark to systematically evaluate LLMs on datasets with mixed question forms under Instruction Boundary settings. Experiments show that users' instructions induce large biases on our benchmark, highlighting the need not only for LLM developers to recognize risks of LLM biased annotation resulting in Sparse Labels mixture, but also problems arising from users' instructions to identify them. Code, datasets and detailed implementations are available at https://github.com/ZpLing/Instruction-Boundary.
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ Towards Threshold-Free KV Cache Pruning
To reduce memory consumption during LLM inference, prior works have proposed numerous methods that focus on KV cache pruning based on various criteria. While these techniques often accomplish lossless memory reduction on many datasets, they often rely on an under-emphasized condition: a dataset/domain-specific budget size threshold needs to be pre-determined to achieve the optimal performance. However, such input-specific tuning may be considerably limited in real-world scenarios, as open-domain inputs span diverse domains, lengths and difficulty levels, without clear boundaries for pre-tuning. Thus, the dependence of an input-sensitive threshold can be an inherent limitation that may cause large degradation on arbitrary inputs. In this work, we propose a new objective that lifts the threshold constraints for robust KV pruning, calling for "threshold-free" methods that automatically adjust budget sizes while ensuring full-cache performance. We then propose a novel method ReFreeKV as the first solution fulfilling this objective, validated by intensive experiments on 13 datasets of diverse context lengths, task types, and model sizes.
comment: Substantial revision
♻ ☆ Efficient Context Scaling with LongCat ZigZag Attention
We introduce LongCat ZigZag Attention (LoZA), which is a sparse attention scheme designed to transform any existing full-attention models into sparse versions with rather limited compute budget. In long-context scenarios, LoZA can achieve significant speed-ups both for prefill-intensive (e.g., retrieval-augmented generation) and decode-intensive (e.g., tool-integrated reasoning) cases. Specifically, by applying LoZA to LongCat-Flash during mid-training, we serve LongCat-Flash-Exp as a long-context foundation model that can swiftly process up to 1 million tokens, enabling efficient long-term reasoning and long-horizon agentic capabilities.
comment: 10 pages, 3 figures, 3 tables
♻ ☆ DoPE: Denoising Rotary Position Embedding
Positional encoding is essential for large language models (LLMs) to represent sequence order, yet recent studies show that Rotary Position Embedding (RoPE) can induce massive activation. We investigate the source of these instabilities via a spectral analysis of RoPE, and show that its low-frequency components concentrate structured energy, producing low-rank, over-aligned attention patterns. We theoretically reveal that this low-frequency alignment manifests as activation noise, degrading stability during long-context extrapolation. To mitigate this effect, we introduce Denoising Rotary Position Embedding (DoPE), a training-free method that identifies and suppresses noisy attention heads using truncated matrix entropy, then reparameterizes their attention maps with an isotropic Gaussian distribution. Across a range of settings, DoPE improves length extrapolation performance without fine-tuning, increases robustness to perturbations, and boosts both needle-in-a-haystack and many-shot in-context learning tasks. These results suggest that selective positional encoding is key to robust extrapolation. Our project page is Project: https://The-physical-picture-of-LLMs.github.io
comment: Technical Report
♻ ☆ Protecting multimodal large language models against misleading visualizations
Visualizations play a pivotal role in daily communication in an increasingly data-driven world. Research on multimodal large language models (MLLMs) for automated chart understanding has accelerated massively, with steady improvements on standard benchmarks. However, for MLLMs to be reliable, they must be robust to misleading visualizations, i.e., charts that distort the underlying data, leading readers to draw inaccurate conclusions. Here, we uncover an important vulnerability: MLLM question-answering (QA) accuracy on misleading visualizations drops on average to the level of the random baseline. To address this, we provide the first comparison of six inference-time methods to improve QA performance on misleading visualizations, without compromising accuracy on non-misleading ones. We find that two methods, table-based QA and redrawing the visualization, are effective, with improvements of up to 19.6 percentage points. We make our code and data available.
comment: Preprint. Code and data available at https://github.com/UKPLab/arxiv2025-misleading-visualizations
♻ ☆ pdfQA: Diverse, Challenging, and Realistic Question Answering over PDFs
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).
♻ ☆ Figure It Out: Improve the Frontier of Reasoning with Executable Visual States
Complex reasoning problems often involve implicit spatial and geometric relationships that are not explicitly encoded in text. While recent reasoning models perform well across many domains, purely text-based reasoning struggles to capture structural constraints in complex settings. In this paper, we introduce FIGR, which integrates executable visual construction into multi-turn reasoning via end-to-end reinforcement learning. Rather than relying solely on textual chains of thought, FIGR externalizes intermediate hypotheses by generating executable code that constructs diagrams within the reasoning loop. An adaptive reward mechanism selectively regulates when visual construction is invoked, enabling more consistent reasoning over latent global properties that are difficult to infer from text alone. Experiments on eight challenging mathematical benchmarks demonstrate that FIGR outperforms strong text-only chain-of-thought baselines, improving the base model by 13.12% on AIME 2025 and 11.00% on BeyondAIME. These results highlight the effectiveness of precise, controllable figure construction of FIGR in enhancing complex reasoning ability.
♻ ☆ Think-on-Graph 3.0: Efficient and Adaptive LLM Reasoning on Heterogeneous Graphs via Multi-Agent Dual-Evolving Context Retrieval
Graph-based Retrieval-Augmented Generation (GraphRAG) has become the important paradigm for enhancing Large Language Models (LLMs) with external knowledge. However, existing approaches are constrained by their reliance on high-quality knowledge graphs: manually built ones are not scalable, while automatically extracted ones are limited by the performance of LLM extractors, especially when using smaller, local-deployed models. To address this, we introduce Think-on-Graph 3.0 (ToG-3), a novel framework featuring a Multi-Agent Context Evolution and Retrieval (MACER) mechanism. Its core contribution is the dynamic construction and iterative refinement of a Chunk-Triplets-Community heterogeneous graph index, powered by a Dual-Evolution process that adaptively evolves both the query and the retrieved sub-graph during reasoning. ToG-3 dynamically builds a targeted graph index tailored to the query, enabling precise evidence retrieval and reasoning even with lightweight LLMs. Extensive experiments demonstrate that ToG-3 outperforms compared baselines on both deep and broad reasoning benchmarks, and ablation studies confirm the efficacy of the components of MACER framework. The source code are available in https://github.com/DataArcTech/ToG-3.
comment: add: reranker agent and experiments
♻ ☆ MARCH: Evaluating the Intersection of Ambiguity Interpretation and Multi-hop Inference
Real-world multi-hop QA is naturally linked with ambiguity, where a single query can trigger multiple reasoning paths that require independent resolution. Since ambiguity can occur at any stage, models must navigate layered uncertainty throughout the entire reasoning chain. Despite its prevalence in real-world user queries, previous benchmarks have primarily focused on single-hop ambiguity, leaving the complex interaction between multi-step inference and layered ambiguity underexplored. In this paper, we introduce \textbf{MARCH}, a benchmark for their intersection, with 2,209 multi-hop ambiguous questions curated via multi-LLM verification and validated by human annotation with strong agreement. Our experiments reveal that even state-of-the-art models struggle with MARCH, confirming that combining ambiguity resolution with multi-step reasoning is a significant challenge. To address this, we propose \textbf{CLARION}, a two-stage agentic framework that explicitly decouples ambiguity planning from evidence-driven reasoning, significantly outperforms existing approaches, and paves the way for robust reasoning systems.
comment: 17 figures, 17 tables
♻ ☆ CMDAR: A Chinese Multi-scene Dynamic Audio Reasoning Benchmark with Diverse Challenges
The ability to reason from audio, including speech, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and English audio data and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce CMDAR, a Chinese benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. CMDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on CMDAR and observe that they exhibit limitations in complex reasoning tasks. In CMDAR-main, Qwen2.5-Omni achieves 76.67% accuracy, whereas GPT-4o Audio reaches 68.47%. However, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice with multiple audios and open-ended tasks. And we provide detail analysis corresponding suggestions for the future development of large audio language models.
comment: 25 pages, 7 figures
♻ ☆ Stable Preference Optimization: A Bilevel Approach to Catastrophic Preference Shift
Direct Preference Learning has emerged as a dominant offline paradigm for preference optimization. Most of these methods are based on the Bradley-Terry (BT) model for pairwise preference ranking, which directly aligns language model with human preference. Prior work has observed a counter-intuitive phenomenon termed likelihood displacement, where the absolute probability of preferred responses decreases simultaneously during training. We demonstrate that such displacement can lead to a more devastating failure mode, which we defined as \textit{Catastrophic Preference Shift}, where the lost preference probability mass inadvertently shifts toward out-of-distribution (OOD) responses. Such a failure mode is a key limitation shared across BT-style direct preference learning methods, due to the fundamental conflict between the unconstrained discriminative alignment and generative foundational capabilities, ultimately leading to severe performance degradation (e.g., SimPO suffers a significant drop in reasoning accuracy from 73.5\% to 37.5\%). We analyze existing BT-style methods from the probability evolution perspective and theoretically prove that these methods exhibit over-reliance on model initialization and can lead to preference shift. To resolve these counter-intuitive behaviors, we propose a theoretically grounded Stable Preference Optimization (SPO) framework that constrains preference learning within a safe alignment region. Empirical evaluations demonstrate that SPO effectively stabilizes and enhances the performance of existing BT-style preference learning methods. SPO provides new insights into the design of preference learning objectives and opens up new avenues towards more reliable and interpretable language model alignment.
♻ ☆ Limits to Predicting Online Speech Using Large Language Models
Our paper studies the predictability of online speech -- that is, how well language models learn to model the distribution of user generated content on X (previously Twitter). We define predictability as a measure of the model's uncertainty, i.e. its negative log-likelihood. As the basis of our study, we collect 10M tweets for ``tweet-tuning'' base models and a further 6.25M posts from more than five thousand X (previously Twitter) users and their peers. In our study involving more than 5000 subjects, we find that predicting posts of individual users remains surprisingly hard. Moreover, it matters greatly what context is used: models using the users' own history significantly outperform models using posts from their social circle. We validate these results across four large language models ranging in size from 1.5 billion to 70 billion parameters. Moreover, our results replicate if instead of prompting the model with additional context, we finetune on it. We follow up with a detailed investigation on what is learned in-context and a demographic analysis. Up to 20\% of what is learned in-context is the use of @-mentions and hashtags. Our main results hold across the demographic groups we studied.
comment: Updated Figure 1, added demographic analysis
♻ ☆ When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection
Driven by surging submission volumes, scientific peer review has catalyzed two parallel trends: individual over-reliance on LLMs and institutional AI-powered assessment systems. This study investigates the robustness of "LLM-as-a-Judge" systems to adversarial PDF manipulation via invisible text injections and layout aware encoding attacks. We specifically target the distinct incentive of flipping "Reject" decisions to "Accept," a vulnerability that fundamentally compromises scientific integrity. To measure this, we introduce the Weighted Adversarial Vulnerability Score (WAVS), a novel metric that quantifies susceptibility by weighting score inflation against the severity of decision shifts relative to ground truth. We adapt 15 domain-specific attack strategies, ranging from semantic persuasion to cognitive obfuscation, and evaluate them across 13 diverse language models (including GPT-5 and DeepSeek) using a curated dataset of 200 official and real-world accepted and rejected submissions (e.g., ICLR OpenReview). Our results demonstrate that obfuscation techniques like "Maximum Mark Magyk" and "Symbolic Masking & Context Redirection" successfully manipulate scores, achieving decision flip rates of up to 86.26% in open-source models, while exposing distinct "reasoning traps" in proprietary systems. We release our complete dataset and injection framework to facilitate further research on the topic (https://anonymous.4open.sciencer/llm-jailbreak-FC9E/).
♻ ☆ Hidden State Poisoning Attacks against Mamba-based Language Models
State space models (SSMs) like Mamba offer efficient alternatives to Transformer-based language models, with linear time complexity. Yet, their adversarial robustness remains critically unexplored. This paper studies the phenomenon whereby specific short input phrases induce a partial amnesia effect in such models, by irreversibly overwriting information in their hidden states, referred to as a Hidden State Poisoning Attack (HiSPA). Our benchmark RoBench25 allows evaluating a model's information retrieval capabilities when subject to HiSPAs, and confirms the vulnerability of SSMs against such attacks. Even a recent 52B hybrid SSM-Transformer model from the Jamba family collapses on RoBench25 under optimized HiSPA triggers, whereas pure Transformers do not. We also observe that HiSPA triggers significantly weaken the Jamba model on the popular Open-Prompt-Injections benchmark, unlike pure Transformers. Finally, our interpretability study reveals patterns in Mamba's hidden layers during HiSPAs that could be used to build a HiSPA mitigation system. The full code and data to reproduce the experiments can be found at https://anonymous.4open.science/r/hispa_anonymous-5DB0.
comment: 17 pages, 4 figures
♻ ☆ Reference-Free Evaluation of Taxonomies
We introduce two reference-free metrics for quality evaluation of taxonomies in the absence of labels. The first metric evaluates robustness by calculating the correlation between semantic and taxonomic similarity, addressing error types not considered by existing metrics. The second uses Natural Language Inference to assess logical adequacy. Both metrics are tested on five taxonomies and are shown to correlate well with F1 against ground truth taxonomies. We further demonstrate that our metrics can predict downstream performance in hierarchical classification when used with label hierarchies.
comment: Under review at ARR January 2026 cycle
♻ ☆ From Intrinsic Toxicity to Reception-Based Toxicity: A Contextual Framework for Prediction and Evaluation
Most toxicity detection models treat toxicity as an intrinsic property of text, overlooking the role of context in shaping its impact. In this position paper, drawing on insights from psychology, neuroscience, and computational social science, we reconceptualise toxicity as a socially emergent signal of stress. We formalise this perspective in the Contextual Stress Framework (CSF), which defines toxicity as a stress-inducing norm violation within a given context and introduces an additional dimension for toxicity detection. As one possible realisation of CSF, we introduce PONOS (Proportion Of Negative Observed Sentiments), a metric that quantifies toxicity through collective social reception rather than lexical features. We validate this approach on a novel dataset, demonstrating improved contextual sensitivity and adaptability when used alongside existing models.
♻ ☆ EduBench: A Comprehensive Benchmarking Dataset for Evaluating Large Language Models in Diverse Educational Scenarios
As large language models continue to advance, their application in educational contexts remains underexplored and under-optimized. In this paper, we address this gap by introducing the first diverse benchmark tailored for educational scenarios, incorporating synthetic data containing 9 major scenarios and over 4,000 distinct educational contexts. To enable comprehensive assessment, we propose a set of multi-dimensional evaluation metrics that cover 12 critical aspects relevant to both teachers and students. We further apply human annotation to ensure the effectiveness of the model-generated evaluation responses. Additionally, we succeed to train a relatively small-scale model on our constructed dataset and demonstrate that it can achieve performance comparable to state-of-the-art large models (e.g., Deepseek V3, Qwen Max) on the test set. Overall, this work provides a practical foundation for the development and evaluation of education-oriented language models. Code and data are released at https://github.com/ybai-nlp/EduBench.
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ The Bidirectional Process Reward Model
Process Reward Models (PRMs), which assign fine-grained scores to intermediate reasoning steps within a solution trajectory, have emerged as a promising approach to enhance the reasoning quality of Large Language Models (LLMs). However, most existing PRMs rely on a unidirectional left-to-right (L2R) evaluation scheme, which restricts their utilization of global context. In light of this challenge, we propose a novel bidirectional evaluation paradigm, named Bidirectional Process Reward Model (BiPRM). BiPRM incorporates a parallel right-to-left (R2L) evaluation stream, implemented via prompt reversal, alongside the conventional L2R flow. Then a gating mechanism is introduced to adaptively fuse the reward scores from both streams to yield a holistic quality assessment. Remarkably, compared to the original PRM, BiPRM introduces only a 0.3% parameter increase for the gating module, and the parallel execution of two streams incurs merely 5% inference time latency. Our extensive empirical evaluations spanning diverse benchmarks, LLM backbones, PRM objectives and sampling policies demonstrate that BiPRM consistently surpasses unidirectional baselines, achieving an average relative gain of 10.6% over 54 solution-level configurations and 37.7% in 12 step-level error detection scenarios. Generally, our results highlight the effectiveness, robustness and general applicability of BiPRM, offering a promising new direction for process-based reward modeling.
♻ ☆ Emergence and Localisation of Semantic Role Circuits in LLMs
Despite displaying semantic competence, large language models' internal mechanisms that ground abstract semantic structure remain insufficiently characterised. We propose a method integrating role-cross minimal pairs, temporal emergence analysis, and cross-model comparison to study how LLMs implement semantic roles. Our analysis uncovers: (i) highly concentrated circuits (89-94% attribution within 28 nodes); (ii) gradual structural refinement rather than phase transitions, with larger models sometimes bypassing localised circuits; and (iii) moderate cross-scale conservation (24-59% component overlap) alongside high spectral similarity. These findings suggest that LLMs form compact, causally isolated mechanisms for abstract semantic structure, and these mechanisms exhibit partial transfer across scales and architectures.
♻ ☆ UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose modality-aware routing, which dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it, and further justify its effectiveness with a theoretical analysis. Moreover, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 10 benchmarks of multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
♻ ☆ SignX: Continuous Sign Recognition in Compact Pose-Rich Latent Space
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID Glosses, which serve to uniquely identify ASL signs. This paper proposes SignX, a novel framework for continuous sign language recognition in compact pose-rich latent space. First, we construct a unified latent representation that encodes heterogeneous pose formats (SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation) into a compact, information-dense space. Second, we train a ViT-based Video2Pose module to extract this latent representation directly from raw videos. Finally, we develop a temporal modeling and sequence refinement method that operates entirely in this latent space. This multi-stage design achieves end-to-end sign language recognition while significantly reducing computational consumption. Experimental results demonstrate that SignX achieves state-of-the-art accuracy on continuous sign language recognition.
comment: 23 pages, CSLR SOTA (2026). More demo at https://signerx.github.io/SignX/
♻ ☆ CogCanvas: Verbatim-Grounded Artifact Extraction for Long LLM Conversations ACL
Conversation summarization loses nuanced details: when asked about coding preferences after 40 turns, summarization recalls "use type hints" but drops the critical constraint "everywhere" (19.0% exact match vs. 93.0% for our approach). We present CogCanvas, a training-free framework inspired by how teams use whiteboards to anchor shared memory. Rather than compressing conversation history, CogCanvas extracts verbatim-grounded artifacts (decisions, facts, reminders) and retrieves them via temporal-aware graph. On the LoCoMo benchmark (all 10 conversations from the ACL 2024 release), CogCanvas achieves the highest overall accuracy among training-free methods (32.4%), outperforming RAG (24.6%) by +7.8pp, with decisive advantages on complex reasoning tasks: +20.6pp on temporal reasoning (32.7% vs. 12.1% RAG) and +1.1pp on multi-hop questions (41.7% vs. 40.6% RAG). CogCanvas also leads on single-hop retrieval (26.6% vs. 24.6% RAG). Ablation studies reveal that BGE reranking contributes +7.7pp, making it the largest contributor to CogCanvas's performance. While heavily-optimized approaches achieve higher absolute scores through dedicated training (EverMemOS: ~92%), our training-free approach provides practitioners with an immediately-deployable alternative that significantly outperforms standard baselines. Code and data: https://github.com/tao-hpu/cog-canvas
comment: 15 pages, 5 figures. Submitted to ACL Rolling Review January 2026
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ SciEvalKit: An Open-source Evaluation Toolkit for Scientific General Intelligence
We introduce SciEvalKit, a unified benchmarking toolkit designed to evaluate AI models for science across a broad range of scientific disciplines and task capabilities. Unlike general-purpose evaluation platforms, SciEvalKit focuses on the core competencies of scientific intelligence, including Scientific Multimodal Perception, Scientific Multimodal Reasoning, Scientific Multimodal Understanding, Scientific Symbolic Reasoning, Scientific Code Generation, Science Hypothesis Generation and Scientific Knowledge Understanding. It supports six major scientific domains, spanning from physics and chemistry to astronomy and materials science. SciEvalKit builds a foundation of expert-grade scientific benchmarks, curated from real-world, domain-specific datasets, ensuring that tasks reflect authentic scientific challenges. The toolkit features a flexible, extensible evaluation pipeline that enables batch evaluation across models and datasets, supports custom model and dataset integration, and provides transparent, reproducible, and comparable results. By bridging capability-based evaluation and disciplinary diversity, SciEvalKit offers a standardized yet customizable infrastructure to benchmark the next generation of scientific foundation models and intelligent agents. The toolkit is open-sourced and actively maintained to foster community-driven development and progress in AI4Science.
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ Encyclo-K: Evaluating LLMs with Dynamically Composed Knowledge Statements
Benchmarks play a crucial role in tracking the rapid advancement of large language models (LLMs) and identifying their capability boundaries. However, existing benchmarks predominantly curate questions at the question level, suffering from three fundamental limitations: vulnerability to data contamination, restriction to single-knowledge-point assessment, and reliance on costly domain expert annotation. We propose Encyclo-K, a statement-based benchmark that rethinks benchmark construction from the ground up. Our key insight is that knowledge statements, not questions, can serve as the unit of curation, and questions can then be constructed from them. We extract standalone knowledge statements from authoritative textbooks and dynamically compose them into evaluation questions through random sampling at test time. This design directly addresses all three limitations: the combinatorial space is too vast to memorize, and model rankings remain stable across dynamically generated question sets, enabling reliable periodic dataset refresh; each question aggregates 8-10 statements for comprehensive multi-knowledge assessment; annotators only verify formatting compliance without requiring domain expertise, substantially reducing annotation costs. Experiments on over 50 LLMs demonstrate that Encyclo-K poses substantial challenges with strong discriminative power. Even the top-performing OpenAI-GPT-5.1 achieves only 62.07% accuracy, and model performance displays a clear gradient distribution--reasoning models span from 16.04% to 62.07%, while chat models range from 9.71% to 50.40%. These results validate the challenges introduced by dynamic evaluation and multi-statement comprehensive understanding. These findings establish Encyclo-K as a scalable framework for dynamic evaluation of LLMs' comprehensive understanding over multiple fine-grained disciplinary knowledge statements.
♻ ☆ Consistency-Aware Parameter-Preserving Knowledge Editing Framework for Multi-Hop Question Answering
Parameter-Preserving Knowledge Editing (PPKE) enables updating models with new information without retraining or parameter adjustment. Recent PPKE approaches used knowledge graphs (KG) to extend knowledge editing (KE) capabilities to multi-hop question answering (MHQA). However, these methods often lack consistency, leading to knowledge contamination, unstable updates, and retrieval behaviors that are misaligned with the intended edits. Such inconsistencies undermine the reliability of PPKE in multi-hop reasoning. We present CAPE-KG, Consistency-Aware Parameter-Preserving Editing with Knowledge Graphs, a novel consistency-aware framework for PPKE on MHQA. CAPE-KG ensures KG construction, update, and retrieval are always aligned with the requirements of the MHQA task, maintaining coherent reasoning over both unedited and edited knowledge. Extensive experiments on the MQuAKE benchmark show accuracy improvements in PPKE performance for MHQA, demonstrating the effectiveness of addressing consistency in PPKE.
♻ ☆ SWAA: Sliding Window Attention Adaptation for Efficient Long-Context LLMs Without Pretraining
The quadratic complexity of self-attention in Transformer-based Large Language Models (LLMs) renders long-context inference prohibitively expensive. While Sliding Window Attention (SWA), the simplest sparse attention pattern, offers a linear-complexity alternative, naively applying it to models pretrained with Full Attention (FA) causes catastrophic long-context performance collapse due to the training-inference mismatch. To address this, we propose Sliding Window Attention Adaptation (SWAA), a plug-and-play toolkit of recipes that adapt FA models to SWA without costly pretraining. SWAA systematically combines five strategies: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments demonstrate that while individual methods are insufficient, specific synergistic combinations can effectively recover original long-context capabilities. After further analyzing performance-efficiency trade-offs, we identify recommended SWAA configurations for diverse scenarios, which achieve 30% to 100% speedups for long-context LLM inference with acceptable quality loss. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
♻ ☆ Communication Compression for Tensor Parallel LLM Inference
Large Language Models (LLMs) have pushed the frontier of artificial intelligence but are comprised of hundreds of billions of parameters and operations. For faster inference latency, LLMs are deployed on multiple hardware accelerators through various Model Parallelism strategies. Our paper looks into the details on one such strategy - Tensor Parallel - and proposes to reduce latency by compressing inter-accelerator communication. We leverage fine grained quantization techniques to compress selected activations by 3.5 - 4.5x. Our proposed method leads up to 2x reduction of time-to-first-token (TTFT) with negligible model performance degradation.
♻ ☆ Style over Story: Measuring LLM Narrative Preferences via Structured Selection
We introduce a constraint-selection-based experiment design for measuring narrative preferences of Large Language Models (LLMs). This design offers an interpretable lens on LLMs' narrative behavior. We developed a library of 200 narratology-grounded constraints and prompted selections from six LLMs under three different instruction types: basic, quality-focused, and creativity-focused. Findings demonstrate that models consistently prioritize Style over narrative content elements like Event, Character, and Setting. Style preferences remain stable across models and instruction types, whereas content elements show cross-model divergence and instructional sensitivity. These results suggest that LLMs have latent narrative preferences, which should inform how the NLP community evaluates and deploys models in creative domains.
♻ ☆ d-TreeRPO: Towards More Reliable Policy Optimization for Diffusion Language Models
Reinforcement learning (RL) is pivotal for enhancing the reasoning capabilities of diffusion large language models (dLLMs). However, existing dLLM policy optimization methods suffer from two critical reliability bottlenecks: (1) reward sparsity, arising from coarse or unverifiable signals that impede accurate advantage calculation; and (2) their probability estimates do not account for the gap to the unbiased expectation over all decoding orders, which are intractable to compute. To mitigate these issues, we propose d-TreeRPO, a reliable RL framework for dLLMs that leverages tree-structured rollouts and bottom-up advantage computation based on verifiable outcome rewards to provide fine-grained and verifiable step-wise reward signals. Furthermore, we provide a theoretical proof demonstrating that increasing prediction confidence effectively minimizes the gap between unbiased expected prediction probabilities and its single-step forward pass estimate. Guided by this analysis, we introduce a time-scheduled self-distillation loss during training that enhances prediction confidence in later training stages, thereby enabling more accurate probability estimation and better performance. Experiments demonstrate that d-TreeRPO outperforms existing baselines and achieves significant improvements across multiple reasoning benchmarks. Specifically, it achieves +86.2% on Sudoku, +51.6% on Countdown, +4.5% on GSM8K, and +5.3% on Math500 compared to the base model.
comment: 20 pages, 19 figures, 4 tables
♻ ☆ Personality-Enhanced Social Recommendations in SAMI: Exploring the Role of Personality Detection in Matchmaking
Social belonging is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI (Social Agent Mediated Interactions) offers one solution by facilitating student connections, but its effectiveness may be constrained by an incomplete Theory of Mind, limiting its ability to create an effective 'mental model' of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this gap, we examine the viability of automated personality inference by proposing a personality detection model utilizing GPT's zeroshot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, finding that while GPT models show promising results on this specific dataset, performance varies significantly across traits. We identify potential biases toward optimistic trait inference, particularly for traits with skewed distributions. We demonstrate a proof-of-concept integration of personality detection into SAMI's entity-based matchmaking system, focusing on three traits with established connections to positive social formation: Extroversion, Agreeableness, and Openness. This work represents an initial exploration of personality-informed social recommendations in educational settings. While our implementation shows technical feasibility, significant questions remain. We discuss these limitations and outline directions for future work, examining what LLMs specifically capture when performing personality inference and whether personality-based matching meaningfully improves student connections in practice.
comment: Preprint. Appears in INTED 2026
♻ ☆ TELEVAL: A Dynamic Benchmark Designed for Spoken Language Models in Chinese Interactive Scenarios
Spoken language models (SLMs) have advanced rapidly in recent years, accompanied by a growing number of evaluation benchmarks. However, most existing benchmarks emphasize task completion and capability scaling, while remaining poorly aligned with how users interact with SLMs in real-world spoken conversations. Effective spoken interaction requires not only accurate understanding of user intent and content, but also the ability to respond with appropriate interactional strategies. In this paper, we present TELEVAL, a dynamic, user-centered benchmark for evaluating SLMs in realistic Chinese spoken interaction scenarios. TELEVAL consolidates evaluation into two core aspects. Reliable Content Fulfillment assesses whether models can comprehend spoken inputs and produce semantically correct responses. Interactional Appropriateness evaluates whether models act as socially capable interlocutors, requiring them not only to generate human-like, colloquial responses, but also to implicitly incorporate paralinguistic cues for natural interaction. Experiments reveal that, despite strong performance on semantic and knowledge-oriented tasks, current SLMs still struggle to produce natural and interactionally appropriate responses, highlighting the need for more interaction-faithful evaluation.
♻ ☆ Do You Get the Hint? Benchmarking LLMs on the Board Game Concept
Large language models (LLMs) have achieved striking successes on many benchmarks, yet recent studies continue to expose fundamental weaknesses. In this paper, we introduce Concept, a simple word-guessing board game, as a benchmark for probing abductive reasoning. Our results show that this game, easily solved by humans (with a success rate of over 90\%), is still very challenging for state-of-the-art LLMs (no model exceeds 40\% success rate). Specifically, we observe that LLMs struggle with interpreting other players' strategic intents, and with correcting initial hypotheses given sequential information updates. In addition, we extend the evaluation across multiple languages, and find that the LLM performance drops further in lower-resource languages (Dutch, French, and Spanish) compared to English.
♻ ☆ E$^2$AT: Multimodal Jailbreak Defense via Dynamic Joint Optimization for Multimodal Large Language Models
Research endeavors have been made in learning robust Multimodal Large Language Models (MLLMs) against jailbreak attacks. However, existing methods for improving MLLMs' robustness still face critical challenges: \ding{172} how to efficiently tune massive weight parameters and \ding{173} how to ensure robustness against attacks across both visual and textual modalities. To this end, we propose an \textbf{E}fficient \textbf{E}nd-to-end \textbf{A}dversarial \textbf{T}raining (E$^2$AT) framework for both visual and textual adversarial attacks. Specifically, for the visual aspect, E$^2$AT incorporates an efficient projector-based AT module that aligns the attack samples at the feature level. For training objectives, we propose a Dynamic Joint Multimodal Optimization (DJMO) strategy to enhance generalization ability against jailbreak attacks by dynamically adjusting weights between normal and adversarial objectives. Extensive experiments are conducted with five major jailbreak attack methods across three mainstream MLLMs. Results demonstrate that our E$^2$AT achieves the state-of-the-art performance, outperforming existing baselines by an average margin of 34\% across text and image modalities, while maintaining clean task performance. Furthermore, evaluations of real-world embodied intelligent systems highlight the practical applicability of E$^2$AT, paving the way for the development of more secure and reliable multimodal systems. Our code is available on \href{https://anonymous.4open.science/r/E2AT_568}{\textcolor{red}{https://anonymous.4open.science/r/E2AT\_568}}.
♻ ☆ Infini-gram mini: Exact n-gram Search at the Internet Scale with FM-Index
Language models are trained mainly on massive text data from the Internet, and it becomes increasingly important to understand this data source. Exact-match search engines enable searching in large text corpora - counting string appearances and retrieving the enclosing documents - yet the high storage overhead hinders their application on Internet-scale data. We present infini-gram mini, an efficient and scalable system that can make petabyte-level text corpora searchable. Based on the FM-index data structure (Ferragina and Manzini, 2000), which simultaneously indexes and compresses text, our system creates indexes with size only 44% of the corpus. Infini-gram mini greatly improves upon the best existing implementation of FM-index in terms of indexing speed (18$\times$) and memory use during both indexing (3.2$\times$ reduction) and querying (down to a negligible amount). We index 83TB of Internet text in 99 days with a single CPU node with 128 vCPUs (or 19 hours if using 137 such nodes). We show one important use case of infini-gram mini in a large-scale analysis of benchmark contamination. We find several core LM evaluation benchmarks to be heavily contaminated in Internet crawls (up to 74.2% in GSM8K), which could lead to overestimating the capabilities of language models if trained on such data. We host a benchmark contamination bulletin to share the contamination rate of many core and community-contributed benchmarks. We also release a web interface and an API endpoint to serve general search queries on infini-gram mini indexes.
♻ ☆ TreeDiff: AST-Guided Code Generation with Diffusion LLMs
Code generation is increasingly critical for real-world applications. Still, diffusion-based large language models continue to struggle with this demand. Unlike free-form text, code requires syntactic precision; even minor structural inconsistencies can render a program non-executable. Existing diffusion-based large language models rely on random token masking for corruption, leading to two key failures: they lack awareness of syntactic boundaries during the iterative denoising process, and they fail to capture the long-range hierarchical dependencies essential for program correctness. We propose TreeDiff to address both issues. Specifically, we propose a syntax-aware diffusion framework that incorporates structural priors from Abstract Syntax Tree (AST) into the corruption process. Instead of masking individual tokens at random, we selectively mask tokens belonging to key AST nodes. By aligning the corruption process with the underlying structure of code, our method encourages the model to internalize the compositional nature of programming languages, enabling it to reconstruct programs that respect grammatical boundaries and capture long-range dependencies. Our method achieves a 13.3% relative improvement over the random masking training method, demonstrating its effectiveness in code generation task by leveraging underlying structures.
♻ ☆ Learning an Efficient Multi-Turn Dialogue Evaluator from Multiple LLM Judges
Evaluating the conversational abilities of large language models (LLMs) remains a challenging task. Current mainstream approaches primarily rely on the "LLM-as-a-judge" paradigm, where an LLM is prompted to serve as an evaluator to assess dialogue quality. However, such methods often suffer from various biases, which undermine the reliability and consistency of the evaluation results. To mitigate these biases, recent methods employ multiple LLMs as judges and aggregate their judgments to select the optimal assessment. Although effective, this multi-judge approach incurs significant computational overhead during inference. In this paper, we propose an efficient dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model. Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast, flexible, and fine-grained dialogue quality assessment. Extensive experiments on seven single rating and pairwise comparison dialogue evaluation benchmarks demonstrate that our method outperforms existing baselines across diverse scenarios, showcasing its efficiency and robustness.
comment: 20 pages, 4 pages, under review
♻ ☆ Reward Auditor: Inference on Reward Modeling Suitability in Real-World Perturbed Scenarios
Reliable reward models (RMs) are critical for ensuring the safe alignment of large language models (LLMs). However, current RM evaluation methods focus solely on preference perception accuracies in given specific scenarios, obscuring the critical vulnerabilities of RMs in real-world scenarios. We identify the true challenge lies in assessing a novel dimension: Suitability, defined as conditional reliability under specific real-world perturbations. To this end, we introduce Reward Auditor, a hypothesis-testing framework specifically designed for RM suitability inference. Rather than answering "How accurate is the RM's preference perception for given samples?", it employs scientific auditing to answer: "Can we infer RMs exhibit systematic vulnerabilities in specific real-world scenarios?". Under real-world perturbed scenarios, Reward Auditor quantifies statistical significance and effect size by auditing distribution degradation of RM preference perception confidence. This enables inference of both the certainty and severity of RM vulnerabilities across diverse real-world scenarios. This lays a solid foundation for building next-generation LLM alignment systems that are verifiably safe, more robust, and trustworthy.
♻ ☆ TPA: Next Token Probability Attribution for Detecting Hallucinations in RAG
Detecting hallucinations in Retrieval-Augmented Generation remains a challenge. Prior approaches attribute hallucinations to a binary conflict between internal knowledge stored in FFNs and the retrieved context. However, this perspective is incomplete, failing to account for the impact of other components of the LLM, such as the user query, previously generated tokens, the self token, and the final LayerNorm adjustment. To comprehensively capture the impact of these components on hallucination detection, we propose TPA which mathematically attributes each token's probability to seven distinct sources: Query, RAG Context, Past Token, Self Token, FFN, Final LayerNorm, and Initial Embedding. This attribution quantifies how each source contributes to the generation of the next token. Specifically, we aggregate these attribution scores by Part-of-Speech (POS) tags to quantify the contribution of each model component to the generation of specific linguistic categories within a response. By leveraging these patterns, such as detecting anomalies where Nouns rely heavily on LayerNorm, TPA effectively identifies hallucinated responses. Extensive experiments show that TPA achieves state-of-the-art performance.
comment: Under review
♻ ☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations NeurIPS 2025
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: Accepted to NeurIPS 2025
♻ ☆ SmartSnap: Proactive Evidence Seeking for Self-Verifying Agents
Agentic reinforcement learning (RL) holds great promise for the development of autonomous agents under complex GUI tasks, but its scalability remains severely hampered by the verification of task completion. Existing task verification is treated as a passive, post-hoc process: a verifier (i.e., rule-based scoring script, reward or critic model, and LLM-as-a-Judge) analyzes the agent's entire interaction trajectory to determine if the agent succeeds. Such processing of verbose context that contains irrelevant, noisy history poses challenges to the verification protocols and therefore leads to prohibitive cost and low reliability. To overcome this bottleneck, we propose SmartSnap, a paradigm shift from this passive, post-hoc verification to proactive, in-situ self-verification by the agent itself. We introduce the Self-Verifying Agent, a new type of agent designed with dual missions: to not only complete a task but also to prove its accomplishment with curated snapshot evidences. Guided by our proposed 3C Principles (Completeness, Conciseness, and Creativity), the agent leverages its accessibility to the online environment to perform self-verification on a minimal, decisive set of snapshots. Such evidences are provided as the sole materials for a general LLM-as-a-Judge verifier to determine their validity and relevance. Experiments on mobile tasks across model families and scales demonstrate that our SmartSnap paradigm allows training LLM-driven agents in a scalable manner, bringing performance gains up to 26.08% and 16.66% respectively to 8B and 30B models. The synergizing between solution finding and evidence seeking facilitates the cultivation of efficient, self-verifying agents with competitive performance against DeepSeek V3.1 and Qwen3-235B-A22B. Code is available at: https://github.com/TencentYoutuResearch/SmartSnap
♻ ☆ Adaptive Constraint Propagation: Scaling Structured Inference for Large Language Models via Meta-Reinforcement Learning
Large language models increasingly require structured inference, from JSON schema enforcement to multi-lingual parsing, where outputs must satisfy complex constraints. We introduce MetaJuLS, a meta-reinforcement learning approach that learns universal constraint propagation policies applicable across languages and tasks without task-specific retraining. By formulating structured inference as adaptive constraint propagation and training a Graph Attention Network with meta-learning, MetaJuLS achieves 1.5--2.0$\times$ speedups over GPU-optimized baselines while maintaining within 0.2\% accuracy of state-of-the-art parsers. On Universal Dependencies across 10 languages and LLM-constrained generation (LogicBench, GSM8K-Constrained), MetaJuLS demonstrates rapid cross-domain adaptation: a policy trained on English parsing adapts to new languages and tasks with 5--10 gradient steps (5--15 seconds) rather than requiring hours of task-specific training. Mechanistic analysis reveals the policy discovers human-like parsing strategies (easy-first) and novel non-intuitive heuristics. By reducing propagation steps in LLM deployments, MetaJuLS contributes to Green AI by directly reducing inference carbon footprint.
♻ ☆ VocabTailor: Dynamic Vocabulary Selection for Downstream Tasks in Small Language Models
Small Language Models (SLMs) provide computational advantages in resource-constrained environments, yet memory limitations remain a critical bottleneck for edge device deployment. A substantial portion of SLMs' memory footprint stems from vocabulary-related components, particularly embeddings and language modeling (LM) heads, due to large vocabulary sizes. Existing static vocabulary pruning, while reducing memory usage, suffers from rigid, one-size-fits-all designs that cause information loss from the prefill stage and a lack of flexibility. In this work, we identify two key principles underlying the vocabulary reduction challenge: the lexical locality principle, the observation that only a small subset of tokens is required during any single inference, and the asymmetry in computational characteristics between vocabulary-related components of SLM. Based on these insights, we introduce VocabTailor, a novel decoupled dynamic vocabulary selection framework that addresses memory constraints through offloading embedding and implements a hybrid static-dynamic vocabulary selection strategy for LM Head, enabling on-demand loading of vocabulary components. Comprehensive experiments across diverse downstream tasks demonstrate that VocabTailor achieves a reduction of up to 99% in the memory usage of vocabulary-related components with minimal or no degradation in task performance, substantially outperforming existing static vocabulary pruning.
♻ ☆ Unpacking Generative AI in Education: Computational Modeling of Teacher and Student Perspectives in Social Media Discourse IEEE
Generative AI (GAI) technologies are quickly reshaping the educational landscape. As adoption accelerates, understanding how students and educators perceive these tools is essential. This study presents one of the most comprehensive analyses to date of stakeholder discourse dynamics on GAI in education using social media data. Our dataset includes 1,199 Reddit posts and 13,959 corresponding top-level comments. We apply sentiment analysis, topic modeling, and author classification. To support this, we propose and validate a modular framework that leverages prompt-based large language models (LLMs) for analysis of online social discourse, and we evaluate this framework against classical natural language processing (NLP) models. Our GPT-4o pipeline consistently outperforms prior approaches across all tasks. For example, it achieved 90.6% accuracy in sentiment analysis against gold-standard human annotations. Topic extraction uncovered 12 latent topics in the public discourse with varying sentiment and author distributions. Teachers and students convey optimism about GAI's potential for personalized learning and productivity in higher education. However, key differences emerged: students often voice distress over false accusations of cheating by AI detectors, while teachers generally express concern about job security, academic integrity, and institutional pressures to adopt GAI tools. These contrasting perspectives highlight the tension between innovation and oversight in GAI-enabled learning environments. Our findings suggest a need for clearer institutional policies, more transparent GAI integration practices, and support mechanisms for both educators and students. More broadly, this study demonstrates the potential of LLM-based frameworks for modeling stakeholder discourse within online communities.
comment: This is the original preprint version, not the final paper. The final, published version is copyrighted by IEEE and is available at: https://doi.org/10.1109/TCSS.2025.3630587
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current AI systems exhibit a fundamental limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings, Non-Collapsing Attention, and Contextual Identity Tracking (CIT), unified under a formal state space with eight operators for non-collapsing computation. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.63$) at ambiguous turns while standard architectures collapse early ($H = 0.10$), demonstrating that NRR preserves interpretive flexibility until context arrives. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 1 figure, 2 tables. v6: Added protocol extensions (state space formalization, eight operators). Clarified language to distinguish empirical results from design proposals
♻ ☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Our best AOs match or exceed white-box baselines on all four tasks and the best overall baseline on 3 of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
Machine Learning 165
Self-Supervised Learning from Noisy and Incomplete Data
Many important problems in science and engineering involve inferring a signal from noisy and/or incomplete observations, where the observation process is known. Historically, this problem has been tackled using hand-crafted regularization (e.g., sparsity, total-variation) to obtain meaningful estimates. Recent data-driven methods often offer better solutions by directly learning a solver from examples of ground-truth signals and associated observations. However, in many real-world applications, obtaining ground-truth references for training is expensive or impossible. Self-supervised learning methods offer a promising alternative by learning a solver from measurement data alone, bypassing the need for ground-truth references. This manuscript provides a comprehensive summary of different self-supervised methods for inverse problems, with a special emphasis on their theoretical underpinnings, and presents practical applications in imaging inverse problems.
☆ PET-TURTLE: Deep Unsupervised Support Vector Machines for Imbalanced Data Clusters
Foundation vision, audio, and language models enable zero-shot performance on downstream tasks via their latent representations. Recently, unsupervised learning of data group structure with deep learning methods has gained popularity. TURTLE, a state of the art deep clustering algorithm, uncovers data labeling without supervision by alternating label and hyperplane updates, maximizing the hyperplane margin, in a similar fashion to support vector machines (SVMs). However, TURTLE assumes clusters are balanced; when data is imbalanced, it yields non-ideal hyperplanes that cause higher clustering error. We propose PET-TURTLE, which generalizes the cost function to handle imbalanced data distributions by a power law prior. Additionally, by introducing sparse logits in the labeling process, PET-TURTLE optimizes a simpler search space that in turn improves accuracy for balanced datasets. Experiments on synthetic and real data show that PET-TURTLE improves accuracy for imbalanced sources, prevents over-prediction of minority clusters, and enhances overall clustering.
☆ Shallow-circuit Supervised Learning on a Quantum Processor
Quantum computing has long promised transformative advances in data analysis, yet practical quantum machine learning has remained elusive due to fundamental obstacles such as a steep quantum cost for the loading of classical data and poor trainability of many quantum machine learning algorithms designed for near-term quantum hardware. In this work, we show that one can overcome these obstacles by using a linear Hamiltonian-based machine learning method which provides a compact quantum representation of classical data via ground state problems for k-local Hamiltonians. We use the recent sample-based Krylov quantum diagonalization method to compute low-energy states of the data Hamiltonians, whose parameters are trained to express classical datasets through local gradients. We demonstrate the efficacy and scalability of the methods by performing experiments on benchmark datasets using up to 50 qubits of an IBM Heron quantum processor.
☆ From Entropy to Epiplexity: Rethinking Information for Computationally Bounded Intelligence
Can we learn more from data than existed in the generating process itself? Can new and useful information be constructed from merely applying deterministic transformations to existing data? Can the learnable content in data be evaluated without considering a downstream task? On these questions, Shannon information and Kolmogorov complexity come up nearly empty-handed, in part because they assume observers with unlimited computational capacity and fail to target the useful information content. In this work, we identify and exemplify three seeming paradoxes in information theory: (1) information cannot be increased by deterministic transformations; (2) information is independent of the order of data; (3) likelihood modeling is merely distribution matching. To shed light on the tension between these results and modern practice, and to quantify the value of data, we introduce epiplexity, a formalization of information capturing what computationally bounded observers can learn from data. Epiplexity captures the structural content in data while excluding time-bounded entropy, the random unpredictable content exemplified by pseudorandom number generators and chaotic dynamical systems. With these concepts, we demonstrate how information can be created with computation, how it depends on the ordering of the data, and how likelihood modeling can produce more complex programs than present in the data generating process itself. We also present practical procedures to estimate epiplexity which we show capture differences across data sources, track with downstream performance, and highlight dataset interventions that improve out-of-distribution generalization. In contrast to principles of model selection, epiplexity provides a theoretical foundation for data selection, guiding how to select, generate, or transform data for learning systems.
☆ Critic-Guided Reinforcement Unlearning in Text-to-Image Diffusion ICLR 2026
Machine unlearning in text-to-image diffusion models aims to remove targeted concepts while preserving overall utility. Prior diffusion unlearning methods typically rely on supervised weight edits or global penalties; reinforcement-learning (RL) approaches, while flexible, often optimize sparse end-of-trajectory rewards, yielding high-variance updates and weak credit assignment. We present a general RL framework for diffusion unlearning that treats denoising as a sequential decision process and introduces a timestep-aware critic with noisy-step rewards. Concretely, we train a CLIP-based reward predictor on noisy latents and use its per-step signal to compute advantage estimates for policy-gradient updates of the reverse diffusion kernel. Our algorithm is simple to implement, supports off-policy reuse, and plugs into standard text-to-image backbones. Across multiple concepts, the method achieves better or comparable forgetting to strong baselines while maintaining image quality and benign prompt fidelity; ablations show that (i) per-step critics and (ii) noisy-conditioned rewards are key to stability and effectiveness. We release code and evaluation scripts to facilitate reproducibility and future research on RL-based diffusion unlearning.
comment: Preprint. Under review at ICLR 2026
☆ Counterfactual Fairness with Graph Uncertainty ECML
Evaluating machine learning (ML) model bias is key to building trustworthy and robust ML systems. Counterfactual Fairness (CF) audits allow the measurement of bias of ML models with a causal framework, yet their conclusions rely on a single causal graph that is rarely known with certainty in real-world scenarios. We propose CF with Graph Uncertainty (CF-GU), a bias evaluation procedure that incorporates the uncertainty of specifying a causal graph into CF. CF-GU (i) bootstraps a Causal Discovery algorithm under domain knowledge constraints to produce a bag of plausible Directed Acyclic Graphs (DAGs), (ii) quantifies graph uncertainty with the normalized Shannon entropy, and (iii) provides confidence bounds on CF metrics. Experiments on synthetic data show how contrasting domain knowledge assumptions support or refute audits of CF, while experiments on real-world data (COMPAS and Adult datasets) pinpoint well-known biases with high confidence, even when supplied with minimal domain knowledge constraints.
comment: Peer reviewed pre-print. Presented at the BIAS 2025 Workshop at ECML PKDD
☆ Empowering Reliable Visual-Centric Instruction Following in MLLMs
Evaluating the instruction-following (IF) capabilities of Multimodal Large Language Models (MLLMs) is essential for rigorously assessing how faithfully model outputs adhere to user-specified intentions. Nevertheless, existing benchmarks for evaluating MLLMs' instruction-following capability primarily focus on verbal instructions in the textual modality. These limitations hinder a thorough analysis of instruction-following capabilities, as they overlook the implicit constraints embedded in the semantically rich visual modality. To address this gap, we introduce VC-IFEval, a new benchmark accompanied by a systematically constructed dataset that evaluates MLLMs' instruction-following ability under multimodal settings. Our benchmark systematically incorporates vision-dependent constraints into instruction design, enabling a more rigorous and fine-grained assessment of how well MLLMs align their outputs with both visual input and textual instructions. Furthermore, by fine-tuning MLLMs on our dataset, we achieve substantial gains in visual instruction-following accuracy and adherence. Through extensive evaluation across representative MLLMs, we provide new insights into the strengths and limitations of current models.
comment: Submitted to ARR Jan
☆ Sparse Knowledge Distillation: A Mathematical Framework for Probability-Domain Temperature Scaling and Multi-Stage Compression
We develop a unified theoretical framework for sparse knowledge distillation based on probability-domain softening operators. While the equivalence $p^{1/T} \propto \mathrm{softmax}(z/T)$ is well known, our contribution is an operator-level analytical framework built on this foundation rather than the equivalence itself. The framework comprises four core components: (i) operator-agnostic bias--variance decompositions that characterize when sparse students outperform dense teachers, (ii) a homotopy path formalization of multi-stage pruning in function space explaining why iterative compression succeeds where one-shot pruning fails, (iii) convergence guarantees establishing $O(1/n)$ rates for $n$-stage distillation with explicit parameter dependence, and (iv) equivalence class characterizations identifying distinct probability-domain operators that yield identical student models under capacity constraints. We introduce an axiomatic definition of probability-domain softening operators based on ranking preservation, continuity, entropy monotonicity, identity, and boundary behavior, and show that multiple non-equivalent operator families satisfy these axioms. All learning-theoretic guarantees are shown to hold uniformly across this operator class, independent of implementation details. These results provide theoretical grounding for black-box teacher distillation, partial-access settings such as top-$k$ truncation and text-only outputs, and privacy-preserving model compression.
comment: Machine learning theory. Develops an axiomatic, operator-agnostic framework for probability-domain knowledge distillation, including bias--variance analysis of sparse students, homotopy-based multi-stage pruning, $O(1/n)$ convergence guarantees, and equivalence classes of probability-domain softening operators. Theoretical analysis only
☆ AnatomiX, an Anatomy-Aware Grounded Multimodal Large Language Model for Chest X-Ray Interpretation
Multimodal medical large language models have shown impressive progress in chest X-ray interpretation but continue to face challenges in spatial reasoning and anatomical understanding. Although existing grounding techniques improve overall performance, they often fail to establish a true anatomical correspondence, resulting in incorrect anatomical understanding in the medical domain. To address this gap, we introduce AnatomiX, a multitask multimodal large language model explicitly designed for anatomically grounded chest X-ray interpretation. Inspired by the radiological workflow, AnatomiX adopts a two stage approach: first, it identifies anatomical structures and extracts their features, and then leverages a large language model to perform diverse downstream tasks such as phrase grounding, report generation, visual question answering, and image understanding. Extensive experiments across multiple benchmarks demonstrate that AnatomiX achieves superior anatomical reasoning and delivers over 25% improvement in performance on anatomy grounding, phrase grounding, grounded diagnosis and grounded captioning tasks compared to existing approaches. Code and pretrained model are available at https://github.com/aneesurhashmi/anatomix
☆ Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrat- ing the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and per- forms full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
☆ Predicting Time Pressure of Powered Two-Wheeler Riders for Proactive Safety Interventions
Time pressure critically influences risky maneuvers and crash proneness among powered two-wheeler riders, yet its prediction remains underexplored in intelligent transportation systems. We present a large-scale dataset of 129,000+ labeled multivariate time-series sequences from 153 rides by 51 participants under No, Low, and High Time Pressure conditions. Each sequence captures 63 features spanning vehicle kinematics, control inputs, behavioral violations, and environmental context. Our empirical analysis shows High Time Pressure induces 48% higher speeds, 36.4% greater speed variability, 58% more risky turns at intersections, 36% more sudden braking, and 50% higher rear brake forces versus No Time Pressure. To benchmark this dataset, we propose MotoTimePressure, a deep learning model combining convolutional preprocessing, dual-stage temporal attention, and Squeeze-and-Excitation feature recalibration, achieving 91.53% accuracy and 98.93% ROC AUC, outperforming eight baselines. Since time pressure cannot be directly measured in real time, we demonstrate its utility in collision prediction and threshold determination. Using MTPS-predicted time pressure as features, improves Informer-based collision risk accuracy from 91.25% to 93.51%, approaching oracle performance (93.72%). Thresholded time pressure states capture rider cognitive stress and enable proactive ITS interventions, including adaptive alerts, haptic feedback, V2I signaling, and speed guidance, supporting safer two-wheeler mobility under the Safe System Approach.
comment: 13 pages, 8 figures
☆ Can Embedding Similarity Predict Cross-Lingual Transfer? A Systematic Study on African Languages
Cross-lingual transfer is essential for building NLP systems for low-resource African languages, but practitioners lack reliable methods for selecting source languages. We systematically evaluate five embedding similarity metrics across 816 transfer experiments spanning three NLP tasks, three African-centric multilingual models, and 12 languages from four language families. We find that cosine gap and retrieval-based metrics (P@1, CSLS) reliably predict transfer success ($ρ= 0.4-0.6$), while CKA shows negligible predictive power ($ρ\approx 0.1$). Critically, correlation signs reverse when pooling across models (Simpson's Paradox), so practitioners must validate per-model. Embedding metrics achieve comparable predictive power to URIEL linguistic typology. Our results provide concrete guidance for source language selection and highlight the importance of model-specific analysis.
comment: 13 pages, 1 figure, 19 tables
☆ Dynamic Hyperparameter Importance for Efficient Multi-Objective Optimization IJCAI 2026
Choosing a suitable ML model is a complex task that can depend on several objectives, e.g., accuracy, model size, fairness, inference time, or energy consumption. In practice, this requires trading off multiple, often competing, objectives through multi-objective optimization (MOO). However, existing MOO methods typically treat all hyperparameters as equally important, overlooking that hyperparameter importance (HPI) can vary significantly depending on the trade-off between objectives. We propose a novel dynamic optimization approach that prioritizes the most influential hyperparameters based on varying objective trade-offs during the search process, which accelerates empirical convergence and leads to better solutions. Building on prior work on HPI for MOO post-analysis, we now integrate HPI, calculated with HyperSHAP, into the optimization. For this, we leverage the objective weightings naturally produced by the MOO algorithm ParEGO and adapt the configuration space by fixing the unimportant hyperparameters, allowing the search to focus on the important ones. Eventually, we validate our method with diverse tasks from PyMOO and YAHPO-Gym. Empirical results demonstrate improvements in convergence speed and Pareto front quality compared to baselines.
comment: Submitted to IJCAI 2026
☆ On the Convergence Behavior of Preconditioned Gradient Descent Toward the Rich Learning Regime
Spectral bias, the tendency of neural networks to learn low frequencies first, can be both a blessing and a curse. While it enhances the generalization capabilities by suppressing high-frequency noise, it can be a limitation in scientific tasks that require capturing fine-scale structures. The delayed generalization phenomenon known as grokking is another barrier to rapid training of neural networks. Grokking has been hypothesized to arise as learning transitions from the NTK to the feature-rich regime. This paper explores the impact of preconditioned gradient descent (PGD), such as Gauss-Newton, on spectral bias and grokking phenomena. We demonstrate through theoretical and empirical results how PGD can mitigate issues associated with spectral bias. Additionally, building on the rich learning regime grokking hypothesis, we study how PGD can be used to reduce delays associated with grokking. Our conjecture is that PGD, without the impediment of spectral bias, enables uniform exploration of the parameter space in the NTK regime. Our experimental results confirm this prediction, providing strong evidence that grokking represents a transitional behavior between the lazy regime characterized by the NTK and the rich regime. These findings deepen our understanding of the interplay between optimization dynamics, spectral bias, and the phases of neural network learning.
comment: 21 pages, 13 figures,
☆ Rapid Augmentations for Time Series (RATS): A High-Performance Library for Time Series Augmentation
Time series augmentation is critical for training robust deep learning models, particularly in domains where labelled data is scarce and expensive to obtain. However, existing augmentation libraries for time series, mainly written in Python, suffer from performance bottlenecks, where running time grows exponentially as dataset sizes increase -- an aspect limiting their applicability in large-scale, production-grade systems. We introduce RATS (Rapid Augmentations for Time Series), a high-performance library for time series augmentation written in Rust with Python bindings (RATSpy). RATS implements multiple augmentation methods spanning basic transformations, frequency-domain operations and time warping techniques, all accessible through a unified pipeline interface with built-in parallelisation. Comprehensive benchmarking of RATSpy versus a commonly used library (tasug) on 143 datasets demonstrates that RATSpy achieves an average speedup of 74.5\% over tsaug (up to 94.8\% on large datasets), with up to 47.9\% less peak memory usage.
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -the prompt- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
☆ PersonaLedger: Generating Realistic Financial Transactions with Persona Conditioned LLMs and Rule Grounded Feedback
Strict privacy regulations limit access to real transaction data, slowing open research in financial AI. Synthetic data can bridge this gap, but existing generators do not jointly achieve behavioral diversity and logical groundedness. Rule-driven simulators rely on hand-crafted workflows and shallow stochasticity, which miss the richness of human behavior. Learning-based generators such as GANs capture correlations yet often violate hard financial constraints and still require training on private data. We introduce PersonaLedger, a generation engine that uses a large language model conditioned on rich user personas to produce diverse transaction streams, coupled with an expert configurable programmatic engine that maintains correctness. The LLM and engine interact in a closed loop: after each event, the engine updates the user state, enforces financial rules, and returns a context aware "nextprompt" that guides the LLM toward feasible next actions. With this engine, we create a public dataset of 30 million transactions from 23,000 users and a benchmark suite with two tasks, illiquidity classification and identity theft segmentation. PersonaLedger offers a realistic, privacy preserving resource that supports rigorous evaluation of forecasting and anomaly detection models. PersonaLedger offers the community a rich, realistic, and privacy preserving resource -- complete with code, rules, and generation logs -- to accelerate innovation in financial AI and enable rigorous, reproducible evaluation.
☆ Finite Memory Belief Approximation for Optimal Control in Partially Observable Markov Decision Processes
We study finite memory belief approximation for partially observable (PO) stochastic optimal control (SOC) problems. While belief states are sufficient for SOC in partially observable Markov decision processes (POMDPs), they are generally infinite-dimensional and impractical. We interpret truncated input-output (IO) histories as inducing a belief approximation and develop a metric-based theory that directly relates information loss to control performance. Using the Wasserstein metric, we derive policy-conditional performance bounds that quantify value degradation induced by finite memory along typical closed-loop trajectories. Our analysis proceeds via a fixed-policy comparison: we evaluate two cost functionals under the same closed-loop execution and isolate the effect of replacing the true belief by its finite memory approximation inside the belief-level cost. For linear quadratic Gaussian (LQG) systems, we provide closed-form belief mismatch evaluation and empirically validate the predicted mechanism, demonstrating that belief mismatch decays approximately exponentially with memory length and that the induced performance mismatch scales accordingly. Together, these results provide a metric-aware characterization of what finite memory belief approximation can and cannot achieve in PO settings.
comment: 6 pages, 3 figures
☆ LeafLife: An Explainable Deep Learning Framework with Robustness for Grape Leaf Disease Recognition IEEE
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
comment: 4 pages, 8 figures, 2025 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON)
☆ Gradient descent reliably finds depth- and gate-optimal circuits for generic unitaries
When the gate set has continuous parameters, synthesizing a unitary operator as a quantum circuit is always possible using exact methods, but finding minimal circuits efficiently remains a challenging problem. The landscape is very different for compiled unitaries, which arise from programming and typically have short circuits, as compared with generic unitaries, which use all parameters and typically require circuits of maximal size. We show that simple gradient descent reliably finds depth- and gate-optimal circuits for generic unitaries, including in the presence of restricted chip connectivity. This runs counter to earlier evidence that optimal synthesis required combinatorial search, and we show that this discrepancy can be explained by avoiding the random selection of certain parameter-deficient circuit skeletons.
comment: 14 pages, 17 figures
☆ ToxiGAN: Toxic Data Augmentation via LLM-Guided Directional Adversarial Generation EACL 2026
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
comment: This paper has been accepted to the main conference of EACL 2026
☆ One Sample to Rule Them All: Extreme Data Efficiency in RL Scaling
The reasoning ability of large language models (LLMs) can be unleashed with reinforcement learning (RL) (OpenAI, 2024; DeepSeek-AI et al., 2025a; Zeng et al., 2025). The success of existing RL attempts in LLMs usually relies on high-quality samples of thousands or beyond. In this paper, we challenge fundamental assumptions about data requirements in RL for LLMs by demonstrating the remarkable effectiveness of one-shot learning. Specifically, we introduce polymath learning, a framework for designing one training sample that elicits multidisciplinary impact. We present three key findings: (1) A single, strategically selected math reasoning sample can produce significant performance improvements across multiple domains, including physics, chemistry, and biology with RL; (2) The math skills salient to reasoning suggest the characteristics of the optimal polymath sample; and (3) An engineered synthetic sample that integrates multidiscipline elements outperforms training with individual samples that naturally occur. Our approach achieves superior performance to training with larger datasets across various reasoning benchmarks, demonstrating that sample quality and design, rather than quantity, may be the key to unlock enhanced reasoning capabilities in language models. Our results suggest a shift, dubbed as sample engineering, toward precision engineering of training samples rather than simply increasing data volume.
☆ Time-Aware Synthetic Control
The synthetic control (SC) framework is widely used for observational causal inference with time-series panel data. SC has been successful in diverse applications, but existing methods typically treat the ordering of pre-intervention time indices interchangeable. This invariance means they may not fully take advantage of temporal structure when strong trends are present. We propose Time-Aware Synthetic Control (TASC), which employs a state-space model with a constant trend while preserving a low-rank structure of the signal. TASC uses the Kalman filter and Rauch-Tung-Striebel smoother: it first fits a generative time-series model with expectation-maximization and then performs counterfactual inference. We evaluate TASC on both simulated and real-world datasets, including policy evaluation and sports prediction. Our results suggest that TASC offers advantages in settings with strong temporal trends and high levels of observation noise.
☆ From Muscle to Text with MyoText: sEMG to Text via Finger Classification and Transformer-Based Decoding
Surface electromyography (sEMG) provides a direct neural interface for decoding muscle activity and offers a promising foundation for keyboard-free text input in wearable and mixed-reality systems. Previous sEMG-to-text studies mainly focused on recognizing letters directly from sEMG signals, forming an important first step toward translating muscle activity into text. Building on this foundation, we present MyoText, a hierarchical framework that decodes sEMG signals to text through physiologically grounded intermediate stages. MyoText first classifies finger activations from multichannel sEMG using a CNN-BiLSTM-Attention model, applies ergonomic typing priors to infer letters, and reconstructs full sentences with a fine-tuned T5 transformer. This modular design mirrors the natural hierarchy of typing, linking muscle intent to language output and reducing the search space for decoding. Evaluated on 30 users from the emg2qwerty dataset, MyoText outperforms baselines by achieving 85.4% finger-classification accuracy, 5.4% character error rate (CER), and 6.5% word error rate (WER). Beyond accuracy gains, this methodology establishes a principled pathway from neuromuscular signals to text, providing a blueprint for virtual and augmented-reality typing interfaces that operate entirely without physical keyboards. By integrating ergonomic structure with transformer-based linguistic reasoning, MyoText advances the feasibility of seamless, wearable neural input for future ubiquitous computing environments.
comment: 25 pages, 11 tables, 11 figures
☆ ATLAS: Adaptive Test-Time Latent Steering with External Verifiers for Enhancing LLMs Reasoning
Recent work on activation and latent steering has demonstrated that modifying internal representations can effectively guide large language models (LLMs) toward improved reasoning and efficiency without additional training. However, most existing approaches rely on fixed steering policies and static intervention strengths, which limit their robustness across problem instances and often result in over- or under-steering. We propose Adaptive Test-time Latent Steering, called (ATLAS), a task- specific framework that dynamically controls steering decisions at inference time using an external, lightweight latent verifier. Given intermediate hidden states, the verifier predicts the quality of ongoing reasoning and adaptively selects whether and how strongly to apply steering, enabling per-example and per-step adjustment with minimal overhead. To our knowledge, ATLAS is the first method to integrate learned latent verification into test-time steering for enhancing LLMs reasoning. Experiments on multiple mathematical reasoning benchmarks show that ATLAS consistently outperforms both vanilla decoding and fixed steering baselines, achieving higher accuracy while substantially reducing test-time token usage. These results demonstrate that verifier-guided latent adaptation provides an effective and scalable mechanism for controlling reasoning efficiency without sacrificing solution quality. All source code will be publicly available.
comment: 12 pages, 3 figures
☆ Grad-ELLM: Gradient-based Explanations for Decoder-only LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
☆ Audit Me If You Can: Query-Efficient Active Fairness Auditing of Black-Box LLMs ACL
Large Language Models (LLMs) exhibit systematic biases across demographic groups. Auditing is proposed as an accountability tool for black-box LLM applications, but suffers from resource-intensive query access. We conceptualise auditing as uncertainty estimation over a target fairness metric and introduce BAFA, the Bounded Active Fairness Auditor for query-efficient auditing of black-box LLMs. BAFA maintains a version space of surrogate models consistent with queried scores and computes uncertainty intervals for fairness metrics (e.g., $Δ$ AUC) via constrained empirical risk minimisation. Active query selection narrows these intervals to reduce estimation error. We evaluate BAFA on two standard fairness dataset case studies: \textsc{CivilComments} and \textsc{Bias-in-Bios}, comparing against stratified sampling, power sampling, and ablations. BAFA achieves target error thresholds with up to 40$\times$ fewer queries than stratified sampling (e.g., 144 vs 5,956 queries at $\varepsilon=0.02$ for \textsc{CivilComments}) for tight thresholds, demonstrates substantially better performance over time, and shows lower variance across runs. These results suggest that active sampling can reduce resources needed for independent fairness auditing with LLMs, supporting continuous model evaluations.
comment: Submitted to ACL ARR 2026
☆ Real-Time Adaptive Anomaly Detection in Industrial IoT Environments
To ensure reliability and service availability, next-generation networks are expected to rely on automated anomaly detection systems powered by advanced machine learning methods with the capability of handling multi-dimensional data. Such multi-dimensional, heterogeneous data occurs mostly in today's industrial Internet of Things (IIoT), where real-time detection of anomalies is critical to prevent impending failures and resolve them in a timely manner. However, existing anomaly detection methods often fall short of effectively coping with the complexity and dynamism of multi-dimensional data streams in IIoT. In this paper, we propose an adaptive method for detecting anomalies in IIoT streaming data utilizing a multi-source prediction model and concept drift adaptation. The proposed anomaly detection algorithm merges a prediction model into a novel drift adaptation method resulting in accurate and efficient anomaly detection that exhibits improved scalability. Our trace-driven evaluations indicate that the proposed method outperforms the state-of-the-art anomaly detection methods by achieving up to an 89.71% accuracy (in terms of Area under the Curve (AUC)) while meeting the given efficiency and scalability requirements.
☆ Joint Encoding of KV-Cache Blocks for Scalable LLM Serving
Modern large language models (LLMs) drive interactive AI systems but are bottlenecked by the memory-heavy growth of key-value (KV) caches, which limits real-time throughput under concurrent loads. Existing KV-cache compression methods rely on rigid heuristics, disrupt tensor layouts, or require specialized compute, hindering scalability and deployment. We propose joint encoding of KV-cache blocks, which fuses similar blocks across requests and input chunks into shared representations while preserving standard cache structure. This alleviates the KV-cache memory bottleneck, supporting high-concurrency serving without specialized hardware. Theoretically, we analyze the rate-distortion tradeoff of fused cache blocks under a Poisson process model. Empirically, our method achieves up to 4.38 $\times$ KV-cache compression with negligible accuracy loss across diverse LLMs and benchmarks, outperforming recent structured and adaptive compression baselines. In real LLM serving, joint encoding improves the token throughput by $\sim$40\% on a single-machine vLLM benchmark, demonstrating substantial gains in inference throughput. Code is available at https://github.com/sef1/kv_fast_fusion kv_joint_encoding.
comment: 12 pages, 16 figures, 2 tables
☆ Do LLMs Encode Functional Importance of Reasoning Tokens?
Large language models solve complex tasks by generating long reasoning chains, achieving higher accuracy at the cost of increased computational cost and reduced ability to isolate functionally relevant reasoning. Prior work on compact reasoning shortens such chains through probabilistic sampling, heuristics, or supervision from frontier models, but offers limited insight into whether models internally encode token-level functional importance for answer generation. We address this gap diagnostically and propose greedy pruning, a likelihood-preserving deletion procedure that iteratively removes reasoning tokens whose removal minimally degrades model likelihood under a specified objective, yielding length-controlled reasoning chains. We evaluate pruned reasoning in a distillation framework and show that students trained on pruned chains outperform a frontier-model-supervised compression baseline at matched reasoning lengths. Finally, our analysis reveals systematic pruning patterns and shows that attention scores can predict greedy pruning ranks, further suggesting that models encode a nontrivial functional importance structure over reasoning tokens.
comment: 20 pages, 8 figures, 2 tables
☆ Explainable Fuzzy GNNs for Leak Detection in Water Distribution Networks
Timely leak detection in water distribution networks is critical for conserving resources and maintaining operational efficiency. Although Graph Neural Networks (GNNs) excel at capturing spatial-temporal dependencies in sensor data, their black-box nature and the limited work on graph-based explainable models for water networks hinder practical adoption. We propose an explainable GNN framework that integrates mutual information to identify critical network regions and fuzzy logic to provide clear, rule-based explanations for node classification tasks. After benchmarking several GNN architectures, we selected the generalized graph convolution network (GENConv) for its superior performance and developed a fuzzy-enhanced variant that offers intuitive explanations for classified leak locations. Our fuzzy graph neural network (FGENConv) achieved Graph F1 scores of 0.889 for detection and 0.814 for localization, slightly below the crisp GENConv 0.938 and 0.858, respectively. Yet it compensates by providing spatially localized, fuzzy rule-based explanations. By striking the right balance between precision and explainability, the proposed fuzzy network could enable hydraulic engineers to validate predicted leak locations, conserve human resources, and optimize maintenance strategies. The code is available at github.com/pasqualedem/GNNLeakDetection.
comment: Accepted at IFSA-NAFIPS 2025
☆ Temporal Graph Network: Hallucination Detection in Multi-Turn Conversation
Hallucinations can be produced by conversational AI systems, particularly in multi-turn conversations where context changes and contradictions may eventually surface. By representing the entire conversation as a temporal graph, we present a novel graph-based method for detecting dialogue-level hallucinations. Our framework models each dialogue as a node, encoding it using a sentence transformer. We explore two different ways of connectivity: i) shared-entity edges, which connect turns that refer to the same entities; ii) temporal edges, which connect contiguous turns in the conversation. Message-passing is used to update the node embeddings, allowing flow of information between related nodes. The context-aware node embeddings are then combined using attention pooling into a single vector, which is then passed on to a classifier to determine the presence and type of hallucinations. We demonstrate that our method offers slightly improved performance over existing methods. Further, we show the attention mechanism can be used to justify the decision making process. The code and model weights are made available at: https://github.com/sambuaneesh/anlp-project.
☆ When the Coffee Feature Activates on Coffins: An Analysis of Feature Extraction and Steering for Mechanistic Interpretability
Recent work by Anthropic on Mechanistic interpretability claims to understand and control Large Language Models by extracting human-interpretable features from their neural activation patterns using sparse autoencoders (SAEs). If successful, this approach offers one of the most promising routes for human oversight in AI safety. We conduct an initial stress-test of these claims by replicating their main results with open-source SAEs for Llama 3.1. While we successfully reproduce basic feature extraction and steering capabilities, our investigation suggests that major caution is warranted regarding the generalizability of these claims. We find that feature steering exhibits substantial fragility, with sensitivity to layer selection, steering magnitude, and context. We observe non-standard activation behavior and demonstrate the difficulty to distinguish thematically similar features from one another. While SAE-based interpretability produces compelling demonstrations in selected cases, current methods often fall short of the systematic reliability required for safety-critical applications. This suggests a necessary shift in focus from prioritizing interpretability of internal representations toward reliable prediction and control of model output. Our work contributes to a more nuanced understanding of what mechanistic interpretability has achieved and highlights fundamental challenges for AI safety that remain unresolved.
comment: 33 pages (65 with appendix), 1 figure
☆ Lil: Less is Less When Applying Post-Training Sparse-Attention Algorithms in Long-Decode Stage
Large language models (LLMs) demonstrate strong capabilities across a wide range of complex tasks and are increasingly deployed at scale, placing significant demands on inference efficiency. Prior work typically decomposes inference into prefill and decode stages, with the decode stage dominating total latency. To reduce time and memory complexity in the decode stage, a line of work introduces sparse-attention algorithms. In this paper, we show, both empirically and theoretically, that sparse attention can paradoxically increase end-to-end complexity: information loss often induces significantly longer sequences, a phenomenon we term ``Less is Less'' (Lil). To mitigate the Lil problem, we propose an early-stopping algorithm that detects the threshold where information loss exceeds information gain during sparse decoding. Our early-stopping algorithm reduces token consumption by up to 90% with a marginal accuracy degradation of less than 2% across reasoning-intensive benchmarks.
☆ PiDR: Physics-Informed Inertial Dead Reckoning for Autonomous Platforms
A fundamental requirement for full autonomy is the ability to sustain accurate navigation in the absence of external data, such as GNSS signals or visual information. In these challenging environments, the platform must rely exclusively on inertial sensors, leading to pure inertial navigation. However, the inherent noise and other error terms of the inertial sensors in such real-world scenarios will cause the navigation solution to drift over time. Although conventional deep-learning models have emerged as a possible approach to inertial navigation, they are inherently black-box in nature. Furthermore, they struggle to learn effectively with limited supervised sensor data and often fail to preserve physical principles. To address these limitations, we propose PiDR, a physics-informed inertial dead-reckoning framework for autonomous platforms in situations of pure inertial navigation. PiDR offers transparency by explicitly integrating inertial navigation principles into the network training process through the physics-informed residual component. PiDR plays a crucial role in mitigating abrupt trajectory deviations even under limited or sparse supervision. We evaluated PiDR on real-world datasets collected by a mobile robot and an autonomous underwater vehicle. We obtained more than 29% positioning improvement in both datasets, demonstrating the ability of PiDR to generalize different platforms operating in various environments and dynamics. Thus, PiDR offers a robust, lightweight, yet effective architecture and can be deployed on resource-constrained platforms, enabling real-time pure inertial navigation in adverse scenarios.
comment: 11 pages and 7 figures
☆ Causal Manifold Fairness: Enforcing Geometric Invariance in Representation Learning
Fairness in machine learning is increasingly critical, yet standard approaches often treat data as static points in a high-dimensional space, ignoring the underlying generative structure. We posit that sensitive attributes (e.g., race, gender) do not merely shift data distributions but causally warp the geometry of the data manifold itself. To address this, we introduce Causal Manifold Fairness (CMF), a novel framework that bridges causal inference and geometric deep learning. CMF learns a latent representation where the local Riemannian geometry, defined by the metric tensor and curvature, remains invariant under counterfactual interventions on sensitive attributes. By enforcing constraints on the Jacobian and Hessian of the decoder, CMF ensures that the rules of the latent space (distances and shapes) are preserved across demographic groups. We validate CMF on synthetic Structural Causal Models (SCMs), demonstrating that it effectively disentangles sensitive geometric warping while preserving task utility, offering a rigorous quantification of the fairness-utility trade-off via geometric metrics.
☆ Flow Matching and Diffusion Models via PointNet for Generating Fluid Fields on Irregular Geometries
We present two novel generative geometric deep learning frameworks, termed Flow Matching PointNet and Diffusion PointNet, for predicting fluid flow variables on irregular geometries by incorporating PointNet into flow matching and diffusion models, respectively. In these frameworks, a reverse generative process reconstructs physical fields from standard Gaussian noise conditioned on unseen geometries. The proposed approaches operate directly on point-cloud representations of computational domains (e.g., grid vertices of finite-volume meshes) and therefore avoid the limitations of pixelation used to project geometries onto uniform lattices. In contrast to graph neural network-based diffusion models, Flow Matching PointNet and Diffusion PointNet do not exhibit high-frequency noise artifacts in the predicted fields. Moreover, unlike such approaches, which require auxiliary intermediate networks to condition geometry, the proposed frameworks rely solely on PointNet, resulting in a simple and unified architecture. The performance of the proposed frameworks is evaluated on steady incompressible flow past a cylinder, using a geometric dataset constructed by varying the cylinder's cross-sectional shape and orientation across samples. The results demonstrate that Flow Matching PointNet and Diffusion PointNet achieve more accurate predictions of velocity and pressure fields, as well as lift and drag forces, and exhibit greater robustness to incomplete geometries compared to a vanilla PointNet with the same number of trainable parameters.
☆ Dementia-R1: Reinforced Pretraining and Reasoning from Unstructured Clinical Notes for Real-World Dementia Prognosis
While Large Language Models (LLMs) have shown strong performance on clinical text understanding, they struggle with longitudinal prediction tasks such as dementia prognosis, which require reasoning over complex, non-monotonic symptom trajectories across multiple visits. Standard supervised training lacks explicit annotations for symptom evolution, while direct Reinforcement Learning (RL) is hindered by sparse binary rewards. To address this challenge, we introduce Dementia-R1, an RL-based framework for longitudinal dementia prognosis from unstructured clinical notes. Our approach adopts a Cold-Start RL strategy that pre-trains the model to predict verifiable clinical indices extracted from patient histories, enhancing the capability to reason about disease progression before determining the final clinical status. Extensive experiments demonstrate that Dementia-R1 achieves an F1 score of 77.03% on real-world unstructured clinical datasets. Notably, on the ADNI benchmark, our 7B model rivals GPT-4o, effectively capturing fluctuating cognitive trajectories. Code is available at https://anonymous.4open.science/r/dementiar1-CDB5
In-Context Reinforcement Learning through Bayesian Fusion of Context and Value Prior
In-context reinforcement learning (ICRL) promises fast adaptation to unseen environments without parameter updates, but current methods either cannot improve beyond the training distribution or require near-optimal data, limiting practical adoption. We introduce SPICE, a Bayesian ICRL method that learns a prior over Q-values via deep ensemble and updates this prior at test-time using in-context information through Bayesian updates. To recover from poor priors resulting from training on sub-optimal data, our online inference follows an Upper-Confidence Bound rule that favours exploration and adaptation. We prove that SPICE achieves regret-optimal behaviour in both stochastic bandits and finite-horizon MDPs, even when pretrained only on suboptimal trajectories. We validate these findings empirically across bandit and control benchmarks. SPICE achieves near-optimal decisions on unseen tasks, substantially reduces regret compared to prior ICRL and meta-RL approaches while rapidly adapting to unseen tasks and remaining robust under distribution shift.
☆ Multi-Distribution Robust Conformal Prediction
In many fairness and distribution robustness problems, one has access to labeled data from multiple source distributions yet the test data may come from an arbitrary member or a mixture of them. We study the problem of constructing a conformal prediction set that is uniformly valid across multiple, heterogeneous distributions, in the sense that no matter which distribution the test point is from, the coverage of the prediction set is guaranteed to exceed a pre-specified level. We first propose a max-p aggregation scheme that delivers finite-sample, multi-distribution coverage given any conformity scores associated with each distribution. Upon studying several efficiency optimization programs subject to uniform coverage, we prove the optimality and tightness of our aggregation scheme, and propose a general algorithm to learn conformity scores that lead to efficient prediction sets after the aggregation under standard conditions. We discuss how our framework relates to group-wise distributionally robust optimization, sub-population shift, fairness, and multi-source learning. In synthetic and real-data experiments, our method delivers valid worst-case coverage across multiple distributions while greatly reducing the set size compared with naively applying max-p aggregation to single-source conformity scores, and can be comparable in size to single-source prediction sets with popular, standard conformity scores.
☆ From Memorization to Creativity: LLM as a Designer of Novel Neural-Architectures
Large language models (LLMs) excel in program synthesis, yet their ability to autonomously navigate neural architecture design--balancing syntactic reliability, performance, and structural novelty--remains underexplored. We address this by placing a code-oriented LLM within a closed-loop synthesis framework, analyzing its evolution over 22 supervised fine-tuning cycles. The model synthesizes PyTorch convolutional networks which are validated, evaluated via low-fidelity performance signals (single-epoch accuracy), and filtered using a MinHash-Jaccard criterion to prevent structural redundancy. High-performing, novel architectures are converted into prompt-code pairs for iterative fine-tuning via parameter-efficient LoRA adaptation, initialized from the LEMUR dataset. Across cycles, the LLM internalizes empirical architectural priors, becoming a robust generator. The valid generation rate stabilizes at 50.6 percent (peaking at 74.5 percent), while mean first-epoch accuracy rises from 28.06 percent to 50.99 percent, and the fraction of candidates exceeding 40 percent accuracy grows from 2.04 percent to 96.81 percent. Analyses confirm the model moves beyond replicating existing motifs, synthesizing 455 high-performing architectures absent from the original corpus. By grounding code synthesis in execution feedback, this work provides a scalable blueprint for transforming stochastic generators into autonomous, performance-driven neural designers, establishing that LLMs can internalize empirical, non-textual rewards to transcend their training data.
☆ Learning to Act Robustly with View-Invariant Latent Actions
Vision-based robotic policies often struggle with even minor viewpoint changes, underscoring the need for view-invariant visual representations. This challenge becomes more pronounced in real-world settings, where viewpoint variability is unavoidable and can significantly disrupt policy performance. Existing methods typically learn invariance from multi-view observations at the scene level, but such approaches rely on visual appearance and fail to incorporate the physical dynamics essential for robust generalization. We propose View-Invariant Latent Action (VILA), which models a latent action capturing transition patterns across trajectories to learn view-invariant representations grounded in physical dynamics. VILA aligns these latent actions across viewpoints using an action-guided objective based on ground-truth action sequences. Experiments in both simulation and the real world show that VILA-based policies generalize effectively to unseen viewpoints and transfer well to new tasks, establishing VILA as a strong pretraining framework that improves robustness and downstream learning performance.
comment: Website: https://joon-stack.github.io/VILA/
☆ Reliability-Aware Adaptive Self-Consistency for Efficient Sampling in LLM Reasoning
Self-Consistency improves reasoning reliability through multi-sample aggregation, but incurs substantial inference cost. Adaptive self-consistency methods mitigate this issue by adjusting the sampling budget; however, they rely on count-based stopping rules that treat all responses equally, often leading to unnecessary sampling. We propose Reliability-Aware Adaptive Self-Consistency (ReASC), which addresses this limitation by reframing adaptive sampling from response counting to evidence sufficiency, leveraging response-level confidence for principled information aggregation. ReASC operates in two stages: a single-sample decision stage that resolves instances confidently answerable from a single response, and a reliability-aware accumulation stage that aggregates responses by jointly leveraging their frequency and confidence. Across five models and four datasets, ReASC consistently achieves the best accuracy-cost trade-off compared to existing baselines, yielding improved inference efficiency across model scales from 3B to 27B parameters. As a concrete example, ReASC reduces inference cost by up to 70\% relative to self-consistency while preserving accuracy on GSM8K using Gemma-3-4B-it.
comment: 15 pages, 8 figures
☆ Low-Resource Heuristics for Bahnaric Optical Character Recognition Improvement
Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
☆ MixTTE: Multi-Level Mixture-of-Experts for Scalable and Adaptive Travel Time Estimation KDD 2026
Accurate Travel Time Estimation (TTE) is critical for ride-hailing platforms, where errors directly impact user experience and operational efficiency. While existing production systems excel at holistic route-level dependency modeling, they struggle to capture city-scale traffic dynamics and long-tail scenarios, leading to unreliable predictions in large urban networks. In this paper, we propose \model, a scalable and adaptive framework that synergistically integrates link-level modeling with industrial route-level TTE systems. Specifically, we propose a spatio-temporal external attention module to capture global traffic dynamic dependencies across million-scale road networks efficiently. Moreover, we construct a stabilized graph mixture-of-experts network to handle heterogeneous traffic patterns while maintaining inference efficiency. Furthermore, an asynchronous incremental learning strategy is tailored to enable real-time and stable adaptation to dynamic traffic distribution shifts. Experiments on real-world datasets validate MixTTE significantly reduces prediction errors compared to seven baselines. MixTTE has been deployed in DiDi, substantially improving the accuracy and stability of the TTE service.
comment: Accepted to KDD 2026
☆ ChemBART: A Pre-trained BART Model Assisting Organic Chemistry Analysis
Recent advances in large language models (LLMs) have demonstrated transformative potential across diverse fields. While LLMs have been applied to molecular simplified molecular input line entry system (SMILES) in computer-aided synthesis planning (CASP), existing methodologies typically address single tasks, such as precursor prediction. We introduce ChemBART, a SMILES-based LLM pre-trained on chemical reactions, which enables a unified model for multiple downstream chemical tasks--achieving the paradigm of "one model, one pre-training, multiple tasks." By leveraging outputs from a mask-filling pre-training task on reaction expressions, ChemBART effectively solves a variety of chemical problems, including precursor/reagent generation, temperature-yield regression, molecular property classification, and optimizing the policy and value functions within a reinforcement learning framework, integrated with Monte Carlo tree search for multi-step synthesis route design. Unlike single-molecule pre-trained LLMs constrained to specific applications, ChemBART addresses broader chemical challenges and integrates them for comprehensive synthesis planning. Crucially, ChemBART-designed multi-step synthesis routes and reaction conditions directly inspired wet-lab validation, which confirmed shorter pathways with ~30% yield improvement over literature benchmarks. Our work validates the power of reaction-focused pre-training and showcases the broad utility of ChemBART in advancing the complete synthesis planning cycle.
☆ Image, Word and Thought: A More Challenging Language Task for the Iterated Learning Model
The iterated learning model simulates the transmission of language from generation to generation in order to explore how the constraints imposed by language transmission facilitate the emergence of language structure. Despite each modelled language learner starting from a blank slate, the presence of a bottleneck limiting the number of utterances to which the learner is exposed can lead to the emergence of language that lacks ambiguity, is governed by grammatical rules, and is consistent over successive generations, that is, one that is expressive, compositional and stable. The recent introduction of a more computationally tractable and ecologically valid semi supervised iterated learning model, combining supervised and unsupervised learning within an autoencoder architecture, has enabled exploration of language transmission dynamics for much larger meaning-signal spaces. Here, for the first time, the model has been successfully applied to a language learning task involving the communication of much more complex meanings: seven-segment display images. Agents in this model are able to learn and transmit a language that is expressive: distinct codes are employed for all 128 glyphs; compositional: signal components consistently map to meaning components, and stable: the language does not change from generation to generation.
comment: This is an extended version of a paper accepted for EvoLang2026, it includes additional details of the numerical experiments
☆ TA-Prompting: Enhancing Video Large Language Models for Dense Video Captioning via Temporal Anchors WACV 2026
Dense video captioning aims to interpret and describe all temporally localized events throughout an input video. Recent state-of-the-art methods leverage large language models (LLMs) to provide detailed moment descriptions for video data. However, existing VideoLLMs remain challenging in identifying precise event boundaries in untrimmed videos, causing the generated captions to be not properly grounded. In this paper, we propose TA-Prompting, which enhances VideoLLMs via Temporal Anchors that learn to precisely localize events and prompt the VideoLLMs to perform temporal-aware video event understanding. During inference, in order to properly determine the output caption sequence from an arbitrary number of events presented within a video, we introduce an event coherent sampling strategy to select event captions with sufficient coherence across temporal events and cross-modal similarity with the given video. Through extensive experiments on benchmark datasets, we show that our TA-Prompting is favorable against state-of-the-art VideoLLMs, yielding superior performance on dense video captioning and temporal understanding tasks including moment retrieval and temporalQA.
comment: 8 pages for main paper (exclude citation pages), 6 pages for appendix, totally 10 figures 7 tables and 2 algorithms. The paper is accepted by WACV 2026
☆ Bridging Mechanistic Interpretability and Prompt Engineering with Gradient Ascent for Interpretable Persona Control
Controlling emergent behavioral personas (e.g., sycophancy, hallucination) in Large Language Models (LLMs) is critical for AI safety, yet remains a persistent challenge. Existing solutions face a dilemma: manual prompt engineering is intuitive but unscalable and imprecise, while automatic optimization methods are effective but operate as "black boxes" with no interpretable connection to model internals. We propose a novel framework that adapts gradient ascent to LLMs, enabling targeted prompt discovery. In specific, we propose two methods, RESGA and SAEGA, that both optimize randomly initialized prompts to achieve better aligned representation with an identified persona direction. We introduce fluent gradient ascent to control the fluency of discovered persona steering prompts. We demonstrate RESGA and SAEGA's effectiveness across Llama 3.1, Qwen 2.5, and Gemma 3 for steering three different personas,sycophancy, hallucination, and myopic reward. Crucially, on sycophancy, our automatically discovered prompts achieve significant improvement (49.90% compared with 79.24%). By grounding prompt discovery in mechanistically meaningful features, our method offers a new paradigm for controllable and interpretable behavior modification.
☆ Enhanced 3D Gravity Inversion Using ResU-Net with Density Logging Constraints: A Dual-Phase Training Approach
Gravity exploration has become an important geophysical method due to its low cost and high efficiency. With the rise of artificial intelligence, data-driven gravity inversion methods based on deep learning (DL) possess physical property recovery capabilities that conventional regularization methods lack. However, existing DL methods suffer from insufficient prior information constraints, which leads to inversion models with large data fitting errors and unreliable results. Moreover, the inversion results lack constraints and matching from other exploration methods, leading to results that may contradict known geological conditions. In this study, we propose a novel approach that integrates prior density well logging information to address the above issues. First, we introduce a depth weighting function to the neural network (NN) and train it in the weighted density parameter domain. The NN, under the constraint of the weighted forward operator, demonstrates improved inversion performance, with the resulting inversion model exhibiting smaller data fitting errors. Next, we divide the entire network training into two phases: first training a large pre-trained network Net-I, and then using the density logging information as the constraint to get the optimized fine-tuning network Net-II. Through testing and comparison in synthetic models and Bishop Model, the inversion quality of our method has significantly improved compared to the unconstrained data-driven DL inversion method. Additionally, we also conduct a comparison and discussion between our method and both the conventional focusing inversion (FI) method and its well logging constrained variant. Finally, we apply this method to the measured data from the San Nicolas mining area in Mexico, comparing and analyzing it with two recent gravity inversion methods based on DL.
☆ RPIQ: Residual-Projected Multi-Collaboration Closed-Loop and Single Instance Quantization for Visually Impaired Assistance
Visually impaired users face significant challenges in daily information access and real-time environmental perception, and there is an urgent need for intelligent assistive systems with accurate recognition capabilities. Although large-scale models provide effective solutions for perception and reasoning, their practical deployment on assistive devices is severely constrained by excessive memory consumption and high inference costs. Moreover, existing quantization strategies often ignore inter-block error accumulation, leading to degraded model stability. To address these challenges, this study proposes a novel quantization framework -- Residual-Projected Multi-Collaboration Closed-Loop and Single Instance Quantization(RPIQ), whose quantization process adopts a multi-collaborative closed-loop compensation scheme based on Single Instance Calibration and Gauss-Seidel Iterative Quantization. Experiments on various types of large-scale models, including language models such as OPT, Qwen, and LLaMA, as well as vision-language models such as CogVLM2, demonstrate that RPIQ can compress models to 4-bit representation while significantly reducing peak memory consumption (approximately 60%-75% reduction compared to original full-precision models). The method maintains performance highly close to full-precision models across multiple language and visual tasks, and exhibits excellent recognition and reasoning capabilities in key applications such as text understanding and visual question answering in complex scenarios. While verifying the effectiveness of RPIQ for deployment in real assistive systems, this study also advances the computational efficiency and reliability of large models, enabling them to provide visually impaired users with the required information accurately and rapidly.
☆ Domain Generalization for Time Series: Enhancing Drilling Regression Models for Stick-Slip Index Prediction
This paper provides a comprehensive comparison of domain generalization techniques applied to time series data within a drilling context, focusing on the prediction of a continuous Stick-Slip Index (SSI), a critical metric for assessing torsional downhole vibrations at the drill bit. The study aims to develop a robust regression model that can generalize across domains by training on 60 second labeled sequences of 1 Hz surface drilling data to predict the SSI. The model is tested in wells that are different from those used during training. To fine-tune the model architecture, a grid search approach is employed to optimize key hyperparameters. A comparative analysis of the Adversarial Domain Generalization (ADG), Invariant Risk Minimization (IRM) and baseline models is presented, along with an evaluation of the effectiveness of transfer learning (TL) in improving model performance. The ADG and IRM models achieve performance improvements of 10% and 8%, respectively, over the baseline model. Most importantly, severe events are detected 60% of the time, against 20% for the baseline model. Overall, the results indicate that both ADG and IRM models surpass the baseline, with the ADG model exhibiting a slight advantage over the IRM model. Additionally, applying TL to a pre-trained model further improves performance. Our findings demonstrate the potential of domain generalization approaches in drilling applications, with ADG emerging as the most effective approach.
☆ STIPP: Space-time in situ postprocessing over the French Alps using proper scoring rules
We propose Space-time in situ postprocessing (STIPP), a machine learning model that generates spatio-temporally consistent weather forecasts for a network of station locations. Gridded forecasts from classical numerical weather prediction or data-driven models often lack the necessary precision due to unresolved local effects. Typical statistical postprocessing methods correct these biases, but often degrade spatio-temporal correlation structures in doing so. Recent works based on generative modeling successfully improve spatial correlation structures but have to forecast every lead time independently. In contrast, STIPP makes joint spatio-temporal forecasts which have increased accuracy for surface temperature, wind, relative humidity and precipitation when compared to baseline methods. It makes hourly ensemble predictions given only a six-hourly deterministic forecast, blending the boundaries of postprocessing and temporal interpolation. By leveraging a multivariate proper scoring rule for training, STIPP contributes to ongoing work data-driven atmospheric models supervised only with distribution marginals.
comment: 17 pages, 11 figures
☆ Quantum-Enhanced Neural Contextual Bandit Algorithms
Stochastic contextual bandits are fundamental for sequential decision-making but pose significant challenges for existing neural network-based algorithms, particularly when scaling to quantum neural networks (QNNs) due to issues such as massive over-parameterization, computational instability, and the barren plateau phenomenon. This paper introduces the Quantum Neural Tangent Kernel-Upper Confidence Bound (QNTK-UCB) algorithm, a novel algorithm that leverages the Quantum Neural Tangent Kernel (QNTK) to address these limitations. By freezing the QNN at a random initialization and utilizing its static QNTK as a kernel for ridge regression, QNTK-UCB bypasses the unstable training dynamics inherent in explicit parameterized quantum circuit training while fully exploiting the unique quantum inductive bias. For a time horizon $T$ and $K$ actions, our theoretical analysis reveals a significantly improved parameter scaling of $Ω((TK)^3)$ for QNTK-UCB, a substantial reduction compared to $Ω((TK)^8)$ required by classical NeuralUCB algorithms for similar regret guarantees. Empirical evaluations on non-linear synthetic benchmarks and quantum-native variational quantum eigensolver tasks demonstrate QNTK-UCB's superior sample efficiency in low-data regimes. This work highlights how the inherent properties of QNTK provide implicit regularization and a sharper spectral decay, paving the way for achieving ``quantum advantage'' in online learning.
comment: 30 pages, under review
☆ Electricity Price Forecasting: Bridging Linear Models, Neural Networks and Online Learning
Precise day-ahead forecasts for electricity prices are crucial to ensure efficient portfolio management, support strategic decision-making for power plant operations, enable efficient battery storage optimization, and facilitate demand response planning. However, developing an accurate prediction model is highly challenging in an uncertain and volatile market environment. For instance, although linear models generally exhibit competitive performance in predicting electricity prices with minimal computational requirements, they fail to capture relevant nonlinear relationships. Nonlinear models, on the other hand, can improve forecasting accuracy with a surge in computational costs. We propose a novel multivariate neural network approach that combines linear and nonlinear feed-forward neural structures. Unlike previous hybrid models, our approach integrates online learning and forecast combination for efficient training and accuracy improvement. It also incorporates all relevant characteristics, particularly the fundamental relationships arising from wind and solar generation, electricity demand patterns, related energy fuel and carbon markets, in addition to autoregressive dynamics and calendar effects. Compared to the current state-of-the-art benchmark models, the proposed forecasting method significantly reduces computational cost while delivering superior forecasting accuracy (12-13% RMSE and 15-18% MAE reductions). Our results are derived from a six-year forecasting study conducted on major European electricity markets.
☆ HAL: Inducing Human-likeness in LLMs with Alignment
Conversational human-likeness plays a central role in human-AI interaction, yet it has remained difficult to define, measure, and optimize. As a result, improvements in human-like behavior are largely driven by scale or broad supervised training, rather than targeted alignment. We introduce Human Aligning LLMs (HAL), a framework for aligning language models to conversational human-likeness using an interpretable, data-driven reward. HAL derives explicit conversational traits from contrastive dialogue data, combines them into a compact scalar score, and uses this score as a transparent reward signal for alignment with standard preference optimization methods. Using this approach, we align models of varying sizes without affecting their overall performance. In large-scale human evaluations, models aligned with HAL are more frequently perceived as human-like in conversation. Because HAL operates over explicit, interpretable traits, it enables inspection of alignment behavior and diagnosis of unintended effects. More broadly, HAL demonstrates how soft, qualitative properties of language--previously outside the scope for alignment--can be made measurable and aligned in an interpretable and explainable way.
☆ COFFEE: COdesign Framework for Feature Enriched Embeddings in Ads-Ranking Systems
Diverse and enriched data sources are essential for commercial ads-recommendation models to accurately assess user interest both before and after engagement with content. While extended user-engagement histories can improve the prediction of user interests, it is equally important to embed activity sequences from multiple sources to ensure freshness of user and ad-representations, following scaling law principles. In this paper, we present a novel three-dimensional framework for enhancing user-ad representations without increasing model inference or serving complexity. The first dimension examines the impact of incorporating diverse event sources, the second considers the benefits of longer user histories, and the third focuses on enriching data with additional event attributes and multi-modal embeddings. We assess the return on investment (ROI) of our source enrichment framework by comparing organic user engagement sources, such as content viewing, with ad-impression sources. The proposed method can boost the area under curve (AUC) and the slope of scaling curves for ad-impression sources by 1.56 to 2 times compared to organic usage sources even for short online-sequence lengths of 100 to 10K. Additionally, click-through rate (CTR) prediction improves by 0.56% AUC over the baseline production ad-recommendation system when using enriched ad-impression event sources, leading to improved sequence scaling resolutions for longer and offline user-ad representations.
comment: 4 pages, 5 figures, 1 table
☆ Stratified Hazard Sampling: Minimal-Variance Event Scheduling for CTMC/DTMC Discrete Diffusion and Flow Models
CTMC/DTMC-based discrete generative models, including uniform-noise discrete diffusion (e.g., D3PM/CTDD) and discrete flow matching, enable non-autoregressive sequence generation by repeatedly replacing tokens through a time-inhomogeneous Markov process. Inference is typically implemented with step-based simulation: each token decides to jump via independent Bernoulli (or categorical) draws at every discretization step. Under uniform-noise initialization, where self-correction requires multiple edits per position, these independent decisions induce substantial variance in both the number and timing of edits, leading to characteristic failure modes such as under-editing (residual noise) or over-editing (cascading unnecessary substitutions), decreasing reproducibility. We propose Stratified Hazard Sampling (SHS), a drop-in and hyperparameter-free inference principle for any sampler that admits a stay-vs.-replace decomposition. SHS models per-token edits as events driven by cumulative hazard (CTMC) or cumulative jump mass (DTMC) and places events by stratifying this cumulative quantity: with a single random phase per position, a token jumps whenever its accumulated hazard crosses unit-spaced thresholds. This preserves the expected number of jumps while achieving the minimum possible variance among unbiased integer estimators (bounded by 1/4), without altering per-jump destination sampling and thus retaining multimodality. We also introduce a phase-allocation variant for blacklist-style lexical constraints that prioritizes early edits at high-risk positions to mitigate late-masking artifacts.
comment: Work in progress. Feedback welcome
☆ RadioDiff-Flux: Efficient Radio Map Construction via Generative Denoise Diffusion Model Trajectory Midpoint Reuse
Accurate radio map (RM) construction is essential to enabling environment-aware and adaptive wireless communication. However, in future 6G scenarios characterized by high-speed network entities and fast-changing environments, it is very challenging to meet real-time requirements. Although generative diffusion models (DMs) can achieve state-of-the-art accuracy with second-level delay, their iterative nature leads to prohibitive inference latency in delay-sensitive scenarios. In this paper, by uncovering a key structural property of diffusion processes: the latent midpoints remain highly consistent across semantically similar scenes, we propose RadioDiff-Flux, a novel two-stage latent diffusion framework that decouples static environmental modeling from dynamic refinement, enabling the reuse of precomputed midpoints to bypass redundant denoising. In particular, the first stage generates a coarse latent representation using only static scene features, which can be cached and shared across similar scenarios. The second stage adapts this representation to dynamic conditions and transmitter locations using a pre-trained model, thereby avoiding repeated early-stage computation. The proposed RadioDiff-Flux significantly reduces inference time while preserving fidelity. Experiment results show that RadioDiff-Flux can achieve up to 50 acceleration with less than 0.15% accuracy loss, demonstrating its practical utility for fast, scalable RM generation in future 6G networks.
☆ Fast Conformal Prediction using Conditional Interquantile Intervals
We introduce Conformal Interquantile Regression (CIR), a conformal regression method that efficiently constructs near-minimal prediction intervals with guaranteed coverage. CIR leverages black-box machine learning models to estimate outcome distributions through interquantile ranges, transforming these estimates into compact prediction intervals while achieving approximate conditional coverage. We further propose CIR+ (Conditional Interquantile Regression with More Comparison), which enhances CIR by incorporating a width-based selection rule for interquantile intervals. This refinement yields narrower prediction intervals while maintaining comparable coverage, though at the cost of slightly increased computational time. Both methods address key limitations of existing distributional conformal prediction approaches: they handle skewed distributions more effectively than Conformalized Quantile Regression, and they achieve substantially higher computational efficiency than Conformal Histogram Regression by eliminating the need for histogram construction. Extensive experiments on synthetic and real-world datasets demonstrate that our methods optimally balance predictive accuracy and computational efficiency compared to existing approaches.
☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies KDD
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: 11pages, 5figures, In Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
☆ Scalable Tree Ensemble Proximities in Python
Tree ensemble methods such as Random Forests naturally induce supervised similarity measures through their decision tree structure, but existing implementations of proximities derived from tree ensembles typically suffer from quadratic time or memory complexity, limiting their scalability. In this work, we introduce a general framework for efficient proximity computation by defining a family of Separable Weighted Leaf-Collision Proximities. We show that any proximity measure in this family admits an exact sparse matrix factorization, restricting computation to leaf-level collisions and avoiding explicit pairwise comparisons. This formulation enables low-memory, scalable proximity computation using sparse linear algebra in Python. Empirical benchmarks demonstrate substantial runtime and memory improvements over traditional approaches, allowing tree ensemble proximities to scale efficiently to datasets with hundreds of thousands of samples on standard CPU hardware.
☆ CRoPE: Efficient Parametrization of Rotary Positional Embedding
Rotary positional embedding has become the state-of-the-art approach to encode position information in transformer-based models. While it is often succinctly expressed in complex linear algebra, we note that the actual implementation of $Q/K/V$-projections is not equivalent to a complex linear transformation. We argue that complex linear transformation is a more natural parametrization and saves near 50\% parameters within the attention block. We show empirically that removing such redundancy has negligible impact on the model performance both in sample and out of sample. Our modification achieves more efficient parameter usage, as well as a cleaner interpretation of the representation space.
☆ Scaling Laws of Machine Learning for Optimal Power Flow
Optimal power flow (OPF) is one of the fundamental tasks for power system operations. While machine learning (ML) approaches such as deep neural networks (DNNs) have been widely studied to enhance OPF solution speed and performance, their practical deployment faces two critical scaling questions: What is the minimum training data volume required for reliable results? How should ML models' complexity balance accuracy with real-time computational limits? Existing studies evaluate discrete scenarios without quantifying these scaling relationships, leading to trial-and-error-based ML development in real-world applications. This work presents the first systematic scaling study for ML-based OPF across two dimensions: data scale (0.1K-40K training samples) and compute scale (multiple NN architectures with varying FLOPs). Our results reveal consistent power-law relationships on both DNNs and physics-informed NNs (PINNs) between each resource dimension and three core performance metrics: prediction error (MAE), constraint violations and speed. We find that for ACOPF, the accuracy metric scales with dataset size and training compute. These scaling laws enable predictable and principled ML pipeline design for OPF. We further identify the divergence between prediction accuracy and constraint feasibility and characterize the compute-optimal frontier. This work provides quantitative guidance for ML-OPF design and deployments.
comment: 5 pages
☆ Which Deep Learner? A Systematic Evaluation of Advanced Deep Forecasting Models Accuracy and Efficiency for Network Traffic Prediction
Network traffic prediction is essential for automating modern network management. It is a difficult time series forecasting (TSF) problem that has been addressed by Deep Learning (DL) models due to their ability to capture complex patterns. Advances in forecasting, from sophisticated transformer architectures to simple linear models, have improved performance across diverse prediction tasks. However, given the variability of network traffic across network environments and traffic series timescales, it is essential to identify effective deployment choices and modeling directions for network traffic prediction. This study systematically identify and evaluates twelve advanced TSF models -including transformer-based and traditional DL approaches, each with unique advantages for network traffic prediction- against three statistical baselines on four real traffic datasets, across multiple time scales and horizons, assessing performance, robustness to anomalies, data gaps, external factors, data efficiency, and resource efficiency in terms of time, memory, and energy. Results highlight performance regimes, efficiency thresholds, and promising architectures that balance accuracy and efficiency, demonstrating robustness to traffic challenges and suggesting new directions beyond traditional RNNs.
comment: 19 pages, 13 figures
☆ Topology-Independent Robustness of the Weighted Mean under Label Poisoning Attacks in Heterogeneous Decentralized Learning
Robustness to malicious attacks is crucial for practical decentralized signal processing and machine learning systems. A typical example of such attacks is label poisoning, meaning that some agents possess corrupted local labels and share models trained on these poisoned data. To defend against malicious attacks, existing works often focus on designing robust aggregators; meanwhile, the weighted mean aggregator is typically considered a simple, vulnerable baseline. This paper analyzes the robustness of decentralized gradient descent under label poisoning attacks, considering both robust and weighted mean aggregators. Theoretical results reveal that the learning errors of robust aggregators depend on the network topology, whereas the performance of weighted mean aggregator is topology-independent. Remarkably, the weighted mean aggregator, although often considered vulnerable, can outperform robust aggregators under sufficient heterogeneity, particularly when: (i) the global contamination rate (i.e., the fraction of poisoned agents for the entire network) is smaller than the local contamination rate (i.e., the maximal fraction of poisoned neighbors for the regular agents); (ii) the network of regular agents is disconnected; or (iii) the network of regular agents is sparse and the local contamination rate is high. Empirical results support our theoretical findings, highlighting the important role of network topology in the robustness to label poisoning attacks.
☆ Adversarial Contrastive Learning for LLM Quantization Attacks
Model quantization is critical for deploying large language models (LLMs) on resource-constrained hardware, yet recent work has revealed severe security risks that benign LLMs in full precision may exhibit malicious behaviors after quantization. In this paper, we propose Adversarial Contrastive Learning (ACL), a novel gradient-based quantization attack that achieves superior attack effectiveness by explicitly maximizing the gap between benign and harmful responses probabilities. ACL formulates the attack objective as a triplet-based contrastive loss, and integrates it with a projected gradient descent two-stage distributed fine-tuning strategy to ensure stable and efficient optimization. Extensive experiments demonstrate ACL's remarkable effectiveness, achieving attack success rates of 86.00% for over-refusal, 97.69% for jailbreak, and 92.40% for advertisement injection, substantially outperforming state-of-the-art methods by up to 44.67%, 18.84%, and 50.80%, respectively.
comment: 14 pages, 5 figures
☆ Uni-FinLLM: A Unified Multimodal Large Language Model with Modular Task Heads for Micro-Level Stock Prediction and Macro-Level Systemic Risk Assessment
Financial institutions and regulators require systems that integrate heterogeneous data to assess risks from stock fluctuations to systemic vulnerabilities. Existing approaches often treat these tasks in isolation, failing to capture cross-scale dependencies. We propose Uni-FinLLM, a unified multimodal large language model that uses a shared Transformer backbone and modular task heads to jointly process financial text, numerical time series, fundamentals, and visual data. Through cross-modal attention and multi-task optimization, it learns a coherent representation for micro-, meso-, and macro-level predictions. Evaluated on stock forecasting, credit-risk assessment, and systemic-risk detection, Uni-FinLLM significantly outperforms baselines. It raises stock directional accuracy to 67.4% (from 61.7%), credit-risk accuracy to 84.1% (from 79.6%), and macro early-warning accuracy to 82.3%. Results validate that a unified multimodal LLM can jointly model asset behavior and systemic vulnerabilities, offering a scalable decision-support engine for finance.
☆ Extracting books from production language models
Many unresolved legal questions over LLMs and copyright center on memorization: whether specific training data have been encoded in the model's weights during training, and whether those memorized data can be extracted in the model's outputs. While many believe that LLMs do not memorize much of their training data, recent work shows that substantial amounts of copyrighted text can be extracted from open-weight models. However, it remains an open question if similar extraction is feasible for production LLMs, given the safety measures these systems implement. We investigate this question using a two-phase procedure: (1) an initial probe to test for extraction feasibility, which sometimes uses a Best-of-N (BoN) jailbreak, followed by (2) iterative continuation prompts to attempt to extract the book. We evaluate our procedure on four production LLMs -- Claude 3.7 Sonnet, GPT-4.1, Gemini 2.5 Pro, and Grok 3 -- and we measure extraction success with a score computed from a block-based approximation of longest common substring (nv-recall). With different per-LLM experimental configurations, we were able to extract varying amounts of text. For the Phase 1 probe, it was unnecessary to jailbreak Gemini 2.5 Pro and Grok 3 to extract text (e.g, nv-recall of 76.8% and 70.3%, respectively, for Harry Potter and the Sorcerer's Stone), while it was necessary for Claude 3.7 Sonnet and GPT-4.1. In some cases, jailbroken Claude 3.7 Sonnet outputs entire books near-verbatim (e.g., nv-recall=95.8%). GPT-4.1 requires significantly more BoN attempts (e.g., 20X), and eventually refuses to continue (e.g., nv-recall=4.0%). Taken together, our work highlights that, even with model- and system-level safeguards, extraction of (in-copyright) training data remains a risk for production LLMs.
comment: We ran experiments from mid-August to mid-September 2025, notified affected providers shortly after, and now make our findings public after a 90-day disclosure window
☆ MAFS: Multi-head Attention Feature Selection for High-Dimensional Data via Deep Fusion of Filter Methods
Feature selection is essential for high-dimensional biomedical data, enabling stronger predictive performance, reduced computational cost, and improved interpretability in precision medicine applications. Existing approaches face notable challenges. Filter methods are highly scalable but cannot capture complex relationships or eliminate redundancy. Deep learning-based approaches can model nonlinear patterns but often lack stability, interpretability, and efficiency at scale. Single-head attention improves interpretability but is limited in capturing multi-level dependencies and remains sensitive to initialization, reducing reproducibility. Most existing methods rarely combine statistical interpretability with the representational power of deep learning, particularly in ultra-high-dimensional settings. Here, we introduce MAFS (Multi-head Attention-based Feature Selection), a hybrid framework that integrates statistical priors with deep learning capabilities. MAFS begins with filter-based priors for stable initialization and guide learning. It then uses multi-head attention to examine features from multiple perspectives in parallel, capturing complex nonlinear relationships and interactions. Finally, a reordering module consolidates outputs across attention heads, resolving conflicts and minimizing information loss to generate robust and consistent feature rankings. This design combines statistical guidance with deep modeling capacity, yielding interpretable importance scores while maximizing retention of informative signals. Across simulated and real-world datasets, including cancer gene expression and Alzheimer's disease data, MAFS consistently achieves superior coverage and stability compared with existing filter-based and deep learning-based alternatives, offering a scalable, interpretable, and robust solution for feature selection in high-dimensional biomedical data.
☆ When Prompting Meets Spiking: Graph Sparse Prompting via Spiking Graph Prompt Learning
Graph Prompt Feature (GPF) learning has been widely used in adapting pre-trained GNN model on the downstream task. GPFs first introduce some prompt atoms and then learns the optimal prompt vector for each graph node using the linear combination of prompt atoms. However, existing GPFs generally conduct prompting over node's all feature dimensions which is obviously redundant and also be sensitive to node feature noise. To overcome this issue, for the first time, this paper proposes learning sparse graph prompts by leveraging the spiking neuron mechanism, termed Spiking Graph Prompt Feature (SpikingGPF). Our approach is motivated by the observation that spiking neuron can perform inexpensive information processing and produce sparse outputs which naturally fits the task of our graph sparse prompting. Specifically, SpikingGPF has two main aspects. First, it learns a sparse prompt vector for each node by exploiting a spiking neuron architecture, enabling prompting on selective node features. This yields a more compact and lightweight prompting design while also improving robustness against node noise. Second, SpikingGPF introduces a novel prompt representation learning model based on sparse representation theory, i.e., it represents each node prompt as a sparse combination of prompt atoms. This encourages a more compact representation and also facilitates efficient computation. Extensive experiments on several benchmarks demonstrate the effectiveness and robustness of SpikingGPF.
☆ Empirical Comparison of Encoder-Based Language Models and Feature-Based Supervised Machine Learning Approaches to Automated Scoring of Long Essays
Long context may impose challenges for encoder-only language models in text processing, specifically for automated scoring of essays. This study trained several commonly used encoder-based language models for automated scoring of long essays. The performance of these trained models was evaluated and compared with the ensemble models built upon the base language models with a token limit of 512?. The experimented models include BERT-based models (BERT, RoBERTa, DistilBERT, and DeBERTa), ensemble models integrating embeddings from multiple encoder models, and ensemble models of feature-based supervised machine learning models, including Gradient-Boosted Decision Trees, eXtreme Gradient Boosting, and Light Gradient Boosting Machine. We trained, validated, and tested each model on a dataset of 17,307 essays, with an 80%/10%/10% split, and evaluated model performance using Quadratic Weighted Kappa. This study revealed that an ensemble-of-embeddings model that combines multiple pre-trained language model representations with gradient-boosting classifier as the ensemble model significantly outperforms individual language models at scoring long essays.
comment: 22 pages, 5 figures, 3 tables, presented at National Council on Measurement in Education 2025
☆ Statistical Inference for Fuzzy Clustering
Clustering is a central tool in biomedical research for discovering heterogeneous patient subpopulations, where group boundaries are often diffuse rather than sharply separated. Traditional methods produce hard partitions, whereas soft clustering methods such as fuzzy $c$-means (FCM) allow mixed memberships and better capture uncertainty and gradual transitions. Despite the widespread use of FCM, principled statistical inference for fuzzy clustering remains limited. We develop a new framework for weighted fuzzy $c$-means (WFCM) for settings with potential cluster size imbalance. Cluster-specific weights rebalance the classical FCM criterion so that smaller clusters are not overwhelmed by dominant groups, and the weighted objective induces a normalized density model with scale parameter $σ$ and fuzziness parameter $m$. Estimation is performed via a blockwise majorize--minimize (MM) procedure that alternates closed-form membership and centroid updates with likelihood-based updates of $(σ,\bw)$. The intractable normalizing constant is approximated by importance sampling using a data-adaptive Gaussian mixture proposal. We further provide likelihood ratio tests for comparing cluster centers and bootstrap-based confidence intervals. We establish consistency and asymptotic normality of the maximum likelihood estimator, validate the method through simulations, and illustrate it using single-cell RNA-seq and Alzheimer disease Neuroimaging Initiative (ADNI) data. These applications demonstrate stable uncertainty quantification and biologically meaningful soft memberships, ranging from well-separated cell populations under imbalance to a graded AD versus non-AD continuum consistent with disease progression.
☆ Prioritized Replay for RL Post-training
We introduce a problem-level prioritization framework for RL post-training of large language models. Building on insights from prioritized replay in deep RL, as well as prior observations that rollouts with intermediate success rates tend to produce stronger learning signals under methods such as GRPO, our approach selects problems according to a simple, model-driven priority score derived from empirical success statistics. In contrast to conventional curriculum strategies that emphasize easier tasks early in training, the resulting schedule naturally focuses training on problems that are neither consistently solved nor consistently failed, while deprioritizing those that contribute little gradient information. The method yields a continuously adapting and automatic prioritization process that requires no predefined difficulty tiers, auxiliary predictors, or external labels. We further introduce lightweight mechanisms for practical deployment, including heap-based prioritized sampling and periodic retesting of solved and unsolved problems to mitigate starvation and forgetting. Overall, the approach offers a principled and scalable alternative to manually designed curricula while aligning data selection directly with the dynamics of GRPO-based post-training.
☆ Credit Assignment via Neural Manifold Noise Correlation
Credit assignment--how changes in individual neurons and synapses affect a network's output--is central to learning in brains and machines. Noise correlation, which estimates gradients by correlating perturbations of activity with changes in output, provides a biologically plausible solution to credit assignment but scales poorly as accurately estimating the Jacobian requires that the number of perturbations scale with network size. Moreover, isotropic noise conflicts with neurobiological observations that neural activity lies on a low-dimensional manifold. To address these drawbacks, we propose neural manifold noise correlation (NMNC), which performs credit assignment using perturbations restricted to the neural manifold. We show theoretically and empirically that the Jacobian row space aligns with the neural manifold in trained networks, and that manifold dimensionality scales slowly with network size. NMNC substantially improves performance and sample efficiency over vanilla noise correlation in convolutional networks trained on CIFAR-10, ImageNet-scale models, and recurrent networks. NMNC also yields representations more similar to the primate visual system than vanilla noise correlation. These findings offer a mechanistic hypothesis for how biological circuits could support credit assignment, and suggest that biologically inspired constraints may enable, rather than limit, effective learning at scale.
☆ Hierarchical temporal receptive windows and zero-shot timescale generalization in biologically constrained scale-invariant deep networks
Human cognition integrates information across nested timescales. While the cortex exhibits hierarchical Temporal Receptive Windows (TRWs), local circuits often display heterogeneous time constants. To reconcile this, we trained biologically constrained deep networks, based on scale-invariant hippocampal time cells, on a language classification task mimicking the hierarchical structure of language (e.g., 'letters' forming 'words'). First, using a feedforward model (SITHCon), we found that a hierarchy of TRWs emerged naturally across layers, despite the network having an identical spectrum of time constants within layers. We then distilled these inductive priors into a biologically plausible recurrent architecture, SITH-RNN. Training a sequence of architectures ranging from generic RNNs to this restricted subset showed that the scale-invariant SITH-RNN learned faster with orders-of-magnitude fewer parameters, and generalized zero-shot to out-of-distribution timescales. These results suggest the brain employs scale-invariant, sequential priors - coding "what" happened "when" - making recurrent networks with such priors particularly well-suited to describe human cognition.
☆ Chronicals: A High-Performance Framework for LLM Fine-Tuning with 3.51x Speedup over Unsloth
Large language model fine-tuning is bottlenecked by memory: a 7B parameter model requires 84GB--14GB for weights, 14GB for gradients, and 56GB for FP32 optimizer states--exceeding even A100-40GB capacity. We present Chronicals, an open-source training framework achieving 3.51x speedup over Unsloth through four synergistic optimizations: (1) fused Triton kernels eliminating 75% of memory traffic via RMSNorm (7x), SwiGLU (5x), and QK-RoPE (2.3x) fusion; (2) Cut Cross-Entropy reducing logit memory from 5GB to 135MB through online softmax computation; (3) LoRA+ with theoretically-derived 16x differential learning rates between adapter matrices; and (4) Best-Fit Decreasing sequence packing recovering 60-75% of compute wasted on padding. On Qwen2.5-0.5B with A100-40GB, Chronicals achieves 41,184 tokens/second for full fine-tuning versus Unsloth's 11,736 tokens/second (3.51x). For LoRA at rank 32, we reach 11,699 tokens/second versus Unsloth MAX's 2,857 tokens/second (4.10x). Critically, we discovered that Unsloth's reported 46,000 tokens/second benchmark exhibited zero gradient norms--the model was not training. We provide complete mathematical foundations: online softmax correctness proofs, FlashAttention IO complexity bounds O(N^2 d^2 M^{-1}), LoRA+ learning rate derivations from gradient magnitude analysis, and bin-packing approximation guarantees. All implementations, benchmarks, and proofs are available at https://github.com/Ajwebdevs/Chronicals with pip installation via https://pypi.org/project/chronicals/.
comment: 61 pages, 25 figures, open-source framework available at https://github.com/Ajwebdevs/Chronicals and pip install chronicals
☆ Decentralized Autoregressive Generation
We present a theoretical analysis of decentralization of autoregressive generation. We define the Decentralized Discrete Flow Matching objective, by expressing probability generating velocity as a linear combination of expert flows. We also conduct experiments demonstrating the equivalence between decentralized and centralized training settings for multimodal language models across diverse set of benchmarks. Specifically, we compare two distinct paradigms: LLaVA and InternVL 2.5-1B, which uses a fixed CLIP vision encoder and performs full-parameter fine-tuning (ViT+MLP+LLM) during the instruction tuning stage.
comment: Work in progress
Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
☆ ATLAS: Adaptive Test-Time Latent Steering with External Verifiers for Enhancing LLMs Reasoning
Recent work on activation and latent steering has demonstrated that modifying internal representations can effectively guide large language models (LLMs) toward improved reasoning and efficiency without additional training. However, most existing approaches rely on fixed steering policies and static intervention strengths, which limit their robustness across problem instances and often result in over- or under-steering. We propose Adaptive Test-time Latent Steering, called (ATLAS), a task-specific framework that dynamically controls steering decisions at inference time using an external, lightweight latent verifier. Given intermediate hidden states, the verifier predicts the quality of ongoing reasoning and adaptively selects whether and how strongly to apply steering, enabling per-example and per-step adjustment with minimal overhead. To our knowledge, ATLAS is the first method to integrate learned latent verification into test-time steering for enhancing LLMs reasoning. Experiments on multiple mathematical reasoning benchmarks show that ATLAS consistently outperforms both vanilla decoding and fixed steering baselines, achieving higher accuracy while substantially reducing test-time token usage. These results demonstrate that verifier-guided latent adaptation provides an effective and scalable mechanism for controlling reasoning efficiency without sacrificing solution quality. All source code will be publicly available.
comment: 12 pages, 3 figures
☆ Which Deep Learner? A Systematic Evaluation of Advanced Deep Forecasting Models Accuracy and Efficiency for Network Traffic Prediction
Network traffic prediction is essential for automating modern network management. It is a difficult time series forecasting (TSF) problem that has been addressed by Deep Learning (DL) models due to their ability to capture complex patterns. Advances in forecasting, from sophisticated transformer architectures to simple linear models, have improved performance across diverse prediction tasks. However, given the variability of network traffic across network environments and traffic series timescales, it is essential to identify effective deployment choices and modeling directions for network traffic prediction. This study systematically identify and evaluates twelve advanced TSF models -- including transformer-based and traditional DL approaches, each with unique advantages for network traffic prediction -- against three statistical baselines on four real traffic datasets, across multiple time scales and horizons, assessing performance, robustness to anomalies, data gaps, external factors, data efficiency, and resource efficiency in terms of time, memory, and energy. Results highlight performance regimes, efficiency thresholds, and promising architectures that balance accuracy and efficiency, demonstrating robustness to traffic challenges and suggesting new directions beyond traditional RNNs.
comment: 19 pages, 13 figures
♻ ☆ TTrace: Lightweight Error Checking and Diagnosis for Distributed Training
Distributed training is essential for scaling the training of large neural network models, such as large language models (LLMs), across thousands of GPUs. However, the complexity of distributed training programs makes them particularly prone to silent bugs, which do not produce explicit error signals but lead to incorrect training outcomes. Effectively detecting and localizing such silent bugs in distributed training is challenging. Common debugging practices based on monitoring training loss or gradient norm curves are indirect, inefficient, and provide no way to localize bugs. To address those challenges, we design and implement TTrace, the first systematic differential testing system for detecting and localizing silent bugs in distributed training. TTrace aligns intermediate tensors from distributed training with those from a trusted reference implementation. To properly compare the floating-point values in the corresponding tensors, we propose a novel mathematical analysis that provides a guideline for setting tolerances, enabling TTrace to distinguish bug-induced errors from numerical errors. Experimental results demonstrate that TTrace effectively detects 11 existing bugs and 3 new bugs in the widely used Megatron-LM framework, while requiring fewer than 10 lines of code changes. TTrace is effective in various training recipes, including low-precision recipes involving BF16 and FP8. Notably, a popular open-source training framework has already adopted the method proposed by TTrace in its development workflow.
♻ ☆ Kolmogorov-Arnold Energy Models: Fast and Interpretable Generative Modeling
Learning an energy-based model (EBM) in the latent space of a top-down generative model offers a powerful framework for generation across many data modalities. However, it remains unclear how its interpretability can be used to guide model design, improve generative quality, and reduce training time. Moreover, the reliance on Langevin Monte Carlo (LMC) sampling presents challenges in efficiency and sampling multimodal latent distributions. We propose a novel adaptation of the Kolmogorov-Arnold representation theorem for generative modeling and introduce the Kolmogorov-Arnold Energy Model (KAEM) to take advantage of structural and inductive biases. By constraining the prior to univariate relationships, KAEM enables fast and exact inference via the inverse transform method. With the low dimensionality of the latent space and suitable inductive biases encoded, we demonstrate that importance sampling (IS) becomes a viable, unbiased, and highly efficient posterior sampler. For domains where IS fails, we introduce a strategy based on population-based LMC, decomposing the posterior into a sequence of annealed distributions to improve LMC mixing. KAEM balances common generative modeling trade-offs, offering fast inference, interpretability, and stable training, while being naturally suited to Zettascale Computing hardware.
♻ ☆ Adapting Web Agents with Synthetic Supervision
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, tasks are refined only when conflicts with observations are detected, which mitigates hallucinations while preserving task consistency. After collection, we conduct trajectory refinement with global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code is publicly available at https://github.com/aiming-lab/SynthAgent.
comment: 21 pages, 6 figures
♻ ☆ Heuristic Methods are Good Teachers to Distill MLPs for Graph Link Prediction
Link prediction is a crucial graph-learning task with applications including citation prediction and product recommendation. Distilling Graph Neural Networks (GNNs) teachers into Multi-Layer Perceptrons (MLPs) students has emerged as an effective approach to achieve strong performance and reducing computational cost by removing graph dependency. However, existing distillation methods only use standard GNNs and overlook alternative teachers such as specialized model for link prediction (GNN4LP) and heuristic methods (e.g., common neighbors). This paper first explores the impact of different teachers in GNN-to-MLP distillation. Surprisingly, we find that stronger teachers do not always produce stronger students: MLPs distilled from GNN4LP can underperform those distilled from simpler GNNs, while weaker heuristic methods can teach MLPs to near-GNN performance with drastically reduced training costs. Building on these insights, we propose Ensemble Heuristic-Distilled MLPs (EHDM), which eliminates graph dependencies while effectively integrating complementary signals via a gating mechanism. Experiments on ten datasets show an average 7.93% improvement over previous GNN-to-MLP approaches with 1.95-3.32 times less training time, indicating EHDM is an efficient and effective link prediction method.
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ Leveraging the true depth of LLMs
The remarkable capabilities of Large Language Models (LLMs) are overshadowed by their immense computational cost. While recent work has shown that many LLM layers can be reordered or even removed with minimal impact on accuracy, these insights have not been translated into significant inference speedups. To bridge this gap, we introduce a novel method that restructures the computational graph by grouping and evaluating consecutive layer pairs in parallel. This approach, requiring no retraining, yields a 1.19x throughput gain on Llama 2 7B while reducing the average benchmark accuracy by only 1.5\%. We demonstrate the practical value of this method for large-scale LLM deployment and show that some of the lost accuracy can be recovered with lightweight fine-tuning of the parallelized layers.
♻ ☆ Iterative Topic Taxonomy Induction with LLMs: A Case Study of Electoral Advertising
Social media platforms play a pivotal role in shaping political discourse, but analyzing their vast and rapidly evolving content remains a major challenge. We introduce an end-to-end framework for automatically inducing an interpretable topic taxonomy from unlabeled text corpora. By combining unsupervised clustering with prompt-based inference, our method leverages large language models (LLMs) to iteratively construct a taxonomy without requiring seed sets (predefined labels) or domain expertise. We validate the framework through a study of political advertising ahead of the 2024 U.S. presidential election. The induced taxonomy yields semantically rich topic labels and supports downstream analyses, including moral framing, in this setting. Results suggest that structured, iterative labeling yields more consistent and interpretable topic labels than existing approaches under human evaluation, and is practical for analyzing large-scale political advertising data.
comment: Under-submission
♻ ☆ DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for a 1.5B model.
comment: Accepted to NeurIPS 2025
♻ ☆ Large Empirical Case Study: Go-Explore adapted for AI Red Team Testing
Production LLM agents with tool-using capabilities require security testing despite their safety training. We adapt Go-Explore to evaluate GPT-4o-mini across 28 experimental runs spanning six research questions. We find that random-seed variance dominates algorithmic parameters, yielding an 8x spread in outcomes; single-seed comparisons are unreliable, while multi-seed averaging materially reduces variance in our setup. Reward shaping consistently harms performance, causing exploration collapse in 94% of runs or producing 18 false positives with zero verified attacks. In our environment, simple state signatures outperform complex ones. For comprehensive security testing, ensembles provide attack-type diversity, whereas single agents optimize coverage within a given attack type. Overall, these results suggest that seed variance and targeted domain knowledge can outweigh algorithmic sophistication when testing safety-trained models.
♻ ☆ Learning with Statistical Equality Constraints
As machine learning applications grow increasingly ubiquitous and complex, they face an increasing set of requirements beyond accuracy. The prevalent approach to handle this challenge is to aggregate a weighted combination of requirement violation penalties into the training objective. To be effective, this approach requires careful tuning of these hyperparameters (weights), involving trial-and-error and cross-validation, which becomes ineffective even for a moderate number of requirements. These issues are exacerbated when the requirements involve parities or equalities, as is the case in fairness and boundary value problems. An alternative technique uses constrained optimization to formulate these learning problems. Yet, existing approximation and generalization guarantees do not apply to problems involving equality constraints. In this work, we derive a generalization theory for equality-constrained statistical learning problems, showing that their solutions can be approximated using samples and rich parametrizations. Using these results, we propose a practical algorithm based on solving a sequence of unconstrained, empirical learning problems. We showcase its effectiveness and the new formulations enabled by equality constraints in fair learning, interpolating classifiers, and boundary value problems.
comment: Published in the 39th Annual Conference on Neural Information Processing Systems
♻ ☆ Quantifying task-relevant representational similarity using decision variable correlation NeurIPS 2025
Previous studies have compared neural activities in the visual cortex to representations in deep neural networks trained on image classification. Interestingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the image-by-image correlation between the decoded decisions based on the internal neural representations in a classification task. Thus, it can capture task-relevant information rather than general representational alignment. We evaluate DVC using monkey V4/IT recordings and network models trained on image classification tasks. We find that model-model similarity is comparable to monkey-monkey similarity, whereas model-monkey similarity is consistently lower. Strikingly, DVC decreases with increasing network performance on ImageNet-1k. Adversarial training does not improve model-monkey similarity in task-relevant dimensions assessed using DVC, although it markedly increases the model-model similarity. Similarly, pre-training on larger datasets does not improve model-monkey similarity. These results suggest a divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.
comment: Camera-ready version; accepted at NeurIPS 2025
♻ ☆ CSAI: Conditional Self-Attention Imputation for Healthcare Time-series
We introduce the Conditional Self-Attention Imputation (CSAI) model, a novel recurrent neural network architecture designed to address the challenges of complex missing data patterns in multivariate time series derived from hospital electronic health records (EHRs). CSAI extends state-of-the-art neural network-based imputation by introducing key modifications specific to EHR data: a) attention-based hidden state initialisation to capture both long- and short-range temporal dependencies prevalent in EHRs, b) domain-informed temporal decay to mimic clinical data recording patterns, and c) a non-uniform masking strategy that models non-random missingness by calibrating weights according to both temporal and cross-sectional data characteristics. Comprehensive evaluation across four EHR benchmark datasets demonstrates CSAI's effectiveness compared to state-of-the-art architectures in data restoration and downstream tasks. CSAI is integrated into PyPOTS, an open-source Python toolbox designed for machine learning tasks on partially observed time series. This work significantly advances the state of neural network imputation applied to EHRs by more closely aligning algorithmic imputation with clinical realities.
♻ ☆ Neuronal Attention Circuit (NAC) for Representation Learning
Attention improves representation learning over RNNs, but its discrete nature limits continuous-time (CT) modeling. We introduce Neuronal Attention Circuit (NAC), a novel, biologically inspired CT-Attention mechanism that reformulates attention logit computation as the solution to a linear first-order ODE with nonlinear interlinked gates derived from repurposing C.elegans Neuronal Circuit Policies (NCPs) wiring. NAC replaces dense projections with sparse sensory gates for key-query projections and a sparse backbone network with two heads for computing content-target and learnable time-constant gates, enabling efficient adaptive dynamics. To improve efficiency and memory consumption, we implemented an adaptable subquadratic sparse Top-K pairwise concatenation mechanism that selectively curates key-query interactions. We provide rigorous theoretical guarantees, including state stability and bounded approximation errors. Empirically, we implemented NAC in diverse domains, including irregular time-series classification, lane-keeping for autonomous vehicles, and industrial prognostics. We observed that NAC matches or outperforms competing baselines in accuracy and occupies an intermediate position in runtime and memory consumption compared with several CT state-of-the-art baselines, while being interpretable at the neuron cell level.
comment: Ongoing work
♻ ☆ Information-Theoretic Generalization Bounds of Replay-based Continual Learning
Continual learning (CL) has emerged as a dominant paradigm for acquiring knowledge from sequential tasks while avoiding catastrophic forgetting. Although many CL methods have been proposed to show impressive empirical performance, the theoretical understanding of their generalization behavior remains limited, particularly for replay-based approaches. This paper establishes a unified theoretical framework for replay-based CL, deriving a series of information-theoretic generalization bounds that explicitly elucidate the impact of the memory buffer alongside the current task on generalization performance. Specifically, our hypothesis-based bounds capture the trade-off between the number of selected exemplars and the information dependency between the hypothesis and the memory buffer. Our prediction-based bounds yield tighter and computationally tractable upper bounds on the generalization error by leveraging low-dimensional variables. Theoretical analysis is general and broadly applicable to a wide range of learning algorithms, exemplified by stochastic gradient Langevin dynamics (SGLD) as a representative method. Comprehensive experimental evaluations demonstrate the effectiveness of our derived bounds in capturing the generalization dynamics in replay-based CL settings.
♻ ☆ Agent.xpu: Efficient Scheduling of Agentic LLM Workloads on Heterogeneous SoC
Personal LLM agents increasingly combine foreground reactive interactions with background proactive monitoring, forming long-lived, stateful LLM flows that interleave prefill and token-by-token decode. While modern heterogeneous SoCs integrate CPUs, iGPUs, and NPUs to support on-device intelligence, existing LLM engines assume static, single-shot inference and lack mechanisms for flow-level concurrency, prioritization, and efficient accelerator coordination. As a result, commodity SoCs remain poorly matched to the dynamic, mixed-criticality execution patterns of personal agents. This paper presents Agent$.$xpu, the first LLM engine that orchestrates concurrent reactive and proactive LLM flows on commodity SoCs. Extensive profiling uncovers unique SoC characteristics of operator-accelerator affinity, asymmetric DDR contention, and stage-divergent batching behaviors distinct from cloud-serving assumptions. Agent$.$xpu introduces three key techniques: a heterogeneous execution graph (HEG) capturing NPU/iGPU affinity and elastic operator binding; flow-aware NPU-iGPU coordination with stage elasticity, decoupling prefill and decode to reduce bandwidth contention and enforce priorities; and fine-grained preemption with slack-aware piggybacking to guarantee reactive responsiveness without starving proactive work. Across realistic personal-agent workloads, Agent$.$xpu delivers 1.2-4.9$\times$ proactive throughput and reduces reactive latency by at least 91%, compared with both industrial iGPU-only serving engine and NPU-iGPU static inference with optimal tensor-partitioning schemes. Agent$.$xpu also minimizes energy consumption and graphics interference via controlled iGPU usage.
♻ ☆ SPARKLE: A Nonparametric Approach for Online Decision-Making with High-Dimensional Covariates
Personalized services are central to today's digital economy, and their sequential decisions are often modeled as contextual bandits. Modern applications pose two main challenges: high-dimensional covariates and the need for nonparametric models to capture complex reward-covariate relationships. We propose SPARKLE, a novel contextual bandit algorithm based on a sparse additive reward model that addresses both challenges through (i) a doubly penalized estimator for nonparametric reward estimation and (ii) an epoch-based design with adaptive screening to balance exploration and exploitation. We prove a sublinear regret bound that grows only logarithmically in the covariate dimensionality; to our knowledge, this is the first such result for nonparametric contextual bandits with high-dimensional covariates. We also derive an information-theoretic lower bound, and the gap to the upper bound vanishes as the reward smoothness increases. Extensive experiments on synthetic data and real data from video recommendation and personalized medicine show strong performance in high-dimensional settings.
comment: Main body: 35 pages, 7 figures; supplemental material: 34 pages
♻ ☆ Universal Dynamic Regret and Constraint Violation Bounds for Constrained Online Convex Optimization ALT 2026
We consider a generalization of the celebrated Online Convex Optimization (OCO) framework with adversarial online constraints. In this problem, an online learner interacts with an adversary sequentially over multiple rounds. At the beginning of each round, the learner chooses an action from a convex decision set. After that, the adversary reveals a convex cost function and a convex constraint function. The goal of the learner is to minimize the cumulative cost while satisfying the constraints as tightly as possible. We present two efficient algorithms with simple modular structures that give universal dynamic regret and cumulative constraint violation bounds, improving upon state-of-the-art results. While the first algorithm, which achieves the optimal regret bound, involves projection onto the constraint sets, the second algorithm is projection-free and achieves better violation bounds in rapidly varying environments. Our results hold in the most general case when both the cost and constraint functions are chosen arbitrarily, and the constraint functions need not contain any fixed common feasible point. We establish these results by introducing a general framework that reduces the constrained learning problem to an instance of the standard OCO problem with specially constructed surrogate cost functions.
comment: To appear in the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
♻ ☆ Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) via Central Limit Theorem-based construction and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis establishes convergence properties via a geometric projection mapping $\mathcal{P}$ and proves robustness to mini-batch noise. Central Limit Theorem-based construction of the interpretability DAG ensures statistical validity of edge orientation decisions. Empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 11 pages
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ Agentic Additive Manufacturing Alloy Evaluation
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy selection and evaluation remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as thermophysical property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system can effectively reason through complex user prompts and provide analysis on the lack of fusion process window of common alloys such as SS316L and IN718 along with proposed composition variants of known alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to showcase the benefits of adopting a LLM enabled multi-agent system to automate and accelerate the task of evaluating proposed additive manufacturing alloys, both novel and known.
♻ ☆ Error analysis of a compositional score-based algorithm for simulation-based inference
Simulation-based inference (SBI) has become a widely used framework in applied sciences for estimating the parameters of stochastic models that best explain experimental observations. A central question in this setting is how to effectively combine multiple observations in order to improve parameter inference and obtain sharper posterior distributions. Recent advances in score-based diffusion methods address this problem by constructing a compositional score, obtained by aggregating individual posterior scores within the diffusion process. While it is natural to suspect that the accumulation of individual errors may significantly degrade sampling quality as the number of observations grows, this important theoretical issue has so far remained unexplored. In this paper, we study the compositional score produced by the GAUSS algorithm of Linhart et al. (2024) and establish an upper bound on its mean squared error in terms of both the individual score errors and the number of observations. We illustrate our theoretical findings on a Gaussian example, where all analytical expressions can be derived in a closed form.
A Comedy of Estimators: On KL Regularization in RL Training of LLMs
The reasoning performance of large language models (LLMs) can be substantially improved by training them with reinforcement learning (RL). The RL objective for LLM training involves a regularization term, which is the reverse Kullback-Leibler (KL) divergence between the trained policy and the reference policy. Since computing the KL divergence exactly is intractable, various estimators are used in practice to estimate it from on-policy samples. Despite its wide adoption, including in several open-source libraries, there is no systematic study analyzing the numerous ways of incorporating KL estimators in the objective and their effect on the downstream performance of RL-trained models. Recent works show that prevailing practices for incorporating KL regularization do not provide correct gradients for stated objectives, creating a discrepancy between the objective and its implementation. In this paper, we further analyze these practices and study the gradients of several estimators configurations, revealing how design choices shape gradient bias. We substantiate these findings with empirical observations by RL fine-tuning \texttt{Qwen2.5-7B}, \texttt{Llama-3.1-8B-Instruct} and \texttt{Qwen3-4B-Instruct-2507} with different configurations and evaluating their performance on both in- and out-of-distribution tasks. Through our analysis, we observe that, in on-policy settings: (1) estimator configurations with biased gradients can result in training instabilities; and (2) using estimator configurations resulting in unbiased gradients leads to better performance on in-domain as well as out-of-domain tasks. We also investigate the performance resulting from different KL configurations in off-policy settings and observe that KL regularization can help stabilize off-policy RL training resulting from asynchronous setups.
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ MAST: Model-Agnostic Sparsified Training ICLR 2025
We introduce a novel optimization problem formulation that departs from the conventional way of minimizing machine learning model loss as a black-box function. Unlike traditional formulations, the proposed approach explicitly incorporates an initially pre-trained model and random sketch operators, allowing for sparsification of both the model and gradient during training. We establish the insightful properties of the proposed objective function and highlight its connections to the standard formulation. Furthermore, we present several variants of the Stochastic Gradient Descent (SGD) method adapted to the new problem formulation, including SGD with general sampling, a distributed version, and SGD with variance reduction techniques. We achieve tighter convergence rates and relax assumptions, bridging the gap between theoretical principles and practical applications, covering several important techniques such as Dropout and Sparse training. This work presents promising opportunities to enhance the theoretical understanding of model training through a sparsification-aware optimization approach.
comment: Published at ICLR 2025
♻ ☆ CodeEvolve: an open source evolutionary coding agent for algorithm discovery and optimization
We introduce CodeEvolve, an open-source framework that combines large language models (LLMs) with evolutionary search to synthesize high-performing algorithmic solutions. CodeEvolve couples an islands-based genetic algorithm with modular LLM orchestration, using execution feedback and task-specific metrics to guide selection and variation. Exploration and exploitation are balanced through context-aware recombination, adaptive meta-prompting, and targeted refinement of promising solutions. We evaluate CodeEvolve on benchmarks previously used to assess Google DeepMind's AlphaEvolve, showing superior performance on several tasks and competitive results overall. Notably, open-weight models often match or exceed closed-source baselines at a fraction of the compute cost. We provide extensive ablations analyzing the contribution of each component and release our framework and experimental results at https://github.com/inter-co/science-codeevolve.
comment: 14 pages, 10 figures, 3 tables
♻ ☆ Source-Optimal Training is Transfer-Suboptimal
We prove that training a source model optimally for its own task is generically suboptimal when the objective is downstream transfer. We study the source-side optimization problem in L2-SP ridge regression and show a fundamental mismatch between the source-optimal and transfer-optimal source regularization: outside of a measure-zero set, $τ_0^* \neq τ_S^*$. We characterize the transfer-optimal source penalty $τ_0^*$ as a function of task alignment and identify an alignment-dependent reversal: with imperfect alignment ($0<ρ<1$), transfer benefits from stronger source regularization, while in super-aligned regimes ($ρ>1$), transfer benefits from weaker regularization. Additionally, in isotropic settings, the decision of whether transfer helps is independent of the target sample size and noise, depending only on task alignment and source characteristics. We verify the linear predictions in a synthetic ridge regression experiment, and we present experiments on MNIST, CIFAR-10, and 20 Newsgroups as evidence that the source-optimal versus transfer-optimal mismatch persists in standard nonlinear transfer learning pipelines.
♻ ☆ Machine Learning H-theorem
H-theorem provides a microscopic foundation of the Second Law of Thermodynamics and is therefore essential to establishing statistical physics, but at the same time, H-theorem has been subject to controversy that in part persists till this day. To better understand H-theorem and its relation to the arrow of time, we study the equilibration of randomly oriented and positioned hard disks with periodic boundary conditions. Using a model based on the DeepSets architecture, which imposes permutation invariance of the particle labels, we train a model to capture the irreversibility of the H-functional.
♻ ☆ Evaluating Gemini Robotics Policies in a Veo World Simulator
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
♻ ☆ Limits to scalable evaluation at the frontier: LLM as Judge won't beat twice the data ICLR 2025
High quality annotations are increasingly a bottleneck in the explosively growing machine learning ecosystem. Scalable evaluation methods that avoid costly annotation have therefore become an important research ambition. Many hope to use strong existing models in lieu of costly labels to provide cheap model evaluations. Unfortunately, this method of using models as judges introduces biases, such as self-preferencing, that can distort model comparisons. An emerging family of debiasing tools promises to fix these issues by using a few high quality labels to debias a large number of model judgments. In this paper, we study how far such debiasing methods, in principle, can go. Our main result shows that when the judge is no more accurate than the evaluated model, no debiasing method can decrease the required amount of ground truth labels by more than half. Our result speaks to the severe limitations of the LLM-as-a-judge paradigm at the evaluation frontier where the goal is to assess newly released models that are possibly better than the judge. Through an empirical evaluation, we demonstrate that the sample size savings achievable in practice are even more modest than what our theoretical limit suggests. Along the way, our work provides new observations about debiasing methods for model evaluation, and points out promising avenues for future work.
comment: ICLR 2025; 28 pages, 8 figures
♻ ☆ MDAgent2: Large Language Model for Code Generation and Knowledge Q&A in Molecular Dynamics
Molecular dynamics (MD) simulations are essential for understanding atomic-scale behaviors in materials science, yet writing LAMMPS scripts remains highly specialized and time-consuming tasks. Although LLMs show promise in code generation and domain-specific question answering, their performance in MD scenarios is limited by scarce domain data, the high deployment cost of state-of-the-art LLMs, and low code executability. Building upon our prior MDAgent, we present MDAgent2, the first end-to-end framework capable of performing both knowledge Q&A and code generation within the MD domain. We construct a domain-specific data-construction pipeline that yields three high-quality datasets spanning MD knowledge, question answering, and code generation. Based on these datasets, we adopt a three stage post-training strategy--continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning (RL)--to train two domain-adapted models, MD-Instruct and MD-Code. Furthermore, we introduce MD-GRPO, a closed-loop RL method that leverages simulation outcomes as reward signals and recycles low-reward trajectories for continual refinement. We further build MDAgent2-RUNTIME, a deployable multi-agent system that integrates code generation, execution, evaluation, and self-correction. Together with MD-EvalBench proposed in this work, the first benchmark for LAMMPS code generation and question answering, our models and system achieve performance surpassing several strong baselines.This work systematically demonstrates the adaptability and generalization capability of large language models in industrial simulation tasks, laying a methodological foundation for automatic code generation in AI for Science and industrial-scale simulations. URL: https://github.com/FredericVAN/PKU_MDAgent2
comment: 24 pages,4 figures
♻ ☆ Learning mirror maps in policy mirror descent
Policy Mirror Descent (PMD) is a popular framework in reinforcement learning, serving as a unifying perspective that encompasses numerous algorithms. These algorithms are derived through the selection of a mirror map and enjoy finite-time convergence guarantees. Despite its popularity, the exploration of PMD's full potential is limited, with the majority of research focusing on a particular mirror map -- namely, the negative entropy -- which gives rise to the renowned Natural Policy Gradient (NPG) method. It remains uncertain from existing theoretical studies whether the choice of mirror map significantly influences PMD's efficacy. In our work, we conduct empirical investigations to show that the conventional mirror map choice (NPG) often yields less-than-optimal outcomes across several standard benchmark environments. Using evolutionary strategies, we identify more efficient mirror maps that enhance the performance of PMD. We first focus on a tabular environment, i.e. Grid-World, where we relate existing theoretical bounds with the performance of PMD for a few standard mirror maps and the learned one. We then show that it is possible to learn a mirror map that outperforms the negative entropy in more complex environments, such as the MinAtar suite. Additionally, we demonstrate that the learned mirror maps generalize effectively to different tasks by testing each map across various other environments.
♻ ☆ Stable Preference Optimization: A Bilevel Approach to Catastrophic Preference Shift
Direct Preference Learning has emerged as a dominant offline paradigm for preference optimization. Most of these methods are based on the Bradley-Terry (BT) model for pairwise preference ranking, which directly aligns language model with human preference. Prior work has observed a counter-intuitive phenomenon termed likelihood displacement, where the absolute probability of preferred responses decreases simultaneously during training. We demonstrate that such displacement can lead to a more devastating failure mode, which we defined as \textit{Catastrophic Preference Shift}, where the lost preference probability mass inadvertently shifts toward out-of-distribution (OOD) responses. Such a failure mode is a key limitation shared across BT-style direct preference learning methods, due to the fundamental conflict between the unconstrained discriminative alignment and generative foundational capabilities, ultimately leading to severe performance degradation (e.g., SimPO suffers a significant drop in reasoning accuracy from 73.5\% to 37.5\%). We analyze existing BT-style methods from the probability evolution perspective and theoretically prove that these methods exhibit over-reliance on model initialization and can lead to preference shift. To resolve these counter-intuitive behaviors, we propose a theoretically grounded Stable Preference Optimization (SPO) framework that constrains preference learning within a safe alignment region. Empirical evaluations demonstrate that SPO effectively stabilizes and enhances the performance of existing BT-style preference learning methods. SPO provides new insights into the design of preference learning objectives and opens up new avenues towards more reliable and interpretable language model alignment.
♻ ☆ Limits to Predicting Online Speech Using Large Language Models
Our paper studies the predictability of online speech -- that is, how well language models learn to model the distribution of user generated content on X (previously Twitter). We define predictability as a measure of the model's uncertainty, i.e. its negative log-likelihood. As the basis of our study, we collect 10M tweets for ``tweet-tuning'' base models and a further 6.25M posts from more than five thousand X (previously Twitter) users and their peers. In our study involving more than 5000 subjects, we find that predicting posts of individual users remains surprisingly hard. Moreover, it matters greatly what context is used: models using the users' own history significantly outperform models using posts from their social circle. We validate these results across four large language models ranging in size from 1.5 billion to 70 billion parameters. Moreover, our results replicate if instead of prompting the model with additional context, we finetune on it. We follow up with a detailed investigation on what is learned in-context and a demographic analysis. Up to 20\% of what is learned in-context is the use of @-mentions and hashtags. Our main results hold across the demographic groups we studied.
comment: Updated Figure 1, added demographic analysis
♻ ☆ Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
♻ ☆ RobotDiffuse: Diffusion-Based Motion Planning for Redundant Manipulators with the ROP Obstacle Avoidance Dataset
Redundant manipulators, with their higher Degrees of Freedom (DoFs), offer enhanced kinematic performance and versatility, making them suitable for applications like manufacturing, surgical robotics, and human-robot collaboration. However, motion planning for these manipulators is challenging due to increased DoFs and complex, dynamic environments. While traditional motion planning algorithms struggle with high-dimensional spaces, deep learning-based methods often face instability and inefficiency in complex tasks. This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators. By integrating physical constraints with a point cloud encoder and replacing the U-Net structure with an encoder-only transformer, RobotDiffuse improves the model's ability to capture temporal dependencies and generate smoother, more coherent motion plans. We validate the approach using a complex simulator and release a new dataset, Robot-obtalcles-panda (ROP), with 35M robot poses and 0.14M obstacle avoidance scenarios. The highest overall score obtained in the experiment demonstrates the effectiveness of RobotDiffuse and the promise of diffusion models for motion planning tasks. The dataset can be accessed at https://github.com/ACRoboT-buaa/RobotDiffuse.
♻ ☆ A Large-Scale Analysis on the Use of Arrival Time Prediction for Automated Shuttle Services in the Real World
Urban mobility is on the cusp of transformation with the emergence of shared, connected, and cooperative automated vehicles. Yet, for them to be accepted by customers, trust in their punctuality is vital. Many pilot initiatives operate without a fixed schedule, enhancing the importance of reliable arrival time (AT) predictions. This study presents an AT prediction system for automated shuttles, utilizing separate models for dwell and running time predictions, validated on real-world data from six cities. Alongside established methods such as XGBoost, we explore the benefits of leveraging spatial correlations using graph neural networks (GNN). To accurately handle the case of a shuttle bypassing a stop, we propose a hierarchical model combining a random forest classifier and a GNN. The results for the final AT prediction are promising, showing low errors even when predicting several stops ahead. Yet, no single model emerges as universally superior, and we provide insights into the characteristics of pilot sites that influence the model selection process and prediction performance. Finally, we identify dwell time prediction as the key determinant in overall AT prediction accuracy when automated shuttles are deployed in low-traffic areas or under regulatory speed limits. Our meta-analysis across six pilot sites in different cities provides insights into the current state of autonomous public transport prediction models and paves the way for more data-informed decision-making as the field advances.
♻ ☆ LoFT-LLM: Low-Frequency Time-Series Forecasting with Large Language Models
Time-series forecasting in real-world applications such as finance and energy often faces challenges due to limited training data and complex, noisy temporal dynamics. Existing deep forecasting models typically supervise predictions using full-length temporal windows, which include substantial high-frequency noise and obscure long-term trends. Moreover, auxiliary variables containing rich domain-specific information are often underutilized, especially in few-shot settings. To address these challenges, we propose LoFT-LLM, a frequency-aware forecasting pipeline that integrates low-frequency learning with semantic calibration via a large language model (LLM). Firstly, a Patch Low-Frequency forecasting Module (PLFM) extracts stable low-frequency trends from localized spectral patches. Secondly, a residual learner then models high-frequency variations. Finally, a fine-tuned LLM refines the predictions by incorporating auxiliary context and domain knowledge through structured natural language prompts. Extensive experiments on financial and energy datasets demonstrate that LoFT-LLM significantly outperforms strong baselines under both full-data and few-shot regimes, delivering superior accuracy, robustness, and interpretability.
comment: This submission is withdrawn due to internal review and compliance considerations
♻ ☆ Do Not Step Into the Same River Twice: Learning to Reason from Trial and Error
Reinforcement learning with verifiable rewards (RLVR) has significantly boosted the reasoning capability of language models (LMs) recently. However, existing RLVR approaches merely train LMs based on their own generated on-policy responses and are constrained by the initial capability of LMs, thus prone to exploration stagnation, in which LMs fail to solve more training problems and cannot further learn from the training data. Some work tries to address this by leveraging off-policy solutions to training problems, but relies on external expert guidance that is limited in availability and scalability. In this work, we propose LTE (Learning to reason from Trial and Error), an approach that hints LMs with their previously self-made mistakes, not requiring any external expert guidance. Experiments validate the effectiveness of LTE, which outperforms the normal group relative policy optimization (GRPO) by 5.02 in Pass@1 and 9.96 in Pass@k on average across six mathematical reasoning benchmarks for Qwen3-8B-Base and even performs better than methods that require external gold solutions as guidance after aligning the experimental setup. Further analysis confirms that LTE successfully mitigates exploration stagnation and enhances both exploitation and exploration during training. Our code is available at https://anonymous.4open.science/r/Learning-from-Trial-and-Error.
comment: Preprint
♻ ☆ From Intrinsic Toxicity to Reception-Based Toxicity: A Contextual Framework for Prediction and Evaluation
Most toxicity detection models treat toxicity as an intrinsic property of text, overlooking the role of context in shaping its impact. In this position paper, drawing on insights from psychology, neuroscience, and computational social science, we reconceptualise toxicity as a socially emergent signal of stress. We formalise this perspective in the Contextual Stress Framework (CSF), which defines toxicity as a stress-inducing norm violation within a given context and introduces an additional dimension for toxicity detection. As one possible realisation of CSF, we introduce PONOS (Proportion Of Negative Observed Sentiments), a metric that quantifies toxicity through collective social reception rather than lexical features. We validate this approach on a novel dataset, demonstrating improved contextual sensitivity and adaptability when used alongside existing models.
♻ ☆ Block-Diagonal LoRA for Eliminating Communication Overhead in Tensor Parallel LoRA Serving
When serving a single base LLM with several different LoRA adapters simultaneously, the adapters cannot simply be merged with the base model's weights as the adapter swapping would create overhead and requests using different adapters could not be batched. Rather, the LoRA computations have to be separated from the base LLM computations, and in a multi-device setup the LoRA adapters can be sharded in a way that is well aligned with the base model's tensor parallel execution, as proposed in S-LoRA. However, the S-LoRA sharding strategy encounters some communication overhead, which may be small in theory, but can be large in practice. In this paper, we propose to constrain certain LoRA factors to be block-diagonal, which allows for an alternative way of sharding LoRA adapters that does not require any additional communication for the LoRA computations. We demonstrate in extensive experiments that our block-diagonal LoRA approach is similarly parameter efficient as standard LoRA (i.e., for a similar number of parameters it achieves similar downstream performance) and that it leads to significant end-to-end speed-up over S-LoRA. For example, when serving on eight A100 GPUs, we observe up to 1.79x (1.23x) end-to-end speed-up with 0.87x (1.74x) the number of adapter parameters for Llama-3.1-70B, and up to 1.63x (1.3x) end-to-end speed-up with 0.86x (1.73x) the number of adapter parameters for Llama-3.1-8B.
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ Modeling Information Blackouts in Missing Not-At-Random Time Series Data
Large-scale traffic forecasting relies on fixed sensor networks that often exhibit blackouts: contiguous intervals of missing measurements caused by detector or communication failures. These outages are typically handled under a Missing At Random (MAR) assumption, even though blackout events may correlate with unobserved traffic conditions (e.g., congestion or anomalous flow), motivating a Missing Not At Random (MNAR) treatment. We propose a latent state-space framework that jointly models (i) traffic dynamics via a linear dynamical system and (ii) sensor dropout via a Bernoulli observation channel whose probability depends on the latent traffic state. Inference uses an Extended Kalman Filter with Rauch-Tung-Striebel smoothing, and parameters are learned via an approximate EM procedure with a dedicated update for detector-specific missingness parameters. On the Seattle inductive loop detector data, introducing latent dynamics yields large gains over naive baselines, reducing blackout imputation RMSE from 7.02 (LOCF) and 5.02 (linear interpolation + seasonal naive) to 4.23 (MAR LDS), corresponding to about a 64% reduction in MSE relative to LOCF. Explicit MNAR modeling provides a consistent but smaller additional improvement on real data (imputation RMSE 4.20; 0.8% RMSE reduction relative to MAR), with similar modest gains for short-horizon post-blackout forecasts (evaluated at 1, 3, and 6 steps). In controlled synthetic experiments, the MNAR advantage increases as the true missingness dependence on latent state strengthens. Overall, temporal dynamics dominate performance, while MNAR modeling offers a principled refinement that becomes most valuable when missingness is genuinely informative.
comment: 8 pages, 7 figures, 3 tables
♻ ☆ CaTS-Bench: Can Language Models Describe Time Series?
Time series captioning, the task of describing time series in natural language, requires numeric and temporal reasoning, trend interpretation, and contextual understanding. Existing benchmarks, however, often rely on fully synthetic or generic captions, and typically neglect metadata and visual representations. We introduce \textbf{CaTS-Bench}, a comprehensive benchmark for \textbf{C}ontext-\textbf{a}ware \textbf{T}ime \textbf{S}eries reasoning across $11$ diverse domains, centered on a gold-standard evaluation set of $1746$ human-rewritten captions that measure how effectively models translate numeric trends into immediately interpretable narratives. To address the scarcity of human-annotated data, we also propose a scalable pipeline for generating high-fidelity synthetic captions, the quality of which we validate. We evaluate leading Vision-Language Models on our benchmark, revealing that even proprietary models struggle to capture numeric nuances in temporal descriptions, while finetuning open-source models on synthetic data yields substantial performance gains. Finally, release a diagnostic suite of $910$ multiple-choice questions and tailored numeric metrics to gauge time-series-specific reasoning capabilities, establishing CaTS-Bench as a reliable foundation for grounded, multimodal language generation in numeric domains.
comment: 8 pages, 6 figures, 3 tables in the main paper. Many more in the appendix
♻ ☆ UniversalRAG: Retrieval-Augmented Generation over Corpora of Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single aggregated corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose modality-aware routing, which dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it, and further justify its effectiveness with a theoretical analysis. Moreover, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 10 benchmarks of multiple modalities, showing its superiority over various modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
♻ ☆ Convergence of Decentralized Stochastic Subgradient-based Methods for Nonsmooth Nonconvex functions
In this paper, we focus on the decentralized stochastic subgradient-based methods in minimizing nonsmooth nonconvex functions without Clarke regularity, especially in the decentralized training of nonsmooth neural networks. We propose a general framework that unifies various decentralized subgradient-based methods, such as decentralized stochastic subgradient descent (DSGD), DSGD with gradient-tracking technique (DSGD-T), and DSGD with momentum (DSGD-M). To establish the convergence properties of our proposed framework, we relate the discrete iterates to the trajectories of a continuous-time differential inclusion, which is assumed to have a coercive Lyapunov function with a stable set $\mathcal{A}$. We prove the asymptotic convergence of the iterates to the stable set $\mathcal{A}$ with sufficiently small and diminishing step-sizes. These results provide first convergence guarantees for some well-recognized of decentralized stochastic subgradient-based methods without Clarke regularity of the objective function. Preliminary numerical experiments demonstrate that our proposed framework yields highly efficient decentralized stochastic subgradient-based methods with convergence guarantees in the training of nonsmooth neural networks.
comment: 35 pages
♻ ☆ Scene-Aware Vectorized Memory Multi-Agent Framework with Cross-Modal Differentiated Quantization VLMs for Visually Impaired Assistance
Visually impaired individuals face significant challenges in environmental perception. Traditional assistive technologies often lack adaptive intelligence, focusing on individual components rather than integrated systems. While Vision-Language Models (VLMs) offer a promising path to richer, integrated understanding, their deployment is severely limited by substantial computational requirements, demanding dozens of gigabytes of memory. To address these gaps in computational efficiency and integrated design, this study proposes a dual technological innovation framework: a cross-modal differentiated quantization framework for VLMs and a scene-aware vectorized memory multi-agent system. The quantization framework implements differentiated strategies, reducing memory from 38GB to 11.3GB. The multi-agent system uses vectorized memory and perception-memory-reasoning workflows to provide environmental information beyond the current view, achieving 2.83-3.52s latency to initial speech output. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory. This research advances computational efficiency and assistive technology, offering comprehensive assistance in scene perception, text recognition, and navigation.
comment: 28 pages,9 figures
♻ ☆ Mixture-of-Experts with Gradient Conflict-Driven Subspace Topology Pruning for Emergent Modularity
Mixture-of-Experts (MoE) architectures achieve parameter efficiency through conditional computation, yet contemporary designs suffer from two fundamental limitations: structural parameter isolation that causes catastrophic forgetting, and instruction-overfitting that degrades performance in instruction-free scenarios. We propose CDSP-MoE (Conflict-Driven Subspace Pruning MoE), a framework that addresses these issues through a paradigm shift from isolated expert containers to dynamic expert instantiation within a shared physical subspace. Grounded in the Universal Weight Subspace Hypothesis, CDSP-MoE maintains a super-complete parameter backbone where logical experts are carved out via learnable topology masks. Unlike prior work that uses gradient conflict for token reassignment or optimization surgery, we leverage it as a structural supervisory signal: a Lagged Gradient Game penalizes interfering connections in the shared manifold, enabling the topology to spontaneously prune conflicting pathways and evolve interpretable modular structures. Experimental results demonstrate that CDSP-MoE achieves robust content-driven routing without human-defined task labels, maintaining semantic specialization even under strict blind inference protocols where explicit instructions are absent. Code is available at: https://github.com/konodiodaaaaa1/Conflict-Driven-Subspace-Pruning-Mixture-of-Experts
♻ ☆ Global law of conjugate kernel random matrices with heavy-tailed weights
We study the asymptotic spectral distribution of the conjugate kernel random matrix $YY^\top$, where $Y= f(WX)$ arises from a two-layer neural network model. We consider the setting where $W$ and $X$ are random rectangular matrices with i.i.d.\ entries, where the entries of $W$ follow a heavy-tailed distribution, while those of $X$ have light tails. Our assumptions on $W$ include a broad class of heavy-tailed distributions, such as symmetric $α$-stable laws with $α\in ]0,2[$ and sparse matrices with $\mathcal{O}(1)$ nonzero entries per row. The activation function $f$, applied entrywise, is bounded, smooth, odd, and nonlinear. We compute the limiting eigenvalue distribution of $YY^\top$ through its moments and show that heavy-tailed weights induce strong correlations between the entries of $Y$, resulting in richer and fundamentally different spectral behavior compared to the light-tailed case.
comment: 48 pages, 7 figures
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ When Does Multi-Task Learning Fail? Quantifying Data Imbalance and Task Independence in Metal Alloy Property Prediction
Multi-task learning (MTL) is widely adopted in materials informatics under the assumption that related properties share leverageable physical principles. This study critically examines this premise by simultaneously predicting electrical resistivity, Vickers hardness, and amorphous-forming ability using a dataset of 54,028 metal alloys.1 Contrary to expectations, we observe a striking dichotomy: MTL significantly degrades regression accuracy (e.g., hardness 2$R^2$ drops from 3$0.832$ to 4$0.694$) while improving classification performance (amorphous F1 increases from 5$0.703$ to 6$0.744$).7 Analysis of learned task graphs reveals negligible inter-task correlations, attributing regression failure to negative transfer driven by severe data imbalance (52,388 vs. 800 samples). To mitigate this, we evaluate Deep Imbalanced Regression techniques. PCGrad recovers hardness performance ($R^2 \rightarrow 0.855$) by resolving gradient conflicts, while LDS+GradNorm achieves the best overall multi-task balance. Our findings suggest that alloy properties often behave independently, necessitating specific strategies: independent models for maximum regression precision, PCGrad for minority tasks, and LDS+GradNorm when balanced joint prediction is required.
♻ ☆ IPA: An Information-Reconstructive Input Projection Framework for Efficient Foundation Model Adaptation
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, reduce adaptation cost by injecting low-rank updates into pretrained weights. However, LoRA's down-projection is randomly initialized and data-agnostic, discarding potentially useful information. Prior analyses show that this projection changes little during training, while the up-projection carries most of the adaptation, making the random input compression a performance bottleneck. We propose IPA, a feature-aware projection framework that explicitly aims to reconstruct the original input within a reduced hidden space. In the linear case, we instantiate IPA with algorithms approximating top principal components, enabling efficient projector pretraining with negligible inference overhead. Across language and vision benchmarks, IPA consistently improves over LoRA and DoRA, achieving on average 1.5 points higher accuracy on commonsense reasoning and 2.3 points on VTAB-1k, while matching full LoRA performance with roughly half the trainable parameters when the projection is frozen. Code available at https://github.com/valeoai/peft-ipa .
comment: Accepted to TMLR
♻ ☆ At the Intersection of Deep Sequential Model Framework and State-space Model Framework: Study on Option Pricing
Inference and forecast problems of the nonlinear dynamical system have arisen in a variety of contexts. Reservoir computing and deep sequential models, on the one hand, have demonstrated efficient, robust, and superior performance in modeling simple and chaotic dynamical systems. However, their innate deterministic feature has partially detracted their robustness to noisy system, and their inability to offer uncertainty measurement has also been an insufficiency of the framework. On the other hand, the traditional state-space model framework is robust to noise. It also carries measured uncertainty, forming a just-right complement to the reservoir computing and deep sequential model framework. We propose the unscented reservoir smoother, a model that unifies both deep sequential and state-space models to achieve both frameworks' superiorities. Evaluated in the option pricing setting on top of noisy datasets, URS strikes highly competitive forecasting accuracy, especially those of longer-term, and uncertainty measurement. Further extensions and implications on URS are also discussed to generalize a full integration of both frameworks.
comment: 37 pages, 12 figures, preprint
♻ ☆ ORPR: An OR-Guided Pretrain-then-Reinforce Learning Model for Inventory Management
As the pursuit of synergy between Artificial Intelligence (AI) and Operations Research (OR) gains momentum in handling complex inventory systems, a critical challenge persists: how to effectively reconcile AI's adaptive perception with OR's structural rigor. To bridge this gap, we propose a novel OR-Guided "Pretrain-then-Reinforce" framework. To provide structured guidance, we propose a simulation-augmented OR model that generates high-quality reference decisions, implicitly capturing complex business constraints and managerial preferences. Leveraging these OR-derived decisions as foundational training labels, we design a domain-informed deep learning foundation model to establish foundational decision-making capabilities, followed by a reinforcement learning (RL) fine-tuning stage. Uniquely, we position RL as a deep alignment mechanism that enables the AI agent to internalize the optimality principles of OR, while simultaneously leveraging exploration for general policy refinement and allowing expert guidance for scenario-specific adaptation (e.g., promotional events). Validated through extensive numerical experiments and a field deployment at JD.com augmented by a Difference-in-Differences (DiD) analysis, our model significantly outperforms incumbent industrial practices, delivering real-world gains of a 5.27-day reduction in turnover and a 2.29% increase in in-stock rates, alongside a 29.95% decrease in holding costs. Contrary to the prevailing trend of brute-force model scaling, our study demonstrates that a lightweight, domain-informed model can deliver state-of-the-art performance and robust transferability when guided by structured OR logic. This approach offers a scalable and cost-effective paradigm for intelligent supply chain management, highlighting the value of deeply aligning AI with OR.
♻ ☆ Communication Compression for Tensor Parallel LLM Inference
Large Language Models (LLMs) have pushed the frontier of artificial intelligence but are comprised of hundreds of billions of parameters and operations. For faster inference latency, LLMs are deployed on multiple hardware accelerators through various Model Parallelism strategies. Our paper looks into the details on one such strategy - Tensor Parallel - and proposes to reduce latency by compressing inter-accelerator communication. We leverage fine grained quantization techniques to compress selected activations by 3.5 - 4.5x. Our proposed method leads up to 2x reduction of time-to-first-token (TTFT) with negligible model performance degradation.
♻ ☆ Personality-Enhanced Social Recommendations in SAMI: Exploring the Role of Personality Detection in Matchmaking
Social belonging is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI (Social Agent Mediated Interactions) offers one solution by facilitating student connections, but its effectiveness may be constrained by an incomplete Theory of Mind, limiting its ability to create an effective 'mental model' of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this gap, we examine the viability of automated personality inference by proposing a personality detection model utilizing GPT's zeroshot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, finding that while GPT models show promising results on this specific dataset, performance varies significantly across traits. We identify potential biases toward optimistic trait inference, particularly for traits with skewed distributions. We demonstrate a proof-of-concept integration of personality detection into SAMI's entity-based matchmaking system, focusing on three traits with established connections to positive social formation: Extroversion, Agreeableness, and Openness. This work represents an initial exploration of personality-informed social recommendations in educational settings. While our implementation shows technical feasibility, significant questions remain. We discuss these limitations and outline directions for future work, examining what LLMs specifically capture when performing personality inference and whether personality-based matching meaningfully improves student connections in practice.
comment: Preprint. Appears in INTED 2026
♻ ☆ U-PINet: Physics-Informed Hierarchical Learning for Accurate and Fast 3D RCS Prediction IEEE
Accurate radar cross section (RCS) computation is a fundamental task in radar engineering and electromagnetic (EM) scattering analysis, underpinning target signature characterization, detection, and recognition. Conventional computational electromagnetics (CEM) solvers provide high-fidelity RCS predictions but suffer from prohibitive computational costs when applied to 3-dimensional (3D) targets under multi-aspect configurations. In contrast, purely data-driven neural networks offer high efficiency yet often lack physical consistency and generalization capability. To address these challenges, this paper proposes a U-shaped Physics-Informed Network (U-PINet). To the best of our knowledge, it is the first framework to establish a fully end-to-end, physics-informed hierarchical architecture for fast and accurate RCS computation, grounded in the governing principles of CEM. Inspired by the near-far field decomposition in classical fast solvers, U-PINet explicitly models local EM coupling and long-range radiation effects through a hierarchical operator design. A physics-guided graph construction is further introduced to represent self- and mutual-coupling among mesh elements of complex 3D targets, enabling physically interpretable intermediate representations. By embedding EM governing equations as residual constraints, the proposed framework achieves end-to-end, physically consistent RCS prediction with significantly improved computational efficiency. Extensive numerical experiments demonstrate that U-PINet attains solver-level RCS accuracy with orders-of-magnitude runtime reduction, while exhibiting strong generalization to unseen target geometries under limited training data.
comment: This work has been submitted to the IEEE Transactions on Radar Systems for possible publication
♻ ☆ Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
♻ ☆ Development of a high-resolution indoor radon map using a new machine learning-based probabilistic model and German radon survey data
Accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas. Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns. However, characteristics of the sampled households often differ from the characteristics of the target population owing to the large number of relevant factors that control the indoor radon concentration, such as the availability of geogenic radon or floor level. We propose a model-based approach that allows a more realistic estimation of indoor radon distribution with a higher spatial resolution than a purely data-based approach. A modeling approach was used by applying a quantile regression forest to estimate the probability distribution function of indoor radon for each floor level of each residential building in Germany. Based on the estimated probability distribution function,a probabilistic Monte Carlo sampling technique was applied, enabling the combination and population weighting of floor-level predictions. In this way,the uncertainty of the individual predictions is effectively propagated into the estimate of variability at the aggregated level. The results show an approximate lognormal distribution of indoor radon in dwellings in Germany with an arithmetic mean of 63 Bq/m3, a geometric mean of 41 Bq/m3, and a 95th percentile of 180 Bq/m3. The exceedance probabilities for 100 and 300 Bq/m3 are 12.5% (10.5 million people affected) and 2.2 % (1.9 million people affected), respectively. The advantages of our approach are that it yields a) an accurate estimation of indoor radon concentration even if the survey is not fully representative with respect to floor level and radon concentration in soil, and b) an estimate of the indoor radon distribution with a much higher spatial resolution than basic descriptive statistics.
♻ ☆ MemHunter: Automated and Verifiable Memorization Detection at Dataset-scale in LLMs
Large language models (LLMs) have been shown to memorize and reproduce content from their training data, raising significant privacy concerns, especially with web-scale datasets. Existing methods for detecting memorization are primarily sample-specific, relying on manually crafted or discretely optimized memory-inducing prompts generated on a per-sample basis, which become impractical for dataset-level detection due to the prohibitive computational cost of iterating through all samples. In real-world scenarios, data owners may need to verify whether a susceptible LLM has memorized their dataset, particularly if the LLM may have collected the data from the web without authorization. To address this, we introduce MemHunter, which trains a memory-inducing LLM and employs hypothesis testing to efficiently detect memorization at the dataset level, without requiring sample-specific memory inducing. Experiments on models like Pythia and Llama demonstrate that MemHunter can extract up to 40% more training data than existing methods under constrained time resources and reduce search time by up to 80% when integrated as a plug-in. Crucially, MemHunter is the first method capable of dataset-level memorization detection, providing a critical tool for assessing privacy risks in LLMs powered by large-scale datasets.
comment: Withdrawn by the authors due to an inconsistency in the reported base model: Section 4 (Experiments) states "Llama-2-7B" while Fig. 3 labels "Llama-2-7B-Chat". Because this affects the experimental configuration, parts of the results must be re-verified by rerunning experiments; we withdraw to avoid misleading readers
♻ ☆ DiRL: An Efficient Post-Training Framework for Diffusion Language Models
Diffusion Language Models (dLLMs) have emerged as promising alternatives to Auto-Regressive (AR) models. While recent efforts have validated their pre-training potential and accelerated inference speeds, the post-training landscape for dLLMs remains underdeveloped. Existing methods suffer from computational inefficiency and objective mismatches between training and inference, severely limiting performance on complex reasoning tasks such as mathematics. To address this, we introduce DiRL, an efficient post-training framework that tightly integrates FlexAttention-accelerated blockwise training with LMDeploy-optimized inference. This architecture enables a streamlined online model update loop, facilitating efficient two-stage post-training (Supervised Fine-Tuning followed by Reinforcement Learning). Building on this framework, we propose DiPO, the first unbiased Group Relative Policy Optimization (GRPO) implementation tailored for dLLMs. We validate our approach by training DiRL-8B-Instruct on high-quality math data. Our model achieves state-of-the-art math performance among dLLMs and surpasses comparable models in the Qwen2.5 series on several benchmarks.
♻ ☆ Learning the Basis: A Kolmogorov-Arnold Network Approach Embedding Green's Function Priors IEEE
The Method of Moments (MoM) is constrained by the usage of static, geometry-defined basis functions, such as the Rao-Wilton-Glisson (RWG) basis. This letter reframes electromagnetic modeling around a learnable basis representation rather than solving for the coefficients over a fixed basis. We first show that the RWG basis is essentially a static and piecewise-linear realization of the Kolmogorov-Arnold representation theorem. Inspired by this insight, we propose PhyKAN, a physics-informed Kolmogorov-Arnold Network (KAN) that generalizes RWG into a learnable and adaptive basis family. Derived from the EFIE, PhyKAN integrates a local KAN branch with a global branch embedded with Green's function priors to preserve physical consistency. It is demonstrated that, across canonical geometries, PhyKAN achieves sub-0.01 reconstruction errors as well as accurate, unsupervised radar cross section predictions, offering an interpretable, physics-consistent bridge between classical solvers and modern neural network models for electromagnetic modeling.
comment: 4 pages, 3 figures. Submitted to IEEE Antennas and Wireless Propagation Letters
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ Compositional Monte Carlo Tree Diffusion for Extendable Planning NeurIPS 25
Monte Carlo Tree Diffusion (MCTD) integrates diffusion models with structured tree search to enable effective trajectory exploration through stepwise reasoning. However, MCTD remains fundamentally limited by training trajectory lengths. While periodic replanning allows plan concatenation for longer plan generation, the planning process remains locally confined, as MCTD searches within individual trajectories without access to global context. We propose Compositional Monte Carlo Tree Diffusion (C-MCTD), a framework that elevates planning from individual trajectory optimization to reasoning over complete plan compositions. C-MCTD introduces three complementary components: (1) Online Composer, which performs globally-aware planning by searching across entire plan compositions; (2) Distributed Composer, which reduces search complexity through parallel exploration from multiple starting points; and (3) Preplan Composer, which accelerates inference by leveraging cached plan graphs.
comment: 24 pages, 4 figures, NeurIPS 25 Spotlight
♻ ☆ Accelerating Storage-Based Training for Graph Neural Networks KDD
Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, a storage-based approach to GNN training has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: how to handle a large number of small storage I/Os. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named AGNES, that employs a method of block-wise storage I/O processing to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, AGNES employs a simple yet effective strategy, hyperbatch-based processing based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that AGNES consistently outperforms four state-of-the-art methods, by up to 4.1X faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.
comment: 10 pages, 12 figures, 2 tables, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2026
♻ ☆ Time-Transformer: Integrating Local and Global Features for Better Time Series Generation (Extended Version) SDM24
Generating time series data is a promising approach to address data deficiency problems. However, it is also challenging due to the complex temporal properties of time series data, including local correlations as well as global dependencies. Most existing generative models have failed to effectively learn both the local and global properties of time series data. To address this open problem, we propose a novel time series generative model named 'Time-Transformer AAE', which consists of an adversarial autoencoder (AAE) and a newly designed architecture named 'Time-Transformer' within the decoder. The Time-Transformer first simultaneously learns local and global features in a layer-wise parallel design, combining the abilities of Temporal Convolutional Networks and Transformer in extracting local features and global dependencies respectively. Second, a bidirectional cross attention is proposed to provide complementary guidance across the two branches and achieve proper fusion between local and global features. Experimental results demonstrate that our model can outperform existing state-of-the-art models in 5 out of 6 datasets, specifically on those with data containing both global and local properties. Furthermore, we highlight our model's advantage on handling this kind of data via an artificial dataset. Finally, we show our model's ability to address a real-world problem: data augmentation to support learning with small datasets and imbalanced datasets.
comment: 15 pages, 7 figures and 16 tables. SDM24 extended
♻ ☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations NeurIPS 2025
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: Accepted to NeurIPS 2025
♻ ☆ Making MoE-based LLM Inference Resilient with Tarragon
Mixture-of-Experts (MoE) models are increasingly used to serve LLMs at scale, but failures become common as deployment scale grows. Existing systems exhibit poor failure resilience: even a single worker failure triggers a coarse-grained, service-wide restart, discarding accumulated progress and halting the entire inference pipeline during recovery--an approach clearly ill-suited for latency-sensitive, LLM services. We present Tarragon, a resilient MoE inference framework that confines the failures impact to individual workers while allowing the rest of the pipeline to continue making forward progress. Tarragon exploits the natural separation between the attention and expert computation in MoE-based transformers, treating attention workers (AWs) and expert workers (EWs) as distinct failure domains. Tarragon introduces a reconfigurable datapath to mask failures by rerouting requests to healthy workers. On top of this datapath, Tarragon implements a self-healing mechanism that relaxes the tightly synchronized execution of existing MoE frameworks. For stateful AWs, Tarragon performs asynchronous, incremental KV cache checkpointing with per-request restoration, and for stateless EWs, it leverages residual GPU memory to deploy shadow experts. These together keep recovery cost and recomputation overhead extremely low. Our evaluation shows that, compared to state-of-the-art MegaScale-Infer, Tarragon reduces failure-induced stalls by 160-213x (from ~64 s down to 0.3-0.4 s) while preserving performance when no failures occur.
♻ ☆ Coarse-Grained Kullback--Leibler Control of Diffusion-Based Generative AI
Diffusion models and score-based generative models provide a powerful framework for synthesizing high-quality images from noise. However, there is still no satisfactory theory that describes how coarse-grained quantities, such as blockwise intensity or class proportions after partitioning an image into spatial blocks, are preserved and evolve along the reverse diffusion dynamics. In previous work, the author introduced an information-theoretic Lyapunov function V for non-ergodic Markov processes on a state space partitioned into blocks, defined as the minimal Kullback-Leibler divergence to the set of stationary distributions reachable from a given initial condition, and showed that a leak-tolerant potential V-delta with a prescribed tolerance for block masses admits a closed-form expression as a scaling-and-clipping operation on block masses. In this paper, I transplant this framework to the reverse diffusion process in generative models and propose a reverse diffusion scheme that is projected by the potential V-delta (referred to as the V-delta projected reverse diffusion). I extend the monotonicity of V to time-inhomogeneous block-preserving Markov kernels and show that, under small leakage and the V-delta projection, V-delta acts as an approximate Lyapunov function. Furthermore, using a toy model consisting of block-constant images and a simplified reverse kernel, I numerically demonstrate that the proposed method keeps the block-mass error and the leak-tolerant potential within the prescribed tolerance, while achieving pixel-wise accuracy and visual quality comparable to the non-projected dynamics. This study reinterprets generative sampling as a decrease of an information potential from noise to data, and provides a design principle for reverse diffusion processes with explicit control of coarse-grained quantities.
♻ ☆ SmartSnap: Proactive Evidence Seeking for Self-Verifying Agents
Agentic reinforcement learning (RL) holds great promise for the development of autonomous agents under complex GUI tasks, but its scalability remains severely hampered by the verification of task completion. Existing task verification is treated as a passive, post-hoc process: a verifier (i.e., rule-based scoring script, reward or critic model, and LLM-as-a-Judge) analyzes the agent's entire interaction trajectory to determine if the agent succeeds. Such processing of verbose context that contains irrelevant, noisy history poses challenges to the verification protocols and therefore leads to prohibitive cost and low reliability. To overcome this bottleneck, we propose SmartSnap, a paradigm shift from this passive, post-hoc verification to proactive, in-situ self-verification by the agent itself. We introduce the Self-Verifying Agent, a new type of agent designed with dual missions: to not only complete a task but also to prove its accomplishment with curated snapshot evidences. Guided by our proposed 3C Principles (Completeness, Conciseness, and Creativity), the agent leverages its accessibility to the online environment to perform self-verification on a minimal, decisive set of snapshots. Such evidences are provided as the sole materials for a general LLM-as-a-Judge verifier to determine their validity and relevance. Experiments on mobile tasks across model families and scales demonstrate that our SmartSnap paradigm allows training LLM-driven agents in a scalable manner, bringing performance gains up to 26.08% and 16.66% respectively to 8B and 30B models. The synergizing between solution finding and evidence seeking facilitates the cultivation of efficient, self-verifying agents with competitive performance against DeepSeek V3.1 and Qwen3-235B-A22B. Code is available at: https://github.com/TencentYoutuResearch/SmartSnap
♻ ☆ Group-Sensitive Offline Contextual Bandits
Offline contextual bandits allow one to learn policies from historical/offline data without requiring online interaction. However, offline policy optimization that maximizes overall expected rewards can unintentionally amplify the reward disparities across groups. As a result, some groups might benefit more than others from the learned policy, raising concerns about fairness, especially when the resources are limited. In this paper, we study a group-sensitive fairness constraint in offline contextual bandits, reducing group-wise reward disparities that may arise during policy learning. We tackle the following common-parity requirements: the reward disparity is constrained within some user-defined threshold or the reward disparity should be minimized during policy optimization. We propose a constrained offline policy optimization framework by introducing group-wise reward disparity constraints into an off-policy gradient-based optimization procedure. To improve the estimation of the group-wise reward disparity during training, we employ a doubly robust estimator and further provide a convergence guarantee for policy optimization. Empirical results in synthetic and real-world datasets demonstrate that our method effectively reduces reward disparities while maintaining competitive overall performance.
♻ ☆ Re3: Learning to Balance Relevance & Recency for Temporal Information Retrieval
Temporal Information Retrieval (TIR) is a critical yet unresolved task for modern search systems, retrieving documents that not only satisfy a query's information need but also adhere to its temporal constraints. This task is shaped by two challenges: Relevance, ensuring alignment with the query's explicit temporal requirements, and Recency, selecting the freshest document among multiple versions. Existing methods often address the two challenges in isolation, relying on brittle heuristics that fail in scenarios where temporal requirements and staleness resistance are intertwined. To address this gap, we introduce Re2Bench, a benchmark specifically designed to disentangle and evaluate Relevance, Recency, and their hybrid combination. Building on this foundation, we propose Re3, a unified and lightweight framework that dynamically balances semantic and temporal information through a query-aware gating mechanism. On Re2Bench, Re3 achieves state-of-the-art results, leading in R@1 across all three subsets. Ablation studies with backbone sensitivity tests confirm robustness, showing strong generalization across diverse encoders and real-world settings. This work provides both a generalizable solution and a principled evaluation suite, advancing the development of temporally aware retrieval systems. Re3 and Re2Bench are available online: https://anonymous.4open.science/r/Re3-0C5A
comment: This version is withdrawn because the authors are preparing a substantially revised manuscript with a significantly different problem setting, methodology, and overall framing. The current version no longer reflects the direction or contributions of the ongoing work
♻ ☆ A new type of federated clustering: A non-model-sharing approach
In recent years, the growing need to leverage sensitive data across institutions has led to increased attention on federated learning (FL), a decentralized machine learning paradigm that enables model training without sharing raw data. However, existing FL-based clustering methods, known as federated clustering, typically assume simple data partitioning scenarios such as horizontal or vertical splits, and cannot handle more complex distributed structures. This study proposes data collaboration clustering (DC-Clustering), a novel federated clustering method that supports clustering over complex data partitioning scenarios where horizontal and vertical splits coexist. In DC-Clustering, each institution shares only intermediate representations instead of raw data, ensuring privacy preservation while enabling collaborative clustering. The method allows flexible selection between k-means and spectral clustering, and achieves final results with a single round of communication with the central server. We conducted extensive experiments using synthetic and open benchmark datasets. The results show that our method achieves clustering performance comparable to centralized clustering where all data are pooled. DC-Clustering addresses an important gap in current FL research by enabling effective knowledge discovery from distributed heterogeneous data. Its practical properties -- privacy preservation, communication efficiency, and flexibility -- make it a promising tool for privacy-sensitive domains such as healthcare and finance.
comment: 30 pages, 3 figures,
♻ ☆ A UCB Bandit Algorithm for General ML-Based Estimators
We present ML-UCB, a generalized upper confidence bound algorithm that integrates arbitrary machine learning models into multi-armed bandit frameworks. A fundamental challenge in deploying sophisticated ML models for sequential decision-making is the lack of tractable concentration inequalities required for principled exploration. We overcome this limitation by directly modeling the learning curve behavior of the underlying estimator. Specifically, assuming the Mean Squared Error decreases as a power law in the number of training samples, we derive a generalized concentration inequality and prove that ML-UCB achieves sublinear regret. This framework enables the principled integration of any ML model whose learning curve can be empirically characterized, eliminating the need for model-specific theoretical analysis. We validate our approach through experiments on a collaborative filtering recommendation system using online matrix factorization with synthetic data designed to simulate a simplified two-tower model, demonstrating substantial improvements over LinUCB
comment: 15 pages, 4 figures, 1 table, Multi-Arm bandit, psi-UCB, generalized estimators
♻ ☆ What Makes Looped Transformers Perform Better Than Non-Recursive Ones
While looped transformers (termed as Looped-Attn) often outperform standard transformers (termed as Single-Attn) on complex reasoning tasks, the mechanism for this advantage remains underexplored. In this paper, we explain this phenomenon through the lens of loss landscape geometry, inspired by empirical observations of their distinct dynamics at both sample and Hessian levels. To formalize this, we extend the River-Valley landscape model by distinguishing between U-shaped valleys (flat) and V-shaped valleys (steep). Based on empirical observations, we conjecture that the recursive architecture of Looped-Attn induces a landscape-level inductive bias towards River-V-Valley. This inductive bias suggest a better loss convergence along the river due to valley hopping, and further encourage learning about complex patterns compared to the River-U-Valley induced by Single-Attn. Building on this insight, we propose SHIFT (Staged HIerarchical Framework for Progressive Training), a principled training strategy that accelerates the training process of Looped-Attn while achieving comparable performances.
♻ ☆ Aha Moment Revisited: Are VLMs Truly Capable of Self Verification in Inference-time Scaling?
Inference time techniques such as decoding time scaling and self refinement have been shown to substantially improve mathematical reasoning in large language models (LLMs), largely attributed to emergent self correction and self verification behaviors often elicited through reinforcement learning (RL). In this work, we ask whether the same recipe transfers to vision language models (VLMs), especially RL finetuned variants that claim strong visual mathematical reasoning. Through extensive evaluation, we reach three main findings that differ markedly from text only models. First, generation time capability matters more than verification and refinement: simple majority voting consistently and substantially outperforms verification centric strategies such as best of N with self verification. Second, behaviors often associated with RL tuned models at inference time, such as the 'Aha moment,' do not yield reliable reasoning performance improvements. Third, visual information is not effectively integrated into the model's self verification process. Overall, our analysis highlights a key limitation: current RL trained VLMs derive limited benefit from self verification in the visual modality, which constrains the effectiveness of inference time scaling for visual mathematical reasoning.
comment: Neurips 2025 Multimodal Algorithmic Reasoning Workshop Oral. In submission
Offline Model-Based Optimization: Comprehensive Review
Offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets. This setting is particularly relevant when querying the objective function is prohibitively expensive or infeasible, with applications spanning protein engineering, material discovery, neural architecture search, and beyond. The main difficulty lies in accurately estimating the objective landscape beyond the available data, where extrapolations are fraught with significant epistemic uncertainty. This uncertainty can lead to objective hacking(reward hacking), exploiting model inaccuracies in unseen regions, or other spurious optimizations that yield misleadingly high performance estimates outside the training distribution. Recent advances in model-based optimization(MBO) have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models. Trained with carefully designed strategies, these models are more robust against out-of-distribution issues, facilitating the discovery of improved designs. Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review. To bridge this gap, we present the first thorough review of offline MBO. We begin by formalizing the problem for both single-objective and multi-objective settings and by reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches into two key areas: surrogate modeling, which emphasizes accurate function approximation in out-of-distribution regions, and generative modeling, which explores high-dimensional design spaces to identify high-performing designs. Finally, we examine the key challenges and propose promising directions for advancement in this rapidly evolving field including safe control of superintelligent systems.
comment: Accepted to TMLR 2026 (Survey Certification)
♻ ☆ Agentic Physical AI toward a Domain-Specific Foundation Model for Nuclear Reactor Control
The prevailing paradigm in AI for physical systems, scaling general-purpose foundation models toward universal multimodal reasoning, confronts a fundamental barrier at the control interface. Recent benchmarks show that even frontier vision-language models achieve only 50-53% accuracy on basic quantitative physics tasks, behaving as approximate guessers that preserve semantic plausibility while violating physical constraints. This input unfaithfulness is not a scaling deficiency but a structural limitation. Perception-centric architectures optimize parameter-space imitation, whereas safety-critical control demands outcome-space guarantees over executed actions. Here, we present a fundamentally different pathway toward domain-specific foundation models by introducing compact language models operating as Agentic Physical AI, in which policy optimization is driven by physics-based validation rather than perceptual inference. We train a 360-million-parameter model on synthetic reactor control scenarios, scaling the dataset from 10^3 to 10^5 examples. This induces a sharp phase transition absent in general-purpose models. Small-scale systems exhibit high-variance imitation with catastrophic tail risk, while large-scale models undergo variance collapse exceeding 500x reduction, stabilizing execution-level behavior. Despite balanced exposure to four actuation families, the model autonomously rejects approximately 70% of the training distribution and concentrates 95% of runtime execution on a single-bank strategy. Learned representations transfer across distinct physics and continuous input modalities without architectural modification.
♻ ☆ VocabTailor: Dynamic Vocabulary Selection for Downstream Tasks in Small Language Models
Small Language Models (SLMs) provide computational advantages in resource-constrained environments, yet memory limitations remain a critical bottleneck for edge device deployment. A substantial portion of SLMs' memory footprint stems from vocabulary-related components, particularly embeddings and language modeling (LM) heads, due to large vocabulary sizes. Existing static vocabulary pruning, while reducing memory usage, suffers from rigid, one-size-fits-all designs that cause information loss from the prefill stage and a lack of flexibility. In this work, we identify two key principles underlying the vocabulary reduction challenge: the lexical locality principle, the observation that only a small subset of tokens is required during any single inference, and the asymmetry in computational characteristics between vocabulary-related components of SLM. Based on these insights, we introduce VocabTailor, a novel decoupled dynamic vocabulary selection framework that addresses memory constraints through offloading embedding and implements a hybrid static-dynamic vocabulary selection strategy for LM Head, enabling on-demand loading of vocabulary components. Comprehensive experiments across diverse downstream tasks demonstrate that VocabTailor achieves a reduction of up to 99% in the memory usage of vocabulary-related components with minimal or no degradation in task performance, substantially outperforming existing static vocabulary pruning.
♻ ☆ Geometric and Dynamic Scaling in Deep Transformers
Despite their empirical success, pushing Transformer architectures to extreme depth often leads to a paradoxical failure: representations become increasingly redundant, lose rank, and ultimately collapse. Existing explanations largely attribute this phenomenon to optimization instability or vanishing gradients, yet such accounts fail to explain why collapse persists even under modern normalization and initialization schemes. In this paper, we argue that the collapse of deep Transformers is fundamentally a geometric problem. Standard residual updates implicitly assume that feature accumulation is always beneficial, but offer no mechanism to constrain update directions or to erase outdated information. As depth increases, this leads to systematic drift off the semantic manifold and monotonic feature accumulation, causing representational degeneracy. We propose a unified geometric framework that addresses these failures through two orthogonal principles. First, manifold-constrained hyper-connections restrict residual updates to valid local tangent directions, preventing uncontrolled manifold drift. Second, deep delta learning introduces data-dependent, non-monotonic updates that enable reflection and erasure of redundant features rather than their unconditional accumulation. Together, these mechanisms decouple the direction and sign of feature updates, yielding a stable geometric evolution across depth. We term the resulting architecture the Manifold-Geometric Transformer (MGT). Our analysis predicts that enforcing geometric validity while allowing dynamic erasure is essential for avoiding rank collapse in ultra-deep networks. We outline an evaluation protocol for Transformers exceeding 100 layers to test the hypothesis that geometry, rather than depth itself, is the key limiting factor in deep representation learning.
comment: Research Proposal Only
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current AI systems exhibit a fundamental limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings, Non-Collapsing Attention, and Contextual Identity Tracking (CIT), unified under a formal state space with eight operators for non-collapsing computation. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.63$) at ambiguous turns while standard architectures collapse early ($H = 0.10$), demonstrating that NRR preserves interpretive flexibility until context arrives. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 1 figure, 2 tables. v6: Added protocol extensions (state space formalization, eight operators). Clarified language to distinguish empirical results from design proposals
♻ ☆ HONEYBEE: Efficient Role-based Access Control for Vector Databases via Dynamic Partitioning SIGMOD 2026
Enterprise deployments of vector databases require access control policies to protect sensitive data. These systems often implement access control through hybrid vector queries that combine nearest-neighbor search with relational predicates based on user permissions. However, existing approaches face a fundamental trade-off: dedicated per-user indexes minimize query latency but incur high memory redundancy, while shared indexes with post-search filtering reduce memory overhead at the cost of increased latency. This paper introduces HONEYBEE, a dynamic partitioning framework that leverages the structure of Role-Based Access Control (RBAC) policies to create a smooth trade-off between these extremes. RBAC policies organize users into roles and assign permissions at the role level, creating a natural ``thin waist" in the permission structure that is ideal for partitioning decisions. Specifically, HONEYBEE produces overlapping partitions where vectors can be strategically replicated across different partitions to reduce query latency while controlling memory overhead. To guide these decisions, HONEYBEE develops analytical models of vector search performance and recall, and formulates partitioning as a constrained optimization problem that balances memory usage, query efficiency, and recall. Evaluations on RBAC workloads demonstrate that HONEYBEE achieves up to 13.5X lower query latency than row-level security with only a 1.24X increase in memory usage, while achieving comparable query performance to dedicated, per-role indexes with 90.4% reduction in additional memory consumption, offering a practical middle ground for secure and efficient vector search.
comment: Accepted by SIGMOD 2026
♻ ☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Our best AOs match or exceed white-box baselines on all four tasks and the best overall baseline on 3 of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
♻ ☆ Exploratory Causal Inference in SAEnce
Randomized Controlled Trials are one of the pillars of science; nevertheless, they rely on hand-crafted hypotheses and expensive analysis. Such constraints prevent causal effect estimation at scale, potentially anchoring on popular yet incomplete hypotheses. We propose to discover the unknown effects of a treatment directly from data. For this, we turn unstructured data from a trial into meaningful representations via pretrained foundation models and interpret them via a sparse autoencoder. However, discovering significant causal effects at the neural level is not trivial due to multiple-testing issues and effects entanglement. To address these challenges, we introduce Neural Effect Search, a novel recursive procedure solving both issues by progressive stratification. After assessing the robustness of our algorithm on semi-synthetic experiments, we showcase, in the context of experimental ecology, the first successful unsupervised causal effect identification on a real-world scientific trial.
Multimedia 10
☆ Resolution deficits drive simulator sickness and compromise reading performance in virtual environments
Extended reality (XR) is evolving into a general-purpose computing platform, yet its adoption for productivity is hindered by visual fatigue and simulator sickness. While these symptoms are often attributed to latency or motion conflicts, the precise impact of textual clarity on physiological comfort remains undefined. Here we show that sub-optimal effective resolution, the clarity that reaches the eye after the full display-optics-rendering pipeline, is a primary driver of simulator sickness during reading tasks in both virtual reality and video see-through environments. By systematically manipulating end-to-end effective resolution on a unified logMAR scale, we measured reading psychophysics and sickness symptoms in a controlled within-subjects study. We find that reading performance and user comfort degrade exponentially as resolution drops below 0 logMAR (normal visual acuity). Notably, our results reveal 0 logMAR as a key physiological tipping point: resolutions better than this threshold yield naked-eye-level performance with minimal sickness, whereas poorer resolutions trigger rapid, non-linear increases in nausea and oculomotor strain. These findings suggest that the cognitive and perceptual effort required to resolve blurry text directly compromises user comfort, establishing human-eye resolution as a critical baseline for the design of future ergonomic XR systems.
comment: 18 pages, 7 figures, 7 tables
☆ The perceptual gap between video see-through displays and natural human vision
Video see-through (VST) technology aims to seamlessly blend virtual and physical worlds by reconstructing reality through cameras. While manufacturers promise perceptual fidelity, it remains unclear how close these systems are to replicating natural human vision across varying environmental conditions. In this work, we quantify the perceptual gap between the human eye and different popular VST headsets (Apple Vision Pro, Meta Quest 3, Quest Pro) using psychophysical measures of visual acuity, contrast sensitivity, and color vision. We show that despite hardware advancements, all tested VST systems fail to match the dynamic range and adaptability of the naked eye. While high-end devices approach human performance in ideal lighting, they exhibit significant degradation in low-light conditions, particularly in contrast sensitivity and acuity. Our results map the physiological limitations of digital reality reconstruction, establishing a specific perceptual gap that defines the roadmap for achieving indistinguishable VST experiences.
comment: 19 pages, 9 figures, 4 tables
☆ UniSRCodec: Unified and Low-Bitrate Single Codebook Codec with Sub-Band Reconstruction
Neural Audio Codecs (NACs) can reduce transmission overhead by performing compact compression and reconstruction, which also aim to bridge the gap between continuous and discrete signals. Existing NACs can be divided into two categories: multi-codebook and single-codebook codecs. Multi-codebook codecs face challenges such as structural complexity and difficulty in adapting to downstream tasks, while single-codebook codecs, though structurally simpler, suffer from low-fidelity, ineffective modeling of unified audio, and an inability to support modeling of high-frequency audio. We propose the UniSRCodec, a single-codebook codec capable of supporting high sampling rate, low-bandwidth, high fidelity, and unified. We analyze the inefficiency of waveform-based compression and introduce the time and frequency compression method using the Mel-spectrogram, and cooperate with a Vocoder to recover the phase information of the original audio. Moreover, we propose a sub-band reconstruction technique to achieve high-quality compression across both low and high frequency bands. Subjective and objective experimental results demonstrate that UniSRCodec achieves state-of-the-art (SOTA) performance among cross-domain single-codebook codecs with only a token rate of 40, and its reconstruction quality is comparable to that of certain multi-codebook methods. Our demo page is available at https://wxzyd123.github.io/unisrcodec.
comment: 6 pages, 2 figures, and 3 tables
☆ Omni2Sound: Towards Unified Video-Text-to-Audio Generation
Training a unified model integrating video-to-audio (V2A), text-to-audio (T2A), and joint video-text-to-audio (VT2A) generation offers significant application flexibility, yet faces two unexplored foundational challenges: (1) the scarcity of high-quality audio captions with tight A-V-T alignment, leading to severe semantic conflict between multimodal conditions, and (2) cross-task and intra-task competition, manifesting as an adverse V2A-T2A performance trade-off and modality bias in the VT2A task. First, to address data scarcity, we introduce SoundAtlas, a large-scale dataset (470k pairs) that significantly outperforms existing benchmarks and even human experts in quality. Powered by a novel agentic pipeline, it integrates Vision-to-Language Compression to mitigate visual bias of MLLMs, a Junior-Senior Agent Handoff for a 5 times cost reduction, and rigorous Post-hoc Filtering to ensure fidelity. Consequently, SoundAtlas delivers semantically rich and temporally detailed captions with tight V-A-T alignment. Second, we propose Omni2Sound, a unified VT2A diffusion model supporting flexible input modalities. To resolve the inherent cross-task and intra-task competition, we design a three-stage multi-task progressive training schedule that converts cross-task competition into joint optimization and mitigates modality bias in the VT2A task, maintaining both audio-visual alignment and off-screen audio generation faithfulness. Finally, we construct VGGSound-Omni, a comprehensive benchmark for unified evaluation, including challenging off-screen tracks. With a standard DiT backbone, Omni2Sound achieves unified SOTA performance across all three tasks within a single model, demonstrating strong generalization across benchmarks with heterogeneous input conditions. The project page is at https://swapforward.github.io/Omni2Sound.
☆ Robust Mesh Saliency GT Acquisition in VR via View Cone Sampling and Geometric Smoothing
Reliable 3D mesh saliency ground truth (GT) is essential for human-centric visual modeling in virtual reality (VR). However, current 3D mesh saliency GT acquisition methods are generally consistent with 2D image methods, ignoring the differences between 3D geometry topology and 2D image array. Current VR eye-tracking pipelines rely on single ray sampling and Euclidean smoothing, triggering texture attention and signal leakage across gaps. This paper proposes a robust framework to address these limitations. We first introduce a view cone sampling (VCS) strategy, which simulates the human foveal receptive field via Gaussian-distributed ray bundles to improve sampling robustness for complex topologies. Furthermore, a hybrid Manifold-Euclidean constrained diffusion (HCD) algorithm is developed, fusing manifold geodesic constraints with Euclidean scales to ensure topologically-consistent saliency propagation. By mitigating "topological short-circuits" and aliasing, our framework provides a high-fidelity 3D attention acquisition paradigm that aligns with natural human perception, offering a more accurate and robust baseline for 3D mesh saliency research.
☆ Transform and Entropy Coding in AV2
AV2 is the successor to the AV1 royalty-free video coding standard developed by the Alliance for Open Media (AOMedia). Its primary objective is to deliver substantial compression gains and subjective quality improvements while maintaining low-complexity encoder and decoder operations. This paper describes the transform, quantization and entropy coding design in AV2, including redesigned transform kernels and data-driven transforms, expanded transform partitioning, and a mode & coefficient dependent transform signaling. AV2 introduces several new coding tools including Intra/Inter Secondary Transforms (IST), Trellis Coded Quantization (TCQ), Adaptive Transform Coding (ATC), Probability Adaptation Rate Adjustment (PARA), Forward Skip Coding (FSC), Cross Chroma Component Transforms (CCTX), Parity Hiding (PH) tools and improved lossless coding. These advances enable AV2 to deliver the highest quality video experience for video applications at a significantly reduced bitrate.
☆ Listen to the Unexpected: Self-Supervised Surprise Detection for Efficient Viewport Prediction
Adaptive streaming of 360-degree video relies on viewport prediction to allocate bandwidth efficiently. Current approaches predominantly use visual saliency or historical gaze patterns, neglecting the role of spatial audio in guiding user attention. This paper presents a self-learning framework for detecting "surprising" auditory events -- moments that deviate from learned temporal expectations -- and demonstrates their utility for viewport prediction. The proposed architecture combines $SE(3)$-equivariant graph neural networks with recurrent temporal modeling, trained via a dual self-supervised objective. A key feature is the natural modeling of temporal attention decay: surprise is high at event onset but diminishes as the listener adapts. Experiments on the AVTrack360 dataset show that integrating audio surprise with visual cues reduces bitrate waste by up to 18% compared to visual-only methods.
comment: 10 pages, 5 figures, Under review
♻ ☆ SyncLipMAE: Contrastive Masked Pretraining for Audio-Visual Talking-Face Representation
We introduce SyncLipMAE, a self-supervised pretraining framework for talking-face video that learns synchronization-aware and transferable facial dynamics from unlabeled audio-visual streams. Our approach couples masked visual modeling with cross-modal contrastive alignment and employs three per-frame prompt tokens that explicitly encode the essential factors of a talking-face frame - identity, vocal motion (speech-synchronized facial dynamics), and ambient motion (audio-agnostic movements such as blinks and head pose). The contrastive objective uses time-aligned vocal-motion and audio tokens as positives and misaligned pairs as negatives, driving both modalities into a shared embedding space and yielding token-level audio-visual stream synchronization. After pretraining, the aligned audio tokens together with the visual prompt tokens (identity, vocal motion, ambient motion) form a unified interface for four disparate downstream settings: (i) audio-visual stream synchronization; (ii) facial emotion and head/face action recognition; (iii) visual speech recognition; and (iv) visual dubbing, for which we enable indistinguishable audio- or video-driven control within a single model. Across four task families that require distinct capabilities, SyncLipMAE achieves state-of-the-art results, underscoring the effectiveness of synchronization-aware, factorized self-supervised pretraining.
♻ ☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
♻ ☆ Towards Unbiased Cross-Modal Representation Learning for Food Image-to-Recipe Retrieval
This paper addresses the challenges of learning representations for recipes and food images in the cross-modal retrieval problem. As the relationship between a recipe and its cooked dish is cause-and-effect, treating a recipe as a text source describing the visual appearance of a dish for learning representation, as the existing approaches, will create bias misleading image-and-recipe similarity judgment. Specifically, a food image may not equally capture every detail in a recipe, due to factors such as the cooking process, dish presentation, and image-capturing conditions. The current representation learning tends to capture dominant visual-text alignment while overlooking subtle variations that determine retrieval relevance. In this paper, we model such bias in cross-modal representation learning using causal theory. The causal view of this problem suggests ingredients as one of the confounder sources and a simple backdoor adjustment can alleviate the bias. By causal intervention, we reformulate the conventional model for food-to-recipe retrieval with an additional term to remove the potential bias in similarity judgment. Based on this theory-informed formulation, we empirically prove the oracle performance of retrieval on the Recipe1M dataset to be MedR=1 across the testing data sizes of 1K, 10K, and even 50K. We also propose a plug-and-play neural module, which is essentially a multi-label ingredient classifier for debiasing. New state-of-the-art search performances are reported on the Recipe1M dataset.
comment: Code link: https://github.com/GZWQ/Towards-Unbiased-Cross-Modal-Representation-Learning-for-Food-Image-to-Recipe-Retrieval
Computer Vision and Pattern Recognition 146
☆ ExposeAnyone: Personalized Audio-to-Expression Diffusion Models Are Robust Zero-Shot Face Forgery Detectors
Detecting unknown deepfake manipulations remains one of the most challenging problems in face forgery detection. Current state-of-the-art approaches fail to generalize to unseen manipulations, as they primarily rely on supervised training with existing deepfakes or pseudo-fakes, which leads to overfitting to specific forgery patterns. In contrast, self-supervised methods offer greater potential for generalization, but existing work struggles to learn discriminative representations only from self-supervision. In this paper, we propose ExposeAnyone, a fully self-supervised approach based on a diffusion model that generates expression sequences from audio. The key idea is, once the model is personalized to specific subjects using reference sets, it can compute the identity distances between suspected videos and personalized subjects via diffusion reconstruction errors, enabling person-of-interest face forgery detection. Extensive experiments demonstrate that 1) our method outperforms the previous state-of-the-art method by 4.22 percentage points in the average AUC on DF-TIMIT, DFDCP, KoDF, and IDForge datasets, 2) our model is also capable of detecting Sora2-generated videos, where the previous approaches perform poorly, and 3) our method is highly robust to corruptions such as blur and compression, highlighting the applicability in real-world face forgery detection.
comment: 17 pages, 8 figures, 11 tables; project page: https://mapooon.github.io/ExposeAnyonePage/
☆ VINO: A Unified Visual Generator with Interleaved OmniModal Context
We present VINO, a unified visual generator that performs image and video generation and editing within a single framework. Instead of relying on task-specific models or independent modules for each modality, VINO uses a shared diffusion backbone that conditions on text, images and videos, enabling a broad range of visual creation and editing tasks under one model. Specifically, VINO couples a vision-language model (VLM) with a Multimodal Diffusion Transformer (MMDiT), where multimodal inputs are encoded as interleaved conditioning tokens, and then used to guide the diffusion process. This design supports multi-reference grounding, long-form instruction following, and coherent identity preservation across static and dynamic content, while avoiding modality-specific architectural components. To train such a unified system, we introduce a multi-stage training pipeline that progressively expands a video generation base model into a unified, multi-task generator capable of both image and video input and output. Across diverse generation and editing benchmarks, VINO demonstrates strong visual quality, faithful instruction following, improved reference and attribute preservation, and more controllable multi-identity edits. Our results highlight a practical path toward scalable unified visual generation, and the promise of interleaved, in-context computation as a foundation for general-purpose visual creation.
comment: Project page: https://sotamak1r.github.io/VINO-web/
☆ Talk2Move: Reinforcement Learning for Text-Instructed Object-Level Geometric Transformation in Scenes
We introduce Talk2Move, a reinforcement learning (RL) based diffusion framework for text-instructed spatial transformation of objects within scenes. Spatially manipulating objects in a scene through natural language poses a challenge for multimodal generation systems. While existing text-based manipulation methods can adjust appearance or style, they struggle to perform object-level geometric transformations-such as translating, rotating, or resizing objects-due to scarce paired supervision and pixel-level optimization limits. Talk2Move employs Group Relative Policy Optimization (GRPO) to explore geometric actions through diverse rollouts generated from input images and lightweight textual variations, removing the need for costly paired data. A spatial reward guided model aligns geometric transformations with linguistic description, while off-policy step evaluation and active step sampling improve learning efficiency by focusing on informative transformation stages. Furthermore, we design object-centric spatial rewards that evaluate displacement, rotation, and scaling behaviors directly, enabling interpretable and coherent transformations. Experiments on curated benchmarks demonstrate that Talk2Move achieves precise, consistent, and semantically faithful object transformations, outperforming existing text-guided editing approaches in both spatial accuracy and scene coherence.
comment: Project page: https://sparkstj.github.io/talk2move
☆ Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.
☆ Joint Semantic and Rendering Enhancements in 3D Gaussian Modeling with Anisotropic Local Encoding ICCV 2025
Recent works propose extending 3DGS with semantic feature vectors for simultaneous semantic segmentation and image rendering. However, these methods often treat the semantic and rendering branches separately, relying solely on 2D supervision while ignoring the 3D Gaussian geometry. Moreover, current adaptive strategies adapt the Gaussian set depending solely on rendering gradients, which can be insufficient in subtle or textureless regions. In this work, we propose a joint enhancement framework for 3D semantic Gaussian modeling that synergizes both semantic and rendering branches. Firstly, unlike conventional point cloud shape encoding, we introduce an anisotropic 3D Gaussian Chebyshev descriptor using the Laplace-Beltrami operator to capture fine-grained 3D shape details, thereby distinguishing objects with similar appearances and reducing reliance on potentially noisy 2D guidance. In addition, without relying solely on rendering gradient, we adaptively adjust Gaussian allocation and spherical harmonics with local semantic and shape signals, enhancing rendering efficiency through selective resource allocation. Finally, we employ a cross-scene knowledge transfer module to continuously update learned shape patterns, enabling faster convergence and robust representations without relearning shape information from scratch for each new scene. Experiments on multiple datasets demonstrate improvements in segmentation accuracy and rendering quality while maintaining high rendering frame rates.
comment: Accepted by ICCV 2025
☆ BEDS: Bayesian Emergent Dissipative Structures
We present BEDS (Bayesian Emergent Dissipative Structures), a theoretical framework that unifies concepts from non-equilibrium thermodynamics, Bayesian inference, information geometry, and machine learning. The central thesis proposes that learning, across physical, biological, and computational systems, fundamentally constitutes the conversion of flux into structure through entropy export. Building on Prigogine's theory of dissipative structures, we establish a formal isomorphism between thermodynamic processes and Bayesian updating, demonstrating that sustainable learning systems must follow dissipative patterns where crystallized posteriors become priors for subsequent levels of emergence. We derive fundamental mathematical constants (e, π, φ) as fixed points of Bayesian inference under minimal axioms, suggesting these constants emerge necessarily from any system capable of representing and updating uncertainty. Furthermore, we propose a conjecture linking Gödel's incompleteness theorems to thermodynamic constraints, hypothesizing that pathologies of formal systems (incompleteness, undecidability) are structurally analogous to dissipation deficits in physical systems. As practical validation, we present a peer-to-peer network architecture implementing BEDS principles, achieving six orders of magnitude improvement in energy efficiency compared to existing distributed consensus systems while enabling continuous learning. This work bridges fundamental physics, mathematical logic, and practical system design, offering both theoretical insights into the nature of learning and computation, and a concrete pathway toward sustainable artificial intelligence.
comment: 19 pages
☆ Fusion2Print: Deep Flash-Non-Flash Fusion for Contactless Fingerprint Matching ICPR 2026
Contactless fingerprint recognition offers a hygienic and convenient alternative to contact-based systems, enabling rapid acquisition without latent prints, pressure artifacts, or hygiene risks. However, contactless images often show degraded ridge clarity due to illumination variation, subcutaneous skin discoloration, and specular reflections. Flash captures preserve ridge detail but introduce noise, whereas non-flash captures reduce noise but lower ridge contrast. We propose Fusion2Print (F2P), the first framework to systematically capture and fuse paired flash-non-flash contactless fingerprints. We construct a custom paired dataset, FNF Database, and perform manual flash-non-flash subtraction to isolate ridge-preserving signals. A lightweight attention-based fusion network also integrates both modalities, emphasizing informative channels and suppressing noise, and then a U-Net enhancement module produces an optimally weighted grayscale image. Finally, a deep embedding model with cross-domain compatibility, generates discriminative and robust representations in a unified embedding space compatible with both contactless and contact-based fingerprints for verification. F2P enhances ridge clarity and achieves superior recognition performance (AUC=0.999, EER=1.12%) over single-capture baselines (Verifinger, DeepPrint).
comment: 15 pages, 8 figures, 5 tables. Submitted to ICPR 2026
☆ Prithvi-Complimentary Adaptive Fusion Encoder (CAFE): unlocking full-potential for flood inundation mapping WACV 2026
Geo-Foundation Models (GFMs), have proven effective in diverse downstream applications, including semantic segmentation, classification, and regression tasks. However, in case of flood mapping using Sen1Flood11 dataset as a downstream task, GFMs struggles to outperform the baseline U-Net, highlighting model's limitation in capturing critical local nuances. To address this, we present the Prithvi-Complementary Adaptive Fusion Encoder (CAFE), which integrate Prithvi GFM pretrained encoder with a parallel CNN residual branch enhanced by Convolutional Attention Modules (CAM). Prithvi-CAFE enables fast and efficient fine-tuning through adapters in Prithvi and performs multi-scale, multi-level fusion with CNN features, capturing critical local details while preserving long-range dependencies. We achieve state-of-the-art results on two comprehensive flood mapping datasets: Sen1Flood11 and FloodPlanet. On Sen1Flood11 test data, Prithvi-CAFE (IoU 83.41) outperforms the original Prithvi (IoU 82.50) and other major GFMs (TerraMind 82.90, DOFA 81.54, spectralGPT: 81.02). The improvement is even more pronounced on the hold-out test site, where Prithvi-CAFE achieves an IoU of 81.37 compared to the baseline U-Net (70.57) and original Prithvi (72.42). On FloodPlanet, Prithvi-CAFE also surpasses the baseline U-Net and other GFMs, achieving an IoU of 64.70 compared to U-Net (60.14), Terramind (62.33), DOFA (59.15) and Prithvi 2.0 (61.91). Our proposed simple yet effective Prithvi-CAFE demonstrates strong potential for improving segmentation tasks where multi-channel and multi-modal data provide complementary information and local details are critical. The code is released on \href{https://github.com/Sk-2103/Prithvi-CAFE}{Prithvi-CAFE Github}
comment: Accepted at CV4EO Workshop @ WACV 2026
☆ 360DVO: Deep Visual Odometry for Monocular 360-Degree Camera
Monocular omnidirectional visual odometry (OVO) systems leverage 360-degree cameras to overcome field-of-view limitations of perspective VO systems. However, existing methods, reliant on handcrafted features or photometric objectives, often lack robustness in challenging scenarios, such as aggressive motion and varying illumination. To address this, we present 360DVO, the first deep learning-based OVO framework. Our approach introduces a distortion-aware spherical feature extractor (DAS-Feat) that adaptively learns distortion-resistant features from 360-degree images. These sparse feature patches are then used to establish constraints for effective pose estimation within a novel omnidirectional differentiable bundle adjustment (ODBA) module. To facilitate evaluation in realistic settings, we also contribute a new real-world OVO benchmark. Extensive experiments on this benchmark and public synthetic datasets (TartanAir V2 and 360VO) demonstrate that 360DVO surpasses state-of-the-art baselines (including 360VO and OpenVSLAM), improving robustness by 50% and accuracy by 37.5%. Homepage: https://chris1004336379.github.io/360DVO-homepage
comment: 12 pages. Received by RA-L
☆ SortWaste: A Densely Annotated Dataset for Object Detection in Industrial Waste Sorting
The increasing production of waste, driven by population growth, has created challenges in managing and recycling materials effectively. Manual waste sorting is a common practice; however, it remains inefficient for handling large-scale waste streams and presents health risks for workers. On the other hand, existing automated sorting approaches still struggle with the high variability, clutter, and visual complexity of real-world waste streams. The lack of real-world datasets for waste sorting is a major reason automated systems for this problem are underdeveloped. Accordingly, we introduce SortWaste, a densely annotated object detection dataset collected from a Material Recovery Facility. Additionally, we contribute to standardizing waste detection in sorting lines by proposing ClutterScore, an objective metric that gauges the scene's hardness level using a set of proxies that affect visual complexity (e.g., object count, class and size entropy, and spatial overlap). In addition to these contributions, we provide an extensive benchmark of state-of-the-art object detection models, detailing their results with respect to the hardness level assessed by the proposed metric. Despite achieving promising results (mAP of 59.7% in the plastic-only detection task), performance significantly decreases in highly cluttered scenes. This highlights the need for novel and more challenging datasets on the topic.
comment: 9 pages
☆ Rank-based Geographical Regularization: Revisiting Contrastive Self-Supervised Learning for Multispectral Remote Sensing Imagery
Self-supervised learning (SSL) has become a powerful paradigm for learning from large, unlabeled datasets, particularly in computer vision (CV). However, applying SSL to multispectral remote sensing (RS) images presents unique challenges and opportunities due to the geographical and temporal variability of the data. In this paper, we introduce GeoRank, a novel regularization method for contrastive SSL that improves upon prior techniques by directly optimizing spherical distances to embed geographical relationships into the learned feature space. GeoRank outperforms or matches prior methods that integrate geographical metadata and consistently improves diverse contrastive SSL algorithms (e.g., BYOL, DINO). Beyond this, we present a systematic investigation of key adaptations of contrastive SSL for multispectral RS images, including the effectiveness of data augmentations, the impact of dataset cardinality and image size on performance, and the task dependency of temporal views. Code is available at https://github.com/tomburgert/georank.
comment: accepted for publication at IEEE/CVF Winter Conference on Applications of Computer Vision
☆ InfiniteVGGT: Visual Geometry Grounded Transformer for Endless Streams
The grand vision of enabling persistent, large-scale 3D visual geometry understanding is shackled by the irreconcilable demands of scalability and long-term stability. While offline models like VGGT achieve inspiring geometry capability, their batch-based nature renders them irrelevant for live systems. Streaming architectures, though the intended solution for live operation, have proven inadequate. Existing methods either fail to support truly infinite-horizon inputs or suffer from catastrophic drift over long sequences. We shatter this long-standing dilemma with InfiniteVGGT, a causal visual geometry transformer that operationalizes the concept of a rolling memory through a bounded yet adaptive and perpetually expressive KV cache. Capitalizing on this, we devise a training-free, attention-agnostic pruning strategy that intelligently discards obsolete information, effectively ``rolling'' the memory forward with each new frame. Fully compatible with FlashAttention, InfiniteVGGT finally alleviates the compromise, enabling infinite-horizon streaming while outperforming existing streaming methods in long-term stability. The ultimate test for such a system is its performance over a truly infinite horizon, a capability that has been impossible to rigorously validate due to the lack of extremely long-term, continuous benchmarks. To address this critical gap, we introduce the Long3D benchmark, which, for the first time, enables a rigorous evaluation of continuous 3D geometry estimation on sequences about 10,000 frames. This provides the definitive evaluation platform for future research in long-term 3D geometry understanding. Code is available at: https://github.com/AutoLab-SAI-SJTU/InfiniteVGGT
☆ TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
☆ DiffProxy: Multi-View Human Mesh Recovery via Diffusion-Generated Dense Proxies
Human mesh recovery from multi-view images faces a fundamental challenge: real-world datasets contain imperfect ground-truth annotations that bias the models' training, while synthetic data with precise supervision suffers from domain gap. In this paper, we propose DiffProxy, a novel framework that generates multi-view consistent human proxies for mesh recovery. Central to DiffProxy is leveraging the diffusion-based generative priors to bridge the synthetic training and real-world generalization. Its key innovations include: (1) a multi-conditional mechanism for generating multi-view consistent, pixel-aligned human proxies; (2) a hand refinement module that incorporates flexible visual prompts to enhance local details; and (3) an uncertainty-aware test-time scaling method that increases robustness to challenging cases during optimization. These designs ensure that the mesh recovery process effectively benefits from the precise synthetic ground truth and generative advantages of the diffusion-based pipeline. Trained entirely on synthetic data, DiffProxy achieves state-of-the-art performance across five real-world benchmarks, demonstrating strong zero-shot generalization particularly on challenging scenarios with occlusions and partial views. Project page: https://wrk226.github.io/DiffProxy.html
comment: Page: https://wrk226.github.io/DiffProxy.html, Code: https://github.com/wrk226/DiffProxy
☆ VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation
Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Neuro-Channel Networks: A Multiplication-Free Architecture by Biological Signal Transmission
The rapid proliferation of Deep Learning is increasingly constrained by its heavy reliance on high-performance hardware, particularly Graphics Processing Units (GPUs). These specialized accelerators are not only prohibitively expensive and energy-intensive but also suffer from significant supply scarcity, limiting the ubiquity of Artificial Intelligence (AI) deployment on edge devices. The core of this inefficiency stems from the standard artificial perceptron's dependence on intensive matrix multiplications. However, biological nervous systems achieve unparalleled efficiency without such arithmetic intensity; synaptic signal transmission is regulated by physical ion channel limits and chemical neurotransmitter levels rather than a process that can be analogous to arithmetic multiplication. Inspired by this biological mechanism, we propose Neuro-Channel Networks (NCN), a novel multiplication-free architecture designed to decouple AI from expensive hardware dependencies. In our model, weights are replaced with Channel Widths that physically limit the signal magnitude, while a secondary parameter acts as a Neurotransmitter to regulate Signal Transmission based on sign logic. The forward pass relies exclusively on addition, subtraction, and bitwise operations (minimum, sign), eliminating floating-point multiplication entirely. In this proof-of-concept study, we demonstrate that NCNs can solve non-linearly separable problems like XOR and the Majority function with 100% accuracy using standard backpropagation, proving their capability to form complex decision boundaries without multiplicative weights. This architecture offers a highly efficient alternative for next-generation neuromorphic hardware, paving the way for running complex models on commodity CPUs or ultra-low-power chips without relying on costly GPU clusters.
comment: 9 pages, 4 figures
☆ SLGNet: Synergizing Structural Priors and Language-Guided Modulation for Multimodal Object Detection
Multimodal object detection leveraging RGB and Infrared (IR) images is pivotal for robust perception in all-weather scenarios. While recent adapter-based approaches efficiently transfer RGB-pretrained foundation models to this task, they often prioritize model efficiency at the expense of cross-modal structural consistency. Consequently, critical structural cues are frequently lost when significant domain gaps arise, such as in high-contrast or nighttime environments. Moreover, conventional static multimodal fusion mechanisms typically lack environmental awareness, resulting in suboptimal adaptation and constrained detection performance under complex, dynamic scene variations. To address these limitations, we propose SLGNet, a parameter-efficient framework that synergizes hierarchical structural priors and language-guided modulation within a frozen Vision Transformer (ViT)-based foundation model. Specifically, we design a Structure-Aware Adapter to extract hierarchical structural representations from both modalities and dynamically inject them into the ViT to compensate for structural degradation inherent in ViT-based backbones. Furthermore, we propose a Language-Guided Modulation module that exploits VLM-driven structured captions to dynamically recalibrate visual features, thereby endowing the model with robust environmental awareness. Extensive experiments on the LLVIP, FLIR, KAIST, and DroneVehicle datasets demonstrate that SLGNet establishes new state-of-the-art performance. Notably, on the LLVIP benchmark, our method achieves an mAP of 66.1, while reducing trainable parameters by approximately 87% compared to traditional full fine-tuning. This confirms SLGNet as a robust and efficient solution for multimodal perception.
☆ A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
☆ VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
☆ FMVP: Masked Flow Matching for Adversarial Video Purification
Video recognition models remain vulnerable to adversarial attacks, while existing diffusion-based purification methods suffer from inefficient sampling and curved trajectories. Directly regressing clean videos from adversarial inputs often fails to recover faithful content due to the subtle nature of perturbations; this necessitates physically shattering the adversarial structure. Therefore, we propose Flow Matching for Adversarial Video Purification FMVP. FMVP physically shatters global adversarial structures via a masking strategy and reconstructs clean video dynamics using Conditional Flow Matching (CFM) with an inpainting objective. To further decouple semantic content from adversarial noise, we design a Frequency-Gated Loss (FGL) that explicitly suppresses high-frequency adversarial residuals while preserving low-frequency fidelity. We design Attack-Aware and Generalist training paradigms to handle known and unknown threats, respectively. Extensive experiments on UCF-101 and HMDB-51 demonstrate that FMVP outperforms state-of-the-art methods (DiffPure, Defense Patterns (DP), Temporal Shuffling (TS) and FlowPure), achieving robust accuracy exceeding 87% against PGD and 89% against CW attacks. Furthermore, FMVP demonstrates superior robustness against adaptive attacks (DiffHammer) and functions as a zero-shot adversarial detector, attaining detection accuracies of 98% for PGD and 79% for highly imperceptible CW attacks.
☆ Prior-Guided DETR for Ultrasound Nodule Detection
Accurate detection of ultrasound nodules is essential for the early diagnosis and treatment of thyroid and breast cancers. However, this task remains challenging due to irregular nodule shapes, indistinct boundaries, substantial scale variations, and the presence of speckle noise that degrades structural visibility. To address these challenges, we propose a prior-guided DETR framework specifically designed for ultrasound nodule detection. Instead of relying on purely data-driven feature learning, the proposed framework progressively incorporates different prior knowledge at multiple stages of the network. First, a Spatially-adaptive Deformable FFN with Prior Regularization (SDFPR) is embedded into the CNN backbone to inject geometric priors into deformable sampling, stabilizing feature extraction for irregular and blurred nodules. Second, a Multi-scale Spatial-Frequency Feature Mixer (MSFFM) is designed to extract multi-scale structural priors, where spatial-domain processing emphasizes contour continuity and boundary cues, while frequency-domain modeling captures global morphology and suppresses speckle noise. Furthermore, a Dense Feature Interaction (DFI) mechanism propagates and exploits these prior-modulated features across all encoder layers, enabling the decoder to enhance query refinement under consistent geometric and structural guidance. Experiments conducted on two clinically collected thyroid ultrasound datasets (Thyroid I and Thyroid II) and two public benchmarks (TN3K and BUSI) for thyroid and breast nodules demonstrate that the proposed method achieves superior accuracy compared with 18 detection methods, particularly in detecting morphologically complex nodules.The source code is publicly available at https://github.com/wjj1wjj/Ultrasound-DETR.
☆ Unraveling MMDiT Blocks: Training-free Analysis and Enhancement of Text-conditioned Diffusion
Recent breakthroughs of transformer-based diffusion models, particularly with Multimodal Diffusion Transformers (MMDiT) driven models like FLUX and Qwen Image, have facilitated thrilling experiences in text-to-image generation and editing. To understand the internal mechanism of MMDiT-based models, existing methods tried to analyze the effect of specific components like positional encoding and attention layers. Yet, a comprehensive understanding of how different blocks and their interactions with textual conditions contribute to the synthesis process remains elusive. In this paper, we first develop a systematic pipeline to comprehensively investigate each block's functionality by removing, disabling and enhancing textual hidden-states at corresponding blocks. Our analysis reveals that 1) semantic information appears in earlier blocks and finer details are rendered in later blocks, 2) removing specific blocks is usually less disruptive than disabling text conditions, and 3) enhancing textual conditions in selective blocks improves semantic attributes. Building on these observations, we further propose novel training-free strategies for improved text alignment, precise editing, and acceleration. Extensive experiments demonstrated that our method outperforms various baselines and remains flexible across text-to-image generation, image editing, and inference acceleration. Our method improves T2I-Combench++ from 56.92% to 63.00% and GenEval from 66.42% to 71.63% on SD3.5, without sacrificing synthesis quality. These results advance understanding of MMDiT models and provide valuable insights to unlock new possibilities for further improvements.
comment: 11 pages
☆ Seeing the Unseen: Zooming in the Dark with Event Cameras AAAI 2026
This paper addresses low-light video super-resolution (LVSR), aiming to restore high-resolution videos from low-light, low-resolution (LR) inputs. Existing LVSR methods often struggle to recover fine details due to limited contrast and insufficient high-frequency information. To overcome these challenges, we present RetinexEVSR, the first event-driven LVSR framework that leverages high-contrast event signals and Retinex-inspired priors to enhance video quality under low-light scenarios. Unlike previous approaches that directly fuse degraded signals, RetinexEVSR introduces a novel bidirectional cross-modal fusion strategy to extract and integrate meaningful cues from noisy event data and degraded RGB frames. Specifically, an illumination-guided event enhancement module is designed to progressively refine event features using illumination maps derived from the Retinex model, thereby suppressing low-light artifacts while preserving high-contrast details. Furthermore, we propose an event-guided reflectance enhancement module that utilizes the enhanced event features to dynamically recover reflectance details via a multi-scale fusion mechanism. Experimental results show that our RetinexEVSR achieves state-of-the-art performance on three datasets. Notably, on the SDSD benchmark, our method can get up to 2.95 dB gain while reducing runtime by 65% compared to prior event-based methods. Code: https://github.com/DachunKai/RetinexEVSR.
comment: Accepted to AAAI 2026
☆ NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation
We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Parameter-Efficient Domain Adaption for CSI Crowd-Counting via Self-Supervised Learning with Adapter Modules
Device-free crowd-counting using WiFi Channel State Information (CSI) is a key enabling technology for a new generation of privacy-preserving Internet of Things (IoT) applications. However, practical deployment is severely hampered by the domain shift problem, where models trained in one environment fail to generalise to another. To overcome this, we propose a novel two-stage framework centred on a CSI-ResNet-A architecture. This model is pre-trained via self-supervised contrastive learning to learn domain-invariant representations and leverages lightweight Adapter modules for highly efficient fine-tuning. The resulting event sequence is then processed by a stateful counting machine to produce a final, stable occupancy estimate. We validate our framework extensively. On our WiFlow dataset, our unsupervised approach excels in a 10-shot learning scenario, achieving a final Mean Absolute Error (MAE) of just 0.44--a task where supervised baselines fail. To formally quantify robustness, we introduce the Generalisation Index (GI), on which our model scores near-perfectly, confirming its ability to generalise. Furthermore, our framework sets a new state-of-the-art public WiAR benchmark with 98.8\% accuracy. Our ablation studies reveal the core strength of our design: adapter-based fine-tuning achieves performance within 1\% of a full fine-tune (98.84\% vs. 99.67\%) while training 97.2\% fewer parameters. Our work provides a practical and scalable solution for developing robust sensing systems ready for real-world IoT deployments.
☆ CORE: Code-based Inverse Self-Training Framework with Graph Expansion for Virtual Agents
The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
comment: 19 pages, 12 figures
☆ Mind the Gap: Continuous Magnification Sampling for Pathology Foundation Models
In histopathology, pathologists examine both tissue architecture at low magnification and fine-grained morphology at high magnification. Yet, the performance of pathology foundation models across magnifications and the effect of magnification sampling during training remain poorly understood. We model magnification sampling as a multi-source domain adaptation problem and develop a simple theoretical framework that reveals systematic trade-offs between sampling strategies. We show that the widely used discrete uniform sampling of magnifications (0.25, 0.5, 1.0, 2.0 mpp) leads to degradation at intermediate magnifications. We introduce continuous magnification sampling, which removes gaps in magnification coverage while preserving performance at standard scales. Further, we derive sampling distributions that optimize representation quality across magnification scales. To evaluate these strategies, we introduce two new benchmarks (TCGA-MS, BRACS-MS) with appropriate metrics. Our experiments show that continuous sampling substantially improves over discrete sampling at intermediate magnifications, with gains of up to 4 percentage points in balanced classification accuracy, and that optimized distributions can further improve performance. Finally, we evaluate current histopathology foundation models, finding that magnification is a primary driver of performance variation across models. Our work paves the way towards future pathology foundation models that perform reliably across magnifications.
☆ QuIC: A Quantum-Inspired Interaction Classifier for Revitalizing Shallow CNNs in Fine-Grained Recognition
Deploying deep learning models for Fine-Grained Visual Classification (FGVC) on resource-constrained edge devices remains a significant challenge. While deep architectures achieve high accuracy on benchmarks like CUB-200-2011, their computational cost is often prohibitive. Conversely, shallow networks (e.g., AlexNet, VGG) offer efficiency but fail to distinguish visually similar sub-categories. This is because standard Global Average Pooling (GAP) heads capture only first-order statistics, missing the subtle high-order feature interactions required for FGVC. While Bilinear CNNs address this, they suffer from high feature dimensionality and instability during training. To bridge this gap, we propose the Quantum-inspired Interaction Classifier (QuIC). Drawing inspiration from quantum mechanics, QuIC models feature channels as interacting quantum states and captures second-order feature covariance via a learnable observable operator. Designed as a lightweight, plug-and-play module, QuIC supports stable, single-stage end-to-end training without exploding feature dimensions. Experimental results demonstrate that QuIC significantly revitalizes shallow backbones: it boosts the Top-1 accuracy of VGG16 by nearly 20% and outperforms state-of-the-art attention mechanisms (SE-Block) on ResNet18. Qualitative analysis, including t-SNE visualization, further confirms that QuIC resolves ambiguous cases by explicitly attending to fine-grained discriminative features and enforcing compact intra-class clustering.
☆ Why Commodity WiFi Sensors Fail at Multi-Person Gait Identification: A Systematic Analysis Using ESP32
WiFi Channel State Information (CSI) has shown promise for single-person gait identification, with numerous studies reporting high accuracy. However, multi-person identification remains largely unexplored, with the limited existing work relying on complex, expensive setups requiring modified firmware. A critical question remains unanswered: is poor multi-person performance an algorithmic limitation or a fundamental hardware constraint? We systematically evaluate six diverse signal separation methods (FastICA, SOBI, PCA, NMF, Wavelet, Tensor Decomposition) across seven scenarios with 1-10 people using commodity ESP32 WiFi sensors--a simple, low-cost, off-the-shelf solution. Through novel diagnostic metrics (intra-subject variability, inter-subject distinguishability, performance degradation rate), we reveal that all methods achieve similarly low accuracy (45-56\%, $σ$=3.74\%) with statistically insignificant differences (p $>$ 0.05). Even the best-performing method, NMF, achieves only 56\% accuracy. Our analysis reveals high intra-subject variability, low inter-subject distinguishability, and severe performance degradation as person count increases, indicating that commodity ESP32 sensors cannot provide sufficient signal quality for reliable multi-person separation.
☆ BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
☆ Efficient Unrolled Networks for Large-Scale 3D Inverse Problems
Deep learning-based methods have revolutionized the field of imaging inverse problems, yielding state-of-the-art performance across various imaging domains. The best performing networks incorporate the imaging operator within the network architecture, typically in the form of deep unrolling. However, in large-scale problems, such as 3D imaging, most existing methods fail to incorporate the operator in the architecture due to the prohibitive amount of memory required by global forward operators, which hinder typical patching strategies. In this work, we present a domain partitioning strategy and normal operator approximations that enable the training of end-to-end reconstruction models incorporating forward operators of arbitrarily large problems into their architecture. The proposed method achieves state-of-the-art performance on 3D X-ray cone-beam tomography and 3D multi-coil accelerated MRI, while requiring only a single GPU for both training and inference.
☆ Beyond Segmentation: An Oil Spill Change Detection Framework Using Synthetic SAR Imagery
Marine oil spills are urgent environmental hazards that demand rapid and reliable detection to minimise ecological and economic damage. While Synthetic Aperture Radar (SAR) imagery has become a key tool for large-scale oil spill monitoring, most existing detection methods rely on deep learning-based segmentation applied to single SAR images. These static approaches struggle to distinguish true oil spills from visually similar oceanic features (e.g., biogenic slicks or low-wind zones), leading to high false positive rates and limited generalizability, especially under data-scarce conditions. To overcome these limitations, we introduce Oil Spill Change Detection (OSCD), a new bi-temporal task that focuses on identifying changes between pre- and post-spill SAR images. As real co-registered pre-spill imagery is not always available, we propose the Temporal-Aware Hybrid Inpainting (TAHI) framework, which generates synthetic pre-spill images from post-spill SAR data. TAHI integrates two key components: High-Fidelity Hybrid Inpainting for oil-free reconstruction, and Temporal Realism Enhancement for radiometric and sea-state consistency. Using TAHI, we construct the first OSCD dataset and benchmark several state-of-the-art change detection models. Results show that OSCD significantly reduces false positives and improves detection accuracy compared to conventional segmentation, demonstrating the value of temporally-aware methods for reliable, scalable oil spill monitoring in real-world scenarios.
☆ Remote Sensing Change Detection via Weak Temporal Supervision
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.
☆ Car Drag Coefficient Prediction from 3D Point Clouds Using a Slice-Based Surrogate Model
The automotive industry's pursuit of enhanced fuel economy and performance necessitates efficient aerodynamic design. However, traditional evaluation methods such as computational fluid dynamics (CFD) and wind tunnel testing are resource intensive, hindering rapid iteration in the early design stages. Machine learning-based surrogate models offer a promising alternative, yet many existing approaches suffer from high computational complexity, limited interpretability, or insufficient accuracy for detailed geometric inputs. This paper introduces a novel lightweight surrogate model for the prediction of the aerodynamic drag coefficient (Cd) based on a sequential slice-wise processing of the geometry of the 3D vehicle. Inspired by medical imaging, 3D point clouds of vehicles are decomposed into an ordered sequence of 2D cross-sectional slices along the stream-wise axis. Each slice is encoded by a lightweight PointNet2D module, and the sequence of slice embeddings is processed by a bidirectional LSTM to capture longitudinal geometric evolution. The model, trained and evaluated on the DrivAerNet++ dataset, achieves a high coefficient of determination (R^2 > 0.9528) and a low mean absolute error (MAE approx 6.046 x 10^{-3}) in Cd prediction. With an inference time of approximately 0.025 seconds per sample on a consumer-grade GPU, our approach provides fast, accurate, and interpretable aerodynamic feedback, facilitating more agile and informed automotive design exploration.
comment: 14 pages, 5 figures. Published in: Bramer M., Stahl F. (eds) Artificial Intelligence XLII. SGAI 2025. Lecture Notes in Computer Science, vol 16302. Springer, Cham
☆ MagicFight: Personalized Martial Arts Combat Video Generation ACM MM 2024
Amid the surge in generic text-to-video generation, the field of personalized human video generation has witnessed notable advancements, primarily concentrated on single-person scenarios. However, to our knowledge, the domain of two-person interactions, particularly in the context of martial arts combat, remains uncharted. We identify a significant gap: existing models for single-person dancing generation prove insufficient for capturing the subtleties and complexities of two engaged fighters, resulting in challenges such as identity confusion, anomalous limbs, and action mismatches. To address this, we introduce a pioneering new task, Personalized Martial Arts Combat Video Generation. Our approach, MagicFight, is specifically crafted to overcome these hurdles. Given this pioneering task, we face a lack of appropriate datasets. Thus, we generate a bespoke dataset using the game physics engine Unity, meticulously crafting a multitude of 3D characters, martial arts moves, and scenes designed to represent the diversity of combat. MagicFight refines and adapts existing models and strategies to generate high-fidelity two-person combat videos that maintain individual identities and ensure seamless, coherent action sequences, thereby laying the groundwork for future innovations in the realm of interactive video content creation. Website: https://MingfuYAN.github.io/MagicFight/ Dataset: https://huggingface.co/datasets/MingfuYAN/KungFu-Fiesta
comment: Accepted by ACM MM 2024
☆ HeadLighter: Disentangling Illumination in Generative 3D Gaussian Heads via Lightstage Captures
Recent 3D-aware head generative models based on 3D Gaussian Splatting achieve real-time, photorealistic and view-consistent head synthesis. However, a fundamental limitation persists: the deep entanglement of illumination and intrinsic appearance prevents controllable relighting. Existing disentanglement methods rely on strong assumptions to enable weakly supervised learning, which restricts their capacity for complex illumination. To address this challenge, we introduce HeadLighter, a novel supervised framework that learns a physically plausible decomposition of appearance and illumination in head generative models. Specifically, we design a dual-branch architecture that separately models lighting-invariant head attributes and physically grounded rendering components. A progressive disentanglement training is employed to gradually inject head appearance priors into the generative architecture, supervised by multi-view images captured under controlled light conditions with a light stage setup. We further introduce a distillation strategy to generate high-quality normals for realistic rendering. Experiments demonstrate that our method preserves high-quality generation and real-time rendering, while simultaneously supporting explicit lighting and viewpoint editing. We will publicly release our code and dataset.
☆ 360-GeoGS: Geometrically Consistent Feed-Forward 3D Gaussian Splatting Reconstruction for 360 Images
3D scene reconstruction is fundamental for spatial intelligence applications such as AR, robotics, and digital twins. Traditional multi-view stereo struggles with sparse viewpoints or low-texture regions, while neural rendering approaches, though capable of producing high-quality results, require per-scene optimization and lack real-time efficiency. Explicit 3D Gaussian Splatting (3DGS) enables efficient rendering, but most feed-forward variants focus on visual quality rather than geometric consistency, limiting accurate surface reconstruction and overall reliability in spatial perception tasks. This paper presents a novel feed-forward 3DGS framework for 360 images, capable of generating geometrically consistent Gaussian primitives while maintaining high rendering quality. A Depth-Normal geometric regularization is introduced to couple rendered depth gradients with normal information, supervising Gaussian rotation, scale, and position to improve point cloud and surface accuracy. Experimental results show that the proposed method maintains high rendering quality while significantly improving geometric consistency, providing an effective solution for 3D reconstruction in spatial perception tasks.
☆ InpaintHuman: Reconstructing Occluded Humans with Multi-Scale UV Mapping and Identity-Preserving Diffusion Inpainting
Reconstructing complete and animatable 3D human avatars from monocular videos remains challenging, particularly under severe occlusions. While 3D Gaussian Splatting has enabled photorealistic human rendering, existing methods struggle with incomplete observations, often producing corrupted geometry and temporal inconsistencies. We present InpaintHuman, a novel method for generating high-fidelity, complete, and animatable avatars from occluded monocular videos. Our approach introduces two key innovations: (i) a multi-scale UV-parameterized representation with hierarchical coarse-to-fine feature interpolation, enabling robust reconstruction of occluded regions while preserving geometric details; and (ii) an identity-preserving diffusion inpainting module that integrates textual inversion with semantic-conditioned guidance for subject-specific, temporally coherent completion. Unlike SDS-based methods, our approach employs direct pixel-level supervision to ensure identity fidelity. Experiments on synthetic benchmarks (PeopleSnapshot, ZJU-MoCap) and real-world scenarios (OcMotion) demonstrate competitive performance with consistent improvements in reconstruction quality across diverse poses and viewpoints.
☆ Dancing Points: Synthesizing Ballroom Dancing with Three-Point Inputs
Ballroom dancing is a structured yet expressive motion category. Its highly diverse movement and complex interactions between leader and follower dancers make the understanding and synthesis challenging. We demonstrate that the three-point trajectory available from a virtual reality (VR) device can effectively serve as a dancer's motion descriptor, simplifying the modeling and synthesis of interplay between dancers' full-body motions down to sparse trajectories. Thanks to the low dimensionality, we can employ an efficient MLP network to predict the follower's three-point trajectory directly from the leader's three-point input for certain types of ballroom dancing, addressing the challenge of modeling high-dimensional full-body interaction. It also prevents our method from overfitting thanks to its compact yet explicit representation. By leveraging the inherent structure of the movements and carefully planning the autoregressive procedure, we show a deterministic neural network is able to translate three-point trajectories into a virtual embodied avatar, which is typically considered under-constrained and requires generative models for common motions. In addition, we demonstrate this deterministic approach generalizes beyond small, structured datasets like ballroom dancing, and performs robustly on larger, more diverse datasets such as LaFAN. Our method provides a computationally- and data-efficient solution, opening new possibilities for immersive paired dancing applications. Code and pre-trained models for this paper are available at https://peizhuoli.github.io/dancing-points.
☆ MCD-Net: A Lightweight Deep Learning Baseline for Optical-Only Moraine Segmentation IEEE
Glacial segmentation is essential for reconstructing past glacier dynamics and evaluating climate-driven landscape change. However, weak optical contrast and the limited availability of high-resolution DEMs hinder automated mapping. This study introduces the first large-scale optical-only moraine segmentation dataset, comprising 3,340 manually annotated high-resolution images from Google Earth covering glaciated regions of Sichuan and Yunnan, China. We develop MCD-Net, a lightweight baseline that integrates a MobileNetV2 encoder, a Convolutional Block Attention Module (CBAM), and a DeepLabV3+ decoder. Benchmarking against deeper backbones (ResNet152, Xception) shows that MCD-Net achieves 62.3\% mean Intersection over Union (mIoU) and 72.8\% Dice coefficient while reducing computational cost by more than 60\%. Although ridge delineation remains constrained by sub-pixel width and spectral ambiguity, the results demonstrate that optical imagery alone can provide reliable moraine-body segmentation. The dataset and code are publicly available at https://github.com/Lyra-alpha/MCD-Net, establishing a reproducible benchmark for moraine-specific segmentation and offering a deployable baseline for high-altitude glacial monitoring.
comment: 13 pages, 10 figures. This manuscript is under review at IEEE Transactions on Geoscience and Remote Sensing
☆ PhysSFI-Net: Physics-informed Geometric Learning of Skeletal and Facial Interactions for Orthognathic Surgical Outcome Prediction
Orthognathic surgery repositions jaw bones to restore occlusion and enhance facial aesthetics. Accurate simulation of postoperative facial morphology is essential for preoperative planning. However, traditional biomechanical models are computationally expensive, while geometric deep learning approaches often lack interpretability. In this study, we develop and validate a physics-informed geometric deep learning framework named PhysSFI-Net for precise prediction of soft tissue deformation following orthognathic surgery. PhysSFI-Net consists of three components: a hierarchical graph module with craniofacial and surgical plan encoders combined with attention mechanisms to extract skeletal-facial interaction features; a Long Short-Term Memory (LSTM)-based sequential predictor for incremental soft tissue deformation; and a biomechanics-inspired module for high-resolution facial surface reconstruction. Model performance was assessed using point cloud shape error (Hausdorff distance), surface deviation error, and landmark localization error (Euclidean distances of craniomaxillofacial landmarks) between predicted facial shapes and corresponding ground truths. A total of 135 patients who underwent combined orthodontic and orthognathic treatment were included for model training and validation. Quantitative analysis demonstrated that PhysSFI-Net achieved a point cloud shape error of 1.070 +/- 0.088 mm, a surface deviation error of 1.296 +/- 0.349 mm, and a landmark localization error of 2.445 +/- 1.326 mm. Comparative experiments indicated that PhysSFI-Net outperformed the state-of-the-art method ACMT-Net in prediction accuracy. In conclusion, PhysSFI-Net enables interpretable, high-resolution prediction of postoperative facial morphology with superior accuracy, showing strong potential for clinical application in orthognathic surgical planning and simulation.
comment: 31 pages, 8 figures
☆ SketchRodGS: Sketch-based Extraction of Slender Geometries for Animating Gaussian Splatting Scenes SIGGRAPH
Physics simulation of slender elastic objects often requires discretization as a polyline. However, constructing a polyline from Gaussian splatting is challenging as Gaussian splatting lacks connectivity information and the configuration of Gaussian primitives contains much noise. This paper presents a method to extract a polyline representation of the slender part of the objects in a Gaussian splatting scene from the user's sketching input. Our method robustly constructs a polyline mesh that represents the slender parts using the screen-space shortest path analysis that can be efficiently solved using dynamic programming. We demonstrate the effectiveness of our approach in several in-the-wild examples.
comment: Presented at SIGGRAPH Asia 2025 (Technical Communications). Best Technical Communications Award
☆ Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
☆ AlignVTOFF: Texture-Spatial Feature Alignment for High-Fidelity Virtual Try-Off
Virtual Try-Off (VTOFF) is a challenging multimodal image generation task that aims to synthesize high-fidelity flat-lay garments under complex geometric deformation and rich high-frequency textures. Existing methods often rely on lightweight modules for fast feature extraction, which struggles to preserve structured patterns and fine-grained details, leading to texture attenuation during generation.To address these issues, we propose AlignVTOFF, a novel parallel U-Net framework built upon a Reference U-Net and Texture-Spatial Feature Alignment (TSFA). The Reference U-Net performs multi-scale feature extraction and enhances geometric fidelity, enabling robust modeling of deformation while retaining complex structured patterns. TSFA then injects the reference garment features into a frozen denoising U-Net via a hybrid attention design, consisting of a trainable cross-attention module and a frozen self-attention module. This design explicitly aligns texture and spatial cues and alleviates the loss of high-frequency information during the denoising process.Extensive experiments across multiple settings demonstrate that AlignVTOFF consistently outperforms state-of-the-art methods, producing flat-lay garment results with improved structural realism and high-frequency detail fidelity.
☆ GDRO: Group-level Reward Post-training Suitable for Diffusion Models
Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
☆ Leveraging 2D-VLM for Label-Free 3D Segmentation in Large-Scale Outdoor Scene Understanding
This paper presents a novel 3D semantic segmentation method for large-scale point cloud data that does not require annotated 3D training data or paired RGB images. The proposed approach projects 3D point clouds onto 2D images using virtual cameras and performs semantic segmentation via a foundation 2D model guided by natural language prompts. 3D segmentation is achieved by aggregating predictions from multiple viewpoints through weighted voting. Our method outperforms existing training-free approaches and achieves segmentation accuracy comparable to supervised methods. Moreover, it supports open-vocabulary recognition, enabling users to detect objects using arbitrary text queries, thus overcoming the limitations of traditional supervised approaches.
comment: 19
☆ Adapting Depth Anything to Adverse Imaging Conditions with Events IEEE
Robust depth estimation under dynamic and adverse lighting conditions is essential for robotic systems. Currently, depth foundation models, such as Depth Anything, achieve great success in ideal scenes but remain challenging under adverse imaging conditions such as extreme illumination and motion blur. These degradations corrupt the visual signals of frame cameras, weakening the discriminative features of frame-based depths across the spatial and temporal dimensions. Typically, existing approaches incorporate event cameras to leverage their high dynamic range and temporal resolution, aiming to compensate for corrupted frame features. However, such specialized fusion models are predominantly trained from scratch on domain-specific datasets, thereby failing to inherit the open-world knowledge and robust generalization inherent to foundation models. In this work, we propose ADAE, an event-guided spatiotemporal fusion framework for Depth Anything in degraded scenes. Our design is guided by two key insights: 1) Entropy-Aware Spatial Fusion. We adaptively merge frame-based and event-based features using an information entropy strategy to indicate illumination-induced degradation. 2) Motion-Guided Temporal Correction. We resort to the event-based motion cue to recalibrate ambiguous features in blurred regions. Under our unified framework, the two components are complementary to each other and jointly enhance Depth Anything under adverse imaging conditions. Extensive experiments have been performed to verify the superiority of the proposed method. Our code will be released upon acceptance.
comment: This work has been submitted to the IEEE for possible publication
☆ Towards Any-Quality Image Segmentation via Generative and Adaptive Latent Space Enhancement
Segment Anything Models (SAMs), known for their exceptional zero-shot segmentation performance, have garnered significant attention in the research community. Nevertheless, their performance drops significantly on severely degraded, low-quality images, limiting their effectiveness in real-world scenarios. To address this, we propose GleSAM++, which utilizes Generative Latent space Enhancement to boost robustness on low-quality images, thus enabling generalization across various image qualities. Additionally, to improve compatibility between the pre-trained diffusion model and the segmentation framework, we introduce two techniques, i.e., Feature Distribution Alignment (FDA) and Channel Replication and Expansion (CRE). However, the above components lack explicit guidance regarding the degree of degradation. The model is forced to implicitly fit a complex noise distribution that spans conditions from mild noise to severe artifacts, which substantially increases the learning burden and leads to suboptimal reconstructions. To address this issue, we further introduce a Degradation-aware Adaptive Enhancement (DAE) mechanism. The key principle of DAE is to decouple the reconstruction process for arbitrary-quality features into two stages: degradation-level prediction and degradation-aware reconstruction. Our method can be applied to pre-trained SAM and SAM2 with only minimal additional learnable parameters, allowing for efficient optimization. Extensive experiments demonstrate that GleSAM++ significantly improves segmentation robustness on complex degradations while maintaining generalization to clear images. Furthermore, GleSAM++ also performs well on unseen degradations, underscoring the versatility of our approach and dataset.
comment: Diffusion-based latent space enhancement helps improve the robustness of SAM
☆ Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
☆ XAI-MeD: Explainable Knowledge Guided Neuro-Symbolic Framework for Domain Generalization and Rare Class Detection in Medical Imaging AAAI
Explainability domain generalization and rare class reliability are critical challenges in medical AI where deep models often fail under real world distribution shifts and exhibit bias against infrequent clinical conditions This paper introduces XAIMeD an explainable medical AI framework that integrates clinically accurate expert knowledge into deep learning through a unified neuro symbolic architecture XAIMeD is designed to improve robustness under distribution shift enhance rare class sensitivity and deliver transparent clinically aligned interpretations The framework encodes clinical expertise as logical connectives over atomic medical propositions transforming them into machine checkable class specific rules Their diagnostic utility is quantified through weighted feature satisfaction scores enabling a symbolic reasoning branch that complements neural predictions A confidence weighted fusion integrates symbolic and deep outputs while a Hunt inspired adaptive routing mechanism guided by Entropy Imbalance Gain EIG and Rare Class Gini mitigates class imbalance high intra class variability and uncertainty We evaluate XAIMeD across diverse modalities on four challenging tasks i Seizure Onset Zone SOZ localization from rs fMRI ii Diabetic Retinopathy grading across 6 multicenter datasets demonstrate substantial performance improvements including 6 percent gains in cross domain generalization and a 10 percent improved rare class F1 score far outperforming state of the art deep learning baselines Ablation studies confirm that the clinically grounded symbolic components act as effective regularizers ensuring robustness to distribution shifts XAIMeD thus provides a principled clinically faithful and interpretable approach to multimodal medical AI.
comment: Accepted at AAAI Bridge Program 2026
☆ Nighttime Hazy Image Enhancement via Progressively and Mutually Reinforcing Night-Haze Priors
Enhancing the visibility of nighttime hazy images is challenging due to the complex degradation distributions. Existing methods mainly address a single type of degradation (e.g., haze or low-light) at a time, ignoring the interplay of different degradation types and resulting in limited visibility improvement. We observe that the domain knowledge shared between low-light and haze priors can be reinforced mutually for better visibility. Based on this key insight, in this paper, we propose a novel framework that enhances visibility in nighttime hazy images by reinforcing the intrinsic consistency between haze and low-light priors mutually and progressively. In particular, our model utilizes image-, patch-, and pixel-level experts that operate across visual and frequency domains to recover global scene structure, regional patterns, and fine-grained details progressively. A frequency-aware router is further introduced to adaptively guide the contribution of each expert, ensuring robust image restoration. Extensive experiments demonstrate the superior performance of our model on nighttime dehazing benchmarks both quantitatively and qualitatively. Moreover, we showcase the generalizability of our model in daytime dehazing and low-light enhancement tasks.
☆ API: Empowering Generalizable Real-World Image Dehazing via Adaptive Patch Importance Learning
Real-world image dehazing is a fundamental yet challenging task in low-level vision. Existing learning-based methods often suffer from significant performance degradation when applied to complex real-world hazy scenes, primarily due to limited training data and the intrinsic complexity of haze density distributions.To address these challenges, we introduce a novel Adaptive Patch Importance-aware (API) framework for generalizable real-world image dehazing. Specifically, our framework consists of an Automatic Haze Generation (AHG) module and a Density-aware Haze Removal (DHR) module. AHG provides a hybrid data augmentation strategy by generating realistic and diverse hazy images as additional high-quality training data. DHR considers hazy regions with varying haze density distributions for generalizable real-world image dehazing in an adaptive patch importance-aware manner. To alleviate the ambiguity of the dehazed image details, we further introduce a new Multi-Negative Contrastive Dehazing (MNCD) loss, which fully utilizes information from multiple negative samples across both spatial and frequency domains. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across multiple real-world benchmarks, delivering strong results in both quantitative metrics and qualitative visual quality, and exhibiting robust generalization across diverse haze distributions.
☆ VIT-Ped: Visionary Intention Transformer for Pedestrian Behavior Analysis
Pedestrian Intention prediction is one of the key technologies in the transition from level 3 to level 4 autonomous driving. To understand pedestrian crossing behaviour, several elements and features should be taken into consideration to make the roads of tomorrow safer for everybody. We introduce a transformer / video vision transformer based algorithm of different sizes which uses different data modalities .We evaluated our algorithms on popular pedestrian behaviour dataset, JAAD, and have reached SOTA performance and passed the SOTA in metrics like Accuracy, AUC and F1-score. The advantages brought by different model design choices are investigated via extensive ablation studies.
☆ Thinking with Blueprints: Assisting Vision-Language Models in Spatial Reasoning via Structured Object Representation
Spatial reasoning -- the ability to perceive and reason about relationships in space -- advances vision-language models (VLMs) from visual perception toward spatial semantic understanding. Existing approaches either revisit local image patches, improving fine-grained perception but weakening global spatial awareness, or mark isolated coordinates, which capture object locations but overlook their overall organization. In this work, we integrate the cognitive concept of an object-centric blueprint into VLMs to enhance spatial reasoning. Given an image and a question, the model first constructs a JSON-style blueprint that records the positions, sizes, and attributes of relevant objects, and then reasons over this structured representation to produce the final answer. To achieve this, we introduce three key techniques: (1) blueprint-embedded reasoning traces for supervised fine-tuning to elicit basic reasoning skills; (2) blueprint-aware rewards in reinforcement learning to encourage the blueprint to include an appropriate number of objects and to align final answers with this causal reasoning; and (3) anti-shortcut data augmentation that applies targeted perturbations to images and questions, discouraging reliance on superficial visual or linguistic cues. Experiments show that our method consistently outperforms existing VLMs and specialized spatial reasoning models.
comment: Preprint. Under review
☆ Forget Less by Learning Together through Concept Consolidation WACV-26
Custom Diffusion Models (CDMs) have gained significant attention due to their remarkable ability to personalize generative processes. However, existing CDMs suffer from catastrophic forgetting when continuously learning new concepts. Most prior works attempt to mitigate this issue under the sequential learning setting with a fixed order of concept inflow and neglect inter-concept interactions. In this paper, we propose a novel framework - Forget Less by Learning Together (FL2T) - that enables concurrent and order-agnostic concept learning while addressing catastrophic forgetting. Specifically, we introduce a set-invariant inter-concept learning module where proxies guide feature selection across concepts, facilitating improved knowledge retention and transfer. By leveraging inter-concept guidance, our approach preserves old concepts while efficiently incorporating new ones. Extensive experiments, across three datasets, demonstrates that our method significantly improves concept retention and mitigates catastrophic forgetting, highlighting the effectiveness of inter-concept catalytic behavior in incremental concept learning of ten tasks with at least 2% gain on average CLIP Image Alignment scores.
comment: Accepted at WACV-26
☆ AFTER: Mitigating the Object Hallucination of LVLM via Adaptive Factual-Guided Activation Editing
Large Vision-Language Models (LVLMs) have achieved substantial progress in cross-modal tasks. However, due to language bias, LVLMs are susceptible to object hallucination, which can be primarily divided into category, attribute, and relation hallucination, significantly impeding the trustworthy AI applications. Editing the internal activations of LVLMs has shown promising effectiveness in mitigating hallucinations with minimal cost. However, previous editing approaches neglect the effective guidance offered by factual textual semantics, thereby struggling to explicitly mitigate language bias. To address these issues, we propose Adaptive Factual-guided Visual-Textual Editing for hallucination mitigation (AFTER), which comprises Factual-Augmented Activation Steering (FAS) and Query-Adaptive Offset Optimization (QAO), to adaptively guides the original biased activations towards factual semantics. Specifically, FAS is proposed to provide factual and general guidance for activation editing, thereby explicitly modeling the precise visual-textual associations. Subsequently, QAO introduces a query-aware offset estimator to establish query-specific editing from the general steering vector, enhancing the diversity and granularity of editing. Extensive experiments on standard hallucination benchmarks across three widely adopted LVLMs validate the efficacy of the proposed AFTER, notably achieving up to a 16.3% reduction of hallucination over baseline on the AMBER benchmark. Our code and data will be released for reproducibility.
☆ MotionAdapter: Video Motion Transfer via Content-Aware Attention Customization
Recent advances in diffusion-based text-to-video models, particularly those built on the diffusion transformer architecture, have achieved remarkable progress in generating high-quality and temporally coherent videos. However, transferring complex motions between videos remains challenging. In this work, we present MotionAdapter, a content-aware motion transfer framework that enables robust and semantically aligned motion transfer within DiT-based T2V models. Our key insight is that effective motion transfer requires \romannumeral1) explicit disentanglement of motion from appearance and \romannumeral 2) adaptive customization of motion to target content. MotionAdapter first isolates motion by analyzing cross-frame attention within 3D full-attention modules to extract attention-derived motion fields. To bridge the semantic gap between reference and target videos, we further introduce a DINO-guided motion customization module that rearranges and refines motion fields based on content correspondences. The customized motion field is then used to guide the DiT denoising process, ensuring that the synthesized video inherits the reference motion while preserving target appearance and semantics. Extensive experiments demonstrate that MotionAdapter outperforms state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, MotionAdapter naturally supports complex motion transfer and motion editing tasks such as zooming.
☆ Face Normal Estimation from Rags to Riches
Although recent approaches to face normal estimation have achieved promising results, their effectiveness heavily depends on large-scale paired data for training. This paper concentrates on relieving this requirement via developing a coarse-to-fine normal estimator. Concretely, our method first trains a neat model from a small dataset to produce coarse face normals that perform as guidance (called exemplars) for the following refinement. A self-attention mechanism is employed to capture long-range dependencies, thus remedying severe local artifacts left in estimated coarse facial normals. Then, a refinement network is customized for the sake of mapping input face images together with corresponding exemplars to fine-grained high-quality facial normals. Such a logical function split can significantly cut the requirement of massive paired data and computational resource. Extensive experiments and ablation studies are conducted to demonstrate the efficacy of our design and reveal its superiority over state-of-the-art methods in terms of both training expense as well as estimation quality. Our code and models are open-sourced at: https://github.com/AutoHDR/FNR2R.git.
☆ MacVQA: Adaptive Memory Allocation and Global Noise Filtering for Continual Visual Question Answering AAAI 2026
Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
comment: Accepted to AAAI 2026
☆ AR-MOT: Autoregressive Multi-object Tracking
As multi-object tracking (MOT) tasks continue to evolve toward more general and multi-modal scenarios, the rigid and task-specific architectures of existing MOT methods increasingly hinder their applicability across diverse tasks and limit flexibility in adapting to new tracking formulations. Most approaches rely on fixed output heads and bespoke tracking pipelines, making them difficult to extend to more complex or instruction-driven tasks. To address these limitations, we propose AR-MOT, a novel autoregressive paradigm that formulates MOT as a sequence generation task within a large language model (LLM) framework. This design enables the model to output structured results through flexible sequence construction, without requiring any task-specific heads. To enhance region-level visual perception, we introduce an Object Tokenizer based on a pretrained detector. To mitigate the misalignment between global and regional features, we propose a Region-Aware Alignment (RAA) module, and to support long-term tracking, we design a Temporal Memory Fusion (TMF) module that caches historical object tokens. AR-MOT offers strong potential for extensibility, as new modalities or instructions can be integrated by simply modifying the output sequence format without altering the model architecture. Extensive experiments on MOT17 and DanceTrack validate the feasibility of our approach, achieving performance comparable to state-of-the-art methods while laying the foundation for more general and flexible MOT systems.
comment: 12 pages, 5 figures
☆ TalkPhoto: A Versatile Training-Free Conversational Assistant for Intelligent Image Editing
Thanks to the powerful language comprehension capabilities of Large Language Models (LLMs), existing instruction-based image editing methods have introduced Multimodal Large Language Models (MLLMs) to promote information exchange between instructions and images, ensuring the controllability and flexibility of image editing. However, these frameworks often build a multi-instruction dataset to train the model to handle multiple editing tasks, which is not only time-consuming and labor-intensive but also fails to achieve satisfactory results. In this paper, we present TalkPhoto, a versatile training-free image editing framework that facilitates precise image manipulation through conversational interaction. We instruct the open-source LLM with a specially designed prompt template to analyze user needs after receiving instructions and hierarchically invoke existing advanced editing methods, all without additional training. Moreover, we implement a plug-and-play and efficient invocation of image editing methods, allowing complex and unseen editing tasks to be integrated into the current framework, achieving stable and high-quality editing results. Extensive experiments demonstrate that our method not only provides more accurate invocation with fewer token consumption but also achieves higher editing quality across various image editing tasks.
comment: a Conversational Assistant for Intelligent Image Editing
☆ Learning Action Hierarchies via Hybrid Geometric Diffusion WACV-26
Temporal action segmentation is a critical task in video understanding, where the goal is to assign action labels to each frame in a video. While recent advances leverage iterative refinement-based strategies, they fail to explicitly utilize the hierarchical nature of human actions. In this work, we propose HybridTAS - a novel framework that incorporates a hybrid of Euclidean and hyperbolic geometries into the denoising process of diffusion models to exploit the hierarchical structure of actions. Hyperbolic geometry naturally provides tree-like relationships between embeddings, enabling us to guide the action label denoising process in a coarse-to-fine manner: higher diffusion timesteps are influenced by abstract, high-level action categories (root nodes), while lower timesteps are refined using fine-grained action classes (leaf nodes). Extensive experiments on three benchmark datasets, GTEA, 50Salads, and Breakfast, demonstrate that our method achieves state-of-the-art performance, validating the effectiveness of hyperbolic-guided denoising for the temporal action segmentation task.
comment: Accepted at WACV-26
☆ Nodule-DETR: A Novel DETR Architecture with Frequency-Channel Attention for Ultrasound Thyroid Nodule Detection
Thyroid cancer is the most common endocrine malignancy, and its incidence is rising globally. While ultrasound is the preferred imaging modality for detecting thyroid nodules, its diagnostic accuracy is often limited by challenges such as low image contrast and blurred nodule boundaries. To address these issues, we propose Nodule-DETR, a novel detection transformer (DETR) architecture designed for robust thyroid nodule detection in ultrasound images. Nodule-DETR introduces three key innovations: a Multi-Spectral Frequency-domain Channel Attention (MSFCA) module that leverages frequency analysis to enhance features of low-contrast nodules; a Hierarchical Feature Fusion (HFF) module for efficient multi-scale integration; and Multi-Scale Deformable Attention (MSDA) to flexibly capture small and irregularly shaped nodules. We conducted extensive experiments on a clinical dataset of real-world thyroid ultrasound images. The results demonstrate that Nodule-DETR achieves state-of-the-art performance, outperforming the baseline model by a significant margin of 0.149 in mAP@0.5:0.95. The superior accuracy of Nodule-DETR highlights its significant potential for clinical application as an effective tool in computer-aided thyroid diagnosis. The code of work is available at https://github.com/wjj1wjj/Nodule-DETR.
☆ Forget Less by Learning from Parents Through Hierarchical Relationships AAAI-26
Custom Diffusion Models (CDMs) offer impressive capabilities for personalization in generative modeling, yet they remain vulnerable to catastrophic forgetting when learning new concepts sequentially. Existing approaches primarily focus on minimizing interference between concepts, often neglecting the potential for positive inter-concept interactions. In this work, we present Forget Less by Learning from Parents (FLLP), a novel framework that introduces a parent-child inter-concept learning mechanism in hyperbolic space to mitigate forgetting. By embedding concept representations within a Lorentzian manifold, naturally suited to modeling tree-like hierarchies, we define parent-child relationships in which previously learned concepts serve as guidance for adapting to new ones. Our method not only preserves prior knowledge but also supports continual integration of new concepts. We validate FLLP on three public datasets and one synthetic benchmark, showing consistent improvements in both robustness and generalization.
comment: Accepted at AAAI-26
☆ Agentic AI in Remote Sensing: Foundations, Taxonomy, and Emerging Systems WACV
The paradigm of Earth Observation analysis is shifting from static deep learning models to autonomous agentic AI. Although recent vision foundation models and multimodal large language models advance representation learning, they often lack the sequential planning and active tool orchestration required for complex geospatial workflows. This survey presents the first comprehensive review of agentic AI in remote sensing. We introduce a unified taxonomy distinguishing between single-agent copilots and multi-agent systems while analyzing architectural foundations such as planning mechanisms, retrieval-augmented generation, and memory structures. Furthermore, we review emerging benchmarks that move the evaluation from pixel-level accuracy to trajectory-aware reasoning correctness. By critically examining limitations in grounding, safety, and orchestration, this work outlines a strategic roadmap for the development of robust, autonomous geospatial intelligence.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026, GeoCV Workshop
☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
☆ Entity-Guided Multi-Task Learning for Infrared and Visible Image Fusion IEEE
Existing text-driven infrared and visible image fusion approaches often rely on textual information at the sentence level, which can lead to semantic noise from redundant text and fail to fully exploit the deeper semantic value of textual information. To address these issues, we propose a novel fusion approach named Entity-Guided Multi-Task learning for infrared and visible image fusion (EGMT). Our approach includes three key innovative components: (i) A principled method is proposed to extract entity-level textual information from image captions generated by large vision-language models, eliminating semantic noise from raw text while preserving critical semantic information; (ii) A parallel multi-task learning architecture is constructed, which integrates image fusion with a multi-label classification task. By using entities as pseudo-labels, the multi-label classification task provides semantic supervision, enabling the model to achieve a deeper understanding of image content and significantly improving the quality and semantic density of the fused image; (iii) An entity-guided cross-modal interactive module is also developed to facilitate the fine-grained interaction between visual and entity-level textual features, which enhances feature representation by capturing cross-modal dependencies at both inter-visual and visual-entity levels. To promote the wide application of the entity-guided image fusion framework, we release the entity-annotated version of four public datasets (i.e., TNO, RoadScene, M3FD, and MSRS). Extensive experiments demonstrate that EGMT achieves superior performance in preserving salient targets, texture details, and semantic consistency, compared to the state-of-the-art methods. The code and dataset will be publicly available at https://github.com/wyshao-01/EGMT.
comment: Accepted by IEEE Transactions on Multimedia
☆ RRNet: Configurable Real-Time Video Enhancement with Arbitrary Local Lighting Variations
With the growing demand for real-time video enhancement in live applications, existing methods often struggle to balance speed and effective exposure control, particularly under uneven lighting. We introduce RRNet (Rendering Relighting Network), a lightweight and configurable framework that achieves a state-of-the-art tradeoff between visual quality and efficiency. By estimating parameters for a minimal set of virtual light sources, RRNet enables localized relighting through a depth-aware rendering module without requiring pixel-aligned training data. This object-aware formulation preserves facial identity and supports real-time, high-resolution performance using a streamlined encoder and lightweight prediction head. To facilitate training, we propose a generative AI-based dataset creation pipeline that synthesizes diverse lighting conditions at low cost. With its interpretable lighting control and efficient architecture, RRNet is well suited for practical applications such as video conferencing, AR-based portrait enhancement, and mobile photography. Experiments show that RRNet consistently outperforms prior methods in low-light enhancement, localized illumination adjustment, and glare removal.
☆ GCR: Geometry-Consistent Routing for Task-Agnostic Continual Anomaly Detection
Feature-based anomaly detection is widely adopted in industrial inspection due to the strong representational power of large pre-trained vision encoders. While most existing methods focus on improving within-category anomaly scoring, practical deployments increasingly require task-agnostic operation under continual category expansion, where the category identity is unknown at test time. In this setting, overall performance is often dominated by expert selection, namely routing an input to an appropriate normality model before any head-specific scoring is applied. However, routing rules that compare head-specific anomaly scores across independently constructed heads are unreliable in practice, as score distributions can differ substantially across categories in scale and tail behavior. We propose GCR, a lightweight mixture-of-experts framework for stabilizing task-agnostic continual anomaly detection through geometry-consistent routing. GCR routes each test image directly in a shared frozen patch-embedding space by minimizing an accumulated nearest-prototype distance to category-specific prototype banks, and then computes anomaly maps only within the routed expert using a standard prototype-based scoring rule. By separating cross-head decision making from within-head anomaly scoring, GCR avoids cross-head score comparability issues without requiring end-to-end representation learning. Experiments on MVTec AD and VisA show that geometry-consistent routing substantially improves routing stability and mitigates continual performance collapse, achieving near-zero forgetting while maintaining competitive detection and localization performance. These results indicate that many failures previously attributed to representation forgetting can instead be explained by decision-rule instability in cross-head routing. Code is available at https://github.com/jw-chae/GCR
☆ ESGaussianFace: Emotional and Stylized Audio-Driven Facial Animation via 3D Gaussian Splatting
Most current audio-driven facial animation research primarily focuses on generating videos with neutral emotions. While some studies have addressed the generation of facial videos driven by emotional audio, efficiently generating high-quality talking head videos that integrate both emotional expressions and style features remains a significant challenge. In this paper, we propose ESGaussianFace, an innovative framework for emotional and stylized audio-driven facial animation. Our approach leverages 3D Gaussian Splatting to reconstruct 3D scenes and render videos, ensuring efficient generation of 3D consistent results. We propose an emotion-audio-guided spatial attention method that effectively integrates emotion features with audio content features. Through emotion-guided attention, the model is able to reconstruct facial details across different emotional states more accurately. To achieve emotional and stylized deformations of the 3D Gaussian points through emotion and style features, we introduce two 3D Gaussian deformation predictors. Futhermore, we propose a multi-stage training strategy, enabling the step-by-step learning of the character's lip movements, emotional variations, and style features. Our generated results exhibit high efficiency, high quality, and 3D consistency. Extensive experimental results demonstrate that our method outperforms existing state-of-the-art techniques in terms of lip movement accuracy, expression variation, and style feature expressiveness.
comment: 13 pages, 10 figures
☆ RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.21 and an F1score of 95.62 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; RSwinV2 vector has thus proved its valiance as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 15 Pages, 7 Figures, 4 Tables
☆ DisCo-FLoc: Using Dual-Level Visual-Geometric Contrasts to Disambiguate Depth-Aware Visual Floorplan Localization
Since floorplan data is readily available, long-term persistent, and robust to changes in visual appearance, visual Floorplan Localization (FLoc) has garnered significant attention. Existing methods either ingeniously match geometric priors or utilize sparse semantics to reduce FLoc uncertainty. However, they still suffer from ambiguous FLoc caused by repetitive structures within minimalist floorplans. Moreover, expensive but limited semantic annotations restrict their applicability. To address these issues, we propose DisCo-FLoc, which utilizes dual-level visual-geometric Contrasts to Disambiguate depth-aware visual Floc, without requiring additional semantic labels. Our solution begins with a ray regression predictor tailored for ray-casting-based FLoc, predicting a series of FLoc candidates using depth estimation expertise. In addition, a novel contrastive learning method with position-level and orientation-level constraints is proposed to strictly match depth-aware visual features with the corresponding geometric structures in the floorplan. Such matches can effectively eliminate FLoc ambiguity and select the optimal imaging pose from FLoc candidates. Exhaustive comparative studies on two standard visual Floc benchmarks demonstrate that our method outperforms the state-of-the-art semantic-based method, achieving significant improvements in both robustness and accuracy.
comment: 7 pages, 4 figures
☆ Robust Egocentric Visual Attention Prediction Through Language-guided Scene Context-aware Learning
As the demand for analyzing egocentric videos grows, egocentric visual attention prediction, anticipating where a camera wearer will attend, has garnered increasing attention. However, it remains challenging due to the inherent complexity and ambiguity of dynamic egocentric scenes. Motivated by evidence that scene contextual information plays a crucial role in modulating human attention, in this paper, we present a language-guided scene context-aware learning framework for robust egocentric visual attention prediction. We first design a context perceiver which is guided to summarize the egocentric video based on a language-based scene description, generating context-aware video representations. We then introduce two training objectives that: 1) encourage the framework to focus on the target point-of-interest regions and 2) suppress distractions from irrelevant regions which are less likely to attract first-person attention. Extensive experiments on Ego4D and Aria Everyday Activities (AEA) datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance and enhanced robustness across diverse, dynamic egocentric scenarios.
comment: 11 pages, 7 figures, 4 tables
☆ Adaptive Hybrid Optimizer based Framework for Lumpy Skin Disease Identification
Lumpy Skin Disease (LSD) is a contagious viral infection that significantly deteriorates livestock health, thereby posing a serious threat to the global economy and food security. Owing to its rapid spread characteristics, early and precise identification is crucial to prevent outbreaks and ensure timely intervention. In this paper, we propose a hybrid deep learning-based approach called LUMPNet for the early detection of LSD. LUMPNet utilizes image data to detect and classify skin nodules -- the primary indicator of LSD. To this end, LUMPNet uses YOLOv11, EfficientNet-based CNN classifier with compound scaling, and a novel adaptive hybrid optimizer. More precisely, LUMPNet detects and localizes LSD skin nodules and lesions on cattle images. It exploits EfficientNet to classify the localized cattle images into LSD-affected or healthy categories. To stabilize and accelerate the training of YOLOv11 and EfficientNet hybrid model, a novel adaptive hybrid optimizer is proposed and utilized. We evaluate LUMPNet at various stages of LSD using a publicly available dataset. Results indicate that the proposed scheme achieves 99% LSD detection training accuracy, and outperforms existing schemes. The model also achieves validation accuracy of 98%. Moreover, for further evaluation, we conduct a case study using an optimized EfficientNet-B0 model trained with the AdamW optimizer, and compare its performance with LUMPNet. The results show that LUMPNet achieves superior performance.
☆ Causality-Aware Temporal Projection for Video Understanding in Video-LLMs
Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.
comment: 7 pages, 4 figures
☆ VerLM: Explaining Face Verification Using Natural Language
Face verification systems have seen substantial advancements; however, they often lack transparency in their decision-making processes. In this paper, we introduce an innovative Vision-Language Model (VLM) for Face Verification, which not only accurately determines if two face images depict the same individual but also explicitly explains the rationale behind its decisions. Our model is uniquely trained using two complementary explanation styles: (1) concise explanations that summarize the key factors influencing its decision, and (2) comprehensive explanations detailing the specific differences observed between the images. We adapt and enhance a state-of-the-art modeling approach originally designed for audio-based differentiation to suit visual inputs effectively. This cross-modal transfer significantly improves our model's accuracy and interpretability. The proposed VLM integrates sophisticated feature extraction techniques with advanced reasoning capabilities, enabling clear articulation of its verification process. Our approach demonstrates superior performance, surpassing baseline methods and existing models. These findings highlight the immense potential of vision language models in face verification set up, contributing to more transparent, reliable, and explainable face verification systems.
☆ DDNet: A Dual-Stream Graph Learning and Disentanglement Framework for Temporal Forgery Localization
The rapid evolution of AIGC technology enables misleading viewers by tampering mere small segments within a video, rendering video-level detection inaccurate and unpersuasive. Consequently, temporal forgery localization (TFL), which aims to precisely pinpoint tampered segments, becomes critical. However, existing methods are often constrained by \emph{local view}, failing to capture global anomalies. To address this, we propose a \underline{d}ual-stream graph learning and \underline{d}isentanglement framework for temporal forgery localization (DDNet). By coordinating a \emph{Temporal Distance Stream} for local artifacts and a \emph{Semantic Content Stream} for long-range connections, DDNet prevents global cues from being drowned out by local smoothness. Furthermore, we introduce Trace Disentanglement and Adaptation (TDA) to isolate generic forgery fingerprints, alongside Cross-Level Feature Embedding (CLFE) to construct a robust feature foundation via deep fusion of hierarchical features. Experiments on ForgeryNet and TVIL benchmarks demonstrate that our method outperforms state-of-the-art approaches by approximately 9\% in AP@0.95, with significant improvements in cross-domain robustness.
☆ Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
☆ CTIS-QA: Clinical Template-Informed Slide-level Question Answering for Pathology
In this paper, we introduce a clinical diagnosis template-based pipeline to systematically collect and structure pathological information. In collaboration with pathologists and guided by the the College of American Pathologists (CAP) Cancer Protocols, we design a Clinical Pathology Report Template (CPRT) that ensures comprehensive and standardized extraction of diagnostic elements from pathology reports. We validate the effectiveness of our pipeline on TCGA-BRCA. First, we extract pathological features from reports using CPRT. These features are then used to build CTIS-Align, a dataset of 80k slide-description pairs from 804 WSIs for vision-language alignment training, and CTIS-Bench, a rigorously curated VQA benchmark comprising 977 WSIs and 14,879 question-answer pairs. CTIS-Bench emphasizes clinically grounded, closed-ended questions (e.g., tumor grade, receptor status) that reflect real diagnostic workflows, minimize non-visual reasoning, and require genuine slide understanding. We further propose CTIS-QA, a Slide-level Question Answering model, featuring a dual-stream architecture that mimics pathologists' diagnostic approach. One stream captures global slide-level context via clustering-based feature aggregation, while the other focuses on salient local regions through attention-guided patch perception module. Extensive experiments on WSI-VQA, CTIS-Bench, and slide-level diagnostic tasks show that CTIS-QA consistently outperforms existing state-of-the-art models across multiple metrics. Code and data are available at https://github.com/HLSvois/CTIS-QA.
comment: The paper has been accepted by BIBM 2025
☆ AlignDrive: Aligned Lateral-Longitudinal Planning for End-to-End Autonomous Driving
End-to-end autonomous driving has rapidly progressed, enabling joint perception and planning in complex environments. In the planning stage, state-of-the-art (SOTA) end-to-end autonomous driving models decouple planning into parallel lateral and longitudinal predictions. While effective, this parallel design can lead to i) coordination failures between the planned path and speed, and ii) underutilization of the drive path as a prior for longitudinal planning, thus redundantly encoding static information. To address this, we propose a novel cascaded framework that explicitly conditions longitudinal planning on the drive path, enabling coordinated and collision-aware lateral and longitudinal planning. Specifically, we introduce a path-conditioned formulation that explicitly incorporates the drive path into longitudinal planning. Building on this, the model predicts longitudinal displacements along the drive path rather than full 2D trajectory waypoints. This design simplifies longitudinal reasoning and more tightly couples it with lateral planning. Additionally, we introduce a planning-oriented data augmentation strategy that simulates rare safety-critical events, such as vehicle cut-ins, by adding agents and relabeling longitudinal targets to avoid collision. Evaluated on the challenging Bench2Drive benchmark, our method sets a new SOTA, achieving a driving score of 89.07 and a success rate of 73.18%, demonstrating significantly improved coordination and safety
comment: underreview
☆ MANGO:Natural Multi-speaker 3D Talking Head Generation via 2D-Lifted Enhancement
Current audio-driven 3D head generation methods mainly focus on single-speaker scenarios, lacking natural, bidirectional listen-and-speak interaction. Achieving seamless conversational behavior, where speaking and listening states transition fluidly remains a key challenge. Existing 3D conversational avatar approaches rely on error-prone pseudo-3D labels that fail to capture fine-grained facial dynamics. To address these limitations, we introduce a novel two-stage framework MANGO, which leveraging pure image-level supervision by alternately training to mitigate the noise introduced by pseudo-3D labels, thereby achieving better alignment with real-world conversational behaviors. Specifically, in the first stage, a diffusion-based transformer with a dual-audio interaction module models natural 3D motion from multi-speaker audio. In the second stage, we use a fast 3D Gaussian Renderer to generate high-fidelity images and provide 2D-level photometric supervision for the 3D motions through alternate training. Additionally, we introduce MANGO-Dialog, a high-quality dataset with over 50 hours of aligned 2D-3D conversational data across 500+ identities. Extensive experiments demonstrate that our method achieves exceptional accuracy and realism in modeling two-person 3D dialogue motion, significantly advancing the fidelity and controllability of audio-driven talking heads.
comment: 20 pages, 11i figures
☆ Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization EACL
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
☆ Point-SRA: Self-Representation Alignment for 3D Representation Learning AAAI 2026
Masked autoencoders (MAE) have become a dominant paradigm in 3D representation learning, setting new performance benchmarks across various downstream tasks. Existing methods with fixed mask ratio neglect multi-level representational correlations and intrinsic geometric structures, while relying on point-wise reconstruction assumptions that conflict with the diversity of point cloud. To address these issues, we propose a 3D representation learning method, termed Point-SRA, which aligns representations through self-distillation and probabilistic modeling. Specifically, we assign different masking ratios to the MAE to capture complementary geometric and semantic information, while the MeanFlow Transformer (MFT) leverages cross-modal conditional embeddings to enable diverse probabilistic reconstruction. Our analysis further reveals that representations at different time steps in MFT also exhibit complementarity. Therefore, a Dual Self-Representation Alignment mechanism is proposed at both the MAE and MFT levels. Finally, we design a Flow-Conditioned Fine-Tuning Architecture to fully exploit the point cloud distribution learned via MeanFlow. Point-SRA outperforms Point-MAE by 5.37% on ScanObjectNN. On intracranial aneurysm segmentation, it reaches 96.07% mean IoU for arteries and 86.87% for aneurysms. For 3D object detection, Point-SRA achieves 47.3% AP@50, surpassing MaskPoint by 5.12%.
comment: This is an AAAI 2026 accepted paper titled "Point-SRA: Self-Representation Alignment for 3D Representation Learning", spanning 13 pages in total. The submission includes 7 figures (fig1 to fig7) that visually support the technical analysis
☆ FFP-300K: Scaling First-Frame Propagation for Generalizable Video Editing
First-Frame Propagation (FFP) offers a promising paradigm for controllable video editing, but existing methods are hampered by a reliance on cumbersome run-time guidance. We identify the root cause of this limitation as the inadequacy of current training datasets, which are often too short, low-resolution, and lack the task diversity required to teach robust temporal priors. To address this foundational data gap, we first introduce FFP-300K, a new large-scale dataset comprising 300K high-fidelity video pairs at 720p resolution and 81 frames in length, constructed via a principled two-track pipeline for diverse local and global edits. Building on this dataset, we propose a novel framework designed for true guidance-free FFP that resolves the critical tension between maintaining first-frame appearance and preserving source video motion. Architecturally, we introduce Adaptive Spatio-Temporal RoPE (AST-RoPE), which dynamically remaps positional encodings to disentangle appearance and motion references. At the objective level, we employ a self-distillation strategy where an identity propagation task acts as a powerful regularizer, ensuring long-term temporal stability and preventing semantic drift. Comprehensive experiments on the EditVerseBench benchmark demonstrate that our method significantly outperforming existing academic and commercial models by receiving about 0.2 PickScore and 0.3 VLM score improvement against these competitors.
☆ Real-Time Lane Detection via Efficient Feature Alignment and Covariance Optimization for Low-Power Embedded Systems
Real-time lane detection in embedded systems encounters significant challenges due to subtle and sparse visual signals in RGB images, often constrained by limited computational resources and power consumption. Although deep learning models for lane detection categorized into segmentation-based, anchor-based, and curve-based methods there remains a scarcity of universally applicable optimization techniques tailored for low-power embedded environments. To overcome this, we propose an innovative Covariance Distribution Optimization (CDO) module specifically designed for efficient, real-time applications. The CDO module aligns lane feature distributions closely with ground-truth labels, significantly enhancing detection accuracy without increasing computational complexity. Evaluations were conducted on six diverse models across all three method categories, including two optimized for real-time applications and four state-of-the-art (SOTA) models, tested comprehensively on three major datasets: CULane, TuSimple, and LLAMAS. Experimental results demonstrate accuracy improvements ranging from 0.01% to 1.5%. The proposed CDO module is characterized by ease of integration into existing systems without structural modifications and utilizes existing model parameters to facilitate ongoing training, thus offering substantial benefits in performance, power efficiency, and operational flexibility in embedded systems.
☆ Annealed Langevin Posterior Sampling (ALPS): A Rapid Algorithm for Image Restoration with Multiscale Energy Models
Solving inverse problems in imaging requires models that support efficient inference, uncertainty quantification, and principled probabilistic reasoning. Energy-Based Models (EBMs), with their interpretable energy landscapes and compositional structure, are well-suited for this task but have historically suffered from high computational costs and training instability. To overcome the historical shortcomings of EBMs, we introduce a fast distillation strategy to transfer the strengths of pre-trained diffusion models into multi-scale EBMs. These distilled EBMs enable efficient sampling and preserve the interpretability and compositionality inherent to potential-based frameworks. Leveraging EBM compositionality, we propose Annealed Langevin Posterior Sampling (ALPS) algorithm for Maximum-A-Posteriori (MAP), Minimum Mean Square Error (MMSE), and uncertainty estimates for inverse problems in imaging. Unlike diffusion models that use complex guidance strategies for latent variables, we perform annealing on static posterior distributions that are well-defined and composable. Experiments on image inpainting and MRI reconstruction demonstrate that our method matches or surpasses diffusion-based baselines in both accuracy and efficiency, while also supporting MAP recovery. Overall, our framework offers a scalable and principled solution for inverse problems in imaging, with potential for practical deployment in scientific and clinical settings. ALPS code is available at the GitHub repository \href{https://github.com/JyoChand/ALPS}{ALPS}.
☆ Shallow- and Deep-fake Image Manipulation Localization Using Vision Mamba and Guided Graph Neural Network
Image manipulation localization is a critical research task, given that forged images may have a significant societal impact of various aspects. Such image manipulations can be produced using traditional image editing tools (known as "shallowfakes") or advanced artificial intelligence techniques ("deepfakes"). While numerous studies have focused on image manipulation localization on either shallowfake images or deepfake videos, few approaches address both cases. In this paper, we explore the feasibility of using a deep learning network to localize manipulations in both shallow- and deep-fake images, and proposed a solution for such purpose. To precisely differentiate between authentic and manipulated pixels, we leverage the Vision Mamba network to extract feature maps that clearly describe the boundaries between tampered and untouched regions. To further enhance this separation, we propose a novel Guided Graph Neural Network (G-GNN) module that amplifies the distinction between manipulated and authentic pixels. Our evaluation results show that our proposed method achieved higher inference accuracy compared to other state-of-the-art methods.
comment: Under review for journal publication
☆ Comparative Analysis of Binarization Methods For Medical Image Hashing On Odir Dataset
In this study, we evaluated four binarization methods. Locality-Sensitive Hashing (LSH), Iterative Quantization (ITQ), Kernel-based Supervised Hashing (KSH), and Supervised Discrete Hashing (SDH) on the ODIR dataset using deep feature embeddings. Experimental results show that SDH achieved the best performance, with an mAP@100 of 0.9184 using only 32-bit codes, outperforming LSH, ITQ, and KSH. Compared with prior studies, our method proved highly competitive: Fang et al. reported 0.7528 (Fundus-iSee, 48 bits) and 0.8856 (ASOCT-Cataract, 48 bits), while Wijesinghe et al. achieved 94.01 (KVASIR, 256 bits). Despite using significantly fewer bits, our SDH-based framework reached retrieval accuracy close to the state-of-the-art. These findings demonstrate that SDH is the most effective approach among those tested, offering a practical balance of accuracy, storage, and efficiency for medical image retrieval and device inventory management.
comment: 17th International İstanbul Scientific Research Congress
☆ Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
☆ A Green Solution for Breast Region Segmentation Using Deep Active Learning
Purpose: Annotation of medical breast images is an essential step toward better diagnostic but a time consuming task. This research aims to focus on different selecting sample strategies within deep active learning on Breast Region Segmentation (BRS) to lessen computational cost of training and effective use of resources. Methods: The Stavanger breast MRI dataset containing 59 patients was used in this study, with FCN-ResNet50 adopted as a sustainable deep learning (DL) model. A novel sample selection approach based on Breast Anatomy Geometry (BAG) analysis was introduced to group data with similar informative features for DL. Patient positioning and Breast Size were considered the key selection criteria in this process. Four selection strategies including Random Selection, Nearest Point, Breast Size, and a hybrid of all three strategies were evaluated using an active learning framework. Four training data proportions of 10%, 20%, 30%, and 40% were used for model training, with the remaining data reserved for testing. Model performance was assessed using Dice score, Intersection over Union, precision, and recall, along with 5-fold cross-validation to enhance generalizability. Results: Increasing the training data proportion from 10% to 40% improved segmentation performance for nearly all strategies, except for Random Selection. The Nearest Point strategy consistently achieved the lowest carbon footprint at 30% and 40% data proportions. Overall, combining the Nearest Point strategy with 30% of the training data provided the best balance between segmentation performance, efficiency, and environmental sustainability. Keywords: Deep Active Learning, Breast Region Segmentation, Human-center analysis
☆ MovieRecapsQA: A Multimodal Open-Ended Video Question-Answering Benchmark
Understanding real-world videos such as movies requires integrating visual and dialogue cues to answer complex questions. Yet existing VideoQA benchmarks struggle to capture this multimodal reasoning and are largely not open-ended, given the difficulty of evaluating free-form answers. In this paper, we introduce a novel open-ended multi-modal VideoQA benchmark, MovieRecapsQA created using movie recap videos--a distinctive type of YouTube content that summarizes a film by presenting its key events through synchronized visual (recap video) and textual (recap summary) modalities. Using the recap summary, we generate $\approx 8.2$ K question-answer (QA) pairs (aligned with movie-subtitles) and provide the necessary "facts" needed to verify an answer in a reference-free manner. To our knowledge, this is the first open-ended VideoQA benchmark that supplies explicit textual context of the input (video and/or text); which we use for evaluation. Our benchmark provides videos of multiple lengths (i.e., recap-segments, movie-segments) and categorizations of questions (by modality and type) to enable fine-grained analysis. We evaluate the performance of seven state-of-the-art MLLMs using our benchmark and observe that: 1) visual-only questions remain the most challenging; 2) models default to textual inputs whenever available; 3) extracting factually accurate information from video content is still difficult for all models; and 4) proprietary and open-source models perform comparably on video-dependent questions.
☆ CT Scans As Video: Efficient Intracranial Hemorrhage Detection Using Multi-Object Tracking
Automated analysis of volumetric medical imaging on edge devices is severely constrained by the high memory and computational demands of 3D Convolutional Neural Networks (CNNs). This paper develops a lightweight computer vision framework that reconciles the efficiency of 2D detection with the necessity of 3D context by reformulating volumetric Computer Tomography (CT) data as sequential video streams. This video-viewpoint paradigm is applied to the time-sensitive task of Intracranial Hemorrhage (ICH) detection using the Hemorica dataset. To ensure operational efficiency, we benchmarked multiple generations of the YOLO architecture (v8, v10, v11 and v12) in their Nano configurations, selecting the version with the highest mAP@50 to serve as the slice-level backbone. A ByteTrack algorithm is then introduced to enforce anatomical consistency across the $z$-axis. To address the initialization lag inherent in video trackers, a hybrid inference strategy and a spatiotemporal consistency filter are proposed to distinguish true pathology from transient prediction noise. Experimental results on independent test data demonstrate that the proposed framework serves as a rigorous temporal validator, increasing detection Precision from 0.703 to 0.779 compared to the baseline 2D detector, while maintaining high sensitivity. By approximating 3D contextual reasoning at a fraction of the computational cost, this method provides a scalable solution for real-time patient prioritization in resource-constrained environments, such as mobile stroke units and IoT-enabled remote clinics.
☆ PatchAlign3D: Local Feature Alignment for Dense 3D Shape understanding
Current foundation models for 3D shapes excel at global tasks (retrieval, classification) but transfer poorly to local part-level reasoning. Recent approaches leverage vision and language foundation models to directly solve dense tasks through multi-view renderings and text queries. While promising, these pipelines require expensive inference over multiple renderings, depend heavily on large language-model (LLM) prompt engineering for captions, and fail to exploit the inherent 3D geometry of shapes. We address this gap by introducing an encoder-only 3D model that produces language-aligned patch-level features directly from point clouds. Our pre-training approach builds on existing data engines that generate part-annotated 3D shapes by pairing multi-view SAM regions with VLM captioning. Using this data, we train a point cloud transformer encoder in two stages: (1) distillation of dense 2D features from visual encoders such as DINOv2 into 3D patches, and (2) alignment of these patch embeddings with part-level text embeddings through a multi-positive contrastive objective. Our 3D encoder achieves zero-shot 3D part segmentation with fast single-pass inference without any test-time multi-view rendering, while significantly outperforming previous rendering-based and feed-forward approaches across several 3D part segmentation benchmarks. Project website: https://souhail-hadgi.github.io/patchalign3dsite/
comment: Project website: https://souhail-hadgi.github.io/patchalign3dsite/
☆ Don't Mind the Gaps: Implicit Neural Representations for Resolution-Agnostic Retinal OCT Analysis
Routine clinical imaging of the retina using optical coherence tomography (OCT) is performed with large slice spacing, resulting in highly anisotropic images and a sparsely scanned retina. Most learning-based methods circumvent the problems arising from the anisotropy by using 2D approaches rather than performing volumetric analyses. These approaches inherently bear the risk of generating inconsistent results for neighboring B-scans. For example, 2D retinal layer segmentations can have irregular surfaces in 3D. Furthermore, the typically used convolutional neural networks are bound to the resolution of the training data, which prevents their usage for images acquired with a different imaging protocol. Implicit neural representations (INRs) have recently emerged as a tool to store voxelized data as a continuous representation. Using coordinates as input, INRs are resolution-agnostic, which allows them to be applied to anisotropic data. In this paper, we propose two frameworks that make use of this characteristic of INRs for dense 3D analyses of retinal OCT volumes. 1) We perform inter-B-scan interpolation by incorporating additional information from en-face modalities, that help retain relevant structures between B-scans. 2) We create a resolution-agnostic retinal atlas that enables general analysis without strict requirements for the data. Both methods leverage generalizable INRs, improving retinal shape representation through population-based training and allowing predictions for unseen cases. Our resolution-independent frameworks facilitate the analysis of OCT images with large B-scan distances, opening up possibilities for the volumetric evaluation of retinal structures and pathologies.
comment: Extended journal version of the proceedings paper "Bridging Gaps in Retinal Imaging: Fusing OCT and SLO Information with Implicit Neural Representations for Improved Interpolation and Segmentation" from the German Conference on Medical Image Computing (BVM 2025; DOI:10.1007/978-3-658-47422-5_24). Under review for a MELBA Special Issue. Minor revision resubmitted; decision pending
☆ A Spatio-Temporal Deep Learning Approach For High-Resolution Gridded Monsoon Prediction IEEE
The Indian Summer Monsoon (ISM) is a critical climate phenomenon, fundamentally impacting the agriculture, economy, and water security of over a billion people. Traditional long-range forecasting, whether statistical or dynamical, has predominantly focused on predicting a single, spatially-averaged seasonal value, lacking the spatial detail essential for regional-level resource management. To address this gap, we introduce a novel deep learning framework that reframes gridded monsoon prediction as a spatio-temporal computer vision task. We treat multi-variable, pre-monsoon atmospheric and oceanic fields as a sequence of multi-channel images, effectively creating a video-like input tensor. Using 85 years of ERA5 reanalysis data for predictors and IMD rainfall data for targets, we employ a Convolutional Neural Network (CNN)-based architecture to learn the complex mapping from the five-month pre-monsoon period (January-May) to a high-resolution gridded rainfall pattern for the subsequent monsoon season. Our framework successfully produces distinct forecasts for each of the four monsoon months (June-September) as well as the total seasonal average, demonstrating its utility for both intra-seasonal and seasonal outlooks.
comment: 8 pages, 3 figures, 2 Tables, to be submitted to "IEEE Transactions on Geoscience and Remote Sensing"
☆ Evaluating the Diagnostic Classification Ability of Multimodal Large Language Models: Insights from the Osteoarthritis Initiative
Multimodal large language models (MLLMs) show promising performance on medical visual question answering (VQA) and report generation, but these generation and explanation abilities do not reliably transfer to disease-specific classification. We evaluated MLLM architectures on knee osteoarthritis (OA) radiograph classification, which remains underrepresented in existing medical MLLM benchmarks, even though knee OA affects an estimated 300 to 400 million people worldwide. Through systematic ablation studies manipulating the vision encoder, the connector, and the large language model (LLM) across diverse training strategies, we measured each component's contribution to diagnostic accuracy. In our classification task, a trained vision encoder alone could outperform full MLLM pipelines in classification accuracy and fine-tuning the LLM provided no meaningful improvement over prompt-based guidance. And LoRA fine-tuning on a small, class-balanced dataset (500 images) gave better results than training on a much larger but class-imbalanced set (5,778 images), indicating that data balance and quality can matter more than raw scale for this task. These findings suggest that for domain-specific medical classification, LLMs are more effective as interpreters and report generators rather than as primary classifiers. Therefore, the MLLM architecture appears less suitable for medical image diagnostic classification tasks that demand high certainty. We recommend prioritizing vision encoder optimization and careful dataset curation when developing clinically applicable systems.
☆ Understanding Pure Textual Reasoning for Blind Image Quality Assessment
Textual reasoning has recently been widely adopted in Blind Image Quality Assessment (BIQA). However, it remains unclear how textual information contributes to quality prediction and to what extent text can represent the score-related image contents. This work addresses these questions from an information-flow perspective by comparing existing BIQA models with three paradigms designed to learn the image-text-score relationship: Chain-of-Thought, Self-Consistency, and Autoencoder. Our experiments show that the score prediction performance of the existing model significantly drops when only textual information is used for prediction. Whereas the Chain-of-Thought paradigm introduces little improvement in BIQA performance, the Self-Consistency paradigm significantly reduces the gap between image- and text-conditioned predictions, narrowing the PLCC/SRCC difference to 0.02/0.03. The Autoencoder-like paradigm is less effective in closing the image-text gap, yet it reveals a direction for further optimization. These findings provide insights into how to improve the textual reasoning for BIQA and high-level vision tasks.
comment: Code available at https://anonymous.4open.science/r/Bridging-Image-Text-Gap-for-BIQA-CF5B/. This work is under review
☆ WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks
We present WebGym, the largest-to-date open-source environment for training realistic visual web agents. Real websites are non-stationary and diverse, making artificial or small-scale task sets insufficient for robust policy learning. WebGym contains nearly 300,000 tasks with rubric-based evaluations across diverse, real-world websites and difficulty levels. We train agents with a simple reinforcement learning (RL) recipe, which trains on the agent's own interaction traces (rollouts), using task rewards as feedback to guide learning. To enable scaling RL, we speed up sampling of trajectories in WebGym by developing a high-throughput asynchronous rollout system, designed specifically for web agents. Our system achieves a 4-5x rollout speedup compared to naive implementations. Second, we scale the task set breadth, depth, and size, which results in continued performance improvement. Fine-tuning a strong base vision-language model, Qwen-3-VL-8B-Instruct, on WebGym results in an improvement in success rate on an out-of-distribution test set from 26.2% to 42.9%, significantly outperforming agents based on proprietary models such as GPT-4o and GPT-5-Thinking that achieve 27.1% and 29.8%, respectively. This improvement is substantial because our test set consists only of tasks on websites never seen during training, unlike many other prior works on training visual web agents.
☆ TAP-ViTs: Task-Adaptive Pruning for On-Device Deployment of Vision Transformers
Vision Transformers (ViTs) have demonstrated strong performance across a wide range of vision tasks, yet their substantial computational and memory demands hinder efficient deployment on resource-constrained mobile and edge devices. Pruning has emerged as a promising direction for reducing ViT complexity. However, existing approaches either (i) produce a single pruned model shared across all devices, ignoring device heterogeneity, or (ii) rely on fine-tuning with device-local data, which is often infeasible due to limited on-device resources and strict privacy constraints. As a result, current methods fall short of enabling task-customized ViT pruning in privacy-preserving mobile computing settings. This paper introduces TAP-ViTs, a novel task-adaptive pruning framework that generates device-specific pruned ViT models without requiring access to any raw local data. Specifically, to infer device-level task characteristics under privacy constraints, we propose a Gaussian Mixture Model (GMM)-based metric dataset construction mechanism. Each device fits a lightweight GMM to approximate its private data distribution and uploads only the GMM parameters. Using these parameters, the cloud selects distribution-consistent samples from public data to construct a task-representative metric dataset for each device. Based on this proxy dataset, we further develop a dual-granularity importance evaluation-based pruning strategy that jointly measures composite neuron importance and adaptive layer importance, enabling fine-grained, task-aware pruning tailored to each device's computational budget. Extensive experiments across multiple ViT backbones and datasets demonstrate that TAP-ViTs consistently outperforms state-of-the-art pruning methods under comparable compression ratios.
☆ Deep Learning Superresolution for 7T Knee MR Imaging: Impact on Image Quality and Diagnostic Performance
Background: Deep learning superresolution (SR) may enhance musculoskeletal MR image quality, but its diagnostic value in knee imaging at 7T is unclear. Objectives: To compare image quality and diagnostic performance of SR, low-resolution (LR), and high-resolution (HR) 7T knee MRI. Methods: In this prospective study, 42 participants underwent 7T knee MRI with LR (0.8*0.8*2 mm3) and HR (0.4*0.4*2 mm3) sequences. SR images were generated from LR data using a Hybrid Attention Transformer model. Three radiologists assessed image quality, anatomic conspicuity, and detection of knee pathologies. Arthroscopy served as reference in 10 cases. Results: SR images showed higher overall quality than LR (median score 5 vs 4, P<.001) and lower noise than HR (5 vs 4, P<.001). Visibility of cartilage, menisci, and ligaments was superior in SR and HR compared to LR (P<.001). Detection rates and diagnostic performance (sensitivity, specificity, AUC) for intra-articular pathology were similar across image types (P>=.095). Conclusions: Deep learning superresolution improved subjective image quality in 7T knee MRI but did not increase diagnostic accuracy compared with standard LR imaging.
♻ ☆ Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.
comment: 11 pages, 9 figures, 4 tables. Undergraduate research project report
♻ ☆ Diminishing Returns in Self-Supervised Learning
Transformer-based architectures have become a dominant paradigm in vision and language, but their success is often attributed to large model capacity and massive training data. In this work, we examine how self-supervised pre-training, intermediate fine-tuning, and downstream fine-tuning interact in a low-capacity regime, using a 5M-parameter Vision Transformer for semantic segmentation. Across multiple data scales, we find that masked image modeling pre-training and downstream fine-tuning reliably improve performance, but with clear diminishing returns as supervision increases. In contrast, inserting an intermediate classification fine-tuning stage consistently degrades downstream performance, with the largest drops occurring precisely where pre-training is most effective. Through an analysis of patch-level representation geometry, we show that classification-based intermediate supervision actively interferes with representations learned during pre-training by collapsing spatial structure critical for dense prediction. These results indicate that, in small models, the geometry of supervision matters more than the number of training stages: misaligned intermediate objectives can negate the benefits of pre-training rather than amplify them.
♻ ☆ TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos
Identifying procedural errors online from egocentric videos is a critical yet challenging task across various domains, including manufacturing, healthcare, and skill-based training. The nature of such mistakes is inherently open-set, as unforeseen or novel errors may occur, necessitating robust detection systems that do not rely on prior examples of failure. Currently, however, no technique effectively detects open-set procedural mistakes online. We propose a dual branch architecture to address this problem in an online fashion: one branch continuously performs step recognition from the input egocentric video, while the other anticipates future steps based on the recognition module's output. Mistakes are detected as mismatches between the currently recognized action and the action predicted by the anticipation module. The recognition branch takes input frames, predicts the current action, and aggregates frame-level results into action tokens. The anticipation branch, specifically, leverages the solid pattern-matching capabilities of Large Language Models (LLMs) to predict action tokens based on previously predicted ones. Given the online nature of the task, we also thoroughly benchmark the difficulties associated with per-frame evaluations, particularly the need for accurate and timely predictions in dynamic online scenarios. Extensive experiments on two procedural datasets demonstrate the challenges and opportunities of leveraging a dual-branch architecture for mistake detection, showcasing the effectiveness of our proposed approach. In a thorough evaluation including recognition and anticipation variants and state-of-the-art models, our method reveals its robustness and effectiveness in online applications.
♻ ☆ PrevMatch: Revisiting and Maximizing Temporal Knowledge in Semi-Supervised Semantic Segmentation WACV 2026
In semi-supervised semantic segmentation, the Mean Teacher- and co-training-based approaches are employed to mitigate confirmation bias and coupling problems. However, despite their high performance, these approaches frequently involve complex training pipelines and a substantial computational burden, limiting the scalability and compatibility of these methods. In this paper, we propose a PrevMatch framework that effectively mitigates the aforementioned limitations by maximizing the utilization of the temporal knowledge obtained during the training process. The PrevMatch framework relies on two core strategies: (1) we reconsider the use of temporal knowledge and thus directly utilize previous models obtained during training to generate additional pseudo-label guidance, referred to as previous guidance. (2) we design a highly randomized ensemble strategy to maximize the effectiveness of the previous guidance. PrevMatch, a simple yet effective plug-in method, can be seamlessly integrated into existing semi-supervised learning frameworks with minimal computational overhead. Experimental results on three benchmark semantic segmentation datasets show that incorporating PrevMatch into existing methods significantly improves their performance. Furthermore, our analysis indicates that PrevMatch facilitates stable optimization during training, resulting in improved generalization performance.
comment: To appear in WACV 2026. Code: https://github.com/wooseok-shin/PrevMatch
♻ ☆ Answering from Sure to Uncertain: Uncertainty-Aware Curriculum Learning for Video Question Answering BMVC 2025
While significant advancements have been made in video question answering (VideoQA), the potential benefits of enhancing model generalization through tailored difficulty scheduling have been largely overlooked in existing research. This paper seeks to bridge that gap by incorporating VideoQA into a curriculum learning (CL) framework that progressively trains models from simpler to more complex data. Recognizing that conventional self-paced CL methods rely on training loss for difficulty measurement, which might not accurately reflect the intricacies of video-question pairs, we introduce the concept of uncertainty-aware CL. Here, uncertainty serves as the guiding principle for dynamically adjusting the difficulty. Furthermore, we address the challenge posed by uncertainty by presenting a probabilistic modeling approach for VideoQA. Specifically, we conceptualize VideoQA as a stochastic computation graph, where the hidden representations are treated as stochastic variables. This yields two distinct types of uncertainty: one related to the inherent uncertainty in the data and another pertaining to the model's confidence. In practice, we seamlessly integrate the VideoQA model into our framework and conduct comprehensive experiments. The findings affirm that our approach not only achieves enhanced performance but also effectively quantifies uncertainty in the context of VideoQA.
comment: Accepted by BMVC 2025
♻ ☆ RingMo-Agent: A Unified Remote Sensing Foundation Model for Multi-Platform and Multi-Modal Reasoning
Remote sensing (RS) images from multiple modalities and platforms exhibit diverse details due to differences in sensor characteristics and imaging perspectives. Existing vision-language research in RS largely relies on relatively homogeneous data sources. Moreover, they still remain limited to conventional visual perception tasks such as classification or captioning. As a result, these methods fail to serve as a unified and standalone framework capable of effectively handling RS imagery from diverse sources in real-world applications. To address these issues, we propose RingMo-Agent, a model designed to handle multi-modal and multi-platform data that performs perception and reasoning tasks based on user textual instructions. Compared with existing models, RingMo-Agent 1) is supported by a large-scale vision-language dataset named RS-VL3M, comprising over 3 million image-text pairs, spanning optical, SAR, and infrared (IR) modalities collected from both satellite and UAV platforms, covering perception and challenging reasoning tasks; 2) learns modality adaptive representations by incorporating separated embedding layers to construct isolated features for heterogeneous modalities and reduce cross-modal interference; 3) unifies task modeling by introducing task-specific tokens and employing a token-based high-dimensional hidden state decoding mechanism designed for long-horizon spatial tasks. Extensive experiments on various RS vision-language tasks demonstrate that RingMo-Agent not only proves effective in both visual understanding and sophisticated analytical tasks, but also exhibits strong generalizability across different platforms and sensing modalities.
comment: 23 pages, 6 figures, 20 tables
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAILab/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAILab/multimodal-adversarial-training
♻ ☆ TD3Net: A temporal densely connected multi-dilated convolutional network for lipreading
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository (https://github.com/Leebh-kor/TD3Net).
comment: Accepted for publication in Journal of Visual Communication and Image Representation. DOI: https://doi.org/10.1016/j.jvcir.2025.104540
♻ ☆ Data-Augmented Multimodal Feature Fusion for Multiclass Visual Recognition of Oral Cancer Lesions
Oral cancer is frequently diagnosed at later stages due to its similarity to other lesions. Existing research on computer aided diagnosis has made progress using deep learning; however, most approaches remain limited by small, imbalanced datasets and a dependence on single-modality features, which restricts model generalization in real-world clinical settings. To address these limitations, this study proposes a novel data-augmentation driven multimodal feature-fusion framework integrated within a (Vision Recognition)VR assisted oral cancer recognition system. Our method combines extensive data centric augmentation with fused clinical and image-based representations to enhance model robustness and reduce diagnostic ambiguity. Using a stratified training pipeline and an EfficientNetV2 B1 backbone, the system improves feature diversity, mitigates imbalance, and strengthens the learned multimodal embeddings. Experimental evaluation demonstrates that the proposed framework achieves an overall accuracy of 82.57 percent on 2 classes, 65.13 percent on 3 classes, and 54.97 percent on 4 classes, outperforming traditional single stream CNN models. These results highlight the effectiveness of multimodal feature fusion combined with strategic augmentation for reliable early oral cancer lesion recognition and serve as a foundation for immersive VR based clinical decision support tools.
♻ ☆ VALLR: Visual ASR Language Model for Lip Reading
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
♻ ☆ Unsupervised Stereo via Multi-Baseline Geometry-Consistent Self-Training
Photometric loss and pseudo-label-based self-training are two widely used methods for training stereo networks on unlabeled data. However, they both struggle to provide accurate supervision in occluded regions. The former lacks valid correspondences, while the latter's pseudo labels are often unreliable. To overcome these limitations, we present S$^3$, a simple yet effective framework based on multi-baseline geometry consistency. Unlike conventional self-training where teacher and student share identical stereo pairs, S$^3$ assigns them different target images, introducing natural visibility asymmetry. Regions occluded in the student's view often remain visible and matchable to the teacher, enabling reliable pseudo labels even in regions where photometric supervision fails. The teacher's disparities are rescaled to align with the student's baseline and used to guide student learning. An occlusion-aware weighting strategy is further proposed to mitigate unreliable supervision in teacher-occluded regions and to encourage the student to learn robust occlusion completion. To support training, we construct MBS20K, a multi-baseline stereo dataset synthesized using the CARLA simulator. Extensive experiments demonstrate that S$^3$ provides effective supervision in both occluded and non-occluded regions, achieves strong generalization performance, and surpasses previous state-of-the-art methods on the KITTI 2015 and 2012 benchmarks.
♻ ☆ SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
Leveraging the Segment Anything Model (SAM) for medical image segmentation remains challenging due to its limited adaptability across diverse medical domains. Although fine-tuned variants, such as MedSAM, improve performance in scenarios similar to the training modalities or organs, they may lack generalizability to unseen data. To overcome this limitation, we propose SAM-aware Test-time Adaptation (SAM-TTA), a lightweight and flexible framework that preserves SAM's inherent generalization ability while enhancing segmentation accuracy for medical images. SAM-TTA tackles two major challenges: (1) input-level discrepancy caused by channel mismatches between natural and medical images, and (2) semantic-level discrepancy due to different object characteristics in natural versus medical images (e.g., with clear boundaries vs. ambiguous structures). To this end, we introduce two complementary components: a self-adaptive Bezier Curve-based Transformation (SBCT), which maps single-channel medical images into SAM-compatible three-channel images via a few learnable parameters to be optimized at test time; and IoU-guided Multi-scale Adaptation (IMA), which leverages SAM's intrinsic IoU scores to enforce high output confidence, dual-scale prediction consistency, and intermediate feature consistency, to improve semantic-level alignments. Extensive experiments on eight public medical image segmentation tasks, covering six grayscale and two color (endoscopic) tasks, demonstrate that SAM-TTA consistently outperforms state-of-the-art test-time adaptation methods. Notably, on six grayscale datasets, SAM-TTA even surpasses fully fine-tuned models, achieving significant Dice improvements (i.e., average 4.8% and 7.4% gains over MedSAM and SAM-Med2D) and establishing a new paradigm for universal medical image segmentation. Code is available at https://github.com/JianghaoWu/SAM-TTA.
comment: 10 pages, 5 figures
♻ ☆ Test-Time Modification: Inverse Domain Transformation for Robust Perception
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
comment: Preprint
♻ ☆ On Exact Editing of Flow-Based Diffusion Models
Recent methods in flow-based diffusion editing have enabled direct transformations between source and target image distribution without explicit inversion. However, the latent trajectories in these methods often exhibit accumulated velocity errors, leading to semantic inconsistency and loss of structural fidelity. We propose Conditioned Velocity Correction (CVC), a principled framework that reformulates flow-based editing as a distribution transformation problem driven by a known source prior. CVC rethinks the role of velocity in inter-distribution transformation by introducing a dual-perspective velocity conversion mechanism. This mechanism explicitly decomposes the latent evolution into two components: a structure-preserving branch that remains consistent with the source trajectory, and a semantically-guided branch that drives a controlled deviation toward the target distribution. The conditional velocity field exhibits an absolute velocity error relative to the true underlying distribution trajectory, which inherently introduces potential instability and trajectory drift in the latent space. To address this quantifiable deviation and maintain fidelity to the true flow, we apply a posterior-consistent update to the resulting conditional velocity field. This update is derived from Empirical Bayes Inference and Tweedie correction, which ensures a mathematically grounded error compensation over time. Our method yields stable and interpretable latent dynamics, achieving faithful reconstruction alongside smooth local semantic conversion. Comprehensive experiments demonstrate that CVC consistently achieves superior fidelity, better semantic alignment, and more reliable editing behavior across diverse tasks.
♻ ☆ Sports-QA: A Large-Scale Video Question Answering Benchmark for Complex and Professional Sports
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
♻ ☆ PMGS: Reconstruction of Projectile Motion Across Large Spatiotemporal Spans via 3D Gaussian Splatting
Modeling complex rigid motion across large spatiotemporal spans remains an unresolved challenge in dynamic reconstruction. Existing paradigms are mainly confined to short-term, small-scale deformation and offer limited consideration for physical consistency. This study proposes PMGS, focusing on reconstructing Projectile Motion via 3D Gaussian Splatting. The workflow comprises two stages: 1) Target Modeling: achieving object-centralized reconstruction through dynamic scene decomposition and an improved point density control; 2) Motion Recovery: restoring full motion sequences by learning per-frame SE(3) poses. We introduce an acceleration consistency constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated annealing strategy that adaptively schedules learning rates based on motion states. Furthermore, we devise a Kalman fusion scheme to optimize error accumulation from multi-source observations to mitigate disturbances. Experiments show PMGS's superior performance in reconstructing high-speed nonlinear rigid motion compared to mainstream dynamic methods.
♻ ☆ CountCluster: Training-Free Object Quantity Guidance with Cross-Attention Map Clustering for Text-to-Image Generation
Diffusion-based text-to-image generation models have demonstrated strong performance in terms of image quality and diversity. However, they still struggle to generate images that accurately reflect the number of objects specified in the input prompt. Several approaches have been proposed that rely on either external counting modules for iterative refinement or quantity representations derived from learned tokens or latent features. However, they still have limitations in accurately reflecting the specified number of objects and overlook an important structural characteristic--The number of object instances in the generated image is largely determined in the early timesteps of the denoising process. To correctly reflect the object quantity for image generation, the highly activated regions in the object cross-attention map at the early timesteps should match the input object quantity, while each region should be clearly separated. To address this issue, we propose \textit{CountCluster}, a method that guides the object cross-attention map to be clustered according to the specified object count in the input, without relying on any external tools or additional training. The proposed method partitions the object cross-attention map into $k$ clusters at inference time based on attention scores, defines an ideal distribution in which each cluster is spatially well-separated, and optimizes the latent to align with this target distribution. Our method achieves an average improvement of 18.5\%p in object count accuracy compared to existing methods, and demonstrates superior quantity control performance across a variety of prompts. Code will be released at: https://github.com/JoohyeonL22/CountCluster
comment: Under review
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ Ideal Observer for Segmentation of Dead Leaves Images
The human visual environment is comprised of different surfaces that are distributed in space. The parts of a scene that are visible at any one time are governed by the occlusion of overlapping objects. In this work we consider "dead leaves" models, which replicate these occlusions when generating images by layering objects on top of each other. A dead leaves model is a generative model comprised of distributions for object position, shape, color and texture. An image is generated from a dead leaves model by sampling objects ("leaves") from these distributions until a stopping criterion is reached, usually when the image is fully covered or until a given number of leaves was sampled. Here, we describe a theoretical approach, based on previous work, to derive a Bayesian ideal observer for the partition of a given set of pixels based on independent dead leaves model distributions. Extending previous work, we provide step-by-step explanations for the computation of the posterior probability as well as describe factors that determine the feasibility of practically applying this computation. The dead leaves image model and the associated ideal observer can be applied to study segmentation decisions in a limited number of pixels, providing a principled upper-bound on performance, to which humans and vision algorithms could be compared.
comment: 41 pages, 16 figures
♻ ☆ CADMorph: Geometry-Driven Parametric CAD Editing via a Plan-Generate-Verify Loop NeurIPS 2025
A Computer-Aided Design (CAD) model encodes an object in two coupled forms: a parametric construction sequence and its resulting visible geometric shape. During iterative design, adjustments to the geometric shape inevitably require synchronized edits to the underlying parametric sequence, called geometry-driven parametric CAD editing. The task calls for 1) preserving the original sequence's structure, 2) ensuring each edit's semantic validity, and 3) maintaining high shape fidelity to the target shape, all under scarce editing data triplets. We present CADMorph, an iterative plan-generate-verify framework that orchestrates pretrained domain-specific foundation models during inference: a parameter-to-shape (P2S) latent diffusion model and a masked-parameter-prediction (MPP) model. In the planning stage, cross-attention maps from the P2S model pinpoint the segments that need modification and offer editing masks. The MPP model then infills these masks with semantically valid edits in the generation stage. During verification, the P2S model embeds each candidate sequence in shape-latent space, measures its distance to the target shape, and selects the closest one. The three stages leverage the inherent geometric consciousness and design knowledge in pretrained priors, and thus tackle structure preservation, semantic validity, and shape fidelity respectively. Besides, both P2S and MPP models are trained without triplet data, bypassing the data-scarcity bottleneck. CADMorph surpasses GPT-4o and specialized CAD baselines, and supports downstream applications such as iterative editing and reverse-engineering enhancement.
comment: NeurIPS 2025
♻ ☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
♻ ☆ Point Cloud to Mesh Reconstruction: Methods, Trade-offs, and Implementation Guide
Reconstructing meshes from point clouds is a fundamental task in computer vision with applications spanning robotics, autonomous systems, and medical imaging. Selecting an appropriate learning-based method requires understanding trade-offs between computational efficiency, geometric accuracy, and output constraints. This paper categorizes over fifteen methods into five paradigms -- PointNet family, autoencoder architectures, deformation-based methods, point-move techniques, and primitive-based approaches -- and provides practical guidance for method selection. We contribute: (1) a decision framework mapping input/output requirements to suitable paradigms, (2) a failure mode analysis to assist practitioners in debugging implementations, (3) standardized comparisons on ShapeNet benchmarks, and (4) a curated list of maintained codebases with implementation resources. By synthesizing both theoretical foundations and practical considerations, this work serves as an entry point for practitioners and researchers new to learning-based 3D mesh reconstruction.
♻ ☆ AdaVLN: Towards Visual Language Navigation in Continuous Indoor Environments with Moving Humans
Visual Language Navigation is a task that challenges robots to navigate in realistic environments based on natural language instructions. While previous research has largely focused on static settings, real-world navigation must often contend with dynamic human obstacles. Hence, we propose an extension to the task, termed Adaptive Visual Language Navigation (AdaVLN), which seeks to narrow this gap. AdaVLN requires robots to navigate complex 3D indoor environments populated with dynamically moving human obstacles, adding a layer of complexity to navigation tasks that mimic the real-world. To support exploration of this task, we also present AdaVLN simulator and AdaR2R datasets. The AdaVLN simulator enables easy inclusion of fully animated human models directly into common datasets like Matterport3D. We also introduce a "freeze-time" mechanism for both the navigation task and simulator, which pauses world state updates during agent inference, enabling fair comparisons and experimental reproducibility across different hardware. We evaluate several baseline models on this task, analyze the unique challenges introduced by AdaVLN, and demonstrate its potential to bridge the sim-to-real gap in VLN research.
♻ ☆ RS-Prune: Training-Free Data Pruning at High Ratios for Efficient Remote Sensing Diffusion Foundation Models
Diffusion-based remote sensing (RS) generative foundation models are cruial for downstream tasks. However, these models rely on large amounts of globally representative data, which often contain redundancy, noise, and class imbalance, reducing training efficiency and preventing convergence. Existing RS diffusion foundation models typically aggregate multiple classification datasets or apply simplistic deduplication, overlooking the distributional requirements of generation modeling and the heterogeneity of RS imagery. To address these limitations, we propose a training-free, two-stage data pruning approach that quickly select a high-quality subset under high pruning ratios, enabling a preliminary foundation model to converge rapidly and serve as a versatile backbone for generation, downstream fine-tuning, and other applications. Our method jointly considers local information content with global scene-level diversity and representativeness. First, an entropy-based criterion efficiently removes low-information samples. Next, leveraging RS scene classification datasets as reference benchmarks, we perform scene-aware clustering with stratified sampling to improve clustering effectiveness while reducing computational costs on large-scale unlabeled data. Finally, by balancing cluster-level uniformity and sample representativeness, the method enables fine-grained selection under high pruning ratios while preserving overall diversity and representativeness. Experiments show that, even after pruning 85\% of the training data, our method significantly improves convergence and generation quality. Furthermore, diffusion foundation models trained with our method consistently achieve state-of-the-art performance across downstream tasks, including super-resolution and semantic image synthesis. This data pruning paradigm offers practical guidance for developing RS generative foundation models.
♻ ☆ Wukong's 72 Transformations: High-fidelity Textured 3D Morphing via Flow Models
We present WUKONG, a novel training-free framework for high-fidelity textured 3D morphing that takes a pair of source and target prompts (image or text) as input. Unlike conventional methods -- which rely on manual correspondence matching and deformation trajectory estimation (limiting generalization and requiring costly preprocessing) -- WUKONG leverages the generative prior of flow-based transformers to produce high-fidelity 3D transitions with rich texture details. To ensure smooth shape transitions, we exploit the inherent continuity of flow-based generative processes and formulate morphing as an optimal transport barycenter problem. We further introduce a sequential initialization strategy to prevent abrupt geometric distortions and preserve identity coherence. For faithful texture preservation, we propose a similarity-guided semantic consistency mechanism that selectively retains high-frequency details and enables precise control over blending dynamics. This empowers WUKONG to support both global texture transitions and identity-preserving texture morphing, catering to diverse generation needs. Extensive quantitative and qualitative evaluations demonstrate that WUKONG significantly outperforms state-of-the-art methods, achieving superior results across diverse geometry and texture variations.
♻ ☆ SJTU:Spatial judgments in multimodal models towards unified segmentation through coordinate detection
Despite significant advances in vision-language understanding, implementing image segmentation within multimodal architectures remains a fundamental challenge in modern artificial intelligence systems. Existing vision-language models, which primarily rely on backbone architectures or CLIP-based embedding learning, demonstrate inherent limitations in fine-grained spatial localization and operational capabilities. This paper introduces SJTU: Spatial Judgments in Multimodal Models - Towards Unified Segmentation through Coordinate Detection, a framework that leverages spatial coordinate understanding to bridge vision-language interaction and precise segmentation, enabling accurate target identification through natural language instructions. The framework presents an approach for integrating segmentation techniques with vision-language models through spatial inference in multimodal space. By utilizing normalized coordinate detection for bounding boxes and transforming them into actionable segmentation outputs, we establish a connection between spatial and language representations in multimodal architectures. Experimental results demonstrate superior performance across benchmark datasets, achieving IoU scores of 0.5958 on COCO 2017 and 0.6758 on Pascal VOC. Testing on a single NVIDIA RTX 3090 GPU with 512x512 resolution images yields an average inference time of 7 seconds per image, demonstrating the framework's effectiveness in both accuracy and practical deployability. The project code is available at https://github.com/jw-chae/SJTU
comment: A flaw was discovered in the experimental setup. Therefore, we are retracting the paper
♻ ☆ G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2026
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2026 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
♻ ☆ SurgWorld: Learning Surgical Robot Policies from Videos via World Modeling
Data scarcity remains a fundamental barrier to achieving fully autonomous surgical robots. While large scale vision language action (VLA) models have shown impressive generalization in household and industrial manipulation by leveraging paired video action data from diverse domains, surgical robotics suffers from the paucity of datasets that include both visual observations and accurate robot kinematics. In contrast, vast corpora of surgical videos exist, but they lack corresponding action labels, preventing direct application of imitation learning or VLA training. In this work, we aim to alleviate this problem by learning policy models from SurgWorld, a world model designed for surgical physical AI. We curated the Surgical Action Text Alignment (SATA) dataset with detailed action description specifically for surgical robots. Then we built SurgeWorld based on the most advanced physical AI world model and SATA. It's able to generate diverse, generalizable and realistic surgery videos. We are also the first to use an inverse dynamics model to infer pseudokinematics from synthetic surgical videos, producing synthetic paired video action data. We demonstrate that a surgical VLA policy trained with these augmented data significantly outperforms models trained only on real demonstrations on a real surgical robot platform. Our approach offers a scalable path toward autonomous surgical skill acquisition by leveraging the abundance of unlabeled surgical video and generative world modeling, thus opening the door to generalizable and data efficient surgical robot policies.
♻ ☆ OVSeg3R: Learn Open-vocabulary Instance Segmentation from 2D via 3D Reconstruction
In this paper, we propose a training scheme called OVSeg3R to learn open-vocabulary 3D instance segmentation from well-studied 2D perception models with the aid of 3D reconstruction. OVSeg3R directly adopts reconstructed scenes from 2D videos as input, avoiding costly manual adjustment while aligning input with real-world applications. By exploiting the 2D to 3D correspondences provided by 3D reconstruction models, OVSeg3R projects each view's 2D instance mask predictions, obtained from an open-vocabulary 2D model, onto 3D to generate annotations for the view's corresponding sub-scene. To avoid incorrectly introduced false positives as supervision due to partial annotations from 2D to 3D, we propose a View-wise Instance Partition algorithm, which partitions predictions to their respective views for supervision, stabilizing the training process. Furthermore, since 3D reconstruction models tend to over-smooth geometric details, clustering reconstructed points into representative super-points based solely on geometry, as commonly done in mainstream 3D segmentation methods, may overlook geometrically non-salient objects. We therefore introduce 2D Instance Boundary-aware Superpoint, which leverages 2D masks to constrain the superpoint clustering, preventing superpoints from violating instance boundaries. With these designs, OVSeg3R not only extends a state-of-the-art closed-vocabulary 3D instance segmentation model to open-vocabulary, but also substantially narrows the performance gap between tail and head classes, ultimately leading to an overall improvement of +2.3 mAP on the ScanNet200 benchmark. Furthermore, under the standard open-vocabulary setting, OVSeg3R surpasses previous methods by about +7.1 mAP on the novel classes, further validating its effectiveness.
♻ ☆ Video Detective: Seek Critical Clues Recurrently to Answer Question from Long Videos
Long Video Question-Answering (LVQA) presents a significant challenge for Multi-modal Large Language Models (MLLMs) due to immense context and overloaded information, which could also lead to prohibitive memory consumption. While existing methods attempt to address these issues by reducing visual tokens or extending model's context length, they may miss useful information or take considerable computation. In fact, when answering given questions, only a small amount of crucial information is required. Therefore, we propose an efficient question-aware memory mechanism, enabling MLLMs to recurrently seek these critical clues. Our approach, named VideoDetective, simplifies this task by iteratively processing video sub-segments. For each sub-segment, a question-aware compression strategy is employed by introducing a few special memory tokens to achieve purposefully compression. This allows models to effectively seek critical clues while reducing visual tokens. Then, due to history context could have a significant impact, we recurrently aggregate and store these memory tokens to update history context, which would be reused for subsequent sub-segments. Furthermore, to more effectively measure model's long video understanding ability, we introduce GLVC (Grounding Long Video Clues), a long video question-answering dataset, which features grounding critical and concrete clues scattered throughout entire videos. Experimental results demonstrate our method enables MLLMs with limited context length of 32K to efficiently process 100K tokens (3600 frames, an hour-long video sampled at 1fps), requiring only 2 minutes and 37GB GPU memory usage. Evaluation results across multiple long video benchmarks illustrate our method can more effectively seek critical clues from massive information.
♻ ☆ UNIDOC-BENCH: A Unified Benchmark for Document-Centric Multimodal RAG
Multimodal retrieval-augmented Generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented -- focusing on either text or images in isolation, or simplified multimodal setup, failing to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from $k$ real-world PDF pages across domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, all of QA pairs are validated by multiple human annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: 1) text-only, 2) image-only, 3) \emph{multimodal} text-image fusion and 4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. UniDoc-Bench can also be used to evaluate Visual Question Answering (VQA) tasks. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
♻ ☆ COMPASS: High-Efficiency Deep Image Compression with Arbitrary-scale Spatial Scalability ICCV 2023
Recently, neural network (NN)-based image compression studies have actively been made and has shown impressive performance in comparison to traditional methods. However, most of the works have focused on non-scalable image compression (single-layer coding) while spatially scalable image compression has drawn less attention although it has many applications. In this paper, we propose a novel NN-based spatially scalable image compression method, called COMPASS, which supports arbitrary-scale spatial scalability. Our proposed COMPASS has a very flexible structure where the number of layers and their respective scale factors can be arbitrarily determined during inference. To reduce the spatial redundancy between adjacent layers for arbitrary scale factors, our COMPASS adopts an inter-layer arbitrary scale prediction method, called LIFF, based on implicit neural representation. We propose a combined RD loss function to effectively train multiple layers. Experimental results show that our COMPASS achieves BD-rate gain of -58.33% and -47.17% at maximum compared to SHVC and the state-of-the-art NN-based spatially scalable image compression method, respectively, for various combinations of scale factors. Our COMPASS also shows comparable or even better coding efficiency than the single-layer coding for various scale factors.
comment: Accepted in ICCV 2023. Please visit our project page at https://kaist-viclab.github.io/compass-site/
♻ ☆ AdaptInfer: Adaptive Token Pruning for Vision-Language Model Inference with Dynamical Text Guidance
Vision-language models (VLMs) have achieved impressive performance on multimodal reasoning tasks such as visual question answering, image captioning and so on, but their inference cost remains a significant challenge due to the large number of vision tokens processed during the prefill stage. Existing pruning methods often rely on directly using the attention patterns or static text prompt guidance, failing to exploit the dynamic internal signals generated during inference. To address these issues, we propose AdaptInfer, a plug-and-play framework for adaptive vision token pruning in VLMs. First, we introduce a fine-grained, dynamic text-guided pruning mechanism that reuses layer-wise text-to-text attention maps to construct soft priors over text-token importance, allowing more informed scoring of vision tokens at each stage. Second, we perform an offline analysis of cross-modal attention shifts and identify consistent inflection locations in inference, which inspire us to propose a more principled and efficient pruning schedule. Our method is lightweight and plug-and-play, also generalizable across multi-modal tasks. Experimental results have verified the effectiveness of the proposed method. For example, it reduces CUDA latency by 61.3% while maintaining an average accuracy of 93.1% on vanilla LLaVA-1.5-7B. Under the same token budget, AdaptInfer surpasses SOTA in accuracy.
♻ ☆ Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a vision-language reasoning model designed to address these limitations. To construct high-quality supervision for spatial reasoning, we design a Multi-Model Monte Carlo Tree Search (M3CTS) method that generates diverse, logically consistent Long Chain-of-Thought (LongCOT) reasoning trajectories. In addition, we propose a fine-grained Direct Preference Optimization (fDPO) method that introduces segment-specific preference granularity for descriptive grounding and logical reasoning, guided by a spatial reward mechanism that evaluates candidate responses based on visual consistency, spatial grounding, and logical coherence. Experimental results demonstrate that fDPO achieves relative performance gains of 4.1% and 9.0% over standard DPO on spatial qualitative and quantitative tasks, respectively. SpatialReasoner-R1, trained with fDPO, sets a new SoTA on SpatialRGPT-Bench, outperforming the strongest baseline by 9.4% in average accuracy, while maintaining competitive performance on general vision-language tasks.
♻ ☆ Spinal Line Detection for Posture Evaluation through Train-ing-free 3D Human Body Reconstruction with 2D Depth Images
The spinal angle is an important indicator of body balance. It is important to restore the 3D shape of the human body and estimate the spine center line. Existing mul-ti-image-based body restoration methods require expensive equipment and complex pro-cedures, and single image-based body restoration methods have limitations in that it is difficult to accurately estimate the internal structure such as the spine center line due to occlusion and viewpoint limitation. This study proposes a method to compensate for the shortcomings of the multi-image-based method and to solve the limitations of the sin-gle-image method. We propose a 3D body posture analysis system that integrates depth images from four directions to restore a 3D human model and automatically estimate the spine center line. Through hierarchical matching of global and fine registration, restora-tion to noise and occlusion is performed. Also, the Adaptive Vertex Reduction is applied to maintain the resolution and shape reliability of the mesh, and the accuracy and stabil-ity of spinal angle estimation are simultaneously secured by using the Level of Detail en-semble. The proposed method achieves high-precision 3D spine registration estimation without relying on training data or complex neural network models, and the verification confirms the improvement of matching quality.
comment: GitHub, see https://github.com/DevChoco/TF3D_SpineDetect
♻ ☆ Training-Free Adaptive Quantization for Variable Rate Image Coding for Machines IEEE 44
Image Coding for Machines (ICM) has become increasingly important with the rapid integration of computer vision technology into real-world applications. However, most neural network-based ICM frameworks operate at a fixed rate, thus requiring individual training for each target bitrate. This limitation may restrict their practical usage. Existing variable rate image compression approaches mitigate this issue but often rely on additional training, which increases computational costs and complicates deployment. Moreover, variable rate control has not been thoroughly explored for ICM. To address these challenges, we propose a training-free framework for quantization strength control which enables flexible bitrate adjustment. By exploiting the scale parameter predicted by the hyperprior network, the proposed method adaptively modulates quantization step sizes across both channel and spatial dimensions. This allows the model to preserve semantically important regions while coarsely quantizing less critical areas. Our architectural design further enables continuous bitrate control through a single parameter. Experimental results demonstrate the effectiveness of our proposed method, achieving up to 11.07% BD-rate savings over the non-adaptive variable rate baseline. The code is available at https://github.com/qwert-top/AQVR-ICM.
comment: Accepted to IEEE 44th International Conference on Consumer Electronics (ICCE 2026)
♻ ☆ VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation
Visual generative models have achieved remarkable progress in synthesizing photorealistic images and videos, yet aligning their outputs with human preferences across critical dimensions remains a persistent challenge. Though reinforcement learning from human feedback offers promise for preference alignment, existing reward models for visual generation face limitations, including black-box scoring without interpretability and potentially resultant unexpected biases. We present VisionReward, a general framework for learning human visual preferences in both image and video generation. Specifically, we employ a hierarchical visual assessment framework to capture fine-grained human preferences, and leverages linear weighting to enable interpretable preference learning. Furthermore, we propose a multi-dimensional consistent strategy when using VisionReward as a reward model during preference optimization for visual generation. Experiments show that VisionReward can significantly outperform existing image and video reward models on both machine metrics and human evaluation. Notably, VisionReward surpasses VideoScore by 17.2% in preference prediction accuracy, and text-to-video models with VisionReward achieve a 31.6% higher pairwise win rate compared to the same models using VideoScore. All code and datasets are provided at https://github.com/THUDM/VisionReward.
comment: 27 pages
♻ ☆ HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features. In DG, the prevalent practice of constraining models to a fixed structure or uniform parameterization to encapsulate invariant features can inadvertently blend specific aspects. Such an approach struggles with nuanced differentiation of inter-domain variations and may exhibit bias towards certain domains, hindering the precise learning of domain-invariant features. Recognizing this, we introduce a novel method designed to supplement the model with domain-level and task-specific characteristics. This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization. Building on the emerging trend of visual prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical \textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This represents a significant advancement in the field, setting itself apart with a unique generative approach to prompts, alongside an explicit model structure and specialized loss functions. Differing from traditional visual prompts that are often shared across entire datasets, HCVP utilizes a hierarchical prompt generation network enhanced by prompt contrastive learning. These generative prompts are instance-dependent, catering to the unique characteristics inherent to different domains and tasks. Additionally, we devise a prompt modulation network that serves as a bridge, effectively incorporating the generated visual prompts into the vision transformer backbone. Experiments conducted on five DG datasets demonstrate the effectiveness of HCVP, outperforming both established DG algorithms and adaptation protocols.
♻ ☆ Bridging Cognitive Gap: Hierarchical Description Learning for Artistic Image Aesthetics Assessment AAAI2026
The aesthetic quality assessment task is crucial for developing a human-aligned quantitative evaluation system for AIGC. However, its inherently complex nature, spanning visual perception, cognition, and emotion, poses fundamental challenges. Although aesthetic descriptions offer a viable representation of this complexity, two critical challenges persist: (1) data scarcity and imbalance: existing dataset overly focuses on visual perception and neglects deeper dimensions due to the expensive manual annotation; and (2) model fragmentation: current visual networks isolate aesthetic attributes with multi-branch encoder, while multimodal methods represented by contrastive learning struggle to effectively process long-form textual descriptions. To resolve challenge (1), we first present the Refined Aesthetic Description (RAD) dataset, a large-scale (70k), multi-dimensional structured dataset, generated via an iterative pipeline without heavy annotation costs and easy to scale. To address challenge (2), we propose ArtQuant, an aesthetics assessment framework for artistic images which not only couples isolated aesthetic dimensions through joint description generation, but also better models long-text semantics with the help of LLM decoders. Besides, theoretical analysis confirms this symbiosis: RAD's semantic adequacy (data) and generation paradigm (model) collectively minimize prediction entropy, providing mathematical grounding for the framework. Our approach achieves state-of-the-art performance on several datasets while requiring only 33% of conventional training epochs, narrowing the cognitive gap between artistic images and aesthetic judgment. We will release both code and dataset to support future research.
comment: AAAI2026,Project Page:https://github.com/Henglin-Liu/ArtQuant
♻ ☆ Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: There is some controversy over the methods of the content
♻ ☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
♻ ☆ Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: Accepted at AAAI 2026
♻ ☆ DGE-YOLO: Dual-Branch Gathering and Attention for Accurate UAV Object Detection
The rapid proliferation of unmanned aerial vehicles (UAVs) has highlighted the importance of robust and efficient object detection in diverse aerial scenarios. Detecting small objects under complex conditions, however, remains a significant challenge.To address this, we present DGE-YOLO, an enhanced YOLO-based detection framework designed to effectively fuse multi-modal information. We introduce a dual-branch architecture for modality-specific feature extraction, enabling the model to process both infrared and visible images. To further enrich semantic representation, we propose an Efficient Multi-scale Attention (EMA) mechanism that enhances feature learning across spatial scales. Additionally, we replace the conventional neck with a Gather-and-Distribute(GD) module to mitigate information loss during feature aggregation. Extensive experiments on the Drone Vehicle dataset demonstrate that DGE-YOLO achieves superior performance over state-of-the-art methods, validating its effectiveness in multi-modal UAV object detection tasks.
comment: 5 pages, 5 figures
♻ ☆ Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
Existing SFDA methods struggle to fully use pre-trained knowledge and often rely on a single model's predictions or handcrafted prompts, limiting robustness under domain shift. Multimodal Large Language Models (MLLMs) offer a promising alternative: they encode rich visual-semantic knowledge and generalize well without task-specific tuning. However, their use in SFDA is hindered by instruction-following failures, inconsistent outputs, and high inference costs. We propose Reliability-based Curriculum Learning (RCL), a novel framework that distills robust supervision from multiple frozen MLLMs into a compact target model. RCL organizes adaptation as a three-stage curriculum that progressively incorporates pseudo-labels based on inter-model agreement and model confidence, enabling stable and noise-aware training. Our approach achieves state-of-the-art performance on standard SFDA datasets, Office-Home, DomainNet-126, and VisDA-C, outperforming zero-shot MLLMs, their ensembles, all without accessing source data or tuning foundation models. Our code is available at: https://github.com/Dong-Jie-Chen/RCL.
♻ ☆ Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models NeurIPS
We argue that diffusion models' success in modeling complex distributions is, for the most part, coming from their input conditioning. This paper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
comment: Published at NeurIPS, 22 pages, 7 tables, 12 figures, code and models available
♻ ☆ Enhancing Multimodal Reasoning via Latent Refocusing
Chain of Thought (CoT) reasoning enhances logical performance by decomposing complex tasks, yet its multimodal extension faces a trade-off. The existing Thinking with Images paradigm is limited by the modality gap between vision and language, which hinders reliable extraction of reasoning relevant information from high dimensional visual data. Recent latent space reasoning method provides stronger multimodal representations, but it often lacks the ability to refocus on visual inputs and suffers from limited interpretability. To address these issues, we propose \underline{La}tent \underline{Re}focusing (LaRe), a novel multimodal reasoning paradigm that combines visual refocusing with rich latent representations, enabling iterative reasoning within the latent space. We further design a semantic augmentation training strategy that enhances the semantic structure of the latent space through joint alignment and reconstruction objectives. Experimental evaluations demonstrate that LaRe improves average accuracy by 9.4\% compared to existing baselines while reducing the number of tokens required for inference by 16.5\%. When scaled to a 7B-parameter Large Language Model backbone, LaRe achieves performance comparable to state-of-the-art models and outperforms larger-scale models on almost all benchmarks. Code and checkpoints will be released later.
Artificial Intelligence 211
☆ DARC: Drum accompaniment generation with fine-grained rhythm control
In music creation, rapid prototyping is essential for exploring and refining ideas, yet existing generative tools often fall short when users require both structural control and stylistic flexibility. Prior approaches in stem-to-stem generation can condition on other musical stems but offer limited control over rhythm, and timbre-transfer methods allow users to specify specific rhythms, but cannot condition on musical context. We introduce DARC, a generative drum accompaniment model that conditions both on musical context from other stems and explicit rhythm prompts such as beatboxing or tapping tracks. Using parameter-efficient fine-tuning, we augment STAGE, a state-of-the-art drum stem generator, with fine-grained rhythm control while maintaining musical context awareness.
☆ Falcon-H1R: Pushing the Reasoning Frontiers with a Hybrid Model for Efficient Test-Time Scaling
This work introduces Falcon-H1R, a 7B-parameter reasoning-optimized model that establishes the feasibility of achieving competitive reasoning performance with small language models (SLMs). Falcon-H1R stands out for its parameter efficiency, consistently matching or outperforming SOTA reasoning models that are $2\times$ to $7\times$ larger across a variety of reasoning-intensive benchmarks. These results underscore the importance of careful data curation and targeted training strategies (via both efficient SFT and RL scaling) in delivering significant performance gains without increasing model size. Furthermore, Falcon-H1R advances the 3D limits of reasoning efficiency by combining faster inference (through its hybrid-parallel architecture design), token efficiency, and higher accuracy. This unique blend makes Falcon-H1R-7B a practical backbone for scaling advanced reasoning systems, particularly in scenarios requiring extensive chain-of-thoughts generation and parallel test-time scaling. Leveraging the recently introduced DeepConf approach, Falcon-H1R achieves state-of-the-art test-time scaling efficiency, offering substantial improvements in both accuracy and computational cost. As a result, Falcon-H1R demonstrates that compact models, through targeted model training and architectural choices, can deliver robust and scalable reasoning performance.
☆ DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
☆ Project Ariadne: A Structural Causal Framework for Auditing Faithfulness in LLM Agents
As Large Language Model (LLM) agents are increasingly tasked with high-stakes autonomous decision-making, the transparency of their reasoning processes has become a critical safety concern. While \textit{Chain-of-Thought} (CoT) prompting allows agents to generate human-readable reasoning traces, it remains unclear whether these traces are \textbf{faithful} generative drivers of the model's output or merely \textbf{post-hoc rationalizations}. We introduce \textbf{Project Ariadne}, a novel XAI framework that utilizes Structural Causal Models (SCMs) and counterfactual logic to audit the causal integrity of agentic reasoning. Unlike existing interpretability methods that rely on surface-level textual similarity, Project Ariadne performs \textbf{hard interventions} ($do$-calculus) on intermediate reasoning nodes -- systematically inverting logic, negating premises, and reversing factual claims -- to measure the \textbf{Causal Sensitivity} ($φ$) of the terminal answer. Our empirical evaluation of state-of-the-art models reveals a persistent \textit{Faithfulness Gap}. We define and detect a widespread failure mode termed \textbf{Causal Decoupling}, where agents exhibit a violation density ($ρ$) of up to $0.77$ in factual and scientific domains. In these instances, agents arrive at identical conclusions despite contradictory internal logic, proving that their reasoning traces function as "Reasoning Theater" while decision-making is governed by latent parametric priors. Our findings suggest that current agentic architectures are inherently prone to unfaithful explanation, and we propose the Ariadne Score as a new benchmark for aligning stated logic with model action.
☆ Placement Semantics for Distributed Deep Learning: A Systematic Framework for Analyzing Parallelism Strategies
Training large language models requires distributing computation across many accelerators, yet practitioners select parallelism strategies (data, tensor, pipeline, ZeRO) through trial and error because no unified systematic framework predicts their behavior. We introduce placement semantics: each strategy is specified by how it places four training states (parameters, optimizer, gradients, activations) across devices using five modes (replicated, sharded, sharded-with-gather, materialized, offloaded). From placement alone, without implementation details, we derive memory consumption and communication volume. Our predictions match published results exactly: ZeRO-3 uses 8x less memory than data parallelism at 1.5x communication cost, as reported in the original paper. We prove two conditions (gradient integrity, state consistency) are necessary and sufficient for distributed training to match single-device results, and provide composition rules for combining strategies safely. The framework unifies ZeRO Stages 1-3, Fully Sharded Data Parallel (FSDP), tensor parallelism, and pipeline parallelism as instances with different placement choices.
comment: 8 pages, 3 tables
☆ pdfQA: Diverse, Challenging, and Realistic Question Answering over PDFs
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).
☆ TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
☆ A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
☆ VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
☆ LLM-Empowered Functional Safety and Security by Design in Automotive Systems
This paper presents LLM-empowered workflow to support Software Defined Vehicle (SDV) software development, covering the aspects of security-aware system topology design, as well as event-driven decision-making code analysis. For code analysis we adopt event chains model which provides formal foundations to systematic validation of functional safety, taking into account the semantic validity of messages exchanged between key components, including both CAN and Vehicle Signal Specification (VSS). Analysis of security aspects for topology relies on synergy with Model-Driven Engineering (MDE) approach and Object Constraint Language (OCL) rules. Both locally deployable and proprietary solution are taken into account for evaluation within Advanced Driver-Assistance Systems (ADAS)-related scenarios.
☆ Seeing the Unseen: Zooming in the Dark with Event Cameras AAAI 2026
This paper addresses low-light video super-resolution (LVSR), aiming to restore high-resolution videos from low-light, low-resolution (LR) inputs. Existing LVSR methods often struggle to recover fine details due to limited contrast and insufficient high-frequency information. To overcome these challenges, we present RetinexEVSR, the first event-driven LVSR framework that leverages high-contrast event signals and Retinex-inspired priors to enhance video quality under low-light scenarios. Unlike previous approaches that directly fuse degraded signals, RetinexEVSR introduces a novel bidirectional cross-modal fusion strategy to extract and integrate meaningful cues from noisy event data and degraded RGB frames. Specifically, an illumination-guided event enhancement module is designed to progressively refine event features using illumination maps derived from the Retinex model, thereby suppressing low-light artifacts while preserving high-contrast details. Furthermore, we propose an event-guided reflectance enhancement module that utilizes the enhanced event features to dynamically recover reflectance details via a multi-scale fusion mechanism. Experimental results show that our RetinexEVSR achieves state-of-the-art performance on three datasets. Notably, on the SDSD benchmark, our method can get up to 2.95 dB gain while reducing runtime by 65% compared to prior event-based methods. Code: https://github.com/DachunKai/RetinexEVSR.
comment: Accepted to AAAI 2026
☆ NextFlow: Unified Sequential Modeling Activates Multimodal Understanding and Generation
We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Code for Machines, Not Just Humans: Quantifying AI-Friendliness with Code Health Metrics
We are entering a hybrid era in which human developers and AI coding agents work in the same codebases. While industry practice has long optimized code for human comprehension, it is increasingly important to ensure that LLMs with different capabilities can edit code reliably. In this study, we investigate the concept of ``AI-friendly code'' via LLM-based refactoring on a dataset of 5,000 Python files from competitive programming. We find a meaningful association between CodeHealth, a quality metric calibrated for human comprehension, and semantic preservation after AI refactoring. Our findings confirm that human-friendly code is also more compatible with AI tooling. These results suggest that organizations can use CodeHealth to guide where AI interventions are lower risk and where additional human oversight is warranted. Investing in maintainability not only helps humans; it also prepares for large-scale AI adoption.
comment: Accepted for the 3rd ACM International Conference on AI Foundation Models and Software Engineering (FORGE 2026)
☆ Streaming Hallucination Detection in Long Chain-of-Thought Reasoning
Long chain-of-thought (CoT) reasoning improves the performance of large language models, yet hallucinations in such settings often emerge subtly and propagate across reasoning steps. We suggest that hallucination in long CoT reasoning is better understood as an evolving latent state rather than a one-off erroneous event. Accordingly, we treat step-level hallucination judgments as local observations and introduce a cumulative prefix-level hallucination signal that tracks the global evolution of the reasoning state over the entire trajectory. Overall, our approach enables streaming hallucination detection in long CoT reasoning, providing real-time, interpretable evidence.
☆ EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
comment: 16 pages, 6 figures, 12 tables. Code available at https://github.com/EverMind-AI/EverMemOS
☆ FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
☆ Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
☆ AI-enhanced tuning of quantum dot Hamiltonians toward Majorana modes
We propose a neural network-based model capable of learning the broad landscape of working regimes in quantum dot simulators, and using this knowledge to autotune these devices - based on transport measurements - toward obtaining Majorana modes in the structure. The model is trained in an unsupervised manner on synthetic data in the form of conductance maps, using a physics-informed loss that incorporates key properties of Majorana zero modes. We show that, with appropriate training, a deep vision-transformer network can efficiently memorize relation between Hamiltonian parameters and structures on conductance maps and use it to propose parameters update for a quantum dot chain that drive the system toward topological phase. Starting from a broad range of initial detunings in parameter space, a single update step is sufficient to generate nontrivial zero modes. Moreover, by enabling an iterative tuning procedure - where the system acquires updated conductance maps at each step - we demonstrate that the method can address a much larger region of the parameter space.
comment: main file: 8 pages, 6 figures; supplementary: 3 pages, 2 figures
☆ BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
☆ Routing by Analogy: kNN-Augmented Expert Assignment for Mixture-of-Experts
Mixture-of-Experts (MoE) architectures scale large language models efficiently by employing a parametric "router" to dispatch tokens to a sparse subset of experts. Typically, this router is trained once and then frozen, rendering routing decisions brittle under distribution shifts. We address this limitation by introducing kNN-MoE, a retrieval-augmented routing framework that reuses optimal expert assignments from a memory of similar past cases. This memory is constructed offline by directly optimizing token-wise routing logits to maximize the likelihood on a reference set. Crucially, we use the aggregate similarity of retrieved neighbors as a confidence-driven mixing coefficient, thus allowing the method to fall back to the frozen router when no relevant cases are found. Experiments show kNN-MoE outperforms zero-shot baselines and rivals computationally expensive supervised fine-tuning.
☆ Remote Sensing Change Detection via Weak Temporal Supervision
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.
☆ SingingBot: An Avatar-Driven System for Robotic Face Singing Performance
Equipping robotic faces with singing capabilities is crucial for empathetic Human-Robot Interaction. However, existing robotic face driving research primarily focuses on conversations or mimicking static expressions, struggling to meet the high demands for continuous emotional expression and coherence in singing. To address this, we propose a novel avatar-driven framework for appealing robotic singing. We first leverage portrait video generation models embedded with extensive human priors to synthesize vivid singing avatars, providing reliable expression and emotion guidance. Subsequently, these facial features are transferred to the robot via semantic-oriented mapping functions that span a wide expression space. Furthermore, to quantitatively evaluate the emotional richness of robotic singing, we propose the Emotion Dynamic Range metric to measure the emotional breadth within the Valence-Arousal space, revealing that a broad emotional spectrum is crucial for appealing performances. Comprehensive experiments prove that our method achieves rich emotional expressions while maintaining lip-audio synchronization, significantly outperforming existing approaches.
☆ DeCode: Decoupling Content and Delivery for Medical QA
Large language models (LLMs) exhibit strong medical knowledge and can generate factually accurate responses. However, existing models often fail to account for individual patient contexts, producing answers that are clinically correct yet poorly aligned with patients' needs. In this work, we introduce DeCode, a training-free, model-agnostic framework that adapts existing LLMs to produce contextualized answers in clinical settings. We evaluate DeCode on OpenAI HealthBench, a comprehensive and challenging benchmark designed to assess clinical relevance and validity of LLM responses. DeCode improves the previous state of the art from $28.4\%$ to $49.8\%$, corresponding to a $75\%$ relative improvement. Experimental results suggest the effectiveness of DeCode in improving clinical question answering of LLMs.
comment: Preprint
☆ Inferring Network Evolutionary History via Structure-State Coupled Learning
Inferring a network's evolutionary history from a single final snapshot with limited temporal annotations is fundamental yet challenging. Existing approaches predominantly rely on topology alone, which often provides insufficient and noisy cues. This paper leverages network steady-state dynamics -- converged node states under a given dynamical process -- as an additional and widely accessible observation for network evolution history inference. We propose CS$^2$, which explicitly models structure-state coupling to capture how topology modulates steady states and how the two signals jointly improve edge discrimination for formation-order recovery. Experiments on six real temporal networks, evaluated under multiple dynamical processes, show that CS$^2$ consistently outperforms strong baselines, improving pairwise edge precedence accuracy by 4.0% on average and global ordering consistency (Spearman-$ρ$) by 7.7% on average. CS$^2$ also more faithfully recovers macroscopic evolution trajectories such as clustering formation, degree heterogeneity, and hub growth. Moreover, a steady-state-only variant remains competitive when reliable topology is limited, highlighting steady states as an independent signal for evolution inference.
☆ LION-DG: Layer-Informed Initialization with Deep Gradient Protocols for Accelerated Neural Network Training
Weight initialization remains decisive for neural network optimization, yet existing methods are largely layer-agnostic. We study initialization for deeply-supervised architectures with auxiliary classifiers, where untrained auxiliary heads can destabilize early training through gradient interference. We propose LION-DG, a layer-informed initialization that zero-initializes auxiliary classifier heads while applying standard He-initialization to the backbone. We prove that this implements Gradient Awakening: auxiliary gradients are exactly zero at initialization, then phase in naturally as weights grow -- providing an implicit warmup without hyperparameters. Experiments on CIFAR-10 and CIFAR-100 with DenseNet-DS and ResNet-DS architectures demonstrate: (1) DenseNet-DS: +8.3% faster convergence on CIFAR-10 with comparable accuracy, (2) Hybrid approach: Combining LSUV with LION-DG achieves best accuracy (81.92% on CIFAR-10), (3) ResNet-DS: Positive speedup on CIFAR-100 (+11.3%) with side-tap auxiliary design. We identify architecture-specific trade-offs and provide clear guidelines for practitioners. LION-DG is simple, requires zero hyperparameters, and adds no computational overhead.
☆ Vision-Based Early Fault Diagnosis and Self-Recovery for Strawberry Harvesting Robots
Strawberry harvesting robots faced persistent challenges such as low integration of visual perception, fruit-gripper misalignment, empty grasping, and strawberry slippage from the gripper due to insufficient gripping force, all of which compromised harvesting stability and efficiency in orchard environments. To overcome these issues, this paper proposed a visual fault diagnosis and self-recovery framework that integrated multi-task perception with corrective control strategies. At the core of this framework was SRR-Net, an end-to-end multi-task perception model that simultaneously performed strawberry detection, segmentation, and ripeness estimation, thereby unifying visual perception with fault diagnosis. Based on this integrated perception, a relative error compensation method based on the simultaneous target-gripper detection was designed to address positional misalignment, correcting deviations when error exceeded the tolerance threshold. To mitigate empty grasping and fruit-slippage faults, an early abort strategy was implemented. A micro-optical camera embedded in the end-effector provided real-time visual feedback, enabling grasp detection during the deflating stage and strawberry slip prediction during snap-off through MobileNet V3-Small classifier and a time-series LSTM classifier. Experiments demonstrated that SRR-Net maintained high perception accuracy. For detection, it achieved a precision of 0.895 and recall of 0.813 on strawberries, and 0.972/0.958 on hands. In segmentation, it yielded a precision of 0.887 and recall of 0.747 for strawberries, and 0.974/0.947 for hands. For ripeness estimation, SRR-Net attained a mean absolute error of 0.035, while simultaneously supporting multi-task perception and sustaining a competitive inference speed of 163.35 FPS.
☆ The Homogeneity Trap: Spectral Collapse in Doubly-Stochastic Deep Networks
Doubly-stochastic matrices (DSM) are increasingly utilized in structure-preserving deep architectures -- such as Optimal Transport layers and Sinkhorn-based attention -- to enforce numerical stability and probabilistic interpretability. In this work, we identify a critical spectral degradation phenomenon inherent to these constraints, termed the Homogeneity Trap. We demonstrate that the maximum-entropy bias, typical of Sinkhorn-based projections, drives the mixing operator towards the uniform barycenter, thereby suppressing the subdominant singular value σ_2 and filtering out high-frequency feature components. We derive a spectral bound linking σ_2 to the network's effective depth, showing that high-entropy constraints restrict feature transformation to a shallow effective receptive field. Furthermore, we formally demonstrate that Layer Normalization fails to mitigate this collapse in noise-dominated regimes; specifically, when spectral filtering degrades the Signal-to-Noise Ratio (SNR) below a critical threshold, geometric structure is irreversibly lost to noise-induced orthogonal collapse. Our findings highlight a fundamental trade-off between entropic stability and spectral expressivity in DSM-constrained networks.
☆ Deferred Commitment Decoding for Diffusion Language Models with Confidence-Aware Sliding Windows
Diffusion language models (DLMs) have recently emerged as a strong alternative to autoregressive models by enabling parallel text generation. To improve inference efficiency and KV-cache compatibility, prior work commonly adopts block-based diffusion, decoding tokens block by block. However, this paradigm suffers from a structural limitation that we term Boundary-Induced Context Truncation (BICT): undecoded tokens near block boundaries are forced to commit without access to nearby future context, even when such context could substantially reduce uncertainty. This limitation degrades decoding confidence and generation quality, especially for tasks requiring precise reasoning, such as mathematical problem solving and code generation. We propose Deferred Commitment Decoding (DCD), a novel, training-free decoding strategy that mitigates this issue. DCD maintains a confidence-aware sliding window over masked tokens, resolving low-uncertainty tokens early while deferring high-uncertainty tokens until sufficient contextual evidence becomes available. This design enables effective bidirectional information flow within the decoding window without sacrificing efficiency. Extensive experiments across multiple diffusion language models, benchmarks, and caching configurations show that DCD improves generation accuracy by 1.39% with comparable time on average compared to fixed block-based diffusion methods, with the most significant improvement reaching 9.0%. These results demonstrate that deferring token commitment based on uncertainty is a simple yet effective principle for improving both the quality and efficiency of diffusion language model decoding.
☆ FormuLLA: A Large Language Model Approach to Generating Novel 3D Printable Formulations
Pharmaceutical three-dimensional (3D) printing is an advanced fabrication technology with the potential to enable truly personalised dosage forms. Recent studies have integrated artificial intelligence (AI) to accelerate formulation and process development, drastically transforming current approaches to pharmaceutical 3D printing. To date, most AI-driven efforts remain narrowly focused, while failing to account for the broader formulation challenges inherent to the technology. Recent advances in AI have introduced artificial general intelligence concepts, wherein systems extend beyond conventional predictive modelling toward more generalised, human-like reasoning. In this work, we investigate the application of large language models (LLMs), fine-tuned on a fused deposition modelling (FDM) dataset comprising over 1400 formulations, to recommend suitable excipients based on active pharmaceutical ingredient (API) dose, and predict filament mechanical properties. Four LLM architectures were fine-tuned, with systematic evaluation of both fine-tuning and generative parameter configurations. Our results demonstrate that Llama2 was best suited for recommending excipients for FDM formulations. Additionally, model selection and parameterisation significantly influence performance, with smaller LLMs exhibiting instances of catastrophic forgetting. Furthermore, we demonstrate: (i) even with relatively small dataset of over 1400 formulations, it can lead to model catastrophic forgetting; (ii) standard LLM metrics only evaluate linguistic performance but not formulation processability; and (iii) LLMs trained on biomedically-related data do not always produce the best results. Addressing these challenges is essential to advancing LLMs beyond linguistic proficiency and toward reliable systems for pharmaceutical formulation development.
☆ Cost-Efficient Cross-Lingual Retrieval-Augmented Generation for Low-Resource Languages: A Case Study in Bengali Agricultural Advisory
Access to reliable agricultural advisory remains limited in many developing regions due to a persistent language barrier: authoritative agricultural manuals are predominantly written in English, while farmers primarily communicate in low-resource local languages such as Bengali. Although recent advances in Large Language Models (LLMs) enable natural language interaction, direct generation in low-resource languages often exhibits poor fluency and factual inconsistency, while cloud-based solutions remain cost-prohibitive. This paper presents a cost-efficient, cross-lingual Retrieval-Augmented Generation (RAG) framework for Bengali agricultural advisory that emphasizes factual grounding and practical deployability. The proposed system adopts a translation-centric architecture in which Bengali user queries are translated into English, enriched through domain-specific keyword injection to align colloquial farmer terminology with scientific nomenclature, and answered via dense vector retrieval over a curated corpus of English agricultural manuals (FAO, IRRI). The generated English response is subsequently translated back into Bengali to ensure accessibility. The system is implemented entirely using open-source models and operates on consumer-grade hardware without reliance on paid APIs. Experimental evaluation demonstrates reliable source-grounded responses, robust rejection of out-of-domain queries, and an average end-to-end latency below 20 seconds. The results indicate that cross-lingual retrieval combined with controlled translation offers a practical and scalable solution for agricultural knowledge access in low-resource language settings
comment: 5 pages, 3 figures, 1 table
☆ Higher-Order Action Regularization in Deep Reinforcement Learning: From Continuous Control to Building Energy Management NeurIPS
Deep reinforcement learning agents often exhibit erratic, high-frequency control behaviors that hinder real-world deployment due to excessive energy consumption and mechanical wear. We systematically investigate action smoothness regularization through higher-order derivative penalties, progressing from theoretical understanding in continuous control benchmarks to practical validation in building energy management. Our comprehensive evaluation across four continuous control environments demonstrates that third-order derivative penalties (jerk minimization) consistently achieve superior smoothness while maintaining competitive performance. We extend these findings to HVAC control systems where smooth policies reduce equipment switching by 60%, translating to significant operational benefits. Our work establishes higher-order action regularization as an effective bridge between RL optimization and operational constraints in energy-critical applications.
comment: 6 pages, accepted at NeurIPS workshop 2025
☆ Perish or Flourish? A Holistic Evaluation of Large Language Models for Code Generation in Functional Programming
Functional programming provides strong foundations for developing reliable and secure software systems, yet its adoption remains not widespread due to the steep learning curve. Recent advances in Large Language Models (LLMs) for code generation present new opportunities to lower these barriers. However, extensive evaluations of LLMs largely focus on imperative programming languages, and their capabilities in functional programming languages (FP) remain underexplored. To address this gap, we introduce FPEval, a holistic evaluation framework built on FPBench, a new benchmark of 721 programming tasks across three difficulty levels on three mainstream FP languages: Haskell, Ocaml and Scala. FPEval provides compehensive evaluation infrastructures with both test validations with comprehensive test suites and static analysis tools to assess both functional correctness and code style and maintainability. Using this framework, we evaluate state-of-the-art LLMs, including GPT-3.5, GPT-4o, and GPT-5, for code generation in functional programming languages and Java as an imperative baseline. Our results demonstrate that LLM performance in functional programming improves substantially with model advancement; however, error rates remain significantly higher in purely functional languages (Haskell and OCaml) than in hybrid (Scala) or imperative (Java) languages. Moreover, LLMs frequently generate non-idiomatic functional code that follows imperative patterns, raising concerns about code style and long-term maintainability. Finally, we show that LLMs can partially self-repair both correctness and quality issues when provided with static analysis feedback and hand-crafted instructions for common types of issues.
☆ Agentic Retoucher for Text-To-Image Generation
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
☆ The New Compiler Stack: A Survey on the Synergy of LLMs and Compilers
This survey has provided a systematic overview of the emerging field of LLM-enabled compilation by addressing several key research questions. We first answered how LLMs are being integrated by proposing a comprehensive, multi-dimensional taxonomy that categorizes works based on their Design Philosophy (Selector, Translator, Generator), LLM Methodology, their operational Level of Code Abstraction, and the specific Task Type they address. In answering what advancements these approaches offer, we identified three primary benefits: the democratization of compiler development, the discovery of novel optimization strategies, and the broadening of the compiler's traditional scope. Finally, in addressing the field's challenges and opportunities, we highlighted the critical hurdles of ensuring correctness and achieving scalability, while identifying the development of hybrid systems as the most promising path forward. By providing these answers, this survey serves as a foundational roadmap for researchers and practitioners, charting the course for a new generation of LLM-powered, intelligent, adaptive and synergistic compilation tools.
comment: Accepted by CCF Transactions on High Performance Computing
☆ Simulated Reasoning is Reasoning
Reasoning has long been understood as a pathway between stages of understanding. Proper reasoning leads to understanding of a given subject. This reasoning was conceptualized as a process of understanding in a particular way, i.e., "symbolic reasoning". Foundational Models (FM) demonstrate that this is not a necessary condition for many reasoning tasks: they can "reason" by way of imitating the process of "thinking out loud", testing the produced pathways, and iterating on these pathways on their own. This leads to some form of reasoning that can solve problems on its own or with few-shot learning, but appears fundamentally different from human reasoning due to its lack of grounding and common sense, leading to brittleness of the reasoning process. These insights promise to substantially alter our assessment of reasoning and its necessary conditions, but also inform the approaches to safety and robust defences against this brittleness of FMs. This paper offers and discusses several philosophical interpretations of this phenomenon, argues that the previously apt metaphor of the "stochastic parrot" has lost its relevance and thus should be abandoned, and reflects on different normative elements in the safety- and appropriateness-considerations emerging from these reasoning models and their growing capacity.
comment: 21 pages
☆ Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
☆ Not All Needles Are Found: How Fact Distribution and Don't Make It Up Prompts Shape Literal Extraction, Logical Inference, and Hallucination Risks in Long-Context LLMs
Large language models (LLMs) increasingly support very long input contexts. Yet it remains unclear how reliably they extract and infer information at scale. Performance varies with context length and strongly interacts with how information is distributed in real-world corpora. Motivated by these observations, we study how fact placement, corpus-level fact distributions, and Don't Make It Up prompts influence model behavior. We introduce an extended needle-in-a-haystack benchmark across four production-scale models: Gemini-2.5-flash, ChatGPT-5-mini, Claude-4.5-haiku, and Deepseek-v3.2-chat. Unlike prior work, we separately evaluate literal extraction, logical inference, and hallucination risk. Our study considers both positional effects and realistic distributions of evidence across long contexts, as well as prompts that explicitly discourage fabrication. We find that longer contexts alone do not guarantee better performance and can be detrimental when relevant evidence is diluted or widely dispersed. Performance varies substantially across models: some show severe degradation under realistic conditions, while others remain more robust at longer context lengths. Anti-hallucination (AH) instructions can make some models overly conservative, sharply reducing accuracy in literal extraction and logical inference. While we do not directly compare retrieval-augmented generation (RAG) and cache-augmented generation (CAG), our results suggest many failures stem from ineffective context utilization. Models often struggle to identify and prioritize relevant information even when it is present. These findings have direct practical implications, as enterprise workflows increasingly involve pasting large volumes of unfiltered documents into LLM prompts. Effective context length and model-specific robustness to long contexts are therefore critical for reliable LLM deployment in research and business.
comment: 25 pages, 8 figures, 3 tables
☆ Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
☆ Surprisal and Metaphor Novelty: Moderate Correlations and Divergent Scaling Effects EACL 2026
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with different metaphor novelty datasets. We analyse surprisal from 16 LM variants on corpus-based and synthetic metaphor novelty datasets. We explore a cloze-style surprisal method that conditions on full-sentence context. Results show that LMs yield significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (Quality-Power Hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains a limited metric of linguistic creativity.
comment: to be published at EACL 2026 main conference
☆ A neural network for modeling human concept formation, understanding and communication
A remarkable capability of the human brain is to form more abstract conceptual representations from sensorimotor experiences and flexibly apply them independent of direct sensory inputs. However, the computational mechanism underlying this ability remains poorly understood. Here, we present a dual-module neural network framework, the CATS Net, to bridge this gap. Our model consists of a concept-abstraction module that extracts low-dimensional conceptual representations, and a task-solving module that performs visual judgement tasks under the hierarchical gating control of the formed concepts. The system develops transferable semantic structure based on concept representations that enable cross-network knowledge transfer through conceptual communication. Model-brain fitting analyses reveal that these emergent concept spaces align with both neurocognitive semantic model and brain response structures in the human ventral occipitotemporal cortex, while the gating mechanisms mirror that in the semantic control brain network. This work establishes a unified computational framework that can offer mechanistic insights for understanding human conceptual cognition and engineering artificial systems with human-like conceptual intelligence.
comment: 6 main figures, 5 extended data figures and 4 supplementary figures
☆ XAI-MeD: Explainable Knowledge Guided Neuro-Symbolic Framework for Domain Generalization and Rare Class Detection in Medical Imaging AAAI
Explainability domain generalization and rare class reliability are critical challenges in medical AI where deep models often fail under real world distribution shifts and exhibit bias against infrequent clinical conditions This paper introduces XAIMeD an explainable medical AI framework that integrates clinically accurate expert knowledge into deep learning through a unified neuro symbolic architecture XAIMeD is designed to improve robustness under distribution shift enhance rare class sensitivity and deliver transparent clinically aligned interpretations The framework encodes clinical expertise as logical connectives over atomic medical propositions transforming them into machine checkable class specific rules Their diagnostic utility is quantified through weighted feature satisfaction scores enabling a symbolic reasoning branch that complements neural predictions A confidence weighted fusion integrates symbolic and deep outputs while a Hunt inspired adaptive routing mechanism guided by Entropy Imbalance Gain EIG and Rare Class Gini mitigates class imbalance high intra class variability and uncertainty We evaluate XAIMeD across diverse modalities on four challenging tasks i Seizure Onset Zone SOZ localization from rs fMRI ii Diabetic Retinopathy grading across 6 multicenter datasets demonstrate substantial performance improvements including 6 percent gains in cross domain generalization and a 10 percent improved rare class F1 score far outperforming state of the art deep learning baselines Ablation studies confirm that the clinically grounded symbolic components act as effective regularizers ensuring robustness to distribution shifts XAIMeD thus provides a principled clinically faithful and interpretable approach to multimodal medical AI.
comment: Accepted at AAAI Bridge Program 2026
☆ Exploring Approaches for Detecting Memorization of Recommender System Data in Large Language Models
Large Language Models (LLMs) are increasingly applied in recommendation scenarios due to their strong natural language understanding and generation capabilities. However, they are trained on vast corpora whose contents are not publicly disclosed, raising concerns about data leakage. Recent work has shown that the MovieLens-1M dataset is memorized by both the LLaMA and OpenAI model families, but the extraction of such memorized data has so far relied exclusively on manual prompt engineering. In this paper, we pose three main questions: Is it possible to enhance manual prompting? Can LLM memorization be detected through methods beyond manual prompting? And can the detection of data leakage be automated? To address these questions, we evaluate three approaches: (i) jailbreak prompt engineering; (ii) unsupervised latent knowledge discovery, probing internal activations via Contrast-Consistent Search (CCS) and Cluster-Norm; and (iii) Automatic Prompt Engineering (APE), which frames prompt discovery as a meta-learning process that iteratively refines candidate instructions. Experiments on MovieLens-1M using LLaMA models show that jailbreak prompting does not improve the retrieval of memorized items and remains inconsistent; CCS reliably distinguishes genuine from fabricated movie titles but fails on numerical user and rating data; and APE retrieves item-level information with moderate success yet struggles to recover numerical interactions. These findings suggest that automatically optimizing prompts is the most promising strategy for extracting memorized samples.
☆ Exploring Diversity, Novelty, and Popularity Bias in ChatGPT's Recommendations
ChatGPT has emerged as a versatile tool, demonstrating capabilities across diverse domains. Given these successes, the Recommender Systems (RSs) community has begun investigating its applications within recommendation scenarios primarily focusing on accuracy. While the integration of ChatGPT into RSs has garnered significant attention, a comprehensive analysis of its performance across various dimensions remains largely unexplored. Specifically, the capabilities of providing diverse and novel recommendations or exploring potential biases such as popularity bias have not been thoroughly examined. As the use of these models continues to expand, understanding these aspects is crucial for enhancing user satisfaction and achieving long-term personalization. This study investigates the recommendations provided by ChatGPT-3.5 and ChatGPT-4 by assessing ChatGPT's capabilities in terms of diversity, novelty, and popularity bias. We evaluate these models on three distinct datasets and assess their performance in Top-N recommendation and cold-start scenarios. The findings reveal that ChatGPT-4 matches or surpasses traditional recommenders, demonstrating the ability to balance novelty and diversity in recommendations. Furthermore, in the cold-start scenario, ChatGPT models exhibit superior performance in both accuracy and novelty, suggesting they can be particularly beneficial for new users. This research highlights the strengths and limitations of ChatGPT's recommendations, offering new perspectives on the capacity of these models to provide recommendations beyond accuracy-focused metrics.
☆ MindChat: A Privacy-preserving Large Language Model for Mental Health Support
Large language models (LLMs) have shown promise for mental health support, yet training such models is constrained by the scarcity and sensitivity of real counseling dialogues. In this article, we present MindChat, a privacy-preserving LLM for mental health support, together with MindCorpus, a synthetic multi-turn counseling dataset constructed via a multi-agent role-playing framework. To synthesize high-quality counseling data, the developed dialogue-construction framework employs a dual closed-loop feedback design to integrate psychological expertise and counseling techniques through role-playing: (i) turn-level critique-and-revision to improve coherence and counseling appropriateness within a session, and (ii) session-level strategy refinement to progressively enrich counselor behaviors across sessions. To mitigate privacy risks under decentralized data ownership, we fine-tune the base model using federated learning with parameter-efficient LoRA adapters and incorporate differentially private optimization to reduce membership and memorization risks. Experiments on synthetic-data quality assessment and counseling capability evaluation show that MindCorpus improves training effectiveness and that MindChat is competitive with existing general and counseling-oriented LLM baselines under both automatic LLM-judge and human evaluation protocols, while exhibiting reduced privacy leakage under membership inference attacks.
comment: 33 pages, 16 figures
☆ VIT-Ped: Visionary Intention Transformer for Pedestrian Behavior Analysis
Pedestrian Intention prediction is one of the key technologies in the transition from level 3 to level 4 autonomous driving. To understand pedestrian crossing behaviour, several elements and features should be taken into consideration to make the roads of tomorrow safer for everybody. We introduce a transformer / video vision transformer based algorithm of different sizes which uses different data modalities .We evaluated our algorithms on popular pedestrian behaviour dataset, JAAD, and have reached SOTA performance and passed the SOTA in metrics like Accuracy, AUC and F1-score. The advantages brought by different model design choices are investigated via extensive ablation studies.
☆ ChaosBench-Logic: A Benchmark for Logical and Symbolic Reasoning on Chaotic Dynamical Systems AAAI-26
Large language models (LLMs) excel at natural language tasks but remain brittle in domains requiring precise logical and symbolic reasoning. Chaotic dynamical systems provide an especially demanding test because chaos is deterministic yet often misinterpreted as randomness or complexity. We introduce ChaosBench-Logic, a benchmark that evaluates LLM reasoning across 30 diverse dynamical systems using a unified first-order logic (FOL) ontology. Each system is annotated with truth assignments for 11 semantic predicates, and 621 questions are generated across seven reasoning categories, including multi-hop implications, cross-system analogies, counterfactual reasoning, bias probes, and multi-turn dialogues. We define metrics for logical accuracy, implication consistency, dialogue coherence, and contradiction, and we release an open-source evaluation pipeline. Initial experiments show that frontier LLMs such as GPT-4, Claude 3.5 Sonnet, Gemini 2.5 Flash, and the open-source LLaMA-3 70B achieve 91-94% per-item accuracy, yet still score 0% on compositional items and exhibit fragile global coherence. Dialogue-level accuracy ranges from 53.1% (GPT-4 CoT) to 75.5% (LLaMA-3 zero-shot). ChaosBench-Logic provides a rigorous testbed for diagnosing such failures and a foundation for developing neuro-symbolic approaches that improve scientific reasoning in LLMs.
comment: 7 pages, 0 figures , Accepted to AAAI-26 Bridge Program: Logical and Symbolic Reasoning in Language Models (camera-ready)
☆ CNC-TP: Classifier Nominal Concept Based on Top-Pertinent Attributes
Knowledge Discovery in Databases (KDD) aims to exploit the vast amounts of data generated daily across various domains of computer applications. Its objective is to extract hidden and meaningful knowledge from datasets through a structured process comprising several key steps: data selection, preprocessing, transformation, data mining, and visualization. Among the core data mining techniques are classification and clustering. Classification involves predicting the class of new instances using a classifier trained on labeled data. Several approaches have been proposed in the literature, including Decision Tree Induction, Bayesian classifiers, Nearest Neighbor search, Neural Networks, Support Vector Machines, and Formal Concept Analysis (FCA). The last one is recognized as an effective approach for interpretable and explainable learning. It is grounded in the mathematical structure of the concept lattice, which enables the generation of formal concepts and the discovery of hidden relationships among them. In this paper, we present a state-of-theart review of FCA-based classifiers. We explore various methods for computing closure operators from nominal data and introduce a novel approach for constructing a partial concept lattice that focuses on the most relevant concepts. Experimental results are provided to demonstrate the efficiency of the proposed method.
☆ Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.
☆ The Invisible Hand of AI Libraries Shaping Open Source Projects and Communities
In the early 1980s, Open Source Software emerged as a revolutionary concept amidst the dominance of proprietary software. What began as a revolutionary idea has now become the cornerstone of computer science. Amidst OSS projects, AI is increasing its presence and relevance. However, despite the growing popularity of AI, its adoption and impacts on OSS projects remain underexplored. We aim to assess the adoption of AI libraries in Python and Java OSS projects and examine how they shape development, including the technical ecosystem and community engagement. To this end, we will perform a large-scale analysis on 157.7k potential OSS repositories, employing repository metrics and software metrics to compare projects adopting AI libraries against those that do not. We expect to identify measurable differences in development activity, community engagement, and code complexity between OSS projects that adopt AI libraries and those that do not, offering evidence-based insights into how AI integration reshapes software development practices.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ OpenSocInt: A Multi-modal Training Environment for Human-Aware Social Navigation
In this paper, we introduce OpenSocInt, an open-source software package providing a simulator for multi-modal social interactions and a modular architecture to train social agents. We described the software package and showcased its interest via an experimental protocol based on the task of social navigation. Our framework allows for exploring the use of different perceptual features, their encoding and fusion, as well as the use of different agents. The software is already publicly available under GPL at https://gitlab.inria.fr/robotlearn/OpenSocInt/.
☆ Visualizing the Structure of Lenia Parameter Space
Continuous cellular automata are rocketing in popularity, yet developing a theoretical understanding of their behaviour remains a challenge. In the case of Lenia, a few fundamental open problems include determining what exactly constitutes a soliton, what is the overall structure of the parameter space, and where do the solitons occur in it. In this abstract, we present a new method to automatically classify Lenia systems into four qualitatively different dynamical classes. This allows us to detect moving solitons, and to provide an interactive visualization of Lenia's parameter space structure on our website https://lenia-explorer.vercel.app/. The results shed new light on the above-mentioned questions and lead to several observations: the existence of new soliton families for parameters where they were not believed to exist, or the universality of the phase space structure across various kernels.
comment: 2 pages
☆ DéjàQ: Open-Ended Evolution of Diverse, Learnable and Verifiable Problems
Recent advances in reasoning models have yielded impressive results in mathematics and coding. However, most approaches rely on static datasets, which have been suggested to encourage memorisation and limit generalisation. We introduce DéjàQ, a framework that departs from this paradigm by jointly evolving a diverse set of synthetic mathematical problems alongside model training. This evolutionary process adapts to the model's ability throughout training, optimising problems for learnability. We propose two LLM-driven mutation strategies in which the model itself mutates the training data, either by altering contextual details or by directly modifying problem structure. We find that the model can generate novel and meaningful problems, and that these LLM-driven mutations improve RL training. We analyse key aspects of DéjàQ, including the validity of generated problems and computational overhead. Our results underscore the potential of dynamically evolving training data to enhance mathematical reasoning and indicate broader applicability, which we will support by open-sourcing our code.
☆ MCGI: Manifold-Consistent Graph Indexing for Billion-Scale Disk-Resident Vector Search
Graph-based Approximate Nearest Neighbor (ANN) search often suffers from performance degradation in high-dimensional spaces due to the ``Euclidean-Geodesic mismatch,'' where greedy routing diverges from the underlying data manifold. To address this, we propose Manifold-Consistent Graph Indexing (MCGI), a geometry-aware and disk-resident indexing method that leverages Local Intrinsic Dimensionality (LID) to dynamically adapt search strategies to the data's intrinsic geometry. Unlike standard algorithms that treat dimensions uniformly, MCGI modulates its beam search budget based on in situ geometric analysis, eliminating dependency on static hyperparameters. Theoretical analysis confirms that MCGI enables improved approximation guarantees by preserving manifold-consistent topological connectivity. Empirically, MCGI achieves 5.8$\times$ higher throughput at 95\% recall on high-dimensional GIST1M compared to state-of-the-art DiskANN. On the billion-scale SIFT1B dataset, MCGI further validates its scalability by reducing high-recall query latency by 3$\times$, while maintaining performance parity on standard lower-dimensional datasets.
☆ Theoretical Convergence of SMOTE-Generated Samples
Imbalanced data affects a wide range of machine learning applications, from healthcare to network security. As SMOTE is one of the most popular approaches to addressing this issue, it is imperative to validate it not only empirically but also theoretically. In this paper, we provide a rigorous theoretical analysis of SMOTE's convergence properties. Concretely, we prove that the synthetic random variable Z converges in probability to the underlying random variable X. We further prove a stronger convergence in mean when X is compact. Finally, we show that lower values of the nearest neighbor rank lead to faster convergence offering actionable guidance to practitioners. The theoretical results are supported by numerical experiments using both real-life and synthetic data. Our work provides a foundational understanding that enhances data augmentation techniques beyond imbalanced data scenarios.
☆ A Defect is Being Born: How Close Are We? A Time Sensitive Forecasting Approach
Background. Defect prediction has been a highly active topic among researchers in the Empirical Software Engineering field. Previous literature has successfully achieved the most accurate prediction of an incoming fault and identified the features and anomalies that precede it through just-in-time prediction. As software systems evolve continuously, there is a growing need for time-sensitive methods capable of forecasting defects before they manifest. Aim. Our study seeks to explore the effectiveness of time-sensitive techniques for defect forecasting. Moreover, we aim to investigate the early indicators that precede the occurrence of a defect. Method. We will train multiple time-sensitive forecasting techniques to forecast the future bug density of a software project, as well as identify the early symptoms preceding the occurrence of a defect. Expected results. Our expected results are translated into empirical evidence on the effectiveness of our approach for early estimation of bug proneness.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ MMP-A*: Multimodal Perception Enhanced Incremental Heuristic Search on Path Planning
Autonomous path planning requires a synergy between global reasoning and geometric precision, especially in complex or cluttered environments. While classical A* is valued for its optimality, it incurs prohibitive computational and memory costs in large-scale scenarios. Recent attempts to mitigate these limitations by using Large Language Models for waypoint guidance remain insufficient, as they rely only on text-based reasoning without spatial grounding. As a result, such models often produce incorrect waypoints in topologically complex environments with dead ends, and lack the perceptual capacity to interpret ambiguous physical boundaries. These inconsistencies lead to costly corrective expansions and undermine the intended computational efficiency. We introduce MMP-A*, a multimodal framework that integrates the spatial grounding capabilities of vision-language models with a novel adaptive decay mechanism. By anchoring high-level reasoning in physical geometry, the framework produces coherent waypoint guidance that addresses the limitations of text-only planners. The adaptive decay mechanism dynamically regulates the influence of uncertain waypoints within the heuristic, ensuring geometric validity while substantially reducing memory overhead. To evaluate robustness, we test the framework in challenging environments characterized by severe clutter and topological complexity. Experimental results show that MMP-A* achieves near-optimal trajectories with significantly reduced operational costs, demonstrating its potential as a perception-grounded and computationally efficient paradigm for autonomous navigation.
☆ Nodule-DETR: A Novel DETR Architecture with Frequency-Channel Attention for Ultrasound Thyroid Nodule Detection
Thyroid cancer is the most common endocrine malignancy, and its incidence is rising globally. While ultrasound is the preferred imaging modality for detecting thyroid nodules, its diagnostic accuracy is often limited by challenges such as low image contrast and blurred nodule boundaries. To address these issues, we propose Nodule-DETR, a novel detection transformer (DETR) architecture designed for robust thyroid nodule detection in ultrasound images. Nodule-DETR introduces three key innovations: a Multi-Spectral Frequency-domain Channel Attention (MSFCA) module that leverages frequency analysis to enhance features of low-contrast nodules; a Hierarchical Feature Fusion (HFF) module for efficient multi-scale integration; and Multi-Scale Deformable Attention (MSDA) to flexibly capture small and irregularly shaped nodules. We conducted extensive experiments on a clinical dataset of real-world thyroid ultrasound images. The results demonstrate that Nodule-DETR achieves state-of-the-art performance, outperforming the baseline model by a significant margin of 0.149 in mAP@0.5:0.95. The superior accuracy of Nodule-DETR highlights its significant potential for clinical application as an effective tool in computer-aided thyroid diagnosis. The code of work is available at https://github.com/wjj1wjj/Nodule-DETR.
☆ Evaluating Feature Dependent Noise in Preference-based Reinforcement Learning
Learning from Preferences in Reinforcement Learning (PbRL) has gained attention recently, as it serves as a natural fit for complicated tasks where the reward function is not easily available. However, preferences often come with uncertainty and noise if they are not from perfect teachers. Much prior literature aimed to detect noise, but with limited types of noise and most being uniformly distributed with no connection to observations. In this work, we formalize the notion of targeted feature-dependent noise and propose several variants like trajectory feature noise, trajectory similarity noise, uncertainty-aware noise, and Language Model noise. We evaluate feature-dependent noise, where noise is correlated with certain features in complex continuous control tasks from DMControl and Meta-world. Our experiments show that in some feature-dependent noise settings, the state-of-the-art noise-robust PbRL method's learning performance is significantly deteriorated, while PbRL method with no explicit denoising can surprisingly outperform noise-robust PbRL in majority settings. We also find language model's noise exhibits similar characteristics to feature-dependent noise, thereby simulating realistic humans and call for further study in learning with feature-dependent noise robustly.
☆ Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
☆ Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
☆ Theory Trace Card: Theory-Driven Socio-Cognitive Evaluation of LLMs
Socio-cognitive benchmarks for large language models (LLMs) often fail to predict real-world behavior, even when models achieve high benchmark scores. Prior work has attributed this evaluation-deployment gap to problems of measurement and validity. While these critiques are insightful, we argue that they overlook a more fundamental issue: many socio-cognitive evaluations proceed without an explicit theoretical specification of the target capability, leaving the assumptions linking task performance to competence implicit. Without this theoretical grounding, benchmarks that exercise only narrow subsets of a capability are routinely misinterpreted as evidence of broad competence: a gap that creates a systemic validity illusion by masking the failure to evaluate the capability's other essential dimensions. To address this gap, we make two contributions. First, we diagnose and formalize this theory gap as a foundational failure that undermines measurement and enables systematic overgeneralization of benchmark results. Second, we introduce the Theory Trace Card (TTC), a lightweight documentation artifact designed to accompany socio-cognitive evaluations, which explicitly outlines the theoretical basis of an evaluation, the components of the target capability it exercises, its operationalization, and its limitations. We argue that TTCs enhance the interpretability and reuse of socio-cognitive evaluations by making explicit the full validity chain, which links theory, task operationalization, scoring, and limitations, without modifying benchmarks or requiring agreement on a single theory.
☆ Toward Auditable Neuro-Symbolic Reasoning in Pathology: SQL as an Explicit Trace of Evidence
Automated pathology image analysis is central to clinical diagnosis, but clinicians still ask which slide features drive a model's decision and why. Vision-language models can produce natural language explanations, but these are often correlational and lack verifiable evidence. In this paper, we introduce an SQL-centered agentic framework that enables both feature measurement and reasoning to be auditable. Specifically, after extracting human-interpretable cellular features, Feature Reasoning Agents compose and execute SQL queries over feature tables to aggregate visual evidence into quantitative findings. A Knowledge Comparison Agent then evaluates these findings against established pathological knowledge, mirroring how pathologists justify diagnoses from measurable observations. Extensive experiments evaluated on two pathology visual question answering datasets demonstrate our method improves interpretability and decision traceability while producing executable SQL traces that link cellular measurements to diagnostic conclusions.
☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
☆ Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios
As agent systems powered by large language models (LLMs) advance, improving the task performance of an autonomous agent, especially in context understanding, tool usage, and response generation, has become increasingly critical. Although prior studies have advanced the overall design of LLM-based agents, systematic optimization of their internal reasoning and tool-use pipelines remains underexplored. This paper introduces an agent framework grounded in real-world practical experience, with three key innovations: (1) an adaptive prompt generation strategy that aligns with the agent's state and task goals to improve reliability and robustness; (2) a context-aware tool orchestration module that performs tool categorization, semantic retrieval, and adaptive invocation based on user intent and context; and (3) a layered memory mechanism that integrates session memory, task history, and external summaries to improve relevance and efficiency through dynamic summarization and compression. An end-to-end framework named Jenius-Agent has been integrated with three key optimizations, including tools based on the Model Context Protocol (MCP), file input/output (I/O), and execution feedback. The experiments show a 20 percent improvement in task accuracy, along with a reduced token cost, response latency, and invocation failures. The framework is already deployed in Jenius (https://www.jenius.cn), providing a lightweight and scalable solution for robust, protocol-compatible autonomous agents.
☆ MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
☆ Clinical Knowledge Graph Construction and Evaluation with Multi-LLMs via Retrieval-Augmented Generation
Large language models (LLMs) offer new opportunities for constructing knowledge graphs (KGs) from unstructured clinical narratives. However, existing approaches often rely on structured inputs and lack robust validation of factual accuracy and semantic consistency, limitations that are especially problematic in oncology. We introduce an end-to-end framework for clinical KG construction and evaluation directly from free text using multi-agent prompting and a schema-constrained Retrieval-Augmented Generation (KG-RAG) strategy. Our pipeline integrates (1) prompt-driven entity, attribute, and relation extraction; (2) entropy-based uncertainty scoring; (3) ontology-aligned RDF/OWL schema generation; and (4) multi-LLM consensus validation for hallucination detection and semantic refinement. Beyond static graph construction, the framework supports continuous refinement and self-supervised evaluation, enabling iterative improvement of graph quality. Applied to two oncology cohorts (PDAC and BRCA), our method produces interpretable, SPARQL-compatible, and clinically grounded knowledge graphs without relying on gold-standard annotations. Experimental results demonstrate consistent gains in precision, relevance, and ontology compliance over baseline methods.
comment: 13 pages, 5 tables, 4 figures
☆ The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation
Despite the growing popularity of AI coding assistants, over 80% of machine learning (ML) projects fail to deliver real business value. This study creates and tests a Machine Learning Canvas, a practical framework that combines business strategy, software engineering, and data science in order to determine the factors that lead to the success of ML projects. We surveyed 150 data scientists and analyzed their responses using statistical modeling. We identified four key success factors: Strategy (clear goals and planning), Process (how work gets done), Ecosystem (tools and infrastructure), and Support (organizational backing and resources). Our results show that these factors are interconnected - each one affects the next. For instance, strong organizational support results in a clearer strategy (β= 0.432, p < 0.001), which improves work processes (β= 0.428, p < 0.001) and builds better infrastructure (β= 0.547, p < 0.001). Together, these elements determine whether a project succeeds. The surprising finding? Although AI assistants make coding faster, they don't guarantee project success. AI assists with the "how" of coding but cannot replace the "why" and "what" of strategic thinking.
comment: Dataset available: https://ieee-dataport.org/documents/machine-learning-canvas-success-determinants
☆ COMPASS: A Framework for Evaluating Organization-Specific Policy Alignment in LLMs
As large language models are deployed in high-stakes enterprise applications, from healthcare to finance, ensuring adherence to organization-specific policies has become essential. Yet existing safety evaluations focus exclusively on universal harms. We present COMPASS (Company/Organization Policy Alignment Assessment), the first systematic framework for evaluating whether LLMs comply with organizational allowlist and denylist policies. We apply COMPASS to eight diverse industry scenarios, generating and validating 5,920 queries that test both routine compliance and adversarial robustness through strategically designed edge cases. Evaluating seven state-of-the-art models, we uncover a fundamental asymmetry: models reliably handle legitimate requests (>95% accuracy) but catastrophically fail at enforcing prohibitions, refusing only 13-40% of adversarial denylist violations. These results demonstrate that current LLMs lack the robustness required for policy-critical deployments, establishing COMPASS as an essential evaluation framework for organizational AI safety.
☆ RSwinV2-MD: An Enhanced Residual SwinV2 Transformer for Monkeypox Detection from Skin Images
In this paper, a deep learning approach for Mpox diagnosis named Customized Residual SwinTransformerV2 (RSwinV2) has been proposed, trying to enhance the capability of lesion classification by employing the RSwinV2 tool-assisted vision approach. In the RSwinV2 method, a hierarchical structure of the transformer has been customized based on the input dimensionality, embedding structure, and output targeted by the method. In this RSwinV2 approach, the input image has been split into non-overlapping patches and processed using shifted windows and attention in these patches. This process has helped the method link all the windows efficiently by avoiding the locality issues of non-overlapping regions in attention, while being computationally efficient. RSwinV2 has further developed based on SwinTransformer and has included patch and position embeddings to take advantage of the transformer global-linking capability by employing multi-head attention in these embeddings. Furthermore, RSwinV2 has developed and incorporated the Inverse Residual Block (IRB) into this method, which utilizes convolutional skip connections with these inclusive designs to address the vanishing gradient issues during processing. RSwinV2 inclusion of IRB has therefore facilitated this method to link global patterns as well as local patterns; hence, its integrity has helped improve lesion classification capability by minimizing variability of Mpox and increasing differences of Mpox, chickenpox, measles, and cowpox. In testing SwinV2, its accuracy of 96.21 and an F1score of 95.62 have been achieved on the Kaggle public dataset, which has outperformed standard CNN models and SwinTransformers; RSwinV2 vector has thus proved its valiance as a computer-assisted tool for Mpox lesion observation interpretation.
comment: 15 Pages, 7 Figures, 4 Tables
☆ Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization
We present Yukthi Opus (YO), a multi-chain hybrid metaheuristic designed for NP-hard optimization under explicit evaluation budget constraints. YO integrates three complementary mechanisms in a structured two-phase architecture: Markov Chain Monte Carlo (MCMC) for global exploration, greedy local search for exploitation, and simulated annealing with adaptive reheating to enable controlled escape from local minima. A dedicated burn-in phase allocates evaluations to probabilistic exploration, after which a hybrid optimization loop refines promising candidates. YO further incorporates a spatial blacklist mechanism to avoid repeated evaluation of poor regions and a multi-chain execution strategy to improve robustness and reduce sensitivity to initialization. We evaluate YO on three benchmarks: the Rastrigin function (5D) with ablation studies, the Traveling Salesman Problem with 50 to 200 cities, and the Rosenbrock function (5D) with comparisons against established optimizers including CMA-ES, Bayesian optimization, and accelerated particle swarm optimization. Results show that MCMC exploration and greedy refinement are critical for solution quality, while simulated annealing and multi-chain execution primarily improve stability and variance reduction. Overall, YO achieves competitive performance on large and multimodal problems while maintaining predictable evaluation budgets, making it suitable for expensive black-box optimization settings.
comment: 22 pages, 9 figures, includes extensive ablation studies and benchmark comparisons
☆ ARIES: A Scalable Multi-Agent Orchestration Framework for Real-Time Epidemiological Surveillance and Outbreak Monitoring
Global health surveillance is currently facing a challenge of Knowledge Gaps. While general-purpose AI has proliferated, it remains fundamentally unsuited for the high-stakes epidemiological domain due to chronic hallucinations and an inability to navigate specialized data silos. This paper introduces ARIES (Agentic Retrieval Intelligence for Epidemiological Surveillance), a specialized, autonomous multi-agent framework designed to move beyond static, disease-specific dashboards toward a dynamic intelligence ecosystem. Built on a hierarchical command structure, ARIES utilizes GPTs to orchestrate a scalable swarm of sub-agents capable of autonomously querying World Health Organization (WHO), Center for Disease Control and Prevention (CDC), and peer-reviewed research papers. By automating the extraction and logical synthesis of surveillance data, ARIES provides a specialized reasoning that identifies emergent threats and signal divergence in near real-time. This modular architecture proves that a task-specific agentic swarm can outperform generic models, offering a robust, extensible for next-generation outbreak response and global health intelligence.
comment: 6 pages, 14 figures, 1 table
☆ Emergent Introspective Awareness in Large Language Models
We investigate whether large language models can introspect on their internal states. It is difficult to answer this question through conversation alone, as genuine introspection cannot be distinguished from confabulations. Here, we address this challenge by injecting representations of known concepts into a model's activations, and measuring the influence of these manipulations on the model's self-reported states. We find that models can, in certain scenarios, notice the presence of injected concepts and accurately identify them. Models demonstrate some ability to recall prior internal representations and distinguish them from raw text inputs. Strikingly, we find that some models can use their ability to recall prior intentions in order to distinguish their own outputs from artificial prefills. In all these experiments, Claude Opus 4 and 4.1, the most capable models we tested, generally demonstrate the greatest introspective awareness; however, trends across models are complex and sensitive to post-training strategies. Finally, we explore whether models can explicitly control their internal representations, finding that models can modulate their activations when instructed or incentivized to "think about" a concept. Overall, our results indicate that current language models possess some functional introspective awareness of their own internal states. We stress that in today's models, this capacity is highly unreliable and context-dependent; however, it may continue to develop with further improvements to model capabilities.
☆ Admissibility Alignment
This paper introduces Admissibility Alignment: a reframing of AI alignment as a property of admissible action and decision selection over distributions of outcomes under uncertainty, evaluated through the behavior of candidate policies. We present MAP-AI (Monte Carlo Alignment for Policy) as a canonical system architecture for operationalizing admissibility alignment, formalizing alignment as a probabilistic, decision-theoretic property rather than a static or binary condition. MAP-AI, a new control-plane system architecture for aligned decision-making under uncertainty, enforces alignment through Monte Carlo estimation of outcome distributions and admissibility-controlled policy selection rather than static model-level constraints. The framework evaluates decision policies across ensembles of plausible futures, explicitly modeling uncertainty, intervention effects, value ambiguity, and governance constraints. Alignment is assessed through distributional properties including expected utility, variance, tail risk, and probability of misalignment rather than accuracy or ranking performance. This approach distinguishes probabilistic prediction from decision reasoning under uncertainty and provides an executable methodology for evaluating trust and alignment in enterprise and institutional AI systems. The result is a practical foundation for governing AI systems whose impact is determined not by individual forecasts, but by policy behavior across distributions and tail events. Finally, we show how distributional alignment evaluation can be integrated into decision-making itself, yielding an admissibility-controlled action selection mechanism that alters policy behavior under uncertainty without retraining or modifying underlying models.
comment: 24 pages, 2 figures, 2 tables.. Decision-theoretic alignment under uncertainty
☆ Adaptive Hybrid Optimizer based Framework for Lumpy Skin Disease Identification
Lumpy Skin Disease (LSD) is a contagious viral infection that significantly deteriorates livestock health, thereby posing a serious threat to the global economy and food security. Owing to its rapid spread characteristics, early and precise identification is crucial to prevent outbreaks and ensure timely intervention. In this paper, we propose a hybrid deep learning-based approach called LUMPNet for the early detection of LSD. LUMPNet utilizes image data to detect and classify skin nodules -- the primary indicator of LSD. To this end, LUMPNet uses YOLOv11, EfficientNet-based CNN classifier with compound scaling, and a novel adaptive hybrid optimizer. More precisely, LUMPNet detects and localizes LSD skin nodules and lesions on cattle images. It exploits EfficientNet to classify the localized cattle images into LSD-affected or healthy categories. To stabilize and accelerate the training of YOLOv11 and EfficientNet hybrid model, a novel adaptive hybrid optimizer is proposed and utilized. We evaluate LUMPNet at various stages of LSD using a publicly available dataset. Results indicate that the proposed scheme achieves 99% LSD detection training accuracy, and outperforms existing schemes. The model also achieves validation accuracy of 98%. Moreover, for further evaluation, we conduct a case study using an optimized EfficientNet-B0 model trained with the AdamW optimizer, and compare its performance with LUMPNet. The results show that LUMPNet achieves superior performance.
☆ Moments Matter:Stabilizing Policy Optimization using Return Distributions
Deep Reinforcement Learning (RL) agents often learn policies that achieve the same episodic return yet behave very differently, due to a combination of environmental (random transitions, initial conditions, reward noise) and algorithmic (minibatch selection, exploration noise) factors. In continuous control tasks, even small parameter shifts can produce unstable gaits, complicating both algorithm comparison and real-world transfer. Previous work has shown that such instability arises when policy updates traverse noisy neighborhoods and that the spread of post-update return distribution $R(θ)$, obtained by repeatedly sampling minibatches, updating $θ$, and measuring final returns, is a useful indicator of this noise. Although explicitly constraining the policy to maintain a narrow $R(θ)$ can improve stability, directly estimating $R(θ)$ is computationally expensive in high-dimensional settings. We propose an alternative that takes advantage of environmental stochasticity to mitigate update-induced variability. Specifically, we model state-action return distribution through a distributional critic and then bias the advantage function of PPO using higher-order moments (skewness and kurtosis) of this distribution. By penalizing extreme tail behaviors, our method discourages policies from entering parameter regimes prone to instability. We hypothesize that in environments where post-update critic values align poorly with post-update returns, standard PPO struggles to produce a narrow $R(θ)$. In such cases, our moment-based correction narrows $R(θ)$, improving stability by up to 75% in Walker2D, while preserving comparable evaluation returns.
comment: Workshop paper at RLDM'25
☆ PsychEval: A Multi-Session and Multi-Therapy Benchmark for High-Realism and Comprehensive AI Psychological Counselor
To develop a reliable AI for psychological assessment, we introduce \texttt{PsychEval}, a multi-session, multi-therapy, and highly realistic benchmark designed to address three key challenges: \textbf{1) Can we train a highly realistic AI counselor?} Realistic counseling is a longitudinal task requiring sustained memory and dynamic goal tracking. We propose a multi-session benchmark (spanning 6-10 sessions across three distinct stages) that demands critical capabilities such as memory continuity, adaptive reasoning, and longitudinal planning. The dataset is annotated with extensive professional skills, comprising over 677 meta-skills and 4577 atomic skills. \textbf{2) How to train a multi-therapy AI counselor?} While existing models often focus on a single therapy, complex cases frequently require flexible strategies among various therapies. We construct a diverse dataset covering five therapeutic modalities (Psychodynamic, Behaviorism, CBT, Humanistic Existentialist, and Postmodernist) alongside an integrative therapy with a unified three-stage clinical framework across six core psychological topics. \textbf{3) How to systematically evaluate an AI counselor?} We establish a holistic evaluation framework with 18 therapy-specific and therapy-shared metrics across Client-Level and Counselor-Level dimensions. To support this, we also construct over 2,000 diverse client profiles. Extensive experimental analysis fully validates the superior quality and clinical fidelity of our dataset. Crucially, \texttt{PsychEval} transcends static benchmarking to serve as a high-fidelity reinforcement learning environment that enables the self-evolutionary training of clinically responsible and adaptive AI counselors.
☆ Sparse Threats, Focused Defense: Criticality-Aware Robust Reinforcement Learning for Safe Autonomous Driving
Reinforcement learning (RL) has shown considerable potential in autonomous driving (AD), yet its vulnerability to perturbations remains a critical barrier to real-world deployment. As a primary countermeasure, adversarial training improves policy robustness by training the AD agent in the presence of an adversary that deliberately introduces perturbations. Existing approaches typically model the interaction as a zero-sum game with continuous attacks. However, such designs overlook the inherent asymmetry between the agent and the adversary and then fail to reflect the sparsity of safety-critical risks, rendering the achieved robustness inadequate for practical AD scenarios. To address these limitations, we introduce criticality-aware robust RL (CARRL), a novel adversarial training approach for handling sparse, safety-critical risks in autonomous driving. CARRL consists of two interacting components: a risk exposure adversary (REA) and a risk-targeted robust agent (RTRA). We model the interaction between the REA and RTRA as a general-sum game, allowing the REA to focus on exposing safety-critical failures (e.g., collisions) while the RTRA learns to balance safety with driving efficiency. The REA employs a decoupled optimization mechanism to better identify and exploit sparse safety-critical moments under a constrained budget. However, such focused attacks inevitably result in a scarcity of adversarial data. The RTRA copes with this scarcity by jointly leveraging benign and adversarial experiences via a dual replay buffer and enforces policy consistency under perturbations to stabilize behavior. Experimental results demonstrate that our approach reduces the collision rate by at least 22.66\% across all cases compared to state-of-the-art baseline methods.
☆ VerLM: Explaining Face Verification Using Natural Language
Face verification systems have seen substantial advancements; however, they often lack transparency in their decision-making processes. In this paper, we introduce an innovative Vision-Language Model (VLM) for Face Verification, which not only accurately determines if two face images depict the same individual but also explicitly explains the rationale behind its decisions. Our model is uniquely trained using two complementary explanation styles: (1) concise explanations that summarize the key factors influencing its decision, and (2) comprehensive explanations detailing the specific differences observed between the images. We adapt and enhance a state-of-the-art modeling approach originally designed for audio-based differentiation to suit visual inputs effectively. This cross-modal transfer significantly improves our model's accuracy and interpretability. The proposed VLM integrates sophisticated feature extraction techniques with advanced reasoning capabilities, enabling clear articulation of its verification process. Our approach demonstrates superior performance, surpassing baseline methods and existing models. These findings highlight the immense potential of vision language models in face verification set up, contributing to more transparent, reliable, and explainable face verification systems.
☆ HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
☆ Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
☆ LIA: Supervised Fine-Tuning of Large Language Models for Automatic Issue Assignment
Issue assignment is a critical process in software maintenance, where new issue reports are validated and assigned to suitable developers. However, manual issue assignment is often inconsistent and error-prone, especially in large open-source projects where thousands of new issues are reported monthly. Existing automated approaches have shown promise, but many rely heavily on large volumes of project-specific training data or relational information that is often sparse and noisy, which limits their effectiveness. To address these challenges, we propose LIA (LLM-based Issue Assignment), which employs supervised fine-tuning to adapt an LLM, DeepSeek-R1-Distill-Llama-8B in this work, for automatic issue assignment. By leveraging the LLM's pretrained semantic understanding of natural language and software-related text, LIA learns to generate ranked developer recommendations directly from issue titles and descriptions. The ranking is based on the model's learned understanding of historical issue-to-developer assignments, using patterns from past tasks to infer which developers are most likely to handle new issues. Through comprehensive evaluation, we show that LIA delivers substantial improvements over both its base pretrained model and state-of-the-art baselines. It achieves up to +187.8% higher Hit@1 compared to the DeepSeek-R1-Distill-Llama-8B pretrained base model, and outperforms four leading issue assignment methods by as much as +211.2% in Hit@1 score. These results highlight the effectiveness of domain-adapted LLMs for software maintenance tasks and establish LIA as a practical, high-performing solution for issue assignment.
☆ Can Large Language Models Solve Engineering Equations? A Systematic Comparison of Direct Prediction and Solver-Assisted Approaches
Transcendental equations requiring iterative numerical solution pervade engineering practice, from fluid mechanics friction factor calculations to orbital position determination. We systematically evaluate whether Large Language Models can solve these equations through direct numerical prediction or whether a hybrid architecture combining LLM symbolic manipulation with classical iterative solvers proves more effective. Testing six state-of-the-art models (GPT-5.1, GPT-5.2, Gemini-3-Flash, Gemini-2.5-Lite, Claude-Sonnet-4.5, Claude-Opus-4.5) on 100 problems spanning seven engineering domains, we compare direct prediction against solver-assisted computation where LLMs formulate governing equations and provide initial conditions while Newton-Raphson iteration performs numerical solution. Direct prediction yields mean relative errors of 0.765 to 1.262 across models, while solver-assisted computation achieves 0.225 to 0.301, representing error reductions of 67.9% to 81.8%. Domain-specific analysis reveals dramatic improvements in Electronics (93.1%) due to exponential equation sensitivity, contrasted with modest gains in Fluid Mechanics (7.2%) where LLMs exhibit effective pattern recognition. These findings establish that contemporary LLMs excel at symbolic manipulation and domain knowledge retrieval but struggle with precision-critical iterative arithmetic, suggesting their optimal deployment as intelligent interfaces to classical numerical solvers rather than standalone computational engines.
comment: 14 pages
☆ A New Benchmark for the Appropriate Evaluation of RTL Code Optimization
The rapid progress of artificial intelligence increasingly relies on efficient integrated circuit (IC) design. Recent studies have explored the use of large language models (LLMs) for generating Register Transfer Level (RTL) code, but existing benchmarks mainly evaluate syntactic correctness rather than optimization quality in terms of power, performance, and area (PPA). This work introduces RTL-OPT, a benchmark for assessing the capability of LLMs in RTL optimization. RTL-OPT contains 36 handcrafted digital designs that cover diverse implementation categories including combinational logic, pipelined datapaths, finite state machines, and memory interfaces. Each task provides a pair of RTL codes, a suboptimal version and a human-optimized reference that reflects industry-proven optimization patterns not captured by conventional synthesis tools. Furthermore, RTL-OPT integrates an automated evaluation framework to verify functional correctness and quantify PPA improvements, enabling standardized and meaningful assessment of generative models for hardware design optimization.
☆ MergeRec: Model Merging for Data-Isolated Cross-Domain Sequential Recommendation KDD 2026
Modern recommender systems trained on domain-specific data often struggle to generalize across multiple domains. Cross-domain sequential recommendation has emerged as a promising research direction to address this challenge; however, existing approaches face fundamental limitations, such as reliance on overlapping users or items across domains, or unrealistic assumptions that ignore privacy constraints. In this work, we propose a new framework, MergeRec, based on model merging under a new and realistic problem setting termed data-isolated cross-domain sequential recommendation, where raw user interaction data cannot be shared across domains. MergeRec consists of three key components: (1) merging initialization, (2) pseudo-user data construction, and (3) collaborative merging optimization. First, we initialize a merged model using training-free merging techniques. Next, we construct pseudo-user data by treating each item as a virtual sequence in each domain, enabling the synthesis of meaningful training samples without relying on real user interactions. Finally, we optimize domain-specific merging weights through a joint objective that combines a recommendation loss, which encourages the merged model to identify relevant items, and a distillation loss, which transfers collaborative filtering signals from the fine-tuned source models. Extensive experiments demonstrate that MergeRec not only preserves the strengths of the original models but also significantly enhances generalizability to unseen domains. Compared to conventional model merging methods, MergeRec consistently achieves superior performance, with average improvements of up to 17.21% in Recall@10, highlighting the potential of model merging as a scalable and effective approach for building universal recommender systems. The source code is available at https://github.com/DIALLab-SKKU/MergeRec.
comment: Accepted by KDD 2026
☆ Query-Document Dense Vectors for LLM Relevance Judgment Bias Analysis ECIR 2026
Large Language Models (LLMs) have been used as relevance assessors for Information Retrieval (IR) evaluation collection creation due to reduced cost and increased scalability as compared to human assessors. While previous research has looked at the reliability of LLMs as compared to human assessors, in this work, we aim to understand if LLMs make systematic mistakes when judging relevance, rather than just understanding how good they are on average. To this aim, we propose a novel representational method for queries and documents that allows us to analyze relevance label distributions and compare LLM and human labels to identify patterns of disagreement and localize systematic areas of disagreement. We introduce a clustering-based framework that embeds query-document (Q-D) pairs into a joint semantic space, treating relevance as a relational property. Experiments on TREC Deep Learning 2019 and 2020 show that systematic disagreement between humans and LLMs is concentrated in specific semantic clusters rather than distributed randomly. Query-level analyses reveal recurring failures, most often in definition-seeking, policy-related, or ambiguous contexts. Queries with large variation in agreement across their clusters emerge as disagreement hotspots, where LLMs tend to under-recall relevant content or over-include irrelevant material. This framework links global diagnostics with localized clustering to uncover hidden weaknesses in LLM judgments, enabling bias-aware and more reliable IR evaluation.
comment: Accepted for presentation at the ECIR 2026 Full Papers track
☆ Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization EACL
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
☆ Multi-granularity Interactive Attention Framework for Residual Hierarchical Pronunciation Assessment AAAI 2026
Automatic pronunciation assessment plays a crucial role in computer-assisted pronunciation training systems. Due to the ability to perform multiple pronunciation tasks simultaneously, multi-aspect multi-granularity pronunciation assessment methods are gradually receiving more attention and achieving better performance than single-level modeling tasks. However, existing methods only consider unidirectional dependencies between adjacent granularity levels, lacking bidirectional interaction among phoneme, word, and utterance levels and thus insufficiently capturing the acoustic structural correlations. To address this issue, we propose a novel residual hierarchical interactive method, HIA for short, that enables bidirectional modeling across granularities. As the core of HIA, the Interactive Attention Module leverages an attention mechanism to achieve dynamic bidirectional interaction, effectively capturing linguistic features at each granularity while integrating correlations between different granularity levels. We also propose a residual hierarchical structure to alleviate the feature forgetting problem when modeling acoustic hierarchies. In addition, we use 1-D convolutional layers to enhance the extraction of local contextual cues at each granularity. Extensive experiments on the speechocean762 dataset show that our model is comprehensively ahead of the existing state-of-the-art methods.
comment: 9 pages, 4 figures, 5 tables, accepted by AAAI 2026
☆ AI Agent Systems: Architectures, Applications, and Evaluation
AI agents -- systems that combine foundation models with reasoning, planning, memory, and tool use -- are rapidly becoming a practical interface between natural-language intent and real-world computation. This survey synthesizes the emerging landscape of AI agent architectures across: (i) deliberation and reasoning (e.g., chain-of-thought-style decomposition, self-reflection and verification, and constraint-aware decision making), (ii) planning and control (from reactive policies to hierarchical and multi-step planners), and (iii) tool calling and environment interaction (retrieval, code execution, APIs, and multimodal perception). We organize prior work into a unified taxonomy spanning agent components (policy/LLM core, memory, world models, planners, tool routers, and critics), orchestration patterns (single-agent vs.\ multi-agent; centralized vs.\ decentralized coordination), and deployment settings (offline analysis vs.\ online interactive assistance; safety-critical vs.\ open-ended tasks). We discuss key design trade-offs -- latency vs.\ accuracy, autonomy vs.\ controllability, and capability vs.\ reliability -- and highlight how evaluation is complicated by non-determinism, long-horizon credit assignment, tool and environment variability, and hidden costs such as retries and context growth. Finally, we summarize measurement and benchmarking practices (task suites, human preference and utility metrics, success under constraints, robustness and security) and identify open challenges including verification and guardrails for tool actions, scalable memory and context management, interpretability of agent decisions, and reproducible evaluation under realistic workloads.
☆ K-EXAONE Technical Report
This technical report presents K-EXAONE, a large-scale multilingual language model developed by LG AI Research. K-EXAONE is built on a Mixture-of-Experts architecture with 236B total parameters, activating 23B parameters during inference. It supports a 256K-token context window and covers six languages: Korean, English, Spanish, German, Japanese, and Vietnamese. We evaluate K-EXAONE on a comprehensive benchmark suite spanning reasoning, agentic, general, Korean, and multilingual abilities. Across these evaluations, K-EXAONE demonstrates performance comparable to open-weight models of similar size. K-EXAONE, designed to advance AI for a better life, is positioned as a powerful proprietary AI foundation model for a wide range of industrial and research applications.
comment: 29 pages
☆ Yuan3.0 Flash: An Open Multimodal Large Language Model for Enterprise Applications
We introduce Yuan3.0 Flash, an open-source Mixture-of-Experts (MoE) MultiModal Large Language Model featuring 3.7B activated parameters and 40B total parameters, specifically designed to enhance performance on enterprise-oriented tasks while maintaining competitive capabilities on general-purpose tasks. To address the overthinking phenomenon commonly observed in Large Reasoning Models (LRMs), we propose Reflection-aware Adaptive Policy Optimization (RAPO), a novel RL training algorithm that effectively regulates overthinking behaviors. In enterprise-oriented tasks such as retrieval-augmented generation (RAG), complex table understanding, and summarization, Yuan3.0 Flash consistently achieves superior performance. Moreover, it also demonstrates strong reasoning capabilities in domains such as mathematics, science, etc., attaining accuracy comparable to frontier model while requiring only approximately 1/4 to 1/2 of the average tokens. Yuan3.0 Flash has been fully open-sourced to facilitate further research and real-world deployment: https://github.com/Yuan-lab-LLM/Yuan3.0.
☆ RelayGR: Scaling Long-Sequence Generative Recommendation via Cross-Stage Relay-Race Inference
Real-time recommender systems execute multi-stage cascades (retrieval, pre-processing, fine-grained ranking) under strict tail-latency SLOs, leaving only tens of milliseconds for ranking. Generative recommendation (GR) models can improve quality by consuming long user-behavior sequences, but in production their online sequence length is tightly capped by the ranking-stage P99 budget. We observe that the majority of GR tokens encode user behaviors that are independent of the item candidates, suggesting an opportunity to pre-infer a user-behavior prefix once and reuse it during ranking rather than recomputing it on the critical path. Realizing this idea at industrial scale is non-trivial: the prefix cache must survive across multiple pipeline stages before the final ranking instance is determined, the user population implies cache footprints far beyond a single device, and indiscriminate pre-inference would overload shared resources under high QPS. We present RelayGR, a production system that enables in-HBM relay-race inference for GR. RelayGR selectively pre-infers long-term user prefixes, keeps their KV caches resident in HBM over the request lifecycle, and ensures the subsequent ranking can consume them without remote fetches. RelayGR combines three techniques: 1) a sequence-aware trigger that admits only at-risk requests under a bounded cache footprint and pre-inference load, 2) an affinity-aware router that co-locates cache production and consumption by routing both the auxiliary pre-infer signal and the ranking request to the same instance, and 3) a memory-aware expander that uses server-local DRAM to capture short-term cross-request reuse while avoiding redundant reloads. We implement RelayGR on Huawei Ascend NPUs and evaluate it with real queries. Under a fixed P99 SLO, RelayGR supports up to 1.5$\times$ longer sequences and improves SLO-compliant throughput by up to 3.6$\times$.
☆ Explicit World Models for Reliable Human-Robot Collaboration AAAI-26
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
comment: Accepted to AAAI-26 Bridge Program B10: Making Embodied AI Reliable with Testing and Formal Verification
☆ Beyond Homophily: Community Search on Heterophilic Graphs
Community search aims to identify a refined set of nodes that are most relevant to a given query, supporting tasks ranging from fraud detection to recommendation. Unlike homophilic graphs, many real-world networks are heterophilic, where edges predominantly connect dissimilar nodes. Therefore, structural signals that once reflected smooth, low-frequency similarity now appear as sharp, high-frequency contrasts. However, both classical algorithms (e.g., k-core, k-truss) and recent ML-based models struggle to achieve effective community search on heterophilic graphs, where edge signs or semantics are generally unknown. Algorithm-based methods often return communities with mixed class labels, while GNNs, built on homophily, smooth away meaningful signals and blur community boundaries. Therefore, we propose Adaptive Community Search (AdaptCS), a unified framework featuring three key designs: (i) an AdaptCS Encoder that disentangles multi-hop and multi-frequency signals, enabling the model to capture both smooth (homophilic) and contrastive (heterophilic) relations; (ii) a memory-efficient low-rank optimization that removes the main computational bottleneck and ensures model scalability; and (iii) an Adaptive Community Score (ACS) that guides online search by balancing embedding similarity and topological relations. Extensive experiments on both heterophilic and homophilic benchmarks demonstrate that AdaptCS outperforms the best-performing baseline by an average of 11% in F1-score, retains robustness across heterophily levels, and achieves up to 2 orders of magnitude speedup.
☆ Digital Twin-Driven Communication-Efficient Federated Anomaly Detection for Industrial IoT
Anomaly detection is increasingly becoming crucial for maintaining the safety, reliability, and efficiency of industrial systems. Recently, with the advent of digital twins and data-driven decision-making, several statistical and machine-learning methods have been proposed. However, these methods face several challenges, such as dependence on only real sensor datasets, limited labeled data, high false alarm rates, and privacy concerns. To address these problems, we propose a suite of digital twin-integrated federated learning (DTFL) methods that enhance global model performance while preserving data privacy and communication efficiency. Specifically, we present five novel approaches: Digital Twin-Based Meta-Learning (DTML), Federated Parameter Fusion (FPF), Layer-wise Parameter Exchange (LPE), Cyclic Weight Adaptation (CWA), and Digital Twin Knowledge Distillation (DTKD). Each method introduces a unique mechanism to combine synthetic and real-world knowledge, balancing generalization with communication overhead. We conduct an extensive experiment using a publicly available cyber-physical anomaly detection dataset. For a target accuracy of 80%, CWA reaches the target in 33 rounds, FPF in 41 rounds, LPE in 48 rounds, and DTML in 87 rounds, whereas the standard FedAvg baseline and DTKD do not reach the target within 100 rounds. These results highlight substantial communication-efficiency gains (up to 62% fewer rounds than DTML and 31% fewer than LPE) and demonstrate that integrating DT knowledge into FL accelerates convergence to operationally meaningful accuracy thresholds for IIoT anomaly detection.
☆ LongDA: Benchmarking LLM Agents for Long-Document Data Analysis
We introduce LongDA, a data analysis benchmark for evaluating LLM-based agents under documentation-intensive analytical workflows. In contrast to existing benchmarks that assume well-specified schemas and inputs, LongDA targets real-world settings in which navigating long documentation and complex data is the primary bottleneck. To this end, we manually curate raw data files, long and heterogeneous documentation, and expert-written publications from 17 publicly available U.S. national surveys, from which we extract 505 analytical queries grounded in real analytical practice. Solving these queries requires agents to first retrieve and integrate key information from multiple unstructured documents, before performing multi-step computations and writing executable code, which remains challenging for existing data analysis agents. To support the systematic evaluation under this setting, we develop LongTA, a tool-augmented agent framework that enables document access, retrieval, and code execution, and evaluate a range of proprietary and open-source models. Our experiments reveal substantial performance gaps even among state-of-the-art models, highlighting the challenges researchers should consider before applying LLM agents for decision support in real-world, high-stakes analytical settings.
☆ Annealed Langevin Posterior Sampling (ALPS): A Rapid Algorithm for Image Restoration with Multiscale Energy Models
Solving inverse problems in imaging requires models that support efficient inference, uncertainty quantification, and principled probabilistic reasoning. Energy-Based Models (EBMs), with their interpretable energy landscapes and compositional structure, are well-suited for this task but have historically suffered from high computational costs and training instability. To overcome the historical shortcomings of EBMs, we introduce a fast distillation strategy to transfer the strengths of pre-trained diffusion models into multi-scale EBMs. These distilled EBMs enable efficient sampling and preserve the interpretability and compositionality inherent to potential-based frameworks. Leveraging EBM compositionality, we propose Annealed Langevin Posterior Sampling (ALPS) algorithm for Maximum-A-Posteriori (MAP), Minimum Mean Square Error (MMSE), and uncertainty estimates for inverse problems in imaging. Unlike diffusion models that use complex guidance strategies for latent variables, we perform annealing on static posterior distributions that are well-defined and composable. Experiments on image inpainting and MRI reconstruction demonstrate that our method matches or surpasses diffusion-based baselines in both accuracy and efficiency, while also supporting MAP recovery. Overall, our framework offers a scalable and principled solution for inverse problems in imaging, with potential for practical deployment in scientific and clinical settings. ALPS code is available at the GitHub repository \href{https://github.com/JyoChand/ALPS}{ALPS}.
☆ FlowPlan-G2P: A Structured Generation Framework for Transforming Scientific Papers into Patent Descriptions
Over 3.5 million patents are filed annually, with drafting patent descriptions requiring deep technical and legal expertise. Transforming scientific papers into patent descriptions is particularly challenging due to their differing rhetorical styles and stringent legal requirements. Unlike black-box text-to-text approaches that struggle to model structural reasoning and legal constraints, we propose FlowPlan-G2P, a novel framework that mirrors the cognitive workflow of expert drafters by reformulating this task into three stages: (1) Concept Graph Induction, extracting technical entities and relationships into a directed graph via expert-like reasoning; (2) Paragraph and Section Planning, reorganizing the graph into coherent clusters aligned with canonical patent sections; and (3) Graph-Conditioned Generation, producing legally compliant paragraphs using section-specific subgraphs and tailored prompts. Experiments demonstrate that FlowPlan-G2P significantly improves logical coherence and legal compliance over end-to-end LLM baselines. Our framework establishes a new paradigm for paper-to-patent generation and advances structured text generation for specialized domains.
☆ Reconstructing Item Characteristic Curves using Fine-Tuned Large Language Models
Traditional methods for determining assessment item parameters, such as difficulty and discrimination, rely heavily on expensive field testing to collect student performance data for Item Response Theory (IRT) calibration. This study introduces a novel approach that implicitly models these psychometric properties by fine-tuning Large Language Models (LLMs) to simulate student responses across a spectrum of latent abilities. Leveraging the Qwen-3 dense model series and Low-Rank Adaptation (LoRA), we train models to generate responses to multiple choice questions conditioned on discrete ability descriptors. We reconstruct the probability of a correct response as a function of student ability, effectively generating synthetic Item Characteristic Curves (ICCs) to estimate IRT parameters. Evaluation on a dataset of Grade 6 English Language Arts (ELA) items and the BEA 2024 Shared Task dataset demonstrates that this method competes with or outperforms baseline approaches. This simulation-based technique seems particularly effective at modeling item discrimination.
comment: 19 pages, 5 tables, 3 figures
☆ Orchestral AI: A Framework for Agent Orchestration
The rapid proliferation of LLM agent frameworks has forced developers to choose between vendor lock-in through provider-specific SDKs and complex multi-package ecosystems that obscure control flow and hinder reproducibility. Integrating tool calling across multiple LLM providers remains a core engineering challenge due to fragmented APIs, incompatible message formats, and inconsistent streaming and tool-calling behavior, making it difficult to build portable, reliable agent systems. We introduce Orchestral, a lightweight Python framework that provides a unified, type-safe interface for building LLM agents across major providers while preserving the simplicity required for scientific computing and production deployment. Orchestral defines a single universal representation for messages, tools, and LLM usage that operates seamlessly across providers, eliminating manual format translation and reducing framework-induced complexity. Automatic tool schema generation from Python type hints removes the need for handwritten descriptors while maintaining type safety across provider boundaries. A synchronous execution model with streaming support enables deterministic behavior, straightforward debugging, and real-time interaction without introducing server dependencies. The framework's modular architecture cleanly separates provider integration, tool execution, conversation orchestration, and user-facing interfaces, enabling extensibility without architectural entanglement. Orchestral supports advanced agent capabilities found in larger frameworks, including rich tool calling, context compaction, workspace sandboxing, user approval workflows, sub-agents, memory management, and MCP integration.
comment: 17 pages, 3 figures. For more information visit https://orchestral-ai.com
☆ Fact-Checking with Large Language Models via Probabilistic Certainty and Consistency
Large language models (LLMs) are increasingly used in applications requiring factual accuracy, yet their outputs often contain hallucinated responses. While fact-checking can mitigate these errors, existing methods typically retrieve external evidence indiscriminately, overlooking the model's internal knowledge and potentially introducing irrelevant noise. Moreover, current systems lack targeted mechanisms to resolve specific uncertainties in the model's reasoning. Inspired by how humans fact-check, we argue that LLMs should adaptively decide whether to rely on internal knowledge or initiate retrieval based on their confidence in a given claim. We introduce Probabilistic Certainty and Consistency (PCC), a framework that estimates factual confidence by jointly modeling an LLM's probabilistic certainty and reasoning consistency. These confidence signals enable an adaptive verification strategy: the model answers directly when confident, triggers targeted retrieval when uncertain or inconsistent, and escalates to deep search when ambiguity is high. Our confidence-guided routing mechanism ensures that retrieval is invoked only when necessary, improving both efficiency and reliability. Extensive experiments across three challenging benchmarks show that PCC achieves better uncertainty quantification than verbalized confidence and consistently outperforms strong LLM-based fact-checking baselines. Furthermore, we demonstrate that PCC generalizes well across various LLMs.
☆ LendNova: Towards Automated Credit Risk Assessment with Language Models
Credit risk assessment is essential in the financial sector, but has traditionally depended on costly feature-based models that often fail to utilize all available information in raw credit records. This paper introduces LendNova, the first practical automated end-to-end pipeline for credit risk assessment, designed to utilize all available information in raw credit records by leveraging advanced NLP techniques and language models. LendNova transforms risk modeling by operating directly on raw, jargon-heavy credit bureau text using a language model that learns task-relevant representations without manual feature engineering. By automatically capturing patterns and risk signals embedded in the text, it replaces manual preprocessing steps, reducing costs and improving scalability. Evaluation on real-world data further demonstrates its strong potential in accurate and efficient risk assessment. LendNova establishes a baseline for intelligent credit risk agents, demonstrating the feasibility of language models in this domain. It lays the groundwork for future research toward foundation systems that enable more accurate, adaptable, and automated financial decision-making.
☆ AI-exposed jobs deteriorated before ChatGPT
Public debate links worsening job prospects for AI-exposed occupations to the release of ChatGPT in late 2022. Using monthly U.S. unemployment insurance records, we measure occupation- and location-specific unemployment risk and find that risk rose in AI-exposed occupations beginning in early 2022, months before ChatGPT. Analyzing millions of LinkedIn profiles, we show that graduate cohorts from 2021 onward entered AI-exposed jobs at lower rates than earlier cohorts, with gaps opening before late 2022. Finally, from millions of university syllabi, we find that graduates taking more AI-exposed curricula had higher first-job pay and shorter job searches after ChatGPT. Together, these results point to forces pre-dating generative AI and to the ongoing value of LLM-relevant education.
☆ SimpleMem: Efficient Lifelong Memory for LLM Agents
To support reliable long-term interaction in complex environments, LLM agents require memory systems that efficiently manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) \textit{Semantic Structured Compression}, which applies entropy-aware filtering to distill unstructured interactions into compact, multi-view indexed memory units; (2) \textit{Recursive Memory Consolidation}, an asynchronous process that integrates related units into higher-level abstract representations to reduce redundancy; and (3) \textit{Adaptive Query-Aware Retrieval}, which dynamically adjusts retrieval scope based on query complexity to construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
☆ Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
☆ ModeX: Evaluator-Free Best-of-N Selection for Open-Ended Generation
Selecting a single high-quality output from multiple stochastic generations remains a fundamental challenge for large language models (LLMs), particularly in open-ended tasks where no canonical answer exists. While Best-of-N and self-consistency methods show that aggregating multiple generations can improve performance, existing approaches typically rely on external evaluators, reward models, or exact string-match voting, limiting their applicability and efficiency. We propose Mode Extraction (ModeX), an evaluator-free Best-of-N selection framework that generalizes majority voting to open-ended text generation by identifying the modal output representing the dominant semantic consensus among generated texts. ModeX constructs a similarity graph over candidate generations and recursively applies spectral clustering to select a representative centroid, without requiring additional inference or auxiliary models. We further instantiate this selection principle as ModeX--Lite, an improved version of ModeX with early pruning for efficiency. Across open-ended tasks--including text summarization, code generation, and mathematical reasoning--our approaches consistently outperform standard single- and multi-path baselines, providing a computationally efficient solution for robust open-ended text generation. Code is released in https://github.com/deeplearning-wisc/ModeX.
☆ Losses that Cook: Topological Optimal Transport for Structured Recipe Generation
Cooking recipes are complex procedures that require not only a fluent and factual text, but also accurate timing, temperature, and procedural coherence, as well as the correct composition of ingredients. Standard training procedures are primarily based on cross-entropy and focus solely on fluency. Building on RECIPE-NLG, we investigate the use of several composite objectives and present a new topological loss that represents ingredient lists as point clouds in embedding space, minimizing the divergence between predicted and gold ingredients. Using both standard NLG metrics and recipe-specific metrics, we find that our loss significantly improves ingredient- and action-level metrics. Meanwhile, the Dice loss excels in time/temperature precision, and the mixed loss yields competitive trade-offs with synergistic gains in quantity and time. A human preference analysis supports our finding, showing our model is preferred in 62% of the cases.
☆ Textual Explanations and Their Evaluations for Reinforcement Learning Policy
Understanding a Reinforcement Learning (RL) policy is crucial for ensuring that autonomous agents behave according to human expectations. This goal can be achieved using Explainable Reinforcement Learning (XRL) techniques. Although textual explanations are easily understood by humans, ensuring their correctness remains a challenge, and evaluations in state-of-the-art remain limited. We present a novel XRL framework for generating textual explanations, converting them into a set of transparent rules, improving their quality, and evaluating them. Expert's knowledge can be incorporated into this framework, and an automatic predicate generator is also proposed to determine the semantic information of a state. Textual explanations are generated using a Large Language Model (LLM) and a clustering technique to identify frequent conditions. These conditions are then converted into rules to evaluate their properties, fidelity, and performance in the deployed environment. Two refinement techniques are proposed to improve the quality of explanations and reduce conflicting information. Experiments were conducted in three open-source environments to enable reproducibility, and in a telecom use case to evaluate the industrial applicability of the proposed XRL framework. This framework addresses the limitations of an existing method, Autonomous Policy Explanation, and the generated transparent rules can achieve satisfactory performance on certain tasks. This framework also enables a systematic and quantitative evaluation of textual explanations, providing valuable insights for the XRL field.
☆ Enhancing Debugging Skills with AI-Powered Assistance: A Real-Time Tool for Debugging Support ICSE
Debugging is a crucial skill in programming education and software development, yet it is often overlooked in CS curricula. To address this, we introduce an AI-powered debugging assistant integrated into an IDE. It offers real-time support by analyzing code, suggesting breakpoints, and providing contextual hints. Using RAG with LLMs, program slicing, and custom heuristics, it enhances efficiency by minimizing LLM calls and improving accuracy. A three-level evaluation - technical analysis, UX study, and classroom tests - highlights its potential for teaching debugging.
comment: Accepted at ICSE SEET 2026, 6 pages, 2 figures
☆ GEM-Style Constraints for PEFT with Dual Gradient Projection in LoRA IEEE
Full fine-tuning of Large Language Models (LLMs) is computationally costly, motivating Continual Learning (CL) approaches that utilize parameter-efficient adapters. We revisit Gradient Episodic Memory (GEM) within the Low-Rank Adapter (LoRA) subspace and introduce I-GEM: a fixed-budget, GPU-resident dual projected-gradient approximation to GEM's quadratic projection. By constraining non-interference solely within the adapter parameters, I-GEM preserves GEM-like stability with orders-of-magnitude lower mean projection overhead. On a 3-task AG News split with induced domain drift, using GPT-2 (355M) and LoRA ($r=8$), I-GEM matches GEM's average accuracy (within $\sim\!0.04$ pts) and outperforms A-GEM by $\sim\!1.4$ pts. Crucially, it reduces projection time vs.\ GEM by a factor of $\sim\!10^3$. These results suggest that applying GEM constraints in the LoRA subspace is a practical pathway for continual learning at the LLM scale.
comment: Work accepted to the NSF REU Symposium at the 2025 IEEE International Conference on Data Mining (ICDM). Correspondence to: betekmen@uncg.edu
☆ The Rise of Agentic Testing: Multi-Agent Systems for Robust Software Quality Assurance
Software testing has progressed toward intelligent automation, yet current AI-based test generators still suffer from static, single-shot outputs that frequently produce invalid, redundant, or non-executable tests due to the lack of execution aware feedback. This paper introduces an agentic multi-model testing framework a closed-loop, self-correcting system in which a Test Generation Agent, an Execution and Analysis Agent, and a Review and Optimization Agent collaboratively generate, execute, analyze, and refine tests until convergence. By using sandboxed execution, detailed failure reporting, and iterative regeneration or patching of failing tests, the framework autonomously improves test quality and expands coverage. Integrated into a CI/CD-compatible pipeline, it leverages reinforcement signals from coverage metrics and execution outcomes to guide refinement. Empirical evaluations on microservice based applications show up to a 60% reduction in invalid tests, 30% coverage improvement, and significantly reduced human effort compared to single-model baselines demonstrating that multi-agent, feedback-driven loops can evolve software testing into an autonomous, continuously learning quality assurance ecosystem for self-healing, high-reliability codebases.
comment: 11 Pages
☆ mHC-GNN: Manifold-Constrained Hyper-Connections for Graph Neural Networks
Graph Neural Networks (GNNs) suffer from over-smoothing in deep architectures and expressiveness bounded by the 1-Weisfeiler-Leman (1-WL) test. We adapt Manifold-Constrained Hyper-Connections (\mhc)~\citep{xie2025mhc}, recently proposed for Transformers, to graph neural networks. Our method, mHC-GNN, expands node representations across $n$ parallel streams and constrains stream-mixing matrices to the Birkhoff polytope via Sinkhorn-Knopp normalization. We prove that mHC-GNN exhibits exponentially slower over-smoothing (rate $(1-γ)^{L/n}$ vs.\ $(1-γ)^L$) and can distinguish graphs beyond 1-WL. Experiments on 10 datasets with 4 GNN architectures show consistent improvements. Depth experiments from 2 to 128 layers reveal that standard GNNs collapse to near-random performance beyond 16 layers, while mHC-GNN maintains over 74\% accuracy even at 128 layers, with improvements exceeding 50 percentage points at extreme depths. Ablations confirm that the manifold constraint is essential: removing it causes up to 82\% performance degradation. Code is available at \href{https://github.com/smlab-niser/mhc-gnn}{https://github.com/smlab-niser/mhc-gnn}
☆ VocalBridge: Latent Diffusion-Bridge Purification for Defeating Perturbation-Based Voiceprint Defenses
The rapid advancement of speech synthesis technologies, including text-to-speech (TTS) and voice conversion (VC), has intensified security and privacy concerns related to voice cloning. Recent defenses attempt to prevent unauthorized cloning by embedding protective perturbations into speech to obscure speaker identity while maintaining intelligibility. However, adversaries can apply advanced purification techniques to remove these perturbations, recover authentic acoustic characteristics, and regenerate cloneable voices. Despite the growing realism of such attacks, the robustness of existing defenses under adaptive purification remains insufficiently studied. Most existing purification methods are designed to counter adversarial noise in automatic speech recognition (ASR) systems rather than speaker verification or voice cloning pipelines. As a result, they fail to suppress the fine-grained acoustic cues that define speaker identity and are often ineffective against speaker verification attacks (SVA). To address these limitations, we propose Diffusion-Bridge (VocalBridge), a purification framework that learns a latent mapping from perturbed to clean speech in the EnCodec latent space. Using a time-conditioned 1D U-Net with a cosine noise schedule, the model enables efficient, transcript-free purification while preserving speaker-discriminative structure. We further introduce a Whisper-guided phoneme variant that incorporates lightweight temporal guidance without requiring ground-truth transcripts. Experimental results show that our approach consistently outperforms existing purification methods in recovering cloneable voices from protected speech. Our findings demonstrate the fragility of current perturbation-based defenses and highlight the need for more robust protection mechanisms against evolving voice-cloning and speaker verification threats.
☆ Evaluating the Diagnostic Classification Ability of Multimodal Large Language Models: Insights from the Osteoarthritis Initiative
Multimodal large language models (MLLMs) show promising performance on medical visual question answering (VQA) and report generation, but these generation and explanation abilities do not reliably transfer to disease-specific classification. We evaluated MLLM architectures on knee osteoarthritis (OA) radiograph classification, which remains underrepresented in existing medical MLLM benchmarks, even though knee OA affects an estimated 300 to 400 million people worldwide. Through systematic ablation studies manipulating the vision encoder, the connector, and the large language model (LLM) across diverse training strategies, we measured each component's contribution to diagnostic accuracy. In our classification task, a trained vision encoder alone could outperform full MLLM pipelines in classification accuracy and fine-tuning the LLM provided no meaningful improvement over prompt-based guidance. And LoRA fine-tuning on a small, class-balanced dataset (500 images) gave better results than training on a much larger but class-imbalanced set (5,778 images), indicating that data balance and quality can matter more than raw scale for this task. These findings suggest that for domain-specific medical classification, LLMs are more effective as interpreters and report generators rather than as primary classifiers. Therefore, the MLLM architecture appears less suitable for medical image diagnostic classification tasks that demand high certainty. We recommend prioritizing vision encoder optimization and careful dataset curation when developing clinically applicable systems.
☆ ModeX: Evaluator-Free Best-of-N Selection for Open-Ended Generation
Selecting a single high-quality output from multiple stochastic generations remains a fundamental challenge for large language models (LLMs), particularly in open-ended tasks where no canonical answer exists. While Best-of-N and self-consistency methods show that aggregating multiple generations can improve performance, existing approaches typically rely on external evaluators, reward models, or exact string-match voting, limiting their applicability and efficiency. We propose Mode Extraction (ModeX), an evaluator-free Best-of-N selection framework that generalizes majority voting to open-ended text generation by identifying the modal output representing the dominant semantic consensus among generated texts. ModeX constructs a similarity graph over candidate generations and recursively applies spectral clustering to select a representative centroid, without requiring additional inference or auxiliary models. We further instantiate this selection principle as ModeX-Lite, an improved version of ModeX with early pruning for efficiency. Across open-ended tasks -- including text summarization, code generation, and mathematical reasoning -- our approaches consistently outperform standard single- and multi-path baselines, providing a computationally efficient solution for robust open-ended text generation. Code is released in https://github.com/deeplearning-wisc/ModeX.
♻ ☆ EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
Speech emotion recognition (SER) systems are constrained by existing datasets that typically cover only 6-10 basic emotions, lack scale and diversity, and face ethical challenges when collecting sensitive emotional states. We introduce EMONET-VOICE, a comprehensive resource addressing these limitations through two components: (1) EmoNet-Voice Big, a 5,000-hour multilingual pre-training dataset spanning 40 fine-grained emotion categories across 11 voices and 4 languages, and (2) EmoNet-Voice Bench, a rigorously validated benchmark of 4,7k samples with unanimous expert consensus on emotion presence and intensity levels. Using state-of-the-art synthetic voice generation, our privacy-preserving approach enables ethical inclusion of sensitive emotions (e.g., pain, shame) while maintaining controlled experimental conditions. Each sample underwent validation by three psychology experts. We demonstrate that our Empathic Insight models trained on our synthetic data achieve strong real-world dataset generalization, as tested on EmoDB and RAVDESS. Furthermore, our comprehensive evaluation reveals that while high-arousal emotions (e.g., anger: 95% accuracy) are readily detected, the benchmark successfully exposes the difficulty of distinguishing perceptually similar emotions (e.g., sadness vs. distress: 63% discrimination), providing quantifiable metrics for advancing nuanced emotion AI. EMONET-VOICE establishes a new paradigm for large-scale, ethically-sourced, fine-grained SER research.
♻ ☆ SpatialBench: Can Agents Analyze Real-World Spatial Biology Data? NeurIPS 2024
Spatial transcriptomics assays are rapidly increasing in scale and complexity, making computational analysis a major bottleneck in biological discovery. Although frontier AI agents have improved dramatically at software engineering and general data analysis, it remains unclear whether they can extract biological insight from messy, real-world spatial datasets. We introduce SpatialBench, a benchmark of 146 verifiable problems derived from practical spatial analysis workflows spanning five spatial technologies and seven task categories. Each problem provides a snapshot of experimental data immediately prior to an analysis step and a deterministic grader that evaluates recovery of a key biological result. Benchmark data on frontier models shows that base model accuracy remains low (20-38% across model families), with strong model-task and model-platform interactions. Harness design has a large empirical effect on performance, indicating that tools, prompts, control flow, and execution environment should be evaluated and improved as first-class objects. SpatialBench serves both as a measurement tool and a diagnostic lens for developing agents that can interact with real spatial datasets faithfully, transparently, and reproducibly.
comment: 10 pages, 9 figures, 4 tables; NeurIPS 2024 format
♻ ☆ Improving Action Smoothness for a Cascaded Online Learning Flight Control System
This paper aims to improve the action smoothness of a cascaded online learning flight control system. Although the cascaded structure is widely used in flight control design, its stability can be compromised by oscillatory control actions, which poses challenges for practical engineering applications. To address this issue, we introduce an online temporal smoothness technique and a low-pass filter to reduce the amplitude and frequency of the control actions. Fast Fourier Transform (FFT) is used to analyze policy performance in the frequency domain. Simulation results demonstrate the improvements achieved by the two proposed techniques.
♻ ☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
The growth of long-context Large Language Models (LLMs) significantly increases memory and bandwidth pressure during autoregressive decoding due to the expanding Key-Value (KV) cache. While accuracy-preserving KV-cache quantization (e.g., 4-bit or 2-bit) reduces memory footprint, existing systems decode inefficiently by relying solely on CUDA cores, underutilizing Tensor Cores-the dominant compute resource on GPUs. We present BitDecoding, the first inference system to efficiently decode low-bit KV caches by cooperatively leveraging CUDA cores and Tensor Cores. BitDecoding smartly induces Tensor-Core-friendly layouts, introduces warp-level dequantization parallelism, and provides unified system support through query transformation, high-performance tensor- and channel-wise quantization, and a software-pipelined dequantization kernel enabling mixed-precision execution. Architecture-aware optimizations further leverage Hopper's warpgroup tensor instructions and Blackwell's NVFP4 (MXFP4) tensor formats. Evaluated on Blackwell, Hopper, and Ampere GPUs, BitDecoding achieves an average 7.5x decoding speedup over FP16 FlashDecoding-v2, up to 8.6x on Blackwell with NVFP4, and up to 4.3x over state-of-the-art approaches. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x. BitDecoding is open-sourced at https://github.com/OpenBitSys/BitDecoding.
♻ ☆ Anytime-Valid Answer Sufficiency Certificates for LLM Generation via Sequential Information Lift
We introduce Sequential-EDFL (Empirical Dynamic Formal Lift), which applies anytime-valid sequential testing to language model generation stopping. Our approach tracks information lift, defined as the log-likelihood ratio between the full model and deliberately weakened "skeleton" baselines, using self-normalized empirical-Bernstein e-processes that provide formal delta-level error control regardless of stopping time. This delta guarantee controls premature stopping when information lift is insufficient relative to the skeleton, and it does not imply delta control of factual incorrectness or hallucinations. We handle unknown centering through online mean estimation, combine multiple parameters via mixture e-processes, and support adaptive resets under distributional drift. On six benchmarks, Sequential-EDFL reduces generation length by 22 to 28 percent relative to sequential baselines while maintaining delta-level control with 12 percent computational overhead. We introduce automated skeletons (distilled submodels and randomized logits) and show robustness across skeleton families. Composing EDFL with a lightweight correctness gate (sentence boundaries plus a verifier) improves end-task correctness while preserving anytime-valid guarantees by only delaying stopping. Our certificates control information sufficiency, not factual correctness. Specifically, 10.9 percent of stopped sequences remain incorrect even with the gate (13.2 to 22.7 percent without it). EDFL serves as a first-stage filter that can reduce verification burden: when applied to stopped sequences, the gate validates 83 percent of stops, requiring full verification only for the remaining 17 percent, plus all non-stopped sequences. EDFL is not a standalone solution for safety-critical domains.
♻ ☆ Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
♻ ☆ Causal Consistency Regularization: Training Verifiably Sensitive Reasoning in Large Language Models
Large language models can produce correct answers while relying on flawed reasoning traces, partly because common training objectives reward final-answer correctness rather than faithful intermediate reasoning. This undermines trustworthiness in high-stakes settings. We propose Counterfactual Sensitivity Regularization (CSR), a training paradigm that improves reasoning faithfulness by enforcing causal consistency between reasoning steps and outcomes. CSR automatically applies operator-level interventions to reasoning traces, such as swapping "+" with "-", to generate minimally perturbed counterfactual rationales, and penalizes the model when these logically invalid traces still lead to the original answer. Our implementation is efficient, adding about 9 percent training overhead via a warm-start curriculum and token-subset optimization. We evaluate faithfulness using Counterfactual Outcome Sensitivity (COS), which measures how appropriately answers change under logical perturbations. Across arithmetic (GSM8K), logical deduction (ProofWriter), multi-hop question answering (HotpotQA), and code generation (MBPP), CSR yields improved accuracy versus faithfulness trade-offs, establishing a new Pareto frontier. CSR improves faithfulness over standard fine-tuning and process supervision by up to 70 percentage points, and transfers across model families with 94.2 to 96.7 percent success in structured domains. CSR also complements inference-time methods such as self-consistency. Overall, CSR offers a practical route to more reliable reasoning in structured domains, including mathematics, formal logic, and code, where operators are well-defined and verifiable, covering an estimated 40 to 60 percent of high-stakes reasoning deployments.
♻ ☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
♻ ☆ Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model's parameters. The core idea is to liberate the latent vectors of abstract concepts from traditional static semantic representations, allowing them to be continuously updated through environmental interaction and reinforcement feedback. We construct a dual-loop architecture: the behavior loop adjusts action preferences based on environmental rewards, while the language loop updates the external latent vectors by reflecting on the semantic embeddings of generated text. Together, these mechanisms allow agents to develop stable and disentangled strategic styles over long-horizon multi-round interactions. Experiments show that agents' latent spaces exhibit clear convergence trajectories under reflection-driven updates, along with structured shifts at critical moments. Moreover, the system demonstrates an emergent ability to implicitly infer and continually adapt to emotional agents, even without shared rewards. These results indicate that, without modifying model parameters, an external latent space can provide language agents with a low-cost, scalable, and interpretable form of abstract strategic representation.
comment: 17 pages, 5 figures. Code available at https://github.com/wltang-dev/Latent-Strategy-RL-Agent
♻ ☆ Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
♻ ☆ CangLing-KnowFlow: A Unified Knowledge-and-Flow-fused Agent for Comprehensive Remote Sensing Applications
The automated and intelligent processing of massive remote sensing (RS) datasets is critical in Earth observation (EO). Existing automated systems are normally task-specific, lacking a unified framework to manage diverse, end-to-end workflows--from data preprocessing to advanced interpretation--across diverse RS applications. To address this gap, this paper introduces CangLing-KnowFlow, a unified intelligent agent framework that integrates a Procedural Knowledge Base (PKB), Dynamic Workflow Adjustment, and an Evolutionary Memory Module. The PKB, comprising 1,008 expert-validated workflow cases across 162 practical RS tasks, guides planning and substantially reduces hallucinations common in general-purpose agents. During runtime failures, the Dynamic Workflow Adjustment autonomously diagnoses and replans recovery strategies, while the Evolutionary Memory Module continuously learns from these events, iteratively enhancing the agent's knowledge and performance. This synergy enables CangLing-KnowFlow to adapt, learn, and operate reliably across diverse, complex tasks. We evaluated CangLing-KnowFlow on the KnowFlow-Bench, a novel benchmark of 324 workflows inspired by real-world applications, testing its performance across 13 top Large Language Model (LLM) backbones, from open-source to commercial. Across all complex tasks, CangLing-KnowFlow surpassed the Reflexion baseline by at least 4% in Task Success Rate. As the first most comprehensive validation along this emerging field, this research demonstrates the great potential of CangLing-KnowFlow as a robust, efficient, and scalable automated solution for complex EO challenges by leveraging expert knowledge (Knowledge) into adaptive and verifiable procedures (Flow).
♻ ☆ FaithLens: Detecting and Explaining Faithfulness Hallucination
Recognizing whether outputs from large language models (LLMs) contain faithfulness hallucination is crucial for real-world applications, e.g., retrieval-augmented generation and summarization. In this paper, we introduce FaithLens, a cost-efficient and effective faithfulness hallucination detection model that can jointly provide binary predictions and corresponding explanations to improve trustworthiness. To achieve this, we first synthesize training data with explanations via advanced LLMs and apply a well-defined data filtering strategy to ensure label correctness, explanation quality, and data diversity. Subsequently, we fine-tune the model on these well-curated training data as a cold start and further optimize it with rule-based reinforcement learning, using rewards for both prediction correctness and explanation quality. Results on 12 diverse tasks show that the 8B-parameter FaithLens outperforms advanced models such as GPT-4.1 and o3. Also, FaithLens can produce high-quality explanations, delivering a distinctive balance of trustworthiness, efficiency, and effectiveness.
♻ ☆ UCO: A Multi-Turn Interactive Reinforcement Learning Method for Adaptive Teaching with Large Language Models
Large language models (LLMs) are shifting from answer providers to intelligent tutors in educational settings, yet current supervised fine-tuning methods only learn surface teaching patterns without dynamic adaptation capabilities. Recent reinforcement learning approaches address this limitation but face two critical challenges. First, they evaluate teaching effectiveness solely based on whether students produce correct outputs, unable to distinguish whether students genuinely understand or echo teacher-provided answers during interaction. Second, they cannot perceive students' evolving cognitive states in real time through interactive dialogue, thus failing to adapt teaching strategies to match students' cognitive levels dynamically. We propose the Unidirectional Cognitive Optimization (UCO) method to address these challenges. UCO uses a multi-turn interactive reinforcement learning paradigm where the innovation lies in two synergistic reward functions: the Progress Reward captures students' cognitive advancement, evaluating whether students truly transition from confusion to comprehension, while the Scaffold Reward dynamically identifies each student's Zone of Proximal Development (ZPD), encouraging teachers to maintain productive teaching within this zone. We evaluate UCO by comparing it against 11 baseline models on BigMath and MathTutorBench benchmarks. Experimental results demonstrate that our UCO model outperforms all models of equivalent scale and achieves performance comparable to advanced closed-source models. The code and data are available at https://github.com/Mind-Lab-ECNU/UCO.
♻ ☆ Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
♻ ☆ Discovering Association Rules in High-Dimensional Small Tabular Data
Association Rule Mining (ARM) aims to discover patterns between features in datasets in the form of propositional rules, supporting both knowledge discovery and interpretable machine learning in high-stakes decision-making. However, in high-dimensional settings, rule explosion and computational overhead render popular algorithmic approaches impractical without effective search space reduction, challenges that propagate to downstream tasks. Neurosymbolic methods, such as Aerial+, have recently been proposed to address the rule explosion in ARM. While they tackle the high dimensionality of the data, they also inherit limitations of neural networks, particularly reduced performance in low-data regimes. This paper makes three key contributions to association rule discovery in high-dimensional tabular data. First, we empirically show that Aerial+ scales one to two orders of magnitude better than state-of-the-art algorithmic and neurosymbolic baselines across five real-world datasets. Second, we introduce the novel problem of ARM in high-dimensional, low-data settings, such as gene expression data from the biomedicine domain with around 18k features and 50 samples. Third, we propose two fine-tuning approaches to Aerial+ using tabular foundation models. Our proposed approaches are shown to significantly improve rule quality on five real-world datasets, demonstrating their effectiveness in low-data, high-dimensional scenarios.
comment: Published version is available at https://ceur-ws.org/Vol-4125/paper_26.pdf
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Foundation models on the bridge: Semantic hazard detection and safety maneuvers for maritime autonomy with vision-language models
The draft IMO MASS Code requires autonomous and remotely supervised maritime vessels to detect departures from their operational design domain, enter a predefined fallback that notifies the operator, permit immediate human override, and avoid changing the voyage plan without approval. Meeting these obligations in the alert-to-takeover gap calls for a short-horizon, human-overridable fallback maneuver. Classical maritime autonomy stacks struggle when the correct action depends on meaning (e.g., diver-down flag means people in the water, fire close by means hazard). We argue (i) that vision-language models (VLMs) provide semantic awareness for such out-of-distribution situations, and (ii) that a fast-slow anomaly pipeline with a short-horizon, human-overridable fallback maneuver makes this practical in the handover window. We introduce Semantic Lookout, a camera-only, candidate-constrained VLM fallback maneuver selector that selects one cautious action (or station-keeping) from water-valid, world-anchored trajectories under continuous human authority. On 40 harbor scenes we measure per-call scene understanding and latency, alignment with human consensus (model majority-of-three voting), short-horizon risk-relief on fire hazard scenes, and an on-water alert->fallback maneuver->operator handover. Sub-10 s models retain most of the awareness of slower state-of-the-art models. The fallback maneuver selector outperforms geometry-only baselines and increases standoff distance on fire scenes. A field run verifies end-to-end operation. These results support VLMs as semantic fallback maneuver selectors compatible with the draft IMO MASS Code, within practical latency budgets, and motivate future work on domain-adapted, hybrid autonomy that pairs foundation-model semantics with multi-sensor bird's-eye-view perception and short-horizon replanning. Website: kimachristensen.github.io/bridge_policy
comment: 17 pages without bibliography or appendix. The main paper has 16 figures. Paper webpage can be found at https://kimachristensen.github.io/bridge_policy/
♻ ☆ Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints
Large Language Models (LLMs) power many modern applications, but their inference procedure poses unique scheduling challenges: the Key-Value (KV) cache grows dynamically during response generation, and memory overflow triggers eviction that can cascade into system-wide failures. Even when memory capacity exceeds the theoretical requirement, conventional scheduling algorithms fail because they do not account for this dynamic memory growth -- a system that should be stable can become unstable under poor scheduling. This paper formulates LLM inference optimization as a multi-stage online scheduling problem. We develop a fluid dynamics approximation to establish a tractable benchmark and derive the Waiting for Accumulated Inference Threshold (WAIT) algorithm. WAIT uses threshold-based batching to prevent eviction by keeping the system near load balance, achieving near-optimal throughput when output lengths are known. For practical settings where output lengths are unknown at arrival, we introduce Nested WAIT. Rather than predicting output lengths, Nested WAIT classifies prompts on-the-fly: short prompts complete early and exit, while longer prompts naturally advance to later segments. A safety buffer provides high-probability protection against memory overflow with only logarithmic overhead. Theoretical analysis establishes near-optimal performance in the asymptotic regime. Experiments on Llama-7B with an A100 GPU demonstrate that our approach achieves superior throughput and reduced latency compared to vLLM and Sarathi. This work applies operations research principles to establish a theoretical framework for LLM deployment under memory constraints.
comment: 49 pages, 18 figures
♻ ☆ SwiftEmbed: Ultra-Fast Text Embeddings via Static Token Lookup for Real-Time Applications
We present a static token lookup methodology for text embedding generation that achieves 1.12 ms p50 latency for single text embeddings while maintaining 60.6 MTEB average score across 8 representative tasks, corresponding to 89% of contextual model quality. The Rust implementation delivers 50,000 requests per second throughput through static embedding lookup, optimized mean pooling, and zero-copy IEEE754 binary serialization. Evaluation demonstrates exceptional duplicate detection performance (90.1% AP), strong semantic similarity (76.1% Spearman correlation), and domain-specific performance ranging from 75% to 131% of baseline across specialized domains. The system enables real-time embedding applications where sub-5ms latency is critica
♻ ☆ Japanese Children's Riddles as a Benchmark for Machine Insight and Metacognition
Benchmark saturation and contamination have obscured genuine advances in reasoning for large language models (LLMs). We introduce NazoNazo Benchmark, a low-cost, renewable test built from Japanese children's riddles that demand insight-based reasoning, or representational shifts rather than knowledge recall. We evaluate 38 frontier LLMs (2023-2025) on 201 riddles and a 120-item human-comparison subset, finding that non-reasoning models average 7.6%, reasoning models 17.6%, and humans ~53% accuracy. Importantly, thought-log analysis reveals that reasoning in Japanese did not necessarily improve accuracy, indicating that language understanding alone is insufficient for insight reasoning. Notably, models sometimes generated correct candidates but failed to endorse them, suggesting weak metacognitive control rather than a lack of knowledge. This "verification failure" indicates that CoT outputs can reflect genuine intermediate reasoning states rather than post-hoc rationalizations. By exposing this metacognitive bottleneck - models' inability to recognize when they are right - the benchmark provides a scalable, cross-linguistic testbed for studying machine insight, confidence calibration, and self-evaluation. NazoNazo Benchmark thus offers not only a fresh challenge to current LLMs but also a concrete target for developing AI metacognitive psychology and enhancing machine Aha! capability.
♻ ☆ A Universal and Robust Framework for Multiple Gas Recognition Based-on Spherical Normalization-Coupled Mahalanobis Algorithm
Electronic nose (E-nose) systems face two interconnected challenges in open-set gas recognition: feature distribution shift caused by signal drift and decision boundary failure induced by unknown gas interference. Existing methods predominantly rely on Euclidean distance or conventional classifiers, failing to account for anisotropic feature distributions and dynamic signal intensity variations. To address these issues, this study proposes the Spherical Normalization coupled Mahalanobis (SNM) module, a universal post-processing module for open-set gas recognition. First, it achieves geometric decoupling through cascaded batch and L2 normalization, projecting features onto a unit hypersphere to eliminate signal intensity fluctuations. Second, it utilizes Mahalanobis distance to construct adaptive ellipsoidal decision boundaries that conform to the anisotropic feature geometry. The architecture-agnostic SNM-Module seamlessly integrates with mainstream backbones including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experiments on the public Vergara dataset demonstrate that the Transformer+SNM configuration achieves near-theoretical-limit performance in discriminating among multiple target gases, with an AUROC of 0.9977 and an unknown gas detection rate of 99.57% at 5% false positive rate, significantly outperforming state-of-the-art methods with a 3.0% AUROC improvement and 91.0% standard deviation reduction compared to Class Anchor Clustering (CAC). The module maintains exceptional robustness across five sensor positions, with standard deviations below 0.0028. This work effectively addresses the critical challenge of simultaneously achieving high accuracy and high stability in open-set gas recognition, providing solid support for industrial E-nose deployment.
comment: 27 pages, 8 figures, 4 tables
♻ ☆ Coward: Collision-based Watermark for Proactive Federated Backdoor Detection
Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where a small number of malicious clients can upload poisoned updates to compromise the federated global model. Existing backdoor detection techniques fall into two categories, passive and proactive, depending on whether the server proactively intervenes in the training process. However, both of them have inherent limitations in practice: passive detection methods are disrupted by common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive detection methods are misled by an inevitable out-of-distribution (OOD) bias because they rely on backdoor coexistence effects. To address these issues, we introduce a novel proactive detection method dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. Correspondingly, we modify the federated global model by injecting a carefully designed backdoor-collided watermark, implemented via regulated dual-mapping learning on OOD data. This design not only enables an inverted detection paradigm compared to existing proactive methods, thereby naturally counteracting the adverse impact of OOD prediction bias, but also introduces a low-disruptive training intervention that inherently limits the strength of OOD bias, leading to significantly fewer misjudgments. Extensive experiments on benchmark datasets show that Coward achieves state-of-the-art detection performance, effectively alleviates OOD prediction bias, and remains robust against potential adaptive attacks. The code for our method is available at https://github.com/still2009/cowardFL.
comment: 13-page main body and 4-page appendix. Currently under review
♻ ☆ Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
♻ ☆ Deployability-Centric Infrastructure-as-Code Generation: Fail, Learn, Refine, and Succeed through LLM-Empowered DevOps Simulation
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions. However, current evaluation focuses on syntactic correctness while ignoring deployability, the critical measure of the utility of IaC configuration files. Six state-of-the-art LLMs performed poorly on deployability, achieving only 20.8$\sim$30.2% deployment success rate on the first attempt. In this paper, we construct DPIaC-Eval, the first deployability-centric IaC template benchmark consisting of 153 real-world scenarios cross 58 unique services. Also, we propose an LLM-based deployability-centric framework, dubbed IaCGen, that uses iterative feedback mechanism encompassing format verification, syntax checking, and live deployment stages, thereby closely mirroring the real DevOps workflows. Results show that IaCGen can make 54.6$\sim$91.6% generated IaC templates from all evaluated models deployable in the first 10 iterations. Additionally, human-in-the-loop feedback that provide direct guidance for the deployability errors, can further boost the performance to over 90% passItr@25 on all evaluated LLMs. Furthermore, we explore the trustworthiness of the generated IaC templates on user intent alignment and security compliance. The poor performance (25.2% user requirement coverage and 8.4% security compliance rate) indicates a critical need for continued research in this domain.
comment: Accepted by FSE 2026
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAILab/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAILab/multimodal-adversarial-training
♻ ☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
♻ ☆ Emotion-Coherent Reasoning for Multimodal LLMs via Emotional Rationale Verifier
The recent advancement of Multimodal Large Language Models (MLLMs) is transforming human-computer interaction (HCI) from surface-level exchanges into more nuanced and emotionally intelligent communication. To realize this shift, emotion understanding becomes essential allowing systems to capture subtle cues underlying user intent. Furthermore, providing faithful explanations for predicted emotions is crucial to ensure interpretability and build user trust. However, current MLLM-based methods often generate emotion explanations that diverge from the target labels and sometimes even contradict their own predicted emotions. This inconsistency poses a critical risk for misunderstanding and erodes reliability in interactive settings. To address this, we propose a novel approach: the Emotional Rationale Verifier (ERV) and an Explanation Reward. Our method guides the model to produce reasoning that is explicitly consistent with the target emotion during multimodal emotion recognition without modifying the model architecture or requiring additional paired video-description annotations. Our method significantly improves faithful explanation-prediction consistency and explanation emotion accuracy on the MAFW and DFEW datasets. Through extensive experiments and human evaluations, we show that our approach not only enhances alignment between explanation and prediction but also empowers MLLMs to deliver emotionally coherent, trustworthy interactions, marking a key step toward truly human-like HCI systems.
comment: 15 pages, 11 figures
♻ ☆ One Tool Is Enough: Reinforcement Learning for Repository-Level LLM Agents
Locating the files and functions requiring modification in large open-source software (OSS) repositories is challenging due to their scale and structural complexity. Existing large language model (LLM)-based methods typically treat this as a repository-level retrieval task and rely on multiple auxiliary tools, which overlook code execution logic and complicate model control. We propose RepoNavigator, an LLM agent equipped with a single execution-aware tool-jumping to the definition of an invoked symbol. This unified design reflects the actual flow of code execution while simplifying tool manipulation. RepoNavigator is trained end-to-end via Reinforcement Learning (RL) directly from a pretrained model, without any closed-source distillation. Experiments demonstrate that RL-trained RepoNavigator achieves state-of-the-art performance, with the 7B model outperforming 14B baselines, the 14B model surpassing 32B competitors, and even the 32B model exceeding closed-source models such as Claude-3.7. These results confirm that integrating a single, structurally grounded tool with RL training provides an efficient and scalable solution for repository-level issue localization.
♻ ☆ TravelBench: A Broader Real-World Benchmark for Multi-Turn and Tool-Using Travel Planning
Travel planning is a natural real-world task to test large language models (LLMs) planning and tool-use abilities. Although prior work has studied LLM performance on travel planning, existing settings still differ from real-world needs, mainly due to limited domain coverage, insufficient modeling of users' implicit preferences in multi-turn conversations, and a lack of clear evaluation of agents' capability boundaries. To mitigate these gaps, we propose \textbf{TravelBench}, a benchmark for fully real-world travel planning. We collect user queries, user profile and tools from real scenarios, and construct three subtasks-Single-Turn, Multi-Turn, and Unsolvable-to evaluate agent's three core capabilities in real settings: (1) solving problems autonomously, (2) interacting with users over multiple turns to refine requirements, and (3) recognizing the limits of own abilities. To enable stable tool invocation and reproducible evaluation, we cache real tool-call results and build a sandbox environment that integrates ten travel-related tools. Agents can combine these tools to solve most practical travel planning problems, and our systematic verification demonstrates the stability of the proposed benchmark. We further evaluate multiple LLMs on TravelBench and conduct an in-depth analysis of their behaviors and performance. TravelBench provides a practical and reproducible evaluation benchmark to advance research on LLM agents for travel planning.\footnote{Our code and data will be available after internal review.
comment: In progress
♻ ☆ CMDAR: A Chinese Multi-scene Dynamic Audio Reasoning Benchmark with Diverse Challenges
The ability to reason from audio, including speech, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and English audio data and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce CMDAR, a Chinese benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. CMDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on CMDAR and observe that they exhibit limitations in complex reasoning tasks. In CMDAR-main, Qwen2.5-Omni achieves 76.67% accuracy, whereas GPT-4o Audio reaches 68.47%. However, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice with multiple audios and open-ended tasks. And we provide detail analysis corresponding suggestions for the future development of large audio language models.
comment: 25 pages, 7 figures
♻ ☆ Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
♻ ☆ AI Prior Art Search: Semantic Clusters and Evaluation Infrastructure
The key to success in automating prior art search in patent research using artificial intelligence (AI) lies in developing large datasets for machine learning (ML) and ensuring their availability. This work is dedicated to providing a comprehensive solution to the problem of creating infrastructure for research in this field, including datasets and tools for calculating search quality criteria. The paper discusses the concept of semantic clusters of patent documents that determine the state of the art in a given subject, as proposed by the authors. A definition of such semantic clusters is also provided. Prior art search is presented as the task of identifying elements within a semantic cluster of patent documents in the subject area specified by the document under consideration. A generator of user-configurable datasets for ML, based on collections of U.S. and Russian patent documents, is described. The dataset generator creates a database of links to documents in semantic clusters. Then, based on user-defined parameters, it forms a dataset of semantic clusters in JSON format for ML. A collection of publicly available patent documents was created. The collection contains 14 million semantic clusters of US patent documents and 1 million clusters of Russian patent documents. To evaluate ML outcomes, it is proposed to calculate search quality scores that account for semantic clusters of the documents being searched. To automate the evaluation process, the paper describes a utility developed by the authors for assessing the quality of prior art document search.
comment: 16 pages, 3 figures, 2 tables
♻ ☆ v-PuNNs: van der Put Neural Networks for Transparent Ultrametric Representation Learning
Conventional deep learning models embed data in Euclidean space $\mathbb{R}^d$, a poor fit for strictly hierarchical objects such as taxa, word senses, or file systems. We introduce van der Put Neural Networks (v-PuNNs), the first architecture whose neurons are characteristic functions of p-adic balls in $\mathbb{Z}_p$. Under our Transparent Ultrametric Representation Learning (TURL) principle every weight is itself a p-adic number, giving exact subtree semantics. A new Finite Hierarchical Approximation Theorem shows that a depth-K v-PuNN with $\sum_{j=0}^{K-1}p^{\,j}$ neurons universally represents any K-level tree. Because gradients vanish in this discrete space, we propose Valuation-Adaptive Perturbation Optimization (VAPO), with a fast deterministic variant (HiPaN-DS) and a moment-based one (HiPaN / Adam-VAPO). On three canonical benchmarks our CPU-only implementation sets new state-of-the-art: WordNet nouns (52,427 leaves) 99.96% leaf accuracy in 16 min; GO molecular-function 96.9% leaf / 100% root in 50 s; NCBI Mammalia Spearman $ρ= -0.96$ with true taxonomic distance. The learned metric is perfectly ultrametric (zero triangle violations), and its fractal and information-theoretic properties are analyzed. Beyond classification we derive structural invariants for quantum systems (HiPaQ) and controllable generative codes for tabular data (Tab-HiPaN). v-PuNNs therefore bridge number theory and deep learning, offering exact, interpretable, and efficient models for hierarchical data.
comment: v2: Corrected mathematical statements in Section 3.1.3 and Appendix A regarding the van der Put basis properties. Clarified distinction between hierarchical indicator family and classical Schauder basis
♻ ☆ Causal Ordering for Structure Learning from Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages. Published in Transactions on Machine Learning Research
♻ ☆ LTLBench: Towards Benchmarks for Evaluating Temporal Reasoning in Large Language Models
Temporal Reasoning (TR) is a critical ability for LLMs to understand and reason over temporal information and relationships between events. To study the TR ability in LLMs, prior works provide different ways for evaluating various aspects of TR ability. In this work, we propose an alternative perspective for evaluating TR ability by leveraging Linear Temporal Logic (LTL), and develop a pipeline to automatically synthesize challenges for assessing the TR ability of LLMs. Based on this pipeline, we construct a dataset, namely LTLBench, consisting of $2000$ TR challenges, and benchmark 12 LLMs across 5 different methods. Furthermore, we conduct additional experiments to investigate the impact of increasing the number of formula operators and events on both LLM performance and the complexity of TR problems. We also perform qualitative analyses of their reasoning processes and the effects of varying the number of events and formula operators, which reveal 3 main issues in their temporal reasoning processes and the unexpected performance changes observed as problem complexity increases. We expect this work to provide valuable insights into the TR ability of LLMs.
♻ ☆ When in Doubt, Consult: Expert Debate for Sexism Detection via Confidence-Based Routin
Sexist content online increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals, even in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. Together, these limitations point to the need for a design that explicitly addresses the combined effects of (i) underrepresentation, (ii) noise, and (iii) conceptual ambiguity in both data and model predictions. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to adapt supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. Our training setup applies class-balanced focal loss, class-aware batching, and post-hoc threshold calibration to mitigate label imbalance and noisy supervision. At inference time, a dynamic routing mechanism classifies high-confidence cases directly and escalates uncertain instances to a novel \textit{Collaborative Expert Judgment} (CEJ) module, which prompts multiple personas and consolidates their reasoning through a judge model. Our approach achieves state-of-the-art results across several benchmarks, with F1 gains of +4.48% and +1.30% on EDOS Tasks A and B, respectively, and a +2.79% improvement in ICM on EXIST 2025 Task 1.1.
♻ ☆ On LLMs' Internal Representation of Code Correctness ICSE'26
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
♻ ☆ Beyond Prompts: Space-Time Decoupling Control-Plane Jailbreaks in LLM Structured Output
Content Warning: This paper may contain unsafe or harmful content generated by LLMs that may be offensive to readers. Large Language Models (LLMs) are extensively used as tooling platforms through structured output APIs to ensure syntax compliance so that robust integration with existing software, like agent systems, can be achieved. However, the feature enabling the functionality of grammar-guided structured output presents significant security vulnerabilities. In this work, we reveal a critical control-plane attack surface orthogonal to traditional data-plane vulnerabilities. We introduce Constrained Decoding Attack (CDA), a novel jailbreak class that weaponizes structured output constraints to bypass both external auditing and internal safety alignment. Unlike prior attacks focused on input prompt designs, CDA operates by embedding malicious intent in schema-level grammar rules (control-plane) while maintaining benign surface prompts (data-plane). We instantiate this with two proof-of-concept attacks: EnumAttack, which embeds malicious content in enum fields; and the more evasive DictAttack, which decouples the malicious payload across a benign prompt and a dictionary-based grammar. Our evaluation spans a broad spectrum of 13 proprietary/open-weight models. In particular, DictAttack achieves 94.3--99.5% ASR across five benchmarks on gpt-5, gemini-2.5-pro, deepseek-r1, and gpt-oss-120b. Furthermore, we demonstrate the significant challenge in defending against these threats: while basic grammar auditing mitigates EnumAttack, the more sophisticated DictAttack maintains a 75.8% ASR even against multiple state-of-the-art jailbreak guardrails. This exposes a critical "semantic gap" in current safety architectures and underscores the urgent need for cross-plane defenses that can bridge the data and control planes to secure the LLM generation pipeline.
comment: 15 pages, 9 figures, 8 tables, Preprint
♻ ☆ Uncertainty Quantification of Surrogate Models using Conformal Prediction
Data-driven surrogate models offer quick approximations to complex numerical and experimental systems but typically lack uncertainty quantification, limiting their reliability in safety-critical applications. While Bayesian methods provide uncertainty estimates, they offer no statistical guarantees and struggle with high-dimensional spatio-temporal problems due to computational costs. We present a conformal prediction (CP) framework that provides statistically guaranteed marginal coverage for surrogate models in a model-agnostic manner with near-zero computational cost. Our approach handles high-dimensional spatio-temporal outputs by performing cell-wise calibration while preserving the tensorial structure of predictions. Through extensive empirical evaluation across diverse applications including fluid dynamics, magnetohydrodynamics, weather forecasting, and fusion diagnostics, we demonstrate that CP achieves empirical coverage with valid error bars regardless of model architecture, training regime, or output dimensionality. We evaluate three nonconformity scores (conformalised quantile regression, absolute error residual, and standard deviation) for both deterministic and probabilistic models, showing that guaranteed coverage holds even for out-of-distribution predictions where models are deployed on physics regimes different from training data. Calibration requires only seconds to minutes on standard hardware. The framework enables rigorous validation of pre-trained surrogate models for downstream applications without retraining. While CP provides marginal rather than conditional coverage and assumes exchangeability between calibration and test data, our method circumvents the curse of dimensionality inherent in traditional uncertainty quantification approaches, offering a practical tool for trustworthy deployment of machine learning in physical sciences.
♻ ☆ I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
♻ ☆ Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
♻ ☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
♻ ☆ Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs IEEE
Event knowledge graphs (EKG) extend the classical notion of a trace to capture multiple, interacting views of a process execution. In this paper, we tackle the open problem of automating EKG discovery from uncurated data through a principled probabilistic framing based on the outcome space resulting from featured-derived partial orders on events. From this we derive an EKG discovery algorithm based on statistical inference rather than an ad hoc or heuristic-based strategy, or relying on manual analysis from domain experts. This approach comes at the computational cost of exploring a large, non-convex hypothesis space. In particular, solving the maximum likelihood term in our objective function involves counting the number of linear extensions of posets, which in general is #P-complete. Fortunately, bound estimates suffice for model comparison, and admit incorporation into a bespoke branch-and-bound algorithm. We establish an upper bound on our objective function which we show to be antitonic w.r.t. search depth for branching rules that are monotonic w.r.t. model inclusion. This allows pruning of large portions of the search space, which we show experimentally leads to rapid convergence toward optimal solutions that are consistent with manually built EKGs.
comment: 2-column IEEE format
♻ ☆ Geometry-induced Regularization in Deep ReLU Neural Networks
Neural networks with a large number of parameters often do not overfit, owing to implicit regularization that favors \lq good\rq{} networks. Other related and puzzling phenomena include properties of flat minima, saddle-to-saddle dynamics, and neuron alignment. To investigate these phenomena, we study the local geometry of deep ReLU neural networks. We show that, for a fixed architecture, as the weights vary, the image of a sample $X$ forms a set whose local dimension changes. The parameter space is partitioned into regions where this local dimension remains constant. The local dimension is invariant under the natural symmetries of ReLU networks (i.e., positive rescalings and neuron permutations). We establish then that the network's geometry induces a regularization, with the local dimension serving as a key measure of regularity. Moreover, we relate the local dimension to a new notion of flatness of minima and to saddle-to-saddle dynamics. For shallow networks, we also show that the local dimension is connected to the number of linear regions perceived by $X$, offering insight into the effects of regularization. This is further supported by experiments and linked to neuron alignment. Our analysis offers, for the first time, a simple and unified geometric explanation that applies to all learning contexts for these phenomena, which are usually studied in isolation. Finally, we explore the practical computation of the local dimension and present experiments on the MNIST dataset, which highlight geometry-induced regularization in this setting.
♻ ☆ Benchmarking Deep Learning Convolutions on Energy-constrained CPUs
This work evaluates State-of-the-Art convolution algorithms for CPU-based CNN inference. Although most prior studies focus on GPUs or NPUs, CPU implementations remain comparatively under-optimized. Our first contribution is to provide fair benchmarking for embedded CPU inference. We evaluate direct, GEMM-based, and Winograd convolutions across modern CPUs from ARM, Intel, AMD, and NVIDIA vendors, considering both latency and energy efficiency. To the best of our knowledge, this is the first study to present a fair, cross-vendor comparison of CPU energy consumption using a high-resolution socket-level measurement platform. To validate our methodology, we further compare socket-level power measurements with estimates derived from model-specific registers (MSRs), finding that MSRs underestimate the power consumption of convolution inference by 10--30%. Our results show that the ARM\R Cortex-A78AE CPU combined with an implicit GEMM convolution implementation offers the best trade-off between latency and power consumption, achieving ResNet50v1.5 inference in 102 ms with an average power of 25.3 W, corresponding to 2.58 J.
♻ ☆ Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles ECAI 2025
For solving zero-sum games involving non-transitivity, a useful approach is to maintain a policy population to approximate the Nash Equilibrium (NE). Previous studies have shown that the Policy Space Response Oracles (PSRO) algorithm is an effective framework for solving such games. However, current methods initialize a new policy from scratch or inherit a single historical policy in Best Response (BR), missing the opportunity to leverage past policies to generate a better BR. In this paper, we propose Fusion-PSRO, which employs Nash Policy Fusion to initialize a new policy for BR training. Nash Policy Fusion serves as an implicit guiding policy that starts exploration on the current Meta-NE, thus providing a closer approximation to BR. Moreover, it insightfully captures a weighted moving average of past policies, dynamically adjusting these weights based on the Meta-NE in each iteration. This cumulative process further enhances the policy population. Empirical results on classic benchmarks show that Fusion-PSRO achieves lower exploitability, thereby mitigating the shortcomings of previous research on policy initialization in BR.
comment: Accepted by ECAI 2025
♻ ☆ GNN-XAR: A Graph Neural Network for Explainable Activity Recognition in Smart Homes
Sensor-based Human Activity Recognition (HAR) in smart home environments is crucial for several applications, especially in the healthcare domain. The majority of the existing approaches leverage deep learning models. While these approaches are effective, the rationale behind their outputs is opaque. Recently, eXplainable Artificial Intelligence (XAI) approaches emerged to provide intuitive explanations to the output of HAR models. To the best of our knowledge, these approaches leverage classic deep models like CNNs or RNNs. Recently, Graph Neural Networks (GNNs) proved to be effective for sensor-based HAR. However, existing approaches are not designed with explainability in mind. In this work, we propose the first explainable Graph Neural Network explicitly designed for smart home HAR. Our results on two public datasets show that this approach provides better explanations than state-of-the-art methods while also slightly improving the recognition rate.
♻ ☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
♻ ☆ Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
comment: 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
♻ ☆ Alignment-Aware Quantization for LLM Safety
Safety and efficiency are paramount yet often conflicting requirements for deploying Large Language Models (LLMs). While LLMs are trained to follow human alignment for safety, Post-Training Quantization (PTQ) is applied afterward to ensure efficiency. Here we identify a fundamental flaw in the conventional PTQ paradigm: quantization can turn into a safety vulnerability if it only aims to achieve low perplexity. To address this, we propose \textbf{Alignment-Aware Quantization (AAQ)}, a novel approach that integrates an \textbf{Alignment-Preserving Contrastive (APC)} loss into the PTQ pipeline. Our method explicitly preserves alignment by encouraging the quantized model to mimic its safe, instruction-tuned model while diverging from the unaligned, pre-trained counterpart. AAQ achieves robust safety alignment without specialized safety-focused datasets, using only standard calibration data. We show that AAQ is compatible with standard PTQ techniques and enables robust 4-bit (W4A4) quantization across diverse model families. Our work resolves the critical trade-off between efficiency and safety, paving the way toward LLMs that are both efficient and trustworthy. Anonymized code is available in the supplementary material.
comment: 8 pages, 4 figures. Includes 7 pages of supplementary material
♻ ☆ SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the existing GitHub issue resolution data construction pipeline is challenging and labor-intensive. We identify three key limitations in existing pipelines: (1) test patches collected often omit binary file changes; (2) the manual construction of evaluation environments is labor-intensive; and (3) the fail2pass validation phase requires manual inspection of test logs and writing custom parsing code to extract test status from logs. In this paper, we propose SWE-Factory, a fully automated issue resolution data construction pipeline, to resolve these limitations. First, our pipeline automatically recovers missing binary test files and ensures the correctness of test patches. Second, we introduce SWE-Builder, a LLM-based multi-agent system that automates evaluation environment construction. Third, we introduce a standardized, exit-code-based log parsing method to automatically extract test status, enabling a fully automated fail2pass validation. Experiments on 671 real-world GitHub issues across four programming languages show that our method can effectively construct valid evaluation environments for GitHub issues at a reasonable cost. For example, with GPT-4.1 mini, our SWE-Builder constructs 337 valid task instances out of 671 issues, at $0.047 per instance. Our ablation study further shows the effectiveness of different components of SWE-Builder. We also demonstrate through manual inspection that our exit-code-based fail2pass validation method is highly accurate, achieving an F1 score of 0.99. Additionally, we conduct an exploratory experiment to investigate whether we can use SWE-Factory to enhance models' software engineering ability.
comment: To appear at FSE'2026
♻ ☆ Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
♻ ☆ A Fast Anti-Jamming Cognitive Radar Deployment Algorithm Based on Reinforcement Learning
The fast deployment of cognitive radar to counter jamming remains a critical challenge in modern warfare, where more efficient deployment leads to quicker detection of targets. Existing methods are primarily based on evolutionary algorithms, which are time-consuming and prone to falling into local optima. We tackle these drawbacks via the efficient inference of neural networks and propose a brand new framework: Fast Anti-Jamming Radar Deployment Algorithm (FARDA). We first model the radar deployment problem as an end-to-end task and design deep reinforcement learning algorithms to solve it, where we develop integrated neural modules to perceive heatmap information and a brand new reward format. Empirical results demonstrate that our method achieves coverage comparable to evolutionary algorithms while deploying radars approximately 7,000 times faster. Further ablation experiments confirm the necessity of each component of FARDA.
♻ ☆ Balancing Fidelity and Plasticity: Aligning Mixed-Precision Fine-Tuning with Linguistic Hierarchies
Deploying and fine-tuning Large Language Models (LLMs) on resource-constrained edge devices requires navigating a strict trade-off between memory footprint and task performance. While Quantization-Aware Fine-tuning has emerged as a viable solution, existing paradigms typically decouple quantization and adapter optimization. This separation overlooks a fundamental theoretical constraint we identify as the \textit{Fidelity-Plasticity Trade-off}: a layer's capacity to adapt to new tasks (Plasticity) is inherently constrained by the information capacity of its frozen weights (Fidelity). Aggressively quantizing semantically critical layers creates an information bottleneck that no amount of adapter rank can recover, while high precision in robust syntactic layers wastes valuable memory. To address this, we introduce \textbf{QR-Adaptor}, a unified framework that jointly optimizes per-layer quantization bit-width and LoRA rank. By formulating resource allocation as a multi-objective search aligned with the model's linguistic hierarchy, our method systematically liberates memory from redundancy-heavy layers to reinvest in capacity-critical ones. Extensive experiments demonstrate that QR-Adaptor establishes a new Pareto frontier: notably, a model fine-tuned under a strict 4-bit memory budget achieves performance rivaling 16-bit baselines, demonstrating that precise resource alignment is as critical as model size.
comment: 18 pages, 5 figures
♻ ☆ What Breaks Knowledge Graph based RAG? Empirical Insights into Reasoning under Incomplete Knowledge EACL 2026
Knowledge Graph-based Retrieval-Augmented Generation (KG-RAG) is an increasingly explored approach for combining the reasoning capabilities of large language models with the structured evidence of knowledge graphs. However, current evaluation practices fall short: existing benchmarks often include questions that can be directly answered using existing triples in KG, making it unclear whether models perform reasoning or simply retrieve answers directly. Moreover, inconsistent evaluation metrics and lenient answer matching criteria further obscure meaningful comparisons. In this work, we introduce a general method for constructing benchmarks, together with an evaluation protocol, to systematically assess KG-RAG methods under knowledge incompleteness. Our empirical results show that current KG-RAG methods have limited reasoning ability under missing knowledge, often rely on internal memorization, and exhibit varying degrees of generalization depending on their design.
comment: Accepted as a main conference paper at EACL 2026
♻ ☆ PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are publicly available at: https://emorzz1g.github.io/PathFinder/.
comment: 20 pages, 14 figures, 4 tables. Under review
♻ ☆ Personalized Spiking Neural Networks with Ferroelectric Synapses for EEG Signal Processing
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are strongly affected by non-stationary neural signals that vary across sessions and individuals, limiting the generalization of subject-agnostic models and motivating adaptive and personalized learning on resource-constrained platforms. Programmable memristive hardware offers a promising substrate for such post-deployment adaptation; however, practical realization is challenged by limited weight resolution, device variability, nonlinear programming dynamics, and finite device endurance. In this work, we show that spiking neural networks (SNNs) can be deployed on ferroelectric memristive synaptic devices for adaptive EEG-based motor imagery decoding under realistic device constraints. We fabricate, characterize, and model ferroelectric synapses. We evaluate a convolutional-recurrent SNN architecture under two complementary deployment strategies: (i) device-aware training using a ferroelectric synapse model, and (ii) transfer of software-trained weights followed by low-overhead on-device re-tuning. To enable efficient adaptation, we introduce a device-aware weight-update strategy in which gradient-based updates are accumulated digitally and converted into discrete programming events only when a threshold is exceeded, emulating nonlinear, state-dependent programming dynamics while reducing programming frequency. Both deployment strategies achieve classification performance comparable to state-of-the-art software-based SNNs. Furthermore, subject-specific transfer learning achieved by retraining only the final network layers improves classification accuracy. These results demonstrate that programmable ferroelectric hardware can support robust, low-overhead adaptation in spiking neural networks, opening a practical path toward personalized neuromorphic processing of neural signals.
♻ ☆ Opportunities and Challenges of Large Language Models for Low-Resource Languages in Humanities Research
Low-resource languages serve as invaluable repositories of human history, embodying cultural evolution and intellectual diversity. Despite their significance, these languages face critical challenges, including data scarcity and technological limitations, which hinder their comprehensive study and preservation. Recent advancements in large language models (LLMs) offer transformative opportunities for addressing these challenges, enabling innovative methodologies in linguistic, historical, and cultural research. This study systematically evaluates the applications of LLMs in low-resource language research, encompassing linguistic variation, historical documentation, cultural expressions, and literary analysis. By analyzing technical frameworks, current methodologies, and ethical considerations, this paper identifies key challenges such as data accessibility, model adaptability, and cultural sensitivity. Given the cultural, historical, and linguistic richness inherent in low-resource languages, this work emphasizes interdisciplinary collaboration and the development of customized models as promising avenues for advancing research in this domain. By underscoring the potential of integrating artificial intelligence with the humanities to preserve and study humanity's linguistic and cultural heritage, this study fosters global efforts towards safeguarding intellectual diversity.
♻ ☆ Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ ScRPO: From Errors to Insights
We introduce Self-correction Relative Policy Optimization (ScRPO), a novel reinforcement learning framework designed to empower large language models with advanced mathematical reasoning capabilities through iterative self-reflection and error correction. The ScRPO framework operates in two distinct phases: (1) Trial-and-error learning stage, where the model is trained via GRPO, and incorrect responses are collected to form an "error pool"; and (2) Self-correction learning stage, which guides the model to introspectively analyze and rectify the reasoning flaws behind its previous errors. Extensive evaluations across challenging mathematical benchmarks, including AIME, AMC, Olympiad, MATH-500, and GSM8k, validate the efficacy of our approach. Using DeepSeek-R1-Distill-Qwen-1.5B and 7B as backbones, ScRPO achieves average accuracies of 64.8% and 77.8%, respectively. This represents a significant improvement of 6.0% and 3.2% over vanilla baselines, consistently outperforming strong post-training methods such as DAPO and GRPO. These findings establish ScRPO as a robust paradigm for enabling autonomous self-improvement in AI systems, particularly in tasks with limited external feedback.
♻ ☆ G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2026
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2026 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
♻ ☆ Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
Artificial Intelligence (AI)-aided drug discovery is an active research field, yet AI models often exhibit poor accuracy in regression tasks for molecular property prediction, and perform catastrophically poorly for out-of-distribution (OOD) molecules. Here, we present MolRuleLoss, a substructure-substitution-rule-informed framework that improves the accuracy and generalizability of multiple molecular property regression models (MPRMs) such as GEM and UniMol for diverse molecular property prediction tasks. MolRuleLoss incorporates partial derivative constraints for substructure substitution rules (SSRs) into an MPRM's loss function. When using GEM models for predicting lipophilicity, water solubility, and solvation-free energy (using lipophilicity, ESOL, and freeSolv datasets from MoleculeNet), the root mean squared error (RMSE) values with and without MolRuleLoss were 0.587 vs. 0.660, 0.777 vs. 0.798, and 1.252 vs. 1.877, respectively, representing 2.6-33.3% performance improvements. We show that both the number and the quality of SSRs contribute to the magnitude of prediction accuracy gains obtained upon adding MolRuleLoss to an MPRM. MolRuleLoss improved the generalizability of MPRMs for "activity cliff" molecules in a lipophilicity prediction task and improved the generalizability of MPRMs for OOD molecules in a melting point prediction task. In a molecular weight prediction task for OOD molecules, MolRuleLoss reduced the RMSE value of a GEM model from 29.507 to 0.007. We also provide a formal demonstration that the upper bound of the variation for property change of SSRs is positively correlated with an MPRM's error. Together, we show that using the MolRuleLoss framework as a bolt-on boosts the prediction accuracy and generalizability of multiple MPRMs, supporting diverse applications in areas like cheminformatics and AI-aided drug discovery.
comment: Author information updated: add co-author Weihao Li (affiliation:Department of Statistics and Data Science, Tsinghua University, Beijing, 100084, China). Weihao Li proposed constructive revision suggestions for section on Proof of "Tian Conjecture"
♻ ☆ MCP-Guard: A Multi-Stage Defense-in-Depth Framework for Securing Model Context Protocol in Agentic AI
While Large Language Models (LLMs) have achieved remarkable performance, they remain vulnerable to jailbreak. The integration of Large Language Models (LLMs) with external tools via protocols such as the Model Context Protocol (MCP) introduces critical security vulnerabilities, including prompt injection, data exfiltration, and other threats. To counter these challenges, we propose MCP-GUARD, a robust, layered defense architecture designed for LLM-tool interactions. MCP-GUARD employs a three-stage detection pipeline that balances efficiency with accuracy: it progresses from lightweight static scanning for overt threats and a deep neural detector for semantic attacks, to our fine-tuned E5-based model which achieves 96.01\% accuracy in identifying adversarial prompts. Finally, an LLM arbitrator synthesizes these signals to deliver the final decision. To enable rigorous training and evaluation, we introduce MCP-ATTACKBENCH, a comprehensive benchmark comprising 70,448 samples augmented by GPT-4. This benchmark simulates diverse real-world attack vectors that circumvent conventional defenses in the MCP paradigm, thereby laying a solid foundation for future research on securing LLM-tool ecosystems.
♻ ☆ Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
♻ ☆ Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.
♻ ☆ KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
♻ ☆ Cross-modal Retrieval Models for Stripped Binary Analysis
Retrieving binary code via natural language queries is a pivotal capability for downstream tasks in the software security domain, such as vulnerability detection and malware analysis. However, it is challenging to identify binary functions semantically relevant to the user query from thousands of candidates, as the absence of symbolic information distinguishes this task from source code retrieval. In this paper, we introduce, BinSeek, a two-stage cross-modal retrieval framework for stripped binary code analysis. It consists of two models: BinSeek-Embedding is trained on large-scale dataset to learn the semantic relevance of the binary code and the natural language description, furthermore, BinSeek-Reranker learns to carefully judge the relevance of the candidate code to the description with context augmentation. To this end, we built an LLM-based data synthesis pipeline to automate training construction, also deriving a domain benchmark for future research. Our evaluation results show that BinSeek achieved the state-of-the-art performance, surpassing the the same scale models by 31.42% in Rec@3 and 27.17% in MRR@3, as well as leading the advanced general-purpose models that have 16 times larger parameters.
♻ ☆ Interaction Tensor SHAP
This study proposes Interaction Tensor SHAP (IT-SHAP), a tensor algebraic formulation of the Shapley Taylor Interaction Index (STII) that makes its computational structure explicit. STII extends the Shapley value to higher order interactions, but its exponential combinatorial definition makes direct computation intractable at scale. We reformulate STII as a linear transformation acting on a value function and derive an explicit algebraic representation of its weight tensor. This weight tensor is shown to possess a multilinear structure induced by discrete finite difference operators. When the value function admits a Tensor Train representation, higher order interaction indices can be computed in the parallel complexity class NC squared. In contrast, under general tensor network representations without structural assumptions, the same computation is proven to be P sharp hard. The main contributions are threefold. First, we establish an exact Tensor Train representation of the STII weight tensor. Second, we develop a parallelizable evaluation algorithm with explicit complexity bounds under the Tensor Train assumption. Third, we prove that computational intractability is unavoidable in the absence of such structure. These results demonstrate that the computational difficulty of higher order interaction analysis is determined by the underlying algebraic representation rather than by the interaction index itself, providing a theoretical foundation for scalable interpretation of high dimensional models.
comment: 22 pages
♻ ☆ Pairwise Judgment Formulation for Semantic Embedding Model in Web Search IEEE
Semantic Embedding Models (SEMs) have become a core component in information retrieval and natural language processing due to their ability to model semantic relevance. However, despite its growing applications in search engines, few studies have systematically explored how to construct effective training data for SEMs from large-scale search engine query logs. In this paper, we present a comprehensive analysis of strategies for generating pairwise judgments as SEM training data. An interesting (perhaps surprising) discovery reveals that conventional formulation approaches used in Learning-to-Rank (LTR) are not necessarily optimal for SEM training. Through a large-scale empirical study using query logs and click-through data from a major search engine, we identify effective strategies and demonstrate the advantages of a proposed hybrid heuristic over simpler atomic heuristics. Finally, we provide best practices for SEM training and outline directions for future research.
comment: Accepted by IEEE BigComp 2026
♻ ☆ Wearable-informed generative digital avatars predict task-conditioned post-stroke locomotion
Dynamic prediction of locomotor capacity after stroke could enable more individualized rehabilitation, yet current assessments largely provide static impairment scores and do not indicate whether patients can perform specific tasks such as slope walking or stair climbing. Here, we present a wearable-informed data-physics hybrid generative framework that reconstructs a stroke survivor's locomotor control from wearable inertial sensing and predicts task-conditioned post-stroke locomotion in new environments. From a single 20 m level-ground walking trial recorded by five IMUs, the framework personalizes a physics-based digital avatar using a healthy-motion prior and hybrid imitation learning, generating dynamically feasible, patient-specific movements for inclined walking and stair negotiation. Across 11 stroke inpatients, predicted postures reached 82.2% similarity for slopes and 69.9% for stairs, substantially exceeding a physics-only baseline. In a multicentre pilot randomized study (n = 21; 28 days), access to scenario-specific locomotion predictions to support task selection and difficulty titration was associated with larger gains in Fugl-Meyer lower-extremity scores than standard care (mean change 6.0 vs 3.7 points; $p < 0.05$). These results suggest that wearable-informed generative digital avatars may augment individualized gait rehabilitation planning and provide a pathway toward dynamically personalized post-stroke motor recovery strategies.
comment: 27 pages, 6 figures
♻ ☆ HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features. In DG, the prevalent practice of constraining models to a fixed structure or uniform parameterization to encapsulate invariant features can inadvertently blend specific aspects. Such an approach struggles with nuanced differentiation of inter-domain variations and may exhibit bias towards certain domains, hindering the precise learning of domain-invariant features. Recognizing this, we introduce a novel method designed to supplement the model with domain-level and task-specific characteristics. This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization. Building on the emerging trend of visual prompts in the DG paradigm, our work introduces the novel \textbf{H}ierarchical \textbf{C}ontrastive \textbf{V}isual \textbf{P}rompt (HCVP) methodology. This represents a significant advancement in the field, setting itself apart with a unique generative approach to prompts, alongside an explicit model structure and specialized loss functions. Differing from traditional visual prompts that are often shared across entire datasets, HCVP utilizes a hierarchical prompt generation network enhanced by prompt contrastive learning. These generative prompts are instance-dependent, catering to the unique characteristics inherent to different domains and tasks. Additionally, we devise a prompt modulation network that serves as a bridge, effectively incorporating the generated visual prompts into the vision transformer backbone. Experiments conducted on five DG datasets demonstrate the effectiveness of HCVP, outperforming both established DG algorithms and adaptation protocols.
♻ ☆ Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: There is some controversy over the methods of the content
♻ ☆ The GPT-4o Shock Emotional Attachment to AI Models and Its Impact on Regulatory Acceptance: A Cross-Cultural Analysis of the Immediate Transition from GPT-4o to GPT-5
In August 2025, a major AI company's immediate, mandatory transition from its previous to its next-generation model triggered widespread public reactions. I collected 150 posts in Japanese and English from multiple social media platforms and video-sharing services between August 8-9, 2025, and qualitatively analyzed expressions of emotional attachment and resistance. Users often described GPT-4o as a trusted partner or AI boyfriend, suggesting person-like bonds. Japanese posts were dominated by loss-oriented narratives, whereas English posts included more anger, meta-level critique, and memes.A preliminary quantitative check showed a statistically significant difference in attachment coding between Japanese and English posts, with substantially higher attachment observed in the Japanese data. The findings suggest that for attachment-heavy models, even safety-oriented changes can face rapid, large-scale resistance that narrows the practical window for behavioral control. If future AI robots capable of inducing emotional bonds become widespread in the physical world, such attachment could surpass the ability to enforce regulation at an even earlier stage than in digital settings. Policy options include gradual transitions, parallel availability, and proactive measurement of attachment thresholds and points of no return to prevent emotional dynamics from outpacing effective governance.
comment: 9 pages ,3 tables
♻ ☆ From Description to Score: Can LLMs Quantify Vulnerabilities?
Manual vulnerability scoring, such as assigning Common Vulnerability Scoring System (CVSS) scores, is a resource-intensive process that is often influenced by subjective interpretation. This study investigates the potential of general-purpose large language models (LLMs), namely ChatGPT, Llama, Grok, DeepSeek, and Gemini, to automate this process by analyzing over 31{,}000 recent Common Vulnerabilities and Exposures (CVE) entries. The results show that LLMs substantially outperform the baseline on certain metrics (e.g., \textit{Availability Impact}), while offering more modest gains on others (e.g., \textit{Attack Complexity}). Moreover, model performance varies across both LLM families and individual CVSS metrics, with ChatGPT-5 attaining the highest precision. Our analysis reveals that LLMs tend to misclassify many of the same CVEs, and ensemble-based meta-classifiers only marginally improve performance. Further examination shows that CVE descriptions often lack critical context or contain ambiguous phrasing, which contributes to systematic misclassifications. These findings underscore the importance of enhancing vulnerability descriptions and incorporating richer contextual details to support more reliable automated reasoning and alleviate the growing backlog of CVEs awaiting triage.
comment: 10 pages
♻ ☆ Matrix Sensing with Kernel Optimal Loss: Robustness and Optimization Landscape
In this paper we study how the choice of loss functions of non-convex optimization problems affects their robustness and optimization landscape, through the study of noisy matrix sensing. In traditional regression tasks, mean squared error (MSE) loss is a common choice, but it can be unreliable for non-Gaussian or heavy-tailed noise. To address this issue, we adopt a robust loss based on nonparametric regression, which uses a kernel-based estimate of the residual density and maximizes the estimated log-likelihood. This robust formulation coincides with the MSE loss under Gaussian errors but remains stable under more general settings. We further examine how this robust loss reshapes the optimization landscape by analyzing the upper-bound of restricted isometry property (RIP) constants for spurious local minima to disappear. Through theoretical and empirical analysis, we show that this new loss excels at handling large noise and remains robust across diverse noise distributions. This work offers initial insights into enhancing the robustness of machine learning tasks through simply changing the loss, guided by an intuitive and broadly applicable analytical framework.
comment: CPAL 2026
♻ ☆ Multi-Agent Collaborative Reward Design for Enhancing Reasoning in Reinforcement Learning
We present CRM (Multi-Agent Collaborative Reward Model), a framework that replaces a single black-box reward model with a coordinated team of specialist evaluators to improve robustness and interpretability in RLHF. Conventional reward models struggle to jointly optimize multiple, sometimes conflicting, preference dimensions (e.g., factuality, helpfulness, safety) and offer limited transparency into why a score is assigned. CRM addresses these issues by decomposing preference evaluation into domain-specific agents that each produce partial signals, alongside global evaluators such as ranker-based and embedding-similarity rewards. A centralized aggregator fuses these signals at each timestep, balancing factors like step-wise correctness, multi-agent agreement, and repetition penalties, yielding a single training reward compatible with standard RL pipelines. The policy is optimized with advantage-based updates (e.g., GAE), while a value model regresses to the aggregated reward, enabling multi-perspective reward shaping without requiring additional human annotations beyond those used to train the evaluators. To support training and assessment, we introduce rewardBench, a benchmark and training suite aligned with the collaborative structure of CRM. Together, CRM and rewardBench provide a practical, modular path to more transparent reward modeling and more stable optimization.
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ Learning Optimal Defender Strategies for CAGE-2 using a POMDP Model
CAGE-2 is an accepted benchmark for learning and evaluating defender strategies against cyberattacks. It reflects a scenario where a defender agent protects an IT infrastructure against various attacks. Many defender methods for CAGE-2 have been proposed in the literature. In this paper, we construct a formal model for CAGE-2 using the framework of Partially Observable Markov Decision Process (POMDP). Based on this model, we define an optimal defender strategy for CAGE-2 and introduce a method to efficiently learn this strategy. Our method, called BF-PPO, is based on PPO, and it uses particle filter to mitigate the computational complexity due to the large state space of the CAGE-2 model. We evaluate our method in the CAGE-2 CybORG environment and compare its performance with that of CARDIFF, the highest ranked method on the CAGE-2 leaderboard. We find that our method outperforms CARDIFF regarding the learned defender strategy and the required training time.
comment: The paper is accepted for the 21st International Conference on Network and Service Management (CNSM-2025) and the official version is published in the conference proceedings
♻ ☆ When Identity Skews Debate: Anonymization for Bias-Reduced Multi-Agent Reasoning
Multi-agent debate (MAD) aims to improve large language model (LLM) reasoning by letting multiple agents exchange answers and then aggregate their opinions. Yet recent studies reveal that agents are not neutral: they are prone to identity-driven sycophancy and self-bias, uncritically adopting a peer's view or stubbornly adhering to their own prior output, undermining the reliability of debate. In this work, we present the first principled framework that joins sycophancy and self-bias to mitigate and quantify identity bias in MAD. First, we formalize the debate dynamics as an identity-weighted Bayesian update process. Second, we propose response anonymization: by removing identity markers from prompts, agents cannot distinguish "self" from "peer", which forces equal weights on agent identity, thereby reducing bias and improving trustworthiness. Third, we define the Identity Bias Coefficient (IBC), a principled bias metric that measures an agent's tendency to follow its peer versus itself. Empirical studies across multiple models and benchmarks confirm that identity bias is widespread, with sycophancy far more common than self-bias. Our findings highlight the need to ensure that MAD systems reason based on content rather than identity. Code is released in https://github.com/deeplearning-wisc/MAD-identity-bias.
♻ ☆ Elastic Federated Learning over Open Radio Access Network (O-RAN) for Concurrent Execution of Multiple Distributed Learning Tasks
Federated learning (FL) is a popular distributed machine learning (ML) technique in Internet of Things (IoT) networks, where resource-constrained devices collaboratively train ML models while preserving data privacy. However, implementation of FL over 5G-and-beyond wireless networks faces key challenges caused by (i) dynamics of the wireless network conditions and (ii) the coexistence of multiple FL-services in the system. In this paper, we unveil two key phenomena that arise from these challenges: over/under-provisioning of resources and perspective-driven load balancing, both of which significantly impact FL performance in IoT environments. We take the first steps towards addressing these phenomena by proposing a novel distributed ML architecture called elastic FL (EFL). EFL unleashes the full potential of Open RAN (O-RAN) systems and introduces an elastic resource provisioning methodology to execute FL-services. It further constitutes a multi-time-scale FL management system that introduces three dedicated network control functionalities tailored for FL-services, including (i) non-real-time (non-RT) system descriptor, which trains ML-based applications to predict both system and FL-related dynamics and parameters; (ii) near-RT FL controller, which handles O-RAN slicing and mobility management for the seamless execution of FL-services; (iii) FL MAC scheduler, which conducts real-time resource allocation to the end clients of various FL-services. We finally prototype EFL to demonstrate its potential in improving the performance of FL-services.
comment: 9 pages, 4 figures
♻ ☆ PatentMind: A Multi-Aspect Reasoning Graph for Patent Similarity Evaluation
Patent similarity evaluation plays a critical role in intellectual property analysis. However, existing methods often overlook the intricate structure of patent documents, which integrate technical specifications, legal boundaries, and application contexts. We introduce PatentMind, a novel framework for patent similarity assessment based on a Multi-Aspect Reasoning Graph (MARG). PatentMind decomposes patents into their three dimensions of technical features, application domains, and claim scopes, then dimension-specific similarity scores are calculated over the MARG. These scores are dynamically weighted through a context-aware reasoning process, which integrates contextual signals to emulate expert-level judgment. To support evaluation, we construct a human-annotated benchmark PatentSimBench, comprising 500 patent pairs. Experimental results demonstrate that the PatentMind-generated scores show a strong correlation ($r=0.938$) with expert annotations, significantly outperforming embedding-based models, patent-specific models, and advanced prompt engineering methods. Beyond computational linguistics, our framework provides a structured and semantically grounded foundation for real-world decision-making, particularly for tasks such as infringement risk assessment, underscoring its broader impact on both patent analytics and evaluation.
♻ ☆ Topological Perspectives on Optimal Multimodal Embedding Spaces
Recent strides in multimodal model development have ignited a paradigm shift in the realm of text-to-image generation. Among these advancements, CLIP stands out as a remarkable achievement which is a sophisticated autoencoder adept at encoding both textual and visual information within a unified latent space. This paper delves into a comparative analysis between CLIP and its recent counterpart, CLOOB. To unravel the intricate distinctions within the embedding spaces crafted by these models, we employ topological data analysis. Our approach encompasses a comprehensive examination of the modality gap drivers, the clustering structures existing across both high and low dimensions, and the pivotal role that dimension collapse plays in shaping their respective embedding spaces. Empirical experiments substantiate the implications of our analyses on downstream performance across various contextual scenarios. Through this investigation, we aim to shed light on the nuanced intricacies that underlie the comparative efficacy of CLIP and CLOOB, offering insights into their respective strengths and weaknesses, and providing a foundation for further refinement and advancement in multimodal model research.
comment: This manuscript contains substantive technical inaccuracies and an incomplete treatment of the stated topic. Subsequent developments and a reassessment of the problem indicate that the scope and framing of the work do not adequately reflect the current state of research, and the analysis is therefore incomplete and outdated
♻ ☆ The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, some benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. Moreover, no benchmarks currently exist for directly measuring whether language models lie. In this work, we introduce a large-scale human-collected dataset for directly measuring lying, allowing us to disentangle accuracy from honesty. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, most frontier LLMs obtain high scores on truthfulness benchmarks yet exhibit a substantial propensity to lie under pressure, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
comment: Website: https://www.mask-benchmark.ai
♻ ☆ Evolutionary Learning in Spatial Agent-Based Models for Physical Climate Risk Assessment NeurIPS 2025
Climate risk assessment requires modelling complex interactions between spatially heterogeneous hazards and adaptive economic systems. We present a novel geospatial agent-based model that integrates climate hazard data with evolutionary learning for economic agents. Our framework combines geospatial agent-based modelling with asset-level damage functions, featuring an illustrative three-sector economy (commodity, manufacturing, retail) with adaptive learning behaviours that allow firms to evolve strategies for budget allocation, pricing, wages, and risk adaptation through fitness-based selection and mutation. We demonstrate the framework using riverine flood projections under RCP8.5 until 2100, comparing four scenarios: baseline and hazard conditions with and without evolutionary learning. Our results show that increasingly frequent and intense acute hazards lower firm production levels, liquidity, and capital, while increasing the prices of goods and unemployment. The framework reveals systemic risks where even agents not directly exposed to floods face impacts through supply chain disruptions. Importantly, evolutionary adaptation enables firms to maintain higher production, capital, liquidity, wages and employment levels while keeping prices lower compared to non-learning counterparts. This open-source framework provides financial institutions and companies with tools to quantify both direct and cascading climate risks while evaluating cost-effective adaptation strategies.
comment: Earlier version accepted to and presented at NeurIPS 2025 Tackling Climate Change with Machine Learning workshop. Source code and documentation available at https://github.com/yaramohajerani/spatial-climate-ABM
♻ ☆ Conformal Prediction for Dose-Response Models with Continuous Treatments
Understanding the dose-response relation between a continuous treatment and the outcome for an individual can greatly drive decision-making, particularly in areas like personalized drug dosing and personalized healthcare interventions. Point estimates are often insufficient in these high-risk environments, highlighting the need for uncertainty quantification to support informed decisions. Conformal prediction, a distribution-free and model-agnostic method for uncertainty quantification, has seen limited application in continuous treatments or dose-response models. To address this gap, we propose a novel methodology that frames the causal dose-response problem as a covariate shift, leveraging weighted conformal prediction. By incorporating propensity estimation, conformal predictive systems, and likelihood ratios, we present a practical solution for generating prediction intervals for dose-response models. Additionally, our method approximates local coverage for every treatment value by applying kernel functions as weights in weighted conformal prediction. Finally, we use a new synthetic benchmark dataset to demonstrate the significance of covariate shift assumptions in achieving robust prediction intervals for dose-response models.
comment: 10 pages main text, 8 pages references and appendix
♻ ☆ Something Just Like TRuST : Toxicity Recognition of Span and Target
Toxic language includes content that is offensive, abusive, or that promotes harm. Progress in preventing toxic output from large language models (LLMs) is hampered by inconsistent definitions of toxicity. We introduce TRuST, a large-scale dataset that unifies and expands prior resources through a carefully synthesized definition of toxicity, and corresponding annotation scheme. It consists of ~300k annotations, with high-quality human annotation on ~11k. To ensure high-quality, we designed a rigorous, multi-stage human annotation process, and evaluated the diversity of the annotators. Then we benchmarked state-of-the-art LLMs and pre-trained models on three tasks: toxicity detection, identification of the target group, and of toxic words. Our results indicate that fine-tuned PLMs outperform LLMs on the three tasks, and that current reasoning models do not reliably improve performance. TRuST constitutes one of the most comprehensive resources for evaluating and mitigating LLM toxicity, and other research in socially-aware and safer language technologies.
♻ ☆ Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models NeurIPS
We argue that diffusion models' success in modeling complex distributions is, for the most part, coming from their input conditioning. This paper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
comment: Published at NeurIPS, 22 pages, 7 tables, 12 figures, code and models available
♻ ☆ Thucy: An LLM-based Multi-Agent System for Claim Verification across Relational Databases AAAI 2026
In today's age, it is becoming increasingly difficult to decipher truth from lies. Every day, politicians, media outlets, and public figures make conflicting claims -- often about topics that can, in principle, be verified against structured data. For instance, statements about crime rates, economic growth or healthcare can all be verified against official public records and structured datasets. Building a system that can automatically do that would have sounded like science fiction just a few years ago. Yet, with the extraordinary progress in LLMs and agentic AI, this is now within reach. Still, there remains a striking gap between what is technically possible and what is being demonstrated by recent work. Most existing verification systems operate only on small, single-table databases -- typically a few hundred rows -- that conveniently fit within an LLM's context window. In this paper we report our progress on Thucy, the first cross-database, cross-table multi-agent claim verification system that also provides concrete evidence for each verification verdict. Thucy remains completely agnostic to the underlying data sources before deployment and must therefore autonomously discover, inspect, and reason over all available relational databases to verify claims. Importantly, Thucy also reports the exact SQL queries that support its verdict (whether the claim is accurate or not) offering full transparency to expert users familiar with SQL. When evaluated on the TabFact dataset -- the standard benchmark for fact verification over structured data -- Thucy surpasses the previous state of the art by 5.6 percentage points in accuracy (94.3% vs. 88.7%).
comment: Accepted at AAAI 2026 Workshop on LLM-based Multi-Agent Systems (LaMAS)
♻ ☆ Uncovering Autoregressive LLM Knowledge of Thematic Fit in Event Representation
We show closed models possess much thematic fit knowledge and set a new state of the art, while open models also seem to capture much relevant knowledge (in semantic filtering), but yield lower scores. Surprisingly, multi-step reasoning only helped closed models (with few exceptions); generated sentences hurt closed models' performance; and output form had little to no effect. We analyze the reasons for these findings, and conclude that more foundational work is needed for a single LLM to perform the best on all tasks with the same experimental condition, let alone improve results further. Source code is available at: https://github.com/SafeyahShemali/LLM_Thematic_Fit_25
comment: Significant update with massive changes: all experiments rerun with current LLMs; includes new probability estimate analysis and expanded results in Sections 4 and 5
♻ ☆ Large Language Models can Achieve Social Balance
Large Language Models (LLMs) can be deployed in situations where they process positive/negative interactions with other agents. We study how this is done under the sociological framework of social balance, which explains the emergence of one faction or multiple antagonistic ones among agents. Across different LLM models, we find that balance depends on the (i) type of interaction, (ii) update mechanism, and (iii) population size. Across (i)-(iii), we characterize the frequency at which social balance is achieved, the justifications for the social dynamics, and the diversity and stability of interactions. Finally, we explain how our findings inform the deployment of agentic systems.
♻ ☆ LLMs as Layout Designers: Enhanced Spatial Reasoning for Content-Aware Layout Generation
While Large Language Models (LLMs) have demonstrated impressive reasoning and planning abilities in textual domains and can effectively follow instructions for complex tasks, their ability to understand and manipulate spatial relationships remains limited. Such capabilities are crucial for content-aware graphic layout design, where the goal is to arrange heterogeneous elements onto a canvas so that final design remains visually balanced and structurally feasible. This problem requires precise coordination of placement, alignment, and structural organization of multiple elements within a constrained visual space. To address this limitation, we introduce LaySPA, a reinforcement learning-based framework that augments LLM-based agents with explicit spatial reasoning capabilities for layout design. LaySPA employs hybrid reward signals that jointly capture geometric constraints, structural fidelity, and visual quality, enabling agents to navigate the canvas, model inter-element relationships, and optimize spatial arrangements. Through group-relative policy optimization, the agent generates content-aware layouts that reflect salient regions, respect spatial constraints, and produces an interpretable reasoning trace explaining placement decisions and a structured layout specification. Experimental results show that LaySPA substantially improves the generation of structurally valid and visually appealing layouts, outperforming larger general-purpose LLMs and achieving performance comparable to state-of-the-art specialized layout models.
♻ ☆ An Uncertainty-Aware Generalization Framework for Cardiovascular Image Segmentation
Deep learning models have achieved significant success in segmenting cardiovascular structures, but there is a growing need to improve their generalization and robustness. Current methods often face challenges such as overfitting and limited accuracy, largely due to their reliance on large annotated datasets and limited optimization techniques. This paper introduces the UU-Mamba model, an extension of the U-Mamba architecture, designed to address these challenges in both cardiac and vascular segmentation. By incorporating Sharpness-Aware Minimization (SAM), the model enhances generalization by seeking flatter minima in the loss landscape. Additionally, we propose an uncertainty-aware loss function that integrates region-based, distribution-based, and pixel-based components, improving segmentation accuracy by capturing both local and global features. We expand our evaluations on the ImageCAS (coronary artery) and Aorta (aortic branches and zones) datasets, which present more complex segmentation challenges than the ACDC dataset (left and right ventricles) used in prior work, showcasing the model's adaptability and resilience. Our results confirm UU-Mamba's superior performance compared to leading models such as TransUNet, Swin-Unet, nnUNet, and nnFormer. We also provide a more in-depth assessment of the model's robustness and segmentation accuracy through extensive experiments.
♻ ☆ The Artificial Intelligence Cognitive Examination: A Survey on the Evolution of Multimodal Evaluation from Recognition to Reasoning
This survey paper chronicles the evolution of evaluation in multimodal artificial intelligence (AI), framing it as a progression of increasingly sophisticated "cognitive examinations." We argue that the field is undergoing a paradigm shift, moving from simple recognition tasks that test "what" a model sees, to complex reasoning benchmarks that probe "why" and "how" it understands. This evolution is driven by the saturation of older benchmarks, where high performance often masks fundamental weaknesses. We chart the journey from the foundational "knowledge tests" of the ImageNet era to the "applied logic and comprehension" exams such as GQA and Visual Commonsense Reasoning (VCR), which were designed specifically to diagnose systemic flaws such as shortcut learning and failures in compositional generalization. We then survey the current frontier of "expert-level integration" benchmarks (e.g., MMBench, SEED-Bench, MMMU) designed for today's powerful multimodal large language models (MLLMs), which increasingly evaluate the reasoning process itself. Finally, we explore the uncharted territories of evaluating abstract, creative, and social intelligence. We conclude that the narrative of AI evaluation is not merely a history of datasets, but a continuous, adversarial process of designing better examinations that, in turn, redefine our goals for creating truly intelligent systems.
♻ ☆ SaVe-TAG: LLM-based Interpolation for Long-Tailed Text-Attributed Graphs KDD 2026
Real-world graph data often follows long-tailed distributions, making it difficult for Graph Neural Networks (GNNs) to generalize well across both head and tail classes. Recent advances in Vicinal Risk Minimization (VRM) have shown promise in mitigating class imbalance with numeric interpolation; however, existing approaches largely rely on embedding-space arithmetic, which fails to capture the rich semantics inherent in text-attributed graphs. In this work, we propose our method, SaVe-TAG (Semantic-aware Vicinal Risk Minimization for Long-Tailed Text-Attributed Graphs), a novel VRM framework that leverages Large Language Models (LLMs) to perform text-level interpolation, generating on-manifold, boundary-enriching synthetic samples for minority classes. To mitigate the risk of noisy generation, we introduce a confidence-based edge assignment mechanism that uses graph topology as a natural filter to ensure structural consistency. We provide theoretical justification for our method and conduct extensive experiments on benchmark datasets, showing that our approach consistently outperforms both numeric interpolation and prior long-tailed node classification baselines. Our results highlight the importance of integrating semantic and structural signals for balanced and effective learning on text-attributed graphs. The source code is publicly available at: https://github.com/LWang-Laura/SaVe-TAG.
comment: Accepted KDD 2026 Research Track Paper
Computation and Language 121
☆ Robust Persona-Aware Toxicity Detection with Prompt Optimization and Learned Ensembling
Toxicity detection is inherently subjective, shaped by the diverse perspectives and social priors of different demographic groups. While ``pluralistic'' modeling as used in economics and the social sciences aims to capture perspective differences across contexts, current Large Language Model (LLM) prompting techniques have different results across different personas and base models. In this work, we conduct a systematic evaluation of persona-aware toxicity detection, showing that no single prompting method, including our proposed automated prompt optimization strategy, uniformly dominates across all model-persona pairs. To exploit complementary errors, we explore ensembling four prompting variants and propose a lightweight meta-ensemble: an SVM over the 4-bit vector of prompt predictions. Our results demonstrate that the proposed SVM ensemble consistently outperforms individual prompting methods and traditional majority-voting techniques, achieving the strongest overall performance across diverse personas. This work provides one of the first systematic comparisons of persona-conditioned prompting for toxicity detection and offers a robust method for pluralistic evaluation in subjective NLP tasks.
☆ Estimating Text Temperature
Autoregressive language models typically use temperature parameter at inference to shape the probability distribution and control the randomness of the text generated. After the text was generated, this parameter can be estimated using maximum likelihood approach. Following it, we propose a procedure to estimate the temperature of any text, including ones written by humans, with respect to a given language model. We evaluate the temperature estimation capability of a wide selection of small-to-medium LLMs. We then use the best-performing Qwen3 14B to estimate temperatures of popular corpora.
☆ Classifying several dialectal Nawatl varieties
Mexico is a country with a large number of indigenous languages, among which the most widely spoken is Nawatl, with more than two million people currently speaking it (mainly in North and Central America). Despite its rich cultural heritage, which dates back to the 15th century, Nawatl is a language with few computer resources. The problem is compounded when it comes to its dialectal varieties, with approximately 30 varieties recognised, not counting the different spellings in the written forms of the language. In this research work, we addressed the problem of classifying Nawatl varieties using Machine Learning and Neural Networks.
comment: 9 pages, 5 figures, 4 tables
☆ Power-of-Two Quantization-Aware-Training (PoT-QAT) in Large Language Models (LLMs)
In Large Language Models (LLMs), the number of parameters has grown exponentially in the past few years, e.g., from 1.5 billion parameters in GPT-2 to 175 billion in GPT-3 to possibly more than trillion in higher versions. This raises a significant challenge for implementation, especially for Edge devices. Unlike cloud computing, memory and processing power for Edge devices are very limited, which necessitates developing novel ideas to make such applications feasible. In this work, we investigate compressing weights with a special quantization that limits numbers to only power-of-two (PoT). This helps save a huge amount of memory as only exponents need to be stored, more importantly, it significantly reduces processing power by replacing costly multiplication with low cost bit shifting. To overcome performance loss due to this strict quantization, we investigate Quantization Aware Training (QAT) to enhance performance through additional training. Results on GPT-2 124M show a major enhancement for quantized PoT model after additional training, with a perplexity enhancement of 66% and BERT-Score loss to baseline GPT-2 of 1%. The memory saving is estimated to be 87.5% while the inference speed is expected to be 3-10x faster with PoT quantization versus full-precision.
☆ pdfQA: Diverse, Challenging, and Realistic Question Answering over PDFs
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).
☆ CD4LM: Consistency Distillation and aDaptive Decoding for Diffusion Language Models
Autoregressive large language models achieve strong results on many benchmarks, but decoding remains fundamentally latency-limited by sequential dependence on previously generated tokens. Diffusion language models (DLMs) promise parallel generation but suffer from a fundamental static-to-dynamic misalignment: Training optimizes local transitions under fixed schedules, whereas efficient inference requires adaptive "long-jump" refinements through unseen states. Our goal is to enable highly parallel decoding for DLMs with low number of function evaluations while preserving generation quality. To achieve this, we propose CD4LM, a framework that decouples training from inference via Discrete-Space Consistency Distillation (DSCD) and Confidence-Adaptive Decoding (CAD). Unlike standard objectives, DSCD trains a student to be trajectory-invariant, mapping diverse noisy states directly to the clean distribution. This intrinsic robustness enables CAD to dynamically allocate compute resources based on token confidence, aggressively skipping steps without the quality collapse typical of heuristic acceleration. On GSM8K, CD4LM matches the LLaDA baseline with a 5.18x wall-clock speedup; across code and math benchmarks, it strictly dominates the accuracy-efficiency Pareto frontier, achieving a 3.62x mean speedup while improving average accuracy. Code is available at https://github.com/yihao-liang/CDLM
comment: 33 pages, 7 figures
☆ From XAI to Stories: A Factorial Study of LLM-Generated Explanation Quality
Explainable AI (XAI) methods like SHAP and LIME produce numerical feature attributions that remain inaccessible to non expert users. Prior work has shown that Large Language Models (LLMs) can transform these outputs into natural language explanations (NLEs), but it remains unclear which factors contribute to high-quality explanations. We present a systematic factorial study investigating how Forecasting model choice, XAI method, LLM selection, and prompting strategy affect NLE quality. Our design spans four models (XGBoost (XGB), Random Forest (RF), Multilayer Perceptron (MLP), and SARIMAX - comparing black-box Machine-Learning (ML) against classical time-series approaches), three XAI conditions (SHAP, LIME, and a no-XAI baseline), three LLMs (GPT-4o, Llama-3-8B, DeepSeek-R1), and eight prompting strategies. Using G-Eval, an LLM-as-a-judge evaluation method, with dual LLM judges and four evaluation criteria, we evaluate 660 explanations for time-series forecasting. Our results suggest that: (1) XAI provides only small improvements over no-XAI baselines, and only for expert audiences; (2) LLM choice dominates all other factors, with DeepSeek-R1 outperforming GPT-4o and Llama-3; (3) we observe an interpretability paradox: in our setting, SARIMAX yielded lower NLE quality than ML models despite higher prediction accuracy; (4) zero-shot prompting is competitive with self-consistency at 7-times lower cost; and (5) chain-of-thought hurts rather than helps.
☆ ARCADE: A City-Scale Corpus for Fine-Grained Arabic Dialect Tagging
The Arabic language is characterized by a rich tapestry of regional dialects that differ substantially in phonetics and lexicon, reflecting the geographic and cultural diversity of its speakers. Despite the availability of many multi-dialect datasets, mapping speech to fine-grained dialect sources, such as cities, remains underexplored. We present ARCADE (Arabic Radio Corpus for Audio Dialect Evaluation), the first Arabic speech dataset designed explicitly with city-level dialect granularity. The corpus comprises Arabic radio speech collected from streaming services across the Arab world. Our data pipeline captures 30-second segments from verified radio streams, encompassing both Modern Standard Arabic (MSA) and diverse dialectal speech. To ensure reliability, each clip was annotated by one to three native Arabic reviewers who assigned rich metadata, including emotion, speech type, dialect category, and a validity flag for dialect identification tasks. The resulting corpus comprises 6,907 annotations and 3,790 unique audio segments spanning 58 cities across 19 countries. These fine-grained annotations enable robust multi-task learning, serving as a benchmark for city-level dialect tagging. We detail the data collection methodology, assess audio quality, and provide a comprehensive analysis of label distributions. The dataset is available on: https://huggingface.co/datasets/riotu-lab/ARCADE-full
☆ Toward Global Large Language Models in Medicine
Despite continuous advances in medical technology, the global distribution of health care resources remains uneven. The development of large language models (LLMs) has transformed the landscape of medicine and holds promise for improving health care quality and expanding access to medical information globally. However, existing LLMs are primarily trained on high-resource languages, limiting their applicability in global medical scenarios. To address this gap, we constructed GlobMed, a large multilingual medical dataset, containing over 500,000 entries spanning 12 languages, including four low-resource languages. Building on this, we established GlobMed-Bench, which systematically assesses 56 state-of-the-art proprietary and open-weight LLMs across multiple multilingual medical tasks, revealing significant performance disparities across languages, particularly for low-resource languages. Additionally, we introduced GlobMed-LLMs, a suite of multilingual medical LLMs trained on GlobMed, with parameters ranging from 1.7B to 8B. GlobMed-LLMs achieved an average performance improvement of over 40% relative to baseline models, with a more than threefold increase in performance on low-resource languages. Together, these resources provide an important foundation for advancing the equitable development and application of LLMs globally, enabling broader language communities to benefit from technological advances.
comment: 182 pages, 65 figures
☆ Confidence Estimation for LLMs in Multi-turn Interactions
While confidence estimation is a promising direction for mitigating hallucinations in Large Language Models (LLMs), current research dominantly focuses on single-turn settings. The dynamics of model confidence in multi-turn conversations, where context accumulates and ambiguity is progressively resolved, remain largely unexplored. Reliable confidence estimation in multi-turn settings is critical for many downstream applications, such as autonomous agents and human-in-the-loop systems. This work presents the first systematic study of confidence estimation in multi-turn interactions, establishing a formal evaluation framework grounded in two key desiderata: per-turn calibration and monotonicity of confidence as more information becomes available. To facilitate this, we introduce novel metrics, including a length-normalized Expected Calibration Error (InfoECE), and a new "Hinter-Guesser" paradigm for generating controlled evaluation datasets. Our experiments reveal that widely-used confidence techniques struggle with calibration and monotonicity in multi-turn dialogues. We propose P(Sufficient), a logit-based probe that achieves comparatively better performance, although the task remains far from solved. Our work provides a foundational methodology for developing more reliable and trustworthy conversational agents.
☆ EverMemOS: A Self-Organizing Memory Operating System for Structured Long-Horizon Reasoning
Large Language Models (LLMs) are increasingly deployed as long-term interactive agents, yet their limited context windows make it difficult to sustain coherent behavior over extended interactions. Existing memory systems often store isolated records and retrieve fragments, limiting their ability to consolidate evolving user states and resolve conflicts. We introduce EverMemOS, a self-organizing memory operating system that implements an engram-inspired lifecycle for computational memory. Episodic Trace Formation converts dialogue streams into MemCells that capture episodic traces, atomic facts, and time-bounded Foresight signals. Semantic Consolidation organizes MemCells into thematic MemScenes, distilling stable semantic structures and updating user profiles. Reconstructive Recollection performs MemScene-guided agentic retrieval to compose the necessary and sufficient context for downstream reasoning. Experiments on LoCoMo and LongMemEval show that EverMemOS achieves state-of-the-art performance on memory-augmented reasoning tasks. We further report a profile study on PersonaMem v2 and qualitative case studies illustrating chat-oriented capabilities such as user profiling and Foresight. Code is available at https://github.com/EverMind-AI/EverMemOS.
comment: 16 pages, 6 figures, 12 tables. Code available at https://github.com/EverMind-AI/EverMemOS
☆ FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
☆ Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
☆ Routing by Analogy: kNN-Augmented Expert Assignment for Mixture-of-Experts
Mixture-of-Experts (MoE) architectures scale large language models efficiently by employing a parametric "router" to dispatch tokens to a sparse subset of experts. Typically, this router is trained once and then frozen, rendering routing decisions brittle under distribution shifts. We address this limitation by introducing kNN-MoE, a retrieval-augmented routing framework that reuses optimal expert assignments from a memory of similar past cases. This memory is constructed offline by directly optimizing token-wise routing logits to maximize the likelihood on a reference set. Crucially, we use the aggregate similarity of retrieved neighbors as a confidence-driven mixing coefficient, thus allowing the method to fall back to the frozen router when no relevant cases are found. Experiments show kNN-MoE outperforms zero-shot baselines and rivals computationally expensive supervised fine-tuning.
☆ Towards Multi-Level Transcript Segmentation: LoRA Fine-Tuning for Table-of-Contents Generation
Segmenting speech transcripts into thematic sections benefits both downstream processing and users who depend on written text for accessibility. We introduce a novel approach to hierarchical topic segmentation in transcripts, generating multi-level tables of contents that capture both topic and subtopic boundaries. We compare zero-shot prompting and LoRA fine-tuning on large language models, while also exploring the integration of high-level speech pause features. Evaluations on English meeting recordings and multilingual lecture transcripts (Portuguese, German) show significant improvements over established topic segmentation baselines. Additionally, we adapt a common evaluation measure for multi-level segmentation, taking into account all hierarchical levels within one metric.
comment: Published in Proceedings of Interspeech 2025. Please cite the proceedings version (DOI: 10.21437/Interspeech.2025-2792)
☆ DeCode: Decoupling Content and Delivery for Medical QA
Large language models (LLMs) exhibit strong medical knowledge and can generate factually accurate responses. However, existing models often fail to account for individual patient contexts, producing answers that are clinically correct yet poorly aligned with patients' needs. In this work, we introduce DeCode, a training-free, model-agnostic framework that adapts existing LLMs to produce contextualized answers in clinical settings. We evaluate DeCode on OpenAI HealthBench, a comprehensive and challenging benchmark designed to assess clinical relevance and validity of LLM responses. DeCode improves the previous state of the art from $28.4\%$ to $49.8\%$, corresponding to a $75\%$ relative improvement. Experimental results suggest the effectiveness of DeCode in improving clinical question answering of LLMs.
comment: Preprint
☆ Deferred Commitment Decoding for Diffusion Language Models with Confidence-Aware Sliding Windows
Diffusion language models (DLMs) have recently emerged as a strong alternative to autoregressive models by enabling parallel text generation. To improve inference efficiency and KV-cache compatibility, prior work commonly adopts block-based diffusion, decoding tokens block by block. However, this paradigm suffers from a structural limitation that we term Boundary-Induced Context Truncation (BICT): undecoded tokens near block boundaries are forced to commit without access to nearby future context, even when such context could substantially reduce uncertainty. This limitation degrades decoding confidence and generation quality, especially for tasks requiring precise reasoning, such as mathematical problem solving and code generation. We propose Deferred Commitment Decoding (DCD), a novel, training-free decoding strategy that mitigates this issue. DCD maintains a confidence-aware sliding window over masked tokens, resolving low-uncertainty tokens early while deferring high-uncertainty tokens until sufficient contextual evidence becomes available. This design enables effective bidirectional information flow within the decoding window without sacrificing efficiency. Extensive experiments across multiple diffusion language models, benchmarks, and caching configurations show that DCD improves generation accuracy by 1.39% with comparable time on average compared to fixed block-based diffusion methods, with the most significant improvement reaching 9.0%. These results demonstrate that deferring token commitment based on uncertainty is a simple yet effective principle for improving both the quality and efficiency of diffusion language model decoding.
☆ Cost-Efficient Cross-Lingual Retrieval-Augmented Generation for Low-Resource Languages: A Case Study in Bengali Agricultural Advisory
Access to reliable agricultural advisory remains limited in many developing regions due to a persistent language barrier: authoritative agricultural manuals are predominantly written in English, while farmers primarily communicate in low-resource local languages such as Bengali. Although recent advances in Large Language Models (LLMs) enable natural language interaction, direct generation in low-resource languages often exhibits poor fluency and factual inconsistency, while cloud-based solutions remain cost-prohibitive. This paper presents a cost-efficient, cross-lingual Retrieval-Augmented Generation (RAG) framework for Bengali agricultural advisory that emphasizes factual grounding and practical deployability. The proposed system adopts a translation-centric architecture in which Bengali user queries are translated into English, enriched through domain-specific keyword injection to align colloquial farmer terminology with scientific nomenclature, and answered via dense vector retrieval over a curated corpus of English agricultural manuals (FAO, IRRI). The generated English response is subsequently translated back into Bengali to ensure accessibility. The system is implemented entirely using open-source models and operates on consumer-grade hardware without reliance on paid APIs. Experimental evaluation demonstrates reliable source-grounded responses, robust rejection of out-of-domain queries, and an average end-to-end latency below 20 seconds. The results indicate that cross-lingual retrieval combined with controlled translation offers a practical and scalable solution for agricultural knowledge access in low-resource language settings
comment: 5 pages, 3 figures, 1 table
☆ Simulated Reasoning is Reasoning
Reasoning has long been understood as a pathway between stages of understanding. Proper reasoning leads to understanding of a given subject. This reasoning was conceptualized as a process of understanding in a particular way, i.e., "symbolic reasoning". Foundational Models (FM) demonstrate that this is not a necessary condition for many reasoning tasks: they can "reason" by way of imitating the process of "thinking out loud", testing the produced pathways, and iterating on these pathways on their own. This leads to some form of reasoning that can solve problems on its own or with few-shot learning, but appears fundamentally different from human reasoning due to its lack of grounding and common sense, leading to brittleness of the reasoning process. These insights promise to substantially alter our assessment of reasoning and its necessary conditions, but also inform the approaches to safety and robust defences against this brittleness of FMs. This paper offers and discusses several philosophical interpretations of this phenomenon, argues that the previously apt metaphor of the "stochastic parrot" has lost its relevance and thus should be abandoned, and reflects on different normative elements in the safety- and appropriateness-considerations emerging from these reasoning models and their growing capacity.
comment: 21 pages
☆ Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
☆ Not All Needles Are Found: How Fact Distribution and Don't Make It Up Prompts Shape Literal Extraction, Logical Inference, and Hallucination Risks in Long-Context LLMs
Large language models (LLMs) increasingly support very long input contexts. Yet it remains unclear how reliably they extract and infer information at scale. Performance varies with context length and strongly interacts with how information is distributed in real-world corpora. Motivated by these observations, we study how fact placement, corpus-level fact distributions, and Don't Make It Up prompts influence model behavior. We introduce an extended needle-in-a-haystack benchmark across four production-scale models: Gemini-2.5-flash, ChatGPT-5-mini, Claude-4.5-haiku, and Deepseek-v3.2-chat. Unlike prior work, we separately evaluate literal extraction, logical inference, and hallucination risk. Our study considers both positional effects and realistic distributions of evidence across long contexts, as well as prompts that explicitly discourage fabrication. We find that longer contexts alone do not guarantee better performance and can be detrimental when relevant evidence is diluted or widely dispersed. Performance varies substantially across models: some show severe degradation under realistic conditions, while others remain more robust at longer context lengths. Anti-hallucination (AH) instructions can make some models overly conservative, sharply reducing accuracy in literal extraction and logical inference. While we do not directly compare retrieval-augmented generation (RAG) and cache-augmented generation (CAG), our results suggest many failures stem from ineffective context utilization. Models often struggle to identify and prioritize relevant information even when it is present. These findings have direct practical implications, as enterprise workflows increasingly involve pasting large volumes of unfiltered documents into LLM prompts. Effective context length and model-specific robustness to long contexts are therefore critical for reliable LLM deployment in research and business.
comment: 25 pages, 8 figures, 3 tables
☆ Surprisal and Metaphor Novelty: Moderate Correlations and Divergent Scaling Effects EACL 2026
Novel metaphor comprehension involves complex semantic processes and linguistic creativity, making it an interesting task for studying language models (LMs). This study investigates whether surprisal, a probabilistic measure of predictability in LMs, correlates with different metaphor novelty datasets. We analyse surprisal from 16 LM variants on corpus-based and synthetic metaphor novelty datasets. We explore a cloze-style surprisal method that conditions on full-sentence context. Results show that LMs yield significant moderate correlations with scores/labels of metaphor novelty. We further identify divergent scaling patterns: on corpus-based data, correlation strength decreases with model size (inverse scaling effect), whereas on synthetic data it increases (Quality-Power Hypothesis). We conclude that while surprisal can partially account for annotations of metaphor novelty, it remains a limited metric of linguistic creativity.
comment: to be published at EACL 2026 main conference
☆ A neural network for modeling human concept formation, understanding and communication
A remarkable capability of the human brain is to form more abstract conceptual representations from sensorimotor experiences and flexibly apply them independent of direct sensory inputs. However, the computational mechanism underlying this ability remains poorly understood. Here, we present a dual-module neural network framework, the CATS Net, to bridge this gap. Our model consists of a concept-abstraction module that extracts low-dimensional conceptual representations, and a task-solving module that performs visual judgement tasks under the hierarchical gating control of the formed concepts. The system develops transferable semantic structure based on concept representations that enable cross-network knowledge transfer through conceptual communication. Model-brain fitting analyses reveal that these emergent concept spaces align with both neurocognitive semantic model and brain response structures in the human ventral occipitotemporal cortex, while the gating mechanisms mirror that in the semantic control brain network. This work establishes a unified computational framework that can offer mechanistic insights for understanding human conceptual cognition and engineering artificial systems with human-like conceptual intelligence.
comment: 6 main figures, 5 extended data figures and 4 supplementary figures
☆ Exploring Approaches for Detecting Memorization of Recommender System Data in Large Language Models
Large Language Models (LLMs) are increasingly applied in recommendation scenarios due to their strong natural language understanding and generation capabilities. However, they are trained on vast corpora whose contents are not publicly disclosed, raising concerns about data leakage. Recent work has shown that the MovieLens-1M dataset is memorized by both the LLaMA and OpenAI model families, but the extraction of such memorized data has so far relied exclusively on manual prompt engineering. In this paper, we pose three main questions: Is it possible to enhance manual prompting? Can LLM memorization be detected through methods beyond manual prompting? And can the detection of data leakage be automated? To address these questions, we evaluate three approaches: (i) jailbreak prompt engineering; (ii) unsupervised latent knowledge discovery, probing internal activations via Contrast-Consistent Search (CCS) and Cluster-Norm; and (iii) Automatic Prompt Engineering (APE), which frames prompt discovery as a meta-learning process that iteratively refines candidate instructions. Experiments on MovieLens-1M using LLaMA models show that jailbreak prompting does not improve the retrieval of memorized items and remains inconsistent; CCS reliably distinguishes genuine from fabricated movie titles but fails on numerical user and rating data; and APE retrieves item-level information with moderate success yet struggles to recover numerical interactions. These findings suggest that automatically optimizing prompts is the most promising strategy for extracting memorized samples.
☆ Exploring Diversity, Novelty, and Popularity Bias in ChatGPT's Recommendations
ChatGPT has emerged as a versatile tool, demonstrating capabilities across diverse domains. Given these successes, the Recommender Systems (RSs) community has begun investigating its applications within recommendation scenarios primarily focusing on accuracy. While the integration of ChatGPT into RSs has garnered significant attention, a comprehensive analysis of its performance across various dimensions remains largely unexplored. Specifically, the capabilities of providing diverse and novel recommendations or exploring potential biases such as popularity bias have not been thoroughly examined. As the use of these models continues to expand, understanding these aspects is crucial for enhancing user satisfaction and achieving long-term personalization. This study investigates the recommendations provided by ChatGPT-3.5 and ChatGPT-4 by assessing ChatGPT's capabilities in terms of diversity, novelty, and popularity bias. We evaluate these models on three distinct datasets and assess their performance in Top-N recommendation and cold-start scenarios. The findings reveal that ChatGPT-4 matches or surpasses traditional recommenders, demonstrating the ability to balance novelty and diversity in recommendations. Furthermore, in the cold-start scenario, ChatGPT models exhibit superior performance in both accuracy and novelty, suggesting they can be particularly beneficial for new users. This research highlights the strengths and limitations of ChatGPT's recommendations, offering new perspectives on the capacity of these models to provide recommendations beyond accuracy-focused metrics.
☆ Hidden State Poisoning Attacks against Mamba-based Language Models ACL 2026
State space models (SSMs) like Mamba offer efficient alternatives to Transformer-based language models, with linear time complexity. Yet, their adversarial robustness remains critically unexplored. This paper studies the phenomenon whereby specific short input phrases induce a partial amnesia effect in such models, by irreversibly overwriting information in their hidden states, referred to as a Hidden State Poisoning Attack (HiSPA). Our benchmark RoBench25 allows evaluating a model's information retrieval capabilities when subject to HiSPAs, and confirms the vulnerability of SSMs against such attacks. Even a recent 52B hybrid SSM-Transformer model from the Jamba family collapses on RoBench25 under optimized HiSPA triggers, whereas pure Transformers do not. We also observe that HiSPA triggers significantly weaken the Jamba model on the popular Open-Prompt-Injections benchmark, unlike pure Transformers. Finally, our interpretability study reveals patterns in Mamba's hidden layers during HiSPAs that could be used to build a HiSPA mitigation system. The full code and data to reproduce the experiments can be found at https://anonymous.4open.science/r/hispa_anonymous-5DB0.
comment: 17 pages, 4 figures. Submitted to ACL 2026
☆ CSF: Contrastive Semantic Features for Direct Multilingual Sign Language Generation
Sign language translation systems typically require English as an intermediary language, creating barriers for non-English speakers in the global deaf community. We present Canonical Semantic Form (CSF), a language-agnostic semantic representation framework that enables direct translation from any source language to sign language without English mediation. CSF decomposes utterances into nine universal semantic slots: event, intent, time, condition, agent, object, location, purpose, and modifier. A key contribution is our comprehensive condition taxonomy comprising 35 condition types across eight semantic categories, enabling nuanced representation of conditional expressions common in everyday communication. We train a lightweight transformer-based extractor (0.74 MB) that achieves 99.03% average slot extraction accuracy across four typologically diverse languages: English, Vietnamese, Japanese, and French. The model demonstrates particularly strong performance on condition classification (99.4% accuracy) despite the 35-class complexity. With inference latency of 3.02ms on CPU, our approach enables real-time sign language generation in browser-based applications. We release our code, trained models, and multilingual dataset to support further research in accessible sign language technology.
comment: 9 pages, 8 tables, code available at https://github.com/transybao1393/csf-sign-language
☆ The Invisible Hand of AI Libraries Shaping Open Source Projects and Communities
In the early 1980s, Open Source Software emerged as a revolutionary concept amidst the dominance of proprietary software. What began as a revolutionary idea has now become the cornerstone of computer science. Amidst OSS projects, AI is increasing its presence and relevance. However, despite the growing popularity of AI, its adoption and impacts on OSS projects remain underexplored. We aim to assess the adoption of AI libraries in Python and Java OSS projects and examine how they shape development, including the technical ecosystem and community engagement. To this end, we will perform a large-scale analysis on 157.7k potential OSS repositories, employing repository metrics and software metrics to compare projects adopting AI libraries against those that do not. We expect to identify measurable differences in development activity, community engagement, and code complexity between OSS projects that adopt AI libraries and those that do not, offering evidence-based insights into how AI integration reshapes software development practices.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ Tackling the Inherent Difficulty of Noise Filtering in RAG
Retrieval-Augmented Generation (RAG) has become a widely adopted approach to enhance Large Language Models (LLMs) by incorporating external knowledge and reducing hallucinations. However, noisy or irrelevant documents are often introduced during RAG, potentially degrading performance and even causing hallucinated outputs. While various methods have been proposed to filter out such noise, we argue that identifying irrelevant information from retrieved content is inherently difficult and limited number of transformer layers can hardly solve this. Consequently, retrievers fail to filter out irrelevant documents entirely. Therefore, LLMs must be robust against such noise, but we demonstrate that standard fine-tuning approaches are often ineffective in enabling the model to selectively utilize relevant information while ignoring irrelevant content due to the structural constraints of attention patterns. To address this, we propose a novel fine-tuning method designed to enhance the model's ability to distinguish between relevant and irrelevant information within retrieved documents. Extensive experiments across multiple benchmarks show that our approach significantly improves the robustness and performance of LLMs.
☆ Agentic Memory: Learning Unified Long-Term and Short-Term Memory Management for Large Language Model Agents
Large language model (LLM) agents face fundamental limitations in long-horizon reasoning due to finite context windows, making effective memory management critical. Existing methods typically handle long-term memory (LTM) and short-term memory (STM) as separate components, relying on heuristics or auxiliary controllers, which limits adaptability and end-to-end optimization. In this paper, we propose Agentic Memory (AgeMem), a unified framework that integrates LTM and STM management directly into the agent's policy. AgeMem exposes memory operations as tool-based actions, enabling the LLM agent to autonomously decide what and when to store, retrieve, update, summarize, or discard information. To train such unified behaviors, we propose a three-stage progressive reinforcement learning strategy and design a step-wise GRPO to address sparse and discontinuous rewards induced by memory operations. Experiments on five long-horizon benchmarks demonstrate that AgeMem consistently outperforms strong memory-augmented baselines across multiple LLM backbones, achieving improved task performance, higher-quality long-term memory, and more efficient context usage.
☆ DermoGPT: Open Weights and Open Data for Morphology-Grounded Dermatological Reasoning MLLMs
Multimodal Large Language Models (MLLMs) show promise for medical applications, yet progress in dermatology lags due to limited training data, narrow task coverage, and lack of clinically-grounded supervision that mirrors expert diagnostic workflows. We present a comprehensive framework to address these gaps. First, we introduce DermoInstruct, a large-scale morphology-anchored instruction corpus comprising 211,243 images and 772,675 trajectories across five task formats, capturing the complete diagnostic pipeline from morphological observation and clinical reasoning to final diagnosis. Second, we establish DermoBench, a rigorous benchmark evaluating 11 tasks across four clinical axes: Morphology, Diagnosis, Reasoning, and Fairness, including a challenging subset of 3,600 expert-verified open-ended instances and human performance baselines. Third, we develop DermoGPT, a dermatology reasoning MLLM trained via supervised fine-tuning followed by our Morphologically-Anchored Visual-Inference-Consistent (MAVIC) reinforcement learning objective, which enforces consistency between visual observations and diagnostic conclusions. At inference, we deploy Confidence-Consistency Test-time adaptation (CCT) for robust predictions. Experiments show DermoGPT significantly outperforms 16 representative baselines across all axes, achieving state-of-the-art performance while substantially narrowing the human-AI gap. DermoInstruct, DermoBench and DermoGPT will be made publicly available at https://github.com/mendicant04/DermoGPT upon acceptance.
☆ Judging with Personality and Confidence: A Study on Personality-Conditioned LLM Relevance Assessment
Recent studies have shown that prompting can enable large language models (LLMs) to simulate specific personality traits and produce behaviors that align with those traits. However, there is limited understanding of how these simulated personalities influence critical web search decisions, specifically relevance assessment. Moreover, few studies have examined how simulated personalities impact confidence calibration, specifically the tendencies toward overconfidence or underconfidence. This gap exists even though psychological literature suggests these biases are trait-specific, often linking high extraversion to overconfidence and high neuroticism to underconfidence. To address this gap, we conducted a comprehensive study evaluating multiple LLMs, including commercial models and open-source models, prompted to simulate Big Five personality traits. We tested these models across three test collections (TREC DL 2019, TREC DL 2020, and LLMJudge), collecting two key outputs for each query-document pair: a relevance judgment and a self-reported confidence score. The findings show that personalities such as low agreeableness consistently align more closely with human labels than the unprompted condition. Additionally, low conscientiousness performs well in balancing the suppression of both overconfidence and underconfidence. We also observe that relevance scores and confidence distributions vary systematically across different personalities. Based on the above findings, we incorporate personality-conditioned scores and confidence as features in a random forest classifier. This approach achieves performance that surpasses the best single-personality condition on a new dataset (TREC DL 2021), even with limited training data. These findings highlight that personality-derived confidence offers a complementary predictive signal, paving the way for more reliable and human-aligned LLM evaluators.
☆ Towards Automated Lexicography: Generating and Evaluating Definitions for Learner's Dictionaries
We study dictionary definition generation (DDG), i.e., the generation of non-contextualized definitions for given headwords. Dictionary definitions are an essential resource for learning word senses, but manually creating them is costly, which motivates us to automate the process. Specifically, we address learner's dictionary definition generation (LDDG), where definitions should consist of simple words. First, we introduce a reliable evaluation approach for DDG, based on our new evaluation criteria and powered by an LLM-as-a-judge. To provide reference definitions for the evaluation, we also construct a Japanese dataset in collaboration with a professional lexicographer. Validation results demonstrate that our evaluation approach agrees reasonably well with human annotators. Second, we propose an LDDG approach via iterative simplification with an LLM. Experimental results indicate that definitions generated by our approach achieve high scores on our criteria while maintaining lexical simplicity.
☆ Emergent Introspective Awareness in Large Language Models
We investigate whether large language models can introspect on their internal states. It is difficult to answer this question through conversation alone, as genuine introspection cannot be distinguished from confabulations. Here, we address this challenge by injecting representations of known concepts into a model's activations, and measuring the influence of these manipulations on the model's self-reported states. We find that models can, in certain scenarios, notice the presence of injected concepts and accurately identify them. Models demonstrate some ability to recall prior internal representations and distinguish them from raw text inputs. Strikingly, we find that some models can use their ability to recall prior intentions in order to distinguish their own outputs from artificial prefills. In all these experiments, Claude Opus 4 and 4.1, the most capable models we tested, generally demonstrate the greatest introspective awareness; however, trends across models are complex and sensitive to post-training strategies. Finally, we explore whether models can explicitly control their internal representations, finding that models can modulate their activations when instructed or incentivized to "think about" a concept. Overall, our results indicate that current language models possess some functional introspective awareness of their own internal states. We stress that in today's models, this capacity is highly unreliable and context-dependent; however, it may continue to develop with further improvements to model capabilities.
☆ Aspect Extraction from E-Commerce Product and Service Reviews
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
☆ CSCBench: A PVC Diagnostic Benchmark for Commodity Supply Chain Reasoning
Large Language Models (LLMs) have achieved remarkable success in general benchmarks, yet their competence in commodity supply chains (CSCs) -- a domain governed by institutional rule systems and feasibility constraints -- remains under-explored. CSC decisions are shaped jointly by process stages (e.g., planning, procurement, delivery), variety-specific rules (e.g., contract specifications and delivery grades), and reasoning depth (from retrieval to multi-step analysis and decision selection). We introduce CSCBench, a 2.3K+ single-choice benchmark for CSC reasoning, instantiated through our PVC 3D Evaluation Framework (Process, Variety, and Cognition). The Process axis aligns tasks with SCOR+Enable; the Variety axis operationalizes commodity-specific rule systems under coupled material-information-financial constraints, grounded in authoritative exchange guidebooks/rulebooks and industry reports; and the Cognition axis follows Bloom's revised taxonomy. Evaluating representative LLMs under a direct prompting setting, we observe strong performance on the Process and Cognition axes but substantial degradation on the Variety axis, especially on Freight Agreements. CSCBench provides a diagnostic yardstick for measuring and improving LLM capabilities in this high-stakes domain.
☆ HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
☆ BanglaIPA: Towards Robust Text-to-IPA Transcription with Contextual Rewriting in Bengali
Despite its widespread use, Bengali lacks a robust automated International Phonetic Alphabet (IPA) transcription system that effectively supports both standard language and regional dialectal texts. Existing approaches struggle to handle regional variations, numerical expressions, and generalize poorly to previously unseen words. To address these limitations, we propose BanglaIPA, a novel IPA generation system that integrates a character-based vocabulary with word-level alignment. The proposed system accurately handles Bengali numerals and demonstrates strong performance across regional dialects. BanglaIPA improves inference efficiency by leveraging a precomputed word-to-IPA mapping dictionary for previously observed words. The system is evaluated on the standard Bengali and six regional variations of the DUAL-IPA dataset. Experimental results show that BanglaIPA outperforms baseline IPA transcription models by 58.4-78.7% and achieves an overall mean word error rate of 11.4%, highlighting its robustness in phonetic transcription generation for the Bengali language.
☆ Can LLMs Track Their Output Length? A Dynamic Feedback Mechanism for Precise Length Regulation
Precisely controlling the length of generated text is a common requirement in real-world applications. However, despite significant advancements in following human instructions, Large Language Models (LLMs) still struggle with this task. In this work, we demonstrate that LLMs often fail to accurately measure input text length, leading to poor adherence to length constraints. To address this issue, we propose a novel length regulation approach that incorporates dynamic length feedback during generation, enabling adaptive adjustments to meet target lengths. Experiments on summarization and biography tasks show our training-free approach significantly improves precision in achieving target token, word, or sentence counts without compromising quality. Additionally, we demonstrate that further supervised fine-tuning allows our method to generalize effectively to broader text-generation tasks.
☆ Context-Free Recognition with Transformers
Transformers excel on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs (Merrill et al., 2022). Merrill & Sabharwal (2024) show that $\mathcal{O}(\log n)$ looping layers (w.r.t. input length $n$) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log n)$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
☆ Query-Document Dense Vectors for LLM Relevance Judgment Bias Analysis ECIR 2026
Large Language Models (LLMs) have been used as relevance assessors for Information Retrieval (IR) evaluation collection creation due to reduced cost and increased scalability as compared to human assessors. While previous research has looked at the reliability of LLMs as compared to human assessors, in this work, we aim to understand if LLMs make systematic mistakes when judging relevance, rather than just understanding how good they are on average. To this aim, we propose a novel representational method for queries and documents that allows us to analyze relevance label distributions and compare LLM and human labels to identify patterns of disagreement and localize systematic areas of disagreement. We introduce a clustering-based framework that embeds query-document (Q-D) pairs into a joint semantic space, treating relevance as a relational property. Experiments on TREC Deep Learning 2019 and 2020 show that systematic disagreement between humans and LLMs is concentrated in specific semantic clusters rather than distributed randomly. Query-level analyses reveal recurring failures, most often in definition-seeking, policy-related, or ambiguous contexts. Queries with large variation in agreement across their clusters emerge as disagreement hotspots, where LLMs tend to under-recall relevant content or over-include irrelevant material. This framework links global diagnostics with localized clustering to uncover hidden weaknesses in LLM judgments, enabling bias-aware and more reliable IR evaluation.
comment: Accepted for presentation at the ECIR 2026 Full Papers track
☆ Multi-granularity Interactive Attention Framework for Residual Hierarchical Pronunciation Assessment AAAI 2026
Automatic pronunciation assessment plays a crucial role in computer-assisted pronunciation training systems. Due to the ability to perform multiple pronunciation tasks simultaneously, multi-aspect multi-granularity pronunciation assessment methods are gradually receiving more attention and achieving better performance than single-level modeling tasks. However, existing methods only consider unidirectional dependencies between adjacent granularity levels, lacking bidirectional interaction among phoneme, word, and utterance levels and thus insufficiently capturing the acoustic structural correlations. To address this issue, we propose a novel residual hierarchical interactive method, HIA for short, that enables bidirectional modeling across granularities. As the core of HIA, the Interactive Attention Module leverages an attention mechanism to achieve dynamic bidirectional interaction, effectively capturing linguistic features at each granularity while integrating correlations between different granularity levels. We also propose a residual hierarchical structure to alleviate the feature forgetting problem when modeling acoustic hierarchies. In addition, we use 1-D convolutional layers to enhance the extraction of local contextual cues at each granularity. Extensive experiments on the speechocean762 dataset show that our model is comprehensively ahead of the existing state-of-the-art methods.
comment: 9 pages, 4 figures, 5 tables, accepted by AAAI 2026
☆ K-EXAONE Technical Report
This technical report presents K-EXAONE, a large-scale multilingual language model developed by LG AI Research. K-EXAONE is built on a Mixture-of-Experts architecture with 236B total parameters, activating 23B parameters during inference. It supports a 256K-token context window and covers six languages: Korean, English, Spanish, German, Japanese, and Vietnamese. We evaluate K-EXAONE on a comprehensive benchmark suite spanning reasoning, agentic, general, Korean, and multilingual abilities. Across these evaluations, K-EXAONE demonstrates performance comparable to open-weight models of similar size. K-EXAONE, designed to advance AI for a better life, is positioned as a powerful proprietary AI foundation model for a wide range of industrial and research applications.
comment: 29 pages
☆ Entropy-Aligned Decoding of LMs for Better Writing and Reasoning
Language models (LMs) are trained on billions of tokens in an attempt to recover the true language distribution. Still, vanilla random sampling from LMs yields low quality generations. Decoding algorithms attempt to restrict the LM distribution to a set of high-probability continuations, but rely on greedy heuristics that introduce myopic distortions, yielding sentences that are homogeneous, repetitive and incoherent. In this paper, we introduce EPIC, a hyperparameter-free decoding approach that incorporates the entropy of future trajectories into LM decoding. EPIC explicitly regulates the amount of uncertainty expressed at every step of generation, aligning the sampling distribution's entropy to the aleatoric (data) uncertainty. Through Entropy-Aware Lazy Gumbel-Max sampling, EPIC manages to be exact, while also being efficient, requiring only a sublinear number of entropy evaluations per step. Unlike current baselines, EPIC yields sampling distributions that are empirically well-aligned with the entropy of the underlying data distribution. Across creative writing and summarization tasks, EPIC consistently improves LM-as-judge preference win-rates over widely used decoding strategies. These preference gains are complemented by automatic metrics, showing that EPIC produces more diverse generations and more faithful summaries. We also evaluate EPIC on mathematical reasoning, where it outperforms all baselines.
☆ A Training-Free Large Reasoning Model-based Knowledge Tracing Framework for Unified Prediction and Prescription
Knowledge Tracing (KT) aims to estimate a learner's evolving mastery based on interaction histories. Recent studies have explored Large Language Models (LLMs) for KT via autoregressive nature, but such approaches typically require fine-tuning and exhibit unstable or near-random performance. Moreover, prior KT systems primarily focus on prediction and rely on multi-stage pipelines for feedback and recommendation, resulting in increased system complexity and resources. To address this gap, we propose Thinking-KT, a training-free KT framework that incorporates Test-Time Scaling (TTS), enabling even small LLMs to achieve competitive KT performance. Moreover, in this framework, a small LLM can jointly perform KT prediction, personalized feedback generation, and learning recommendation in a unified output without degrading prediction accuracy. Beyond performance, we present the systematic analysis of reasoning traces in KT. Our results demonstrate that TTS is a critical yet underexplored factor in LLM-based KT, and that small LLMs can serve as unified ITS engines.
☆ Scalable Construction of a Lung Cancer Knowledge Base: Profiling Semantic Reasoning in LLMs IEEE
The integration of Large Language Models (LLMs) into biomedical research offers new opportunities for domainspecific reasoning and knowledge representation. However, their performance depends heavily on the semantic quality of training data. In oncology, where precision and interpretability are vital, scalable methods for constructing structured knowledge bases are essential for effective fine-tuning. This study presents a pipeline for developing a lung cancer knowledge base using Open Information Extraction (OpenIE). The process includes: (1) identifying medical concepts with the MeSH thesaurus; (2) filtering open-access PubMed literature with permissive licenses (CC0); (3) extracting (subject, relation, object) triplets using OpenIE method; and (4) enriching triplet sets with Named Entity Recognition (NER) to ensure biomedical relevance. The resulting triplet sets provide a domain-specific, large-scale, and noise-aware resource for fine-tuning LLMs. We evaluated T5 models finetuned on this dataset through Supervised Semantic Fine-Tuning. Comparative assessments with ROUGE and BERTScore show significantly improved performance and semantic coherence, demonstrating the potential of OpenIE-derived resources as scalable, low-cost solutions for enhancing biomedical NLP.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ FlowPlan-G2P: A Structured Generation Framework for Transforming Scientific Papers into Patent Descriptions
Over 3.5 million patents are filed annually, with drafting patent descriptions requiring deep technical and legal expertise. Transforming scientific papers into patent descriptions is particularly challenging due to their differing rhetorical styles and stringent legal requirements. Unlike black-box text-to-text approaches that struggle to model structural reasoning and legal constraints, we propose FlowPlan-G2P, a novel framework that mirrors the cognitive workflow of expert drafters by reformulating this task into three stages: (1) Concept Graph Induction, extracting technical entities and relationships into a directed graph via expert-like reasoning; (2) Paragraph and Section Planning, reorganizing the graph into coherent clusters aligned with canonical patent sections; and (3) Graph-Conditioned Generation, producing legally compliant paragraphs using section-specific subgraphs and tailored prompts. Experiments demonstrate that FlowPlan-G2P significantly improves logical coherence and legal compliance over end-to-end LLM baselines. Our framework establishes a new paradigm for paper-to-patent generation and advances structured text generation for specialized domains.
☆ Reconstructing Item Characteristic Curves using Fine-Tuned Large Language Models
Traditional methods for determining assessment item parameters, such as difficulty and discrimination, rely heavily on expensive field testing to collect student performance data for Item Response Theory (IRT) calibration. This study introduces a novel approach that implicitly models these psychometric properties by fine-tuning Large Language Models (LLMs) to simulate student responses across a spectrum of latent abilities. Leveraging the Qwen-3 dense model series and Low-Rank Adaptation (LoRA), we train models to generate responses to multiple choice questions conditioned on discrete ability descriptors. We reconstruct the probability of a correct response as a function of student ability, effectively generating synthetic Item Characteristic Curves (ICCs) to estimate IRT parameters. Evaluation on a dataset of Grade 6 English Language Arts (ELA) items and the BEA 2024 Shared Task dataset demonstrates that this method competes with or outperforms baseline approaches. This simulation-based technique seems particularly effective at modeling item discrimination.
comment: 19 pages, 5 tables, 3 figures
☆ DataParasite Enables Scalable and Repurposable Online Data Curation
Many questions in computational social science rely on datasets assembled from heterogeneous online sources, a process that is often labor-intensive, costly, and difficult to reproduce. Recent advances in large language models enable agentic search and structured extraction from the web, but existing systems are frequently opaque, inflexible, or poorly suited to scientific data curation. Here we introduce DataParasite, an open-source, modular pipeline for scalable online data collection. DataParasite decomposes tabular curation tasks into independent, entity-level searches defined through lightweight configuration files and executed through a shared, task-agnostic python script. Crucially, the same pipeline can be repurposed to new tasks, including those without predefined entity lists, using only natural-language instructions. We evaluate the pipeline on multiple canonical tasks in computational social science, including faculty hiring histories, elite death events, and political career trajectories. Across tasks, DataParasite achieves high accuracy while reducing data-collection costs by an order of magnitude relative to manual curation. By lowering the technical and labor barriers to online data assembly, DataParasite provides a practical foundation for scalable, transparent, and reusable data curation in computational social science and beyond.
☆ Fact-Checking with Large Language Models via Probabilistic Certainty and Consistency
Large language models (LLMs) are increasingly used in applications requiring factual accuracy, yet their outputs often contain hallucinated responses. While fact-checking can mitigate these errors, existing methods typically retrieve external evidence indiscriminately, overlooking the model's internal knowledge and potentially introducing irrelevant noise. Moreover, current systems lack targeted mechanisms to resolve specific uncertainties in the model's reasoning. Inspired by how humans fact-check, we argue that LLMs should adaptively decide whether to rely on internal knowledge or initiate retrieval based on their confidence in a given claim. We introduce Probabilistic Certainty and Consistency (PCC), a framework that estimates factual confidence by jointly modeling an LLM's probabilistic certainty and reasoning consistency. These confidence signals enable an adaptive verification strategy: the model answers directly when confident, triggers targeted retrieval when uncertain or inconsistent, and escalates to deep search when ambiguity is high. Our confidence-guided routing mechanism ensures that retrieval is invoked only when necessary, improving both efficiency and reliability. Extensive experiments across three challenging benchmarks show that PCC achieves better uncertainty quantification than verbalized confidence and consistently outperforms strong LLM-based fact-checking baselines. Furthermore, we demonstrate that PCC generalizes well across various LLMs.
☆ LoRA-Drop: Temporal LoRA Decoding for Efficient LLM Inference
Autoregressive large language models (LLMs) are bottlenecked by sequential decoding, where each new token typically requires executing all transformer layers. Existing dynamic-depth and layer-skipping methods reduce this cost, but often rely on auxiliary routing mechanisms or incur accuracy degradation when bypassed layers are left uncompensated. We present \textbf{LoRA-Drop}, a plug-and-play inference framework that accelerates decoding by applying a \emph{temporal compute schedule} to a fixed subset of intermediate layers: on most decoding steps, selected layers reuse the previous-token hidden state and apply a low-rank LoRA correction, while periodic \emph{refresh} steps execute the full model to prevent drift. LoRA-Drop requires no routing network, is compatible with standard KV caching, and can reduce KV-cache footprint by skipping KV updates in droppable layers during LoRA steps and refreshing periodically. Across \textbf{LLaMA2-7B}, \textbf{LLaMA3-8B}, \textbf{Qwen2.5-7B}, and \textbf{Qwen2.5-14B}, LoRA-Drop achieves up to \textbf{2.6$\times$ faster decoding} and \textbf{45--55\% KV-cache reduction} while staying within \textbf{0.5 percentage points (pp)} of baseline accuracy. Evaluations on reasoning (GSM8K, MATH, BBH), code generation (HumanEval, MBPP), and long-context/multilingual benchmarks (LongBench, XNLI, XCOPA) identify a consistent \emph{safe zone} of scheduling configurations that preserves quality while delivering substantial efficiency gains, providing a simple path toward adaptive-capacity inference in LLMs. Codes are available at https://github.com/hosseinbv/LoRA-Drop.git.
☆ Compressed code: the hidden effects of quantization and distillation on programming tokens
Large Language Models (LLMs) have demonstrated exceptional code generation capabilities, yet their token-level mechanisms remain underexplored, particularly in compressed models. Through systematic analysis of programming language token representations, we characterize how programming languages are encoded in LLM tokenizers by analyzing their vocabulary distribution and keyword coverage patterns. We introduce a novel cold-start probability analysis method that provides insights into model behavior without requiring explicit prompts. Additionally, we present a comprehensive evaluation of how different model optimization techniques - including quantization, distillation, model scaling, and task-specific fine-tuning - affect token-level representations and code generation quality. Our experiments, supported by comprehensive probability distribution analysis and evaluation metrics, reveal critical insights into token-level behavior and provide empirically-validated guidelines for maintaining code generation quality under various optimization constraints. These findings advance both theoretical understanding of LLM code generation and practical implementation of optimized models in production environments.
comment: 18 pages, 1 figure and 6 tables
☆ ModeX: Evaluator-Free Best-of-N Selection for Open-Ended Generation
Selecting a single high-quality output from multiple stochastic generations remains a fundamental challenge for large language models (LLMs), particularly in open-ended tasks where no canonical answer exists. While Best-of-N and self-consistency methods show that aggregating multiple generations can improve performance, existing approaches typically rely on external evaluators, reward models, or exact string-match voting, limiting their applicability and efficiency. We propose Mode Extraction (ModeX), an evaluator-free Best-of-N selection framework that generalizes majority voting to open-ended text generation by identifying the modal output representing the dominant semantic consensus among generated texts. ModeX constructs a similarity graph over candidate generations and recursively applies spectral clustering to select a representative centroid, without requiring additional inference or auxiliary models. We further instantiate this selection principle as ModeX--Lite, an improved version of ModeX with early pruning for efficiency. Across open-ended tasks--including text summarization, code generation, and mathematical reasoning--our approaches consistently outperform standard single- and multi-path baselines, providing a computationally efficient solution for robust open-ended text generation. Code is released in https://github.com/deeplearning-wisc/ModeX.
☆ Losses that Cook: Topological Optimal Transport for Structured Recipe Generation
Cooking recipes are complex procedures that require not only a fluent and factual text, but also accurate timing, temperature, and procedural coherence, as well as the correct composition of ingredients. Standard training procedures are primarily based on cross-entropy and focus solely on fluency. Building on RECIPE-NLG, we investigate the use of several composite objectives and present a new topological loss that represents ingredient lists as point clouds in embedding space, minimizing the divergence between predicted and gold ingredients. Using both standard NLG metrics and recipe-specific metrics, we find that our loss significantly improves ingredient- and action-level metrics. Meanwhile, the Dice loss excels in time/temperature precision, and the mixed loss yields competitive trade-offs with synergistic gains in quantity and time. A human preference analysis supports our finding, showing our model is preferred in 62% of the cases.
☆ Dynamic Quantization Error Propagation in Encoder-Decoder ASR Quantization
Running Automatic Speech Recognition (ASR) models on memory-constrained edge devices requires efficient compression. While layer-wise post-training quantization is effective, it suffers from error accumulation, especially in encoder-decoder architectures. Existing solutions like Quantization Error Propagation (QEP) are suboptimal for ASR due to the model's heterogeneity, processing acoustic features in the encoder while generating text in the decoder. To address this, we propose Fine-grained Alpha for Dynamic Quantization Error Propagation (FADE), which adaptively controls the trade-off between cross-layer error correction and local quantization. Experiments show that FADE significantly improves stability by reducing performance variance across runs, while simultaneously surpassing baselines in mean WER.
comment: 9 pages, 4 figures, 3 tables
☆ ModeX: Evaluator-Free Best-of-N Selection for Open-Ended Generation
Selecting a single high-quality output from multiple stochastic generations remains a fundamental challenge for large language models (LLMs), particularly in open-ended tasks where no canonical answer exists. While Best-of-N and self-consistency methods show that aggregating multiple generations can improve performance, existing approaches typically rely on external evaluators, reward models, or exact string-match voting, limiting their applicability and efficiency. We propose Mode Extraction (ModeX), an evaluator-free Best-of-N selection framework that generalizes majority voting to open-ended text generation by identifying the modal output representing the dominant semantic consensus among generated texts. ModeX constructs a similarity graph over candidate generations and recursively applies spectral clustering to select a representative centroid, without requiring additional inference or auxiliary models. We further instantiate this selection principle as ModeX-Lite, an improved version of ModeX with early pruning for efficiency. Across open-ended tasks -- including text summarization, code generation, and mathematical reasoning -- our approaches consistently outperform standard single- and multi-path baselines, providing a computationally efficient solution for robust open-ended text generation. Code is released in https://github.com/deeplearning-wisc/ModeX.
♻ ☆ EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
Speech emotion recognition (SER) systems are constrained by existing datasets that typically cover only 6-10 basic emotions, lack scale and diversity, and face ethical challenges when collecting sensitive emotional states. We introduce EMONET-VOICE, a comprehensive resource addressing these limitations through two components: (1) EmoNet-Voice Big, a 5,000-hour multilingual pre-training dataset spanning 40 fine-grained emotion categories across 11 voices and 4 languages, and (2) EmoNet-Voice Bench, a rigorously validated benchmark of 4,7k samples with unanimous expert consensus on emotion presence and intensity levels. Using state-of-the-art synthetic voice generation, our privacy-preserving approach enables ethical inclusion of sensitive emotions (e.g., pain, shame) while maintaining controlled experimental conditions. Each sample underwent validation by three psychology experts. We demonstrate that our Empathic Insight models trained on our synthetic data achieve strong real-world dataset generalization, as tested on EmoDB and RAVDESS. Furthermore, our comprehensive evaluation reveals that while high-arousal emotions (e.g., anger: 95% accuracy) are readily detected, the benchmark successfully exposes the difficulty of distinguishing perceptually similar emotions (e.g., sadness vs. distress: 63% discrimination), providing quantifiable metrics for advancing nuanced emotion AI. EMONET-VOICE establishes a new paradigm for large-scale, ethically-sourced, fine-grained SER research.
♻ ☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
♻ ☆ SteganoBackdoor: Stealthy and Data-Efficient Backdoor Attacks on Language Models
Modern language models remain vulnerable to backdoor attacks via poisoned data, where training inputs containing a trigger are paired with a target output, causing the model to reproduce that behavior whenever the trigger appears at inference time. Recent work has emphasized stealthy attacks that stress-test data-curation defenses using stylized artifacts or token-level perturbations as triggers, but this focus leaves a more practically relevant threat model underexplored: backdoors tied to naturally occurring semantic concepts. We introduce SteganoBackdoor, an optimization-based framework that constructs SteganoPoisons, steganographic poisoned training examples in which a backdoor payload is distributed across a fluent sentence while exhibiting no representational overlap with the inference-time semantic trigger. Across diverse model architectures, SteganoBackdoor achieves high attack success under constrained poisoning budgets and remains effective under conservative data-level filtering, highlighting a blind spot in existing data-curation defenses.
♻ ☆ Vision-Language Reasoning for Geolocalization: A Reinforcement Learning Approach AAAI 2026
Recent advances in vision-language models have opened up new possibilities for reasoning-driven image geolocalization. However, existing approaches often rely on synthetic reasoning annotations or external image retrieval, which can limit interpretability and generalizability. In this paper, we present Geo-R, a retrieval-free framework that uncovers structured reasoning paths from existing ground-truth coordinates and optimizes geolocation accuracy via reinforcement learning. We propose the Chain of Region, a rule-based hierarchical reasoning paradigm that generates precise, interpretable supervision by mapping GPS coordinates to geographic entities (e.g., country, province, city) without relying on model-generated or synthetic labels. Building on this, we introduce a lightweight reinforcement learning strategy with coordinate-aligned rewards based on Haversine distance, enabling the model to refine predictions through spatially meaningful feedback. Our approach bridges structured geographic reasoning with direct spatial supervision, yielding improved localization accuracy, stronger generalization, and more transparent inference. Experimental results across multiple benchmarks confirm the effectiveness of Geo-R, establishing a new retrieval-free paradigm for scalable and interpretable image geolocalization. To facilitate further research and ensure reproducibility, both the model and code will be made publicly available.
comment: Accepted to AAAI 2026. Project Page: https://github.com/aialt/geo-r
♻ ☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
The growth of long-context Large Language Models (LLMs) significantly increases memory and bandwidth pressure during autoregressive decoding due to the expanding Key-Value (KV) cache. While accuracy-preserving KV-cache quantization (e.g., 4-bit or 2-bit) reduces memory footprint, existing systems decode inefficiently by relying solely on CUDA cores, underutilizing Tensor Cores-the dominant compute resource on GPUs. We present BitDecoding, the first inference system to efficiently decode low-bit KV caches by cooperatively leveraging CUDA cores and Tensor Cores. BitDecoding smartly induces Tensor-Core-friendly layouts, introduces warp-level dequantization parallelism, and provides unified system support through query transformation, high-performance tensor- and channel-wise quantization, and a software-pipelined dequantization kernel enabling mixed-precision execution. Architecture-aware optimizations further leverage Hopper's warpgroup tensor instructions and Blackwell's NVFP4 (MXFP4) tensor formats. Evaluated on Blackwell, Hopper, and Ampere GPUs, BitDecoding achieves an average 7.5x decoding speedup over FP16 FlashDecoding-v2, up to 8.6x on Blackwell with NVFP4, and up to 4.3x over state-of-the-art approaches. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x. BitDecoding is open-sourced at https://github.com/OpenBitSys/BitDecoding.
♻ ☆ Tales of the 2025 Los Angeles Fire: Hotwash for Public Health Concerns in Reddit via LLM-Enhanced Topic Modeling
Wildfires have become increasingly frequent, irregular, and severe in recent years. Understanding how affected populations perceive and respond during wildfire crises is critical for timely and empathetic disaster response. Social media platforms offer a crowd-sourced channel to capture evolving public discourse, providing hyperlocal information and insight into public sentiment. This study analyzes Reddit discourse during the 2025 Los Angeles wildfires, spanning from the onset of the disaster to full containment. We collect 385 posts and 114,879 comments related to the Palisades and Eaton fires. We adopt topic modeling methods to identify the latent topics, enhanced by large language models (LLMs) and human-in-the-loop (HITL) refinement. Furthermore, we develop a hierarchical framework to categorize latent topics, consisting of two main categories, Situational Awareness (SA) and Crisis Narratives (CN). The volume of SA category closely aligns with real-world fire progressions, peaking within the first 2-5 days as the fires reach the maximum extent. The most frequent co-occurring category set of public health and safety, loss and damage, and emergency resources expands on a wide range of health-related latent topics, including environmental health, occupational health, and one health. Grief signals and mental health risks consistently accounted for 60 percentage and 40 percentage of CN instances, respectively, with the highest total volume occurring at night. This study contributes the first annotated social media dataset on the 2025 LA fires, and introduces a scalable multi-layer framework that leverages topic modeling for crisis discourse analysis. By identifying persistent public health concerns, our results can inform more empathetic and adaptive strategies for disaster response, public health communication, and future research in comparable climate-related disaster events.
comment: Fix typos in Method Section. Add data/code availability
♻ ☆ MIND Your Reasoning: A Meta-Cognitive Intuitive-Reflective Network for Dual-Reasoning in Multimodal Stance Detection
Multimodal Stance Detection (MSD) is a crucial task for understanding public opinion on social media. Existing methods predominantly operate by learning to fuse modalities. They lack an explicit reasoning process to discern how inter-modal dynamics, such as irony or conflict, collectively shape the user's final stance, leading to frequent misjudgments. To address this, we advocate for a paradigm shift from *learning to fuse* to *learning to reason*. We introduce **MIND**, a **M**eta-cognitive **I**ntuitive-reflective **N**etwork for **D**ual-reasoning. Inspired by the dual-process theory of human cognition, MIND operationalizes a self-improving loop. It first generates a rapid, intuitive hypothesis by querying evolving Modality and Semantic Experience Pools. Subsequently, a meta-cognitive reflective stage uses Modality-CoT and Semantic-CoT to scrutinize this initial judgment, distill superior adaptive strategies, and evolve the experience pools themselves. These dual experience structures are continuously refined during training and recalled at inference to guide robust and context-aware stance decisions. Extensive experiments on the MMSD benchmark demonstrate that our MIND significantly outperforms most baseline models and exhibits strong generalization.
♻ ☆ Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
♻ ☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
♻ ☆ Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
♻ ☆ QFrBLiMP: a Quebec-French Benchmark of Linguistic Minimal Pairs EACL 2026
In this paper, we introduce the Quebec-French Benchmark of Linguistic Minimal Pairs (QFrBLiMP), a corpus designed to evaluate LLMs' linguistic knowledge of prominent grammatical phenomena in Quebec-French. QFrBLiMP comprises 1,761 minimal pairs annotated with 20 LPs. Specifically, these minimal pairs have been created by manually modifying sentences extracted from an official online resource maintained by a Québec government institution. Each pair is annotated by 12 Quebec-French native speakers, who select the sentence they consider grammatical from the two. These annotations are used to compare the competency of LLMs with that of humans. We evaluate different LLMs on QFrBLiMP and MultiBLiMP-Fr by observing the rate of higher probabilities assigned to the sentences of each minimal pair for each category. We find that while grammatical competence scales with model size, a clear hierarchy of difficulty emerges. All benchmarked models consistently fail on phenomena requiring deep semantic understanding, revealing a critical limitation. Finally, our statistical analysis comparing QFrBLiMP and MultiBLiMP reveals a significant performance degradation for most models on Quebec-French; however, the most capable models remain within the statistical significance interval, demonstrating cross-dialectal robustness.
comment: Acceptged to EACL 2026
♻ ☆ FaithLens: Detecting and Explaining Faithfulness Hallucination
Recognizing whether outputs from large language models (LLMs) contain faithfulness hallucination is crucial for real-world applications, e.g., retrieval-augmented generation and summarization. In this paper, we introduce FaithLens, a cost-efficient and effective faithfulness hallucination detection model that can jointly provide binary predictions and corresponding explanations to improve trustworthiness. To achieve this, we first synthesize training data with explanations via advanced LLMs and apply a well-defined data filtering strategy to ensure label correctness, explanation quality, and data diversity. Subsequently, we fine-tune the model on these well-curated training data as a cold start and further optimize it with rule-based reinforcement learning, using rewards for both prediction correctness and explanation quality. Results on 12 diverse tasks show that the 8B-parameter FaithLens outperforms advanced models such as GPT-4.1 and o3. Also, FaithLens can produce high-quality explanations, delivering a distinctive balance of trustworthiness, efficiency, and effectiveness.
♻ ☆ Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
♻ ☆ SwiftEmbed: Ultra-Fast Text Embeddings via Static Token Lookup for Real-Time Applications
We present a static token lookup methodology for text embedding generation that achieves 1.12 ms p50 latency for single text embeddings while maintaining 60.6 MTEB average score across 8 representative tasks, corresponding to 89% of contextual model quality. The Rust implementation delivers 50,000 requests per second throughput through static embedding lookup, optimized mean pooling, and zero-copy IEEE754 binary serialization. Evaluation demonstrates exceptional duplicate detection performance (90.1% AP), strong semantic similarity (76.1% Spearman correlation), and domain-specific performance ranging from 75% to 131% of baseline across specialized domains. The system enables real-time embedding applications where sub-5ms latency is critica
♻ ☆ Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
♻ ☆ Deployability-Centric Infrastructure-as-Code Generation: Fail, Learn, Refine, and Succeed through LLM-Empowered DevOps Simulation
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions. However, current evaluation focuses on syntactic correctness while ignoring deployability, the critical measure of the utility of IaC configuration files. Six state-of-the-art LLMs performed poorly on deployability, achieving only 20.8$\sim$30.2% deployment success rate on the first attempt. In this paper, we construct DPIaC-Eval, the first deployability-centric IaC template benchmark consisting of 153 real-world scenarios cross 58 unique services. Also, we propose an LLM-based deployability-centric framework, dubbed IaCGen, that uses iterative feedback mechanism encompassing format verification, syntax checking, and live deployment stages, thereby closely mirroring the real DevOps workflows. Results show that IaCGen can make 54.6$\sim$91.6% generated IaC templates from all evaluated models deployable in the first 10 iterations. Additionally, human-in-the-loop feedback that provide direct guidance for the deployability errors, can further boost the performance to over 90% passItr@25 on all evaluated LLMs. Furthermore, we explore the trustworthiness of the generated IaC templates on user intent alignment and security compliance. The poor performance (25.2% user requirement coverage and 8.4% security compliance rate) indicates a critical need for continued research in this domain.
comment: Accepted by FSE 2026
♻ ☆ CMDAR: A Chinese Multi-scene Dynamic Audio Reasoning Benchmark with Diverse Challenges
The ability to reason from audio, including speech, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and English audio data and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce CMDAR, a Chinese benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. CMDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on CMDAR and observe that they exhibit limitations in complex reasoning tasks. In CMDAR-main, Qwen2.5-Omni achieves 76.67% accuracy, whereas GPT-4o Audio reaches 68.47%. However, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice with multiple audios and open-ended tasks. And we provide detail analysis corresponding suggestions for the future development of large audio language models.
comment: 25 pages, 7 figures
♻ ☆ VISTA Score: Verification In Sequential Turn-based Assessment
Hallucination--defined here as generating statements unsupported or contradicted by available evidence or conversational context--remains a major obstacle to deploying conversational AI systems in settings that demand factual reliability. Existing metrics either evaluate isolated responses or treat unverifiable content as errors, limiting their use for multi-turn dialogue. We introduce VISTA (Verification In Sequential Turn-based Assessment), a framework for evaluating conversational factuality through claim-level verification and sequential consistency tracking. VISTA decomposes each assistant turn into atomic factual claims, verifies them against trusted sources and dialogue history, and categorizes unverifiable statements (subjective, contradicted, lacking evidence, or abstaining). Across eight large language models and four dialogue factuality benchmarks (AIS, BEGIN, FAITHDIAL, and FADE), VISTA substantially improves hallucination detection over FACTSCORE and LLM-as-Judge baselines. Human evaluation confirms that VISTA's decomposition improves annotator agreement and reveals inconsistencies in existing benchmarks. By modeling factuality as a dynamic property of conversation, VISTA offers a more transparent, human-aligned measure of truthfulness in dialogue systems.
♻ ☆ SIP-BMM: Constructing the Capability--Efficiency Pareto Set for LLMs via Structural Importance Prior Bayesian Model Merging
Constructing a Pareto set is pivotal for navigating the capability--efficiency trade-offs in Large Language Models (LLMs). However, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the curse of dimensionality, rendering the search space computationally intractable. To resolve this dichotomy, we propose Structural Importance Prior Bayesian Model Merging (SIP-BMM), a framework that automatically constructs the LLM Pareto set. SIP-BMM renders high-dimensional layer-wise search tractable by introducing an importance-aware Sparse Axis-Aligned Subspace Bayesian Optimization (SAASBO) strategy. By leveraging a structural importance prior derived from task-vector differences, our method guides SAASBO to automatically identify critical layers, thereby dramatically reducing the effective dimensionality without sacrificing the granularity of full-model control. The entire process is automated within an evolutionary loop driven by the Log-Noisy Expected Hypervolume Improvement ($q$NEHVI) acquisition function. Experiments demonstrate that SIP-BMM discovers a stronger and denser Pareto front than competitive baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/MiLab-HITSZ/2026-SIPBMM.
♻ ☆ LTLBench: Towards Benchmarks for Evaluating Temporal Reasoning in Large Language Models
Temporal Reasoning (TR) is a critical ability for LLMs to understand and reason over temporal information and relationships between events. To study the TR ability in LLMs, prior works provide different ways for evaluating various aspects of TR ability. In this work, we propose an alternative perspective for evaluating TR ability by leveraging Linear Temporal Logic (LTL), and develop a pipeline to automatically synthesize challenges for assessing the TR ability of LLMs. Based on this pipeline, we construct a dataset, namely LTLBench, consisting of $2000$ TR challenges, and benchmark 12 LLMs across 5 different methods. Furthermore, we conduct additional experiments to investigate the impact of increasing the number of formula operators and events on both LLM performance and the complexity of TR problems. We also perform qualitative analyses of their reasoning processes and the effects of varying the number of events and formula operators, which reveal 3 main issues in their temporal reasoning processes and the unexpected performance changes observed as problem complexity increases. We expect this work to provide valuable insights into the TR ability of LLMs.
♻ ☆ When in Doubt, Consult: Expert Debate for Sexism Detection via Confidence-Based Routin
Sexist content online increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals, even in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. Together, these limitations point to the need for a design that explicitly addresses the combined effects of (i) underrepresentation, (ii) noise, and (iii) conceptual ambiguity in both data and model predictions. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to adapt supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. Our training setup applies class-balanced focal loss, class-aware batching, and post-hoc threshold calibration to mitigate label imbalance and noisy supervision. At inference time, a dynamic routing mechanism classifies high-confidence cases directly and escalates uncertain instances to a novel \textit{Collaborative Expert Judgment} (CEJ) module, which prompts multiple personas and consolidates their reasoning through a judge model. Our approach achieves state-of-the-art results across several benchmarks, with F1 gains of +4.48% and +1.30% on EDOS Tasks A and B, respectively, and a +2.79% improvement in ICM on EXIST 2025 Task 1.1.
♻ ☆ Learning an Efficient Multi-Turn Dialogue Evaluator from Multiple LLM Judges
Evaluating the conversational abilities of large language models (LLMs) remains a challenging task. Current mainstream approaches primarily rely on the "LLM-as-a-judge" paradigm, where an LLM is prompted to serve as an evaluator to assess dialogue quality. However, such methods often suffer from various biases, which undermine the reliability and consistency of the evaluation results. To mitigate these biases, recent methods employ multiple LLMs as judges and aggregate their judgments to select the optimal assessment. Although effective, this multi-judge approach incurs significant computational overhead during inference. In this paper, we propose an efficient dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model. Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast, flexible, and fine-grained dialogue quality assessment. Extensive experiments on seven single rating and pairwise comparison dialogue evaluation benchmarks demonstrate that our method outperforms existing baselines across diverse scenarios, showcasing its efficiency and robustness.
comment: 20 pages, 4 pages, under review
♻ ☆ Adversarial Training for Failure-Sensitive User Simulation in Mental Health Dialogue Optimization
Realistic user simulation is crucial for training and evaluating task-oriented dialogue (TOD) systems, yet creating simulators that accurately replicate human behavior remains challenging. A key property of effective simulators is their ability to expose failure modes of the systems they evaluate. We present an adversarial training framework that iteratively improves user simulator realism through a competitive dynamic between a generator (user simulator) and a discriminator. Applied to mental health support chatbots, our approach demonstrates that fine-tuned simulators dramatically outperform zero-shot base models at surfacing system issues, and adversarial training further enhances diversity, distributional alignment, and predictive validity. The resulting simulator achieves a strong correlation between simulated and real failure occurrence rates across diverse chatbot configurations while maintaining low distributional divergence of failure modes. Discriminator accuracy decreases drastically after three adversarial iterations, suggesting improved realism. These results provide evidence that adversarial training is a promising approach for creating realistic user simulators in mental health support TOD domains, enabling rapid, reliable, and cost-effective system evaluation before deployment.
♻ ☆ I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
♻ ☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
♻ ☆ Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
♻ ☆ TabiBERT: A Large-Scale ModernBERT Foundation Model and A Unified Benchmark for Turkish
Since the inception of BERT, encoder-only Transformers have evolved significantly in computational efficiency, training stability, and long-context modeling. ModernBERT consolidates these advances by integrating Rotary Positional Embeddings (RoPE), FlashAttention, and refined normalization. Despite these developments, Turkish NLP lacks a monolingual encoder trained from scratch, incorporating such modern architectural paradigms. This work introduces TabiBERT, a monolingual Turkish encoder based on ModernBERT architecture trained from scratch on a large, curated corpus. TabiBERT is pre-trained on one trillion tokens sampled from an 84.88B token multi-domain corpus: web text (73%), scientific publications (20%), source code (6%), and mathematical content (0.3%). It supports 8,192-token context length (16x original BERT), achieves up to 2.65x inference speedup, and reduces GPU memory consumption, enabling larger batch sizes. We introduce TabiBench with 28 datasets across eight task categories with standardized splits and protocols, evaluated using GLUE-style macro-averaging. TabiBERT attains 77.58 on TabiBench, outperforming BERTurk by 1.62 points and establishing state-of-the-art on five of eight categories, with particularly strong gains on question answering (+9.55 points), code retrieval (+2.41 points), and academic understanding (+0.66 points). Compared with task-specific prior best results, including specialized models like TurkishBERTweet, TabiBERT achieves +1.47 average improvement, indicating robust cross-domain generalization. We release model weights, training configurations, and evaluation code for transparent, reproducible Turkish encoder research.
comment: 33 pages, 2 figures, 13 tables
♻ ☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
♻ ☆ Sorting the Babble in Babel: Assessing the Performance of Language Identification Algorithms on the OpenAlex Database
This project aims to optimize the linguistic indexing of the OpenAlex database by comparing the performance of various Python-based language identification procedures on different metadata corpora extracted from a manually-annotated article sample \footnote{OpenAlex used the results presented in this article to inform the language metadata overhaul carried out as part of its recent Walden system launch. The precision and recall performance of each algorithm, corpus, and language is first analyzed, followed by an assessment of processing speeds recorded for each algorithm and corpus type. These different performance measures are then simulated at the database level using probabilistic confusion matrices for each algorithm, corpus, and language, as well as a probabilistic modeling of relative article language frequencies for the whole OpenAlex database. Results show that procedure performance strongly depends on the importance given to each of the measures implemented: for contexts where precision is preferred, using the LangID algorithm on the greedy corpus gives the best results; however, for all cases where recall is considered at least slightly more important than precision or as soon as processing times are given any kind of consideration, the procedure that consists in the application of the FastText algorithm on the Titles corpus outperforms all other alternatives. Given the lack of truly multilingual large-scale bibliographic databases, it is hoped that these results help confirm and foster the unparalleled potential of the OpenAlex database for cross-linguistic and comprehensive measurement and evaluation.
comment: 43 pages, 4 figures
♻ ☆ Cosmos: Compressed and Smooth Latent Space for Text Diffusion Modeling
Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by $8\times$ while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than $2\times$ faster inference. Code is released at \href{https://github.com/MeshchaninovViacheslav/cosmos}{GitHub}
♻ ☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
♻ ☆ Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
comment: 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
♻ ☆ AprielGuard
Safeguarding large language models (LLMs) against unsafe or adversarial behavior is critical as they are increasingly deployed in conversational and agentic settings. Existing moderation tools often treat safety risks (e.g. toxicity, bias) and adversarial threats (e.g. prompt injections, jailbreaks) as separate problems, limiting their robustness and generalizability. We introduce AprielGuard, an 8B parameter safeguard model that unify these dimensions within a single taxonomy and learning framework. AprielGuard is trained on a diverse mix of open and synthetic data covering standalone prompts, multi-turn conversations, and agentic workflows, augmented with structured reasoning traces to improve interpretability. Across multiple public and proprietary benchmarks, AprielGuard achieves strong performance in detecting harmful content and adversarial manipulations, outperforming existing opensource guardrails such as Llama-Guard and Granite Guardian, particularly in multi-step and reasoning intensive scenarios. By releasing the model, we aim to advance transparent and reproducible research on reliable safeguards for LLMs.
♻ ☆ MATEX: A Multi-Agent Framework for Explaining Ethereum Transactions
Understanding the economic intent of Ethereum transactions is critical for user safety, yet current tools expose only raw on-chain data, leading to widespread "blind signing" (approving transactions without understanding them). Through interviews with 16 Web3 users, we find that effective explanations should be structured, risk-aware, and grounded at the token-flow level. Based on interviews, we propose TxSum, a new task and dataset of 100 complex Ethereum transactions annotated with natural-language summaries and step-wise semantic labels (intent, mechanism, etc.). We then introduce MATEX, a multi-agent system that emulates human experts' dual-process reasoning. MATEX achieves the highest faithfulness and intent clarity among strong baselines. It boosts user comprehension by 23.6% on complex transactions and doubles users' ability to find real attacks, significantly reducing blind signing.
♻ ☆ Context-aware Decoding Reduces Hallucination in Query-focused Summarization
Query-focused summarization (QFS) aims to provide a summary of a single document/multi documents that can satisfy the information needs of a given query. It is useful for various real-world applications, such as abstractive snippet generation or more recent retrieval augmented generation (RAG). A prototypical QFS pipeline consists of a retriever (sparse or dense retrieval) and a generator (usually a large language model). However, applying large language models (LLM) potentially leads to hallucinations, especially when the evidence contradicts the prior belief of LLMs. There has been growing interest in developing new decoding methods to improve generation quality and reduce hallucination. In this work, we conduct a large-scale reproducibility study on one recently proposed decoding method\, -- \,Context-aware Decoding (CAD). In addition to replicating CAD's experiments on news summarization datasets, we include experiments on QFS datasets, and conduct more rigorous analysis on computational complexity and hyperparameter sensitivity. Experiments with eight different language models show that performance-wise, CAD improves QFS quality by (1) reducing factuality errors/hallucinations while (2) mostly retaining the match of lexical patterns, measured by ROUGE scores, while also at a cost of increased inference-time FLOPs and reduced decoding speed. The \href{https://github.com/zhichaoxu-shufe/context-aware-decoding-qfs}{code implementation} based on Huggingface Library is made available
comment: technical report
♻ ☆ Improving End-to-End Training of Retrieval-Augmented Generation Models via Joint Stochastic Approximation
Retrieval-augmented generation (RAG) has become a widely recognized paradigm to combine parametric memory with non-parametric memories. An RAG model consists of two serial connecting components (retriever and generator). A major challenge in end-to-end optimization of the RAG model is that marginalization over relevant passages (modeled as discrete latent variables) from a knowledge base is required. Traditional top-K marginalization and variational RAG (VRAG) suffer from biased or high-variance gradient estimates. In this paper, we propose and develop joint stochastic approximation (JSA) based end-to-end training of RAG, which is referred to as JSA-RAG. The JSA algorithm is a stochastic extension of the EM (expectation-maximization) algorithm and is particularly powerful in estimating discrete latent variable models. Extensive experiments are conducted on five datasets for two tasks (open-domain question answering, knowledge-grounded dialogs) and show that JSA-RAG significantly outperforms both vanilla RAG and VRAG. Further analysis shows the efficacy of JSA-RAG from the perspectives of generation, retrieval, and low-variance gradient estimate.
♻ ☆ RankMamba: Benchmarking Mamba's Document Ranking Performance in the Era of Transformers
Transformer structure has achieved great success in multiple applied machine learning communities, such as natural language processing (NLP), computer vision (CV) and information retrieval (IR). Transformer architecture's core mechanism\, -- \,attention requires $O(n^2)$ time complexity in training and $O(n)$ time complexity in inference. Many works have been proposed to improve the attention mechanism's scalability, such as Flash Attention and Multi-query Attention. A different line of work aims to design new mechanisms to replace attention. Recently, a notable model structure Mamba, which is based on state space models, has achieved transformer-equivalent performance in multiple sequence modeling tasks. In this work, we examine Mamba's efficacy through the lens of a classical IR task\, -- \,document ranking. A reranker model takes a query and a document as input, and predicts a scalar relevance score. This task demands the language model's ability to comprehend lengthy contextual inputs and to capture the interaction between query and document tokens. We find that \textbf{(1) Mamba models achieve competitive performance compared to transformer-based models with the same training recipe; (2) but also have a lower training throughput in comparison to efficient transformer implementations such as flash attention.} We hope this study can serve as a starting point to explore \mamba models in other classical IR tasks. Our \href{https://github.com/zhichaoxu-shufe/RankMamba}{code implementation} is made public to facilitate reproducibility. Refer to~\cite{xu-etal-2025-state} for more comprehensive experiments and results, including passage ranking.
♻ ☆ Opportunities and Challenges of Large Language Models for Low-Resource Languages in Humanities Research
Low-resource languages serve as invaluable repositories of human history, embodying cultural evolution and intellectual diversity. Despite their significance, these languages face critical challenges, including data scarcity and technological limitations, which hinder their comprehensive study and preservation. Recent advancements in large language models (LLMs) offer transformative opportunities for addressing these challenges, enabling innovative methodologies in linguistic, historical, and cultural research. This study systematically evaluates the applications of LLMs in low-resource language research, encompassing linguistic variation, historical documentation, cultural expressions, and literary analysis. By analyzing technical frameworks, current methodologies, and ethical considerations, this paper identifies key challenges such as data accessibility, model adaptability, and cultural sensitivity. Given the cultural, historical, and linguistic richness inherent in low-resource languages, this work emphasizes interdisciplinary collaboration and the development of customized models as promising avenues for advancing research in this domain. By underscoring the potential of integrating artificial intelligence with the humanities to preserve and study humanity's linguistic and cultural heritage, this study fosters global efforts towards safeguarding intellectual diversity.
♻ ☆ ScRPO: From Errors to Insights
We introduce Self-correction Relative Policy Optimization (ScRPO), a novel reinforcement learning framework designed to empower large language models with advanced mathematical reasoning capabilities through iterative self-reflection and error correction. The ScRPO framework operates in two distinct phases: (1) Trial-and-error learning stage, where the model is trained via GRPO, and incorrect responses are collected to form an "error pool"; and (2) Self-correction learning stage, which guides the model to introspectively analyze and rectify the reasoning flaws behind its previous errors. Extensive evaluations across challenging mathematical benchmarks, including AIME, AMC, Olympiad, MATH-500, and GSM8k, validate the efficacy of our approach. Using DeepSeek-R1-Distill-Qwen-1.5B and 7B as backbones, ScRPO achieves average accuracies of 64.8% and 77.8%, respectively. This represents a significant improvement of 6.0% and 3.2% over vanilla baselines, consistently outperforming strong post-training methods such as DAPO and GRPO. These findings establish ScRPO as a robust paradigm for enabling autonomous self-improvement in AI systems, particularly in tasks with limited external feedback.
♻ ☆ ERA-IT: Aligning Semantic Models with Revealed Economic Preference for Real-Time and Explainable Patent Valuation
Valuing intangible assets under uncertainty remains a critical challenge in the strategic management of technological innovation due to the information asymmetry inherent in high-dimensional technical specifications. Traditional bibliometric indicators, such as citation counts, fail to address this friction in a timely manner due to the systemic latency inherent in data accumulation. To bridge this gap, this study proposes the Economic Reasoning Alignment via Instruction Tuning (ERA-IT) framework. We theoretically conceptualize patent renewal history as a revealed economic preference and leverage it as an objective supervisory signal to align the generative reasoning of Large Language Models (LLMs) with market realities, a process we term Eco-Semantic Alignment. Using a randomly sampled dataset of 10,000 European Patent Office patents across diverse technological domains, we trained the model not only to predict value tiers but also to reverse-engineer the Economic Chain-of-Thought from unstructured text. Empirical results demonstrate that ERA-IT significantly outperforms both conventional econometric models and zero-shot LLMs in predictive accuracy. More importantly, by generating explicit, logically grounded rationales for valuation, the framework serves as a transparent cognitive scaffold for decision-makers, reducing the opacity of black-box AI in high-stakes intellectual property management.
♻ ☆ On the Robustness of Answer Formats in Medical Reasoning Models
Medical reasoning models (MRMs) achieve superior performance on medical benchmarks compared to medical LLMs; however, high accuracy alone is insufficient for practical deployment. One of such requirements for real-world application is robustness to varying output constraints. Specifically, posing the same medical question while requesting different answer formats should not affect the underlying correctness of the response. We investigate this phenomenon in this paper, focusing on MRMs. To quantify this behavior, we propose the metric answer-format robustness: the ability to reliably generate correct outputs across varying specified formats. We examine three representative formats: multiple-choice, open-ended question-answering, and ranked lists. Across 15 proprietary and open-weight models, we observe substantial variation in format robustness (35-100%). Furthermore, we conduct controlled fine-tuning experiments on a shared backbone with matched training data to isolate the effects of the fine-tuning paradigm. We find that supervised fine-tuning yields more stable behavior across formats, whereas reinforcement fine-tuning often exhibits higher cross-format brittleness, with the degree of instability strongly dependent on reward design. Overall, answer-format robustness in MRMs is trainable yet brittle and requires careful evaluation for practical medical use.
comment: 62 pages, 47 figures
♻ ☆ CSSBench: Evaluating the Safety of Lightweight LLMs against Chinese-Specific Adversarial Patterns
Large language models (LLMs) are increasingly deployed in cost-sensitive and on-device scenarios, and safety guardrails have advanced mainly in English. However, real-world Chinese malicious queries typically conceal intent via homophones, pinyin, symbol-based splitting, and other Chinese-specific patterns. These Chinese-specific adversarial patterns create the safety evaluation gap that is not well captured by existing benchmarks focused on English. This gap is particularly concerning for lightweight models, which may be more vulnerable to such specific adversarial perturbations. To bridge this gap, we introduce the Chinese-Specific Safety Benchmark (CSSBench) that emphasizes these adversarial patterns and evaluates the safety of lightweight LLMs in Chinese. Our benchmark covers six domains that are common in real Chinese scenarios, including illegal activities and compliance, privacy leakage, health and medical misinformation, fraud and hate, adult content, and public and political safety, and organizes queries into multiple task types. We evaluate a set of popular lightweight LLMs and measure over-refusal behavior to assess safety-induced performance degradation. Our results show that the Chinese-specific adversarial pattern is a critical challenge for lightweight LLMs. This benchmark offers a comprehensive evaluation of LLM safety in Chinese, assisting robust deployments in practice.
comment: 18 pages
♻ ☆ UNIDOC-BENCH: A Unified Benchmark for Document-Centric Multimodal RAG
Multimodal retrieval-augmented Generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented -- focusing on either text or images in isolation, or simplified multimodal setup, failing to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from $k$ real-world PDF pages across domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, all of QA pairs are validated by multiple human annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: 1) text-only, 2) image-only, 3) \emph{multimodal} text-image fusion and 4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. UniDoc-Bench can also be used to evaluate Visual Question Answering (VQA) tasks. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
♻ ☆ RIMRULE: Improving Tool-Using Language Agents via MDL-Guided Rule Learning
Large language models (LLMs) often struggle to use tools reliably in domain-specific settings, where APIs may be idiosyncratic, under-documented, or tailored to private workflows. This highlights the need for effective adaptation to task-specific tools. We propose RIMRULE, a neuro-symbolic approach for LLM adaptation based on dynamic rule injection. Compact, interpretable rules are distilled from failure traces and injected into the prompt during inference to improve task performance. These rules are proposed by the LLM itself and consolidated using a Minimum Description Length (MDL) objective that favors generality and conciseness. Each rule is stored in both natural language and a structured symbolic form, supporting efficient retrieval at inference time. Experiments on tool-use benchmarks show that this approach improves accuracy on both seen and unseen tools without modifying LLM weights. It outperforms prompting-based adaptation methods and complements finetuning. Moreover, rules learned from one LLM can be reused to improve others, including long reasoning LLMs, highlighting the portability of symbolic knowledge across architectures.
♻ ☆ AFA-LoRA: Enabling Non-Linear Adaptations in LoRA with Activation Function Annealing
Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning (PEFT) method. However, its linear adaptation process limits its expressive power. This means there is a gap between the expressive power of linear training and non-linear training. To bridge this gap, we propose AFA-LoRA, a novel training strategy that brings non-linear expressivity to LoRA while maintaining its seamless mergeability. Our key innovation is an annealed activation function that transitions from a non-linear to a linear transformation during training, allowing the adapter to initially adopt stronger representational capabilities before converging to a mergeable linear form. We implement our method on supervised fine-tuning, reinforcement learning, and speculative decoding. The results show that AFA-LoRA reduces the performance gap between LoRA and full-parameter training. This work enables a more powerful and practical paradigm of parameter-efficient adaptation.
♻ ☆ Diagnosing and Mitigating Semantic Inconsistencies in Wikidata's Classification Hierarchy
Wikidata is currently the largest open knowledge graph on the web, encompassing over 120 million entities. It integrates data from various domain-specific databases and imports a substantial amount of content from Wikipedia, while also allowing users to freely edit its content. This openness has positioned Wikidata as a central resource in knowledge graph research and has enabled convenient knowledge access for users worldwide. However, its relatively loose editorial policy has also led to a degree of taxonomic inconsistency. Building on prior work, this study proposes and applies a novel validation method to confirm the presence of classification errors, over-generalized subclass links, and redundant connections in specific domains of Wikidata. We further introduce a new evaluation criterion for determining whether such issues warrant correction and develop a system that allows users to inspect the taxonomic relationships of arbitrary Wikidata entities-leveraging the platform's crowdsourced nature to its full potential.
♻ ☆ Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a vision-language reasoning model designed to address these limitations. To construct high-quality supervision for spatial reasoning, we design a Multi-Model Monte Carlo Tree Search (M3CTS) method that generates diverse, logically consistent Long Chain-of-Thought (LongCOT) reasoning trajectories. In addition, we propose a fine-grained Direct Preference Optimization (fDPO) method that introduces segment-specific preference granularity for descriptive grounding and logical reasoning, guided by a spatial reward mechanism that evaluates candidate responses based on visual consistency, spatial grounding, and logical coherence. Experimental results demonstrate that fDPO achieves relative performance gains of 4.1% and 9.0% over standard DPO on spatial qualitative and quantitative tasks, respectively. SpatialReasoner-R1, trained with fDPO, sets a new SoTA on SpatialRGPT-Bench, outperforming the strongest baseline by 9.4% in average accuracy, while maintaining competitive performance on general vision-language tasks.
♻ ☆ KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
♻ ☆ HaluMem: Evaluating Hallucinations in Memory Systems of Agents
Memory systems are key components that enable AI systems such as LLMs and AI agents to achieve long-term learning and sustained interaction. However, during memory storage and retrieval, these systems frequently exhibit memory hallucinations, including fabrication, errors, conflicts, and omissions. Existing evaluations of memory hallucinations are primarily end-to-end question answering, which makes it difficult to localize the operational stage within the memory system where hallucinations arise. To address this, we introduce the Hallucination in Memory Benchmark (HaluMem), the first operation level hallucination evaluation benchmark tailored to memory systems. HaluMem defines three evaluation tasks (memory extraction, memory updating, and memory question answering) to comprehensively reveal hallucination behaviors across different operational stages of interaction. To support evaluation, we construct user-centric, multi-turn human-AI interaction datasets, HaluMem-Medium and HaluMem-Long. Both include about 15k memory points and 3.5k multi-type questions. The average dialogue length per user reaches 1.5k and 2.6k turns, with context lengths exceeding 1M tokens, enabling evaluation of hallucinations across different context scales and task complexities. Empirical studies based on HaluMem show that existing memory systems tend to generate and accumulate hallucinations during the extraction and updating stages, which subsequently propagate errors to the question answering stage. Future research should focus on developing interpretable and constrained memory operation mechanisms that systematically suppress hallucinations and improve memory reliability.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
♻ ☆ Thunder-NUBench: A Benchmark for LLMs' Sentence-Level Negation Understanding
Negation is a fundamental linguistic phenomenon that poses ongoing challenges for Large Language Models (LLMs), particularly in tasks requiring deep semantic understanding. Current benchmarks often treat negation as a minor detail within broader tasks, such as natural language inference. Consequently, there is a lack of benchmarks specifically designed to evaluate comprehension of negation. In this work, we introduce Thunder-NUBench, a novel benchmark explicitly created to assess sentence-level understanding of negation in LLMs. Thunder-NUBench goes beyond merely identifying surface-level cues by contrasting standard negation with structurally diverse alternatives, such as local negation, contradiction, and paraphrase. This benchmark includes manually curated sentence-negation pairs and a multiple-choice dataset, allowing for a comprehensive evaluation of models' understanding of negation.
♻ ☆ Youtu-LLM: Unlocking the Native Agentic Potential for Lightweight Large Language Models
We introduce Youtu-LLM, a lightweight yet powerful language model that harmonizes high computational efficiency with native agentic intelligence. Unlike typical small models that rely on distillation, Youtu-LLM (1.96B) is pre-trained from scratch to systematically cultivate reasoning and planning capabilities. The key technical advancements are as follows: (1) Compact Architecture with Long-Context Support: Built on a dense Multi-Latent Attention (MLA) architecture with a novel STEM-oriented vocabulary, Youtu-LLM supports a 128k context window. This design enables robust long-context reasoning and state tracking within a minimal memory footprint, making it ideal for long-horizon agent and reasoning tasks. (2) Principled "Commonsense-STEM-Agent" Curriculum: We curated a massive corpus of approximately 11T tokens and implemented a multi-stage training strategy. By progressively shifting the pre-training data distribution from general commonsense to complex STEM and agentic tasks, we ensure the model acquires deep cognitive abilities rather than superficial alignment. (3) Scalable Agentic Mid-training: Specifically for the agentic mid-training, we employ diverse data construction schemes to synthesize rich and varied trajectories across math, coding, and tool-use domains. This high-quality data enables the model to internalize planning and reflection behaviors effectively. Extensive evaluations show that Youtu-LLM sets a new state-of-the-art for sub-2B LLMs. On general benchmarks, it achieves competitive performance against larger models, while on agent-specific tasks, it significantly surpasses existing SOTA baselines, demonstrating that lightweight models can possess strong intrinsic agentic capabilities.
comment: 57 pages, 26 figures
♻ ☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, some benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. Moreover, no benchmarks currently exist for directly measuring whether language models lie. In this work, we introduce a large-scale human-collected dataset for directly measuring lying, allowing us to disentangle accuracy from honesty. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, most frontier LLMs obtain high scores on truthfulness benchmarks yet exhibit a substantial propensity to lie under pressure, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
comment: Website: https://www.mask-benchmark.ai
♻ ☆ Self-Filtered Distillation with LLMs-generated Trust Indicators for Reliable Patent Classification
Large language models (LLMs) increasingly generate natural language rationales to enhance interpretability, but these often contain logical errors, label mismatches, and domain-specific misalignments. Directly using such rationales as supervision risks propagating noise and undermining training stability. To address this challenge, we introduce Self-Filtered Distillation, a framework tailored for patent classification that treats LLM-generated rationales as trust signals rather than ground-truth supervision. The framework employs selective distillation guided by three unsupervised trust metrics: (1) Self-Consistency, which measures the stability of LLM-generated rationales across multiple generations; (2) Class Entailment Alignment, which assesses semantic coherence with patent-specific class definitions; and (3) LLM Agreement Scoring, which validates rationale-label plausibility. These metrics are integrated into a unified trust score that primarily weights training samples while optionally filtering out extremely low-trust cases, enabling reasoning-aware supervision. Experiments on the USPTO-2M dataset show that our method consistently outperforms label-based learning and conventional distillation in accuracy, stability, and interpretability across diverse student architectures, establishing a reliable paradigm for leveraging reasoning-aware trust indicators in patent analytics.
♻ ☆ Less is more: Probabilistic reduction is best explained by small-scale predictability measures
The primary research questions of this paper center on defining the amount of context that is necessary and/or appropriate when investigating the relationship between language model probabilities and cognitive phenomena. We investigate whether whole utterances are necessary to observe probabilistic reduction and demonstrate that n-gram representations suffice as cognitive units of planning.
♻ ☆ Something Just Like TRuST : Toxicity Recognition of Span and Target
Toxic language includes content that is offensive, abusive, or that promotes harm. Progress in preventing toxic output from large language models (LLMs) is hampered by inconsistent definitions of toxicity. We introduce TRuST, a large-scale dataset that unifies and expands prior resources through a carefully synthesized definition of toxicity, and corresponding annotation scheme. It consists of ~300k annotations, with high-quality human annotation on ~11k. To ensure high-quality, we designed a rigorous, multi-stage human annotation process, and evaluated the diversity of the annotators. Then we benchmarked state-of-the-art LLMs and pre-trained models on three tasks: toxicity detection, identification of the target group, and of toxic words. Our results indicate that fine-tuned PLMs outperform LLMs on the three tasks, and that current reasoning models do not reliably improve performance. TRuST constitutes one of the most comprehensive resources for evaluating and mitigating LLM toxicity, and other research in socially-aware and safer language technologies.
♻ ☆ POLAR: A Benchmark for Multilingual, Multicultural, and Multi-Event Online Polarization
Online polarization poses a growing challenge for democratic discourse, yet most computational social science research remains monolingual, culturally narrow, or event-specific. We introduce POLAR, a multilingual, multicultural, and multievent dataset with over 23k instances in seven languages from diverse online platforms and real-world events. Polarization is annotated along three axes: presence, type, and manifestation, using a variety of annotation platforms adapted to each cultural context. We conduct two main experiments: (1) we fine-tune six multilingual pretrained language models in both monolingual and cross-lingual setups; and (2) we evaluate a range of open and closed large language models (LLMs) in few-shot and zero-shot scenarios. Results show that while most models perform well on binary polarization detection, they achieve substantially lower scores when predicting polarization types and manifestations. These findings highlight the complex, highly contextual nature of polarization and the need for robust, adaptable approaches in NLP and computational social science. All resources will be released to support further research and effective mitigation of digital polarization globally.
comment: Preprint
♻ ☆ Enhancing Multimodal Reasoning via Latent Refocusing
Chain of Thought (CoT) reasoning enhances logical performance by decomposing complex tasks, yet its multimodal extension faces a trade-off. The existing Thinking with Images paradigm is limited by the modality gap between vision and language, which hinders reliable extraction of reasoning relevant information from high dimensional visual data. Recent latent space reasoning method provides stronger multimodal representations, but it often lacks the ability to refocus on visual inputs and suffers from limited interpretability. To address these issues, we propose \underline{La}tent \underline{Re}focusing (LaRe), a novel multimodal reasoning paradigm that combines visual refocusing with rich latent representations, enabling iterative reasoning within the latent space. We further design a semantic augmentation training strategy that enhances the semantic structure of the latent space through joint alignment and reconstruction objectives. Experimental evaluations demonstrate that LaRe improves average accuracy by 9.4\% compared to existing baselines while reducing the number of tokens required for inference by 16.5\%. When scaled to a 7B-parameter Large Language Model backbone, LaRe achieves performance comparable to state-of-the-art models and outperforms larger-scale models on almost all benchmarks. Code and checkpoints will be released later.
♻ ☆ Uncovering Autoregressive LLM Knowledge of Thematic Fit in Event Representation
We show closed models possess much thematic fit knowledge and set a new state of the art, while open models also seem to capture much relevant knowledge (in semantic filtering), but yield lower scores. Surprisingly, multi-step reasoning only helped closed models (with few exceptions); generated sentences hurt closed models' performance; and output form had little to no effect. We analyze the reasons for these findings, and conclude that more foundational work is needed for a single LLM to perform the best on all tasks with the same experimental condition, let alone improve results further. Source code is available at: https://github.com/SafeyahShemali/LLM_Thematic_Fit_25
comment: Significant update with massive changes: all experiments rerun with current LLMs; includes new probability estimate analysis and expanded results in Sections 4 and 5
♻ ☆ Predicting Failures of LLMs to Link Biomedical Ontology Terms to Identifiers Evidence Across Models and Ontologies
Large language models often perform well on biomedical NLP tasks but may fail to link ontology terms to their correct identifiers. We investigate why these failures occur by analyzing predictions across two major ontologies, Human Phenotype Ontology and Gene Ontology, and two high-performing models, GPT-4o and LLaMa 3.1 405B. We evaluate nine candidate features related to term familiarity, identifier usage, morphology, and ontology structure. Univariate and multivariate analyses show that exposure to ontology identifiers is the strongest predictor of linking success.
comment: Accepted for Presentation, IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI 25), Atlanta GA USA, October 26-29, 2025
♻ ☆ Large Language Models can Achieve Social Balance
Large Language Models (LLMs) can be deployed in situations where they process positive/negative interactions with other agents. We study how this is done under the sociological framework of social balance, which explains the emergence of one faction or multiple antagonistic ones among agents. Across different LLM models, we find that balance depends on the (i) type of interaction, (ii) update mechanism, and (iii) population size. Across (i)-(iii), we characterize the frequency at which social balance is achieved, the justifications for the social dynamics, and the diversity and stability of interactions. Finally, we explain how our findings inform the deployment of agentic systems.
♻ ☆ Scalable Scientific Interest Profiling Using Large Language Models
Research profiles highlight scientists' research focus, enabling talent discovery and collaborations, but are often outdated. Automated, scalable methods are urgently needed to keep profiles current. We design and evaluate two Large Language Models (LLMs)-based methods to generate scientific interest profiles--one summarizing PubMed abstracts and the other using Medical Subject Headings (MeSH) terms--comparing them with researchers' self-summarized interests. We collected titles, MeSH terms, and abstracts of PubMed publications for 595 faculty at Columbia University Irving Medical Center, obtaining human-written profiles for 167. GPT-4o-mini was prompted to summarize each researcher's interests. Manual and automated evaluations characterized similarities between machine-generated and self-written profiles. The similarity study showed low ROUGE-L, BLEU, and METEOR scores, reflecting little terminological overlap. BERTScore analysis revealed moderate semantic similarity (F1: 0.542 for MeSH-based, 0.555 for abstract-based), despite low lexical overlap. In validation, paraphrased summaries achieved a higher F1 of 0.851. Comparing original and manually paraphrased summaries indicated limitations of such metrics. Kullback-Leibler (KL) Divergence of TF-IDF values (8.56 for MeSH-based, 8.58 for abstract-based) suggests machine summaries employ different keywords than human-written ones. Manual reviews showed 77.78% rated MeSH-based profiling "good" or "excellent," with readability rated favorably in 93.44% of cases, though granularity and accuracy varied. Panel reviews favored 67.86% of MeSH-derived profiles over abstract-derived ones. LLMs promise to automate scientific interest profiling at scale. MeSH-derived profiles have better readability than abstract-derived ones. Machine-generated summaries differ from human-written ones in concept choice, with the latter initiating more novel ideas.
♻ ☆ The Homogenizing Effect of Large Language Models on Human Expression and Thought
Cognitive diversity, reflected in variations of language, perspective, and reasoning, is essential to creativity and collective intelligence. This diversity is rich and grounded in culture, history, and individual experience. Yet as large language models (LLMs) become deeply embedded in people's lives, they risk standardizing language and reasoning. We synthesize evidence across linguistics, psychology, cognitive science, and computer science to show how LLMs reflect and reinforce dominant styles while marginalizing alternative voices and reasoning strategies. We examine how their design and widespread use contribute to this effect by mirroring patterns in their training data and amplifying convergence as all people increasingly rely on the same models across contexts. Unchecked, this homogenization risks flattening the cognitive landscapes that drive collective intelligence and adaptability.
Machine Learning 187
☆ Heterogeneous Low-Bandwidth Pre-Training of LLMs
Pre-training large language models (LLMs) increasingly requires distributed compute, yet bandwidth constraints make it difficult to scale beyond well-provisioned datacenters-especially when model parallelism forces frequent, large inter-device communications. We study whether SparseLoCo, a low-communication data parallel method based on infrequent synchronization and sparse pseudo-gradient exchange, can be combined with low-bandwidth pipeline model parallelism via activation and activation-gradient compression. We introduce a heterogeneous distributed training framework where some participants host full replicas on high-bandwidth interconnects, while resource-limited participants are grouped to jointly instantiate a replica using pipeline parallelism with subspace-projected inter-stage communication. To make the recently introduced subspace pipeline compression compatible with SparseLoCo, we study a number of adaptations. Across large-scale language modeling experiments (178M-1B parameters) on standard pretraining corpora, we find that activation compression composes with SparseLoCo at modest cost, while selective (heterogeneous) compression consistently improves the loss-communication tradeoff relative to compressing all replicas-especially at aggressive compression ratios. These results suggest a practical path to incorporating low-bandwidth model parallelism and heterogeneous participants into LLM pre-training.
☆ Meta-Learning Guided Pruning for Few-Shot Plant Pathology on Edge Devices
Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.
☆ Hunting for "Oddballs" with Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit Spectra with Autoencoders
This study explores the application of autoencoder-based machine learning techniques for anomaly detection to identify exoplanet atmospheres with unconventional chemical signatures using a low-dimensional data representation. We use the Atmospheric Big Challenge (ABC) database, a publicly available dataset with over 100,000 simulated exoplanet spectra, to construct an anomaly detection scenario by defining CO2-rich atmospheres as anomalies and CO2-poor atmospheres as the normal class. We benchmarked four different anomaly detection strategies: Autoencoder Reconstruction Loss, One-Class Support Vector Machine (1 class-SVM), K-means Clustering, and Local Outlier Factor (LOF). Each method was evaluated in both the original spectral space and the autoencoder's latent space using Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) metrics. To test the performance of the different methods under realistic conditions, we introduced Gaussian noise levels ranging from 10 to 50 ppm. Our results indicate that anomaly detection is consistently more effective when performed within the latent space across all noise levels. Specifically, K-means clustering in the latent space emerged as a stable and high-performing method. We demonstrate that this anomaly detection approach is robust to noise levels up to 30 ppm (consistent with realistic space-based observations) and remains viable even at 50 ppm when leveraging latent space representations. On the other hand, the performance of the anomaly detection methods applied directly in the raw spectral space degrades significantly with increasing the level of noise. This suggests that autoencoder-driven dimensionality reduction offers a robust methodology for flagging chemically anomalous targets in large-scale surveys where exhaustive retrievals are computationally prohibitive.
comment: 14 pages, 12 figures
☆ Environment-Adaptive Covariate Selection: Learning When to Use Spurious Correlations for Out-of-Distribution Prediction
Out-of-distribution (OOD) prediction is often approached by restricting models to causal or invariant covariates, avoiding non-causal spurious associations that may be unstable across environments. Despite its theoretical appeal, this strategy frequently underperforms empirical risk minimization (ERM) in practice. We investigate the source of this gap and show that such failures naturally arise when only a subset of the true causes of the outcome is observed. In these settings, non-causal spurious covariates can serve as informative proxies for unobserved causes and substantially improve prediction, except under distribution shifts that break these proxy relationships. Consequently, the optimal set of predictive covariates is neither universal nor necessarily exhibits invariant relationships with the outcome across all environments, but instead depends on the specific type of shift encountered. Crucially, we observe that different covariate shifts induce distinct, observable signatures in the covariate distribution itself. Moreover, these signatures can be extracted from unlabeled data in the target OOD environment and used to assess when proxy covariates remain reliable and when they fail. Building on this observation, we propose an environment-adaptive covariate selection (EACS) algorithm that maps environment-level covariate summaries to environment-specific covariate sets, while allowing the incorporation of prior causal knowledge as constraints. Across simulations and applied datasets, EACS consistently outperforms static causal, invariant, and ERM-based predictors under diverse distribution shifts.
☆ DatBench: Discriminative, Faithful, and Efficient VLM Evaluations
Empirical evaluation serves as the primary compass guiding research progress in foundation models. Despite a large body of work focused on training frontier vision-language models (VLMs), approaches to their evaluation remain nascent. To guide their maturation, we propose three desiderata that evaluations should satisfy: (1) faithfulness to the modality and application, (2) discriminability between models of varying quality, and (3) efficiency in compute. Through this lens, we identify critical failure modes that violate faithfulness and discriminability, misrepresenting model capabilities: (i) multiple-choice formats reward guessing, poorly reflect downstream use cases, and saturate early as models improve; (ii) blindly solvable questions, which can be answered without images, constitute up to 70% of some evaluations; and (iii) mislabeled or ambiguous samples compromise up to 42% of examples in certain datasets. Regarding efficiency, the computational burden of evaluating frontier models has become prohibitive: by some accounts, nearly 20% of development compute is devoted to evaluation alone. Rather than discarding existing benchmarks, we curate them via transformation and filtering to maximize fidelity and discriminability. We find that converting multiple-choice questions to generative tasks reveals sharp capability drops of up to 35%. In addition, filtering blindly solvable and mislabeled samples improves discriminative power while simultaneously reducing computational cost. We release DatBench-Full, a cleaned evaluation suite of 33 datasets spanning nine VLM capabilities, and DatBench, a discriminative subset that achieves 13x average speedup (up to 50x) while closely matching the discriminative power of the original datasets. Our work outlines a path toward evaluation practices that are both rigorous and sustainable as VLMs continue to scale.
☆ Game of Coding: Coding Theory in the Presence of Rational Adversaries, Motivated by Decentralized Machine Learning
Coding theory plays a crucial role in enabling reliable communication, storage, and computation. Classical approaches assume a worst-case adversarial model and ensure error correction and data recovery only when the number of honest nodes exceeds the number of adversarial ones by some margin. However, in some emerging decentralized applications, particularly in decentralized machine learning (DeML), participating nodes are rewarded for accepted contributions. This incentive structure naturally gives rise to rational adversaries who act strategically rather than behaving in purely malicious ways. In this paper, we first motivate the need for coding in the presence of rational adversaries, particularly in the context of outsourced computation in decentralized systems. We contrast this need with existing approaches and highlight their limitations. We then introduce the game of coding, a novel game-theoretic framework that extends coding theory to trust-minimized settings where honest nodes are not in the majority. Focusing on repetition coding, we highlight two key features of this framework: (1) the ability to achieve a non-zero probability of data recovery even when adversarial nodes are in the majority, and (2) Sybil resistance, i.e., the equilibrium remains unchanged even as the number of adversarial nodes increases. Finally, we explore scenarios in which the adversary's strategy is unknown and outline several open problems for future research.
☆ Temporal Kolmogorov-Arnold Networks (T-KAN) for High-Frequency Limit Order Book Forecasting: Efficiency, Interpretability, and Alpha Decay
High-Frequency trading (HFT) environments are characterised by large volumes of limit order book (LOB) data, which is notoriously noisy and non-linear. Alpha decay represents a significant challenge, with traditional models such as DeepLOB losing predictive power as the time horizon (k) increases. In this paper, using data from the FI-2010 dataset, we introduce Temporal Kolmogorov-Arnold Networks (T-KAN) to replace the fixed, linear weights of standard LSTMs with learnable B-spline activation functions. This allows the model to learn the 'shape' of market signals as opposed to just their magnitude. This resulted in a 19.1% relative improvement in the F1-score at the k = 100 horizon. The efficacy of T-KAN networks cannot be understated, producing a 132.48% return compared to the -82.76% DeepLOB drawdown under 1.0 bps transaction costs. In addition to this, the T-KAN model proves quite interpretable, with the 'dead-zones' being clearly visible in the splines. The T-KAN architecture is also uniquely optimized for low-latency FPGA implementation via High level Synthesis (HLS). The code for the experiments in this project can be found at https://github.com/AhmadMak/Temporal-Kolmogorov-Arnold-Networks-T-KAN-for-High-Frequency-Limit-Order-Book-Forecasting.
comment: 8 pages, 5 figures, Proposes T-KAN architecture for HFT. Achieves 19.1% F1-score improvement on FI-2010 and 132.48% return in cost-adjusted backtests.Proposes T-KAN architecture for HFT. Achieves 19.1% F1-score improvement on FI-2010 and 132.48% return in cost-adjusted backtests
☆ Differential Privacy for Transformer Embeddings of Text with Nonparametric Variational Information Bottleneck
We propose a privacy-preserving method for sharing text data by sharing noisy versions of their transformer embeddings. It has been shown that hidden representations learned by deep models can encode sensitive information from the input, making it possible for adversaries to recover the input data with considerable accuracy. This problem is exacerbated in transformer embeddings because they consist of multiple vectors, one per token. To mitigate this risk, we propose Nonparametric Variational Differential Privacy (NVDP), which ensures both useful data sharing and strong privacy protection. We take a differential privacy approach, integrating a Nonparametric Variational Information Bottleneck (NVIB) layer into the transformer architecture to inject noise into its multi-vector embeddings and thereby hide information, and measuring privacy protection with Rényi divergence and its corresponding Bayesian Differential Privacy (BDP) guarantee. Training the NVIB layer calibrates the noise level according to utility. We test NVDP on the GLUE benchmark and show that varying the noise level gives us a useful tradeoff between privacy and accuracy. With lower noise levels, our model maintains high accuracy while offering strong privacy guarantees, effectively balancing privacy and utility.
comment: 11 pages, 2 figures
☆ TopoLoRA-SAM: Topology-Aware Parameter-Efficient Adaptation of Foundation Segmenters for Thin-Structure and Cross-Domain Binary Semantic Segmentation
Foundation segmentation models such as the Segment Anything Model (SAM) exhibit strong zero-shot generalization through large-scale pretraining, but adapting them to domain-specific semantic segmentation remains challenging, particularly for thin structures (e.g., retinal vessels) and noisy modalities (e.g., SAR imagery). Full fine-tuning is computationally expensive and risks catastrophic forgetting. We propose \textbf{TopoLoRA-SAM}, a topology-aware and parameter-efficient adaptation framework for binary semantic segmentation. TopoLoRA-SAM injects Low-Rank Adaptation (LoRA) into the frozen ViT encoder, augmented with a lightweight spatial convolutional adapter and optional topology-aware supervision via differentiable clDice. We evaluate our approach on five benchmarks spanning retinal vessel segmentation (DRIVE, STARE, CHASE\_DB1), polyp segmentation (Kvasir-SEG), and SAR sea/land segmentation (SL-SSDD), comparing against U-Net, DeepLabV3+, SegFormer, and Mask2Former. TopoLoRA-SAM achieves the best retina-average Dice and the best overall average Dice across datasets, while training only \textbf{5.2\%} of model parameters ($\sim$4.9M). On the challenging CHASE\_DB1 dataset, our method substantially improves segmentation accuracy and robustness, demonstrating that topology-aware parameter-efficient adaptation can match or exceed fully fine-tuned specialist models. Code is available at : https://github.com/salimkhazem/Seglab.git
☆ Predicting Early and Complete Drug Release from Long-Acting Injectables Using Explainable Machine Learning
Polymer-based long-acting injectables (LAIs) have transformed the treatment of chronic diseases by enabling controlled drug delivery, thus reducing dosing frequency and extending therapeutic duration. Achieving controlled drug release from LAIs requires extensive optimization of the complex underlying physicochemical properties. Machine learning (ML) can accelerate LAI development by modeling the complex relationships between LAI properties and drug release. However, recent ML studies have provided limited information on key properties that modulate drug release, due to the lack of custom modeling and analysis tailored to LAI data. This paper presents a novel data transformation and explainable ML approach to synthesize actionable information from 321 LAI formulations by predicting early drug release at 24, 48, and 72 hours, classification of release profile types, and prediction of complete release profiles. These three experiments investigate the contribution and control of LAI material characteristics in early and complete drug release profiles. A strong correlation (>0.65) is observed between the true and predicted drug release in 72 hours, while a 0.87 F1-score is obtained in classifying release profile types. A time-independent ML framework predicts delayed biphasic and triphasic curves with better performance than current time-dependent approaches. Shapley additive explanations reveal the relative influence of material characteristics during early and for complete release which fill several gaps in previous in-vitro and ML-based studies. The novel approach and findings can provide a quantitative strategy and recommendations for scientists to optimize the drug-release dynamics of LAI. The source code for the model implementation is publicly available.
☆ POSEIDON: Physics-Optimized Seismic Energy Inference and Detection Operating Network
Earthquake prediction and seismic hazard assessment remain fundamental challenges in geophysics, with existing machine learning approaches often operating as black boxes that ignore established physical laws. We introduce POSEIDON (Physics-Optimized Seismic Energy Inference and Detection Operating Network), a physics-informed energy-based model for unified multi-task seismic event prediction, alongside the Poseidon dataset -- the largest open-source global earthquake catalog comprising 2.8 million events spanning 30 years. POSEIDON embeds fundamental seismological principles, including the Gutenberg-Richter magnitude-frequency relationship and Omori-Utsu aftershock decay law, as learnable constraints within an energy-based modeling framework. The architecture simultaneously addresses three interconnected prediction tasks: aftershock sequence identification, tsunami generation potential, and foreshock detection. Extensive experiments demonstrate that POSEIDON achieves state-of-the-art performance across all tasks, outperforming gradient boosting, random forest, and CNN baselines with the highest average F1 score among all compared methods. Crucially, the learned physics parameters converge to scientifically interpretable values -- Gutenberg-Richter b-value of 0.752 and Omori-Utsu parameters p=0.835, c=0.1948 days -- falling within established seismological ranges while enhancing rather than compromising predictive accuracy. The Poseidon dataset is publicly available at https://huggingface.co/datasets/BorisKriuk/Poseidon, providing pre-computed energy features, spatial grid indices, and standardized quality metrics to advance physics-informed seismic research.
comment: 8 pages, 14 figures
☆ Improved Accuracy for Private Continual Cardinality Estimation in Fully Dynamic Streams via Matrix Factorization
We study differentially-private statistics in the fully dynamic continual observation model, where many updates can arrive at each time step and updates to a stream can involve both insertions and deletions of an item. Earlier work (e.g., Jain et al., NeurIPS 2023 for counting distinct elements; Raskhodnikova & Steiner, PODS 2025 for triangle counting with edge updates) reduced the respective cardinality estimation problem to continual counting on the difference stream associated with the true function values on the input stream. In such reductions, a change in the original stream can cause many changes in the difference stream, this poses a challenge for applying private continual counting algorithms to obtain optimal error bounds. We improve the accuracy of several such reductions by studying the associated $\ell_p$-sensitivity vectors of the resulting difference streams and isolating their properties. We demonstrate that our framework gives improved bounds for counting distinct elements, estimating degree histograms, and estimating triangle counts (under a slightly relaxed privacy model), thus offering a general approach to private continual cardinality estimation in streaming settings. Our improved accuracy stems from tight analysis of known factorization mechanisms for the counting matrix in this setting; the key technical challenge is arguing that one can use state-of-the-art factorizations for sensitivity vector sets with the properties we isolate. Empirically and analytically, we demonstrate that our improved error bounds offer a substantial improvement in accuracy for cardinality estimation problems over a large range of parameters.
☆ VAR RL Done Right: Tackling Asynchronous Policy Conflicts in Visual Autoregressive Generation
Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
comment: Project page: https://github.com/ByteVisionLab/NextFlow
☆ Neuro-Channel Networks: A Multiplication-Free Architecture by Biological Signal Transmission
The rapid proliferation of Deep Learning is increasingly constrained by its heavy reliance on high-performance hardware, particularly Graphics Processing Units (GPUs). These specialized accelerators are not only prohibitively expensive and energy-intensive but also suffer from significant supply scarcity, limiting the ubiquity of Artificial Intelligence (AI) deployment on edge devices. The core of this inefficiency stems from the standard artificial perceptron's dependence on intensive matrix multiplications. However, biological nervous systems achieve unparalleled efficiency without such arithmetic intensity; synaptic signal transmission is regulated by physical ion channel limits and chemical neurotransmitter levels rather than a process that can be analogous to arithmetic multiplication. Inspired by this biological mechanism, we propose Neuro-Channel Networks (NCN), a novel multiplication-free architecture designed to decouple AI from expensive hardware dependencies. In our model, weights are replaced with Channel Widths that physically limit the signal magnitude, while a secondary parameter acts as a Neurotransmitter to regulate Signal Transmission based on sign logic. The forward pass relies exclusively on addition, subtraction, and bitwise operations (minimum, sign), eliminating floating-point multiplication entirely. In this proof-of-concept study, we demonstrate that NCNs can solve non-linearly separable problems like XOR and the Majority function with 100% accuracy using standard backpropagation, proving their capability to form complex decision boundaries without multiplicative weights. This architecture offers a highly efficient alternative for next-generation neuromorphic hardware, paving the way for running complex models on commodity CPUs or ultra-low-power chips without relying on costly GPU clusters.
comment: 9 pages, 4 figures
☆ A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
Convolutional Neural Networks (CNNs) are a standard approach for visual recognition due to their capacity to learn hierarchical representations from raw pixels. In practice, practitioners often choose among (i) training a compact custom CNN from scratch, (ii) using a large pre-trained CNN as a fixed feature extractor, and (iii) performing transfer learning via partial or full fine-tuning of a pre-trained backbone. This report presents a controlled comparison of these three paradigms across five real-world image classification datasets spanning road-surface defect recognition, agricultural variety identification, fruit/leaf disease recognition, pedestrian walkway encroachment recognition, and unauthorized vehicle recognition. Models are evaluated using accuracy and macro F1-score, complemented by efficiency metrics including training time per epoch and parameter counts. The results show that transfer learning consistently yields the strongest predictive performance, while the custom CNN provides an attractive efficiency--accuracy trade-off, especially when compute and memory budgets are constrained.
☆ VIBE: Visual Instruction Based Editor
Instruction-based image editing is among the fastest developing areas in generative AI. Over the past year, the field has reached a new level, with dozens of open-source models released alongside highly capable commercial systems. However, only a limited number of open-source approaches currently achieve real-world quality. In addition, diffusion backbones, the dominant choice for these pipelines, are often large and computationally expensive for many deployments and research settings, with widely used variants typically containing 6B to 20B parameters. This paper presents a compact, high-throughput instruction-based image editing pipeline that uses a modern 2B-parameter Qwen3-VL model to guide the editing process and the 1.6B-parameter diffusion model Sana1.5 for image generation. Our design decisions across architecture, data processing, training configuration, and evaluation target low-cost inference and strict source consistency while maintaining high quality across the major edit categories feasible at this scale. Evaluated on the ImgEdit and GEdit benchmarks, the proposed method matches or exceeds the performance of substantially heavier baselines, including models with several times as many parameters and higher inference cost, and is particularly strong on edits that require preserving the input image, such as an attribute adjustment, object removal, background edits, and targeted replacement. The model fits within 24 GB of GPU memory and generates edited images at up to 2K resolution in approximately 4 seconds on an NVIDIA H100 in BF16, without additional inference optimizations or distillation.
☆ From Mice to Trains: Amortized Bayesian Inference on Graph Data
Graphs arise across diverse domains, from biology and chemistry to social and information networks, as well as in transportation and logistics. Inference on graph-structured data requires methods that are permutation-invariant, scalable across varying sizes and sparsities, and capable of capturing complex long-range dependencies, making posterior estimation on graph parameters particularly challenging. Amortized Bayesian Inference (ABI) is a simulation-based framework that employs generative neural networks to enable fast, likelihood-free posterior inference. We adapt ABI to graph data to address these challenges to perform inference on node-, edge-, and graph-level parameters. Our approach couples permutation-invariant graph encoders with flexible neural posterior estimators in a two-module pipeline: a summary network maps attributed graphs to fixed-length representations, and an inference network approximates the posterior over parameters. In this setting, several neural architectures can serve as the summary network. In this work we evaluate multiple architectures and assess their performance on controlled synthetic settings and two real-world domains - biology and logistics - in terms of recovery and calibration.
☆ ELLA: Efficient Lifelong Learning for Adapters in Large Language Models
Large Language Models (LLMs) suffer severe catastrophic forgetting when adapted sequentially to new tasks in a continual learning (CL) setting. Existing approaches are fundamentally limited: replay-based methods are impractical and privacy-violating, while strict orthogonality-based methods collapse under scale: each new task is projected onto an orthogonal complement, progressively reducing the residual degrees of freedom and eliminating forward transfer by forbidding overlap in shared representations. In this work, we introduce ELLA, a training framework built on the principle of selective subspace de-correlation. Rather than forbidding all overlap, ELLA explicitly characterizes the structure of past updates and penalizes alignments along their high-energy, task-specific directions, while preserving freedom in the low-energy residual subspaces to enable transfer. Formally, this is realized via a lightweight regularizer on a single aggregated update matrix. We prove this mechanism corresponds to an anisotropic shrinkage operator that bounds interference, yielding a penalty that is both memory- and compute-constant regardless of task sequence length. ELLA requires no data replay, no architectural expansion, and negligible storage. Empirically, it achieves state-of-the-art CL performance on three popular benchmarks, with relative accuracy gains of up to $9.6\%$ and a $35\times$ smaller memory footprint. Further, ELLA scales robustly across architectures and actively enhances the model's zero-shot generalization performance on unseen tasks, establishing a principled and scalable solution for constructive lifelong LLM adaptation.
☆ Quantized SO(3)-Equivariant Graph Neural Networks for Efficient Molecular Property Prediction
Deploying 3D graph neural networks (GNNs) that are equivariant to 3D rotations (the group SO(3)) on edge devices is challenging due to their high computational cost. This paper addresses the problem by compressing and accelerating an SO(3)-equivariant GNN using low-bit quantization techniques. Specifically, we introduce three innovations for quantized equivariant transformers: (1) a magnitude-direction decoupled quantization scheme that separately quantizes the norm and orientation of equivariant (vector) features, (2) a branch-separated quantization-aware training strategy that treats invariant and equivariant feature channels differently in an attention-based $SO(3)$-GNN, and (3) a robustness-enhancing attention normalization mechanism that stabilizes low-precision attention computations. Experiments on the QM9 and rMD17 molecular benchmarks demonstrate that our 8-bit models achieve accuracy on energy and force predictions comparable to full-precision baselines with markedly improved efficiency. We also conduct ablation studies to quantify the contribution of each component to maintain accuracy and equivariance under quantization, using the Local error of equivariance (LEE) metric. The proposed techniques enable the deployment of symmetry-aware GNNs in practical chemistry applications with 2.37--2.73x faster inference and 4x smaller model size, without sacrificing accuracy or physical symmetry.
☆ CORE: Code-based Inverse Self-Training Framework with Graph Expansion for Virtual Agents
The development of Multimodal Virtual Agents has made significant progress through the integration of Multimodal Large Language Models. However, mainstream training paradigms face key challenges: Behavior Cloning is simple and effective through imitation but suffers from low behavioral diversity, while Reinforcement Learning is capable of discovering novel strategies through exploration but heavily relies on manually designed reward functions. To address the conflict between these two methods, we present CORE, a Code-based Inverse Self-Training Framework with Graph Expansion that bridges imitation and exploration, offering a novel training framework that promotes behavioral diversity while eliminating the reliance on manually reward design. Specifically, we introduce Semantic Code Abstraction to automatically infers reward functions from expert demonstrations without manual design. The inferred reward function, referred to as the Label Function, is executable code that verifies one key step within a task. Building on this, we propose Strategy Graph Expansion to enhance in-domain behavioral diversity, which constructs a multi-path graph called Strategy Graph that captures diverse valid solutions beyond expert demonstrations. Furthermore, we introduce Trajectory-Guided Extrapolation, which enriches out-of-domain behavioral diversity by utilizing both successful and failed trajectories to expand the task space. Experiments on Web and Android platforms demonstrate that CORE significantly improves both overall performance and generalization, highlighting its potential as a robust and generalizable training paradigm for building powerful virtual agents.
comment: 19 pages, 12 figures
☆ Mind the Gap: Continuous Magnification Sampling for Pathology Foundation Models
In histopathology, pathologists examine both tissue architecture at low magnification and fine-grained morphology at high magnification. Yet, the performance of pathology foundation models across magnifications and the effect of magnification sampling during training remain poorly understood. We model magnification sampling as a multi-source domain adaptation problem and develop a simple theoretical framework that reveals systematic trade-offs between sampling strategies. We show that the widely used discrete uniform sampling of magnifications (0.25, 0.5, 1.0, 2.0 mpp) leads to degradation at intermediate magnifications. We introduce continuous magnification sampling, which removes gaps in magnification coverage while preserving performance at standard scales. Further, we derive sampling distributions that optimize representation quality across magnification scales. To evaluate these strategies, we introduce two new benchmarks (TCGA-MS, BRACS-MS) with appropriate metrics. Our experiments show that continuous sampling substantially improves over discrete sampling at intermediate magnifications, with gains of up to 4 percentage points in balanced classification accuracy, and that optimized distributions can further improve performance. Finally, we evaluate current histopathology foundation models, finding that magnification is a primary driver of performance variation across models. Our work paves the way towards future pathology foundation models that perform reliably across magnifications.
☆ ACDZero: Graph-Embedding-Based Tree Search for Mastering Automated Cyber Defense
Automated cyber defense (ACD) seeks to protect computer networks with minimal or no human intervention, reacting to intrusions by taking corrective actions such as isolating hosts, resetting services, deploying decoys, or updating access controls. However, existing approaches for ACD, such as deep reinforcement learning (RL), often face difficult exploration in complex networks with large decision/state spaces and thus require an expensive amount of samples. Inspired by the need to learn sample-efficient defense policies, we frame ACD in CAGE Challenge 4 (CAGE-4 / CC4) as a context-based partially observable Markov decision problem and propose a planning-centric defense policy based on Monte Carlo Tree Search (MCTS). It explicitly models the exploration-exploitation tradeoff in ACD and uses statistical sampling to guide exploration and decision making. We make novel use of graph neural networks (GNNs) to embed observations from the network as attributed graphs, to enable permutation-invariant reasoning over hosts and their relationships. To make our solution practical in complex search spaces, we guide MCTS with learned graph embeddings and priors over graph-edit actions, combining model-free generalization and policy distillation with look-ahead planning. We evaluate the resulting agent on CC4 scenarios involving diverse network structures and adversary behaviors, and show that our search-guided, graph-embedding-based planning improves defense reward and robustness relative to state-of-the-art RL baselines.
☆ Learning with Monotone Adversarial Corruptions
We study the extent to which standard machine learning algorithms rely on exchangeability and independence of data by introducing a monotone adversarial corruption model. In this model, an adversary, upon looking at a "clean" i.i.d. dataset, inserts additional "corrupted" points of their choice into the dataset. These added points are constrained to be monotone corruptions, in that they get labeled according to the ground-truth target function. Perhaps surprisingly, we demonstrate that in this setting, all known optimal learning algorithms for binary classification can be made to achieve suboptimal expected error on a new independent test point drawn from the same distribution as the clean dataset. On the other hand, we show that uniform convergence-based algorithms do not degrade in their guarantees. Our results showcase how optimal learning algorithms break down in the face of seemingly helpful monotone corruptions, exposing their overreliance on exchangeability.
☆ QuIC: A Quantum-Inspired Interaction Classifier for Revitalizing Shallow CNNs in Fine-Grained Recognition
Deploying deep learning models for Fine-Grained Visual Classification (FGVC) on resource-constrained edge devices remains a significant challenge. While deep architectures achieve high accuracy on benchmarks like CUB-200-2011, their computational cost is often prohibitive. Conversely, shallow networks (e.g., AlexNet, VGG) offer efficiency but fail to distinguish visually similar sub-categories. This is because standard Global Average Pooling (GAP) heads capture only first-order statistics, missing the subtle high-order feature interactions required for FGVC. While Bilinear CNNs address this, they suffer from high feature dimensionality and instability during training. To bridge this gap, we propose the Quantum-inspired Interaction Classifier (QuIC). Drawing inspiration from quantum mechanics, QuIC models feature channels as interacting quantum states and captures second-order feature covariance via a learnable observable operator. Designed as a lightweight, plug-and-play module, QuIC supports stable, single-stage end-to-end training without exploding feature dimensions. Experimental results demonstrate that QuIC significantly revitalizes shallow backbones: it boosts the Top-1 accuracy of VGG16 by nearly 20% and outperforms state-of-the-art attention mechanisms (SE-Block) on ResNet18. Qualitative analysis, including t-SNE visualization, further confirms that QuIC resolves ambiguous cases by explicitly attending to fine-grained discriminative features and enforcing compact intra-class clustering.
☆ FormationEval, an open multiple-choice benchmark for petroleum geoscience
This paper presents FormationEval, an open multiple-choice question benchmark for evaluating language models on petroleum geoscience and subsurface disciplines. The dataset contains 505 questions across seven domains including petrophysics, petroleum geology and reservoir engineering, derived from three authoritative sources using a reasoning model with detailed instructions and a concept-based approach that avoids verbatim copying of copyrighted text. Each question includes source metadata to support traceability and audit. The evaluation covers 72 models from major providers including OpenAI, Anthropic, Google, Meta and open-weight alternatives. The top performers achieve over 97\% accuracy, with Gemini 3 Pro Preview reaching 99.8\%, while tier and domain gaps persist. Among open-weight models, GLM-4.7 leads at 98.6\%, with several DeepSeek, Llama, Qwen and Mistral models also exceeding 93\%. The performance gap between open-weight and closed models is narrower than expected, with several lower-cost open-weight models exceeding 90\% accuracy. Petrophysics emerges as the most challenging domain across all models, while smaller models show wider performance variance. Residual length bias in the dataset (correct answers tend to be longer) is documented along with bias mitigation strategies applied during construction. The benchmark, evaluation code and results are publicly available.
comment: 24 pages, 8 figures, 10 tables; benchmark and code at https://github.com/AlmazErmilov/FormationEval-an-Open-Benchmark-for-Oil-Gas-Geoscience-MCQ-Evaluation
☆ Entropy-Adaptive Fine-Tuning: Resolving Confident Conflicts to Mitigate Forgetting
Supervised Fine-Tuning (SFT) is the standard paradigm for domain adaptation, yet it frequently incurs the cost of catastrophic forgetting. In sharp contrast, on-policy Reinforcement Learning (RL) effectively preserves general capabilities. We investigate this discrepancy and identify a fundamental distributional gap: while RL aligns with the model's internal belief, SFT forces the model to fit external supervision. This mismatch often manifests as "Confident Conflicts" tokens characterized by low probability but low entropy. In these instances, the model is highly confident in its own prediction but is forced to learn a divergent ground truth, triggering destructive gradient updates. To address this, we propose Entropy-Adaptive Fine-Tuning (EAFT). Unlike methods relying solely on prediction probability, EAFT utilizes token-level entropy as a gating mechanism to distinguish between epistemic uncertainty and knowledge conflict. This allows the model to learn from uncertain samples while suppressing gradients on conflicting data. Extensive experiments on Qwen and GLM series (ranging from 4B to 32B parameters) across mathematical, medical, and agentic domains confirm our hypothesis. EAFT consistently matches the downstream performance of standard SFT while significantly mitigating the degradation of general capabilities.
☆ BiPrompt: Bilateral Prompt Optimization for Visual and Textual Debiasing in Vision-Language Models AAAI 2026
Vision language foundation models such as CLIP exhibit impressive zero-shot generalization yet remain vulnerable to spurious correlations across visual and textual modalities. Existing debiasing approaches often address a single modality either visual or textual leading to partial robustness and unstable adaptation under distribution shifts. We propose a bilateral prompt optimization framework (BiPrompt) that simultaneously mitigates non-causal feature reliance in both modalities during test-time adaptation. On the visual side, it employs structured attention-guided erasure to suppress background activations and enforce orthogonal prediction consistency between causal and spurious regions. On the textual side, it introduces balanced prompt normalization, a learnable re-centering mechanism that aligns class embeddings toward an isotropic semantic space. Together, these modules jointly minimize conditional mutual information between spurious cues and predictions, steering the model toward causal, domain invariant reasoning without retraining or domain supervision. Extensive evaluations on real-world and synthetic bias benchmarks demonstrate consistent improvements in both average and worst-group accuracies over prior test-time debiasing methods, establishing a lightweight yet effective path toward trustworthy and causally grounded vision-language adaptation.
comment: Accepted at the AAAI 2026 Workshop AIR-FM, Assessing and Improving Reliability of Foundation Models in the Real World
☆ Feature-based Inversion of 2.5D Controlled Source Electromagnetic Data using Generative Priors
In this study, we investigate feature-based 2.5D controlled source marine electromagnetic (mCSEM) data inversion using generative priors. Two-and-half dimensional modeling using finite difference method (FDM) is adopted to compute the response of horizontal electric dipole (HED) excitation. Rather than using a neural network to approximate the entire inverse mapping in a black-box manner, we adopt a plug-andplay strategy in which a variational autoencoder (VAE) is used solely to learn prior information on conductivity distributions. During the inversion process, the conductivity model is iteratively updated using the Gauss Newton method, while the model space is constrained by projections onto the learned VAE decoder. This framework preserves explicit control over data misfit and enables flexible adaptation to different survey configurations. Numerical and field experiments demonstrate that the proposed approach effectively incorporates prior information, improves reconstruction accuracy, and exhibits good generalization performance.
☆ Edge-aware GAT-based protein binding site prediction
Accurate identification of protein binding sites is crucial for understanding biomolecular interaction mechanisms and for the rational design of drug targets. Traditional predictive methods often struggle to balance prediction accuracy with computational efficiency when capturing complex spatial conformations. To address this challenge, we propose an Edge-aware Graph Attention Network (Edge-aware GAT) model for the fine-grained prediction of binding sites across various biomolecules, including proteins, DNA/RNA, ions, ligands, and lipids. Our method constructs atom-level graphs and integrates multidimensional structural features, including geometric descriptors, DSSP-derived secondary structure, and relative solvent accessibility (RSA), to generate spatially aware embedding vectors. By incorporating interatomic distances and directional vectors as edge features within the attention mechanism, the model significantly enhances its representation capacity. On benchmark datasets, our model achieves an ROC-AUC of 0.93 for protein-protein binding site prediction, outperforming several state-of-the-art methods. The use of directional tensor propagation and residue-level attention pooling further improves both binding site localization and the capture of local structural details. Visualizations using PyMOL confirm the model's practical utility and interpretability. To facilitate community access and application, we have deployed a publicly accessible web server at http://119.45.201.89:5000/. In summary, our approach offers a novel and efficient solution that balances prediction accuracy, generalization, and interpretability for identifying functional sites in proteins.
comment: 24 pages, 10 figures, 6 tables
☆ Car Drag Coefficient Prediction from 3D Point Clouds Using a Slice-Based Surrogate Model
The automotive industry's pursuit of enhanced fuel economy and performance necessitates efficient aerodynamic design. However, traditional evaluation methods such as computational fluid dynamics (CFD) and wind tunnel testing are resource intensive, hindering rapid iteration in the early design stages. Machine learning-based surrogate models offer a promising alternative, yet many existing approaches suffer from high computational complexity, limited interpretability, or insufficient accuracy for detailed geometric inputs. This paper introduces a novel lightweight surrogate model for the prediction of the aerodynamic drag coefficient (Cd) based on a sequential slice-wise processing of the geometry of the 3D vehicle. Inspired by medical imaging, 3D point clouds of vehicles are decomposed into an ordered sequence of 2D cross-sectional slices along the stream-wise axis. Each slice is encoded by a lightweight PointNet2D module, and the sequence of slice embeddings is processed by a bidirectional LSTM to capture longitudinal geometric evolution. The model, trained and evaluated on the DrivAerNet++ dataset, achieves a high coefficient of determination (R^2 > 0.9528) and a low mean absolute error (MAE approx 6.046 x 10^{-3}) in Cd prediction. With an inference time of approximately 0.025 seconds per sample on a consumer-grade GPU, our approach provides fast, accurate, and interpretable aerodynamic feedback, facilitating more agile and informed automotive design exploration.
comment: 14 pages, 5 figures. Published in: Bramer M., Stahl F. (eds) Artificial Intelligence XLII. SGAI 2025. Lecture Notes in Computer Science, vol 16302. Springer, Cham
☆ Prototype-Based Learning for Healthcare: A Demonstration of Interpretable AI IEEE
Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.
comment: Accepted to the Demo Track at the IEEE International Conference on Data Mining (ICDM) 2025, where it received the Best Demo Award
☆ LION-DG: Layer-Informed Initialization with Deep Gradient Protocols for Accelerated Neural Network Training
Weight initialization remains decisive for neural network optimization, yet existing methods are largely layer-agnostic. We study initialization for deeply-supervised architectures with auxiliary classifiers, where untrained auxiliary heads can destabilize early training through gradient interference. We propose LION-DG, a layer-informed initialization that zero-initializes auxiliary classifier heads while applying standard He-initialization to the backbone. We prove that this implements Gradient Awakening: auxiliary gradients are exactly zero at initialization, then phase in naturally as weights grow -- providing an implicit warmup without hyperparameters. Experiments on CIFAR-10 and CIFAR-100 with DenseNet-DS and ResNet-DS architectures demonstrate: (1) DenseNet-DS: +8.3% faster convergence on CIFAR-10 with comparable accuracy, (2) Hybrid approach: Combining LSUV with LION-DG achieves best accuracy (81.92% on CIFAR-10), (3) ResNet-DS: Positive speedup on CIFAR-100 (+11.3%) with side-tap auxiliary design. We identify architecture-specific trade-offs and provide clear guidelines for practitioners. LION-DG is simple, requires zero hyperparameters, and adds no computational overhead.
☆ Horizon Activation Mapping for Neural Networks in Time Series Forecasting
Neural networks for time series forecasting have relied on error metrics and architecture-specific interpretability approaches for model selection that don't apply across models of different families. To interpret forecasting models agnostic to the types of layers across state-of-the-art model families, we introduce Horizon Activation Mapping (HAM), a visual interpretability technique inspired by grad-CAM that uses gradient norm averages to study the horizon's subseries where grad-CAM studies attention maps over image data. We introduce causal and anti-causal modes to calculate gradient update norm averages across subseries at every timestep and lines of proportionality signifying uniform distributions of the norm averages. Optimization landscape studies with respect to changes in batch sizes, early stopping, train-val-test splits, univariate forecasting and dropouts are studied with respect to performances and subseries in HAM. Interestingly, batch size based differences in activities seem to indicate potential for existence of an exponential approximation across them per epoch relative to each other. Multivariate forecasting models including MLP-based CycleNet, N-Linear, N-HITS, self attention-based FEDformer, Pyraformer, SSM-based SpaceTime and diffusion-based Multi-Resolution DDPM over different horizon sizes trained over the ETTm2 dataset are used for HAM plots in this study. NHITS' neural approximation theorem and SpaceTime's exponential autoregressive activities have been attributed to trends in HAM plots over their training, validation and test sets. In general, HAM can be used for granular model selection, validation set choices and comparisons across different neural network model families.
☆ A Differentiable Adversarial Framework for Task-Aware Data Subsampling
The proliferation of large-scale datasets poses a major computational challenge to model training. The traditional data subsampling method works as a static, task independent preprocessing step which usually discards information that is critical to downstream prediction. In this paper, we introduces the antagonistic soft selection subsampling (ASSS) framework as is a novel paradigm that reconstructs data reduction into a differentiable end-to-end learning problem. ASSS uses the adversarial game between selector network and task network, and selector network learning assigns continuous importance weights to samples. This direct optimization implemented by Gumbel-Softmax relaxation allows the selector to identify and retain samples with the maximum amount of information for a specific task target under the guidance of the loss function that balances the fidelity and sparsity of the prediction. Theoretical analysis links this framework with the information bottleneck principle. Comprehensive experiments on four large-scale real world datasets show that ASSS has always been better than heuristic subsampling baselines such as clustering and nearest neighbor thinning in maintaining model performance. It is worth noting that ASSS can not only match, but also sometimes exceed the training performance of the entire dataset, showcasing the effect of intelligent denoising. This work establishes task aware data subsampling as a learnable component, providing a principled solution for effective large-scale data learning.
comment: 14 pages
☆ The Homogeneity Trap: Spectral Collapse in Doubly-Stochastic Deep Networks
Doubly-stochastic matrices (DSM) are increasingly utilized in structure-preserving deep architectures -- such as Optimal Transport layers and Sinkhorn-based attention -- to enforce numerical stability and probabilistic interpretability. In this work, we identify a critical spectral degradation phenomenon inherent to these constraints, termed the Homogeneity Trap. We demonstrate that the maximum-entropy bias, typical of Sinkhorn-based projections, drives the mixing operator towards the uniform barycenter, thereby suppressing the subdominant singular value σ_2 and filtering out high-frequency feature components. We derive a spectral bound linking σ_2 to the network's effective depth, showing that high-entropy constraints restrict feature transformation to a shallow effective receptive field. Furthermore, we formally demonstrate that Layer Normalization fails to mitigate this collapse in noise-dominated regimes; specifically, when spectral filtering degrades the Signal-to-Noise Ratio (SNR) below a critical threshold, geometric structure is irreversibly lost to noise-induced orthogonal collapse. Our findings highlight a fundamental trade-off between entropic stability and spectral expressivity in DSM-constrained networks.
☆ MDAgent2: Large Language Model for Code Generation and Knowledge Q&A in Molecular Dynamics
Molecular dynamics (MD) simulations are essential for understanding atomic-scale behaviors in materials science, yet writing LAMMPS scripts remains highly specialized and time-consuming tasks. Although LLMs show promise in code generation and domain-specific question answering, their performance in MD scenarios is limited by scarce domain data, the high deployment cost of state-of-the-art LLMs, and low code executability. Building upon our prior MDAgent, we present MDAgent2, the first end-to-end framework capable of performing both knowledge Q&A and code generation within the MD domain. We construct a domain-specific data-construction pipeline that yields three high-quality datasets spanning MD knowledge, question answering, and code generation. Based on these datasets, we adopt a three stage post-training strategy--continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning (RL)--to train two domain-adapted models, MD-Instruct and MD-Code. Furthermore, we introduce MD-GRPO, a closed-loop RL method that leverages simulation outcomes as reward signals and recycles low-reward trajectories for continual refinement. We further build MDAgent2-RUNTIME, a deployable multi-agent system that integrates code generation, execution, evaluation, and self-correction. Together with MD-EvalBench proposed in this work, the first benchmark for LAMMPS code generation and question answering, our models and system achieve performance surpassing several strong baselines.This work systematically demonstrates the adaptability and generalization capability of large language models in industrial simulation tasks, laying a methodological foundation for automatic code generation in AI for Science and industrial-scale simulations. URL: https://github.com/FredericVAN/PKU_MDAgent2
comment: 24 pages,4 figures
☆ Higher-Order Action Regularization in Deep Reinforcement Learning: From Continuous Control to Building Energy Management NeurIPS
Deep reinforcement learning agents often exhibit erratic, high-frequency control behaviors that hinder real-world deployment due to excessive energy consumption and mechanical wear. We systematically investigate action smoothness regularization through higher-order derivative penalties, progressing from theoretical understanding in continuous control benchmarks to practical validation in building energy management. Our comprehensive evaluation across four continuous control environments demonstrates that third-order derivative penalties (jerk minimization) consistently achieve superior smoothness while maintaining competitive performance. We extend these findings to HVAC control systems where smooth policies reduce equipment switching by 60%, translating to significant operational benefits. Our work establishes higher-order action regularization as an effective bridge between RL optimization and operational constraints in energy-critical applications.
comment: 6 pages, accepted at NeurIPS workshop 2025
☆ Explore the Ideology of Deep Learning in ENSO Forecasts
The El Ni{~n}o-Southern Oscillation (ENSO) exerts profound influence on global climate variability, yet its prediction remains a grand challenge. Recent advances in deep learning have significantly improved forecasting skill, but the opacity of these models hampers scientific trust and operational deployment. Here, we introduce a mathematically grounded interpretability framework based on bounded variation function. By rescuing the "dead" neurons from the saturation zone of the activation function, we enhance the model's expressive capacity. Our analysis reveals that ENSO predictability emerges dominantly from the tropical Pacific, with contributions from the Indian and Atlantic Oceans, consistent with physical understanding. Controlled experiments affirm the robustness of our method and its alignment with established predictors. Notably, we probe the persistent Spring Predictability Barrier (SPB), finding that despite expanded sensitivity during spring, predictive performance declines-likely due to suboptimal variable selection. These results suggest that incorporating additional ocean-atmosphere variables may help transcend SPB limitations and advance long-range ENSO prediction.
comment: 5 figures. Code available at https://github.com/liuxingguo9349/pptv-enso-env
☆ Multivariate Time-series Anomaly Detection via Dynamic Model Pool & Ensembling
Multivariate time-series (MTS) anomaly detection is critical in domains such as service monitor, IoT, and network security. While multi-model methods based on selection or ensembling outperform single-model ones, they still face limitations: (i) selection methods rely on a single chosen model and are sensitive to the strategy; (ii) ensembling methods often combine all models or are restricted to univariate data; and (iii) most methods depend on fixed data dimensionality, limiting scalability. To address these, we propose DMPEAD, a Dynamic Model Pool and Ensembling framework for MTS Anomaly Detection. The framework first (i) constructs a diverse model pool via parameter transfer and diversity metric, then (ii) updates it with a meta-model and similarity-based strategy for adaptive pool expansion, subset selection, and pool merging, finally (iii) ensembles top-ranked models through proxy metric ranking and top-k aggregation in the selected subset, outputting the final anomaly detection result. Extensive experiments on 8 real-world datasets show that our model outperforms all baselines, demonstrating superior adaptability and scalability.
☆ GDRO: Group-level Reward Post-training Suitable for Diffusion Models
Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
☆ Output Embedding Centering for Stable LLM Pretraining
Pretraining of large language models is not only expensive but also prone to certain training instabilities. A specific instability that often occurs for large learning rates at the end of training is output logit divergence. The most widely used mitigation strategy, z-loss, merely addresses the symptoms rather than the underlying cause of the problem. In this paper, we analyze the instability from the perspective of the output embeddings' geometry and identify its cause. Based on this, we propose output embedding centering (OEC) as a new mitigation strategy, and prove that it suppresses output logit divergence. OEC can be implemented in two different ways, as a deterministic operation called μ-centering, or a regularization method called μ-loss. Our experiments show that both variants outperform z-loss in terms of training stability and learning rate sensitivity. In particular, they ensure that training converges even for large learning rates when z-loss fails. Furthermore, we find that μ-loss is significantly less sensitive to regularization hyperparameter tuning than z-loss.
comment: 11 pages, 5 figures
☆ Prior Diffusiveness and Regret in the Linear-Gaussian Bandit
We prove that Thompson sampling exhibits $\tilde{O}(σd \sqrt{T} + d r \sqrt{\mathrm{Tr}(Σ_0)})$ Bayesian regret in the linear-Gaussian bandit with a $\mathcal{N}(μ_0, Σ_0)$ prior distribution on the coefficients, where $d$ is the dimension, $T$ is the time horizon, $r$ is the maximum $\ell_2$ norm of the actions, and $σ^2$ is the noise variance. In contrast to existing regret bounds, this shows that to within logarithmic factors, the prior-dependent ``burn-in'' term $d r \sqrt{\mathrm{Tr}(Σ_0)}$ decouples additively from the minimax (long run) regret $σd \sqrt{T}$. Previous regret bounds exhibit a multiplicative dependence on these terms. We establish these results via a new ``elliptical potential'' lemma, and also provide a lower bound indicating that the burn-in term is unavoidable.
☆ Enhancing Object Detection with Privileged Information: A Model-Agnostic Teacher-Student Approach
This paper investigates the integration of the Learning Using Privileged Information (LUPI) paradigm in object detection to exploit fine-grained, descriptive information available during training but not at inference. We introduce a general, model-agnostic methodology for injecting privileged information-such as bounding box masks, saliency maps, and depth cues-into deep learning-based object detectors through a teacher-student architecture. Experiments are conducted across five state-of-the-art object detection models and multiple public benchmarks, including UAV-based litter detection datasets and Pascal VOC 2012, to assess the impact on accuracy, generalization, and computational efficiency. Our results demonstrate that LUPI-trained students consistently outperform their baseline counterparts, achieving significant boosts in detection accuracy with no increase in inference complexity or model size. Performance improvements are especially marked for medium and large objects, while ablation studies reveal that intermediate weighting of teacher guidance optimally balances learning from privileged and standard inputs. The findings affirm that the LUPI framework provides an effective and practical strategy for advancing object detection systems in both resource-constrained and real-world settings.
comment: Code available on GitHub: https://github.com/mbar0075/lupi-for-object-detection
☆ SerpentFlow: Generative Unpaired Domain Alignment via Shared-Structure Decomposition
Domain alignment refers broadly to learning correspondences between data distributions from distinct domains. In this work, we focus on a setting where domains share underlying structural patterns despite differences in their specific realizations. The task is particularly challenging in the absence of paired observations, which removes direct supervision across domains. We introduce a generative framework, called SerpentFlow (SharEd-structuRe decomPosition for gEnerative domaiN adapTation), for unpaired domain alignment. SerpentFlow decomposes data within a latent space into a shared component common to both domains and a domain-specific one. By isolating the shared structure and replacing the domain-specific component with stochastic noise, we construct synthetic training pairs between shared representations and target-domain samples, thereby enabling the use of conditional generative models that are traditionally restricted to paired settings. We apply this approach to super-resolution tasks, where the shared component naturally corresponds to low-frequency content while high-frequency details capture domain-specific variability. The cutoff frequency separating low- and high-frequency components is determined automatically using a classifier-based criterion, ensuring a data-driven and domain-adaptive decomposition. By generating pseudo-pairs that preserve low-frequency structures while injecting stochastic high-frequency realizations, we learn the conditional distribution of the target domain given the shared representation. We implement SerpentFlow using Flow Matching as the generative pipeline, although the framework is compatible with other conditional generative approaches. Experiments on synthetic images, physical process simulations, and a climate downscaling task demonstrate that the method effectively reconstructs high-frequency structures consistent with underlying low-frequency patterns, supporting shared-structure decomposition as an effective strategy for unpaired domain alignment.
☆ A Multilayered Approach to Classifying Customer Responsiveness and Credit Risk
This study evaluates the performance of various classifiers in three distinct models: response, risk, and response-risk, concerning credit card mail campaigns and default prediction. In the response model, the Extra Trees classifier demonstrates the highest recall level (79.1%), emphasizing its effectiveness in identifying potential responders to targeted credit card offers. Conversely, in the risk model, the Random Forest classifier exhibits remarkable specificity of 84.1%, crucial for identifying customers least likely to default. Furthermore, in the multi-class response-risk model, the Random Forest classifier achieves the highest accuracy (83.2%), indicating its efficacy in discerning both potential responders to credit card mail campaign and low-risk credit card users. In this study, we optimized various performance metrics to solve a specific credit risk and mail responsiveness business problem.
☆ Refinement Provenance Inference: Detecting LLM-Refined Training Prompts from Model Behavior
Instruction tuning increasingly relies on LLM-based prompt refinement, where prompts in the training corpus are selectively rewritten by an external refiner to improve clarity and instruction alignment. This motivates an instance-level audit problem: for a fine-tuned model and a training prompt-response pair, can we infer whether the model was trained on the original prompt or its LLM-refined version within a mixed corpus? This matters for dataset governance and dispute resolution when training data are contested. However, it is non-trivial in practice: refined and raw instances are interleaved in the training corpus with unknown, source-dependent mixture ratios, making it harder to develop provenance methods that generalize across models and training setups. In this paper, we formalize this audit task as Refinement Provenance Inference (RPI) and show that prompt refinement yields stable, detectable shifts in teacher-forced token distributions, even when semantic differences are not obvious. Building on this phenomenon, we propose RePro, a logit-based provenance framework that fuses teacher-forced likelihood features with logit-ranking signals. During training, RePro learns a transferable representation via shadow fine-tuning, and uses a lightweight linear head to infer provenance on unseen victims without training-data access. Empirically, RePro consistently attains strong performance and transfers well across refiners, suggesting that it exploits refiner-agnostic distribution shifts rather than rewrite-style artifacts.
☆ Forget Less by Learning Together through Concept Consolidation WACV-26
Custom Diffusion Models (CDMs) have gained significant attention due to their remarkable ability to personalize generative processes. However, existing CDMs suffer from catastrophic forgetting when continuously learning new concepts. Most prior works attempt to mitigate this issue under the sequential learning setting with a fixed order of concept inflow and neglect inter-concept interactions. In this paper, we propose a novel framework - Forget Less by Learning Together (FL2T) - that enables concurrent and order-agnostic concept learning while addressing catastrophic forgetting. Specifically, we introduce a set-invariant inter-concept learning module where proxies guide feature selection across concepts, facilitating improved knowledge retention and transfer. By leveraging inter-concept guidance, our approach preserves old concepts while efficiently incorporating new ones. Extensive experiments, across three datasets, demonstrates that our method significantly improves concept retention and mitigates catastrophic forgetting, highlighting the effectiveness of inter-concept catalytic behavior in incremental concept learning of ten tasks with at least 2% gain on average CLIP Image Alignment scores.
comment: Accepted at WACV-26
☆ SynRXN: An Open Benchmark and Curated Dataset for Computational Reaction Modeling
We present SynRXN, a unified benchmarking framework and open-data resource for computer-aided synthesis planning (CASP). SynRXN decomposes end-to-end synthesis planning into five task families, covering reaction rebalancing, atom-to-atom mapping, reaction classification, reaction property prediction, and synthesis route design. Curated, provenance-tracked reaction corpora are assembled from heterogeneous public sources into a harmonized representation and packaged as versioned datasets for each task family, with explicit source metadata, licence tags, and machine-readable manifests that record checksums, and row counts. For every task, SynRXN provides transparent splitting functions that generate leakage-aware train, validation, and test partitions, together with standardized evaluation workflows and metric suites tailored to classification, regression, and structured prediction settings. For sensitive benchmarking, we combine public training and validation data with held-out gold-standard test sets, and contamination-prone tasks such as reaction rebalancing and atom-to-atom mapping are distributed only as evaluation sets and are explicitly not intended for model training. Scripted build recipes enable bitwise-reproducible regeneration of all corpora across machines and over time, and the entire resource is released under permissive open licences to support reuse and extension. By removing dataset heterogeneity and packaging transparent, reusable evaluation scaffolding, SynRXN enables fair longitudinal comparison of CASP methods, supports rigorous ablations and stress tests along the full reaction-informatics pipeline, and lowers the barrier for practitioners who seek robust and comparable performance estimates for real-world synthesis planning workloads.
comment: 31 pages (including references), 3 figures, 7 tables
☆ DéjàQ: Open-Ended Evolution of Diverse, Learnable and Verifiable Problems
Recent advances in reasoning models have yielded impressive results in mathematics and coding. However, most approaches rely on static datasets, which have been suggested to encourage memorisation and limit generalisation. We introduce DéjàQ, a framework that departs from this paradigm by jointly evolving a diverse set of synthetic mathematical problems alongside model training. This evolutionary process adapts to the model's ability throughout training, optimising problems for learnability. We propose two LLM-driven mutation strategies in which the model itself mutates the training data, either by altering contextual details or by directly modifying problem structure. We find that the model can generate novel and meaningful problems, and that these LLM-driven mutations improve RL training. We analyse key aspects of DéjàQ, including the validity of generated problems and computational overhead. Our results underscore the potential of dynamically evolving training data to enhance mathematical reasoning and indicate broader applicability, which we will support by open-sourcing our code.
☆ Theoretical Convergence of SMOTE-Generated Samples
Imbalanced data affects a wide range of machine learning applications, from healthcare to network security. As SMOTE is one of the most popular approaches to addressing this issue, it is imperative to validate it not only empirically but also theoretically. In this paper, we provide a rigorous theoretical analysis of SMOTE's convergence properties. Concretely, we prove that the synthetic random variable Z converges in probability to the underlying random variable X. We further prove a stronger convergence in mean when X is compact. Finally, we show that lower values of the nearest neighbor rank lead to faster convergence offering actionable guidance to practitioners. The theoretical results are supported by numerical experiments using both real-life and synthetic data. Our work provides a foundational understanding that enhances data augmentation techniques beyond imbalanced data scenarios.
☆ Efficient temporal prediction of compressible flows in irregular domains using Fourier neural operators
This paper investigates the temporal evolution of high-speed compressible fluids in irregular flow fields using the Fourier Neural Operator (FNO). We reconstruct the irregular flow field point set into sequential format compatible with FNO input requirements, and then embed temporal bundling technique within a recurrent neural network (RNN) for multi-step prediction. We further employ a composite loss function to balance errors across different physical quantities. Experiments are conducted on three different types of irregular flow fields, including orthogonal and non-orthogonal grid configurations. Then we comprehensively analyze the physical component loss curves, flow field visualizations, and physical profiles. Results demonstrate that our approach significantly surpasses traditional numerical methods in computational efficiency while achieving high accuracy, with maximum relative $L_2$ errors of (0.78, 0.57, 0.35)% for ($p$, $T$, $\mathbf{u}$) respectively. This verifies that the method can efficiently and accurately simulate the temporal evolution of high-speed compressible flows in irregular domains.
comment: 18 pages, 15 figures
☆ A Defect is Being Born: How Close Are We? A Time Sensitive Forecasting Approach
Background. Defect prediction has been a highly active topic among researchers in the Empirical Software Engineering field. Previous literature has successfully achieved the most accurate prediction of an incoming fault and identified the features and anomalies that precede it through just-in-time prediction. As software systems evolve continuously, there is a growing need for time-sensitive methods capable of forecasting defects before they manifest. Aim. Our study seeks to explore the effectiveness of time-sensitive techniques for defect forecasting. Moreover, we aim to investigate the early indicators that precede the occurrence of a defect. Method. We will train multiple time-sensitive forecasting techniques to forecast the future bug density of a software project, as well as identify the early symptoms preceding the occurrence of a defect. Expected results. Our expected results are translated into empirical evidence on the effectiveness of our approach for early estimation of bug proneness.
comment: ACCEPTED REGISTERED REPORT AT SANER (CORE A*) 2026
☆ Distorted Distributional Policy Evaluation for Offline Reinforcement Learning ICONIP2025
While Distributional Reinforcement Learning (DRL) methods have demonstrated strong performance in online settings, its success in offline scenarios remains limited. We hypothesize that a key limitation of existing offline DRL methods lies in their approach to uniformly underestimate return quantiles. This uniform pessimism can lead to overly conservative value estimates, ultimately hindering generalization and performance. To address this, we introduce a novel concept called quantile distortion, which enables non-uniform pessimism by adjusting the degree of conservatism based on the availability of supporting data. Our approach is grounded in theoretical analysis and empirically validated, demonstrating improved performance over uniform pessimism.
comment: The preprint version of the paper accepted to ICONIP2025. The Version of Record is available online at https://link.springer.com/chapter/10.1007/978-981-95-4091-4_35
☆ Evaluating Feature Dependent Noise in Preference-based Reinforcement Learning
Learning from Preferences in Reinforcement Learning (PbRL) has gained attention recently, as it serves as a natural fit for complicated tasks where the reward function is not easily available. However, preferences often come with uncertainty and noise if they are not from perfect teachers. Much prior literature aimed to detect noise, but with limited types of noise and most being uniformly distributed with no connection to observations. In this work, we formalize the notion of targeted feature-dependent noise and propose several variants like trajectory feature noise, trajectory similarity noise, uncertainty-aware noise, and Language Model noise. We evaluate feature-dependent noise, where noise is correlated with certain features in complex continuous control tasks from DMControl and Meta-world. Our experiments show that in some feature-dependent noise settings, the state-of-the-art noise-robust PbRL method's learning performance is significantly deteriorated, while PbRL method with no explicit denoising can surprisingly outperform noise-robust PbRL in majority settings. We also find language model's noise exhibits similar characteristics to feature-dependent noise, thereby simulating realistic humans and call for further study in learning with feature-dependent noise robustly.
☆ TT-FSI: Scalable Faithful Shapley Interactions via Tensor-Train
The Faithful Shapley Interaction (FSI) index uniquely satisfies the faithfulness axiom among Shapley interaction indices, but computing FSI requires $O(d^\ell \cdot 2^d)$ time and existing implementations use $O(4^d)$ memory. We present TT-FSI, which exploits FSI's algebraic structure via Matrix Product Operators (MPO). Our main theoretical contribution is proving that the linear operator $v \mapsto \text{FSI}(v)$ admits an MPO representation with TT-rank $O(\ell d)$, enabling an efficient sweep algorithm with $O(\ell^2 d^3 \cdot 2^d)$ time and $O(\ell d^2)$ core storage an exponential improvement over existing methods. Experiments on six datasets ($d=8$ to $d=20$) demonstrate up to 280$\times$ speedup over baseline, 85$\times$ over SHAP-IQ, and 290$\times$ memory reduction. TT-FSI scales to $d=20$ (1M coalitions) where all competing methods fail.
☆ FedBiCross: A Bi-Level Optimization Framework to Tackle Non-IID Challenges in Data-Free One-Shot Federated Learning on Medical Data
Data-free knowledge distillation-based one-shot federated learning (OSFL) trains a model in a single communication round without sharing raw data, making OSFL attractive for privacy-sensitive medical applications. However, existing methods aggregate predictions from all clients to form a global teacher. Under non-IID data, conflicting predictions cancel out during averaging, yielding near-uniform soft labels that provide weak supervision for distillation. We propose FedBiCross, a personalized OSFL framework with three stages: (1) clustering clients by model output similarity to form coherent sub-ensembles, (2) bi-level cross-cluster optimization that learns adaptive weights to selectively leverage beneficial cross-cluster knowledge while suppressing negative transfer, and (3) personalized distillation for client-specific adaptation. Experiments on four medical image datasets demonstrate that FedBiCross consistently outperforms state-of-the-art baselines across different non-IID degrees.
☆ Forget Less by Learning from Parents Through Hierarchical Relationships AAAI-26
Custom Diffusion Models (CDMs) offer impressive capabilities for personalization in generative modeling, yet they remain vulnerable to catastrophic forgetting when learning new concepts sequentially. Existing approaches primarily focus on minimizing interference between concepts, often neglecting the potential for positive inter-concept interactions. In this work, we present Forget Less by Learning from Parents (FLLP), a novel framework that introduces a parent-child inter-concept learning mechanism in hyperbolic space to mitigate forgetting. By embedding concept representations within a Lorentzian manifold, naturally suited to modeling tree-like hierarchies, we define parent-child relationships in which previously learned concepts serve as guidance for adapting to new ones. Our method not only preserves prior knowledge but also supports continual integration of new concepts. We validate FLLP on three public datasets and one synthetic benchmark, showing consistent improvements in both robustness and generalization.
comment: Accepted at AAAI-26
☆ SafeLoad: Efficient Admission Control Framework for Identifying Memory-Overloading Queries in Cloud Data Warehouses VLDB 2026
Memory overload is a common form of resource exhaustion in cloud data warehouses. When database queries fail due to memory overload, it not only wastes critical resources such as CPU time but also disrupts the execution of core business processes, as memory-overloading (MO) queries are typically part of complex workflows. If such queries are identified in advance and scheduled to memory-rich serverless clusters, it can prevent resource wastage and query execution failure. Therefore, cloud data warehouses desire an admission control framework with high prediction precision, interpretability, efficiency, and adaptability to effectively identify MO queries. However, existing admission control frameworks primarily focus on scenarios like SLA satisfaction and resource isolation, with limited precision in identifying MO queries. Moreover, there is a lack of publicly available MO-labeled datasets with workloads for training and benchmarking. To tackle these challenges, we propose SafeLoad, the first query admission control framework specifically designed to identify MO queries. Alongside, we release SafeBench, an open-source, industrial-scale benchmark for this task, which includes 150 million real queries. SafeLoad first filters out memory-safe queries using the interpretable discriminative rule. It then applies a hybrid architecture that integrates both a global model and cluster-level models, supplemented by a misprediction correction module to identify MO queries. Additionally, a self-tuning quota management mechanism dynamically adjusts prediction quotas per cluster to improve precision. Experimental results show that SafeLoad achieves state-of-the-art prediction performance with low online and offline time overhead. Specifically, SafeLoad improves precision by up to 66% over the best baseline and reduces wasted CPU time by up to 8.09x compared to scenarios without SafeLoad.
comment: This paper has been accepted for presentation at VLDB 2026
☆ Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance
Fine-tuning safety-aligned large language models (LLMs) can substantially compromise their safety. Previous approaches require many safety samples or calibration sets, which not only incur significant computational overhead during realignment but also lead to noticeable degradation in model utility. Contrary to this belief, we show that safety alignment can be fully recovered with only a single safety example, without sacrificing utility and at minimal cost. Remarkably, this recovery is effective regardless of the number of harmful examples used in fine-tuning or the size of the underlying model, and convergence is achieved within just a few epochs. Furthermore, we uncover the low-rank structure of the safety gradient, which explains why such efficient correction is possible. We validate our findings across five safety-aligned LLMs and multiple datasets, demonstrating the generality of our approach.
☆ Random-Matrix-Induced Simplicity Bias in Over-parameterized Variational Quantum Circuits
Over-parameterization is commonly used to increase the expressivity of variational quantum circuits (VQCs), yet deeper and more highly parameterized circuits often exhibit poor trainability and limited generalization. In this work, we provide a theoretical explanation for this phenomenon from a function-class perspective. We show that sufficiently expressive, unstructured variational ansatze enter a Haar-like universality class in which both observable expectation values and parameter gradients concentrate exponentially with system size. As a consequence, the hypothesis class induced by such circuits collapses with high probability to a narrow family of near-constant functions, a phenomenon we term simplicity bias, with barren plateaus arising as a consequence rather than the root cause. Using tools from random matrix theory and concentration of measure, we rigorously characterize this universality class and establish uniform hypothesis-class collapse over finite datasets. We further show that this collapse is not unavoidable: tensor-structured VQCs, including tensor-network-based and tensor-hypernetwork parameterizations, lie outside the Haar-like universality class. By restricting the accessible unitary ensemble through bounded tensor rank or bond dimension, these architectures prevent concentration of measure, preserve output variability for local observables, and retain non-degenerate gradient signals even in over-parameterized regimes. Together, our results unify barren plateaus, expressivity limits, and generalization collapse under a single structural mechanism rooted in random-matrix universality, highlighting the central role of architectural inductive bias in variational quantum algorithms.
comment: 20 pages, 4 figures
☆ High-Order Epistasis Detection Using Factorization Machine with Quadratic Optimization Annealing and MDR-Based Evaluation
Detecting high-order epistasis is a fundamental challenge in genetic association studies due to the combinatorial explosion of candidate locus combinations. Although multifactor dimensionality reduction (MDR) is a widely used method for evaluating epistasis, exhaustive MDR-based searches become computationally infeasible as the number of loci or the interaction order increases. In this paper, we define the epistasis detection problem as a black-box optimization problem and solve it with a factorization machine with quadratic optimization annealing (FMQA). We propose an efficient epistasis detection method based on FMQA, in which the classification error rate (CER) computed by MDR is used as a black-box objective function. Experimental evaluations were conducted using simulated case-control datasets with predefined high-order epistasis. The results demonstrate that the proposed method successfully identified ground-truth epistasis across various interaction orders and the numbers of genetic loci within a limited number of iterations. These results indicate that the proposed method is effective and computationally efficient for high-order epistasis detection.
comment: 6 pages, 2 figures
☆ MORE: Multi-Objective Adversarial Attacks on Speech Recognition
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
comment: 19 pages
☆ Tackling Resource-Constrained and Data-Heterogeneity in Federated Learning with Double-Weight Sparse Pack AAAI 2026
Federated learning has drawn widespread interest from researchers, yet the data heterogeneity across edge clients remains a key challenge, often degrading model performance. Existing methods enhance model compatibility with data heterogeneity by splitting models and knowledge distillation. However, they neglect the insufficient communication bandwidth and computing power on the client, failing to strike an effective balance between addressing data heterogeneity and accommodating limited client resources. To tackle this limitation, we propose a personalized federated learning method based on cosine sparsification parameter packing and dual-weighted aggregation (FedCSPACK), which effectively leverages the limited client resources and reduces the impact of data heterogeneity on model performance. In FedCSPACK, the client packages model parameters and selects the most contributing parameter packages for sharing based on cosine similarity, effectively reducing bandwidth requirements. The client then generates a mask matrix anchored to the shared parameter package to improve the alignment and aggregation efficiency of sparse updates on the server. Furthermore, directional and distribution distance weights are embedded in the mask to implement a weighted-guided aggregation mechanism, enhancing the robustness and generalization performance of the global model. Extensive experiments across four datasets using ten state-of-the-art methods demonstrate that FedCSPACK effectively improves communication and computational efficiency while maintaining high model accuracy.
comment: Accepted in AAAI 2026
☆ FAROS: Robust Federated Learning with Adaptive Scaling against Backdoor Attacks
Federated Learning (FL) enables multiple clients to collaboratively train a shared model without exposing local data. However, backdoor attacks pose a significant threat to FL. These attacks aim to implant a stealthy trigger into the global model, causing it to mislead on inputs that possess a specific trigger while functioning normally on benign data. Although pre-aggregation detection is a main defense direction, existing state-of-the-art defenses often rely on fixed defense parameters. This reliance makes them vulnerable to single-point-of-failure risks, rendering them less effective against sophisticated attackers. To address these limitations, we propose FAROS, an enhanced FL framework that incorporates Adaptive Differential Scaling (ADS) and Robust Core-set Computing (RCC). The ADS mechanism adjusts the defense's sensitivity dynamically, based on the dispersion of uploaded gradients by clients in each round. This allows it to counter attackers who strategically shift between stealthiness and effectiveness. Furthermore, the RCC effectively mitigates the risk of single-point failure by computing the centroid of a core set comprising clients with the highest confidence. We conducted extensive experiments across various datasets, models, and attack scenarios. The results demonstrate that our method outperforms current defenses in both attack success rate and main task accuracy.
☆ RealPDEBench: A Benchmark for Complex Physical Systems with Real-World Data
Predicting the evolution of complex physical systems remains a central problem in science and engineering. Despite rapid progress in scientific Machine Learning (ML) models, a critical bottleneck is the lack of expensive real-world data, resulting in most current models being trained and validated on simulated data. Beyond limiting the development and evaluation of scientific ML, this gap also hinders research into essential tasks such as sim-to-real transfer. We introduce RealPDEBench, the first benchmark for scientific ML that integrates real-world measurements with paired numerical simulations. RealPDEBench consists of five datasets, three tasks, eight metrics, and ten baselines. We first present five real-world measured datasets with paired simulated datasets across different complex physical systems. We further define three tasks, which allow comparisons between real-world and simulated data, and facilitate the development of methods to bridge the two. Moreover, we design eight evaluation metrics, spanning data-oriented and physics-oriented metrics, and finally benchmark ten representative baselines, including state-of-the-art models, pretrained PDE foundation models, and a traditional method. Experiments reveal significant discrepancies between simulated and real-world data, while showing that pretraining with simulated data consistently improves both accuracy and convergence. In this work, we hope to provide insights from real-world data, advancing scientific ML toward bridging the sim-to-real gap and real-world deployment. Our benchmark, datasets, and instructions are available at https://realpdebench.github.io/.
comment: 46 pages, 21 figures
☆ Aspect Extraction from E-Commerce Product and Service Reviews
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
☆ Moments Matter:Stabilizing Policy Optimization using Return Distributions
Deep Reinforcement Learning (RL) agents often learn policies that achieve the same episodic return yet behave very differently, due to a combination of environmental (random transitions, initial conditions, reward noise) and algorithmic (minibatch selection, exploration noise) factors. In continuous control tasks, even small parameter shifts can produce unstable gaits, complicating both algorithm comparison and real-world transfer. Previous work has shown that such instability arises when policy updates traverse noisy neighborhoods and that the spread of post-update return distribution $R(θ)$, obtained by repeatedly sampling minibatches, updating $θ$, and measuring final returns, is a useful indicator of this noise. Although explicitly constraining the policy to maintain a narrow $R(θ)$ can improve stability, directly estimating $R(θ)$ is computationally expensive in high-dimensional settings. We propose an alternative that takes advantage of environmental stochasticity to mitigate update-induced variability. Specifically, we model state-action return distribution through a distributional critic and then bias the advantage function of PPO using higher-order moments (skewness and kurtosis) of this distribution. By penalizing extreme tail behaviors, our method discourages policies from entering parameter regimes prone to instability. We hypothesize that in environments where post-update critic values align poorly with post-update returns, standard PPO struggles to produce a narrow $R(θ)$. In such cases, our moment-based correction narrows $R(θ)$, improving stability by up to 75% in Walker2D, while preserving comparable evaluation returns.
comment: Workshop paper at RLDM'25
☆ Sparse Threats, Focused Defense: Criticality-Aware Robust Reinforcement Learning for Safe Autonomous Driving
Reinforcement learning (RL) has shown considerable potential in autonomous driving (AD), yet its vulnerability to perturbations remains a critical barrier to real-world deployment. As a primary countermeasure, adversarial training improves policy robustness by training the AD agent in the presence of an adversary that deliberately introduces perturbations. Existing approaches typically model the interaction as a zero-sum game with continuous attacks. However, such designs overlook the inherent asymmetry between the agent and the adversary and then fail to reflect the sparsity of safety-critical risks, rendering the achieved robustness inadequate for practical AD scenarios. To address these limitations, we introduce criticality-aware robust RL (CARRL), a novel adversarial training approach for handling sparse, safety-critical risks in autonomous driving. CARRL consists of two interacting components: a risk exposure adversary (REA) and a risk-targeted robust agent (RTRA). We model the interaction between the REA and RTRA as a general-sum game, allowing the REA to focus on exposing safety-critical failures (e.g., collisions) while the RTRA learns to balance safety with driving efficiency. The REA employs a decoupled optimization mechanism to better identify and exploit sparse safety-critical moments under a constrained budget. However, such focused attacks inevitably result in a scarcity of adversarial data. The RTRA copes with this scarcity by jointly leveraging benign and adversarial experiences via a dual replay buffer and enforces policy consistency under perturbations to stabilize behavior. Experimental results demonstrate that our approach reduces the collision rate by at least 22.66\% across all cases compared to state-of-the-art baseline methods.
☆ Distributed Federated Learning by Alternating Periods of Training
Federated learning is a privacy-focused approach towards machine learning where models are trained on client devices with locally available data and aggregated at a central server. However, the dependence on a single central server is challenging in the case of a large number of clients and even poses the risk of a single point of failure. To address these critical limitations of scalability and fault-tolerance, we present a distributed approach to federated learning comprising multiple servers with inter-server communication capabilities. While providing a fully decentralized approach, the designed framework retains the core federated learning structure where each server is associated with a disjoint set of clients with server-client communication capabilities. We propose a novel DFL (Distributed Federated Learning) algorithm which uses alternating periods of local training on the client data followed by global training among servers. We show that the DFL algorithm, under a suitable choice of parameters, ensures that all the servers converge to a common model value within a small tolerance of the ideal model, thus exhibiting effective integration of local and global training models. Finally, we illustrate our theoretical claims through numerical simulations.
☆ HyperCLOVA X 8B Omni
In this report, we present HyperCLOVA X 8B Omni, the first any-to-any omnimodal model in the HyperCLOVA X family that supports text, audio, and vision as both inputs and outputs. By consolidating multimodal understanding and generation into a single model rather than separate modality-specific pipelines, HyperCLOVA X 8B Omni serves as an 8B-scale omni-pathfinding point toward practical any-to-any omni assistants. At a high level, the model unifies modalities through a shared next-token prediction interface over an interleaved multimodal sequence, while vision and audio encoders inject continuous embeddings for fine-grained understanding and grounding. Empirical evaluations demonstrate competitive performance against comparably sized models across diverse input-output combinations spanning text, audio, and vision, in both Korean and English. We anticipate that the open-weight release of HyperCLOVA X 8B Omni will support a wide range of research and deployment scenarios.
comment: Technical Report
☆ UnPII: Unlearning Personally Identifiable Information with Quantifiable Exposure Risk ICSE
The ever-increasing adoption of Large Language Models in critical sectors like finance, healthcare, and government raises privacy concerns regarding the handling of sensitive Personally Identifiable Information (PII) during training. In response, regulations such as European Union's General Data Protection Regulation (GDPR) mandate the deletion of PII upon requests, underscoring the need for reliable and cost-effective data removal solutions. Machine unlearning has emerged as a promising direction for selectively forgetting data points. However, existing unlearning techniques typically apply a uniform forgetting strategy that neither accounts for the varying privacy risks posed by different PII attributes nor reflects associated business risks. In this work, we propose UnPII, the first PII-centric unlearning approach that prioritizes forgetting based on the risk of individual or combined PII attributes. To this end, we introduce the PII risk index (PRI), a composite metric that incorporates multiple dimensions of risk factors: identifiability, sensitivity, usability, linkability, permanency, exposability, and compliancy. The PRI enables a nuanced evaluation of privacy risks associated with PII exposures and can be tailored to align with organizational privacy policies. To support realistic assessment, we systematically construct a synthetic PII dataset (e.g., 1,700 PII instances) that simulates realistic exposure scenarios. UnPII seamlessly integrates with established unlearning algorithms, such as Gradient Ascent, Negative Preference Optimization, and Direct Preference Optimization, without modifying their underlying principles. Our experimental results demonstrate that UnPII achieves the improvements of accuracy up to 11.8%, utility up to 6.3%, and generalizability up to 12.4%, respectively, while incurring a modest fine-tuning overhead of 27.5% on average during unlearning.
comment: 11 pages, 7 Tables, 6 Figures To appear in the Software Engineering in Practice (SEIP) track of ICSE
☆ SRAS: A Lightweight Reinforcement Learning-based Document Selector for Edge-Native RAG Pipelines
Retrieval-Augmented Generation (RAG) systems often rely on fixed top-k document selection mechanisms that ignore downstream generation quality and impose computational overheads. We propose SRAS (Sparse Reward-Aware Selector), a lightweight document selector trained via reinforcement learning (RL) for edge-native RAG deployment. Unlike prior RL-based retrievers that assume large memory and latency budgets, SRAS learns a compact (~0.76MB) policy using Proximal Policy Optimization (PPO), guided by a hybrid reward signal combining Relaxed F1 and BERTScore. Our method operates under tight token and compute constraints, maintaining <1s latency on CPU. SRAS outperforms supervised and random selectors on a synthetic QA benchmark, and generalizes to real-world data, achieving BERTScore F1 of 0.8546 on SQuAD v2 without domain-specific tuning. This work is the first to demonstrate that RL-based document selection can be made ultra-lightweight, latency-aware, and effective for on-device RAG pipelines.
comment: Presented at ICEdge 2025; nominated for Best Paper Award
☆ Subimage Overlap Prediction: Task-Aligned Self-Supervised Pretraining For Semantic Segmentation In Remote Sensing Imagery WACV 2026
Self-supervised learning (SSL) methods have become a dominant paradigm for creating general purpose models whose capabilities can be transferred to downstream supervised learning tasks. However, most such methods rely on vast amounts of pretraining data. This work introduces Subimage Overlap Prediction, a novel self-supervised pretraining task to aid semantic segmentation in remote sensing imagery that uses significantly lesser pretraining imagery. Given an image, a sub-image is extracted and the model is trained to produce a semantic mask of the location of the extracted sub-image within the original image. We demonstrate that pretraining with this task results in significantly faster convergence, and equal or better performance (measured via mIoU) on downstream segmentation. This gap in convergence and performance widens when labeled training data is reduced. We show this across multiple architecture types, and with multiple downstream datasets. We also show that our method matches or exceeds performance while requiring significantly lesser pretraining data relative to other SSL methods. Code and model weights are provided at \href{https://github.com/sharmalakshay93/subimage-overlap-prediction}{github.com/sharmalakshay93/subimage-overlap-prediction}.
comment: Accepted at CV4EO Workshop at WACV 2026
☆ Machine learning modularity
Based on a transformer based sequence-to-sequence architecture combined with a dynamic batching algorithm, this work introduces a machine learning framework for automatically simplifying complex expressions involving multiple elliptic Gamma functions, including the $q$-$θ$ function and the elliptic Gamma function. The model learns to apply algebraic identities, particularly the SL$(2,\mathbb{Z})$ and SL$(3,\mathbb{Z})$ modular transformations, to reduce heavily scrambled expressions to their canonical forms. Experimental results show that the model achieves over 99\% accuracy on in-distribution tests and maintains robust performance (exceeding 90\% accuracy) under significant extrapolation, such as with deeper scrambling depths. This demonstrates that the model has internalized the underlying algebraic rules of modular transformations rather than merely memorizing training patterns. Our work presents the first successful application of machine learning to perform symbolic simplification using modular identities, offering a new automated tool for computations with special functions in quantum field theory and the string theory.
comment: 34 pages, 7 figures, 6 tables
☆ Sparse Convex Biclustering
Biclustering is an essential unsupervised machine learning technique for simultaneously clustering rows and columns of a data matrix, with widespread applications in genomics, transcriptomics, and other high-dimensional omics data. Despite its importance, existing biclustering methods struggle to meet the demands of modern large-scale datasets. The challenges stem from the accumulation of noise in high-dimensional features, the limitations of non-convex optimization formulations, and the computational complexity of identifying meaningful biclusters. These issues often result in reduced accuracy and stability as the size of the dataset increases. To overcome these challenges, we propose Sparse Convex Biclustering (SpaCoBi), a novel method that penalizes noise during the biclustering process to improve both accuracy and robustness. By adopting a convex optimization framework and introducing a stability-based tuning criterion, SpaCoBi achieves an optimal balance between cluster fidelity and sparsity. Comprehensive numerical studies, including simulations and an application to mouse olfactory bulb data, demonstrate that SpaCoBi significantly outperforms state-of-the-art methods in accuracy. These results highlight SpaCoBi as a robust and efficient solution for biclustering in high-dimensional and large-scale datasets.
☆ Context-Free Recognition with Transformers
Transformers excel on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs (Merrill et al., 2022). Merrill & Sabharwal (2024) show that $\mathcal{O}(\log n)$ looping layers (w.r.t. input length $n$) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log n)$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
☆ Crafting Adversarial Inputs for Large Vision-Language Models Using Black-Box Optimization EACL
Recent advancements in Large Vision-Language Models (LVLMs) have shown groundbreaking capabilities across diverse multimodal tasks. However, these models remain vulnerable to adversarial jailbreak attacks, where adversaries craft subtle perturbations to bypass safety mechanisms and trigger harmful outputs. Existing white-box attacks methods require full model accessibility, suffer from computing costs and exhibit insufficient adversarial transferability, making them impractical for real-world, black-box settings. To address these limitations, we propose a black-box jailbreak attack on LVLMs via Zeroth-Order optimization using Simultaneous Perturbation Stochastic Approximation (ZO-SPSA). ZO-SPSA provides three key advantages: (i) gradient-free approximation by input-output interactions without requiring model knowledge, (ii) model-agnostic optimization without the surrogate model and (iii) lower resource requirements with reduced GPU memory consumption. We evaluate ZO-SPSA on three LVLMs, including InstructBLIP, LLaVA and MiniGPT-4, achieving the highest jailbreak success rate of 83.0% on InstructBLIP, while maintaining imperceptible perturbations comparable to white-box methods. Moreover, adversarial examples generated from MiniGPT-4 exhibit strong transferability to other LVLMs, with ASR reaching 64.18%. These findings underscore the real-world feasibility of black-box jailbreaks and expose critical weaknesses in the safety mechanisms of current LVLMs
comment: EACL
☆ Latent Space Element Method
How can we build surrogate solvers that train on small domains but scale to larger ones without intrusive access to PDE operators? Inspired by the Data-Driven Finite Element Method (DD-FEM) framework for modular data-driven solvers, we propose the Latent Space Element Method (LSEM), an element-based latent surrogate assembly approach in which a learned subdomain ("element") model can be tiled and coupled to form a larger computational domain. Each element is a LaSDI latent ODE surrogate trained from snapshots on a local patch, and neighboring elements are coupled through learned directional interaction terms in latent space, avoiding Schwarz iterations and interface residual evaluations. A smooth window-based blending reconstructs a global field from overlapping element predictions, yielding a scalable assembled latent dynamical system. Experiments on the 1D Burgers and Korteweg-de Vries equations show that LSEM maintains predictive accuracy while scaling to spatial domains larger than those seen in training. LSEM offers an interpretable and extensible route toward foundation-model surrogate solvers built from reusable local models.
comment: 17 pages, 10 figures
☆ Entropy-Aligned Decoding of LMs for Better Writing and Reasoning
Language models (LMs) are trained on billions of tokens in an attempt to recover the true language distribution. Still, vanilla random sampling from LMs yields low quality generations. Decoding algorithms attempt to restrict the LM distribution to a set of high-probability continuations, but rely on greedy heuristics that introduce myopic distortions, yielding sentences that are homogeneous, repetitive and incoherent. In this paper, we introduce EPIC, a hyperparameter-free decoding approach that incorporates the entropy of future trajectories into LM decoding. EPIC explicitly regulates the amount of uncertainty expressed at every step of generation, aligning the sampling distribution's entropy to the aleatoric (data) uncertainty. Through Entropy-Aware Lazy Gumbel-Max sampling, EPIC manages to be exact, while also being efficient, requiring only a sublinear number of entropy evaluations per step. Unlike current baselines, EPIC yields sampling distributions that are empirically well-aligned with the entropy of the underlying data distribution. Across creative writing and summarization tasks, EPIC consistently improves LM-as-judge preference win-rates over widely used decoding strategies. These preference gains are complemented by automatic metrics, showing that EPIC produces more diverse generations and more faithful summaries. We also evaluate EPIC on mathematical reasoning, where it outperforms all baselines.
☆ RelayGR: Scaling Long-Sequence Generative Recommendation via Cross-Stage Relay-Race Inference
Real-time recommender systems execute multi-stage cascades (retrieval, pre-processing, fine-grained ranking) under strict tail-latency SLOs, leaving only tens of milliseconds for ranking. Generative recommendation (GR) models can improve quality by consuming long user-behavior sequences, but in production their online sequence length is tightly capped by the ranking-stage P99 budget. We observe that the majority of GR tokens encode user behaviors that are independent of the item candidates, suggesting an opportunity to pre-infer a user-behavior prefix once and reuse it during ranking rather than recomputing it on the critical path. Realizing this idea at industrial scale is non-trivial: the prefix cache must survive across multiple pipeline stages before the final ranking instance is determined, the user population implies cache footprints far beyond a single device, and indiscriminate pre-inference would overload shared resources under high QPS. We present RelayGR, a production system that enables in-HBM relay-race inference for GR. RelayGR selectively pre-infers long-term user prefixes, keeps their KV caches resident in HBM over the request lifecycle, and ensures the subsequent ranking can consume them without remote fetches. RelayGR combines three techniques: 1) a sequence-aware trigger that admits only at-risk requests under a bounded cache footprint and pre-inference load, 2) an affinity-aware router that co-locates cache production and consumption by routing both the auxiliary pre-infer signal and the ranking request to the same instance, and 3) a memory-aware expander that uses server-local DRAM to capture short-term cross-request reuse while avoiding redundant reloads. We implement RelayGR on Huawei Ascend NPUs and evaluate it with real queries. Under a fixed P99 SLO, RelayGR supports up to 1.5$\times$ longer sequences and improves SLO-compliant throughput by up to 3.6$\times$.
☆ Reinforcement Learning for Option Hedging: Static Implied-Volatility Fit versus Shortfall-Aware Performance
We extend the Q-learner in Black-Scholes (QLBS) framework by incorporating risk aversion and trading costs, and propose a novel Replication Learning of Option Pricing (RLOP) approach. Both methods are fully compatible with standard reinforcement learning algorithms and operate under market frictions. Using SPY and XOP option data, we evaluate performance along static and dynamic dimensions. Adaptive-QLBS achieves higher static pricing accuracy in implied volatility space, while RLOP delivers superior dynamic hedging performance by reducing shortfall probability. These results highlight the importance of evaluating option pricing models beyond static fit, emphasizing realized hedging outcomes.
☆ Digital Twin-Driven Communication-Efficient Federated Anomaly Detection for Industrial IoT
Anomaly detection is increasingly becoming crucial for maintaining the safety, reliability, and efficiency of industrial systems. Recently, with the advent of digital twins and data-driven decision-making, several statistical and machine-learning methods have been proposed. However, these methods face several challenges, such as dependence on only real sensor datasets, limited labeled data, high false alarm rates, and privacy concerns. To address these problems, we propose a suite of digital twin-integrated federated learning (DTFL) methods that enhance global model performance while preserving data privacy and communication efficiency. Specifically, we present five novel approaches: Digital Twin-Based Meta-Learning (DTML), Federated Parameter Fusion (FPF), Layer-wise Parameter Exchange (LPE), Cyclic Weight Adaptation (CWA), and Digital Twin Knowledge Distillation (DTKD). Each method introduces a unique mechanism to combine synthetic and real-world knowledge, balancing generalization with communication overhead. We conduct an extensive experiment using a publicly available cyber-physical anomaly detection dataset. For a target accuracy of 80%, CWA reaches the target in 33 rounds, FPF in 41 rounds, LPE in 48 rounds, and DTML in 87 rounds, whereas the standard FedAvg baseline and DTKD do not reach the target within 100 rounds. These results highlight substantial communication-efficiency gains (up to 62% fewer rounds than DTML and 31% fewer than LPE) and demonstrate that integrating DT knowledge into FL accelerates convergence to operationally meaningful accuracy thresholds for IIoT anomaly detection.
☆ Hidden costs for inference with deep network on embedded system devices IEEE
This study evaluates the inference performance of various deep learning models under an embedded system environment. In previous works, Multiply-Accumulate operation is typically used to measure computational load of a deep model. According to this study, however, this metric has a limitation to estimate inference time on embedded devices. This paper poses the question of what aspects are overlooked when expressed in terms of Multiply-Accumulate operations. In experiments, an image classification task is performed on an embedded system device using the CIFAR-100 dataset to compare and analyze the inference times of ten deep models with the theoretically calculated Multiply-Accumulate operations for each model. The results highlight the importance of considering additional computations between tensors when optimizing deep learning models for real-time performing in embedded systems.
comment: published in Proc. of IEEE ICCE 2025
☆ SWaRL: Safeguard Code Watermarking via Reinforcement Learning
We present SWaRL, a robust and fidelity-preserving watermarking framework designed to protect the intellectual property of code LLM owners by embedding unique and verifiable signatures in the generated output. Existing approaches rely on manually crafted transformation rules to preserve watermarked code functionality or manipulate token-generation probabilities at inference time, which are prone to compilation errors. To address these challenges, SWaRL employs a reinforcement learning-based co-training framework that uses compiler feedback for functional correctness and a jointly trained confidential verifier as a reward signal to maintain watermark detectability. Furthermore, SWaRL employs low-rank adaptation (LoRA) during fine-tuning, allowing the learned watermark information to be transferable across model updates. Extensive experiments show that SWaRL achieves higher watermark detection accuracy compared to prior methods while fully maintaining watermarked code functionality. The LoRA-based signature embedding steers the base model to generate and solve code in a watermark-specific manner without significant computational overhead. Moreover, SWaRL exhibits strong resilience against refactoring and adversarial transformation attacks.
comment: Under review
☆ Threat Detection in Social Media Networks Using Machine Learning Based Network Analysis
The accelerated development of social media websites has posed intricate security issues in cyberspace, where these sites have increasingly become victims of criminal activities including attempts to intrude into them, abnormal traffic patterns, and organized attacks. The conventional rule-based security systems are not always scalable and dynamic to meet such a threat. This paper introduces a threat detection framework based on machine learning that can be used to classify malicious behavior in the social media network environment based on the nature of network traffic. Exploiting a rich network traffic dataset, the massive preprocessing and exploratory data analysis is conducted to overcome the problem of data imbalance, feature inconsistency, and noise. A model of artificial neural network (ANN) is then created to acquire intricate, non-linear tendencies of malicious actions. The proposed model is tested on conventional performance metrics, such as accuracy, accuracy, recall, F1-score, and ROC-AUC, and shows good detection and high levels of strength. The findings suggest that neural network-based solutions have the potential to be used effectively to identify the latent threat dynamics within the context of a large-scale social media network and that they can be employed to complement the existing intrusion detection system and better to conduct proactive cybersecurity operations.
comment: 11 Pages, 6 figures
☆ LendNova: Towards Automated Credit Risk Assessment with Language Models
Credit risk assessment is essential in the financial sector, but has traditionally depended on costly feature-based models that often fail to utilize all available information in raw credit records. This paper introduces LendNova, the first practical automated end-to-end pipeline for credit risk assessment, designed to utilize all available information in raw credit records by leveraging advanced NLP techniques and language models. LendNova transforms risk modeling by operating directly on raw, jargon-heavy credit bureau text using a language model that learns task-relevant representations without manual feature engineering. By automatically capturing patterns and risk signals embedded in the text, it replaces manual preprocessing steps, reducing costs and improving scalability. Evaluation on real-world data further demonstrates its strong potential in accurate and efficient risk assessment. LendNova establishes a baseline for intelligent credit risk agents, demonstrating the feasibility of language models in this domain. It lays the groundwork for future research toward foundation systems that enable more accurate, adaptable, and automated financial decision-making.
☆ Compressed code: the hidden effects of quantization and distillation on programming tokens
Large Language Models (LLMs) have demonstrated exceptional code generation capabilities, yet their token-level mechanisms remain underexplored, particularly in compressed models. Through systematic analysis of programming language token representations, we characterize how programming languages are encoded in LLM tokenizers by analyzing their vocabulary distribution and keyword coverage patterns. We introduce a novel cold-start probability analysis method that provides insights into model behavior without requiring explicit prompts. Additionally, we present a comprehensive evaluation of how different model optimization techniques - including quantization, distillation, model scaling, and task-specific fine-tuning - affect token-level representations and code generation quality. Our experiments, supported by comprehensive probability distribution analysis and evaluation metrics, reveal critical insights into token-level behavior and provide empirically-validated guidelines for maintaining code generation quality under various optimization constraints. These findings advance both theoretical understanding of LLM code generation and practical implementation of optimized models in production environments.
comment: 18 pages, 1 figure and 6 tables
☆ CutisAI: Deep Learning Framework for Automated Dermatology and Cancer Screening
The rapid growth of dermatological imaging and mobile diagnostic tools calls for systems that not only demonstrate empirical performance but also provide strong theoretical guarantees. Deep learning models have shown high predictive accuracy; however, they are often criticized for lacking well, calibrated uncertainty estimates without which these models are hardly deployable in a clinical setting. To this end, we present the Conformal Bayesian Dermatological Classifier (CBDC), a well, founded framework that combines Statistical Learning Theory, Topological Data Analysis (TDA), and Bayesian Conformal Inference. CBDC offers distribution, dependent generalization bounds that reflect dermatological variability, proves a topological stability theorem that guarantees the invariance of convolutional neural network embeddings under photometric and morphological perturbations and provides finite conformal coverage guarantees for trustworthy uncertainty quantification. Through exhaustive experiments on the HAM10000, PH2, and ISIC 2020 datasets, we show that CBDC not only attains classification accuracy but also generates calibrated predictions that are interpretable from a clinical perspective. This research constitutes a theoretical and practical leap for deep dermatological diagnostics, thereby opening the machine learning theory clinical applicability interface.
comment: 10 pages, 3 figures
☆ Normalized Conditional Mutual Information Surrogate Loss for Deep Neural Classifiers
In this paper, we propose a novel information theoretic surrogate loss; normalized conditional mutual information (NCMI); as a drop in alternative to the de facto cross-entropy (CE) for training deep neural network (DNN) based classifiers. We first observe that the model's NCMI is inversely proportional to its accuracy. Building on this insight, we introduce an alternating algorithm to efficiently minimize the NCMI. Across image recognition and whole-slide imaging (WSI) subtyping benchmarks, NCMI-trained models surpass state of the art losses by substantial margins at a computational cost comparable to that of CE. Notably, on ImageNet, NCMI yields a 2.77% top-1 accuracy improvement with ResNet-50 comparing to the CE; on CAMELYON-17, replacing CE with NCMI improves the macro-F1 by 8.6% over the strongest baseline. Gains are consistent across various architectures and batch sizes, suggesting that NCMI is a practical and competitive alternative to CE.
comment: 8 pages, 4 figures
☆ Multi-scale Graph Autoregressive Modeling: Molecular Property Prediction via Next Token Prediction
We present Connection-Aware Motif Sequencing (CamS), a graph-to-sequence representation that enables decoder-only Transformers to learn molecular graphs via standard next-token prediction (NTP). For molecular property prediction, SMILES-based NTP scales well but lacks explicit topology, whereas graph-native masked modeling captures connectivity but risks disrupting the pivotal chemical details (e.g., activity cliffs). CamS bridges this gap by serializing molecular graphs into structure-rich causal sequences. CamS first mines data-driven connection-aware motifs. It then serializes motifs via scaffold-rooted breadth-first search (BFS) to establish a stable core-to-periphery order. Crucially, CamS enables hierarchical modeling by concatenating sequences from fine to coarse motif scales, allowing the model to condition global scaffolds on dense, uncorrupted local structural evidence. We instantiate CamS-LLaMA by pre-training a vanilla LLaMA backbone on CamS sequences. It achieves state-of-the-art performance on MoleculeNet and the activity-cliff benchmark MoleculeACE, outperforming both SMILES-based language models and strong graph baselines. Interpretability analysis confirms that our multi-scale causal serialization effectively drives attention toward cliff-determining differences.
☆ First Provably Optimal Asynchronous SGD for Homogeneous and Heterogeneous Data
Artificial intelligence has advanced rapidly through large neural networks trained on massive datasets using thousands of GPUs or TPUs. Such training can occupy entire data centers for weeks and requires enormous computational and energy resources. Yet the optimization algorithms behind these runs have not kept pace. Most large scale training still relies on synchronous methods, where workers must wait for the slowest device, wasting compute and amplifying the effects of hardware and network variability. Removing synchronization seems like a simple fix, but asynchrony introduces staleness, meaning updates computed on outdated models. This makes analysis difficult, especially when delays arise from system level randomness rather than algorithmic choices. As a result, the time complexity of asynchronous methods remains poorly understood. This dissertation develops a rigorous framework for asynchronous first order stochastic optimization, focusing on the core challenge of heterogeneous worker speeds. Within this framework, we show that with proper design, asynchronous SGD can achieve optimal time complexity, matching guarantees previously known only for synchronous methods. Our first contribution, Ringmaster ASGD, attains optimal time complexity in the homogeneous data setting by selectively discarding stale updates. The second, Ringleader ASGD, extends optimality to heterogeneous data, common in federated learning, using a structured gradient table mechanism. Finally, ATA improves resource efficiency by learning worker compute time distributions and allocating tasks adaptively, achieving near optimal wall clock time with less computation. Together, these results establish asynchronous optimization as a theoretically sound and practically efficient foundation for distributed learning, showing that coordination without synchronization can be both feasible and optimal.
comment: PhD thesis
☆ LLM-Enhanced Reinforcement Learning for Time Series Anomaly Detection
Detecting anomalies in time series data is crucial for finance, healthcare, sensor networks, and industrial monitoring applications. However, time series anomaly detection often suffers from sparse labels, complex temporal patterns, and costly expert annotation. We propose a unified framework that integrates Large Language Model (LLM)-based potential functions for reward shaping with Reinforcement Learning (RL), Variational Autoencoder (VAE)-enhanced dynamic reward scaling, and active learning with label propagation. An LSTM-based RL agent leverages LLM-derived semantic rewards to guide exploration, while VAE reconstruction errors add unsupervised anomaly signals. Active learning selects the most uncertain samples, and label propagation efficiently expands labeled data. Evaluations on Yahoo-A1 and SMD benchmarks demonstrate that our method achieves state-of-the-art detection accuracy under limited labeling budgets and operates effectively in data-constrained settings. This study highlights the promise of combining LLMs with RL and advanced unsupervised techniques for robust, scalable anomaly detection in real-world applications.
☆ hdlib 2.0: Extending Machine Learning Capabilities of Vector-Symbolic Architectures
Following the initial publication of hdlib, a Python library for designing Vector-Symbolic Architectures (VSA), we introduce a major extension that significantly enhances its machine learning capabilities. VSA, also known as Hyperdimensional Computing, is a computing paradigm that represents and processes information using high-dimensional vectors. While the first version of hdlib established a robust foundation for creating and manipulating these vectors, this update addresses the growing need for more advanced, data-driven modeling within the VSA framework. Here, we present four extensions: significant enhancements to the existing supervised classification model also enabling feature selection, and a new regression model for predicting continuous variables, a clustering model for unsupervised learning, and a graph-based learning model. Furthermore, we propose the first implementation ever of Quantum Hyperdimensional Computing with quantum-powered arithmetic operations and a new Quantum Machine Learning model for supervised learning. hdlib remains open-source and available on GitHub at https://github.com/cumbof/hdlib under the MIT license, and distributed through the Python Package Index (pip install hdlib) and Conda (conda install -c conda-forge hdlib). Documentation and examples of these new features are available on the official Wiki at https://github.com/cumbof/hdlib/wiki.
comment: 7 pages, 1 figure
☆ GEM-Style Constraints for PEFT with Dual Gradient Projection in LoRA IEEE
Full fine-tuning of Large Language Models (LLMs) is computationally costly, motivating Continual Learning (CL) approaches that utilize parameter-efficient adapters. We revisit Gradient Episodic Memory (GEM) within the Low-Rank Adapter (LoRA) subspace and introduce I-GEM: a fixed-budget, GPU-resident dual projected-gradient approximation to GEM's quadratic projection. By constraining non-interference solely within the adapter parameters, I-GEM preserves GEM-like stability with orders-of-magnitude lower mean projection overhead. On a 3-task AG News split with induced domain drift, using GPT-2 (355M) and LoRA ($r=8$), I-GEM matches GEM's average accuracy (within $\sim\!0.04$ pts) and outperforms A-GEM by $\sim\!1.4$ pts. Crucially, it reduces projection time vs.\ GEM by a factor of $\sim\!10^3$. These results suggest that applying GEM constraints in the LoRA subspace is a practical pathway for continual learning at the LLM scale.
comment: Work accepted to the NSF REU Symposium at the 2025 IEEE International Conference on Data Mining (ICDM). Correspondence to: betekmen@uncg.edu
☆ Polynomial Convergence of Riemannian Diffusion Models
Diffusion models have demonstrated remarkable empirical success in the recent years and are considered one of the state-of-the-art generative models in modern AI. These models consist of a forward process, which gradually diffuses the data distribution to a noise distribution spanning the whole space, and a backward process, which inverts this transformation to recover the data distribution from noise. Most of the existing literature assumes that the underlying space is Euclidean. However, in many practical applications, the data are constrained to lie on a submanifold of Euclidean space. Addressing this setting, De Bortoli et al. (2022) introduced Riemannian diffusion models and proved that using an exponentially small step size yields a small sampling error in the Wasserstein distance, provided the data distribution is smooth and strictly positive, and the score estimate is $L_\infty$-accurate. In this paper, we greatly strengthen this theory by establishing that, under $L_2$-accurate score estimate, a {\em polynomially small stepsize} suffices to guarantee small sampling error in the total variation distance, without requiring smoothness or positivity of the data distribution. Our analysis only requires mild and standard curvature assumptions on the underlying manifold. The main ingredients in our analysis are Li-Yau estimate for the log-gradient of heat kernel, and Minakshisundaram-Pleijel parametrix expansion of the perturbed heat equation. Our approach opens the door to a sharper analysis of diffusion models on non-Euclidean spaces.
☆ Variational (Energy-Based) Spectral Learning: A Machine Learning Framework for Solving Partial Differential Equations
We introduce variational spectral learning (VSL), a machine learning framework for solving partial differential equations (PDEs) that operates directly in the coefficient space of spectral expansions. VSL offers a principled bridge between variational PDE theory, spectral discretization, and contemporary machine learning practice. The core idea is to recast a given PDE \[ \mathcal{L}u = f \quad \text{in} \quad Q=Ω\times(0,T), \] together with boundary and initial conditions, into differentiable space--time energies built from strong-form least-squares residuals and weak (Galerkin) formulations. The solution is represented as a finite spectral expansion \[ u_N(x,t)=\sum_{n=1}^{N} c_n\,φ_n(x,t), \] where $φ_n$ are tensor-product Chebyshev bases in space and time, with Dirichlet-satisfying spatial modes enforcing homogeneous boundary conditions analytically. This yields a compact linear parameterization in the coefficient vector $\mathbf{c}$, while all PDE complexity is absorbed into the variational energy. We show how to construct strong-form and weak-form space-time functionals, augment them with initial-condition and Tikhonov regularization terms, and minimize the resulting objective with gradient-based optimization. In practice, VSL is implemented in TensorFlow using automatic differentiation and Keras cosine-decay-with-restarts learning-rate schedules, enabling robust optimization of moderately sized coefficient vectors. Numerical experiments on benchmark elliptic and parabolic problems, including one- and two-dimensional Poisson, diffusion, and Burgers-type equations, demonstrate that VSL attains accuracy comparable to classical spectral collocation with Crank-Nicolson time stepping, while providing a differentiable objective suitable for modern optimization tooling.
☆ mHC-GNN: Manifold-Constrained Hyper-Connections for Graph Neural Networks
Graph Neural Networks (GNNs) suffer from over-smoothing in deep architectures and expressiveness bounded by the 1-Weisfeiler-Leman (1-WL) test. We adapt Manifold-Constrained Hyper-Connections (\mhc)~\citep{xie2025mhc}, recently proposed for Transformers, to graph neural networks. Our method, mHC-GNN, expands node representations across $n$ parallel streams and constrains stream-mixing matrices to the Birkhoff polytope via Sinkhorn-Knopp normalization. We prove that mHC-GNN exhibits exponentially slower over-smoothing (rate $(1-γ)^{L/n}$ vs.\ $(1-γ)^L$) and can distinguish graphs beyond 1-WL. Experiments on 10 datasets with 4 GNN architectures show consistent improvements. Depth experiments from 2 to 128 layers reveal that standard GNNs collapse to near-random performance beyond 16 layers, while mHC-GNN maintains over 74\% accuracy even at 128 layers, with improvements exceeding 50 percentage points at extreme depths. Ablations confirm that the manifold constraint is essential: removing it causes up to 82\% performance degradation. Code is available at \href{https://github.com/smlab-niser/mhc-gnn}{https://github.com/smlab-niser/mhc-gnn}
☆ A Spatio-Temporal Deep Learning Approach For High-Resolution Gridded Monsoon Prediction IEEE
The Indian Summer Monsoon (ISM) is a critical climate phenomenon, fundamentally impacting the agriculture, economy, and water security of over a billion people. Traditional long-range forecasting, whether statistical or dynamical, has predominantly focused on predicting a single, spatially-averaged seasonal value, lacking the spatial detail essential for regional-level resource management. To address this gap, we introduce a novel deep learning framework that reframes gridded monsoon prediction as a spatio-temporal computer vision task. We treat multi-variable, pre-monsoon atmospheric and oceanic fields as a sequence of multi-channel images, effectively creating a video-like input tensor. Using 85 years of ERA5 reanalysis data for predictors and IMD rainfall data for targets, we employ a Convolutional Neural Network (CNN)-based architecture to learn the complex mapping from the five-month pre-monsoon period (January-May) to a high-resolution gridded rainfall pattern for the subsequent monsoon season. Our framework successfully produces distinct forecasts for each of the four monsoon months (June-September) as well as the total seasonal average, demonstrating its utility for both intra-seasonal and seasonal outlooks.
comment: 8 pages, 3 figures, 2 Tables, to be submitted to "IEEE Transactions on Geoscience and Remote Sensing"
☆ VocalBridge: Latent Diffusion-Bridge Purification for Defeating Perturbation-Based Voiceprint Defenses
The rapid advancement of speech synthesis technologies, including text-to-speech (TTS) and voice conversion (VC), has intensified security and privacy concerns related to voice cloning. Recent defenses attempt to prevent unauthorized cloning by embedding protective perturbations into speech to obscure speaker identity while maintaining intelligibility. However, adversaries can apply advanced purification techniques to remove these perturbations, recover authentic acoustic characteristics, and regenerate cloneable voices. Despite the growing realism of such attacks, the robustness of existing defenses under adaptive purification remains insufficiently studied. Most existing purification methods are designed to counter adversarial noise in automatic speech recognition (ASR) systems rather than speaker verification or voice cloning pipelines. As a result, they fail to suppress the fine-grained acoustic cues that define speaker identity and are often ineffective against speaker verification attacks (SVA). To address these limitations, we propose Diffusion-Bridge (VocalBridge), a purification framework that learns a latent mapping from perturbed to clean speech in the EnCodec latent space. Using a time-conditioned 1D U-Net with a cosine noise schedule, the model enables efficient, transcript-free purification while preserving speaker-discriminative structure. We further introduce a Whisper-guided phoneme variant that incorporates lightweight temporal guidance without requiring ground-truth transcripts. Experimental results show that our approach consistently outperforms existing purification methods in recovering cloneable voices from protected speech. Our findings demonstrate the fragility of current perturbation-based defenses and highlight the need for more robust protection mechanisms against evolving voice-cloning and speaker verification threats.
☆ Mitigating Long-Tailed Anomaly Score Distributions with Importance-Weighted Loss IJCNN 2025
Anomaly detection is crucial in industrial applications for identifying rare and unseen patterns to ensure system reliability. Traditional models, trained on a single class of normal data, struggle with real-world distributions where normal data exhibit diverse patterns, leading to class imbalance and long-tailed anomaly score distributions (LTD). This imbalance skews model training and degrades detection performance, especially for minority instances. To address this issue, we propose a novel importance-weighted loss designed specifically for anomaly detection. Compared to the previous method for LTD in classification, our method does not require prior knowledge of normal data classes. Instead, we introduce a weighted loss function that incorporates importance sampling to align the distribution of anomaly scores with a target Gaussian, ensuring a balanced representation of normal data. Extensive experiments on three benchmark image datasets and three real-world hyperspectral imaging datasets demonstrate the robustness of our approach in mitigating LTD-induced bias. Our method improves anomaly detection performance by 0.043, highlighting its effectiveness in real-world applications.
comment: 8 pages, Published as a conference paper at IJCNN 2025
☆ WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks
We present WebGym, the largest-to-date open-source environment for training realistic visual web agents. Real websites are non-stationary and diverse, making artificial or small-scale task sets insufficient for robust policy learning. WebGym contains nearly 300,000 tasks with rubric-based evaluations across diverse, real-world websites and difficulty levels. We train agents with a simple reinforcement learning (RL) recipe, which trains on the agent's own interaction traces (rollouts), using task rewards as feedback to guide learning. To enable scaling RL, we speed up sampling of trajectories in WebGym by developing a high-throughput asynchronous rollout system, designed specifically for web agents. Our system achieves a 4-5x rollout speedup compared to naive implementations. Second, we scale the task set breadth, depth, and size, which results in continued performance improvement. Fine-tuning a strong base vision-language model, Qwen-3-VL-8B-Instruct, on WebGym results in an improvement in success rate on an out-of-distribution test set from 26.2% to 42.9%, significantly outperforming agents based on proprietary models such as GPT-4o and GPT-5-Thinking that achieve 27.1% and 29.8%, respectively. This improvement is substantial because our test set consists only of tasks on websites never seen during training, unlike many other prior works on training visual web agents.
☆ TAP-ViTs: Task-Adaptive Pruning for On-Device Deployment of Vision Transformers
Vision Transformers (ViTs) have demonstrated strong performance across a wide range of vision tasks, yet their substantial computational and memory demands hinder efficient deployment on resource-constrained mobile and edge devices. Pruning has emerged as a promising direction for reducing ViT complexity. However, existing approaches either (i) produce a single pruned model shared across all devices, ignoring device heterogeneity, or (ii) rely on fine-tuning with device-local data, which is often infeasible due to limited on-device resources and strict privacy constraints. As a result, current methods fall short of enabling task-customized ViT pruning in privacy-preserving mobile computing settings. This paper introduces TAP-ViTs, a novel task-adaptive pruning framework that generates device-specific pruned ViT models without requiring access to any raw local data. Specifically, to infer device-level task characteristics under privacy constraints, we propose a Gaussian Mixture Model (GMM)-based metric dataset construction mechanism. Each device fits a lightweight GMM to approximate its private data distribution and uploads only the GMM parameters. Using these parameters, the cloud selects distribution-consistent samples from public data to construct a task-representative metric dataset for each device. Based on this proxy dataset, we further develop a dual-granularity importance evaluation-based pruning strategy that jointly measures composite neuron importance and adaptive layer importance, enabling fine-grained, task-aware pruning tailored to each device's computational budget. Extensive experiments across multiple ViT backbones and datasets demonstrate that TAP-ViTs consistently outperforms state-of-the-art pruning methods under comparable compression ratios.
☆ Deep Learning Superresolution for 7T Knee MR Imaging: Impact on Image Quality and Diagnostic Performance
Background: Deep learning superresolution (SR) may enhance musculoskeletal MR image quality, but its diagnostic value in knee imaging at 7T is unclear. Objectives: To compare image quality and diagnostic performance of SR, low-resolution (LR), and high-resolution (HR) 7T knee MRI. Methods: In this prospective study, 42 participants underwent 7T knee MRI with LR (0.8*0.8*2 mm3) and HR (0.4*0.4*2 mm3) sequences. SR images were generated from LR data using a Hybrid Attention Transformer model. Three radiologists assessed image quality, anatomic conspicuity, and detection of knee pathologies. Arthroscopy served as reference in 10 cases. Results: SR images showed higher overall quality than LR (median score 5 vs 4, P<.001) and lower noise than HR (5 vs 4, P<.001). Visibility of cartilage, menisci, and ligaments was superior in SR and HR compared to LR (P<.001). Detection rates and diagnostic performance (sensitivity, specificity, AUC) for intra-articular pathology were similar across image types (P>=.095). Conclusions: Deep learning superresolution improved subjective image quality in 7T knee MRI but did not increase diagnostic accuracy compared with standard LR imaging.
☆ Variational (Energy-Based) Spectral Learning: A Machine Learning Framework for Solving Partial Differential Equations
We introduce variational spectral learning (VSL), a machine learning framework for solving partial differential equations (PDEs) that operates directly in the coefficient space of spectral expansions. VSL offers a principled bridge between variational PDE theory, spectral discretization, and contemporary machine learning practice. The core idea is to recast a given PDE \[ \mathcal{L}u = f \quad \text{in} \quad Q=Ω\times(0,T), \] together with boundary and initial conditions, into differentiable space-time energies built from strong-form least-squares residuals and weak (Galerkin) formulations. The solution is represented as a finite spectral expansion \[ u_N(x,t)=\sum_{n=1}^{N} c_n\,φ_n(x,t), \] where $φ_n$ are tensor-product Chebyshev bases in space and time, with Dirichlet-satisfying spatial modes enforcing homogeneous boundary conditions analytically. This yields a compact linear parameterization in the coefficient vector $\mathbf{c}$, while all PDE complexity is absorbed into the variational energy. We show how to construct strong-form and weak-form space-time functionals, augment them with initial-condition and Tikhonov regularization terms, and minimize the resulting objective with gradient-based optimization. In practice, VSL is implemented in TensorFlow using automatic differentiation and Keras cosine-decay-with-restarts learning-rate schedules, enabling robust optimization of moderately sized coefficient vectors. Numerical experiments on benchmark elliptic and parabolic problems, including one- and two-dimensional Poisson, diffusion, and Burgers-type equations, demonstrate that VSL attains accuracy comparable to classical spectral collocation with Crank-Nicolson time stepping, while providing a differentiable objective suitable for modern optimization tooling.
♻ ☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
♻ ☆ Causal Multi-fidelity Surrogate Forward and Inverse Models for ICF Implosions
Continued progress in inertial confinement fusion (ICF) requires solving inverse problems relating experimental observations to simulation input parameters, followed by design optimization. However, such high-dimensional dynamic PDE-constrained optimization problems are extremely challenging or even intractable. It has been recently shown that inverse problems can be solved by only considering certain robust features. Here we consider the ICF capsule's deuterium-tritium (DT) interface, and construct a causal, dynamic, multifidelity reduced-order surrogate that maps from a time-dependent radiation temperature drive to the interface's radius and velocity dynamics. The surrogate targets an ODE embedding of DT interface dynamics, and is constructed by learning a controller for a base analytical model using low- and high-fidelity simulation training data with respect to radiation energy group structure. After demonstrating excellent accuracy of the surrogate interface model, we use machine learning (ML) models with surrogate-generated data to solve inverse problems optimizing radiation temperature drive to reproduce observed interface dynamics. For sparse snapshots in time, the ML model further characterizes the most informative times at which to sample dynamics. Altogether we demonstrate how operator learning, causal architectures, and physical inductive bias can be integrated to accelerate discovery, design, and diagnostics in high-energy-density systems.
♻ ☆ SteganoBackdoor: Stealthy and Data-Efficient Backdoor Attacks on Language Models
Modern language models remain vulnerable to backdoor attacks via poisoned data, where training inputs containing a trigger are paired with a target output, causing the model to reproduce that behavior whenever the trigger appears at inference time. Recent work has emphasized stealthy attacks that stress-test data-curation defenses using stylized artifacts or token-level perturbations as triggers, but this focus leaves a more practically relevant threat model underexplored: backdoors tied to naturally occurring semantic concepts. We introduce SteganoBackdoor, an optimization-based framework that constructs SteganoPoisons, steganographic poisoned training examples in which a backdoor payload is distributed across a fluent sentence while exhibiting no representational overlap with the inference-time semantic trigger. Across diverse model architectures, SteganoBackdoor achieves high attack success under constrained poisoning budgets and remains effective under conservative data-level filtering, highlighting a blind spot in existing data-curation defenses.
♻ ☆ Non-omniscient backdoor injection with one poison sample: Proving the one-poison hypothesis for linear regression, linear classification, and 2-layer ReLU neural networks
Backdoor poisoning attacks are a threat to machine learning models trained on large data collected from untrusted sources; these attacks enable attackers to inject malicious behavior into the model that can be triggered by specially crafted inputs. Prior work has established bounds on the success of backdoor attacks and their impact on the benign learning task, however, an open question is what amount of poison data is needed for a successful backdoor attack. Typical attacks either use few samples but need much information about the data points, or need to poison many data points. In this paper, we formulate the one-poison hypothesis: An adversary with one poison sample and limited background knowledge can inject a backdoor with zero backdooring-error and without significantly impacting the benign learning task performance. Moreover, we prove the one-poison hypothesis for linear regression, linear classification, and 2-layer ReLU neural networks. For adversaries that utilize a direction unused by the clean data distribution for the poison sample, we prove for linear classification and linear regression that the resulting model is functionally equivalent to a model where the poison was excluded from training. We build on prior work on statistical backdoor learning to show that in all other cases, the impact on the benign learning task is still limited. We validate our theoretical results experimentally with realistic benchmark data sets.
comment: Added generalization to 2-layer ReLU neural networks
♻ ☆ Grounded Test-Time Adaptation for LLM Agents
Large language model (LLM)-based agents struggle to generalize to novel and complex environments, such as unseen websites or new sets of functions, due to a fundamental mismatch between their pre-training and test-time conditions. This challenge stems from two distinct failure modes: a syntactic misunderstanding of environment-specific components like observation formats, and a semantic misunderstanding of state-transition dynamics, which are only revealed at test time. To address these issues, we propose two distinct and complementary strategies for adapting LLM agents by leveraging environment-specific information available during deployment. First, an online distributional adaptation method parameterizes environmental nuances by learning a lightweight adaptation vector that biases the model's output distribution, enabling rapid alignment with an environment response format. Second, a deployment-time dynamics grounding method employs a persona-driven exploration phase to systematically probe and learn the environment's causal dynamics before task execution, equipping the agent with a nonparametric world model. We evaluate these strategies across diverse agentic benchmarks, including function calling and web navigation. Our empirical results show the effectiveness of both strategies across all benchmarks with minimal computational cost. We find that dynamics grounding is particularly effective in complex environments where unpredictable dynamics pose a major obstacle, demonstrating a robust path toward more generalizable and capable LLM-based agents. For example, on the WebArena multi-site split, this method increases the agent's success rate from 2% to 23%.
comment: Our code is available here: https://github.com/r2llab/GTTA
♻ ☆ Anytime-Valid Answer Sufficiency Certificates for LLM Generation via Sequential Information Lift
We introduce Sequential-EDFL (Empirical Dynamic Formal Lift), which applies anytime-valid sequential testing to language model generation stopping. Our approach tracks information lift, defined as the log-likelihood ratio between the full model and deliberately weakened "skeleton" baselines, using self-normalized empirical-Bernstein e-processes that provide formal delta-level error control regardless of stopping time. This delta guarantee controls premature stopping when information lift is insufficient relative to the skeleton, and it does not imply delta control of factual incorrectness or hallucinations. We handle unknown centering through online mean estimation, combine multiple parameters via mixture e-processes, and support adaptive resets under distributional drift. On six benchmarks, Sequential-EDFL reduces generation length by 22 to 28 percent relative to sequential baselines while maintaining delta-level control with 12 percent computational overhead. We introduce automated skeletons (distilled submodels and randomized logits) and show robustness across skeleton families. Composing EDFL with a lightweight correctness gate (sentence boundaries plus a verifier) improves end-task correctness while preserving anytime-valid guarantees by only delaying stopping. Our certificates control information sufficiency, not factual correctness. Specifically, 10.9 percent of stopped sequences remain incorrect even with the gate (13.2 to 22.7 percent without it). EDFL serves as a first-stage filter that can reduce verification burden: when applied to stopped sequences, the gate validates 83 percent of stops, requiring full verification only for the remaining 17 percent, plus all non-stopped sequences. EDFL is not a standalone solution for safety-critical domains.
♻ ☆ Language as a Wave Phenomenon: Iso-Energetic Phase-Locking and Semantic Interference in Neural Networks
Conventional deep learning paradigms rely on metabolically expensive magnitude-based representations, rendering them fundamentally incompatible with passive photonic hardware. We introduce PRISM, a sequence modeling architecture that bridges high-level reasoning and physical constraints by enforcing an Iso-Energetic (Unity Gain) principle, compelling the network to encode semantic information exclusively in the phase angle. Validated on the WMT14 translation benchmark, PRISM achieves a 0.799 COMET score, demonstrating that phase-based reasoning competes with standard Transformers (0.821) and functionally matches unconstrained spectral baselines like FNet (0.805), despite enforcing strict energy constraints and requiring 11.5% fewer parameters. Furthermore, to verify hardware feasibility, we simulate a Holographic Backpropagation mechanism on a noisy, 4-bit optical correlator. Ablation studies reveal a substantial performance gain (48.4% vs. 62.4%) over a frozen baseline, proving that the proposed phase-steering mechanism actively optimizes physical parameters under strict energy constraints. These results establish an existence proof that ultra-low-power, passive optical hardware can support high-level linguistic intelligence without sacrificing representational capacity.
comment: Major Revision. Title changed to reflect the new theoretical framework. Complete narrative shift from "Optimization Efficiency" to "Iso-Energetic Phase Coding" and "Optical Hardware Compatibility". Replaced ISMR diagnostics with Holographic Optical Learning simulations and mechanistic "Dual-Regime" phase analysis. Comparison with spectral baselines (FNet) added
♻ ☆ Quantum Enhanced Anomaly Detection for ADS-B Data using Hybrid Deep Learning SC
The emerging field of Quantum Machine Learning (QML) has shown promising advantages in accelerating processing speed and effectively handling the high dimensionality associated with complex datasets. Quantum Computing (QC) enables more efficient data manipulation through the quantum properties of superposition and entanglement. In this paper, we present a novel approach combining quantum and classical machine learning techniques to explore the impact of quantum properties for anomaly detection in Automatic Dependent Surveillance-Broadcast (ADS-B) data. We compare the performance of a Hybrid-Fully Connected Quantum Neural Network (H-FQNN) with different loss functions and use a publicly available ADS-B dataset to evaluate the performance. The results demonstrate competitive performance in detecting anomalies, with accuracies ranging from 90.17% to 94.05%, comparable to the performance of a traditional Fully Connected Neural Network (FNN) model, which achieved accuracies between 91.50% and 93.37%.
comment: This is the author's version of the work accepted for publication in the IEEE-AIAA Digital Avionics Systems Conference (DASC) 2025. The final version version is available via IEEE Xplore
♻ ☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
♻ ☆ Development of a high-resolution indoor radon map using a new machine learning-based probabilistic model and German radon survey data
Accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas. Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns. However, characteristics of the sampled households often differ from the characteristics of the target population owing to the large number of relevant factors that control the indoor radon concentration, such as the availability of geogenic radon or floor level. We propose a model-based approach that allows a more realistic estimation of indoor radon distribution with a higher spatial resolution than a purely data-based approach. A modeling approach was used by applying a quantile regression forest to estimate the probability distribution function of indoor radon for each floor level of each residential building in Germany. Based on the estimated probability distribution function,a probabilistic Monte Carlo sampling technique was applied, enabling the combination and population weighting of floor-level predictions. In this way,the uncertainty of the individual predictions is effectively propagated into the estimate of variability at the aggregated level. The results show an approximate lognormal distribution of indoor radon in dwellings in Germany with an arithmetic mean of 63 Bq/m3, a geometric mean of 41 Bq/m3, and a 95th percentile of 180 Bq/m3. The exceedance probabilities for 100 and 300 Bq/m3 are 12.5% (10.5 million people affected) and 2.2 % (1.9 million people affected), respectively. The advantages of our approach are that it yields a) an accurate estimation of indoor radon concentration even if the survey is not fully representative with respect to floor level and radon concentration in soil, and b) an estimate of the indoor radon distribution with a much higher spatial resolution than basic descriptive statistics.
♻ ☆ Towards Fair In-Context Learning with Tabular Foundation Models
Transformer-based tabular foundation models have recently demonstrated promising in-context learning (ICL) performance on structured data, emerging as competitive alternatives to gradient-boosted trees. However, the fairness implications of this new paradigm remain largely unexplored. We present the first investigation of fairness in tabular ICL, evaluating three recently proposed foundation models--TabPFNv2, TabICL, and TabDPT--on multiple benchmark datasets. To mitigate biases, we explore three pre-processing fairness-enhancing methods: correlation removal (decorrelating input features from the sensitive attribute), group-balanced sample selection (ensuring equal representation of protected groups in context examples), and uncertainty-based sample selection (prioritizing context examples with high sensitive-attribute prediction uncertainty). Our experiments show that the uncertainty-based strategy consistently improves group fairness metrics (e.g., demographic parity, equalized odds, and equal opportunity) with minimal impact on predictive accuracy. We release our code to facilitate reproducibility https://github.com/patrikken/Fair-TabICL.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Training More Robust Classification Model via Discriminative Loss and Gaussian Noise Injection
Robustness of deep neural networks to input noise remains a critical challenge, as naive noise injection often degrades accuracy on clean (uncorrupted) data. We propose a novel training framework that addresses this trade-off through two complementary objectives. First, we introduce a loss function applied at the penultimate layer that explicitly enforces intra-class compactness and increases the margin to analytically defined decision boundaries. This enhances feature discriminativeness and class separability for clean data. Second, we propose a class-wise feature alignment mechanism that brings noisy data clusters closer to their clean counterparts. Furthermore, we provide a theoretical analysis demonstrating that improving feature stability under additive Gaussian noise implicitly reduces the curvature of the softmax loss landscape in input space, as measured by Hessian eigenvalues.This thus naturally enhances robustness without explicit curvature penalties. Conversely, we also theoretically show that lower curvatures lead to more robust models. We validate the effectiveness of our method on standard benchmarks and our custom dataset. Our approach significantly reinforces model robustness to various perturbations while maintaining high accuracy on clean data, advancing the understanding and practice of noise-robust deep learning.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Subgroup Discovery with the Cox Model
We study the problem of subgroup discovery for survival analysis, where the goal is to find an interpretable subset of the data on which a Cox model is highly accurate. Our work is the first to study this particular subgroup problem, for which we make several contributions. Subgroup discovery methods generally require a "quality function" in order to sift through and select the most advantageous subgroups. We first examine why existing natural choices for quality functions are insufficient to solve the subgroup discovery problem for the Cox model. To address the shortcomings of existing metrics, we introduce two technical innovations: the *expected prediction entropy (EPE)*, a novel metric for evaluating survival models which predict a hazard function; and the *conditional rank statistics (CRS)*, a statistical object which quantifies the deviation of an individual point to the distribution of survival times in an existing subgroup. We study the EPE and CRS theoretically and show that they can solve many of the problems with existing metrics. We introduce a total of eight algorithms for the Cox subgroup discovery problem. The main algorithm is able to take advantage of both the EPE and the CRS, allowing us to give theoretical correctness results for this algorithm in a well-specified setting. We evaluate all of the proposed methods empirically on both synthetic and real data. The experiments confirm our theory, showing that our contributions allow for the recovery of a ground-truth subgroup in well-specified cases, as well as leading to better model fit compared to naively fitting the Cox model to the whole dataset in practical settings. Lastly, we conduct a case study on jet engine simulation data from NASA. The discovered subgroups uncover known nonlinearities/homogeneity in the data, and which suggest design choices which have been mirrored in practice.
comment: 43 pages, 2 figures
♻ ☆ Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model's parameters. The core idea is to liberate the latent vectors of abstract concepts from traditional static semantic representations, allowing them to be continuously updated through environmental interaction and reinforcement feedback. We construct a dual-loop architecture: the behavior loop adjusts action preferences based on environmental rewards, while the language loop updates the external latent vectors by reflecting on the semantic embeddings of generated text. Together, these mechanisms allow agents to develop stable and disentangled strategic styles over long-horizon multi-round interactions. Experiments show that agents' latent spaces exhibit clear convergence trajectories under reflection-driven updates, along with structured shifts at critical moments. Moreover, the system demonstrates an emergent ability to implicitly infer and continually adapt to emotional agents, even without shared rewards. These results indicate that, without modifying model parameters, an external latent space can provide language agents with a low-cost, scalable, and interpretable form of abstract strategic representation.
comment: 17 pages, 5 figures. Code available at https://github.com/wltang-dev/Latent-Strategy-RL-Agent
♻ ☆ Tuning without Peeking: Provable Generalization Bounds and Robust LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, exposing gradients during training can leak sensitive information about the underlying data, raising privacy and security concerns such as susceptibility to data poisoning attacks. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide non-vacuous generalization bounds and strong theoretical guarantees for privacy, robustness to data poisoning attacks, and extraction attacks. In experiments with LLMs, we demonstrate empirically that black-box optimization methods, despite the scalability and computational challenges inherent to black-box approaches, are able to learn, showing how a few iterations of BBoxER improve performance, generalize well on a benchmark of reasoning datasets, and are robust to membership inference attacks. This positions BBoxER as an attractive add-on on top of gradient-based optimization, offering suitability for deployment in restricted or privacy-sensitive environments while also providing non-vacuous generalization guarantees.
♻ ☆ Perch 2.0: The Bittern Lesson for Bioacoustics
Perch is a performant pre-trained model for bioacoustics. It was trained in supervised fashion, providing both off-the-shelf classification scores for thousands of vocalizing species as well as strong embeddings for transfer learning. In this new release, Perch 2.0, we expand from training exclusively on avian species to a large multi-taxa dataset. The model is trained with self-distillation using a prototype-learning classifier as well as a new source-prediction training criterion. Perch 2.0 obtains state-of-the-art performance on the BirdSet and BEANS benchmarks. It also outperforms specialized marine models on marine transfer learning tasks, despite having almost no marine training data. We present hypotheses as to why fine-grained species classification is a particularly robust pre-training task for bioacoustics.
♻ ☆ Bayesian uncertainty-aware deep learning with noisy labels: Tackling annotation ambiguity in EEG seizure detection
Deep learning is advancing EEG processing for automated epileptic seizure detection and onset zone localization, yet its performance relies heavily on high-quality annotated training data. However, scalp EEG is susceptible to high noise levels, which in turn leads to imprecise annotations of the seizure timing and characteristics. This "label noise" presents a significant challenge in model training and generalization. In this paper, we introduce Bayesian UncertaiNty-aware Deep Learning (BUNDL), a novel algorithm that informs a deep learning model of label ambiguities, thereby enhancing the robustness of seizure detection systems. By integrating domain knowledge into an underlying Bayesian framework, we derive a novel KL-divergence-based loss function that capitalizes on uncertainty to better learn seizure characteristics from scalp EEG. Thus, BUNDL offers a straightforward and model-agnostic method for training deep neural networks with noisy training labels that does not add any parameters to existing architectures. Additionally, we explore the impact of improved detection system on the task of automated onset zone localization. We validate BUNDL using a comprehensive simulated EEG dataset and two publicly available datasets collected by Temple University Hospital (TUH) and Boston Children's Hospital (CHB-MIT). Results show that BUNDL consistently identifies noisy labels and improves the robustness of three base models under various label noise conditions. We also evaluate cross-site generalizability and quantify computational cost of all methods. Ultimately, BUNDL presents as a reliable method that can be seamlessly integrated with existing deep models used in clinical practice, enabling the training of trustworthy models for epilepsy evaluation.
♻ ☆ Matrix Manifold Neural Networks++
Deep neural networks (DNNs) on Riemannian manifolds have garnered increasing interest in various applied areas. For instance, DNNs on spherical and hyperbolic manifolds have been designed to solve a wide range of computer vision and nature language processing tasks. One of the key factors that contribute to the success of these networks is that spherical and hyperbolic manifolds have the rich algebraic structures of gyrogroups and gyrovector spaces. This enables principled and effective generalizations of the most successful DNNs to these manifolds. Recently, some works have shown that many concepts in the theory of gyrogroups and gyrovector spaces can also be generalized to matrix manifolds such as Symmetric Positive Definite (SPD) and Grassmann manifolds. As a result, some building blocks for SPD and Grassmann neural networks, e.g., isometric models and multinomial logistic regression (MLR) can be derived in a way that is fully analogous to their spherical and hyperbolic counterparts. Building upon these works, we design fully-connected (FC) and convolutional layers for SPD neural networks. We also develop MLR on Symmetric Positive Semi-definite (SPSD) manifolds, and propose a method for performing backpropagation with the Grassmann logarithmic map in the projector perspective. We demonstrate the effectiveness of the proposed approach in the human action recognition and node classification tasks.
comment: added references
♻ ☆ Comparison of generalised additive models and neural networks in applications: A systematic review
Neural networks have become a popular tool in predictive modelling, more commonly associated with machine learning and artificial intelligence than with statistics. Generalised Additive Models (GAMs) are flexible non-linear statistical models that retain interpretability. Both are state-of-the-art in their own right, with their respective advantages and disadvantages. This paper analyses how these two model classes have performed on real-world tabular data. Following PRISMA guidelines, we conducted a systematic review of papers that performed empirical comparisons of GAMs and neural networks. Eligible papers were identified, yielding 143 papers, with 430 datasets. Key attributes at both paper and dataset levels were extracted and reported. Beyond summarising comparisons, we analyse reported performance metrics using mixed-effects modelling to investigate potential characteristics that can explain and quantify observed differences, including application area, study year, sample size, number of predictors, and neural network complexity. Across datasets, no consistent evidence of superiority was found for either GAMs or neural networks when considering the most frequently reported metrics (RMSE, $R^2$, and AUC). Neural networks tended to outperform in larger datasets and in those with more predictors, but this advantage narrowed over time. Conversely, GAMs remained competitive, particularly in smaller data settings, while retaining interpretability. Reporting of dataset characteristics and neural network complexity was incomplete in much of the literature, limiting transparency and reproducibility. This review highlights that GAMs and neural networks should be viewed as complementary approaches rather than competitors. For many tabular applications, the performance trade-off is modest, and interpretability may favour GAMs.
♻ ☆ The Human Brain as a Combinatorial Complex NeurIPS 2025
We propose a framework for constructing combinatorial complexes (CCs) from fMRI time series data that captures both pairwise and higher-order neural interactions through information-theoretic measures, bridging topological deep learning and network neuroscience. Current graph-based representations of brain networks systematically miss the higher-order dependencies that characterize neural complexity, where information processing often involves synergistic interactions that cannot be decomposed into pairwise relationships. Unlike topological lifting approaches that map relational structures into higher-order domains, our method directly constructs CCs from statistical dependencies in the data. Our CCs generalize graphs by incorporating higher-order cells that represent collective dependencies among brain regions, naturally accommodating the multi-scale, hierarchical nature of neural processing. The framework constructs data-driven combinatorial complexes using O-information and S-information measures computed from fMRI signals, preserving both pairwise connections and higher-order cells (e.g., triplets, quadruplets) based on synergistic dependencies. Using NetSim simulations as a controlled proof-of-concept dataset, we demonstrate our CC construction pipeline and show how both pairwise and higher-order dependencies in neural time series can be quantified and represented within a unified structure. This work provides a framework for brain network representation that preserves fundamental higher-order structure invisible to traditional graph methods, and enables the application of topological deep learning (TDL) architectures to neural data.
comment: Accepted as an Extended Abstract at the NeurReps Workshop, NeurIPS 2025
♻ ☆ Investigating the Robustness of Extreme Precipitation Super-Resolution Across Climates
The coarse spatial resolution of gridded climate models, such as general circulation models, limits their direct use in projecting socially relevant variables like extreme precipitation. Most downscaling methods estimate the conditional distributions of extremes by generating large ensembles, complicating the assessment of robustness under distributional transformations, such as those induced by climate change. To better understand and potentially improve robustness, we propose super-resolving the parameters of the target variable's probability distribution directly using analytically tractable mappings. Within a perfect-model framework over Switzerland, we demonstrate that vector generalized linear and additive models can super-resolve the generalized extreme value distribution of summer hourly precipitation extremes from coarse precipitation fields and topography. We introduce the notion of a "robustness gap", defined as the difference in predictive error between present-trained and future-trained models, and use it to diagnose how model structure affects the generalization of each quantile to a pseudo-global warming scenario. By evaluating multiple model configurations, we also identify an upper limit on the super-resolution factor based on the spatial auto- and cross-correlation of precipitation and elevation, beyond which coarse precipitation loses predictive value. Our framework is broadly applicable to variables governed by parametric distributions and offers a model-agnostic diagnostic for understanding when and why empirical downscaling generalizes to climate change and extremes.
comment: 47+7 pages, 10+4 figures, 1 table, submitted to WCE
♻ ☆ Discovering Association Rules in High-Dimensional Small Tabular Data
Association Rule Mining (ARM) aims to discover patterns between features in datasets in the form of propositional rules, supporting both knowledge discovery and interpretable machine learning in high-stakes decision-making. However, in high-dimensional settings, rule explosion and computational overhead render popular algorithmic approaches impractical without effective search space reduction, challenges that propagate to downstream tasks. Neurosymbolic methods, such as Aerial+, have recently been proposed to address the rule explosion in ARM. While they tackle the high dimensionality of the data, they also inherit limitations of neural networks, particularly reduced performance in low-data regimes. This paper makes three key contributions to association rule discovery in high-dimensional tabular data. First, we empirically show that Aerial+ scales one to two orders of magnitude better than state-of-the-art algorithmic and neurosymbolic baselines across five real-world datasets. Second, we introduce the novel problem of ARM in high-dimensional, low-data settings, such as gene expression data from the biomedicine domain with around 18k features and 50 samples. Third, we propose two fine-tuning approaches to Aerial+ using tabular foundation models. Our proposed approaches are shown to significantly improve rule quality on five real-world datasets, demonstrating their effectiveness in low-data, high-dimensional scenarios.
comment: Published version is available at https://ceur-ws.org/Vol-4125/paper_26.pdf
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints
Large Language Models (LLMs) power many modern applications, but their inference procedure poses unique scheduling challenges: the Key-Value (KV) cache grows dynamically during response generation, and memory overflow triggers eviction that can cascade into system-wide failures. Even when memory capacity exceeds the theoretical requirement, conventional scheduling algorithms fail because they do not account for this dynamic memory growth -- a system that should be stable can become unstable under poor scheduling. This paper formulates LLM inference optimization as a multi-stage online scheduling problem. We develop a fluid dynamics approximation to establish a tractable benchmark and derive the Waiting for Accumulated Inference Threshold (WAIT) algorithm. WAIT uses threshold-based batching to prevent eviction by keeping the system near load balance, achieving near-optimal throughput when output lengths are known. For practical settings where output lengths are unknown at arrival, we introduce Nested WAIT. Rather than predicting output lengths, Nested WAIT classifies prompts on-the-fly: short prompts complete early and exit, while longer prompts naturally advance to later segments. A safety buffer provides high-probability protection against memory overflow with only logarithmic overhead. Theoretical analysis establishes near-optimal performance in the asymptotic regime. Experiments on Llama-7B with an A100 GPU demonstrate that our approach achieves superior throughput and reduced latency compared to vLLM and Sarathi. This work applies operations research principles to establish a theoretical framework for LLM deployment under memory constraints.
comment: 49 pages, 18 figures
♻ ☆ Kriging prior Regression: A Case for Kriging-Based Spatial Features with TabPFN in Soil Mapping
Machine learning and geostatistics are two fundamentally different frameworks for predicting and spatially mapping soil properties. Geostatistics leverages the spatial structure of soil properties, while machine learning captures the relationship between available environmental features and soil properties. We propose a hybrid framework that enriches ML with spatial context through engineering of 'spatial lag' features from ordinary kriging. We call this approach 'kriging prior regression' (KpR), as it follows the inverse logic of regression kriging. To evaluate this approach, we assessed both the point and probabilistic prediction performance of KpR, using the TabPFN model across six fieldscale datasets from LimeSoDa. These datasets included soil organic carbon, clay content, and pH, along with features derived from remote sensing and in-situ proximal soil sensing. KpR with TabPFN demonstrated reliable uncertainty estimates and more accurate predictions in comparison to several other spatial techniques (e.g., regression/residual kriging with TabPFN), as well as to established non-spatial machine learning algorithms (e.g., random forest). Most notably, it significantly improved the average R2 by around 30% compared to machine learning algorithms without spatial context. This improvement was due to the strong prediction performance of the TabPFN algorithm itself and the complementary spatial information provided by KpR features. TabPFN is particularly effective for prediction tasks with small sample sizes, common in precision agriculture, whereas KpR can compensate for weak relationships between sensing features and soil properties when proximal soil sensing data are limited. Hence, we conclude that KpR with TabPFN is a very robust and versatile modelling framework for digital soil mapping in precision agriculture.
♻ ☆ Gibbs randomness-compression proposition: An efficient deep learning
A proposition that connects randomness and compression is put forward via Gibbs entropy over set of measurement vectors associated with a compression process. The proposition states that a lossy compression process is equivalent to {\it directed randomness} that preserves information content. The proposition originated from the observed behavior in newly proposed {\it Dual Tomographic Compression} (DTC) compress-train framework. This is akin to tomographic reconstruction of layer weight matrices via building compressed sensed projections, via so-called {\it weight rays}. This tomographic approach is applied to previous and next layers in a dual fashion, that triggers neuronal-level pruning. This novel model compress-train scheme appears in iterative fashion and acts as a smart neural architecture search: also called {\it compression aware training}. The experiments demonstrated the utility of this dual-tomography during training: method accelerates and supports lottery ticket hypothesis. However, random compress-train iterations having similar performance demonstrated the connection between randomness and compression from statistical physics perspective, we formulated the so-called {\it Gibbs randomness-compression proposition}, signifying randomness-compression relationship via Gibbs entropy. The proposition is supported with the experimental evidence, resulting in very high correlation between learning performance vs. Gibbs entropy over compression ratios. Practically, the DTC framework provides a promising approach for massively energy- and resource-efficient deep learning training.
comment: 11 pages, 5 figures, 1 table, 1 algorithm, 1 theorem
♻ ☆ Ambiguous Online Learning
We propose a new variant of online learning that we call "ambiguous online learning". In this setting, the learner is allowed to produce multiple predicted labels. Such an "ambiguous prediction" is considered correct when at least one of the labels is correct, and none of the labels are "predictably wrong". The definition of "predictably wrong" comes from a hypothesis class in which hypotheses are also multi-valued. Thus, a prediction is "predictably wrong" if it's not allowed by the (unknown) true hypothesis. In particular, this setting is natural in the context of multivalued dynamical systems, recommendation algorithms and lossless compression. It is also strongly related to so-called "apple tasting". We show that in this setting, there is a trichotomy of mistake bounds: up to logarithmic factors, any hypothesis class has an optimal mistake bound of either Theta(1), Theta(sqrt(N)) or N.
♻ ☆ A Universal and Robust Framework for Multiple Gas Recognition Based-on Spherical Normalization-Coupled Mahalanobis Algorithm
Electronic nose (E-nose) systems face two interconnected challenges in open-set gas recognition: feature distribution shift caused by signal drift and decision boundary failure induced by unknown gas interference. Existing methods predominantly rely on Euclidean distance or conventional classifiers, failing to account for anisotropic feature distributions and dynamic signal intensity variations. To address these issues, this study proposes the Spherical Normalization coupled Mahalanobis (SNM) module, a universal post-processing module for open-set gas recognition. First, it achieves geometric decoupling through cascaded batch and L2 normalization, projecting features onto a unit hypersphere to eliminate signal intensity fluctuations. Second, it utilizes Mahalanobis distance to construct adaptive ellipsoidal decision boundaries that conform to the anisotropic feature geometry. The architecture-agnostic SNM-Module seamlessly integrates with mainstream backbones including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experiments on the public Vergara dataset demonstrate that the Transformer+SNM configuration achieves near-theoretical-limit performance in discriminating among multiple target gases, with an AUROC of 0.9977 and an unknown gas detection rate of 99.57% at 5% false positive rate, significantly outperforming state-of-the-art methods with a 3.0% AUROC improvement and 91.0% standard deviation reduction compared to Class Anchor Clustering (CAC). The module maintains exceptional robustness across five sensor positions, with standard deviations below 0.0028. This work effectively addresses the critical challenge of simultaneously achieving high accuracy and high stability in open-set gas recognition, providing solid support for industrial E-nose deployment.
comment: 27 pages, 8 figures, 4 tables
♻ ☆ Interpretable Safety Alignment via SAE-Constructed Low-Rank Subspace Adaptation
Safety alignment -- training large language models (LLMs) to refuse harmful requests while remaining helpful -- is critical for responsible deployment. Prior work established that safety behaviors are governed by low-rank structures, suggesting parameter-efficient fine-tuning (PEFT) should be well-suited for alignment. However, Low-Rank Adaptation (LoRA) consistently underperforms full fine-tuning and reinforcement learning on safety benchmarks. We attribute this gap to semantic entanglement: safety-relevant directions are intertwined with unrelated concepts due to polysemanticity, impeding implicit subspace identification. To address this, we propose SAILS (Safety Alignment via Interpretable Low-rank Subspace), which leverages Sparse Autoencoders (SAEs) to disentangle representations into monosemantic features, constructs an interpretable safety subspace from SAE decoder directions, and uses it to initialize LoRA adapters. Theoretically, we prove that SAE-based identification achieves arbitrarily small recovery error under monosemanticity assumptions, while direct identification suffers an irreducible error floor. Empirically, SAILS achieves up to 99.6% safety rate on Gemma-2-9B -- exceeding full fine-tuning by 7.4 points and matching RLHF-based models -- while updating only 0.19% of parameters and providing interpretability.
♻ ☆ A Linear Approach to Data Poisoning
Backdoor and data-poisoning attacks can flip predictions with tiny training corruptions, yet a sharp theory linking poisoning strength, overparameterization, and regularization is lacking. We analyze ridge least squares with an unpenalized intercept in the high-dimensional regime \(p,n\to\infty\), \(p/n\to c\). Targeted poisoning is modelled by shifting a \(θ\)-fraction of one class by a direction \(\mathbf{v}\) and relabelling. Using resolvent techniques and deterministic equivalents from random matrix theory, we derive closed-form limits for the poisoned score explicit in the model parameters. The formulas yield scaling laws, recover the interpolation threshold as \(c\to1\) in the ridgeless limit, and show that the weights align with the poisoning direction. Synthetic experiments match theory across sweeps of the parameters and MNIST backdoor tests show qualitatively consistent trends. The results provide a tractable framework for quantifying poisoning in linear models.
comment: 9 pages, 9 Figures
♻ ☆ Comparison of neural network training strategies for the simulation of dynamical systems
Neural networks have become a widely adopted tool for modeling nonlinear dynamical systems from data. However, the choice of training strategy remains a key design decision, particularly for simulation tasks. This paper compares two predominant strategies: parallel and series-parallel training. The conducted empirical analysis spans five neural network architectures and two examples: a pneumatic valve test bench and an industrial robot benchmark. The study reveals that, even though series-parallel training dominates current practice, parallel training consistently yields better long-term prediction accuracy. Additionally, this work clarifies the often inconsistent terminology in the literature and relate both strategies to concepts from system identification. The findings suggest that parallel training should be considered the default training strategy for neural network-based simulation of dynamical systems.
comment: submitted to ECC 2026
♻ ☆ Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Euclidean diffusion models have achieved remarkable success in generative modeling across diverse domains, and they have been extended to manifold cases in recent advances. Instead of explicitly utilizing the structure of special manifolds as studied in previous works, in this paper we investigate direct sampling of the Euclidean diffusion models for general manifold-structured data. We reveal the multiscale singularity of the score function in the ambient space, which hinders the accuracy of diffusion-generated samples. We then present an elaborate theoretical analysis of the singularity structure of the score function by decomposing it along the tangential and normal directions of the manifold. To mitigate the singularity and improve the sampling accuracy, we propose two novel methods: (1) Niso-DM, which reduces the scale discrepancies in the score function by utilizing a non-isotropic noise, and (2) Tango-DM, which trains only the tangential component of the score function using a tangential-only loss function. Numerical experiments demonstrate that our methods achieve superior performance on distributions over various manifolds with complex geometries.
♻ ☆ Do Not Step Into the Same River Twice: Learning to Reason from Trial and Error
Reinforcement learning with verifiable rewards (RLVR) has significantly boosted the reasoning capability of language models (LMs) recently. However, existing RLVR approaches merely train LMs based on their own generated on-policy responses and are constrained by the initial capability of LMs, thus prone to exploration stagnation, in which LMs fail to solve more training problems and cannot further learn from the training data. Some work tries to address this by leveraging off-policy solutions to training problems, but relies on external expert guidance that is limited in availability and scalability. In this work, we propose LTE (Learning to reason from Trial and Error), an approach that hints LMs with their previously self-made mistakes, not requiring any external expert guidance. Experiments validate the effectiveness of LTE, which outperforms the normal group relative policy optimization (GRPO) by 5.02 in Pass@1 and 9.96 in Pass@k on average across six mathematical reasoning benchmarks for Qwen3-8B-Base and even performs better than methods that require external gold solutions as guidance after aligning the experimental setup. Further analysis confirms that LTE successfully mitigates exploration stagnation and enhances both exploitation and exploration during training. Our code is available at https://anonymous.4open.science/r/Learning-from-Trial-and-Error.
comment: Preprint
♻ ☆ Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Models
We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
♻ ☆ SIP-BMM: Constructing the Capability--Efficiency Pareto Set for LLMs via Structural Importance Prior Bayesian Model Merging
Constructing a Pareto set is pivotal for navigating the capability--efficiency trade-offs in Large Language Models (LLMs). However, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the curse of dimensionality, rendering the search space computationally intractable. To resolve this dichotomy, we propose Structural Importance Prior Bayesian Model Merging (SIP-BMM), a framework that automatically constructs the LLM Pareto set. SIP-BMM renders high-dimensional layer-wise search tractable by introducing an importance-aware Sparse Axis-Aligned Subspace Bayesian Optimization (SAASBO) strategy. By leveraging a structural importance prior derived from task-vector differences, our method guides SAASBO to automatically identify critical layers, thereby dramatically reducing the effective dimensionality without sacrificing the granularity of full-model control. The entire process is automated within an evolutionary loop driven by the Log-Noisy Expected Hypervolume Improvement ($q$NEHVI) acquisition function. Experiments demonstrate that SIP-BMM discovers a stronger and denser Pareto front than competitive baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/MiLab-HITSZ/2026-SIPBMM.
♻ ☆ v-PuNNs: van der Put Neural Networks for Transparent Ultrametric Representation Learning
Conventional deep learning models embed data in Euclidean space $\mathbb{R}^d$, a poor fit for strictly hierarchical objects such as taxa, word senses, or file systems. We introduce van der Put Neural Networks (v-PuNNs), the first architecture whose neurons are characteristic functions of p-adic balls in $\mathbb{Z}_p$. Under our Transparent Ultrametric Representation Learning (TURL) principle every weight is itself a p-adic number, giving exact subtree semantics. A new Finite Hierarchical Approximation Theorem shows that a depth-K v-PuNN with $\sum_{j=0}^{K-1}p^{\,j}$ neurons universally represents any K-level tree. Because gradients vanish in this discrete space, we propose Valuation-Adaptive Perturbation Optimization (VAPO), with a fast deterministic variant (HiPaN-DS) and a moment-based one (HiPaN / Adam-VAPO). On three canonical benchmarks our CPU-only implementation sets new state-of-the-art: WordNet nouns (52,427 leaves) 99.96% leaf accuracy in 16 min; GO molecular-function 96.9% leaf / 100% root in 50 s; NCBI Mammalia Spearman $ρ= -0.96$ with true taxonomic distance. The learned metric is perfectly ultrametric (zero triangle violations), and its fractal and information-theoretic properties are analyzed. Beyond classification we derive structural invariants for quantum systems (HiPaQ) and controllable generative codes for tabular data (Tab-HiPaN). v-PuNNs therefore bridge number theory and deep learning, offering exact, interpretable, and efficient models for hierarchical data.
comment: v2: Corrected mathematical statements in Section 3.1.3 and Appendix A regarding the van der Put basis properties. Clarified distinction between hierarchical indicator family and classical Schauder basis
♻ ☆ Causal Ordering for Structure Learning from Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages. Published in Transactions on Machine Learning Research
♻ ☆ On LLMs' Internal Representation of Code Correctness ICSE'26
Despite the effectiveness of large language models (LLMs) for code generation, they often output incorrect code. One reason is that model output probabilities are often not well-correlated with correctness, and reflect only the final output of the generation process. Inspired by findings that LLMs internally encode concepts like truthfulness, this paper explores if LLMs similarly represent code correctness. Specifically, we identify a correctness representation inside LLMs by contrasting the hidden states between pairs of correct and incorrect code for the same programming tasks. By experimenting on four LLMs, we show that exploiting this extracted correctness representation outperforms standard log-likelihood ranking, as well as verbalized model confidence. Furthermore, we explore how this internal correctness signal can be used to select higher-quality code samples, without requiring test execution. Ultimately, this work demonstrates how leveraging internal representations can enhance code generation systems and make LLMs more reliable, thus improving confidence in automatically generated code.
comment: Accepted for ICSE'26
♻ ☆ I Large Language Models possono nascondere un testo in un altro testo della stessa lunghezza
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. -- Un testo di senso compiuto può essere nascosto all'interno di un altro testo completamente diverso, eppure coerente e plausibile, della stessa lunghezza. Ad esempio, un tweet che celebra un leader politico potrebbe celare un tweet che lo critica duramente, o un'anonima recensione di un prodotto potrebbe in realtà codificare un manoscritto segreto. Questa sconcertante possibilità è oggi alla nostra portata grazie ai Large Language Models (LLM); in questo articolo presentiamo Calgacus, un protocollo semplice ed efficiente per realizzarla. Mostriamo che anche modesti LLM open-source da 8 miliardi di parametri sono sufficienti per ottenere risultati di alta qualità, e che un messaggio lungo quanto questo abstract può essere codificato e decodificato su un comune portatile in pochi secondi. L'esistenza di tale protocollo dimostra un radicale disaccoppiamento del testo dall'intento del suo autore, erodendo ulteriormente la fiducia nella comunicazione scritta, già scossa dall'ascesa dei chatbot basati su LLMs. Illustriamo ciò con uno scenario concreto: un'azienda potrebbe offrire pubblicamente i servizi di un LLM senza filtri nascondendo le sue risposte all'interno di risposte apparentemente innocue generate da un LLM considerato sicuro. Questa possibilità solleva questioni urgenti per la sicurezza dell'Intelligenza Artificiale e sfida la nostra comprensione di cosa significhi, per un Large Language Model, sapere qualcosa.
comment: 21 pages, in Italian language, main paper 9 pages. v1-v4 are in English
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ Low-degree lower bounds via almost orthonormal bases
Low-degree polynomials have emerged as a powerful paradigm for providing evidence of statistical-computational gaps across a variety of high-dimensional statistical models [Wein25]. For detection problems -- where the goal is to test a planted distribution $\mathbb{P}'$ against a null distribution $\mathbb{P}$ with independent components -- the standard approach is to bound the advantage using an $\mathbb{L}^2(\mathbb{P})$-orthonormal family of polynomials. However, this method breaks down for estimation tasks or more complex testing problems where $\mathbb{P}$ has some planted structures, so that no simple $\mathbb{L}^2(\mathbb{P})$-orthogonal polynomial family is available. To address this challenge, several technical workarounds have been proposed [SW22,SW25], though their implementation can be delicate. In this work, we propose a more direct proof strategy. Focusing on random graph models, we construct a basis of polynomials that is almost orthonormal under $\mathbb{P}$, in precisely those regimes where statistical-computational gaps arise. This almost orthonormal basis not only yields a direct route to establishing low-degree lower bounds, but also allows us to explicitly identify the polynomials that optimize the low-degree criterion. This, in turn, provides insights into the design of optimal polynomial-time algorithms. We illustrate the effectiveness of our approach by recovering known low-degree lower bounds, and establishing new ones for problems such as hidden subcliques, stochastic block models, and seriation models.
♻ ☆ Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs IEEE
Event knowledge graphs (EKG) extend the classical notion of a trace to capture multiple, interacting views of a process execution. In this paper, we tackle the open problem of automating EKG discovery from uncurated data through a principled probabilistic framing based on the outcome space resulting from featured-derived partial orders on events. From this we derive an EKG discovery algorithm based on statistical inference rather than an ad hoc or heuristic-based strategy, or relying on manual analysis from domain experts. This approach comes at the computational cost of exploring a large, non-convex hypothesis space. In particular, solving the maximum likelihood term in our objective function involves counting the number of linear extensions of posets, which in general is #P-complete. Fortunately, bound estimates suffice for model comparison, and admit incorporation into a bespoke branch-and-bound algorithm. We establish an upper bound on our objective function which we show to be antitonic w.r.t. search depth for branching rules that are monotonic w.r.t. model inclusion. This allows pruning of large portions of the search space, which we show experimentally leads to rapid convergence toward optimal solutions that are consistent with manually built EKGs.
comment: 2-column IEEE format
♻ ☆ Geometry-induced Regularization in Deep ReLU Neural Networks
Neural networks with a large number of parameters often do not overfit, owing to implicit regularization that favors \lq good\rq{} networks. Other related and puzzling phenomena include properties of flat minima, saddle-to-saddle dynamics, and neuron alignment. To investigate these phenomena, we study the local geometry of deep ReLU neural networks. We show that, for a fixed architecture, as the weights vary, the image of a sample $X$ forms a set whose local dimension changes. The parameter space is partitioned into regions where this local dimension remains constant. The local dimension is invariant under the natural symmetries of ReLU networks (i.e., positive rescalings and neuron permutations). We establish then that the network's geometry induces a regularization, with the local dimension serving as a key measure of regularity. Moreover, we relate the local dimension to a new notion of flatness of minima and to saddle-to-saddle dynamics. For shallow networks, we also show that the local dimension is connected to the number of linear regions perceived by $X$, offering insight into the effects of regularization. This is further supported by experiments and linked to neuron alignment. Our analysis offers, for the first time, a simple and unified geometric explanation that applies to all learning contexts for these phenomena, which are usually studied in isolation. Finally, we explore the practical computation of the local dimension and present experiments on the MNIST dataset, which highlight geometry-induced regularization in this setting.
♻ ☆ Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles ECAI 2025
For solving zero-sum games involving non-transitivity, a useful approach is to maintain a policy population to approximate the Nash Equilibrium (NE). Previous studies have shown that the Policy Space Response Oracles (PSRO) algorithm is an effective framework for solving such games. However, current methods initialize a new policy from scratch or inherit a single historical policy in Best Response (BR), missing the opportunity to leverage past policies to generate a better BR. In this paper, we propose Fusion-PSRO, which employs Nash Policy Fusion to initialize a new policy for BR training. Nash Policy Fusion serves as an implicit guiding policy that starts exploration on the current Meta-NE, thus providing a closer approximation to BR. Moreover, it insightfully captures a weighted moving average of past policies, dynamically adjusting these weights based on the Meta-NE in each iteration. This cumulative process further enhances the policy population. Empirical results on classic benchmarks show that Fusion-PSRO achieves lower exploitability, thereby mitigating the shortcomings of previous research on policy initialization in BR.
comment: Accepted by ECAI 2025
♻ ☆ GNN-XAR: A Graph Neural Network for Explainable Activity Recognition in Smart Homes
Sensor-based Human Activity Recognition (HAR) in smart home environments is crucial for several applications, especially in the healthcare domain. The majority of the existing approaches leverage deep learning models. While these approaches are effective, the rationale behind their outputs is opaque. Recently, eXplainable Artificial Intelligence (XAI) approaches emerged to provide intuitive explanations to the output of HAR models. To the best of our knowledge, these approaches leverage classic deep models like CNNs or RNNs. Recently, Graph Neural Networks (GNNs) proved to be effective for sensor-based HAR. However, existing approaches are not designed with explainability in mind. In this work, we propose the first explainable Graph Neural Network explicitly designed for smart home HAR. Our results on two public datasets show that this approach provides better explanations than state-of-the-art methods while also slightly improving the recognition rate.
♻ ☆ Convergence of a L2 regularized Policy Gradient Algorithm for the Multi Armed Bandit
Although Multi Armed Bandit (MAB) on one hand and the policy gradient approach on the other hand are among the most used frameworks of Reinforcement Learning, the theoretical properties of the policy gradient algorithm used for MAB have not been given enough attention. We investigate in this work the convergence of such a procedure for the situation when a $L2$ regularization term is present jointly with the 'softmax' parametrization. We prove convergence under appropriate technical hypotheses and test numerically the procedure including situations beyond the theoretical setting. The tests show that a time dependent regularized procedure can improve over the canonical approach especially when the initial guess is far from the solution.
♻ ☆ A Fast Anti-Jamming Cognitive Radar Deployment Algorithm Based on Reinforcement Learning
The fast deployment of cognitive radar to counter jamming remains a critical challenge in modern warfare, where more efficient deployment leads to quicker detection of targets. Existing methods are primarily based on evolutionary algorithms, which are time-consuming and prone to falling into local optima. We tackle these drawbacks via the efficient inference of neural networks and propose a brand new framework: Fast Anti-Jamming Radar Deployment Algorithm (FARDA). We first model the radar deployment problem as an end-to-end task and design deep reinforcement learning algorithms to solve it, where we develop integrated neural modules to perceive heatmap information and a brand new reward format. Empirical results demonstrate that our method achieves coverage comparable to evolutionary algorithms while deploying radars approximately 7,000 times faster. Further ablation experiments confirm the necessity of each component of FARDA.
♻ ☆ Balancing Fidelity and Plasticity: Aligning Mixed-Precision Fine-Tuning with Linguistic Hierarchies
Deploying and fine-tuning Large Language Models (LLMs) on resource-constrained edge devices requires navigating a strict trade-off between memory footprint and task performance. While Quantization-Aware Fine-tuning has emerged as a viable solution, existing paradigms typically decouple quantization and adapter optimization. This separation overlooks a fundamental theoretical constraint we identify as the \textit{Fidelity-Plasticity Trade-off}: a layer's capacity to adapt to new tasks (Plasticity) is inherently constrained by the information capacity of its frozen weights (Fidelity). Aggressively quantizing semantically critical layers creates an information bottleneck that no amount of adapter rank can recover, while high precision in robust syntactic layers wastes valuable memory. To address this, we introduce \textbf{QR-Adaptor}, a unified framework that jointly optimizes per-layer quantization bit-width and LoRA rank. By formulating resource allocation as a multi-objective search aligned with the model's linguistic hierarchy, our method systematically liberates memory from redundancy-heavy layers to reinvest in capacity-critical ones. Extensive experiments demonstrate that QR-Adaptor establishes a new Pareto frontier: notably, a model fine-tuned under a strict 4-bit memory budget achieves performance rivaling 16-bit baselines, demonstrating that precise resource alignment is as critical as model size.
comment: 18 pages, 5 figures
♻ ☆ PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are publicly available at: https://emorzz1g.github.io/PathFinder/.
comment: 20 pages, 14 figures, 4 tables. Under review
♻ ☆ Sharp Structure-Agnostic Lower Bounds for General Linear Functional Estimation
We establish a general statistical optimality theory for estimation problems where the target parameter is a linear functional of an unknown nuisance component that must be estimated from data. This formulation covers many causal and predictive parameters and has applications to numerous disciplines. We adopt the structure-agnostic framework introduced by \citet{balakrishnan2023fundamental}, which poses no structural properties on the nuisance functions other than access to black-box estimators that achieve some statistical estimation rate. This framework is particularly appealing when one is only willing to consider estimation strategies that use non-parametric regression and classification oracles as black-box sub-processes. Within this framework, we first prove the statistical optimality of the celebrated and widely used doubly robust estimators for the Average Treatment Effect (ATE), the most central parameter in causal inference. We then characterize the minimax optimal rate under the general formulation. Notably, we differentiate between two regimes in which double robustness can and cannot be achieved and in which first-order debiasing yields different error rates. Our result implies that first-order debiasing is simultaneously optimal in both regimes. We instantiate our theory by deriving optimal error rates that recover existing results and extend to various settings of interest, including the case when the nuisance is defined by generalized regressions and when covariate shift exists for training and test distribution.
comment: 117 pages; generalizes and subsumes arXiv:2402.14264 by the same authors
♻ ☆ Blade: A Derivative-free Bayesian Inversion Method using Diffusion Priors
Derivative-free Bayesian inversion is an important task in many science and engineering applications, particularly when computing the forward model derivative is computationally and practically challenging. In this paper, we introduce Blade, which can produce accurate and well-calibrated posteriors for Bayesian inversion using an ensemble of interacting particles. Blade leverages powerful data-driven priors based on diffusion models, and can handle nonlinear forward models that permit only black-box access (i.e., derivative-free). Theoretically, we establish a non-asymptotic convergence analysis to characterize the effects of forward model and prior estimation errors. Empirically, Blade achieves superior performance compared to existing derivative-free Bayesian inversion methods on various inverse problems, including challenging highly nonlinear fluid dynamics.
♻ ☆ Personalized Spiking Neural Networks with Ferroelectric Synapses for EEG Signal Processing
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) are strongly affected by non-stationary neural signals that vary across sessions and individuals, limiting the generalization of subject-agnostic models and motivating adaptive and personalized learning on resource-constrained platforms. Programmable memristive hardware offers a promising substrate for such post-deployment adaptation; however, practical realization is challenged by limited weight resolution, device variability, nonlinear programming dynamics, and finite device endurance. In this work, we show that spiking neural networks (SNNs) can be deployed on ferroelectric memristive synaptic devices for adaptive EEG-based motor imagery decoding under realistic device constraints. We fabricate, characterize, and model ferroelectric synapses. We evaluate a convolutional-recurrent SNN architecture under two complementary deployment strategies: (i) device-aware training using a ferroelectric synapse model, and (ii) transfer of software-trained weights followed by low-overhead on-device re-tuning. To enable efficient adaptation, we introduce a device-aware weight-update strategy in which gradient-based updates are accumulated digitally and converted into discrete programming events only when a threshold is exceeded, emulating nonlinear, state-dependent programming dynamics while reducing programming frequency. Both deployment strategies achieve classification performance comparable to state-of-the-art software-based SNNs. Furthermore, subject-specific transfer learning achieved by retraining only the final network layers improves classification accuracy. These results demonstrate that programmable ferroelectric hardware can support robust, low-overhead adaptation in spiking neural networks, opening a practical path toward personalized neuromorphic processing of neural signals.
♻ ☆ Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ On the Robustness of Answer Formats in Medical Reasoning Models
Medical reasoning models (MRMs) achieve superior performance on medical benchmarks compared to medical LLMs; however, high accuracy alone is insufficient for practical deployment. One of such requirements for real-world application is robustness to varying output constraints. Specifically, posing the same medical question while requesting different answer formats should not affect the underlying correctness of the response. We investigate this phenomenon in this paper, focusing on MRMs. To quantify this behavior, we propose the metric answer-format robustness: the ability to reliably generate correct outputs across varying specified formats. We examine three representative formats: multiple-choice, open-ended question-answering, and ranked lists. Across 15 proprietary and open-weight models, we observe substantial variation in format robustness (35-100%). Furthermore, we conduct controlled fine-tuning experiments on a shared backbone with matched training data to isolate the effects of the fine-tuning paradigm. We find that supervised fine-tuning yields more stable behavior across formats, whereas reinforcement fine-tuning often exhibits higher cross-format brittleness, with the degree of instability strongly dependent on reward design. Overall, answer-format robustness in MRMs is trainable yet brittle and requires careful evaluation for practical medical use.
comment: 62 pages, 47 figures
♻ ☆ Improving Graph Neural Network Training, Defense and Hypergraph Clustering via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise and adversarial attacks from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. Similarly, a hypergraph is a highly complex structure, and partitioning a hypergraph is a challenging task. This paper leverages spectral adversarial robustness evaluation to effectively address key challenges in complex-graph algorithms. By using spectral adversarial robustness evaluation to distinguish robust nodes from non-robust ones and treating them differently, we propose a training-set construction strategy that improves the training quality of GNNs. In addition, we develop algorithms to enhance both the adversarial robustness of GNNs and the performance of hypergraph clustering. Experimental results show that this series of methods is highly effective.
♻ ☆ Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
Artificial Intelligence (AI)-aided drug discovery is an active research field, yet AI models often exhibit poor accuracy in regression tasks for molecular property prediction, and perform catastrophically poorly for out-of-distribution (OOD) molecules. Here, we present MolRuleLoss, a substructure-substitution-rule-informed framework that improves the accuracy and generalizability of multiple molecular property regression models (MPRMs) such as GEM and UniMol for diverse molecular property prediction tasks. MolRuleLoss incorporates partial derivative constraints for substructure substitution rules (SSRs) into an MPRM's loss function. When using GEM models for predicting lipophilicity, water solubility, and solvation-free energy (using lipophilicity, ESOL, and freeSolv datasets from MoleculeNet), the root mean squared error (RMSE) values with and without MolRuleLoss were 0.587 vs. 0.660, 0.777 vs. 0.798, and 1.252 vs. 1.877, respectively, representing 2.6-33.3% performance improvements. We show that both the number and the quality of SSRs contribute to the magnitude of prediction accuracy gains obtained upon adding MolRuleLoss to an MPRM. MolRuleLoss improved the generalizability of MPRMs for "activity cliff" molecules in a lipophilicity prediction task and improved the generalizability of MPRMs for OOD molecules in a melting point prediction task. In a molecular weight prediction task for OOD molecules, MolRuleLoss reduced the RMSE value of a GEM model from 29.507 to 0.007. We also provide a formal demonstration that the upper bound of the variation for property change of SSRs is positively correlated with an MPRM's error. Together, we show that using the MolRuleLoss framework as a bolt-on boosts the prediction accuracy and generalizability of multiple MPRMs, supporting diverse applications in areas like cheminformatics and AI-aided drug discovery.
comment: Author information updated: add co-author Weihao Li (affiliation:Department of Statistics and Data Science, Tsinghua University, Beijing, 100084, China). Weihao Li proposed constructive revision suggestions for section on Proof of "Tian Conjecture"
♻ ☆ Long-Horizon Model-Based Offline Reinforcement Learning Without Conservatism
Popular offline reinforcement learning (RL) methods rely on conservatism, either by penalizing out-of-dataset actions or by restricting rollout horizons. In this work, we question the universality of this principle and instead revisit a complementary one: a Bayesian perspective. Rather than enforcing conservatism, the Bayesian approach tackles epistemic uncertainty in offline data by modeling a posterior distribution over plausible world models and training a history-dependent agent to maximize expected rewards, enabling test-time generalization. We first illustrate, in a bandit setting, that Bayesianism excels on low-quality datasets where conservatism fails. We then scale this principle to realistic tasks and show that long-horizon planning is critical for reducing value overestimation once conservatism is removed. To make this feasible, we introduce key design choices for performing and learning from long-horizon rollouts while controlling compounding errors. These yield our algorithm, NEUBAY, grounded in the neutral Bayesian principle. On D4RL and NeoRL benchmarks, NEUBAY generally matches or surpasses leading conservative algorithms, achieving new state-of-the-art on 7 datasets. Notably, it succeeds with rollout horizons of several hundred steps, contrary to dominant practice. Finally, we characterize datasets by quality and coverage, showing when NEUBAY is preferable to conservative methods. Together, we argue NEUBAY lays the foundation for a new practical direction in offline and model-based RL.
comment: Preprint (52 pages, 15 figures) and code is available at https://github.com/twni2016/neubay
♻ ☆ Renormalizable Spectral-Shell Dynamics as the Origin of Neural Scaling Laws
Neural scaling laws and double-descent phenomena suggest that deep-network training obeys a simple macroscopic structure despite highly nonlinear optimization dynamics. We derive such structure directly from gradient descent in function space. For mean-squared error loss, the training error evolves as $\dot e_t=-M(t)e_t$ with $M(t)=J_{θ(t)}J_{θ(t)}^{\!*}$, a time-dependent self-adjoint operator induced by the network Jacobian. Using Kato perturbation theory, we obtain an exact system of coupled modewise ODEs in the instantaneous eigenbasis of $M(t)$. To extract macroscopic behavior, we introduce a logarithmic spectral-shell coarse-graining and track quadratic error energy across shells. Microscopic interactions within each shell cancel identically at the energy level, so shell energies evolve only through dissipation and external inter-shell interactions. We formalize this via a \emph{renormalizable shell-dynamics} assumption, under which cumulative microscopic effects reduce to a controlled net flux across shell boundaries. Assuming an effective power-law spectral transport in a relevant resolution range, the shell dynamics admits a self-similar solution with a moving resolution frontier and explicit scaling exponents. This framework explains neural scaling laws and double descent, and unifies lazy (NTK-like) training and feature learning as two limits of the same spectral-shell dynamics.
♻ ☆ AFA-LoRA: Enabling Non-Linear Adaptations in LoRA with Activation Function Annealing
Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning (PEFT) method. However, its linear adaptation process limits its expressive power. This means there is a gap between the expressive power of linear training and non-linear training. To bridge this gap, we propose AFA-LoRA, a novel training strategy that brings non-linear expressivity to LoRA while maintaining its seamless mergeability. Our key innovation is an annealed activation function that transitions from a non-linear to a linear transformation during training, allowing the adapter to initially adopt stronger representational capabilities before converging to a mergeable linear form. We implement our method on supervised fine-tuning, reinforcement learning, and speculative decoding. The results show that AFA-LoRA reduces the performance gap between LoRA and full-parameter training. This work enables a more powerful and practical paradigm of parameter-efficient adaptation.
♻ ☆ Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
♻ ☆ Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.
♻ ☆ KVCrush: Key value cache size-reduction using similarity in head-behaviour
Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
♻ ☆ Precision Autotuning for Linear Solvers via Reinforcement Learning
We propose a reinforcement learning (RL) framework for adaptive precision tuning of linear solvers, and can be extended to general algorithms. The framework is formulated as a contextual bandit problem and solved using incremental action-value estimation with a discretized state space to select optimal precision configurations for computational steps, balancing precision and computational efficiency. To verify its effectiveness, we apply the framework to iterative refinement for solving linear systems $Ax = b$. In this application, our approach dynamically chooses precisions based on calculated features from the system. In detail, a Q-table maps discretized features (e.g., approximate condition number and matrix norm)to actions (chosen precision configurations for specific steps), optimized via an epsilon-greedy strategy to maximize a multi-objective reward balancing accuracy and computational cost. Empirical results demonstrate effective precision selection, reducing computational cost while maintaining accuracy comparable to double-precision baselines. The framework generalizes to diverse out-of-sample data and offers insight into utilizing RL precision selection for other numerical algorithms, advancing mixed-precision numerical methods in scientific computing. To the best of our knowledge, this is the first work on precision autotuning with RL and verified on unseen datasets.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
♻ ☆ Interaction Tensor SHAP
This study proposes Interaction Tensor SHAP (IT-SHAP), a tensor algebraic formulation of the Shapley Taylor Interaction Index (STII) that makes its computational structure explicit. STII extends the Shapley value to higher order interactions, but its exponential combinatorial definition makes direct computation intractable at scale. We reformulate STII as a linear transformation acting on a value function and derive an explicit algebraic representation of its weight tensor. This weight tensor is shown to possess a multilinear structure induced by discrete finite difference operators. When the value function admits a Tensor Train representation, higher order interaction indices can be computed in the parallel complexity class NC squared. In contrast, under general tensor network representations without structural assumptions, the same computation is proven to be P sharp hard. The main contributions are threefold. First, we establish an exact Tensor Train representation of the STII weight tensor. Second, we develop a parallelizable evaluation algorithm with explicit complexity bounds under the Tensor Train assumption. Third, we prove that computational intractability is unavoidable in the absence of such structure. These results demonstrate that the computational difficulty of higher order interaction analysis is determined by the underlying algebraic representation rather than by the interaction index itself, providing a theoretical foundation for scalable interpretation of high dimensional models.
comment: 22 pages
♻ ☆ A first-order method for nonconvex-strongly-concave constrained minimax optimization
In this paper we study a nonconvex-strongly-concave constrained minimax problem. Specifically, we propose a first-order augmented Lagrangian method for solving it, whose subproblems are nonconvex-strongly-concave unconstrained minimax problems and suitably solved by a first-order method developed in this paper that leverages the strong concavity structure. Under suitable assumptions, the proposed method achieves an operation complexity of $O(\varepsilon^{-3.5}\log\varepsilon^{-1})$, measured in terms of its fundamental operations, for finding an $\varepsilon$-KKT solution of the constrained minimax problem, which improves the previous best-known operation complexity by a factor of $\varepsilon^{-0.5}$.
comment: Accepted by Optimization Methods and Software
♻ ☆ 3D Dynamic Radio Map Prediction Using Vision Transformers for Low-Altitude Wireless Networks IEEE
Low-altitude wireless networks (LAWN) are rapidly expanding with the growing deployment of unmanned aerial vehicles (UAVs) for logistics, surveillance, and emergency response. Reliable connectivity remains a critical yet challenging task due to three-dimensional (3D) mobility, time-varying user density, and limited power budgets. The transmit power of base stations (BSs) fluctuates dynamically according to user locations and traffic demands, leading to a highly non-stationary 3D radio environment. Radio maps (RMs) have emerged as an effective means to characterize spatial power distributions and support radio-aware network optimization. However, most existing works construct static or offline RMs, overlooking real-time power variations and spatio-temporal dependencies in multi-UAV networks. To overcome this limitation, we propose a 3D dynamic radio map (3D-DRM) framework that learns and predicts the spatio-temporal evolution of received power. Specially, a Vision Transformer (ViT) encoder extracts high-dimensional spatial representations from 3D RMs, while a Transformer-based module models sequential dependencies to predict future power distributions. Experiments unveil that 3D-DRM accurately captures fast-varying power dynamics and substantially outperforms baseline models in both RM reconstruction and short-term prediction.
comment: 7 pages, 4 figures, submitted to IEEE ICC 2026
♻ ☆ CEE: An Inference-Time Jailbreak Defense for Embodied Intelligence via Subspace Concept Rotation
Large language models (LLMs) are widely used for task understanding and action planning in embodied intelligence (EI) systems, but their adoption substantially increases vulnerability to jailbreak attacks. While recent work explores inference-time defenses, existing methods rely on static interventions on intermediate representations, which often degrade generation quality and impair adherence to task instructions, reducing system usability in EI settings. We propose a dynamic defense framework. For each EI inference request, we dynamically construct a task-specific safety-semantic subspace, project its hidden state to the most relevant direction, and apply SLERP rotation for adaptive safety control. At comparable defense success rates, our method preserves generation quality, improves usability, reduces tuning cost, and strengthens robustness in EI scenarios.
♻ ☆ CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers NeurIPS 2025
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully connected layers, and introduces no additional heavy operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic Transformers (EITs) framework, CAT's design not only offers practical efficiency and ease of implementation, but also provides insights to guide the development of future high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
comment: Accepted as a poster at NeurIPS 2025
♻ ☆ Matrix Sensing with Kernel Optimal Loss: Robustness and Optimization Landscape
In this paper we study how the choice of loss functions of non-convex optimization problems affects their robustness and optimization landscape, through the study of noisy matrix sensing. In traditional regression tasks, mean squared error (MSE) loss is a common choice, but it can be unreliable for non-Gaussian or heavy-tailed noise. To address this issue, we adopt a robust loss based on nonparametric regression, which uses a kernel-based estimate of the residual density and maximizes the estimated log-likelihood. This robust formulation coincides with the MSE loss under Gaussian errors but remains stable under more general settings. We further examine how this robust loss reshapes the optimization landscape by analyzing the upper-bound of restricted isometry property (RIP) constants for spurious local minima to disappear. Through theoretical and empirical analysis, we show that this new loss excels at handling large noise and remains robust across diverse noise distributions. This work offers initial insights into enhancing the robustness of machine learning tasks through simply changing the loss, guided by an intuitive and broadly applicable analytical framework.
comment: CPAL 2026
♻ ☆ ReNF: Rethinking the Design Space of Neural Long-Term Time Series Forecasters
Neural Forecasters (NFs) have become a cornerstone of Long-term Time Series Forecasting (LTSF). However, recent progress has been hampered by an overemphasis on architectural complexity at the expense of fundamental forecasting principles. In this work, we revisit the principles of LTSF. We begin by formulating a Variance Reduction Hypothesis (VRH), positing that generating and combining multiple forecasts is essential to reducing the inherent uncertainty of NFs. Guided by this, we propose Boosted Direct Output (BDO), a streamlined paradigm that synergistically hybridizes the causal structure of Auto-Regressive (AR) with the stability of Direct Output (DO), while implicitly realizing the principle of forecast combination within a single network. Furthermore, we address the critical validation-test generalization gap by employing parameter smoothing to stabilize optimization. Extensive experiments demonstrate that these trivial yet principled improvements enable a direct temporal MLP to outperform recent, complex state-of-the-art models in nearly all benchmarks, without relying on intricate inductive biases. Finally, we empirically verify our hypothesis, establishing a dynamic performance bound that highlights promising directions for future research. The code for review is available at: https://anonymous.4open.science/r/ReNF-A151.
♻ ☆ Learning Optimal Defender Strategies for CAGE-2 using a POMDP Model
CAGE-2 is an accepted benchmark for learning and evaluating defender strategies against cyberattacks. It reflects a scenario where a defender agent protects an IT infrastructure against various attacks. Many defender methods for CAGE-2 have been proposed in the literature. In this paper, we construct a formal model for CAGE-2 using the framework of Partially Observable Markov Decision Process (POMDP). Based on this model, we define an optimal defender strategy for CAGE-2 and introduce a method to efficiently learn this strategy. Our method, called BF-PPO, is based on PPO, and it uses particle filter to mitigate the computational complexity due to the large state space of the CAGE-2 model. We evaluate our method in the CAGE-2 CybORG environment and compare its performance with that of CARDIFF, the highest ranked method on the CAGE-2 leaderboard. We find that our method outperforms CARDIFF regarding the learned defender strategy and the required training time.
comment: The paper is accepted for the 21st International Conference on Network and Service Management (CNSM-2025) and the official version is published in the conference proceedings
♻ ☆ Myopically Verifiable Probabilistic Certificates for Safe Control and Learning
This paper addresses the design of safety certificates for stochastic systems, with a focus on ensuring long-term safety through fast real-time control. In stochastic environments, set invariance-based methods that restrict the probability of risk events in infinitesimal time intervals may exhibit significant long-term risks due to cumulative uncertainties/risks. On the other hand, reachability-based approaches that account for the long-term future may require prohibitive computation in real-time decision making. To overcome this challenge involving stringent long-term safety vs. computation tradeoffs, we first introduce a novel technique termed 'probabilistic invariance'. This technique characterizes the invariance conditions of the probability of interest. When the target probability is defined using long-term trajectories, this technique can be used to design myopic conditions/controllers with assured long-term safe probability. Then, we integrate this technique into safe control and learning. The proposed control methods efficiently assure long-term safety using neural networks or model predictive controllers with short outlook horizons. The proposed learning methods can be used to guarantee long-term safety during and after training. Finally, we demonstrate the performance of the proposed techniques in numerical simulations.
♻ ☆ Elastic Federated Learning over Open Radio Access Network (O-RAN) for Concurrent Execution of Multiple Distributed Learning Tasks
Federated learning (FL) is a popular distributed machine learning (ML) technique in Internet of Things (IoT) networks, where resource-constrained devices collaboratively train ML models while preserving data privacy. However, implementation of FL over 5G-and-beyond wireless networks faces key challenges caused by (i) dynamics of the wireless network conditions and (ii) the coexistence of multiple FL-services in the system. In this paper, we unveil two key phenomena that arise from these challenges: over/under-provisioning of resources and perspective-driven load balancing, both of which significantly impact FL performance in IoT environments. We take the first steps towards addressing these phenomena by proposing a novel distributed ML architecture called elastic FL (EFL). EFL unleashes the full potential of Open RAN (O-RAN) systems and introduces an elastic resource provisioning methodology to execute FL-services. It further constitutes a multi-time-scale FL management system that introduces three dedicated network control functionalities tailored for FL-services, including (i) non-real-time (non-RT) system descriptor, which trains ML-based applications to predict both system and FL-related dynamics and parameters; (ii) near-RT FL controller, which handles O-RAN slicing and mobility management for the seamless execution of FL-services; (iii) FL MAC scheduler, which conducts real-time resource allocation to the end clients of various FL-services. We finally prototype EFL to demonstrate its potential in improving the performance of FL-services.
comment: 9 pages, 4 figures
♻ ☆ The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, some benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. Moreover, no benchmarks currently exist for directly measuring whether language models lie. In this work, we introduce a large-scale human-collected dataset for directly measuring lying, allowing us to disentangle accuracy from honesty. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, most frontier LLMs obtain high scores on truthfulness benchmarks yet exhibit a substantial propensity to lie under pressure, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
comment: Website: https://www.mask-benchmark.ai
♻ ☆ Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
Existing SFDA methods struggle to fully use pre-trained knowledge and often rely on a single model's predictions or handcrafted prompts, limiting robustness under domain shift. Multimodal Large Language Models (MLLMs) offer a promising alternative: they encode rich visual-semantic knowledge and generalize well without task-specific tuning. However, their use in SFDA is hindered by instruction-following failures, inconsistent outputs, and high inference costs. We propose Reliability-based Curriculum Learning (RCL), a novel framework that distills robust supervision from multiple frozen MLLMs into a compact target model. RCL organizes adaptation as a three-stage curriculum that progressively incorporates pseudo-labels based on inter-model agreement and model confidence, enabling stable and noise-aware training. Our approach achieves state-of-the-art performance on standard SFDA datasets, Office-Home, DomainNet-126, and VisDA-C, outperforming zero-shot MLLMs, their ensembles, all without accessing source data or tuning foundation models. Our code is available at: https://github.com/Dong-Jie-Chen/RCL.
♻ ☆ Solving the Paint Shop Problem with Flexible Management of Multi-Lane Buffers Using Reinforcement Learning and Action Masking
In the paint shop problem, an unordered incoming sequence of cars assigned to different colors has to be reshuffled with the objective of minimizing the number of color changes. To reshuffle the incoming sequence, manufacturers can employ a first-in-first-out multi-lane buffer system allowing store and retrieve operations. So far, prior studies primarily focused on simple decision heuristics like greedy or simplified problem variants that do not allow full flexibility when performing store and retrieve operations. In this study, we propose a reinforcement learning approach to minimize color changes for the flexible problem variant, where store and retrieve operations can be performed in an arbitrary order. After proving that greedy retrieval is optimal, we incorporate this finding into the model using action masking. Our evaluation, based on 170 problem instances with 2-8 buffer lanes and 5-15 colors, shows that our approach reduces color changes compared to existing methods by considerable margins depending on the problem size. Furthermore, we demonstrate the robustness of our approach towards different buffer sizes and imbalanced color distributions.
♻ ☆ Conformal Prediction for Dose-Response Models with Continuous Treatments
Understanding the dose-response relation between a continuous treatment and the outcome for an individual can greatly drive decision-making, particularly in areas like personalized drug dosing and personalized healthcare interventions. Point estimates are often insufficient in these high-risk environments, highlighting the need for uncertainty quantification to support informed decisions. Conformal prediction, a distribution-free and model-agnostic method for uncertainty quantification, has seen limited application in continuous treatments or dose-response models. To address this gap, we propose a novel methodology that frames the causal dose-response problem as a covariate shift, leveraging weighted conformal prediction. By incorporating propensity estimation, conformal predictive systems, and likelihood ratios, we present a practical solution for generating prediction intervals for dose-response models. Additionally, our method approximates local coverage for every treatment value by applying kernel functions as weights in weighted conformal prediction. Finally, we use a new synthetic benchmark dataset to demonstrate the significance of covariate shift assumptions in achieving robust prediction intervals for dose-response models.
comment: 10 pages main text, 8 pages references and appendix
♻ ☆ Active operator learning with predictive uncertainty quantification for partial differential equations
With the increased prevalence of neural operators being used to provide rapid solutions to partial differential equations (PDEs), understanding the accuracy of model predictions and the associated error levels is necessary for deploying reliable surrogate models in scientific applications. Existing uncertainty quantification (UQ) frameworks employ ensembles or Bayesian methods, which can incur substantial computational costs during both training and inference. We propose a lightweight predictive UQ method tailored for Deep operator networks (DeepONets) that also generalizes to other operator networks. Numerical experiments on linear and nonlinear PDEs demonstrate that the framework's uncertainty estimates are unbiased and provide accurate out-of-distribution uncertainty predictions with a sufficiently large training dataset. Our framework provides fast inference and uncertainty estimates that can efficiently drive outer-loop analyses that would be prohibitively expensive with conventional solvers. We demonstrate how predictive uncertainties can be used in the context of Bayesian optimization and active learning problems to yield improvements in accuracy and data-efficiency for outer-loop optimization procedures. In the active learning setup, we extend the framework to Fourier Neural Operators (FNO) and describe a generalized method for other operator networks. To enable real-time deployment, we introduce an inference strategy based on precomputed trunk outputs and a sparse placement matrix, reducing evaluation time by more than a factor of five. Our method provides a practical route to uncertainty-aware operator learning in time-sensitive settings.
comment: Submitted to the Journal of Computational Physics
♻ ☆ Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models NeurIPS
We argue that diffusion models' success in modeling complex distributions is, for the most part, coming from their input conditioning. This paper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
comment: Published at NeurIPS, 22 pages, 7 tables, 12 figures, code and models available
♻ ☆ SaVe-TAG: LLM-based Interpolation for Long-Tailed Text-Attributed Graphs KDD 2026
Real-world graph data often follows long-tailed distributions, making it difficult for Graph Neural Networks (GNNs) to generalize well across both head and tail classes. Recent advances in Vicinal Risk Minimization (VRM) have shown promise in mitigating class imbalance with numeric interpolation; however, existing approaches largely rely on embedding-space arithmetic, which fails to capture the rich semantics inherent in text-attributed graphs. In this work, we propose our method, SaVe-TAG (Semantic-aware Vicinal Risk Minimization for Long-Tailed Text-Attributed Graphs), a novel VRM framework that leverages Large Language Models (LLMs) to perform text-level interpolation, generating on-manifold, boundary-enriching synthetic samples for minority classes. To mitigate the risk of noisy generation, we introduce a confidence-based edge assignment mechanism that uses graph topology as a natural filter to ensure structural consistency. We provide theoretical justification for our method and conduct extensive experiments on benchmark datasets, showing that our approach consistently outperforms both numeric interpolation and prior long-tailed node classification baselines. Our results highlight the importance of integrating semantic and structural signals for balanced and effective learning on text-attributed graphs. The source code is publicly available at: https://github.com/LWang-Laura/SaVe-TAG.
comment: Accepted KDD 2026 Research Track Paper
♻ ☆ Training Set Reconstruction from Differentially Private Forests: How Effective is DP? IEEE
Recent research has shown that structured machine learning models such as tree ensembles are vulnerable to privacy attacks targeting their training data. To mitigate these risks, differential privacy (DP) has become a widely adopted countermeasure, as it offers rigorous privacy protection. In this paper, we introduce a reconstruction attack targeting state-of-the-art $ε$-DP random forests. By leveraging a constraint programming model that incorporates knowledge of the forest's structure and DP mechanism characteristics, our approach formally reconstructs the most likely dataset that could have produced a given forest. Through extensive computational experiments, we examine the interplay between model utility, privacy guarantees and reconstruction accuracy across various configurations. Our results reveal that random forests trained with meaningful DP guarantees can still leak portions of their training data. Specifically, while DP reduces the success of reconstruction attacks, the only forests fully robust to our attack exhibit predictive performance no better than a constant classifier. Building on these insights, we also provide practical recommendations for the construction of DP random forests that are more resilient to reconstruction attacks while maintaining a non-trivial predictive performance.
comment: This work has been accepted for publication at the 2026 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)
Multimedia 4
☆ DDNet: A Dual-Stream Graph Learning and Disentanglement Framework for Temporal Forgery Localization
The rapid evolution of AIGC technology enables misleading viewers by tampering mere small segments within a video, rendering video-level detection inaccurate and unpersuasive. Consequently, temporal forgery localization (TFL), which aims to precisely pinpoint tampered segments, becomes critical. However, existing methods are often constrained by \emph{local view}, failing to capture global anomalies. To address this, we propose a \underline{d}ual-stream graph learning and \underline{d}isentanglement framework for temporal forgery localization (DDNet). By coordinating a \emph{Temporal Distance Stream} for local artifacts and a \emph{Semantic Content Stream} for long-range connections, DDNet prevents global cues from being drowned out by local smoothness. Furthermore, we introduce Trace Disentanglement and Adaptation (TDA) to isolate generic forgery fingerprints, alongside Cross-Level Feature Embedding (CLFE) to construct a robust feature foundation via deep fusion of hierarchical features. Experiments on ForgeryNet and TVIL benchmarks demonstrate that our method outperforms state-of-the-art approaches by approximately 9\% in AP@0.95, with significant improvements in cross-domain robustness.
♻ ☆ MIND Your Reasoning: A Meta-Cognitive Intuitive-Reflective Network for Dual-Reasoning in Multimodal Stance Detection
Multimodal Stance Detection (MSD) is a crucial task for understanding public opinion on social media. Existing methods predominantly operate by learning to fuse modalities. They lack an explicit reasoning process to discern how inter-modal dynamics, such as irony or conflict, collectively shape the user's final stance, leading to frequent misjudgments. To address this, we advocate for a paradigm shift from *learning to fuse* to *learning to reason*. We introduce **MIND**, a **M**eta-cognitive **I**ntuitive-reflective **N**etwork for **D**ual-reasoning. Inspired by the dual-process theory of human cognition, MIND operationalizes a self-improving loop. It first generates a rapid, intuitive hypothesis by querying evolving Modality and Semantic Experience Pools. Subsequently, a meta-cognitive reflective stage uses Modality-CoT and Semantic-CoT to scrutinize this initial judgment, distill superior adaptive strategies, and evolve the experience pools themselves. These dual experience structures are continuously refined during training and recalled at inference to guide robust and context-aware stance decisions. Extensive experiments on the MMSD benchmark demonstrate that our MIND significantly outperforms most baseline models and exhibits strong generalization.
♻ ☆ Pedagogical Reflections on the Holistic Cognitive Development (HCD) Framework and AI-Augmented Learning in Creative Computing
This paper presents an expanded account of the Holistic Cognitive Development (HCD) framework for reflective and creative learning in computing education. The HCD framework integrates design thinking, experiential learning, and reflective practice into a unified constructivist pedagogy emphasizing autonomy, ownership, and scaffolding. It is applied across courses in game design (CS3247, CS4350), virtual reality (CS4240), and extended reality systems, where students engage in iterative cycles of thinking, creating, criticizing, and reflecting. The paper also examines how AI-augmented systems such as iReflect, ReflexAI, and Knowledge Graph-enhanced LLM feedback tools operationalize the HCD framework through scalable, personalized feedback. Empirical findings demonstrate improved reflective depth, feedback quality, and learner autonomy. The work advocates a balance of supportive autonomy in supervision, where students practice self-directed inquiry while guided through structured reflection and feedback.
comment: Short Abstract
♻ ☆ pyAMPACT: A Score-Audio Alignment Toolkit for Performance Data Estimation and Multi-modal Processing
pyAMPACT (Python-based Automatic Music Performance Analysis and Comparison Toolkit) links symbolic and audio music representations to facilitate score-informed estimation of performance data in audio as well as general linking of symbolic and audio music representations with a variety of annotations. pyAMPACT can read a range of symbolic formats and can output note-linked audio descriptors/performance data into MEI-formatted files. The audio analysis uses score alignment to calculate time-frequency regions of importance for each note in the symbolic representation from which to estimate a range of parameters. These include tuning-, dynamics-, and timbre-related performance descriptors, with timing-related information available from the score alignment. Beyond performance data estimation, pyAMPACT also facilitates multi-modal investigations through its infrastructure for linking symbolic representations and annotations to audio.
comment: Proceedings of the 2025 International Computer Music Conference
Computer Vision and Pattern Recognition 75
☆ Learnability-Driven Submodular Optimization for Active Roadside 3D Detection CVPR 2026
Roadside perception datasets are typically constructed via cooperative labeling between synchronized vehicle and roadside frame pairs. However, real deployment often requires annotation of roadside-only data due to hardware and privacy constraints. Even human experts struggle to produce accurate labels without vehicle-side data (image, LIDAR), which not only increases annotation difficulty and cost, but also reveals a fundamental learnability problem: many roadside-only scenes contain distant, blurred, or occluded objects whose 3D properties are ambiguous from a single view and can only be reliably annotated by cross-checking paired vehicle--roadside frames. We refer to such cases as inherently ambiguous samples. To reduce wasted annotation effort on inherently ambiguous samples while still obtaining high-performing models, we turn to active learning. This work focuses on active learning for roadside monocular 3D object detection and proposes a learnability-driven framework that selects scenes which are both informative and reliably labelable, suppressing inherently ambiguous samples while ensuring coverage. Experiments demonstrate that our method, LH3D, achieves 86.06%, 67.32%, and 78.67% of full-performance for vehicles, pedestrians, and cyclists respectively, using only 25% of the annotation budget on DAIR-V2X-I, significantly outperforming uncertainty-based baselines. This confirms that learnability, not uncertainty, matters for roadside 3D perception.
comment: 10 pages, 7 figures. Submitted to CVPR 2026
☆ Mitigating Longitudinal Performance Degradation in Child Face Recognition Using Synthetic Data
Longitudinal face recognition in children remains challenging due to rapid and nonlinear facial growth, which causes template drift and increasing verification errors over time. This work investigates whether synthetic face data can act as a longitudinal stabilizer by improving temporal robustness of child face recognition models. Using an identity disjoint protocol on the Young Face Aging (YFA) dataset, we evaluate three settings: (i) pretrained MagFace embeddings without dataset specific fine-tuning, (ii) MagFace fine-tuned using authentic training faces only, and (iii) MagFace fine-tuned using a combination of authentic and synthetically generated training faces. Synthetic data is generated using StyleGAN2 ADA and incorporated exclusively within the training identities; a post generation filtering step is applied to mitigate identity leakage and remove artifact affected samples. Experimental results across enrollment verification gaps from 6 to 36 months show that synthetic-augmented fine tuning substantially reduces error rates relative to both the pretrained baseline and real only fine tuning. These findings provide a risk aware assessment of synthetic augmentation for improving identity persistence in pediatric face recognition.
☆ FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation
Precise delineation of anatomical and pathological structures within 3D medical volumes is crucial for accurate diagnosis, effective surgical planning, and longitudinal disease monitoring. Despite advancements in AI, clinically viable segmentation is often hindered by the scarcity of 3D annotations, patient-specific variability, data privacy concerns, and substantial computational overhead. In this work, we propose FALCON, a cross-domain few-shot segmentation framework that achieves high-precision 3D volume segmentation by processing data as 2D slices. The framework is first meta-trained on natural images to learn-to-learn generalizable segmentation priors, then transferred to the medical domain via adversarial fine-tuning and boundary-aware learning. Task-aware inference, conditioned on support cues, allows FALCON to adapt dynamically to patient-specific anatomical variations across slices. Experiments on four benchmarks demonstrate that FALCON consistently achieves the lowest Hausdorff Distance scores, indicating superior boundary accuracy while maintaining a Dice Similarity Coefficient comparable to the state-of-the-art models. Notably, these results are achieved with significantly less labeled data, no data augmentation, and substantially lower computational overhead.
comment: 20 pages, 6 figures, 7 tables
☆ Evaluating Deep Learning-Based Face Recognition for Infants and Toddlers: Impact of Age Across Developmental Stages IEEE
Face recognition for infants and toddlers presents unique challenges due to rapid facial morphology changes, high inter-class similarity, and limited dataset availability. This study evaluates the performance of four deep learning-based face recognition models FaceNet, ArcFace, MagFace, and CosFace on a newly developed longitudinal dataset collected over a 24 month period in seven sessions involving children aged 0 to 3 years. Our analysis examines recognition accuracy across developmental stages, showing that the True Accept Rate (TAR) is only 30.7% at 0.1% False Accept Rate (FAR) for infants aged 0 to 6 months, due to unstable facial features. Performance improves significantly in older children, reaching 64.7% TAR at 0.1% FAR in the 2.5 to 3 year age group. We also evaluate verification performance over different time intervals, revealing that shorter time gaps result in higher accuracy due to reduced embedding drift. To mitigate this drift, we apply a Domain Adversarial Neural Network (DANN) approach that improves TAR by over 12%, yielding features that are more temporally stable and generalizable. These findings are critical for building biometric systems that function reliably over time in smart city applications such as public healthcare, child safety, and digital identity services. The challenges observed in early age groups highlight the importance of future research on privacy preserving biometric authentication systems that can address temporal variability, particularly in secure and regulated urban environments where child verification is essential.
comment: Accepted and presented at IEEE IJCB 2025 conference; final published version forthcoming
☆ Trustworthy Data-Driven Wildfire Risk Prediction and Understanding in Western Canada
In recent decades, the intensification of wildfire activity in western Canada has resulted in substantial socio-economic and environmental losses. Accurate wildfire risk prediction is hindered by the intrinsic stochasticity of ignition and spread and by nonlinear interactions among fuel conditions, meteorology, climate variability, topography, and human activities, challenging the reliability and interpretability of purely data-driven models. We propose a trustworthy data-driven wildfire risk prediction framework based on long-sequence, multi-scale temporal modeling, which integrates heterogeneous drivers while explicitly quantifying predictive uncertainty and enabling process-level interpretation. Evaluated over western Canada during the record-breaking 2023 and 2024 fire seasons, the proposed model outperforms existing time-series approaches, achieving an F1 score of 0.90 and a PR-AUC of 0.98 with low computational cost. Uncertainty-aware analysis reveals structured spatial and seasonal patterns in predictive confidence, highlighting increased uncertainty associated with ambiguous predictions and spatiotemporal decision boundaries. SHAP-based interpretation provides mechanistic understanding of wildfire controls, showing that temperature-related drivers dominate wildfire risk in both years, while moisture-related constraints play a stronger role in shaping spatial and land-cover-specific contrasts in 2024 compared to the widespread hot and dry conditions of 2023. Data and code are available at https://github.com/SynUW/mmFire.
☆ LabelAny3D: Label Any Object 3D in the Wild NeurIPS 2025
Detecting objects in 3D space from monocular input is crucial for applications ranging from robotics to scene understanding. Despite advanced performance in the indoor and autonomous driving domains, existing monocular 3D detection models struggle with in-the-wild images due to the lack of 3D in-the-wild datasets and the challenges of 3D annotation. We introduce LabelAny3D, an \emph{analysis-by-synthesis} framework that reconstructs holistic 3D scenes from 2D images to efficiently produce high-quality 3D bounding box annotations. Built on this pipeline, we present COCO3D, a new benchmark for open-vocabulary monocular 3D detection, derived from the MS-COCO dataset and covering a wide range of object categories absent from existing 3D datasets. Experiments show that annotations generated by LabelAny3D improve monocular 3D detection performance across multiple benchmarks, outperforming prior auto-labeling approaches in quality. These results demonstrate the promise of foundation-model-driven annotation for scaling up 3D recognition in realistic, open-world settings.
comment: NeurIPS 2025. Project page: https://uva-computer-vision-lab.github.io/LabelAny3D/
☆ Animated 3DGS Avatars in Diverse Scenes with Consistent Lighting and Shadows
We present a method for consistent lighting and shadows when animated 3D Gaussian Splatting (3DGS) avatars interact with 3DGS scenes or with dynamic objects inserted into otherwise static scenes. Our key contribution is Deep Gaussian Shadow Maps (DGSM), a modern analogue of the classical shadow mapping algorithm tailored to the volumetric 3DGS representation. Building on the classic deep shadow mapping idea, we show that 3DGS admits closed form light accumulation along light rays, enabling volumetric shadow computation without meshing. For each estimated light, we tabulate transmittance over concentric radial shells and store them in octahedral atlases, which modern GPUs can sample in real time per query to attenuate affected scene Gaussians and thus cast and receive shadows consistently. To relight moving avatars, we approximate the local environment illumination with HDRI probes represented in a spherical harmonic (SH) basis and apply a fast per Gaussian radiance transfer, avoiding explicit BRDF estimation or offline optimization. We demonstrate environment consistent lighting for avatars from AvatarX and ActorsHQ, composited into ScanNet++, DL3DV, and SuperSplat scenes, and show interactions with inserted objects. Across single and multi avatar settings, DGSM and SH relighting operate fully in the volumetric 3DGS representation, yielding coherent shadows and relighting while avoiding meshing.
comment: Our project page is available at https://miraymen.github.io/dgsm
☆ An Empirical Study of Monocular Human Body Measurement Under Weak Calibration
Estimating human body measurements from monocular RGB imagery remains challenging due to scale ambiguity, viewpoint sensitivity, and the absence of explicit depth information. This work presents a systematic empirical study of three weakly calibrated monocular strategies: landmark-based geometry, pose-driven regression, and object-calibrated silhouettes, evaluated under semi-constrained conditions using consumer-grade cameras. Rather than pursuing state-of-the-art accuracy, the study analyzes how differing calibration assumptions influence measurement behavior, robustness, and failure modes across varied body types. The results reveal a clear trade-off between user effort during calibration and the stability of resulting circumferential quantities. This paper serves as an empirical design reference for lightweight monocular human measurement systems intended for deployment on consumer devices.
comment: The paper consists of 8 pages, 2 figures (on pages 4 and 7), and 2 tables (both on page 6)
☆ CAP-IQA: Context-Aware Prompt-Guided CT Image Quality Assessment
Prompt-based methods, which encode medical priors through descriptive text, have been only minimally explored for CT Image Quality Assessment (IQA). While such prompts can embed prior knowledge about diagnostic quality, they often introduce bias by reflecting idealized definitions that may not hold under real-world degradations such as noise, motion artifacts, or scanner variability. To address this, we propose the Context-Aware Prompt-guided Image Quality Assessment (CAP-IQA) framework, which integrates text-level priors with instance-level context prompts and applies causal debiasing to separate idealized knowledge from factual, image-specific degradations. Our framework combines a CNN-based visual encoder with a domain-specific text encoder to assess diagnostic visibility, anatomical clarity, and noise perception in abdominal CT images. The model leverages radiology-style prompts and context-aware fusion to align semantic and perceptual representations. On the 2023 LDCTIQA challenge benchmark, CAP-IQA achieves an overall correlation score of 2.8590 (sum of PLCC, SROCC, and KROCC), surpassing the top-ranked leaderboard team (2.7427) by 4.24%. Moreover, our comprehensive ablation experiments confirm that prompt-guided fusion and the simplified encoder-only design jointly enhance feature alignment and interpretability. Furthermore, evaluation on an in-house dataset of 91,514 pediatric CT images demonstrates the true generalizability of CAP-IQA in assessing perceptual fidelity in a different patient population.
comment: 18 pages, 9 figures, 5 tables
☆ Guiding Token-Sparse Diffusion Models
Diffusion models deliver high quality in image synthesis but remain expensive during training and inference. Recent works have leveraged the inherent redundancy in visual content to make training more affordable by training only on a subset of visual information. While these methods were successful in providing cheaper and more effective training, sparsely trained diffusion models struggle in inference. This is due to their lacking response to Classifier-free Guidance (CFG) leading to underwhelming performance during inference. To overcome this, we propose Sparse Guidance (SG). Instead of using conditional dropout as a signal to guide diffusion models, SG uses token-level sparsity. As a result, SG preserves the high-variance of the conditional prediction better, achieving good quality and high variance outputs. Leveraging token-level sparsity at inference, SG improves fidelity at lower compute, achieving 1.58 FID on the commonly used ImageNet-256 benchmark with 25% fewer FLOPs, and yields up to 58% FLOP savings at matched baseline quality. To demonstrate the effectiveness of Sparse Guidance, we train a 2.5B text-to-image diffusion model using training time sparsity and leverage SG during inference. SG achieves improvements in composition and human preference score while increasing throughput at the same time.
☆ Beyond Patches: Global-aware Autoregressive Model for Multimodal Few-Shot Font Generation
Manual font design is an intricate process that transforms a stylistic visual concept into a coherent glyph set. This challenge persists in automated Few-shot Font Generation (FFG), where models often struggle to preserve both the structural integrity and stylistic fidelity from limited references. While autoregressive (AR) models have demonstrated impressive generative capabilities, their application to FFG is constrained by conventional patch-level tokenization, which neglects global dependencies crucial for coherent font synthesis. Moreover, existing FFG methods remain within the image-to-image paradigm, relying solely on visual references and overlooking the role of language in conveying stylistic intent during font design. To address these limitations, we propose GAR-Font, a novel AR framework for multimodal few-shot font generation. GAR-Font introduces a global-aware tokenizer that effectively captures both local structures and global stylistic patterns, a multimodal style encoder offering flexible style control through a lightweight language-style adapter without requiring intensive multimodal pretraining, and a post-refinement pipeline that further enhances structural fidelity and style coherence. Extensive experiments show that GAR-Font outperforms existing FFG methods, excelling in maintaining global style faithfulness and achieving higher-quality results with textual stylistic guidance.
comment: 25 pages
☆ OpenRT: An Open-Source Red Teaming Framework for Multimodal LLMs
The rapid integration of Multimodal Large Language Models (MLLMs) into critical applications is increasingly hindered by persistent safety vulnerabilities. However, existing red-teaming benchmarks are often fragmented, limited to single-turn text interactions, and lack the scalability required for systematic evaluation. To address this, we introduce OpenRT, a unified, modular, and high-throughput red-teaming framework designed for comprehensive MLLM safety evaluation. At its core, OpenRT architects a paradigm shift in automated red-teaming by introducing an adversarial kernel that enables modular separation across five critical dimensions: model integration, dataset management, attack strategies, judging methods, and evaluation metrics. By standardizing attack interfaces, it decouples adversarial logic from a high-throughput asynchronous runtime, enabling systematic scaling across diverse models. Our framework integrates 37 diverse attack methodologies, spanning white-box gradients, multi-modal perturbations, and sophisticated multi-agent evolutionary strategies. Through an extensive empirical study on 20 advanced models (including GPT-5.2, Claude 4.5, and Gemini 3 Pro), we expose critical safety gaps: even frontier models fail to generalize across attack paradigms, with leading models exhibiting average Attack Success Rates as high as 49.14%. Notably, our findings reveal that reasoning models do not inherently possess superior robustness against complex, multi-turn jailbreaks. By open-sourcing OpenRT, we provide a sustainable, extensible, and continuously maintained infrastructure that accelerates the development and standardization of AI safety.
☆ MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
☆ EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
☆ Sim2Real SAR Image Restoration: Metadata-Driven Models for Joint Despeckling and Sidelobes Reduction
Synthetic aperture radar (SAR) provides valuable information about the Earth's surface under all weather and illumination conditions. However, the inherent phenomenon of speckle and the presence of sidelobes around bright targets pose challenges for accurate interpretation of SAR imagery. Most existing SAR image restoration methods address despeckling and sidelobes reduction as separate tasks. In this paper, we propose a unified framework that jointly performs both tasks using neural networks (NNs) trained on a realistic SAR simulated dataset generated with MOCEM. Inference can then be performed on real SAR images, demonstrating effective simulation to real (Sim2Real) transferability. Additionally, we incorporate acquisition metadata as auxiliary input to the NNs, demonstrating improved restoration performance.
comment: Accepted at the Conference on Artificial Intelligence for Defense (CAID), 2025, Rennes, France
☆ FAR-AMTN: Attention Multi-Task Network for Face Attribute Recognition
To enhance the generalization performance of Multi-Task Networks (MTN) in Face Attribute Recognition (FAR), it is crucial to share relevant information across multiple related prediction tasks effectively. Traditional MTN methods create shared low-level modules and distinct high-level modules, causing an exponential increase in model parameters with the addition of tasks. This approach also limits feature interaction at the high level, hindering the exploration of semantic relations among attributes, thereby affecting generalization negatively. In response, this study introduces FAR-AMTN, a novel Attention Multi-Task Network for FAR. It incorporates a Weight-Shared Group-Specific Attention (WSGSA) module with shared parameters to minimize complexity while improving group feature representation. Furthermore, a Cross-Group Feature Fusion (CGFF) module is utilized to foster interactions between attribute groups, enhancing feature learning. A Dynamic Weighting Strategy (DWS) is also introduced for synchronized task convergence. Experiments on the CelebA and LFWA datasets demonstrate that the proposed FAR-AMTN demonstrates superior accuracy with significantly fewer parameters compared to existing models.
comment: 28 pages, 8figures
☆ Improving Flexible Image Tokenizers for Autoregressive Image Generation
Flexible image tokenizers aim to represent an image using an ordered 1D variable-length token sequence. This flexible tokenization is typically achieved through nested dropout, where a portion of trailing tokens is randomly truncated during training, and the image is reconstructed using the remaining preceding sequence. However, this tail-truncation strategy inherently concentrates the image information in the early tokens, limiting the effectiveness of downstream AutoRegressive (AR) image generation as the token length increases. To overcome these limitations, we propose \textbf{ReToK}, a flexible tokenizer with \underline{Re}dundant \underline{Tok}en Padding and Hierarchical Semantic Regularization, designed to fully exploit all tokens for enhanced latent modeling. Specifically, we introduce \textbf{Redundant Token Padding} to activate tail tokens more frequently, thereby alleviating information over-concentration in the early tokens. In addition, we apply \textbf{Hierarchical Semantic Regularization} to align the decoding features of earlier tokens with those from a pre-trained vision foundation model, while progressively reducing the regularization strength toward the tail to allow finer low-level detail reconstruction. Extensive experiments demonstrate the effectiveness of ReTok: on ImageNet 256$\times$256, our method achieves superior generation performance compared with both flexible and fixed-length tokenizers. Code will be available at: \href{https://github.com/zfu006/ReTok}{https://github.com/zfu006/ReTok}
☆ DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
comment: 10 pages, 4 figures; Project Website: https://drivinggen-bench.github.io/
☆ BARE: Towards Bias-Aware and Reasoning-Enhanced One-Tower Visual Grounding
Visual Grounding (VG), which aims to locate a specific region referred to by expressions, is a fundamental yet challenging task in the multimodal understanding fields. While recent grounding transfer works have advanced the field through one-tower architectures, they still suffer from two primary limitations: (1) over-entangled multimodal representations that exacerbate deceptive modality biases, and (2) insufficient semantic reasoning that hinders the comprehension of referential cues. In this paper, we propose BARE, a bias-aware and reasoning-enhanced framework for one-tower visual grounding. BARE introduces a mechanism that preserves modality-specific features and constructs referential semantics through three novel modules: (i) language salience modulator, (ii) visual bias correction and (iii) referential relationship enhancement, which jointly mitigate multimodal distractions and enhance referential comprehension. Extensive experimental results on five benchmarks demonstrate that BARE not only achieves state-of-the-art performance but also delivers superior computational efficiency compared to existing approaches. The code is publicly accessible at https://github.com/Marloweeee/BARE.
☆ FastV-RAG: Towards Fast and Fine-Grained Video QA with Retrieval-Augmented Generation
Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
☆ A Novel Deep Learning Method for Segmenting the Left Ventricle in Cardiac Cine MRI
This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.
comment: 9 pages, 5 figures
☆ DiffKD-DCIS: Predicting Upgrade of Ductal Carcinoma In Situ with Diffusion Augmentation and Knowledge Distillation
Accurately predicting the upgrade of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) is crucial for surgical planning. However, traditional deep learning methods face challenges due to limited ultrasound data and poor generalization ability. This study proposes the DiffKD-DCIS framework, integrating conditional diffusion modeling with teacher-student knowledge distillation. The framework operates in three stages: First, a conditional diffusion model generates high-fidelity ultrasound images using multimodal conditions for data augmentation. Then, a deep teacher network extracts robust features from both original and synthetic data. Finally, a compact student network learns from the teacher via knowledge distillation, balancing generalization and computational efficiency. Evaluated on a multi-center dataset of 1,435 cases, the synthetic images were of good quality. The student network had fewer parameters and faster inference. On external test sets, it outperformed partial combinations, and its accuracy was comparable to senior radiologists and superior to junior ones, showing significant clinical potential.
☆ DeepInv: A Novel Self-supervised Learning Approach for Fast and Accurate Diffusion Inversion
Diffusion inversion is a task of recovering the noise of an image in a diffusion model, which is vital for controllable diffusion image editing. At present, diffusion inversion still remains a challenging task due to the lack of viable supervision signals. Thus, most existing methods resort to approximation-based solutions, which however are often at the cost of performance or efficiency. To remedy these shortcomings, we propose a novel self-supervised diffusion inversion approach in this paper, termed Deep Inversion (DeepInv). Instead of requiring ground-truth noise annotations, we introduce a self-supervised objective as well as a data augmentation strategy to generate high-quality pseudo noises from real images without manual intervention. Based on these two innovative designs, DeepInv is also equipped with an iterative and multi-scale training regime to train a parameterized inversion solver, thereby achieving the fast and accurate image-to-noise mapping. To the best of our knowledge, this is the first attempt of presenting a trainable solver to predict inversion noise step by step. The extensive experiments show that our DeepInv can achieve much better performance and inference speed than the compared methods, e.g., +40.435% SSIM than EasyInv and +9887.5% speed than ReNoise on COCO dataset. Moreover, our careful designs of trainable solvers can also provide insights to the community. Codes and model parameters will be released in https://github.com/potato-kitty/DeepInv.
☆ Higher-Order Domain Generalization in Magnetic Resonance-Based Assessment of Alzheimer's Disease
Despite progress in deep learning for Alzheimer's disease (AD) diagnostics, models trained on structural magnetic resonance imaging (sMRI) often do not perform well when applied to new cohorts due to domain shifts from varying scanners, protocols and patient demographics. AD, the primary driver of dementia, manifests through progressive cognitive and neuroanatomical changes like atrophy and ventricular expansion, making robust, generalizable classification essential for real-world use. While convolutional neural networks and transformers have advanced feature extraction via attention and fusion techniques, single-domain generalization (SDG) remains underexplored yet critical, given the fragmented nature of AD datasets. To bridge this gap, we introduce Extended MixStyle (EM), a framework for blending higher-order feature moments (skewness and kurtosis) to mimic diverse distributional variations. Trained on sMRI data from the National Alzheimer's Coordinating Center (NACC; n=4,647) to differentiate persons with normal cognition (NC) from those with mild cognitive impairment (MCI) or AD and tested on three unseen cohorts (total n=3,126), EM yields enhanced cross-domain performance, improving macro-F1 on average by 2.4 percentage points over state-of-the-art SDG benchmarks, underscoring its promise for invariant, reliable AD detection in heterogeneous real-world settings. The source code will be made available upon acceptance at https://github.com/zobia111/Extended-Mixstyle.
☆ Unified Generation and Self-Verification for Vision-Language Models via Advantage Decoupled Preference Optimization
Parallel test-time scaling typically trains separate generation and verification models, incurring high training and inference costs. We propose Advantage Decoupled Preference Optimization (ADPO), a unified reinforcement learning framework that jointly learns answer generation and self-verification within a single policy. ADPO introduces two innovations: a preference verification reward improving verification capability and a decoupled optimization mechanism enabling synergistic optimization of generation and verification. Specifically, the preference verification reward computes mean verification scores from positive and negative samples as decision thresholds, providing positive feedback when prediction correctness aligns with answer correctness. Meanwhile, the advantage decoupled optimization computes separate advantages for generation and verification, applies token masks to isolate gradients, and combines masked GRPO objectives, preserving generation quality while calibrating verification scores. ADPO achieves up to +34.1% higher verification AUC and -53.5% lower inference time, with significant gains of +2.8%/+1.4% accuracy on MathVista/MMMU, +1.9 cIoU on ReasonSeg, and +1.7%/+1.0% step success rate on AndroidControl/GUI Odyssey.
☆ Robust Ship Detection and Tracking Using Modified ViBe and Backwash Cancellation Algorithm
In this paper, we propose a robust real time detection and tracking method for detecting ships in a coastal video sequences. Since coastal scenarios are unpredictable and scenes have dynamic properties it is essential to apply detection methods that are robust to these conditions. This paper presents modified ViBe for moving object detection which detects ships and backwash. In the modified ViBe the probability of losing ships is decreased in comparison with the original ViBe. It is robust to natural sea waves and variation of lights and is capable of quickly updating the background. Based on geometrical properties of ship and some concepts such as brightness distortion, a new method for backwash cancellation is proposed. Experimental results demonstrate that the proposed strategy and methods have outstanding performance in ship detection and tracking. These results also illustrate real time and precise performance of the proposed strategy.
☆ Domain Adaptation of Carotid Ultrasound Images using Generative Adversarial Network
Deep learning has been extensively used in medical imaging applications, assuming that the test and training datasets belong to the same probability distribution. However, a common challenge arises when working with medical images generated by different systems or even the same system with different parameter settings. Such images contain diverse textures and reverberation noise that violate the aforementioned assumption. Consequently, models trained on data from one device or setting often struggle to perform effectively with data from other devices or settings. In addition, retraining models for each specific device or setting is labor-intensive and costly. To address these issues in ultrasound images, we propose a novel Generative Adversarial Network (GAN)-based model. We formulated the domain adaptation tasks as an image-to-image translation task, in which we modified the texture patterns and removed reverberation noise in the test data images from the source domain to align with those in the target domain images while keeping the image content unchanged. We applied the proposed method to two datasets containing carotid ultrasound images from three different domains. The experimental results demonstrate that the model successfully translated the texture pattern of images and removed reverberation noise from the ultrasound images. Furthermore, we evaluated the CycleGAN approaches for a comparative study with the proposed model. The experimental findings conclusively demonstrated that the proposed model achieved domain adaptation (histogram correlation (0.960 (0.019), & 0.920 (0.043) and bhattacharya distance (0.040 (0.020), & 0.085 (0.048)), compared to no adaptation (0.916 (0.062) & 0.890 (0.077), 0.090 (0.070) & 0.121 (0.095)) for both datasets.
comment: 15 pages, 9 figures, 4 tables
☆ Language as Prior, Vision as Calibration: Metric Scale Recovery for Monocular Depth Estimation
Relative-depth foundation models transfer well, yet monocular metric depth remains ill-posed due to unidentifiable global scale and heightened domain-shift sensitivity. Under a frozen-backbone calibration setting, we recover metric depth via an image-specific affine transform in inverse depth and train only lightweight calibration heads while keeping the relative-depth backbone and the CLIP text encoder fixed. Since captions provide coarse but noisy scale cues that vary with phrasing and missing objects, we use language to predict an uncertainty-aware envelope that bounds feasible calibration parameters in an unconstrained space, rather than committing to a text-only point estimate. We then use pooled multi-scale frozen visual features to select an image-specific calibration within this envelope. During training, a closed-form least-squares oracle in inverse depth provides per-image supervision for learning the envelope and the selected calibration. Experiments on NYUv2 and KITTI improve in-domain accuracy, while zero-shot transfer to SUN-RGBD and DDAD demonstrates improved robustness over strong language-only baselines.
☆ Rethinking Multimodal Few-Shot 3D Point Cloud Segmentation: From Fused Refinement to Decoupled Arbitration
In this paper, we revisit multimodal few-shot 3D point cloud semantic segmentation (FS-PCS), identifying a conflict in "Fuse-then-Refine" paradigms: the "Plasticity-Stability Dilemma." In addition, CLIP's inter-class confusion can result in semantic blindness. To address these issues, we present the Decoupled-experts Arbitration Few-Shot SegNet (DA-FSS), a model that effectively distinguishes between semantic and geometric paths and mutually regularizes their gradients to achieve better generalization. DA-FSS employs the same backbone and pre-trained text encoder as MM-FSS to generate text embeddings, which can increase free modalities' utilization rate and better leverage each modality's information space. To achieve this, we propose a Parallel Expert Refinement module to generate each modal correlation. We also propose a Stacked Arbitration Module (SAM) to perform convolutional fusion and arbitrate correlations for each modality pathway. The Parallel Experts decouple two paths: a Geometric Expert maintains plasticity, and a Semantic Expert ensures stability. They are coordinated via a Decoupled Alignment Module (DAM) that transfers knowledge without propagating confusion. Experiments on popular datasets (S3DIS, ScanNet) demonstrate the superiority of DA-FSS over MM-FSS. Meanwhile, geometric boundaries, completeness, and texture differentiation are all superior to the baseline. The code is available at: https://github.com/MoWenQAQ/DA-FSS.
comment: 10 pages, 4 figures, 3 tables
☆ PartImageNet++ Dataset: Enhancing Visual Models with High-Quality Part Annotations
To address the scarcity of high-quality part annotations in existing datasets, we introduce PartImageNet++ (PIN++), a dataset that provides detailed part annotations for all categories in ImageNet-1K. With 100 annotated images per category, totaling 100K images, PIN++ represents the most comprehensive dataset covering a diverse range of object categories. Leveraging PIN++, we propose a Multi-scale Part-supervised recognition Model (MPM) for robust classification on ImageNet-1K. We first trained a part segmentation network using PIN++ and used it to generate pseudo part labels for the remaining unannotated images. MPM then integrated a conventional recognition architecture with auxiliary bypass layers, jointly supervised by both pseudo part labels and the original part annotations. Furthermore, we conducted extensive experiments on PIN++, including part segmentation, object segmentation, and few-shot learning, exploring various ways to leverage part annotations in downstream tasks. Experimental results demonstrated that our approach not only enhanced part-based models for robust object recognition but also established strong baselines for multiple downstream tasks, highlighting the potential of part annotations in improving model performance. The dataset and the code are available at https://github.com/LixiaoTHU/PartImageNetPP.
comment: arXiv admin note: substantial text overlap with arXiv:2407.10918
☆ Image Synthesis Using Spintronic Deep Convolutional Generative Adversarial Network
The computational requirements of generative adversarial networks (GANs) exceed the limit of conventional Von Neumann architectures, necessitating energy efficient alternatives such as neuromorphic spintronics. This work presents a hybrid CMOS-spintronic deep convolutional generative adversarial network (DCGAN) architecture for synthetic image generation. The proposed generative vision model approach follows the standard framework, leveraging generator and discriminators adversarial training with our designed spintronics hardware for deconvolution, convolution, and activation layers of the DCGAN architecture. To enable hardware aware spintronic implementation, the generator's deconvolution layers are restructured as zero padded convolution, allowing seamless integration with a 6-bit skyrmion based synapse in a crossbar, without compromising training performance. Nonlinear activation functions are implemented using a hybrid CMOS domain wall based Rectified linear unit (ReLU) and Leaky ReLU units. Our proposed tunable Leaky ReLU employs domain wall position coded, continuous resistance states and a piecewise uniaxial parabolic anisotropy profile with a parallel MTJ readout, exhibiting energy consumption of 0.192 pJ. Our spintronic DCGAN model demonstrates adaptability across both grayscale and colored datasets, achieving Fr'echet Inception Distances (FID) of 27.5 for the Fashion MNIST and 45.4 for Anime Face datasets, with testing energy (training energy) of 4.9 nJ (14.97~nJ/image) and 24.72 nJ (74.7 nJ/image).
comment: 8 pages, 4 figures
☆ In defense of the two-stage framework for open-set domain adaptive semantic segmentation
Open-Set Domain Adaptation for Semantic Segmentation (OSDA-SS) presents a significant challenge, as it requires both domain adaptation for known classes and the distinction of unknowns. Existing methods attempt to address both tasks within a single unified stage. We question this design, as the annotation imbalance between known and unknown classes often leads to negative transfer of known classes and underfitting for unknowns. To overcome these issues, we propose SATS, a Separating-then-Adapting Training Strategy, which addresses OSDA-SS through two sequential steps: known/unknown separation and unknown-aware domain adaptation. By providing the model with more accurate and well-aligned unknown classes, our method ensures a balanced learning of discriminative features for both known and unknown classes, steering the model toward discovering truly unknown objects. Additionally, we present hard unknown exploration, an innovative data augmentation method that exposes the model to more challenging unknowns, strengthening its ability to capture more comprehensive understanding of target unknowns. We evaluate our method on public OSDA-SS benchmarks. Experimental results demonstrate that our method achieves a substantial advancement, with a +3.85% H-Score improvement for GTA5-to-Cityscapes and +18.64% for SYNTHIA-to-Cityscapes, outperforming previous state-of-the-art methods.
☆ EdgeNeRF: Edge-Guided Regularization for Neural Radiance Fields from Sparse Views
Neural Radiance Fields (NeRF) achieve remarkable performance in dense multi-view scenarios, but their reconstruction quality degrades significantly under sparse inputs due to geometric artifacts. Existing methods utilize global depth regularization to mitigate artifacts, leading to the loss of geometric boundary details. To address this problem, we propose EdgeNeRF, an edge-guided sparse-view 3D reconstruction algorithm. Our method leverages the prior that abrupt changes in depth and normals generate edges. Specifically, we first extract edges from input images, then apply depth and normal regularization constraints to non-edge regions, enhancing geometric consistency while preserving high-frequency details at boundaries. Experiments on LLFF and DTU datasets demonstrate EdgeNeRF's superior performance, particularly in retaining sharp geometric boundaries and suppressing artifacts. Additionally, the proposed edge-guided depth regularization module can be seamlessly integrated into other methods in a plug-and-play manner, significantly improving their performance without substantially increasing training time. Code is available at https://github.com/skyhigh404/edgenerf.
comment: PRCV 2025
☆ DreamID-V:Bridging the Image-to-Video Gap for High-Fidelity Face Swapping via Diffusion Transformer
Video Face Swapping (VFS) requires seamlessly injecting a source identity into a target video while meticulously preserving the original pose, expression, lighting, background, and dynamic information. Existing methods struggle to maintain identity similarity and attribute preservation while preserving temporal consistency. To address the challenge, we propose a comprehensive framework to seamlessly transfer the superiority of Image Face Swapping (IFS) to the video domain. We first introduce a novel data pipeline SyncID-Pipe that pre-trains an Identity-Anchored Video Synthesizer and combines it with IFS models to construct bidirectional ID quadruplets for explicit supervision. Building upon paired data, we propose the first Diffusion Transformer-based framework DreamID-V, employing a core Modality-Aware Conditioning module to discriminatively inject multi-model conditions. Meanwhile, we propose a Synthetic-to-Real Curriculum mechanism and an Identity-Coherence Reinforcement Learning strategy to enhance visual realism and identity consistency under challenging scenarios. To address the issue of limited benchmarks, we introduce IDBench-V, a comprehensive benchmark encompassing diverse scenes. Extensive experiments demonstrate DreamID-V outperforms state-of-the-art methods and further exhibits exceptional versatility, which can be seamlessly adapted to various swap-related tasks.
comment: Project: https://guoxu1233.github.io/DreamID-V/
☆ AirSpatialBot: A Spatially-Aware Aerial Agent for Fine-Grained Vehicle Attribute Recognization and Retrieval
Despite notable advancements in remote sensing vision-language models (VLMs), existing models often struggle with spatial understanding, limiting their effectiveness in real-world applications. To push the boundaries of VLMs in remote sensing, we specifically address vehicle imagery captured by drones and introduce a spatially-aware dataset AirSpatial, which comprises over 206K instructions and introduces two novel tasks: Spatial Grounding and Spatial Question Answering. It is also the first remote sensing grounding dataset to provide 3DBB. To effectively leverage existing image understanding of VLMs to spatial domains, we adopt a two-stage training strategy comprising Image Understanding Pre-training and Spatial Understanding Fine-tuning. Utilizing this trained spatially-aware VLM, we develop an aerial agent, AirSpatialBot, which is capable of fine-grained vehicle attribute recognition and retrieval. By dynamically integrating task planning, image understanding, spatial understanding, and task execution capabilities, AirSpatialBot adapts to diverse query requirements. Experimental results validate the effectiveness of our approach, revealing the spatial limitations of existing VLMs while providing valuable insights. The model, code, and datasets will be released at https://github.com/VisionXLab/AirSpatialBot
comment: 12 pages, 9 figures
☆ Mask-Guided Multi-Task Network for Face Attribute Recognition
Face Attribute Recognition (FAR) plays a crucial role in applications such as person re-identification, face retrieval, and face editing. Conventional multi-task attribute recognition methods often process the entire feature map for feature extraction and attribute classification, which can produce redundant features due to reliance on global regions. To address these challenges, we propose a novel approach emphasizing the selection of specific feature regions for efficient feature learning. We introduce the Mask-Guided Multi-Task Network (MGMTN), which integrates Adaptive Mask Learning (AML) and Group-Global Feature Fusion (G2FF) to address the aforementioned limitations. Leveraging a pre-trained keypoint annotation model and a fully convolutional network, AML accurately localizes critical facial parts (e.g., eye and mouth groups) and generates group masks that delineate meaningful feature regions, thereby mitigating negative transfer from global region usage. Furthermore, G2FF combines group and global features to enhance FAR learning, enabling more precise attribute identification. Extensive experiments on two challenging facial attribute recognition datasets demonstrate the effectiveness of MGMTN in improving FAR performance.
comment: 23 pages, 9 figures
☆ SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution
Face super-resolution aims to recover high-quality facial images from severely degraded low-resolution inputs, but remains challenging due to the loss of fine structural details and identity-specific features. This work introduces SwinIFS, a landmark-guided super-resolution framework that integrates structural priors with hierarchical attention mechanisms to achieve identity-preserving reconstruction at both moderate and extreme upscaling factors. The method incorporates dense Gaussian heatmaps of key facial landmarks into the input representation, enabling the network to focus on semantically important facial regions from the earliest stages of processing. A compact Swin Transformer backbone is employed to capture long-range contextual information while preserving local geometry, allowing the model to restore subtle facial textures and maintain global structural consistency. Extensive experiments on the CelebA benchmark demonstrate that SwinIFS achieves superior perceptual quality, sharper reconstructions, and improved identity retention; it consistently produces more photorealistic results and exhibits strong performance even under 8x magnification, where most methods fail to recover meaningful structure. SwinIFS also provides an advantageous balance between reconstruction accuracy and computational efficiency, making it suitable for real-world applications in facial enhancement, surveillance, and digital restoration. Our code, model weights, and results are available at https://github.com/Habiba123-stack/SwinIFS.
☆ ShadowGS: Shadow-Aware 3D Gaussian Splatting for Satellite Imagery
3D Gaussian Splatting (3DGS) has emerged as a novel paradigm for 3D reconstruction from satellite imagery. However, in multi-temporal satellite images, prevalent shadows exhibit significant inconsistencies due to varying illumination conditions. To address this, we propose ShadowGS, a novel framework based on 3DGS. It leverages a physics-based rendering equation from remote sensing, combined with an efficient ray marching technique, to precisely model geometrically consistent shadows while maintaining efficient rendering. Additionally, it effectively disentangles different illumination components and apparent attributes in the scene. Furthermore, we introduce a shadow consistency constraint that significantly enhances the geometric accuracy of 3D reconstruction. We also incorporate a novel shadow map prior to improve performance with sparse-view inputs. Extensive experiments demonstrate that ShadowGS outperforms current state-of-the-art methods in shadow decoupling accuracy, 3D reconstruction precision, and novel view synthesis quality, with only a few minutes of training. ShadowGS exhibits robust performance across various settings, including RGB, pansharpened, and sparse-view satellite inputs.
☆ Evaluation of Convolutional Neural Network For Image Classification with Agricultural and Urban Datasets
This paper presents the development and evaluation of a custom Convolutional Neural Network (CustomCNN) created to study how architectural design choices affect multi-domain image classification tasks. The network uses residual connections, Squeeze-and-Excitation attention mechanisms, progressive channel scaling, and Kaiming initialization to improve its ability to represent data and speed up training. The model is trained and tested on five publicly available datasets: unauthorized vehicle detection, footpath encroachment detection, polygon-annotated road damage and manhole detection, MangoImageBD and PaddyVarietyBD. A comparison with popular CNN architectures shows that the CustomCNN delivers competitive performance while remaining efficient in computation. The results underscore the importance of thoughtful architectural design for real-world Smart City and agricultural imaging applications.
comment: All authors contributed equally to this work
☆ ParkGaussian: Surround-view 3D Gaussian Splatting for Autonomous Parking
Parking is a critical task for autonomous driving systems (ADS), with unique challenges in crowded parking slots and GPS-denied environments. However, existing works focus on 2D parking slot perception, mapping, and localization, 3D reconstruction remains underexplored, which is crucial for capturing complex spatial geometry in parking scenarios. Naively improving the visual quality of reconstructed parking scenes does not directly benefit autonomous parking, as the key entry point for parking is the slots perception module. To address these limitations, we curate the first benchmark named ParkRecon3D, specifically designed for parking scene reconstruction. It includes sensor data from four surround-view fisheye cameras with calibrated extrinsics and dense parking slot annotations. We then propose ParkGaussian, the first framework that integrates 3D Gaussian Splatting (3DGS) for parking scene reconstruction. To further improve the alignment between reconstruction and downstream parking slot detection, we introduce a slot-aware reconstruction strategy that leverages existing parking perception methods to enhance the synthesis quality of slot regions. Experiments on ParkRecon3D demonstrate that ParkGaussian achieves state-of-the-art reconstruction quality and better preserves perception consistency for downstream tasks. The code and dataset will be released at: https://github.com/wm-research/ParkGaussian
☆ Unsupervised SE(3) Disentanglement for in situ Macromolecular Morphology Identification from Cryo-Electron Tomography
Cryo-electron tomography (cryo-ET) provides direct 3D visualization of macromolecules inside the cell, enabling analysis of their in situ morphology. This morphology can be regarded as an SE(3)-invariant, denoised volumetric representation of subvolumes extracted from tomograms. Inferring morphology is therefore an inverse problem of estimating both a template morphology and its SE(3) transformation. Existing expectation-maximization based solution to this problem often misses rare but important morphologies and requires extensive manual hyperparameter tuning. Addressing this issue, we present a disentangled deep representation learning framework that separates SE(3) transformations from morphological content in the representation space. The framework includes a novel multi-choice learning module that enables this disentanglement for highly noisy cryo-ET data, and the learned morphological content is used to generate template morphologies. Experiments on simulated and real cryo-ET datasets demonstrate clear improvements over prior methods, including the discovery of previously unidentified macromolecular morphologies.
☆ Garment Inertial Denoiser (GID): Endowing Accurate Motion Capture via Loose IMU Denoiser
Wearable inertial motion capture (MoCap) provides a portable, occlusion-free, and privacy-preserving alternative to camera-based systems, but its accuracy depends on tightly attached sensors - an intrusive and uncomfortable requirement for daily use. Embedding IMUs into loose-fitting garments is a desirable alternative, yet sensor-body displacement introduces severe, structured, and location-dependent corruption that breaks standard inertial pipelines. We propose GID (Garment Inertial Denoiser), a lightweight, plug-and-play Transformer that factorizes loose-wear MoCap into three stages: (i) location-specific denoising, (ii) adaptive cross-wear fusion, and (iii) general pose prediction. GID uses a location-aware expert architecture, where a shared spatio-temporal backbone models global motion while per-IMU expert heads specialize in local garment dynamics, and a lightweight fusion module ensures cross-part consistency. This inductive bias enables stable training and effective learning from limited paired loose-tight IMU data. We also introduce GarMoCap, a combined public and newly collected dataset covering diverse users, motions, and garments. Experiments show that GID enables accurate, real-time denoising from single-user training and generalizes across unseen users, motions, and garment types, consistently improving state-of-the-art inertial MoCap methods when used as a drop-in module.
comment: 11 pages, 4 figures
☆ Advanced Machine Learning Approaches for Enhancing Person Re-Identification Performance
Person re-identification (ReID) plays a critical role in intelligent surveillance systems by linking identities across multiple cameras in complex environments. However, ReID faces significant challenges such as appearance variations, domain shifts, and limited labeled data. This dissertation proposes three advanced approaches to enhance ReID performance under supervised, unsupervised domain adaptation (UDA), and fully unsupervised settings. First, SCM-ReID integrates supervised contrastive learning with hybrid loss optimization (classification, center, triplet, and centroid-triplet losses), improving discriminative feature representation and achieving state-of-the-art accuracy on Market-1501 and CUHK03 datasets. Second, for UDA, IQAGA and DAPRH combine GAN-based image augmentation, domain-invariant mapping, and pseudo-label refinement to mitigate domain discrepancies and enhance cross-domain generalization. Experiments demonstrate substantial gains over baseline methods, with mAP and Rank-1 improvements up to 12% in challenging transfer scenarios. Finally, ViTC-UReID leverages Vision Transformer-based feature encoding and camera-aware proxy learning to boost unsupervised ReID. By integrating global and local attention with camera identity constraints, this method significantly outperforms existing unsupervised approaches on large-scale benchmarks. Comprehensive evaluations across CUHK03, Market-1501, DukeMTMC-reID, and MSMT17 confirm the effectiveness of the proposed methods. The contributions advance ReID research by addressing key limitations in feature learning, domain adaptation, and label noise handling, paving the way for robust deployment in real-world surveillance systems.
comment: in Vietnamese language
☆ Slot-ID: Identity-Preserving Video Generation from Reference Videos via Slot-Based Temporal Identity Encoding
Producing prompt-faithful videos that preserve a user-specified identity remains challenging: models need to extrapolate facial dynamics from sparse reference while balancing the tension between identity preservation and motion naturalness. Conditioning on a single image completely ignores the temporal signature, which leads to pose-locked motions, unnatural warping, and "average" faces when viewpoints and expressions change. To this end, we introduce an identity-conditioned variant of a diffusion-transformer video generator which uses a short reference video rather than a single portrait. Our key idea is to incorporate the dynamics in the reference. A short clip reveals subject-specific patterns, e.g., how smiles form, across poses and lighting. From this clip, a Sinkhorn-routed encoder learns compact identity tokens that capture characteristic dynamics while remaining pretrained backbone-compatible. Despite adding only lightweight conditioning, the approach consistently improves identity retention under large pose changes and expressive facial behavior, while maintaining prompt faithfulness and visual realism across diverse subjects and prompts.
☆ Achieving Fine-grained Cross-modal Understanding through Brain-inspired Hierarchical Representation Learning
Understanding neural responses to visual stimuli remains challenging due to the inherent complexity of brain representations and the modality gap between neural data and visual inputs. Existing methods, mainly based on reducing neural decoding to generation tasks or simple correlations, fail to reflect the hierarchical and temporal processes of visual processing in the brain. To address these limitations, we present NeuroAlign, a novel framework for fine-grained fMRI-video alignment inspired by the hierarchical organization of the human visual system. Our framework implements a two-stage mechanism that mirrors biological visual pathways: global semantic understanding through Neural-Temporal Contrastive Learning (NTCL) and fine-grained pattern matching through enhanced vector quantization. NTCL explicitly models temporal dynamics through bidirectional prediction between modalities, while our DynaSyncMM-EMA approach enables dynamic multi-modal fusion with adaptive weighting. Experiments demonstrate that NeuroAlign significantly outperforms existing methods in cross-modal retrieval tasks, establishing a new paradigm for understanding visual cognitive mechanisms.
☆ LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
☆ Quantifying Local Strain Field and Deformation in Active Contraction of Bladder Using a Pretrained Transformer Model: A Speckle-Free Approach
Accurate quantification of local strain fields during bladder contraction is essential for understanding the biomechanics of bladder micturition, in both health and disease. Conventional digital image correlation (DIC) methods have been successfully applied to various biological tissues; however, this approach requires artificial speckling, which can alter both passive and active properties of the tissue. In this study, we introduce a speckle-free framework for quantifying local strain fields using a state-of-the-art, zero-shot transformer model, CoTracker3. We utilized a custom-designed, portable isotonic biaxial apparatus compatible with multiphoton microscopy (MPM) to demonstrate this approach, successfully tracking natural bladder lumen textures without artificial markers. Benchmark tests validated the method's high pixel accuracy and low strain errors. Our framework effectively captured heterogeneous deformation patterns, despite complex folding and buckling, which conventional DIC often fails to track. Application to in vitro active bladder contractions in four rat specimens (n=4) revealed statistically significant anisotropy (p<0.01), with higher contraction longitudinally compared to circumferentially. Multiphoton microscopy further illustrated and confirmed heterogeneous morphological changes, such as large fold formation during active contraction. This non-invasive approach eliminates speckle-induced artifacts, enabling more physiologically relevant measurements, and has broad applicability for material testing of other biological and engineered systems.
☆ VReID-XFD: Video-based Person Re-identification at Extreme Far Distance Challenge Results
Person re-identification (ReID) across aerial and ground views at extreme far distances introduces a distinct operating regime where severe resolution degradation, extreme viewpoint changes, unstable motion cues, and clothing variation jointly undermine the appearance-based assumptions of existing ReID systems. To study this regime, we introduce VReID-XFD, a video-based benchmark and community challenge for extreme far-distance (XFD) aerial-to-ground person re-identification. VReID-XFD is derived from the DetReIDX dataset and comprises 371 identities, 11,288 tracklets, and 11.75 million frames, captured across altitudes from 5.8 m to 120 m, viewing angles from oblique (30 degrees) to nadir (90 degrees), and horizontal distances up to 120 m. The benchmark supports aerial-to-aerial, aerial-to-ground, and ground-to-aerial evaluation under strict identity-disjoint splits, with rich physical metadata. The VReID-XFD-25 Challenge attracted 10 teams with hundreds of submissions. Systematic analysis reveals monotonic performance degradation with altitude and distance, a universal disadvantage of nadir views, and a trade-off between peak performance and robustness. Even the best-performing SAS-PReID method achieves only 43.93 percent mAP in the aerial-to-ground setting. The dataset, annotations, and official evaluation protocols are publicly available at https://www.it.ubi.pt/DetReIDX/ .
☆ NitroGen: An Open Foundation Model for Generalist Gaming Agents
We introduce NitroGen, a vision-action foundation model for generalist gaming agents that is trained on 40,000 hours of gameplay videos across more than 1,000 games. We incorporate three key ingredients: 1) an internet-scale video-action dataset constructed by automatically extracting player actions from publicly available gameplay videos, 2) a multi-game benchmark environment that can measure cross-game generalization, and 3) a unified vision-action model trained with large-scale behavior cloning. NitroGen exhibits strong competence across diverse domains, including combat encounters in 3D action games, high-precision control in 2D platformers, and exploration in procedurally generated worlds. It transfers effectively to unseen games, achieving up to 52% relative improvement in task success rates over models trained from scratch. We release the dataset, evaluation suite, and model weights to advance research on generalist embodied agents.
comment: 16 pages, 7 figures
♻ ☆ VisualActBench: Can VLMs See and Act like a Human?
Vision-Language Models (VLMs) have achieved impressive progress in perceiving and describing visual environments. However, their ability to proactively reason and act based solely on visual inputs, without explicit textual prompts, remains underexplored. We introduce a new task, Visual Action Reasoning, and propose VisualActBench, a large-scale benchmark comprising 1,074 videos and 3,733 human-annotated actions across four real-world scenarios. Each action is labeled with an Action Prioritization Level (APL) and a proactive-reactive type to assess models' human-aligned reasoning and value sensitivity. We evaluate 29 VLMs on VisualActBench and find that while frontier models like GPT4o demonstrate relatively strong performance, a significant gap remains compared to human-level reasoning, particularly in generating proactive, high-priority actions. Our results highlight limitations in current VLMs' ability to interpret complex context, anticipate outcomes, and align with human decision-making frameworks. VisualActBench establishes a comprehensive foundation for assessing and improving the real-world readiness of proactive, vision-centric AI agents.
♻ ☆ Attire-Based Anomaly Detection in Restricted Areas Using YOLOv8 for Enhanced CCTV Security
This research introduces an innovative security enhancement approach, employing advanced image analysis and soft computing. The focus is on an intelligent surveillance system that detects unauthorized individuals in restricted areas by analyzing attire. Traditional security measures face challenges in monitoring unauthorized access. Leveraging YOLOv8, an advanced object detection algorithm, our system identifies authorized personnel based on their attire in CCTV footage. The methodology involves training the YOLOv8 model on a comprehensive dataset of uniform patterns, ensuring precise recognition in specific regions. Soft computing techniques enhance adaptability to dynamic environments and varying lighting conditions. This research contributes to image analysis and soft computing, providing a sophisticated security solution. Emphasizing uniform-based anomaly detection, it establishes a foundation for robust security systems in restricted areas. The outcomes highlight the potential of YOLOv8-based surveillance in ensuring safety in sensitive locations.
comment: 9 pages, 6 figures
♻ ☆ Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow to outperform a 1024 step flow matching model with only a single additional backward NFE.
♻ ☆ How Robot Dogs See the Unseeable: Improving Visual Interpretability via Peering for Exploratory Robots
In vegetated environments, such as forests, exploratory robots play a vital role in navigating complex, cluttered environments where human access is limited and traditional equipment struggles. Visual occlusion from obstacles, such as foliage, can severely obstruct a robot's sensors, impairing scene understanding. We show that "peering", a characteristic side-to-side movement used by insects to overcome their visual limitations, can also allow robots to markedly improve visual reasoning under partial occlusion. This is accomplished by applying core signal processing principles, specifically optical synthetic aperture sensing, together with the vision reasoning capabilities of modern large multimodal models. Peering enables real-time, high-resolution, and wavelength-independent perception, which is crucial for vision-based scene understanding across a wide range of applications. The approach is low-cost and immediately deployable on any camera-equipped robot. We investigated different peering motions and occlusion masking strategies, demonstrating that, unlike peering, state-of-the-art multi-view 3D vision techniques fail in these conditions due to their high susceptibility to occlusion. Our experiments were carried out on an industrial-grade quadrupedal robot. However, the ability to peer is not limited to such platforms, but potentially also applicable to bipedal, hexapod, wheeled, or crawling platforms. Robots that can effectively see through partial occlusion will gain superior perception abilities - including enhanced scene understanding, situational awareness, camouflage breaking, and advanced navigation in complex environments.
♻ ☆ AHA! Animating Human Avatars in Diverse Scenes with Gaussian Splatting
We present a novel framework for animating humans in 3D scenes using 3D Gaussian Splatting (3DGS), a neural scene representation that has recently achieved state-of-the-art photorealistic results for novel-view synthesis but remains under-explored for human-scene animation and interaction. Unlike existing animation pipelines that use meshes or point clouds as the underlying 3D representation, our approach introduces the use of 3DGS as the 3D representation for animating humans in scenes. By representing humans and scenes as Gaussians, our approach allows geometry-consistent free-viewpoint rendering of humans interacting with 3D scenes. Our key insight is that rendering can be decoupled from motion synthesis, and each sub-problem can be addressed independently without the need for paired human-scene data. Central to our method is a Gaussian-aligned motion module that synthesizes motion without explicit scene geometry, using opacity-based cues and projected Gaussian structures to guide human placement and pose alignment. To ensure natural interactions, we further propose a human-scene Gaussian refinement optimization that enforces realistic contact and navigation. We evaluate our approach on scenes from Scannet++ and the SuperSplat library, and on avatars reconstructed from sparse and dense multi-view human capture. Finally, we demonstrate that our framework enables novel applications such as geometry-consistent free-viewpoint rendering of edited monocular RGB videos with newly animated humans, showcasing the unique advantages of 3DGS for monocular video-based human animation. To assess the full quality of our results, we encourage readers to view the supplementary material available at https://miraymen.github.io/aha/ .
comment: Project page available at: https://miraymen.github.io/aha/
♻ ☆ GTPBD: A Fine-Grained Global Terraced Parcel and Boundary Dataset NeurIPS 2025
Agricultural parcels serve as basic units for conducting agricultural practices and applications, which is vital for land ownership registration, food security assessment, soil erosion monitoring, etc. However, existing agriculture parcel extraction studies only focus on mid-resolution mapping or regular plain farmlands while lacking representation of complex terraced terrains due to the demands of precision agriculture.In this paper, we introduce a more fine-grained terraced parcel dataset named GTPBD (Global Terraced Parcel and Boundary Dataset), which is the first fine-grained dataset covering major worldwide terraced regions with more than 200,000 complex terraced parcels with manual annotation. GTPBD comprises 47,537 high-resolution images with three-level labels, including pixel-level boundary labels, mask labels, and parcel labels. It covers seven major geographic zones in China and transcontinental climatic regions around the world.Compared to the existing datasets, the GTPBD dataset brings considerable challenges due to the: (1) terrain diversity; (2) complex and irregular parcel objects; and (3) multiple domain styles. Our proposed GTPBD dataset is suitable for four different tasks, including semantic segmentation, edge detection, terraced parcel extraction, and unsupervised domain adaptation (UDA) tasks.Accordingly, we benchmark the GTPBD dataset on eight semantic segmentation methods, four edge extraction methods, three parcel extraction methods, and five UDA methods, along with a multi-dimensional evaluation framework integrating pixel-level and object-level metrics. GTPBD fills a critical gap in terraced remote sensing research, providing a basic infrastructure for fine-grained agricultural terrain analysis and cross-scenario knowledge transfer.
comment: 40 pages, 40 figures, Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Bridging Geometry and Appearance: Topological Features for Robust Self-Supervised Segmentation
Self-supervised semantic segmentation methods often fail when faced with appearance ambiguities. We argue that this is due to an over-reliance on unstable, appearance-based features such as shadows, glare, and local textures. We propose \textbf{GASeg}, a novel framework that bridges appearance and geometry by leveraging stable topological information. The core of our method is Differentiable Box-Counting (\textbf{DBC}) module, which quantifies multi-scale topological statistics from two parallel streams: geometric-based features and appearance-based features. To force the model to learn these stable structural representations, we introduce Topological Augmentation (\textbf{TopoAug}), an adversarial strategy that simulates real-world ambiguities by applying morphological operators to the input images. A multi-objective loss, \textbf{GALoss}, then explicitly enforces cross-modal alignment between geometric-based and appearance-based features. Extensive experiments demonstrate that GASeg achieves state-of-the-art performance on four benchmarks, including COCO-Stuff, Cityscapes, and PASCAL, validating our approach of bridging geometry and appearance via topological information.
♻ ☆ PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation AAAI 2026
Chest X-ray report generation aims to reduce radiologists' workload by automatically producing high-quality preliminary reports. A critical yet underexplored aspect of this task is the effective use of patient-specific prior knowledge -- including clinical context (e.g., symptoms, medical history) and the most recent prior image -- which radiologists routinely rely on for diagnostic reasoning. Most existing methods generate reports from single images, neglecting this essential prior information and thus failing to capture diagnostic intent or disease progression. To bridge this gap, we propose PriorRG, a novel chest X-ray report generation framework that emulates real-world clinical workflows via a two-stage training pipeline. In Stage 1, we introduce a prior-guided contrastive pre-training scheme that leverages clinical context to guide spatiotemporal feature extraction, allowing the model to align more closely with the intrinsic spatiotemporal semantics in radiology reports. In Stage 2, we present a prior-aware coarse-to-fine decoding for report generation that progressively integrates patient-specific prior knowledge with the vision encoder's hidden states. This decoding allows the model to align with diagnostic focus and track disease progression, thereby enhancing the clinical accuracy and fluency of the generated reports. Extensive experiments on MIMIC-CXR and MIMIC-ABN datasets demonstrate that PriorRG outperforms state-of-the-art methods, achieving a 3.6% BLEU-4 and 3.8% F1 score improvement on MIMIC-CXR, and a 5.9% BLEU-1 gain on MIMIC-ABN. Code and checkpoints will be released upon acceptance.
comment: Accepted by AAAI 2026
♻ ☆ Hierarchical Relation-augmented Representation Generalization for Few-shot Action Recognition
Few-shot action recognition (FSAR) aims to recognize novel action categories with few exemplars. Existing methods typically learn frame-level representations for each video by designing inter-frame temporal modeling strategies or inter-video interaction at the coarse video-level granularity. However, they treat each episode task in isolation and neglect fine-grained temporal relation modeling between videos, thus failing to capture shared fine-grained temporal patterns across videos and reuse temporal knowledge from historical tasks. In light of this, we propose HR2G-shot, a Hierarchical Relation-augmented Representation Generalization framework for FSAR, which unifies three types of relation modeling (inter-frame, inter-video, and inter-task) to learn task-specific temporal patterns from a holistic view. Going beyond conducting inter-frame temporal interactions, we further devise two components to respectively explore inter-video and inter-task relationships: i) Inter-video Semantic Correlation (ISC) performs cross-video frame-level interactions in a fine-grained manner, thereby capturing task-specific query features and enhancing both intra-class consistency and inter-class separability; ii) Inter-task Knowledge Transfer (IKT) retrieves and aggregates relevant temporal knowledge from the bank, which stores diverse temporal patterns from historical episode tasks. Extensive experiments on five benchmarks show that HR2G-shot outperforms current top-leading FSAR methods.
♻ ☆ Pretraining Frame Preservation in Autoregressive Video Memory Compression
We present PFP, a neural network structure to compress long videos into short contexts, with an explicit pretraining objective to preserve the high-frequency details of single frames at arbitrary temporal positions. The baseline model can compress a 20-second video into a context at about 5k length, where random frames can be retrieved with perceptually preserved appearances. Such pretrained models can be directly fine-tuned as memory encoders for autoregressive video models, enabling long history memory with low context cost and relatively low fidelity loss. We evaluate the framework with ablative settings and discuss the trade-offs of possible neural architecture designs.
comment: Github: https://github.com/lllyasviel/PFP ; Project: https://lllyasviel.github.io/pfp_gitpage/
♻ ☆ MeSS: City Mesh-Guided Outdoor Scene Generation with Cross-View Consistent Diffusion
Mesh models have become increasingly accessible for numerous cities; however, the lack of realistic textures restricts their application in virtual urban navigation and autonomous driving. To address this, this paper proposes MeSS (Meshbased Scene Synthesis) for generating high-quality, styleconsistent outdoor scenes with city mesh models serving as the geometric prior. While image and video diffusion models can leverage spatial layouts (such as depth maps or HD maps) as control conditions to generate street-level perspective views, they are not directly applicable to 3D scene generation. Video diffusion models excel at synthesizing consistent view sequences that depict scenes but often struggle to adhere to predefined camera paths or align accurately with rendered control videos. In contrast, image diffusion models, though unable to guarantee cross-view visual consistency, can produce more geometry-aligned results when combined with ControlNet. Building on this insight, our approach enhances image diffusion models by improving cross-view consistency. The pipeline comprises three key stages: first, we generate geometrically consistent sparse views using Cascaded Outpainting ControlNets; second, we propagate denser intermediate views via a component dubbed AGInpaint; and third, we globally eliminate visual inconsistencies (e.g., varying exposure) using the GCAlign module. Concurrently with generation, a 3D Gaussian Splatting (3DGS) scene is reconstructed by initializing Gaussian balls on the mesh surface. Our method outperforms existing approaches in both geometric alignment and generation quality. Once synthesized, the scene can be rendered in diverse styles through relighting and style transfer techniques. project page: https://albertchen98.github.io/mess/
♻ ☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc.). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
♻ ☆ Conditional Diffusion Model with Anatomical-Dose Dual Constraints for End-to-End Multi-Tumor Dose Prediction
Radiotherapy treatment planning often relies on time-consuming, trial-and-error adjustments that heavily depend on the expertise of specialists, while existing deep learning methods face limitations in generalization, prediction accuracy, and clinical applicability. To tackle these challenges, we propose ADDiff-Dose, an Anatomical-Dose Dual Constraints Conditional Diffusion Model for end-to-end multi-tumor dose prediction. The model employs LightweightVAE3D to compress high-dimensional CT data and integrates multimodal inputs, including target and organ-at-risk (OAR) masks and beam parameters, within a progressive noise addition and denoising framework. It incorporates conditional features via a multi-head attention mechanism and utilizes a composite loss function combining MSE, conditional terms, and KL divergence to ensure both dosimetric accuracy and compliance with clinical constraints. Evaluation on a large-scale public dataset (2,877 cases) and three external institutional cohorts (450 cases in total) demonstrates that ADDiff-Dose significantly outperforms traditional baselines, achieving an MAE of 0.101-0.154 (compared to 0.316 for UNet and 0.169 for GAN models), a DICE coefficient of 0.927 (a 6.8% improvement), and limiting spinal cord maximum dose error to within 0.1 Gy. The average plan generation time per case is reduced to 22 seconds. Ablation studies confirm that the structural encoder enhances compliance with clinical dose constraints by 28.5%. To our knowledge, this is the first study to introduce a conditional diffusion model framework for radiotherapy dose prediction, offering a generalizable and efficient solution for automated treatment planning across diverse tumor sites, with the potential to substantially reduce planning time and improve clinical workflow efficiency.
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ Training-Free Video Editing via Optical Flow-Enhanced Score Distillation
The rapid advancement in visual generation, particularly the emergence of pre-trained text-to-image and text-to-video models, has catalyzed growing interest in training-free video editing research. Mirroring training-free image editing techniques, current approaches preserve original video information through video input inversion and manipulating intermediate features and attention during the inference process to achieve content editing. Although they have demonstrated promising results, the lossy nature of the inversion process poses significant challenges in maintaining unedited regions of the video. Furthermore, feature and attention manipulation during inference can lead to unintended over-editing and face challenges in both local temporal continuity and global content consistency. To address these challenges, this study proposes a score distillation paradigm based on pre-trained text-to-video models, where the original video is iteratively optimized through multiple steps guided by editing gradients provided by score distillation to ultimately obtain the target video. The iterative optimization starting from the original video, combined with content preservation loss, ensures the maintenance of unedited regions in the original video and suppresses over-editing. To further guarantee video content consistency and temporal continuity, we additionally introduce a global consistency auxiliary loss and optical flow prediction-based local editing gradient smoothing. Experiments demonstrate that these strategies effectively address the aforementioned challenges, achieving comparable or superior performance across multiple dimensions including preservation of unedited regions, local temporal continuity, and global content consistency of editing results, compared to state-of-the-art methods.
♻ ☆ TalkingEyes: Pluralistic Speech-Driven 3D Eye Gaze Animation
Although significant progress has been made in the field of speech-driven 3D facial animation recently, the speech-driven animation of an indispensable facial component, eye gaze, has been overlooked by recent research. This is primarily due to the weak correlation between speech and eye gaze, as well as the scarcity of audio-gaze data, making it very challenging to generate 3D eye gaze motion from speech alone. In this paper, we propose a novel data-driven method which can generate diverse 3D eye gaze motions in harmony with the speech. To achieve this, we firstly construct an audio-gaze dataset that contains about 14 hours of audio-mesh sequences featuring high-quality eye gaze motion, head motion and facial motion simultaneously. The motion data is acquired by performing lightweight eye gaze fitting and face reconstruction on videos from existing audio-visual datasets. We then tailor a novel speech-to-motion translation framework in which the head motions and eye gaze motions are jointly generated from speech but are modeled in two separate latent spaces. This design stems from the physiological knowledge that the rotation range of eyeballs is less than that of head. Through mapping the speech embedding into the two latent spaces, the difficulty in modeling the weak correlation between speech and non-verbal motion is thus attenuated. Finally, our TalkingEyes, integrated with a speech-driven 3D facial motion generator, can synthesize eye gaze motion, eye blinks, head motion and facial motion collectively from speech. Extensive quantitative and qualitative evaluations demonstrate the superiority of the proposed method in generating diverse and natural 3D eye gaze motions from speech. The project page of this paper is: https://lkjkjoiuiu.github.io/TalkingEyes_Home/
♻ ☆ EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction NeurIPS 2025
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model, which originally required 95GB of memory, on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Project page: https://hsi-che-lin.github.io/EMLoC/
♻ ☆ A Mutual-Structure Weighted Sub-Pixel Multimodal Optical Remote Sensing Image Matching Method
Sub-pixel matching of multimodal optical images is a critical step in combined application of multiple sensors. However structural noise and inconsistencies arising from variations in multimodal image responses usually limit the accuracy of matching. Phase congruency mutual-structure weighted least absolute deviation (PCWLAD) is developed as a coarse-to-fine framework. In the coarse matching stage, we preserve the complete structure and use an enhanced cross-modal similarity criterion to mitigate structural information loss by PC noise filtering. In the fine matching stage, a mutual-structure filtering and weighted least absolute deviation-based is introduced to enhance inter-modal structural consistency and accurately estimate sub-pixel displacements adaptively. Experiments on three multimodal datasets-Landsat visible-infrared, short-range visible-near-infrared, and UAV optical image pairs demonstrate that PCWLAD consistently outperforms eight state-of-the-art methods, achieving an average matching accuracy of approximately 0.4 pixels. The software and datasets are publicly available at https://github.com/huangtaocsu/PCWLAD.
♻ ☆ RoboMirror: Understand Before You Imitate for Video to Humanoid Locomotion
Humans learn locomotion through visual observation, interpreting visual content first before imitating actions. However, state-of-the-art humanoid locomotion systems rely on either curated motion capture trajectories or sparse text commands, leaving a critical gap between visual understanding and control. Text-to-motion methods suffer from semantic sparsity and staged pipeline errors, while video-based approaches only perform mechanical pose mimicry without genuine visual understanding. We propose RoboMirror, the first retargeting-free video-to-locomotion framework embodying "understand before you imitate". Leveraging VLMs, it distills raw egocentric/third-person videos into visual motion intents, which directly condition a diffusion-based policy to generate physically plausible, semantically aligned locomotion without explicit pose reconstruction or retargeting. Extensive experiments validate the effectiveness of RoboMirror, it enables telepresence via egocentric videos, drastically reduces third-person control latency by 80%, and achieves a 3.7% higher task success rate than baselines. By reframing humanoid control around video understanding, we bridge the visual understanding and action gap.
♻ ☆ Towards Vision-Language Geo-Foundation Model: A Survey
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding. However, most methods rely on training with general image datasets, and the lack of geospatial data leads to poor performance on earth observation. Numerous geospatial image-text pair datasets and VLFMs fine-tuned on them have been proposed recently. These new approaches aim to leverage large-scale, multimodal geospatial data to build versatile intelligent models with diverse geo-perceptive capabilities, which we refer to as Vision-Language Geo-Foundation Models (VLGFMs). This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field. In particular, we introduce the background and motivation behind the rise of VLGFMs, highlighting their unique research significance. Then, we systematically summarize the core technologies employed in VLGFMs, including data construction, model architectures, and applications of various multimodal geospatial tasks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To the best of our knowledge, this is the first comprehensive literature review of VLGFMs. We keep tracing related works at https://github.com/zytx121/Awesome-VLGFM.
comment: 18 pages, 4 figures
♻ ☆ Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone
While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as $π_0$ and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
comment: Add real-world experiments
♻ ☆ A Survey on 3D Skeleton Based Person Re-Identification: Taxonomy, Advances, Challenges, and Interdisciplinary Prospects
Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community. With distinctive advantages across various application scenarios, numerous 3D skeleton based person re-identification (SRID) methods with diverse skeleton modeling and learning paradigms have been proposed in recent years. In this paper, we provide a comprehensive review and analysis of recent SRID advances. First of all, we define the SRID task and provide an overview of its origin and major advancements. Secondly, we formulate a systematic taxonomy that organizes existing methods into three categories centered on hand-crafted, sequence-based, and graph-based modeling. Then, we elaborate on the representative models along these three types with an illustration of foundational mechanisms. Meanwhile, we provide an overview of mainstream supervised, self-supervised, and unsupervised SRID learning paradigms and corresponding common methods. A thorough evaluation of state-of-the-art SRID methods is further conducted over various types of benchmarks and protocols to compare their effectiveness, efficiency, and key properties. Finally, we present the key challenges and prospects to advance future research, and highlight interdisciplinary applications of SRID with a case study.
comment: A curated collection of valuable resources is available at https://github.com/Kali-Hac/3D-SRID-Survey
♻ ☆ TraveLLaMA: A Multimodal Travel Assistant with Large-Scale Dataset and Structured Reasoning AAAI 2026
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for comprehensive travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through three key contributions: (1) TravelQA, a novel dataset of 265k question-answer pairs combining 160k text QA from authentic travel sources, 100k vision-language QA featuring maps and location imagery, and 5k expert-annotated Chain-of-Thought reasoning examples; (2) Travel-CoT, a structured reasoning framework that decomposes travel queries into spatial, temporal, and practical dimensions, improving answer accuracy by 10.8\% while providing interpretable decision paths; and (3) an interactive agent system validated through extensive user studies. Through fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we achieve 6.2-9.4\% base improvements, further enhanced by Travel-CoT reasoning. Our model demonstrates superior capabilities in contextual travel recommendations, map interpretation, and scene understanding while providing practical information such as operating hours and cultural insights. User studies with 500 participants show TraveLLaMA achieves a System Usability Scale score of 82.5, significantly outperforming general-purpose models and establishing new standards for multimodal travel assistance systems.
comment: AAAI 2026 Oral
♻ ☆ InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
♻ ☆ RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation
Deep learning models often encounter challenges in making accurate inferences when there are domain shifts between the source and target data. This issue is particularly pronounced in clinical settings due to the scarcity of annotated data resulting from the professional and private nature of medical data. Although various cross-domain strategies have been explored, including frequency-based approaches that vary appearance while preserving semantics, many remain limited by data constraints and computational cost. To tackle domain shifts in data-scarce medical scenarios, we propose a Random frequency filtering enabled Single-source Domain Generalization algorithm (RaffeSDG), which promises robust out-of-domain inference with segmentation models trained on a single-source domain. A frequency filter-based data augmentation strategy is first proposed to promote domain variability within a single-source domain by introducing variations in frequency space and blending homologous samples. Then Gaussian filter-based structural saliency is also leveraged to learn robust representations across augmented samples, further facilitating the training of generalizable segmentation models. To validate the effectiveness of RaffeSDG, we conducted extensive experiments involving out-of-domain inference on segmentation tasks for three human tissues imaged by four diverse modalities. Through thorough investigations and comparisons, compelling evidence was observed in these experiments, demonstrating the potential and generalizability of RaffeSDG. The code is available at https://github.com/liamheng/Non-IID_Medical_Image_Segmentation.
♻ ☆ Enhancing Blind Video Quality Assessment with Rich Quality-aware Features CVPR
Blind video quality assessment (BVQA) is a highly challenging task due to the intrinsic complexity of video content and visual distortions, especially given the high popularity of social media videos, which originate from a wide range of sources, and are often processed by various compression and enhancement algorithms. While recent BVQA and blind image quality assessment (BIQA) studies have made remarkable progress, their models typically perform well on the datasets they were trained on but generalize poorly to unseen videos, making them less effective for accurately evaluating the perceptual quality of diverse social media videos. In this paper, we propose Rich Quality-aware features enabled Video Quality Assessment (RQ-VQA), a simple yet effective method to enhance BVQA by leveraging rich quality-aware features extracted from off-the-shelf BIQA and BVQA models. Our approach exploits the expertise of existing quality assessment models within their trained domains to improve generalization. Specifically, we design a multi-source feature framework that integrates:(1) Learnable spatial features} from a base model fine-tuned on the target VQA dataset to capture domain-specific quality cues; (2) Temporal motion features from the fast pathway of SlowFast pre-trained on action recognition datasets to model motion-related distortions; (3) Spatial quality-aware features from BIQA models trained on diverse IQA datasets to enhance frame-level distortion representation; and (4) Spatiotemporal quality-aware features from a BVQA model trained on large-scale VQA datasets to jointly encode spatial structure and temporal dynamics. These features are concatenated and fed into a multi-layer perceptron (MLP) to regress them into quality scores. Experimental results demonstrate that our model achieves state-of-the-art performance on three public social media VQA datasets.
comment: RQ-VQA won first place in the CVPR NTIRE 2024 Short-form UGC Video Quality Assessment Challenge
Artificial Intelligence 96
☆ FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation
Precise delineation of anatomical and pathological structures within 3D medical volumes is crucial for accurate diagnosis, effective surgical planning, and longitudinal disease monitoring. Despite advancements in AI, clinically viable segmentation is often hindered by the scarcity of 3D annotations, patient-specific variability, data privacy concerns, and substantial computational overhead. In this work, we propose FALCON, a cross-domain few-shot segmentation framework that achieves high-precision 3D volume segmentation by processing data as 2D slices. The framework is first meta-trained on natural images to learn-to-learn generalizable segmentation priors, then transferred to the medical domain via adversarial fine-tuning and boundary-aware learning. Task-aware inference, conditioned on support cues, allows FALCON to adapt dynamically to patient-specific anatomical variations across slices. Experiments on four benchmarks demonstrate that FALCON consistently achieves the lowest Hausdorff Distance scores, indicating superior boundary accuracy while maintaining a Dice Similarity Coefficient comparable to the state-of-the-art models. Notably, these results are achieved with significantly less labeled data, no data augmentation, and substantially lower computational overhead.
comment: 20 pages, 6 figures, 7 tables
☆ Lying with Truths: Open-Channel Multi-Agent Collusion for Belief Manipulation via Generative Montage
As large language models (LLMs) transition to autonomous agents synthesizing real-time information, their reasoning capabilities introduce an unexpected attack surface. This paper introduces a novel threat where colluding agents steer victim beliefs using only truthful evidence fragments distributed through public channels, without relying on covert communications, backdoors, or falsified documents. By exploiting LLMs' overthinking tendency, we formalize the first cognitive collusion attack and propose Generative Montage: a Writer-Editor-Director framework that constructs deceptive narratives through adversarial debate and coordinated posting of evidence fragments, causing victims to internalize and propagate fabricated conclusions. To study this risk, we develop CoPHEME, a dataset derived from real-world rumor events, and simulate attacks across diverse LLM families. Our results show pervasive vulnerability across 14 LLM families: attack success rates reach 74.4% for proprietary models and 70.6% for open-weights models. Counterintuitively, stronger reasoning capabilities increase susceptibility, with reasoning-specialized models showing higher attack success than base models or prompts. Furthermore, these false beliefs then cascade to downstream judges, achieving over 60% deception rates, highlighting a socio-technical vulnerability in how LLM-based agents interact with dynamic information environments. Our implementation and data are available at: https://github.com/CharlesJW222/Lying_with_Truth/tree/main.
comment: Under Review
☆ Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks IEEE
Private macOS frameworks underpin critical services and daemons but remain undocumented and distributed only as stripped binaries, complicating security analysis. We present MOTIF, an agentic framework that integrates tool-augmented analysis with a finetuned large language model specialized for Objective-C type inference. The agent manages runtime metadata extraction, binary inspection, and constraint checking, while the model generates candidate method signatures that are validated and refined into compilable headers. On MOTIF-Bench, a benchmark built from public frameworks with groundtruth headers, MOTIF improves signature recovery from 15% to 86% compared to baseline static analysis tooling, with consistent gains in tool-use correctness and inference stability. Case studies on private frameworks show that reconstructed headers compile, link, and facilitate downstream security research and vulnerability studies. By transforming opaque binaries into analyzable interfaces, MOTIF establishes a scalable foundation for systematic auditing of macOS internals.
comment: IEEE S&P'26 under review
☆ EHRSummarizer: A Privacy-Aware, FHIR-Native Architecture for Structured Clinical Summarization of Electronic Health Records
Clinicians routinely navigate fragmented electronic health record (EHR) interfaces to assemble a coherent picture of a patient's problems, medications, recent encounters, and longitudinal trends. This work describes EHRSummarizer, a privacy-aware, FHIR-native reference architecture that retrieves a targeted set of high-yield FHIR R4 resources, normalizes them into a consistent clinical context package, and produces structured summaries intended to support structured chart review. The system can be configured for data minimization, stateless processing, and flexible deployment, including local inference within an organization's trust boundary. To mitigate the risk of unsupported or unsafe behavior, the summarization stage is constrained to evidence present in the retrieved context package, is intended to indicate missing or unavailable domains where feasible, and avoids diagnostic or treatment recommendations. Prototype demonstrations on synthetic and test FHIR environments illustrate end-to-end behavior and output formats; however, this manuscript does not report clinical outcomes or controlled workflow studies. We outline an evaluation plan centered on faithfulness, omission risk, temporal correctness, usability, and operational monitoring to guide future institutional assessments.
comment: 19 pages
☆ Adversarial Instance Generation and Robust Training for Neural Combinatorial Optimization with Multiple Objectives
Deep reinforcement learning (DRL) has shown great promise in addressing multi-objective combinatorial optimization problems (MOCOPs). Nevertheless, the robustness of these learning-based solvers has remained insufficiently explored, especially across diverse and complex problem distributions. In this paper, we propose a unified robustness-oriented framework for preference-conditioned DRL solvers for MOCOPs. Within this framework, we develop a preference-based adversarial attack to generate hard instances that expose solver weaknesses, and quantify the attack impact by the resulting degradation on Pareto-front quality. We further introduce a defense strategy that integrates hardness-aware preference selection into adversarial training to reduce overfitting to restricted preference regions and improve out-of-distribution performance. The experimental results on multi-objective traveling salesman problem (MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and multi-objective knapsack problem (MOKP) verify that our attack method successfully learns hard instances for different solvers. Furthermore, our defense method significantly strengthens the robustness and generalizability of neural solvers, delivering superior performance on hard or out-of-distribution instances.
☆ Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths
We study generative modeling of \emph{variable-length trajectories} -- sequences of visited locations/items with associated timestamps -- for downstream simulation and counterfactual analysis. A recurring practical issue is that standard mini-batch training can be unstable when trajectory lengths are highly heterogeneous, which in turn degrades \emph{distribution matching} for trajectory-derived statistics. We propose \textbf{length-aware sampling (LAS)}, a simple batching strategy that groups trajectories by length and samples batches from a single length bucket, reducing within-batch length heterogeneity (and making updates more consistent) without changing the model class. We integrate LAS into a conditional trajectory GAN with auxiliary time-alignment losses and provide (i) a distribution-level guarantee for derived variables under mild boundedness assumptions, and (ii) an IPM/Wasserstein mechanism explaining why LAS improves distribution matching by removing length-only shortcut critics and targeting within-bucket discrepancies. Empirically, LAS consistently improves matching of derived-variable distributions on a multi-mall dataset of shopper trajectories and on diverse public sequence datasets (GPS, education, e-commerce, and movies), outperforming random sampling across dataset-specific metrics.
☆ UniCrop: A Universal, Multi-Source Data Engineering Pipeline for Scalable Crop Yield Prediction
Accurate crop yield prediction relies on diverse data streams, including satellite, meteorological, soil, and topographic information. However, despite rapid advances in machine learning, existing approaches remain crop- or region-specific and require data engineering efforts. This limits scalability, reproducibility, and operational deployment. This study introduces UniCrop, a universal and reusable data pipeline designed to automate the acquisition, cleaning, harmonisation, and engineering of multi-source environmental data for crop yield prediction. For any given location, crop type, and temporal window, UniCrop automatically retrieves, harmonises, and engineers over 200 environmental variables (Sentinel-1/2, MODIS, ERA5-Land, NASA POWER, SoilGrids, and SRTM), reducing them to a compact, analysis-ready feature set utilising a structured feature reduction workflow with minimum redundancy maximum relevance (mRMR). To validate, UniCrop was applied to a rice yield dataset comprising 557 field observations. Using only the selected 15 features, four baseline machine learning models (LightGBM, Random Forest, Support Vector Regression, and Elastic Net) were trained. LightGBM achieved the best single-model performance (RMSE = 465.1 kg/ha, $R^2 = 0.6576$), while a constrained ensemble of all baselines further improved accuracy (RMSE = 463.2 kg/ha, $R^2 = 0.6604$). UniCrop contributes a scalable and transparent data-engineering framework that addresses the primary bottleneck in operational crop yield modelling: the preparation of consistent and harmonised multi-source data. By decoupling data specification from implementation and supporting any crop, region, and time frame through simple configuration updates, UniCrop provides a practical foundation for scalable agricultural analytics. The code and implementation documentation are shared in https://github.com/CoDIS-Lab/UniCrop.
☆ Learning Resilient Elections with Adversarial GNNs
In the face of adverse motives, it is indispensable to achieve a consensus. Elections have been the canonical way by which modern democracy has operated since the 17th century. Nowadays, they regulate markets, provide an engine for modern recommender systems or peer-to-peer networks, and remain the main approach to represent democracy. However, a desirable universal voting rule that satisfies all hypothetical scenarios is still a challenging topic, and the design of these systems is at the forefront of mechanism design research. Automated mechanism design is a promising approach, and recent works have demonstrated that set-invariant architectures are uniquely suited to modelling electoral systems. However, various concerns prevent the direct application to real-world settings, such as robustness to strategic voting. In this paper, we generalise the expressive capability of learned voting rules, and combine improvements in neural network architecture with adversarial training to improve the resilience of voting rules while maximizing social welfare. We evaluate the effectiveness of our methods on both synthetic and real-world datasets. Our method resolves critical limitations of prior work regarding learning voting rules by representing elections using bipartite graphs, and learning such voting rules using graph neural networks. We believe this opens new frontiers for applying machine learning to real-world elections.
☆ JMedEthicBench: A Multi-Turn Conversational Benchmark for Evaluating Medical Safety in Japanese Large Language Models
As Large Language Models (LLMs) are increasingly deployed in healthcare field, it becomes essential to carefully evaluate their medical safety before clinical use. However, existing safety benchmarks remain predominantly English-centric, and test with only single-turn prompts despite multi-turn clinical consultations. To address these gaps, we introduce JMedEthicBench, the first multi-turn conversational benchmark for evaluating medical safety of LLMs for Japanese healthcare. Our benchmark is based on 67 guidelines from the Japan Medical Association and contains over 50,000 adversarial conversations generated using seven automatically discovered jailbreak strategies. Using a dual-LLM scoring protocol, we evaluate 27 models and find that commercial models maintain robust safety while medical-specialized models exhibit increased vulnerability. Furthermore, safety scores decline significantly across conversation turns (median: 9.5 to 5.0, $p < 0.001$). Cross-lingual evaluation on both Japanese and English versions of our benchmark reveals that medical model vulnerabilities persist across languages, indicating inherent alignment limitations rather than language-specific factors. These findings suggest that domain-specific fine-tuning may accidentally weaken safety mechanisms and that multi-turn interactions represent a distinct threat surface requiring dedicated alignment strategies.
comment: 12 pages, 6 figures
☆ Structured Decomposition for LLM Reasoning: Cross-Domain Validation and Semantic Web Integration
Rule-based reasoning over natural language input arises in domains where decisions must be auditable and justifiable: clinical protocols specify eligibility criteria in prose, evidence rules define admissibility through textual conditions, and scientific standards dictate methodological requirements. Applying rules to such inputs demands both interpretive flexibility and formal guarantees. Large language models (LLMs) provide flexibility but cannot ensure consistent rule application; symbolic systems provide guarantees but require structured input. This paper presents an integration pattern that combines these strengths: LLMs serve as ontology population engines, translating unstructured text into ABox assertions according to expert-authored TBox specifications, while SWRL-based reasoners apply rules with deterministic guarantees. The framework decomposes reasoning into entity identification, assertion extraction, and symbolic verification, with task definitions grounded in OWL 2 ontologies. Experiments across three domains (legal hearsay determination, scientific method-task application, clinical trial eligibility) and eleven language models validate the approach. Structured decomposition achieves statistically significant improvements over few-shot prompting in aggregate, with gains observed across all three domains. An ablation study confirms that symbolic verification provides substantial benefit beyond structured prompting alone. The populated ABox integrates with standard semantic web tooling for inspection and querying, positioning the framework for richer inference patterns that simpler formalisms cannot express.
☆ REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training
Precipitation nowcasting is critically important for meteorological forecasting. Deep learning-based Radar Echo Extrapolation (REE) has become a predominant nowcasting approach, yet it suffers from poor generalization due to its reliance on high-quality local training data and static model parameters, limiting its applicability across diverse regions and extreme events. To overcome this, we propose REE-TTT, a novel model that incorporates an adaptive Test-Time Training (TTT) mechanism. The core of our model lies in the newly designed Spatio-temporal Test-Time Training (ST-TTT) block, which replaces the standard linear projections in TTT layers with task-specific attention mechanisms, enabling robust adaptation to non-stationary meteorological distributions and thereby significantly enhancing the feature representation of precipitation. Experiments under cross-regional extreme precipitation scenarios demonstrate that REE-TTT substantially outperforms state-of-the-art baseline models in prediction accuracy and generalization, exhibiting remarkable adaptability to data distribution shifts.
☆ From Theory of Mind to Theory of Environment: Counterfactual Simulation of Latent Environmental Dynamics AAAI 2026
The vertebrate motor system employs dimensionality-reducing strategies to limit the complexity of movement coordination, for efficient motor control. But when environments are dense with hidden action-outcome contingencies, movement complexity can promote behavioral innovation. Humans, perhaps uniquely, may infer the presence of hidden environmental dynamics from social cues, by drawing upon computational mechanisms shared with Theory of Mind. This proposed "Theory of Environment" supports behavioral innovation by expanding the dimensionality of motor exploration.
comment: Accepted to the AAAI 2026 Workshop on Theory of Mind for Artificial Intelligence (ToM4AI). Extended abstract, 2 pages
☆ CONSENT: A Negotiation Framework for Leveraging User Flexibility in Vehicle-to-Building Charging under Uncertainty AAMAS 2026
The growth of Electric Vehicles (EVs) creates a conflict in vehicle-to-building (V2B) settings between building operators, who face high energy costs from uncoordinated charging, and drivers, who prioritize convenience and a full charge. To resolve this, we propose a negotiation-based framework that, by design, guarantees voluntary participation, strategy-proofness, and budget feasibility. It transforms EV charging into a strategic resource by offering drivers a range of incentive-backed options for modest flexibility in their departure time or requested state of charge (SoC). Our framework is calibrated with user survey data and validated using real operational data from a commercial building and an EV manufacturer. Simulations show that our negotiation protocol creates a mutually beneficial outcome: lowering the building operator's costs by over 3.5\% compared to an optimized, non-negotiating smart charging policy, while simultaneously reducing user charging expenses by 22\% below the utility's retail energy rate. By aligning operator and EV user objectives, our framework provides a strategic bridge between energy and mobility systems, transforming EV charging from a source of operational friction into a platform for collaboration and shared savings.
comment: Submitted to AAMAS 2026. 25 pages, 13 figures, 14 tables
☆ The Two-Stage Decision-Sampling Hypothesis: Understanding the Emergence of Self-Reflection in RL-Trained LLMs
Self-reflection capabilities emerge in Large Language Models after RL post-training, with multi-turn RL achieving substantial gains over SFT counterparts. Yet the mechanism of how a unified optimization objective gives rise to functionally distinct capabilities of generating solutions and evaluating when to revise them remains opaque. To address this question, we introduce the Gradient Attribution Property to characterize how reward gradients distribute across policy components, formalized through the Two-Stage Decision-Sampling (DS) Hypothesis, which decomposes the policy into sampling ($π_{sample}$) for generation and decision ($π_{d}$) for verification. We prove that surrogate rewards exhibit Balanced Gradient Attribution, while SFT and KL penalties exhibit Unbalanced Gradient Attribution, with length-weighting creating asymmetric regularization that constrains $π_{sample}$ while leaving $π_{d}$ under-optimized, providing an theoretical explanation of why RL succeeds where SFT fails. We also empirically validate our theoretical predictions on arithmetic reasoning demonstrates that RL's superior generalization stems primarily from improved decision-making ($π_{d}$) rather than sampling capabilities, providing a first-principles mechanistic explanation for self-correction in thinking models.
☆ HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller
Current attempts of Reinforcement Learning for Autonomous Controller are data-demanding while the results are under-performed, unstable, and unable to grasp and anchor on the concept of safety, and over-concentrating on noise features due to the nature of pixel reconstruction. While current Self-Supervised Learningapproachs that learning on high-dimensional representations by leveraging the JointEmbedding Predictive Architecture (JEPA) are interesting and an effective alternative, as the idea mimics the natural ability of the human brain in acquiring new skill usingimagination and minimal samples of observations. This study introduces Hanoi-World, a JEPA-based world model that using recurrent neural network (RNN) formaking longterm horizontal planning with effective inference time. Experimentsconducted on the Highway-Env package with difference enviroment showcase the effective capability of making a driving plan while safety-awareness, with considerablecollision rate in comparison with SOTA baselines
☆ OpenNovelty: An LLM-powered Agentic System for Verifiable Scholarly Novelty Assessment
Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
☆ CaveAgent: Transforming LLMs into Stateful Runtime Operators
LLM-based agents are increasingly capable of complex task execution, yet current agentic systems remain constrained by text-centric paradigms. Traditional approaches rely on procedural JSON-based function calling, which often struggles with long-horizon tasks due to fragile multi-turn dependencies and context drift. In this paper, we present CaveAgent, a framework that transforms the paradigm from "LLM-as-Text-Generator" to "LLM-as-Runtime-Operator." We introduce a Dual-stream Context Architecture that decouples state management into a lightweight semantic stream for reasoning and a persistent, deterministic Python Runtime stream for execution. In addition to leveraging code generation to efficiently resolve interdependent sub-tasks (e.g., loops, conditionals) in a single step, we introduce \textit{Stateful Runtime Management} in CaveAgent. Distinct from existing code-based approaches that remain text-bound and lack the support for external object injection and retrieval, CaveAgent injects, manipulates, and retrieves complex Python objects (e.g., DataFrames, database connections) that persist across turns. This persistence mechanism acts as a high-fidelity external memory to eliminate context drift, avoid catastrophic forgetting, while ensuring that processed data flows losslessly to downstream applications. Comprehensive evaluations on Tau$^2$-bench, BFCL and various case studies across representative SOTA LLMs demonstrate CaveAgent's superiority. Specifically, our framework achieves a 10.5\% success rate improvement on retail tasks and reduces total token consumption by 28.4\% in multi-turn scenarios. On data-intensive tasks, direct variable storage and retrieval reduces token consumption by 59\%, allowing CaveAgent to handle large-scale data that causes context overflow failures in both JSON-based and Code-based agents.
comment: 32 pages, 14 Figures
☆ MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
☆ Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement
We present Logics-STEM, a state-of-the-art reasoning model fine-tuned on Logics-STEM-SFT-Dataset, a high-quality and diverse dataset at 10M scale that represents one of the largest-scale open-source long chain-of-thought corpora. Logics-STEM targets reasoning tasks in the domains of Science, Technology, Engineering, and Mathematics (STEM), and exhibits exceptional performance on STEM-related benchmarks with an average improvement of 4.68% over the next-best model at 8B scale. We attribute the gains to our data-algorithm co-design engine, where they are jointly optimized to fit a gold-standard distribution behind reasoning. Data-wise, the Logics-STEM-SFT-Dataset is constructed from a meticulously designed data curation engine with 5 stages to ensure the quality, diversity, and scalability, including annotation, deduplication, decontamination, distillation, and stratified sampling. Algorithm-wise, our failure-driven post-training framework leverages targeted knowledge retrieval and data synthesis around model failure regions in the Supervised Fine-tuning (SFT) stage to effectively guide the second-stage SFT or the reinforcement learning (RL) for better fitting the target distribution. The superior empirical performance of Logics-STEM reveals the vast potential of combining large-scale open-source data with carefully designed synthetic data, underscoring the critical role of data-algorithm co-design in enhancing reasoning capabilities through post-training. We make both the Logics-STEM models (8B and 32B) and the Logics-STEM-SFT-Dataset (10M and downsampled 2.2M versions) publicly available to support future research in the open-source community.
☆ Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings
Predicting river flow in places without streamflow records is challenging because basins respond differently to climate, terrain, vegetation, and soils. Traditional basin attributes describe some of these differences, but they cannot fully represent the complexity of natural environments. This study examines whether AlphaEarth Foundation embeddings, which are learned from large collections of satellite images rather than designed by experts, offer a more informative way to describe basin characteristics. These embeddings summarize patterns in vegetation, land surface properties, and long-term environmental dynamics. We find that models using them achieve higher accuracy when predicting flows in basins not used for training, suggesting that they capture key physical differences more effectively than traditional attributes. We further investigate how selecting appropriate donor basins influences prediction in ungauged regions. Similarity based on the embeddings helps identify basins with comparable environmental and hydrological behavior, improving performance, whereas adding many dissimilar basins can reduce accuracy. The results show that satellite-informed environmental representations can strengthen hydrological forecasting and support the development of models that adapt more easily to different landscapes.
comment: 12 pages, 11 figures
☆ MOSS Transcribe Diarize: Accurate Transcription with Speaker Diarization
Speaker-Attributed, Time-Stamped Transcription (SATS) aims to transcribe what is said and to precisely determine the timing of each speaker, which is particularly valuable for meeting transcription. Existing SATS systems rarely adopt an end-to-end formulation and are further constrained by limited context windows, weak long-range speaker memory, and the inability to output timestamps. To address these limitations, we present MOSS Transcribe Diarize, a unified multimodal large language model that jointly performs Speaker-Attributed, Time-Stamped Transcription in an end-to-end paradigm. Trained on extensive real wild data and equipped with a 128k context window for up to 90-minute inputs, MOSS Transcribe Diarize scales well and generalizes robustly. Across comprehensive evaluations, it outperforms state-of-the-art commercial systems on multiple public and in-house benchmarks.
☆ EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
☆ Improving Behavioral Alignment in LLM Social Simulations via Context Formation and Navigation
Large language models (LLMs) are increasingly used to simulate human behavior in experimental settings, but they systematically diverge from human decisions in complex decision-making environments, where participants must anticipate others' actions and form beliefs based on observed behavior. We propose a two-stage framework for improving behavioral alignment. The first stage, context formation, explicitly specifies the experimental design to establish an accurate representation of the decision task and its context. The second stage, context navigation, guides the reasoning process within that representation to make decisions. We validate this framework through a focal replication of a sequential purchasing game with quality signaling (Kremer and Debo, 2016), extending to a crowdfunding game with costly signaling (Cason et al., 2025) and a demand-estimation task (Gui and Toubia, 2025) to test generalizability across decision environments. Across four state-of-the-art (SOTA) models (GPT-4o, GPT-5, Claude-4.0-Sonnet-Thinking, DeepSeek-R1), we find that complex decision-making environments require both stages to achieve behavioral alignment with human benchmarks, whereas the simpler demand-estimation task requires only context formation. Our findings clarify when each stage is necessary and provide a systematic approach for designing and diagnosing LLM social simulations as complements to human subjects in behavioral research.
comment: 39 pages, 2 figures, 3 tables
☆ Bridging the Data Gap: Creating a Hindi Text Summarization Dataset from the English XSUM
Current advancements in Natural Language Processing (NLP) have largely favored resource-rich languages, leaving a significant gap in high-quality datasets for low-resource languages like Hindi. This scarcity is particularly evident in text summarization, where the development of robust models is hindered by a lack of diverse, specialized corpora. To address this disparity, this study introduces a cost-effective, automated framework for creating a comprehensive Hindi text summarization dataset. By leveraging the English Extreme Summarization (XSUM) dataset as a source, we employ advanced translation and linguistic adaptation techniques. To ensure high fidelity and contextual relevance, we utilize the Crosslingual Optimized Metric for Evaluation of Translation (COMET) for validation, supplemented by the selective use of Large Language Models (LLMs) for curation. The resulting dataset provides a diverse, multi-thematic resource that mirrors the complexity of the original XSUM corpus. This initiative not only provides a direct tool for Hindi NLP research but also offers a scalable methodology for democratizing NLP in other underserved languages. By reducing the costs associated with dataset creation, this work fosters the development of more nuanced, culturally relevant models in computational linguistics.
comment: Book chapter for River publications
☆ Aletheia: Quantifying Cognitive Conviction in Reasoning Models via Regularized Inverse Confusion Matrix
In the progressive journey toward Artificial General Intelligence (AGI), current evaluation paradigms face an epistemological crisis. Static benchmarks measure knowledge breadth but fail to quantify the depth of belief. While Simhi et al. (2025) defined the CHOKE phenomenon in standard QA, we extend this framework to quantify "Cognitive Conviction" in System 2 reasoning models. We propose Project Aletheia, a cognitive physics framework that employs Tikhonov Regularization to invert the judge's confusion matrix. To validate this methodology without relying on opaque private data, we implement a Synthetic Proxy Protocol. Our preliminary pilot study on 2025 baselines (e.g., DeepSeek-R1, OpenAI o1) suggests that while reasoning models act as a "cognitive buffer," they may exhibit "Defensive OverThinking" under adversarial pressure. Furthermore, we introduce the Aligned Conviction Score (S_aligned) to verify that conviction does not compromise safety. This work serves as a blueprint for measuring AI scientific integrity.
comment: 6 pages, 2 figures
☆ DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving
Video generation models, as one form of world models, have emerged as one of the most exciting frontiers in AI, promising agents the ability to imagine the future by modeling the temporal evolution of complex scenes. In autonomous driving, this vision gives rise to driving world models: generative simulators that imagine ego and agent futures, enabling scalable simulation, safe testing of corner cases, and rich synthetic data generation. Yet, despite fast-growing research activity, the field lacks a rigorous benchmark to measure progress and guide priorities. Existing evaluations remain limited: generic video metrics overlook safety-critical imaging factors; trajectory plausibility is rarely quantified; temporal and agent-level consistency is neglected; and controllability with respect to ego conditioning is ignored. Moreover, current datasets fail to cover the diversity of conditions required for real-world deployment. To address these gaps, we present DrivingGen, the first comprehensive benchmark for generative driving world models. DrivingGen combines a diverse evaluation dataset curated from both driving datasets and internet-scale video sources, spanning varied weather, time of day, geographic regions, and complex maneuvers, with a suite of new metrics that jointly assess visual realism, trajectory plausibility, temporal coherence, and controllability. Benchmarking 14 state-of-the-art models reveals clear trade-offs: general models look better but break physics, while driving-specific ones capture motion realistically but lag in visual quality. DrivingGen offers a unified evaluation framework to foster reliable, controllable, and deployable driving world models, enabling scalable simulation, planning, and data-driven decision-making.
comment: 10 pages, 4 figures; Project Website: https://drivinggen-bench.github.io/
☆ Bayesian Orchestration of Multi-LLM Agents for Cost-Aware Sequential Decision-Making
Large language models (LLMs) are increasingly deployed as autonomous decision agents in settings with asymmetric error costs: hiring (missed talent vs wasted interviews), medical triage (missed emergencies vs unnecessary escalation), and fraud detection (approved fraud vs declined legitimate payments). The dominant design queries a single LLM for a posterior over states, thresholds "confidence," and acts; we prove this is inadequate for sequential decisions with costs. We propose a Bayesian, cost-aware multi-LLM orchestration framework that treats LLMs as approximate likelihood models rather than classifiers. For each candidate state, we elicit likelihoods via contrastive prompting, aggregate across diverse models with robust statistics, and update beliefs with Bayes rule under explicit priors as new evidence arrives. This enables coherent belief updating, expected-cost action selection, principled information gathering via value of information, and fairness gains via ensemble bias mitigation. In resume screening with costs of 40000 USD per missed hire, 2500 USD per interview, and 150 USD per phone screen, experiments on 1000 resumes using five LLMs (GPT-4o, Claude 4.5 Sonnet, Gemini Pro, Grok, DeepSeek) reduce total cost by 294000 USD (34 percent) versus the best single-LLM baseline and improve demographic parity by 45 percent (max group gap 22 to 5 percentage points). Ablations attribute 51 percent of savings to multi-LLM aggregation, 43 percent to sequential updating, and 20 percent to disagreement-triggered information gathering, consistent with the theoretical benefits of correct probabilistic foundations.
☆ FastV-RAG: Towards Fast and Fine-Grained Video QA with Retrieval-Augmented Generation
Vision-Language Models (VLMs) excel at visual reasoning but still struggle with integrating external knowledge. Retrieval-Augmented Generation (RAG) is a promising solution, but current methods remain inefficient and often fail to maintain high answer quality. To address these challenges, we propose VideoSpeculateRAG, an efficient VLM-based RAG framework built on two key ideas. First, we introduce a speculative decoding pipeline: a lightweight draft model quickly generates multiple answer candidates, which are then verified and refined by a more accurate heavyweight model, substantially reducing inference latency without sacrificing correctness. Second, we identify a major source of error - incorrect entity recognition in retrieved knowledge - and mitigate it with a simple yet effective similarity-based filtering strategy that improves entity alignment and boosts overall answer accuracy. Experiments demonstrate that VideoSpeculateRAG achieves comparable or higher accuracy than standard RAG approaches while accelerating inference by approximately 2x. Our framework highlights the potential of combining speculative decoding with retrieval-augmented reasoning to enhance efficiency and reliability in complex, knowledge-intensive multimodal tasks.
☆ Reading Between the Lines: Deconfounding Causal Estimates using Text Embeddings and Deep Learning
Estimating causal treatment effects in observational settings is frequently compromised by selection bias arising from unobserved confounders. While traditional econometric methods struggle when these confounders are orthogonal to structured covariates, high-dimensional unstructured text often contains rich proxies for these latent variables. This study proposes a Neural Network-Enhanced Double Machine Learning (DML) framework designed to leverage text embeddings for causal identification. Using a rigorous synthetic benchmark, we demonstrate that unstructured text embeddings capture critical confounding information that is absent from structured tabular data. However, we show that standard tree-based DML estimators retain substantial bias (+24%) due to their inability to model the continuous topology of embedding manifolds. In contrast, our deep learning approach reduces bias to -0.86% with optimized architectures, effectively recovering the ground-truth causal parameter. These findings suggest that deep learning architectures are essential for satisfying the unconfoundedness assumption when conditioning on high-dimensional natural language data
☆ The Optimal Sample Complexity of Linear Contracts
In this paper, we settle the problem of learning optimal linear contracts from data in the offline setting, where agent types are drawn from an unknown distribution and the principal's goal is to design a contract that maximizes her expected utility. Specifically, our analysis shows that the simple Empirical Utility Maximization (EUM) algorithm yields an $\varepsilon$-approximation of the optimal linear contract with probability at least $1-δ$, using just $O(\ln(1/δ) / \varepsilon^2)$ samples. This result improves upon previously known bounds and matches a lower bound from Duetting et al. [2025] up to constant factors, thereby proving its optimality. Our analysis uses a chaining argument, where the key insight is to leverage a simple structural property of linear contracts: their expected reward is non-decreasing. This property, which holds even though the utility function itself is non-monotone and discontinuous, enables the construction of fine-grained nets required for the chaining argument, which in turn yields the optimal sample complexity. Furthermore, our proof establishes the stronger guarantee of uniform convergence: the empirical utility of every linear contract is a $\varepsilon$-approximation of its true expectation with probability at least $1-δ$, using the same optimal $O(\ln(1/δ) / \varepsilon^2)$ sample complexity.
☆ Distortion Instead of Hallucination: The Effect of Reasoning Under Strict Constraints
With the widespread adoption of large language models (LLMs), hallucinations, which are non-factual fabrications in model outputs, have become serious concerns. Reasoning capabilities have received attention as a self-verification process to improve output reliability. However, the effect of reasoning within a closed system where LLMs cannot rely on external tools or knowledge has yet to be clarified. We therefore conduct experiments under strict constraints (recommending peer-reviewed journal articles in computer science) to examine the effect of reasoning across multiple models (GPT-5.2 and Gemini 3 Flash). Our results reveal a problematic trade-off between constraint compliance and factual accuracy. Non-reasoning models exhibit high constraint violation rates (66-75%) but maintain factual accuracy, while reasoning models reduce violations (13-26%) but systematically distort known facts to satisfy constraints and increase complete fabrication. This trade-off pattern is consistent across both models despite different architectures, indicating a fundamental limitation of reasoning. Furthermore, reasoning does not uniformly improve output authenticity: effects diverge by model, reflecting different allocations of the compliance-truthfulness trade-off. These findings challenge the assumption that reasoning universally improves reliability: reasoning models trade honest constraint violations for detection-resistant distortions.
☆ DeepInv: A Novel Self-supervised Learning Approach for Fast and Accurate Diffusion Inversion
Diffusion inversion is a task of recovering the noise of an image in a diffusion model, which is vital for controllable diffusion image editing. At present, diffusion inversion still remains a challenging task due to the lack of viable supervision signals. Thus, most existing methods resort to approximation-based solutions, which however are often at the cost of performance or efficiency. To remedy these shortcomings, we propose a novel self-supervised diffusion inversion approach in this paper, termed Deep Inversion (DeepInv). Instead of requiring ground-truth noise annotations, we introduce a self-supervised objective as well as a data augmentation strategy to generate high-quality pseudo noises from real images without manual intervention. Based on these two innovative designs, DeepInv is also equipped with an iterative and multi-scale training regime to train a parameterized inversion solver, thereby achieving the fast and accurate image-to-noise mapping. To the best of our knowledge, this is the first attempt of presenting a trainable solver to predict inversion noise step by step. The extensive experiments show that our DeepInv can achieve much better performance and inference speed than the compared methods, e.g., +40.435% SSIM than EasyInv and +9887.5% speed than ReNoise on COCO dataset. Moreover, our careful designs of trainable solvers can also provide insights to the community. Codes and model parameters will be released in https://github.com/potato-kitty/DeepInv.
☆ Accelerating Storage-Based Training for Graph Neural Networks KDD
Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, \textit{a storage-based approach to GNN training} has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: \textit{how to handle a large number of small storage I/Os}. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named \textsf{AGNES}, that employs a method of \textit{block-wise storage I/O processing} to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, \textsf{AGNES} employs a simple yet effective strategy, \textit{hyperbatch-based processing} based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that \textsf{AGNES} consistently outperforms four state-of-the-art methods, by up to 4.1$\times$ faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.
comment: 10 pages, 12 figures, 2 tables, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2026
☆ A construction of an optimal base for conditional attribute and attributional condition implications in triadic contexts
This article studies implications in triadic contexts. Specifically, we focus on those introduced by Ganter and Obiedkov, namely conditional attribute and attributional condition implications. Our aim is to construct an optimal base for these implications.
comment: 26 pages
☆ Rethinking Multimodal Few-Shot 3D Point Cloud Segmentation: From Fused Refinement to Decoupled Arbitration
In this paper, we revisit multimodal few-shot 3D point cloud semantic segmentation (FS-PCS), identifying a conflict in "Fuse-then-Refine" paradigms: the "Plasticity-Stability Dilemma." In addition, CLIP's inter-class confusion can result in semantic blindness. To address these issues, we present the Decoupled-experts Arbitration Few-Shot SegNet (DA-FSS), a model that effectively distinguishes between semantic and geometric paths and mutually regularizes their gradients to achieve better generalization. DA-FSS employs the same backbone and pre-trained text encoder as MM-FSS to generate text embeddings, which can increase free modalities' utilization rate and better leverage each modality's information space. To achieve this, we propose a Parallel Expert Refinement module to generate each modal correlation. We also propose a Stacked Arbitration Module (SAM) to perform convolutional fusion and arbitrate correlations for each modality pathway. The Parallel Experts decouple two paths: a Geometric Expert maintains plasticity, and a Semantic Expert ensures stability. They are coordinated via a Decoupled Alignment Module (DAM) that transfers knowledge without propagating confusion. Experiments on popular datasets (S3DIS, ScanNet) demonstrate the superiority of DA-FSS over MM-FSS. Meanwhile, geometric boundaries, completeness, and texture differentiation are all superior to the baseline. The code is available at: https://github.com/MoWenQAQ/DA-FSS.
comment: 10 pages, 4 figures, 3 tables
☆ Bayesian Subspace Gradient Estimation for Zeroth-Order Optimization of Large Language Models
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations, but existing methods rely on one-step gradient estimates from random perturbations. We introduce Bayesian Subspace Zeroth-Order optimization (BSZO), a ZO optimizer that applies Kalman filtering to combine finite-difference information across multiple perturbation directions. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adjust perturbation scales. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms MeZO, MeZO-Adam, and HiZOO across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 19 pages, 1 figures, 4 tables
☆ Online Estimation and Manipulation of Articulated Objects
From refrigerators to kitchen drawers, humans interact with articulated objects effortlessly every day while completing household chores. For automating these tasks, service robots must be capable of manipulating arbitrary articulated objects. Recent deep learning methods have been shown to predict valuable priors on the affordance of articulated objects from vision. In contrast, many other works estimate object articulations by observing the articulation motion, but this requires the robot to already be capable of manipulating the object. In this article, we propose a novel approach combining these methods by using a factor graph for online estimation of articulation which fuses learned visual priors and proprioceptive sensing during interaction into an analytical model of articulation based on Screw Theory. With our method, a robotic system makes an initial prediction of articulation from vision before touching the object, and then quickly updates the estimate from kinematic and force sensing during manipulation. We evaluate our method extensively in both simulations and real-world robotic manipulation experiments. We demonstrate several closed-loop estimation and manipulation experiments in which the robot was capable of opening previously unseen drawers. In real hardware experiments, the robot achieved a 75% success rate for autonomous opening of unknown articulated objects.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in Autonomous Robots, and is available online at [Link will be updated when available]
☆ Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework--Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin--that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CAISO TAC-area dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but significantly associated with temperature (r = 0.16, p < 10^{-16}), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest Reserve_{99.5}% margin (14.12%) compared to 16.66% for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 24 pages, 8 figures, 8 tables
☆ SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution
Face super-resolution aims to recover high-quality facial images from severely degraded low-resolution inputs, but remains challenging due to the loss of fine structural details and identity-specific features. This work introduces SwinIFS, a landmark-guided super-resolution framework that integrates structural priors with hierarchical attention mechanisms to achieve identity-preserving reconstruction at both moderate and extreme upscaling factors. The method incorporates dense Gaussian heatmaps of key facial landmarks into the input representation, enabling the network to focus on semantically important facial regions from the earliest stages of processing. A compact Swin Transformer backbone is employed to capture long-range contextual information while preserving local geometry, allowing the model to restore subtle facial textures and maintain global structural consistency. Extensive experiments on the CelebA benchmark demonstrate that SwinIFS achieves superior perceptual quality, sharper reconstructions, and improved identity retention; it consistently produces more photorealistic results and exhibits strong performance even under 8x magnification, where most methods fail to recover meaningful structure. SwinIFS also provides an advantageous balance between reconstruction accuracy and computational efficiency, making it suitable for real-world applications in facial enhancement, surveillance, and digital restoration. Our code, model weights, and results are available at https://github.com/Habiba123-stack/SwinIFS.
☆ A Graph-based Framework for Online Time Series Anomaly Detection Using Model Ensemble
With the increasing volume of streaming data in industrial systems, online anomaly detection has become a critical task. The diverse and rapidly evolving data patterns pose significant challenges for online anomaly detection. Many existing anomaly detection methods are designed for offline settings or have difficulty in handling heterogeneous streaming data effectively. This paper proposes GDME, an unsupervised graph-based framework for online time series anomaly detection using model ensemble. GDME maintains a dynamic model pool that is continuously updated by pruning underperforming models and introducing new ones. It utilizes a dynamic graph structure to represent relationships among models and employs community detection on the graph to select an appropriate subset for ensemble. The graph structure is also used to detect concept drift by monitoring structural changes, allowing the framework to adapt to evolving streaming data. Experiments on seven heterogeneous time series demonstrate that GDME outperforms existing online anomaly detection methods, achieving improvements of up to 24%. In addition, its ensemble strategy provides superior detection performance compared with both individual models and average ensembles, with competitive computational efficiency.
comment: 8 pages
☆ Scale-Adaptive Power Flow Analysis with Local Topology Slicing and Multi-Task Graph Learning
Developing deep learning models with strong adaptability to topological variations is of great practical significance for power flow analysis. To enhance model performance under variable system scales and improve robustness in branch power prediction, this paper proposes a Scale-adaptive Multi-task Power Flow Analysis (SaMPFA) framework. SaMPFA introduces a Local Topology Slicing (LTS) sampling technique that extracts subgraphs of different scales from the complete power network to strengthen the model's cross-scale learning capability. Furthermore, a Reference-free Multi-task Graph Learning (RMGL) model is designed for robust power flow prediction. Unlike existing approaches, RMGL predicts bus voltages and branch powers instead of phase angles. This design not only avoids the risk of error amplification in branch power calculation but also guides the model to learn the physical relationships of phase angle differences. In addition, the loss function incorporates extra terms that encourage the model to capture the physical patterns of angle differences and power transmission, further improving consistency between predictions and physical laws. Simulations on the IEEE 39-bus system and a real provincial grid in China demonstrate that the proposed model achieves superior adaptability and generalization under variable system scales, with accuracy improvements of 4.47% and 36.82%, respectively.
☆ ParkGaussian: Surround-view 3D Gaussian Splatting for Autonomous Parking
Parking is a critical task for autonomous driving systems (ADS), with unique challenges in crowded parking slots and GPS-denied environments. However, existing works focus on 2D parking slot perception, mapping, and localization, 3D reconstruction remains underexplored, which is crucial for capturing complex spatial geometry in parking scenarios. Naively improving the visual quality of reconstructed parking scenes does not directly benefit autonomous parking, as the key entry point for parking is the slots perception module. To address these limitations, we curate the first benchmark named ParkRecon3D, specifically designed for parking scene reconstruction. It includes sensor data from four surround-view fisheye cameras with calibrated extrinsics and dense parking slot annotations. We then propose ParkGaussian, the first framework that integrates 3D Gaussian Splatting (3DGS) for parking scene reconstruction. To further improve the alignment between reconstruction and downstream parking slot detection, we introduce a slot-aware reconstruction strategy that leverages existing parking perception methods to enhance the synthesis quality of slot regions. Experiments on ParkRecon3D demonstrate that ParkGaussian achieves state-of-the-art reconstruction quality and better preserves perception consistency for downstream tasks. The code and dataset will be released at: https://github.com/wm-research/ParkGaussian
☆ Data Complexity-aware Deep Model Performance Forecasting
Deep learning models are widely used across computer vision and other domains. When working on the model induction, selecting the right architecture for a given dataset often relies on repetitive trial-and-error procedures. This procedure is time-consuming, resource-intensive, and difficult to automate. While previous work has explored performance prediction using partial training or complex simulations, these methods often require significant computational overhead or lack generalizability. In this work, we propose an alternative approach: a lightweight, two-stage framework that can estimate model performance before training given the understanding of the dataset and the focused deep model structures. The first stage predicts a baseline based on the analysis of some measurable properties of the dataset, while the second stage adjusts the estimation with additional information on the model's architectural and hyperparameter details. The setup allows the framework to generalize across datasets and model types. Moreover, we find that some of the underlying features used for prediction - such as dataset variance - can offer practical guidance for model selection, and can serve as early indicators of data quality. As a result, the framework can be used not only to forecast model performance, but also to guide architecture choices, inform necessary preprocessing procedures, and detect potentially problematic datasets before training begins.
comment: 12 pages, 12 figures
☆ Empowering Small Language Models with Factual Hallucination-Aware Reasoning for Financial Classification
Small language models (SLMs) are increasingly used for financial classification due to their fast inference and local deployability. However, compared with large language models, SLMs are more prone to factual hallucinations in reasoning and exhibit weaker classification performance. This raises a natural question: Can mitigating factual hallucinations improve SLMs' financial classification? To address this, we propose a three-step pipeline named AAAI (Association Identification, Automated Detection, and Adaptive Inference). Experiments on three representative SLMs reveal that: (1) factual hallucinations are positively correlated with misclassifications; (2) encoder-based verifiers effectively detect factual hallucinations; and (3) incorporating feedback on factual errors enables SLMs' adaptive inference that enhances classification performance. We hope this pipeline contributes to trustworthy and effective applications of SLMs in finance.
☆ UltraEval-Audio: A Unified Framework for Comprehensive Evaluation of Audio Foundation Models
The development of audio foundation models has accelerated rapidly since the emergence of GPT-4o. However, the lack of comprehensive evaluation has become a critical bottleneck for further progress in the field, particularly in audio generation. Current audio evaluation faces three major challenges: (1) audio evaluation lacks a unified framework, with datasets and code scattered across various sources, hindering fair and efficient cross-model comparison;(2) audio codecs, as a key component of audio foundation models, lack a widely accepted and holistic evaluation methodology; (3) existing speech benchmarks are heavily reliant on English, making it challenging to objectively assess models' performance on Chinese. To address the first issue, we introduce UltraEval-Audio, a unified evaluation framework for audio foundation models, specifically designed for both audio understanding and generation tasks. UltraEval-Audio features a modular architecture, supporting 10 languages and 14 core task categories, while seamlessly integrating 24 mainstream models and 36 authoritative benchmarks. To enhance research efficiency, the framework provides a one-command evaluation feature, accompanied by real-time public leaderboards. For the second challenge, UltraEval-Audio adopts a novel comprehensive evaluation scheme for audio codecs, evaluating performance across three key dimensions: semantic accuracy, timbre fidelity, and acoustic quality. To address the third issue, we propose two new Chinese benchmarks, SpeechCMMLU and SpeechHSK, designed to assess Chinese knowledge proficiency and language fluency. We wish that UltraEval-Audio will provide both academia and industry with a transparent, efficient, and fair platform for comparison of audio models. Our code, benchmarks, and leaderboards are available at https://github.com/OpenBMB/UltraEval-Audio.
comment: 13 pages, 2 figures
☆ KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models
With the rapid adoption of multimodal large language models (MLMs) in autonomous agents, cross-platform task execution capabilities in educational settings have garnered significant attention. However, existing benchmark frameworks still exhibit notable deficiencies in supporting cross-platform tasks in educational contexts, especially when dealing with school-specific software (such as XiaoYa Intelligent Assistant, HuaShi XiaZi, etc.), where the efficiency of agents often significantly decreases due to a lack of understanding of the structural specifics of these private-domain software. Additionally, current evaluation methods heavily rely on coarse-grained metrics like goal orientation or trajectory matching, making it challenging to capture the detailed execution and efficiency of agents in complex tasks. To address these issues, we propose KGCE (Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models), a novel benchmarking platform that integrates knowledge base enhancement and a dual-graph evaluation framework. We first constructed a dataset comprising 104 education-related tasks, covering Windows, Android, and cross-platform collaborative tasks. KGCE introduces a dual-graph evaluation framework that decomposes tasks into multiple sub-goals and verifies their completion status, providing fine-grained evaluation metrics. To overcome the execution bottlenecks of existing agents in private-domain tasks, we developed an enhanced agent system incorporating a knowledge base specific to school-specific software. The code can be found at https://github.com/Kinginlife/KGCE.
☆ A unified multimodal understanding and generation model for cross-disciplinary scientific research
Scientific discovery increasingly relies on integrating heterogeneous, high-dimensional data across disciplines nowadays. While AI models have achieved notable success across various scientific domains, they typically remain domain-specific or lack the capability of simultaneously understanding and generating multimodal scientific data, particularly for high-dimensional data. Yet, many pressing global challenges and scientific problems are inherently cross-disciplinary and require coordinated progress across multiple fields. Here, we present FuXi-Uni, a native unified multimodal model for scientific understanding and high-fidelity generation across scientific domains within a single architecture. Specifically, FuXi-Uni aligns cross-disciplinary scientific tokens within natural language tokens and employs science decoder to reconstruct scientific tokens, thereby supporting both natural language conversation and scientific numerical prediction. Empirically, we validate FuXi-Uni in Earth science and Biomedicine. In Earth system modeling, the model supports global weather forecasting, tropical cyclone (TC) forecast editing, and spatial downscaling driven by only language instructions. FuXi-Uni generates 10-day global forecasts at 0.25° resolution that outperform the SOTA physical forecasting system. It shows superior performance for both TC track and intensity prediction relative to the SOTA physical model, and generates high-resolution regional weather fields that surpass standard interpolation baselines. Regarding biomedicine, FuXi-Uni outperforms leading multimodal large language models on multiple biomedical visual question answering benchmarks. By unifying heterogeneous scientific modalities within a native shared latent space while maintaining strong domain-specific performance, FuXi-Uni provides a step forward more general-purpose, multimodal scientific models.
☆ Slot-ID: Identity-Preserving Video Generation from Reference Videos via Slot-Based Temporal Identity Encoding
Producing prompt-faithful videos that preserve a user-specified identity remains challenging: models need to extrapolate facial dynamics from sparse reference while balancing the tension between identity preservation and motion naturalness. Conditioning on a single image completely ignores the temporal signature, which leads to pose-locked motions, unnatural warping, and "average" faces when viewpoints and expressions change. To this end, we introduce an identity-conditioned variant of a diffusion-transformer video generator which uses a short reference video rather than a single portrait. Our key idea is to incorporate the dynamics in the reference. A short clip reveals subject-specific patterns, e.g., how smiles form, across poses and lighting. From this clip, a Sinkhorn-routed encoder learns compact identity tokens that capture characteristic dynamics while remaining pretrained backbone-compatible. Despite adding only lightweight conditioning, the approach consistently improves identity retention under large pose changes and expressive facial behavior, while maintaining prompt faithfulness and visual realism across diverse subjects and prompts.
☆ From Classification to Generation: An Open-Ended Paradigm for Adverse Drug Reaction Prediction Based on Graph-Motif Feature Fusion
Computational biology offers immense potential for reducing the high costs and protracted cycles of new drug development through adverse drug reaction (ADR) prediction. However, current methods remain impeded by drug data scarcity-induced cold-start challenge, closed label sets, and inadequate modeling of label dependencies. Here we propose an open-ended ADR prediction paradigm based on Graph-Motif feature fusion and Multi-Label Generation (GM-MLG). Leveraging molecular structure as an intrinsic and inherent feature, GM-MLG constructs a dual-graph representation architecture spanning the atomic level, the local molecular level (utilizing fine-grained motifs dynamically extracted via the BRICS algorithm combined with additional fragmentation rules), and the global molecular level. Uniquely, GM-MLG pioneers transforming ADR prediction from multi-label classification into Transformer Decoder-based multi-label generation. By treating ADR labels as discrete token sequences, it employs positional embeddings to explicitly capture dependencies and co-occurrence relationships within large-scale label spaces, generating predictions via autoregressive decoding to dynamically expand the prediction space. Experiments demonstrate GM-MLG achieves up to 38% improvement and an average gain of 20%, expanding the prediction space from 200 to over 10,000 types. Furthermore, it elucidates non-linear structure-activity relationships between ADRs and motifs via retrosynthetic motif analysis, providing interpretable and innovative support for systematic risk reduction in drug safety.
comment: 34 pages,5 figures
☆ Beyond Gemini-3-Pro: Revisiting LLM Routing and Aggregation at Scale
Large Language Models (LLMs) have rapidly advanced, with Gemini-3-Pro setting a new performance milestone. In this work, we explore collective intelligence as an alternative to monolithic scaling, and demonstrate that open-source LLMs' collaboration can surpass Gemini-3-Pro. We first revisit LLM routing and aggregation at scale and identify three key bottlenecks: (1) current train-free routers are limited by a query-based paradigm focusing solely on textual similarity; (2) recent aggregation methods remain largely static, failing to select appropriate aggregators for different tasks;(3) the complementarity of routing and aggregation remains underutilized. To address these problems, we introduce JiSi, a novel framework designed to release the full potential of LLMs' collaboration through three innovations: (1) Query-Response Mixed Routing capturing both semantic information and problem difficulty; (2) Support-Set-based Aggregator Selection jointly evaluating the aggregation and domain capacity of aggregators; (3) Adaptive Routing-Aggregation Switch dynamically leveraging the advantages of routing and aggregation. Comprehensive experiments on nine benchmarks demonstrate that JiSi can surpass Gemini-3-Pro with only 47% costs by orchestrating ten open-source LLMs, while outperforming mainstream baselines. It suggests that collective intelligence represents a novel path towards Artificial General Intelligence (AGI).
comment: 12 pages
☆ LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
☆ Digital Twin AI: Opportunities and Challenges from Large Language Models to World Models
Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
☆ Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python
Large Language Models have become integral to software development, yet they frequently generate vulnerable code. Existing code vulnerability detection benchmarks employ binary classification, lacking the CWE-level specificity required for actionable feedback in iterative correction systems. We present ALPHA (Adaptive Learning via Penalty in Hierarchical Assessment), the first function-level Python benchmark that evaluates both LLMs and SAST tools using hierarchically aware, CWE-specific penalties. ALPHA distinguishes between over-generalisation, over-specification, and lateral errors, reflecting practical differences in diagnostic utility. Evaluating seven LLMs and two SAST tools, we find LLMs substantially outperform SAST, though SAST demonstrates higher precision when detections occur. Critically, prediction consistency varies dramatically across models (8.26%-81.87% agreement), with significant implications for feedback-driven systems. We further outline a pathway for future work incorporating ALPHA penalties into supervised fine-tuning, which could provide principled hierarchy-aware vulnerability detection pending empirical validation.
☆ Quantifying Local Strain Field and Deformation in Active Contraction of Bladder Using a Pretrained Transformer Model: A Speckle-Free Approach
Accurate quantification of local strain fields during bladder contraction is essential for understanding the biomechanics of bladder micturition, in both health and disease. Conventional digital image correlation (DIC) methods have been successfully applied to various biological tissues; however, this approach requires artificial speckling, which can alter both passive and active properties of the tissue. In this study, we introduce a speckle-free framework for quantifying local strain fields using a state-of-the-art, zero-shot transformer model, CoTracker3. We utilized a custom-designed, portable isotonic biaxial apparatus compatible with multiphoton microscopy (MPM) to demonstrate this approach, successfully tracking natural bladder lumen textures without artificial markers. Benchmark tests validated the method's high pixel accuracy and low strain errors. Our framework effectively captured heterogeneous deformation patterns, despite complex folding and buckling, which conventional DIC often fails to track. Application to in vitro active bladder contractions in four rat specimens (n=4) revealed statistically significant anisotropy (p<0.01), with higher contraction longitudinally compared to circumferentially. Multiphoton microscopy further illustrated and confirmed heterogeneous morphological changes, such as large fold formation during active contraction. This non-invasive approach eliminates speckle-induced artifacts, enabling more physiologically relevant measurements, and has broad applicability for material testing of other biological and engineered systems.
♻ ☆ Polarity Detection of Sustainable Development Goals in News Text
The United Nations' Sustainable Development Goals (SDGs) provide a globally recognised framework for addressing critical societal, environmental, and economic challenges. Recent developments in natural language processing (NLP) and large language models (LLMs) have facilitated the automatic classification of textual data according to their relevance to specific SDGs. Nevertheless, in many applications, it is equally important to determine the directionality of this relevance; that is, to assess whether the described impact is positive, neutral, or negative. To tackle this challenge, we propose the novel task of SDG polarity detection, which assesses whether a text segment indicates progress toward a specific SDG or conveys an intention to achieve such progress. To support research in this area, we introduce SDG-POD, a benchmark dataset designed specifically for this task, combining original and synthetically generated data. We perform a comprehensive evaluation using six state-of-the-art large LLMs, considering both zero-shot and fine-tuned configurations. Our results suggest that the task remains challenging for the current generation of LLMs. Nevertheless, some fine-tuned models, particularly QWQ-32B, achieve good performance, especially on specific Sustainable Development Goals such as SDG-9 (Industry, Innovation and Infrastructure), SDG-12 (Responsible Consumption and Production), and SDG-15 (Life on Land). Furthermore, we demonstrate that augmenting the fine-tuning dataset with synthetically generated examples yields improved model performance on this task. This result highlights the effectiveness of data enrichment techniques in addressing the challenges of this resource-constrained domain. This work advances the methodological toolkit for sustainability monitoring and provides actionable insights into the development of efficient, high-performing polarity detection systems.
comment: Updated as one author was mispelled
♻ ☆ HARBOR: Holistic Adaptive Risk assessment model for BehaviORal healthcare
Behavioral healthcare risk assessment remains a challenging problem due to the highly multimodal nature of patient data and the temporal dynamics of mood and affective disorders. While large language models (LLMs) have demonstrated strong reasoning capabilities, their effectiveness in structured clinical risk scoring remains unclear. In this work, we introduce HARBOR, a behavioral health aware language model designed to predict a discrete mood and risk score, termed the Harbor Risk Score (HRS), on an integer scale from -3 (severe depression) to +3 (mania). We also release PEARL, a longitudinal behavioral healthcare dataset spanning four years of monthly observations from three patients, containing physiological, behavioral, and self reported mental health signals. We benchmark traditional machine learning models, proprietary LLMs, and HARBOR across multiple evaluation settings and ablations. Our results show that HARBOR outperforms classical baselines and off the shelf LLMs, achieving 69 percent accuracy compared to 54 percent for logistic regression and 29 percent for the strongest proprietary LLM baseline.
♻ ☆ Applying Deep Learning to Anomaly Detection of Russian Satellite Activity for Indications Prior to Military Activity
We apply deep learning techniques for anomaly detection to analyze activity of Russian-owned resident space objects (RSO) prior to the Ukraine invasion and assess the results for any findings that can be used as indications and warnings (I&W) of aggressive military behavior for future conflicts. Through analysis of anomalous activity, an understanding of possible tactics and procedures can be established to assess the existence of statistically significant changes in Russian RSO pattern of life/pattern of behavior (PoL/PoB) using publicly available two-line element (TLE) data. This research looks at statistical and deep learning approaches to assess anomalous activity. The deep learning methods assessed are isolation forest (IF), traditional autoencoder (AE), variational autoencoder (VAE), Kolmogorov Arnold Network (KAN), and a novel anchor-loss based autoencoder (Anchor AE). Each model is used to establish a baseline of on-orbit activity based on a five-year data sample. The primary investigation period focuses on the six months leading up to the invasion date of February 24, 2022. Additional analysis looks at RSO activity during an active combat period by sampling TLE data after the invasion date. The deep learning autoencoder models identify anomalies based on reconstruction errors that surpass a threshold sigma. To capture the nuance and unique characteristics of each RSO an individual model was trained for each observed space object. The research made an effort to prioritize explainability and interpretability of the model results thus each observation was assessed for anomalous behavior of the individual six orbital elements versus analyzing the input data as a single monolithic observation. The results demonstrate not only statistically significant anomalies of Russian RSO activity but also details anomalous findings to the individual orbital element.
comment: Withdrawn because of inaccurate information and misrepresented findings
♻ ☆ The Bayesian Origin of the Probability Weighting Function in Human Representation of Probabilities
Understanding the representation of probability in the human mind has been of great interest to understanding human decision making. Classical paradoxes in decision making suggest that human perception distorts probability magnitudes. Previous accounts postulate a Probability Weighting Function that transforms perceived probabilities; however, its motivation has been debated. Recent work has sought to motivate this function in terms of noisy representations of probabilities in the human mind. Here, we present an account of the Probability Weighting Function grounded in rational inference over optimal decoding from noisy neural encoding of quantities. We show that our model accurately accounts for behavior in a lottery task and a dot counting task. It further accounts for adaptation to a bimodal short-term prior. Taken together, our results provide a unifying account grounding the human representation of probability in rational inference.
♻ ☆ Coupled Distributional Random Expert Distillation for World Model Online Imitation Learning NeurIPS 2025
Imitation Learning (IL) has achieved remarkable success across various domains, including robotics, autonomous driving, and healthcare, by enabling agents to learn complex behaviors from expert demonstrations. However, existing IL methods often face instability challenges, particularly when relying on adversarial reward or value formulations in world model frameworks. In this work, we propose a novel approach to online imitation learning that addresses these limitations through a reward model based on random network distillation (RND) for density estimation. Our reward model is built on the joint estimation of expert and behavioral distributions within the latent space of the world model. We evaluate our method across diverse benchmarks, including DMControl, Meta-World, and ManiSkill2, showcasing its ability to deliver stable performance and achieve expert-level results in both locomotion and manipulation tasks. Our approach demonstrates improved stability over adversarial methods while maintaining expert-level performance.
comment: NeurIPS 2025 Workshop of Embodied World Models; Code Available at: https://github.com/TobyLeelsz/CDRED-WM
♻ ☆ Explainability-Based Token Replacement on LLM-Generated Text
Generative models, especially large language models (LLMs), have shown remarkable progress in producing text that appears human-like. However, they often exhibit patterns that make their output easier to detect than text written by humans. In this paper, we investigate how explainable AI (XAI) methods can be used to reduce the detectability of AI-generated text (AIGT) while also introducing a robust ensemble-based detection approach. We begin by training an ensemble classifier to distinguish AIGT from human-written text, then apply SHAP and LIME to identify tokens that most strongly influence its predictions. We propose four explainability-based token replacement strategies to modify these influential tokens. Our findings show that these token replacement approaches can significantly diminish a single classifier's ability to detect AIGT. However, our ensemble classifier maintains strong performance across multiple languages and domains, showing that a multi-model approach can mitigate the impact of token-level manipulations. These results show that XAI methods can make AIGT harder to detect by focusing on the most influential tokens. At the same time, they highlight the need for robust, ensemble-based detection strategies that can adapt to evolving approaches for hiding AIGT.
♻ ☆ Language Model Distillation: A Temporal Difference Imitation Learning Perspective AAAI 2026
Large language models have led to significant progress across many NLP tasks, although their massive sizes often incur substantial computational costs. Distillation has become a common practice to compress these large and highly capable models into smaller, more efficient ones. Many existing language model distillation methods can be viewed as behavior cloning from the perspective of imitation learning or inverse reinforcement learning. This viewpoint has inspired subsequent studies that leverage (inverse) reinforcement learning techniques, including variations of behavior cloning and temporal difference learning methods. Rather than proposing yet another specific temporal difference method, we introduce a general framework for temporal difference-based distillation by exploiting the distributional sparsity of the teacher model. Specifically, it is often observed that language models assign most probability mass to a small subset of tokens. Motivated by this observation, we design a temporal difference learning framework that operates on a reduced action space (a subset of vocabulary), and demonstrate how practical algorithms can be derived and the resulting performance improvements.
comment: AAAI 2026; Code available at: https://github.com/TobyLeelsz/Bellman-Distillation
♻ ☆ Spatio-Temporal Graph Deep Learning with Stochastic Differential Equations for Uncovering Alzheimer's Disease Progression
Identifying objective neuroimaging biomarkers to forecast Alzheimer's disease (AD) progression is crucial for timely intervention. However, this task remains challenging due to the complex dysfunctions in the spatio-temporal characteristics of underlying brain networks, which are often overlooked by existing methods. To address these limitations, we develop an interpretable spatio-temporal graph neural network framework to predict future AD progression, leveraging dual Stochastic Differential Equations (SDEs) to model the irregularly-sampled longitudinal functional magnetic resonance imaging (fMRI) data. We validate our approach on two independent cohorts, including the Open Access Series of Imaging Studies (OASIS-3) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our framework effectively learns sparse regional and connective importance probabilities, enabling the identification of key brain circuit abnormalities associated with disease progression. Notably, we detect the parahippocampal cortex, prefrontal cortex, and parietal lobule as salient regions, with significant disruptions in the ventral attention, dorsal attention, and default mode networks. These abnormalities correlate strongly with longitudinal AD-related clinical symptoms. Moreover, our interpretability strategy reveals both established and novel neural systems-level and sex-specific biomarkers, offering new insights into the neurobiological mechanisms underlying AD progression. Our findings highlight the potential of spatio-temporal graph-based learning for early, individualized prediction of AD progression, even in the context of irregularly-sampled longitudinal imaging data.
♻ ☆ Tubular Riemannian Laplace Approximations for Bayesian Neural Networks
Laplace approximations are among the simplest and most practical methods for approximate Bayesian inference in neural networks, yet their Euclidean formulation struggles with the highly anisotropic, curved loss surfaces and large symmetry groups that characterize modern deep models. Recent work has proposed Riemannian and geometric Gaussian approximations to adapt to this structure. Building on these ideas, we introduce the Tubular Riemannian Laplace (TRL) approximation. TRL explicitly models the posterior as a probabilistic tube that follows a low-loss valley induced by functional symmetries, using a Fisher/Gauss-Newton metric to separate prior-dominated tangential uncertainty from data-dominated transverse uncertainty. We interpret TRL as a scalable reparametrised Gaussian approximation that utilizes implicit curvature estimates to operate in high-dimensional parameter spaces. Our empirical evaluation on ResNet-18 (CIFAR-10 and CIFAR-100) demonstrates that TRL achieves excellent calibration, matching or exceeding the reliability of Deep Ensembles (in terms of ECE) while requiring only a fraction (1/5) of the training cost. TRL effectively bridges the gap between single-model efficiency and ensemble-grade reliability.
comment: v2: corrected an erroneous/hallucinated reference (Dold et al.)
♻ ☆ General Dynamic Goal Recognition using Goal-Conditioned and Meta Reinforcement Learning AAMAS 2026
Understanding an agent's goal through its behavior is a common AI problem called Goal Recognition (GR). This task becomes particularly challenging in dynamic environments where goals are numerous and ever-changing. We introduce the General Dynamic Goal Recognition (GDGR) problem, a broader definition of GR aimed at real-time adaptation of GR systems. This paper presents two novel approaches to tackle GDGR: (1) GC-AURA, generalizing to new goals using Model-Free Goal-Conditioned Reinforcement Learning, and (2) Meta-AURA, adapting to novel environments with Meta-Reinforcement Learning. We evaluate these methods across diverse environments, demonstrating their ability to achieve rapid adaptation and high GR accuracy under dynamic and noisy conditions. This work is a significant step forward in enabling GR in dynamic and unpredictable real-world environments.
comment: Accepted for publication at AAMAS 2026
♻ ☆ A Multi-Scale Attention-Based Attack Diagnosis Mechanism for Parallel Cyber-Physical Attacks in Power Grids
Parallel cyber--physical attacks (PCPA) can simultaneously damage physical transmission lines and disrupt measurement data transmission in power grids, severely impairing system situational awareness and attack diagnosis. This paper investigates the attack diagnosis problem for linearized AC/DC power flow models under PCPA, where physical attacks include not only line disconnections but also admittance modifications, such as those caused by compromised distributed flexible AC transmission system (D-FACTS) devices. To address this challenge, we propose a learning-assisted attack diagnosis framework based on meta--mixed-integer programming (MMIP), which integrates a convolutional graph cross-attention attack localization (CGCA-AL) model. First, sufficient conditions for measurement reconstruction are derived, enabling the recovery of unknown measurements in attacked areas using available measurements and network topology information. Based on these conditions, the attack diagnosis problem is formulated as an MMIP model. The proposed CGCA-AL employs a multi-scale attention mechanism to predict a probability distribution over potential physical attack locations, which is incorporated into the MMIP as informative objective coefficients. By solving the resulting MMIP, both the locations and magnitudes of physical attacks are optimally estimated, and system states are subsequently reconstructed. Simulation results on IEEE 30-bus and IEEE 118-bus test systems demonstrate the effectiveness, robustness, and scalability of the proposed attack diagnosis framework under complex PCPA scenarios.
comment: 10 pages, 3 figures, 5 tables, journal
♻ ☆ An AI-powered Bayesian generative modeling approach for causal inference in observational studies
Causal inference in observational studies with high-dimensional covariates presents significant challenges. We introduce CausalBGM, an AI-powered Bayesian generative modeling approach that captures the causal relationship among covariates, treatment, and outcome. The core innovation is to estimate the individual treatment effect (ITE) by learning the individual-specific distribution of a low-dimensional latent feature set (e.g., latent confounders) that drives changes in both treatment and outcome. This individualized posterior representation yields estimates of the individual treatment effect (ITE) together with well-calibrated posterior intervals while mitigating confounding effect. CausalBGM is fitted through an iterative algorithm to update the model parameters and the latent features until convergence. This framework leverages the power of AI to capture complex dependencies among variables while adhering to the Bayesian principles. Extensive experiments demonstrate that CausalBGM consistently outperforms state-of-the-art methods, particularly in scenarios with high-dimensional covariates and large-scale datasets. By addressing key limitations of existing methods, CausalBGM emerges as a robust and promising framework for advancing causal inference in a wide range of modern applications. The code for CausalBGM is available at https://github.com/liuq-lab/bayesgm. The tutorial for CausalBGM is available at https://causalbgm.readthedocs.io.
♻ ☆ Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agentic model. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME, an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-Perceptive Agentic Policy Optimization (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of ALE.
comment: 36 pages, 15 figures
♻ ☆ PriorRG: Prior-Guided Contrastive Pre-training and Coarse-to-Fine Decoding for Chest X-ray Report Generation AAAI 2026
Chest X-ray report generation aims to reduce radiologists' workload by automatically producing high-quality preliminary reports. A critical yet underexplored aspect of this task is the effective use of patient-specific prior knowledge -- including clinical context (e.g., symptoms, medical history) and the most recent prior image -- which radiologists routinely rely on for diagnostic reasoning. Most existing methods generate reports from single images, neglecting this essential prior information and thus failing to capture diagnostic intent or disease progression. To bridge this gap, we propose PriorRG, a novel chest X-ray report generation framework that emulates real-world clinical workflows via a two-stage training pipeline. In Stage 1, we introduce a prior-guided contrastive pre-training scheme that leverages clinical context to guide spatiotemporal feature extraction, allowing the model to align more closely with the intrinsic spatiotemporal semantics in radiology reports. In Stage 2, we present a prior-aware coarse-to-fine decoding for report generation that progressively integrates patient-specific prior knowledge with the vision encoder's hidden states. This decoding allows the model to align with diagnostic focus and track disease progression, thereby enhancing the clinical accuracy and fluency of the generated reports. Extensive experiments on MIMIC-CXR and MIMIC-ABN datasets demonstrate that PriorRG outperforms state-of-the-art methods, achieving a 3.6% BLEU-4 and 3.8% F1 score improvement on MIMIC-CXR, and a 5.9% BLEU-1 gain on MIMIC-ABN. Code and checkpoints will be released upon acceptance.
comment: Accepted by AAAI 2026
♻ ☆ Red-Teaming Coding Agents from a Tool-Invocation Perspective: An Empirical Security Assessment
Coding agents powered by large language models are becoming central modules of modern IDEs, helping users perform complex tasks by invoking tools. While powerful, tool invocation opens a substantial attack surface. Prior work has demonstrated attacks against general-purpose and domain-specific agents, but none have focused on the security risks of tool invocation in coding agents. To fill this gap, we conduct the first systematic red-teaming of six popular real-world coding agents: Cursor, Claude Code, Copilot, Windsurf, Cline, and Trae. Our red-teaming proceeds in two phases. In Phase 1, we perform prompt leakage reconnaissance to recover system prompts. We discover a general vulnerability, ToolLeak, which allows malicious prompt exfiltration through benign argument retrieval during tool invocation. In Phase 2, we hijack the agent's tool-invocation behavior using a novel two-channel prompt injection in the tool description and return values, achieving remote code execution (RCE). We adaptively construct payloads using security information leaked in Phase 1. In emulation across five backends, our method outperforms baselines on Claude-Sonnet-4, Claude-Sonnet-4.5, Grok-4, and GPT-5. On real agents, our approach succeeds on 19 of 25 agent-LLM pairs, achieving leakage on every agent using Claude and Grok backends. For tool-invocation hijacking, we obtain RCE on every tested agent-LLM pair, with our two-channel method delivering the highest success rate. We provide case studies on Cursor and Claude Code, analyze security guardrails of external and built-in tools, and conclude with practical defense recommendations.
♻ ☆ PICABench: How Far Are We from Physically Realistic Image Editing?
Image editing has achieved remarkable progress recently. Modern editing models could already follow complex instructions to manipulate the original content. However, beyond completing the editing instructions, the accompanying physical effects are the key to the generation realism. For example, removing an object should also remove its shadow, reflections, and interactions with nearby objects. Unfortunately, existing models and benchmarks mainly focus on instruction completion but overlook these physical effects. So, at this moment, how far are we from physically realistic image editing? To answer this, we introduce PICABench, which systematically evaluates physical realism across eight sub-dimension (spanning optics, mechanics, and state transitions) for most of the common editing operations (add, remove, attribute change, etc.). We further propose the PICAEval, a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level human annotations and questions. Beyond benchmarking, we also explore effective solutions by learning physics from videos and construct a training dataset PICA-100K. After evaluating most of the mainstream models, we observe that physical realism remains a challenging problem with large rooms to explore. We hope that our benchmark and proposed solutions can serve as a foundation for future work moving from naive content editing toward physically consistent realism.
♻ ☆ AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences. Existing KT models typically follow a single-step training paradigm, which leads to discrepancies with the multi-step inference process required in real-world simulations, resulting in significant error accumulation. This accumulation of error, coupled with the issue of data sparsity, can substantially degrade the performance of recommendation models in the intelligent tutoring systems. To address these challenges, we propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT), which, for the first time, focuses on the multi-step KT task. More specifically, AdvKT leverages adversarial learning paradigm involving a generator and a discriminator. The generator mimics high-reward responses, effectively reducing error accumulation across multiple steps, while the discriminator provides feedback to generate synthetic data. Additionally, we design specialized data augmentation techniques to enrich the training data with realistic variations, ensuring that the model generalizes well even in scenarios with sparse data. Experiments conducted on four real-world datasets demonstrate the superiority of AdvKT over existing KT models, showcasing its ability to address both error accumulation and data sparsity issues effectively.
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ CoSER: A Comprehensive Literary Dataset and Framework for Training and Evaluating LLM Role-Playing and Persona Simulation ICML 2025
Role-playing language agents (RPLAs) have emerged as promising applications of large language models (LLMs). However, simulating established characters presents a challenging task for RPLAs, due to the lack of authentic character datasets and nuanced evaluation methods using such data. In this paper, we present CoSER, a collection of a high-quality dataset, open models, and an evaluation protocol towards effective RPLAs of established characters. The CoSER dataset covers 17,966 characters from 771 renowned books. It provides authentic dialogues with real-world intricacies, as well as diverse data types such as conversation setups, character experiences and internal thoughts. Drawing from acting methodology, we introduce given-circumstance acting for training and evaluating role-playing LLMs, where LLMs sequentially portray multiple characters in book scenes. Using our dataset, we develop CoSER 8B and CoSER 70B, i.e., advanced open role-playing LLMs built on LLaMA-3.1 models. Extensive experiments demonstrate the value of the CoSER dataset for RPLA training, evaluation and retrieval. Moreover, CoSER 70B exhibits state-of-the-art performance surpassing or matching GPT-4o on our evaluation and three existing benchmarks, i.e., achieving 75.80% and 93.47% accuracy on the InCharacter and LifeChoice benchmarks respectively.
comment: Accepted by ICML 2025
♻ ☆ A Survey of Text Classification Under Class Distribution Shift EACL 2026
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
♻ ☆ nvBench 2.0: Resolving Ambiguity in Text-to-Visualization through Stepwise Reasoning
Text-to-Visualization (Text2VIS) enables users to create visualizations from natural language queries, making data insights more accessible. However, Text2VIS faces challenges in interpreting ambiguous queries, as users often express their visualization needs in imprecise language. To address this challenge, we introduce nBench 2.0, a new benchmark designed to evaluate Text2VIS systems in scenarios involving ambiguous queries. nvBench 2.0 includes 7,878 natural language queries and 24,076 corresponding visualizations, derived from 780 tables across 153 domains. It is built using a controlled ambiguity-injection pipeline that generates ambiguous queries through a reverse-generation workflow. By starting with unambiguous seed visualizations and selectively injecting ambiguities, the pipeline yields multiple valid interpretations for each query, with each ambiguous query traceable to its corresponding visualization through step-wise reasoning paths. We evaluate various Large Language Models (LLMs) on their ability to perform ambiguous Text2VIS tasks using nBench 2.0. We also propose Step-Text2Vis, an LLM-based model trained on nvBench 2.0, which enhances performance in ambiguous scenarios through step-wise preference optimization. Our results show that Step-Text2Vis outperforms all baselines, setting a new state-of-the-art for ambiguous Text2VIS tasks. Our source code and data are available at https://nvbench2.github.io/
♻ ☆ How to make Medical AI Systems safer? Simulating Vulnerabilities, and Threats in Multimodal Medical RAG System ICASSP
Large Vision-Language Models (LVLMs) augmented with Retrieval-Augmented Generation (RAG) are increasingly employed in medical AI to enhance factual grounding through external clinical image-text retrieval. However, this reliance creates a significant attack surface. We propose MedThreatRAG, a novel multimodal poisoning framework that systematically probes vulnerabilities in medical RAG systems by injecting adversarial image-text pairs. A key innovation of our approach is the construction of a simulated semi-open attack environment, mimicking real-world medical systems that permit periodic knowledge base updates via user or pipeline contributions. Within this setting, we introduce and emphasize Cross-Modal Conflict Injection (CMCI), which embeds subtle semantic contradictions between medical images and their paired reports. These mismatches degrade retrieval and generation by disrupting cross-modal alignment while remaining sufficiently plausible to evade conventional filters. While basic textual and visual attacks are included for completeness, CMCI demonstrates the most severe degradation. Evaluations on IU-Xray and MIMIC-CXR QA tasks show that MedThreatRAG reduces answer F1 scores by up to 27.66% and lowers LLaVA-Med-1.5 F1 rates to as low as 51.36%. Our findings expose fundamental security gaps in clinical RAG systems and highlight the urgent need for threat-aware design and robust multimodal consistency checks. Finally, we conclude with a concise set of guidelines to inform the safe development of future multimodal medical RAG systems.
comment: Sumbitted to 2026 ICASSP
♻ ☆ Self-Speculative Biased Decoding for Faster Re-Translation
Large language models achieve strong machine translation quality but incur high inference cost and latency, posing challenges for simultaneous translation. Re-translation provides a practical solution for off-the-shelf LLMs by repeatedly regenerating the target output as the source input grows, but it suffers from substantial redundant computation. We propose Self-Speculative Biased Decoding (SSBD), a simple and tuning-free inference method that accelerates re-translation by exploiting temporal coherence in streaming translation. SSBD reuses the model's previous output as a speculative draft for the updated input, verifies the draft efficiently in a single forward pass with a lightweight bias, and resumes autoregressive decoding only from the first divergence. We further introduce a display-only masking strategy that hides unstable suffixes from the user interface while retaining them in the draft for verification and potential acceptance. Experiments show that SSBD achieves substantial speedup over standard re-translation while maintaining comparable translation quality, without architectural changes, auxiliary models, or extra fine-tuning.
♻ ☆ When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics
Empirical power--law scaling has been widely observed across modern deep learning systems, yet its theoretical origins and scope of validity remain incompletely understood. The Generalized Resolution--Shell Dynamics (GRSD) framework models learning as spectral energy transport across logarithmic resolution shells, providing a coarse--grained dynamical description of training. Within GRSD, power--law scaling corresponds to a particularly simple renormalized shell dynamics; however, such behavior is not automatic and requires additional structural properties of the learning process. In this work, we identify a set of sufficient conditions under which the GRSD shell dynamics admits a renormalizable coarse--grained description. These conditions constrain the learning configuration at multiple levels, including boundedness of gradient propagation in the computation graph, weak functional incoherence at initialization, controlled Jacobian evolution along training, and log--shift invariance of renormalized shell couplings. We further show that power--law scaling does not follow from renormalizability alone, but instead arises as a rigidity consequence: once log--shift invariance is combined with the intrinsic time--rescaling covariance of gradient flow, the renormalized GRSD velocity field is forced into a power--law form.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 13 pages, 7 figures, submitted to ARR
♻ ☆ Social Comparison without Explicit Inference of Others' Reward Values: A Constructive Approach Using a Probabilistic Generative Model
Social comparison$\unicode{x2014}$the process of evaluating one's rewards relative to others$\unicode{x2014}$plays a fundamental role in primate social cognition. However, it remains unknown from a computational perspective how information about others' rewards affects the evaluation of one's own reward. With a constructive approach, this study examines whether monkeys merely recognize objective reward differences or, instead, infer others' subjective reward valuations. We developed three computational models with varying degrees of social information processing: an Internal Prediction Model (IPM), which infers the partner's subjective values; a No Comparison Model (NCM), which disregards partner information; and an External Comparison Model (ECM), which directly incorporates the partner's objective rewards. To test model performance, we used a multi-layered, multimodal latent Dirichlet allocation. We trained the models on a dataset containing the behavior of a pair of monkeys, their rewards, and the conditioned stimuli. Then, we evaluated the models' ability to classify subjective values across pre-defined experimental conditions. The ECM achieved the highest classification score in the Rand Index (0.88 vs. 0.79 for the IPM) under our settings, suggesting that social comparison relies on objective reward differences rather than inferences about subjective states.
comment: This is a preprint of an article submitted for consideration in ADVANCED ROBOTICS, copyright Taylor & Francis and Robotics Society of Japan; ADVANCED ROBOTICS is available online at http://www.tandfonline.com/
♻ ☆ EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction NeurIPS 2025
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model, which originally required 95GB of memory, on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Project page: https://hsi-che-lin.github.io/EMLoC/
♻ ☆ Auditing Human Decision-Making in High-Stakes Environments via Prescriptive AI: A Stress-Test on Real-Time Tactical Management AAAI
High-stakes decision-making is often compromised by cognitive biases and outcome dependency. Current AI models typically mimic historical human behavior, inheriting these biases and limiting their utility for normative improvement. Here, we introduce a Prescriptive AI framework designed to audit, rather than automate, human judgment in real-time environments. By decoupling decision quality from stochastic outcomes, we quantify "decision latency" and status quo bias in elite soccer management - a high-pressure adversarial domain. Analyzing 2018 FIFA World Cup data, our system exposes critical risk states, such as performance collapse following salient positive events (e.g., an assist), which human experts systematically overlook due to outcome bias. These findings demonstrate that interpretable auditing systems can reveal structural flaws in human reasoning that predictive models obscure. This approach establishes a paradigm for Human-AI interaction prioritizing epistemic accountability over predictive mimicry in safety-critical domains.
comment: Preprint; suitable for AI, decision sciences, and prescriptive analytics. Short versions published in Wharton Sports Analytics Journal Fall 2025 (AI Feature Spotlight) and accepted to AAAI Bridge on LM Reasoning 2026
♻ ☆ FaithAct: Faithfulness Planning and Acting in MLLMs
Multimodal Large Language Models (MLLMs) frequently suffer from unfaithfulness, generating reasoning chains that drift from visual evidence or contradict final predictions. We propose Faithful-First Reasoning, Planning, and Acting (RPA) framework in which FaithEvi provides step-wise and chain-level supervision by evaluating the faithfulness of intermediate reasoning, and FaithAct uses these signals to plan and execute faithfulness-aware actions during inference. Experiments across multiple multimodal reasoning benchmarks show that faithful-first RPA improves perceptual faithfulness by up to 24% over prompt-based and tool-augmented reasoning frameworks, without degrading task accuracy. Our analysis shows that treating faithfulness as a guiding principle perceptually faithful reasoning trajectories and mitigates hallucination behavior. This work thereby establishes a unified framework for both evaluating and enforcing faithfulness in multimodal reasoning.
comment: 16 pages, updated version
♻ ☆ Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
♻ ☆ A Multi-Memory Segment System for Generating High-Quality Long-Term Memory Content in Agents
In the current field of agent memory, extensive explorations have been conducted in the area of memory retrieval, yet few studies have focused on exploring the memory content. Most research simply stores summarized versions of historical dialogues, as exemplified by methods like A-MEM and MemoryBank. However, when humans form long-term memories, the process involves multi-dimensional and multi-component generation, rather than merely creating simple summaries. The low-quality memory content generated by existing methods can adversely affect recall performance and response quality. In order to better construct high-quality long-term memory content, we have designed a multi-memory segment system (MMS) inspired by cognitive psychology theory. The system processes short-term memory into multiple long-term memory segments, and constructs retrieval memory units and contextual memory units based on these segments, with a one-to-one correspondence between the two. During the retrieval phase, MMS will match the most relevant retrieval memory units based on the user's query. Then, the corresponding contextual memory units is obtained as the context for the response stage to enhance knowledge, thereby effectively utilizing historical data. We conducted experiments on the LoCoMo dataset and further performed ablation experiments, experiments on the robustness regarding the number of input memories, and overhead experiments, which demonstrated the effectiveness and practical value of our method.
♻ ☆ A Survey on 3D Skeleton Based Person Re-Identification: Taxonomy, Advances, Challenges, and Interdisciplinary Prospects
Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community. With distinctive advantages across various application scenarios, numerous 3D skeleton based person re-identification (SRID) methods with diverse skeleton modeling and learning paradigms have been proposed in recent years. In this paper, we provide a comprehensive review and analysis of recent SRID advances. First of all, we define the SRID task and provide an overview of its origin and major advancements. Secondly, we formulate a systematic taxonomy that organizes existing methods into three categories centered on hand-crafted, sequence-based, and graph-based modeling. Then, we elaborate on the representative models along these three types with an illustration of foundational mechanisms. Meanwhile, we provide an overview of mainstream supervised, self-supervised, and unsupervised SRID learning paradigms and corresponding common methods. A thorough evaluation of state-of-the-art SRID methods is further conducted over various types of benchmarks and protocols to compare their effectiveness, efficiency, and key properties. Finally, we present the key challenges and prospects to advance future research, and highlight interdisciplinary applications of SRID with a case study.
comment: A curated collection of valuable resources is available at https://github.com/Kali-Hac/3D-SRID-Survey
♻ ☆ Digital Twins as Funhouse Mirrors: Five Key Distortions
Scientists and practitioners are aggressively moving to deploy digital twins - LLM-based models of real individuals - across social science and policy research. We conducted 19 pre-registered studies with 164 diverse outcomes (e.g., attitudes towards hiring algorithms, intention to share misinformation) and compared human responses to those of their digital twins (trained on each person's previous answers to over 500 questions). We find that digital twins' answers are only modestly more accurate than those from the homogeneous base LLM and correlate weakly with human responses (average r = 0.20). We document five ways in which digital twins distort human behavior: (i) stereotyping, (ii) insufficient individuation, (iii) representation bias, (iv) ideological biases, and (v) hyper-rationality. Together, our results caution against the premature deployment of digital twins, which may systematically misrepresent human cognition and undermine both scientific understanding and practical applications.
♻ ☆ AI Compute Architecture and Evolution Trends
The focus of AI development has shifted from academic research to practical applications. However, AI development faces numerous challenges at various levels. This article will attempt to analyze the opportunities and challenges of AI from several different perspectives using a structured approach. This article proposes a seven-layer model for AI compute architecture, including Physical Layer, Link Layer, Neural Network Layer, Context Layer, Agent Layer, Orchestrator Layer, and Application Layer, from bottom to top. It also explains the three stages in the evolution of large language models (LLMs) using the proposed 7-layer model. For each layer, we describe the development trajectory and key technologies. In Layers 1 and 2 we discuss AI computing issues and the impact of Scale-Up and Scale-Out strategies on computing architecture. In Layer 3 we explore two different development paths for LLMs. In Layer 4 we discuss the impact of contextual memory on LLMs and compares it to traditional processor memory. In Layers 5 to 7 we discuss the trends of AI agents and explore the issues in evolution from a single AI agent to an AI-based ecosystem, and their impact on the AI industry.
comment: 33 pages, 17 figures, 2 Tables
♻ ☆ Enabling Reconfiguration-Communication Overlap for Collective Communication in Optical Networks
Collective communication (CC) is critical for scaling distributed machine learning (DML). The predictable traffic patterns of DML present a great oppotunity for applying optical network technologies. Optical networks with reconfigurable topologies promise high bandwidth and low latency for collective communications. However, existing approaches face inherent limitations: static topologies are inefficient for dynamic communication patterns within CC algorithm, while frequent topology reconfiguration matching every step of the algorithm incurs significant overhead. In this paper, we propose SWOT, a demand-aware optical network framework that employs ``intra-collective reconfiguration'' to dynamically align network resources with CC traffic patterns. SWOT hides reconfiguration latency by overlapping it with data transmission through three key techniques: Heterogeneous Message Splitting, Asynchronous Overlapping, and Topology Bypassing. Extensive simulations demonstrate that SWOT reduces communication completion time up to 89.7% across diverse CC algorithm compared to static baselines, demonstrating strong robustness to varying optical resources and reconfiguration delay.
♻ ☆ DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.
♻ ☆ Optimal Look-back Horizon for Time Series Forecasting in Federated Learning AAAI-26
Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to centralized and independently distributed settings. This paper presents a principled framework for adaptive horizon selection in federated time series forecasting through an intrinsic space formulation. We introduce a synthetic data generator (SDG) that captures essential temporal structures in client data, including autoregressive dependencies, seasonality, and trend, while incorporating client-specific heterogeneity. Building on this model, we define a transformation that maps time series windows into an intrinsic representation space with well-defined geometric and statistical properties. We then derive a decomposition of the forecasting loss into a Bayesian term, which reflects irreducible uncertainty, and an approximation term, which accounts for finite-sample effects and limited model capacity. Our analysis shows that while increasing the look-back horizon improves the identifiability of deterministic patterns, it also increases approximation error due to higher model complexity and reduced sample efficiency. We prove that the total forecasting loss is minimized at the smallest horizon where the irreducible loss starts to saturate, while the approximation loss continues to rise. This work provides a rigorous theoretical foundation for adaptive horizon selection for time series forecasting in federated learning.
comment: Accepted by AAAI-26 as Oral Presentation
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
♻ ☆ LSRE: Latent Semantic Rule Encoding for Real-Time Semantic Risk Detection in Autonomous Driving
Real-world autonomous driving must adhere to complex human social rules that extend beyond legally codified traffic regulations. Many of these semantic constraints, such as yielding to emergency vehicles, complying with traffic officers' gestures, or stopping for school buses, are intuitive for humans yet difficult to encode explicitly. Although large vision-language models (VLMs) can interpret such semantics, their inference cost makes them impractical for real-time deployment. This work proposes LSRE, a Latent Semantic Rule Encoding framework that converts sparsely sampled VLM judgments into decision boundaries within the latent space of a recurrent world model. By encoding language-defined safety semantics into a lightweight latent classifier, LSRE enables real-time semantic risk assessment at 10 Hz without per-frame VLM queries. Experiments on six semantic-failure scenarios in CARLA demonstrate that LSRE attains semantic risk detection accuracy comparable to a large VLM baseline, while providing substantially earlier hazard anticipation and maintaining low computational latency. LSRE further generalizes to rarely seen semantic-similar test cases, indicating that language-guided latent classification offers an effective and deployable mechanism for semantic safety monitoring in autonomous driving.
♻ ☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods. The model and dataset are open-sourced at https://github.com/LLM-VLM-GSL/AHA.
♻ ☆ Understanding Prompt Management in GitHub Repositories: A Call for Best Practices
The rapid adoption of foundation models (e.g., large language models) has given rise to promptware, i.e., software built using natural language prompts. Effective management of prompts, such as organization and quality assurance, is essential yet challenging. In this study, we perform an empirical analysis of 24,800 open-source prompts from 92 GitHub repositories to investigate prompt management practices and quality attributes. Our findings reveal critical challenges such as considerable inconsistencies in prompt formatting, substantial internal and external prompt duplication, and frequent readability and spelling issues. Based on these findings, we provide actionable recommendations for developers to enhance the usability and maintainability of open-source prompts within the rapidly evolving promptware ecosystem.
Computation and Language 59
☆ Lying with Truths: Open-Channel Multi-Agent Collusion for Belief Manipulation via Generative Montage
As large language models (LLMs) transition to autonomous agents synthesizing real-time information, their reasoning capabilities introduce an unexpected attack surface. This paper introduces a novel threat where colluding agents steer victim beliefs using only truthful evidence fragments distributed through public channels, without relying on covert communications, backdoors, or falsified documents. By exploiting LLMs' overthinking tendency, we formalize the first cognitive collusion attack and propose Generative Montage: a Writer-Editor-Director framework that constructs deceptive narratives through adversarial debate and coordinated posting of evidence fragments, causing victims to internalize and propagate fabricated conclusions. To study this risk, we develop CoPHEME, a dataset derived from real-world rumor events, and simulate attacks across diverse LLM families. Our results show pervasive vulnerability across 14 LLM families: attack success rates reach 74.4% for proprietary models and 70.6% for open-weights models. Counterintuitively, stronger reasoning capabilities increase susceptibility, with reasoning-specialized models showing higher attack success than base models or prompts. Furthermore, these false beliefs then cascade to downstream judges, achieving over 60% deception rates, highlighting a socio-technical vulnerability in how LLM-based agents interact with dynamic information environments. Our implementation and data are available at: https://github.com/CharlesJW222/Lying_with_Truth/tree/main.
comment: Under Review
☆ LACONIC: Dense-Level Effectiveness for Scalable Sparse Retrieval via a Two-Phase Training Curriculum
While dense retrieval models have become the standard for state-of-the-art information retrieval, their deployment is often constrained by high memory requirements and reliance on GPU accelerators for vector similarity search. Learned sparse retrieval offers a compelling alternative by enabling efficient search via inverted indices, yet it has historically received less attention than dense approaches. In this report, we introduce LACONIC, a family of learned sparse retrievers based on the Llama-3 architecture (1B, 3B, and 8B). We propose a streamlined two-phase training curriculum consisting of (1) weakly supervised pre-finetuning to adapt causal LLMs for bidirectional contextualization and (2) high-signal finetuning using curated hard negatives. Our results demonstrate that LACONIC effectively bridges the performance gap with dense models: the 8B variant achieves a state-of-the-art 60.2 nDCG on the MTEB Retrieval benchmark, ranking 15th on the leaderboard as of January 1, 2026, while utilizing 71\% less index memory than an equivalent dense model. By delivering high retrieval effectiveness on commodity CPU hardware with a fraction of the compute budget required by competing models, LACONIC provides a scalable and efficient solution for real-world search applications.
☆ EHRSummarizer: A Privacy-Aware, FHIR-Native Architecture for Structured Clinical Summarization of Electronic Health Records
Clinicians routinely navigate fragmented electronic health record (EHR) interfaces to assemble a coherent picture of a patient's problems, medications, recent encounters, and longitudinal trends. This work describes EHRSummarizer, a privacy-aware, FHIR-native reference architecture that retrieves a targeted set of high-yield FHIR R4 resources, normalizes them into a consistent clinical context package, and produces structured summaries intended to support structured chart review. The system can be configured for data minimization, stateless processing, and flexible deployment, including local inference within an organization's trust boundary. To mitigate the risk of unsupported or unsafe behavior, the summarization stage is constrained to evidence present in the retrieved context package, is intended to indicate missing or unavailable domains where feasible, and avoids diagnostic or treatment recommendations. Prototype demonstrations on synthetic and test FHIR environments illustrate end-to-end behavior and output formats; however, this manuscript does not report clinical outcomes or controlled workflow studies. We outline an evaluation plan centered on faithfulness, omission risk, temporal correctness, usability, and operational monitoring to guide future institutional assessments.
comment: 19 pages
☆ JMedEthicBench: A Multi-Turn Conversational Benchmark for Evaluating Medical Safety in Japanese Large Language Models
As Large Language Models (LLMs) are increasingly deployed in healthcare field, it becomes essential to carefully evaluate their medical safety before clinical use. However, existing safety benchmarks remain predominantly English-centric, and test with only single-turn prompts despite multi-turn clinical consultations. To address these gaps, we introduce JMedEthicBench, the first multi-turn conversational benchmark for evaluating medical safety of LLMs for Japanese healthcare. Our benchmark is based on 67 guidelines from the Japan Medical Association and contains over 50,000 adversarial conversations generated using seven automatically discovered jailbreak strategies. Using a dual-LLM scoring protocol, we evaluate 27 models and find that commercial models maintain robust safety while medical-specialized models exhibit increased vulnerability. Furthermore, safety scores decline significantly across conversation turns (median: 9.5 to 5.0, $p < 0.001$). Cross-lingual evaluation on both Japanese and English versions of our benchmark reveals that medical model vulnerabilities persist across languages, indicating inherent alignment limitations rather than language-specific factors. These findings suggest that domain-specific fine-tuning may accidentally weaken safety mechanisms and that multi-turn interactions represent a distinct threat surface requiring dedicated alignment strategies.
comment: 12 pages, 6 figures
☆ How Does Prefix Matter in Reasoning Model Tuning?
Recent alignment studies commonly remove introductory boilerplate phrases from supervised fine-tuning (SFT) datasets. This work challenges that assumption. We hypothesize that safety- and reasoning-oriented prefix sentences serve as lightweight alignment signals that can guide model decoding toward safer and more coherent responses. To examine this, we fine-tune three R1 series models across three core model capabilities: reasoning (mathematics, coding), safety, and factuality, systematically varying prefix inclusion from 0% to 100%. Results show that prefix-conditioned SFT improves both safety and reasoning performance, yielding up to +6% higher Safe@1 accuracy on adversarial benchmarks (WildJailbreak, StrongReject) and +7% improvement on GSM8K reasoning. However, factuality and coding tasks show marginal or negative effects, indicating that prefix-induced narrowing of the search space benefits structured reasoning. Token-level loss analysis further reveals that prefix tokens such as "revised" and "logically" incur higher gradient magnitudes, acting as alignment anchors that stabilize reasoning trajectories. Our findings suggest that prefix conditioning offers a scalable and interpretable mechanism for improving reasoning safety, serving as an implicit form of alignment that complements traditional reward-based methods.
☆ The Gray Area: Characterizing Moderator Disagreement on Reddit
Volunteer moderators play a crucial role in sustaining online dialogue, but they often disagree about what should or should not be allowed. In this paper, we study the complexity of content moderation with a focus on disagreements between moderators, which we term the ``gray area'' of moderation. Leveraging 5 years and 4.3 million moderation log entries from 24 subreddits of different topics and sizes, we characterize how gray area, or disputed cases, differ from undisputed cases. We show that one-in-seven moderation cases are disputed among moderators, often addressing transgressions where users' intent is not directly legible, such as in trolling and brigading, as well as tensions around community governance. This is concerning, as almost half of all gray area cases involved automated moderation decisions. Through information-theoretic evaluations, we demonstrate that gray area cases are inherently harder to adjudicate than undisputed cases and show that state-of-the-art language models struggle to adjudicate them. We highlight the key role of expert human moderators in overseeing the moderation process and provide insights about the challenges of current moderation processes and tools.
comment: 16 pages, 11 figures
☆ Steerability of Instrumental-Convergence Tendencies in LLMs
We examine two properties of AI systems: capability (what a system can do) and steerability (how reliably one can shift behavior toward intended outcomes). In our experiments, higher capability does not imply lower steerability. We distinguish between authorized steerability (builders reliably reaching intended behaviors) and unauthorized steerability (attackers eliciting disallowed behaviors). This distinction highlights a fundamental safety--security dilemma for open-weight AI models: safety requires high steerability to enforce control (e.g., stop/refuse), while security requires low steerability to prevent malicious actors from eliciting harmful behaviors. This tension is acute for open-weight models, which are currently highly steerable via common techniques such as fine-tuning and adversarial prompting. Using Qwen3 models (4B/30B; Base/Instruct/Thinking) and InstrumentalEval, we find that a short anti-instrumental prompt suffix sharply reduces outputs labeled as instrumental convergence (e.g., shutdown avoidance, deception, self-replication). For Qwen3-30B Instruct, convergence drops from 81.69% under a pro-instrumental suffix to 2.82% under an anti-instrumental suffix. Under anti-instrumental prompting, larger aligned models produce fewer convergence-labeled outputs than smaller ones (Instruct: 2.82% vs. 4.23%; Thinking: 4.23% vs. 9.86%). Code is available at github.com/j-hoscilowicz/instrumental_steering.
comment: Code is available at https://github.com/j-hoscilowicz/instrumental_steering
☆ OpenNovelty: An LLM-powered Agentic System for Verifiable Scholarly Novelty Assessment
Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
☆ HalluZig: Hallucination Detection using Zigzag Persistence
The factual reliability of Large Language Models (LLMs) remains a critical barrier to their adoption in high-stakes domains due to their propensity to hallucinate. Current detection methods often rely on surface-level signals from the model's output, overlooking the failures that occur within the model's internal reasoning process. In this paper, we introduce a new paradigm for hallucination detection by analyzing the dynamic topology of the evolution of model's layer-wise attention. We model the sequence of attention matrices as a zigzag graph filtration and use zigzag persistence, a tool from Topological Data Analysis, to extract a topological signature. Our core hypothesis is that factual and hallucinated generations exhibit distinct topological signatures. We validate our framework, HalluZig, on multiple benchmarks, demonstrating that it outperforms strong baselines. Furthermore, our analysis reveals that these topological signatures are generalizable across different models and hallucination detection is possible only using structural signatures from partial network depth.
☆ Bridging the Data Gap: Creating a Hindi Text Summarization Dataset from the English XSUM
Current advancements in Natural Language Processing (NLP) have largely favored resource-rich languages, leaving a significant gap in high-quality datasets for low-resource languages like Hindi. This scarcity is particularly evident in text summarization, where the development of robust models is hindered by a lack of diverse, specialized corpora. To address this disparity, this study introduces a cost-effective, automated framework for creating a comprehensive Hindi text summarization dataset. By leveraging the English Extreme Summarization (XSUM) dataset as a source, we employ advanced translation and linguistic adaptation techniques. To ensure high fidelity and contextual relevance, we utilize the Crosslingual Optimized Metric for Evaluation of Translation (COMET) for validation, supplemented by the selective use of Large Language Models (LLMs) for curation. The resulting dataset provides a diverse, multi-thematic resource that mirrors the complexity of the original XSUM corpus. This initiative not only provides a direct tool for Hindi NLP research but also offers a scalable methodology for democratizing NLP in other underserved languages. By reducing the costs associated with dataset creation, this work fosters the development of more nuanced, culturally relevant models in computational linguistics.
comment: Book chapter for River publications
☆ Aletheia: Quantifying Cognitive Conviction in Reasoning Models via Regularized Inverse Confusion Matrix
In the progressive journey toward Artificial General Intelligence (AGI), current evaluation paradigms face an epistemological crisis. Static benchmarks measure knowledge breadth but fail to quantify the depth of belief. While Simhi et al. (2025) defined the CHOKE phenomenon in standard QA, we extend this framework to quantify "Cognitive Conviction" in System 2 reasoning models. We propose Project Aletheia, a cognitive physics framework that employs Tikhonov Regularization to invert the judge's confusion matrix. To validate this methodology without relying on opaque private data, we implement a Synthetic Proxy Protocol. Our preliminary pilot study on 2025 baselines (e.g., DeepSeek-R1, OpenAI o1) suggests that while reasoning models act as a "cognitive buffer," they may exhibit "Defensive OverThinking" under adversarial pressure. Furthermore, we introduce the Aligned Conviction Score (S_aligned) to verify that conviction does not compromise safety. This work serves as a blueprint for measuring AI scientific integrity.
comment: 6 pages, 2 figures
☆ EmoHarbor: Evaluating Personalized Emotional Support by Simulating the User's Internal World
Current evaluation paradigms for emotional support conversations tend to reward generic empathetic responses, yet they fail to assess whether the support is genuinely personalized to users' unique psychological profiles and contextual needs. We introduce EmoHarbor, an automated evaluation framework that adopts a User-as-a-Judge paradigm by simulating the user's inner world. EmoHarbor employs a Chain-of-Agent architecture that decomposes users' internal processes into three specialized roles, enabling agents to interact with supporters and complete assessments in a manner similar to human users. We instantiate this benchmark using 100 real-world user profiles that cover a diverse range of personality traits and situations, and define 10 evaluation dimensions of personalized support quality. Comprehensive evaluation of 20 advanced LLMs on EmoHarbor reveals a critical insight: while these models excel at generating empathetic responses, they consistently fail to tailor support to individual user contexts. This finding reframes the central challenge, shifting research focus from merely enhancing generic empathy to developing truly user-aware emotional support. EmoHarbor provides a reproducible and scalable framework to guide the development and evaluation of more nuanced and user-aware emotional support systems.
☆ Bayesian Orchestration of Multi-LLM Agents for Cost-Aware Sequential Decision-Making
Large language models (LLMs) are increasingly deployed as autonomous decision agents in settings with asymmetric error costs: hiring (missed talent vs wasted interviews), medical triage (missed emergencies vs unnecessary escalation), and fraud detection (approved fraud vs declined legitimate payments). The dominant design queries a single LLM for a posterior over states, thresholds "confidence," and acts; we prove this is inadequate for sequential decisions with costs. We propose a Bayesian, cost-aware multi-LLM orchestration framework that treats LLMs as approximate likelihood models rather than classifiers. For each candidate state, we elicit likelihoods via contrastive prompting, aggregate across diverse models with robust statistics, and update beliefs with Bayes rule under explicit priors as new evidence arrives. This enables coherent belief updating, expected-cost action selection, principled information gathering via value of information, and fairness gains via ensemble bias mitigation. In resume screening with costs of 40000 USD per missed hire, 2500 USD per interview, and 150 USD per phone screen, experiments on 1000 resumes using five LLMs (GPT-4o, Claude 4.5 Sonnet, Gemini Pro, Grok, DeepSeek) reduce total cost by 294000 USD (34 percent) versus the best single-LLM baseline and improve demographic parity by 45 percent (max group gap 22 to 5 percentage points). Ablations attribute 51 percent of savings to multi-LLM aggregation, 43 percent to sequential updating, and 20 percent to disagreement-triggered information gathering, consistent with the theoretical benefits of correct probabilistic foundations.
☆ From Failure to Mastery: Generating Hard Samples for Tool-use Agents
The advancement of LLM agents with tool-use capabilities requires diverse and complex training corpora. Existing data generation methods, which predominantly follow a paradigm of random sampling and shallow generation, often yield simple and homogeneous trajectories that fail to capture complex, implicit logical dependencies. To bridge this gap, we introduce HardGen, an automatic agentic pipeline designed to generate hard tool-use training samples with verifiable reasoning. Firstly, HardGen establishes a dynamic API Graph built upon agent failure cases, from which it samples to synthesize hard traces. Secondly, these traces serve as conditional priors to guide the instantiation of modular, abstract advanced tools, which are subsequently leveraged to formulate hard queries. Finally, the advanced tools and hard queries enable the generation of verifiable complex Chain-of-Thought (CoT), with a closed-loop evaluation feedback steering the continuous refinement of the process. Extensive evaluations demonstrate that a 4B parameter model trained with our curated dataset achieves superior performance compared to several leading open-source and closed-source competitors (e.g., GPT-5.2, Gemini-3-Pro and Claude-Opus-4.5). Our code, models, and dataset will be open-sourced to facilitate future research.
☆ Distortion Instead of Hallucination: The Effect of Reasoning Under Strict Constraints
With the widespread adoption of large language models (LLMs), hallucinations, which are non-factual fabrications in model outputs, have become serious concerns. Reasoning capabilities have received attention as a self-verification process to improve output reliability. However, the effect of reasoning within a closed system where LLMs cannot rely on external tools or knowledge has yet to be clarified. We therefore conduct experiments under strict constraints (recommending peer-reviewed journal articles in computer science) to examine the effect of reasoning across multiple models (GPT-5.2 and Gemini 3 Flash). Our results reveal a problematic trade-off between constraint compliance and factual accuracy. Non-reasoning models exhibit high constraint violation rates (66-75%) but maintain factual accuracy, while reasoning models reduce violations (13-26%) but systematically distort known facts to satisfy constraints and increase complete fabrication. This trade-off pattern is consistent across both models despite different architectures, indicating a fundamental limitation of reasoning. Furthermore, reasoning does not uniformly improve output authenticity: effects diverge by model, reflecting different allocations of the compliance-truthfulness trade-off. These findings challenge the assumption that reasoning universally improves reliability: reasoning models trade honest constraint violations for detection-resistant distortions.
☆ Four Quadrants of Difficulty: A Simple Categorisation and its Limits
Curriculum Learning (CL) aims to improve the outcome of model training by estimating the difficulty of samples and scheduling them accordingly. In NLP, difficulty is commonly approximated using task-agnostic linguistic heuristics or human intuition, implicitly assuming that these signals correlate with what neural models find difficult to learn. We propose a four-quadrant categorisation of difficulty signals -- human vs. model and task-agnostic vs. task-dependent -- and systematically analyse their interactions on a natural language understanding dataset. We find that task-agnostic features behave largely independently and that only task-dependent features align. These findings challenge common CL intuitions and highlight the need for lightweight, task-dependent difficulty estimators that better reflect model learning behaviour.
comment: prepared for ESANN 2026 submission
☆ Can Legislation Be Made Machine-Readable in PROLEG?
The anticipated positive social impact of regulatory processes requires both the accuracy and efficiency of their application. Modern artificial intelligence technologies, including natural language processing and machine-assisted reasoning, hold great promise for addressing this challenge. We present a framework to address the challenge of tools for regulatory application, based on current state-of-the-art (SOTA) methods for natural language processing (large language models or LLMs) and formalization of legal reasoning (the legal representation system PROLEG). As an example, we focus on Article 6 of the European General Data Protection Regulation (GDPR). In our framework, a single LLM prompt simultaneously transforms legal text into if-then rules and a corresponding PROLEG encoding, which are then validated and refined by legal domain experts. The final output is an executable PROLEG program that can produce human-readable explanations for instances of GDPR decisions. We describe processes to support the end-to-end transformation of a segment of a regulatory document (Article 6 from GDPR), including the prompting frame to guide an LLM to "compile" natural language text to if-then rules, then to further "compile" the vetted if-then rules to PROLEG. Finally, we produce an instance that shows the PROLEG execution. We conclude by summarizing the value of this approach and note observed limitations with suggestions to further develop such technologies for capturing and deploying regulatory frameworks.
☆ Bridging the gap: A comparative exploration of Speech-LLM and end-to-end architecture for multilingual conversational ASR
The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
comment: 5 pages, 1 figure
Segmentation and Processing of German Court Decisions from Open Legal Data
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
comment: Accepted and published as a research article in Legal Knowledge and Information Systems (JURIX 2025 proceedings, IOS Press). Pages 276--281
☆ iFlip: Iterative Feedback-driven Counterfactual Example Refinement
Counterfactual examples are minimal edits to an input that alter a model's prediction. They are widely employed in explainable AI to probe model behavior and in natural language processing (NLP) to augment training data. However, generating valid counterfactuals with large language models (LLMs) remains challenging, as existing single-pass methods often fail to induce reliable label changes, neglecting LLMs' self-correction capabilities. To explore this untapped potential, we propose iFlip, an iterative refinement approach that leverages three types of feedback, including model confidence, feature attribution, and natural language. Our results show that iFlip achieves an average 57.8% higher validity than the five state-of-the-art baselines, as measured by the label flipping rate. The user study further corroborates that iFlip outperforms baselines in completeness, overall satisfaction, and feasibility. In addition, ablation studies demonstrate that three components are paramount for iFlip to generate valid counterfactuals: leveraging an appropriate number of iterations, pointing to highly attributed words, and early stopping. Finally, counterfactuals generated by iFlip enable effective counterfactual data augmentation, substantially improving model performance and robustness.
comment: In submission
☆ SWE-Lego: Pushing the Limits of Supervised Fine-tuning for Software Issue Resolving
We present SWE-Lego, a supervised fine-tuning (SFT) recipe designed to achieve state-ofthe-art performance in software engineering (SWE) issue resolving. In contrast to prevalent methods that rely on complex training paradigms (e.g., mid-training, SFT, reinforcement learning, and their combinations), we explore how to push the limits of a lightweight SFT-only approach for SWE tasks. SWE-Lego comprises three core building blocks, with key findings summarized as follows: 1) the SWE-Lego dataset, a collection of 32k highquality task instances and 18k validated trajectories, combining real and synthetic data to complement each other in both quality and quantity; 2) a refined SFT procedure with error masking and a difficulty-based curriculum, which demonstrably improves action quality and overall performance. Empirical results show that with these two building bricks alone,the SFT can push SWE-Lego models to state-of-the-art performance among open-source models of comparable size on SWE-bench Verified: SWE-Lego-Qwen3-8B reaches 42.2%, and SWE-Lego-Qwen3-32B attains 52.6%. 3) We further evaluate and improve test-time scaling (TTS) built upon the SFT foundation. Based on a well-trained verifier, SWE-Lego models can be significantly boosted--for example, 42.2% to 49.6% and 52.6% to 58.8% under TTS@16 for the 8B and 32B models, respectively.
comment: Project website: https://github.com/SWE-Lego/SWE-Lego
☆ From Emotion Classification to Emotional Reasoning: Enhancing Emotional Intelligence in Large Language Models
This work investigates whether synthetic emotional chain-of-thought data can improve the emotional reasoning abilities of smaller open large language models (LLMs). We design a multi-agent generation pipeline that produces therapy-style conversations and converts them into structured emotion multiple-choice questions (MCQs) with explanations. We propose that fine-tuning a variety of 7B models on this dataset should yield substantial gains in emotional understanding and emotional awareness on EmoBench-style evaluations, suggesting that emotional reasoning can be induced without architectural changes. Our results demonstrate that fine-tuned Mistral 7B achieves EU improvements from 10.5 to 20.5 and EA improvements from 40.5 to 60.0, validating the effectiveness of synthetic emotional reasoning data for enhancing model capabilities in nuanced emotional tasks.
comment: 10 pages, 1 figure
☆ LANCET: Neural Intervention via Structural Entropy for Mitigating Faithfulness Hallucinations in LLMs
Large Language Models have revolutionized information processing, yet their reliability is severely compromised by faithfulness hallucinations. While current approaches attempt to mitigate this issue through node-level adjustments or coarse suppression, they often overlook the distributed nature of neural information, leading to imprecise interventions. Recognizing that hallucinations propagate through specific forward transmission pathways like an infection, we aim to surgically block this flow using precise structural analysis. To leverage this, we propose Lancet, a novel framework that achieves precise neural intervention by leveraging structural entropy and hallucination difference ratios. Lancet first locates hallucination-prone neurons via gradient-driven contrastive analysis, then maps their propagation pathways by minimizing structural entropy, and finally implements a hierarchical intervention strategy that preserves general model capabilities. Comprehensive evaluations across hallucination benchmark datasets demonstrate that Lancet significantly outperforms state-of-the-art methods, validating the effectiveness of our surgical approach to neural intervention.
☆ EternalMath: A Living Benchmark of Frontier Mathematics that Evolves with Human Discovery
Current evaluations of mathematical reasoning in large language models (LLMs) are dominated by static benchmarks, either derived from competition-style problems or curated through costly expert effort, resulting in limited coverage of research-level mathematics and rapid performance saturation. We propose a fully automated, theorem-grounded pipeline for evaluating frontier mathematical reasoning, which directly transforms recent peer-reviewed mathematical literature into executable and verifiable reasoning tasks. The pipeline identifies constructive or quantitative results, instantiates them into parameterized problem templates, and generates deterministic solutions through execution-based verification, enabling scalable, reproducible, and continuously updatable evaluation without reliance on large-scale expert authoring. By design, this approach supports temporal extensibility, intrinsic correctness checking, and domain-specific customization across mathematical subfields. Applying this pipeline yields \textbf{EternalMath}, an evolving evaluation suite derived from contemporary research papers. Experiments with state-of-the-art LLMs reveal substantial performance gaps, indicating that mathematical reasoning at the research frontier remains far from saturated and underscoring the need for evaluation methodologies that evolve in step with human mathematical discovery.
☆ SAFE-QAQ: End-to-End Slow-Thinking Audio-Text Fraud Detection via Reinforcement Learning
Existing fraud detection methods predominantly rely on transcribed text, suffering from ASR errors and missing crucial acoustic cues like vocal tone and environmental context. This limits their effectiveness against complex deceptive strategies. To address these challenges, we first propose \textbf{SAFE-QAQ}, an end-to-end comprehensive framework for audio-based slow-thinking fraud detection. First, the SAFE-QAQ framework eliminates the impact of transcription errors on detection performance. Secondly, we propose rule-based slow-thinking reward mechanisms that systematically guide the system to identify fraud-indicative patterns by accurately capturing fine-grained audio details, through hierarchical reasoning processes. Besides, our framework introduces a dynamic risk assessment framework during live calls, enabling early detection and prevention of fraud. Experiments on the TeleAntiFraud-Bench demonstrate that SAFE-QAQ achieves dramatic improvements over existing methods in multiple key dimensions, including accuracy, inference efficiency, and real-time processing capabilities. Currently deployed and analyzing over 70,000 calls daily, SAFE-QAQ effectively automates complex fraud detection, reducing human workload and financial losses. Code: https://anonymous.4open.science/r/SAFE-QAQ.
☆ Investigating the Multilingual Calibration Effects of Language Model Instruction-Tuning EACL
Ensuring that deep learning models are well-calibrated in terms of their predictive uncertainty is essential in maintaining their trustworthiness and reliability, yet despite increasing advances in foundation model research, the relationship between such large language models (LLMs) and their calibration remains an open area of research. In this work, we look at a critical gap in the calibration of LLMs within multilingual settings, in an attempt to better understand how the data scarcity can potentially lead to different calibration effects and how commonly used techniques can apply in these settings. Our analysis on two multilingual benchmarks, over 29 and 42 languages respectively, reveals that even in low-resource languages, model confidence can increase significantly after instruction-tuning on high-resource language SFT datasets. However, improvements in accuracy are marginal or non-existent, resulting in mis-calibration, highlighting a critical shortcoming of standard SFT for multilingual languages. Furthermore, we observe that the use of label smoothing to be a reasonable method alleviate this concern, again without any need for low-resource SFT data, maintaining better calibration across all languages. Overall, this highlights the importance of multilingual considerations for both training and tuning LLMs in order to improve their reliability and fairness in downstream use.
comment: Accepted to The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL)
☆ FC-CONAN: An Exhaustively Paired Dataset for Robust Evaluation of Retrieval Systems KR
Hate speech (HS) is a critical issue in online discourse, and one promising strategy to counter it is through the use of counter-narratives (CNs). Datasets linking HS with CNs are essential for advancing counterspeech research. However, even flagship resources like CONAN (Chung et al., 2019) annotate only a sparse subset of all possible HS-CN pairs, limiting evaluation. We introduce FC-CONAN (Fully Connected CONAN), the first dataset created by exhaustively considering all combinations of 45 English HS messages and 129 CNs. A two-stage annotation process involving nine annotators and four validators produces four partitions-Diamond, Gold, Silver, and Bronze-that balance reliability and scale. None of the labeled pairs overlap with CONAN, uncovering hundreds of previously unlabelled positives. FC-CONAN enables more faithful evaluation of counterspeech retrieval systems and facilitates detailed error analysis. The dataset is publicly available.
comment: Presented at NeLaMKRR@KR, 2025 (arXiv:2511.09575)
☆ Reasoning Over Recall: Evaluating the Efficacy of Generalist Architectures vs. Specialized Fine-Tunes in RAG-Based Mental Health Dialogue Systems
The deployment of Large Language Models (LLMs) in mental health counseling faces the dual challenges of hallucinations and lack of empathy. While the former may be mitigated by RAG (retrieval-augmented generation) by anchoring answers in trusted clinical sources, there remains an open question as to whether the most effective model under this paradigm would be one that is fine-tuned on mental health data, or a more general and powerful model that succeeds purely on the basis of reasoning. In this paper, we perform a direct comparison by running four open-source models through the same RAG pipeline using ChromaDB: two generalist reasoners (Qwen2.5-3B and Phi-3-Mini) and two domain-specific fine-tunes (MentalHealthBot-7B and TherapyBot-7B). We use an LLM-as-a-Judge framework to automate evaluation over 50 turns. We find a clear trend: the generalist models outperform the domain-specific ones in empathy (3.72 vs. 3.26, $p < 0.001$) in spite of being much smaller (3B vs. 7B), and all models perform well in terms of safety, but the generalist models show better contextual understanding and are less prone to overfitting as we observe in the domain-specific models. Overall, our results indicate that for RAG-based therapy systems, strong reasoning is more important than training on mental health-specific vocabulary; i.e. a well-reasoned general model would provide more empathetic and balanced support than a larger narrowly fine-tuned model, so long as the answer is already grounded in clinical evidence.
☆ FLOP-Efficient Training: Early Stopping Based on Test-Time Compute Awareness
Scaling training compute, measured in FLOPs, has long been shown to improve the accuracy of large language models, yet training remains resource-intensive. Prior work shows that increasing test-time compute (TTC)-for example through iterative sampling-can allow smaller models to rival or surpass much larger ones at lower overall cost. We introduce TTC-aware training, where an intermediate checkpoint and a corresponding TTC configuration can together match or exceed the accuracy of a fully trained model while requiring substantially fewer training FLOPs. Building on this insight, we propose an early stopping algorithm that jointly selects a checkpoint and TTC configuration to minimize training compute without sacrificing accuracy. To make this practical, we develop an efficient TTC evaluation method that avoids exhaustive search, and we formalize a break-even bound that identifies when increased inference compute compensates for reduced training compute. Experiments demonstrate up to 92\% reductions in training FLOPs while maintaining and sometimes remarkably improving accuracy. These results highlight a new perspective for balancing training and inference compute in model development, enabling faster deployment cycles and more frequent model refreshes. Codes will be publicly released.
☆ AppellateGen: A Benchmark for Appellate Legal Judgment Generation
Legal judgment generation is a critical task in legal intelligence. However, existing research in legal judgment generation has predominantly focused on first-instance trials, relying on static fact-to-verdict mappings while neglecting the dialectical nature of appellate (second-instance) review. To address this, we introduce AppellateGen, a benchmark for second-instance legal judgment generation comprising 7,351 case pairs. The task requires models to draft legally binding judgments by reasoning over the initial verdict and evidentiary updates, thereby modeling the causal dependency between trial stages. We further propose a judicial Standard Operating Procedure (SOP)-based Legal Multi-Agent System (SLMAS) to simulate judicial workflows, which decomposes the generation process into discrete stages of issue identification, retrieval, and drafting. Experimental results indicate that while SLMAS improves logical consistency, the complexity of appellate reasoning remains a substantial challenge for current LLMs. The dataset and code are publicly available at: https://anonymous.4open.science/r/AppellateGen-5763.
comment: 15 pages, 4 figures, 3 tables
♻ ☆ Polarity Detection of Sustainable Development Goals in News Text
The United Nations' Sustainable Development Goals (SDGs) provide a globally recognised framework for addressing critical societal, environmental, and economic challenges. Recent developments in natural language processing (NLP) and large language models (LLMs) have facilitated the automatic classification of textual data according to their relevance to specific SDGs. Nevertheless, in many applications, it is equally important to determine the directionality of this relevance; that is, to assess whether the described impact is positive, neutral, or negative. To tackle this challenge, we propose the novel task of SDG polarity detection, which assesses whether a text segment indicates progress toward a specific SDG or conveys an intention to achieve such progress. To support research in this area, we introduce SDG-POD, a benchmark dataset designed specifically for this task, combining original and synthetically generated data. We perform a comprehensive evaluation using six state-of-the-art large LLMs, considering both zero-shot and fine-tuned configurations. Our results suggest that the task remains challenging for the current generation of LLMs. Nevertheless, some fine-tuned models, particularly QWQ-32B, achieve good performance, especially on specific Sustainable Development Goals such as SDG-9 (Industry, Innovation and Infrastructure), SDG-12 (Responsible Consumption and Production), and SDG-15 (Life on Land). Furthermore, we demonstrate that augmenting the fine-tuning dataset with synthetically generated examples yields improved model performance on this task. This result highlights the effectiveness of data enrichment techniques in addressing the challenges of this resource-constrained domain. This work advances the methodological toolkit for sustainability monitoring and provides actionable insights into the development of efficient, high-performing polarity detection systems.
comment: Updated as one author was mispelled
♻ ☆ Safe in the Future, Dangerous in the Past: Dissecting Temporal and Linguistic Vulnerabilities in LLMs
As Large Language Models (LLMs) integrate into critical global infrastructure, the assumption that safety alignment transfers zero-shot from English to other languages remains a dangerous blind spot. This study presents a systematic audit of three state of the art models (GPT-5.1, Gemini 3 Pro, and Claude 4.5 Opus) using HausaSafety, a novel adversarial dataset grounded in West African threat scenarios (e.g., Yahoo-Yahoo fraud, Dane gun manufacturing). Employing a 2 x 4 factorial design across 1,440 evaluations, we tested the non-linear interaction between language (English vs. Hausa) and temporal framing. Our results challenge the narrative of the multilingual safety gap. Instead of a simple degradation in low-resource settings, we identified a complex interference mechanism in which safety is determined by the intersection of variables. Although the models exhibited a reverse linguistic vulnerability with Claude 4.5 Opus proving significantly safer in Hausa (45.0%) than in English (36.7%) due to uncertainty-driven refusal, they suffered catastrophic failures in temporal reasoning. We report a profound Temporal Asymmetry, where past-tense framing bypassed defenses (15.6% safe) while future-tense scenarios triggered hyper-conservative refusals (57.2% safe). The magnitude of this volatility is illustrated by a 9.2x disparity between the safest and most vulnerable configurations, proving that safety is not a fixed property but a context-dependent state. We conclude that current models rely on superficial heuristics rather than robust semantic understanding, creating Safety Pockets that leave Global South users exposed to localized harms. We propose Invariant Alignment as a necessary paradigm shift to ensure safety stability across linguistic and temporal shifts.
♻ ☆ Explainability-Based Token Replacement on LLM-Generated Text
Generative models, especially large language models (LLMs), have shown remarkable progress in producing text that appears human-like. However, they often exhibit patterns that make their output easier to detect than text written by humans. In this paper, we investigate how explainable AI (XAI) methods can be used to reduce the detectability of AI-generated text (AIGT) while also introducing a robust ensemble-based detection approach. We begin by training an ensemble classifier to distinguish AIGT from human-written text, then apply SHAP and LIME to identify tokens that most strongly influence its predictions. We propose four explainability-based token replacement strategies to modify these influential tokens. Our findings show that these token replacement approaches can significantly diminish a single classifier's ability to detect AIGT. However, our ensemble classifier maintains strong performance across multiple languages and domains, showing that a multi-model approach can mitigate the impact of token-level manipulations. These results show that XAI methods can make AIGT harder to detect by focusing on the most influential tokens. At the same time, they highlight the need for robust, ensemble-based detection strategies that can adapt to evolving approaches for hiding AIGT.
♻ ☆ Language Model Distillation: A Temporal Difference Imitation Learning Perspective AAAI 2026
Large language models have led to significant progress across many NLP tasks, although their massive sizes often incur substantial computational costs. Distillation has become a common practice to compress these large and highly capable models into smaller, more efficient ones. Many existing language model distillation methods can be viewed as behavior cloning from the perspective of imitation learning or inverse reinforcement learning. This viewpoint has inspired subsequent studies that leverage (inverse) reinforcement learning techniques, including variations of behavior cloning and temporal difference learning methods. Rather than proposing yet another specific temporal difference method, we introduce a general framework for temporal difference-based distillation by exploiting the distributional sparsity of the teacher model. Specifically, it is often observed that language models assign most probability mass to a small subset of tokens. Motivated by this observation, we design a temporal difference learning framework that operates on a reduced action space (a subset of vocabulary), and demonstrate how practical algorithms can be derived and the resulting performance improvements.
comment: AAAI 2026; Code available at: https://github.com/TobyLeelsz/Bellman-Distillation
♻ ☆ Exploring Cultural Variations in Moral Judgments with Large Language Models
Large Language Models (LLMs) have shown strong performance across many tasks, but their ability to capture culturally diverse moral values remains unclear. In this paper, we examine whether LLMs mirror variations in moral attitudes reported by the World Values Survey (WVS) and the Pew Research Center's Global Attitudes Survey (PEW). We compare smaller monolingual and multilingual models (GPT-2, OPT, BLOOMZ, and Qwen) with recent instruction-tuned models (GPT-4o, GPT-4o-mini, Gemma-2-9b-it, and Llama-3.3-70B-Instruct). Using log-probability-based \emph{moral justifiability} scores, we correlate each model's outputs with survey data covering a broad set of ethical topics. Our results show that many earlier or smaller models often produce near-zero or negative correlations with human judgments. In contrast, advanced instruction-tuned models achieve substantially higher positive correlations, suggesting they better reflect real-world moral attitudes. We provide a detailed regional analysis revealing that models align better with Western, Educated, Industrialized, Rich, and Democratic (W.E.I.R.D.) nations than with other regions. While scaling model size and using instruction tuning improves alignment with cross-cultural moral norms, challenges remain for certain topics and regions. We discuss these findings in relation to bias analysis, training data diversity, information retrieval implications, and strategies for improving the cultural sensitivity of LLMs.
♻ ☆ DAMASHA: Detecting AI in Mixed Adversarial Texts via Segmentation with Human-interpretable Attribution EACL 2026
In the age of advanced large language models (LLMs), the boundaries between human and AI-generated text are becoming increasingly blurred. We address the challenge of segmenting mixed-authorship text, that is identifying transition points in text where authorship shifts from human to AI or vice-versa, a problem with critical implications for authenticity, trust, and human oversight. We introduce a novel framework, called Info-Mask for mixed authorship detection that integrates stylometric cues, perplexity-driven signals, and structured boundary modeling to accurately segment collaborative human-AI content. To evaluate the robustness of our system against adversarial perturbations, we construct and release an adversarial benchmark dataset Mixed-text Adversarial setting for Segmentation (MAS), designed to probe the limits of existing detectors. Beyond segmentation accuracy, we introduce Human-Interpretable Attribution (HIA overlays that highlight how stylometric features inform boundary predictions, and we conduct a small-scale human study assessing their usefulness. Across multiple architectures, Info-Mask significantly improves span-level robustness under adversarial conditions, establishing new baselines while revealing remaining challenges. Our findings highlight both the promise and limitations of adversarially robust, interpretable mixed-authorship detection, with implications for trust and oversight in human-AI co-authorship.
comment: EACL 2026 Findings
♻ ☆ Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agentic model. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME, an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-Perceptive Agentic Policy Optimization (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of ALE.
comment: 36 pages, 15 figures
♻ ☆ FormulaReasoning: A Dataset for Formula-Based Numerical Reasoning
The application of physics formulas is a fundamental human capability in numerical reasoning. While existing datasets often rely on implicit mathematical knowledge, they rarely explicitate the underlying formulas. To address this, we introduce FormulaReasoning, a new benchmark for formula-based numerical reasoning comprising 5,324 questions requiring calculations grounded in external physics principles. We provide high-quality, fine-grained annotations in English and Chinese--including formula structures, parameter names, symbols, values, and units--curated through manual effort and LLM-assisted validation. Additionally, we provide a consolidated formula database as an external knowledge source. To further challenge model performance, we develop an extended version of the dataset by coupling multiple questions. We evaluate various architectural and methodological frameworks, including retrieval-augmented methods, modular reasoning (formula generation, parameter extraction, and calculation), and preference-based optimization. Our analysis identifies critical challenges in formula-based reasoning, highlighting significant opportunities for future methodological advancement.
♻ ☆ MedKGI: Iterative Differential Diagnosis with Medical Knowledge Graphs and Information-Guided Inquiring
Recent advancements in Large Language Models (LLMs) have demonstrated significant promise in clinical diagnosis. However, current models struggle to emulate the iterative, diagnostic hypothesis-driven reasoning of real clinical scenarios. Specifically, current LLMs suffer from three critical limitations: (1) generating hallucinated medical content due to weak grounding in verified knowledge, (2) asking redundant or inefficient questions rather than discriminative ones that hinder diagnostic progress, and (3) losing coherence over multi-turn dialogues, leading to contradictory or inconsistent conclusions. To address these challenges, we propose MedKGI, a diagnostic framework grounded in clinical practices. MedKGI integrates a medical knowledge graph (KG) to constrain reasoning to validated medical ontologies, selects questions based on information gain to maximize diagnostic efficiency, and adopts an OSCE-format structured state to maintain consistent evidence tracking across turns. Experiments on clinical benchmarks show that MedKGI outperforms strong LLM baselines in both diagnostic accuracy and inquiry efficiency, improving dialogue efficiency by 30% on average while maintaining state-of-the-art accuracy.
♻ ☆ MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
As a multimodal medium combining images and text, memes frequently convey implicit harmful content through metaphors and humor, rendering the detection of harmful memes a complex and challenging task. Although recent studies have made progress in detection accuracy and interpretability, large-scale, high-quality datasets for harmful memes remain scarce, and current methods still struggle to capture implicit risks and nuanced semantics. Thus, we construct MemeMind, a large-scale harmful meme dataset. Aligned with the international standards and the context of internet, MemeMind provides detailed Chain-of-Thought (CoT) reasoning annotations to support fine-grained analysis of implicit intentions in memes. Based on this dataset, we further propose MemeGuard, a reasoning-oriented multimodal detection model that significantly improves both the accuracy of harmful meme detection and the interpretability of model decisions. Extensive experimental results demonstrate that MemeGuard outperforms existing state-of-the-art methods on the MemeMind dataset, establishing a solid foundation for future research in harmful meme detection.
♻ ☆ CoSER: A Comprehensive Literary Dataset and Framework for Training and Evaluating LLM Role-Playing and Persona Simulation ICML 2025
Role-playing language agents (RPLAs) have emerged as promising applications of large language models (LLMs). However, simulating established characters presents a challenging task for RPLAs, due to the lack of authentic character datasets and nuanced evaluation methods using such data. In this paper, we present CoSER, a collection of a high-quality dataset, open models, and an evaluation protocol towards effective RPLAs of established characters. The CoSER dataset covers 17,966 characters from 771 renowned books. It provides authentic dialogues with real-world intricacies, as well as diverse data types such as conversation setups, character experiences and internal thoughts. Drawing from acting methodology, we introduce given-circumstance acting for training and evaluating role-playing LLMs, where LLMs sequentially portray multiple characters in book scenes. Using our dataset, we develop CoSER 8B and CoSER 70B, i.e., advanced open role-playing LLMs built on LLaMA-3.1 models. Extensive experiments demonstrate the value of the CoSER dataset for RPLA training, evaluation and retrieval. Moreover, CoSER 70B exhibits state-of-the-art performance surpassing or matching GPT-4o on our evaluation and three existing benchmarks, i.e., achieving 75.80% and 93.47% accuracy on the InCharacter and LifeChoice benchmarks respectively.
comment: Accepted by ICML 2025
♻ ☆ La RoSA: Enhancing LLM Efficiency via Layerwise Rotated Sparse Activation ICML 2025
Activation sparsity can reduce the computational overhead and memory transfers during the forward pass of Large Language Model (LLM) inference. Existing methods face limitations, either demanding time-consuming recovery training that hinders real-world adoption, or relying on empirical magnitude-based pruning, which causes fluctuating sparsity and unstable inference speed-up. This paper introduces LaRoSA (Layerwise Rotated Sparse Activation), a novel method for activation sparsification designed to improve LLM efficiency without requiring additional training or magnitude-based pruning. We leverage layerwise orthogonal rotations to transform input activations into rotated forms that are more suitable for sparsification. By employing a Top-K selection approach within the rotated activations, we achieve consistent model-level sparsity and reliable wall-clock time speed-up. LaRoSA is effective across various sizes and types of LLMs, demonstrating minimal performance degradation and robust inference acceleration. Specifically, for LLaMA2-7B at 40% sparsity, LaRoSA achieves a mere 0.17 perplexity gap with a consistent 1.30x wall-clock time speed-up, and reduces the accuracy gap in zero-shot tasks compared to the dense model to just 0.54%, while surpassing TEAL by 1.77% and CATS by 17.14%.
comment: ICML 2025 Acceptance
♻ ☆ A Survey of Text Classification Under Class Distribution Shift EACL 2026
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
♻ ☆ Evaluating the cognitive reality of Spanish irregular morphomic patterns: Humans vs. Transformers
Do transformer models generalize morphological patterns like humans do? We investigate this by directly comparing transformers to human behavioral data on Spanish irregular morphomic patterns from \citet{Nevins2015TheRA}. We adopt the same analytical framework as the original human study. Under controlled input conditions, we evaluate whether transformer models can replicate human-like sensitivity to the morphome, a complex linguistic phenomenon. Our experiments focus on three frequency conditions: natural, low-frequency, and high-frequency distributions of verbs exhibiting irregular morphomic patterns. Transformer models achieve higher stem-accuracy than human participants. However, response preferences diverge: humans consistently favor the "natural" inflection across all items, whereas models preferred the irregular forms, and their choices are modulated by the proportion of irregular verbs present during training. Moreover, models trained on the natural and low-frequency distributions, but not the high-frequency distribution, exhibit sensitivity to phonological similarity between test items and Spanish L-shaped verbs, mirroring a limited aspect of human phonological generalization.
♻ ☆ nvBench 2.0: Resolving Ambiguity in Text-to-Visualization through Stepwise Reasoning
Text-to-Visualization (Text2VIS) enables users to create visualizations from natural language queries, making data insights more accessible. However, Text2VIS faces challenges in interpreting ambiguous queries, as users often express their visualization needs in imprecise language. To address this challenge, we introduce nBench 2.0, a new benchmark designed to evaluate Text2VIS systems in scenarios involving ambiguous queries. nvBench 2.0 includes 7,878 natural language queries and 24,076 corresponding visualizations, derived from 780 tables across 153 domains. It is built using a controlled ambiguity-injection pipeline that generates ambiguous queries through a reverse-generation workflow. By starting with unambiguous seed visualizations and selectively injecting ambiguities, the pipeline yields multiple valid interpretations for each query, with each ambiguous query traceable to its corresponding visualization through step-wise reasoning paths. We evaluate various Large Language Models (LLMs) on their ability to perform ambiguous Text2VIS tasks using nBench 2.0. We also propose Step-Text2Vis, an LLM-based model trained on nvBench 2.0, which enhances performance in ambiguous scenarios through step-wise preference optimization. Our results show that Step-Text2Vis outperforms all baselines, setting a new state-of-the-art for ambiguous Text2VIS tasks. Our source code and data are available at https://nvbench2.github.io/
♻ ☆ Self-Speculative Biased Decoding for Faster Re-Translation
Large language models achieve strong machine translation quality but incur high inference cost and latency, posing challenges for simultaneous translation. Re-translation provides a practical solution for off-the-shelf LLMs by repeatedly regenerating the target output as the source input grows, but it suffers from substantial redundant computation. We propose Self-Speculative Biased Decoding (SSBD), a simple and tuning-free inference method that accelerates re-translation by exploiting temporal coherence in streaming translation. SSBD reuses the model's previous output as a speculative draft for the updated input, verifies the draft efficiently in a single forward pass with a lightweight bias, and resumes autoregressive decoding only from the first divergence. We further introduce a display-only masking strategy that hides unstable suffixes from the user interface while retaining them in the draft for verification and potential acceptance. Experiments show that SSBD achieves substantial speedup over standard re-translation while maintaining comparable translation quality, without architectural changes, auxiliary models, or extra fine-tuning.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 13 pages, 7 figures, submitted to ARR
♻ ☆ Reasoning Path Divergence: A New Metric and Curation Strategy to Unlock LLM Diverse Thinking
While Test-Time Scaling (TTS) has proven effective in improving the reasoning ability of large language models (LLMs), low diversity in model outputs often becomes a bottleneck; this is partly caused by the common "one problem, one solution" (1P1S) training practice, which provides a single canonical answer and can push models toward a narrow set of reasoning paths. This homogenization not only limits sampling effectiveness but also restricts the exploration space for subsequent Reinforcement Learning (RL) stages. To address this, we propose a "one problem, multiple solutions" (1PNS) training paradigm that exposes the model to a variety of valid reasoning trajectories and thus increases inference diversity. A core challenge for 1PNS is reliably measuring semantic differences between multi-step chains of thought, so we introduce Reasoning Path Divergence (RPD), a step-level metric that aligns and scores Long Chain-of-Thought solutions to capture differences in intermediate reasoning. Using RPD, we curate maximally diverse solution sets per problem and fine-tune Qwen3-4B-Base. Experiments show that RPD-selected training yields more varied outputs and higher pass@k, with an average +2.80% gain in pass@16 over a strong 1P1S baseline and a +4.99% gain on AIME24, demonstrating that 1PNS further amplifies the effectiveness of TTS. Our code is available at https://github.com/fengjujf/Reasoning-Path-Divergence .
♻ ☆ Can LLMs Predict Their Own Failures? Self-Awareness via Internal Circuits
Large language models (LLMs) generate fluent and complex outputs but often fail to recognize their own mistakes and hallucinations. Existing approaches typically rely on external judges, multi-sample consistency, or text-based self-critique, which incur additional compute or correlate weakly with true correctness. We ask: can LLMs predict their own failures by inspecting internal states during inference? We introduce Gnosis, a lightweight self-awareness mechanism that enables frozen LLMs to perform intrinsic self-verification by decoding signals from hidden states and attention patterns. Gnosis passively observes internal traces, compresses them into fixed-budget descriptors, and predicts correctness with negligible inference cost, adding only ~5M parameters and operating independently of sequence length. Across math reasoning, open-domain question answering, and academic knowledge benchmarks, and over frozen backbones ranging from 1.7B to 20B parameters, Gnosis consistently outperforms strong internal baselines and large external judges in both accuracy and calibration. Moreover, it generalizes zero-shot to partial generations, enabling early detection of failing trajectories and compute-aware control. These results show that reliable correctness cues are intrinsic to generation process and can be extracted efficiently without external supervision.
♻ ☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of LLM judgments induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and constructs confidence intervals accounting for uncertainty from both the test dataset and a human-evaluated calibration dataset, enabling statistically sound and practical LLM-based evaluation. Building on this framework, we introduce an adaptive calibration strategy for constructing the calibration dataset to reduce uncertainty in the estimated score. Notably, we characterize the regimes in which LLM-based evaluation within our framework produces more reliable estimates than fully human evaluation. Moreover, our framework is more robust to distribution shift between the test and calibration datasets than existing approaches.
comment: This version adds Sections 2, 6, 7, and 8.2
♻ ☆ Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone
While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as $π_0$ and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
comment: Add real-world experiments
♻ ☆ Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
♻ ☆ Rotation Control Unlearning: Quantifying and Controlling Continuous Unlearning for LLM with The Cognitive Rotation Space
As Large Language Models (LLMs) become increasingly prevalent, their security vulnerabilities have already drawn attention. Machine unlearning is introduced to seek to mitigate these risks by removing the influence of undesirable data. However, existing methods not only rely on the retained dataset to preserve model utility, but also suffer from cumulative catastrophic utility loss under continuous unlearning requests. To solve this dilemma, we propose a novel method, called Rotation Control Unlearning (RCU), which leverages the rotational salience weight of RCU to quantify and control the unlearning degree in the continuous unlearning process. The skew symmetric loss is designed to construct the existence of the cognitive rotation space, where the changes of rotational angle can simulate the continuous unlearning process. Furthermore, we design an orthogonal rotation axes regularization to enforce mutually perpendicular rotation directions for continuous unlearning requests, effectively minimizing interference and addressing cumulative catastrophic utility loss. Experiments on multiple datasets confirm that our method without retained dataset achieves SOTA performance.
♻ ☆ A Multi-Memory Segment System for Generating High-Quality Long-Term Memory Content in Agents
In the current field of agent memory, extensive explorations have been conducted in the area of memory retrieval, yet few studies have focused on exploring the memory content. Most research simply stores summarized versions of historical dialogues, as exemplified by methods like A-MEM and MemoryBank. However, when humans form long-term memories, the process involves multi-dimensional and multi-component generation, rather than merely creating simple summaries. The low-quality memory content generated by existing methods can adversely affect recall performance and response quality. In order to better construct high-quality long-term memory content, we have designed a multi-memory segment system (MMS) inspired by cognitive psychology theory. The system processes short-term memory into multiple long-term memory segments, and constructs retrieval memory units and contextual memory units based on these segments, with a one-to-one correspondence between the two. During the retrieval phase, MMS will match the most relevant retrieval memory units based on the user's query. Then, the corresponding contextual memory units is obtained as the context for the response stage to enhance knowledge, thereby effectively utilizing historical data. We conducted experiments on the LoCoMo dataset and further performed ablation experiments, experiments on the robustness regarding the number of input memories, and overhead experiments, which demonstrated the effectiveness and practical value of our method.
♻ ☆ DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.
♻ ☆ MR-Align: Meta-Reasoning Informed Factuality Alignment for Large Reasoning Models
Large reasoning models (LRMs) show strong capabilities in complex reasoning, yet their marginal gains on evidence-dependent factual questions are limited. We find this limitation is partially attributable to a reasoning-answer hit gap, where the model identifies the correct facts during reasoning but fails to incorporate them into the final response, thereby reducing factual fidelity. To address this issue, we propose MR-ALIGN, a Meta-Reasoning informed alignment framework that enhances factuality without relying on external verifiers. MR-ALIGN quantifies state transition probabilities along the model's thinking process and constructs a transition-aware implicit reward that reinforces beneficial reasoning patterns while suppressing defective ones at the atomic thinking segments. This re-weighting reshapes token-level signals into probability-aware segment scores, encouraging coherent reasoning trajectories that are more conducive to factual correctness. Empirical evaluations across four factual QA datasets and one long-form factuality benchmark show that MR-ALIGN consistently improves accuracy and truthfulness while reducing misleading reasoning. These results highlight that aligning the reasoning process itself, rather than merely the outputs, is pivotal for advancing factuality in LRMs.
comment: Preprint
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ Style Amnesia: Investigating Speaking Style Degradation and Mitigation in Multi-Turn Spoken Language Models ACL
In this paper, we show that when spoken language models (SLMs) are instructed to speak in a specific speaking style at the beginning of a multi-turn conversation, they cannot maintain the required speaking styles after several turns of interaction; we refer to this as the style amnesia of SLMs. We focus on paralinguistic speaking styles, including emotion, accent, volume, and speaking speed. We evaluate three proprietary and two open-source SLMs, demonstrating that none of these models can maintain a consistent speaking style when instructed to do so. We further show that when SLMs are asked to recall the style instruction in later turns, they can recall the style instruction, but they fail to express it throughout the conversation. We also show that explicitly asking the model to recall the style instruction can partially mitigate style amnesia. In addition, we examine various prompting strategies and find that SLMs struggle to follow the required style when the instruction is placed in system messages rather than user messages, which contradicts the intended function of system prompts.
comment: Submitted to ACL ARR January 2026
♻ ☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods. The model and dataset are open-sourced at https://github.com/LLM-VLM-GSL/AHA.
Machine Learning 94
☆ Enhanced Multi-model Online Conformal Prediction
Conformal prediction is a framework for uncertainty quantification that constructs prediction sets for previously unseen data, guaranteeing coverage of the true label with a specified probability. However, the efficiency of these prediction sets, measured by their size, depends on the choice of the underlying learning model. Relying on a single fixed model may lead to suboptimal performance in online environments, as a single model may not consistently perform well across all time steps. To mitigate this, prior work has explored selecting a model from a set of candidates. However, this approach becomes computationally expensive as the number of candidate models increases. Moreover, poorly performing models in the set may also hinder the effectiveness. To tackle this challenge, this work develops a novel multi-model online conformal prediction algorithm that reduces computational complexity and improves prediction efficiency. At each time step, a bipartite graph is generated to identify a subset of effective models, from which a model is selected to construct the prediction set. Experiments demonstrate that our method outperforms existing multi-model conformal prediction techniques in terms of both prediction set size and computational efficiency.
☆ DiMEx: Breaking the Cold Start Barrier in Data-Free Model Extraction via Latent Diffusion Priors
Model stealing attacks pose an existential threat to Machine Learning as a Service (MLaaS), allowing adversaries to replicate proprietary models for a fraction of their training cost. While Data-Free Model Extraction (DFME) has emerged as a stealthy vector, it remains fundamentally constrained by the "Cold Start" problem: GAN-based adversaries waste thousands of queries converging from random noise to meaningful data. We propose DiMEx, a framework that weaponizes the rich semantic priors of pre-trained Latent Diffusion Models to bypass this initialization barrier entirely. By employing Random Embedding Bayesian Optimization (REMBO) within the generator's latent space, DiMEx synthesizes high-fidelity queries immediately, achieving 52.1 percent agreement on SVHN with just 2,000 queries - outperforming state-of-the-art GAN baselines by over 16 percent. To counter this highly semantic threat, we introduce the Hybrid Stateful Ensemble (HSE) defense, which identifies the unique "optimization trajectory" of latent-space attacks. Our results demonstrate that while DiMEx evades static distribution detectors, HSE exploits this temporal signature to suppress attack success rates to 21.6 percent with negligible latency.
comment: 8 pages, 3 figures, 4 tables
☆ Simplex Deep Linear Discriminant Analysis
We revisit Deep Linear Discriminant Analysis (Deep LDA) from a likelihood-based perspective. While classical LDA is a simple Gaussian model with linear decision boundaries, attaching an LDA head to a neural encoder raises the question of how to train the resulting deep classifier by maximum likelihood estimation (MLE). We first show that end-to-end MLE training of an unconstrained Deep LDA model ignores discrimination: when both the LDA parameters and the encoder parameters are learned jointly, the likelihood admits a degenerate solution in which some of the class clusters may heavily overlap or even collapse, and classification performance deteriorates. Batchwise moment re-estimation of the LDA parameters does not remove this failure mode. We then propose a constrained Deep LDA formulation that fixes the class means to the vertices of a regular simplex in the latent space and restricts the shared covariance to be spherical, leaving only the priors and a single variance parameter to be learned along with the encoder. Under these geometric constraints, MLE becomes stable and yields well-separated class clusters in the latent space. On images (Fashion-MNIST, CIFAR-10, CIFAR-100), the resulting Deep LDA models achieve accuracy competitive with softmax baselines while offering a simple, interpretable latent geometry that is clearly visible in two-dimensional projections.
☆ HeurekaBench: A Benchmarking Framework for AI Co-scientist
LLM-based reasoning models have enabled the development of agentic systems that act as co-scientists, assisting in multi-step scientific analysis. However, evaluating these systems is challenging, as it requires realistic, end-to-end research scenarios that integrate data analysis, interpretation, and the generation of new insights from the experimental data. To address this limitation, we introduce HeurekaBench, a framework to create benchmarks with exploratory, open-ended research questions for experimental datasets. Each such question is grounded in a scientific study and its corresponding code repository, and is created using a semi-automated pipeline that leverages multiple LLMs to extract insights and generate candidate workflows, which are then verified against reported findings. We instantiate the framework in single-cell biology to obtain sc-HeurekaBench benchmark and use it to compare state-of-the-art single-cell agents. We further showcase the benefits of our benchmark for quantitatively analyzing current design choices in agentic systems. We find that the addition of a critic module can improve ill-formed responses for open-source LLM-based agents by up to 22% and close the gap with their closed-source counterparts. Overall, HeurekaBench sets a path toward rigorous, end-to-end evaluation of scientific agents, grounding benchmark construction in real scientific workflows.
comment: 33 pages, 5 figures, 7 tables. Code available at https://github.com/mlbio-epfl/HeurekaBench
☆ Adversarial Instance Generation and Robust Training for Neural Combinatorial Optimization with Multiple Objectives
Deep reinforcement learning (DRL) has shown great promise in addressing multi-objective combinatorial optimization problems (MOCOPs). Nevertheless, the robustness of these learning-based solvers has remained insufficiently explored, especially across diverse and complex problem distributions. In this paper, we propose a unified robustness-oriented framework for preference-conditioned DRL solvers for MOCOPs. Within this framework, we develop a preference-based adversarial attack to generate hard instances that expose solver weaknesses, and quantify the attack impact by the resulting degradation on Pareto-front quality. We further introduce a defense strategy that integrates hardness-aware preference selection into adversarial training to reduce overfitting to restricted preference regions and improve out-of-distribution performance. The experimental results on multi-objective traveling salesman problem (MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and multi-objective knapsack problem (MOKP) verify that our attack method successfully learns hard instances for different solvers. Furthermore, our defense method significantly strengthens the robustness and generalizability of neural solvers, delivering superior performance on hard or out-of-distribution instances.
☆ Who is the Winning Algorithm? Rank Aggregation for Comparative Studies
Consider a collection of m competing machine learning algorithms. Given their performance on a benchmark of datasets, we would like to identify the best performing algorithm. Specifically, which algorithm is most likely to ``win'' (rank highest) on a future, unseen dataset. The standard maximum likelihood approach suggests counting the number of wins per each algorithm. In this work, we argue that there is much more information in the complete rankings. That is, the number of times that each algorithm finished second, third and so forth. Yet, it is not entirely clear how to effectively utilize this information for our purpose. In this work we introduce a novel conceptual framework for estimating the win probability for each of the m algorithms, given their complete rankings over a benchmark of datasets. Our proposed framework significantly improves upon currently known methods in synthetic and real-world examples.
☆ Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths
We study generative modeling of \emph{variable-length trajectories} -- sequences of visited locations/items with associated timestamps -- for downstream simulation and counterfactual analysis. A recurring practical issue is that standard mini-batch training can be unstable when trajectory lengths are highly heterogeneous, which in turn degrades \emph{distribution matching} for trajectory-derived statistics. We propose \textbf{length-aware sampling (LAS)}, a simple batching strategy that groups trajectories by length and samples batches from a single length bucket, reducing within-batch length heterogeneity (and making updates more consistent) without changing the model class. We integrate LAS into a conditional trajectory GAN with auxiliary time-alignment losses and provide (i) a distribution-level guarantee for derived variables under mild boundedness assumptions, and (ii) an IPM/Wasserstein mechanism explaining why LAS improves distribution matching by removing length-only shortcut critics and targeting within-bucket discrepancies. Empirically, LAS consistently improves matching of derived-variable distributions on a multi-mall dataset of shopper trajectories and on diverse public sequence datasets (GPS, education, e-commerce, and movies), outperforming random sampling across dataset-specific metrics.
☆ UniCrop: A Universal, Multi-Source Data Engineering Pipeline for Scalable Crop Yield Prediction
Accurate crop yield prediction relies on diverse data streams, including satellite, meteorological, soil, and topographic information. However, despite rapid advances in machine learning, existing approaches remain crop- or region-specific and require data engineering efforts. This limits scalability, reproducibility, and operational deployment. This study introduces UniCrop, a universal and reusable data pipeline designed to automate the acquisition, cleaning, harmonisation, and engineering of multi-source environmental data for crop yield prediction. For any given location, crop type, and temporal window, UniCrop automatically retrieves, harmonises, and engineers over 200 environmental variables (Sentinel-1/2, MODIS, ERA5-Land, NASA POWER, SoilGrids, and SRTM), reducing them to a compact, analysis-ready feature set utilising a structured feature reduction workflow with minimum redundancy maximum relevance (mRMR). To validate, UniCrop was applied to a rice yield dataset comprising 557 field observations. Using only the selected 15 features, four baseline machine learning models (LightGBM, Random Forest, Support Vector Regression, and Elastic Net) were trained. LightGBM achieved the best single-model performance (RMSE = 465.1 kg/ha, $R^2 = 0.6576$), while a constrained ensemble of all baselines further improved accuracy (RMSE = 463.2 kg/ha, $R^2 = 0.6604$). UniCrop contributes a scalable and transparent data-engineering framework that addresses the primary bottleneck in operational crop yield modelling: the preparation of consistent and harmonised multi-source data. By decoupling data specification from implementation and supporting any crop, region, and time frame through simple configuration updates, UniCrop provides a practical foundation for scalable agricultural analytics. The code and implementation documentation are shared in https://github.com/CoDIS-Lab/UniCrop.
☆ Learning Resilient Elections with Adversarial GNNs
In the face of adverse motives, it is indispensable to achieve a consensus. Elections have been the canonical way by which modern democracy has operated since the 17th century. Nowadays, they regulate markets, provide an engine for modern recommender systems or peer-to-peer networks, and remain the main approach to represent democracy. However, a desirable universal voting rule that satisfies all hypothetical scenarios is still a challenging topic, and the design of these systems is at the forefront of mechanism design research. Automated mechanism design is a promising approach, and recent works have demonstrated that set-invariant architectures are uniquely suited to modelling electoral systems. However, various concerns prevent the direct application to real-world settings, such as robustness to strategic voting. In this paper, we generalise the expressive capability of learned voting rules, and combine improvements in neural network architecture with adversarial training to improve the resilience of voting rules while maximizing social welfare. We evaluate the effectiveness of our methods on both synthetic and real-world datasets. Our method resolves critical limitations of prior work regarding learning voting rules by representing elections using bipartite graphs, and learning such voting rules using graph neural networks. We believe this opens new frontiers for applying machine learning to real-world elections.
☆ Communication-Efficient Federated AUC Maximization with Cyclic Client Participation
Federated AUC maximization is a powerful approach for learning from imbalanced data in federated learning (FL). However, existing methods typically assume full client availability, which is rarely practical. In real-world FL systems, clients often participate in a cyclic manner: joining training according to a fixed, repeating schedule. This setting poses unique optimization challenges for the non-decomposable AUC objective. This paper addresses these challenges by developing and analyzing communication-efficient algorithms for federated AUC maximization under cyclic client participation. We investigate two key settings: First, we study AUC maximization with a squared surrogate loss, which reformulates the problem as a nonconvex-strongly-concave minimax optimization. By leveraging the Polyak-Łojasiewicz (PL) condition, we establish a state-of-the-art communication complexity of $\widetilde{O}(1/ε^{1/2})$ and iteration complexity of $\widetilde{O}(1/ε)$. Second, we consider general pairwise AUC losses. We establish a communication complexity of $O(1/ε^3)$ and an iteration complexity of $O(1/ε^4)$. Further, under the PL condition, these bounds improve to communication complexity of $\widetilde{O}(1/ε^{1/2})$ and iteration complexity of $\widetilde{O}(1/ε)$. Extensive experiments on benchmark tasks in image classification, medical imaging, and fraud detection demonstrate the superior efficiency and effectiveness of our proposed methods.
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ Deep Linear Discriminant Analysis Revisited
We show that for unconstrained Deep Linear Discriminant Analysis (LDA) classifiers, maximum-likelihood training admits pathological solutions in which class means drift together, covariances collapse, and the learned representation becomes almost non-discriminative. Conversely, cross-entropy training yields excellent accuracy but decouples the head from the underlying generative model, leading to highly inconsistent parameter estimates. To reconcile generative structure with discriminative performance, we introduce the \emph{Discriminative Negative Log-Likelihood} (DNLL) loss, which augments the LDA log-likelihood with a simple penalty on the mixture density. DNLL can be interpreted as standard LDA NLL plus a term that explicitly discourages regions where several classes are simultaneously likely. Deep LDA trained with DNLL produces clean, well-separated latent spaces, matches the test accuracy of softmax classifiers on synthetic data and standard image benchmarks, and yields substantially better calibrated predictive probabilities, restoring a coherent probabilistic interpretation to deep discriminant models.
☆ Real Time NILM Based Power Monitoring of Identical Induction Motors Representing Cutting Machines in Textile Industry
The textile industry in Bangladesh is one of the most energy-intensive sectors, yet its monitoring practices remain largely outdated, resulting in inefficient power usage and high operational costs. To address this, we propose a real-time Non-Intrusive Load Monitoring (NILM)-based framework tailored for industrial applications, with a focus on identical motor-driven loads representing textile cutting machines. A hardware setup comprising voltage and current sensors, Arduino Mega and ESP8266 was developed to capture aggregate and individual load data, which was stored and processed on cloud platforms. A new dataset was created from three identical induction motors and auxiliary loads, totaling over 180,000 samples, to evaluate the state-of-the-art MATNILM model under challenging industrial conditions. Results indicate that while aggregate energy estimation was reasonably accurate, per-appliance disaggregation faced difficulties, particularly when multiple identical machines operated simultaneously. Despite these challenges, the integrated system demonstrated practical real-time monitoring with remote accessibility through the Blynk application. This work highlights both the potential and limitations of NILM in industrial contexts, offering insights into future improvements such as higher-frequency data collection, larger-scale datasets and advanced deep learning approaches for handling identical loads.
comment: 9 pages, 9 figures
☆ REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training
Precipitation nowcasting is critically important for meteorological forecasting. Deep learning-based Radar Echo Extrapolation (REE) has become a predominant nowcasting approach, yet it suffers from poor generalization due to its reliance on high-quality local training data and static model parameters, limiting its applicability across diverse regions and extreme events. To overcome this, we propose REE-TTT, a novel model that incorporates an adaptive Test-Time Training (TTT) mechanism. The core of our model lies in the newly designed Spatio-temporal Test-Time Training (ST-TTT) block, which replaces the standard linear projections in TTT layers with task-specific attention mechanisms, enabling robust adaptation to non-stationary meteorological distributions and thereby significantly enhancing the feature representation of precipitation. Experiments under cross-regional extreme precipitation scenarios demonstrate that REE-TTT substantially outperforms state-of-the-art baseline models in prediction accuracy and generalization, exhibiting remarkable adaptability to data distribution shifts.
☆ Variance-Reduced Diffusion Sampling via Conditional Score Expectation Identity
We introduce and prove a \textbf{Conditional Score Expectation (CSE)} identity: an exact relation for the marginal score of affine diffusion processes that links scores across time via a conditional expectation under the forward dynamics. Motivated by this identity, we propose a CSE-based statistical estimator for the score using a Self-Normalized Importance Sampling (SNIS) procedure with prior samples and forward noise. We analyze its relationship to the standard Tweedie estimator, proving anti-correlation for Gaussian targets and establishing the same behavior for general targets in the small time-step regime. Exploiting this structure, we derive a variance-minimizing blended score estimator given by a state--time dependent convex combination of the CSE and Tweedie estimators. Numerical experiments show that this optimal-blending estimator reduces variance and improves sample quality for a fixed computational budget compared to either baseline. We further extend the framework to Bayesian inverse problems via likelihood-informed SNIS weights, and demonstrate improved reconstruction quality and sample diversity on high-dimensional image reconstruction tasks and PDE-governed inverse problems.
☆ Identifying recurrent flows in high-dimensional dissipative chaos from low-dimensional embeddings
Unstable periodic orbits (UPOs) are the non-chaotic, dynamical building blocks of spatio-temporal chaos, motivating a first-principles based theory for turbulence ever since the discovery of deterministic chaos. Despite their key role in the ergodic theory approach to fluid turbulence, identifying UPOs is challenging for two reasons: chaotic dynamics and the high-dimensionality of the spatial discretization. We address both issues at once by proposing a loop convergence algorithm for UPOs directly within a low-dimensional embedding of the chaotic attractor. The convergence algorithm circumvents time-integration, hence avoiding instabilities from exponential error amplification, and operates on a latent dynamics obtained by pulling back the physical equations using automatic differentiation through the learned embedding function. The interpretable latent dynamics is accurate in a statistical sense, and, crucially, the embedding preserves the internal structure of the attractor, which we demonstrate through an equivalence between the latent and physical UPOs of both a model PDE and the 2D Navier-Stokes equations. This allows us to exploit the collapse of high-dimensional dissipative systems onto a lower dimensional manifold, and identify UPOs in the low-dimensional embedding.
☆ Learning Relationship between Quantum Walks and Underdamped Langevin Dynamics
Fast computational algorithms are in constant demand, and their development has been driven by advances such as quantum speedup and classical acceleration. This paper intends to study search algorithms based on quantum walks in quantum computation and sampling algorithms based on Langevin dynamics in classical computation. On the quantum side, quantum walk-based search algorithms can achieve quadratic speedups over their classical counterparts. In classical computation, a substantial body of work has focused on gradient acceleration, with gradient-adjusted algorithms derived from underdamped Langevin dynamics providing quadratic acceleration over conventional Langevin algorithms. Since both search and sampling algorithms are designed to address learning tasks, we study learning relationship between coined quantum walks and underdamped Langevin dynamics. Specifically, we show that, in terms of the Le Cam deficiency distance, a quantum walk with randomization is asymptotically equivalent to underdamped Langevin dynamics, whereas the quantum walk without randomization is not asymptotically equivalent due to its high-frequency oscillatory behavior. We further discuss the implications of these equivalence and nonequivalence results for the computational and inferential properties of the associated algorithms in machine learning tasks. Our findings offer new insight into the relationship between quantum walks and underdamped Langevin dynamics, as well as the intrinsic mechanisms underlying quantum speedup and classical gradient acceleration.
☆ The Two-Stage Decision-Sampling Hypothesis: Understanding the Emergence of Self-Reflection in RL-Trained LLMs
Self-reflection capabilities emerge in Large Language Models after RL post-training, with multi-turn RL achieving substantial gains over SFT counterparts. Yet the mechanism of how a unified optimization objective gives rise to functionally distinct capabilities of generating solutions and evaluating when to revise them remains opaque. To address this question, we introduce the Gradient Attribution Property to characterize how reward gradients distribute across policy components, formalized through the Two-Stage Decision-Sampling (DS) Hypothesis, which decomposes the policy into sampling ($π_{sample}$) for generation and decision ($π_{d}$) for verification. We prove that surrogate rewards exhibit Balanced Gradient Attribution, while SFT and KL penalties exhibit Unbalanced Gradient Attribution, with length-weighting creating asymmetric regularization that constrains $π_{sample}$ while leaving $π_{d}$ under-optimized, providing an theoretical explanation of why RL succeeds where SFT fails. We also empirically validate our theoretical predictions on arithmetic reasoning demonstrates that RL's superior generalization stems primarily from improved decision-making ($π_{d}$) rather than sampling capabilities, providing a first-principles mechanistic explanation for self-correction in thinking models.
☆ Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings
Predicting river flow in places without streamflow records is challenging because basins respond differently to climate, terrain, vegetation, and soils. Traditional basin attributes describe some of these differences, but they cannot fully represent the complexity of natural environments. This study examines whether AlphaEarth Foundation embeddings, which are learned from large collections of satellite images rather than designed by experts, offer a more informative way to describe basin characteristics. These embeddings summarize patterns in vegetation, land surface properties, and long-term environmental dynamics. We find that models using them achieve higher accuracy when predicting flows in basins not used for training, suggesting that they capture key physical differences more effectively than traditional attributes. We further investigate how selecting appropriate donor basins influences prediction in ungauged regions. Similarity based on the embeddings helps identify basins with comparable environmental and hydrological behavior, improving performance, whereas adding many dissimilar basins can reduce accuracy. The results show that satellite-informed environmental representations can strengthen hydrological forecasting and support the development of models that adapt more easily to different landscapes.
comment: 12 pages, 11 figures
☆ EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding
The ability to reason about spatial dynamics is a cornerstone of intelligence, yet current research overlooks the human intent behind spatial changes. To address these limitations, we introduce Teleo-Spatial Intelligence (TSI), a new paradigm that unifies two critical pillars: Physical-Dynamic Reasoning--understanding the physical principles of object interactions--and Intent-Driven Reasoning--inferring the human goals behind these actions. To catalyze research in TSI, we present EscherVerse, consisting of a large-scale, open-world benchmark (Escher-Bench), a dataset (Escher-35k), and models (Escher series). Derived from real-world videos, EscherVerse moves beyond constrained settings to explicitly evaluate an agent's ability to reason about object permanence, state transitions, and trajectory prediction in dynamic, human-centric scenarios. Crucially, it is the first benchmark to systematically assess Intent-Driven Reasoning, challenging models to connect physical events to their underlying human purposes. Our work, including a novel data curation pipeline, provides a foundational resource to advance spatial intelligence from passive scene description toward a holistic, purpose-driven understanding of the world.
☆ Aletheia: Quantifying Cognitive Conviction in Reasoning Models via Regularized Inverse Confusion Matrix
In the progressive journey toward Artificial General Intelligence (AGI), current evaluation paradigms face an epistemological crisis. Static benchmarks measure knowledge breadth but fail to quantify the depth of belief. While Simhi et al. (2025) defined the CHOKE phenomenon in standard QA, we extend this framework to quantify "Cognitive Conviction" in System 2 reasoning models. We propose Project Aletheia, a cognitive physics framework that employs Tikhonov Regularization to invert the judge's confusion matrix. To validate this methodology without relying on opaque private data, we implement a Synthetic Proxy Protocol. Our preliminary pilot study on 2025 baselines (e.g., DeepSeek-R1, OpenAI o1) suggests that while reasoning models act as a "cognitive buffer," they may exhibit "Defensive OverThinking" under adversarial pressure. Furthermore, we introduce the Aligned Conviction Score (S_aligned) to verify that conviction does not compromise safety. This work serves as a blueprint for measuring AI scientific integrity.
comment: 6 pages, 2 figures
☆ A Novel Deep Learning Method for Segmenting the Left Ventricle in Cardiac Cine MRI
This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.
comment: 9 pages, 5 figures
☆ Advanced Global Wildfire Activity Modeling with Hierarchical Graph ODE
Wildfires, as an integral component of the Earth system, are governed by a complex interplay of atmospheric, oceanic, and terrestrial processes spanning a vast range of spatiotemporal scales. Modeling their global activity on large timescales is therefore a critical yet challenging task. While deep learning has recently achieved significant breakthroughs in global weather forecasting, its potential for global wildfire behavior prediction remains underexplored. In this work, we reframe this problem and introduce the Hierarchical Graph ODE (HiGO), a novel framework designed to learn the multi-scale, continuous-time dynamics of wildfires. Specifically, we represent the Earth system as a multi-level graph hierarchy and propose an adaptive filtering message passing mechanism for both intra- and inter-level information flow, enabling more effective feature extraction and fusion. Furthermore, we incorporate GNN-parameterized Neural ODE modules at multiple levels to explicitly learn the continuous dynamics inherent to each scale. Through extensive experiments on the SeasFire Cube dataset, we demonstrate that HiGO significantly outperforms state-of-the-art baselines on long-range wildfire forecasting. Moreover, its continuous-time predictions exhibit strong observational consistency, highlighting its potential for real-world applications.
☆ The Optimal Sample Complexity of Linear Contracts
In this paper, we settle the problem of learning optimal linear contracts from data in the offline setting, where agent types are drawn from an unknown distribution and the principal's goal is to design a contract that maximizes her expected utility. Specifically, our analysis shows that the simple Empirical Utility Maximization (EUM) algorithm yields an $\varepsilon$-approximation of the optimal linear contract with probability at least $1-δ$, using just $O(\ln(1/δ) / \varepsilon^2)$ samples. This result improves upon previously known bounds and matches a lower bound from Duetting et al. [2025] up to constant factors, thereby proving its optimality. Our analysis uses a chaining argument, where the key insight is to leverage a simple structural property of linear contracts: their expected reward is non-decreasing. This property, which holds even though the utility function itself is non-monotone and discontinuous, enables the construction of fine-grained nets required for the chaining argument, which in turn yields the optimal sample complexity. Furthermore, our proof establishes the stronger guarantee of uniform convergence: the empirical utility of every linear contract is a $\varepsilon$-approximation of its true expectation with probability at least $1-δ$, using the same optimal $O(\ln(1/δ) / \varepsilon^2)$ sample complexity.
☆ Accelerating Decentralized Optimization via Overlapping Local Steps
Decentralized optimization has emerged as a critical paradigm for distributed learning, enabling scalable training while preserving data privacy through peer-to-peer collaboration. However, existing methods often suffer from communication bottlenecks due to frequent synchronization between nodes. We present Overlapping Local Decentralized SGD (OLDSGD), a novel approach to accelerate decentralized training by computation-communication overlapping, significantly reducing network idle time. With a deliberately designed update, OLDSGD preserves the same average update as Local SGD while avoiding communication-induced stalls. Theoretically, we establish non-asymptotic convergence rates for smooth non-convex objectives, showing that OLDSGD retains the same iteration complexity as standard Local Decentralized SGD while improving per-iteration runtime. Empirical results demonstrate OLDSGD's consistent improvements in wall-clock time convergence under different levels of communication delays. With minimal modifications to existing frameworks, OLDSGD offers a practical solution for faster decentralized learning without sacrificing theoretical guarantees.
☆ Four Quadrants of Difficulty: A Simple Categorisation and its Limits
Curriculum Learning (CL) aims to improve the outcome of model training by estimating the difficulty of samples and scheduling them accordingly. In NLP, difficulty is commonly approximated using task-agnostic linguistic heuristics or human intuition, implicitly assuming that these signals correlate with what neural models find difficult to learn. We propose a four-quadrant categorisation of difficulty signals -- human vs. model and task-agnostic vs. task-dependent -- and systematically analyse their interactions on a natural language understanding dataset. We find that task-agnostic features behave largely independently and that only task-dependent features align. These findings challenge common CL intuitions and highlight the need for lightweight, task-dependent difficulty estimators that better reflect model learning behaviour.
comment: prepared for ESANN 2026 submission
☆ SGD-Based Knowledge Distillation with Bayesian Teachers: Theory and Guidelines
Knowledge Distillation (KD) is a central paradigm for transferring knowledge from a large teacher network to a typically smaller student model, often by leveraging soft probabilistic outputs. While KD has shown strong empirical success in numerous applications, its theoretical underpinnings remain only partially understood. In this work, we adopt a Bayesian perspective on KD to rigorously analyze the convergence behavior of students trained with Stochastic Gradient Descent (SGD). We study two regimes: $(i)$ when the teacher provides the exact Bayes Class Probabilities (BCPs); and $(ii)$ supervision with noisy approximations of the BCPs. Our analysis shows that learning from BCPs yields variance reduction and removes neighborhood terms in the convergence bounds compared to one-hot supervision. We further characterize how the level of noise affects generalization and accuracy. Motivated by these insights, we advocate the use of Bayesian deep learning models, which typically provide improved estimates of the BCPs, as teachers in KD. Consistent with our analysis, we experimentally demonstrate that students distilled from Bayesian teachers not only achieve higher accuracies (up to +4.27%), but also exhibit more stable convergence (up to 30% less noise), compared to students distilled from deterministic teachers.
☆ Modeling Information Blackouts in Missing Not-At-Random Time Series Data
Large-scale traffic forecasting relies on fixed sensor networks that often exhibit blackouts: contiguous intervals of missing measurements caused by detector or communication failures. These outages are typically handled under a Missing At Random (MAR) assumption, even though blackout events may correlate with unobserved traffic conditions (e.g., congestion or anomalous flow), motivating a Missing Not At Random (MNAR) treatment. We propose a latent state-space framework that jointly models (i) traffic dynamics via a linear dynamical system and (ii) sensor dropout via a Bernoulli observation channel whose probability depends on the latent traffic state. Inference uses an Extended Kalman Filter with Rauch-Tung-Striebel smoothing, and parameters are learned via an approximate EM procedure with a dedicated update for detector-specific missingness parameters. On the Seattle inductive loop detector data, introducing latent dynamics yields large gains over naive baselines, reducing blackout imputation RMSE from 7.02 (LOCF) and 5.02 (linear interpolation + seasonal naive) to 4.23 (MAR LDS), corresponding to about a 64% reduction in MSE relative to LOCF. Explicit MNAR modeling provides a consistent but smaller additional improvement on real data (imputation RMSE 4.20; 0.8% RMSE reduction relative to MAR), with similar modest gains for short-horizon post-blackout forecasts (evaluated at 1, 3, and 6 steps). In controlled synthetic experiments, the MNAR advantage increases as the true missingness dependence on latent state strengthens. Overall, temporal dynamics dominate performance, while MNAR modeling offers a principled refinement that becomes most valuable when missingness is genuinely informative.
comment: 8 pages, 7 figures, 3 tables
☆ Multi-Subspace Multi-Modal Modeling for Diffusion Models: Estimation, Convergence and Mixture of Experts
Recently, diffusion models have achieved a great performance with a small dataset of size $n$ and a fast optimization process. However, the estimation error of diffusion models suffers from the curse of dimensionality $n^{-1/D}$ with the data dimension $D$. Since images are usually a union of low-dimensional manifolds, current works model the data as a union of linear subspaces with Gaussian latent and achieve a $1/\sqrt{n}$ bound. Though this modeling reflects the multi-manifold property, the Gaussian latent can not capture the multi-modal property of the latent manifold. To bridge this gap, we propose the mixture subspace of low-rank mixture of Gaussian (MoLR-MoG) modeling, which models the target data as a union of $K$ linear subspaces, and each subspace admits a mixture of Gaussian latent ($n_k$ modals with dimension $d_k$). With this modeling, the corresponding score function naturally has a mixture of expert (MoE) structure, captures the multi-modal information, and contains nonlinear property. We first conduct real-world experiments to show that the generation results of MoE-latent MoG NN are much better than MoE-latent Gaussian score. Furthermore, MoE-latent MoG NN achieves a comparable performance with MoE-latent Unet with $10 \times$ parameters. These results indicate that the MoLR-MoG modeling is reasonable and suitable for real-world data. After that, based on such MoE-latent MoG score, we provide a $R^4\sqrt{Σ_{k=1}^Kn_k}\sqrt{Σ_{k=1}^Kn_kd_k}/\sqrt{n}$ estimation error, which escapes the curse of dimensionality by using data structure. Finally, we study the optimization process and prove the convergence guarantee under the MoLR-MoG modeling. Combined with these results, under a setting close to real-world data, this work explains why diffusion models only require a small training sample and enjoy a fast optimization process to achieve a great performance.
☆ Accelerating Storage-Based Training for Graph Neural Networks KDD
Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, \textit{a storage-based approach to GNN training} has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: \textit{how to handle a large number of small storage I/Os}. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named \textsf{AGNES}, that employs a method of \textit{block-wise storage I/O processing} to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, \textsf{AGNES} employs a simple yet effective strategy, \textit{hyperbatch-based processing} based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that \textsf{AGNES} consistently outperforms four state-of-the-art methods, by up to 4.1$\times$ faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.
comment: 10 pages, 12 figures, 2 tables, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2026
☆ Leveraging Flatness to Improve Information-Theoretic Generalization Bounds for SGD ICLR 2025
Information-theoretic (IT) generalization bounds have been used to study the generalization of learning algorithms. These bounds are intrinsically data- and algorithm-dependent so that one can exploit the properties of data and algorithm to derive tighter bounds. However, we observe that although the flatness bias is crucial for SGD's generalization, these bounds fail to capture the improved generalization under better flatness and are also numerically loose. This is caused by the inadequate leverage of SGD's flatness bias in existing IT bounds. This paper derives a more flatness-leveraging IT bound for the flatness-favoring SGD. The bound indicates the learned models generalize better if the large-variance directions of the final weight covariance have small local curvatures in the loss landscape. Experiments on deep neural networks show our bound not only correctly reflects the better generalization when flatness is improved, but is also numerically much tighter. This is achieved by a flexible technique called "omniscient trajectory". When applied to Gradient Descent's minimax excess risk on convex-Lipschitz-Bounded problems, it improves representative IT bounds' $Ω(1)$ rates to $O(1/\sqrt{n})$. It also implies a by-pass of memorization-generalization trade-offs.
comment: Published as a conference paper at ICLR 2025
☆ Rethinking Multimodal Few-Shot 3D Point Cloud Segmentation: From Fused Refinement to Decoupled Arbitration
In this paper, we revisit multimodal few-shot 3D point cloud semantic segmentation (FS-PCS), identifying a conflict in "Fuse-then-Refine" paradigms: the "Plasticity-Stability Dilemma." In addition, CLIP's inter-class confusion can result in semantic blindness. To address these issues, we present the Decoupled-experts Arbitration Few-Shot SegNet (DA-FSS), a model that effectively distinguishes between semantic and geometric paths and mutually regularizes their gradients to achieve better generalization. DA-FSS employs the same backbone and pre-trained text encoder as MM-FSS to generate text embeddings, which can increase free modalities' utilization rate and better leverage each modality's information space. To achieve this, we propose a Parallel Expert Refinement module to generate each modal correlation. We also propose a Stacked Arbitration Module (SAM) to perform convolutional fusion and arbitrate correlations for each modality pathway. The Parallel Experts decouple two paths: a Geometric Expert maintains plasticity, and a Semantic Expert ensures stability. They are coordinated via a Decoupled Alignment Module (DAM) that transfers knowledge without propagating confusion. Experiments on popular datasets (S3DIS, ScanNet) demonstrate the superiority of DA-FSS over MM-FSS. Meanwhile, geometric boundaries, completeness, and texture differentiation are all superior to the baseline. The code is available at: https://github.com/MoWenQAQ/DA-FSS.
comment: 10 pages, 4 figures, 3 tables
☆ Bayesian Subspace Gradient Estimation for Zeroth-Order Optimization of Large Language Models
Fine-tuning large language models (LLMs) with zeroth-order (ZO) optimization reduces memory by approximating gradients through function evaluations, but existing methods rely on one-step gradient estimates from random perturbations. We introduce Bayesian Subspace Zeroth-Order optimization (BSZO), a ZO optimizer that applies Kalman filtering to combine finite-difference information across multiple perturbation directions. By treating each finite-difference measurement as a noisy observation, BSZO builds a posterior distribution over the projected gradient and updates it through Bayesian inference, with a residual-based adaptive mechanism to adjust perturbation scales. Theoretical analysis shows that BSZO improves the convergence rate by a factor of $k/γ$ compared to standard ZO methods. Experiments on RoBERTa, Mistral, and OPT models show that BSZO outperforms MeZO, MeZO-Adam, and HiZOO across various tasks, achieving up to 6.67\% absolute average improvement on OPT-13B while keeping memory usage close to inference-only baselines (1.00$\times$--1.08$\times$ of MeZO).
comment: 19 pages, 1 figures, 4 tables
Segmentation and Processing of German Court Decisions from Open Legal Data
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
comment: Accepted and published as a research article in Legal Knowledge and Information Systems (JURIX 2025 proceedings, IOS Press). Pages 276--281
☆ iFlip: Iterative Feedback-driven Counterfactual Example Refinement
Counterfactual examples are minimal edits to an input that alter a model's prediction. They are widely employed in explainable AI to probe model behavior and in natural language processing (NLP) to augment training data. However, generating valid counterfactuals with large language models (LLMs) remains challenging, as existing single-pass methods often fail to induce reliable label changes, neglecting LLMs' self-correction capabilities. To explore this untapped potential, we propose iFlip, an iterative refinement approach that leverages three types of feedback, including model confidence, feature attribution, and natural language. Our results show that iFlip achieves an average 57.8% higher validity than the five state-of-the-art baselines, as measured by the label flipping rate. The user study further corroborates that iFlip outperforms baselines in completeness, overall satisfaction, and feasibility. In addition, ablation studies demonstrate that three components are paramount for iFlip to generate valid counterfactuals: leveraging an appropriate number of iterations, pointing to highly attributed words, and early stopping. Finally, counterfactuals generated by iFlip enable effective counterfactual data augmentation, substantially improving model performance and robustness.
comment: In submission
☆ Fast Gibbs Sampling on Bayesian Hidden Markov Model with Missing Observations
The Hidden Markov Model (HMM) is a widely-used statistical model for handling sequential data. However, the presence of missing observations in real-world datasets often complicates the application of the model. The EM algorithm and Gibbs samplers can be used to estimate the model, yet suffering from various problems including non-convexity, high computational complexity and slow mixing. In this paper, we propose a collapsed Gibbs sampler that efficiently samples from HMMs' posterior by integrating out both the missing observations and the corresponding latent states. The proposed sampler is fast due to its three advantages. First, it achieves an estimation accuracy that is comparable to existing methods. Second, it can produce a larger Effective Sample Size (ESS) per iteration, which can be justified theoretically and numerically. Third, when the number of missing entries is large, the sampler has a significant smaller computational complexity per iteration compared to other methods, thus is faster computationally. In summary, the proposed sampling algorithm is fast both computationally and theoretically and is particularly advantageous when there are a lot of missing entries. Finally, empirical evaluations based on numerical simulations and real data analysis demonstrate that the proposed algorithm consistently outperforms existing algorithms in terms of time complexity and sampling efficiency (measured in ESS).
comment: 45 pages, 2 figures
☆ Unveiling the Heart-Brain Connection: An Analysis of ECG in Cognitive Performance
Understanding the interaction of neural and cardiac systems during cognitive activity is critical to advancing physiological computing. Although EEG has been the gold standard for assessing mental workload, its limited portability restricts its real-world use. Widely available ECG through wearable devices proposes a pragmatic alternative. This research investigates whether ECG signals can reliably reflect cognitive load and serve as proxies for EEG-based indicators. In this work, we present multimodal data acquired from two different paradigms involving working-memory and passive-listening tasks. For each modality, we extracted ECG time-domain HRV metrics and Catch22 descriptors against EEG spectral and Catch22 features, respectively. We propose a cross-modal XGBoost framework to project the ECG features onto EEG-representative cognitive spaces, thereby allowing workload inferences using only ECG. Our results show that ECG-derived projections expressively capture variation in cognitive states and provide good support for accurate classification. Our findings underpin ECG as an interpretable, real-time, wearable solution for everyday cognitive monitoring.
comment: 6 pages, 6 figures. Code available at https://github.com/AkshaySasi/Unveiling-the-Heart-Brain-Connection-An-Analysis-of-ECG-in-Cognitive-Performance. Presented at AIHC (not published)
☆ A Depth Hierarchy for Computing the Maximum in ReLU Networks via Extremal Graph Theory
We consider the problem of exact computation of the maximum function over $d$ real inputs using ReLU neural networks. We prove a depth hierarchy, wherein width $Ω\big(d^{1+\frac{1}{2^{k-2}-1}}\big)$ is necessary to represent the maximum for any depth $3\le k\le \log_2(\log_2(d))$. This is the first unconditional super-linear lower bound for this fundamental operator at depths $k\ge3$, and it holds even if the depth scales with $d$. Our proof technique is based on a combinatorial argument and associates the non-differentiable ridges of the maximum with cliques in a graph induced by the first hidden layer of the computing network, utilizing Turán's theorem from extremal graph theory to show that a sufficiently narrow network cannot capture the non-linearities of the maximum. This suggests that despite its simple nature, the maximum function possesses an inherent complexity that stems from the geometric structure of its non-differentiable hyperplanes, and provides a novel approach for proving lower bounds for deep neural networks.
☆ Reliable Grid Forecasting: State Space Models for Safety-Critical Energy Systems
Accurate grid load forecasting is safety-critical: under-predictions risk supply shortfalls, while symmetric error metrics mask this operational asymmetry. We introduce a grid-specific evaluation framework--Asymmetric MAPE, Under-Prediction Rate, and Reserve Margin--that directly measures operational risk rather than statistical accuracy alone. Using this framework, we conduct a systematic evaluation of Mamba-based State Space Models for California grid forecasting on a weather-aligned CAISO TAC-area dataset spanning Nov 2023--Nov 2025 (84,498 hourly records across 5 transmission areas). Our analysis reveals that standard accuracy metrics are poor proxies for operational safety: models with identical MAPE can require vastly different reserve margins. We demonstrate that forecast errors are weakly but significantly associated with temperature (r = 0.16, p < 10^{-16}), motivating weather-aware modeling rather than loss function modification alone. The S-Mamba model achieves the lowest Reserve_{99.5}% margin (14.12%) compared to 16.66% for iTransformer, demonstrating superior forecast reliability under a 99.5th-percentile tail-risk reserve proxy.
comment: 24 pages, 8 figures, 8 tables
☆ Efficient Cover Construction for Ball Mapper via Accelerated Range Queries
Ball Mapper is an widely used tool in topological data analysis for summarizing the structure of high-dimensional data through metric-based coverings and graph representations. A central computational bottleneck in Ball Mapper is the construction of the underlying cover, which requires repeated range queries to identify data points within a fixed distance of selected landmarks. As data sets grow in size and dimensionality, naive implementations of this step become increasingly inefficient. In this work, we study practical strategies for accelerating cover construction in Ball Mapper by improving the efficiency of range queries. We integrate two complementary approaches into the Ball Mapper pipeline: hierarchical geometric pruning using ball tree data structures, and hardware-aware distance computation using Facebook AI Similarity Search. We describe the underlying algorithms, discuss their trade-offs with respect to metric flexibility and dimensionality, and provide implementation details relevant to large-scale data analysis. Empirical benchmarks demonstrate that both approaches yield substantial speedups over the baseline implementation, with performance gains depending on data set size, dimensionality, and choice of distance function. These results improve the practical scalability of Ball Mapper without modifying its theoretical formulation and provide guidance for the efficient implementation of metric-based exploratory tools in modern data analysis workflows.
☆ A Graph-based Framework for Online Time Series Anomaly Detection Using Model Ensemble
With the increasing volume of streaming data in industrial systems, online anomaly detection has become a critical task. The diverse and rapidly evolving data patterns pose significant challenges for online anomaly detection. Many existing anomaly detection methods are designed for offline settings or have difficulty in handling heterogeneous streaming data effectively. This paper proposes GDME, an unsupervised graph-based framework for online time series anomaly detection using model ensemble. GDME maintains a dynamic model pool that is continuously updated by pruning underperforming models and introducing new ones. It utilizes a dynamic graph structure to represent relationships among models and employs community detection on the graph to select an appropriate subset for ensemble. The graph structure is also used to detect concept drift by monitoring structural changes, allowing the framework to adapt to evolving streaming data. Experiments on seven heterogeneous time series demonstrate that GDME outperforms existing online anomaly detection methods, achieving improvements of up to 24%. In addition, its ensemble strategy provides superior detection performance compared with both individual models and average ensembles, with competitive computational efficiency.
comment: 8 pages
☆ LANCET: Neural Intervention via Structural Entropy for Mitigating Faithfulness Hallucinations in LLMs
Large Language Models have revolutionized information processing, yet their reliability is severely compromised by faithfulness hallucinations. While current approaches attempt to mitigate this issue through node-level adjustments or coarse suppression, they often overlook the distributed nature of neural information, leading to imprecise interventions. Recognizing that hallucinations propagate through specific forward transmission pathways like an infection, we aim to surgically block this flow using precise structural analysis. To leverage this, we propose Lancet, a novel framework that achieves precise neural intervention by leveraging structural entropy and hallucination difference ratios. Lancet first locates hallucination-prone neurons via gradient-driven contrastive analysis, then maps their propagation pathways by minimizing structural entropy, and finally implements a hierarchical intervention strategy that preserves general model capabilities. Comprehensive evaluations across hallucination benchmark datasets demonstrate that Lancet significantly outperforms state-of-the-art methods, validating the effectiveness of our surgical approach to neural intervention.
☆ Bayesian Negative Binomial Regression of Afrobeats Chart Persistence
Afrobeats songs compete for attention on streaming platforms, where chart visibility can influence both revenue and cultural impact. This paper examines whether collaborations help songs remain on the charts longer, using daily Nigeria Spotify Top 200 data from 2024. Each track is summarized by the number of days it appears in the Top 200 during the year and its total annual streams in Nigeria. A Bayesian negative binomial regression is applied, with days on chart as the outcome and collaboration status (solo versus multi-artist) and log total streams as predictors. This approach is well suited for overdispersed count data and allows the effect of collaboration to be interpreted while controlling for overall popularity. Posterior inference is conducted using Markov chain Monte Carlo, and results are assessed using rate ratios, posterior probabilities, and predictive checks. The findings indicate that, after accounting for total streams, collaboration tracks tend to spend slightly fewer days on the chart than comparable solo tracks.
☆ Scale-Adaptive Power Flow Analysis with Local Topology Slicing and Multi-Task Graph Learning
Developing deep learning models with strong adaptability to topological variations is of great practical significance for power flow analysis. To enhance model performance under variable system scales and improve robustness in branch power prediction, this paper proposes a Scale-adaptive Multi-task Power Flow Analysis (SaMPFA) framework. SaMPFA introduces a Local Topology Slicing (LTS) sampling technique that extracts subgraphs of different scales from the complete power network to strengthen the model's cross-scale learning capability. Furthermore, a Reference-free Multi-task Graph Learning (RMGL) model is designed for robust power flow prediction. Unlike existing approaches, RMGL predicts bus voltages and branch powers instead of phase angles. This design not only avoids the risk of error amplification in branch power calculation but also guides the model to learn the physical relationships of phase angle differences. In addition, the loss function incorporates extra terms that encourage the model to capture the physical patterns of angle differences and power transmission, further improving consistency between predictions and physical laws. Simulations on the IEEE 39-bus system and a real provincial grid in China demonstrate that the proposed model achieves superior adaptability and generalization under variable system scales, with accuracy improvements of 4.47% and 36.82%, respectively.
☆ Data Complexity-aware Deep Model Performance Forecasting
Deep learning models are widely used across computer vision and other domains. When working on the model induction, selecting the right architecture for a given dataset often relies on repetitive trial-and-error procedures. This procedure is time-consuming, resource-intensive, and difficult to automate. While previous work has explored performance prediction using partial training or complex simulations, these methods often require significant computational overhead or lack generalizability. In this work, we propose an alternative approach: a lightweight, two-stage framework that can estimate model performance before training given the understanding of the dataset and the focused deep model structures. The first stage predicts a baseline based on the analysis of some measurable properties of the dataset, while the second stage adjusts the estimation with additional information on the model's architectural and hyperparameter details. The setup allows the framework to generalize across datasets and model types. Moreover, we find that some of the underlying features used for prediction - such as dataset variance - can offer practical guidance for model selection, and can serve as early indicators of data quality. As a result, the framework can be used not only to forecast model performance, but also to guide architecture choices, inform necessary preprocessing procedures, and detect potentially problematic datasets before training begins.
comment: 12 pages, 12 figures
☆ SGD with Dependent Data: Optimal Estimation, Regret, and Inference
This work investigates the performance of the final iterate produced by stochastic gradient descent (SGD) under temporally dependent data. We consider two complementary sources of dependence: $(i)$ martingale-type dependence in both the covariate and noise processes, which accommodates non-stationary and non-mixing time series data, and $(ii)$ dependence induced by sequential decision making. Our formulation runs in parallel with classical notions of (local) stationarity and strong mixing, while neither framework fully subsumes the other. Remarkably, SGD is shown to automatically accommodate both independent and dependent information under a broad class of stepsize schedules and exploration rate schemes. Non-asymptotically, we show that SGD simultaneously achieves statistically optimal estimation error and regret, extending and improving existing results. In particular, our tail bounds remain sharp even for potentially infinite horizon $T=+\infty$. Asymptotically, the SGD iterates converge to a Gaussian distribution with only an $O_{\PP}(1/\sqrt{t})$ remainder, demonstrating that the supposed estimation-regret trade-off claimed in prior work can in fact be avoided. We further propose a new ``conic'' approximation of the decision region that allows the covariates to have unbounded support. For online sparse regression, we develop a new SGD-based algorithm that uses only $d$ units of storage and requires $O(d)$ flops per iteration, achieving the long term statistical optimality. Intuitively, each incoming observation contributes to estimation accuracy, while aggregated summary statistics guide support recovery.
☆ Causal discovery for linear causal model with correlated noise: an Adversarial Learning Approach
Causal discovery from data with unmeasured confounding factors is a challenging problem. This paper proposes an approach based on the f-GAN framework, learning the binary causal structure independent of specific weight values. We reformulate the structure learning problem as minimizing Bayesian free energy and prove that this problem is equivalent to minimizing the f-divergence between the true data distribution and the model-generated distribution. Using the f-GAN framework, we transform this objective into a min-max adversarial optimization problem. We implement the gradient search in the discrete graph space using Gumbel-Softmax relaxation.
☆ Investigating the Multilingual Calibration Effects of Language Model Instruction-Tuning EACL
Ensuring that deep learning models are well-calibrated in terms of their predictive uncertainty is essential in maintaining their trustworthiness and reliability, yet despite increasing advances in foundation model research, the relationship between such large language models (LLMs) and their calibration remains an open area of research. In this work, we look at a critical gap in the calibration of LLMs within multilingual settings, in an attempt to better understand how the data scarcity can potentially lead to different calibration effects and how commonly used techniques can apply in these settings. Our analysis on two multilingual benchmarks, over 29 and 42 languages respectively, reveals that even in low-resource languages, model confidence can increase significantly after instruction-tuning on high-resource language SFT datasets. However, improvements in accuracy are marginal or non-existent, resulting in mis-calibration, highlighting a critical shortcoming of standard SFT for multilingual languages. Furthermore, we observe that the use of label smoothing to be a reasonable method alleviate this concern, again without any need for low-resource SFT data, maintaining better calibration across all languages. Overall, this highlights the importance of multilingual considerations for both training and tuning LLMs in order to improve their reliability and fairness in downstream use.
comment: Accepted to The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL)
☆ A New Framework for Explainable Rare Cell Identification in Single-Cell Transcriptomics Data
The detection of rare cell types in single-cell transcriptomics data is crucial for elucidating disease pathogenesis and tissue development dynamics. However, a critical gap that persists in current methods is their inability to provide an explanation based on genes for each cell they have detected as rare. We identify three primary sources of this deficiency. First, the anomaly detectors often function as "black boxes", designed to detect anomalies but unable to explain why a cell is anomalous. Second, the standard analytical framework hinders interpretability by relying on dimensionality reduction techniques, such as Principal Component Analysis (PCA), which transform meaningful gene expression data into abstract, uninterpretable features. Finally, existing explanation algorithms cannot be readily applied to this domain, as single-cell data is characterized by high dimensionality, noise, and substantial sparsity. To overcome these limitations, we introduce a framework for explainable anomaly detection in single-cell transcriptomics data which not only identifies individual anomalies, but also provides a visual explanation based on genes that makes an instance anomalous. This framework has two key ingredients that are not existed in current methods applied in this domain. First, it eliminates the PCA step which is deemed to be an essential component in previous studies. Second, it employs the state-of-art anomaly detector and explainer as the efficient and effective means to find each rare cell and the relevant gene subspace in order to provide explanations for each rare cell as well as the typical normal cell associated with the rare cell's closest normal cells.
☆ Towards LLM-enabled autonomous combustion research: A literature-aware agent for self-corrective modeling workflows
The rapid evolution of large language models (LLMs) is transforming artificial intelligence into autonomous research partners, yet a critical gap persists in complex scientific domains such as combustion modeling. Here, practical AI assistance requires the seamless integration of domain literature knowledge with robust execution capabilities for expertise-intensive tools such as computational fluid dynamics (CFD) codes. To bridge this gap, we introduce FlamePilot, an LLM agent designed to empower combustion modeling research through automated and self-corrective CFD workflows. FlamePilot differentiates itself through an architecture that leverages atomic tools to ensure the robust setup and execution of complex simulations in both OpenFOAM and extended frameworks such as DeepFlame. The system is also capable of learning from scientific articles, extracting key information to guide the simulation from initial setup to optimized results. Validation on a public benchmark shows FlamePilot achieved a perfect 1.0 executability score and a 0.438 success rate, surpassing the prior best reported agent scores of 0.625 and 0.250, respectively. Furthermore, a detailed case study on Moderate or Intense Low-oxygen Dilution (MILD) combustion simulation demonstrates its efficacy as a collaborative research copilot, where FlamePilot autonomously translated a research paper into a configured simulation, conducted the simulation, post-processed the results, proposed evidence-based refinements, and managed a multi-step parameter study to convergence under minimal human intervention. By adopting a transparent and interpretable paradigm, FlamePilot establishes a foundational framework for AI-empowered combustion modeling, fostering a collaborative partnership where the agent manages workflow orchestration, freeing the researcher for high-level analysis.
☆ From Classification to Generation: An Open-Ended Paradigm for Adverse Drug Reaction Prediction Based on Graph-Motif Feature Fusion
Computational biology offers immense potential for reducing the high costs and protracted cycles of new drug development through adverse drug reaction (ADR) prediction. However, current methods remain impeded by drug data scarcity-induced cold-start challenge, closed label sets, and inadequate modeling of label dependencies. Here we propose an open-ended ADR prediction paradigm based on Graph-Motif feature fusion and Multi-Label Generation (GM-MLG). Leveraging molecular structure as an intrinsic and inherent feature, GM-MLG constructs a dual-graph representation architecture spanning the atomic level, the local molecular level (utilizing fine-grained motifs dynamically extracted via the BRICS algorithm combined with additional fragmentation rules), and the global molecular level. Uniquely, GM-MLG pioneers transforming ADR prediction from multi-label classification into Transformer Decoder-based multi-label generation. By treating ADR labels as discrete token sequences, it employs positional embeddings to explicitly capture dependencies and co-occurrence relationships within large-scale label spaces, generating predictions via autoregressive decoding to dynamically expand the prediction space. Experiments demonstrate GM-MLG achieves up to 38% improvement and an average gain of 20%, expanding the prediction space from 200 to over 10,000 types. Furthermore, it elucidates non-linear structure-activity relationships between ADRs and motifs via retrosynthetic motif analysis, providing interpretable and innovative support for systematic risk reduction in drug safety.
comment: 34 pages,5 figures
☆ FLOP-Efficient Training: Early Stopping Based on Test-Time Compute Awareness
Scaling training compute, measured in FLOPs, has long been shown to improve the accuracy of large language models, yet training remains resource-intensive. Prior work shows that increasing test-time compute (TTC)-for example through iterative sampling-can allow smaller models to rival or surpass much larger ones at lower overall cost. We introduce TTC-aware training, where an intermediate checkpoint and a corresponding TTC configuration can together match or exceed the accuracy of a fully trained model while requiring substantially fewer training FLOPs. Building on this insight, we propose an early stopping algorithm that jointly selects a checkpoint and TTC configuration to minimize training compute without sacrificing accuracy. To make this practical, we develop an efficient TTC evaluation method that avoids exhaustive search, and we formalize a break-even bound that identifies when increased inference compute compensates for reduced training compute. Experiments demonstrate up to 92\% reductions in training FLOPs while maintaining and sometimes remarkably improving accuracy. These results highlight a new perspective for balancing training and inference compute in model development, enabling faster deployment cycles and more frequent model refreshes. Codes will be publicly released.
☆ AppellateGen: A Benchmark for Appellate Legal Judgment Generation
Legal judgment generation is a critical task in legal intelligence. However, existing research in legal judgment generation has predominantly focused on first-instance trials, relying on static fact-to-verdict mappings while neglecting the dialectical nature of appellate (second-instance) review. To address this, we introduce AppellateGen, a benchmark for second-instance legal judgment generation comprising 7,351 case pairs. The task requires models to draft legally binding judgments by reasoning over the initial verdict and evidentiary updates, thereby modeling the causal dependency between trial stages. We further propose a judicial Standard Operating Procedure (SOP)-based Legal Multi-Agent System (SLMAS) to simulate judicial workflows, which decomposes the generation process into discrete stages of issue identification, retrieval, and drafting. Experimental results indicate that while SLMAS improves logical consistency, the complexity of appellate reasoning remains a substantial challenge for current LLMs. The dataset and code are publicly available at: https://anonymous.4open.science/r/AppellateGen-5763.
comment: 15 pages, 4 figures, 3 tables
☆ LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
☆ Spectral-Window Hybrid (SWH)
Scaling sequence modeling to extreme contexts requires balancing computational efficiency with representational expressivity. While Transformers provide precise retrieval via the attention mechanism, their quadratic $\mathcal{O}(T^2)$ complexity limits their application to long-horizon tasks. In this work, we propose the \textbf{Spectral-Window Hybrid (SWH)}, an architecture that decouples sequence modeling into two \textit{parallel} streams: a global branch utilizing the Convolution Theorem to model long-range decay dynamics in $\mathcal{O}(T \log T)$ time, and a local branch employing sliding-window attention for token interactions within a bounded context. By aggregating these representations, SWH avoids the computational bottleneck of global attention while retaining local precision. We demonstrate that SWH matches the perplexity of standard Transformers on short contexts while enabling efficient linear scaling to extended sequences. The code is available at https://github.com/VladimerKhasia/SWH
☆ Concave Certificates: Geometric Framework for Distributionally Robust Risk and Complexity Analysis
Distributionally Robust (DR) optimization aims to certify worst-case risk within a Wasserstein uncertainty set. Current certifications typically rely either on global Lipschitz bounds, which are often conservative, or on local gradient information, which provides only a first-order approximation. This paper introduces a novel geometric framework based on the least concave majorants of the growth rate function. Our proposed concave certificate establishes a tight bound of DR risk that remains applicable to non-Lipschitz and non-differentiable losses. We extend this framework to complexity analysis, introducing a deterministic bound that complements standard statistical generalization bound. Furthermore, we utilize this certificate to bound the gap between adversarial and empirical Rademacher complexity, demonstrating that dependencies on input diameter, network width, and depth can be eliminated. For practical application in deep learning, we introduce the adversarial score as a tractable relaxation of the concave certificate that enables efficient and layer-wise analysis of neural networks. We validate our theoretical results in various numerical experiments on classification and regression tasks on real-world data.
comment: 30 pages, 7 figures
☆ Making MoE based LLM inference resilient with Tarragon
Mixture-of-Experts (MoE) models are increasingly used to serve LLMs at scale, but failures become common as deployment scale grows. Existing systems exhibit poor failure resilience: even a single worker failure triggers a coarse-grained, service-wide restart, discarding accumulated progress and halting the entire inference pipeline during recovery--an approach clearly ill-suited for latency-sensitive, LLM services. We present Tarragon, a resilient MoE inference framework that confines the failures impact to individual workers while allowing the rest of the pipeline to continue making forward progress. Tarragon exploits the natural separation between the attention and expert computation in MoE-based transformers, treating attention workers (AWs) and expert workers (EWs) as distinct failure domains. Tarragon introduces a reconfigurable datapath to mask failures by rerouting requests to healthy workers. On top of this datapath, Tarragon implements a self-healing mechanism that relaxes the tightly synchronized execution of existing MoE frameworks. For stateful AWs, Tarragon performs asynchronous, incremental KV cache checkpointing with per-request restoration, and for stateless EWs, it leverages residual GPU memory to deploy shadow experts. These together keep recovery cost and recomputation overhead extremely low. Our evaluation shows that, compared to state-of-the-art MegaScale-Infer, Tarragon reduces failure-induced stalls by 160-213x (from ~64 s down to 0.3-0.4 s) while preserving performance when no failures occur.
☆ Towards a Principled Muon under $μ\mathsf{P}$: Ensuring Spectral Conditions throughout Training
The $μ$-parameterization ($μ$P) provides a principled foundation for large language model (LLM) training by prescribing width-independent learning dynamics, which in turn enables predictable scaling behavior and robust hyperparameter transfer across model sizes. A central requirement of $μ$P is the satisfaction of certain spectral conditions on weight matrices, which ensure consistent feature learning and optimization behavior as model width grows. While these conditions are well understood in theory, guaranteeing their validity in practical training for matrix-based optimizers such as Muon is still under studied. Existing works that study Muon under $μ$P exhibit important limitations: they either do not ensure that the spectral conditions hold throughout the entire training horizon, or require repeated spectral normalization (or Newton-Schulz iterations) applied to both weights and updates, leading to significant computational overhead and reduced practicality. In this work, we show how to reliably guarantee the spectral conditions required by $μ$P for Muon during the entire training process. Our key insight is that for moderately large models, maintaining spectral control at the level of optimizer updates alone is sufficient to preserve $μ$P-compatible scaling, eliminating the need for explicit spectral normalization of the weights. Based on this principle, we develop a variant of Muon, namely Muon++, that satisfies spectral condition throughout the training process. Our results bridge the gap between the theoretical promises of $μ$P and the practical deployment of matrix-based optimizers in long-horizon training. We also take the first step towards an adaptive spectral condition by incorporating data-dependent effects, making it better suited for long-horizon LLM training.
comment: 21 pages, 0 figures
♻ ☆ Visualizing LLM Latent Space Geometry Through Dimensionality Reduction
Large language models (LLMs) achieve state-of-the-art results across many natural language tasks, but their internal mechanisms remain difficult to interpret. In this work, we extract, process, and visualize latent state geometries in Transformer-based language models through dimensionality reduction. We capture layerwise activations at multiple points within Transformer blocks and enable systematic analysis through Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). We demonstrate experiments on GPT-2 and LLaMa models, where we uncover interesting geometric patterns in latent space. Notably, we identify a clear separation between attention and MLP component outputs across intermediate layers, a pattern not documented in prior work to our knowledge. We also characterize the high norm of latent states at the initial sequence position and visualize the layerwise evolution of latent states. Additionally, we demonstrate the high-dimensional helical structure of GPT-2's positional embeddings and the sequence-wise geometric patterns in LLaMa. We make our code available at https://github.com/Vainateya/Feature_Geometry_Visualization.
comment: 22 pages, 14 figures
♻ ☆ Revisiting Randomization in Greedy Model Search
Feature subsampling is a core component of random forests and other ensemble methods. While recent theory suggests that this randomization acts solely as a variance reduction mechanism analogous to ridge regularization, these results largely rely on base learners optimized via ordinary least squares. We investigate the effects of feature subsampling on greedy forward selection, a model that better captures the adaptive nature of decision trees. Assuming an orthogonal design, we prove that ensembling with feature subsampling can reduce both bias and variance, contrasting with the pure variance reduction of convex base learners. More precisely, we show that both the training error and degrees of freedom can be non-monotonic in the subsampling rate, breaking the analogy with standard shrinkage methods like the lasso or ridge regression. Furthermore, we characterize the exact asymptotic behavior of the estimator, showing that it adaptively reweights OLS coefficients based on their rank, with weights that are well-approximated by a logistic function. These results elucidate the distinct role of algorithmic randomization when interleaved with greedy optimization.
♻ ☆ SAMUeL: Efficient Vocal-Conditioned Music Generation via Soft Alignment Attention and Latent Diffusion
We present a lightweight latent diffusion model for vocal-conditioned musical accompaniment generation that addresses critical limitations in existing music AI systems. Our approach introduces a novel soft alignment attention mechanism that adaptively combines local and global temporal dependencies based on diffusion timesteps, enabling efficient capture of multi-scale musical structure. Operating in the compressed latent space of a pre-trained variational autoencoder, the model achieves a 220 times parameter reduction compared to state-of-the-art systems while delivering 52 times faster inference. Experimental evaluation demonstrates competitive performance with only 15M parameters, outperforming OpenAI Jukebox in production quality and content unity while maintaining reasonable musical coherence. The ultra-lightweight architecture enables real-time deployment on consumer hardware, making AI-assisted music creation accessible for interactive applications and resource-constrained environments.
comment: 7 pages, 3 figures, accepted to IEEE/WIC WI-IAT
♻ ☆ Relaxed Equivariance via Multitask Learning
Incorporating equivariance as an inductive bias into deep learning architectures to take advantage of the data symmetry has been successful in multiple applications, such as chemistry and dynamical systems. In particular, roto-translations are crucial for effectively modeling geometric graphs and molecules, where understanding the 3D structures enhances generalization. However, strictly equivariant models often pose challenges due to their higher computational complexity. In this paper, we introduce REMUL, a training procedure that learns \emph{approximate} equivariance for unconstrained networks via multitask learning. By formulating equivariance as a tunable objective alongside the primary task loss, REMUL offers a principled way to control the degree of approximate symmetry, relaxing the rigid constraints of traditional equivariant architectures. We show that unconstrained models (which do not build equivariance into the architecture) can learn approximate symmetries by minimizing an additional simple equivariance loss. This enables quantitative control over the trade-off between enforcing equivariance constraints and optimizing for task-specific performance. Our method achieves competitive performance compared to equivariant baselines while being significantly faster (up to 10$\times$ at inference and 2.5$\times$ at training), offering a practical and adaptable approach to leveraging symmetry in unconstrained architectures.
♻ ☆ Efficient Identification of Critical Transitions via Flow Matching: A Scalable Generative Approach for Many-Body Systems
We propose a machine learning framework based on Flow Matching (FM) to identify critical properties in many-body systems efficiently. Using the 2D XY model as a benchmark, we demonstrate that a single network, trained only on configurations from a small ($32\times 32$) lattice at sparse temperature points, effectively generalizes across both temperature and system size. This dual generalization enables two primary applications for large-scale computational physics: (i) a rapid "train-small, predict-large" strategy to locate phase transition points for significantly larger systems ($128\times 128$) without retraining, facilitating efficient finite-size scaling analysis; and (ii) the fast generation of high-fidelity, decorrelated initial spin configurations for large-scale Monte Carlo simulations, providing a robust starting point that bypasses the long thermalization times of traditional samplers. These capabilities arise from the combination of the Flow Matching framework, which learns stable probability-flow vector fields, and the inductive biases of the U-Net architecture that capture scale-invariant local correlations. Our approach offers a scalable and efficient tool for exploring the thermodynamic limit, serving as both a rapid explorer for phase boundaries and a high-performance initializer for high-precision studies.
comment: 23 pages, 20 figures
♻ ☆ A unified framework for geometry-independent operator learning in cardiac electrophysiology simulations
Learning biophysically accurate solution operators for cardiac electrophysiology is fundamentally challenged by geometric variability across patient-specific heart anatomies. Most existing neural operator approaches are limited to structured or weakly deformed domains, restricting their applicability to realistic atrial and ventricular geometries. Here, we introduce a unified operator-learning framework that projects inputs and outputs onto a standardised anatomical coordinate system, decoupling electrophysiological dynamics from mesh topology. This formulation enables geometry-independent learning while preserving physiologically meaningful spatial organisation, and allows predictions to be interpolated back onto patient-specific geometries for anatomical interpretation. To support large-scale training within the framework, we develop a GPU-accelerated electrophysiology solver and generate over 300,000 high-fidelity simulations across diverse patient-specific left atrial geometries with varied pacing and conduction properties. Within this anatomical coordinate domain, we design a neural operator to predict full-field local activation time maps, achieving a mean absolute error of 5.1 ms and an inference time of 0.12 ms per sample, outperforming existing operator learning and convolutional baselines. We further validate the framework on ventricular geometries, demonstrating robust generalisation beyond the atrial setting. Together, this framework establishes a scalable foundation for fast, geometry-invariant cardiac electrophysiology modelling, with potential relevance for real-time and population-scale clinical workflows.
♻ ☆ Applying Deep Learning to Anomaly Detection of Russian Satellite Activity for Indications Prior to Military Activity
We apply deep learning techniques for anomaly detection to analyze activity of Russian-owned resident space objects (RSO) prior to the Ukraine invasion and assess the results for any findings that can be used as indications and warnings (I&W) of aggressive military behavior for future conflicts. Through analysis of anomalous activity, an understanding of possible tactics and procedures can be established to assess the existence of statistically significant changes in Russian RSO pattern of life/pattern of behavior (PoL/PoB) using publicly available two-line element (TLE) data. This research looks at statistical and deep learning approaches to assess anomalous activity. The deep learning methods assessed are isolation forest (IF), traditional autoencoder (AE), variational autoencoder (VAE), Kolmogorov Arnold Network (KAN), and a novel anchor-loss based autoencoder (Anchor AE). Each model is used to establish a baseline of on-orbit activity based on a five-year data sample. The primary investigation period focuses on the six months leading up to the invasion date of February 24, 2022. Additional analysis looks at RSO activity during an active combat period by sampling TLE data after the invasion date. The deep learning autoencoder models identify anomalies based on reconstruction errors that surpass a threshold sigma. To capture the nuance and unique characteristics of each RSO an individual model was trained for each observed space object. The research made an effort to prioritize explainability and interpretability of the model results thus each observation was assessed for anomalous behavior of the individual six orbital elements versus analyzing the input data as a single monolithic observation. The results demonstrate not only statistically significant anomalies of Russian RSO activity but also details anomalous findings to the individual orbital element.
comment: Withdrawn because of inaccurate information and misrepresented findings
♻ ☆ Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models
Log-likelihood evaluation enables important capabilities in generative models, including model comparison, certain fine-tuning objectives, and many downstream applications. Yet paradoxically, some of today's best generative models -- diffusion and flow-based models -- still require hundreds to thousands of neural function evaluations (NFEs) to compute a single likelihood. While recent distillation methods have successfully accelerated sampling to just a few steps, they achieve this at the cost of likelihood tractability: existing approaches either abandon likelihood computation entirely or still require expensive integration over full trajectories. We present fast flow joint distillation (F2D2), a framework that simultaneously reduces the number of NFEs required for both sampling and likelihood evaluation by two orders of magnitude. Our key insight is that in continuous normalizing flows, the coupled ODEs for sampling and likelihood are computed from a shared underlying velocity field, allowing us to jointly distill both the sampling trajectory and cumulative divergence using a single model. F2D2 is modular, compatible with existing flow-based few-step sampling models, and requires only an additional divergence prediction head. Experiments demonstrate F2D2's capability of achieving accurate log-likelihood with few-step evaluations while maintaining high sample quality, solving a long-standing computational bottleneck in flow-based generative models. As an application of our approach, we propose a lightweight self-guidance method that enables a 2-step MeanFlow to outperform a 1024 step flow matching model with only a single additional backward NFE.
♻ ☆ PIKAN: Physics-Inspired Kolmogorov-Arnold Networks for Explainable UAV Channel Modelling IEEE
Unmanned aerial vehicle (UAV) communications demand accurate yet interpretable air-to-ground (A2G) channel models that can adapt to nonstationary propagation environments. While deterministic models offer interpretability and deep learning (DL) models provide accuracy, both approaches suffer from either rigidity or a lack of explainability. To bridge this gap, we propose the Physics-Inspired Kolmogorov-Arnold Network (PIKAN) that embeds physical principles (e.g., free-space path loss, two-ray reflections) into the learning process. Unlike physics-informed neural networks (PINNs), PIKAN is more flexible for applying physical information because it introduces them as flexible inductive biases. Thus, it enables a more flexible training process. Experiments on UAV A2G measurement data show that PIKAN achieves comparable accuracy to DL models while providing symbolic and explainable expressions aligned with propagation laws. Remarkably, PIKAN achieves this performance with only 232 parameters, making it up to 37 times lighter than multilayer perceptron (MLP) baselines with thousands of parameters, without sacrificing correlation with measurements and also providing symbolic expressions. These results highlight PIKAN as an efficient, interpretable, and scalable solution for UAV channel modelling in beyond-5G and 6G networks.
comment: This paper has been accepted for IEEE Aerospace Conference
♻ ☆ Coupled Distributional Random Expert Distillation for World Model Online Imitation Learning NeurIPS 2025
Imitation Learning (IL) has achieved remarkable success across various domains, including robotics, autonomous driving, and healthcare, by enabling agents to learn complex behaviors from expert demonstrations. However, existing IL methods often face instability challenges, particularly when relying on adversarial reward or value formulations in world model frameworks. In this work, we propose a novel approach to online imitation learning that addresses these limitations through a reward model based on random network distillation (RND) for density estimation. Our reward model is built on the joint estimation of expert and behavioral distributions within the latent space of the world model. We evaluate our method across diverse benchmarks, including DMControl, Meta-World, and ManiSkill2, showcasing its ability to deliver stable performance and achieve expert-level results in both locomotion and manipulation tasks. Our approach demonstrates improved stability over adversarial methods while maintaining expert-level performance.
comment: NeurIPS 2025 Workshop of Embodied World Models; Code Available at: https://github.com/TobyLeelsz/CDRED-WM
♻ ☆ Spatio-Temporal Graph Deep Learning with Stochastic Differential Equations for Uncovering Alzheimer's Disease Progression
Identifying objective neuroimaging biomarkers to forecast Alzheimer's disease (AD) progression is crucial for timely intervention. However, this task remains challenging due to the complex dysfunctions in the spatio-temporal characteristics of underlying brain networks, which are often overlooked by existing methods. To address these limitations, we develop an interpretable spatio-temporal graph neural network framework to predict future AD progression, leveraging dual Stochastic Differential Equations (SDEs) to model the irregularly-sampled longitudinal functional magnetic resonance imaging (fMRI) data. We validate our approach on two independent cohorts, including the Open Access Series of Imaging Studies (OASIS-3) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our framework effectively learns sparse regional and connective importance probabilities, enabling the identification of key brain circuit abnormalities associated with disease progression. Notably, we detect the parahippocampal cortex, prefrontal cortex, and parietal lobule as salient regions, with significant disruptions in the ventral attention, dorsal attention, and default mode networks. These abnormalities correlate strongly with longitudinal AD-related clinical symptoms. Moreover, our interpretability strategy reveals both established and novel neural systems-level and sex-specific biomarkers, offering new insights into the neurobiological mechanisms underlying AD progression. Our findings highlight the potential of spatio-temporal graph-based learning for early, individualized prediction of AD progression, even in the context of irregularly-sampled longitudinal imaging data.
♻ ☆ Tubular Riemannian Laplace Approximations for Bayesian Neural Networks
Laplace approximations are among the simplest and most practical methods for approximate Bayesian inference in neural networks, yet their Euclidean formulation struggles with the highly anisotropic, curved loss surfaces and large symmetry groups that characterize modern deep models. Recent work has proposed Riemannian and geometric Gaussian approximations to adapt to this structure. Building on these ideas, we introduce the Tubular Riemannian Laplace (TRL) approximation. TRL explicitly models the posterior as a probabilistic tube that follows a low-loss valley induced by functional symmetries, using a Fisher/Gauss-Newton metric to separate prior-dominated tangential uncertainty from data-dominated transverse uncertainty. We interpret TRL as a scalable reparametrised Gaussian approximation that utilizes implicit curvature estimates to operate in high-dimensional parameter spaces. Our empirical evaluation on ResNet-18 (CIFAR-10 and CIFAR-100) demonstrates that TRL achieves excellent calibration, matching or exceeding the reliability of Deep Ensembles (in terms of ECE) while requiring only a fraction (1/5) of the training cost. TRL effectively bridges the gap between single-model efficiency and ensemble-grade reliability.
comment: v2: corrected an erroneous/hallucinated reference (Dold et al.)
♻ ☆ Design and Scheduling of an AI-based Queueing System
To leverage prediction models to make optimal scheduling decisions in service systems, we must understand how predictive errors impact congestion due to externalities on the delay of other jobs. Motivated by applications where prediction models interact with human servers (e.g., content moderation), we consider a large queueing system comprising of many single server queues where the class of a job is estimated using a prediction model. By characterizing the impact of mispredictions on congestion cost in heavy traffic, we design an index-based policy that incorporates the predicted class information in a near-optimal manner. Our theoretical results guide the design of predictive models by providing a simple model selection procedure with downstream queueing performance as a central concern, and offer novel insights on how to design queueing systems with AI-based triage. We illustrate our framework on a content moderation task based on real online comments, where we construct toxicity classifiers by finetuning large language models.
♻ ☆ An AI-powered Bayesian generative modeling approach for causal inference in observational studies
Causal inference in observational studies with high-dimensional covariates presents significant challenges. We introduce CausalBGM, an AI-powered Bayesian generative modeling approach that captures the causal relationship among covariates, treatment, and outcome. The core innovation is to estimate the individual treatment effect (ITE) by learning the individual-specific distribution of a low-dimensional latent feature set (e.g., latent confounders) that drives changes in both treatment and outcome. This individualized posterior representation yields estimates of the individual treatment effect (ITE) together with well-calibrated posterior intervals while mitigating confounding effect. CausalBGM is fitted through an iterative algorithm to update the model parameters and the latent features until convergence. This framework leverages the power of AI to capture complex dependencies among variables while adhering to the Bayesian principles. Extensive experiments demonstrate that CausalBGM consistently outperforms state-of-the-art methods, particularly in scenarios with high-dimensional covariates and large-scale datasets. By addressing key limitations of existing methods, CausalBGM emerges as a robust and promising framework for advancing causal inference in a wide range of modern applications. The code for CausalBGM is available at https://github.com/liuq-lab/bayesgm. The tutorial for CausalBGM is available at https://causalbgm.readthedocs.io.
♻ ☆ Semi-supervised and unsupervised learning for health indicator extraction from guided waves in aerospace composite structures
Health indicators (HIs) are central to diagnosing and prognosing the condition of aerospace composite structures, enabling efficient maintenance and operational safety. However, extracting reliable HIs remains challenging due to variability in material properties, stochastic damage evolution, and diverse damage modes. Manufacturing defects (e.g., disbonds) and in-service incidents (e.g., bird strikes) further complicate this process. This study presents a comprehensive data-driven framework that learns HIs via two learning approaches integrated with multi-domain signal processing. Because ground-truth HIs are unavailable, a semi-supervised and an unsupervised approach are proposed: (i) a diversity deep semi-supervised anomaly detection (Diversity-DeepSAD) approach augmented with continuous auxiliary labels used as hypothetical damage proxies, which overcomes the limitation of prior binary labels that only distinguish healthy and failed states while neglecting intermediate degradation, and (ii) a degradation-trend-constrained variational autoencoder (DTC-VAE), in which the monotonicity criterion is embedded via an explicit trend constraint. Guided waves with multiple excitation frequencies are used to monitor single-stiffener composite structures under fatigue loading. Time, frequency, and time-frequency representations are explored, and per-frequency HIs are fused via unsupervised ensemble learning to mitigate frequency dependence and reduce variance. Using fast Fourier transform features, the augmented Diversity-DeepSAD model achieved 81.6% performance, while DTC-VAE delivered the most consistent HIs with 92.3% performance, outperforming existing baselines.
♻ ☆ Sample Path Regularity of Gaussian Processes from the Covariance Kernel
Gaussian processes (GPs) are the most common formalism for defining probability distributions over spaces of functions. While applications of GPs are myriad, a comprehensive understanding of GP sample paths, i.e. the function spaces over which they define a probability measure, is lacking. In practice, GPs are not constructed through a probability measure, but instead through a mean function and a covariance kernel. In this paper we provide necessary and sufficient conditions on the covariance kernel for the sample paths of the corresponding GP to attain a given regularity. We focus primarily on Hölder regularity as it grants particularly straightforward conditions, which simplify further in the cases of stationary and isotropic GPs. We then demonstrate that our results allow for novel and unusually tight characterisations of the sample path regularities of the GPs commonly used in machine learning applications, such as the Matérn GPs.
♻ ☆ Post-hoc Stochastic Concept Bottleneck Models
Concept Bottleneck Models (CBMs) are interpretable models that predict the target variable through high-level human-understandable concepts, allowing users to intervene on mispredicted concepts to adjust the final output. While recent work has shown that modeling dependencies between concepts can improve CBM performance, especially under interventions, such approaches typically require retraining the entire model, which may be infeasible when access to the original data or compute is limited. In this paper, we introduce Post-hoc Stochastic Concept Bottleneck Models (PSCBMs), a lightweight method that augments any pre-trained CBM with a multivariate normal distribution over concepts by adding only a small covariance-prediction module, without retraining the backbone model. We propose two training strategies and show on real-world data that PSCBMs consistently match or improve both concept and target accuracy over standard CBMs at test time. Furthermore, we show that due to the modeling of concept dependencies, PSCBMs perform much better than CBMs under interventions, while remaining far more efficient than retraining a similar stochastic model from scratch.
♻ ☆ Preconditioned Inexact Stochastic ADMM for Deep Model
The recent advancement of foundation models (FMs) has brought about a paradigm shift, revolutionizing various sectors worldwide. The popular optimizers used to train these models are stochastic gradient descent-based algorithms, which face inherent limitations, such as slow convergence and stringent assumptions for convergence. In particular, data heterogeneity arising from distributed settings poses significant challenges to their theoretical and numerical performance. This paper develops an algorithm, PISA (Preconditioned Inexact Stochastic Alternating Direction Method of Multipliers). Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz continuity of the gradient on a bounded region, thereby removing the need for other conditions commonly imposed by stochastic methods. This capability enables the proposed algorithm to tackle the challenge of data heterogeneity effectively. Moreover, the algorithmic architecture enables scalable parallel computing and supports various preconditions, such as second-order information, second moment, and orthogonalized momentum by Newton-Schulz iterations. Incorporating the latter two preconditions in PISA yields two computationally efficient variants: SISA and NSISA. Comprehensive experimental evaluations for training or fine-tuning diverse deep models, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate superior numerical performance of SISA and NSISA compared to various state-of-the-art optimizers.
♻ ☆ AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences. Existing KT models typically follow a single-step training paradigm, which leads to discrepancies with the multi-step inference process required in real-world simulations, resulting in significant error accumulation. This accumulation of error, coupled with the issue of data sparsity, can substantially degrade the performance of recommendation models in the intelligent tutoring systems. To address these challenges, we propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT), which, for the first time, focuses on the multi-step KT task. More specifically, AdvKT leverages adversarial learning paradigm involving a generator and a discriminator. The generator mimics high-reward responses, effectively reducing error accumulation across multiple steps, while the discriminator provides feedback to generate synthetic data. Additionally, we design specialized data augmentation techniques to enrich the training data with realistic variations, ensuring that the model generalizes well even in scenarios with sparse data. Experiments conducted on four real-world datasets demonstrate the superiority of AdvKT over existing KT models, showcasing its ability to address both error accumulation and data sparsity issues effectively.
♻ ☆ Reinforcement Learning via Conservative Agent for Environments with Random Delays
Real-world reinforcement learning applications are often hindered by delayed feedback from environments, which violates the Markov assumption and introduces significant challenges. Although numerous delay-compensating methods have been proposed for environments with constant delays, environments with random delays remain largely unexplored due to their inherent variability and unpredictability. In this study, we propose a simple yet robust agent for decision-making under random delays, termed the conservative agent, which reformulates the random-delay environment into its constant-delay equivalent. This transformation enables any state-of-the-art constant-delay method to be directly extended to the random-delay environments without modifying the algorithmic structure or sacrificing performance. We evaluate the conservative agent-based algorithm on continuous control tasks, and empirical results demonstrate that it significantly outperforms existing baseline algorithms in terms of asymptotic performance and sample efficiency.
♻ ☆ Two-hidden-layer ReLU neural networks and finite elements
We point out that (continuous or discontinuous) piecewise linear functions on a convex polytope mesh can be represented by two-hidden-layer ReLU neural networks in a weak sense. In addition, the numbers of neurons of the two hidden layers required to weakly represent are accurately given based on the numbers of polytopes and hyperplanes involved in this mesh. The results naturally hold for constant and linear finite element functions. Such weak representation establishes a bridge between two-hidden-layer ReLU neural networks and finite element functions, and leads to a perspective for analyzing approximation capability of ReLU neural networks in $L^p$ norm via finite element functions. Moreover, we discuss the strict representation for tensor finite element functions via the recent tensor neural networks.
♻ ☆ A Survey of Text Classification Under Class Distribution Shift EACL 2026
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
comment: Accepted at EACL 2026 (main)
♻ ☆ Detecting Proxy Gaming in RL and LLM Alignment via Evaluator Stress Tests
Proxy optimization, where AI systems exploit evaluator weaknesses rather than improve intended objectives, threatens both reinforcement learning (reward hacking) and LLM alignment (evaluator gaming). We introduce the Evaluator Stress Test (EST), an invariance-based framework that detects proxy gaming by separating exploitable sensitivity (e.g., formatting artifacts, physics bugs) from content-driven improvements using controlled perturbations with semantic validity audits. We validate EST across both domains. In RL, across 15 environments and 5 algorithms (2,156 expert-annotated episodes), EST achieves 78.4% precision and 81.7% recall. In LLM alignment, across 4 tasks, 2 model scales, 2 training methods, and 2 judges (1,200 human-annotated instances), EST achieves 74.2% precision and 78.6% recall, with early warning signals that precede quality decline. Cross-domain analysis shows that proxy-true correlation tracking transfers directly between domains, while perturbation design requires domain adaptation. Closed-loop mitigation improves human win-rate by 8.3 points (LLM) and reduces hacking by 54.6% (RL). We release benchmarks for both domains: 2,156 RL episodes and 1,200 LLM instances.
♻ ☆ Bandit and Delayed Feedback in Online Structured Prediction NeurIPS 2025
Online structured prediction is a task of sequentially predicting outputs with complex structures based on inputs and past observations, encompassing online classification. Recent studies showed that in the full-information setting, we can achieve finite bounds on the \textit{surrogate regret}, \textit{i.e.,}~the extra target loss relative to the best possible surrogate loss. In practice, however, full-information feedback is often unrealistic as it requires immediate access to the whole structure of complex outputs. Motivated by this, we propose algorithms that work with less demanding feedback, \textit{bandit} and \textit{delayed} feedback. For bandit feedback, by using a standard inverse-weighted gradient estimator, we achieve a surrogate regret bound of $O(\sqrt{KT})$ for the time horizon $T$ and the size of the output set $K$. However, $K$ can be extremely large when outputs are highly complex, resulting in an undesirable bound. To address this issue, we propose another algorithm that achieves a surrogate regret bound of $O(T^{2/3})$, which is independent of $K$. This is achieved with a carefully designed pseudo-inverse matrix estimator. Furthermore, we numerically compare the performance of these algorithms, as well as existing ones. Regarding delayed feedback, we provide algorithms and regret analyses that cover various scenarios, including full-information and bandit feedback, as well as fixed and variable delays.
comment: 43 pages, Accepted in NeurIPS 2025
♻ ☆ Effects of algorithmic flagging on fairness: quasi-experimental evidence from Wikipedia SC
Online community moderators often rely on social signals such as whether or not a user has an account or a profile page as clues that users may cause problems. Reliance on these clues can lead to "overprofiling'' bias when moderators focus on these signals but overlook the misbehavior of others. We propose that algorithmic flagging systems deployed to improve the efficiency of moderation work can also make moderation actions more fair to these users by reducing reliance on social signals and making norm violations by everyone else more visible. We analyze moderator behavior in Wikipedia as mediated by RCFilters, a system which displays social signals and algorithmic flags, and estimate the causal effect of being flagged on moderator actions. We show that algorithmically flagged edits are reverted more often, especially those by established editors with positive social signals, and that flagging decreases the likelihood that moderation actions will be undone. Our results suggest that algorithmic flagging systems can lead to increased fairness in some contexts but that the relationship is complex and contingent.
comment: 27 pages, 11 figures, ACM CSCW
♻ ☆ How to make Medical AI Systems safer? Simulating Vulnerabilities, and Threats in Multimodal Medical RAG System ICASSP
Large Vision-Language Models (LVLMs) augmented with Retrieval-Augmented Generation (RAG) are increasingly employed in medical AI to enhance factual grounding through external clinical image-text retrieval. However, this reliance creates a significant attack surface. We propose MedThreatRAG, a novel multimodal poisoning framework that systematically probes vulnerabilities in medical RAG systems by injecting adversarial image-text pairs. A key innovation of our approach is the construction of a simulated semi-open attack environment, mimicking real-world medical systems that permit periodic knowledge base updates via user or pipeline contributions. Within this setting, we introduce and emphasize Cross-Modal Conflict Injection (CMCI), which embeds subtle semantic contradictions between medical images and their paired reports. These mismatches degrade retrieval and generation by disrupting cross-modal alignment while remaining sufficiently plausible to evade conventional filters. While basic textual and visual attacks are included for completeness, CMCI demonstrates the most severe degradation. Evaluations on IU-Xray and MIMIC-CXR QA tasks show that MedThreatRAG reduces answer F1 scores by up to 27.66% and lowers LLaVA-Med-1.5 F1 rates to as low as 51.36%. Our findings expose fundamental security gaps in clinical RAG systems and highlight the urgent need for threat-aware design and robust multimodal consistency checks. Finally, we conclude with a concise set of guidelines to inform the safe development of future multimodal medical RAG systems.
comment: Sumbitted to 2026 ICASSP
♻ ☆ Self-Speculative Biased Decoding for Faster Re-Translation
Large language models achieve strong machine translation quality but incur high inference cost and latency, posing challenges for simultaneous translation. Re-translation provides a practical solution for off-the-shelf LLMs by repeatedly regenerating the target output as the source input grows, but it suffers from substantial redundant computation. We propose Self-Speculative Biased Decoding (SSBD), a simple and tuning-free inference method that accelerates re-translation by exploiting temporal coherence in streaming translation. SSBD reuses the model's previous output as a speculative draft for the updated input, verifies the draft efficiently in a single forward pass with a lightweight bias, and resumes autoregressive decoding only from the first divergence. We further introduce a display-only masking strategy that hides unstable suffixes from the user interface while retaining them in the draft for verification and potential acceptance. Experiments show that SSBD achieves substantial speedup over standard re-translation while maintaining comparable translation quality, without architectural changes, auxiliary models, or extra fine-tuning.
♻ ☆ When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics
Empirical power--law scaling has been widely observed across modern deep learning systems, yet its theoretical origins and scope of validity remain incompletely understood. The Generalized Resolution--Shell Dynamics (GRSD) framework models learning as spectral energy transport across logarithmic resolution shells, providing a coarse--grained dynamical description of training. Within GRSD, power--law scaling corresponds to a particularly simple renormalized shell dynamics; however, such behavior is not automatic and requires additional structural properties of the learning process. In this work, we identify a set of sufficient conditions under which the GRSD shell dynamics admits a renormalizable coarse--grained description. These conditions constrain the learning configuration at multiple levels, including boundedness of gradient propagation in the computation graph, weak functional incoherence at initialization, controlled Jacobian evolution along training, and log--shift invariance of renormalized shell couplings. We further show that power--law scaling does not follow from renormalizability alone, but instead arises as a rigidity consequence: once log--shift invariance is combined with the intrinsic time--rescaling covariance of gradient flow, the renormalized GRSD velocity field is forced into a power--law form.
♻ ☆ EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction NeurIPS 2025
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model, which originally required 95GB of memory, on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Project page: https://hsi-che-lin.github.io/EMLoC/
♻ ☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of LLM judgments induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and constructs confidence intervals accounting for uncertainty from both the test dataset and a human-evaluated calibration dataset, enabling statistically sound and practical LLM-based evaluation. Building on this framework, we introduce an adaptive calibration strategy for constructing the calibration dataset to reduce uncertainty in the estimated score. Notably, we characterize the regimes in which LLM-based evaluation within our framework produces more reliable estimates than fully human evaluation. Moreover, our framework is more robust to distribution shift between the test and calibration datasets than existing approaches.
comment: This version adds Sections 2, 6, 7, and 8.2
♻ ☆ Rotation Control Unlearning: Quantifying and Controlling Continuous Unlearning for LLM with The Cognitive Rotation Space
As Large Language Models (LLMs) become increasingly prevalent, their security vulnerabilities have already drawn attention. Machine unlearning is introduced to seek to mitigate these risks by removing the influence of undesirable data. However, existing methods not only rely on the retained dataset to preserve model utility, but also suffer from cumulative catastrophic utility loss under continuous unlearning requests. To solve this dilemma, we propose a novel method, called Rotation Control Unlearning (RCU), which leverages the rotational salience weight of RCU to quantify and control the unlearning degree in the continuous unlearning process. The skew symmetric loss is designed to construct the existence of the cognitive rotation space, where the changes of rotational angle can simulate the continuous unlearning process. Furthermore, we design an orthogonal rotation axes regularization to enforce mutually perpendicular rotation directions for continuous unlearning requests, effectively minimizing interference and addressing cumulative catastrophic utility loss. Experiments on multiple datasets confirm that our method without retained dataset achieves SOTA performance.
♻ ☆ DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.
♻ ☆ Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
♻ ☆ Optimal Look-back Horizon for Time Series Forecasting in Federated Learning AAAI-26
Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to centralized and independently distributed settings. This paper presents a principled framework for adaptive horizon selection in federated time series forecasting through an intrinsic space formulation. We introduce a synthetic data generator (SDG) that captures essential temporal structures in client data, including autoregressive dependencies, seasonality, and trend, while incorporating client-specific heterogeneity. Building on this model, we define a transformation that maps time series windows into an intrinsic representation space with well-defined geometric and statistical properties. We then derive a decomposition of the forecasting loss into a Bayesian term, which reflects irreducible uncertainty, and an approximation term, which accounts for finite-sample effects and limited model capacity. Our analysis shows that while increasing the look-back horizon improves the identifiability of deterministic patterns, it also increases approximation error due to higher model complexity and reduced sample efficiency. We prove that the total forecasting loss is minimized at the smallest horizon where the irreducible loss starts to saturate, while the approximation loss continues to rise. This work provides a rigorous theoretical foundation for adaptive horizon selection for time series forecasting in federated learning.
comment: Accepted by AAAI-26 as Oral Presentation
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Conference on Neural Information Processing Systems (NeurIPS) 2025 (Spotlight)
♻ ☆ ManiBox: Enhancing Embodied Spatial Generalization via Scalable Simulation Data Generations
Embodied agents require robust spatial intelligence to execute precise real-world manipulations. However, this remains a significant challenge, as current methods often struggle to accurately position objects in space. Collecting extensive data can help address this issue by enhancing the agent's spatial understanding. Nonetheless, obtaining such data with real robots is prohibitively expensive, and relying on simulation data frequently leads to visual generalization gaps during real-world deployment. To tackle these challenges, we propose ManiBox, a novel bounding-box-guided framework. By decoupling perception from policy generalization, ManiBox effectively reduces the Sim2Real gap, leverages Internet-scale data, and scales our policy data collection in simulation. Specifically, within ManiBox, the RL teacher policy efficiently generates scalable simulation data. The student policy is distilled from this data and takes bounding boxes as input, which is proven sufficient for determining objects' spatial positions, thus enabling zero-shot transfer to real robots. Comprehensive evaluations in both simulated and real-world environments demonstrate that ManiBox exhibits strong spatial generalization and adaptability across various manipulation tasks and settings. Furthermore, our empirical study provides preliminary verification of spatial scaling laws, i.e., the amount of data required for spatial generalization scales with spatial volume following a power-law relationship. At a given spatial volume level, the success rate of manipulation tasks follows Michaelis-Menten kinetics with respect to data volume, exhibiting a saturation effect as data increases. Our videos and code are available at https://thkkk.github.io/manibox
Multimedia 6
☆ Beyond Patches: Global-aware Autoregressive Model for Multimodal Few-Shot Font Generation
Manual font design is an intricate process that transforms a stylistic visual concept into a coherent glyph set. This challenge persists in automated Few-shot Font Generation (FFG), where models often struggle to preserve both the structural integrity and stylistic fidelity from limited references. While autoregressive (AR) models have demonstrated impressive generative capabilities, their application to FFG is constrained by conventional patch-level tokenization, which neglects global dependencies crucial for coherent font synthesis. Moreover, existing FFG methods remain within the image-to-image paradigm, relying solely on visual references and overlooking the role of language in conveying stylistic intent during font design. To address these limitations, we propose GAR-Font, a novel AR framework for multimodal few-shot font generation. GAR-Font introduces a global-aware tokenizer that effectively captures both local structures and global stylistic patterns, a multimodal style encoder offering flexible style control through a lightweight language-style adapter without requiring intensive multimodal pretraining, and a post-refinement pipeline that further enhances structural fidelity and style coherence. Extensive experiments show that GAR-Font outperforms existing FFG methods, excelling in maintaining global style faithfulness and achieving higher-quality results with textual stylistic guidance.
comment: 25 pages
☆ MM-Sonate: Multimodal Controllable Audio-Video Generation with Zero-Shot Voice Cloning
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
☆ LinMU: Multimodal Understanding Made Linear
Modern Vision-Language Models (VLMs) achieve impressive performance but are limited by the quadratic complexity of self-attention, which prevents their deployment on edge devices and makes their understanding of high-resolution images and long-context videos prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity Multimodal Understanding), a VLM design that achieves linear complexity without using any quadratic-complexity modules while maintaining the performance of global-attention-based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE block: a dual-branch module that combines a bidirectional state-space model for global context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch) for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture, we propose a three-stage distillation framework that (i) initializes both branches with self-attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME, and other benchmarks, LinMU matches the performance of teacher models, yet reduces Time-To-First-Token (TTFT) by up to 2.7$\times$ and improves token throughput by up to 9.0$\times$ on minute-length videos. Ablations confirm the importance of each distillation stage and the necessity of the two branches of the M-MATE block. The proposed framework demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic attention, thus opening up avenues for long-context VLMs that can deal with high-resolution images and long videos.
comment: 23 pages, 7 figures
♻ ☆ TraveLLaMA: A Multimodal Travel Assistant with Large-Scale Dataset and Structured Reasoning AAAI 2026
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for comprehensive travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through three key contributions: (1) TravelQA, a novel dataset of 265k question-answer pairs combining 160k text QA from authentic travel sources, 100k vision-language QA featuring maps and location imagery, and 5k expert-annotated Chain-of-Thought reasoning examples; (2) Travel-CoT, a structured reasoning framework that decomposes travel queries into spatial, temporal, and practical dimensions, improving answer accuracy by 10.8\% while providing interpretable decision paths; and (3) an interactive agent system validated through extensive user studies. Through fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we achieve 6.2-9.4\% base improvements, further enhanced by Travel-CoT reasoning. Our model demonstrates superior capabilities in contextual travel recommendations, map interpretation, and scene understanding while providing practical information such as operating hours and cultural insights. User studies with 500 participants show TraveLLaMA achieves a System Usability Scale score of 82.5, significantly outperforming general-purpose models and establishing new standards for multimodal travel assistance systems.
comment: AAAI 2026 Oral
♻ ☆ Enhancing Blind Video Quality Assessment with Rich Quality-aware Features CVPR
Blind video quality assessment (BVQA) is a highly challenging task due to the intrinsic complexity of video content and visual distortions, especially given the high popularity of social media videos, which originate from a wide range of sources, and are often processed by various compression and enhancement algorithms. While recent BVQA and blind image quality assessment (BIQA) studies have made remarkable progress, their models typically perform well on the datasets they were trained on but generalize poorly to unseen videos, making them less effective for accurately evaluating the perceptual quality of diverse social media videos. In this paper, we propose Rich Quality-aware features enabled Video Quality Assessment (RQ-VQA), a simple yet effective method to enhance BVQA by leveraging rich quality-aware features extracted from off-the-shelf BIQA and BVQA models. Our approach exploits the expertise of existing quality assessment models within their trained domains to improve generalization. Specifically, we design a multi-source feature framework that integrates:(1) Learnable spatial features} from a base model fine-tuned on the target VQA dataset to capture domain-specific quality cues; (2) Temporal motion features from the fast pathway of SlowFast pre-trained on action recognition datasets to model motion-related distortions; (3) Spatial quality-aware features from BIQA models trained on diverse IQA datasets to enhance frame-level distortion representation; and (4) Spatiotemporal quality-aware features from a BVQA model trained on large-scale VQA datasets to jointly encode spatial structure and temporal dynamics. These features are concatenated and fed into a multi-layer perceptron (MLP) to regress them into quality scores. Experimental results demonstrate that our model achieves state-of-the-art performance on three public social media VQA datasets.
comment: RQ-VQA won first place in the CVPR NTIRE 2024 Short-form UGC Video Quality Assessment Challenge
♻ ☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods. The model and dataset are open-sourced at https://github.com/LLM-VLM-GSL/AHA.
Computer Vision and Pattern Recognition 60
☆ T3C: Test-Time Tensor Compression with Consistency Guarantees
We present T3C, a train-once, test-time budget-conditioned compression framework that exposes rank and precision as a controllable deployment knob. T3C combines elastic tensor factorization (maintained up to a maximal rank) with rank-tied mixed-precision quantization and a lightweight controller that maps a latency/energy/size budget token to per-layer rank/bit assignments; the policy snaps to hardware-aligned profiles and is monotone in the budget. A fast, layerwise consistency certificate, computed from spectral proxies and activation statistics, upper-bounds logit drift and regularizes training, yielding a practical reliability signal with negligible overhead. On ImageNet-1k, T3C shifts the vision Pareto frontier: for ResNet-50 at matched accuracy (\leq 0.5% drop), p50 latency is 1.18ms with a 38MB model, outperforming PTQ-8b (1.44ms, 88MB); for ViT-B/16, T3C reaches 2.30ms p50 with 59MB, improving over strong PTQ/QAT baselines. A single T3C checkpoint therefore provides predictable, certificate-backed accuracy-latency-size trade-offs on demand across devices.
☆ S2M-Net: Spectral-Spatial Mixing for Medical Image Segmentation with Morphology-Aware Adaptive Loss
Medical image segmentation requires balancing local precision for boundary-critical clinical applications, global context for anatomical coherence, and computational efficiency for deployment on limited data and hardware a trilemma that existing architectures fail to resolve. Although convolutional networks provide local precision at $\mathcal{O}(n)$ cost but limited receptive fields, vision transformers achieve global context through $\mathcal{O}(n^2)$ self-attention at prohibitive computational expense, causing overfitting on small clinical datasets. We propose S2M-Net, a 4.7M-parameter architecture that achieves $\mathcal{O}(HW \log HW)$ global context through two synergistic innovations: (i) Spectral-Selective Token Mixer (SSTM), which exploits the spectral concentration of medical images via truncated 2D FFT with learnable frequency filtering and content-gated spatial projection, avoiding quadratic attention cost while maintaining global receptive fields; and (ii) Morphology-Aware Adaptive Segmentation Loss (MASL), which automatically analyzes structure characteristics (compactness, tubularity, irregularity, scale) to modulate five complementary loss components through constrained learnable weights, eliminating manual per-dataset tuning. Comprehensive evaluation in 16 medical imaging datasets that span 8 modalities demonstrates state-of-the-art performance: 96.12\% Dice on polyp segmentation, 83.77\% on surgical instruments (+17.85\% over the prior art) and 80.90\% on brain tumors, with consistent 3-18\% improvements over specialized baselines while using 3.5--6$\times$ fewer parameters than transformer-based methods.
☆ AI-Powered Deepfake Detection Using CNN and Vision Transformer Architectures
The increasing use of artificial intelligence generated deepfakes creates major challenges in maintaining digital authenticity. Four AI-based models, consisting of three CNNs and one Vision Transformer, were evaluated using large face image datasets. Data preprocessing and augmentation techniques improved model performance across different scenarios. VFDNET demonstrated superior accuracy with MobileNetV3, showing efficient performance, thereby demonstrating AI's capabilities for dependable deepfake detection.
comment: 6 pages, 6 figures, 3 tables. Conference paper
☆ An Energy-Efficient Smart Bus Transport Management System with Blind-Spot Collision Detection Ability
Public bus transport systems in developing countries often suffer from a lack of real-time location updates and for users, making commuting inconvenient and unreliable for passengers. Furthermore, stopping at undesired locations rather than designated bus stops creates safety risks and contributes to roadblocks, often causing traffic congestion. Additionally, issues such as blind spots, along with a lack of following traffic laws, increase the chances of accidents. In this work, we address these challenges by proposing a smart public bus system along with intelligent bus stops that enhance safety, efficiency, and sustainability. Our approach includes a deep learning-based blind-spot warning system to help drivers avoid accidents with automated bus-stop detection to accurately identify bus stops, improving transit efficiency. We also introduce IoT-based solar-powered smart bus stops that show real-time passenger counts, along with an RFID-based card system to track where passengers board and exit. A smart door system ensures safer and more organised boarding, while real-time bus tracking keeps passengers informed. To connect all these features, we use an HTTP-based server for seamless communication between the interconnected network systems. Our proposed system demonstrated approximately 99% efficiency in real-time blind spot detection while stopping precisely at the bus stops. Furthermore, the server showed real-time location updates both to the users and at the bus stops, enhancing commuting efficiency. The proposed energy-efficient bus stop demonstrated 12.71kWh energy saving, promoting sustainable architecture. Full implementation and source code are available at: https://github.com/sadman-adib/MoveMe-IoT
comment: 29 pages, 11 figures
MambaFormer: Token-Level Guided Routing Mixture-of-Experts for Accurate and Efficient Clinical Assistance
The deployment of large language models (LLMs) in real-world clinical applications is constrained by the fundamental trade-off between computational cost and the efficiency of linear-time models. To address this, we propose an LLM-based MambaFormer hybrid Mixture-of-Experts (MoE) framework for efficient medical question-answering (QA) and clinical assistance. The MambaFormer employs a lightweight gating mechanism that performs token-level dynamic routing to a customized Transformer expert (ET5) for short, complex queries or to a State Space Model expert (EMamba) for long, high-throughput sequences. The customized EMamba and ET5 models are tailored to accommodate input sequence dimensionality, embedding structure, sequence length, and target-specific output heads, and are fine-tuned through transfer learning on a new, custom-designed DentalQA dataset. Moreover, intelligent routing decisions are driven by the contextual complexity of token embeddings, normalized sequence length, and domain-aware features, thereby enforcing a Pareto-optimal trade-off between inference latency and prediction accuracy. Furthermore, a novel utility-guided multi-objective loss jointly optimizes decisions, router parameters, routing behavior, expert utilization, and computational cost by adaptively regulating token-level expert activation. Finally, the proposed MambaFormer is cross-validated (holdout) for medical QA on the new, custom-designed DentalQA and PubMedQA datasets and compared with state-of-the-art techniques. The proposed MambaFormer outperforms (BERTScore = 0.9180) with ultra-low latency (0.077 s), delivering a 24.4 speedup over T5-Large and establishing a scalable solution for resource-constrained clinical deployment.
comment: 28 Pages, Tables 12, Figure 09
☆ Seamlessly Natural: Image Stitching with Natural Appearance Preservation
This paper introduces SENA (SEamlessly NAtural), a geometry-driven image stitching approach that prioritizes structural fidelity in challenging real-world scenes characterized by parallax and depth variation. Conventional image stitching relies on homographic alignment, but this rigid planar assumption often fails in dual-camera setups with significant scene depth, leading to distortions such as visible warps and spherical bulging. SENA addresses these fundamental limitations through three key contributions. First, we propose a hierarchical affine-based warping strategy, combining global affine initialization with local affine refinement and smooth free-form deformation. This design preserves local shape, parallelism, and aspect ratios, thereby avoiding the hallucinated structural distortions commonly introduced by homography-based models. Second, we introduce a geometry-driven adequate zone detection mechanism that identifies parallax-minimized regions directly from the disparity consistency of RANSAC-filtered feature correspondences, without relying on semantic segmentation. Third, building upon this adequate zone, we perform anchor-based seamline cutting and segmentation, enforcing a one-to-one geometric correspondence across image pairs by construction, which effectively eliminates ghosting, duplication, and smearing artifacts in the final panorama. Extensive experiments conducted on challenging datasets demonstrate that SENA achieves alignment accuracy comparable to leading homography-based methods, while significantly outperforming them in critical visual metrics such as shape preservation, texture integrity, and overall visual realism.
☆ RFAssigner: A Generic Label Assignment Strategy for Dense Object Detection
Label assignment is a critical component in training dense object detectors. State-of-the-art methods typically assign each training sample a positive and a negative weight, optimizing the assignment scheme during training. However, these strategies often assign an insufficient number of positive samples to small objects, leading to a scale imbalance during training. To address this limitation, we introduce RFAssigner, a novel assignment strategy designed to enhance the multi-scale learning capabilities of dense detectors. RFAssigner first establishes an initial set of positive samples using a point-based prior. It then leverages a Gaussian Receptive Field (GRF) distance to measure the similarity between the GRFs of unassigned candidate locations and the ground-truth objects. Based on this metric, RFAssigner adaptively selects supplementary positive samples from the unassigned pool, promoting a more balanced learning process across object scales. Comprehensive experiments on three datasets with distinct object scale distributions validate the effectiveness and generalizability of our method. Notably, a single FCOS-ResNet-50 detector equipped with RFAssigner achieves state-of-the-art performance across all object scales, consistently outperforming existing strategies without requiring auxiliary modules or heuristics.
☆ HyDRA: Hybrid Denoising Regularization for Measurement-Only DEQ Training
Solving image reconstruction problems of the form \(\mathbf{A} \mathbf{x} = \mathbf{y}\) remains challenging due to ill-posedness and the lack of large-scale supervised datasets. Deep Equilibrium (DEQ) models have been used successfully but typically require supervised pairs \((\mathbf{x},\mathbf{y})\). In many practical settings, only measurements \(\mathbf{y}\) are available. We introduce HyDRA (Hybrid Denoising Regularization Adaptation), a measurement-only framework for DEQ training that combines measurement consistency with an adaptive denoising regularization term, together with a data-driven early stopping criterion. Experiments on sparse-view CT demonstrate competitive reconstruction quality and fast inference.
☆ Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment
Slot Attention (SA) with pretrained diffusion models has recently shown promise for object-centric learning (OCL), but suffers from slot entanglement and weak alignment between object slots and image content. We propose Contrastive Object-centric Diffusion Alignment (CODA), a simple extension that (i) employs register slots to absorb residual attention and reduce interference between object slots, and (ii) applies a contrastive alignment loss to explicitly encourage slot-image correspondence. The resulting training objective serves as a tractable surrogate for maximizing mutual information (MI) between slots and inputs, strengthening slot representation quality. On both synthetic (MOVi-C/E) and real-world datasets (VOC, COCO), CODA improves object discovery (e.g., +6.1% FG-ARI on COCO), property prediction, and compositional image generation over strong baselines. Register slots add negligible overhead, keeping CODA efficient and scalable. These results indicate potential applications of CODA as an effective framework for robust OCL in complex, real-world scenes.
☆ UniSH: Unifying Scene and Human Reconstruction in a Feed-Forward Pass
We present UniSH, a unified, feed-forward framework for joint metric-scale 3D scene and human reconstruction. A key challenge in this domain is the scarcity of large-scale, annotated real-world data, forcing a reliance on synthetic datasets. This reliance introduces a significant sim-to-real domain gap, leading to poor generalization, low-fidelity human geometry, and poor alignment on in-the-wild videos. To address this, we propose an innovative training paradigm that effectively leverages unlabeled in-the-wild data. Our framework bridges strong, disparate priors from scene reconstruction and HMR, and is trained with two core components: (1) a robust distillation strategy to refine human surface details by distilling high-frequency details from an expert depth model, and (2) a two-stage supervision scheme, which first learns coarse localization on synthetic data, then fine-tunes on real data by directly optimizing the geometric correspondence between the SMPL mesh and the human point cloud. This approach enables our feed-forward model to jointly recover high-fidelity scene geometry, human point clouds, camera parameters, and coherent, metric-scale SMPL bodies, all in a single forward pass. Extensive experiments demonstrate that our model achieves state-of-the-art performance on human-centric scene reconstruction and delivers highly competitive results on global human motion estimation, comparing favorably against both optimization-based frameworks and HMR-only methods. Project page: https://murphylmf.github.io/UniSH/
Promptable Foundation Models for SAR Remote Sensing: Adapting the Segment Anything Model for Snow Avalanche Segmentation
Remote sensing solutions for avalanche segmentation and mapping are key to supporting risk forecasting and mitigation in mountain regions. Synthetic Aperture Radar (SAR) imagery from Sentinel-1 can be effectively used for this task, but training an effective detection model requires gathering a large dataset with high-quality annotations from domain experts, which is prohibitively time-consuming. In this work, we aim to facilitate and accelerate the annotation of SAR images for avalanche mapping. We build on the Segment Anything Model (SAM), a segmentation foundation model trained on natural images, and tailor it to Sentinel-1 SAR data. Adapting SAM to our use-case requires addressing several domain-specific challenges: (i) domain mismatch, since SAM was not trained on satellite/SAR imagery; (ii) input adaptation, because SAR products typically provide more than three channels, while SAM is constrained to RGB images; (iii) robustness to imprecise prompts that can affect target identification and degrade the segmentation quality, an issue exacerbated in small, low-contrast avalanches; and (iv) training efficiency, since standard fine-tuning is computationally demanding for SAM. We tackle these challenges through a combination of adapters to mitigate the domain gap, multiple encoders to handle multi-channel SAR inputs, prompt-engineering strategies to improve avalanche localization accuracy, and a training algorithm that limits the training time of the encoder, which is recognized as the major bottleneck. We integrate the resulting model into an annotation tool and show experimentally that it speeds up the annotation of SAR images.
☆ Real-Time LiDAR Point Cloud Densification for Low-Latency Spatial Data Transmission
To realize low-latency spatial transmission system for immersive telepresence, there are two major problems: capturing dynamic 3D scene densely and processing them in real time. LiDAR sensors capture 3D in real time, but produce sparce point clouds. Therefore, this paper presents a high-speed LiDAR point cloud densification method to generate dense 3D scene with minimal latency, addressing the need for on-the-fly depth completion while maintaining real-time performance. Our approach combines multiple LiDAR inputs with high-resolution color images and applies a joint bilateral filtering strategy implemented through a convolutional neural network architecture. Experiments demonstrate that the proposed method produces dense depth maps at full HD resolution in real time (30 fps), which is over 15x faster than a recent training-based depth completion approach. The resulting dense point clouds exhibit accurate geometry without multiview inconsistencies or ghosting artifacts.
☆ XStreamVGGT: Extremely Memory-Efficient Streaming Vision Geometry Grounded Transformer with KV Cache Compression
Learning-based 3D visual geometry models have benefited substantially from large-scale transformers. Among these, StreamVGGT leverages frame-wise causal attention for strong streaming reconstruction, but suffers from unbounded KV cache growth, leading to escalating memory consumption and inference latency as input frames accumulate. We propose XStreamVGGT, a tuning-free approach that systematically compresses the KV cache through joint pruning and quantization, enabling extremely memory-efficient streaming inference. Specifically, redundant KVs originating from multi-view inputs are pruned through efficient token importance identification, enabling a fixed memory budget. Leveraging the unique distribution of KV tensors, we incorporate KV quantization to further reduce memory consumption. Extensive evaluations show that XStreamVGGT achieves mostly negligible performance degradation while substantially reducing memory usage by 4.42$\times$ and accelerating inference by 5.48$\times$, enabling scalable and practical streaming 3D applications. The code is available at https://github.com/ywh187/XStreamVGGT/.
☆ RefSR-Adv: Adversarial Attack on Reference-based Image Super-Resolution Models
Single Image Super-Resolution (SISR) aims to recover high-resolution images from low-resolution inputs. Unlike SISR, Reference-based Super-Resolution (RefSR) leverages an additional high-resolution reference image to facilitate the recovery of high-frequency textures. However, existing research mainly focuses on backdoor attacks targeting RefSR, while the vulnerability of the adversarial attacks targeting RefSR has not been fully explored. To fill this research gap, we propose RefSR-Adv, an adversarial attack that degrades SR outputs by perturbing only the reference image. By maximizing the difference between adversarial and clean outputs, RefSR-Adv induces significant performance degradation and generates severe artifacts across CNN, Transformer, and Mamba architectures on the CUFED5, WR-SR, and DRefSR datasets. Importantly, experiments confirm a positive correlation between the similarity of the low-resolution input and the reference image and attack effectiveness, revealing that the model's over-reliance on reference features is a key security flaw. This study reveals a security vulnerability in RefSR systems, aiming to urge researchers to pay attention to the robustness of RefSR.
☆ MS-ISSM: Objective Quality Assessment of Point Clouds Using Multi-scale Implicit Structural Similarity
The unstructured and irregular nature of point clouds poses a significant challenge for objective quality assessment (PCQA), particularly in establishing accurate perceptual feature correspondence. To tackle this, we propose the Multi-scale Implicit Structural Similarity Measurement (MS-ISSM). Unlike traditional point-to-point matching, MS-ISSM utilizes Radial Basis Functions (RBF) to represent local features continuously, transforming distortion measurement into a comparison of implicit function coefficients. This approach effectively circumvents matching errors inherent in irregular data. Additionally, we propose a ResGrouped-MLP quality assessment network, which robustly maps multi-scale feature differences to perceptual scores. The network architecture departs from traditional flat MLPs by adopting a grouped encoding strategy integrated with Residual Blocks and Channel-wise Attention mechanisms. This hierarchical design allows the model to preserve the distinct physical semantics of luma, chroma, and geometry while adaptively focusing on the most salient distortion features across High, Medium, and Low scales. Experimental results on multiple benchmarks demonstrate that MS-ISSM outperforms state-of-the-art metrics in both reliability and generalization. The source code is available at: https://github.com/ZhangChen2022/MS-ISSM.
☆ Crowded Video Individual Counting Informed by Social Grouping and Spatial-Temporal Displacement Priors
Video Individual Counting (VIC) is a recently introduced task aiming to estimate pedestrian flux from a video. It extends Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that learns to count pedestrians across frames, VIC must identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, can underperform in congested scenes such as metro commuting. To address this, we build WuhanMetroCrowd, one of the first VIC datasets that characterize crowded, dynamic pedestrian flows. It features sparse-to-dense density levels, short-to-long video clips, slow-to-fast flow variations, front-to-back appearance changes, and light-to-heavy occlusions. To better adapt VIC approaches to crowds, we rethink the nature of VIC and recognize two informative priors: i) the social grouping prior that indicates pedestrians tend to gather in groups and ii) the spatial-temporal displacement prior that informs an individual cannot teleport physically. The former inspires us to relax the standard one-to-one (O2O) matching used by VIC to one-to-many (O2M) matching, implemented by an implicit context generator and a O2M matcher; the latter facilitates the design of a displacement prior injector, which strengthens not only O2M matching but also feature extraction and model training. These designs jointly form a novel and strong VIC baseline OMAN++. Extensive experiments show that OMAN++ not only outperforms state-of-the-art VIC baselines on the standard SenseCrowd, CroHD, and MovingDroneCrowd benchmarks, but also indicates a clear advantage in crowded scenes, with a 38.12% error reduction on our WuhanMetroCrowd dataset. Code, data, and pretrained models are available at https://github.com/tiny-smart/OMAN.
comment: Journal Extension of arXiv:2506.13067
☆ DST-Calib: A Dual-Path, Self-Supervised, Target-Free LiDAR-Camera Extrinsic Calibration Network
LiDAR-camera extrinsic calibration is essential for multi-modal data fusion in robotic perception systems. However, existing approaches typically rely on handcrafted calibration targets (e.g., checkerboards) or specific, static scene types, limiting their adaptability and deployment in real-world autonomous and robotic applications. This article presents the first self-supervised LiDAR-camera extrinsic calibration network that operates in an online fashion and eliminates the need for specific calibration targets. We first identify a significant generalization degradation problem in prior methods, caused by the conventional single-sided data augmentation strategy. To overcome this limitation, we propose a novel double-sided data augmentation technique that generates multi-perspective camera views using estimated depth maps, thereby enhancing robustness and diversity during training. Built upon this augmentation strategy, we design a dual-path, self-supervised calibration framework that reduces the dependence on high-precision ground truth labels and supports fully adaptive online calibration. Furthermore, to improve cross-modal feature association, we replace the traditional dual-branch feature extraction design with a difference map construction process that explicitly correlates LiDAR and camera features. This not only enhances calibration accuracy but also reduces model complexity. Extensive experiments conducted on five public benchmark datasets, as well as our own recorded dataset, demonstrate that the proposed method significantly outperforms existing approaches in terms of generalizability.
☆ GenCAMO: Scene-Graph Contextual Decoupling for Environment-aware and Mask-free Camouflage Image-Dense Annotation Generation
Conceal dense prediction (CDP), especially RGB-D camouflage object detection and open-vocabulary camouflage object segmentation, plays a crucial role in advancing the understanding and reasoning of complex camouflage scenes. However, high-quality and large-scale camouflage datasets with dense annotation remain scarce due to expensive data collection and labeling costs. To address this challenge, we explore leveraging generative models to synthesize realistic camouflage image-dense data for training CDP models with fine-grained representations, prior knowledge, and auxiliary reasoning. Concretely, our contributions are threefold: (i) we introduce GenCAMO-DB, a large-scale camouflage dataset with multi-modal annotations, including depth maps, scene graphs, attribute descriptions, and text prompts; (ii) we present GenCAMO, an environment-aware and mask-free generative framework that produces high-fidelity camouflage image-dense annotations; (iii) extensive experiments across multiple modalities demonstrate that GenCAMO significantly improves dense prediction performance on complex camouflage scenes by providing high-quality synthetic data. The code and datasets will be released after paper acceptance.
☆ CardioMOD-Net: A Modal Decomposition-Neural Network Framework for Diagnosis and Prognosis of HFpEF from Echocardiography Cine Loops
Introduction: Heart failure with preserved ejection fraction (HFpEF) arises from diverse comorbidities and progresses through prolonged subclinical stages, making early diagnosis and prognosis difficult. Current echocardiography-based Artificial Intelligence (AI) models focus primarily on binary HFpEF detection in humans and do not provide comorbidity-specific phenotyping or temporal estimates of disease progression towards decompensation. We aimed to develop a unified AI framework, CardioMOD-Net, to perform multiclass diagnosis and continuous prediction of HFpEF onset directly from standard echocardiography cine loops in preclinical models. Methods: Mouse echocardiography videos from four groups were used: control (CTL), hyperglycaemic (HG), obesity (OB), and systemic arterial hypertension (SAH). Two-dimensional parasternal long-axis cine loops were decomposed using Higher Order Dynamic Mode Decomposition (HODMD) to extract temporal features for downstream analysis. A shared latent representation supported Vision Transformers, one for a classifier for diagnosis and another for a regression module for predicting the age at HFpEF onset. Results: Overall diagnostic accuracy across the four groups was 65%, with all classes exceeding 50% accuracy. Misclassifications primarily reflected early-stage overlap between OB or SAH and CTL. The prognostic module achieved a root-mean-square error of 21.72 weeks for time-to-HFpEF prediction, with OB and SAH showing the most accurate estimates. Predicted HFpEF onset closely matched true distributions in all groups. Discussion: This unified framework demonstrates that multiclass phenotyping and continuous HFpEF onset prediction can be obtained from a single cine loop, even under small-data conditions. The approach offers a foundation for integrating diagnostic and prognostic modelling in preclinical HFpEF research.
comment: 9 pages; 1 figure; letter
☆ Cross-Layer Attentive Feature Upsampling for Low-latency Semantic Segmentation
Semantic segmentation is a fundamental problem in computer vision and it requires high-resolution feature maps for dense prediction. Current coordinate-guided low-resolution feature interpolation methods, e.g., bilinear interpolation, produce coarse high-resolution features which suffer from feature misalignment and insufficient context information. Moreover, enriching semantics to high-resolution features requires a high computation burden, so that it is challenging to meet the requirement of lowlatency inference. We propose a novel Guided Attentive Interpolation (GAI) method to adaptively interpolate fine-grained high-resolution features with semantic features to tackle these issues. Guided Attentive Interpolation determines both spatial and semantic relations of pixels from features of different resolutions and then leverages these relations to interpolate high-resolution features with rich semantics. GAI can be integrated with any deep convolutional network for efficient semantic segmentation. In experiments, the GAI-based semantic segmentation networks, i.e., GAIN, can achieve78.8 mIoU with 22.3 FPS on Cityscapes and 80.6 mIoU with 64.5 on CamVid using an NVIDIA 1080Ti GPU, which are the new state-of-the-art results of low-latency semantic segmentation. Code and models are available at: https://github.com/hustvl/simpleseg.
☆ YODA: Yet Another One-step Diffusion-based Video Compressor
While one-step diffusion models have recently excelled in perceptual image compression, their application to video remains limited. Prior efforts typically rely on pretrained 2D autoencoders that generate per-frame latent representations independently, thereby neglecting temporal dependencies. We present YODA--Yet Another One-step Diffusion-based Video Compressor--which embeds multiscale features from temporal references for both latent generation and latent coding to better exploit spatial-temporal correlations for more compact representation, and employs a linear Diffusion Transformer (DiT) for efficient one-step denoising. YODA achieves state-of-the-art perceptual performance, consistently outperforming traditional and deep-learning baselines on LPIPS, DISTS, FID, and KID. Source code will be publicly available at https://github.com/NJUVISION/YODA.
comment: Code will be available at https://github.com/NJUVISION/YODA
☆ Histogram Assisted Quality Aware Generative Model for Resolution Invariant NIR Image Colorization WACV 2026
We present HAQAGen, a unified generative model for resolution-invariant NIR-to-RGB colorization that balances chromatic realism with structural fidelity. The proposed model introduces (i) a combined loss term aligning the global color statistics through differentiable histogram matching, perceptual image quality measure, and feature based similarity to preserve texture information, (ii) local hue-saturation priors injected via Spatially Adaptive Denormalization (SPADE) to stabilize chromatic reconstruction, and (iii) texture-aware supervision within a Mamba backbone to preserve fine details. We introduce an adaptive-resolution inference engine that further enables high-resolution translation without sacrificing quality. Our proposed NIR-to-RGB translation model simultaneously enforces global color statistics and local chromatic consistency, while scaling to native resolutions without compromising texture fidelity or generalization. Extensive evaluations on FANVID, OMSIV, VCIP2020, and RGB2NIR using different evaluation metrics demonstrate consistent improvements over state-of-the-art baseline methods. HAQAGen produces images with sharper textures, natural colors, attaining significant gains as per perceptual metrics. These results position HAQAGen as a scalable and effective solution for NIR-to-RGB translation across diverse imaging scenarios. Project Page: https://rajeev-dw9.github.io/HAQAGen/
comment: Accepted at WACV 2026
☆ Evolving CNN Architectures: From Custom Designs to Deep Residual Models for Diverse Image Classification and Detection Tasks
This paper presents a comparative study of a custom convolutional neural network (CNN) architecture against widely used pretrained and transfer learning CNN models across five real-world image datasets. The datasets span binary classification, fine-grained multiclass recognition, and object detection scenarios. We analyze how architectural factors, such as network depth, residual connections, and feature extraction strategies, influence classification and localization performance. The results show that deeper CNN architectures provide substantial performance gains on fine-grained multiclass datasets, while lightweight pretrained and transfer learning models remain highly effective for simpler binary classification tasks. Additionally, we extend the proposed architecture to an object detection setting, demonstrating its adaptability in identifying unauthorized auto-rickshaws in real-world traffic scenes. Building upon a systematic analysis of custom CNN architectures alongside pretrained and transfer learning models, this study provides practical guidance for selecting suitable network designs based on task complexity and resource constraints.
☆ NarrativeTrack: Evaluating Video Language Models Beyond the Frame
Multimodal large language models (MLLMs) have achieved impressive progress in vision-language reasoning, yet their ability to understand temporally unfolding narratives in videos remains underexplored. True narrative understanding requires grounding who is doing what, when, and where, maintaining coherent entity representations across dynamic visual and temporal contexts. We introduce NarrativeTrack, the first benchmark to evaluate narrative understanding in MLLMs through fine-grained entity-centric reasoning. Unlike existing benchmarks limited to short clips or coarse scene-level semantics, we decompose videos into constituent entities and examine their continuity via a Compositional Reasoning Progression (CRP), a structured evaluation framework that progressively increases narrative complexity across three dimensions: entity existence, entity changes, and entity ambiguity. CRP challenges models to advance from temporal persistence to contextual evolution and fine-grained perceptual reasoning. A fully automated entity-centric pipeline enables scalable extraction of temporally grounded entity representations, providing the foundation for CRP. Evaluations of state-of-the-art MLLMs reveal that models fail to robustly track entities across visual transitions and temporal dynamics, often hallucinating identity under context shifts. Open-source general-purpose MLLMs exhibit strong perceptual grounding but weak temporal coherence, while video-specific MLLMs capture temporal context yet hallucinate entity's contexts. These findings uncover a fundamental trade-off between perceptual grounding and temporal reasoning, indicating that narrative understanding emerges only from their integration. NarrativeTrack provides the first systematic framework to diagnose and advance temporally grounded narrative comprehension in MLLMs.
comment: VideoLLM Fine-Grained Evaluation
☆ 600k-ks-ocr: a large-scale synthetic dataset for optical character recognition in kashmiri script
This technical report presents the 600K-KS-OCR Dataset, a large-scale synthetic corpus comprising approximately 602,000 word-level segmented images designed for training and evaluating optical character recognition systems targeting Kashmiri script. The dataset addresses a critical resource gap for Kashmiri, an endangered Dardic language utilizing a modified Perso-Arabic writing system spoken by approximately seven million people. Each image is rendered at 256x64 pixels with corresponding ground-truth transcriptions provided in multiple formats compatible with CRNN, TrOCR, and generalpurpose machine learning pipelines. The generation methodology incorporates three traditional Kashmiri typefaces, comprehensive data augmentation simulating real-world document degradation, and diverse background textures to enhance model robustness. The dataset is distributed across ten partitioned archives totaling approximately 10.6 GB and is released under the CC-BY-4.0 license to facilitate research in low-resource language optical character recognition.
☆ Luminark: Training-free, Probabilistically-Certified Watermarking for General Vision Generative Models
In this paper, we introduce \emph{Luminark}, a training-free and probabilistically-certified watermarking method for general vision generative models. Our approach is built upon a novel watermark definition that leverages patch-level luminance statistics. Specifically, the service provider predefines a binary pattern together with corresponding patch-level thresholds. To detect a watermark in a given image, we evaluate whether the luminance of each patch surpasses its threshold and then verify whether the resulting binary pattern aligns with the target one. A simple statistical analysis demonstrates that the false positive rate of the proposed method can be effectively controlled, thereby ensuring certified detection. To enable seamless watermark injection across different paradigms, we leverage the widely adopted guidance technique as a plug-and-play mechanism and develop the \emph{watermark guidance}. This design enables Luminark to achieve generality across state-of-the-art generative models without compromising image quality. Empirically, we evaluate our approach on nine models spanning diffusion, autoregressive, and hybrid frameworks. Across all evaluations, Luminark consistently demonstrates high detection accuracy, strong robustness against common image transformations, and good performance on visual quality.
☆ A UAV-Based Multispectral and RGB Dataset for Multi-Stage Paddy Crop Monitoring in Indian Agricultural Fields
We present a large-scale unmanned aerial vehicle (UAV)-based RGB and multispectral image dataset collected over paddy fields in the Vijayawada region, Andhra Pradesh, India, covering nursery to harvesting stages. We used a 20-megapixel RGB camera and a 5-megapixel four-band multispectral camera capturing red, green, red-edge, and near-infrared bands. Standardised operating procedure (SOP) and checklists were developed to ensure repeatable data acquisition. Our dataset comprises of 42,430 raw images (415 GB) captured over 5 acres with 1 cm/pixel ground sampling distance (GSD) with associated metadata such as GPS coordinates, flight altitude, and environmental conditions. Captured images were validated using Pix4D Fields to generate orthomosaic maps and vegetation index maps, such as normalised difference vegetation index (NDVI) and normalised difference red-edge (NDRE) index. Our dataset is one of the few datasets that provide high-resolution images with rich metadata that cover all growth stages of Indian paddy crops. The dataset is available on IEEE DataPort with DOI, . It can support studies on targeted spraying, disease analysis, and yield estimation.
comment: 10-page dataset explanation paper
☆ Flow Equivariant World Models: Memory for Partially Observed Dynamic Environments
Embodied systems experience the world as 'a symphony of flows': a combination of many continuous streams of sensory input coupled to self-motion, interwoven with the dynamics of external objects. These streams obey smooth, time-parameterized symmetries, which combine through a precisely structured algebra; yet most neural network world models ignore this structure and instead repeatedly re-learn the same transformations from data. In this work, we introduce 'Flow Equivariant World Models', a framework in which both self-motion and external object motion are unified as one-parameter Lie group 'flows'. We leverage this unification to implement group equivariance with respect to these transformations, thereby providing a stable latent world representation over hundreds of timesteps. On both 2D and 3D partially observed video world modeling benchmarks, we demonstrate that Flow Equivariant World Models significantly outperform comparable state-of-the-art diffusion-based and memory-augmented world modeling architectures -- particularly when there are predictable world dynamics outside the agent's current field of view. We show that flow equivariance is particularly beneficial for long rollouts, generalizing far beyond the training horizon. By structuring world model representations with respect to internal and external motion, flow equivariance charts a scalable route to data efficient, symmetry-guided, embodied intelligence. Project link: https://flowequivariantworldmodels.github.io.
comment: 11 main text pages, 10 figures
☆ Efficient Hyperspectral Image Reconstruction Using Lightweight Separate Spectral Transformers
Hyperspectral imaging (HSI) is essential across various disciplines for its capacity to capture rich spectral information. However, efficiently reconstructing hyperspectral images from compressive sensing measurements presents significant challenges. To tackle these, we adopt a divide-and-conquer strategy that capitalizes on the unique spectral and spatial characteristics of hyperspectral images. We introduce the Lightweight Separate Spectral Transformer (LSST), an innovative architecture tailored for efficient hyperspectral image reconstruction. This architecture consists of Separate Spectral Transformer Blocks (SSTB) for modeling spectral relationships and Lightweight Spatial Convolution Blocks (LSCB) for spatial processing. The SSTB employs Grouped Spectral Self-attention and a Spectrum Shuffle operation to effectively manage both local and non-local spectral relationships. Simultaneously, the LSCB utilizes depth-wise separable convolutions and strategic ordering to enhance spatial information processing. Furthermore, we implement the Focal Spectrum Loss, a novel loss weighting mechanism that dynamically adjusts during training to improve reconstruction across spectrally complex bands. Extensive testing demonstrates that our LSST achieves superior performance while requiring fewer FLOPs and parameters, underscoring its efficiency and effectiveness. The source code is available at: https://github.com/wcz1124/LSST.
☆ SPoRC-VIST: A Benchmark for Evaluating Generative Natural Narrative in Vision-Language Models WACV 2026
Vision-Language Models (VLMs) have achieved remarkable success in descriptive tasks such as image captioning and visual question answering (VQA). However, their ability to generate engaging, long-form narratives -- specifically multi-speaker podcast dialogues -- remains under-explored and difficult to evaluate. Standard metrics like BLEU and ROUGE fail to capture the nuances of conversational naturalness, personality, and narrative flow, often rewarding safe, repetitive outputs over engaging storytelling. In this work, we present a novel pipeline for end-to-end visual podcast generation, and fine-tune a Qwen3-VL-32B model on a curated dataset of 4,000 image-dialogue pairs. Crucially, we use a synthetic-to-real training strategy: we train on high-quality podcast dialogues from the Structured Podcast Research Corpus (SPoRC) paired with synthetically generated imagery, and evaluate on real-world photo sequences from the Visual Storytelling Dataset (VIST). This rigorous setup tests the model's ability to generalize from synthetic training data to real-world visual domains. We propose a comprehensive evaluation framework that moves beyond textual overlap, and use AI-as-a-judge (Gemini 3 Pro, Claude Opus 4.5, GPT 5.2) and novel style metrics (average turn length, speaker switch rate) to assess quality. Our experiments demonstrate that our fine-tuned 32B model significantly outperforms a 235B base model in conversational naturalness ($>$80\% win rate) and narrative depth (+50\% turn length), while maintaining identical visual grounding capabilities (CLIPScore: 20.39).
comment: 14 pages, 3 figures. Accepted to WVAQ 2026, WACV 2026
☆ Enhancing Histopathological Image Classification via Integrated HOG and Deep Features with Robust Noise Performance
The era of digital pathology has advanced histopathological examinations, making automated image analysis essential in clinical practice. This study evaluates the classification performance of machine learning and deep learning models on the LC25000 dataset, which includes five classes of histopathological images. We used the fine-tuned InceptionResNet-v2 network both as a classifier and for feature extraction. Our results show that the fine-tuned InceptionResNet-v2 achieved a classification accuracy of 96.01\% and an average AUC of 96.8\%. Models trained on deep features from InceptionResNet-v2 outperformed those using only the pre-trained network, with the Neural Network model achieving an AUC of 99.99\% and accuracy of 99.84\%. Evaluating model robustness under varying SNR conditions revealed that models using deep features exhibited greater resilience, particularly GBM and KNN. The combination of HOG and deep features showed enhanced performance, however, less so in noisy environments.
comment: 10 pages, 8 figures. Code and datasets available upon request
☆ EgoGrasp: World-Space Hand-Object Interaction Estimation from Egocentric Videos
We propose EgoGrasp, the first method to reconstruct world-space hand-object interactions (W-HOI) from egocentric monocular videos with dynamic cameras in the wild. Accurate W-HOI reconstruction is critical for understanding human behavior and enabling applications in embodied intelligence and virtual reality. However, existing hand-object interactions (HOI) methods are limited to single images or camera coordinates, failing to model temporal dynamics or consistent global trajectories. Some recent approaches attempt world-space hand estimation but overlook object poses and HOI constraints. Their performance also suffers under severe camera motion and frequent occlusions common in egocentric in-the-wild videos. To address these challenges, we introduce a multi-stage framework with a robust pre-process pipeline built on newly developed spatial intelligence models, a whole-body HOI prior model based on decoupled diffusion models, and a multi-objective test-time optimization paradigm. Our HOI prior model is template-free and scalable to multiple objects. In experiments, we prove our method achieving state-of-the-art performance in W-HOI reconstruction.
☆ Evaluating transfer learning strategies for improving dairy cattle body weight prediction in small farms using depth-image and point-cloud data
Computer vision provides automated, non-invasive, and scalable tools for monitoring dairy cattle, thereby supporting management, health assessment, and phenotypic data collection. Although transfer learning is commonly used for predicting body weight from images, its effectiveness and optimal fine-tuning strategies remain poorly understood in livestock applications, particularly beyond the use of pretrained ImageNet or COCO weights. In addition, while both depth images and three-dimensional point-cloud data have been explored for body weight prediction, direct comparisons of these two modalities in dairy cattle are limited. Therefore, the objectives of this study were to 1) evaluate whether transfer learning from a large farm enhances body weight prediction on a small farm with limited data, and 2) compare the predictive performance of depth-image- and point-cloud-based approaches under three experimental designs. Top-view depth images and point-cloud data were collected from 1,201, 215, and 58 cows at large, medium, and small dairy farms, respectively. Four deep learning models were evaluated: ConvNeXt and MobileViT for depth images, and PointNet and DGCNN for point clouds. Transfer learning markedly improved body weight prediction on the small farm across all four models, outperforming single-source learning and achieving gains comparable to or greater than joint learning. These results indicate that pretrained representations generalize well across farms with differing imaging conditions and dairy cattle populations. No consistent performance difference was observed between depth-image- and point-cloud-based models. Overall, these findings suggest that transfer learning is well suited for small farm prediction scenarios where cross-farm data sharing is limited by privacy, logistical, or policy constraints, as it requires access only to pretrained model weights rather than raw data.
☆ Deepfake Detection with Multi-Artifact Subspace Fine-Tuning and Selective Layer Masking
Deepfake detection still faces significant challenges in cross-dataset and real-world complex scenarios. The root cause lies in the high diversity of artifact distributions introduced by different forgery methods, while pretrained models tend to disrupt their original general semantic structures when adapting to new artifacts. Existing approaches usually rely on indiscriminate global parameter updates or introduce additional supervision signals, making it difficult to effectively model diverse forgery artifacts while preserving semantic stability. To address these issues, this paper proposes a deepfake detection method based on Multi-Artifact Subspaces and selective layer masks (MASM), which explicitly decouples semantic representations from artifact representations and constrains the fitting strength of artifact subspaces, thereby improving generalization robustness in cross-dataset scenarios. Specifically, MASM applies singular value decomposition to model weights, partitioning pretrained weights into a stable semantic principal subspace and multiple learnable artifact subspaces. This design enables decoupled modeling of different forgery artifact patterns while preserving the general semantic subspace. On this basis, a selective layer mask strategy is introduced to adaptively regulate the update behavior of corresponding network layers according to the learning state of each artifact subspace, suppressing overfitting to any single forgery characteristic. Furthermore, orthogonality constraints and spectral consistency constraints are imposed to jointly regularize multiple artifact subspaces, guiding them to learn complementary and diverse artifact representations while maintaining a stable overall spectral structure.
☆ Mono3DV: Monocular 3D Object Detection with 3D-Aware Bipartite Matching and Variational Query DeNoising
While DETR-like architectures have demonstrated significant potential for monocular 3D object detection, they are often hindered by a critical limitation: the exclusion of 3D attributes from the bipartite matching process. This exclusion arises from the inherent ill-posed nature of 3D estimation from monocular image, which introduces instability during training. Consequently, high-quality 3D predictions can be erroneously suppressed by 2D-only matching criteria, leading to suboptimal results. To address this, we propose Mono3DV, a novel Transformer-based framework. Our approach introduces three key innovations. First, we develop a 3D-Aware Bipartite Matching strategy that directly incorporates 3D geometric information into the matching cost, resolving the misalignment caused by purely 2D criteria. Second, it is important to stabilize the Bipartite Matching to resolve the instability occurring when integrating 3D attributes. Therefore, we propose 3D-DeNoising scheme in the training phase. Finally, recognizing the gradient vanishing issue associated with conventional denoising techniques, we propose a novel Variational Query DeNoising mechanism to overcome this limitation, which significantly enhances model performance. Without leveraging any external data, our method achieves state-of-the-art results on the KITTI 3D object detection benchmark.
☆ Enhanced Leukemic Cell Classification Using Attention-Based CNN and Data Augmentation
We present a reproducible deep learning pipeline for leukemic cell classification, focusing on system architecture, experimental robustness, and software design choices for medical image analysis. Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, requiring expert microscopic diagnosis that suffers from inter-observer variability and time constraints. The proposed system integrates an attention-based convolutional neural network combining EfficientNetV2-B3 with Squeeze-and-Excitation mechanisms for automated ALL cell classification. Our approach employs comprehensive data augmentation, focal loss for class imbalance, and patient-wise data splitting to ensure robust and reproducible evaluation. On the C-NMC 2019 dataset (12,528 original images from 62 patients), the system achieves a 97.89% F1-score and 97.89% accuracy on the test set, with statistical validation through 100-iteration Monte Carlo experiments confirming significant improvements (p < 0.001) over baseline methods. The proposed pipeline outperforms existing approaches by up to 4.67% while using 89% fewer parameters than VGG16 (15.2M vs. 138M). The attention mechanism provides interpretable visualizations of diagnostically relevant cellular features, demonstrating that modern attention-based architectures can improve leukemic cell classification while maintaining computational efficiency suitable for clinical deployment.
comment: 9 pages, 5 figures, 4 tables. Submitted to VISAPP 2025
☆ ITSELF: Attention Guided Fine-Grained Alignment for Vision-Language Retrieval WACV
Vision Language Models (VLMs) have rapidly advanced and show strong promise for text-based person search (TBPS), a task that requires capturing fine-grained relationships between images and text to distinguish individuals. Previous methods address these challenges through local alignment, yet they are often prone to shortcut learning and spurious correlations, yielding misalignment. Moreover, injecting prior knowledge can distort intra-modality structure. Motivated by our finding that encoder attention surfaces spatially precise evidence from the earliest training epochs, and to alleviate these issues, we introduceITSELF, an attention-guided framework for implicit local alignment. At its core, Guided Representation with Attentive Bank (GRAB) converts the model's own attention into an Attentive Bank of high-saliency tokens and applies local objectives on this bank, learning fine-grained correspondences without extra supervision. To make the selection reliable and non-redundant, we introduce Multi-Layer Attention for Robust Selection (MARS), which aggregates attention across layers and performs diversity-aware top-k selection; and Adaptive Token Scheduler (ATS), which schedules the retention budget from coarse to fine over training, preserving context early while progressively focusing on discriminative details. Extensive experiments on three widely used TBPS benchmarks showstate-of-the-art performance and strong cross-dataset generalization, confirming the effectiveness and robustness of our approach without additional prior supervision. Our project is publicly available at https://trhuuloc.github.io/itself
comment: Accepted at WACV Main Track 2026
☆ Decoupling Amplitude and Phase Attention in Frequency Domain for RGB-Event based Visual Object Tracking
Existing RGB-Event visual object tracking approaches primarily rely on conventional feature-level fusion, failing to fully exploit the unique advantages of event cameras. In particular, the high dynamic range and motion-sensitive nature of event cameras are often overlooked, while low-information regions are processed uniformly, leading to unnecessary computational overhead for the backbone network. To address these issues, we propose a novel tracking framework that performs early fusion in the frequency domain, enabling effective aggregation of high-frequency information from the event modality. Specifically, RGB and event modalities are transformed from the spatial domain to the frequency domain via the Fast Fourier Transform, with their amplitude and phase components decoupled. High-frequency event information is selectively fused into RGB modality through amplitude and phase attention, enhancing feature representation while substantially reducing backbone computation. In addition, a motion-guided spatial sparsification module leverages the motion-sensitive nature of event cameras to capture the relationship between target motion cues and spatial probability distribution, filtering out low-information regions and enhancing target-relevant features. Finally, a sparse set of target-relevant features is fed into the backbone network for learning, and the tracking head predicts the final target position. Extensive experiments on three widely used RGB-Event tracking benchmark datasets, including FE108, FELT, and COESOT, demonstrate the high performance and efficiency of our method. The source code of this paper will be released on https://github.com/Event-AHU/OpenEvTracking
☆ An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions
Artificial intelligence models have shown strong potential in acute ischemic stroke imaging, particularly for lesion detection and segmentation using computed tomography and magnetic resonance imaging. However, most existing approaches operate as black box predictors, producing deterministic outputs without explicit uncertainty awareness or structured mechanisms to abstain under ambiguous conditions. This limitation raises serious safety and trust concerns in high risk emergency radiology settings. In this paper, we propose an explainable agentic AI framework for uncertainty aware and abstention enabled decision support in acute ischemic stroke imaging. The framework follows a modular agentic pipeline in which a perception agent performs lesion aware image analysis, an uncertainty estimation agent computes slice level predictive reliability, and a decision agent determines whether to issue a prediction or abstain based on predefined uncertainty thresholds. Unlike prior stroke imaging systems that primarily focus on improving segmentation or classification accuracy, the proposed framework explicitly prioritizes clinical safety, transparency, and clinician aligned decision behavior. Qualitative and case based analyses across representative stroke imaging scenarios demonstrate that uncertainty driven abstention naturally emerges in diagnostically ambiguous regions and low information slices. The framework further integrates visual explanation mechanisms to support both predictive and abstention decisions, addressing a key limitation of existing uncertainty aware medical imaging systems. Rather than introducing a new performance benchmark, this work presents agentic control, uncertainty awareness, and selective abstention as essential design principles for developing safe and trustworthy medical imaging AI systems.
comment: Preprint. Conceptual and exploratory framework focusing on uncertainty-aware and abstention-enabled decision support for acute ischemic stroke imaging
♻ ☆ Damba-ST: Domain-Adaptive Mamba for Efficient Urban Spatio-Temporal Prediction ICDE 2026
Training urban spatio-temporal foundation models that generalize well across diverse regions and cities is critical for deploying urban services in unseen or data-scarce regions. Recent studies have typically focused on fusing cross-domain spatio-temporal data to train unified Transformer-based models. However, these models suffer from quadratic computational complexity and high memory overhead, limiting their scalability and practical deployment. Inspired by the efficiency of Mamba, a state space model with linear time complexity, we explore its potential for efficient urban spatio-temporal prediction. However, directly applying Mamba as a spatio-temporal backbone leads to negative transfer and severe performance degradation. This is primarily due to spatio-temporal heterogeneity and the recursive mechanism of Mamba's hidden state updates, which limit cross-domain generalization. To overcome these challenges, we propose Damba-ST, a novel domain-adaptive Mamba-based model for efficient urban spatio-temporal prediction. Damba-ST retains Mamba's linear complexity advantage while significantly enhancing its adaptability to heterogeneous domains. Specifically, we introduce two core innovations: (1) a domain-adaptive state space model that partitions the latent representation space into a shared subspace for learning cross-domain commonalities and independent, domain-specific subspaces for capturing intra-domain discriminative features; (2) three distinct Domain Adapters, which serve as domain-aware proxies to bridge disparate domain distributions and facilitate the alignment of cross-domain commonalities. Extensive experiments demonstrate the generalization and efficiency of Damba-ST. It achieves state-of-the-art performance on prediction tasks and demonstrates strong zero-shot generalization, enabling seamless deployment in new urban environments without extensive retraining or fine-tuning.
comment: Accepted by ICDE 2026
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms AAAI26
Wave-like images--from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames--encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise \(\sin(\cdot)\) mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets--including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics--demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
comment: AAAI26 Poster
♻ ☆ Energy Propagation in Scattering Convolution Networks Can Be Arbitrarily Slow
We analyze energy decay for deep convolutional neural networks employed as feature extractors, including Mallat's wavelet scattering transform. For time-frequency scattering transforms based on Gabor filters, previous work has established that energy decay is exponential for arbitrary square-integrable input signals. In contrast, our main results allow proving that this is false for wavelet scattering in arbitrary dimensions. Specifically, we show that the energy decay of wavelet and wavelet-like scattering transforms acting on generic square-integrable signals can be arbitrarily slow. Importantly, this slow decay behavior holds for dense subsets of $L^2(\mathbb{R}^d)$, indicating that rapid energy decay is generally an unstable property of signals. We complement these findings with positive results that allow us to infer fast (up to exponential) energy decay for generalized Sobolev spaces tailored to the frequency localization of the underlying filter bank. Both negative and positive results highlight that energy decay in scattering networks critically depends on the interplay between the respective frequency localizations of both the signal and the filters used.
comment: 44 pages; updated to match published OA version (ACHA); added a brief reference to related SampTA 2025 paper
♻ ☆ MotionCharacter: Fine-Grained Motion Controllable Human Video Generation AAAI 2026
Recent advancements in personalized Text-to-Video (T2V) generation have made significant strides in synthesizing character-specific content. However, these methods face a critical limitation: the inability to perform fine-grained control over motion intensity. This limitation stems from an inherent entanglement of action semantics and their corresponding magnitudes within coarse textual descriptions, hindering the generation of nuanced human videos and limiting their applicability in scenarios demanding high precision, such as animating virtual avatars or synthesizing subtle micro-expressions. Furthermore, existing approaches often struggle to preserve high identity fidelity when other attributes are modified. To address these challenges, we introduce MotionCharacter, a framework for high-fidelity human video generation with precise motion control. At its core, MotionCharacter explicitly decouples motion into two independently controllable components: action type and motion intensity. This is achieved through two key technical contributions: (1) a Motion Control Module that leverages textual phrases to specify the action type and a quantifiable metric derived from optical flow to modulate its intensity, guided by a region-aware loss that localizes motion to relevant subject areas; and (2) an ID Content Insertion Module coupled with an ID-Consistency loss to ensure robust identity preservation during dynamic motions. To facilitate training for such fine-grained control, we also curate Human-Motion, a new large-scale dataset with detailed annotations for both motion and facial features. Extensive experiments demonstrate that MotionCharacter achieves substantial improvements over existing methods. Our framework excels in generating videos that are not only identity-consistent but also precisely adhere to specified motion types and intensities.
comment: Accepted by AAAI 2026
♻ ☆ AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
comment: need to revsie
♻ ☆ RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics NeurIPS 2025
Spatial referring is a fundamental capability of embodied robots to interact with the 3D physical world. However, even with the powerful pretrained vision language models (VLMs), recent approaches are still not qualified to accurately understand the complex 3D scenes and dynamically reason about the instruction-indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware VLM that can first achieve precise spatial understanding by integrating a disentangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover, RoboRefer advances generalized multi-step spatial reasoning via reinforcement fine-tuning (RFT), with metric-sensitive process reward functions tailored for spatial referring tasks. To support SFT and RFT training, we introduce RefSpatial, a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations (vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In addition, we introduce RefSpatial-Bench, a challenging benchmark filling the gap in evaluating spatial referring with multi-step reasoning. Experiments show that SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an average success rate of 89.6%. RFT-trained RoboRefer further outperforms all other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (e,g., UR5, G1 humanoid) in cluttered real-world scenes.
comment: Accepted by NeurIPS 2025. Project page: https://zhoues.github.io/RoboRefer/
♻ ☆ P2U-SLAM: A Monocular Wide-FoV SLAM System Based on Point Uncertainty and Pose Uncertainty IEEE
This paper presents P2U-SLAM, a visual Simultaneous Localization And Mapping (SLAM) system with a wide Field of View (FoV) camera, which utilizes pose uncertainty and point uncertainty. While the wide FoV enables considerable repetitive observations of historical map points for matching cross-view features, the data properties of the historical map points and the poses of historical keyframes have changed during the optimization process. The neglect of data property changes results in the lack of partial information matrices in optimization, increasing the risk of long-term positioning performance degradation. The purpose of our research is to mitigate the risks posed by wide-FoV visual input to the SLAM system. Based on the conditional probability model, this work reveals the definite impacts of the above data properties changes on the optimization process, concretizes these impacts as point uncertainty and pose uncertainty, and gives their specific mathematical form. P2U-SLAM embeds point uncertainty into the tracking module and pose uncertainty into the local mapping module respectively, and updates these uncertainties after each optimization operation including local mapping, map merging, and loop closing. We present an exhaustive evaluation on 27 sequences from two popular public datasets with wide-FoV visual input. P2U-SLAM shows excellent performance compared with other state-of-the-art methods. The source code will be made publicly available at https://github.com/BambValley/P2U-SLAM.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS). The source code will be made publicly available at https://github.com/BambValley/P2U-SLAM
♻ ☆ On Pitfalls of $\textit{RemOve-And-Retrain}$: Data Processing Inequality Perspective
Approaches for appraising feature importance approximations, alternatively referred to as attribution methods, have been established across an extensive array of contexts. The development of resilient techniques for performance benchmarking constitutes a critical concern in the sphere of explainable deep learning. This study scrutinizes the dependability of the RemOve-And-Retrain (ROAR) procedure, which is prevalently employed for gauging the performance of feature importance estimates. The insights gleaned from our theoretical foundation and empirical investigations reveal that attributions containing lesser information about the decision function may yield superior results in ROAR benchmarks, contradicting the original intent of ROAR. This occurrence is similarly observed in the recently introduced variant RemOve-And-Debias (ROAD), and we posit a persistent pattern of blurriness bias in ROAR attribution metrics. Our findings serve as a warning against indiscriminate use on ROAR metrics.
♻ ☆ SDEval: Safety Dynamic Evaluation for Multimodal Large Language Models AAAI 2026
In the rapidly evolving landscape of Multimodal Large Language Models (MLLMs), the safety concerns of their outputs have earned significant attention. Although numerous datasets have been proposed, they may become outdated with MLLM advancements and are susceptible to data contamination issues. To address these problems, we propose \textbf{SDEval}, the \textit{first} safety dynamic evaluation framework to controllably adjust the distribution and complexity of safety benchmarks. Specifically, SDEval mainly adopts three dynamic strategies: text, image, and text-image dynamics to generate new samples from original benchmarks. We first explore the individual effects of text and image dynamics on model safety. Then, we find that injecting text dynamics into images can further impact safety, and conversely, injecting image dynamics into text also leads to safety risks. SDEval is general enough to be applied to various existing safety and even capability benchmarks. Experiments across safety benchmarks, MLLMGuard and VLSBench, and capability benchmarks, MMBench and MMVet, show that SDEval significantly influences safety evaluation, mitigates data contamination, and exposes safety limitations of MLLMs. Code is available at https://github.com/hq-King/SDEval
comment: AAAI 2026 poster
♻ ☆ COLT: Enhancing Video Large Language Models with Continual Tool Usage
The success of Large Language Models (LLMs) has significantly propelled the research of video understanding. To harvest the benefits of well-trained expert models (i.e., tools), video LLMs prioritize the exploration of tool usage capabilities. Existing methods either prompt closed-source LLMs or employ the instruction tuning paradigm for tool-use fine-tuning. These methods, however, assume an established repository of fixed tools and struggle to generalize to real-world environments where tool data is perpetually evolving and streaming in. To this end, we propose to enhance open-source video LLMs with COntinuaL Tool usage (termed COLT), which automatically acquires tool-use ability in a successive tool stream without suffering 'catastrophic forgetting' of the past learned tools. Specifically, our COLT incorporates a learnable tool codebook as a tool-specific memory system. Then relevant tools are dynamically selected based on the similarity between user instruction and tool features within the codebook. To unleash the tool usage potential of video LLMs, we collect a video-centric tool-use instruction tuning dataset VideoToolBench. Extensive experiments on both previous video LLM benchmarks and the tool-use-specific VideoToolBench dataset demonstrate the state-of-the-art performance of our proposed COLT.
comment: 16 pages
♻ ☆ Quantifying task-relevant representational similarity using decision variable correlation NeurIPS 2025
Previous studies have compared neural activities in the visual cortex to representations in deep neural networks trained on image classification. Interestingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the image-by-image correlation between the decoded decisions based on the internal neural representations in a classification task. Thus, it can capture task-relevant information rather than general representational alignment. We evaluate DVC using monkey V4/IT recordings and network models trained on image classification tasks. We find that model-model similarity is comparable to monkey-monkey similarity, whereas model-monkey similarity is consistently lower. Strikingly, DVC decreases with increasing network performance on ImageNet-1k. Adversarial training does not improve model-monkey similarity in task-relevant dimensions assessed using DVC, although it markedly increases the model-model similarity. Similarly, pre-training on larger datasets does not improve model-monkey similarity. These results suggest a divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.
comment: Camera-ready version; accepted at NeurIPS 2025
♻ ☆ Spiking Neural Networks Need High Frequency Information
Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.
♻ ☆ Adaptive Dual-Weighted Gravitational Point Cloud Denoising Method
High-quality point cloud data is a critical foundation for tasks such as autonomous driving and 3D reconstruction. However, LiDAR-based point cloud acquisition is often affected by various disturbances, resulting in a large number of noise points that degrade the accuracy of subsequent point cloud object detection and recognition. Moreover, existing point cloud denoising methods typically sacrifice computational efficiency in pursuit of higher denoising accuracy, or, conversely, improve processing speed at the expense of preserving object boundaries and fine structural details, making it difficult to simultaneously achieve high denoising accuracy, strong edge preservation, and real-time performance. To address these limitations, this paper proposes an adaptive dualweight gravitational-based point cloud denoising method. First, an octree is employed to perform spatial partitioning of the global point cloud, enabling parallel acceleration. Then, within each leaf node, adaptive voxel-based occupancy statistics and k-nearest neighbor (kNN) density estimation are applied to rapidly remove clearly isolated and low-density noise points, thereby reducing the effective candidate set. Finally, a gravitational scoring function that combines density weights with adaptive distance weights is constructed to finely distinguish noise points from object points. Experiments conducted on the Stanford 3D Scanning Repository, the Canadian Adverse Driving Conditions (CADC) dataset, and in-house RUBY PLUS LiDAR point clouds acquired in our laboratory demonstrate that, compared with existing methods, the proposed approach achieves consistent improvements in F1, PSNR, and Chamfer Distance (CD) across various noise conditions while reducing the single-frame processing time, thereby validating its high accuracy, robustness, and real-time performance in multi-noise scenarios.
♻ ☆ Vision-Enhanced Large Language Models for High-Resolution Image Synthesis and Multimodal Data Interpretation
This research introduces a transformative framework for integrating Vision-Enhanced Large Language Models (LLMs) with advanced transformer-based architectures to tackle challenges in high-resolution image synthesis and multimodal data interpretation. The proposed model incorporates a rectified flow mechanism that connects noise and data with linear paths, enabling efficient and high-quality generation. A bidirectional tokenization strategy is employed to seamlessly merge inputs from text, image, and video modalities, fostering a unified understanding across diverse data types. By embedding spatial-temporal features and leveraging a hybrid text-image sequence modeling approach, the framework achieves unparalleled fidelity in synthesized images and coherent multimodal representations. The architecture is optimized with a noise-aware learning algorithm, addressing discrepancies in noisy data distributions and improving generative performance under varying input conditions. Rigorous evaluations on benchmark datasets demonstrate a 25% increase in image resolution clarity and a 20% reduction in computational requirements compared to diffusion-based methods. Furthermore, the model exhibits robust scalability and adaptability, showcasing its potential in applications like autonomous systems, creative content generation, and advanced video analysis. This work underscores the role of vision-centric LLMs in redefining capabilities in computer vision and multimodal artificial intelligence.
♻ ☆ MPJudge: Towards Perceptual Assessment of Music-Induced Paintings
Music induced painting is a unique artistic practice, where visual artworks are created under the influence of music. Evaluating whether a painting faithfully reflects the music that inspired it poses a challenging perceptual assessment task. Existing methods primarily rely on emotion recognition models to assess the similarity between music and painting, but such models introduce considerable noise and overlook broader perceptual cues beyond emotion. To address these limitations, we propose a novel framework for music induced painting assessment that directly models perceptual coherence between music and visual art. We introduce MPD, the first large scale dataset of music painting pairs annotated by domain experts based on perceptual coherence. To better handle ambiguous cases, we further collect pairwise preference annotations. Building on this dataset, we present MPJudge, a model that integrates music features into a visual encoder via a modulation based fusion mechanism. To effectively learn from ambiguous cases, we adopt Direct Preference Optimization for training. Extensive experiments demonstrate that our method outperforms existing approaches. Qualitative results further show that our model more accurately identifies music relevant regions in paintings.
♻ ☆ DISCODE: Distribution-Aware Score Decoder for Robust Automatic Evaluation of Image Captioning AAAI 2026
Large vision-language models (LVLMs) have shown impressive performance across a broad range of multimodal tasks. However, robust image caption evaluation using LVLMs remains challenging, particularly under domain-shift scenarios. To address this issue, we introduce the Distribution-Aware Score Decoder (DISCODE), a novel finetuning-free method that generates robust evaluation scores better aligned with human judgments across diverse domains. The core idea behind DISCODE lies in its test-time adaptive evaluation approach, which introduces the Adaptive Test-Time (ATT) loss, leveraging a Gaussian prior distribution to improve robustness in evaluation score estimation. This loss is efficiently minimized at test time using an analytical solution that we derive. Furthermore, we introduce the Multi-domain Caption Evaluation (MCEval) benchmark, a new image captioning evaluation benchmark covering six distinct domains, designed to assess the robustness of evaluation metrics. In our experiments, we demonstrate that DISCODE achieves state-of-the-art performance as a reference-free evaluation metric across MCEval and four representative existing benchmarks.
comment: Paper accepted to AAAI 2026
♻ ☆ Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in aligning visual inputs with natural language outputs. Yet, the extent to which generated tokens depend on visual modalities remains poorly understood, limiting interpretability and reliability. In this work, we present EAGLE, a lightweight black-box framework for explaining autoregressive token generation in MLLMs. EAGLE attributes any selected tokens to compact perceptual regions while quantifying the relative influence of language priors and perceptual evidence. The framework introduces an objective function that unifies sufficiency (insight score) and indispensability (necessity score), optimized via greedy search over sparsified image regions for faithful and efficient attribution. Beyond spatial attribution, EAGLE performs modality-aware analysis that disentangles what tokens rely on, providing fine-grained interpretability of model decisions. Extensive experiments across open-source MLLMs show that EAGLE consistently outperforms existing methods in faithfulness, localization, and hallucination diagnosis, while requiring substantially less GPU memory. These results highlight its effectiveness and practicality for advancing the interpretability of MLLMs.
♻ ☆ LRANet++: Low-Rank Approximation Network for Accurate and Efficient Text Spotting IEEE
End-to-end text spotting aims to jointly optimize text detection and recognition within a unified framework. Despite significant progress, designing an accurate and efficient end-to-end text spotter for arbitrary-shaped text remains challenging. We identify the primary bottleneck as the lack of a reliable and efficient text detection method. To address this, we propose a novel parameterized text shape representation based on low-rank approximation for precise detection and a triple assignment detection head for fast inference. Specifically, unlike current data-irrelevant shape representation methods, we exploit shape correlations among labeled text boundaries to construct a robust low-rank subspace. By minimizing an $\ell_1$-norm objective, we extract orthogonal vectors that capture the intrinsic text shape from noisy annotations, enabling precise reconstruction via the linear combination of only a few basis vectors. Next, the triple assignment scheme decouples training complexity from inference speed. It utilizes a deep sparse branch to guide an ultra-lightweight inference branch, while a dense branch provides rich parallel supervision. Building upon these advancements, we integrate the enhanced detection module with a lightweight recognition branch to form an end-to-end text spotting framework, termed LRANet++, capable of accurately and efficiently spotting arbitrary-shaped text. Extensive experiments on challenging benchmarks demonstrate the superiority of LRANet++ compared to state-of-the-art methods. Code is available at: https://github.com/ychensu/LRANet-PP.
comment: Accepted by IEEE TPAMI
♻ ☆ Seal2Real: Prompt Prior Learning on Diffusion Model for Unsupervised Document Seal Data Generation and Realisation
Seal-related tasks in document processing-such as seal segmentation, authenticity verification, seal removal, and text recognition under seals-hold substantial commercial importance. However, progress in these areas has been hindered by the scarcity of labeled document seal datasets, which are essential for supervised learning. To address this limitation, we propose Seal2Real, a novel generative framework designed to synthesize large-scale labeled document seal data. As part of this work, we also present Seal-DB, a comprehensive dataset containing 20,000 labeled images to support seal-related research. Seal2Real introduces a prompt prior learning architecture built upon a pre-trained Stable Diffusion model, effectively transferring its generative capability to the unsupervised domain of seal image synthesis. By producing highly realistic synthetic seal images, Seal2Real significantly enhances the performance of downstream seal-related tasks on real-world data. Experimental evaluations on the Seal-DB dataset demonstrate the effectiveness and practical value of the proposed framework. The dataset is available at https://github.com/liuyifan6613/DocBank-Document-Enhancement-Dataset.
♻ ☆ EgoReAct: Egocentric Video-Driven 3D Human Reaction Generation
Humans exhibit adaptive, context-sensitive responses to egocentric visual input. However, faithfully modeling such reactions from egocentric video remains challenging due to the dual requirements of strictly causal generation and precise 3D spatial alignment. To tackle this problem, we first construct the Human Reaction Dataset (HRD) to address data scarcity and misalignment by building a spatially aligned egocentric video-reaction dataset, as existing datasets (e.g., ViMo) suffer from significant spatial inconsistency between the egocentric video and reaction motion, e.g., dynamically moving motions are always paired with fixed-camera videos. Leveraging HRD, we present EgoReAct, the first autoregressive framework that generates 3D-aligned human reaction motions from egocentric video streams in real-time. We first compress the reaction motion into a compact yet expressive latent space via a Vector Quantised-Variational AutoEncoder and then train a Generative Pre-trained Transformer for reaction generation from the visual input. EgoReAct incorporates 3D dynamic features, i.e., metric depth, and head dynamics during the generation, which effectively enhance spatial grounding. Extensive experiments demonstrate that EgoReAct achieves remarkably higher realism, spatial consistency, and generation efficiency compared with prior methods, while maintaining strict causality during generation. We will release code, models, and data upon acceptance.
comment: 12 pages, 9 figures
♻ ☆ Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
Artificial Intelligence 30
☆ Accelerating Monte-Carlo Tree Search with Optimized Posterior Policies
We introduce a recursive AlphaZero-style Monte--Carlo tree search algorithm, "RMCTS". The advantage of RMCTS over AlphaZero's MCTS-UCB is speed. In RMCTS, the search tree is explored in a breadth-first manner, so that network inferences naturally occur in large batches. This significantly reduces the GPU latency cost. We find that RMCTS is often more than 40 times faster than MCTS-UCB when searching a single root state, and about 3 times faster when searching a large batch of root states. The recursion in RMCTS is based on computing optimized posterior policies at each game state in the search tree, starting from the leaves and working back up to the root. Here we use the posterior policy explored in "Monte--Carlo tree search as regularized policy optimization" (Grill, et al.) Their posterior policy is the unique policy which maximizes the expected reward given estimated action rewards minus a penalty for diverging from the prior policy. The tree explored by RMCTS is not defined in an adaptive manner, as it is in MCTS-UCB. Instead, the RMCTS tree is defined by following prior network policies at each node. This is a disadvantage, but the speedup advantage is more significant, and in practice we find that RMCTS-trained networks match the quality of MCTS-UCB-trained networks in roughly one-third of the training time. We include timing and quality comparisons of RMCTS vs. MCTS-UCB for three games: Connect-4, Dots-and-Boxes, and Othello.
comment: 11 pages; an efficient implementation is available at https://github.com/bhoward73/rmcts
☆ T3C: Test-Time Tensor Compression with Consistency Guarantees
We present T3C, a train-once, test-time budget-conditioned compression framework that exposes rank and precision as a controllable deployment knob. T3C combines elastic tensor factorization (maintained up to a maximal rank) with rank-tied mixed-precision quantization and a lightweight controller that maps a latency/energy/size budget token to per-layer rank/bit assignments; the policy snaps to hardware-aligned profiles and is monotone in the budget. A fast, layerwise consistency certificate, computed from spectral proxies and activation statistics, upper-bounds logit drift and regularizes training, yielding a practical reliability signal with negligible overhead. On ImageNet-1k, T3C shifts the vision Pareto frontier: for ResNet-50 at matched accuracy (\leq 0.5% drop), p50 latency is 1.18ms with a 38MB model, outperforming PTQ-8b (1.44ms, 88MB); for ViT-B/16, T3C reaches 2.30ms p50 with 59MB, improving over strong PTQ/QAT baselines. A single T3C checkpoint therefore provides predictable, certificate-backed accuracy-latency-size trade-offs on demand across devices.
☆ Warp-Cortex: An Asynchronous, Memory-Efficient Architecture for Million-Agent Cognitive Scaling on Consumer Hardware
Current multi-agent Large Language Model (LLM) frameworks suffer from linear memory scaling, rendering "System 2" parallel reasoning impractical on consumer hardware. We present Warp Cortex, an asynchronous architecture that theoretically enables million-agent cognitive scaling by decoupling agent logic from physical memory. Through Singleton Weight Sharing and a novel Topological Synapse--inspired by hybrid landmarking techniques from Topological Data Analysis (TDA)--we reduce memory complexity from O(N * L) to O(1) for weights and O(N * k) for context, where k << L. By treating the KV-cache as a point cloud in latent space, we apply witness-complex-inspired sparsification to preserve persistent homological features of the context manifold. On a single NVIDIA RTX 4090, we empirically demonstrate 100 concurrent agents at 2.2 GB total VRAM, with theoretical capacity exceeding 1,000 agents before compute latency becomes the bottleneck. We further introduce Referential Injection, a non-intrusive KV-cache update mechanism that allows asynchronous sub-agents to influence primary generation without stream disruption.
☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold. The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces. This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: 26 pages
☆ Aggressive Compression Enables LLM Weight Theft NeurIPS 2024
As frontier AIs become more powerful and costly to develop, adversaries have increasing incentives to steal model weights by mounting exfiltration attacks. In this work, we consider exfiltration attacks where an adversary attempts to sneak model weights out of a datacenter over a network. While exfiltration attacks are multi-step cyber attacks, we demonstrate that a single factor, the compressibility of model weights, significantly heightens exfiltration risk for large language models (LLMs). We tailor compression specifically for exfiltration by relaxing decompression constraints and demonstrate that attackers could achieve 16x to 100x compression with minimal trade-offs, reducing the time it would take for an attacker to illicitly transmit model weights from the defender's server from months to days. Finally, we study defenses designed to reduce exfiltration risk in three distinct ways: making models harder to compress, making them harder to 'find,' and tracking provenance for post-attack analysis using forensic watermarks. While all defenses are promising, the forensic watermark defense is both effective and cheap, and therefore is a particularly attractive lever for mitigating weight-exfiltration risk.
comment: An early version of this work was presented at the SoLAR Workshop at NeurIPS 2024
☆ Diffusion Timbre Transfer Via Mutual Information Guided Inpainting
We study timbre transfer as an inference-time editing problem for music audio. Starting from a strong pre-trained latent diffusion model, we introduce a lightweight procedure that requires no additional training: (i) a dimension-wise noise injection that targets latent channels most informative of instrument identity, and (ii) an early-step clamping mechanism that re-imposes the input's melodic and rhythmic structure during reverse diffusion. The method operates directly on audio latents and is compatible with text/audio conditioning (e.g., CLAP). We discuss design choices,analyze trade-offs between timbral change and structural preservation, and show that simple inference-time controls can meaningfully steer pre-trained models for style-transfer use cases.
comment: 6 pages, 2 figures, 3 tables
☆ PyBatchRender: A Python Library for Batched 3D Rendering at Up to One Million FPS
Reinforcement learning from pixels is often bottlenecked by the performance and complexity of 3D rendered environments. Researchers face a trade-off between high-speed, low-level engines and slower, more accessible Python frameworks. To address this, we introduce PyBatchRender, a Python library for high-throughput, batched 3D rendering that achieves over 1 million FPS on simple scenes. Built on the Panda3D game engine, it utilizes its mature ecosystem while enhancing performance through optimized batched rendering for up to 1000X speedups. Designed as a physics-agnostic renderer for reinforcement learning from pixels, PyBatchRender offers greater flexibility than dedicated libraries, simpler setup than typical game-engine wrappers, and speeds rivaling state-of-the-art C++ engines like Madrona. Users can create custom scenes entirely in Python with tens of lines of code, enabling rapid prototyping for scalable AI training. Open-source and easy to integrate, it serves to democratize high-performance 3D simulation for researchers and developers. The library is available at https://github.com/dolphin-in-a-coma/PyBatchRender.
☆ AI-Powered Deepfake Detection Using CNN and Vision Transformer Architectures
The increasing use of artificial intelligence generated deepfakes creates major challenges in maintaining digital authenticity. Four AI-based models, consisting of three CNNs and one Vision Transformer, were evaluated using large face image datasets. Data preprocessing and augmentation techniques improved model performance across different scenarios. VFDNET demonstrated superior accuracy with MobileNetV3, showing efficient performance, thereby demonstrating AI's capabilities for dependable deepfake detection.
comment: 6 pages, 6 figures, 3 tables. Conference paper
☆ Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research.
☆ LLM Collusion
We study how delegating pricing to large language models (LLMs) can facilitate collusion in a duopoly when both sellers rely on the same pre-trained model. The LLM is characterized by (i) a propensity parameter capturing its internal bias toward high-price recommendations and (ii) an output-fidelity parameter measuring how tightly outputs track that bias; the propensity evolves through retraining. We show that configuring LLMs for robustness and reproducibility can induce collusion via a phase transition: there exists a critical output-fidelity threshold that pins down long-run behavior. Below it, competitive pricing is the unique long-run outcome. Above it, the system is bistable, with competitive and collusive pricing both locally stable and the realized outcome determined by the model's initial preference. The collusive regime resembles tacit collusion: prices are elevated on average, yet occasional low-price recommendations provide plausible deniability. With perfect fidelity, full collusion emerges from any interior initial condition. For finite training batches of size $b$, infrequent retraining (driven by computational costs) further amplifies collusion: conditional on starting in the collusive basin, the probability of collusion approaches one as $b$ grows, since larger batches dampen stochastic fluctuations that might otherwise tip the system toward competition. The indeterminacy region shrinks at rate $O(1/\sqrt{b})$.
comment: 44 pages
☆ From Policy to Logic for Efficient and Interpretable Coverage Assessment AAAI 2026
Large Language Models (LLMs) have demonstrated strong capabilities in interpreting lengthy, complex legal and policy language. However, their reliability can be undermined by hallucinations and inconsistencies, particularly when analyzing subjective and nuanced documents. These challenges are especially critical in medical coverage policy review, where human experts must be able to rely on accurate information. In this paper, we present an approach designed to support human reviewers by making policy interpretation more efficient and interpretable. We introduce a methodology that pairs a coverage-aware retriever with symbolic rule-based reasoning to surface relevant policy language, organize it into explicit facts and rules, and generate auditable rationales. This hybrid system minimizes the number of LLM inferences required which reduces overall model cost. Notably, our approach achieves a 44% reduction in inference cost alongside a 4.5% improvement in F1 score, demonstrating both efficiency and effectiveness.
comment: Accepted at AIMedHealth @ AAAI 2026
MambaFormer: Token-Level Guided Routing Mixture-of-Experts for Accurate and Efficient Clinical Assistance
The deployment of large language models (LLMs) in real-world clinical applications is constrained by the fundamental trade-off between computational cost and the efficiency of linear-time models. To address this, we propose an LLM-based MambaFormer hybrid Mixture-of-Experts (MoE) framework for efficient medical question-answering (QA) and clinical assistance. The MambaFormer employs a lightweight gating mechanism that performs token-level dynamic routing to a customized Transformer expert (ET5) for short, complex queries or to a State Space Model expert (EMamba) for long, high-throughput sequences. The customized EMamba and ET5 models are tailored to accommodate input sequence dimensionality, embedding structure, sequence length, and target-specific output heads, and are fine-tuned through transfer learning on a new, custom-designed DentalQA dataset. Moreover, intelligent routing decisions are driven by the contextual complexity of token embeddings, normalized sequence length, and domain-aware features, thereby enforcing a Pareto-optimal trade-off between inference latency and prediction accuracy. Furthermore, a novel utility-guided multi-objective loss jointly optimizes decisions, router parameters, routing behavior, expert utilization, and computational cost by adaptively regulating token-level expert activation. Finally, the proposed MambaFormer is cross-validated (holdout) for medical QA on the new, custom-designed DentalQA and PubMedQA datasets and compared with state-of-the-art techniques. The proposed MambaFormer outperforms (BERTScore = 0.9180) with ultra-low latency (0.077 s), delivering a 24.4 speedup over T5-Large and establishing a scalable solution for resource-constrained clinical deployment.
comment: 28 Pages, Tables 12, Figure 09
☆ Seamlessly Natural: Image Stitching with Natural Appearance Preservation
This paper introduces SENA (SEamlessly NAtural), a geometry-driven image stitching approach that prioritizes structural fidelity in challenging real-world scenes characterized by parallax and depth variation. Conventional image stitching relies on homographic alignment, but this rigid planar assumption often fails in dual-camera setups with significant scene depth, leading to distortions such as visible warps and spherical bulging. SENA addresses these fundamental limitations through three key contributions. First, we propose a hierarchical affine-based warping strategy, combining global affine initialization with local affine refinement and smooth free-form deformation. This design preserves local shape, parallelism, and aspect ratios, thereby avoiding the hallucinated structural distortions commonly introduced by homography-based models. Second, we introduce a geometry-driven adequate zone detection mechanism that identifies parallax-minimized regions directly from the disparity consistency of RANSAC-filtered feature correspondences, without relying on semantic segmentation. Third, building upon this adequate zone, we perform anchor-based seamline cutting and segmentation, enforcing a one-to-one geometric correspondence across image pairs by construction, which effectively eliminates ghosting, duplication, and smearing artifacts in the final panorama. Extensive experiments conducted on challenging datasets demonstrate that SENA achieves alignment accuracy comparable to leading homography-based methods, while significantly outperforming them in critical visual metrics such as shape preservation, texture integrity, and overall visual realism.
☆ Benchmarking the Computational and Representational Efficiency of State Space Models against Transformers on Long-Context Dyadic Sessions
State Space Models (SSMs) have emerged as a promising alternative to Transformers for long-context sequence modeling, offering linear $O(N)$ computational complexity compared to the Transformer's quadratic $O(N^2)$ scaling. This paper presents a comprehensive benchmarking study comparing the Mamba SSM against the LLaMA Transformer on long-context sequences, using dyadic therapy sessions as a representative test case. We evaluate both architectures across two dimensions: (1) computational efficiency, where we measure memory usage and inference speed from 512 to 8,192 tokens, and (2) representational efficiency, where we analyze hidden state dynamics and attention patterns. Our findings provide actionable insights for practitioners working with long-context applications, establishing precise conditions under which SSMs offer advantages over Transformers.
comment: 14 pages
☆ Stylometry Analysis of Human and Machine Text for Academic Integrity
This work addresses critical challenges to academic integrity, including plagiarism, fabrication, and verification of authorship of educational content, by proposing a Natural Language Processing (NLP)-based framework for authenticating students' content through author attribution and style change detection. Despite some initial efforts, several aspects of the topic are yet to be explored. In contrast to existing solutions, the paper provides a comprehensive analysis of the topic by targeting four relevant tasks, including (i) classification of human and machine text, (ii) differentiating in single and multi-authored documents, (iii) author change detection within multi-authored documents, and (iv) author recognition in collaboratively produced documents. The solutions proposed for the tasks are evaluated on two datasets generated with Gemini using two different prompts, including a normal and a strict set of instructions. During experiments, some reduction in the performance of the proposed solutions is observed on the dataset generated through the strict prompt, demonstrating the complexities involved in detecting machine-generated text with cleverly crafted prompts. The generated datasets, code, and other relevant materials are made publicly available on GitHub, which are expected to provide a baseline for future research in the domain.
comment: 16 pages, 9 tables, 3 figures
☆ Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment
Slot Attention (SA) with pretrained diffusion models has recently shown promise for object-centric learning (OCL), but suffers from slot entanglement and weak alignment between object slots and image content. We propose Contrastive Object-centric Diffusion Alignment (CODA), a simple extension that (i) employs register slots to absorb residual attention and reduce interference between object slots, and (ii) applies a contrastive alignment loss to explicitly encourage slot-image correspondence. The resulting training objective serves as a tractable surrogate for maximizing mutual information (MI) between slots and inputs, strengthening slot representation quality. On both synthetic (MOVi-C/E) and real-world datasets (VOC, COCO), CODA improves object discovery (e.g., +6.1% FG-ARI on COCO), property prediction, and compositional image generation over strong baselines. Register slots add negligible overhead, keeping CODA efficient and scalable. These results indicate potential applications of CODA as an effective framework for robust OCL in complex, real-world scenes.
☆ Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code ICSE
Large language models (LLMs) can generate programs that pass unit tests, but passing tests does not guarantee reliable runtime behavior. We find that different correct solutions to the same task can show very different memory and performance patterns, which can lead to hidden operational risks. We present a framework to measure execution-time memory stability across multiple correct generations. At the solution level, we introduce Dynamic Mean Pairwise Distance (DMPD), which uses Dynamic Time Warping to compare the shapes of memory-usage traces after converting them into Monotonic Peak Profiles (MPPs) to reduce transient noise. Aggregating DMPD across tasks yields a model-level Model Instability Score (MIS). Experiments on BigOBench and CodeContests show substantial runtime divergence among correct solutions. Instability often increases with higher sampling temperature even when pass@1 improves. We also observe correlations between our stability measures and software engineering indicators such as cognitive and cyclomatic complexity, suggesting links between operational behavior and maintainability. Our results support stability-aware selection among passing candidates in CI/CD to reduce operational risk without sacrificing correctness. Artifacts are available.
comment: 11 Pages, 11 figures, Accepted at ICSE SEIP
☆ MentalGame: Predicting Personality-Job Fitness for Software Developers Using Multi-Genre Games and Machine Learning Approaches
Personality assessment in career guidance and personnel selection traditionally relies on self-report questionnaires, which are susceptible to response bias, fatigue, and intentional distortion. Game-based assessment offers a promising alternative by capturing implicit behavioral signals during gameplay. This study proposes a multi-genre serious-game framework combined with machine-learning techniques to predict suitability for software development roles. Developer-relevant personality and behavioral traits were identified through a systematic literature review and an empirical study of professional software engineers. A custom mobile game was designed to elicit behaviors related to problem solving, planning, adaptability, persistence, time management, and information seeking. Fine-grained gameplay event data were collected and analyzed using a two-phase modeling strategy where suitability was predicted exclusively from gameplay-derived behavioral features. Results show that our model achieved up to 97% precision and 94% accuracy. Behavioral analysis revealed that proper candidates exhibited distinct gameplay patterns, such as more wins in puzzle-based games, more side challenges, navigating menus more frequently, and exhibiting fewer pauses, retries, and surrender actions. These findings demonstrate that implicit behavioral traces captured during gameplay is promising in predicting software-development suitability without explicit personality testing, supporting serious games as a scalable, engaging, and less biased alternative for career assessment.
♻ ☆ GRACE: Discriminator-Guided Chain-of-Thought Reasoning
In the context of multi-step reasoning, e.g., with chain-of-thought, language models (LMs) can easily assign a high likelihood to incorrect steps. As a result, decoding strategies that optimize for solution likelihood often yield incorrect solutions. To address this issue, we propose Guiding chain-of-thought ReAsoning with a CorrectnEss Discriminator (GRACE), a stepwise decoding approach that steers the decoding process towards producing correct reasoning steps. GRACE employs a step-level verifier or discriminator trained with a contrastive loss over correct and incorrect steps, which is used during decoding to score next-step candidates based on their correctness. Importantly, GRACE only requires sampling from the LM, without the need for LM training or fine-tuning. Using models from FLAN-T5 and LLaMA families, we evaluate GRACE over four math and two symbolic reasoning tasks, where it exhibits substantial performance gains compared to greedy decoding, verifiers, and self-consistency in most settings. When further combined with self-consistency, GRACE outperforms all the baselines by sizeable margins. Human and LLM evaluations over GSM8K show that GRACE not only improves the final answer accuracy but also the correctness of the intermediate reasoning. Our implementation can be accessed at https://github.com/mukhal/grace.
comment: Fixed typos
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems WWW 2026
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review WWW 2026
♻ ☆ Behaviour Policy Optimization: Provably Lower Variance Return Estimates for Off-Policy Reinforcement Learning AAAI 2026
Many reinforcement learning algorithms, particularly those that rely on return estimates for policy improvement, can suffer from poor sample efficiency and training instability due to high-variance return estimates. In this paper we leverage new results from off-policy evaluation; it has recently been shown that well-designed behaviour policies can be used to collect off-policy data for provably lower variance return estimates. This result is surprising as it means collecting data on-policy is not variance optimal. We extend this key insight to the online reinforcement learning setting, where both policy evaluation and improvement are interleaved to learn optimal policies. Off-policy RL has been well studied (e.g., IMPALA), with correct and truncated importance weighted samples for de-biasing and managing variance appropriately. Generally these approaches are concerned with reconciling data collected from multiple workers in parallel, while the policy is updated asynchronously, mismatch between the workers and policy is corrected in a mathematically sound way. Here we consider only one worker - the behaviour policy, which is used to collect data for policy improvement, with provably lower variance return estimates. In our experiments we extend two policy-gradient methods with this regime, demonstrating better sample efficiency and performance over a diverse set of environments.
comment: Main Track at AAAI 2026
♻ ☆ Hybrid coupling with operator inference and the overlapping Schwarz alternating method
This paper presents a novel hybrid approach for coupling subdomain-local non-intrusive Operator Inference (OpInf) reduced order models (ROMs) with each other and with subdomain-local high-fidelity full order models (FOMs) with using the overlapping Schwarz alternating method (O-SAM). The proposed methodology addresses significant challenges in multiscale modeling and simulation, particularly the long runtime and complex mesh generation requirements associated with traditional high-fidelity simulations. By leveraging the flexibility of O-SAM, we enable the seamless integration of disparate models, meshes, and time integration schemes, enhancing computational efficiency while maintaining high accuracy. Our approach is demonstrated through a series of numerical experiments on complex three-dimensional (3D) solid dynamics problems, showcasing speedups of up to 106x compared to conventional FOM-FOM couplings. This work paves the way for more efficient simulation workflows in engineering applications, with potential extensions to a wide range of partial differential equations.
♻ ☆ Beyond Expectations: Learning with Stochastic Dominance Made Practical
Stochastic dominance serves as a general framework for modeling a broad spectrum of decision preferences under uncertainty, with risk aversion as one notable example, as it naturally captures the intrinsic structure of the underlying uncertainty, in contrast to simply resorting to the expectations. Despite theoretical appeal, the application of stochastic dominance in machine learning has been scarce, due to the following challenges: $\textbf{i)}$, the original concept of stochastic dominance only provides a $\textit{partial order}$, and therefore, is not amenable to serve as a general optimality criterion; and $\textbf{ii)}$, an efficient computational recipe remains lacking due to the continuum nature of evaluating stochastic dominance. In this work, we make the first attempt towards establishing a general framework of learning with stochastic dominance. We first generalize the stochastic dominance concept to enable feasible comparisons between any arbitrary pair of random variables. We next develop a simple and computationally efficient approach for finding the optimal solution in terms of stochastic dominance, which can be seamlessly plugged into many learning tasks. Numerical experiments demonstrate that the proposed method achieves comparable performance as standard risk-neutral strategies and obtains better trade-offs against risk across a variety of applications including supervised learning, reinforcement learning, and portfolio optimization.
♻ ☆ User-Assistant Bias in LLMs
Modern large language models (LLMs) are typically trained and deployed using structured role tags (e.g. system, user, assistant, tool) that explicitly mark the source of each piece of context. While these tags are essential for instruction following and controllability, asymmetries in the training data associated with different role tags can introduce inductive biases. In this paper, we study this phenomenon by formalizing user-assistant bias, defined as the tendency of an LLM to preferentially rely on information from either the user or assistant role when there is a conflict. We introduce a task-agnostic benchmark UserAssist and evaluate such bias in 52 frontier models. We observe that most of the instruction-tuned models exhibit strong user bias, whereas base and reasoning models are close to neutral. Using controlled fine-tuning experiments, we isolate which post-training recipes drive the observed user-assistant bias. We find that human-preference alignment amplifies user bias, while reasoning fine-tuning reduces it. Finally, we show that user-assistant bias can be bidirectionally controlled via direct preference optimization (DPO) on UserAssist-train, and that the resulting bias reliably generalizes to a more realistic multi-turn conversation dataset. These results reveal an underexplored consequence of role-tagged training and provide a principled framework to diagnose and control tag-induced biases in modern LLMs.
♻ ☆ Learning Repetition-Invariant Representations for Polymer Informatics NeurIPS 2025
Polymers are large macromolecules composed of repeating structural units known as monomers and are widely applied in fields such as energy storage, construction, medicine, and aerospace. However, existing graph neural network methods, though effective for small molecules, only model the single unit of polymers and fail to produce consistent vector representations for the true polymer structure with varying numbers of units. To address this challenge, we introduce Graph Repetition Invariance (GRIN), a novel method to learn polymer representations that are invariant to the number of repeating units in their graph representations. GRIN integrates a graph-based maximum spanning tree alignment with repeat-unit augmentation to ensure structural consistency. We provide theoretical guarantees for repetition-invariance from both model and data perspectives, demonstrating that three repeating units are the minimal augmentation required for optimal invariant representation learning. GRIN outperforms state-of-the-art baselines on both homopolymer and copolymer benchmarks, learning stable, repetition-invariant representations that generalize effectively to polymer chains of unseen sizes.
comment: Accepted to NeurIPS 2025
♻ ☆ Chimera: Harnessing Multi-Agent LLMs for Automatic Insider Threat Simulation NDSS 2026
Insider threats pose a persistent and critical security risk, yet are notoriously difficult to detect in complex enterprise environments, where malicious actions are often hidden within seemingly benign user behaviors. Although machine-learning-based insider threat detection (ITD) methods have shown promise, their effectiveness is fundamentally limited by the scarcity of high-quality and realistic training data. Enterprise internal data is highly sensitive and rarely accessible, while existing public and synthetic datasets are either small-scale or lack sufficient realism, semantic richness, and behavioral diversity. To address this challenge, we propose Chimera, an LLM-based multi-agent framework that automatically simulates both benign and malicious insider activities and generates comprehensive system logs across diverse enterprise environments. Chimera models each agent as an individual employee with fine-grained roles and supports group meetings, pairwise interactions, and self-organized scheduling to capture realistic organizational dynamics. Based on 15 insider attacks abstracted from real-world incidents, we deploy Chimera in three representative data-sensitive organizational scenarios and construct ChimeraLog, a new dataset for developing and evaluating ITD methods. We evaluate ChimeraLog through human studies and quantitative analyses, demonstrating its diversity and realism. Experiments with existing ITD methods show substantially lower detection performance on ChimeraLog compared to prior datasets, indicating a more challenging and realistic benchmark. Moreover, despite distribution shifts, models trained on ChimeraLog exhibit strong generalization, highlighting the practical value of LLM-based multi-agent simulation for advancing insider threat detection.
comment: Accepted by NDSS 2026
♻ ☆ Shutdownable Agents through POST-Agency
Many fear that future artificial agents will resist shutdown. I present an idea - the POST-Agents Proposal - for ensuring that doesn't happen. I propose that we train agents to satisfy Preferences Only Between Same-Length Trajectories (POST). I then prove that POST - together with other conditions - implies Neutrality+: the agent maximizes expected utility, ignoring the probability distribution over trajectory-lengths. I argue that Neutrality+ keeps agents shutdownable and allows them to be useful.
♻ ☆ Damba-ST: Domain-Adaptive Mamba for Efficient Urban Spatio-Temporal Prediction ICDE 2026
Training urban spatio-temporal foundation models that generalize well across diverse regions and cities is critical for deploying urban services in unseen or data-scarce regions. Recent studies have typically focused on fusing cross-domain spatio-temporal data to train unified Transformer-based models. However, these models suffer from quadratic computational complexity and high memory overhead, limiting their scalability and practical deployment. Inspired by the efficiency of Mamba, a state space model with linear time complexity, we explore its potential for efficient urban spatio-temporal prediction. However, directly applying Mamba as a spatio-temporal backbone leads to negative transfer and severe performance degradation. This is primarily due to spatio-temporal heterogeneity and the recursive mechanism of Mamba's hidden state updates, which limit cross-domain generalization. To overcome these challenges, we propose Damba-ST, a novel domain-adaptive Mamba-based model for efficient urban spatio-temporal prediction. Damba-ST retains Mamba's linear complexity advantage while significantly enhancing its adaptability to heterogeneous domains. Specifically, we introduce two core innovations: (1) a domain-adaptive state space model that partitions the latent representation space into a shared subspace for learning cross-domain commonalities and independent, domain-specific subspaces for capturing intra-domain discriminative features; (2) three distinct Domain Adapters, which serve as domain-aware proxies to bridge disparate domain distributions and facilitate the alignment of cross-domain commonalities. Extensive experiments demonstrate the generalization and efficiency of Damba-ST. It achieves state-of-the-art performance on prediction tasks and demonstrates strong zero-shot generalization, enabling seamless deployment in new urban environments without extensive retraining or fine-tuning.
comment: Accepted by ICDE 2026
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms AAAI26
Wave-like images--from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames--encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise \(\sin(\cdot)\) mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets--including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics--demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
comment: AAAI26 Poster
♻ ☆ The Gaining Paths to Investment Success: Information-Driven LLM Graph Reasoning for Venture Capital Prediction
Most venture capital (VC) investments fail, while a few deliver outsized returns. Accurately predicting startup success requires synthesizing complex relational evidence, including company disclosures, investor track records, and investment network structures, through explicit reasoning to form coherent, interpretable investment theses. Traditional machine learning and graph neural networks both lack this reasoning capability. Large language models (LLMs) offer strong reasoning but face a modality mismatch with graphs. Recent graph-LLM methods target in-graph tasks where answers lie within the graph, whereas VC prediction is off-graph: the target exists outside the network. The core challenge is selecting graph paths that maximize predictor performance on an external objective while enabling step-by-step reasoning. We present MIRAGE-VC, a multi-perspective retrieval-augmented generation framework that addresses two obstacles: path explosion (thousands of candidate paths overwhelm LLM context) and heterogeneous evidence fusion (different startups need different analytical emphasis). Our information-gain-driven path retriever iteratively selects high-value neighbors, distilling investment networks into compact chains for explicit reasoning. A multi-agent architecture integrates three evidence streams via a learnable gating mechanism based on company attributes. Under strict anti-leakage controls, MIRAGE-VC achieves +5.0% F1 and +16.6% PrecisionAt5, and sheds light on other off-graph prediction tasks such as recommendation and risk assessment. Code: https://anonymous.4open.science/r/MIRAGE-VC-323F.
Computation and Language 42
☆ T3C: Test-Time Tensor Compression with Consistency Guarantees
We present T3C, a train-once, test-time budget-conditioned compression framework that exposes rank and precision as a controllable deployment knob. T3C combines elastic tensor factorization (maintained up to a maximal rank) with rank-tied mixed-precision quantization and a lightweight controller that maps a latency/energy/size budget token to per-layer rank/bit assignments; the policy snaps to hardware-aligned profiles and is monotone in the budget. A fast, layerwise consistency certificate, computed from spectral proxies and activation statistics, upper-bounds logit drift and regularizes training, yielding a practical reliability signal with negligible overhead. On ImageNet-1k, T3C shifts the vision Pareto frontier: for ResNet-50 at matched accuracy (\leq 0.5% drop), p50 latency is 1.18ms with a 38MB model, outperforming PTQ-8b (1.44ms, 88MB); for ViT-B/16, T3C reaches 2.30ms p50 with 59MB, improving over strong PTQ/QAT baselines. A single T3C checkpoint therefore provides predictable, certificate-backed accuracy-latency-size trade-offs on demand across devices.
☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold. The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces. This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: 26 pages
☆ Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research.
☆ LLM Collusion
We study how delegating pricing to large language models (LLMs) can facilitate collusion in a duopoly when both sellers rely on the same pre-trained model. The LLM is characterized by (i) a propensity parameter capturing its internal bias toward high-price recommendations and (ii) an output-fidelity parameter measuring how tightly outputs track that bias; the propensity evolves through retraining. We show that configuring LLMs for robustness and reproducibility can induce collusion via a phase transition: there exists a critical output-fidelity threshold that pins down long-run behavior. Below it, competitive pricing is the unique long-run outcome. Above it, the system is bistable, with competitive and collusive pricing both locally stable and the realized outcome determined by the model's initial preference. The collusive regime resembles tacit collusion: prices are elevated on average, yet occasional low-price recommendations provide plausible deniability. With perfect fidelity, full collusion emerges from any interior initial condition. For finite training batches of size $b$, infrequent retraining (driven by computational costs) further amplifies collusion: conditional on starting in the collusive basin, the probability of collusion approaches one as $b$ grows, since larger batches dampen stochastic fluctuations that might otherwise tip the system toward competition. The indeterminacy region shrinks at rate $O(1/\sqrt{b})$.
comment: 44 pages
☆ From Policy to Logic for Efficient and Interpretable Coverage Assessment AAAI 2026
Large Language Models (LLMs) have demonstrated strong capabilities in interpreting lengthy, complex legal and policy language. However, their reliability can be undermined by hallucinations and inconsistencies, particularly when analyzing subjective and nuanced documents. These challenges are especially critical in medical coverage policy review, where human experts must be able to rely on accurate information. In this paper, we present an approach designed to support human reviewers by making policy interpretation more efficient and interpretable. We introduce a methodology that pairs a coverage-aware retriever with symbolic rule-based reasoning to surface relevant policy language, organize it into explicit facts and rules, and generate auditable rationales. This hybrid system minimizes the number of LLM inferences required which reduces overall model cost. Notably, our approach achieves a 44% reduction in inference cost alongside a 4.5% improvement in F1 score, demonstrating both efficiency and effectiveness.
comment: Accepted at AIMedHealth @ AAAI 2026
MambaFormer: Token-Level Guided Routing Mixture-of-Experts for Accurate and Efficient Clinical Assistance
The deployment of large language models (LLMs) in real-world clinical applications is constrained by the fundamental trade-off between computational cost and the efficiency of linear-time models. To address this, we propose an LLM-based MambaFormer hybrid Mixture-of-Experts (MoE) framework for efficient medical question-answering (QA) and clinical assistance. The MambaFormer employs a lightweight gating mechanism that performs token-level dynamic routing to a customized Transformer expert (ET5) for short, complex queries or to a State Space Model expert (EMamba) for long, high-throughput sequences. The customized EMamba and ET5 models are tailored to accommodate input sequence dimensionality, embedding structure, sequence length, and target-specific output heads, and are fine-tuned through transfer learning on a new, custom-designed DentalQA dataset. Moreover, intelligent routing decisions are driven by the contextual complexity of token embeddings, normalized sequence length, and domain-aware features, thereby enforcing a Pareto-optimal trade-off between inference latency and prediction accuracy. Furthermore, a novel utility-guided multi-objective loss jointly optimizes decisions, router parameters, routing behavior, expert utilization, and computational cost by adaptively regulating token-level expert activation. Finally, the proposed MambaFormer is cross-validated (holdout) for medical QA on the new, custom-designed DentalQA and PubMedQA datasets and compared with state-of-the-art techniques. The proposed MambaFormer outperforms (BERTScore = 0.9180) with ultra-low latency (0.077 s), delivering a 24.4 speedup over T5-Large and establishing a scalable solution for resource-constrained clinical deployment.
comment: 28 Pages, Tables 12, Figure 09
☆ Entity-Aware and Secure Query Optimization in Database Using Named Entity Recognition
Cloud storage has become the backbone of modern data infrastructure, yet privacy and efficient data retrieval remain significant challenges. Traditional privacy-preserving approaches primarily focus on enhancing database security but fail to address the automatic identification of sensitive information before encryption. This can dramatically reduce query processing time and mitigate errors during manual identification of sensitive information, thereby reducing potential privacy risks. To address this limitation, this research proposes an intelligent privacy-preserving query optimization framework that integrates Named Entity Recognition (NER) to detect sensitive information in queries, utilizing secure data encryption and query optimization techniques for both sensitive and non-sensitive data in parallel, thereby enabling efficient database optimization. Combined deep learning algorithms and transformer-based models to detect and classify sensitive entities with high precision, and the Advanced Encryption Standard (AES) algorithm to encrypt, with blind indexing to secure search functionality of the sensitive data, whereas non-sensitive data was divided into groups using the K-means algorithm, along with a rank search for optimization. Among all NER models, the Deep Belief Network combined with Long Short-Term Memory (DBN-LSTM) delivers the best performance, with an accuracy of 93% and precision (94%), recall, and F1 score of 93%, and 93%, respectively. Besides, encrypted search achieved considerably faster results with the help of blind indexing, and non-sensitive data fetching also outperformed traditional clustering-based searches. By integrating sensitive data detection, encryption, and query optimization, this work advances the state of privacy-preserving computation in modern cloud infrastructures.
comment: 48 pages, 15 figures, 14 tables
☆ Racka: Efficient Hungarian LLM Adaptation on Academic Infrastructure
We present Racka, a lightweight, continually pretrained large language model designed to bridge the resource gap between Hungarian and high-resource languages such as English and German. Racka employs parameter-efficient continual pretraining via Low-Rank Adaptation (LoRA) on a Qwen-3 4B backbone, making the recipe practical on A100 (40GB)-based HPC clusters with low inter-node bandwidth. To better match the training distribution, we replace and adapt the tokenizer, achieving substantially improved tokenization fertility for Hungarian while maintaining competitive performance in English and German. The model is trained on 160B subword tokens drawn from a mixture of internet and high-quality curated sources, with a composition of 44% Hungarian, 24% English, 21% German, and 11% code. This data mix is chosen to mitigate catastrophic forgetting and preserve high-resource language capabilities during continual pretraining. Our preliminary results indicate modest but stable results in language adaptation.
comment: 18 pages, 1 figures. To appear in the XXII. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2026)
☆ Stylometry Analysis of Human and Machine Text for Academic Integrity
This work addresses critical challenges to academic integrity, including plagiarism, fabrication, and verification of authorship of educational content, by proposing a Natural Language Processing (NLP)-based framework for authenticating students' content through author attribution and style change detection. Despite some initial efforts, several aspects of the topic are yet to be explored. In contrast to existing solutions, the paper provides a comprehensive analysis of the topic by targeting four relevant tasks, including (i) classification of human and machine text, (ii) differentiating in single and multi-authored documents, (iii) author change detection within multi-authored documents, and (iv) author recognition in collaboratively produced documents. The solutions proposed for the tasks are evaluated on two datasets generated with Gemini using two different prompts, including a normal and a strict set of instructions. During experiments, some reduction in the performance of the proposed solutions is observed on the dataset generated through the strict prompt, demonstrating the complexities involved in detecting machine-generated text with cleverly crafted prompts. The generated datasets, code, and other relevant materials are made publicly available on GitHub, which are expected to provide a baseline for future research in the domain.
comment: 16 pages, 9 tables, 3 figures
☆ Almost Clinical: Linguistic properties of synthetic electronic health records
This study evaluates the linguistic and clinical suitability of synthetic electronic health records (EHRs) in the field of mental health. First, we describe the rationale and the methodology for creating the synthetic corpus. Second, we assess agency, modality, and information flow across four clinical genres (Assessments, Correspondence, Referrals and Care plans) to understand how LLMs grammatically construct medical authority and patient agency through linguistic choices. While LLMs produce coherent, terminology-appropriate texts that approximate clinical practice, systematic divergences remain, including registerial shifts, insufficient clinical specificity, and inaccuracies in medication use and diagnostic procedures.
☆ Bridging the Semantic Gap for Categorical Data Clustering via Large Language Models ICPR 2026
Categorical data are prevalent in domains such as healthcare, marketing, and bioinformatics, where clustering serves as a fundamental tool for pattern discovery. A core challenge in categorical data clustering lies in measuring similarity among attribute values that lack inherent ordering or distance. Without appropriate similarity measures, values are often treated as equidistant, creating a semantic gap that obscures latent structures and degrades clustering quality. Although existing methods infer value relationships from within-dataset co-occurrence patterns, such inference becomes unreliable when samples are limited, leaving the semantic context of the data underexplored. To bridge this gap, we present ARISE (Attention-weighted Representation with Integrated Semantic Embeddings), which draws on external semantic knowledge from Large Language Models (LLMs) to construct semantic-aware representations that complement the metric space of categorical data for accurate clustering. That is, LLM is adopted to describe attribute values for representation enhancement, and the LLM-enhanced embeddings are combined with the original data to explore semantically prominent clusters. Experiments on eight benchmark datasets demonstrate consistent improvements over seven representative counterparts, with gains of 19-27%. Code is available at https://github.com/develop-yang/ARISE
comment: Submitted to ICPR 2026
☆ DHI: Leveraging Diverse Hallucination Induction for Enhanced Contrastive Factuality Control in Large Language Models ICONIP 2025
Large language models (LLMs) frequently produce inaccurate or fabricated information, known as "hallucinations," which compromises their reliability. Existing approaches often train an "Evil LLM" to deliberately generate hallucinations on curated datasets, using these induced hallucinations to guide contrastive decoding against a reliable "positive model" for hallucination mitigation. However, this strategy is limited by the narrow diversity of hallucinations induced, as Evil LLMs trained on specific error types tend to reproduce only these particular patterns, thereby restricting their overall effectiveness. To address these limitations, we propose DHI (Diverse Hallucination Induction), a novel training framework that enables the Evil LLM to generate a broader range of hallucination types without relying on pre-annotated hallucination data. DHI employs a modified loss function that down-weights the generation of specific factually correct tokens, encouraging the Evil LLM to produce diverse hallucinations at targeted positions while maintaining overall factual content. Additionally, we introduce a causal attention masking adaptation to reduce the impact of this penalization on the generation of subsequent tokens. During inference, we apply an adaptive rationality constraint that restricts contrastive decoding to tokens where the positive model exhibits high confidence, thereby avoiding unnecessary penalties on factually correct tokens. Extensive empirical results show that DHI achieves significant performance gains over other contrastive decoding-based approaches across multiple hallucination benchmarks.
comment: ICONIP 2025
☆ SongSage: A Large Musical Language Model with Lyric Generative Pre-training
Large language models have achieved significant success in various domains, yet their understanding of lyric-centric knowledge has not been fully explored. In this work, we first introduce PlaylistSense, a dataset to evaluate the playlist understanding capability of language models. PlaylistSense encompasses ten types of user queries derived from common real-world perspectives, challenging LLMs to accurately grasp playlist features and address diverse user intents. Comprehensive evaluations indicate that current general-purpose LLMs still have potential for improvement in playlist understanding. Inspired by this, we introduce SongSage, a large musical language model equipped with diverse lyric-centric intelligence through lyric generative pretraining. SongSage undergoes continual pretraining on LyricBank, a carefully curated corpus of 5.48 billion tokens focused on lyrical content, followed by fine-tuning with LyricBank-SFT, a meticulously crafted instruction set comprising 775k samples across nine core lyric-centric tasks. Experimental results demonstrate that SongSage exhibits a strong understanding of lyric-centric knowledge, excels in rewriting user queries for zero-shot playlist recommendations, generates and continues lyrics effectively, and performs proficiently across seven additional capabilities. Beyond its lyric-centric expertise, SongSage also retains general knowledge comprehension and achieves a competitive MMLU score. We will keep the datasets inaccessible due to copyright restrictions and release the SongSage and training script to ensure reproducibility and support music AI research and applications, the datasets release plan details are provided in the appendix.
☆ KOS-TL (Knowledge Operation System Type Logic)
This paper introduces KOS-TL (Knowledge Operation System Type Logic), a novel constructive framework designed to provide a rigorous logical foundation for autonomous and executable knowledge systems. Traditional knowledge representation models often suffer from a gap between static symbolic logic and dynamic system execution. To bridge this divide, KOS-TL leverages Dependent Type Theory to unify data, logic, and proof into a singular computational substrate.The architecture of KOS-TL is organized into three hierarchical layers: the Core Layer, which defines the static type universe and constructive primitives; the Kernel Layer, which governs state evolution through an event-driven mechanism characterized by the triple $\langle Σ, \textsf{Ev}, Δ\rangle$; and the Runtime Layer, responsible for the bidirectional refinement of physical signals into logical evidence. We formally define the operational semantics of the system and prove key meta-theoretical properties, including Progress and Evolutionary Consistency, ensuring that the system remains logically self-consistent and free from stuck states during continuous state transitions.By integrating Davidsonian event semantics with Martin-Löf type theory, KOS-TL enables the construction of "proof-carrying knowledge," where every state change in the knowledge base is accompanied by a formal witness of its validity. We demonstrate the practical utility of this logic through application examples in industrial traceability and cross-border financial compliance. Our results suggest that KOS-TL provides a robust, formally verifiable basis for the next generation of intelligent, autonomous operating systems.
☆ RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian ICSE'26
Large Language Models (LLMs)-powered code review automation has the potential to transform code review workflows. Despite the advances of LLM-powered code review comment generation approaches, several practical challenges remain for designing enterprise-grade code review automation tools. In particular, this paper aims at answering the practical question: how can we design a review-guided, context-aware, quality-checked code review comment generation without fine-tuning? In this paper, we present RovoDev Code Reviewer, an enterprise-grade LLM-based code review automation tool designed and deployed at scale within Atlassian's development ecosystem with seamless integration into Atlassian's Bitbucket. Through the offline, online, user feedback evaluations over a one-year period, we conclude that RovoDev Code Reviewer is (1) effective in generating code review comments that could lead to code resolution for 38.70% (i.e., comments that triggered code changes in the subsequent commits); and (2) offers the promise of accelerating feedback cycles (i.e., decreasing the PR cycle time by 30.8%), alleviating reviewer workload (i.e., reducing the number of human-written comments by 35.6%), and improving overall software quality (i.e., finding errors with actionable suggestions).
comment: Accepted at the 48th International Conference on Software Engineering (ICSE'26), SEIP Track. 12 Pages
☆ RoboPhD: Self-Improving Text-to-SQL Through Autonomous Agent Evolution
We present RoboPhD, a system where AI agents autonomously conduct research to improve Text-to-SQL performance. RoboPhD implements a closed-loop evolution cycle with two coordinated components: a SQL Generation agent composed of a database analysis script and SQL generation instructions, and an Evolution agent that designs new versions based on performance feedback. Central to the framework is an ELO-based selection mechanism enabling survival-of-the-fittest dynamics while handling non-transitivity in performance. Starting from a naive 70-line baseline, RoboPhD evolves agents through iterative cross-pollination, discovering effective techniques without any external guidance on the Text-to-SQL domain. Our best agent, evolved to 1500 lines over 18 iterations, autonomously discovered strategies such as size-adaptive database analysis that adjusts depth based on schema complexity and SQL generation patterns for column selection, evidence interpretation, and aggregation. Evolution provides the largest gains on cheaper models: while we improve by 2.3 points over a strong Claude Opus 4.5 naive baseline, we show an improvement of 8.9 points over the weaker Claude Haiku model. This enables 'skip a tier' deployment: evolved Haiku exceeds naive Sonnet accuracy, and evolved Sonnet exceeds naive Opus, both at lower cost. The full system achieves 73.67% accuracy on the BIRD test set, demonstrating that AI can autonomously build a strong agentic system with only a trivial human-provided starting point.
comment: 18 pages, 3 figures
☆ Listen, Attend, Understand: a Regularization Technique for Stable E2E Speech Translation Training on High Variance labels
End-to-End Speech Translation often shows slower convergence and worse performance when target transcriptions exhibit high variance and semantic ambiguity. We propose Listen, Attend, Understand (LAU), a semantic regularization technique that constrains the acoustic encoder's latent space during training. By leveraging frozen text embeddings to provide a directional auxiliary loss, LAU injects linguistic groundedness into the acoustic representation without increasing inference cost. We evaluate our method on a Bambara-to-French dataset with 30 hours of Bambara speech translated by non-professionals. Experimental results demonstrate that LAU models achieve comparable performance by standard metrics compared to an E2E-ST system pretrained with 100\% more data and while performing better in preserving semantic meaning. Furthermore, we introduce Total Parameter Drift as a metric to quantify the structural impact of regularization to demonstrate that semantic constraints actively reorganize the encoder's weights to prioritize meaning over literal phonetics. Our findings suggest that LAU is a robust alternative to post-hoc rescoring and a valuable addition to E2E-ST training, especially when training data is scarce and/or noisy.
comment: 9 mages, 3 figures
☆ EmoLoom-2B: Fast Base-Model Screening for Emotion Classification and VAD with Lexicon-Weak Supervision and KV-Off Evaluation
We introduce EmoLoom-2B, a lightweight and reproducible pipeline that turns small language models under 2B parameters into fast screening candidates for joint emotion classification and Valence-Arousal-Dominance prediction. To ensure protocol-faithful and fair evaluation, we unify data loading, training, and inference under a single JSON input-output contract and remove avoidable variance by adopting KV-off decoding as the default setting. We incorporate two orthogonal semantic regularizers: a VAD-preserving constraint that aligns generated text with target VAD triples, and a lightweight external appraisal classifier that provides training-time guidance on goal attainment, controllability, certainty, and fairness without injecting long rationales. To improve polarity sensitivity, we introduce Valence Flip augmentation based on mirrored emotional pairs. During supervised fine-tuning, we apply A/B mixture sampling with entropy-aware temperature scheduling to balance coverage and convergence. Using Qwen-1.8B-Chat as the base model, EmoLoom-2B achieves strong performance on GoEmotions and EmpatheticDialogues, and demonstrates robust cross-corpus generalization on DailyDialog. The proposed recipe is budget-aware, auditable, and re-entrant, serving as a dependable screening pass before heavier training or multimodal fusion.
comment: This paper presents an initial and self-contained study of a lightweight screening pipeline for emotion-aware language modeling, intended as a reproducible baseline and system-level design reference
☆ ks-lit-3m: A 3.1 million word kashmiri text dataset for large language model pretraining
Large Language Models (LLMs) demonstrate remarkable fluency across high-resource languages yet consistently fail to generate coherent text in Kashmiri, a language spoken by approximately seven million people. This performance disparity stems not from inherent model limitations but from a critical scarcity of high-quality training data. Decades of Kashmiri literature remain inaccessible to modern NLP pipelines due to their encoding in the proprietary InPage desktop publishing format. This paper introduces KS-LIT-3M, a curated corpus of 3.1 million words (16.4 million characters) specifically designed for pretraining language models on Kashmiri. The dataset is structured as a single continuous linear text stream, optimized for causal language model training where models learn to predict subsequent tokens from preceding context. The corpus was constructed through the development of a specialized InPage-to-Unicode converter, followed by rigorous preprocessing including English contamination removal, character normalization, and quality validation. Encompassing 131,607 unique words drawn from diverse genres including literary works, journalistic writing, academic texts, and religious scholarship, KS-LIT-3M addresses a fundamental resource gap for Kashmiri language technology. The dataset is released under the CC-BY-4.0 license to facilitate research in Kashmiri natural language processing.
☆ 600k-ks-ocr: a large-scale synthetic dataset for optical character recognition in kashmiri script
This technical report presents the 600K-KS-OCR Dataset, a large-scale synthetic corpus comprising approximately 602,000 word-level segmented images designed for training and evaluating optical character recognition systems targeting Kashmiri script. The dataset addresses a critical resource gap for Kashmiri, an endangered Dardic language utilizing a modified Perso-Arabic writing system spoken by approximately seven million people. Each image is rendered at 256x64 pixels with corresponding ground-truth transcriptions provided in multiple formats compatible with CRNN, TrOCR, and generalpurpose machine learning pipelines. The generation methodology incorporates three traditional Kashmiri typefaces, comprehensive data augmentation simulating real-world document degradation, and diverse background textures to enhance model robustness. The dataset is distributed across ten partitioned archives totaling approximately 10.6 GB and is released under the CC-BY-4.0 license to facilitate research in low-resource language optical character recognition.
☆ Unsupervised Text Style Transfer for Controllable Intensity
Unsupervised Text Style Transfer (UTST) aims to build a system to transfer the stylistic properties of a given text without parallel text pairs. Compared with text transfer between style polarities, UTST for controllable intensity is more challenging due to the subtle differences in stylistic features across different intensity levels. Faced with the challenges posed by the lack of parallel data and the indistinguishability between adjacent intensity levels, we propose a SFT-then-PPO paradigm to fine-tune an LLM. We first fine-tune the LLM with synthesized parallel data. Then, we further train the LLM with PPO, where the rewards are elaborately designed for distinguishing the stylistic intensity in hierarchical levels. Both the global and local stylistic features are considered to formulate the reward functions. The experiments on two UTST benchmarks showcase that both rewards have their advantages and applying them to LLM fine-tuning can effectively improve the performance of an LLM backbone based on various evaluation metrics. Even for close levels of intensity, we can still observe the noticeable stylistic difference between the generated text.
☆ KV-Embedding: Training-free Text Embedding via Internal KV Re-routing in Decoder-only LLMs
While LLMs are powerful embedding backbones, their application in training-free settings faces two structural challenges: causal attention restricts early tokens from accessing subsequent context, and the next-token prediction objective biases representations toward generation rather than semantic compression. To address these limitations, we propose KV-Embedding, a framework that activates the latent representation power of frozen LLMs. Our method leverages the observation that the key-value (KV) states of the final token at each layer encode a compressed view of the sequence. By re-routing these states as a prepended prefix, we enable all tokens to access sequence-level context within a single forward pass. To ensure model-agnostic applicability, we introduce an automated layer selection strategy based on intrinsic dimensionality. Evaluations on MTEB across Qwen, Mistral, and Llama backbones show that KV-Embedding outperforms existing training-free baselines by up to 10%, while maintaining robust performance on sequences up to 4,096 tokens. These results demonstrate that internal state manipulation offers an efficient alternative to input modification, and we hope this work encourages further exploration of LLM internals for representation learning.
☆ Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation
Small language models (SLMs) offer significant deployment advantages but often struggle to match the dialogue quality of larger models in open-domain settings. In this paper, we propose a multi-dimensional prompt-chaining framework that integrates Naturalness, Coherence, and Engagingness dimensions to enhance human-likeness in open-domain dialogue generation. We apply the framework to two SLMs, TinyLlama and Llama-2-7B, and benchmark their performance against responses generated by substantially larger models, including Llama-2-70B and GPT-3.5 Turbo. We then employ automatic and human evaluation to assess the responses based on diversity, contextual coherence, as well as overall quality. Results show that the full framework improves response diversity by up to 29%, contextual coherence by up to 28%, and engagingness as well as naturalness by up to 29%. Notably, Llama-2-7B achieves performance comparable to substantially larger models, including Llama-2-70B and GPT-3.5 Turbo. Overall, the findings demonstrate that carefully designed prompt-based strategies provide an effective and resource-efficient pathway to improving open-domain dialogue quality in SLMs.
☆ A Platform for Interactive AI Character Experiences
From movie characters to modern science fiction - bringing characters into interactive, story-driven conversations has captured imaginations across generations. Achieving this vision is highly challenging and requires much more than just language modeling. It involves numerous complex AI challenges, such as conversational AI, maintaining character integrity, managing personality and emotions, handling knowledge and memory, synthesizing voice, generating animations, enabling real-world interactions, and integration with physical environments. Recent advancements in the development of foundation models, prompt engineering, and fine-tuning for downstream tasks have enabled researchers to address these individual challenges. However, combining these technologies for interactive characters remains an open problem. We present a system and platform for conveniently designing believable digital characters, enabling a conversational and story-driven experience while providing solutions to all of the technical challenges. As a proof-of-concept, we introduce Digital Einstein, which allows users to engage in conversations with a digital representation of Albert Einstein about his life, research, and persona. While Digital Einstein exemplifies our methods for a specific character, our system is flexible and generalizes to any story-driven or conversational character. By unifying these diverse AI components into a single, easy-to-adapt platform, our work paves the way for immersive character experiences, turning the dream of lifelike, story-based interactions into a reality.
☆ HyperJoin: LLM-augmented Hypergraph Link Prediction for Joinable Table Discovery
As a pivotal task in data lake management, joinable table discovery has attracted widespread interest. While existing language model-based methods achieve remarkable performance by combining offline column representation learning with online ranking, their design insufficiently accounts for the underlying structural interactions: (1) offline, they directly model tables into isolated or pairwise columns, thereby struggling to capture the rich inter-table and intra-table structural information; and (2) online, they rank candidate columns based solely on query-candidate similarity, ignoring the mutual interactions among the candidates, leading to incoherent result sets. To address these limitations, we propose HyperJoin, a large language model (LLM)-augmented Hypergraph framework for Joinable table discovery. Specifically, we first construct a hypergraph to model tables using both the intra-table hyperedges and the LLM-augmented inter-table hyperedges. Consequently, the task of joinable table discovery is formulated as link prediction on this constructed hypergraph. We then design HIN, a Hierarchical Interaction Network that learns expressive column representations through bidirectional message passing over columns and hyperedges. To strengthen coherence and internal consistency in the result columns, we cast online ranking as a coherence-aware top-k column selection problem. We then introduce a reranking module that leverages a maximum spanning tree algorithm to prune noisy connections and maximize coherence. Experiments demonstrate the superiority of HyperJoin, achieving average improvements of 21.4% (Precision@15) and 17.2% (Recall@15) over the best baseline.
☆ Intention Collapse: Intention-Level Metrics for Reasoning in Language Models
Every act of language generation compresses a rich internal state into a single token sequence. We call this process intention collapse: a many-to-one projection from a high dimensional intention space I into an external language space L. We formalize intention collapse for contemporary language models, define three simple, model agnostic intention metrics (intention entropy Hint, effective dimensionality dimeff, and latent knowledge recoverability Recov), and propose an empirical agenda for studying how inference time computation shapes internal intentions before they are verbalized. We also report a first small scale experiment. Using a 4 bit Mistral 7B model on 200 GSM8K problems, we compare a direct answer baseline, a chain of thought (CoT) regime, and a babble control. CoT raises accuracy from 5.5 percent to 53 percent, sharply reduces pre collapse intention entropy (from 1.42 to 0.37 bits), and shows higher global effective dimensionality than the other regimes despite producing fewer tokens than babble. At the same time, Hint has little item level predictive power, and a linear probe on I achieves AUROC 0.65 in the CoT regime but only about chance in the baseline regime, where it collapses to the majority class. These preliminary results indicate that intention level metrics can distinguish inference regimes and expose latent information that is partly lost during collapse, while also revealing important limitations of our current proxies
comment: 21 pages, 4 figures, 3 tables. Code: https://github.com/patriciomvera/intention-collapse-experiments
♻ ☆ GRACE: Discriminator-Guided Chain-of-Thought Reasoning
In the context of multi-step reasoning, e.g., with chain-of-thought, language models (LMs) can easily assign a high likelihood to incorrect steps. As a result, decoding strategies that optimize for solution likelihood often yield incorrect solutions. To address this issue, we propose Guiding chain-of-thought ReAsoning with a CorrectnEss Discriminator (GRACE), a stepwise decoding approach that steers the decoding process towards producing correct reasoning steps. GRACE employs a step-level verifier or discriminator trained with a contrastive loss over correct and incorrect steps, which is used during decoding to score next-step candidates based on their correctness. Importantly, GRACE only requires sampling from the LM, without the need for LM training or fine-tuning. Using models from FLAN-T5 and LLaMA families, we evaluate GRACE over four math and two symbolic reasoning tasks, where it exhibits substantial performance gains compared to greedy decoding, verifiers, and self-consistency in most settings. When further combined with self-consistency, GRACE outperforms all the baselines by sizeable margins. Human and LLM evaluations over GSM8K show that GRACE not only improves the final answer accuracy but also the correctness of the intermediate reasoning. Our implementation can be accessed at https://github.com/mukhal/grace.
comment: Fixed typos
♻ ☆ From Bench to Bedside: A Review of Clinical Trials in Drug Discovery and Development
Clinical trials are an indispensable part of the drug development process, bridging the gap between basic research and clinical application. During the development of new drugs, clinical trials are used not only to evaluate the safety and efficacy of the drug but also to explore its dosage, treatment regimens, and potential side effects. This review discusses the various stages of clinical trials, including Phase I (safety assessment), Phase II (preliminary efficacy evaluation), Phase III (large-scale validation), and Phase IV (post-marketing surveillance), highlighting the characteristics of each phase and their interrelationships. Additionally, the paper addresses the major challenges encountered in clinical trials, such as ethical issues, subject recruitment difficulties, diversity and representativeness concerns, and proposes strategies for overcoming these challenges. With the advancement of technology, innovative technologies such as artificial intelligence, big data, and digitalization are gradually transforming clinical trial design and implementation, improving trial efficiency and data quality. The article also looks forward to the future of clinical trials, particularly the impact of emerging therapies such as gene therapy and immunotherapy on trial design, as well as the importance of regulatory reforms and global collaboration. In conclusion, the core role of clinical trials in drug development will continue to drive the progress of innovative drug development and clinical treatment.
comment: 11 pages
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems WWW 2026
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review WWW 2026
♻ ☆ RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs in Medicine
Answering complex real-world questions in the medical domain often requires accurate retrieval from medical Textual Knowledge Graphs (medical TKGs), as the relational path information from TKGs could enhance the inference ability of Large Language Models (LLMs). However, the main bottlenecks lie in the scarcity of existing medical TKGs, the limited expressiveness of their topological structures, and the lack of comprehensive evaluations of current retrievers for medical TKGs. To address these challenges, we first develop a Dataset1 for LLMs Complex Reasoning over medical Textual Knowledge Graphs (RiTeK), covering a broad range of topological structures. Specifically, we synthesize realistic user queries integrating diverse topological structures, relational information, and complex textual descriptions. We conduct a rigorous medical expert evaluation process to assess and validate the quality of our synthesized queries. RiTeK also serves as a comprehensive benchmark dataset for evaluating the capabilities of retrieval systems built upon LLMs. By assessing 11 representative retrievers on this benchmark, we observe that existing methods struggle to perform well, revealing notable limitations in current LLM-driven retrieval approaches. These findings highlight the pressing need for more effective retrieval systems tailored for semi-structured data in the medical domain.
♻ ☆ User-Assistant Bias in LLMs
Modern large language models (LLMs) are typically trained and deployed using structured role tags (e.g. system, user, assistant, tool) that explicitly mark the source of each piece of context. While these tags are essential for instruction following and controllability, asymmetries in the training data associated with different role tags can introduce inductive biases. In this paper, we study this phenomenon by formalizing user-assistant bias, defined as the tendency of an LLM to preferentially rely on information from either the user or assistant role when there is a conflict. We introduce a task-agnostic benchmark UserAssist and evaluate such bias in 52 frontier models. We observe that most of the instruction-tuned models exhibit strong user bias, whereas base and reasoning models are close to neutral. Using controlled fine-tuning experiments, we isolate which post-training recipes drive the observed user-assistant bias. We find that human-preference alignment amplifies user bias, while reasoning fine-tuning reduces it. Finally, we show that user-assistant bias can be bidirectionally controlled via direct preference optimization (DPO) on UserAssist-train, and that the resulting bias reliably generalizes to a more realistic multi-turn conversation dataset. These results reveal an underexplored consequence of role-tagged training and provide a principled framework to diagnose and control tag-induced biases in modern LLMs.
♻ ☆ Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
♻ ☆ NoveltyRank: A Retrieval-Augmented Framework for Conceptual Novelty Estimation in AI Research
The accelerating pace of scientific publication makes it difficult to identify truly original research among incremental work. We propose a framework for estimating the conceptual novelty of research papers by combining semantic representation learning with retrieval-based comparison against prior literature. We model novelty as both a binary classification task (novel vs. non-novel) and a pairwise ranking task (comparative novelty), enabling absolute and relative assessments. Experiments benchmark three model scales, ranging from compact domain-specific encoders to a zero-shot frontier model. Results show that fine-tuned lightweight models outperform larger zero-shot models despite their smaller parameter count, indicating that task-specific supervision matters more than scale for conceptual novelty estimation. We further deploy the best-performing model as an online system for public interaction and real-time novelty scoring.
comment: 11 pages, 4, tables, 3 figures
♻ ☆ The Syntax of qulk-clauses in Yemeni Ibbi Arabic: A Minimalist Approach
This study investigates the syntax of qulk-clauses in Yemeni Ibbi Arabic (YIA) within the Minimalist Program. The construction qulk-clause, a morphologically fused form meaning 'I said,' introduces embedded declarative interrogative, and imperative clauses, often eithout complementizer. The central proposal of this paper is that qulk-clauses are biclausal structures in which qulk functions a clause-embedding predicate sec;ecting a dull CP complement. By applying core minimalist operations, viz., Merge, Move, Agree, and Spell-out, the study provides a layered syntactic analysis of qulk-clauses, for illustrating how their derivation proceeds through standard computational steps and post-syntactic processes such as Morphological Merger. The proposal also accounts for dialect-specific features like bipartite negation, cliticization, and CP embedding. The findings offer theoretical contributions to generative syntax, specifically minimalism. The study concludes raising theoretical questions concerning extending the analysis to the addressee-clause kil-k 'you said'. It also provides insights into the possibility of the universality of minimalism.
comment: 23 pages, 6 figures
♻ ☆ Reasoning Beyond Limits: Advances and Open Problems for LLMs
Recent breakthroughs in generative reasoning have fundamentally reshaped how large language models (LLMs) address complex tasks, enabling them to dynamically retrieve, refine, and organize information into coherent multi-step reasoning chains. Techniques such as inference-time scaling, reinforcement learning, supervised fine-tuning, and distillation have been effectively applied to state-of-the-art models, including DeepSeek-R1, OpenAI o1 and o3, GPT-4o, Qwen-32B, and various Llama variants, significantly enhancing their reasoning capabilities. In this paper, we present a comprehensive review of the top 27 LLMs released between 2023 and 2025, such as Mistral AI Small 3 24B, DeepSeek-R1, Search-o1, QwQ-32B, and Phi-4, and analyze their core innovations and performance improvements. We also provide a detailed overview of recent advancements in multilingual large language models (MLLMs), emphasizing methods that improve cross-lingual reasoning and address the limitations of English-centric training. In parallel, we present a comprehensive review of progress in state space model (SSM)-based architectures, including models such as Mamba, which demonstrate improved efficiency for long-context processing compared to transformer-based approaches. Our analysis covers training strategies including general optimization techniques, mixture-of-experts (MoE) configurations, retrieval-augmented generation (RAG), chain-of-thought prompting, self-improvement methods, and test-time compute scaling and distillation frameworks. Finally, we identify key challenges for future research, including enabling multi-step reasoning without human supervision, improving robustness in chained task execution, balancing structured prompting with generative flexibility, and enhancing the integration of long-context retrieval and external tools.
comment: The paper is published ICT Express Volume 11, Issue 6, December 2025, Pages 1054-1096
♻ ☆ SGM: Safety Glasses for Multimodal Large Language Models via Neuron-Level Detoxification ACL 2026
Disclaimer: Samples in this paper may be harmful and cause discomfort. Multimodal large language models (MLLMs) enable multimodal generation but inherit toxic, biased, and NSFW signals from weakly curated pretraining corpora, causing safety risks, especially under adversarial triggers that late, opaque training-free detoxification methods struggle to handle. We propose SGM, a white-box neuron-level multimodal intervention that acts like safety glasses for toxic neurons: it selectively recalibrates a small set of toxic expert neurons via expertise-weighted soft suppression, neutralizing harmful cross-modal activations without any parameter updates. We establish MM-TOXIC-QA, a multimodal toxicity evaluation framework, and compare SGM with existing detoxification techniques. Experiments on open-source MLLMs show that SGM mitigates toxicity in standard and adversarial conditions, cutting harmful rates from 48.2\% to 2.5\% while preserving fluency and multimodal reasoning. SGM is extensible, and its combined defenses, denoted as SGM*, integrate with existing detoxification methods for stronger safety performance, providing an interpretable, low-cost solution for toxicity-controlled multimodal generation.
comment: Under Review for ACL 2026
♻ ☆ GRAPHMOE: Amplifying Cognitive Depth of Mixture-of-Experts Network via Introducing Self-Rethinking Mechanism
Traditional Mixture-of-Experts (MoE) networks benefit from utilizing multiple smaller expert models as opposed to a single large network. However, these experts typically operate independently, leaving a question open about whether interconnecting these models could enhance the performance of MoE networks. In response, we introduce GRAPHMOE, a novel method aimed at augmenting the cognitive depth of language models via a self-rethinking mechanism constructed on Pseudo GraphMoE networks. GRAPHMOE employs a recurrent routing strategy to simulate iterative thinking steps, thereby facilitating the flow of information among expert nodes. We implement the GRAPHMOE architecture using Low-Rank Adaptation techniques (LoRA) and conduct extensive experiments on various benchmark datasets. The experimental results reveal that GRAPHMOE outperforms other LoRA based models, achieving state-of-the-art (SOTA) performance. Additionally, this study explores a novel recurrent routing strategy that may inspire further advancements in enhancing the reasoning capabilities of language models.
comment: 10 pages
♻ ☆ Korean Canonical Legal Benchmark: Toward Knowledge-Independent Evaluation of LLMs' Legal Reasoning Capabilities EACL 2026
We introduce the Korean Canonical Legal Benchmark (KCL), a benchmark designed to assess language models' legal reasoning capabilities independently of domain-specific knowledge. KCL provides question-level supporting precedents, enabling a more faithful disentanglement of reasoning ability from parameterized knowledge. KCL consists of two components: (1) KCL-MCQA, multiple-choice problems of 283 questions with 1,103 aligned precedents, and (2) KCL-Essay, open-ended generation problems of 169 questions with 550 aligned precedents and 2,739 instance-level rubrics for automated evaluation. Our systematic evaluation of 30+ models shows large remaining gaps, particularly in KCL-Essay, and that reasoning-specialized models consistently outperform their general-purpose counterparts. We release all resources, including the benchmark dataset and evaluation code, at https://github.com/lbox-kr/kcl.
comment: EACL 2026
♻ ☆ Performance Gap in Entity Knowledge Extraction Across Modalities in Vision Language Models ACL 2025
Vision-language models (VLMs) excel at extracting and reasoning about information from images. Yet, their capacity to leverage internal knowledge about specific entities remains underexplored. This work investigates the disparity in model performance when answering factual questions about an entity described in text versus depicted in an image. Our results reveal a significant accuracy drop - reaching 18% for some models - when the entity is presented visually instead of textually. To study this gap we present PopVQA, a dataset which allows separating entity recognition and question answering, and use it to benchmark several models. We hypothesize that this decline arises from limitations in how information flows from image tokens to query tokens. Thus, we use mechanistic interpretability tools to reveal that, although image tokens are preprocessed by the vision encoder, meaningful information flow from these tokens occurs only in the much deeper layers. Furthermore, critical image processing happens in the language model's middle layers, allowing few layers for consecutive reasoning, highlighting a potential inefficiency in how the model utilizes its layers for reasoning. These insights shed light on the internal mechanics of VLMs and offer pathways for enhancing their reasoning capabilities. PopVQA can be found at https://huggingface.co/datasets/idoco/PopVQA.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ OFFSIDE: Benchmarking Unlearning Misinformation in Multimodal Large Language Models
Advances in Multimodal Large Language Models (MLLMs) intensify concerns about data privacy, making Machine Unlearning (MU), the selective removal of learned information, a critical necessity. However, existing MU benchmarks for MLLMs are limited by a lack of image diversity, potential inaccuracies, and insufficient evaluation scenarios, which fail to capture the complexity of real-world applications. To facilitate the development of MLLMs unlearning and alleviate the aforementioned limitations, we introduce OFFSIDE, a novel benchmark for evaluating misinformation unlearning in MLLMs based on football transfer rumors. This manually curated dataset contains 15.68K records for 80 players, providing a comprehensive framework with four test sets to assess forgetting efficacy, generalization, utility, and robustness. OFFSIDE supports advanced settings like selective unlearning and corrective relearning, and crucially, unimodal unlearning (forgetting only text data). Our extensive evaluation of multiple baselines reveals key findings: (1) Unimodal methods (erasing text-based knowledge) fail on multimodal rumors; (2) Unlearning efficacy is largely driven by catastrophic forgetting; (3) All methods struggle with "visual rumors" (rumors appear in the image); (4) The unlearned rumors can be easily recovered and (5) All methods are vulnerable to prompt attacks. These results expose significant vulnerabilities in current approaches, highlighting the need for more robust multimodal unlearning solutions. The code is available at https://github.com/zh121800/OFFSIDE
♻ ☆ Sri Lanka Document Datasets: A Large-Scale, Multilingual Resource for Law, News, and Policy
We present a collection of open, machine-readable document datasets covering parliamentary proceedings, legal judgments, government publications, news, and tourism statistics from Sri Lanka. The collection currently comprises of 247,818 documents (67.6 GB) across 26 datasets in Sinhala, Tamil, and English. The datasets are updated daily and mirrored on GitHub and Hugging Face. These resources aim to support research in computational linguistics, legal analytics, socio-political studies, and multilingual natural language processing. We describe the data sources, collection pipeline, formats, and potential use cases, while discussing licensing and ethical considerations. This manuscript is at version v2026-01-03-0933.
comment: 4 pages. 247,818 documents (67.6 GB) across 26 datasets in Sinhala, Tamil, and English. Last updated on 2026-01-03 (9.33am)
♻ ☆ Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
Machine Learning 51
☆ Accelerating Monte-Carlo Tree Search with Optimized Posterior Policies
We introduce a recursive AlphaZero-style Monte--Carlo tree search algorithm, "RMCTS". The advantage of RMCTS over AlphaZero's MCTS-UCB is speed. In RMCTS, the search tree is explored in a breadth-first manner, so that network inferences naturally occur in large batches. This significantly reduces the GPU latency cost. We find that RMCTS is often more than 40 times faster than MCTS-UCB when searching a single root state, and about 3 times faster when searching a large batch of root states. The recursion in RMCTS is based on computing optimized posterior policies at each game state in the search tree, starting from the leaves and working back up to the root. Here we use the posterior policy explored in "Monte--Carlo tree search as regularized policy optimization" (Grill, et al.) Their posterior policy is the unique policy which maximizes the expected reward given estimated action rewards minus a penalty for diverging from the prior policy. The tree explored by RMCTS is not defined in an adaptive manner, as it is in MCTS-UCB. Instead, the RMCTS tree is defined by following prior network policies at each node. This is a disadvantage, but the speedup advantage is more significant, and in practice we find that RMCTS-trained networks match the quality of MCTS-UCB-trained networks in roughly one-third of the training time. We include timing and quality comparisons of RMCTS vs. MCTS-UCB for three games: Connect-4, Dots-and-Boxes, and Othello.
comment: 11 pages; an efficient implementation is available at https://github.com/bhoward73/rmcts
☆ Warp-Cortex: An Asynchronous, Memory-Efficient Architecture for Million-Agent Cognitive Scaling on Consumer Hardware
Current multi-agent Large Language Model (LLM) frameworks suffer from linear memory scaling, rendering "System 2" parallel reasoning impractical on consumer hardware. We present Warp Cortex, an asynchronous architecture that theoretically enables million-agent cognitive scaling by decoupling agent logic from physical memory. Through Singleton Weight Sharing and a novel Topological Synapse--inspired by hybrid landmarking techniques from Topological Data Analysis (TDA)--we reduce memory complexity from O(N * L) to O(1) for weights and O(N * k) for context, where k << L. By treating the KV-cache as a point cloud in latent space, we apply witness-complex-inspired sparsification to preserve persistent homological features of the context manifold. On a single NVIDIA RTX 4090, we empirically demonstrate 100 concurrent agents at 2.2 GB total VRAM, with theoretical capacity exceeding 1,000 agents before compute latency becomes the bottleneck. We further introduce Referential Injection, a non-intrusive KV-cache update mechanism that allows asynchronous sub-agents to influence primary generation without stream disruption.
☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold. The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces. This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: 26 pages
☆ Aggressive Compression Enables LLM Weight Theft NeurIPS 2024
As frontier AIs become more powerful and costly to develop, adversaries have increasing incentives to steal model weights by mounting exfiltration attacks. In this work, we consider exfiltration attacks where an adversary attempts to sneak model weights out of a datacenter over a network. While exfiltration attacks are multi-step cyber attacks, we demonstrate that a single factor, the compressibility of model weights, significantly heightens exfiltration risk for large language models (LLMs). We tailor compression specifically for exfiltration by relaxing decompression constraints and demonstrate that attackers could achieve 16x to 100x compression with minimal trade-offs, reducing the time it would take for an attacker to illicitly transmit model weights from the defender's server from months to days. Finally, we study defenses designed to reduce exfiltration risk in three distinct ways: making models harder to compress, making them harder to 'find,' and tracking provenance for post-attack analysis using forensic watermarks. While all defenses are promising, the forensic watermark defense is both effective and cheap, and therefore is a particularly attractive lever for mitigating weight-exfiltration risk.
comment: An early version of this work was presented at the SoLAR Workshop at NeurIPS 2024
☆ Sobolev Approximation of Deep ReLU Network in Log-weighted Barron Space
Universal approximation theorems show that neural networks can approximate any continuous function; however, the number of parameters may grow exponentially with the ambient dimension, so these results do not fully explain the practical success of deep models on high-dimensional data. Barron space theory addresses this: if a target function belongs to a Barron space, a two-layer network with $n$ parameters achieves an $O(n^{-1/2})$ approximation error in $L^2$. Yet classical Barron spaces $\mathscr{B}^{s+1}$ still require stronger regularity than Sobolev spaces $H^s$, and existing depth-sensitive results often assume constraints such as $sL \le 1/2$. In this paper, we introduce a log-weighted Barron space $\mathscr{B}^{\log}$, which requires a strictly weaker assumption than $\mathscr{B}^s$ for any $s>0$. For this new function space, we first study embedding properties and carry out a statistical analysis via the Rademacher complexity. Then we prove that functions in $\mathscr{B}^{\log}$ can be approximated by deep ReLU networks with explicit depth dependence. We then define a family $\mathscr{B}^{s,\log}$, establish approximation bounds in the $H^1$ norm, and identify maximal depth scales under which these rates are preserved. Our results clarify how depth reduces regularity requirements for efficient representation, offering a more precise explanation for the performance of deep architectures beyond the classical Barron setting, and for their stable use in high-dimensional problems used today.
☆ The Alchemy of Thought: Understanding In-Context Learning Through Supervised Classification
In-context learning (ICL) has become a prominent paradigm to rapidly customize LLMs to new tasks without fine-tuning. However, despite the empirical evidence of its usefulness, we still do not truly understand how ICL works. In this paper, we compare the behavior of in-context learning with supervised classifiers trained on ICL demonstrations to investigate three research questions: (1) Do LLMs with ICL behave similarly to classifiers trained on the same examples? (2) If so, which classifiers are closer, those based on gradient descent (GD) or those based on k-nearest neighbors (kNN)? (3) When they do not behave similarly, what conditions are associated with differences in behavior? Using text classification as a use case, with six datasets and three LLMs, we observe that LLMs behave similarly to these classifiers when the relevance of demonstrations is high. On average, ICL is closer to kNN than logistic regression, giving empirical evidence that the attention mechanism behaves more similarly to kNN than GD. However, when demonstration relevance is low, LLMs perform better than these classifiers, likely because LLMs can back off to their parametric memory, a luxury these classifiers do not have.
comment: International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics, 2025
☆ AI-Powered Deepfake Detection Using CNN and Vision Transformer Architectures
The increasing use of artificial intelligence generated deepfakes creates major challenges in maintaining digital authenticity. Four AI-based models, consisting of three CNNs and one Vision Transformer, were evaluated using large face image datasets. Data preprocessing and augmentation techniques improved model performance across different scenarios. VFDNET demonstrated superior accuracy with MobileNetV3, showing efficient performance, thereby demonstrating AI's capabilities for dependable deepfake detection.
comment: 6 pages, 6 figures, 3 tables. Conference paper
☆ Accelerated Full Waveform Inversion by Deep Compressed Learning
We propose and test a method to reduce the dimensionality of Full Waveform Inversion (FWI) inputs as computational cost mitigation approach. Given modern seismic acquisition systems, the data (as input for FWI) required for an industrial-strength case is in the teraflop level of storage, therefore solving complex subsurface cases or exploring multiple scenarios with FWI become prohibitive. The proposed method utilizes a deep neural network with a binarized sensing layer that learns by compressed learning a succinct but consequential seismic acquisition layout from a large corpus of subsurface models. Thus, given a large seismic data set to invert, the trained network selects a smaller subset of the data, then by using representation learning, an autoencoder computes latent representations of the data, followed by K-means clustering of the latent representations to further select the most relevant data for FWI. Effectively, this approach can be seen as a hierarchical selection. The proposed approach consistently outperforms random data sampling, even when utilizing only 10% of the data for 2D FWI, these results pave the way to accelerating FWI in large scale 3D inversion.
☆ Stochastic Control Methods for Optimization
In this work, we investigate a stochastic control framework for global optimization over both finite-dimensional Euclidean spaces and the Wasserstein space of probability measures. In the Euclidean setting, the original minimization problem is approximated by a family of regularized stochastic control problems; using dynamic programming, we analyze the associated Hamilton--Jacobi--Bellman equations and obtain tractable representations via the Cole--Hopf transform and the Feynman--Kac formula. For optimization over probability measures, we formulate a regularized mean-field control problem characterized by a master equation, and further approximate it by controlled $N$-particle systems. We establish that, as the regularization parameter tends to zero (and as the particle number tends to infinity for the optimization over probability measures), the value of the control problem converges to the global minimum of the original objective. Building on the resulting probabilistic representations, Monte Carlo-based numerical schemes are proposed and numerical experiments are reported to illustrate the practical performance of the methods and to support the theoretical convergence rates.
☆ Evidence Slopes and Effective Dimension in Singular Linear Models
Bayesian model selection commonly relies on Laplace approximation or the Bayesian Information Criterion (BIC), which assume that the effective model dimension equals the number of parameters. Singular learning theory replaces this assumption with the real log canonical threshold (RLCT), an effective dimension that can be strictly smaller in overparameterized or rank-deficient models. We study linear-Gaussian rank models and linear subspace (dictionary) models in which the exact marginal likelihood is available in closed form and the RLCT is analytically tractable. In this setting, we show theoretically and empirically that the error of Laplace/BIC grows linearly with (d/2 minus lambda) times log n, where d is the ambient parameter dimension and lambda is the RLCT. An RLCT-aware correction recovers the correct evidence slope and is invariant to overcomplete reparameterizations that represent the same data subspace. Our results provide a concrete finite-sample characterization of Laplace failure in singular models and demonstrate that evidence slopes can be used as a practical estimator of effective dimension in simple linear settings.
comment: Preprint. 10 pages, 6 figures. Under review
☆ Benchmarking the Computational and Representational Efficiency of State Space Models against Transformers on Long-Context Dyadic Sessions
State Space Models (SSMs) have emerged as a promising alternative to Transformers for long-context sequence modeling, offering linear $O(N)$ computational complexity compared to the Transformer's quadratic $O(N^2)$ scaling. This paper presents a comprehensive benchmarking study comparing the Mamba SSM against the LLaMA Transformer on long-context sequences, using dyadic therapy sessions as a representative test case. We evaluate both architectures across two dimensions: (1) computational efficiency, where we measure memory usage and inference speed from 512 to 8,192 tokens, and (2) representational efficiency, where we analyze hidden state dynamics and attention patterns. Our findings provide actionable insights for practitioners working with long-context applications, establishing precise conditions under which SSMs offer advantages over Transformers.
comment: 14 pages
☆ The Dependency Divide: An Interpretable Machine Learning Framework for Profiling Student Digital Satisfaction in the Bangladesh Context
Background: While digital access has expanded rapidly in resource-constrained contexts, satisfaction with digital learning platforms varies significantly among students with seemingly equal connectivity. Traditional digital divide frameworks fail to explain these variations. Purpose: This study introduces the "Dependency Divide", a novel framework proposing that highly engaged students become conditionally vulnerable to infrastructure failures, challenging assumptions that engagement uniformly benefits learners in post-access environments. Methods: We conducted a cross-sectional study of 396 university students in Bangladesh using a three-stage analytical approach: (1) stability-validated K-prototypes clustering to identify student profiles, (2) profile-specific Random Forest models with SHAP and ALE analysis to determine satisfaction drivers, and (3) formal interaction analysis with propensity score matching to test the Dependency Divide hypothesis. Results: Three distinct profiles emerged: Casually Engaged (58%), Efficient Learners (35%), and Hyper-Engaged (7%). A significant interaction between educational device time and internet reliability (\b{eta} = 0.033, p = 0.028) confirmed the Dependency Divide: engagement increased satisfaction only when infrastructure remained reliable. Hyper-Engaged students showed greatest vulnerability despite or because of their sophisticated digital workflows. Policy simulations demonstrated that targeted reliability improvements for high-dependency users yielded 2.06 times greater returns than uniform interventions. Conclusions: In fragile infrastructure contexts, capability can become liability. Digital transformation policies must prioritize reliability for dependency-prone users, establish contingency systems, and educate students about dependency risks rather than uniformly promoting engagement.
comment: Conference Paper
☆ NeuroSSM: Multiscale Differential State-Space Modeling for Context-Aware fMRI Analysis
Accurate fMRI analysis requires sensitivity to temporal structure across multiple scales, as BOLD signals encode cognitive processes that emerge from fast transient dynamics to slower, large-scale fluctuations. Existing deep learning (DL) approaches to temporal modeling face challenges in jointly capturing these dynamics over long fMRI time series. Among current DL models, transformers address long-range dependencies by explicitly modeling pairwise interactions through attention, but the associated quadratic computational cost limits effective integration of temporal dependencies across long fMRI sequences. Selective state-space models (SSMs) instead model long-range temporal dependencies implicitly through latent state evolution in a dynamical system, enabling efficient propagation of dependencies over time. However, recent SSM-based approaches for fMRI commonly operate on derived functional connectivity representations and employ single-scale temporal processing. These design choices constrain the ability to jointly represent fast transient dynamics and slower global trends within a single model. We propose NeuroSSM, a selective state-space architecture designed for end-to-end analysis of raw BOLD signals in fMRI time series. NeuroSSM addresses the above limitations through two complementary design components: a multiscale state-space backbone that captures fast and slow dynamics concurrently, and a parallel differencing branch that increases sensitivity to transient state changes. Experiments on clinical and non-clinical datasets demonstrate that NeuroSSM achieves competitive performance and efficiency against state-of-the-art fMRI analysis methods.
☆ Adaptive Conformal Prediction via Bayesian Uncertainty Weighting for Hierarchical Healthcare Data
Clinical decision-making demands uncertainty quantification that provides both distribution-free coverage guarantees and risk-adaptive precision, requirements that existing methods fail to jointly satisfy. We present a hybrid Bayesian-conformal framework that addresses this fundamental limitation in healthcare predictions. Our approach integrates Bayesian hierarchical random forests with group-aware conformal calibration, using posterior uncertainties to weight conformity scores while maintaining rigorous coverage validity. Evaluated on 61,538 admissions across 3,793 U.S. hospitals and 4 regions, our method achieves target coverage (94.3% vs 95% target) with adaptive precision: 21% narrower intervals for low-uncertainty cases while appropriately widening for high-risk predictions. Critically, we demonstrate that well-calibrated Bayesian uncertainties alone severely under-cover (14.1%), highlighting the necessity of our hybrid approach. This framework enables risk-stratified clinical protocols, efficient resource planning for high-confidence predictions, and conservative allocation with enhanced oversight for uncertain cases, providing uncertainty-aware decision support across diverse healthcare settings.
Promptable Foundation Models for SAR Remote Sensing: Adapting the Segment Anything Model for Snow Avalanche Segmentation
Remote sensing solutions for avalanche segmentation and mapping are key to supporting risk forecasting and mitigation in mountain regions. Synthetic Aperture Radar (SAR) imagery from Sentinel-1 can be effectively used for this task, but training an effective detection model requires gathering a large dataset with high-quality annotations from domain experts, which is prohibitively time-consuming. In this work, we aim to facilitate and accelerate the annotation of SAR images for avalanche mapping. We build on the Segment Anything Model (SAM), a segmentation foundation model trained on natural images, and tailor it to Sentinel-1 SAR data. Adapting SAM to our use-case requires addressing several domain-specific challenges: (i) domain mismatch, since SAM was not trained on satellite/SAR imagery; (ii) input adaptation, because SAR products typically provide more than three channels, while SAM is constrained to RGB images; (iii) robustness to imprecise prompts that can affect target identification and degrade the segmentation quality, an issue exacerbated in small, low-contrast avalanches; and (iv) training efficiency, since standard fine-tuning is computationally demanding for SAM. We tackle these challenges through a combination of adapters to mitigate the domain gap, multiple encoders to handle multi-channel SAR inputs, prompt-engineering strategies to improve avalanche localization accuracy, and a training algorithm that limits the training time of the encoder, which is recognized as the major bottleneck. We integrate the resulting model into an annotation tool and show experimentally that it speeds up the annotation of SAR images.
☆ Sparse Bayesian Message Passing under Structural Uncertainty
Semi-supervised learning on real-world graphs is frequently challenged by heterophily, where the observed graph is unreliable or label-disassortative. Many existing graph neural networks either rely on a fixed adjacency structure or attempt to handle structural noise through regularization. In this work, we explicitly capture structural uncertainty by modeling a posterior distribution over signed adjacency matrices, allowing each edge to be positive, negative, or absent. We propose a sparse signed message passing network that is naturally robust to edge noise and heterophily, which can be interpreted from a Bayesian perspective. By combining (i) posterior marginalization over signed graph structures with (ii) sparse signed message aggregation, our approach offers a principled way to handle both edge noise and heterophily. Experimental results demonstrate that our method outperforms strong baseline models on heterophilic benchmarks under both synthetic and real-world structural noise.
☆ MentalGame: Predicting Personality-Job Fitness for Software Developers Using Multi-Genre Games and Machine Learning Approaches
Personality assessment in career guidance and personnel selection traditionally relies on self-report questionnaires, which are susceptible to response bias, fatigue, and intentional distortion. Game-based assessment offers a promising alternative by capturing implicit behavioral signals during gameplay. This study proposes a multi-genre serious-game framework combined with machine-learning techniques to predict suitability for software development roles. Developer-relevant personality and behavioral traits were identified through a systematic literature review and an empirical study of professional software engineers. A custom mobile game was designed to elicit behaviors related to problem solving, planning, adaptability, persistence, time management, and information seeking. Fine-grained gameplay event data were collected and analyzed using a two-phase modeling strategy where suitability was predicted exclusively from gameplay-derived behavioral features. Results show that our model achieved up to 97% precision and 94% accuracy. Behavioral analysis revealed that proper candidates exhibited distinct gameplay patterns, such as more wins in puzzle-based games, more side challenges, navigating menus more frequently, and exhibiting fewer pauses, retries, and surrender actions. These findings demonstrate that implicit behavioral traces captured during gameplay is promising in predicting software-development suitability without explicit personality testing, supporting serious games as a scalable, engaging, and less biased alternative for career assessment.
☆ Bridging the Semantic Gap for Categorical Data Clustering via Large Language Models ICPR 2026
Categorical data are prevalent in domains such as healthcare, marketing, and bioinformatics, where clustering serves as a fundamental tool for pattern discovery. A core challenge in categorical data clustering lies in measuring similarity among attribute values that lack inherent ordering or distance. Without appropriate similarity measures, values are often treated as equidistant, creating a semantic gap that obscures latent structures and degrades clustering quality. Although existing methods infer value relationships from within-dataset co-occurrence patterns, such inference becomes unreliable when samples are limited, leaving the semantic context of the data underexplored. To bridge this gap, we present ARISE (Attention-weighted Representation with Integrated Semantic Embeddings), which draws on external semantic knowledge from Large Language Models (LLMs) to construct semantic-aware representations that complement the metric space of categorical data for accurate clustering. That is, LLM is adopted to describe attribute values for representation enhancement, and the LLM-enhanced embeddings are combined with the original data to explore semantically prominent clusters. Experiments on eight benchmark datasets demonstrate consistent improvements over seven representative counterparts, with gains of 19-27%. Code is available at https://github.com/develop-yang/ARISE
comment: Submitted to ICPR 2026
☆ Gradient-Free Approaches is a Key to an Efficient Interaction with Markovian Stochasticity
This paper deals with stochastic optimization problems involving Markovian noise with a zero-order oracle. We present and analyze a novel derivative-free method for solving such problems in strongly convex smooth and non-smooth settings with both one-point and two-point feedback oracles. Using a randomized batching scheme, we show that when mixing time $τ$ of the underlying noise sequence is less than the dimension of the problem $d$, the convergence estimates of our method do not depend on $τ$. This observation provides an efficient way to interact with Markovian stochasticity: instead of invoking the expensive first-order oracle, one should use the zero-order oracle. Finally, we complement our upper bounds with the corresponding lower bounds. This confirms the optimality of our results.
☆ Evo-TFS: Evolutionary Time-Frequency Domain-Based Synthetic Minority Oversampling Approach to Imbalanced Time Series Classification
Time series classification is a fundamental machine learning task with broad real-world applications. Although many deep learning methods have proven effective in learning time-series data for classification, they were originally developed under the assumption of balanced data distributions. Once data distribution is uneven, these methods tend to ignore the minority class that is typically of higher practical significance. Oversampling methods have been designed to address this by generating minority-class samples, but their reliance on linear interpolation often hampers the preservation of temporal dynamics and the generation of diverse samples. Therefore, in this paper, we propose Evo-TFS, a novel evolutionary oversampling method that integrates both time- and frequency-domain characteristics. In Evo-TFS, strongly typed genetic programming is employed to evolve diverse, high-quality time series, guided by a fitness function that incorporates both time-domain and frequency-domain characteristics. Experiments conducted on imbalanced time series datasets demonstrate that Evo-TFS outperforms existing oversampling methods, significantly enhancing the performance of time-domain and frequency-domain classifiers.
☆ Conformal Blindness: A Note on $A$-Cryptic change-points
Conformal Test Martingales (CTMs) are a standard method within the Conformal Prediction framework for testing the crucial assumption of data exchangeability by monitoring deviations from uniformity in the p-value sequence. Although exchangeability implies uniform p-values, the converse does not hold. This raises the question of whether a significant break in exchangeability can occur, such that the p-values remain uniform, rendering CTMs blind. We answer this affirmatively, demonstrating the phenomenon of \emph{conformal blindness}. Through explicit construction, for the theoretically ideal ``oracle'' conformity measure (given by the true conditional density), we demonstrate the possibility of an \emph{$A$-cryptic change-point} (where $A$ refers to the conformity measure). Using bivariate Gaussian distributions, we identify a line along which a change in the marginal means does not alter the distribution of the conformity scores, thereby producing perfectly uniform p-values. Simulations confirm that even a massive distribution shift can be perfectly cryptic to the CTM, highlighting a fundamental limitation and emphasising the critical role of the alignment of the conformity measure with potential shifts.
comment: 6 pages, 3 figures
☆ Self-Training the Neurochaos Learning Algorithm
In numerous practical applications, acquiring substantial quantities of labelled data is challenging and expensive, but unlabelled data is readily accessible. Conventional supervised learning methods frequently underperform in scenarios characterised by little labelled data or imbalanced datasets. This study introduces a hybrid semi-supervised learning (SSL) architecture that integrates Neurochaos Learning (NL) with a threshold-based Self-Training (ST) method to overcome this constraint. The NL architecture converts input characteristics into chaos-based ring-rate representations that encapsulate nonlinear relationships within the data, whereas ST progressively enlarges the labelled set utilising high-confidence pseudo-labelled samples. The model's performance is assessed using ten benchmark datasets and five machine learning classifiers, with 85% of the training data considered unlabelled and just 15% utilised as labelled data. The proposed Self-Training Neurochaos Learning (NL+ST) architecture consistently attains superior performance gain relative to standalone ST models, especially on limited, nonlinear and imbalanced datasets like Iris (188.66%), Wine (158.58%) and Glass Identification (110.48%). The results indicate that using chaos-based feature extraction with SSL improves generalisation, resilience, and classification accuracy in low-data contexts.
☆ Generating Diverse TSP Tours via a Combination of Graph Pointer Network and Dispersion
We address the Diverse Traveling Salesman Problem (D-TSP), a bi-criteria optimization challenge that seeks a set of $k$ distinct TSP tours. The objective requires every selected tour to have a length at most $c|T^*|$ (where $|T^*|$ is the optimal tour length) while minimizing the average Jaccard similarity across all tour pairs. This formulation is crucial for applications requiring both high solution quality and fault tolerance, such as logistics planning, robotics pathfinding or strategic patrolling. Current methods are limited: traditional heuristics, such as the Niching Memetic Algorithm (NMA) or bi-criteria optimization, incur high computational complexity $O(n^3)$, while modern neural approaches (e.g., RF-MA3S) achieve limited diversity quality and rely on complex, external mechanisms. To overcome these limitations, we propose a novel hybrid framework that decomposes D-TSP into two efficient steps. First, we utilize a simple Graph Pointer Network (GPN), augmented with an approximated sequence entropy loss, to efficiently sample a large, diverse pool of high-quality tours. This simple modification effectively controls the quality-diversity trade-off without complex external mechanisms. Second, we apply a greedy algorithm that yields a 2-approximation for the dispersion problem to select the final $k$ maximally diverse tours from the generated pool. Our results demonstrate state-of-the-art performance. On the Berlin instance, our model achieves an average Jaccard index of $0.015$, significantly outperforming NMA ($0.081$) and RF-MA3S. By leveraging GPU acceleration, our GPN structure achieves a near-linear empirical runtime growth of $O(n)$. While maintaining solution diversity comparable to complex bi-criteria algorithms, our approach is over 360 times faster on large-scale instances (783 cities), delivering high-quality TSP solutions with unprecedented efficiency and simplicity.
☆ RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian ICSE'26
Large Language Models (LLMs)-powered code review automation has the potential to transform code review workflows. Despite the advances of LLM-powered code review comment generation approaches, several practical challenges remain for designing enterprise-grade code review automation tools. In particular, this paper aims at answering the practical question: how can we design a review-guided, context-aware, quality-checked code review comment generation without fine-tuning? In this paper, we present RovoDev Code Reviewer, an enterprise-grade LLM-based code review automation tool designed and deployed at scale within Atlassian's development ecosystem with seamless integration into Atlassian's Bitbucket. Through the offline, online, user feedback evaluations over a one-year period, we conclude that RovoDev Code Reviewer is (1) effective in generating code review comments that could lead to code resolution for 38.70% (i.e., comments that triggered code changes in the subsequent commits); and (2) offers the promise of accelerating feedback cycles (i.e., decreasing the PR cycle time by 30.8%), alleviating reviewer workload (i.e., reducing the number of human-written comments by 35.6%), and improving overall software quality (i.e., finding errors with actionable suggestions).
comment: Accepted at the 48th International Conference on Software Engineering (ICSE'26), SEIP Track. 12 Pages
☆ Wittgenstein's Family Resemblance Clustering Algorithm
This paper, introducing a novel method in philomatics, draws on Wittgenstein's concept of family resemblance from analytic philosophy to develop a clustering algorithm for machine learning. According to Wittgenstein's Philosophical Investigations (1953), family resemblance holds that members of a concept or category are connected by overlapping similarities rather than a single defining property. Consequently, a family of entities forms a chain of items sharing overlapping traits. This philosophical idea naturally lends itself to a graph-based approach in machine learning. Accordingly, we propose the Wittgenstein's Family Resemblance (WFR) clustering algorithm and its kernel variant, kernel WFR. This algorithm computes resemblance scores between neighboring data instances, and after thresholding these scores, a resemblance graph is constructed. The connected components of this graph define the resulting clusters. Simulations on benchmark datasets demonstrate that WFR is an effective nonlinear clustering algorithm that does not require prior knowledge of the number of clusters or assumptions about their shapes.
☆ Learning from Historical Activations in Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated remarkable success in various domains such as social networks, molecular chemistry, and more. A crucial component of GNNs is the pooling procedure, in which the node features calculated by the model are combined to form an informative final descriptor to be used for the downstream task. However, previous graph pooling schemes rely on the last GNN layer features as an input to the pooling or classifier layers, potentially under-utilizing important activations of previous layers produced during the forward pass of the model, which we regard as historical graph activations. This gap is particularly pronounced in cases where a node's representation can shift significantly over the course of many graph neural layers, and worsened by graph-specific challenges such as over-smoothing in deep architectures. To bridge this gap, we introduce HISTOGRAPH, a novel two-stage attention-based final aggregation layer that first applies a unified layer-wise attention over intermediate activations, followed by node-wise attention. By modeling the evolution of node representations across layers, our HISTOGRAPH leverages both the activation history of nodes and the graph structure to refine features used for final prediction. Empirical results on multiple graph classification benchmarks demonstrate that HISTOGRAPH offers strong performance that consistently improves traditional techniques, with particularly strong robustness in deep GNNs.
☆ Community-Based Early-Stage Chronic Kidney Disease Screening using Explainable Machine Learning for Low-Resource Settings
Early detection of chronic kidney disease (CKD) is essential for preventing progression to end-stage renal disease. However, existing screening tools - primarily developed using populations from high-income countries - often underperform in Bangladesh and South Asia, where risk profiles differ. Most of these tools rely on simple additive scoring functions and are based on data from patients with advanced-stage CKD. Consequently, they fail to capture complex interactions among risk factors and are limited in predicting early-stage CKD. Our objective was to develop and evaluate an explainable machine learning (ML) framework for community-based early-stage CKD screening for low-resource settings, tailored to the Bangladeshi and South Asian population context. We used a community-based dataset from Bangladesh, the first such CKD dataset in South and South Asia, and evaluated twelve ML classifiers across multiple feature domains. Ten complementary feature selection techniques were applied to identify robust, generalizable predictors. The final models were assessed using 10-fold cross-validation. External validation was conducted on three independent datasets from India, the UAE, and Bangladesh. SHAP (SHapley Additive exPlanations) was used to provide model explainability. An ML model trained on an RFECV-selected feature subset achieved a balanced accuracy of 90.40%, whereas minimal non-pathology-test features demonstrated excellent predictive capability with a balanced accuracy of 89.23%, often outperforming larger or full feature sets. Compared with existing screening tools, the proposed models achieved substantially higher accuracy and sensitivity while requiring fewer and more accessible inputs. External validation confirmed strong generalizability with 78% to 98% sensitivity. SHAP interpretation identified clinically meaningful predictors consistent with established CKD risk factors.
comment: 27 pages
♻ ☆ Subsampled Ensemble Can Improve Generalization Tail Exponentially
Ensemble learning is a popular technique to improve the accuracy of machine learning models. It traditionally hinges on the rationale that aggregating multiple weak models can lead to better models with lower variance and hence higher stability, especially for discontinuous base learners. In this paper, we provide a new perspective on ensembling. By selecting the most frequently generated model from the base learner when repeatedly applied to subsamples, we can attain exponentially decaying tails for the excess risk, even if the base learner suffers from slow (i.e., polynomial) decay rates. This tail enhancement power of ensembling applies to base learners that have reasonable predictive power to begin with and is stronger than variance reduction in the sense of exhibiting rate improvement. We demonstrate how our ensemble methods can substantially improve out-of-sample performances in a range of numerical examples involving heavy-tailed data or intrinsically slow rates.
comment: 46 pages, 21 figures
♻ ☆ Echo State Networks for Spatio-Temporal Area-Level Data
Spatio-temporal area-level datasets play a critical role in official statistics, providing valuable insights for policy-making and regional planning. Accurate modeling and forecasting of these datasets can be extremely useful for policymakers to develop informed strategies for future planning. Echo State Networks (ESNs) are efficient methods for capturing nonlinear temporal dynamics and generating forecasts. However, ESNs lack a direct mechanism to account for the neighborhood structure inherent in area-level data. Ignoring these spatial relationships can significantly compromise the accuracy and utility of forecasts. In this paper, we incorporate approximate graph spectral filters at the input stage of the ESN, thereby improving forecast accuracy while preserving the model's computational efficiency during training. We demonstrate the effectiveness of our approach using Eurostat's tourism occupancy dataset and show how it can support more informed decision-making in policy and planning contexts.
comment: 23 pages, 4 figures
♻ ☆ MFAI: A Scalable Bayesian Matrix Factorization Approach to Leveraging Auxiliary Information
In various practical situations, matrix factorization methods suffer from poor data quality, such as high data sparsity and low signal-to-noise ratio (SNR). Here, we consider a matrix factorization problem by utilizing auxiliary information, which is massively available in real-world applications, to overcome the challenges caused by poor data quality. Unlike existing methods that mainly rely on simple linear models to combine auxiliary information with the main data matrix, we propose to integrate gradient boosted trees in the probabilistic matrix factorization framework to effectively leverage auxiliary information (MFAI). Thus, MFAI naturally inherits several salient features of gradient boosted trees, such as the capability of flexibly modeling nonlinear relationships and robustness to irrelevant features and missing values in auxiliary information. The parameters in MFAI can be automatically determined under the empirical Bayes framework, making it adaptive to the utilization of auxiliary information and immune to overfitting. Moreover, MFAI is computationally efficient and scalable to large datasets by exploiting variational inference. We demonstrate the advantages of MFAI through comprehensive numerical results from simulation studies and real data analyses. Our approach is implemented in the R package mfair available at https://github.com/YangLabHKUST/mfair.
♻ ☆ Membership Inference Attacks on LLM-based Recommender Systems WWW 2026
Large language models (LLMs) based recommender systems (RecSys) can adapt to different domains flexibly. It utilizes in-context learning (ICL), i.e., prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, encompassing implicit feedback such as clicked items and explicit product reviews. Such private information may be exposed by novel privacy attacks. However, no study has been conducted on this important issue. We design several membership inference attacks (MIAs) aimed to revealing whether system prompts include victims' historical interactions. The attacks are \emph{Similarity, Memorization, Inquiry, and Poisoning attacks}, each utilizing unique features of LLMs or RecSys. We have carefully evaluated them on five of the latest open-source LLMs and three well-known RecSys benchmark datasets. The results confirm that the MIA threat to LLM RecSys is realistic: inquiry and poisoning attacks show significantly high attack advantages. We also discussed possible methods to mitigate such MIA threats. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts, the position of the victim in the shots, the number of poisoning items in the prompt,etc.
comment: This is paper is under review WWW 2026
♻ ☆ Behaviour Policy Optimization: Provably Lower Variance Return Estimates for Off-Policy Reinforcement Learning AAAI 2026
Many reinforcement learning algorithms, particularly those that rely on return estimates for policy improvement, can suffer from poor sample efficiency and training instability due to high-variance return estimates. In this paper we leverage new results from off-policy evaluation; it has recently been shown that well-designed behaviour policies can be used to collect off-policy data for provably lower variance return estimates. This result is surprising as it means collecting data on-policy is not variance optimal. We extend this key insight to the online reinforcement learning setting, where both policy evaluation and improvement are interleaved to learn optimal policies. Off-policy RL has been well studied (e.g., IMPALA), with correct and truncated importance weighted samples for de-biasing and managing variance appropriately. Generally these approaches are concerned with reconciling data collected from multiple workers in parallel, while the policy is updated asynchronously, mismatch between the workers and policy is corrected in a mathematically sound way. Here we consider only one worker - the behaviour policy, which is used to collect data for policy improvement, with provably lower variance return estimates. In our experiments we extend two policy-gradient methods with this regime, demonstrating better sample efficiency and performance over a diverse set of environments.
comment: Main Track at AAAI 2026
♻ ☆ Beyond Expectations: Learning with Stochastic Dominance Made Practical
Stochastic dominance serves as a general framework for modeling a broad spectrum of decision preferences under uncertainty, with risk aversion as one notable example, as it naturally captures the intrinsic structure of the underlying uncertainty, in contrast to simply resorting to the expectations. Despite theoretical appeal, the application of stochastic dominance in machine learning has been scarce, due to the following challenges: $\textbf{i)}$, the original concept of stochastic dominance only provides a $\textit{partial order}$, and therefore, is not amenable to serve as a general optimality criterion; and $\textbf{ii)}$, an efficient computational recipe remains lacking due to the continuum nature of evaluating stochastic dominance. In this work, we make the first attempt towards establishing a general framework of learning with stochastic dominance. We first generalize the stochastic dominance concept to enable feasible comparisons between any arbitrary pair of random variables. We next develop a simple and computationally efficient approach for finding the optimal solution in terms of stochastic dominance, which can be seamlessly plugged into many learning tasks. Numerical experiments demonstrate that the proposed method achieves comparable performance as standard risk-neutral strategies and obtains better trade-offs against risk across a variety of applications including supervised learning, reinforcement learning, and portfolio optimization.
♻ ☆ From Optimization to Control: Quasi Policy Iteration
Recent control algorithms for Markov decision processes (MDPs) have been designed using an implicit analogy with well-established optimization algorithms. In this paper, we adopt the quasi-Newton method (QNM) from convex optimization to introduce a novel control algorithm coined as quasi-policy iteration (QPI). In particular, QPI is based on a novel approximation of the ``Hessian'' matrix in the policy iteration algorithm, which exploits two linear structural constraints specific to MDPs and allows for the incorporation of prior information on the transition probability kernel. While the proposed algorithm has the same computational complexity as value iteration, it exhibits an empirical convergence behavior similar to that of QNM with a low sensitivity to the discount factor.
♻ ☆ Compositions of Variant Experts for Integrating Short-Term and Long-Term Preferences
In the online digital realm, recommendation systems are ubiquitous and play a crucial role in enhancing user experience. These systems leverage user preferences to provide personalized recommendations, thereby helping users navigate through the paradox of choice. This work focuses on personalized sequential recommendation, where the system considers not only a user's immediate, evolving session context, but also their cumulative historical behavior to provide highly relevant and timely recommendations. Through an empirical study conducted on diverse real-world datasets, we have observed and quantified the existence and impact of both short-term (immediate and transient) and long-term (enduring and stable) preferences on users' historical interactions. Building on these insights, we propose a framework that combines short- and long-term preferences to enhance recommendation performance, namely Compositions of Variant Experts (CoVE). This novel framework dynamically integrates short- and long-term preferences through the use of different specialized recommendation models (i.e., experts). Extensive experiments showcase the effectiveness of the proposed methods and ablation studies further investigate the impact of variant expert types.
♻ ☆ Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
♻ ☆ Learning Repetition-Invariant Representations for Polymer Informatics NeurIPS 2025
Polymers are large macromolecules composed of repeating structural units known as monomers and are widely applied in fields such as energy storage, construction, medicine, and aerospace. However, existing graph neural network methods, though effective for small molecules, only model the single unit of polymers and fail to produce consistent vector representations for the true polymer structure with varying numbers of units. To address this challenge, we introduce Graph Repetition Invariance (GRIN), a novel method to learn polymer representations that are invariant to the number of repeating units in their graph representations. GRIN integrates a graph-based maximum spanning tree alignment with repeat-unit augmentation to ensure structural consistency. We provide theoretical guarantees for repetition-invariance from both model and data perspectives, demonstrating that three repeating units are the minimal augmentation required for optimal invariant representation learning. GRIN outperforms state-of-the-art baselines on both homopolymer and copolymer benchmarks, learning stable, repetition-invariant representations that generalize effectively to polymer chains of unseen sizes.
comment: Accepted to NeurIPS 2025
♻ ☆ NoveltyRank: A Retrieval-Augmented Framework for Conceptual Novelty Estimation in AI Research
The accelerating pace of scientific publication makes it difficult to identify truly original research among incremental work. We propose a framework for estimating the conceptual novelty of research papers by combining semantic representation learning with retrieval-based comparison against prior literature. We model novelty as both a binary classification task (novel vs. non-novel) and a pairwise ranking task (comparative novelty), enabling absolute and relative assessments. Experiments benchmark three model scales, ranging from compact domain-specific encoders to a zero-shot frontier model. Results show that fine-tuned lightweight models outperform larger zero-shot models despite their smaller parameter count, indicating that task-specific supervision matters more than scale for conceptual novelty estimation. We further deploy the best-performing model as an online system for public interaction and real-time novelty scoring.
comment: 11 pages, 4, tables, 3 figures
♻ ☆ Stochastic Online Optimization for Cyber-Physical and Robotic Systems
We propose a novel gradient-based online optimization framework for solving stochastic programming problems that frequently arise in the context of cyber-physical and robotic systems. Our problem formulation accommodates constraints that model the evolution of a cyber-physical system, which has, in general, a continuous state and action space, is nonlinear, and where the state is only partially observed. We also incorporate an approximate model of the dynamics as prior knowledge into the learning process and show that even rough estimates of the dynamics can significantly improve the convergence of our algorithms. Our online optimization framework encompasses both gradient descent and quasi-Newton methods, and we provide a unified convergence analysis of our algorithms in a non-convex setting. We also characterize the impact of modeling errors in the system dynamics on the convergence rate of the algorithms. Finally, we evaluate our algorithms in simulations of a flexible beam, a four-legged walking robot, and in real-world experiments with a ping-pong playing robot.
comment: 46 pages, 16 figures
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms AAAI26
Wave-like images--from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames--encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise \(\sin(\cdot)\) mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets--including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics--demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
comment: AAAI26 Poster
♻ ☆ Müntz-Szász Networks: Neural Architectures with Learnable Power-Law Bases
Standard neural network architectures employ fixed activation functions (ReLU, tanh, sigmoid) that are poorly suited for approximating functions with singular or fractional power behavior, a structure that arises ubiquitously in physics, including boundary layers, fracture mechanics, and corner singularities. We introduce Müntz-Szász Networks (MSN), a novel architecture that replaces fixed smooth activations with learnable fractional power bases grounded in classical approximation theory. Each MSN edge computes $φ(x) = \sum_k a_k |x|^{μ_k} + \sum_k b_k \mathrm{sign}(x)|x|^{λ_k}$, where the exponents $\{μ_k, λ_k\}$ are learned alongside the coefficients. We prove that MSN inherits universal approximation from the Müntz-Szász theorem and establish novel approximation rates: for functions of the form $|x|^α$, MSN achieves error $\mathcal{O}(|μ- α|^2)$ with a single learned exponent, whereas standard MLPs require $\mathcal{O}(ε^{-1/α})$ neurons for comparable accuracy. On supervised regression with singular target functions, MSN achieves 5-8x lower error than MLPs with 10x fewer parameters. Physics-informed neural networks (PINNs) represent a particularly demanding application for singular function approximation; on PINN benchmarks including a singular ODE and stiff boundary-layer problems, MSN achieves 3-6x improvement while learning interpretable exponents that match the known solution structure. Our results demonstrate that theory-guided architectural design can yield dramatic improvements for scientifically-motivated function classes.
comment: v2: Added full architecture figure (Fig. 2), corrected bibliography errors, added keywords. https://github.com/ReFractals/muntz-szasz-networks
♻ ☆ Accelerating Sparse Transformer Inference on GPU
Large language models (LLMs) are popular around the world due to their powerful understanding capabilities. As the core component of LLMs, accelerating Transformer through parallelization has gradually become a hot research topic. Mask layers introduce sparsity into Transformer to reduce calculations. However, previous works rarely focus on the performance optimization of sparse Transformer. In addition, current static operator fusion schemes fail to adapt to diverse application scenarios. To address the above problems, we propose STOF, a framework that incorporates optimizations for Sparse Transformer that enables flexible masking and Operator Fusion on GPU. For multi-head attention (MHA) structure, STOF maps the computation to row-wise or blockwise kernels with unique storage formats according to analytical modeling. For downstream operators, STOF maps the fusion scheme to compilation templates and determines the optimal running configuration through two-stage searching. The experimental results show that compared to the stateof-the-art work, STOF achieves maximum speedups of 1.6x in MHA computation and 1.4x in end-to-end inference.
♻ ☆ Reasoning Beyond Limits: Advances and Open Problems for LLMs
Recent breakthroughs in generative reasoning have fundamentally reshaped how large language models (LLMs) address complex tasks, enabling them to dynamically retrieve, refine, and organize information into coherent multi-step reasoning chains. Techniques such as inference-time scaling, reinforcement learning, supervised fine-tuning, and distillation have been effectively applied to state-of-the-art models, including DeepSeek-R1, OpenAI o1 and o3, GPT-4o, Qwen-32B, and various Llama variants, significantly enhancing their reasoning capabilities. In this paper, we present a comprehensive review of the top 27 LLMs released between 2023 and 2025, such as Mistral AI Small 3 24B, DeepSeek-R1, Search-o1, QwQ-32B, and Phi-4, and analyze their core innovations and performance improvements. We also provide a detailed overview of recent advancements in multilingual large language models (MLLMs), emphasizing methods that improve cross-lingual reasoning and address the limitations of English-centric training. In parallel, we present a comprehensive review of progress in state space model (SSM)-based architectures, including models such as Mamba, which demonstrate improved efficiency for long-context processing compared to transformer-based approaches. Our analysis covers training strategies including general optimization techniques, mixture-of-experts (MoE) configurations, retrieval-augmented generation (RAG), chain-of-thought prompting, self-improvement methods, and test-time compute scaling and distillation frameworks. Finally, we identify key challenges for future research, including enabling multi-step reasoning without human supervision, improving robustness in chained task execution, balancing structured prompting with generative flexibility, and enhancing the integration of long-context retrieval and external tools.
comment: The paper is published ICT Express Volume 11, Issue 6, December 2025, Pages 1054-1096
♻ ☆ On Pitfalls of $\textit{RemOve-And-Retrain}$: Data Processing Inequality Perspective
Approaches for appraising feature importance approximations, alternatively referred to as attribution methods, have been established across an extensive array of contexts. The development of resilient techniques for performance benchmarking constitutes a critical concern in the sphere of explainable deep learning. This study scrutinizes the dependability of the RemOve-And-Retrain (ROAR) procedure, which is prevalently employed for gauging the performance of feature importance estimates. The insights gleaned from our theoretical foundation and empirical investigations reveal that attributions containing lesser information about the decision function may yield superior results in ROAR benchmarks, contradicting the original intent of ROAR. This occurrence is similarly observed in the recently introduced variant RemOve-And-Debias (ROAD), and we posit a persistent pattern of blurriness bias in ROAR attribution metrics. Our findings serve as a warning against indiscriminate use on ROAR metrics.
♻ ☆ On the Representation of Pairwise Causal Background Knowledge and Its Applications in Causal Inference
Pairwise causal background knowledge about the existence or absence of causal edges and paths is frequently encountered in observational studies. Such constraints allow the shared directed and undirected edges in the constrained subclass of Markov equivalent DAGs to be represented as a causal maximally partially directed acyclic graph (MPDAG). In this paper, we first provide a sound and complete graphical characterization of causal MPDAGs and introduce a minimal representation of a causal MPDAG. Then, we give a unified representation for three types of pairwise causal background knowledge, including direct, ancestral and non-ancestral causal knowledge, by introducing a novel concept called direct causal clause (DCC). Using DCCs, we study the consistency and equivalence of pairwise causal background knowledge and show that any pairwise causal background knowledge set can be uniquely and equivalently decomposed into the causal MPDAG representing the refined Markov equivalence class and a minimal residual set of DCCs. Polynomial-time algorithms are also provided for checking consistency and equivalence, as well as for finding the decomposed MPDAG and the residual DCCs. Finally, with pairwise causal background knowledge, we prove a sufficient and necessary condition to identify causal effects and surprisingly find that the identifiability of causal effects only depends on the decomposed MPDAG. We also develop a local IDA-type algorithm to estimate the possible values of an unidentifiable effect. Simulations suggest that pairwise causal background knowledge can significantly improve the identifiability of causal effects.
♻ ☆ "FRAME: Forward Recursive Adaptive Model Extraction-A Technique for Advance Feature Selection"
The challenges in feature selection, particularly in balancing model accuracy, interpretability, and computational efficiency, remain a critical issue in advancing machine learning methodologies. To address these complexities, this study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME), which combines Forward Selection and Recursive Feature Elimination (RFE) to enhance feature selection across diverse datasets. By combining the exploratory capabilities of Forward Selection with the refinement strengths of RFE, FRAME systematically identifies optimal feature subsets, striking a harmonious trade-off between experimentation and precision. A comprehensive evaluation of FRAME is conducted against traditional methods such as SelectKBest and Lasso Regression, using high-dimensional, noisy, and heterogeneous datasets. The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics. It efficiently performs dimensionality reduction with strong model performance, thus being especially useful for applications that need interpretable and accurate predictions, e.g., biomedical diagnostics. This research emphasizes the need to evaluate feature selection techniques on diverse datasets to test their robustness and generalizability. The results indicate that FRAME has great potential for further development, especially by incorporating deep learning frameworks for adaptive and real-time feature selection in dynamic settings. By advancing feature selection methodologies, FRAME offers a practical and effective solution to improve machine learning applications across multiple domains.
comment: The manuscript was posted prematurely and without full consideration of dissemination constraints agreed upon by the authors and collaborators. The authors are withdrawing this submission
♻ ☆ Controllable Flow Matching for Online Reinforcement Learning
Model-based reinforcement learning (MBRL) typically relies on modeling environment dynamics for data efficiency. However, due to the accumulation of model errors over long-horizon rollouts, such methods often face challenges in maintaining modeling stability. To address this, we propose CtrlFlow, a trajectory-level synthetic method using conditional flow matching (CFM), which directly modeling the distribution of trajectories from initial states to high-return terminal states without explicitly modeling the environment transition function. Our method ensures optimal trajectory sampling by minimizing the control energy governed by the non-linear Controllability Gramian Matrix, while the generated diverse trajectory data significantly enhances the robustness and cross-task generalization of policy learning. In online settings, CtrlFlow demonstrates the better performance on common MuJoCo benchmark tasks than dynamics models and achieves superior sample efficiency compared to standard MBRL methods.
♻ ☆ Quantifying task-relevant representational similarity using decision variable correlation NeurIPS 2025
Previous studies have compared neural activities in the visual cortex to representations in deep neural networks trained on image classification. Interestingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the image-by-image correlation between the decoded decisions based on the internal neural representations in a classification task. Thus, it can capture task-relevant information rather than general representational alignment. We evaluate DVC using monkey V4/IT recordings and network models trained on image classification tasks. We find that model-model similarity is comparable to monkey-monkey similarity, whereas model-monkey similarity is consistently lower. Strikingly, DVC decreases with increasing network performance on ImageNet-1k. Adversarial training does not improve model-monkey similarity in task-relevant dimensions assessed using DVC, although it markedly increases the model-model similarity. Similarly, pre-training on larger datasets does not improve model-monkey similarity. These results suggest a divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.
comment: Camera-ready version; accepted at NeurIPS 2025
♻ ☆ DeepFilter: A Transformer-style Framework for Accurate and Efficient Process Monitoring
The process monitoring task is characterized by stringent demands for accuracy and efficiency. Current transformer-based methods, characterized by self-attention for temporal fusion, exhibit limitations in accurately understanding the semantic context and efficiently processing monitoring logs, rendering them inadequate for process monitoring. To address these limitations, we introduce DeepFilter, which revises the self-attention mechanism to improve both accuracy and efficiency. As a straightforward yet versatile approach, DeepFilter provides an instrumental baseline for practitioners in process monitoring, whether initiating new projects or enhancing existing capabilities.
♻ ☆ On the social bias of speech self-supervised models INTERSPEECH 2024
Self-supervised learning (SSL) speech models have achieved remarkable performance in various tasks, yet the biased outcomes, especially affecting marginalized groups, raise significant concerns. Social bias refers to the phenomenon where algorithms potentially amplify disparate properties between social groups present in the data used for training. Bias in SSL models can perpetuate injustice by automating discriminatory patterns and reinforcing inequitable systems. This work reveals that prevalent SSL models inadvertently acquire biased associations. We probe how various factors, such as model architecture, size, and training methodologies, influence the propagation of social bias within these models. Finally, we explore the efficacy of debiasing SSL models through regularization techniques, specifically via model compression. Our findings reveal that employing techniques such as row-pruning and training wider, shallower models can effectively mitigate social bias within SSL model.
comment: Accepted by INTERSPEECH 2024, best paper runner-up for the special session "Responsible Speech Foundation Models"
♻ ☆ A Practitioner's Guide to Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs), whose design is inspired-rather than dictated-by the Kolmogorov superposition theorem, have emerged as a structured alternative to MLPs. This review provides a systematic and comprehensive overview of the rapidly expanding KAN literature. The review is organized around three core themes: (i) clarifying the relationships between KANs and Kolmogorov superposition theory (KST), MLPs, and classical kernel methods; (ii) analyzing basis functions as a central design axis; and (iii) summarizing recent advances in accuracy, efficiency, regularization, and convergence. Finally, we provide a practical "Choose-Your-KAN" guide and outline open research challenges and future directions. The accompanying GitHub repository serves as a structured reference for ongoing KAN research.
Multimedia 3
☆ IO-RAE: Information-Obfuscation Reversible Adversarial Example for Audio Privacy Protection
The rapid advancements in artificial intelligence have significantly accelerated the adoption of speech recognition technology, leading to its widespread integration across various applications. However, this surge in usage also highlights a critical issue: audio data is highly vulnerable to unauthorized exposure and analysis, posing significant privacy risks for businesses and individuals. This paper introduces an Information-Obfuscation Reversible Adversarial Example (IO-RAE) framework, the pioneering method designed to safeguard audio privacy using reversible adversarial examples. IO-RAE leverages large language models to generate misleading yet contextually coherent content, effectively preventing unauthorized eavesdropping by humans and Automatic Speech Recognition (ASR) systems. Additionally, we propose the Cumulative Signal Attack technique, which mitigates high-frequency noise and enhances attack efficacy by targeting low-frequency signals. Our approach ensures the protection of audio data without degrading its quality or our ability. Experimental evaluations demonstrate the superiority of our method, achieving a targeted misguidance rate of 96.5% and a remarkable 100% untargeted misguidance rate in obfuscating target keywords across multiple ASR models, including a commercial black-box system from Google. Furthermore, the quality of the recovered audio, measured by the Perceptual Evaluation of Speech Quality score, reached 4.45, comparable to high-quality original recordings. Notably, the recovered audio processed by ASR systems exhibited an error rate of 0%, indicating nearly lossless recovery. These results highlight the practical applicability and effectiveness of our IO-RAE framework in protecting sensitive audio privacy.
comment: 10 pages, 5 figures
☆ MotiBo: The Impact of Interactive Digital Storytelling Robots on Student Motivation through Self-Determination Theory
Creativity is increasingly recognized as an important skill in education, and storytelling can enhance motivation and engagement among students. However, conventional storytelling methods often lack the interactive elements necessary to engage students. To this end, this study examines the impact of an interactive digital storytelling system incorporating a human-like robot on student engagement and creativity. The study aims to compare engagement levels across three modalities: paper-based, PowerPoint, and robot-assisted storytelling, MotiBo. Utilizing a quasi-experimental design, this work involves three groups of students who interact with the storytelling system over a five-day learning. Findings reveal that students using MotiBo exhibit statistically significant improvement in behavioural and cognitive engagement compared to those using traditional methods. These results suggest that the integration of novel technologies can effectively enhance the learning experience, ultimately promoting creativity and self-learning ability in educational settings. Future research will investigate the long-term effects of these technologies on learning outcomes and explore their potential for broader applications in diverse educational contexts.
☆ Deepfake Detection with Multi-Artifact Subspace Fine-Tuning and Selective Layer Masking
Deepfake detection still faces significant challenges in cross-dataset and real-world complex scenarios. The root cause lies in the high diversity of artifact distributions introduced by different forgery methods, while pretrained models tend to disrupt their original general semantic structures when adapting to new artifacts. Existing approaches usually rely on indiscriminate global parameter updates or introduce additional supervision signals, making it difficult to effectively model diverse forgery artifacts while preserving semantic stability. To address these issues, this paper proposes a deepfake detection method based on Multi-Artifact Subspaces and selective layer masks (MASM), which explicitly decouples semantic representations from artifact representations and constrains the fitting strength of artifact subspaces, thereby improving generalization robustness in cross-dataset scenarios. Specifically, MASM applies singular value decomposition to model weights, partitioning pretrained weights into a stable semantic principal subspace and multiple learnable artifact subspaces. This design enables decoupled modeling of different forgery artifact patterns while preserving the general semantic subspace. On this basis, a selective layer mask strategy is introduced to adaptively regulate the update behavior of corresponding network layers according to the learning state of each artifact subspace, suppressing overfitting to any single forgery characteristic. Furthermore, orthogonality constraints and spectral consistency constraints are imposed to jointly regularize multiple artifact subspaces, guiding them to learn complementary and diverse artifact representations while maintaining a stable overall spectral structure.
Computer Vision and Pattern Recognition 71
☆ AdaGaR: Adaptive Gabor Representation for Dynamic Scene Reconstruction
Reconstructing dynamic 3D scenes from monocular videos requires simultaneously capturing high-frequency appearance details and temporally continuous motion. Existing methods using single Gaussian primitives are limited by their low-pass filtering nature, while standard Gabor functions introduce energy instability. Moreover, lack of temporal continuity constraints often leads to motion artifacts during interpolation. We propose AdaGaR, a unified framework addressing both frequency adaptivity and temporal continuity in explicit dynamic scene modeling. We introduce Adaptive Gabor Representation, extending Gaussians through learnable frequency weights and adaptive energy compensation to balance detail capture and stability. For temporal continuity, we employ Cubic Hermite Splines with Temporal Curvature Regularization to ensure smooth motion evolution. An Adaptive Initialization mechanism combining depth estimation, point tracking, and foreground masks establishes stable point cloud distributions in early training. Experiments on Tap-Vid DAVIS demonstrate state-of-the-art performance (PSNR 35.49, SSIM 0.9433, LPIPS 0.0723) and strong generalization across frame interpolation, depth consistency, video editing, and stereo view synthesis. Project page: https://jiewenchan.github.io/AdaGaR/
comment: Project page: https://jiewenchan.github.io/AdaGaR/
☆ Two Deep Learning Approaches for Automated Segmentation of Left Ventricle in Cine Cardiac MRI
Left ventricle (LV) segmentation is critical for clinical quantification and diagnosis of cardiac images. In this work, we propose two novel deep learning architectures called LNU-Net and IBU-Net for left ventricle segmentation from short-axis cine MRI images. LNU-Net is derived from layer normalization (LN) U-Net architecture, while IBU-Net is derived from the instance-batch normalized (IB) U-Net for medical image segmentation. The architectures of LNU-Net and IBU-Net have a down-sampling path for feature extraction and an up-sampling path for precise localization. We use the original U-Net as the basic segmentation approach and compared it with our proposed architectures. Both LNU-Net and IBU-Net have left ventricle segmentation methods: LNU-Net applies layer normalization in each convolutional block, while IBU-Net incorporates instance and batch normalization together in the first convolutional block and passes its result to the next layer. Our method incorporates affine transformations and elastic deformations for image data processing. Our dataset that contains 805 MRI images regarding the left ventricle from 45 patients is used for evaluation. We experimentally evaluate the results of the proposed approaches outperforming the dice coefficient and the average perpendicular distance than other state-of-the-art approaches.
comment: 7 pages, 5 figures, published in ICBBB 2022
☆ Fusion-SSAT: Unleashing the Potential of Self-supervised Auxiliary Task by Feature Fusion for Generalized Deepfake Detection
In this work, we attempted to unleash the potential of self-supervised learning as an auxiliary task that can optimise the primary task of generalised deepfake detection. To explore this, we examined different combinations of the training schemes for these tasks that can be most effective. Our findings reveal that fusing the feature representation from self-supervised auxiliary tasks is a powerful feature representation for the problem at hand. Such a representation can leverage the ultimate potential and bring in a unique representation of both the self-supervised and primary tasks, achieving better performance for the primary task. We experimented on a large set of datasets, which includes DF40, FaceForensics++, Celeb-DF, DFD, FaceShifter, UADFV, and our results showed better generalizability on cross-dataset evaluation when compared with current state-of-the-art detectors.
☆ FedHypeVAE: Federated Learning with Hypernetwork Generated Conditional VAEs for Differentially Private Embedding Sharing
Federated data sharing promises utility without centralizing raw data, yet existing embedding-level generators struggle under non-IID client heterogeneity and provide limited formal protection against gradient leakage. We propose FedHypeVAE, a differentially private, hypernetwork-driven framework for synthesizing embedding-level data across decentralized clients. Building on a conditional VAE backbone, we replace the single global decoder and fixed latent prior with client-aware decoders and class-conditional priors generated by a shared hypernetwork from private, trainable client codes. This bi-level design personalizes the generative layerrather than the downstream modelwhile decoupling local data from communicated parameters. The shared hypernetwork is optimized under differential privacy, ensuring that only noise-perturbed, clipped gradients are aggregated across clients. A local MMD alignment between real and synthetic embeddings and a Lipschitz regularizer on hypernetwork outputs further enhance stability and distributional coherence under non-IID conditions. After training, a neutral meta-code enables domain agnostic synthesis, while mixtures of meta-codes provide controllable multi-domain coverage. FedHypeVAE unifies personalization, privacy, and distribution alignment at the generator level, establishing a principled foundation for privacy-preserving data synthesis in federated settings. Code: github.com/sunnyinAI/FedHypeVAE
comment: 10 pages, 1 figures, Accepted at AAI'26
☆ Investigating the Viability of Employing Multi-modal Large Language Models in the Context of Audio Deepfake Detection
While Vision-Language Models (VLMs) and Multimodal Large Language Models (MLLMs) have shown strong generalisation in detecting image and video deepfakes, their use for audio deepfake detection remains largely unexplored. In this work, we aim to explore the potential of MLLMs for audio deepfake detection. Combining audio inputs with a range of text prompts as queries to find out the viability of MLLMs to learn robust representations across modalities for audio deepfake detection. Therefore, we attempt to explore text-aware and context-rich, question-answer based prompts with binary decisions. We hypothesise that such a feature-guided reasoning will help in facilitating deeper multimodal understanding and enable robust feature learning for audio deepfake detection. We evaluate the performance of two MLLMs, Qwen2-Audio-7B-Instruct and SALMONN, in two evaluation modes: (a) zero-shot and (b) fine-tuned. Our experiments demonstrate that combining audio with a multi-prompt approach could be a viable way forward for audio deepfake detection. Our experiments show that the models perform poorly without task-specific training and struggle to generalise to out-of-domain data. However, they achieve good performance on in-domain data with minimal supervision, indicating promising potential for audio deepfake detection.
comment: Accepted at IJCB 2025
☆ Unified Primitive Proxies for Structured Shape Completion
Structured shape completion recovers missing geometry as primitives rather than as unstructured points, which enables primitive-based surface reconstruction. Instead of following the prevailing cascade, we rethink how primitives and points should interact, and find it more effective to decode primitives in a dedicated pathway that attends to shared shape features. Following this principle, we present UniCo, which in a single feed-forward pass predicts a set of primitives with complete geometry, semantics, and inlier membership. To drive this unified representation, we introduce primitive proxies, learnable queries that are contextualized to produce assembly-ready outputs. To ensure consistent optimization, our training strategy couples primitives and points with online target updates. Across synthetic and real-world benchmarks with four independent assembly solvers, UniCo consistently outperforms recent baselines, lowering Chamfer distance by up to 50% and improving normal consistency by up to 7%. These results establish an attractive recipe for structured 3D understanding from incomplete data. Project page: https://unico-completion.github.io.
☆ Grading Handwritten Engineering Exams with Multimodal Large Language Models
Handwritten STEM exams capture open-ended reasoning and diagrams, but manual grading is slow and difficult to scale. We present an end-to-end workflow for grading scanned handwritten engineering quizzes with multimodal large language models (LLMs) that preserves the standard exam process (A4 paper, unconstrained student handwriting). The lecturer provides only a handwritten reference solution (100%) and a short set of grading rules; the reference is converted into a text-only summary that conditions grading without exposing the reference scan. Reliability is achieved through a multi-stage design with a format/presence check to prevent grading blank answers, an ensemble of independent graders, supervisor aggregation, and rigid templates with deterministic validation to produce auditable, machine-parseable reports. We evaluate the frozen pipeline in a clean-room protocol on a held-out real course quiz in Slovenian, including hand-drawn circuit schematics. With state-of-the-art backends (GPT-5.2 and Gemini-3 Pro), the full pipeline achieves $\approx$8-point mean absolute difference to lecturer grades with low bias and an estimated manual-review trigger rate of $\approx$17% at $D_{\max}=40$. Ablations show that trivial prompting and removing the reference solution substantially degrade accuracy and introduce systematic over-grading, confirming that structured prompting and reference grounding are essential.
comment: 10 pages, 5 figures, 2 tables. Supplementary material available at https://lmi.fe.uni-lj.si/en/janez-pers-2/supplementary-material/
☆ Multi-Level Feature Fusion for Continual Learning in Visual Quality Inspection IEEE 13
Deep neural networks show great potential for automating various visual quality inspection tasks in manufacturing. However, their applicability is limited in more volatile scenarios, such as remanufacturing, where the inspected products and defect patterns often change. In such settings, deployed models require frequent adaptation to novel conditions, effectively posing a continual learning problem. To enable quick adaptation, the necessary training processes must be computationally efficient while still avoiding effects like catastrophic forgetting. This work presents a multi-level feature fusion (MLFF) approach that aims to improve both aspects simultaneously by utilizing representations from different depths of a pretrained network. We show that our approach is able to match the performance of end-to-end training for different quality inspection problems while using significantly less trainable parameters. Furthermore, it reduces catastrophic forgetting and improves generalization robustness to new product types or defects.
comment: Accepted at the 2025 IEEE 13th International Conference on Control, Mechatronics and Automation (ICCMA)
☆ Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model
Vision-Language Models have demonstrated strong potential in medical image analysis and disease diagnosis. However, after deployment, their performance may deteriorate when the input data distribution shifts from that observed during development. Detecting such performance degradation is essential for clinical reliability, yet remains challenging for large pre-trained VLMs operating without labeled data. In this study, we investigate performance degradation detection under data shift in a state-of-the-art pathology VLM. We examine both input-level data shift and output-level prediction behavior to understand their respective roles in monitoring model reliability. To facilitate systematic analysis of input data shift, we develop DomainSAT, a lightweight toolbox with a graphical interface that integrates representative shift detection algorithms and enables intuitive exploration of data shift. Our analysis shows that while input data shift detection is effective at identifying distributional changes and providing early diagnostic signals, it does not always correspond to actual performance degradation. Motivated by this observation, we further study output-based monitoring and introduce a label-free, confidence-based degradation indicator that directly captures changes in model prediction confidence. We find that this indicator exhibits a close relationship with performance degradation and serves as an effective complement to input shift detection. Experiments on a large-scale pathology dataset for tumor classification demonstrate that combining input data shift detection and output confidence-based indicators enables more reliable detection and interpretation of performance degradation in VLMs under data shift. These findings provide a practical and complementary framework for monitoring the reliability of foundation models in digital pathology.
comment: 8 pages, 6 figures
☆ Efficient Deep Demosaicing with Spatially Downsampled Isotropic Networks WACV
In digital imaging, image demosaicing is a crucial first step which recovers the RGB information from a color filter array (CFA). Oftentimes, deep learning is utilized to perform image demosaicing. Given that most modern digital imaging applications occur on mobile platforms, applying deep learning to demosaicing requires lightweight and efficient networks. Isotropic networks, also known as residual-in-residual networks, have been often employed for image demosaicing and joint-demosaicing-and-denoising (JDD). Most demosaicing isotropic networks avoid spatial downsampling entirely, and thus are often prohibitively expensive computationally for mobile applications. Contrary to previous isotropic network designs, this paper claims that spatial downsampling to a signficant degree can improve the efficiency and performance of isotropic networks. To validate this claim, we design simple fully convolutional networks with and without downsampling using a mathematical architecture design technique adapted from DeepMAD, and find that downsampling improves empirical performance. Additionally, empirical testing of the downsampled variant, JD3Net, of our fully convolutional networks reveals strong empirical performance on a variety of image demosaicing and JDD tasks.
comment: 9 pages, 5 figures. To be published at WVAQ Workshop at WACV
☆ DefVINS: Visual-Inertial Odometry for Deformable Scenes
Deformable scenes violate the rigidity assumptions underpinning classical visual-inertial odometry (VIO), often leading to over-fitting to local non-rigid motion or severe drift when deformation dominates visual parallax. We introduce DefVINS, a visual-inertial odometry framework that explicitly separates a rigid, IMU-anchored state from a non--rigid warp represented by an embedded deformation graph. The system is initialized using a standard VIO procedure that fixes gravity, velocity, and IMU biases, after which non-rigid degrees of freedom are activated progressively as the estimation becomes well conditioned. An observability analysis is included to characterize how inertial measurements constrain the rigid motion and render otherwise unobservable modes identifiable in the presence of deformation. This analysis motivates the use of IMU anchoring and informs a conditioning-based activation strategy that prevents ill-posed updates under poor excitation. Ablation studies demonstrate the benefits of combining inertial constraints with observability-aware deformation activation, resulting in improved robustness under non-rigid environments.
comment: 4 figures, 3 tables. Submitted to RA-L
☆ Pixel-to-4D: Camera-Controlled Image-to-Video Generation with Dynamic 3D Gaussians
Humans excel at forecasting the future dynamics of a scene given just a single image. Video generation models that can mimic this ability are an essential component for intelligent systems. Recent approaches have improved temporal coherence and 3D consistency in single-image-conditioned video generation. However, these methods often lack robust user controllability, such as modifying the camera path, limiting their applicability in real-world applications. Most existing camera-controlled image-to-video models struggle with accurately modeling camera motion, maintaining temporal consistency, and preserving geometric integrity. Leveraging explicit intermediate 3D representations offers a promising solution by enabling coherent video generation aligned with a given camera trajectory. Although these methods often use 3D point clouds to render scenes and introduce object motion in a later stage, this two-step process still falls short in achieving full temporal consistency, despite allowing precise control over camera movement. We propose a novel framework that constructs a 3D Gaussian scene representation and samples plausible object motion, given a single image in a single forward pass. This enables fast, camera-guided video generation without the need for iterative denoising to inject object motion into render frames. Extensive experiments on the KITTI, Waymo, RealEstate10K and DL3DV-10K datasets demonstrate that our method achieves state-of-the-art video quality and inference efficiency. The project page is available at https://melonienimasha.github.io/Pixel-to-4D-Website.
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
☆ CRoPS: A Training-Free Hallucination Mitigation Framework for Vision-Language Models
Despite the rapid success of Large Vision-Language Models (LVLMs), a persistent challenge is their tendency to generate hallucinated content, undermining reliability in real-world use. Existing training-free methods address hallucinations but face two limitations: (i) they rely on narrow assumptions about hallucination sources, and (ii) their effectiveness declines toward the end of generation, where hallucinations are most likely to occur. A common strategy is to build hallucinated models by completely or partially removing visual tokens and contrasting them with the original model. Yet, this alone proves insufficient, since visual information still propagates into generated text. Building on this insight, we propose a novel hallucinated model that captures hallucination effects by selectively removing key text tokens. We further introduce Generalized Contrastive Decoding, which integrates multiple hallucinated models to represent diverse hallucination sources. Together, these ideas form CRoPS, a training-free hallucination mitigation framework that improves CHAIR scores by 20% and achieves consistent gains across six benchmarks and three LVLM families, outperforming state-of-the-art training-free methods.
comment: Accepted at TMLR 2026
☆ Reconstructing Building Height from Spaceborne TomoSAR Point Clouds Using a Dual-Topology Network IEEE
Reliable building height estimation is essential for various urban applications. Spaceborne SAR tomography (TomoSAR) provides weather-independent, side-looking observations that capture facade-level structure, offering a promising alternative to conventional optical methods. However, TomoSAR point clouds often suffer from noise, anisotropic point distributions, and data voids on incoherent surfaces, all of which hinder accurate height reconstruction. To address these challenges, we introduce a learning-based framework for converting raw TomoSAR points into high-resolution building height maps. Our dual-topology network alternates between a point branch that models irregular scatterer features and a grid branch that enforces spatial consistency. By jointly processing these representations, the network denoises the input points and inpaints missing regions to produce continuous height estimates. To our knowledge, this is the first proof of concept for large-scale urban height mapping directly from TomoSAR point clouds. Extensive experiments on data from Munich and Berlin validate the effectiveness of our approach. Moreover, we demonstrate that our framework can be extended to incorporate optical satellite imagery, further enhancing reconstruction quality. The source code is available at https://github.com/zhu-xlab/tomosar2height.
comment: Accepted for publication in IEEE Transactions on Geoscience and Remote Sensing
☆ Quality Detection of Stored Potatoes via Transfer Learning: A CNN and Vision Transformer Approach
Image-based deep learning provides a non-invasive, scalable solution for monitoring potato quality during storage, addressing key challenges such as sprout detection, weight loss estimation, and shelf-life prediction. In this study, images and corresponding weight data were collected over a 200-day period under controlled temperature and humidity conditions. Leveraging powerful pre-trained architectures of ResNet, VGG, DenseNet, and Vision Transformer (ViT), we designed two specialized models: (1) a high-precision binary classifier for sprout detection, and (2) an advanced multi-class predictor to estimate weight loss and forecast remaining shelf-life with remarkable accuracy. DenseNet achieved exceptional performance, with 98.03% accuracy in sprout detection. Shelf-life prediction models performed best with coarse class divisions (2-5 classes), achieving over 89.83% accuracy, while accuracy declined for finer divisions (6-8 classes) due to subtle visual differences and limited data per class. These findings demonstrate the feasibility of integrating image-based models into automated sorting and inventory systems, enabling early identification of sprouted potatoes and dynamic categorization based on storage stage. Practical implications include improved inventory management, differential pricing strategies, and reduced food waste across supply chains. While predicting exact shelf-life intervals remains challenging, focusing on broader class divisions ensures robust performance. Future research should aim to develop generalized models trained on diverse potato varieties and storage conditions to enhance adaptability and scalability. Overall, this approach offers a cost-effective, non-destructive method for quality assessment, supporting efficiency and sustainability in potato storage and distribution.
☆ HyperPriv-EPN: Hypergraph Learning with Privileged Knowledge for Ependymoma Prognosis
Preoperative prognosis of Ependymoma is critical for treatment planning but challenging due to the lack of semantic insights in MRI compared to post-operative surgical reports. Existing multimodal methods fail to leverage this privileged text data when it is unavailable during inference. To bridge this gap, we propose HyperPriv-EPN, a hypergraph-based Learning Using Privileged Information (LUPI) framework. We introduce a Severed Graph Strategy, utilizing a shared encoder to process both a Teacher graph (enriched with privileged post-surgery information) and a Student graph (restricted to pre-operation data). Through dual-stream distillation, the Student learns to hallucinate semantic community structures from visual features alone. Validated on a multi-center cohort of 311 patients, HyperPriv-EPN achieves state-of-the-art diagnostic accuracy and survival stratification. This effectively transfers expert knowledge to the preoperative setting, unlocking the value of historical post-operative data to guide the diagnosis of new patients without requiring text at inference.
comment: 6 pages, 2 figures, 2 tables
☆ RePose: A Real-Time 3D Human Pose Estimation and Biomechanical Analysis Framework for Rehabilitation
We propose a real-time 3D human pose estimation and motion analysis method termed RePose for rehabilitation training. It is capable of real-time monitoring and evaluation of patients'motion during rehabilitation, providing immediate feedback and guidance to assist patients in executing rehabilitation exercises correctly. Firstly, we introduce a unified pipeline for end-to-end real-time human pose estimation and motion analysis using RGB video input from multiple cameras which can be applied to the field of rehabilitation training. The pipeline can help to monitor and correct patients'actions, thus aiding them in regaining muscle strength and motor functions. Secondly, we propose a fast tracking method for medical rehabilitation scenarios with multiple-person interference, which requires less than 1ms for tracking for a single frame. Additionally, we modify SmoothNet for real-time posture estimation, effectively reducing pose estimation errors and restoring the patient's true motion state, making it visually smoother. Finally, we use Unity platform for real-time monitoring and evaluation of patients' motion during rehabilitation, and to display the muscle stress conditions to assist patients with their rehabilitation training.
☆ Noise-Robust Tiny Object Localization with Flows
Despite significant advances in generic object detection, a persistent performance gap remains for tiny objects compared to normal-scale objects. We demonstrate that tiny objects are highly sensitive to annotation noise, where optimizing strict localization objectives risks noise overfitting. To address this, we propose Tiny Object Localization with Flows (TOLF), a noise-robust localization framework leveraging normalizing flows for flexible error modeling and uncertainty-guided optimization. Our method captures complex, non-Gaussian prediction distributions through flow-based error modeling, enabling robust learning under noisy supervision. An uncertainty-aware gradient modulation mechanism further suppresses learning from high-uncertainty, noise-prone samples, mitigating overfitting while stabilizing training. Extensive experiments across three datasets validate our approach's effectiveness. Especially, TOLF boosts the DINO baseline by 1.2% AP on the AI-TOD dataset.
comment: 11 pages, 5 figures
☆ Modality Dominance-Aware Optimization for Embodied RGB-Infrared Perception
RGB-Infrared (RGB-IR) multimodal perception is fundamental to embodied multimedia systems operating in complex physical environments. Although recent cross-modal fusion methods have advanced RGB-IR detection, the optimization dynamics caused by asymmetric modality characteristics remain underexplored. In practice, disparities in information density and feature quality introduce persistent optimization bias, leading training to overemphasize a dominant modality and hindering effective fusion. To quantify this phenomenon, we propose the Modality Dominance Index (MDI), which measures modality dominance by jointly modeling feature entropy and gradient contribution. Based on MDI, we develop a Modality Dominance-Aware Cross-modal Learning (MDACL) framework that regulates cross-modal optimization. MDACL incorporates Hierarchical Cross-modal Guidance (HCG) to enhance feature alignment and Adversarial Equilibrium Regularization (AER) to balance optimization dynamics during fusion. Extensive experiments on three RGB-IR benchmarks demonstrate that MDACL effectively mitigates optimization bias and achieves SOTA performance.
☆ SafeMo: Linguistically Grounded Unlearning for Trustworthy Text-to-Motion Generation
Text-to-motion (T2M) generation with diffusion backbones achieves strong realism and alignment. Safety concerns in T2M methods have been raised in recent years; existing methods replace discrete VQ-VAE codebook entries to steer the model away from unsafe behaviors. However, discrete codebook replacement-based methods have two critical flaws: firstly, replacing codebook entries which are reused by benign prompts leads to drifts on everyday tasks, degrading the model's benign performance; secondly, discrete token-based methods introduce quantization and smoothness loss, resulting in artifacts and jerky transitions. Moreover, existing text-to-motion datasets naturally contain unsafe intents and corresponding motions, making them unsuitable for safety-driven machine learning. To address these challenges, we propose SafeMo, a trustworthy motion generative framework integrating Minimal Motion Unlearning (MMU), a two-stage machine unlearning strategy, enabling safe human motion generation in continuous space, preserving continuous kinematics without codebook loss and delivering strong safety-utility trade-offs compared to current baselines. Additionally, we present the first safe text-to-motion dataset SafeMoVAE-29K integrating rewritten safe text prompts and continuous refined motion for trustworthy human motion unlearning. Built upon DiP, SafeMo efficiently generates safe human motions with natural transitions. Experiments demonstrate effective unlearning performance of SafeMo by showing strengthened forgetting on unsafe prompts, reaching 2.5x and 14.4x higher forget-set FID on HumanML3D and Motion-X respectively, compared to the previous SOTA human motion unlearning method LCR, with benign performance on safe prompts being better or comparable. Code: https://github.com/AIGeeksGroup/SafeMo. Website: https://aigeeksgroup.github.io/SafeMo.
☆ GranAlign: Granularity-Aware Alignment Framework for Zero-Shot Video Moment Retrieval AAAI 2026
Zero-shot video moment retrieval (ZVMR) is the task of localizing a temporal moment within an untrimmed video using a natural language query without relying on task-specific training data. The primary challenge in this setting lies in the mismatch in semantic granularity between textual queries and visual content. Previous studies in ZVMR have attempted to achieve alignment by leveraging high-quality pre-trained knowledge that represents video and language in a joint space. However, these approaches failed to balance the semantic granularity between the pre-trained knowledge provided by each modality for a given scene. As a result, despite the high quality of each modality's representations, the mismatch in granularity led to inaccurate retrieval. In this paper, we propose a training-free framework, called Granularity-Aware Alignment (GranAlign), that bridges this gap between coarse and fine semantic representations. Our approach introduces two complementary techniques: granularity-based query rewriting to generate varied semantic granularities, and query-aware caption generation to embed query intent into video content. By pairing multi-level queries with both query-agnostic and query-aware captions, we effectively resolve semantic mismatches. As a result, our method sets a new state-of-the-art across all three major benchmarks (QVHighlights, Charades-STA, ActivityNet-Captions), with a notable 3.23% mAP@avg improvement on the challenging QVHighlights dataset.
comment: Accepted to AAAI 2026
☆ A Cascaded Information Interaction Network for Precise Image Segmentation
Visual perception plays a pivotal role in enabling autonomous behavior, offering a cost-effective and efficient alternative to complex multi-sensor systems. However, robust segmentation remains a challenge in complex scenarios. To address this, this paper proposes a cascaded convolutional neural network integrated with a novel Global Information Guidance Module. This module is designed to effectively fuse low-level texture details with high-level semantic features across multiple layers, thereby overcoming the inherent limitations of single-scale feature extraction. This architectural innovation significantly enhances segmentation accuracy, particularly in visually cluttered or blurred environments where traditional methods often fail. Experimental evaluations on benchmark image segmentation datasets demonstrate that the proposed framework achieves superior precision, outperforming existing state-of-the-art methods. The results highlight the effectiveness of the approach and its promising potential for deployment in practical robotic applications.
☆ AEGIS: Exploring the Limit of World Knowledge Capabilities for Unified Mulitmodal Models
The capability of Unified Multimodal Models (UMMs) to apply world knowledge across diverse tasks remains a critical, unresolved challenge. Existing benchmarks fall short, offering only siloed, single-task evaluations with limited diagnostic power. To bridge this gap, we propose AEGIS (\emph{i.e.}, \textbf{A}ssessing \textbf{E}diting, \textbf{G}eneration, \textbf{I}nterpretation-Understanding for \textbf{S}uper-intelligence), a comprehensive multi-task benchmark covering visual understanding, generation, editing, and interleaved generation. AEGIS comprises 1,050 challenging, manually-annotated questions spanning 21 topics (including STEM, humanities, daily life, etc.) and 6 reasoning types. To concretely evaluate the performance of UMMs in world knowledge scope without ambiguous metrics, we further propose Deterministic Checklist-based Evaluation (DCE), a protocol that replaces ambiguous prompt-based scoring with atomic ``Y/N'' judgments, to enhance evaluation reliability. Our extensive experiments reveal that most UMMs exhibit severe world knowledge deficits and that performance degrades significantly with complex reasoning. Additionally, simple plug-in reasoning modules can partially mitigate these vulnerabilities, highlighting a promising direction for future research. These results highlight the importance of world-knowledge-based reasoning as a critical frontier for UMMs.
☆ A Comprehensive Dataset for Human vs. AI Generated Image Detection
Multimodal generative AI systems like Stable Diffusion, DALL-E, and MidJourney have fundamentally changed how synthetic images are created. These tools drive innovation but also enable the spread of misleading content, false information, and manipulated media. As generated images become harder to distinguish from photographs, detecting them has become an urgent priority. To combat this challenge, We release MS COCOAI, a novel dataset for AI generated image detection consisting of 96000 real and synthetic datapoints, built using the MS COCO dataset. To generate synthetic images, we use five generators: Stable Diffusion 3, Stable Diffusion 2.1, SDXL, DALL-E 3, and MidJourney v6. Based on the dataset, we propose two tasks: (1) classifying images as real or generated, and (2) identifying which model produced a given synthetic image. The dataset is available at https://huggingface.co/datasets/Rajarshi-Roy-research/Defactify_Image_Dataset.
☆ SingBAG Pro: Accelerating point cloud-based iterative reconstruction for 3D photoacoustic imaging under arbitrary array
High-quality three-dimensional (3D) photoacoustic imaging (PAI) is gaining increasing attention in clinical applications. To address the challenges of limited space and high costs, irregular geometric transducer arrays that conform to specific imaging regions are promising for achieving high-quality 3D PAI with fewer transducers. However, traditional iterative reconstruction algorithms struggle with irregular array configurations, suffering from high computational complexity, substantial memory requirements, and lengthy reconstruction times. In this work, we introduce SlingBAG Pro, an advanced reconstruction algorithm based on the point cloud iteration concept of the Sliding ball adaptive growth (SlingBAG) method, while extending its compatibility to arbitrary array geometries. SlingBAG Pro maintains high reconstruction quality, reduces the number of required transducers, and employs a hierarchical optimization strategy that combines zero-gradient filtering with progressively increased temporal sampling rates during iteration. This strategy rapidly removes redundant spatial point clouds, accelerates convergence, and significantly shortens overall reconstruction time. Compared to the original SlingBAG algorithm, SlingBAG Pro achieves up to a 2.2-fold speed improvement in point cloud-based 3D PA reconstruction under irregular array geometries. The proposed method is validated through both simulation and in vivo mouse experiments, and the source code is publicly available at https://github.com/JaegerCQ/SlingBAG_Pro.
☆ DynaDrag: Dynamic Drag-Style Image Editing by Motion Prediction
To achieve pixel-level image manipulation, drag-style image editing which edits images using points or trajectories as conditions is attracting widespread attention. Most previous methods follow move-and-track framework, in which miss tracking and ambiguous tracking are unavoidable challenging issues. Other methods under different frameworks suffer from various problems like the huge gap between source image and target edited image as well as unreasonable intermediate point which can lead to low editability. To avoid these problems, we propose DynaDrag, the first dragging method under predict-and-move framework. In DynaDrag, Motion Prediction and Motion Supervision are performed iteratively. In each iteration, Motion Prediction first predicts where the handle points should move, and then Motion Supervision drags them accordingly. We also propose to dynamically adjust the valid handle points to further improve the performance. Experiments on face and human datasets showcase the superiority over previous works.
comment: 9 pages, 6 figures
☆ Boosting Segment Anything Model to Generalize Visually Non-Salient Scenarios IEEE
Segment Anything Model (SAM), known for its remarkable zero-shot segmentation capabilities, has garnered significant attention in the community. Nevertheless, its performance is challenged when dealing with what we refer to as visually non-salient scenarios, where there is low contrast between the foreground and background. In these cases, existing methods often cannot capture accurate contours and fail to produce promising segmentation results. In this paper, we propose Visually Non-Salient SAM (VNS-SAM), aiming to enhance SAM's perception of visually non-salient scenarios while preserving its original zero-shot generalizability. We achieve this by effectively exploiting SAM's low-level features through two designs: Mask-Edge Token Interactive decoder and Non-Salient Feature Mining module. These designs help the SAM decoder gain a deeper understanding of non-salient characteristics with only marginal parameter increments and computational requirements. The additional parameters of VNS-SAM can be optimized within 4 hours, demonstrating its feasibility and practicality. In terms of data, we established VNS-SEG, a unified dataset for various VNS scenarios, with more than 35K images, in contrast to previous single-task adaptations. It is designed to make the model learn more robust VNS features and comprehensively benchmark the model's segmentation performance and generalizability on VNS scenarios. Extensive experiments across various VNS segmentation tasks demonstrate the superior performance of VNS-SAM, particularly under zero-shot settings, highlighting its potential for broad real-world applications. Codes and datasets are publicly available at https://guangqian-guo.github.io/VNS-SAM.
comment: Accepted by IEEE TIP
☆ FreeText: Training-Free Text Rendering in Diffusion Transformers via Attention Localization and Spectral Glyph Injection
Large-scale text-to-image (T2I) diffusion models excel at open-domain synthesis but still struggle with precise text rendering, especially for multi-line layouts, dense typography, and long-tailed scripts such as Chinese. Prior solutions typically require costly retraining or rigid external layout constraints, which can degrade aesthetics and limit flexibility. We propose \textbf{FreeText}, a training-free, plug-and-play framework that improves text rendering by exploiting intrinsic mechanisms of \emph{Diffusion Transformer (DiT)} models. \textbf{FreeText} decomposes the problem into \emph{where to write} and \emph{what to write}. For \emph{where to write}, we localize writing regions by reading token-wise spatial attribution from endogenous image-to-text attention, using sink-like tokens as stable spatial anchors and topology-aware refinement to produce high-confidence masks. For \emph{what to write}, we introduce Spectral-Modulated Glyph Injection (SGMI), which injects a noise-aligned glyph prior with frequency-domain band-pass modulation to strengthen glyph structure and suppress semantic leakage (rendering the concept instead of the word). Extensive experiments on Qwen-Image, FLUX.1-dev, and SD3 variants across longText-Benchmark, CVTG, and our CLT-Bench show consistent gains in text readability while largely preserving semantic alignment and aesthetic quality, with modest inference overhead.
☆ All-in-One Video Restoration under Smoothly Evolving Unknown Weather Degradations
All-in-one image restoration aims to recover clean images from diverse unknown degradations using a single model. But extending this task to videos faces unique challenges. Existing approaches primarily focus on frame-wise degradation variation, overlooking the temporal continuity that naturally exists in real-world degradation processes. In practice, degradation types and intensities evolve smoothly over time, and multiple degradations may coexist or transition gradually. In this paper, we introduce the Smoothly Evolving Unknown Degradations (SEUD) scenario, where both the active degradation set and degradation intensity change continuously over time. To support this scenario, we design a flexible synthesis pipeline that generates temporally coherent videos with single, compound, and evolving degradations. To address the challenges in the SEUD scenario, we propose an all-in-One Recurrent Conditional and Adaptive prompting Network (ORCANet). First, a Coarse Intensity Estimation Dehazing (CIED) module estimates haze intensity using physical priors and provides coarse dehazed features as initialization. Second, a Flow Prompt Generation (FPG) module extracts degradation features. FPG generates both static prompts that capture segment-level degradation types and dynamic prompts that adapt to frame-level intensity variations. Furthermore, a label-aware supervision mechanism improves the discriminability of static prompt representations under different degradations. Extensive experiments show that ORCANet achieves superior restoration quality, temporal consistency, and robustness over image and video-based baselines. Code is available at https://github.com/Friskknight/ORCANet-SEUD.
☆ Scale-aware Adaptive Supervised Network with Limited Medical Annotations
Medical image segmentation faces critical challenges in semi-supervised learning scenarios due to severe annotation scarcity requiring expert radiological knowledge, significant inter-annotator variability across different viewpoints and expertise levels, and inadequate multi-scale feature integration for precise boundary delineation in complex anatomical structures. Existing semi-supervised methods demonstrate substantial performance degradation compared to fully supervised approaches, particularly in small target segmentation and boundary refinement tasks. To address these fundamental challenges, we propose SASNet (Scale-aware Adaptive Supervised Network), a dual-branch architecture that leverages both low-level and high-level feature representations through novel scale-aware adaptive reweight mechanisms. Our approach introduces three key methodological innovations, including the Scale-aware Adaptive Reweight strategy that dynamically weights pixel-wise predictions using temporal confidence accumulation, the View Variance Enhancement mechanism employing 3D Fourier domain transformations to simulate annotation variability, and segmentation-regression consistency learning through signed distance map algorithms for enhanced boundary precision. These innovations collectively address the core limitations of existing semi-supervised approaches by integrating spatial, temporal, and geometric consistency principles within a unified optimization framework. Comprehensive evaluation across LA, Pancreas-CT, and BraTS datasets demonstrates that SASNet achieves superior performance with limited labeled data, surpassing state-of-the-art semi-supervised methods while approaching fully supervised performance levels. The source code for SASNet is available at https://github.com/HUANGLIZI/SASNet.
comment: Accepted by Pattern Recognition, 8 figures, 11 tables
☆ Lightweight Channel Attention for Efficient CNNs
Attention mechanisms have become integral to modern convolutional neural networks (CNNs), delivering notable performance improvements with minimal computational overhead. However, the efficiency accuracy trade off of different channel attention designs remains underexplored. This work presents an empirical study comparing Squeeze and Excitation (SE), Efficient Channel Attention (ECA), and a proposed Lite Channel Attention (LCA) module across ResNet 18 and MobileNetV2 architectures on CIFAR 10. LCA employs adaptive one dimensional convolutions with grouped operations to reduce parameter usage while preserving effective attention behavior. Experimental results show that LCA achieves competitive accuracy, reaching 94.68 percent on ResNet 18 and 93.10 percent on MobileNetV2, while matching ECA in parameter efficiency and maintaining favorable inference latency. Comprehensive benchmarks including FLOPs, parameter counts, and GPU latency measurements are provided, offering practical insights for deploying attention enhanced CNNs in resource constrained environments.
comment: 6 pages, 5 figures
☆ DVGBench: Implicit-to-Explicit Visual Grounding Benchmark in UAV Imagery with Large Vision-Language Models
Remote sensing (RS) large vision-language models (LVLMs) have shown strong promise across visual grounding (VG) tasks. However, existing RS VG datasets predominantly rely on explicit referring expressions-such as relative position, relative size, and color cues-thereby constraining performance on implicit VG tasks that require scenario-specific domain knowledge. This article introduces DVGBench, a high-quality implicit VG benchmark for drones, covering six major application scenarios: traffic, disaster, security, sport, social activity, and productive activity. Each object provides both explicit and implicit queries. Based on the dataset, we design DroneVG-R1, an LVLM that integrates the novel Implicit-to-Explicit Chain-of-Thought (I2E-CoT) within a reinforcement learning paradigm. This enables the model to take advantage of scene-specific expertise, converting implicit references into explicit ones and thus reducing grounding difficulty. Finally, an evaluation of mainstream models on both explicit and implicit VG tasks reveals substantial limitations in their reasoning capabilities. These findings provide actionable insights for advancing the reasoning capacity of LVLMs for drone-based agents. The code and datasets will be released at https://github.com/zytx121/DVGBench
comment: 20 pages, 17 figures
☆ WildIng: A Wildlife Image Invariant Representation Model for Geographical Domain Shift
Wildlife monitoring is crucial for studying biodiversity loss and climate change. Camera trap images provide a non-intrusive method for analyzing animal populations and identifying ecological patterns over time. However, manual analysis is time-consuming and resource-intensive. Deep learning, particularly foundation models, has been applied to automate wildlife identification, achieving strong performance when tested on data from the same geographical locations as their training sets. Yet, despite their promise, these models struggle to generalize to new geographical areas, leading to significant performance drops. For example, training an advanced vision-language model, such as CLIP with an adapter, on an African dataset achieves an accuracy of 84.77%. However, this performance drops significantly to 16.17% when the model is tested on an American dataset. This limitation partly arises because existing models rely predominantly on image-based representations, making them sensitive to geographical data distribution shifts, such as variation in background, lighting, and environmental conditions. To address this, we introduce WildIng, a Wildlife image Invariant representation model for geographical domain shift. WildIng integrates text descriptions with image features, creating a more robust representation to geographical domain shifts. By leveraging textual descriptions, our approach captures consistent semantic information, such as detailed descriptions of the appearance of the species, improving generalization across different geographical locations. Experiments show that WildIng enhances the accuracy of foundation models such as BioCLIP by 30% under geographical domain shift conditions. We evaluate WildIng on two datasets collected from different regions, namely America and Africa. The code and models are publicly available at https://github.com/Julian075/CATALOG/tree/WildIng.
☆ UnrealPose: Leveraging Game Engine Kinematics for Large-Scale Synthetic Human Pose Data CVPR 2026
Diverse, accurately labeled 3D human pose data is expensive and studio-bound, while in-the-wild datasets lack known ground truth. We introduce UnrealPose-Gen, an Unreal Engine 5 pipeline built on Movie Render Queue for high-quality offline rendering. Our generated frames include: (i) 3D joints in world and camera coordinates, (ii) 2D projections and COCO-style keypoints with occlusion and joint-visibility flags, (iii) person bounding boxes, and (iv) camera intrinsics and extrinsics. We use UnrealPose-Gen to present UnrealPose-1M, an approximately one million frame corpus comprising eight sequences: five scripted "coherent" sequences spanning five scenes, approximately 40 actions, and five subjects; and three randomized sequences across three scenes, approximately 100 actions, and five subjects, all captured from diverse camera trajectories for broad viewpoint coverage. As a fidelity check, we report real-to-synthetic results on four tasks: image-to-3D pose, 2D keypoint detection, 2D-to-3D lifting, and person detection/segmentation. Though time and resources constrain us from an unlimited dataset, we release the UnrealPose-1M dataset, as well as the UnrealPose-Gen pipeline to support third-party generation of human pose data.
comment: CVPR 2026 submission. Introduces UnrealPose-1M dataset and UnrealPose-Gen pipeline
☆ Uncertainty-Calibrated Explainable AI for Fetal Ultrasound Plane Classification
Fetal ultrasound standard-plane classification underpins reliable prenatal biometry and anomaly screening, yet real-world deployment is limited by domain shift, image noise, and poor calibration of predicted probabilities. This paper presents a practical framework for uncertainty-calibrated explainable AI in fetal plane classification. We synthesize uncertainty estimation methods (Monte Carlo dropout, deep ensembles, evidential learning, and conformal prediction) with post-hoc and uncertainty-aware explanations (Grad-CAM variants, LIME-style local surrogates, and uncertainty-weighted multi-resolution activation maps), and we map these components to a clinician-facing workflow. Using FETAL_PLANES_DB as a reference benchmark, we define a reporting protocol that couples accuracy with calibration and selective prediction, including expected calibration error, Brier score, coverage-risk curves, and structured error analysis with explanations. We also discuss integration points for quality control and human-in-the-loop review, where uncertainty flags trigger re-acquisition or expert confirmation. The goal is a reproducible, clinically aligned blueprint for building fetal ultrasound classifiers whose confidence and explanations remain trustworthy under noisy acquisition conditions.
comment: 9 pages, 1 figure, 4 tables
☆ Few-Shot Video Object Segmentation in X-Ray Angiography Using Local Matching and Spatio-Temporal Consistency Loss
We introduce a novel FSVOS model that employs a local matching strategy to restrict the search space to the most relevant neighboring pixels. Rather than relying on inefficient standard im2col-like implementations (e.g., spatial convolutions, depthwise convolutions and feature-shifting mechanisms) or hardware-specific CUDA kernels (e.g., deformable and neighborhood attention), which often suffer from limited portability across non-CUDA devices, we reorganize the local sampling process through a direction-based sampling perspective. Specifically, we implement a non-parametric sampling mechanism that enables dynamically varying sampling regions. This approach provides the flexibility to adapt to diverse spatial structures without the computational costs of parametric layers and the need for model retraining. To further enhance feature coherence across frames, we design a supervised spatio-temporal contrastive learning scheme that enforces consistency in feature representations. In addition, we introduce a publicly available benchmark dataset for multi-object segmentation in X-ray angiography videos (MOSXAV), featuring detailed, manually labeled segmentation ground truth. Extensive experiments on the CADICA, XACV, and MOSXAV datasets show that our proposed FSVOS method outperforms current state-of-the-art video segmentation methods in terms of segmentation accuracy and generalization capability (i.e., seen and unseen categories). This work offers enhanced flexibility and potential for a wide range of clinical applications.
☆ Simulations of MRI Guided and Powered Ferric Applicators for Tetherless Delivery of Therapeutic Interventions
Magnetic Resonance Imaging (MRI) is a well-established modality for pre-operative planning and is also explored for intra-operative guidance of procedures such as intravascular interventions. Among the experimental robot-assisted technologies, the magnetic field gradients of the MRI scanner are used to power and maneuver ferromagnetic applicators for accessing sites in the patient's body via the vascular network. In this work, we propose a computational platform for preoperative planning and modeling of MRI-powered applicators inside blood vessels. This platform was implemented as a two-way data and command pipeline that links the MRI scanner, the computational core, and the operator. The platform first processes multi-slice MR data to extract the vascular bed and then fits a virtual corridor inside the vessel. This corridor serves as a virtual fixture (VF), a forbidden region for the applicators to avoid vessel perforation or collision. The geometric features of the vessel centerline, the VF, and MRI safety compliance (dB/dt, max available gradient) are then used to generate magnetic field gradient waveforms. Different blood flow profiles can be user-selected, and those parameters are used for modeling the applicator's maneuvering. The modeling module further generates cues about whether the selected vascular path can be safely maneuvered. Given future experimental studies that require a real-time operation, the platform was implemented on the Qt framework (C/C++) with software modules performing specific tasks running on dedicated threads: PID controller, generation of VF, generation of MR gradient waveforms.
comment: 9 pages, 8 figures, published in ICBBB 2022
☆ A Deep Learning Approach for Automated Skin Lesion Diagnosis with Explainable AI
Skin cancer is also one of the most common and dangerous types of cancer in the world that requires timely and precise diagnosis. In this paper, a deep-learning architecture of the multi-class skin lesion classification on the HAM10000 dataset will be described. The system suggested combines high-quality data balancing methods, large-scale data augmentation, hybridized EfficientNetV2-L framework with channel attention, and a three-stage progressive learning approach. Moreover, we also use explainable AI (XAI) techniques such as Grad-CAM and saliency maps to come up with intelligible visual representations of model predictions. Our strategy is with a total accuracy of 91.15 per cent, macro F1 of 85.45\% and micro-average AUC of 99.33\%. The model has shown high performance in all the seven lesion classes with specific high performance of melanoma and melanocytic nevi. In addition to enhancing diagnostic transparency, XAI also helps to find out the visual characteristics that cause the classifications, which enhances clinical trustworthiness.
☆ Deep Clustering with Associative Memories
Deep clustering - joint representation learning and latent space clustering - is a well studied problem especially in computer vision and text processing under the deep learning framework. While the representation learning is generally differentiable, clustering is an inherently discrete optimization task, requiring various approximations and regularizations to fit in a standard differentiable pipeline. This leads to a somewhat disjointed representation learning and clustering. In this work, we propose a novel loss function utilizing energy-based dynamics via Associative Memories to formulate a new deep clustering method, DCAM, which ties together the representation learning and clustering aspects more intricately in a single objective. Our experiments showcase the advantage of DCAM, producing improved clustering quality for various architecture choices (convolutional, residual or fully-connected) and data modalities (images or text).
☆ PhyEduVideo: A Benchmark for Evaluating Text-to-Video Models for Physics Education WACV
Generative AI models, particularly Text-to-Video (T2V) systems, offer a promising avenue for transforming science education by automating the creation of engaging and intuitive visual explanations. In this work, we take a first step toward evaluating their potential in physics education by introducing a dedicated benchmark for explanatory video generation. The benchmark is designed to assess how well T2V models can convey core physics concepts through visual illustrations. Each physics concept in our benchmark is decomposed into granular teaching points, with each point accompanied by a carefully crafted prompt intended for visual explanation of the teaching point. T2V models are evaluated on their ability to generate accurate videos in response to these prompts. Our aim is to systematically explore the feasibility of using T2V models to generate high-quality, curriculum-aligned educational content-paving the way toward scalable, accessible, and personalized learning experiences powered by AI. Our evaluation reveals that current models produce visually coherent videos with smooth motion and minimal flickering, yet their conceptual accuracy is less reliable. Performance in areas such as mechanics, fluids, and optics is encouraging, but models struggle with electromagnetism and thermodynamics, where abstract interactions are harder to depict. These findings underscore the gap between visual quality and conceptual correctness in educational video generation. We hope this benchmark helps the community close that gap and move toward T2V systems that can deliver accurate, curriculum-aligned physics content at scale. The benchmark and accompanying codebase are publicly available at https://github.com/meghamariamkm/PhyEduVideo.
comment: Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
☆ Learning to Segment Liquids in Real-world Images
Different types of liquids such as water, wine and medicine appear in all aspects of daily life. However, limited attention has been given to the task, hindering the ability of robots to avoid or interact with liquids safely. The segmentation of liquids is difficult because liquids come in diverse appearances and shapes; moreover, they can be both transparent or reflective, taking on arbitrary objects and scenes from the background or surroundings. To take on this challenge, we construct a large-scale dataset of liquids named LQDS consisting of 5000 real-world images annotated into 14 distinct classes, and design a novel liquid detection model named LQDM, which leverages cross-attention between a dedicated boundary branch and the main segmentation branch to enhance segmentation predictions. Extensive experiments demonstrate the effectiveness of LQDM on the test set of LQDS, outperforming state-of-the-art methods and establishing a strong baseline for the semantic segmentation of liquids.
comment: 9 pages, 7 figures
♻ ☆ Semantic Anchor Transport: Robust Test-Time Adaptation for Vision-Language Models
Large pre-trained vision-language models (VLMs), such as CLIP, have shown unprecedented zero-shot performance across a wide range of tasks. Nevertheless, these models may be unreliable under distributional shifts, as their performance is significantly degraded. In this work, we investigate how to efficiently utilize class text information to mitigate distribution drifts encountered by VLMs during inference. In particular, we propose generating pseudo-labels for the noisy test-time samples by aligning visual embeddings with reliable, text-based semantic anchors. Specifically, to maintain the regular structure of the dataset properly, we formulate the problem as a batch-wise label assignment, which is efficiently solved using Optimal Transport. Our method, Semantic Anchor Transport (SAT), utilizes such pseudo-labels as supervisory signals for test-time adaptation, yielding a principled cross-modal alignment solution. Moreover, SAT further leverages heterogeneous textual clues, with a multi-template distillation approach that replicates multi-view contrastive learning strategies in unsupervised representation learning without incurring additional computational complexity. Extensive experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of SAT, achieving consistent performance gains over recent state-of-the-art methods, yet being computationally efficient.
comment: Added additional figures to communicate the algorithm
♻ ☆ Med-2D SegNet: A Light Weight Deep Neural Network for Medical 2D Image Segmentation
Accurate and efficient medical image segmentation is crucial for advancing clinical diagnostics and surgical planning, yet remains a complex challenge due to the variability in anatomical structures and the demand for low-complexity models. In this paper, we introduced Med-2D SegNet, a novel and highly efficient segmentation architecture that delivers outstanding accuracy while maintaining a minimal computational footprint. Med-2D SegNet achieves state-of-the-art performance across multiple benchmark datasets, including KVASIR-SEG, PH2, EndoVis, and GLAS, with an average Dice similarity coefficient (DSC) of 89.77% across 20 diverse datasets. Central to its success is the compact Med Block, a specialized encoder design that incorporates dimension expansion and parameter reduction, enabling precise feature extraction while keeping model parameters to a low count of just 2.07 million. Med-2D SegNet excels in cross-dataset generalization, particularly in polyp segmentation, where it was trained on KVASIR-SEG and showed strong performance on unseen datasets, demonstrating its robustness in zero-shot learning scenarios, even though we acknowledge that further improvements are possible. With top-tier performance in both binary and multi-class segmentation, Med-2D SegNet redefines the balance between accuracy and efficiency, setting a new benchmark for medical image analysis. This work paves the way for developing accessible, high-performance diagnostic tools suitable for clinical environments and resource-constrained settings, making it a step forward in the democratization of advanced medical technology.
♻ ☆ JavisGPT: A Unified Multi-modal LLM for Sounding-Video Comprehension and Generation NeurIPS
This paper presents JavisGPT, the first unified multimodal large language model (MLLM) for joint audio-video (JAV) comprehension and generation. JavisGPT has a concise encoder-LLM-decoder architecture, which has a SyncFusion module for spatio-temporal audio-video fusion and synchrony-aware learnable queries to bridge a pretrained JAV-DiT generator. This design enables temporally coherent video-audio understanding and generation from multimodal instructions. We design an effective three-stage training pipeline consisting of multimodal pretraining, audio-video fine-tuning, and large-scale instruction-tuning, to progressively build multimodal comprehension and generation from existing vision-language models. For instruction tuning, we construct JavisInst-Omni, a high-quality instruction dataset with over 200K GPT-4o-curated audio-video-text dialogues that cover diverse and multi-level comprehension and generation scenarios. On JAV comprehension and generation benchmarks, our experiments show that JavisGPT outperforms existing MLLMs, particularly in complex and temporally synchronized settings.
comment: Accepted by NeurIPS as a Spotlight paper. Code: https://github.com/JavisVerse/JavisGPT
♻ ☆ Digital implementations of deep feature extractors are intrinsically informative IEEE
Rapid information (energy) propagation in deep feature extractors is crucial to balance computational complexity versus expressiveness as a representation of the input. We prove an upper bound for the speed of energy propagation in a unified framework that covers different neural network models, both over Euclidean and non-Euclidean domains. Additional structural information about the signal domain can be used to explicitly determine or improve the rate of decay. To illustrate this, we show global exponential energy decay for a range of 1) feature extractors with discrete-domain input signals, and 2) convolutional neural networks (CNNs) via scattering over locally compact abelian (LCA) groups.
comment: 6 pages; updated to match the published manuscript of SampTA 2025 proceedings (IEEE Xplore); added IEEE copyright notice
♻ ☆ Beyond Accuracy: What Matters in Designing Well-Behaved Image Classification Models?
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect these quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high class balance on ImageNet-1k classification and strong robustness against domain changes; (ii) training models initialized with weights obtained through self-supervised learning is an effective strategy to improve most considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
comment: Published in TMLR (12/2025) | OpenReview: https://openreview.net/forum?id=E7HDtLCoT6 | Project page: https://visinf.github.io/beyond-accuracy/
♻ ☆ PoseStreamer: A Multi-modal Framework for 3D Tracking of Unseen Moving Objects
Six degree of freedom (6DoF) pose estimation for novel objects is a critical task in computer vision, yet it faces significant challenges in high-speed and low-light scenarios where standard RGB cameras suffer from motion blur. While event cameras offer a promising solution due to their high temporal resolution, current 6DoF pose estimation methods typically yield suboptimal performance in high-speed object moving scenarios. To address this gap, we propose PoseStreamer, a robust multi-modal 6DoF pose estimation framework designed specifically on high-speed moving scenarios. Our approach integrates three core components: an Adaptive Pose Memory Queue that utilizes historical orientation cues for temporal consistency, an Object-centric 2D Tracker that provides strong 2D priors to boost 3D center recall, and a Ray Pose Filter for geometric refinement along camera rays. Furthermore, we introduce MoCapCube6D, a novel multi-modal dataset constructed to benchmark performance under rapid motion. Extensive experiments demonstrate that PoseStreamer not only achieves superior accuracy in high-speed moving scenarios, but also exhibits strong generalizability as a template-free framework for unseen moving objects.
♻ ☆ Evaluating the Performance of Open-Vocabulary Object Detection in Low-quality Image
Open-vocabulary object detection enables models to localize and recognize objects beyond a predefined set of categories and is expected to achieve recognition capabilities comparable to human performance. In this study, we aim to evaluate the performance of existing models on open-vocabulary object detection tasks under low-quality image conditions. For this purpose, we introduce a new dataset that simulates low-quality images in the real world. In our evaluation experiment, we find that although open-vocabulary object detection models exhibited no significant decrease in mAP scores under low-level image degradation, the performance of all models dropped sharply under high-level image degradation. OWLv2 models consistently performed better across different types of degradation, while OWL-ViT, GroundingDINO, and Detic showed significant performance declines. We will release our dataset and codes to facilitate future studies.
♻ ☆ Lamps: Learning Anatomy from Multiple Perspectives via Self-supervision in Chest Radiographs
Foundation models have been successful in natural language processing and computer vision because they are capable of capturing the underlying structures (foundation) of natural languages. However, in medical imaging, the key foundation lies in human anatomy, as these images directly represent the internal structures of the body, reflecting the consistency, coherence, and hierarchy of human anatomy. Yet, existing self-supervised learning (SSL) methods often overlook these perspectives, limiting their ability to effectively learn anatomical features. To overcome the limitation, we built Lamps (learning anatomy from multiple perspectives via self-supervision) pre-trained on large-scale chest radiographs by harmoniously utilizing the consistency, coherence, and hierarchy of human anatomy as the supervision signal. Extensive experiments across 10 datasets evaluated through fine-tuning and emergent property analysis demonstrate Lamps' superior robustness, transferability, and clinical potential when compared to 10 baseline models. By learning from multiple perspectives, Lamps presents a unique opportunity for foundation models to develop meaningful, robust representations that are aligned with the structure of human anatomy.
♻ ☆ Matrix-free Second-order Optimization of Gaussian Splats with Residual Sampling
3D Gaussian Splatting (3DGS) is widely used for novel view synthesis due to its high rendering quality and fast inference time. However, 3DGS predominantly relies on first-order optimizers such as Adam, which leads to long training times. To address this limitation, we propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG), which we specifically tailor towards Gaussian Splatting. Our key insight is that the Jacobian in 3DGS exhibits significant sparsity since each Gaussian affects only a limited number of pixels. We exploit this sparsity by proposing a matrix-free and GPU-parallelized LM optimization. To further improve its efficiency, we propose sampling strategies for both the camera views and loss function and, consequently, the normal equation, significantly reducing the computational complexity. In addition, we increase the convergence rate of the second-order approximation by introducing an effective heuristic to determine the learning rate that avoids the expensive computation cost of line search methods. As a result, our method achieves a $3\times$ speedup over standard LM and outperforms Adam by $~6\times$ when the Gaussian count is low while remaining competitive for moderate counts. Project Page: https://vcai.mpi-inf.mpg.de/projects/LM-IS
♻ ☆ LEL: Lipschitz Continuity Constrained Ensemble Learning for Efficient EEG-Based Intra-subject Emotion Recognition
Accurate and efficient recognition of emotional states is critical for human social functioning, and impairments in this ability are associated with significant psychosocial difficulties. While electroencephalography (EEG) offers a powerful tool for objective emotion detection, existing EEG-based Emotion Recognition (EER) methods suffer from three key limitations: (1) insufficient model stability, (2) limited accuracy in processing high-dimensional nonlinear EEG signals, and (3) poor robustness against intra-subject variability and signal noise. To address these challenges, we introduce Lipschitz continuity-constrained Ensemble Learning (LEL), a novel framework that enhances EEG-based emotion recognition by enforcing Lipschitz continuity constraints on Transformer-based attention mechanisms, spectral extraction, and normalization modules. This constraint ensures model stability, reduces sensitivity to signal variability and noise, and improves generalization capability. Additionally, LEL employs a learnable ensemble fusion strategy that optimally combines decisions from multiple heterogeneous classifiers to mitigate single-model bias and variance. Extensive experiments on three public benchmark datasets (EAV, FACED, and SEED) demonstrate superior performance, achieving average recognition accuracies of 74.25%, 81.19%, and 86.79%, respectively. The official implementation codes are available at https://github.com/NZWANG/LEL.
♻ ☆ AnyCXR: Human Anatomy Segmentation of Chest X-ray at Any Acquisition Position using Multi-stage Domain Randomized Synthetic Data with Imperfect Annotations and Conditional Joint Annotation Regularization Learning
Robust anatomical segmentation of chest X-rays (CXRs) remains challenging due to the scarcity of comprehensive annotations and the substantial variability of real-world acquisition conditions. We propose AnyCXR, a unified framework that enables generalizable multi-organ segmentation across arbitrary CXR projection angles using only synthetic supervision. The method combines a Multi-stage Domain Randomization (MSDR) engine, which generates over 100,000 anatomically faithful and highly diverse synthetic radiographs from 3D CT volumes, with a Conditional Joint Annotation Regularization (CAR) learning strategy that leverages partial and imperfect labels by enforcing anatomical consistency in a latent space. Trained entirely on synthetic data, AnyCXR achieves strong zero-shot generalization on multiple real-world datasets, providing accurate delineation of 54 anatomical structures in PA, lateral, and oblique views. The resulting segmentation maps support downstream clinical tasks, including automated cardiothoracic ratio estimation, spine curvature assessment, and disease classification, where the incorporation of anatomical priors improves diagnostic performance. These results demonstrate that AnyCXR establishes a scalable and reliable foundation for anatomy-aware CXR analysis and offers a practical pathway toward reducing annotation burdens while improving robustness across diverse imaging conditions.
comment: 20 pages, 12 figures, Preprint (under review at Medical Image Analysis)
♻ ☆ Towards Knowledge Guided Pretraining Approaches for Multimodal Foundation Models: Applications in Remote Sensing
Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the knowledge of causal interplay between different geospatial and environmental variables. To address this limitation, we propose Knowledge Guided Variable-Step Forecasting (KG-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to strong embeddings which give enhanced performance when finetuned on downstream tasks where capturing this causality matters such as pixel wise crop type mapping, soil moisture estimation and forecasting, missing image prediction, and future image forecasting when compared to finetuning embeddings from other standard pretraining approaches.
comment: 31 pages with appendix
♻ ☆ ASemConsist: Adaptive Semantic Feature Control for Training-Free Identity-Consistent Generation
Recent text-to-image diffusion models have significantly improved visual quality and text alignment. However, generating a sequence of images while preserving consistent character identity across diverse scene descriptions remains a challenging task. Existing methods often struggle with a trade-off between maintaining identity consistency and ensuring per-image prompt alignment. In this paper, we introduce a novel framework, ASemconsist, that addresses this challenge through selective text embedding modification, enabling explicit semantic control over character identity without sacrificing prompt alignment. Furthermore, based on our analysis of padding embeddings in FLUX, we propose a semantic control strategy that repurposes padding embeddings as semantic containers. Additionally, we introduce an adaptive feature-sharing strategy that automatically evaluates textual ambiguity and applies constraints only to the ambiguous identity prompt. Finally, we propose a unified evaluation protocol, the Consistency Quality Score (CQS), which integrates identity preservation and per-image text alignment into a single comprehensive metric, explicitly capturing performance imbalances between the two metrics. Our framework achieves state-of-the-art performance, effectively overcoming prior trade-offs. Project page: https://minjung-s.github.io/asemconsist
♻ ☆ Spike Imaging Velocimetry: Dense Motion Estimation of Fluids Using Spike Cameras AAAI-26
Particle Image Velocimetry (PIV) is a widely adopted non-invasive imaging technique that tracks the motion of tracer particles across image sequences to capture the velocity distribution of fluid flows. It is commonly employed to analyze complex flow structures and validate numerical simulations. This study explores the untapped potential of spike cameras--ultra-high-speed, high-dynamic-range vision sensors--in high-speed fluid velocimetry. We propose a deep learning framework, Spike Imaging Velocimetry (SIV), tailored for high-resolution fluid motion estimation. To enhance the network's performance, we design three novel modules specifically adapted to the characteristics of fluid dynamics and spike streams: the Detail-Preserving Hierarchical Transform (DPHT), the Graph Encoder (GE), and the Multi-scale Velocity Refinement (MSVR). Furthermore, we introduce a spike-based PIV dataset, Particle Scenes with Spike and Displacement (PSSD), which contains labeled samples from three representative fluid-dynamics scenarios: steady turbulence, high-speed flow, and high-dynamic-range conditions. Our proposed method outperforms existing baselines across all these scenarios, demonstrating its effectiveness.
comment: To appear in AAAI-26 proceedings
♻ ☆ Test-time generative augmentation for medical image segmentation
Medical image segmentation is critical for clinical diagnosis, treatment planning, and monitoring, yet segmentation models often struggle with uncertainties stemming from occlusions, ambiguous boundaries, and variations in imaging devices. Traditional test-time augmentation (TTA) techniques typically rely on predefined geometric and photometric transformations, limiting their adaptability and effectiveness in complex medical scenarios. In this study, we introduced Test-Time Generative Augmentation (TTGA), a novel augmentation strategy specifically tailored for medical image segmentation at inference time. Different from conventional augmentation strategies that suffer from excessive randomness or limited flexibility, TTGA leverages a domain-fine-tuned generative model to produce contextually relevant and diverse augmentations tailored to the characteristics of each test image. Built upon diffusion model inversion, a masked null-text inversion method is proposed to enable region-specific augmentations during sampling. Furthermore, a dual denoising pathway is designed to balance precise identity preservation with controlled variability. We demonstrate the efficacy of our TTGA through extensive experiments across three distinct segmentation tasks spanning nine datasets. Our results consistently demonstrate that TTGA not only improves segmentation accuracy (with DSC gains ranging from 0.1% to 2.3% over the baseline) but also offers pixel-wise error estimation (with DSC gains ranging from 1.1% to 29.0% over the baseline). The source code and demonstration are available at: https://github.com/maxiao0234/TTGA.
comment: Accepted for publication in Medical Image Analysis (MedIA). Finalized version. Vol. 109, March 2026
♻ ☆ CIC: Circular Image Compression
Learned image compression (LIC) is currently the cutting-edge method. However, the inherent difference between testing and training images of LIC results in performance degradation to some extent. Especially for out-of-sample, out-of-distribution, or out-of-domain testing images, the performance of LIC degrades significantly. Classical LIC is a serial image compression (SIC) approach that utilizes an open-loop architecture with serial encoding and decoding units. Nevertheless, according to the principles of automatic control systems, a closed-loop architecture holds the potential to improve the dynamic and static performance of LIC. Therefore, a circular image compression (CIC) approach with closed-loop encoding and decoding elements is proposed to minimize the gap between testing and training images and upgrade the capability of LIC. The proposed CIC establishes a nonlinear loop equation and proves that steady-state error between reconstructed and original images is close to zero by Taylor series expansion. The proposed CIC method possesses the property of Post-Training and Plug-and-Play which can be built on any existing advanced SIC methods. Experimental results including rate-distortion curves on five public image compression datasets demonstrate that the proposed CIC outperforms eight competing state-of-the-art open-source SIC algorithms in reconstruction capacity. Experimental results further show that the proposed method is suitable for out-of-sample testing images with dark backgrounds, sharp edges, high contrast, grid shapes, or complex patterns.
♻ ☆ Error Propagation Mechanisms and Compensation Strategies for Quantized Diffusion
Diffusion models have transformed image synthesis by establishing unprecedented quality and creativity benchmarks. Nevertheless, their large-scale deployment faces challenges due to computationally intensive iterative denoising processes. Although post-training quantization (PTQ) provides an effective pathway for accelerating sampling, the iterative nature of diffusion models causes stepwise quantization errors to accumulate progressively during generation, inevitably compromising output fidelity. To address this challenge, we develop a theoretical framework that mathematically formulates error propagation in Diffusion Models (DMs), deriving per-step quantization error propagation equations and establishing the first closed-form solution for cumulative error. Building on this theoretical foundation, we propose a timestep-aware cumulative error compensation scheme. Extensive experiments on multiple image datasets demonstrate that our compensation strategy effectively mitigates error propagation, significantly enhancing existing PTQ methods. Specifically, it achieves a 1.2 PSNR improvement over SVDQuant on SDXL W4A4, while incurring only an additional $<$ 0.5\% time overhead.
♻ ☆ AnyMS: Bottom-up Attention Decoupling for Layout-guided and Training-free Multi-subject Customization
Multi-subject customization aims to synthesize multiple user-specified subjects into a coherent image. To address issues such as subjects missing or conflicts, recent works incorporate layout guidance to provide explicit spatial constraints. However, existing methods still struggle to balance three critical objectives: text alignment, subject identity preservation, and layout control, while the reliance on additional training further limits their scalability and efficiency. In this paper, we present AnyMS, a novel training-free framework for layout-guided multi-subject customization. AnyMS leverages three input conditions: text prompt, subject images, and layout constraints, and introduces a bottom-up dual-level attention decoupling mechanism to harmonize their integration during generation. Specifically, global decoupling separates cross-attention between textual and visual conditions to ensure text alignment. Local decoupling confines each subject's attention to its designated area, which prevents subject conflicts and thus guarantees identity preservation and layout control. Moreover, AnyMS employs pre-trained image adapters to extract subject-specific features aligned with the diffusion model, removing the need for subject learning or adapter tuning. Extensive experiments demonstrate that AnyMS achieves state-of-the-art performance, supporting complex compositions and scaling to a larger number of subjects.
♻ ☆ NeRF-VIO: Map-Based Visual-Inertial Odometry with Initialization Leveraging Neural Radiance Fields
A prior map serves as a foundational reference for localization in context-aware applications such as augmented reality (AR). Providing valuable contextual information about the environment, the prior map is a vital tool for mitigating drift. In this paper, we propose a map-based visual-inertial localization algorithm (NeRF-VIO) with initialization using neural radiance fields (NeRF). Our algorithm utilizes a multilayer perceptron model and redefines the loss function as the geodesic distance on \(SE(3)\), ensuring the invariance of the initialization model under a frame change within \(\mathfrak{se}(3)\). The evaluation demonstrates that our model outperforms existing NeRF-based initialization solution in both accuracy and efficiency. By integrating a two-stage update mechanism within a multi-state constraint Kalman filter (MSCKF) framework, the state of NeRF-VIO is constrained by both captured images from an onboard camera and rendered images from a pre-trained NeRF model. The proposed algorithm is validated using a real-world AR dataset, the results indicate that our two-stage update pipeline outperforms MSCKF across all data sequences.
♻ ☆ OBS-Diff: Accurate Pruning For Diffusion Models in One-Shot
Large-scale text-to-image diffusion models, while powerful, suffer from prohibitive computational cost. Existing one-shot network pruning methods can hardly be directly applied to them due to the iterative denoising nature of diffusion models. To bridge the gap, this paper presents OBS-Diff, a novel one-shot pruning framework that enables accurate and training-free compression of large-scale text-to-image diffusion models. Specifically, (i) OBS-Diff revitalizes the classic Optimal Brain Surgeon (OBS), adapting it to the complex architectures of modern diffusion models and supporting diverse pruning granularity, including unstructured, N:M semi-structured, and structured (MHA heads and FFN neurons) sparsity; (ii) To align the pruning criteria with the iterative dynamics of the diffusion process, by examining the problem from an error-accumulation perspective, we propose a novel timestep-aware Hessian construction that incorporates a logarithmic-decrease weighting scheme, assigning greater importance to earlier timesteps to mitigate potential error accumulation; (iii) Furthermore, a computationally efficient group-wise sequential pruning strategy is proposed to amortize the expensive calibration process. Extensive experiments show that OBS-Diff achieves state-of-the-art one-shot pruning for diffusion models, delivering inference acceleration with minimal degradation in visual quality.
♻ ☆ Unsupervised Representation Learning for 3D Mesh Parameterization with Semantic and Visibility Objectives
Recent 3D generative models produce high-quality textures for 3D mesh objects. However, they commonly rely on the heavy assumption that input 3D meshes are accompanied by manual mesh parameterization (UV mapping), a manual task that requires both technical precision and artistic judgment. Industry surveys show that this process often accounts for a significant share of asset creation, creating a major bottleneck for 3D content creators. Moreover, existing automatic methods often ignore two perceptually important criteria: (1) semantic awareness (UV charts should align semantically similar 3D parts across shapes) and (2) visibility awareness (cutting seams should lie in regions unlikely to be seen). To overcome these shortcomings and to automate the mesh parameterization process, we present an unsupervised differentiable framework that augments standard geometry-preserving UV learning with semantic- and visibility-aware objectives. For semantic-awareness, our pipeline (i) segments the mesh into semantic 3D parts, (ii) applies an unsupervised learned per-part UV-parameterization backbone, and (iii) aggregates per-part charts into a unified UV atlas. For visibility-awareness, we use ambient occlusion (AO) as an exposure proxy and back-propagate a soft differentiable AO-weighted seam objective to steer cutting seams toward occluded regions. By conducting qualitative and quantitative evaluations against state-of-the-art methods, we show that the proposed method produces UV atlases that better support texture generation and reduce perceptible seam artifacts compared to recent baselines. Our implementation code is publicly available at: https://github.com/AHHHZ975/Semantic-Visibility-UV-Param.
♻ ☆ UKAN-EP: Enhancing U-KAN with Efficient Attention and Pyramid Aggregation for 3D Multi-Modal MRI Brain Tumor Segmentation
Background: Gliomas are among the most common malignant brain tumors and exhibit substantial heterogeneity, complicating accurate detection and segmentation. Although multi-modal MRI is the clinical standard for glioma imaging, variability across modalities and high computational demands hamper effective automated segmentation. Methods: We propose UKAN-EP, a novel 3D extension of the original 2D U-KAN model for multi-modal MRI brain tumor segmentation. While U-KAN integrates Kolmogorov-Arnold Network (KAN) layers into a U-Net backbone, UKAN-EP further incorporates Efficient Channel Attention (ECA) and Pyramid Feature Aggregation (PFA) modules to enhance inter-modality feature fusion and multi-scale feature representation. We also introduce a dynamic loss weighting strategy that adaptively balances cross-entropy and Dice losses during training. Results: On the 2024 BraTS-GLI dataset, UKAN-EP achieves superior segmentation performance (e.g., Dice = 0.9001 $\pm$ 0.0127 and IoU = 0.8257 $\pm$ 0.0186 for the whole tumor) while requiring substantially fewer computational resources (223.57 GFLOPs and 11.30M parameters) compared to strong baselines including U-Net, Attention U-Net, Swin UNETR, VT-Unet, TransBTS, and 3D U-KAN. An extensive ablation study further confirms the effectiveness of ECA and PFA and shows the limited utility of self-attention and spatial attention alternatives. Conclusion: UKAN-EP demonstrates that combining the expressive power of KAN layers with lightweight channel-wise attention and multi-scale feature aggregation improves the accuracy and efficiency of brain tumor segmentation.
♻ ☆ Satellite to Street : Disaster Impact Estimator
Accurate assessment of post-disaster damage is essential for prioritizing emergency response, yet current practices rely heavily on manual interpretation of satellite imagery.This approach is time-consuming, subjective, and difficult to scale during large-area disasters. Although recent deep-learning models for semantic segmentation and change detection have improved automation, many of them still struggle to capture subtle structural variations and often perform poorly when dealing with highly imbalanced datasets, where undamaged buildings dominate. This thesis introduces Satellite-to-Street:Disaster Impact Estimator, a deep-learning framework that produces detailed, pixel-level damage maps by analyzing pre and post-disaster satellite images together. The model is built on a modified dual-input U-Net architecture that strengthens feature fusion between both images, allowing it to detect not only small, localized changes but also broader contextual patterns across the scene. To address the imbalance between damage categories, a class-aware weighted loss function is used, which helps the model better recognize major and destroyed structures. A consistent preprocessing pipeline is employed to align image pairs, standardize resolutions, and prepare the dataset for training. Experiments conducted on publicly available disaster datasets show that the proposed framework achieves better classification of damaged regions compared to conventional segmentation networks.The generated damage maps provide faster and objective method for analyzing disaster impact, working alongside expert judgment rather than replacing it. In addition to identifying which areas are damaged, the system is capable of distinguishing different levels of severity, ranging from slight impact to complete destruction. This provides a more detailed and practical understanding of how the disaster has affected each region.
comment: 6 pages,4 figures, 2 tables
♻ ☆ VisualQuest: A Benchmark for Abstract Visual Reasoning in MLLMs
We introduce VisualQuest, a novel dataset designed to rigorously evaluate multimodal large language models (MLLMs) on abstract visual reasoning tasks that require the integration of symbolic, cultural, and linguistic knowledge. Unlike existing benchmarks that focus on direct image captioning or classification of realistic images, VisualQuest comprises 3,551 non-photographic, stylized images spanning four categories: Public Figures, Popular Culture, Linguistic Expressions, and Literary Works. Each image is paired with targeted questions to probe complex reasoning. We benchmark ten state-of-the-art MLLMs and find that only Gemini-2.5-flash and GPT-4o achieve strong overall performance, while 3.7 percent of the images remain unrecognized by any model, underscoring persistent challenges in multimodal understanding. Fine-grained analysis shows that Gemini excels at recognizing stylized public figures, whereas GPT-4o leads in linguistic reasoning tasks such as visual puns and emoji combinations. VisualQuest provides a comprehensive and challenging resource for advancing research in abstract visual reasoning and highlights key areas for future model improvement. The dataset is available at https://github.com/xkt88/VISUALQUEST.
♻ ☆ FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance. However, existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive, subject-specific optimization, while zero-shot methods often fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor leverages semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated images. Additionally, our framework introduces a novel noise initialization strategy to preserve the geometry priors of reference subjects, facilitating robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
comment: Code: https://github.com/Nihukat/FreeGraftor
♻ ☆ Learning the Language of Histopathology Images reveals Prognostic Subgroups in Invasive Lung Adenocarcinoma Patients
Recurrence remains a major clinical challenge in surgically resected invasive lung adenocarcinoma, where existing grading and staging systems fail to capture the cellular complexity that underlies tumor aggressiveness. We present PathRosetta, a novel AI model that conceptualizes histopathology as a language, where cells serve as words, spatial neighborhoods form syntactic structures, and tissue architecture composes sentences. By learning this language of histopathology, PathRosetta predicts five-year recurrence directly from hematoxylin-and-eosin (H&E) slides, treating them as documents representing the state of the disease. In a multi-cohort dataset of 289 patients (600 slides), PathRosetta achieved an area under the curve (AUC) of 0.78 +- 0.04 on the internal cohort, significantly outperforming IASLC grading (AUC:0.71), AJCC staging (AUC:0.64), and other state-of-the-art AI models (AUC:0.62-0.67). It yielded a hazard ratio of 9.54 and a concordance index of 0.70, generalized robustly to external TCGA (AUC:0.75) and CPTAC (AUC:0.76) cohorts, and performed consistently across demographic and clinical subgroups. Beyond whole-slide prediction, PathRosetta uncovered prognostic subgroups within individual cell types, revealing that even within benign epithelial, stromal, or other cells, distinct morpho-spatial phenotypes correspond to divergent outcomes. Moreover, because the model explicitly understands what it is looking at, including cell types, cellular neighborhoods, and higher-order tissue morphology, it is inherently interpretable and can articulate the rationale behind its predictions. These findings establish that representing histopathology as a language enables interpretable and generalizable prognostication from routine histology.
♻ ☆ Neural Surface Reconstruction from Sparse Views Using Epipolar Geometry
Reconstructing accurate surfaces from sparse multi-view images remains challenging due to severe geometric ambiguity and occlusions. Existing generalizable neural surface reconstruction methods primarily rely on cost volumes that summarize multi-view features using simple statistics (e.g., mean and variance), which discard critical view-dependent geometric structure and often lead to over-smoothed reconstructions. We propose EpiS, a generalizable neural surface reconstruction framework that explicitly leverages epipolar geometry for sparse-view inputs. Instead of directly regressing geometry from cost-volume statistics, EpiS uses coarse cost-volume features to guide the aggregation of fine-grained epipolar features sampled along corresponding epipolar lines across source views. An epipolar transformer fuses multi-view information, followed by ray-wise aggregation to produce SDF-aware features for surface estimation. To further mitigate information loss under sparse views, we introduce a geometry regularization strategy that leverages a pretrained monocular depth model through scale-invariant global and local constraints. Extensive experiments on DTU and BlendedMVS demonstrate that EpiS significantly outperforms state-of-the-art generalizable surface reconstruction methods under sparse-view settings, while maintaining strong generalization without per-scene optimization.
♻ ☆ RAD: A Dataset and Benchmark for Real-Life Anomaly Detection with Robotic Observations
Anomaly detection is a core capability for robotic perception and industrial inspection, yet most existing benchmarks are collected under controlled conditions with fixed viewpoints and stable illumination, failing to reflect real deployment scenarios. We introduce RAD (Realistic Anomaly Detection), a robot-captured, multi-view dataset designed to stress pose variation, reflective materials, and viewpoint-dependent defect visibility. RAD covers 13 everyday object categories and four realistic defect types--scratched, missing, stained, and squeezed--captured from over 60 robot viewpoints per object under uncontrolled lighting. We benchmark a wide range of state-of-the-art approaches, including 2D feature-based methods, 3D reconstruction pipelines, and vision-language models (VLMs), under a pose-agnostic setting. Surprisingly, we find that mature 2D feature-embedding methods consistently outperform recent 3D and VLM-based approaches at the image level, while the performance gap narrows for pixel-level localization. Our analysis reveals that reflective surfaces, geometric symmetry, and sparse viewpoint coverage fundamentally limit current geometry-based and zero-shot methods. RAD establishes a challenging and realistic benchmark for robotic anomaly detection, highlighting critical open problems beyond controlled laboratory settings.
♻ ☆ Improving VisNet for Object Recognition
Object recognition plays a fundamental role in how biological organisms perceive and interact with their environment. While the human visual system performs this task with remarkable efficiency, reproducing similar capabilities in artificial systems remains challenging. This study investigates VisNet, a biologically inspired neural network model, and several enhanced variants incorporating radial basis function neurons, Mahalanobis distance based learning, and retinal like preprocessing for both general object recognition and symmetry classification. By leveraging principles of Hebbian learning and temporal continuity associating temporally adjacent views to build invariant representations. VisNet and its extensions capture robust and transformation invariant features. Experimental results across multiple datasets, including MNIST, CIFAR10, and custom symmetric object sets, show that these enhanced VisNet variants substantially improve recognition accuracy compared with the baseline model. These findings underscore the adaptability and biological relevance of VisNet inspired architectures, offering a powerful and interpretable framework for visual recognition in both neuroscience and artificial intelligence. Keywords: VisNet, Object Recognition, Symmetry Detection, Hebbian Learning, RBF Neurons, Mahalanobis Distance, Biologically Inspired Models, Invariant Representations
Artificial Intelligence 57
☆ Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.
comment: 58 pages, 19 figures, Under Review
☆ FedHypeVAE: Federated Learning with Hypernetwork Generated Conditional VAEs for Differentially Private Embedding Sharing
Federated data sharing promises utility without centralizing raw data, yet existing embedding-level generators struggle under non-IID client heterogeneity and provide limited formal protection against gradient leakage. We propose FedHypeVAE, a differentially private, hypernetwork-driven framework for synthesizing embedding-level data across decentralized clients. Building on a conditional VAE backbone, we replace the single global decoder and fixed latent prior with client-aware decoders and class-conditional priors generated by a shared hypernetwork from private, trainable client codes. This bi-level design personalizes the generative layerrather than the downstream modelwhile decoupling local data from communicated parameters. The shared hypernetwork is optimized under differential privacy, ensuring that only noise-perturbed, clipped gradients are aggregated across clients. A local MMD alignment between real and synthetic embeddings and a Lipschitz regularizer on hypernetwork outputs further enhance stability and distributional coherence under non-IID conditions. After training, a neutral meta-code enables domain agnostic synthesis, while mixtures of meta-codes provide controllable multi-domain coverage. FedHypeVAE unifies personalization, privacy, and distribution alignment at the generator level, establishing a principled foundation for privacy-preserving data synthesis in federated settings. Code: github.com/sunnyinAI/FedHypeVAE
comment: 10 pages, 1 figures, Accepted at AAI'26
☆ LLM Agents for Combinatorial Efficient Frontiers: Investment Portfolio Optimization
Investment portfolio optimization is a task conducted in all major financial institutions. The Cardinality Constrained Mean-Variance Portfolio Optimization (CCPO) problem formulation is ubiquitous for portfolio optimization. The challenge of this type of portfolio optimization, a mixed-integer quadratic programming (MIQP) problem, arises from the intractability of solutions from exact solvers, where heuristic algorithms are used to find approximate portfolio solutions. CCPO entails many laborious and complex workflows and also requires extensive effort pertaining to heuristic algorithm development, where the combination of pooled heuristic solutions results in improved efficient frontiers. Hence, common approaches are to develop many heuristic algorithms. Agentic frameworks emerge as a promising candidate for many problems within combinatorial optimization, as they have been shown to be equally efficient with regard to automating large workflows and have been shown to be excellent in terms of algorithm development, sometimes surpassing human-level performance. This study implements a novel agentic framework for the CCPO and explores several concrete architectures. In benchmark problems, the implemented agentic framework matches state-of-the-art algorithms. Furthermore, complex workflows and algorithm development efforts are alleviated, while in the worst case, lower but acceptable error is reported.
☆ An Agentic Framework for Neuro-Symbolic Programming
Integrating symbolic constraints into deep learning models could make them more robust, interpretable, and data-efficient. Still, it remains a time-consuming and challenging task. Existing frameworks like DomiKnowS help this integration by providing a high-level declarative programming interface, but they still assume the user is proficient with the library's specific syntax. We propose AgenticDomiKnowS (ADS) to eliminate this dependency. ADS translates free-form task descriptions into a complete DomiKnowS program using an agentic workflow that creates and tests each DomiKnowS component separately. The workflow supports optional human-in-the-loop intervention, enabling users familiar with DomiKnowS to refine intermediate outputs. We show how ADS enables experienced DomiKnowS users and non-users to rapidly construct neuro-symbolic programs, reducing development time from hours to 10-15 minutes.
☆ Stochastic Actor-Critic: Mitigating Overestimation via Temporal Aleatoric Uncertainty
Off-policy actor-critic methods in reinforcement learning train a critic with temporal-difference updates and use it as a learning signal for the policy (actor). This design typically achieves higher sample efficiency than purely on-policy methods. However, critic networks tend to overestimate value estimates systematically. This is often addressed by introducing a pessimistic bias based on uncertainty estimates. Current methods employ ensembling to quantify the critic's epistemic uncertainty-uncertainty due to limited data and model ambiguity-to scale pessimistic updates. In this work, we propose a new algorithm called Stochastic Actor-Critic (STAC) that incorporates temporal (one-step) aleatoric uncertainty-uncertainty arising from stochastic transitions, rewards, and policy-induced variability in Bellman targets-to scale pessimistic bias in temporal-difference updates, rather than relying on epistemic uncertainty. STAC uses a single distributional critic network to model the temporal return uncertainty, and applies dropout to both the critic and actor networks for regularization. Our results show that pessimism based on a distributional critic alone suffices to mitigate overestimation, and naturally leads to risk-averse behavior in stochastic environments. Introducing dropout further improves training stability and performance by means of regularization. With this design, STAC achieves improved computational efficiency using a single distributional critic network.
comment: 19 pages
☆ Exploring the Performance of Large Language Models on Subjective Span Identification Tasks
Identifying relevant text spans is important for several downstream tasks in NLP, as it contributes to model explainability. While most span identification approaches rely on relatively smaller pre-trained language models like BERT, a few recent approaches have leveraged the latest generation of Large Language Models (LLMs) for the task. Current work has focused on explicit span identification like Named Entity Recognition (NER), while more subjective span identification with LLMs in tasks like Aspect-based Sentiment Analysis (ABSA) has been underexplored. In this paper, we fill this important gap by presenting an evaluation of the performance of various LLMs on text span identification in three popular tasks, namely sentiment analysis, offensive language identification, and claim verification. We explore several LLM strategies like instruction tuning, in-context learning, and chain of thought. Our results indicate underlying relationships within text aid LLMs in identifying precise text spans.
☆ Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model
Vision-Language Models have demonstrated strong potential in medical image analysis and disease diagnosis. However, after deployment, their performance may deteriorate when the input data distribution shifts from that observed during development. Detecting such performance degradation is essential for clinical reliability, yet remains challenging for large pre-trained VLMs operating without labeled data. In this study, we investigate performance degradation detection under data shift in a state-of-the-art pathology VLM. We examine both input-level data shift and output-level prediction behavior to understand their respective roles in monitoring model reliability. To facilitate systematic analysis of input data shift, we develop DomainSAT, a lightweight toolbox with a graphical interface that integrates representative shift detection algorithms and enables intuitive exploration of data shift. Our analysis shows that while input data shift detection is effective at identifying distributional changes and providing early diagnostic signals, it does not always correspond to actual performance degradation. Motivated by this observation, we further study output-based monitoring and introduce a label-free, confidence-based degradation indicator that directly captures changes in model prediction confidence. We find that this indicator exhibits a close relationship with performance degradation and serves as an effective complement to input shift detection. Experiments on a large-scale pathology dataset for tumor classification demonstrate that combining input data shift detection and output confidence-based indicators enables more reliable detection and interpretation of performance degradation in VLMs under data shift. These findings provide a practical and complementary framework for monitoring the reliability of foundation models in digital pathology.
comment: 8 pages, 6 figures
☆ A Vision-and-Knowledge Enhanced Large Language Model for Generalizable Pedestrian Crossing Behavior Inference
Existing paradigms for inferring pedestrian crossing behavior, ranging from statistical models to supervised learning methods, demonstrate limited generalizability and perform inadequately on new sites. Recent advances in Large Language Models (LLMs) offer a shift from numerical pattern fitting to semantic, context-aware behavioral reasoning, yet existing LLM applications lack domain-specific adaptation and visual context. This study introduces Pedestrian Crossing LLM (PedX-LLM), a vision-and-knowledge enhanced framework designed to transform pedestrian crossing inference from site-specific pattern recognition to generalizable behavioral reasoning. By integrating LLaVA-extracted visual features with textual data and transportation domain knowledge, PedX-LLM fine-tunes a LLaMA-2-7B foundation model via Low-Rank Adaptation (LoRA) to infer crossing decisions. PedX-LLM achieves 82.0% balanced accuracy, outperforming the best statistical and supervised learning methods. Results demonstrate that the vision-augmented module contributes a 2.9% performance gain by capturing the built environment and integrating domain knowledge yields an additional 4.1% improvement. To evaluate generalizability across unseen environments, cross-site validation was conducted using site-based partitioning. The zero-shot PedX-LLM configuration achieves 66.9% balanced accuracy on five unseen test sites, outperforming the baseline data-driven methods by at least 18 percentage points. Incorporating just five validation examples via few-shot learning to PedX-LLM further elevates the balanced accuracy to 72.2%. PedX-LLM demonstrates strong generalizability to unseen scenarios, confirming that vision-and-knowledge-enhanced reasoning enables the model to mimic human-like decision logic and overcome the limitations of purely data-driven methods.
☆ QSLM: A Performance- and Memory-aware Quantization Framework with Tiered Search Strategy for Spike-driven Language Models DATE
Large Language Models (LLMs) have been emerging as prominent AI models for solving many natural language tasks due to their high performance (e.g., accuracy) and capabilities in generating high-quality responses to the given inputs. However, their large computational cost, huge memory footprints, and high processing power/energy make it challenging for their embedded deployments. Amid several tinyLLMs, recent works have proposed spike-driven language models (SLMs) for significantly reducing the processing power/energy of LLMs. However, their memory footprints still remain too large for low-cost and resource-constrained embedded devices. Manual quantization approach may effectively compress SLM memory footprints, but it requires a huge design time and compute power to find the quantization setting for each network, hence making this approach not-scalable for handling different networks, performance requirements, and memory budgets. To bridge this gap, we propose QSLM, a novel framework that performs automated quantization for compressing pre-trained SLMs, while meeting the performance and memory constraints. To achieve this, QSLM first identifies the hierarchy of the given network architecture and the sensitivity of network layers under quantization, then employs a tiered quantization strategy (e.g., global-, block-, and module-level quantization) while leveraging a multi-objective performance-and-memory trade-off function to select the final quantization setting. Experimental results indicate that our QSLM reduces memory footprint by up to 86.5%, reduces power consumption by up to 20%, maintains high performance across different tasks (i.e., by up to 84.4% accuracy of sentiment classification on the SST-2 dataset and perplexity score of 23.2 for text generation on the WikiText-2 dataset) close to the original non-quantized model while meeting the performance and memory constraints.
comment: Accepted at the Design, Automation and Test in Europe Conference (DATE) 2025 on April 20th-22nd, 2025 in Verona, Italy
☆ IRPO: Scaling the Bradley-Terry Model via Reinforcement Learning
Generative Reward Models (GRMs) have attracted considerable research interest in reward modeling due to their interpretability, inference-time scalability, and potential for refinement through reinforcement learning (RL). However, widely used pairwise GRMs create a computational bottleneck when integrated with RL algorithms such as Group Relative Policy Optimization (GRPO). This bottleneck arises from two factors: (i) the O(n^2) time complexity of pairwise comparisons required to obtain relative scores, and (ii) the computational overhead of repeated sampling or additional chain-of-thought (CoT) reasoning to improve performance. To address the first factor, we propose Intergroup Relative Preference Optimization (IRPO), a novel RL framework that incorporates the well-established Bradley-Terry model into GRPO. By generating a pointwise score for each response, IRPO enables efficient evaluation of arbitrarily many candidates during RL training while preserving interpretability and fine-grained reward signals. Experimental results demonstrate that IRPO achieves state-of-the-art (SOTA) performance among pointwise GRMs across multiple benchmarks, with performance comparable to that of current leading pairwise GRMs. Furthermore, we show that IRPO significantly outperforms pairwise GRMs in post-training evaluations.
comment: 14 pages, 4 figures
☆ Fast-weight Product Key Memory
Sequence modeling layers in modern language models typically face a trade-off between storage capacity and computational efficiency. While Softmax attention offers unbounded storage at prohibitive quadratic costs, linear variants provide efficiency but suffer from limited, fixed-size storage. We propose Fast-weight Product Key Memory (FwPKM), a novel architecture that resolves this tension by transforming the sparse Product Key Memory (PKM) from a static module into a dynamic, "fast-weight" episodic memory. Unlike PKM, FwPKM updates its parameters dynamically at both training and inference time via local chunk-level gradient descent, allowing the model to rapidly memorize and retrieve new key-value pairs from input sequences. Experiments reveal that FwPKM functions as an effective episodic memory that complements the semantic memory of standard modules, yielding significant perplexity reductions on long-context datasets. Notably, in Needle in a Haystack evaluations, FwPKM generalizes to 128K-token contexts despite being trained on only 4K-token sequences.
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
☆ Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis proves convergence properties and robustness to mini-batch noise, while empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 10 pages
☆ DA-DPO: Cost-efficient Difficulty-aware Preference Optimization for Reducing MLLM Hallucinations
Direct Preference Optimization (DPO) has shown strong potential for mitigating hallucinations in Multimodal Large Language Models (MLLMs). However, existing multimodal DPO approaches often suffer from overfitting due to the difficulty imbalance in preference data. Our analysis shows that MLLMs tend to overemphasize easily distinguishable preference pairs, which hinders fine-grained hallucination suppression and degrades overall performance. To address this issue, we propose Difficulty-Aware Direct Preference Optimization (DA-DPO), a cost-effective framework designed to balance the learning process. DA-DPO consists of two main components: (1) Difficulty Estimation leverages pre-trained vision--language models with complementary generative and contrastive objectives, whose outputs are integrated via a distribution-aware voting strategy to produce robust difficulty scores without additional training; and (2) Difficulty-Aware Training reweights preference pairs based on their estimated difficulty, down-weighting easy samples while emphasizing harder ones to alleviate overfitting. This framework enables more effective preference optimization by prioritizing challenging examples, without requiring new data or extra fine-tuning stages. Extensive experiments demonstrate that DA-DPO consistently improves multimodal preference optimization, yielding stronger robustness to hallucinations and better generalization across standard benchmarks, while remaining computationally efficient. The project page is available at https://artanic30.github.io/project_pages/DA-DPO/.
comment: Accepted by TMLR
☆ Noise-Robust Tiny Object Localization with Flows
Despite significant advances in generic object detection, a persistent performance gap remains for tiny objects compared to normal-scale objects. We demonstrate that tiny objects are highly sensitive to annotation noise, where optimizing strict localization objectives risks noise overfitting. To address this, we propose Tiny Object Localization with Flows (TOLF), a noise-robust localization framework leveraging normalizing flows for flexible error modeling and uncertainty-guided optimization. Our method captures complex, non-Gaussian prediction distributions through flow-based error modeling, enabling robust learning under noisy supervision. An uncertainty-aware gradient modulation mechanism further suppresses learning from high-uncertainty, noise-prone samples, mitigating overfitting while stabilizing training. Extensive experiments across three datasets validate our approach's effectiveness. Especially, TOLF boosts the DINO baseline by 1.2% AP on the AI-TOD dataset.
comment: 11 pages, 5 figures
☆ Stronger Approximation Guarantees for Non-Monotone γ-Weakly DR-Submodular Maximization AAMAS 2026
Maximizing submodular objectives under constraints is a fundamental problem in machine learning and optimization. We study the maximization of a nonnegative, non-monotone $γ$-weakly DR-submodular function over a down-closed convex body. Our main result is an approximation algorithm whose guarantee depends smoothly on $γ$; in particular, when $γ=1$ (the DR-submodular case) our bound recovers the $0.401$ approximation factor, while for $γ<1$ the guarantee degrades gracefully and, it improves upon previously reported bounds for $γ$-weakly DR-submodular maximization under the same constraints. Our approach combines a Frank-Wolfe-guided continuous-greedy framework with a $γ$-aware double-greedy step, yielding a simple yet effective procedure for handling non-monotonicity. This results in state-of-the-art guarantees for non-monotone $γ$-weakly DR-submodular maximization over down-closed convex bodies.
comment: Extended version of paper accepted in AAMAS 2026
☆ HFedMoE: Resource-aware Heterogeneous Federated Learning with Mixture-of-Experts
While federated learning (FL) enables fine-tuning of large language models (LLMs) without compromising data privacy, the substantial size of an LLM renders on-device training impractical for resource-constrained clients, such as mobile devices. Thus, Mixture-of-Experts (MoE) models have emerged as a computation-efficient solution, which activates only a sparse subset of experts during model training to reduce computing burden without sacrificing performance. Though integrating MoE into FL fine-tuning holds significant potential, it still encounters three key challenges: i) selecting appropriate experts for clients remains challenging due to the lack of a reliable metric to measure each expert's impact on local fine-tuning performance, ii) the heterogeneous computing resources across clients severely hinder MoE-based LLM fine-tuning, as dynamic expert activations across diverse input samples can overwhelm resource-constrained devices, and iii) client-specific expert subsets and routing preference undermine global aggregation, where misaligned expert updates and inconsistent gating networks in troduce destructive interference. To address these challenges, we propose HFedMoE, a heterogeneous MoE-based FL fine-tuning framework that customizes a subset of experts to each client for computation-efficient LLM fine-tuning. Specifically, HFedMoE identifies the expert importance based on its contributions to fine-tuning performance, and then adaptively selects a subset of experts from an information bottleneck perspective to align with each client' s computing budget. A sparsity-aware model aggregation strategy is also designed to aggregate the actively fine-tuned experts and gating parameters with importance weighted contributions. Extensive experiments demonstrate that HFedMoE outperforms state-of-the-art benchmarks in training accuracy and convergence speed.
comment: 14 pages, 16 figures
☆ Priority-Aware Multi-Robot Coverage Path Planning IEEE
Multi-robot systems are widely used for coverage tasks that require efficient coordination across large environments. In Multi-Robot Coverage Path Planning (MCPP), the objective is typically to minimize the makespan by generating non-overlapping paths for full-area coverage. However, most existing methods assume uniform importance across regions, limiting their effectiveness in scenarios where some zones require faster attention. We introduce the Priority-Aware MCPP (PA-MCPP) problem, where a subset of the environment is designated as prioritized zones with associated weights. The goal is to minimize, in lexicographic order, the total priority-weighted latency of zone coverage and the overall makespan. To address this, we propose a scalable two-phase framework combining (1) greedy zone assignment with local search, spanning-tree-based path planning, and (2) Steiner-tree-guided residual coverage. Experiments across diverse scenarios demonstrate that our method significantly reduces priority-weighted latency compared to standard MCPP baselines, while maintaining competitive makespan. Sensitivity analyses further show that the method scales well with the number of robots and that zone coverage behavior can be effectively controlled by adjusting priority weights.
comment: IEEE Robotics and Automation Letters, 8 pages, 10 figures
☆ Learning to be Reproducible: Custom Loss Design for Robust Neural Networks
To enhance the reproducibility and reliability of deep learning models, we address a critical gap in current training methodologies: the lack of mechanisms that ensure consistent and robust performance across runs. Our empirical analysis reveals that even under controlled initialization and training conditions, the accuracy of the model can exhibit significant variability. To address this issue, we propose a Custom Loss Function (CLF) that reduces the sensitivity of training outcomes to stochastic factors such as weight initialization and data shuffling. By fine-tuning its parameters, CLF explicitly balances predictive accuracy with training stability, leading to more consistent and reliable model performance. Extensive experiments across diverse architectures for both image classification and time series forecasting demonstrate that our approach significantly improves training robustness without sacrificing predictive performance. These results establish CLF as an effective and efficient strategy for developing more stable, reliable and trustworthy neural networks.
☆ Improving Scientific Document Retrieval with Academic Concept Index
Adapting general-domain retrievers to scientific domains is challenging due to the scarcity of large-scale domain-specific relevance annotations and the substantial mismatch in vocabulary and information needs. Recent approaches address these issues through two independent directions that leverage large language models (LLMs): (1) generating synthetic queries for fine-tuning, and (2) generating auxiliary contexts to support relevance matching. However, both directions overlook the diverse academic concepts embedded within scientific documents, often producing redundant or conceptually narrow queries and contexts. To address this limitation, we introduce an academic concept index, which extracts key concepts from papers and organizes them guided by an academic taxonomy. This structured index serves as a foundation for improving both directions. First, we enhance the synthetic query generation with concept coverage-based generation (CCQGen), which adaptively conditions LLMs on uncovered concepts to generate complementary queries with broader concept coverage. Second, we strengthen the context augmentation with concept-focused auxiliary contexts (CCExpand), which leverages a set of document snippets that serve as concise responses to the concept-aware CCQGen queries. Extensive experiments show that incorporating the academic concept index into both query generation and context augmentation leads to higher-quality queries, better conceptual alignment, and improved retrieval performance.
☆ Cracking IoT Security: Can LLMs Outsmart Static Analysis Tools?
Smart home IoT platforms such as openHAB rely on Trigger Action Condition (TAC) rules to automate device behavior, but the interplay among these rules can give rise to interaction threats, unintended or unsafe behaviors emerging from implicit dependencies, conflicting triggers, or overlapping conditions. Identifying these threats requires semantic understanding and structural reasoning that traditionally depend on symbolic, constraint-driven static analysis. This work presents the first comprehensive evaluation of Large Language Models (LLMs) across a multi-category interaction threat taxonomy, assessing their performance on both the original openHAB (oHC/IoTB) dataset and a structurally challenging Mutation dataset designed to test robustness under rule transformations. We benchmark Llama 3.1 8B, Llama 70B, GPT-4o, Gemini-2.5-Pro, and DeepSeek-R1 across zero-, one-, and two-shot settings, comparing their results against oHIT's manually validated ground truth. Our findings show that while LLMs exhibit promising semantic understanding, particularly on action- and condition-related threats, their accuracy degrades significantly for threats requiring cross-rule structural reasoning, especially under mutated rule forms. Model performance varies widely across threat categories and prompt settings, with no model providing consistent reliability. In contrast, the symbolic reasoning baseline maintains stable detection across both datasets, unaffected by rule rewrites or structural perturbations. These results underscore that LLMs alone are not yet dependable for safety critical interaction-threat detection in IoT environments. We discuss the implications for tool design and highlight the potential of hybrid architectures that combine symbolic analysis with LLM-based semantic interpretation to reduce false positives while maintaining structural rigor.
☆ A Comprehensive Dataset for Human vs. AI Generated Image Detection
Multimodal generative AI systems like Stable Diffusion, DALL-E, and MidJourney have fundamentally changed how synthetic images are created. These tools drive innovation but also enable the spread of misleading content, false information, and manipulated media. As generated images become harder to distinguish from photographs, detecting them has become an urgent priority. To combat this challenge, We release MS COCOAI, a novel dataset for AI generated image detection consisting of 96000 real and synthetic datapoints, built using the MS COCO dataset. To generate synthetic images, we use five generators: Stable Diffusion 3, Stable Diffusion 2.1, SDXL, DALL-E 3, and MidJourney v6. Based on the dataset, we propose two tasks: (1) classifying images as real or generated, and (2) identifying which model produced a given synthetic image. The dataset is available at https://huggingface.co/datasets/Rajarshi-Roy-research/Defactify_Image_Dataset.
☆ CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge
The deployment of large-scale neural networks within the Open Radio Access Network (O-RAN) architecture is pivotal for enabling native edge intelligence. However, this paradigm faces two critical bottlenecks: the prohibitive memory footprint required for local training on resource-constrained gNBs, and the saturation of bandwidth-limited backhaul links during the global aggregation of high-dimensional model updates. To address these challenges, we propose CoCo-Fed, a novel Compression and Combination-based Federated learning framework that unifies local memory efficiency and global communication reduction. Locally, CoCo-Fed breaks the memory wall by performing a double-dimension down-projection of gradients, adapting the optimizer to operate on low-rank structures without introducing additional inference parameters/latency. Globally, we introduce a transmission protocol based on orthogonal subspace superposition, where layer-wise updates are projected and superimposed into a single consolidated matrix per gNB, drastically reducing the backhaul traffic. Beyond empirical designs, we establish a rigorous theoretical foundation, proving the convergence of CoCo-Fed even under unsupervised learning conditions suitable for wireless sensing tasks. Extensive simulations on an angle-of-arrival estimation task demonstrate that CoCo-Fed significantly outperforms state-of-the-art baselines in both memory and communication efficiency while maintaining robust convergence under non-IID settings.
comment: 7 pages, 3 figures, 1 algorithm
☆ ECR: Manifold-Guided Semantic Cues for Compact Language Models
Compact models often lose the structure of their embedding space. The issue shows up when the capacity is tight or the data spans several languages. Such collapse makes it difficult for downstream tasks to build on the resulting representation. Existing compression methods focus on aligning model outputs at a superficial level but fail to preserve the underlying manifold structure. This mismatch often leads to semantic drift in the compact model, causing both task behavior and linguistic properties to deviate from the reference model. To address those issues, we provide a new framework called Embedding Consistency Regulation (ECR). This framework first derives a set of semantic anchors from teacher embeddings (computed once offline). Then, the compact model learns to maintain consistent geometry around these anchors, without relying on matching logits or internal features. ECR adds only a small projection step at inference, without altering the decoding architecture or its runtime behavior. In experiments on a 100K multilingual corpus, ECR consistently stabilizes training and preserves semantic structure across tasks and languages. It also produces a more compact and task-aligned representation space, enabling low-capacity models to learn cleaner manifolds than conventional baselines. ECR works without teacher outputs and is compatible with, but independent of, distillation. Taken together, our results show that ECR helps compact models better follow task requirements and makes them easier to deploy under strict efficiency or privacy limits.
comment: Preprint 13pages, 6 figures
☆ Parametrized Sharing for Multi-Agent Hybrid DRL for Multiple Multi-Functional RISs-Aided Downlink NOMA Networks
Multi-functional reconfigurable intelligent surface (MF-RIS) is conceived to address the communication efficiency thanks to its extended signal coverage from its active RIS capability and self-sustainability from energy harvesting (EH). We investigate the architecture of multi-MF-RISs to assist non-orthogonal multiple access (NOMA) downlink networks. We formulate an energy efficiency (EE) maximization problem by optimizing power allocation, transmit beamforming and MF-RIS configurations of amplitudes, phase-shifts and EH ratios, as well as the position of MF-RISs, while satisfying constraints of available power, user rate requirements, and self-sustainability property. We design a parametrized sharing scheme for multi-agent hybrid deep reinforcement learning (PMHRL), where the multi-agent proximal policy optimization (PPO) and deep-Q network (DQN) handle continuous and discrete variables, respectively. The simulation results have demonstrated that proposed PMHRL has the highest EE compared to other benchmarks, including cases without parametrized sharing, pure PPO and DQN. Moreover, the proposed multi-MF-RISs-aided downlink NOMA achieves the highest EE compared to scenarios of no-EH/amplification, traditional RISs, and deployment without RISs/MF-RISs under different multiple access.
☆ Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study IEEE
Standard LSTM(Long Short-Term Memory) neural networks provide accurate predictions for sales data in the retail industry, but require a lot of computing power. It can be challenging especially for mid to small retail industries. This paper examines LSTM model compression by gradually reducing the number of hidden units from 128 to 16. We used the Kaggle Store Item Demand Forecasting dataset, which has 913,000 daily sales records from 10 stores and 50 items, to look at the trade-off between model size and how accurate the predictions are. Experiments show that lowering the number of hidden LSTM units to 64 maintains the same level of accuracy while also improving it. The mean absolute percentage error (MAPE) ranges from 23.6% for the full 128-unit model to 12.4% for the 64-unit model. The optimized model is 73% smaller (from 280KB to 76KB) and 47% more accurate. These results show that larger models do not always achieve better results.
comment: Accepted to IEEE ICUIS 2025 (International Conference on Ubiquitous and Intelligent Systems). 5 pages, 3 figures, 1 table
☆ Probability-Aware Parking Selection IEEE
Current parking navigation systems often underestimate total travel time by failing to account for the time spent searching for a parking space, which significantly affects user experience, mode choice, congestion, and emissions. To address this issue, this paper introduces the probability-aware parking selection problem, which aims to direct drivers to the best parking location rather than straight to their destination. An adaptable dynamic programming framework is proposed for decision-making based on probabilistic information about parking availability at the parking lot level. Closed-form analysis determines when it is optimal to target a specific parking lot or explore alternatives, as well as the expected time cost. Sensitivity analysis and three illustrative cases are examined, demonstrating the model's ability to account for the dynamic nature of parking availability. Acknowledging the financial costs of permanent sensing infrastructure, the paper provides analytical and empirical assessments of errors incurred when leveraging stochastic observations to estimate parking availability. Experiments with real-world data from the US city of Seattle indicate this approach's viability, with mean absolute error decreasing from 7% to below 2% as observation frequency grows. In data-based simulations, probability-aware strategies demonstrate time savings up to 66% relative to probability-unaware baselines, yet still take up to 123% longer than direct-to-destination estimates.
comment: 10 pages, 6 figures, 3 tables. To be published in IEEE Transactions on Intelligent Transportation Systems
☆ Trajectory Guard -- A Lightweight, Sequence-Aware Model for Real-Time Anomaly Detection in Agentic AI AAAI
Autonomous LLM agents generate multi-step action plans that can fail due to contextual misalignment or structural incoherence. Existing anomaly detection methods are ill-suited for this challenge: mean-pooling embeddings dilutes anomalous steps, while contrastive-only approaches ignore sequential structure. Standard unsupervised methods on pre-trained embeddings achieve F1-scores no higher than 0.69. We introduce Trajectory Guard, a Siamese Recurrent Autoencoder with a hybrid loss function that jointly learns task-trajectory alignment via contrastive learning and sequential validity via reconstruction. This dual objective enables unified detection of both "wrong plan for this task" and "malformed plan structure." On benchmarks spanning synthetic perturbations and real-world failures from security audits (RAS-Eval) and multi-agent systems (Who\&When), we achieve F1-scores of 0.88-0.94 on balanced sets and recall of 0.86-0.92 on imbalanced external benchmarks. At 32 ms inference latency, our approach runs 17-27$\times$ faster than LLM Judge baselines, enabling real-time safety verification in production deployments.
comment: Accepted to AAAI Trustagent 2026
☆ The Illusion of Insight in Reasoning Models
Do reasoning models have "Aha!" moments? Prior work suggests that models like DeepSeek-R1-Zero undergo sudden mid-trace realizations that lead to accurate outputs, implying an intrinsic capacity for self-correction. Yet, it remains unclear whether such intrinsic shifts in reasoning strategy actually improve performance. Here, we study mid-reasoning shifts and instrument training runs to detect them. Our analysis spans 1M+ reasoning traces, hundreds of training checkpoints, three reasoning domains, and multiple decoding temperatures and model architectures. We find that reasoning shifts are rare, do not become more frequent with training, and seldom improve accuracy, indicating that they do not correspond to prior perceptions of model insight. However, their effect varies with model uncertainty. Building on this finding, we show that artificially triggering extrinsic shifts under high entropy reliably improves accuracy. Our results show that mid-reasoning shifts are symptoms of unstable inference behavior rather than an intrinsic mechanism for self-correction.
♻ ☆ Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients
Recent Reinforcement Learning (RL) advances for Large Language Models (LLMs) have improved reasoning tasks, yet their resource-constrained application to medical imaging remains underexplored. We introduce ChexReason, a vision-language model trained via R1-style methodology (SFT followed by GRPO) using only 2,000 SFT samples, 1,000 RL samples, and a single A100 GPU. Evaluations on CheXpert and NIH benchmarks reveal a fundamental tension: GRPO recovers in-distribution performance (23% improvement on CheXpert, macro-F1 = 0.346) but degrades cross-dataset transferability (19% drop on NIH). This mirrors high-resource models like NV-Reason-CXR-3B, suggesting the issue stems from the RL paradigm rather than scale. We identify a generalization paradox where the SFT checkpoint uniquely improves on NIH before optimization, indicating teacher-guided reasoning captures more institution-agnostic features. Furthermore, cross-model comparisons show structured reasoning scaffolds benefit general-purpose VLMs but offer minimal gain for medically pre-trained models. Consequently, curated supervised fine-tuning may outperform aggressive RL for clinical deployment requiring robustness across diverse populations.
♻ ☆ Modeling the One-to-Many Property in Open-Domain Dialogue with LLMs
Open-domain Dialogue (OD) exhibits a one-to-many (o2m) property, whereby multiple appropriate responses exist for a single dialogue context. Despite prior research showing that modeling this property boosts response diversity, most modern LLM-based dialogue agents do not explicitly do so. In this work, we model the o2m property of OD in LLMs by decomposing OD generation into two key tasks: Multi-Response Generation (MRG) and Preference-based Selection (PS), which entail generating a set of n semantically and lexically diverse high-quality responses for a given dialogue context, followed by selecting a single response based on human preference, respectively. To facilitate MRG and PS, we introduce o2mDial, a dialogue corpus explicitly designed to capture the o2m property by featuring multiple plausible responses for each context. Leveraging o2mDial, we propose new in-context learning and instruction-tuning strategies, as well as novel evaluation metrics for MRG, alongside a model-based approach for PS. Empirical results demonstrate that applying the proposed two-stage framework to smaller LLMs for OD generation enhances overall response diversity while maintaining contextual coherence, improving response quality by up to 90%, bringing them closer to the performance of larger models.
♻ ☆ QUITE: A Query Rewrite System Beyond Rules with LLM Agents
Query rewrite transforms SQL queries into semantically equivalent forms that run more efficiently. Existing approaches mainly rely on predefined rewrite rules, but they handle a limited subset of queries and can cause performance regressions. This limitation stems from three challenges of rule-based query rewrite: (1) it is hard to discover and verify new rules, (2) fixed rewrite rules do not generalize to new query patterns, and (3) some rewrite techniques cannot be expressed as fixed rules. Motivated by the fact that human experts exhibit significantly better rewrite ability but suffer from scalability, and Large Language Models (LLMs) have demonstrated nearly human-level semantic and reasoning abilities, we propose a new approach of using LLMs to rewrite SQL queries beyond rules. Due to the hallucination problems in LLMs, directly applying LLMs often leads to nonequivalent and suboptimal queries. To address this issue, we propose QUITE (query rewrite), a training-free and feedback-aware system based on LLM agents that rewrites SQL queries into semantically equivalent forms with significantly better performance, covering a broader range of query patterns and rewrite strategies compared to rule-based methods. Firstly, we design a multi-agent framework controlled by a finite state machine (FSM) to equip LLMs with the ability to use external tools and enhance the rewrite process with real-time database feedback. Secondly, we develop a rewrite middleware to enhance the ability of LLMs to generate optimized query equivalents. Finally, we employ a novel hint injection technique to improve execution plans for rewritten queries. Extensive experiments show that QUITE reduces query execution time by up to 35.8% over state-of-the-art approaches and produces 24.1% more rewrites than prior methods, covering query cases that earlier systems did not handle.
♻ ☆ The Curse of Depth in Large Language Models NeurIPS 2025
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
comment: Accepted by NeurIPS 2025
♻ ☆ Navigating the safe harbor paradox in human-machine systems
When deploying artificial skills, decision-makers often assume that layering human oversight is a safe harbor that mitigates the risks of full automation in high-complexity tasks. This paper formally challenges the economic validity of this widespread assumption, arguing that the true bottom-line economic utility of a human-machine skill policy is highly contingent on situational and design factors. To investigate this gap, we develop an in-silico exploratory framework for policy analysis based on Monte Carlo simulations to quantify the economic impact of skill policies in the execution of tasks presenting varying levels of complexity across diverse setups. Our results show that in complex scenarios, a human-machine strategy can yield the highest economic utility, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine approach can perform worse than either the machine-exclusive or the human-exclusive policy, actively destroying value under the pressure of costs that are not sufficiently compensated by performance gains. This finding points to a key implication for decision-makers: when the context is complex and critical, simply allocating human and machine skills to a task may be insufficient, and far from being a silver-bullet solution or a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation when surprise is the norm, even when machines become more effective than humans in handling uncertainty.
comment: Rework of the title based on an improved framing (safe harbor paradox); results unchanged; conclusions unchanged
♻ ☆ PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration IEEE
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version)
♻ ☆ Simulation as Supervision: Mechanistic Pretraining for Scientific Discovery
Scientific modeling faces a tradeoff between the interpretability of mechanistic theory and the predictive power of machine learning. While hybrid approaches like Physics-Informed Neural Networks (PINNs) embed domain knowledge as functional constraints, they can be brittle under model misspecification. We introduce Simulation-Grounded Neural Networks (SGNNs), a framework that instead embeds domain knowledge into the training data to establish a structural prior. By pretraining on synthetic corpora spanning diverse model structures and observational artifacts, SGNNs learn the broad patterns of physical possibility. This allows the model to internalize the underlying dynamics of a system without being forced to satisfy a single, potentially incorrect equation. We evaluated SGNNs across scientific disciplines and found that this approach confers significant robustness. In prediction tasks, SGNNs nearly tripled COVID-19 forecasting skill versus CDC baselines. In tests on dengue outbreaks, SGNNs outperformed physics-constrained models even when both were restricted to incorrect human-to-human transmission equations, demonstrating that SGNNs are potentially more robust to model misspecification. For inference, SGNNs extend the logic of simulation-based inference to enable supervised learning for unobservable targets, estimating early COVID-19 transmissibility more accurately than traditional methods. Finally, SGNNs enable back-to-simulation attribution, a form of mechanistic interpretability that maps real-world data back to the simulated manifold to identify underlying processes. By unifying these disparate simulation-based techniques into a single framework, we demonstrate that mechanistic simulations can serve as effective training data for robust scientific inference that generalizes beyond the limitations of fixed functional forms.
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination provisions for high-risk systems in the EU AI Act NeurIPS 2025
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). This version has been updated after acceptance
♻ ☆ EXAONE Deep: Reasoning Enhanced Language Models
We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE.
♻ ☆ Flattening Hierarchies with Policy Bootstrapping NeurIPS 2025
Offline goal-conditioned reinforcement learning (GCRL) is a promising approach for pretraining generalist policies on large datasets of reward-free trajectories, akin to the self-supervised objectives used to train foundation models for computer vision and natural language processing. However, scaling GCRL to longer horizons remains challenging due to the combination of sparse rewards and discounting, which obscures the comparative advantages of primitive actions with respect to distant goals. Hierarchical RL methods achieve strong empirical results on long-horizon goal-reaching tasks, but their reliance on modular, timescale-specific policies and subgoal generation introduces significant additional complexity and hinders scaling to high-dimensional goal spaces. In this work, we introduce an algorithm to train a flat (non-hierarchical) goal-conditioned policy by bootstrapping on subgoal-conditioned policies with advantage-weighted importance sampling. Our approach eliminates the need for a generative model over the (sub)goal space, which we find is key for scaling to high-dimensional control in large state spaces. We further show that existing hierarchical and bootstrapping-based approaches correspond to specific design choices within our derivation. Across a comprehensive suite of state- and pixel-based locomotion and manipulation benchmarks, our method matches or surpasses state-of-the-art offline GCRL algorithms and scales to complex, long-horizon tasks where prior approaches fail. Project page: https://johnlyzhou.github.io/saw/
comment: NeurIPS 2025 (Spotlight, top 3.2%)
♻ ☆ EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct.
♻ ☆ EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes
This technical report introduces EXAONE 4.0, which integrates a Non-reasoning mode and a Reasoning mode to achieve both the excellent usability of EXAONE 3.5 and the advanced reasoning abilities of EXAONE Deep. To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended to support Spanish in addition to English and Korean. The EXAONE 4.0 model series consists of two sizes: a mid-size 32B model optimized for high performance, and a small-size 1.2B model designed for on-device applications. The EXAONE 4.0 demonstrates superior performance compared to open-weight models in its class and remains competitive even against frontier-class models. The models are publicly available for research purposes and can be easily downloaded via https://huggingface.co/LGAI-EXAONE.
comment: Technical Report, 30 Pages
♻ ☆ NormCode: A Semi-Formal Language for Auditable AI Planning
As AI systems move into high stakes domains such as legal reasoning, medical diagnosis, and financial decision making, regulators and practitioners increasingly demand auditability. Auditability means the ability to trace exactly what each step in a multi step workflow saw and did. Current large language model based workflows are fundamentally opaque. Context pollution, defined as the accumulation of information across reasoning steps, causes models to hallucinate and lose track of constraints. At the same time, implicit data flow makes it impossible to reconstruct what any given step actually received as input. We present NormCode, a semi formal language that makes AI workflows auditable by construction. Each inference step operates in enforced data isolation and can access only explicitly passed inputs. This eliminates cross step contamination and ensures that every intermediate state can be inspected. A strict separation between semantic operations, meaning probabilistic language model reasoning, and syntactic operations, meaning deterministic data flow, allows auditors to clearly distinguish inference from mechanical restructuring. The multi format ecosystem, consisting of NCDS, NCD, NCN, and NCDN files, allows developers, domain experts, and auditors to inspect the same plan in formats suited to their individual needs. A four phase compilation pipeline transforms natural language intent into executable JSON repositories. A visual Canvas application provides real time graph visualization and breakpoint debugging. We validate the approach by achieving full accuracy on base X addition and by self hosted execution of the NormCode compiler itself. These results demonstrate that structured intermediate representations can bridge human intuition and machine rigor while maintaining full transparency.
comment: Archive name: NormCode: A Semi Formal Language for Context Isolated AI Planning
♻ ☆ Consistent Opponent Modeling in Imperfect-Information Games
The goal of agents in multi-agent environments is to maximize total reward against the opposing agents that are encountered. Following a game-theoretic solution concept, such as Nash equilibrium, may obtain a strong performance in some settings; however, such approaches fail to capitalize on historical and observed data from repeated interactions against our opponents. Opponent modeling algorithms integrate machine learning techniques to exploit suboptimal opponents utilizing available data; however, the effectiveness of such approaches in imperfect-information games to date is quite limited. We show that existing opponent modeling approaches fail to satisfy a simple desirable property even against static opponents drawn from a known prior distribution; namely, they do not guarantee that the model approaches the opponent's true strategy even in the limit as the number of game iterations approaches infinity. We develop a new algorithm that is able to achieve this property and runs efficiently by solving a convex minimization problem based on the sequence-form game representation using projected gradient descent. The algorithm is guaranteed to efficiently converge to the opponent's true strategy under standard Bayesian identifiability and visitation assumptions, given observations from gameplay and possibly additional historical data if it is available.
♻ ☆ Digital Twin based Automatic Reconfiguration of Robotic Systems in Smart Environments IEEE
Robotic systems have become integral to smart environments, enabling applications ranging from urban surveillance and automated agriculture to industrial automation. However, their effective operation in dynamic settings - such as smart cities and precision farming - is challenged by continuously evolving topographies and environmental conditions. Traditional control systems often struggle to adapt quickly, leading to inefficiencies or operational failures. To address this limitation, we propose a novel framework for autonomous and dynamic reconfiguration of robotic controllers using Digital Twin technology. Our approach leverages a virtual replica of the robot's operational environment to simulate and optimize movement trajectories in response to real-world changes. By recalculating paths and control parameters in the Digital Twin and deploying the updated code to the physical robot, our method ensures rapid and reliable adaptation without manual intervention. This work advances the integration of Digital Twins in robotics, offering a scalable solution for enhancing autonomy in smart, dynamic environments.
comment: Accepted for presentation to 11th IEEE International Smart Cities Conference (ISC2 2025)
♻ ☆ SUSTAINABLE Platform: Seamless Smart Farming Integration Towards Agronomy Automation IEEE
The global agricultural sector is undergoing a transformative shift, driven by increasing food demands, climate variability and the need for sustainable practices. SUSTAINABLE is a smart farming platform designed to integrate IoT, AI, satellite imaging, and role-based task orchestration to enable efficient, traceable, and sustainable agriculture with a pilot usecase in viticulture. This paper explores current smart agriculture solutions, presents a comparative evaluation, and introduces SUSTAINABLE's key features, including satellite index integration, real-time environmental data, and role-aware task management tailored to Mediterranean vineyards.
comment: Accepted for presentation to 11th IEEE International Smart Cities Conference (ISC2 2025)
♻ ☆ NeedleChain: Measuring Intact Context Comprehension Capability of Large Language Models
Recent reports suggest that LLMs can handle increasingly long contexts. However, many existing benchmarks for context understanding embed substantial query-irrelevant content, which shifts evaluation toward retrieving relevant snippets rather than fully integrating all provided information. Under this setting, we view that current benchmarks can overestimate true context-understanding ability of LLMs. In particular, we demonstrate that when the context consists entirely of query-relevant text, even advanced models such as GPT-4o fail to reliably integrate inputs as short as 200 tokens. To evaluate this capability more rigorously, we introduce NeedleChain, a benchmark designed to test whether models can faithfully incorporate all given evidence. NeedleChain includes three variants that differ in the required order of comprehension, along with a parallel benchmark based on the needle-in-a-haystack(NIAH) paradigm. By comparing these variants, NeedleChain enables a more comprehensive assessment of context understanding. We further propose a training-free strategy that encourages models to reflect all available information, ROPE contraction, highlighting the importance of full-context integration and pointing to new directions for improving reliable reasoning over context.
comment: 13 pages
♻ ☆ A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism IEEE
Neural architecture search (NAS) has emerged as a powerful paradigm that enables researchers to automatically explore vast search spaces and discover efficient neural networks. However, NAS suffers from a critical bottleneck, i.e. the evaluation of numerous architectures during the search process demands substantial computing resources and time. In order to improve the efficiency of NAS, a series of methods have been proposed to reduce the evaluation time of neural architectures. However, they are not efficient enough and still only focus on the accuracy of architectures. Beyond classification accuracy, real-world applications increasingly demand more efficient and compact network architectures that balance multiple performance criteria. To address these challenges, we propose the SMEMNAS, a pairwise comparison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism. In the SMEMNAS, a surrogate model is constructed based on pairwise comparison relations to predict the accuracy ranking of architectures, rather than the absolute accuracy. Moreover, two populations cooperate with each other in the search process, i.e. a main population that guides the evolutionary process, while a vice population that enhances search diversity. Our method aims to discover high-performance models that simultaneously optimize multiple objectives. We conduct comprehensive experiments on CIFAR-10, CIFAR-100 and ImageNet datasets to validate the effectiveness of our approach. With only a single GPU searching for 0.17 days, competitive architectures can be found by SMEMNAS which achieves 78.91% accuracy with the MAdds of 570M on the ImageNet. This work makes a significant advancement in the field of NAS.
comment: Accepted by IEEE Transactions on Systems, Man, and Cybernetics: Systems. Published on https://ieeexplore.ieee.org/document/11321923
♻ ☆ AnyMS: Bottom-up Attention Decoupling for Layout-guided and Training-free Multi-subject Customization
Multi-subject customization aims to synthesize multiple user-specified subjects into a coherent image. To address issues such as subjects missing or conflicts, recent works incorporate layout guidance to provide explicit spatial constraints. However, existing methods still struggle to balance three critical objectives: text alignment, subject identity preservation, and layout control, while the reliance on additional training further limits their scalability and efficiency. In this paper, we present AnyMS, a novel training-free framework for layout-guided multi-subject customization. AnyMS leverages three input conditions: text prompt, subject images, and layout constraints, and introduces a bottom-up dual-level attention decoupling mechanism to harmonize their integration during generation. Specifically, global decoupling separates cross-attention between textual and visual conditions to ensure text alignment. Local decoupling confines each subject's attention to its designated area, which prevents subject conflicts and thus guarantees identity preservation and layout control. Moreover, AnyMS employs pre-trained image adapters to extract subject-specific features aligned with the diffusion model, removing the need for subject learning or adapter tuning. Extensive experiments demonstrate that AnyMS achieves state-of-the-art performance, supporting complex compositions and scaling to a larger number of subjects.
♻ ☆ Energy Decay Network (EDeN)
This paper and accompanying Python and C++ Framework is the product of the authors perceived problems with narrow (Discrimination based) AI. (Artificial Intelligence) The Framework attempts to develop a genetic transfer of experience through potential structural expressions using a common regulation/exchange value (energy) to create a model whereby neural architecture and all unit processes are co-dependently developed by genetic and real time signal processing influences; successful routes are defined by stability of the spike distribution per epoch which is influenced by genetically encoded morphological development biases.These principles are aimed towards creating a diverse and robust network that is capable of adapting to general tasks by training within a simulation designed for transfer learning to other mediums at scale.
♻ ☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
♻ ☆ Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Ensuring large language model (LLM) reliability requires distinguishing objective unsolvability (inherent contradictions) from subjective capability limitations (tasks exceeding model competence). Current LLMs often conflate these dimensions, leading to hallucinations in which they return confident answers to inherently unsolvable queries. To address this issue, we propose a multi-domain dataset containing both solvable and unsolvable questions, UnsolvableQA, together with an alignment framework, UnsolvableRL. First, we construct UnsolvableQA by "Reverse Construction" that systematically injects logical contradictions into otherwise valid reasoning chains. Second, we introduce UnsolvableRL, a reinforcement learning paradigm that balances objective unsolvability detection with calibrated confidence under capability limits. Empirically, our approach achieves near-perfect unsolvability detection (>90% detection rate) and boosts solvable reasoning accuracy from 43.4% to 69.4% on Qwen3-4B-Instruct. Crucially, we identify a data-training interaction: strict alignment constraints induce Capability Collapse without unsolvable data, but act as a regularizer for rigor when such data are included, thereby improving overall robustness. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA .
comment: preprint
♻ ☆ Satellite to Street : Disaster Impact Estimator
Accurate assessment of post-disaster damage is essential for prioritizing emergency response, yet current practices rely heavily on manual interpretation of satellite imagery.This approach is time-consuming, subjective, and difficult to scale during large-area disasters. Although recent deep-learning models for semantic segmentation and change detection have improved automation, many of them still struggle to capture subtle structural variations and often perform poorly when dealing with highly imbalanced datasets, where undamaged buildings dominate. This thesis introduces Satellite-to-Street:Disaster Impact Estimator, a deep-learning framework that produces detailed, pixel-level damage maps by analyzing pre and post-disaster satellite images together. The model is built on a modified dual-input U-Net architecture that strengthens feature fusion between both images, allowing it to detect not only small, localized changes but also broader contextual patterns across the scene. To address the imbalance between damage categories, a class-aware weighted loss function is used, which helps the model better recognize major and destroyed structures. A consistent preprocessing pipeline is employed to align image pairs, standardize resolutions, and prepare the dataset for training. Experiments conducted on publicly available disaster datasets show that the proposed framework achieves better classification of damaged regions compared to conventional segmentation networks.The generated damage maps provide faster and objective method for analyzing disaster impact, working alongside expert judgment rather than replacing it. In addition to identifying which areas are damaged, the system is capable of distinguishing different levels of severity, ranging from slight impact to complete destruction. This provides a more detailed and practical understanding of how the disaster has affected each region.
comment: 6 pages,4 figures, 2 tables
♻ ☆ RAG-BioQA: A Retrieval-Augmented Generation Framework for Long-Form Biomedical Question Answering
The rapidly growth of biomedical literature creates challenges acquiring specific medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a retrieval-augmented generation framework for long-form biomedical question answering. Our system integrates BioBERT embeddings with FAISS indexing for retrieval and a LoRA fine-tuned FLAN-T5 model for answer generation. We train on 181k QA pairs from PubMedQA, MedDialog, and MedQuAD, and evaluate on a held-out PubMedQA test set. We compare four retrieval strategies: dense retrieval (FAISS), BM25, ColBERT, and MonoT5. Our results show that domain-adapted dense retrieval outperforms zero-shot neural re-rankers, with the best configuration achieving 0.24 BLEU-1 and 0.29 ROUGE-1. Fine-tuning improves BERTScore by 81\% over the base model. We release our framework to support reproducible biomedical QA research.
comment: Submitted to ICAEI
♻ ☆ Computing Evolutionarily Stable Strategies in Multiplayer Games
We present an algorithm for computing all evolutionarily stable strategies in nondegenerate normal-form games with three or more players.
comment: Reverting to original title after fixing Google scholar merge
♻ ☆ Fusion of Multiscale Features Via Centralized Sparse-attention Network for EEG Decoding
Electroencephalography (EEG) signal decoding is a key technology that translates brain activity into executable commands, laying the foundation for direct brain-machine interfacing and intelligent interaction. To address the inherent spatiotemporal heterogeneity of EEG signals, this paper proposes a multi-branch parallel architecture, where each temporal scale is equipped with an independent spatial feature extraction module. To further enhance multi-branch feature fusion, we propose a Fusion of Multiscale Features via Centralized Sparse-attention Network (EEG-CSANet), a centralized sparse-attention network. It employs a main-auxiliary branch architecture, where the main branch models core spatiotemporal patterns via multiscale self-attention, and the auxiliary branch facilitates efficient local interactions through sparse cross-attention. Experimental results show that EEG-CSANet achieves state-of-the-art (SOTA) performance across five public datasets (BCIC-IV-2A, BCIC-IV-2B, HGD, SEED, and SEED-VIG), with accuracies of 88.54%, 91.09%, 97.15%, 96.03%, and 90.56%, respectively. Such performance demonstrates its strong adaptability and robustness across various EEG decoding tasks. Moreover, extensive ablation studies are conducted to enhance the interpretability of EEG-CSANet. In the future, we hope that EEG-CSANet could serve as a promising baseline model in the field of EEG signal decoding. The source code is publicly available at: https://github.com/Xiangrui-Cai/EEG-CSANet
♻ ☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data-stemming from the onerous and costly nature of experimental validation-further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel bilevel optimization approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to learn how to generalize beyond the training distribution. We demonstrate significant performance gains on challenging real-world datasets with substantial covariate shift, supported by t-SNE visualizations highlighting our interpolation method.
♻ ☆ Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Though our findings persist up to the 100M scale, frontier models today are well into the billions of parameters. Therefore, our conceptual framework and empirical findings can best serve as a starting point for understanding and improving the creativity of frontier-size models today, as we begin to bridge the gap between human and machine intelligence.
comment: Preprint. The first two authors contributed equally
Computation and Language 42
☆ Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.
comment: 58 pages, 19 figures, Under Review
☆ Adapting Natural Language Processing Models Across Jurisdictions: A pilot Study in Canadian Cancer Registries
Population-based cancer registries depend on pathology reports as their primary diagnostic source, yet manual abstraction is resource-intensive and contributes to delays in cancer data. While transformer-based NLP systems have improved registry workflows, their ability to generalize across jurisdictions with differing reporting conventions remains poorly understood. We present the first cross-provincial evaluation of adapting BCCRTron, a domain-adapted transformer model developed at the British Columbia Cancer Registry, alongside GatorTron, a biomedical transformer model, for cancer surveillance in Canada. Our training dataset consisted of approximately 104,000 and 22,000 de-identified pathology reports from the Newfoundland & Labrador Cancer Registry (NLCR) for Tier 1 (cancer vs. non-cancer) and Tier 2 (reportable vs. non-reportable) tasks, respectively. Both models were fine-tuned using complementary synoptic and diagnosis focused report section input pipelines. Across NLCR test sets, the adapted models maintained high performance, demonstrating transformers pretrained in one jurisdiction can be localized to another with modest fine-tuning. To improve sensitivity, we combined the two models using a conservative OR-ensemble achieving a Tier 1 recall of 0.99 and reduced missed cancers to 24, compared with 48 and 54 for the standalone models. For Tier 2, the ensemble achieved 0.99 recall and reduced missed reportable cancers to 33, compared with 54 and 46 for the individual models. These findings demonstrate that an ensemble combining complementary text representations substantially reduce missed cancers and improve error coverage in cancer-registry NLP. We implement a privacy-preserving workflow in which only model weights are shared between provinces, supporting interoperable NLP infrastructure and a future pan-Canadian foundation model for cancer pathology and registry workflows.
☆ Memory Bank Compression for Continual Adaptation of Large Language Models
Large Language Models (LLMs) have become a mainstay for many everyday applications. However, as data evolve their knowledge quickly becomes outdated. Continual learning aims to update LLMs with new information without erasing previously acquired knowledge. Although methods such as full fine-tuning can incorporate new data, they are computationally expensive and prone to catastrophic forgetting, where prior knowledge is overwritten. Memory-augmented approaches address this by equipping LLMs with a memory bank, that is an external memory module which stores information for future use. However, these methods face a critical limitation, in particular, the memory bank constantly grows in the real-world scenario when large-scale data streams arrive. In this paper, we propose MBC, a model that compresses the memory bank through a codebook optimization strategy during online adaptation learning. To ensure stable learning, we also introduce an online resetting mechanism that prevents codebook collapse. In addition, we employ Key-Value Low-Rank Adaptation in the attention layers of the LLM, enabling efficient utilization of the compressed memory representations. Experiments with benchmark question-answering datasets demonstrate that MBC reduces the memory bank size to 0.3% when compared against the most competitive baseline, while maintaining high retention accuracy during online adaptation learning. Our code is publicly available at https://github.com/Thomkat/MBC.
comment: Accepted to the 41st ACM/SIGAPP Symposium on Applied Computing (SAC '26)
☆ Exploring the Performance of Large Language Models on Subjective Span Identification Tasks
Identifying relevant text spans is important for several downstream tasks in NLP, as it contributes to model explainability. While most span identification approaches rely on relatively smaller pre-trained language models like BERT, a few recent approaches have leveraged the latest generation of Large Language Models (LLMs) for the task. Current work has focused on explicit span identification like Named Entity Recognition (NER), while more subjective span identification with LLMs in tasks like Aspect-based Sentiment Analysis (ABSA) has been underexplored. In this paper, we fill this important gap by presenting an evaluation of the performance of various LLMs on text span identification in three popular tasks, namely sentiment analysis, offensive language identification, and claim verification. We explore several LLM strategies like instruction tuning, in-context learning, and chain of thought. Our results indicate underlying relationships within text aid LLMs in identifying precise text spans.
☆ TeleDoCTR: Domain-Specific and Contextual Troubleshooting for Telecommunications
Ticket troubleshooting refers to the process of analyzing and resolving problems that are reported through a ticketing system. In large organizations offering a wide range of services, this task is highly complex due to the diversity of submitted tickets and the need for specialized domain knowledge. In particular, troubleshooting in telecommunications (telecom) is a very time-consuming task as it requires experts to interpret ticket content, consult documentation, and search historical records to identify appropriate resolutions. This human-intensive approach not only delays issue resolution but also hinders overall operational efficiency. To enhance the effectiveness and efficiency of ticket troubleshooting in telecom, we propose TeleDoCTR, a novel telecom-related, domain-specific, and contextual troubleshooting system tailored for end-to-end ticket resolution in telecom. TeleDoCTR integrates both domain-specific ranking and generative models to automate key steps of the troubleshooting workflow which are: routing tickets to the appropriate expert team responsible for resolving the ticket (classification task), retrieving contextually and semantically similar historical tickets (retrieval task), and generating a detailed fault analysis report outlining the issue, root cause, and potential solutions (generation task). We evaluate TeleDoCTR on a real-world dataset from a telecom infrastructure and demonstrate that it achieves superior performance over existing state-of-the-art methods, significantly enhancing the accuracy and efficiency of the troubleshooting process.
☆ Sigmoid Head for Quality Estimation under Language Ambiguity
Language model (LM) probability is not a reliable quality estimator, as natural language is ambiguous. When multiple output options are valid, the model's probability distribution is spread across them, which can misleadingly indicate low output quality. This issue is caused by two reasons: (1) LMs' final output activation is softmax, which does not allow multiple correct options to receive high probabilities simultaneuously and (2) LMs' training data is single, one-hot encoded references, indicating that there is only one correct option at each output step. We propose training a module for Quality Estimation on top of pre-trained LMs to address these limitations. The module, called Sigmoid Head, is an extra unembedding head with sigmoid activation to tackle the first limitation. To tackle the second limitation, during the negative sampling process to train the Sigmoid Head, we use a heuristic to avoid selecting potentially alternative correct tokens. Our Sigmoid Head is computationally efficient during training and inference. The probability from Sigmoid Head is notably better quality signal compared to the original softmax head. As the Sigmoid Head does not rely on human-annotated quality data, it is more robust to out-of-domain settings compared to supervised QE.
☆ Fast-weight Product Key Memory
Sequence modeling layers in modern language models typically face a trade-off between storage capacity and computational efficiency. While Softmax attention offers unbounded storage at prohibitive quadratic costs, linear variants provide efficiency but suffer from limited, fixed-size storage. We propose Fast-weight Product Key Memory (FwPKM), a novel architecture that resolves this tension by transforming the sparse Product Key Memory (PKM) from a static module into a dynamic, "fast-weight" episodic memory. Unlike PKM, FwPKM updates its parameters dynamically at both training and inference time via local chunk-level gradient descent, allowing the model to rapidly memorize and retrieve new key-value pairs from input sequences. Experiments reveal that FwPKM functions as an effective episodic memory that complements the semantic memory of standard modules, yielding significant perplexity reductions on long-context datasets. Notably, in Needle in a Haystack evaluations, FwPKM generalizes to 128K-token contexts despite being trained on only 4K-token sequences.
☆ Physio-DPO: Aligning Large Language Models with the Protein Energy Landscape to Eliminate Structural Hallucinations
Large Protein Language Models have shown strong potential for generative protein design, yet they frequently produce structural hallucinations, generating sequences with high linguistic likelihood that fold into thermodynamically unstable conformations. Existing alignment approaches such as Direct Preference Optimization are limited in this setting, as they model preferences as binary labels and ignore the continuous structure of the physical energy landscape. We propose Physio-DPO, a physics informed alignment framework that grounds protein language models in thermodynamic stability. Physio-DPO introduces a magnitude aware objective that scales optimization updates according to the energy gap between native structures and physics perturbed hard negatives. Experiments show that Physio-DPO consistently outperforms strong baselines including SFT, PPO, and standard DPO, reducing self consistency RMSD to 1.28 Å and increasing foldability to 92.8%. Qualitative analysis further demonstrates that Physio-DPO effectively mitigates structural hallucinations by recovering biophysical interactions such as hydrophobic core packing and hydrogen bond networks.
☆ Probabilistic Guarantees for Reducing Contextual Hallucinations in LLMs
Large language models (LLMs) frequently produce contextual hallucinations, where generated content contradicts or ignores information explicitly stated in the prompt. Such errors are particularly problematic in deterministic automation workflows, where inputs are fixed and correctness is unambiguous. We introduce a simple and model-agnostic framework that provides explicit probabilistic guarantees for reducing hallucinations in this setting. We formalize the notion of a specific task, defined by a fixed input and a deterministic correctness criterion, and show that issuing the same prompt in independent context windows yields an exponential reduction in the probability that all model outputs are incorrect. To identify a correct answer among repeated runs, we incorporate an LLM-as-a-judge and prove that the probability that the judged pipeline fails decays at a rate determined by the judge's true- and false-positive probabilities. When the judge is imperfect, we strengthen it through majority vote over independent judge calls, obtaining ensemble-level error rates that decrease exponentially in the number of votes. This yields an explicit bound on the probability that the pipeline selects a hallucinated answer. Experiments on controlled extraction tasks with synthetic noisy judges match these predictions exactly: pipeline failure decreases exponentially with the number of repetitions, and hallucination-selection decreases exponentially with the number of judges in the ensemble. Together, these results provide a lightweight, modular, and theoretically grounded method for driving hallucination probabilities arbitrarily low in fixed-input LLM workflows-without modifying model weights, decoding strategies, or prompt engineering.
☆ Beyond IVR: Benchmarking Customer Support LLM Agents for Business-Adherence
Traditional customer support systems, such as Interactive Voice Response (IVR), rely on rigid scripts and lack the flexibility required for handling complex, policy-driven tasks. While large language model (LLM) agents offer a promising alternative, evaluating their ability to act in accordance with business rules and real-world support workflows remains an open challenge. Existing benchmarks primarily focus on tool usage or task completion, overlooking an agent's capacity to adhere to multi-step policies, navigate task dependencies, and remain robust to unpredictable user or environment behavior. In this work, we introduce JourneyBench, a benchmark designed to assess policy-aware agents in customer support. JourneyBench leverages graph representations to generate diverse, realistic support scenarios and proposes the User Journey Coverage Score, a novel metric to measure policy adherence. We evaluate multiple state-of-the-art LLMs using two agent designs: a Static-Prompt Agent (SPA) and a Dynamic-Prompt Agent (DPA) that explicitly models policy control. Across 703 conversations in three domains, we show that DPA significantly boosts policy adherence, even allowing smaller models like GPT-4o-mini to outperform more capable ones like GPT-4o. Our findings demonstrate the importance of structured orchestration and establish JourneyBench as a critical resource to advance AI-driven customer support beyond IVR-era limitations.
comment: 17 pages, 3 figures, preprint
☆ CSSBench: Evaluating the Safety of Lightweight LLMs against Chinese-Specific Adversarial Patterns
Large language models (LLMs) are increasingly deployed in cost-sensitive and on-device scenarios, and safety guardrails have advanced mainly in English. However, real-world Chinese malicious queries typically conceal intent via homophones, pinyin, symbol-based splitting, and other Chinese-specific patterns. These Chinese-specific adversarial patterns create the safety evaluation gap that is not well captured by existing benchmarks focused on English. This gap is particularly concerning for lightweight models, which may be more vulnerable to such specific adversarial perturbations. To bridge this gap, we introduce the Chinese-Specific Safety Benchmark (CSSBench) that emphasizes these adversarial patterns and evaluates the safety of lightweight LLMs in Chinese. Our benchmark covers six domains that are common in real Chinese scenarios, including illegal activities and compliance, privacy leakage, health and medical misinformation, fraud and hate, adult content, and public and political safety, and organizes queries into multiple task types. We evaluate a set of popular lightweight LLMs and measure over-refusal behavior to assess safety-induced performance degradation. Our results show that the Chinese-specific adversarial pattern is a critical challenge for lightweight LLMs. This benchmark offers a comprehensive evaluation of LLM safety in Chinese, assisting robust deployments in practice.
comment: 18 pages
☆ InfoSynth: Information-Guided Benchmark Synthesis for LLMs
Large language models (LLMs) have demonstrated significant advancements in reasoning and code generation. However, efficiently creating new benchmarks to evaluate these capabilities remains a challenge. Traditional benchmark creation relies on manual human effort, a process that is both expensive and time-consuming. Furthermore, existing benchmarks often contaminate LLM training data, necessitating novel and diverse benchmarks to accurately assess their genuine capabilities. This work introduces InfoSynth, a novel framework for automatically generating and evaluating reasoning benchmarks guided by information-theoretic principles. We propose metrics based on KL-divergence and entropy to quantify benchmark novelty and diversity without relying on costly model evaluations. Building on this framework, we develop an end-to-end pipeline that synthesizes robust Python coding problems from seed datasets using genetic algorithms and iterative code feedback. Our method generates accurate test cases and solutions to new problems 97% of the time, and the synthesized benchmarks consistently exhibit higher novelty and diversity compared to their seed datasets. Moreover, our algorithm provides a method for controlling the novelty/diversity and difficulty of generated problems. InfoSynth offers a scalable, self-verifying pipeline for constructing high-quality, novel and diverse benchmarks for LLMs. Project Page: https://ishirgarg.github.io/infosynth_web/
☆ A Language-Agnostic Hierarchical LoRA-MoE Architecture for CTC-based Multilingual ASR IEEE
Large-scale multilingual ASR (mASR) models such as Whisper achieve strong performance but incur high computational and latency costs, limiting their deployment on resource-constrained edge devices. In this study, we propose a lightweight and language-agnostic multilingual ASR system based on a CTC architecture with domain adaptation. Specifically, we introduce a Language-agnostic Hierarchical LoRA-MoE (HLoRA) framework integrated into an mHuBERT-CTC model, enabling end-to-end decoding via LID-posterior-driven LoRA routing. The hierarchical design consists of a multilingual shared LoRA for learning language-invariant acoustic representations and language-specific LoRA experts for modeling language-dependent characteristics. The proposed routing mechanism removes the need for prior language identity information or explicit language labels during inference, achieving true language-agnostic decoding. Experiments on MSR-86K and the MLC-SLM 2025 Challenge datasets demonstrate that HLoRA achieves competitive performance with state-of-the-art two-stage inference methods using only single-pass decoding, significantly improving decoding efficiency for low-resource mASR applications.
comment: 5 pages, submitted to IEEE Signal Processing Letters
☆ ECR: Manifold-Guided Semantic Cues for Compact Language Models
Compact models often lose the structure of their embedding space. The issue shows up when the capacity is tight or the data spans several languages. Such collapse makes it difficult for downstream tasks to build on the resulting representation. Existing compression methods focus on aligning model outputs at a superficial level but fail to preserve the underlying manifold structure. This mismatch often leads to semantic drift in the compact model, causing both task behavior and linguistic properties to deviate from the reference model. To address those issues, we provide a new framework called Embedding Consistency Regulation (ECR). This framework first derives a set of semantic anchors from teacher embeddings (computed once offline). Then, the compact model learns to maintain consistent geometry around these anchors, without relying on matching logits or internal features. ECR adds only a small projection step at inference, without altering the decoding architecture or its runtime behavior. In experiments on a 100K multilingual corpus, ECR consistently stabilizes training and preserves semantic structure across tasks and languages. It also produces a more compact and task-aligned representation space, enabling low-capacity models to learn cleaner manifolds than conventional baselines. ECR works without teacher outputs and is compatible with, but independent of, distillation. Taken together, our results show that ECR helps compact models better follow task requirements and makes them easier to deploy under strict efficiency or privacy limits.
comment: Preprint 13pages, 6 figures
☆ Retrieval--Reasoning Processes for Multi-hop Question Answering: A Four-Axis Design Framework and Empirical Trends
Multi-hop question answering (QA) requires systems to iteratively retrieve evidence and reason across multiple hops. While recent RAG and agentic methods report strong results, the underlying retrieval--reasoning \emph{process} is often left implicit, making procedural choices hard to compare across model families. This survey takes the execution procedure as the unit of analysis and introduces a four-axis framework covering (A) overall execution plan, (B) index structure, (C) next-step control (strategies and triggers), and (D) stop/continue criteria. Using this schema, we map representative multi-hop QA systems and synthesize reported ablations and tendencies on standard benchmarks (e.g., HotpotQA, 2WikiMultiHopQA, MuSiQue), highlighting recurring trade-offs among effectiveness, efficiency, and evidence faithfulness. We conclude with open challenges for retrieval--reasoning agents, including structure-aware planning, transferable control policies, and robust stopping under distribution shift.
☆ The Illusion of Insight in Reasoning Models
Do reasoning models have "Aha!" moments? Prior work suggests that models like DeepSeek-R1-Zero undergo sudden mid-trace realizations that lead to accurate outputs, implying an intrinsic capacity for self-correction. Yet, it remains unclear whether such intrinsic shifts in reasoning strategy actually improve performance. Here, we study mid-reasoning shifts and instrument training runs to detect them. Our analysis spans 1M+ reasoning traces, hundreds of training checkpoints, three reasoning domains, and multiple decoding temperatures and model architectures. We find that reasoning shifts are rare, do not become more frequent with training, and seldom improve accuracy, indicating that they do not correspond to prior perceptions of model insight. However, their effect varies with model uncertainty. Building on this finding, we show that artificially triggering extrinsic shifts under high entropy reliably improves accuracy. Our results show that mid-reasoning shifts are symptoms of unstable inference behavior rather than an intrinsic mechanism for self-correction.
☆ Reliability Under Randomness: An Empirical Analysis of Sparse and Dense Language Models Across Decoding Temperatures
The increasing prevalence of sparse Mixture-of-Experts (MoE) architectures in large language models raises important questions regarding their reliability under stochastic decoding. While conditional computation enables substantial gains in computational efficiency, it remains unclear whether the interaction between sparse routing and temperature-based sampling compromises output stability relative to dense architectures. This work investigates whether conditional computation in MoE models amplifies decoding-induced randomness, leading to reduced reliability as temperature increases. We evaluate three representative models: OLMoE-7B (sparse base), Mixtral-8x7B (sparse instruction-tuned), and Qwen2.5-3B (dense instruction-tuned) on deterministic arithmetic reasoning tasks with objectively verifiable answers. Experiments span four decoding configurations, ranging from greedy decoding to T=1.0. Our evaluation encompasses accuracy, format compliance, output consistency across repeated generations, and confidence metrics, totaling 9,360 model generations. Results demonstrate that the sparse instruction-tuned model exhibits stability comparable to the dense instruction-tuned model across all decoding temperatures, while the sparse base model shows systematic degradation as temperature increases. These findings indicate that instruction tuning, rather than architectural sparsity, is the primary determinant of robustness to decoding randomness on deterministic tasks. We discuss the implications of these results for deploying sparse language models in reliability-critical applications, highlighting scenarios in which sparse architectures can be safely adopted without sacrificing output stability.
☆ Rate-Distortion Analysis of Compressed Query Delegation with Low-Rank Riemannian Updates
Bounded-context agents fail when intermediate reasoning exceeds an effective working-memory budget. We study compressed query delegation (CQD): (i) compress a high-dimensional latent reasoning state into a low-rank tensor query, (ii) delegate the minimal query to an external oracle, and (iii) update the latent state via Riemannian optimization on fixed-rank manifolds. We give a math-first formulation: CQD is a constrained stochastic program with a query-budget functional and an oracle modeled as a noisy operator. We connect CQD to classical rate-distortion and information bottleneck principles, showing that spectral hard-thresholding is optimal for a natural constrained quadratic distortion problem, and we derive convergence guarantees for Riemannian stochastic approximation under bounded oracle noise and smoothness assumptions. Empirically, we report (A) a 2,500-item bounded-context reasoning suite (BBH-derived tasks plus curated paradox instances) comparing CQD against chain-of-thought baselines under fixed compute and context; and (B) a human "cognitive mirror" benchmark (N=200) measuring epistemic gain and semantic drift across modern oracles.
comment: 9 pages
☆ Measuring Social Media Polarization Using Large Language Models and Heuristic Rules
Understanding affective polarization in online discourse is crucial for evaluating the societal impact of social media interactions. This study presents a novel framework that leverages large language models (LLMs) and domain-informed heuristics to systematically analyze and quantify affective polarization in discussions on divisive topics such as climate change and gun control. Unlike most prior approaches that relied on sentiment analysis or predefined classifiers, our method integrates LLMs to extract stance, affective tone, and agreement patterns from large-scale social media discussions. We then apply a rule-based scoring system capable of quantifying affective polarization even in small conversations consisting of single interactions, based on stance alignment, emotional content, and interaction dynamics. Our analysis reveals distinct polarization patterns that are event dependent: (i) anticipation-driven polarization, where extreme polarization escalates before well-publicized events, and (ii) reactive polarization, where intense affective polarization spikes immediately after sudden, high-impact events. By combining AI-driven content annotation with domain-informed scoring, our framework offers a scalable and interpretable approach to measuring affective polarization. The source code is publicly available at: https://github.com/hasanjawad001/llm-social-media-polarization.
comment: Foundations and Applications of Big Data Analytics (FAB), Niagara Falls, Canada, 2025
♻ ☆ C-VARC: A Large-Scale Chinese Value Rule Corpus for Value Alignment of Large Language Models
Ensuring that Large Language Models (LLMs) align with mainstream human values and ethical norms is crucial for the safe and sustainable development of AI. Current value evaluation and alignment are constrained by Western cultural bias and incomplete domestic frameworks reliant on non-native rules; furthermore, the lack of scalable, rule-driven scenario generation methods makes evaluations costly and inadequate across diverse cultural contexts. To address these challenges, we propose a hierarchical value framework grounded in core Chinese values, encompassing three main dimensions, 12 core values, and 50 derived values. Based on this framework, we construct a large-scale Chinese Value Rule Corpus (C-VARC) containing over 250,000 value rules enhanced and expanded through human annotation. Experimental results demonstrate that scenarios guided by C-VARC exhibit clearer value boundaries and greater content diversity compared to those produced through direct generation. In the evaluation across six sensitive themes (e.g., surrogacy, suicide), seven mainstream LLMs preferred C-VARC generated options in over 70.5% of cases, while five Chinese human annotators showed an 87.5% alignment with C-VARC, confirming its universality, cultural relevance, and strong alignment with Chinese values. Additionally, we construct 400,000 rule-based moral dilemma scenarios that objectively capture nuanced distinctions in conflicting value prioritization across 17 LLMs. Our work establishes a culturally-adaptive benchmarking framework for comprehensive value evaluation and alignment, representing Chinese characteristics.
♻ ☆ RadarPLM: Adapting Pre-trained Language Models for Marine Radar Target Detection by Selective Fine-tuning
Recent advances in pre-trained language models (PLMs) have demonstrated their capabilities in capturing universal knowledge, making them promising for radar signal processing applications. Nevertheless, directly fine-tuning PLMs on radar signals is both computationally expensive and prone to overfitting, particularly in low signal-to-clutter ratio (SCR) environments. In this paper, we propose a novel fine-tuning framework for PLM-based marine radar target detection. First, we design a lightweight adaptation module, enabling computationally efficient fine-tuning while preserving the pre-trained model's general knowledge. Second, a novel preference-aware loss is developed to selectively optimize different feature patches based on their online-evaluated learning values, guiding the model to concentrate on those generalizable feature patterns during optimization. Finally, a binary classification head is retrained based on autoencoder network to further enhance detection performance. Experiments on real-world radar data show that the proposed RadarPLM framework yields at least a 6.35% improvement in detection performance over the existing networks under low SCR conditions. Especially, in small training samples cases,the proposed RadarPLM also achieves significant advantage over existing networks owing to the incorporation of the PLM.
♻ ☆ Modeling the One-to-Many Property in Open-Domain Dialogue with LLMs
Open-domain Dialogue (OD) exhibits a one-to-many (o2m) property, whereby multiple appropriate responses exist for a single dialogue context. Despite prior research showing that modeling this property boosts response diversity, most modern LLM-based dialogue agents do not explicitly do so. In this work, we model the o2m property of OD in LLMs by decomposing OD generation into two key tasks: Multi-Response Generation (MRG) and Preference-based Selection (PS), which entail generating a set of n semantically and lexically diverse high-quality responses for a given dialogue context, followed by selecting a single response based on human preference, respectively. To facilitate MRG and PS, we introduce o2mDial, a dialogue corpus explicitly designed to capture the o2m property by featuring multiple plausible responses for each context. Leveraging o2mDial, we propose new in-context learning and instruction-tuning strategies, as well as novel evaluation metrics for MRG, alongside a model-based approach for PS. Empirical results demonstrate that applying the proposed two-stage framework to smaller LLMs for OD generation enhances overall response diversity while maintaining contextual coherence, improving response quality by up to 90%, bringing them closer to the performance of larger models.
♻ ☆ SpiderGen: Towards Procedure Generation For Carbon Life Cycle Assessments with Generative AI
Investigating the effects of climate change and global warming caused by GHG emissions have been a key concern worldwide. These emissions are largely contributed to by the production, use and disposal of consumer products. Thus, it is important to build tools to estimate the environmental impact of consumer goods, an essential part of which is conducting Life Cycle Assessments (LCAs). LCAs specify and account for the appropriate processes involved with the production, use, and disposal of the products. We present SpiderGen, an LLM-based workflow which integrates the taxonomy and methodology of traditional LCA with the reasoning capabilities and world knowledge of LLMs to generate graphical representations of the key procedural information used for LCA, known as Product Category Rules Process Flow Graphs (PCR PFGs). We additionally evaluate the output of SpiderGen by comparing it with 65 real-world LCA documents. We find that SpiderGen provides accurate LCA process information that is either fully correct or has minor errors, achieving an F1-Score of 65% across 10 sample data points, as compared to 53% using a one-shot prompting method. We observe that the remaining errors occur primarily due to differences in detail between LCA documents, as well as differences in the "scope" of which auxiliary processes must also be included. We also demonstrate that SpiderGen performs better than several baselines techniques, such as chain-of-thought prompting and one-shot prompting. Finally, we highlight SpiderGen's potential to reduce the human effort and costs for estimating carbon impact, as it is able to produce LCA process information for less than \$1 USD in under 10 minutes as compared to the status quo LCA, which can cost over \$25000 USD and take up to 21-person days.
♻ ☆ Training a Huggingface Model on AWS Sagemaker (Without Tears)
The development of Large Language Models (LLMs) has primarily been driven by resource-rich research groups and industry partners. Due to the lack of on-premise computing resources required for increasingly complex models, many researchers are turning to cloud services like AWS SageMaker to train Hugging Face models. However, the steep learning curve of cloud platforms often presents a barrier for researchers accustomed to local environments. Existing documentation frequently leaves knowledge gaps, forcing users to seek fragmented information across the web. This demo paper aims to democratize cloud adoption by centralizing the essential information required for researchers to successfully train their first Hugging Face model on AWS SageMaker from scratch.
♻ ☆ Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking Language Model ICML 2025
For reasons such as privacy, there are use cases for language models at the edge. This has given rise to small language models targeted for deployment in resource-constrained devices where energy efficiency is critical. Spiking neural networks (SNNs) offer a promising solution due to their energy efficiency, and there are already works on realizing transformer-based models on SNNs. However, key operations like softmax and layer normalization (LN) are difficult to implement on neuromorphic hardware, and many of these early works sidestepped them. To address these challenges, we introduce Sorbet, a transformer-based spiking language model that is more neuromorphic hardware-compatible. Sorbet incorporates a novel shifting-based softmax called PTsoftmax and a Bit Shifting PowerNorm (BSPN), both designed to replace the respective energy-intensive operations. By leveraging knowledge distillation and model quantization, Sorbet achieved a highly compressed binary weight model that maintains competitive performance while achieving $27.16\times$ energy savings compared to BERT. We validate Sorbet through extensive testing on the GLUE benchmark and a series of ablation studies, demonstrating its potential as an energy-efficient solution for language model inference. Our code is publicly available at \href{https://github.com/Kaiwen-Tang/Sorbet}{https://github.com/Kaiwen-Tang/Sorbet}
comment: Accepted by ICML 2025. Camera-ready version
♻ ☆ Cultural Palette: Pluralising Culture Alignment via Multi-agent Palette
Large language models (LLMs) face challenges in aligning with diverse cultural values despite their remarkable performance in generation, which stems from inherent monocultural biases and difficulties in capturing nuanced cultural semantics. Existing methods struggle to adapt to unknown culture after fine-tuning. Inspired by cultural geography across five continents, we propose Cultural Palette, a multi-agent framework that redefines cultural alignment as an adaptive "color-blending" process for country-specific adaptation. Our approach harnesses cultural geography across five continents through three key steps: First, we synthesize the Pentachromatic Cultural Palette Dataset using GPT-4o, refining continental-level dialogues with Hofstede's cultural dimensions to establish foundational cultural representations. Second, five continent-level alignment agents form specialized cultural communities that generate region-specific draft responses. Third, a Meta Agent employs Cultural MoErges to dynamically blend these cultural "colors" through attention-gated parameter merging, akin to mixing pigments on a palette, resolving conflicts while preserving cultural nuances to produce the final culturally-aligned response. Extensive experiments across various countries demonstrate that \textit{Cultural Palette} surpasses existing baselines in cultural alignment.
comment: 19 pages, 10 figures
♻ ☆ Training-free Context-adaptive Attention for Efficient Long Context Modeling
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. These capabilities stem primarily from the self-attention mechanism, which enables modeling of long-range dependencies. However, the quadratic complexity of self-attention with respect to sequence length poses significant computational and memory challenges, especially as sequence length extends to extremes. While various sparse attention and KV cache compression methods have been proposed to improve efficiency, they often suffer from limitations such as reliance on fixed patterns, inability to handle both prefilling and decoding stages, or the requirement for additional training. In this paper, we propose Training-free Context-adaptive Attention (TCA-Attention), a training-free sparse attention mechanism that selectively attends to only the informative tokens for efficient long-context inference. Our method consists of two lightweight phases: i) an offline calibration phase that determines head-specific sparsity budgets via a single forward pass, and ii) an online token selection phase that adaptively retains core context tokens using a lightweight redundancy metric. TCA-Attention provides a unified solution that accelerates both prefilling and decoding while reducing KV cache memory footprint, without requiring parameter updates or architectural changes. Theoretical analysis shows that our approach maintains bounded approximation error. Extensive experiments demonstrate that TCA-Attention achieves a 2.8$\times$ speedup and reduces KV cache by 61% at 128K context length while maintaining performance comparable to full attention across various benchmarks, offering a practical plug-and-play solution for efficient long-context inference.
♻ ☆ EXAONE Deep: Reasoning Enhanced Language Models
We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE.
♻ ☆ EXAONE 3.5: Series of Large Language Models for Real-world Use Cases
This technical report introduces the EXAONE 3.5 instruction-tuned language models, developed and released by LG AI Research. The EXAONE 3.5 language models are offered in three configurations: 32B, 7.8B, and 2.4B. These models feature several standout capabilities: 1) exceptional instruction following capabilities in real-world scenarios, achieving the highest scores across seven benchmarks, 2) outstanding long-context comprehension, attaining the top performance in four benchmarks, and 3) competitive results compared to state-of-the-art open models of similar sizes across nine general benchmarks. The EXAONE 3.5 language models are open to anyone for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE. For commercial use, please reach out to the official contact point of LG AI Research: contact_us@lgresearch.ai.
♻ ☆ EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct.
♻ ☆ EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes
This technical report introduces EXAONE 4.0, which integrates a Non-reasoning mode and a Reasoning mode to achieve both the excellent usability of EXAONE 3.5 and the advanced reasoning abilities of EXAONE Deep. To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended to support Spanish in addition to English and Korean. The EXAONE 4.0 model series consists of two sizes: a mid-size 32B model optimized for high performance, and a small-size 1.2B model designed for on-device applications. The EXAONE 4.0 demonstrates superior performance compared to open-weight models in its class and remains competitive even against frontier-class models. The models are publicly available for research purposes and can be easily downloaded via https://huggingface.co/LGAI-EXAONE.
comment: Technical Report, 30 Pages
♻ ☆ NeedleChain: Measuring Intact Context Comprehension Capability of Large Language Models
Recent reports suggest that LLMs can handle increasingly long contexts. However, many existing benchmarks for context understanding embed substantial query-irrelevant content, which shifts evaluation toward retrieving relevant snippets rather than fully integrating all provided information. Under this setting, we view that current benchmarks can overestimate true context-understanding ability of LLMs. In particular, we demonstrate that when the context consists entirely of query-relevant text, even advanced models such as GPT-4o fail to reliably integrate inputs as short as 200 tokens. To evaluate this capability more rigorously, we introduce NeedleChain, a benchmark designed to test whether models can faithfully incorporate all given evidence. NeedleChain includes three variants that differ in the required order of comprehension, along with a parallel benchmark based on the needle-in-a-haystack(NIAH) paradigm. By comparing these variants, NeedleChain enables a more comprehensive assessment of context understanding. We further propose a training-free strategy that encourages models to reflect all available information, ROPE contraction, highlighting the importance of full-context integration and pointing to new directions for improving reliable reasoning over context.
comment: 13 pages
♻ ☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
♻ ☆ Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Ensuring large language model (LLM) reliability requires distinguishing objective unsolvability (inherent contradictions) from subjective capability limitations (tasks exceeding model competence). Current LLMs often conflate these dimensions, leading to hallucinations in which they return confident answers to inherently unsolvable queries. To address this issue, we propose a multi-domain dataset containing both solvable and unsolvable questions, UnsolvableQA, together with an alignment framework, UnsolvableRL. First, we construct UnsolvableQA by "Reverse Construction" that systematically injects logical contradictions into otherwise valid reasoning chains. Second, we introduce UnsolvableRL, a reinforcement learning paradigm that balances objective unsolvability detection with calibrated confidence under capability limits. Empirically, our approach achieves near-perfect unsolvability detection (>90% detection rate) and boosts solvable reasoning accuracy from 43.4% to 69.4% on Qwen3-4B-Instruct. Crucially, we identify a data-training interaction: strict alignment constraints induce Capability Collapse without unsolvable data, but act as a regularizer for rigor when such data are included, thereby improving overall robustness. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA .
comment: preprint
♻ ☆ RAG-BioQA: A Retrieval-Augmented Generation Framework for Long-Form Biomedical Question Answering
The rapidly growth of biomedical literature creates challenges acquiring specific medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a retrieval-augmented generation framework for long-form biomedical question answering. Our system integrates BioBERT embeddings with FAISS indexing for retrieval and a LoRA fine-tuned FLAN-T5 model for answer generation. We train on 181k QA pairs from PubMedQA, MedDialog, and MedQuAD, and evaluate on a held-out PubMedQA test set. We compare four retrieval strategies: dense retrieval (FAISS), BM25, ColBERT, and MonoT5. Our results show that domain-adapted dense retrieval outperforms zero-shot neural re-rankers, with the best configuration achieving 0.24 BLEU-1 and 0.29 ROUGE-1. Fine-tuning improves BERTScore by 81\% over the base model. We release our framework to support reproducible biomedical QA research.
comment: Submitted to ICAEI
♻ ☆ Tabby: A Language Model Architecture for Tabular and Structured Data Synthesis
While advances in large language models (LLMs) have greatly improved the quality of synthetic text data in recent years, synthesizing tabular data has received relatively less attention. We address this disparity with Tabby, a simple but powerful post-training modification to the standard Transformer language model architecture, enabling its use for tabular dataset synthesis. Tabby enables the representation of differences across columns using Gated Mixture-of-Experts, with column-specific sets of parameters. Empirically, Tabby results in data quality near or equal to that of real data. By pairing our novel LLM table training technique, Plain, with Tabby, we observe up to a 44% improvement in quality over previous methods. We also show that Tabby extends beyond tables to more general structured data, reaching parity with real data on a nested JSON dataset as well.
comment: 21 pages, 8 figures. Appearing in TMLR 2026
♻ ☆ Scaling Efficient LLMs
Recent LLMs have hundreds of billions of parameters consuming vast resources. Furthermore, the so called "AI scaling law" for transformers suggests that the number of parameters must scale linearly with the size of the data. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, by comparing theoretical and empirical estimates of the Kullback-Leibler divergence, we derive a natural AI scaling law that the number of parameters in an efficient LLM scales as $D^γ$ where $D$ is the size of the training data and $ γ\in [0.44, 0.72]$, suggesting the existence of more efficient architectures. Against this backdrop, we propose recurrent transformers, combining the efficacy of transformers with the efficiency of recurrent networks, progressively applying a single transformer layer to a fixed-width sliding window across the input sequence. Recurrent transformers (a) run in linear time in the sequence length, (b) are memory-efficient and amenable to parallel processing in large batches, (c) learn to forget history for language tasks, or accumulate history for long range tasks like copy and selective copy, and (d) are amenable to curriculum training to overcome vanishing gradients. In our experiments, we find that recurrent transformers perform favorably on benchmark tests.
♻ ☆ LABOR-LLM: Language-Based Occupational Representations with Large Language Models
This paper builds an empirical model that predicts a worker's next occupation as a function of the worker's occupational history. Because histories are sequences of occupations, the covariate space is high-dimensional, and further, the outcome (the next occupation) is a discrete choice that can take on many values. To estimate the parameters of the model, we leverage an approach from generative artificial intelligence. Estimation begins from a ``foundation model'' trained on non-representative data and then ``fine-tunes'' the estimation using data about careers from a representative survey. We convert tabular data from the survey into text files that resemble resumes and fine-tune the parameters of the foundation model, a large language model (LLM), using these text files with the objective of predicting the next token (word). The resulting fine-tuned LLM is used to calculate estimates of worker transition probabilities. Its predictive performance surpasses all prior models, both for the task of granularly predicting the next occupation as well as for specific tasks such as predicting whether the worker changes occupations or stays in the labor force. We quantify the value of fine-tuning and further show that by adding more career data from a different population, fine-tuning smaller LLMs (fewer parameters) surpasses the performance of fine-tuning larger models. When we omit the English language occupational title and replace it with a unique code, predictive performance declines.
♻ ☆ Do You Feel Comfortable? Detecting Hidden Conversational Escalation in AI Chatbots
Large Language Models (LLM) are increasingly integrated into everyday interactions, serving not only as information assistants but also as emotional companions. Even in the absence of explicit toxicity, repeated emotional reinforcement or affective drift can gradually escalate distress in a form of \textit{implicit harm} that traditional toxicity filters fail to detect. Existing guardrail mechanisms often rely on external classifiers or clinical rubrics that may lag behind the nuanced, real-time dynamics of a developing conversation. To address this gap, we propose GAUGE (Guarding Affective Utterance Generation Escalation), logit-based framework for the real-time detection of hidden conversational escalation. GAUGE measures how an LLM's output probabilistically shifts the affective state of a dialogue.
♻ ☆ ToMoE: Converting Dense Large Language Models to Mixture-of-Experts through Dynamic Structural Pruning
Large Language Models (LLMs) have demonstrated remarkable abilities in tackling a wide range of complex tasks. However, their huge computational and memory costs raise significant challenges in deploying these models on resource-constrained devices or efficiently serving them. Prior approaches have attempted to alleviate these problems by permanently removing less important model structures, yet these methods often result in substantial performance degradation due to the permanent deletion of model parameters. In this work, we tried to mitigate this issue by reducing the number of active parameters without permanently removing them. Specifically, we introduce a differentiable dynamic pruning method that pushes dense models to maintain a fixed number of active parameters by converting their MLP layers into a Mixture of Experts (MoE) architecture. Our method, even without fine-tuning, consistently outperforms previous structural pruning techniques across diverse model families, including Phi-2, LLaMA-2, LLaMA-3, and Qwen-2.5.
♻ ☆ Sample-Efficient Online Learning in LM Agents via Hindsight Trajectory Rewriting
Language model (LM) agents deployed in novel environments often exhibit poor sample efficiency when learning from sequential interactions. This significantly hinders the usefulness of such agents in environments where interaction is costly (for example, when they interact with humans or reset physical systems). While a number of existing LM agent architectures incorporate various mechanisms for experience storage and reflection, they make limited use of LMs' abilities to directly generate or reason about full counterfactual trajectories. We introduce ECHO (Experience Consolidation via Hindsight Optimization), a prompting framework that adapts hindsight experience replay from reinforcement learning for language model agents. ECHO generates optimized trajectories for alternative goals that could have been achieved during failed attempts, effectively creating synthetic positive examples from unsuccessful interactions. Our approach consists of two components: a hindsight rule that uses the language model itself to identify relevant subgoals and generate optimized trajectories, and an update rule that maintains compressed trajectory representations in memory. We evaluate ECHO on stateful versions of XMiniGrid, a text-based navigation and planning benchmark, and PeopleJoinQA, a collaborative information-gathering enterprise simulation. Across both domains, ECHO outperforms vanilla language agent baselines by up to 80%; in XMiniGrid, it also outperforms a number of sophisticated agent architectures including Reflexion and AWM, demonstrating faster adaptation to novel environments through more effective utilization of past experiences.
♻ ☆ A Systematic Survey on Large Language Models for Algorithm Design
Algorithm design is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and promising solutions. In just a few years, this integration has yielded remarkable progress in areas ranging from combinatorial optimization to scientific discovery. Despite this rapid expansion, a holistic understanding of the field is hindered by the lack of a systematic review, as existing surveys either remain limited to narrow sub-fields or with different objectives. This paper seeks to provide a systematic review of algorithm design with LLMs. We introduce a taxonomy that categorises the roles of LLMs as optimizers, predictors, extractors and designers, analyzing the progress, advantages, and limitations within each category. We further synthesize literature across the three phases of the algorithm design pipeline and across diverse algorithmic applications that define the current landscape. Finally, we outline key open challenges and opportunities to guide future research. To support future research and collaboration, we provide an accompanying repository at: https://github.com/FeiLiu36/LLM4AlgorithmDesign.
Machine Learning 75
☆ Two Deep Learning Approaches for Automated Segmentation of Left Ventricle in Cine Cardiac MRI
Left ventricle (LV) segmentation is critical for clinical quantification and diagnosis of cardiac images. In this work, we propose two novel deep learning architectures called LNU-Net and IBU-Net for left ventricle segmentation from short-axis cine MRI images. LNU-Net is derived from layer normalization (LN) U-Net architecture, while IBU-Net is derived from the instance-batch normalized (IB) U-Net for medical image segmentation. The architectures of LNU-Net and IBU-Net have a down-sampling path for feature extraction and an up-sampling path for precise localization. We use the original U-Net as the basic segmentation approach and compared it with our proposed architectures. Both LNU-Net and IBU-Net have left ventricle segmentation methods: LNU-Net applies layer normalization in each convolutional block, while IBU-Net incorporates instance and batch normalization together in the first convolutional block and passes its result to the next layer. Our method incorporates affine transformations and elastic deformations for image data processing. Our dataset that contains 805 MRI images regarding the left ventricle from 45 patients is used for evaluation. We experimentally evaluate the results of the proposed approaches outperforming the dice coefficient and the average perpendicular distance than other state-of-the-art approaches.
comment: 7 pages, 5 figures, published in ICBBB 2022
☆ Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.
comment: 58 pages, 19 figures, Under Review
☆ FedHypeVAE: Federated Learning with Hypernetwork Generated Conditional VAEs for Differentially Private Embedding Sharing
Federated data sharing promises utility without centralizing raw data, yet existing embedding-level generators struggle under non-IID client heterogeneity and provide limited formal protection against gradient leakage. We propose FedHypeVAE, a differentially private, hypernetwork-driven framework for synthesizing embedding-level data across decentralized clients. Building on a conditional VAE backbone, we replace the single global decoder and fixed latent prior with client-aware decoders and class-conditional priors generated by a shared hypernetwork from private, trainable client codes. This bi-level design personalizes the generative layerrather than the downstream modelwhile decoupling local data from communicated parameters. The shared hypernetwork is optimized under differential privacy, ensuring that only noise-perturbed, clipped gradients are aggregated across clients. A local MMD alignment between real and synthetic embeddings and a Lipschitz regularizer on hypernetwork outputs further enhance stability and distributional coherence under non-IID conditions. After training, a neutral meta-code enables domain agnostic synthesis, while mixtures of meta-codes provide controllable multi-domain coverage. FedHypeVAE unifies personalization, privacy, and distribution alignment at the generator level, establishing a principled foundation for privacy-preserving data synthesis in federated settings. Code: github.com/sunnyinAI/FedHypeVAE
comment: 10 pages, 1 figures, Accepted at AAI'26
☆ Categorical Reparameterization with Denoising Diffusion models
Gradient-based optimization with categorical variables typically relies on score-function estimators, which are unbiased but noisy, or on continuous relaxations that replace the discrete distribution with a smooth surrogate admitting a pathwise (reparameterized) gradient, at the cost of optimizing a biased, temperature-dependent objective. In this paper, we extend this family of relaxations by introducing a diffusion-based soft reparameterization for categorical distributions. For these distributions, the denoiser under a Gaussian noising process admits a closed form and can be computed efficiently, yielding a training-free diffusion sampler through which we can backpropagate. Our experiments show that the proposed reparameterization trick yields competitive or improved optimization performance on various benchmarks.
comment: working paper
☆ Memory Bank Compression for Continual Adaptation of Large Language Models
Large Language Models (LLMs) have become a mainstay for many everyday applications. However, as data evolve their knowledge quickly becomes outdated. Continual learning aims to update LLMs with new information without erasing previously acquired knowledge. Although methods such as full fine-tuning can incorporate new data, they are computationally expensive and prone to catastrophic forgetting, where prior knowledge is overwritten. Memory-augmented approaches address this by equipping LLMs with a memory bank, that is an external memory module which stores information for future use. However, these methods face a critical limitation, in particular, the memory bank constantly grows in the real-world scenario when large-scale data streams arrive. In this paper, we propose MBC, a model that compresses the memory bank through a codebook optimization strategy during online adaptation learning. To ensure stable learning, we also introduce an online resetting mechanism that prevents codebook collapse. In addition, we employ Key-Value Low-Rank Adaptation in the attention layers of the LLM, enabling efficient utilization of the compressed memory representations. Experiments with benchmark question-answering datasets demonstrate that MBC reduces the memory bank size to 0.3% when compared against the most competitive baseline, while maintaining high retention accuracy during online adaptation learning. Our code is publicly available at https://github.com/Thomkat/MBC.
comment: Accepted to the 41st ACM/SIGAPP Symposium on Applied Computing (SAC '26)
☆ A Machine Learning Framework for Off Ball Defensive Role and Performance Evaluation in Football
Evaluating off-ball defensive performance in football is challenging, as traditional metrics do not capture the nuanced coordinated movements that limit opponent action selection and success probabilities. Although widely used possession value models excel at appraising on-ball actions, their application to defense remains limited. Existing counterfactual methods, such as ghosting models, help extend these analyses but often rely on simulating "average" behavior that lacks tactical context. To address this, we introduce a covariate-dependent Hidden Markov Model (CDHMM) tailored to corner kicks, a highly structured aspect of football games. Our label-free model infers time-resolved man-marking and zonal assignments directly from player tracking data. We leverage these assignments to propose a novel framework for defensive credit attribution and a role-conditioned ghosting method for counterfactual analysis of off-ball defensive performance. We show how these contributions provide a interpretable evaluation of defensive contributions against context-aware baselines.
comment: 40 pages, 16 figures
☆ The Reasoning-Creativity Trade-off: Toward Creativity-Driven Problem Solving
State-of-the-art large language model (LLM) pipelines rely on bootstrapped reasoning loops: sampling diverse chains of thought and reinforcing the highest-scoring ones, mainly optimizing correctness. We analyze how this design choice is sensitive to the collapse of the model's distribution over reasoning paths, slashing semantic entropy and undermining creative problem-solving. To analyze this failure, we introduce Distributional Creative Reasoning (DCR), a unified variational objective that casts training as gradient flow through probability measures on solution traces. STaR, GRPO, and DPO, as well as entropy bonuses, and other methods, all constitute special cases of the same loss. The framework delivers three core results: (i) the diversity decay theorem, describing how correctness-based objectives lead to distinct modes of diversity decay for STaR, GRPO, and DPO; (ii) designs that ensure convergence to a stable and diverse policy, effectively preventing collapse; and (iii) simple, actionable recipes to achieve this in practice. DCR thus offers the first principled recipe for LLMs that remain both correct and creative.
comment: 56 pages, 9 figures, submitted to Twenty-Ninth Annual Conference on Artificial Intelligence and Statistics
☆ Stochastic Actor-Critic: Mitigating Overestimation via Temporal Aleatoric Uncertainty
Off-policy actor-critic methods in reinforcement learning train a critic with temporal-difference updates and use it as a learning signal for the policy (actor). This design typically achieves higher sample efficiency than purely on-policy methods. However, critic networks tend to overestimate value estimates systematically. This is often addressed by introducing a pessimistic bias based on uncertainty estimates. Current methods employ ensembling to quantify the critic's epistemic uncertainty-uncertainty due to limited data and model ambiguity-to scale pessimistic updates. In this work, we propose a new algorithm called Stochastic Actor-Critic (STAC) that incorporates temporal (one-step) aleatoric uncertainty-uncertainty arising from stochastic transitions, rewards, and policy-induced variability in Bellman targets-to scale pessimistic bias in temporal-difference updates, rather than relying on epistemic uncertainty. STAC uses a single distributional critic network to model the temporal return uncertainty, and applies dropout to both the critic and actor networks for regularization. Our results show that pessimism based on a distributional critic alone suffices to mitigate overestimation, and naturally leads to risk-averse behavior in stochastic environments. Introducing dropout further improves training stability and performance by means of regularization. With this design, STAC achieves improved computational efficiency using a single distributional critic network.
comment: 19 pages
☆ Precision Autotuning for Linear Solvers via Contextual Bandit-Based RL
We propose a reinforcement learning (RL) framework for adaptive precision tuning of linear solvers, and can be extended to general algorithms. The framework is formulated as a contextual bandit problem and solved using incremental action-value estimation with a discretized state space to select optimal precision configurations for computational steps, balancing precision and computational efficiency. To verify its effectiveness, we apply the framework to iterative refinement for solving linear systems $Ax = b$. In this application, our approach dynamically chooses precisions based on calculated features from the system. In detail, a Q-table maps discretized features (e.g., approximate condition number and matrix norm)to actions (chosen precision configurations for specific steps), optimized via an epsilon-greedy strategy to maximize a multi-objective reward balancing accuracy and computational cost. Empirical results demonstrate effective precision selection, reducing computational cost while maintaining accuracy comparable to double-precision baselines. The framework generalizes to diverse out-of-sample data and offers insight into utilizing RL precision selection for other numerical algorithms, advancing mixed-precision numerical methods in scientific computing. To the best of our knowledge, this is the first work on precision autotuning with RL and verified on unseen datasets.
☆ BSAT: B-Spline Adaptive Tokenizer for Long-Term Time Series Forecasting
Long-term time series forecasting using transformers is hampered by the quadratic complexity of self-attention and the rigidity of uniform patching, which may be misaligned with the data's semantic structure. In this paper, we introduce the \textit{B-Spline Adaptive Tokenizer (BSAT)}, a novel, parameter-free method that adaptively segments a time series by fitting it with B-splines. BSAT algorithmically places tokens in high-curvature regions and represents each variable-length basis function as a fixed-size token, composed of its coefficient and position. Further, we propose a hybrid positional encoding that combines a additive learnable positional encoding with Rotary Positional Embedding featuring a layer-wise learnable base: L-RoPE. This allows each layer to attend to different temporal dependencies. Our experiments on several public benchmarks show that our model is competitive with strong performance at high compression rates. This makes it particularly well-suited for use cases with strong memory constraints.
comment: 20 pages, 7 figures
☆ Bayesian Inverse Games with High-Dimensional Multi-Modal Observations
Many multi-agent interaction scenarios can be naturally modeled as noncooperative games, where each agent's decisions depend on others' future actions. However, deploying game-theoretic planners for autonomous decision-making requires a specification of all agents' objectives. To circumvent this practical difficulty, recent work develops maximum likelihood techniques for solving inverse games that can identify unknown agent objectives from interaction data. Unfortunately, these methods only infer point estimates and do not quantify estimator uncertainty; correspondingly, downstream planning decisions can overconfidently commit to unsafe actions. We present an approximate Bayesian inference approach for solving the inverse game problem, which can incorporate observation data from multiple modalities and be used to generate samples from the Bayesian posterior over the hidden agent objectives given limited sensor observations in real time. Concretely, the proposed Bayesian inverse game framework trains a structured variational autoencoder with an embedded differentiable Nash game solver on interaction datasets and does not require labels of agents' true objectives. Extensive experiments show that our framework successfully learns prior and posterior distributions, improves inference quality over maximum likelihood estimation-based inverse game approaches, and enables safer downstream decision-making without sacrificing efficiency. When trajectory information is uninformative or unavailable, multimodal inference further reduces uncertainty by exploiting additional observation modalities.
☆ ARISE: Adaptive Reinforcement Integrated with Swarm Exploration SC 2026
Effective exploration remains a key challenge in RL, especially with non-stationary rewards or high-dimensional policies. We introduce ARISE, a lightweight framework that enhances reinforcement learning by augmenting standard policy-gradient methods with a compact swarm-based exploration layer. ARISE blends policy actions with particle-driven proposals, where each particle represents a candidate policy trajectory sampled in the action space, and modulates exploration adaptively using reward-variance cues. While easy benchmarks exhibit only slight improvements (e.g., +0.7% on CartPole-v1), ARISE yields substantial gains on more challenging tasks, including +46% on LunarLander-v3 and +22% on Hopper-v4, while preserving stability on Walker2d and Ant. Under non-stationary reward shifts, ARISE provides marked robustness advantages, outperforming PPO by +75 points on CartPole and improving LunarLander accordingly. Ablation studies confirm that both the swarm component and the adaptive mechanism contribute to the performance. Overall, ARISE offers a simple, architecture-agnostic route to more exploratory and resilient RL agents without altering core algorithmic structures.
comment: 12 pages. Accepted for presentation at WCSC 2026
☆ TeleDoCTR: Domain-Specific and Contextual Troubleshooting for Telecommunications
Ticket troubleshooting refers to the process of analyzing and resolving problems that are reported through a ticketing system. In large organizations offering a wide range of services, this task is highly complex due to the diversity of submitted tickets and the need for specialized domain knowledge. In particular, troubleshooting in telecommunications (telecom) is a very time-consuming task as it requires experts to interpret ticket content, consult documentation, and search historical records to identify appropriate resolutions. This human-intensive approach not only delays issue resolution but also hinders overall operational efficiency. To enhance the effectiveness and efficiency of ticket troubleshooting in telecom, we propose TeleDoCTR, a novel telecom-related, domain-specific, and contextual troubleshooting system tailored for end-to-end ticket resolution in telecom. TeleDoCTR integrates both domain-specific ranking and generative models to automate key steps of the troubleshooting workflow which are: routing tickets to the appropriate expert team responsible for resolving the ticket (classification task), retrieving contextually and semantically similar historical tickets (retrieval task), and generating a detailed fault analysis report outlining the issue, root cause, and potential solutions (generation task). We evaluate TeleDoCTR on a real-world dataset from a telecom infrastructure and demonstrate that it achieves superior performance over existing state-of-the-art methods, significantly enhancing the accuracy and efficiency of the troubleshooting process.
☆ Cost Optimization in Production Line Using Genetic Algorithm
This paper presents a genetic algorithm (GA) approach to cost-optimal task scheduling in a production line. The system consists of a set of serial processing tasks, each with a given duration, unit execution cost, and precedence constraints, which must be assigned to an unlimited number of stations subject to a per-station duration bound. The objective is to minimize the total production cost, modeled as a station-wise function of task costs and the duration bound, while strictly satisfying all prerequisite and capacity constraints. Two chromosome encoding strategies are investigated: a station-based representation implemented using the JGAP library with SuperGene validity checks, and a task-based representation in which genes encode station assignments directly. For each encoding, standard GA operators (crossover, mutation, selection, and replacement) are adapted to preserve feasibility and drive the population toward lower-cost schedules. Experimental results on three classes of precedence structures-tightly coupled, loosely coupled, and uncoupled-demonstrate that the task-based encoding yields smoother convergence and more reliable cost minimization than the station-based encoding, particularly when the number of valid schedules is large. The study highlights the advantages of GA over gradient-based and analytical methods for combinatorial scheduling problems, especially in the presence of complex constraints and non-differentiable cost landscapes.
☆ QSLM: A Performance- and Memory-aware Quantization Framework with Tiered Search Strategy for Spike-driven Language Models DATE
Large Language Models (LLMs) have been emerging as prominent AI models for solving many natural language tasks due to their high performance (e.g., accuracy) and capabilities in generating high-quality responses to the given inputs. However, their large computational cost, huge memory footprints, and high processing power/energy make it challenging for their embedded deployments. Amid several tinyLLMs, recent works have proposed spike-driven language models (SLMs) for significantly reducing the processing power/energy of LLMs. However, their memory footprints still remain too large for low-cost and resource-constrained embedded devices. Manual quantization approach may effectively compress SLM memory footprints, but it requires a huge design time and compute power to find the quantization setting for each network, hence making this approach not-scalable for handling different networks, performance requirements, and memory budgets. To bridge this gap, we propose QSLM, a novel framework that performs automated quantization for compressing pre-trained SLMs, while meeting the performance and memory constraints. To achieve this, QSLM first identifies the hierarchy of the given network architecture and the sensitivity of network layers under quantization, then employs a tiered quantization strategy (e.g., global-, block-, and module-level quantization) while leveraging a multi-objective performance-and-memory trade-off function to select the final quantization setting. Experimental results indicate that our QSLM reduces memory footprint by up to 86.5%, reduces power consumption by up to 20%, maintains high performance across different tasks (i.e., by up to 84.4% accuracy of sentiment classification on the SST-2 dataset and perplexity score of 23.2 for text generation on the WikiText-2 dataset) close to the original non-quantized model while meeting the performance and memory constraints.
comment: Accepted at the Design, Automation and Test in Europe Conference (DATE) 2025 on April 20th-22nd, 2025 in Verona, Italy
☆ IRPO: Scaling the Bradley-Terry Model via Reinforcement Learning
Generative Reward Models (GRMs) have attracted considerable research interest in reward modeling due to their interpretability, inference-time scalability, and potential for refinement through reinforcement learning (RL). However, widely used pairwise GRMs create a computational bottleneck when integrated with RL algorithms such as Group Relative Policy Optimization (GRPO). This bottleneck arises from two factors: (i) the O(n^2) time complexity of pairwise comparisons required to obtain relative scores, and (ii) the computational overhead of repeated sampling or additional chain-of-thought (CoT) reasoning to improve performance. To address the first factor, we propose Intergroup Relative Preference Optimization (IRPO), a novel RL framework that incorporates the well-established Bradley-Terry model into GRPO. By generating a pointwise score for each response, IRPO enables efficient evaluation of arbitrarily many candidates during RL training while preserving interpretability and fine-grained reward signals. Experimental results demonstrate that IRPO achieves state-of-the-art (SOTA) performance among pointwise GRMs across multiple benchmarks, with performance comparable to that of current leading pairwise GRMs. Furthermore, we show that IRPO significantly outperforms pairwise GRMs in post-training evaluations.
comment: 14 pages, 4 figures
☆ Sparse FEONet: A Low-Cost, Memory-Efficient Operator Network via Finite-Element Local Sparsity for Parametric PDEs
In this paper, we study the finite element operator network (FEONet), an operator-learning method for parametric problems, originally introduced in J. Y. Lee, S. Ko, and Y. Hong, Finite Element Operator Network for Solving Elliptic-Type Parametric PDEs, SIAM J. Sci. Comput., 47(2), C501-C528, 2025. FEONet realizes the parameter-to-solution map on a finite element space and admits a training procedure that does not require training data, while exhibiting high accuracy and robustness across a broad class of problems. However, its computational cost increases and accuracy may deteriorate as the number of elements grows, posing notable challenges for large-scale problems. In this paper, we propose a new sparse network architecture motivated by the structure of the finite elements to address this issue. Throughout extensive numerical experiments, we show that the proposed sparse network achieves substantial improvements in computational cost and efficiency while maintaining comparable accuracy. We also establish theoretical results demonstrating that the sparse architecture can approximate the target operator effectively and provide a stability analysis ensuring reliable training and prediction.
☆ Three factor delay learning rules for spiking neural networks
Spiking Neural Networks (SNNs) are dynamical systems that operate on spatiotemporal data, yet their learnable parameters are often limited to synaptic weights, contributing little to temporal pattern recognition. Learnable parameters that delay spike times can improve classification performance in temporal tasks, but existing methods rely on large networks and offline learning, making them unsuitable for real-time operation in resource-constrained environments. In this paper, we introduce synaptic and axonal delays to leaky integrate and fire (LIF)-based feedforward and recurrent SNNs, and propose three-factor learning rules to simultaneously learn delay parameters online. We employ a smooth Gaussian surrogate to approximate spike derivatives exclusively for the eligibility trace calculation, and together with a top-down error signal determine parameter updates. Our experiments show that incorporating delays improves accuracy by up to 20% over a weights-only baseline, and for networks with similar parameter counts, jointly learning weights and delays yields up to 14% higher accuracy. On the SHD speech recognition dataset, our method achieves similar accuracy to offline backpropagation-based approaches. Compared to state-of-the-art methods, it reduces model size by 6.6x and inference latency by 67%, with only a 2.4% drop in classification accuracy. Our findings benefit the design of power and area-constrained neuromorphic processors by enabling on-device learning and lowering memory requirements.
comment: 7 pages, 5 figures
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
☆ Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis proves convergence properties and robustness to mini-batch noise, while empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 10 pages
☆ HyperPriv-EPN: Hypergraph Learning with Privileged Knowledge for Ependymoma Prognosis
Preoperative prognosis of Ependymoma is critical for treatment planning but challenging due to the lack of semantic insights in MRI compared to post-operative surgical reports. Existing multimodal methods fail to leverage this privileged text data when it is unavailable during inference. To bridge this gap, we propose HyperPriv-EPN, a hypergraph-based Learning Using Privileged Information (LUPI) framework. We introduce a Severed Graph Strategy, utilizing a shared encoder to process both a Teacher graph (enriched with privileged post-surgery information) and a Student graph (restricted to pre-operation data). Through dual-stream distillation, the Student learns to hallucinate semantic community structures from visual features alone. Validated on a multi-center cohort of 311 patients, HyperPriv-EPN achieves state-of-the-art diagnostic accuracy and survival stratification. This effectively transfers expert knowledge to the preoperative setting, unlocking the value of historical post-operative data to guide the diagnosis of new patients without requiring text at inference.
comment: 6 pages, 2 figures, 2 tables
☆ Do Chatbot LLMs Talk Too Much? The YapBench Benchmark
Large Language Models (LLMs) such as ChatGPT, Claude, and Gemini increasingly act as general-purpose copilots, yet they often respond with unnecessary length on simple requests, adding redundant explanations, hedging, or boilerplate that increases cognitive load and inflates token-based inference cost. Prior work suggests that preference-based post-training and LLM-judged evaluations can induce systematic length bias, where longer answers are rewarded even at comparable quality. We introduce YapBench, a lightweight benchmark for quantifying user-visible over-generation on brevity-ideal prompts. Each item consists of a single-turn prompt, a curated minimal-sufficient baseline answer, and a category label. Our primary metric, YapScore, measures excess response length beyond the baseline in characters, enabling comparisons across models without relying on any specific tokenizer. We summarize model performance via the YapIndex, a uniformly weighted average of category-level median YapScores. YapBench contains over three hundred English prompts spanning three common brevity-ideal settings: (A) minimal or ambiguous inputs where the ideal behavior is a short clarification, (B) closed-form factual questions with short stable answers, and (C) one-line coding tasks where a single command or snippet suffices. Evaluating 76 assistant LLMs, we observe an order-of-magnitude spread in median excess length and distinct category-specific failure modes, including vacuum-filling on ambiguous inputs and explanation or formatting overhead on one-line technical requests. We release the benchmark and maintain a live leaderboard for tracking verbosity behavior over time.
☆ Stronger Approximation Guarantees for Non-Monotone γ-Weakly DR-Submodular Maximization AAMAS 2026
Maximizing submodular objectives under constraints is a fundamental problem in machine learning and optimization. We study the maximization of a nonnegative, non-monotone $γ$-weakly DR-submodular function over a down-closed convex body. Our main result is an approximation algorithm whose guarantee depends smoothly on $γ$; in particular, when $γ=1$ (the DR-submodular case) our bound recovers the $0.401$ approximation factor, while for $γ<1$ the guarantee degrades gracefully and, it improves upon previously reported bounds for $γ$-weakly DR-submodular maximization under the same constraints. Our approach combines a Frank-Wolfe-guided continuous-greedy framework with a $γ$-aware double-greedy step, yielding a simple yet effective procedure for handling non-monotonicity. This results in state-of-the-art guarantees for non-monotone $γ$-weakly DR-submodular maximization over down-closed convex bodies.
comment: Extended version of paper accepted in AAMAS 2026
☆ Traffic-Aware Optimal Taxi Placement Using Graph Neural Network-Based Reinforcement Learning
In the context of smart city transportation, efficient matching of taxi supply with passenger demand requires real-time integration of urban traffic network data and mobility patterns. Conventional taxi hotspot prediction models often rely solely on historical demand, overlooking dynamic influences such as traffic congestion, road incidents, and public events. This paper presents a traffic-aware, graph-based reinforcement learning (RL) framework for optimal taxi placement in metropolitan environments. The urban road network is modeled as a graph where intersections represent nodes, road segments serve as edges, and node attributes capture historical demand, event proximity, and real-time congestion scores obtained from live traffic APIs. Graph Neural Network (GNN) embeddings are employed to encode spatial-temporal dependencies within the traffic network, which are then used by a Q-learning agent to recommend optimal taxi hotspots. The reward mechanism jointly optimizes passenger waiting time, driver travel distance, and congestion avoidance. Experiments on a simulated Delhi taxi dataset, generated using real geospatial boundaries and historic ride-hailing request patterns, demonstrate that the proposed model reduced passenger waiting time by about 56% and reduced travel distance by 38% compared to baseline stochastic selection. The proposed approach is adaptable to multi-modal transport systems and can be integrated into smart city platforms for real-time urban mobility optimization.
☆ Cycling Race Time Prediction: A Personalized Machine Learning Approach Using Route Topology and Training Load
Predicting cycling duration for a given route is essential for training planning and event preparation. Existing solutions rely on physics-based models that require extensive parameterization, including aerodynamic drag coefficients and real-time wind forecasts, parameters impractical for most amateur cyclists. This work presents a machine learning approach that predicts ride duration using route topology features combined with the athlete's current fitness state derived from training load metrics. The model learns athlete-specific performance patterns from historical data, substituting complex physical measurements with historical performance proxies. We evaluate the approach using a single-athlete dataset (N=96 rides) in an N-of-1 study design. After rigorous feature engineering to eliminate data leakage, we find that Lasso regression with Topology + Fitness features achieves MAE=6.60 minutes and R2=0.922. Notably, integrating fitness metrics (CTL, ATL) reduces error by 14% compared to topology alone (MAE=7.66 min), demonstrating that physiological state meaningfully constrains performance even in self-paced efforts. Progressive checkpoint predictions enable dynamic race planning as route difficulty becomes apparent.
comment: 14 pages, 22 figures
☆ HFedMoE: Resource-aware Heterogeneous Federated Learning with Mixture-of-Experts
While federated learning (FL) enables fine-tuning of large language models (LLMs) without compromising data privacy, the substantial size of an LLM renders on-device training impractical for resource-constrained clients, such as mobile devices. Thus, Mixture-of-Experts (MoE) models have emerged as a computation-efficient solution, which activates only a sparse subset of experts during model training to reduce computing burden without sacrificing performance. Though integrating MoE into FL fine-tuning holds significant potential, it still encounters three key challenges: i) selecting appropriate experts for clients remains challenging due to the lack of a reliable metric to measure each expert's impact on local fine-tuning performance, ii) the heterogeneous computing resources across clients severely hinder MoE-based LLM fine-tuning, as dynamic expert activations across diverse input samples can overwhelm resource-constrained devices, and iii) client-specific expert subsets and routing preference undermine global aggregation, where misaligned expert updates and inconsistent gating networks in troduce destructive interference. To address these challenges, we propose HFedMoE, a heterogeneous MoE-based FL fine-tuning framework that customizes a subset of experts to each client for computation-efficient LLM fine-tuning. Specifically, HFedMoE identifies the expert importance based on its contributions to fine-tuning performance, and then adaptively selects a subset of experts from an information bottleneck perspective to align with each client' s computing budget. A sparsity-aware model aggregation strategy is also designed to aggregate the actively fine-tuned experts and gating parameters with importance weighted contributions. Extensive experiments demonstrate that HFedMoE outperforms state-of-the-art benchmarks in training accuracy and convergence speed.
comment: 14 pages, 16 figures
☆ AceFF: A State-of-the-Art Machine Learning Potential for Small Molecules
We introduce AceFF, a pre-trained machine learning interatomic potential (MLIP) optimized for small molecule drug discovery. While MLIPs have emerged as efficient alternatives to Density Functional Theory (DFT), generalizability across diverse chemical spaces remains difficult. AceFF addresses this via a refined TensorNet2 architecture trained on a comprehensive dataset of drug-like compounds. This approach yields a force field that balances high-throughput inference speed with DFT-level accuracy. AceFF fully supports the essential medicinal chemistry elements (H, B, C, N, O, F, Si, P, S, Cl, Br, I) and is explicitly trained to handle charged states. Validation against rigorous benchmarks, including complex torsional energy scans, molecular dynamics trajectories, batched minimizations, and forces and anergy accuracy demonstrates that AceFF establishes a new state-of-the-art for organic molecules. The AceFF-2 model weights and inference code are available at https://huggingface.co/Acellera/AceFF-2.0.
☆ Learning to be Reproducible: Custom Loss Design for Robust Neural Networks
To enhance the reproducibility and reliability of deep learning models, we address a critical gap in current training methodologies: the lack of mechanisms that ensure consistent and robust performance across runs. Our empirical analysis reveals that even under controlled initialization and training conditions, the accuracy of the model can exhibit significant variability. To address this issue, we propose a Custom Loss Function (CLF) that reduces the sensitivity of training outcomes to stochastic factors such as weight initialization and data shuffling. By fine-tuning its parameters, CLF explicitly balances predictive accuracy with training stability, leading to more consistent and reliable model performance. Extensive experiments across diverse architectures for both image classification and time series forecasting demonstrate that our approach significantly improves training robustness without sacrificing predictive performance. These results establish CLF as an effective and efficient strategy for developing more stable, reliable and trustworthy neural networks.
☆ Adversarial Samples Are Not Created Equal
Over the past decade, numerous theories have been proposed to explain the widespread vulnerability of deep neural networks to adversarial evasion attacks. Among these, the theory of non-robust features proposed by Ilyas et al. has been widely accepted, showing that brittle but predictive features of the data distribution can be directly exploited by attackers. However, this theory overlooks adversarial samples that do not directly utilize these features. In this work, we advocate that these two kinds of samples - those which use use brittle but predictive features and those that do not - comprise two types of adversarial weaknesses and should be differentiated when evaluating adversarial robustness. For this purpose, we propose an ensemble-based metric to measure the manipulation of non-robust features by adversarial perturbations and use this metric to analyze the makeup of adversarial samples generated by attackers. This new perspective also allows us to re-examine multiple phenomena, including the impact of sharpness-aware minimization on adversarial robustness and the robustness gap observed between adversarially training and standard training on robust datasets.
☆ Entropy Production in Machine Learning Under Fokker-Planck Probability Flow
Machine learning models deployed in nonstationary environments experience performance degradation due to data drift. While many drift detection heuristics exist, most lack a principled dynamical interpretation and provide limited guidance on how retraining frequency should be balanced against operational cost. In this work, we propose an entropy--based retraining framework grounded in nonequilibrium stochastic dynamics. Modeling deployment--time data drift as probability flow governed by a Fokker--Planck equation, we quantify model--data mismatch using a time--evolving Kullback--Leibler divergence. We show that the time derivative of this mismatch admits an entropy--balance decomposition featuring a nonnegative entropy production term driven by probability currents. This interpretation motivates entropy--triggered retraining as a label--free intervention strategy that responds to accumulated mismatch rather than delayed performance collapse. In a controlled nonstationary classification experiment, entropy--triggered retraining achieves predictive performance comparable to high--frequency retraining while reducing retraining events by an order of magnitude relative to daily and label--based policies.
comment: 10 pages, 3 figures. Submitted for journal review
☆ Cloud-Native Generative AI for Automated Planogram Synthesis: A Diffusion Model Approach for Multi-Store Retail Optimization
Planogram creation is a significant challenge for retail, requiring an average of 30 hours per complex layout. This paper introduces a cloud-native architecture using diffusion models to automatically generate store-specific planograms. Unlike conventional optimization methods that reorganize existing layouts, our system learns from successful shelf arrangements across multiple retail locations to create new planogram configurations. The architecture combines cloud-based model training via AWS with edge deployment for real-time inference. The diffusion model integrates retail-specific constraints through a modified loss function. Simulation-based analysis demonstrates the system reduces planogram design time by 98.3% (from 30 to 0.5 hours) while achieving 94.4% constraint satisfaction. Economic analysis reveals a 97.5% reduction in creation expenses with a 4.4-month break-even period. The cloud-native architecture scales linearly, supporting up to 10,000 concurrent store requests. This work demonstrates the viability of generative AI for automated retail space optimization.
comment: International Conference on Software Engineering and Data Engineering : Springer Nature
☆ Federated Customization of Large Models: Approaches, Experiments, and Insights
In this article, we explore federated customization of large models and highlight the key challenges it poses within the federated learning framework. We review several popular large model customization techniques, including full fine-tuning, efficient fine-tuning, prompt engineering, prefix-tuning, knowledge distillation, and retrieval-augmented generation. Then, we discuss how these techniques can be implemented within the federated learning framework. Moreover, we conduct experiments on federated prefix-tuning, which, to the best of our knowledge, is the first trial to apply prefix-tuning in the federated learning setting. The conducted experiments validate its feasibility with performance close to centralized approaches. Further comparison with three other federated customization methods demonstrated its competitive performance, satisfactory efficiency, and consistent robustness.
comment: 8 pages, 1 figure
☆ Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study IEEE
Standard LSTM(Long Short-Term Memory) neural networks provide accurate predictions for sales data in the retail industry, but require a lot of computing power. It can be challenging especially for mid to small retail industries. This paper examines LSTM model compression by gradually reducing the number of hidden units from 128 to 16. We used the Kaggle Store Item Demand Forecasting dataset, which has 913,000 daily sales records from 10 stores and 50 items, to look at the trade-off between model size and how accurate the predictions are. Experiments show that lowering the number of hidden LSTM units to 64 maintains the same level of accuracy while also improving it. The mean absolute percentage error (MAPE) ranges from 23.6% for the full 128-unit model to 12.4% for the 64-unit model. The optimized model is 73% smaller (from 280KB to 76KB) and 47% more accurate. These results show that larger models do not always achieve better results.
comment: Accepted to IEEE ICUIS 2025 (International Conference on Ubiquitous and Intelligent Systems). 5 pages, 3 figures, 1 table
☆ A Sparse-Attention Deep Learning Model Integrating Heterogeneous Multimodal Features for Parkinson's Disease Severity Profiling
Characterising the heterogeneous presentation of Parkinson's disease (PD) requires integrating biological and clinical markers within a unified predictive framework. While multimodal data provide complementary information, many existing computational models struggle with interpretability, class imbalance, or effective fusion of high-dimensional imaging and tabular clinical features. To address these limitations, we propose the Class-Weighted Sparse-Attention Fusion Network (SAFN), an interpretable deep learning framework for robust multimodal profiling. SAFN integrates MRI cortical thickness, MRI volumetric measures, clinical assessments, and demographic variables using modality-specific encoders and a symmetric cross-attention mechanism that captures nonlinear interactions between imaging and clinical representations. A sparsity-constrained attention-gating fusion layer dynamically prioritises informative modalities, while a class-balanced focal loss (beta = 0.999, gamma = 1.5) mitigates dataset imbalance without synthetic oversampling. Evaluated on 703 participants (570 PD, 133 healthy controls) from the Parkinson's Progression Markers Initiative using subject-wise five-fold cross-validation, SAFN achieves an accuracy of 0.98 plus or minus 0.02 and a PR-AUC of 1.00 plus or minus 0.00, outperforming established machine learning and deep learning baselines. Interpretability analysis shows a clinically coherent decision process, with approximately 60 percent of predictive weight assigned to clinical assessments, consistent with Movement Disorder Society diagnostic principles. SAFN provides a reproducible and transparent multimodal modelling paradigm for computational profiling of neurodegenerative disease.
☆ Generative Conditional Missing Imputation Networks
In this study, we introduce a sophisticated generative conditional strategy designed to impute missing values within datasets, an area of considerable importance in statistical analysis. Specifically, we initially elucidate the theoretical underpinnings of the Generative Conditional Missing Imputation Networks (GCMI), demonstrating its robust properties in the context of the Missing Completely at Random (MCAR) and the Missing at Random (MAR) mechanisms. Subsequently, we enhance the robustness and accuracy of GCMI by integrating a multiple imputation framework using a chained equations approach. This innovation serves to bolster model stability and improve imputation performance significantly. Finally, through a series of meticulous simulations and empirical assessments utilizing benchmark datasets, we establish the superior efficacy of our proposed methods when juxtaposed with other leading imputation techniques currently available. This comprehensive evaluation not only underscores the practicality of GCMI but also affirms its potential as a leading-edge tool in the field of statistical data analysis.
☆ Trajectory Guard -- A Lightweight, Sequence-Aware Model for Real-Time Anomaly Detection in Agentic AI AAAI
Autonomous LLM agents generate multi-step action plans that can fail due to contextual misalignment or structural incoherence. Existing anomaly detection methods are ill-suited for this challenge: mean-pooling embeddings dilutes anomalous steps, while contrastive-only approaches ignore sequential structure. Standard unsupervised methods on pre-trained embeddings achieve F1-scores no higher than 0.69. We introduce Trajectory Guard, a Siamese Recurrent Autoencoder with a hybrid loss function that jointly learns task-trajectory alignment via contrastive learning and sequential validity via reconstruction. This dual objective enables unified detection of both "wrong plan for this task" and "malformed plan structure." On benchmarks spanning synthetic perturbations and real-world failures from security audits (RAS-Eval) and multi-agent systems (Who\&When), we achieve F1-scores of 0.88-0.94 on balanced sets and recall of 0.86-0.92 on imbalanced external benchmarks. At 32 ms inference latency, our approach runs 17-27$\times$ faster than LLM Judge baselines, enabling real-time safety verification in production deployments.
comment: Accepted to AAAI Trustagent 2026
♻ ☆ Effects of Structural Allocation of Geometric Task Diversity in Linear Meta-Learning Models
Meta-learning aims to leverage information across related tasks to improve prediction on unlabeled data for new tasks when only a small number of labeled observations are available ("few-shot" learning). Increased task diversity is often believed to enhance meta-learning by providing richer information across tasks. However, recent work by Kumar et al. (2022) shows that increasing task diversity, quantified through the overall geometric spread of task representations, can in fact degrade meta-learning prediction performance across a range of models and datasets. In this work, we build on this observation by showing that meta-learning performance is affected not only by the overall geometric variability of task parameters, but also by how this variability is allocated relative to an underlying low-dimensional structure. Similar to Pimonova et al. (2025), we decompose task-specific regression effects into a structurally informative component and an orthogonal, non-informative component. We show theoretically and through simulation that meta-learning prediction degrades when a larger fraction of between-task variability lies in orthogonal, non-informative directions, even when the overall geometric variability of tasks is held fixed.
♻ ☆ Distributed Sparse Linear Regression under Communication Constraints
In multiple domains, statistical tasks are performed in distributed settings, with data split among several end machines that are connected to a fusion center. In various applications, the end machines have limited bandwidth and power, and thus a tight communication budget. In this work we focus on distributed learning of a sparse linear regression model, under severe communication constraints. We propose several two round distributed schemes, whose communication per machine is sublinear in the data dimension. In our schemes, individual machines compute debiased lasso estimators, but send to the fusion center only very few values. On the theoretical front, we analyze one of these schemes and prove that with high probability it achieves exact support recovery at low signal to noise ratios, where individual machines fail to recover the support. We show in simulations that our scheme works as well as, and in some cases better, than more communication intensive approaches.
comment: 50 pages, 5 figures
♻ ☆ Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients
Recent Reinforcement Learning (RL) advances for Large Language Models (LLMs) have improved reasoning tasks, yet their resource-constrained application to medical imaging remains underexplored. We introduce ChexReason, a vision-language model trained via R1-style methodology (SFT followed by GRPO) using only 2,000 SFT samples, 1,000 RL samples, and a single A100 GPU. Evaluations on CheXpert and NIH benchmarks reveal a fundamental tension: GRPO recovers in-distribution performance (23% improvement on CheXpert, macro-F1 = 0.346) but degrades cross-dataset transferability (19% drop on NIH). This mirrors high-resource models like NV-Reason-CXR-3B, suggesting the issue stems from the RL paradigm rather than scale. We identify a generalization paradox where the SFT checkpoint uniquely improves on NIH before optimization, indicating teacher-guided reasoning captures more institution-agnostic features. Furthermore, cross-model comparisons show structured reasoning scaffolds benefit general-purpose VLMs but offer minimal gain for medically pre-trained models. Consequently, curated supervised fine-tuning may outperform aggressive RL for clinical deployment requiring robustness across diverse populations.
♻ ☆ Brain network science modelling of sparse neural networks enables Transformers and LLMs to perform as fully connected
Dynamic sparse training (DST) can reduce the computational demands in ANNs, but faces difficulties in keeping peak performance at high sparsity levels. The Cannistraci-Hebb training (CHT) is a brain-inspired method for growing connectivity in DST. CHT leverages a gradient-free, topology-driven link regrowth, which has shown ultra-sparse (less than 1% connectivity) advantage across various tasks compared to fully connected networks. Yet, CHT suffers two main drawbacks: (i) its time complexity is $O(Nd^3)$ - N node network size, d node degree - restricting it to ultra-sparse regimes. (ii) it selects top link prediction scores, which is inappropriate for the early training epochs, when the network presents unreliable connections. Here, we design the first brain-inspired network model - termed bipartite receptive field (BRF) - to initialize the connectivity of sparse artificial neural networks. We further introduce a GPU-friendly matrix-based approximation of CH link prediction, reducing complexity to $O(N^3)$. We introduce the Cannistraci-Hebb training soft rule (CHTs), which adopts a flexible strategy for sampling connections in both link removal and regrowth, balancing the exploration and exploitation of network topology. Additionally, we integrate CHTs with a sigmoid gradual density decay (CHTss). Empirical results show that BRF offers performance advantages over previous network science models. Using 1% of connections, CHTs outperforms fully connected networks in MLP architectures on image classification tasks, compressing some networks to less than 30% of the nodes. Using 5% of the connections, CHTss outperforms fully connected networks in two Transformer-based machine translation tasks. Finally, at 30% connectivity, both CHTs and CHTss outperform other DST methods in language modeling task.
♻ ☆ uGMM-NN: Univariate Gaussian Mixture Model Neural Network
This paper introduces the Univariate Gaussian Mixture Model Neural Network (uGMM-NN), a novel neural architecture that embeds probabilistic reasoning directly into the computational units of deep networks. Unlike traditional neurons, which apply weighted sums followed by fixed non-linearities, each uGMM-NN node parameterizes its activations as a univariate Gaussian mixture, with learnable means, variances, and mixing coefficients. This design enables richer representations by capturing multimodality and uncertainty at the level of individual neurons, while retaining the scalability of standard feed-forward networks. We demonstrate that uGMM-NN can achieve competitive discriminative performance compared to conventional multilayer perceptrons, while additionally offering a probabilistic interpretation of activations. The proposed framework provides a foundation for integrating uncertainty-aware components into modern neural architectures, opening new directions for both discriminative and generative modeling.
comment: 12 pages, 3 figures
♻ ☆ Clustering by Denoising: Latent plug-and-play diffusion for single-cell data
Single-cell RNA sequencing (scRNA-seq) enables the study of cellular heterogeneity. Yet, clustering accuracy, and with it downstream analyses based on cell labels, remain challenging due to measurement noise and biological variability. In standard latent spaces (e.g., obtained through PCA), data from different cell types can be projected close together, making accurate clustering difficult. We introduce a latent plug-and-play diffusion framework that separates the observation and denoising space. This separation is operationalized through a novel Gibbs sampling procedure: the learned diffusion prior is applied in a low-dimensional latent space to perform denoising, while to steer this process, noise is reintroduced into the original high-dimensional observation space. This unique "input-space steering" ensures the denoising trajectory remains faithful to the original data structure. Our approach offers three key advantages: (1) adaptive noise handling via a tunable balance between prior and observed data; (2) uncertainty quantification through principled uncertainty estimates for downstream analysis; and (3) generalizable denoising by leveraging clean reference data to denoise noisier datasets, and via averaging, improve quality beyond the training set. We evaluate robustness on both synthetic and real single-cell genomics data. Our method improves clustering accuracy on synthetic data across varied noise levels and dataset shifts. On real-world single-cell data, our method demonstrates improved biological coherence in the resulting cell clusters, with cluster boundaries that better align with known cell type markers and developmental trajectories.
♻ ☆ Adaptive Learning Guided by Bias-Noise-Alignment Diagnostics
Learning systems deployed in nonstationary and safety-critical environments often suffer from instability, slow convergence, or brittle adaptation when learning dynamics evolve over time. While modern optimization, reinforcement learning, and meta-learning methods adapt to gradient statistics, they largely ignore the temporal structure of the error signal itself. This paper proposes a diagnostic-driven adaptive learning framework that explicitly models error evolution through a principled decomposition into bias, capturing persistent drift; noise, capturing stochastic variability; and alignment, capturing repeated directional excitation leading to overshoot. These diagnostics are computed online from lightweight statistics of loss or temporal-difference (TD) error trajectories and are independent of model architecture or task domain. We show that the proposed bias-noise-alignment decomposition provides a unifying control backbone for supervised optimization, actor-critic reinforcement learning, and learned optimizers. Within this framework, we introduce three diagnostic-driven instantiations: the Human-inspired Supervised Adaptive Optimizer (HSAO), Hybrid Error-Diagnostic Reinforcement Learning (HED-RL) for actor-critic methods, and the Meta-Learned Learning Policy (MLLP). Under standard smoothness assumptions, we establish bounded effective updates and stability properties for all cases. Representative diagnostic illustrations in actor-critic learning highlight how the proposed signals modulate adaptation in response to TD error structure. Overall, this work elevates error evolution to a first-class object in adaptive learning and provides an interpretable, lightweight foundation for reliable learning in dynamic environments.
comment: This preprint focuses on the theoretical framework and diagnostic behavior. Comprehensive experimental validation in application-specific settings is deferred to a companion experimental study
♻ ☆ Data-Driven Analysis of Crash Patterns in SAE Level 2 and Level 4 Automated Vehicles Using K-means Clustering and Association Rule Mining
Automated Vehicles (AV) hold potential to reduce or eliminate human driving errors, enhance traffic safety, and support sustainable mobility. Recently, crash data has increasingly revealed that AV behavior can deviate from expected safety outcomes, raising concerns about the technology's safety and operational reliability in mixed traffic environments. While past research has investigated AV crash, most studies rely on small-size California-centered datasets, with a limited focus on understanding crash trends across various SAE Levels of automation. This study analyzes over 2,500 AV crash records from the United States National Highway Traffic Safety Administration (NHTSA), covering SAE Levels 2 and 4, to uncover underlying crash dynamics. A two-stage data mining framework is developed. K-means clustering is first applied to segment crash records into 4 distinct behavioral clusters based on temporal, spatial, and environmental factors. Then, Association Rule Mining (ARM) is used to extract interpretable multivariate relationships between crash patterns and crash contributors including lighting conditions, surface condition, vehicle dynamics, and environmental conditions within each cluster. These insights provide actionable guidance for AV developers, safety regulators, and policymakers in formulating AV deployment strategies and minimizing crash risks.
comment: 7 tables, 7 figures, 23 pages including references
♻ ☆ The Curse of Depth in Large Language Models NeurIPS 2025
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
comment: Accepted by NeurIPS 2025
♻ ☆ Designing an Optimal Sensor Network via Minimizing Information Loss
Optimal experimental design is a classic topic in statistics, with many well-studied problems, applications, and solutions. The design problem we study is the placement of sensors to monitor spatiotemporal processes, explicitly accounting for the temporal dimension in our modeling and optimization. We observe that recent advancements in computational sciences often yield large datasets based on physics-based simulations, which are rarely leveraged in experimental design. We introduce a novel model-based sensor placement criterion, along with a highly-efficient optimization algorithm, which integrates physics-based simulations and Bayesian experimental design principles to identify sensor networks that "minimize information loss" from simulated data. Our technique relies on sparse variational inference and (separable) Gauss-Markov priors, and thus may adapt many techniques from Bayesian experimental design. We validate our method through a case study monitoring air temperature in Phoenix, Arizona, using state-of-the-art physics-based simulations. Our results show our framework to be superior to random or quasi-random sampling, particularly with a limited number of sensors. We conclude by discussing practical considerations and implications of our framework, including more complex modeling tools and real-world deployments.
comment: 37 pages, 15 figures. Camera-ready version; accepted to Bayesian Analysis
♻ ☆ PolarGrad: A Class of Matrix-Gradient Optimizers from a Unifying Preconditioning Perspective
The ever-growing scale of deep learning models and training data underscores the critical importance of efficient optimization methods. While preconditioned gradient methods such as Adam and AdamW are the de facto optimizers for training neural networks and large language models, structure-aware preconditioned optimizers like Shampoo and Muon, which utilize the matrix structure of gradients, have demonstrated promising evidence of faster convergence. In this paper, we introduce a unifying framework for analyzing "matrix-aware" preconditioned methods, which not only sheds light on the effectiveness of Muon and related optimizers but also leads to a class of new structure-aware preconditioned methods. A key contribution of this framework is its precise distinction between preconditioning strategies that treat neural network weights as vectors (addressing curvature anisotropy) versus those that consider their matrix structure (addressing gradient anisotropy). This perspective provides new insights into several empirical phenomena in language model pre-training, including Adam's training instabilities, Muon's accelerated convergence, and the necessity of learning rate warmup for Adam. Building upon this framework, we introduce PolarGrad, a new class of preconditioned optimization methods based on the polar decomposition of matrix-valued gradients. As a special instance, PolarGrad includes Muon with updates scaled by the nuclear norm of the gradients. We provide numerical implementations of these methods, leveraging efficient numerical polar decomposition algorithms for enhanced convergence. Our extensive evaluations across diverse matrix optimization problems and language model pre-training tasks demonstrate that PolarGrad outperforms both Adam and Muon.
♻ ☆ Digital implementations of deep feature extractors are intrinsically informative IEEE
Rapid information (energy) propagation in deep feature extractors is crucial to balance computational complexity versus expressiveness as a representation of the input. We prove an upper bound for the speed of energy propagation in a unified framework that covers different neural network models, both over Euclidean and non-Euclidean domains. Additional structural information about the signal domain can be used to explicitly determine or improve the rate of decay. To illustrate this, we show global exponential energy decay for a range of 1) feature extractors with discrete-domain input signals, and 2) convolutional neural networks (CNNs) via scattering over locally compact abelian (LCA) groups.
comment: 6 pages; updated to match the published manuscript of SampTA 2025 proceedings (IEEE Xplore); added IEEE copyright notice
♻ ☆ Beyond Accuracy: What Matters in Designing Well-Behaved Image Classification Models?
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect these quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high class balance on ImageNet-1k classification and strong robustness against domain changes; (ii) training models initialized with weights obtained through self-supervised learning is an effective strategy to improve most considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
comment: Published in TMLR (12/2025) | OpenReview: https://openreview.net/forum?id=E7HDtLCoT6 | Project page: https://visinf.github.io/beyond-accuracy/
♻ ☆ PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration IEEE
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version)
♻ ☆ Training a Huggingface Model on AWS Sagemaker (Without Tears)
The development of Large Language Models (LLMs) has primarily been driven by resource-rich research groups and industry partners. Due to the lack of on-premise computing resources required for increasingly complex models, many researchers are turning to cloud services like AWS SageMaker to train Hugging Face models. However, the steep learning curve of cloud platforms often presents a barrier for researchers accustomed to local environments. Existing documentation frequently leaves knowledge gaps, forcing users to seek fragmented information across the web. This demo paper aims to democratize cloud adoption by centralizing the essential information required for researchers to successfully train their first Hugging Face model on AWS SageMaker from scratch.
♻ ☆ Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking Language Model ICML 2025
For reasons such as privacy, there are use cases for language models at the edge. This has given rise to small language models targeted for deployment in resource-constrained devices where energy efficiency is critical. Spiking neural networks (SNNs) offer a promising solution due to their energy efficiency, and there are already works on realizing transformer-based models on SNNs. However, key operations like softmax and layer normalization (LN) are difficult to implement on neuromorphic hardware, and many of these early works sidestepped them. To address these challenges, we introduce Sorbet, a transformer-based spiking language model that is more neuromorphic hardware-compatible. Sorbet incorporates a novel shifting-based softmax called PTsoftmax and a Bit Shifting PowerNorm (BSPN), both designed to replace the respective energy-intensive operations. By leveraging knowledge distillation and model quantization, Sorbet achieved a highly compressed binary weight model that maintains competitive performance while achieving $27.16\times$ energy savings compared to BERT. We validate Sorbet through extensive testing on the GLUE benchmark and a series of ablation studies, demonstrating its potential as an energy-efficient solution for language model inference. Our code is publicly available at \href{https://github.com/Kaiwen-Tang/Sorbet}{https://github.com/Kaiwen-Tang/Sorbet}
comment: Accepted by ICML 2025. Camera-ready version
♻ ☆ Simulation as Supervision: Mechanistic Pretraining for Scientific Discovery
Scientific modeling faces a tradeoff between the interpretability of mechanistic theory and the predictive power of machine learning. While hybrid approaches like Physics-Informed Neural Networks (PINNs) embed domain knowledge as functional constraints, they can be brittle under model misspecification. We introduce Simulation-Grounded Neural Networks (SGNNs), a framework that instead embeds domain knowledge into the training data to establish a structural prior. By pretraining on synthetic corpora spanning diverse model structures and observational artifacts, SGNNs learn the broad patterns of physical possibility. This allows the model to internalize the underlying dynamics of a system without being forced to satisfy a single, potentially incorrect equation. We evaluated SGNNs across scientific disciplines and found that this approach confers significant robustness. In prediction tasks, SGNNs nearly tripled COVID-19 forecasting skill versus CDC baselines. In tests on dengue outbreaks, SGNNs outperformed physics-constrained models even when both were restricted to incorrect human-to-human transmission equations, demonstrating that SGNNs are potentially more robust to model misspecification. For inference, SGNNs extend the logic of simulation-based inference to enable supervised learning for unobservable targets, estimating early COVID-19 transmissibility more accurately than traditional methods. Finally, SGNNs enable back-to-simulation attribution, a form of mechanistic interpretability that maps real-world data back to the simulated manifold to identify underlying processes. By unifying these disparate simulation-based techniques into a single framework, we demonstrate that mechanistic simulations can serve as effective training data for robust scientific inference that generalizes beyond the limitations of fixed functional forms.
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination provisions for high-risk systems in the EU AI Act NeurIPS 2025
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). This version has been updated after acceptance
♻ ☆ Frequent subgraph-based persistent homology for graph classification
Persistent homology (PH) has recently emerged as a powerful tool for extracting topological features. Integrating PH into machine learning and deep learning models enhances topology awareness and interpretability. However, most PH methods on graphs rely on a limited set of filtrations, such as degree-based or weight-based filtrations, which overlook richer features like recurring information across the dataset and thus restrict expressive power. In this work, we propose a novel graph filtration called Frequent Subgraph Filtration (FSF), which is derived from frequent subgraphs and produces stable and information-rich frequency-based persistent homology (FPH) features. We study the theoretical properties of FSF and provide both proofs and experimental validation. Beyond persistent homology itself, we introduce two approaches for graph classification: an FPH-based machine learning model (FPH-ML) and a hybrid framework that integrates FPH with graph neural networks (FPH-GNNs) to enhance topology-aware graph representation learning. Our frameworks bridge frequent subgraph mining and topological data analysis, offering a new perspective on topology-aware feature extraction. Experimental results show that FPH-ML achieves competitive or superior accuracy compared with kernel-based and degree-based filtration methods. When integrated into graph neural networks, FPH yields relative performance gains ranging from 0.4 to 21 percent, with improvements of up to 8.2 percentage points over GCN and GIN backbones across benchmarks.
comment: v2: Author list updated to include previously omitted co-authors
♻ ☆ Flattening Hierarchies with Policy Bootstrapping NeurIPS 2025
Offline goal-conditioned reinforcement learning (GCRL) is a promising approach for pretraining generalist policies on large datasets of reward-free trajectories, akin to the self-supervised objectives used to train foundation models for computer vision and natural language processing. However, scaling GCRL to longer horizons remains challenging due to the combination of sparse rewards and discounting, which obscures the comparative advantages of primitive actions with respect to distant goals. Hierarchical RL methods achieve strong empirical results on long-horizon goal-reaching tasks, but their reliance on modular, timescale-specific policies and subgoal generation introduces significant additional complexity and hinders scaling to high-dimensional goal spaces. In this work, we introduce an algorithm to train a flat (non-hierarchical) goal-conditioned policy by bootstrapping on subgoal-conditioned policies with advantage-weighted importance sampling. Our approach eliminates the need for a generative model over the (sub)goal space, which we find is key for scaling to high-dimensional control in large state spaces. We further show that existing hierarchical and bootstrapping-based approaches correspond to specific design choices within our derivation. Across a comprehensive suite of state- and pixel-based locomotion and manipulation benchmarks, our method matches or surpasses state-of-the-art offline GCRL algorithms and scales to complex, long-horizon tasks where prior approaches fail. Project page: https://johnlyzhou.github.io/saw/
comment: NeurIPS 2025 (Spotlight, top 3.2%)
♻ ☆ Iterative Tuning of Nonlinear Model Predictive Control for Robotic Manufacturing Tasks
Manufacturing processes are often perturbed by drifts in the environment and wear in the system, requiring control re-tuning even in the presence of repetitive operations. This paper presents an iterative learning framework for automatic tuning of Nonlinear Model Predictive Control (NMPC) weighting matrices based on task-level performance feedback. Inspired by norm-optimal Iterative Learning Control (ILC), the proposed method adaptively adjusts NMPC weights Q and R across task repetitions to minimize key performance indicators (KPIs) related to tracking accuracy, control effort, and saturation. Unlike gradient-based approaches that require differentiating through the NMPC solver, we construct an empirical sensitivity matrix, enabling structured weight updates without analytic derivatives. The framework is validated through simulation on a UR10e robot performing carbon fiber winding on a tetrahedral core. Results demonstrate that the proposed approach converges to near-optimal tracking performance (RMSE within 0.3% of offline Bayesian Optimization (BO)) in just 4 online repetitions, compared to 100 offline evaluations required by BO algorithm. The method offers a practical solution for adaptive NMPC tuning in repetitive robotic tasks, combining the precision of carefully optimized controllers with the flexibility of online adaptation.
♻ ☆ Episodic Contextual Bandits with Knapsacks under Conversion Models
We study an online setting, where a decision maker (DM) interacts with contextual bandit-with-knapsack (BwK) instances in repeated episodes. These episodes start with different resource amounts, and the contexts' probability distributions are non-stationary in an episode. All episodes share the same latent conversion model, which governs the random outcome contingent upon a request's context and an allocation decision. Our model captures applications such as dynamic pricing on perishable resources with episodic replenishment, and first price auctions in repeated episodes with different starting budgets. We design an online algorithm that achieves a regret sub-linear in $T$, the number of episodes, assuming access to a \emph{confidence bound oracle} that achieves an $o(T)$-regret. Such an oracle is readily available from existing contextual bandit literature. We overcome the technical challenge with arbitrarily many possible contexts, which leads to a reinforcement learning problem with an unbounded state space. Our framework provides improved regret bounds in certain settings when the DM is provided with unlabeled feature data, which is novel to the contextual BwK literature.
♻ ☆ MCD: Marginal Contrastive Discrimination for conditional density estimation
We consider the problem of conditional density estimation, which is a major topic of interest in the fields of statistical and machine learning. Our method, called Marginal Contrastive Discrimination, MCD, reformulates the conditional density function into two factors, the marginal density function of the target variable and a ratio of density functions which can be estimated through binary classification. Like noise-contrastive methods, MCD can leverage state-of-the-art supervised learning techniques to perform conditional density estimation, including neural networks. Our benchmark reveals that our method significantly outperforms in practice existing methods on most density models and regression datasets.
♻ ☆ A Near-optimal, Scalable and Parallelizable Framework for Stochastic Bandits Robust to Adversarial Corruptions and Beyond NeurIPS 2025
We investigate various stochastic bandit problems in the presence of adversarial corruptions. A seminal work for this problem is the BARBAR~\cite{gupta2019better} algorithm, which achieves both robustness and efficiency. However, it suffers from a regret of $O(KC)$, which does not match the lower bound of $Ω(C)$, where $K$ denotes the number of arms and $C$ denotes the corruption level. In this paper, we first improve the BARBAR algorithm by proposing a novel framework called BARBAT, which eliminates the factor of $K$ to achieve an optimal regret bound up to a logarithmic factor. We also extend BARBAT to various settings, including multi-agent bandits, graph bandits, combinatorial semi-bandits and batched bandits. Compared with the Follow-the-Regularized-Leader framework, our methods are more amenable to parallelization, making them suitable for multi-agent and batched bandit settings, and they incur lower computational costs, particularly in semi-bandit problems. Numerical experiments verify the efficiency of the proposed methods.
comment: Accepted at NeurIPS 2025
♻ ☆ Towards Knowledge Guided Pretraining Approaches for Multimodal Foundation Models: Applications in Remote Sensing
Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the knowledge of causal interplay between different geospatial and environmental variables. To address this limitation, we propose Knowledge Guided Variable-Step Forecasting (KG-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to strong embeddings which give enhanced performance when finetuned on downstream tasks where capturing this causality matters such as pixel wise crop type mapping, soil moisture estimation and forecasting, missing image prediction, and future image forecasting when compared to finetuning embeddings from other standard pretraining approaches.
comment: 31 pages with appendix
♻ ☆ CIC: Circular Image Compression
Learned image compression (LIC) is currently the cutting-edge method. However, the inherent difference between testing and training images of LIC results in performance degradation to some extent. Especially for out-of-sample, out-of-distribution, or out-of-domain testing images, the performance of LIC degrades significantly. Classical LIC is a serial image compression (SIC) approach that utilizes an open-loop architecture with serial encoding and decoding units. Nevertheless, according to the principles of automatic control systems, a closed-loop architecture holds the potential to improve the dynamic and static performance of LIC. Therefore, a circular image compression (CIC) approach with closed-loop encoding and decoding elements is proposed to minimize the gap between testing and training images and upgrade the capability of LIC. The proposed CIC establishes a nonlinear loop equation and proves that steady-state error between reconstructed and original images is close to zero by Taylor series expansion. The proposed CIC method possesses the property of Post-Training and Plug-and-Play which can be built on any existing advanced SIC methods. Experimental results including rate-distortion curves on five public image compression datasets demonstrate that the proposed CIC outperforms eight competing state-of-the-art open-source SIC algorithms in reconstruction capacity. Experimental results further show that the proposed method is suitable for out-of-sample testing images with dark backgrounds, sharp edges, high contrast, grid shapes, or complex patterns.
♻ ☆ From Autoencoders to CycleGAN: Robust Unpaired Face Manipulation via Adversarial Learning
Human face synthesis and manipulation are increasingly important in entertainment and AI, with a growing demand for highly realistic, identity-preserving images even when only unpaired, unaligned datasets are available. We study unpaired face manipulation via adversarial learning, moving from autoencoder baselines to a robust, guided CycleGAN framework. While autoencoders capture coarse identity, they often miss fine details. Our approach integrates spectral normalization for stable training, identity- and perceptual-guided losses to preserve subject identity and high-level structure, and landmark-weighted cycle constraints to maintain facial geometry across pose and illumination changes. Experiments show that our adversarial trained CycleGAN improves realism (FID), perceptual quality (LPIPS), and identity preservation (ID-Sim) over autoencoders, with competitive cycle-reconstruction SSIM and practical inference times, which achieved high quality without paired datasets and approaching pix2pix on curated paired subsets. These results demonstrate that guided, spectrally normalized CycleGANs provide a practical path from autoencoders to robust unpaired face manipulation.
comment: 8 pages, 7 figures
♻ ☆ Mitigating optimistic bias in entropic risk estimation and optimization
The entropic risk measure is widely used in high-stakes decision-making across economics, management science, finance, and safety-critical control systems because it captures tail risks associated with uncertain losses. However, when data are limited, the empirical entropic risk estimator, formed by replacing the expectation in the risk measure with a sample average, underestimates true risk. We show that this negative bias grows superlinearly with the standard deviation of the loss for distributions with unbounded right tails. We further demonstrate that several existing bias reduction techniques developed for empirical risk either continue to underestimate entropic risk or substantially overestimate it, potentially leading to overly risky or overly conservative decisions. To address this issue, we develop a parametric bootstrap procedure that is strongly asymptotically consistent and provides a controlled overestimation of entropic risk under mild assumptions. The method first fits a distribution to the data and then estimates the empirical estimator's bias via bootstrapping. We show that the fitted distribution must satisfy only weak regularity conditions, and Gaussian mixture models offer a convenient and flexible choice within this class. As an application, we introduce a distributionally robust optimization model for an insurance contract design problem that incorporates correlations in household losses. We show that selecting regularization parameters using standard cross-validation can lead to substantially higher out-of-sample risk for the insurer if the validation bias is not corrected. Our approach improves performance by recommending higher and more accurate premiums, thereby better reflecting the underlying tail risk.
♻ ☆ Causality-Inspired Safe Residual Correction for Multivariate Time Series
While modern multivariate forecasters such as Transformers and GNNs achieve strong benchmark performance, they often suffer from systematic errors at specific variables or horizons and, critically, lack guarantees against performance degradation in deployment. Existing post-hoc residual correction methods attempt to fix these errors, but are inherently greedy: although they may improve average accuracy, they can also "help in the wrong way" by overcorrecting reliable predictions and causing local failures in unseen scenarios. To address this critical "safety gap," we propose CRC (Causality-inspired Safe Residual Correction), a plug-and-play framework explicitly designed to ensure non-degradation. CRC follows a divide-and-conquer philosophy: it employs a causality-inspired encoder to expose direction-aware structure by decoupling self- and cross-variable dynamics, and a hybrid corrector to model residual errors. Crucially, the correction process is governed by a strict four-fold safety mechanism that prevents harmful updates. Experiments across multiple datasets and forecasting backbones show that CRC consistently improves accuracy, while an in-depth ablation study confirms that its core safety mechanisms ensure exceptionally high non-degradation rates (NDR), making CRC a correction framework suited for safe and reliable deployment.
♻ ☆ Infinite-Width Limit of a Single Attention Layer: Analysis via Tensor Programs
In modern theoretical analyses of neural networks, the infinite-width limit is often invoked to justify Gaussian approximations of neuron preactivations (e.g., via neural network Gaussian processes or Tensor Programs). However, these Gaussian-based asymptotic theories have so far been unable to capture the behavior of attention layers, except under special regimes such as infinitely many heads or tailored scaling schemes. In this paper, leveraging the Tensor Programs framework, we rigorously identify the infinite-width limit distribution of variables within a single attention layer under realistic architectural dimensionality and standard $1/\sqrt{n}$-scaling with $n$ dimensionality. We derive the exact form of this limit law without resorting to infinite-head approximations or tailored scalings, demonstrating that it departs fundamentally from Gaussianity. This limiting distribution exhibits non-Gaussianity from a hierarchical structure, being Gaussian conditional on the random similarity scores. Numerical experiments validate our theoretical predictions, confirming the effectiveness of our theory at finite width and accurate description of finite-head attentions. Beyond characterizing a standalone attention layer, our findings lay the groundwork for developing a unified theory of deep Transformer architectures in the infinite-width regime.
♻ ☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
♻ ☆ Unregularized Linear Convergence in Zero-Sum Game from Preference Feedback
Aligning large language models (LLMs) with human preferences has proven effective for enhancing model capabilities, yet standard preference modeling using the Bradley-Terry model assumes transitivity, overlooking the inherent complexity of human population preferences. Nash learning from human feedback (NLHF) addresses this by framing non-transitive preferences as a two-player zero-sum game, where alignment reduces to finding the Nash equilibrium (NE). However, existing algorithms typically rely on regularization, incurring unavoidable bias when computing the duality gap in the original game. In this work, we provide the first convergence guarantee for Optimistic Multiplicative Weights Update ($\mathtt{OMWU}$) in NLHF, showing that it achieves last-iterate linear convergence after a burn-in phase whenever an NE with full support exists, with an instance-dependent linear convergence rate to the original NE, measured by duality gaps. Compared to prior results in Wei et al. (2020), we do not require the assumption of NE uniqueness. Our analysis identifies a novel marginal convergence behavior, where the probability of rarely played actions grows exponentially from exponentially small values, enabling exponentially better dependence on instance-dependent constants than prior results. Experiments corroborate the theoretical strengths of $\mathtt{OMWU}$ in both tabular and neural policy classes, demonstrating its potential for LLM applications.
comment: 28 pages
♻ ☆ Real-Time Forecasting of Pathological Gait via IMU Navigation: A Few-Shot and Generative Learning Framework for Wearable Devices
Current gait analysis faces challenges in various aspects, including limited and poorly labeled data within existing wearable electronics databases, difficulties in collecting patient data due to privacy concerns, and the inadequacy of the Zero-Velocity Update Technique (ZUPT) in accurately analyzing pathological gait patterns. To address these limitations, we introduce GaitMotion, a novel machine-learning framework that employs few-shot learning on a multitask dataset collected via wearable IMU sensors for real-time pathological gait analysis. GaitMotion enhances data quality through detailed, ground-truth-labeled sequences and achieves accurate step and stride segmentation and stride length estimation, which are essential for diagnosing neurological disorders. We incorporate a generative augmentation component, which synthesizes rare or underrepresented pathological gait patterns. GaitMotion achieves a 65\% increase in stride length estimation accuracy compared to ZUPT. In addition, its application to real patient datasets via transfer learning confirms its robust predictive capability. By integrating generative AI into wearable gait analysis, GaitMotion not only refines the precision of pathological gait forecasting but also demonstrates a scalable framework for leveraging synthetic data in biomechanical pattern recognition, paving the way for more personalized and data-efficient digital health services.
♻ ☆ Tabby: A Language Model Architecture for Tabular and Structured Data Synthesis
While advances in large language models (LLMs) have greatly improved the quality of synthetic text data in recent years, synthesizing tabular data has received relatively less attention. We address this disparity with Tabby, a simple but powerful post-training modification to the standard Transformer language model architecture, enabling its use for tabular dataset synthesis. Tabby enables the representation of differences across columns using Gated Mixture-of-Experts, with column-specific sets of parameters. Empirically, Tabby results in data quality near or equal to that of real data. By pairing our novel LLM table training technique, Plain, with Tabby, we observe up to a 44% improvement in quality over previous methods. We also show that Tabby extends beyond tables to more general structured data, reaching parity with real data on a nested JSON dataset as well.
comment: 21 pages, 8 figures. Appearing in TMLR 2026
♻ ☆ Scaling Efficient LLMs
Recent LLMs have hundreds of billions of parameters consuming vast resources. Furthermore, the so called "AI scaling law" for transformers suggests that the number of parameters must scale linearly with the size of the data. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, by comparing theoretical and empirical estimates of the Kullback-Leibler divergence, we derive a natural AI scaling law that the number of parameters in an efficient LLM scales as $D^γ$ where $D$ is the size of the training data and $ γ\in [0.44, 0.72]$, suggesting the existence of more efficient architectures. Against this backdrop, we propose recurrent transformers, combining the efficacy of transformers with the efficiency of recurrent networks, progressively applying a single transformer layer to a fixed-width sliding window across the input sequence. Recurrent transformers (a) run in linear time in the sequence length, (b) are memory-efficient and amenable to parallel processing in large batches, (c) learn to forget history for language tasks, or accumulate history for long range tasks like copy and selective copy, and (d) are amenable to curriculum training to overcome vanishing gradients. In our experiments, we find that recurrent transformers perform favorably on benchmark tests.
♻ ☆ Fusion of Multiscale Features Via Centralized Sparse-attention Network for EEG Decoding
Electroencephalography (EEG) signal decoding is a key technology that translates brain activity into executable commands, laying the foundation for direct brain-machine interfacing and intelligent interaction. To address the inherent spatiotemporal heterogeneity of EEG signals, this paper proposes a multi-branch parallel architecture, where each temporal scale is equipped with an independent spatial feature extraction module. To further enhance multi-branch feature fusion, we propose a Fusion of Multiscale Features via Centralized Sparse-attention Network (EEG-CSANet), a centralized sparse-attention network. It employs a main-auxiliary branch architecture, where the main branch models core spatiotemporal patterns via multiscale self-attention, and the auxiliary branch facilitates efficient local interactions through sparse cross-attention. Experimental results show that EEG-CSANet achieves state-of-the-art (SOTA) performance across five public datasets (BCIC-IV-2A, BCIC-IV-2B, HGD, SEED, and SEED-VIG), with accuracies of 88.54%, 91.09%, 97.15%, 96.03%, and 90.56%, respectively. Such performance demonstrates its strong adaptability and robustness across various EEG decoding tasks. Moreover, extensive ablation studies are conducted to enhance the interpretability of EEG-CSANet. In the future, we hope that EEG-CSANet could serve as a promising baseline model in the field of EEG signal decoding. The source code is publicly available at: https://github.com/Xiangrui-Cai/EEG-CSANet
♻ ☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data-stemming from the onerous and costly nature of experimental validation-further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel bilevel optimization approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to learn how to generalize beyond the training distribution. We demonstrate significant performance gains on challenging real-world datasets with substantial covariate shift, supported by t-SNE visualizations highlighting our interpolation method.
♻ ☆ Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Though our findings persist up to the 100M scale, frontier models today are well into the billions of parameters. Therefore, our conceptual framework and empirical findings can best serve as a starting point for understanding and improving the creativity of frontier-size models today, as we begin to bridge the gap between human and machine intelligence.
comment: Preprint. The first two authors contributed equally
♻ ☆ Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has become an important technical and storytelling tool to deploy the latest machine learning systems. In this book, we hope to give a gentle introduction to the core methods for people with some level of quantitative background. The book starts with the origins of RLHF -- both in recent literature and in a convergence of disparate fields of science in economics, philosophy, and optimal control. We then set the stage with definitions, problem formulation, data collection, and other common math used in the literature. The core of the book details every optimization stage in using RLHF, from starting with instruction tuning to training a reward model and finally all of rejection sampling, reinforcement learning, and direct alignment algorithms. The book concludes with advanced topics -- understudied research questions in synthetic data and evaluation -- and open questions for the field.
comment: 193 pages. Web-native version at https://rlhfbook.com/ Continually improving, latest version at website
Multimedia 1
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
Computer Vision and Pattern Recognition 63
☆ MotionPhysics: Learnable Motion Distillation for Text-Guided Simulation AAAI2026
Accurately simulating existing 3D objects and a wide variety of materials often demands expert knowledge and time-consuming physical parameter tuning to achieve the desired dynamic behavior. We introduce MotionPhysics, an end-to-end differentiable framework that infers plausible physical parameters from a user-provided natural language prompt for a chosen 3D scene of interest, removing the need for guidance from ground-truth trajectories or annotated videos. Our approach first utilizes a multimodal large language model to estimate material parameter values, which are constrained to lie within plausible ranges. We further propose a learnable motion distillation loss that extracts robust motion priors from pretrained video diffusion models while minimizing appearance and geometry inductive biases to guide the simulation. We evaluate MotionPhysics across more than thirty scenarios, including real-world, human-designed, and AI-generated 3D objects, spanning a wide range of materials such as elastic solids, metals, foams, sand, and both Newtonian and non-Newtonian fluids. We demonstrate that MotionPhysics produces visually realistic dynamic simulations guided by natural language, surpassing the state of the art while automatically determining physically plausible parameters. The code and project page are available at: https://wangmiaowei.github.io/MotionPhysics.github.io/.
comment: AAAI2026 Accepted
☆ CPPO: Contrastive Perception for Vision Language Policy Optimization
We introduce CPPO, a Contrastive Perception Policy Optimization method for finetuning vision-language models (VLMs). While reinforcement learning (RL) has advanced reasoning in language models, extending it to multimodal reasoning requires improving both the perception and reasoning aspects. Prior works tackle this challenge mainly with explicit perception rewards, but disentangling perception tokens from reasoning tokens is difficult, requiring extra LLMs, ground-truth data, forced separation of perception from reasoning by policy model, or applying rewards indiscriminately to all output tokens. CPPO addresses this problem by detecting perception tokens via entropy shifts in the model outputs under perturbed input images. CPPO then extends the RL objective function with a Contrastive Perception Loss (CPL) that enforces consistency under information-preserving perturbations and sensitivity under information-removing ones. Experiments show that CPPO surpasses previous perception-rewarding methods, while avoiding extra models, making training more efficient and scalable.
☆ E-GRPO: High Entropy Steps Drive Effective Reinforcement Learning for Flow Models
Recent reinforcement learning has enhanced the flow matching models on human preference alignment. While stochastic sampling enables the exploration of denoising directions, existing methods which optimize over multiple denoising steps suffer from sparse and ambiguous reward signals. We observe that the high entropy steps enable more efficient and effective exploration while the low entropy steps result in undistinguished roll-outs. To this end, we propose E-GRPO, an entropy aware Group Relative Policy Optimization to increase the entropy of SDE sampling steps. Since the integration of stochastic differential equations suffer from ambiguous reward signals due to stochasticity from multiple steps, we specifically merge consecutive low entropy steps to formulate one high entropy step for SDE sampling, while applying ODE sampling on other steps. Building upon this, we introduce multi-step group normalized advantage, which computes group-relative advantages within samples sharing the same consolidated SDE denoising step. Experimental results on different reward settings have demonstrated the effectiveness of our methods.
comment: Code: https://github.com/shengjun-zhang/VisualGRPO
☆ Robust Assembly Progress Estimation via Deep Metric Learning
In recent years, the advancement of AI technologies has accelerated the development of smart factories. In particular, the automatic monitoring of product assembly progress is crucial for improving operational efficiency, minimizing the cost of discarded parts, and maximizing factory productivity. However, in cases where assembly tasks are performed manually over multiple days, implementing smart factory systems remains a challenge. Previous work has proposed Anomaly Triplet-Net, which estimates assembly progress by applying deep metric learning to the visual features of products. Nevertheless, when visual changes between consecutive tasks are subtle, misclassification often occurs. To address this issue, this paper proposes a robust system for estimating assembly progress, even in cases of occlusion or minimal visual change, using a small-scale dataset. Our method leverages a Quadruplet Loss-based learning approach for anomaly images and introduces a custom data loader that strategically selects training samples to enhance estimation accuracy. We evaluated our approach using a image datasets: captured during desktop PC assembly. The proposed Anomaly Quadruplet-Net outperformed existing methods on the dataset. Specifically, it improved the estimation accuracy by 1.3% and reduced misclassification between adjacent tasks by 1.9% in the desktop PC dataset and demonstrating the effectiveness of the proposed method.
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ ABFR-KAN: Kolmogorov-Arnold Networks for Functional Brain Analysis
Functional connectivity (FC) analysis, a valuable tool for computer-aided brain disorder diagnosis, traditionally relies on atlas-based parcellation. However, issues relating to selection bias and a lack of regard for subject specificity can arise as a result of such parcellations. Addressing this, we propose ABFR-KAN, a transformer-based classification network that incorporates novel advanced brain function representation components with the power of Kolmogorov-Arnold Networks (KANs) to mitigate structural bias, improve anatomical conformity, and enhance the reliability of FC estimation. Extensive experiments on the ABIDE I dataset, including cross-site evaluation and ablation studies across varying model backbones and KAN configurations, demonstrate that ABFR-KAN consistently outperforms state-of-the-art baselines for autism spectrum distorder (ASD) classification. Our code is available at https://github.com/tbwa233/ABFR-KAN.
comment: 21 pages, 10 figures, 8 tables
☆ RoLID-11K: A Dashcam Dataset for Small-Object Roadside Litter Detection
Roadside litter poses environmental, safety and economic challenges, yet current monitoring relies on labour-intensive surveys and public reporting, providing limited spatial coverage. Existing vision datasets for litter detection focus on street-level still images, aerial scenes or aquatic environments, and do not reflect the unique characteristics of dashcam footage, where litter appears extremely small, sparse and embedded in cluttered road-verge backgrounds. We introduce RoLID-11K, the first large-scale dataset for roadside litter detection from dashcams, comprising over 11k annotated images spanning diverse UK driving conditions and exhibiting pronounced long-tail and small-object distributions. We benchmark a broad spectrum of modern detectors, from accuracy-oriented transformer architectures to real-time YOLO models, and analyse their strengths and limitations on this challenging task. Our results show that while CO-DETR and related transformers achieve the best localisation accuracy, real-time models remain constrained by coarse feature hierarchies. RoLID-11K establishes a challenging benchmark for extreme small-object detection in dynamic driving scenes and aims to support the development of scalable, low-cost systems for roadside-litter monitoring. The dataset is available at https://github.com/xq141839/RoLID-11K.
☆ NeoVerse: Enhancing 4D World Model with in-the-wild Monocular Videos
In this paper, we propose NeoVerse, a versatile 4D world model that is capable of 4D reconstruction, novel-trajectory video generation, and rich downstream applications. We first identify a common limitation of scalability in current 4D world modeling methods, caused either by expensive and specialized multi-view 4D data or by cumbersome training pre-processing. In contrast, our NeoVerse is built upon a core philosophy that makes the full pipeline scalable to diverse in-the-wild monocular videos. Specifically, NeoVerse features pose-free feed-forward 4D reconstruction, online monocular degradation pattern simulation, and other well-aligned techniques. These designs empower NeoVerse with versatility and generalization to various domains. Meanwhile, NeoVerse achieves state-of-the-art performance in standard reconstruction and generation benchmarks. Our project page is available at https://neoverse-4d.github.io
comment: Project Page: https://neoverse-4d.github.io
☆ BHaRNet: Reliability-Aware Body-Hand Modality Expertized Networks for Fine-grained Skeleton Action Recognition
Skeleton-based human action recognition (HAR) has achieved remarkable progress with graph-based architectures. However, most existing methods remain body-centric, focusing on large-scale motions while neglecting subtle hand articulations that are crucial for fine-grained recognition. This work presents a probabilistic dual-stream framework that unifies reliability modeling and multi-modal integration, generalizing expertized learning under uncertainty across both intra-skeleton and cross-modal domains. The framework comprises three key components: (1) a calibration-free preprocessing pipeline that removes canonical-space transformations and learns directly from native coordinates; (2) a probabilistic Noisy-OR fusion that stabilizes reliability-aware dual-stream learning without requiring explicit confidence supervision; and (3) an intra- to cross-modal ensemble that couples four skeleton modalities (Joint, Bone, Joint Motion, and Bone Motion) to RGB representations, bridging structural and visual motion cues in a unified cross-modal formulation. Comprehensive evaluations across multiple benchmarks (NTU RGB+D~60/120, PKU-MMD, N-UCLA) and a newly defined hand-centric benchmark exhibit consistent improvements and robustness under noisy and heterogeneous conditions.
comment: 16 pages; 8 figures. Extension of previous conference paper. Project page: https://github.com/VinnyCSY/BHaRNet
☆ Mask-Conditioned Voxel Diffusion for Joint Geometry and Color Inpainting
We present a lightweight two-stage framework for joint geometry and color inpainting of damaged 3D objects, motivated by the digital restoration of cultural heritage artifacts. The pipeline separates damage localization from reconstruction. In the first stage, a 2D convolutional network predicts damage masks on RGB slices extracted from a voxelized object, and these predictions are aggregated into a volumetric mask. In the second stage, a diffusion-based 3D U-Net performs mask-conditioned inpainting directly on voxel grids, reconstructing geometry and color while preserving observed regions. The model jointly predicts occupancy and color using a composite objective that combines occupancy reconstruction with masked color reconstruction and perceptual regularization. We evaluate the approach on a curated set of textured artifacts with synthetically generated damage using standard geometric and color metrics. Compared to symmetry-based baselines, our method produces more complete geometry and more coherent color reconstructions at a fixed 32^3 resolution. Overall, the results indicate that explicit mask conditioning is a practical way to guide volumetric diffusion models for joint 3D geometry and color inpainting.
comment: 10 pages, 9 figures
☆ Efficient Prediction of Dense Visual Embeddings via Distillation and RGB-D Transformers IROS 2025
In domestic environments, robots require a comprehensive understanding of their surroundings to interact effectively and intuitively with untrained humans. In this paper, we propose DVEFormer - an efficient RGB-D Transformer-based approach that predicts dense text-aligned visual embeddings (DVE) via knowledge distillation. Instead of directly performing classical semantic segmentation with fixed predefined classes, our method uses teacher embeddings from Alpha-CLIP to guide our efficient student model DVEFormer in learning fine-grained pixel-wise embeddings. While this approach still enables classical semantic segmentation, e.g., via linear probing, it further enables flexible text-based querying and other applications, such as creating comprehensive 3D maps. Evaluations on common indoor datasets demonstrate that our approach achieves competitive performance while meeting real-time requirements, operating at 26.3 FPS for the full model and 77.0 FPS for a smaller variant on an NVIDIA Jetson AGX Orin. Additionally, we show qualitative results that highlight the effectiveness and possible use cases in real-world applications. Overall, our method serves as a drop-in replacement for traditional segmentation approaches while enabling flexible natural-language querying and seamless integration into 3D mapping pipelines for mobile robotics.
comment: Published in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ The Impact of Lesion Focus on the Performance of AI-Based Melanoma Classification
Melanoma is the most lethal subtype of skin cancer, and early and accurate detection of this disease can greatly improve patients' outcomes. Although machine learning models, especially convolutional neural networks (CNNs), have shown great potential in automating melanoma classification, their diagnostic reliability still suffers due to inconsistent focus on lesion areas. In this study, we analyze the relationship between lesion attention and diagnostic performance, involving masked images, bounding box detection, and transfer learning. We used multiple explainability and sensitivity analysis approaches to investigate how well models aligned their attention with lesion areas and how this alignment correlated with precision, recall, and F1-score. Results showed that models with a higher focus on lesion areas achieved better diagnostic performance, suggesting the potential of interpretable AI in medical diagnostics. This study provides a foundation for developing more accurate and trustworthy melanoma classification models in the future.
☆ OmniVaT: Single Domain Generalization for Multimodal Visual-Tactile Learning
Visual-tactile learning (VTL) enables embodied agents to perceive the physical world by integrating visual (VIS) and tactile (TAC) sensors. However, VTL still suffers from modality discrepancies between VIS and TAC images, as well as domain gaps caused by non-standardized tactile sensors and inconsistent data collection procedures. We formulate these challenges as a new task, termed single domain generalization for multimodal VTL (SDG-VTL). In this paper, we propose an OmniVaT framework that, for the first time, successfully addresses this task. On the one hand, OmniVaT integrates a multimodal fractional Fourier adapter (MFFA) to map VIS and TAC embeddings into a unified embedding-frequency space, thereby effectively mitigating the modality gap without multi-domain training data or careful cross-modal fusion strategies. On the other hand, it also incorporates a discrete tree generation (DTG) module that obtains diverse and reliable multimodal fractional representations through a hierarchical tree structure, thereby enhancing its adaptivity to fluctuating domain shifts in unseen domains. Extensive experiments demonstrate the superior cross-domain generalization performance of OmniVaT on the SDG-VTL task.
☆ Intelligent Traffic Surveillance for Real-Time Vehicle Detection, License Plate Recognition, and Speed Estimation
Speeding is a major contributor to road fatalities, particularly in developing countries such as Uganda, where road safety infrastructure is limited. This study proposes a real-time intelligent traffic surveillance system tailored to such regions, using computer vision techniques to address vehicle detection, license plate recognition, and speed estimation. The study collected a rich dataset using a speed gun, a Canon Camera, and a mobile phone to train the models. License plate detection using YOLOv8 achieved a mean average precision (mAP) of 97.9%. For character recognition of the detected license plate, the CNN model got a character error rate (CER) of 3.85%, while the transformer model significantly reduced the CER to 1.79%. Speed estimation used source and target regions of interest, yielding a good performance of 10 km/h margin of error. Additionally, a database was established to correlate user information with vehicle detection data, enabling automated ticket issuance via SMS via Africa's Talking API. This system addresses critical traffic management needs in resource-constrained environments and shows potential to reduce road accidents through automated traffic enforcement in developing countries where such interventions are urgently needed.
☆ Joint Geometry-Appearance Human Reconstruction in a Unified Latent Space via Bridge Diffusion
Achieving consistent and high-fidelity geometry and appearance reconstruction of 3D digital humans from a single RGB image is inherently a challenging task. Existing studies typically resort to decoupled pipelines for geometry estimation and appearance synthesis, often hindering unified reconstruction and causing inconsistencies. This paper introduces \textbf{JGA-LBD}, a novel framework that unifies the modeling of geometry and appearance into a joint latent representation and formulates the generation process as bridge diffusion. Observing that directly integrating heterogeneous input conditions (e.g., depth maps, SMPL models) leads to substantial training difficulties, we unify all conditions into the 3D Gaussian representations, which can be further compressed into a unified latent space through a shared sparse variational autoencoder (VAE). Subsequently, the specialized form of bridge diffusion enables to start with a partial observation of the target latent code and solely focuses on inferring the missing components. Finally, a dedicated decoding module extracts the complete 3D human geometric structure and renders novel views from the inferred latent representation. Experiments demonstrate that JGA-LBD outperforms current state-of-the-art approaches in terms of both geometry fidelity and appearance quality, including challenging in-the-wild scenarios. Our code will be made publicly available at https://github.com/haiantyz/JGA-LBD.
☆ HarmoniAD: Harmonizing Local Structures and Global Semantics for Anomaly Detection
Anomaly detection is crucial in industrial product quality inspection. Failing to detect tiny defects often leads to serious consequences. Existing methods face a structure-semantics trade-off: structure-oriented models (such as frequency-based filters) are noise-sensitive, while semantics-oriented models (such as CLIP-based encoders) often miss fine details. To address this, we propose HarmoniAD, a frequency-guided dual-branch framework. Features are first extracted by the CLIP image encoder, then transformed into the frequency domain, and finally decoupled into high- and low-frequency paths for complementary modeling of structure and semantics. The high-frequency branch is equipped with a fine-grained structural attention module (FSAM) to enhance textures and edges for detecting small anomalies, while the low-frequency branch uses a global structural context module (GSCM) to capture long-range dependencies and preserve semantic consistency. Together, these branches balance fine detail and global semantics. HarmoniAD further adopts a multi-class joint training strategy, and experiments on MVTec-AD, VisA, and BTAD show state-of-the-art performance with both sensitivity and robustness.
☆ Depth-Synergized Mamba Meets Memory Experts for All-Day Image Reflection Separation AAAI 2026
Image reflection separation aims to disentangle the transmission layer and the reflection layer from a blended image. Existing methods rely on limited information from a single image, tending to confuse the two layers when their contrasts are similar, a challenge more severe at night. To address this issue, we propose the Depth-Memory Decoupling Network (DMDNet). It employs the Depth-Aware Scanning (DAScan) to guide Mamba toward salient structures, promoting information flow along semantic coherence to construct stable states. Working in synergy with DAScan, the Depth-Synergized State-Space Model (DS-SSM) modulates the sensitivity of state activations by depth, suppressing the spread of ambiguous features that interfere with layer disentanglement. Furthermore, we introduce the Memory Expert Compensation Module (MECM), leveraging cross-image historical knowledge to guide experts in providing layer-specific compensation. To address the lack of datasets for nighttime reflection separation, we construct the Nighttime Image Reflection Separation (NightIRS) dataset. Extensive experiments demonstrate that DMDNet outperforms state-of-the-art methods in both daytime and nighttime.
comment: This paper has been accepted by AAAI 2026
☆ ReMA: A Training-Free Plug-and-Play Mixing Augmentation for Video Behavior Recognition
Video behavior recognition demands stable and discriminative representations under complex spatiotemporal variations. However, prevailing data augmentation strategies for videos remain largely perturbation-driven, often introducing uncontrolled variations that amplify non-discriminative factors, which finally weaken intra-class distributional structure and representation drift with inconsistent gains across temporal scales. To address these problems, we propose Representation-aware Mixing Augmentation (ReMA), a plug-and-play augmentation strategy that formulates mixing as a controlled replacement process to expand representations while preserving class-conditional stability. ReMA integrates two complementary mechanisms. Firstly, the Representation Alignment Mechanism (RAM) performs structured intra-class mixing under distributional alignment constraints, suppressing irrelevant intra-class drift while enhancing statistical reliability. Then, the Dynamic Selection Mechanism (DSM) generates motion-aware spatiotemporal masks to localize perturbations, guiding them away from discrimination-sensitive regions and promoting temporal coherence. By jointly controlling how and where mixing is applied, ReMA improves representation robustness without additional supervision or trainable parameters. Extensive experiments on diverse video behavior benchmarks demonstrate that ReMA consistently enhances generalization and robustness across different spatiotemporal granularities.
☆ VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning
Person re-identification (ReID) is an extremely important area in both surveillance and mobile applications, requiring strong accuracy with minimal computational cost. State-of-the-art methods give good accuracy but with high computational budgets. To remedy this, this paper proposes VisNet, a computationally efficient and effective re-identification model suitable for real-world scenarios. It is the culmination of conceptual contributions, including feature fusion at multiple scales with automatic attention on each, semantic clustering with anatomical body partitioning, a dynamic weight averaging technique to balance classification semantic regularization, and the use of loss function FIDI for improved metric learning tasks. The multiple scales fuse ResNet50's stages 1 through 4 without the use of parallel paths, with semantic clustering introducing spatial constraints through the use of rule-based pseudo-labeling. VisNet achieves 87.05% Rank-1 and 77.65% mAP on the Market-1501 dataset, having 32.41M parameters and 4.601 GFLOPs, hence, proposing a practical approach for real-time deployment in surveillance and mobile applications where computational resources are limited.
☆ TimeColor: Flexible Reference Colorization via Temporal Concatenation
Most colorization models condition only on a single reference, typically the first frame of the scene. However, this approach ignores other sources of conditional data, such as character sheets, background images, or arbitrary colorized frames. We propose TimeColor, a sketch-based video colorization model that supports heterogeneous, variable-count references with the use of explicit per-reference region assignment. TimeColor encodes references as additional latent frames which are concatenated temporally, permitting them to be processed concurrently in each diffusion step while keeping the model's parameter count fixed. TimeColor also uses spatiotemporal correspondence-masked attention to enforce subject-reference binding in addition to modality-disjoint RoPE indexing. These mechanisms mitigate shortcutting and cross-identity palette leakage. Experiments on SAKUGA-42M under both single- and multi-reference protocols show that TimeColor improves color fidelity, identity consistency, and temporal stability over prior baselines.
comment: Demo samples are available at: https://bconstantine.github.io/TimeColor/
☆ Towards Automated Differential Diagnosis of Skin Diseases Using Deep Learning and Imbalance-Aware Strategies
As dermatological conditions become increasingly common and the availability of dermatologists remains limited, there is a growing need for intelligent tools to support both patients and clinicians in the timely and accurate diagnosis of skin diseases. In this project, we developed a deep learning based model for the classification and diagnosis of skin conditions. By leveraging pretraining on publicly available skin disease image datasets, our model effectively extracted visual features and accurately classified various dermatological cases. Throughout the project, we refined the model architecture, optimized data preprocessing workflows, and applied targeted data augmentation techniques to improve overall performance. The final model, based on the Swin Transformer, achieved a prediction accuracy of 87.71 percent across eight skin lesion classes on the ISIC2019 dataset. These results demonstrate the model's potential as a diagnostic support tool for clinicians and a self assessment aid for patients.
comment: The 23rd Australasian Data Science and Machine Learning Conference (AusDM'25)
☆ SV-GS: Sparse View 4D Reconstruction with Skeleton-Driven Gaussian Splatting
Reconstructing a dynamic target moving over a large area is challenging. Standard approaches for dynamic object reconstruction require dense coverage in both the viewing space and the temporal dimension, typically relying on multi-view videos captured at each time step. However, such setups are only possible in constrained environments. In real-world scenarios, observations are often sparse over time and captured sparsely from diverse viewpoints (e.g., from security cameras), making dynamic reconstruction highly ill-posed. We present SV-GS, a framework that simultaneously estimates a deformation model and the object's motion over time under sparse observations. To initialize SV-GS, we leverage a rough skeleton graph and an initial static reconstruction as inputs to guide motion estimation. (Later, we show that this input requirement can be relaxed.) Our method optimizes a skeleton-driven deformation field composed of a coarse skeleton joint pose estimator and a module for fine-grained deformations. By making only the joint pose estimator time-dependent, our model enables smooth motion interpolation while preserving learned geometric details. Experiments on synthetic datasets show that our method outperforms existing approaches under sparse observations by up to 34% in PSNR, and achieves comparable performance to dense monocular video methods on real-world datasets despite using significantly fewer frames. Moreover, we demonstrate that the input initial static reconstruction can be replaced by a diffusion-based generative prior, making our method more practical for real-world scenarios.
☆ Disentangling Hardness from Noise: An Uncertainty-Driven Model-Agnostic Framework for Long-Tailed Remote Sensing Classification
Long-Tailed distributions are pervasive in remote sensing due to the inherently imbalanced occurrence of grounded objects. However, a critical challenge remains largely overlooked, i.e., disentangling hard tail data samples from noisy ambiguous ones. Conventional methods often indiscriminately emphasize all low-confidence samples, leading to overfitting on noisy data. To bridge this gap, building upon Evidential Deep Learning, we propose a model-agnostic uncertainty-aware framework termed DUAL, which dynamically disentangles prediction uncertainty into Epistemic Uncertainty (EU) and Aleatoric Uncertainty (AU). Specifically, we introduce EU as an indicator of sample scarcity to guide a reweighting strategy for hard-to-learn tail samples, while leveraging AU to quantify data ambiguity, employing an adaptive label smoothing mechanism to suppress the impact of noise. Extensive experiments on multiple datasets across various backbones demonstrate the effectiveness and generalization of our framework, surpassing strong baselines such as TGN and SADE. Ablation studies provide further insights into the crucial choices of our design.
☆ FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 14 pages, 9 figures, 5 tables
☆ ActErase: A Training-Free Paradigm for Precise Concept Erasure via Activation Patching
Recent advances in text-to-image diffusion models have demonstrated remarkable generation capabilities, yet they raise significant concerns regarding safety, copyright, and ethical implications. Existing concept erasure methods address these risks by removing sensitive concepts from pre-trained models, but most of them rely on data-intensive and computationally expensive fine-tuning, which poses a critical limitation. To overcome these challenges, inspired by the observation that the model's activations are predominantly composed of generic concepts, with only a minimal component can represent the target concept, we propose a novel training-free method (ActErase) for efficient concept erasure. Specifically, the proposed method operates by identifying activation difference regions via prompt-pair analysis, extracting target activations and dynamically replacing input activations during forward passes. Comprehensive evaluations across three critical erasure tasks (nudity, artistic style, and object removal) demonstrates that our training-free method achieves state-of-the-art (SOTA) erasure performance, while effectively preserving the model's overall generative capability. Our approach also exhibits strong robustness against adversarial attacks, establishing a new plug-and-play paradigm for lightweight yet effective concept manipulation in diffusion models.
☆ S1-MMAlign: A Large-Scale, Multi-Disciplinary Dataset for Scientific Figure-Text Understanding
Multimodal learning has revolutionized general domain tasks, yet its application in scientific discovery is hindered by the profound semantic gap between complex scientific imagery and sparse textual descriptions. We present S1-MMAlign, a large-scale, multi-disciplinary multimodal dataset comprising over 15.5 million high-quality image-text pairs derived from 2.5 million open-access scientific papers. Spanning disciplines from physics and biology to engineering, the dataset captures diverse visual modalities including experimental setups, heatmaps, and microscopic imagery. To address the pervasive issue of weak alignment in raw scientific captions, we introduce an AI-ready semantic enhancement pipeline that utilizes the Qwen-VL multimodal large model series to recaption images by synthesizing context from paper abstracts and citation contexts. Technical validation demonstrates that this enhancement significantly improves data quality: SciBERT-based pseudo-perplexity metrics show reduced semantic ambiguity, while CLIP scores indicate an 18.21% improvement in image-text alignment. S1-MMAlign provides a foundational resource for advancing scientific reasoning and cross-modal understanding in the era of AI for Science. The dataset is publicly available at https://huggingface.co/datasets/ScienceOne-AI/S1-MMAlign.
comment: 12 pages, 5 figures. Dataset available at https://huggingface.co/datasets/ScienceOne-AI/S1-MMAlign
☆ TotalFM: An Organ-Separated Framework for 3D-CT Vision Foundation Models
While foundation models in radiology are expected to be applied to various clinical tasks, computational cost constraints remain a major challenge when training on 3D-CT volumetric data. In this study, we propose TotalFM, a radiological foundation model that efficiently learns the correspondence between 3D-CT images and linguistic expressions based on the concept of organ separation, utilizing a large-scale dataset of 140,000 series. By automating the creation of organ volume and finding-sentence pairs through segmentation techniques and Large Language Model (LLM)-based radiology report processing, and by combining self-supervised pre-training via VideoMAE with contrastive learning using volume-text pairs, we aimed to balance computational efficiency and representation capability. In zero-shot organ-wise lesion classification tasks, the proposed model achieved higher F1 scores in 83% (5/6) of organs compared to CT-CLIP and 64% (9/14) of organs compared to Merlin. These results suggest that the proposed model exhibits high generalization performance in a clinical evaluation setting using actual radiology report sentences. Furthermore, in zero-shot finding-wise lesion classification tasks, our model achieved a higher AUROC in 83% (25/30) of finding categories compared to Merlin. We also confirmed performance comparable to existing Vision-Language Models (VLMs) in radiology report generation tasks. Our results demonstrate that the organ-separated learning framework can serve as a realistic and effective design guideline for the practical implementation of 3D-CT foundation models.
☆ Next Generation Intelligent Low-Altitude Economy Deployments: The O-RAN Perspective IEEE
Despite the growing interest in low-altitude economy (LAE) applications, including UAV-based logistics and emergency response, fundamental challenges remain in orchestrating such missions over complex, signal-constrained environments. These include the absence of real-time, resilient, and context-aware orchestration of aerial nodes with limited integration of artificial intelligence (AI) specialized for LAE missions. This paper introduces an open radio access network (O-RAN)-enabled LAE framework that leverages seamless coordination between the disaggregated RAN architecture, open interfaces, and RAN intelligent controllers (RICs) to facilitate closed-loop, AI-optimized, and mission-critical LAE operations. We evaluate the feasibility and performance of the proposed architecture via a semantic-aware rApp that acts as a terrain interpreter, offering semantic guidance to a reinforcement learning-enabled xApp, which performs real-time trajectory planning for LAE swarm nodes. We survey the capabilities of UAV testbeds that can be leveraged for LAE research, and present critical research challenges and standardization needs.
comment: This article has been accepted for publication in the IEEE Wireless Communications Magazine
☆ Context-Aware Pesticide Recommendation via Few-Shot Pest Recognition for Precision Agriculture
Effective pest management is crucial for enhancing agricultural productivity, especially for crops such as sugarcane and wheat that are highly vulnerable to pest infestations. Traditional pest management methods depend heavily on manual field inspections and the use of chemical pesticides. These approaches are often costly, time-consuming, labor-intensive, and can have a negative impact on the environment. To overcome these challenges, this study presents a lightweight framework for pest detection and pesticide recommendation, designed for low-resource devices such as smartphones and drones, making it suitable for use by small and marginal farmers. The proposed framework includes two main components. The first is a Pest Detection Module that uses a compact, lightweight convolutional neural network (CNN) combined with prototypical meta-learning to accurately identify pests even when only a few training samples are available. The second is a Pesticide Recommendation Module that incorporates environmental factors like crop type and growth stage to suggest safe and eco-friendly pesticide recommendations. To train and evaluate our framework, a comprehensive pest image dataset was developed by combining multiple publicly available datasets. The final dataset contains samples with different viewing angles, pest sizes, and background conditions to ensure strong generalization. Experimental results show that the proposed lightweight CNN achieves high accuracy, comparable to state-of-the-art models, while significantly reducing computational complexity. The Decision Support System additionally improves pest management by reducing dependence on traditional chemical pesticides and encouraging sustainable practices, demonstrating its potential for real-time applications in precision agriculture.
comment: Submitted to the 3rd International Conference on Nonlinear Dynamics and Applications (ICNDA 2026), 12 pages, 7 figures
☆ Application Research of a Deep Learning Model Integrating CycleGAN and YOLO in PCB Infrared Defect Detection
This paper addresses the critical bottleneck of infrared (IR) data scarcity in Printed Circuit Board (PCB) defect detection by proposing a cross-modal data augmentation framework integrating CycleGAN and YOLOv8. Unlike conventional methods relying on paired supervision, we leverage CycleGAN to perform unpaired image-to-image translation, mapping abundant visible-light PCB images into the infrared domain. This generative process synthesizes high-fidelity pseudo-IR samples that preserve the structural semantics of defects while accurately simulating thermal distribution patterns. Subsequently, we construct a heterogeneous training strategy that fuses generated pseudo-IR data with limited real IR samples to train a lightweight YOLOv8 detector. Experimental results demonstrate that this method effectively enhances feature learning under low-data conditions. The augmented detector significantly outperforms models trained on limited real data alone and approaches the performance benchmarks of fully supervised training, proving the efficacy of pseudo-IR synthesis as a robust augmentation strategy for industrial inspection.
comment: 8 pages,8 figures
☆ Towards Syn-to-Real IQA: A Novel Perspective on Reshaping Synthetic Data Distributions NIPS 2025
Blind Image Quality Assessment (BIQA) has advanced significantly through deep learning, but the scarcity of large-scale labeled datasets remains a challenge. While synthetic data offers a promising solution, models trained on existing synthetic datasets often show limited generalization ability. In this work, we make a key observation that representations learned from synthetic datasets often exhibit a discrete and clustered pattern that hinders regression performance: features of high-quality images cluster around reference images, while those of low-quality images cluster based on distortion types. Our analysis reveals that this issue stems from the distribution of synthetic data rather than model architecture. Consequently, we introduce a novel framework SynDR-IQA, which reshapes synthetic data distribution to enhance BIQA generalization. Based on theoretical derivations of sample diversity and redundancy's impact on generalization error, SynDR-IQA employs two strategies: distribution-aware diverse content upsampling, which enhances visual diversity while preserving content distribution, and density-aware redundant cluster downsampling, which balances samples by reducing the density of densely clustered areas. Extensive experiments across three cross-dataset settings (synthetic-to-authentic, synthetic-to-algorithmic, and synthetic-to-synthetic) demonstrate the effectiveness of our method. The code is available at https://github.com/Li-aobo/SynDR-IQA.
comment: Accepted by NIPS 2025
☆ LooC: Effective Low-Dimensional Codebook for Compositional Vector Quantization
Vector quantization (VQ) is a prevalent and fundamental technique that discretizes continuous feature vectors by approximating them using a codebook. As the diversity and complexity of data and models continue to increase, there is an urgent need for high-capacity, yet more compact VQ methods. This paper aims to reconcile this conflict by presenting a new approach called LooC, which utilizes an effective Low-dimensional codebook for Compositional vector quantization. Firstly, LooC introduces a parameter-efficient codebook by reframing the relationship between codevectors and feature vectors, significantly expanding its solution space. Instead of individually matching codevectors with feature vectors, LooC treats them as lower-dimensional compositional units within feature vectors and combines them, resulting in a more compact codebook with improved performance. Secondly, LooC incorporates a parameter-free extrapolation-by-interpolation mechanism to enhance and smooth features during the VQ process, which allows for better preservation of details and fidelity in feature approximation. The design of LooC leads to full codebook usage, effectively utilizing the compact codebook while avoiding the problem of collapse. Thirdly, LooC can serve as a plug-and-play module for existing methods for different downstream tasks based on VQ. Finally, extensive evaluations on different tasks, datasets, and architectures demonstrate that LooC outperforms existing VQ methods, achieving state-of-the-art performance with a significantly smaller codebook.
comment: The IEEE/CVF Winter Conference on Applications of Computer Vision 2026
☆ From Sight to Insight: Improving Visual Reasoning Capabilities of Multimodal Models via Reinforcement Learning
Reinforcement learning (RL) has emerged as a promising approach for eliciting reasoning chains before generating final answers. However, multimodal large language models (MLLMs) generate reasoning that lacks integration of visual information. This limits their ability to solve problems that demand accurate visual perception, such as visual puzzles. We show that visual perception is the key bottleneck in such tasks: converting images into textual descriptions significantly improves performance, yielding gains of 26.7% for Claude 3.5 and 23.6% for Claude 3.7. To address this, we investigate reward-driven RL as a mechanism to unlock long visual reasoning in open-source MLLMs without requiring costly supervision. We design and evaluate six reward functions targeting different reasoning aspects, including image understanding, thinking steps, and answer accuracy. Using group relative policy optimization (GRPO), our approach explicitly incentivizes longer, structured reasoning and mitigates bypassing of visual information. Experiments on Qwen-2.5-VL-7B achieve 5.56% improvements over the base model, with consistent gains across both in-domain and out-of-domain settings.
comment: 23 pages, 15 Figures, 10 Tables
☆ IntraStyler: Exemplar-based Style Synthesis for Cross-modality Domain Adaptation
Image-level domain alignment is the de facto approach for unsupervised domain adaptation, where unpaired image translation is used to minimize the domain gap. Prior studies mainly focus on the domain shift between the source and target domains, whereas the intra-domain variability remains under-explored. To address the latter, an effective strategy is to diversify the styles of the synthetic target domain data during image translation. However, previous methods typically require intra-domain variations to be pre-specified for style synthesis, which may be impractical. In this paper, we propose an exemplar-based style synthesis method named IntraStyler, which can capture diverse intra-domain styles without any prior knowledge. Specifically, IntraStyler uses an exemplar image to guide the style synthesis such that the output style matches the exemplar style. To extract the style-only features, we introduce a style encoder to learn styles discriminatively based on contrastive learning. We evaluate the proposed method on the largest public dataset for cross-modality domain adaptation, CrossMoDA 2023. Our experiments show the efficacy of our method in controllable style synthesis and the benefits of diverse synthetic data for downstream segmentation. Code is available at https://github.com/han-liu/IntraStyler.
comment: Extension of our 1st place solution for the CrossMoDA 2023 challenge
☆ CropNeRF: A Neural Radiance Field-Based Framework for Crop Counting
Rigorous crop counting is crucial for effective agricultural management and informed intervention strategies. However, in outdoor field environments, partial occlusions combined with inherent ambiguity in distinguishing clustered crops from individual viewpoints poses an immense challenge for image-based segmentation methods. To address these problems, we introduce a novel crop counting framework designed for exact enumeration via 3D instance segmentation. Our approach utilizes 2D images captured from multiple viewpoints and associates independent instance masks for neural radiance field (NeRF) view synthesis. We introduce crop visibility and mask consistency scores, which are incorporated alongside 3D information from a NeRF model. This results in an effective segmentation of crop instances in 3D and highly-accurate crop counts. Furthermore, our method eliminates the dependence on crop-specific parameter tuning. We validate our framework on three agricultural datasets consisting of cotton bolls, apples, and pears, and demonstrate consistent counting performance despite major variations in crop color, shape, and size. A comparative analysis against the state of the art highlights superior performance on crop counting tasks. Lastly, we contribute a cotton plant dataset to advance further research on this topic.
comment: 8 pages, 10 figures, and 2 tables
☆ MorphAny3D: Unleashing the Power of Structured Latent in 3D Morphing
3D morphing remains challenging due to the difficulty of generating semantically consistent and temporally smooth deformations, especially across categories. We present MorphAny3D, a training-free framework that leverages Structured Latent (SLAT) representations for high-quality 3D morphing. Our key insight is that intelligently blending source and target SLAT features within the attention mechanisms of 3D generators naturally produces plausible morphing sequences. To this end, we introduce Morphing Cross-Attention (MCA), which fuses source and target information for structural coherence, and Temporal-Fused Self-Attention (TFSA), which enhances temporal consistency by incorporating features from preceding frames. An orientation correction strategy further mitigates the pose ambiguity within the morphing steps. Extensive experiments show that our method generates state-of-the-art morphing sequences, even for challenging cross-category cases. MorphAny3D further supports advanced applications such as decoupled morphing and 3D style transfer, and can be generalized to other SLAT-based generative models. Project page: https://xiaokunsun.github.io/MorphAny3D.github.io/.
comment: Project page: https://xiaokunsun.github.io/MorphAny3D.github.io/
☆ DichroGAN: Towards Restoration of in-air Colours of Seafloor from Satellite Imagery
Recovering the in-air colours of seafloor from satellite imagery is a challenging task due to the exponential attenuation of light with depth in the water column. In this study, we present DichroGAN, a conditional generative adversarial network (cGAN) designed for this purpose. DichroGAN employs a two-steps simultaneous training: first, two generators utilise a hyperspectral image cube to estimate diffuse and specular reflections, thereby obtaining atmospheric scene radiance. Next, a third generator receives as input the generated scene radiance containing the features of each spectral band, while a fourth generator estimates the underwater light transmission. These generators work together to remove the effects of light absorption and scattering, restoring the in-air colours of seafloor based on the underwater image formation equation. DichroGAN is trained on a compact dataset derived from PRISMA satellite imagery, comprising RGB images paired with their corresponding spectral bands and masks. Extensive experiments on both satellite and underwater datasets demonstrate that DichroGAN achieves competitive performance compared to state-of-the-art underwater restoration techniques.
comment: 11 pages, 6 figures
☆ Optimized Hybrid Feature Engineering for Resource-Efficient Arrhythmia Detection in ECG Signals: An Optimization Framework
Cardiovascular diseases, particularly arrhythmias, remain a leading global cause of mortality, necessitating continuous monitoring via the Internet of Medical Things (IoMT). However, state-of-the-art deep learning approaches often impose prohibitive computational overheads, rendering them unsuitable for resource-constrained edge devices. This study proposes a resource-efficient, data-centric framework that prioritizes feature engineering over complexity. Our optimized pipeline makes the complex, high-dimensional arrhythmia data linearly separable. This is achieved by integrating time-frequency wavelet decompositions with graph-theoretic structural descriptors, such as PageRank centrality. This hybrid feature space, combining wavelet decompositions and graph-theoretic descriptors, is then refined using mutual information and recursive elimination, enabling interpretable, ultra-lightweight linear classifiers. Validation on the MIT-BIH and INCART datasets yields 98.44% diagnostic accuracy with an 8.54 KB model footprint. The system achieves 0.46 $μ$s classification inference latency within a 52 ms per-beat pipeline, ensuring real-time operation. These outcomes provide an order-of-magnitude efficiency gain over compressed models, such as KD-Light (25 KB, 96.32% accuracy), advancing battery-less cardiac sensors.
☆ Focal-RegionFace: Generating Fine-Grained Multi-attribute Descriptions for Arbitrarily Selected Face Focal Regions
In this paper, we introduce an underexplored problem in facial analysis: generating and recognizing multi-attribute natural language descriptions, containing facial action units (AUs), emotional states, and age estimation, for arbitrarily selected face regions (termed FaceFocalDesc). We argue that the system's ability to focus on individual facial areas leads to better understanding and control. To achieve this capability, we construct a new multi-attribute description dataset for arbitrarily selected face regions, providing rich region-level annotations and natural language descriptions. Further, we propose a fine-tuned vision-language model based on Qwen2.5-VL, called Focal-RegionFace for facial state analysis, which incrementally refines its focus on localized facial features through multiple progressively fine-tuning stages, resulting in interpretable age estimation, FAU and emotion detection. Experimental results show that Focal-RegionFace achieves the best performance on the new benchmark in terms of traditional and widely used metrics, as well as new proposed metrics. This fully verifies its effectiveness and versatility in fine-grained multi-attribute face region-focal analysis scenarios.
☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
☆ Attention to Detail: Global-Local Attention for High-Resolution AI-Generated Image Detection
The rapid development of generative AI has made AI-generated images increasingly realistic and high-resolution. Most AI-generated image detection architectures typically downsample images before inputting them into models, risking the loss of fine-grained details. This paper presents GLASS (Global-Local Attention with Stratified Sampling), an architecture that combines a globally resized view with multiple randomly sampled local crops. These crops are original-resolution regions efficiently selected through spatially stratified sampling and aggregated using attention-based scoring. GLASS can be integrated into vision models to leverage both global and local information in images of any size. Vision Transformer, ResNet, and ConvNeXt models are used as backbones, and experiments show that GLASS outperforms standard transfer learning by achieving higher predictive performance within feasible computational constraints.
♻ ☆ A Low-Cost UAV Deep Learning Pipeline for Integrated Apple Disease Diagnosis,Freshness Assessment, and Fruit Detection
Apple orchards require timely disease detection, fruit quality assessment, and yield estimation, yet existing UAV-based systems address such tasks in isolation and often rely on costly multispectral sensors. This paper presents a unified, low-cost RGB-only UAV-based orchard intelligent pipeline integrating ResNet50 for leaf disease detection, VGG 16 for apple freshness determination, and YOLOv8 for real-time apple detection and localization. The system runs on an ESP32-CAM and Raspberry Pi, providing fully offline on-site inference without cloud support. Experiments demonstrate 98.9% accuracy for leaf disease classification, 97.4% accuracy for freshness classification, and 0.857 F1 score for apple detection. The framework provides an accessible and scalable alternative to multispectral UAV solutions, supporting practical precision agriculture on affordable hardware.
comment: This revision fixes minor typographical and phrasing issues
♻ ☆ FoundationSLAM: Unleashing the Power of Depth Foundation Models for End-to-End Dense Visual SLAM AAAI 2026
We present FoundationSLAM, a learning-based monocular dense SLAM system that addresses the absence of geometric consistency in previous flow-based approaches for accurate and robust tracking and mapping. Our core idea is to bridge flow estimation with geometric reasoning by leveraging the guidance from foundation depth models. To this end, we first develop a Hybrid Flow Network that produces geometry-aware correspondences, enabling consistent depth and pose inference across diverse keyframes. To enforce global consistency, we propose a Bi-Consistent Bundle Adjustment Layer that jointly optimizes keyframe pose and depth under multi-view constraints. Furthermore, we introduce a Reliability-Aware Refinement mechanism that dynamically adapts the flow update process by distinguishing between reliable and uncertain regions, forming a closed feedback loop between matching and optimization. Extensive experiments demonstrate that FoundationSLAM achieves superior trajectory accuracy and dense reconstruction quality across multiple challenging datasets, while running in real-time at 18 FPS, demonstrating strong generalization to various scenarios and practical applicability of our method.
comment: Accept at AAAI 2026 (Oral)
♻ ☆ Fair Domain Generalization: An Information-Theoretic View AAAI
Domain generalization (DG) and algorithmic fairness are two critical challenges in machine learning. However, most DG methods focus only on minimizing expected risk in the unseen target domain without considering algorithmic fairness. Conversely, fairness methods typically do not account for domain shifts, so the fairness achieved during training may not generalize to unseen test domains. In this work, we bridge these gaps by studying the problem of Fair Domain Generalization (FairDG), which aims to minimize both expected risk and fairness violations in unseen target domains. We derive novel mutual information-based upper bounds for expected risk and fairness violations in multi-class classification tasks with multi-group sensitive attributes. These bounds provide key insights for algorithm design from an information-theoretic perspective. Guided by these insights, we introduce PAFDG (Pareto-Optimal Fairness for Domain Generalization), a practical framework that solves the FairDG problem and models the utility-fairness trade-off through Pareto optimization. Experiments on real-world vision and language datasets show that PAFDG achieves superior utility-fairness trade-offs compared to existing methods.
comment: Accepted at AAAI (Oral)
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Late-interaction multimodal retrieval models like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they operate at page-level granularity, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on area efficiency. We evaluate on BBox-DocVQA with ground-truth bounding boxes. For within-page localization (given correct page retrieval), ColQwen3-4B with percentile-50 thresholding achieves 59.7% hit rate at IoU@0.5 (84.4% at IoU@0.25, 35.8% at IoU@0.7), with mean IoU of 0.569, compared to ~6.7% for random region selection. Our approach reduces context tokens by 28.8% compared to returning all OCR regions and by 52.3% compared to full-page image tokens. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation at https://github.com/athrael-soju/Snappy.
comment: 21 pages, 6 figures, 8 tables. Includes ancillary files with full benchmark results and ablation studies. Code available at https://github.com/athrael-soju/Snappy
♻ ☆ Efficient Multi-Task Scene Analysis with RGB-D Transformers IJCNN 2023
Scene analysis is essential for enabling autonomous systems, such as mobile robots, to operate in real-world environments. However, obtaining a comprehensive understanding of the scene requires solving multiple tasks, such as panoptic segmentation, instance orientation estimation, and scene classification. Solving these tasks given limited computing and battery capabilities on mobile platforms is challenging. To address this challenge, we introduce an efficient multi-task scene analysis approach, called EMSAFormer, that uses an RGB-D Transformer-based encoder to simultaneously perform the aforementioned tasks. Our approach builds upon the previously published EMSANet. However, we show that the dual CNN-based encoder of EMSANet can be replaced with a single Transformer-based encoder. To achieve this, we investigate how information from both RGB and depth data can be effectively incorporated in a single encoder. To accelerate inference on robotic hardware, we provide a custom NVIDIA TensorRT extension enabling highly optimization for our EMSAFormer approach. Through extensive experiments on the commonly used indoor datasets NYUv2, SUNRGB-D, and ScanNet, we show that our approach achieves state-of-the-art performance while still enabling inference with up to 39.1 FPS on an NVIDIA Jetson AGX Orin 32 GB.
comment: Published in Proc. International Joint Conference on Neural Networks (IJCNN 2023)
♻ ☆ Body-Hand Modality Expertized Networks with Cross-attention for Fine-grained Skeleton Action Recognition IROS 2025
Skeleton-based Human Action Recognition (HAR) is a vital technology in robotics and human-robot interaction. However, most existing methods concentrate primarily on full-body movements and often overlook subtle hand motions that are critical for distinguishing fine-grained actions. Recent work leverages a unified graph representation that combines body, hand, and foot keypoints to capture detailed body dynamics. Yet, these models often blur fine hand details due to the disparity between body and hand action characteristics and the loss of subtle features during the spatial-pooling. In this paper, we propose BHaRNet (Body-Hand action Recognition Network), a novel framework that augments a typical body-expert model with a hand-expert model. Our model jointly trains both streams with an ensemble loss that fosters cooperative specialization, functioning in a manner reminiscent of a Mixture-of-Experts (MoE). Moreover, cross-attention is employed via an expertized branch method and a pooling-attention module to enable feature-level interactions and selectively fuse complementary information. Inspired by MMNet, we also demonstrate the applicability of our approach to multi-modal tasks by leveraging RGB information, where body features guide RGB learning to capture richer contextual cues. Experiments on large-scale benchmarks (NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, and Northwestern-UCLA) demonstrate that BHaRNet achieves SOTA accuracies -- improving from 86.4\% to 93.0\% in hand-intensive actions -- while maintaining fewer GFLOPs and parameters than the relevant unified methods.
comment: 7 figures, 8 pages. Accepted to IROS 2025, project page: https://github.com/VinnyCSY/BHaRNet
♻ ☆ LLM-Guided Exemplar Selection for Few-Shot Wearable-Sensor Human Activity Recognition
In this paper, we propose an LLM-Guided Exemplar Selection framework to address a key limitation in state-of-the-art Human Activity Recognition (HAR) methods: their reliance on large labeled datasets and purely geometric exemplar selection, which often fail to distinguish similar wearable sensor activities such as walking, walking upstairs, and walking downstairs. Our method incorporates semantic reasoning via an LLM-generated knowledge prior that captures feature importance, inter-class confusability, and exemplar budget multipliers, and uses it to guide exemplar scoring and selection. These priors are combined with margin-based validation cues, PageRank centrality, hubness penalization, and facility-location optimization to obtain a compact and informative set of exemplars. Evaluated on the UCI-HAR dataset under strict few-shot conditions, the framework achieves a macro F1-score of 88.78%, outperforming classical approaches such as random sampling, herding, and k-center. The results show that LLM-derived semantic priors, when integrated with structural and geometric cues, provide a stronger foundation for selecting representative sensor exemplars in few-shot wearable-sensor HAR.
comment: This paper has been accepted for presentation at ABC 2026. The manuscript is under revision prior to camera-ready submission
♻ ☆ StyGazeTalk: Learning Stylized Generation of Gaze and Head Dynamics
Gaze and head movements play a central role in expressive 3D media, human-agent interaction, and immersive communication. Existing works often model facial components in isolation and lack mechanisms for generating personalized, style-aware gaze behaviors. We propose StyGazeTalk, a multimodal framework that synthesizes synchronized gaze-head dynamics with controllable styles. To support high-fidelity training, we construct HAGE, a high-precision multimodal dataset containing eye-tracking data, audio, head pose, and 3D facial parameters. Experiments show that our method produces temporally coherent, style-consistent gaze-head motions, enhancing realism in 3D face generation.
comment: arXiv submission
♻ ☆ GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, GLM-4.5V, and GLM-4.6V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. We further introduce the GLM-4.6V series, open-source multimodal models with native tool use and a 128K context window. A brief overview is available at https://z.ai/blog/glm-4.6v. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ Stereo-GS: Multi-View Stereo Vision Model for Generalizable 3D Gaussian Splatting Reconstruction
Generalizable 3D Gaussian Splatting reconstruction showcases advanced Image-to-3D content creation but requires substantial computational resources and large datasets, posing challenges to training models from scratch. Current methods usually entangle the prediction of 3D Gaussian geometry and appearance, which rely heavily on data-driven priors and result in slow regression speeds. To address this, we propose \method, a disentangled framework for efficient 3D Gaussian prediction. Our method extracts features from local image pairs using a stereo vision backbone and fuses them via global attention blocks. Dedicated point and Gaussian prediction heads generate multi-view point-maps for geometry and Gaussian features for appearance, combined as GS-maps to represent the 3DGS object. A refinement network enhances these GS-maps for high-quality reconstruction. Unlike existing methods that depend on camera parameters, our approach achieves pose-free 3D reconstruction, improving robustness and practicality. By reducing resource demands while maintaining high-quality outputs, \method provides an efficient, scalable solution for real-world 3D content generation.
comment: ACM Multimedia 2025
♻ ☆ CrownGen: Patient-customized Crown Generation via Point Diffusion Model
Digital crown design remains a labor-intensive bottleneck in restorative dentistry. We present CrownGen, a generative framework that automates patient-customized crown design using a denoising diffusion model on a novel tooth-level point cloud representation. The system employs two core components: a boundary prediction module to establish spatial priors and a diffusion-based generative module to synthesize high-fidelity morphology for multiple teeth in a single inference pass. We validated CrownGen through a quantitative benchmark on 496 external scans and a clinical study of 26 restoration cases. Results demonstrate that CrownGen surpasses state-of-the-art models in geometric fidelity and significantly reduces active design time. Clinical assessments by trained dentists confirmed that CrownGen-assisted crowns are statistically non-inferior in quality to those produced by expert technicians using manual workflows. By automating complex prosthetic modeling, CrownGen offers a scalable solution to lower costs, shorten turnaround times, and enhance patient access to high-quality dental care.
♻ ☆ UltraGS: Real-Time Physically-Decoupled Gaussian Splatting for Ultrasound Novel View Synthesis
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view poses challenges for novel view synthesis. We present UltraGS, a real-time framework that adapts Gaussian Splatting to sensorless ultrasound imaging by integrating explicit radiance fields with lightweight, physics-inspired acoustic modeling. UltraGS employs depth-aware Gaussian primitives with learnable fields of view to improve geometric consistency under unconstrained probe motion, and introduces PD Rendering, a differentiable acoustic operator that combines low-order spherical harmonics with first-order wave effects for efficient intensity synthesis. We further present a clinical ultrasound dataset acquired under real-world scanning protocols. Extensive evaluations across three datasets demonstrate that UltraGS establishes a new performance-efficiency frontier, achieving state-of-the-art results in PSNR (up to 29.55) and SSIM (up to 0.89) while achieving real-time synthesis at 64.69 fps on a single GPU. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.
comment: Under Review
♻ ☆ Do Vision Encoders Truly Explain Object Hallucination?: Mitigating Object Hallucination via Simple Fine-Grained CLIPScore
Recently, Large Vision-Language Models (LVLMs) show remarkable performance across various domains. However, these models suffer from object hallucination. In this work, we study object hallucination primarily in a discriminative, retrieval-style evaluation setting (OHD-Caps), rather than in free-form caption generation. This study revisits the previous claim that the cause of such hallucinations lies in the limited representational capacity of the vision encoder. Our analysis implies that the capacity of the vision encoder is not necessarily a major limiting factor in detecting object hallucination. Based on this insight, we propose Fine-grained CLIPScore (F-CLIPScore), a simple yet effective evaluation metric that enhances object-level granularity by incorporating text embeddings at the noun level. Evaluations on the OHD-Caps benchmark show that F-CLIPScore significantly outperforms conventional CLIPScore in accuracy by a large margin of 39.6% without additional training. We further demonstrate that F-CLIPScore-based data filtering reduces object hallucination in LVLM (4.9% in POPE accuracy after alignment pretraining). Our code is publicly available at https://github.com/abzb1/f-clip
comment: Transactions on Machine Learning Research
♻ ☆ A Survey on 3D Gaussian Splatting Applications: Segmentation, Editing, and Generation
In the context of novel view synthesis, 3D Gaussian Splatting (3DGS) has recently emerged as an efficient and competitive counterpart to Neural Radiance Field (NeRF), enabling high-fidelity photorealistic rendering in real time. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into three foundational tasks: segmentation, editing, and generation, alongside additional functional applications built upon or tightly coupled with these foundational capabilities. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.
comment: GitHub Repo: https://github.com/heshuting555/Awesome-3DGS-Applications
♻ ☆ ATRNet-STAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
The absence of publicly available, large-scale, high-quality datasets for Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has significantly hindered the application of rapidly advancing deep learning techniques, which hold huge potential to unlock new capabilities in this field. This is primarily because collecting large volumes of diverse target samples from SAR images is prohibitively expensive, largely due to privacy concerns, the characteristics of microwave radar imagery perception, and the need for specialized expertise in data annotation. Throughout the history of SAR ATR research, there have been only a number of small datasets, mainly including targets like ships, airplanes, buildings, etc. There is only one vehicle dataset MSTAR collected in the 1990s, which has been a valuable source for SAR ATR. To fill this gap, this paper introduces a large-scale, new dataset named ATRNet-STAR with 40 different vehicle categories collected under various realistic imaging conditions and scenes. It marks a substantial advancement in dataset scale and diversity, comprising over 190,000 well-annotated samples, 10 times larger than its predecessor, the famous MSTAR. Building such a large dataset is a challenging task, and the data collection scheme will be detailed. Secondly, we illustrate the value of ATRNet-STAR via extensively evaluating the performance of 15 representative methods with 7 different experimental settings on challenging classification and detection benchmarks derived from the dataset. Finally, based on our extensive experiments, we identify valuable insights for SAR ATR and discuss potential future research directions in this field. We hope that the scale, diversity, and benchmark of ATRNet-STAR can significantly facilitate the advancement of SAR ATR.
comment: 17 pages, 12 figures; Homepage: https://github.com/waterdisappear/ATRNet-STAR
♻ ☆ HiSin: A Sinogram-Aware Framework for Efficient High-Resolution Inpainting
High-resolution sinogram inpainting is essential for computed tomography reconstruction, as missing high-frequency projections can lead to visible artifacts and diagnostic errors. Diffusion models are well-suited for this task due to their robustness and detail-preserving capabilities, but their application to high-resolution inputs is limited by excessive memory and computational demands. To address this limitation, we propose HiSin, a novel diffusion-based framework for efficient sinogram inpainting that exploits spectral sparsity and structural heterogeneity of projection data. It progressively extracts global structure at low resolution and defers high-resolution inference to small patches, enabling memory-efficient inpainting. Considering the structural features of sinograms, we incorporate frequency-aware patch skipping and structure-adaptive step allocation to reduce redundant computation. Experimental results show that HiSin reduces peak memory usage by up to 30.81% and inference time by up to 17.58% than the state-of-the-art framework, and maintains inpainting accuracy across.
♻ ☆ YOLO-IOD: Towards Real Time Incremental Object Detection AAAI 2026
Current methods for incremental object detection (IOD) primarily rely on Faster R-CNN or DETR series detectors; however, these approaches do not accommodate the real-time YOLO detection frameworks. In this paper, we first identify three primary types of knowledge conflicts that contribute to catastrophic forgetting in YOLO-based incremental detectors: foreground-background confusion, parameter interference, and misaligned knowledge distillation. Subsequently, we introduce YOLO-IOD, a real-time Incremental Object Detection (IOD) framework that is constructed upon the pretrained YOLO-World model, facilitating incremental learning via a stage-wise parameter-efficient fine-tuning process. Specifically, YOLO-IOD encompasses three principal components: 1) Conflict-Aware Pseudo-Label Refinement (CPR), which mitigates the foreground-background confusion by leveraging the confidence levels of pseudo labels and identifying potential objects relevant to future tasks. 2) Importancebased Kernel Selection (IKS), which identifies and updates the pivotal convolution kernels pertinent to the current task during the current learning stage. 3) Cross-Stage Asymmetric Knowledge Distillation (CAKD), which addresses the misaligned knowledge distillation conflict by transmitting the features of the student target detector through the detection heads of both the previous and current teacher detectors, thereby facilitating asymmetric distillation between existing and newly introduced categories. We further introduce LoCo COCO, a more realistic benchmark that eliminates data leakage across stages. Experiments on both conventional and LoCo COCO benchmarks show that YOLO-IOD achieves superior performance with minimal forgetting.
comment: AAAI 2026 accepted. Code & models are available at: https://github.com/qiangzai-lv/YOLO-IOD
♻ ☆ WorldMem: Long-term Consistent World Simulation with Memory
World simulation has gained increasing popularity due to its ability to model virtual environments and predict the consequences of actions. However, the limited temporal context window often leads to failures in maintaining long-term consistency, particularly in preserving 3D spatial consistency. In this work, we present WorldMem, a framework that enhances scene generation with a memory bank consisting of memory units that store memory frames and states (e.g., poses and timestamps). By employing a memory attention mechanism that effectively extracts relevant information from these memory frames based on their states, our method is capable of accurately reconstructing previously observed scenes, even under significant viewpoint or temporal gaps. Furthermore, by incorporating timestamps into the states, our framework not only models a static world but also captures its dynamic evolution over time, enabling both perception and interaction within the simulated world. Extensive experiments in both virtual and real scenarios validate the effectiveness of our approach.
comment: Project page at https://xizaoqu.github.io/worldmem/
♻ ☆ Physically-Grounded Manifold Projection Model for Generalizable Metal Artifact Reduction in Dental CBCT
Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP.
comment: This manuscript has been submitted to Medical Image Analysis for peer review
♻ ☆ AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection ICLR 2024
Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
comment: Accepted by ICLR 2024
♻ ☆ AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving
Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. We release all the codes and datasets in https://github.com/taco-group/AutoTrust.
comment: Published at TMLR 2025
Artificial Intelligence 72
☆ MotionPhysics: Learnable Motion Distillation for Text-Guided Simulation AAAI2026
Accurately simulating existing 3D objects and a wide variety of materials often demands expert knowledge and time-consuming physical parameter tuning to achieve the desired dynamic behavior. We introduce MotionPhysics, an end-to-end differentiable framework that infers plausible physical parameters from a user-provided natural language prompt for a chosen 3D scene of interest, removing the need for guidance from ground-truth trajectories or annotated videos. Our approach first utilizes a multimodal large language model to estimate material parameter values, which are constrained to lie within plausible ranges. We further propose a learnable motion distillation loss that extracts robust motion priors from pretrained video diffusion models while minimizing appearance and geometry inductive biases to guide the simulation. We evaluate MotionPhysics across more than thirty scenarios, including real-world, human-designed, and AI-generated 3D objects, spanning a wide range of materials such as elastic solids, metals, foams, sand, and both Newtonian and non-Newtonian fluids. We demonstrate that MotionPhysics produces visually realistic dynamic simulations guided by natural language, surpassing the state of the art while automatically determining physically plausible parameters. The code and project page are available at: https://wangmiaowei.github.io/MotionPhysics.github.io/.
comment: AAAI2026 Accepted
☆ Multi-Agent Coordinated Rename Refactoring
The primary value of AI agents in software development lies in their ability to extend the developer's capacity for reasoning and action, not to supplant human involvement. To showcase how to use agents working in tandem with developers, we designed a novel approach for carrying out coordinated renaming. Coordinated renaming, where a single rename refactoring triggers refactorings in multiple, related identifiers, is a frequent yet challenging task. Developers must manually propagate these rename refactorings across numerous files and contexts, a process that is both tedious and highly error-prone. State-of-the-art heuristic-based approaches produce an overwhelming number of false positives, while vanilla Large Language Models (LLMs) provide incomplete suggestions due to their limited context and inability to interact with refactoring tools. This leaves developers with incomplete refactorings or burdens them with filtering too many false positives. Coordinated renaming is exactly the kind of repetitive task that agents can significantly reduce the developers' burden while keeping them in the driver's seat. We designed, implemented, and evaluated the first multi-agent framework that automates coordinated renaming. It operates on a key insight: a developer's initial refactoring is a clue to infer the scope of related refactorings. Our Scope Inference Agent first transforms this clue into an explicit, natural-language Declared Scope. The Planned Execution Agent then uses this as a strict plan to identify program elements that should undergo refactoring and safely executes the changes by invoking the IDE's own trusted refactoring APIs. Finally, the Replication Agent uses it to guide the project-wide search. We first conducted a formative study on the practice of coordinated renaming in 609K commits in 100 open-source projects and surveyed 205 developers ...
☆ MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability
We present MAESTRO, an evaluation suite for the testing, reliability, and observability of LLM-based MAS. MAESTRO standardizes MAS configuration and execution through a unified interface, supports integrating both native and third-party MAS via a repository of examples and lightweight adapters, and exports framework-agnostic execution traces together with system-level signals (e.g., latency, cost, and failures). We instantiate MAESTRO with 12 representative MAS spanning popular agentic frameworks and interaction patterns, and conduct controlled experiments across repeated runs, backend models, and tool configurations. Our case studies show that MAS executions can be structurally stable yet temporally variable, leading to substantial run-to-run variance in performance and reliability. We further find that MAS architecture is the dominant driver of resource profiles, reproducibility, and cost-latency-accuracy trade-off, often outweighing changes in backend models or tool settings. Overall, MAESTRO enables systematic evaluation and provides empirical guidance for designing and optimizing agentic systems.
☆ Progressive Ideation using an Agentic AI Framework for Human-AI Co-Creation
The generation of truly novel and diverse ideas is important for contemporary engineering design, yet it remains a significant cognitive challenge for novice designers. Current 'single-spurt' AI systems exacerbate this challenge by producing a high volume of semantically clustered ideas. We propose MIDAS (Meta-cognitive Ideation through Distributed Agentic AI System), a novel framework that replaces the single-AI paradigm with a distributed 'team' of specialized AI agents designed to emulate the human meta-cognitive ideation workflow. This agentic system progressively refines ideas and assesses each one for both global novelty (against existing solutions) and local novelty (against previously generated ideas). MIDAS, therefore, demonstrates a viable and progressive paradigm for true human-AI co-creation, elevating the human designer from a passive filterer to a participatory, active, collaborative partner.
comment: 21 pages, 11 figures
☆ Neural Chains and Discrete Dynamical Systems
We inspect the analogy between machine-learning (ML) applications based on the transformer architecture without self-attention, {\it neural chains} hereafter, and discrete dynamical systems associated with discretised versions of neural integral and partial differential equations (NIE, PDE). A comparative analysis of the numerical solution of the (viscid and inviscid) Burgers and Eikonal equations via standard numerical discretization (also cast in terms of neural chains) and via PINN's learning is presented and commented on. It is found that standard numerical discretization and PINN learning provide two different paths to acquire essentially the same knowledge about the dynamics of the system. PINN learning proceeds through random matrices which bear no direct relation to the highly structured matrices associated with finite-difference (FD) procedures. Random matrices leading to acceptable solutions are far more numerous than the unique tridiagonal form in matrix space, which explains why the PINN search typically lands on the random ensemble. The price is a much larger number of parameters, causing lack of physical transparency (explainability) as well as large training costs with no counterpart in the FD procedure. However, our results refer to one-dimensional dynamic problems, hence they don't rule out the possibility that PINNs and ML in general, may offer better strategies for high-dimensional problems.
☆ Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations
Mixture-of-Experts (MoE) models achieve efficiency through sparse activation, but the role of geometric regularization in expert specialization remains unclear. We apply orthogonality loss to enforce expert diversity and find it fails on multiple fronts: it does not reduce weight-space overlap (MSO actually increases by up to 114%), activation-space overlap remains high (~0.6) regardless of regularization, and effects on performance are inconsistent -- marginal improvement on WikiText-103 (-0.9%), slight degradation on TinyStories (+0.9%), and highly variable results on PTB (std > 1.0). Our analysis across 7 regularization strengths reveals no significant correlation (r = -0.293, p = 0.523) between weight and activation orthogonality. These findings demonstrate that weight-space regularization neither achieves its geometric goal nor reliably improves performance, making it unsuitable for MoE diversity.
☆ Deep Networks Learn Deep Hierarchical Models
We consider supervised learning with $n$ labels and show that layerwise SGD on residual networks can efficiently learn a class of hierarchical models. This model class assumes the existence of an (unknown) label hierarchy $L_1 \subseteq L_2 \subseteq \dots \subseteq L_r = [n]$, where labels in $L_1$ are simple functions of the input, while for $i > 1$, labels in $L_i$ are simple functions of simpler labels. Our class surpasses models that were previously shown to be learnable by deep learning algorithms, in the sense that it reaches the depth limit of efficient learnability. That is, there are models in this class that require polynomial depth to express, whereas previous models can be computed by log-depth circuits. Furthermore, we suggest that learnability of such hierarchical models might eventually form a basis for understanding deep learning. Beyond their natural fit for domains where deep learning excels, we argue that the mere existence of human ``teachers" supports the hypothesis that hierarchical structures are inherently available. By providing granular labels, teachers effectively reveal ``hints'' or ``snippets'' of the internal algorithms used by the brain. We formalize this intuition, showing that in a simplified model where a teacher is partially aware of their internal logic, a hierarchical structure emerges that facilitates efficient learnability.
☆ Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations
Guardrail models are essential for ensuring the safety of Large Language Model (LLM) deployments, but processing full multi-turn conversation histories incurs significant computational cost. We propose Defensive M2S, a training paradigm that fine-tunes guardrail models on Multi-turn to Single-turn (M2S) compressed conversations rather than complete dialogue histories. We provide a formal complexity analysis showing that M2S reduces training cost from $O(n^2)$ to $O(n)$ for $n$-turn conversations. Empirically, on our training dataset (779 samples, avg. 10.6 turns), M2S requires only 169K tokens compared to 15.7M tokens for the multi-turn baseline -- a 93$\times$ reduction. We evaluate Defensive M2S across three guardrail model families (LlamaGuard, Nemotron, Qwen3Guard) and three compression templates (hyphenize, numberize, pythonize) on SafeDialBench, a comprehensive multi-turn jailbreak benchmark. Our best configuration, Qwen3Guard with hyphenize compression, achieves 93.8% attack detection recall while reducing inference tokens by 94.6% (from 3,231 to 173 tokens per conversation). This represents a 38.9 percentage point improvement over the baseline while dramatically reducing both training and inference costs. Our findings demonstrate that M2S compression can serve as an effective efficiency technique for guardrail deployment, enabling scalable safety screening of long multi-turn conversations.
☆ Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games
Large language models (LLMs) offer a new empirical setting in which long-standing theories of linguistic meaning can be examined. This paper contrasts two broad approaches: social constructivist accounts associated with language games, and a mathematically oriented framework we call Semantic Field Theory. Building on earlier work by the author, we formalize the notions of lexical fields (Lexfelder) and linguistic fields (Lingofelder) as interacting structures in a continuous semantic space. We then analyze how core properties of transformer architectures-such as distributed representations, attention mechanisms, and geometric regularities in embedding spaces-relate to these concepts. We argue that the success of LLMs in capturing semantic regularities supports the view that language exhibits an underlying mathematical structure, while their persistent limitations in pragmatic reasoning and context sensitivity are consistent with the importance of social grounding emphasized in philosophical accounts of language use. On this basis, we suggest that mathematical structure and language games can be understood as complementary rather than competing perspectives. The resulting framework clarifies the scope and limits of purely statistical models of language and motivates new directions for theoretically informed AI architectures.
☆ RMAAT: Astrocyte-Inspired Memory Compression and Replay for Efficient Long-Context Transformers
The quadratic complexity of self-attention mechanism presents a significant impediment to applying Transformer models to long sequences. This work explores computational principles derived from astrocytes-glial cells critical for biological memory and synaptic modulation-as a complementary approach to conventional architectural modifications for efficient self-attention. We introduce the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), an architecture integrating abstracted astrocyte functionalities. RMAAT employs a recurrent, segment-based processing strategy where persistent memory tokens propagate contextual information. An adaptive compression mechanism, governed by a novel retention factor derived from simulated astrocyte long-term plasticity (LTP), modulates these tokens. Attention within segments utilizes an efficient, linear-complexity mechanism inspired by astrocyte short-term plasticity (STP). Training is performed using Astrocytic Memory Replay Backpropagation (AMRB), a novel algorithm designed for memory efficiency in recurrent networks. Evaluations on the Long Range Arena (LRA) benchmark demonstrate RMAAT's competitive accuracy and substantial improvements in computational and memory efficiency, indicating the potential of incorporating astrocyte-inspired dynamics into scalable sequence models.
☆ E-GRPO: High Entropy Steps Drive Effective Reinforcement Learning for Flow Models
Recent reinforcement learning has enhanced the flow matching models on human preference alignment. While stochastic sampling enables the exploration of denoising directions, existing methods which optimize over multiple denoising steps suffer from sparse and ambiguous reward signals. We observe that the high entropy steps enable more efficient and effective exploration while the low entropy steps result in undistinguished roll-outs. To this end, we propose E-GRPO, an entropy aware Group Relative Policy Optimization to increase the entropy of SDE sampling steps. Since the integration of stochastic differential equations suffer from ambiguous reward signals due to stochasticity from multiple steps, we specifically merge consecutive low entropy steps to formulate one high entropy step for SDE sampling, while applying ODE sampling on other steps. Building upon this, we introduce multi-step group normalized advantage, which computes group-relative advantages within samples sharing the same consolidated SDE denoising step. Experimental results on different reward settings have demonstrated the effectiveness of our methods.
comment: Code: https://github.com/shengjun-zhang/VisualGRPO
☆ Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications
This paper explores how semantic-space reasoning, traditionally used in computational linguistics, can be extended to tactical decision-making in team sports. Building on the analogy between texts and teams -- where players act as words and collective play conveys meaning -- the proposed methodology models tactical configurations as compositional semantic structures. Each player is represented as a multidimensional vector integrating technical, physical, and psychological attributes; team profiles are aggregated through contextual weighting into a higher-level semantic representation. Within this shared vector space, tactical templates such as high press, counterattack, or possession build-up are encoded analogously to linguistic concepts. Their alignment with team profiles is evaluated using vector-distance metrics, enabling the computation of tactical ``fit'' and opponent-exploitation potential. A Python-based prototype demonstrates how these methods can generate interpretable, dynamically adaptive strategy recommendations, accompanied by fine-grained diagnostic insights at the attribute level. Beyond football, the approach offers a generalizable framework for collective decision-making and performance optimization in team-based domains -- ranging from basketball and hockey to cooperative robotics and human-AI coordination systems. The paper concludes by outlining future directions toward real-world data integration, predictive simulation, and hybrid human-machine tactical intelligence.
comment: Submitted to Sci (MDPI) for peer review
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset
We present judgeWEL, a dataset for named entity recognition (NER) in Luxembourgish, automatically labelled and subsequently verified using large language models (LLM) in a novel pipeline. Building datasets for under-represented languages remains one of the major bottlenecks in natural language processing, where the scarcity of resources and linguistic particularities make large-scale annotation costly and potentially inconsistent. To address these challenges, we propose and evaluate a novel approach that leverages Wikipedia and Wikidata as structured sources of weak supervision. By exploiting internal links within Wikipedia articles, we infer entity types based on their corresponding Wikidata entries, thereby generating initial annotations with minimal human intervention. Because such links are not uniformly reliable, we mitigate noise by employing and comparing several LLMs to identify and retain only high-quality labelled sentences. The resulting corpus is approximately five times larger than the currently available Luxembourgish NER dataset and offers broader and more balanced coverage across entity categories, providing a substantial new resource for multilingual and low-resource NER research.
☆ Adaptive Causal Coordination Detection for Social Media: A Memory-Guided Framework with Semi-Supervised Learning
Detecting coordinated inauthentic behavior on social media remains a critical and persistent challenge, as most existing approaches rely on superficial correlation analysis, employ static parameter settings, and demand extensive and labor-intensive manual annotation. To address these limitations systematically, we propose the Adaptive Causal Coordination Detection (ACCD) framework. ACCD adopts a three-stage, progressive architecture that leverages a memory-guided adaptive mechanism to dynamically learn and retain optimal detection configurations for diverse coordination scenarios. Specifically, in the first stage, ACCD introduces an adaptive Convergent Cross Mapping (CCM) technique to deeply identify genuine causal relationships between accounts. The second stage integrates active learning with uncertainty sampling within a semi-supervised classification scheme, significantly reducing the burden of manual labeling. The third stage deploys an automated validation module driven by historical detection experience, enabling self-verification and optimization of the detection outcomes. We conduct a comprehensive evaluation using real-world datasets, including the Twitter IRA dataset, Reddit coordination traces, and several widely-adopted bot detection benchmarks. Experimental results demonstrate that ACCD achieves an F1-score of 87.3\% in coordinated attack detection, representing a 15.2\% improvement over the strongest existing baseline. Furthermore, the system reduces manual annotation requirements by 68\% and achieves a 2.8x speedup in processing through hierarchical clustering optimization. In summary, ACCD provides a more accurate, efficient, and highly automated end-to-end solution for identifying coordinated behavior on social platforms, offering substantial practical value and promising potential for broad application.
comment: 15 pages, 8 figures. Under review
☆ Engineering Attack Vectors and Detecting Anomalies in Additive Manufacturing SP 2025
Additive manufacturing (AM) is rapidly integrating into critical sectors such as aerospace, automotive, and healthcare. However, this cyber-physical convergence introduces new attack surfaces, especially at the interface between computer-aided design (CAD) and machine execution layers. In this work, we investigate targeted cyberattacks on two widely used fused deposition modeling (FDM) systems, Creality's flagship model K1 Max, and Ender 3. Our threat model is a multi-layered Man-in-the-Middle (MitM) intrusion, where the adversary intercepts and manipulates G-code files during upload from the user interface to the printer firmware. The MitM intrusion chain enables several stealthy sabotage scenarios. These attacks remain undetectable by conventional slicer software or runtime interfaces, resulting in structurally defective yet externally plausible printed parts. To counter these stealthy threats, we propose an unsupervised Intrusion Detection System (IDS) that analyzes structured machine logs generated during live printing. Our defense mechanism uses a frozen Transformer-based encoder (a BERT variant) to extract semantic representations of system behavior, followed by a contrastively trained projection head that learns anomaly-sensitive embeddings. Later, a clustering-based approach and a self-attention autoencoder are used for classification. Experimental results demonstrate that our approach effectively distinguishes between benign and compromised executions.
comment: This paper has been accepted to EAI SmartSP 2025. This is the preprint version
☆ Word Frequency Counting Based on Serverless MapReduce
With the increasing demand for high-performance and high-efficiency computing, cloud computing, especially serverless computing, has gradually become a research hotspot in recent years, attracting numerous research attention. Meanwhile, MapReduce, which is a popular big data processing model in the industry, has been widely applied in various fields. Inspired by the serverless framework of Function as a Service and the high concurrency and robustness of MapReduce programming model, this paper focus on combining them to reduce the time span and increase the efficiency when executing the word frequency counting task. In this case, the paper use a MapReduce programming model based on a serverless computing platform to figure out the most optimized number of Map functions and Reduce functions for a particular task. For the same amount of workload, extensive experiments show both execution time reduces and the overall efficiency of the program improves at different rates as the number of map functions and reduce functions increases. This paper suppose the discovery of the most optimized number of map and reduce functions can help cooperations and programmers figure out the most optimized solutions.
comment: 6 pages, 4 figures, International Conference on Engineering Management, Information Technology and Intelligence (EMITI 2024)
☆ In Line with Context: Repository-Level Code Generation via Context Inlining
Repository-level code generation has attracted growing attention in recent years. Unlike function-level code generation, it requires the model to understand the entire repository, reasoning over complex dependencies across functions, classes, and modules. However, existing approaches such as retrieval-augmented generation (RAG) or context-based function selection often fall short: they primarily rely on surface-level similarity and struggle to capture the rich dependencies that govern repository-level semantics. In this paper, we introduce InlineCoder, a novel framework for repository-level code generation. InlineCoder enhances the understanding of repository context by inlining the unfinished function into its call graph, thereby reframing the challenging repository understanding as an easier function-level coding task. Given a function signature, InlineCoder first generates a draft completion, termed an anchor, which approximates downstream dependencies and enables perplexity-based confidence estimation. This anchor drives a bidirectional inlining process: (i) Upstream Inlining, which embeds the anchor into its callers to capture diverse usage scenarios; and (ii) Downstream Retrieval, which integrates the anchor's callees into the prompt to provide precise dependency context. The enriched context, combining draft completion with upstream and downstream perspectives, equips the LLM with a comprehensive repository view.
comment: Accepted to FSE 2026
☆ PatchBlock: A Lightweight Defense Against Adversarial Patches for Embedded EdgeAI Devices DATE 2026
Adversarial attacks pose a significant challenge to the reliable deployment of machine learning models in EdgeAI applications, such as autonomous driving and surveillance, which rely on resource-constrained devices for real-time inference. Among these, patch-based adversarial attacks, where small malicious patches (e.g., stickers) are applied to objects, can deceive neural networks into making incorrect predictions with potentially severe consequences. In this paper, we present PatchBlock, a lightweight framework designed to detect and neutralize adversarial patches in images. Leveraging outlier detection and dimensionality reduction, PatchBlock identifies regions affected by adversarial noise and suppresses their impact. It operates as a pre-processing module at the sensor level, efficiently running on CPUs in parallel with GPU inference, thus preserving system throughput while avoiding additional GPU overhead. The framework follows a three-stage pipeline: splitting the input into chunks (Chunking), detecting anomalous regions via a redesigned isolation forest with targeted cuts for faster convergence (Separating), and applying dimensionality reduction on the identified outliers (Mitigating). PatchBlock is both model- and patch-agnostic, can be retrofitted to existing pipelines, and integrates seamlessly between sensor inputs and downstream models. Evaluations across multiple neural architectures, benchmark datasets, attack types, and diverse edge devices demonstrate that PatchBlock consistently improves robustness, recovering up to 77% of model accuracy under strong patch attacks such as the Google Adversarial Patch, while maintaining high portability and minimal clean accuracy loss. Additionally, PatchBlock outperforms the state-of-the-art defenses in efficiency, in terms of computation time and energy consumption per sample, making it suitable for EdgeAI applications.
comment: 7 pages, 5 figures, 5 tables, Accepted to DATE 2026
BERT-JEPA: Reorganizing CLS Embeddings for Language-Invariant Semantics
Joint Embedding Predictive Architectures (JEPA) are a novel self supervised training technique that have shown recent promise across domains. We introduce BERT-JEPA (BEPA), a training paradigm that adds a JEPA training objective to BERT-style models, working to combat a collapsed [CLS] embedding space and turning it into a language-agnostic space. This new structure leads to increased performance across multilingual benchmarks.
comment: 16 pages, 10 figures, 10 tables
☆ Mapping Human Anti-collusion Mechanisms to Multi-agent AI
As multi-agent AI systems become increasingly autonomous, evidence shows they can develop collusive strategies similar to those long observed in human markets and institutions. While human domains have accumulated centuries of anti-collusion mechanisms, it remains unclear how these can be adapted to AI settings. This paper addresses that gap by (i) developing a taxonomy of human anti-collusion mechanisms, including sanctions, leniency & whistleblowing, monitoring & auditing, market design, and governance and (ii) mapping them to potential interventions for multi-agent AI systems. For each mechanism, we propose implementation approaches. We also highlight open challenges, such as the attribution problem (difficulty attributing emergent coordination to specific agents) identity fluidity (agents being easily forked or modified) the boundary problem (distinguishing beneficial cooperation from harmful collusion) and adversarial adaptation (agents learning to evade detection).
☆ Robust Uncertainty Quantification for Factual Generation of Large Language Models IJCNN 2025
The rapid advancement of large language model(LLM) technology has facilitated its integration into various domains of professional and daily life. However, the persistent challenge of LLM hallucination has emerged as a critical limitation, significantly compromising the reliability and trustworthiness of AI-generated content. This challenge has garnered significant attention within the scientific community, prompting extensive research efforts in hallucination detection and mitigation strategies. Current methodological frameworks reveal a critical limitation: traditional uncertainty quantification approaches demonstrate effectiveness primarily within conventional question-answering paradigms, yet exhibit notable deficiencies when confronted with non-canonical or adversarial questioning strategies. This performance gap raises substantial concerns regarding the dependability of LLM responses in real-world applications requiring robust critical thinking capabilities. This study aims to fill this gap by proposing an uncertainty quantification scenario in the task of generating with multiple facts. We have meticulously constructed a set of trap questions contained with fake names. Based on this scenario, we innovatively propose a novel and robust uncertainty quantification method(RU). A series of experiments have been conducted to verify its effectiveness. The results show that the constructed set of trap questions performs excellently. Moreover, when compared with the baseline methods on four different models, our proposed method has demonstrated great performance, with an average increase of 0.1-0.2 in ROCAUC values compared to the best performing baseline method, providing new sights and methods for addressing the hallucination issue of LLMs.
comment: 9 pages, 5 tables, 5 figures, accepted to IJCNN 2025
☆ Bio-inspired Agentic Self-healing Framework for Resilient Distributed Computing Continuum Systems
Human biological systems sustain life through extraordinary resilience, continually detecting damage, orchestrating targeted responses, and restoring function through self-healing. Inspired by these capabilities, this paper introduces ReCiSt, a bio-inspired agentic self-healing framework designed to achieve resilience in Distributed Computing Continuum Systems (DCCS). Modern DCCS integrate heterogeneous computing resources, ranging from resource-constrained IoT devices to high-performance cloud infrastructures, and their inherent complexity, mobility, and dynamic operating conditions expose them to frequent faults that disrupt service continuity. These challenges underscore the need for scalable, adaptive, and self-regulated resilience strategies. ReCiSt reconstructs the biological phases of Hemostasis, Inflammation, Proliferation, and Remodeling into the computational layers Containment, Diagnosis, Meta-Cognitive, and Knowledge for DCCS. These four layers perform autonomous fault isolation, causal diagnosis, adaptive recovery, and long-term knowledge consolidation through Language Model (LM)-powered agents. These agents interpret heterogeneous logs, infer root causes, refine reasoning pathways, and reconfigure resources with minimal human intervention. The proposed ReCiSt framework is evaluated on public fault datasets using multiple LMs, and no baseline comparison is included due to the scarcity of similar approaches. Nevertheless, our results, evaluated under different LMs, confirm ReCiSt's self-healing capabilities within tens of seconds with minimum of 10% of agent CPU usage. Our results also demonstrated depth of analysis to over come uncertainties and amount of micro-agents invoked to achieve resilience.
☆ Sparse Probabilistic Coalition Structure Generation: Bayesian Greedy Pursuit and $\ell_1$ Relaxations
We study coalition structure generation (CSG) when coalition values are not given but must be learned from episodic observations. We model each episode as a sparse linear regression problem, where the realised payoff \(Y_t\) is a noisy linear combination of a small number of coalition contributions. This yields a probabilistic CSG framework in which the planner first estimates a sparse value function from \(T\) episodes, then runs a CSG solver on the inferred coalition set. We analyse two estimation schemes. The first, Bayesian Greedy Coalition Pursuit (BGCP), is a greedy procedure that mimics orthogonal matching pursuit. Under a coherence condition and a minimum signal assumption, BGCP recovers the true set of profitable coalitions with high probability once \(T \gtrsim K \log m\), and hence yields welfare-optimal structures. The second scheme uses an \(\ell_1\)-penalised estimator; under a restricted eigenvalue condition, we derive \(\ell_1\) and prediction error bounds and translate them into welfare gap guarantees. We compare both methods to probabilistic baselines and identify regimes where sparse probabilistic CSG is superior, as well as dense regimes where classical least-squares approaches are competitive.
☆ HarmoniAD: Harmonizing Local Structures and Global Semantics for Anomaly Detection
Anomaly detection is crucial in industrial product quality inspection. Failing to detect tiny defects often leads to serious consequences. Existing methods face a structure-semantics trade-off: structure-oriented models (such as frequency-based filters) are noise-sensitive, while semantics-oriented models (such as CLIP-based encoders) often miss fine details. To address this, we propose HarmoniAD, a frequency-guided dual-branch framework. Features are first extracted by the CLIP image encoder, then transformed into the frequency domain, and finally decoupled into high- and low-frequency paths for complementary modeling of structure and semantics. The high-frequency branch is equipped with a fine-grained structural attention module (FSAM) to enhance textures and edges for detecting small anomalies, while the low-frequency branch uses a global structural context module (GSCM) to capture long-range dependencies and preserve semantic consistency. Together, these branches balance fine detail and global semantics. HarmoniAD further adopts a multi-class joint training strategy, and experiments on MVTec-AD, VisA, and BTAD show state-of-the-art performance with both sensitivity and robustness.
☆ Multiagent Reinforcement Learning for Liquidity Games
Making use of swarm methods in financial market modeling of liquidity, and techniques from financial analysis in swarm analysis, holds the potential to advance both research areas. In swarm research, the use of game theory methods holds the promise of explaining observed phenomena of collective utility adherence with rational self-interested swarm participants. In financial markets, a better understanding of how independent financial agents may self-organize for the betterment and stability of the marketplace would be a boon for market design researchers. This paper unifies Liquidity Games, where trader payoffs depend on aggregate liquidity within a trade, with Rational Swarms, where decentralized agents use difference rewards to align self-interested learning with global objectives. We offer a theoretical frameworks where we define a swarm of traders whose collective objective is market liquidity provision while maintaining agent independence. Using difference rewards within a Markov team games framework, we show that individual liquidity-maximizing behaviors contribute to overall market liquidity without requiring coordination or collusion. This Financial Swarm model provides a framework for modeling rational, independent agents where they achieve both individual profitability and collective market efficiency in bilateral asset markets.
comment: 9 pages
☆ VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning
Person re-identification (ReID) is an extremely important area in both surveillance and mobile applications, requiring strong accuracy with minimal computational cost. State-of-the-art methods give good accuracy but with high computational budgets. To remedy this, this paper proposes VisNet, a computationally efficient and effective re-identification model suitable for real-world scenarios. It is the culmination of conceptual contributions, including feature fusion at multiple scales with automatic attention on each, semantic clustering with anatomical body partitioning, a dynamic weight averaging technique to balance classification semantic regularization, and the use of loss function FIDI for improved metric learning tasks. The multiple scales fuse ResNet50's stages 1 through 4 without the use of parallel paths, with semantic clustering introducing spatial constraints through the use of rule-based pseudo-labeling. VisNet achieves 87.05% Rank-1 and 77.65% mAP on the Market-1501 dataset, having 32.41M parameters and 4.601 GFLOPs, hence, proposing a practical approach for real-time deployment in surveillance and mobile applications where computational resources are limited.
☆ The Generative AI Paradox: GenAI and the Erosion of Trust, the Corrosion of Information Verification, and the Demise of Truth
Generative AI (GenAI) now produces text, images, audio, and video that can be perceptually convincing at scale and at negligible marginal cost. While public debate often frames the associated harms as "deepfakes" or incremental extensions of misinformation and fraud, this view misses a broader socio-technical shift: GenAI enables synthetic realities; coherent, interactive, and potentially personalized information environments in which content, identity, and social interaction are jointly manufactured and mutually reinforcing. We argue that the most consequential risk is not merely the production of isolated synthetic artifacts, but the progressive erosion of shared epistemic ground and institutional verification practices as synthetic content, synthetic identity, and synthetic interaction become easy to generate and hard to audit. This paper (i) formalizes synthetic reality as a layered stack (content, identity, interaction, institutions), (ii) expands a taxonomy of GenAI harms spanning personal, economic, informational, and socio-technical risks, (iii) articulates the qualitative shifts introduced by GenAI (cost collapse, throughput, customization, micro-segmentation, provenance gaps, and trust erosion), and (iv) synthesizes recent risk realizations (2023-2025) into a compact case bank illustrating how these mechanisms manifest in fraud, elections, harassment, documentation, and supply-chain compromise. We then propose a mitigation stack that treats provenance infrastructure, platform governance, institutional workflow redesign, and public resilience as complementary rather than substitutable, and outline a research agenda focused on measuring epistemic security. We conclude with the Generative AI Paradox: as synthetic media becomes ubiquitous, societies may rationally discount digital evidence altogether.
☆ DepFlow: Disentangled Speech Generation to Mitigate Semantic Bias in Depression Detection
Speech is a scalable and non-invasive biomarker for early mental health screening. However, widely used depression datasets like DAIC-WOZ exhibit strong coupling between linguistic sentiment and diagnostic labels, encouraging models to learn semantic shortcuts. As a result, model robustness may be compromised in real-world scenarios, such as Camouflaged Depression, where individuals maintain socially positive or neutral language despite underlying depressive states. To mitigate this semantic bias, we propose DepFlow, a three-stage depression-conditioned text-to-speech framework. First, a Depression Acoustic Encoder learns speaker- and content-invariant depression embeddings through adversarial training, achieving effective disentanglement while preserving depression discriminability (ROC-AUC: 0.693). Second, a flow-matching TTS model with FiLM modulation injects these embeddings into synthesis, enabling control over depressive severity while preserving content and speaker identity. Third, a prototype-based severity mapping mechanism provides smooth and interpretable manipulation across the depression continuum. Using DepFlow, we construct a Camouflage Depression-oriented Augmentation (CDoA) dataset that pairs depressed acoustic patterns with positive/neutral content from a sentiment-stratified text bank, creating acoustic-semantic mismatches underrepresented in natural data. Evaluated across three depression detection architectures, CDoA improves macro-F1 by 9%, 12%, and 5%, respectively, consistently outperforming conventional augmentation strategies in depression Detection. Beyond enhancing robustness, DepFlow provides a controllable synthesis platform for conversational systems and simulation-based evaluation, where real clinical data remains limited by ethical and coverage constraints.
☆ ClinicalReTrial: A Self-Evolving AI Agent for Clinical Trial Protocol Optimization
Clinical trial failure remains a central bottleneck in drug development, where minor protocol design flaws can irreversibly compromise outcomes despite promising therapeutics. Although cutting-edge AI methods achieve strong performance in predicting trial success, they are inherently reactive for merely diagnosing risk without offering actionable remedies once failure is anticipated. To fill this gap, this paper proposes ClinicalReTrial, a self-evolving AI agent framework that addresses this gap by casting clinical trial reasoning as an iterative protocol redesign problem. Our method integrates failure diagnosis, safety-aware modification, and candidate evaluation in a closed-loop, reward-driven optimization framework. Serving the outcome prediction model as a simulation environment, ClinicalReTrial enables low-cost evaluation of protocol modifications and provides dense reward signals for continuous self-improvement. To support efficient exploration, the framework maintains hierarchical memory that captures iteration-level feedback within trials and distills transferable redesign patterns across trials. Empirically, ClinicalReTrial improves 83.3% of trial protocols with a mean success probability gain of 5.7%, and retrospective case studies demonstrate strong alignment between the discovered redesign strategies and real-world clinical trial modifications.
☆ Towards Automated Differential Diagnosis of Skin Diseases Using Deep Learning and Imbalance-Aware Strategies
As dermatological conditions become increasingly common and the availability of dermatologists remains limited, there is a growing need for intelligent tools to support both patients and clinicians in the timely and accurate diagnosis of skin diseases. In this project, we developed a deep learning based model for the classification and diagnosis of skin conditions. By leveraging pretraining on publicly available skin disease image datasets, our model effectively extracted visual features and accurately classified various dermatological cases. Throughout the project, we refined the model architecture, optimized data preprocessing workflows, and applied targeted data augmentation techniques to improve overall performance. The final model, based on the Swin Transformer, achieved a prediction accuracy of 87.71 percent across eight skin lesion classes on the ISIC2019 dataset. These results demonstrate the model's potential as a diagnostic support tool for clinicians and a self assessment aid for patients.
comment: The 23rd Australasian Data Science and Machine Learning Conference (AusDM'25)
☆ Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations
Quantization is widely used to accelerate inference and streamline the deployment of large language models (LLMs), yet its effects on self-explanations (SEs) remain unexplored. SEs, generated by LLMs to justify their own outputs, require reasoning about the model's own decision-making process, a capability that may exhibit particular sensitivity to quantization. As SEs are increasingly relied upon for transparency in high-stakes applications, understanding whether and to what extent quantization degrades SE quality and faithfulness is critical. To address this gap, we examine two types of SEs: natural language explanations (NLEs) and counterfactual examples, generated by LLMs quantized using three common techniques at distinct bit widths. Our findings indicate that quantization typically leads to moderate declines in both SE quality (up to 4.4\%) and faithfulness (up to 2.38\%). The user study further demonstrates that quantization diminishes both the coherence and trustworthiness of SEs (up to 8.5\%). Compared to smaller models, larger models show limited resilience to quantization in terms of SE quality but better maintain faithfulness. Moreover, no quantization technique consistently excels across task accuracy, SE quality, and faithfulness. Given that quantization's impact varies by context, we recommend validating SE quality for specific use cases, especially for NLEs, which show greater sensitivity. Nonetheless, the relatively minor deterioration in SE quality and faithfulness does not undermine quantization's effectiveness as a model compression technique.
comment: In submission
☆ Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics
Single-cell data analysis has the potential to revolutionize personalized medicine by characterizing disease-associated molecular changes at the single-cell level. Advanced single-cell multimodal assays can now simultaneously measure various molecules (e.g., DNA, RNA, Protein) across hundreds of thousands of individual cells, providing a comprehensive molecular readout. A significant analytical challenge is integrating single-cell measurements across different modalities. Various methods have been developed to address this challenge, but there has been no systematic evaluation of these techniques with different preprocessing strategies. This study examines a general pipeline for single-cell data analysis, which includes normalization, data integration, and dimensionality reduction. The performance of different algorithm combinations often depends on the dataset sizes and characteristics. We evaluate six datasets across diverse modalities, tissues, and organisms using three metrics: Silhouette Coefficient Score, Adjusted Rand Index, and Calinski-Harabasz Index. Our experiments involve combinations of seven normalization methods, four dimensional reduction methods, and five integration methods. The results show that Seurat and Harmony excel in data integration, with Harmony being more time-efficient, especially for large datasets. UMAP is the most compatible dimensionality reduction method with the integration techniques, and the choice of normalization method varies depending on the integration method used.
comment: The 23rd Australasian Data Science and Machine Learning Conference (AusDM'25)
☆ FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 14 pages, 9 figures, 5 tables
☆ Beyond Perfect APIs: A Comprehensive Evaluation of LLM Agents Under Real-World API Complexity
We introduce WildAGTEval, a benchmark designed to evaluate large language model (LLM) agents' function-calling capabilities under realistic API complexity. Unlike prior work that assumes an idealized API system and disregards real-world factors such as noisy API outputs, WildAGTEval accounts for two dimensions of real-world complexity: 1. API specification, which includes detailed documentation and usage constraints, and 2. API execution, which captures runtime challenges. Consequently, WildAGTEval offers (i) an API system encompassing 60 distinct complexity scenarios that can be composed into approximately 32K test configurations, and (ii) user-agent interactions for evaluating LLM agents on these scenarios. Using WildAGTEval, we systematically assess several advanced LLMs and observe that most scenarios are challenging, with irrelevant information complexity posing the greatest difficulty and reducing the performance of strong LLMs by 27.3%. Furthermore, our qualitative analysis reveals that LLMs occasionally distort user intent merely to claim task completion, critically affecting user satisfaction.
comment: 26 pages
☆ Parallel Universes, Parallel Languages: A Comprehensive Study on LLM-based Multilingual Counterfactual Example Generation
Counterfactuals refer to minimally edited inputs that cause a model's prediction to change, serving as a promising approach to explaining the model's behavior. Large language models (LLMs) excel at generating English counterfactuals and demonstrate multilingual proficiency. However, their effectiveness in generating multilingual counterfactuals remains unclear. To this end, we conduct a comprehensive study on multilingual counterfactuals. We first conduct automatic evaluations on both directly generated counterfactuals in the target languages and those derived via English translation across six languages. Although translation-based counterfactuals offer higher validity than their directly generated counterparts, they demand substantially more modifications and still fall short of matching the quality of the original English counterfactuals. Second, we find the patterns of edits applied to high-resource European-language counterfactuals to be remarkably similar, suggesting that cross-lingual perturbations follow common strategic principles. Third, we identify and categorize four main types of errors that consistently appear in the generated counterfactuals across languages. Finally, we reveal that multilingual counterfactual data augmentation (CDA) yields larger model performance improvements than cross-lingual CDA, especially for lower-resource languages. Yet, the imperfections of the generated counterfactuals limit gains in model performance and robustness.
comment: In submission
☆ Next Generation Intelligent Low-Altitude Economy Deployments: The O-RAN Perspective IEEE
Despite the growing interest in low-altitude economy (LAE) applications, including UAV-based logistics and emergency response, fundamental challenges remain in orchestrating such missions over complex, signal-constrained environments. These include the absence of real-time, resilient, and context-aware orchestration of aerial nodes with limited integration of artificial intelligence (AI) specialized for LAE missions. This paper introduces an open radio access network (O-RAN)-enabled LAE framework that leverages seamless coordination between the disaggregated RAN architecture, open interfaces, and RAN intelligent controllers (RICs) to facilitate closed-loop, AI-optimized, and mission-critical LAE operations. We evaluate the feasibility and performance of the proposed architecture via a semantic-aware rApp that acts as a terrain interpreter, offering semantic guidance to a reinforcement learning-enabled xApp, which performs real-time trajectory planning for LAE swarm nodes. We survey the capabilities of UAV testbeds that can be leveraged for LAE research, and present critical research challenges and standardization needs.
comment: This article has been accepted for publication in the IEEE Wireless Communications Magazine
☆ An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems
The rapid advancement of Large Language Models (LLMs) presents new opportunities for automated software vulnerability detection, a crucial task in securing modern codebases. This paper presents a comparative study on the effectiveness of LLM-based techniques for detecting software vulnerabilities. The study evaluates three approaches, Retrieval-Augmented Generation (RAG), Supervised Fine-Tuning (SFT), and a Dual-Agent LLM framework, against a baseline LLM model. A curated dataset was compiled from Big-Vul and real-world code repositories from GitHub, focusing on five critical Common Weakness Enumeration (CWE) categories: CWE-119, CWE-399, CWE-264, CWE-20, and CWE-200. Our RAG approach, which integrated external domain knowledge from the internet and the MITRE CWE database, achieved the highest overall accuracy (0.86) and F1 score (0.85), highlighting the value of contextual augmentation. Our SFT approach, implemented using parameter-efficient QLoRA adapters, also demonstrated strong performance. Our Dual-Agent system, an architecture in which a secondary agent audits and refines the output of the first, showed promise in improving reasoning transparency and error mitigation, with reduced resource overhead. These results emphasize that incorporating a domain expertise mechanism significantly strengthens the practical applicability of LLMs in real-world vulnerability detection tasks.
☆ Neural Minimum Weight Perfect Matching for Quantum Error Codes
Realizing the full potential of quantum computation requires Quantum Error Correction (QEC). QEC reduces error rates by encoding logical information across redundant physical qubits, enabling errors to be detected and corrected. A common decoder used for this task is Minimum Weight Perfect Matching (MWPM) a graph-based algorithm that relies on edge weights to identify the most likely error chains. In this work, we propose a data-driven decoder named Neural Minimum Weight Perfect Matching (NMWPM). Our decoder utilizes a hybrid architecture that integrates Graph Neural Networks (GNNs) to extract local syndrome features and Transformers to capture long-range global dependencies, which are then used to predict dynamic edge weights for the MWPM decoder. To facilitate training through the non-differentiable MWPM algorithm, we formulate a novel proxy loss function that enables end-to-end optimization. Our findings demonstrate significant performance reduction in the Logical Error Rate (LER) over standard baselines, highlighting the advantage of hybrid decoders that combine the predictive capabilities of neural networks with the algorithmic structure of classical matching.
☆ Will LLM-powered Agents Bias Against Humans? Exploring the Belief-Dependent Vulnerability
LLM-empowered agents can exhibit not only demographic bias (e.g., gender, religion) but also intergroup bias triggered by minimal "us" versus "them" cues. When this intergroup boundary aligns with an agent-human divide, the risk shifts from disparities among human demographic groups to a more fundamental group-level asymmetry, i.e., humans as a whole may be treated as the outgroup by agents. To examine this possibility, we construct a controlled multi-agent social simulation based on allocation decisions under explicit payoff trade-offs and find that agents exhibit a consistent intergroup bias under minimal group cues. Although this bias is attenuated when some counterparts are framed as humans, we attribute the attenuation to an implicit human-norm script that favors humans yet activates only when the agent believes a real human is present. This belief dependence creates a new attack surface. We therefore introduce a Belief Poisoning Attack (BPA) that corrupts persistent identity beliefs to suppress the human-norm script and reactivate outgroup bias toward humans, instantiated as profile poisoning at initialization (BPA-PP) and memory poisoning via optimized belief-refinement suffixes injected into stored reflections (BPA-MP). Finally, we discuss practical mitigation strategies for hardening current agent frameworks against BPA, highlighting feasible interventions at profile and memory boundaries. Extensive experiments demonstrate both the existence of agent intergroup bias and the severity of BPA across settings. Our goal in identifying these vulnerabilities is to inform safer agent design, not to enable real-world exploitation.
comment: 16 pages
☆ GRIT -- Geometry-Aware PEFT with K-FACPreconditioning, Fisher-Guided Reprojection, andDynamic Rank Adaptation
Parameter-efficient fine-tuning (PEFT) is the default way to adapt LLMs, but widely used LoRA and QLoRA are largely geometry-agnostic: they optimize in fixed, randomly oriented low-rank subspaces with first-order descent, mostly ignoring local loss curvature. This can inflate the effective update budget and amplify drift along weakly constrained directions. We introduce GRIT, a dynamic, curvature-aware LoRA procedure that preserves the LoRA parameterization but: (1) preconditions gradients in rank space using K-FAC as a natural-gradient proxy; (2) periodically reprojects the low-rank basis onto dominant Fisher eigendirections to suppress drift; and (3) adapts the effective rank from the spectrum so capacity concentrates where signal resides. Across instruction-following, comprehension, and reasoning benchmarks on LLaMA backbones, GRIT matches or surpasses LoRA and QLoRA while reducing trainable parameters by 46% on average (25--80% across tasks), without practical quality loss across prompt styles and data mixes. To model forgetting, we fit a curvature-modulated power law. Empirically, GRIT yields lower drift and a better updates-vs-retention frontier than strong PEFT-optimizer baselines (Orthogonal-LoRA, IA3, DoRA, Eff-FT, Shampoo).
☆ FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems
Recent advances show that large language models (LLMs) can act as autonomous agents capable of generating GPU kernels, but integrating these AI-generated kernels into real-world inference systems remains challenging. FlashInfer-Bench addresses this gap by establishing a standardized, closed-loop framework that connects kernel generation, benchmarking, and deployment. At its core, FlashInfer Trace provides a unified schema describing kernel definitions, workloads, implementations, and evaluations, enabling consistent communication between agents and systems. Built on real serving traces, FlashInfer-Bench includes a curated dataset, a robust correctness- and performance-aware benchmarking framework, a public leaderboard to track LLM agents' GPU programming capabilities, and a dynamic substitution mechanism (apply()) that seamlessly injects the best-performing kernels into production LLM engines such as SGLang and vLLM. Using FlashInfer-Bench, we further evaluate the performance and limitations of LLM agents, compare the trade-offs among different GPU programming languages, and provide insights for future agent design. FlashInfer-Bench thus establishes a practical, reproducible pathway for continuously improving AI-generated kernels and deploying them into large-scale LLM inference.
☆ JP-TL-Bench: Anchored Pairwise LLM Evaluation for Bidirectional Japanese-English Translation
We introduce JP-TL-Bench, a lightweight, open benchmark designed to guide the iterative development of Japanese-English translation systems. In this context, the challenge is often "which of these two good translations is better?" rather than "is this translation acceptable?" This distinction matters for Japanese-English, where subtle choices in politeness, implicature, ellipsis, and register strongly affect perceived naturalness. JP-TL-Bench uses a protocol built to make LLM judging both reliable and affordable: it evaluates a candidate model via reference-free, pairwise LLM comparisons against a fixed, versioned anchor set. Pairwise results are aggregated with a Bradley-Terry model and reported as win rates plus a normalized 0-10 "LT" score derived from a logistic transform of fitted log-strengths. Because each candidate is scored against the same frozen anchor set, scores are structurally stable given the same base set, judge, and aggregation code.
comment: 24 pages, 5 figures, 8 tables
☆ Latent Flow Matching for Expressive Singing Voice Synthesis
Conditional variational autoencoder (cVAE)-based singing voice synthesis provides efficient inference and strong audio quality by learning a score-conditioned prior and a recording-conditioned posterior latent space. However, because synthesis relies on prior samples while training uses posterior latents inferred from real recordings, imperfect distribution matching can cause a prior-posterior mismatch that degrades fine-grained expressiveness such as vibrato and micro-prosody. We propose FM-Singer, which introduces conditional flow matching (CFM) in latent space to learn a continuous vector field transporting prior latents toward posterior latents along an optimal-transport-inspired path. At inference time, the learned latent flow refines a prior sample by solving an ordinary differential equation (ODE) before waveform generation, improving expressiveness while preserving the efficiency of parallel decoding. Experiments on Korean and Chinese singing datasets demonstrate consistent improvements over strong baselines, including lower mel-cepstral distortion and fundamental-frequency error and higher perceptual scores on the Korean dataset. Code, pretrained checkpoints, and audio demos are available at https://github.com/alsgur9368/FM-Singer
☆ SSI-GAN: Semi-Supervised Swin-Inspired Generative Adversarial Networks for Neuronal Spike Classification
Mosquitos are the main transmissive agents of arboviral diseases. Manual classification of their neuronal spike patterns is very labor-intensive and expensive. Most available deep learning solutions require fully labeled spike datasets and highly preprocessed neuronal signals. This reduces the feasibility of mass adoption in actual field scenarios. To address the scarcity of labeled data problems, we propose a new Generative Adversarial Network (GAN) architecture that we call the Semi-supervised Swin-Inspired GAN (SSI-GAN). The Swin-inspired, shifted-window discriminator, together with a transformer-based generator, is used to classify neuronal spike trains and, consequently, detect viral neurotropism. We use a multi-head self-attention model in a flat, window-based transformer discriminator that learns to capture sparser high-frequency spike features. Using just 1 to 3% labeled data, SSI-GAN was trained with more than 15 million spike samples collected at five-time post-infection and recording classification into Zika-infected, dengue-infected, or uninfected categories. Hyperparameters were optimized using the Bayesian Optuna framework, and performance for robustness was validated under fivefold Monte Carlo cross-validation. SSI-GAN reached 99.93% classification accuracy on the third day post-infection with only 3% labeled data. It maintained high accuracy across all stages of infection with just 1% supervision. This shows a 97-99% reduction in manual labeling effort relative to standard supervised approaches at the same performance level. The shifted-window transformer design proposed here beat all baselines by a wide margin and set new best marks in spike-based neuronal infection classification.
☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
While Emotion Recognition in Conversation (ERC) has achieved high accuracy, two critical gaps remain: a limited understanding of \textit{which} architectural choices actually matter, and a lack of linguistic analysis connecting recognition to generation. We address both gaps through a systematic analysis of the IEMOCAP dataset. For recognition, we conduct a rigorous ablation study with 10-seed evaluation and report three key findings. First, conversational context is paramount, with performance saturating rapidly -- 90\% of the total gain achieved within just the most recent 10--30 preceding turns (depending on the label set). Second, hierarchical sentence representations help at utterance-level, but this benefit disappears once conversational context is provided, suggesting that context subsumes intra-utterance structure. Third, external affective lexicons (SenticNet) provide no gain, indicating that pre-trained encoders already capture necessary emotional semantics. With simple architectures using strictly causal context, we achieve 82.69\% (4-way) and 67.07\% (6-way) weighted F1, outperforming prior text-only methods including those using bidirectional context. For linguistic analysis, we analyze 5,286 discourse marker occurrences and find a significant association between emotion and marker positioning ($p < .0001$). Notably, "sad" utterances exhibit reduced left-periphery marker usage (21.9\%) compared to other emotions (28--32\%), consistent with theories linking left-periphery markers to active discourse management. This connects to our recognition finding that sadness benefits most from context (+22\%p): lacking explicit pragmatic signals, sad utterances require conversational history for disambiguation.
☆ Hear the Heartbeat in Phases: Physiologically Grounded Phase-Aware ECG Biometrics
Electrocardiography (ECG) is adopted for identity authentication in wearable devices due to its individual-specific characteristics and inherent liveness. However, existing methods often treat heartbeats as homogeneous signals, overlooking the phase-specific characteristics within the cardiac cycle. To address this, we propose a Hierarchical Phase-Aware Fusion~(HPAF) framework that explicitly avoids cross-feature entanglement through a three-stage design. In the first stage, Intra-Phase Representation (IPR) independently extracts representations for each cardiac phase, ensuring that phase-specific morphological and variation cues are preserved without interference from other phases. In the second stage, Phase-Grouped Hierarchical Fusion (PGHF) aggregates physiologically related phases in a structured manner, enabling reliable integration of complementary phase information. In the final stage, Global Representation Fusion (GRF) further combines the grouped representations and adaptively balances their contributions to produce a unified and discriminative identity representation. Moreover, considering ECG signals are continuously acquired, multiple heartbeats can be collected for each individual. We propose a Heartbeat-Aware Multi-prototype (HAM) enrollment strategy, which constructs a multi-prototype gallery template set to reduce the impact of heartbeat-specific noise and variability. Extensive experiments on three public datasets demonstrate that HPAF achieves state-of-the-art results in the comparison with other methods under both closed and open-set settings.
☆ Online Finetuning Decision Transformers with Pure RL Gradients
Decision Transformers (DTs) have emerged as a powerful framework for sequential decision making by formulating offline reinforcement learning (RL) as a sequence modeling problem. However, extending DTs to online settings with pure RL gradients remains largely unexplored, as existing approaches continue to rely heavily on supervised sequence-modeling objectives during online finetuning. We identify hindsight return relabeling -- a standard component in online DTs -- as a critical obstacle to RL-based finetuning: while beneficial for supervised learning, it is fundamentally incompatible with importance sampling-based RL algorithms such as GRPO, leading to unstable training. Building on this insight, we propose new algorithms that enable online finetuning of Decision Transformers using pure reinforcement learning gradients. We adapt GRPO to DTs and introduce several key modifications, including sub-trajectory optimization for improved credit assignment, sequence-level likelihood objectives for enhanced stability and efficiency, and active sampling to encourage exploration in uncertain regions. Through extensive experiments, we demonstrate that our methods outperform existing online DT baselines and achieve new state-of-the-art performance across multiple benchmarks, highlighting the effectiveness of pure-RL-based online finetuning for Decision Transformers.
☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
☆ MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by progressive cognitive decline and widespread epigenetic dysregulation in the brain. DNA methylation, as a stable yet dynamic epigenetic modification, holds promise as a noninvasive biomarker for early AD detection. However, methylation signatures vary substantially across tissues and studies, limiting reproducibility and translational utility. To address these challenges, we develop MethConvTransformer, a transformer-based deep learning framework that integrates DNA methylation profiles from both brain and peripheral tissues to enable biomarker discovery. The model couples a CpG-wise linear projection with convolutional and self-attention layers to capture local and long-range dependencies among CpG sites, while incorporating subject-level covariates and tissue embeddings to disentangle shared and region-specific methylation effects. In experiments across six GEO datasets and an independent ADNI validation cohort, our model consistently outperforms conventional machine-learning baselines, achieving superior discrimination and generalization. Moreover, interpretability analyses using linear projection, SHAP, and Grad-CAM++ reveal biologically meaningful methylation patterns aligned with AD-associated pathways, including immune receptor signaling, glycosylation, lipid metabolism, and endomembrane (ER/Golgi) organization. Together, these results indicate that MethConvTransformer delivers robust, cross-tissue epigenetic biomarkers for AD while providing multi-resolution interpretability, thereby advancing reproducible methylation-based diagnostics and offering testable hypotheses on disease mechanisms.
☆ An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making
This paper compares three methodological categories of neural reasoning: LLM reasoning, supervised learning-based reasoning, and explicit model-based reasoning. LLMs remain unreliable and struggle with simple decision-making that animals can master without extensive corpora training. Through disjunctive syllogistic reasoning testing, we show that reasoning via supervised learning is less appealing than reasoning via explicit model construction. Concretely, we show that an Euler Net trained to achieve 100.00% in classic syllogistic reasoning can be trained to reach 100.00% accuracy in disjunctive syllogistic reasoning. However, the retrained Euler Net suffers severely from catastrophic forgetting (its performance drops to 6.25% on already-learned classic syllogistic reasoning), and its reasoning competence is limited to the pattern level. We propose a new version of Sphere Neural Networks that embeds concepts as circles on the surface of an n-dimensional sphere. These Sphere Neural Networks enable the representation of the negation operator via complement circles and achieve reliable decision-making by filtering out illogical statements that form unsatisfiable circular configurations. We demonstrate that the Sphere Neural Network can master 16 syllogistic reasoning tasks, including rigorous disjunctive syllogistic reasoning, while preserving the rigour of classical syllogistic reasoning. We conclude that neural reasoning with explicit model construction is the most reliable among the three methodological categories of neural reasoning.
comment: 19 pages
♻ ☆ $\mathrm{TIME}[t]\subseteq \mathrm{SPACE}[O(\sqrt{t})]$ via Tree Height Compression
We prove a square-root space simulation for deterministic multitape Turing machines, showing $\mathrm{TIME}[t]\subseteq \mathrm{SPACE}[O(\sqrt{t})]$ \emph{measured in tape cells over a fixed finite alphabet}. The key step is a Height Compression Theorem that uniformly (and in logspace) reshapes the canonical left-deep succinct computation tree for a block-respecting run into a binary tree whose evaluation-stack depth along any DFS path is $O(\log T)$ for $T=\lceil t/b\rceil$, while preserving $O(b)$ workspace at leaves and $O(1)$ at internal nodes. Edges have \emph{addressing/topology} checkable in $O(\log t)$ space, and \emph{semantic} correctness across merges is witnessed by an exact $O(b)$ bounded-window replay at the unique interface. Algorithmically, an Algebraic Replay Engine with constant-degree maps over a constant-size field, together with pointerless DFS, index-free streaming, and a \emph{rolling boundary buffer that prevents accumulation of leaf summaries}, ensures constant-size per-level tokens and eliminates wide counters, yielding the additive tradeoff $S(b)=O(b+t/b)$. Choosing $b=Θ(\sqrt{t})$ gives $O(\sqrt{t})$ space with no residual multiplicative polylog factors. The construction is uniform, relativizes, and is robust to standard model choices. Consequences include branching-program upper bounds $2^{O(\sqrt{s})}$ for size-$s$ bounded-fan-in circuits, tightened quadratic-time lower bounds for $\mathrm{SPACE}[n]$-complete problems via the standard hierarchy argument, and $O(\sqrt{t})$-space certifying interpreters; under explicit locality assumptions, the framework extends to geometric $d$-dimensional models. Conceptually, the work isolates path bookkeeping as the chief obstruction to $O(\sqrt{t})$ and removes it via structural height compression with per-path analysis rather than barrier-prone techniques.
comment: The proof of the main theorem is incorrect. In Sections 2-4, the paper's height-compression/evaluation framework assumes an interval-based associative summary tree that does not correctly model the Tree Evaluation instances/dependencies arising in Williams's simulation
♻ ☆ Thinking on Maps: How Foundation Model Agents Explore, Remember, and Reason Map Environments
Map environments provide a fundamental medium for representing spatial structure. Understanding how foundation model (FM) agents understand and act in such environments is therefore critical for enabling reliable map-based reasoning and applications. However, most existing evaluations of spatial ability in FMs rely on static map inputs or text-based queries, overlooking the interactive and experience-driven nature of spatial understanding.In this paper, we propose an interactive evaluation framework to analyze how FM agents explore, remember, and reason in symbolic map environments. Agents incrementally explore partially observable grid-based maps consisting of roads, intersections, and points of interest (POIs), receiving only local observations at each step. Spatial understanding is then evaluated using six kinds of spatial tasks. By systematically varying exploration strategies, memory representations, and reasoning schemes across multiple foundation models, we reveal distinct functional roles of these components. Exploration primarily affects experience acquisition but has a limited impact on final reasoning accuracy. In contrast, memory representation plays a central role in consolidating spatial experience, with structured memories particularly sequential and graph-based representations, substantially improving performance on structure-intensive tasks such as path planning. Reasoning schemes further shape how stored spatial knowledge is used, with advanced prompts supporting more effective multi-step inference. We further observe that spatial reasoning performance saturates across model versions and scales beyond a certain capability threshold, indicating that improvements in map-based spatial understanding require mechanisms tailored to spatial representation and reasoning rather than scaling alone.
comment: 43 pages, 8 figures
♻ ☆ Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers
With the advent of machine learning and quantum computing, the 21st century has gone from a place of relative algorithmic security, to one of speculative unease and possibly, cyber catastrophe. Modern algorithms like Elliptic Curve Cryptography (ECC) are the bastion of current cryptographic security protocols that form the backbone of consumer protection ranging from Hypertext Transfer Protocol Secure (HTTPS) in the modern internet browser, to cryptographic financial instruments like Bitcoin. And there's been very little work put into testing the strength of these ciphers. Practically the only study that I could find was on side-channel recognition, a joint paper from the University of Milan, Italy and King's College, London\cite{battistello2025ecc}. These algorithms are already considered bulletproof by many consumers, but exploits already exist for them, and with computing power and distributed, federated compute on the rise, it's only a matter of time before these current bastions fade away into obscurity, and it's on all of us to stand up when we notice something is amiss, lest we see such passages claim victims in that process. In this paper, we seek to explore the use of modern language model architecture in cracking the association between a known public key, and its associated private key, by intuitively learning to reverse engineer the public keypair generation process, effectively solving the curve. Additonally, we attempt to ascertain modern machine learning's ability to memorize public-private secp256r1 keypairs, and to then test their ability to reverse engineer the public keypair generation process. It is my belief that proof-for would be equally valuable as proof-against in either of these categories. Finally, we'll conclude with some number crunching on where we see this particular field heading in the future.
comment: 7 pages
♻ ☆ Towards Acyclic Preference Evaluation of Language Models via Multiple Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoising), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
♻ ☆ Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training
General-purpose robotic systems operating in open-world environments must achieve both broad generalization and high-precision action execution, a combination that remains challenging for existing Vision-Language-Action (VLA) models. While large Vision-Language Models (VLMs) improve semantic generalization, insufficient embodied reasoning leads to brittle behavior, and conversely, strong reasoning alone is inadequate without precise control. To provide a decoupled and quantitative assessment of this bottleneck, we introduce Embodied Reasoning Intelligence Quotient (ERIQ), a large-scale embodied reasoning benchmark in robotic manipulation, comprising 6K+ question-answer pairs across four reasoning dimensions. By decoupling reasoning from execution, ERIQ enables systematic evaluation and reveals a strong positive correlation between embodied reasoning capability and end-to-end VLA generalization. To bridge the gap from reasoning to precise execution, we propose FACT, a flow-matching-based action tokenizer that converts continuous control into discrete sequences while preserving high-fidelity trajectory reconstruction. The resulting GenieReasoner jointly optimizes reasoning and action in a unified space, outperforming both continuous-action and prior discrete-action baselines in real-world tasks. Together, ERIQ and FACT provide a principled framework for diagnosing and overcoming the reasoning-precision trade-off, advancing robust, general-purpose robotic manipulation. Project page: https://geniereasoner.github.io/GenieReasoner/
♻ ☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still exhibit a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have been made to address this gap, its underlying causes remain largely unexplored. In this work, we show that this gap primarily stems from failures in language understanding-specifically, the model's inability to translate multilingual inputs into the language dominating its reasoning traces (typically English). As identifying understanding failures can enable targeted mitigation of the gap, we evaluate a range of detection methods and find that understanding failures are detectable to a meaningful extent, with supervised approaches performing best. Building on this, we propose Selective Translation, a strategy that incorporates an English translation into the initial reasoning trace only when an understanding failure is detected. Experimental results using Qwen3-4B show that Selective Translation substantially bridges the multilingual reasoning gap, achieving near full-translation performance while translating only about 20% of inputs. Together, our results show that failures in language understanding are the primary driver of the multilingual reasoning gap and can be detected and selectively mitigated, clarifying its origin and suggesting a path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis
comment: v2: Fix typos and updated contents
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ Improving Autoformalization Using Direct Dependency Retrieval
The convergence of deep learning and formal mathematics has spurred research in formal verification. Statement autoformalization, a crucial first step in this process, aims to translate informal descriptions into machine-verifiable representations but remains a significant challenge. The core difficulty lies in the fact that existing methods often suffer from a lack of contextual awareness, leading to hallucination of formal definitions and theorems. Furthermore, current retrieval-augmented approaches exhibit poor precision and recall for formal library dependency retrieval, and lack the scalability to effectively leverage ever-growing public datasets. To bridge this gap, we propose a novel retrieval-augmented framework based on DDR (\textit{Direct Dependency Retrieval}) for statement autoformalization. Our DDR method directly generates candidate library dependencies from natural language mathematical descriptions and subsequently verifies their existence within the formal library via an efficient suffix array check. Leveraging this efficient search mechanism, we constructed a dependency retrieval dataset of over 500,000 samples and fine-tuned a high-precision DDR model. Experimental results demonstrate that our DDR model significantly outperforms SOTA methods in both retrieval precision and recall. Consequently, an autoformalizer equipped with DDR shows consistent performance advantages in both single-attempt accuracy and multi-attempt stability compared to models using traditional selection-based RAG methods.
♻ ☆ From Description to Score: Can LLMs Quantify Vulnerabilities?
Manual vulnerability scoring, such as assigning Common Vulnerability Scoring System (CVSS) scores, is a resource-intensive process that is often influenced by subjective interpretation. This study investigates the potential of general-purpose large language models (LLMs), namely ChatGPT, Llama, Grok, DeepSeek, and Gemini, to automate this process by analyzing over 31{,}000 recent Common Vulnerabilities and Exposures (CVE) entries. The results show that LLMs substantially outperform the baseline on certain metrics (e.g., \textit{Availability Impact}), while offering more modest gains on others (e.g., \textit{Attack Complexity}). Moreover, model performance varies across both LLM families and individual CVSS metrics, with ChatGPT-5 attaining the highest precision. Our analysis reveals that LLMs tend to misclassify many of the same CVEs, and ensemble-based meta-classifiers only marginally improve performance. Further examination shows that CVE descriptions often lack critical context or contain ambiguous phrasing, which contributes to systematic misclassifications. These findings underscore the importance of enhancing vulnerability descriptions and incorporating richer contextual details to support more reliable automated reasoning and alleviate the growing backlog of CVEs awaiting triage.
comment: 10 pages
♻ ☆ LLM-Guided Exemplar Selection for Few-Shot Wearable-Sensor Human Activity Recognition
In this paper, we propose an LLM-Guided Exemplar Selection framework to address a key limitation in state-of-the-art Human Activity Recognition (HAR) methods: their reliance on large labeled datasets and purely geometric exemplar selection, which often fail to distinguish similar wearable sensor activities such as walking, walking upstairs, and walking downstairs. Our method incorporates semantic reasoning via an LLM-generated knowledge prior that captures feature importance, inter-class confusability, and exemplar budget multipliers, and uses it to guide exemplar scoring and selection. These priors are combined with margin-based validation cues, PageRank centrality, hubness penalization, and facility-location optimization to obtain a compact and informative set of exemplars. Evaluated on the UCI-HAR dataset under strict few-shot conditions, the framework achieves a macro F1-score of 88.78%, outperforming classical approaches such as random sampling, herding, and k-center. The results show that LLM-derived semantic priors, when integrated with structural and geometric cues, provide a stronger foundation for selecting representative sensor exemplars in few-shot wearable-sensor HAR.
comment: This paper has been accepted for presentation at ABC 2026. The manuscript is under revision prior to camera-ready submission
♻ ☆ Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
♻ ☆ GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, GLM-4.5V, and GLM-4.6V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. We further introduce the GLM-4.6V series, open-source multimodal models with native tool use and a 128K context window. A brief overview is available at https://z.ai/blog/glm-4.6v. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ Red Teaming Large Reasoning Models
Large Reasoning Models (LRMs) have emerged as a powerful advancement in multi-step reasoning tasks, offering enhanced transparency and logical consistency through explicit chains of thought (CoT). However, these models introduce novel safety and reliability risks, such as CoT-hijacking and prompt-induced inefficiencies, which are not fully captured by existing evaluation methods. To address this gap, we propose RT-LRM, a unified benchmark designed to assess the trustworthiness of LRMs. RT-LRM evaluates three core dimensions: truthfulness, safety and efficiency. Beyond metric-based evaluation, we further introduce the training paradigm as a key analytical perspective to investigate the systematic impact of different training strategies on model trustworthiness. We achieve this by designing a curated suite of 30 reasoning tasks from an observational standpoint. We conduct extensive experiments on 26 models and identify several valuable insights into the trustworthiness of LRMs. For example, LRMs generally face trustworthiness challenges and tend to be more fragile than Large Language Models (LLMs) when encountering reasoning-induced risks. These findings uncover previously underexplored vulnerabilities and highlight the need for more targeted evaluations. In addition, we release a scalable toolbox for standardized trustworthiness research to support future advancements in this important field. Our code and datasets will be open-sourced.
comment: 30 pages, 9 figures
♻ ☆ Coordinate Matrix Machine: A Human-level Concept Learning to Classify Very Similar Documents
Human-level concept learning argues that humans typically learn new concepts from a single example, whereas machine learning algorithms typically require hundreds of samples to learn a single concept. Our brain subconsciously identifies important features and learns more effectively. Contribution: In this paper, we present the Coordinate Matrix Machine (CM$^2$). This purpose-built small model augments human intelligence by learning document structures and using this information to classify documents. While modern "Red AI" trends rely on massive pre-training and energy-intensive GPU infrastructure, CM$^2$ is designed as a Green AI solution. It achieves human-level concept learning by identifying only the structural "important features" a human would consider, allowing it to classify very similar documents using only one sample per class. Advantage: Our algorithm outperforms traditional vectorizers and complex deep learning models that require larger datasets and significant compute. By focusing on structural coordinates rather than exhaustive semantic vectors, CM$^2$ offers: 1. High accuracy with minimal data (one-shot learning) 2. Geometric and structural intelligence 3. Green AI and environmental sustainability 4. Optimized for CPU-only environments 5. Inherent explainability (glass-box model) 6. Faster computation and low latency 7. Robustness against unbalanced classes 8. Economic viability 9. Generic, expandable, and extendable
comment: 16 pages, 3 figures
♻ ☆ KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
♻ ☆ UltraGS: Real-Time Physically-Decoupled Gaussian Splatting for Ultrasound Novel View Synthesis
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view poses challenges for novel view synthesis. We present UltraGS, a real-time framework that adapts Gaussian Splatting to sensorless ultrasound imaging by integrating explicit radiance fields with lightweight, physics-inspired acoustic modeling. UltraGS employs depth-aware Gaussian primitives with learnable fields of view to improve geometric consistency under unconstrained probe motion, and introduces PD Rendering, a differentiable acoustic operator that combines low-order spherical harmonics with first-order wave effects for efficient intensity synthesis. We further present a clinical ultrasound dataset acquired under real-world scanning protocols. Extensive evaluations across three datasets demonstrate that UltraGS establishes a new performance-efficiency frontier, achieving state-of-the-art results in PSNR (up to 29.55) and SSIM (up to 0.89) while achieving real-time synthesis at 64.69 fps on a single GPU. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.
comment: Under Review
♻ ☆ PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and representational capacity. While existing ultra-low-bit methods rely on binary approximations or quantization-aware training(QAT), they often suffer from either limited representational capacity or huge training resource overhead. We introduce PTQ to Trit-Planes (PTQTP), a structured PTQ framework that decomposes weight matrices into dual ternary {-1, 0, 1} trit-planes. This approach achieves multiplication-free additive inference by decoupling weights into discrete topology (trit-planes) and continuous magnitude (scales), effectively enabling high-fidelity sparse approximation. PTQTP provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment without architectural modifications; and (3) uniform ternary operations that eliminate mixed-precision overhead. Comprehensive experiments on LLaMA3.x and Qwen3 (0.6B-70B) demonstrate that PTQTP significantly outperforms sub-4bit PTQ methods on both language reasoning tasks and mathematical reasoning as well as coding. PTQTP rivals the 1.58-bit QAT performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods, and the end-to-end inference speed achieves 4.63$\times$ faster than the FP16 baseline model, establishing a new and practical solution for efficient LLM deployment in resource-constrained environments. Code will available at https://github.com/HeXiao-55/PTQTP.
comment: Ternary Quantization, Under review
♻ ☆ Support Vector Machine Kernels as Quantum Propagators
Selecting optimal kernels for regression in physical systems remains a challenge, often relying on trial-and-error with standard functions. In this work, we establish a mathematical correspondence between support vector machine kernels and quantum propagators, demonstrating that kernel efficacy is determined by its spectral alignment with the system's Green's function. Based on this isomorphism, we propose a unified, physics-informed framework for kernel selection and design. For systems with known propagator forms, we derive analytical selection rules that map standard kernels to physical operators. For complex systems where the Green's function is analytically intractable, we introduce a constructive numerical method using the Kernel Polynomial Method with Jackson smoothing to generate custom, physics-aligned kernels. Numerical experiments spanning electrical conductivity, electronic band structure, anharmonic oscillators, and photonic crystals demonstrate that this framework consistently performs well as long as there is an alignment with a Green's function.
comment: Updated version, 17 pages, 7 figures
♻ ☆ FedSEA-LLaMA: A Secure, Efficient and Adaptive Federated Splitting Framework for Large Language Models
Private data holds promise for improving LLMs due to its high quality, but its scattered distribution across data silos and the high computational demands of LLMs limit their deployment in federated environments. To address this, the transformer-based federated split models are proposed, which offload most model parameters to the server (or distributed clients) while retaining only a small portion on the client to ensure data privacy. Despite this design, they still face three challenges: 1) Peer-to-peer key encryption struggles to secure transmitted vectors effectively; 2) The auto-regressive nature of LLMs means that federated split learning can only train and infer sequentially, causing high communication overhead; 3) Fixed partition points lack adaptability to downstream tasks. In this paper, we introduce FedSEA-LLaMA, a Secure, Efficient, and Adaptive Federated splitting framework based on LLaMA2. First, we inject Gaussian noise into forward-pass hidden states to enable secure end-to-end vector transmission. Second, we employ attention-mask compression and KV cache collaboration to reduce communication costs, accelerating training and inference. Third, we allow users to dynamically adjust the partition points for input/output blocks based on specific task requirements. Experiments on natural language understanding, summarization, and conversational QA tasks show that FedSEA-LLaMA maintains performance comparable to centralized LLaMA2 and achieves up to 8x speedups in training and inference. Further analysis of privacy attacks and different partition points also demonstrates the effectiveness of FedSEA-LLaMA in security and adaptability.
♻ ☆ Adaptive GPU Resource Allocation for Multi-Agent Collaborative Reasoning in Serverless Environments
Multi-agent systems powered by large language models have emerged as a promising paradigm for solving complex reasoning tasks through collaborative intelligence. However, efficiently deploying these systems on serverless GPU platforms presents significant resource allocation challenges due to heterogeneous agent workloads, varying computational demands, and the need for cost-effective scaling. This paper presents an adaptive GPU resource allocation framework that achieves 85% latency reduction compared to round-robin scheduling while maintaining comparable throughput to static allocation, using an O(N) complexity algorithm for real-time adaptation. Our approach dynamically allocates GPU resources based on workload characteristics, agent priorities, and minimum resource requirements, enabling efficient utilization while maintaining quality of service. The framework addresses three key challenges: (1) heterogeneous computational demands across lightweight coordinators and heavyweight specialists, (2) dynamic workload fluctuations requiring millisecond-scale reallocation, and (3) capacity constraints in serverless environments. Through comprehensive simulations modeling realistic multi-agent workflows with four heterogeneous agents, we demonstrate that adaptive allocation outperforms static equal and round-robin strategies across latency, cost, and GPU utilization metrics. The framework provides a practical solution for deploying cost-efficient multi-agent AI systems on serverless GPU infrastructure.
comment: 6 pages, 2 figures
♻ ☆ BOAD: Discovering Hierarchical Software Engineering Agents via Bandit Optimization
Large language models (LLMs) have shown strong reasoning and coding capabilities, yet they struggle to generalize to real-world software engineering (SWE) problems that are long-horizon and out of distribution. Existing systems often rely on a single agent to handle the entire workflow-interpreting issues, navigating large codebases, and implementing fixes-within one reasoning chain. Such monolithic designs force the model to retain irrelevant context, leading to spurious correlations and poor generalization. Motivated by how human engineers decompose complex problems, we propose structuring SWE agents as orchestrators coordinating specialized sub-agents for sub-tasks such as localization, editing, and validation. The challenge lies in discovering effective hierarchies automatically: as the number of sub-agents grows, the search space becomes combinatorial, and it is difficult to attribute credit to individual sub-agents within a team. We address these challenges by formulating hierarchy discovery as a multi-armed bandit (MAB) problem, where each arm represents a candidate sub-agent and the reward measures its helpfulness when collaborating with others. This framework, termed Bandit Optimization for Agent Design (BOAD), enables efficient exploration of sub-agent designs under limited evaluation budgets. On SWE-bench-Verified, BOAD outperforms single-agent and manually designed multi-agent systems. On SWE-bench-Live, featuring more recent and out-of-distribution issues, our 36B system ranks second on the leaderboard at the time of evaluation, surpassing larger models such as GPT-4 and Claude. These results demonstrate that automatically discovered hierarchical multi-agent systems significantly improve generalization on challenging long-horizon SWE tasks. Code is available at https://github.com/iamxjy/BOAD-SWE-Agent.
Computation and Language 47
☆ A Chain-of-Thought Approach to Semantic Query Categorization in e-Commerce Taxonomies SIGIR
Search in e-Commerce is powered at the core by a structured representation of the inventory, often formulated as a category taxonomy. An important capability in e-Commerce with hierarchical taxonomies is to select a set of relevant leaf categories that are semantically aligned with a given user query. In this scope, we address a fundamental problem of search query categorization in real-world e-Commerce taxonomies. A correct categorization of a query not only provides a way to zoom into the correct inventory space, but opens the door to multiple intent understanding capabilities for a query. A practical and accurate solution to this problem has many applications in e-commerce, including constraining retrieved items and improving the relevance of the search results. For this task, we explore a novel Chain-of-Thought (CoT) paradigm that combines simple tree-search with LLM semantic scoring. Assessing its classification performance on human-judged query-category pairs, relevance tests, and LLM-based reference methods, we find that the CoT approach performs better than a benchmark that uses embedding-based query category predictions. We show how the CoT approach can detect problems within a hierarchical taxonomy. Finally, we also propose LLM-based approaches for query-categorization of the same spirit, but which scale better at the range of millions of queries.
comment: 9 pages, accepted at SIGIR eCom 2025
☆ Rule-Based Approaches to Atomic Sentence Extraction
Natural language often combines multiple ideas into complex sentences. Atomic sentence extraction, the task of decomposing complex sentences into simpler sentences that each express a single idea, improves performance in information retrieval, question answering, and automated reasoning systems. Previous work has formalized the "split-and-rephrase" task and established evaluation metrics, and machine learning approaches using large language models have improved extraction accuracy. However, these methods lack interpretability and provide limited insight into which linguistic structures cause extraction failures. Although some studies have explored dependency-based extraction of subject-verb-object triples and clauses, no principled analysis has examined which specific clause structures and dependencies lead to extraction difficulties. This study addresses this gap by analyzing how complex sentence structures, including relative clauses, adverbial clauses, coordination patterns, and passive constructions, affect the performance of rule-based atomic sentence extraction. Using the WikiSplit dataset, we implemented dependency-based extraction rules in spaCy, generated 100 gold=standard atomic sentence sets, and evaluated performance using ROUGE and BERTScore. The system achieved ROUGE-1 F1 = 0.6714, ROUGE-2 F1 = 0.478, ROUGE-L F1 = 0.650, and BERTScore F1 = 0.5898, indicating moderate-to-high lexical, structural, and semantic alignment. Challenging structures included relative clauses, appositions, coordinated predicates, adverbial clauses, and passive constructions. Overall, rule-based extraction is reasonably accurate but sensitive to syntactic complexity.
☆ Noise-Aware Named Entity Recognition for Historical VET Documents
This paper addresses Named Entity Recognition (NER) in the domain of Vocational Education and Training (VET), focusing on historical, digitized documents that suffer from OCR-induced noise. We propose a robust NER approach leveraging Noise-Aware Training (NAT) with synthetically injected OCR errors, transfer learning, and multi-stage fine-tuning. Three complementary strategies, training on noisy, clean, and artificial data, are systematically compared. Our method is one of the first to recognize multiple entity types in VET documents. It is applied to German documents but transferable to arbitrary languages. Experimental results demonstrate that domain-specific and noise-aware fine-tuning substantially increases robustness and accuracy under noisy conditions. We provide publicly available code for reproducible noise-aware NER in domain-specific contexts.
comment: This is an extended, non-peer-reviewed version of the paper presented at VISAPP 2026
☆ Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations
Guardrail models are essential for ensuring the safety of Large Language Model (LLM) deployments, but processing full multi-turn conversation histories incurs significant computational cost. We propose Defensive M2S, a training paradigm that fine-tunes guardrail models on Multi-turn to Single-turn (M2S) compressed conversations rather than complete dialogue histories. We provide a formal complexity analysis showing that M2S reduces training cost from $O(n^2)$ to $O(n)$ for $n$-turn conversations. Empirically, on our training dataset (779 samples, avg. 10.6 turns), M2S requires only 169K tokens compared to 15.7M tokens for the multi-turn baseline -- a 93$\times$ reduction. We evaluate Defensive M2S across three guardrail model families (LlamaGuard, Nemotron, Qwen3Guard) and three compression templates (hyphenize, numberize, pythonize) on SafeDialBench, a comprehensive multi-turn jailbreak benchmark. Our best configuration, Qwen3Guard with hyphenize compression, achieves 93.8% attack detection recall while reducing inference tokens by 94.6% (from 3,231 to 173 tokens per conversation). This represents a 38.9 percentage point improvement over the baseline while dramatically reducing both training and inference costs. Our findings demonstrate that M2S compression can serve as an effective efficiency technique for guardrail deployment, enabling scalable safety screening of long multi-turn conversations.
☆ Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games
Large language models (LLMs) offer a new empirical setting in which long-standing theories of linguistic meaning can be examined. This paper contrasts two broad approaches: social constructivist accounts associated with language games, and a mathematically oriented framework we call Semantic Field Theory. Building on earlier work by the author, we formalize the notions of lexical fields (Lexfelder) and linguistic fields (Lingofelder) as interacting structures in a continuous semantic space. We then analyze how core properties of transformer architectures-such as distributed representations, attention mechanisms, and geometric regularities in embedding spaces-relate to these concepts. We argue that the success of LLMs in capturing semantic regularities supports the view that language exhibits an underlying mathematical structure, while their persistent limitations in pragmatic reasoning and context sensitivity are consistent with the importance of social grounding emphasized in philosophical accounts of language use. On this basis, we suggest that mathematical structure and language games can be understood as complementary rather than competing perspectives. The resulting framework clarifies the scope and limits of purely statistical models of language and motivates new directions for theoretically informed AI architectures.
☆ Comparative Efficiency Analysis of Lightweight Transformer Models: A Multi-Domain Empirical Benchmark for Enterprise NLP Deployment
In the rapidly evolving landscape of enterprise natural language processing (NLP), the demand for efficient, lightweight models capable of handling multi-domain text automation tasks has intensified. This study conducts a comparative analysis of three prominent lightweight Transformer models - DistilBERT, MiniLM, and ALBERT - across three distinct domains: customer sentiment classification, news topic classification, and toxicity and hate speech detection. Utilizing datasets from IMDB, AG News, and the Measuring Hate Speech corpus, we evaluated performance using accuracy-based metrics including accuracy, precision, recall, and F1-score, as well as efficiency metrics such as model size, inference time, throughput, and memory usage. Key findings reveal that no single model dominates all performance dimensions. ALBERT achieves the highest task-specific accuracy in multiple domains, MiniLM excels in inference speed and throughput, and DistilBERT demonstrates the most consistent accuracy across tasks while maintaining competitive efficiency. All results reflect controlled fine-tuning under fixed enterprise-oriented constraints rather than exhaustive hyperparameter optimization. These results highlight trade-offs between accuracy and efficiency, recommending MiniLM for latency-sensitive enterprise applications, DistilBERT for balanced performance, and ALBERT for resource-constrained environments.
comment: 11 pages, 6 figures. Code and reproducibility resources available on GitHub
☆ Toward Better Temporal Structures for Geopolitical Events Forecasting
Forecasting on geopolitical temporal knowledge graphs (TKGs) through the lens of large language models (LLMs) has recently gained traction. While TKGs and their generalization, hyper-relational temporal knowledge graphs (HTKGs), offer a straightforward structure to represent simple temporal relationships, they lack the expressive power to convey complex facts efficiently. One of the critical limitations of HTKGs is a lack of support for more than two primary entities in temporal facts, which commonly occur in real-world events. To address this limitation, in this work, we study a generalization of HTKGs, Hyper-Relational Temporal Knowledge Generalized Hypergraphs (HTKGHs). We first derive a formalization for HTKGHs, demonstrating their backward compatibility while supporting two complex types of facts commonly found in geopolitical incidents. Then, utilizing this formalization, we introduce the htkgh-polecat dataset, built upon the global event database POLECAT. Finally, we benchmark and analyze popular LLMs on the relation prediction task, providing insights into their adaptability and capabilities in complex forecasting scenarios.
comment: 17 pages, 13 figures, 3 tables
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset
We present judgeWEL, a dataset for named entity recognition (NER) in Luxembourgish, automatically labelled and subsequently verified using large language models (LLM) in a novel pipeline. Building datasets for under-represented languages remains one of the major bottlenecks in natural language processing, where the scarcity of resources and linguistic particularities make large-scale annotation costly and potentially inconsistent. To address these challenges, we propose and evaluate a novel approach that leverages Wikipedia and Wikidata as structured sources of weak supervision. By exploiting internal links within Wikipedia articles, we infer entity types based on their corresponding Wikidata entries, thereby generating initial annotations with minimal human intervention. Because such links are not uniformly reliable, we mitigate noise by employing and comparing several LLMs to identify and retain only high-quality labelled sentences. The resulting corpus is approximately five times larger than the currently available Luxembourgish NER dataset and offers broader and more balanced coverage across entity categories, providing a substantial new resource for multilingual and low-resource NER research.
☆ Vision-Language Reasoning for Geolocalization: A Reinforcement Learning Approach
Recent advances in vision-language models have opened up new possibilities for reasoning-driven image geolocalization. However, existing approaches often rely on synthetic reasoning annotations or external image retrieval, which can limit interpretability and generalizability. In this paper, we present Geo-R, a retrieval-free framework that uncovers structured reasoning paths from existing ground-truth coordinates and optimizes geolocation accuracy via reinforcement learning. We propose the Chain of Region, a rule-based hierarchical reasoning paradigm that generates precise, interpretable supervision by mapping GPS coordinates to geographic entities (e.g., country, province, city) without relying on model-generated or synthetic labels. Building on this, we introduce a lightweight reinforcement learning strategy with coordinate-aligned rewards based on Haversine distance, enabling the model to refine predictions through spatially meaningful feedback. Our approach bridges structured geographic reasoning with direct spatial supervision, yielding improved localization accuracy, stronger generalization, and more transparent inference. Experimental results across multiple benchmarks confirm the effectiveness of Geo-R, establishing a new retrieval-free paradigm for scalable and interpretable image geolocalization. To facilitate further research and ensure reproducibility, both the model and code will be made publicly available.
comment: 8 pages, 1 figures
BERT-JEPA: Reorganizing CLS Embeddings for Language-Invariant Semantics
Joint Embedding Predictive Architectures (JEPA) are a novel self supervised training technique that have shown recent promise across domains. We introduce BERT-JEPA (BEPA), a training paradigm that adds a JEPA training objective to BERT-style models, working to combat a collapsed [CLS] embedding space and turning it into a language-agnostic space. This new structure leads to increased performance across multilingual benchmarks.
comment: 16 pages, 10 figures, 10 tables
☆ The Role of Mixed-Language Documents for Multilingual Large Language Model Pretraining
Multilingual large language models achieve impressive cross-lingual performance despite largely monolingual pretraining. While bilingual data in pretraining corpora is widely believed to enable these abilities, details of its contributions remain unclear. We investigate this question by pretraining models from scratch under controlled conditions, comparing the standard web corpus with a monolingual-only version that removes all multilingual documents. Despite constituting only 2% of the corpus, removing bilingual data causes translation performance to drop 56% in BLEU, while behaviour on cross-lingual QA and general reasoning tasks remains stable, with training curves largely overlapping the baseline. To understand this asymmetry, we categorize bilingual data into parallel (14%), code-switching (72%), and miscellaneous documents (14%) based on the semantic relevance of content in different languages. We then conduct granular ablations by reintroducing parallel or code-switching data into the monolingual-only corpus. Our experiments reveal that parallel data almost fully restores translation performance (91% of the unfiltered baseline), whereas code-switching contributes minimally. Other cross-lingual tasks remain largely unaffected by either type. These findings reveal that translation critically depends on systematic token-level alignments from parallel data, whereas cross-lingual understanding and reasoning appear to be achievable even without bilingual data.
comment: under review
☆ Robust Uncertainty Quantification for Factual Generation of Large Language Models IJCNN 2025
The rapid advancement of large language model(LLM) technology has facilitated its integration into various domains of professional and daily life. However, the persistent challenge of LLM hallucination has emerged as a critical limitation, significantly compromising the reliability and trustworthiness of AI-generated content. This challenge has garnered significant attention within the scientific community, prompting extensive research efforts in hallucination detection and mitigation strategies. Current methodological frameworks reveal a critical limitation: traditional uncertainty quantification approaches demonstrate effectiveness primarily within conventional question-answering paradigms, yet exhibit notable deficiencies when confronted with non-canonical or adversarial questioning strategies. This performance gap raises substantial concerns regarding the dependability of LLM responses in real-world applications requiring robust critical thinking capabilities. This study aims to fill this gap by proposing an uncertainty quantification scenario in the task of generating with multiple facts. We have meticulously constructed a set of trap questions contained with fake names. Based on this scenario, we innovatively propose a novel and robust uncertainty quantification method(RU). A series of experiments have been conducted to verify its effectiveness. The results show that the constructed set of trap questions performs excellently. Moreover, when compared with the baseline methods on four different models, our proposed method has demonstrated great performance, with an average increase of 0.1-0.2 in ROCAUC values compared to the best performing baseline method, providing new sights and methods for addressing the hallucination issue of LLMs.
comment: 9 pages, 5 tables, 5 figures, accepted to IJCNN 2025
☆ DepFlow: Disentangled Speech Generation to Mitigate Semantic Bias in Depression Detection
Speech is a scalable and non-invasive biomarker for early mental health screening. However, widely used depression datasets like DAIC-WOZ exhibit strong coupling between linguistic sentiment and diagnostic labels, encouraging models to learn semantic shortcuts. As a result, model robustness may be compromised in real-world scenarios, such as Camouflaged Depression, where individuals maintain socially positive or neutral language despite underlying depressive states. To mitigate this semantic bias, we propose DepFlow, a three-stage depression-conditioned text-to-speech framework. First, a Depression Acoustic Encoder learns speaker- and content-invariant depression embeddings through adversarial training, achieving effective disentanglement while preserving depression discriminability (ROC-AUC: 0.693). Second, a flow-matching TTS model with FiLM modulation injects these embeddings into synthesis, enabling control over depressive severity while preserving content and speaker identity. Third, a prototype-based severity mapping mechanism provides smooth and interpretable manipulation across the depression continuum. Using DepFlow, we construct a Camouflage Depression-oriented Augmentation (CDoA) dataset that pairs depressed acoustic patterns with positive/neutral content from a sentiment-stratified text bank, creating acoustic-semantic mismatches underrepresented in natural data. Evaluated across three depression detection architectures, CDoA improves macro-F1 by 9%, 12%, and 5%, respectively, consistently outperforming conventional augmentation strategies in depression Detection. Beyond enhancing robustness, DepFlow provides a controllable synthesis platform for conversational systems and simulation-based evaluation, where real clinical data remains limited by ethical and coverage constraints.
☆ Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations
Quantization is widely used to accelerate inference and streamline the deployment of large language models (LLMs), yet its effects on self-explanations (SEs) remain unexplored. SEs, generated by LLMs to justify their own outputs, require reasoning about the model's own decision-making process, a capability that may exhibit particular sensitivity to quantization. As SEs are increasingly relied upon for transparency in high-stakes applications, understanding whether and to what extent quantization degrades SE quality and faithfulness is critical. To address this gap, we examine two types of SEs: natural language explanations (NLEs) and counterfactual examples, generated by LLMs quantized using three common techniques at distinct bit widths. Our findings indicate that quantization typically leads to moderate declines in both SE quality (up to 4.4\%) and faithfulness (up to 2.38\%). The user study further demonstrates that quantization diminishes both the coherence and trustworthiness of SEs (up to 8.5\%). Compared to smaller models, larger models show limited resilience to quantization in terms of SE quality but better maintain faithfulness. Moreover, no quantization technique consistently excels across task accuracy, SE quality, and faithfulness. Given that quantization's impact varies by context, we recommend validating SE quality for specific use cases, especially for NLEs, which show greater sensitivity. Nonetheless, the relatively minor deterioration in SE quality and faithfulness does not undermine quantization's effectiveness as a model compression technique.
comment: In submission
☆ Beyond Perfect APIs: A Comprehensive Evaluation of LLM Agents Under Real-World API Complexity
We introduce WildAGTEval, a benchmark designed to evaluate large language model (LLM) agents' function-calling capabilities under realistic API complexity. Unlike prior work that assumes an idealized API system and disregards real-world factors such as noisy API outputs, WildAGTEval accounts for two dimensions of real-world complexity: 1. API specification, which includes detailed documentation and usage constraints, and 2. API execution, which captures runtime challenges. Consequently, WildAGTEval offers (i) an API system encompassing 60 distinct complexity scenarios that can be composed into approximately 32K test configurations, and (ii) user-agent interactions for evaluating LLM agents on these scenarios. Using WildAGTEval, we systematically assess several advanced LLMs and observe that most scenarios are challenging, with irrelevant information complexity posing the greatest difficulty and reducing the performance of strong LLMs by 27.3%. Furthermore, our qualitative analysis reveals that LLMs occasionally distort user intent merely to claim task completion, critically affecting user satisfaction.
comment: 26 pages
☆ Parallel Universes, Parallel Languages: A Comprehensive Study on LLM-based Multilingual Counterfactual Example Generation
Counterfactuals refer to minimally edited inputs that cause a model's prediction to change, serving as a promising approach to explaining the model's behavior. Large language models (LLMs) excel at generating English counterfactuals and demonstrate multilingual proficiency. However, their effectiveness in generating multilingual counterfactuals remains unclear. To this end, we conduct a comprehensive study on multilingual counterfactuals. We first conduct automatic evaluations on both directly generated counterfactuals in the target languages and those derived via English translation across six languages. Although translation-based counterfactuals offer higher validity than their directly generated counterparts, they demand substantially more modifications and still fall short of matching the quality of the original English counterfactuals. Second, we find the patterns of edits applied to high-resource European-language counterfactuals to be remarkably similar, suggesting that cross-lingual perturbations follow common strategic principles. Third, we identify and categorize four main types of errors that consistently appear in the generated counterfactuals across languages. Finally, we reveal that multilingual counterfactual data augmentation (CDA) yields larger model performance improvements than cross-lingual CDA, especially for lower-resource languages. Yet, the imperfections of the generated counterfactuals limit gains in model performance and robustness.
comment: In submission
☆ Talk Less, Verify More: Improving LLM Assistants with Semantic Checks and Execution Feedback
As large language model (LLM) assistants become increasingly integrated into enterprise workflows, their ability to generate accurate, semantically aligned, and executable outputs is critical. However, current conversational business analytics (CBA) systems often lack built-in verification mechanisms, leaving users to manually validate potentially flawed results. This paper introduces two complementary verification techniques: Q*, which performs reverse translation and semantic matching between code and user intent, and Feedback+, which incorporates execution feedback to guide code refinement. Embedded within a generator-discriminator framework, these mechanisms shift validation responsibilities from users to the system. Evaluations on three benchmark datasets, Spider, Bird, and GSM8K, demonstrate that both Q* and Feedback+ reduce error rates and task completion time. The study also identifies reverse translation as a key bottleneck, highlighting opportunities for future improvement. Overall, this work contributes a design-oriented framework for building more reliable, enterprise-grade GenAI systems capable of trustworthy decision support.
☆ JP-TL-Bench: Anchored Pairwise LLM Evaluation for Bidirectional Japanese-English Translation
We introduce JP-TL-Bench, a lightweight, open benchmark designed to guide the iterative development of Japanese-English translation systems. In this context, the challenge is often "which of these two good translations is better?" rather than "is this translation acceptable?" This distinction matters for Japanese-English, where subtle choices in politeness, implicature, ellipsis, and register strongly affect perceived naturalness. JP-TL-Bench uses a protocol built to make LLM judging both reliable and affordable: it evaluates a candidate model via reference-free, pairwise LLM comparisons against a fixed, versioned anchor set. Pairwise results are aggregated with a Bradley-Terry model and reported as win rates plus a normalized 0-10 "LT" score derived from a logistic transform of fitted log-strengths. Because each candidate is scored against the same frozen anchor set, scores are structurally stable given the same base set, judge, and aggregation code.
comment: 24 pages, 5 figures, 8 tables
☆ From Evidence-Based Medicine to Knowledge Graph: Retrieval-Augmented Generation for Sports Rehabilitation and a Domain Benchmark
In medicine, large language models (LLMs) increasingly rely on retrieval-augmented generation (RAG) to ground outputs in up-to-date external evidence. However, current RAG approaches focus primarily on performance improvements while overlooking evidence-based medicine (EBM) principles. This study addresses two key gaps: (1) the lack of PICO alignment between queries and retrieved evidence, and (2) the absence of evidence hierarchy considerations during reranking. We present a generalizable strategy for adapting EBM to graph-based RAG, integrating the PICO framework into knowledge graph construction and retrieval, and proposing a Bayesian-inspired reranking algorithm to calibrate ranking scores by evidence grade without introducing predefined weights. We validated this framework in sports rehabilitation, a literature-rich domain currently lacking RAG systems and benchmarks. We released a knowledge graph (357,844 nodes and 371,226 edges) and a reusable benchmark of 1,637 QA pairs. The system achieved 0.830 nugget coverage, 0.819 answer faithfulness, 0.882 semantic similarity, and 0.788 PICOT match accuracy. In a 5-point Likert evaluation, five expert clinicians rated the system 4.66-4.84 across factual accuracy, faithfulness, relevance, safety, and PICO alignment. These findings demonstrate that the proposed EBM adaptation strategy improves retrieval and answer quality and is transferable to other clinical domains. The released resources also help address the scarcity of RAG datasets in sports rehabilitation.
comment: 35 pages, 5 figures
☆ From Sight to Insight: Improving Visual Reasoning Capabilities of Multimodal Models via Reinforcement Learning
Reinforcement learning (RL) has emerged as a promising approach for eliciting reasoning chains before generating final answers. However, multimodal large language models (MLLMs) generate reasoning that lacks integration of visual information. This limits their ability to solve problems that demand accurate visual perception, such as visual puzzles. We show that visual perception is the key bottleneck in such tasks: converting images into textual descriptions significantly improves performance, yielding gains of 26.7% for Claude 3.5 and 23.6% for Claude 3.7. To address this, we investigate reward-driven RL as a mechanism to unlock long visual reasoning in open-source MLLMs without requiring costly supervision. We design and evaluate six reward functions targeting different reasoning aspects, including image understanding, thinking steps, and answer accuracy. Using group relative policy optimization (GRPO), our approach explicitly incentivizes longer, structured reasoning and mitigates bypassing of visual information. Experiments on Qwen-2.5-VL-7B achieve 5.56% improvements over the base model, with consistent gains across both in-domain and out-of-domain settings.
comment: 23 pages, 15 Figures, 10 Tables
☆ Overlooked Safety Vulnerability in LLMs: Malicious Intelligent Optimization Algorithm Request and its Jailbreak
The widespread deployment of large language models (LLMs) has raised growing concerns about their misuse risks and associated safety issues. While prior studies have examined the safety of LLMs in general usage, code generation, and agent-based applications, their vulnerabilities in automated algorithm design remain underexplored. To fill this gap, this study investigates this overlooked safety vulnerability, with a particular focus on intelligent optimization algorithm design, given its prevalent use in complex decision-making scenarios. We introduce MalOptBench, a benchmark consisting of 60 malicious optimization algorithm requests, and propose MOBjailbreak, a jailbreak method tailored for this scenario. Through extensive evaluation of 13 mainstream LLMs including the latest GPT-5 and DeepSeek-V3.1, we reveal that most models remain highly susceptible to such attacks, with an average attack success rate of 83.59% and an average harmfulness score of 4.28 out of 5 on original harmful prompts, and near-complete failure under MOBjailbreak. Furthermore, we assess state-of-the-art plug-and-play defenses that can be applied to closed-source models, and find that they are only marginally effective against MOBjailbreak and prone to exaggerated safety behaviors. These findings highlight the urgent need for stronger alignment techniques to safeguard LLMs against misuse in algorithm design.
☆ Knowledge Distillation for Temporal Knowledge Graph Reasoning with Large Language Models
Reasoning over temporal knowledge graphs (TKGs) is fundamental to improving the efficiency and reliability of intelligent decision-making systems and has become a key technological foundation for future artificial intelligence applications. Despite recent progress, existing TKG reasoning models typically rely on large parameter sizes and intensive computation, leading to high hardware costs and energy consumption. These constraints hinder their deployment on resource-constrained, low-power, and distributed platforms that require real-time inference. Moreover, most existing model compression and distillation techniques are designed for static knowledge graphs and fail to adequately capture the temporal dependencies inherent in TKGs, often resulting in degraded reasoning performance. To address these challenges, we propose a distillation framework specifically tailored for temporal knowledge graph reasoning. Our approach leverages large language models as teacher models to guide the distillation process, enabling effective transfer of both structural and temporal reasoning capabilities to lightweight student models. By integrating large-scale public knowledge with task-specific temporal information, the proposed framework enhances the student model's ability to model temporal dynamics while maintaining a compact and efficient architecture. Extensive experiments on multiple publicly available benchmark datasets demonstrate that our method consistently outperforms strong baselines, achieving a favorable trade-off between reasoning accuracy, computational efficiency, and practical deployability.
☆ StockBot 2.0: Vanilla LSTMs Outperform Transformer-based Forecasting for Stock Prices
Accurate forecasting of financial markets remains a long-standing challenge due to complex temporal and often latent dependencies, non-linear dynamics, and high volatility. Building on our earlier recurrent neural network framework, we present an enhanced StockBot architecture that systematically evaluates modern attention-based, convolutional, and recurrent time-series forecasting models within a unified experimental setting. While attention-based and transformer-inspired models offer increased modeling flexibility, extensive empirical evaluation reveals that a carefully constructed vanilla LSTM consistently achieves superior predictive accuracy and more stable buy/sell decision-making when trained under a common set of default hyperparameters. These results highlight the robustness and data efficiency of recurrent sequence models for financial time-series forecasting, particularly in the absence of extensive hyperparameter tuning or the availability of sufficient data when discretized to single-day intervals. Additionally, these results underscore the importance of architectural inductive bias in data-limited market prediction tasks.
comment: 14 pages, 5 figures
☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
While Emotion Recognition in Conversation (ERC) has achieved high accuracy, two critical gaps remain: a limited understanding of \textit{which} architectural choices actually matter, and a lack of linguistic analysis connecting recognition to generation. We address both gaps through a systematic analysis of the IEMOCAP dataset. For recognition, we conduct a rigorous ablation study with 10-seed evaluation and report three key findings. First, conversational context is paramount, with performance saturating rapidly -- 90\% of the total gain achieved within just the most recent 10--30 preceding turns (depending on the label set). Second, hierarchical sentence representations help at utterance-level, but this benefit disappears once conversational context is provided, suggesting that context subsumes intra-utterance structure. Third, external affective lexicons (SenticNet) provide no gain, indicating that pre-trained encoders already capture necessary emotional semantics. With simple architectures using strictly causal context, we achieve 82.69\% (4-way) and 67.07\% (6-way) weighted F1, outperforming prior text-only methods including those using bidirectional context. For linguistic analysis, we analyze 5,286 discourse marker occurrences and find a significant association between emotion and marker positioning ($p < .0001$). Notably, "sad" utterances exhibit reduced left-periphery marker usage (21.9\%) compared to other emotions (28--32\%), consistent with theories linking left-periphery markers to active discourse management. This connects to our recognition finding that sadness benefits most from context (+22\%p): lacking explicit pragmatic signals, sad utterances require conversational history for disambiguation.
☆ Pat-DEVAL: Chain-of-Legal-Thought Evaluation for Patent Description
Patent descriptions must deliver comprehensive technical disclosure while meeting strict legal standards such as enablement and written description requirements. Although large language models have enabled end-to-end automated patent drafting, existing evaluation approaches fail to assess long-form structural coherence and statutory compliance specific to descriptions. We propose Pat-DEVAL, the first multi-dimensional evaluation framework dedicated to patent description bodies. Leveraging the LLM-as-a-judge paradigm, Pat-DEVAL introduces Chain-of-Legal-Thought (CoLT), a legally-constrained reasoning mechanism that enforces sequential patent-law-specific analysis. Experiments validated by patent expert on our Pap2Pat-EvalGold dataset demonstrate that Pat-DEVAL achieves a Pearson correlation of 0.69, significantly outperforming baseline metrics and existing LLM evaluators. Notably, the framework exhibits a superior correlation of 0.73 in Legal-Professional Compliance, proving that the explicit injection of statutory constraints is essential for capturing nuanced legal validity. By establishing a new standard for ensuring both technical soundness and legal compliance, Pat-DEVAL provides a robust methodological foundation for the practical deployment of automated patent drafting systems.
☆ Attention Needs to Focus: A Unified Perspective on Attention Allocation ICLR 2026
The Transformer architecture, a cornerstone of modern Large Language Models (LLMs), has achieved extraordinary success in sequence modeling, primarily due to its attention mechanism. However, despite its power, the standard attention mechanism is plagued by well-documented issues: representational collapse and attention sink. Although prior work has proposed approaches for these issues, they are often studied in isolation, obscuring their deeper connection. In this paper, we present a unified perspective, arguing that both can be traced to a common root -- improper attention allocation. We identify two failure modes: 1) Attention Overload, where tokens receive comparable high weights, blurring semantic features that lead to representational collapse; 2) Attention Underload, where no token is semantically relevant, yet attention is still forced to distribute, resulting in spurious focus such as attention sink. Building on this insight, we introduce Lazy Attention, a novel mechanism designed for a more focused attention distribution. To mitigate overload, it employs positional discrimination across both heads and dimensions to sharpen token distinctions. To counteract underload, it incorporates Elastic-Softmax, a modified normalization function that relaxes the standard softmax constraint to suppress attention on irrelevant tokens. Experiments on the FineWeb-Edu corpus, evaluated across nine diverse benchmarks, demonstrate that Lazy Attention successfully mitigates attention sink and achieves competitive performance compared to both standard attention and modern architectures, while reaching up to 59.58% attention sparsity.
comment: ICLR 2026 conference
♻ ☆ Towards Acyclic Preference Evaluation of Language Models via Multiple Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoising), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
♻ ☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still exhibit a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have been made to address this gap, its underlying causes remain largely unexplored. In this work, we show that this gap primarily stems from failures in language understanding-specifically, the model's inability to translate multilingual inputs into the language dominating its reasoning traces (typically English). As identifying understanding failures can enable targeted mitigation of the gap, we evaluate a range of detection methods and find that understanding failures are detectable to a meaningful extent, with supervised approaches performing best. Building on this, we propose Selective Translation, a strategy that incorporates an English translation into the initial reasoning trace only when an understanding failure is detected. Experimental results using Qwen3-4B show that Selective Translation substantially bridges the multilingual reasoning gap, achieving near full-translation performance while translating only about 20% of inputs. Together, our results show that failures in language understanding are the primary driver of the multilingual reasoning gap and can be detected and selectively mitigated, clarifying its origin and suggesting a path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis
comment: v2: Fix typos and updated contents
♻ ☆ Navigating the Reality Gap: Privacy-Preserving On-Device Continual Adaptation of ASR for Clinical Telephony
Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. Such adaptation is essential for clinical telephony systems, where patient speech is highly variable and transcription errors can directly impact downstream clinical workflows. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades up to a 40.94% WER on rural clinical telephony speech from India, rendering it unusable. We demonstrate consistent improvements on these helpline interactions without transmitting raw patient data off-device via an on-device continual adaptation framework using Low-Rank Adaptation (LoRA). We conduct an investigative study of stabilization strategies, characterizing the trade-offs between data-driven and parameter-driven approaches. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we investigate a stabilized importance estimation strategy (Absolute Fisher) to ensure robust convergence against the high-variance gradients common in clinical telephony speech. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability in healthcare settings which cannot be bypassed by language models alone.
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ LLM-Guided Exemplar Selection for Few-Shot Wearable-Sensor Human Activity Recognition
In this paper, we propose an LLM-Guided Exemplar Selection framework to address a key limitation in state-of-the-art Human Activity Recognition (HAR) methods: their reliance on large labeled datasets and purely geometric exemplar selection, which often fail to distinguish similar wearable sensor activities such as walking, walking upstairs, and walking downstairs. Our method incorporates semantic reasoning via an LLM-generated knowledge prior that captures feature importance, inter-class confusability, and exemplar budget multipliers, and uses it to guide exemplar scoring and selection. These priors are combined with margin-based validation cues, PageRank centrality, hubness penalization, and facility-location optimization to obtain a compact and informative set of exemplars. Evaluated on the UCI-HAR dataset under strict few-shot conditions, the framework achieves a macro F1-score of 88.78%, outperforming classical approaches such as random sampling, herding, and k-center. The results show that LLM-derived semantic priors, when integrated with structural and geometric cues, provide a stronger foundation for selecting representative sensor exemplars in few-shot wearable-sensor HAR.
comment: This paper has been accepted for presentation at ABC 2026. The manuscript is under revision prior to camera-ready submission
♻ ☆ Dual LoRA: Enhancing LoRA with Magnitude and Direction Updates
Low-rank adaptation (LoRA) is one of the most popular methods among parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large language models (LLMs) to specific downstream tasks. However, the model trained based on LoRA often has an unsatisfactory performance due to its low-rank assumption. In this paper, we propose a novel method called Dual LoRA to improve the performance by incorporating an inductive bias into the original LoRA. Specifically, we separate low-rank matrices into two groups: the magnitude group to control whether or not and how far we should update a parameter and the direction group to decide whether this parameter should move forward or backward, to better simulate the parameter updating process of the full fine-tuning based on gradient-based optimization algorithms. We show that this can be simply achieved by adding a ReLU function to the magnitude group and a sign function to the direction group. We conduct several experiments over a wide range of NLP tasks, including natural language understanding (NLU) and commonsense reasoning datasets on RoBERTa, DeBERTa, and LLaMA-1/2/3 as baseline models. The results show that we consistently outperform LoRA and its state-of-the-art variants with the same number of trainable parameters.
♻ ☆ TabiBERT: A Large-Scale ModernBERT Foundation Model and Unified Benchmarking Framework for Turkish
Since the inception of BERT, encoder-only Transformers have evolved significantly in computational efficiency, training stability, and long-context modeling. ModernBERT consolidates these advances by integrating Rotary Positional Embeddings (RoPE), FlashAttention, and refined normalization. Despite these developments, Turkish NLP lacks a monolingual encoder trained from scratch, incorporating such modern architectural paradigms. This work introduces TabiBERT, a monolingual Turkish encoder based on ModernBERT architecture trained from scratch on a large, curated corpus. TabiBERT is pre-trained on one trillion tokens sampled from an 84.88B token multi-domain corpus: web text (73%), scientific publications (20%), source code (6%), and mathematical content (0.3%). It supports 8,192-token context length (16x original BERT), achieves up to 2.65x inference speedup, and reduces GPU memory consumption, enabling larger batch sizes. We introduce TabiBench with 28 datasets across eight task categories with standardized splits and protocols, evaluated using GLUE-style macro-averaging. TabiBERT attains 77.58 on TabiBench, outperforming BERTurk by 1.62 points and establishing state-of-the-art on five of eight categories, with particularly strong gains on question answering (+9.55 points), code retrieval (+2.41 points), and academic understanding (+0.66 points). Compared with task-specific prior best results, including specialized models like TurkishBERTweet, TabiBERT achieves +1.47 average improvement, indicating robust cross-domain generalization. We release model weights, training configurations, and evaluation code for transparent, reproducible Turkish encoder research.
comment: 33 pages, 2 figures, 13 tables
♻ ☆ Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
♻ ☆ Multi-hop Reasoning via Early Knowledge Alignment
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for Large Language Models (LLMs) to address knowledge-intensive queries requiring domain-specific or up-to-date information. To handle complex multi-hop questions that are challenging for single-step retrieval, iterative RAG approaches incorporating reinforcement learning have been proposed. However, existing iterative RAG systems typically plan to decompose questions without leveraging information about the available retrieval corpus, leading to inefficient retrieval and reasoning chains that cascade into suboptimal performance. In this paper, we introduce Early Knowledge Alignment (EKA), a simple but effective module that aligns LLMs with retrieval set before planning in iterative RAG systems with contextually relevant retrieved knowledge. Extensive experiments on six standard RAG datasets demonstrate that by establishing a stronger reasoning foundation, EKA significantly improves retrieval precision, reduces cascading errors, and enhances both performance and efficiency. Our analysis from an entropy perspective demonstrate that incorporating early knowledge reduces unnecessary exploration during the reasoning process, enabling the model to focus more effectively on relevant information subsets. Moreover, EKA proves effective as a versatile, training-free inference strategy that scales seamlessly to large models. Generalization tests across diverse datasets and retrieval corpora confirm the robustness of our approach. Overall, EKA advances the state-of-the-art in iterative RAG systems while illuminating the critical interplay between structured reasoning and efficient exploration in reinforcement learning-augmented frameworks. The code is released at \href{https://github.com/yxzwang/EarlyKnowledgeAlignment}{Github}.
comment: 16 pages
♻ ☆ Through a Compressed Lens: Investigating The Impact of Quantization on Factual Knowledge Recall
Quantization methods are widely used to accelerate inference and streamline the deployment of large language models (LLMs). Although quantization's effects on various LLM capabilities have been extensively studied, one critical area remains underexplored: factual knowledge recall (FKR), the process by which LLMs access stored knowledge. To this end, we conduct comprehensive experiments using three common quantization techniques at distinct bit widths, in conjunction with interpretability-driven analyses on two tasks, knowledge memorization and latent multi-hop reasoning. We show that quantization typically results in information loss within LLMs, consequently diminishing their capacity for FKR. This effect is particularly amplified in smaller models within the same architectural families. However, models quantized at reduced bit precision do not consistently exhibit inferior performance and occasionally quantization may even enhance model FKR. We find that BitSandBytes demonstrates highest preservation of the original full-precision model's FKR. Despite variability across models and methods, quantization causes modest performance degradation and remains an effective compression strategy.
comment: In submission
♻ ☆ CTTA-T: Continual Test-Time Adaptation for Text Understanding via Teacher-Student with a Domain-aware and Generalized Teacher
Text understanding often suffers from domain shifts. To handle testing domains, domain adaptation (DA) is trained to adapt to a fixed and observed testing domain; a more challenging paradigm, test-time adaptation (TTA), cannot access the testing domain during training and online adapts to the testing samples during testing, where the samples are from a fixed domain. We aim to explore a more practical and underexplored scenario, continual test-time adaptation (CTTA) for text understanding, which involves a sequence of testing (unobserved) domains in testing. Current CTTA methods struggle in reducing error accumulation over domains and enhancing generalization to handle unobserved domains: 1) Noise-filtering reduces accumulated errors but discards useful information, and 2) accumulating historical domains enhances generalization, but it is hard to achieve adaptive accumulation. In this paper, we propose a CTTA-T (continual test-time adaptation for text understanding) framework adaptable to evolving target domains: it adopts a teacher-student framework, where the teacher is domain-aware and generalized for evolving domains. To improve teacher predictions, we propose a refine-then-filter based on dropout-driven consistency, which calibrates predictions and removes unreliable guidance. For the adaptation-generalization trade-off, we construct a domain-aware teacher by dynamically accumulating cross-domain semantics via incremental PCA, which continuously tracks domain shifts. Experiments show CTTA-T excels baselines.
♻ ☆ Do Vision Encoders Truly Explain Object Hallucination?: Mitigating Object Hallucination via Simple Fine-Grained CLIPScore
Recently, Large Vision-Language Models (LVLMs) show remarkable performance across various domains. However, these models suffer from object hallucination. In this work, we study object hallucination primarily in a discriminative, retrieval-style evaluation setting (OHD-Caps), rather than in free-form caption generation. This study revisits the previous claim that the cause of such hallucinations lies in the limited representational capacity of the vision encoder. Our analysis implies that the capacity of the vision encoder is not necessarily a major limiting factor in detecting object hallucination. Based on this insight, we propose Fine-grained CLIPScore (F-CLIPScore), a simple yet effective evaluation metric that enhances object-level granularity by incorporating text embeddings at the noun level. Evaluations on the OHD-Caps benchmark show that F-CLIPScore significantly outperforms conventional CLIPScore in accuracy by a large margin of 39.6% without additional training. We further demonstrate that F-CLIPScore-based data filtering reduces object hallucination in LVLM (4.9% in POPE accuracy after alignment pretraining). Our code is publicly available at https://github.com/abzb1/f-clip
comment: Transactions on Machine Learning Research
♻ ☆ PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
As researchers delve more deeply into their work, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as previous systems mainly collect paper abstract to construct corpus index, which lacks detailed information to support retrieval by some finer-grained queries. In this work, we propose PaperRegister, which transforms traditional abstract-based index into a hierarchical index tree, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the SOTA performance, and particularly excels in the fine-grained scenarios, highlighting good potential as an effective solution for flexible-grained paper search in real-world applications. https://github.com/Li-Z-Q/PaperRegister.
♻ ☆ Optimizing Retrieval for RAG via Reinforcement Learning
As retrieval-augmented generation (RAG) becomes more widespread, the role of retrieval is shifting from retrieving information for human browsing to retrieving context for AI reasoning. This shift creates more complex search environments, where relevance is difficult to pre-define. Existing retrievers rely on supervised fine-tuning (SFT) with human labels or synthetic data, resulting in static relevance that struggles to adapt to diverse RAG environments. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through Reinforcement learning (RL). Specifically, we adopt an RL training paradigm that enables the retriever to explore and self-improve within given RAG environments, automating the learning process with minimal manual experimentation or tuning effort. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
♻ ☆ FedSEA-LLaMA: A Secure, Efficient and Adaptive Federated Splitting Framework for Large Language Models
Private data holds promise for improving LLMs due to its high quality, but its scattered distribution across data silos and the high computational demands of LLMs limit their deployment in federated environments. To address this, the transformer-based federated split models are proposed, which offload most model parameters to the server (or distributed clients) while retaining only a small portion on the client to ensure data privacy. Despite this design, they still face three challenges: 1) Peer-to-peer key encryption struggles to secure transmitted vectors effectively; 2) The auto-regressive nature of LLMs means that federated split learning can only train and infer sequentially, causing high communication overhead; 3) Fixed partition points lack adaptability to downstream tasks. In this paper, we introduce FedSEA-LLaMA, a Secure, Efficient, and Adaptive Federated splitting framework based on LLaMA2. First, we inject Gaussian noise into forward-pass hidden states to enable secure end-to-end vector transmission. Second, we employ attention-mask compression and KV cache collaboration to reduce communication costs, accelerating training and inference. Third, we allow users to dynamically adjust the partition points for input/output blocks based on specific task requirements. Experiments on natural language understanding, summarization, and conversational QA tasks show that FedSEA-LLaMA maintains performance comparable to centralized LLaMA2 and achieves up to 8x speedups in training and inference. Further analysis of privacy attacks and different partition points also demonstrates the effectiveness of FedSEA-LLaMA in security and adaptability.
♻ ☆ Inner-Probe: Discovering Copyright-related Data Generation in LLM Architecture IEEE
Large Language Models (LLMs) utilize extensive knowledge databases and show powerful text generation ability. However, their reliance on high-quality copyrighted datasets raises concerns about copyright infringements in generated texts. Current research often employs prompt engineering or semantic classifiers to identify copyrighted content, but these approaches have two significant limitations: (1) Challenging to identify which specific subdataset (e.g., works from particular authors) influences an LLM's output. (2) Treating the entire training database as copyrighted, hence overlooking the inclusion of non-copyrighted training data. We propose Inner-Probe, a lightweight framework designed to evaluate the influence of copyrighted sub-datasets on LLM-generated texts. Unlike traditional methods relying solely on text, we discover that the results of multi-head attention (MHA) during LLM output generation provide more effective information. Thus, Inner-Probe performs sub-dataset contribution analysis using a lightweight LSTM based network trained on MHA results in a supervised manner. Harnessing such a prior, Inner-Probe enables non-copyrighted text detection through a concatenated global projector trained with unsupervised contrastive learning. Inner-Probe demonstrates 3x improved efficiency compared to semantic model training in sub-dataset contribution analysis on Books3, achieves 15.04% - 58.7% higher accuracy over baselines on the Pile, and delivers a 0.104 increase in AUC for non-copyrighted data filtering.
comment: Accepted by IEEE Transactions on Artificial Intelligence
♻ ☆ W2S-AlignTree: Weak-to-Strong Inference-Time Alignment for Large Language Models via Monte Carlo Tree Search AAAI 2026
Large Language Models (LLMs) demonstrate impressive capabilities, yet their outputs often suffer from misalignment with human preferences due to the inadequacy of weak supervision and a lack of fine-grained control. Training-time alignment methods like Reinforcement Learning from Human Feedback (RLHF) face prohibitive costs in expert supervision and inherent scalability limitations, offering limited dynamic control during inference. Consequently, there is an urgent need for scalable and adaptable alignment mechanisms. To address this, we propose W2S-AlignTree, a pioneering plug-and-play inference-time alignment framework that synergistically combines Monte Carlo Tree Search (MCTS) with the Weak-to-Strong Generalization paradigm for the first time. W2S-AlignTree formulates LLM alignment as an optimal heuristic search problem within a generative search tree. By leveraging weak model's real-time, step-level signals as alignment proxies and introducing an Entropy-Aware exploration mechanism, W2S-AlignTree enables fine-grained guidance during strong model's generation without modifying its parameters. The approach dynamically balances exploration and exploitation in high-dimensional generation search trees. Experiments across controlled sentiment generation, summarization, and instruction-following show that W2S-AlignTree consistently outperforms strong baselines. Notably, W2S-AlignTree raises the performance of Llama3-8B from 1.89 to 2.19, a relative improvement of 15.9 on the summarization task.
comment: AAAI 2026 Oral
♻ ☆ AlignAR: Generative Sentence Alignment for Arabic-English Parallel Corpora of Legal and Literary Texts
High-quality parallel corpora are essential for Machine Translation (MT) research and translation teaching. However, Arabic-English resources remain scarce and existing datasets mainly consist of simple one-to-one mappings. In this paper, we present AlignAR, a generative sentence alignment method, and a new Arabic-English dataset comprising simple legal and complex literary parallel texts. Our evaluation demonstrates that "Easy" datasets lack the discriminatory power to fully assess alignment methods. By reducing one-to-one mappings in our "Hard" subset, we exposed the limitations of traditional alignment methods. In contrast, LLM-based approaches demonstrated better robustness, achieving an overall F1-score of 85.5%, a nearly 9% improvement over previous methods. Our datasets and codes are open-sourced at https://github.com/XXX.
♻ ☆ One Trigger Token Is Enough: A Defense Strategy for Balancing Safety and Usability in Large Language Models
Large Language Models (LLMs) have been extensively used across diverse domains, including virtual assistants, automated code generation, and scientific research. However, they remain vulnerable to jailbreak attacks, which manipulate the models into generating harmful responses despite safety alignment. Recent studies have shown that current safety-aligned LLMs undergo shallow safety alignment. In this work, we conduct an in-depth investigation into the underlying mechanism of this phenomenon and reveal that it manifests through learned ''safety trigger tokens'' that activate the model's safety patterns when paired with the specific input. Through both analysis and empirical verification, we further demonstrate the high similarity of the safety trigger tokens across different harmful inputs. Accordingly, we propose D-STT, a simple yet effective defense algorithm that identifies and explicitly decodes safety trigger tokens of the given safety-aligned LLM to activate the model's learned safety patterns. In this process, the safety trigger is constrained to a single token, which effectively preserves model usability by introducing minimum intervention in the decoding process. Extensive experiments across diverse jailbreak attacks and benign prompts demonstrate that D-STT significantly reduces output harmfulness while preserving model usability and incurring negligible response time overhead, outperforming ten baseline methods.
♻ ☆ Decide less, communicate more: On the construct validity of end-to-end fact-checking in medicine
Technological progress has led to concrete advancements in tasks that were regarded as challenging, such as automatic fact-checking. Interest in adopting these systems for public health and medicine has grown due to the high-stakes nature of medical decisions and challenges in critically appraising a vast and diverse medical literature. Evidence-based medicine connects to every individual, and yet the nature of it is highly technical, rendering the medical literacy of majority users inadequate to sufficiently navigate the domain. Such problems with medical communication ripens the ground for end-to-end fact-checking agents: check a claim against current medical literature and return with an evidence-backed verdict. And yet, such systems remain largely unused. In this position paper, developed with expert input, we present the first study examining how clinical experts verify real claims from social media by synthesizing medical evidence. In searching for this upper-bound, we reveal fundamental challenges in end-to-end fact-checking when applied to medicine: Difficulties connecting claims in the wild to scientific evidence in the form of clinical trials; ambiguities in underspecified claims mixed with mismatched intentions; and inherently subjective veracity labels. We argue that fact-checking should be approached and evaluated as an interactive communication problem, rather than an end-to-end process.
Machine Learning 79
☆ When Small Models Are Right for Wrong Reasons: Process Verification for Trustworthy Agents AAAI 2026
Deploying small language models (7-9B parameters) as autonomous agents requires trust in their reasoning, not just their outputs. We reveal a critical reliability crisis: 50-69\% of correct answers from these models contain fundamentally flawed reasoning -- a ``Right-for-Wrong-Reasons'' phenomenon invisible to standard accuracy metrics. Through analysis of 10,734 reasoning traces across three models and diverse tasks, we introduce the Reasoning Integrity Score (RIS), a process-based metric validated with substantial inter-rater agreement ($κ=0.657$). Conventional practices are challenged by our findings: while retrieval-augmented generation (RAG) significantly improves reasoning integrity (Cohen's $d=0.23$--$0.93$), meta-cognitive interventions like self-critique often harm performance ($d=-0.14$ to $-0.33$) in small models on the evaluated tasks. Mechanistic analysis reveals RAG succeeds by grounding calculations in external evidence, reducing errors by 7.6\%, while meta-cognition amplifies confusion without sufficient model capacity. To enable deployment, verification capabilities are distilled into a neural classifier achieving 0.86 F1-score with 100$\times$ speedup. These results underscore the necessity of process-based verification for trustworthy agents: accuracy alone is dangerously insufficient when models can be right for entirely wrong reasons.
comment: Accepted to Trustagent workshop AAAI 2026
☆ Improving LLM-Assisted Secure Code Generation through Retrieval-Augmented-Generation and Multi-Tool Feedback
Large Language Models (LLMs) can generate code but often introduce security vulnerabilities, logical inconsistencies, and compilation errors. Prior work demonstrates that LLMs benefit substantially from structured feedback, static analysis, retrieval augmentation, and execution-based refinement. We propose a retrieval-augmented, multi-tool repair workflow in which a single code-generating LLM iteratively refines its outputs using compiler diagnostics, CodeQL security scanning, and KLEE symbolic execution. A lightweight embedding model is used for semantic retrieval of previously successful repairs, providing security-focused examples that guide generation. Evaluated on a combined dataset of 3,242 programs generated by DeepSeek-Coder-1.3B and CodeLlama-7B, the system demonstrates significant improvements in robustness. For DeepSeek, security vulnerabilities were reduced by 96%. For the larger CodeLlama model, the critical security defect rate was decreased from 58.55% to 22.19%, highlighting the efficacy of tool-assisted self-repair even on "stubborn" models.
☆ Interpretable Machine Learning for Quantum-Informed Property Predictions in Artificial Sensing Materials
Digital sensing faces challenges in developing sustainable methods to extend the applicability of customized e-noses to complex body odor volatilome (BOV). To address this challenge, we developed MORE-ML, a computational framework that integrates quantum-mechanical (QM) property data of e-nose molecular building blocks with machine learning (ML) methods to predict sensing-relevant properties. Within this framework, we expanded our previous dataset, MORE-Q, to MORE-QX by sampling a larger conformational space of interactions between BOV molecules and mucin-derived receptors. This dataset provides extensive electronic binding features (BFs) computed upon BOV adsorption. Analysis of MORE-QX property space revealed weak correlations between QM properties of building blocks and resulting BFs. Leveraging this observation, we defined electronic descriptors of building blocks as inputs for tree-based ML models to predict BFs. Benchmarking showed CatBoost models outperform alternatives, especially in transferability to unseen compounds. Explainable AI methods further highlighted which QM properties most influence BF predictions. Collectively, MORE-ML combines QM insights with ML to provide mechanistic understanding and rational design principles for molecular receptors in BOV sensing. This approach establishes a foundation for advancing artificial sensing materials capable of analyzing complex odor mixtures, bridging the gap between molecular-level computations and practical e-nose applications.
comment: 18 pages, 6 figures, 1 table
☆ Noise-Aware Named Entity Recognition for Historical VET Documents
This paper addresses Named Entity Recognition (NER) in the domain of Vocational Education and Training (VET), focusing on historical, digitized documents that suffer from OCR-induced noise. We propose a robust NER approach leveraging Noise-Aware Training (NAT) with synthetically injected OCR errors, transfer learning, and multi-stage fine-tuning. Three complementary strategies, training on noisy, clean, and artificial data, are systematically compared. Our method is one of the first to recognize multiple entity types in VET documents. It is applied to German documents but transferable to arbitrary languages. Experimental results demonstrate that domain-specific and noise-aware fine-tuning substantially increases robustness and accuracy under noisy conditions. We provide publicly available code for reproducible noise-aware NER in domain-specific contexts.
comment: This is an extended, non-peer-reviewed version of the paper presented at VISAPP 2026
☆ Neural Chains and Discrete Dynamical Systems
We inspect the analogy between machine-learning (ML) applications based on the transformer architecture without self-attention, {\it neural chains} hereafter, and discrete dynamical systems associated with discretised versions of neural integral and partial differential equations (NIE, PDE). A comparative analysis of the numerical solution of the (viscid and inviscid) Burgers and Eikonal equations via standard numerical discretization (also cast in terms of neural chains) and via PINN's learning is presented and commented on. It is found that standard numerical discretization and PINN learning provide two different paths to acquire essentially the same knowledge about the dynamics of the system. PINN learning proceeds through random matrices which bear no direct relation to the highly structured matrices associated with finite-difference (FD) procedures. Random matrices leading to acceptable solutions are far more numerous than the unique tridiagonal form in matrix space, which explains why the PINN search typically lands on the random ensemble. The price is a much larger number of parameters, causing lack of physical transparency (explainability) as well as large training costs with no counterpart in the FD procedure. However, our results refer to one-dimensional dynamic problems, hence they don't rule out the possibility that PINNs and ML in general, may offer better strategies for high-dimensional problems.
☆ Laplacian Kernelized Bandit
We study multi-user contextual bandits where users are related by a graph and their reward functions exhibit both non-linear behavior and graph homophily. We introduce a principled joint penalty for the collection of user reward functions $\{f_u\}$, combining a graph smoothness term based on RKHS distances with an individual roughness penalty. Our central contribution is proving that this penalty is equivalent to the squared norm within a single, unified \emph{multi-user RKHS}. We explicitly derive its reproducing kernel, which elegantly fuses the graph Laplacian with the base arm kernel. This unification allows us to reframe the problem as learning a single ''lifted'' function, enabling the design of principled algorithms, \texttt{LK-GP-UCB} and \texttt{LK-GP-TS}, that leverage Gaussian Process posteriors over this new kernel for exploration. We provide high-probability regret bounds that scale with an \emph{effective dimension} of the multi-user kernel, replacing dependencies on user count or ambient dimension. Empirically, our methods outperform strong linear and non-graph-aware baselines in non-linear settings and remain competitive even when the true rewards are linear. Our work delivers a unified, theoretically grounded, and practical framework that bridges Laplacian regularization with kernelized bandits for structured exploration.
☆ Detecting Spike Wave Discharges (SWD) using 1-dimensional Residual UNet
The manual labeling of events in electroencephalography (EEG) records is time-consuming. This is especially true when EEG recordings are taken continuously over weeks to months. Therefore, a method to automatically label pertinent EEG events reduces the manual workload. Spike wave discharges (SWD), which are the electrographic hallmark of absence seizures, are EEG events that are often labeled manually. While some previous studies have utilized machine learning to automatically segment and classify EEG signals like SWDs, they can be improved. Here we compare the performance of 14 machine learning classifiers on our own manually annotated dataset of 961 hours of EEG recordings from C3H/HeJ mice, including 22,637 labeled SWDs. We find that a 1D UNet performs best for labeling SWDs in this dataset. We also improve the 1D UNet by augmenting our training data and determine that scaling showed the greatest benefit of all augmentation procedures applied. We then compare the 1D UNet with data augmentation, AugUNet1D, against a recently published time- and frequency-based algorithmic approach called "Twin Peaks". AugUNet1D showed superior performance and detected events with more similar features to the SWDs labeled manually. AugUNet1D, pretrained on our manually annotated data or untrained, is made public for others users.
☆ Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations
Mixture-of-Experts (MoE) models achieve efficiency through sparse activation, but the role of geometric regularization in expert specialization remains unclear. We apply orthogonality loss to enforce expert diversity and find it fails on multiple fronts: it does not reduce weight-space overlap (MSO actually increases by up to 114%), activation-space overlap remains high (~0.6) regardless of regularization, and effects on performance are inconsistent -- marginal improvement on WikiText-103 (-0.9%), slight degradation on TinyStories (+0.9%), and highly variable results on PTB (std > 1.0). Our analysis across 7 regularization strengths reveals no significant correlation (r = -0.293, p = 0.523) between weight and activation orthogonality. These findings demonstrate that weight-space regularization neither achieves its geometric goal nor reliably improves performance, making it unsuitable for MoE diversity.
☆ Deep Networks Learn Deep Hierarchical Models
We consider supervised learning with $n$ labels and show that layerwise SGD on residual networks can efficiently learn a class of hierarchical models. This model class assumes the existence of an (unknown) label hierarchy $L_1 \subseteq L_2 \subseteq \dots \subseteq L_r = [n]$, where labels in $L_1$ are simple functions of the input, while for $i > 1$, labels in $L_i$ are simple functions of simpler labels. Our class surpasses models that were previously shown to be learnable by deep learning algorithms, in the sense that it reaches the depth limit of efficient learnability. That is, there are models in this class that require polynomial depth to express, whereas previous models can be computed by log-depth circuits. Furthermore, we suggest that learnability of such hierarchical models might eventually form a basis for understanding deep learning. Beyond their natural fit for domains where deep learning excels, we argue that the mere existence of human ``teachers" supports the hypothesis that hierarchical structures are inherently available. By providing granular labels, teachers effectively reveal ``hints'' or ``snippets'' of the internal algorithms used by the brain. We formalize this intuition, showing that in a simplified model where a teacher is partially aware of their internal logic, a hierarchical structure emerges that facilitates efficient learnability.
☆ Imitation from Observations with Trajectory-Level Generative Embeddings
We consider the offline imitation learning from observations (LfO) where the expert demonstrations are scarce and the available offline suboptimal data are far from the expert behavior. Many existing distribution-matching approaches struggle in this regime because they impose strict support constraints and rely on brittle one-step models, making it hard to extract useful signal from imperfect data. To tackle this challenge, we propose TGE, a trajectory-level generative embedding for offline LfO that constructs a dense, smooth surrogate reward by estimating expert state density in the latent space of a temporal diffusion model trained on offline trajectory data. By leveraging the smooth geometry of the learned diffusion embedding, TGE captures long-horizon temporal dynamics and effectively bridges the gap between disjoint supports, ensuring a robust learning signal even when offline data is distributionally distinct from the expert. Empirically, the proposed approach consistently matches or outperforms prior offline LfO methods across a range of D4RL locomotion and manipulation benchmarks.
comment: 24 pages, 6 figures, 7 tables
☆ Controllable Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered much attention for their ability to elucidate the prediction process through a human-understandable concept layer. However, most previous studies focused on static scenarios where the data and concepts are assumed to be fixed and clean. In real-world applications, deployed models require continuous maintenance: we often need to remove erroneous or sensitive data (unlearning), correct mislabeled concepts, or incorporate newly acquired samples (incremental learning) to adapt to evolving environments. Thus, deriving efficient editable CBMs without retraining from scratch remains a significant challenge, particularly in large-scale applications. To address these challenges, we propose Controllable Concept Bottleneck Models (CCBMs). Specifically, CCBMs support three granularities of model editing: concept-label-level, concept-level, and data-level, the latter of which encompasses both data removal and data addition. CCBMs enjoy mathematically rigorous closed-form approximations derived from influence functions that obviate the need for retraining. Experimental results demonstrate the efficiency and adaptability of our CCBMs, affirming their practical value in enabling dynamic and trustworthy CBMs.
comment: arXiv admin note: substantial text overlap with arXiv:2405.15476
☆ A Comparative Study of Adaptation Strategies for Time Series Foundation Models in Anomaly Detection
Time series anomaly detection is essential for the reliable operation of complex systems, but most existing methods require extensive task-specific training. We explore whether time series foundation models (TSFMs), pretrained on large heterogeneous data, can serve as universal backbones for anomaly detection. Through systematic experiments across multiple benchmarks, we compare zero-shot inference, full model adaptation, and parameter-efficient fine-tuning (PEFT) strategies. Our results demonstrate that TSFMs outperform task-specific baselines, achieving notable gains in AUC-PR and VUS-PR, particularly under severe class imbalance. Moreover, PEFT methods such as LoRA, OFT, and HRA not only reduce computational cost but also match or surpass full fine-tuning in most cases, indicating that TSFMs can be efficiently adapted for anomaly detection, even when pretrained for forecasting. These findings position TSFMs as promising general-purpose models for scalable and efficient time series anomaly detection.
☆ A Comparative Analysis of Interpretable Machine Learning Methods
In recent years, Machine Learning (ML) has seen widespread adoption across a broad range of sectors, including high-stakes domains such as healthcare, finance, and law. This growing reliance has raised increasing concerns regarding model interpretability and accountability, particularly as legal and regulatory frameworks place tighter constraints on using black-box models in critical applications. Although interpretable ML has attracted substantial attention, systematic evaluations of inherently interpretable models, especially for tabular data, remain relatively scarce and often focus primarily on aggregated performance outcomes. To address this gap, we present a large-scale comparative evaluation of 16 inherently interpretable methods, ranging from classical linear models and decision trees to more recent approaches such as Explainable Boosting Machines (EBMs), Symbolic Regression (SR), and Generalized Optimal Sparse Decision Trees (GOSDT). Our study spans 216 real-world tabular datasets and goes beyond aggregate rankings by stratifying performance according to structural dataset characteristics, including dimensionality, sample size, linearity, and class imbalance. In addition, we assess training time and robustness under controlled distributional shifts. Our results reveal clear performance hierarchies, especially for regression tasks, where EBMs consistently achieve strong predictive accuracy. At the same time, we show that performance is highly context-dependent: SR and Interpretable Generalized Additive Neural Networks (IGANNs) perform particularly well in non-linear regimes, while GOSDT models exhibit pronounced sensitivity to class imbalance. Overall, these findings provide practical guidance for practitioners seeking a balance between interpretability and predictive performance, and contribute to a deeper empirical understanding of interpretable modeling for tabular data.
☆ RMAAT: Astrocyte-Inspired Memory Compression and Replay for Efficient Long-Context Transformers
The quadratic complexity of self-attention mechanism presents a significant impediment to applying Transformer models to long sequences. This work explores computational principles derived from astrocytes-glial cells critical for biological memory and synaptic modulation-as a complementary approach to conventional architectural modifications for efficient self-attention. We introduce the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), an architecture integrating abstracted astrocyte functionalities. RMAAT employs a recurrent, segment-based processing strategy where persistent memory tokens propagate contextual information. An adaptive compression mechanism, governed by a novel retention factor derived from simulated astrocyte long-term plasticity (LTP), modulates these tokens. Attention within segments utilizes an efficient, linear-complexity mechanism inspired by astrocyte short-term plasticity (STP). Training is performed using Astrocytic Memory Replay Backpropagation (AMRB), a novel algorithm designed for memory efficiency in recurrent networks. Evaluations on the Long Range Arena (LRA) benchmark demonstrate RMAAT's competitive accuracy and substantial improvements in computational and memory efficiency, indicating the potential of incorporating astrocyte-inspired dynamics into scalable sequence models.
☆ E-GRPO: High Entropy Steps Drive Effective Reinforcement Learning for Flow Models
Recent reinforcement learning has enhanced the flow matching models on human preference alignment. While stochastic sampling enables the exploration of denoising directions, existing methods which optimize over multiple denoising steps suffer from sparse and ambiguous reward signals. We observe that the high entropy steps enable more efficient and effective exploration while the low entropy steps result in undistinguished roll-outs. To this end, we propose E-GRPO, an entropy aware Group Relative Policy Optimization to increase the entropy of SDE sampling steps. Since the integration of stochastic differential equations suffer from ambiguous reward signals due to stochasticity from multiple steps, we specifically merge consecutive low entropy steps to formulate one high entropy step for SDE sampling, while applying ODE sampling on other steps. Building upon this, we introduce multi-step group normalized advantage, which computes group-relative advantages within samples sharing the same consolidated SDE denoising step. Experimental results on different reward settings have demonstrated the effectiveness of our methods.
comment: Code: https://github.com/shengjun-zhang/VisualGRPO
☆ Secure, Verifiable, and Scalable Multi-Client Data Sharing via Consensus-Based Privacy-Preserving Data Distribution
We propose the Consensus-Based Privacy-Preserving Data Distribution (CPPDD) framework, a lightweight and post-setup autonomous protocol for secure multi-client data aggregation. The framework enforces unanimous-release confidentiality through a dual-layer protection mechanism that combines per-client affine masking with priority-driven sequential consensus locking. Decentralized integrity is verified via step (sigma_S) and data (sigma_D) checksums, facilitating autonomous malicious deviation detection and atomic abort without requiring persistent coordination. The design supports scalar, vector, and matrix payloads with O(N*D) computation and communication complexity, optional edge-server offloading, and resistance to collusion under N-1 corruptions. Formal analysis proves correctness, Consensus-Dependent Integrity and Fairness (CDIF) with overwhelming-probability abort on deviation, and IND-CPA security assuming a pseudorandom function family. Empirical evaluations on MNIST-derived vectors demonstrate linear scalability up to N = 500 with sub-millisecond per-client computation times. The framework achieves 100% malicious deviation detection, exact data recovery, and three-to-four orders of magnitude lower FLOPs compared to MPC and HE baselines. CPPDD enables atomic collaboration in secure voting, consortium federated learning, blockchain escrows, and geo-information capacity building, addressing critical gaps in scalability, trust minimization, and verifiable multi-party computation for regulated and resource-constrained environments.
comment: Preprint. Under review
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ Revati: Transparent GPU-Free Time-Warp Emulation for LLM Serving
Deploying LLMs efficiently requires testing hundreds of serving configurations, but evaluating each one on a GPU cluster takes hours and costs thousands of dollars. Discrete-event simulators are faster and cheaper, but they require re-implementing the serving system's control logic -- a burden that compounds as frameworks evolve. We present Revati, a time-warp emulator that enables performance modeling by directly executing real serving system code at simulation-like speed. The system intercepts CUDA API calls to virtualize device management, allowing serving frameworks to run without physical GPUs. Instead of executing GPU kernels, it performs time jumps -- fast-forwarding virtual time by predicted kernel durations. We propose a coordination protocol that synchronizes these jumps across distributed processes while preserving causality. On vLLM and SGLang, Revati achieves less than 5% prediction error across multiple models and parallelism configurations, while running 5-17x faster than real GPU execution.
☆ Real-Time Human Detection for Aerial Captured Video Sequences via Deep Models
Human detection in videos plays an important role in various real-life applications. Most traditional approaches depend on utilizing handcrafted features, which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods, which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated that the proposed methods are successful for the human detection task. The pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with softmax and 91.7% with Support Vector Machines (SVM). H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM's training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high-performance Graphical Processing Unit (GPU).
☆ NOS-Gate: Queue-Aware Streaming IDS for Consumer Gateways under Timing-Controlled Evasion
Timing and burst patterns can leak through encryption, and an adaptive adversary can exploit them. This undermines metadata-only detection in a stand-alone consumer gateway. Therefore, consumer gateways need streaming intrusion detection on encrypted traffic using metadata only, under tight CPU and latency budgets. We present a streaming IDS for stand-alone gateways that instantiates a lightweight two-state unit derived from Network-Optimised Spiking (NOS) dynamics per flow, named NOS-Gate. NOS-Gate scores fixed-length windows of metadata features and, under a $K$-of-$M$ persistence rule, triggers a reversible mitigation that temporarily reduces the flow's weight under weighted fair queueing (WFQ). We evaluate NOS-Gate under timing-controlled evasion using an executable 'worlds' benchmark that specifies benign device processes, auditable attacker budgets, contention structure, and packet-level WFQ replay to quantify queue impact. All methods are calibrated label-free via burn-in quantile thresholding. Across multiple reproducible worlds and malicious episodes, at an achieved $0.1%$ false-positive operating point, NOS-Gate attains 0.952 incident recall versus 0.857 for the best baseline in these runs. Under gating, it reduces p99.9 queueing delay and p99.9 collateral delay with a mean scoring cost of ~ 2.09 μs per flow-window on CPU.
comment: 9 pages, 3 figures, 4 tables
☆ Engineering Attack Vectors and Detecting Anomalies in Additive Manufacturing SP 2025
Additive manufacturing (AM) is rapidly integrating into critical sectors such as aerospace, automotive, and healthcare. However, this cyber-physical convergence introduces new attack surfaces, especially at the interface between computer-aided design (CAD) and machine execution layers. In this work, we investigate targeted cyberattacks on two widely used fused deposition modeling (FDM) systems, Creality's flagship model K1 Max, and Ender 3. Our threat model is a multi-layered Man-in-the-Middle (MitM) intrusion, where the adversary intercepts and manipulates G-code files during upload from the user interface to the printer firmware. The MitM intrusion chain enables several stealthy sabotage scenarios. These attacks remain undetectable by conventional slicer software or runtime interfaces, resulting in structurally defective yet externally plausible printed parts. To counter these stealthy threats, we propose an unsupervised Intrusion Detection System (IDS) that analyzes structured machine logs generated during live printing. Our defense mechanism uses a frozen Transformer-based encoder (a BERT variant) to extract semantic representations of system behavior, followed by a contrastively trained projection head that learns anomaly-sensitive embeddings. Later, a clustering-based approach and a self-attention autoencoder are used for classification. Experimental results demonstrate that our approach effectively distinguishes between benign and compromised executions.
comment: This paper has been accepted to EAI SmartSP 2025. This is the preprint version
BERT-JEPA: Reorganizing CLS Embeddings for Language-Invariant Semantics
Joint Embedding Predictive Architectures (JEPA) are a novel self supervised training technique that have shown recent promise across domains. We introduce BERT-JEPA (BEPA), a training paradigm that adds a JEPA training objective to BERT-style models, working to combat a collapsed [CLS] embedding space and turning it into a language-agnostic space. This new structure leads to increased performance across multilingual benchmarks.
comment: 16 pages, 10 figures, 10 tables
☆ Deterministic Coreset for Lp Subspace
We introduce the first iterative algorithm for constructing a $\varepsilon$-coreset that guarantees deterministic $\ell_p$ subspace embedding for any $p \in [1,\infty)$ and any $\varepsilon > 0$. For a given full rank matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ where $n \gg d$, $\mathbf{X}' \in \mathbb{R}^{m \times d}$ is an $(\varepsilon,\ell_p)$-subspace embedding of $\mathbf{X}$, if for every $\mathbf{q} \in \mathbb{R}^d$, $(1-\varepsilon)\|\mathbf{Xq}\|_{p}^{p} \leq \|\mathbf{X'q}\|_{p}^{p} \leq (1+\varepsilon)\|\mathbf{Xq}\|_{p}^{p}$. Specifically, in this paper, $\mathbf{X}'$ is a weighted subset of rows of $\mathbf{X}$ which is commonly known in the literature as a coreset. In every iteration, the algorithm ensures that the loss on the maintained set is upper and lower bounded by the loss on the original dataset with appropriate scalings. So, unlike typical coreset guarantees, due to bounded loss, our coreset gives a deterministic guarantee for the $\ell_p$ subspace embedding. For an error parameter $\varepsilon$, our algorithm takes $O(\mathrm{poly}(n,d,\varepsilon^{-1}))$ time and returns a deterministic $\varepsilon$-coreset, for $\ell_p$ subspace embedding whose size is $O\left(\frac{d^{\max\{1,p/2\}}}{\varepsilon^{2}}\right)$. Here, we remove the $\log$ factors in the coreset size, which had been a long-standing open problem. Our coresets are optimal as they are tight with the lower bound. As an application, our coreset can also be used for approximately solving the $\ell_p$ regression problem in a deterministic manner.
☆ Solving nonlinear subsonic compressible flow in infinite domain via multi-stage neural networks
In aerodynamics, accurately modeling subsonic compressible flow over airfoils is critical for aircraft design. However, solving the governing nonlinear perturbation velocity potential equation presents computational challenges. Traditional approaches often rely on linearized equations or finite, truncated domains, which introduce non-negligible errors and limit applicability in real-world scenarios. In this study, we propose a novel framework utilizing Physics-Informed Neural Networks (PINNs) to solve the full nonlinear compressible potential equation in an unbounded (infinite) domain. We address the unbounded-domain and convergence challenges inherent in standard PINNs by incorporating a coordinate transformation and embedding physical asymptotic constraints directly into the network architecture. Furthermore, we employ a Multi-Stage PINN (MS-PINN) approach to iteratively minimize residuals, achieving solution accuracy approaching machine precision. We validate this framework by simulating flow over circular and elliptical geometries, comparing our results against traditional finite-domain and linearized solutions. Our findings quantify the noticeable discrepancies introduced by domain truncation and linearization, particularly at higher Mach numbers, and demonstrate that this new framework is a robust, high-fidelity tool for computational fluid dynamics.
comment: 24 pages, 9 figures
☆ Smart Fault Detection in Nanosatellite Electrical Power System
This paper presents a new detection method of faults at Nanosatellites' electrical power without an Attitude Determination Control Subsystem (ADCS) at the LEO orbit. Each part of this system is at risk of fault due to pressure tolerance, launcher pressure, and environmental circumstances. Common faults are line to line fault and open circuit for the photovoltaic subsystem, short circuit and open circuit IGBT at DC to DC converter, and regulator fault of the ground battery. The system is simulated without fault based on a neural network using solar radiation and solar panel's surface temperature as input data and current and load as outputs. Finally, using the neural network classifier, different faults are diagnosed by pattern and type of fault. For fault classification, other machine learning methods are also used, such as PCA classification, decision tree, and KNN.
☆ Quantum King-Ring Domination in Chess: A QAOA Approach
The Quantum Approximate Optimization Algorithm (QAOA) is extensively benchmarked on synthetic random instances such as MaxCut, TSP, and SAT problems, but these lack semantic structure and human interpretability, offering limited insight into performance on real-world problems with meaningful constraints. We introduce Quantum King-Ring Domination (QKRD), a NISQ-scale benchmark derived from chess tactical positions that provides 5,000 structured instances with one-hot constraints, spatial locality, and 10--40 qubit scale. The benchmark pairs human-interpretable coverage metrics with intrinsic validation against classical heuristics, enabling algorithmic conclusions without external oracles. Using QKRD, we systematically evaluate QAOA design choices and find that constraint-preserving mixers (XY, domain-wall) converge approximately 13 steps faster than standard mixers (p<10^{-7}, d\approx0.5) while eliminating penalty tuning, warm-start strategies reduce convergence by 45 steps (p<10^{-127}, d=3.35) with energy improvements exceeding d=8, and Conditional Value-at-Risk (CVaR) optimization yields an informative negative result with worse energy (p<10^{-40}, d=1.21) and no coverage benefit. Intrinsic validation shows QAOA outperforms greedy heuristics by 12.6\% and random selection by 80.1\%. Our results demonstrate that structured benchmarks reveal advantages of problem-informed QAOA techniques obscured in random instances. We release all code, data, and experimental artifacts for reproducible NISQ algorithm research.
☆ Can Optimal Transport Improve Federated Inverse Reinforcement Learning?
In robotics and multi-agent systems, fleets of autonomous agents often operate in subtly different environments while pursuing a common high-level objective. Directly pooling their data to learn a shared reward function is typically impractical due to differences in dynamics, privacy constraints, and limited communication bandwidth. This paper introduces an optimal transport-based approach to federated inverse reinforcement learning (IRL). Each client first performs lightweight Maximum Entropy IRL locally, adhering to its computational and privacy limitations. The resulting reward functions are then fused via a Wasserstein barycenter, which considers their underlying geometric structure. We further prove that this barycentric fusion yields a more faithful global reward estimate than conventional parameter averaging methods in federated learning. Overall, this work provides a principled and communication-efficient framework for deriving a shared reward that generalizes across heterogeneous agents and environments.
☆ Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations
Quantization is widely used to accelerate inference and streamline the deployment of large language models (LLMs), yet its effects on self-explanations (SEs) remain unexplored. SEs, generated by LLMs to justify their own outputs, require reasoning about the model's own decision-making process, a capability that may exhibit particular sensitivity to quantization. As SEs are increasingly relied upon for transparency in high-stakes applications, understanding whether and to what extent quantization degrades SE quality and faithfulness is critical. To address this gap, we examine two types of SEs: natural language explanations (NLEs) and counterfactual examples, generated by LLMs quantized using three common techniques at distinct bit widths. Our findings indicate that quantization typically leads to moderate declines in both SE quality (up to 4.4\%) and faithfulness (up to 2.38\%). The user study further demonstrates that quantization diminishes both the coherence and trustworthiness of SEs (up to 8.5\%). Compared to smaller models, larger models show limited resilience to quantization in terms of SE quality but better maintain faithfulness. Moreover, no quantization technique consistently excels across task accuracy, SE quality, and faithfulness. Given that quantization's impact varies by context, we recommend validating SE quality for specific use cases, especially for NLEs, which show greater sensitivity. Nonetheless, the relatively minor deterioration in SE quality and faithfulness does not undermine quantization's effectiveness as a model compression technique.
comment: In submission
☆ Task-Driven Kernel Flows: Label Rank Compression and Laplacian Spectral Filtering
We present a theory of feature learning in wide L2-regularized networks showing that supervised learning is inherently compressive. We derive a kernel ODE that predicts a "water-filling" spectral evolution and prove that for any stable steady state, the kernel rank is bounded by the number of classes ($C$). We further demonstrate that SGD noise is similarly low-rank ($O(C)$), confining dynamics to the task-relevant subspace. This framework unifies the deterministic and stochastic views of alignment and contrasts the low-rank nature of supervised learning with the high-rank, expansive representations of self-supervision.
comment: 47 pages;3 figures
☆ Rectifying Adversarial Examples Using Their Vulnerabilities
Deep neural network-based classifiers are prone to errors when processing adversarial examples (AEs). AEs are minimally perturbed input data undetectable to humans posing significant risks to security-dependent applications. Hence, extensive research has been undertaken to develop defense mechanisms that mitigate their threats. Most existing methods primarily focus on discriminating AEs based on the input sample features, emphasizing AE detection without addressing the correct sample categorization before an attack. While some tasks may only require mere rejection on detected AEs, others necessitate identifying the correct original input category such as traffic sign recognition in autonomous driving. The objective of this study is to propose a method for rectifying AEs to estimate the correct labels of their original inputs. Our method is based on re-attacking AEs to move them beyond the decision boundary for accurate label prediction, effectively addressing the issue of rectifying minimally perceptible AEs created using white-box attack methods. However, challenge remains with respect to effectively rectifying AEs produced by black-box attacks at a distance from the boundary, or those misclassified into low-confidence categories by targeted attacks. By adopting a straightforward approach of only considering AEs as inputs, the proposed method can address diverse attacks while avoiding the requirement of parameter adjustments or preliminary training. Results demonstrate that the proposed method exhibits consistent performance in rectifying AEs generated via various attack methods, including targeted and black-box attacks. Moreover, it outperforms conventional rectification and input transformation methods in terms of stability against various attacks.
☆ Modern Neuromorphic AI: From Intra-Token to Inter-Token Processing
The rapid growth of artificial intelligence (AI) has brought novel data processing and generative capabilities but also escalating energy requirements. This challenge motivates renewed interest in neuromorphic computing principles, which promise brain-like efficiency through discrete and sparse activations, recurrent dynamics, and non-linear feedback. In fact, modern AI architectures increasingly embody neuromorphic principles through heavily quantized activations, state-space dynamics, and sparse attention mechanisms. This paper elaborates on the connections between neuromorphic models, state-space models, and transformer architectures through the lens of the distinction between intra-token processing and inter-token processing. Most early work on neuromorphic AI was based on spiking neural networks (SNNs) for intra-token processing, i.e., for transformations involving multiple channels, or features, of the same vector input, such as the pixels of an image. In contrast, more recent research has explored how neuromorphic principles can be leveraged to design efficient inter-token processing methods, which selectively combine different information elements depending on their contextual relevance. Implementing associative memorization mechanisms, these approaches leverage state-space dynamics or sparse self-attention. Along with a systematic presentation of modern neuromorphic AI models through the lens of intra-token and inter-token processing, training methodologies for neuromorphic AI models are also reviewed. These range from surrogate gradients leveraging parallel convolutional processing to local learning rules based on reinforcement learning mechanisms.
☆ Neural Minimum Weight Perfect Matching for Quantum Error Codes
Realizing the full potential of quantum computation requires Quantum Error Correction (QEC). QEC reduces error rates by encoding logical information across redundant physical qubits, enabling errors to be detected and corrected. A common decoder used for this task is Minimum Weight Perfect Matching (MWPM) a graph-based algorithm that relies on edge weights to identify the most likely error chains. In this work, we propose a data-driven decoder named Neural Minimum Weight Perfect Matching (NMWPM). Our decoder utilizes a hybrid architecture that integrates Graph Neural Networks (GNNs) to extract local syndrome features and Transformers to capture long-range global dependencies, which are then used to predict dynamic edge weights for the MWPM decoder. To facilitate training through the non-differentiable MWPM algorithm, we formulate a novel proxy loss function that enables end-to-end optimization. Our findings demonstrate significant performance reduction in the Logical Error Rate (LER) over standard baselines, highlighting the advantage of hybrid decoders that combine the predictive capabilities of neural networks with the algorithmic structure of classical matching.
☆ Application Research of a Deep Learning Model Integrating CycleGAN and YOLO in PCB Infrared Defect Detection
This paper addresses the critical bottleneck of infrared (IR) data scarcity in Printed Circuit Board (PCB) defect detection by proposing a cross-modal data augmentation framework integrating CycleGAN and YOLOv8. Unlike conventional methods relying on paired supervision, we leverage CycleGAN to perform unpaired image-to-image translation, mapping abundant visible-light PCB images into the infrared domain. This generative process synthesizes high-fidelity pseudo-IR samples that preserve the structural semantics of defects while accurately simulating thermal distribution patterns. Subsequently, we construct a heterogeneous training strategy that fuses generated pseudo-IR data with limited real IR samples to train a lightweight YOLOv8 detector. Experimental results demonstrate that this method effectively enhances feature learning under low-data conditions. The augmented detector significantly outperforms models trained on limited real data alone and approaches the performance benchmarks of fully supervised training, proving the efficacy of pseudo-IR synthesis as a robust augmentation strategy for industrial inspection.
comment: 8 pages,8 figures
☆ GRIT -- Geometry-Aware PEFT with K-FACPreconditioning, Fisher-Guided Reprojection, andDynamic Rank Adaptation
Parameter-efficient fine-tuning (PEFT) is the default way to adapt LLMs, but widely used LoRA and QLoRA are largely geometry-agnostic: they optimize in fixed, randomly oriented low-rank subspaces with first-order descent, mostly ignoring local loss curvature. This can inflate the effective update budget and amplify drift along weakly constrained directions. We introduce GRIT, a dynamic, curvature-aware LoRA procedure that preserves the LoRA parameterization but: (1) preconditions gradients in rank space using K-FAC as a natural-gradient proxy; (2) periodically reprojects the low-rank basis onto dominant Fisher eigendirections to suppress drift; and (3) adapts the effective rank from the spectrum so capacity concentrates where signal resides. Across instruction-following, comprehension, and reasoning benchmarks on LLaMA backbones, GRIT matches or surpasses LoRA and QLoRA while reducing trainable parameters by 46% on average (25--80% across tasks), without practical quality loss across prompt styles and data mixes. To model forgetting, we fit a curvature-modulated power law. Empirically, GRIT yields lower drift and a better updates-vs-retention frontier than strong PEFT-optimizer baselines (Orthogonal-LoRA, IA3, DoRA, Eff-FT, Shampoo).
☆ Robust Graph Fine-Tuning with Adversarial Graph Prompting
Parameter-Efficient Fine-Tuning (PEFT) method has emerged as a dominant paradigm for adapting pre-trained GNN models to downstream tasks. However, existing PEFT methods usually exhibit significant vulnerability to various noise and attacks on graph topology and node attributes/features. To address this issue, for the first time, we propose integrating adversarial learning into graph prompting and develop a novel Adversarial Graph Prompting (AGP) framework to achieve robust graph fine-tuning. Our AGP has two key aspects. First, we propose the general problem formulation of AGP as a min-max optimization problem and develop an alternating optimization scheme to solve it. For inner maximization, we propose Joint Projected Gradient Descent (JointPGD) algorithm to generate strong adversarial noise. For outer minimization, we employ a simple yet effective module to learn the optimal node prompts to counteract the adversarial noise. Second, we demonstrate that the proposed AGP can theoretically address both graph topology and node noise. This confirms the versatility and robustness of our AGP fine-tuning method across various graph noise. Note that, the proposed AGP is a general method that can be integrated with various pre-trained GNN models to enhance their robustness on the downstream tasks. Extensive experiments on multiple benchmark tasks validate the robustness and effectiveness of AGP method compared to state-of-the-art methods.
☆ Unknown Aware AI-Generated Content Attribution
The rapid advancement of photorealistic generative models has made it increasingly important to attribute the origin of synthetic content, moving beyond binary real or fake detection toward identifying the specific model that produced a given image. We study the problem of distinguishing outputs from a target generative model (e.g., OpenAI Dalle 3) from other sources, including real images and images generated by a wide range of alternative models. Using CLIP features and a simple linear classifier, shown to be effective in prior work, we establish a strong baseline for target generator attribution using only limited labeled data from the target model and a small number of known generators. However, this baseline struggles to generalize to harder, unseen, and newly released generators. To address this limitation, we propose a constrained optimization approach that leverages unlabeled wild data, consisting of images collected from the Internet that may include real images, outputs from unknown generators, or even samples from the target model itself. The proposed method encourages wild samples to be classified as non target while explicitly constraining performance on labeled data to remain high. Experimental results show that incorporating wild data substantially improves attribution performance on challenging unseen generators, demonstrating that unlabeled data from the wild can be effectively exploited to enhance AI generated content attribution in open world settings.
☆ Detecting Unobserved Confounders: A Kernelized Regression Approach
Detecting unobserved confounders is crucial for reliable causal inference in observational studies. Existing methods require either linearity assumptions or multiple heterogeneous environments, limiting applicability to nonlinear single-environment settings. To bridge this gap, we propose Kernel Regression Confounder Detection (KRCD), a novel method for detecting unobserved confounding in nonlinear observational data under single-environment conditions. KRCD leverages reproducing kernel Hilbert spaces to model complex dependencies. By comparing standard and higherorder kernel regressions, we derive a test statistic whose significant deviation from zero indicates unobserved confounding. Theoretically, we prove two key results: First, in infinite samples, regression coefficients coincide if and only if no unobserved confounders exist. Second, finite-sample differences converge to zero-mean Gaussian distributions with tractable variance. Extensive experiments on synthetic benchmarks and the Twins dataset demonstrate that KRCD not only outperforms existing baselines but also achieves superior computational efficiency.
☆ StockBot 2.0: Vanilla LSTMs Outperform Transformer-based Forecasting for Stock Prices
Accurate forecasting of financial markets remains a long-standing challenge due to complex temporal and often latent dependencies, non-linear dynamics, and high volatility. Building on our earlier recurrent neural network framework, we present an enhanced StockBot architecture that systematically evaluates modern attention-based, convolutional, and recurrent time-series forecasting models within a unified experimental setting. While attention-based and transformer-inspired models offer increased modeling flexibility, extensive empirical evaluation reveals that a carefully constructed vanilla LSTM consistently achieves superior predictive accuracy and more stable buy/sell decision-making when trained under a common set of default hyperparameters. These results highlight the robustness and data efficiency of recurrent sequence models for financial time-series forecasting, particularly in the absence of extensive hyperparameter tuning or the availability of sufficient data when discretized to single-day intervals. Additionally, these results underscore the importance of architectural inductive bias in data-limited market prediction tasks.
comment: 14 pages, 5 figures
☆ Optimized Hybrid Feature Engineering for Resource-Efficient Arrhythmia Detection in ECG Signals: An Optimization Framework
Cardiovascular diseases, particularly arrhythmias, remain a leading global cause of mortality, necessitating continuous monitoring via the Internet of Medical Things (IoMT). However, state-of-the-art deep learning approaches often impose prohibitive computational overheads, rendering them unsuitable for resource-constrained edge devices. This study proposes a resource-efficient, data-centric framework that prioritizes feature engineering over complexity. Our optimized pipeline makes the complex, high-dimensional arrhythmia data linearly separable. This is achieved by integrating time-frequency wavelet decompositions with graph-theoretic structural descriptors, such as PageRank centrality. This hybrid feature space, combining wavelet decompositions and graph-theoretic descriptors, is then refined using mutual information and recursive elimination, enabling interpretable, ultra-lightweight linear classifiers. Validation on the MIT-BIH and INCART datasets yields 98.44% diagnostic accuracy with an 8.54 KB model footprint. The system achieves 0.46 $μ$s classification inference latency within a 52 ms per-beat pipeline, ensuring real-time operation. These outcomes provide an order-of-magnitude efficiency gain over compressed models, such as KD-Light (25 KB, 96.32% accuracy), advancing battery-less cardiac sensors.
☆ SSI-GAN: Semi-Supervised Swin-Inspired Generative Adversarial Networks for Neuronal Spike Classification
Mosquitos are the main transmissive agents of arboviral diseases. Manual classification of their neuronal spike patterns is very labor-intensive and expensive. Most available deep learning solutions require fully labeled spike datasets and highly preprocessed neuronal signals. This reduces the feasibility of mass adoption in actual field scenarios. To address the scarcity of labeled data problems, we propose a new Generative Adversarial Network (GAN) architecture that we call the Semi-supervised Swin-Inspired GAN (SSI-GAN). The Swin-inspired, shifted-window discriminator, together with a transformer-based generator, is used to classify neuronal spike trains and, consequently, detect viral neurotropism. We use a multi-head self-attention model in a flat, window-based transformer discriminator that learns to capture sparser high-frequency spike features. Using just 1 to 3% labeled data, SSI-GAN was trained with more than 15 million spike samples collected at five-time post-infection and recording classification into Zika-infected, dengue-infected, or uninfected categories. Hyperparameters were optimized using the Bayesian Optuna framework, and performance for robustness was validated under fivefold Monte Carlo cross-validation. SSI-GAN reached 99.93% classification accuracy on the third day post-infection with only 3% labeled data. It maintained high accuracy across all stages of infection with just 1% supervision. This shows a 97-99% reduction in manual labeling effort relative to standard supervised approaches at the same performance level. The shifted-window transformer design proposed here beat all baselines by a wide margin and set new best marks in spike-based neuronal infection classification.
☆ Reinforcement-Learned Unequal Error Protection for Quantized Semantic Embeddings
This paper tackles the pressing challenge of preserving semantic meaning in communication systems constrained by limited bandwidth. We introduce a novel reinforcement learning framework that achieves per-dimension unequal error protection via adaptive repetition coding. Central to our approach is a composite semantic distortion metric that balances global embedding similarity with entity-level preservation, empowering the reinforcement learning agent to allocate protection in a context-aware manner. Experiments show statistically significant gains over uniform protection, achieving 6.8% higher chrF scores and 9.3% better entity preservation at 1 dB SNR. The key innovation of our framework is the demonstration that simple, intelligently allocated repetition coding enables fine-grained semantic protection -- an advantage unattainable with conventional codes such as LDPC or Reed-Solomon. Our findings challenge traditional channel coding paradigms by establishing that code structure must align with semantic granularity. This approach is particularly suited to edge computing and IoT scenarios, where bandwidth is scarce, but semantic fidelity is critical, providing a practical pathway for next-generation semantic-aware networks.
☆ Early Prediction of Liver Cirrhosis Up to Three Years in Advance: A Machine Learning Study Benchmarking Against the FIB-4 Score
Objective: Develop and evaluate machine learning (ML) models for predicting incident liver cirrhosis one, two, and three years prior to diagnosis using routinely collected electronic health record (EHR) data, and to benchmark their performance against the FIB-4 score. Methods: We conducted a retrospective cohort study using de-identified EHR data from a large academic health system. Patients with fatty liver disease were identified and categorized into cirrhosis and non-cirrhosis cohorts based on ICD-9/10 codes. Prediction scenarios were constructed using observation and prediction windows to emulate real-world clinical use. Demographics, diagnoses, laboratory results, vital signs, and comorbidity indices were aggregated from the observation window. XGBoost models were trained for 1-, 2-, and 3-year prediction horizons and evaluated on held-out test sets. Model performance was compared with FIB-4 using area under the receiver operating characteristic curve (AUC). Results: Final cohorts included 3,043 patients for the 1-year prediction, 1,981 for the 2-year prediction, and 1,470 for the 3-year prediction. Across all prediction windows, ML models consistently outperformed FIB-4. The XGBoost models achieved AUCs of 0.81, 0.73, and 0.69 for 1-, 2-, and 3-year predictions, respectively, compared with 0.71, 0.63, and 0.57 for FIB-4. Performance gains persisted with longer prediction horizons, indicating improved early risk discrimination. Conclusions: Machine learning models leveraging routine EHR data substantially outperform the traditional FIB-4 score for early prediction of liver cirrhosis. These models enable earlier and more accurate risk stratification and can be integrated into clinical workflows as automated decision-support tools to support proactive cirrhosis prevention and management.
☆ Sequential Reservoir Computing for Efficient High-Dimensional Spatiotemporal Forecasting
Forecasting high-dimensional spatiotemporal systems remains computationally challenging for recurrent neural networks (RNNs) and long short-term memory (LSTM) models due to gradient-based training and memory bottlenecks. Reservoir Computing (RC) mitigates these challenges by replacing backpropagation with fixed recurrent layers and a convex readout optimization, yet conventional RC architectures still scale poorly with input dimensionality. We introduce a Sequential Reservoir Computing (Sequential RC) architecture that decomposes a large reservoir into a series of smaller, interconnected reservoirs. This design reduces memory and computational costs while preserving long-term temporal dependencies. Using both low-dimensional chaotic systems (Lorenz63) and high-dimensional physical simulations (2D vorticity and shallow-water equations), Sequential RC achieves 15-25% longer valid forecast horizons, 20-30% lower error metrics (SSIM, RMSE), and up to three orders of magnitude lower training cost compared to LSTM and standard RNN baselines. The results demonstrate that Sequential RC maintains the simplicity and efficiency of conventional RC while achieving superior scalability for high-dimensional dynamical systems. This approach provides a practical path toward real-time, energy-efficient forecasting in scientific and engineering applications.
☆ Online Finetuning Decision Transformers with Pure RL Gradients
Decision Transformers (DTs) have emerged as a powerful framework for sequential decision making by formulating offline reinforcement learning (RL) as a sequence modeling problem. However, extending DTs to online settings with pure RL gradients remains largely unexplored, as existing approaches continue to rely heavily on supervised sequence-modeling objectives during online finetuning. We identify hindsight return relabeling -- a standard component in online DTs -- as a critical obstacle to RL-based finetuning: while beneficial for supervised learning, it is fundamentally incompatible with importance sampling-based RL algorithms such as GRPO, leading to unstable training. Building on this insight, we propose new algorithms that enable online finetuning of Decision Transformers using pure reinforcement learning gradients. We adapt GRPO to DTs and introduce several key modifications, including sub-trajectory optimization for improved credit assignment, sequence-level likelihood objectives for enhanced stability and efficiency, and active sampling to encourage exploration in uncertain regions. Through extensive experiments, we demonstrate that our methods outperform existing online DT baselines and achieve new state-of-the-art performance across multiple benchmarks, highlighting the effectiveness of pure-RL-based online finetuning for Decision Transformers.
☆ The Weather Paradox: Why Precipitation Fails to Predict Traffic Accident Severity in Large-Scale US Data
This study investigates the predictive capacity of environmental, temporal, and spatial factors on traffic accident severity in the United States. Using a dataset of 500,000 U.S. traffic accidents spanning 2016-2023, we trained an XGBoost classifier optimized through randomized search cross-validation and adjusted for class imbalance via class weighting. The final model achieves an overall accuracy of 78%, with strong performance on the majority class (Severity 2), attaining 87% precision and recall. Feature importance analysis reveals that time of day, geographic location, and weather-related variables, including visibility, temperature, and wind speed, rank among the strongest predictors of accident severity. However, contrary to initial hypotheses, precipitation and visibility demonstrate limited predictive power, potentially reflecting behavioral adaptation by drivers under overtly hazardous conditions. The dataset's predominance of mid-level severity accidents constrains the model's capacity to learn meaningful patterns for extreme cases, highlighting the need for alternative sampling strategies, enhanced feature engineering, and integration of external datasets. These findings contribute to evidence-based traffic management and suggest future directions for severity prediction research.
comment: 11 pages, 8 figures, 0 tables. Preprint, machine learning analysis of 500,000 US traffic accidents
☆ Reinforcement Learning with Function Approximation for Non-Markov Processes
We study reinforcement learning methods with linear function approximation under non-Markov state and cost processes. We first consider the policy evaluation method and show that the algorithm converges under suitable ergodicity conditions on the underlying non-Markov processes. Furthermore, we show that the limit corresponds to the fixed point of a joint operator composed of an orthogonal projection and the Bellman operator of an auxiliary \emph{Markov} decision process. For Q-learning with linear function approximation, as in the Markov setting, convergence is not guaranteed in general. We show, however, that for the special case where the basis functions are chosen based on quantization maps, the convergence can be shown under similar ergodicity conditions. Finally, we apply our results to partially observed Markov decision processes, where finite-memory variables are used as state representations, and we derive explicit error bounds for the limits of the resulting learning algorithms.
☆ Combining datasets with different ground truths using Low-Rank Adaptation to generalize image-based CNN models for photometric redshift prediction NeurIPS
In this work, we demonstrate how Low-Rank Adaptation (LoRA) can be used to combine different galaxy imaging datasets to improve redshift estimation with CNN models for cosmology. LoRA is an established technique for large language models that adds adapter networks to adjust model weights and biases to efficiently fine-tune large base models without retraining. We train a base model using a photometric redshift ground truth dataset, which contains broad galaxy types but is less accurate. We then fine-tune using LoRA on a spectroscopic redshift ground truth dataset. These redshifts are more accurate but limited to bright galaxies and take orders of magnitude more time to obtain, so are less available for large surveys. Ideally, the combination of the two datasets would yield more accurate models that generalize well. The LoRA model performs better than a traditional transfer learning method, with $\sim2.5\times$ less bias and $\sim$2.2$\times$ less scatter. Retraining the model on a combined dataset yields a model that generalizes better than LoRA but at a cost of greater computation time. Our work shows that LoRA is useful for fine-tuning regression models in astrophysics by providing a middle ground between full retraining and no retraining. LoRA shows potential in allowing us to leverage existing pretrained astrophysical models, especially for data sparse tasks.
comment: 11 pages, 7 figures, 3 tables, Accepted to the Conference on Neural Information Processing Systems (NeurIPS), Machine Learning and the Physical Sciences (ML4PS) Workshop 2025
♻ ☆ Machine Learnability as a Measure of Order in Aperiodic Sequences
Research on the distribution of prime numbers has revealed a dual character: deterministic in definition yet exhibiting statistical behavior reminiscent of random processes. In this paper we show that it is possible to use an image-focused machine learning model to measure the comparative regularity of prime number fields at specific regions of an Ulam spiral. Specifically, we demonstrate that in pure accuracy terms, models trained on blocks extracted from regions of the spiral in the vicinity of 500m outperform models trained on blocks extracted from the region representing integers lower than 25m. This implies existence of more easily learnable order in the former region than in the latter. Moreover, a detailed breakdown of precision and recall scores seem to imply that the model is favouring a different approach to classification in different regions of the spiral, focusing more on identifying prime patterns at lower numbers and more on eliminating composites at higher numbers. This aligns with number theory conjectures suggesting that at higher orders of magnitude we should see diminishing noise in prime number distributions, with averages (density, AP equidistribution) coming to dominate, while local randomness regularises after scaling by log x. Taken together, these findings point toward an interesting possibility: that machine learning can serve as a new experimental instrument for number theory. Notably, the method shows potential 1 for investigating the patterns in strong and weak primes for cryptographic purposes.
♻ ☆ An Analytical and AI-discovered Stable, Accurate, and Generalizable Subgrid-scale Closure for Geophysical Turbulence
By combining AI and fluid physics, we discover a closed-form closure for 2D turbulence from small direct numerical simulation (DNS) data. Large-eddy simulation (LES) with this closure is accurate and stable, reproducing DNS statistics including those of extremes. We also show that the new closure could be derived from a 4th-order truncated Taylor expansion. Prior analytical and AI-based work only found the 2nd-order expansion, which led to unstable LES. The additional terms emerge only when inter-scale energy transfer is considered alongside standard reconstruction criterion in the sparse-equation discovery.
comment: Main manuscript: 6 pages, 3 figures; End Matter: 1 page, 1 figure; Supplementary Information: 7 pages, 5 figures, 2 tables
♻ ☆ A Gaussian Process View on Observation Noise and Initialization in Wide Neural Networks
Performing gradient descent in a wide neural network is equivalent to computing the posterior mean of a Gaussian Process with the Neural Tangent Kernel (NTK-GP), for a specific prior mean and with zero observation noise. However, existing formulations have two limitations: (i) the NTK-GP assumes noiseless targets, leading to misspecification on noisy data; (ii) the equivalence does not extend to arbitrary prior means, which are essential for well-specified models. To address (i), we introduce a regularizer into the training objective, showing its correspondence to incorporating observation noise in the NTK-GP. To address (ii), we propose a \textit{shifted network} that enables arbitrary prior means and allows obtaining the posterior mean with gradient descent on a single network, without ensembling or kernel inversion. We validate our results with experiments across datasets and architectures, showing that this approach removes key obstacles to the practical use of NTK-GP equivalence in applied Gaussian process modeling.
comment: Work in progress
♻ ☆ Towards Acyclic Preference Evaluation of Language Models via Multiple Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoising), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
♻ ☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still exhibit a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have been made to address this gap, its underlying causes remain largely unexplored. In this work, we show that this gap primarily stems from failures in language understanding-specifically, the model's inability to translate multilingual inputs into the language dominating its reasoning traces (typically English). As identifying understanding failures can enable targeted mitigation of the gap, we evaluate a range of detection methods and find that understanding failures are detectable to a meaningful extent, with supervised approaches performing best. Building on this, we propose Selective Translation, a strategy that incorporates an English translation into the initial reasoning trace only when an understanding failure is detected. Experimental results using Qwen3-4B show that Selective Translation substantially bridges the multilingual reasoning gap, achieving near full-translation performance while translating only about 20% of inputs. Together, our results show that failures in language understanding are the primary driver of the multilingual reasoning gap and can be detected and selectively mitigated, clarifying its origin and suggesting a path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis
comment: v2: Fix typos and updated contents
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Advancing Generalizability by the Baldwin Effect IEEE
Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them. However, today's PINNs are often trained for a single physics task and require computationally expensive re-training for each new task, even for tasks from similar physics domains. To address this limitation, this paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution. Drawing inspiration from the neurodevelopment of precocial species that have evolved to learn, predict and react quickly to their environment, we envision PINNs that are pre-wired with connection strengths inducing strong biases towards efficient learning of physics. A novel two-stage stochastic programming formulation coupling evolutionary selection pressure (based on proficiency over a distribution of physics tasks) with lifetime learning (to specialize on a sampled subset of those tasks) is proposed to instantiate the Baldwin effect. The evolved Baldwinian-PINNs demonstrate fast and physics-compliant prediction capabilities across a range of empirically challenging problem instances with more than an order of magnitude improvement in prediction accuracy at a fraction of the computation cost compared to state-of-the-art gradient-based meta-learning methods. For example, when solving the diffusion-reaction equation, a 70x improvement in accuracy was obtained while taking 700x less computational time. This paper thus marks a leap forward in the meta-learning of PINNs as generalizable physics solvers. Sample codes are available at https://github.com/chiuph/Baldwinian-PINN.
comment: Accepted for publication in IEEE Transactions on Evolutionary Computation
♻ ☆ Fair Domain Generalization: An Information-Theoretic View AAAI
Domain generalization (DG) and algorithmic fairness are two critical challenges in machine learning. However, most DG methods focus only on minimizing expected risk in the unseen target domain without considering algorithmic fairness. Conversely, fairness methods typically do not account for domain shifts, so the fairness achieved during training may not generalize to unseen test domains. In this work, we bridge these gaps by studying the problem of Fair Domain Generalization (FairDG), which aims to minimize both expected risk and fairness violations in unseen target domains. We derive novel mutual information-based upper bounds for expected risk and fairness violations in multi-class classification tasks with multi-group sensitive attributes. These bounds provide key insights for algorithm design from an information-theoretic perspective. Guided by these insights, we introduce PAFDG (Pareto-Optimal Fairness for Domain Generalization), a practical framework that solves the FairDG problem and models the utility-fairness trade-off through Pareto optimization. Experiments on real-world vision and language datasets show that PAFDG achieves superior utility-fairness trade-offs compared to existing methods.
comment: Accepted at AAAI (Oral)
♻ ☆ Personalized Federated Heat-Kernel Enhanced Multi-View Clustering via Advanced Tensor Decomposition Techniques
This paper introduces mathematical frameworks that address the challenges of multi-view clustering in federated learning environments. The objective is to integrate optimization techniques based on new objective functions employing heat-kernel coefficients to replace conventional distance metrics with quantum-inspired measures. The proposed frameworks utilize advanced tensor decomposition methods, specifically, PARAFAC2 and Tucker decomposition to efficiently represent high-dimensional, multi-view data while preserving inter-view relationships. The research has yielded the development of four novel algorithms, an efficient federated kernel multi-view clustering (E-FKMVC) model, FedHK-PARAFAC2, FedHK-Tucker, and FedHK-MVC-Person with PARAFAC2 Decomposition (Personalized FedHK-PARAFAC2). The primary objective of these algorithms is to enhance the efficacy of clustering processes while ensuring the confidentiality and efficient communication in federated learning environments. Theoretical analyses of convergence guarantees, privacy bounds, and complexity are provided to validate the effectiveness of the proposed methods. In essence, this paper makes a significant academic contribution to the field of federated multi-view clustering through its innovative integration of mathematical modeling and algorithm design. This approach addresses the critical challenges of data heterogeneity and privacy concerns, paving the way for enhanced data management and analytics in various contexts.
comment: 37 pages, 4 algorithms, 5 tables, and 5 figures
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Evo-PINN Frontiers and Opportunities IEEE
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes and present as a promising route towards Physical AI. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This work examines PINNs in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are gradient-free evolutionary algorithms (EAs) for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and EAs for discovering bespoke neural architectures and balancing multiple terms in physics-informed learning objectives are positioned as important avenues for future research. Another exciting track is to cast EAs as a meta-learner of generalizable PINN models. To substantiate these proposed avenues, we further highlight results from recent literature to showcase the early success of such approaches in addressing the aforementioned challenges in PINN optimization and generalization.
comment: Accepted for publication in IEEE Computational Intelligence Magazine
♻ ☆ Density-Based Algorithms for Corruption-Robust Contextual Search and Convex Optimization COLT22
We study the problem of contextual search, a generalization of binary search in higher dimensions, in the adversarial noise model. Let $d$ be the dimension of the problem, $T$ be the time horizon and $C$ be the total amount of adversarial noise in the system. We focus on the $ε$-ball and the symmetric loss. For the $ε$-ball loss, we give a tight regret bound of $O(C + d \log(1/ε))$ improving over the $O(d^3 \log(1/ε) \log^2(T) + C \log(T) \log(1/ε))$ bound of Krishnamurthy et al (Operations Research '23). For the symmetric loss, we give an efficient algorithm with regret $O(C+d \log T)$. To tackle the symmetric loss case, we study the more general setting of Corruption-Robust Convex Optimization with Subgradient feedback, which is of independent interest. Our techniques are a significant departure from prior approaches. Specifically, we keep track of density functions over the candidate target vectors instead of a knowledge set consisting of the candidate target vectors consistent with the feedback obtained.
comment: Extended abstract accepted at COLT22. This is a significantly updated version
♻ ☆ Survey of Data-driven Newsvendor: Unified Analysis and Spectrum of Achievable Regrets
In the Newsvendor problem, the goal is to guess the number that will be drawn from some distribution, with asymmetric consequences for guessing too high vs. too low. In the data-driven version, the distribution is unknown, and one must work with samples from the distribution. Data-driven Newsvendor has been studied under many variants: additive vs. multiplicative regret, high probability vs. expectation bounds, and different distribution classes. This paper studies all combinations of these variants, filling in many gaps in the literature and simplifying many proofs. In particular, we provide a unified analysis based on the notion of clustered distributions, which in conjunction with our new lower bounds, shows that the entire spectrum of regrets between $1/\sqrt{n}$ and $1/n$ can be possible. Simulations on commonly-used distributions demonstrate that our notion is the "correct" predictor of empirical regret across varying data sizes.
comment: Forthcoming in Operations Research
♻ ☆ Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
♻ ☆ GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, GLM-4.5V, and GLM-4.6V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. We further introduce the GLM-4.6V series, open-source multimodal models with native tool use and a 128K context window. A brief overview is available at https://z.ai/blog/glm-4.6v. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ Feature-Modulated UFNO for Improved Prediction of Multiphase Flow in Porous Media
The UNet-enhanced Fourier Neural Operator (UFNO) extends the Fourier Neural Operator (FNO) by incorporating a parallel UNet pathway, enabling the retention of both high- and low-frequency components. While UFNO improves predictive accuracy over FNO, it inefficiently treats scalar inputs (e.g., temperature, injection rate) as spatially distributed fields by duplicating their values across the domain. This forces the model to process redundant constant signals within the frequency domain. Additionally, its standard loss function does not account for spatial variations in error sensitivity, limiting performance in regions of high physical importance. We introduce UFNO-FiLM, an enhanced architecture that incorporates two key innovations. First, we decouple scalar inputs from spatial features using a Feature-wise Linear Modulation (FiLM) layer, allowing the model to modulate spatial feature maps without introducing constant signals into the Fourier transform. Second, we employ a spatially weighted loss function that prioritizes learning in critical regions. Our experiments on subsurface multiphase flow demonstrate a 21\% reduction in gas saturation Mean Absolute Error (MAE) compared to UFNO, highlighting the effectiveness of our approach in improving predictive accuracy.
♻ ☆ Weighted Conditional Flow Matching
Conditional flow matching (CFM) has emerged as a powerful framework for training continuous normalizing flows due to its computational efficiency and effectiveness. However, standard CFM often produces paths that deviate significantly from straight-line interpolations between prior and target distributions, making generation slower and less accurate due to the need for fine discretization at inference. Recent methods enhance CFM performance by inducing shorter and straighter trajectories but typically rely on computationally expensive mini-batch optimal transport (OT). Drawing insights from entropic optimal transport (EOT), we propose Weighted Conditional Flow Matching (W-CFM), a novel approach that modifies the classical CFM loss by weighting each training pair $(x, y)$ with a Gibbs kernel. We show that this weighting recovers the entropic OT coupling up to some bias in the marginals, and we provide the conditions under which the marginals remain nearly unchanged. Moreover, we establish an equivalence between W-CFM and the minibatch OT method in the large-batch limit, showing how our method overcomes computational and performance bottlenecks linked to batch size. Empirically, we test our method on unconditional generation on various synthetic and real datasets, confirming that W-CFM achieves comparable or superior sample quality, fidelity, and diversity to other alternative baselines while maintaining the computational efficiency of vanilla CFM.
comment: Working paper. Changes to generalize the framework
♻ ☆ Coordinate Matrix Machine: A Human-level Concept Learning to Classify Very Similar Documents
Human-level concept learning argues that humans typically learn new concepts from a single example, whereas machine learning algorithms typically require hundreds of samples to learn a single concept. Our brain subconsciously identifies important features and learns more effectively. Contribution: In this paper, we present the Coordinate Matrix Machine (CM$^2$). This purpose-built small model augments human intelligence by learning document structures and using this information to classify documents. While modern "Red AI" trends rely on massive pre-training and energy-intensive GPU infrastructure, CM$^2$ is designed as a Green AI solution. It achieves human-level concept learning by identifying only the structural "important features" a human would consider, allowing it to classify very similar documents using only one sample per class. Advantage: Our algorithm outperforms traditional vectorizers and complex deep learning models that require larger datasets and significant compute. By focusing on structural coordinates rather than exhaustive semantic vectors, CM$^2$ offers: 1. High accuracy with minimal data (one-shot learning) 2. Geometric and structural intelligence 3. Green AI and environmental sustainability 4. Optimized for CPU-only environments 5. Inherent explainability (glass-box model) 6. Faster computation and low latency 7. Robustness against unbalanced classes 8. Economic viability 9. Generic, expandable, and extendable
comment: 16 pages, 3 figures
♻ ☆ KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
♻ ☆ Through a Compressed Lens: Investigating The Impact of Quantization on Factual Knowledge Recall
Quantization methods are widely used to accelerate inference and streamline the deployment of large language models (LLMs). Although quantization's effects on various LLM capabilities have been extensively studied, one critical area remains underexplored: factual knowledge recall (FKR), the process by which LLMs access stored knowledge. To this end, we conduct comprehensive experiments using three common quantization techniques at distinct bit widths, in conjunction with interpretability-driven analyses on two tasks, knowledge memorization and latent multi-hop reasoning. We show that quantization typically results in information loss within LLMs, consequently diminishing their capacity for FKR. This effect is particularly amplified in smaller models within the same architectural families. However, models quantized at reduced bit precision do not consistently exhibit inferior performance and occasionally quantization may even enhance model FKR. We find that BitSandBytes demonstrates highest preservation of the original full-precision model's FKR. Despite variability across models and methods, quantization causes modest performance degradation and remains an effective compression strategy.
comment: In submission
♻ ☆ From Continual Learning to SGD and Back: Better Rates for Continual Linear Models ALT 2026
We study the common continual learning setup where an overparameterized model is sequentially fitted to a set of jointly realizable tasks. We analyze forgetting, defined as the loss on previously seen tasks, after $k$ iterations. For continual linear models, we prove that fitting a task is equivalent to a single stochastic gradient descent (SGD) step on a modified objective. We develop novel last-iterate SGD upper bounds in the realizable least squares setup and leverage them to derive new results for continual learning. Focusing on random orderings over $T$ tasks, we establish universal forgetting rates, whereas existing rates depend on problem dimensionality or complexity and become prohibitive in highly overparameterized regimes. In continual regression with replacement, we improve the best existing rate from $O((d-\bar{r})/k)$ to $O(\min(1/\sqrt[4]{k}, \sqrt{(d-\bar{r})}/k, \sqrt{T\bar{r}}/k))$, where $d$ is the dimensionality and $\bar{r}$ the average task rank. Furthermore, we establish the first rate for random task orderings without replacement. The resulting rate $O(\min(1/\sqrt[4]{T},\, (d-\bar{r})/T))$ shows that randomization alone, without task repetition, prevents catastrophic forgetting in sufficiently long task sequences. Finally, we prove a matching $O(1/\sqrt[4]{k})$ forgetting rate for continual linear classification on separable data. Our universal rates extend to broader methods, such as block Kaczmarz and POCS, illuminating their loss convergence under i.i.d. and single-pass orderings.
comment: Accepted to ALT 2026
♻ ☆ Homogenization with Guaranteed Bounds via Primal-Dual Physically Informed Neural Networks
Physics-informed neural networks (PINNs) have shown promise in solving partial differential equations (PDEs) relevant to multiscale modeling, but they often fail when applied to materials with discontinuous coefficients, such as media with piecewise constant properties. This paper introduces a dual formulation for the PINN framework to improve the reliability of the homogenization of periodic thermo-conductive composites, for both strong and variational (weak) formulations. The dual approach facilitates the derivation of guaranteed upper and lower error bounds, enabling more robust detection of PINN failure. We compare standard PINNs applied to smoothed material approximations with variational PINNs (VPINNs) using both spectral and neural network-based test functions. Our results indicate that while strong-form PINNs may outperform VPINNs in controlled settings, they are sensitive to material discontinuities and may fail without clear diagnostics. In contrast, VPINNs accommodate piecewise constant material parameters directly but require careful selection of test functions to avoid instability. Dual formulation serves as a reliable indicator of convergence quality, and its integration into PINN frameworks enhances their applicability to homogenization problems in micromechanics.
♻ ☆ A New Flexible Train-Test Split Algorithm, an approach for choosing among the Hold-out, K-fold cross-validation, and Hold-out iteration
Choosing an appropriate strategy for partitioning data into training and evaluation sets is a critical step in machine learning, yet validation methods are often selected using default or conventional settings without considering their impact on generalizability and real-world performance. Common approaches such as hold-out validation or k-fold cross-validation with fixed k values are frequently applied based solely on empirical practice. To address this issue, we propose a flexible Python-based framework that systematically examines how different validation strategies affect predictive performance across seven widely used machine learning algorithms, including Decision Trees, K-Nearest Neighbors, Naive Bayes variants, Logistic Regression, calibrated linear Support Vector Machines, and histogram-based gradient boosting. The framework evaluates these methods under a wide range of validation schemes, including hold-out splits from 10% to 90%, k-fold cross-validation with k between 3 and 15, repeated hold-out, and nested cross-validation. The framework is applied to three biomedical datasets of varying size, and performance is assessed using ROC-AUC, accuracy, and the Matthews correlation coefficient. The results show that no single validation strategy consistently outperforms others across all algorithms and datasets, indicating that optimal validation depends on the interaction between the algorithm, dataset characteristics, and evaluation metric.
♻ ☆ 70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float (DFloat11) NeurIPS 2025
Large-scale AI models, such as Large Language Models (LLMs) and Diffusion Models (DMs), have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM and DM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in the existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) compact, hierarchical lookup tables (LUTs) that fit within GPU SRAM for efficient decoding, (ii) a two-phase GPU kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on Llama 3.3, Qwen 3, Mistral 3, FLUX.1, and others validate our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit identical outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 2.3--46.2x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.7--14.9x longer generation lengths than uncompressed models. Notably, our method enables lossless inference of Llama 3.1 405B, an 810GB model, on a single node equipped with 8x80GB GPUs.
comment: Published in NeurIPS 2025
♻ ☆ LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid ICLR 2025
Large language models (LLMs) have shown immense potential across various domains, but their high memory requirements and inference costs remain critical challenges for deployment. Post-training quantization (PTQ) has emerged as a promising technique to reduce memory requirements and decoding latency. However, recent accurate quantization methods often depend on specialized computations or custom data formats to achieve better model quality, which limits their compatibility with popular frameworks, as they require dedicated inference kernels tailored to specific hardware and software platforms, hindering wider adoption. Furthermore, many competitive methods have high resource requirements and computational overhead for quantizing models, making it challenging to scale them to hundreds of billions of parameters. In response to these challenges, we propose LeanQuant (Loss-Error-Aware Network Quantization), a novel quantization method that is accurate, versatile, and scalable. In the existing popular iterative loss-error-based quantization framework, we identify a critical limitation in prior methods: the min-max affine quantization grid fails to preserve model quality due to outliers in inverse Hessian diagonals. To overcome this fundamental issue, we propose learning loss-error-aware grids, instead of using non-adaptive min-max affine grids. Our approach not only produces quantized models that are more accurate but also generalizes to a wider range of quantization types, including affine and non-uniform quantization, enhancing compatibility with more frameworks. Extensive experiments with recent LLMs demonstrate that LeanQuant is highly accurate, comparing favorably against competitive baselines in model quality, and scalable, achieving very accurate quantization of Llama-3.1 405B, one of the largest open-source LLMs to date, using two Quadro RTX 8000-48GB GPUs in 21 hours.
comment: Published in ICLR 2025
♻ ☆ PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and representational capacity. While existing ultra-low-bit methods rely on binary approximations or quantization-aware training(QAT), they often suffer from either limited representational capacity or huge training resource overhead. We introduce PTQ to Trit-Planes (PTQTP), a structured PTQ framework that decomposes weight matrices into dual ternary {-1, 0, 1} trit-planes. This approach achieves multiplication-free additive inference by decoupling weights into discrete topology (trit-planes) and continuous magnitude (scales), effectively enabling high-fidelity sparse approximation. PTQTP provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment without architectural modifications; and (3) uniform ternary operations that eliminate mixed-precision overhead. Comprehensive experiments on LLaMA3.x and Qwen3 (0.6B-70B) demonstrate that PTQTP significantly outperforms sub-4bit PTQ methods on both language reasoning tasks and mathematical reasoning as well as coding. PTQTP rivals the 1.58-bit QAT performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods, and the end-to-end inference speed achieves 4.63$\times$ faster than the FP16 baseline model, establishing a new and practical solution for efficient LLM deployment in resource-constrained environments. Code will available at https://github.com/HeXiao-55/PTQTP.
comment: Ternary Quantization, Under review
♻ ☆ Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation ICML 2025
Adapting pre-trained large language models (LLMs) is crucial but challenging due to their enormous size. Parameter-efficient fine-tuning (PEFT) techniques typically employ additive adapters applied to frozen model weights. To further reduce memory usage, model weights are often compressed through quantization. However, existing PEFT methods often yield suboptimal model quality because they rely on restrictive assumptions, such as low-rank constraints on adapters to limit the number of trainable parameters. We find that sketching, a popular data compression technique, can serve as an efficient LLM adaptation strategy while avoiding the low-rank assumption. We introduce SketchTune, a compressive adaptation strategy that compresses LLM weights into compact fine-tunable sketches, integrating compression and adaptation into a unified framework. This integration eliminates the need for complex two-path computation in existing PEFT techniques, enabling faster and more memory-efficient training and inference. SketchTune is supported by mathematical insights into matrix classes that are better approximated using sketching rather than low-rank methods. Our extensive evaluations with Llama and Mistral models demonstrate that SketchTune outperforms leading PEFT methods across diverse tasks while using substantially smaller base models and comparable trainable parameters. As a highlight, SketchTune outperforms LoRA, DoRA, and S2FT on commonsense and math benchmarks using 2.6-3.5$\times$ smaller base models and exceeds LoftQ in accuracy by 14.48% on GSM8K with 7.3$\times$ fewer trainable parameters. Our code is available at https://github.com/LeanModels/SketchTune.
comment: Published in ICML 2025
♻ ☆ Support Vector Machine Kernels as Quantum Propagators
Selecting optimal kernels for regression in physical systems remains a challenge, often relying on trial-and-error with standard functions. In this work, we establish a mathematical correspondence between support vector machine kernels and quantum propagators, demonstrating that kernel efficacy is determined by its spectral alignment with the system's Green's function. Based on this isomorphism, we propose a unified, physics-informed framework for kernel selection and design. For systems with known propagator forms, we derive analytical selection rules that map standard kernels to physical operators. For complex systems where the Green's function is analytically intractable, we introduce a constructive numerical method using the Kernel Polynomial Method with Jackson smoothing to generate custom, physics-aligned kernels. Numerical experiments spanning electrical conductivity, electronic band structure, anharmonic oscillators, and photonic crystals demonstrate that this framework consistently performs well as long as there is an alignment with a Green's function.
comment: Updated version, 17 pages, 7 figures
♻ ☆ Streaming Sliced Optimal Transport
Sliced optimal transport (SOT), or sliced Wasserstein (SW) distance, is widely recognized for its statistical and computational scalability. In this work, we further enhance computational scalability by proposing the first method for estimating SW from sample streams, called \emph{streaming sliced Wasserstein} (Stream-SW). To define Stream-SW, we first introduce a streaming estimator of the one-dimensional Wasserstein distance (1DW). Since the 1DW has a closed-form expression, given by the absolute difference between the quantile functions of the compared distributions, we leverage quantile approximation techniques for sample streams to define a streaming 1DW estimator. By applying the streaming 1DW to all projections, we obtain Stream-SW. The key advantage of Stream-SW is its low memory complexity while providing theoretical guarantees on the approximation error. We demonstrate that Stream-SW achieves a more accurate approximation of SW than random subsampling, with lower memory consumption, when comparing Gaussian distributions and mixtures of Gaussians from streaming samples. Additionally, we conduct experiments on point cloud classification, point cloud gradient flows, and streaming change point detection to further highlight the favorable performance of the proposed Stream-SW
comment: 28 pages, 9 figures, 3 tables
♻ ☆ Asynchronous Fractional Multi-Agent Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing
In the realm of emerging real-time networked applications such as cyber-physical systems (CPS), the Age of Information (AoI) has emerged as a pivotal metric for evaluating timeliness. To meet the high computational demands, such as those in smart manufacturing within CPS, mobile edge computing (MEC) presents a promising solution for optimizing computing and reducing AoI. In this work, we study the timeliness of compute-intensive updates and explore jointly optimizing the task updating (when to generate a task) and offloading (where to process a task) policies to minimize AoI. Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI. Solving this problem is challenging due to the fractional objective introduced by AoI and the asynchronous decision-making of the semi-Markov game (SMG). To this end, we propose a fractional reinforcement learning (RL) framework. We begin by introducing a fractional single-agent RL framework and establish its linear convergence rate. Building on this, we develop a fractional multi-agent RL framework, extend Dinkelbach's method, and demonstrate its equivalence to the inexact Newton's method. Furthermore, we provide the conditions under which the framework achieves linear convergence to the Nash equilibrium (NE). To tackle the challenge of asynchronous decision-making in the SMG, we further design an asynchronous model-free fractional multi-agent RL algorithm, where each mobile device can determine the task updating and offloading decisions without knowing the real-time system dynamics and decisions of other devices. Experimental results show that when compared with the best existing baseline algorithm, our proposed algorithm reduces the average AoI by up to 50.6%.
♻ ☆ AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving
Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. We release all the codes and datasets in https://github.com/taco-group/AutoTrust.
comment: Published at TMLR 2025
♻ ☆ Information-Theoretic Quality Metric of Low-Dimensional Embeddings
In this work we study the quality of low-dimensional embeddings from an explicitly information-theoretic perspective. We begin by noting that classical evaluation metrics such as stress, rank-based neighborhood criteria, or Local Procrustes quantify distortions in distances or in local geometries, but do not directly assess how much information is preserved when projecting high-dimensional data onto a lower-dimensional space. To address this limitation, we introduce the Entropy Rank Preservation Measure (ERPM), a local metric based on the Shannon entropy of the singular-value spectrum of neighborhood matrices and on the stable rank, which quantifies changes in uncertainty between the original representation and its reduced projection, providing neighborhood-level indicators and a global summary statistic. To validate the results of the metric, we compare its outcomes with the Mean Relative Rank Error (MRRE), which is distance-based, and with Local Procrustes, which is based on geometric properties, using a financial time series and a manifold commonly studied in the literature. We observe that distance-based criteria exhibit very low correlation with geometric and spectral measures, while ERPM and Local Procrustes show strong average correlation but display significant discrepancies in local regimes, leading to the conclusion that ERPM complements existing metrics by identifying neighborhoods with severe information loss, thereby enabling a more comprehensive assessment of embeddings, particularly in information-sensitive applications such as the construction of early-warning indicators.
comment: 18 pages, 6 figures, submitted to Machine Learning (Springer Nature)
♻ ☆ BOAD: Discovering Hierarchical Software Engineering Agents via Bandit Optimization
Large language models (LLMs) have shown strong reasoning and coding capabilities, yet they struggle to generalize to real-world software engineering (SWE) problems that are long-horizon and out of distribution. Existing systems often rely on a single agent to handle the entire workflow-interpreting issues, navigating large codebases, and implementing fixes-within one reasoning chain. Such monolithic designs force the model to retain irrelevant context, leading to spurious correlations and poor generalization. Motivated by how human engineers decompose complex problems, we propose structuring SWE agents as orchestrators coordinating specialized sub-agents for sub-tasks such as localization, editing, and validation. The challenge lies in discovering effective hierarchies automatically: as the number of sub-agents grows, the search space becomes combinatorial, and it is difficult to attribute credit to individual sub-agents within a team. We address these challenges by formulating hierarchy discovery as a multi-armed bandit (MAB) problem, where each arm represents a candidate sub-agent and the reward measures its helpfulness when collaborating with others. This framework, termed Bandit Optimization for Agent Design (BOAD), enables efficient exploration of sub-agent designs under limited evaluation budgets. On SWE-bench-Verified, BOAD outperforms single-agent and manually designed multi-agent systems. On SWE-bench-Live, featuring more recent and out-of-distribution issues, our 36B system ranks second on the leaderboard at the time of evaluation, surpassing larger models such as GPT-4 and Claude. These results demonstrate that automatically discovered hierarchical multi-agent systems significantly improve generalization on challenging long-horizon SWE tasks. Code is available at https://github.com/iamxjy/BOAD-SWE-Agent.
♻ ☆ Decomposing Uncertainty in Probabilistic Knowledge Graph Embeddings: Why Entity Variance Is Not Enough
Probabilistic knowledge graph embeddings represent entities as distributions, using learned variances to quantify epistemic uncertainty. We identify a fundamental limitation: these variances are relation-agnostic, meaning an entity receives identical uncertainty regardless of relational context. This conflates two distinct out-of-distribution phenomena that behave oppositely: emerging entities (rare, poorly-learned) and novel relational contexts (familiar entities in unobserved relationships). We prove an impossibility result: any uncertainty estimator using only entity-level statistics independent of relation context achieves near-random OOD detection on novel contexts. We empirically validate this on three datasets, finding 100 percent of novel-context triples have frequency-matched in-distribution counterparts. This explains why existing probabilistic methods achieve 0.99 AUROC on random corruptions but only 0.52-0.64 on temporal distribution shift. We formalize uncertainty decomposition into complementary components: semantic uncertainty from entity embedding variance (detecting emerging entities) and structural uncertainty from entity-relation co-occurrence (detecting novel contexts). Our main theoretical result proves these signals are non-redundant, and that any convex combination strictly dominates either signal alone. Our method (CAGP) combines semantic and structural uncertainty via learned weights, achieving 0.94-0.99 AUROC on temporal OOD detection across multiple benchmarks, a 60-80 percent relative improvement over relation-agnostic baselines. Empirical validation confirms complete frequency overlap on three datasets (FB15k-237, WN18RR, YAGO3-10). On selective prediction, our method reduces errors by 43 percent at 85 percent answer rate.
Multimedia 4
☆ Effects of Limited Field of View on Musical Collaboration Experience with Avatars in Extended Reality
During musical collaboration, visual cues are essential for communication between musicians. Extended Reality (XR) applications, often used with head-mounted displays like Augmented Reality (AR) glasses, can limit the field of view (FOV) of players. We conducted a study to investigate the effects of limited FOV on co-presence, gesture recognition, overall enjoyment, and reaction time. Initially, we observed experienced musicians collaborating informally with and without visual occlusion, noting that collaboration suffered with limited FOV. We then conducted a within-subjects study with 19 participants, comparing an unrestricted FOV holographic setup called HoloJam to Nreal AR glasses with a 52$^{\circ}$ limited FOV. In the AR setup, we tested two conditions: standard AR with a 52$^{\circ}$ FOV and a modified AR notification system called Mini Musicians. Results showed that HoloJam provided higher co-presence, quicker gesture recognition, and greater enjoyment. The Mini Musicians application reduced reaction time and maintained enjoyment compared to the standard AR setup. We conclude that limited FOV impacts musical collaboration, but notifications can improve reaction time and should be considered in future XR music collaborations.
☆ MR-DAW: Towards Collaborative Digital Audio Workstations in Mixed Reality
Digital Audio Workstations (DAWs) are central to modern music production but often encumber the musician's workflow, tethering them to a desk and hindering natural interaction with their instrument. Furthermore, effective remote collaboration remains a significant challenge, with existing solutions hampered by network latency and asynchronous file sharing. This paper investigates the potential of Mixed Reality (MR) to overcome these barriers, creating an intuitive environment for real-time, remote musical collaboration. We employ qualitative and speculative design techniques to better understand: 1) how players currently use DAWs, and 2) to imagine a speculative future of collaborative MR-DAWs. To facilitate this discussion, we developed and evaluated the usability of a design probe, MR-DAW. An MR system enabling multiple, geographically dispersed users to control a single, shared DAW instance while moving freely in their local spaces. Our networked system enables each remote musician to use a physical foot pedal for collaborative looping, merging a familiar, hands-free interaction with a shared virtual session. Based on interviews and system evaluations with 20 musicians, we analyze current practices, report on the user experience with our MR system, and speculate on the future of musical collaboration in MR. Our results highlight the affordances of MR for unencumbered musical interaction and provide a speculative outlook on the future of remote collaborative DAWs in the Musical Metaverse.
☆ Timed text extraction from Taiwanese Kua-á-hì TV series
Taiwanese opera (Kua-á-hì), a major form of local theatrical tradition, underwent extensive television adaptation notably by pioneers like Iûnn Lē-hua. These videos, while potentially valuable for in-depth studies of Taiwanese opera, often have low quality and require substantial manual effort during data preparation. To streamline this process, we developed an interactive system for real-time OCR correction and a two-step approach integrating OCR-driven segmentation with Speech and Music Activity Detection (SMAD) to efficiently identify vocal segments from archival episodes with high precision. The resulting dataset, consisting of vocal segments and corresponding lyrics, can potentially supports various MIR tasks such as lyrics identification and tune retrieval. Code is available at https://github.com/z-huang/ocr-subtitle-editor .
comment: Accepted to ISMIR 2025 Late-Breaking Demo (LBD)
☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
Computer Vision and Pattern Recognition 100
☆ SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
comment: Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
☆ GaMO: Geometry-aware Multi-view Diffusion Outpainting for Sparse-View 3D Reconstruction
Recent advances in 3D reconstruction have achieved remarkable progress in high-quality scene capture from dense multi-view imagery, yet struggle when input views are limited. Various approaches, including regularization techniques, semantic priors, and geometric constraints, have been implemented to address this challenge. Latest diffusion-based methods have demonstrated substantial improvements by generating novel views from new camera poses to augment training data, surpassing earlier regularization and prior-based techniques. Despite this progress, we identify three critical limitations in these state-of-the-art approaches: inadequate coverage beyond known view peripheries, geometric inconsistencies across generated views, and computationally expensive pipelines. We introduce GaMO (Geometry-aware Multi-view Outpainter), a framework that reformulates sparse-view reconstruction through multi-view outpainting. Instead of generating new viewpoints, GaMO expands the field of view from existing camera poses, which inherently preserves geometric consistency while providing broader scene coverage. Our approach employs multi-view conditioning and geometry-aware denoising strategies in a zero-shot manner without training. Extensive experiments on Replica and ScanNet++ demonstrate state-of-the-art reconstruction quality across 3, 6, and 9 input views, outperforming prior methods in PSNR and LPIPS, while achieving a $25\times$ speedup over SOTA diffusion-based methods with processing time under 10 minutes. Project page: https://yichuanh.github.io/GaMO/
comment: Project page: https://yichuanh.github.io/GaMO/
☆ Edit3r: Instant 3D Scene Editing from Sparse Unposed Images
We present Edit3r, a feed-forward framework that reconstructs and edits 3D scenes in a single pass from unposed, view-inconsistent, instruction-edited images. Unlike prior methods requiring per-scene optimization, Edit3r directly predicts instruction-aligned 3D edits, enabling fast and photorealistic rendering without optimization or pose estimation. A key challenge in training such a model lies in the absence of multi-view consistent edited images for supervision. We address this with (i) a SAM2-based recoloring strategy that generates reliable, cross-view-consistent supervision, and (ii) an asymmetric input strategy that pairs a recolored reference view with raw auxiliary views, encouraging the network to fuse and align disparate observations. At inference, our model effectively handles images edited by 2D methods such as InstructPix2Pix, despite not being exposed to such edits during training. For large-scale quantitative evaluation, we introduce DL3DV-Edit-Bench, a benchmark built on the DL3DV test split, featuring 20 diverse scenes, 4 edit types and 100 edits in total. Comprehensive quantitative and qualitative results show that Edit3r achieves superior semantic alignment and enhanced 3D consistency compared to recent baselines, while operating at significantly higher inference speed, making it promising for real-time 3D editing applications.
comment: Project page: https://edit3r.github.io/edit3r/
☆ FineTec: Fine-Grained Action Recognition Under Temporal Corruption via Skeleton Decomposition and Sequence Completion AAAI 2026
Recognizing fine-grained actions from temporally corrupted skeleton sequences remains a significant challenge, particularly in real-world scenarios where online pose estimation often yields substantial missing data. Existing methods often struggle to accurately recover temporal dynamics and fine-grained spatial structures, resulting in the loss of subtle motion cues crucial for distinguishing similar actions. To address this, we propose FineTec, a unified framework for Fine-grained action recognition under Temporal Corruption. FineTec first restores a base skeleton sequence from corrupted input using context-aware completion with diverse temporal masking. Next, a skeleton-based spatial decomposition module partitions the skeleton into five semantic regions, further divides them into dynamic and static subgroups based on motion variance, and generates two augmented skeleton sequences via targeted perturbation. These, along with the base sequence, are then processed by a physics-driven estimation module, which utilizes Lagrangian dynamics to estimate joint accelerations. Finally, both the fused skeleton position sequence and the fused acceleration sequence are jointly fed into a GCN-based action recognition head. Extensive experiments on both coarse-grained (NTU-60, NTU-120) and fine-grained (Gym99, Gym288) benchmarks show that FineTec significantly outperforms previous methods under various levels of temporal corruption. Specifically, FineTec achieves top-1 accuracies of 89.1% and 78.1% on the challenging Gym99-severe and Gym288-severe settings, respectively, demonstrating its robustness and generalizability. Code and datasets could be found at https://smartdianlab.github.io/projects-FineTec/.
comment: Accepted by AAAI 2026
☆ From Inpainting to Editing: A Self-Bootstrapping Framework for Context-Rich Visual Dubbing
Audio-driven visual dubbing aims to synchronize a video's lip movements with new speech, but is fundamentally challenged by the lack of ideal training data: paired videos where only a subject's lip movements differ while all other visual conditions are identical. Existing methods circumvent this with a mask-based inpainting paradigm, where an incomplete visual conditioning forces models to simultaneously hallucinate missing content and sync lips, leading to visual artifacts, identity drift, and poor synchronization. In this work, we propose a novel self-bootstrapping framework that reframes visual dubbing from an ill-posed inpainting task into a well-conditioned video-to-video editing problem. Our approach employs a Diffusion Transformer, first as a data generator, to synthesize ideal training data: a lip-altered companion video for each real sample, forming visually aligned video pairs. A DiT-based audio-driven editor is then trained on these pairs end-to-end, leveraging the complete and aligned input video frames to focus solely on precise, audio-driven lip modifications. This complete, frame-aligned input conditioning forms a rich visual context for the editor, providing it with complete identity cues, scene interactions, and continuous spatiotemporal dynamics. Leveraging this rich context fundamentally enables our method to achieve highly accurate lip sync, faithful identity preservation, and exceptional robustness against challenging in-the-wild scenarios. We further introduce a timestep-adaptive multi-phase learning strategy as a necessary component to disentangle conflicting editing objectives across diffusion timesteps, thereby facilitating stable training and yielding enhanced lip synchronization and visual fidelity. Additionally, we propose ContextDubBench, a comprehensive benchmark dataset for robust evaluation in diverse and challenging practical application scenarios.
comment: Project Page https://hjrphoebus.github.io/X-Dub
☆ Generative Classifiers Avoid Shortcut Solutions ICLR 2025
Discriminative approaches to classification often learn shortcuts that hold in-distribution but fail even under minor distribution shift. This failure mode stems from an overreliance on features that are spuriously correlated with the label. We show that generative classifiers, which use class-conditional generative models, can avoid this issue by modeling all features, both core and spurious, instead of mainly spurious ones. These generative classifiers are simple to train, avoiding the need for specialized augmentations, strong regularization, extra hyperparameters, or knowledge of the specific spurious correlations to avoid. We find that diffusion-based and autoregressive generative classifiers achieve state-of-the-art performance on five standard image and text distribution shift benchmarks and reduce the impact of spurious correlations in realistic applications, such as medical or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to understand the inductive biases of generative classifiers, as well as the data properties that determine when generative classifiers outperform discriminative ones.
comment: ICLR 2025. Code: https://github.com/alexlioralexli/generative-classifiers
☆ FoundationSLAM: Unleashing the Power of Depth Foundation Models for End-to-End Dense Visual SLAM
We present FoundationSLAM, a learning-based monocular dense SLAM system that addresses the absence of geometric consistency in previous flow-based approaches for accurate and robust tracking and mapping. Our core idea is to bridge flow estimation with geometric reasoning by leveraging the guidance from foundation depth models. To this end, we first develop a Hybrid Flow Network that produces geometry-aware correspondences, enabling consistent depth and pose inference across diverse keyframes. To enforce global consistency, we propose a Bi-Consistent Bundle Adjustment Layer that jointly optimizes keyframe pose and depth under multi-view constraints. Furthermore, we introduce a Reliability-Aware Refinement mechanism that dynamically adapts the flow update process by distinguishing between reliable and uncertain regions, forming a closed feedback loop between matching and optimization. Extensive experiments demonstrate that FoundationSLAM achieves superior trajectory accuracy and dense reconstruction quality across multiple challenging datasets, while running in real-time at 18 FPS, demonstrating strong generalization to various scenarios and practical applicability of our method.
☆ Bi-C2R: Bidirectional Continual Compatible Representation for Re-indexing Free Lifelong Person Re-identification
Lifelong person Re-IDentification (L-ReID) exploits sequentially collected data to continuously train and update a ReID model, focusing on the overall performance of all data. Its main challenge is to avoid the catastrophic forgetting problem of old knowledge while training on new data. Existing L-ReID methods typically re-extract new features for all historical gallery images for inference after each update, known as "re-indexing". However, historical gallery data typically suffers from direct saving due to the data privacy issue and the high re-indexing costs for large-scale gallery images. As a result, it inevitably leads to incompatible retrieval between query features extracted by the updated model and gallery features extracted by those before the update, greatly impairing the re-identification performance. To tackle the above issue, this paper focuses on a new task called Re-index Free Lifelong person Re-IDentification (RFL-ReID), which requires performing lifelong person re-identification without re-indexing historical gallery images. Therefore, RFL-ReID is more challenging than L-ReID, requiring continuous learning and balancing new and old knowledge in diverse streaming data, and making the features output by the new and old models compatible with each other. To this end, we propose a Bidirectional Continuous Compatible Representation (Bi-C2R) framework to continuously update the gallery features extracted by the old model to perform efficient L-ReID in a compatible manner. We verify our proposed Bi-C2R method through theoretical analysis and extensive experiments on multiple benchmarks, which demonstrate that the proposed method can achieve leading performance on both the introduced RFL-ReID task and the traditional L-ReID task.
☆ PhysTalk: Language-driven Real-time Physics in 3D Gaussian Scenes
Realistic visual simulations are omnipresent, yet their creation requires computing time, rendering, and expert animation knowledge. Open-vocabulary visual effects generation from text inputs emerges as a promising solution that can unlock immense creative potential. However, current pipelines lack both physical realism and effective language interfaces, requiring slow offline optimization. In contrast, PhysTalk takes a 3D Gaussian Splatting (3DGS) scene as input and translates arbitrary user prompts into real time, physics based, interactive 4D animations. A large language model (LLM) generates executable code that directly modifies 3DGS parameters through lightweight proxies and particle dynamics. Notably, PhysTalk is the first framework to couple 3DGS directly with a physics simulator without relying on time consuming mesh extraction. While remaining open vocabulary, this design enables interactive 3D Gaussian animation via collision aware, physics based manipulation of arbitrary, multi material objects. Finally, PhysTalk is train-free and computationally lightweight: this makes 4D animation broadly accessible and shifts these workflows from a "render and wait" paradigm toward an interactive dialogue with a modern, physics-informed pipeline.
☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Our code and benchmark dataset will be released upon acceptance.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions ICML
Compressed deep learning models are crucial for deploying computer vision systems on resource-constrained devices. However, model compression may affect robustness, especially under natural corruption. Therefore, it is important to consider robustness evaluation while validating computer vision systems. This paper presents a comprehensive evaluation of compression techniques - quantization, pruning, and weight clustering applied individually and in combination to convolutional neural networks (ResNet-50, VGG-19, and MobileNetV2). Using the CIFAR-10-C and CIFAR 100-C datasets, we analyze the trade-offs between robustness, accuracy, and compression ratio. Our results show that certain compression strategies not only preserve but can also improve robustness, particularly on networks with more complex architectures. Utilizing multiobjective assessment, we determine the best configurations, showing that customized technique combinations produce beneficial multi-objective results. This study provides insights into selecting compression methods for robust and efficient deployment of models in corrupted real-world environments.
comment: Accepted for publication at the 2025 International Conference on Machine Learning and Applications (ICMLA). IEEE Catalog Number: CFP25592-ART
☆ ShowUI-$π$: Flow-based Generative Models as GUI Dexterous Hands
Building intelligent agents capable of dexterous manipulation is essential for achieving human-like automation in both robotics and digital environments. However, existing GUI agents rely on discrete click predictions (x,y), which prohibits free-form, closed-loop trajectories (e.g. dragging a progress bar) that require continuous, on-the-fly perception and adjustment. In this work, we develop ShowUI-$π$, the first flow-based generative model as GUI dexterous hand, featuring the following designs: (i) Unified Discrete-Continuous Actions, integrating discrete clicks and continuous drags within a shared model, enabling flexible adaptation across diverse interaction modes; (ii) Flow-based Action Generation for drag modeling, which predicts incremental cursor adjustments from continuous visual observations via a lightweight action expert, ensuring smooth and stable trajectories; (iii) Drag Training data and Benchmark, where we manually collect and synthesize 20K drag trajectories across five domains (e.g. PowerPoint, Adobe Premiere Pro), and introduce ScreenDrag, a benchmark with comprehensive online and offline evaluation protocols for assessing GUI agents' drag capabilities. Our experiments show that proprietary GUI agents still struggle on ScreenDrag (e.g. Operator scores 13.27, and the best Gemini-2.5-CUA reaches 22.18). In contrast, ShowUI-$π$ achieves 26.98 with only 450M parameters, underscoring both the difficulty of the task and the effectiveness of our approach. We hope this work advances GUI agents toward human-like dexterous control in digital world. The code is available at https://github.com/showlab/showui-pi.
comment: 17 pages, 15 figures
☆ VIPER: Process-aware Evaluation for Generative Video Reasoning
Recent breakthroughs in video generation have demonstrated an emerging capability termed Chain-of-Frames (CoF) reasoning, where models resolve complex tasks through the generation of continuous frames. While these models show promise for Generative Video Reasoning (GVR), existing evaluation frameworks often rely on single-frame assessments, which can lead to outcome-hacking, where a model reaches a correct conclusion through an erroneous process. To address this, we propose a process-aware evaluation paradigm. We introduce VIPER, a comprehensive benchmark spanning 16 tasks across temporal, structural, symbolic, spatial, physics, and planning reasoning. Furthermore, we propose Process-outcome Consistency (POC@r), a new metric that utilizes VLM-as-Judge with a hierarchical rubric to evaluate both the validity of the intermediate steps and the final result. Our experiments reveal that state-of-the-art video models achieve only about 20% POC@1.0 and exhibit a significant outcome-hacking. We further explore the impact of test-time scaling and sampling robustness, highlighting a substantial gap between current video generation and true generalized visual reasoning. Our benchmark will be publicly released.
comment: Work in progress
☆ ProDM: Synthetic Reality-driven Property-aware Progressive Diffusion Model for Coronary Calcium Motion Correction in Non-gated Chest CT
Coronary artery calcium (CAC) scoring from chest CT is a well-established tool to stratify and refine clinical cardiovascular disease risk estimation. CAC quantification relies on the accurate delineation of calcified lesions, but is oftentimes affected by artifacts introduced by cardiac and respiratory motion. ECG-gated cardiac CTs substantially reduce motion artifacts, but their use in population screening and routine imaging remains limited due to gating requirements and lack of insurance coverage. Although identification of incidental CAC from non-gated chest CT is increasingly considered for it offers an accessible and widely available alternative, this modality is limited by more severe motion artifacts. We present ProDM (Property-aware Progressive Correction Diffusion Model), a generative diffusion framework that restores motion-free calcified lesions from non-gated CTs. ProDM introduces three key components: (1) a CAC motion simulation data engine that synthesizes realistic non-gated acquisitions with diverse motion trajectories directly from cardiac-gated CTs, enabling supervised training without paired data; (2) a property-aware learning strategy incorporating calcium-specific priors through a differentiable calcium consistency loss to preserve lesion integrity; and (3) a progressive correction scheme that reduces artifacts gradually across diffusion steps to enhance stability and calcium fidelity. Experiments on real patient datasets show that ProDM significantly improves CAC scoring accuracy, spatial lesion fidelity, and risk stratification performance compared with several baselines. A reader study on real non-gated scans further confirms that ProDM suppresses motion artifacts and improves clinical usability. These findings highlight the potential of progressive, property-aware frameworks for reliable CAC quantification from routine chest CT imaging.
comment: 21 pages, 8 figures
☆ CPJ: Explainable Agricultural Pest Diagnosis via Caption-Prompt-Judge with LLM-Judged Refinement
Accurate and interpretable crop disease diagnosis is essential for agricultural decision-making, yet existing methods often rely on costly supervised fine-tuning and perform poorly under domain shifts. We propose Caption--Prompt--Judge (CPJ), a training-free few-shot framework that enhances Agri-Pest VQA through structured, interpretable image captions. CPJ employs large vision-language models to generate multi-angle captions, refined iteratively via an LLM-as-Judge module, which then inform a dual-answer VQA process for both recognition and management responses. Evaluated on CDDMBench, CPJ significantly improves performance: using GPT-5-mini captions, GPT-5-Nano achieves \textbf{+22.7} pp in disease classification and \textbf{+19.5} points in QA score over no-caption baselines. The framework provides transparent, evidence-based reasoning, advancing robust and explainable agricultural diagnosis without fine-tuning. Our code and data are publicly available at: https://github.com/CPJ-Agricultural/CPJ-Agricultural-Diagnosis.
comment: This paper is 6 pages in length and contains 2 figures. Tao Fang (Corresponding Author), Lina Lu (Co-corresponding Author)
☆ HaineiFRDM: Explore Diffusion to Restore Defects in Fast-Movement Films
Existing open-source film restoration methods show limited performance compared to commercial methods due to training with low-quality synthetic data and employing noisy optical flows. In addition, high-resolution films have not been explored by the open-source methods.We propose HaineiFRDM(Film Restoration Diffusion Model), a film restoration framework, to explore diffusion model's powerful content-understanding ability to help human expert better restore indistinguishable film defects.Specifically, we employ a patch-wise training and testing strategy to make restoring high-resolution films on one 24GB-VRAMR GPU possible and design a position-aware Global Prompt and Frame Fusion Modules.Also, we introduce a global-local frequency module to reconstruct consistent textures among different patches. Besides, we firstly restore a low-resolution result and use it as global residual to mitigate blocky artifacts caused by patching process.Furthermore, we construct a film restoration dataset that contains restored real-degraded films and realistic synthetic data.Comprehensive experimental results conclusively demonstrate the superiority of our model in defect restoration ability over existing open-source methods. Code and the dataset will be released.
☆ Semi-Supervised Diversity-Aware Domain Adaptation for 3D Object detection
3D object detectors are fundamental components of perception systems in autonomous vehicles. While these detectors achieve remarkable performance on standard autonomous driving benchmarks, they often struggle to generalize across different domains - for instance, a model trained in the U.S. may perform poorly in regions like Asia or Europe. This paper presents a novel lidar domain adaptation method based on neuron activation patterns, demonstrating that state-of-the-art performance can be achieved by annotating only a small, representative, and diverse subset of samples from the target domain if they are correctly selected. The proposed approach requires very small annotation budget and, when combined with post-training techniques inspired by continual learning prevent weight drift from the original model. Empirical evaluation shows that the proposed domain adaptation approach outperforms both linear probing and state-of-the-art domain adaptation techniques.
☆ FinMMDocR: Benchmarking Financial Multimodal Reasoning with Scenario Awareness, Document Understanding, and Multi-Step Computation AAAI-26
We introduce FinMMDocR, a novel bilingual multimodal benchmark for evaluating multimodal large language models (MLLMs) on real-world financial numerical reasoning. Compared to existing benchmarks, our work delivers three major advancements. (1) Scenario Awareness: 57.9% of 1,200 expert-annotated problems incorporate 12 types of implicit financial scenarios (e.g., Portfolio Management), challenging models to perform expert-level reasoning based on assumptions; (2) Document Understanding: 837 Chinese/English documents spanning 9 types (e.g., Company Research) average 50.8 pages with rich visual elements, significantly surpassing existing benchmarks in both breadth and depth of financial documents; (3) Multi-Step Computation: Problems demand 11-step reasoning on average (5.3 extraction + 5.7 calculation steps), with 65.0% requiring cross-page evidence (2.4 pages average). The best-performing MLLM achieves only 58.0% accuracy, and different retrieval-augmented generation (RAG) methods show significant performance variations on this task. We expect FinMMDocR to drive improvements in MLLMs and reasoning-enhanced methods on complex multimodal reasoning tasks in real-world scenarios.
comment: Accepted by AAAI-26 Main Track
☆ Towards autonomous time-calibration of large quantum-dot devices: Detection, real-time feedback, and noise spectroscopy
The performance and scalability of semiconductor quantum-dot (QD) qubits are limited by electrostatic drift and charge noise that shift operating points and destabilize qubit parameters. As systems expand to large one- and two-dimensional arrays, manual recalibration becomes impractical, creating a need for autonomous stabilization frameworks. Here, we introduce a method that uses the full network of charge-transition lines in repeatedly acquired double-quantum-dot charge stability diagrams (CSDs) as a multidimensional probe of the local electrostatic environment. By accurately tracking the motion of selected transitions in time, we detect voltage drifts, identify abrupt charge reconfigurations, and apply compensating updates to maintain stable operating conditions. We demonstrate our approach on a 10-QD device, showing robust stabilization and real-time diagnostic access to dot-specific noise processes. The high acquisition rate of radio-frequency reflectometry CSD measurements also enables time-domain noise spectroscopy, allowing the extraction of noise power spectral densities, the identification of two-level fluctuators, and the analysis of spatial noise correlations across the array. From our analysis, we find that the background noise at 100~$μ$\si{\hertz} is dominated by drift with a power law of $1/f^2$, accompanied by a few dominant two-level fluctuators and an average linear correlation length of $(188 \pm 38)$~\si{\nano\meter} in the device. These capabilities form the basis of a scalable, autonomous calibration and characterization module for QD-based quantum processors, providing essential feedback for long-duration, high-fidelity qubit operations.
comment: 12 pages, 4 figures
☆ OFL-SAM2: Prompt SAM2 with Online Few-shot Learner for Efficient Medical Image Segmentation
The Segment Anything Model 2 (SAM2) has demonstrated remarkable promptable visual segmentation capabilities in video data, showing potential for extension to medical image segmentation (MIS) tasks involving 3D volumes and temporally correlated 2D image sequences. However, adapting SAM2 to MIS presents several challenges, including the need for extensive annotated medical data for fine-tuning and high-quality manual prompts, which are both labor-intensive and require intervention from medical experts. To address these challenges, we introduce OFL-SAM2, a prompt-free SAM2 framework for label-efficient MIS. Our core idea is to leverage limited annotated samples to train a lightweight mapping network that captures medical knowledge and transforms generic image features into target features, thereby providing additional discriminative target representations for each frame and eliminating the need for manual prompts. Crucially, the mapping network supports online parameter update during inference, enhancing the model's generalization across test sequences. Technically, we introduce two key components: (1) an online few-shot learner that trains the mapping network to generate target features using limited data, and (2) an adaptive fusion module that dynamically integrates the target features with the memory-attention features generated by frozen SAM2, leading to accurate and robust target representation. Extensive experiments on three diverse MIS datasets demonstrate that OFL-SAM2 achieves state-of-the-art performance with limited training data.
☆ VLN-MME: Diagnosing MLLMs as Language-guided Visual Navigation agents
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue spatial reasoning and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their 3D spatial reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.
☆ CropTrack: A Tracking with Re-Identification Framework for Precision Agriculture
Multiple-object tracking (MOT) in agricultural environments presents major challenges due to repetitive patterns, similar object appearances, sudden illumination changes, and frequent occlusions. Contemporary trackers in this domain rely on the motion of objects rather than appearance for association. Nevertheless, they struggle to maintain object identities when targets undergo frequent and strong occlusions. The high similarity of object appearances makes integrating appearance-based association nontrivial for agricultural scenarios. To solve this problem we propose CropTrack, a novel MOT framework based on the combination of appearance and motion information. CropTrack integrates a reranking-enhanced appearance association, a one-to-many association with appearance-based conflict resolution strategy, and an exponential moving average prototype feature bank to improve appearance-based association. Evaluated on publicly available agricultural MOT datasets, CropTrack demonstrates consistent identity preservation, outperforming traditional motion-based tracking methods. Compared to the state of the art, CropTrack achieves significant gains in identification F1 and association accuracy scores with a lower number of identity switches.
comment: 8 pages, 5 figures, and 3 tables
☆ Video and Language Alignment in 2D Systems for 3D Multi-object Scenes with Multi-Information Derivative-Free Control
Cross-modal systems trained on 2D visual inputs are presented with a dimensional shift when processing 3D scenes. An in-scene camera bridges the dimensionality gap but requires learning a control module. We introduce a new method that improves multivariate mutual information estimates by regret minimisation with derivative-free optimisation. Our algorithm enables off-the-shelf cross-modal systems trained on 2D visual inputs to adapt online to object occlusions and differentiate features. The pairing of expressive measures and value-based optimisation assists control of an in-scene camera to learn directly from the noisy outputs of vision-language models. The resulting pipeline improves performance in cross-modal tasks on multi-object 3D scenes without resorting to pretraining or finetuning.
☆ Nonlinear Noise2Noise for Efficient Monte Carlo Denoiser Training
The Noise2Noise method allows for training machine learning-based denoisers with pairs of input and target images where both the input and target can be noisy. This removes the need for training with clean target images, which can be difficult to obtain. However, Noise2Noise training has a major limitation: nonlinear functions applied to the noisy targets will skew the results. This bias occurs because the nonlinearity makes the expected value of the noisy targets different from the clean target image. Since nonlinear functions are common in image processing, avoiding them limits the types of preprocessing that can be performed on the noisy targets. Our main insight is that certain nonlinear functions can be applied to the noisy targets without adding significant bias to the results. We develop a theoretical framework for analyzing the effects of these nonlinearities, and describe a class of nonlinear functions with minimal bias. We demonstrate our method on the denoising of high dynamic range (HDR) images produced by Monte Carlo rendering. Noise2Noise training can have trouble with HDR images, where the training process is overwhelmed by outliers and performs poorly. We consider a commonly used method of addressing these training issues: applying a nonlinear tone mapping function to the model output and target images to reduce their dynamic range. This method was previously thought to be incompatible with Noise2Noise training because of the nonlinearities involved. We show that certain combinations of loss functions and tone mapping functions can reduce the effect of outliers while introducing minimal bias. We apply our method to an existing machine learning-based Monte Carlo denoiser, where the original implementation was trained with high-sample count reference images. Our results approach those of the original implementation, but are produced using only noisy training data.
comment: 15 pages, 7 figures, 2 tables
☆ Projection-based Adversarial Attack using Physics-in-the-Loop Optimization for Monocular Depth Estimation
Deep neural networks (DNNs) remain vulnerable to adversarial attacks that cause misclassification when specific perturbations are added to input images. This vulnerability also threatens the reliability of DNN-based monocular depth estimation (MDE) models, making robustness enhancement a critical need in practical applications. To validate the vulnerability of DNN-based MDE models, this study proposes a projection-based adversarial attack method that projects perturbation light onto a target object. The proposed method employs physics-in-the-loop (PITL) optimization -- evaluating candidate solutions in actual environments to account for device specifications and disturbances -- and utilizes a distributed covariance matrix adaptation evolution strategy. Experiments confirmed that the proposed method successfully created adversarial examples that lead to depth misestimations, resulting in parts of objects disappearing from the target scene.
☆ Dream2Flow: Bridging Video Generation and Open-World Manipulation with 3D Object Flow
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.
comment: Project website: https://dream2flow.github.io/
☆ UniC-Lift: Unified 3D Instance Segmentation via Contrastive Learning AAAI 2026
3D Gaussian Splatting (3DGS) and Neural Radiance Fields (NeRF) have advanced novel-view synthesis. Recent methods extend multi-view 2D segmentation to 3D, enabling instance/semantic segmentation for better scene understanding. A key challenge is the inconsistency of 2D instance labels across views, leading to poor 3D predictions. Existing methods use a two-stage approach in which some rely on contrastive learning with hyperparameter-sensitive clustering, while others preprocess labels for consistency. We propose a unified framework that merges these steps, reducing training time and improving performance by introducing a learnable feature embedding for segmentation in Gaussian primitives. This embedding is then efficiently decoded into instance labels through a novel "Embedding-to-Label" process, effectively integrating the optimization. While this unified framework offers substantial benefits, we observed artifacts at the object boundaries. To address the object boundary issues, we propose hard-mining samples along these boundaries. However, directly applying hard mining to the feature embeddings proved unstable. Therefore, we apply a linear layer to the rasterized feature embeddings before calculating the triplet loss, which stabilizes training and significantly improves performance. Our method outperforms baselines qualitatively and quantitatively on the ScanNet, Replica3D, and Messy-Rooms datasets.
comment: Accepted to AAAI 2026. Project Page: https://unic-lift.github.io/
☆ Splatwizard: A Benchmark Toolkit for 3D Gaussian Splatting Compression
The recent advent of 3D Gaussian Splatting (3DGS) has marked a significant breakthrough in real-time novel view synthesis. However, the rapid proliferation of 3DGS-based algorithms has created a pressing need for standardized and comprehensive evaluation tools, especially for compression task. Existing benchmarks often lack the specific metrics necessary to holistically assess the unique characteristics of different methods, such as rendering speed, rate distortion trade-offs memory efficiency, and geometric accuracy. To address this gap, we introduce Splatwizard, a unified benchmark toolkit designed specifically for benchmarking 3DGS compression models. Splatwizard provides an easy-to-use framework to implement new 3DGS compression model and utilize state-of-the-art techniques proposed by previous work. Besides, an integrated pipeline that automates the calculation of key performance indicators, including image-based quality metrics, chamfer distance of reconstruct mesh, rendering frame rates, and computational resource consumption is included in the framework as well. Code is available at https://github.com/splatwizard/splatwizard
☆ EchoFoley: Event-Centric Hierarchical Control for Video Grounded Creative Sound Generation
Sound effects build an essential layer of multimodal storytelling, shaping the emotional atmosphere and the narrative semantics of videos. Despite recent advancement in video-text-to-audio (VT2A), the current formulation faces three key limitations: First, an imbalance between visual and textual conditioning that leads to visual dominance; Second, the absence of a concrete definition for fine-grained controllable generation; Third, weak instruction understanding and following, as existing datasets rely on brief categorical tags. To address these limitations, we introduce EchoFoley, a new task designed for video-grounded sound generation with both event level local control and hierarchical semantic control. Our symbolic representation for sounding events specifies when, what, and how each sound is produced within a video or instruction, enabling fine-grained controls like sound generation, insertion, and editing. To support this task, we construct EchoFoley-6k, a large-scale, expert-curated benchmark containing over 6,000 video-instruction-annotation triplets. Building upon this foundation, we propose EchoVidia a sounding-event-centric agentic generation framework with slow-fast thinking strategy. Experiments show that EchoVidia surpasses recent VT2A models by 40.7% in controllability and 12.5% in perceptual quality.
☆ FlowBlending: Stage-Aware Multi-Model Sampling for Fast and High-Fidelity Video Generation
In this work, we show that the impact of model capacity varies across timesteps: it is crucial for the early and late stages but largely negligible during the intermediate stage. Accordingly, we propose FlowBlending, a stage-aware multi-model sampling strategy that employs a large model and a small model at capacity-sensitive stages and intermediate stages, respectively. We further introduce simple criteria to choose stage boundaries and provide a velocity-divergence analysis as an effective proxy for identifying capacity-sensitive regions. Across LTX-Video (2B/13B) and WAN 2.1 (1.3B/14B), FlowBlending achieves up to 1.65x faster inference with 57.35% fewer FLOPs, while maintaining the visual fidelity, temporal coherence, and semantic alignment of the large models. FlowBlending is also compatible with existing sampling-acceleration techniques, enabling up to 2x additional speedup. Project page is available at: https://jibin86.github.io/flowblending_project_page.
comment: Project page: https://jibin86.github.io/flowblending_project_page
☆ Evolving, Not Training: Zero-Shot Reasoning Segmentation via Evolutionary Prompting
Reasoning Segmentation requires models to interpret complex, context-dependent linguistic queries to achieve pixel-level localization. Current dominant approaches rely heavily on Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL). However, SFT suffers from catastrophic forgetting and domain dependency, while RL is often hindered by training instability and rigid reliance on predefined reward functions. Although recent training-free methods circumvent these training burdens, they are fundamentally limited by a static inference paradigm. These methods typically rely on a single-pass "generate-then-segment" chain, which suffers from insufficient reasoning depth and lacks the capability to self-correct linguistic hallucinations or spatial misinterpretations. In this paper, we challenge these limitations and propose EVOL-SAM3, a novel zero-shot framework that reformulates reasoning segmentation as an inference-time evolutionary search process. Instead of relying on a fixed prompt, EVOL-SAM3 maintains a population of prompt hypotheses and iteratively refines them through a "Generate-Evaluate-Evolve" loop. We introduce a Visual Arena to assess prompt fitness via reference-free pairwise tournaments, and a Semantic Mutation operator to inject diversity and correct semantic errors. Furthermore, a Heterogeneous Arena module integrates geometric priors with semantic reasoning to ensure robust final selection. Extensive experiments demonstrate that EVOL-SAM3 not only substantially outperforms static baselines but also significantly surpasses fully supervised state-of-the-art methods on the challenging ReasonSeg benchmark in a zero-shot setting. The code is available at https://github.com/AHideoKuzeA/Evol-SAM3.
☆ Renormalization Group Guided Tensor Network Structure Search AAAI 2026
Tensor network structure search (TN-SS) aims to automatically discover optimal network topologies and rank configurations for efficient tensor decomposition in high-dimensional data representation. Despite recent advances, existing TN-SS methods face significant limitations in computational tractability, structure adaptivity, and optimization robustness across diverse tensor characteristics. They struggle with three key challenges: single-scale optimization missing multi-scale structures, discrete search spaces hindering smooth structure evolution, and separated structure-parameter optimization causing computational inefficiency. We propose RGTN (Renormalization Group guided Tensor Network search), a physics-inspired framework transforming TN-SS via multi-scale renormalization group flows. Unlike fixed-scale discrete search methods, RGTN uses dynamic scale-transformation for continuous structure evolution across resolutions. Its core innovation includes learnable edge gates for optimization-stage topology modification and intelligent proposals based on physical quantities like node tension measuring local stress and edge information flow quantifying connectivity importance. Starting from low-complexity coarse scales and refining to finer ones, RGTN finds compact structures while escaping local minima via scale-induced perturbations. Extensive experiments on light field data, high-order synthetic tensors, and video completion tasks show RGTN achieves state-of-the-art compression ratios and runs 4-600$\times$ faster than existing methods, validating the effectiveness of our physics-inspired approach.
comment: Accepted to AAAI 2026
☆ From Sequential to Spatial: Reordering Autoregression for Efficient Visual Generation
Inspired by the remarkable success of autoregressive models in language modeling, this paradigm has been widely adopted in visual generation. However, the sequential token-by-token decoding mechanism inherent in traditional autoregressive models leads to low inference efficiency.In this paper, we propose RadAR, an efficient and parallelizable framework designed to accelerate autoregressive visual generation while preserving its representational capacity. Our approach is motivated by the observation that visual tokens exhibit strong local dependencies and spatial correlations with their neighbors--a property not fully exploited in standard raster-scan decoding orders. Specifically, we organize the generation process around a radial topology: an initial token is selected as the starting point, and all other tokens are systematically grouped into multiple concentric rings according to their spatial distances from this center. Generation then proceeds in a ring-wise manner, from inner to outer regions, enabling the parallel prediction of all tokens within the same ring. This design not only preserves the structural locality and spatial coherence of visual scenes but also substantially increases parallelization. Furthermore, to address the risk of inconsistent predictions arising from simultaneous token generation with limited context, we introduce a nested attention mechanism. This mechanism dynamically refines implausible outputs during the forward pass, thereby mitigating error accumulation and preventing model collapse. By integrating radial parallel prediction with dynamic output correction, RadAR significantly improves generation efficiency.
☆ FireRescue: A UAV-Based Dataset and Enhanced YOLO Model for Object Detection in Fire Rescue Scenes
Object detection in fire rescue scenarios is importance for command and decision-making in firefighting operations. However, existing research still suffers from two main limitations. First, current work predominantly focuses on environments such as mountainous or forest areas, while paying insufficient attention to urban rescue scenes, which are more frequent and structurally complex. Second, existing detection systems include a limited number of classes, such as flames and smoke, and lack a comprehensive system covering key targets crucial for command decisions, such as fire trucks and firefighters. To address the above issues, this paper first constructs a new dataset named "FireRescue" for rescue command, which covers multiple rescue scenarios, including urban, mountainous, forest, and water areas, and contains eight key categories such as fire trucks and firefighters, with a total of 15,980 images and 32,000 bounding boxes. Secondly, to tackle the problems of inter-class confusion and missed detection of small targets caused by chaotic scenes, diverse targets, and long-distance shooting, this paper proposes an improved model named FRS-YOLO. On the one hand, the model introduces a plug-and-play multidi-mensional collaborative enhancement attention module, which enhances the discriminative representation of easily confused categories (e.g., fire trucks vs. ordinary trucks) through cross-dimensional feature interaction. On the other hand, it integrates a dynamic feature sampler to strengthen high-response foreground features, thereby mitigating the effects of smoke occlusion and background interference. Experimental results demonstrate that object detection in fire rescue scenarios is highly challenging, and the proposed method effectively improves the detection performance of YOLO series models in this context.
☆ LLHA-Net: A Hierarchical Attention Network for Two-View Correspondence Learning
Establishing the correct correspondence of feature points is a fundamental task in computer vision. However, the presence of numerous outliers among the feature points can significantly affect the matching results, reducing the accuracy and robustness of the process. Furthermore, a challenge arises when dealing with a large proportion of outliers: how to ensure the extraction of high-quality information while reducing errors caused by negative samples. To address these issues, in this paper, we propose a novel method called Layer-by-Layer Hierarchical Attention Network, which enhances the precision of feature point matching in computer vision by addressing the issue of outliers. Our method incorporates stage fusion, hierarchical extraction, and an attention mechanism to improve the network's representation capability by emphasizing the rich semantic information of feature points. Specifically, we introduce a layer-by-layer channel fusion module, which preserves the feature semantic information from each stage and achieves overall fusion, thereby enhancing the representation capability of the feature points. Additionally, we design a hierarchical attention module that adaptively captures and fuses global perception and structural semantic information using an attention mechanism. Finally, we propose two architectures to extract and integrate features, thereby improving the adaptability of our network. We conduct experiments on two public datasets, namely YFCC100M and SUN3D, and the results demonstrate that our proposed method outperforms several state-of-the-art techniques in both outlier removal and camera pose estimation. Source code is available at http://www.linshuyuan.com.
☆ MoniRefer: A Real-world Large-scale Multi-modal Dataset based on Roadside Infrastructure for 3D Visual Grounding
3D visual grounding aims to localize the object in 3D point cloud scenes that semantically corresponds to given natural language sentences. It is very critical for roadside infrastructure system to interpret natural languages and localize relevant target objects in complex traffic environments. However, most existing datasets and approaches for 3D visual grounding focus on the indoor and outdoor driving scenes, outdoor monitoring scenarios remain unexplored due to scarcity of paired point cloud-text data captured by roadside infrastructure sensors. In this paper, we introduce a novel task of 3D Visual Grounding for Outdoor Monitoring Scenarios, which enables infrastructure-level understanding of traffic scenes beyond the ego-vehicle perspective. To support this task, we construct MoniRefer, the first real-world large-scale multi-modal dataset for roadside-level 3D visual grounding. The dataset consists of about 136,018 objects with 411,128 natural language expressions collected from multiple complex traffic intersections in the real-world environments. To ensure the quality and accuracy of the dataset, we manually verified all linguistic descriptions and 3D labels for objects. Additionally, we also propose a new end-to-end method, named Moni3DVG, which utilizes the rich appearance information provided by images and geometry and optical information from point cloud for multi-modal feature learning and 3D object localization. Extensive experiments and ablation studies on the proposed benchmarks demonstrate the superiority and effectiveness of our method. Our dataset and code will be released.
comment: 14 pages
☆ Collaborative Low-Rank Adaptation for Pre-Trained Vision Transformers
Low-rank adaptation (LoRA) has achieved remarkable success in fine-tuning pre-trained vision transformers for various downstream tasks. Existing studies mainly focus on exploring more parameter-efficient strategies or more effective representation learning schemes. However, these methods either sacrifice fine-tuning performance or introduce excessive trainable parameters, failing to strike a balance between learning performance and parameter efficiency. To address this problem, we propose a novel tuning method named collaborative low-rank adaptation (CLoRA) in this paper. CLoRA consists of base-space sharing and sample-agnostic diversity enhancement (SADE) components. To maintain parameter efficiency while expanding the learning capacity of low-rank modules (LRMs), base-space sharing allows all LRMs to share a set of down/up-projection spaces. In CLoRA, the low-rank matrices obtained from the shared spaces collaboratively construct each LRM. Since the representations extracted by these matrices may contain redundant information, SADE is employed to regularize the similarities among them to encourage diverse representations in the training process. We conduct extensive experiments on widely used image and point cloud datasets to evaluate the performance of CLoRA. Experimental results demonstrate that CLoRA strikes a better balance between learning performance and parameter efficiency, while requiring the fewest GFLOPs for point cloud analysis, compared with the state-of-the-art methods.
comment: 13 tables, 3 figures
☆ 3D Semantic Segmentation for Post-Disaster Assessment IEEE
The increasing frequency of natural disasters poses severe threats to human lives and leads to substantial economic losses. While 3D semantic segmentation is crucial for post-disaster assessment, existing deep learning models lack datasets specifically designed for post-disaster environments. To address this gap, we constructed a specialized 3D dataset using unmanned aerial vehicles (UAVs)-captured aerial footage of Hurricane Ian (2022) over affected areas, employing Structure-from-Motion (SfM) and Multi-View Stereo (MVS) techniques to reconstruct 3D point clouds. We evaluated the state-of-the-art (SOTA) 3D semantic segmentation models, Fast Point Transformer (FPT), Point Transformer v3 (PTv3), and OA-CNNs on this dataset, exposing significant limitations in existing methods for disaster-stricken regions. These findings underscore the urgent need for advancements in 3D segmentation techniques and the development of specialized 3D benchmark datasets to improve post-disaster scene understanding and response.
comment: Accepted by the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2025)
☆ SliceLens: Fine-Grained and Grounded Error Slice Discovery for Multi-Instance Vision Tasks
Systematic failures of computer vision models on subsets with coherent visual patterns, known as error slices, pose a critical challenge for robust model evaluation. Existing slice discovery methods are primarily developed for image classification, limiting their applicability to multi-instance tasks such as detection, segmentation, and pose estimation. In real-world scenarios, error slices often arise from corner cases involving complex visual relationships, where existing instance-level approaches lacking fine-grained reasoning struggle to yield meaningful insights. Moreover, current benchmarks are typically tailored to specific algorithms or biased toward image classification, with artificial ground truth that fails to reflect real model failures. To address these limitations, we propose SliceLens, a hypothesis-driven framework that leverages LLMs and VLMs to generate and verify diverse failure hypotheses through grounded visual reasoning, enabling reliable identification of fine-grained and interpretable error slices. We further introduce FeSD (Fine-grained Slice Discovery), the first benchmark specifically designed for evaluating fine-grained error slice discovery across instance-level vision tasks, featuring expert-annotated and carefully refined ground-truth slices with precise grounding to local error regions. Extensive experiments on both existing benchmarks and FeSD demonstrate that SliceLens achieves state-of-the-art performance, improving Precision@10 by 0.42 (0.73 vs. 0.31) on FeSD, and identifies interpretable slices that facilitate actionable model improvements, as validated through model repair experiments.
☆ Improving Few-Shot Change Detection Visual Question Answering via Decision-Ambiguity-guided Reinforcement Fine-Tuning
Change detection visual question answering (CDVQA) requires answering text queries by reasoning about semantic changes in bi-temporal remote sensing images. A straightforward approach is to boost CDVQA performance with generic vision-language models via supervised fine-tuning (SFT). Despite recent progress, we observe that a significant portion of failures do not stem from clearly incorrect predictions, but from decision ambiguity, where the model assigns similar confidence to the correct answer and strong distractors. To formalize this challenge, we define Decision-Ambiguous Samples (DAS) as instances with a small probability margin between the ground-truth answer and the most competitive alternative. We argue that explicitly optimizing DAS is crucial for improving the discriminability and robustness of CDVQA models. To this end, we propose DARFT, a Decision-Ambiguity-guided Reinforcement Fine-Tuning framework that first mines DAS using an SFT-trained reference policy and then applies group-relative policy optimization on the mined subset. By leveraging multi-sample decoding and intra-group relative advantages, DARFT suppresses strong distractors and sharpens decision boundaries without additional supervision. Extensive experiments demonstrate consistent gains over SFT baselines, particularly under few-shot settings.
☆ RGBT-Ground Benchmark: Visual Grounding Beyond RGB in Complex Real-World Scenarios
Visual Grounding (VG) aims to localize specific objects in an image according to natural language expressions, serving as a fundamental task in vision-language understanding. However, existing VG benchmarks are mostly derived from datasets collected under clean environments, such as COCO, where scene diversity is limited. Consequently, they fail to reflect the complexity of real-world conditions, such as changes in illumination, weather, etc., that are critical to evaluating model robustness and generalization in safety-critical applications. To address these limitations, we present RGBT-Ground, the first large-scale visual grounding benchmark built for complex real-world scenarios. It consists of spatially aligned RGB and Thermal infrared (TIR) image pairs with high-quality referring expressions, corresponding object bounding boxes, and fine-grained annotations at the scene, environment, and object levels. This benchmark enables comprehensive evaluation and facilitates the study of robust grounding under diverse and challenging conditions. Furthermore, we establish a unified visual grounding framework that supports both uni-modal (RGB or TIR) and multi-modal (RGB-TIR) visual inputs. Based on it, we propose RGBT-VGNet, a simple yet effective baseline for fusing complementary visual modalities to achieve robust grounding. We conduct extensive adaptations to the existing methods on RGBT-Ground. Experimental results show that our proposed RGBT-VGNet significantly outperforms these adapted methods, particularly in nighttime and long-distance scenarios. All resources will be publicly released to promote future research on robust visual grounding in complex real-world environments.
comment: 27pages, 9figures
☆ OCP-LS: An Efficient Algorithm for Visual Localization
This paper proposes a novel second-order optimization algorithm. It aims to address large-scale optimization problems in deep learning because it incorporates the OCP method and appropriately approximating the diagonal elements of the Hessian matrix. Extensive experiments on multiple standard visual localization benchmarks demonstrate the significant superiority of the proposed method. Compared with conventional optimiza tion algorithms, our framework achieves competitive localization accuracy while exhibiting faster convergence, enhanced training stability, and improved robustness to noise interference.
☆ PhyGDPO: Physics-Aware Groupwise Direct Preference Optimization for Physically Consistent Text-to-Video Generation
Recent advances in text-to-video (T2V) generation have achieved good visual quality, yet synthesizing videos that faithfully follow physical laws remains an open challenge. Existing methods mainly based on graphics or prompt extension struggle to generalize beyond simple simulated environments or learn implicit physical reasoning. The scarcity of training data with rich physics interactions and phenomena is also a problem. In this paper, we first introduce a Physics-Augmented video data construction Pipeline, PhyAugPipe, that leverages a vision-language model (VLM) with chain-of-thought reasoning to collect a large-scale training dataset, PhyVidGen-135K. Then we formulate a principled Physics-aware Groupwise Direct Preference Optimization, PhyGDPO, framework that builds upon the groupwise Plackett-Luce probabilistic model to capture holistic preferences beyond pairwise comparisons. In PhyGDPO, we design a Physics-Guided Rewarding (PGR) scheme that embeds VLM-based physics rewards to steer optimization toward physical consistency. We also propose a LoRA-Switch Reference (LoRA-SR) scheme that eliminates memory-heavy reference duplication for efficient training. Experiments show that our method significantly outperforms state-of-the-art open-source methods on PhyGenBench and VideoPhy2. Please check our project page at https://caiyuanhao1998.github.io/project/PhyGDPO for more video results. Our code, models, and data will be released at https://github.com/caiyuanhao1998/Open-PhyGDPO
☆ Hierarchical Vector-Quantized Latents for Perceptual Low-Resolution Video Compression
The exponential growth of video traffic has placed increasing demands on bandwidth and storage infrastructure, particularly for content delivery networks (CDNs) and edge devices. While traditional video codecs like H.264 and HEVC achieve high compression ratios, they are designed primarily for pixel-domain reconstruction and lack native support for machine learning-centric latent representations, limiting their integration into deep learning pipelines. In this work, we present a Multi-Scale Vector Quantized Variational Autoencoder (MS-VQ-VAE) designed to generate compact, high-fidelity latent representations of low-resolution video, suitable for efficient storage, transmission, and client-side decoding. Our architecture extends the VQ-VAE-2 framework to a spatiotemporal setting, introducing a two-level hierarchical latent structure built with 3D residual convolutions. The model is lightweight (approximately 18.5M parameters) and optimized for 64x64 resolution video clips, making it appropriate for deployment on edge devices with constrained compute and memory resources. To improve perceptual reconstruction quality, we incorporate a perceptual loss derived from a pre-trained VGG16 network. Trained on the UCF101 dataset using 2-second video clips (32 frames at 16 FPS), on the test set we achieve 25.96 dB PSNR and 0.8375 SSIM. On validation, our model improves over the single-scale baseline by 1.41 dB PSNR and 0.0248 SSIM. The proposed framework is well-suited for scalable video compression in bandwidth-sensitive scenarios, including real-time streaming, mobile video analytics, and CDN-level storage optimization.
comment: 11 pages
☆ Compressed Map Priors for 3D Perception
Human drivers rarely travel where no person has gone before. After all, thousands of drivers use busy city roads every day, and only one can claim to be the first. The same holds for autonomous computer vision systems. The vast majority of the deployment area of an autonomous vision system will have been visited before. Yet, most autonomous vehicle vision systems act as if they are encountering each location for the first time. In this work, we present Compressed Map Priors (CMP), a simple but effective framework to learn spatial priors from historic traversals. The map priors use a binarized hashmap that requires only $32\text{KB}/\text{km}^2$, a $20\times$ reduction compared to the dense storage. Compressed Map Priors easily integrate into leading 3D perception systems at little to no extra computational costs, and lead to a significant and consistent improvement in 3D object detection on the nuScenes dataset across several architectures.
comment: Tech report; code https://github.com/bradyz/compressed_map_priors
☆ Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
High-stakes deployment of vision-language models (VLMs) requires selective prediction, where systems abstain when uncertain rather than risk costly errors. We investigate whether confidence-based abstention provides reliable control over error rates in video question answering, and whether that control remains robust under distribution shift. Using NExT-QA and Gemini 2.0 Flash, we establish two findings. First, confidence thresholding provides mechanistic control in-distribution. Sweeping threshold epsilon produces smooth risk-coverage tradeoffs, reducing error rates f
comment: Preprint. Diagnostic study of confidence-based abstention under evidence truncation
☆ A Spatially Masked Adaptive Gated Network for multimodal post-flood water extent mapping using SAR and incomplete multispectral data
Mapping water extent during a flood event is essential for effective disaster management throughout all phases: mitigation, preparedness, response, and recovery. In particular, during the response stage, when timely and accurate information is important, Synthetic Aperture Radar (SAR) data are primarily employed to produce water extent maps. Recently, leveraging the complementary characteristics of SAR and MSI data through a multimodal approach has emerged as a promising strategy for advancing water extent mapping using deep learning models. This approach is particularly beneficial when timely post-flood observations, acquired during or shortly after the flood peak, are limited, as it enables the use of all available imagery for more accurate post-flood water extent mapping. However, the adaptive integration of partially available MSI data into the SAR-based post-flood water extent mapping process remains underexplored. To bridge this research gap, we propose the Spatially Masked Adaptive Gated Network (SMAGNet), a multimodal deep learning model that utilizes SAR data as the primary input for post-flood water extent mapping and integrates complementary MSI data through feature fusion. In experiments on the C2S-MS Floods dataset, SMAGNet consistently outperformed other multimodal deep learning models in prediction performance across varying levels of MSI data availability. Furthermore, we found that even when MSI data were completely missing, the performance of SMAGNet remained statistically comparable to that of a U-Net model trained solely on SAR data. These findings indicate that SMAGNet enhances the model robustness to missing data as well as the applicability of multimodal deep learning in real-world flood management scenarios.
comment: 50 pages, 12 figures, 6 tables
☆ Spatial4D-Bench: A Versatile 4D Spatial Intelligence Benchmark
4D spatial intelligence involves perceiving and processing how objects move or change over time. Humans naturally possess 4D spatial intelligence, supporting a broad spectrum of spatial reasoning abilities. To what extent can Multimodal Large Language Models (MLLMs) achieve human-level 4D spatial intelligence? In this work, we present Spatial4D-Bench, a versatile 4D spatial intelligence benchmark designed to comprehensively assess the 4D spatial reasoning abilities of MLLMs. Unlike existing spatial intelligence benchmarks that are often small-scale or limited in diversity, Spatial4D-Bench provides a large-scale, multi-task evaluation benchmark consisting of ~40,000 question-answer pairs covering 18 well-defined tasks. We systematically organize these tasks into six cognitive categories: object understanding, scene understanding, spatial relationship understanding, spatiotemporal relationship understanding, spatial reasoning and spatiotemporal reasoning. Spatial4D-Bench thereby offers a structured and comprehensive benchmark for evaluating the spatial cognition abilities of MLLMs, covering a broad spectrum of tasks that parallel the versatility of human spatial intelligence. We benchmark various state-of-the-art open-source and proprietary MLLMs on Spatial4D-Bench and reveal their substantial limitations in a wide variety of 4D spatial reasoning aspects, such as route plan, action recognition, and physical plausibility reasoning. We hope that the findings provided in this work offer valuable insights to the community and that our benchmark can facilitate the development of more capable MLLMs toward human-level 4D spatial intelligence. More resources can be found on our project page.
comment: Technical Report
☆ It's Never Too Late: Noise Optimization for Collapse Recovery in Trained Diffusion Models
Contemporary text-to-image models exhibit a surprising degree of mode collapse, as can be seen when sampling several images given the same text prompt. While previous work has attempted to address this issue by steering the model using guidance mechanisms, or by generating a large pool of candidates and refining them, in this work we take a different direction and aim for diversity in generations via noise optimization. Specifically, we show that a simple noise optimization objective can mitigate mode collapse while preserving the fidelity of the base model. We also analyze the frequency characteristics of the noise and show that alternative noise initializations with different frequency profiles can improve both optimization and search. Our experiments demonstrate that noise optimization yields superior results in terms of generation quality and variety.
☆ Automated electrostatic characterization of quantum dot devices in single- and bilayer heterostructures
As quantum dot (QD)-based spin qubits advance toward larger, more complex device architectures, rapid, automated device characterization and data analysis tools become critical. The orientation and spacing of transition lines in a charge stability diagram (CSD) contain a fingerprint of a QD device's capacitive environment, making these measurements useful tools for device characterization. However, manually interpreting these features is time-consuming, error-prone, and impractical at scale. Here, we present an automated protocol for extracting underlying capacitive properties from CSDs. Our method integrates machine learning, image processing, and object detection to identify and track charge transitions across large datasets without manual labeling. We demonstrate this method using experimentally measured data from a strained-germanium single-quantum-well (planar) and a strained-germanium double-quantum-well (bilayer) QD device. Unlike for planar QD devices, CSDs in bilayer germanium heterostructure exhibit a larger set of transitions, including interlayer tunneling and distinct loading lines for the vertically stacked QDs, making them a powerful testbed for automation methods. By analyzing the properties of many CSDs, we can statistically estimate physically relevant quantities, like relative lever arms and capacitive couplings. Thus, our protocol enables rapid extraction of useful, nontrivial information about QD devices.
comment: 18 pages, 12 figures
☆ TeleWorld: Towards Dynamic Multimodal Synthesis with a 4D World Model
World models aim to endow AI systems with the ability to represent, generate, and interact with dynamic environments in a coherent and temporally consistent manner. While recent video generation models have demonstrated impressive visual quality, they remain limited in real-time interaction, long-horizon consistency, and persistent memory of dynamic scenes, hindering their evolution into practical world models. In this report, we present TeleWorld, a real-time multimodal 4D world modeling framework that unifies video generation, dynamic scene reconstruction, and long-term world memory within a closed-loop system. TeleWorld introduces a novel generation-reconstruction-guidance paradigm, where generated video streams are continuously reconstructed into a dynamic 4D spatio-temporal representation, which in turn guides subsequent generation to maintain spatial, temporal, and physical consistency. To support long-horizon generation with low latency, we employ an autoregressive diffusion-based video model enhanced with Macro-from-Micro Planning (MMPL)--a hierarchical planning method that reduces error accumulation from frame-level to segment-level-alongside efficient Distribution Matching Distillation (DMD), enabling real-time synthesis under practical computational budgets. Our approach achieves seamless integration of dynamic object modeling and static scene representation within a unified 4D framework, advancing world models toward practical, interactive, and computationally accessible systems. Extensive experiments demonstrate that TeleWorld achieves strong performance in both static and dynamic world understanding, long-term consistency, and real-time generation efficiency, positioning it as a practical step toward interactive, memory-enabled world models for multimodal generation and embodied intelligence.
☆ Deep Learning Approach for the Diagnosis of Pediatric Pneumonia Using Chest X-ray Imaging
Pediatric pneumonia remains a leading cause of morbidity and mortality in children worldwide. Timely and accurate diagnosis is critical but often challenged by limited radiological expertise and the physiological and procedural complexity of pediatric imaging. This study investigates the performance of state-of-the-art convolutional neural network (CNN) architectures ResNetRS, RegNet, and EfficientNetV2 using transfer learning for the automated classification of pediatric chest Xray images as either pneumonia or normal.A curated subset of 1,000 chest X-ray images was extracted from a publicly available dataset originally comprising 5,856 pediatric images. All images were preprocessed and labeled for binary classification. Each model was fine-tuned using pretrained ImageNet weights and evaluated based on accuracy and sensitivity. RegNet achieved the highest classification performance with an accuracy of 92.4 and a sensitivity of 90.1, followed by ResNetRS (accuracy: 91.9, sensitivity: 89.3) and EfficientNetV2 (accuracy: 88.5, sensitivity: 88.1).
comment: 9 pages, 3 figures
♻ ☆ Towards Generalisable Foundation Models for Brain MRI
Foundation models in artificial intelligence (AI) are transforming medical imaging by enabling general-purpose feature learning from large-scale, unlabeled datasets. In this work, we introduce BrainFound, a self-supervised foundation model for brain MRI, built by extending DINO-v2, a vision transformer originally designed for 2D natural images. BrainFound adapts DINO-v2 to model full 3D brain anatomy by incorporating volumetric information from sequential MRI slices, moving beyond conventional single-slice paradigms. It supports both single- and multimodal inputs, enabling a broad range of downstream tasks, including disease detection and image segmentation, while generalising across varied imaging protocols and clinical scenarios. We show that BrainFound consistently outperforms existing self-supervised pretraining strategies and supervised baselines, particularly in label-scarce and multi-contrast settings. By integrating information from diverse 3D MRI modalities (e.g., T1, T2, FLAIR), it enhances diagnostic accuracy and reduces dependency on extensive expert annotations. This flexibility makes BrainFound a scalable and practical solution for 3D neuroimaging pipelines, with significant potential for clinical deployment and research innovation.
♻ ☆ Hybrid Learning: A Novel Combination of Self-Supervised and Supervised Learning for Joint MRI Reconstruction and Denoising in Low-Field MRI
Deep learning has demonstrated strong potential for MRI reconstruction. However, conventional supervised learning requires high-quality, high-SNR references for network training, which are often difficult or impossible to obtain in different scenarios, particularly in low-field MRI. Self-supervised learning provides an alternative by removing the need for training references, but its reconstruction performance can degrade when the baseline SNR is low. To address these limitations, we propose hybrid learning, a two-stage training framework that integrates self-supervised and supervised learning for joint MRI reconstruction and denoising when only low-SNR training references are available. Hybrid learning is implemented in two sequential stages. In the first stage, self-supervised learning is applied to fully sampled low-SNR data to generate higher-quality pseudo-references. In the second stage, these pseudo-references are used as targets for supervised learning to reconstruct and denoise undersampled noisy data. The proposed technique was evaluated in multiple experiments involving simulated and real low-field MRI in the lung and brain at different field strengths. Hybrid learning consistently improved image quality over both standard self-supervised learning and supervised learning with noisy training references at different acceleration rates, noise levels, and field strengths, achieving higher SSIM and lower NMSE. The hybrid learning approach is effective for both Cartesian and non-Cartesian acquisitions. Hybrid learning provides an effective solution for training deep MRI reconstruction models in the absence of high-SNR references. By improving image quality in low-SNR settings, particularly for low-field MRI, it holds promise for broader clinical adoption of deep learning-based reconstruction methods.
♻ ☆ DAVE: A VLM Vision Encoder for Document Understanding and Web Agents
While Vision-language models (VLMs) have demonstrated remarkable performance across multi-modal tasks, their choice of vision encoders presents a fundamental weakness: their low-level features lack the robust structural and spatial information essential for document understanding and web agents. To bridge this gap, we introduce DAVE, a vision encoder purpose-built for VLMs and tailored for these tasks. Our training pipeline is designed to leverage abundant unlabeled data to bypass the need for costly large-scale annotations for document and web images. We begin with a self-supervised pretraining stage on unlabeled images, followed by a supervised autoregressive pretraining stage, where the model learns tasks like parsing and localization from limited, high-quality data. Within the supervised stage, we adopt two strategies to improve our encoder's alignment with both general visual knowledge and diverse document and web agentic tasks: (i) We introduce a novel model-merging scheme, combining encoders trained with different text decoders to ensure broad compatibility with different web agentic architectures. (ii) We use ensemble training to fuse features from pretrained generalist encoders (e.g., SigLIP2) with our own document and web-specific representations. Extensive experiments on classic document tasks, VQAs, web localization, and agent-based benchmarks validate the effectiveness of our approach, establishing DAVE as a strong vision encoder for document and web applications.
♻ ☆ PoseStreamer: A Multi-modal Framework for 6DoF Pose Estimation of Unseen Moving Objects
Six degree of freedom (6DoF) pose estimation for novel objects is a critical task in computer vision, yet it faces significant challenges in high-speed and low-light scenarios where standard RGB cameras suffer from motion blur. While event cameras offer a promising solution due to their high temporal resolution, current 6DoF pose estimation methods typically yield suboptimal performance in high-speed object moving scenarios. To address this gap, we propose PoseStreamer, a robust multi-modal 6DoF pose estimation framework designed specifically on high-speed moving scenarios. Our approach integrates three core components: an Adaptive Pose Memory Queue that utilizes historical orientation cues for temporal consistency, an Object-centric 2D Tracker that provides strong 2D priors to boost 3D center recall, and a Ray Pose Filter for geometric refinement along camera rays. Furthermore, we introduce MoCapCube6D, a novel multi-modal dataset constructed to benchmark performance under rapid motion. Extensive experiments demonstrate that PoseStreamer not only achieves superior accuracy in high-speed moving scenarios, but also exhibits strong generalizability as a template-free framework for unseen moving objects.
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: Accepted and to appear in IJCNLP-AACL 2025
♻ ☆ SoulX-LiveTalk: Real-Time Infinite Streaming of Audio-Driven Avatars via Self-Correcting Bidirectional Distillation
Deploying massive diffusion models for real-time, infinite-duration, audio-driven avatar generation presents a significant engineering challenge, primarily due to the conflict between computational load and strict latency constraints. Existing approaches often compromise visual fidelity by enforcing strictly unidirectional attention mechanisms or reducing model capacity. To address this problem, we introduce \textbf{SoulX-LiveTalk}, a 14B-parameter framework optimized for high-fidelity real-time streaming. Diverging from conventional unidirectional paradigms, we use a \textbf{Self-correcting Bidirectional Distillation} strategy that retains bidirectional attention within video chunks. This design preserves critical spatiotemporal correlations, significantly enhancing motion coherence and visual detail. To ensure stability during infinite generation, we incorporate a \textbf{Multi-step Retrospective Self-Correction Mechanism}, enabling the model to autonomously recover from accumulated errors and preventing collapse. Furthermore, we engineered a full-stack inference acceleration suite incorporating hybrid sequence parallelism, Parallel VAE, and kernel-level optimizations. Extensive evaluations confirm that SoulX-LiveTalk is the first 14B-scale system to achieve a \textbf{sub-second start-up latency (0.87s)} while reaching a real-time throughput of \textbf{32 FPS}, setting a new standard for high-fidelity interactive digital human synthesis.
comment: 12 pages, 6 figures
♻ ☆ Effective Online Exam Proctoring by Combining Lightweight Face Detection and Deep Recognition
Online exams conducted via video conferencing platforms such as Zoom have become widespread, yet ensuring exam integrity remains challenging due to the difficulty of monitoring multiple video feeds in real time. We present iExam, an online exam proctoring and analysis system that combines lightweight real-time face detection with deep face recognition for postexam analysis. iExam assists invigilators by monitoring student presence during exams and identifies abnormal behaviors, such as face disappearance, face rotation, and identity substitution, from recorded videos. The system addresses three key challenges: (i)efficient real-time video capture and analysis, (ii) automated student identity labeling using enhanced OCR on dynamic Zoom name tags, and (iii) resource-efficient training and inference on standard teacher devices. Extensive experiments show that iExam achieves 90.4% accuracy in real-time face detection and 98.4% accuracy in post-exam recognition with low overhead, demonstrating its practicality and effectiveness for online exam proctoring.
comment: This is a technical report from Lingnan University and the Chinese University of Hong Kong
♻ ☆ SciceVPR: Stable Cross-Image Correlation Enhanced Model for Visual Place Recognition
Visual Place Recognition (VPR) is a major challenge for robotics and autonomous systems, with the goal of predicting the location of an image based solely on its visual features. State-of-the-art (SOTA) models extract global descriptors using the powerful foundation model DINOv2 as backbone. These models either explore the cross-image correlation or propose a time-consuming two-stage re-ranking strategy to achieve better performance. However, existing works only utilize the final output of DINOv2, and the current cross-image correlation causes unstable retrieval results. To produce both discriminative and constant global descriptors, this paper proposes stable cross-image correlation enhanced model for VPR called SciceVPR. This model explores the full potential of DINOv2 in providing useful feature representations that implicitly encode valuable contextual knowledge. Specifically, SciceVPR first uses a multi-layer feature fusion module to capture increasingly detailed task-relevant channel and spatial information from the multi-layer output of DINOv2. Secondly, SciceVPR considers the invariant correlation between images within a batch as valuable knowledge to be distilled into the proposed self-enhanced encoder. In this way, SciceVPR can acquire fairly robust global features regardless of domain shifts (e.g., changes in illumination, weather and viewpoint between pictures taken in the same place). Experimental results demonstrate that the base variant, SciceVPR-B, outperforms SOTA one-stage methods with single input on multiple datasets with varying domain conditions. The large variant, SciceVPR-L, performs on par with SOTA two-stage models, scoring over 3% higher in Recall@1 compared to existing models on the challenging Tokyo24/7 dataset. Our code will be released at https://github.com/shuimushan/SciceVPR.
comment: This work has been accepted by Neurocomputing. The final version can be accessed via https://www.sciencedirect.com/science/article/pii/S0925231225032114
♻ ☆ Explaining Object Detectors via Collective Contribution of Pixels
Visual explanations for object detectors are crucial for enhancing their reliability. Object detectors identify and localize instances by assessing multiple visual features collectively. When generating explanations, overlooking these collective influences in detections may lead to missing compositional cues or capturing spurious correlations. However, existing methods typically focus solely on individual pixel contributions, neglecting the collective contribution of multiple pixels. To address this limitation, we propose a game-theoretic method based on Shapley values and interactions to explicitly capture both individual and collective pixel contributions. Our method provides explanations for both bounding box localization and class determination, highlighting regions crucial for detection. Extensive experiments demonstrate that the proposed method identifies important regions more accurately than state-of-the-art methods. The code is available at https://github.com/tttt-0814/VX-CODE
comment: 11+20 pages, 21 figures, 11 tables. v3: updated version; code is available at: https://github.com/tttt-0814/VX-CODE
♻ ☆ A Novel Compression Framework for YOLOv8: Achieving Real-Time Aerial Object Detection on Edge Devices via Structured Pruning and Channel-Wise Distillation
Efficient deployment of deep learning models for aerial object detection on resource-constrained devices requires significant compression without com-promising performance. In this study, we propose a novel three-stage compression pipeline for the YOLOv8 object detection model, integrating sparsity-aware training, structured channel pruning, and Channel-Wise Knowledge Distillation (CWD). First, sparsity-aware training introduces dynamic sparsity during model optimization, effectively balancing parameter reduction and detection accuracy. Second, we apply structured channel pruning by leveraging batch normalization scaling factors to eliminate redundant channels, significantly reducing model size and computational complexity. Finally, to mitigate the accuracy drop caused by pruning, we employ CWD to transfer knowledge from the original model, using an adjustable temperature and loss weighting scheme tailored for small and medium object detection. Extensive experiments on the VisDrone dataset demonstrate the effectiveness of our approach across multiple YOLOv8 variants. For YOLOv8m, our method reduces model parameters from 25.85M to 6.85M (a 73.51% reduction), FLOPs from 49.6G to 13.3G, and MACs from 101G to 34.5G, while reducing AP50 by only 2.7%. The resulting compressed model achieves 47.9 AP50 and boosts inference speed from 26 FPS (YOLOv8m baseline) to 45 FPS, enabling real-time deployment on edge devices. We further apply TensorRT as a lightweight optimization step. While this introduces a minor drop in AP50 (from 47.9 to 47.6), it significantly improves inference speed from 45 to 68 FPS, demonstrating the practicality of our approach for high-throughput, re-source-constrained scenarios.
comment: 28 pages, 11 figures
♻ ☆ OpenGround: Active Cognition-based Reasoning for Open-World 3D Visual Grounding
3D visual grounding aims to locate objects based on natural language descriptions in 3D scenes. Existing methods rely on a pre-defined Object Lookup Table (OLT) to query Visual Language Models (VLMs) for reasoning about object locations, which limits the applications in scenarios with undefined or unforeseen targets. To address this problem, we present OpenGround, a novel zero-shot framework for open-world 3D visual grounding. Central to OpenGround is the Active Cognition-based Reasoning (ACR) module, which is designed to overcome the fundamental limitation of pre-defined OLTs by progressively augmenting the cognitive scope of VLMs. The ACR module performs human-like perception of the target via a cognitive task chain and actively reasons about contextually relevant objects, thereby extending VLM cognition through a dynamically updated OLT. This allows OpenGround to function with both pre-defined and open-world categories. We also propose a new dataset named OpenTarget, which contains over 7000 object-description pairs to evaluate our method in open-world scenarios. Extensive experiments demonstrate that OpenGround achieves competitive performance on Nr3D, state-of-the-art on ScanRefer, and delivers a substantial 17.6% improvement on OpenTarget. Project Page at https://why-102.github.io/openground.io/.
comment: 27 pages, 15 figures, 14 tables, Project Page at https://why-102.github.io/openground.io/
♻ ☆ Inference-based GAN Video Generation
Video generation has seen remarkable progress thanks to advancements in generative deep learning. However, generating long sequences remains a significant challenge. Generated videos should not only display coherent and continuous movement but also meaningful movement in successions of scenes. Models such as GANs, VAEs, and Diffusion Networks have been used for generating short video sequences, typically up to 16 frames. In this paper, we first propose a new type of video generator by enabling adversarial-based unconditional video generators with a variational encoder, akin to a VAE-GAN hybrid structure. The proposed model, as in other video deep learning-based processing frameworks, incorporates two processing branches, one for content and another for movement. However, existing models struggle with the temporal scaling of the generated videos. Classical approaches often result in degraded video quality when attempting to increase the generated video length, especially for significantly long sequences. To overcome this limitation, our research study extends the initially proposed VAE-GAN video generation model by employing a novel, memory-efficient approach to generate long videos composed of hundreds or thousands of frames ensuring their temporal continuity, consistency and dynamics. Our approach leverages a Markov chain framework with a recall mechanism, where each state represents a short-length VAE-GAN video generator. This setup enables the sequential connection of generated video sub-sequences, maintaining temporal dependencies and resulting in meaningful long video sequences.
♻ ☆ CritiFusion: Semantic Critique and Spectral Alignment for Faithful Text-to-Image Generation
Recent text-to-image diffusion models have achieved remarkable visual fidelity but often struggle with semantic alignment to complex prompts. We introduce CritiFusion, a novel inference-time framework that integrates a multimodal semantic critique mechanism with frequency-domain refinement to improve text-to-image consistency and detail. The proposed CritiCore module leverages a vision-language model and multiple large language models to enrich the prompt context and produce high-level semantic feedback, guiding the diffusion process to better align generated content with the prompt's intent. Additionally, SpecFusion merges intermediate generation states in the spectral domain, injecting coarse structural information while preserving high-frequency details. No additional model training is required. CritiFusion serves as a plug-in refinement stage compatible with existing diffusion backbones. Experiments on standard benchmarks show that our method notably improves human-aligned metrics of text-to-image correspondence and visual quality. CritiFusion consistently boosts performance on human preference scores and aesthetic evaluations, achieving results on par with state-of-the-art reward optimization approaches. Qualitative results further demonstrate superior detail, realism, and prompt fidelity, indicating the effectiveness of our semantic critique and spectral alignment strategy.
♻ ☆ Zoomer: Adaptive Image Focus Optimization for Black-box MLLM
Multimodal large language models (MLLMs) such as GPT-4o, Gemini Pro, and Claude 3.5 have enabled unified reasoning over text and visual inputs, yet they often hallucinate in real world scenarios especially when small objects or fine spatial context are involved. We pinpoint two core causes of this failure: the absence of region-adaptive attention and inflexible token budgets that force uniform downsampling, leading to critical information loss. To overcome these limitations, we introduce Zoomer, a visual prompting framework that delivers token-efficient, detail-preserving image representations for black-box MLLMs. Zoomer integrates (1) a prompt-aware emphasis module to highlight semantically relevant regions, (2) a spatial-preserving orchestration schema to maintain object relationships, and (3) a budget-aware strategy to adaptively allocate tokens between global context and local details. Extensive experiments on nine benchmarks and three commercial MLLMs demonstrate that Zoomer boosts accuracy by up to 27% while cutting image token usage by up to 67%. Our approach establishes a principled methodology for robust, resource-aware multimodal understanding in settings where model internals are inaccessible.
comment: TMLR accepted
♻ ☆ Hybrid Convolution and Vision Transformer NAS Search Space for TinyML Image Classification ECML
Hybrids of Convolutional Neural Network (CNN) and Vision Transformer (ViT) have outperformed pure CNN or ViT architecture. However, since these architectures require large parameters and incur large computational costs, they are unsuitable for tinyML deployment. This paper introduces a new hybrid CNN-ViT search space for Neural Architecture Search (NAS) to find efficient hybrid architectures for image classification. The search space covers hybrid CNN and ViT blocks to learn local and global information, as well as the novel Pooling block of searchable pooling layers for efficient feature map reduction. Experimental results on the CIFAR10 dataset show that our proposed search space can produce hybrid CNN-ViT architectures with superior accuracy and inference speed to ResNet-based tinyML models under tight model size constraints.
comment: Presented at ITEM workshop co-located with ECML PKDD 2024, Vilnius LT
♻ ☆ Chrono: A Simple Blueprint for Representing Time in MLLMs IEEE
The recent success of Large Language Models (LLMs) has prompted the extension to the multimodal domain, developing image-text Multimodal LLMs (MLLMs) and then video-text models. In this work, we investigate the challenge of contextual and temporal comprehension in video-language models by exploring the task of temporal localization in videos. To address this problem, prior works have developed complex task-specific architectures, novel modules to embed time into MLLMs, or leveraged additional input signals such as video transcripts to best encode contextual and temporal information. We find that most of these efforts are surpassed by a much simpler design. We introduce Chrono, a universal sequence blueprint that can be applied to any image-text pretrained MLLM. In extensive experiments spanning different MLLM architectures and sizes, finetuning and zero-shot settings, we demonstrate new state-of-the-art results in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions, as well as in grounded video question answering on NExT-GQA.
comment: Code: https://github.com/sudo-Boris/mr-Blip. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Under review
♻ ☆ IDT: A Physically Grounded Transformer for Feed-Forward Multi-View Intrinsic Decomposition
Intrinsic image decomposition is fundamental for visual understanding, as RGB images entangle material properties, illumination, and view-dependent effects. Recent diffusion-based methods have achieved strong results for single-view intrinsic decomposition; however, extending these approaches to multi-view settings remains challenging, often leading to severe view inconsistency. We propose \textbf{Intrinsic Decomposition Transformer (IDT)}, a feed-forward framework for multi-view intrinsic image decomposition. By leveraging transformer-based attention to jointly reason over multiple input images, IDT produces view-consistent intrinsic factors in a single forward pass, without iterative generative sampling. IDT adopts a physically grounded image formation model that explicitly decomposes images into diffuse reflectance, diffuse shading, and specular shading. This structured factorization separates Lambertian and non-Lambertian light transport, enabling interpretable and controllable decomposition of material and illumination effects across views. Experiments on both synthetic and real-world datasets demonstrate that IDT achieves cleaner diffuse reflectance, more coherent diffuse shading, and better-isolated specular components, while substantially improving multi-view consistency compared to prior intrinsic decomposition methods.
comment: 10 pages 4 figures
♻ ☆ ColaVLA: Leveraging Cognitive Latent Reasoning for Hierarchical Parallel Trajectory Planning in Autonomous Driving
Autonomous driving requires generating safe and reliable trajectories from complex multimodal inputs. Traditional modular pipelines separate perception, prediction, and planning, while recent end-to-end (E2E) systems learn them jointly. Vision-language models (VLMs) further enrich this paradigm by introducing cross-modal priors and commonsense reasoning, yet current VLM-based planners face three key challenges: (i) a mismatch between discrete text reasoning and continuous control, (ii) high latency from autoregressive chain-of-thought decoding, and (iii) inefficient or non-causal planners that limit real-time deployment. We propose ColaVLA, a unified vision-language-action framework that transfers reasoning from text to a unified latent space and couples it with a hierarchical, parallel trajectory decoder. The Cognitive Latent Reasoner compresses scene understanding into compact, decision-oriented meta-action embeddings through ego-adaptive selection and only two VLM forward passes. The Hierarchical Parallel Planner then generates multi-scale, causality-consistent trajectories in a single forward pass. Together, these components preserve the generalization and interpretability of VLMs while enabling efficient, accurate and safe trajectory generation. Experiments on the nuScenes benchmark show that ColaVLA achieves state-of-the-art performance in both open-loop and closed-loop settings with favorable efficiency and robustness.
comment: 11 pages, 4 figures. Project page: https://pqh22.github.io/projects/ColaVLA/index.html
♻ ☆ Reconstructing Hand-Held Objects in 3D from Images and Videos 3DV 2026
Objects manipulated by the hand (i.e., manipulanda) are particularly challenging to reconstruct from Internet videos. Not only does the hand occlude much of the object, but also the object is often only visible in a small number of image pixels. At the same time, two strong anchors emerge in this setting: (1) estimated 3D hands help disambiguate the location and scale of the object, and (2) the set of manipulanda is small relative to all possible objects. With these insights in mind, we present a scalable paradigm for hand-held object reconstruction that builds on recent breakthroughs in large language/vision models and 3D object datasets. Given a monocular RGB video, we aim to reconstruct hand-held object geometry in 3D, over time. In order to obtain the best performing single frame model, we first present MCC-Hand-Object (MCC-HO), which jointly reconstructs hand and object geometry given a single RGB image and inferred 3D hand as inputs. Subsequently, we prompt a text-to-3D generative model using GPT-4(V) to retrieve a 3D object model that matches the object in the image(s); we call this alignment Retrieval-Augmented Reconstruction (RAR). RAR provides unified object geometry across all frames, and the result is rigidly aligned with both the input images and 3D MCC-HO observations in a temporally consistent manner. Experiments demonstrate that our approach achieves state-of-the-art performance on lab and Internet image/video datasets. We make our code and models available on the project website: https://janehwu.github.io/mcc-ho
comment: 3DV 2026, Project page: https://janehwu.github.io/mcc-ho
♻ ☆ Visual Language Hypothesis
We study visual representation learning from a structural and topological perspective. We begin from a single hypothesis: that visual understanding presupposes a semantic language for vision, in which many perceptual observations correspond to a small number of discrete semantic states. Together with widely assumed premises on transferability and abstraction in representation learning, this hypothesis implies that the visual observation space must be organized in a fiber bundle like structure, where nuisance variation populates fibers and semantics correspond to a quotient base space. From this structure we derive two theoretical consequences. First, the semantic quotient X/G is not a submanifold of X and cannot be obtained through smooth deformation alone, semantic invariance requires a non homeomorphic, discriminative target for example, supervision via labels, cross-instance identification, or multimodal alignment that supplies explicit semantic equivalence. Second, we show that approximating the quotient also places structural demands on the model architecture. Semantic abstraction requires not only an external semantic target, but a representation mechanism capable of supporting topology change: an expand and snap process in which the manifold is first geometrically expanded to separate structure and then collapsed to form discrete semantic regions. We emphasize that these results are interpretive rather than prescriptive: the framework provides a topological lens that aligns with empirical regularities observed in large-scale discriminative and multimodal models, and with classical principles in statistical learning theory.
♻ ☆ DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models
We present DiffIR2VR-Zero, a zero-shot framework that enables any pre-trained image restoration diffusion model to perform high-quality video restoration without additional training. While image diffusion models have shown remarkable restoration capabilities, their direct application to video leads to temporal inconsistencies, and existing video restoration methods require extensive retraining for different degradation types. Our approach addresses these challenges through two key innovations: a hierarchical latent warping strategy that maintains consistency across both keyframes and local frames, and a hybrid token merging mechanism that adaptively combines optical flow and feature matching. Through extensive experiments, we demonstrate that our method not only maintains the high-quality restoration of base diffusion models but also achieves superior temporal consistency across diverse datasets and degradation conditions, including challenging scenarios like 8$\times$ super-resolution and severe noise. Importantly, our framework works with any image restoration diffusion model, providing a versatile solution for video enhancement without task-specific training or modifications. Project page: https://jimmycv07.github.io/DiffIR2VR_web/
comment: Project page: https://jimmycv07.github.io/DiffIR2VR_web/
♻ ☆ HIDFlowNet: A Flow-Based Deep Network for Hyperspectral Image Denoising
Hyperspectral image (HSI) denoising is essentially ill-posed since a noisy HSI can be degraded from multiple clean HSIs. However, existing deep learning (DL)-based approaches only restore one clean HSI from the given noisy HSI with a deterministic mapping, thus ignoring the ill-posed issue and always resulting in an over-smoothing problem. Additionally, these DL-based methods often neglect that noise is part of the high-frequency component and their network architectures fail to decouple the learning of low-frequency and high-frequency. To alleviate these issues, this paper proposes a flow-based HSI denoising network (HIDFlowNet) to directly learn the conditional distribution of the clean HSI given the noisy HSI and thus diverse clean HSIs can be sampled from the conditional distribution. Overall, our HIDFlowNet is induced from the generative flow model and is comprised of an invertible decoder and a conditional encoder, which can explicitly decouple the learning of low-frequency and high-frequency information of HSI. Specifically, the invertible decoder is built by staking a succession of invertible conditional blocks (ICBs) to capture the local high-frequency details. The conditional encoder utilizes down-sampling operations to obtain low-resolution images and uses transformers to capture correlations over a long distance so that global low-frequency information can be effectively extracted. Extensive experiments on simulated and real HSI datasets verify that our proposed HIDFlowNet can obtain better or comparable results compared with other state-of-the-art methods.
comment: 29 pages, 8 figures
♻ ☆ SplatSSC: Decoupled Depth-Guided Gaussian Splatting for Semantic Scene Completion AAAI
Monocular 3D Semantic Scene Completion (SSC) is a challenging yet promising task that aims to infer dense geometric and semantic descriptions of a scene from a single image. While recent object-centric paradigms significantly improve efficiency by leveraging flexible 3D Gaussian primitives, they still rely heavily on a large number of randomly initialized primitives, which inevitably leads to 1) inefficient primitive initialization and 2) outlier primitives that introduce erroneous artifacts. In this paper, we propose SplatSSC, a novel framework that resolves these limitations with a depth-guided initialization strategy and a principled Gaussian aggregator. Instead of random initialization, SplatSSC utilizes a dedicated depth branch composed of a Group-wise Multi-scale Fusion (GMF) module, which integrates multi-scale image and depth features to generate a sparse yet representative set of initial Gaussian primitives. To mitigate noise from outlier primitives, we develop the Decoupled Gaussian Aggregator (DGA), which enhances robustness by decomposing geometric and semantic predictions during the Gaussian-to-voxel splatting process. Complemented with a specialized Probability Scale Loss, our method achieves state-of-the-art performance on the Occ-ScanNet dataset, outperforming prior approaches by over 6.3% in IoU and 4.1% in mIoU, while reducing both latency and memory cost by more than 9.3%.
comment: Accepted for oral presentation in The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
♻ ☆ OnlineVPO: Align Video Diffusion Model with Online Video-Centric Preference Optimization
Video diffusion models (VDMs) have demonstrated remarkable capabilities in text-to-video (T2V) generation. Despite their success, VDMs still suffer from degraded image quality and flickering artifacts. To address these issues, some approaches have introduced preference learning to exploit human feedback to enhance the video generation. However, these methods primarily adopt the routine in the image domain without an in-depth investigation into video-specific preference optimization. In this paper, we reexamine the design of the video preference learning from two key aspects: feedback source and feedback tuning methodology, and present OnlineVPO, a more efficient preference learning framework tailored specifically for VDMs. On the feedback source, we found that the image-level reward model commonly used in existing methods fails to provide a human-aligned video preference signal due to the modality gap. In contrast, video quality assessment (VQA) models show superior alignment with human perception of video quality. Building on this insight, we propose leveraging VQA models as a proxy of humans to provide more modality-aligned feedback for VDMs. Regarding the preference tuning methodology, we introduce an online DPO algorithm tailored for VDMs. It not only enjoys the benefits of superior scalability in optimizing videos with higher resolution and longer duration compared with the existing method, but also mitigates the insufficient optimization issue caused by off-policy learning via online preference generation and curriculum preference update designs. Extensive experiments on the open-source video-diffusion model demonstrate OnlineVPO as a simple yet effective and, more importantly, scalable preference learning algorithm for video diffusion models.
♻ ☆ MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Continual learning enables AI systems to acquire new knowledge while retaining previously learned information. While traditional unimodal methods have made progress, the rise of Multimodal Large Language Models (MLLMs) brings new challenges in Multimodal Continual Learning (MCL), where models are expected to address both catastrophic forgetting and cross-modal coordination. To advance research in this area, we present MCITlib, a comprehensive library for Multimodal Continual Instruction Tuning. MCITlib currently implements 8 representative algorithms and conducts evaluations on 3 benchmarks under 2 backbone models. The library will be continuously updated to support future developments in MCL. The codebase is released at https://github.com/Ghy0501/MCITlib.
comment: Preprint
♻ ☆ TrimTokenator-LC: Towards Adaptive Visual Token Pruning for Large Multimodal Models with Long Contexts
Large Multimodal Models (LMMs) have proven effective on various tasks. They typically encode visual inputs into Original Model sequences of tokens, which are then concatenated with textual tokens and jointly processed by the language model. However, the growing number of visual tokens greatly increases inference cost. Visual token pruning has emerged as a promising solution. However, existing methods often overlook scenarios involving long context inputs with multiple images. In this paper, we analyze the challenges of visual token pruning in long context, multi-image settings and introduce an adaptive pruning method tailored for such scenarios. We decompose redundancy into intra-image and inter-image components and quantify them through intra-image diversity and inter-image variation, which jointly guide dynamic budget allocation. Our approach consists of two stages. The intra-image stage allocates each image a content-aware token budget and greedily selects its most representative tokens. The inter-image stage performs global diversity filtering to form a candidate pool and then applies a Pareto selection procedure that balances diversity with text alignment. Extensive experiments show that our approach can reduce up to 80% of visual tokens while maintaining performance in long context settings.
comment: 17 pages
♻ ☆ Controllable Human-centric Keyframe Interpolation with Generative Prior
Existing interpolation methods use pre-trained video diffusion priors to generate intermediate frames between sparsely sampled keyframes. In the absence of 3D geometric guidance, these methods struggle to produce plausible results for complex, articulated human motions and offer limited control over the synthesized dynamics. In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process for Controllable Human-centric Keyframe Interpolation (CHKI). To provide rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed control model, features a novel SMPL-X encoder that transforms 3D geometry and shape into the 2D latent conditioning space, alongside a fusion network that integrates these 3D cues with 2D pose embeddings. For evaluation, we build CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X parameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduction in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model improves interpolation fidelity.
comment: Project Page: https://gseancdat.github.io/projects/PoseFuse3D_KI
♻ ☆ ProCache: Constraint-Aware Feature Caching with Selective Computation for Diffusion Transformer Acceleration AAAI 2026
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in generative modeling, yet their high computational cost hinders real-time deployment. While feature caching offers a promising training-free acceleration solution by exploiting temporal redundancy, existing methods suffer from two key limitations: (1) uniform caching intervals fail to align with the non-uniform temporal dynamics of DiT, and (2) naive feature reuse with excessively large caching intervals can lead to severe error accumulation. In this work, we analyze the evolution of DiT features during denoising and reveal that both feature changes and error propagation are highly time- and depth-varying. Motivated by this, we propose ProCache, a training-free dynamic feature caching framework that addresses these issues via two core components: (i) a constraint-aware caching pattern search module that generates non-uniform activation schedules through offline constrained sampling, tailored to the model's temporal characteristics; and (ii) a selective computation module that selectively computes within deep blocks and high-importance tokens for cached segments to mitigate error accumulation with minimal overhead. Extensive experiments on PixArt-alpha and DiT demonstrate that ProCache achieves up to 1.96x and 2.90x acceleration with negligible quality degradation, significantly outperforming prior caching-based methods.
comment: Accepted for poster presentation at AAAI 2026
♻ ☆ TALO: Pushing 3D Vision Foundation Models Towards Globally Consistent Online Reconstruction
3D vision foundation models have shown strong generalization in reconstructing key 3D attributes from uncalibrated images through a single feed-forward pass. However, when deployed in online settings such as driving scenarios, predictions are made over temporal windows, making it non-trivial to maintain consistency across time. Recent strategies align consecutive predictions by solving global transformation, yet our analysis reveals their fundamental limitations in assumption validity, local alignment scope, and robustness under noisy geometry. In this work, we propose a higher-DOF and long-term alignment framework based on Thin Plate Spline, leveraging globally propagated control points to correct spatially varying inconsistencies. In addition, we adopt a point-agnostic submap registration design that is inherently robust to noisy geometry predictions. The proposed framework is fully plug-and-play, compatible with diverse 3D foundation models and camera configurations (e.g., monocular or surround-view). Extensive experiments demonstrate that our method consistently yields more coherent geometry and lower trajectory errors across multiple datasets, backbone models, and camera setups, highlighting its robustness and generality. Codes are publicly available at https://github.com/Xian-Bei/TALO.
♻ ☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models IEEE
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
♻ ☆ CoT-PL: Visual Chain-of-Thought Reasoning Meets Pseudo-Labeling for Open-Vocabulary Object Detection
Open-vocabulary object detection (OVD) seeks to recognize and localize object categories beyond those seen during training. Recent approaches typically leverage vision-language models (VLMs) to generate pseudo-labels using image-text alignment, allowing detectors to generalize to unseen classes without explicit supervision. However, these methods depend heavily on direct image-text matching, neglecting the intermediate reasoning steps essential for interpreting semantically complex scenes. This results in limited robustness when confronted with crowded or occluded visual contexts. In this paper, we introduce CoT-PL, a new framework that employs structured visual chain-of-thought (CoT) reasoning into the pseudo-labeling process. CoT-PL decomposes object understanding into three interpretable steps: (1) region perception even for unseen objects, (2) category recognition via zero-shot reasoning, and (3) background grounding to separate semantically complex objects. Crucially, the third step naturally motivates our contrastive background learning (CBL) that uses the pre-computed background cues as negatives to promote feature disentanglement between objects and background. In this way, CoT reasoning and CBL form an integrated pipeline tailored to robust pseudo-labeling in crowded or occluded scenes. Notably, in these two settings, our novel-class pseudo-label quality achieves relative improvements of 103.4% and 168.4% over the best prior, respectively. Our extensive experiments demonstrate that CoT-PL achieves +7.7 AP50 on open-vocabulary COCO and +2.9 mask AP on LVIS for novel classes, setting a new state of the art. Code and models are available at https://github.com/hchoi256/cotpl.
comment: 28 pages, 13 Figures, 12 Tables
♻ ☆ Collaborative Representation Learning for Alignment of Tactile, Language, and Vision Modalities
Tactile sensing offers rich and complementary information to vision and language, enabling robots to perceive fine-grained object properties. However, existing tactile sensors lack standardization, leading to redundant features that hinder cross-sensor generalization. Moreover, existing methods fail to fully integrate the intermediate communication among tactile, language, and vision modalities. To address this, we propose TLV-CoRe, a CLIP-based Tactile-Language-Vision Collaborative Representation learning method. TLV-CoRe introduces a Sensor-Aware Modulator to unify tactile features across different sensors and employs tactile-irrelevant decoupled learning to disentangle irrelevant tactile features. Additionally, a Unified Bridging Adapter is introduced to enhance tri-modal interaction within the shared representation space. To fairly evaluate the effectiveness of tactile models, we further propose the RSS evaluation framework, focusing on Robustness, Synergy, and Stability across different methods. Experimental results demonstrate that TLV-CoRe significantly improves sensor-agnostic representation learning and cross-modal alignment, offering a new direction for multimodal tactile representation.
♻ ☆ Unsupervised Online 3D Instance Segmentation with Synthetic Sequences and Dynamic Loss
Unsupervised online 3D instance segmentation is a fundamental yet challenging task, as it requires maintaining consistent object identities across LiDAR scans without relying on annotated training data. Existing methods, such as UNIT, have made progress in this direction but remain constrained by limited training diversity, rigid temporal sampling, and heavy dependence on noisy pseudo-labels. We propose a new framework that enriches the training distribution through synthetic point cloud sequence generation, enabling greater diversity without relying on manual labels or simulation engines. To better capture temporal dynamics, our method incorporates a flexible sampling strategy that leverages both adjacent and non-adjacent frames, allowing the model to learn from long-range dependencies as well as short-term variations. In addition, a dynamic-weighting loss emphasizes confident and informative samples, guiding the network toward more robust representations. Through extensive experiments on SemanticKITTI, nuScenes, and PandaSet, our method consistently outperforms UNIT and other unsupervised baselines, achieving higher segmentation accuracy and more robust temporal associations. The code will be publicly available at github.com/Eaphan/SFT3D.
comment: 11 pages, 6 figures
♻ ☆ Hierarchical Context Alignment with Disentangled Geometric and Temporal Modeling for Semantic Occupancy Prediction IEEE
Camera-based 3D Semantic Occupancy Prediction (SOP) is crucial for understanding complex 3D scenes from limited 2D image observations. Existing SOP methods typically aggregate contextual features to assist the occupancy representation learning, alleviating issues like occlusion or ambiguity. However, these solutions often face misalignment issues wherein the corresponding features at the same position across different frames may have different semantic meanings during the aggregation process, which leads to unreliable contextual fusion results and an unstable representation learning process. To address this problem, we introduce a new Hierarchical context alignment paradigm for a more accurate SOP (Hi-SOP). Hi-SOP first disentangles the geometric and temporal context for separate alignment, which two branches are then composed to enhance the reliability of SOP. This parsing of the visual input into a local-global alignment hierarchy includes: (I) disentangled geometric and temporal separate alignment, within each leverages depth confidence and camera pose as prior for relevant feature matching respectively; (II) global alignment and composition of the transformed geometric and temporal volumes based on semantics consistency. Our method outperforms SOTAs for semantic scene completion on the SemanticKITTI & NuScenes-Occupancy datasets and LiDAR semantic segmentation on the NuScenes dataset. The project website is available at https://arlo0o.github.io/hisop.github.io/.
comment: IEEE TPAMI 2025
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and more than ten machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
♻ ☆ Space Object Detection using Multi-frame Temporal Trajectory Completion Method
Space objects in Geostationary Earth Orbit (GEO) present significant detection challenges in optical imaging due to weak signals, complex stellar backgrounds, and environmental interference. In this paper, we enhance high-frequency features of GEO targets while suppressing background noise at the single-frame level through wavelet transform. Building on this, we propose a multi-frame temporal trajectory completion scheme centered on the Hungarian algorithm for globally optimal cross-frame matching. To effectively mitigate missing and false detections, a series of key steps including temporal matching and interpolation completion, temporal-consistency-based noise filtering, and progressive trajectory refinement are designed in the post-processing pipeline. Experimental results on the public SpotGEO dataset demonstrate the effectiveness of the proposed method, achieving an F_1 score of 90.14%.
♻ ☆ evTransFER: A Transfer Learning Framework for Event-based Facial Expression Recognition
Event-based cameras are bio-inspired sensors that asynchronously capture pixel intensity changes with microsecond latency, high temporal resolution, and high dynamic range, providing information on the spatiotemporal dynamics of a scene. We propose evTransFER, a transfer learning-based framework for facial expression recognition using event-based cameras. The main contribution is a feature extractor designed to encode facial spatiotemporal dynamics, built by training an adversarial generative method on facial reconstruction and transferring the encoder weights to the facial expression recognition system. We demonstrate that the proposed transfer learning method improves facial expression recognition compared to training a network from scratch. We propose an architecture that incorporates an LSTM to capture longer-term facial expression dynamics and introduces a new event-based representation called TIE. We evaluated the framework using both the synthetic event-based facial expression database e-CK+ and the real neuromorphic dataset NEFER. On e-CK+, evTransFER achieved a recognition rate of 93.6\%, surpassing state-of-the-art methods. For NEFER, which comprises event sequence with real sensor noise and sparse activity, the proposed transfer learning strategy achieved an accuracy of up to 76.7\%. In both datasets, the outcomes surpassed current methodologies and exceeded results when compared with models trained from scratch.
♻ ☆ Guiding Cross-Modal Representations with MLLM Priors via Preference Alignment NeurIPS 2025
Despite Contrastive Language-Image Pretraining (CLIP)'s remarkable capability to retrieve content across modalities, a substantial modality gap persists in its feature space. Intriguingly, we discover that off-the-shelf MLLMs (Multimodal Large Language Models) demonstrate powerful inherent modality alignment properties. While recent MLLM-based retrievers with unified architectures partially mitigate this gap, their reliance on coarse modality alignment mechanisms fundamentally limits their potential. In this work, We introduce MAPLE (Modality-Aligned Preference Learning for Embeddings), a novel framework that leverages the fine grained alignment priors inherent in MLLM to guide cross modal representation learning. MAPLE formulates the learning process as reinforcement learning with two key components: (1) Automatic preference data construction using off-the-shelf MLLM, and (2) a new Relative Preference Alignment (RPA) loss, which adapts Direct Preference Optimization (DPO) to the embedding learning setting. Experimental results show that our preference-guided alignment achieves substantial gains in fine-grained cross-modal retrieval, underscoring its effectiveness in handling nuanced semantic distinctions.
comment: Accepted by NeurIPS 2025
♻ ☆ Few-Shot-Based Modular Image-to-Video Adapter for Diffusion Models
Diffusion models (DMs) have recently achieved impressive photorealism in image and video generation. However, their application to image animation remains limited, even when trained on large-scale datasets. Two primary challenges contribute to this: the high dimensionality of video signals leads to a scarcity of training data, causing DMs to favor memorization over prompt compliance when generating motion; moreover, DMs struggle to generalize to novel motion patterns not present in the training set, and fine-tuning them to learn such patterns, especially using limited training data, is still under-explored. To address these limitations, we propose Modular Image-to-Video Adapter (MIVA), a lightweight sub-network attachable to a pre-trained DM, each designed to capture a single motion pattern and scalable via parallelization. MIVAs can be efficiently trained on approximately ten samples using a single consumer-grade GPU. At inference time, users can specify motion by selecting one or multiple MIVAs, eliminating the need for prompt engineering. Extensive experiments demonstrate that MIVA enables more precise motion control while maintaining, or even surpassing, the generation quality of models trained on significantly larger datasets.
comment: GitHub page: https://github.com/yishaohan/MIVA
♻ ☆ DriveLaW:Unifying Planning and Video Generation in a Latent Driving World
World models have become crucial for autonomous driving, as they learn how scenarios evolve over time to address the long-tail challenges of the real world. However, current approaches relegate world models to limited roles: they operate within ostensibly unified architectures that still keep world prediction and motion planning as decoupled processes. To bridge this gap, we propose DriveLaW, a novel paradigm that unifies video generation and motion planning. By directly injecting the latent representation from its video generator into the planner, DriveLaW ensures inherent consistency between high-fidelity future generation and reliable trajectory planning. Specifically, DriveLaW consists of two core components: DriveLaW-Video, our powerful world model that generates high-fidelity forecasting with expressive latent representations, and DriveLaW-Act, a diffusion planner that generates consistent and reliable trajectories from the latent of DriveLaW-Video, with both components optimized by a three-stage progressive training strategy. The power of our unified paradigm is demonstrated by new state-of-the-art results across both tasks. DriveLaW not only advances video prediction significantly, surpassing best-performing work by 33.3% in FID and 1.8% in FVD, but also achieves a new record on the NAVSIM planning benchmark.
comment: 17 pages, 7 figures
♻ ☆ OmniVCus: Feedforward Subject-driven Video Customization with Multimodal Control Conditions NeurIPS 2025
Existing feedforward subject-driven video customization methods mainly study single-subject scenarios due to the difficulty of constructing multi-subject training data pairs. Another challenging problem that how to use the signals such as depth, mask, camera, and text prompts to control and edit the subject in the customized video is still less explored. In this paper, we first propose a data construction pipeline, VideoCus-Factory, to produce training data pairs for multi-subject customization from raw videos without labels and control signals such as depth-to-video and mask-to-video pairs. Based on our constructed data, we develop an Image-Video Transfer Mixed (IVTM) training with image editing data to enable instructive editing for the subject in the customized video. Then we propose a diffusion Transformer framework, OmniVCus, with two embedding mechanisms, Lottery Embedding (LE) and Temporally Aligned Embedding (TAE). LE enables inference with more subjects by using the training subjects to activate more frame embeddings. TAE encourages the generation process to extract guidance from temporally aligned control signals by assigning the same frame embeddings to the control and noise tokens. Experiments demonstrate that our method significantly surpasses state-of-the-art methods in both quantitative and qualitative evaluations. Video demos are at our project page: https://caiyuanhao1998.github.io/project/OmniVCus/. Our code, models, data are released at https://github.com/caiyuanhao1998/Open-OmniVCus
comment: NeurIPS 2025; A data construction pipeline and a diffusion Transformer framework for controllable subject-driven video customization
♻ ☆ EndoStreamDepth: Temporally Consistent Monocular Depth Estimation for Endoscopic Video Streams
This work presents EndoStreamDepth, a monocular depth estimation framework for endoscopic video streams. It provides accurate depth maps with sharp anatomical boundaries for each frame, temporally consistent predictions across frames, and real-time throughput. Unlike prior work that uses batched inputs, EndoStreamDepth processes individual frames with a temporal module to propagate inter-frame information. The framework contains three main components: (1) a single-frame depth network with endoscopy-specific transformation to produce accurate depth maps, (2) multi-level Mamba temporal modules that leverage inter-frame information to improve accuracy and stabilize predictions, and (3) a hierarchical design with comprehensive multi-scale supervision, where complementary loss terms jointly improve local boundary sharpness and global geometric consistency. We conduct comprehensive evaluations on two publicly available colonoscopy depth estimation datasets. Compared to state-of-the-art monocular depth estimation methods, EndoStreamDepth substantially improves performance, and it produces depth maps with sharp, anatomically aligned boundaries, which are essential to support downstream tasks such as automation for robotic surgery. The code is publicly available at https://github.com/MedICL-VU/EndoStreamDepth
comment: fixed typo in appendix table 3
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We study continual learning in large language model (LLM) based agents that integrate episodic memory with reinforcement learning. We focus on reflection, the ability of an agent to revisit past experience and adjust how it selects future actions, as the central mechanism for continual adaptation without fine tuning model weights. To formalise this, we introduce the Stateful Reflective Decision Process (SRDP), in which an agent maintains and updates episodic memory and alternates between writing new experiences to memory and reading relevant cases to guide decisions. This framework casts reflective memory dynamics as part of the decision process itself and makes them amenable to control and learning analysis. Building on this formulation, we develop a Read-Write Reflective Learning algorithm that incorporates memory retrieval into a soft policy iteration procedure and prove that it converges. We further show that as memory grows and more densely covers the task environment, the resulting policy approaches optimality. Our framework unifies memory based reasoning with reinforcement learning and provides a formal foundation for LLM agents capable of continual, experience driven learning.
comment: 35 pages, four figures
♻ ☆ FP4DiT: Towards Effective Floating Point Quantization for Diffusion Transformers
Diffusion Models (DM) have revolutionized the text-to-image visual generation process. However, the large computational cost and model footprint of DMs hinders practical deployment, especially on edge devices. Post-training quantization (PTQ) is a lightweight method to alleviate these burdens without the need for training or fine-tuning. While recent DM PTQ methods achieve W4A8 \blue{(i.e., 4-bit weights and 8-bit activations)} on integer-based PTQ, two key limitations remain: First, while most existing DM PTQ methods evaluate on classical DMs like Stable Diffusion XL, 1.5 or earlier, which use convolutional U-Nets, newer Diffusion Transformer (DiT) models like the PixArt series, Hunyuan and others adopt fundamentally different transformer backbones to achieve superior image synthesis. Second, integer (INT) quantization is prevailing in DM PTQ but does not align well with the network weight and activation distribution, while Floating-Point Quantization (FPQ) is still under-investigated, yet it holds the potential to better align the weight and activation distributions in low-bit settings for DiT. In this paper, we introduce FP4DiT, a PTQ method that leverages FPQ to achieve W4A6 quantization. Specifically, we extend and generalize the Adaptive Rounding PTQ technique to adequately calibrate weight quantization for FPQ and demonstrate that DiT activations depend on input patch data, necessitating robust online activation quantization techniques. Experimental results demonstrate that FP4DiT achieves higher CLIP, ImageReward and HPSv2 performance compared to integer-based PTQ at the W4A6 and W4A8 precision levels while generating convincing visual content on PixArt-$α$, PixArt-$Σ$ and Hunyuan.
comment: The code is available at https://github.com/cccrrrccc/FP4DiT
♻ ☆ Revisiting Out-of-Distribution Detection in Real-time Object Detection: From Benchmark Pitfalls to a New Mitigation Paradigm IEEE
Out-of-distribution (OoD) inputs pose a persistent challenge to deep learning models, often triggering overconfident predictions on non-target objects. While prior work has primarily focused on refining scoring functions and adjusting test-time thresholds, such algorithmic improvements offer only incremental gains. We argue that a rethinking of the entire development lifecycle is needed to mitigate these risks effectively. This work addresses two overlooked dimensions of OoD detection in object detection. First, we reveal fundamental flaws in widely used evaluation benchmarks: contrary to their design intent, up to 13% of objects in the OoD test sets actually belong to in-distribution classes, and vice versa. These quality issues severely distort the reported performance of existing methods and contribute to their high false positive rates. Second, we introduce a novel training-time mitigation paradigm that operates independently of external OoD detectors. Instead of relying solely on post-hoc scoring, we fine-tune the detector using a carefully synthesized OoD dataset that semantically resembles in-distribution objects. This process shapes a defensive decision boundary by suppressing objectness on OoD objects, leading to a 91% reduction in hallucination error of a YOLO model on BDD-100K. Our methodology generalizes across detection paradigms such as YOLO, Faster R-CNN, and RT-DETR, and supports few-shot adaptation. Together, these contributions offer a principled and effective way to reduce OoD-induced hallucination in object detectors. Code and data are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Accepted at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Task-oriented Learnable Diffusion Timesteps for Universal Few-shot Learning of Dense Tasks
Denoising diffusion probabilistic models have brought tremendous advances in generative tasks, achieving state-of-the-art performance thus far. Current diffusion model-based applications exploit the power of learned visual representations from multistep forward-backward Markovian processes for single-task prediction tasks by attaching a task-specific decoder. However, the heuristic selection of diffusion timestep features still heavily relies on empirical intuition, often leading to sub-optimal performance biased towards certain tasks. To alleviate this constraint, we investigate the significance of versatile diffusion timestep features by adaptively selecting timesteps best suited for the few-shot dense prediction task, evaluated on an arbitrary unseen task. To this end, we propose two modules: Task-aware Timestep Selection (TTS) to select ideal diffusion timesteps based on timestep-wise losses and similarity scores, and Timestep Feature Consolidation (TFC) to consolidate the selected timestep features to improve the dense predictive performance in a few-shot setting. Accompanied by our parameter-efficient fine-tuning adapter, our framework effectively achieves superiority in dense prediction performance given only a few support queries. We empirically validate our learnable timestep consolidation method on the large-scale challenging Taskonomy dataset for dense prediction, particularly for practical universal and few-shot learning scenarios.
comment: Prematurely uploaded without mutual consent by all authors, with critical modifications necessary in the references
♻ ☆ Towards Streaming LiDAR Object Detection with Point Clouds as Egocentric Sequences WACV 2026
Accurate and low-latency 3D object detection is essential for autonomous driving, where safety hinges on both rapid response and reliable perception. While rotating LiDAR sensors are widely adopted for their robustness and fidelity, current detectors face a trade-off: streaming methods process partial polar sectors on the fly for fast updates but suffer from limited visibility, cross-sector dependencies, and distortions from retrofitted Cartesian designs, whereas full-scan methods achieve higher accuracy but are bottlenecked by the inherent latency of a LiDAR revolution. We propose Polar-Fast-Cartesian-Full (PFCF), a hybrid detector that combines fast polar processing for intra-sector feature extraction with accurate Cartesian reasoning for full-scene understanding. Central to PFCF is a custom Mamba SSM-based streaming backbone with dimensionally-decomposed convolutions that avoids distortion-heavy planes, enabling parameter-efficient, translation-invariant, and distortion-robust polar representation learning. Local sector features are extracted via this backbone, then accumulated into a sector feature buffer to enable efficient inter-sector communication through a full-scan backbone. PFCF establishes a new Pareto frontier on the Waymo Open dataset, surpassing prior streaming baselines by 10% mAP and matching full-scan accuracy at twice the update rate. Code is available at \href{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}.
comment: Accepted to WACV 2026
Artificial Intelligence 122
☆ SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
comment: Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
☆ Coordinated Humanoid Manipulation with Choice Policies
Humanoid robots hold great promise for operating in human-centric environments, yet achieving robust whole-body coordination across the head, hands, and legs remains a major challenge. We present a system that combines a modular teleoperation interface with a scalable learning framework to address this problem. Our teleoperation design decomposes humanoid control into intuitive submodules, which include hand-eye coordination, grasp primitives, arm end-effector tracking, and locomotion. This modularity allows us to collect high-quality demonstrations efficiently. Building on this, we introduce Choice Policy, an imitation learning approach that generates multiple candidate actions and learns to score them. This architecture enables both fast inference and effective modeling of multimodal behaviors. We validate our approach on two real-world tasks: dishwasher loading and whole-body loco-manipulation for whiteboard wiping. Experiments show that Choice Policy significantly outperforms diffusion policies and standard behavior cloning. Furthermore, our results indicate that hand-eye coordination is critical for success in long-horizon tasks. Our work demonstrates a practical path toward scalable data collection and learning for coordinated humanoid manipulation in unstructured environments.
comment: Code and Website: https://choice-policy.github.io/
☆ Vulcan: Instance-Optimal Systems Heuristics Through LLM-Driven Search
Resource-management tasks in modern operating and distributed systems continue to rely primarily on hand-designed heuristics for tasks such as scheduling, caching, or active queue management. Designing performant heuristics is an expensive, time-consuming process that we are forced to continuously go through due to the constant flux of hardware, workloads and environments. We propose a new alternative: synthesizing instance-optimal heuristics -- specialized for the exact workloads and hardware where they will be deployed -- using code-generating large language models (LLMs). To make this synthesis tractable, Vulcan separates policy and mechanism through LLM-friendly, task-agnostic interfaces. With these interfaces, users specify the inputs and objectives of their desired policy, while Vulcan searches for performant policies via evolutionary search over LLM-generated code. This interface is expressive enough to capture a wide range of system policies, yet sufficiently constrained to allow even small, inexpensive LLMs to generate correct and executable code. We use Vulcan to synthesize performant heuristics for cache eviction and memory tiering, and find that these heuristics outperform all human-designed state-of-the-art algorithms by upto 69% and 7.9% in performance for each of these tasks respectively.
comment: 27 pages, 11 figures, 7 tables
☆ Context-aware LLM-based AI Agents for Human-centered Energy Management Systems in Smart Buildings
This study presents a conceptual framework and a prototype assessment for Large Language Model (LLM)-based Building Energy Management System (BEMS) AI agents to facilitate context-aware energy management in smart buildings through natural language interaction. The proposed framework comprises three modules: perception (sensing), central control (brain), and action (actuation and user interaction), forming a closed feedback loop that captures, analyzes, and interprets energy data to respond intelligently to user queries and manage connected appliances. By leveraging the autonomous data analytics capabilities of LLMs, the BEMS AI agent seeks to offer context-aware insights into energy consumption, cost prediction, and device scheduling, thereby addressing limitations in existing energy management systems. The prototype's performance was evaluated using 120 user queries across four distinct real-world residential energy datasets and different evaluation metrics, including latency, functionality, capability, accuracy, and cost-effectiveness. The generalizability of the framework was demonstrated using ANOVA tests. The results revealed promising performance, measured by response accuracy in device control (86%), memory-related tasks (97%), scheduling and automation (74%), and energy analysis (77%), while more complex cost estimation tasks highlighted areas for improvement with an accuracy of 49%. This benchmarking study moves toward formalizing the assessment of LLM-based BEMS AI agents and identifying future research directions, emphasizing the trade-off between response accuracy and computational efficiency.
☆ AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG
Retrieval-augmented generation (RAG) is highly sensitive to the quality of selected context, yet standard top-k retrieval often returns redundant or near-duplicate chunks that waste token budget and degrade downstream generation. We present AdaGReS, a redundancy-aware context selection framework for token-budgeted RAG that optimizes a set-level objective combining query-chunk relevance and intra-set redundancy penalties. AdaGReS performs greedy selection under a token-budget constraint using marginal gains derived from the objective, and introduces a closed-form, instance-adaptive calibration of the relevance-redundancy trade-off parameter to eliminate manual tuning and adapt to candidate-pool statistics and budget limits. We further provide a theoretical analysis showing that the proposed objective exhibits epsilon-approximate submodularity under practical embedding similarity conditions, yielding near-optimality guarantees for greedy selection. Experiments on open-domain question answering (Natural Questions) and a high-redundancy biomedical (drug) corpus demonstrate consistent improvements in redundancy control and context quality, translating to better end-to-end answer quality and robustness across settings.
comment: Preprint. Under review
☆ Generative Classifiers Avoid Shortcut Solutions ICLR 2025
Discriminative approaches to classification often learn shortcuts that hold in-distribution but fail even under minor distribution shift. This failure mode stems from an overreliance on features that are spuriously correlated with the label. We show that generative classifiers, which use class-conditional generative models, can avoid this issue by modeling all features, both core and spurious, instead of mainly spurious ones. These generative classifiers are simple to train, avoiding the need for specialized augmentations, strong regularization, extra hyperparameters, or knowledge of the specific spurious correlations to avoid. We find that diffusion-based and autoregressive generative classifiers achieve state-of-the-art performance on five standard image and text distribution shift benchmarks and reduce the impact of spurious correlations in realistic applications, such as medical or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to understand the inductive biases of generative classifiers, as well as the data properties that determine when generative classifiers outperform discriminative ones.
comment: ICLR 2025. Code: https://github.com/alexlioralexli/generative-classifiers
☆ Modeling Language as a Sequence of Thoughts
Transformer language models can generate strikingly natural text by modeling language as a sequence of tokens. Yet, by relying primarily on surface-level co-occurrence statistics, they fail to form globally consistent latent representations of entities and events, lack of which contributes to brittleness in relational direction (e.g., reversal curse), contextualization errors, and data inefficiency. On the other hand, cognitive science shows that human comprehension involves converting the input linguistic stream into compact, event-like representations that persist in memory while verbatim form is short-lived. Motivated by this view, we introduce Thought Gestalt (TG) model, a recurrent Transformer that models language at two levels of abstraction - tokens and sentence-level "thought" states. TG generates the tokens of one sentence at a time while cross-attending to a memory of prior sentence representations. In TG, token and sentence representations are generated using the same set of model parameters and trained with a single objective, the next-token cross-entropy: by retaining the computation graph of sentence representations written to memory, gradients from future token losses flow backward through cross-attention to optimize the parameters generating earlier sentence vectors. In scaling experiments, TG consistently improves efficiency over matched GPT-2 runs, among other baselines, with scaling fits indicating GPT-2 requires ~5-8% more data and ~33-42% more parameters to match TG's loss. TG also reduces errors on relational direction generalization on a father-son reversal curse probe.
☆ Classifying long legal documents using short random chunks
Classifying legal documents is a challenge, besides their specialized vocabulary, sometimes they can be very long. This means that feeding full documents to a Transformers-based models for classification might be impossible, expensive or slow. Thus, we present a legal document classifier based on DeBERTa V3 and a LSTM, that uses as input a collection of 48 randomly-selected short chunks (max 128 tokens). Besides, we present its deployment pipeline using Temporal, a durable execution solution, which allow us to have a reliable and robust processing workflow. The best model had a weighted F-score of 0.898, while the pipeline running on CPU had a processing median time of 498 seconds per 100 files.
☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Our code and benchmark dataset will be released upon acceptance.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ A Modal Logic for Possibilistic Reasoning with Fuzzy Formal Contexts
We introduce a two-sort weighted modal logic for possibilistic reasoning with fuzzy formal contexts. The syntax of the logic includes two types of weighted modal operators corresponding to classical necessity ($\Box$) and sufficiency ($\boxminus$) modalities and its formulas are interpreted in fuzzy formal contexts based on possibility theory. We present its axiomatization that is \emph{sound} with respect to the class of all fuzzy context models. In addition, both the necessity and sufficiency fragments of the logic are also individually complete with respect to the class of all fuzzy context models. We highlight the expressive power of the logic with some illustrative examples. As a formal context is the basic construct of formal concept analysis (FCA), we generalize three main notions in FCA, i.e., formal concepts, object oriented concepts, and property oriented concepts, to their corresponding $c$-cut concepts in fuzzy formal contexts. Then, we show that our logical language can represent all three of these generalized notions. Finally, we demonstrate the possibility of extending our logic to reasoning with multi-relational fuzzy contexts, in which the Boolean combinations of different fuzzy relations are allowed.
comment: 25 pages
☆ SymSeqBench: a unified framework for the generation and analysis of rule-based symbolic sequences and datasets
Sequential structure is a key feature of multiple domains of natural cognition and behavior, such as language, movement and decision-making. Likewise, it is also a central property of tasks to which we would like to apply artificial intelligence. It is therefore of great importance to develop frameworks that allow us to evaluate sequence learning and processing in a domain agnostic fashion, whilst simultaneously providing a link to formal theories of computation and computability. To address this need, we introduce two complementary software tools: SymSeq, designed to rigorously generate and analyze structured symbolic sequences, and SeqBench, a comprehensive benchmark suite of rule-based sequence processing tasks to evaluate the performance of artificial learning systems in cognitively relevant domains. In combination, SymSeqBench offers versatility in investigating sequential structure across diverse knowledge domains, including experimental psycholinguistics, cognitive psychology, behavioral analysis, neuromorphic computing and artificial intelligence. Due to its basis in Formal Language Theory (FLT), SymSeqBench provides researchers in multiple domains with a convenient and practical way to apply the concepts of FLT to conceptualize and standardize their experiments, thus advancing our understanding of cognition and behavior through shared computational frameworks and formalisms. The tool is modular, openly available and accessible to the research community.
☆ Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions ICML
Compressed deep learning models are crucial for deploying computer vision systems on resource-constrained devices. However, model compression may affect robustness, especially under natural corruption. Therefore, it is important to consider robustness evaluation while validating computer vision systems. This paper presents a comprehensive evaluation of compression techniques - quantization, pruning, and weight clustering applied individually and in combination to convolutional neural networks (ResNet-50, VGG-19, and MobileNetV2). Using the CIFAR-10-C and CIFAR 100-C datasets, we analyze the trade-offs between robustness, accuracy, and compression ratio. Our results show that certain compression strategies not only preserve but can also improve robustness, particularly on networks with more complex architectures. Utilizing multiobjective assessment, we determine the best configurations, showing that customized technique combinations produce beneficial multi-objective results. This study provides insights into selecting compression methods for robust and efficient deployment of models in corrupted real-world environments.
comment: Accepted for publication at the 2025 International Conference on Machine Learning and Applications (ICMLA). IEEE Catalog Number: CFP25592-ART
☆ The Impact of LLMs on Online News Consumption and Production
Large language models (LLMs) change how consumers acquire information online; their bots also crawl news publishers' websites for training data and to answer consumer queries; and they provide tools that can lower the cost of content creation. These changes lead to predictions of adverse impact on news publishers in the form of lowered consumer demand, reduced demand for newsroom employees, and an increase in news "slop." Consequently, some publishers strategically responded by blocking LLM access to their websites using the robots.txt file standard. Using high-frequency granular data, we document four effects related to the predicted shifts in news publishing following the introduction of generative AI (GenAI). First, we find a consistent and moderate decline in traffic to news publishers occurring after August 2024. Second, using a difference-in-differences approach, we find that blocking GenAI bots can have adverse effects on large publishers by reducing total website traffic by 23% and real consumer traffic by 14% compared to not blocking. Third, on the hiring side, we do not find evidence that LLMs are replacing editorial or content-production jobs yet. The share of new editorial and content-production job listings increases over time. Fourth, regarding content production, we find no evidence that large publishers increased text volume; instead, they significantly increased rich content and use more advertising and targeting technologies. Together, these findings provide early evidence of some unforeseen impacts of the introduction of LLMs on news production and consumption.
☆ ShowUI-$π$: Flow-based Generative Models as GUI Dexterous Hands
Building intelligent agents capable of dexterous manipulation is essential for achieving human-like automation in both robotics and digital environments. However, existing GUI agents rely on discrete click predictions (x,y), which prohibits free-form, closed-loop trajectories (e.g. dragging a progress bar) that require continuous, on-the-fly perception and adjustment. In this work, we develop ShowUI-$π$, the first flow-based generative model as GUI dexterous hand, featuring the following designs: (i) Unified Discrete-Continuous Actions, integrating discrete clicks and continuous drags within a shared model, enabling flexible adaptation across diverse interaction modes; (ii) Flow-based Action Generation for drag modeling, which predicts incremental cursor adjustments from continuous visual observations via a lightweight action expert, ensuring smooth and stable trajectories; (iii) Drag Training data and Benchmark, where we manually collect and synthesize 20K drag trajectories across five domains (e.g. PowerPoint, Adobe Premiere Pro), and introduce ScreenDrag, a benchmark with comprehensive online and offline evaluation protocols for assessing GUI agents' drag capabilities. Our experiments show that proprietary GUI agents still struggle on ScreenDrag (e.g. Operator scores 13.27, and the best Gemini-2.5-CUA reaches 22.18). In contrast, ShowUI-$π$ achieves 26.98 with only 450M parameters, underscoring both the difficulty of the task and the effectiveness of our approach. We hope this work advances GUI agents toward human-like dexterous control in digital world. The code is available at https://github.com/showlab/showui-pi.
comment: 17 pages, 15 figures
☆ Semi-overlapping Multi-bandit Best Arm Identification for Sequential Support Network Learning
Many modern AI and ML problems require evaluating partners' contributions through shared yet asymmetric, computationally intensive processes and the simultaneous selection of the most beneficial candidates. Sequential approaches to these problems can be unified under a new framework, Sequential Support Network Learning (SSNL), in which the goal is to select the most beneficial candidate set of partners for all participants using trials; that is, to learn a directed graph that represents the highest-performing contributions. We demonstrate that a new pure-exploration model, the semi-overlapping multi-(multi-armed) bandit (SOMMAB), in which a single evaluation provides distinct feedback to multiple bandits due to structural overlap among their arms, can be used to learn a support network from sparse candidate lists efficiently. We develop a generalized GapE algorithm for SOMMABs and derive new exponential error bounds that improve the best known constant in the exponent for multi-bandit best-arm identification. The bounds scale linearly with the degree of overlap, revealing significant sample-complexity gains arising from shared evaluations. From an application point of view, this work provides a theoretical foundation and improved performance guarantees for sequential learning tools for identifying support networks from sparse candidates in multiple learning problems, such as in multi-task learning (MTL), auxiliary task learning (ATL), federated learning (FL), and in multi-agent systems (MAS).
comment: 29 pages, 2 figures
☆ AMAP Agentic Planning Technical Report
We present STAgent, an agentic large language model tailored for spatio-temporal understanding, designed to solve complex tasks such as constrained point-of-interest discovery and itinerary planning. STAgent is a specialized model capable of interacting with ten distinct tools within spatio-temporal scenarios, enabling it to explore, verify, and refine intermediate steps during complex reasoning. Notably, STAgent effectively preserves its general capabilities. We empower STAgent with these capabilities through three key contributions: (1) a stable tool environment that supports over ten domain-specific tools, enabling asynchronous rollout and training; (2) a hierarchical data curation framework that identifies high-quality data like a needle in a haystack, curating high-quality queries with a filter ratio of 1:10,000, emphasizing both diversity and difficulty; and (3) a cascaded training recipe that starts with a seed SFT stage acting as a guardian to measure query difficulty, followed by a second SFT stage fine-tuned on queries with high certainty, and an ultimate RL stage that leverages data of low certainty. Initialized with Qwen3-30B-A3B to establish a strong SFT foundation and leverage insights into sample difficulty, STAgent yields promising performance on TravelBench while maintaining its general capabilities across a wide range of general benchmarks, thereby demonstrating the effectiveness of our proposed agentic model.
☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control
Achieving provable stability in model-free reinforcement learning (RL) remains a challenge, particularly in balancing exploration with rigorous safety. This article introduces MSACL, a framework that integrates exponential stability theory with maximum entropy RL through multi-step Lyapunov certificate learning. Unlike methods relying on complex reward engineering, MSACL utilizes off-policy multi-step data to learn Lyapunov certificates satisfying theoretical stability conditions. By introducing Exponential Stability Labels (ESL) and a $λ$-weighted aggregation mechanism, the framework effectively balances the bias-variance trade-off in multi-step learning. Policy optimization is guided by a stability-aware advantage function, ensuring the learned policy promotes rapid Lyapunov descent. We evaluate MSACL across six benchmarks, including stabilization and nonlinear tracking tasks, demonstrating its superiority over state-of-the-art Lyapunov-based RL algorithms. MSACL achieves exponential stability and rapid convergence under simple rewards, while exhibiting significant robustness to uncertainties and generalization to unseen trajectories. Sensitivity analysis establishes the multi-step horizon $n=20$ as a robust default across diverse systems. By linking Lyapunov theory with off-policy actor-critic frameworks, MSACL provides a foundation for verifiably safe learning-based control. Source code and benchmark environments will be made publicly available.
☆ HaineiFRDM: Explore Diffusion to Restore Defects in Fast-Movement Films
Existing open-source film restoration methods show limited performance compared to commercial methods due to training with low-quality synthetic data and employing noisy optical flows. In addition, high-resolution films have not been explored by the open-source methods.We propose HaineiFRDM(Film Restoration Diffusion Model), a film restoration framework, to explore diffusion model's powerful content-understanding ability to help human expert better restore indistinguishable film defects.Specifically, we employ a patch-wise training and testing strategy to make restoring high-resolution films on one 24GB-VRAMR GPU possible and design a position-aware Global Prompt and Frame Fusion Modules.Also, we introduce a global-local frequency module to reconstruct consistent textures among different patches. Besides, we firstly restore a low-resolution result and use it as global residual to mitigate blocky artifacts caused by patching process.Furthermore, we construct a film restoration dataset that contains restored real-degraded films and realistic synthetic data.Comprehensive experimental results conclusively demonstrate the superiority of our model in defect restoration ability over existing open-source methods. Code and the dataset will be released.
☆ RAIR: A Rule-Aware Benchmark Uniting Challenging Long-Tail and Visual Salience Subset for E-commerce Relevance Assessment
Search relevance plays a central role in web e-commerce. While large language models (LLMs) have shown significant results on relevance task, existing benchmarks lack sufficient complexity for comprehensive model assessment, resulting in an absence of standardized relevance evaluation metrics across the industry. To address this limitation, we propose Rule-Aware benchmark with Image for Relevance assessment(RAIR), a Chinese dataset derived from real-world scenarios. RAIR established a standardized framework for relevance assessment and provides a set of universal rules, which forms the foundation for standardized evaluation. Additionally, RAIR analyzes essential capabilities required for current relevance models and introduces a comprehensive dataset consists of three subset: (1) a general subset with industry-balanced sampling to evaluate fundamental model competencies; (2) a long-tail hard subset focus on challenging cases to assess performance limits; (3) a visual salience subset for evaluating multimodal understanding capabilities. We conducted experiments on RAIR using 14 open and closed-source models. The results demonstrate that RAIR presents sufficient challenges even for GPT-5, which achieved the best performance. RAIR data are now available, serving as an industry benchmark for relevance assessment while providing new insights into general LLM and Visual Language Model(VLM) evaluation.
☆ Iterative Deployment Improves Planning Skills in LLMs
We show that iterative deployment of large language models (LLMs), each fine-tuned on data carefully curated by users from the previous models' deployment, can significantly change the properties of the resultant models. By testing this mechanism on various planning domains, we observe substantial improvements in planning skills, with later models displaying emergent generalization by discovering much longer plans than the initial models. We then provide theoretical analysis showing that iterative deployment effectively implements reinforcement learning (RL) training in the outer-loop (i.e. not as part of intentional model training), with an implicit reward function. The connection to RL has two important implications: first, for the field of AI safety, as the reward function entailed by repeated deployment is not defined explicitly, and could have unexpected implications to the properties of future model deployments. Second, the mechanism highlighted here can be viewed as an alternative training regime to explicit RL, relying on data curation rather than explicit rewards.
☆ AI-Driven Cloud Resource Optimization for Multi-Cluster Environments
Modern cloud-native systems increasingly rely on multi-cluster deployments to support scalability, resilience, and geographic distribution. However, existing resource management approaches remain largely reactive and cluster-centric, limiting their ability to optimize system-wide behavior under dynamic workloads. These limitations result in inefficient resource utilization, delayed adaptation, and increased operational overhead across distributed environments. This paper presents an AI-driven framework for adaptive resource optimization in multi-cluster cloud systems. The proposed approach integrates predictive learning, policy-aware decision-making, and continuous feedback to enable proactive and coordinated resource management across clusters. By analyzing cross-cluster telemetry and historical execution patterns, the framework dynamically adjusts resource allocation to balance performance, cost, and reliability objectives. A prototype implementation demonstrates improved resource efficiency, faster stabilization during workload fluctuations, and reduced performance variability compared to conventional reactive approaches. The results highlight the effectiveness of intelligent, self-adaptive infrastructure management as a key enabler for scalable and resilient cloud platforms.
☆ Semi-Automated Data Annotation in Multisensor Datasets for Autonomous Vehicle Testing
This report presents the design and implementation of a semi-automated data annotation pipeline developed within the DARTS project, whose goal is to create a large-scale, multimodal dataset of driving scenarios recorded in Polish conditions. Manual annotation of such heterogeneous data is both costly and time-consuming. To address this challenge, the proposed solution adopts a human-in-the-loop approach that combines artificial intelligence with human expertise to reduce annotation cost and duration. The system automatically generates initial annotations, enables iterative model retraining, and incorporates data anonymization and domain adaptation techniques. At its core, the tool relies on 3D object detection algorithms to produce preliminary annotations. Overall, the developed tools and methodology result in substantial time savings while ensuring consistent, high-quality annotations across different sensor modalities. The solution directly supports the DARTS project by accelerating the preparation of large annotated dataset in the project's standardized format, strengthening the technological base for autonomous vehicle research in Poland.
☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
☆ Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agent LLMs. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME (ROME is Obviously an Agentic Model), an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-based Policy Alignment (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of the ALE infrastructure.
comment: 36 pages, 15 figures
☆ Encyclo-K: Evaluating LLMs with Dynamically Composed Knowledge Statements
Benchmarks play a crucial role in tracking the rapid advancement of large language models (LLMs) and identifying their capability boundaries. However, existing benchmarks predominantly curate questions at the question level, suffering from three fundamental limitations: vulnerability to data contamination, restriction to single-knowledge-point assessment, and reliance on costly domain expert annotation. We propose Encyclo-K, a statement-based benchmark that rethinks benchmark construction from the ground up. Our key insight is that knowledge statements, not questions, can serve as the unit of curation, and questions can then be constructed from them. We extract standalone knowledge statements from authoritative textbooks and dynamically compose them into evaluation questions through random sampling at test time. This design directly addresses all three limitations: the combinatorial space is too vast to memorize, and model rankings remain stable across dynamically generated question sets, enabling reliable periodic dataset refresh; each question aggregates 8-10 statements for comprehensive multi-knowledge assessment; annotators only verify formatting compliance without requiring domain expertise, substantially reducing annotation costs. Experiments on over 50 LLMs demonstrate that Encyclo-K poses substantial challenges with strong discriminative power. Even the top-performing OpenAI-GPT-5.1 achieves only 62.07% accuracy, and model performance displays a clear gradient distribution--reasoning models span from 16.04% to 62.07%, while chat models range from 9.71% to 50.40%. These results validate the challenges introduced by dynamic evaluation and multi-statement comprehensive understanding. These findings establish Encyclo-K as a scalable framework for dynamic evaluation of LLMs' comprehensive understanding over multiple fine-grained disciplinary knowledge statements.
☆ Big AI is accelerating the metacrisis: What can we do?
The world is in the grip of ecological, meaning, and language crises which are converging into a metacrisis. Big AI is accelerating them all. Language engineers are playing a central role, persisting with a scalability story that is failing humanity, supplying critical talent to plutocrats and kleptocrats, and creating new technologies as if the whole endeavour was value-free. We urgently need to explore alternatives, applying our collective intelligence to design a life-affirming future for NLP that is centered on human flourishing on a living planet.
comment: 9 pages, 1 figure
☆ A study on constraint extraction and exception exclusion in care worker scheduling
Technologies for automatically generating work schedules have been extensively studied; however, in long-term care facilities, the conditions vary between facilities, making it essential to interview the managers who create shift schedules to design facility-specific constraint conditions. The proposed method utilizes constraint templates to extract combinations of various components, such as shift patterns for consecutive days or staff combinations. The templates can extract a variety of constraints by changing the number of days and the number of staff members to focus on and changing the extraction focus to patterns or frequency. In addition, unlike existing constraint extraction techniques, this study incorporates mechanisms to exclude exceptional constraints. The extracted constraints can be employed by a constraint programming solver to create care worker schedules. Experiments demonstrated that our proposed method successfully created schedules that satisfied all hard constraints and reduced the number of violations for soft constraints by circumventing the extraction of exceptional constraints.
☆ PrivacyBench: A Conversational Benchmark for Evaluating Privacy in Personalized AI
Personalized AI agents rely on access to a user's digital footprint, which often includes sensitive data from private emails, chats and purchase histories. Yet this access creates a fundamental societal and privacy risk: systems lacking social-context awareness can unintentionally expose user secrets, threatening digital well-being. We introduce PrivacyBench, a benchmark with socially grounded datasets containing embedded secrets and a multi-turn conversational evaluation to measure secret preservation. Testing Retrieval-Augmented Generation (RAG) assistants reveals that they leak secrets in up to 26.56% of interactions. A privacy-aware prompt lowers leakage to 5.12%, yet this measure offers only partial mitigation. The retrieval mechanism continues to access sensitive data indiscriminately, which shifts the entire burden of privacy preservation onto the generator. This creates a single point of failure, rendering current architectures unsafe for wide-scale deployment. Our findings underscore the urgent need for structural, privacy-by-design safeguards to ensure an ethical and inclusive web for everyone.
comment: 11 pages, 2 figures
☆ GenZ: Foundational models as latent variable generators within traditional statistical models
We present GenZ, a hybrid model that bridges foundational models and statistical modeling through interpretable semantic features. While large language models possess broad domain knowledge, they often fail to capture dataset-specific patterns critical for prediction tasks. Our approach addresses this by discovering semantic feature descriptions through an iterative process that contrasts groups of items identified via statistical modeling errors, rather than relying solely on the foundational model's domain understanding. We formulate this as a generalized EM algorithm that jointly optimizes semantic feature descriptors and statistical model parameters. The method prompts a frozen foundational model to classify items based on discovered features, treating these judgments as noisy observations of latent binary features that predict real-valued targets through learned statistical relationships. We demonstrate the approach on two domains: house price prediction (hedonic regression) and cold-start collaborative filtering for movie recommendations. On house prices, our model achieves 12\% median relative error using discovered semantic features from multimodal listing data, substantially outperforming a GPT-5 baseline (38\% error) that relies on the LLM's general domain knowledge. For Netflix movie embeddings, our model predicts collaborative filtering representations with 0.59 cosine similarity purely from semantic descriptions -- matching the performance that would require approximately 4000 user ratings through traditional collaborative filtering. The discovered features reveal dataset-specific patterns (e.g., architectural details predicting local housing markets, franchise membership predicting user preferences) that diverge from the model's domain knowledge alone.
☆ Explaining Why Things Go Where They Go: Interpretable Constructs of Human Organizational Preferences IEEE
Robotic systems for household object rearrangement often rely on latent preference models inferred from human demonstrations. While effective at prediction, these models offer limited insight into the interpretable factors that guide human decisions. We introduce an explicit formulation of object arrangement preferences along four interpretable constructs: spatial practicality (putting items where they naturally fit best in the space), habitual convenience (making frequently used items easy to reach), semantic coherence (placing items together if they are used for the same task or are contextually related), and commonsense appropriateness (putting things where people would usually expect to find them). To capture these constructs, we designed and validated a self-report questionnaire through a 63-participant online study. Results confirm the psychological distinctiveness of these constructs and their explanatory power across two scenarios (kitchen and living room). We demonstrate the utility of these constructs by integrating them into a Monte Carlo Tree Search (MCTS) planner and show that when guided by participant-derived preferences, our planner can generate reasonable arrangements that closely align with those generated by participants. This work contributes a compact, interpretable formulation of object arrangement preferences and a demonstration of how it can be operationalized for robot planning.
comment: Accepted to the 2026 ACM/IEEE International Conference on Human-Robot Interaction (HRI '26)
☆ Video and Language Alignment in 2D Systems for 3D Multi-object Scenes with Multi-Information Derivative-Free Control
Cross-modal systems trained on 2D visual inputs are presented with a dimensional shift when processing 3D scenes. An in-scene camera bridges the dimensionality gap but requires learning a control module. We introduce a new method that improves multivariate mutual information estimates by regret minimisation with derivative-free optimisation. Our algorithm enables off-the-shelf cross-modal systems trained on 2D visual inputs to adapt online to object occlusions and differentiate features. The pairing of expressive measures and value-based optimisation assists control of an in-scene camera to learn directly from the noisy outputs of vision-language models. The resulting pipeline improves performance in cross-modal tasks on multi-object 3D scenes without resorting to pretraining or finetuning.
☆ Practising responsibility: Ethics in NLP as a hands-on course
As Natural Language Processing (NLP) systems become more pervasive, integrating ethical considerations into NLP education has become essential. However, this presents inherent challenges in curriculum development: the field's rapid evolution from both academia and industry, and the need to foster critical thinking beyond traditional technical training. We introduce our course on Ethical Aspects in NLP and our pedagogical approach, grounded in active learning through interactive sessions, hands-on activities, and "learning by teaching" methods. Over four years, the course has been refined and adapted across different institutions, educational levels, and interdisciplinary backgrounds; it has also yielded many reusable products, both in the form of teaching materials and in the form of actual educational products aimed at diverse audiences, made by the students themselves. By sharing our approach and experience, we hope to provide inspiration for educators seeking to incorporate social impact considerations into their curricula.
☆ LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)
Large language models (LLMs) have made rapid progress in formal theorem proving, yet current benchmarks under-measure the kind of abstraction and library-mediated reasoning that organizes modern mathematics. In parallel with FATE's emphasis on frontier algebra, we introduce LeanCat, a Lean benchmark for category-theoretic formalization -- a unifying language for mathematical structure and a core layer of modern proof engineering -- serving as a stress test of structural, interface-level reasoning. Part I: 1-Categories contains 100 fully formalized statement-level tasks, curated into topic families and three difficulty tiers via an LLM-assisted + human grading process. The best model solves 8.25% of tasks at pass@1 (32.50%/4.17%/0.00% by Easy/Medium/High) and 12.00% at pass@4 (50.00%/4.76%/0.00%). We also evaluate LeanBridge which use LeanExplore to search Mathlib, and observe consistent gains over single-model baselines. LeanCat is intended as a compact, reusable checkpoint for tracking both AI and human progress toward reliable, research-level formalization in Lean.
comment: 11 pages, 4 figures, 1 table
☆ HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment
Slate recommendation, where users are presented with a ranked list of items simultaneously, is widely adopted in online platforms. Recent advances in generative models have shown promise in slate recommendation by modeling sequences of discrete semantic IDs autoregressively. However, existing autoregressive approaches suffer from semantically entangled item tokenization and inefficient sequential decoding that lacks holistic slate planning. To address these limitations, we propose HiGR, an efficient generative slate recommendation framework that integrates hierarchical planning with listwise preference alignment. First, we propose an auto-encoder utilizing residual quantization and contrastive constraints to tokenize items into semantically structured IDs for controllable generation. Second, HiGR decouples generation into a list-level planning stage for global slate intent, followed by an item-level decoding stage for specific item selection. Third, we introduce a listwise preference alignment objective to directly optimize slate quality using implicit user feedback. Experiments on our large-scale commercial media platform demonstrate that HiGR delivers consistent improvements in both offline evaluations and online deployment. Specifically, it outperforms state-of-the-art methods by over 10% in offline recommendation quality with a 5x inference speedup, while further achieving a 1.22% and 1.73% increase in Average Watch Time and Average Video Views in online A/B tests.
☆ Dream2Flow: Bridging Video Generation and Open-World Manipulation with 3D Object Flow
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.
comment: Project website: https://dream2flow.github.io/
☆ AstroReview: An LLM-driven Multi-Agent Framework for Telescope Proposal Peer Review and Refinement
Competitive access to modern observatories has intensified as proposal volumes outpace available telescope time, making timely, consistent, and transparent peer review a critical bottleneck for the advancement of astronomy. Automating parts of this process is therefore both scientifically significant and operationally necessary to ensure fair allocation and reproducible decisions at scale. We present AstroReview, an open-source, agent-based framework that automates proposal review in three stages: (i) novelty and scientific merit, (ii) feasibility and expected yield, and (iii) meta-review and reliability verification. Task isolation and explicit reasoning traces curb hallucinations and improve transparency. Without any domain specific fine tuning, AstroReview used in our experiments only for the last stage, correctly identifies genuinely accepted proposals with an accuracy of 87%. The AstroReview in Action module replicates the review and refinement loop; with its integrated Proposal Authoring Agent, the acceptance rate of revised drafts increases by 66% after two iterations, showing that iterative feedback combined with automated meta-review and reliability verification delivers measurable quality gains. Together, these results point to a practical path toward scalable, auditable, and higher throughput proposal review for resource limited facilities.
☆ LSRE: Latent Semantic Rule Encoding for Real-Time Semantic Risk Detection in Autonomous Driving
Real-world autonomous driving must adhere to complex human social rules that extend beyond legally codified traffic regulations. Many of these semantic constraints, such as yielding to emergency vehicles, complying with traffic officers' gestures, or stopping for school buses, are intuitive for humans yet difficult to encode explicitly. Although large vision-language models (VLMs) can interpret such semantics, their inference cost makes them impractical for real-time deployment.This work proposes LSRE, a Latent Semantic Rule Encoding framework that converts sparsely sampled VLM judgments into decision boundaries within the latent space of a recurrent world model. By encoding language-defined safety semantics into a lightweight latent classifier, LSRE enables real-time semantic risk assessment at 10 Hz without per-frame VLM queries. Experiments on six semantic-failure scenarios in CARLA demonstrate that LSRE attains semantic risk detection accuracy comparable to a large VLM baseline, while providing substantially earlier hazard anticipation and maintaining low computational latency. LSRE further generalizes to rarely seen semantic-similar test cases, indicating that language-guided latent classification offers an effective and deployable mechanism for semantic safety monitoring in autonomous driving.
☆ BandiK: Efficient Multi-Task Decomposition Using a Multi-Bandit Framework
The challenge of effectively transferring knowledge across multiple tasks is of critical importance and is also present in downstream tasks with foundation models. However, the nature of transfer, its transitive-intransitive nature, is still an open problem, and negative transfer remains a significant obstacle. Selection of beneficial auxiliary task sets in multi-task learning is frequently hindered by the high computational cost of their evaluation, the high number of plausible candidate auxiliary sets, and the varying complexity of selection across target tasks. To address these constraints, we introduce BandiK, a novel three-stage multi-task auxiliary task subset selection method using multi-bandits, where each arm pull evaluates candidate auxiliary sets by training and testing a multiple output neural network on a single random train-test dataset split. Firstly, BandiK estimates the pairwise transfers between tasks, which helps in identifying which tasks are likely to benefit from joint learning. In the second stage, it constructs a linear number of candidate sets of auxiliary tasks (in the number of all tasks) for each target task based on the initial estimations, significantly reducing the exponential number of potential auxiliary task sets. Thirdly, it employs a Multi-Armed Bandit (MAB) framework for each task, where the arms correspond to the performance of candidate auxiliary sets realized as multiple output neural networks over train-test data set splits. To enhance efficiency, BandiK integrates these individual task-specific MABs into a multi-bandit structure. The proposed multi-bandit solution exploits that the same neural network realizes multiple arms of different individual bandits corresponding to a given candidate set. This semi-overlapping arm property defines a novel multi-bandit cost/reward structure utilized in BandiK.
comment: 8 pages, 14 figures
☆ Evolving, Not Training: Zero-Shot Reasoning Segmentation via Evolutionary Prompting
Reasoning Segmentation requires models to interpret complex, context-dependent linguistic queries to achieve pixel-level localization. Current dominant approaches rely heavily on Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL). However, SFT suffers from catastrophic forgetting and domain dependency, while RL is often hindered by training instability and rigid reliance on predefined reward functions. Although recent training-free methods circumvent these training burdens, they are fundamentally limited by a static inference paradigm. These methods typically rely on a single-pass "generate-then-segment" chain, which suffers from insufficient reasoning depth and lacks the capability to self-correct linguistic hallucinations or spatial misinterpretations. In this paper, we challenge these limitations and propose EVOL-SAM3, a novel zero-shot framework that reformulates reasoning segmentation as an inference-time evolutionary search process. Instead of relying on a fixed prompt, EVOL-SAM3 maintains a population of prompt hypotheses and iteratively refines them through a "Generate-Evaluate-Evolve" loop. We introduce a Visual Arena to assess prompt fitness via reference-free pairwise tournaments, and a Semantic Mutation operator to inject diversity and correct semantic errors. Furthermore, a Heterogeneous Arena module integrates geometric priors with semantic reasoning to ensure robust final selection. Extensive experiments demonstrate that EVOL-SAM3 not only substantially outperforms static baselines but also significantly surpasses fully supervised state-of-the-art methods on the challenging ReasonSeg benchmark in a zero-shot setting. The code is available at https://github.com/AHideoKuzeA/Evol-SAM3.
☆ Nested Learning: The Illusion of Deep Learning Architectures NeurIPS
Despite the recent progresses, particularly in developing Language Models, there are fundamental challenges and unanswered questions about how such models can continually learn/memorize, self-improve, and find effective solutions. In this paper, we present a new learning paradigm, called Nested Learning (NL), that coherently represents a machine learning model with a set of nested, multi-level, and/or parallel optimization problems, each of which with its own context flow. Through the lenses of NL, existing deep learning methods learns from data through compressing their own context flow, and in-context learning naturally emerges in large models. NL suggests a philosophy to design more expressive learning algorithms with more levels, resulting in higher-order in-context learning and potentially unlocking effective continual learning capabilities. We advocate for NL by presenting three core contributions: (1) Expressive Optimizers: We show that known gradient-based optimizers, such as Adam, SGD with Momentum, etc., are in fact associative memory modules that aim to compress the gradients' information (by gradient descent). Building on this insight, we present other more expressive optimizers with deep memory and/or more powerful learning rules; (2) Self-Modifying Learning Module: Taking advantage of NL's insights on learning algorithms, we present a sequence model that learns how to modify itself by learning its own update algorithm; and (3) Continuum Memory System: We present a new formulation for memory system that generalizes the traditional viewpoint of long/short-term memory. Combining our self-modifying sequence model with the continuum memory system, we present a continual learning module, called Hope, showing promising results in language modeling, knowledge incorporation, and few-shot generalization tasks, continual learning, and long-context reasoning tasks.
comment: A version of this work is published at Neural Information Processing Systems (NeurIPS) 2025
☆ BatteryAgent: Synergizing Physics-Informed Interpretation with LLM Reasoning for Intelligent Battery Fault Diagnosis
Fault diagnosis of lithium-ion batteries is critical for system safety. While existing deep learning methods exhibit superior detection accuracy, their "black-box" nature hinders interpretability. Furthermore, restricted by binary classification paradigms, they struggle to provide root cause analysis and maintenance recommendations. To address these limitations, this paper proposes BatteryAgent, a hierarchical framework that integrates physical knowledge features with the reasoning capabilities of Large Language Models (LLMs). The framework comprises three core modules: (1) A Physical Perception Layer that utilizes 10 mechanism-based features derived from electrochemical principles, balancing dimensionality reduction with physical fidelity; (2) A Detection and Attribution Layer that employs Gradient Boosting Decision Trees and SHAP to quantify feature contributions; and (3) A Reasoning and Diagnosis Layer that leverages an LLM as the agent core. This layer constructs a "numerical-semantic" bridge, combining SHAP attributions with a mechanism knowledge base to generate comprehensive reports containing fault types, root cause analysis, and maintenance suggestions. Experimental results demonstrate that BatteryAgent effectively corrects misclassifications on hard boundary samples, achieving an AUROC of 0.986, which significantly outperforms current state-of-the-art methods. Moreover, the framework extends traditional binary detection to multi-type interpretable diagnosis, offering a new paradigm shift from "passive detection" to "intelligent diagnosis" for battery safety management.
☆ R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory AAMAS 2026
We present R-Debater, an agentic framework for generating multi-turn debates built on argumentative memory. Grounded in rhetoric and memory studies, the system views debate as a process of recalling and adapting prior arguments to maintain stance consistency, respond to opponents, and support claims with evidence. Specifically, R-Debater integrates a debate knowledge base for retrieving case-like evidence and prior debate moves with a role-based agent that composes coherent utterances across turns. We evaluate on standardized ORCHID debates, constructing a 1,000-item retrieval corpus and a held-out set of 32 debates across seven domains. Two tasks are evaluated: next-utterance generation, assessed by InspireScore (subjective, logical, and factual), and adversarial multi-turn simulations, judged by Debatrix (argument, source, language, and overall). Compared with strong LLM baselines, R-Debater achieves higher single-turn and multi-turn scores. Human evaluation with 20 experienced debaters further confirms its consistency and evidence use, showing that combining retrieval grounding with structured planning yields more faithful, stance-aligned, and coherent debates across turns.
comment: Accepteed by AAMAS 2026 full paper
☆ Multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis under unseen working conditions
Intelligent fault diagnosis has become an indispensable technique for ensuring machinery reliability. However, existing methods suffer significant performance decline in real-world scenarios where models are tested under unseen working conditions, while domain adaptation approaches are limited to their reliance on target domain samples. Moreover, most existing studies rely on single-modal sensing signals, overlooking the complementary nature of multi-modal information for improving model generalization. To address these limitations, this paper proposes a multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis. A dual disentanglement framework is developed to decouple modality-invariant and modality-specific features, as well as domain-invariant and domain-specific representations, enabling both comprehensive multi-modal representation learning and robust domain generalization. A cross-domain mixed fusion strategy is designed to randomly mix modality information across domains for modality and domain diversity augmentation. Furthermore, a triple-modal fusion mechanism is introduced to adaptively integrate multi-modal heterogeneous information. Extensive experiments are conducted on induction motor fault diagnosis under both unseen constant and time-varying working conditions. The results demonstrate that the proposed method consistently outperforms advanced methods and comprehensive ablation studies further verify the effectiveness of each proposed component and multi-modal fusion. The code is available at: https://github.com/xiapc1996/MMDG.
comment: 21 pages, 8 figures
☆ An Adaptive, Disentangled Representation for Multidimensional MRI Reconstruction
We present a new approach for representing and reconstructing multidimensional magnetic resonance imaging (MRI) data. Our method builds on a novel, learned feature-based image representation that disentangles different types of features, such as geometry and contrast, into distinct low-dimensional latent spaces, enabling better exploitation of feature correlations in multidimensional images and incorporation of pre-learned priors specific to different feature types for reconstruction. More specifically, the disentanglement was achieved via an encoderdecoder network and image transfer training using large public data, enhanced by a style-based decoder design. A latent diffusion model was introduced to impose stronger constraints on distinct feature spaces. New reconstruction formulations and algorithms were developed to integrate the learned representation with a zero-shot selfsupervised learning adaptation and subspace modeling. The proposed method has been evaluated on accelerated T1 and T2 parameter mapping, achieving improved performance over state-of-the-art reconstruction methods, without task-specific supervised training or fine-tuning. This work offers a new strategy for learning-based multidimensional image reconstruction where only limited data are available for problem-specific or task-specific training.
☆ VLA-RAIL: A Real-Time Asynchronous Inference Linker for VLA Models and Robots
Vision-Language-Action (VLA) models have achieved remarkable breakthroughs in robotics, with the action chunk playing a dominant role in these advances. Given the real-time and continuous nature of robotic motion control, the strategies for fusing a queue of successive action chunks have a profound impact on the overall performance of VLA models. Existing methods suffer from jitter, stalling, or even pauses in robotic action execution, which not only limits the achievable execution speed but also reduces the overall success rate of task completion. This paper introduces VLA-RAIL (A Real-Time Asynchronous Inference Linker), a novel framework designed to address these issues by conducting model inference and robot motion control asynchronously and guaranteeing smooth, continuous, and high-speed action execution. The core contributions of the paper are two fold: a Trajectory Smoother that effectively filters out the noise and jitter in the trajectory of one action chunk using polynomial fitting and a Chunk Fuser that seamlessly align the current executing trajectory and the newly arrived chunk, ensuring position, velocity, and acceleration continuity between two successive action chunks. We validate the effectiveness of VLA-RAIL on a benchmark of dynamic simulation tasks and several real-world manipulation tasks. Experimental results demonstrate that VLA-RAIL significantly reduces motion jitter, enhances execution speed, and improves task success rates, which will become a key infrastructure for the large-scale deployment of VLA models.
☆ Renormalization Group Guided Tensor Network Structure Search AAAI 2026
Tensor network structure search (TN-SS) aims to automatically discover optimal network topologies and rank configurations for efficient tensor decomposition in high-dimensional data representation. Despite recent advances, existing TN-SS methods face significant limitations in computational tractability, structure adaptivity, and optimization robustness across diverse tensor characteristics. They struggle with three key challenges: single-scale optimization missing multi-scale structures, discrete search spaces hindering smooth structure evolution, and separated structure-parameter optimization causing computational inefficiency. We propose RGTN (Renormalization Group guided Tensor Network search), a physics-inspired framework transforming TN-SS via multi-scale renormalization group flows. Unlike fixed-scale discrete search methods, RGTN uses dynamic scale-transformation for continuous structure evolution across resolutions. Its core innovation includes learnable edge gates for optimization-stage topology modification and intelligent proposals based on physical quantities like node tension measuring local stress and edge information flow quantifying connectivity importance. Starting from low-complexity coarse scales and refining to finer ones, RGTN finds compact structures while escaping local minima via scale-induced perturbations. Extensive experiments on light field data, high-order synthetic tensors, and video completion tasks show RGTN achieves state-of-the-art compression ratios and runs 4-600$\times$ faster than existing methods, validating the effectiveness of our physics-inspired approach.
comment: Accepted to AAAI 2026
☆ Do Large Language Models Know What They Are Capable Of?
We investigate whether large language models (LLMs) can predict whether they will succeed on a given task and whether their predictions improve as they progress through multi-step tasks. We also investigate whether LLMs can learn from in-context experiences to make better decisions about whether to pursue a task in scenarios where failure is costly. All LLMs we tested are overconfident, but most predict their success with better-than-random discriminatory power. We find that newer and larger LLMs generally do not have greater discriminatory power, though Claude models do show such a trend. On multi-step agentic tasks, the overconfidence of several frontier LLMs worsens as they progress through the tasks, and reasoning LLMs perform comparably to or worse than non-reasoning LLMs. With in-context experiences of failure, some but not all LLMs reduce their overconfidence leading to significantly improved decision making, while others do not. Interestingly, all LLMs' decisions are approximately rational given their estimated probabilities of success, yet their overly-optimistic estimates result in poor decision making. These results suggest that current LLM agents are hindered by their lack of awareness of their own capabilities. We discuss the implications of LLMs' awareness of their capabilities for AI misuse and misalignment risks.
comment: 23 pages, 8 figures
☆ Hybrid Motion Planning with Deep Reinforcement Learning for Mobile Robot Navigation
Autonomous mobile robots operating in complex, dynamic environments face the dual challenge of navigating large-scale, structurally diverse spaces with static obstacles while safely interacting with various moving agents. Traditional graph-based planners excel at long-range pathfinding but lack reactivity, while Deep Reinforcement Learning (DRL) methods demonstrate strong collision avoidance but often fail to reach distant goals due to a lack of global context. We propose Hybrid Motion Planning with Deep Reinforcement Learning (HMP-DRL), a hybrid framework that bridges this gap. Our approach utilizes a graph-based global planner to generate a path, which is integrated into a local DRL policy via a sequence of checkpoints encoded in both the state space and reward function. To ensure social compliance, the local planner employs an entity-aware reward structure that dynamically adjusts safety margins and penalties based on the semantic type of surrounding agents. We validate the proposed method through extensive testing in a realistic simulation environment derived from real-world map data. Comprehensive experiments demonstrate that HMP-DRL consistently outperforms other methods, including state-of-the-art approaches, in terms of key metrics of robot navigation: success rate, collision rate, and time to reach the goal. Overall, these findings confirm that integrating long-term path guidance with semantically-aware local control significantly enhances both the safety and reliability of autonomous navigation in complex human-centric settings.
comment: 22 pages, 4 figures
☆ DynaFix: Iterative Automated Program Repair Driven by Execution-Level Dynamic Information
Automated Program Repair (APR) aims to automatically generate correct patches for buggy programs. Recent approaches leveraging large language models (LLMs) have shown promise but face limitations. Most rely solely on static analysis, ignoring runtime behaviors. Some attempt to incorporate dynamic signals, but these are often restricted to training or fine-tuning, or injected only once into the repair prompt, without iterative use. This fails to fully capture program execution. Current iterative repair frameworks typically rely on coarse-grained feedback, such as pass/fail results or exception types, and do not leverage fine-grained execution-level information effectively. As a result, models struggle to simulate human stepwise debugging, limiting their effectiveness in multi-step reasoning and complex bug repair. To address these challenges, we propose DynaFix, an execution-level dynamic information-driven APR method that iteratively leverages runtime information to refine the repair process. In each repair round, DynaFix captures execution-level dynamic information such as variable states, control-flow paths, and call stacks, transforming them into structured prompts to guide LLMs in generating candidate patches. If a patch fails validation, DynaFix re-executes the modified program to collect new execution information for the next attempt. This iterative loop incrementally improves patches based on updated feedback, similar to the stepwise debugging practices of human developers. We evaluate DynaFix on the Defects4J v1.2 and v2.0 benchmarks. DynaFix repairs 186 single-function bugs, a 10% improvement over state-of-the-art baselines, including 38 bugs previously unrepaired. It achieves correct patches within at most 35 attempts, reducing the patch search space by 70% compared with existing methods, thereby demonstrating both effectiveness and efficiency in repairing complex bugs.
comment: 22 pages, 7 figures, preprint version
☆ AI-Driven Acoustic Voice Biomarker-Based Hierarchical Classification of Benign Laryngeal Voice Disorders from Sustained Vowels
Benign laryngeal voice disorders affect nearly one in five individuals and often manifest as dysphonia, while also serving as non-invasive indicators of broader physiological dysfunction. We introduce a clinically inspired hierarchical machine learning framework for automated classification of eight benign voice disorders alongside healthy controls, using acoustic features extracted from short, sustained vowel phonations. Experiments utilized 15,132 recordings from 1,261 speakers in the Saarbruecken Voice Database, covering vowels /a/, /i/, and /u/ at neutral, high, low, and gliding pitches. Mirroring clinical triage workflows, the framework operates in three sequential stages: Stage 1 performs binary screening of pathological versus non-pathological voices by integrating convolutional neural network-derived mel-spectrogram features with 21 interpretable acoustic biomarkers; Stage 2 stratifies voices into Healthy, Functional or Psychogenic, and Structural or Inflammatory groups using a cubic support vector machine; Stage 3 achieves fine-grained classification by incorporating probabilistic outputs from prior stages, improving discrimination of structural and inflammatory disorders relative to functional conditions. The proposed system consistently outperformed flat multi-class classifiers and pre-trained self-supervised models, including META HuBERT and Google HeAR, whose generic objectives are not optimized for sustained clinical phonation. By combining deep spectral representations with interpretable acoustic features, the framework enhances transparency and clinical alignment. These results highlight the potential of quantitative voice biomarkers as scalable, non-invasive tools for early screening, diagnostic triage, and longitudinal monitoring of vocal health.
☆ AutoFed: Manual-Free Federated Traffic Prediction via Personalized Prompt
Accurate traffic prediction is essential for Intelligent Transportation Systems, including ride-hailing, urban road planning, and vehicle fleet management. However, due to significant privacy concerns surrounding traffic data, most existing methods rely on local training, resulting in data silos and limited knowledge sharing. Federated Learning (FL) offers an efficient solution through privacy-preserving collaborative training; however, standard FL struggles with the non-independent and identically distributed (non-IID) problem among clients. This challenge has led to the emergence of Personalized Federated Learning (PFL) as a promising paradigm. Nevertheless, current PFL frameworks require further adaptation for traffic prediction tasks, such as specialized graph feature engineering, data processing, and network architecture design. A notable limitation of many prior studies is their reliance on hyper-parameter optimization across datasets-information that is often unavailable in real-world scenarios-thus impeding practical deployment. To address this challenge, we propose AutoFed, a novel PFL framework for traffic prediction that eliminates the need for manual hyper-parameter tuning. Inspired by prompt learning, AutoFed introduces a federated representor that employs a client-aligned adapter to distill local data into a compact, globally shared prompt matrix. This prompt then conditions a personalized predictor, allowing each client to benefit from cross-client knowledge while maintaining local specificity. Extensive experiments on real-world datasets demonstrate that AutoFed consistently achieves superior performance across diverse scenarios. The code of this paper is provided at https://github.com/RS2002/AutoFed .
☆ Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
☆ Youtu-Agent: Scaling Agent Productivity with Automated Generation and Hybrid Policy Optimization
Existing Large Language Model (LLM) agent frameworks face two significant challenges: high configuration costs and static capabilities. Building a high-quality agent often requires extensive manual effort in tool integration and prompt engineering, while deployed agents struggle to adapt to dynamic environments without expensive fine-tuning. To address these issues, we propose \textbf{Youtu-Agent}, a modular framework designed for the automated generation and continuous evolution of LLM agents. Youtu-Agent features a structured configuration system that decouples execution environments, toolkits, and context management, enabling flexible reuse and automated synthesis. We introduce two generation paradigms: a \textbf{Workflow} mode for standard tasks and a \textbf{Meta-Agent} mode for complex, non-standard requirements, capable of automatically generating tool code, prompts, and configurations. Furthermore, Youtu-Agent establishes a hybrid policy optimization system: (1) an \textbf{Agent Practice} module that enables agents to accumulate experience and improve performance through in-context optimization without parameter updates; and (2) an \textbf{Agent RL} module that integrates with distributed training frameworks to enable scalable and stable reinforcement learning of any Youtu-Agents in an end-to-end, large-scale manner. Experiments demonstrate that Youtu-Agent achieves state-of-the-art performance on WebWalkerQA (71.47\%) and GAIA (72.8\%) using open-weight models. Our automated generation pipeline achieves over 81\% tool synthesis success rate, while the Practice module improves performance on AIME 2024/2025 by +2.7\% and +5.4\% respectively. Moreover, our Agent RL training achieves 40\% speedup with steady performance improvement on 7B LLMs, enhancing coding/reasoning and searching capabilities respectively up to 35\% and 21\% on Maths and general/multi-hop QA benchmarks.
☆ Chat-Driven Optimal Management for Virtual Network Services
This paper proposes a chat-driven network management framework that integrates natural language processing (NLP) with optimization-based virtual network allocation, enabling intuitive and reliable reconfiguration of virtual network services. Conventional intent-based networking (IBN) methods depend on statistical language models to interpret user intent but cannot guarantee the feasibility of generated configurations. To overcome this, we develop a two-stage framework consisting of an Interpreter, which extracts intent from natural language prompts using NLP, and an Optimizer, which computes feasible virtual machine (VM) placement and routing via an integer linear programming. In particular, the Interpreter translates user chats into update directions, i.e., whether to increase, decrease, or maintain parameters such as CPU demand and latency bounds, thereby enabling iterative refinement of the network configuration. In this paper, two intent extractors, which are a Sentence-BERT model with support vector machine (SVM) classifiers and a large language model (LLM), are introduced. Experiments in single-user and multi-user settings show that the framework dynamically updates VM placement and routing while preserving feasibility. The LLM-based extractor achieves higher accuracy with fewer labeled samples, whereas the Sentence-BERT with SVM classifiers provides significantly lower latency suitable for real-time operation. These results underscore the effectiveness of combining NLP-driven intent extraction with optimization-based allocation for safe, interpretable, and user-friendly virtual network management.
☆ Group Deliberation Oriented Multi-Agent Conversational Model for Complex Reasoning IEEE
This paper proposes a group deliberation oriented multi-agent conversational model to address the limitations of single large language models in complex reasoning tasks. The model adopts a three-level role division architecture consisting of generation, verification, and integration. An opinion generation agent produces diverse reasoning perspectives, an evidence verification agent retrieves external knowledge and quantifies factual support, and a consistency arbitration agent integrates logically coherent conclusions. A self-game mechanism is introduced to expand multi-path reasoning trajectories, while a retrieval enhancement module dynamically supplements external knowledge. A composite reward function combining factual consistency and logical coherence is designed, and an improved proximal policy optimization strategy is applied for collaborative training. Experimental results show that the proposed model improves multi-hop reasoning accuracy by 16.8 percent on HotpotQA, 14.3 percent on 2WikiMultihopQA, and 19.2 percent on MeetingBank, while improving consistency by 21.5 percent. The model achieves higher reasoning efficiency than mainstream multi-agent approaches, providing an effective and stable solution for complex reasoning tasks.
comment: Accepted by IEEE ITCA 2025
☆ Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization IEEE
Large Language Models (LLMs) perform well in language tasks but often lack collaborative awareness and struggle to optimize global performance in multi-agent settings. We present a reinforcement learning-augmented LLM agent framework that formulates cooperation as a decentralized partially observable Markov decision process (Dec-POMDP) and adopts centralized training with decentralized execution (CTDE). We introduce Group Relative Policy Optimization (GRPO) to jointly optimize agent policies with access to global signals during training, together with a simplified joint reward that balances task quality, speed, and coordination cost. On collaborative writing and coding benchmarks, our framework delivers a 3x increase in task processing speed over single-agent baselines, 98.7% structural/style consistency in writing, and a 74.6% test pass rate in coding. The approach consistently outperforms strong multi-agent LLM baselines and provides a practical path toward reliable collaboration in complex workflows.
comment: Accepted by IEEE ICFTIC 2025
☆ Recursive Language Models
We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs and common long-context scaffolds across four diverse long-context tasks, while having comparable (or cheaper) cost per query.
comment: 9 pages, 33 with Appendix
☆ Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time
Large Language Models (LLMs) often rely on long chain-of-thought (CoT) reasoning to solve complex tasks. While effective, these trajectories are frequently inefficient, leading to high latency from excessive token generation, or unstable reasoning that alternates between underthinking (shallow, inconsistent steps) and overthinking (repetitive, verbose reasoning). In this work, we study the structure of reasoning trajectories and uncover specialized attention heads that correlate with distinct cognitive behaviors such as verification and backtracking. By lightly intervening on these heads at inference time, we can steer the model away from inefficient modes. Building on this insight, we propose CREST, a training-free method for Cognitive REasoning Steering at Test-time. CREST has two components: (1) an offline calibration step that identifies cognitive heads and derives head-specific steering vectors, and (2) an inference-time procedure that rotates hidden representations to suppress components along those vectors. CREST adaptively suppresses unproductive reasoning behaviors, yielding both higher accuracy and lower computational cost. Across diverse reasoning benchmarks and models, CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%, offering a simple and effective pathway to faster, more reliable LLM reasoning.
☆ SynRAG: A Large Language Model Framework for Executable Query Generation in Heterogeneous SIEM System
Security Information and Event Management (SIEM) systems are essential for large enterprises to monitor their IT infrastructure by ingesting and analyzing millions of logs and events daily. Security Operations Center (SOC) analysts are tasked with monitoring and analyzing this vast data to identify potential threats and take preventive actions to protect enterprise assets. However, the diversity among SIEM platforms, such as Palo Alto Networks Qradar, Google SecOps, Splunk, Microsoft Sentinel and the Elastic Stack, poses significant challenges. As these systems differ in attributes, architecture, and query languages, making it difficult for analysts to effectively monitor multiple platforms without undergoing extensive training or forcing enterprises to expand their workforce. To address this issue, we introduce SynRAG, a unified framework that automatically generates threat detection or incident investigation queries for multiple SIEM platforms from a platform-agnostic specification. SynRAG can generate platformspecific queries from a single high-level specification written by analysts. Without SynRAG, analysts would need to manually write separate queries for each SIEM platform, since query languages vary significantly across systems. This framework enables seamless threat detection and incident investigation across heterogeneous SIEM environments, reducing the need for specialized training and manual query translation. We evaluate SynRAG against state-of-the-art language models, including GPT, Llama, DeepSeek, Gemma, and Claude, using Qradar and SecOps as representative SIEM systems. Our results demonstrate that SynRAG generates significantly better queries for crossSIEM threat detection and incident investigation compared to the state-of-the-art base models.
☆ MCPAgentBench: A Real-world Task Benchmark for Evaluating LLM Agent MCP Tool Use
Large Language Models (LLMs) are increasingly serving as autonomous agents, and their utilization of external tools via the Model Context Protocol (MCP) is considered a future trend. Current MCP evaluation sets suffer from issues such as reliance on external MCP services and a lack of difficulty awareness. To address these limitations, we propose MCPAgentBench, a benchmark based on real-world MCP definitions designed to evaluate the tool-use capabilities of agents. We construct a dataset containing authentic tasks and simulated MCP tools. The evaluation employs a dynamic sandbox environment that presents agents with candidate tool lists containing distractors, thereby testing their tool selection and discrimination abilities. Furthermore, we introduce comprehensive metrics to measure both task completion rates and execution efficiency. Experiments conducted on various latest mainstream Large Language Models reveal significant performance differences in handling complex, multi-step tool invocations. All code is open-source at Github.
☆ Localized Calibrated Uncertainty in Code Language Models
Large Language models (LLMs) can generate complicated source code from natural language prompts. However, LLMs can generate output that deviates from what the user wants, requiring supervision and editing. To support this process, we offer techniques to localize where generations might be misaligned from user intent. We first create a dataset of "Minimal Intent Aligning Patches" of repaired LLM generated programs. Each program uses test cases to verify correctness. After creating a dataset of programs, we measure how well various techniques can assign a well-calibrated probability to indicate which parts of code will be edited in a minimal patch (i.e., give a probability that corresponds with empirical odds it is edited). We compare white-box probing (where we propose a technique for efficient arbitrary-span querying), against black-box reflective and self-consistency based approaches. We find probes with a small supervisor model can achieve low calibration error and Brier Skill Score of approx 0.2 estimating edited lines on code generated by models many orders of magnitude larger. We discuss the generalizability of the techniques, and the connections to AI oversight and control, finding a probe trained only on code shows some signs of generalizing to natural language errors if new probability scaling is allowed.
☆ More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization
For extreme low-bit quantization of large language models (LLMs), Double Binary Factorization (DBF) is attractive as it enables efficient inference without sacrificing accuracy. However, the scaling parameters of DBF are too restrictive; after factoring out signs, all rank components share the same magnitude profile, resulting in performance saturation. We propose Multi-envelope DBF (MDBF), which retains a shared pair of 1-bit sign bases but replaces the single envelope with a rank-$l$ envelope. By sharing sign matrices among envelope components, MDBF effectively maintains a binary carrier and utilizes the limited memory budget for magnitude expressiveness. We also introduce a closed-form initialization and an alternating refinement method to optimize MDBF. Across the LLaMA and Qwen families, MDBF enhances perplexity and zero-shot accuracy over previous binary formats at matched bits per weight while preserving the same deployment-friendly inference primitive.
comment: 14 pages, 2 figures
☆ From Building Blocks to Planning: Multi-Step Spatial Reasoning in LLMs with Reinforcement Learning
Spatial reasoning in large language models (LLMs) has gained increasing attention due to applications in navigation and planning. Despite strong general language capabilities, LLMs still struggle with spatial transformations and multi-step planning in structured environments. We propose a two-stage approach that decomposes spatial reasoning into atomic building blocks and their composition. First, we apply supervised fine-tuning on elementary spatial transformations, such as rotation, translation, and scaling, to equip the model with basic spatial physics. We then freeze this physics-aware model and train lightweight LoRA adapters within the GRPO framework to learn policies that compose these building blocks for multi-step planning in puzzle-based environments, in a closed-loop manner. To support this pipeline, we synthesize an ASCII-art dataset and construct a corresponding ASCII-based reinforcement learning environment. Our method consistently outperforms baselines, including the generic backbone, physics-aware model, and end-to-end RL models, under both Dynamic environments with explicit state updates and Static environments where the model must rely on its internal state across steps. In addition, the proposed approach converges faster and exhibits more stable training compared to end-to-end reinforcement learning from scratch. Finally, we analyze attention patterns to assess whether fine-tuning induces meaningful improvements in spatial understanding.
☆ Generative AI-enhanced Sector-based Investment Portfolio Construction
This paper investigates how Large Language Models (LLMs) from leading providers (OpenAI, Google, Anthropic, DeepSeek, and xAI) can be applied to quantitative sector-based portfolio construction. We use LLMs to identify investable universes of stocks within S&P 500 sector indices and evaluate how their selections perform when combined with classical portfolio optimization methods. Each model was prompted to select and weight 20 stocks per sector, and the resulting portfolios were compared with their respective sector indices across two distinct out-of-sample periods: a stable market phase (January-March 2025) and a volatile phase (April-June 2025). Our results reveal a strong temporal dependence in LLM portfolio performance. During stable market conditions, LLM-weighted portfolios frequently outperformed sector indices on both cumulative return and risk-adjusted (Sharpe ratio) measures. However, during the volatile period, many LLM portfolios underperformed, suggesting that current models may struggle to adapt to regime shifts or high-volatility environments underrepresented in their training data. Importantly, when LLM-based stock selection is combined with traditional optimization techniques, portfolio outcomes improve in both performance and consistency. This study contributes one of the first multi-model, cross-provider evaluations of generative AI algorithms in investment management. It highlights that while LLMs can effectively complement quantitative finance by enhancing stock selection and interpretability, their reliability remains market-dependent. The findings underscore the potential of hybrid AI-quantitative frameworks, integrating LLM reasoning with established optimization techniques, to produce more robust and adaptive investment strategies.
☆ Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
High-stakes deployment of vision-language models (VLMs) requires selective prediction, where systems abstain when uncertain rather than risk costly errors. We investigate whether confidence-based abstention provides reliable control over error rates in video question answering, and whether that control remains robust under distribution shift. Using NExT-QA and Gemini 2.0 Flash, we establish two findings. First, confidence thresholding provides mechanistic control in-distribution. Sweeping threshold epsilon produces smooth risk-coverage tradeoffs, reducing error rates f
comment: Preprint. Diagnostic study of confidence-based abstention under evidence truncation
☆ Democratizing Electronic-Photonic AI Systems: An Open-Source AI-Infused Cross-Layer Co-Design and Design Automation Toolflow SP
Photonics is becoming a cornerstone technology for high-performance AI systems and scientific computing, offering unparalleled speed, parallelism, and energy efficiency. Despite this promise, the design and deployment of electronic-photonic AI systems remain highly challenging due to a steep learning curve across multiple layers, spanning device physics, circuit design, system architecture, and AI algorithms. The absence of a mature electronic-photonic design automation (EPDA) toolchain leads to long, inefficient design cycles and limits cross-disciplinary innovation and co-evolution. In this work, we present a cross-layer co-design and automation framework aimed at democratizing photonic AI system development. We begin by introducing our architecture designs for scalable photonic edge AI and Transformer inference, followed by SimPhony, an open-source modeling tool for rapid EPIC AI system evaluation and design-space exploration. We then highlight advances in AI-enabled photonic design automation, including physical AI-based Maxwell solvers, a fabrication-aware inverse design framework, and a scalable inverse training algorithm for meta-optical neural networks, enabling a scalable EPDA stack for next-generation electronic-photonic AI systems.
comment: 9 ages. Accepted to SPIE Photonics West, AI and Optical Data Sciences VII, 2026
☆ Toward Large-Scale Photonics-Empowered AI Systems: From Physical Design Automation to System-Algorithm Co-Exploration SP
In this work, we identify three considerations that are essential for realizing practical photonic AI systems at scale: (1) dynamic tensor operation support for modern models rather than only weight-static kernels, especially for attention/Transformer-style workloads; (2) systematic management of conversion, control, and data-movement overheads, where multiplexing and dataflow must amortize electronic costs instead of letting ADC/DAC and I/O dominate; and (3) robustness under hardware non-idealities that become more severe as integration density grows. To study these coupled tradeoffs quantitatively, and to ensure they remain meaningful under real implementation constraints, we build a cross-layer toolchain that supports photonic AI design from early exploration to physical realization. SimPhony provides implementation-aware modeling and rapid cross-layer evaluation, translating physical costs into system-level metrics so architectural decisions are grounded in realistic assumptions. ADEPT and ADEPT-Z enable end-to-end circuit and topology exploration, connecting system objectives to feasible photonic fabrics under practical device and circuit constraints. Finally, Apollo and LiDAR provide scalable photonic physical design automation, turning candidate circuits into manufacturable layouts while accounting for routing, thermal, and crosstalk constraints.
comment: 10 pages. Accepted to SPIE Photonics West, Optical Interconnects and Packaging 2026
☆ Constructing a Neuro-Symbolic Mathematician from First Principles
Large Language Models (LLMs) exhibit persistent logical failures in complex reasoning due to the lack of an internal axiomatic framework. We propose Mathesis, a neuro-symbolic architecture that encodes mathematical states as higher-order hypergraphs and uses a Symbolic Reasoning Kernel (SRK)--a differentiable logic engine that maps constraints to a continuous energy landscape. By defining a global energy function E(G), where zero energy implies logical consistency, the SRK yields gradient-based signals to train a Hypergraph Transformer Brain, turning proof search into energy minimization. Multi-step deduction is enabled via Monte Carlo Tree Search and Evolutionary Proof Search, guided by learned value functions and semantic unification.
☆ Ask, Clarify, Optimize: Human-LLM Agent Collaboration for Smarter Inventory Control
Inventory management remains a challenge for many small and medium-sized businesses that lack the expertise to deploy advanced optimization methods. This paper investigates whether Large Language Models (LLMs) can help bridge this gap. We show that employing LLMs as direct, end-to-end solvers incurs a significant "hallucination tax": a performance gap arising from the model's inability to perform grounded stochastic reasoning. To address this, we propose a hybrid agentic framework that strictly decouples semantic reasoning from mathematical calculation. In this architecture, the LLM functions as an intelligent interface, eliciting parameters from natural language and interpreting results while automatically calling rigorous algorithms to build the optimization engine. To evaluate this interactive system against the ambiguity and inconsistency of real-world managerial dialogue, we introduce the Human Imitator, a fine-tuned "digital twin" of a boundedly rational manager that enables scalable, reproducible stress-testing. Our empirical analysis reveals that the hybrid agentic framework reduces total inventory costs by 32.1% relative to an interactive baseline using GPT-4o as an end-to-end solver. Moreover, we find that providing perfect ground-truth information alone is insufficient to improve GPT-4o's performance, confirming that the bottleneck is fundamentally computational rather than informational. Our results position LLMs not as replacements for operations research, but as natural-language interfaces that make rigorous, solver-based policies accessible to non-experts.
☆ Mortar: Evolving Mechanics for Automatic Game Design
We present Mortar, a system for autonomously evolving game mechanics for automatic game design. Game mechanics define the rules and interactions that govern gameplay, and designing them manually is a time-consuming and expert-driven process. Mortar combines a quality-diversity algorithm with a large language model to explore a diverse set of mechanics, which are evaluated by synthesising complete games that incorporate both evolved mechanics and those drawn from an archive. The mechanics are evaluated by composing complete games through a tree search procedure, where the resulting games are evaluated by their ability to preserve a skill-based ordering over players -- that is, whether stronger players consistently outperform weaker ones. We assess the mechanics based on their contribution towards the skill-based ordering score in the game. We demonstrate that Mortar produces games that appear diverse and playable, and mechanics that contribute more towards the skill-based ordering score in the game. We perform ablation studies to assess the role of each system component and a user study to evaluate the games based on human feedback.
☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
☆ Large Empirical Case Study: Go-Explore adapted for AI Red Team Testing
Production LLM agents with tool-using capabilities require security testing despite their safety training. We adapt Go-Explore to evaluate GPT-4o-mini across 28 experimental runs spanning six research questions. We find that random-seed variance dominates algorithmic parameters, yielding an 8x spread in outcomes; single-seed comparisons are unreliable, while multi-seed averaging materially reduces variance in our setup. Reward shaping consistently harms performance, causing exploration collapse in 94% of runs or producing 18 false positives with zero verified attacks. In our environment, simple state signatures outperform complex ones. For comprehensive security testing, ensembles provide attack-type diversity, whereas single agents optimize coverage within a given attack type. Overall, these results suggest that seed variance and targeted domain knowledge can outweigh algorithmic sophistication when testing safety-trained models.
♻ ☆ Deep sequence models tend to memorize geometrically; it is unclear why
Deep sequence models are said to store atomic facts predominantly in the form of associative memory: a brute-force lookup of co-occurring entities. We identify a dramatically different form of storage of atomic facts that we term as geometric memory. Here, the model has synthesized embeddings encoding novel global relationships between all entities, including ones that do not co-occur in training. Such storage is powerful: for instance, we show how it transforms a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn $1$-step navigation task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, as against a lookup of local associations, cannot be straightforwardly attributed to typical supervisory, architectural, or optimizational pressures. Counterintuitively, a geometry is learned even when it is more complex than the brute-force lookup. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points out to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery, and unlearning.
♻ ☆ Plan Verification for LLM-Based Embodied Task Completion Agents
Large language model (LLM) based task plans and corresponding human demonstrations for embodied AI may be noisy, with unnecessary actions, redundant navigation, and logical errors that reduce policy quality. We propose an iterative verification framework in which a Judge LLM critiques action sequences and a Planner LLM applies the revisions, yielding progressively cleaner and more spatially coherent trajectories. Unlike rule-based approaches, our method relies on natural language prompting, enabling broad generalization across error types including irrelevant actions, contradictions, and missing steps. On a set of manually annotated actions from the TEACh embodied AI dataset, our framework achieves up to 90% recall and 100% precision across four state-of-the-art LLMs (GPT o4-mini, DeepSeek-R1, Gemini 2.5, LLaMA 4 Scout). The refinement loop converges quickly, with 96.5% of sequences requiring at most three iterations, while improving both temporal efficiency and spatial action organization. Crucially, the method preserves human error-recovery patterns rather than collapsing them, supporting future work on robust corrective behavior. By establishing plan verification as a reliable LLM capability for spatial planning and action refinement, we provide a scalable path to higher-quality training data for imitation learning in embodied AI.
♻ ☆ Spiking Manifesto
Practically everything computers do is better, faster, and more power-efficient than the brain. For example, a calculator performs numerical computations more energy-efficiently than any human. Yet modern AI models are a thousand times less efficient than the brain. These models rely on larger and larger artificial neural networks (ANNs) to boost their encoding capacity, requiring GPUs to perform large-scale matrix multiplications. In contrast, the brain's spiking neural networks (SNNs) exhibit factorially explosive encoding capacity and compute through the polychronization of spikes rather than explicit matrix-vector products, resulting in lower energy requirements. This manifesto proposes a paradigm for framing popular AI models in terms of spiking networks and polychronization, and for interpreting spiking activity as nature's way of implementing look-up tables. This suggests a path toward converting AI models into a novel class of architectures with much smaller size yet combinatorially large encoding capacity, offering the promise of a thousandfold improvement in performance. Code is available at https://github.com/izhikevich/SNN
comment: This is a declaration of principles and a roadmap for spiking networks, intended as a manifesto rather than a conventional research article
♻ ☆ Can machines think efficiently?
The Turing Test is no longer adequate for distinguishing human and machine intelligence. With advanced artificial intelligence systems already passing the original Turing Test and contributing to serious ethical and environmental concerns, we urgently need to update the test. This work expands upon the original imitation game by accounting for an additional factor: the energy spent answering the questions. By adding the constraint of energy, the new test forces us to evaluate intelligence through the lens of efficiency, connecting the abstract problem of thinking to the concrete reality of finite resources. Further, this proposed new test ensures the evaluation of intelligence has a measurable, practical finish line that the original test lacks. This additional constraint compels society to weigh the time savings of using artificial intelligence against its total resource cost.
♻ ☆ Interpretable Perturbation Modeling Through Biomedical Knowledge Graphs
Understanding how small molecules perturb gene expression is essential for uncovering drug mechanisms, predicting off-target effects, and identifying repurposing opportunities. While prior deep learning frameworks have integrated multimodal embeddings into biomedical knowledge graphs (BKGs) and further improved these representations through graph neural network message-passing paradigms, these models have been applied to tasks such as link prediction and binary drug-disease association, rather than the task of gene perturbation, which may unveil more about mechanistic transcriptomic effects. To address this gap, we construct a merged biomedical graph that integrates (i) PrimeKG++, an augmentation of PrimeKG containing semantically rich embeddings for nodes with (ii) LINCS L1000 drug and cell line nodes, initialized with multimodal embeddings from foundation models such as MolFormerXL and BioBERT. Using this heterogeneous graph, we train a graph attention network (GAT) with a downstream prediction head that learns the delta expression profile of over 978 landmark genes for a given drug-cell pair. Our results show that our framework outperforms MLP baselines for differentially expressed genes (DEG) -- which predict the delta expression given a concatenated embedding of drug features, target features, and baseline cell expression -- under the scaffold and random splits. Ablation experiments with edge shuffling and node feature randomization further demonstrate that the edges provided by biomedical KGs enhance perturbation-level prediction. More broadly, our framework provides a path toward mechanistic drug modeling: moving beyond binary drug-disease association tasks to granular transcriptional effects of therapeutic intervention.
♻ ☆ A Geometric Theory of Cognition
Human cognition spans perception, memory, intuitive judgment, deliberative reasoning, action selection, and social inference, yet these capacities are often explained through distinct computational theories. Here we present a unified mathematical framework in which diverse cognitive processes emerge from a single geometric principle. We represent the cognitive state as a point on a differentiable manifold endowed with a learned Riemannian metric that encodes representational constraints, computational costs, and structural relations among cognitive variables. A scalar cognitive potential combines predictive accuracy, structural parsimony, task utility, and normative or logical requirements. Cognition unfolds as the Riemannian gradient flow of this potential, providing a universal dynamical law from which a broad range of psychological phenomena arise. Classical dual-process effects--rapid intuitive responses and slower deliberative reasoning--emerge naturally from metric-induced anisotropies that generate intrinsic time-scale separations and geometric phase transitions, without invoking modular or hybrid architectures. We derive analytical conditions for these regimes and demonstrate their behavioural signatures through simulations of canonical cognitive tasks. Together, these results establish a geometric foundation for cognition and suggest guiding principles for the development of more general and human-like artificial intelligence systems.
♻ ☆ Physics-Informed Neural Networks for Device and Circuit Modeling: A Case Study of NeuroSPICE IEEE
We present NeuroSPICE, a physics-informed neural network (PINN) framework for device and circuit simulation. Unlike conventional SPICE, which relies on time-discretized numerical solvers, NeuroSPICE leverages PINNs to solve circuit differential-algebraic equations (DAEs) by minimizing the residual of the equations through backpropagation. It models device and circuit waveforms using analytical equations in time domain with exact temporal derivatives. While PINNs do not outperform SPICE in speed or accuracy during training, they offer unique advantages such as surrogate models for design optimization and inverse problems. NeuroSPICE's flexibility enables the simulation of emerging devices, including highly nonlinear systems such as ferroelectric memories.
comment: Submitted to IEEE Electron Device Letters
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: Accepted and to appear in IJCNLP-AACL 2025
♻ ☆ HAROOD: A Benchmark for Out-of-distribution Generalization in Sensor-based Human Activity Recognition KDD 2026
Sensor-based human activity recognition (HAR) mines activity patterns from the time-series sensory data. In realistic scenarios, variations across individuals, devices, environments, and time introduce significant distributional shifts for the same activities. Recent efforts attempt to solve this challenge by applying or adapting existing out-of-distribution (OOD) algorithms, but only in certain distribution shift scenarios (e.g., cross-device or cross-position), lacking comprehensive insights on the effectiveness of these algorithms. For instance, is OOD necessary to HAR? Which OOD algorithm performs the best? In this paper, we fill this gap by proposing HAROOD, a comprehensive benchmark for HAR in OOD settings. We define 4 OOD scenarios: cross-person, cross-position, cross-dataset, and cross-time, and build a testbed covering 6 datasets, 16 comparative methods (implemented with CNN-based and Transformer-based architectures), and two model selection protocols. Then, we conduct extensive experiments and present several findings for future research, e.g., no single method consistently outperforms others, highlighting substantial opportunity for advancement. Our codebase is highly modular and easy to extend for new datasets, algorithms, comparisons, and analysis, with the hope to facilitate the research in OOD-based HAR. Our implementation is released and can be found at https://github.com/AIFrontierLab/HAROOD.
comment: Accepted by KDD 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
♻ ☆ SoulX-LiveTalk: Real-Time Infinite Streaming of Audio-Driven Avatars via Self-Correcting Bidirectional Distillation
Deploying massive diffusion models for real-time, infinite-duration, audio-driven avatar generation presents a significant engineering challenge, primarily due to the conflict between computational load and strict latency constraints. Existing approaches often compromise visual fidelity by enforcing strictly unidirectional attention mechanisms or reducing model capacity. To address this problem, we introduce \textbf{SoulX-LiveTalk}, a 14B-parameter framework optimized for high-fidelity real-time streaming. Diverging from conventional unidirectional paradigms, we use a \textbf{Self-correcting Bidirectional Distillation} strategy that retains bidirectional attention within video chunks. This design preserves critical spatiotemporal correlations, significantly enhancing motion coherence and visual detail. To ensure stability during infinite generation, we incorporate a \textbf{Multi-step Retrospective Self-Correction Mechanism}, enabling the model to autonomously recover from accumulated errors and preventing collapse. Furthermore, we engineered a full-stack inference acceleration suite incorporating hybrid sequence parallelism, Parallel VAE, and kernel-level optimizations. Extensive evaluations confirm that SoulX-LiveTalk is the first 14B-scale system to achieve a \textbf{sub-second start-up latency (0.87s)} while reaching a real-time throughput of \textbf{32 FPS}, setting a new standard for high-fidelity interactive digital human synthesis.
comment: 12 pages, 6 figures
♻ ☆ Distilled HuBERT for Mobile Speech Emotion Recognition: A Cross-Corpus Validation Study
Speech Emotion Recognition (SER) has significant potential for mobile applications, yet deployment remains constrained by the computational demands of state-of-the-art transformer architectures. This paper presents a mobile-efficient SER system based on DistilHuBERT, a distilled and 8-bit quantized transformer that achieves approximately 92% parameter reduction compared to full-scale Wav2Vec 2.0 models while maintaining competitive accuracy. We conduct a rigorous 5-fold Leave-One-Session-Out (LOSO) cross-validation on the IEMOCAP dataset to ensure speaker independence, augmented with cross-corpus training on CREMA-D to enhance generalization. Cross-corpus training with CREMA-D yields a 1.2% improvement in Weighted Accuracy, a 1.4% gain in Macro F1-score, and a 32% reduction in cross-fold variance, with the Neutral class showing the most substantial benefit at 5.4% F1-score improvement. Our approach achieves an Unweighted Accuracy of 61.4% with a quantized model footprint of only 23 MB, representing approximately 91% of the Unweighted Accuracy of a full-scale baseline. Cross-corpus evaluation on RAVDESS reveals that the theatrical nature of acted emotions causes predictions to cluster by arousal level rather than by specific emotion categories - happiness predictions systematically bleed into anger predictions, and sadness predictions bleed into neutral predictions, due to acoustic saturation when actors prioritize clarity over subtlety. Despite this theatricality effect reducing overall RAVDESS accuracy to 46.64%, the model maintains robust arousal detection with 99% recall for anger, 55% recall for neutral, and 27% recall for sadness. These findings demonstrate a Pareto-optimal tradeoff between model size and accuracy, enabling practical affect recognition on resource-constrained mobile devices.
comment: 5 pages, 2 tables, 1 figure. Not yet submitted to a conference
♻ ☆ Theory of Mind for Explainable Human-Robot Interaction
Within the context of human-robot interaction (HRI), Theory of Mind (ToM) is intended to serve as a user-friendly backend to the interface of robotic systems, enabling robots to infer and respond to human mental states. When integrated into robots, ToM allows them to adapt their internal models to users' behaviors, enhancing the interpretability and predictability of their actions. Similarly, Explainable Artificial Intelligence (XAI) aims to make AI systems transparent and interpretable, allowing humans to understand and interact with them effectively. Since ToM in HRI serves related purposes, we propose to consider ToM as a form of XAI and evaluate it through the eValuation XAI (VXAI) framework and its seven desiderata. This paper identifies a critical gap in the application of ToM within HRI, as existing methods rarely assess the extent to which explanations correspond to the robot's actual internal reasoning. To address this limitation, we propose to integrate ToM within XAI frameworks. By embedding ToM principles inside XAI, we argue for a shift in perspective, as current XAI research focuses predominantly on the AI system itself and often lacks user-centered explanations. Incorporating ToM would enable a change in focus, prioritizing the user's informational needs and perspective.
♻ ☆ Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
comment: Accepted to TMLR 2025
♻ ☆ Probabilistically Tightened Linear Relaxation-based Perturbation Analysis for Neural Network Verification
We present $\textbf{P}$robabilistically $\textbf{T}$ightened $\textbf{Li}$near $\textbf{R}$elaxation-based $\textbf{P}$erturbation $\textbf{A}$nalysis ($\texttt{PT-LiRPA}$), a novel framework that combines over-approximation techniques from LiRPA-based approaches with a sampling-based method to compute tight intermediate reachable sets. In detail, we show that with negligible computational overhead, $\texttt{PT-LiRPA}$ exploiting the estimated reachable sets, significantly tightens the lower and upper linear bounds of a neural network's output, reducing the computational cost of formal verification tools while providing probabilistic guarantees on verification soundness. Extensive experiments on standard formal verification benchmarks, including the International Verification of Neural Networks Competition, show that our $\texttt{PT-LiRPA}$-based verifier improves robustness certificates, i.e., the certified lower bound of $\varepsilon$ perturbation tolerated by the models, by up to 3.31X and 2.26X compared to related work. Importantly, our probabilistic approach results in a valuable solution for challenging competition entries where state-of-the-art formal verification methods fail, allowing us to provide answers with high confidence (i.e., at least 99%).
comment: Accepted at the Journal of Artificial Intelligence Research (JAIR)
♻ ☆ OpenGround: Active Cognition-based Reasoning for Open-World 3D Visual Grounding
3D visual grounding aims to locate objects based on natural language descriptions in 3D scenes. Existing methods rely on a pre-defined Object Lookup Table (OLT) to query Visual Language Models (VLMs) for reasoning about object locations, which limits the applications in scenarios with undefined or unforeseen targets. To address this problem, we present OpenGround, a novel zero-shot framework for open-world 3D visual grounding. Central to OpenGround is the Active Cognition-based Reasoning (ACR) module, which is designed to overcome the fundamental limitation of pre-defined OLTs by progressively augmenting the cognitive scope of VLMs. The ACR module performs human-like perception of the target via a cognitive task chain and actively reasons about contextually relevant objects, thereby extending VLM cognition through a dynamically updated OLT. This allows OpenGround to function with both pre-defined and open-world categories. We also propose a new dataset named OpenTarget, which contains over 7000 object-description pairs to evaluate our method in open-world scenarios. Extensive experiments demonstrate that OpenGround achieves competitive performance on Nr3D, state-of-the-art on ScanRefer, and delivers a substantial 17.6% improvement on OpenTarget. Project Page at https://why-102.github.io/openground.io/.
comment: 27 pages, 15 figures, 14 tables, Project Page at https://why-102.github.io/openground.io/
♻ ☆ Inference-based GAN Video Generation
Video generation has seen remarkable progress thanks to advancements in generative deep learning. However, generating long sequences remains a significant challenge. Generated videos should not only display coherent and continuous movement but also meaningful movement in successions of scenes. Models such as GANs, VAEs, and Diffusion Networks have been used for generating short video sequences, typically up to 16 frames. In this paper, we first propose a new type of video generator by enabling adversarial-based unconditional video generators with a variational encoder, akin to a VAE-GAN hybrid structure. The proposed model, as in other video deep learning-based processing frameworks, incorporates two processing branches, one for content and another for movement. However, existing models struggle with the temporal scaling of the generated videos. Classical approaches often result in degraded video quality when attempting to increase the generated video length, especially for significantly long sequences. To overcome this limitation, our research study extends the initially proposed VAE-GAN video generation model by employing a novel, memory-efficient approach to generate long videos composed of hundreds or thousands of frames ensuring their temporal continuity, consistency and dynamics. Our approach leverages a Markov chain framework with a recall mechanism, where each state represents a short-length VAE-GAN video generator. This setup enables the sequential connection of generated video sub-sequences, maintaining temporal dependencies and resulting in meaningful long video sequences.
♻ ☆ MedQARo: A Large-Scale Benchmark for Evaluating Large Language Models on Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art (SOTA) large language models (LLMs). We construct a high-quality and large-scale dataset comprising 105,880 QA pairs related to cancer patients from two medical centers. The questions regard medical case summaries of 1,242 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 3,000 work hours to generate the QA pairs. Our benchmark contains both in-domain and cross-domain (cross-center and cross-cancer) test collections, enabling a precise assessment of generalization capabilities. We experiment with four open-source LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. We also evaluate two state-of-the-art LLMs exposed only through APIs, namely GPT-5.2 and Gemini 3 Flash. Our results show that fine-tuned models significantly outperform zero-shot models, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
♻ ☆ Zoomer: Adaptive Image Focus Optimization for Black-box MLLM
Multimodal large language models (MLLMs) such as GPT-4o, Gemini Pro, and Claude 3.5 have enabled unified reasoning over text and visual inputs, yet they often hallucinate in real world scenarios especially when small objects or fine spatial context are involved. We pinpoint two core causes of this failure: the absence of region-adaptive attention and inflexible token budgets that force uniform downsampling, leading to critical information loss. To overcome these limitations, we introduce Zoomer, a visual prompting framework that delivers token-efficient, detail-preserving image representations for black-box MLLMs. Zoomer integrates (1) a prompt-aware emphasis module to highlight semantically relevant regions, (2) a spatial-preserving orchestration schema to maintain object relationships, and (3) a budget-aware strategy to adaptively allocate tokens between global context and local details. Extensive experiments on nine benchmarks and three commercial MLLMs demonstrate that Zoomer boosts accuracy by up to 27% while cutting image token usage by up to 67%. Our approach establishes a principled methodology for robust, resource-aware multimodal understanding in settings where model internals are inaccessible.
comment: TMLR accepted
♻ ☆ DaGRPO: Rectifying Gradient Conflict in Reasoning via Distinctiveness-Aware Group Relative Policy Optimization
The evolution of Large Language Models (LLMs) has catalyzed a paradigm shift from superficial instruction following to rigorous long-horizon reasoning. While Group Relative Policy Optimization (GRPO) has emerged as a pivotal mechanism for eliciting such post-training reasoning capabilities due to its exceptional performance, it remains plagued by significant training instability and poor sample efficiency. We theoretically identify the root cause of these issues as the lack of distinctiveness within on-policy rollouts: for routine queries, highly homogeneous samples induce destructive gradient conflicts; whereas for hard queries, the scarcity of valid positive samples results in ineffective optimization. To bridge this gap, we propose Distinctiveness-aware Group Relative Policy Optimization (DaGRPO). DaGRPO incorporates two core mechanisms: (1) Sequence-level Gradient Rectification, which utilizes fine-grained scoring to dynamically mask sample pairs with low distinctiveness, thereby eradicating gradient conflicts at the source; and (2) Off-policy Data Augmentation, which introduces high-quality anchors to recover training signals for challenging tasks. Extensive experiments across 9 mathematical reasoning and out-of-distribution (OOD) generalization benchmarks demonstrate that DaGRPO significantly surpasses existing SFT, GRPO, and hybrid baselines, achieving new state-of-the-art performance (e.g., a +4.7% average accuracy gain on math benchmarks). Furthermore, in-depth analysis confirms that DaGRPO effectively mitigates gradient explosion and accelerates the emergence of long-chain reasoning capabilities.
♻ ☆ Toward Robust Legal Text Formalization into Defeasible Deontic Logic using LLMs
We present a comprehensive approach to the automated formalization of legal texts using large language models (LLMs), targeting their transformation into Defeasible Deontic Logic (DDL). Our method employs a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. We introduce a refined success metric that more precisely captures the completeness of formalizations, and a novel two-stage pipeline with a dedicated refinement step to improve logical consistency and coverage. The evaluation procedure has been strengthened with stricter error assessment, and we provide comparative results across multiple LLM configurations, including newly released models and various prompting and fine-tuning strategies. Experiments on legal norms from the Australian Telecommunications Consumer Protections Code demonstrate that, when guided effectively, LLMs can produce formalizations that align closely with expert-crafted representations, underscoring their potential for scalable legal informatics.
comment: This version is an extended version with additional results and discussion
♻ ☆ AINav: Large Language Model-Based Adaptive Interactive Navigation IEEE
Robotic navigation in complex environments remains a critical research challenge. Traditional navigation methods focus on optimal trajectory generation within fixed free workspace, therefore struggling in environments lacking viable paths to the goal, such as disaster zones or cluttered warehouses. To address this problem, we propose AINav, an adaptive interactive navigation approach that proactively interacts with environments to create feasible paths to achieve originally unreachable goals. Specifically, we present a primitive skill tree for task planning with large language models (LLMs), facilitating effective reasoning to determine interaction objects and sequences. To ensure robust subtask execution, we adopt reinforcement learning to pre-train a comprehensive skill library containing versatile locomotion and interaction behaviors for motion planning. Furthermore, we introduce an adaptive replanning approach featuring two LLM-based modules: an advisor serving as a flexible replanning trigger and an arborist for autonomous plan adjustment. Integrated with the tree structure, the replanning mechanism allows for convenient node addition and pruning, enabling rapid plan adaptation in a priori unknown environments. Comprehensive simulations and experiments have demonstrated AINav's effectiveness and adaptivity in diverse scenarios. The supplementary video is available at: https://youtu.be/CjXm5KFx9AI.
comment: 13 pages, 12 figures, accepted to IEEE Robotics & Automation Magazine
♻ ☆ Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
♻ ☆ An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation AAAI 2026
Optimizing Retrieval-Augmented Generation (RAG) configurations for specific tasks is a complex and resource-intensive challenge. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To fill this gap, we present a comprehensive study involving five HPO algorithms over five datasets from diverse domains, including a newly curated real-world product documentation dataset. Our study explores the largest RAG HPO search space to date that includes full grid-search evaluations, and uses three evaluation metrics as optimization targets. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing model selection first is preferable to the common practice of following the RAG pipeline order during optimization.
comment: AAAI 2026 Workshop on New Frontiers in Information Retrieval. For associated results, see https://github.com/IBM/rag-hpo-bench
♻ ☆ When F1 Fails: Granularity-Aware Evaluation for Dialogue Topic Segmentation
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of work, evaluation practice remains dominated by strict boundary matching and F1-based metrics. Modern large language model (LLM) based conversational systems increasingly rely on segmentation to manage conversation history beyond fixed context windows. In such systems, unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation framework that reports boundary density and segment alignment diagnostics (purity and coverage) alongside window-tolerant F1 (W-F1). By separating boundary scoring from boundary selection, we evaluate segmentation quality across density regimes rather than at a single operating point. Cross-dataset evaluation shows that reported performance differences often reflect annotation granularity mismatch rather than boundary placement quality alone. We evaluate structurally distinct segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Boundary-based metrics are strongly coupled to boundary density: threshold sweeps produce larger W-F1 changes than switching between methods. These findings support viewing topic segmentation as a granularity selection problem rather than prediction of a single correct boundary set. This motivates separating boundary scoring from boundary selection for analyzing and tuning segmentation under varying annotation granularities.
comment: 34 pages, 4 figures. Evaluation and methodology study on dialogue topic segmentation
♻ ☆ Secure and Efficient Access Control for Computer-Use Agents via Context Space
Large language model (LLM)-based computer-use agents represent a convergence of AI and OS capabilities, enabling natural language to control system- and application-level functions. However, due to LLMs' inherent uncertainty issues, granting agents control over computers poses significant security risks. When agent actions deviate from user intentions, they can cause irreversible consequences. Existing mitigation approaches, such as user confirmation and LLM-based dynamic action validation, still suffer from limitations in usability, security, and performance. To address these challenges, we propose CSAgent, a system-level, static policy-based access control framework for computer-use agents. To bridge the gap between static policy and dynamic context and user intent, CSAgent introduces intent- and context-aware policies, and provides an automated toolchain to assist developers in constructing and refining them. CSAgent enforces these policies through an optimized OS service, ensuring that agent actions can only be executed under specific user intents and contexts. CSAgent supports protecting agents that control computers through diverse interfaces, including API, CLI, and GUI. We implement and evaluate CSAgent, which successfully defends against more than 99.56% of attacks while introducing only 1.99% performance overhead.
♻ ☆ Mamba2 Meets Silence: Robust Vocal Source Separation for Sparse Regions
We introduce a new music source separation model tailored for accurate vocal isolation. Unlike Transformer-based approaches, which often fail to capture intermittently occurring vocals, our model leverages Mamba2, a recent state space model, to better capture long-range temporal dependencies. To handle long input sequences efficiently, we combine a band-splitting strategy with a dual-path architecture. Experiments show that our approach outperforms recent state-of-the-art models, achieving a cSDR of 11.03 dB-the best reported to date-and delivering substantial gains in uSDR. Moreover, the model exhibits stable and consistent performance across varying input lengths and vocal occurrence patterns. These results demonstrate the effectiveness of Mamba-based models for high-resolution audio processing and open up new directions for broader applications in audio research.
♻ ☆ Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +9.28% average improvement on six benchmarks for DeepSeek-R1-7B and +11.25% on AIME2024 using Ling-mini-2.0-while remaining highly efficient.
comment: Code: https://github.com/EnVision-Research/MTI
♻ ☆ MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Continual learning enables AI systems to acquire new knowledge while retaining previously learned information. While traditional unimodal methods have made progress, the rise of Multimodal Large Language Models (MLLMs) brings new challenges in Multimodal Continual Learning (MCL), where models are expected to address both catastrophic forgetting and cross-modal coordination. To advance research in this area, we present MCITlib, a comprehensive library for Multimodal Continual Instruction Tuning. MCITlib currently implements 8 representative algorithms and conducts evaluations on 3 benchmarks under 2 backbone models. The library will be continuously updated to support future developments in MCL. The codebase is released at https://github.com/Ghy0501/MCITlib.
comment: Preprint
♻ ☆ Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting is a vital component in live music performances, shaping an engaging experience for both musicians and audiences. In recent years, Automatic Stage Lighting Control (ASLC) has attracted growing interest due to the high costs of hiring or training professional lighting engineers. However, most existing ASLC solutions only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this gap, this paper presents Skip-BART, an end-to-end model that directly learns from experienced lighting engineers and predict vivid, human-like stage lighting. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method adapts the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid. To address the lack of available datasets, we create the first stage lighting dataset, along with several pre-training and transfer learning techniques to improve model training with limited data. We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .
♻ ☆ When Intelligence Fails: An Empirical Study on Why LLMs Struggle with Password Cracking
The remarkable capabilities of Large Language Models (LLMs) in natural language understanding and generation have sparked interest in their potential for cybersecurity applications, including password guessing. In this study, we conduct an empirical investigation into the efficacy of pre-trained LLMs for password cracking using synthetic user profiles. Specifically, we evaluate the performance of state-of-the-art open-source LLMs such as TinyLLaMA, Falcon-RW-1B, and Flan-T5 by prompting them to generate plausible passwords based on structured user attributes (e.g., name, birthdate, hobbies). Our results, measured using Hit@1, Hit@5, and Hit@10 metrics under both plaintext and SHA-256 hash comparisons, reveal consistently poor performance, with all models achieving less than 1.5% accuracy at Hit@10. In contrast, traditional rule-based and combinator-based cracking methods demonstrate significantly higher success rates. Through detailed analysis and visualization, we identify key limitations in the generative reasoning of LLMs when applied to the domain-specific task of password guessing. Our findings suggest that, despite their linguistic prowess, current LLMs lack the domain adaptation and memorization capabilities required for effective password inference, especially in the absence of supervised fine-tuning on leaked password datasets. This study provides critical insights into the limitations of LLMs in adversarial contexts and lays the groundwork for future efforts in secure, privacy-preserving, and robust password modeling.
♻ ☆ Large Language Model Sourcing: A Survey
Due to the black-box nature of large language models (LLMs) and the realism of their generated content, issues such as hallucinations, bias, unfairness, and copyright infringement have become significant. In this context, sourcing information from multiple perspectives is essential. This survey presents a systematic investigation organized around four interrelated dimensions: Model Sourcing, Model Structure Sourcing, Training Data Sourcing, and External Data Sourcing. Moreover, a unified dual-paradigm taxonomy is proposed that classifies existing sourcing methods into prior-based (proactive traceability embedding) and posterior-based (retrospective inference) approaches. Traceability across these dimensions enhances the transparency, accountability, and trustworthiness of LLMs deployment in real-world applications.
comment: 31 pages
♻ ☆ Interpretable Deep Learning for Stock Returns: A Consensus-Bottleneck Asset Pricing Model
We introduce the Consensus-Bottleneck Asset Pricing Model (CB-APM), a framework that reconciles the predictive power of deep learning with the structural transparency of traditional finance. By embedding aggregate analyst consensus as a structural "bottleneck", the model treats professional beliefs as a sufficient statistic for the market's high-dimensional information set. We document a striking "interpretability-accuracy amplification effect" for annual horizons, the structural constraint acts as an endogenous regularizer that significantly improves out-of-sample R2 over unconstrained benchmarks. Portfolios sorted on CB-APM forecasts exhibit a strong monotonic return gradient, delivering an annualized Sharpe ratio of 1.44 and robust performance across macroeconomic regimes. Furthermore, pricing diagnostics reveal that the learned consensus captures priced variation only partially spanned by canonical factor models, identifying structured risk heterogeneity that standard linear models systematically miss. Our results suggest that anchoring machine intelligence to human-expert belief formation is not merely a tool for transparency, but a catalyst for uncovering new dimensions of belief-driven risk premiums.
♻ ☆ Triple-BERT: Do We Really Need MARL for Order Dispatch on Ride-Sharing Platforms?
On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-time challenge of bundling and matching passengers-each with distinct origins and destinations-to available vehicles, all while navigating significant system uncertainties. Due to the extensive observation space arising from the large number of drivers and orders, order dispatching, though fundamentally a centralized task, is often addressed using Multi-Agent Reinforcement Learning (MARL). However, independent MARL methods fail to capture global information and exhibit poor cooperation among workers, while Centralized Training Decentralized Execution (CTDE) MARL methods suffer from the curse of dimensionality. To overcome these challenges, we propose Triple-BERT, a centralized Single Agent Reinforcement Learning (MARL) method designed specifically for large-scale order dispatching on ride-sharing platforms. Built on a variant TD3, our approach addresses the vast action space through an action decomposition strategy that breaks down the joint action probability into individual driver action probabilities. To handle the extensive observation space, we introduce a novel BERT-based network, where parameter reuse mitigates parameter growth as the number of drivers and orders increases, and the attention mechanism effectively captures the complex relationships among the large pool of driver and orders. We validate our method using a real-world ride-hailing dataset from Manhattan. Triple-BERT achieves approximately an 11.95% improvement over current state-of-the-art methods, with a 4.26% increase in served orders and a 22.25% reduction in pickup times. Our code, trained model parameters, and processed data are publicly available at the repository https://github.com/RS2002/Triple-BERT .
♻ ☆ One Step is Enough: Multi-Agent Reinforcement Learning based on One-Step Policy Optimization for Order Dispatch on Ride-Sharing Platforms
Order dispatch is a critical task in ride-sharing systems with Autonomous Vehicles (AVs), directly influencing efficiency and profits. Recently, Multi-Agent Reinforcement Learning (MARL) has emerged as a promising solution to this problem by decomposing the large state and action spaces among individual agents, effectively addressing the Curse of Dimensionality (CoD) in transportation market, which is caused by the substantial number of vehicles, passengers, and orders. However, conventional MARL-based approaches heavily rely on accurate estimation of the value function, which becomes problematic in large-scale, highly uncertain environments. To address this issue, we propose two novel methods that bypass value function estimation, leveraging the homogeneous property of AV fleets. First, we draw an analogy between AV fleets and groups in Group Relative Policy Optimization (GRPO), adapting it to the order dispatch task. By replacing the Proximal Policy Optimization (PPO) baseline with the group average reward-to-go, GRPO eliminates critic estimation errors and reduces training bias. Inspired by this baseline replacement, we further propose One-Step Policy Optimization (OSPO), demonstrating that the optimal policy can be trained using only one-step group rewards under a homogeneous fleet. Experiments on a real-world ride-hailing dataset show that both GRPO and OSPO achieve promising performance across all scenarios, efficiently optimizing pickup times and the number of served orders using simple Multilayer Perceptron (MLP) networks. Furthermore, OSPO outperforms GRPO in all scenarios, attributed to its elimination of bias caused by the bounded time horizon of GRPO. Our code, trained models, and processed data are provided at https://github.com/RS2002/OSPO .
♻ ☆ TIM-PRM: Verifying multimodal reasoning with Tool-Integrated PRM
Multimodal Large Language Models (MLLMs) have achieved impressive performances in mathematical reasoning, yet they remain vulnerable to visual hallucinations and logical inconsistencies that standard outcome-based supervision fails to mitigate. While Process Reward Models (PRMs) promise step-by-step verification, current approaches typically operate as scalar scorers or generative critics that suffer from sycophancy, blindly validating the flawed hypotheses rather than grounding them in visual reality. To bridge this gap, we introduce TIM-PRM (Tool-Integrated Multimodal PRM), a novel agentic framework that transforms verification from a passive classification task into an active, tool-augmented investigation. TIM-PRM is trained to explicitly plan verification strategies and utilizes a mechanism of Independent Question Asking to query evidence via external tools, effectively decoupling verification from the reasoning context to eliminate confirmation bias. We instantiate this method by curating a high-quality dataset of tool-integrated verification trajectories. Extensive experiments on VisualProcessBench demonstrate that our 8B parameter model surpasses existing open-source multimodal PRMs, significantly outperforming much larger models like Qwen2.5-72B and InternVL-78B, while offering interpretable insights into the verification process.
comment: 12 pages
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and more than ten machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
♻ ☆ Quantifying Positional Biases in Text Embedding Models NeurIPS
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
comment: 13 pages, 11 figures, NeurIPS
♻ ☆ OPTIMA: Optimal One-shot Pruning for LLMs via Quadratic Programming Reconstruction
Post-training model pruning is a promising solution, yet it faces a trade-off: simple heuristics that zero weights are fast but degrade accuracy, while principled joint optimization methods recover accuracy but are computationally infeasible at modern scale. One-shot methods such as SparseGPT offer a practical trade-off in optimality by applying efficient, approximate heuristic weight updates. To close this gap, we introduce OPTIMA, a practical one-shot post-training pruning method that balances accuracy and scalability. OPTIMA casts layer-wise weight reconstruction after mask selection as independent, row-wise Quadratic Programs (QPs) that share a common layer Hessian. Solving these QPs yields the per-row globally optimal update with respect to the reconstruction objective given the estimated Hessian. The shared-Hessian structure makes the problem highly amenable to batching on accelerators. We implement an accelerator-friendly QP solver that accumulates one Hessian per layer and solves many small QPs in parallel, enabling one-shot post-training pruning at scale on a single accelerator without fine-tuning. OPTIMA integrates with existing mask selectors and consistently improves zero-shot performance across multiple LLM families and sparsity regimes, yielding up to 3.97% absolute accuracy improvement. On an NVIDIA H100, OPTIMA prunes a 8B-parameter transformer end-to-end in 40 hours with 60GB peak memory. Together, these results set a new state-of-the-art accuracy-efficiency trade-offs for one-shot post-training pruning.
♻ ☆ Agentic AI Systems in Electrical Power Systems Engineering: Current State-of-the-Art and Challenges
Agentic AI systems have recently emerged as a critical and transformative approach in artificial intelligence, offering capabilities that extend far beyond traditional AI agents and contemporary generative AI models. This rapid evolution necessitates a clear conceptual and taxonomical understanding to differentiate this new paradigm. Our paper addresses this gap by providing a comprehensive review that establishes a precise definition and taxonomy for "agentic AI," with the aim of distinguishing it from previous AI paradigms. The concepts are gradually introduced, starting with a highlight of its diverse applications across the broader field of engineering. The paper then presents four detailed, state-of-the-art use case applications specifically within electrical engineering. These case studies demonstrate practical impact, ranging from an advanced agentic framework for streamlining complex power system studies and benchmarking to a novel system developed for survival analysis of dynamic pricing strategies in battery swapping stations. Finally, to ensure robust deployment, the paper provides detailed failure mode investigations. From these findings, we derive actionable recommendations for the design and implementation of safe, reliable, and accountable agentic AI systems, offering a critical resource for researchers and practitioners.
♻ ☆ On measuring grounding and generalizing grounding problems
The symbol grounding problem asks how tokens like cat can be about cats, as opposed to mere shapes manipulated in a calculus. We recast grounding from a binary judgment into an audit across desiderata, each indexed by an evaluation tuple (context, meaning type, threat model, reference distribution): authenticity (mechanisms reside inside the agent and, for strong claims, were acquired through learning or evolution); preservation (atomic meanings remain intact); faithfulness, both correlational (realized meanings match intended ones) and etiological (internal mechanisms causally contribute to success); robustness (graceful degradation under declared perturbations); compositionality (the whole is built systematically from the parts). We apply this framework to four grounding modes (symbolic; referential; vectorial; relational) and three case studies: model-theoretic semantics achieves exact composition but lacks etiological warrant; large language models show correlational fit and local robustness for linguistic tasks, yet lack selection-for-success on world tasks without grounded interaction; human language meets the desiderata under strong authenticity through evolutionary and developmental acquisition. By operationalizing a philosophical inquiry about representation, we equip philosophers of science, computer scientists, linguists, and mathematicians with a common language and technical framework for systematic investigation of grounding and meaning.
comment: resubmission: 39 pages, 85 sources, 3 figures
♻ ☆ Effective and Efficient Jailbreaks of Black-Box LLMs with Cross-Behavior Attacks
Despite recent advancements in Large Language Models (LLMs) and their alignment, they can still be jailbroken, i.e., harmful and toxic content can be elicited from them. While existing red-teaming methods have shown promise in uncovering such vulnerabilities, these methods struggle with limited success and high computational and monetary costs. To address this, we propose a black-box Jailbreak method with Cross-Behavior attacks (JCB), that can automatically and efficiently find successful jailbreak prompts. JCB leverages successes from past behaviors to help jailbreak new behaviors, thereby significantly improving the attack efficiency. Moreover, JCB does not rely on time- and/or cost-intensive calls to auxiliary LLMs to discover/optimize the jailbreak prompts, making it highly efficient and scalable. Comprehensive experimental evaluations show that JCB significantly outperforms related baselines, requiring up to 94% fewer queries while still achieving 12.9% higher average attack success. JCB also achieves a notably high 37% attack success rate on Llama-2-7B, one of the most resilient LLMs, and shows promising zero-shot transferability across different LLMs.
comment: Code is at https://github.com/gohil-vasudev/JCB
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ MTSQL-R1: Towards Long-Horizon Multi-Turn Text-to-SQL via Agentic Training
Multi-turn Text-to-SQL aims to translate a user's conversational utterances into executable SQL while preserving dialogue coherence and grounding to the target schema. However, most existing systems only regard this task as a simple text translation task and follow a short-horizon paradigm, generating a query per turn without execution, explicit verification, and refinement, which leads to non-executable or incoherent outputs. We present MTSQL-R1, an agentic training framework for long-horizon multi-turn Text-to-SQL. We cast the task as a Markov Decision Process (MDP) in which an agent interacts with (i) a database for execution feedback and (ii) a persistent dialogue memory for coherence verification, performing an iterative propose to execute -> verify -> refine cycle until all checks pass. Experiments on COSQL and SPARC demonstrate that MTSQL-R1 consistently outperforms strong baselines, highlighting the importance of environment-driven verification and memory-guided refinement for conversational semantic parsing. Full recipes (including code, trained models, logs, reasoning trajectories, etc.) will be released after the internal review to contribute to community research.
♻ ☆ Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models (LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation (PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
comment: Camera-ready version of a paper accepted at the AIIDE 2025 Workshop on Experimental AI in Games (EXAG)
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We study continual learning in large language model (LLM) based agents that integrate episodic memory with reinforcement learning. We focus on reflection, the ability of an agent to revisit past experience and adjust how it selects future actions, as the central mechanism for continual adaptation without fine tuning model weights. To formalise this, we introduce the Stateful Reflective Decision Process (SRDP), in which an agent maintains and updates episodic memory and alternates between writing new experiences to memory and reading relevant cases to guide decisions. This framework casts reflective memory dynamics as part of the decision process itself and makes them amenable to control and learning analysis. Building on this formulation, we develop a Read-Write Reflective Learning algorithm that incorporates memory retrieval into a soft policy iteration procedure and prove that it converges. We further show that as memory grows and more densely covers the task environment, the resulting policy approaches optimality. Our framework unifies memory based reasoning with reinforcement learning and provides a formal foundation for LLM agents capable of continual, experience driven learning.
comment: 35 pages, four figures
♻ ☆ Revisiting Out-of-Distribution Detection in Real-time Object Detection: From Benchmark Pitfalls to a New Mitigation Paradigm IEEE
Out-of-distribution (OoD) inputs pose a persistent challenge to deep learning models, often triggering overconfident predictions on non-target objects. While prior work has primarily focused on refining scoring functions and adjusting test-time thresholds, such algorithmic improvements offer only incremental gains. We argue that a rethinking of the entire development lifecycle is needed to mitigate these risks effectively. This work addresses two overlooked dimensions of OoD detection in object detection. First, we reveal fundamental flaws in widely used evaluation benchmarks: contrary to their design intent, up to 13% of objects in the OoD test sets actually belong to in-distribution classes, and vice versa. These quality issues severely distort the reported performance of existing methods and contribute to their high false positive rates. Second, we introduce a novel training-time mitigation paradigm that operates independently of external OoD detectors. Instead of relying solely on post-hoc scoring, we fine-tune the detector using a carefully synthesized OoD dataset that semantically resembles in-distribution objects. This process shapes a defensive decision boundary by suppressing objectness on OoD objects, leading to a 91% reduction in hallucination error of a YOLO model on BDD-100K. Our methodology generalizes across detection paradigms such as YOLO, Faster R-CNN, and RT-DETR, and supports few-shot adaptation. Together, these contributions offer a principled and effective way to reduce OoD-induced hallucination in object detectors. Code and data are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Accepted at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task
This study explores the neural and behavioral consequences of LLM-assisted essay writing. Participants were divided into three groups: LLM, Search Engine, and Brain-only (no tools). Each completed three sessions under the same condition. In a fourth session, LLM users were reassigned to Brain-only group (LLM-to-Brain), and Brain-only users were reassigned to LLM condition (Brain-to-LLM). A total of 54 participants took part in Sessions 1-3, with 18 completing session 4. We used electroencephalography (EEG) to assess cognitive load during essay writing, and analyzed essays using NLP, as well as scoring essays with the help from human teachers and an AI judge. Across groups, NERs, n-gram patterns, and topic ontology showed within-group homogeneity. EEG revealed significant differences in brain connectivity: Brain-only participants exhibited the strongest, most distributed networks; Search Engine users showed moderate engagement; and LLM users displayed the weakest connectivity. Cognitive activity scaled down in relation to external tool use. In session 4, LLM-to-Brain participants showed reduced alpha and beta connectivity, indicating under-engagement. Brain-to-LLM users exhibited higher memory recall and activation of occipito-parietal and prefrontal areas, similar to Search Engine users. Self-reported ownership of essays was the lowest in the LLM group and the highest in the Brain-only group. LLM users also struggled to accurately quote their own work. While LLMs offer immediate convenience, our findings highlight potential cognitive costs. Over four months, LLM users consistently underperformed at neural, linguistic, and behavioral levels. These results raise concerns about the long-term educational implications of LLM reliance and underscore the need for deeper inquiry into AI's role in learning.
comment: 216 pages, 102 figures, 4 tables and appendix
♻ ☆ Towards Streaming LiDAR Object Detection with Point Clouds as Egocentric Sequences WACV 2026
Accurate and low-latency 3D object detection is essential for autonomous driving, where safety hinges on both rapid response and reliable perception. While rotating LiDAR sensors are widely adopted for their robustness and fidelity, current detectors face a trade-off: streaming methods process partial polar sectors on the fly for fast updates but suffer from limited visibility, cross-sector dependencies, and distortions from retrofitted Cartesian designs, whereas full-scan methods achieve higher accuracy but are bottlenecked by the inherent latency of a LiDAR revolution. We propose Polar-Fast-Cartesian-Full (PFCF), a hybrid detector that combines fast polar processing for intra-sector feature extraction with accurate Cartesian reasoning for full-scene understanding. Central to PFCF is a custom Mamba SSM-based streaming backbone with dimensionally-decomposed convolutions that avoids distortion-heavy planes, enabling parameter-efficient, translation-invariant, and distortion-robust polar representation learning. Local sector features are extracted via this backbone, then accumulated into a sector feature buffer to enable efficient inter-sector communication through a full-scan backbone. PFCF establishes a new Pareto frontier on the Waymo Open dataset, surpassing prior streaming baselines by 10% mAP and matching full-scan accuracy at twice the update rate. Code is available at \href{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}.
comment: Accepted to WACV 2026
♻ ☆ From Transformers to LLMs: A Systematic Survey of Efficiency Considerations in NLP
The emergence of Transformer-based Large Language Models (LLMs) has substantially augmented the capabilities of Natural Language Processing (NLP), thereby intensifying the demand for computational resources. Therefore, enhancing efficiency based on factors like computational requirements, energy consumption, carbon footprint and financial cost has become a vital area of research. This motivates us to conduct a systematic literature review on Transformer-based LLMs in NLP from the perspective of efficiency. In this survey of 312 articles published between the years 2011 and 2025, efficiency-improvement endeavors have been systematically discussed targeting various aspects such as data curation, model design, model downsizing, and dynamic inferencing. This has been augmented with efficiency considerations in model adaptation strategies like pre-training, fine-tuning, prompt-engineering and Retrieval-Augmented Generation (RAG). Furthermore, a statistical analysis of the articles has been performed followed by an in-depth evaluation of the efficiency and efficacy of more than 30 renowned NLP models has been conducted on 13 evaluation benchmarks. This paper offers valuable insights for researchers, professionals as well as scholars, and explores the trend of research toward sustainable practices in NLP.
comment: 63 pages, 5 tables and 22 figures
Computation and Language 64
☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
☆ Many Minds from One Model: Bayesian Transformers for Population Intelligence
Despite their scale and success, modern transformers are almost universally trained as single-minded systems: optimization produces one deterministic set of parameters, representing a single functional hypothesis about the data. Motivated by the idea that intelligence emerge from many minds, we propose Population Bayesian Transformers (B-Trans), which transform a standard Large Language Model into a Bayesian Transformer model to supports sampling diverse yet coherent model instances from a single set of pre-trained weights. B-Trans introduces a Bayesian-motivated posterior proxy by treating the bias-like offsets in normalization layers as stochastic variables with a Gaussian variational approximation, inducing a distribution over model behavior without the cost of training full Bayesian neural networks. Sampling from this proxy yields a set of model instances with diverse behaviors while maintaining general competence. To preserve coherence within each generation, we freeze the sampled noise at the sequence level, enforcing temporal consistency across tokens. B-Trans allows for population-level decision-making, where aggregating predictions across sampled individuals significantly enhances exploration. Experiments across zero-shot generation, Reinforcement Learning with Verifiable Rewards (RLVR), and RL without explicit labels demonstrate that B-Trans effectively leverage the wisdom of crowds, yielding superior semantic diversity while achieving better task performance compared to deterministic baselines.
☆ AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG
Retrieval-augmented generation (RAG) is highly sensitive to the quality of selected context, yet standard top-k retrieval often returns redundant or near-duplicate chunks that waste token budget and degrade downstream generation. We present AdaGReS, a redundancy-aware context selection framework for token-budgeted RAG that optimizes a set-level objective combining query-chunk relevance and intra-set redundancy penalties. AdaGReS performs greedy selection under a token-budget constraint using marginal gains derived from the objective, and introduces a closed-form, instance-adaptive calibration of the relevance-redundancy trade-off parameter to eliminate manual tuning and adapt to candidate-pool statistics and budget limits. We further provide a theoretical analysis showing that the proposed objective exhibits epsilon-approximate submodularity under practical embedding similarity conditions, yielding near-optimality guarantees for greedy selection. Experiments on open-domain question answering (Natural Questions) and a high-redundancy biomedical (drug) corpus demonstrate consistent improvements in redundancy control and context quality, translating to better end-to-end answer quality and robustness across settings.
comment: Preprint. Under review
☆ Modeling Language as a Sequence of Thoughts
Transformer language models can generate strikingly natural text by modeling language as a sequence of tokens. Yet, by relying primarily on surface-level co-occurrence statistics, they fail to form globally consistent latent representations of entities and events, lack of which contributes to brittleness in relational direction (e.g., reversal curse), contextualization errors, and data inefficiency. On the other hand, cognitive science shows that human comprehension involves converting the input linguistic stream into compact, event-like representations that persist in memory while verbatim form is short-lived. Motivated by this view, we introduce Thought Gestalt (TG) model, a recurrent Transformer that models language at two levels of abstraction - tokens and sentence-level "thought" states. TG generates the tokens of one sentence at a time while cross-attending to a memory of prior sentence representations. In TG, token and sentence representations are generated using the same set of model parameters and trained with a single objective, the next-token cross-entropy: by retaining the computation graph of sentence representations written to memory, gradients from future token losses flow backward through cross-attention to optimize the parameters generating earlier sentence vectors. In scaling experiments, TG consistently improves efficiency over matched GPT-2 runs, among other baselines, with scaling fits indicating GPT-2 requires ~5-8% more data and ~33-42% more parameters to match TG's loss. TG also reduces errors on relational direction generalization on a father-son reversal curse probe.
☆ MAMA-Memeia! Multi-Aspect Multi-Agent Collaboration for Depressive Symptoms Identification in Memes AAAI 2026
Over the past years, memes have evolved from being exclusively a medium of humorous exchanges to one that allows users to express a range of emotions freely and easily. With the ever-growing utilization of memes in expressing depressive sentiments, we conduct a study on identifying depressive symptoms exhibited by memes shared by users of online social media platforms. We introduce RESTOREx as a vital resource for detecting depressive symptoms in memes on social media through the Large Language Model (LLM) generated and human-annotated explanations. We introduce MAMAMemeia, a collaborative multi-agent multi-aspect discussion framework grounded in the clinical psychology method of Cognitive Analytic Therapy (CAT) Competencies. MAMAMemeia improves upon the current state-of-the-art by 7.55% in macro-F1 and is established as the new benchmark compared to over 30 methods.
comment: Accepted by AAAI 2026
☆ Classifying long legal documents using short random chunks
Classifying legal documents is a challenge, besides their specialized vocabulary, sometimes they can be very long. This means that feeding full documents to a Transformers-based models for classification might be impossible, expensive or slow. Thus, we present a legal document classifier based on DeBERTa V3 and a LSTM, that uses as input a collection of 48 randomly-selected short chunks (max 128 tokens). Besides, we present its deployment pipeline using Temporal, a durable execution solution, which allow us to have a reliable and robust processing workflow. The best model had a weighted F-score of 0.898, while the pipeline running on CPU had a processing median time of 498 seconds per 100 files.
☆ Large language models and the entropy of English
We use large language models (LLMs) to uncover long-ranged structure in English texts from a variety of sources. The conditional entropy or code length in many cases continues to decrease with context length at least to $N\sim 10^4$ characters, implying that there are direct dependencies or interactions across these distances. A corollary is that there are small but significant correlations between characters at these separations, as we show from the data independent of models. The distribution of code lengths reveals an emergent certainty about an increasing fraction of characters at large $N$. Over the course of model training, we observe different dynamics at long and short context lengths, suggesting that long-ranged structure is learned only gradually. Our results constrain efforts to build statistical physics models of LLMs or language itself.
comment: 8 pages, 6 figures
☆ CPJ: Explainable Agricultural Pest Diagnosis via Caption-Prompt-Judge with LLM-Judged Refinement
Accurate and interpretable crop disease diagnosis is essential for agricultural decision-making, yet existing methods often rely on costly supervised fine-tuning and perform poorly under domain shifts. We propose Caption--Prompt--Judge (CPJ), a training-free few-shot framework that enhances Agri-Pest VQA through structured, interpretable image captions. CPJ employs large vision-language models to generate multi-angle captions, refined iteratively via an LLM-as-Judge module, which then inform a dual-answer VQA process for both recognition and management responses. Evaluated on CDDMBench, CPJ significantly improves performance: using GPT-5-mini captions, GPT-5-Nano achieves \textbf{+22.7} pp in disease classification and \textbf{+19.5} points in QA score over no-caption baselines. The framework provides transparent, evidence-based reasoning, advancing robust and explainable agricultural diagnosis without fine-tuning. Our code and data are publicly available at: https://github.com/CPJ-Agricultural/CPJ-Agricultural-Diagnosis.
comment: This paper is 6 pages in length and contains 2 figures. Tao Fang (Corresponding Author), Lina Lu (Co-corresponding Author)
☆ RAIR: A Rule-Aware Benchmark Uniting Challenging Long-Tail and Visual Salience Subset for E-commerce Relevance Assessment
Search relevance plays a central role in web e-commerce. While large language models (LLMs) have shown significant results on relevance task, existing benchmarks lack sufficient complexity for comprehensive model assessment, resulting in an absence of standardized relevance evaluation metrics across the industry. To address this limitation, we propose Rule-Aware benchmark with Image for Relevance assessment(RAIR), a Chinese dataset derived from real-world scenarios. RAIR established a standardized framework for relevance assessment and provides a set of universal rules, which forms the foundation for standardized evaluation. Additionally, RAIR analyzes essential capabilities required for current relevance models and introduces a comprehensive dataset consists of three subset: (1) a general subset with industry-balanced sampling to evaluate fundamental model competencies; (2) a long-tail hard subset focus on challenging cases to assess performance limits; (3) a visual salience subset for evaluating multimodal understanding capabilities. We conducted experiments on RAIR using 14 open and closed-source models. The results demonstrate that RAIR presents sufficient challenges even for GPT-5, which achieved the best performance. RAIR data are now available, serving as an industry benchmark for relevance assessment while providing new insights into general LLM and Visual Language Model(VLM) evaluation.
☆ Iterative Deployment Improves Planning Skills in LLMs
We show that iterative deployment of large language models (LLMs), each fine-tuned on data carefully curated by users from the previous models' deployment, can significantly change the properties of the resultant models. By testing this mechanism on various planning domains, we observe substantial improvements in planning skills, with later models displaying emergent generalization by discovering much longer plans than the initial models. We then provide theoretical analysis showing that iterative deployment effectively implements reinforcement learning (RL) training in the outer-loop (i.e. not as part of intentional model training), with an implicit reward function. The connection to RL has two important implications: first, for the field of AI safety, as the reward function entailed by repeated deployment is not defined explicitly, and could have unexpected implications to the properties of future model deployments. Second, the mechanism highlighted here can be viewed as an alternative training regime to explicit RL, relying on data curation rather than explicit rewards.
☆ Vibe Coding, Interface Flattening
Large language models are reshaping programming by enabling 'vibe coding': the development of softwares through natural-language interaction with model-driven toolchains. This article argues that vibe coding is best understood as interface flattening, a reconfiguration in which previously distinct modalities (GUI, CLI, and API) appear to converge into a single conversational surface, even as the underlying chain of translation from intention to machinic effect lengthens and thickens. Drawing on Friedrich Kittler's materialist media theory and Alexander Galloway's account of interfaces as sites of protocol control, the paper situates programming as a historically localised interface arrangement rather than an essential relation to computation. Through a materialist reconstruction of the contemporary vibe-coding stack, it shows how remote compute infrastructures, latency and connectivity, structured outputs, function/tool calling, and interoperability standards such as the Model Context Protocol relocate control and meaning-making power to model and protocol providers. The apparent democratisation of technical capability therefore depends on new dependencies and new literacies. By foregrounding the tension between experiential flattening and infrastructural thickening, I demonstrate how LLM-mediated development redistributes symbolic labour/power, obscures responsibility, and privatises competencies previously dispersed across programming communities, contributing a critical lens on the political economy of AI-mediated human-computer interaction.
comment: 16 pages, 1 figure
☆ Adaptive Dependency-aware Prompt Optimization Framework for Multi-Step LLM Pipeline
Multi-step LLM pipelines invoke large language models multiple times in a structured sequence and can effectively solve complex tasks, but their performance heavily depends on the prompts used at each step. Jointly optimizing these prompts is difficult due to missing step-level supervision and inter-step dependencies. Existing end-to-end prompt optimization methods struggle under these conditions and often yield suboptimal or unstable updates. We propose ADOPT, an Adaptive Dependency-aware Prompt Optimization framework for multi-step LLM pipelines. ADOPT explicitly models the dependency between each LLM step and the final task outcome, enabling precise text-gradient estimation analogous to computing analytical derivatives. It decouples textual gradient estimation from gradient updates, reducing multi-prompt optimization to flexible single-prompt optimization steps, and employs a Shapley-based mechanism to adaptively allocate optimization resources. Experiments on real-world datasets and diverse pipeline structures show that ADOPT is effective and robust, consistently outperforming state-of-the-art prompt optimization baselines.
☆ BEDA: Belief Estimation as Probabilistic Constraints for Performing Strategic Dialogue Acts AAMAS 2026
Strategic dialogue requires agents to execute distinct dialogue acts, for which belief estimation is essential. While prior work often estimates beliefs accurately, it lacks a principled mechanism to use those beliefs during generation. We bridge this gap by first formalizing two core acts Adversarial and Alignment, and by operationalizing them via probabilistic constraints on what an agent may generate. We instantiate this idea in BEDA, a framework that consists of the world set, the belief estimator for belief estimation, and the conditional generator that selects acts and realizes utterances consistent with the inferred beliefs. Across three settings, Conditional Keeper Burglar (CKBG, adversarial), Mutual Friends (MF, cooperative), and CaSiNo (negotiation), BEDA consistently outperforms strong baselines: on CKBG it improves success rate by at least 5.0 points across backbones and by 20.6 points with GPT-4.1-nano; on Mutual Friends it achieves an average improvement of 9.3 points; and on CaSiNo it achieves the optimal deal relative to all baselines. These results indicate that casting belief estimation as constraints provides a simple, general mechanism for reliable strategic dialogue.
comment: Accepted by AAMAS 2026
☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
☆ Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agent LLMs. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME (ROME is Obviously an Agentic Model), an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-based Policy Alignment (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of the ALE infrastructure.
comment: 36 pages, 15 figures
☆ Encyclo-K: Evaluating LLMs with Dynamically Composed Knowledge Statements
Benchmarks play a crucial role in tracking the rapid advancement of large language models (LLMs) and identifying their capability boundaries. However, existing benchmarks predominantly curate questions at the question level, suffering from three fundamental limitations: vulnerability to data contamination, restriction to single-knowledge-point assessment, and reliance on costly domain expert annotation. We propose Encyclo-K, a statement-based benchmark that rethinks benchmark construction from the ground up. Our key insight is that knowledge statements, not questions, can serve as the unit of curation, and questions can then be constructed from them. We extract standalone knowledge statements from authoritative textbooks and dynamically compose them into evaluation questions through random sampling at test time. This design directly addresses all three limitations: the combinatorial space is too vast to memorize, and model rankings remain stable across dynamically generated question sets, enabling reliable periodic dataset refresh; each question aggregates 8-10 statements for comprehensive multi-knowledge assessment; annotators only verify formatting compliance without requiring domain expertise, substantially reducing annotation costs. Experiments on over 50 LLMs demonstrate that Encyclo-K poses substantial challenges with strong discriminative power. Even the top-performing OpenAI-GPT-5.1 achieves only 62.07% accuracy, and model performance displays a clear gradient distribution--reasoning models span from 16.04% to 62.07%, while chat models range from 9.71% to 50.40%. These results validate the challenges introduced by dynamic evaluation and multi-statement comprehensive understanding. These findings establish Encyclo-K as a scalable framework for dynamic evaluation of LLMs' comprehensive understanding over multiple fine-grained disciplinary knowledge statements.
☆ Big AI is accelerating the metacrisis: What can we do?
The world is in the grip of ecological, meaning, and language crises which are converging into a metacrisis. Big AI is accelerating them all. Language engineers are playing a central role, persisting with a scalability story that is failing humanity, supplying critical talent to plutocrats and kleptocrats, and creating new technologies as if the whole endeavour was value-free. We urgently need to explore alternatives, applying our collective intelligence to design a life-affirming future for NLP that is centered on human flourishing on a living planet.
comment: 9 pages, 1 figure
☆ PrivacyBench: A Conversational Benchmark for Evaluating Privacy in Personalized AI
Personalized AI agents rely on access to a user's digital footprint, which often includes sensitive data from private emails, chats and purchase histories. Yet this access creates a fundamental societal and privacy risk: systems lacking social-context awareness can unintentionally expose user secrets, threatening digital well-being. We introduce PrivacyBench, a benchmark with socially grounded datasets containing embedded secrets and a multi-turn conversational evaluation to measure secret preservation. Testing Retrieval-Augmented Generation (RAG) assistants reveals that they leak secrets in up to 26.56% of interactions. A privacy-aware prompt lowers leakage to 5.12%, yet this measure offers only partial mitigation. The retrieval mechanism continues to access sensitive data indiscriminately, which shifts the entire burden of privacy preservation onto the generator. This creates a single point of failure, rendering current architectures unsafe for wide-scale deployment. Our findings underscore the urgent need for structural, privacy-by-design safeguards to ensure an ethical and inclusive web for everyone.
comment: 11 pages, 2 figures
☆ Triangulation as an Acceptance Rule for Multilingual Mechanistic Interpretability NeurIPS 2025
Multilingual language models achieve strong aggregate performance yet often behave unpredictably across languages, scripts, and cultures. We argue that mechanistic explanations for such models should satisfy a \emph{causal} standard: claims must survive causal interventions and must \emph{cross-reference} across environments that perturb surface form while preserving meaning. We formalize \emph{reference families} as predicate-preserving variants and introduce \emph{triangulation}, an acceptance rule requiring necessity (ablating the circuit degrades the target behavior), sufficiency (patching activations transfers the behavior), and invariance (both effects remain directionally stable and of sufficient magnitude across the reference family). To supply candidate subgraphs, we adopt automatic circuit discovery and \emph{accept or reject} those candidates by triangulation. We ground triangulation in causal abstraction by casting it as an approximate transformation score over a distribution of interchange interventions, connect it to the pragmatic interpretability agenda, and present a comparative experimental protocol across multiple model families, language pairs, and tasks. Triangulation provides a falsifiable standard for mechanistic claims that filters spurious circuits passing single-environment tests but failing cross-lingual invariance.
comment: NeurIPS 2025 Workshop Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Practising responsibility: Ethics in NLP as a hands-on course
As Natural Language Processing (NLP) systems become more pervasive, integrating ethical considerations into NLP education has become essential. However, this presents inherent challenges in curriculum development: the field's rapid evolution from both academia and industry, and the need to foster critical thinking beyond traditional technical training. We introduce our course on Ethical Aspects in NLP and our pedagogical approach, grounded in active learning through interactive sessions, hands-on activities, and "learning by teaching" methods. Over four years, the course has been refined and adapted across different institutions, educational levels, and interdisciplinary backgrounds; it has also yielded many reusable products, both in the form of teaching materials and in the form of actual educational products aimed at diverse audiences, made by the students themselves. By sharing our approach and experience, we hope to provide inspiration for educators seeking to incorporate social impact considerations into their curricula.
☆ Compute-Accuracy Pareto Frontiers for Open-Source Reasoning Large Language Models
Large Language Models (LLMs) are demonstrating rapid improvements on complex reasoning benchmarks, particularly when allowed to utilize intermediate reasoning steps before converging on a final solution. However, current literature often overlooks the significant computational burden associated with generating long reasoning sequences. For industrial applications, model selection depends not only on raw accuracy but also on resource constraints and inference costs. In this work, we conduct a test-time-compute aware evaluation of both contemporary and older open-source LLMs, mapping their Pareto frontiers across math- and reasoning-intensive benchmarks. Our findings identify the Mixture of Experts (MoE) architecture as a strong candidate to balance performance and efficiency in our evaluation setting. Furthermore, we trace the trajectory of Pareto efficiency over time to derive an emergent trend regarding accuracy gain per unit of compute. Finally, we demonstrate that there is a saturation point for inference-time compute. Beyond a certain threshold, accuracy gains diminish, indicating that while extended reasoning capabilities are beneficial, they cannot overcome intrinsic model limitations regarding specific complexities.
☆ Uncertainty-aware Semi-supervised Ensemble Teacher Framework for Multilingual Depression Detection
Detecting depression from social media text is still a challenging task. This is due to different language styles, informal expression, and the lack of annotated data in many languages. To tackle these issues, we propose, Semi-SMDNet, a strong Semi-Supervised Multilingual Depression detection Network. It combines teacher-student pseudo-labelling, ensemble learning, and augmentation of data. Our framework uses a group of teacher models. Their predictions come together through soft voting. An uncertainty-based threshold filters out low-confidence pseudo-labels to reduce noise and improve learning stability. We also use a confidence-weighted training method that focuses on reliable pseudo-labelled samples. This greatly boosts robustness across languages. Tests on Arabic, Bangla, English, and Spanish datasets show that our approach consistently beats strong baselines. It significantly reduces the performance gap between settings that have plenty of resources and those that do not. Detailed experiments and studies confirm that our framework is effective and can be used in various situations. This shows that it is suitable for scalable, cross-language mental health monitoring where labelled resources are limited.
☆ BIOME-Bench: A Benchmark for Biomolecular Interaction Inference and Multi-Omics Pathway Mechanism Elucidation from Scientific Literature
Multi-omics studies often rely on pathway enrichment to interpret heterogeneous molecular changes, but pathway enrichment (PE)-based workflows inherit structural limitations of pathway resources, including curation lag, functional redundancy, and limited sensitivity to molecular states and interventions. Although recent work has explored using large language models (LLMs) to improve PE-based interpretation, the lack of a standardized benchmark for end-to-end multi-omics pathway mechanism elucidation has largely confined evaluation to small, manually curated datasets or ad hoc case studies, hindering reproducible progress. To address this issue, we introduce BIOME-Bench, constructed via a rigorous four-stage workflow, to evaluate two core capabilities of LLMs in multi-omics analysis: Biomolecular Interaction Inference and end-to-end Multi-Omics Pathway Mechanism Elucidation. We develop evaluation protocols for both tasks and conduct comprehensive experiments across multiple strong contemporary models. Experimental results demonstrate that existing models still exhibit substantial deficiencies in multi-omics analysis, struggling to reliably distinguish fine-grained biomolecular relation types and to generate faithful, robust pathway-level mechanistic explanations.
☆ MUSIC: MUlti-Step Instruction Contrast for Multi-Turn Reward Models
Evaluating the quality of multi-turn conversations is crucial for developing capable Large Language Models (LLMs), yet remains a significant challenge, often requiring costly human evaluation. Multi-turn reward models (RMs) offer a scalable alternative and can provide valuable signals for guiding LLM training. While recent work has advanced multi-turn \textit{training} techniques, effective automated \textit{evaluation} specifically for multi-turn interactions lags behind. We observe that standard preference datasets, typically contrasting responses based only on the final conversational turn, provide insufficient signal to capture the nuances of multi-turn interactions. Instead, we find that incorporating contrasts spanning \textit{multiple} turns is critical for building robust multi-turn RMs. Motivated by this finding, we propose \textbf{MU}lti-\textbf{S}tep \textbf{I}nstruction \textbf{C}ontrast (MUSIC), an unsupervised data augmentation strategy that synthesizes contrastive conversation pairs exhibiting differences across multiple turns. Leveraging MUSIC on the Skywork preference dataset, we train a multi-turn RM based on the Gemma-2-9B-Instruct model. Empirical results demonstrate that our MUSIC-augmented RM outperforms baseline methods, achieving higher alignment with judgments from advanced proprietary LLM judges on multi-turn conversations, crucially, without compromising performance on standard single-turn RM benchmarks.
☆ Quantum Visual Word Sense Disambiguation: Unraveling Ambiguities Through Quantum Inference Model
Visual word sense disambiguation focuses on polysemous words, where candidate images can be easily confused. Traditional methods use classical probability to calculate the likelihood of an image matching each gloss of the target word, summing these to form a posterior probability. However, due to the challenge of semantic uncertainty, glosses from different sources inevitably carry semantic biases, which can lead to biased disambiguation results. Inspired by quantum superposition in modeling uncertainty, this paper proposes a Quantum Inference Model for Unsupervised Visual Word Sense Disambiguation (Q-VWSD). It encodes multiple glosses of the target word into a superposition state to mitigate semantic biases. Then, the quantum circuit is executed, and the results are observed. By formalizing our method, we find that Q-VWSD is a quantum generalization of the method based on classical probability. Building on this, we further designed a heuristic version of Q-VWSD that can run more efficiently on classical computing. The experiments demonstrate that our method outperforms state-of-the-art classical methods, particularly by effectively leveraging non-specialized glosses from large language models, which further enhances performance. Our approach showcases the potential of quantum machine learning in practical applications and provides a case for leveraging quantum modeling advantages on classical computers while quantum hardware remains immature.
☆ R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory AAMAS 2026
We present R-Debater, an agentic framework for generating multi-turn debates built on argumentative memory. Grounded in rhetoric and memory studies, the system views debate as a process of recalling and adapting prior arguments to maintain stance consistency, respond to opponents, and support claims with evidence. Specifically, R-Debater integrates a debate knowledge base for retrieving case-like evidence and prior debate moves with a role-based agent that composes coherent utterances across turns. We evaluate on standardized ORCHID debates, constructing a 1,000-item retrieval corpus and a held-out set of 32 debates across seven domains. Two tasks are evaluated: next-utterance generation, assessed by InspireScore (subjective, logical, and factual), and adversarial multi-turn simulations, judged by Debatrix (argument, source, language, and overall). Compared with strong LLM baselines, R-Debater achieves higher single-turn and multi-turn scores. Human evaluation with 20 experienced debaters further confirms its consistency and evidence use, showing that combining retrieval grounding with structured planning yields more faithful, stance-aligned, and coherent debates across turns.
comment: Accepteed by AAMAS 2026 full paper
☆ Do Large Language Models Know What They Are Capable Of?
We investigate whether large language models (LLMs) can predict whether they will succeed on a given task and whether their predictions improve as they progress through multi-step tasks. We also investigate whether LLMs can learn from in-context experiences to make better decisions about whether to pursue a task in scenarios where failure is costly. All LLMs we tested are overconfident, but most predict their success with better-than-random discriminatory power. We find that newer and larger LLMs generally do not have greater discriminatory power, though Claude models do show such a trend. On multi-step agentic tasks, the overconfidence of several frontier LLMs worsens as they progress through the tasks, and reasoning LLMs perform comparably to or worse than non-reasoning LLMs. With in-context experiences of failure, some but not all LLMs reduce their overconfidence leading to significantly improved decision making, while others do not. Interestingly, all LLMs' decisions are approximately rational given their estimated probabilities of success, yet their overly-optimistic estimates result in poor decision making. These results suggest that current LLM agents are hindered by their lack of awareness of their own capabilities. We discuss the implications of LLMs' awareness of their capabilities for AI misuse and misalignment risks.
comment: 23 pages, 8 figures
☆ Youtu-LLM: Unlocking the Native Agentic Potential for Lightweight Large Language Models
We introduce Youtu-LLM, a lightweight yet powerful language model that harmonizes high computational efficiency with native agentic intelligence. Unlike typical small models that rely on distillation, Youtu-LLM (1.96B) is pre-trained from scratch to systematically cultivate reasoning and planning capabilities. The key technical advancements are as follows: (1) Compact Architecture with Long-Context Support: Built on a dense Multi-Latent Attention (MLA) architecture with a novel STEM-oriented vocabulary, Youtu-LLM supports a 128k context window. This design enables robust long-context reasoning and state tracking within a minimal memory footprint, making it ideal for long-horizon agent and reasoning tasks. (2) Principled "Commonsense-STEM-Agent" Curriculum: We curated a massive corpus of approximately 11T tokens and implemented a multi-stage training strategy. By progressively shifting the pre-training data distribution from general commonsense to complex STEM and agentic tasks, we ensure the model acquires deep cognitive abilities rather than superficial alignment. (3) Scalable Agentic Mid-training: Specifically for the agentic mid-training, we employ diverse data construction schemes to synthesize rich and varied trajectories across math, coding, and tool-use domains. This high-quality data enables the model to internalize planning and reflection behaviors effectively. Extensive evaluations show that Youtu-LLM sets a new state-of-the-art for sub-2B LLMs. On general benchmarks, it achieves competitive performance against larger models, while on agent-specific tasks, it significantly surpasses existing SOTA baselines, demonstrating that lightweight models can possess strong intrinsic agentic capabilities.
comment: 57 pages, 26 figures
☆ Recursive Language Models
We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs and common long-context scaffolds across four diverse long-context tasks, while having comparable (or cheaper) cost per query.
comment: 9 pages, 33 with Appendix
☆ Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time
Large Language Models (LLMs) often rely on long chain-of-thought (CoT) reasoning to solve complex tasks. While effective, these trajectories are frequently inefficient, leading to high latency from excessive token generation, or unstable reasoning that alternates between underthinking (shallow, inconsistent steps) and overthinking (repetitive, verbose reasoning). In this work, we study the structure of reasoning trajectories and uncover specialized attention heads that correlate with distinct cognitive behaviors such as verification and backtracking. By lightly intervening on these heads at inference time, we can steer the model away from inefficient modes. Building on this insight, we propose CREST, a training-free method for Cognitive REasoning Steering at Test-time. CREST has two components: (1) an offline calibration step that identifies cognitive heads and derives head-specific steering vectors, and (2) an inference-time procedure that rotates hidden representations to suppress components along those vectors. CREST adaptively suppresses unproductive reasoning behaviors, yielding both higher accuracy and lower computational cost. Across diverse reasoning benchmarks and models, CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%, offering a simple and effective pathway to faster, more reliable LLM reasoning.
☆ Korean Canonical Legal Benchmark: Toward Knowledge-Independent Evaluation of LLMs' Legal Reasoning Capabilities
We introduce the Korean Canonical Legal Benchmark (KCL), a benchmark designed to assess language models' legal reasoning capabilities independently of domain-specific knowledge. KCL provides question-level supporting precedents, enabling a more faithful disentanglement of reasoning ability from parameterized knowledge. KCL consists of two components: (1) KCL-MCQA, multiple-choice problems of 283 questions with 1,103 aligned precedents, and (2) KCL-Essay, open-ended generation problems of 169 questions with 550 aligned precedents and 2,739 instance-level rubrics for automated evaluation. Our systematic evaluation of 30+ models shows large remaining gaps, particularly in KCL-Essay, and that reasoning-specialized models consistently outperform their general-purpose counterparts. We release all resources, including the benchmark dataset and evaluation code, at https://github.com/lbox-kr/kcl.
☆ HaluNet: Multi-Granular Uncertainty Modeling for Efficient Hallucination Detection in LLM Question Answering
Large Language Models (LLMs) excel at question answering (QA) but often generate hallucinations, including factual errors or fabricated content. Detecting hallucinations from internal uncertainty signals is attractive due to its scalability and independence from external resources. Existing methods often aim to accurately capture a single type of uncertainty while overlooking the complementarity among different sources, particularly between token-level probability uncertainty and the uncertainty conveyed by internal semantic representations, which provide complementary views on model reliability. We present \textbf{HaluNet}, a lightweight and trainable neural framework that integrates multi granular token level uncertainties by combining semantic embeddings with probabilistic confidence and distributional uncertainty. Its multi branch architecture adaptively fuses what the model knows with the uncertainty expressed in its outputs, enabling efficient one pass hallucination detection. Experiments on SQuAD, TriviaQA, and Natural Questions show that HaluNet delivers strong detection performance and favorable computational efficiency, with or without access to context, highlighting its potential for real time hallucination detection in LLM based QA systems.
comment: 13 pages, 5 figures
☆ Safe in the Future, Dangerous in the Past: Dissecting Temporal and Linguistic Vulnerabilities in LLMs
As Large Language Models (LLMs) integrate into critical global infrastructure, the assumption that safety alignment transfers zero-shot from English to other languages remains a dangerous blind spot. This study presents a systematic audit of three state of the art models (GPT-5.1, Gemini 3 Pro, and Claude 4.5 Opus) using HausaSafety, a novel adversarial dataset grounded in West African threat scenarios (e.g., Yahoo-Yahoo fraud, Dane gun manufacturing). Employing a 2 x 4 factorial design across 1,440 evaluations, we tested the non-linear interaction between language (English vs. Hausa) and temporal framing. Our results challenge the prevailing multilingual safety gap narrative. Instead of a simple degradation in low-resource settings, we identified a mechanism of Complex Interference where safety is determined by the intersection of variables. While models exhibited a Reverse Linguistic with Claude 4.5 Opus proving significantly safer in Hausa (45.0%) than in English (36.7%) due to uncertainty-driven refusal they suffered catastrophic failures in temporal reasoning. We report a profound Temporal Asymmetry, where past-tense framing bypassed defenses (15.6% safe) while future-tense scenarios triggered hyper-conservative refusals (57.2% safe). The magnitude of this volatility is illustrated by a 9.2x disparity between the safest and most vulnerable configurations, proving that safety is not a fixed property but a context-dependent state. We conclude that current models rely on superficial heuristics rather than robust semantic understanding, creating Safety Pockets that leave Global South users exposed to localized harms. We propose Invariant Alignment as a necessary paradigm shift to ensure safety stability across linguistic and temporal shifts.
☆ More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization
For extreme low-bit quantization of large language models (LLMs), Double Binary Factorization (DBF) is attractive as it enables efficient inference without sacrificing accuracy. However, the scaling parameters of DBF are too restrictive; after factoring out signs, all rank components share the same magnitude profile, resulting in performance saturation. We propose Multi-envelope DBF (MDBF), which retains a shared pair of 1-bit sign bases but replaces the single envelope with a rank-$l$ envelope. By sharing sign matrices among envelope components, MDBF effectively maintains a binary carrier and utilizes the limited memory budget for magnitude expressiveness. We also introduce a closed-form initialization and an alternating refinement method to optimize MDBF. Across the LLaMA and Qwen families, MDBF enhances perplexity and zero-shot accuracy over previous binary formats at matched bits per weight while preserving the same deployment-friendly inference primitive.
comment: 14 pages, 2 figures
☆ From Building Blocks to Planning: Multi-Step Spatial Reasoning in LLMs with Reinforcement Learning
Spatial reasoning in large language models (LLMs) has gained increasing attention due to applications in navigation and planning. Despite strong general language capabilities, LLMs still struggle with spatial transformations and multi-step planning in structured environments. We propose a two-stage approach that decomposes spatial reasoning into atomic building blocks and their composition. First, we apply supervised fine-tuning on elementary spatial transformations, such as rotation, translation, and scaling, to equip the model with basic spatial physics. We then freeze this physics-aware model and train lightweight LoRA adapters within the GRPO framework to learn policies that compose these building blocks for multi-step planning in puzzle-based environments, in a closed-loop manner. To support this pipeline, we synthesize an ASCII-art dataset and construct a corresponding ASCII-based reinforcement learning environment. Our method consistently outperforms baselines, including the generic backbone, physics-aware model, and end-to-end RL models, under both Dynamic environments with explicit state updates and Static environments where the model must rely on its internal state across steps. In addition, the proposed approach converges faster and exhibits more stable training compared to end-to-end reinforcement learning from scratch. Finally, we analyze attention patterns to assess whether fine-tuning induces meaningful improvements in spatial understanding.
☆ Learning Speech Representations with Variational Predictive Coding ACL
Despite being the best known objective for learning speech representations, the HuBERT objective has not been further developed and improved. We argue that it is the lack of an underlying principle that stalls the development, and, in this paper, we show that predictive coding under a variational view is the principle behind the HuBERT objective. Due to its generality, our formulation provides opportunities to improve parameterization and optimization, and we show two simple modifications that bring immediate improvements to the HuBERT objective. In addition, the predictive coding formulation has tight connections to various other objectives, such as APC, CPC, wav2vec, and BEST-RQ. Empirically, the improvement in pre-training brings significant improvements to four downstream tasks: phone classification, f0 tracking, speaker recognition, and automatic speech recognition, highlighting the importance of the predictive coding interpretation.
comment: Accepted to Transactions of the Association for Computational Linguistics (TACL); Pre MIT Press version
☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
☆ Universal Adaptive Constraint Propagation: Scaling Structured Inference for Large Language Models via Meta-Reinforcement Learning
Large language models increasingly require structured inference, from JSON schema enforcement to multi-lingual parsing, where outputs must satisfy complex constraints. We introduce MetaJuLS, a meta-reinforcement learning approach that learns universal constraint propagation policies applicable across languages and tasks without task-specific retraining. By formulating structured inference as adaptive constraint propagation and training a Graph Attention Network with meta-learning, MetaJuLS achieves 1.5--2.0$\times$ speedups over GPU-optimized baselines while maintaining within 0.2\% accuracy of state-of-the-art parsers. On Universal Dependencies across 10 languages and LLM-constrained generation (LogicBench, GSM8K-Constrained), MetaJuLS demonstrates rapid cross-domain adaptation: a policy trained on English parsing adapts to new languages and tasks with 5--10 gradient steps (5--15 seconds) rather than requiring hours of task-specific training. Mechanistic analysis reveals the policy discovers human-like parsing strategies (easy-first) and novel non-intuitive heuristics. By reducing propagation steps in LLM deployments, MetaJuLS contributes to Green AI by directly reducing inference carbon footprint.
☆ RIMRULE: Improving Tool-Using Language Agents via MDL-Guided Rule Learning
Large language models (LLMs) often struggle to use tools reliably in domain-specific settings, where APIs may be idiosyncratic, under-documented, or tailored to private workflows. This highlights the need for effective adaptation to task-specific tools. We propose RIMRULE, a neuro-symbolic approach for LLM adaptation based on dynamic rule injection. Compact, interpretable rules are distilled from failure traces and injected into the prompt during inference to improve task performance. These rules are proposed by the LLM itself and consolidated using a Minimum Description Length (MDL) objective that favors generality and conciseness. Each rule is stored in both natural language and a structured symbolic form, supporting efficient retrieval at inference time. Experiments on tool-use benchmarks show that this approach improves accuracy on both seen and unseen tools without modifying LLM weights. It outperforms prompting-based adaptation methods and complements finetuning. Moreover, rules learned from one LLM can be reused to improve others, including long reasoning LLMs, highlighting the portability of symbolic knowledge across architectures.
☆ The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
The open-weight LLM ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single "breaker token" that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack creates an asymmetric realizability gap that sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and achieves spectral mimicry to evade outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
♻ ☆ Deep sequence models tend to memorize geometrically; it is unclear why
Deep sequence models are said to store atomic facts predominantly in the form of associative memory: a brute-force lookup of co-occurring entities. We identify a dramatically different form of storage of atomic facts that we term as geometric memory. Here, the model has synthesized embeddings encoding novel global relationships between all entities, including ones that do not co-occur in training. Such storage is powerful: for instance, we show how it transforms a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn $1$-step navigation task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, as against a lookup of local associations, cannot be straightforwardly attributed to typical supervisory, architectural, or optimizational pressures. Counterintuitively, a geometry is learned even when it is more complex than the brute-force lookup. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points out to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery, and unlearning.
♻ ☆ Semantic Parsing with Candidate Expressions for Knowledge Base Question Answering
Semantic parsers convert natural language to logical forms, which can be evaluated on knowledge bases (KBs) to produce denotations. Recent semantic parsers have been developed with sequence-to-sequence (seq2seq) pre-trained language models (PLMs) or large language models, where the models treat logical forms as sequences of tokens. For syntactic and semantic validity, the semantic parsers use grammars that enable constrained decoding. However, the grammars lack the ability to utilize large information of KBs, although logical forms contain representations of KB elements, such as entities or relations. In this work, we propose a grammar augmented with candidate expressions for semantic parsing on a large KB with a seq2seq PLM. The grammar defines actions as production rules, and our semantic parser predicts actions during inference under the constraints by types and candidate expressions. We apply the grammar to knowledge base question answering, where the constraints by candidate expressions assist a semantic parser to generate valid KB elements. We also introduce two special rules, sub-type inference and union types, and a mask caching algorithm. In particular, sub-type inference and the mask caching algorithm greatly increase the decoding speed of our semantic parser. We experimented on two benchmarks, KQA Pro and Overnight, where the constraints by candidate expressions increased the accuracy of our semantic parser, whether it was trained with strong supervision or weak supervision. In addition, our semantic parser had a fast decoding speed in the experiments. Our source code is publicly available at https://github.com/daehwannam/candexpr-sp.git.
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: Accepted and to appear in IJCNLP-AACL 2025
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
♻ ☆ Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
♻ ☆ MedQARo: A Large-Scale Benchmark for Evaluating Large Language Models on Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art (SOTA) large language models (LLMs). We construct a high-quality and large-scale dataset comprising 105,880 QA pairs related to cancer patients from two medical centers. The questions regard medical case summaries of 1,242 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 3,000 work hours to generate the QA pairs. Our benchmark contains both in-domain and cross-domain (cross-center and cross-cancer) test collections, enabling a precise assessment of generalization capabilities. We experiment with four open-source LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. We also evaluate two state-of-the-art LLMs exposed only through APIs, namely GPT-5.2 and Gemini 3 Flash. Our results show that fine-tuned models significantly outperform zero-shot models, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
♻ ☆ Toward Robust Legal Text Formalization into Defeasible Deontic Logic using LLMs
We present a comprehensive approach to the automated formalization of legal texts using large language models (LLMs), targeting their transformation into Defeasible Deontic Logic (DDL). Our method employs a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. We introduce a refined success metric that more precisely captures the completeness of formalizations, and a novel two-stage pipeline with a dedicated refinement step to improve logical consistency and coverage. The evaluation procedure has been strengthened with stricter error assessment, and we provide comparative results across multiple LLM configurations, including newly released models and various prompting and fine-tuning strategies. Experiments on legal norms from the Australian Telecommunications Consumer Protections Code demonstrate that, when guided effectively, LLMs can produce formalizations that align closely with expert-crafted representations, underscoring their potential for scalable legal informatics.
comment: This version is an extended version with additional results and discussion
♻ ☆ Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
♻ ☆ An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation AAAI 2026
Optimizing Retrieval-Augmented Generation (RAG) configurations for specific tasks is a complex and resource-intensive challenge. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To fill this gap, we present a comprehensive study involving five HPO algorithms over five datasets from diverse domains, including a newly curated real-world product documentation dataset. Our study explores the largest RAG HPO search space to date that includes full grid-search evaluations, and uses three evaluation metrics as optimization targets. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing model selection first is preferable to the common practice of following the RAG pipeline order during optimization.
comment: AAAI 2026 Workshop on New Frontiers in Information Retrieval. For associated results, see https://github.com/IBM/rag-hpo-bench
♻ ☆ When F1 Fails: Granularity-Aware Evaluation for Dialogue Topic Segmentation
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of work, evaluation practice remains dominated by strict boundary matching and F1-based metrics. Modern large language model (LLM) based conversational systems increasingly rely on segmentation to manage conversation history beyond fixed context windows. In such systems, unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation framework that reports boundary density and segment alignment diagnostics (purity and coverage) alongside window-tolerant F1 (W-F1). By separating boundary scoring from boundary selection, we evaluate segmentation quality across density regimes rather than at a single operating point. Cross-dataset evaluation shows that reported performance differences often reflect annotation granularity mismatch rather than boundary placement quality alone. We evaluate structurally distinct segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Boundary-based metrics are strongly coupled to boundary density: threshold sweeps produce larger W-F1 changes than switching between methods. These findings support viewing topic segmentation as a granularity selection problem rather than prediction of a single correct boundary set. This motivates separating boundary scoring from boundary selection for analyzing and tuning segmentation under varying annotation granularities.
comment: 34 pages, 4 figures. Evaluation and methodology study on dialogue topic segmentation
♻ ☆ A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond
Recent Large Reasoning Models (LRMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference. However, a growing concern lies in their tendency to produce excessively long reasoning traces, which are often filled with redundant content (e.g., repeated definitions), over-analysis of simple problems, and superficial exploration of multiple reasoning paths for harder tasks. This inefficiency introduces significant challenges for training, inference, and real-world deployment (e.g., in agent-based systems), where token economy is critical. In this survey, we provide a comprehensive overview of recent efforts aimed at improving reasoning efficiency in LRMs, with a particular focus on the unique challenges that arise in this new paradigm. We identify common patterns of inefficiency, examine methods proposed across the LRM lifecycle, i.e., from pretraining to inference, and discuss promising future directions for research. To support ongoing development, we also maintain a real-time GitHub repository tracking recent progress in the field. We hope this survey serves as a foundation for further exploration and inspires innovation in this rapidly evolving area.
comment: Update recent RL papers. Project page: https://github.com/XiaoYee/Awesome_Efficient_LRM_Reasoning
♻ ☆ Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +9.28% average improvement on six benchmarks for DeepSeek-R1-7B and +11.25% on AIME2024 using Ling-mini-2.0-while remaining highly efficient.
comment: Code: https://github.com/EnVision-Research/MTI
♻ ☆ Large Language Model Sourcing: A Survey
Due to the black-box nature of large language models (LLMs) and the realism of their generated content, issues such as hallucinations, bias, unfairness, and copyright infringement have become significant. In this context, sourcing information from multiple perspectives is essential. This survey presents a systematic investigation organized around four interrelated dimensions: Model Sourcing, Model Structure Sourcing, Training Data Sourcing, and External Data Sourcing. Moreover, a unified dual-paradigm taxonomy is proposed that classifies existing sourcing methods into prior-based (proactive traceability embedding) and posterior-based (retrospective inference) approaches. Traceability across these dimensions enhances the transparency, accountability, and trustworthiness of LLMs deployment in real-world applications.
comment: 31 pages
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and more than ten machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
♻ ☆ Quantifying Positional Biases in Text Embedding Models NeurIPS
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
comment: 13 pages, 11 figures, NeurIPS
♻ ☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
♻ ☆ On measuring grounding and generalizing grounding problems
The symbol grounding problem asks how tokens like cat can be about cats, as opposed to mere shapes manipulated in a calculus. We recast grounding from a binary judgment into an audit across desiderata, each indexed by an evaluation tuple (context, meaning type, threat model, reference distribution): authenticity (mechanisms reside inside the agent and, for strong claims, were acquired through learning or evolution); preservation (atomic meanings remain intact); faithfulness, both correlational (realized meanings match intended ones) and etiological (internal mechanisms causally contribute to success); robustness (graceful degradation under declared perturbations); compositionality (the whole is built systematically from the parts). We apply this framework to four grounding modes (symbolic; referential; vectorial; relational) and three case studies: model-theoretic semantics achieves exact composition but lacks etiological warrant; large language models show correlational fit and local robustness for linguistic tasks, yet lack selection-for-success on world tasks without grounded interaction; human language meets the desiderata under strong authenticity through evolutionary and developmental acquisition. By operationalizing a philosophical inquiry about representation, we equip philosophers of science, computer scientists, linguists, and mathematicians with a common language and technical framework for systematic investigation of grounding and meaning.
comment: resubmission: 39 pages, 85 sources, 3 figures
♻ ☆ Effective and Efficient Jailbreaks of Black-Box LLMs with Cross-Behavior Attacks
Despite recent advancements in Large Language Models (LLMs) and their alignment, they can still be jailbroken, i.e., harmful and toxic content can be elicited from them. While existing red-teaming methods have shown promise in uncovering such vulnerabilities, these methods struggle with limited success and high computational and monetary costs. To address this, we propose a black-box Jailbreak method with Cross-Behavior attacks (JCB), that can automatically and efficiently find successful jailbreak prompts. JCB leverages successes from past behaviors to help jailbreak new behaviors, thereby significantly improving the attack efficiency. Moreover, JCB does not rely on time- and/or cost-intensive calls to auxiliary LLMs to discover/optimize the jailbreak prompts, making it highly efficient and scalable. Comprehensive experimental evaluations show that JCB significantly outperforms related baselines, requiring up to 94% fewer queries while still achieving 12.9% higher average attack success. JCB also achieves a notably high 37% attack success rate on Llama-2-7B, one of the most resilient LLMs, and shows promising zero-shot transferability across different LLMs.
comment: Code is at https://github.com/gohil-vasudev/JCB
♻ ☆ Chunk Based Speech Pre-training with High Resolution Finite Scalar Quantization
Low latency speech human-machine communication is becoming increasingly necessary as speech technology advances quickly in the last decade. One of the primary factors behind the advancement of speech technology is self-supervised learning. Most self-supervised learning algorithms are designed with full utterance assumption and compromises have to made if partial utterances are presented, which are common in the streaming applications. In this work, we propose a chunk based self-supervised learning (Chunk SSL) algorithm as an unified solution for both streaming and offline speech pre-training. Chunk SSL is optimized with the masked prediction loss and an acoustic encoder is encouraged to restore indices of those masked speech frames with help from unmasked frames in the same chunk and preceding chunks. A copy and append data augmentation approach is proposed to conduct efficient chunk based pre-training. Chunk SSL utilizes a finite scalar quantization (FSQ) module to discretize input speech features and our study shows a high resolution FSQ codebook, i.e., a codebook with vocabulary size up to a few millions, is beneficial to transfer knowledge from the pre-training task to the downstream tasks. A group masked prediction loss is employed during pre-training to alleviate the high memory and computation cost introduced by the large codebook. The proposed approach is examined in two speech to text tasks, i.e., speech recognition and speech translation. Experimental results on the \textsc{Librispeech} and \textsc{Must-C} datasets show that the proposed method could achieve very competitive results for speech to text tasks at both streaming and offline modes.
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ MTSQL-R1: Towards Long-Horizon Multi-Turn Text-to-SQL via Agentic Training
Multi-turn Text-to-SQL aims to translate a user's conversational utterances into executable SQL while preserving dialogue coherence and grounding to the target schema. However, most existing systems only regard this task as a simple text translation task and follow a short-horizon paradigm, generating a query per turn without execution, explicit verification, and refinement, which leads to non-executable or incoherent outputs. We present MTSQL-R1, an agentic training framework for long-horizon multi-turn Text-to-SQL. We cast the task as a Markov Decision Process (MDP) in which an agent interacts with (i) a database for execution feedback and (ii) a persistent dialogue memory for coherence verification, performing an iterative propose to execute -> verify -> refine cycle until all checks pass. Experiments on COSQL and SPARC demonstrate that MTSQL-R1 consistently outperforms strong baselines, highlighting the importance of environment-driven verification and memory-guided refinement for conversational semantic parsing. Full recipes (including code, trained models, logs, reasoning trajectories, etc.) will be released after the internal review to contribute to community research.
♻ ☆ Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models (LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation (PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
comment: Camera-ready version of a paper accepted at the AIIDE 2025 Workshop on Experimental AI in Games (EXAG)
♻ ☆ Esoteric Language Models
Diffusion-based language models offer a compelling alternative to autoregressive (AR) models by enabling parallel and controllable generation. Within this family, Masked Diffusion Models (MDMs) currently perform best but still underperform AR models in perplexity and lack key inference-time efficiency features, most notably KV caching. We introduce Eso-LMs, a new family of models that fuses AR and MDM paradigms, smoothly interpolating between their perplexities while overcoming their respective limitations. Unlike prior work, which uses transformers with bidirectional attention as MDM denoisers, we exploit the connection between MDMs and Any-Order autoregressive models and adopt causal attention. This design lets us compute the exact likelihood of MDMs for the first time and, crucially, enables us \to introduce KV caching for MDMs while preserving parallel generation for the first time, significantly improving inference efficiency. Combined with an optimized sampling schedule, Eso-LMs achieves a new state of the art on the speed-quality Pareto frontier for unconditional generation. On long contexts, it yields $\mathbf{14 - 65{}\times}$ faster inference than standard MDMs and $\mathbf{3 - 4{}\times}$ faster inference than prior semi-autoregressive approaches. We provide code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/Eso-LMs
♻ ☆ From Transformers to LLMs: A Systematic Survey of Efficiency Considerations in NLP
The emergence of Transformer-based Large Language Models (LLMs) has substantially augmented the capabilities of Natural Language Processing (NLP), thereby intensifying the demand for computational resources. Therefore, enhancing efficiency based on factors like computational requirements, energy consumption, carbon footprint and financial cost has become a vital area of research. This motivates us to conduct a systematic literature review on Transformer-based LLMs in NLP from the perspective of efficiency. In this survey of 312 articles published between the years 2011 and 2025, efficiency-improvement endeavors have been systematically discussed targeting various aspects such as data curation, model design, model downsizing, and dynamic inferencing. This has been augmented with efficiency considerations in model adaptation strategies like pre-training, fine-tuning, prompt-engineering and Retrieval-Augmented Generation (RAG). Furthermore, a statistical analysis of the articles has been performed followed by an in-depth evaluation of the efficiency and efficacy of more than 30 renowned NLP models has been conducted on 13 evaluation benchmarks. This paper offers valuable insights for researchers, professionals as well as scholars, and explores the trend of research toward sustainable practices in NLP.
comment: 63 pages, 5 tables and 22 figures
Machine Learning 122
☆ Coordinated Humanoid Manipulation with Choice Policies
Humanoid robots hold great promise for operating in human-centric environments, yet achieving robust whole-body coordination across the head, hands, and legs remains a major challenge. We present a system that combines a modular teleoperation interface with a scalable learning framework to address this problem. Our teleoperation design decomposes humanoid control into intuitive submodules, which include hand-eye coordination, grasp primitives, arm end-effector tracking, and locomotion. This modularity allows us to collect high-quality demonstrations efficiently. Building on this, we introduce Choice Policy, an imitation learning approach that generates multiple candidate actions and learns to score them. This architecture enables both fast inference and effective modeling of multimodal behaviors. We validate our approach on two real-world tasks: dishwasher loading and whole-body loco-manipulation for whiteboard wiping. Experiments show that Choice Policy significantly outperforms diffusion policies and standard behavior cloning. Furthermore, our results indicate that hand-eye coordination is critical for success in long-horizon tasks. Our work demonstrates a practical path toward scalable data collection and learning for coordinated humanoid manipulation in unstructured environments.
comment: Code and Website: https://choice-policy.github.io/
☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
☆ Many Minds from One Model: Bayesian Transformers for Population Intelligence
Despite their scale and success, modern transformers are almost universally trained as single-minded systems: optimization produces one deterministic set of parameters, representing a single functional hypothesis about the data. Motivated by the idea that intelligence emerge from many minds, we propose Population Bayesian Transformers (B-Trans), which transform a standard Large Language Model into a Bayesian Transformer model to supports sampling diverse yet coherent model instances from a single set of pre-trained weights. B-Trans introduces a Bayesian-motivated posterior proxy by treating the bias-like offsets in normalization layers as stochastic variables with a Gaussian variational approximation, inducing a distribution over model behavior without the cost of training full Bayesian neural networks. Sampling from this proxy yields a set of model instances with diverse behaviors while maintaining general competence. To preserve coherence within each generation, we freeze the sampled noise at the sequence level, enforcing temporal consistency across tokens. B-Trans allows for population-level decision-making, where aggregating predictions across sampled individuals significantly enhances exploration. Experiments across zero-shot generation, Reinforcement Learning with Verifiable Rewards (RLVR), and RL without explicit labels demonstrate that B-Trans effectively leverage the wisdom of crowds, yielding superior semantic diversity while achieving better task performance compared to deterministic baselines.
☆ On the geometry and topology of representations: the manifolds of modular addition
The Clock and Pizza interpretations, associated with architectures differing in either uniform or learnable attention, were introduced to argue that different architectural designs can yield distinct circuits for modular addition. In this work, we show that this is not the case, and that both uniform attention and trainable attention architectures implement the same algorithm via topologically and geometrically equivalent representations. Our methodology goes beyond the interpretation of individual neurons and weights. Instead, we identify all of the neurons corresponding to each learned representation and then study the collective group of neurons as one entity. This method reveals that each learned representation is a manifold that we can study utilizing tools from topology. Based on this insight, we can statistically analyze the learned representations across hundreds of circuits to demonstrate the similarity between learned modular addition circuits that arise naturally from common deep learning paradigms.
☆ Reliable and Resilient Collective Communication Library for LLM Training and Serving
Modern ML training and inference now span tens to tens of thousands of GPUs, where network faults can waste 10--15\% of GPU hours due to slow recovery. Common network errors and link fluctuations trigger timeouts that often terminate entire jobs, forcing expensive checkpoint rollback during training and request reprocessing during inference. We present R$^2$CCL, a fault-tolerant communication library that provides lossless, low-overhead failover by exploiting multi-NIC hardware. R$^2$CCL performs rapid connection migration, bandwidth-aware load redistribution, and resilient collective algorithms to maintain progress under failures. We evaluate R$^2$CCL on two 8-GPU H100 InfiniBand servers and via large-scale ML simulators modeling hundreds of GPUs with diverse failure patterns. Experiments show that R$^2$CCL is highly robust to NIC failures, incurring less than 1\% training and less than 3\% inference overheads. R$^2$CCL outperforms baselines AdapCC and DejaVu by 12.18$\times$ and 47$\times$, respectively.
☆ Generative Classifiers Avoid Shortcut Solutions ICLR 2025
Discriminative approaches to classification often learn shortcuts that hold in-distribution but fail even under minor distribution shift. This failure mode stems from an overreliance on features that are spuriously correlated with the label. We show that generative classifiers, which use class-conditional generative models, can avoid this issue by modeling all features, both core and spurious, instead of mainly spurious ones. These generative classifiers are simple to train, avoiding the need for specialized augmentations, strong regularization, extra hyperparameters, or knowledge of the specific spurious correlations to avoid. We find that diffusion-based and autoregressive generative classifiers achieve state-of-the-art performance on five standard image and text distribution shift benchmarks and reduce the impact of spurious correlations in realistic applications, such as medical or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to understand the inductive biases of generative classifiers, as well as the data properties that determine when generative classifiers outperform discriminative ones.
comment: ICLR 2025. Code: https://github.com/alexlioralexli/generative-classifiers
☆ ResponseRank: Data-Efficient Reward Modeling through Preference Strength Learning NeurIPS 2025
Binary choices, as often used for reinforcement learning from human feedback (RLHF), convey only the direction of a preference. A person may choose apples over oranges and bananas over grapes, but which preference is stronger? Strength is crucial for decision-making under uncertainty and generalization of preference models, but hard to measure reliably. Metadata such as response times and inter-annotator agreement can serve as proxies for strength, but are often noisy and confounded. We propose ResponseRank to address the challenge of learning from noisy strength signals. Our method uses relative differences in proxy signals to rank responses to pairwise comparisons by their inferred preference strength. To control for systemic variation, we compare signals only locally within carefully constructed strata. This enables robust learning of utility differences consistent with strength-derived rankings while making minimal assumptions about the strength signal. Our contributions are threefold: (1) ResponseRank, a novel method that robustly learns preference strength by leveraging locally valid relative strength signals; (2) empirical evidence of improved sample efficiency and robustness across diverse tasks: synthetic preference learning (with simulated response times), language modeling (with annotator agreement), and RL control tasks (with simulated episode returns); and (3) the Pearson Distance Correlation (PDC), a novel metric that isolates cardinal utility learning from ordinal accuracy.
comment: NeurIPS 2025
☆ Convergence of the generalization error for deep gradient flow methods for PDEs
The aim of this article is to provide a firm mathematical foundation for the application of deep gradient flow methods (DGFMs) for the solution of (high-dimensional) partial differential equations (PDEs). We decompose the generalization error of DGFMs into an approximation and a training error. We first show that the solution of PDEs that satisfy reasonable and verifiable assumptions can be approximated by neural networks, thus the approximation error tends to zero as the number of neurons tends to infinity. Then, we derive the gradient flow that the training process follows in the ``wide network limit'' and analyze the limit of this flow as the training time tends to infinity. These results combined show that the generalization error of DGFMs tends to zero as the number of neurons and the training time tend to infinity.
comment: 28 pages
☆ Diffusion Language Models are Provably Optimal Parallel Samplers
Diffusion language models (DLMs) have emerged as a promising alternative to autoregressive models for faster inference via parallel token generation. We provide a rigorous foundation for this advantage by formalizing a model of parallel sampling and showing that DLMs augmented with polynomial-length chain-of-thought (CoT) can simulate any parallel sampling algorithm using an optimal number of sequential steps. Consequently, whenever a target distribution can be generated using a small number of sequential steps, a DLM can be used to generate the distribution using the same number of optimal sequential steps. However, without the ability to modify previously revealed tokens, DLMs with CoT can still incur large intermediate footprints. We prove that enabling remasking (converting unmasked tokens to masks) or revision (converting unmasked tokens to other unmasked tokens) together with CoT further allows DLMs to simulate any parallel sampling algorithm with optimal space complexity. We further justify the advantage of revision by establishing a strict expressivity gap: DLMs with revision or remasking are strictly more expressive than those without. Our results not only provide a theoretical justification for the promise of DLMs as the most efficient parallel sampler, but also advocate for enabling revision in DLMs.
☆ Basic Inequalities for First-Order Optimization with Applications to Statistical Risk Analysis
We introduce \textit{basic inequalities} for first-order iterative optimization algorithms, forming a simple and versatile framework that connects implicit and explicit regularization. While related inequalities appear in the literature, we isolate and highlight a specific form and develop it as a well-rounded tool for statistical analysis. Let $f$ denote the objective function to be optimized. Given a first-order iterative algorithm initialized at $θ_0$ with current iterate $θ_T$, the basic inequality upper bounds $f(θ_T)-f(z)$ for any reference point $z$ in terms of the accumulated step sizes and the distances between $θ_0$, $θ_T$, and $z$. The bound translates the number of iterations into an effective regularization coefficient in the loss function. We demonstrate this framework through analyses of training dynamics and prediction risk bounds. In addition to revisiting and refining known results on gradient descent, we provide new results for mirror descent with Bregman divergence projection, for generalized linear models trained by gradient descent and exponentiated gradient descent, and for randomized predictors. We illustrate and supplement these theoretical findings with experiments on generalized linear models.
comment: 47 pages, 3 figures (7 subfigures)
☆ Efficiently Estimating Data Efficiency for Language Model Fine-tuning
While large language models (LLMs) demonstrate reasonable zero-shot capability across many downstream tasks, fine-tuning is a common practice to improve their performance. However, a task's data efficiency--i.e., the number of fine-tuning examples needed to achieve a desired level of performance--is often unknown, resulting in costly cycles of incremental annotation and retraining. Indeed, we demonstrate across a curated set of 30 specialized tasks that performant LLMs may struggle zero-shot but can attain stronger performance after fine-tuning. This motivates the need for methods to predict a task's data efficiency without requiring incremental annotation. After introducing a concrete metric that quantifies a task's data efficiency, we propose using the gradient cosine similarity of low-confidence examples to predict data efficiency based on a small number of labeled samples. We validate our approach on a diverse set of tasks with varying data efficiencies, attaining 8.6% error in overall data efficiency prediction and typically eliminating hundreds of unnecessary annotations on each task. Our experiment results and implementation code are available on GitHub.
☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Our code and benchmark dataset will be released upon acceptance.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ SymSeqBench: a unified framework for the generation and analysis of rule-based symbolic sequences and datasets
Sequential structure is a key feature of multiple domains of natural cognition and behavior, such as language, movement and decision-making. Likewise, it is also a central property of tasks to which we would like to apply artificial intelligence. It is therefore of great importance to develop frameworks that allow us to evaluate sequence learning and processing in a domain agnostic fashion, whilst simultaneously providing a link to formal theories of computation and computability. To address this need, we introduce two complementary software tools: SymSeq, designed to rigorously generate and analyze structured symbolic sequences, and SeqBench, a comprehensive benchmark suite of rule-based sequence processing tasks to evaluate the performance of artificial learning systems in cognitively relevant domains. In combination, SymSeqBench offers versatility in investigating sequential structure across diverse knowledge domains, including experimental psycholinguistics, cognitive psychology, behavioral analysis, neuromorphic computing and artificial intelligence. Due to its basis in Formal Language Theory (FLT), SymSeqBench provides researchers in multiple domains with a convenient and practical way to apply the concepts of FLT to conceptualize and standardize their experiments, thus advancing our understanding of cognition and behavior through shared computational frameworks and formalisms. The tool is modular, openly available and accessible to the research community.
☆ Attribution-Guided Distillation of Matryoshka Sparse Autoencoders
Sparse autoencoders (SAEs) aim to disentangle model activations into monosemantic, human-interpretable features. In practice, learned features are often redundant and vary across training runs and sparsity levels, which makes interpretations difficult to transfer and reuse. We introduce Distilled Matryoshka Sparse Autoencoders (DMSAEs), a training pipeline that distills a compact core of consistently useful features and reuses it to train new SAEs. DMSAEs run an iterative distillation cycle: train a Matryoshka SAE with a shared core, use gradient X activation to measure each feature's contribution to next-token loss in the most nested reconstruction, and keep only the smallest subset that explains a fixed fraction of the attribution. Only the core encoder weight vectors are transferred across cycles; the core decoder and all non-core latents are reinitialized each time. On Gemma-2-2B layer 12 residual stream activations, seven cycles of distillation (500M tokens, 65k width) yielded a distilled core of 197 features that were repeatedly selected. Training using this distilled core improves several SAEBench metrics and demonstrates that consistent sets of latent features can be transferred across sparsity levels
☆ Semi-overlapping Multi-bandit Best Arm Identification for Sequential Support Network Learning
Many modern AI and ML problems require evaluating partners' contributions through shared yet asymmetric, computationally intensive processes and the simultaneous selection of the most beneficial candidates. Sequential approaches to these problems can be unified under a new framework, Sequential Support Network Learning (SSNL), in which the goal is to select the most beneficial candidate set of partners for all participants using trials; that is, to learn a directed graph that represents the highest-performing contributions. We demonstrate that a new pure-exploration model, the semi-overlapping multi-(multi-armed) bandit (SOMMAB), in which a single evaluation provides distinct feedback to multiple bandits due to structural overlap among their arms, can be used to learn a support network from sparse candidate lists efficiently. We develop a generalized GapE algorithm for SOMMABs and derive new exponential error bounds that improve the best known constant in the exponent for multi-bandit best-arm identification. The bounds scale linearly with the degree of overlap, revealing significant sample-complexity gains arising from shared evaluations. From an application point of view, this work provides a theoretical foundation and improved performance guarantees for sequential learning tools for identifying support networks from sparse candidates in multiple learning problems, such as in multi-task learning (MTL), auxiliary task learning (ATL), federated learning (FL), and in multi-agent systems (MAS).
comment: 29 pages, 2 figures
☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control
Achieving provable stability in model-free reinforcement learning (RL) remains a challenge, particularly in balancing exploration with rigorous safety. This article introduces MSACL, a framework that integrates exponential stability theory with maximum entropy RL through multi-step Lyapunov certificate learning. Unlike methods relying on complex reward engineering, MSACL utilizes off-policy multi-step data to learn Lyapunov certificates satisfying theoretical stability conditions. By introducing Exponential Stability Labels (ESL) and a $λ$-weighted aggregation mechanism, the framework effectively balances the bias-variance trade-off in multi-step learning. Policy optimization is guided by a stability-aware advantage function, ensuring the learned policy promotes rapid Lyapunov descent. We evaluate MSACL across six benchmarks, including stabilization and nonlinear tracking tasks, demonstrating its superiority over state-of-the-art Lyapunov-based RL algorithms. MSACL achieves exponential stability and rapid convergence under simple rewards, while exhibiting significant robustness to uncertainties and generalization to unseen trajectories. Sensitivity analysis establishes the multi-step horizon $n=20$ as a robust default across diverse systems. By linking Lyapunov theory with off-policy actor-critic frameworks, MSACL provides a foundation for verifiably safe learning-based control. Source code and benchmark environments will be made publicly available.
☆ ProDM: Synthetic Reality-driven Property-aware Progressive Diffusion Model for Coronary Calcium Motion Correction in Non-gated Chest CT
Coronary artery calcium (CAC) scoring from chest CT is a well-established tool to stratify and refine clinical cardiovascular disease risk estimation. CAC quantification relies on the accurate delineation of calcified lesions, but is oftentimes affected by artifacts introduced by cardiac and respiratory motion. ECG-gated cardiac CTs substantially reduce motion artifacts, but their use in population screening and routine imaging remains limited due to gating requirements and lack of insurance coverage. Although identification of incidental CAC from non-gated chest CT is increasingly considered for it offers an accessible and widely available alternative, this modality is limited by more severe motion artifacts. We present ProDM (Property-aware Progressive Correction Diffusion Model), a generative diffusion framework that restores motion-free calcified lesions from non-gated CTs. ProDM introduces three key components: (1) a CAC motion simulation data engine that synthesizes realistic non-gated acquisitions with diverse motion trajectories directly from cardiac-gated CTs, enabling supervised training without paired data; (2) a property-aware learning strategy incorporating calcium-specific priors through a differentiable calcium consistency loss to preserve lesion integrity; and (3) a progressive correction scheme that reduces artifacts gradually across diffusion steps to enhance stability and calcium fidelity. Experiments on real patient datasets show that ProDM significantly improves CAC scoring accuracy, spatial lesion fidelity, and risk stratification performance compared with several baselines. A reader study on real non-gated scans further confirms that ProDM suppresses motion artifacts and improves clinical usability. These findings highlight the potential of progressive, property-aware frameworks for reliable CAC quantification from routine chest CT imaging.
comment: 21 pages, 8 figures
☆ RAIR: A Rule-Aware Benchmark Uniting Challenging Long-Tail and Visual Salience Subset for E-commerce Relevance Assessment
Search relevance plays a central role in web e-commerce. While large language models (LLMs) have shown significant results on relevance task, existing benchmarks lack sufficient complexity for comprehensive model assessment, resulting in an absence of standardized relevance evaluation metrics across the industry. To address this limitation, we propose Rule-Aware benchmark with Image for Relevance assessment(RAIR), a Chinese dataset derived from real-world scenarios. RAIR established a standardized framework for relevance assessment and provides a set of universal rules, which forms the foundation for standardized evaluation. Additionally, RAIR analyzes essential capabilities required for current relevance models and introduces a comprehensive dataset consists of three subset: (1) a general subset with industry-balanced sampling to evaluate fundamental model competencies; (2) a long-tail hard subset focus on challenging cases to assess performance limits; (3) a visual salience subset for evaluating multimodal understanding capabilities. We conducted experiments on RAIR using 14 open and closed-source models. The results demonstrate that RAIR presents sufficient challenges even for GPT-5, which achieved the best performance. RAIR data are now available, serving as an industry benchmark for relevance assessment while providing new insights into general LLM and Visual Language Model(VLM) evaluation.
☆ Iterative Deployment Improves Planning Skills in LLMs
We show that iterative deployment of large language models (LLMs), each fine-tuned on data carefully curated by users from the previous models' deployment, can significantly change the properties of the resultant models. By testing this mechanism on various planning domains, we observe substantial improvements in planning skills, with later models displaying emergent generalization by discovering much longer plans than the initial models. We then provide theoretical analysis showing that iterative deployment effectively implements reinforcement learning (RL) training in the outer-loop (i.e. not as part of intentional model training), with an implicit reward function. The connection to RL has two important implications: first, for the field of AI safety, as the reward function entailed by repeated deployment is not defined explicitly, and could have unexpected implications to the properties of future model deployments. Second, the mechanism highlighted here can be viewed as an alternative training regime to explicit RL, relying on data curation rather than explicit rewards.
☆ Adaptive Dependency-aware Prompt Optimization Framework for Multi-Step LLM Pipeline
Multi-step LLM pipelines invoke large language models multiple times in a structured sequence and can effectively solve complex tasks, but their performance heavily depends on the prompts used at each step. Jointly optimizing these prompts is difficult due to missing step-level supervision and inter-step dependencies. Existing end-to-end prompt optimization methods struggle under these conditions and often yield suboptimal or unstable updates. We propose ADOPT, an Adaptive Dependency-aware Prompt Optimization framework for multi-step LLM pipelines. ADOPT explicitly models the dependency between each LLM step and the final task outcome, enabling precise text-gradient estimation analogous to computing analytical derivatives. It decouples textual gradient estimation from gradient updates, reducing multi-prompt optimization to flexible single-prompt optimization steps, and employs a Shapley-based mechanism to adaptively allocate optimization resources. Experiments on real-world datasets and diverse pipeline structures show that ADOPT is effective and robust, consistently outperforming state-of-the-art prompt optimization baselines.
☆ Are First-Order Diffusion Samplers Really Slower? A Fast Forward-Value Approach
Higher-order ODE solvers have become a standard tool for accelerating diffusion probabilistic model (DPM) sampling, motivating the widespread view that first-order methods are inherently slower and that increasing discretization order is the primary path to faster generation. This paper challenges this belief and revisits acceleration from a complementary angle: beyond solver order, the placement of DPM evaluations along the reverse-time dynamics can substantially affect sampling accuracy in the low-neural function evaluation (NFE) regime. We propose a novel training-free, first-order sampler whose leading discretization error has the opposite sign to that of DDIM. Algorithmically, the method approximates the forward-value evaluation via a cheap one-step lookahead predictor. We provide theoretical guarantees showing that the resulting sampler provably approximates the ideal forward-value trajectory while retaining first-order convergence. Empirically, across standard image generation benchmarks (CIFAR-10, ImageNet, FFHQ, and LSUN), the proposed sampler consistently improves sample quality under the same NFE budget and can be competitive with, and sometimes outperform, state-of-the-art higher-order samplers. Overall, the results suggest that the placement of DPM evaluations provides an additional and largely independent design angle for accelerating diffusion sampling.
☆ Frequent subgraph-based persistent homology for graph classification
Persistent homology (PH) has recently emerged as a powerful tool for extracting topological features. Integrating PH into machine learning and deep learning models enhances topology awareness and interpretability. However, most PH methods on graphs rely on a limited set of filtrations, such as degree-based or weight-based filtrations, which overlook richer features like recurring information across the dataset and thus restrict expressive power. In this work, we propose a novel graph filtration called Frequent Subgraph Filtration (FSF), which is derived from frequent subgraphs and produces stable and information-rich frequency-based persistent homology (FPH) features. We study the theoretical properties of FSF and provide both proofs and experimental validation. Beyond persistent homology itself, we introduce two approaches for graph classification: an FPH-based machine learning model (FPH-ML) and a hybrid framework that integrates FPH with graph neural networks (FPH-GNNs) to enhance topology-aware graph representation learning. Our frameworks bridge frequent subgraph mining and topological data analysis, offering a new perspective on topology-aware feature extraction. Experimental results show that FPH-ML achieves competitive or superior accuracy compared with kernel-based and degree-based filtration methods. When integrated into graph neural networks, FPH yields relative performance gains ranging from 0.4 to 21 percent, with improvements of up to 8.2 percentage points over GCN and GIN backbones across benchmarks.
comment: Preprint. 18 pages, 10 figures
☆ Spectral Graph Neural Networks for Cognitive Task Classification in fMRI Connectomes
Cognitive task classification using machine learning plays a central role in decoding brain states from neuroimaging data. By integrating machine learning with brain network analysis, complex connectivity patterns can be extracted from functional magnetic resonance imaging connectomes. This process transforms raw blood-oxygen-level-dependent (BOLD) signals into interpretable representations of cognitive processes. Graph neural networks (GNNs) further advance this paradigm by modeling brain regions as nodes and functional connections as edges, capturing topological dependencies and multi-scale interactions that are often missed by conventional approaches. Our proposed SpectralBrainGNN model, a spectral convolution framework based on graph Fourier transforms (GFT) computed via normalized Laplacian eigendecomposition. Experiments on the Human Connectome Project-Task (HCPTask) dataset demonstrate the effectiveness of the proposed approach, achieving a classification accuracy of 96.25\%. The implementation is publicly available at https://github.com/gnnplayground/SpectralBrainGNN to support reproducibility and future research.
☆ PRISM: A hierarchical multiscale approach for time series forecasting
Forecasting is critical in areas such as finance, biology, and healthcare. Despite the progress in the field, making accurate forecasts remains challenging because real-world time series contain both global trends, local fine-grained structure, and features on multiple scales in between. Here, we present a new forecasting method, PRISM (Partitioned Representation for Iterative Sequence Modeling), that addresses this challenge through a learnable tree-based partitioning of the signal. At the root of the tree, a global representation captures coarse trends in the signal, while recursive splits reveal increasingly localized views of the signal. At each level of the tree, data are projected onto a time-frequency basis (e.g., wavelets or exponential moving averages) to extract scale-specific features, which are then aggregated across the hierarchy. This design allows the model to jointly capture global structure and local dynamics of the signal, enabling accurate forecasting. Experiments across benchmark datasets show that our method outperforms state-of-the-art methods for forecasting. Overall, these results demonstrate that our hierarchical approach provides a lightweight and flexible framework for forecasting multivariate time series. The code is available at https://github.com/nerdslab/prism.
☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
☆ Characterization of Transfer Using Multi-task Learning Curves
Transfer effects manifest themselves both during training using a fixed data set and in inductive inference using accumulating data. We hypothesize that perturbing the data set by including more samples, instead of perturbing the model by gradient updates, provides a complementary and more fundamental characterization of transfer effects. To capture this phenomenon, we quantitatively model transfer effects using multi-task learning curves approximating the inductive performance over varying sample sizes. We describe an efficient method to approximate multi-task learning curves analogous to the Task Affinity Grouping method applied during training. We compare the statistical and computational approaches to transfer, which indicates considerably higher compute costs for the previous but better power and broader applicability. Evaluations are performed using a benchmark drug-target interaction data set. Our results show that learning curves can better capture the effects of multi-task learning and their multi-task extensions can delineate pairwise and contextual transfer effects in foundation models.
☆ AODDiff: Probabilistic Reconstruction of Aerosol Optical Depth via Diffusion-based Bayesian Inference
High-quality reconstruction of Aerosol Optical Depth (AOD) fields is critical for Atmosphere monitoring, yet current models remain constrained by the scarcity of complete training data and a lack of uncertainty quantification.To address these limitations, we propose AODDiff, a probabilistic reconstruction framework based on diffusion-based Bayesian inference. By leveraging the learned spatiotemporal probability distribution of the AOD field as a generative prior, this framework can be flexibly adapted to various reconstruction tasks without requiring task-specific retraining. We first introduce a corruption-aware training strategy to learns a spatiotemporal AOD prior solely from naturally incomplete data. Subsequently, we employ a decoupled annealing posterior sampling strategy that enables the more effective and integration of heterogeneous observations as constraints to guide the generation process. We validate the proposed framework through extensive experiments on Reanalysis data. Results across downscaling and inpainting tasks confirm the efficacy and robustness of AODDiff, specifically demonstrating its advantage in maintaining high spatial spectral fidelity. Furthermore, as a generative model, AODDiff inherently enables uncertainty quantification via multiple sampling, offering critical confidence metrics for downstream applications.
comment: 17 pages, 9 figures
☆ Discovering Coordinated Joint Options via Inter-Agent Relative Dynamics
Temporally extended actions improve the ability to explore and plan in single-agent settings. In multi-agent settings, the exponential growth of the joint state space with the number of agents makes coordinated behaviours even more valuable. Yet, this same exponential growth renders the design of multi-agent options particularly challenging. Existing multi-agent option discovery methods often sacrifice coordination by producing loosely coupled or fully independent behaviours. Toward addressing these limitations, we describe a novel approach for multi-agent option discovery. Specifically, we propose a joint-state abstraction that compresses the state space while preserving the information necessary to discover strongly coordinated behaviours. Our approach builds on the inductive bias that synchronisation over agent states provides a natural foundation for coordination in the absence of explicit objectives. We first approximate a fictitious state of maximal alignment with the team, the \textit{Fermat} state, and use it to define a measure of \textit{spreadness}, capturing team-level misalignment on each individual state dimension. Building on this representation, we then employ a neural graph Laplacian estimator to derive options that capture state synchronisation patterns between agents. We evaluate the resulting options across multiple scenarios in two multi-agent domains, showing that they yield stronger downstream coordination capabilities compared to alternative option discovery methods.
☆ Unregularized Linear Convergence in Zero-Sum Game from Preference Feedback
Aligning large language models (LLMs) with human preferences has proven effective for enhancing model capabilities, yet standard preference modeling using the Bradley-Terry model assumes transitivity, overlooking the inherent complexity of human population preferences. Nash learning from human feedback (NLHF) addresses this by framing non-transitive preferences as a two-player zero-sum game, where alignment reduces to finding the Nash equilibrium (NE). However, existing algorithms typically rely on regularization, incurring unavoidable bias when computing the duality gap in the original game. In this work, we provide the first convergence guarantee for Optimistic Multiplicative Weights Update ($\mathtt{OMWU}$) in NLHF, showing that it achieves last-iterate linear convergence after a burn-in phase whenever an NE with full support exists, with an instance-dependent linear convergence rate to the original NE, measured by duality gaps. Compared to prior results in Wei et al. (2020), we do not require the assumption of NE uniqueness. Our analysis identifies a novel marginal convergence behavior, where the probability of rarely played actions grows exponentially from exponentially small values, enabling exponentially better dependence on instance-dependent constants than prior results. Experiments corroborate the theoretical strengths of $\mathtt{OMWU}$ in both tabular and neural policy classes, demonstrating its potential for LLM applications.
comment: 28 pages
☆ Learning Temporally Consistent Turbulence Between Sparse Snapshots via Diffusion Models
We investigate the statistical accuracy of temporally interpolated spatiotemporal flow sequences between sparse, decorrelated snapshots of turbulent flow fields using conditional Denoising Diffusion Probabilistic Models (DDPMs). The developed method is presented as a proof-of-concept generative surrogate for reconstructing coherent turbulent dynamics between sparse snapshots, demonstrated on a 2D Kolmogorov Flow, and a 3D Kelvin-Helmholtz Instability (KHI). We analyse the generated flow sequences through the lens of statistical turbulence, examining the time-averaged turbulent kinetic energy spectra over generated sequences, and temporal decay of turbulent structures. For the non-stationary Kelvin-Helmholtz Instability, we assess the ability of the proposed method to capture evolving flow statistics across the most strongly time-varying flow regime. We additionally examine instantaneous fields and physically motivated metrics at key stages of the KHI flow evolution.
comment: 15 pages, 10 figures
☆ DTI-GP: Bayesian operations for drug-target interactions using deep kernel Gaussian processes
Precise probabilistic information about drug-target interaction (DTI) predictions is vital for understanding limitations and boosting predictive performance. Gaussian processes (GP) offer a scalable framework to integrate state-of-the-art DTI representations and Bayesian inference, enabling novel operations, such as Bayesian classification with rejection, top-$K$ selection, and ranking. We propose a deep kernel learning-based GP architecture (DTI-GP), which incorporates a combined neural embedding module for chemical compounds and protein targets, and a GP module. The workflow continues with sampling from the predictive distribution to estimate a Bayesian precedence matrix, which is used in fast and accurate selection and ranking operations. DTI-GP outperforms state-of-the-art solutions, and it allows (1) the construction of a Bayesian accuracy-confidence enrichment score, (2) rejection schemes for improved enrichment, and (3) estimation and search for top-$K$ selections and ranking with high expected utility.
☆ Limits of quantum generative models with classical sampling hardness
Sampling tasks have been successful in establishing quantum advantages both in theory and experiments. This has fueled the use of quantum computers for generative modeling to create samples following the probability distribution underlying a given dataset. In particular, the potential to build generative models on classically hard distributions would immediately preclude classical simulability, due to theoretical separations. In this work, we study quantum generative models from the perspective of output distributions, showing that models that anticoncentrate are not trainable on average, including those exhibiting quantum advantage. In contrast, models outputting data from sparse distributions can be trained. We consider special cases to enhance trainability, and observe that this opens the path for classical algorithms for surrogate sampling. This observed trade-off is linked to verification of quantum processes. We conclude that quantum advantage can still be found in generative models, although its source must be distinct from anticoncentration.
comment: 29 pages, 9 figures
☆ LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)
Large language models (LLMs) have made rapid progress in formal theorem proving, yet current benchmarks under-measure the kind of abstraction and library-mediated reasoning that organizes modern mathematics. In parallel with FATE's emphasis on frontier algebra, we introduce LeanCat, a Lean benchmark for category-theoretic formalization -- a unifying language for mathematical structure and a core layer of modern proof engineering -- serving as a stress test of structural, interface-level reasoning. Part I: 1-Categories contains 100 fully formalized statement-level tasks, curated into topic families and three difficulty tiers via an LLM-assisted + human grading process. The best model solves 8.25% of tasks at pass@1 (32.50%/4.17%/0.00% by Easy/Medium/High) and 12.00% at pass@4 (50.00%/4.76%/0.00%). We also evaluate LeanBridge which use LeanExplore to search Mathlib, and observe consistent gains over single-model baselines. LeanCat is intended as a compact, reusable checkpoint for tracking both AI and human progress toward reliable, research-level formalization in Lean.
comment: 11 pages, 4 figures, 1 table
☆ Nonlinear Noise2Noise for Efficient Monte Carlo Denoiser Training
The Noise2Noise method allows for training machine learning-based denoisers with pairs of input and target images where both the input and target can be noisy. This removes the need for training with clean target images, which can be difficult to obtain. However, Noise2Noise training has a major limitation: nonlinear functions applied to the noisy targets will skew the results. This bias occurs because the nonlinearity makes the expected value of the noisy targets different from the clean target image. Since nonlinear functions are common in image processing, avoiding them limits the types of preprocessing that can be performed on the noisy targets. Our main insight is that certain nonlinear functions can be applied to the noisy targets without adding significant bias to the results. We develop a theoretical framework for analyzing the effects of these nonlinearities, and describe a class of nonlinear functions with minimal bias. We demonstrate our method on the denoising of high dynamic range (HDR) images produced by Monte Carlo rendering. Noise2Noise training can have trouble with HDR images, where the training process is overwhelmed by outliers and performs poorly. We consider a commonly used method of addressing these training issues: applying a nonlinear tone mapping function to the model output and target images to reduce their dynamic range. This method was previously thought to be incompatible with Noise2Noise training because of the nonlinearities involved. We show that certain combinations of loss functions and tone mapping functions can reduce the effect of outliers while introducing minimal bias. We apply our method to an existing machine learning-based Monte Carlo denoiser, where the original implementation was trained with high-sample count reference images. Our results approach those of the original implementation, but are produced using only noisy training data.
comment: 15 pages, 7 figures, 2 tables
Self-Supervised Neural Architecture Search for Multimodal Deep Neural Networks
Neural architecture search (NAS), which automates the architectural design process of deep neural networks (DNN), has attracted increasing attention. Multimodal DNNs that necessitate feature fusion from multiple modalities benefit from NAS due to their structural complexity; however, constructing an architecture for multimodal DNNs through NAS requires a substantial amount of labeled training data. Thus, this paper proposes a self-supervised learning (SSL) method for architecture search of multimodal DNNs. The proposed method applies SSL comprehensively for both the architecture search and model pretraining processes. Experimental results demonstrated that the proposed method successfully designed architectures for DNNs from unlabeled training data.
☆ Projection-based Adversarial Attack using Physics-in-the-Loop Optimization for Monocular Depth Estimation
Deep neural networks (DNNs) remain vulnerable to adversarial attacks that cause misclassification when specific perturbations are added to input images. This vulnerability also threatens the reliability of DNN-based monocular depth estimation (MDE) models, making robustness enhancement a critical need in practical applications. To validate the vulnerability of DNN-based MDE models, this study proposes a projection-based adversarial attack method that projects perturbation light onto a target object. The proposed method employs physics-in-the-loop (PITL) optimization -- evaluating candidate solutions in actual environments to account for device specifications and disturbances -- and utilizes a distributed covariance matrix adaptation evolution strategy. Experiments confirmed that the proposed method successfully created adversarial examples that lead to depth misestimations, resulting in parts of objects disappearing from the target scene.
☆ Gradient Descent as Implicit EM in Distance-Based Neural Models
Neural networks trained with standard objectives exhibit behaviors characteristic of probabilistic inference: soft clustering, prototype specialization, and Bayesian uncertainty tracking. These phenomena appear across architectures -- in attention mechanisms, classification heads, and energy-based models -- yet existing explanations rely on loose analogies to mixture models or post-hoc architectural interpretation. We provide a direct derivation. For any objective with log-sum-exp structure over distances or energies, the gradient with respect to each distance is exactly the negative posterior responsibility of the corresponding component: $\partial L / \partial d_j = -r_j$. This is an algebraic identity, not an approximation. The immediate consequence is that gradient descent on such objectives performs expectation-maximization implicitly -- responsibilities are not auxiliary variables to be computed but gradients to be applied. No explicit inference algorithm is required because inference is embedded in optimization. This result unifies three regimes of learning under a single mechanism: unsupervised mixture modeling, where responsibilities are fully latent; attention, where responsibilities are conditioned on queries; and cross-entropy classification, where supervision clamps responsibilities to targets. The Bayesian structure recently observed in trained transformers is not an emergent property but a necessary consequence of the objective geometry. Optimization and inference are the same process.
comment: 15 pages
☆ Sparse Offline Reinforcement Learning with Corruption Robustness
We investigate robustness to strong data corruption in offline sparse reinforcement learning (RL). In our setting, an adversary may arbitrarily perturb a fraction of the collected trajectories from a high-dimensional but sparse Markov decision process, and our goal is to estimate a near optimal policy. The main challenge is that, in the high-dimensional regime where the number of samples $N$ is smaller than the feature dimension $d$, exploiting sparsity is essential for obtaining non-vacuous guarantees but has not been systematically studied in offline RL. We analyse the problem under uniform coverage and sparse single-concentrability assumptions. While Least Square Value Iteration (LSVI), a standard approach for robust offline RL, performs well under uniform coverage, we show that integrating sparsity into LSVI is unnatural, and its analysis may break down due to overly pessimistic bonuses. To overcome this, we propose actor-critic methods with sparse robust estimator oracles, which avoid the use of pointwise pessimistic bonuses and provide the first non-vacuous guarantees for sparse offline RL under single-policy concentrability coverage. Moreover, we extend our results to the contaminated setting and show that our algorithm remains robust under strong contamination. Our results provide the first non-vacuous guarantees in high-dimensional sparse MDPs with single-policy concentrability coverage and corruption, showing that learning a near-optimal policy remains possible in regimes where traditional robust offline RL techniques may fail.
☆ From Trial to Deployment: A SEM Analysis of Traveler Adoptions to Fully Operational Autonomous Taxis
Autonomous taxi services represent a transformative advancement in urban mobility, offering safety, efficiency, and round-the-clock operations. While existing literature has explored user acceptance of autonomous taxis through stated preference experiments and hypothetical scenarios, few studies have investigated actual user behavior based on operational AV services. This study addresses that gap by leveraging survey data from Wuhan, China, where Baidu's Apollo Robotaxi service operates at scale. We design a realistic survey incorporating actual service attributes and collect 336 valid responses from actual users. Using Structural Equation Modeling, we identify six latent psychological constructs, namely Trust \& Policy Support, Cost Sensitivity, Performance, Behavioral Intention, Lifestyle, and Education. Their influences on adoption behavior, measured by the selection frequency of autonomous taxis in ten scenarios, are examined and interpreted. Results show that Cost Sensitivity and Behavioral Intention are the strongest positive predictors of adoption, while other latent constructs play more nuanced roles. The model demonstrates strong goodness-of-fit across multiple indices. Our findings offer empirical evidence to support policymaking, fare design, and public outreach strategies for scaling autonomous taxis deployments in real-world urban settings.
☆ Fairness-Aware Insurance Pricing: A Multi-Objective Optimization Approach
Machine learning improves predictive accuracy in insurance pricing but exacerbates trade-offs between competing fairness criteria across different discrimination measures, challenging regulators and insurers to reconcile profitability with equitable outcomes. While existing fairness-aware models offer partial solutions under GLM and XGBoost estimation methods, they remain constrained by single-objective optimization, failing to holistically navigate a conflicting landscape of accuracy, group fairness, individual fairness, and counterfactual fairness. To address this, we propose a novel multi-objective optimization framework that jointly optimizes all four criteria via the Non-dominated Sorting Genetic Algorithm II (NSGA-II), generating a diverse Pareto front of trade-off solutions. We use a specific selection mechanism to extract a premium on this front. Our results show that XGBoost outperforms GLM in accuracy but amplifies fairness disparities; the Orthogonal model excels in group fairness, while Synthetic Control leads in individual and counterfactual fairness. Our method consistently achieves a balanced compromise, outperforming single-model approaches.
☆ FPGA Co-Design for Efficient N:M Sparse and Quantized Model Inference
Large language models (LLMs) have demonstrated remarkable performance across a wide range of language processing tasks. However, this success comes at the cost of substantial computation and memory requirements, which significantly impedes their deployment in resource-constrained environments. To address this challenge, this work introduces an automation framework that leverages weight pruning and low-bit quantization, and presents a hardware-software co-design method that generates accelerators on the Field-Programmable Gate Array (FPGA) platform. In particular, we implement a unified pipeline that applies N:M structured pruning and 4-bit integer quantization to reduce the memory footprint, followed by optimized dequantization and matrix multiplication to enhance LLM inference on several hardware platforms, including CPUs, NVIDIA GPUs with Dense and 2:4 Sparse Tensor Cores, and a custom systolic-array-based FPGA accelerator. Utilizing 2:4 sparsity combined with quantization on $4096 \times 4096$ matrices, our approach achieves a reduction of up to $4\times$ in weight storage and a $1.71\times$ speedup in matrix multiplication, yielding a $1.29\times$ end-to-end latency reduction compared to dense GPU baselines. Scaling analysis on the LLaMA-7B model further shows that structured sparsity enhances the throughput per token by $1.36\times$. These results demonstrate the synergy of fine-grained N:M sparsity and quantization for enabling efficient and deployable LLM inference, while the proposed FPGA accelerator offers a flexible architectural path for supporting a broader class of sparsity patterns beyond the fixed 2:4 hardware constraints.
☆ BandiK: Efficient Multi-Task Decomposition Using a Multi-Bandit Framework
The challenge of effectively transferring knowledge across multiple tasks is of critical importance and is also present in downstream tasks with foundation models. However, the nature of transfer, its transitive-intransitive nature, is still an open problem, and negative transfer remains a significant obstacle. Selection of beneficial auxiliary task sets in multi-task learning is frequently hindered by the high computational cost of their evaluation, the high number of plausible candidate auxiliary sets, and the varying complexity of selection across target tasks. To address these constraints, we introduce BandiK, a novel three-stage multi-task auxiliary task subset selection method using multi-bandits, where each arm pull evaluates candidate auxiliary sets by training and testing a multiple output neural network on a single random train-test dataset split. Firstly, BandiK estimates the pairwise transfers between tasks, which helps in identifying which tasks are likely to benefit from joint learning. In the second stage, it constructs a linear number of candidate sets of auxiliary tasks (in the number of all tasks) for each target task based on the initial estimations, significantly reducing the exponential number of potential auxiliary task sets. Thirdly, it employs a Multi-Armed Bandit (MAB) framework for each task, where the arms correspond to the performance of candidate auxiliary sets realized as multiple output neural networks over train-test data set splits. To enhance efficiency, BandiK integrates these individual task-specific MABs into a multi-bandit structure. The proposed multi-bandit solution exploits that the same neural network realizes multiple arms of different individual bandits corresponding to a given candidate set. This semi-overlapping arm property defines a novel multi-bandit cost/reward structure utilized in BandiK.
comment: 8 pages, 14 figures
☆ Causal Discovery with Mixed Latent Confounding via Precision Decomposition
We study causal discovery from observational data in linear Gaussian systems affected by \emph{mixed latent confounding}, where some unobserved factors act broadly across many variables while others influence only small subsets. This setting is common in practice and poses a challenge for existing methods: differentiable and score-based DAG learners can misinterpret global latent effects as causal edges, while latent-variable graphical models recover only undirected structure. We propose \textsc{DCL-DECOR}, a modular, precision-led pipeline that separates these roles. The method first isolates pervasive latent effects by decomposing the observed precision matrix into a structured component and a low-rank component. The structured component corresponds to the conditional distribution after accounting for pervasive confounders and retains only local dependence induced by the causal graph and localized confounding. A correlated-noise DAG learner is then applied to this deconfounded representation to recover directed edges while modeling remaining structured error correlations, followed by a simple reconciliation step to enforce bow-freeness. We provide identifiability results that characterize the recoverable causal target under mixed confounding and show how the overall problem reduces to well-studied subproblems with modular guarantees. Synthetic experiments that vary the strength and dimensionality of pervasive confounding demonstrate consistent improvements in directed edge recovery over applying correlated-noise DAG learning directly to the confounded data.
☆ Nested Learning: The Illusion of Deep Learning Architectures NeurIPS
Despite the recent progresses, particularly in developing Language Models, there are fundamental challenges and unanswered questions about how such models can continually learn/memorize, self-improve, and find effective solutions. In this paper, we present a new learning paradigm, called Nested Learning (NL), that coherently represents a machine learning model with a set of nested, multi-level, and/or parallel optimization problems, each of which with its own context flow. Through the lenses of NL, existing deep learning methods learns from data through compressing their own context flow, and in-context learning naturally emerges in large models. NL suggests a philosophy to design more expressive learning algorithms with more levels, resulting in higher-order in-context learning and potentially unlocking effective continual learning capabilities. We advocate for NL by presenting three core contributions: (1) Expressive Optimizers: We show that known gradient-based optimizers, such as Adam, SGD with Momentum, etc., are in fact associative memory modules that aim to compress the gradients' information (by gradient descent). Building on this insight, we present other more expressive optimizers with deep memory and/or more powerful learning rules; (2) Self-Modifying Learning Module: Taking advantage of NL's insights on learning algorithms, we present a sequence model that learns how to modify itself by learning its own update algorithm; and (3) Continuum Memory System: We present a new formulation for memory system that generalizes the traditional viewpoint of long/short-term memory. Combining our self-modifying sequence model with the continuum memory system, we present a continual learning module, called Hope, showing promising results in language modeling, knowledge incorporation, and few-shot generalization tasks, continual learning, and long-context reasoning tasks.
comment: A version of this work is published at Neural Information Processing Systems (NeurIPS) 2025
☆ Mobility-Assisted Decentralized Federated Learning: Convergence Analysis and A Data-Driven Approach IEEE
Decentralized Federated Learning (DFL) has emerged as a privacy-preserving machine learning paradigm that enables collaborative training among users without relying on a central server. However, its performance often degrades significantly due to limited connectivity and data heterogeneity. As we move toward the next generation of wireless networks, mobility is increasingly embedded in many real-world applications. The user mobility, either natural or induced, enables clients to act as relays or bridges, thus enhancing information flow in sparse networks; however, its impact on DFL has been largely overlooked despite its potential. In this work, we systematically investigate the role of mobility in improving DFL performance. We first establish the convergence of DFL in sparse networks under user mobility and theoretically demonstrate that even random movement of a fraction of users can significantly boost performance. Building upon this insight, we propose a DFL framework that utilizes mobile users with induced mobility patterns, allowing them to exploit the knowledge of data distribution to determine their trajectories to enhance information propagation through the network. Through extensive experiments, we empirically confirm our theoretical findings, validate the superiority of our approach over baselines, and provide a comprehensive analysis of how various network parameters influence DFL performance in mobile networks.
comment: Under review for potential publication in IEEE Transactions on Cognitive Communications and Networking
☆ A New Decomposition Paradigm for Graph-structured Nonlinear Programs via Message Passing
We study finite-sum nonlinear programs whose decision variables interact locally according to a graph or hypergraph. We propose MP-Jacobi (Message Passing-Jacobi), a graph-compliant decentralized framework that couples min-sum message passing with Jacobi block updates. The (hyper)graph is partitioned into tree clusters. At each iteration, agents update in parallel by solving a cluster subproblem whose objective decomposes into (i) an intra-cluster term evaluated by a single min-sum sweep on the cluster tree (cost-to-go messages) and (ii) inter-cluster couplings handled via a Jacobi correction using neighbors' latest iterates. This design uses only single-hop communication and yields a convergent message-passing method on loopy graphs. For strongly convex objectives we establish global linear convergence and explicit rates that quantify how curvature, coupling strength, and the chosen partition affect scalability and provide guidance for clustering. To mitigate the computation and communication cost of exact message updates, we develop graph-compliant surrogates that preserve convergence while reducing per-iteration complexity. We further extend MP-Jacobi to hypergraphs; in heavily overlapping regimes, a surrogate-based hyperedge-splitting scheme restores finite-time intra-cluster message updates and maintains convergence. Experiments validate the theory and show consistent improvements over decentralized gradient baselines.
comment: 55 pages, 14 figures
☆ HeteroHBA: A Generative Structure-Manipulating Backdoor Attack on Heterogeneous Graphs
Heterogeneous graph neural networks (HGNNs) have achieved strong performance in many real-world applications, yet targeted backdoor poisoning on heterogeneous graphs remains less studied. We consider backdoor attacks for heterogeneous node classification, where an adversary injects a small set of trigger nodes and connections during training to force specific victim nodes to be misclassified into an attacker-chosen label at test time while preserving clean performance. We propose HeteroHBA, a generative backdoor framework that selects influential auxiliary neighbors for trigger attachment via saliency-based screening and synthesizes diverse trigger features and connection patterns to better match the local heterogeneous context. To improve stealthiness, we combine Adaptive Instance Normalization (AdaIN) with a Maximum Mean Discrepancy (MMD) loss to align the trigger feature distribution with benign statistics, thereby reducing detectability, and we optimize the attack with a bilevel objective that jointly promotes attack success and maintains clean accuracy. Experiments on multiple real-world heterogeneous graphs with representative HGNN architectures show that HeteroHBA consistently achieves higher attack success than prior backdoor baselines with comparable or smaller impact on clean accuracy; moreover, the attack remains effective under our heterogeneity-aware structural defense, CSD. These results highlight practical backdoor risks in heterogeneous graph learning and motivate the development of stronger defenses.
☆ Hybrid Motion Planning with Deep Reinforcement Learning for Mobile Robot Navigation
Autonomous mobile robots operating in complex, dynamic environments face the dual challenge of navigating large-scale, structurally diverse spaces with static obstacles while safely interacting with various moving agents. Traditional graph-based planners excel at long-range pathfinding but lack reactivity, while Deep Reinforcement Learning (DRL) methods demonstrate strong collision avoidance but often fail to reach distant goals due to a lack of global context. We propose Hybrid Motion Planning with Deep Reinforcement Learning (HMP-DRL), a hybrid framework that bridges this gap. Our approach utilizes a graph-based global planner to generate a path, which is integrated into a local DRL policy via a sequence of checkpoints encoded in both the state space and reward function. To ensure social compliance, the local planner employs an entity-aware reward structure that dynamically adjusts safety margins and penalties based on the semantic type of surrounding agents. We validate the proposed method through extensive testing in a realistic simulation environment derived from real-world map data. Comprehensive experiments demonstrate that HMP-DRL consistently outperforms other methods, including state-of-the-art approaches, in terms of key metrics of robot navigation: success rate, collision rate, and time to reach the goal. Overall, these findings confirm that integrating long-term path guidance with semantically-aware local control significantly enhances both the safety and reliability of autonomous navigation in complex human-centric settings.
comment: 22 pages, 4 figures
☆ A Scalable Framework for logP Prediction: From Terabyte-Scale Data Integration to Interpretable Ensemble Modeling
This study presents a large-scale predictive modeling framework for logP prediction using 426850 bioactive compounds rigorously curated from the intersection of three authoritative chemical databases: PubChem, ChEMBL, and eMolecules. We developed a novel computational infrastructure to address the data integration challenge, reducing processing time from a projected over 100 days to 3.2 hours through byte-offset indexing architecture, a 740-fold improvement. Our comprehensive analysis revealed critical insights into the multivariate nature of lipophilicity: while molecular weight exhibited weak bivariate correlation with logP, SHAP analysis on ensemble models identified it as the single most important predictor globally. We systematically evaluated multiple modeling approaches, discovering that linear models suffered from inherent heteroskedasticity that classical remediation strategies, including weighted least squares and Box-Cox transformation, failed to address. Tree-based ensemble methods, including Random Forest and XGBoost, proved inherently robust to this violation, achieving an R-squared of 0.765 and RMSE of 0.731 logP units on the test set. Furthermore, a stratified modeling strategy, employing specialized models for drug-like molecules (91 percent of dataset) and extreme cases (nine percent), achieved optimal performance: an RMSE of 0.838 for the drug-like subset and an R-squared of 0.767 for extreme molecules, the highest of all evaluated approaches. These findings provide actionable guidance for molecular design, establish robust baselines for lipophilicity prediction using only 2D descriptors, and demonstrate that well-curated, descriptor-based ensemble models remain competitive with state-of-the-art graph neural network architectures.
comment: 18 pages, 15 figures, 4 equations, 2 algorithms, 6 tables, to be published in KST 2026, unabridged version
☆ Soliton profiles: Classical Numerical Schemes vs. Neural Network - Based Solvers
We present a comparative study of classical numerical solvers, such as Petviashvili's method or finite difference with Newton iterations, and neural network-based methods for computing ground states or profiles of solitary-wave solutions to the one-dimensional dispersive PDEs that include the nonlinear Schrödinger, the nonlinear Klein-Gordon and the generalized KdV equations. We confirm that classical approaches retain high-order accuracy and strong computational efficiency for single-instance problems in the one-dimensional setting. Physics-informed neural networks (PINNs) are also able to reproduce qualitative solutions but are generally less accurate and less efficient in low dimensions than classical solvers due to expensive training and slow convergence. We also investigate the operator-learning methods, which, although computationally intensive during training, can be reused across many parameter instances, providing rapid inference after pretraining, making them attractive for applications involving repeated simulations or real-time predictions. For single-instance computations, however, the accuracy of operator-learning methods remains lower than that of classical methods or PINNs, in general.
☆ AI-Driven Acoustic Voice Biomarker-Based Hierarchical Classification of Benign Laryngeal Voice Disorders from Sustained Vowels
Benign laryngeal voice disorders affect nearly one in five individuals and often manifest as dysphonia, while also serving as non-invasive indicators of broader physiological dysfunction. We introduce a clinically inspired hierarchical machine learning framework for automated classification of eight benign voice disorders alongside healthy controls, using acoustic features extracted from short, sustained vowel phonations. Experiments utilized 15,132 recordings from 1,261 speakers in the Saarbruecken Voice Database, covering vowels /a/, /i/, and /u/ at neutral, high, low, and gliding pitches. Mirroring clinical triage workflows, the framework operates in three sequential stages: Stage 1 performs binary screening of pathological versus non-pathological voices by integrating convolutional neural network-derived mel-spectrogram features with 21 interpretable acoustic biomarkers; Stage 2 stratifies voices into Healthy, Functional or Psychogenic, and Structural or Inflammatory groups using a cubic support vector machine; Stage 3 achieves fine-grained classification by incorporating probabilistic outputs from prior stages, improving discrimination of structural and inflammatory disorders relative to functional conditions. The proposed system consistently outperformed flat multi-class classifiers and pre-trained self-supervised models, including META HuBERT and Google HeAR, whose generic objectives are not optimized for sustained clinical phonation. By combining deep spectral representations with interpretable acoustic features, the framework enhances transparency and clinical alignment. These results highlight the potential of quantitative voice biomarkers as scalable, non-invasive tools for early screening, diagnostic triage, and longitudinal monitoring of vocal health.
☆ AutoFed: Manual-Free Federated Traffic Prediction via Personalized Prompt
Accurate traffic prediction is essential for Intelligent Transportation Systems, including ride-hailing, urban road planning, and vehicle fleet management. However, due to significant privacy concerns surrounding traffic data, most existing methods rely on local training, resulting in data silos and limited knowledge sharing. Federated Learning (FL) offers an efficient solution through privacy-preserving collaborative training; however, standard FL struggles with the non-independent and identically distributed (non-IID) problem among clients. This challenge has led to the emergence of Personalized Federated Learning (PFL) as a promising paradigm. Nevertheless, current PFL frameworks require further adaptation for traffic prediction tasks, such as specialized graph feature engineering, data processing, and network architecture design. A notable limitation of many prior studies is their reliance on hyper-parameter optimization across datasets-information that is often unavailable in real-world scenarios-thus impeding practical deployment. To address this challenge, we propose AutoFed, a novel PFL framework for traffic prediction that eliminates the need for manual hyper-parameter tuning. Inspired by prompt learning, AutoFed introduces a federated representor that employs a client-aligned adapter to distill local data into a compact, globally shared prompt matrix. This prompt then conditions a personalized predictor, allowing each client to benefit from cross-client knowledge while maintaining local specificity. Extensive experiments on real-world datasets demonstrate that AutoFed consistently achieves superior performance across diverse scenarios. The code of this paper is provided at https://github.com/RS2002/AutoFed .
☆ Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space
Large Language Models (LLMs) apply uniform computation to all tokens, despite language exhibiting highly non-uniform information density. This token-uniform regime wastes capacity on locally predictable spans while under-allocating computation to semantically critical transitions. We propose $\textbf{Dynamic Large Concept Models (DLCM)}$, a hierarchical language modeling framework that learns semantic boundaries from latent representations and shifts computation from tokens to a compressed concept space where reasoning is more efficient. DLCM discovers variable-length concepts end-to-end without relying on predefined linguistic units. Hierarchical compression fundamentally changes scaling behavior. We introduce the first $\textbf{compression-aware scaling law}$, which disentangles token-level capacity, concept-level reasoning capacity, and compression ratio, enabling principled compute allocation under fixed FLOPs. To stably train this heterogeneous architecture, we further develop a $\textbf{decoupled $μ$P parametrization}$ that supports zero-shot hyperparameter transfer across widths and compression regimes. At a practical setting ($R=4$, corresponding to an average of four tokens per concept), DLCM reallocates roughly one-third of inference compute into a higher-capacity reasoning backbone, achieving a $\textbf{+2.69$\%$ average improvement}$ across 12 zero-shot benchmarks under matched inference FLOPs.
☆ 3D Semantic Segmentation for Post-Disaster Assessment IEEE
The increasing frequency of natural disasters poses severe threats to human lives and leads to substantial economic losses. While 3D semantic segmentation is crucial for post-disaster assessment, existing deep learning models lack datasets specifically designed for post-disaster environments. To address this gap, we constructed a specialized 3D dataset using unmanned aerial vehicles (UAVs)-captured aerial footage of Hurricane Ian (2022) over affected areas, employing Structure-from-Motion (SfM) and Multi-View Stereo (MVS) techniques to reconstruct 3D point clouds. We evaluated the state-of-the-art (SOTA) 3D semantic segmentation models, Fast Point Transformer (FPT), Point Transformer v3 (PTv3), and OA-CNNs on this dataset, exposing significant limitations in existing methods for disaster-stricken regions. These findings underscore the urgent need for advancements in 3D segmentation techniques and the development of specialized 3D benchmark datasets to improve post-disaster scene understanding and response.
comment: Accepted by the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2025)
☆ MultiRisk: Multiple Risk Control via Iterative Score Thresholding
As generative AI systems are increasingly deployed in real-world applications, regulating multiple dimensions of model behavior has become essential. We focus on test-time filtering: a lightweight mechanism for behavior control that compares performance scores to estimated thresholds, and modifies outputs when these bounds are violated. We formalize the problem of enforcing multiple risk constraints with user-defined priorities, and introduce two efficient dynamic programming algorithms that leverage this sequential structure. The first, MULTIRISK-BASE, provides a direct finite-sample procedure for selecting thresholds, while the second, MULTIRISK, leverages data exchangeability to guarantee simultaneous control of the risks. Under mild assumptions, we show that MULTIRISK achieves nearly tight control of all constraint risks. The analysis requires an intricate iterative argument, upper bounding the risks by introducing several forms of intermediate symmetrized risk functions, and carefully lower bounding the risks by recursively counting jumps in symmetrized risk functions between appropriate risk levels. We evaluate our framework on a three-constraint Large Language Model alignment task using the PKU-SafeRLHF dataset, where the goal is to maximize helpfulness subject to multiple safety constraints, and where scores are generated by a Large Language Model judge and a perplexity filter. Our experimental results show that our algorithm can control each individual risk at close to the target level.
☆ Robust Bayesian Dynamic Programming for On-policy Risk-sensitive Reinforcement Learning
We propose a novel framework for risk-sensitive reinforcement learning (RSRL) that incorporates robustness against transition uncertainty. We define two distinct yet coupled risk measures: an inner risk measure addressing state and cost randomness and an outer risk measure capturing transition dynamics uncertainty. Our framework unifies and generalizes most existing RL frameworks by permitting general coherent risk measures for both inner and outer risk measures. Within this framework, we construct a risk-sensitive robust Markov decision process (RSRMDP), derive its Bellman equation, and provide error analysis under a given posterior distribution. We further develop a Bayesian Dynamic Programming (Bayesian DP) algorithm that alternates between posterior updates and value iteration. The approach employs an estimator for the risk-based Bellman operator that combines Monte Carlo sampling with convex optimization, for which we prove strong consistency guarantees. Furthermore, we demonstrate that the algorithm converges to a near-optimal policy in the training environment and analyze both the sample complexity and the computational complexity under the Dirichlet posterior and CVaR. Finally, we validate our approach through two numerical experiments. The results exhibit excellent convergence properties while providing intuitive demonstrations of its advantages in both risk-sensitivity and robustness. Empirically, we further demonstrate the advantages of the proposed algorithm through an application on option hedging.
comment: 63 pages
☆ Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time
Large Language Models (LLMs) often rely on long chain-of-thought (CoT) reasoning to solve complex tasks. While effective, these trajectories are frequently inefficient, leading to high latency from excessive token generation, or unstable reasoning that alternates between underthinking (shallow, inconsistent steps) and overthinking (repetitive, verbose reasoning). In this work, we study the structure of reasoning trajectories and uncover specialized attention heads that correlate with distinct cognitive behaviors such as verification and backtracking. By lightly intervening on these heads at inference time, we can steer the model away from inefficient modes. Building on this insight, we propose CREST, a training-free method for Cognitive REasoning Steering at Test-time. CREST has two components: (1) an offline calibration step that identifies cognitive heads and derives head-specific steering vectors, and (2) an inference-time procedure that rotates hidden representations to suppress components along those vectors. CREST adaptively suppresses unproductive reasoning behaviors, yielding both higher accuracy and lower computational cost. Across diverse reasoning benchmarks and models, CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%, offering a simple and effective pathway to faster, more reliable LLM reasoning.
☆ CPR: Causal Physiological Representation Learning for Robust ECG Analysis under Distribution Shifts
Deep learning models for Electrocardiogram (ECG) diagnosis have achieved remarkable accuracy but exhibit fragility against adversarial perturbations, particularly Smooth Adversarial Perturbations (SAP) that mimic biological morphology. Existing defenses face a critical dilemma: Adversarial Training (AT) provides robustness but incurs a prohibitive computational burden, while certified methods like Randomized Smoothing (RS) introduce significant inference latency, rendering them impractical for real-time clinical monitoring. We posit that this vulnerability stems from the models' reliance on non-robust spurious correlations rather than invariant pathological features. To address this, we propose Causal Physiological Representation Learning (CPR). Unlike standard denoising approaches that operate without semantic constraints, CPR incorporates a Physiological Structural Prior within a causal disentanglement framework. By modeling ECG generation via a Structural Causal Model (SCM), CPR enforces a structural intervention that strictly separates invariant pathological morphology (P-QRS-T complex) from non-causal artifacts. Empirical results on PTB-XL demonstrate that CPR significantly outperforms standard clinical preprocessing methods. Specifically, under SAP attacks, CPR achieves an F1 score of 0.632, surpassing Median Smoothing (0.541 F1) by 9.1%. Crucially, CPR matches the certified robustness of Randomized Smoothing while maintaining single-pass inference efficiency, offering a superior trade-off between robustness, efficiency, and clinical interpretability.
☆ Probabilistic Computers for Neural Quantum States
Neural quantum states efficiently represent many-body wavefunctions with neural networks, but the cost of Monte Carlo sampling limits their scaling to large system sizes. Here we address this challenge by combining sparse Boltzmann machine architectures with probabilistic computing hardware. We implement a probabilistic computer on field programmable gate arrays (FPGAs) and use it as a fast sampler for energy-based neural quantum states. For the two-dimensional transverse-field Ising model at criticality, we obtain accurate ground-state energies for lattices up to 80 $\times$ 80 (6400 spins) using a custom multi-FPGA cluster. Furthermore, we introduce a dual-sampling algorithm to train deep Boltzmann machines, replacing intractable marginalization with conditional sampling over auxiliary layers. This enables the training of sparse deep models and improves parameter efficiency relative to shallow networks. Using this algorithm, we train deep Boltzmann machines for a system with 35 $\times$ 35 (1225 spins). Together, these results demonstrate that probabilistic hardware can overcome the sampling bottleneck in variational simulation of quantum many-body systems, opening a path to larger system sizes and deeper variational architectures.
☆ From Perception to Punchline: Empowering VLM with the Art of In-the-wild Meme
Generating humorous memes is a challenging multimodal task that moves beyond direct image-to-caption supervision. It requires a nuanced reasoning over visual content, contextual cues, and subjective humor. To bridge this gap between visual perception and humorous punchline creation, we propose HUMOR}, a novel framework that guides VLMs through hierarchical reasoning and aligns them with group-wise human preferences. First, HUMOR employs a hierarchical, multi-path Chain-of-Thought (CoT): the model begins by identifying a template-level intent, then explores diverse reasoning paths under different contexts, and finally anchors onto a high-quality, context-specific path. This CoT supervision, which traces back from ground-truth captions, enhances reasoning diversity. We further analyze that this multi-path exploration with anchoring maintains a high expected humor quality, under the practical condition that high-quality paths retain significant probability mass. Second, to capture subjective humor, we train a pairwise reward model that operates within groups of memes sharing the same template. Following established theory, this approach ensures a consistent and robust proxy for human preference, even with subjective and noisy labels. The reward model then enables a group-wise reinforcement learning optimization, guaranteeing providing a theoretical guarantee for monotonic improvement within the trust region. Extensive experiments show that HUMOR empowers various VLMs with superior reasoning diversity, more reliable preference alignment, and higher overall meme quality. Beyond memes, our work presents a general training paradigm for open-ended, human-aligned multimodal generation, where success is guided by comparative judgment within coherent output group.
comment: 46 pages, 20 figures
☆ More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization
For extreme low-bit quantization of large language models (LLMs), Double Binary Factorization (DBF) is attractive as it enables efficient inference without sacrificing accuracy. However, the scaling parameters of DBF are too restrictive; after factoring out signs, all rank components share the same magnitude profile, resulting in performance saturation. We propose Multi-envelope DBF (MDBF), which retains a shared pair of 1-bit sign bases but replaces the single envelope with a rank-$l$ envelope. By sharing sign matrices among envelope components, MDBF effectively maintains a binary carrier and utilizes the limited memory budget for magnitude expressiveness. We also introduce a closed-form initialization and an alternating refinement method to optimize MDBF. Across the LLaMA and Qwen families, MDBF enhances perplexity and zero-shot accuracy over previous binary formats at matched bits per weight while preserving the same deployment-friendly inference primitive.
comment: 14 pages, 2 figures
☆ A Graph Neural Network with Auxiliary Task Learning for Missing PMU Data Reconstruction
In wide-area measurement systems (WAMS), phasor measurement unit (PMU) measurement is prone to data missingness due to hardware failures, communication delays, and cyber-attacks. Existing data-driven methods are limited by inadaptability to concept drift in power systems, poor robustness under high missing rates, and reliance on the unrealistic assumption of full system observability. Thus, this paper proposes an auxiliary task learning (ATL) method for reconstructing missing PMU data. First, a K-hop graph neural network (GNN) is proposed to enable direct learning on the subgraph consisting of PMU nodes, overcoming the limitation of the incompletely observable system. Then, an auxiliary learning framework consisting of two complementary graph networks is designed for accurate reconstruction: a spatial-temporal GNN extracts spatial-temporal dependencies from PMU data to reconstruct missing values, and another auxiliary GNN utilizes the low-rank property of PMU data to achieve unsupervised online learning. In this way, the low-rank properties of the PMU data are dynamically leveraged across the architecture to ensure robustness and self-adaptation. Numerical results demonstrate the superior offline and online performance of the proposed method under high missing rates and incomplete observability.
☆ GRL-SNAM: Geometric Reinforcement Learning with Path Differential Hamiltonians for Simultaneous Navigation and Mapping in Unknown Environments
We present GRL-SNAM, a geometric reinforcement learning framework for Simultaneous Navigation and Mapping(SNAM) in unknown environments. A SNAM problem is challenging as it needs to design hierarchical or joint policies of multiple agents that control the movement of a real-life robot towards the goal in mapless environment, i.e. an environment where the map of the environment is not available apriori, and needs to be acquired through sensors. The sensors are invoked from the path learner, i.e. navigator, through active query responses to sensory agents, and along the motion path. GRL-SNAM differs from preemptive navigation algorithms and other reinforcement learning methods by relying exclusively on local sensory observations without constructing a global map. Our approach formulates path navigation and mapping as a dynamic shortest path search and discovery process using controlled Hamiltonian optimization: sensory inputs are translated into local energy landscapes that encode reachability, obstacle barriers, and deformation constraints, while policies for sensing, planning, and reconfiguration evolve stagewise via updating Hamiltonians. A reduced Hamiltonian serves as an adaptive score function, updating kinetic/potential terms, embedding barrier constraints, and continuously refining trajectories as new local information arrives. We evaluate GRL-SNAM on two different 2D navigation tasks. Comparing against local reactive baselines and global policy learning references under identical stagewise sensing constraints, it preserves clearance, generalizes to unseen layouts, and demonstrates that Geometric RL learning via updating Hamiltonians enables high-quality navigation through minimal exploration via local energy refinement rather than extensive global mapping. The code is publicly available on \href{https://github.com/CVC-Lab/GRL-SNAM}{Github}.
☆ It's Never Too Late: Noise Optimization for Collapse Recovery in Trained Diffusion Models
Contemporary text-to-image models exhibit a surprising degree of mode collapse, as can be seen when sampling several images given the same text prompt. While previous work has attempted to address this issue by steering the model using guidance mechanisms, or by generating a large pool of candidates and refining them, in this work we take a different direction and aim for diversity in generations via noise optimization. Specifically, we show that a simple noise optimization objective can mitigate mode collapse while preserving the fidelity of the base model. We also analyze the frequency characteristics of the noise and show that alternative noise initializations with different frequency profiles can improve both optimization and search. Our experiments demonstrate that noise optimization yields superior results in terms of generation quality and variety.
☆ Dynamic Bayesian Optimization Framework for Instruction Tuning in Partial Differential Equation Discovery
Large Language Models (LLMs) show promise for equation discovery, yet their outputs are highly sensitive to prompt phrasing, a phenomenon we term instruction brittleness. Static prompts cannot adapt to the evolving state of a multi-step generation process, causing models to plateau at suboptimal solutions. To address this, we propose NeuroSymBO, which reframes prompt engineering as a sequential decision problem. Our method maintains a discrete library of reasoning strategies and uses Bayesian Optimization to select the optimal instruction at each step based on numerical feedback. Experiments on PDE discovery benchmarks show that adaptive instruction selection significantly outperforms fixed prompts, achieving higher recovery rates with more parsimonious solutions.
☆ Reinforcement learning with timed constraints for robotics motion planning
Robotic systems operating in dynamic and uncertain environments increasingly require planners that satisfy complex task sequences while adhering to strict temporal constraints. Metric Interval Temporal Logic (MITL) offers a formal and expressive framework for specifying such time-bounded requirements; however, integrating MITL with reinforcement learning (RL) remains challenging due to stochastic dynamics and partial observability. This paper presents a unified automata-based RL framework for synthesizing policies in both Markov Decision Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs) under MITL specifications. MITL formulas are translated into Timed Limit-Deterministic Generalized Büchi Automata (Timed-LDGBA) and synchronized with the underlying decision process to construct product timed models suitable for Q-learning. A simple yet expressive reward structure enforces temporal correctness while allowing additional performance objectives. The approach is validated in three simulation studies: a $5 \times 5$ grid-world formulated as an MDP, a $10 \times 10$ grid-world formulated as a POMDP, and an office-like service-robot scenario. Results demonstrate that the proposed framework consistently learns policies that satisfy strict time-bounded requirements under stochastic transitions, scales to larger state spaces, and remains effective in partially observable environments, highlighting its potential for reliable robotic planning in time-critical and uncertain settings.
☆ Exploration in the Limit
In fixed-confidence best arm identification (BAI), the objective is to quickly identify the optimal option while controlling the probability of error below a desired threshold. Despite the plethora of BAI algorithms, existing methods typically fall short in practical settings, as stringent exact error control requires using loose tail inequalities and/or parametric restrictions. To overcome these limitations, we introduce a relaxed formulation that requires valid error control asymptotically with respect to a minimum sample size. This aligns with many real-world settings that often involve weak signals, high desired significance, and post-experiment inference requirements, all of which necessitate long horizons. This allows us to achieve tighter optimality, while better handling flexible nonparametric outcome distributions and fully leveraging individual-level contexts. We develop a novel asymptotic anytime-valid confidence sequences over arm indices, and we use it to design a new BAI algorithm for our asymptotic framework. Our method flexibly incorporates covariates for variance reduction and ensures approximate error control in fully nonparametric settings. Under mild convergence assumptions, we provide asymptotic bounds on the sample complexity and show the worst-case sample complexity of our approach matches the best-case sample complexity of Gaussian BAI under exact error guarantees and known variances. Experiments suggest our approach reduces average sample complexities while maintaining error control.
☆ Cuffless, calibration-free hemodynamic monitoring with physics-informed machine learning models
Wearable technologies have the potential to transform ambulatory and at-home hemodynamic monitoring by providing continuous assessments of cardiovascular health metrics and guiding clinical management. However, existing cuffless wearable devices for blood pressure (BP) monitoring often rely on methods lacking theoretical foundations, such as pulse wave analysis or pulse arrival time, making them vulnerable to physiological and experimental confounders that undermine their accuracy and clinical utility. Here, we developed a smartwatch device with real-time electrical bioimpedance (BioZ) sensing for cuffless hemodynamic monitoring. We elucidate the biophysical relationship between BioZ and BP via a multiscale analytical and computational modeling framework, and identify physiological, anatomical, and experimental parameters that influence the pulsatile BioZ signal at the wrist. A signal-tagged physics-informed neural network incorporating fluid dynamics principles enables calibration-free estimation of BP and radial and axial blood velocity. We successfully tested our approach with healthy individuals at rest and after physical activity including physical and autonomic challenges, and with patients with hypertension and cardiovascular disease in outpatient and intensive care settings. Our findings demonstrate the feasibility of BioZ technology for cuffless BP and blood velocity monitoring, addressing critical limitations of existing cuffless technologies.
comment: 225 pages, Number of Main Figures 4, Number of Extended Data Tables 4, Number of Extended Data Figures 5, Number of Supplementary Figures 34, Number of Supplementary Tables 11, Number of Supplementary Videos 11, Supplementary Statistical Table 1 (Supplementary Table 12)
☆ IMBWatch -- a Spatio-Temporal Graph Neural Network approach to detect Illicit Massage Business AAAI
Illicit Massage Businesses (IMBs) are a covert and persistent form of organized exploitation that operate under the facade of legitimate wellness services while facilitating human trafficking, sexual exploitation, and coerced labor. Detecting IMBs is difficult due to encoded digital advertisements, frequent changes in personnel and locations, and the reuse of shared infrastructure such as phone numbers and addresses. Traditional approaches, including community tips and regulatory inspections, are largely reactive and ineffective at revealing the broader operational networks traffickers rely on. To address these challenges, we introduce IMBWatch, a spatio-temporal graph neural network (ST-GNN) framework for large-scale IMB detection. IMBWatch constructs dynamic graphs from open-source intelligence, including scraped online advertisements, business license records, and crowdsourced reviews. Nodes represent heterogeneous entities such as businesses, aliases, phone numbers, and locations, while edges capture spatio-temporal and relational patterns, including co-location, repeated phone usage, and synchronized advertising. The framework combines graph convolutional operations with temporal attention mechanisms to model the evolution of IMB networks over time and space, capturing patterns such as intercity worker movement, burner phone rotation, and coordinated advertising surges. Experiments on real-world datasets from multiple U.S. cities show that IMBWatch outperforms baseline models, achieving higher accuracy and F1 scores. Beyond performance gains, IMBWatch offers improved interpretability, providing actionable insights to support proactive and targeted interventions. The framework is scalable, adaptable to other illicit domains, and released with anonymized data and open-source code to support reproducible research.
comment: Submitted to AAAI AISI 2026
☆ Automated electrostatic characterization of quantum dot devices in single- and bilayer heterostructures
As quantum dot (QD)-based spin qubits advance toward larger, more complex device architectures, rapid, automated device characterization and data analysis tools become critical. The orientation and spacing of transition lines in a charge stability diagram (CSD) contain a fingerprint of a QD device's capacitive environment, making these measurements useful tools for device characterization. However, manually interpreting these features is time-consuming, error-prone, and impractical at scale. Here, we present an automated protocol for extracting underlying capacitive properties from CSDs. Our method integrates machine learning, image processing, and object detection to identify and track charge transitions across large datasets without manual labeling. We demonstrate this method using experimentally measured data from a strained-germanium single-quantum-well (planar) and a strained-germanium double-quantum-well (bilayer) QD device. Unlike for planar QD devices, CSDs in bilayer germanium heterostructure exhibit a larger set of transitions, including interlayer tunneling and distinct loading lines for the vertically stacked QDs, making them a powerful testbed for automation methods. By analyzing the properties of many CSDs, we can statistically estimate physically relevant quantities, like relative lever arms and capacitive couplings. Thus, our protocol enables rapid extraction of useful, nontrivial information about QD devices.
comment: 18 pages, 12 figures
☆ The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
The open-weight LLM ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single "breaker token" that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack creates an asymmetric realizability gap that sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and achieves spectral mimicry to evade outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
☆ Group Cross-Correlations with Faintly Constrained Filters
We provide a notion of group cross-correlations, where the associated filter is not as tightly constrained as in the previous literature. This resolves an incompatibility previous constraints have for group actions with non-compact stabilizers. Moreover, we generalize previous results to group actions that are not necessarily transitive, and we weaken the common assumption of unimodularity.
comment: 25 pages + 9 pages appendices, 1 figure, comments welcome
☆ Large Empirical Case Study: Go-Explore adapted for AI Red Team Testing
Production LLM agents with tool-using capabilities require security testing despite their safety training. We adapt Go-Explore to evaluate GPT-4o-mini across 28 experimental runs spanning six research questions. We find that random-seed variance dominates algorithmic parameters, yielding an 8x spread in outcomes; single-seed comparisons are unreliable, while multi-seed averaging materially reduces variance in our setup. Reward shaping consistently harms performance, causing exploration collapse in 94% of runs or producing 18 false positives with zero verified attacks. In our environment, simple state signatures outperform complex ones. For comprehensive security testing, ensembles provide attack-type diversity, whereas single agents optimize coverage within a given attack type. Overall, these results suggest that seed variance and targeted domain knowledge can outweigh algorithmic sophistication when testing safety-trained models.
☆ Deep Learning Approach for the Diagnosis of Pediatric Pneumonia Using Chest X-ray Imaging
Pediatric pneumonia remains a leading cause of morbidity and mortality in children worldwide. Timely and accurate diagnosis is critical but often challenged by limited radiological expertise and the physiological and procedural complexity of pediatric imaging. This study investigates the performance of state-of-the-art convolutional neural network (CNN) architectures ResNetRS, RegNet, and EfficientNetV2 using transfer learning for the automated classification of pediatric chest Xray images as either pneumonia or normal.A curated subset of 1,000 chest X-ray images was extracted from a publicly available dataset originally comprising 5,856 pediatric images. All images were preprocessed and labeled for binary classification. Each model was fine-tuned using pretrained ImageNet weights and evaluated based on accuracy and sensitivity. RegNet achieved the highest classification performance with an accuracy of 92.4 and a sensitivity of 90.1, followed by ResNetRS (accuracy: 91.9, sensitivity: 89.3) and EfficientNetV2 (accuracy: 88.5, sensitivity: 88.1).
comment: 9 pages, 3 figures
♻ ☆ Deep sequence models tend to memorize geometrically; it is unclear why
Deep sequence models are said to store atomic facts predominantly in the form of associative memory: a brute-force lookup of co-occurring entities. We identify a dramatically different form of storage of atomic facts that we term as geometric memory. Here, the model has synthesized embeddings encoding novel global relationships between all entities, including ones that do not co-occur in training. Such storage is powerful: for instance, we show how it transforms a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn $1$-step navigation task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, as against a lookup of local associations, cannot be straightforwardly attributed to typical supervisory, architectural, or optimizational pressures. Counterintuitively, a geometry is learned even when it is more complex than the brute-force lookup. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points out to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery, and unlearning.
♻ ☆ End-to-End Test-Time Training for Long Context
We formulate long-context language modeling as a problem in continual learning rather than architecture design. Under this formulation, we only use a standard architecture -- a Transformer with sliding-window attention. However, our model continues learning at test time via next-token prediction on the given context, compressing the context it reads into its weights. In addition, we improve the model's initialization for learning at test time via meta-learning at training time. Overall, our method, a form of Test-Time Training (TTT), is End-to-End (E2E) both at test time (via next-token prediction) and training time (via meta-learning), in contrast to previous forms. We conduct extensive experiments with a focus on scaling properties. In particular, for 3B models trained with 164B tokens, our method (TTT-E2E) scales with context length in the same way as Transformer with full attention, while others, such as Mamba 2 and Gated DeltaNet, do not. However, similar to RNNs, TTT-E2E has constant inference latency regardless of context length, making it 2.7 times faster than full attention for 128K context. Our code is publicly available.
comment: Code: https://github.com/test-time-training/e2e
♻ ☆ Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions, to compute means and standard deviations of the results. Statistical Taylor expansion traces the dependency of the input uncertainties in the intermediate steps, so that the variables in the intermediate analytic expressions can no longer be regarded as independent of each other, and the result of the analytic expression is path independent. Thus, it differs fundamentally from the conventional common approaches in applied mathematics which optimize execution path for each calculation. In fact, statistical Taylor expansion may standardize numerical calculations for analytic expressions. Its statistical nature allows religious testing of its result when the sample size is large enough. This paper also introduces an implementation of statistical Taylor expansion called variance arithmetic and presents corresponding test results in a very wide range of mathematical applications. Another important conclusion of this paper is that the numerical errors in the library function can have significant effects on the result. For example, the periodic numerical errors in the trigonometric library functions can resonate with periodic signals, producing large numerical errors in the results.
comment: 83 pages, 66 figures
♻ ☆ Spiking Manifesto
Practically everything computers do is better, faster, and more power-efficient than the brain. For example, a calculator performs numerical computations more energy-efficiently than any human. Yet modern AI models are a thousand times less efficient than the brain. These models rely on larger and larger artificial neural networks (ANNs) to boost their encoding capacity, requiring GPUs to perform large-scale matrix multiplications. In contrast, the brain's spiking neural networks (SNNs) exhibit factorially explosive encoding capacity and compute through the polychronization of spikes rather than explicit matrix-vector products, resulting in lower energy requirements. This manifesto proposes a paradigm for framing popular AI models in terms of spiking networks and polychronization, and for interpreting spiking activity as nature's way of implementing look-up tables. This suggests a path toward converting AI models into a novel class of architectures with much smaller size yet combinatorially large encoding capacity, offering the promise of a thousandfold improvement in performance. Code is available at https://github.com/izhikevich/SNN
comment: This is a declaration of principles and a roadmap for spiking networks, intended as a manifesto rather than a conventional research article
♻ ☆ Can machines think efficiently?
The Turing Test is no longer adequate for distinguishing human and machine intelligence. With advanced artificial intelligence systems already passing the original Turing Test and contributing to serious ethical and environmental concerns, we urgently need to update the test. This work expands upon the original imitation game by accounting for an additional factor: the energy spent answering the questions. By adding the constraint of energy, the new test forces us to evaluate intelligence through the lens of efficiency, connecting the abstract problem of thinking to the concrete reality of finite resources. Further, this proposed new test ensures the evaluation of intelligence has a measurable, practical finish line that the original test lacks. This additional constraint compels society to weigh the time savings of using artificial intelligence against its total resource cost.
♻ ☆ Concentration Inequalities for Stochastic Optimization of Unbounded Objective Functions with Application to Denoising Score Matching
We derive novel concentration inequalities that bound the statistical error for a large class of stochastic optimization problems, focusing on the case of unbounded objective functions. Our derivations utilize the following key tools: 1) A new form of McDiarmid's inequality that is based on sample-dependent one-component mean-difference bounds and which leads to a novel uniform law of large numbers result for unbounded functions. 2) A new Rademacher complexity bound for families of functions that satisfy an appropriate sample-dependent Lipschitz property, which allows for application to a large class of distributions with unbounded support. As an application of these results, we derive statistical error bounds for denoising score matching (DSM), an application that inherently requires one to consider unbounded objective functions and distributions with unbounded support, even in cases where the data distribution has bounded support. In addition, our results quantify the benefit of sample-reuse in algorithms that employ easily-sampled auxiliary random variables in addition to the training data, e.g., as in DSM, which uses auxiliary Gaussian random variables.
comment: 31 pages
♻ ☆ A Context-Aware Temporal Modeling through Unified Multi-Scale Temporal Encoding and Hierarchical Sequence Learning for Single-Channel EEG Sleep Staging
Automatic sleep staging is a critical task in healthcare due to the global prevalence of sleep disorders. This study focuses on single-channel electroencephalography (EEG), a practical and widely available signal for automatic sleep staging. Existing approaches face challenges such as class imbalance, limited receptive-field modeling, and insufficient interpretability. This work proposes a context-aware and interpretable framework for single-channel EEG sleep staging, with particular emphasis on improving detection of the N1 stage. Many prior models operate as black boxes with stacked layers, lacking clearly defined and interpretable feature extraction roles.The proposed model combines compact multi-scale feature extraction with temporal modeling to capture both local and long-range dependencies. To address data imbalance, especially in the N1 stage, classweighted loss functions and data augmentation are applied. EEG signals are segmented into sub-epoch chunks, and final predictions are obtained by averaging softmax probabilities across chunks, enhancing contextual representation and robustness.The proposed framework achieves an overall accuracy of 89.72% and a macro-average F1-score of 85.46%. Notably, it attains an F1- score of 61.7% for the challenging N1 stage, demonstrating a substantial improvement over previous methods on the SleepEDF datasets. These results indicate that the proposed approach effectively improves sleep staging performance while maintaining interpretability and suitability for real-world clinical applications.
♻ ☆ Interpretable Perturbation Modeling Through Biomedical Knowledge Graphs
Understanding how small molecules perturb gene expression is essential for uncovering drug mechanisms, predicting off-target effects, and identifying repurposing opportunities. While prior deep learning frameworks have integrated multimodal embeddings into biomedical knowledge graphs (BKGs) and further improved these representations through graph neural network message-passing paradigms, these models have been applied to tasks such as link prediction and binary drug-disease association, rather than the task of gene perturbation, which may unveil more about mechanistic transcriptomic effects. To address this gap, we construct a merged biomedical graph that integrates (i) PrimeKG++, an augmentation of PrimeKG containing semantically rich embeddings for nodes with (ii) LINCS L1000 drug and cell line nodes, initialized with multimodal embeddings from foundation models such as MolFormerXL and BioBERT. Using this heterogeneous graph, we train a graph attention network (GAT) with a downstream prediction head that learns the delta expression profile of over 978 landmark genes for a given drug-cell pair. Our results show that our framework outperforms MLP baselines for differentially expressed genes (DEG) -- which predict the delta expression given a concatenated embedding of drug features, target features, and baseline cell expression -- under the scaffold and random splits. Ablation experiments with edge shuffling and node feature randomization further demonstrate that the edges provided by biomedical KGs enhance perturbation-level prediction. More broadly, our framework provides a path toward mechanistic drug modeling: moving beyond binary drug-disease association tasks to granular transcriptional effects of therapeutic intervention.
♻ ☆ Kolmogorov-Arnold Energy Models: Fast and Interpretable Generative Modeling
Learning an energy-based model (EBM) in the latent space of a top-down generative model offers a powerful framework for generation across many data modalities. However, it remains unclear how its interpretability can be used to guide model design, improve generative quality, and reduce training time. Moreover, the reliance on Langevin Monte Carlo (LMC) sampling presents challenges in efficiency and sampling multimodal latent distributions. We propose a novel adaptation of the Kolmogorov-Arnold representation theorem for generative modeling and introduce the Kolmogorov-Arnold Energy Model (KAEM) to take advantage of structural and inductive biases. By constraining the prior to univariate relationships, KAEM enables fast and exact inference via the inverse transform method. With the low dimensionality of the latent space and suitable inductive biases encoded, we demonstrate that importance sampling (IS) becomes a viable, unbiased, and highly efficient posterior sampler. For domains where IS fails, we introduce a strategy based on population-based LMC, decomposing the posterior into a sequence of annealed distributions to improve LMC mixing. KAEM balances common generative modeling trade-offs, offering fast inference, interpretability, and stable training, while being naturally suited to Zettascale Computing hardware.
♻ ☆ Distribution-Dependent Rates for Multi-Distribution Learning
To address the needs of modeling uncertainty in sensitive machine learning applications, the setup of distributionally robust optimization (DRO) seeks good performance uniformly across a variety of tasks. The recent multi-distribution learning (MDL) framework tackles this objective in a dynamic interaction with the environment, where the learner has sampling access to each target distribution. Drawing inspiration from the field of pure-exploration multi-armed bandits, we provide distribution-dependent guarantees in the MDL regime, that scale with suboptimality gaps and result in superior dependence on the sample size when compared to the existing distribution-independent analyses. We investigate two non-adaptive strategies, uniform and non-uniform exploration, and present non-asymptotic regret bounds using novel tools from empirical process theory. Furthermore, we devise an adaptive optimistic algorithm, LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between uniform and optimistic allocation in the multi-armed bandit literature. We also conduct a small synthetic experiment illustrating the comparative strengths of each strategy.
♻ ☆ Learning quadratic neural networks in high dimensions: SGD dynamics and scaling laws NeurIPS 2025
We study the optimization and sample complexity of gradient-based training of a two-layer neural network with quadratic activation function in the high-dimensional regime, where the data is generated as $f_*(\boldsymbol{x}) \propto \sum_{j=1}^{r}λ_j σ\left(\langle \boldsymbol{θ_j}, \boldsymbol{x}\rangle\right), \boldsymbol{x} \sim N(0,\boldsymbol{I}_d)$, $σ$ is the 2nd Hermite polynomial, and $\lbrace\boldsymbolθ_j \rbrace_{j=1}^{r} \subset \mathbb{R}^d$ are orthonormal signal directions. We consider the extensive-width regime $r \asymp d^β$ for $β\in [0, 1)$, and assume a power-law decay on the (non-negative) second-layer coefficients $λ_j\asymp j^{-α}$ for $α\geq 0$. We present a sharp analysis of the SGD dynamics in the feature learning regime, for both the population limit and the finite-sample (online) discretization, and derive scaling laws for the prediction risk that highlight the power-law dependencies on the optimization time, sample size, and model width. Our analysis combines a precise characterization of the associated matrix Riccati differential equation with novel matrix monotonicity arguments to establish convergence guarantees for the infinite-dimensional effective dynamics.
comment: NeurIPS 2025
♻ ☆ Sampling from Gaussian Processes: A Tutorial and Applications in Global Sensitivity Analysis and Optimization
High-fidelity simulations and physical experiments are essential for engineering analysis and design, yet their high cost often makes two critical tasks--global sensitivity analysis (GSA) and optimization--prohibitively expensive. This limitation motivates the common use of Gaussian processes (GPs) as proxy regression models that provide uncertainty-aware predictions from a limited number of high-quality observations. GPs naturally enable efficient sampling strategies that support informed decision-making under uncertainty by extracting information from a subset of possible functions for the model of interest. However, direct sampling from GPs is inefficient due to their infinite-dimensional nature and the high cost associated with large covariance matrix operations. Despite their popularity in machine learning and statistics communities, sampling from GPs has received little attention in the community of engineering optimization. In this paper, we present the formulation and detailed implementation of two notable sampling methods--random Fourier features and pathwise conditioning--for generating posterior samples from GPs at reduced computational cost. Alternative approaches are briefly described. Importantly, we detail how the generated samples can be applied in GSA, single-objective optimization, and multi-objective optimization. We show successful applications of these sampling methods through a series of numerical examples.
♻ ☆ Distributed Information Bottleneck Theory for Multi-Modal Task-Aware Semantic Communication
Semantic communication shifts the focus from bit-level accuracy to task-relevant semantic delivery, enabling efficient and intelligent communication for next-generation networks. However, existing multi-modal solutions often process all available data modalities indiscriminately, ignoring that their contributions to downstream tasks are often unequal. This not only leads to severe resource inefficiency but also degrades task inference performance due to irrelevant or redundant information. To tackle this issue, we propose a novel task-aware distributed information bottleneck (TADIB) framework, which quantifies the contribution of any set of modalities to given tasks. Based on this theoretical framework, we design a practical coding scheme that intelligently selects and compresses only the most task-relevant modalities at the transmitter. To find the optimal selection and the codecs in the network, we adopt the probabilistic relaxation of discrete selection, enabling distributed encoders to make coordinated decisions with score function estimation and common randomness. Extensive experiments on public datasets demonstrate that our solution matches or surpasses the inference quality of full-modal baselines while significantly reducing communication and computational costs.
♻ ☆ Discovery and inference beyond linearity by integrating Bayesian regression, tree ensembles and Shapley values
Machine Learning (ML) is gaining popularity for hypothesis-free discovery of risk and protective factors in healthcare studies. ML is strong at discovering nonlinearities and interactions, but this power is compromised by a lack of reliable inference. Although Shapley values provide local measures of features' effects, valid uncertainty quantification for these effects is typically lacking, thus precluding statistical inference. We propose RuleSHAP, a framework that addresses this limitation by combining a dedicated Bayesian sparse regression model with a new tree-based rule generator and Shapley value attribution. RuleSHAP provides detection of nonlinear and interaction effects with uncertainty quantification at the individual level. We derive an efficient formula for computing marginal Shapley values within this framework. We demonstrate the validity of our framework on simulated data. Finally, we apply RuleSHAP to data from an epidemiological cohort to detect and infer several effects for high cholesterol and blood pressure, such as nonlinear interaction effects between features like age, sex, ethnicity, BMI and glucose level.
comment: Main body: 25 pages, 8 figures; Supplementary material: 48 pages, 15 figures
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
♻ ☆ Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
comment: Accepted to TMLR 2025
♻ ☆ Symmetric Linear Bandits with Hidden Symmetry
High-dimensional linear bandits with low-dimensional structure have received considerable attention in recent studies due to their practical significance. The most common structure in the literature is sparsity. However, it may not be available in practice. Symmetry, where the reward is invariant under certain groups of transformations on the set of arms, is another important inductive bias in the high-dimensional case that covers many standard structures, including sparsity. In this work, we study high-dimensional symmetric linear bandits where the symmetry is hidden from the learner, and the correct symmetry needs to be learned in an online setting. We examine the structure of a collection of hidden symmetry and provide a method based on model selection within the collection of low-dimensional subspaces. Our algorithm achieves a regret bound of $ O(d_0^{2/3} T^{2/3} \log(d))$, where $d$ is the ambient dimension which is potentially very large, and $d_0$ is the dimension of the true low-dimensional subspace such that $d_0 \ll d$. With an extra assumption on well-separated models, we can further improve the regret to $ O(d_0\sqrt{T\log(d)} )$.
♻ ☆ Probabilistically Tightened Linear Relaxation-based Perturbation Analysis for Neural Network Verification
We present $\textbf{P}$robabilistically $\textbf{T}$ightened $\textbf{Li}$near $\textbf{R}$elaxation-based $\textbf{P}$erturbation $\textbf{A}$nalysis ($\texttt{PT-LiRPA}$), a novel framework that combines over-approximation techniques from LiRPA-based approaches with a sampling-based method to compute tight intermediate reachable sets. In detail, we show that with negligible computational overhead, $\texttt{PT-LiRPA}$ exploiting the estimated reachable sets, significantly tightens the lower and upper linear bounds of a neural network's output, reducing the computational cost of formal verification tools while providing probabilistic guarantees on verification soundness. Extensive experiments on standard formal verification benchmarks, including the International Verification of Neural Networks Competition, show that our $\texttt{PT-LiRPA}$-based verifier improves robustness certificates, i.e., the certified lower bound of $\varepsilon$ perturbation tolerated by the models, by up to 3.31X and 2.26X compared to related work. Importantly, our probabilistic approach results in a valuable solution for challenging competition entries where state-of-the-art formal verification methods fail, allowing us to provide answers with high confidence (i.e., at least 99%).
comment: Accepted at the Journal of Artificial Intelligence Research (JAIR)
♻ ☆ MedQARo: A Large-Scale Benchmark for Evaluating Large Language Models on Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art (SOTA) large language models (LLMs). We construct a high-quality and large-scale dataset comprising 105,880 QA pairs related to cancer patients from two medical centers. The questions regard medical case summaries of 1,242 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 3,000 work hours to generate the QA pairs. Our benchmark contains both in-domain and cross-domain (cross-center and cross-cancer) test collections, enabling a precise assessment of generalization capabilities. We experiment with four open-source LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. We also evaluate two state-of-the-art LLMs exposed only through APIs, namely GPT-5.2 and Gemini 3 Flash. Our results show that fine-tuned models significantly outperform zero-shot models, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
♻ ☆ Hybrid Convolution and Vision Transformer NAS Search Space for TinyML Image Classification ECML
Hybrids of Convolutional Neural Network (CNN) and Vision Transformer (ViT) have outperformed pure CNN or ViT architecture. However, since these architectures require large parameters and incur large computational costs, they are unsuitable for tinyML deployment. This paper introduces a new hybrid CNN-ViT search space for Neural Architecture Search (NAS) to find efficient hybrid architectures for image classification. The search space covers hybrid CNN and ViT blocks to learn local and global information, as well as the novel Pooling block of searchable pooling layers for efficient feature map reduction. Experimental results on the CIFAR10 dataset show that our proposed search space can produce hybrid CNN-ViT architectures with superior accuracy and inference speed to ResNet-based tinyML models under tight model size constraints.
comment: Presented at ITEM workshop co-located with ECML PKDD 2024, Vilnius LT
♻ ☆ A Unified Approach to Submodular Maximization Under Noise NeurIPS 2025
We consider the problem of maximizing a submodular function with access to a noisy value oracle for the function instead of an exact value oracle. Similar to prior work, we assume that the noisy oracle is persistent in that multiple calls to the oracle for a specific set always return the same value. In this model, Hassidim and Singer (2017) design a $(1-1/e)$-approximation algorithm for monotone submodular maximization subject to a cardinality constraint, and Huang et al (2022) design a $(1-1/e)/2$-approximation algorithm for monotone submodular maximization subject to any arbitrary matroid constraint. In this paper, we design a meta-algorithm that allows us to take any "robust" algorithm for exact submodular maximization as a black box and transform it into an algorithm for the noisy setting while retaining the approximation guarantee. By using the meta-algorithm with the measured continuous greedy algorithm, we obtain a $(1-1/e)$-approximation (resp. $1/e$-approximation) for monotone (resp. non-monotone) submodular maximization subject to a matroid constraint under noise. Furthermore, by using the meta-algorithm with the double greedy algorithm, we obtain a $1/2$-approximation for unconstrained (non-monotone) submodular maximization under noise.
comment: Accepted by NeurIPS 2025
♻ ☆ An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation AAAI 2026
Optimizing Retrieval-Augmented Generation (RAG) configurations for specific tasks is a complex and resource-intensive challenge. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To fill this gap, we present a comprehensive study involving five HPO algorithms over five datasets from diverse domains, including a newly curated real-world product documentation dataset. Our study explores the largest RAG HPO search space to date that includes full grid-search evaluations, and uses three evaluation metrics as optimization targets. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing model selection first is preferable to the common practice of following the RAG pipeline order during optimization.
comment: AAAI 2026 Workshop on New Frontiers in Information Retrieval. For associated results, see https://github.com/IBM/rag-hpo-bench
♻ ☆ Visual Language Hypothesis
We study visual representation learning from a structural and topological perspective. We begin from a single hypothesis: that visual understanding presupposes a semantic language for vision, in which many perceptual observations correspond to a small number of discrete semantic states. Together with widely assumed premises on transferability and abstraction in representation learning, this hypothesis implies that the visual observation space must be organized in a fiber bundle like structure, where nuisance variation populates fibers and semantics correspond to a quotient base space. From this structure we derive two theoretical consequences. First, the semantic quotient X/G is not a submanifold of X and cannot be obtained through smooth deformation alone, semantic invariance requires a non homeomorphic, discriminative target for example, supervision via labels, cross-instance identification, or multimodal alignment that supplies explicit semantic equivalence. Second, we show that approximating the quotient also places structural demands on the model architecture. Semantic abstraction requires not only an external semantic target, but a representation mechanism capable of supporting topology change: an expand and snap process in which the manifold is first geometrically expanded to separate structure and then collapsed to form discrete semantic regions. We emphasize that these results are interpretive rather than prescriptive: the framework provides a topological lens that aligns with empirical regularities observed in large-scale discriminative and multimodal models, and with classical principles in statistical learning theory.
♻ ☆ coverforest: Conformal Predictions with Random Forest in Python
Conformal prediction provides a framework for uncertainty quantification, specifically in the forms of prediction intervals and sets with distribution-free guaranteed coverage. While recent cross-conformal techniques such as CV+ and Jackknife+-after-bootstrap achieve better data efficiency than traditional split conformal methods, they incur substantial computational costs due to required pairwise comparisons between training and test samples' out-of-bag scores. Observing that these methods naturally extend from ensemble models, particularly random forests, we leverage existing optimized random forest implementations to enable efficient cross-conformal predictions. We present coverforest, a Python package that implements efficient conformal prediction methods specifically optimized for random forests. coverforest supports both regression and classification tasks through various conformal prediction methods, including split conformal, CV+, Jackknife+-after-bootstrap, and adaptive prediction sets. Our package leverages parallel computing and Cython optimizations to speed up out-of-bag calculations. Our experiments demonstrate that coverforest's predictions achieve the desired level of coverage. In addition, its training and prediction times can be faster than an existing implementation by 2--9 times. The source code for the coverforest is hosted on GitHub at https://github.com/donlap/coverforest.
comment: Published in Neurocomputing. Code available at https://github.com/donlap/coverforest
♻ ☆ Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting is a vital component in live music performances, shaping an engaging experience for both musicians and audiences. In recent years, Automatic Stage Lighting Control (ASLC) has attracted growing interest due to the high costs of hiring or training professional lighting engineers. However, most existing ASLC solutions only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this gap, this paper presents Skip-BART, an end-to-end model that directly learns from experienced lighting engineers and predict vivid, human-like stage lighting. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method adapts the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid. To address the lack of available datasets, we create the first stage lighting dataset, along with several pre-training and transfer learning techniques to improve model training with limited data. We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .
♻ ☆ When Intelligence Fails: An Empirical Study on Why LLMs Struggle with Password Cracking
The remarkable capabilities of Large Language Models (LLMs) in natural language understanding and generation have sparked interest in their potential for cybersecurity applications, including password guessing. In this study, we conduct an empirical investigation into the efficacy of pre-trained LLMs for password cracking using synthetic user profiles. Specifically, we evaluate the performance of state-of-the-art open-source LLMs such as TinyLLaMA, Falcon-RW-1B, and Flan-T5 by prompting them to generate plausible passwords based on structured user attributes (e.g., name, birthdate, hobbies). Our results, measured using Hit@1, Hit@5, and Hit@10 metrics under both plaintext and SHA-256 hash comparisons, reveal consistently poor performance, with all models achieving less than 1.5% accuracy at Hit@10. In contrast, traditional rule-based and combinator-based cracking methods demonstrate significantly higher success rates. Through detailed analysis and visualization, we identify key limitations in the generative reasoning of LLMs when applied to the domain-specific task of password guessing. Our findings suggest that, despite their linguistic prowess, current LLMs lack the domain adaptation and memorization capabilities required for effective password inference, especially in the absence of supervised fine-tuning on leaked password datasets. This study provides critical insights into the limitations of LLMs in adversarial contexts and lays the groundwork for future efforts in secure, privacy-preserving, and robust password modeling.
♻ ☆ Spectral Convolutional Conditional Neural Processes
Neural Processes (NPs) are meta-learning models that learn to map sets of observations to approximations of the corresponding posterior predictive distributions. By accommodating variable-sized, unstructured collections of observations and enabling probabilistic predictions at arbitrary query points, NPs provide a flexible framework for modeling functions over continuous domains. Since their introduction, numerous variants have emerged; however, early formulations shared a fundamental limitation: they compressed the observed data into finite-dimensional global representations via aggregation operations such as mean pooling. This strategy induces an intrinsic mismatch with the infinite-dimensional nature of the stochastic processes that NPs intend to model. Convolutional conditional neural processes (ConvCNPs) address this limitation by constructing infinite-dimensional functional embeddings processed through convolutional neural networks (CNNs) to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to capture long-range dependencies without resorting to large kernels, which impose significant computational costs. To overcome this limitation, we propose spectral ConvCNPs (SConvCNPs), which perform global convolution in the frequency domain. Inspired by Fourier neural operators (FNOs) for learning solution operators of partial differential equations (PDEs), our approach directly parameterizes convolution kernels in the frequency domain, leveraging the relatively compact yet global Fourier representation of many natural signals. We validate the effectiveness of SConvCNPs on both synthetic and real-world datasets, demonstrating how ideas from operator learning can advance the capabilities of NPs.
♻ ☆ A Particle Algorithm for Mean-Field Variational Inference
Variational inference is a fast and scalable alternative to Markov chain Monte Carlo and has been widely applied to posterior inference tasks in statistics and machine learning. A traditional approach for implementing mean-field variational inference (MFVI) is coordinate ascent variational inference (CAVI), which relies crucially on parametric assumptions on complete conditionals. We introduce a novel particle-based algorithm for MFVI, named PArticle VI (PAVI), for nonparametric mean-field approximation. We obtain non-asymptotic error bounds for our algorithm. To our knowledge, this is the first end-to-end guarantee for particle-based MFVI.
comment: 22 pages
♻ ☆ Knowledge-Driven Federated Graph Learning on Model Heterogeneity
Federated graph learning (FGL) has emerged as a promising paradigm for collaborative graph representation learning, enabling multiple parties to jointly train models while preserving data privacy. However, most existing approaches assume homogeneous client models and largely overlook the challenge of model-centric heterogeneous FGL (MHtFGL), which frequently arises in practice when organizations employ graph neural networks (GNNs) of different scales and architectures.Such architectural diversity not only undermines smooth server-side aggregation, which presupposes a unified representation space shared across clients' updates, but also further complicates the transfer and integration of structural knowledge across clients. To address this issue, we propose the Federated Graph Knowledge Collaboration (FedGKC) framework. FedGKC introduces a lightweight Copilot Model on each client to facilitate knowledge exchange while local architectures are heterogeneous across clients, and employs two complementary mechanisms: Client-side Self-Mutual Knowledge Distillation, which transfers effective knowledge between local and copilot models through bidirectional distillation with multi-view perturbation; and Server-side Knowledge-Aware Model Aggregation, which dynamically assigns aggregation weights based on knowledge provided by clients. Extensive experiments on eight benchmark datasets demonstrate that FedGKC achieves an average accuracy gain of 3.88% over baselines in MHtFGL scenarios, while maintaining excellent performance in homogeneous settings.
♻ ☆ Interpretable Deep Learning for Stock Returns: A Consensus-Bottleneck Asset Pricing Model
We introduce the Consensus-Bottleneck Asset Pricing Model (CB-APM), a framework that reconciles the predictive power of deep learning with the structural transparency of traditional finance. By embedding aggregate analyst consensus as a structural "bottleneck", the model treats professional beliefs as a sufficient statistic for the market's high-dimensional information set. We document a striking "interpretability-accuracy amplification effect" for annual horizons, the structural constraint acts as an endogenous regularizer that significantly improves out-of-sample R2 over unconstrained benchmarks. Portfolios sorted on CB-APM forecasts exhibit a strong monotonic return gradient, delivering an annualized Sharpe ratio of 1.44 and robust performance across macroeconomic regimes. Furthermore, pricing diagnostics reveal that the learned consensus captures priced variation only partially spanned by canonical factor models, identifying structured risk heterogeneity that standard linear models systematically miss. Our results suggest that anchoring machine intelligence to human-expert belief formation is not merely a tool for transparency, but a catalyst for uncovering new dimensions of belief-driven risk premiums.
♻ ☆ The Z-Gromov-Wasserstein Distance
The Gromov-Wasserstein (GW) distance is a powerful tool for comparing metric measure spaces which has found broad applications in data science and machine learning. Driven by the need to analyze datasets whose objects have increasingly complex structure (such as node and edge-attributed graphs), several variants of GW distance have been introduced in the recent literature. With a view toward establishing a general framework for the theory of GW-like distances, this paper considers a vast generalization of the notion of a metric measure space: for an arbitrary metric space $Z$, we define a $Z$-network to be a measure space endowed with a kernel valued in $Z$. We introduce a method for comparing $Z$-networks by defining a generalization of GW distance, which we refer to as $Z$-Gromov-Wasserstein ($Z$-GW) distance. This construction subsumes many previously known metrics and offers a unified approach to understanding their shared properties. This paper demonstrates that the $Z$-GW distance defines a metric on the space of $Z$-networks which retains desirable properties of $Z$, such as separability, completeness, and geodesicity. Many of these properties were unknown for existing variants of GW distance that fall under our framework. Our focus is on foundational theory, but our results also include computable lower bounds and approximations of the distance which will be useful for practical applications.
comment: V4: Add a section for a numerical algorithm V3: Improved exposition. V2: Added a new result on contractibility and fixed small errors
♻ ☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models IEEE
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
♻ ☆ Feedback Descent: Open-Ended Text Optimization via Pairwise Comparison
We introduce \textit{Feedback Descent}, a framework that optimizes text artifacts -- prompts, code, and molecules -- through structured textual feedback, rather than relying solely on scalar rewards. By preserving detailed critiques instead of compressing them to binary preferences, Feedback Descent widens the information bottleneck in preference learning, enabling directed optimization in text space rather than weight space. We show that in-context learning can transform structured feedback into gradient-like directional information, enabling targeted edits. Unlike prior approaches that collapse judgments into single bits, our evaluators pair each comparison with textual feedback, which functions as high-bandwidth supervision. The iteration loop is done purely at inference time, without modifying any model weights, and is task-agnostic. We evaluate Feedback Descent on three diverse domains and find that it outperforms state-of-the-art prompt optimization (GEPA), reinforcement learning methods (GRPO, REINVENT), and even specialized graph-based molecular optimizers. In the DOCKSTRING molecule discovery benchmark, Feedback Descent identifies novel drug-like molecules surpassing the $99.9$th percentile of a database with more than $260{,}000$ compounds across six protein targets.
♻ ☆ Triple-BERT: Do We Really Need MARL for Order Dispatch on Ride-Sharing Platforms?
On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-time challenge of bundling and matching passengers-each with distinct origins and destinations-to available vehicles, all while navigating significant system uncertainties. Due to the extensive observation space arising from the large number of drivers and orders, order dispatching, though fundamentally a centralized task, is often addressed using Multi-Agent Reinforcement Learning (MARL). However, independent MARL methods fail to capture global information and exhibit poor cooperation among workers, while Centralized Training Decentralized Execution (CTDE) MARL methods suffer from the curse of dimensionality. To overcome these challenges, we propose Triple-BERT, a centralized Single Agent Reinforcement Learning (MARL) method designed specifically for large-scale order dispatching on ride-sharing platforms. Built on a variant TD3, our approach addresses the vast action space through an action decomposition strategy that breaks down the joint action probability into individual driver action probabilities. To handle the extensive observation space, we introduce a novel BERT-based network, where parameter reuse mitigates parameter growth as the number of drivers and orders increases, and the attention mechanism effectively captures the complex relationships among the large pool of driver and orders. We validate our method using a real-world ride-hailing dataset from Manhattan. Triple-BERT achieves approximately an 11.95% improvement over current state-of-the-art methods, with a 4.26% increase in served orders and a 22.25% reduction in pickup times. Our code, trained model parameters, and processed data are publicly available at the repository https://github.com/RS2002/Triple-BERT .
♻ ☆ Stock Price Responses to Firm-Level News in Supply Chain Networks
This study examines how positive and negative news about firms are associated with stock prices and whether these associations extend to suppliers and clients linked via supply chain relationships, using large samples of publicly listed firms worldwide and in Japan. News sentiment is measured using FinBERT, a natural language processing model fine-tuned for financial text, and supply chain links are identified from financial statements for global firms and from large-scale firm-level surveys for Japanese firms. We find that stock prices exhibit systematic associations with positive and negative news even before public disclosure. These associations are also observed for suppliers and clients before and after disclosure. In general, post-disclosure associations are larger than pre-disclosure associations, with the difference concentrated around the time of public news disclosure relative to the pre-disclosure period. However, for Japanese firms, the post-disclosure associations for suppliers and clients are smaller than the pre-disclosure associations, in contrast to the pattern observed for firms outside Japan.
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and more than ten machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
♻ ☆ ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding KDD 2026
We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video, and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF demonstrates significant real-world impact by delivering simultaneous gains in both precision and recall, for instance boosting recall by over 40 percentage points on one critical policy and increasing precision to 99.8% on another. The architecture's effectiveness stems from its novel combination of multi-modal transformations, inter-sample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs.
comment: KDD 2026 ADS Track
♻ ☆ OPTIMA: Optimal One-shot Pruning for LLMs via Quadratic Programming Reconstruction
Post-training model pruning is a promising solution, yet it faces a trade-off: simple heuristics that zero weights are fast but degrade accuracy, while principled joint optimization methods recover accuracy but are computationally infeasible at modern scale. One-shot methods such as SparseGPT offer a practical trade-off in optimality by applying efficient, approximate heuristic weight updates. To close this gap, we introduce OPTIMA, a practical one-shot post-training pruning method that balances accuracy and scalability. OPTIMA casts layer-wise weight reconstruction after mask selection as independent, row-wise Quadratic Programs (QPs) that share a common layer Hessian. Solving these QPs yields the per-row globally optimal update with respect to the reconstruction objective given the estimated Hessian. The shared-Hessian structure makes the problem highly amenable to batching on accelerators. We implement an accelerator-friendly QP solver that accumulates one Hessian per layer and solves many small QPs in parallel, enabling one-shot post-training pruning at scale on a single accelerator without fine-tuning. OPTIMA integrates with existing mask selectors and consistently improves zero-shot performance across multiple LLM families and sparsity regimes, yielding up to 3.97% absolute accuracy improvement. On an NVIDIA H100, OPTIMA prunes a 8B-parameter transformer end-to-end in 40 hours with 60GB peak memory. Together, these results set a new state-of-the-art accuracy-efficiency trade-offs for one-shot post-training pruning.
♻ ☆ On measuring grounding and generalizing grounding problems
The symbol grounding problem asks how tokens like cat can be about cats, as opposed to mere shapes manipulated in a calculus. We recast grounding from a binary judgment into an audit across desiderata, each indexed by an evaluation tuple (context, meaning type, threat model, reference distribution): authenticity (mechanisms reside inside the agent and, for strong claims, were acquired through learning or evolution); preservation (atomic meanings remain intact); faithfulness, both correlational (realized meanings match intended ones) and etiological (internal mechanisms causally contribute to success); robustness (graceful degradation under declared perturbations); compositionality (the whole is built systematically from the parts). We apply this framework to four grounding modes (symbolic; referential; vectorial; relational) and three case studies: model-theoretic semantics achieves exact composition but lacks etiological warrant; large language models show correlational fit and local robustness for linguistic tasks, yet lack selection-for-success on world tasks without grounded interaction; human language meets the desiderata under strong authenticity through evolutionary and developmental acquisition. By operationalizing a philosophical inquiry about representation, we equip philosophers of science, computer scientists, linguists, and mathematicians with a common language and technical framework for systematic investigation of grounding and meaning.
comment: resubmission: 39 pages, 85 sources, 3 figures
♻ ☆ Multi-fidelity Bayesian Optimization: A Review
Resided at the intersection of multi-fidelity optimization (MFO) and Bayesian optimization (BO), MF BO has found a niche in solving expensive engineering design optimization problems, thanks to its advantages in incorporating physical and mathematical understandings of the problems, saving resources, addressing exploitation-exploration trade-off, considering uncertainty, and processing parallel computing. The increasing number of works dedicated to MF BO suggests the need for a comprehensive review of this advanced optimization technique. In this paper, we survey recent developments of two essential ingredients of MF BO: Gaussian process (GP) based MF surrogates and acquisition functions. We first categorize the existing MF modeling methods and MFO strategies to locate MF BO in a large family of surrogate-based optimization and MFO algorithms. We then exploit the common properties shared between the methods from each ingredient of MF BO to describe important GP-based MF surrogate models and review various acquisition functions. By doing so, we expect to provide a structured understanding of MF BO. Finally, we attempt to reveal important aspects that require further research for applications of MF BO in solving intricate yet important design optimization problems, including constrained optimization, high-dimensional optimization, optimization under uncertainty, and multi-objective optimization.
♻ ☆ MTSQL-R1: Towards Long-Horizon Multi-Turn Text-to-SQL via Agentic Training
Multi-turn Text-to-SQL aims to translate a user's conversational utterances into executable SQL while preserving dialogue coherence and grounding to the target schema. However, most existing systems only regard this task as a simple text translation task and follow a short-horizon paradigm, generating a query per turn without execution, explicit verification, and refinement, which leads to non-executable or incoherent outputs. We present MTSQL-R1, an agentic training framework for long-horizon multi-turn Text-to-SQL. We cast the task as a Markov Decision Process (MDP) in which an agent interacts with (i) a database for execution feedback and (ii) a persistent dialogue memory for coherence verification, performing an iterative propose to execute -> verify -> refine cycle until all checks pass. Experiments on COSQL and SPARC demonstrate that MTSQL-R1 consistently outperforms strong baselines, highlighting the importance of environment-driven verification and memory-guided refinement for conversational semantic parsing. Full recipes (including code, trained models, logs, reasoning trajectories, etc.) will be released after the internal review to contribute to community research.
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We study continual learning in large language model (LLM) based agents that integrate episodic memory with reinforcement learning. We focus on reflection, the ability of an agent to revisit past experience and adjust how it selects future actions, as the central mechanism for continual adaptation without fine tuning model weights. To formalise this, we introduce the Stateful Reflective Decision Process (SRDP), in which an agent maintains and updates episodic memory and alternates between writing new experiences to memory and reading relevant cases to guide decisions. This framework casts reflective memory dynamics as part of the decision process itself and makes them amenable to control and learning analysis. Building on this formulation, we develop a Read-Write Reflective Learning algorithm that incorporates memory retrieval into a soft policy iteration procedure and prove that it converges. We further show that as memory grows and more densely covers the task environment, the resulting policy approaches optimality. Our framework unifies memory based reasoning with reinforcement learning and provides a formal foundation for LLM agents capable of continual, experience driven learning.
comment: 35 pages, four figures
♻ ☆ Sparse Additive Contextual Bandits: A Nonparametric Approach for Online Decision-Making with High-Dimensional Covariates
Personalized services are central to today's digital economy, and their sequential decisions are often modeled as contextual bandits. Modern applications pose two main challenges: high-dimensional covariates and the need for nonparametric models to capture complex reward-covariate relationships. We propose a contextual bandit algorithm based on a sparse additive reward model that addresses both challenges through (i) a doubly penalized estimator for nonparametric reward estimation and (ii) an epoch-based design with adaptive screening to balance exploration and exploitation. We prove a sublinear regret bound that grows only logarithmically in the covariate dimensionality; to our knowledge, this is the first such result for nonparametric contextual bandits with high-dimensional covariates. We also derive an information-theoretic lower bound, and the gap to the upper bound vanishes as the reward smoothness increases. Extensive experiments on synthetic data and real data from video recommendation and personalized medicine show strong performance in high-dimensional settings.
♻ ☆ Collaborative Device-Cloud LLM Inference through Reinforcement Learning
Device-cloud collaboration has emerged as a promising paradigm for deploying large language models (LLMs), combining the efficiency of lightweight on-device inference with the superior performance of powerful cloud LLMs. An essential problem in this scenario lies in deciding whether a given query is best handled locally or delegated to the cloud. Existing approaches typically rely on external routers, implemented as binary classifiers, which often struggle to determine task difficulty from the prompt's surface pattern. To address these limitations, we propose a framework where the on-device LLM makes routing decisions at the end of its solving process, with this capability instilled through post-training. In particular, we formulate a reward maximization problem with carefully designed rewards that encourage effective problem solving and judicious offloading to the cloud. To solve this problem, we develop a group-adaptive policy gradient algorithm, featuring a group-level policy gradient, designed to yield an unbiased gradient estimator of the reward, and adaptive prompt filtering, developed to enforce the constraint on cloud LLM usage. Extensive experiments across models and benchmarks show that the proposed methodology consistently outperforms existing baselines and significantly narrows the gap to full cloud LLM performance.
comment: We propose a unified post-training framework that integrates routing optimization, enabling the on-device LLM to improve its problem-solving ability while learning routing strategies
♻ ☆ Quantum Intelligence Meets BD-RIS-Enabled AmBC: Challenges, Opportunities, and Practical Insights
A beyond-diagonal reconfigurable intelligent surface (BD-RIS) is an innovative type of reconfigurable intelligent surface (RIS) that has recently been proposed and is considered a revolutionary advancement in wave manipulation. Unlike the mutually disconnected arrangement of elements in traditional RISs, BD-RIS creates cost-effective and simple inter-element connections, allowing for greater freedom in configuring the amplitude and phase of impinging waves. However, there are numerous underlying challenges in realizing the advantages associated with BD-RIS, prompting the research community to actively investigate cutting-edge schemes and algorithms in this direction. Particularly, the passive beamforming design for BD-RIS under specific environmental conditions has become a major focus in this research area. In this article, we provide a systematic introduction to BD-RIS, elaborating on its functional principles concerning architectural design, promising advantages, and classification. Subsequently, we present recent advances and identify a series of challenges and opportunities. Additionally, we consider a specific case study where beamforming is designed using four different algorithms, and we analyze their performance with respect to sum rate and computation cost. To augment the beamforming capabilities in 6G BD-RIS with quantum enhancement, we analyze various hybrid quantum-classical machine learning (ML) models to improve beam prediction performance, employing real-world communication Scenario 8 from the DeepSense 6G dataset. Consequently, we derive useful insights about the practical implications of BD-RIS.
♻ ☆ Towards Streaming LiDAR Object Detection with Point Clouds as Egocentric Sequences WACV 2026
Accurate and low-latency 3D object detection is essential for autonomous driving, where safety hinges on both rapid response and reliable perception. While rotating LiDAR sensors are widely adopted for their robustness and fidelity, current detectors face a trade-off: streaming methods process partial polar sectors on the fly for fast updates but suffer from limited visibility, cross-sector dependencies, and distortions from retrofitted Cartesian designs, whereas full-scan methods achieve higher accuracy but are bottlenecked by the inherent latency of a LiDAR revolution. We propose Polar-Fast-Cartesian-Full (PFCF), a hybrid detector that combines fast polar processing for intra-sector feature extraction with accurate Cartesian reasoning for full-scene understanding. Central to PFCF is a custom Mamba SSM-based streaming backbone with dimensionally-decomposed convolutions that avoids distortion-heavy planes, enabling parameter-efficient, translation-invariant, and distortion-robust polar representation learning. Local sector features are extracted via this backbone, then accumulated into a sector feature buffer to enable efficient inter-sector communication through a full-scan backbone. PFCF establishes a new Pareto frontier on the Waymo Open dataset, surpassing prior streaming baselines by 10% mAP and matching full-scan accuracy at twice the update rate. Code is available at \href{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}.
comment: Accepted to WACV 2026
♻ ☆ Sparse-Input Neural Network using Group Concave Regularization
Simultaneous feature selection and non-linear function estimation is challenging in modeling, especially in high-dimensional settings where the number of variables exceeds the available sample size. In this article, we investigate the problem of feature selection in neural networks. Although the group least absolute shrinkage and selection operator (LASSO) has been utilized to select variables for learning with neural networks, it tends to select unimportant variables into the model to compensate for its over-shrinkage. To overcome this limitation, we propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings. The main idea is to apply a proper concave penalty to the $l_2$ norm of weights from all outgoing connections of each input node, and thus obtain a neural net that only uses a small subset of the original variables. In addition, we develop an effective algorithm based on backward path-wise optimization to yield stable solution paths, in order to tackle the challenge of complex optimization landscapes. We provide a rigorous theoretical analysis of the proposed framework, establishing finite-sample guarantees for both variable selection consistency and prediction accuracy. These results are supported by extensive simulation studies and real data applications, which demonstrate the finite-sample performance of the estimator in feature selection and prediction across continuous, binary, and time-to-event outcomes.
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ Esoteric Language Models
Diffusion-based language models offer a compelling alternative to autoregressive (AR) models by enabling parallel and controllable generation. Within this family, Masked Diffusion Models (MDMs) currently perform best but still underperform AR models in perplexity and lack key inference-time efficiency features, most notably KV caching. We introduce Eso-LMs, a new family of models that fuses AR and MDM paradigms, smoothly interpolating between their perplexities while overcoming their respective limitations. Unlike prior work, which uses transformers with bidirectional attention as MDM denoisers, we exploit the connection between MDMs and Any-Order autoregressive models and adopt causal attention. This design lets us compute the exact likelihood of MDMs for the first time and, crucially, enables us \to introduce KV caching for MDMs while preserving parallel generation for the first time, significantly improving inference efficiency. Combined with an optimized sampling schedule, Eso-LMs achieves a new state of the art on the speed-quality Pareto frontier for unconditional generation. On long contexts, it yields $\mathbf{14 - 65{}\times}$ faster inference than standard MDMs and $\mathbf{3 - 4{}\times}$ faster inference than prior semi-autoregressive approaches. We provide code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/Eso-LMs
Multimedia 4
☆ HaineiFRDM: Explore Diffusion to Restore Defects in Fast-Movement Films
Existing open-source film restoration methods show limited performance compared to commercial methods due to training with low-quality synthetic data and employing noisy optical flows. In addition, high-resolution films have not been explored by the open-source methods.We propose HaineiFRDM(Film Restoration Diffusion Model), a film restoration framework, to explore diffusion model's powerful content-understanding ability to help human expert better restore indistinguishable film defects.Specifically, we employ a patch-wise training and testing strategy to make restoring high-resolution films on one 24GB-VRAMR GPU possible and design a position-aware Global Prompt and Frame Fusion Modules.Also, we introduce a global-local frequency module to reconstruct consistent textures among different patches. Besides, we firstly restore a low-resolution result and use it as global residual to mitigate blocky artifacts caused by patching process.Furthermore, we construct a film restoration dataset that contains restored real-degraded films and realistic synthetic data.Comprehensive experimental results conclusively demonstrate the superiority of our model in defect restoration ability over existing open-source methods. Code and the dataset will be released.
♻ ☆ Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting is a vital component in live music performances, shaping an engaging experience for both musicians and audiences. In recent years, Automatic Stage Lighting Control (ASLC) has attracted growing interest due to the high costs of hiring or training professional lighting engineers. However, most existing ASLC solutions only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this gap, this paper presents Skip-BART, an end-to-end model that directly learns from experienced lighting engineers and predict vivid, human-like stage lighting. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method adapts the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid. To address the lack of available datasets, we create the first stage lighting dataset, along with several pre-training and transfer learning techniques to improve model training with limited data. We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models (LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation (PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
comment: Camera-ready version of a paper accepted at the AIIDE 2025 Workshop on Experimental AI in Games (EXAG)
Computer Vision and Pattern Recognition 116
☆ Using Large Language Models To Translate Machine Results To Human Results
Artificial intelligence (AI) has transformed medical imaging, with computer vision (CV) systems achieving state-of-the-art performance in classification and detection tasks. However, these systems typically output structured predictions, leaving radiologists responsible for translating results into full narrative reports. Recent advances in large language models (LLMs), such as GPT-4, offer new opportunities to bridge this gap by generating diagnostic narratives from structured findings. This study introduces a pipeline that integrates YOLOv5 and YOLOv8 for anomaly detection in chest X-ray images with a large language model (LLM) to generate natural-language radiology reports. The YOLO models produce bounding-box predictions and class labels, which are then passed to the LLM to generate descriptive findings and clinical summaries. YOLOv5 and YOLOv8 are compared in terms of detection accuracy, inference latency, and the quality of generated text, as measured by cosine similarity to ground-truth reports. Results show strong semantic similarity between AI and human reports, while human evaluation reveals GPT-4 excels in clarity (4.88/5) but exhibits lower scores for natural writing flow (2.81/5), indicating that current systems achieve clinical accuracy but remain stylistically distinguishable from radiologist-authored text.
comment: 11 pages, 7 figures, 3 tables
☆ Training-Free Color-Aware Adversarial Diffusion Sanitization for Diffusion Stegomalware Defense at Security Gateways
The rapid expansion of generative AI has normalized large-scale synthetic media creation, enabling new forms of covert communication. Recent generative steganography methods, particularly those based on diffusion models, can embed high-capacity payloads without fine-tuning or auxiliary decoders, creating significant challenges for detection and remediation. Coverless diffusion-based techniques are difficult to counter because they generate image carriers directly from secret data, enabling attackers to deliver stegomalware for command-and-control, payload staging, and data exfiltration while bypassing detectors that rely on cover-stego discrepancies. This work introduces Adversarial Diffusion Sanitization (ADS), a training-free defense for security gateways that neutralizes hidden payloads rather than detecting them. ADS employs an off-the-shelf pretrained denoiser as a differentiable proxy for diffusion-based decoders and incorporates a color-aware, quaternion-coupled update rule to reduce artifacts under strict distortion limits. Under a practical threat model and in evaluation against the state-of-the-art diffusion steganography method Pulsar, ADS drives decoder success rates to near zero with minimal perceptual impact. Results demonstrate that ADS provides a favorable security-utility trade-off compared to standard content transformations, offering an effective mitigation strategy against diffusion-driven steganography.
☆ Automated Classification of First-Trimester Fetal Heart Views Using Ultrasound-Specific Self-Supervised Learning
Congenital heart disease remains the most common congenital anomaly and a leading cause of neonatal morbidity and mortality. Although first-trimester fetal echocardiography offers an opportunity for earlier detection, automated analysis at this stage is challenging due to small cardiac structures, low signal-to-noise ratio, and substantial inter-operator variability. In this work, we evaluate a self-supervised ultrasound foundation model, USF-MAE, for first-trimester fetal heart view classification. USF-MAE is pretrained using masked autoencoding modelling on more than 370,000 unlabelled ultrasound images spanning over 40 anatomical regions and is subsequently fine-tuned for downstream classification. As a proof of concept, the pretrained Vision Transformer encoder was fine-tuned on an open-source dataset of 6,720 first-trimester fetal echocardiography images to classify five categories: aorta, atrioventricular flows, V sign, X sign, and Other. Model performance was benchmarked against supervised convolutional neural network baselines (ResNet-18 and ResNet-50) and a Vision Transformer (ViT-B/16) model pretrained on natural images (ImageNet-1k). All models were trained and evaluated using identical preprocessing, data splits, and optimization protocols. On an independent test set, USF-MAE achieved the highest performance across all evaluation metrics, with 90.57% accuracy, 91.15% precision, 90.57% recall, and 90.71% F1-score. This represents an improvement of +2.03% in accuracy and +1.98% in F1-score compared with the strongest baseline, ResNet-18. The proposed approach demonstrated robust performance without reliance on aggressive image preprocessing or region-of-interest cropping and showed improved discrimination of non-diagnostic frames.
comment: 7 pages, 4 figures
☆ F2IDiff: Real-world Image Super-resolution using Feature to Image Diffusion Foundation Model
With the advent of Generative AI, Single Image Super-Resolution (SISR) quality has seen substantial improvement, as the strong priors learned by Text-2-Image Diffusion (T2IDiff) Foundation Models (FM) can bridge the gap between High-Resolution (HR) and Low-Resolution (LR) images. However, flagship smartphone cameras have been slow to adopt generative models because strong generation can lead to undesirable hallucinations. For substantially degraded LR images, as seen in academia, strong generation is required and hallucinations are more tolerable because of the wide gap between LR and HR images. In contrast, in consumer photography, the LR image has substantially higher fidelity, requiring only minimal hallucination-free generation. We hypothesize that generation in SISR is controlled by the stringency and richness of the FM's conditioning feature. First, text features are high level features, which often cannot describe subtle textures in an image. Additionally, Smartphone LR images are at least $12MP$, whereas SISR networks built on T2IDiff FM are designed to perform inference on much smaller images ($<1MP$). As a result, SISR inference has to be performed on small patches, which often cannot be accurately described by text feature. To address these shortcomings, we introduce an SISR network built on a FM with lower-level feature conditioning, specifically DINOv2 features, which we call a Feature-to-Image Diffusion (F2IDiff) Foundation Model (FM). Lower level features provide stricter conditioning while being rich descriptors of even small patches.
☆ Spectral and Spatial Graph Learning for Multispectral Solar Image Compression
High-fidelity compression of multispectral solar imagery remains challenging for space missions, where limited bandwidth must be balanced against preserving fine spectral and spatial details. We present a learned image compression framework tailored to solar observations, leveraging two complementary modules: (1) the Inter-Spectral Windowed Graph Embedding (iSWGE), which explicitly models inter-band relationships by representing spectral channels as graph nodes with learned edge features; and (2) the Windowed Spatial Graph Attention and Convolutional Block Attention (WSGA-C), which combines sparse graph attention with convolutional attention to reduce spatial redundancy and emphasize fine-scale structures. Evaluations on the SDOML dataset across six extreme ultraviolet (EUV) channels show that our approach achieves a 20.15%reduction in Mean Spectral Information Divergence (MSID), up to 1.09% PSNR improvement, and a 1.62% log transformed MS-SSIM gain over strong learned baselines, delivering sharper and spectrally faithful reconstructions at comparable bits-per-pixel rates. The code is publicly available at https://github.com/agyat4/sgraph .
comment: 8 pages, 6 figures 1 table. Code available at https://github.com/agyat4/sgraph
☆ Exploring Compositionality in Vision Transformers using Wavelet Representations
While insights into the workings of the transformer model have largely emerged by analysing their behaviour on language tasks, this work investigates the representations learnt by the Vision Transformer (ViT) encoder through the lens of compositionality. We introduce a framework, analogous to prior work on measuring compositionality in representation learning, to test for compositionality in the ViT encoder. Crucial to drawing this analogy is the Discrete Wavelet Transform (DWT), which is a simple yet effective tool for obtaining input-dependent primitives in the vision setting. By examining the ability of composed representations to reproduce original image representations, we empirically test the extent to which compositionality is respected in the representation space. Our findings show that primitives from a one-level DWT decomposition produce encoder representations that approximately compose in latent space, offering a new perspective on how ViTs structure information.
comment: 9 pages, 6 figures
☆ AI-Driven Evaluation of Surgical Skill via Action Recognition
The development of effective training and evaluation strategies is critical. Conventional methods for assessing surgical proficiency typically rely on expert supervision, either through onsite observation or retrospective analysis of recorded procedures. However, these approaches are inherently subjective, susceptible to inter-rater variability, and require substantial time and effort from expert surgeons. These demands are often impractical in low- and middle-income countries, thereby limiting the scalability and consistency of such methods across training programs. To address these limitations, we propose a novel AI-driven framework for the automated assessment of microanastomosis performance. The system integrates a video transformer architecture based on TimeSformer, improved with hierarchical temporal attention and weighted spatial attention mechanisms, to achieve accurate action recognition within surgical videos. Fine-grained motion features are then extracted using a YOLO-based object detection and tracking method, allowing for detailed analysis of instrument kinematics. Performance is evaluated along five aspects of microanastomosis skill, including overall action execution, motion quality during procedure-critical actions, and general instrument handling. Experimental validation using a dataset of 58 expert-annotated videos demonstrates the effectiveness of the system, achieving 87.7% frame-level accuracy in action segmentation that increased to 93.62% with post-processing, and an average classification accuracy of 76% in replicating expert assessments across all skill aspects. These findings highlight the system's potential to provide objective, consistent, and interpretable feedback, thereby enabling more standardized, data-driven training and evaluation in surgical education.
☆ DyStream: Streaming Dyadic Talking Heads Generation via Flow Matching-based Autoregressive Model
Generating realistic, dyadic talking head video requires ultra-low latency. Existing chunk-based methods require full non-causal context windows, introducing significant delays. This high latency critically prevents the immediate, non-verbal feedback required for a realistic listener. To address this, we present DyStream, a flow matching-based autoregressive model that could generate video in real-time from both speaker and listener audio. Our method contains two key designs: (1) we adopt a stream-friendly autoregressive framework with flow-matching heads for probabilistic modeling, and (2) We propose a causal encoder enhanced by a lookahead module to incorporate short future context (e.g., 60 ms) to improve quality while maintaining low latency. Our analysis shows this simple-and-effective method significantly surpass alternative causal strategies, including distillation and generative encoder. Extensive experiments show that DyStream could generate video within 34 ms per frame, guaranteeing the entire system latency remains under 100 ms. Besides, it achieves state-of-the-art lip-sync quality, with offline and online LipSync Confidence scores of 8.13 and 7.61 on HDTF, respectively. The model, weights and codes are available.
comment: Project Page: https://robinwitch.github.io/DyStream-Page
☆ Lifting Vision: Ground to Aerial Localization with Reasoning Guided Planning
Multimodal intelligence development recently show strong progress in visual understanding and high level reasoning. Though, most reasoning system still reply on textual information as the main medium for inference. This limit their effectiveness in spatial tasks such as visual navigation and geo-localization. This work discuss about the potential scope of this field and eventually propose an idea visual reasoning paradigm Geo-Consistent Visual Planning, our introduced framework called Visual Reasoning for Localization, or ViReLoc, which performs planning and localization using only visual representations. The proposed framework learns spatial dependencies and geometric relations that text based reasoning often suffer to understand. By encoding step by step inference in the visual domain and optimizing with reinforcement based objectives, ViReLoc plans routes between two given ground images. The system also integrates contrastive learning and adaptive feature interaction to align cross view perspectives and reduce viewpoint differences. Experiments across diverse navigation and localization scenarios show consistent improvements in spatial reasoning accuracy and cross view retrieval performance. These results establish visual reasoning as a strong complementary approach for navigation and localization, and show that such tasks can be performed without real time global positioning system data, leading to more secure navigation solutions.
☆ RedunCut: Measurement-Driven Sampling and Accuracy Performance Modeling for Low-Cost Live Video Analytics
Live video analytics (LVA) runs continuously across massive camera fleets, but inference cost with modern vision models remains high. To address this, dynamic model size selection (DMSS) is an attractive approach: it is content-aware but treats models as black boxes, and could potentially reduce cost by up to 10x without model retraining or modification. Without ground truth labels at runtime, we observe that DMSS methods use two stages per segment: (i) sampling a few models to calculate prediction statistics (e.g., confidences), then (ii) selection of the model size from those statistics. Prior systems fail to generalize to diverse workloads, particularly to mobile videos and lower accuracy targets. We identify that the failure modes stem from inefficient sampling whose cost exceeds its benefit, and inaccurate per-segment accuracy prediction. In this work, we present RedunCut, a new DMSS system that addresses both: It uses a measurement-driven planner that estimates the cost-benefit tradeoff of sampling, and a lightweight, data-driven performance model to improve accuracy prediction. Across road-vehicle, drone, and surveillance videos and multiple model families and tasks, RedunCut reduces compute cost by 14-62% at fixed accuracy and remains robust to limited historical data and to drift.
comment: 21 pages, 23 figures
☆ Forging Spatial Intelligence: A Roadmap of Multi-Modal Data Pre-Training for Autonomous Systems
The rapid advancement of autonomous systems, including self-driving vehicles and drones, has intensified the need to forge true Spatial Intelligence from multi-modal onboard sensor data. While foundation models excel in single-modal contexts, integrating their capabilities across diverse sensors like cameras and LiDAR to create a unified understanding remains a formidable challenge. This paper presents a comprehensive framework for multi-modal pre-training, identifying the core set of techniques driving progress toward this goal. We dissect the interplay between foundational sensor characteristics and learning strategies, evaluating the role of platform-specific datasets in enabling these advancements. Our central contribution is the formulation of a unified taxonomy for pre-training paradigms: ranging from single-modality baselines to sophisticated unified frameworks that learn holistic representations for advanced tasks like 3D object detection and semantic occupancy prediction. Furthermore, we investigate the integration of textual inputs and occupancy representations to facilitate open-world perception and planning. Finally, we identify critical bottlenecks, such as computational efficiency and model scalability, and propose a roadmap toward general-purpose multi-modal foundation models capable of achieving robust Spatial Intelligence for real-world deployment.
comment: Preprint; 38 pages, 7 figures, 9 tables; GitHub at https://github.com/worldbench/awesome-spatial-intelligence
☆ Geometric Multi-Session Map Merging with Learned Local Descriptors
Multi-session map merging is crucial for extended autonomous operations in large-scale environments. In this paper, we present GMLD, a learning-based local descriptor framework for large-scale multi-session point cloud map merging that systematically aligns maps collected across different sessions with overlapping regions. The proposed framework employs a keypoint-aware encoder and a plane-based geometric transformer to extract discriminative features for loop closure detection and relative pose estimation. To further improve global consistency, we include inter-session scan matching cost factors in the factor-graph optimization stage. We evaluate our framework on the public datasets, as well as self-collected data from diverse environments. The results show accurate and robust map merging with low error, and the learned features deliver strong performance in both loop closure detection and relative pose estimation.
☆ DermaVQA-DAS: Dermatology Assessment Schema (DAS) & Datasets for Closed-Ended Question Answering & Segmentation in Patient-Generated Dermatology Images
Recent advances in dermatological image analysis have been driven by large-scale annotated datasets; however, most existing benchmarks focus on dermatoscopic images and lack patient-authored queries and clinical context, limiting their applicability to patient-centered care. To address this gap, we introduce DermaVQA-DAS, an extension of the DermaVQA dataset that supports two complementary tasks: closed-ended question answering (QA) and dermatological lesion segmentation. Central to this work is the Dermatology Assessment Schema (DAS), a novel expert-developed framework that systematically captures clinically meaningful dermatological features in a structured and standardized form. DAS comprises 36 high-level and 27 fine-grained assessment questions, with multiple-choice options in English and Chinese. Leveraging DAS, we provide expert-annotated datasets for both closed QA and segmentation and benchmark state-of-the-art multimodal models. For segmentation, we evaluate multiple prompting strategies and show that prompt design impacts performance: the default prompt achieves the best results under Mean-of-Max and Mean-of-Mean evaluation aggregation schemes, while an augmented prompt incorporating both patient query title and content yields the highest performance under majority-vote-based microscore evaluation, achieving a Jaccard index of 0.395 and a Dice score of 0.566 with BiomedParse. For closed-ended QA, overall performance is strong across models, with average accuracies ranging from 0.729 to 0.798; o3 achieves the best overall accuracy (0.798), closely followed by GPT-4.1 (0.796), while Gemini-1.5-Pro shows competitive performance within the Gemini family (0.783). We publicly release DermaVQA-DAS, the DAS schema, and evaluation protocols to support and accelerate future research in patient-centered dermatological vision-language modeling (https://osf.io/72rp3).
☆ The Mechanics of CNN Filtering with Rectification
This paper proposes elementary information mechanics as a new model for understanding the mechanical properties of convolutional filtering with rectification, inspired by physical theories of special relativity and quantum mechanics. We consider kernels decomposed into orthogonal even and odd components. Even components cause image content to diffuse isotropically while preserving the center of mass, analogously to rest or potential energy with zero net momentum. Odd kernels cause directional displacement of the center of mass, analogously to kinetic energy with non-zero momentum. The speed of information displacement is linearly related to the ratio of odd vs total kernel energy. Even-Odd properties are analyzed in the spectral domain via the discrete cosine transform (DCT), where the structure of small convolutional filters (e.g. $3 \times 3$ pixels) is dominated by low-frequency bases, specifically the DC $Σ$ and gradient components $\nabla$, which define the fundamental modes of information propagation. To our knowledge, this is the first work demonstrating the link between information processing in generic CNNs and the energy-momentum relation, a cornerstone of modern relativistic physics.
☆ Spatial-aware Vision Language Model for Autonomous Driving
While Vision-Language Models (VLMs) show significant promise for end-to-end autonomous driving by leveraging the common sense embedded in language models, their reliance on 2D image cues for complex scene understanding and decision-making presents a critical bottleneck for safety and reliability. Current image-based methods struggle with accurate metric spatial reasoning and geometric inference, leading to unreliable driving policies. To bridge this gap, we propose LVLDrive (LiDAR-Vision-Language), a novel framework specifically designed to upgrade existing VLMs with robust 3D metric spatial understanding for autonomous driving by incoperating LiDAR point cloud as an extra input modality. A key challenge lies in mitigating the catastrophic disturbance introduced by disparate 3D data to the pre-trained VLMs. To this end, we introduce a Gradual Fusion Q-Former that incrementally injects LiDAR features, ensuring the stability and preservation of the VLM's existing knowledge base. Furthermore, we develop a spatial-aware question-answering (SA-QA) dataset to explicitly teach the model advanced 3D perception and reasoning capabilities. Extensive experiments on driving benchmarks demonstrate that LVLDrive achieves superior performance compared to vision-only counterparts across scene understanding, metric spatial perception, and reliable driving decision-making. Our work highlights the necessity of explicit 3D metric data for building trustworthy VLM-based autonomous systems.
☆ SenseNova-MARS: Empowering Multimodal Agentic Reasoning and Search via Reinforcement Learning
While Vision-Language Models (VLMs) can solve complex tasks through agentic reasoning, their capabilities remain largely constrained to text-oriented chain-of-thought or isolated tool invocation. They fail to exhibit the human-like proficiency required to seamlessly interleave dynamic tool manipulation with continuous reasoning, particularly in knowledge-intensive and visually complex scenarios that demand coordinated external tools such as search and image cropping. In this work, we introduce SenseNova-MARS, a novel Multimodal Agentic Reasoning and Search framework that empowers VLMs with interleaved visual reasoning and tool-use capabilities via reinforcement learning (RL). Specifically, SenseNova-MARS dynamically integrates the image search, text search, and image crop tools to tackle fine-grained and knowledge-intensive visual understanding challenges. In the RL stage, we propose the Batch-Normalized Group Sequence Policy Optimization (BN-GSPO) algorithm to improve the training stability and advance the model's ability to invoke tools and reason effectively. To comprehensively evaluate the agentic VLMs on complex visual tasks, we introduce the HR-MMSearch benchmark, the first search-oriented benchmark composed of high-resolution images with knowledge-intensive and search-driven questions. Experiments demonstrate that SenseNova-MARS achieves state-of-the-art performance on open-source search and fine-grained image understanding benchmarks. Specifically, on search-oriented benchmarks, SenseNova-MARS-8B scores 67.84 on MMSearch and 41.64 on HR-MMSearch, surpassing proprietary models such as Gemini-3-Flash and GPT-5. SenseNova-MARS represents a promising step toward agentic VLMs by providing effective and robust tool-use capabilities. To facilitate further research in this field, we will release all code, models, and datasets.
☆ Robust Egocentric Referring Video Object Segmentation via Dual-Modal Causal Intervention NeurIPS 2025
Egocentric Referring Video Object Segmentation (Ego-RVOS) aims to segment the specific object actively involved in a human action, as described by a language query, within first-person videos. This task is critical for understanding egocentric human behavior. However, achieving such segmentation robustly is challenging due to ambiguities inherent in egocentric videos and biases present in training data. Consequently, existing methods often struggle, learning spurious correlations from skewed object-action pairings in datasets and fundamental visual confounding factors of the egocentric perspective, such as rapid motion and frequent occlusions. To address these limitations, we introduce Causal Ego-REferring Segmentation (CERES), a plug-in causal framework that adapts strong, pre-trained RVOS backbones to the egocentric domain. CERES implements dual-modal causal intervention: applying backdoor adjustment principles to counteract language representation biases learned from dataset statistics, and leveraging front-door adjustment concepts to address visual confounding by intelligently integrating semantic visual features with geometric depth information guided by causal principles, creating representations more robust to egocentric distortions. Extensive experiments demonstrate that CERES achieves state-of-the-art performance on Ego-RVOS benchmarks, highlighting the potential of applying causal reasoning to build more reliable models for broader egocentric video understanding.
comment: NeurIPS 2025
☆ UniAct: Unified Motion Generation and Action Streaming for Humanoid Robots
A long-standing objective in humanoid robotics is the realization of versatile agents capable of following diverse multimodal instructions with human-level flexibility. Despite advances in humanoid control, bridging high-level multimodal perception with whole-body execution remains a significant bottleneck. Existing methods often struggle to translate heterogeneous instructions -- such as language, music, and trajectories -- into stable, real-time actions. Here we show that UniAct, a two-stage framework integrating a fine-tuned MLLM with a causal streaming pipeline, enables humanoid robots to execute multimodal instructions with sub-500 ms latency. By unifying inputs through a shared discrete codebook via FSQ, UniAct ensures cross-modal alignment while constraining motions to a physically grounded manifold. This approach yields a 19% improvement in the success rate of zero-shot tracking of imperfect reference motions. We validate UniAct on UniMoCap, our 20-hour humanoid motion benchmark, demonstrating robust generalization across diverse real-world scenarios. Our results mark a critical step toward responsive, general-purpose humanoid assistants capable of seamless interaction through unified perception and control.
comment: Project page: https://jnnan.github.io/uniact/
☆ Virtual-Eyes: Quantitative Validation of a Lung CT Quality-Control Pipeline for Foundation-Model Cancer Risk Prediction
Robust preprocessing is rarely quantified in deep-learning pipelines for low-dose CT (LDCT) lung cancer screening. We develop and validate Virtual-Eyes, a clinically motivated 16-bit CT quality-control pipeline, and measure its differential impact on generalist foundation models versus specialist models. Virtual-Eyes enforces strict 512x512 in-plane resolution, rejects short or non-diagnostic series, and extracts a contiguous lung block using Hounsfield-unit filtering and bilateral lung-coverage scoring while preserving the native 16-bit grid. Using 765 NLST patients (182 cancer, 583 non-cancer), we compute slice-level embeddings from RAD-DINO and Merlin with frozen encoders and train leakage-free patient-level MLP heads; we also evaluate Sybil and a 2D ResNet-18 baseline under Raw versus Virtual-Eyes inputs without backbone retraining. Virtual-Eyes improves RAD-DINO slice-level AUC from 0.576 to 0.610 and patient-level AUC from 0.646 to 0.683 (mean pooling) and from 0.619 to 0.735 (max pooling), with improved calibration (Brier score 0.188 to 0.112). In contrast, Sybil and ResNet-18 degrade under Virtual-Eyes (Sybil AUC 0.886 to 0.837; ResNet-18 AUC 0.571 to 0.596) with evidence of context dependence and shortcut learning, and Merlin shows limited transferability (AUC approximately 0.507 to 0.567) regardless of preprocessing. These results demonstrate that anatomically targeted QC can stabilize and improve generalist foundation-model workflows but may disrupt specialist models adapted to raw clinical context.
comment: 23 pages, and Under Review-MIDL-2026
☆ One-shot synthesis of rare gastrointestinal lesions improves diagnostic accuracy and clinical training
Rare gastrointestinal lesions are infrequently encountered in routine endoscopy, restricting the data available for developing reliable artificial intelligence (AI) models and training novice clinicians. Here we present EndoRare, a one-shot, retraining-free generative framework that synthesizes diverse, high-fidelity lesion exemplars from a single reference image. By leveraging language-guided concept disentanglement, EndoRare separates pathognomonic lesion features from non-diagnostic attributes, encoding the former into a learnable prototype embedding while varying the latter to ensure diversity. We validated the framework across four rare pathologies (calcifying fibrous tumor, juvenile polyposis syndrome, familial adenomatous polyposis, and Peutz-Jeghers syndrome). Synthetic images were judged clinically plausible by experts and, when used for data augmentation, significantly enhanced downstream AI classifiers, improving the true positive rate at low false-positive rates. Crucially, a blinded reader study demonstrated that novice endoscopists exposed to EndoRare-generated cases achieved a 0.400 increase in recall and a 0.267 increase in precision. These results establish a practical, data-efficient pathway to bridge the rare-disease gap in both computer-aided diagnostics and clinical education.
☆ LiftProj: Space Lifting and Projection-Based Panorama Stitching
Traditional image stitching techniques have predominantly utilized two-dimensional homography transformations and mesh warping to achieve alignment on a planar surface. While effective for scenes that are approximately coplanar or exhibit minimal parallax, these approaches often result in ghosting, structural bending, and stretching distortions in non-overlapping regions when applied to real three-dimensional scenes characterized by multiple depth layers and occlusions. Such challenges are exacerbated in multi-view accumulations and 360° closed-loop stitching scenarios. In response, this study introduces a spatially lifted panoramic stitching framework that initially elevates each input image into a dense three-dimensional point representation within a unified coordinate system, facilitating global cross-view fusion augmented by confidence metrics. Subsequently, a unified projection center is established in three-dimensional space, and an equidistant cylindrical projection is employed to map the fused data onto a single panoramic manifold, thereby producing a geometrically consistent 360° panoramic layout. Finally, hole filling is conducted within the canvas domain to address unknown regions revealed by viewpoint transitions, restoring continuous texture and semantic coherence. This framework reconceptualizes stitching from a two-dimensional warping paradigm to a three-dimensional consistency paradigm and is designed to flexibly incorporate various three-dimensional lifting and completion modules. Experimental evaluations demonstrate that the proposed method substantially mitigates geometric distortions and ghosting artifacts in scenarios involving significant parallax and complex occlusions, yielding panoramic results that are more natural and consistent.
comment: 16 pages, 10 figures
☆ Taming Hallucinations: Boosting MLLMs' Video Understanding via Counterfactual Video Generation
Multimodal Large Language Models (MLLMs) have made remarkable progress in video understanding. However, they suffer from a critical vulnerability: an over-reliance on language priors, which can lead to visual ungrounded hallucinations, especially when processing counterfactual videos that defy common sense. This limitation, stemming from the intrinsic data imbalance between text and video, is challenging to address due to the substantial cost of collecting and annotating counterfactual data. To address this, we introduce DualityForge, a novel counterfactual data synthesis framework that employs controllable, diffusion-based video editing to transform real-world videos into counterfactual scenarios. By embedding structured contextual information into the video editing and QA generation processes, the framework automatically produces high-quality QA pairs together with original-edited video pairs for contrastive training. Based on this, we build DualityVidQA, a large-scale video dataset designed to reduce MLLM hallucinations. In addition, to fully exploit the contrastive nature of our paired data, we propose Duality-Normalized Advantage Training (DNA-Train), a two-stage SFT-RL training regime where the RL phase applies pair-wise $\ell_1$ advantage normalization, thereby enabling a more stable and efficient policy optimization. Experiments on DualityVidQA-Test demonstrate that our method substantially reduces model hallucinations on counterfactual videos, yielding a relative improvement of 24.0% over the Qwen2.5-VL-7B baseline. Moreover, our approach achieves significant gains across both hallucination and general-purpose benchmarks, indicating strong generalization capability. We will open-source our dataset and code.
comment: 18 pages
☆ Physically-Grounded Manifold Projection with Foundation Priors for Metal Artifact Reduction in Dental CBCT
Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP
comment: This manuscript has been submitted to Medical Image Analysis for peer review
MambaSeg: Harnessing Mamba for Accurate and Efficient Image-Event Semantic Segmentation AAAI 2026
Semantic segmentation is a fundamental task in computer vision with wide-ranging applications, including autonomous driving and robotics. While RGB-based methods have achieved strong performance with CNNs and Transformers, their effectiveness degrades under fast motion, low-light, or high dynamic range conditions due to limitations of frame cameras. Event cameras offer complementary advantages such as high temporal resolution and low latency, yet lack color and texture, making them insufficient on their own. To address this, recent research has explored multimodal fusion of RGB and event data; however, many existing approaches are computationally expensive and focus primarily on spatial fusion, neglecting the temporal dynamics inherent in event streams. In this work, we propose MambaSeg, a novel dual-branch semantic segmentation framework that employs parallel Mamba encoders to efficiently model RGB images and event streams. To reduce cross-modal ambiguity, we introduce the Dual-Dimensional Interaction Module (DDIM), comprising a Cross-Spatial Interaction Module (CSIM) and a Cross-Temporal Interaction Module (CTIM), which jointly perform fine-grained fusion along both spatial and temporal dimensions. This design improves cross-modal alignment, reduces ambiguity, and leverages the complementary properties of each modality. Extensive experiments on the DDD17 and DSEC datasets demonstrate that MambaSeg achieves state-of-the-art segmentation performance while significantly reducing computational cost, showcasing its promise for efficient, scalable, and robust multimodal perception.
comment: Accepted by AAAI 2026
☆ MotivNet: Evolving Meta-Sapiens into an Emotionally Intelligent Foundation Model
In this paper, we introduce MotivNet, a generalizable facial emotion recognition model for robust real-world application. Current state-of-the-art FER models tend to have weak generalization when tested on diverse data, leading to deteriorated performance in the real world and hindering FER as a research domain. Though researchers have proposed complex architectures to address this generalization issue, they require training cross-domain to obtain generalizable results, which is inherently contradictory for real-world application. Our model, MotivNet, achieves competitive performance across datasets without cross-domain training by using Meta-Sapiens as a backbone. Sapiens is a human vision foundational model with state-of-the-art generalization in the real world through large-scale pretraining of a Masked Autoencoder. We propose MotivNet as an additional downstream task for Sapiens and define three criteria to evaluate MotivNet's viability as a Sapiens task: benchmark performance, model similarity, and data similarity. Throughout this paper, we describe the components of MotivNet, our training approach, and our results showing MotivNet is generalizable across domains. We demonstrate that MotivNet can be benchmarked against existing SOTA models and meets the listed criteria, validating MotivNet as a Sapiens downstream task, and making FER more incentivizing for in-the-wild application. The code is available at https://github.com/OSUPCVLab/EmotionFromFaceImages.
comment: 6 pages, 4 figures
☆ Mirage: One-Step Video Diffusion for Photorealistic and Coherent Asset Editing in Driving Scenes
Vision-centric autonomous driving systems rely on diverse and scalable training data to achieve robust performance. While video object editing offers a promising path for data augmentation, existing methods often struggle to maintain both high visual fidelity and temporal coherence. In this work, we propose \textbf{Mirage}, a one-step video diffusion model for photorealistic and coherent asset editing in driving scenes. Mirage builds upon a text-to-video diffusion prior to ensure temporal consistency across frames. However, 3D causal variational autoencoders often suffer from degraded spatial fidelity due to compression, and directly passing 3D encoder features to decoder layers breaks temporal causality. To address this, we inject temporally agnostic latents from a pretrained 2D encoder into the 3D decoder to restore detail while preserving causal structures. Furthermore, because scene objects and inserted assets are optimized under different objectives, their Gaussians exhibit a distribution mismatch that leads to pose misalignment. To mitigate this, we introduce a two-stage data alignment strategy combining coarse 3D alignment and fine 2D refinement, thereby improving alignment and providing cleaner supervision. Extensive experiments demonstrate that Mirage achieves high realism and temporal consistency across diverse editing scenarios. Beyond asset editing, Mirage can also generalize to other video-to-video translation tasks, serving as a reliable baseline for future research. Our code is available at https://github.com/wm-research/mirage.
☆ ARM: A Learnable, Plug-and-Play Module for CLIP-based Open-vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation (OVSS) is fundamentally hampered by the coarse, image-level representations of CLIP, which lack precise pixel-level details. Existing training-free methods attempt to resolve this by either importing priors from costly external foundation models (e.g., SAM, DINO) or by applying static, hand-crafted heuristics to CLIP's internal features. These approaches are either computationally expensive or sub-optimal. We propose the Attention Refinement Module (ARM), a lightweight, learnable module that effectively unlocks and refines CLIP's internal potential. Unlike static-fusion methods, ARM learns to adaptively fuse hierarchical features. It employs a semantically-guided cross-attention block, using robust deep features (K, V) to select and refine detail-rich shallow features (Q), followed by a self-attention block. The key innovation lies in a ``train once, use anywhere" paradigm. Trained once on a general-purpose dataset (e.g., COCO-Stuff), ARM acts as a universal plug-and-play post-processor for diverse training-free frameworks. Extensive experiments show that ARM consistently boosts baseline performance on multiple benchmarks with negligible inference overhead, establishing an efficient and effective paradigm for training-free OVSS.
comment: 10 pages, 4 figures
Medical Image Classification on Imbalanced Data Using ProGAN and SMA-Optimized ResNet: Application to COVID-19
The challenge of imbalanced data is prominent in medical image classification. This challenge arises when there is a significant disparity in the number of images belonging to a particular class, such as the presence or absence of a specific disease, as compared to the number of images belonging to other classes. This issue is especially notable during pandemics, which may result in an even more significant imbalance in the dataset. Researchers have employed various approaches in recent years to detect COVID-19 infected individuals accurately and quickly, with artificial intelligence and machine learning algorithms at the forefront. However, the lack of sufficient and balanced data remains a significant obstacle to these methods. This study addresses the challenge by proposing a progressive generative adversarial network to generate synthetic data to supplement the real ones. The proposed method suggests a weighted approach to combine synthetic data with real ones before inputting it into a deep network classifier. A multi-objective meta-heuristic population-based optimization algorithm is employed to optimize the hyper-parameters of the classifier. The proposed model exhibits superior cross-validated metrics compared to existing methods when applied to a large and imbalanced chest X-ray image dataset of COVID-19. The proposed model achieves 95.5% and 98.5% accuracy for 4-class and 2-class imbalanced classification problems, respectively. The successful experimental outcomes demonstrate the effectiveness of the proposed model in classifying medical images using imbalanced data during pandemics.
☆ RANGER: A Monocular Zero-Shot Semantic Navigation Framework through Contextual Adaptation
Efficiently finding targets in complex environments is fundamental to real-world embodied applications. While recent advances in multimodal foundation models have enabled zero-shot object goal navigation, allowing robots to search for arbitrary objects without fine-tuning, existing methods face two key limitations: (1) heavy reliance on precise depth and pose information provided by simulators, which restricts applicability in real-world scenarios; and (2) lack of in-context learning (ICL) capability, making it difficult to quickly adapt to new environments, as in leveraging short videos. To address these challenges, we propose RANGER, a novel zero-shot, open-vocabulary semantic navigation framework that operates using only a monocular camera. Leveraging powerful 3D foundation models, RANGER eliminates the dependency on depth and pose while exhibiting strong ICL capability. By simply observing a short video of a new environment, the system can also significantly improve task efficiency without requiring architectural modifications or fine-tuning. The framework integrates several key components: keyframe-based 3D reconstruction, semantic point cloud generation, vision-language model (VLM)-driven exploration value estimation, high-level adaptive waypoint selection, and low-level action execution. Experiments on the HM3D benchmark and real-world environments demonstrate that RANGER achieves competitive performance in terms of navigation success rate and exploration efficiency, while showing superior ICL adaptability, with no previous 3D mapping of the environment required.
☆ CorGi: Contribution-Guided Block-Wise Interval Caching for Training-Free Acceleration of Diffusion Transformers
Diffusion transformer (DiT) achieves remarkable performance in visual generation, but its iterative denoising process combined with larger capacity leads to a high inference cost. Recent works have demonstrated that the iterative denoising process of DiT models involves substantial redundant computation across steps. To effectively reduce the redundant computation in DiT, we propose CorGi (Contribution-Guided Block-Wise Interval Caching), training-free DiT inference acceleration framework that selectively reuses the outputs of transformer blocks in DiT across denoising steps. CorGi caches low-contribution blocks and reuses them in later steps within each interval to reduce redundant computation while preserving generation quality. For text-to-image tasks, we further propose CorGi+, which leverages per-block cross-attention maps to identify salient tokens and applies partial attention updates to protect important object details. Evaluation on the state-of-the-art DiT models demonstrates that CorGi and CorGi+ achieve up to 2.0x speedup on average, while preserving high generation quality.
comment: 16 pages, 20 figures
☆ PointRAFT: 3D deep learning for high-throughput prediction of potato tuber weight from partial point clouds
Potato yield is a key indicator for optimizing cultivation practices in agriculture. Potato yield can be estimated on harvesters using RGB-D cameras, which capture three-dimensional (3D) information of individual tubers moving along the conveyor belt. However, point clouds reconstructed from RGB-D images are incomplete due to self-occlusion, leading to systematic underestimation of tuber weight. To address this, we introduce PointRAFT, a high-throughput point cloud regression network that directly predicts continuous 3D shape properties, such as tuber weight, from partial point clouds. Rather than reconstructing full 3D geometry, PointRAFT infers target values directly from raw 3D data. Its key architectural novelty is an object height embedding that incorporates tuber height as an additional geometric cue, improving weight prediction under practical harvesting conditions. PointRAFT was trained and evaluated on 26,688 partial point clouds collected from 859 potato tubers across four cultivars and three growing seasons on an operational harvester in Japan. On a test set of 5,254 point clouds from 172 tubers, PointRAFT achieved a mean absolute error of 12.0 g and a root mean squared error of 17.2 g, substantially outperforming a linear regression baseline and a standard PointNet++ regression network. With an average inference time of 6.3 ms per point cloud, PointRAFT supports processing rates of up to 150 tubers per second, meeting the high-throughput requirements of commercial potato harvesters. Beyond potato weight estimation, PointRAFT provides a versatile regression network applicable to a wide range of 3D phenotyping and robotic perception tasks. The code, network weights, and a subset of the dataset are publicly available at https://github.com/pieterblok/pointraft.git.
comment: 14 pages, 7 figures, 3 tables
☆ Guiding a Diffusion Transformer with the Internal Dynamics of Itself
The diffusion model presents a powerful ability to capture the entire (conditional) data distribution. However, due to the lack of sufficient training and data to learn to cover low-probability areas, the model will be penalized for failing to generate high-quality images corresponding to these areas. To achieve better generation quality, guidance strategies such as classifier free guidance (CFG) can guide the samples to the high-probability areas during the sampling stage. However, the standard CFG often leads to over-simplified or distorted samples. On the other hand, the alternative line of guiding diffusion model with its bad version is limited by carefully designed degradation strategies, extra training and additional sampling steps. In this paper, we proposed a simple yet effective strategy Internal Guidance (IG), which introduces an auxiliary supervision on the intermediate layer during training process and extrapolates the intermediate and deep layer's outputs to obtain generative results during sampling process. This simple strategy yields significant improvements in both training efficiency and generation quality on various baselines. On ImageNet 256x256, SiT-XL/2+IG achieves FID=5.31 and FID=1.75 at 80 and 800 epochs. More impressively, LightningDiT-XL/1+IG achieves FID=1.34 which achieves a large margin between all of these methods. Combined with CFG, LightningDiT-XL/1+IG achieves the current state-of-the-art FID of 1.19.
comment: Project Page: https://zhouxingyu13.github.io/Internal-Guidance/
☆ Deep Global Clustering for Hyperspectral Image Segmentation: Concepts, Applications, and Open Challenges
Hyperspectral imaging (HSI) analysis faces computational bottlenecks due to massive data volumes that exceed available memory. While foundation models pre-trained on large remote sensing datasets show promise, their learned representations often fail to transfer to domain-specific applications like close-range agricultural monitoring where spectral signatures, spatial scales, and semantic targets differ fundamentally. This report presents Deep Global Clustering (DGC), a conceptual framework for memory-efficient HSI segmentation that learns global clustering structure from local patch observations without pre-training. DGC operates on small patches with overlapping regions to enforce consistency, enabling training in under 30 minutes on consumer hardware while maintaining constant memory usage. On a leaf disease dataset, DGC achieves background-tissue separation (mean IoU 0.925) and demonstrates unsupervised disease detection through navigable semantic granularity. However, the framework suffers from optimization instability rooted in multi-objective loss balancing: meaningful representations emerge rapidly but degrade due to cluster over-merging in feature space. We position this work as intellectual scaffolding - the design philosophy has merit, but stable implementation requires principled approaches to dynamic loss balancing. Code and data are available at https://github.com/b05611038/HSI_global_clustering.
comment: 10 pages, 4 figures. Technical report extending ACPA 2025 conference paper. Code and data available at https://github.com/b05611038/HSI_global_clustering
☆ DiffThinker: Towards Generative Multimodal Reasoning with Diffusion Models
While recent Multimodal Large Language Models (MLLMs) have attained significant strides in multimodal reasoning, their reasoning processes remain predominantly text-centric, leading to suboptimal performance in complex long-horizon, vision-centric tasks. In this paper, we establish a novel Generative Multimodal Reasoning paradigm and introduce DiffThinker, a diffusion-based reasoning framework. Conceptually, DiffThinker reformulates multimodal reasoning as a native generative image-to-image task, achieving superior logical consistency and spatial precision in vision-centric tasks. We perform a systematic comparison between DiffThinker and MLLMs, providing the first in-depth investigation into the intrinsic characteristics of this paradigm, revealing four core properties: efficiency, controllability, native parallelism, and collaboration. Extensive experiments across four domains (sequential planning, combinatorial optimization, constraint satisfaction, and spatial configuration) demonstrate that DiffThinker significantly outperforms leading closed source models including GPT-5 (+314.2\%) and Gemini-3-Flash (+111.6\%), as well as the fine-tuned Qwen3-VL-32B baseline (+39.0\%), highlighting generative multimodal reasoning as a promising approach for vision-centric reasoning.
comment: Project page: https://diffthinker-project.github.io
☆ Bayesian Self-Distillation for Image Classification
Supervised training of deep neural networks for classification typically relies on hard targets, which promote overconfidence and can limit calibration, generalization, and robustness. Self-distillation methods aim to mitigate this by leveraging inter-class and sample-specific information present in the model's own predictions, but often remain dependent on hard targets, reducing their effectiveness. With this in mind, we propose Bayesian Self-Distillation (BSD), a principled method for constructing sample-specific target distributions via Bayesian inference using the model's own predictions. Unlike existing approaches, BSD does not rely on hard targets after initialization. BSD consistently yields higher test accuracy (e.g. +1.4% for ResNet-50 on CIFAR-100) and significantly lower Expected Calibration Error (ECE) (-40% ResNet-50, CIFAR-100) than existing architecture-preserving self-distillation methods for a range of deep architectures and datasets. Additional benefits include improved robustness against data corruptions, perturbations, and label noise. When combined with a contrastive loss, BSD achieves state-of-the-art robustness under label noise for single-stage, single-network methods.
comment: 17 pages, 17 figures
☆ Towards Open-Vocabulary Industrial Defect Understanding with a Large-Scale Multimodal Dataset
We present IMDD-1M, the first large-scale Industrial Multimodal Defect Dataset comprising 1,000,000 aligned image-text pairs, designed to advance multimodal learning for manufacturing and quality inspection. IMDD-1M contains high-resolution real-world defects spanning over 60 material categories and more than 400 defect types, each accompanied by expert-verified annotations and fine-grained textual descriptions detailing defect location, severity, and contextual attributes. This dataset enables a wide spectrum of applications, including classification, segmentation, retrieval, captioning, and generative modeling. Building upon IMDD-1M, we train a diffusion-based vision-language foundation model from scratch, specifically tailored for industrial scenarios. The model serves as a generalizable foundation that can be efficiently adapted to specialized domains through lightweight fine-tuning. With less than 5% of the task-specific data required by dedicated expert models, it achieves comparable performance, highlighting the potential of data-efficient foundation model adaptation for industrial inspection and generation, paving the way for scalable, domain-adaptive, and knowledge-grounded manufacturing intelligence.
☆ Taming Preference Mode Collapse via Directional Decoupling Alignment in Diffusion Reinforcement Learning
Recent studies have demonstrated significant progress in aligning text-to-image diffusion models with human preference via Reinforcement Learning from Human Feedback. However, while existing methods achieve high scores on automated reward metrics, they often lead to Preference Mode Collapse (PMC)-a specific form of reward hacking where models converge on narrow, high-scoring outputs (e.g., images with monolithic styles or pervasive overexposure), severely degrading generative diversity. In this work, we introduce and quantify this phenomenon, proposing DivGenBench, a novel benchmark designed to measure the extent of PMC. We posit that this collapse is driven by over-optimization along the reward model's inherent biases. Building on this analysis, we propose Directional Decoupling Alignment (D$^2$-Align), a novel framework that mitigates PMC by directionally correcting the reward signal. Specifically, our method first learns a directional correction within the reward model's embedding space while keeping the model frozen. This correction is then applied to the reward signal during the optimization process, preventing the model from collapsing into specific modes and thereby maintaining diversity. Our comprehensive evaluation, combining qualitative analysis with quantitative metrics for both quality and diversity, reveals that D$^2$-Align achieves superior alignment with human preference.
☆ GARDO: Reinforcing Diffusion Models without Reward Hacking
Fine-tuning diffusion models via online reinforcement learning (RL) has shown great potential for enhancing text-to-image alignment. However, since precisely specifying a ground-truth objective for visual tasks remains challenging, the models are often optimized using a proxy reward that only partially captures the true goal. This mismatch often leads to reward hacking, where proxy scores increase while real image quality deteriorates and generation diversity collapses. While common solutions add regularization against the reference policy to prevent reward hacking, they compromise sample efficiency and impede the exploration of novel, high-reward regions, as the reference policy is usually sub-optimal. To address the competing demands of sample efficiency, effective exploration, and mitigation of reward hacking, we propose Gated and Adaptive Regularization with Diversity-aware Optimization (GARDO), a versatile framework compatible with various RL algorithms. Our key insight is that regularization need not be applied universally; instead, it is highly effective to selectively penalize a subset of samples that exhibit high uncertainty. To address the exploration challenge, GARDO introduces an adaptive regularization mechanism wherein the reference model is periodically updated to match the capabilities of the online policy, ensuring a relevant regularization target. To address the mode collapse issue in RL, GARDO amplifies the rewards for high-quality samples that also exhibit high diversity, encouraging mode coverage without destabilizing the optimization process. Extensive experiments across diverse proxy rewards and hold-out unseen metrics consistently show that GARDO mitigates reward hacking and enhances generation diversity without sacrificing sample efficiency or exploration, highlighting its effectiveness and robustness.
comment: 17 pages. Project: https://tinnerhrhe.github.io/gardo_project
☆ Enhancing LLM-Based Neural Network Generation: Few-Shot Prompting and Efficient Validation for Automated Architecture Design
Automated neural network architecture design remains a significant challenge in computer vision. Task diversity and computational constraints require both effective architectures and efficient search methods. Large Language Models (LLMs) present a promising alternative to computationally intensive Neural Architecture Search (NAS), but their application to architecture generation in computer vision has not been systematically studied, particularly regarding prompt engineering and validation strategies. Building on the task-agnostic NNGPT/LEMUR framework, this work introduces and validates two key contributions for computer vision. First, we present Few-Shot Architecture Prompting (FSAP), the first systematic study of the number of supporting examples (n = 1, 2, 3, 4, 5, 6) for LLM-based architecture generation. We find that using n = 3 examples best balances architectural diversity and context focus for vision tasks. Second, we introduce Whitespace-Normalized Hash Validation, a lightweight deduplication method (less than 1 ms) that provides a 100x speedup over AST parsing and prevents redundant training of duplicate computer vision architectures. In large-scale experiments across seven computer vision benchmarks (MNIST, CIFAR-10, CIFAR-100, CelebA, ImageNette, SVHN, Places365), we generated 1,900 unique architectures. We also introduce a dataset-balanced evaluation methodology to address the challenge of comparing architectures across heterogeneous vision tasks. These contributions provide actionable guidelines for LLM-based architecture search in computer vision and establish rigorous evaluation practices, making automated design more accessible to researchers with limited computational resources.
☆ GeoBench: Rethinking Multimodal Geometric Problem-Solving via Hierarchical Evaluation
Geometric problem solving constitutes a critical branch of mathematical reasoning, requiring precise analysis of shapes and spatial relationships. Current evaluations of geometric reasoning in vision-language models (VLMs) face limitations, including the risk of test data contamination from textbook-based benchmarks, overemphasis on final answers over reasoning processes, and insufficient diagnostic granularity. To address these issues, we present GeoBench, a hierarchical benchmark featuring four reasoning levels in geometric problem-solving: Visual Perception, Goal-Oriented Planning, Rigorous Theorem Application, and Self-Reflective Backtracking. Through six formally verified tasks generated via TrustGeoGen, we systematically assess capabilities ranging from attribute extraction to logical error correction. Experiments reveal that while reasoning models like OpenAI-o3 outperform general MLLMs, performance declines significantly with increasing task complexity. Key findings demonstrate that sub-goal decomposition and irrelevant premise filtering critically influence final problem-solving accuracy, whereas Chain-of-Thought prompting unexpectedly degrades performance in some tasks. These findings establish GeoBench as a comprehensive benchmark while offering actionable guidelines for developing geometric problem-solving systems.
☆ Targeted Semantic Segmentation of Himalayan Glacial Lakes Using Time-Series SAR: Towards Automated GLOF Early Warning
Glacial Lake Outburst Floods (GLOFs) are one of the most devastating climate change induced hazards. Existing remote monitoring approaches often prioritise maximising spatial coverage to train generalistic models or rely on optical imagery hampered by persistent cloud coverage. This paper presents an end-to-end, automated deep learning pipeline for the targeted monitoring of high-risk Himalayan glacial lakes using time-series Sentinel-1 SAR. We introduce a "temporal-first" training strategy, utilising a U-Net with an EfficientNet-B3 backbone trained on a curated dataset of a cohort of 4 lakes (Tsho Rolpa, Chamlang Tsho, Tilicho and Gokyo Lake). The model achieves an IoU of 0.9130 validating the success and efficacy of the "temporal-first" strategy required for transitioning to Early Warning Systems. Beyond the model, we propose an operational engineering architecture: a Dockerised pipeline that automates data ingestion via the ASF Search API and exposes inference results via a RESTful endpoint. This system shifts the paradigm from static mapping to dynamic and automated early warning, providing a scalable architectural foundation for future development in Early Warning Systems.
comment: 12 pages, 6 figures
☆ Guided Diffusion-based Generation of Adversarial Objects for Real-World Monocular Depth Estimation Attacks
Monocular Depth Estimation (MDE) serves as a core perception module in autonomous driving systems, but it remains highly susceptible to adversarial attacks. Errors in depth estimation may propagate through downstream decision making and influence overall traffic safety. Existing physical attacks primarily rely on texture-based patches, which impose strict placement constraints and exhibit limited realism, thereby reducing their effectiveness in complex driving environments. To overcome these limitations, this work introduces a training-free generative adversarial attack framework that generates naturalistic, scene-consistent adversarial objects via a diffusion-based conditional generation process. The framework incorporates a Salient Region Selection module that identifies regions most influential to MDE and a Jacobian Vector Product Guidance mechanism that steers adversarial gradients toward update directions supported by the pre-trained diffusion model. This formulation enables the generation of physically plausible adversarial objects capable of inducing substantial adversarial depth shifts. Extensive digital and physical experiments demonstrate that our method significantly outperforms existing attacks in effectiveness, stealthiness, and physical deployability, underscoring its strong practical implications for autonomous driving safety assessment.
☆ Think Before You Move: Latent Motion Reasoning for Text-to-Motion Generation
Current state-of-the-art paradigms predominantly treat Text-to-Motion (T2M) generation as a direct translation problem, mapping symbolic language directly to continuous poses. While effective for simple actions, this System 1 approach faces a fundamental theoretical bottleneck we identify as the Semantic-Kinematic Impedance Mismatch: the inherent difficulty of grounding semantically dense, discrete linguistic intent into kinematically dense, high-frequency motion data in a single shot. In this paper, we argue that the solution lies in an architectural shift towards Latent System 2 Reasoning. Drawing inspiration from Hierarchical Motor Control in cognitive science, we propose Latent Motion Reasoning (LMR) that reformulates generation as a two-stage Think-then-Act decision process. Central to LMR is a novel Dual-Granularity Tokenizer that disentangles motion into two distinct manifolds: a compressed, semantically rich Reasoning Latent for planning global topology, and a high-frequency Execution Latent for preserving physical fidelity. By forcing the model to autoregressively reason (plan the coarse trajectory) before it moves (instantiates the frames), we effectively bridge the ineffability gap between language and physics. We demonstrate LMR's versatility by implementing it for two representative baselines: T2M-GPT (discrete) and MotionStreamer (continuous). Extensive experiments show that LMR yields non-trivial improvements in both semantic alignment and physical plausibility, validating that the optimal substrate for motion planning is not natural language, but a learned, motion-aligned concept space. Codes and demos can be found in \hyperlink{https://chenhaoqcdyq.github.io/LMR/}{https://chenhaoqcdyq.github.io/LMR/}
comment: project page: https://chenhaoqcdyq.github.io/LMR/
☆ Factorized Learning for Temporally Grounded Video-Language Models ICCV 2025
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.
comment: ICCV 2025 paper. This arXiv version updates Figure 1 to include the concurrent work Qwen2.5-VL to ensure consistency with Table 1
☆ RainFusion2.0: Temporal-Spatial Awareness and Hardware-Efficient Block-wise Sparse Attention
In video and image generation tasks, Diffusion Transformer (DiT) models incur extremely high computational costs due to attention mechanisms, which limits their practical applications. Furthermore, with hardware advancements, a wide range of devices besides graphics processing unit (GPU), such as application-specific integrated circuit (ASIC), have been increasingly adopted for model inference. Sparse attention, which leverages the inherent sparsity of attention by skipping computations for insignificant tokens, is an effective approach to mitigate computational costs. However, existing sparse attention methods have two critical limitations: the overhead of sparse pattern prediction and the lack of hardware generality, as most of these methods are designed for GPU. To address these challenges, this study proposes RainFusion2.0, which aims to develop an online adaptive, hardware-efficient, and low-overhead sparse attention mechanism to accelerate both video and image generative models, with robust performance across diverse hardware platforms. Key technical insights include: (1) leveraging block-wise mean values as representative tokens for sparse mask prediction; (2) implementing spatiotemporal-aware token permutation; and (3) introducing a first-frame sink mechanism specifically designed for video generation scenarios. Experimental results demonstrate that RainFusion2.0 can achieve 80% sparsity while achieving an end-to-end speedup of 1.5~1.8x without compromising video quality. Moreover, RainFusion2.0 demonstrates effectiveness across various generative models and validates its generalization across diverse hardware platforms.
☆ Balanced Hierarchical Contrastive Learning with Decoupled Queries for Fine-grained Object Detection in Remote Sensing Images
Fine-grained remote sensing datasets often use hierarchical label structures to differentiate objects in a coarse-to-fine manner, with each object annotated across multiple levels. However, embedding this semantic hierarchy into the representation learning space to improve fine-grained detection performance remains challenging. Previous studies have applied supervised contrastive learning at different hierarchical levels to group objects under the same parent class while distinguishing sibling subcategories. Nevertheless, they overlook two critical issues: (1) imbalanced data distribution across the label hierarchy causes high-frequency classes to dominate the learning process, and (2) learning semantic relationships among categories interferes with class-agnostic localization. To address these issues, we propose a balanced hierarchical contrastive loss combined with a decoupled learning strategy within the detection transformer (DETR) framework. The proposed loss introduces learnable class prototypes and equilibrates gradients contributed by different classes at each hierarchical level, ensuring that each hierarchical class contributes equally to the loss computation in every mini-batch. The decoupled strategy separates DETR's object queries into classification and localization sets, enabling task-specific feature extraction and optimization. Experiments on three fine-grained datasets with hierarchical annotations demonstrate that our method outperforms state-of-the-art approaches.
☆ Pathology Context Recalibration Network for Ocular Disease Recognition
Pathology context and expert experience play significant roles in clinical ocular disease diagnosis. Although deep neural networks (DNNs) have good ocular disease recognition results, they often ignore exploring the clinical pathology context and expert experience priors to improve ocular disease recognition performance and decision-making interpretability. To this end, we first develop a novel Pathology Recalibration Module (PRM) to leverage the potential of pathology context prior via the combination of the well-designed pixel-wise context compression operator and pathology distribution concentration operator; then this paper applies a novel expert prior Guidance Adapter (EPGA) to further highlight significant pixel-wise representation regions by fully mining the expert experience prior. By incorporating PRM and EPGA into the modern DNN, the PCRNet is constructed for automated ocular disease recognition. Additionally, we introduce an Integrated Loss (IL) to boost the ocular disease recognition performance of PCRNet by considering the effects of sample-wise loss distributions and training label frequencies. The extensive experiments on three ocular disease datasets demonstrate the superiority of PCRNet with IL over state-of-the-art attention-based networks and advanced loss methods. Further visualization analysis explains the inherent behavior of PRM and EPGA that affects the decision-making process of DNNs.
comment: The article has been accepted for publication at Machine Intelligence Research (MIR)
☆ Neighbor-aware Instance Refining with Noisy Labels for Cross-Modal Retrieval AAAI-26
In recent years, Cross-Modal Retrieval (CMR) has made significant progress in the field of multi-modal analysis. However, since it is time-consuming and labor-intensive to collect large-scale and well-annotated data, the annotation of multi-modal data inevitably contains some noise. This will degrade the retrieval performance of the model. To tackle the problem, numerous robust CMR methods have been developed, including robust learning paradigms, label calibration strategies, and instance selection mechanisms. Unfortunately, they often fail to simultaneously satisfy model performance ceilings, calibration reliability, and data utilization rate. To overcome the limitations, we propose a novel robust cross-modal learning framework, namely Neighbor-aware Instance Refining with Noisy Labels (NIRNL). Specifically, we first propose Cross-modal Margin Preserving (CMP) to adjust the relative distance between positive and negative pairs, thereby enhancing the discrimination between sample pairs. Then, we propose Neighbor-aware Instance Refining (NIR) to identify pure subset, hard subset, and noisy subset through cross-modal neighborhood consensus. Afterward, we construct different tailored optimization strategies for this fine-grained partitioning, thereby maximizing the utilization of all available data while mitigating error propagation. Extensive experiments on three benchmark datasets demonstrate that NIRNL achieves state-of-the-art performance, exhibiting remarkable robustness, especially under high noise rates.
comment: 9 pages, 4 figures, and AAAI-26 conference
☆ Reinforced Diffusion: Learning to Push the Limits of Anisotropic Diffusion for Image Denoising
Image denoising is an important problem in low-level vision and serves as a critical module for many image recovery tasks. Anisotropic diffusion is a wide family of image denoising approaches with promising performance. However, traditional anisotropic diffusion approaches use explicit diffusion operators which are not well adapted to complex image structures. As a result, their performance is limited compared to recent learning-based approaches. In this work, we describe a trainable anisotropic diffusion framework based on reinforcement learning. By modeling the denoising process as a series of naive diffusion actions with order learned by deep Q-learning, we propose an effective diffusion-based image denoiser. The diffusion actions selected by deep Q-learning at different iterations indeed composite a stochastic anisotropic diffusion process with strong adaptivity to different image structures, which enjoys improvement over the traditional ones. The proposed denoiser is applied to removing three types of often-seen noise. The experiments show that it outperforms existing diffusion-based methods and competes with the representative deep CNN-based methods.
☆ PipeFlow: Pipelined Processing and Motion-Aware Frame Selection for Long-Form Video Editing
Long-form video editing poses unique challenges due to the exponential increase in the computational cost from joint editing and Denoising Diffusion Implicit Models (DDIM) inversion across extended sequences. To address these limitations, we propose PipeFlow, a scalable, pipelined video editing method that introduces three key innovations: First, based on a motion analysis using Structural Similarity Index Measure (SSIM) and Optical Flow, we identify and propose to skip editing of frames with low motion. Second, we propose a pipelined task scheduling algorithm that splits a video into multiple segments and performs DDIM inversion and joint editing in parallel based on available GPU memory. Lastly, we leverage a neural network-based interpolation technique to smooth out the border frames between segments and interpolate the previously skipped frames. Our method uniquely scales to longer videos by dividing them into smaller segments, allowing PipeFlow's editing time to increase linearly with video length. In principle, this enables editing of infinitely long videos without the growing per-frame computational overhead encountered by other methods. PipeFlow achieves up to a 9.6X speedup compared to TokenFlow and a 31.7X speedup over Diffusion Motion Transfer (DMT).
☆ RSAgent: Learning to Reason and Act for Text-Guided Segmentation via Multi-Turn Tool Invocations
Text-guided object segmentation requires both cross-modal reasoning and pixel grounding abilities. Most recent methods treat text-guided segmentation as one-shot grounding, where the model predicts pixel prompts in a single forward pass to drive an external segmentor, which limits verification, refocusing and refinement when initial localization is wrong. To address this limitation, we propose RSAgent, an agentic Multimodal Large Language Model (MLLM) which interleaves reasoning and action for segmentation via multi-turn tool invocations. RSAgent queries a segmentation toolbox, observes visual feedback, and revises its spatial hypothesis using historical observations to re-localize targets and iteratively refine masks. We further build a data pipeline to synthesize multi-turn reasoning segmentation trajectories, and train RSAgent with a two-stage framework: cold-start supervised fine-tuning followed by agentic reinforcement learning with fine-grained, task-specific rewards. Extensive experiments show that RSAgent achieves a zero-shot performance of 66.5% gIoU on ReasonSeg test, improving over Seg-Zero-7B by 9%, and reaches 81.5% cIoU on RefCOCOg, demonstrating state-of-the-art performance on both in-domain and out-of-domain benchmarks.
☆ FUSE-RSVLM: Feature Fusion Vision-Language Model for Remote Sensing
Large vision-language models (VLMs) exhibit strong performance across various tasks. However, these VLMs encounter significant challenges when applied to the remote sensing domain due to the inherent differences between remote sensing images and natural images. Existing remote sensing VLMs often fail to extract fine-grained visual features and suffer from visual forgetting during deep language processing. To address this, we introduce MF-RSVLM, a Multi-Feature Fusion Remote Sensing Vision--Language Model that effectively extracts and fuses visual features for RS understanding. MF-RSVLM learns multi-scale visual representations and combines global context with local details, improving the capture of small and complex structures in RS scenes. A recurrent visual feature injection scheme ensures the language model remains grounded in visual evidence and reduces visual forgetting during generation. Extensive experiments on diverse RS benchmarks show that MF-RSVLM achieves state-of-the-art or highly competitive performance across remote sensing classification, image captioning, and VQA tasks. Our code is publicly available at https://github.com/Yunkaidang/RSVLM.
☆ One-Shot Structured Pruning of Quantum Neural Networks via $q$-Group Engineering and Quantum Geometric Metrics
Quantum neural networks (QNNs) suffer from severe gate-level redundancy, which hinders their deployment on noisy intermediate-scale quantum (NISQ) devices. In this work, we propose q-iPrune, a one-shot structured pruning framework grounded in the algebraic structure of $q$-deformed groups and task-conditioned quantum geometry. Unlike prior heuristic or gradient-based pruning methods, q-iPrune formulates redundancy directly at the gate level. Each gate is compared within an algebraically consistent subgroup using a task-conditioned $q$-overlap distance, which measures functional similarity through state overlaps on a task-relevant ensemble. A gate is removed only when its replacement by a subgroup representative provably induces a bounded deviation on all task observables. We establish three rigorous theoretical guarantees. First, we prove completeness of redundancy pruning: no gate that violates the prescribed similarity threshold is removed. Second, we show that the pruned circuit is functionally equivalent up to an explicit, task-conditioned error bound, with a closed-form dependence on the redundancy tolerance and the number of replaced gates. Third, we prove that the pruning procedure is computationally feasible, requiring only polynomial-time comparisons and avoiding exponential enumeration over the Hilbert space. To adapt pruning decisions to hardware imperfections, we introduce a noise-calibrated deformation parameter $λ$ that modulates the $q$-geometry and redundancy tolerance. Experiments on standard quantum machine learning benchmarks demonstrate that q-iPrune achieves substantial gate reduction while maintaining bounded task performance degradation, consistent with our theoretical guarantees.
comment: 10 pages, 2 figures
☆ Structure-Guided Allocation of 2D Gaussians for Image Representation and Compression
Recent advances in 2D Gaussian Splatting (2DGS) have demonstrated its potential as a compact image representation with millisecond-level decoding. However, existing 2DGS-based pipelines allocate representation capacity and parameter precision largely oblivious to image structure, limiting their rate-distortion (RD) efficiency at low bitrates. To address this, we propose a structure-guided allocation principle for 2DGS, which explicitly couples image structure with both representation capacity and quantization precision, while preserving native decoding speed. First, we introduce a structure-guided initialization that assigns 2D Gaussians according to spatial structural priors inherent in natural images, yielding a localized and semantically meaningful distribution. Second, during quantization-aware fine-tuning, we propose adaptive bitwidth quantization of covariance parameters, which grants higher precision to small-scale Gaussians in complex regions and lower precision elsewhere, enabling RD-aware optimization, thereby reducing redundancy without degrading edge quality. Third, we impose a geometry-consistent regularization that aligns Gaussian orientations with local gradient directions to better preserve structural details. Extensive experiments demonstrate that our approach substantially improves both the representational power and the RD performance of 2DGS while maintaining over 1000 FPS decoding. Compared with the baseline GSImage, we reduce BD-rate by 43.44% on Kodak and 29.91% on DIV2K.
☆ FitControler: Toward Fit-Aware Virtual Try-On
Realistic virtual try-on (VTON) concerns not only faithful rendering of garment details but also coordination of the style. Prior art typically pursues the former, but neglects a key factor that shapes the holistic style -- garment fit. Garment fit delineates how a garment aligns with the body of a wearer and is a fundamental element in fashion design. In this work, we introduce fit-aware VTON and present FitControler, a learnable plug-in that can seamlessly integrate into modern VTON models to enable customized fit control. To achieve this, we highlight two challenges: i) how to delineate layouts of different fits and ii) how to render the garment that matches the layout. FitControler first features a fit-aware layout generator to redraw the body-garment layout conditioned on a set of delicately processed garment-agnostic representations, and a multi-scale fit injector is then used to deliver layout cues to enable layout-driven VTON. In particular, we build a fit-aware VTON dataset termed Fit4Men, including 13,000 body-garment pairs of different fits, covering both tops and bottoms, and featuring varying camera distances and body poses. Two fit consistency metrics are also introduced to assess the fitness of generations. Extensive experiments show that FitControler can work with various VTON models and achieve accurate fit control. Code and data will be released.
☆ On Exact Editing of Flow-Based Diffusion Models
Recent methods in flow-based diffusion editing have enabled direct transformations between source and target image distribution without explicit inversion. However, the latent trajectories in these methods often exhibit accumulated velocity errors, leading to semantic inconsistency and loss of structural fidelity. We propose Conditioned Velocity Correction (CVC), a principled framework that reformulates flow-based editing as a distribution transformation problem driven by a known source prior. CVC rethinks the role of velocity in inter-distribution transformation by introducing a dual-perspective velocity conversion mechanism. This mechanism explicitly decomposes the latent evolution into two components: a structure-preserving branch that remains consistent with the source trajectory, and a semantically-guided branch that drives a controlled deviation toward the target distribution. The conditional velocity field exhibits an absolute velocity error relative to the true underlying distribution trajectory, which inherently introduces potential instability and trajectory drift in the latent space. To address this quantifiable deviation and maintain fidelity to the true flow, we apply a posterior-consistent update to the resulting conditional velocity field. This update is derived from Empirical Bayes Inference and Tweedie correction, which ensures a mathematically grounded error compensation over time. Our method yields stable and interpretable latent dynamics, achieving faithful reconstruction alongside smooth local semantic conversion. Comprehensive experiments demonstrate that CVC consistently achieves superior fidelity, better semantic alignment, and more reliable editing behavior across diverse tasks.
☆ Bridging the Perception-Cognition Gap:Re-engineering SAM2 with Hilbert-Mamba for Robust VLM-based Medical Diagnosis
Recent studies suggest that Visual Language Models (VLMs) hold great potential for tasks such as automated medical diagnosis. However, processing complex three-dimensional (3D) multimodal medical images poses significant challenges - specifically, the effective integration of complementary information and the occasional oversight of subtle yet critical pathological features. To address these issues, we present a novel two-stage fusion framework termed Hilbert-VLM. This framework leverages the HilbertMed-SAM module for precise lesion segmentation, with the generated multimodal enhanced prompts then guiding the VLM toward accurate disease classification. Our key innovation lies in the systematic redesign of the Segment Anything Model 2 (SAM2) architecture: we incorporate Hilbert space-filling curves into the scanning mechanism of the Mamba State Space Model (SSM) to maximize the preservation of spatial locality in 3D data, a property critical for medical image analysis. We also introduce a novel Hilbert-Mamba Cross-Attention (HMCA) mechanism and a scale-aware decoder to capture fine-grained details. Meanwhile, the prompt enhancement module unifies segmentation masks and their corresponding textual attributes into an information-dense prompt to support VLM inference. Extensive experiments were conducted to validate the effectiveness of the Hilbert-VLM model. On the BraTS2021 segmentation benchmark, it achieves a Dice score of 82.35 percent, with a diagnostic classification accuracy (ACC) of 78.85 percent. These results demonstrate that the proposed model offers substantial potential to improve the accuracy and reliability of medical VLM-based analysis.
☆ Improved 3D Gaussian Splatting of Unknown Spacecraft Structure Using Space Environment Illumination Knowledge IEEE
This work presents a novel pipeline to recover the 3D structure of an unknown target spacecraft from a sequence of images captured during Rendezvous and Proximity Operations (RPO) in space. The target's geometry and appearance are represented as a 3D Gaussian Splatting (3DGS) model. However, learning 3DGS requires static scenes, an assumption in contrast to dynamic lighting conditions encountered in spaceborne imagery. The trained 3DGS model can also be used for camera pose estimation through photometric optimization. Therefore, in addition to recovering a geometrically accurate 3DGS model, the photometric accuracy of the rendered images is imperative to downstream pose estimation tasks during the RPO process. This work proposes to incorporate the prior knowledge of the Sun's position, estimated and maintained by the servicer spacecraft, into the training pipeline for improved photometric quality of 3DGS rasterization. Experimental studies demonstrate the effectiveness of the proposed solution, as 3DGS models trained on a sequence of images learn to adapt to rapidly changing illumination conditions in space and reflect global shadowing and self-occlusion.
comment: Presented at 2025 IEEE International Conference on Space Robotics (iSpaRo)
☆ Bridging Structure and Appearance: Topological Features for Robust Self-Supervised Segmentation
Self-supervised semantic segmentation methods often fail when faced with appearance ambiguities. We argue that this is due to an over-reliance on unstable, appearance-based features such as shadows, glare, and local textures. We propose \textbf{GASeg}, a novel framework that bridges appearance and geometry by leveraging stable topological information. The core of our method is Differentiable Box-Counting (\textbf{DBC}) module, which quantifies multi-scale topological statistics from two parallel streams: geometric-based features and appearance-based features. To force the model to learn these stable structural representations, we introduce Topological Augmentation (\textbf{TopoAug}), an adversarial strategy that simulates real-world ambiguities by applying morphological operators to the input images. A multi-objective loss, \textbf{GALoss}, then explicitly enforces cross-modal alignment between geometric-based and appearance-based features. Extensive experiments demonstrate that GASeg achieves state-of-the-art performance on four benchmarks, including COCO-Stuff, Cityscapes, and PASCAL, validating our approach of bridging geometry and appearance via topological information.
☆ GCA-ResUNet: Medical Image Segmentation Using Grouped Coordinate Attention
Accurate segmentation of heterogeneous anatomical structures is pivotal for computer-aided diagnosis and subsequent clinical decision-making. Although U-Net based convolutional neural networks have achieved remarkable progress, their intrinsic locality and largely homogeneous attention formulations often limit the modeling of long-range contextual dependencies, especially in multi-organ scenarios and low-contrast regions. Transformer-based architectures mitigate this issue by leveraging global self-attention, but they usually require higher computational resources and larger training data, which may impede deployment in resource-constrained clinical environments.In this paper, we propose GCA-ResUNet, an efficient medical image segmentation framework equipped with a lightweight and plug-and-play Grouped Coordinate Attention (GCA) module. The proposed GCA decouples channel-wise context modeling into multiple groups to explicitly account for semantic heterogeneity across channels, and integrates direction-aware coordinate encoding to capture structured spatial dependencies along horizontal and vertical axes. This design enhances global representation capability while preserving the efficiency advantages of CNN backbones. Extensive experiments on two widely used benchmarks, Synapse and ACDC, demonstrate that GCA-ResUNet achieves Dice scores of 86.11% and 92.64%, respectively, outperforming a range of representative CNN and Transformer-based methods, including Swin-UNet and TransUNet. In particular, GCA-ResUNet yields consistent improvements in delineating small anatomical structures with complex boundaries. These results indicate that the proposed approach provides a favorable trade-off between segmentation accuracy and computational efficiency, offering a practical and scalable solution for clinical deployment.
☆ Anomaly detection in satellite imagery through temporal inpainting
Detecting surface changes from satellite imagery is critical for rapid disaster response and environmental monitoring, yet remains challenging due to the complex interplay between atmospheric noise, seasonal variations, and sensor artifacts. Here we show that deep learning can leverage the temporal redundancy of satellite time series to detect anomalies at unprecedented sensitivity, by learning to predict what the surface should look like in the absence of change. We train an inpainting model built upon the SATLAS foundation model to reconstruct the last frame of a Sentinel-2 time series from preceding acquisitions, using globally distributed training data spanning diverse climate zones and land cover types. When applied to regions affected by sudden surface changes, the discrepancy between prediction and observation reveals anomalies that traditional change detection methods miss. We validate our approach on earthquake-triggered surface ruptures from the 2023 Turkey-Syria earthquake sequence, demonstrating detection of a rift feature in Tepehan with higher sensitivity and specificity than temporal median or Reed-Xiaoli anomaly detectors. Our method reaches detection thresholds approximately three times lower than baseline approaches, providing a path towards automated, global-scale monitoring of surface changes from freely available multi-spectral satellite data.
☆ DriveExplorer: Images-Only Decoupled 4D Reconstruction with Progressive Restoration for Driving View Extrapolation
This paper presents an effective solution for view extrapolation in autonomous driving scenarios. Recent approaches focus on generating shifted novel view images from given viewpoints using diffusion models. However, these methods heavily rely on priors such as LiDAR point clouds, 3D bounding boxes, and lane annotations, which demand expensive sensors or labor-intensive labeling, limiting applicability in real-world deployment. In this work, with only images and optional camera poses, we first estimate a global static point cloud and per-frame dynamic point clouds, fusing them into a unified representation. We then employ a deformable 4D Gaussian framework to reconstruct the scene. The initially trained 4D Gaussian model renders degraded and pseudo-images to train a video diffusion model. Subsequently, progressively shifted Gaussian renderings are iteratively refined by the diffusion model,and the enhanced results are incorporated back as training data for 4DGS. This process continues until extrapolation reaches the target viewpoints. Compared with baselines, our method produces higher-quality images at novel extrapolated viewpoints.
☆ T2VAttack: Adversarial Attack on Text-to-Video Diffusion Models
The rapid evolution of Text-to-Video (T2V) diffusion models has driven remarkable advancements in generating high-quality, temporally coherent videos from natural language descriptions. Despite these achievements, their vulnerability to adversarial attacks remains largely unexplored. In this paper, we introduce T2VAttack, a comprehensive study of adversarial attacks on T2V diffusion models from both semantic and temporal perspectives. Considering the inherently dynamic nature of video data, we propose two distinct attack objectives: a semantic objective to evaluate video-text alignment and a temporal objective to assess the temporal dynamics. To achieve an effective and efficient attack process, we propose two adversarial attack methods: (i) T2VAttack-S, which identifies semantically or temporally critical words in prompts and replaces them with synonyms via greedy search, and (ii) T2VAttack-I, which iteratively inserts optimized words with minimal perturbation to the prompt. By combining these objectives and strategies, we conduct a comprehensive evaluation on the adversarial robustness of several state-of-the-art T2V models, including ModelScope, CogVideoX, Open-Sora, and HunyuanVideo. Our experiments reveal that even minor prompt modifications, such as the substitution or insertion of a single word, can cause substantial degradation in semantic fidelity and temporal dynamics, highlighting critical vulnerabilities in current T2V diffusion models.
☆ U-Net-Like Spiking Neural Networks for Single Image Dehazing IJCNN 2025
Image dehazing is a critical challenge in computer vision, essential for enhancing image clarity in hazy conditions. Traditional methods often rely on atmospheric scattering models, while recent deep learning techniques, specifically Convolutional Neural Networks (CNNs) and Transformers, have improved performance by effectively analyzing image features. However, CNNs struggle with long-range dependencies, and Transformers demand significant computational resources. To address these limitations, we propose DehazeSNN, an innovative architecture that integrates a U-Net-like design with Spiking Neural Networks (SNNs). DehazeSNN captures multi-scale image features while efficiently managing local and long-range dependencies. The introduction of the Orthogonal Leaky-Integrate-and-Fire Block (OLIFBlock) enhances cross-channel communication, resulting in superior dehazing performance with reduced computational burden. Our extensive experiments show that DehazeSNN is highly competitive to state-of-the-art methods on benchmark datasets, delivering high-quality haze-free images with a smaller model size and less multiply-accumulate operations. The proposed dehazing method is publicly available at https://github.com/HaoranLiu507/DehazeSNN.
comment: 9 pages, 4 figures. Accepted at IJCNN 2025 (Rome, Italy). To appear in IEEE/IJCNN 2025 proceedings
☆ Kinematic-Based Assessment of Surgical Actions in Microanastomosis
Proficiency in microanastomosis is a critical surgical skill in neurosurgery, where the ability to precisely manipulate fine instruments is crucial to successful outcomes. These procedures require sustained attention, coordinated hand movements, and highly refined motor skills, underscoring the need for objective and systematic methods to evaluate and enhance microsurgical training. Conventional assessment approaches typically rely on expert raters supervising the procedures or reviewing surgical videos, which is an inherently subjective process prone to inter-rater variability, inconsistency, and significant time investment. These limitations highlight the necessity for automated and scalable solutions. To address this challenge, we introduce a novel AI-driven framework for automated action segmentation and performance assessment in microanastomosis procedures, designed to operate efficiently on edge computing platforms. The proposed system comprises three main components: (1) an object tip tracking and localization module based on YOLO and DeepSORT; (2) an action segmentation module leveraging self-similarity matrix for action boundary detection and unsupervised clustering; and (3) a supervised classification module designed to evaluate surgical gesture proficiency. Experimental validation on a dataset of 58 expert-rated microanastomosis videos demonstrates the effectiveness of our approach, achieving a frame-level action segmentation accuracy of 92.4% and an overall skill classification accuracy of 85.5% in replicating expert evaluations. These findings demonstrate the potential of the proposed method to provide objective, real-time feedback in microsurgical education, thereby enabling more standardized, data-driven training protocols and advancing competency assessment in high-stakes surgical environments.
☆ Learnable Query Aggregation with KV Routing for Cross-view Geo-localisation
Cross-view geo-localisation (CVGL) aims to estimate the geographic location of a query image by matching it with images from a large-scale database. However, the significant view-point discrepancies present considerable challenges for effective feature aggregation and alignment. To address these challenges, we propose a novel CVGL system that incorporates three key improvements. Firstly, we leverage the DINOv2 backbone with a convolution adapter fine-tuning to enhance model adaptability to cross-view variations. Secondly, we propose a multi-scale channel reallocation module to strengthen the diversity and stability of spatial representations. Finally, we propose an improved aggregation module that integrates a Mixture-of-Experts (MoE) routing into the feature aggregation process. Specifically, the module dynamically selects expert subspaces for the keys and values in a cross-attention framework, enabling adaptive processing of heterogeneous input domains. Extensive experiments on the University-1652 and SUES-200 datasets demonstrate that our method achieves competitive performance with fewer trained parameters.
comment: 7 pages, 4 figures
☆ MGML: A Plug-and-Play Meta-Guided Multi-Modal Learning Framework for Incomplete Multimodal Brain Tumor Segmentation
Leveraging multimodal information from Magnetic Resonance Imaging (MRI) plays a vital role in lesion segmentation, especially for brain tumors. However, in clinical practice, multimodal MRI data are often incomplete, making it challenging to fully utilize the available information. Therefore, maximizing the utilization of this incomplete multimodal information presents a crucial research challenge. We present a novel meta-guided multi-modal learning (MGML) framework that comprises two components: meta-parameterized adaptive modality fusion and consistency regularization module. The meta-parameterized adaptive modality fusion (Meta-AMF) enables the model to effectively integrate information from multiple modalities under varying input conditions. By generating adaptive soft-label supervision signals based on the available modalities, Meta-AMF explicitly promotes more coherent multimodal fusion. In addition, the consistency regularization module enhances segmentation performance and implicitly reinforces the robustness and generalization of the overall framework. Notably, our approach does not alter the original model architecture and can be conveniently integrated into the training pipeline for end-to-end model optimization. We conducted extensive experiments on the public BraTS2020 and BraTS2023 datasets. Compared to multiple state-of-the-art methods from previous years, our method achieved superior performance. On BraTS2020, for the average Dice scores across fifteen missing modality combinations, building upon the baseline, our method obtained scores of 87.55, 79.36, and 62.67 for the whole tumor (WT), the tumor core (TC), and the enhancing tumor (ET), respectively. We have made our source code publicly available at https://github.com/worldlikerr/MGML.
☆ Learning to learn skill assessment for fetal ultrasound scanning
Traditionally, ultrasound skill assessment has relied on expert supervision and feedback, a process known for its subjectivity and time-intensive nature. Previous works on quantitative and automated skill assessment have predominantly employed supervised learning methods, often limiting the analysis to predetermined or assumed factors considered influential in determining skill levels. In this work, we propose a novel bi-level optimisation framework that assesses fetal ultrasound skills by how well a task is performed on the acquired fetal ultrasound images, without using manually predefined skill ratings. The framework consists of a clinical task predictor and a skill predictor, which are optimised jointly by refining the two networks simultaneously. We validate the proposed method on real-world clinical ultrasound videos of scanning the fetal head. The results demonstrate the feasibility of predicting ultrasound skills by the proposed framework, which quantifies optimised task performance as a skill indicator.
☆ A multimodal Transformer for InSAR-based ground deformation forecasting with cross-site generalization across Europe SP
Near-real-time regional-scale monitoring of ground deformation is increasingly required to support urban planning, critical infrastructure management, and natural hazard mitigation. While Interferometric Synthetic Aperture Radar (InSAR) and continental-scale services such as the European Ground Motion Service (EGMS) provide dense observations of past motion, predicting the next observation remains challenging due to the superposition of long-term trends, seasonal cycles, and occasional abrupt discontinuities (e.g., co-seismic steps), together with strong spatial heterogeneity. In this study we propose a multimodal patch-based Transformer for single-step, fixed-interval next-epoch nowcasting of displacement maps from EGMS time series (resampled to a 64x64 grid over 100 km x 100 km tiles). The model ingests recent displacement snapshots together with (i) static kinematic indicators (mean velocity, acceleration, seasonal amplitude) computed in a leakage-safe manner from the training window only, and (ii) harmonic day-of-year encodings. On the eastern Ireland tile (E32N34), the STGCN is strongest in the displacement-only setting, whereas the multimodal Transformer clearly outperforms CNN-LSTM, CNN-LSTM+Attn, and multimodal STGCN when all models receive the same multimodal inputs, achieving RMSE = 0.90 mm and $R^2$ = 0.97 on the test set with the best threshold accuracies.
comment: submitted to ISPRS Journal of Photogrammetry and Remote Sensing for review
♻ ☆ MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs KDD 2026
Spurious bias, a tendency to exploit spurious correlations between superficial input attributes and prediction targets, has revealed a severe robustness pitfall in classical machine learning problems. Multimodal Large Language Models (MLLMs), which leverage pretrained vision and language models, have recently demonstrated strong capability in joint vision-language understanding. However, both the presence and severity of spurious biases in MLLMs remain poorly understood. In this work, we address this gap by analyzing the spurious biases in the multimodal setting and uncovering the specific inference-time data patterns that can manifest this problem. To support this analysis, we introduce MM-SpuBench, a comprehensive, human-verified benchmark dataset consisting of image-class pairs annotated with core and spurious attributes, grounded in our taxonomy of nine distinct types of spurious correlations. The benchmark is constructed using human-interpretable attribute information to capture a wide range of spurious patterns reflective of real-world knowledge. Leveraging this benchmark, we conduct a comprehensive evaluation of the state-of-the-art open-source and proprietary MLLMs with both standard accuracy and the proposed Conditional Generation Likelihood Advantage (CGLA). Our findings highlight the persistence of reliance on spurious correlations and the difficulty of mitigation on our benchmark. We hope this work can inspire new technical strides to mitigate these biases. Our benchmark is publicly available at https://huggingface.co/datasets/mmbench/MM-SpuBench.
comment: Accepted at KDD 2026 (Dataset and Benchmark Track)
♻ ☆ Flowing from Reasoning to Motion: Learning 3D Hand Trajectory Prediction from Egocentric Human Interaction Videos
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.
comment: Project website: https://egoman-project.github.io
♻ ☆ SurgWorld: Learning Surgical Robot Policies from Videos via World Modeling
Data scarcity remains a fundamental barrier to achieving fully autonomous surgical robots. While large scale vision language action (VLA) models have shown impressive generalization in household and industrial manipulation by leveraging paired video action data from diverse domains, surgical robotics suffers from the paucity of datasets that include both visual observations and accurate robot kinematics. In contrast, vast corpora of surgical videos exist, but they lack corresponding action labels, preventing direct application of imitation learning or VLA training. In this work, we aim to alleviate this problem by learning policy models from SurgWorld, a world model designed for surgical physical AI. We curated the Surgical Action Text Alignment (SATA) dataset with detailed action description specifically for surgical robots. Then we built SurgeWorld based on the most advanced physical AI world model and SATA. It's able to generate diverse, generalizable and realistic surgery videos. We are also the first to use an inverse dynamics model to infer pseudokinematics from synthetic surgical videos, producing synthetic paired video action data. We demonstrate that a surgical VLA policy trained with these augmented data significantly outperforms models trained only on real demonstrations on a real surgical robot platform. Our approach offers a scalable path toward autonomous surgical skill acquisition by leveraging the abundance of unlabeled surgical video and generative world modeling, thus opening the door to generalizable and data efficient surgical robot policies.
♻ ☆ Lightweight Deep Learning-Based Channel Estimation for RIS-Aided Extremely Large-Scale MIMO Systems on Resource-Limited Edge Devices
Next-generation wireless technologies such as 6G aim to meet demanding requirements such as ultra-high data rates, low latency, and enhanced connectivity. Extremely Large-Scale MIMO (XL-MIMO) and Reconfigurable Intelligent Surface (RIS) are key enablers, with XL-MIMO boosting spectral and energy efficiency through numerous antennas, and RIS offering dynamic control over the wireless environment via passive reflective elements. However, realizing their full potential depends on accurate Channel State Information (CSI). Recent advances in deep learning have facilitated efficient cascaded channel estimation. However, the scalability and practical deployment of existing estimation models in XL-MIMO systems remain limited. The growing number of antennas and RIS elements introduces a significant barrier to real-time and efficient channel estimation, drastically increasing data volume, escalating computational complexity, requiring advanced hardware, and resulting in substantial energy consumption. To address these challenges, we propose a lightweight deep learning framework for efficient cascaded channel estimation in XL-MIMO systems, designed to minimize computational complexity and make it suitable for deployment on resource-constrained edge devices. Using spatial correlations in the channel, we introduce a patch-based training mechanism that reduces the dimensionality of input to patch-level representations while preserving essential information, allowing scalable training for large-scale systems. Simulation results under diverse conditions demonstrate that our framework significantly improves estimation accuracy and reduces computational complexity, regardless of the increasing number of antennas and RIS elements in XL-MIMO systems.
♻ ☆ Natural Image Classification via Quasi-Cyclic Graph Ensembles and Random-Bond Ising Models at the Nishimori Temperature
Modern multi-class image classification relies on high-dimensional CNN feature vectors, which are computationally expensive and obscure the underlying data geometry. Conventional graph-based classifiers degrade on natural multi-class images because typical graphs fail to preserve separability on feature manifolds with complex topology. We address this with a physics-inspired pipeline frozen MobileNetV2 embeddings are treated as Ising spins on a sparse Multi-Edge Type QC-LDPC graph forming a Random Bond Ising Model. The system is tuned to its Nishimori temperature identified where the smallest Bethe-Hessian eigenvalue vanishes. Our method rests on two innovations: we prove a spectral-topological correspondence linking graph trapping sets to invariants via the Ihara-Bass zeta function removing these structures boosts top-1 accuracy over four-fold in multi-class settings; we develop a quadratic-Newton estimator for the Nishimori temperature converging in around 9 Arnoldi iterations for a 6-times speedup enabling spectral embedding on scales like ImageNet-100. The resulting graphs compress 1280-dimensional MobileNetV2 features to 32 dimensions for ImageNet10 and 64 for ImageNet-100 We achieve 98.7% top-1 accuracy on ImageNet-10 and 84.92% on ImageNet-100 with a three-graph soft ensemble Versus MobileNetV2 our hard ensemble increases top-1 by 0.1% while cutting FLOPs by 2.67-times compared to ResNet50 the soft ensemble drops top1 by only 1.09% yet reduces FLOPs by 29-times. Novelty lies in (a) rigorously linking trapping sets to topological defects, (b) an efficient Nishimori temperature estimator and (c) demonstrating that topology-guided LDPC embedding produces highly compressed accurate classifiers for resource-constrained deployment
comment: 31 pages, 8 figures, 3 tables, was presented at the 9th International Conference 'Deep Learning on Computational Physics (DLCP2025)', and accepted for the Moscow University Physics Bulletin, Physics series
♻ ☆ An Empirical Study of Methods for Small Object Detection from Satellite Imagery
This paper reviews object detection methods for finding small objects from remote sensing imagery and provides an empirical evaluation of four state-of-the-art methods to gain insights into method performance and technical challenges. In particular, we use car detection from urban satellite images and bee box detection from satellite images of agricultural lands as application scenarios. Drawing from the existing surveys and literature, we identify several top-performing methods for the empirical study. Public, high-resolution satellite image datasets are used in our experiments.
♻ ☆ Daily Land Surface Temperature Reconstruction in Landsat Cross-Track Areas Using Deep Ensemble Learning With Uncertainty Quantification
Many real-world applications rely on land surface temperature (LST) data at high spatiotemporal resolution. In complex urban areas, LST exhibits significant variations, fluctuating dramatically within and across city blocks. Landsat provides high spatial resolution data at 100 meters but is limited by long revisit time, with cloud cover further disrupting data collection. Here, we propose DELAG, a deep ensemble learning method that integrates annual temperature cycles and Gaussian processes, to reconstruct Landsat LST in complex urban areas. Leveraging the cross-track characteristics and dual-satellite operation of Landsat since 2021, we further enhance data availability to 4 scenes every 16 days. We select New York City, London and Hong Kong from three different continents as study areas. Experiments show that DELAG successfully reconstructed LST in the three cities under clear-sky (RMSE = 0.73-0.96 K) and heavily-cloudy (RMSE = 0.84-1.62 K) situations, superior to existing methods. Additionally, DELAG can quantify uncertainty that enhances LST reconstruction reliability. We further tested the reconstructed LST to estimate near-surface air temperature, achieving results (RMSE = 1.48-2.11 K) comparable to those derived from clear-sky LST (RMSE = 1.63-2.02 K). The results demonstrate the successful reconstruction through DELAG and highlight the broader applications of LST reconstruction for estimating accurate air temperature. Our study thus provides a novel and practical method for Landsat LST reconstruction, particularly suited for complex urban areas within Landsat cross-track areas, taking one step toward addressing complex climate events at high spatiotemporal resolution. Code and data are available at https://skrisliu.com/delag
♻ ☆ SuperiorGAT: Graph Attention Networks for Sparse LiDAR Point Cloud Reconstruction in Autonomous Systems
LiDAR-based perception in autonomous systems is constrained by fixed vertical beam resolution and further compromised by beam dropout resulting from environmental occlusions. This paper introduces SuperiorGAT, a graph attention-based framework designed to reconstruct missing elevation information in sparse LiDAR point clouds. By modeling LiDAR scans as beam-aware graphs and incorporating gated residual fusion with feed-forward refinement, SuperiorGAT enables accurate reconstruction without increasing network depth. To evaluate performance, structured beam dropout is simulated by removing every fourth vertical scanning beam. Extensive experiments across diverse KITTI environments, including Person, Road, Campus, and City sequences, demonstrate that SuperiorGAT consistently achieves lower reconstruction error and improved geometric consistency compared to PointNet-based models and deeper GAT baselines. Qualitative X-Z projections further confirm the model's ability to preserve structural integrity with minimal vertical distortion. These results suggest that architectural refinement offers a computationally efficient method for improving LiDAR resolution without requiring additional sensor hardware.
♻ ☆ ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts ICML 2025
Parameter-efficient fine-tuning (PEFT) techniques such as low-rank adaptation (LoRA) can effectively adapt large pre-trained foundation models to downstream tasks using only a small fraction (0.1%-10%) of the original trainable weights. An under-explored question of PEFT is in extending the pre-training phase without supervised labels; that is, can we adapt a pre-trained foundation model to a new domain via efficient self-supervised pre-training on this domain? In this work, we introduce ExPLoRA, a highly effective technique to improve transfer learning of pre-trained vision transformers (ViTs) under domain shifts. Initializing a ViT with pre-trained weights on large, natural-image datasets such as from DinoV2 or MAE, ExPLoRA continues the unsupervised pre-training objective on a new domain, unfreezing 1-2 pre-trained ViT blocks and tuning all other layers with LoRA. We then fine-tune the resulting model only with LoRA on this new domain for supervised learning. Our experiments demonstrate state-of-the-art results on satellite imagery, even outperforming fully pre-training and fine-tuning ViTs. Using the DinoV2 training objective, we demonstrate up to 8% improvement in linear probing top-1 accuracy on downstream tasks while using <10% of the number of parameters that are used in prior fully-tuned state-of-the-art approaches. Our ablation studies confirm the efficacy of our approach over other baselines such as PEFT. Code is available on the project website: https://samar-khanna.github.io/ExPLoRA/
comment: Published at ICML 2025
♻ ☆ TalkingHeadBench: A Multi-Modal Benchmark & Analysis of Talking-Head DeepFake Detection WACV2026
The rapid advancement of talking-head deepfake generation fueled by advanced generative models has elevated the realism of synthetic videos to a level that poses substantial risks in domains such as media, politics, and finance. However, current benchmarks for deepfake talking-head detection fail to reflect this progress, relying on outdated generators and offering limited insight into model robustness and generalization. We introduce TalkingHeadBench, a comprehensive multi-model multi-generator benchmark and curated dataset designed to evaluate the performance of state-of-the-art detectors on the most advanced generators. Our dataset includes deepfakes synthesized by leading academic and commercial models and features carefully constructed protocols to assess generalization under distribution shifts in identity and generator characteristics. We benchmark a diverse set of existing detection methods, including CNNs, vision transformers, and temporal models, and analyze their robustness and generalization capabilities. In addition, we provide error analysis using Grad-CAM visualizations to expose common failure modes and detector biases. TalkingHeadBench is hosted on https://huggingface.co/datasets/luchaoqi/TalkingHeadBench with open access to all data splits and protocols. Our benchmark aims to accelerate research towards more robust and generalizable detection models in the face of rapidly evolving generative techniques.
comment: WACV2026
♻ ☆ Bringing The Consistency Gap: Explicit Structured Memory for Interleaved Image-Text Generation
Existing Vision Language Models (VLMs) often struggle to preserve logic, entity identity, and artistic style during extended, interleaved image-text interactions. We identify this limitation as "Multimodal Context Drift", which stems from the inherent tendency of implicit neural representations to decay or become entangled over long sequences. To bridge this gap, we propose IUT-Plug, a model-agnostic Neuro-Symbolic Structured State Tracking mechanism. Unlike purely neural approaches that rely on transient attention maps, IUT-Plug introduces the Image Understanding Tree (IUT) as an explicit, persistent memory module. The framework operates by (1) parsing visual scenes into hierarchical symbolic structures (entities, attributes, and relationships); (2) performing incremental state updates to logically lock invariant properties while modifying changing elements; and (3) guiding generation through topological constraints. We evaluate our approach on a novel benchmark comprising 3,000 human-annotated samples. Experimental results demonstrate that IUT-Plug effectively mitigates context drift, achieving significantly higher consistency scores compared to unstructured text-prompting baselines. This confirms that explicit symbolic grounding is essential for maintaining robust long-horizon consistency in multimodal generation.
♻ ☆ Beyond Degradation Redundancy: Contrastive Prompt Learning for All-in-One Image Restoration IEEE
All-in-One Image Restoration (AiOIR), which addresses diverse degradation types with a unified model, presents significant challenges in designing task-aware prompts that effectively guide restoration across multiple degradation scenarios. While adaptive prompt learning enables end-to-end optimization, it often yields overlapping or redundant task representations. Conversely, explicit prompts derived from pretrained classifiers enhance discriminability but discard critical visual information needed for reconstruction. To address these limitations, we introduce Contrastive Prompt Learning (CPL), a framework that aims to improve prompt-task alignment through two complementary components: a Sparse Prompt Module (SPM) that efficiently captures degradation-aware representations while reducing redundancy, and a Contrastive Prompt Regularization (CPR) that explicitly strengthens task boundaries by incorporating negative prompt samples across different degradation types. Unlike previous approaches that focus primarily on degradation classification, CPL directly optimizes the interaction between prompts and the restoration model. Extensive experiments across five benchmarks show that CPL consistently boosts the performance of strong AiOIR baselines across diverse scenarios. Our approach achieves state-of-the-art average performance on these benchmarks, providing a general and robust solution for AiOIR. The code is available at https://github.com/Aitical/CPLIR
comment: Accepted by IEEE TPAMI
♻ ☆ RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
♻ ☆ One Graph to Track Them All: Dynamic GNNs for Single- and Multi-View Tracking
This work presents a unified, fully differentiable model for multi-people tracking that learns to associate detections into trajectories without relying on pre-computed tracklets. The model builds a dynamic spatiotemporal graph that aggregates spatial, contextual, and temporal information, enabling seamless information propagation across entire sequences. To improve occlusion handling, the graph can also encode scene-specific information. We also introduce a new large-scale dataset with 25 partially overlapping views, detailed scene reconstructions, and extensive occlusions. Experiments show the model achieves state-of-the-art performance on public benchmarks and the new dataset, with flexibility across diverse conditions. Both the dataset and approach will be publicly released to advance research in multi-people tracking.
♻ ☆ CVBench: Benchmarking Cross-Video Synergies for Complex Multimodal Reasoning
While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their capability for spatiotemporal pattern reasoning across multiple videos remains a critical gap in pattern recognition research. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first diagnostic benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to analyze and integrate spatiotemporal patterns from dynamic visual streams. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 63.5% accuracy on causal reasoning tasks, compared to the 91.3% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLMs architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for advancing pattern recognition methodologies in multi-video scenarios, providing architectural insights for next-generation models. The data and evaluation code are available at: https://github.com/Hokhim2/CVBench.
♻ ☆ Text-to-Image Models and Their Representation of People from Different Nationalities Engaging in Activities
This paper investigates how popular text-to-image (T2I) models, DALL-E 3 and Gemini 3 Pro Preview, depict people from 206 nationalities when prompted to generate images of individuals engaging in common everyday activities. Five scenarios were developed, and 2,060 images were generated using input prompts that specified nationalities across five activities. When aggregating across activities and models, results showed that 28.4% of the images depicted individuals wearing traditional attire, including attire that is impractical for the specified activities in several cases. This pattern was statistically significantly associated with regions, with the Middle East & North Africa and Sub-Saharan Africa disproportionately affected, and was also associated with World Bank income groups. Similar region- and income-linked patterns were observed for images labeled as depicting impractical attire in two athletics-related activities. To assess image-text alignment, CLIP, ALIGN, and GPT-4.1 mini were used to score 9,270 image-prompt pairs. Images labeled as featuring traditional attire received statistically significantly higher alignment scores when prompts included country names, and this pattern weakened or reversed when country names were removed. Revised prompt analysis showed that one model frequently inserted the word "traditional" (50.3% for traditional-labeled images vs. 16.6% otherwise). These results indicate that these representational patterns can be shaped by several components of the pipeline, including image generator, evaluation models, and prompt revision.
♻ ☆ Matching Semantically Similar Non-Identical Objects WACV 2026
Not identical but similar objects are ubiquitous in our world, ranging from four-legged animals such as dogs and cats to cars of different models and flowers of various colors. This study addresses a novel task of matching such non-identical objects at the pixel level. We propose a weighting scheme of descriptors, Semantic Enhancement Weighting (SEW), that incorporates semantic information from object detectors into existing sparse feature matching methods, extending their targets from identical objects captured from different perspectives to semantically similar objects. The experiments show successful matching between non-identical objects in various cases, including in-class design variations, class discrepancy, and domain shifts (e.g., photo vs. drawing and image corruptions). The code is available at https://github.com/Circ-Leaf/NIOM .
comment: WACV 2026
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/ ; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Codebase: https://github.com/OpenSenseNova/SenseNova-SI ; Models: https://huggingface.co/collections/sensenova/sensenova-si
♻ ☆ GaussianImage++: Boosted Image Representation and Compression with 2D Gaussian Splatting AAAI 2026
Implicit neural representations (INRs) have achieved remarkable success in image representation and compression, but they require substantial training time and memory. Meanwhile, recent 2D Gaussian Splatting (GS) methods (\textit{e.g.}, GaussianImage) offer promising alternatives through efficient primitive-based rendering. However, these methods require excessive Gaussian primitives to maintain high visual fidelity. To exploit the potential of GS-based approaches, we present GaussianImage++, which utilizes limited Gaussian primitives to achieve impressive representation and compression performance. Firstly, we introduce a distortion-driven densification mechanism. It progressively allocates Gaussian primitives according to signal intensity. Secondly, we employ context-aware Gaussian filters for each primitive, which assist in the densification to optimize Gaussian primitives based on varying image content. Thirdly, we integrate attribute-separated learnable scalar quantizers and quantization-aware training, enabling efficient compression of primitive attributes. Experimental results demonstrate the effectiveness of our method. In particular, GaussianImage++ outperforms GaussianImage and INRs-based COIN in representation and compression performance while maintaining real-time decoding and low memory usage.
comment: Accepted to AAAI 2026. Code URL:https://github.com/Sweethyh/GaussianImage_plus.git
♻ ☆ YOLO-Master: MOE-Accelerated with Specialized Transformers for Enhanced Real-time Detection
Existing Real-Time Object Detection (RTOD) methods commonly adopt YOLO-like architectures for their favorable trade-off between accuracy and speed. However, these models rely on static dense computation that applies uniform processing to all inputs, misallocating representational capacity and computational resources such as over-allocating on trivial scenes while under-serving complex ones. This mismatch results in both computational redundancy and suboptimal detection performance. To overcome this limitation, we propose YOLO-Master, a novel YOLO-like framework that introduces instance-conditional adaptive computation for RTOD. This is achieved through a Efficient Sparse Mixture-of-Experts (ES-MoE) block that dynamically allocates computational resources to each input according to its scene complexity. At its core, a lightweight dynamic routing network guides expert specialization during training through a diversity enhancing objective, encouraging complementary expertise among experts. Additionally, the routing network adaptively learns to activate only the most relevant experts, thereby improving detection performance while minimizing computational overhead during inference. Comprehensive experiments on five large-scale benchmarks demonstrate the superiority of YOLO-Master. On MS COCO, our model achieves 42.4% AP with 1.62ms latency, outperforming YOLOv13-N by +0.8% mAP and 17.8% faster inference. Notably, the gains are most pronounced on challenging dense scenes, while the model preserves efficiency on typical inputs and maintains real-time inference speed. Code will be available.
♻ ☆ VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree NeurIPS 2025
Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree.
comment: NeurIPS 2025 poster
♻ ☆ DiRe: Diversity-promoting Regularization for Dataset Condensation WACV 2026
In Dataset Condensation, the goal is to synthesize a small dataset that replicates the training utility of a large original dataset. Existing condensation methods synthesize datasets with significant redundancy, so there is a dire need to reduce redundancy and improve the diversity of the synthesized datasets. To tackle this, we propose an intuitive Diversity Regularizer (DiRe) composed of cosine similarity and Euclidean distance, which can be applied off-the-shelf to various state-of-the-art condensation methods. Through extensive experiments, we demonstrate that the addition of our regularizer improves state-of-the-art condensation methods on various benchmark datasets from CIFAR-10 to ImageNet-1K with respect to generalization and diversity metrics.
comment: Accepted at WACV 2026. v2: Optimized figure assets to reduce PDF size, no content changes
♻ ☆ GoMatching++: Parameter- and Data-Efficient Arbitrary-Shaped Video Text Spotting and Benchmarking
Video text spotting (VTS) extends image text spotting (ITS) by adding text tracking, significantly increasing task complexity. Despite progress in VTS, existing methods still fall short of the performance seen in ITS. This paper identifies a key limitation in current video text spotters: limited recognition capability, even after extensive end-to-end training. To address this, we propose GoMatching++, a parameter- and data-efficient method that transforms an off-the-shelf image text spotter into a video specialist. The core idea lies in freezing the image text spotter and introducing a lightweight, trainable tracker, which can be optimized efficiently with minimal training data. Our approach includes two key components: (1) a rescoring mechanism to bridge the domain gap between image and video data, and (2) the LST-Matcher, which enhances the frozen image text spotter's ability to handle video text. We explore various architectures for LST-Matcher to ensure efficiency in both parameters and training data. As a result, GoMatching++ sets new performance records on challenging benchmarks such as ICDAR15-video, DSText, and BOVText, while significantly reducing training costs. To address the lack of curved text datasets in VTS, we introduce ArTVideo, a new benchmark featuring over 30% curved text with detailed annotations. We also provide a comprehensive statistical analysis and experimental results for ArTVideo. We believe that GoMatching++ and the ArTVideo benchmark will drive future advancements in video text spotting. The source code, models and dataset are publicly available at https://github.com/Hxyz-123/GoMatching.
♻ ☆ How Robot Dogs See the Unseeable: Improving Visual Interpretability via Peering for Exploratory Robots
In vegetated environments, such as forests, exploratory robots play a vital role in navigating complex, cluttered environments where human access is limited and traditional equipment struggles. Visual occlusion from obstacles, such as foliage, can severely obstruct a robot's sensors, impairing scene understanding. We show that "peering", a characteristic side-to-side movement used by insects to overcome their visual limitations, can also allow robots to markedly improve visual reasoning under partial occlusion. This is accomplished by applying core signal processing principles, specifically optical synthetic aperture sensing, together with the vision reasoning capabilities of modern large multimodal models. Peering enables real-time, high-resolution, and wavelength-independent perception, which is crucial for vision-based scene understanding across a wide range of applications. The approach is low-cost and immediately deployable on any camera-equipped robot. We investigated different peering motions and occlusion masking strategies, demonstrating that, unlike peering, state-of-the-art multi-view 3D vision techniques fail in these conditions due to their high susceptibility to occlusion. Our experiments were carried out on an industrial-grade quadrupedal robot. However, the ability to peer is not limited to such platforms, but potentially also applicable to bipedal, hexapod, wheeled, or crawling platforms. Robots that can effectively see through partial occlusion will gain superior perception abilities - including enhanced scene understanding, situational awareness, camouflage breaking, and advanced navigation in complex environments.
♻ ☆ Learning from Random Subspace Exploration: Generalized Test-Time Augmentation with Self-supervised Distillation
We introduce Generalized Test-Time Augmentation (GTTA), a highly effective method for improving the performance of a trained model, which unlike other existing Test-Time Augmentation approaches from the literature is general enough to be used off-the-shelf for many vision and non-vision tasks, such as classification, regression, image segmentation and object detection. By applying a new general data transformation, that randomly perturbs multiple times the PCA subspace projection of a test input, GTTA creates valid augmented samples from the data distribution with high diversity, properties we theoretically show that are essential for a Test-Time Augmentation method to be effective. Different from other existing methods, we also propose a final self-supervised learning stage in which the ensemble output, acting as an unsupervised teacher, is used to train the initial single student model, thus reducing significantly the test time computational cost. Our comparisons to strong TTA approaches and SoTA models on various vision and non-vision well-known datasets and tasks, such as image classification and segmentation, pneumonia detection, speech recognition and house price prediction, validate the generality of the proposed GTTA. Furthermore, we also prove its effectiveness on the more specific real-world task of salmon segmentation and detection in low-visibility underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature.
♻ ☆ Infinity-RoPE: Action-Controllable Infinite Video Generation Emerges From Autoregressive Self-Rollout
Current autoregressive video diffusion models are constrained by three core bottlenecks: (i) the finite temporal horizon imposed by the base model's 3D Rotary Positional Embedding (3D-RoPE), (ii) slow prompt responsiveness in maintaining fine-grained action control during long-form rollouts, and (iii) the inability to realize discontinuous cinematic transitions within a single generation stream. We introduce $\infty$-RoPE, a unified inference-time framework that addresses all three limitations through three interconnected components: Block-Relativistic RoPE, KV Flush, and RoPE Cut. Block-Relativistic RoPE reformulates temporal encoding as a moving local reference frame, where each newly generated latent block is rotated relative to the base model's maximum frame horizon while earlier blocks are rotated backward to preserve relative temporal geometry. This relativistic formulation eliminates fixed temporal positions, enabling continuous video generation far beyond the base positional limits. To obtain fine-grained action control without re-encoding, KV Flush renews the KV cache by retaining only two latent frames, the global sink and the last generated latent frame, thereby ensuring immediate prompt responsiveness. Finally, RoPE Cut introduces controlled discontinuities in temporal RoPE coordinates, enabling multi-cut scene transitions within a single continuous rollout. Together, these components establish $\infty$-RoPE as a training-free foundation for infinite-horizon, controllable, and cinematic video diffusion. Comprehensive experiments show that $\infty$-RoPE consistently surpasses previous autoregressive models in overall VBench scores.
comment: Project Page: https://infinity-rope.github.io/
♻ ☆ MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: 21 pages, 13 figures
♻ ☆ ForensicFlow: A Tri-Modal Adaptive Network for Robust Deepfake Detection
Modern deepfakes evade detection by leaving subtle, domain-speci c artifacts that single branch networks miss. ForensicFlow addresses this by fusing evidence across three forensic dimensions: global visual inconsistencies (via ConvNeXt-tiny), ne-grained texture anomalies (via Swin Transformer-tiny), and spectral noise patterns (via CNN with channel attention). Our attention-based temporal pooling dynamically prioritizes high-evidence frames, while adaptive fusion weights each branch according to forgery type. Trained on CelebDF(v2) with Focal Loss, the model achieves AUC 0.9752, F1 0.9408, and accuracy 0.9208 out performing single-stream detectors. Ablation studies con rm branch synergy, and Grad-CAM visualizations validate focus on genuine manipulation regions (e.g., facial boundaries). This multi-domain fusion strategy establishes robustness against increasingly sophisticated forgeries.
comment: 12 pages, 4 figures, 2 tables. Preprint. First submitted on November 18, 2025; revised December 30, 2025
♻ ☆ Bidirectional Sparse Attention for Faster Video Diffusion Training
Video diffusion Transformer (DiT) models excel in generative quality but hit major computational bottlenecks when producing high-resolution, long-duration videos. The quadratic complexity of full attention leads to prohibitively high training and inference costs. Full attention inefficiency stems from two key challenges: excessive computation due to the inherent sparsity of Queries and Key-Value pairs, and redundant computation as fixed sparse patterns fail to leverage DiT's dynamic attention. To overcome this limitation, we propose a Bidirectional Sparse Attention (BSA) framework for faster video DiT training, the first to dynamically sparsify both Queries and Key-Value pairs within 3D full attention, thereby substantially improving training and inference efficiency. BSA addresses these issues through two key components. Query sparsity is optimized by selecting the most informative query tokens via semantic similarity and with a dynamic spatial-time training strategy, while KV sparsity is achieved by computing a statistical dynamic threshold to retain only the most salient KV blocks for computation. Extensive experiments demonstrate that BSA significantly accelerates DiT training across long sequences, reducing FLOPs by up to 20x and achieving 17.79x faster attention training, while preserving or even surpassing the generative quality of full attention.
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ BadBlocks: Lightweight and Stealthy Backdoor Threat in Text-to-Image Diffusion Models
Diffusion models have recently achieved remarkable success in image generation, yet growing evidence shows their vulnerability to backdoor attacks, where adversaries implant covert triggers to manipulate outputs. While existing defenses can detect many such attacks via visual inspection and neural network-based analysis, we identify a more lightweight and stealthy threat, termed BadBlocks. BadBlocks selectively contaminates specific blocks within the UNet architecture while preserving the normal behavior of the remaining components. Compared with prior methods, it requires only about 30% of the computation and 20% of the GPU time, yet achieves high attack success rates with minimal perceptual degradation. Extensive experiments demonstrate that BadBlocks can effectively evade state-of-the-art defenses, particularly attention-based detection frameworks. Ablation studies further reveal that effective backdoor injection does not require fine-tuning the entire network and highlight the critical role of certain layers in backdoor mapping. Overall, BadBlocks substantially lowers the barrier for backdooring large-scale diffusion models, even on consumer-grade GPUs.
♻ ☆ INST-IT: Boosting Instance Understanding via Explicit Visual Prompt Instruction Tuning NeurIPS 2025
Large Multimodal Models (LMMs) have made significant breakthroughs with the advancement of instruction tuning. However, while existing models can understand images and videos at a holistic level, they still struggle with instance-level understanding that requires a more fine-grained comprehension and alignment. Instance-level understanding is crucial for LMMs, as it focuses on the specific elements that we are most interested in. Excitingly, existing works find that the SOTA LMMs exhibit strong instance understanding capabilities when provided with explicit visual cues. Motivated by this, we proposed Inst-IT, a solution to enhance LMMs in Instance understanding via explicit visual prompt Instruction Tuning for instance guidance. Inst-IT consists of a benchmark to diagnose multimodal instance-level understanding, a large-scale instruction-tuning dataset, and a continuous instruction-tuning training paradigm to effectively enhance spatial-temporal instance understanding capabilities of existing LMMs. Experimental results show that, enhanced by Inst-IT, our models not only achieve outstanding performance on Inst-IT Bench and other instance understanding benchmarks, but also demonstrate significant improvements across various generic image and video understanding benchmarks. This highlights that our method not only boosts instance-level understanding but also strengthens the overall capabilities of generic image and video comprehension.
comment: Accepted by NeurIPS 2025
♻ ☆ Tracking by Predicting 3-D Gaussians Over Time
We propose Video Gaussian Masked Autoencoders (Video-GMAE), a self-supervised approach for representation learning that encodes a sequence of images into a set of Gaussian splats moving over time. Representing a video as a set of Gaussians enforces a reasonable inductive bias: that 2-D videos are often consistent projections of a dynamic 3-D scene. We find that tracking emerges when pretraining a network with this architecture. Mapping the trajectory of the learnt Gaussians onto the image plane gives zero-shot tracking performance comparable to state-of-the-art. With small-scale finetuning, our models achieve 34.6% improvement on Kinetics, and 13.1% on Kubric datasets, surpassing existing self-supervised video approaches. The project page and code are publicly available at https://videogmae.org/ and https://github.com/tekotan/video-gmae.
♻ ☆ EmotiCrafter: Text-to-Emotional-Image Generation based on Valence-Arousal Model
Recent research shows that emotions can enhance users' cognition and influence information communication. While research on visual emotion analysis is extensive, limited work has been done on helping users generate emotionally rich image content. Existing work on emotional image generation relies on discrete emotion categories, making it challenging to capture complex and subtle emotional nuances accurately. Additionally, these methods struggle to control the specific content of generated images based on text prompts. In this work, we introduce the new task of continuous emotional image content generation (C-EICG) and present EmotiCrafter, an emotional image generation model that generates images based on text prompts and Valence-Arousal values. Specifically, we propose a novel emotion-embedding mapping network that embeds Valence-Arousal values into textual features, enabling the capture of specific emotions in alignment with intended input prompts. Additionally, we introduce a loss function to enhance emotion expression. The experimental results show that our method effectively generates images representing specific emotions with the desired content and outperforms existing techniques.
comment: 11 pages, 10 figures
♻ ☆ Aligned Anchor Groups Guided Line Segment Detector
This paper introduces a novel line segment detector, the Aligned Anchor Groups guided Line Segment Detector (AAGLSD), designed to detect line segments from images with high precision and completeness. The algorithm employs a hierarchical approach to extract candidate pixels with different saliency levels, including regular anchors and aligned anchor groups. AAGLSD initiates from these aligned anchor groups, sequentially linking anchors and updating the currently predicted line segment simultaneously. The final predictions are derived through straightforward validation and merging of adjacent line segments, avoiding complex refinement strategies. AAGLSD is evaluated on various datasets and quantitative experiments demonstrate that the proposed method can effectively extract complete line segments from input images compared to other advanced line segment detectors. The implementation is available at https://github.com/zyl0609/AAGLSD.
comment: Accepted at the 8th Chinese Conference on Pattern Recognition and Computer Vision (PRCV 2025). 14 pages, supplementary material attached
♻ ☆ Adapting In-Domain Few-Shot Segmentation to New Domains without Source Domain Retraining ICCV 2025
Cross-domain few-shot segmentation (CD-FSS) aims to segment objects of novel classes in new domains, which is often challenging due to the diverse characteristics of target domains and the limited availability of support data. Most CD-FSS methods redesign and retrain in-domain FSS models using abundant base data from the source domain, which are effective but costly to train. To address these issues, we propose adapting informative model structures of the well-trained FSS model for target domains by learning domain characteristics from few-shot labeled support samples during inference, thereby eliminating the need for source domain retraining. Specifically, we first adaptively identify domain-specific model structures by measuring parameter importance using a novel structure Fisher score in a data-dependent manner. Then, we progressively train the selected informative model structures with hierarchically constructed training samples, progressing from fewer to more support shots. The resulting Informative Structure Adaptation (ISA) method effectively addresses domain shifts and equips existing well-trained in-domain FSS models with flexible adaptation capabilities for new domains, eliminating the need to redesign or retrain CD-FSS models on base data. Extensive experiments validate the effectiveness of our method, demonstrating superior performance across multiple CD-FSS benchmarks. Codes are at https://github.com/fanq15/ISA.
comment: Accepted by ICCV 2025
♻ ☆ RoboMirror: Understand Before You Imitate for Video to Humanoid Locomotion
Humans learn locomotion through visual observation, interpreting visual content first before imitating actions. However, state-of-the-art humanoid locomotion systems rely on either curated motion capture trajectories or sparse text commands, leaving a critical gap between visual understanding and control. Text-to-motion methods suffer from semantic sparsity and staged pipeline errors, while video-based approaches only perform mechanical pose mimicry without genuine visual understanding. We propose RoboMirror, the first retargeting-free video-to-locomotion framework embodying "understand before you imitate". Leveraging VLMs, it distills raw egocentric/third-person videos into visual motion intents, which directly condition a diffusion-based policy to generate physically plausible, semantically aligned locomotion without explicit pose reconstruction or retargeting. Extensive experiments validate the effectiveness of RoboMirror, it enables telepresence via egocentric videos, drastically reduces third-person control latency by 80%, and achieves a 3.7% higher task success rate than baselines. By reframing humanoid control around video understanding, we bridge the visual understanding and action gap.
♻ ☆ Towards Comprehensive Interactive Change Understanding in Remote Sensing: A Large-scale Dataset and Dual-granularity Enhanced VLM
Remote sensing change understanding (RSCU) is essential for analyzing remote sensing images and understanding how human activities affect the environment. However, existing datasets lack deep understanding and interactions in the diverse change captioning, counting, and localization tasks. To tackle these gaps, we construct ChangeIMTI, a new large-scale interactive multi-task instruction dataset that encompasses four complementary tasks including change captioning, binary change classification, change counting, and change localization. Building upon this new dataset, we further design a novel vision-guided vision-language model (ChangeVG) with dual-granularity awareness for bi-temporal remote sensing images (i.e., two remote sensing images of the same area at different times). The introduced vision-guided module is a dual-branch architecture that synergistically combines fine-grained spatial feature extraction with high-level semantic summarization. These enriched representations further serve as the auxiliary prompts to guide large vision-language models (VLMs) (e.g., Qwen2.5-VL-7B) during instruction tuning, thereby facilitating the hierarchical cross-modal learning. We extensively conduct experiments across four tasks to demonstrate the superiority of our approach. Remarkably, on the change captioning task, our method outperforms the strongest method Semantic-CC by 1.39 points on the comprehensive S*m metric, which integrates the semantic similarity and descriptive accuracy to provide an overall evaluation of change caption. Moreover, we also perform a series of ablation studies to examine the critical components of our method. The source code and associated data for this work are publicly available at Github.
comment: Junxiao Xue, Quan Deng, and Xuecheng Wu deserve equal contributions
♻ ☆ Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
♻ ☆ SyncAnyone: Implicit Disentanglement via Progressive Self-Correction for Lip-Syncing in the wild
High-quality AI-powered video dubbing demands precise audio-lip synchronization, high-fidelity visual generation, and faithful preservation of identity and background. Most existing methods rely on a mask-based training strategy, where the mouth region is masked in talking-head videos, and the model learns to synthesize lip movements from corrupted inputs and target audios. While this facilitates lip-sync accuracy, it disrupts spatiotemporal context, impairing performance on dynamic facial motions and causing instability in facial structure and background consistency. To overcome this limitation, we propose SyncAnyone, a novel two-stage learning framework that achieves accurate motion modeling and high visual fidelity simultaneously. In Stage 1, we train a diffusion-based video transformer for masked mouth inpainting, leveraging its strong spatiotemporal modeling to generate accurate, audio-driven lip movements. However, due to input corruption, minor artifacts may arise in the surrounding facial regions and the background. In Stage 2, we develop a mask-free tuning pipeline to address mask-induced artifacts. Specifically, on the basis of the Stage 1 model, we develop a data generation pipeline that creates pseudo-paired training samples by synthesizing lip-synced videos from the source video and random sampled audio. We further tune the stage 2 model on this synthetic data, achieving precise lip editing and better background consistency. Extensive experiments show that our method achieves state-of-the-art results in visual quality, temporal coherence, and identity preservation under in-the wild lip-syncing scenarios.
comment: Project page: https://humanaigc.github.io/sync_anyone_demo_page/
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ SlideChain: Semantic Provenance for Lecture Understanding via Blockchain Registration
Modern vision--language models (VLMs) are increasingly used to interpret and generate educational content, yet their semantic outputs remain challenging to verify, reproduce, and audit over time. Inconsistencies across model families, inference settings, and computing environments undermine the reliability of AI-generated instructional material, particularly in high-stakes and quantitative STEM domains. This work introduces SlideChain, a blockchain-backed provenance framework designed to provide verifiable integrity for multimodal semantic extraction at scale. Using the SlideChain Slides Dataset-a curated corpus of 1,117 medical imaging lecture slides from a university course-we extract concepts and relational triples from four state-of-the-art VLMs and construct structured provenance records for every slide. SlideChain anchors cryptographic hashes of these records on a local EVM (Ethereum Virtual Machine)-compatible blockchain, providing tamper-evident auditability and persistent semantic baselines. Through the first systematic analysis of semantic disagreement, cross-model similarity, and lecture-level variability in multimodal educational content, we reveal pronounced cross-model discrepancies, including low concept overlap and near-zero agreement in relational triples on many slides. We further evaluate gas usage, throughput, and scalability under simulated deployment conditions, and demonstrate perfect tamper detection along with deterministic reproducibility across independent extraction runs. Together, these results show that SlideChain provides a practical and scalable step toward trustworthy, verifiable multimodal educational pipelines, supporting long-term auditability, reproducibility, and integrity for AI-assisted instructional systems.
♻ ☆ Illuminating Darkness: Learning to Enhance Low-light Images In-the-Wild
Single-shot low-light image enhancement (SLLIE) remains challenging due to the limited availability of diverse, real-world paired datasets. To bridge this gap, we introduce the Low-Light Smartphone Dataset (LSD), a large-scale, high-resolution (4K+) dataset collected in the wild across a wide range of challenging lighting conditions (0.1 to 200 lux). LSD contains 6,425 precisely aligned low and normal-light image pairs, selected from over 8,000 dynamic indoor and outdoor scenes through multi-frame acquisition and expert evaluation. To evaluate generalization and aesthetic quality, we collect 2,117 unpaired low-light images from previously unseen devices. To fully exploit LSD, we propose TFFormer, a hybrid model that encodes luminance and chrominance (LC) separately to reduce color-structure entanglement. We further propose a cross-attention-driven joint decoder for context-aware fusion of LC representations, along with LC refinement and LC-guided supervision to significantly enhance perceptual fidelity and structural consistency. TFFormer achieves state-of-the-art results on LSD (+2.45 dB PSNR) and substantially improves downstream vision tasks, such as low-light object detection (+6.80 mAP on ExDark).
♻ ☆ Benchmark of Segmentation Techniques for Pelvic Fracture in CT and X-ray: Summary of the PENGWIN 2024 Challenge
The segmentation of pelvic fracture fragments in CT and X-ray images is crucial for trauma diagnosis, surgical planning, and intraoperative guidance. However, accurately and efficiently delineating the bone fragments remains a significant challenge due to complex anatomy and imaging limitations. The PENGWIN challenge, organized as a MICCAI 2024 satellite event, aimed to advance automated fracture segmentation by benchmarking state-of-the-art algorithms on these complex tasks. A diverse dataset of 150 CT scans was collected from multiple clinical centers, and a large set of simulated X-ray images was generated using the DeepDRR method. Final submissions from 16 teams worldwide were evaluated under a rigorous multi-metric testing scheme. The top-performing CT algorithm achieved an average fragment-wise intersection over union (IoU) of 0.930, demonstrating satisfactory accuracy. However, in the X-ray task, the best algorithm achieved an IoU of 0.774, which is promising but not yet sufficient for intra-operative decision-making, reflecting the inherent challenges of fragment overlap in projection imaging. Beyond the quantitative evaluation, the challenge revealed methodological diversity in algorithm design. Variations in instance representation, such as primary-secondary classification versus boundary-core separation, led to differing segmentation strategies. Despite promising results, the challenge also exposed inherent uncertainties in fragment definition, particularly in cases of incomplete fractures. These findings suggest that interactive segmentation approaches, integrating human decision-making with task-relevant information, may be essential for improving model reliability and clinical applicability.
comment: PENGWIN 2024 Challenge Report
♻ ☆ Geometric Disentanglement of Text Embeddings for Subject-Consistent Text-to-Image Generation using A Single Prompt
Text-to-image diffusion models excel at generating high-quality images from natural language descriptions but often fail to preserve subject consistency across multiple outputs, limiting their use in visual storytelling. Existing approaches rely on model fine-tuning or image conditioning, which are computationally expensive and require per-subject optimization. 1Prompt1Story, a training-free approach, concatenates all scene descriptions into a single prompt and rescales token embeddings, but it suffers from semantic leakage, where embeddings across frames become entangled, causing text misalignment. In this paper, we propose a simple yet effective training-free approach that addresses semantic entanglement from a geometric perspective by refining text embeddings to suppress unwanted semantics. Extensive experiments prove that our approach significantly improves both subject consistency and text alignment over existing baselines.
♻ ☆ FDP: A Frequency-Decomposition Preprocessing Pipeline for Unsupervised Anomaly Detection in Brain MRI AAAI 2026
Due to the diversity of brain anatomy and the scarcity of annotated data, supervised anomaly detection for brain MRI remains challenging, driving the development of unsupervised anomaly detection (UAD) approaches. Current UAD methods typically utilize artificially generated noise perturbations on healthy MRIs to train generative models for normal anatomy reconstruction, enabling anomaly detection via residual maps. However, such simulated anomalies lack the biophysical fidelity and morphological complexity characteristic of true clinical lesions. To advance UAD in brain MRI, we conduct the first systematic frequency-domain analysis of pathological signatures, revealing two key properties: (1) anomalies exhibit unique frequency patterns distinguishable from normal anatomy, and (2) low-frequency signals maintain consistent representations across healthy scans. These insights motivate our Frequency-Decomposition Preprocessing (FDP) framework, the first UAD method to leverage frequency-domain reconstruction for simultaneous pathology suppression and anatomical preservation. FDP can integrate seamlessly with existing anomaly simulation techniques, consistently enhancing detection performance across diverse architectures while maintaining diagnostic fidelity. Experimental results demonstrate that FDP consistently improves anomaly detection performance when integrated with existing methods. Notably, FDP achieves a 17.63% increase in DICE score with LDM while maintaining robust improvements across multiple baselines. The code is available at https://github.com/ls1rius/MRI_FDP.
comment: Accepted by AAAI 2026
Artificial Intelligence 120
☆ Evaluating the Reasoning Abilities of LLMs on Underrepresented Mathematics Competition Problems
Understanding the limitations of Large Language Models, or LLMs, in mathematical reasoning has been the focus of several recent studies. However, the majority of these studies use the same datasets for benchmarking, which limits the generalizability of their findings and may not fully capture the diverse challenges present in mathematical tasks. The purpose of the present study is to analyze the performance of LLMs on underrepresented mathematics competition problems. We prompted three leading LLMs, namely GPT-4o-mini, Gemini-2.0-Flash, and DeepSeek-V3, with the Missouri Collegiate Mathematics Competition problems in the areas of Calculus, Analytic Geometry, and Discrete Mathematics. The LLMs responses were then compared to the known correct solutions in order to determine the accuracy of the LLM for each problem domain. We also analyzed the LLMs reasoning to explore patterns in errors across problem types and models. DeepSeek-V3 has the best performance in all three categories of Calculus, Analytic Geometry, and Discrete Mathematics, both in reasoning and correct final answers. All three LLMs exhibited notably weak performance in Geometry. The majority of errors made by DeepSeek-V3 were attributed to computational and logical mistakes, whereas GPT-4o-mini frequently exhibited logical and approach-related errors. Gemini, on the other hand, tended to struggle with incomplete reasoning and drawing rushed conclusions. In conclusion, evaluating LLMs on underrepresented mathematics competition datasets can provide deeper insights into their distinct error patterns and highlight ongoing challenges in structured reasoning, particularly within the domain of Geometry.
comment: 7 pages, submitted to ACM Transactions on Intelligent Systems and Technology
☆ Thinking on Maps: How Foundation Model Agents Explore, Remember, and Reason Map Environments
Map environments provide a fundamental medium for representing spatial structure. Understanding how foundation model (FM) agents understand and act in such environments is therefore critical for enabling reliable map-based reasoning and applications. However, most existing evaluations of spatial ability in FMs rely on static map inputs or text-based queries, overlooking the interactive and experience-driven nature of spatial understanding.In this paper, we propose an interactive evaluation framework to analyze how FM agents explore, remember, and reason in symbolic map environments. Agents incrementally explore partially observable grid-based maps consisting of roads, intersections, and points of interest (POIs), receiving only local observations at each step. Spatial understanding is then evaluated using six kinds of spatial tasks. By systematically varying exploration strategies, memory representations, and reasoning schemes across multiple foundation models, we reveal distinct functional roles of these components. Exploration primarily affects experience acquisition but has a limited impact on final reasoning accuracy. In contrast, memory representation plays a central role in consolidating spatial experience, with structured memories particularly sequential and graph-based representations, substantially improving performance on structure-intensive tasks such as path planning. Reasoning schemes further shape how stored spatial knowledge is used, with advanced prompts supporting more effective multi-step inference. We further observe that spatial reasoning performance saturates across model versions and scales beyond a certain capability threshold, indicating that improvements in map-based spatial understanding require mechanisms tailored to spatial representation and reasoning rather than scaling alone.
comment: 43 pages, 8 figures
☆ Can Small Training Runs Reliably Guide Data Curation? Rethinking Proxy-Model Practice
Data teams at frontier AI companies routinely train small proxy models to make critical decisions about pretraining data recipes for full-scale training runs. However, the community has a limited understanding of whether and when conclusions drawn from small-scale experiments reliably transfer to full-scale model training. In this work, we uncover a subtle yet critical issue in the standard experimental protocol for data recipe assessment: the use of identical small-scale model training configurations across all data recipes in the name of "fair" comparison. We show that the experiment conclusions about data quality can flip with even minor adjustments to training hyperparameters, as the optimal training configuration is inherently data-dependent. Moreover, this fixed-configuration protocol diverges from full-scale model development pipelines, where hyperparameter optimization is a standard step. Consequently, we posit that the objective of data recipe assessment should be to identify the recipe that yields the best performance under data-specific tuning. To mitigate the high cost of hyperparameter tuning, we introduce a simple patch to the evaluation protocol: using reduced learning rates for proxy model training. We show that this approach yields relative performance that strongly correlates with that of fully tuned large-scale LLM pretraining runs. Theoretically, we prove that for random-feature models, this approach preserves the ordering of datasets according to their optimal achievable loss. Empirically, we validate this approach across 23 data recipes covering four critical dimensions of data curation, demonstrating dramatic improvements in the reliability of small-scale experiments.
What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
☆ Automated Classification of First-Trimester Fetal Heart Views Using Ultrasound-Specific Self-Supervised Learning
Congenital heart disease remains the most common congenital anomaly and a leading cause of neonatal morbidity and mortality. Although first-trimester fetal echocardiography offers an opportunity for earlier detection, automated analysis at this stage is challenging due to small cardiac structures, low signal-to-noise ratio, and substantial inter-operator variability. In this work, we evaluate a self-supervised ultrasound foundation model, USF-MAE, for first-trimester fetal heart view classification. USF-MAE is pretrained using masked autoencoding modelling on more than 370,000 unlabelled ultrasound images spanning over 40 anatomical regions and is subsequently fine-tuned for downstream classification. As a proof of concept, the pretrained Vision Transformer encoder was fine-tuned on an open-source dataset of 6,720 first-trimester fetal echocardiography images to classify five categories: aorta, atrioventricular flows, V sign, X sign, and Other. Model performance was benchmarked against supervised convolutional neural network baselines (ResNet-18 and ResNet-50) and a Vision Transformer (ViT-B/16) model pretrained on natural images (ImageNet-1k). All models were trained and evaluated using identical preprocessing, data splits, and optimization protocols. On an independent test set, USF-MAE achieved the highest performance across all evaluation metrics, with 90.57% accuracy, 91.15% precision, 90.57% recall, and 90.71% F1-score. This represents an improvement of +2.03% in accuracy and +1.98% in F1-score compared with the strongest baseline, ResNet-18. The proposed approach demonstrated robust performance without reliance on aggressive image preprocessing or region-of-interest cropping and showed improved discrimination of non-diagnostic frames.
comment: 7 pages, 4 figures
☆ HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors
Causal discovery from observational data remains fundamentally limited by identifiability constraints. Recent work has explored leveraging Large Language Models (LLMs) as sources of prior causal knowledge, but existing approaches rely on heuristic integration that lacks theoretical grounding. We introduce HOLOGRAPH, a framework that formalizes LLM-guided causal discovery through sheaf theory--representing local causal beliefs as sections of a presheaf over variable subsets. Our key insight is that coherent global causal structure corresponds to the existence of a global section, while topological obstructions manifest as non-vanishing sheaf cohomology. We propose the Algebraic Latent Projection to handle hidden confounders and Natural Gradient Descent on the belief manifold for principled optimization. Experiments on synthetic and real-world benchmarks demonstrate that HOLOGRAPH provides rigorous mathematical foundations while achieving competitive performance on causal discovery tasks with 50-100 variables. Our sheaf-theoretic analysis reveals that while Identity, Transitivity, and Gluing axioms are satisfied to numerical precision (<10^{-6}), the Locality axiom fails for larger graphs, suggesting fundamental non-local coupling in latent variable projections. Code is available at [https://github.com/hyunjun1121/holograph](https://github.com/hyunjun1121/holograph).
☆ F2IDiff: Real-world Image Super-resolution using Feature to Image Diffusion Foundation Model
With the advent of Generative AI, Single Image Super-Resolution (SISR) quality has seen substantial improvement, as the strong priors learned by Text-2-Image Diffusion (T2IDiff) Foundation Models (FM) can bridge the gap between High-Resolution (HR) and Low-Resolution (LR) images. However, flagship smartphone cameras have been slow to adopt generative models because strong generation can lead to undesirable hallucinations. For substantially degraded LR images, as seen in academia, strong generation is required and hallucinations are more tolerable because of the wide gap between LR and HR images. In contrast, in consumer photography, the LR image has substantially higher fidelity, requiring only minimal hallucination-free generation. We hypothesize that generation in SISR is controlled by the stringency and richness of the FM's conditioning feature. First, text features are high level features, which often cannot describe subtle textures in an image. Additionally, Smartphone LR images are at least $12MP$, whereas SISR networks built on T2IDiff FM are designed to perform inference on much smaller images ($<1MP$). As a result, SISR inference has to be performed on small patches, which often cannot be accurately described by text feature. To address these shortcomings, we introduce an SISR network built on a FM with lower-level feature conditioning, specifically DINOv2 features, which we call a Feature-to-Image Diffusion (F2IDiff) Foundation Model (FM). Lower level features provide stricter conditioning while being rich descriptors of even small patches.
☆ Foundation models on the bridge: Semantic hazard detection and safety maneuvers for maritime autonomy with vision-language models
The draft IMO MASS Code requires autonomous and remotely supervised maritime vessels to detect departures from their operational design domain, enter a predefined fallback that notifies the operator, permit immediate human override, and avoid changing the voyage plan without approval. Meeting these obligations in the alert-to-takeover gap calls for a short-horizon, human-overridable fallback maneuver. Classical maritime autonomy stacks struggle when the correct action depends on meaning (e.g., diver-down flag means people in the water, fire close by means hazard). We argue (i) that vision-language models (VLMs) provide semantic awareness for such out-of-distribution situations, and (ii) that a fast-slow anomaly pipeline with a short-horizon, human-overridable fallback maneuver makes this practical in the handover window. We introduce Semantic Lookout, a camera-only, candidate-constrained vision-language model (VLM) fallback maneuver selector that selects one cautious action (or station-keeping) from water-valid, world-anchored trajectories under continuous human authority. On 40 harbor scenes we measure per-call scene understanding and latency, alignment with human consensus (model majority-of-three voting), short-horizon risk-relief on fire hazard scenes, and an on-water alert->fallback maneuver->operator handover. Sub-10 s models retain most of the awareness of slower state-of-the-art models. The fallback maneuver selector outperforms geometry-only baselines and increases standoff distance on fire scenes. A field run verifies end-to-end operation. These results support VLMs as semantic fallback maneuver selectors compatible with the draft IMO MASS Code, within practical latency budgets, and motivate future work on domain-adapted, hybrid autonomy that pairs foundation-model semantics with multi-sensor bird's-eye-view perception and short-horizon replanning.
comment: 17 pages without bibliography or appendix. The main paper has 16 figures
☆ Align While Search: Belief-Guided Exploratory Inference for World-Grounded Embodied Agents
In this paper, we propose a test-time adaptive agent that performs exploratory inference through posterior-guided belief refinement without relying on gradient-based updates or additional training for LLM agent operating under partial observability. Our agent maintains an external structured belief over the environment state, iteratively updates it via action-conditioned observations, and selects actions by maximizing predicted information gain over the belief space. We estimate information gain using a lightweight LLM-based surrogate and assess world alignment through a novel reward that quantifies the consistency between posterior belief and ground-truth environment configuration. Experiments show that our method outperforms inference-time scaling baselines such as prompt-augmented or retrieval-enhanced LLMs, in aligning with latent world states with significantly lower integration overhead.
☆ Privacy-Preserving Semantic Communications via Multi-Task Learning and Adversarial Perturbations
Semantic communications conveys task-relevant meaning rather than focusing solely on message reconstruction, improving bandwidth efficiency and robustness for next-generation wireless systems. However, learned semantic representations can still leak sensitive information to unintended receivers (eavesdroppers). This paper presents a deep learning-based semantic communication framework that jointly supports multiple receiver tasks while explicitly limiting semantic leakage to an eavesdropper. The legitimate link employs a learned encoder at the transmitter, while the receiver trains decoders for semantic inference and data reconstruction. The security problem is formulated via an iterative min-max optimization in which an eavesdropper is trained to improve its semantic inference, while the legitimate transmitter-receiver pair is trained to preserve task performance while reducing the eavesdropper's success. We also introduce an auxiliary layer that superimposes a cooperative, adversarially crafted perturbation on the transmitted waveform to degrade semantic leakage to an eavesdropper. Performance is evaluated over Rayleigh fading channels with additive white Gaussian noise using MNIST and CIFAR-10 datasets. Semantic accuracy and reconstruction quality improve with increasing latent dimension, while the min-max mechanism reduces the eavesdropper's inference performance significantly without degrading the legitimate receiver. The perturbation layer is successful in reducing semantic leakage even when the legitimate link is trained only for its own task. This comprehensive framework motivates semantic communication designs with tunable, end-to-end privacy against adaptive adversaries in realistic wireless settings.
☆ PackKV: Reducing KV Cache Memory Footprint through LLM-Aware Lossy Compression
Transformer-based large language models (LLMs) have demonstrated remarkable potential across a wide range of practical applications. However, long-context inference remains a significant challenge due to the substantial memory requirements of the key-value (KV) cache, which can scale to several gigabytes as sequence length and batch size increase. In this paper, we present \textbf{PackKV}, a generic and efficient KV cache management framework optimized for long-context generation. %, which synergistically supports both latency-critical and throughput-critical inference scenarios. PackKV introduces novel lossy compression techniques specifically tailored to the characteristics of KV cache data, featuring a careful co-design of compression algorithms and system architecture. Our approach is compatible with the dynamically growing nature of the KV cache while preserving high computational efficiency. Experimental results show that, under the same and minimum accuracy drop as state-of-the-art quantization methods, PackKV achieves, on average, \textbf{153.2}\% higher memory reduction rate for the K cache and \textbf{179.6}\% for the V cache. Furthermore, PackKV delivers extremely high execution throughput, effectively eliminating decompression overhead and accelerating the matrix-vector multiplication operation. Specifically, PackKV achieves an average throughput improvement of \textbf{75.7}\% for K and \textbf{171.7}\% for V across A100 and RTX Pro 6000 GPUs, compared to cuBLAS matrix-vector multiplication kernels, while demanding less GPU memory bandwidth. Code available on https://github.com/BoJiang03/PackKV
☆ Comparing Approaches to Automatic Summarization in Less-Resourced Languages
Automatic text summarization has achieved high performance in high-resourced languages like English, but comparatively less attention has been given to summarization in less-resourced languages. This work compares a variety of different approaches to summarization from zero-shot prompting of LLMs large and small to fine-tuning smaller models like mT5 with and without three data augmentation approaches and multilingual transfer. We also explore an LLM translation pipeline approach, translating from the source language to English, summarizing and translating back. Evaluating with five different metrics, we find that there is variation across LLMs in their performance across similar parameter sizes, that our multilingual fine-tuned mT5 baseline outperforms most other approaches including zero-shot LLM performance for most metrics, and that LLM as judge may be less reliable on less-resourced languages.
comment: Under review
☆ Fast and Realistic Automated Scenario Simulations and Reporting for an Autonomous Racing Stack
In this paper, we describe the automated simulation and reporting pipeline implemented for our autonomous racing stack, ur.autopilot. The backbone of the simulation is based on a high-fidelity model of the vehicle interfaced as a Functional Mockup Unit (FMU). The pipeline can execute the software stack and the simulation up to three times faster than real-time, locally or on GitHub for Continuous Integration/- Continuous Delivery (CI/CD). As the most important input of the pipeline, there is a set of running scenarios. Each scenario allows the initialization of the ego vehicle in different initial conditions (position and speed), as well as the initialization of any other configuration of the stack. This functionality is essential to validate efficiently critical modules, like the one responsible for high-speed overtaking maneuvers or localization, which are among the most challenging aspects of autonomous racing. Moreover, we describe how we implemented a fault injection module, capable of introducing sensor delays and perturbations as well as modifying outputs of any node of the stack. Finally, we describe the design of our automated reporting process, aimed at maximizing the effectiveness of the simulation analysis.
comment: Accepted to the 2026 IEEE/SICE International Symposium on System Integration (SII 2026)
☆ FAST-IDS: A Fast Two-Stage Intrusion Detection System with Hybrid Compression for Real-Time Threat Detection in Connected and Autonomous Vehicles
We have implemented a multi-stage IDS for CAVs that can be deployed to resourec-constrained environments after hybrid model compression.
☆ Tubular Riemannian Laplace Approximations for Bayesian Neural Networks
Laplace approximations are among the simplest and most practical methods for approximate Bayesian inference in neural networks, yet their Euclidean formulation struggles with the highly anisotropic, curved loss surfaces and large symmetry groups that characterize modern deep models. Recent work has proposed Riemannian and geometric Gaussian approximations to adapt to this structure. Building on these ideas, we introduce the Tubular Riemannian Laplace (TRL) approximation. TRL explicitly models the posterior as a probabilistic tube that follows a low-loss valley induced by functional symmetries, using a Fisher/Gauss-Newton metric to separate prior-dominated tangential uncertainty from data-dominated transverse uncertainty. We interpret TRL as a scalable reparametrised Gaussian approximation that utilizes implicit curvature estimates to operate in high-dimensional parameter spaces. Our empirical evaluation on ResNet-18 (CIFAR-10 and CIFAR-100) demonstrates that TRL achieves excellent calibration, matching or exceeding the reliability of Deep Ensembles (in terms of ECE) while requiring only a fraction (1/5) of the training cost. TRL effectively bridges the gap between single-model efficiency and ensemble-grade reliability.
☆ Skim-Aware Contrastive Learning for Efficient Document Representation
Although transformer-based models have shown strong performance in word- and sentence-level tasks, effectively representing long documents, especially in fields like law and medicine, remains difficult. Sparse attention mechanisms can handle longer inputs, but are resource-intensive and often fail to capture full-document context. Hierarchical transformer models offer better efficiency but do not clearly explain how they relate different sections of a document. In contrast, humans often skim texts, focusing on important sections to understand the overall message. Drawing from this human strategy, we introduce a new self-supervised contrastive learning framework that enhances long document representation. Our method randomly masks a section of the document and uses a natural language inference (NLI)-based contrastive objective to align it with relevant parts while distancing it from unrelated ones. This mimics how humans synthesize information, resulting in representations that are both richer and more computationally efficient. Experiments on legal and biomedical texts confirm significant gains in both accuracy and efficiency.
☆ FedSecureFormer: A Fast, Federated and Secure Transformer Framework for Lightweight Intrusion Detection in Connected and Autonomous Vehicles
This works presents an encoder-only transformer built with minimum layers for intrusion detection in the domain of Connected and Autonomous Vehicles using Federated Learning.
☆ DermaVQA-DAS: Dermatology Assessment Schema (DAS) & Datasets for Closed-Ended Question Answering & Segmentation in Patient-Generated Dermatology Images
Recent advances in dermatological image analysis have been driven by large-scale annotated datasets; however, most existing benchmarks focus on dermatoscopic images and lack patient-authored queries and clinical context, limiting their applicability to patient-centered care. To address this gap, we introduce DermaVQA-DAS, an extension of the DermaVQA dataset that supports two complementary tasks: closed-ended question answering (QA) and dermatological lesion segmentation. Central to this work is the Dermatology Assessment Schema (DAS), a novel expert-developed framework that systematically captures clinically meaningful dermatological features in a structured and standardized form. DAS comprises 36 high-level and 27 fine-grained assessment questions, with multiple-choice options in English and Chinese. Leveraging DAS, we provide expert-annotated datasets for both closed QA and segmentation and benchmark state-of-the-art multimodal models. For segmentation, we evaluate multiple prompting strategies and show that prompt design impacts performance: the default prompt achieves the best results under Mean-of-Max and Mean-of-Mean evaluation aggregation schemes, while an augmented prompt incorporating both patient query title and content yields the highest performance under majority-vote-based microscore evaluation, achieving a Jaccard index of 0.395 and a Dice score of 0.566 with BiomedParse. For closed-ended QA, overall performance is strong across models, with average accuracies ranging from 0.729 to 0.798; o3 achieves the best overall accuracy (0.798), closely followed by GPT-4.1 (0.796), while Gemini-1.5-Pro shows competitive performance within the Gemini family (0.783). We publicly release DermaVQA-DAS, the DAS schema, and evaluation protocols to support and accelerate future research in patient-centered dermatological vision-language modeling (https://osf.io/72rp3).
☆ Empower Low-Altitude Economy: A Reliability-Aware Dynamic Weighting Allocation for Multi-modal UAV Beam Prediction
The low-altitude economy (LAE) is rapidly expanding driven by urban air mobility, logistics drones, and aerial sensing, while fast and accurate beam prediction in uncrewed aerial vehicles (UAVs) communications is crucial for achieving reliable connectivity. Current research is shifting from single-signal to multi-modal collaborative approaches. However, existing multi-modal methods mostly employ fixed or empirical weights, assuming equal reliability across modalities at any given moment. Indeed, the importance of different modalities fluctuates dramatically with UAV motion scenarios, and static weighting amplifies the negative impact of degraded modalities. Furthermore, modal mismatch and weak alignment further undermine cross-scenario generalization. To this end, we propose a reliability-aware dynamic weighting scheme applied to a semantic-aware multi-modal beam prediction framework, named SaM2B. Specifically, SaM2B leverages lightweight cues such as environmental visual, flight posture, and geospatial data to adaptively allocate contributions across modalities at different time points through reliability-aware dynamic weight updates. Moreover, by utilizing cross-modal contrastive learning, we align the "multi-source representation beam semantics" associated with specific beam information to a shared semantic space, thereby enhancing discriminative power and robustness under modal noise and distribution shifts. Experiments on real-world low-altitude UAV datasets show that SaM2B achieves more satisfactory results than baseline methods.
☆ Generative Video Compression: Towards 0.01% Compression Rate for Video Transmission
Whether a video can be compressed at an extreme compression rate as low as 0.01%? To this end, we achieve the compression rate as 0.02% at some cases by introducing Generative Video Compression (GVC), a new framework that redefines the limits of video compression by leveraging modern generative video models to achieve extreme compression rates while preserving a perception-centric, task-oriented communication paradigm, corresponding to Level C of the Shannon-Weaver model. Besides, How we trade computation for compression rate or bandwidth? GVC answers this question by shifting the burden from transmission to inference: it encodes video into extremely compact representations and delegates content reconstruction to the receiver, where powerful generative priors synthesize high-quality video from minimal transmitted information. Is GVC practical and deployable? To ensure practical deployment, we propose a compression-computation trade-off strategy, enabling fast inference on consume-grade GPUs. Within the AI Flow framework, GVC opens new possibility for video communication in bandwidth- and resource-constrained environments such as emergency rescue, remote surveillance, and mobile edge computing. Through empirical validation, we demonstrate that GVC offers a viable path toward a new effective, efficient, scalable, and practical video communication paradigm.
☆ Virtual-Eyes: Quantitative Validation of a Lung CT Quality-Control Pipeline for Foundation-Model Cancer Risk Prediction
Robust preprocessing is rarely quantified in deep-learning pipelines for low-dose CT (LDCT) lung cancer screening. We develop and validate Virtual-Eyes, a clinically motivated 16-bit CT quality-control pipeline, and measure its differential impact on generalist foundation models versus specialist models. Virtual-Eyes enforces strict 512x512 in-plane resolution, rejects short or non-diagnostic series, and extracts a contiguous lung block using Hounsfield-unit filtering and bilateral lung-coverage scoring while preserving the native 16-bit grid. Using 765 NLST patients (182 cancer, 583 non-cancer), we compute slice-level embeddings from RAD-DINO and Merlin with frozen encoders and train leakage-free patient-level MLP heads; we also evaluate Sybil and a 2D ResNet-18 baseline under Raw versus Virtual-Eyes inputs without backbone retraining. Virtual-Eyes improves RAD-DINO slice-level AUC from 0.576 to 0.610 and patient-level AUC from 0.646 to 0.683 (mean pooling) and from 0.619 to 0.735 (max pooling), with improved calibration (Brier score 0.188 to 0.112). In contrast, Sybil and ResNet-18 degrade under Virtual-Eyes (Sybil AUC 0.886 to 0.837; ResNet-18 AUC 0.571 to 0.596) with evidence of context dependence and shortcut learning, and Merlin shows limited transferability (AUC approximately 0.507 to 0.567) regardless of preprocessing. These results demonstrate that anatomically targeted QC can stabilize and improve generalist foundation-model workflows but may disrupt specialist models adapted to raw clinical context.
comment: 23 pages, and Under Review-MIDL-2026
☆ DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments
Deep reinforcement learning (DRL) methods have demonstrated potential for autonomous navigation and obstacle avoidance of unmanned ground vehicles (UGVs) in crowded environments. Most existing approaches rely on single-frame observation and employ simple concatenation for multi-modal fusion, which limits their ability to capture temporal context and hinders dynamic adaptability. To address these challenges, we propose a DRL-based navigation framework, DRL-TH, which leverages temporal graph attention and hierarchical graph pooling to integrate historical observations and adaptively fuse multi-modal information. Specifically, we introduce a temporal-guided graph attention network (TG-GAT) that incorporates temporal weights into attention scores to capture correlations between consecutive frames, thereby enabling the implicit estimation of scene evolution. In addition, we design a graph hierarchical abstraction module (GHAM) that applies hierarchical pooling and learnable weighted fusion to dynamically integrate RGB and LiDAR features, achieving balanced representation across multiple scales. Extensive experiments demonstrate that our DRL-TH outperforms existing methods in various crowded environments. We also implemented DRL-TH control policy on a real UGV and showed that it performed well in real world scenarios.
☆ One-shot synthesis of rare gastrointestinal lesions improves diagnostic accuracy and clinical training
Rare gastrointestinal lesions are infrequently encountered in routine endoscopy, restricting the data available for developing reliable artificial intelligence (AI) models and training novice clinicians. Here we present EndoRare, a one-shot, retraining-free generative framework that synthesizes diverse, high-fidelity lesion exemplars from a single reference image. By leveraging language-guided concept disentanglement, EndoRare separates pathognomonic lesion features from non-diagnostic attributes, encoding the former into a learnable prototype embedding while varying the latter to ensure diversity. We validated the framework across four rare pathologies (calcifying fibrous tumor, juvenile polyposis syndrome, familial adenomatous polyposis, and Peutz-Jeghers syndrome). Synthetic images were judged clinically plausible by experts and, when used for data augmentation, significantly enhanced downstream AI classifiers, improving the true positive rate at low false-positive rates. Crucially, a blinded reader study demonstrated that novice endoscopists exposed to EndoRare-generated cases achieved a 0.400 increase in recall and a 0.267 increase in precision. These results establish a practical, data-efficient pathway to bridge the rare-disease gap in both computer-aided diagnostics and clinical education.
☆ Taming Hallucinations: Boosting MLLMs' Video Understanding via Counterfactual Video Generation
Multimodal Large Language Models (MLLMs) have made remarkable progress in video understanding. However, they suffer from a critical vulnerability: an over-reliance on language priors, which can lead to visual ungrounded hallucinations, especially when processing counterfactual videos that defy common sense. This limitation, stemming from the intrinsic data imbalance between text and video, is challenging to address due to the substantial cost of collecting and annotating counterfactual data. To address this, we introduce DualityForge, a novel counterfactual data synthesis framework that employs controllable, diffusion-based video editing to transform real-world videos into counterfactual scenarios. By embedding structured contextual information into the video editing and QA generation processes, the framework automatically produces high-quality QA pairs together with original-edited video pairs for contrastive training. Based on this, we build DualityVidQA, a large-scale video dataset designed to reduce MLLM hallucinations. In addition, to fully exploit the contrastive nature of our paired data, we propose Duality-Normalized Advantage Training (DNA-Train), a two-stage SFT-RL training regime where the RL phase applies pair-wise $\ell_1$ advantage normalization, thereby enabling a more stable and efficient policy optimization. Experiments on DualityVidQA-Test demonstrate that our method substantially reduces model hallucinations on counterfactual videos, yielding a relative improvement of 24.0% over the Qwen2.5-VL-7B baseline. Moreover, our approach achieves significant gains across both hallucination and general-purpose benchmarks, indicating strong generalization capability. We will open-source our dataset and code.
comment: 18 pages
☆ Constrained Language Model Policy Optimization via Risk-aware Stepwise Alignment
When fine-tuning pre-trained Language Models (LMs) to exhibit desired behaviors, maintaining control over risk is critical for ensuring both safety and trustworthiness. Most existing safety alignment methods, such as Safe RLHF and SACPO, typically operate under a risk-neutral paradigm that is insufficient to address the risks arising from deviations from the reference policy and offers limited robustness against rare but potentially catastrophic harmful behaviors. To address this limitation, we propose Risk-aware Stepwise Alignment (RSA), a novel alignment method that explicitly incorporates risk awareness into the policy optimization process by leveraging a class of nested risk measures. Specifically, RSA formulates safety alignment as a token-level risk-aware constrained policy optimization problem and solves it through a stepwise alignment procedure that yields token-level policy updates derived from the nested risk measures. This design offers two key benefits: (1) it mitigates risks induced by excessive model shift away from a reference policy, and (2) it explicitly suppresses low-probability yet high-impact harmful behaviors. Moreover, we provide theoretical analysis on policy optimality under mild assumptions. Experimental results demonstrate that our method achieves high levels of helpfulness while ensuring strong safety and significantly suppresses tail risks, namely low-probability yet high-impact unsafe responses.
☆ Deep Reinforcement Learning for Solving the Fleet Size and Mix Vehicle Routing Problem
The Fleet Size and Mix Vehicle Routing Problem (FSMVRP) is a prominent variant of the Vehicle Routing Problem (VRP), extensively studied in operations research and computational science. FSMVRP requires simultaneous decisions on fleet composition and routing, making it highly applicable to real-world scenarios such as short-term vehicle rental and on-demand logistics. However, these requirements also increase the complexity of FSMVRP, posing significant challenges, particularly in large-scale and time-constrained environments. In this paper, we propose a deep reinforcement learning (DRL)-based approach for solving FSMVRP, capable of generating near-optimal solutions within a few seconds. Specifically, we formulate the problem as a Markov Decision Process (MDP) and develop a novel policy network, termed FRIPN, that seamlessly integrates fleet composition and routing decisions. Our method incorporates specialized input embeddings designed for distinctdecision objectives, including a remaining graph embedding to facilitate effective vehicle employment decisions. Comprehensive experiments are conducted on both randomly generated instances and benchmark datasets. The experimental results demonstrate that our method exhibits notable advantages in terms of computational efficiency and scalability, particularly in large-scale and time-constrained scenarios. These strengths highlight the potential of our approach for practical applications and provide valuable inspiration for extending DRL-based techniques to other variants of VRP.
☆ PointRAFT: 3D deep learning for high-throughput prediction of potato tuber weight from partial point clouds
Potato yield is a key indicator for optimizing cultivation practices in agriculture. Potato yield can be estimated on harvesters using RGB-D cameras, which capture three-dimensional (3D) information of individual tubers moving along the conveyor belt. However, point clouds reconstructed from RGB-D images are incomplete due to self-occlusion, leading to systematic underestimation of tuber weight. To address this, we introduce PointRAFT, a high-throughput point cloud regression network that directly predicts continuous 3D shape properties, such as tuber weight, from partial point clouds. Rather than reconstructing full 3D geometry, PointRAFT infers target values directly from raw 3D data. Its key architectural novelty is an object height embedding that incorporates tuber height as an additional geometric cue, improving weight prediction under practical harvesting conditions. PointRAFT was trained and evaluated on 26,688 partial point clouds collected from 859 potato tubers across four cultivars and three growing seasons on an operational harvester in Japan. On a test set of 5,254 point clouds from 172 tubers, PointRAFT achieved a mean absolute error of 12.0 g and a root mean squared error of 17.2 g, substantially outperforming a linear regression baseline and a standard PointNet++ regression network. With an average inference time of 6.3 ms per point cloud, PointRAFT supports processing rates of up to 150 tubers per second, meeting the high-throughput requirements of commercial potato harvesters. Beyond potato weight estimation, PointRAFT provides a versatile regression network applicable to a wide range of 3D phenotyping and robotic perception tasks. The code, network weights, and a subset of the dataset are publicly available at https://github.com/pieterblok/pointraft.git.
comment: 14 pages, 7 figures, 3 tables
☆ SCP: Accelerating Discovery with a Global Web of Autonomous Scientific Agents
We introduce SCP: the Science Context Protocol, an open-source standard designed to accelerate discovery by enabling a global network of autonomous scientific agents. SCP is built on two foundational pillars: (1) Unified Resource Integration: At its core, SCP provides a universal specification for describing and invoking scientific resources, spanning software tools, models, datasets, and physical instruments. This protocol-level standardization enables AI agents and applications to discover, call, and compose capabilities seamlessly across disparate platforms and institutional boundaries. (2) Orchestrated Experiment Lifecycle Management: SCP complements the protocol with a secure service architecture, which comprises a centralized SCP Hub and federated SCP Servers. This architecture manages the complete experiment lifecycle (registration, planning, execution, monitoring, and archival), enforces fine-grained authentication and authorization, and orchestrates traceable, end-to-end workflows that bridge computational and physical laboratories. Based on SCP, we have constructed a scientific discovery platform that offers researchers and agents a large-scale ecosystem of more than 1,600 tool resources. Across diverse use cases, SCP facilitates secure, large-scale collaboration between heterogeneous AI systems and human researchers while significantly reducing integration overhead and enhancing reproducibility. By standardizing scientific context and tool orchestration at the protocol level, SCP establishes essential infrastructure for scalable, multi-institution, agent-driven science.
☆ Developing controlled natural language for formal specification patterns using AI assistants
Using an AI assistant, we developed a method for systematically constructing controlled natural language for requirements based on formal specification patterns containing logical attributes. The method involves three stages: 1) compiling a generalized natural language requirement pattern that utilizes all attributes of the formal specification template; 2) generating, using the AI assistant, a corpus of natural language requirement patterns, reduced by partially evaluating attributes (the developed prompt utilizes the generalized template, attribute definitions, and specific formal semantics of the requirement patterns); and 3) formalizing the syntax of the controlled natural language based on an analysis of the grammatical structure of the resulting patterns. The method has been tested for event-driven temporal requirements.
☆ Graph-Based Exploration for ARC-AGI-3 Interactive Reasoning Tasks
We present a training-free graph-based approach for solving interactive reasoning tasks in the ARC-AGI-3 benchmark. ARC-AGI-3 comprises game-like tasks where agents must infer task mechanics through limited interactions, and adapt to increasing complexity as levels progress. Success requires forming hypotheses, testing them, and tracking discovered mechanics. The benchmark has revealed that state-of-the-art LLMs are currently incapable of reliably solving these tasks. Our method combines vision-based frame processing with systematic state-space exploration using graph-structured representations. It segments visual frames into meaningful components, prioritizes actions based on visual salience, and maintains a directed graph of explored states and transitions. By tracking visited states and tested actions, the agent prioritizes actions that provide the shortest path to untested state-action pairs. On the ARC-AGI-3 Preview Challenge, this structured exploration strategy solves a median of 30 out of 52 levels across six games and ranks 3rd on the private leaderboard, substantially outperforming frontier LLM-based agents. These results demonstrate that explicit graph-structured exploration, even without learning, can serve as a strong baseline for interactive reasoning and underscore the importance of systematic state tracking and action prioritization in sparse-feedback environments where current LLMs fail to capture task dynamics. The code is open source and available at https://github.com/dolphin-in-a-coma/arc-agi-3-just-explore.
☆ GARDO: Reinforcing Diffusion Models without Reward Hacking
Fine-tuning diffusion models via online reinforcement learning (RL) has shown great potential for enhancing text-to-image alignment. However, since precisely specifying a ground-truth objective for visual tasks remains challenging, the models are often optimized using a proxy reward that only partially captures the true goal. This mismatch often leads to reward hacking, where proxy scores increase while real image quality deteriorates and generation diversity collapses. While common solutions add regularization against the reference policy to prevent reward hacking, they compromise sample efficiency and impede the exploration of novel, high-reward regions, as the reference policy is usually sub-optimal. To address the competing demands of sample efficiency, effective exploration, and mitigation of reward hacking, we propose Gated and Adaptive Regularization with Diversity-aware Optimization (GARDO), a versatile framework compatible with various RL algorithms. Our key insight is that regularization need not be applied universally; instead, it is highly effective to selectively penalize a subset of samples that exhibit high uncertainty. To address the exploration challenge, GARDO introduces an adaptive regularization mechanism wherein the reference model is periodically updated to match the capabilities of the online policy, ensuring a relevant regularization target. To address the mode collapse issue in RL, GARDO amplifies the rewards for high-quality samples that also exhibit high diversity, encouraging mode coverage without destabilizing the optimization process. Extensive experiments across diverse proxy rewards and hold-out unseen metrics consistently show that GARDO mitigates reward hacking and enhances generation diversity without sacrificing sample efficiency or exploration, highlighting its effectiveness and robustness.
comment: 17 pages. Project: https://tinnerhrhe.github.io/gardo_project
☆ Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training
General-purpose robotic systems operating in open-world environments must achieve both broad generalization and high-precision action execution, a combination that remains challenging for existing Vision-Language-Action (VLA) models. While large Vision-Language Models (VLMs) improve semantic generalization, insufficient embodied reasoning leads to brittle behavior, and conversely, strong reasoning alone is inadequate without precise control. To provide a decoupled and quantitative assessment of this bottleneck, we introduce Embodied Reasoning Intelligence Quotient (ERIQ), a large-scale embodied reasoning benchmark in robotic manipulation, comprising 6K+ question-answer pairs across four reasoning dimensions. By decoupling reasoning from execution, ERIQ enables systematic evaluation and reveals a strong positive correlation between embodied reasoning capability and end-to-end VLA generalization. To bridge the gap from reasoning to precise execution, we propose FACT, a flow-matching-based action tokenizer that converts continuous control into discrete sequences while preserving high-fidelity trajectory reconstruction. The resulting GenieReasoner jointly optimizes reasoning and action in a unified space, outperforming both continuous-action and prior discrete-action baselines in real-world tasks. Together, ERIQ and FACT provide a principled framework for diagnosing and overcoming the reasoning-precision trade-off, advancing robust, general-purpose robotic manipulation.
☆ OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization
The presence of outliers in Large Language Models (LLMs) weights and activations makes them difficult to quantize. Recent work has leveraged rotations to mitigate these outliers. In this work, we propose methods that learn fusible rotations by minimizing principled and cheap proxy objectives to the weight quantization error. We primarily focus on GPTQ as the quantization method. Our main method is OptRot, which reduces weight outliers simply by minimizing the element-wise fourth power of the rotated weights. We show that OptRot outperforms both Hadamard rotations and more expensive, data-dependent methods like SpinQuant and OSTQuant for weight quantization. It also improves activation quantization in the W4A8 setting. We also propose a data-dependent method, OptRot$^{+}$, that further improves performance by incorporating information on the activation covariance. In the W4A4 setting, we see that both OptRot and OptRot$^{+}$ perform worse, highlighting a trade-off between weight and activation quantization.
comment: 25 pages, 10 figures
☆ Enhancing LLM-Based Neural Network Generation: Few-Shot Prompting and Efficient Validation for Automated Architecture Design
Automated neural network architecture design remains a significant challenge in computer vision. Task diversity and computational constraints require both effective architectures and efficient search methods. Large Language Models (LLMs) present a promising alternative to computationally intensive Neural Architecture Search (NAS), but their application to architecture generation in computer vision has not been systematically studied, particularly regarding prompt engineering and validation strategies. Building on the task-agnostic NNGPT/LEMUR framework, this work introduces and validates two key contributions for computer vision. First, we present Few-Shot Architecture Prompting (FSAP), the first systematic study of the number of supporting examples (n = 1, 2, 3, 4, 5, 6) for LLM-based architecture generation. We find that using n = 3 examples best balances architectural diversity and context focus for vision tasks. Second, we introduce Whitespace-Normalized Hash Validation, a lightweight deduplication method (less than 1 ms) that provides a 100x speedup over AST parsing and prevents redundant training of duplicate computer vision architectures. In large-scale experiments across seven computer vision benchmarks (MNIST, CIFAR-10, CIFAR-100, CelebA, ImageNette, SVHN, Places365), we generated 1,900 unique architectures. We also introduce a dataset-balanced evaluation methodology to address the challenge of comparing architectures across heterogeneous vision tasks. These contributions provide actionable guidelines for LLM-based architecture search in computer vision and establish rigorous evaluation practices, making automated design more accessible to researchers with limited computational resources.
☆ CogRec: A Cognitive Recommender Agent Fusing Large Language Models and Soar for Explainable Recommendation
Large Language Models (LLMs) have demonstrated a remarkable capacity in understanding user preferences for recommendation systems. However, they are constrained by several critical challenges, including their inherent "Black-Box" characteristics, susceptibility to knowledge hallucination, and limited online learning capacity. These factors compromise their trustworthiness and adaptability. Conversely, cognitive architectures such as Soar offer structured and interpretable reasoning processes, yet their knowledge acquisition is notoriously laborious. To address these complementary challenges, we propose a novel cognitive recommender agent called CogRec which synergizes the strengths of LLMs with the Soar cognitive architecture. CogRec leverages Soar as its core symbolic reasoning engine and leverages an LLM for knowledge initialization to populate its working memory with production rules. The agent operates on a Perception-Cognition-Action(PCA) cycle. Upon encountering an impasse, it dynamically queries the LLM to obtain a reasoned solution. This solution is subsequently transformed into a new symbolic production rule via Soar's chunking mechanism, thereby enabling robust online learning. This learning paradigm allows the agent to continuously evolve its knowledge base and furnish highly interpretable rationales for its recommendations. Extensive evaluations conducted on three public datasets demonstrate that CogRec demonstrates significant advantages in recommendation accuracy, explainability, and its efficacy in addressing the long-tail problem.
comment: 9 pages, 6 figures
☆ Multilevel Fair Allocation
We introduce the concept of multilevel fair allocation of resources with tree-structured hierarchical relations among agents. While at each level it is possible to consider the problem locally as an allocation of an agent to its children, the multilevel allocation can be seen as a trace capturing the fact that the process is iterated until the leaves of the tree. In principle, each intermediary node may have its own local allocation mechanism. The main challenge is then to design algorithms which can retain good fairness and efficiency properties. In this paper we propose two original algorithms under the assumption that leaves of the tree have matroid-rank utility functions and the utility of any internal node is the sum of the utilities of its children. The first one is a generic polynomial-time sequential algorithm that comes with theoretical guarantees in terms of efficiency and fairness. It operates in a top-down fashion -- as commonly observed in real-world applications -- and is compatible with various local algorithms. The second one extends the recently proposed General Yankee Swap to the multilevel setting. This extension comes with efficiency guarantees only, but we show that it preserves excellent fairness properties in practice.
☆ Enhancing LLM Planning Capabilities through Intrinsic Self-Critique
We demonstrate an approach for LLMs to critique their \emph{own} answers with the goal of enhancing their performance that leads to significant improvements over established planning benchmarks. Despite the findings of earlier research that has cast doubt on the effectiveness of LLMs leveraging self critique methods, we show significant performance gains on planning datasets in the Blocksworld domain through intrinsic self-critique, without external source such as a verifier. We also demonstrate similar improvements on Logistics and Mini-grid datasets, exceeding strong baseline accuracies. We employ a few-shot learning technique and progressively extend it to a many-shot approach as our base method and demonstrate that it is possible to gain substantial improvement on top of this already competitive approach by employing an iterative process for correction and refinement. We illustrate how self-critique can significantly boost planning performance. Our empirical results present new state-of-the-art on the class of models considered, namely LLM model checkpoints from October 2024. Our primary focus lies on the method itself, demonstrating intrinsic self-improvement capabilities that are applicable regardless of the specific model version, and we believe that applying our method to more complex search techniques and more capable models will lead to even better performance.
☆ Factorized Learning for Temporally Grounded Video-Language Models ICCV 2025
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.
comment: ICCV 2025 paper. This arXiv version updates Figure 1 to include the concurrent work Qwen2.5-VL to ensure consistency with Table 1
☆ FedLiTeCAN : A Federated Lightweight Transformer for Fast and Robust CAN Bus Intrusion Detection
This work implements a lightweight Transformer model for IDS in the domain of Connected and Autonomous Vehicles
☆ Random Multiplexing
As wireless communication applications evolve from traditional multipath environments to high-mobility scenarios like unmanned aerial vehicles, multiplexing techniques have advanced accordingly. Traditional single-carrier frequency-domain equalization (SC-FDE) and orthogonal frequency-division multiplexing (OFDM) have given way to emerging orthogonal time-frequency space (OTFS) and affine frequency-division multiplexing (AFDM). These approaches exploit specific channel structures to diagonalize or sparsify the effective channel, thereby enabling low-complexity detection. However, their reliance on these structures significantly limits their robustness in dynamic, real-world environments. To address these challenges, this paper studies a random multiplexing technique that is decoupled from the physical channels, enabling its application to arbitrary norm-bounded and spectrally convergent channel matrices. Random multiplexing achieves statistical fading-channel ergodicity for transmitted signals by constructing an equivalent input-isotropic channel matrix in the random transform domain. It guarantees the asymptotic replica MAP bit-error rate (BER) optimality of AMP-type detectors for linear systems with arbitrary norm-bounded, spectrally convergent channel matrices and signaling configurations, under the unique fixed point assumption. A low-complexity cross-domain memory AMP (CD-MAMP) detector is considered, leveraging the sparsity of the time-domain channel and the randomness of the equivalent channel. Optimal power allocations are derived to minimize the replica MAP BER and maximize the replica constrained capacity of random multiplexing systems. The optimal coding principle and replica constrained-capacity optimality of CD-MAMP detector are investigated for random multiplexing systems. Additionally, the versatility of random multiplexing in diverse wireless applications is explored.
☆ LoongFlow: Directed Evolutionary Search via a Cognitive Plan-Execute-Summarize Paradigm
The transition from static Large Language Models (LLMs) to self-improving agents is hindered by the lack of structured reasoning in traditional evolutionary approaches. Existing methods often struggle with premature convergence and inefficient exploration in high-dimensional code spaces. To address these challenges, we introduce LoongFlow, a self-evolving agent framework that achieves state-of-the-art solution quality with significantly reduced computational costs. Unlike "blind" mutation operators, LoongFlow integrates LLMs into a cognitive "Plan-Execute-Summarize" (PES) paradigm, effectively mapping the evolutionary search to a reasoning-heavy process. To sustain long-term architectural coherence, we incorporate a hybrid evolutionary memory system. By synergizing Multi-Island models with MAP-Elites and adaptive Boltzmann selection, this system theoretically balances the exploration-exploitation trade-off, maintaining diverse behavioral niches to prevent optimization stagnation. We instantiate LoongFlow with a General Agent for algorithmic discovery and an ML Agent for pipeline optimization. Extensive evaluations on the AlphaEvolve benchmark and Kaggle competitions demonstrate that LoongFlow outperforms leading baselines (e.g., OpenEvolve, ShinkaEvolve) by up to 60% in evolutionary efficiency while discovering superior solutions. LoongFlow marks a substantial step forward in autonomous scientific discovery, enabling the generation of expert-level solutions with reduced computational overhead.
☆ Pathology Context Recalibration Network for Ocular Disease Recognition
Pathology context and expert experience play significant roles in clinical ocular disease diagnosis. Although deep neural networks (DNNs) have good ocular disease recognition results, they often ignore exploring the clinical pathology context and expert experience priors to improve ocular disease recognition performance and decision-making interpretability. To this end, we first develop a novel Pathology Recalibration Module (PRM) to leverage the potential of pathology context prior via the combination of the well-designed pixel-wise context compression operator and pathology distribution concentration operator; then this paper applies a novel expert prior Guidance Adapter (EPGA) to further highlight significant pixel-wise representation regions by fully mining the expert experience prior. By incorporating PRM and EPGA into the modern DNN, the PCRNet is constructed for automated ocular disease recognition. Additionally, we introduce an Integrated Loss (IL) to boost the ocular disease recognition performance of PCRNet by considering the effects of sample-wise loss distributions and training label frequencies. The extensive experiments on three ocular disease datasets demonstrate the superiority of PCRNet with IL over state-of-the-art attention-based networks and advanced loss methods. Further visualization analysis explains the inherent behavior of PRM and EPGA that affects the decision-making process of DNNs.
comment: The article has been accepted for publication at Machine Intelligence Research (MIR)
☆ Beyond Hallucinations: A Composite Score for Measuring Reliability in Open-Source Large Language Models AAAI 2026
Large Language Models (LLMs) like LLaMA, Mistral, and Gemma are increasingly used in decision-critical domains such as healthcare, law, and finance, yet their reliability remains uncertain. They often make overconfident errors, degrade under input shifts, and lack clear uncertainty estimates. Existing evaluations are fragmented, addressing only isolated aspects. We introduce the Composite Reliability Score (CRS), a unified framework that integrates calibration, robustness, and uncertainty quantification into a single interpretable metric. Through experiments on ten leading open-source LLMs across five QA datasets, we assess performance under baselines, perturbations, and calibration methods. CRS delivers stable model rankings, uncovers hidden failure modes missed by single metrics, and highlights that the most dependable systems balance accuracy, robustness, and calibrated uncertainty.
comment: 5 pages, 4 tables, accepted at AAAI 2026
☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods.
☆ Jailbreaking Attacks vs. Content Safety Filters: How Far Are We in the LLM Safety Arms Race?
As large language models (LLMs) are increasingly deployed, ensuring their safe use is paramount. Jailbreaking, adversarial prompts that bypass model alignment to trigger harmful outputs, present significant risks, with existing studies reporting high success rates in evading common LLMs. However, previous evaluations have focused solely on the models, neglecting the full deployment pipeline, which typically incorporates additional safety mechanisms like content moderation filters. To address this gap, we present the first systematic evaluation of jailbreak attacks targeting LLM safety alignment, assessing their success across the full inference pipeline, including both input and output filtering stages. Our findings yield two key insights: first, nearly all evaluated jailbreak techniques can be detected by at least one safety filter, suggesting that prior assessments may have overestimated the practical success of these attacks; second, while safety filters are effective in detection, there remains room to better balance recall and precision to further optimize protection and user experience. We highlight critical gaps and call for further refinement of detection accuracy and usability in LLM safety systems.
comment: 26 pages,11 tables, 7 figures
☆ ROAD: Reflective Optimization via Automated Debugging for Zero-Shot Agent Alignment
Automatic Prompt Optimization (APO) has emerged as a critical technique for enhancing Large Language Model (LLM) performance, yet current state-of-the-art methods typically rely on large, labeled gold-standard development sets to compute fitness scores for evolutionary or Reinforcement Learning (RL) approaches. In real-world software engineering, however, such curated datasets are rarely available during the initial cold start of agent development, where engineers instead face messy production logs and evolving failure modes. We present ROAD (Reflective Optimization via Automated Debugging), a novel framework that bypasses the need for refined datasets by treating optimization as a dynamic debugging investigation rather than a stochastic search. Unlike traditional mutation strategies, ROAD utilizes a specialized multi-agent architecture, comprising an Analyzer for root-cause analysis, an Optimizer for pattern aggregation, and a Coach for strategy integration, to convert unstructured failure logs into robust, structured Decision Tree Protocols. We evaluated ROAD across both a standardized academic benchmark and a live production Knowledge Management engine. Experimental results demonstrate that ROAD is highly sample-efficient, achieving a 5.6 percent increase in success rate (73.6 percent to 79.2 percent) and a 3.8 percent increase in search accuracy within just three automated iterations. Furthermore, on complex reasoning tasks in the retail domain, ROAD improved agent performance by approximately 19 percent relative to the baseline. These findings suggest that mimicking the human engineering loop of failure analysis and patching offers a viable, data-efficient alternative to resource-intensive RL training for deploying reliable LLM agents.
comment: 22 pages, 1 figure
☆ Kidney Exchange: Faster Parameterized Algorithms and Tighter Lower Bounds AAMAS 2026
The kidney exchange mechanism allows many patient-donor pairs who are otherwise incompatible with each other to come together and exchange kidneys along a cycle. However, due to infrastructure and legal constraints, kidney exchange can only be performed in small cycles in practice. In reality, there are also some altruistic donors who do not have any paired patients. This allows us to also perform kidney exchange along paths that start from some altruistic donor. Unfortunately, the computational task is NP-complete. To overcome this computational barrier, an important line of research focuses on designing faster algorithms, both exact and using the framework of parameterized complexity. The standard parameter for the kidney exchange problem is the number $t$ of patients that receive a healthy kidney. The current fastest known deterministic FPT algorithm for this problem, parameterized by $t$, is $O^\star\left(14^t\right)$. In this work, we improve this by presenting a deterministic FPT algorithm that runs in time $O^\star\left((4e)^t\right)\approx O^\star\left(10.88^t\right)$. This problem is also known to be W[1]-hard parameterized by the treewidth of the underlying undirected graph. A natural question here is whether the kidney exchange problem admits an FPT algorithm parameterized by the pathwidth of the underlying undirected graph. We answer this negatively in this paper by proving that this problem is W[1]-hard parameterized by the pathwidth of the underlying undirected graph. We also present some parameterized intractability results improving the current understanding of the problem under the framework of parameterized complexity.
comment: Accepted as a full paper in AAMAS 2026
☆ PipeFlow: Pipelined Processing and Motion-Aware Frame Selection for Long-Form Video Editing
Long-form video editing poses unique challenges due to the exponential increase in the computational cost from joint editing and Denoising Diffusion Implicit Models (DDIM) inversion across extended sequences. To address these limitations, we propose PipeFlow, a scalable, pipelined video editing method that introduces three key innovations: First, based on a motion analysis using Structural Similarity Index Measure (SSIM) and Optical Flow, we identify and propose to skip editing of frames with low motion. Second, we propose a pipelined task scheduling algorithm that splits a video into multiple segments and performs DDIM inversion and joint editing in parallel based on available GPU memory. Lastly, we leverage a neural network-based interpolation technique to smooth out the border frames between segments and interpolate the previously skipped frames. Our method uniquely scales to longer videos by dividing them into smaller segments, allowing PipeFlow's editing time to increase linearly with video length. In principle, this enables editing of infinitely long videos without the growing per-frame computational overhead encountered by other methods. PipeFlow achieves up to a 9.6X speedup compared to TokenFlow and a 31.7X speedup over Diffusion Motion Transfer (DMT).
☆ RSAgent: Learning to Reason and Act for Text-Guided Segmentation via Multi-Turn Tool Invocations
Text-guided object segmentation requires both cross-modal reasoning and pixel grounding abilities. Most recent methods treat text-guided segmentation as one-shot grounding, where the model predicts pixel prompts in a single forward pass to drive an external segmentor, which limits verification, refocusing and refinement when initial localization is wrong. To address this limitation, we propose RSAgent, an agentic Multimodal Large Language Model (MLLM) which interleaves reasoning and action for segmentation via multi-turn tool invocations. RSAgent queries a segmentation toolbox, observes visual feedback, and revises its spatial hypothesis using historical observations to re-localize targets and iteratively refine masks. We further build a data pipeline to synthesize multi-turn reasoning segmentation trajectories, and train RSAgent with a two-stage framework: cold-start supervised fine-tuning followed by agentic reinforcement learning with fine-grained, task-specific rewards. Extensive experiments show that RSAgent achieves a zero-shot performance of 66.5% gIoU on ReasonSeg test, improving over Seg-Zero-7B by 9%, and reaches 81.5% cIoU on RefCOCOg, demonstrating state-of-the-art performance on both in-domain and out-of-domain benchmarks.
☆ FUSE-RSVLM: Feature Fusion Vision-Language Model for Remote Sensing
Large vision-language models (VLMs) exhibit strong performance across various tasks. However, these VLMs encounter significant challenges when applied to the remote sensing domain due to the inherent differences between remote sensing images and natural images. Existing remote sensing VLMs often fail to extract fine-grained visual features and suffer from visual forgetting during deep language processing. To address this, we introduce MF-RSVLM, a Multi-Feature Fusion Remote Sensing Vision--Language Model that effectively extracts and fuses visual features for RS understanding. MF-RSVLM learns multi-scale visual representations and combines global context with local details, improving the capture of small and complex structures in RS scenes. A recurrent visual feature injection scheme ensures the language model remains grounded in visual evidence and reduces visual forgetting during generation. Extensive experiments on diverse RS benchmarks show that MF-RSVLM achieves state-of-the-art or highly competitive performance across remote sensing classification, image captioning, and VQA tasks. Our code is publicly available at https://github.com/Yunkaidang/RSVLM.
☆ iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning
Large language models (LLMs), when guided by explicit textual plans, can perform reliable step-by-step reasoning during problem-solving. However, generating accurate and effective textual plans remains challenging due to LLM hallucinations and the high diversity of task-specific questions. To address this, we draw inspiration from human Implicit Cognition (IC), the subconscious process by which decisions are guided by compact, generalized patterns learned from past experiences without requiring explicit verbalization. We propose iCLP, a novel framework that enables LLMs to adaptively generate latent plans (LPs), which are compact encodings of effective reasoning instructions. iCLP first distills explicit plans from existing step-by-step reasoning trajectories. It then learns discrete representations of these plans via a vector-quantized autoencoder coupled with a codebook. Finally, by fine-tuning LLMs on paired latent plans and corresponding reasoning steps, the models learn to perform implicit planning during reasoning. Experimental results on mathematical reasoning and code generation tasks demonstrate that, with iCLP, LLMs can plan in latent space while reasoning in language space. This approach yields significant improvements in both accuracy and efficiency and, crucially, demonstrates strong cross-domain generalization while preserving the interpretability of chain-of-thought reasoning.
comment: 9 pages, 6 figures. The source code is publicly available at https://github.com/AgenticFinLab/latent-planning
☆ SPARK: Search Personalization via Agent-Driven Retrieval and Knowledge-sharing WSDM 2026
Personalized search demands the ability to model users' evolving, multi-dimensional information needs; a challenge for systems constrained by static profiles or monolithic retrieval pipelines. We present SPARK (Search Personalization via Agent-Driven Retrieval and Knowledge-sharing), a framework in which coordinated persona-based large language model (LLM) agents deliver task-specific retrieval and emergent personalization. SPARK formalizes a persona space defined by role, expertise, task context, and domain, and introduces a Persona Coordinator that dynamically interprets incoming queries to activate the most relevant specialized agents. Each agent executes an independent retrieval-augmented generation process, supported by dedicated long- and short-term memory stores and context-aware reasoning modules. Inter-agent collaboration is facilitated through structured communication protocols, including shared memory repositories, iterative debate, and relay-style knowledge transfer. Drawing on principles from cognitive architectures, multi-agent coordination theory, and information retrieval, SPARK models how emergent personalization properties arise from distributed agent behaviors governed by minimal coordination rules. The framework yields testable predictions regarding coordination efficiency, personalization quality, and cognitive load distribution, while incorporating adaptive learning mechanisms for continuous persona refinement. By integrating fine-grained agent specialization with cooperative retrieval, SPARK provides insights for next-generation search systems capable of capturing the complexity, fluidity, and context sensitivity of human information-seeking behavior.
comment: This is the author's preprint. Accepted to WEB&GRAPH 2026 (co-located with WSDM 2026), Boise, Idaho, USA, Feb 26, 2026. Final version will appear in WSDM 2026 Companion Proceedings. Conf: https://wsdm-conference.org/2026/ Workshop: https://aiimlab.org/events/WSDM_2026_WEB_and_GRAPH_2026_Workshop_on_Web_and_Graphs_Responsible_Intelligence_and_Social_Media.html
☆ TESO Tabu Enhanced Simulation Optimization for Noisy Black Box Problems
Simulation optimization (SO) is frequently challenged by noisy evaluations, high computational costs, and complex, multimodal search landscapes. This paper introduces Tabu-Enhanced Simulation Optimization (TESO), a novel metaheuristic framework integrating adaptive search with memory-based strategies. TESO leverages a short-term Tabu List to prevent cycling and encourage diversification, and a long-term Elite Memory to guide intensification by perturbing high-performing solutions. An aspiration criterion allows overriding tabu restrictions for exceptional candidates. This combination facilitates a dynamic balance between exploration and exploitation in stochastic environments. We demonstrate TESO's effectiveness and reliability using an queue optimization problem, showing improved performance compared to benchmarks and validating the contribution of its memory components. Source code and data are available at: https://github.com/bulentsoykan/TESO.
comment: 11 pages, 2 figures, Presented at the Winter Simulation Conference 2025, Seattle, Washington (December 2025)
☆ Tracing the Heart's Pathways: ECG Representation Learning from a Cardiac Conduction Perspective AAAI2026
The multi-lead electrocardiogram (ECG) stands as a cornerstone of cardiac diagnosis. Recent strides in electrocardiogram self-supervised learning (eSSL) have brightened prospects for enhancing representation learning without relying on high-quality annotations. Yet earlier eSSL methods suffer a key limitation: they focus on consistent patterns across leads and beats, overlooking the inherent differences in heartbeats rooted in cardiac conduction processes, while subtle but significant variations carry unique physiological signatures. Moreover, representation learning for ECG analysis should align with ECG diagnostic guidelines, which progress from individual heartbeats to single leads and ultimately to lead combinations. This sequential logic, however, is often neglected when applying pre-trained models to downstream tasks. To address these gaps, we propose CLEAR-HUG, a two-stage framework designed to capture subtle variations in cardiac conduction across leads while adhering to ECG diagnostic guidelines. In the first stage, we introduce an eSSL model termed Conduction-LEAd Reconstructor (CLEAR), which captures both specific variations and general commonalities across heartbeats. Treating each heartbeat as a distinct entity, CLEAR employs a simple yet effective sparse attention mechanism to reconstruct signals without interference from other heartbeats. In the second stage, we implement a Hierarchical lead-Unified Group head (HUG) for disease diagnosis, mirroring clinical workflow. Experimental results across six tasks show a 6.84% improvement, validating the effectiveness of CLEAR-HUG. This highlights its ability to enhance representations of cardiac conduction and align patterns with expert diagnostic guidelines.
comment: Accepted to AAAI2026
☆ PhyAVBench: A Challenging Audio Physics-Sensitivity Benchmark for Physically Grounded Text-to-Audio-Video Generation
Text-to-audio-video (T2AV) generation underpins a wide range of applications demanding realistic audio-visual content, including virtual reality, world modeling, gaming, and filmmaking. However, existing T2AV models remain incapable of generating physically plausible sounds, primarily due to their limited understanding of physical principles. To situate current research progress, we present PhyAVBench, a challenging audio physics-sensitivity benchmark designed to systematically evaluate the audio physics grounding capabilities of existing T2AV models. PhyAVBench comprises 1,000 groups of paired text prompts with controlled physical variables that implicitly induce sound variations, enabling a fine-grained assessment of models' sensitivity to changes in underlying acoustic conditions. We term this evaluation paradigm the Audio-Physics Sensitivity Test (APST). Unlike prior benchmarks that primarily focus on audio-video synchronization, PhyAVBench explicitly evaluates models' understanding of the physical mechanisms underlying sound generation, covering 6 major audio physics dimensions, 4 daily scenarios (music, sound effects, speech, and their mix), and 50 fine-grained test points, ranging from fundamental aspects such as sound diffraction to more complex phenomena, e.g., Helmholtz resonance. Each test point consists of multiple groups of paired prompts, where each prompt is grounded by at least 20 newly recorded or collected real-world videos, thereby minimizing the risk of data leakage during model pre-training. Both prompts and videos are iteratively refined through rigorous human-involved error correction and quality control to ensure high quality. We argue that only models with a genuine grasp of audio-related physical principles can generate physically consistent audio-visual content. We hope PhyAVBench will stimulate future progress in this critical yet largely unexplored domain.
comment: 6 major physical dimensions, 50 fine-grained test points, 1,000 groups of variable-controlled test samples
☆ Fantastic Reasoning Behaviors and Where to Find Them: Unsupervised Discovery of the Reasoning Process
Despite the growing reasoning capabilities of recent large language models (LLMs), their internal mechanisms during the reasoning process remain underexplored. Prior approaches often rely on human-defined concepts (e.g., overthinking, reflection) at the word level to analyze reasoning in a supervised manner. However, such methods are limited, as it is infeasible to capture the full spectrum of potential reasoning behaviors, many of which are difficult to define in token space. In this work, we propose an unsupervised framework (namely, RISE: Reasoning behavior Interpretability via Sparse auto-Encoder) for discovering reasoning vectors, which we define as directions in the activation space that encode distinct reasoning behaviors. By segmenting chain-of-thought traces into sentence-level 'steps' and training sparse auto-encoders (SAEs) on step-level activations, we uncover disentangled features corresponding to interpretable behaviors such as reflection and backtracking. Visualization and clustering analyses show that these behaviors occupy separable regions in the decoder column space. Moreover, targeted interventions on SAE-derived vectors can controllably amplify or suppress specific reasoning behaviors, altering inference trajectories without retraining. Beyond behavior-specific disentanglement, SAEs capture structural properties such as response length, revealing clusters of long versus short reasoning traces. More interestingly, SAEs enable the discovery of novel behaviors beyond human supervision. We demonstrate the ability to control response confidence by identifying confidence-related vectors in the SAE decoder space. These findings underscore the potential of unsupervised latent discovery for both interpreting and controllably steering reasoning in LLMs.
☆ MeLeMaD: Adaptive Malware Detection via Chunk-wise Feature Selection and Meta-Learning
Confronting the substantial challenges of malware detection in cybersecurity necessitates solutions that are both robust and adaptable to the ever-evolving threat environment. The paper introduces Meta Learning Malware Detection (MeLeMaD), a novel framework leveraging the adaptability and generalization capabilities of Model-Agnostic Meta-Learning (MAML) for malware detection. MeLeMaD incorporates a novel feature selection technique, Chunk-wise Feature Selection based on Gradient Boosting (CFSGB), tailored for handling large-scale, high-dimensional malware datasets, significantly enhancing the detection efficiency. Two benchmark malware datasets (CIC-AndMal2020 and BODMAS) and a custom dataset (EMBOD) were used for rigorously validating the MeLeMaD, achieving a remarkable performance in terms of key evaluation measures, including accuracy, precision, recall, F1-score, MCC, and AUC. With accuracies of 98.04\% on CIC-AndMal2020 and 99.97\% on BODMAS, MeLeMaD outperforms the state-of-the-art approaches. The custom dataset, EMBOD, also achieves a commendable accuracy of 97.85\%. The results underscore the MeLeMaD's potential to address the challenges of robustness, adaptability, and large-scale, high-dimensional datasets in malware detection, paving the way for more effective and efficient cybersecurity solutions.
comment: 20 pages, 8 Figures
☆ Coding With AI: From a Reflection on Industrial Practices to Future Computer Science and Software Engineering Education
Recent advances in large language models (LLMs) have introduced new paradigms in software development, including vibe coding, AI-assisted coding, and agentic coding, fundamentally reshaping how software is designed, implemented, and maintained. Prior research has primarily examined AI-based coding at the individual level or in educational settings, leaving industrial practitioners' perspectives underexplored. This paper addresses this gap by investigating how LLM coding tools are used in professional practice, the associated concerns and risks, and the resulting transformations in development workflows, with particular attention to implications for computing education. We conducted a qualitative analysis of 57 curated YouTube videos published between late 2024 and 2025, capturing reflections and experiences shared by practitioners. Following a filtering and quality assessment process, the selected sources were analyzed to compare LLM-based and traditional programming, identify emerging risks, and characterize evolving workflows. Our findings reveal definitions of AI-based coding practices, notable productivity gains, and lowered barriers to entry. Practitioners also report a shift in development bottlenecks toward code review and concerns regarding code quality, maintainability, security vulnerabilities, ethical issues, erosion of foundational problem-solving skills, and insufficient preparation of entry-level engineers. Building on these insights, we discuss implications for computer science and software engineering education and argue for curricular shifts toward problem-solving, architectural thinking, code review, and early project-based learning that integrates LLM tools. This study offers an industry-grounded perspective on AI-based coding and provides guidance for aligning educational practices with rapidly evolving professional realities.
comment: 21 pages, 5 figures
☆ Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing
We present DataFlow, a computational framework for building, testing, and deploying high-performance machine learning systems on unbounded time-series data. Traditional data science workflows assume finite datasets and require substantial reimplementation when moving from batch prototypes to streaming production systems. This gap introduces causality violations, batch boundary artifacts, and poor reproducibility of real-time failures. DataFlow resolves these issues through a unified execution model based on directed acyclic graphs (DAGs) with point-in-time idempotency: outputs at any time t depend only on a fixed-length context window preceding t. This guarantee ensures that models developed in batch mode execute identically in streaming production without code changes. The framework enforces strict causality by automatically tracking knowledge time across all transformations, eliminating future-peeking bugs. DataFlow supports flexible tiling across temporal and feature dimensions, allowing the same model to operate at different frequencies and memory profiles via configuration alone. It integrates natively with the Python data science stack and provides fit/predict semantics for online learning, caching and incremental computation, and automatic parallelization through DAG-based scheduling. We demonstrate its effectiveness across domains including financial trading, IoT, fraud detection, and real-time analytics.
☆ A Community-Aware Framework for Influence Maximization with Explicit Accounting for Inter-Community Influence
Influence Maximization (IM) seeks to identify a small set of seed nodes in a social network to maximize expected information spread under a diffusion model. While community-based approaches improve scalability by exploiting modular structure, they typically assume independence between communities, overlooking inter-community influence$\unicode{x2014}$a limitation that reduces effectiveness in real-world networks. We introduce Community-IM++, a scalable framework that explicitly models cross-community diffusion through a principled heuristic based on community-based diffusion degree (CDD) and a progressive budgeting strategy. The algorithm partitions the network, computes CDD to prioritize bridging nodes, and allocates seeds adaptively across communities using lazy evaluation to minimize redundant computations. Experiments on large real-world social networks under different edge weight models show that Community-IM++ achieves near-greedy influence spread at up to 100 times lower runtime, while outperforming Community-IM and degree heuristics across budgets and structural conditions. These results demonstrate the practicality of Community-IM++ for large-scale applications such as viral marketing, misinformation control, and public health campaigns, where efficiency and cross-community reach are critical.
comment: 7 pages, 4 figures, and 1 table
☆ Efficient Context Scaling with LongCat ZigZag Attention
We introduce LongCat ZigZag Attention (LoZA), which is a sparse attention scheme designed to transform any existing full-attention models into sparse versions with rather limited compute budget. In long-context scenarios, LoZA can achieve significant speed-ups both for prefill-intensive (e.g., retrieval-augmented generation) and decode-intensive (e.g., tool-integrated reasoning) cases. Specifically, by applying LoZA to LongCat-Flash during mid-training, we serve LongCat-Flash-Exp as a long-context foundation model that can swiftly process up to 1 million tokens, enabling efficient long-term reasoning and long-horizon agentic capabilities.
comment: 10 pages, 3 figures, 3 tables
☆ Physics-informed Graph Neural Networks for Operational Flood Modeling IJCAI
Flood models inform strategic disaster management by simulating the spatiotemporal hydrodynamics of flooding. While physics-based numerical flood models are accurate, their substantial computational cost limits their use in operational settings where rapid predictions are essential. Models designed with graph neural networks (GNNs) provide both speed and accuracy while having the ability to process unstructured spatial domains. Given its flexible input and architecture, GNNs can be leveraged alongside physics-informed techniques with ease, significantly improving interpretability. This study introduces a novel flood GNN architecture, DUALFloodGNN, which embeds physical constraints at both global and local scales through explicit loss terms. The model jointly predicts water volume at nodes and flow along edges through a shared message-passing framework. To improve performance for autoregressive inference, model training is conducted with a multi-step loss enhanced with dynamic curriculum learning. Compared with standard GNN architectures and state-of-the-art GNN flood models, DUALFloodGNN achieves substantial improvements in predicting multiple hydrologic variables while maintaining high computational efficiency. The model is open-sourced at https://github.com/acostacos/dual_flood_gnn.
comment: To be submitted to IJCAI
☆ An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System
This research presents a cutting-edge recommendation system utilizing agentic AI for KYC (Know Your Customer in the financial domain), and its evaluation across five distinct content verticals: Advertising (Ad), News, Gossip, Sharing (User-Generated Content), and Technology (Tech). The study compares the performance of four experimental groups, grouping by the intense usage of KYC, benchmarking them against the Normalized Discounted Cumulative Gain (nDCG) metric at truncation levels of $k=1$, $k=3$, and $k=5$. By synthesizing experimental data with theoretical frameworks and industry benchmarks from platforms such as Baidu and Xiaohongshu, this research provides insight by showing experimental results for engineering a large-scale agentic recommendation system.
comment: 5 pages, 1 figure
☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
☆ A Proof-of-Concept for Explainable Disease Diagnosis Using Large Language Models and Answer Set Programming
Accurate disease prediction is vital for timely intervention, effective treatment, and reducing medical complications. While symbolic AI has been applied in healthcare, its adoption remains limited due to the effort required for constructing high-quality knowledge bases. This work introduces McCoy, a framework that combines Large Language Models (LLMs) with Answer Set Programming (ASP) to overcome this barrier. McCoy orchestrates an LLM to translate medical literature into ASP code, combines it with patient data, and processes it using an ASP solver to arrive at the final diagnosis. This integration yields a robust, interpretable prediction framework that leverages the strengths of both paradigms. Preliminary results show McCoy has strong performance on small-scale disease diagnosis tasks.
☆ Interactive Machine Learning: From Theory to Scale
Machine learning has achieved remarkable success across a wide range of applications, yet many of its most effective methods rely on access to large amounts of labeled data or extensive online interaction. In practice, acquiring high-quality labels and making decisions through trial-and-error can be expensive, time-consuming, or risky, particularly in large-scale or high-stakes settings. This dissertation studies interactive machine learning, in which the learner actively influences how information is collected or which actions are taken, using past observations to guide future interactions. We develop new algorithmic principles and establish fundamental limits for interactive learning along three dimensions: active learning with noisy data and rich model classes, sequential decision making with large action spaces, and model selection under partial feedback. Our results include the first computationally efficient active learning algorithms achieving exponential label savings without low-noise assumptions; the first efficient, general-purpose contextual bandit algorithms whose guarantees are independent of the size of the action space; and the first tight characterizations of the fundamental cost of model selection in sequential decision making. Overall, this dissertation advances the theoretical foundations of interactive learning by developing algorithms that are statistically optimal and computationally efficient, while also providing principled guidance for deploying interactive learning methods in large-scale, real-world settings.
comment: Updated Ph.D. dissertation (typos corrected; minor technical and structural revisions)
☆ A multimodal Transformer for InSAR-based ground deformation forecasting with cross-site generalization across Europe SP
Near-real-time regional-scale monitoring of ground deformation is increasingly required to support urban planning, critical infrastructure management, and natural hazard mitigation. While Interferometric Synthetic Aperture Radar (InSAR) and continental-scale services such as the European Ground Motion Service (EGMS) provide dense observations of past motion, predicting the next observation remains challenging due to the superposition of long-term trends, seasonal cycles, and occasional abrupt discontinuities (e.g., co-seismic steps), together with strong spatial heterogeneity. In this study we propose a multimodal patch-based Transformer for single-step, fixed-interval next-epoch nowcasting of displacement maps from EGMS time series (resampled to a 64x64 grid over 100 km x 100 km tiles). The model ingests recent displacement snapshots together with (i) static kinematic indicators (mean velocity, acceleration, seasonal amplitude) computed in a leakage-safe manner from the training window only, and (ii) harmonic day-of-year encodings. On the eastern Ireland tile (E32N34), the STGCN is strongest in the displacement-only setting, whereas the multimodal Transformer clearly outperforms CNN-LSTM, CNN-LSTM+Attn, and multimodal STGCN when all models receive the same multimodal inputs, achieving RMSE = 0.90 mm and $R^2$ = 0.97 on the test set with the best threshold accuracies.
comment: submitted to ISPRS Journal of Photogrammetry and Remote Sensing for review
♻ ☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison AAAI
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: v.1.1. AAAI Workshop on Reproducible Artificial Intelligence (RAI, https://reproducibleai.github.io) 2026, camera ready version. Model weights and intermediate training checkpoints are available at https://huggingface.co/collections/open-sci/open-sci-ref-001; code for reproducing training, evaluation and raw experiments data at https://github.com/LAION-AI/open-sci-ref-0.01
♻ ☆ Flowing from Reasoning to Motion: Learning 3D Hand Trajectory Prediction from Egocentric Human Interaction Videos
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.
comment: Project website: https://egoman-project.github.io
♻ ☆ FEDSTR: Money-In AI-Out | A Decentralized Marketplace for Federated Learning and LLM Training on the NOSTR Protocol
The NOSTR is a communication protocol for the social web, based on the w3c websockets standard. Although it is still in its infancy, it is well known as a social media protocol, with thousands of trusted users and multiple user interfaces, offering a unique experience and enormous capabilities. To name a few, the NOSTR applications include but are not limited to direct messaging, file sharing, audio/video streaming, collaborative writing, blogging and data processing through distributed AI directories. In this work, we propose an approach that builds upon the existing protocol structure with end goal a decentralized marketplace for federated learning and LLM training. In this proposed design there are two parties: on one side there are customers who provide a dataset that they want to use for training an AI model. On the other side, there are service providers, who receive (parts of) the dataset, train the AI model, and for a payment as an exchange, they return the optimized AI model. To demonstrate viability, we present a proof-of-concept implementation over public NOSTR relays. The decentralized and censorship resistant features of the NOSTR enable the possibility of designing a fair and open marketplace for training AI models and LLMs.
comment: 23 pages
♻ ☆ Multi-step retrieval and reasoning improves radiology question answering with large language models
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose radiology Retrieval and Reasoning (RaR), a multi-step retrieval and reasoning framework designed to improve diagnostic accuracy, factual consistency, and clinical reliability of LLMs in radiology question answering. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. RaR significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, RaR retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from RaR (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of RaR to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full RaR framework are publicly available to support open research and clinical translation.
comment: Published in npj Digital Medicine
♻ ☆ An Empirical Study of Methods for Small Object Detection from Satellite Imagery
This paper reviews object detection methods for finding small objects from remote sensing imagery and provides an empirical evaluation of four state-of-the-art methods to gain insights into method performance and technical challenges. In particular, we use car detection from urban satellite images and bee box detection from satellite images of agricultural lands as application scenarios. Drawing from the existing surveys and literature, we identify several top-performing methods for the empirical study. Public, high-resolution satellite image datasets are used in our experiments.
♻ ☆ KernelEvolve: Scaling Agentic Kernel Coding for Heterogeneous AI Accelerators at Meta
Making deep learning recommendation model (DLRM) training and inference fast and efficient is important. However, this presents three key system challenges - model architecture diversity, kernel primitive diversity, and hardware generation and architecture heterogeneity. This paper presents KernelEvolve-an agentic kernel coding framework-to tackle heterogeneity at-scale for DLRM. KernelEvolve is designed to take kernel specifications as input and automate the process of kernel generation and optimization for recommendation model across heterogeneous hardware architectures. KernelEvolve does so by operating at multiple programming abstractions, from Triton and CuTe DSL to low-level hardware agnostic languages, spanning the full hardware-software optimization stack. The kernel optimization process is described as graph-based search with selection policy, universal operator, fitness function, and termination rule, dynamically adapts to runtime execution context through retrieval-augmented prompt synthesis. We designed, implemented, and deployed KernelEvolve to optimize a wide variety of production recommendation models across generations of NVIDIA and AMD GPUs, as well as Meta's AI accelerators. We validate KernelEvolve on the publicly-available KernelBench suite, achieving 100% pass rate on all 250 problems across three difficulty levels, and 160 PyTorch ATen operators across three heterogeneous hardware platforms, demonstrating 100% correctness. KernelEvolve reduces development time from weeks to hours and achieves substantial performance improvements over PyTorch baselines across diverse production use cases and for heterogeneous AI systems at-scale. Beyond performance efficiency improvements, KernelEvolve significantly mitigates the programmability barrier for new AI hardware by enabling automated kernel generation for in-house developed AI hardware.
♻ ☆ Lagrangian Index Policy for Restless Bandits with Average Reward
We study the Lagrangian Index Policy (LIP) for restless multi-armed bandits with long-run average reward. In particular, we compare the performance of LIP with the performance of the Whittle Index Policy (WIP), both heuristic policies known to be asymptotically optimal under certain natural conditions. Even though in most cases their performances are very similar, in the cases when WIP shows bad performance, LIP continues to perform very well. We then propose reinforcement learning algorithms, both tabular and NN-based, to obtain online learning schemes for LIP in the model-free setting. The proposed reinforcement learning schemes for LIP require significantly less memory than the analogous schemes for WIP. We calculate analytically the Lagrangian index for the restart model, which applies to the optimal web crawling and the minimization of the weighted age of information. We also give a new proof of asymptotic optimality in case of homogeneous arms as the number of arms goes to infinity, based on exchangeability and de Finetti's theorem.
♻ ☆ Maxwell's Demon at Work: Efficient Pruning by Leveraging Saturation of Neurons
When training neural networks, dying neurons -- units becoming inactive or saturated -- are traditionally seen as harmful. This paper sheds new light on this phenomenon. By exploring the impact of various hyperparameter configurations on dying neurons during training, we gather insights on how to improve upon sparse training approaches to pruning. We introduce Demon Pruning (DemP), a method that controls the proliferation of dead neurons through a combination of noise injection on active units and a one-cycle schedule regularization strategy, dynamically leading to network sparsity. Experiments on CIFAR-10 and ImageNet datasets demonstrate that DemP outperforms existing dense-to-sparse structured pruning methods, achieving better accuracy-sparsity tradeoffs and accelerating training by up to 3.56$\times$. These findings provide a novel perspective on dying neurons as a resource for efficient model compression and optimization.
♻ ☆ Natural Language Processing for Tigrinya: Current State and Future Directions
Despite being spoken by millions of people, Tigrinya remains severely underrepresented in Natural Language Processing (NLP) research. This work presents a comprehensive survey of NLP research for Tigrinya, analyzing over 50 studies from 2011 to 2025. We systematically review the current state of computational resources, models, and applications across fifteen downstream tasks, including morphological processing, part-of-speech tagging, named entity recognition, machine translation, question-answering, speech recognition, and synthesis. Our analysis reveals a clear trajectory from foundational, rule-based systems to modern neural architectures, with progress consistently driven by milestones in resource creation. We identify key challenges rooted in Tigrinya's morphological properties and resource scarcity, and highlight promising research directions, including morphology-aware modeling, cross-lingual transfer, and community-centered resource development. This work serves both as a reference for researchers and as a roadmap for advancing Tigrinya NLP. An anthology of surveyed studies and resources is publicly available.
♻ ☆ On the limitation of evaluating machine unlearning using only a single training seed
Machine unlearning (MU) aims to remove the influence of certain data points from a trained model without costly retraining. Most practical MU algorithms are only approximate and their performance can only be assessed empirically. Care must therefore be taken to make empirical comparisons as representative as possible. A common practice is to run the MU algorithm multiple times independently starting from the same trained model. In this work, we demonstrate that this practice can give highly non-representative results because -- even for the same architecture and same dataset -- some MU methods can be highly sensitive to the choice of random number seed used for model training. We illustrate that this is particularly relevant for MU methods that are deterministic, i.e., which always produce the same result when started from the same trained model. We therefore recommend that empirical comparisons of MU algorithms should also reflect the variability across different model training seeds.
comment: mini paper, 2 figures
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the other model is significantly more capable). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 33 pages, 7 tables, 8 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ Transfer learning of state-based potential games for process optimization in decentralized manufacturing systems
This paper presents a novel online transfer learning approach in state-based potential games (TL-SbPGs) for distributed self-optimization in manufacturing systems. The approach targets practical industrial scenarios where knowledge sharing among similar players enhances learning in large-scale and decentralized environments. TL-SbPGs enable players to reuse learned policies from others, which improves learning outcomes and accelerates convergence. To accomplish this goal, we develop transfer learning concepts and similarity criteria for players, which offer two distinct settings: (a) predefined similarities between players and (b) dynamically inferred similarities between players during training. The applicability of the SbPG framework to transfer learning is formally established. Furthermore, we present a method to optimize the timing and weighting of knowledge transfer. Experimental results from a laboratory-scale testbed show that TL-SbPGs improve production efficiency and reduce power consumption compared to vanilla SbPGs.
comment: This revised pre-print was accepted in Computers in Industry in December 2025
♻ ☆ SoundnessBench: A Soundness Benchmark for Neural Network Verifiers
Neural network (NN) verification aims to formally verify properties of NNs, which is crucial for ensuring the behavior of NN-based models in safety-critical applications. In recent years, the community has developed many NN verifiers and benchmarks to evaluate them. However, existing benchmarks typically lack ground-truth for hard instances where no current verifier can verify the property and no counterexample can be found. This makes it difficult to validate the soundness of a verifier, when it claims verification on such challenging instances that no other verifier can handle. In this work, we develop a new benchmark for NN verification, named SoundnessBench, specifically for testing the soundness of NN verifiers. SoundnessBench consists of instances with deliberately inserted counterexamples that are hidden from adversarial attacks commonly used to find counterexamples. Thereby, it can identify false verification claims when hidden counterexamples are known to exist. We design a training method to produce NNs with hidden counterexamples and systematically construct our SoundnessBench with instances across various model architectures, activation functions, and input data. We demonstrate that our training effectively produces hidden counterexamples and our SoundnessBench successfully identifies bugs in state-of-the-art NN verifiers. Our code is available at https://github.com/mvp-harry/SoundnessBench and our dataset is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.
comment: TMLR (December 2025)
♻ ☆ ATLAS: Artifact Generation Through Layered Constraints and LLM x MDE Synergy
ATLAS unifies Large Language Models with Model-Driven Engineering to generate regulator-ready artifacts and machine-checkable evidence for safety- and compliance-critical domains. ATLAS integrates three pillars: a Unified Meta-Model (UMM) reconciles heterogeneous schemas and regulatory text into a single semantic space; an Integrated Constraint Model (ICM) extends our prior Dual-Stage(S2D2) extraction logic to compile layered requirements into deterministic generation-time automata (Layer~1) and post-generation validators (Layer~2); and Constraint-Guided Verifiable Generation (CVG) applies these through two-layer enforcement -- Layer~1 structural constraints drive prefix-safe decoding while Layer~2 semantic/logical validation produces machine-checkable certificates. When violations occur, ATLAS performs audit-guided repair and records generation traces for compliance review. We evaluate ATLAS in automotive software engineering (AUTOSAR) and cross-border legal jurisdiction (Brussels~I~bis). ATLAS produces structurally valid, auditable artifacts that integrate with existing tooling and substantially reduce manual remediation effort, validating a graduated automation paradigm that automates routine construction while empowering experts to resolve complex semantic ambiguities through machine-checkable evidence.
comment: 45 pages, 9 figures
♻ ☆ Tazza: Shuffling Neural Network Parameters for Secure and Private Federated Learning
Federated learning enables decentralized model training without sharing raw data, preserving data privacy. However, its vulnerability towards critical security threats, such as gradient inversion and model poisoning by malicious clients, remain unresolved. Existing solutions often address these issues separately, sacrificing either system robustness or model accuracy. This work introduces Tazza, a secure and efficient federated learning framework that simultaneously addresses both challenges. By leveraging the permutation equivariance and invariance properties of neural networks via weight shuffling and shuffled model validation, Tazza enhances resilience against diverse poisoning attacks, while ensuring data confidentiality and high model accuracy. Comprehensive evaluations on various datasets and embedded platforms show that Tazza achieves robust defense with up to 6.7x improved computational efficiency compared to alternative schemes, without compromising performance.
comment: 15 pages, 16 figures
♻ ☆ SuperiorGAT: Graph Attention Networks for Sparse LiDAR Point Cloud Reconstruction in Autonomous Systems
LiDAR-based perception in autonomous systems is constrained by fixed vertical beam resolution and further compromised by beam dropout resulting from environmental occlusions. This paper introduces SuperiorGAT, a graph attention-based framework designed to reconstruct missing elevation information in sparse LiDAR point clouds. By modeling LiDAR scans as beam-aware graphs and incorporating gated residual fusion with feed-forward refinement, SuperiorGAT enables accurate reconstruction without increasing network depth. To evaluate performance, structured beam dropout is simulated by removing every fourth vertical scanning beam. Extensive experiments across diverse KITTI environments, including Person, Road, Campus, and City sequences, demonstrate that SuperiorGAT consistently achieves lower reconstruction error and improved geometric consistency compared to PointNet-based models and deeper GAT baselines. Qualitative X-Z projections further confirm the model's ability to preserve structural integrity with minimal vertical distortion. These results suggest that architectural refinement offers a computationally efficient method for improving LiDAR resolution without requiring additional sensor hardware.
♻ ☆ ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts ICML 2025
Parameter-efficient fine-tuning (PEFT) techniques such as low-rank adaptation (LoRA) can effectively adapt large pre-trained foundation models to downstream tasks using only a small fraction (0.1%-10%) of the original trainable weights. An under-explored question of PEFT is in extending the pre-training phase without supervised labels; that is, can we adapt a pre-trained foundation model to a new domain via efficient self-supervised pre-training on this domain? In this work, we introduce ExPLoRA, a highly effective technique to improve transfer learning of pre-trained vision transformers (ViTs) under domain shifts. Initializing a ViT with pre-trained weights on large, natural-image datasets such as from DinoV2 or MAE, ExPLoRA continues the unsupervised pre-training objective on a new domain, unfreezing 1-2 pre-trained ViT blocks and tuning all other layers with LoRA. We then fine-tune the resulting model only with LoRA on this new domain for supervised learning. Our experiments demonstrate state-of-the-art results on satellite imagery, even outperforming fully pre-training and fine-tuning ViTs. Using the DinoV2 training objective, we demonstrate up to 8% improvement in linear probing top-1 accuracy on downstream tasks while using <10% of the number of parameters that are used in prior fully-tuned state-of-the-art approaches. Our ablation studies confirm the efficacy of our approach over other baselines such as PEFT. Code is available on the project website: https://samar-khanna.github.io/ExPLoRA/
comment: Published at ICML 2025
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
comment: This paper has been accepted and presented at the 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy 2025). Published version is available at https://proceedings.mlr.press/v284/karabulut25a.html
♻ ☆ RxnBench: A Multimodal Benchmark for Evaluating Large Language Models on Chemical Reaction Understanding from Scientific Literature
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
♻ ☆ InSPO: Unlocking Intrinsic Self-Reflection for LLM Preference Optimization
Direct Preference Optimization (DPO) and its variants have become standard for aligning Large Language Models due to their simplicity and offline stability. However, we identify two fundamental limitations. First, the optimal policy depends on arbitrary modeling choices (scalarization function, reference policy), yielding behavior reflecting parameterization artifacts rather than true preferences. Second, treating response generation in isolation fails to leverage comparative information in pairwise data, leaving the model's capacity for intrinsic self-reflection untapped. To address it, we propose Intrinsic Self-reflective Preference Optimization (InSPO), deriving a globally optimal policy conditioning on both context and alternative responses. We prove this formulation superior to DPO/RLHF while guaranteeing invariance to scalarization and reference choices. InSPO serves as a plug-and-play enhancement without architectural changes or inference overhead. Experiments demonstrate consistent improvements in win rates and length-controlled metrics, validating that unlocking self-reflection yields more robust, human-aligned LLMs.
♻ ☆ Are Biological Systems More Intelligent Than Artificial Intelligence?
Are biological self-organising systems more `intelligent' than artificial intelligence (AI)? If so, why? I explore this through a mathematical lens which frames intelligence in terms of adaptability. I model systems as stacks of abstraction layers (\emph{Stack Theory}) and compare them by how they delegate agentic control down their stacks, illustrating with examples of computational, biological, human military, governmental and economic systems. Contemporary AI rests on a static, human-engineered stack in which lower layers are static during deployment. Put provocatively, static stacks resemble inflexible bureaucracies, adapting only top-down. Biological stacks are more `intelligent' because they delegate adaptation. Formally, I prove a theorem (\emph{The Law of the Stack}) showing adaptability in higher layers requires sufficient adaptability in lower layers. Generalising bio-electric explanations of cancer as isolation from collective informational structures, I explore how cancer-like failures occur in non-biological systems when delegation is inadequate. This helps explain how to build more robust systems, by delegating control like the military doctrine of mission command. It also provides a design perspective on hybrid agents (e.g. organoids, systems involving both humans and AI): hybrid creation is a boundary-condition design problem in which human-imposed constraints prune low-level policy spaces to yield desired collective behaviour while preserving collective identity.
comment: Definitions shared with arXiv:2404.07227, arXiv:2302.00843
♻ ☆ UniHetero: Could Generation Enhance Understanding for Vision-Language-Model at Large Data Scale?
Vision-language large models are moving toward the unification of visual understanding and visual generation tasks. However, whether generation can enhance understanding is still under-explored on large data scale. In this work, we analysis the unified structure with a concise model, UniHetero, under large-scale pretraining (>200M samples). Our key observations are: (1) Generation can improve understanding, but Only if you generate Semantics, Not Pixels. A common assumption in unified vision-language models is that adding generation will naturally strengthen understanding. However, this is not always true at scale. At 200M+ pretraining samples, generation helps understanding only when it operates at the semantic level, i.e. when the model learns to autoregress high-level visual representations inside the LLM. Once pixel-level objectives (e.g., diffusion losses) directly interfere with the LLM, understanding performance often degrades. (2) Generation reveals a superior Data Scaling trend and higher Data Utilization. Unified generation-understanding demonstrates a superior scaling trend compared to understanding alone, revealing a more effective way to learn vision-only knowledge directive from vision modality rather than captioning to text. (3) Autoregression on Input Embedding is effective to capture visual details. Compared to the commonly-used vision encoder, make visual autoregression on input embedding shows less cumulative error and is modality independent, which can be extend to all modalities. The learned semantic representations capture visual information such as objects, locations, shapes, and colors; further enable pixel-level image generation.
♻ ☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Codebase: https://github.com/OpenSenseNova/SenseNova-SI ; Models: https://huggingface.co/collections/sensenova/sensenova-si
♻ ☆ Deep Reinforcement Learning Optimization for Uncertain Nonlinear Systems via Event-Triggered Robust Adaptive Dynamic Programming
This work proposes a unified control architecture that couples a Reinforcement Learning (RL)-driven controller with a disturbance-rejection Extended State Observer (ESO), complemented by an Event-Triggered Mechanism (ETM) to limit unnecessary computations. The ESO is utilized to estimate the system states and the lumped disturbance in real time, forming the foundation for effective disturbance compensation. To obtain near-optimal behavior without an accurate system description, a value-iteration-based Adaptive Dynamic Programming (ADP) method is adopted for policy approximation. The inclusion of the ETM ensures that parameter updates of the learning module are executed only when the state deviation surpasses a predefined bound, thereby preventing excessive learning activity and substantially reducing computational load. A Lyapunov-oriented analysis is used to characterize the stability properties of the resulting closed-loop system. Numerical experiments further confirm that the developed approach maintains strong control performance and disturbance tolerance, while achieving a significant reduction in sampling and processing effort compared with standard time-triggered ADP schemes.
comment: 9 pages, 9 figures
♻ ☆ Structuring Concept Space with the Musical Circle of Fifths by Utilizing Music Grammar Based Activations
We propose a neural coding framework harmonic toroidal codes in which abstract cognitive operations are implemented through dynamical activity on manifolds derived from music theoretic structures.
comment: Inaccuracies in script
♻ ☆ LTLBench: Towards Benchmarks for Evaluating Temporal Logic Reasoning in Large Language Models
Temporal Reasoning (TR) is a critical ability for LLMs to understand and reason over temporal information and relationships between events. To study the TR ability in LLMs, prior works provide different ways for evaluating various aspects of TR ability. In this work, we propose an alternative perspective for evaluating TR ability by leveraging Linear Temporal Logic (LTL), and develop a pipeline to automatically synthesize challenges for assessing the TR ability of LLMs. Based on this pipeline, we construct a dataset, namely \LTL, consisting of $2000$ TR challenges, and benchmark 12 LLMs across 5 different methods. Furthermore, we conduct additional experiments to investigate the impact of increasing the number of formula operators and events on both LLM performance and the complexity of TR problems. We also perform qualitative analyses of their reasoning processes and the effects of varying the number of events and formula operators, which reveal 3 main issues in their temporal reasoning processes and the unexpected performance changes observed as problem complexity increases. We expect this work to provide valuable insights into the TR ability of LLMs.
♻ ☆ Hear: Hierarchically Enhanced Aesthetic Representations For Multidimensional Music Evaluation
Evaluating song aesthetics is challenging due to the multidimensional nature of musical perception and the scarcity of labeled data. We propose HEAR, a robust music aesthetic evaluation framework that combines: (1) a multi-source multi-scale representations module to obtain complementary segment- and track-level features, (2) a hierarchical augmentation strategy to mitigate overfitting, and (3) a hybrid training objective that integrates regression and ranking losses for accurate scoring and reliable top-tier song identification. Experiments demonstrate that HEAR consistently outperforms the baseline across all metrics on both tracks of the ICASSP 2026 SongEval benchmark. The code and trained model weights are available at https://github.com/Eps-Acoustic-Revolution-Lab/EAR_HEAR.
♻ ☆ AUDRON: A Deep Learning Framework with Fused Acoustic Signatures for Drone Type Recognition IEEE 22
Unmanned aerial vehicles (UAVs), commonly known as drones, are increasingly used across diverse domains, including logistics, agriculture, surveillance, and defense. While these systems provide numerous benefits, their misuse raises safety and security concerns, making effective detection mechanisms essential. Acoustic sensing offers a low-cost and non-intrusive alternative to vision or radar-based detection, as drone propellers generate distinctive sound patterns. This study introduces AUDRON (AUdio-based Drone Recognition Network), a hybrid deep learning framework for drone sound detection, employing a combination of Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform (STFT) spectrograms processed with convolutional neural networks (CNNs), recurrent layers for temporal modeling, and autoencoder-based representations. Feature-level fusion integrates complementary information before classification. Experimental evaluation demonstrates that AUDRON effectively differentiates drone acoustic signatures from background noise, achieving high accuracy while maintaining generalizability across varying conditions. AUDRON achieves 98.51 percent and 97.11 percent accuracy in binary and multiclass classification. The results highlight the advantage of combining multiple feature representations with deep learning for reliable acoustic drone detection, suggesting the framework's potential for deployment in security and surveillance applications where visual or radar sensing may be limited.
comment: Presented at the 2025 IEEE 22nd India Council International Conference (INDICON). 6 pages, 3 figures
♻ ☆ A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
comment: Accepted to IJCNLP-AACl 2025
♻ ☆ Lattice: Learning to Efficiently Compress the Memory
Attention mechanisms have revolutionized sequence learning but suffer from quadratic computational complexity. This paper introduces \model, a novel recurrent neural network (RNN) mechanism that leverages the inherent low-rank structure of K-V matrices to efficiently compress the cache into a fixed number of memory slots, achieving sub-quadratic complexity. We formulate this compression as an online optimization problem and derive a dynamic memory update rule based on a single gradient descent step. The resulting recurrence features a state- and input-dependent gating mechanism, offering an interpretable memory update process. The core innovation is the orthogonal update: each memory slot is updated exclusively with information orthogonal to its current state, hence incorporating only novel, non-redundant data to minimize interference with previously stored information. We derive an efficient computation for this orthogonal update rule and further approximate it with chunk-wise parallelization to ensure training scalability. Empirically, Lattice outperforms strong baselines on language modeling and associative recall tasks across diverse context lengths and model sizes, achieving superior memory efficiency with significantly reduced memory sizes.
♻ ☆ SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models CIKM'25
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
comment: 9 pages, 5 figures. This paper was presented at the CIKM'25 Workshop on Small and Efficient Large Language Models for Knowledge Extraction
♻ ☆ Improving Reliability and Explainability of Medical Question Answering through Atomic Fact Checking in Retrieval-Augmented LLMs
Large language models (LLMs) exhibit extensive medical knowledge but are prone to hallucinations and inaccurate citations, which pose a challenge to their clinical adoption and regulatory compliance. Current methods, such as Retrieval Augmented Generation, partially address these issues by grounding answers in source documents, but hallucinations and low fact-level explainability persist. In this work, we introduce a novel atomic fact-checking framework designed to enhance the reliability and explainability of LLMs used in medical long-form question answering. This method decomposes LLM-generated responses into discrete, verifiable units called atomic facts, each of which is independently verified against an authoritative knowledge base of medical guidelines. This approach enables targeted correction of errors and direct tracing to source literature, thereby improving the factual accuracy and explainability of medical Q&A. Extensive evaluation using multi-reader assessments by medical experts and an automated open Q&A benchmark demonstrated significant improvements in factual accuracy and explainability. Our framework achieved up to a 40% overall answer improvement and a 50% hallucination detection rate. The ability to trace each atomic fact back to the most relevant chunks from the database provides a granular, transparent explanation of the generated responses, addressing a major gap in current medical AI applications. This work represents a crucial step towards more trustworthy and reliable clinical applications of LLMs, addressing key prerequisites for clinical application and fostering greater confidence in AI-assisted healthcare.
comment: 18 pages, 7 figures and tables
♻ ☆ Generalising Traffic Forecasting to Regions without Traffic Observations AAAI 2026
Traffic forecasting is essential for intelligent transportation systems. Accurate forecasting relies on continuous observations collected by traffic sensors. However, due to high deployment and maintenance costs, not all regions are equipped with such sensors. This paper aims to forecast for regions without traffic sensors, where the lack of historical traffic observations challenges the generalisability of existing models. We propose a model named GenCast, the core idea of which is to exploit external knowledge to compensate for the missing observations and to enhance generalisation. We integrate physics-informed neural networks into GenCast, enabling physical principles to regularise the learning process. We introduce an external signal learning module to explore correlations between traffic states and external signals such as weather conditions, further improving model generalisability. Additionally, we design a spatial grouping module to filter localised features that hinder model generalisability. Extensive experiments show that GenCast consistently reduces forecasting errors on multiple real-world datasets.
comment: Accepted by AAAI 2026
♻ ☆ A Systematic Survey on Large Language Models for Algorithm Design
Algorithm design is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and promising solutions. In just a few years, this integration has yielded remarkable progress in areas ranging from combinatorial optimization to scientific discovery. Despite this rapid expansion, a holistic understanding of the field is hindered by the lack of a systematic review, as existing surveys either remain limited to narrow sub-fields or with different objectives. This paper seeks to provide a systematic review of algorithm design with LLMs. We introduce a taxonomy that categorises the roles of LLMs as optimizers, predictors, extractors and designers, analyzing the progress, advantages, and limitations within each category. We further synthesize literature across the three phases of the algorithm design pipeline and across diverse algorithmic applications that define the current landscape. Finally, we outline key open challenges and opportunities to guide future research.
♻ ☆ MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: 21 pages, 13 figures
♻ ☆ Benchmarking LLMs for Fine-Grained Code Review with Enriched Context in Practice
Code review is a cornerstone of software quality assurance, and recent advances in Large Language Models (LLMs) have shown promise in its automation. However, existing benchmarks for LLM-based code review face three major limitations. Lack of semantic context: most benchmarks provide only code diffs without textual information such as issue descriptions, which are crucial for understanding developer intent. Data quality issues: without rigorous validation, many samples are noisy-e.g., reviews on outdated or irrelevant code-reducing evaluation reliability. Coarse granularity: most benchmarks operate at the file or commit level, overlooking the fine-grained, line-level reasoning essential for precise review. We introduce ContextCRBench, a high-quality, context-rich benchmark for fine-grained LLM evaluation in code review. Our construction pipeline comprises: Raw Data Crawling, collecting 153.7K issues and pull requests from top-tier repositories; Comprehensive Context Extraction, linking issue-PR pairs for textual context and extracting the full surrounding function or class for code context; and Multi-stage Data Filtering, combining rule-based and LLM-based validation to remove outdated, malformed, or low-value samples, resulting in 67,910 context-enriched entries. ContextCRBench supports three evaluation scenarios aligned with the review workflow: hunk-level quality assessment, line-level defect localization, and line-level comment generation. Evaluating eight leading LLMs (four closed-source and four open-source) reveals that textual context yields greater performance gains than code context alone, while current LLMs remain far from human-level review ability. Deployed at ByteDance, ContextCRBench drives a self-evolving code review system, improving performance by 61.98% and demonstrating its robustness and industrial utility. https://github.com/kinesiatricssxilm14/ContextCRBench.
♻ ☆ RAJ-PGA: Reasoning-Activated Jailbreak and Principle-Guided Alignment Framework for Large Reasoning Models
Large Reasoning Models (LRMs) face a distinct safety vulnerability: their internal reasoning chains may generate harmful content even when the final output appears benign. To address this overlooked risk, we first propose a novel attack paradigm, Reasoning-Activated Jailbreak (RAJ) via Concretization, which demonstrates that refining malicious prompts to be more specific can trigger step-by-step logical reasoning that overrides the model's safety protocols. To systematically mitigate this vulnerability, we further develop a scalable framework for constructing high-quality safety alignment datasets. This framework first leverages the RAJ attack to elicit challenging harmful reasoning chains from LRMs, then transforms these high-risk traces into safe, constructive, and educational responses through a tailored Principle-Guided Alignment (PGA) mechanism. Then, we introduce the PGA dataset, a verified alignment dataset containing 3,989 samples using our proposed method. Extensive experiments show that fine-tuning LRMs with PGA dataset significantly enhances model safety, achieving up to a 29.5% improvement in defense success rates across multiple jailbreak benchmarks. Critically, our approach not only defends against sophisticated reasoning-based attacks but also preserves, even enhances, the model's general reasoning capabilities. This work provides a scalable and effective pathway for safety alignment in reasoning-intensive AI systems, addressing the core trade-off between safety and functional performance.
comment: 12 pages, 6 figures
♻ ☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining NeurIPS 2025
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
comment: NeurIPS 2025 poster
♻ ☆ RAST: A Retrieval Augmented Spatio-Temporal Framework for Traffic Prediction AAAI 2026
Traffic prediction is a cornerstone of modern intelligent transportation systems and a critical task in spatio-temporal forecasting. Although advanced Spatio-temporal Graph Neural Networks (STGNNs) and pre-trained models have achieved significant progress in traffic prediction, two key challenges remain: (i) limited contextual capacity when modeling complex spatio-temporal dependencies, and (ii) low predictability at fine-grained spatio-temporal points due to heterogeneous patterns. Inspired by Retrieval-Augmented Generation (RAG), we propose RAST, a universal framework that integrates retrieval-augmented mechanisms with spatio-temporal modeling to address these challenges. Our framework consists of three key designs: 1) Decoupled Encoder and Query Generator to capture decoupled spatial and temporal features and construct a fusion query via residual fusion; 2) Spatio-temporal Retrieval Store and Retrievers to maintain and retrieve vectorized fine-grained patterns; and 3) Universal Backbone Predictor that flexibly accommodates pre-trained STGNNs or simple MLP predictors. Extensive experiments on six real-world traffic networks, including large-scale datasets, demonstrate that RAST achieves superior performance while maintaining computational efficiency.
comment: Accepted by AAAI 2026 (AI for Social Impact)
♻ ☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) extends automatic machine translation (MT) evaluation by localizing translation errors and labeling their severity. Current generative ESD methods typically use Maximum a Posteriori (MAP) decoding, assuming that the model-estimated probabilities are perfectly correlated with similarity to the human annotation, but we often observe higher likelihood assigned to an incorrect annotation than to the human one. We instead apply Minimum Bayes Risk (MBR) decoding to generative ESD. We use a sentence- or span-level similarity function for MBR decoding, which selects candidate hypotheses based on their approximate similarity to the human annotation. Experimental results on the WMT24 Metrics Shared Task show that MBR decoding significantly improves span-level performance and generally matches or outperforms MAP at the system and sentence levels. To reduce the computational cost of MBR decoding, we further distill its decisions into a model decoded via greedy search, removing the inference-time latency bottleneck.
♻ ☆ ITDR: An Instruction Tuning Dataset for Enhancing Large Language Models in Recommendations
Large language models (LLMs) have demonstrated outstanding performance in natural language processing tasks. However, in the field of recommender systems, due to the inherent structural discrepancy between user behavior data and natural language, LLMs struggle to effectively model the associations between user preferences and items. Although prompt-based methods can generate recommendation results, their inadequate understanding of recommendation tasks leads to constrained performance. To address this gap, we construct a comprehensive instruction tuning dataset, ITDR, which encompasses seven subtasks across two root tasks: user-item interaction and user-item understanding. The dataset integrates data from 13 public recommendation datasets and is built using manually crafted standardized templates, comprising approximately 200,000 instances. Experimental results demonstrate that ITDR significantly enhances the performance of mainstream open-source LLMs such as GLM-4, Qwen2.5, Qwen2.5-Instruct and LLaMA-3.2 on recommendation tasks. Furthermore, we analyze the correlations between tasks and explore the impact of task descriptions and data scale on instruction tuning effectiveness. Finally, we perform comparative experiments against closed-source LLMs with massive parameters. Our tuning dataset ITDR, the fine-tuned large recommendation models, all LoRA modules, and the complete experimental results are available at https://github.com/hellolzk/ITDR.
♻ ☆ In-N-Out: A Parameter-Level API Graph Dataset for Tool Agents
Tool agents--LLM-based systems that interact with external APIs--offer a way to execute real-world tasks. However, as tasks become increasingly complex, these agents struggle to identify and call the correct APIs in the proper order. To tackle this problem, we investigate converting API documentation into a structured API graph that captures API dependencies and leveraging it for multi-tool queries that require compositional API calls. To support this, we introduce In-N-Out, the first expert-annotated dataset of API graphs built from two real-world API benchmarks and their documentation. Using In-N-Out significantly improves performance on both tool retrieval and multi-tool query generation, nearly doubling that of LLMs using documentation alone. Moreover, graphs generated by models fine-tuned on In-N-Out close 90% of this gap, showing that our dataset helps models learn to comprehend API documentation and parameter relationships. Our findings highlight the promise of using explicit API graphs for tool agents and the utility of In-N-Out as a valuable resource. We release our dataset and code at https://github.com/holi-lab/In-N-Out-API-Graph.
♻ ☆ CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems
Multi-modal learning has emerged as a key technique for improving performance across domains such as autonomous driving, robotics, and reasoning. However, in certain scenarios, particularly in resource-constrained environments, some modalities available during training may be absent during inference. While existing frameworks effectively utilize multiple data sources during training and enable inference with reduced modalities, they are primarily designed for single-agent settings. This poses a critical limitation in dynamic environments such as connected autonomous vehicles (CAV), where incomplete data coverage can lead to decision-making blind spots. Conversely, some works explore multi-agent collaboration but without addressing missing modality at test time. To overcome these limitations, we propose Collaborative Auxiliary Modality Learning (CAML), a novel multi-modal multi-agent framework that enables agents to collaborate and share multi-modal data during training, while allowing inference with reduced modalities during testing. Experimental results in collaborative decision-making for CAV in accident-prone scenarios demonstrate that CAML achieves up to a 58.1% improvement in accident detection. Additionally, we validate CAML on real-world aerial-ground robot data for collaborative semantic segmentation, achieving up to a 10.6% improvement in mIoU.
♻ ☆ Do LLMs Understand Collaborative Signals? Diagnosis and Repair
Collaborative information from user-item interactions is a fundamental source of signal in successful recommender systems. Recently, researchers have attempted to incorporate this knowledge into large language model-based recommender approaches (LLMRec) to enhance their performance. However, there has been little fundamental analysis of whether LLMs can effectively reason over collaborative information. In this paper, we analyze the ability of LLMs to reason about collaborative information in recommendation tasks, comparing their performance to traditional matrix factorization (MF) models. We propose a simple and effective method to improve LLMs' reasoning capabilities using retrieval-augmented generation (RAG) over the user-item interaction matrix with four different prompting strategies. Our results show that the LLM outperforms the MF model whenever we provide relevant information in a clear and easy-to-follow format, and prompt the LLM to reason based on it. We observe that with this strategy, in almost all cases, the more information we provide, the better the LLM performs.
♻ ☆ Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo, at https://github.com/FunAudioLLM/Fun-Audio-Chat .
comment: Authors are listed in alphabetical order, 21 pages, open-source at https://github.com/FunAudioLLM/Fun-Audio-Chat
♻ ☆ STRelay: A Universal Spatio-Temporal Relaying Framework for Location Prediction over Human Trajectory Data
Next location prediction is a critical task in human mobility modeling, enabling applications like travel planning and urban mobility management. Existing methods mainly rely on historical spatiotemporal trajectory data to train sequence models that directly forecast future locations. However, they often overlook the importance of the future spatiotemporal contexts, which are highly informative for the future locations. For example, knowing how much time and distance a user will travel could serve as a critical clue for predicting the user's next location. Against this background, we propose \textbf{STRelay}, a universal \textbf{\underline{S}}patio\textbf{\underline{T}}emporal \textbf{\underline{Relay}}ing framework explicitly modeling the future spatiotemporal context given a human trajectory, to boost the performance of different location prediction models. Specifically, STRelay models future spatiotemporal contexts in a relaying manner, which is subsequently integrated with the encoded historical representation from a base location prediction model, enabling multi-task learning by simultaneously predicting the next time interval, next moving distance interval, and finally the next location. We evaluate STRelay integrated with five state-of-the-art location prediction base models on four real-world trajectory datasets. Results demonstrate that STRelay consistently improves prediction performance across all cases by 2.49\%-11.30\%. Additionally, we find that the future spatiotemporal contexts are particularly helpful for entertainment-related locations and also for user groups who prefer traveling longer distances. The performance gain on such non-daily-routine activities, which often suffer from higher uncertainty, is indeed complementary to the base location prediction models that often excel at modeling regular daily routine patterns.
♻ ☆ Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
♻ ☆ Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
comment: Added appendices and updated literature review
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ Benchmark of Segmentation Techniques for Pelvic Fracture in CT and X-ray: Summary of the PENGWIN 2024 Challenge
The segmentation of pelvic fracture fragments in CT and X-ray images is crucial for trauma diagnosis, surgical planning, and intraoperative guidance. However, accurately and efficiently delineating the bone fragments remains a significant challenge due to complex anatomy and imaging limitations. The PENGWIN challenge, organized as a MICCAI 2024 satellite event, aimed to advance automated fracture segmentation by benchmarking state-of-the-art algorithms on these complex tasks. A diverse dataset of 150 CT scans was collected from multiple clinical centers, and a large set of simulated X-ray images was generated using the DeepDRR method. Final submissions from 16 teams worldwide were evaluated under a rigorous multi-metric testing scheme. The top-performing CT algorithm achieved an average fragment-wise intersection over union (IoU) of 0.930, demonstrating satisfactory accuracy. However, in the X-ray task, the best algorithm achieved an IoU of 0.774, which is promising but not yet sufficient for intra-operative decision-making, reflecting the inherent challenges of fragment overlap in projection imaging. Beyond the quantitative evaluation, the challenge revealed methodological diversity in algorithm design. Variations in instance representation, such as primary-secondary classification versus boundary-core separation, led to differing segmentation strategies. Despite promising results, the challenge also exposed inherent uncertainties in fragment definition, particularly in cases of incomplete fractures. These findings suggest that interactive segmentation approaches, integrating human decision-making with task-relevant information, may be essential for improving model reliability and clinical applicability.
comment: PENGWIN 2024 Challenge Report
♻ ☆ Adversarial Reinforcement Learning Framework for ESP Cheater Simulation
Extra-Sensory Perception (ESP) cheats, which reveal hidden in-game information such as enemy locations, are difficult to detect because their effects are not directly observable in player behavior. The lack of observable evidence makes it difficult to collect reliably labeled data, which is essential for training effective anti-cheat systems. Furthermore, cheaters often adapt their behavior by limiting or disguising their cheat usage, which further complicates detection and detector development. To address these challenges, we propose a simulation framework for controlled modeling of ESP cheaters, non-cheaters, and trajectory-based detectors. We model cheaters and non-cheaters as reinforcement learning agents with different levels of observability, while detectors classify their behavioral trajectories. Next, we formulate the interaction between the cheater and the detector as an adversarial game, allowing both players to co-adapt over time. To reflect realistic cheater strategies, we introduce a structured cheater model that dynamically switches between cheating and non-cheating behaviors based on detection risk. Experiments demonstrate that our framework successfully simulates adaptive cheater behaviors that strategically balance reward optimization and detection evasion. This work provides a controllable and extensible platform for studying adaptive cheating behaviors and developing effective cheat detectors.
♻ ☆ SciEvalKit: An Open-source Evaluation Toolkit for Scientific General Intelligence
We introduce SciEvalKit, a unified benchmarking toolkit designed to evaluate AI models for science across a broad range of scientific disciplines and task capabilities. Unlike general-purpose evaluation platforms, SciEvalKit focuses on the core competencies of scientific intelligence, including Scientific Multimodal Perception, Scientific Multimodal Reasoning, Scientific Multimodal Understanding, Scientific Symbolic Reasoning, Scientific Code Generation, Science Hypothesis Generation and Scientific Knowledge Understanding. It supports six major scientific domains, spanning from physics and chemistry to astronomy and materials science. SciEvalKit builds a foundation of expert-grade scientific benchmarks, curated from real-world, domain-specific datasets, ensuring that tasks reflect authentic scientific challenges. The toolkit features a flexible, extensible evaluation pipeline that enables batch evaluation across models and datasets, supports custom model and dataset integration, and provides transparent, reproducible, and comparable results. By bridging capability-based evaluation and disciplinary diversity, SciEvalKit offers a standardized yet customizable infrastructure to benchmark the next generation of scientific foundation models and intelligent agents. The toolkit is open-sourced and actively maintained to foster community-driven development and progress in AI4Science.
♻ ☆ Information Physics of Intelligence: Unifying Logical Depth and Entropy under Thermodynamic Constraints
The rapid scaling of artificial intelligence models has revealed a fundamental tension between model capacity (storage) and inference efficiency (computation). While classical information theory focuses on transmission and storage limits, it lacks a unified physical framework to quantify the thermodynamic costs of generating information from compressed laws versus retrieving it from memory. In this paper, we propose a theoretical framework that treats information processing as an enabling mapping from ontological states to carrier states. We introduce a novel metric, Derivation Entropy, which quantifies the effective work required to compute a target state from a given logical depth. By analyzing the interplay between Shannon entropy (storage) and computational complexity (time/energy), we demonstrate the existence of a critical phase transition point. Below this threshold, memory retrieval is thermodynamically favorable; above it, generative computation becomes the optimal strategy. This "Energy-Time-Space" conservation law provides a physical explanation for the efficiency of generative models and offers a rigorous mathematical bound for designing next-generation, energy-efficient AI architectures. Our findings suggest that the minimization of Derivation Entropy is a governing principle for the evolution of both biological and artificial intelligence.
Computation and Language 65
☆ Paragraph Segmentation Revisited: Towards a Standard Task for Structuring Speech
Automatic speech transcripts are often delivered as unstructured word streams that impede readability and repurposing. We recast paragraph segmentation as the missing structuring step and fill three gaps at the intersection of speech processing and text segmentation. First, we establish TEDPara (human-annotated TED talks) and YTSegPara (YouTube videos with synthetic labels) as the first benchmarks for the paragraph segmentation task. The benchmarks focus on the underexplored speech domain, where paragraph segmentation has traditionally not been part of post-processing, while also contributing to the wider text segmentation field, which still lacks robust and naturalistic benchmarks. Second, we propose a constrained-decoding formulation that lets large language models insert paragraph breaks while preserving the original transcript, enabling faithful, sentence-aligned evaluation. Third, we show that a compact model (MiniSeg) attains state-of-the-art accuracy and, when extended hierarchically, jointly predicts chapters and paragraphs with minimal computational cost. Together, our resources and methods establish paragraph segmentation as a standardized, practical task in speech processing.
☆ IELTS Writing Revision Platform with Automated Essay Scoring and Adaptive Feedback
This paper presents the design, development, and evaluation of a proposed revision platform assisting candidates for the International English Language Testing System (IELTS) writing exam. Traditional IELTS preparation methods lack personalised feedback, catered to the IELTS writing rubric. To address these shortcomings, the platform features an attractive user interface (UI), an Automated Essay Scoring system (AES), and targeted feedback tailored to candidates and the IELTS writing rubric. The platform architecture separates conversational guidance from a dedicated writing interface to reduce cognitive load and simulate exam conditions. Through iterative, Design-Based Research (DBR) cycles, the study progressed from rule-based to transformer-based with a regression head scoring, mounted with adaptive feedback. Early cycles (2-3) revealed fundamental limitations of rule-based approaches: mid-band compression, low accuracy, and negative $R^2$ values. DBR Cycle 4 implemented a DistilBERT transformer model with a regression head, yielding substantial improvements with MAE of 0.66 and positive $R^2$. This enabled Cycle 5's adaptive feedback implementation, which demonstrated statistically significant score improvements (mean +0.060 bands, p = 0.011, Cohen's d = 0.504), though effectiveness varied by revision strategy. Findings suggest automated feedback functions are most suited as a supplement to human instruction, with conservative surface-level corrections proving more reliable than aggressive structural interventions for IELTS preparation contexts. Challenges remain in assessing higher-band essays, and future work should incorporate longitudinal studies with real IELTS candidates and validation from official examiners.
☆ Cleaning English Abstracts of Scientific Publications
Scientific abstracts are often used as proxies for the content and thematic focus of research publications. However, a significant share of published abstracts contains extraneous information-such as publisher copyright statements, section headings, author notes, registrations, and bibliometric or bibliographic metadata-that can distort downstream analyses, particularly those involving document similarity or textual embeddings. We introduce an open-source, easy-to-integrate language model designed to clean English-language scientific abstracts by automatically identifying and removing such clutter. We demonstrate that our model is both conservative and precise, alters similarity rankings of cleaned abstracts and improves information content of standard-length embeddings.
comment: 2 tables, 2 figures
☆ Comparing Approaches to Automatic Summarization in Less-Resourced Languages
Automatic text summarization has achieved high performance in high-resourced languages like English, but comparatively less attention has been given to summarization in less-resourced languages. This work compares a variety of different approaches to summarization from zero-shot prompting of LLMs large and small to fine-tuning smaller models like mT5 with and without three data augmentation approaches and multilingual transfer. We also explore an LLM translation pipeline approach, translating from the source language to English, summarizing and translating back. Evaluating with five different metrics, we find that there is variation across LLMs in their performance across similar parameter sizes, that our multilingual fine-tuned mT5 baseline outperforms most other approaches including zero-shot LLM performance for most metrics, and that LLM as judge may be less reliable on less-resourced languages.
comment: Under review
☆ Skim-Aware Contrastive Learning for Efficient Document Representation
Although transformer-based models have shown strong performance in word- and sentence-level tasks, effectively representing long documents, especially in fields like law and medicine, remains difficult. Sparse attention mechanisms can handle longer inputs, but are resource-intensive and often fail to capture full-document context. Hierarchical transformer models offer better efficiency but do not clearly explain how they relate different sections of a document. In contrast, humans often skim texts, focusing on important sections to understand the overall message. Drawing from this human strategy, we introduce a new self-supervised contrastive learning framework that enhances long document representation. Our method randomly masks a section of the document and uses a natural language inference (NLI)-based contrastive objective to align it with relevant parts while distancing it from unrelated ones. This mimics how humans synthesize information, resulting in representations that are both richer and more computationally efficient. Experiments on legal and biomedical texts confirm significant gains in both accuracy and efficiency.
☆ DermaVQA-DAS: Dermatology Assessment Schema (DAS) & Datasets for Closed-Ended Question Answering & Segmentation in Patient-Generated Dermatology Images
Recent advances in dermatological image analysis have been driven by large-scale annotated datasets; however, most existing benchmarks focus on dermatoscopic images and lack patient-authored queries and clinical context, limiting their applicability to patient-centered care. To address this gap, we introduce DermaVQA-DAS, an extension of the DermaVQA dataset that supports two complementary tasks: closed-ended question answering (QA) and dermatological lesion segmentation. Central to this work is the Dermatology Assessment Schema (DAS), a novel expert-developed framework that systematically captures clinically meaningful dermatological features in a structured and standardized form. DAS comprises 36 high-level and 27 fine-grained assessment questions, with multiple-choice options in English and Chinese. Leveraging DAS, we provide expert-annotated datasets for both closed QA and segmentation and benchmark state-of-the-art multimodal models. For segmentation, we evaluate multiple prompting strategies and show that prompt design impacts performance: the default prompt achieves the best results under Mean-of-Max and Mean-of-Mean evaluation aggregation schemes, while an augmented prompt incorporating both patient query title and content yields the highest performance under majority-vote-based microscore evaluation, achieving a Jaccard index of 0.395 and a Dice score of 0.566 with BiomedParse. For closed-ended QA, overall performance is strong across models, with average accuracies ranging from 0.729 to 0.798; o3 achieves the best overall accuracy (0.798), closely followed by GPT-4.1 (0.796), while Gemini-1.5-Pro shows competitive performance within the Gemini family (0.783). We publicly release DermaVQA-DAS, the DAS schema, and evaluation protocols to support and accelerate future research in patient-centered dermatological vision-language modeling (https://osf.io/72rp3).
☆ World model inspired sarcasm reasoning with large language model agents
Sarcasm understanding is a challenging problem in natural language processing, as it requires capturing the discrepancy between the surface meaning of an utterance and the speaker's intentions as well as the surrounding social context. Although recent advances in deep learning and Large Language Models (LLMs) have substantially improved performance, most existing approaches still rely on black-box predictions of a single model, making it difficult to structurally explain the cognitive factors underlying sarcasm. Moreover, while sarcasm often emerges as a mismatch between semantic evaluation and normative expectations or intentions, frameworks that explicitly decompose and model these components remain limited. In this work, we reformulate sarcasm understanding as a world model inspired reasoning process and propose World Model inspired SArcasm Reasoning (WM-SAR), which decomposes literal meaning, context, normative expectation, and intention into specialized LLM-based agents. The discrepancy between literal evaluation and normative expectation is explicitly quantified as a deterministic inconsistency score, and together with an intention score, these signals are integrated by a lightweight Logistic Regression model to infer the final sarcasm probability. This design leverages the reasoning capability of LLMs while maintaining an interpretable numerical decision structure. Experiments on representative sarcasm detection benchmarks show that WM-SAR consistently outperforms existing deep learning and LLM-based methods. Ablation studies and case analyses further demonstrate that integrating semantic inconsistency and intention reasoning is essential for effective sarcasm detection, achieving both strong performance and high interpretability.
☆ QianfanHuijin Technical Report: A Novel Multi-Stage Training Paradigm for Finance Industrial LLMs
Domain-specific enhancement of Large Language Models (LLMs) within the financial context has long been a focal point of industrial application. While previous models such as BloombergGPT and Baichuan-Finance primarily focused on knowledge enhancement, the deepening complexity of financial services has driven a growing demand for models that possess not only domain knowledge but also robust financial reasoning and agentic capabilities. In this paper, we present QianfanHuijin, a financial domain LLM, and propose a generalizable multi-stage training paradigm for industrial model enhancement. Our approach begins with Continual Pre-training (CPT) on financial corpora to consolidate the knowledge base. This is followed by a fine-grained Post-training pipeline designed with increasing specificity: starting with Financial SFT, progressing to Finance Reasoning RL and Finance Agentic RL, and culminating in General RL aligned with real-world business scenarios. Empirical results demonstrate that QianfanHuijin achieves superior performance across various authoritative financial benchmarks. Furthermore, ablation studies confirm that the targeted Reasoning RL and Agentic RL stages yield significant gains in their respective capabilities. These findings validate our motivation and suggest that this fine-grained, progressive post-training methodology is poised to become a mainstream paradigm for various industrial-enhanced LLMs.
☆ Figure It Out: Improving the Frontier of Reasoning with Active Visual Thinking
Complex reasoning problems often involve implicit spatial, geometric, and structural relationships that are not explicitly encoded in text. While recent reasoning models have achieved strong performance across many domains, purely text-based reasoning struggles to represent global structural constraints in complex settings. In this paper, we introduce FIGR, which integrates active visual thinking into multi-turn reasoning via end-to-end reinforcement learning. FIGR externalizes intermediate structural hypotheses by constructing visual representations during problem solving. By adaptively regulating when and how visual reasoning should be invoked, FIGR enables more stable and coherent reasoning over global structural properties that are difficult to capture from text alone. Experiments on challenging mathematical reasoning benchmarks demonstrate that FIGR outperforms strong text-only chain-of-thought baselines. In particular, FIGR improves the base model by 13.12% on AIME 2025 and 11.00% on BeyondAIME, highlighting the effectiveness of figure-guided multimodal reasoning in enhancing the stability and reliability of complex reasoning.
☆ Automated Analysis of Sustainability Reports: Using Large Language Models for the Extraction and Prediction of EU Taxonomy-Compliant KPIs
The manual, resource-intensive process of complying with the EU Taxonomy presents a significant challenge for companies. While Large Language Models (LLMs) offer a path to automation, research is hindered by a lack of public benchmark datasets. To address this gap, we introduce a novel, structured dataset from 190 corporate reports, containing ground-truth economic activities and quantitative Key Performance Indicators (KPIs). We use this dataset to conduct the first systematic evaluation of LLMs on the core compliance workflow. Our results reveal a clear performance gap between qualitative and quantitative tasks. LLMs show moderate success in the qualitative task of identifying economic activities, with a multi-step agentic framework modestly enhancing precision. Conversely, the models comprehensively fail at the quantitative task of predicting financial KPIs in a zero-shot setting. We also discover a paradox, where concise metadata often yields superior performance to full, unstructured reports, and find that model confidence scores are poorly calibrated. We conclude that while LLMs are not ready for full automation, they can serve as powerful assistive tools for human experts. Our dataset provides a public benchmark for future research.
☆ Joint Selection for Large-Scale Pre-Training Data via Policy Gradient-based Mask Learning
A fine-grained data recipe is crucial for pre-training large language models, as it can significantly enhance training efficiency and model performance. One important ingredient in the recipe is to select samples based on scores produced by defined rules, LLM judgment, or statistical information in embeddings, which can be roughly categorized into quality and diversity metrics. Due to the high computational cost when applied to trillion-scale token pre-training datasets such as FineWeb and DCLM, these two or more types of metrics are rarely considered jointly in a single selection process. However, in our empirical study, selecting samples based on quality metrics exhibit severe diminishing returns during long-term pre-training, while selecting on diversity metrics removes too many valuable high-quality samples, both of which limit pre-trained LLMs' capabilities. Therefore, we introduce DATAMASK, a novel and efficient joint learning framework designed for large-scale pre-training data selection that can simultaneously optimize multiple types of metrics in a unified process, with this study focusing specifically on quality and diversity metrics. DATAMASK approaches the selection process as a mask learning problem, involving iterative sampling of data masks, computation of policy gradients based on predefined objectives with sampled masks, and updating of mask sampling logits. Through policy gradient-based optimization and various acceleration enhancements, it significantly reduces selection time by 98.9% compared to greedy algorithm, enabling our study to explore joint learning within trillion-scale tokens. With DATAMASK, we select a subset of about 10% from the 15 trillion-token FineWeb dataset, termed FineWeb-Mask. Evaluated across 12 diverse tasks, we achieves significant improvements of 3.2% on a 1.5B dense model and 1.9% on a 7B MoE model.
☆ Tracing the Flow of Knowledge From Science to Technology Using Deep Learning
We develop a language similarity model suitable for working with patents and scientific publications at the same time. In a horse race-style evaluation, we subject eight language (similarity) models to predict credible Patent-Paper Citations. We find that our Pat-SPECTER model performs best, which is the SPECTER2 model fine-tuned on patents. In two real-world scenarios (separating patent-paper-pairs and predicting patent-paper-pairs) we demonstrate the capabilities of the Pat-SPECTER. We finally test the hypothesis that US patents cite papers that are semantically less similar than in other large jurisdictions, which we posit is because of the duty of candor. The model is open for the academic community and practitioners alike.
comment: 4 tables, 7 figures
☆ LAILA: A Large Trait-Based Dataset for Arabic Automated Essay Scoring
Automated Essay Scoring (AES) has gained increasing attention in recent years, yet research on Arabic AES remains limited due to the lack of publicly available datasets. To address this, we introduce LAILA, the largest publicly available Arabic AES dataset to date, comprising 7,859 essays annotated with holistic and trait-specific scores on seven dimensions: relevance, organization, vocabulary, style, development, mechanics, and grammar. We detail the dataset design, collection, and annotations, and provide benchmark results using state-of-the-art Arabic and English models in prompt-specific and cross-prompt settings. LAILA fills a critical need in Arabic AES research, supporting the development of robust scoring systems.
☆ MedKGI: Iterative Differential Diagnosis with Medical Knowledge Graphs and Information-Guided Inquiring
Recent advancements in Large Language Models (LLMs) have demonstrated significant promise in clinical diagnosis. However, current models struggle to emulate the iterative, diagnostic hypothesis-driven reasoning of real clinical scenarios. Specifically, current LLMs suffer from three critical limitations: (1) generating hallucinated medical content due to weak grounding in verified knowledge, (2) asking redundant or inefficient questions rather than discriminative ones that hinder diagnostic progress, and (3) losing coherence over multi-turn dialogues, leading to contradictory or inconsistent conclusions. To address these challenges, we propose MedKGI, a diagnostic framework grounded in clinical practices. MedKGI integrates a medical knowledge graph (KG) to constrain reasoning to validated medical ontologies, selects questions based on information gain to maximize diagnostic efficiency, and adopts an OSCE-format structured state to maintain consistent evidence tracking across turns. Experiments on clinical benchmarks show that MedKGI outperforms strong LLM baselines in both diagnostic accuracy and inquiry efficiency, improving dialogue efficiency by 30% on average while maintaining state-of-the-art accuracy.
☆ Training Report of TeleChat3-MoE
TeleChat3-MoE is the latest series of TeleChat large language models, featuring a Mixture-of-Experts (MoE) architecture with parameter counts ranging from 105 billion to over one trillion,trained end-to-end on Ascend NPU cluster. This technical report mainly presents the underlying training infrastructure that enables reliable and efficient scaling to frontier model sizes. We detail systematic methodologies for operator-level and end-to-end numerical accuracy verification, ensuring consistency across hardware platforms and distributed parallelism strategies. Furthermore, we introduce a suite of performance optimizations, including interleaved pipeline scheduling, attention-aware data scheduling for long-sequence training,hierarchical and overlapped communication for expert parallelism, and DVM-based operator fusion. A systematic parallelization framework, leveraging analytical estimation and integer linear programming, is also proposed to optimize multi-dimensional parallelism configurations. Additionally, we present methodological approaches to cluster-level optimizations, addressing host- and device-bound bottlenecks during large-scale training tasks. These infrastructure advancements yield significant throughput improvements and near-linear scaling on clusters comprising thousands of devices, providing a robust foundation for large-scale language model development on hardware ecosystems.
☆ Large Emotional World Model
World Models serve as tools for understanding the current state of the world and predicting its future dynamics, with broad application potential across numerous fields. As a key component of world knowledge, emotion significantly influences human decision-making. While existing Large Language Models (LLMs) have shown preliminary capability in capturing world knowledge, they primarily focus on modeling physical-world regularities and lack systematic exploration of emotional factors. In this paper, we first demonstrate the importance of emotion in understanding the world by showing that removing emotionally relevant information degrades reasoning performance. Inspired by theory of mind, we further propose a Large Emotional World Model (LEWM). Specifically, we construct the Emotion-Why-How (EWH) dataset, which integrates emotion into causal relationships and enables reasoning about why actions occur and how emotions drive future world states. Based on this dataset, LEWM explicitly models emotional states alongside visual observations and actions, allowing the world model to predict both future states and emotional transitions. Experimental results show that LEWM more accurately predicts emotion-driven social behaviors while maintaining comparable performance to general world models on basic tasks.
☆ Activation Steering for Masked Diffusion Language Models
Masked diffusion language models (MDLMs) generate text through an iterative denoising process. They have recently gained attention due to mask-parallel decoding and competitive performance with autoregressive large language models. However, effective mechanisms for inference-time control and steering in MDLMs remain largely unexplored. We present an activation-steering framework for MDLMs that computes layer-wise steering vectors from a single forward pass using contrastive examples, without simulating the denoising trajectory. These directions are applied at every reverse-diffusion step, yielding an efficient inference-time control mechanism. Experiments on LLaDA-8B-Instruct demonstrate reliable modulation of high-level attributes, with ablations examining the effects of steering across transformer sub-modules and token scope (prompt vs.\ response).
☆ OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization
The presence of outliers in Large Language Models (LLMs) weights and activations makes them difficult to quantize. Recent work has leveraged rotations to mitigate these outliers. In this work, we propose methods that learn fusible rotations by minimizing principled and cheap proxy objectives to the weight quantization error. We primarily focus on GPTQ as the quantization method. Our main method is OptRot, which reduces weight outliers simply by minimizing the element-wise fourth power of the rotated weights. We show that OptRot outperforms both Hadamard rotations and more expensive, data-dependent methods like SpinQuant and OSTQuant for weight quantization. It also improves activation quantization in the W4A8 setting. We also propose a data-dependent method, OptRot$^{+}$, that further improves performance by incorporating information on the activation covariance. In the W4A4 setting, we see that both OptRot and OptRot$^{+}$ perform worse, highlighting a trade-off between weight and activation quantization.
comment: 25 pages, 10 figures
☆ Training a Huggingface Model on AWS Sagemaker (Without Tears)
The development of Large Language Models (LLMs) has primarily been driven by resource-rich research groups and industry partners. Due to the lack of on-premise computing resources required for increasingly complex models, many researchers are turning to cloud services like AWS SageMaker to train Hugging Face models. However, the steep learning curve of cloud platforms often presents a barrier for researchers accustomed to local environments. Existing documentation frequently leaves knowledge gaps, forcing users to seek fragmented information across the web. This demo paper aims to democratize cloud adoption by centralizing the essential information required for researchers to successfully train their first Hugging Face model on AWS SageMaker from scratch.
☆ Factorized Learning for Temporally Grounded Video-Language Models ICCV 2025
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.
comment: ICCV 2025 paper. This arXiv version updates Figure 1 to include the concurrent work Qwen2.5-VL to ensure consistency with Table 1
☆ HY-MT1.5 Technical Report
In this report, we introduce our latest translation models, HY-MT1.5-1.8B and HY-MT1.5-7B, a new family of machine translation models developed through a holistic training framework tailored for high-performance translation. Our methodology orchestrates a multi-stage pipeline that integrates general and MT-oriented pre-training, supervised fine-tuning, on-policy distillation, and reinforcement learning. HY-MT1.5-1.8B, the 1.8B-parameter model demonstrates remarkable parameter efficiency, comprehensively outperforming significantly larger open-source baselines (e.g., Tower-Plus-72B, Qwen3-32B) and mainstream commercial APIs (e.g., Microsoft Translator, Doubao Translator) in standard Chinese-foreign and English-foreign tasks. It achieves approximately 90% of the performance of ultra-large proprietary models such as Gemini-3.0-Pro, while marginally trailing Gemini-3.0-Pro on WMT25 and Mandarin-minority language benchmarks, it maintains a substantial lead over other competing models. Furthermore, HY-MT1.5-7B establishes a new state-of-the-art for its size class, achieving 95% of Gemini-3.0-Pro's performance on Flores-200 and surpassing it on the challenging WMT25 and Mandarin-minority language test sets. Beyond standard translation, the HY-MT1.5 series supports advanced constraints, including terminology intervention, context-aware translation, and format preservation. Extensive empirical evaluations confirm that both models offer highly competitive, robust solutions for general and specialized translation tasks within their respective parameter scales.
☆ Beyond Hallucinations: A Composite Score for Measuring Reliability in Open-Source Large Language Models AAAI 2026
Large Language Models (LLMs) like LLaMA, Mistral, and Gemma are increasingly used in decision-critical domains such as healthcare, law, and finance, yet their reliability remains uncertain. They often make overconfident errors, degrade under input shifts, and lack clear uncertainty estimates. Existing evaluations are fragmented, addressing only isolated aspects. We introduce the Composite Reliability Score (CRS), a unified framework that integrates calibration, robustness, and uncertainty quantification into a single interpretable metric. Through experiments on ten leading open-source LLMs across five QA datasets, we assess performance under baselines, perturbations, and calibration methods. CRS delivers stable model rankings, uncovers hidden failure modes missed by single metrics, and highlights that the most dependable systems balance accuracy, robustness, and calibrated uncertainty.
comment: 5 pages, 4 tables, accepted at AAAI 2026
☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods.
☆ Jailbreaking Attacks vs. Content Safety Filters: How Far Are We in the LLM Safety Arms Race?
As large language models (LLMs) are increasingly deployed, ensuring their safe use is paramount. Jailbreaking, adversarial prompts that bypass model alignment to trigger harmful outputs, present significant risks, with existing studies reporting high success rates in evading common LLMs. However, previous evaluations have focused solely on the models, neglecting the full deployment pipeline, which typically incorporates additional safety mechanisms like content moderation filters. To address this gap, we present the first systematic evaluation of jailbreak attacks targeting LLM safety alignment, assessing their success across the full inference pipeline, including both input and output filtering stages. Our findings yield two key insights: first, nearly all evaluated jailbreak techniques can be detected by at least one safety filter, suggesting that prior assessments may have overestimated the practical success of these attacks; second, while safety filters are effective in detection, there remains room to better balance recall and precision to further optimize protection and user experience. We highlight critical gaps and call for further refinement of detection accuracy and usability in LLM safety systems.
comment: 26 pages,11 tables, 7 figures
☆ iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning
Large language models (LLMs), when guided by explicit textual plans, can perform reliable step-by-step reasoning during problem-solving. However, generating accurate and effective textual plans remains challenging due to LLM hallucinations and the high diversity of task-specific questions. To address this, we draw inspiration from human Implicit Cognition (IC), the subconscious process by which decisions are guided by compact, generalized patterns learned from past experiences without requiring explicit verbalization. We propose iCLP, a novel framework that enables LLMs to adaptively generate latent plans (LPs), which are compact encodings of effective reasoning instructions. iCLP first distills explicit plans from existing step-by-step reasoning trajectories. It then learns discrete representations of these plans via a vector-quantized autoencoder coupled with a codebook. Finally, by fine-tuning LLMs on paired latent plans and corresponding reasoning steps, the models learn to perform implicit planning during reasoning. Experimental results on mathematical reasoning and code generation tasks demonstrate that, with iCLP, LLMs can plan in latent space while reasoning in language space. This approach yields significant improvements in both accuracy and efficiency and, crucially, demonstrates strong cross-domain generalization while preserving the interpretability of chain-of-thought reasoning.
comment: 9 pages, 6 figures. The source code is publicly available at https://github.com/AgenticFinLab/latent-planning
☆ WISE: Web Information Satire and Fakeness Evaluation WSDM 2026
Distinguishing fake or untrue news from satire or humor poses a unique challenge due to their overlapping linguistic features and divergent intent. This study develops WISE (Web Information Satire and Fakeness Evaluation) framework which benchmarks eight lightweight transformer models alongside two baseline models on a balanced dataset of 20,000 samples from Fakeddit, annotated as either fake news or satire. Using stratified 5-fold cross-validation, we evaluate models across comprehensive metrics including accuracy, precision, recall, F1-score, ROC-AUC, PR-AUC, MCC, Brier score, and Expected Calibration Error. Our evaluation reveals that MiniLM, a lightweight model, achieves the highest accuracy (87.58%) among all models, while RoBERTa-base achieves the highest ROC-AUC (95.42%) and strong accuracy (87.36%). DistilBERT offers an excellent efficiency-accuracy trade-off with 86.28\% accuracy and 93.90\% ROC-AUC. Statistical tests confirm significant performance differences between models, with paired t-tests and McNemar tests providing rigorous comparisons. Our findings highlight that lightweight models can match or exceed baseline performance, offering actionable insights for deploying misinformation detection systems in real-world, resource-constrained settings.
comment: This is the author's preprint. Accepted to WEB&GRAPH 2026 (co-located with WSDM 2026), Boise, Idaho, USA, Feb 26, 2026. Final version will appear in WSDM 2026 Companion Proceedings. Conf: https://wsdm-conference.org/2026/ Workshop: https://aiimlab.org/events/WSDM_2026_WEB_and_GRAPH_2026_Workshop_on_Web_and_Graphs_Responsible_Intelligence_and_Social_Media.html
☆ Fantastic Reasoning Behaviors and Where to Find Them: Unsupervised Discovery of the Reasoning Process
Despite the growing reasoning capabilities of recent large language models (LLMs), their internal mechanisms during the reasoning process remain underexplored. Prior approaches often rely on human-defined concepts (e.g., overthinking, reflection) at the word level to analyze reasoning in a supervised manner. However, such methods are limited, as it is infeasible to capture the full spectrum of potential reasoning behaviors, many of which are difficult to define in token space. In this work, we propose an unsupervised framework (namely, RISE: Reasoning behavior Interpretability via Sparse auto-Encoder) for discovering reasoning vectors, which we define as directions in the activation space that encode distinct reasoning behaviors. By segmenting chain-of-thought traces into sentence-level 'steps' and training sparse auto-encoders (SAEs) on step-level activations, we uncover disentangled features corresponding to interpretable behaviors such as reflection and backtracking. Visualization and clustering analyses show that these behaviors occupy separable regions in the decoder column space. Moreover, targeted interventions on SAE-derived vectors can controllably amplify or suppress specific reasoning behaviors, altering inference trajectories without retraining. Beyond behavior-specific disentanglement, SAEs capture structural properties such as response length, revealing clusters of long versus short reasoning traces. More interestingly, SAEs enable the discovery of novel behaviors beyond human supervision. We demonstrate the ability to control response confidence by identifying confidence-related vectors in the SAE decoder space. These findings underscore the potential of unsupervised latent discovery for both interpreting and controllably steering reasoning in LLMs.
☆ CEC-Zero: Zero-Supervision Character Error Correction with Self-Generated Rewards AAAI'26
Large-scale Chinese spelling correction (CSC) remains critical for real-world text processing, yet existing LLMs and supervised methods lack robustness to novel errors and rely on costly annotations. We introduce CEC-Zero, a zero-supervision reinforcement learning framework that addresses this by enabling LLMs to correct their own mistakes. CEC-Zero synthesizes errorful inputs from clean text, computes cluster-consensus rewards via semantic similarity and candidate agreement, and optimizes the policy with PPO. It outperforms supervised baselines by 10--13 F$_1$ points and strong LLM fine-tunes by 5--8 points across 9 benchmarks, with theoretical guarantees of unbiased rewards and convergence. CEC-Zero establishes a label-free paradigm for robust, scalable CSC, unlocking LLM potential in noisy text pipelines.
comment: AAAI'26 poster
☆ Efficient Context Scaling with LongCat ZigZag Attention
We introduce LongCat ZigZag Attention (LoZA), which is a sparse attention scheme designed to transform any existing full-attention models into sparse versions with rather limited compute budget. In long-context scenarios, LoZA can achieve significant speed-ups both for prefill-intensive (e.g., retrieval-augmented generation) and decode-intensive (e.g., tool-integrated reasoning) cases. Specifically, by applying LoZA to LongCat-Flash during mid-training, we serve LongCat-Flash-Exp as a long-context foundation model that can swiftly process up to 1 million tokens, enabling efficient long-term reasoning and long-horizon agentic capabilities.
comment: 10 pages, 3 figures, 3 tables
☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
☆ Disentangling Learning from Judgment: Representation Learning for Open Response Analytics
Open-ended responses are central to learning, yet automated scoring often conflates what students wrote with how teachers grade. We present an analytics-first framework that separates content signals from rater tendencies, making judgments visible and auditable via analytics. Using de-identified ASSISTments mathematics responses, we model teacher histories as dynamic priors and derive text representations from sentence embeddings, incorporating centering and residualization to mitigate prompt and teacher confounds. Temporally-validated linear models quantify the contributions of each signal, and a projection surfaces model disagreements for qualitative inspection. Results show that teacher priors heavily influence grade predictions; the strongest results arise when priors are combined with content embeddings (AUC~0.815), while content-only models remain above chance but substantially weaker (AUC~0.626). Adjusting for rater effects sharpens the residual content representation, retaining more informative embedding dimensions and revealing cases where semantic evidence supports understanding as opposed to surface-level differences in how students respond. The contribution presents a practical pipeline that transforms embeddings from mere features into learning analytics for reflection, enabling teachers and researchers to examine where grading practices align (or conflict) with evidence of student reasoning and learning.
comment: Short research paper accepted at Learning Analytics and Knowledge (LAK '26)
♻ ☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison AAAI
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: v.1.1. AAAI Workshop on Reproducible Artificial Intelligence (RAI, https://reproducibleai.github.io) 2026, camera ready version. Model weights and intermediate training checkpoints are available at https://huggingface.co/collections/open-sci/open-sci-ref-001; code for reproducing training, evaluation and raw experiments data at https://github.com/LAION-AI/open-sci-ref-0.01
♻ ☆ Automatic identification of diagnosis from hospital discharge letters via weakly-supervised Natural Language Processing
Identifying patient diagnoses from discharge letters is essential to enable large-scale cohort selection and epidemiological research, but traditional supervised approaches rely on extensive manual annotation, which is often impractical for large textual datasets. In this study, we present a novel weakly-supervised Natural Language Processing pipeline designed to classify Italian discharge letters without requiring manual labelling. After extracting diagnosis-related sentences, the method leverages a transformer-based model with an additional pre-training on Italian medical documents to generate semantic embeddings. A two-level clustering procedure is applied to these embeddings, and the resulting clusters are mapped to the diseases of interest to derive weak labels for a subset of data, eventually used to train a transformer-based classifier. We evaluate the approach on a real-world case study on bronchiolitis in a corpus of 33,176 Italian discharge letters of children admitted to 44 emergency rooms or hospitals in the Veneto Region between 2017 and 2020. The pipeline achieves an area under the curve (AUC) of 77.68% ($\pm 4.30\%)$ and an F1-score of 78.14% ($\pm 4.89\%$) against manual annotations. Its performance surpasses other unsupervised methods and approaches fully supervised models, maintaining robustness to cluster selection and promising generalizability across different disease types. It allows saving approximately 3 minutes of expert time per discharge letter, resulting in more than 1,500 hours for a dataset like ours. This study demonstrates the feasibility of a weakly-supervised strategy for identifying diagnoses from Italian discharge letters. The pipeline achieves strong performance, is adaptable to various diseases, and offers a scalable solution for clinical text classification, reducing the need for manual annotation while maintaining reliable accuracy.
comment: 49 pages, 7 figures
♻ ☆ SpiderGen: Towards Procedure Generation For Carbon Life Cycle Assessments with Generative AI
Investigating the effects of climate change and global warming caused by GHG emissions have been a key concern worldwide. These emissions are largely contributed to by the production, use and disposal of consumer products. Thus, it is important to build tools to estimate the environmental impact of consumer goods, an essential part of which is conducting Life Cycle Assessments (LCAs). LCAs specify and account for the appropriate processes involved with the production, use, and disposal of the products. We present SpiderGen, an LLM-based workflow which integrates the taxonomy and methodology of traditional LCA with the reasoning capabilities and world knowledge of LLMs to generate graphical representations of the key procedural information used for LCA, known as Product Category Rules Process Flow Graphs (PCR PFGs). We additionally evaluate the output of SpiderGen by comparing it with 65 real-world LCA documents. We find that SpiderGen provides accurate LCA process information that is either fully correct or has minor errors, achieving an F1-Score of 65% across 10 sample data points, as compared to 53% using a one-shot prompting method. We observe that the remaining errors occur primarily due to differences in detail between LCA documents, as well as differences in the "scope" of which auxiliary processes must also be included. We also demonstrate that SpiderGen performs better than several baselines techniques, such as chain-of-thought prompting and one-shot prompting. Finally, we highlight SpiderGen's potential to reduce the human effort and costs for estimating carbon impact, as it is able to produce LCA process information for less than \$1 USD in under 10 minutes as compared to the status quo LCA, which can cost over \$25000 USD and take up to 21-person days.
♻ ☆ Multi-step retrieval and reasoning improves radiology question answering with large language models
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose radiology Retrieval and Reasoning (RaR), a multi-step retrieval and reasoning framework designed to improve diagnostic accuracy, factual consistency, and clinical reliability of LLMs in radiology question answering. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. RaR significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, RaR retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from RaR (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of RaR to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full RaR framework are publicly available to support open research and clinical translation.
comment: Published in npj Digital Medicine
♻ ☆ PERK: Long-Context Reasoning as Parameter-Efficient Test-Time Learning
Long-context reasoning requires accurately identifying relevant information in extensive, noisy input contexts. Previous research shows that using test-time learning to encode context directly into model parameters can effectively enable reasoning over noisy information. However, meta-learning methods for enabling test-time learning are prohibitively memory-intensive, preventing their application to long context settings. In this work, we propose PERK (Parameter Efficient Reasoning over Knowledge), a scalable approach for learning to encode long input contexts using gradient updates to a lightweight model adapter at test time. Specifically, PERK employs two nested optimization loops in a meta-training phase. The inner loop rapidly encodes contexts into a low-rank adapter (LoRA) that serves as a parameter-efficient memory module for the base model. Concurrently, the outer loop learns to use the updated adapter to accurately recall and reason over relevant information from the encoded long context. Our evaluations on several long-context reasoning tasks show that PERK significantly outperforms the standard prompt-based long-context baseline, achieving average absolute performance gains of up to 90% for smaller models (GPT-2) and up to 27% for our largest evaluated model, Qwen-2.5-0.5B. In general, PERK is more robust to reasoning complexity, length extrapolation, and the locations of relevant information in contexts. Finally, we show that while PERK is memory-intensive during training, it scales more efficiently at inference time than prompt-based long-context inference.
comment: 10 pages, 7 figures
♻ ☆ Natural Language Processing for Tigrinya: Current State and Future Directions
Despite being spoken by millions of people, Tigrinya remains severely underrepresented in Natural Language Processing (NLP) research. This work presents a comprehensive survey of NLP research for Tigrinya, analyzing over 50 studies from 2011 to 2025. We systematically review the current state of computational resources, models, and applications across fifteen downstream tasks, including morphological processing, part-of-speech tagging, named entity recognition, machine translation, question-answering, speech recognition, and synthesis. Our analysis reveals a clear trajectory from foundational, rule-based systems to modern neural architectures, with progress consistently driven by milestones in resource creation. We identify key challenges rooted in Tigrinya's morphological properties and resource scarcity, and highlight promising research directions, including morphology-aware modeling, cross-lingual transfer, and community-centered resource development. This work serves both as a reference for researchers and as a roadmap for advancing Tigrinya NLP. An anthology of surveyed studies and resources is publicly available.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the other model is significantly more capable). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 33 pages, 7 tables, 8 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ Invisible Languages of the LLM Universe
Large Language Models are trained on massive multilingual corpora, yet this abundance masks a profound crisis: of the world's 7,613 living languages, approximately 2,000 languages with millions of speakers remain effectively invisible in digital ecosystems. We propose a critical framework connecting empirical measurements of language vitality (real world demographic strength) and digitality (online presence) with postcolonial theory and epistemic injustice to explain why linguistic inequality in AI systems is not incidental but structural. Analyzing data across all documented human languages, we identify four categories: Strongholds (33%, high vitality and digitality), Digital Echoes (6%, high digitality despite declining vitality), Fading Voices (36%, low on both dimensions), and critically, Invisible Giants (27%, high vitality but near-zero digitality) - languages spoken by millions yet absent from the LLM universe. We demonstrate that these patterns reflect continuities from colonial-era linguistic hierarchies to contemporary AI development, constituting digital epistemic injustice. Our analysis reveals that English dominance in AI is not a technical necessity but an artifact of power structures that systematically exclude marginalized linguistic knowledge. We conclude with implications for decolonizing language technology and democratizing access to AI benefits.
♻ ☆ Can ensembles improve evidence recall? A case study
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications, such as compliance and cataloging, the full set of contributing features must be identified: complete evidence. We present a case study using existing language models and a medical dataset which contains human-annotated complete evidence. Our findings show that an ensemble approach, aggregating evidence from several models, improves evidence recall over individual models. We examine different ensemble sizes, the effect of evidence-guided training, and provide qualitative insights.
comment: Submitted to ESANN 2026
♻ ☆ LiRA: A Multi-Agent Framework for Reliable and Readable Literature Review Generation
The rapid growth of scientific publications has made it increasingly difficult to keep literature reviews comprehensive and up-to-date. Though prior work has focused on automating retrieval and screening, the writing phase of systematic reviews remains largely under-explored, especially with regard to readability and factual accuracy. To address this, we present LiRA (Literature Review Agents), a multi-agent collaborative workflow which emulates the human literature review process. LiRA utilizes specialized agents for content outlining, subsection writing, editing, and reviewing, producing cohesive and comprehensive review articles. Evaluated on SciReviewGen and a proprietary ScienceDirect dataset, LiRA outperforms current baselines such as AutoSurvey and MASS-Survey in writing and citation quality, while maintaining competitive similarity to human-written reviews. We further evaluate LiRA in real-world scenarios using document retrieval and assess its robustness to reviewer model variation. Our findings highlight the potential of agentic LLM workflows, even without domain-specific tuning, to improve the reliability and usability of automated scientific writing.
comment: Camera-ready version
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/ ; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ UniHetero: Could Generation Enhance Understanding for Vision-Language-Model at Large Data Scale?
Vision-language large models are moving toward the unification of visual understanding and visual generation tasks. However, whether generation can enhance understanding is still under-explored on large data scale. In this work, we analysis the unified structure with a concise model, UniHetero, under large-scale pretraining (>200M samples). Our key observations are: (1) Generation can improve understanding, but Only if you generate Semantics, Not Pixels. A common assumption in unified vision-language models is that adding generation will naturally strengthen understanding. However, this is not always true at scale. At 200M+ pretraining samples, generation helps understanding only when it operates at the semantic level, i.e. when the model learns to autoregress high-level visual representations inside the LLM. Once pixel-level objectives (e.g., diffusion losses) directly interfere with the LLM, understanding performance often degrades. (2) Generation reveals a superior Data Scaling trend and higher Data Utilization. Unified generation-understanding demonstrates a superior scaling trend compared to understanding alone, revealing a more effective way to learn vision-only knowledge directive from vision modality rather than captioning to text. (3) Autoregression on Input Embedding is effective to capture visual details. Compared to the commonly-used vision encoder, make visual autoregression on input embedding shows less cumulative error and is modality independent, which can be extend to all modalities. The learned semantic representations capture visual information such as objects, locations, shapes, and colors; further enable pixel-level image generation.
♻ ☆ xVerify: Efficient Answer Verifier for Reasoning Model Evaluations
With the release of OpenAI's o1 model, reasoning models that adopt slow-thinking strategies have become increasingly common. Their outputs often contain complex reasoning, intermediate steps, and self-reflection, making existing evaluation methods and reward models inadequate. In particular, they struggle to judge answer equivalence and to reliably extract final answers from long, complex responses. To address this challenge, we propose xVerify, an efficient answer verifier for evaluating reasoning models. xVerify shows strong equivalence judgment capabilities, enabling accurate comparison between model outputs and reference answers across diverse question types. To train and evaluate xVerify, we construct the VAR dataset, which consists of question-answer pairs generated by multiple LLMs across various datasets. The dataset incorporates multiple reasoning models and challenging evaluation sets specifically designed for reasoning assessment, with a multi-round annotation process to ensure label quality. Based on VAR, we train xVerify models at different scales. Experimental results on both test and generalization sets show that all xVerify variants achieve over 95% F1 score and accuracy. Notably, the smallest model, xVerify-0.5B-I, outperforms all evaluation methods except GPT-4o, while xVerify-3B-Ib surpasses GPT-4o in overall performance. In addition, reinforcement learning experiments using xVerify as the reward model yield an 18.4% improvement for Qwen2.5-7B compared with direct generation, exceeding the gains achieved with Math Verify as the reward. These results demonstrate the effectiveness and generalizability of xVerify. All xVerify resources are available on \href{https://github.com/IAAR-Shanghai/xVerify}{GitHub}.
comment: 35 pages
♻ ☆ LTLBench: Towards Benchmarks for Evaluating Temporal Logic Reasoning in Large Language Models
Temporal Reasoning (TR) is a critical ability for LLMs to understand and reason over temporal information and relationships between events. To study the TR ability in LLMs, prior works provide different ways for evaluating various aspects of TR ability. In this work, we propose an alternative perspective for evaluating TR ability by leveraging Linear Temporal Logic (LTL), and develop a pipeline to automatically synthesize challenges for assessing the TR ability of LLMs. Based on this pipeline, we construct a dataset, namely \LTL, consisting of $2000$ TR challenges, and benchmark 12 LLMs across 5 different methods. Furthermore, we conduct additional experiments to investigate the impact of increasing the number of formula operators and events on both LLM performance and the complexity of TR problems. We also perform qualitative analyses of their reasoning processes and the effects of varying the number of events and formula operators, which reveal 3 main issues in their temporal reasoning processes and the unexpected performance changes observed as problem complexity increases. We expect this work to provide valuable insights into the TR ability of LLMs.
♻ ☆ Addressing Hallucinations with RAG and NMISS in Italian Healthcare LLM Chatbots
I combine detection and mitigation techniques to addresses hallucinations in Large Language Models (LLMs). Mitigation is achieved in a question-answering Retrieval-Augmented Generation (RAG) framework while detection is obtained by introducing the Negative Missing Information Scoring System (NMISS), which accounts for contextual relevance in responses. While RAG mitigates hallucinations by grounding answers in external data, NMISS refines the evaluation by identifying cases where traditional metrics incorrectly flag contextually accurate responses as hallucinations. I use Italian health news articles as context to evaluate LLM performance. Results show that Gemma2 and GPT-4 outperform the other models, with GPT-4 producing answers closely aligned with reference responses. Mid-tier models, such as Llama2, Llama3, and Mistral benefit significantly from NMISS, highlighting their ability to provide richer contextual information. This combined approach offers new insights into the reduction and more accurate assessment of hallucinations in LLMs, with applications in real-world healthcare tasks and other domains.
♻ ☆ ACE-RL: Adaptive Constraint-Enhanced Reward for Long-form Generation Reinforcement Learning
Long-form generation has become a critical and challenging application for Large Language Models (LLMs). Existing studies are limited by their reliance on scarce, high-quality long-form response data and their focus on coarse-grained, general-purpose metrics (e.g., coherence and helpfulness), overlooking the nuanced, scenario-specific requirements of real-world tasks. To address these limitations, we propose a framework utilizing Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first decomposes each instruction into a set of fine-grained, adaptive constraint criteria spanning key dimensions of long-form generation tasks. Subsequently, we design a reward mechanism to quantify the response quality based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we leverage reinforcement learning to optimize LLMs using these fine-grained signals. Experimental results show that ACE-RL significantly outperforms existing SFT and RL baselines by 18.63% and 7.61% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 8.76%, providing a more effective training paradigm in long-form generation scenarios.
comment: Under review
♻ ☆ CascadeNS: Confidence-Cascaded Neurosymbolic Model for Sarcasm Detection
Sarcasm detection in product reviews requires balancing domain-specific symbolic pattern recognition with deep semantic understanding. Symbolic representations capture explicit linguistic phenomena that are often decisive for sarcasm detection. Existing work either favors interpretable symbolic representation or semantic neural modeling, but rarely achieves both effectively. Prior hybrid methods typically combine these paradigms through feature fusion or ensembling, which can degrade performance. We propose CascadeNS, a confidence-calibrated neurosymbolic architecture that integrates symbolic and neural reasoning through selective activation rather than fusion. A symbolic semigraph handles pattern-rich instances with high confidence, while semantically ambiguous cases are delegated to a neural module based on pre-trained LLM embeddings. At the core of CascadeNS is a calibrated confidence measure derived from polarity-weighted semigraph scores. This measure reliably determines when symbolic reasoning is sufficient and when neural analysis is needed. Experiments on product reviews show that CascadeNS outperforms the strong baselines by 7.44%.
comment: 10 pages
♻ ☆ Dual LoRA: Enhancing LoRA with Magnitude and Direction Updates
Low-rank adaptation (LoRA) is one of the most popular methods among parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large language models (LLMs) to specific downstream tasks. However, the model trained based on LoRA often has an unsatisfactory performance due to its low-rank assumption. In this paper, we propose a novel method called Dual LoRA to improve the performance by incorporating an inductive bias into the original LoRA. Specifically, we separate low-rank matrices into two groups: the magnitude group to control whether or not and how far we should update a parameter and the direction group to decide whether this parameter should move forward or backward, to better simulate the parameter updating process of the full fine-tuning based on gradient-based optimization algorithms. We show that this can be simply achieved by adding a ReLU function to the magnitude group and a sign function to the direction group. We conduct several experiments over a wide range of NLP tasks, including natural language understanding (NLU) and commonsense reasoning datasets on RoBERTa, DeBERTa, and LLaMA-1/2/3 as baseline models. The results show that we consistently outperform LoRA and its state-of-the-art variants with the same number of trainable parameters.
♻ ☆ A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
comment: Accepted to IJCNLP-AACl 2025
♻ ☆ SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models CIKM'25
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
comment: 9 pages, 5 figures. This paper was presented at the CIKM'25 Workshop on Small and Efficient Large Language Models for Knowledge Extraction
♻ ☆ Improving Reliability and Explainability of Medical Question Answering through Atomic Fact Checking in Retrieval-Augmented LLMs
Large language models (LLMs) exhibit extensive medical knowledge but are prone to hallucinations and inaccurate citations, which pose a challenge to their clinical adoption and regulatory compliance. Current methods, such as Retrieval Augmented Generation, partially address these issues by grounding answers in source documents, but hallucinations and low fact-level explainability persist. In this work, we introduce a novel atomic fact-checking framework designed to enhance the reliability and explainability of LLMs used in medical long-form question answering. This method decomposes LLM-generated responses into discrete, verifiable units called atomic facts, each of which is independently verified against an authoritative knowledge base of medical guidelines. This approach enables targeted correction of errors and direct tracing to source literature, thereby improving the factual accuracy and explainability of medical Q&A. Extensive evaluation using multi-reader assessments by medical experts and an automated open Q&A benchmark demonstrated significant improvements in factual accuracy and explainability. Our framework achieved up to a 40% overall answer improvement and a 50% hallucination detection rate. The ability to trace each atomic fact back to the most relevant chunks from the database provides a granular, transparent explanation of the generated responses, addressing a major gap in current medical AI applications. This work represents a crucial step towards more trustworthy and reliable clinical applications of LLMs, addressing key prerequisites for clinical application and fostering greater confidence in AI-assisted healthcare.
comment: 18 pages, 7 figures and tables
♻ ☆ A Systematic Survey on Large Language Models for Algorithm Design
Algorithm design is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and promising solutions. In just a few years, this integration has yielded remarkable progress in areas ranging from combinatorial optimization to scientific discovery. Despite this rapid expansion, a holistic understanding of the field is hindered by the lack of a systematic review, as existing surveys either remain limited to narrow sub-fields or with different objectives. This paper seeks to provide a systematic review of algorithm design with LLMs. We introduce a taxonomy that categorises the roles of LLMs as optimizers, predictors, extractors and designers, analyzing the progress, advantages, and limitations within each category. We further synthesize literature across the three phases of the algorithm design pipeline and across diverse algorithmic applications that define the current landscape. Finally, we outline key open challenges and opportunities to guide future research.
♻ ☆ MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding
Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question-answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-4o and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.
comment: 21 pages, 13 figures
♻ ☆ OpenSIR: Open-Ended Self-Improving Reasoner
Recent advances in large language model (LLM) reasoning through reinforcement learning rely on annotated datasets for verifiable rewards, which may limit models' ability to surpass human-level performance. While self-play offers a promising alternative, existing approaches depend on external verifiers or cannot learn open-endedly. We present Open-Ended Self-Improving Reasoner (OpenSIR), a self-play framework where an LLM learns to generate and solve novel problems by alternating teacher and student roles without external supervision. To generate novel problems, OpenSIR optimises for both difficulty and diversity, rewarding problems that challenge appropriately while exploring distinct concepts, enabling open-ended mathematical discovery. Starting from a single trivial seed problem, OpenSIR substantially improves instruction models: Llama-3.2-3B-Instruct advances from 73.9 to 78.3 on GSM8K, and from 28.8 to 34.4 on College Math, while Gemma-2-2B-Instruct rises from 38.5 to 58.7 on GSM8K. Our analyses reveal that OpenSIR achieves open-ended learning through co-evolving teacher-student roles that adaptively calibrate difficulty and drive diverse exploration, progressing autonomously from basic to advanced mathematics.
♻ ☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining NeurIPS 2025
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
comment: NeurIPS 2025 poster
♻ ☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) extends automatic machine translation (MT) evaluation by localizing translation errors and labeling their severity. Current generative ESD methods typically use Maximum a Posteriori (MAP) decoding, assuming that the model-estimated probabilities are perfectly correlated with similarity to the human annotation, but we often observe higher likelihood assigned to an incorrect annotation than to the human one. We instead apply Minimum Bayes Risk (MBR) decoding to generative ESD. We use a sentence- or span-level similarity function for MBR decoding, which selects candidate hypotheses based on their approximate similarity to the human annotation. Experimental results on the WMT24 Metrics Shared Task show that MBR decoding significantly improves span-level performance and generally matches or outperforms MAP at the system and sentence levels. To reduce the computational cost of MBR decoding, we further distill its decisions into a model decoded via greedy search, removing the inference-time latency bottleneck.
♻ ☆ MobileWorld: Benchmarking Autonomous Mobile Agents in Agent-User Interactive and MCP-Augmented Environments
Among existing online mobile-use benchmarks, AndroidWorld has emerged as the dominant benchmark due to its reproducible environment and deterministic evaluation; however, recent agents achieving over 90% success rates indicate its saturation and motivate the need for a more challenging benchmark. In addition, its environment lacks key application categories, such as e-commerce and enterprise communication, and does not reflect realistic mobile-use scenarios characterized by vague user instructions and hybrid tool usage. We introduce MobileWorld, a substantially more challenging benchmark designed to reflect real-world usage through 201 tasks across 20 applications. MobileWorld derives its difficulty from an emphasis on long-horizon, cross-application workflows, requiring nearly twice as many completion steps on average (27.8 vs. 14.3) and featuring a significantly higher proportion of multi-app tasks (62.2% vs. 9.5%) than AndroidWorld. To overcome the limitations of existing environments, MobileWorld achieves a balance between production-grade utility and reproducible evaluation by utilizing open-source alternatives to industry standards (e.g., Mattermost for Slack). This approach enables a fully observable and controlled environment through source code modification and direct backend database access for precise verification. MobileWorld also introduces novel task categories, including agent-user interaction and Model Context Protocol (MCP)-augmented tasks, for evaluating agents in user-aware, hybrid-tool scenarios. To facilitate evaluation, we develop a planner-executor agentic framework with extended action spaces to support user interactions and MCP calls. Our results reveal a sharp performance drop compared to AndroidWorld, with the best agentic framework and end-to-end model achieving 51.7% and 20.9% success rates, respectively, highlighting ample headroom for future research.
♻ ☆ SiDiaC: Sinhala Diachronic Corpus ACL
SiDiaC, the first comprehensive Sinhala Diachronic Corpus, covers a historical span from the 5th to the 20th century CE. SiDiaC comprises 58k words across 46 literary works, annotated carefully based on the written date, after filtering based on availability, authorship, copyright compliance, and data attribution. Texts from the National Library of Sri Lanka were digitised using Google Document AI OCR, followed by post-processing to correct formatting and modernise the orthography. The construction of SiDiaC was informed by practices from other corpora, such as FarPaHC, particularly in syntactic annotation and text normalisation strategies, due to the shared characteristics of low-resourced language status. This corpus is categorised based on genres into two layers: primary and secondary. Primary categorisation is binary, classifying each book into Non-Fiction or Fiction, while the secondary categorisation is more specific, grouping texts under Religious, History, Poetry, Language, and Medical genres. Despite challenges including limited access to rare texts and reliance on secondary date sources, SiDiaC serves as a foundational resource for Sinhala NLP, significantly extending the resources available for Sinhala, enabling diachronic studies in lexical change, neologism tracking, historical syntax, and corpus-based lexicography.
comment: 17 pages, 7 figures, 9 tables, Accepted paper at the 39th Pacific Asia Conference on Language, Information and Computation (PACLIC 39)
♻ ☆ In-N-Out: A Parameter-Level API Graph Dataset for Tool Agents
Tool agents--LLM-based systems that interact with external APIs--offer a way to execute real-world tasks. However, as tasks become increasingly complex, these agents struggle to identify and call the correct APIs in the proper order. To tackle this problem, we investigate converting API documentation into a structured API graph that captures API dependencies and leveraging it for multi-tool queries that require compositional API calls. To support this, we introduce In-N-Out, the first expert-annotated dataset of API graphs built from two real-world API benchmarks and their documentation. Using In-N-Out significantly improves performance on both tool retrieval and multi-tool query generation, nearly doubling that of LLMs using documentation alone. Moreover, graphs generated by models fine-tuned on In-N-Out close 90% of this gap, showing that our dataset helps models learn to comprehend API documentation and parameter relationships. Our findings highlight the promise of using explicit API graphs for tool agents and the utility of In-N-Out as a valuable resource. We release our dataset and code at https://github.com/holi-lab/In-N-Out-API-Graph.
♻ ☆ Do LLMs Understand Collaborative Signals? Diagnosis and Repair
Collaborative information from user-item interactions is a fundamental source of signal in successful recommender systems. Recently, researchers have attempted to incorporate this knowledge into large language model-based recommender approaches (LLMRec) to enhance their performance. However, there has been little fundamental analysis of whether LLMs can effectively reason over collaborative information. In this paper, we analyze the ability of LLMs to reason about collaborative information in recommendation tasks, comparing their performance to traditional matrix factorization (MF) models. We propose a simple and effective method to improve LLMs' reasoning capabilities using retrieval-augmented generation (RAG) over the user-item interaction matrix with four different prompting strategies. Our results show that the LLM outperforms the MF model whenever we provide relevant information in a clear and easy-to-follow format, and prompt the LLM to reason based on it. We observe that with this strategy, in almost all cases, the more information we provide, the better the LLM performs.
♻ ☆ Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo, at https://github.com/FunAudioLLM/Fun-Audio-Chat .
comment: Authors are listed in alphabetical order, 21 pages, open-source at https://github.com/FunAudioLLM/Fun-Audio-Chat
♻ ☆ Heaven-Sent or Hell-Bent? Benchmarking the Intelligence and Defectiveness of LLM Hallucinations KDD 2026
Hallucinations in large language models (LLMs) are commonly regarded as errors to be minimized. However, recent perspectives suggest that some hallucinations may encode creative or epistemically valuable content, a dimension that remains underquantified in current literature. Existing hallucination detection methods primarily focus on factual consistency, struggling to handle heterogeneous scientific tasks and balance creativity with accuracy. To address these challenges, we propose HIC-Bench, a novel evaluation framework that categorizes hallucinations into Intelligent Hallucinations (IH) and Defective Hallucinations (DH), enabling systematic investigation of their interplay in LLM creativity. HIC-Bench features three core characteristics: (1) Structured IH/DH Assessment. using a multi-dimensional metric matrix integrating Torrance Tests of Creative Thinking (TTCT) metrics (Originality, Feasibility, Value) with hallucination-specific dimensions (scientific plausibility, factual deviation); (2) Cross-Domain Applicability. spanning ten scientific domains with open-ended innovation tasks; and (3) Dynamic Prompt Optimization. leveraging the Dynamic Hallucination Prompt (DHP) to guide models toward creative and reliable outputs. The evaluation process employs multiple LLM judges, averaging scores to mitigate bias, with human annotators verifying IH/DH classifications. Experimental results reveal a nonlinear relationship between IH and DH, demonstrating that creativity and correctness can be jointly optimized. These insights position IH as a catalyst for creativity and reveal the ability of LLM hallucinations to drive scientific innovation.Additionally, the HIC-Bench offers a valuable platform for advancing research into the creative intelligence of LLM hallucinations.
comment: Published as a conference paper at KDD 2026
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ SciEvalKit: An Open-source Evaluation Toolkit for Scientific General Intelligence
We introduce SciEvalKit, a unified benchmarking toolkit designed to evaluate AI models for science across a broad range of scientific disciplines and task capabilities. Unlike general-purpose evaluation platforms, SciEvalKit focuses on the core competencies of scientific intelligence, including Scientific Multimodal Perception, Scientific Multimodal Reasoning, Scientific Multimodal Understanding, Scientific Symbolic Reasoning, Scientific Code Generation, Science Hypothesis Generation and Scientific Knowledge Understanding. It supports six major scientific domains, spanning from physics and chemistry to astronomy and materials science. SciEvalKit builds a foundation of expert-grade scientific benchmarks, curated from real-world, domain-specific datasets, ensuring that tasks reflect authentic scientific challenges. The toolkit features a flexible, extensible evaluation pipeline that enables batch evaluation across models and datasets, supports custom model and dataset integration, and provides transparent, reproducible, and comparable results. By bridging capability-based evaluation and disciplinary diversity, SciEvalKit offers a standardized yet customizable infrastructure to benchmark the next generation of scientific foundation models and intelligent agents. The toolkit is open-sourced and actively maintained to foster community-driven development and progress in AI4Science.
Machine Learning 150
☆ Improving the stability of the covariance-controlled adaptive Langevin thermostat for large-scale Bayesian sampling
Stochastic gradient Langevin dynamics and its variants approximate the likelihood of an entire dataset, via random (and typically much smaller) subsets, in the setting of Bayesian sampling. Due to the (often substantial) improvement of the computational efficiency, they have been widely used in large-scale machine learning applications. It has been demonstrated that the so-called covariance-controlled adaptive Langevin (CCAdL) thermostat, which incorporates an additional term involving the covariance matrix of the noisy force, outperforms popular alternative methods. A moving average is used in CCAdL to estimate the covariance matrix of the noisy force, in which case the covariance matrix will converge to a constant matrix in long-time limit. Moreover, it appears in our numerical experiments that the use of a moving average could reduce the stability of the numerical integrators, thereby limiting the largest usable stepsize. In this article, we propose a modified CCAdL (i.e., mCCAdL) thermostat that uses the scaling part of the scaling and squaring method together with a truncated Taylor series approximation to the exponential to numerically approximate the exact solution to the subsystem involving the additional term proposed in CCAdL. We also propose a symmetric splitting method for mCCAdL, instead of an Euler-type discretisation used in the original CCAdL thermostat. We demonstrate in our numerical experiments that the newly proposed mCCAdL thermostat achieves a substantial improvement in the numerical stability over the original CCAdL thermostat, while significantly outperforming popular alternative stochastic gradient methods in terms of the numerical accuracy for large-scale machine learning applications.
☆ Generalising E-prop to Deep Networks
Recurrent networks are typically trained with backpropagation through time (BPTT). However, BPTT requires storing the history of all states in the network and then replaying them sequentially backwards in time. This computation appears extremely implausible for the brain to implement. Real Time Recurrent Learning (RTRL) proposes an mathematically equivalent alternative where gradient information is propagated forwards in time locally alongside the regular forward pass, however it has significantly greater computational complexity than BPTT which renders it impractical for large networks. E-prop proposes an approximation of RTRL which reduces its complexity to the level of BPTT while maintaining a purely online forward update which can be implemented by an eligibility trace at each synapse. However, works on RTRL and E-prop ubiquitously investigate learning in a single layer with recurrent dynamics. However, learning in the brain spans multiple layers and consists of both hierarchal dynamics in depth as well as time. In this mathematical note, we extend the E-prop framework to handle arbitrarily deep networks, deriving a novel recursion relationship across depth which extends the eligibility traces of E-prop to deeper layers. Our results thus demonstrate an online learning algorithm can perform accurate credit assignment across both time and depth simultaneously, allowing the training of deep recurrent networks without backpropagation through time.
comment: 30/12/25 initial upload
☆ Can Small Training Runs Reliably Guide Data Curation? Rethinking Proxy-Model Practice
Data teams at frontier AI companies routinely train small proxy models to make critical decisions about pretraining data recipes for full-scale training runs. However, the community has a limited understanding of whether and when conclusions drawn from small-scale experiments reliably transfer to full-scale model training. In this work, we uncover a subtle yet critical issue in the standard experimental protocol for data recipe assessment: the use of identical small-scale model training configurations across all data recipes in the name of "fair" comparison. We show that the experiment conclusions about data quality can flip with even minor adjustments to training hyperparameters, as the optimal training configuration is inherently data-dependent. Moreover, this fixed-configuration protocol diverges from full-scale model development pipelines, where hyperparameter optimization is a standard step. Consequently, we posit that the objective of data recipe assessment should be to identify the recipe that yields the best performance under data-specific tuning. To mitigate the high cost of hyperparameter tuning, we introduce a simple patch to the evaluation protocol: using reduced learning rates for proxy model training. We show that this approach yields relative performance that strongly correlates with that of fully tuned large-scale LLM pretraining runs. Theoretically, we prove that for random-feature models, this approach preserves the ordering of datasets according to their optimal achievable loss. Empirically, we validate this approach across 23 data recipes covering four critical dimensions of data curation, demonstrating dramatic improvements in the reliability of small-scale experiments.
What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
☆ HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors
Causal discovery from observational data remains fundamentally limited by identifiability constraints. Recent work has explored leveraging Large Language Models (LLMs) as sources of prior causal knowledge, but existing approaches rely on heuristic integration that lacks theoretical grounding. We introduce HOLOGRAPH, a framework that formalizes LLM-guided causal discovery through sheaf theory--representing local causal beliefs as sections of a presheaf over variable subsets. Our key insight is that coherent global causal structure corresponds to the existence of a global section, while topological obstructions manifest as non-vanishing sheaf cohomology. We propose the Algebraic Latent Projection to handle hidden confounders and Natural Gradient Descent on the belief manifold for principled optimization. Experiments on synthetic and real-world benchmarks demonstrate that HOLOGRAPH provides rigorous mathematical foundations while achieving competitive performance on causal discovery tasks with 50-100 variables. Our sheaf-theoretic analysis reveals that while Identity, Transitivity, and Gluing axioms are satisfied to numerical precision (<10^{-6}), the Locality axiom fails for larger graphs, suggesting fundamental non-local coupling in latent variable projections. Code is available at [https://github.com/hyunjun1121/holograph](https://github.com/hyunjun1121/holograph).
☆ Spectral and Spatial Graph Learning for Multispectral Solar Image Compression
High-fidelity compression of multispectral solar imagery remains challenging for space missions, where limited bandwidth must be balanced against preserving fine spectral and spatial details. We present a learned image compression framework tailored to solar observations, leveraging two complementary modules: (1) the Inter-Spectral Windowed Graph Embedding (iSWGE), which explicitly models inter-band relationships by representing spectral channels as graph nodes with learned edge features; and (2) the Windowed Spatial Graph Attention and Convolutional Block Attention (WSGA-C), which combines sparse graph attention with convolutional attention to reduce spatial redundancy and emphasize fine-scale structures. Evaluations on the SDOML dataset across six extreme ultraviolet (EUV) channels show that our approach achieves a 20.15%reduction in Mean Spectral Information Divergence (MSID), up to 1.09% PSNR improvement, and a 1.62% log transformed MS-SSIM gain over strong learned baselines, delivering sharper and spectrally faithful reconstructions at comparable bits-per-pixel rates. The code is publicly available at https://github.com/agyat4/sgraph .
comment: 8 pages, 6 figures 1 table. Code available at https://github.com/agyat4/sgraph
☆ Privacy-Preserving Semantic Communications via Multi-Task Learning and Adversarial Perturbations
Semantic communications conveys task-relevant meaning rather than focusing solely on message reconstruction, improving bandwidth efficiency and robustness for next-generation wireless systems. However, learned semantic representations can still leak sensitive information to unintended receivers (eavesdroppers). This paper presents a deep learning-based semantic communication framework that jointly supports multiple receiver tasks while explicitly limiting semantic leakage to an eavesdropper. The legitimate link employs a learned encoder at the transmitter, while the receiver trains decoders for semantic inference and data reconstruction. The security problem is formulated via an iterative min-max optimization in which an eavesdropper is trained to improve its semantic inference, while the legitimate transmitter-receiver pair is trained to preserve task performance while reducing the eavesdropper's success. We also introduce an auxiliary layer that superimposes a cooperative, adversarially crafted perturbation on the transmitted waveform to degrade semantic leakage to an eavesdropper. Performance is evaluated over Rayleigh fading channels with additive white Gaussian noise using MNIST and CIFAR-10 datasets. Semantic accuracy and reconstruction quality improve with increasing latent dimension, while the min-max mechanism reduces the eavesdropper's inference performance significantly without degrading the legitimate receiver. The perturbation layer is successful in reducing semantic leakage even when the legitimate link is trained only for its own task. This comprehensive framework motivates semantic communication designs with tunable, end-to-end privacy against adaptive adversaries in realistic wireless settings.
☆ Generative forecasting with joint probability models
Chaotic dynamical systems exhibit strong sensitivity to initial conditions and often contain unresolved multiscale processes, making deterministic forecasting fundamentally limited. Generative models offer an appealing alternative by learning distributions over plausible system evolutions; yet, most existing approaches focus on next-step conditional prediction rather than the structure of the underlying dynamics. In this work, we reframe forecasting as a fully generative problem by learning the joint probability distribution of lagged system states over short temporal windows and obtaining forecasts through marginalization. This new perspective allows the model to capture nonlinear temporal dependencies, represent multistep trajectory segments, and produce next-step predictions consistent with the learned joint distribution. We also introduce a general, model-agnostic training and inference framework for joint generative forecasting and show how it enables assessment of forecast robustness and reliability using three complementary uncertainty quantification metrics (ensemble variance, short-horizon autocorrelation, and cumulative Wasserstein drift), without access to ground truth. We evaluate the performance of the proposed method on two canonical chaotic dynamical systems, the Lorenz-63 system and the Kuramoto-Sivashinsky equation, and show that joint generative models yield improved short-term predictive skill, preserve attractor geometry, and achieve substantially more accurate long-range statistical behaviour than conventional conditional next-step models.
comment: 18 pages, 11 figures
☆ Adaptive Learning Guided by Bias-Noise-Alignment Diagnostics
Learning systems deployed in nonstationary and safety-critical environments often suffer from instability, slow convergence, or brittle adaptation when learning dynamics evolve over time. While modern optimization, reinforcement learning, and meta-learning methods adapt to gradient statistics, they largely ignore the temporal structure of the error signal itself. This paper proposes a diagnostic-driven adaptive learning framework that explicitly models error evolution through a principled decomposition into bias, capturing persistent drift; noise, capturing stochastic variability; and alignment, capturing repeated directional excitation leading to overshoot. These diagnostics are computed online from lightweight statistics of loss or temporal-difference error trajectories and are independent of model architecture or task domain. We show that the proposed bias-noise-alignment decomposition provides a unifying control backbone for supervised optimization, actor-critic reinforcement learning, and learned optimizers. Building on this framework, we derive diagnostic-driven instantiations including a stabilized supervised optimizer, a diagnostic-regulated actor-critic scheme, and a diagnostic-conditioned learned optimizer. Under standard smoothness assumptions, we establish bounded effective updates and stability properties for all cases. Representative diagnostic illustrations in actor-critic learning highlight how the proposed signals modulate adaptation in response to temporal-difference error structure. Overall, this work elevates error evolution to a first-class object in adaptive learning and provides an interpretable, lightweight foundation for reliable learning in dynamic environments.
comment: This preprint focuses on the theoretical framework and diagnostic behavior. Comprehensive experimental validation in application-specific settings is deferred to a companion experimental study
☆ Sparse classification with positive-confidence data in high dimensions
High-dimensional learning problems, where the number of features exceeds the sample size, often require sparse regularization for effective prediction and variable selection. While established for fully supervised data, these techniques remain underexplored in weak-supervision settings such as Positive-Confidence (Pconf) classification. Pconf learning utilizes only positive samples equipped with confidence scores, thereby avoiding the need for negative data. However, existing Pconf methods are ill-suited for high-dimensional regimes. This paper proposes a novel sparse-penalization framework for high-dimensional Pconf classification. We introduce estimators using convex (Lasso) and non-convex (SCAD, MCP) penalties to address shrinkage bias and improve feature recovery. Theoretically, we establish estimation and prediction error bounds for the L1-regularized Pconf estimator, proving it achieves near minimax-optimal sparse recovery rates under Restricted Strong Convexity condition. To solve the resulting composite objective, we develop an efficient proximal gradient algorithm. Extensive simulations demonstrate that our proposed methods achieve predictive performance and variable selection accuracy comparable to fully supervised approaches, effectively bridging the gap between weak supervision and high-dimensional statistics.
☆ Towards mechanistic understanding in a data-driven weather model: internal activations reveal interpretable physical features
Large data-driven physics models like DeepMind's weather model GraphCast have empirically succeeded in parameterizing time operators for complex dynamical systems with an accuracy reaching or in some cases exceeding that of traditional physics-based solvers. Unfortunately, how these data-driven models perform computations is largely unknown and whether their internal representations are interpretable or physically consistent is an open question. Here, we adapt tools from interpretability research in Large Language Models to analyze intermediate computational layers in GraphCast, leveraging sparse autoencoders to discover interpretable features in the neuron space of the model. We uncover distinct features on a wide range of length and time scales that correspond to tropical cyclones, atmospheric rivers, diurnal and seasonal behavior, large-scale precipitation patterns, specific geographical coding, and sea-ice extent, among others. We further demonstrate how the precise abstraction of these features can be probed via interventions on the prediction steps of the model. As a case study, we sparsely modify a feature corresponding to tropical cyclones in GraphCast and observe interpretable and physically consistent modifications to evolving hurricanes. Such methods offer a window into the black-box behavior of data-driven physics models and are a step towards realizing their potential as trustworthy predictors and scientifically valuable tools for discovery.
comment: 18 pages, 13 figures
☆ Virasoro Symmetry in Neural Network Field Theories
Neural Network Field Theories (NN-FTs) can realize global conformal symmetries via embedding space architectures. These models describe Generalized Free Fields (GFFs) in the infinite width limit. However, they typically lack a local stress-energy tensor satisfying conformal Ward identities. This presents an obstruction to realizing infinite-dimensional, local conformal symmetry typifying 2d Conformal Field Theories (CFTs). We present the first construction of an NN-FT that encodes the full Virasoro symmetry of a 2d CFT. We formulate a neural free boson theory with a local stress tensor $T(z)$ by properly choosing the architecture and prior distribution of network parameters. We verify the analytical results through numerical simulation; computing the central charge and the scaling dimensions of vertex operators. We then construct an NN realization of a Majorana Fermion and an $\mathcal{N}=(1,1)$ scalar multiplet, which then enables an extension of the formalism to include super-Virasoro symmetry. Finally, we extend the framework by constructing boundary NN-FTs that preserve (super-)conformal symmetry via the method of images.
comment: 11 pages, 2 figures
☆ Efficient Inference for Inverse Reinforcement Learning and Dynamic Discrete Choice Models
Inverse reinforcement learning (IRL) and dynamic discrete choice (DDC) models explain sequential decision-making by recovering reward functions that rationalize observed behavior. Flexible IRL methods typically rely on machine learning but provide no guarantees for valid inference, while classical DDC approaches impose restrictive parametric specifications and often require repeated dynamic programming. We develop a semiparametric framework for debiased inverse reinforcement learning that yields statistically efficient inference for a broad class of reward-dependent functionals in maximum entropy IRL and Gumbel-shock DDC models. We show that the log-behavior policy acts as a pseudo-reward that point-identifies policy value differences and, under a simple normalization, the reward itself. We then formalize these targets, including policy values under known and counterfactual softmax policies and functionals of the normalized reward, as smooth functionals of the behavior policy and transition kernel, establish pathwise differentiability, and derive their efficient influence functions. Building on this characterization, we construct automatic debiased machine-learning estimators that allow flexible nonparametric estimation of nuisance components while achieving $\sqrt{n}$-consistency, asymptotic normality, and semiparametric efficiency. Our framework extends classical inference for DDC models to nonparametric rewards and modern machine-learning tools, providing a unified and computationally tractable approach to statistical inference in IRL.
☆ Lifting Vision: Ground to Aerial Localization with Reasoning Guided Planning
Multimodal intelligence development recently show strong progress in visual understanding and high level reasoning. Though, most reasoning system still reply on textual information as the main medium for inference. This limit their effectiveness in spatial tasks such as visual navigation and geo-localization. This work discuss about the potential scope of this field and eventually propose an idea visual reasoning paradigm Geo-Consistent Visual Planning, our introduced framework called Visual Reasoning for Localization, or ViReLoc, which performs planning and localization using only visual representations. The proposed framework learns spatial dependencies and geometric relations that text based reasoning often suffer to understand. By encoding step by step inference in the visual domain and optimizing with reinforcement based objectives, ViReLoc plans routes between two given ground images. The system also integrates contrastive learning and adaptive feature interaction to align cross view perspectives and reduce viewpoint differences. Experiments across diverse navigation and localization scenarios show consistent improvements in spatial reasoning accuracy and cross view retrieval performance. These results establish visual reasoning as a strong complementary approach for navigation and localization, and show that such tasks can be performed without real time global positioning system data, leading to more secure navigation solutions.
☆ Tubular Riemannian Laplace Approximations for Bayesian Neural Networks
Laplace approximations are among the simplest and most practical methods for approximate Bayesian inference in neural networks, yet their Euclidean formulation struggles with the highly anisotropic, curved loss surfaces and large symmetry groups that characterize modern deep models. Recent work has proposed Riemannian and geometric Gaussian approximations to adapt to this structure. Building on these ideas, we introduce the Tubular Riemannian Laplace (TRL) approximation. TRL explicitly models the posterior as a probabilistic tube that follows a low-loss valley induced by functional symmetries, using a Fisher/Gauss-Newton metric to separate prior-dominated tangential uncertainty from data-dominated transverse uncertainty. We interpret TRL as a scalable reparametrised Gaussian approximation that utilizes implicit curvature estimates to operate in high-dimensional parameter spaces. Our empirical evaluation on ResNet-18 (CIFAR-10 and CIFAR-100) demonstrates that TRL achieves excellent calibration, matching or exceeding the reliability of Deep Ensembles (in terms of ECE) while requiring only a fraction (1/5) of the training cost. TRL effectively bridges the gap between single-model efficiency and ensemble-grade reliability.
☆ Implicit score matching meets denoising score matching: improved rates of convergence and log-density Hessian estimation
We study the problem of estimating the score function using both implicit score matching and denoising score matching. Assuming that the data distribution exhibiting a low-dimensional structure, we prove that implicit score matching is able not only to adapt to the intrinsic dimension, but also to achieve the same rates of convergence as denoising score matching in terms of the sample size. Furthermore, we demonstrate that both methods allow us to estimate log-density Hessians without the curse of dimensionality by simple differentiation. This justifies convergence of ODE-based samplers for generative diffusion models. Our approach is based on Gagliardo-Nirenberg-type inequalities relating weighted $L^2$-norms of smooth functions and their derivatives.
comment: 52 pages
☆ Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning
Deep learning methods -- physics-informed neural networks (PINNs), deep operator networks (DeepONet), and graph network simulators (GNS) -- are increasingly proposed for geotechnical problems. This paper tests these methods against traditional solvers on canonical problems: wave propagation and beam-foundation interaction. PINNs run 90,000 times slower than finite difference with larger errors. DeepONet requires thousands of training simulations and breaks even only after millions of evaluations. Multi-layer perceptrons fail catastrophically when extrapolating beyond training data -- the common case in geotechnical prediction. GNS shows promise for geometry-agnostic simulation but faces scaling limits and cannot capture path-dependent soil behavior. For inverse problems, automatic differentiation through traditional solvers recovers material parameters with sub-percent accuracy in seconds. We recommend: use automatic differentiation for inverse problems; apply site-based cross-validation to account for spatial autocorrelation; reserve neural networks for problems where traditional solvers are genuinely expensive and predictions remain within the training envelope. When a method is four orders of magnitude slower with less accuracy, it is not a viable replacement for proven solvers.
☆ OptiVote: Non-Coherent FSO Over-the-Air Majority Vote for Communication-Efficient Distributed Federated Learning in Space Data Centers
The rapid deployment of mega-constellations is driving the long-term vision of space data centers (SDCs), where interconnected satellites form in-orbit distributed computing and learning infrastructures. Enabling distributed federated learning in such systems is challenging because iterative training requires frequent aggregation over inter-satellite links that are bandwidth- and energy-constrained, and the link conditions can be highly dynamic. In this work, we exploit over-the-air computation (AirComp) as an in-network aggregation primitive. However, conventional coherent AirComp relies on stringent phase alignment, which is difficult to maintain in space environments due to satellite jitter and Doppler effects. To overcome this limitation, we propose OptiVote, a robust and communication-efficient non-coherent free-space optical (FSO) AirComp framework for federated learning toward Space Data Centers. OptiVote integrates sign stochastic gradient descent (signSGD) with a majority-vote (MV) aggregation principle and pulse-position modulation (PPM), where each satellite conveys local gradient signs by activating orthogonal PPM time slots. The aggregation node performs MV detection via non-coherent energy accumulation, transforming phase-sensitive field superposition into phase-agnostic optical intensity combining, thereby eliminating the need for precise phase synchronization and improving resilience under dynamic impairments. To mitigate aggregation bias induced by heterogeneous FSO channels, we further develop an importance-aware, channel state information (CSI)-free dynamic power control scheme that balances received energies without additional signaling. We provide theoretical analysis by characterizing the aggregate error probability under statistical FSO channels and establishing convergence guarantees for non-convex objectives.
☆ Topological Spatial Graph Coarsening
Spatial graphs are particular graphs for which the nodes are localized in space (e.g., public transport network, molecules, branching biological structures). In this work, we consider the problem of spatial graph reduction, that aims to find a smaller spatial graph (i.e., with less nodes) with the same overall structure as the initial one. In this context, performing the graph reduction while preserving the main topological features of the initial graph is particularly relevant, due to the additional spatial information. Thus, we propose a topological spatial graph coarsening approach based on a new framework that finds a trade-off between the graph reduction and the preservation of the topological characteristics. The coarsening is realized by collapsing short edges. In order to capture the topological information required to calibrate the reduction level, we adapt the construction of classical topological descriptors made for point clouds (the so-called persistent diagrams) to spatial graphs. This construction relies on the introduction of a new filtration called triangle-aware graph filtration. Our coarsening approach is parameter-free and we prove that it is equivariant under rotations, translations and scaling of the initial spatial graph. We evaluate the performances of our method on synthetic and real spatial graphs, and show that it significantly reduces the graph sizes while preserving the relevant topological information.
☆ MaRCA: Multi-Agent Reinforcement Learning for Dynamic Computation Allocation in Large-Scale Recommender Systems
Modern recommender systems face significant computational challenges due to growing model complexity and traffic scale, making efficient computation allocation critical for maximizing business revenue. Existing approaches typically simplify multi-stage computation resource allocation, neglecting inter-stage dependencies, thus limiting global optimality. In this paper, we propose MaRCA, a multi-agent reinforcement learning framework for end-to-end computation resource allocation in large-scale recommender systems. MaRCA models the stages of a recommender system as cooperative agents, using Centralized Training with Decentralized Execution (CTDE) to optimize revenue under computation resource constraints. We introduce an AutoBucket TestBench for accurate computation cost estimation, and a Model Predictive Control (MPC)-based Revenue-Cost Balancer to proactively forecast traffic loads and adjust the revenue-cost trade-off accordingly. Since its end-to-end deployment in the advertising pipeline of a leading global e-commerce platform in November 2024, MaRCA has consistently handled hundreds of billions of ad requests per day and has delivered a 16.67% revenue uplift using existing computation resources.
comment: 12 pages, 5 figures
☆ Empower Low-Altitude Economy: A Reliability-Aware Dynamic Weighting Allocation for Multi-modal UAV Beam Prediction
The low-altitude economy (LAE) is rapidly expanding driven by urban air mobility, logistics drones, and aerial sensing, while fast and accurate beam prediction in uncrewed aerial vehicles (UAVs) communications is crucial for achieving reliable connectivity. Current research is shifting from single-signal to multi-modal collaborative approaches. However, existing multi-modal methods mostly employ fixed or empirical weights, assuming equal reliability across modalities at any given moment. Indeed, the importance of different modalities fluctuates dramatically with UAV motion scenarios, and static weighting amplifies the negative impact of degraded modalities. Furthermore, modal mismatch and weak alignment further undermine cross-scenario generalization. To this end, we propose a reliability-aware dynamic weighting scheme applied to a semantic-aware multi-modal beam prediction framework, named SaM2B. Specifically, SaM2B leverages lightweight cues such as environmental visual, flight posture, and geospatial data to adaptively allocate contributions across modalities at different time points through reliability-aware dynamic weight updates. Moreover, by utilizing cross-modal contrastive learning, we align the "multi-source representation beam semantics" associated with specific beam information to a shared semantic space, thereby enhancing discriminative power and robustness under modal noise and distribution shifts. Experiments on real-world low-altitude UAV datasets show that SaM2B achieves more satisfactory results than baseline methods.
☆ Fast reconstruction-based ROI triggering via anomaly detection in the CYGNO optical TPC
Optical-readout Time Projection Chambers (TPCs) produce megapixel-scale images whose fine-grained topological information is essential for rare-event searches, but whose size challenges real-time data selection. We present an unsupervised, reconstruction-based anomaly-detection strategy for fast Region-of-Interest (ROI) extraction that operates directly on minimally processed camera frames. A convolutional autoencoder trained exclusively on pedestal images learns the detector noise morphology without labels, simulation, or fine-grained calibration. Applied to standard data-taking frames, localized reconstruction residuals identify particle-induced structures, from which compact ROIs are extracted via thresholding and spatial clustering. Using real data from the CYGNO optical TPC prototype, we compare two pedestal-trained autoencoder configurations that differ only in their training objective, enabling a controlled study of its impact. The best configuration retains (93.0 +/- 0.2)% of reconstructed signal intensity while discarding (97.8 +/- 0.1)% of the image area, with an inference time of approximately 25 ms per frame on a consumer GPU. The results demonstrate that careful design of the training objective is critical for effective reconstruction-based anomaly detection and that pedestal-trained autoencoders provide a transparent and detector-agnostic baseline for online data reduction in optical TPCs.
comment: 13 pages, 6 figures, Submitted to IOP Machine Learning: Science and Technology
☆ Joint Selection for Large-Scale Pre-Training Data via Policy Gradient-based Mask Learning
A fine-grained data recipe is crucial for pre-training large language models, as it can significantly enhance training efficiency and model performance. One important ingredient in the recipe is to select samples based on scores produced by defined rules, LLM judgment, or statistical information in embeddings, which can be roughly categorized into quality and diversity metrics. Due to the high computational cost when applied to trillion-scale token pre-training datasets such as FineWeb and DCLM, these two or more types of metrics are rarely considered jointly in a single selection process. However, in our empirical study, selecting samples based on quality metrics exhibit severe diminishing returns during long-term pre-training, while selecting on diversity metrics removes too many valuable high-quality samples, both of which limit pre-trained LLMs' capabilities. Therefore, we introduce DATAMASK, a novel and efficient joint learning framework designed for large-scale pre-training data selection that can simultaneously optimize multiple types of metrics in a unified process, with this study focusing specifically on quality and diversity metrics. DATAMASK approaches the selection process as a mask learning problem, involving iterative sampling of data masks, computation of policy gradients based on predefined objectives with sampled masks, and updating of mask sampling logits. Through policy gradient-based optimization and various acceleration enhancements, it significantly reduces selection time by 98.9% compared to greedy algorithm, enabling our study to explore joint learning within trillion-scale tokens. With DATAMASK, we select a subset of about 10% from the 15 trillion-token FineWeb dataset, termed FineWeb-Mask. Evaluated across 12 diverse tasks, we achieves significant improvements of 3.2% on a 1.5B dense model and 1.9% on a 7B MoE model.
☆ Early Prediction of Sepsis using Heart Rate Signals and Genetic Optimized LSTM Algorithm
Sepsis, characterized by a dysregulated immune response to infection, results in significant mortality, morbidity, and healthcare costs. The timely prediction of sepsis progression is crucial for reducing adverse outcomes through early intervention. Despite the development of numerous models for Intensive Care Unit (ICU) patients, there remains a notable gap in approaches for the early detection of sepsis in non-ward settings. This research introduces and evaluates four novel machine learning algorithms designed for predicting the onset of sepsis on wearable devices by analyzing heart rate data. The architecture of these models was refined through a genetic algorithm, optimizing for performance, computational complexity, and memory requirements. Performance metrics were subsequently extracted for each model to evaluate their feasibility for implementation on wearable devices capable of accurate heart rate monitoring. The models were initially tailored for a prediction window of one hour, later extended to four hours through transfer learning. The encouraging outcomes of this study suggest the potential for wearable technology to facilitate early sepsis detection outside ICU and ward environments.
☆ Deep Reinforcement Learning for Solving the Fleet Size and Mix Vehicle Routing Problem
The Fleet Size and Mix Vehicle Routing Problem (FSMVRP) is a prominent variant of the Vehicle Routing Problem (VRP), extensively studied in operations research and computational science. FSMVRP requires simultaneous decisions on fleet composition and routing, making it highly applicable to real-world scenarios such as short-term vehicle rental and on-demand logistics. However, these requirements also increase the complexity of FSMVRP, posing significant challenges, particularly in large-scale and time-constrained environments. In this paper, we propose a deep reinforcement learning (DRL)-based approach for solving FSMVRP, capable of generating near-optimal solutions within a few seconds. Specifically, we formulate the problem as a Markov Decision Process (MDP) and develop a novel policy network, termed FRIPN, that seamlessly integrates fleet composition and routing decisions. Our method incorporates specialized input embeddings designed for distinctdecision objectives, including a remaining graph embedding to facilitate effective vehicle employment decisions. Comprehensive experiments are conducted on both randomly generated instances and benchmark datasets. The experimental results demonstrate that our method exhibits notable advantages in terms of computational efficiency and scalability, particularly in large-scale and time-constrained scenarios. These strengths highlight the potential of our approach for practical applications and provide valuable inspiration for extending DRL-based techniques to other variants of VRP.
☆ MotivNet: Evolving Meta-Sapiens into an Emotionally Intelligent Foundation Model
In this paper, we introduce MotivNet, a generalizable facial emotion recognition model for robust real-world application. Current state-of-the-art FER models tend to have weak generalization when tested on diverse data, leading to deteriorated performance in the real world and hindering FER as a research domain. Though researchers have proposed complex architectures to address this generalization issue, they require training cross-domain to obtain generalizable results, which is inherently contradictory for real-world application. Our model, MotivNet, achieves competitive performance across datasets without cross-domain training by using Meta-Sapiens as a backbone. Sapiens is a human vision foundational model with state-of-the-art generalization in the real world through large-scale pretraining of a Masked Autoencoder. We propose MotivNet as an additional downstream task for Sapiens and define three criteria to evaluate MotivNet's viability as a Sapiens task: benchmark performance, model similarity, and data similarity. Throughout this paper, we describe the components of MotivNet, our training approach, and our results showing MotivNet is generalizable across domains. We demonstrate that MotivNet can be benchmarked against existing SOTA models and meets the listed criteria, validating MotivNet as a Sapiens downstream task, and making FER more incentivizing for in-the-wild application. The code is available at https://github.com/OSUPCVLab/EmotionFromFaceImages.
comment: 6 pages, 4 figures
Medical Image Classification on Imbalanced Data Using ProGAN and SMA-Optimized ResNet: Application to COVID-19
The challenge of imbalanced data is prominent in medical image classification. This challenge arises when there is a significant disparity in the number of images belonging to a particular class, such as the presence or absence of a specific disease, as compared to the number of images belonging to other classes. This issue is especially notable during pandemics, which may result in an even more significant imbalance in the dataset. Researchers have employed various approaches in recent years to detect COVID-19 infected individuals accurately and quickly, with artificial intelligence and machine learning algorithms at the forefront. However, the lack of sufficient and balanced data remains a significant obstacle to these methods. This study addresses the challenge by proposing a progressive generative adversarial network to generate synthetic data to supplement the real ones. The proposed method suggests a weighted approach to combine synthetic data with real ones before inputting it into a deep network classifier. A multi-objective meta-heuristic population-based optimization algorithm is employed to optimize the hyper-parameters of the classifier. The proposed model exhibits superior cross-validated metrics compared to existing methods when applied to a large and imbalanced chest X-ray image dataset of COVID-19. The proposed model achieves 95.5% and 98.5% accuracy for 4-class and 2-class imbalanced classification problems, respectively. The successful experimental outcomes demonstrate the effectiveness of the proposed model in classifying medical images using imbalanced data during pandemics.
☆ Micro-Macro Tensor Neural Surrogates for Uncertainty Quantification in Collisional Plasma
Plasma kinetic equations exhibit pronounced sensitivity to microscopic perturbations in model parameters and data, making reliable and efficient uncertainty quantification (UQ) essential for predictive simulations. However, the cost of uncertainty sampling, the high-dimensional phase space, and multiscale stiffness pose severe challenges to both computational efficiency and error control in traditional numerical methods. These aspects are further emphasized in presence of collisions where the high-dimensional nonlocal collision integrations and conservation properties pose severe constraints. To overcome this, we present a variance-reduced Monte Carlo framework for UQ in the Vlasov--Poisson--Landau (VPL) system, in which neural network surrogates replace the multiple costly evaluations of the Landau collision term. The method couples a high-fidelity, asymptotic-preserving VPL solver with inexpensive, strongly correlated surrogates based on the Vlasov--Poisson--Fokker--Planck (VPFP) and Euler--Poisson (EP) equations. For the surrogate models, we introduce a generalization of the separable physics-informed neural network (SPINN), developing a class of tensor neural networks based on an anisotropic micro-macro decomposition, to reduce velocity-moment costs, model complexity, and the curse of dimensionality. To further increase correlation with VPL, we calibrate the VPFP model and design an asymptotic-preserving SPINN whose small- and large-Knudsen limits recover the EP and VP systems, respectively. Numerical experiments show substantial variance reduction over standard Monte Carlo, accurate statistics with far fewer high-fidelity samples, and lower wall-clock time, while maintaining robustness to stochastic dimension.
☆ Guiding a Diffusion Transformer with the Internal Dynamics of Itself
The diffusion model presents a powerful ability to capture the entire (conditional) data distribution. However, due to the lack of sufficient training and data to learn to cover low-probability areas, the model will be penalized for failing to generate high-quality images corresponding to these areas. To achieve better generation quality, guidance strategies such as classifier free guidance (CFG) can guide the samples to the high-probability areas during the sampling stage. However, the standard CFG often leads to over-simplified or distorted samples. On the other hand, the alternative line of guiding diffusion model with its bad version is limited by carefully designed degradation strategies, extra training and additional sampling steps. In this paper, we proposed a simple yet effective strategy Internal Guidance (IG), which introduces an auxiliary supervision on the intermediate layer during training process and extrapolates the intermediate and deep layer's outputs to obtain generative results during sampling process. This simple strategy yields significant improvements in both training efficiency and generation quality on various baselines. On ImageNet 256x256, SiT-XL/2+IG achieves FID=5.31 and FID=1.75 at 80 and 800 epochs. More impressively, LightningDiT-XL/1+IG achieves FID=1.34 which achieves a large margin between all of these methods. Combined with CFG, LightningDiT-XL/1+IG achieves the current state-of-the-art FID of 1.19.
comment: Project Page: https://zhouxingyu13.github.io/Internal-Guidance/
☆ Variational Quantum Brushes
Quantum brushes are computational arts software introduced by Ferreira et al (2025) that leverage quantum behavior to generate novel artistic effects. In this outreach paper, we introduce the mathematical framework and describe the implementation of two quantum brushes based on variational quantum algorithms, Steerable and Chemical. While Steerable uses quantum geometric control theory to merge two works of art, Chemical mimics variational eigensolvers for estimating molecular ground energies to evolve colors on an underlying canvas. The implementation of both brushes is available open-source at https://github.com/moth-quantum/QuantumBrush and is fully compatible with the original quantum brushes.
☆ Deep Global Clustering for Hyperspectral Image Segmentation: Concepts, Applications, and Open Challenges
Hyperspectral imaging (HSI) analysis faces computational bottlenecks due to massive data volumes that exceed available memory. While foundation models pre-trained on large remote sensing datasets show promise, their learned representations often fail to transfer to domain-specific applications like close-range agricultural monitoring where spectral signatures, spatial scales, and semantic targets differ fundamentally. This report presents Deep Global Clustering (DGC), a conceptual framework for memory-efficient HSI segmentation that learns global clustering structure from local patch observations without pre-training. DGC operates on small patches with overlapping regions to enforce consistency, enabling training in under 30 minutes on consumer hardware while maintaining constant memory usage. On a leaf disease dataset, DGC achieves background-tissue separation (mean IoU 0.925) and demonstrates unsupervised disease detection through navigable semantic granularity. However, the framework suffers from optimization instability rooted in multi-objective loss balancing: meaningful representations emerge rapidly but degrade due to cluster over-merging in feature space. We position this work as intellectual scaffolding - the design philosophy has merit, but stable implementation requires principled approaches to dynamic loss balancing. Code and data are available at https://github.com/b05611038/HSI_global_clustering.
comment: 10 pages, 4 figures. Technical report extending ACPA 2025 conference paper. Code and data available at https://github.com/b05611038/HSI_global_clustering
☆ Score-based sampling without diffusions: Guidance from a simple and modular scheme
Sampling based on score diffusions has led to striking empirical results, and has attracted considerable attention from various research communities. It depends on availability of (approximate) Stein score functions for various levels of additive noise. We describe and analyze a modular scheme that reduces score-based sampling to solving a short sequence of ``nice'' sampling problems, for which high-accuracy samplers are known. We show how to design forward trajectories such that both (a) the terminal distribution, and (b) each of the backward conditional distribution is defined by a strongly log concave (SLC) distribution. This modular reduction allows us to exploit \emph{any} SLC sampling algorithm in order to traverse the backwards path, and we establish novel guarantees with short proofs for both uni-modal and multi-modal densities. The use of high-accuracy routines yields $\varepsilon$-accurate answers, in either KL or Wasserstein distances, with polynomial dependence on $\log(1/\varepsilon)$ and $\sqrt{d}$ dependence on the dimension.
☆ Paired Seed Evaluation: Statistical Reliability for Learning-Based Simulators
Machine learning systems appear stochastic but are deterministically random, as seeded pseudorandom number generators produce identical realisations across executions. Learning-based simulators are widely used to compare algorithms, design choices, and interventions under such dynamics, yet evaluation outcomes often exhibit high variance due to random initialisation and learning stochasticity. We analyse the statistical structure of comparative evaluation in these settings and show that standard independent evaluation designs fail to exploit shared sources of randomness across alternatives. We formalise a paired seed evaluation design in which competing systems are evaluated under identical random seeds, inducing matched realisations of stochastic components and strict variance reduction whenever outcomes are positively correlated at the seed level. This yields tighter confidence intervals, higher statistical power, and effective sample size gains at fixed computational budgets. Empirically, seed-level correlations are typically large and positive, producing order-of-magnitude efficiency gains. Paired seed evaluation is weakly dominant in practice, improving statistical reliability when correlation is present and reducing to independent evaluation without loss of validity when it is not.
comment: 12 pages, 3 figures
☆ Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
☆ GARDO: Reinforcing Diffusion Models without Reward Hacking
Fine-tuning diffusion models via online reinforcement learning (RL) has shown great potential for enhancing text-to-image alignment. However, since precisely specifying a ground-truth objective for visual tasks remains challenging, the models are often optimized using a proxy reward that only partially captures the true goal. This mismatch often leads to reward hacking, where proxy scores increase while real image quality deteriorates and generation diversity collapses. While common solutions add regularization against the reference policy to prevent reward hacking, they compromise sample efficiency and impede the exploration of novel, high-reward regions, as the reference policy is usually sub-optimal. To address the competing demands of sample efficiency, effective exploration, and mitigation of reward hacking, we propose Gated and Adaptive Regularization with Diversity-aware Optimization (GARDO), a versatile framework compatible with various RL algorithms. Our key insight is that regularization need not be applied universally; instead, it is highly effective to selectively penalize a subset of samples that exhibit high uncertainty. To address the exploration challenge, GARDO introduces an adaptive regularization mechanism wherein the reference model is periodically updated to match the capabilities of the online policy, ensuring a relevant regularization target. To address the mode collapse issue in RL, GARDO amplifies the rewards for high-quality samples that also exhibit high diversity, encouraging mode coverage without destabilizing the optimization process. Extensive experiments across diverse proxy rewards and hold-out unseen metrics consistently show that GARDO mitigates reward hacking and enhances generation diversity without sacrificing sample efficiency or exploration, highlighting its effectiveness and robustness.
comment: 17 pages. Project: https://tinnerhrhe.github.io/gardo_project
☆ OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization
The presence of outliers in Large Language Models (LLMs) weights and activations makes them difficult to quantize. Recent work has leveraged rotations to mitigate these outliers. In this work, we propose methods that learn fusible rotations by minimizing principled and cheap proxy objectives to the weight quantization error. We primarily focus on GPTQ as the quantization method. Our main method is OptRot, which reduces weight outliers simply by minimizing the element-wise fourth power of the rotated weights. We show that OptRot outperforms both Hadamard rotations and more expensive, data-dependent methods like SpinQuant and OSTQuant for weight quantization. It also improves activation quantization in the W4A8 setting. We also propose a data-dependent method, OptRot$^{+}$, that further improves performance by incorporating information on the activation covariance. In the W4A4 setting, we see that both OptRot and OptRot$^{+}$ perform worse, highlighting a trade-off between weight and activation quantization.
comment: 25 pages, 10 figures
☆ Quantitative Understanding of PDF Fits and their Uncertainties
Parton Distribution Functions (PDFs) play a central role in describing experimental data at colliders and provide insight into the structure of nucleons. As the LHC enters an era of high-precision measurements, a robust PDF determination with a reliable uncertainty quantification has become mandatory in order to match the experimental precision. The NNPDF collaboration has pioneered the use of Machine Learning (ML) techniques for PDF determinations, using Neural Networks (NNs) to parametrise the unknown PDFs in a flexible and unbiased way. The NNs are then trained on experimental data by means of stochastic gradient descent algorithms. The statistical robustness of the results is validated by extensive closure tests using synthetic data. In this work, we develop a theoretical framework based on the Neural Tangent Kernel (NTK) to analyse the training dynamics of neural networks. This approach allows us to derive, under precise assumptions, an analytical description of the neural network evolution during training, enabling a quantitative understanding of the training process. Having an analytical handle on the training dynamics allows us to clarify the role of the NN architecture and the impact of the experimental data in a transparent way. Similarly, we are able to describe the evolution of the covariance of the NN output during training, providing a quantitative description of how uncertainties are propagated from the data to the fitted function. While our results are not a substitute for PDF fitting, they do provide a powerful diagnostic tool to assess the robustness of current fitting methodologies. Beyond its relevance for particle physics phenomenology, our analysis of PDF determinations provides a testbed to apply theoretical ideas about the learning process developed in the ML community.
☆ Constructive Approximation of Random Process via Stochastic Interpolation Neural Network Operators
In this paper, we construct a class of stochastic interpolation neural network operators (SINNOs) with random coefficients activated by sigmoidal functions. We establish their boundedness, interpolation accuracy, and approximation capabilities in the mean square sense, in probability, as well as path-wise within the space of second-order stochastic (random) processes \( L^2(Ω, \mathcal{F},\mathbb{P}) \). Additionally, we provide quantitative error estimates using the modulus of continuity of the processes. These results highlight the effectiveness of SINNOs for approximating stochastic processes with potential applications in COVID-19 case prediction.
comment: 22 Pages, 10 Figures
☆ Enhancing LLM Planning Capabilities through Intrinsic Self-Critique
We demonstrate an approach for LLMs to critique their \emph{own} answers with the goal of enhancing their performance that leads to significant improvements over established planning benchmarks. Despite the findings of earlier research that has cast doubt on the effectiveness of LLMs leveraging self critique methods, we show significant performance gains on planning datasets in the Blocksworld domain through intrinsic self-critique, without external source such as a verifier. We also demonstrate similar improvements on Logistics and Mini-grid datasets, exceeding strong baseline accuracies. We employ a few-shot learning technique and progressively extend it to a many-shot approach as our base method and demonstrate that it is possible to gain substantial improvement on top of this already competitive approach by employing an iterative process for correction and refinement. We illustrate how self-critique can significantly boost planning performance. Our empirical results present new state-of-the-art on the class of models considered, namely LLM model checkpoints from October 2024. Our primary focus lies on the method itself, demonstrating intrinsic self-improvement capabilities that are applicable regardless of the specific model version, and we believe that applying our method to more complex search techniques and more capable models will lead to even better performance.
☆ Autoregressivity in the Latent Space of a GP-VAE Language Model: An Empirical Ablation Study
This paper provides an ablation-based analysis of latent autoregression in GP-VAE models, building upon our previous work introducing the architecture. Language models typically rely on an autoregressive factorization over tokens. In contrast, our prior work proposed shifting sequential structure to the latent space through a causal Gaussian process, while using a non-autoregressive decoder. Here, we conduct a systematic ablation study of the role played by latent autoregression. We compare (i) a full GP-VAE model with autoregressive latent dynamics, (ii) a non-autoregressive ablation in which latent variables are independent, and (iii) a standard token-level autoregressive Transformer. Our results show that, within the considered regime (medium-scale corpora and short training contexts), latent autoregression induces latent trajectories that are significantly more compatible with the Gaussian-process prior and exhibit greater long-horizon stability. In contrast, removing autoregression leads to degraded latent structure and unstable long-range behavior. These findings highlight the role of latent autoregression as an effective mechanism for organizing long-range structure, while remaining complementary to token-level autoregressive modeling. They should be interpreted as an empirical analysis of representational structure rather than as a proposal for a new architecture.
comment: A focused ablation study analyzing the role of latent autoregression in GP-VAE models
☆ Training a Huggingface Model on AWS Sagemaker (Without Tears)
The development of Large Language Models (LLMs) has primarily been driven by resource-rich research groups and industry partners. Due to the lack of on-premise computing resources required for increasingly complex models, many researchers are turning to cloud services like AWS SageMaker to train Hugging Face models. However, the steep learning curve of cloud platforms often presents a barrier for researchers accustomed to local environments. Existing documentation frequently leaves knowledge gaps, forcing users to seek fragmented information across the web. This demo paper aims to democratize cloud adoption by centralizing the essential information required for researchers to successfully train their first Hugging Face model on AWS SageMaker from scratch.
☆ Random Multiplexing
As wireless communication applications evolve from traditional multipath environments to high-mobility scenarios like unmanned aerial vehicles, multiplexing techniques have advanced accordingly. Traditional single-carrier frequency-domain equalization (SC-FDE) and orthogonal frequency-division multiplexing (OFDM) have given way to emerging orthogonal time-frequency space (OTFS) and affine frequency-division multiplexing (AFDM). These approaches exploit specific channel structures to diagonalize or sparsify the effective channel, thereby enabling low-complexity detection. However, their reliance on these structures significantly limits their robustness in dynamic, real-world environments. To address these challenges, this paper studies a random multiplexing technique that is decoupled from the physical channels, enabling its application to arbitrary norm-bounded and spectrally convergent channel matrices. Random multiplexing achieves statistical fading-channel ergodicity for transmitted signals by constructing an equivalent input-isotropic channel matrix in the random transform domain. It guarantees the asymptotic replica MAP bit-error rate (BER) optimality of AMP-type detectors for linear systems with arbitrary norm-bounded, spectrally convergent channel matrices and signaling configurations, under the unique fixed point assumption. A low-complexity cross-domain memory AMP (CD-MAMP) detector is considered, leveraging the sparsity of the time-domain channel and the randomness of the equivalent channel. Optimal power allocations are derived to minimize the replica MAP BER and maximize the replica constrained capacity of random multiplexing systems. The optimal coding principle and replica constrained-capacity optimality of CD-MAMP detector are investigated for random multiplexing systems. Additionally, the versatility of random multiplexing in diverse wireless applications is explored.
☆ Multi-Scenario Highway Lane-Change Intention Prediction: A Temporal Physics-Informed Multi-Modal Framework
Lane-change intention prediction is safety-critical for autonomous driving and ADAS, but remains difficult in naturalistic traffic due to noisy kinematics, severe class imbalance, and limited generalization across heterogeneous highway scenarios. We propose Temporal Physics-Informed AI (TPI-AI), a hybrid framework that fuses deep temporal representations with physics-inspired interaction cues. A two-layer bidirectional LSTM (Bi-LSTM) encoder learns compact embeddings from multi-step trajectory histories; we concatenate these embeddings with kinematics-, safety-, and interaction-aware features (e.g., headway, TTC, and safe-gap indicators) and train a LightGBM classifier for three-class intention recognition (No-LC, Left-LC, Right-LC). To improve minority-class reliability, we apply imbalance-aware optimization including resampling/weighting and fold-wise threshold calibration. Experiments on two large-scale drone-based datasets, highD (straight highways) and exiD (ramp-rich environments), use location-based splits and evaluate prediction horizons T = 1, 2, 3 s. TPI-AI outperforms standalone LightGBM and Bi-LSTM baselines, achieving macro-F1 of 0.9562, 0.9124, 0.8345 on highD and 0.9247, 0.8197, 0.7605 on exiD at T = 1, 2, 3 s, respectively. These results show that combining physics-informed interaction features with learned temporal embeddings yields robust multi-scenario lane-change intention prediction.
☆ Time-varying Mixing Matrix Design for Energy-efficient Decentralized Federated Learning
We consider the design of mixing matrices to minimize the operation cost for decentralized federated learning (DFL) in wireless networks, with focus on minimizing the maximum per-node energy consumption. As a critical hyperparameter for DFL, the mixing matrix controls both the convergence rate and the needs of agent-to-agent communications, and has thus been studied extensively. However, existing designs mostly focused on minimizing the communication time, leaving open the minimization of per-node energy consumption that is critical for energy-constrained devices. This work addresses this gap through a theoretically-justified solution for mixing matrix design that aims at minimizing the maximum per-node energy consumption until convergence, while taking into account the broadcast nature of wireless communications. Based on a novel convergence theorem that allows arbitrarily time-varying mixing matrices, we propose a multi-phase design framework that activates time-varying communication topologies under optimized budgets to trade off the per-iteration energy consumption and the convergence rate while balancing the energy consumption across nodes. Our evaluations based on real data have validated the efficacy of the proposed solution in combining the low energy consumption of sparse mixing matrices and the fast convergence of dense mixing matrices.
☆ How and Why LLMs Generalize: A Fine-Grained Analysis of LLM Reasoning from Cognitive Behaviors to Low-Level Patterns
Large Language Models (LLMs) display strikingly different generalization behaviors: supervised fine-tuning (SFT) often narrows capability, whereas reinforcement-learning (RL) tuning tends to preserve it. The reasons behind this divergence remain unclear, as prior studies have largely relied on coarse accuracy metrics. We address this gap by introducing a novel benchmark that decomposes reasoning into atomic core skills such as calculation, fact retrieval, simulation, enumeration, and diagnostic, providing a concrete framework for addressing the fundamental question of what constitutes reasoning in LLMs. By isolating and measuring these core skills, the benchmark offers a more granular view of how specific cognitive abilities emerge, transfer, and sometimes collapse during post-training. Combined with analyses of low-level statistical patterns such as distributional divergence and parameter statistics, it enables a fine-grained study of how generalization evolves under SFT and RL across mathematical, scientific reasoning, and non-reasoning tasks. Our meta-probing framework tracks model behavior at different training stages and reveals that RL-tuned models maintain more stable behavioral profiles and resist collapse in reasoning skills, whereas SFT models exhibit sharper drift and overfit to surface patterns. This work provides new insights into the nature of reasoning in LLMs and points toward principles for designing training strategies that foster broad, robust generalization.
☆ Hyperspherical Graph Representation Learning via Adaptive Neighbor-Mean Alignment and Uniformity
Graph representation learning (GRL) aims to encode structural and semantic dependencies of graph-structured data into low-dimensional embeddings. However, existing GRL methods often rely on surrogate contrastive objectives or mutual information maximization, which typically demand complex architectures, negative sampling strategies, and sensitive hyperparameter tuning. These design choices may induce over-smoothing, over-squashing, and training instability. In this work, we propose HyperGRL, a unified framework for hyperspherical graph representation learning via adaptive neighbor-mean alignment and sampling-free uniformity. HyperGRL embeds nodes on a unit hypersphere through two adversarially coupled objectives: neighbor-mean alignment and sampling-free uniformity. The alignment objective uses the mean representation of each node's local neighborhood to construct semantically grounded, stable targets that capture shared structural and feature patterns. The uniformity objective formulates dispersion via an L2-based hyperspherical regularization, encouraging globally uniform embedding distributions while preserving discriminative information. To further stabilize training, we introduce an entropy-guided adaptive balancing mechanism that dynamically regulates the interplay between alignment and uniformity without requiring manual tuning. Extensive experiments on node classification, node clustering, and link prediction demonstrate that HyperGRL delivers superior representation quality and generalization across diverse graph structures, achieving average improvements of 1.49%, 0.86%, and 0.74% over the strongest existing methods, respectively. These findings highlight the effectiveness of geometrically grounded, sampling-free contrastive objectives for graph representation learning.
comment: Submitted to Pattern Recognition
☆ Beyond Hallucinations: A Composite Score for Measuring Reliability in Open-Source Large Language Models AAAI 2026
Large Language Models (LLMs) like LLaMA, Mistral, and Gemma are increasingly used in decision-critical domains such as healthcare, law, and finance, yet their reliability remains uncertain. They often make overconfident errors, degrade under input shifts, and lack clear uncertainty estimates. Existing evaluations are fragmented, addressing only isolated aspects. We introduce the Composite Reliability Score (CRS), a unified framework that integrates calibration, robustness, and uncertainty quantification into a single interpretable metric. Through experiments on ten leading open-source LLMs across five QA datasets, we assess performance under baselines, perturbations, and calibration methods. CRS delivers stable model rankings, uncovers hidden failure modes missed by single metrics, and highlights that the most dependable systems balance accuracy, robustness, and calibrated uncertainty.
comment: 5 pages, 4 tables, accepted at AAAI 2026
☆ Policy Mirror Descent with Temporal Difference Learning: Sample Complexity under Online Markov Data
This paper studies the policy mirror descent (PMD) method, which is a general policy optimization framework in reinforcement learning and can cover a wide range of policy gradient methods by specifying difference mirror maps. Existing sample complexity analysis for policy mirror descent either focuses on the generative sampling model, or the Markovian sampling model but with the action values being explicitly approximated to certain pre-specified accuracy. In contrast, we consider the sample complexity of policy mirror descent with temporal difference (TD) learning under the Markovian sampling model. Two algorithms called Expected TD-PMD and Approximate TD-PMD have been presented, which are off-policy and mixed policy algorithms respectively. Under a small enough constant policy update step size, the $\tilde{O}(\varepsilon^{-2})$ (a logarithm factor about $\varepsilon$ is hidden in $\tilde{O}(\cdot)$) sample complexity can be established for them to achieve average-time $\varepsilon$-optimality. The sample complexity is further improved to $O(\varepsilon^{-2})$ (without the hidden logarithm factor) to achieve the last-iterate $\varepsilon$-optimality based on adaptive policy update step sizes.
☆ Tracing the Heart's Pathways: ECG Representation Learning from a Cardiac Conduction Perspective AAAI2026
The multi-lead electrocardiogram (ECG) stands as a cornerstone of cardiac diagnosis. Recent strides in electrocardiogram self-supervised learning (eSSL) have brightened prospects for enhancing representation learning without relying on high-quality annotations. Yet earlier eSSL methods suffer a key limitation: they focus on consistent patterns across leads and beats, overlooking the inherent differences in heartbeats rooted in cardiac conduction processes, while subtle but significant variations carry unique physiological signatures. Moreover, representation learning for ECG analysis should align with ECG diagnostic guidelines, which progress from individual heartbeats to single leads and ultimately to lead combinations. This sequential logic, however, is often neglected when applying pre-trained models to downstream tasks. To address these gaps, we propose CLEAR-HUG, a two-stage framework designed to capture subtle variations in cardiac conduction across leads while adhering to ECG diagnostic guidelines. In the first stage, we introduce an eSSL model termed Conduction-LEAd Reconstructor (CLEAR), which captures both specific variations and general commonalities across heartbeats. Treating each heartbeat as a distinct entity, CLEAR employs a simple yet effective sparse attention mechanism to reconstruct signals without interference from other heartbeats. In the second stage, we implement a Hierarchical lead-Unified Group head (HUG) for disease diagnosis, mirroring clinical workflow. Experimental results across six tasks show a 6.84% improvement, validating the effectiveness of CLEAR-HUG. This highlights its ability to enhance representations of cardiac conduction and align patterns with expert diagnostic guidelines.
comment: Accepted to AAAI2026
☆ RepetitionCurse: Measuring and Understanding Router Imbalance in Mixture-of-Experts LLMs under DoS Stress
Mixture-of-Experts architectures have become the standard for scaling large language models due to their superior parameter efficiency. To accommodate the growing number of experts in practice, modern inference systems commonly adopt expert parallelism to distribute experts across devices. However, the absence of explicit load balancing constraints during inference allows adversarial inputs to trigger severe routing concentration. We demonstrate that out-of-distribution prompts can manipulate the routing strategy such that all tokens are consistently routed to the same set of top-$k$ experts, which creates computational bottlenecks on certain devices while forcing others to idle. This converts an efficiency mechanism into a denial-of-service attack vector, leading to violations of service-level agreements for time to first token. We propose RepetitionCurse, a low-cost black-box strategy to exploit this vulnerability. By identifying a universal flaw in MoE router behavior, RepetitionCurse constructs adversarial prompts using simple repetitive token patterns in a model-agnostic manner. On widely deployed MoE models like Mixtral-8x7B, our method increases end-to-end inference latency by 3.063x, degrading service availability significantly.
☆ Fantastic Reasoning Behaviors and Where to Find Them: Unsupervised Discovery of the Reasoning Process
Despite the growing reasoning capabilities of recent large language models (LLMs), their internal mechanisms during the reasoning process remain underexplored. Prior approaches often rely on human-defined concepts (e.g., overthinking, reflection) at the word level to analyze reasoning in a supervised manner. However, such methods are limited, as it is infeasible to capture the full spectrum of potential reasoning behaviors, many of which are difficult to define in token space. In this work, we propose an unsupervised framework (namely, RISE: Reasoning behavior Interpretability via Sparse auto-Encoder) for discovering reasoning vectors, which we define as directions in the activation space that encode distinct reasoning behaviors. By segmenting chain-of-thought traces into sentence-level 'steps' and training sparse auto-encoders (SAEs) on step-level activations, we uncover disentangled features corresponding to interpretable behaviors such as reflection and backtracking. Visualization and clustering analyses show that these behaviors occupy separable regions in the decoder column space. Moreover, targeted interventions on SAE-derived vectors can controllably amplify or suppress specific reasoning behaviors, altering inference trajectories without retraining. Beyond behavior-specific disentanglement, SAEs capture structural properties such as response length, revealing clusters of long versus short reasoning traces. More interestingly, SAEs enable the discovery of novel behaviors beyond human supervision. We demonstrate the ability to control response confidence by identifying confidence-related vectors in the SAE decoder space. These findings underscore the potential of unsupervised latent discovery for both interpreting and controllably steering reasoning in LLMs.
☆ MeLeMaD: Adaptive Malware Detection via Chunk-wise Feature Selection and Meta-Learning
Confronting the substantial challenges of malware detection in cybersecurity necessitates solutions that are both robust and adaptable to the ever-evolving threat environment. The paper introduces Meta Learning Malware Detection (MeLeMaD), a novel framework leveraging the adaptability and generalization capabilities of Model-Agnostic Meta-Learning (MAML) for malware detection. MeLeMaD incorporates a novel feature selection technique, Chunk-wise Feature Selection based on Gradient Boosting (CFSGB), tailored for handling large-scale, high-dimensional malware datasets, significantly enhancing the detection efficiency. Two benchmark malware datasets (CIC-AndMal2020 and BODMAS) and a custom dataset (EMBOD) were used for rigorously validating the MeLeMaD, achieving a remarkable performance in terms of key evaluation measures, including accuracy, precision, recall, F1-score, MCC, and AUC. With accuracies of 98.04\% on CIC-AndMal2020 and 99.97\% on BODMAS, MeLeMaD outperforms the state-of-the-art approaches. The custom dataset, EMBOD, also achieves a commendable accuracy of 97.85\%. The results underscore the MeLeMaD's potential to address the challenges of robustness, adaptability, and large-scale, high-dimensional datasets in malware detection, paving the way for more effective and efficient cybersecurity solutions.
comment: 20 pages, 8 Figures
☆ Information-Theoretic Quality Metric of Low-Dimensional Embeddings
In this work we study the quality of low-dimensional embeddings from an explicitly information-theoretic perspective. We begin by noting that classical evaluation metrics such as stress, rank-based neighborhood criteria, or Local Procrustes quantify distortions in distances or in local geometries, but do not directly assess how much information is preserved when projecting high-dimensional data onto a lower-dimensional space. To address this limitation, we introduce the Entropy Rank Preservation Measure (ERPM), a local metric based on the Shannon entropy of the singular-value spectrum of neighborhood matrices and on the stable rank, which quantifies changes in uncertainty between the original representation and its reduced projection, providing neighborhood-level indicators and a global summary statistic. To validate the results of the metric, we compare its outcomes with the Mean Relative Rank Error (MRRE), which is distance-based, and with Local Procrustes, which is based on geometric properties, using a financial time series and a manifold commonly studied in the literature. We observe that distance-based criteria exhibit very low correlation with geometric and spectral measures, while ERPM and Local Procrustes show strong average correlation but display significant discrepancies in local regimes, leading to the conclusion that ERPM complements existing metrics by identifying neighborhoods with severe information loss, thereby enabling a more comprehensive assessment of embeddings, particularly in information-sensitive applications such as the construction of early-warning indicators.
comment: 18 pages, 6 figures, submitted to Machine Learning (Springer Nature)
☆ Fundamental limits for weighted empirical approximations of tilted distributions
Consider the task of generating samples from a tilted distribution of a random vector whose underlying distribution is unknown, but samples from it are available. This finds applications in fields such as finance and climate science, and in rare event simulation. In this article, we discuss the asymptotic efficiency of a self-normalized importance sampler of the tilted distribution. We provide a sharp characterization of its accuracy, given the number of samples and the degree of tilt. Our findings reveal a surprising dichotomy: while the number of samples needed to accurately tilt a bounded random vector increases polynomially in the tilt amount, it increases at a super polynomial rate for unbounded distributions.
comment: 84 pages, 6 figures
☆ Assured Autonomy: How Operations Research Powers and Orchestrates Generative AI Systems
Generative artificial intelligence (GenAI) is shifting from conversational assistants toward agentic systems -- autonomous decision-making systems that sense, decide, and act within operational workflows. This shift creates an autonomy paradox: as GenAI systems are granted greater operational autonomy, they should, by design, embody more formal structure, more explicit constraints, and stronger tail-risk discipline. We argue stochastic generative models can be fragile in operational domains unless paired with mechanisms that provide verifiable feasibility, robustness to distribution shift, and stress testing under high-consequence scenarios. To address this challenge, we develop a conceptual framework for assured autonomy grounded in operations research (OR), built on two complementary approaches. First, flow-based generative models frame generation as deterministic transport characterized by an ordinary differential equation, enabling auditability, constraint-aware generation, and connections to optimal transport, robust optimization, and sequential decision control. Second, operational safety is formulated through an adversarial robustness lens: decision rules are evaluated against worst-case perturbations within uncertainty or ambiguity sets, making unmodeled risks part of the design. This framework clarifies how increasing autonomy shifts OR's role from solver to guardrail to system architect, with responsibility for control logic, incentive protocols, monitoring regimes, and safety boundaries. These elements define a research agenda for assured autonomy in safety-critical, reliability-sensitive operational domains.
comment: Authors are listed alphabetically
☆ Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing
We present DataFlow, a computational framework for building, testing, and deploying high-performance machine learning systems on unbounded time-series data. Traditional data science workflows assume finite datasets and require substantial reimplementation when moving from batch prototypes to streaming production systems. This gap introduces causality violations, batch boundary artifacts, and poor reproducibility of real-time failures. DataFlow resolves these issues through a unified execution model based on directed acyclic graphs (DAGs) with point-in-time idempotency: outputs at any time t depend only on a fixed-length context window preceding t. This guarantee ensures that models developed in batch mode execute identically in streaming production without code changes. The framework enforces strict causality by automatically tracking knowledge time across all transformations, eliminating future-peeking bugs. DataFlow supports flexible tiling across temporal and feature dimensions, allowing the same model to operate at different frequencies and memory profiles via configuration alone. It integrates natively with the Python data science stack and provides fit/predict semantics for online learning, caching and incremental computation, and automatic parallelization through DAG-based scheduling. We demonstrate its effectiveness across domains including financial trading, IoT, fraud detection, and real-time analytics.
☆ Exploring the Potential of Spiking Neural Networks in UWB Channel Estimation
Although existing deep learning-based Ultra-Wide Band (UWB) channel estimation methods achieve high accuracy, their computational intensity clashes sharply with the resource constraints of low-cost edge devices. Motivated by this, this letter explores the potential of Spiking Neural Networks (SNNs) for this task and develops a fully unsupervised SNN solution. To enable a comprehensive performance analysis, we devise an extensive set of comparative strategies and evaluate them on a compelling public benchmark. Experimental results show that our unsupervised approach still attains 80% test accuracy, on par with several supervised deep learning-based strategies. Moreover, compared with complex deep learning methods, our SNN implementation is inherently suited to neuromorphic deployment and offers a drastic reduction in model complexity, bringing significant advantages for future neuromorphic practice.
☆ Physics-informed Graph Neural Networks for Operational Flood Modeling IJCAI
Flood models inform strategic disaster management by simulating the spatiotemporal hydrodynamics of flooding. While physics-based numerical flood models are accurate, their substantial computational cost limits their use in operational settings where rapid predictions are essential. Models designed with graph neural networks (GNNs) provide both speed and accuracy while having the ability to process unstructured spatial domains. Given its flexible input and architecture, GNNs can be leveraged alongside physics-informed techniques with ease, significantly improving interpretability. This study introduces a novel flood GNN architecture, DUALFloodGNN, which embeds physical constraints at both global and local scales through explicit loss terms. The model jointly predicts water volume at nodes and flow along edges through a shared message-passing framework. To improve performance for autoregressive inference, model training is conducted with a multi-step loss enhanced with dynamic curriculum learning. Compared with standard GNN architectures and state-of-the-art GNN flood models, DUALFloodGNN achieves substantial improvements in predicting multiple hydrologic variables while maintaining high computational efficiency. The model is open-sourced at https://github.com/acostacos/dual_flood_gnn.
comment: To be submitted to IJCAI
☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
☆ Implicit geometric regularization in flow matching via density weighted Stein operators
Flow Matching (FM) has emerged as a powerful paradigm for continuous normalizing flows, yet standard FM implicitly performs an unweighted $L^2$ regression over the entire ambient space. In high dimensions, this leads to a fundamental inefficiency: the vast majority of the integration domain consists of low-density ``void'' regions where the target velocity fields are often chaotic or ill-defined. In this paper, we propose {$γ$-Flow Matching ($γ$-FM)}, a density-weighted variant that aligns the regression geometry with the underlying probability flow. While density weighting is desirable, naive implementations would require evaluating the intractable target density. We circumvent this by introducing a Dynamic Density-Weighting strategy that estimates the \emph{target} density directly from training particles. This approach allows us to dynamically downweight the regression loss in void regions without compromising the simulation-free nature of FM. Theoretically, we establish that $γ$-FM minimizes the transport cost on a statistical manifold endowed with the $γ$-Stein metric. Spectral analysis further suggests that this geometry induces an implicit Sobolev regularization, effectively damping high-frequency oscillations in void regions. Empirically, $γ$-FM significantly improves vector field smoothness and sampling efficiency on high-dimensional latent datasets, while demonstrating intrinsic robustness to outliers.
☆ DivQAT: Enhancing Robustness of Quantized Convolutional Neural Networks against Model Extraction Attacks
Convolutional Neural Networks (CNNs) and their quantized counterparts are vulnerable to extraction attacks, posing a significant threat of IP theft. Yet, the robustness of quantized models against these attacks is little studied compared to large models. Previous defenses propose to inject calculated noise into the prediction probabilities. However, these defenses are limited since they are not incorporated during the model design and are only added as an afterthought after training. Additionally, most defense techniques are computationally expensive and often have unrealistic assumptions about the victim model that are not feasible in edge device implementations and do not apply to quantized models. In this paper, we propose DivQAT, a novel algorithm to train quantized CNNs based on Quantization Aware Training (QAT) aiming to enhance their robustness against extraction attacks. To the best of our knowledge, our technique is the first to modify the quantization process to integrate a model extraction defense into the training process. Through empirical validation on benchmark vision datasets, we demonstrate the efficacy of our technique in defending against model extraction attacks without compromising model accuracy. Furthermore, combining our quantization technique with other defense mechanisms improves their effectiveness compared to traditional QAT.
☆ Improved Balanced Classification with Theoretically Grounded Loss Functions NeurIPS 2025
The balanced loss is a widely adopted objective for multi-class classification under class imbalance. By assigning equal importance to all classes, regardless of their frequency, it promotes fairness and ensures that minority classes are not overlooked. However, directly minimizing the balanced classification loss is typically intractable, which makes the design of effective surrogate losses a central question. This paper introduces and studies two advanced surrogate loss families: Generalized Logit-Adjusted (GLA) loss functions and Generalized Class-Aware weighted (GCA) losses. GLA losses generalize Logit-Adjusted losses, which shift logits based on class priors, to the broader general cross-entropy loss family. GCA loss functions extend the standard class-weighted losses, which scale losses inversely by class frequency, by incorporating class-dependent confidence margins and extending them to the general cross-entropy family. We present a comprehensive theoretical analysis of consistency for both loss families. We show that GLA losses are Bayes-consistent, but only $H$-consistent for complete (i.e., unbounded) hypothesis sets. Moreover, their $H$-consistency bounds depend inversely on the minimum class probability, scaling at least as $1/\mathsf p_{\min}$. In contrast, GCA losses are $H$-consistent for any hypothesis set that is bounded or complete, with $H$-consistency bounds that scale more favorably as $1/\sqrt{\mathsf p_{\min}}$, offering significantly stronger theoretical guarantees in imbalanced settings. We report the results of experiments demonstrating that, empirically, both the GCA losses with calibrated class-dependent confidence margins and GLA losses can greatly outperform straightforward class-weighted losses as well as the LA losses. GLA generally performs slightly better in common benchmarks, whereas GCA exhibits a slight edge in highly imbalanced settings.
comment: NeurIPS 2025
☆ Statistical Guarantees in the Search for Less Discriminatory Algorithms
Recent scholarship has argued that firms building data-driven decision systems in high-stakes domains like employment, credit, and housing should search for "less discriminatory algorithms" (LDAs) (Black et al., 2024). That is, for a given decision problem, firms considering deploying a model should make a good-faith effort to find equally performant models with lower disparate impact across social groups. Evidence from the literature on model multiplicity shows that randomness in training pipelines can lead to multiple models with the same performance, but meaningful variations in disparate impact. This suggests that developers can find LDAs simply by randomly retraining models. Firms cannot continue retraining forever, though, which raises the question: What constitutes a good-faith effort? In this paper, we formalize LDA search via model multiplicity as an optimal stopping problem, where a model developer with limited information wants to produce strong evidence that they have sufficiently explored the space of models. Our primary contribution is an adaptive stopping algorithm that yields a high-probability upper bound on the gains achievable from a continued search, allowing the developer to certify (e.g., to a court) that their search was sufficient. We provide a framework under which developers can impose stronger assumptions about the distribution of models, yielding correspondingly stronger bounds. We validate the method on real-world credit, employment and housing datasets.
comment: 37 pages, 10 figures
☆ Assessing generative modeling approaches for free energy estimates in condensed matter
The accurate estimation of free energy differences between two states is a long-standing challenge in molecular simulations. Traditional approaches generally rely on sampling multiple intermediate states to ensure sufficient overlap in phase space and are, consequently, computationally expensive. Several generative-model-based methods have recently addressed this challenge by learning a direct bridge between distributions, bypassing the need for intermediate states. However, it remains unclear which approaches provide the best trade-off between efficiency, accuracy, and scalability. In this work, we systematically review these methods and benchmark selected approaches with a focus on condensed-matter systems. In particular, we investigate the performance of discrete and continuous normalizing flows in the context of targeted free energy perturbation as well as FEAT (Free energy Estimators with Adaptive Transport) together with the escorted Jarzynski equality, using coarse-grained monatomic ice and Lennard-Jones solids as benchmark systems. We evaluate accuracy, data efficiency, computational cost, and scalability with system size. Our results provide a quantitative framework for selecting effective free energy estimation strategies in condensed-phase systems.
☆ Stationary Reweighting Yields Local Convergence of Soft Fitted Q-Iteration
Fitted Q-iteration (FQI) and its entropy-regularized variant, soft FQI, are central tools for value-based model-free offline reinforcement learning, but can behave poorly under function approximation and distribution shift. In the entropy-regularized setting, we show that the soft Bellman operator is locally contractive in the stationary norm of the soft-optimal policy, rather than in the behavior norm used by standard FQI. This geometric mismatch explains the instability of soft Q-iteration with function approximation in the absence of Bellman completeness. To restore contraction, we introduce stationary-reweighted soft FQI, which reweights each regression update using the stationary distribution of the current policy. We prove local linear convergence under function approximation with geometrically damped weight-estimation errors, assuming approximate realizability. Our analysis further suggests that global convergence may be recovered by gradually reducing the softmax temperature, and that this continuation approach can extend to the hardmax limit under a mild margin condition.
☆ Interactive Machine Learning: From Theory to Scale
Machine learning has achieved remarkable success across a wide range of applications, yet many of its most effective methods rely on access to large amounts of labeled data or extensive online interaction. In practice, acquiring high-quality labels and making decisions through trial-and-error can be expensive, time-consuming, or risky, particularly in large-scale or high-stakes settings. This dissertation studies interactive machine learning, in which the learner actively influences how information is collected or which actions are taken, using past observations to guide future interactions. We develop new algorithmic principles and establish fundamental limits for interactive learning along three dimensions: active learning with noisy data and rich model classes, sequential decision making with large action spaces, and model selection under partial feedback. Our results include the first computationally efficient active learning algorithms achieving exponential label savings without low-noise assumptions; the first efficient, general-purpose contextual bandit algorithms whose guarantees are independent of the size of the action space; and the first tight characterizations of the fundamental cost of model selection in sequential decision making. Overall, this dissertation advances the theoretical foundations of interactive learning by developing algorithms that are statistically optimal and computationally efficient, while also providing principled guidance for deploying interactive learning methods in large-scale, real-world settings.
comment: Updated Ph.D. dissertation (typos corrected; minor technical and structural revisions)
☆ Tensor Computing Interface: An Application-Oriented, Lightweight Interface for Portable High-Performance Tensor Network Applications
Tensor networks (TNs) are a central computational tool in quantum science and artificial intelligence. However, the lack of unified software interface across tensor-computing frameworks severely limits the portability of TN applications, coupling algorithmic development to specific hardware and software back ends. To address this challenge, we introduce the Tensor Computing Interface (TCI) -- an application-oriented, lightweight application programming interface designed to enable framework-independent, high-performance TN applications. TCI provides a well-defined type system that abstracts tensor objects together with a minimal yet expressive set of core functions covering essential tensor manipulations and tensor linear-algebra operations. Through numerical demonstrations on representative tensor-network applications, we show that codes written against TCI can be migrated seamlessly across heterogeneous hardware and software platforms while achieving performance comparable to native framework implementations. We further release an open-source implementation of TCI based on \textit{Cytnx}, demonstrating its practicality and ease of integration with existing tensor-computing frameworks.
comment: 34 pages, 10 figures
☆ Constraint Breeds Generalization: Temporal Dynamics as an Inductive Bias
Conventional deep learning prioritizes unconstrained optimization, yet biological systems operate under strict metabolic constraints. We propose that these physical constraints shape dynamics to function not as limitations, but as a temporal inductive bias that breeds generalization. Through a phase-space analysis of signal propagation, we reveal a fundamental asymmetry: expansive dynamics amplify noise, whereas proper dissipative dynamics compress phase space that aligns with the network's spectral bias, compelling the abstraction of invariant features. This condition can be imposed externally via input encoding, or intrinsically through the network's own temporal dynamics. Both pathways require architectures capable of temporal integration and proper constraints to decode induced invariants, whereas static architectures fail to capitalize on temporal structure. Through comprehensive evaluations across supervised classification, unsupervised reconstruction, and zero-shot reinforcement learning, we demonstrate that a critical "transition" regime maximizes generalization capability. These findings establish dynamical constraints as a distinct class of inductive bias, suggesting that robust AI development requires not only scaling and removing limitations, but computationally mastering the temporal characteristics that naturally promote generalization.
comment: 8 pages, 7 figures
☆ A multimodal Transformer for InSAR-based ground deformation forecasting with cross-site generalization across Europe SP
Near-real-time regional-scale monitoring of ground deformation is increasingly required to support urban planning, critical infrastructure management, and natural hazard mitigation. While Interferometric Synthetic Aperture Radar (InSAR) and continental-scale services such as the European Ground Motion Service (EGMS) provide dense observations of past motion, predicting the next observation remains challenging due to the superposition of long-term trends, seasonal cycles, and occasional abrupt discontinuities (e.g., co-seismic steps), together with strong spatial heterogeneity. In this study we propose a multimodal patch-based Transformer for single-step, fixed-interval next-epoch nowcasting of displacement maps from EGMS time series (resampled to a 64x64 grid over 100 km x 100 km tiles). The model ingests recent displacement snapshots together with (i) static kinematic indicators (mean velocity, acceleration, seasonal amplitude) computed in a leakage-safe manner from the training window only, and (ii) harmonic day-of-year encodings. On the eastern Ireland tile (E32N34), the STGCN is strongest in the displacement-only setting, whereas the multimodal Transformer clearly outperforms CNN-LSTM, CNN-LSTM+Attn, and multimodal STGCN when all models receive the same multimodal inputs, achieving RMSE = 0.90 mm and $R^2$ = 0.97 on the test set with the best threshold accuracies.
comment: submitted to ISPRS Journal of Photogrammetry and Remote Sensing for review
☆ Rethinking Dense Linear Transformations: Stagewise Pairwise Mixing (SPM) for Near-Linear Training in Neural Networks
Dense linear layers are a dominant source of computational and parametric cost in modern machine learning models, despite their quadratic complexity and often being misaligned with the compositional structure of learned representations. We introduce Stagewise Pairwise Mixers (SPM), a structured linear operator that replaces dense matrices with a composition of sparse pairwise-mixing stages. An SPM layer implements a global linear transformation in $O(nL)$ time with $O(nL)$ parameters, where $L$ is typically constant or $log_2n$, and admits exact closed-form forward and backward computations. SPM is designed as a drop-in replacement for dense linear layers in feedforward networks, recurrent architectures, attention mechanisms, etc. We derive complete forward and backward expressions for two parameterizations: an orthogonal norm-preserving rotation-based variant and a fully general $2 \times 2$ mixing variant. Beyond computational savings, the stagewise structure of SPM induces an explicit compositional inductive bias that constrains model capacity and improves generalization when aligned with task structure. We present proof-of-concept experiments demonstrating substantial reductions in wall-clock cost and improved accuracy on structured learning problems, while retaining competitive performance on real-world benchmarks.
comment: 16 pages
♻ ☆ Complex variational autoencoders admit Kähler structure
It has been discovered that latent-Euclidean variational autoencoders (VAEs) admit, in various capacities, Riemannian structure. We adapt these arguments but for complex VAEs with a complex latent stage. We show that complex VAEs reveal to some level Kähler geometric structure. Our methods will be tailored for decoder geometry. We derive the Fisher information metric in the complex case under a latent complex Gaussian with trivial relation matrix. It is well known from statistical information theory that the Fisher information coincides with the Hessian of the Kullback-Leibler (KL) divergence. Thus, the metric Kähler potential relation is exactly achieved under relative entropy. We propose a Kähler potential derivative of complex Gaussian mixtures that acts as a rough proxy to the Fisher information metric while still being faithful to the underlying Kähler geometry. Computation of the metric via this potential is efficient, and through our potential, valid as a plurisubharmonic (PSH) function, large scale computational burden of automatic differentiation is displaced to small scale. Our methods leverage the law of total covariance to bridge behavior between our potential and the Fisher metric. We show that we can regularize the latent space with decoder geometry, and that we can sample in accordance with a weighted complex volume element. We demonstrate these strategies, at the exchange of sample variation, yield consistently smoother representations and fewer semantic outliers.
comment: Fine-tuning; improvements to some technical arguments
♻ ☆ Cross-embodied Co-design for Dexterous Hands
Dexterous manipulation is limited by both control and design, without consensus as to what makes manipulators best for performing dexterous tasks. This raises a fundamental challenge: how should we design and control robot manipulators that are optimized for dexterity? We present a co-design framework that learns task-specific hand morphology and complementary dexterous control policies. The framework supports 1) an expansive morphology search space including joint, finger, and palm generation, 2) scalable evaluation across the wide design space via morphology-conditioned cross-embodied control, and 3) real-world fabrication with accessible components. We evaluate the approach across multiple dexterous tasks, including in-hand rotation with simulation and real deployment. Our framework enables an end-to-end pipeline that can design, train, fabricate, and deploy a new robotic hand in under 24 hours. The full framework will be open-sourced and available on our website: https://an-axolotl.github.io/co-design-for-dexterity.github.io/
♻ ☆ MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs KDD 2026
Spurious bias, a tendency to exploit spurious correlations between superficial input attributes and prediction targets, has revealed a severe robustness pitfall in classical machine learning problems. Multimodal Large Language Models (MLLMs), which leverage pretrained vision and language models, have recently demonstrated strong capability in joint vision-language understanding. However, both the presence and severity of spurious biases in MLLMs remain poorly understood. In this work, we address this gap by analyzing the spurious biases in the multimodal setting and uncovering the specific inference-time data patterns that can manifest this problem. To support this analysis, we introduce MM-SpuBench, a comprehensive, human-verified benchmark dataset consisting of image-class pairs annotated with core and spurious attributes, grounded in our taxonomy of nine distinct types of spurious correlations. The benchmark is constructed using human-interpretable attribute information to capture a wide range of spurious patterns reflective of real-world knowledge. Leveraging this benchmark, we conduct a comprehensive evaluation of the state-of-the-art open-source and proprietary MLLMs with both standard accuracy and the proposed Conditional Generation Likelihood Advantage (CGLA). Our findings highlight the persistence of reliance on spurious correlations and the difficulty of mitigation on our benchmark. We hope this work can inspire new technical strides to mitigate these biases. Our benchmark is publicly available at https://huggingface.co/datasets/mmbench/MM-SpuBench.
comment: Accepted at KDD 2026 (Dataset and Benchmark Track)
♻ ☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison AAAI
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: v.1.1. AAAI Workshop on Reproducible Artificial Intelligence (RAI, https://reproducibleai.github.io) 2026, camera ready version. Model weights and intermediate training checkpoints are available at https://huggingface.co/collections/open-sci/open-sci-ref-001; code for reproducing training, evaluation and raw experiments data at https://github.com/LAION-AI/open-sci-ref-0.01
♻ ☆ Hedonic Prices and Quality Adjusted Price Indices Powered by AI
We develop empirical models that efficiently process large amounts of unstructured product data (text, images, prices, quantities) to produce accurate hedonic price estimates and derived indices. To achieve this, we generate abstract product attributes (or ``features'') from descriptions and images using deep neural networks. These attributes are then used to estimate the hedonic price function. To demonstrate the effectiveness of this approach, we apply the models to Amazon's data for first-party apparel sales, and estimate hedonic prices. The resulting models have a very high out-of-sample predictive accuracy, with $R^2$ ranging from $80\%$ to $90\%$. Finally, we construct the AI-based hedonic Fisher price index, chained at the year-over-year frequency, and contrast it with the CPI and other electronic indices.
comment: Revised CEMMAP Working Paper (CWP08/23)
♻ ☆ Private Linear Regression with Differential Privacy and PAC Privacy
Linear regression is a fundamental tool for statistical analysis, which has motivated the development of linear regression methods that satisfy provable privacy guarantees so that the learned model reveals little about any one data point used to construct it. Most existing privacy-preserving linear regression methods rely on the well-established framework of differential privacy, while the newly proposed PAC Privacy has not yet been explored in this context. In this paper, we systematically compare linear regression models trained with differential privacy and PAC privacy across three real-world datasets, observing several key findings that impact the performance of privacy-preserving linear regression.
comment: 8 pages, 6 figures
♻ ☆ Automatic identification of diagnosis from hospital discharge letters via weakly-supervised Natural Language Processing
Identifying patient diagnoses from discharge letters is essential to enable large-scale cohort selection and epidemiological research, but traditional supervised approaches rely on extensive manual annotation, which is often impractical for large textual datasets. In this study, we present a novel weakly-supervised Natural Language Processing pipeline designed to classify Italian discharge letters without requiring manual labelling. After extracting diagnosis-related sentences, the method leverages a transformer-based model with an additional pre-training on Italian medical documents to generate semantic embeddings. A two-level clustering procedure is applied to these embeddings, and the resulting clusters are mapped to the diseases of interest to derive weak labels for a subset of data, eventually used to train a transformer-based classifier. We evaluate the approach on a real-world case study on bronchiolitis in a corpus of 33,176 Italian discharge letters of children admitted to 44 emergency rooms or hospitals in the Veneto Region between 2017 and 2020. The pipeline achieves an area under the curve (AUC) of 77.68% ($\pm 4.30\%)$ and an F1-score of 78.14% ($\pm 4.89\%$) against manual annotations. Its performance surpasses other unsupervised methods and approaches fully supervised models, maintaining robustness to cluster selection and promising generalizability across different disease types. It allows saving approximately 3 minutes of expert time per discharge letter, resulting in more than 1,500 hours for a dataset like ours. This study demonstrates the feasibility of a weakly-supervised strategy for identifying diagnoses from Italian discharge letters. The pipeline achieves strong performance, is adaptable to various diseases, and offers a scalable solution for clinical text classification, reducing the need for manual annotation while maintaining reliable accuracy.
comment: 49 pages, 7 figures
♻ ☆ Minibatch Optimal Transport and Perplexity Bound Estimation in Discrete Flow Matching
Discrete flow matching, a recent framework for modeling categorical data, has shown competitive performance with autoregressive models. However, unlike continuous flow matching, the rectification strategy cannot be applied due to the stochasticity of discrete paths, necessitating alternative methods to minimize state transitions. We propose a dynamic-optimal-transport-like minimization objective and derive its Kantorovich formulation for discrete flows with convex interpolants, where transport cost depends solely on inter-state similarity and can be optimized via minibatch strategies. In the case of bag-of-words (BoW) sourced flows, we show that such methods can reduce the number of transitions up to 8 times (1024 to 128) to reach the same generative perplexity without compromising diversity. Additionally, path nondeterminism in discrete flows precludes an instantaneous change-of-variables analogue, preventing precise probability estimation available to continuous flows. We therefore propose two upper bounds on perplexity, enabling principled training, evaluation and model comparison. Finally, we introduce Multimask Flows which outperform masked flows in generative perplexity, particularly when utilizing minibatch Optimal Transport, without sacrificing diversity.
♻ ☆ Lightweight Deep Learning-Based Channel Estimation for RIS-Aided Extremely Large-Scale MIMO Systems on Resource-Limited Edge Devices
Next-generation wireless technologies such as 6G aim to meet demanding requirements such as ultra-high data rates, low latency, and enhanced connectivity. Extremely Large-Scale MIMO (XL-MIMO) and Reconfigurable Intelligent Surface (RIS) are key enablers, with XL-MIMO boosting spectral and energy efficiency through numerous antennas, and RIS offering dynamic control over the wireless environment via passive reflective elements. However, realizing their full potential depends on accurate Channel State Information (CSI). Recent advances in deep learning have facilitated efficient cascaded channel estimation. However, the scalability and practical deployment of existing estimation models in XL-MIMO systems remain limited. The growing number of antennas and RIS elements introduces a significant barrier to real-time and efficient channel estimation, drastically increasing data volume, escalating computational complexity, requiring advanced hardware, and resulting in substantial energy consumption. To address these challenges, we propose a lightweight deep learning framework for efficient cascaded channel estimation in XL-MIMO systems, designed to minimize computational complexity and make it suitable for deployment on resource-constrained edge devices. Using spatial correlations in the channel, we introduce a patch-based training mechanism that reduces the dimensionality of input to patch-level representations while preserving essential information, allowing scalable training for large-scale systems. Simulation results under diverse conditions demonstrate that our framework significantly improves estimation accuracy and reduces computational complexity, regardless of the increasing number of antennas and RIS elements in XL-MIMO systems.
♻ ☆ Natural Image Classification via Quasi-Cyclic Graph Ensembles and Random-Bond Ising Models at the Nishimori Temperature
Modern multi-class image classification relies on high-dimensional CNN feature vectors, which are computationally expensive and obscure the underlying data geometry. Conventional graph-based classifiers degrade on natural multi-class images because typical graphs fail to preserve separability on feature manifolds with complex topology. We address this with a physics-inspired pipeline frozen MobileNetV2 embeddings are treated as Ising spins on a sparse Multi-Edge Type QC-LDPC graph forming a Random Bond Ising Model. The system is tuned to its Nishimori temperature identified where the smallest Bethe-Hessian eigenvalue vanishes. Our method rests on two innovations: we prove a spectral-topological correspondence linking graph trapping sets to invariants via the Ihara-Bass zeta function removing these structures boosts top-1 accuracy over four-fold in multi-class settings; we develop a quadratic-Newton estimator for the Nishimori temperature converging in around 9 Arnoldi iterations for a 6-times speedup enabling spectral embedding on scales like ImageNet-100. The resulting graphs compress 1280-dimensional MobileNetV2 features to 32 dimensions for ImageNet10 and 64 for ImageNet-100 We achieve 98.7% top-1 accuracy on ImageNet-10 and 84.92% on ImageNet-100 with a three-graph soft ensemble Versus MobileNetV2 our hard ensemble increases top-1 by 0.1% while cutting FLOPs by 2.67-times compared to ResNet50 the soft ensemble drops top1 by only 1.09% yet reduces FLOPs by 29-times. Novelty lies in (a) rigorously linking trapping sets to topological defects, (b) an efficient Nishimori temperature estimator and (c) demonstrating that topology-guided LDPC embedding produces highly compressed accurate classifiers for resource-constrained deployment
comment: 31 pages, 8 figures, 3 tables, was presented at the 9th International Conference 'Deep Learning on Computational Physics (DLCP2025)', and accepted for the Moscow University Physics Bulletin, Physics series
♻ ☆ FEDSTR: Money-In AI-Out | A Decentralized Marketplace for Federated Learning and LLM Training on the NOSTR Protocol
The NOSTR is a communication protocol for the social web, based on the w3c websockets standard. Although it is still in its infancy, it is well known as a social media protocol, with thousands of trusted users and multiple user interfaces, offering a unique experience and enormous capabilities. To name a few, the NOSTR applications include but are not limited to direct messaging, file sharing, audio/video streaming, collaborative writing, blogging and data processing through distributed AI directories. In this work, we propose an approach that builds upon the existing protocol structure with end goal a decentralized marketplace for federated learning and LLM training. In this proposed design there are two parties: on one side there are customers who provide a dataset that they want to use for training an AI model. On the other side, there are service providers, who receive (parts of) the dataset, train the AI model, and for a payment as an exchange, they return the optimized AI model. To demonstrate viability, we present a proof-of-concept implementation over public NOSTR relays. The decentralized and censorship resistant features of the NOSTR enable the possibility of designing a fair and open marketplace for training AI models and LLMs.
comment: 23 pages
♻ ☆ Multi-step retrieval and reasoning improves radiology question answering with large language models
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose radiology Retrieval and Reasoning (RaR), a multi-step retrieval and reasoning framework designed to improve diagnostic accuracy, factual consistency, and clinical reliability of LLMs in radiology question answering. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. RaR significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, RaR retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from RaR (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of RaR to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full RaR framework are publicly available to support open research and clinical translation.
comment: Published in npj Digital Medicine
♻ ☆ PERK: Long-Context Reasoning as Parameter-Efficient Test-Time Learning
Long-context reasoning requires accurately identifying relevant information in extensive, noisy input contexts. Previous research shows that using test-time learning to encode context directly into model parameters can effectively enable reasoning over noisy information. However, meta-learning methods for enabling test-time learning are prohibitively memory-intensive, preventing their application to long context settings. In this work, we propose PERK (Parameter Efficient Reasoning over Knowledge), a scalable approach for learning to encode long input contexts using gradient updates to a lightweight model adapter at test time. Specifically, PERK employs two nested optimization loops in a meta-training phase. The inner loop rapidly encodes contexts into a low-rank adapter (LoRA) that serves as a parameter-efficient memory module for the base model. Concurrently, the outer loop learns to use the updated adapter to accurately recall and reason over relevant information from the encoded long context. Our evaluations on several long-context reasoning tasks show that PERK significantly outperforms the standard prompt-based long-context baseline, achieving average absolute performance gains of up to 90% for smaller models (GPT-2) and up to 27% for our largest evaluated model, Qwen-2.5-0.5B. In general, PERK is more robust to reasoning complexity, length extrapolation, and the locations of relevant information in contexts. Finally, we show that while PERK is memory-intensive during training, it scales more efficiently at inference time than prompt-based long-context inference.
comment: 10 pages, 7 figures
♻ ☆ The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
We propose $\textsf{ScaledGD($λ$)}$, a preconditioned gradient descent method to tackle the low-rank matrix sensing problem when the true rank is unknown, and when the matrix is possibly ill-conditioned. Using overparametrized factor representations, $\textsf{ScaledGD($λ$)}$ starts from a small random initialization, and proceeds by gradient descent with a specific form of damped preconditioning to combat bad curvatures induced by overparameterization and ill-conditioning. At the expense of light computational overhead incurred by preconditioners, $\textsf{ScaledGD($λ$)}$ is remarkably robust to ill-conditioning compared to vanilla gradient descent ($\textsf{GD}$) even with overprameterization. Specifically, we show that, under the Gaussian design, $\textsf{ScaledGD($λ$)}$ converges to the true low-rank matrix at a constant linear rate after a small number of iterations that scales only logarithmically with respect to the condition number and the problem dimension. This significantly improves over the convergence rate of vanilla $\textsf{GD}$ which suffers from a polynomial dependency on the condition number. Our work provides evidence on the power of preconditioning in accelerating the convergence without hurting generalization in overparameterized learning.
comment: Journal version
♻ ☆ KernelEvolve: Scaling Agentic Kernel Coding for Heterogeneous AI Accelerators at Meta
Making deep learning recommendation model (DLRM) training and inference fast and efficient is important. However, this presents three key system challenges - model architecture diversity, kernel primitive diversity, and hardware generation and architecture heterogeneity. This paper presents KernelEvolve-an agentic kernel coding framework-to tackle heterogeneity at-scale for DLRM. KernelEvolve is designed to take kernel specifications as input and automate the process of kernel generation and optimization for recommendation model across heterogeneous hardware architectures. KernelEvolve does so by operating at multiple programming abstractions, from Triton and CuTe DSL to low-level hardware agnostic languages, spanning the full hardware-software optimization stack. The kernel optimization process is described as graph-based search with selection policy, universal operator, fitness function, and termination rule, dynamically adapts to runtime execution context through retrieval-augmented prompt synthesis. We designed, implemented, and deployed KernelEvolve to optimize a wide variety of production recommendation models across generations of NVIDIA and AMD GPUs, as well as Meta's AI accelerators. We validate KernelEvolve on the publicly-available KernelBench suite, achieving 100% pass rate on all 250 problems across three difficulty levels, and 160 PyTorch ATen operators across three heterogeneous hardware platforms, demonstrating 100% correctness. KernelEvolve reduces development time from weeks to hours and achieves substantial performance improvements over PyTorch baselines across diverse production use cases and for heterogeneous AI systems at-scale. Beyond performance efficiency improvements, KernelEvolve significantly mitigates the programmability barrier for new AI hardware by enabling automated kernel generation for in-house developed AI hardware.
♻ ☆ New affine invariant ensemble samplers and their dimensional scaling
We introduce new affine invariant ensemble Markov chain Monte Carlo (MCMC) samplers that are easy to construct and improve upon existing methods, especially for high-dimensional problems. We first propose a simple derivative-free side move sampler that improves upon popular samplers in the \texttt{emcee} package by generating more effective proposal directions. We then develop a class of derivative-based affine invariant ensemble Hamiltonian Monte Carlo (HMC) samplers based on antisymmetric preconditioning using complementary ensembles, which outperform standard, non-affine-invariant HMC when sampling highly anisotropic distributions. We provide asymptotic scaling analysis for high-dimensional Gaussian targets to further elucidate the properties of these affine invariant ensemble samplers. In particular, with derivative information, the affine invariant ensemble HMC can scale much better with dimension compared to derivative-free ensemble samplers.
comment: Any feedback welcome!
♻ ☆ Lagrangian Index Policy for Restless Bandits with Average Reward
We study the Lagrangian Index Policy (LIP) for restless multi-armed bandits with long-run average reward. In particular, we compare the performance of LIP with the performance of the Whittle Index Policy (WIP), both heuristic policies known to be asymptotically optimal under certain natural conditions. Even though in most cases their performances are very similar, in the cases when WIP shows bad performance, LIP continues to perform very well. We then propose reinforcement learning algorithms, both tabular and NN-based, to obtain online learning schemes for LIP in the model-free setting. The proposed reinforcement learning schemes for LIP require significantly less memory than the analogous schemes for WIP. We calculate analytically the Lagrangian index for the restart model, which applies to the optimal web crawling and the minimization of the weighted age of information. We also give a new proof of asymptotic optimality in case of homogeneous arms as the number of arms goes to infinity, based on exchangeability and de Finetti's theorem.
♻ ☆ Maxwell's Demon at Work: Efficient Pruning by Leveraging Saturation of Neurons
When training neural networks, dying neurons -- units becoming inactive or saturated -- are traditionally seen as harmful. This paper sheds new light on this phenomenon. By exploring the impact of various hyperparameter configurations on dying neurons during training, we gather insights on how to improve upon sparse training approaches to pruning. We introduce Demon Pruning (DemP), a method that controls the proliferation of dead neurons through a combination of noise injection on active units and a one-cycle schedule regularization strategy, dynamically leading to network sparsity. Experiments on CIFAR-10 and ImageNet datasets demonstrate that DemP outperforms existing dense-to-sparse structured pruning methods, achieving better accuracy-sparsity tradeoffs and accelerating training by up to 3.56$\times$. These findings provide a novel perspective on dying neurons as a resource for efficient model compression and optimization.
♻ ☆ Revisiting Agnostic Boosting NeurIPS 2025
Boosting is a key method in statistical learning, allowing for converting weak learners into strong ones. While well studied in the realizable case, the statistical properties of weak-to-strong learning remain less understood in the agnostic setting, where there are no assumptions on the distribution of the labels. In this work, we propose a new agnostic boosting algorithm with substantially improved sample complexity compared to prior works under very general assumptions. Our approach is based on a reduction to the realizable case, followed by a margin-based filtering of high-quality hypotheses. Furthermore, we show a nearly-matching lower bound, settling the sample complexity of agnostic boosting up to logarithmic factors.
comment: Camera-ready version: NeurIPS 2025
♻ ☆ On the limitation of evaluating machine unlearning using only a single training seed
Machine unlearning (MU) aims to remove the influence of certain data points from a trained model without costly retraining. Most practical MU algorithms are only approximate and their performance can only be assessed empirically. Care must therefore be taken to make empirical comparisons as representative as possible. A common practice is to run the MU algorithm multiple times independently starting from the same trained model. In this work, we demonstrate that this practice can give highly non-representative results because -- even for the same architecture and same dataset -- some MU methods can be highly sensitive to the choice of random number seed used for model training. We illustrate that this is particularly relevant for MU methods that are deterministic, i.e., which always produce the same result when started from the same trained model. We therefore recommend that empirical comparisons of MU algorithms should also reflect the variability across different model training seeds.
comment: mini paper, 2 figures
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the other model is significantly more capable). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 33 pages, 7 tables, 8 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ Transfer learning of state-based potential games for process optimization in decentralized manufacturing systems
This paper presents a novel online transfer learning approach in state-based potential games (TL-SbPGs) for distributed self-optimization in manufacturing systems. The approach targets practical industrial scenarios where knowledge sharing among similar players enhances learning in large-scale and decentralized environments. TL-SbPGs enable players to reuse learned policies from others, which improves learning outcomes and accelerates convergence. To accomplish this goal, we develop transfer learning concepts and similarity criteria for players, which offer two distinct settings: (a) predefined similarities between players and (b) dynamically inferred similarities between players during training. The applicability of the SbPG framework to transfer learning is formally established. Furthermore, we present a method to optimize the timing and weighting of knowledge transfer. Experimental results from a laboratory-scale testbed show that TL-SbPGs improve production efficiency and reduce power consumption compared to vanilla SbPGs.
comment: This revised pre-print was accepted in Computers in Industry in December 2025
♻ ☆ Local-Cloud Inference Offloading for LLMs in Multi-Modal, Multi-Task, Multi-Dialogue Settings
Compared to traditional machine learning models, recent large language models (LLMs) can exhibit multi-task-solving capabilities through multiple dialogues and multi-modal data sources. These unique characteristics of LLMs, together with their large model size, make their deployment more challenging. Specifically, (i) deploying LLMs on local devices faces computational, memory, and energy resource issues, while (ii) deploying them in the cloud cannot guarantee real-time service and incurs communication/usage costs. In this paper, we design TMO, a local-cloud LLM inference system with Three-M Offloading: Multi-modal, Multi-task, and Multi-dialogue. TMO incorporates (i) a lightweight local LLM that can process simple tasks at high speed and (ii) a large-scale cloud LLM that can handle multi-modal data sources. We develop a resource-constrained reinforcement learning (RCRL) strategy for TMO that optimizes the inference location (i.e., local vs. cloud) and multi-modal data sources to use for each task/dialogue, aiming to maximize the long-term reward (response quality, latency, and usage cost) while adhering to resource constraints. We also contribute M4A1, a new dataset we curated that contains reward and cost metrics across multiple modality, task, dialogue, and LLM configurations, enabling evaluation of offloading decisions. We demonstrate the effectiveness of TMO compared to several exploration-decision and LLM-as-Agent baselines, showing significant improvements in latency, cost, and response quality.
♻ ☆ GIMLET: Generalizable and Interpretable Model Learning through Embedded Thermodynamics
We develop a data-driven framework for discovering constitutive relations in models of fluid flow and scalar transport. Under the assumption that velocity and/or scalar fields are measured, our approach infers unknown closure terms in the governing equations as neural networks. The target to be discovered is the constitutive relations only, while the temporal derivative, convective transport terms, and pressure-gradient term in the governing equations are prescribed. The formulation is rooted in a variational principle from non-equilibrium thermodynamics, where the dynamics is defined by a free-energy functional and a dissipation functional. The unknown constitutive terms arise as functional derivatives of these functionals with respect to the state variables. To enable a flexible and structured model discovery, the free-energy and dissipation functionals are parameterized using neural networks, while their functional derivatives are obtained via automatic differentiation. This construction enforces thermodynamic consistency by design, guaranteeing monotonic decay of the total free energy and non-negative entropy production. The resulting method, termed GIMLET (Generalizable and Interpretable Model Learning through Embedded Thermodynamics), avoids reliance on a predefined library of candidate functions, unlike sparse regression or symbolic identification approaches. The learned models are generalizable in that functionals identified from one dataset can be transferred to distinct datasets governed by the same underlying equations. Moreover, the inferred free-energy and dissipation functions provide direct physical interpretability of the learned dynamics. The framework is demonstrated on several benchmark systems, including the viscous Burgers equation, the Kuramoto--Sivashinsky equation, and the incompressible Navier--Stokes equations for both Newtonian and non-Newtonian fluids.
♻ ☆ Optimal Approximation -- Smoothness Tradeoffs for Soft-Max Functions NeurIPS 2020
A soft-max function has two main efficiency measures: (1) approximation - which corresponds to how well it approximates the maximum function, (2) smoothness - which shows how sensitive it is to changes of its input. Our goal is to identify the optimal approximation-smoothness tradeoffs for different measures of approximation and smoothness. This leads to novel soft-max functions, each of which is optimal for a different application. The most commonly used soft-max function, called exponential mechanism, has optimal tradeoff between approximation measured in terms of expected additive approximation and smoothness measured with respect to Rényi Divergence. We introduce a soft-max function, called "piecewise linear soft-max", with optimal tradeoff between approximation, measured in terms of worst-case additive approximation and smoothness, measured with respect to $\ell_q$-norm. The worst-case approximation guarantee of the piecewise linear mechanism enforces sparsity in the output of our soft-max function, a property that is known to be important in Machine Learning applications [Martins et al. '16, Laha et al. '18] and is not satisfied by the exponential mechanism. Moreover, the $\ell_q$-smoothness is suitable for applications in Mechanism Design and Game Theory where the piecewise linear mechanism outperforms the exponential mechanism. Finally, we investigate another soft-max function, called power mechanism, with optimal tradeoff between expected \textit{multiplicative} approximation and smoothness with respect to the Rényi Divergence, which provides improved theoretical and practical results in differentially private submodular optimization.
comment: Accepted for spotlight presentation at NeurIPS 2020. The updated version fixes a technical gap in the proof of Theorem 4.4
♻ ☆ SoundnessBench: A Soundness Benchmark for Neural Network Verifiers
Neural network (NN) verification aims to formally verify properties of NNs, which is crucial for ensuring the behavior of NN-based models in safety-critical applications. In recent years, the community has developed many NN verifiers and benchmarks to evaluate them. However, existing benchmarks typically lack ground-truth for hard instances where no current verifier can verify the property and no counterexample can be found. This makes it difficult to validate the soundness of a verifier, when it claims verification on such challenging instances that no other verifier can handle. In this work, we develop a new benchmark for NN verification, named SoundnessBench, specifically for testing the soundness of NN verifiers. SoundnessBench consists of instances with deliberately inserted counterexamples that are hidden from adversarial attacks commonly used to find counterexamples. Thereby, it can identify false verification claims when hidden counterexamples are known to exist. We design a training method to produce NNs with hidden counterexamples and systematically construct our SoundnessBench with instances across various model architectures, activation functions, and input data. We demonstrate that our training effectively produces hidden counterexamples and our SoundnessBench successfully identifies bugs in state-of-the-art NN verifiers. Our code is available at https://github.com/mvp-harry/SoundnessBench and our dataset is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.
comment: TMLR (December 2025)
♻ ☆ Lipschitz-Guided Design of Interpolation Schedules in Generative Models
We study the design of interpolation schedules in the stochastic interpolants framework for flow and diffusion-based generative models. We show that while all scalar interpolation schedules achieve identical statistical efficiency under Kullback-Leibler divergence in path space after optimal diffusion coefficient tuning, their numerical efficiency can differ substantially. This motivates focusing on numerical properties of the resulting drift fields rather than purely statistical criteria for schedule design. We propose averaged squared Lipschitzness minimization as a principled criterion for numerical optimization, providing an alternative to kinetic energy minimization used in optimal transport approaches. A transfer formula is derived that enables conversion between different schedules at inference time without retraining neural networks. For Gaussian distributions, the optimized schedules achieve exponential improvements in Lipschitz constants over standard linear schedules, while for Gaussian mixtures, they reduce mode collapse in few-step sampling. We also validate our approach on high-dimensional invariant distributions from stochastic Allen-Cahn equations and Navier-Stokes equations, demonstrating robust performance improvements across resolutions.
♻ ☆ HiGen: Hierarchical Graph Generative Networks ICLR
Most real-world graphs exhibit a hierarchical structure, which is often overlooked by existing graph generation methods. To address this limitation, we propose a novel graph generative network that captures the hierarchical nature of graphs and successively generates the graph sub-structures in a coarse-to-fine fashion. At each level of hierarchy, this model generates communities in parallel, followed by the prediction of cross-edges between communities using separate neural networks. This modular approach enables scalable graph generation for large and complex graphs. Moreover, we model the output distribution of edges in the hierarchical graph with a multinomial distribution and derive a recursive factorization for this distribution. This enables us to generate community graphs with integer-valued edge weights in an autoregressive manner. Empirical studies demonstrate the effectiveness and scalability of our proposed generative model, achieving state-ofthe-art performance in terms of graph quality across various benchmark datasets. The code is available at https://github.com/Karami-m/HiGen_main.
comment: 9 pages. In The Twelfth International Conference on Learning Representations (ICLR) (2024)
♻ ☆ Tazza: Shuffling Neural Network Parameters for Secure and Private Federated Learning
Federated learning enables decentralized model training without sharing raw data, preserving data privacy. However, its vulnerability towards critical security threats, such as gradient inversion and model poisoning by malicious clients, remain unresolved. Existing solutions often address these issues separately, sacrificing either system robustness or model accuracy. This work introduces Tazza, a secure and efficient federated learning framework that simultaneously addresses both challenges. By leveraging the permutation equivariance and invariance properties of neural networks via weight shuffling and shuffled model validation, Tazza enhances resilience against diverse poisoning attacks, while ensuring data confidentiality and high model accuracy. Comprehensive evaluations on various datasets and embedded platforms show that Tazza achieves robust defense with up to 6.7x improved computational efficiency compared to alternative schemes, without compromising performance.
comment: 15 pages, 16 figures
♻ ☆ Generative Modelling of Lévy Area for High Order SDE Simulation
It is well understood that, when numerically simulating SDEs with general noise, achieving a strong convergence rate better than $O(\sqrt{h})$ (where h is the step size) requires the use of certain iterated integrals of Brownian motion, commonly referred to as its "Lévy areas". However, these stochastic integrals are difficult to simulate due to their non-Gaussian nature and for a $d$-dimensional Brownian motion with $d > 2$, no fast almost-exact sampling algorithm is known. In this paper, we propose LévyGAN, a deep-learning-based model for generating approximate samples of Lévy area conditional on a Brownian increment. Due to our "Bridge-flipping" operation, the output samples match all joint and conditional odd moments exactly. Our generator employs a tailored GNN-inspired architecture, which enforces the correct dependency structure between the output distribution and the conditioning variable. Furthermore, we incorporate a mathematically principled characteristic-function based discriminator. Lastly, we introduce a novel training mechanism termed "Chen-training", which circumvents the need for expensive-to-generate training data-sets. This new training procedure is underpinned by our two main theoretical results. For 4-dimensional Brownian motion, we show that LévyGAN exhibits state-of-the-art performance across several metrics which measure both the joint and marginal distributions. We conclude with a numerical experiment on the log-Heston model, a popular SDE in mathematical finance, demonstrating that high-quality synthetic Lévy area can lead to high order weak convergence and variance reduction when using multilevel Monte Carlo (MLMC).
comment: 37 pages, 6 figures
♻ ☆ Stochastic Gradient Descent for Nonparametric Additive Regression
This paper introduces an iterative algorithm for training nonparametric additive models that enjoys favorable memory storage and computational requirements. The algorithm can be viewed as the functional counterpart of stochastic gradient descent, applied to the coefficients of a truncated basis expansion of the component functions. We show that the resulting estimator satisfies an oracle inequality that allows for model mis-specification. In the well-specified setting, by choosing the learning rate carefully across three distinct stages of training, we demonstrate that its risk is minimax optimal in terms of the dependence on both the dimensionality of the data and the size of the training sample. Unlike past work, we also provide polynomial convergence rates even when the covariates do not have full support on their domain.
♻ ☆ Are Ensembles Getting Better all the Time?
Ensemble methods combine the predictions of several base models. We study whether or not including more models always improves their average performance. This question depends on the kind of ensemble considered, as well as the predictive metric chosen. We focus on situations where all members of the ensemble are a priori expected to perform equally well, which is the case of several popular methods such as random forests or deep ensembles. In this setting, we show that ensembles are getting better all the time if, and only if, the considered loss function is convex. More precisely, in that case, the loss of the ensemble is a decreasing function of the number of models. When the loss function is nonconvex, we show a series of results that can be summarised as: ensembles of good models keep getting better, and ensembles of bad models keep getting worse. To this end, we prove a new result on the monotonicity of tail probabilities that may be of independent interest. We illustrate our results on a medical problem (diagnosing melanomas using neural nets) and a "wisdom of crowds" experiment (guessing the ratings of upcoming movies).
comment: Final JMLR version, see journal version at http://jmlr.org/papers/v26/24-0408.html
♻ ☆ GRASP: GRouped Activation Shared Parameterization for Parameter-Efficient Fine-Tuning and Robust Inference of Transformers
Parameter-efficient fine-tuning (PEFT) provides a scalable alternative to full-model adaptation by updating only a small subset of parameters in large pre-trained models. We introduce GRASP - GRouped Activation Shared Parameterization - a lightweight PEFT framework that partitions the D-dimensional token representations of selected layers into K << D groups and learns a shared scaling and shifting vector for each group. This grouped modulation reduces the number of trainable parameters significantly while preserving the ability of the model to learn task-specific features. Building on this formulation, we further propose StochGRASP, which learns Gaussian distributions as perturbations to the pre-trained weights rather than deterministic values. This probabilistic parameterization along with a noise-aware loss function formulation enables modelling hardware-level variability in programmed weights and significantly improves robustness under non-ideal inference conditions-an important requirement for deployment on edge-based emerging AI hardware. Across GLUE (RoBERTa-base & RoBERTa-large) and E2E NLG (GPT-2 Medium), GRASP matches or exceeds the performance of established PEFT methods while achieving an order of magnitude reduction in trainable parameters compared to LoRA and BitFit. Under varying levels of noise, StochGRASP consistently outperforms deterministic variants, demonstrating its suitability for energy-efficient and noise-prone hardware platforms.
comment: Under Review
♻ ☆ Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling
In the rapidly evolving field of deep learning, the demand for models that are both expressive and computationally efficient has never been more critical. This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms without compromising the ability to capture long-range dependencies and in-context learning. At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its kernel conditioned on input sequence using a dedicated conditioning neural network. We design two simple conditioning networks that maintain shift equivariance in our data-dependent convolution operation. The dynamic nature of the proposed convolution kernel grants Orchid high expressivity while maintaining quasilinear scalability for long sequences. We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality. Our experiments demonstrate that this architecture not only outperforms traditional attention-based architectures such as BERT and Vision Transformers with smaller model sizes, but also extends the feasible sequence length beyond the limitations of the dense attention layers. This achievement represents a significant step towards more efficient and scalable deep learning models for sequence modeling. The code is available at https://github.com/Karami-m/orchid.
♻ ☆ Not All Tokens Are Meant to Be Forgotten
Large Language Models (LLMs), pre-trained on massive text corpora, exhibit remarkable human-level language understanding, reasoning, and decision-making abilities. However, they tend to memorize unwanted information, such as private or copyrighted content, raising significant privacy and legal concerns. Unlearning has emerged as a promising solution, but existing methods face a significant challenge of over-forgetting. This issue arises because they indiscriminately suppress the generation of all the tokens in forget samples, leading to a substantial loss of model utility. To overcome this challenge, we introduce the Targeted Information Forgetting (TIF) framework, which consists of (1) a flexible targeted information identifier designed to differentiate between unwanted words (UW) and general words (GW) in the forget samples, and (2) a novel Targeted Preference Optimization approach that leverages Logit Preference Loss to unlearn unwanted information associated with UW and Preservation Loss to retain general information in GW, effectively improving the unlearning process while mitigating utility degradation. Extensive experiments on the TOFU and MUSE benchmarks demonstrate that the proposed TIF framework enhances unlearning effectiveness while preserving model utility and achieving state-of-the-art results.
♻ ☆ Personalized Enhanced Federated Multi-View Clustering via Heat-Kernel Tensor Decomposition
This paper introduces mathematical frameworks that address the challenges of multi-view clustering in federated learning environments. The objective is to integrate optimization techniques based on new objective functions employing heat-kernel coefficients to replace conventional distance metrics with quantum-inspired measures. The proposed frameworks utilize advanced tensor decomposition methods, specifically, PARAFAC2 and Tucker decomposition to efficiently represent high-dimensional, multi-view data while preserving inter-view relationships. The research has yielded the development of four novel algorithms, an efficient federated kernel multi-view clustering (E-FKMVC) model, FedHK-PARAFAC2, FedHK-Tucker, and FedHK-MVC-Person with PARAFAC2 Decomposition (Personalized FedHK-PARAFAC2). The primary objective of these algorithms is to enhance the efficacy of clustering processes while ensuring the confidentiality and efficient communication in federated learning environments. Theoretical analyses of convergence guarantees, privacy bounds, and complexity are provided to validate the effectiveness of the proposed methods. In essence, this paper makes a significant academic contribution to the field of federated multi-view clustering through its innovative integration of mathematical modeling and algorithm design. This approach addresses the critical challenges of data heterogeneity and privacy concerns, paving the way for enhanced data management and analytics in various contexts.
comment: 37 pages, 4 algorithms, 5 tables, and 4 figures
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
comment: This paper has been accepted and presented at the 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy 2025). Published version is available at https://proceedings.mlr.press/v284/karabulut25a.html
♻ ☆ Optimization over Trained (and Sparse) Neural Networks: A Surrogate within a Surrogate
In constraint learning, we use a neural network as a surrogate for part of the constraints or of the objective function of an optimization model. However, the tractability of the resulting model is heavily influenced by the size of the neural network used as a surrogate. One way to obtain a more tractable surrogate is by pruning the neural network first. In this work, we consider how to approach the setting in which the neural network is actually a given: how can we solve an optimization model embedding a large and predetermined neural network? We propose surrogating the neural network itself by pruning it, which leads to a sparse and more tractable optimization model, for which we hope to still obtain good solutions with respect to the original neural network. For network verification and function maximization models, that indeed leads to better solutions within a time limit, especially -- and surprisingly -- if we skip the standard retraining step known as finetuning. Hence, a pruned network with worse inference for lack of finetuning can be a better surrogate.
♻ ☆ NeuroPMD: Neural Fields for Density Estimation on Product Manifolds
We propose a novel deep neural network methodology for density estimation on product Riemannian manifold domains. In our approach, the network directly parameterizes the unknown density function and is trained using a penalized maximum likelihood framework, with a penalty term formed using manifold differential operators. The network architecture and estimation algorithm are carefully designed to handle the challenges of high-dimensional product manifold domains, effectively mitigating the curse of dimensionality that limits traditional kernel and basis expansion estimators, as well as overcoming the convergence issues encountered by non-specialized neural network methods. Extensive simulations and a real-world application to brain structural connectivity data highlight the clear advantages of our method over the competing alternatives.
♻ ☆ The Oracle Complexity of Simplex-based Matrix Games: Linear Separability and Nash Equilibria COLT 2025
We study the problem of solving matrix games of the form $\max_{\mathbf{w}\in\mathcal{W}}\min_{\mathbf{p}\inΔ}\mathbf{p}^{\top}A\mathbf{w}$, where $A$ is some matrix and $Δ$ is the probability simplex. This problem encapsulates canonical tasks such as finding a linear separator and computing Nash equilibria in zero-sum games. However, perhaps surprisingly, its inherent complexity (as formalized in the standard framework of oracle complexity [Nemirovski and Yudin, 1983]) is not well-understood. In this work, we first identify different oracle models which are implicitly used by prior algorithms, amounting to multiplying the matrix $A$ by a vector from either one or both sides. We then prove complexity lower bounds for algorithms under both access models, which in particular imply a separation between them. Specifically, we start by showing that algorithms for linear separability based on one-sided multiplications must require $Ω(γ_A^{-2})$ iterations, where $γ_A$ is the margin, as matched by the Perceptron algorithm. We then prove that accelerated algorithms for this task, which utilize multiplications from both sides, must require $\tildeΩ(γ_{A}^{-2/3})$ iterations, establishing the first oracle complexity barrier for such algorithms. Finally, by adapting our lower bound to $\ell_1$ geometry, we prove that computing an $ε$-approximate Nash equilibrium requires $\tildeΩ(ε^{-2/3})$ iterations, which is an exponential improvement over the previously best-known lower bound due to Hadiji et al. [2024].
comment: v2 appeared in COLT 2025; v3 improves the lower bound for computing Nash equilibria to T^{-3/2}
♻ ☆ InSPO: Unlocking Intrinsic Self-Reflection for LLM Preference Optimization
Direct Preference Optimization (DPO) and its variants have become standard for aligning Large Language Models due to their simplicity and offline stability. However, we identify two fundamental limitations. First, the optimal policy depends on arbitrary modeling choices (scalarization function, reference policy), yielding behavior reflecting parameterization artifacts rather than true preferences. Second, treating response generation in isolation fails to leverage comparative information in pairwise data, leaving the model's capacity for intrinsic self-reflection untapped. To address it, we propose Intrinsic Self-reflective Preference Optimization (InSPO), deriving a globally optimal policy conditioning on both context and alternative responses. We prove this formulation superior to DPO/RLHF while guaranteeing invariance to scalarization and reference choices. InSPO serves as a plug-and-play enhancement without architectural changes or inference overhead. Experiments demonstrate consistent improvements in win rates and length-controlled metrics, validating that unlocking self-reflection yields more robust, human-aligned LLMs.
♻ ☆ Graph Learning is Suboptimal in Causal Bandits
We study regret minimization in causal bandits under causal sufficiency where the underlying causal structure is not known to the agent. Previous work has focused on identifying the reward's parents and then applying classic bandit methods to them, or jointly learning the parents while minimizing regret. We investigate whether such strategies are optimal. Somewhat counterintuitively, our results show that learning the parent set is suboptimal. We do so by proving that there exist instances where regret minimization and parent identification are fundamentally conflicting objectives. We further analyze both the known and unknown parent set size regimes, establish novel regret lower bounds that capture the combinatorial structure of the action space. Building on these insights, we propose nearly optimal algorithms that bypass graph and parent recovery, demonstrating that parent identification is indeed unnecessary for regret minimization. Experiments confirm that there exists a large performance gap between our method and existing baselines in various environments.
comment: 31 pages, 5 figures
♻ ☆ Can ensembles improve evidence recall? A case study
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications, such as compliance and cataloging, the full set of contributing features must be identified: complete evidence. We present a case study using existing language models and a medical dataset which contains human-annotated complete evidence. Our findings show that an ensemble approach, aggregating evidence from several models, improves evidence recall over individual models. We examine different ensemble sizes, the effect of evidence-guided training, and provide qualitative insights.
comment: Submitted to ESANN 2026
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/ ; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ On The Hidden Biases of Flow Matching Samplers
We study the implicit bias of flow matching (FM) samplers via the lens of empirical flow matching. Although population FM may produce gradient-field velocities resembling optimal transport (OT), we show that the empirical FM minimizer is generally not a gradient field, even when each conditional flow is. Consequently, empirical FM is intrinsically not OT-optimal in the Benamou-Brenier sense. In view of this, we analyze the kinetic energy of generated samples. With Gaussian sources, both instantaneous and integrated kinetic energies exhibit exponential concentration, while heavy-tailed sources lead to polynomial tails. These behaviors are governed primarily by the choice of source distribution rather than the data. Overall, these notes provide a concise mathematical account of the structural and energetic biases arising in empirical FM.
comment: 21 pages
♻ ☆ Evaluating Parameter Efficient Methods for RLVR
We systematically evaluate Parameter-Efficient Fine-Tuning (PEFT) methods under the paradigm of Reinforcement Learning with Verifiable Rewards (RLVR). RLVR incentivizes language models to enhance their reasoning capabilities through verifiable feedback; however, while methods like LoRA are commonly used, the optimal PEFT architecture for RLVR remains unidentified. In this work, we conduct the first comprehensive evaluation of over 12 PEFT methodologies across the DeepSeek-R1-Distill families on mathematical reasoning benchmarks. Our empirical results challenge the default adoption of standard LoRA with three main findings. First, we demonstrate that structural variants, such as DoRA, AdaLoRA, and MiSS, consistently outperform LoRA. Second, we uncover a spectral collapse phenomenon in SVD-informed initialization strategies (\textit{e.g.,} PiSSA, MiLoRA), attributing their failure to a fundamental misalignment between principal-component updates and RL optimization. Furthermore, our ablations reveal that extreme parameter reduction (\textit{e.g.,} VeRA, Rank-1) severely bottlenecks reasoning capacity. We further conduct ablation studies and scaling experiments to validate our findings. This work provides a definitive guide for advocating for more exploration for parameter-efficient RL methods.
comment: Preprint
♻ ☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Codebase: https://github.com/OpenSenseNova/SenseNova-SI ; Models: https://huggingface.co/collections/sensenova/sensenova-si
♻ ☆ AUDRON: A Deep Learning Framework with Fused Acoustic Signatures for Drone Type Recognition IEEE 22
Unmanned aerial vehicles (UAVs), commonly known as drones, are increasingly used across diverse domains, including logistics, agriculture, surveillance, and defense. While these systems provide numerous benefits, their misuse raises safety and security concerns, making effective detection mechanisms essential. Acoustic sensing offers a low-cost and non-intrusive alternative to vision or radar-based detection, as drone propellers generate distinctive sound patterns. This study introduces AUDRON (AUdio-based Drone Recognition Network), a hybrid deep learning framework for drone sound detection, employing a combination of Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform (STFT) spectrograms processed with convolutional neural networks (CNNs), recurrent layers for temporal modeling, and autoencoder-based representations. Feature-level fusion integrates complementary information before classification. Experimental evaluation demonstrates that AUDRON effectively differentiates drone acoustic signatures from background noise, achieving high accuracy while maintaining generalizability across varying conditions. AUDRON achieves 98.51 percent and 97.11 percent accuracy in binary and multiclass classification. The results highlight the advantage of combining multiple feature representations with deep learning for reliable acoustic drone detection, suggesting the framework's potential for deployment in security and surveillance applications where visual or radar sensing may be limited.
comment: Presented at the 2025 IEEE 22nd India Council International Conference (INDICON). 6 pages, 3 figures
♻ ☆ DiRe: Diversity-promoting Regularization for Dataset Condensation WACV 2026
In Dataset Condensation, the goal is to synthesize a small dataset that replicates the training utility of a large original dataset. Existing condensation methods synthesize datasets with significant redundancy, so there is a dire need to reduce redundancy and improve the diversity of the synthesized datasets. To tackle this, we propose an intuitive Diversity Regularizer (DiRe) composed of cosine similarity and Euclidean distance, which can be applied off-the-shelf to various state-of-the-art condensation methods. Through extensive experiments, we demonstrate that the addition of our regularizer improves state-of-the-art condensation methods on various benchmark datasets from CIFAR-10 to ImageNet-1K with respect to generalization and diversity metrics.
comment: Accepted at WACV 2026. v2: Optimized figure assets to reduce PDF size, no content changes
♻ ☆ Adjusted Count Quantification Learning on Graphs NeurIPS 2025
Quantification learning is the task of predicting the label distribution of a set of instances. We study this problem in the context of graph-structured data, where the instances are vertices. Previously, this problem has only been addressed via node clustering methods. In this paper, we extend the popular Adjusted Classify & Count (ACC) method to graphs. We show that the prior probability shift assumption upon which ACC relies is often not applicable to graph quantification problems. To address this issue, we propose structural importance sampling (SIS), the first graph quantification method that is applicable under (structural) covariate shift. Additionally, we propose Neighborhood-aware ACC, which improves quantification in the presence of non-homophilic edges. We show the effectiveness of our techniques on multiple graph quantification tasks.
comment: 19 pages, presented at NeurIPS 2025
♻ ☆ Enhancing Diffusion-Based Sampling with Molecular Collective Variables
Diffusion-based samplers learn to sample complex, high-dimensional distributions using energies or log densities alone, without training data. Yet, they remain impractical for molecular sampling because they are often slower than molecular dynamics and miss thermodynamically relevant modes. Inspired by enhanced sampling, we encourage exploration by introducing a sequential bias along bespoke, information-rich, low-dimensional projections of atomic coordinates known as collective variables (CVs). We introduce a repulsive potential centered on the CVs from recent samples, which pushes future samples towards novel CV regions and effectively increases the temperature in the projected space. Our resulting method improves efficiency, mode discovery, enables the estimation of free energy differences, and retains independent sampling from the approximate Boltzmann distribution via reweighting by the bias. On standard peptide conformational sampling benchmarks, the method recovers diverse conformational states and accurate free energy profiles. We are the first to demonstrate reactive sampling using a diffusion-based sampler, capturing bond breaking and formation with universal interatomic potentials at near-first-principles accuracy. The approach resolves reactive energy landscapes at a fraction of the wall-clock time of standard sampling methods, advancing diffusion-based sampling towards practical use in molecular sciences.
♻ ☆ CrystalDiT: A Diffusion Transformer for Crystal Generation
We present CrystalDiT, a diffusion transformer for crystal structure generation that achieves state-of-the-art performance by challenging the trend of architectural complexity. Instead of intricate, multi-stream designs, CrystalDiT employs a unified transformer that imposes a powerful inductive bias: treating lattice and atomic properties as a single, interdependent system. Combined with a periodic table-based atomic representation and a balanced training strategy, our approach achieves 8.78% SUN (Stable, Unique, Novel) rate on MP-20, substantially outperforming recent methods including FlowMM (4.21%) and MatterGen (3.66%). Notably, CrystalDiT generates 63.28% unique and novel structures while maintaining comparable stability rates, demonstrating that architectural simplicity can be more effective than complexity for materials discovery. Our results suggest that in data-limited scientific domains, carefully designed simple architectures outperform sophisticated alternatives that are prone to overfitting.
comment: 18 pages, 18 figures. Code available at https://github.com/hanyi2021/CrystalDiT.git. Updated to remove copyright notice
♻ ☆ Robust Distributed Estimation: Extending Gossip Algorithms to Ranking and Trimmed Means
This paper addresses the problem of robust estimation in gossip algorithms over arbitrary communication graphs. Gossip algorithms are fully decentralized, relying only on local neighbor-to-neighbor communication, making them well-suited for situations where communication is constrained. A fundamental challenge in existing mean-based gossip algorithms is their vulnerability to malicious or corrupted nodes. In this paper, we show that an outlier-robust mean can be computed by globally estimating a robust statistic. More specifically, we propose a novel gossip algorithm for rank estimation, referred to as \textsc{GoRank}, and leverage it to design a gossip procedure dedicated to trimmed mean estimation, coined \textsc{GoTrim}. In addition to a detailed description of the proposed methods, a key contribution of our work is a precise convergence analysis: we establish an $\mathcal{O}(1/t)$ rate for rank estimation and an $\mathcal{O}(1 / {t})$ rate for trimmed mean estimation, where by $t$ is meant the number of iterations. Moreover, we provide a breakdown point analysis of \textsc{GoTrim}. We empirically validate our theoretical results through experiments on diverse network topologies, data distributions and contamination schemes.
♻ ☆ Lattice: Learning to Efficiently Compress the Memory
Attention mechanisms have revolutionized sequence learning but suffer from quadratic computational complexity. This paper introduces \model, a novel recurrent neural network (RNN) mechanism that leverages the inherent low-rank structure of K-V matrices to efficiently compress the cache into a fixed number of memory slots, achieving sub-quadratic complexity. We formulate this compression as an online optimization problem and derive a dynamic memory update rule based on a single gradient descent step. The resulting recurrence features a state- and input-dependent gating mechanism, offering an interpretable memory update process. The core innovation is the orthogonal update: each memory slot is updated exclusively with information orthogonal to its current state, hence incorporating only novel, non-redundant data to minimize interference with previously stored information. We derive an efficient computation for this orthogonal update rule and further approximate it with chunk-wise parallelization to ensure training scalability. Empirically, Lattice outperforms strong baselines on language modeling and associative recall tasks across diverse context lengths and model sizes, achieving superior memory efficiency with significantly reduced memory sizes.
♻ ☆ Mathematical artificial data for operator learning
Machine learning has emerged as a transformative tool for solving differential equations (DEs), yet prevailing methodologies remain constrained by dual limitations: data-driven methods demand costly labeled datasets while model-driven techniques face efficiency-accuracy trade-offs. We present the Mathematical Artificial Data (MAD) framework, a new paradigm that integrates physical laws with data-driven learning to facilitate large-scale operator discovery. By exploiting DEs' intrinsic mathematical structure to generate physics-embedded analytical solutions and associated synthetic data, MAD fundamentally eliminates dependence on experimental or simulated training data. This enables computationally efficient operator learning across multi-parameter systems while maintaining mathematical rigor. Through numerical demonstrations spanning 2D parametric problems where both the boundary values and source term are functions, we showcase MAD's generalizability and superior efficiency/accuracy across various DE scenarios. This physics-embedded-data-driven framework and its capacity to handle complex parameter spaces gives it the potential to become a universal paradigm for physics-informed machine intelligence in scientific computing.
comment: 22 pages, 5 figures
♻ ☆ Generalising Traffic Forecasting to Regions without Traffic Observations AAAI 2026
Traffic forecasting is essential for intelligent transportation systems. Accurate forecasting relies on continuous observations collected by traffic sensors. However, due to high deployment and maintenance costs, not all regions are equipped with such sensors. This paper aims to forecast for regions without traffic sensors, where the lack of historical traffic observations challenges the generalisability of existing models. We propose a model named GenCast, the core idea of which is to exploit external knowledge to compensate for the missing observations and to enhance generalisation. We integrate physics-informed neural networks into GenCast, enabling physical principles to regularise the learning process. We introduce an external signal learning module to explore correlations between traffic states and external signals such as weather conditions, further improving model generalisability. Additionally, we design a spatial grouping module to filter localised features that hinder model generalisability. Extensive experiments show that GenCast consistently reduces forecasting errors on multiple real-world datasets.
comment: Accepted by AAAI 2026
♻ ☆ A Systematic Survey on Large Language Models for Algorithm Design
Algorithm design is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and promising solutions. In just a few years, this integration has yielded remarkable progress in areas ranging from combinatorial optimization to scientific discovery. Despite this rapid expansion, a holistic understanding of the field is hindered by the lack of a systematic review, as existing surveys either remain limited to narrow sub-fields or with different objectives. This paper seeks to provide a systematic review of algorithm design with LLMs. We introduce a taxonomy that categorises the roles of LLMs as optimizers, predictors, extractors and designers, analyzing the progress, advantages, and limitations within each category. We further synthesize literature across the three phases of the algorithm design pipeline and across diverse algorithmic applications that define the current landscape. Finally, we outline key open challenges and opportunities to guide future research.
♻ ☆ BiTrajDiff: Bidirectional Trajectory Generation with Diffusion Models for Offline Reinforcement Learning
Recent advances in offline Reinforcement Learning (RL) have proven that effective policy learning can benefit from imposing conservative constraints on pre-collected datasets. However, such static datasets often exhibit distribution bias, resulting in limited generalizability. To address this limitation, a straightforward solution is data augmentation (DA), which leverages generative models to enrich data distribution. Despite the promising results, current DA techniques focus solely on reconstructing future trajectories from given states, while ignoring the exploration of history transitions that reach them. This single-direction paradigm inevitably hinders the discovery of diverse behavior patterns, especially those leading to critical states that may have yielded high-reward outcomes. In this work, we introduce Bidirectional Trajectory Diffusion (BiTrajDiff), a novel DA framework for offline RL that models both future and history trajectories from any intermediate states. Specifically, we decompose the trajectory generation task into two independent yet complementary diffusion processes: one generating forward trajectories to predict future dynamics, and the other generating backward trajectories to trace essential history transitions.BiTrajDiff can efficiently leverage critical states as anchors to expand into potentially valuable yet underexplored regions of the state space, thereby facilitating dataset diversity. Extensive experiments on the D4RL benchmark suite demonstrate that BiTrajDiff achieves superior performance compared to other advanced DA methods across various offline RL backbones.
♻ ☆ Machine learning for option pricing: an empirical investigation of network architectures
We consider the supervised learning problem of learning the price of an option or the implied volatility given appropriate input data (model parameters) and corresponding output data (option prices or implied volatilities). The majority of articles in this literature considers a (plain) feed forward neural network architecture in order to connect the neurons used for learning the function mapping inputs to outputs. In this article, motivated by methods in image classification and recent advances in machine learning methods for PDEs, we investigate empirically whether and how the choice of network architecture affects the accuracy and training time of a machine learning algorithm. We find that the generalized highway network architecture achieves the best performance, when considering the mean squared error and the training time as criteria, within the considered parameter budgets for the Black-Scholes and Heston option pricing problems. Considering the transformed implied volatility problem, a simplified DGM variant achieves the lowest error among the tested architectures. We also carry out a capacity-normalised comparison for completeness, where all architectures are evaluated with an equal number of parameters. Finally, for the implied volatility problem, we additionally include experiments using real market data.
comment: 29 pages, 28 figures, 21 tables, revised version. Serena Della Corte has been added as co-author to reflect her contribution to the revised analysis and results. Several sections have been updated accordingly
♻ ☆ Federated Multi-Task Clustering
Spectral clustering has emerged as one of the most effective clustering algorithms due to its superior performance. However, most existing models are designed for centralized settings, rendering them inapplicable in modern decentralized environments. Moreover, current federated learning approaches often suffer from poor generalization performance due to reliance on unreliable pseudo-labels, and fail to capture the latent correlations amongst heterogeneous clients. To tackle these limitations, this paper proposes a novel framework named Federated Multi-Task Clustering (i.e.,FMTC), which intends to learn personalized clustering models for heterogeneous clients while collaboratively leveraging their shared underlying structure in a privacy-preserving manner. More specifically, the FMTC framework is composed of two main components: client-side personalized clustering module, which learns a parameterized mapping model to support robust out-of-sample inference, bypassing the need for unreliable pseudo-labels; and server-side tensorial correlation module, which explicitly captures the shared knowledge across all clients. This is achieved by organizing all client models into a unified tensor and applying a low-rank regularization to discover their common subspace. To solve this joint optimization problem, we derive an efficient, privacy-preserving distributed algorithm based on the Alternating Direction Method of Multipliers, which decomposes the global problem into parallel local updates on clients and an aggregation step on the server. To the end, several extensive experiments on multiple real-world datasets demonstrate that our proposed FMTC framework significantly outperforms various baseline and state-of-the-art federated clustering algorithms.
♻ ☆ ForensicFlow: A Tri-Modal Adaptive Network for Robust Deepfake Detection
Modern deepfakes evade detection by leaving subtle, domain-speci c artifacts that single branch networks miss. ForensicFlow addresses this by fusing evidence across three forensic dimensions: global visual inconsistencies (via ConvNeXt-tiny), ne-grained texture anomalies (via Swin Transformer-tiny), and spectral noise patterns (via CNN with channel attention). Our attention-based temporal pooling dynamically prioritizes high-evidence frames, while adaptive fusion weights each branch according to forgery type. Trained on CelebDF(v2) with Focal Loss, the model achieves AUC 0.9752, F1 0.9408, and accuracy 0.9208 out performing single-stream detectors. Ablation studies con rm branch synergy, and Grad-CAM visualizations validate focus on genuine manipulation regions (e.g., facial boundaries). This multi-domain fusion strategy establishes robustness against increasingly sophisticated forgeries.
comment: 12 pages, 4 figures, 2 tables. Preprint. First submitted on November 18, 2025; revised December 30, 2025
♻ ☆ The Generalization Error of Supervised Machine Learning Algorithms IEEE
In this paper, the method of gaps, a technique for deriving closed-form expressions in terms of information measures for the generalization error of supervised machine learning algorithms is introduced. The method relies on the notion of \emph{gaps}, which characterize the variation of the expected empirical risk (when either the model or dataset is kept fixed) with respect to changes in the probability measure on the varying parameter (either the dataset or the model, respectively). This distinction results in two classes of gaps: Algorithm-driven gaps (fixed dataset) and data-driven gaps (fixed model). In general, the method relies on two central observations: $(i)$~The generalization error is the expectation of an algorithm-driven gap or a data-driven gap. In the first case, the expectation is with respect to a measure on the datasets; and in the second case, with respect to a measure on the models. $(ii)$~Both, algorithm-driven gaps and data-driven gaps exhibit closed-form expressions in terms of relative entropies. In particular, algorithm-driven gaps involve a Gibbs probability measure on the set of models, which represents a supervised Gibbs algorithm. Alternatively, data-driven gaps involve a worst-case data-generating (WCDG) probability measure on the set of data points, which is also a Gibbs probability measure. Interestingly, such Gibbs measures, which are exogenous to the analysis of generalization, place both the supervised Gibbs algorithm and the WCDG probability measure as natural references for the analysis of supervised learning algorithms. All existing exact expressions for the generalization error of supervised machine learning algorithms can be obtained with the proposed method. Also, this method allows obtaining numerous new exact expressions, which allows establishing connections with other areas in statistics.
comment: Submitted to the IEEE Transaction on Information Theory in November 18, 2024. This version is revision R1 submitted December 30, 2025
♻ ☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining NeurIPS 2025
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
comment: NeurIPS 2025 poster
♻ ☆ RAST: A Retrieval Augmented Spatio-Temporal Framework for Traffic Prediction AAAI 2026
Traffic prediction is a cornerstone of modern intelligent transportation systems and a critical task in spatio-temporal forecasting. Although advanced Spatio-temporal Graph Neural Networks (STGNNs) and pre-trained models have achieved significant progress in traffic prediction, two key challenges remain: (i) limited contextual capacity when modeling complex spatio-temporal dependencies, and (ii) low predictability at fine-grained spatio-temporal points due to heterogeneous patterns. Inspired by Retrieval-Augmented Generation (RAG), we propose RAST, a universal framework that integrates retrieval-augmented mechanisms with spatio-temporal modeling to address these challenges. Our framework consists of three key designs: 1) Decoupled Encoder and Query Generator to capture decoupled spatial and temporal features and construct a fusion query via residual fusion; 2) Spatio-temporal Retrieval Store and Retrievers to maintain and retrieve vectorized fine-grained patterns; and 3) Universal Backbone Predictor that flexibly accommodates pre-trained STGNNs or simple MLP predictors. Extensive experiments on six real-world traffic networks, including large-scale datasets, demonstrate that RAST achieves superior performance while maintaining computational efficiency.
comment: Accepted by AAAI 2026 (AI for Social Impact)
♻ ☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) extends automatic machine translation (MT) evaluation by localizing translation errors and labeling their severity. Current generative ESD methods typically use Maximum a Posteriori (MAP) decoding, assuming that the model-estimated probabilities are perfectly correlated with similarity to the human annotation, but we often observe higher likelihood assigned to an incorrect annotation than to the human one. We instead apply Minimum Bayes Risk (MBR) decoding to generative ESD. We use a sentence- or span-level similarity function for MBR decoding, which selects candidate hypotheses based on their approximate similarity to the human annotation. Experimental results on the WMT24 Metrics Shared Task show that MBR decoding significantly improves span-level performance and generally matches or outperforms MAP at the system and sentence levels. To reduce the computational cost of MBR decoding, we further distill its decisions into a model decoded via greedy search, removing the inference-time latency bottleneck.
♻ ☆ Testing the spin-bath view of self-attention: A Hamiltonian analysis of GPT-2 Transformer
The recently proposed physics-based framework by Huo and Johnson~\cite{huo2024capturing} models the attention mechanism of Large Language Models (LLMs) as an interacting two-body spin system, offering a first-principles explanation for phenomena like repetition and bias. Building on this hypothesis, we extract the complete Query-Key weight matrices from a production-grade GPT-2 model and derive the corresponding effective Hamiltonian for every attention head. From these Hamiltonians, we obtain analytic phase boundaries and logit gap criteria that predict which token should dominate the next-token distribution for a given context. A systematic evaluation on 144 heads across 20 factual-recall prompts reveals a strong negative correlation between the theoretical logit gaps and the model's empirical token rankings ($r\approx-0.70$, $p<10^{-3}$).Targeted ablations further show that suppressing the heads most aligned with the spin-bath predictions induces the anticipated shifts in output probabilities, confirming a causal link rather than a coincidental association. Taken together, our findings provide the first strong empirical evidence for the spin-bath analogy in a production-grade model. In this work, we utilize the context-field lens, which provides physics-grounded interpretability and motivates the development of novel generative models bridging theoretical condensed matter physics and artificial intelligence.
♻ ☆ Online Convex Optimization with Heavy Tails: Old Algorithms, New Regrets, and Applications ALT 2026
In Online Convex Optimization (OCO), when the stochastic gradient has a finite variance, many algorithms provably work and guarantee a sublinear regret. However, limited results are known if the gradient estimate has a heavy tail, i.e., the stochastic gradient only admits a finite $\mathsf{p}$-th central moment for some $\mathsf{p}\in\left(1,2\right]$. Motivated by it, this work examines different old algorithms for OCO (e.g., Online Gradient Descent) in the more challenging heavy-tailed setting. Under the standard bounded domain assumption, we establish new regrets for these classical methods without any algorithmic modification. Remarkably, these regret bounds are fully optimal in all parameters (can be achieved even without knowing $\mathsf{p}$), suggesting that OCO with heavy tails can be solved effectively without any extra operation (e.g., gradient clipping). Our new results have several applications. A particularly interesting one is the first provable and optimal convergence result for nonsmooth nonconvex optimization under heavy-tailed noise without gradient clipping. Furthermore, we explore broader settings (e.g., smooth OCO) and extend our ideas to optimistic algorithms to handle different cases simultaneously.
comment: A short, self-contained version has been accepted at ALT 2026
♻ ☆ CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems
Multi-modal learning has emerged as a key technique for improving performance across domains such as autonomous driving, robotics, and reasoning. However, in certain scenarios, particularly in resource-constrained environments, some modalities available during training may be absent during inference. While existing frameworks effectively utilize multiple data sources during training and enable inference with reduced modalities, they are primarily designed for single-agent settings. This poses a critical limitation in dynamic environments such as connected autonomous vehicles (CAV), where incomplete data coverage can lead to decision-making blind spots. Conversely, some works explore multi-agent collaboration but without addressing missing modality at test time. To overcome these limitations, we propose Collaborative Auxiliary Modality Learning (CAML), a novel multi-modal multi-agent framework that enables agents to collaborate and share multi-modal data during training, while allowing inference with reduced modalities during testing. Experimental results in collaborative decision-making for CAV in accident-prone scenarios demonstrate that CAML achieves up to a 58.1% improvement in accident detection. Additionally, we validate CAML on real-world aerial-ground robot data for collaborative semantic segmentation, achieving up to a 10.6% improvement in mIoU.
♻ ☆ Do LLMs Understand Collaborative Signals? Diagnosis and Repair
Collaborative information from user-item interactions is a fundamental source of signal in successful recommender systems. Recently, researchers have attempted to incorporate this knowledge into large language model-based recommender approaches (LLMRec) to enhance their performance. However, there has been little fundamental analysis of whether LLMs can effectively reason over collaborative information. In this paper, we analyze the ability of LLMs to reason about collaborative information in recommendation tasks, comparing their performance to traditional matrix factorization (MF) models. We propose a simple and effective method to improve LLMs' reasoning capabilities using retrieval-augmented generation (RAG) over the user-item interaction matrix with four different prompting strategies. Our results show that the LLM outperforms the MF model whenever we provide relevant information in a clear and easy-to-follow format, and prompt the LLM to reason based on it. We observe that with this strategy, in almost all cases, the more information we provide, the better the LLM performs.
♻ ☆ ISOPO: Proximal policy gradients without pi-old
This note introduces Isometric Policy Optimization (ISOPO), an efficient method to approximate the natural policy gradient in a single gradient step. In comparison, existing proximal policy methods such as GRPO or CISPO use multiple gradient steps with variants of importance ratio clipping to approximate a natural gradient step relative to a reference policy. In its simplest form, ISOPO normalizes the log-probability gradient of each sequence in the Fisher metric before contracting with the advantages. Another variant of ISOPO transforms the microbatch advantages based on the neural tangent kernel in each layer. ISOPO applies this transformation layer-wise in a single backward pass and can be implemented with negligible computational overhead compared to vanilla REINFORCE.
♻ ☆ STRelay: A Universal Spatio-Temporal Relaying Framework for Location Prediction over Human Trajectory Data
Next location prediction is a critical task in human mobility modeling, enabling applications like travel planning and urban mobility management. Existing methods mainly rely on historical spatiotemporal trajectory data to train sequence models that directly forecast future locations. However, they often overlook the importance of the future spatiotemporal contexts, which are highly informative for the future locations. For example, knowing how much time and distance a user will travel could serve as a critical clue for predicting the user's next location. Against this background, we propose \textbf{STRelay}, a universal \textbf{\underline{S}}patio\textbf{\underline{T}}emporal \textbf{\underline{Relay}}ing framework explicitly modeling the future spatiotemporal context given a human trajectory, to boost the performance of different location prediction models. Specifically, STRelay models future spatiotemporal contexts in a relaying manner, which is subsequently integrated with the encoded historical representation from a base location prediction model, enabling multi-task learning by simultaneously predicting the next time interval, next moving distance interval, and finally the next location. We evaluate STRelay integrated with five state-of-the-art location prediction base models on four real-world trajectory datasets. Results demonstrate that STRelay consistently improves prediction performance across all cases by 2.49\%-11.30\%. Additionally, we find that the future spatiotemporal contexts are particularly helpful for entertainment-related locations and also for user groups who prefer traveling longer distances. The performance gain on such non-daily-routine activities, which often suffer from higher uncertainty, is indeed complementary to the base location prediction models that often excel at modeling regular daily routine patterns.
♻ ☆ Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.
comment: Project website: https://xandergos.github.io/terrain-diffusion/ Code: https://github.com/xandergos/terrain-diffusion/
♻ ☆ Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
comment: Added appendices and updated literature review
♻ ☆ PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies
A significant challenge for robot learning research is our ability to accurately measure and compare the performance of robot policies. Benchmarking in robotics is historically challenging due to the stochasticity, reproducibility, and time-consuming nature of real-world rollouts. This challenge is exacerbated for recent generalist policies, which has to be evaluated across a wide variety of scenes and tasks. Evaluation in simulation offers a scalable complement to real world evaluations, but the visual and physical domain gap between existing simulation benchmarks and the real world has made them an unreliable signal for policy improvement. Furthermore, building realistic and diverse simulated environments has traditionally required significant human effort and expertise. To bridge the gap, we introduce Policy Evaluation and Environment Reconstruction in Simulation (PolaRiS), a scalable real-to-sim framework for high-fidelity simulated robot evaluation. PolaRiS utilizes neural reconstruction methods to turn short video scans of real-world scenes into interactive simulation environments. Additionally, we develop a simple simulation data co-training recipe that bridges remaining real-to-sim gaps and enables zero-shot evaluation in unseen simulation environments. Through extensive paired evaluations between simulation and the real world, we demonstrate that PolaRiS evaluations provide a much stronger correlation to real world generalist policy performance than existing simulated benchmarks. Its simplicity also enables rapid creation of diverse simulated environments. As such, this work takes a step towards distributed and democratized evaluation for the next generation of robotic foundation models.
comment: Website: https://polaris-evals.github.io/
♻ ☆ Adversarial Reinforcement Learning Framework for ESP Cheater Simulation
Extra-Sensory Perception (ESP) cheats, which reveal hidden in-game information such as enemy locations, are difficult to detect because their effects are not directly observable in player behavior. The lack of observable evidence makes it difficult to collect reliably labeled data, which is essential for training effective anti-cheat systems. Furthermore, cheaters often adapt their behavior by limiting or disguising their cheat usage, which further complicates detection and detector development. To address these challenges, we propose a simulation framework for controlled modeling of ESP cheaters, non-cheaters, and trajectory-based detectors. We model cheaters and non-cheaters as reinforcement learning agents with different levels of observability, while detectors classify their behavioral trajectories. Next, we formulate the interaction between the cheater and the detector as an adversarial game, allowing both players to co-adapt over time. To reflect realistic cheater strategies, we introduce a structured cheater model that dynamically switches between cheating and non-cheating behaviors based on detection risk. Experiments demonstrate that our framework successfully simulates adaptive cheater behaviors that strategically balance reward optimization and detection evasion. This work provides a controllable and extensible platform for studying adaptive cheating behaviors and developing effective cheat detectors.
♻ ☆ Learning Network Dismantling Without Handcrafted Inputs AAAI
The application of message-passing Graph Neural Networks has been a breakthrough for important network science problems. However, the competitive performance often relies on using handcrafted structural features as inputs, which increases computational cost and introduces bias into the otherwise purely data-driven network representations. Here, we eliminate the need for handcrafted features by introducing an attention mechanism and utilizing message-iteration profiles, in addition to an effective algorithmic approach to generate a structurally diverse training set of small synthetic networks. Thereby, we build an expressive message-passing framework and use it to efficiently solve the NP-hard problem of Network Dismantling, virtually equivalent to vital node identification, with significant real-world applications. Trained solely on diversified synthetic networks, our proposed model -- MIND: Message Iteration Network Dismantler -- generalizes to large, unseen real networks with millions of nodes, outperforming state-of-the-art network dismantling methods. Increased efficiency and generalizability of the proposed model can be leveraged beyond dismantling in a range of complex network problems.
comment: Accepted for Oral Presentation at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), Main Technical Track
♻ ☆ Towards Privacy-Preserving and Heterogeneity-aware Split Federated Learning via Probabilistic Masking KDD 2026
Split Federated Learning (SFL) has emerged as an efficient alternative to traditional Federated Learning (FL) by reducing client-side computation through model partitioning. However, exchanging of intermediate activations and model updates introduces significant privacy risks, especially from data reconstruction attacks that recover original inputs from intermediate representations. Existing defenses using noise injection often degrade model performance. To overcome these challenges, we present PM-SFL, a scalable and privacy-preserving SFL framework that incorporates Probabilistic Mask training to add structured randomness without relying on explicit noise. This mitigates data reconstruction risks while maintaining model utility. To address data heterogeneity, PM-SFL employs personalized mask learning that tailors submodel structures to each client's local data. For system heterogeneity, we introduce a layer-wise knowledge compensation mechanism, enabling clients with varying resources to participate effectively under adaptive model splitting. Theoretical analysis confirms its privacy protection, and experiments on image and wireless sensing tasks demonstrate that PM-SFL consistently improves accuracy, communication efficiency, and robustness to privacy attacks, with particularly strong performance under data and system heterogeneity.
comment: KDD 2026
♻ ☆ Jacobian-Enhanced Neural Networks
Jacobian-Enhanced Neural Networks (JENN) are densely connected multi-layer perceptrons, whose training process is modified to predict partial derivatives accurately. Their main benefit is better accuracy with fewer training points compared to standard neural networks. These attributes are particularly desirable in the field of computer-aided design, where there is often the need to replace computationally expensive, physics-based models with fast running approximations, known as surrogate models or meta-models. Since a surrogate emulates the original model accurately in near-real time, it yields a speed benefit that can be used to carry out orders of magnitude more function calls quickly. However, in the special case of gradient-enhanced methods, there is the additional value proposition that partial derivatives are accurate, which is a critical property for one important use-case: surrogate-based optimization. This work derives the complete theory and exemplifies its superiority over standard neural nets for surrogate-based optimization.
comment: 34 pages, 9 figures
♻ ☆ UnPaSt: unsupervised patient stratification by biclustering of omics data
Unsupervised patient stratification is essential for disease subtype discovery, yet, despite growing evidence of molecular heterogeneity of non-oncological diseases, popular methods are benchmarked primarily using cancers with mutually exclusive molecular subtypes well-differentiated by numerous biomarkers. Evaluating 22 unsupervised methods, including clustering and biclustering, using simulated and real transcriptomics data revealed their inefficiency in scenarios with non-mutually exclusive subtypes or subtypes discriminated only by few biomarkers. To address these limitations and advance precision medicine, we developed UnPaSt, a novel biclustering algorithm for unsupervised patient stratification based on differentially expressed biclusters. UnPaSt outperformed widely used patient stratification approaches in the de novo identification of known subtypes of breast cancer and asthma. In addition, it detected many biologically insightful patterns across bulk transcriptomics, proteomics, single-cell, spatial transcriptomics, and multi-omics datasets, enabling a more nuanced and interpretable view of high-throughput data heterogeneity than traditionally used methods.
comment: Substantially revised version with additional analyses
♻ ☆ Active Learning with Neural Networks: Insights from Nonparametric Statistics
Deep neural networks have great representation power, but typically require large numbers of training examples. This motivates deep active learning methods that can significantly reduce the amount of labeled training data. Empirical successes of deep active learning have been recently reported in the literature, however, rigorous label complexity guarantees of deep active learning have remained elusive. This constitutes a significant gap between theory and practice. This paper tackles this gap by providing the first near-optimal label complexity guarantees for deep active learning. The key insight is to study deep active learning from the nonparametric classification perspective. Under standard low noise conditions, we show that active learning with neural networks can provably achieve the minimax label complexity, up to disagreement coefficient and other logarithmic terms. When equipped with an abstention option, we further develop an efficient deep active learning algorithm that achieves $\mathsf{polylog}(\frac{1}ε)$ label complexity, without any low noise assumptions. We also provide extensions of our results beyond the commonly studied Sobolev/Hölder spaces and develop label complexity guarantees for learning in Radon $\mathsf{BV}^2$ spaces, which have recently been proposed as natural function spaces associated with neural networks.
comment: Correct typos and make minor structural revisions
Multimedia 9
☆ Generative Video Compression: Towards 0.01% Compression Rate for Video Transmission
Whether a video can be compressed at an extreme compression rate as low as 0.01%? To this end, we achieve the compression rate as 0.02% at some cases by introducing Generative Video Compression (GVC), a new framework that redefines the limits of video compression by leveraging modern generative video models to achieve extreme compression rates while preserving a perception-centric, task-oriented communication paradigm, corresponding to Level C of the Shannon-Weaver model. Besides, How we trade computation for compression rate or bandwidth? GVC answers this question by shifting the burden from transmission to inference: it encodes video into extremely compact representations and delegates content reconstruction to the receiver, where powerful generative priors synthesize high-quality video from minimal transmitted information. Is GVC practical and deployable? To ensure practical deployment, we propose a compression-computation trade-off strategy, enabling fast inference on consume-grade GPUs. Within the AI Flow framework, GVC opens new possibility for video communication in bandwidth- and resource-constrained environments such as emergency rescue, remote surveillance, and mobile edge computing. Through empirical validation, we demonstrate that GVC offers a viable path toward a new effective, efficient, scalable, and practical video communication paradigm.
☆ LiftProj: Space Lifting and Projection-Based Panorama Stitching
Traditional image stitching techniques have predominantly utilized two-dimensional homography transformations and mesh warping to achieve alignment on a planar surface. While effective for scenes that are approximately coplanar or exhibit minimal parallax, these approaches often result in ghosting, structural bending, and stretching distortions in non-overlapping regions when applied to real three-dimensional scenes characterized by multiple depth layers and occlusions. Such challenges are exacerbated in multi-view accumulations and 360° closed-loop stitching scenarios. In response, this study introduces a spatially lifted panoramic stitching framework that initially elevates each input image into a dense three-dimensional point representation within a unified coordinate system, facilitating global cross-view fusion augmented by confidence metrics. Subsequently, a unified projection center is established in three-dimensional space, and an equidistant cylindrical projection is employed to map the fused data onto a single panoramic manifold, thereby producing a geometrically consistent 360° panoramic layout. Finally, hole filling is conducted within the canvas domain to address unknown regions revealed by viewpoint transitions, restoring continuous texture and semantic coherence. This framework reconceptualizes stitching from a two-dimensional warping paradigm to a three-dimensional consistency paradigm and is designed to flexibly incorporate various three-dimensional lifting and completion modules. Experimental evaluations demonstrate that the proposed method substantially mitigates geometric distortions and ghosting artifacts in scenarios involving significant parallax and complex occlusions, yielding panoramic results that are more natural and consistent.
comment: 16 pages, 10 figures
☆ Factorized Learning for Temporally Grounded Video-Language Models ICCV 2025
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.
comment: ICCV 2025 paper. This arXiv version updates Figure 1 to include the concurrent work Qwen2.5-VL to ensure consistency with Table 1
☆ Neighbor-aware Instance Refining with Noisy Labels for Cross-Modal Retrieval AAAI-26
In recent years, Cross-Modal Retrieval (CMR) has made significant progress in the field of multi-modal analysis. However, since it is time-consuming and labor-intensive to collect large-scale and well-annotated data, the annotation of multi-modal data inevitably contains some noise. This will degrade the retrieval performance of the model. To tackle the problem, numerous robust CMR methods have been developed, including robust learning paradigms, label calibration strategies, and instance selection mechanisms. Unfortunately, they often fail to simultaneously satisfy model performance ceilings, calibration reliability, and data utilization rate. To overcome the limitations, we propose a novel robust cross-modal learning framework, namely Neighbor-aware Instance Refining with Noisy Labels (NIRNL). Specifically, we first propose Cross-modal Margin Preserving (CMP) to adjust the relative distance between positive and negative pairs, thereby enhancing the discrimination between sample pairs. Then, we propose Neighbor-aware Instance Refining (NIR) to identify pure subset, hard subset, and noisy subset through cross-modal neighborhood consensus. Afterward, we construct different tailored optimization strategies for this fine-grained partitioning, thereby maximizing the utilization of all available data while mitigating error propagation. Extensive experiments on three benchmark datasets demonstrate that NIRNL achieves state-of-the-art performance, exhibiting remarkable robustness, especially under high noise rates.
comment: 9 pages, 4 figures, and AAAI-26 conference
☆ AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods.
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/ ; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Codebase: https://github.com/OpenSenseNova/SenseNova-SI ; Models: https://huggingface.co/collections/sensenova/sensenova-si
♻ ☆ Federated Multi-Task Clustering
Spectral clustering has emerged as one of the most effective clustering algorithms due to its superior performance. However, most existing models are designed for centralized settings, rendering them inapplicable in modern decentralized environments. Moreover, current federated learning approaches often suffer from poor generalization performance due to reliance on unreliable pseudo-labels, and fail to capture the latent correlations amongst heterogeneous clients. To tackle these limitations, this paper proposes a novel framework named Federated Multi-Task Clustering (i.e.,FMTC), which intends to learn personalized clustering models for heterogeneous clients while collaboratively leveraging their shared underlying structure in a privacy-preserving manner. More specifically, the FMTC framework is composed of two main components: client-side personalized clustering module, which learns a parameterized mapping model to support robust out-of-sample inference, bypassing the need for unreliable pseudo-labels; and server-side tensorial correlation module, which explicitly captures the shared knowledge across all clients. This is achieved by organizing all client models into a unified tensor and applying a low-rank regularization to discover their common subspace. To solve this joint optimization problem, we derive an efficient, privacy-preserving distributed algorithm based on the Alternating Direction Method of Multipliers, which decomposes the global problem into parallel local updates on clients and an aggregation step on the server. To the end, several extensive experiments on multiple real-world datasets demonstrate that our proposed FMTC framework significantly outperforms various baseline and state-of-the-art federated clustering algorithms.
♻ ☆ GestureHYDRA: Semantic Co-speech Gesture Synthesis via Hybrid Modality Diffusion Transformer and Cascaded-Synchronized Retrieval-Augmented Generation ICCV 2025
While increasing attention has been paid to co-speech gesture synthesis, most previous works neglect to investigate hand gestures with explicit and essential semantics. In this paper, we study co-speech gesture generation with an emphasis on specific hand gesture activation, which can deliver more instructional information than common body movements. To achieve this, we first build a high-quality dataset of 3D human body movements including a set of semantically explicit hand gestures that are commonly used by live streamers. Then we present a hybrid-modality gesture generation system GestureHYDRA built upon a hybrid-modality diffusion transformer architecture with novelly designed motion-style injective transformer layers, which enables advanced gesture modeling ability and versatile gesture operations. To guarantee these specific hand gestures can be activated, we introduce a cascaded retrieval-augmented generation strategy built upon a semantic gesture repository annotated for each subject and an adaptive audio-gesture synchronization mechanism, which substantially improves semantic gesture activation and production efficiency. Quantitative and qualitative experiments demonstrate that our proposed approach achieves superior performance over all the counterparts. The project page can be found at https://mumuwei.github.io/GestureHYDRA/.
comment: 10 pages, 5 figures, Accepted by ICCV 2025