Yg4Arxiv
Computer Vision and Pattern Recognition 171
☆ SAGE: Scalable Agentic 3D Scene Generation for Embodied AI
Real-world data collection for embodied agents remains costly and unsafe, calling for scalable, realistic, and simulator-ready 3D environments. However, existing scene-generation systems often rely on rule-based or task-specific pipelines, yielding artifacts and physically invalid scenes. We present SAGE, an agentic framework that, given a user-specified embodied task (e.g., "pick up a bowl and place it on the table"), understands the intent and automatically generates simulation-ready environments at scale. The agent couples multiple generators for layout and object composition with critics that evaluate semantic plausibility, visual realism, and physical stability. Through iterative reasoning and adaptive tool selection, it self-refines the scenes until meeting user intent and physical validity. The resulting environments are realistic, diverse, and directly deployable in modern simulators for policy training. Policies trained purely on this data exhibit clear scaling trends and generalize to unseen objects and layouts, demonstrating the promise of simulation-driven scaling for embodied AI. Code, demos, and the SAGE-10k dataset can be found on the project page here: https://nvlabs.github.io/sage.
comment: Project Page: https://nvlabs.github.io/sage
☆ Quantum Multiple Rotation Averaging
Multiple rotation averaging (MRA) is a fundamental optimization problem in 3D vision and robotics that aims to recover globally consistent absolute rotations from noisy relative measurements. Established classical methods, such as L1-IRLS and Shonan, face limitations including local minima susceptibility and reliance on convex relaxations that fail to preserve the exact manifold geometry, leading to reduced accuracy in high-noise scenarios. We introduce IQARS (Iterative Quantum Annealing for Rotation Synchronization), the first algorithm that reformulates MRA as a sequence of local quadratic non-convex sub-problems executable on quantum annealers after binarization, to leverage inherent hardware advantages. IQARS removes convex relaxation dependence and better preserves non-Euclidean rotation manifold geometry while leveraging quantum tunneling and parallelism for efficient solution space exploration. We evaluate IQARS's performance on synthetic and real-world datasets. While current annealers remain in their nascent phase and only support solving problems of limited scale with constrained performance, we observed that IQARS on D-Wave annealers can already achieve ca. 12% higher accuracy than Shonan, i.e., the best-performing classical method evaluated empirically.
comment: 16 pages, 13 figures, 4 tables; project page: https://4dqv.mpi-inf.mpg.de/QMRA/
☆ ConsID-Gen: View-Consistent and Identity-Preserving Image-to-Video Generation
Image-to-Video generation (I2V) animates a static image into a temporally coherent video sequence following textual instructions, yet preserving fine-grained object identity under changing viewpoints remains a persistent challenge. Unlike text-to-video models, existing I2V pipelines often suffer from appearance drift and geometric distortion, artifacts we attribute to the sparsity of single-view 2D observations and weak cross-modal alignment. Here we address this problem from both data and model perspectives. First, we curate ConsIDVid, a large-scale object-centric dataset built with a scalable pipeline for high-quality, temporally aligned videos, and establish ConsIDVid-Bench, where we present a novel benchmarking and evaluation framework for multi-view consistency using metrics sensitive to subtle geometric and appearance deviations. We further propose ConsID-Gen, a view-assisted I2V generation framework that augments the first frame with unposed auxiliary views and fuses semantic and structural cues via a dual-stream visual-geometric encoder as well as a text-visual connector, yielding unified conditioning for a Diffusion Transformer backbone. Experiments across ConsIDVid-Bench demonstrate that ConsID-Gen consistently outperforms in multiple metrics, with the best overall performance surpassing leading video generation models like Wan2.1 and HunyuanVideo, delivering superior identity fidelity and temporal coherence under challenging real-world scenarios. We will release our model and dataset at https://myangwu.github.io/ConsID-Gen.
comment: Project page: https://myangwu.github.io/ConsID-Gen
☆ Olaf-World: Orienting Latent Actions for Video World Modeling
Scaling action-controllable world models is limited by the scarcity of action labels. While latent action learning promises to extract control interfaces from unlabeled video, learned latents often fail to transfer across contexts: they entangle scene-specific cues and lack a shared coordinate system. This occurs because standard objectives operate only within each clip, providing no mechanism to align action semantics across contexts. Our key insight is that although actions are unobserved, their semantic effects are observable and can serve as a shared reference. We introduce Seq$Δ$-REPA, a sequence-level control-effect alignment objective that anchors integrated latent action to temporal feature differences from a frozen, self-supervised video encoder. Building on this, we present Olaf-World, a pipeline that pretrains action-conditioned video world models from large-scale passive video. Extensive experiments demonstrate that our method learns a more structured latent action space, leading to stronger zero-shot action transfer and more data-efficient adaptation to new control interfaces than state-of-the-art baselines.
comment: Project page: https://showlab.github.io/Olaf-World/ Code: https://github.com/showlab/Olaf-World
☆ VideoWorld 2: Learning Transferable Knowledge from Real-world Videos
Learning transferable knowledge from unlabeled video data and applying it in new environments is a fundamental capability of intelligent agents. This work presents VideoWorld 2, which extends VideoWorld and offers the first investigation into learning transferable knowledge directly from raw real-world videos. At its core, VideoWorld 2 introduces a dynamic-enhanced Latent Dynamics Model (dLDM) that decouples action dynamics from visual appearance: a pretrained video diffusion model handles visual appearance modeling, enabling the dLDM to learn latent codes that focus on compact and meaningful task-related dynamics. These latent codes are then modeled autoregressively to learn task policies and support long-horizon reasoning. We evaluate VideoWorld 2 on challenging real-world handcraft making tasks, where prior video generation and latent-dynamics models struggle to operate reliably. Remarkably, VideoWorld 2 achieves up to 70% improvement in task success rate and produces coherent long execution videos. In robotics, we show that VideoWorld 2 can acquire effective manipulation knowledge from the Open-X dataset, which substantially improves task performance on CALVIN. This study reveals the potential of learning transferable world knowledge directly from raw videos, with all code, data, and models to be open-sourced for further research.
comment: Code and models are released at: https://maverickren.github.io/VideoWorld2.github.io/
☆ Learning on the Manifold: Unlocking Standard Diffusion Transformers with Representation Encoders
Leveraging representation encoders for generative modeling offers a path for efficient, high-fidelity synthesis. However, standard diffusion transformers fail to converge on these representations directly. While recent work attributes this to a capacity bottleneck proposing computationally expensive width scaling of diffusion transformers we demonstrate that the failure is fundamentally geometric. We identify Geometric Interference as the root cause: standard Euclidean flow matching forces probability paths through the low-density interior of the hyperspherical feature space of representation encoders, rather than following the manifold surface. To resolve this, we propose Riemannian Flow Matching with Jacobi Regularization (RJF). By constraining the generative process to the manifold geodesics and correcting for curvature-induced error propagation, RJF enables standard Diffusion Transformer architectures to converge without width scaling. Our method RJF enables the standard DiT-B architecture (131M parameters) to converge effectively, achieving an FID of 3.37 where prior methods fail to converge. Code: https://github.com/amandpkr/RJF
comment: Technical Report
☆ VLA-JEPA: Enhancing Vision-Language-Action Model with Latent World Model
Pretraining Vision-Language-Action (VLA) policies on internet-scale video is appealing, yet current latent-action objectives often learn the wrong thing: they remain anchored to pixel variation rather than action-relevant state transitions, making them vulnerable to appearance bias, nuisance motion, and information leakage. We introduce VLA-JEPA, a JEPA-style pretraining framework that sidesteps these pitfalls by design. The key idea is \emph{leakage-free state prediction}: a target encoder produces latent representations from future frames, while the student pathway sees only the current observation -- future information is used solely as supervision targets, never as input. By predicting in latent space rather than pixel space, VLA-JEPA learns dynamics abstractions that are robust to camera motion and irrelevant background changes. This yields a simple two-stage recipe -- JEPA pretraining followed by action-head fine-tuning -- without the multi-stage complexity of prior latent-action pipelines. Experiments on LIBERO, LIBERO-Plus, SimplerEnv and real-world manipulation tasks show that VLA-JEPA achieves consistent gains in generalization and robustness over existing methods.
☆ Causality in Video Diffusers is Separable from Denoising
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. Through systematic probing of autoregressive video diffusers, we uncover two key regularities: (1) early layers produce highly similar features across denoising steps, indicating redundant computation along the diffusion trajectory; and (2) deeper layers exhibit sparse cross-frame attention and primarily perform intra-frame rendering. Motivated by these findings, we introduce Separable Causal Diffusion (SCD), a new architecture that explicitly decouples once-per-frame temporal reasoning, via a causal transformer encoder, from multi-step frame-wise rendering, via a lightweight diffusion decoder. Extensive experiments on both pretraining and post-training tasks across synthetic and real benchmarks show that SCD significantly improves throughput and per-frame latency while matching or surpassing the generation quality of strong causal diffusion baselines.
☆ 4RC: 4D Reconstruction via Conditional Querying Anytime and Anywhere
We present 4RC, a unified feed-forward framework for 4D reconstruction from monocular videos. Unlike existing approaches that typically decouple motion from geometry or produce limited 4D attributes such as sparse trajectories or two-view scene flow, 4RC learns a holistic 4D representation that jointly captures dense scene geometry and motion dynamics. At its core, 4RC introduces a novel encode-once, query-anywhere and anytime paradigm: a transformer backbone encodes the entire video into a compact spatio-temporal latent space, from which a conditional decoder can efficiently query 3D geometry and motion for any query frame at any target timestamp. To facilitate learning, we represent per-view 4D attributes in a minimally factorized form by decomposing them into base geometry and time-dependent relative motion. Extensive experiments demonstrate that 4RC outperforms prior and concurrent methods across a wide range of 4D reconstruction tasks.
comment: Project page: https://yihangluo.com/projects/4RC/
☆ Can Image Splicing and Copy-Move Forgery Be Detected by the Same Model? Forensim: An Attention-Based State-Space Approach
We introduce Forensim, an attention-based state-space framework for image forgery detection that jointly localizes both manipulated (target) and source regions. Unlike traditional approaches that rely solely on artifact cues to detect spliced or forged areas, Forensim is designed to capture duplication patterns crucial for understanding context. In scenarios such as protest imagery, detecting only the forged region, for example a duplicated act of violence inserted into a peaceful crowd, can mislead interpretation, highlighting the need for joint source-target localization. Forensim outputs three-class masks (pristine, source, target) and supports detection of both splicing and copy-move forgeries within a unified architecture. We propose a visual state-space model that leverages normalized attention maps to identify internal similarities, paired with a region-based block attention module to distinguish manipulated regions. This design enables end-to-end training and precise localization. Forensim achieves state-of-the-art performance on standard benchmarks. We also release CMFD-Anything, a new dataset addressing limitations of existing copy-move forgery datasets.
☆ Vendi Novelty Scores for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is critical for the safe deployment of machine learning systems. Existing post-hoc detectors typically rely on model confidence scores or likelihood estimates in feature space, often under restrictive distributional assumptions. In this work, we introduce a third paradigm and formulate OOD detection from a diversity perspective. We propose the Vendi Novelty Score (VNS), an OOD detector based on the Vendi Scores (VS), a family of similarity-based diversity metrics. VNS quantifies how much a test sample increases the VS of the in-distribution feature set, providing a principled notion of novelty that does not require density modeling. VNS is linear-time, non-parametric, and naturally combines class-conditional (local) and dataset-level (global) novelty signals. Across multiple image classification benchmarks and network architectures, VNS achieves state-of-the-art OOD detection performance. Remarkably, VNS retains this performance when computed using only 1% of the training data, enabling deployment in memory- or access-constrained settings.
☆ Spatio-Temporal Attention for Consistent Video Semantic Segmentation in Automated Driving
Deep neural networks, especially transformer-based architectures, have achieved remarkable success in semantic segmentation for environmental perception. However, existing models process video frames independently, thus failing to leverage temporal consistency, which could significantly improve both accuracy and stability in dynamic scenes. In this work, we propose a Spatio-Temporal Attention (STA) mechanism that extends transformer attention blocks to incorporate multi-frame context, enabling robust temporal feature representations for video semantic segmentation. Our approach modifies standard self-attention to process spatio-temporal feature sequences while maintaining computational efficiency and requiring minimal changes to existing architectures. STA demonstrates broad applicability across diverse transformer architectures and remains effective across both lightweight and larger-scale models. A comprehensive evaluation on the Cityscapes and BDD100k datasets shows substantial improvements of 9.20 percentage points in temporal consistency metrics and up to 1.76 percentage points in mean intersection over union compared to single-frame baselines. These results demonstrate STA as an effective architectural enhancement for video-based semantic segmentation applications.
☆ Conformal Prediction Sets for Instance Segmentation
Current instance segmentation models achieve high performance on average predictions, but lack principled uncertainty quantification: their outputs are not calibrated, and there is no guarantee that a predicted mask is close to the ground truth. To address this limitation, we introduce a conformal prediction algorithm to generate adaptive confidence sets for instance segmentation. Given an image and a pixel coordinate query, our algorithm generates a confidence set of instance predictions for that pixel, with a provable guarantee for the probability that at least one of the predictions has high Intersection-Over-Union (IoU) with the true object instance mask. We apply our algorithm to instance segmentation examples in agricultural field delineation, cell segmentation, and vehicle detection. Empirically, we find that our prediction sets vary in size based on query difficulty and attain the target coverage, outperforming existing baselines such as Learn Then Test, Conformal Risk Control, and morphological dilation-based methods. We provide versions of the algorithm with asymptotic and finite sample guarantees.
☆ Simple Image Processing and Similarity Measures Can Link Data Samples across Databases through Brain MRI
Head Magnetic Resonance Imaging (MRI) is routinely collected and shared for research under strict regulatory frameworks. These frameworks require removing potential identifiers before sharing. But, even after skull stripping, the brain parenchyma contains unique signatures that can match other MRIs from the same participants across databases, posing a privacy risk if additional data features are available. Current regulatory frameworks often mandate evaluating such risks based on the assessment of a certain level of reasonableness. Prior studies have already suggested that a brain MRI could enable participant linkage, but they have relied on training-based or computationally intensive methods. Here, we demonstrate that linking an individual's skull-stripped T1-weighted MRI, which may lead to re-identification if other identifiers are available, is possible using standard preprocessing followed by image similarity computation. Nearly perfect linkage accuracy was achieved in matching data samples across various time intervals, scanner types, spatial resolutions, and acquisition protocols, despite potential cognitive decline, simulating MRI matching across databases. These results aim to contribute meaningfully to the development of thoughtful, forward-looking policies in medical data sharing.
☆ Fake-HR1: Rethinking reasoning of vision language model for synthetic image detection ICASSP 2026
Recent studies have demonstrated that incorporating Chain-of-Thought (CoT) reasoning into the detection process can enhance a model's ability to detect synthetic images. However, excessively lengthy reasoning incurs substantial resource overhead, including token consumption and latency, which is particularly redundant when handling obviously generated forgeries. To address this issue, we propose Fake-HR1, a large-scale hybrid-reasoning model that, to the best of our knowledge, is the first to adaptively determine whether reasoning is necessary based on the characteristics of the generative detection task. To achieve this, we design a two-stage training framework: we first perform Hybrid Fine-Tuning (HFT) for cold-start initialization, followed by online reinforcement learning with Hybrid-Reasoning Grouped Policy Optimization (HGRPO) to implicitly learn when to select an appropriate reasoning mode. Experimental results show that Fake-HR1 adaptively performs reasoning across different types of queries, surpassing existing LLMs in both reasoning ability and generative detection performance, while significantly improving response efficiency.
comment: Accepted by ICASSP 2026
☆ Perception with Guarantees: Certified Pose Estimation via Reachability Analysis
Agents in cyber-physical systems are increasingly entrusted with safety-critical tasks. Ensuring safety of these agents often requires localizing the pose for subsequent actions. Pose estimates can, e.g., be obtained from various combinations of lidar sensors, cameras, and external services such as GPS. Crucially, in safety-critical domains, a rough estimate is insufficient to formally determine safety, i.e., guaranteeing safety even in the worst-case scenario, and external services might additionally not be trustworthy. We address this problem by presenting a certified pose estimation in 3D solely from a camera image and a well-known target geometry. This is realized by formally bounding the pose, which is computed by leveraging recent results from reachability analysis and formal neural network verification. Our experiments demonstrate that our approach efficiently and accurately localizes agents in both synthetic and real-world experiments.
☆ Faster-GS: Analyzing and Improving Gaussian Splatting Optimization
Recent advances in 3D Gaussian Splatting (3DGS) have focused on accelerating optimization while preserving reconstruction quality. However, many proposed methods entangle implementation-level improvements with fundamental algorithmic modifications or trade performance for fidelity, leading to a fragmented research landscape that complicates fair comparison. In this work, we consolidate and evaluate the most effective and broadly applicable strategies from prior 3DGS research and augment them with several novel optimizations. We further investigate underexplored aspects of the framework, including numerical stability, Gaussian truncation, and gradient approximation. The resulting system, Faster-GS, provides a rigorously optimized algorithm that we evaluate across a comprehensive suite of benchmarks. Our experiments demonstrate that Faster-GS achieves up to 5$\times$ faster training while maintaining visual quality, establishing a new cost-effective and resource efficient baseline for 3DGS optimization. Furthermore, we demonstrate that optimizations can be applied to 4D Gaussian reconstruction, leading to efficient non-rigid scene optimization.
comment: Project page: https://fhahlbohm.github.io/faster-gaussian-splatting
☆ Efficient Special Stain Classification
Stains are essential in histopathology to visualize specific tissue characteristics, with Haematoxylin and Eosin (H&E) serving as the clinical standard. However, pathologists frequently utilize a variety of special stains for the diagnosis of specific morphologies. Maintaining accurate metadata for these slides is critical for quality control in clinical archives and for the integrity of computational pathology datasets. In this work, we compare two approaches for automated classification of stains using whole slide images, covering the 14 most commonly used special stains in our institute alongside standard and frozen-section H&E. We evaluate a Multi-Instance Learning (MIL) pipeline and a proposed lightweight thumbnail-based approach. On internal test data, MIL achieved the highest performance (macro F1: 0.941 for 16 classes; 0.969 for 14 merged classes), while the thumbnail approach remained competitive (0.897 and 0.953, respectively). On external TCGA data, the thumbnail model generalized best (weighted F1: 0.843 vs. 0.807 for MIL). The thumbnail approach also increased throughput by two orders of magnitude (5.635 vs. 0.018 slides/s for MIL with all patches). We conclude that thumbnail-based classification provides a scalable and robust solution for routine visual quality control in digital pathology workflows.
comment: 14 pages, 7 figures, 2 tables
☆ Online Monitoring Framework for Automotive Time Series Data using JEPA Embeddings IEEE
As autonomous vehicles are rolled out, measures must be taken to ensure their safe operation. In order to supervise a system that is already in operation, monitoring frameworks are frequently employed. These run continuously online in the background, supervising the system status and recording anomalies. This work proposes an online monitoring framework to detect anomalies in object state representations. Thereby, a key challenge is creating a framework for anomaly detection without anomaly labels, which are usually unavailable for unknown anomalies. To address this issue, this work applies a self-supervised embedding method to translate object data into a latent representation space. For this, a JEPA-based self-supervised prediction task is constructed, allowing training without anomaly labels and the creation of rich object embeddings. The resulting expressive JEPA embeddings serve as input for established anomaly detection methods, in order to identify anomalies within object state representations. This framework is particularly useful for applications in real-world environments, where new or unknown anomalies may occur during operation for which there are no labels available. Experiments performed on the publicly available, real-world nuScenes dataset illustrate the framework's capabilities.
comment: Accepted at the 2026 IEEE Intelligent Vehicles Symposium. Copyright 2026 IEEE. Permission from IEEE must be obtained for use in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Coupled Inference in Diffusion Models for Semantic Decomposition
Many visual scenes can be described as compositions of latent factors. Effective recognition, reasoning, and editing often require not only forming such compositional representations, but also solving the decomposition problem. One popular choice for constructing these representations is through the binding operation. Resonator networks, which can be understood as coupled Hopfield networks, were proposed as a way to perform decomposition on such bound representations. Recent works have shown notable similarities between Hopfield networks and diffusion models. Motivated by these observations, we introduce a framework for semantic decomposition using coupled inference in diffusion models. Our method frames semantic decomposition as an inverse problem and couples the diffusion processes using a reconstruction-driven guidance term that encourages the composition of factor estimates to match the bound vector. We also introduce a novel iterative sampling scheme that improves the performance of our model. Finally, we show that attention-based resonator networks are a special case of our framework. Empirically, we demonstrate that our coupled inference framework outperforms resonator networks across a range of synthetic semantic decomposition tasks.
comment: 15 pages
☆ Learning to Detect Baked Goods with Limited Supervision
Monitoring leftover products provides valuable insights that can be used to optimize future production. This is especially important for German bakeries because freshly baked goods have a very short shelf life. Automating this process can reduce labor costs, improve accuracy, and streamline operations. We propose automating this process using an object detection model to identify baked goods from images. However, the large diversity of German baked goods makes fully supervised training prohibitively expensive and limits scalability. Although open-vocabulary detectors (e.g., OWLv2, Grounding DINO) offer lexibility, we demonstrate that they are insufficient for our task. While motivated by bakeries, our work addresses the broader challenges of deploying computer vision in industries, where tasks are specialized and annotated datasets are scarce. We compile dataset splits with varying supervision levels, covering 19 classes of baked goods. We propose two training workflows to train an object detection model with limited supervision. First, we combine OWLv2 and Grounding DINO localization with image-level supervision to train the model in a weakly supervised manner. Second, we improve viewpoint robustness by fine-tuning on video frames annotated using Segment Anything 2 as a pseudo-label propagation model. Using these workflows, we train YOLOv11 for our detection task due to its favorable speed accuracy tradeoff. Relying solely on image-level supervision, the model achieves a mean Average Precision (mAP) of 0.91. Finetuning with pseudo-labels raises model performance by 19.3% under non-ideal deployment conditions. Combining these workflows trains a model that surpasses our fully-supervised baseline model under non-ideal deployment conditions, despite relying only on image-level supervision.
☆ Bladder Vessel Segmentation using a Hybrid Attention-Convolution Framework
Urinary bladder cancer surveillance requires tracking tumor sites across repeated interventions, yet the deformable and hollow bladder lacks stable landmarks for orientation. While blood vessels visible during endoscopy offer a patient-specific "vascular fingerprint" for navigation, automated segmentation is challenged by imperfect endoscopic data, including sparse labels, artifacts like bubbles or variable lighting, continuous deformation, and mucosal folds that mimic vessels. State-of-the-art vessel segmentation methods often fail to address these domain-specific complexities. We introduce a Hybrid Attention-Convolution (HAC) architecture that combines Transformers to capture global vessel topology prior with a CNN that learns a residual refinement map to precisely recover thin-vessel details. To prioritize structural connectivity, the Transformer is trained on optimized ground truth data that exclude short and terminal branches. Furthermore, to address data scarcity, we employ a physics-aware pretraining, that is a self-supervised strategy using clinically grounded augmentations on unlabeled data. Evaluated on the BlaVeS dataset, consisting of endoscopic video frames, our approach achieves high accuracy (0.94) and superior precision (0.61) and clDice (0.66) compared to state-of-the-art medical segmentation models. Crucially, our method successfully suppresses false positives from mucosal folds that dynamically appear and vanish as the bladder fills and empties during surgery. Hence, HAC provides the reliable structural stability required for clinical navigation.
☆ VersaViT: Enhancing MLLM Vision Backbones via Task-Guided Optimization
Multimodal Large Language Models (MLLMs) have recently achieved remarkable success in visual-language understanding, demonstrating superior high-level semantic alignment within their vision encoders. An important question thus arises: Can these encoders serve as versatile vision backbones, capable of reliably performing classic vision-centric tasks as well? To address the question, we make the following contributions: (i) we identify that the vision encoders within MLLMs exhibit deficiencies in their dense feature representations, as evidenced by their suboptimal performance on dense prediction tasks (e.g., semantic segmentation, depth estimation); (ii) we propose VersaViT, a well-rounded vision transformer that instantiates a novel multi-task framework for collaborative post-training. This framework facilitates the optimization of the vision backbone via lightweight task heads with multi-granularity supervision; (iii) extensive experiments across various downstream tasks demonstrate the effectiveness of our method, yielding a versatile vision backbone suited for both language-mediated reasoning and pixel-level understanding.
☆ Unbalanced optimal transport for robust longitudinal lesion evolution with registration-aware and appearance-guided priors IEEE
Evaluating lesion evolution in longitudinal CT scans of can cer patients is essential for assessing treatment response, yet establishing reliable lesion correspondence across time remains challenging. Standard bipartite matchers, which rely on geometric proximity, struggle when lesions appear, disappear, merge, or split. We propose a registration-aware matcher based on unbalanced optimal transport (UOT) that accommodates unequal lesion mass and adapts priors to patient-level tumor-load changes. Our transport cost blends (i) size-normalized geometry, (ii) local registration trust from the deformation-field Jacobian, and (iii) optional patch-level appearance consistency. The resulting transport plan is sparsified by relative pruning, yielding one-to-one matches as well as new, disappearing, merging, and splitting lesions without retraining or heuristic rules. On longitudinal CT data, our approach achieves consistently higher edge-detection precision and recall, improved lesion-state recall, and superior lesion-graph component F1 scores versus distance-only baselines.
comment: This work has been submitted to the IEEE for possible publication. Accepted at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ GeoFormer: A Swin Transformer-Based Framework for Scene-Level Building Height and Footprint Estimation from Sentinel Imagery
Accurate three-dimensional urban data are critical for climate modelling, disaster risk assessment, and urban planning, yet remain scarce due to reliance on proprietary sensors or poor cross-city generalisation. We propose GeoFormer, an open-source Swin Transformer framework that jointly estimates building height (BH) and footprint (BF) on a 100 m grid using only Sentinel-1/2 imagery and open DEM data. A geo-blocked splitting strategy ensures strict spatial independence between training and test sets. Evaluated over 54 diverse cities, GeoFormer achieves a BH RMSE of 3.19 m and a BF RMSE of 0.05, improving 7.5% and 15.3% over the strongest CNN baseline, while maintaining under 3.5 m BH RMSE in cross-continent transfer. Ablation studies confirm that DEM is indispensable for height estimation and that optical reflectance dominates over SAR, though multi-source fusion yields the best overall accuracy. All code, weights, and global products are publicly released.
☆ Monocular Normal Estimation via Shading Sequence Estimation ICLR 2026
Monocular normal estimation aims to estimate the normal map from a single RGB image of an object under arbitrary lights. Existing methods rely on deep models to directly predict normal maps. However, they often suffer from 3D misalignment: while the estimated normal maps may appear to have a correct appearance, the reconstructed surfaces often fail to align with the geometric details. We argue that this misalignment stems from the current paradigm: the model struggles to distinguish and reconstruct varying geometry represented in normal maps, as the differences in underlying geometry are reflected only through relatively subtle color variations. To address this issue, we propose a new paradigm that reformulates normal estimation as shading sequence estimation, where shading sequences are more sensitive to various geometric information. Building on this paradigm, we present RoSE, a method that leverages image-to-video generative models to predict shading sequences. The predicted shading sequences are then converted into normal maps by solving a simple ordinary least-squares problem. To enhance robustness and better handle complex objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes, materials, and light conditions. Experiments demonstrate that RoSE achieves state-of-the-art performance on real-world benchmark datasets for object-based monocular normal estimation.
comment: Accepted by ICLR 2026 (Oral Presentation)
☆ A benchmark for video-based laparoscopic skill analysis and assessment
Laparoscopic surgery is a complex surgical technique that requires extensive training. Recent advances in deep learning have shown promise in supporting this training by enabling automatic video-based assessment of surgical skills. However, the development and evaluation of deep learning models is currently hindered by the limited size of available annotated datasets. To address this gap, we introduce the Laparoscopic Skill Analysis and Assessment (LASANA) dataset, comprising 1270 stereo video recordings of four basic laparoscopic training tasks. Each recording is annotated with a structured skill rating, aggregated from three independent raters, as well as binary labels indicating the presence or absence of task-specific errors. The majority of recordings originate from a laparoscopic training course, thereby reflecting a natural variation in the skill of participants. To facilitate benchmarking of both existing and novel approaches for video-based skill assessment and error recognition, we provide predefined data splits for each task. Furthermore, we present baseline results from a deep learning model as a reference point for future comparisons.
comment: under review
☆ SARS: A Novel Face and Body Shape and Appearance Aware 3D Reconstruction System extends Morphable Models
Morphable Models (3DMMs) are a type of morphable model that takes 2D images as inputs and recreates the structure and physical appearance of 3D objects, especially human faces and bodies. 3DMM combines identity and expression blendshapes with a basic face mesh to create a detailed 3D model. The variability in the 3D Morphable models can be controlled by tuning diverse parameters. They are high-level image descriptors, such as shape, texture, illumination, and camera parameters. Previous research in 3D human reconstruction concentrated solely on global face structure or geometry, ignoring face semantic features such as age, gender, and facial landmarks characterizing facial boundaries, curves, dips, and wrinkles. In order to accommodate changes in these high-level facial characteristics, this work introduces a shape and appearance-aware 3D reconstruction system (named SARS by us), a c modular pipeline that extracts body and face information from a single image to properly rebuild the 3D model of the human full body.
☆ AdaTSQ: Pushing the Pareto Frontier of Diffusion Transformers via Temporal-Sensitivity Quantization
Diffusion Transformers (DiTs) have emerged as the state-of-the-art backbone for high-fidelity image and video generation. However, their massive computational cost and memory footprint hinder deployment on edge devices. While post-training quantization (PTQ) has proven effective for large language models (LLMs), directly applying existing methods to DiTs yields suboptimal results due to the neglect of the unique temporal dynamics inherent in diffusion processes. In this paper, we propose AdaTSQ, a novel PTQ framework that pushes the Pareto frontier of efficiency and quality by exploiting the temporal sensitivity of DiTs. First, we propose a Pareto-aware timestep-dynamic bit-width allocation strategy. We model the quantization policy search as a constrained pathfinding problem. We utilize a beam search algorithm guided by end-to-end reconstruction error to dynamically assign layer-wise bit-widths across different timesteps. Second, we propose a Fisher-guided temporal calibration mechanism. It leverages temporal Fisher information to prioritize calibration data from highly sensitive timesteps, seamlessly integrating with Hessian-based weight optimization. Extensive experiments on four advanced DiTs (e.g., Flux-Dev, Flux-Schnell, Z-Image, and Wan2.1) demonstrate that AdaTSQ significantly outperforms state-of-the-art methods like SVDQuant and ViDiT-Q. Our code will be released at https://github.com/Qiushao-E/AdaTSQ.
comment: Code will be released at https://github.com/Qiushao-E/AdaTSQ/
☆ MVISTA-4D: View-Consistent 4D World Model with Test-Time Action Inference for Robotic Manipulation
World-model-based imagine-then-act becomes a promising paradigm for robotic manipulation, yet existing approaches typically support either purely image-based forecasting or reasoning over partial 3D geometry, limiting their ability to predict complete 4D scene dynamics. This work proposes a novel embodied 4D world model that enables geometrically consistent, arbitrary-view RGBD generation: given only a single-view RGBD observation as input, the model imagines the remaining viewpoints, which can then be back-projected and fused to assemble a more complete 3D structure across time. To efficiently learn the multi-view, cross-modality generation, we explicitly design cross-view and cross-modality feature fusion that jointly encourage consistency between RGB and depth and enforce geometric alignment across views. Beyond prediction, converting generated futures into actions is often handled by inverse dynamics, which is ill-posed because multiple actions can explain the same transition. We address this with a test-time action optimization strategy that backpropagates through the generative model to infer a trajectory-level latent best matching the predicted future, and a residual inverse dynamics model that turns this trajectory prior into accurate executable actions. Experiments on three datasets demonstrate strong performance on both 4D scene generation and downstream manipulation, and ablations provide practical insights into the key design choices.
☆ BabyMamba-HAR: Lightweight Selective State Space Models for Efficient Human Activity Recognition on Resource Constrained Devices
Human activity recognition (HAR) on wearable and mobile devices is constrained by memory footprint and computational budget, yet competitive accuracy must be maintained across heterogeneous sensor configurations. Selective state space models (SSMs) offer linear time sequence processing with input dependent gating, presenting a compelling alternative to quadratic complexity attention mechanisms. However, the design space for deploying SSMs in the TinyML regime remains largely unexplored. In this paper, BabyMamba-HAR is introduced, a framework comprising two novel lightweight Mamba inspired architectures optimized for resource constrained HAR: (1) CI-BabyMamba-HAR, using a channel independent stem that processes each sensor channel through shared weight, but instance independent transformations to prevent cross channel noise propagation, and (2) Crossover-BiDir-BabyMamba-HAR, using an early fusion stem that achieves channel count independent computational complexity. Both variants incorporate weight tied bidirectional scanning and lightweight temporal attention pooling. Through evaluation across eight diverse benchmarks, it is demonstrated that Crossover-BiDir-BabyMamba-HAR achieves 86.52% average macro F1-score with approximately 27K parameters and 2.21M MACs, matching TinyHAR (86.16%) while requiring 11x fewer MACs on high channel datasets. Systematic ablation studies reveal that bidirectional scanning contributes up to 8.42% F1-score improvement, and gated temporal attention provides up to 8.94% F1-score gain over mean pooling. These findings establish practical design principles for deploying selective state space models as efficient TinyML backbones for HAR.
☆ Free-GVC: Towards Training-Free Extreme Generative Video Compression with Temporal Coherence
Building on recent advances in video generation, generative video compression has emerged as a new paradigm for achieving visually pleasing reconstructions. However, existing methods exhibit limited exploitation of temporal correlations, causing noticeable flicker and degraded temporal coherence at ultra-low bitrates. In this paper, we propose Free-GVC, a training-free generative video compression framework that reformulates video coding as latent trajectory compression guided by a video diffusion prior. Our method operates at the group-of-pictures (GOP) level, encoding video segments into a compact latent space and progressively compressing them along the diffusion trajectory. To ensure perceptually consistent reconstruction across GOPs, we introduce an Adaptive Quality Control module that dynamically constructs an online rate-perception surrogate model to predict the optimal diffusion step for each GOP. In addition, an Inter-GOP Alignment module establishes frame overlap and performs latent fusion between adjacent groups, thereby mitigating flicker and enhancing temporal coherence. Experiments show that Free-GVC achieves an average of 93.29% BD-Rate reduction in DISTS over the latest neural codec DCVC-RT, and a user study further confirms its superior perceptual quality and temporal coherence at ultra-low bitrates.
☆ Code2World: A GUI World Model via Renderable Code Generation
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
comment: github: https://github.com/AMAP-ML/Code2World project page: https://amap-ml.github.io/Code2World/
☆ Reason-IAD: Knowledge-Guided Dynamic Latent Reasoning for Explainable Industrial Anomaly Detection
Industrial anomaly detection demands precise reasoning over fine-grained defect patterns. However, existing multimodal large language models (MLLMs), pretrained on general-domain data, often struggle to capture category-specific anomalies, thereby limiting both detection accuracy and interpretability. To address these limitations, we propose Reason-IAD, a knowledge-guided dynamic latent reasoning framework for explainable industrial anomaly detection. Reason-IAD comprises two core components. First, a retrieval-augmented knowledge module incorporates category-specific textual descriptions into the model input, enabling context-aware reasoning over domain-specific defects. Second, an entropy-driven latent reasoning mechanism conducts iterative exploration within a compact latent space using optimizable latent think tokens, guided by an entropy-based reward that encourages confident and stable predictions. Furthermore, a dynamic visual injection strategy selectively incorporates the most informative image patches into the latent sequence, directing the reasoning process toward regions critical for anomaly detection. Extensive experimental results demonstrate that Reason-IAD consistently outperforms state-of-the-art methods. The code will be publicly available at https://github.com/chenpeng052/Reason-IAD.
☆ Kelix Technique Report
Autoregressive large language models (LLMs) scale well by expressing diverse tasks as sequences of discrete natural-language tokens and training with next-token prediction, which unifies comprehension and generation under self-supervision. Extending this paradigm to multimodal data requires a shared, discrete representation across modalities. However, most vision-language models (VLMs) still rely on a hybrid interface: discrete text tokens paired with continuous Vision Transformer (ViT) features. Because supervision is largely text-driven, these models are often biased toward understanding and cannot fully leverage large-scale self-supervised learning on non-text data. Recent work has explored discrete visual tokenization to enable fully autoregressive multimodal modeling, showing promising progress toward unified understanding and generation. Yet existing discrete vision tokens frequently lose information due to limited code capacity, resulting in noticeably weaker understanding than continuous-feature VLMs. We present Kelix, a fully discrete autoregressive unified model that closes the understanding gap between discrete and continuous visual representations.
comment: Work in progress
☆ ARK: A Dual-Axis Multimodal Retrieval Benchmark along Reasoning and Knowledge
Existing multimodal retrieval benchmarks largely emphasize semantic matching on daily-life images and offer limited diagnostics of professional knowledge and complex reasoning. To address this gap, we introduce ARK, a benchmark designed to analyze multimodal retrieval from two complementary perspectives: (i) knowledge domains (five domains with 17 subtypes), which characterize the content and expertise retrieval relies on, and (ii) reasoning skills (six categories), which characterize the type of inference over multimodal evidence required to identify the correct candidate. Specifically, ARK evaluates retrieval with both unimodal and multimodal queries and candidates, covering 16 heterogeneous visual data types. To avoid shortcut matching during evaluation, most queries are paired with targeted hard negatives that require multi-step reasoning. We evaluate 23 representative text-based and multimodal retrievers on ARK and observe a pronounced gap between knowledge-intensive and reasoning-intensive retrieval, with fine-grained visual and spatial reasoning emerging as persistent bottlenecks. We further show that simple enhancements such as re-ranking and rewriting yield consistent improvements, but substantial headroom remains.
☆ SAKED: Mitigating Hallucination in Large Vision-Language Models via Stability-Aware Knowledge Enhanced Decoding
Hallucinations in Large Vision-Language Models (LVLMs) pose significant security and reliability risks in real-world applications. Inspired by the observation that humans are more error-prone when uncertain or hesitant, we investigate how instability in a model 's internal knowledge contributes to LVLM hallucinations. We conduct extensive empirical analyses from three perspectives, namely attention heads, model layers, and decoding tokens, and identify three key hallucination patterns: (i) visual activation drift across attention heads, (ii) pronounced knowledge fluctuations across layers, and (iii) visual focus distraction between neighboring output tokens. Building on these findings, we propose Stability-Aware Knowledge-Enhanced Decoding (SAKED), which introduces a layer-wise Knowledge Stability Score (KSS) to quantify knowledge stability throughout the model. By contrasting the most stability-aware and stability-agnostic layers, SAKED suppresses decoding noise and dynamically leverages the most reliable internal knowledge for faithful token generation. Moreover, SAKED is training-free and can be seamlessly integrated into different architectures. Extensive experiments demonstrate that SAKED achieves state-of-the-art performance for hallucination mitigation on various models, tasks, and benchmarks.
☆ CompSplat: Compression-aware 3D Gaussian Splatting for Real-world Video
High-quality novel view synthesis (NVS) from real-world videos is crucial for applications such as cultural heritage preservation, digital twins, and immersive media. However, real-world videos typically contain long sequences with irregular camera trajectories and unknown poses, leading to pose drift, feature misalignment, and geometric distortion during reconstruction. Moreover, lossy compression amplifies these issues by introducing inconsistencies that gradually degrade geometry and rendering quality. While recent studies have addressed either long-sequence NVS or unposed reconstruction, compression-aware approaches still focus on specific artifacts or limited scenarios, leaving diverse compression patterns in long videos insufficiently explored. In this paper, we propose CompSplat, a compression-aware training framework that explicitly models frame-wise compression characteristics to mitigate inter-frame inconsistency and accumulated geometric errors. CompSplat incorporates compression-aware frame weighting and an adaptive pruning strategy to enhance robustness and geometric consistency, particularly under heavy compression. Extensive experiments on challenging benchmarks, including Tanks and Temples, Free, and Hike, demonstrate that CompSplat achieves state-of-the-art rendering quality and pose accuracy, significantly surpassing most recent state-of-the-art NVS approaches under severe compression conditions.
comment: Preprint. Under review
☆ SciFlow-Bench: Evaluating Structure-Aware Scientific Diagram Generation via Inverse Parsing
Scientific diagrams convey explicit structural information, yet modern text-to-image models often produce visually plausible but structurally incorrect results. Existing benchmarks either rely on image-centric or subjective metrics insensitive to structure, or evaluate intermediate symbolic representations rather than final rendered images, leaving pixel-based diagram generation underexplored. We introduce SciFlow-Bench, a structure-first benchmark for evaluating scientific diagram generation directly from pixel-level outputs. Built from real scientific PDFs, SciFlow-Bench pairs each source framework figure with a canonical ground-truth graph and evaluates models as black-box image generators under a closed-loop, round-trip protocol that inverse-parses generated diagram images back into structured graphs for comparison. This design enforces evaluation by structural recoverability rather than visual similarity alone, and is enabled by a hierarchical multi-agent system that coordinates planning, perception, and structural reasoning. Experiments show that preserving structural correctness remains a fundamental challenge, particularly for diagrams with complex topology, underscoring the need for structure-aware evaluation.
☆ Where Do Images Come From? Analyzing Captions to Geographically Profile Datasets
Recent studies show that text-to-image models often fail to generate geographically representative images, raising concerns about the representativeness of their training data and motivating the question: which parts of the world do these training examples come from? We geographically profile large-scale multimodal datasets by mapping image-caption pairs to countries based on location information extracted from captions using LLMs. Studying English captions from three widely used datasets (Re-LAION, DataComp1B, and Conceptual Captions) across $20$ common entities (e.g., house, flag), we find that the United States, the United Kingdom, and Canada account for $48.0\%$ of samples, while South American and African countries are severely under-represented with only $1.8\%$ and $3.8\%$ of images, respectively. We observe a strong correlation between a country's GDP and its representation in the data ($ρ= 0.82$). Examining non-English subsets for $4$ languages from the Re-LAION dataset, we find that representation skews heavily toward countries where these languages are predominantly spoken. Additionally, we find that higher representation does not necessarily translate to greater visual or semantic diversity. Finally, analyzing country-specific images generated by Stable Diffusion v1.3 trained on Re-LAION, we show that while generations appear realistic, they are severely limited in their coverage compared to real-world images.
comment: 41 pages, 20 figures
Self-Supervised Learning as Discrete Communication
Most self-supervised learning (SSL) methods learn continuous visual representations by aligning different views of the same input, offering limited control over how information is structured across representation dimensions. In this work, we frame visual self-supervised learning as a discrete communication process between a teacher and a student network, where semantic information is transmitted through a fixed-capacity binary channel. Rather than aligning continuous features, the student predicts multi-label binary messages produced by the teacher. Discrete agreement is enforced through an element-wise binary cross-entropy objective, while a coding-rate regularization term encourages effective utilization of the constrained channel, promoting structured representations. We further show that periodically reinitializing the projection head strengthens this effect by encouraging embeddings that remain predictive across multiple discrete encodings. Extensive experiments demonstrate consistent improvements over continuous agreement baselines on image classification, retrieval, and dense visual prediction tasks, as well as under domain shift through self-supervised adaptation. Beyond backbone representations, we analyze the learned binary codes and show that they form a compact and informative discrete language, capturing semantic factors reusable across classes.
☆ Robust Vision Systems for Connected and Autonomous Vehicles: Security Challenges and Attack Vectors IEEE
This article investigates the robustness of vision systems in Connected and Autonomous Vehicles (CAVs), which is critical for developing Level-5 autonomous driving capabilities. Safe and reliable CAV navigation undeniably depends on robust vision systems that enable accurate detection of objects, lane markings, and traffic signage. We analyze the key sensors and vision components essential for CAV navigation to derive a reference architecture for CAV vision system (CAVVS). This reference architecture provides a basis for identifying potential attack surfaces of CAVVS. Subsequently, we elaborate on identified attack vectors targeting each attack surface, rigorously evaluating their implications for confidentiality, integrity, and availability (CIA). Our study provides a comprehensive understanding of attack vector dynamics in vision systems, which is crucial for formulating robust security measures that can uphold the principles of the CIA triad.
comment: Submitted to IEEE Transactions on Intelligent Vehicles
☆ Toward Fine-Grained Facial Control in 3D Talking Head Generation
Audio-driven talking head generation is a core component of digital avatars, and 3D Gaussian Splatting has shown strong performance in real-time rendering of high-fidelity talking heads. However, achieving precise control over fine-grained facial movements remains a significant challenge, particularly due to lip-synchronization inaccuracies and facial jitter, both of which can contribute to the uncanny valley effect. To address these challenges, we propose Fine-Grained 3D Gaussian Splatting (FG-3DGS), a novel framework that enables temporally consistent and high-fidelity talking head generation. Our method introduces a frequency-aware disentanglement strategy to explicitly model facial regions based on their motion characteristics. Low-frequency regions, such as the cheeks, nose, and forehead, are jointly modeled using a standard MLP, while high-frequency regions, including the eyes and mouth, are captured separately using a dedicated network guided by facial area masks. The predicted motion dynamics, represented as Gaussian deltas, are applied to the static Gaussians to generate the final head frames, which are rendered via a rasterizer using frame-specific camera parameters. Additionally, a high-frequency-refined post-rendering alignment mechanism, learned from large-scale audio-video pairs by a pretrained model, is incorporated to enhance per-frame generation and achieve more accurate lip synchronization. Extensive experiments on widely used datasets for talking head generation demonstrate that our method outperforms recent state-of-the-art approaches in producing high-fidelity, lip-synced talking head videos.
☆ Allure of Craquelure: A Variational-Generative Approach to Crack Detection in Paintings
Recent advances in imaging technologies, deep learning and numerical performance have enabled non-invasive detailed analysis of artworks, supporting their documentation and conservation. In particular, automated detection of craquelure in digitized paintings is crucial for assessing degradation and guiding restoration, yet remains challenging due to the possibly complex scenery and the visual similarity between cracks and crack-like artistic features such as brush strokes or hair. We propose a hybrid approach that models crack detection as an inverse problem, decomposing an observed image into a crack-free painting and a crack component. A deep generative model is employed as powerful prior for the underlying artwork, while crack structures are captured using a Mumford--Shah-type variational functional together with a crack prior. Joint optimization yields a pixel-level map of crack localizations in the painting.
☆ From Lightweight CNNs to SpikeNets: Benchmarking Accuracy-Energy Tradeoffs with Pruned Spiking SqueezeNet
Spiking Neural Networks (SNNs) are increasingly studied as energy-efficient alternatives to Convolutional Neural Networks (CNNs), particularly for edge intelligence. However, prior work has largely emphasized large-scale models, leaving the design and evaluation of lightweight CNN-to-SNN pipelines underexplored. In this paper, we present the first systematic benchmark of lightweight SNNs obtained by converting compact CNN architectures into spiking networks, where activations are modeled with Leaky-Integrate-and-Fire (LIF) neurons and trained using surrogate gradient descent under a unified setup. We construct spiking variants of ShuffleNet, SqueezeNet, MnasNet, and MixNet, and evaluate them on CIFAR-10, CIFAR-100, and TinyImageNet, measuring accuracy, F1-score, parameter count, computational complexity, and energy consumption. Our results show that SNNs can achieve up to 15.7x higher energy efficiency than their CNN counterparts while retaining competitive accuracy. Among these, the SNN variant of SqueezeNet consistently outperforms other lightweight SNNs. To further optimize this model, we apply a structured pruning strategy that removes entire redundant modules, yielding a pruned architecture, SNN-SqueezeNet-P. This pruned model improves CIFAR-10 accuracy by 6% and reduces parameters by 19% compared to the original SNN-SqueezeNet. Crucially, it narrows the gap with CNN-SqueezeNet, achieving nearly the same accuracy (only 1% lower) but with an 88.1% reduction in energy consumption due to sparse spike-driven computations. Together, these findings establish lightweight SNNs as practical, low-power alternatives for edge deployment, highlighting a viable path toward deploying high-performance, low-power intelligence on the edge.
☆ Stroke3D: Lifting 2D strokes into rigged 3D model via latent diffusion models ICLR 2026
Rigged 3D assets are fundamental to 3D deformation and animation. However, existing 3D generation methods face challenges in generating animatable geometry, while rigging techniques lack fine-grained structural control over skeleton creation. To address these limitations, we introduce Stroke3D, a novel framework that directly generates rigged meshes from user inputs: 2D drawn strokes and a descriptive text prompt. Our approach pioneers a two-stage pipeline that separates the generation into: 1) Controllable Skeleton Generation, we employ the Skeletal Graph VAE (Sk-VAE) to encode the skeleton's graph structure into a latent space, where the Skeletal Graph DiT (Sk-DiT) generates a skeletal embedding. The generation process is conditioned on both the text for semantics and the 2D strokes for explicit structural control, with the VAE's decoder reconstructing the final high-quality 3D skeleton; and 2) Enhanced Mesh Synthesis via TextuRig and SKA-DPO, where we then synthesize a textured mesh conditioned on the generated skeleton. For this stage, we first enhance an existing skeleton-to-mesh model by augmenting its training data with TextuRig: a dataset of textured and rigged meshes with captions, curated from Objaverse-XL. Additionally, we employ a preference optimization strategy, SKA-DPO, guided by a skeleton-mesh alignment score, to further improve geometric fidelity. Together, our framework enables a more intuitive workflow for creating ready to animate 3D content. To the best of our knowledge, our work is the first to generate rigged 3D meshes conditioned on user-drawn 2D strokes. Extensive experiments demonstrate that Stroke3D produces plausible skeletons and high-quality meshes.
comment: Accepted by ICLR 2026
☆ Physics-informed diffusion models in spectral space
We propose a methodology that combines generative latent diffusion models with physics-informed machine learning to generate solutions of parametric partial differential equations (PDEs) conditioned on partial observations, which includes, in particular, forward and inverse PDE problems. We learn the joint distribution of PDE parameters and solutions via a diffusion process in a latent space of scaled spectral representations, where Gaussian noise corresponds to functions with controlled regularity. This spectral formulation enables significant dimensionality reduction compared to grid-based diffusion models and ensures that the induced process in function space remains within a class of functions for which the PDE operators are well defined. Building on diffusion posterior sampling, we enforce physics-informed constraints and measurement conditions during inference, applying Adam-based updates at each diffusion step. We evaluate the proposed approach on Poisson, Helmholtz, and incompressible Navier--Stokes equations, demonstrating improved accuracy and computational efficiency compared with existing diffusion-based PDE solvers, which are state of the art for sparse observations. Code is available at https://github.com/deeplearningmethods/PISD.
comment: 24 pages, 9 figures
☆ GenSeg-R1: RL-Driven Vision-Language Grounding for Fine-Grained Referring Segmentation
We study fine-grained referring image segmentation via a decoupled reason-then-segment pipeline. A vision-language model (VLM) receives an image and a natural-language query, reasons about the scene, and emits structured spatial prompts: a bounding box plus two interior keypoints for every referred instance. A frozen promptable segmenter (SAM 2) converts these prompts into high-quality masks. Within our GenSeg-R1 framework we finetune Qwen3-VL models (4B and 8B parameters) using Group Relative Policy Optimization (GRPO), requiring no supervised reasoning-chain annotations. On RefCOCOg validation our best model (GenSeg-R1-8B) achieves 0.7127 cIoU and 0.7382 mIoU, substantially outperforming the corresponding Qwen3-VL Instruct baselines (+15.3 and +21.9 points, respectively) and surpassing Seg-Zero-7B [3] by +3.3 cIoU under identical evaluation. We further introduce GenSeg-R1-G, a variant trained on GRefCOCO [9] with a SAM 2 in-the-loop reward that directly optimizes mask quality. On GRefCOCO validation GenSeg-R1-G achieves 76.69% target mIoU with 82.40% accuracy on negative (no-target) prompts, substantially outperforming Seg-R1-7B and Seg-Zero-7B, which lack no-target detection capability. On ReasonSeg test, GenSeg-R1-4B reaches 68.40% mIoU, surpassing Seg-Zero-7B by +7.0 and Seg-R1-7B by +10.7 points.
☆ Semi-supervised Liver Segmentation and Patch-based Fibrosis Staging with Registration-aided Multi-parametric MRI
Liver fibrosis poses a substantial challenge in clinical practice, emphasizing the necessity for precise liver segmentation and accurate disease staging. Based on the CARE Liver 2025 Track 4 Challenge, this study introduces a multi-task deep learning framework developed for liver segmentation (LiSeg) and liver fibrosis staging (LiFS) using multiparametric MRI. The LiSeg phase addresses the challenge of limited annotated images and the complexities of multi-parametric MRI data by employing a semi-supervised learning model that integrates image segmentation and registration. By leveraging both labeled and unlabeled data, the model overcomes the difficulties introduced by domain shifts and variations across modalities. In the LiFS phase, we employed a patchbased method which allows the visualization of liver fibrosis stages based on the classification outputs. Our approach effectively handles multimodality imaging data, limited labels, and domain shifts. The proposed method has been tested by the challenge organizer on an independent test set that includes in-distribution (ID) and out-of-distribution (OOD) cases using three-channel MRIs (T1, T2, DWI) and seven-channel MRIs (T1, T2, DWI, GED1-GED4). The code is freely available. Github link: https://github.com/mileywang3061/Care-Liver
☆ TreeCUA: Efficiently Scaling GUI Automation with Tree-Structured Verifiable Evolution
Effectively scaling GUI automation is essential for computer-use agents (CUAs); however, existing work primarily focuses on scaling GUI grounding rather than the more crucial GUI planning, which requires more sophisticated data collection. In reality, the exploration process of a CUA across apps/desktops/web pages typically follows a tree structure, with earlier functional entry points often being explored more frequently. Thus, organizing large-scale trajectories into tree structures can reduce data cost and streamline the data scaling of GUI planning. In this work, we propose TreeCUA to efficiently scale GUI automation with tree-structured verifiable evolution. We propose a multi-agent collaborative framework to explore the environment, verify actions, summarize trajectories, and evaluate quality to generate high-quality and scalable GUI trajectories. To improve efficiency, we devise a novel tree-based topology to store and replay duplicate exploration nodes, and design an adaptive exploration algorithm to balance the depth (\emph{i.e.}, trajectory difficulty) and breadth (\emph{i.e.}, trajectory diversity). Moreover, we develop world knowledge guidance and global memory backtracking to avoid low-quality generation. Finally, we naturally extend and propose the TreeCUA-DPO method from abundant tree node information, improving GUI planning capability by referring to the branch information of adjacent trajectories. Experimental results show that TreeCUA and TreeCUA-DPO offer significant improvements, and out-of-domain (OOD) studies further demonstrate strong generalization. All trajectory node information and code will be available at https://github.com/UITron-hub/TreeCUA.
comment: 14 pages, 7 figures
☆ Time2General: Learning Spatiotemporal Invariant Representations for Domain-Generalization Video Semantic Segmentation
Domain Generalized Video Semantic Segmentation (DGVSS) is trained on a single labeled driving domain and is directly deployed on unseen domains without target labels and test-time adaptation while maintaining temporally consistent predictions over video streams. In practice, both domain shift and temporal-sampling shift break correspondence-based propagation and fixed-stride temporal aggregation, causing severe frame-to-frame flicker even in label-stable regions. We propose Time2General, a DGVSS framework built on Stability Queries. Time2General introduces a Spatio-Temporal Memory Decoder that aggregates multi-frame context into a clip-level spatio-temporal memory and decodes temporally consistent per-frame masks without explicit correspondence propagation. To further suppress flicker and improve robustness to varying sampling rates, the Masked Temporal Consistency Loss is proposed to regularize temporal prediction discrepancies across different strides, and randomize training strides to expose the model to diverse temporal gaps. Extensive experiments on multiple driving benchmarks show that Time2General achieves a substantial improvement in cross-domain accuracy and temporal stability over prior DGSS and VSS baselines while running at up to 18 FPS. Code will be released after the review process.
☆ VideoAfford: Grounding 3D Affordance from Human-Object-Interaction Videos via Multimodal Large Language Model
3D affordance grounding aims to highlight the actionable regions on 3D objects, which is crucial for robotic manipulation. Previous research primarily focused on learning affordance knowledge from static cues such as language and images, which struggle to provide sufficient dynamic interaction context that can reveal temporal and causal cues. To alleviate this predicament, we collect a comprehensive video-based 3D affordance dataset, \textit{VIDA}, which contains 38K human-object-interaction videos covering 16 affordance types, 38 object categories, and 22K point clouds. Based on \textit{VIDA}, we propose a strong baseline: VideoAfford, which activates multimodal large language models with additional affordance segmentation capabilities, enabling both world knowledge reasoning and fine-grained affordance grounding within a unified framework. To enhance action understanding capability, we leverage a latent action encoder to extract dynamic interaction priors from HOI videos. Moreover, we introduce a \textit{spatial-aware} loss function to enable VideoAfford to obtain comprehensive 3D spatial knowledge. Extensive experimental evaluations demonstrate that our model significantly outperforms well-established methods and exhibits strong open-world generalization with affordance reasoning abilities. All datasets and code will be publicly released to advance research in this area.
☆ Towards Training-free Multimodal Hate Localisation with Large Language Models
The proliferation of hateful content in online videos poses severe threats to individual well-being and societal harmony. However, existing solutions for video hate detection either rely heavily on large-scale human annotations or lack fine-grained temporal precision. In this work, we propose LELA, the first training-free Large Language Model (LLM) based framework for hate video localization. Distinct from state-of-the-art models that depend on supervised pipelines, LELA leverages LLMs and modality-specific captioning to detect and temporally localize hateful content in a training-free manner. Our method decomposes a video into five modalities, including image, speech, OCR, music, and video context, and uses a multi-stage prompting scheme to compute fine-grained hateful scores for each frame. We further introduce a composition matching mechanism to enhance cross-modal reasoning. Experiments on two challenging benchmarks, HateMM and MultiHateClip, demonstrate that LELA outperforms all existing training-free baselines by a large margin. We also provide extensive ablations and qualitative visualizations, establishing LELA as a strong foundation for scalable and interpretable hate video localization.
☆ AnyTouch 2: General Optical Tactile Representation Learning For Dynamic Tactile Perception ICLR 2026
Real-world contact-rich manipulation demands robots to perceive temporal tactile feedback, capture subtle surface deformations, and reason about object properties as well as force dynamics. Although optical tactile sensors are uniquely capable of providing such rich information, existing tactile datasets and models remain limited. These resources primarily focus on object-level attributes (e.g., material) while largely overlooking fine-grained tactile temporal dynamics during physical interactions. We consider that advancing dynamic tactile perception requires a systematic hierarchy of dynamic perception capabilities to guide both data collection and model design. To address the lack of tactile data with rich dynamic information, we present ToucHD, a large-scale hierarchical tactile dataset spanning tactile atomic actions, real-world manipulations, and touch-force paired data. Beyond scale, ToucHD establishes a comprehensive tactile dynamic data ecosystem that explicitly supports hierarchical perception capabilities from the data perspective. Building on it, we propose AnyTouch 2, a general tactile representation learning framework for diverse optical tactile sensors that unifies object-level understanding with fine-grained, force-aware dynamic perception. The framework captures both pixel-level and action-specific deformations across frames, while explicitly modeling physical force dynamics, thereby learning multi-level dynamic perception capabilities from the model perspective. We evaluate our model on benchmarks that covers static object properties and dynamic physical attributes, as well as real-world manipulation tasks spanning multiple tiers of dynamic perception capabilities-from basic object-level understanding to force-aware dexterous manipulation. Experimental results demonstrate consistent and strong performance across sensors and tasks.
comment: Accepted by ICLR 2026
☆ AGMark: Attention-Guided Dynamic Watermarking for Large Vision-Language Models
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks may introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases. Additionally, current vision-specific watermarks rely on a static, one-time estimation of vision critical weights and ignore the weight distribution density when determining the proportion of protected tokens. This design fails to account for dynamic changes in visual dependence during generation and may introduce low-quality tokens in the long tail. To address these challenges, we propose Attention-Guided Dynamic Watermarking (AGMark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. At each decoding step, AGMark first dynamically identifies semantic-critical evidence based on attention weights for visual relevance, together with context-aware coherence cues, resulting in a more adaptive and well-calibrated evidence-weight distribution. It then determines the proportion of semantic-critical tokens by jointly considering uncertainty awareness (token entropy) and evidence calibration (weight density), thereby enabling adaptive vocabulary partitioning to avoid irrelevant tokens. Empirical results confirm that AGMark outperforms conventional methods, observably improving generation quality and yielding particularly strong gains in visual semantic fidelity in the later stages of generation. The framework maintains highly competitive detection accuracy (at least 99.36\% AUC) and robust attack resilience (at least 88.61\% AUC) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multi-modal watermarking.
comment: preprint
☆ Tele-Omni: a Unified Multimodal Framework for Video Generation and Editing
Recent advances in diffusion-based video generation have substantially improved visual fidelity and temporal coherence. However, most existing approaches remain task-specific and rely primarily on textual instructions, limiting their ability to handle multimodal inputs, contextual references, and diverse video generation and editing scenarios within a unified framework. Moreover, many video editing methods depend on carefully engineered pipelines tailored to individual operations, which hinders scalability and composability. In this paper, we propose Tele-Omni, a unified multimodal framework for video generation and editing that follows multimodal instructions, including text, images, and reference videos, within a single model. Tele-Omni leverages pretrained multimodal large language models to parse heterogeneous instructions and infer structured generation or editing intents, while diffusion-based generators perform high-quality video synthesis conditioned on these structured signals. To enable joint training across heterogeneous video tasks, we introduce a task-aware data processing pipeline that unifies multimodal inputs into a structured instruction format while preserving task-specific constraints. Tele-Omni supports a wide range of video-centric tasks, including text-to-video generation, image-to-video generation, first-last-frame video generation, in-context video generation, and in-context video editing. By decoupling instruction parsing from video synthesis and combining it with task-aware data design, Tele-Omni achieves flexible multimodal control while maintaining strong temporal coherence and visual consistency. Experimental results demonstrate that Tele-Omni achieves competitive performance across multiple tasks.
☆ Hand2World: Autoregressive Egocentric Interaction Generation via Free-Space Hand Gestures
Egocentric interactive world models are essential for augmented reality and embodied AI, where visual generation must respond to user input with low latency, geometric consistency, and long-term stability. We study egocentric interaction generation from a single scene image under free-space hand gestures, aiming to synthesize photorealistic videos in which hands enter the scene, interact with objects, and induce plausible world dynamics under head motion. This setting introduces fundamental challenges, including distribution shift between free-space gestures and contact-heavy training data, ambiguity between hand motion and camera motion in monocular views, and the need for arbitrary-length video generation. We present Hand2World, a unified autoregressive framework that addresses these challenges through occlusion-invariant hand conditioning based on projected 3D hand meshes, allowing visibility and occlusion to be inferred from scene context rather than encoded in the control signal. To stabilize egocentric viewpoint changes, we inject explicit camera geometry via per-pixel Plücker-ray embeddings, disentangling camera motion from hand motion and preventing background drift. We further develop a fully automated monocular annotation pipeline and distill a bidirectional diffusion model into a causal generator, enabling arbitrary-length synthesis. Experiments on three egocentric interaction benchmarks show substantial improvements in perceptual quality and 3D consistency while supporting camera control and long-horizon interactive generation.
☆ MieDB-100k: A Comprehensive Dataset for Medical Image Editing
The scarcity of high-quality data remains a primary bottleneck in adapting multimodal generative models for medical image editing. Existing medical image editing datasets often suffer from limited diversity, neglect of medical image understanding and inability to balance quality with scalability. To address these gaps, we propose MieDB-100k, a large-scale, high-quality and diverse dataset for text-guided medical image editing. It categorizes editing tasks into perspectives of Perception, Modification and Transformation, considering both understanding and generation abilities. We construct MieDB-100k via a data curation pipeline leveraging both modality-specific expert models and rule-based data synthetic methods, followed by rigorous manual inspection to ensure clinical fidelity. Extensive experiments demonstrate that model trained with MieDB-100k consistently outperform both open-source and proprietary models while exhibiting strong generalization ability. We anticipate that this dataset will serve as a cornerstone for future advancements in specialized medical image editing.
☆ Delving into Spectral Clustering with Vision-Language Representations ICLR26
Spectral clustering is known as a powerful technique in unsupervised data analysis. The vast majority of approaches to spectral clustering are driven by a single modality, leaving the rich information in multi-modal representations untapped. Inspired by the recent success of vision-language pre-training, this paper enriches the landscape of spectral clustering from a single-modal to a multi-modal regime. Particularly, we propose Neural Tangent Kernel Spectral Clustering that leverages cross-modal alignment in pre-trained vision-language models. By anchoring the neural tangent kernel with positive nouns, i.e., those semantically close to the images of interest, we arrive at formulating the affinity between images as a coupling of their visual proximity and semantic overlap. We show that this formulation amplifies within-cluster connections while suppressing spurious ones across clusters, hence encouraging block-diagonal structures. In addition, we present a regularized affinity diffusion mechanism that adaptively ensembles affinity matrices induced by different prompts. Extensive experiments on \textbf{16} benchmarks -- including classical, large-scale, fine-grained and domain-shifted datasets -- manifest that our method consistently outperforms the state-of-the-art by a large margin.
comment: ICLR26
☆ ECG-IMN: Interpretable Mesomorphic Neural Networks for 12-Lead Electrocardiogram Interpretation
Deep learning has achieved expert-level performance in automated electrocardiogram (ECG) diagnosis, yet the "black-box" nature of these models hinders their clinical deployment. Trust in medical AI requires not just high accuracy but also transparency regarding the specific physiological features driving predictions. Existing explainability methods for ECGs typically rely on post-hoc approximations (e.g., Grad-CAM and SHAP), which can be unstable, computationally expensive, and unfaithful to the model's actual decision-making process. In this work, we propose the ECG-IMN, an Interpretable Mesomorphic Neural Network tailored for high-resolution 12-lead ECG classification. Unlike standard classifiers, the ECG-IMN functions as a hypernetwork: a deep convolutional backbone generates the parameters of a strictly linear model specific to each input sample. This architecture enforces intrinsic interpretability, as the decision logic is mathematically transparent and the generated weights (W) serve as exact, high-resolution feature attribution maps. We introduce a transition decoder that effectively maps latent features to sample-wise weights, enabling precise localization of pathological evidence (e.g., ST-elevation, T-wave inversion) in both time and lead dimensions. We evaluate our approach on the PTB-XL dataset for classification tasks, demonstrating that the ECG-IMN achieves competitive predictive performance (AUROC comparable to black-box baselines) while providing faithful, instance-specific explanations. By explicitly decoupling parameter generation from prediction execution, our framework bridges the gap between deep learning capability and clinical trustworthiness, offering a principled path toward "white-box" cardiac diagnostics.
☆ Scalpel: Fine-Grained Alignment of Attention Activation Manifolds via Mixture Gaussian Bridges to Mitigate Multimodal Hallucination WACV 2026
Rapid progress in large vision-language models (LVLMs) has achieved unprecedented performance in vision-language tasks. However, due to the strong prior of large language models (LLMs) and misaligned attention across modalities, LVLMs often generate outputs inconsistent with visual content - termed hallucination. To address this, we propose \textbf{Scalpel}, a method that reduces hallucination by refining attention activation distributions toward more credible regions. Scalpel predicts trusted attention directions for each head in Transformer layers during inference and adjusts activations accordingly. It employs a Gaussian mixture model to capture multi-peak distributions of attention in trust and hallucination manifolds, and uses entropic optimal transport (equivalent to Schrödinger bridge problem) to map Gaussian components precisely. During mitigation, Scalpel dynamically adjusts intervention strength and direction based on component membership and mapping relationships between hallucination and trust activations. Extensive experiments across multiple datasets and benchmarks demonstrate that Scalpel effectively mitigates hallucinations, outperforming previous methods and achieving state-of-the-art performance. Moreover, Scalpel is model- and data-agnostic, requiring no additional computation, only a single decoding step.
comment: WACV 2026 (It was accepted in the first round, with an acceptance rate of 6%.)
☆ AUHead: Realistic Emotional Talking Head Generation via Action Units Control ICLR
Realistic talking-head video generation is critical for virtual avatars, film production, and interactive systems. Current methods struggle with nuanced emotional expressions due to the lack of fine-grained emotion control. To address this issue, we introduce a novel two-stage method (AUHead) to disentangle fine-grained emotion control, i.e. , Action Units (AUs), from audio and achieve controllable generation. In the first stage, we explore the AU generation abilities of large audio-language models (ALMs), by spatial-temporal AU tokenization and an "emotion-then-AU" chain-of-thought mechanism. It aims to disentangle AUs from raw speech, effectively capturing subtle emotional cues. In the second stage, we propose an AU-driven controllable diffusion model that synthesizes realistic talking-head videos conditioned on AU sequences. Specifically, we first map the AU sequences into the structured 2D facial representation to enhance spatial fidelity, and then model the AU-vision interaction within cross-attention modules. To achieve flexible AU-quality trade-off control, we introduce an AU disentanglement guidance strategy during inference, further refining the emotional expressiveness and identity consistency of the generated videos. Results on benchmark datasets demonstrate that our approach achieves competitive performance in emotional realism, accurate lip synchronization, and visual coherence, significantly surpassing existing techniques. Our implementation is available at https://github.com/laura990501/AUHead_ICLR
comment: https://openreview.net/forum?id=dmzlAUkulz&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DICLR.cc%2F2026%2FConference%2FAuthors%23your-submissions)
☆ RAD: Retrieval-Augmented Monocular Metric Depth Estimation for Underrepresented Classes
Monocular Metric Depth Estimation (MMDE) is essential for physically intelligent systems, yet accurate depth estimation for underrepresented classes in complex scenes remains a persistent challenge. To address this, we propose RAD, a retrieval-augmented framework that approximates the benefits of multi-view stereo by utilizing retrieved neighbors as structural geometric proxies. Our method first employs an uncertainty-aware retrieval mechanism to identify low-confidence regions in the input and retrieve RGB-D context samples containing semantically similar content. We then process both the input and retrieved context via a dual-stream network and fuse them using a matched cross-attention module, which transfers geometric information only at reliable point correspondences. Evaluations on NYU Depth v2, KITTI, and Cityscapes demonstrate that RAD significantly outperforms state-of-the-art baselines on underrepresented classes, reducing relative absolute error by 29.2% on NYU Depth v2, 13.3% on KITTI, and 7.2% on Cityscapes, while maintaining competitive performance on standard in-domain benchmarks.
☆ DR.Experts: Differential Refinement of Distortion-Aware Experts for Blind Image Quality Assessment AAAI 2026
Blind Image Quality Assessment, aiming to replicate human perception of visual quality without reference, plays a key role in vision tasks, yet existing models often fail to effectively capture subtle distortion cues, leading to a misalignment with human subjective judgments. We identify that the root cause of this limitation lies in the lack of reliable distortion priors, as methods typically learn shallow relationships between unified image features and quality scores, resulting in their insensitive nature to distortions and thus limiting their performance. To address this, we introduce DR.Experts, a novel prior-driven BIQA framework designed to explicitly incorporate distortion priors, enabling a reliable quality assessment. DR.Experts begins by leveraging a degradation-aware vision-language model to obtain distortion-specific priors, which are further refined and enhanced by the proposed Distortion-Saliency Differential Module through distinguishing them from semantic attentions, thereby ensuring the genuine representations of distortions. The refined priors, along with semantics and bridging representation, are then fused by a proposed mixture-of-experts style module named the Dynamic Distortion Weighting Module. This mechanism weights each distortion-specific feature as per its perceptual impact, ensuring that the final quality prediction aligns with human perception. Extensive experiments conducted on five challenging BIQA benchmarks demonstrate the superiority of DR.Experts over current methods and showcase its excellence in terms of generalization and data efficiency.
comment: Accepted by AAAI 2026
☆ SCA-Net: Spatial-Contextual Aggregation Network for Enhanced Small Building and Road Change Detection
Automated change detection in remote sensing imagery is critical for urban management, environmental monitoring, and disaster assessment. While deep learning models have advanced this field, they often struggle with challenges like low sensitivity to small objects and high computational costs. This paper presents SCA-Net, an enhanced architecture built upon the Change-Agent framework for precise building and road change detection in bi-temporal images. Our model incorporates several key innovations: a novel Difference Pyramid Block for multi-scale change analysis, an Adaptive Multi-scale Processing module combining shape-aware and high-resolution enhancement blocks, and multi-level attention mechanisms (PPM and CSAGate) for joint contextual and detail processing. Furthermore, a dynamic composite loss function and a four-phase training strategy are introduced to stabilize training and accelerate convergence. Comprehensive evaluations on the LEVIR-CD and LEVIR-MCI datasets demonstrate SCA-Net's superior performance over Change-Agent and other state-of-the-art methods. Our approach achieves a significant 2.64% improvement in mean Intersection over Union (mIoU) on LEVIR-MCI and a remarkable 57.9% increase in IoU for small buildings, while reducing the training time by 61%. This work provides an efficient, accurate, and robust solution for practical change detection applications.
comment: 6 pages, 2 figures, 3 tables. Submitted for review
☆ SchröMind: Mitigating Hallucinations in Multimodal Large Language Models via Solving the Schrödinger Bridge Problem ICASSP 2026
Recent advancements in Multimodal Large Language Models (MLLMs) have achieved significant success across various domains. However, their use in high-stakes fields like healthcare remains limited due to persistent hallucinations, where generated text contradicts or ignores visual input. We contend that MLLMs can comprehend images but struggle to produce accurate token sequences. Minor perturbations can shift attention from truthful to untruthful states, and the autoregressive nature of text generation often prevents error correction. To address this, we propose SchröMind-a novel framework reducing hallucinations via solving the Schrödinger bridge problem. It establishes a token-level mapping between hallucinatory and truthful activations with minimal transport cost through lightweight training, while preserving the model's original capabilities. Extensive experiments on the POPE and MME benchmarks demonstrate the superiority of Schrödinger, which achieves state-of-the-art performance while introducing only minimal computational overhead.
comment: ICASSP 2026
☆ HLGFA: High-Low Resolution Guided Feature Alignment for Unsupervised Anomaly Detection
Unsupervised industrial anomaly detection (UAD) is essential for modern manufacturing inspection, where defect samples are scarce and reliable detection is required. In this paper, we propose HLGFA, a high-low resolution guided feature alignment framework that learns normality by modeling cross-resolution feature consistency between high-resolution and low-resolution representations of normal samples, instead of relying on pixel-level reconstruction. Dual-resolution inputs are processed by a shared frozen backbone to extract multi-level features, and high-resolution representations are decomposed into structure and detail priors to guide the refinement of low-resolution features through conditional modulation and gated residual correction. During inference, anomalies are naturally identified as regions where cross-resolution alignment breaks down. In addition, a noise-aware data augmentation strategy is introduced to suppress nuisance-induced responses commonly observed in industrial environments. Extensive experiments on standard benchmarks demonstrate the effectiveness of HLGFA, achieving 97.9% pixel-level AUROC and 97.5% image-level AUROC on the MVTec AD dataset, outperforming representative reconstruction-based and feature-based methods.
comment: 14 pages, 6 figures, references added
☆ Singpath-VL Technical Report
We present Singpath-VL, a vision-language large model, to fill the vacancy of AI assistant in cervical cytology. Recent advances in multi-modal large language models (MLLMs) have significantly propelled the field of computational pathology. However, their application in cytopathology, particularly cervical cytology, remains underexplored, primarily due to the scarcity of large-scale, high-quality annotated datasets. To bridge this gap, we first develop a novel three-stage pipeline to synthesize a million-scale image-description dataset. The pipeline leverages multiple general-purpose MLLMs as weak annotators, refines their outputs through consensus fusion and expert knowledge injection, and produces high-fidelity descriptions of cell morphology. Using this dataset, we then fine-tune the Qwen3-VL-4B model via a multi-stage strategy to create a specialized cytopathology MLLM. The resulting model, named Singpath-VL, demonstrates superior performance in fine-grained morphological perception and cell-level diagnostic classification. To advance the field, we will open-source a portion of the synthetic dataset and benchmark.
☆ Attention to details, logits to truth: visual-aware attention and logits enhancement to mitigate hallucinations in LVLMs
Existing Large Vision-Language Models (LVLMs) exhibit insufficient visual attention, leading to hallucinations. To alleviate this problem, some previous studies adjust and amplify visual attention. These methods present a limitation that boosting attention for all visual tokens inevitably increases attention to task irrelevant tokens. To tackle this challenge, we propose a training free attentional intervention algorithm to enhance the attention of task-relevant tokens based on the argument that task-relevant tokens generally demonstrate high visual-textual similarities. Specifically, the vision-text cross-attention submatrices, which represent visual-textual correlations, are extracted to construct the reweighting matrices to reallocate attention. Besides, to enhance the contribution of visual tokens, we inject visual attention values into the beam search decoding to identify solutions with higher visual attention. Extensive experiments demonstrate that this method significantly reduces hallucinations across mainstream LVLMs, while preserving the accuracy and coherence of generated content.
☆ A Universal Action Space for General Behavior Analysis
Analyzing animal and human behavior has long been a challenging task in computer vision. Early approaches from the 1970s to the 1990s relied on hand-crafted edge detection, segmentation, and low-level features such as color, shape, and texture to locate objects and infer their identities-an inherently ill-posed problem. Behavior analysis in this era typically proceeded by tracking identified objects over time and modeling their trajectories using sparse feature points, which further limited robustness and generalization. A major shift occurred with the introduction of ImageNet by Deng and Li in 2010, which enabled large-scale visual recognition through deep neural networks and effectively served as a comprehensive visual dictionary. This development allowed object recognition to move beyond complex low-level processing toward learned high-level representations. In this work, we follow this paradigm to build a large-scale Universal Action Space (UAS) using existing labeled human-action datasets. We then use this UAS as the foundation for analyzing and categorizing mammalian and chimpanzee behavior datasets. The source code is released on GitHub at https://github.com/franktpmvu/Universal-Action-Space.
☆ Energy-Efficient Fast Object Detection on Edge Devices for IoT Systems
This paper presents an Internet of Things (IoT) application that utilizes an AI classifier for fast-object detection using the frame difference method. This method, with its shorter duration, is the most efficient and suitable for fast-object detection in IoT systems, which require energy-efficient applications compared to end-to-end methods. We have implemented this technique on three edge devices: AMD AlveoT M U50, Jetson Orin Nano, and Hailo-8T M AI Accelerator, and four models with artificial neural networks and transformer models. We examined various classes, including birds, cars, trains, and airplanes. Using the frame difference method, the MobileNet model consistently has high accuracy, low latency, and is highly energy-efficient. YOLOX consistently shows the lowest accuracy, lowest latency, and lowest efficiency. The experimental results show that the proposed algorithm has improved the average accuracy gain by 28.314%, the average efficiency gain by 3.6 times, and the average latency reduction by 39.305% compared to the end-to-end method. Of all these classes, the faster objects are trains and airplanes. Experiments show that the accuracy percentage for trains and airplanes is lower than other categories. So, in tasks that require fast detection and accurate results, end-to-end methods can be a disaster because they cannot handle fast object detection. To improve computational efficiency, we designed our proposed method as a lightweight detection algorithm. It is well suited for applications in IoT systems, especially those that require fast-moving object detection and higher accuracy.
comment: 14 pages, 12 figures
☆ Robust Depth Super-Resolution via Adaptive Diffusion Sampling
We propose AdaDS, a generalizable framework for depth super-resolution that robustly recovers high-resolution depth maps from arbitrarily degraded low-resolution inputs. Unlike conventional approaches that directly regress depth values and often exhibit artifacts under severe or unknown degradation, AdaDS capitalizes on the contraction property of Gaussian smoothing: as noise accumulates in the forward process, distributional discrepancies between degraded inputs and their pristine high-quality counterparts diminish, ultimately converging to isotropic Gaussian prior. Leveraging this, AdaDS adaptively selects a starting timestep in the reverse diffusion trajectory based on estimated refinement uncertainty, and subsequently injects tailored noise to position the intermediate sample within the high-probability region of the target posterior distribution. This strategy ensures inherent robustness, enabling generative prior of a pre-trained diffusion model to dominate recovery even when upstream estimations are imperfect. Extensive experiments on real-world and synthetic benchmarks demonstrate AdaDS's superior zero-shot generalization and resilience to diverse degradation patterns compared to state-of-the-art methods.
☆ Equilibrium contrastive learning for imbalanced image classification
Contrastive learning (CL) is a predominant technique in image classification, but they showed limited performance with an imbalanced dataset. Recently, several supervised CL methods have been proposed to promote an ideal regular simplex geometric configuration in the representation space-characterized by intra-class feature collapse and uniform inter-class mean spacing, especially for imbalanced datasets. In particular, existing prototype-based methods include class prototypes, as additional samples to consider all classes. However, the existing CL methods suffer from two limitations. First, they do not consider the alignment between the class means/prototypes and classifiers, which could lead to poor generalization. Second, existing prototype-based methods treat prototypes as only one additional sample per class, making their influence depend on the number of class instances in a batch and causing unbalanced contributions across classes. To address these limitations, we propose Equilibrium Contrastive Learning (ECL), a supervised CL framework designed to promote geometric equilibrium, where class features, means, and classifiers are harmoniously balanced under data imbalance. The proposed ECL framework uses two main components. First, ECL promotes the representation geometric equilibrium (i.e., a regular simplex geometry characterized by collapsed class samples and uniformly distributed class means), while balancing the contributions of class-average features and class prototypes. Second, ECL establishes a classifier-class center geometric equilibrium by aligning classifier weights and class prototypes. We ran experiments with three long-tailed datasets, the CIFAR-10(0)-LT, ImageNet-LT, and the two imbalanced medical datasets, the ISIC 2019 and our constructed LCCT dataset. Results show that ECL outperforms existing SOTA supervised CL methods designed for imbalanced classification.
comment: 18 pages, 8 figures
☆ OSI: One-step Inversion Excels in Extracting Diffusion Watermarks
Watermarking is an important mechanism for provenance and copyright protection of diffusion-generated images. Training-free methods, exemplified by Gaussian Shading, embed watermarks into the initial noise of diffusion models with negligible impact on the quality of generated images. However, extracting this type of watermark typically requires multi-step diffusion inversion to obtain precise initial noise, which is computationally expensive and time-consuming. To address this issue, we propose One-step Inversion (OSI), a significantly faster and more accurate method for extracting Gaussian Shading style watermarks. OSI reformulates watermark extraction as a learnable sign classification problem, which eliminates the need for precise regression of the initial noise. Then, we initialize the OSI model from the diffusion backbone and finetune it on synthesized noise-image pairs with a sign classification objective. In this manner, the OSI model is able to accomplish the watermark extraction efficiently in only one step. Our OSI substantially outperforms the multi-step diffusion inversion method: it is 20x faster, achieves higher extraction accuracy, and doubles the watermark payload capacity. Extensive experiments across diverse schedulers, diffusion backbones, and cryptographic schemes consistently show improvements, demonstrating the generality of our OSI framework.
☆ Beyond Next-Token Alignment: Distilling Multimodal Large Language Models via Token Interactions
Multimodal Large Language Models (MLLMs) demonstrate impressive cross-modal capabilities, yet their substantial size poses significant deployment challenges. Knowledge distillation (KD) is a promising solution for compressing these models, but existing methods primarily rely on static next-token alignment, neglecting the dynamic token interactions, which embed essential capabilities for multimodal understanding and generation. To this end, we introduce Align-TI, a novel KD framework designed from the perspective of Token Interactions. Our approach is motivated by the insight that MLLMs rely on two primary interactions: vision-instruction token interactions to extract relevant visual information, and intra-response token interactions for coherent generation. Accordingly, Align-TI introduces two components: IVA enables the student model to imitate the teacher's instruction-relevant visual information extract capability by aligning on salient visual regions. TPA captures the teacher's dynamic generative logic by aligning the sequential token-to-token transition probabilities. Extensive experiments demonstrate Align-TI's superiority. Notably, our approach achieves $2.6\%$ relative improvement over Vanilla KD, and our distilled Align-TI-2B even outperforms LLaVA-1.5-7B (a much larger MLLM) by $7.0\%$, establishing a new state-of-the-art distillation framework for training parameter-efficient MLLMs. Code is available at https://github.com/lchen1019/Align-TI.
☆ Weakly Supervised Contrastive Learning for Histopathology Patch Embeddings
Digital histopathology whole slide images (WSIs) provide gigapixel-scale high-resolution images that are highly useful for disease diagnosis. However, digital histopathology image analysis faces significant challenges due to the limited training labels, since manually annotating specific regions or small patches cropped from large WSIs requires substantial time and effort. Weakly supervised multiple instance learning (MIL) offers a practical and efficient solution by requiring only bag-level (slide-level) labels, while each bag typically contains multiple instances (patches). Most MIL methods directly use frozen image patch features generated by various image encoders as inputs and primarily focus on feature aggregation. However, feature representation learning for encoder pretraining in MIL settings has largely been neglected. In our work, we propose a novel feature representation learning framework called weakly supervised contrastive learning (WeakSupCon) that incorporates bag-level label information during training. Our method does not rely on instance-level pseudo-labeling, yet it effectively separates patches with different labels in the feature space. Experimental results demonstrate that the image features generated by our WeakSupCon method lead to improved downstream MIL performance compared to self-supervised contrastive learning approaches in three datasets. Our related code is available at github.com/BzhangURU/Paper_WeakSupCon_for_MIL
☆ FD-DB: Frequency-Decoupled Dual-Branch Network for Unpaired Synthetic-to-Real Domain Translation
Synthetic data provide low-cost, accurately annotated samples for geometry-sensitive vision tasks, but appearance and imaging differences between synthetic and real domains cause severe domain shift and degrade downstream performance. Unpaired synthetic-to-real translation can reduce this gap without paired supervision, yet existing methods often face a trade-off between photorealism and structural stability: unconstrained generation may introduce deformation or spurious textures, while overly rigid constraints limit adaptation to real-domain statistics. We propose FD-DB, a frequency-decoupled dual-branch model that separates appearance transfer into low-frequency interpretable editing and high-frequency residual compensation. The interpretable branch predicts physically meaningful editing parameters (white balance, exposure, contrast, saturation, blur, and grain) to build a stable low-frequency appearance base with strong content preservation. The free branch complements fine details through residual generation, and a gated fusion mechanism combines the two branches under explicit frequency constraints to limit low-frequency drift. We further adopt a two-stage training schedule that first stabilizes the editing branch and then releases the residual branch to improve optimization stability. Experiments on the YCB-V dataset show that FD-DB improves real-domain appearance consistency and significantly boosts downstream semantic segmentation performance while preserving geometric and semantic structures.
comment: 26 pages, 13 figures, 2 tables. Code available at https://github.com/tryzang/FD-DB
☆ ArtifactLens: Hundreds of Labels Are Enough for Artifact Detection with VLMs
Modern image generators produce strikingly realistic images, where only artifacts like distorted hands or warped objects reveal their synthetic origin. Detecting these artifacts is essential: without detection, we cannot benchmark generators or train reward models to improve them. Current detectors fine-tune VLMs on tens of thousands of labeled images, but this is expensive to repeat whenever generators evolve or new artifact types emerge. We show that pretrained VLMs already encode the knowledge needed to detect artifacts - with the right scaffolding, this capability can be unlocked using only a few hundred labeled examples per artifact category. Our system, ArtifactLens, achieves state-of-the-art on five human artifact benchmarks (the first evaluation across multiple datasets) while requiring orders of magnitude less labeled data. The scaffolding consists of a multi-component architecture with in-context learning and text instruction optimization, with novel improvements to each. Our methods generalize to other artifact types - object morphology, animal anatomy, and entity interactions - and to the distinct task of AIGC detection.
comment: https://jmhb0.github.io/ArtifactLens/
☆ LLM-Grounded Dynamic Task Planning with Hierarchical Temporal Logic for Human-Aware Multi-Robot Collaboration
While Large Language Models (LLM) enable non-experts to specify open-world multi-robot tasks, the generated plans often lack kinematic feasibility and are not efficient, especially in long-horizon scenarios. Formal methods like Linear Temporal Logic (LTL) offer correctness and optimal guarantees, but are typically confined to static, offline settings and struggle with computational scalability. To bridge this gap, we propose a neuro-symbolic framework that grounds LLM reasoning into hierarchical LTL specifications and solves the corresponding Simultaneous Task Allocation and Planning (STAP) problem. Unlike static approaches, our system resolves stochastic environmental changes, such as moving users or updated instructions via a receding horizon planning (RHP) loop with real-time perception, which dynamically refines plans through a hierarchical state space. Extensive real-world experiments demonstrate that our approach significantly outperforms baseline methods in success rate and interaction fluency while minimizing planning latency.
☆ Look-Ahead and Look-Back Flows: Training-Free Image Generation with Trajectory Smoothing
Recent advances have reformulated diffusion models as deterministic ordinary differential equations (ODEs) through the framework of flow matching, providing a unified formulation for the noise-to-data generative process. Various training-free flow matching approaches have been developed to improve image generation through flow velocity field adjustment, eliminating the need for costly retraining. However, Modifying the velocity field $v$ introduces errors that propagate through the full generation path, whereas adjustments to the latent trajectory $z$ are naturally corrected by the pretrained velocity network, reducing error accumulation. In this paper, we propose two complementary training-free latent-trajectory adjustment approaches based on future and past velocity $v$ and latent trajectory $z$ information that refine the generative path directly in latent space. We propose two training-free trajectory smoothing schemes: \emph{Look-Ahead}, which averages the current and next-step latents using a curvature-gated weight, and \emph{Look-Back}, which smoothes latents using an exponential moving average with decay. We demonstrate through extensive experiments and comprehensive evaluation metrics that the proposed training-free trajectory smoothing models substantially outperform various state-of-the-art models across multiple datasets including COCO17, CUB-200, and Flickr30K.
☆ A Scoping Review of Deep Learning for Urban Visual Pollution and Proposal of a Real-Time Monitoring Framework with a Visual Pollution Index
Urban Visual Pollution (UVP) has emerged as a critical concern, yet research on automatic detection and application remains fragmented. This scoping review maps the existing deep learning-based approaches for detecting, classifying, and designing a comprehensive application framework for visual pollution management. Following the PRISMA-ScR guidelines, seven academic databases (Scopus, Web of Science, IEEE Xplore, ACM DL, ScienceDirect, SpringerNatureLink, and Wiley) were systematically searched and reviewed, and 26 articles were found. Most research focuses on specific pollutant categories and employs variations of YOLO, Faster R-CNN, and EfficientDet architectures. Although several datasets exist, they are limited to specific areas and lack standardized taxonomies. Few studies integrate detection into real-time application systems, yet they tend to be geographically skewed. We proposed a framework for monitoring visual pollution that integrates a visual pollution index to assess the severity of visual pollution for a certain area. This review highlights the need for a unified UVP management system that incorporates pollutant taxonomy, a cross-city benchmark dataset, a generalized deep learning model, and an assessment index that supports sustainable urban aesthetics and enhances the well-being of urban dwellers.
☆ Fine-T2I: An Open, Large-Scale, and Diverse Dataset for High-Quality T2I Fine-Tuning
High-quality and open datasets remain a major bottleneck for text-to-image (T2I) fine-tuning. Despite rapid progress in model architectures and training pipelines, most publicly available fine-tuning datasets suffer from low resolution, poor text-image alignment, or limited diversity, resulting in a clear performance gap between open research models and enterprise-grade models. In this work, we present Fine-T2I, a large-scale, high-quality, and fully open dataset for T2I fine-tuning. Fine-T2I spans 10 task combinations, 32 prompt categories, 11 visual styles, and 5 prompt templates, and combines synthetic images generated by strong modern models with carefully curated real images from professional photographers. All samples are rigorously filtered for text-image alignment, visual fidelity, and prompt quality, with over 95% of initial candidates removed. The final dataset contains over 6 million text-image pairs, around 2 TB on disk, approaching the scale of pretraining datasets while maintaining fine-tuning-level quality. Across a diverse set of pretrained diffusion and autoregressive models, fine-tuning on Fine-T2I consistently improves both generation quality and instruction adherence, as validated by human evaluation, visual comparison, and automatic metrics. We release Fine-T2I under an open license to help close the data gap in T2I fine-tuning in the open community.
comment: Dataset: https://huggingface.co/datasets/ma-xu/fine-t2i
☆ SceneReVis: A Self-Reflective Vision-Grounded Framework for 3D Indoor Scene Synthesis via Multi-turn RL
Current one-pass 3D scene synthesis methods often suffer from spatial hallucinations, such as collisions, due to a lack of deliberative reasoning. To bridge this gap, we introduce SceneReVis, a vision-grounded self-reflection framework that employs an iterative ``diagnose-and-act'' loop to explicitly intercept and resolve spatial conflicts using multi-modal feedback. To support this step-wise paradigm, we construct SceneChain-12k, a large-scale dataset of causal construction trajectories derived through a novel reverse engineering pipeline. We further propose a two-stage training recipe that transitions from Supervised Fine-Tuning to Agentic Reinforcement Learning, evolving the model into an active spatial planner. Extensive experiments demonstrate that SceneReVis achieves state-of-the-art performance in high-fidelity generation and goal-oriented optimization, with robust generalization to long-tail domains.
☆ Understanding and Enhancing Encoder-based Adversarial Transferability against Large Vision-Language Models
Large vision-language models (LVLMs) have achieved impressive success across multimodal tasks, but their reliance on visual inputs exposes them to significant adversarial threats. Existing encoder-based attacks perturb the input image by optimizing solely on the vision encoder, rather than the entire LVLM, offering a computationally efficient alternative to end-to-end optimization. However, their transferability across different LVLM architectures in realistic black-box scenarios remains poorly understood. To address this gap, we present the first systematic study towards encoder-based adversarial transferability in LVLMs. Our contributions are threefold. First, through large-scale benchmarking over eight diverse LVLMs, we reveal that existing attacks exhibit severely limited transferability. Second, we perform in-depth analysis, disclosing two root causes that hinder the transferability: (1) inconsistent visual grounding across models, where different models focus their attention on distinct regions; (2) redundant semantic alignment within models, where a single object is dispersed across multiple overlapping token representations. Third, we propose Semantic-Guided Multimodal Attack (SGMA), a novel framework to enhance the transferability. Inspired by the discovered causes in our analysis, SGMA directs perturbations toward semantically critical regions and disrupts cross-modal grounding at both global and local levels. Extensive experiments across different victim models and tasks show that SGMA achieves higher transferability than existing attacks. These results expose critical security risks in LVLM deployment and underscore the urgent need for robust multimodal defenses.
comment: Under review; 21 pages
☆ Bridging the Modality Gap in Roadside LiDAR: A Training-Free Vision-Language Model Framework for Vehicle Classification
Fine-grained truck classification is critical for intelligent transportation systems (ITS), yet current LiDAR-based methods face scalability challenges due to their reliance on supervised deep learning and labor-intensive manual annotation. Vision-Language Models (VLMs) offer promising few-shot generalization, but their application to roadside LiDAR is limited by a modality gap between sparse 3D point clouds and dense 2D imagery. We propose a framework that bridges this gap by adapting off-the-shelf VLMs for fine-grained truck classification without parameter fine-tuning. Our new depth-aware image generation pipeline applies noise removal, spatial and temporal registration, orientation rectification, morphological operations, and anisotropic smoothing to transform sparse, occluded LiDAR scans into depth-encoded 2D visual proxies. Validated on a real-world dataset of 20 vehicle classes, our approach achieves competitive classification accuracy with as few as 16-30 examples per class, offering a scalable alternative to data-intensive supervised baselines. We further observe a "Semantic Anchor" effect: text-based guidance regularizes performance in ultra-low-shot regimes $k < 4$, but degrades accuracy in more-shot settings due to semantic mismatch. Furthermore, we demonstrate the efficacy of this framework as a Cold Start strategy, using VLM-generated labels to bootstrap lightweight supervised models. Notably, the few-shot VLM-based model achieves over correct classification rate of 75 percent for specific drayage categories (20ft, 40ft, and 53ft containers) entirely without the costly training or fine-tuning, significantly reducing the intensive demands of initial manual labeling, thus achieving a method of practical use in ITS applications.
comment: 12 pages, 10 figures, 4 tables
☆ Stability and Concentration in Nonlinear Inverse Problems with Block-Structured Parameters: Lipschitz Geometry, Identifiability, and an Application to Gaussian Splatting
We develop an operator-theoretic framework for stability and statistical concentration in nonlinear inverse problems with block-structured parameters. Under a unified set of assumptions combining blockwise Lipschitz geometry, local identifiability, and sub-Gaussian noise, we establish deterministic stability inequalities, global Lipschitz bounds for least-squares misfit functionals, and nonasymptotic concentration estimates. These results yield high-probability parameter error bounds that are intrinsic to the forward operator and independent of any specific reconstruction algorithm. As a concrete instantiation, we verify that the Gaussian Splatting rendering operator satisfies the proposed assumptions and derive explicit constants governing its Lipschitz continuity and resolution-dependent observability. This leads to a fundamental stability--resolution tradeoff, showing that estimation error is inherently constrained by the ratio between image resolution and model complexity. Overall, the analysis characterizes operator-level limits for a broad class of high-dimensional nonlinear inverse problems arising in modern imaging and differentiable rendering.
☆ LARV: Data-Free Layer-wise Adaptive Rescaling Veneer for Model Merging
Model merging aims to combine multiple fine-tuned models into a single multi-task model without access to training data. Existing task-vector merging methods such as TIES, TSV-M, and Iso-C/CTS differ in their aggregation rules but treat all layers nearly uniformly. This assumption overlooks the strong layer-wise heterogeneity in large vision transformers, where shallow layers are sensitive to interference while deeper layers encode stable task-specific features. We introduce LARV, a training-free, data-free, merger-agnostic Layer-wise Adaptive Rescaling Veneer that plugs into any task-vector merger and assigns a per-layer scale to each task vector before aggregation, and show it consistently boosts diverse merging rules. LARV adaptively suppresses shallow-layer interference and amplifies deeper-layer alignment using a simple deterministic schedule, requiring no retraining or modification to existing mergers. To our knowledge, this is the first work to perform layer-aware scaling for task-vector merging. LARV computes simple data-free layer proxies and turns them into scales through a lightweight rule; we study several instantiations within one framework (e.g., tiered two/three-level scaling with fixed values, or continuous mappings) and show that tiered choices offer the best robustness, while continuous mappings remain an ablation. LARV is orthogonal to the base merger and adds negligible cost. On FusionBench with Vision Transformers, LARV consistently improves all task-vector baselines across 8/14/20-task settings; for example, Iso-C + LARV reaches 85.9% on ViT-B/32, 89.2% on ViT-B/16, and 92.6% on ViT-L/14. Layerwise analysis and corruption tests further indicate that LARV suppresses shallow-layer interference while modestly amplifying deeper, task-stable features, turning model merging into a robust, layer-aware procedure rather than a uniform one.
comment: 14 pages, 9 figures, 6 tables
☆ K-Sort Eval: Efficient Preference Evaluation for Visual Generation via Corrected VLM-as-a-Judge ICLR 2026
The rapid development of visual generative models raises the need for more scalable and human-aligned evaluation methods. While the crowdsourced Arena platforms offer human preference assessments by collecting human votes, they are costly and time-consuming, inherently limiting their scalability. Leveraging vision-language model (VLMs) as substitutes for manual judgments presents a promising solution. However, the inherent hallucinations and biases of VLMs hinder alignment with human preferences, thus compromising evaluation reliability. Additionally, the static evaluation approach lead to low efficiency. In this paper, we propose K-Sort Eval, a reliable and efficient VLM-based evaluation framework that integrates posterior correction and dynamic matching. Specifically, we curate a high-quality dataset from thousands of human votes in K-Sort Arena, with each instance containing the outputs and rankings of K models. When evaluating a new model, it undergoes (K+1)-wise free-for-all comparisons with existing models, and the VLM provide the rankings. To enhance alignment and reliability, we propose a posterior correction method, which adaptively corrects the posterior probability in Bayesian updating based on the consistency between the VLM prediction and human supervision. Moreover, we propose a dynamic matching strategy, which balances uncertainty and diversity to maximize the expected benefit of each comparison, thus ensuring more efficient evaluation. Extensive experiments show that K-Sort Eval delivers evaluation results consistent with K-Sort Arena, typically requiring fewer than 90 model runs, demonstrating both its efficiency and reliability.
comment: ICLR 2026. Code is available at: https://github.com/zkkli/K-Sort-Eval
☆ Single-Slice-to-3D Reconstruction in Medical Imaging and Natural Objects: A Comparative Benchmark with SAM 3D
A 3D understanding of anatomy is central to diagnosis and treatment planning, yet volumetric imaging remains costly with long wait times. Image-to-3D foundations models can solve this issue by reconstructing 3D data from 2D modalites. Current foundation models are trained on natural image distributions to reconstruct naturalistic objects from a single image by leveraging geometric priors across pixels. However, it is unclear whether these learned geometric priors transfer to medical data. In this study, we present a controlled zero-shot benchmark of single slice medical image-to-3D reconstruction across five state-of-the-art image-to-3D models: SAM3D, Hunyuan3D-2.1, Direct3D, Hi3DGen, and TripoSG. These are evaluated across six medical datasets spanning anatomical and pathological structures and two natrual datasets, using voxel based metrics and point cloud distance metrics. Across medical datasets, voxel based overlap remains moderate for all models, consistent with a depth reconstruction failure mode when inferring volume from a single slice. In contrast, global distance metrics show more separation between methods: SAM3D achieves the strongest overall topological similarity to ground truth medical 3D data, while alternative models are more prone to over-simplication of reconstruction. Our results quantify the limits of single-slice medical reconstruction and highlight depth ambiguity caused by the planar nature of 2D medical data, motivating multi-view image-to-3D reconstruction to enable reliable medical 3D inference.
☆ Fully Differentiable Bidirectional Dual-Task Synergistic Learning for Semi-Supervised 3D Medical Image Segmentation
Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by leveraging unlabeled data. The scarcity of high-quality labeled data remains a major challenge in medical image analysis due to the high annotation costs and the need for specialized clinical expertise. Semi-supervised learning has demonstrated significant potential in addressing this bottleneck, with pseudo-labeling and consistency regularization emerging as two predominant paradigms. Dual-task collaborative learning, an emerging consistency-aware paradigm, seeks to derive supplementary supervision by establishing prediction consistency between related tasks. However, current methodologies are limited to unidirectional interaction mechanisms (typically regression-to-segmentation), as segmentation results can only be transformed into regression outputs in an offline manner, thereby failing to fully exploit the potential benefits of online bidirectional cross-task collaboration. Thus, we propose a fully Differentiable Bidirectional Synergistic Learning (DBiSL) framework, which seamlessly integrates and enhances four critical SSL components: supervised learning, consistency regularization, pseudo-supervised learning, and uncertainty estimation. Experiments on two benchmark datasets demonstrate our method's state-of-the-art performance. Beyond technical contributions, this work provides new insights into unified SSL framework design and establishes a new architectural foundation for dual-task-driven SSL, while offering a generic multitask learning framework applicable to broader computer vision applications. The code will be released on github upon acceptance.
comment: Accepted by ESWA 2026
☆ Impact of domain adaptation in deep learning for medical image classifications IEEE
Domain adaptation (DA) is a quickly expanding area in machine learning that involves adjusting a model trained in one domain to perform well in another domain. While there have been notable progressions, the fundamental concept of numerous DA methodologies has persisted: aligning the data from various domains into a shared feature space. In this space, knowledge acquired from labeled source data can improve the model training on target data that lacks sufficient labels. In this study, we demonstrate the use of 10 deep learning models to simulate common DA techniques and explore their application in four medical image datasets. We have considered various situations such as multi-modality, noisy data, federated learning (FL), interpretability analysis, and classifier calibration. The experimental results indicate that using DA with ResNet34 in a brain tumor (BT) data set results in an enhancement of 4.7\% in model performance. Similarly, the use of DA can reduce the impact of Gaussian noise, as it provides $\sim 3\%$ accuracy increase using ResNet34 on a BT dataset. Furthermore, simply introducing DA into FL framework shows limited potential (e.g., $\sim 0.3\%$ increase in performance) for skin cancer classification. In addition, the DA method can improve the interpretability of the models using the gradcam++ technique, which offers clinical values. Calibration analysis also demonstrates that using DA provides a lower expected calibration error (ECE) value $\sim 2\%$ compared to CNN alone on a multi-modality dataset.
comment: Accepted in IEEE SMC 2025
☆ Kyrtos: A methodology for automatic deep analysis of graphic charts with curves in technical documents
Deep Understanding of Technical Documents (DUTD) has become a very attractive field with great potential due to large amounts of accumulated documents and the valuable knowledge contained in them. In addition, the holistic understanding of technical documents depends on the accurate analysis of its particular modalities, such as graphics, tables, diagrams, text, etc. and their associations. In this paper, we introduce the Kyrtos methodology for the automatic recognition and analysis of charts with curves in graphics images of technical documents. The recognition processing part adopts a clustering based approach to recognize middle-points that delimit the line-segments that construct the illustrated curves. The analysis processing part parses the extracted line-segments of curves to capture behavioral features such as direction, trend and etc. These associations assist the conversion of recognized segments' relations into attributed graphs, for the preservation of the curves' structural characteristics. The graph relations are also are expressed into natural language (NL) text sentences, enriching the document's text and facilitating their conversion into Stochastic Petri-net (SPN) graphs, which depict the internal functionality represented in the chart image. Extensive evaluation results demonstrate the accuracy of Kyrtos' recognition and analysis methods by measuring the structural similarity between input chart curves and the approximations generated by Kyrtos for charts with multiple functions.
☆ Deep Modeling and Interpretation for Bladder Cancer Classification IEEE
Deep models based on vision transformer (ViT) and convolutional neural network (CNN) have demonstrated remarkable performance on natural datasets. However, these models may not be similar in medical imaging, where abnormal regions cover only a small portion of the image. This challenge motivates this study to investigate the latest deep models for bladder cancer classification tasks. We propose the following to evaluate these deep models: 1) standard classification using 13 models (four CNNs and eight transormer-based models), 2) calibration analysis to examine if these models are well calibrated for bladder cancer classification, and 3) we use GradCAM++ to evaluate the interpretability of these models for clinical diagnosis. We simulate $\sim 300$ experiments on a publicly multicenter bladder cancer dataset, and the experimental results demonstrate that the ConvNext series indicate limited generalization ability to classify bladder cancer images (e.g., $\sim 60\%$ accuracy). In addition, ViTs show better calibration effects compared to ConvNext and swin transformer series. We also involve test time augmentation to improve the models interpretability. Finally, no model provides a one-size-fits-all solution for a feasible interpretable model. ConvNext series are suitable for in-distribution samples, while ViT and its variants are suitable for interpreting out-of-distribution samples.
comment: Accepted in IEEE SMC 2025
☆ GAFR-Net: A Graph Attention and Fuzzy-Rule Network for Interpretable Breast Cancer Image Classification
Accurate classification of breast cancer histopathology images is pivotal for early oncological diagnosis and therapeutic intervention.However, conventional deep learning architectures often encounter performance degradation under limited annotations and suffer from a "blackbox" nature, hindering their clinical integration. To mitigate these limitations, we propose GAFRNet, a robust and interpretable Graph Attention and FuzzyRule Network specifically engineered for histopathology image classification with scarce supervision. GAFRNet constructs a similarity-driven graph representation to model intersample relationships and employs a multihead graph attention mechanism to capture complex relational features across heterogeneous tissue structures.Concurrently, a differentiable fuzzy-rule module encodes intrinsic topological descriptorsincluding node degree, clustering coefficient, and label consistencyinto explicit, human-understandable diagnostic logic. This design establishes transparent "IF-THEN" mappings that mimic the heuristic deduction process of medical experts, providing clear reasoning behind each prediction without relying on post-hoc attribution methods. Extensive evaluations on three benchmark datasets (BreakHis, Mini-DDSM, and ICIAR2018) demonstrate that GAFR-Net consistently outperforms various state-of-the-art methods across multiple magnifications and classification tasks. These results validate the superior generalization and practical utility of GAFR-Net as a reliable decision-support tool for weakly supervised medical image analysis.
☆ A Deep Multi-Modal Method for Patient Wound Healing Assessment
Hospitalization of patients is one of the major factors for high wound care costs. Most patients do not acquire a wound which needs immediate hospitalization. However, due to factors such as delay in treatment, patient's non-compliance or existing co-morbid conditions, an injury can deteriorate and ultimately lead to patient hospitalization. In this paper, we propose a deep multi-modal method to predict the patient's risk of hospitalization. Our goal is to predict the risk confidently by collectively using the wound variables and wound images of the patient. Existing works in this domain have mainly focused on healing trajectories based on distinct wound types. We developed a transfer learning-based wound assessment solution, which can predict both wound variables from wound images and their healing trajectories, which is our primary contribution. We argue that the development of a novel model can help in early detection of the complexities in the wound, which might affect the healing process and also reduce the time spent by a clinician to diagnose the wound.
comment: 4 pages, 2 figures
☆ X-Mark: Saliency-Guided Robust Dataset Ownership Verification for Medical Imaging
High-quality medical imaging datasets are essential for training deep learning models, but their unauthorized use raises serious copyright and ethical concerns. Medical imaging presents a unique challenge for existing dataset ownership verification methods designed for natural images, as static watermark patterns generated in fixed-scale images scale poorly dynamic and high-resolution scans with limited visual diversity and subtle anatomical structures, while preserving diagnostic quality. In this paper, we propose X-Mark, a sample-specific clean-label watermarking method for chest x-ray copyright protection. Specifically, X-Mark uses a conditional U-Net to generate unique perturbations within salient regions of each sample. We design a multi-component training objective to ensure watermark efficacy, robustness against dynamic scaling processes while preserving diagnostic quality and visual-distinguishability. We incorporate Laplacian regularization into our training objective to penalize high-frequency perturbations and achieve watermark scale-invariance. Ownership verification is performed in a black-box setting to detect characteristic behaviors in suspicious models. Extensive experiments on CheXpert verify the effectiveness of X-Mark, achieving WSR of 100% and reducing probability of false positives in Ind-M scenario by 12%, while demonstrating resistance to potential adaptive attacks.
♻ ☆ Story-Iter: A Training-free Iterative Paradigm for Long Story Visualization
This paper introduces Story-Iter, a new training-free iterative paradigm to enhance long-story generation. Unlike existing methods that rely on fixed reference images to construct a complete story, our approach features a novel external iterative paradigm, extending beyond the internal iterative denoising steps of diffusion models, to continuously refine each generated image by incorporating all reference images from the previous round. To achieve this, we propose a plug-and-play, training-free global reference cross-attention (GRCA) module, modeling all reference frames with global embeddings, ensuring semantic consistency in long sequences. By progressively incorporating holistic visual context and text constraints, our iterative paradigm enables precise generation with fine-grained interactions, optimizing the story visualization step-by-step. Extensive experiments in the official story visualization dataset and our long story benchmark demonstrate that Story-Iter's state-of-the-art performance in long-story visualization (up to 100 frames) excels in both semantic consistency and fine-grained interactions.
comment: 31 pages, 33 figures, The project page and associated code can be accessed via https://jwmao1.github.io/storyiter/
♻ ☆ Designing Multi-Robot Ground Video Sensemaking with Public Safety Professionals
Videos from fleets of ground robots can advance public safety by providing scalable situational awareness and reducing professionals' burden. Yet little is known about how to design and integrate multi-robot videos into public safety workflows. Collaborating with six police agencies, we examined how such videos could be made practical. In Study 1, we presented the first testbed for multi-robot ground video sensemaking. The testbed includes 38 events-of-interest (EoI) relevant to public safety, a dataset of 20 robot patrol videos (10 day/night pairs) covering EoI types, and 6 design requirements aimed at improving current video sensemaking practices. In Study 2, we built MRVS, a tool that augments multi-robot patrol video streams with a prompt-engineered video understanding model. Participants reported reduced manual workload and greater confidence with LLM-based explanations, while noting concerns about false alarms and privacy. We conclude with implications for designing future multi-robot video sensemaking tools.
♻ ☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors ICLR 2026
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: ICLR 2026, Project page: https://falcon-vla.github.io/
♻ ☆ ALIVE: Animate Your World with Lifelike Audio-Video Generation
Video generation is rapidly evolving towards unified audio-video generation. In this paper, we present ALIVE, a generation model that adapts a pretrained Text-to-Video (T2V) model to Sora-style audio-video generation and animation. In particular, the model unlocks the Text-to-Video&Audio (T2VA) and Reference-to-Video&Audio (animation) capabilities compared to the T2V foundation models. To support the audio-visual synchronization and reference animation, we augment the popular MMDiT architecture with a joint audio-video branch which includes TA-CrossAttn for temporally-aligned cross-modal fusion and UniTemp-RoPE for precise audio-visual alignment. Meanwhile, a comprehensive data pipeline consisting of audio-video captioning, quality control, etc., is carefully designed to collect high-quality finetuning data. Additionally, we introduce a new benchmark to perform a comprehensive model test and comparison. After continue pretraining and finetuning on million-level high-quality data, ALIVE demonstrates outstanding performance, consistently outperforming open-source models and matching or surpassing state-of-the-art commercial solutions. With detailed recipes and benchmarks, we hope ALIVE helps the community develop audio-video generation models more efficiently. Official page: https://github.com/FoundationVision/Alive.
comment: Technical report for ALIVE. Bytedance ALIVE Team. Homepage: https://foundationvision.github.io/Alive/
♻ ☆ Scalable Dynamic Origin-Destination Demand Estimation Enhanced by High-Resolution Satellite Imagery Data
This study presents a novel integrated framework for dynamic origin-destination demand estimation (DODE) in multi-class mesoscopic network models, incorporating high-resolution satellite imagery together with conventional traffic data from local sensors. Unlike sparse local detectors, satellite imagery offers consistent, city-wide road and traffic information of both parking and moving vehicles, overcoming data availability limitations. To extract information from imagery data, we design a computer vision pipeline for class-specific vehicle detection and map matching, generating link-level traffic density observations by vehicle class. Building upon this information, we formulate a computational graph-based DODE framework that calibrates dynamic network states by jointly matching observed traffic counts/speeds from local sensors with density measurements derived from satellite imagery. To assess the accuracy and robustness of the proposed framework, we conduct a series of numerical experiments using both synthetic and real-world data. The results demonstrate that supplementing traditional data with satellite-derived density significantly improves estimation performance, especially for links without local sensors. Real-world experiments also show the framework's potential for practical deployment on large-scale networks. Sensitivity analysis further evaluates the impact of data quality related to satellite imagery data.
♻ ☆ Benchmarking 3D Human Pose Estimation Models under Occlusions
Human Pose Estimation (HPE) involves detecting and localizing keypoints on the human body from visual data. In 3D HPE, occlusions, where parts of the body are not visible in the image, pose a significant challenge for accurate pose reconstruction. This paper presents a benchmark on the robustness of 3D HPE models under realistic occlusion conditions, involving combinations of occluded keypoints commonly observed in real-world scenarios. We evaluate nine state-of-the-art 2D-to-3D HPE models, spanning convolutional, transformer-based, graph-based, and diffusion-based architectures, using the BlendMimic3D dataset, a synthetic dataset with ground-truth 2D/3D annotations and occlusion labels. All models were originally trained on Human3.6M and tested here without retraining to assess their generalization. We introduce a protocol that simulates occlusion by adding noise into 2D keypoints based on real detector behavior, and conduct both global and per-joint sensitivity analyses. Our findings reveal that all models exhibit notable performance degradation under occlusion, with diffusion-based models underperforming despite their stochastic nature. Additionally, a per-joint occlusion analysis identifies consistent vulnerability in distal joints (e.g., wrists, feet) across models. Overall, this work highlights critical limitations of current 3D HPE models in handling occlusions, and provides insights for improving real-world robustness.
♻ ☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, achieving an accuracy of 55.04\% on the ICDAR 2013 dataset ($m=1500$), significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples, achieving 92.41\% accuracy with only one support sample per class.
comment: 34 pages, 8 figures
♻ ☆ Residual Decoding: Mitigating Hallucinations in Large Vision-Language Models via History-Aware Residual Guidance
Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
♻ ☆ Toward Efficient and Robust Behavior Models for Multi-Agent Driving Simulation IEEE
Scalable multi-agent driving simulation requires behavior models that are both realistic and computationally efficient. We address this by optimizing the behavior model that controls individual traffic participants. To improve efficiency, we adopt an instance-centric scene representation, where each traffic participant and map element is modeled in its own local coordinate frame. This design enables efficient, viewpoint-invariant scene encoding and allows static map tokens to be reused across simulation steps. To model interactions, we employ a query-centric symmetric context encoder with relative positional encodings between local frames. We use Adversarial Inverse Reinforcement Learning to learn the behavior model and propose an adaptive reward transformation that automatically balances robustness and realism during training. Experiments demonstrate that our approach scales efficiently with the number of tokens, significantly reducing training and inference times, while outperforming several agent-centric baselines in terms of positional accuracy and robustness.
comment: Accepted for publication by IEEE International Conference on Robotics & Automation (ICRA 2026)
♻ ☆ Driving as a Diagnostic Tool: Scenario-based Cognitive Assessment in Older Drivers from Driving Video
We introduce scenario-based cognitive status identification in older drivers from naturalistic driving videos, leveraging large vision models. In recent times, cognitive decline including Dementia and Mild Cognitive Impairment (MCI), is often underdiagnosed due to the time-consuming and costly nature of current diagnostic methods. By analyzing real-world driving behavior captured through in-vehicle sensors, this study aims to extract "digital fingerprints" that correlate with functional decline and clinical features of dementia. Moreover, modern large vision models can draw meaningful insights from everyday driving patterns across different roadway scenarios to early detect cognitive decline. We propose a framework that uses large vision models and naturalistic driving videos to analyze driver behavior, identify cognitive status and predict disease progression. We leverage the strong relationship between real-world driving behavior as an observation of the current cognitive status of the drivers where the vehicle can be utilized as a "diagnostic tool". Our method identifies early warning signs of functional impairment, contributing to proactive intervention strategies. This work enhances early detection and supports the development of scalable, non-invasive monitoring systems to mitigate the growing societal and economic burden of cognitive decline in the aging population.
♻ ☆ CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration
Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/.
comment: Accepted at TMLR (2026)
♻ ☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
♻ ☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
♻ ☆ SNAP: Towards Segmenting Anything in Any Point Cloud
Interactive 3D point cloud segmentation enables efficient annotation of complex 3D scenes through user-guided prompts. However, current approaches are typically restricted in scope to a single domain (indoor or outdoor), and to a single form of user interaction (either spatial clicks or textual prompts). Moreover, training on multiple datasets often leads to negative transfer, resulting in domain-specific tools that lack generalizability. To address these limitations, we present SNAP (Segment aNything in Any Point cloud), a unified model for interactive 3D segmentation that supports both point-based and text-based prompts across diverse domains. Our approach achieves cross-domain generalizability by training on 7 datasets spanning indoor, outdoor, and aerial environments, while employing domain-adaptive normalization to prevent negative transfer. For text-prompted segmentation, we automatically generate mask proposals without human intervention and match them against CLIP embeddings of textual queries, enabling both panoptic and open-vocabulary segmentation. Extensive experiments demonstrate that SNAP consistently delivers high-quality segmentation results. We achieve state-of-the-art performance on 8 out of 9 zero-shot benchmarks for spatial-prompted segmentation and demonstrate competitive results on all 5 text-prompted benchmarks. These results show that a unified model can match or exceed specialized domain-specific approaches, providing a practical tool for scalable 3D annotation. Project page is at, https://neu-vi.github.io/SNAP/
comment: Project Page, https://neu-vi.github.io/SNAP/
♻ ☆ Grow with the Flow: 4D Reconstruction of Growing Plants with Gaussian Flow Fields
Modeling the time-varying 3D appearance of plants during their growth poses unique challenges: unlike many dynamic scenes, plants generate new geometry over time as they expand, branch, and differentiate. Recent motion modeling techniques are ill-suited to this problem setting. For example, deformation fields cannot introduce new geometry, and 4D Gaussian splatting constrains motion to a linear trajectory in space and time and cannot track the same set of Gaussians over time. Here, we introduce a 3D Gaussian flow field representation that models plant growth as a time-varying derivative over Gaussian parameters -- position, scale, orientation, color, and opacity -- enabling nonlinear and continuous-time growth dynamics. To initialize a sufficient set of Gaussian primitives, we reconstruct the mature plant and learn a process of reverse growth, effectively simulating the plant's developmental history in reverse. Our approach achieves superior image quality and geometric accuracy compared to prior methods on multi-view timelapse datasets of plant growth, providing a new approach for appearance modeling of growing 3D structures.
comment: Project page: https://weihanluo.ca/growflow/
♻ ☆ Assessing Identity Leakage in Talking Face Generation: Metrics and Evaluation Framework ICASSP 2026
Video editing-based talking face generation aims to preserve video details such as pose, lighting, and gestures while modifying only lip motion, often using an identity reference image to maintain speaker consistency. However, this mechanism can introduce lip leakage, where generated lips are influenced by the reference image rather than solely by the driving audio. Such leakage is difficult to detect with standard metrics and conventional test setup. To address this, we propose a systematic evaluation methodology to analyze and quantify lip leakage. Our framework employs three complementary test setups: silent-input generation, mismatched audio-video pairing, and matched audio-video synthesis. We also introduce derived metrics including lip-sync discrepancy and silent-audio-based lip-sync scores. In addition, we study how different identity reference selections affect leakage, providing insights into reference design. The proposed methodology is model-agnostic and establishes a more reliable benchmark for future research in talking face generation.
comment: Accepted to ICASSP 2026
♻ ☆ Thinking with Geometry: Active Geometry Integration for Spatial Reasoning
Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.
♻ ☆ Constant Rate Scheduling: A General Framework for Optimizing Diffusion Noise Schedule via Distributional Change
We propose a general framework for optimizing noise schedules in diffusion models, applicable to both training and sampling. Our method enforces a constant rate of change in the probability distribution of diffused data throughout the diffusion process, where the rate of change is quantified using a user-defined discrepancy measure. We introduce three such measures, which can be flexibly selected or combined depending on the domain and model architecture. While our framework is inspired by theoretical insights, we do not aim to provide a complete theoretical justification of how distributional change affects sample quality. Instead, we focus on establishing a general-purpose scheduling framework and validating its empirical effectiveness. Through extensive experiments, we demonstrate that our approach consistently improves the performance of both pixel-space and latent-space diffusion models, across various datasets, samplers, and a wide range of number of function evaluations from 5 to 250. In particular, when applied to both training and sampling schedules, our method achieves a state-of-the-art FID score of 2.03 on LSUN Horse 256$\times$256, without compromising mode coverage.
comment: Published in Transactions on Machine Learning Research (TMLR), January 2026
♻ ☆ OpenMonoGS-SLAM: Monocular Gaussian Splatting SLAM with Open-set Semantics
Simultaneous Localization and Mapping (SLAM) is a foundational component in robotics, AR/VR, and autonomous systems. With the rising focus on spatial AI in recent years, combining SLAM with semantic understanding has become increasingly important for enabling intelligent perception and interaction. Recent efforts have explored this integration, but they often rely on depth sensors or closed-set semantic models, limiting their scalability and adaptability in open-world environments. In this work, we present OpenMonoGS-SLAM, the first monocular SLAM framework that unifies 3D Gaussian Splatting (3DGS) with open-set semantic understanding. To achieve our goal, we leverage recent advances in Visual Foundation Models (VFMs), including MASt3R for visual geometry and SAM and CLIP for open-vocabulary semantics. These models provide robust generalization across diverse tasks, enabling accurate monocular camera tracking and mapping, as well as a rich understanding of semantics in open-world environments. Our method operates without any depth input or 3D semantic ground truth, relying solely on self-supervised learning objectives. Furthermore, we propose a memory mechanism specifically designed to manage high-dimensional semantic features, which effectively constructs Gaussian semantic feature maps, leading to strong overall performance. Experimental results demonstrate that our approach achieves performance comparable to or surpassing existing baselines in both closed-set and open-set segmentation tasks, all without relying on supplementary sensors such as depth maps or semantic annotations.
comment: Work in progress. Project page: https://jisang1528.github.io/OpenMonoGS-SLAM/
♻ ☆ Dual-IPO: Dual-Iterative Preference Optimization for Text-to-Video Generation ICLR 2026
Recent advances in video generation have enabled thrilling experiences in producing realistic videos driven by scalable diffusion transformers. However, they usually fail to produce satisfactory outputs that are aligned to users' authentic demands and preferences. In this work, we introduce Dual-Iterative Optimization (Dual-IPO), an iterative paradigm that sequentially optimizes both the reward model and the video generation model for improved synthesis quality and human preference alignment. For the reward model, our framework ensures reliable and robust reward signals via CoT-guided reasoning, voting-based self-consistency, and preference certainty estimation. Given this, we optimize video foundation models with guidance of signals from reward model's feedback, thus improving the synthesis quality in subject consistency, motion smoothness and aesthetic quality, etc. The reward model and video generation model complement each other and are progressively improved in the multi-round iteration, without requiring tediously manual preference annotations. Comprehensive experiments demonstrate that the proposed Dual-IPO can effectively and consistently improve the video generation quality of base model with various architectures and sizes, even help a model with only 2B parameters surpass a 5B one. Moreover, our analysis experiments and ablation studies identify the rational of our systematic design and the efficacy of each component.
comment: To appear in ICLR 2026
♻ ☆ Efficient HDR Reconstruction from Real-World Raw Images
The growing prevalence of high-resolution displays on edge devices has created a pressing need for efficient high dynamic range (HDR) imaging algorithms. However, most existing HDR methods either struggle to deliver satisfactory visual quality or incur high computational and memory costs, limiting their applicability to high-resolution inputs (typically exceeding 12 megapixels). Furthermore, current HDR dataset collection approaches are often labor-intensive and inefficient. In this work, we explore a novel and practical solution for HDR reconstruction directly from raw sensor data, aiming to enhance both performance and deployability on mobile platforms. Our key insights are threefold: (1) we propose RepUNet, a lightweight and efficient HDR network leveraging structural re-parameterization for fast and robust inference; (2) we design a new computational raw HDR data formation pipeline and construct a new raw HDR dataset, RealRaw-HDR; (3) we design a plug-and-play motion alignment loss to suppress ghosting artifacts under constrained bandwidth conditions effectively. Our model contains fewer than 830K parameters and takes less than 3 ms to process an image of 4K resolution using one RTX 3090 GPU. While being highly efficient, our model also achieves comparable performance to state-of-the-art HDR methods in terms of PSNR, SSIM, and a color difference metric.
♻ ☆ MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
comment: 21 pages,14 figures,9 tables
♻ ☆ Wandering around: A bioinspired approach to visual attention through object motion sensitivity
Active vision enables dynamic visual perception, offering an alternative to static feedforward architectures in computer vision, which rely on large datasets and high computational resources. Biological selective attention mechanisms allow agents to focus on salient Regions of Interest (ROIs), reducing computational demand while maintaining real-time responsiveness. Event-based cameras, inspired by the mammalian retina, enhance this capability by capturing asynchronous scene changes enabling efficient low-latency processing. To distinguish moving objects while the event-based camera is in motion the agent requires an object motion segmentation mechanism to accurately detect targets and center them in the visual field (fovea). Integrating event-based sensors with neuromorphic algorithms represents a paradigm shift, using Spiking Neural Networks to parallelize computation and adapt to dynamic environments. This work presents a Spiking Convolutional Neural Network bioinspired attention system for selective attention through object motion sensitivity. The system generates events via fixational eye movements using a Dynamic Vision Sensor integrated into the Speck neuromorphic hardware, mounted on a Pan-Tilt unit, to identify the ROI and saccade toward it. The system, characterized using ideal gratings and benchmarked against the Event Camera Motion Segmentation Dataset, reaches a mean IoU of 82.2% and a mean SSIM of 96% in multi-object motion segmentation. The detection of salient objects reaches 88.8% accuracy in office scenarios and 89.8% in low-light conditions on the Event-Assisted Low-Light Video Object Segmentation Dataset. A real-time demonstrator shows the system's 0.12 s response to dynamic scenes. Its learning-free design ensures robustness across perceptual scenes, making it a reliable foundation for real-time robotic applications serving as a basis for more complex architectures.
♻ ☆ Automatic regularization parameter choice for tomography using a double model approach
Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.
♻ ☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Modified TSception for Analyzing Driver Drowsiness and Mental Workload from EEG
Driver drowsiness is a leading cause of traffic accidents, necessitating real-time, reliable detection systems to ensure road safety. This study proposes a Modified TSception architecture for robust assessment of driver fatigue and mental workload using Electroencephalography (EEG). The model introduces a five-layer hierarchical temporal refinement strategy to capture multi-scale brain dynamics, surpassing the original TSception's three-layer approach. Key innovations include the use of Adaptive Average Pooling (ADP) for structural flexibility across varying EEG dimensions and a two-stage fusion mechanism to optimize spatiotemporal feature integration for improved stability. Evaluated on the SEED-VIG dataset, the Modified TSception achieves 83.46% accuracy, comparable to the original model (83.15%), but with a significantly reduced confidence interval (0.24 vs. 0.36), indicating better performance stability. The architecture's generalizability was further validated on the STEW mental workload dataset, achieving state-of-the-art accuracies of 95.93% and 95.35% for 2-class and 3-class classification, respectively. These results show that the proposed modifications improve consistency and cross-task generalizability, making the model a reliable framework for EEG-based safety monitoring.
comment: 8 Pages, 4 Figures, 1 Table
♻ ☆ Unified Personalized Reward Model for Vision Generation
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
comment: Website: https://codegoat24.github.io/UnifiedReward/flex
♻ ☆ UGround: Towards Unified Visual Grounding with Unrolled Transformers
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.
comment: https://github.com/rui-qian/UGround
♻ ☆ Temporal Concept Dynamics in Diffusion Models via Prompt-Conditioned Interventions ICLR 2026
Diffusion models are usually evaluated by their final outputs, gradually denoising random noise into meaningful images. Yet, generation unfolds along a trajectory, and analyzing this dynamic process is crucial for understanding how controllable, reliable, and predictable these models are in terms of their success/failure modes. In this work, we ask the question: when does noise turn into a specific concept (e.g., age) and lock in the denoising trajectory? We propose PCI (Prompt-Conditioned Intervention) to study this question. PCI is a training-free and model-agnostic framework for analyzing concept dynamics through diffusion time. The central idea is the analysis of Concept Insertion Success (CIS), defined as the probability that a concept inserted at a given timestep is preserved and reflected in the final image, offering a way to characterize the temporal dynamics of concept formation. Applied to several state-of-the-art text-to-image diffusion models and a broad taxonomy of concepts, PCI reveals diverse temporal behaviors across diffusion models, in which certain phases of the trajectory are more favorable to specific concepts even within the same concept type. These findings also provide actionable insights for text-driven image editing, highlighting when interventions are most effective without requiring access to model internals or training, and yielding quantitatively stronger edits that achieve a balance of semantic accuracy and content preservation than strong baselines. Code is available at: https://adagorgun.github.io/PCI-Project/
comment: Accepted at the International Conference on Learning Representations 2026 (ICLR 2026). Code is available at: https://adagorgun.github.io/PCI-Project/
♻ ☆ E-VAds: An E-commerce Short Videos Understanding Benchmark for MLLMs
E-commerce short videos represent a high-revenue segment of the online video industry characterized by a goal-driven format and dense multi-modal signals. Current models often struggle with these videos because existing benchmarks focus primarily on general-purpose tasks and neglect the reasoning of commercial intent. In this work, we first propose a multi-modal information density assessment framework to quantify the complexity of this domain. Our evaluation reveals that e-commerce content exhibits substantially higher density across visual, audio, and textual modalities compared to mainstream datasets, establishing a more challenging frontier for video understanding. To address this gap, we introduce E-commerce Video Ads Benchmark (E-VAds), which is the first benchmark specifically designed for e-commerce short video understanding. We curated 3,961 high-quality videos from Taobao covering a wide range of product categories and used a multi-agent system to generate 19,785 open-ended Q&A pairs. These questions are organized into two primary dimensions, namely Perception and Cognition and Reasoning, which consist of five distinct tasks. Finally, we develop E-VAds-R1, an RL-based reasoning model featuring a multi-grained reward design called MG-GRPO. This strategy provides smooth guidance for early exploration while creating a non-linear incentive for expert-level precision. Experimental results demonstrate that E-VAds-R1 achieves a 109.2% performance gain in commercial intent reasoning with only a few hundred training samples.
♻ ☆ PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits ICLR 2026
Understanding human behavior traits is central to applications in human-computer interaction, computational social science, and personalized AI systems. Such understanding often requires integrating multiple modalities to capture nuanced patterns and relationships. However, existing resources rarely provide datasets that combine behavioral descriptors with complementary modalities such as facial attributes and biographical information. To address this gap, we present PersonaX, a curated collection of multimodal datasets designed to enable comprehensive analysis of public traits across modalities. PersonaX consists of (1) CelebPersona, featuring 9444 public figures from diverse occupations, and (2) AthlePersona, covering 4181 professional athletes across 7 major sports leagues. Each dataset includes behavioral trait assessments inferred by three high-performing large language models, alongside facial imagery and structured biographical features. We analyze PersonaX at two complementary levels. First, we abstract high-level trait scores from text descriptions and apply five statistical independence tests to examine their relationships with other modalities. Second, we introduce a novel causal representation learning (CRL) framework tailored to multimodal and multi-measurement data, providing theoretical identifiability guarantees. Experiments on both synthetic and real-world data demonstrate the effectiveness of our approach. By unifying structured and unstructured analysis, PersonaX establishes a foundation for studying LLM-inferred behavioral traits in conjunction with visual and biographical attributes, advancing multimodal trait analysis and causal reasoning. The code is available at https://github.com/lokali/PersonaX.
comment: ICLR 2026
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ TAMMs: Change Understanding and Forecasting in Satellite Image Time Series with Temporal-Aware Multimodal Models ICLR 2026
Temporal Change Description (TCD) and Future Satellite Image Forecasting (FSIF) are critical, yet historically disjointed tasks in Satellite Image Time Series (SITS) analysis. Both are fundamentally limited by the common challenge of modeling long-range temporal dynamics. To explore how to improve the performance of methods on both tasks simultaneously by enhancing long-range temporal understanding capabilities, we introduce **TAMMs**, the first unified framework designed to jointly perform TCD and FSIF within a single MLLM-diffusion architecture. TAMMs introduces two key innovations: Temporal Adaptation Modules (**TAM**) enhance frozen MLLM's ability to comprehend long-range dynamics, and Semantic-Fused Control Injection (**SFCI**) mechanism translates this change understanding into fine-grained generative control. This synergistic design makes the understanding from the TCD task to directly inform and improve the consistency of the FSIF task. Extensive experiments demonstrate TAMMs significantly outperforms state-of-the-art specialist baselines on both tasks. Our dataset can be found at https://huggingface.co/datasets/IceInPot/TAMMs .
comment: Published as a conference paper at The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Shifting the Breaking Point of Flow Matching for Multi-Instance Editing
Flow matching models have recently emerged as an efficient alternative to diffusion, especially for text-guided image generation and editing, offering faster inference through continuous-time dynamics. However, existing flow-based editors predominantly support global or single-instruction edits and struggle with multi-instance scenarios, where multiple parts of a reference input must be edited independently without semantic interference. We identify this limitation as a consequence of globally conditioned velocity fields and joint attention mechanisms, which entangle concurrent edits. To address this issue, we introduce Instance-Disentangled Attention, a mechanism that partitions joint attention operations, enforcing binding between instance-specific textual instructions and spatial regions during velocity field estimation. We evaluate our approach on both natural image editing and a newly introduced benchmark of text-dense infographics with region-level editing instructions. Experimental results demonstrate that our approach promotes edit disentanglement and locality while preserving global output coherence, enabling single-pass, instance-level editing.
♻ ☆ Understanding Image2Video Domain Shift in Food Segmentation: An Instance-level Analysis on Apples
Food segmentation models trained on static images have achieved strong performance on benchmark datasets; however, their reliability in video settings remains poorly understood. In real-world applications such as food monitoring and instance counting, segmentation outputs must be temporally consistent, yet image-trained models often break down when deployed on videos. In this work, we analyze this failure through an instance segmentation and tracking perspective, focusing on apples as a representative food category. Models are trained solely on image-level food segmentation data and evaluated on video sequences using an instance segmentation with tracking-by-matching framework, enabling object-level temporal analysis. Our results reveal that high frame-wise segmentation accuracy does not translate to stable instance identities over time. Temporal appearance variations, particularly illumination changes, specular reflections, and texture ambiguity, lead to mask flickering and identity fragmentation, resulting in significant errors in apple counting. These failures are largely overlooked by conventional image-based metrics, which substantially overestimate real-world video performance. Beyond diagnosing the problem, we examine practical remedies that do not require full video supervision, including post-hoc temporal regularization and self-supervised temporal consistency objectives. Our findings suggest that the root cause of failure lies in image-centric training objectives that ignore temporal coherence, rather than model capacity. This study highlights a critical evaluation gap in food segmentation research and motivates temporally-aware learning and evaluation protocols for video-based food analysis.
♻ ☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: Data privacy regulations hinder the creation of generalizable foundation models (FMs) for surgery by preventing multi-institutional data aggregation. This study investigates federated learning (FL) as a privacy-preserving solution to collaboratively train robust surgical FMs. Methods: We introduce Federated EndoViT (FL-EndoViT), a federated framework that validates the Masked Autoencoder (MAE) pretraining strategy in a decentralized surgical setting. To ensure convergence under severe data heterogeneity, the architecture integrates adaptive Sharpness-Aware Minimization (FedSAM). Pretrained on the large-scale Endo700k dataset, FL-EndoViT is evaluated against a centralized baseline on different tasks including scene segmentation, action recognition, and phase recognition. Results: FedSAM is critical for successful pretraining, overcoming the convergence failures of standard federated methods. The resulting FL-EndoViT performs comparably to its centralized counterpart, with significant advantages in data-scarce, high-resolution segmentation and generalization to new surgical events. We also establish that full, end-to-end fine-tuning is necessary for optimal performance. Conclusion: This work validates FL with adaptive optimization as a viable paradigm for creating robust, privacy-preserving surgical FMs. Our findings provide a scalable framework for collaborative Surgical Data Science and underscore the optimizer's critical role in handling data heterogeneity. Future work should explore video-based models to incorporate spatiotemporal dynamics.
comment: Preprint submitted to MIDL
♻ ☆ GenTrack2: An Improved Hybrid Approach for Multi-Object Tracking IEEE
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ On the Provable Importance of Gradients for Language-Assisted Image Clustering ICCV2025
This paper investigates the recently emerged problem of Language-assisted Image Clustering (LaIC), where textual semantics are leveraged to improve the discriminability of visual representations to facilitate image clustering. Due to the unavailability of true class names, one of core challenges of LaIC lies in how to filter positive nouns, i.e., those semantically close to the images of interest, from unlabeled wild corpus data. Existing filtering strategies are predominantly based on the off-the-shelf feature space learned by CLIP; however, despite being intuitive, these strategies lack a rigorous theoretical foundation. To fill this gap, we propose a novel gradient-based framework, termed as GradNorm, which is theoretically guaranteed and shows strong empirical performance. In particular, we measure the positiveness of each noun based on the magnitude of gradients back-propagated from the cross-entropy between the predicted target distribution and the softmax output. Theoretically, we provide a rigorous error bound to quantify the separability of positive nouns by GradNorm and prove that GradNorm naturally subsumes existing filtering strategies as extremely special cases of itself. Empirically, extensive experiments show that GradNorm achieves the state-of-the-art clustering performance on various benchmarks.
comment: revised and extended version of ICCV2025
♻ ☆ WristMIR: Coarse-to-Fine Region-Aware Retrieval of Pediatric Wrist Radiographs with Radiology Report-Driven Learning
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
♻ ☆ MoWM: Mixture-of-World-Models for Embodied Planning via Latent-to-Pixel Feature Modulation
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach combines motion-aware latent world model features with pixel-space features, enabling MoWM to emphasize action-relevant visual details for action decoding. Extensive evaluations on the CALVIN and real-world manipulation tasks demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.
♻ ☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Experiments on three diverse video datasets - EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition) with multiple target models covering both classification and regression tasks, demonstrate that LD-ViCE generalizes well and achieves state-of-the-art performance. On the EchoNet-Dynamic dataset, LD-ViCE achieves significantly higher regression accuracy than prior methods and exhibits high temporal consistency, while the refinement stage further improves perceptual quality. Qualitative analyses confirm that LD-ViCE produces semantically meaningful and temporally coherent explanations, providing actionable insights into model behavior. LD-ViCE advances the trustworthiness and interpretability of video-based AI systems through visually coherent counterfactual explanations.
comment: 44 Pages
♻ ☆ MediRound: Multi-Round Entity-Level Reasoning Segmentation in Medical Images
Despite the progress in medical image segmentation, most existing methods remain task-specific and lack interactivity. Although recent text-prompt-based segmentation approaches enhance user-driven and reasoning-based segmentation, they remain confined to single-round dialogues and fail to perform multi-round reasoning. In this work, we introduce Multi-Round Entity-Level Medical Reasoning Segmentation (MEMR-Seg), a new task that requires generating segmentation masks through multi-round queries with entity-level reasoning. To support this task, we construct MR-MedSeg, a large-scale dataset of 177K multi-round medical segmentation dialogues, featuring entity-based reasoning across rounds. Furthermore, we propose MediRound, an effective baseline model designed for multi-round medical reasoning segmentation. To mitigate the inherent error propagation in the chain-like pipeline of multi-round segmentation, we introduce a lightweight yet effective Judgment & Correction Mechanism during model inference. Experimental results demonstrate that our method effectively addresses the MEMR-Seg task and outperforms conventional medical referring segmentation methods.
comment: 16pages, 10 figures
♻ ☆ Free-Boundary Quasiconformal Maps via a Least-squares Operator in Diffeomorphism Optimization
Free-boundary diffeomorphism optimization, an important and widely occurring task in geometric modeling, computer graphics, and biological imaging, requires simultaneously determining a planar target domain and a locally bijective map with well-controlled distortion. We formulate this task through the least-squares quasiconformal (LSQC) operator and establish key structural properties of the LSQC minimizer, including well-posedness under mild conditions, invariance under similarity transformations, and resolution-independent behavior with stability under mesh refinement. We further analyze the sensitivity of the LSQC solution with respect to the Beltrami coefficient, establishing stability and differentiability properties that enable gradient-based optimization over the space of Beltrami coefficients. To make this differentiable formulation practical at scale and to facilitate the optimization process, we introduce the Spectral Beltrami Network (SBN), a multiscale mesh-spectral surrogate that approximates the LSQC solution operator in a single differentiable forward pass. This yields SBN-Opt, an optimization framework that searches over admissible Beltrami coefficients and pinning conditions to solve free-boundary diffeomorphism objectives with explicit distortion control. Extensive experiments on equiareal parameterization and inconsistent surface registration demonstrate consistent improvements over traditional numerical algorithms.
♻ ☆ Common Objects Out of Context (COOCo): Investigating Multimodal Context and Semantic Scene Violations in Referential Communication ACL
To what degree and under what conditions do VLMs rely on scene context when generating references to objects? To address this question, we introduce the $\textit{Common Objects Out-of-Context (COOCo)}$ dataset and conduct experiments on several VLMs under different degrees of scene-object congruency and noise. We find that models leverage scene context adaptively, depending on scene-object semantic relatedness and noise level. Based on these consistent trends across models, we turn to the question of how VLM attention patterns change as a function of target-scene semantic fit, and to what degree these patterns are predictive of categorisation accuracy. We find that successful object categorisation is associated with increased mid-layer attention to the target. We also find a non-monotonic dependency on semantic fit, with attention dropping at moderate fit and increasing for both low and high fit. These results suggest that VLMs dynamically balance local and contextual information for reference generation. Dataset and code are available here: $\href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}$.
comment: Accepted to TACL (pre-MIT Press publication version)
♻ ☆ Self-Supervised Learning Based on Transformed Image Reconstruction for Equivariance-Coherent Feature Representation AAAI2026
Self-supervised learning (SSL) methods have achieved remarkable success in learning image representations allowing invariances in them - but therefore discarding transformation information that some computer vision tasks actually require. While recent approaches attempt to address this limitation by learning equivariant features using linear operators in feature space, they impose restrictive assumptions that constrain flexibility and generalization. We introduce a weaker definition for the transformation relation between image and feature space denoted as equivariance-coherence. We propose a novel SSL auxiliary task that learns equivariance-coherent representations through intermediate transformation reconstruction, which can be integrated with existing joint embedding SSL methods. Our key idea is to reconstruct images at intermediate points along transformation paths, e.g. when training on 30-degree rotations, we reconstruct the 10-degree and 20-degree rotation states. Reconstructing intermediate states requires the transformation information used in augmentations, rather than suppressing it, and therefore fosters features containing the augmented transformation information. Our method decomposes feature vectors into invariant and equivariant parts, training them with standard SSL losses and reconstruction losses, respectively. We demonstrate substantial improvements on synthetic equivariance benchmarks while maintaining competitive performance on downstream tasks requiring invariant representations. The approach seamlessly integrates with existing SSL methods (iBOT, DINOv2) and consistently enhances performance across diverse tasks, including segmentation, detection, depth estimation, and video dense prediction. Our framework provides a practical way for augmenting SSL methods with equivariant capabilities while preserving invariant performance.
comment: AAAI2026 oral
♻ ☆ A Real-Time DDS-Based Chest X-Ray Decision Support System for Resource-Constrained Clinics
Internet of Things (IoT)-based healthcare systems offer significant potential for improving healthcare delivery in humanitarian and resource-constrained environments, providing essential services to underserved populations in remote areas. However, limited network infrastructure in such regions makes reliable communication challenging for traditional IoT systems. This paper presents a real-time chest X-ray decision support system designed for hospitals in remote locations. The proposed system integrates a fine-tuned ResNet50 deep learning model for disease classification with Fast DDS real-time middleware to ensure reliable and low-latency communication between healthcare practitioners and the inference system. Experimental results show that the model achieves an accuracy of 88.61%, precision of 88.76%, and recall of 88.49%. The system attains an average throughput of 3.2 KB/s and an average latency of 65 ms, demonstrating its suitability for deployment in bandwidth-constrained environments. These results highlight the effectiveness of DDS-based middleware in enabling real-time medical decision support for remote healthcare applications.
♻ ☆ Local Dense Logit Relations for Enhanced Knowledge Distillation ICCV2025
State-of-the-art logit distillation methods exhibit versatility, simplicity, and efficiency. Despite the advances, existing studies have yet to delve thoroughly into fine-grained relationships within logit knowledge. In this paper, we propose Local Dense Relational Logit Distillation (LDRLD), a novel method that captures inter-class relationships through recursively decoupling and recombining logit information, thereby providing more detailed and clearer insights for student learning. To further optimize the performance, we introduce an Adaptive Decay Weight (ADW) strategy, which can dynamically adjust the weights for critical category pairs using Inverse Rank Weighting (IRW) and Exponential Rank Decay (ERD). Specifically, IRW assigns weights inversely proportional to the rank differences between pairs, while ERD adaptively controls weight decay based on total ranking scores of category pairs. Furthermore, after the recursive decoupling, we distill the remaining non-target knowledge to ensure knowledge completeness and enhance performance. Ultimately, our method improves the student's performance by transferring fine-grained knowledge and emphasizing the most critical relationships. Extensive experiments on datasets such as CIFAR-100, ImageNet-1K, and Tiny-ImageNet demonstrate that our method compares favorably with state-of-the-art logit-based distillation approaches. The code will be made publicly available.
comment: Accepted by ICCV2025, Code available at https://github.com/yema-web/LDRLD
♻ ☆ MOVA: Towards Scalable and Synchronized Video-Audio Generation
Audio is indispensable for real-world video, yet generation models have largely overlooked audio components. Current approaches to producing audio-visual content often rely on cascaded pipelines, which increase cost, accumulate errors, and degrade overall quality. While systems such as Veo 3 and Sora 2 emphasize the value of simultaneous generation, joint multimodal modeling introduces unique challenges in architecture, data, and training. Moreover, the closed-source nature of existing systems limits progress in the field. In this work, we introduce MOVA (MOSS Video and Audio), an open-source model capable of generating high-quality, synchronized audio-visual content, including realistic lip-synced speech, environment-aware sound effects, and content-aligned music. MOVA employs a Mixture-of-Experts (MoE) architecture, with a total of 32B parameters, of which 18B are active during inference. It supports IT2VA (Image-Text to Video-Audio) generation task. By releasing the model weights and code, we aim to advance research and foster a vibrant community of creators. The released codebase features comprehensive support for efficient inference, LoRA fine-tuning, and prompt enhancement.
comment: Technical report for MOVA (open-source video-audio generation model). 38 pages, 10 figures, 22 tables. Project page: https://mosi.cn/models/mova Code: https://github.com/OpenMOSS/MOVA Models: https://huggingface.co/collections/OpenMOSS-Team/mova. Qinyuan Cheng and Tianyi Liang are project leader. Xie Chen and Xipeng Qiu are corresponding authors
♻ ☆ Controllable Dance Generation with Style-Guided Motion Diffusion
Dance plays an important role as an artistic form and expression in human culture, yet automatically generating dance sequences is a significant yet challenging endeavor. Existing approaches often neglect the critical aspect of controllability in dance generation. Additionally, they inadequately model the nuanced impact of music styles, resulting in dances that lack alignment with the expressive characteristics inherent in the conditioned music. To address this gap, we propose Style-Guided Motion Diffusion (SGMD), which integrates the Transformer-based architecture with a Style Modulation module. By incorporating music features with user-provided style prompts, the SGMD ensures that the generated dances not only match the musical content but also reflect the desired stylistic characteristics. To enable flexible control over the generated dances, we introduce a spatial-temporal masking mechanism. As controllable dance generation has not been fully studied, we construct corresponding experimental setups and benchmarks for tasks such as trajectory-based dance generation, dance in-betweening, and dance inpainting. Extensive experiments demonstrate that our approach can generate realistic and stylistically consistent dances, while also empowering users to create dances tailored to diverse artistic and practical needs. Code is available on Github: https://github.com/mucunzhuzhu/DGSDP
♻ ☆ Multi-Expert Learning Framework with the State Space Model for Optical and SAR Image Registration
Optical and Synthetic Aperture Radar (SAR) image registration is crucial for multi-modal image fusion and applications. However, several challenges limit the performance of existing deep learning-based methods in cross-modal image registration: (i) significant nonlinear radiometric variations between optical and SAR images affect the shared feature learning and matching; (ii) limited textures in images hinder discriminative feature extraction; (iii) the local receptive field of Convolutional Neural Networks (CNNs) restricts the learning of contextual information, while the Transformer can capture long-range global features but with high computational complexity. To address these issues, this paper proposes a multi-expert learning framework with the State Space Model (ME-SSM) for optical and SAR image registration. Firstly, to improve the registration performance with limited textures, ME-SSM constructs a multi-expert learning framework to capture shared features from multi-modal images. Specifically, it extracts features from various transformations of the input image and employs a learnable soft router to dynamically fuse these features, thereby enriching feature representations and improving registration performance. Secondly, ME-SSM introduces a state space model, Mamba, for feature extraction, which employs a multi-directional cross-scanning strategy to efficiently capture global contextual relationships with linear complexity. ME-SSM can expand the receptive field, enhance image registration accuracy, and avoid incurring high computational costs. Additionally, ME-SSM uses a multi-level feature aggregation (MFA) module to enhance the multi-scale feature fusion and interaction. Extensive experiments have demonstrated the effectiveness and advantages of our proposed ME-SSM on optical and SAR image registration.
♻ ☆ Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, limiting its application in real-world scenarios. Existing methods often directly adapt noisy label learning techniques designed for instance classification, overlooking the pixel-wise heterogeneity in medical segmentation with its spatially and anatomically varying difficulties. Consequently, global assumptions or simple confidence metrics fail to address these local variations, leaving boundary ambiguities unresolved. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
♻ ☆ RS-Agent: Automating Remote Sensing Tasks through Intelligent Agent
The unprecedented advancements in Multimodal Large Language Models (MLLMs) have demonstrated strong potential in interacting with humans through both language and visual inputs to perform downstream tasks such as visual question answering and scene understanding. However, these models are constrained to basic instruction-following or descriptive tasks, facing challenges in complex real-world remote sensing applications that require specialized tools and knowledge. To address these limitations, we propose RS-Agent, an AI agent designed to interact with human users and autonomously leverage specialized models to address the demands of real-world remote sensing applications. RS-Agent integrates four key components: a Central Controller based on large language models, a dynamic toolkit for tool execution, a Solution Space for task-specific expert guidance, and a Knowledge Space for domain-level reasoning, enabling it to interpret user queries and orchestrate tools for accurate remote sensing task. We introduce two novel mechanisms: Task-Aware Retrieval, which improves tool selection accuracy through expert-guided planning, and DualRAG, a retrieval-augmented generation method that enhances knowledge relevance through weighted, dual-path retrieval. RS-Agent supports flexible integration of new tools and is compatible with both open-source and proprietary LLMs. Extensive experiments across 9 datasets and 18 remote sensing tasks demonstrate that RS-Agent significantly outperforms state-of-the-art MLLMs, achieving over 95% task planning accuracy and delivering superior performance in tasks such as scene classification, object counting, and remote sensing visual question answering. Our work presents RS-Agent as a robust and extensible framework for advancing intelligent automation in remote sensing analysis.
♻ ☆ From Correspondence to Actions: Human-Like Multi-Image Spatial Reasoning in Multi-modal Large Language Models
While multimodal large language models (MLLMs) have made substantial progress in single-image spatial reasoning, multi-image spatial reasoning, which requires integration of information from multiple viewpoints, remains challenging. Cognitive studies suggest that humans address such tasks through two mechanisms: cross-view correspondence, which identifies regions across different views that correspond to the same physical locations, and stepwise viewpoint transformation, which composes relative viewpoint changes sequentially. However, existing studies incorporate these mechanisms only partially and often implicitly, without explicit supervision for both. We propose Human-Aware Training for Cross-view correspondence and viewpoint cHange (HATCH), a training framework with two complementary objectives: (1) Patch-Level Spatial Alignment, which encourages patch representations to align across views for spatially corresponding regions, and (2) Action-then-Answer Reasoning, which requires the model to generate explicit viewpoint transition actions before predicting the final answer. Experiments on three benchmarks demonstrate that HATCH consistently outperforms baselines of comparable size by a clear margin and achieves competitive results against much larger models, while preserving single-image reasoning capabilities.
♻ ☆ Efficient-SAM2: Accelerating SAM2 with Object-Aware Visual Encoding and Memory Retrieval ICLR 2026
Segment Anything Model 2 (SAM2) shows excellent performance in video object segmentation tasks; however, the heavy computational burden hinders its application in real-time video processing. Although there have been efforts to improve the efficiency of SAM2, most of them focus on retraining a lightweight backbone, with little exploration into post-training acceleration. In this paper, we observe that SAM2 exhibits sparse perception pattern as biological vision, which provides opportunities for eliminating redundant computation and acceleration: i) In mask decoder, the attention primarily focuses on the foreground objects, whereas the image encoder in the earlier stage exhibits a broad attention span, which results in unnecessary computation to background regions. ii) In memory bank, only a small subset of tokens in each frame contribute significantly to memory attention, and the salient regions exhibit temporal consistency, making full-token computation redundant. With these insights, we propose Efficient-SAM2, which promotes SAM2 to adaptively focus on object regions while eliminating task-irrelevant computations, thereby significantly improving inference efficiency. Specifically, for image encoder, we propose object-aware Sparse Window Routing (SWR), a window-level computation allocation mechanism that leverages the consistency and saliency cues from the previous-frame decoder to route background regions into a lightweight shortcut branch. Moreover, for memory attention, we propose object-aware Sparse Memory Retrieval (SMR), which allows only the salient memory tokens in each frame to participate in computation, with the saliency pattern reused from their first recollection. With negligible additional parameters and minimal training overhead, Efficient-SAM2 delivers 1.68x speedup on SAM2.1-L model with only 1.0% accuracy drop on SA-V test set.
comment: ICLR 2026,Code is available at: https://github.com/jingjing0419/Efficient-SAM2
♻ ☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric. The code is available at https://github.com/rohanasthana/memorization-anisotropy .
comment: Accepted at ICLR 2026
♻ ☆ AdaptMMBench: Benchmarking Adaptive Multimodal Reasoning for Mode Selection and Reasoning Process
Adaptive multimodal reasoning has emerged as a promising frontier in Vision-Language Models (VLMs), aiming to dynamically modulate between tool-augmented visual reasoning and text reasoning to enhance both effectiveness and efficiency. However, existing evaluations rely on static difficulty labels and simplistic metrics, which fail to capture the dynamic nature of difficulty relative to varying model capacities. Consequently, they obscure the distinction between adaptive mode selection and general performance while neglecting fine-grained process analyses. In this paper, we propose AdaptMMBench, a comprehensive benchmark for adaptive multimodal reasoning across five domains: real-world, OCR, GUI, knowledge, and math, encompassing both direct perception and complex reasoning tasks. AdaptMMBench utilizes a Matthews Correlation Coefficient (MCC) metric to evaluate the selection rationality of different reasoning modes, isolating this meta-cognition ability by dynamically identifying task difficulties based on models' capability boundaries. Moreover, AdaptMMBench facilitates multi-dimensional process evaluation across key step coverage, tool effectiveness, and computational efficiency. Our evaluation reveals that while adaptive mode selection scales with model capacity, it notably decouples from final accuracy. Conversely, key step coverage aligns with performance, though tool effectiveness remains highly inconsistent across model architectures.
♻ ☆ DINO-LG: Enhancing Vision Transformers with Label Guidance for Coronary Artery Calcium Detection
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by introducing DINO-LG, a novel label-guided extension of DINO (self-distillation with no labels) that incorporates targeted augmentation on annotated calcified regions during self-supervised pre-training. Our three-stage pipeline integrates Vision Transformer (ViT-Base/8) feature extraction via DINO-LG trained on 914 CT scans comprising 700 gated and 214 non-gated acquisitions, linear classification to identify calcified slices, and U-NET segmentation for CAC quantification and Agatston scoring. DINO-LG achieved 89% sensitivity and 90% specificity for detecting CAC-containing CT slices, compared to standard DINO's 79% sensitivity and 77% specificity, reducing false-negative and false-positive rates by 49% and 57% respectively. The integrated system achieves 90% accuracy in CAC risk classification on 45 test patients, outperforming standalone U-NET segmentation (76% accuracy) while processing only the relevant subset of CT slices. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, improving diagnostic precision while lowering healthcare costs by minimizing unnecessary tests and treatments.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ ReaMOT: A Benchmark and Framework for Reasoning-based Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track targets specified by language instructions. However, existing RMOT paradigms are largely designed for explicit instructions and consequently fail to generalize to complex instructions that require logical reasoning. To overcome this, we propose Reasoning-based Multi-Object Tracking (ReaMOT), a novel task that requires models to identify and track targets that satisfy implicit constraints via logical reasoning. To advance this field, we construct the ReaMOT Challenge, a comprehensive benchmark comprising: (1) a large-scale dataset with 1,156 instructions categorized into High-Level Reasoning and Low-Level Perception, covering 423,359 image-language pairs across 869 diverse scenes; and (2) a tailored metric suite designed to jointly evaluate reasoning accuracy and tracking robustness. Furthermore, we propose ReaTrack, a training-free framework that synergizes the reasoning capabilities of Thinking-variant Large Vision-Language Model (LVLM) with the precise temporal modeling of SAM2. Extensive experiments on the ReaMOT Challenge benchmark demonstrates the effectiveness of our ReaTrack framework.
comment: https://github.com/chen-si-jia/ReaMOT
♻ ☆ Q-DiT4SR: Exploration of Detail-Preserving Diffusion Transformer Quantization for Real-World Image Super-Resolution
Recently, Diffusion Transformers (DiTs) have emerged in Real-World Image Super-Resolution (Real-ISR) to generate high-quality textures, yet their heavy inference burden hinders real-world deployment. While Post-Training Quantization (PTQ) is a promising solution for acceleration, existing methods in super-resolution mostly focus on U-Net architectures, whereas generic DiT quantization is typically designed for text-to-image tasks. Directly applying these methods to DiT-based super-resolution models leads to severe degradation of local textures. Therefore, we propose Q-DiT4SR, the first PTQ framework specifically tailored for DiT-based Real-ISR. We propose H-SVD, a hierarchical SVD that integrates a global low-rank branch with a local block-wise rank-1 branch under a matched parameter budget. We further propose Variance-aware Spatio-Temporal Mixed Precision: VaSMP allocates cross-layer weight bit-widths in a data-free manner based on rate-distortion theory, while VaTMP schedules intra-layer activation precision across diffusion timesteps via dynamic programming (DP) with minimal calibration. Experiments on multiple real-world datasets demonstrate that our Q-DiT4SR achieves SOTA performance under both W4A6 and W4A4 settings. Notably, the W4A4 quantization configuration reduces model size by 5.8$\times$ and computational operations by over 60$\times$. Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR.
comment: Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR
♻ ☆ SHIELD: Suppressing Hallucinations In LVLM Encoders via Bias and Vulnerability Defense ICLR 2026
Large Vision-Language Models (LVLMs) excel in diverse cross-modal tasks. However, object hallucination, where models produce plausible but inaccurate object descriptions, remains a significant challenge. In contrast to previous work focusing on LLM components, this paper is the first to trace LVLM hallucinations to visual encoders and identifies three key issues: statistical bias, inherent bias, and vulnerability. To address these challenges, we propose SHIELD, a training-free framework that mitigates hallucinations through three strategies: re-weighting visual tokens to reduce statistical bias, introducing noise-derived tokens to counter inherent bias, and applying adversarial attacks with contrastive decoding to address vulnerability. Experiments demonstrate that SHIELD effectively mitigates object hallucinations across diverse benchmarks and LVLM families. Moreover, SHIELD achieves strong performance on the general LVLM benchmark, highlighting its broad applicability. Code is available at https://github.com/hukcc/SHIELD.
comment: ICLR 2026
♻ ☆ SoulX-FlashHead: Oracle-guided Generation of Infinite Real-time Streaming Talking Heads
Achieving a balance between high-fidelity visual quality and low-latency streaming remains a formidable challenge in audio-driven portrait generation. Existing large-scale models often suffer from prohibitive computational costs, while lightweight alternatives typically compromise on holistic facial representations and temporal stability. In this paper, we propose SoulX-FlashHead, a unified 1.3B-parameter framework designed for real-time, infinite-length, and high-fidelity streaming video generation. To address the instability of audio features in streaming scenarios, we introduce Streaming-Aware Spatiotemporal Pre-training equipped with a Temporal Audio Context Cache mechanism, which ensures robust feature extraction from short audio fragments. Furthermore, to mitigate the error accumulation and identity drift inherent in long-sequence autoregressive generation, we propose Oracle-Guided Bidirectional Distillation, leveraging ground-truth motion priors to provide precise physical guidance. We also present VividHead, a large-scale, high-quality dataset containing 782 hours of strictly aligned footage to support robust training. Extensive experiments demonstrate that SoulX-FlashHead achieves state-of-the-art performance on HDTF and VFHQ benchmarks. Notably, our Lite variant achieves an inference speed of 96 FPS on a single NVIDIA RTX 4090, facilitating ultra-fast interaction without sacrificing visual coherence.
comment: 11 pages, 3 figures
♻ ☆ VLA-Pruner: Temporal-Aware Dual-Level Visual Token Pruning for Efficient Vision-Language-Action Inference
Vision-Language-Action (VLA) models have shown great promise for embodied AI, yet the heavy computational cost of processing continuous visual streams severely limits their real-time deployment. Token pruning (keeping salient visual tokens and dropping redundant ones) has emerged as an effective approach for accelerating Vision-Language Models (VLMs), offering a solution for efficient VLA. However, these VLM-specific token pruning methods select tokens based solely on semantic salience metrics (e.g., prefill attention), while overlooking the VLA's intrinsic dual-system nature of high-level semantic understanding and low-level action execution. Consequently, these methods bias token retention toward semantic cues, discard critical information for action generation, and significantly degrade VLA performance. To bridge this gap, we propose VLA-Pruner, a versatile plug-and-play VLA-specific token prune method that aligns with the dual-system nature of VLA models and exploits the temporal continuity in robot manipulation. Specifically, VLA-Pruner adopts a dual-level importance criterion for visual token retention: vision-language prefill attention for semantic-level relevance and action decode attention, estimated via temporal smoothing, for action-level importance. Based on this criterion, VLA-Pruner proposes a novel dual-level token selection strategy that adaptively preserves a compact, informative set of visual tokens for both semantic understanding and action execution under given compute budget. Experiments show that VLA-Pruner achieves state-of-the-art performance across multiple VLA architectures and diverse robotic tasks.
♻ ☆ DiffBreak: Is Diffusion-Based Purification Robust?
Diffusion-based purification (DBP) has become a cornerstone defense against adversarial examples (AEs), regarded as robust due to its use of diffusion models (DMs) that project AEs onto the natural data manifold. We refute this core claim, theoretically proving that gradient-based attacks effectively target the DM rather than the classifier, causing DBP's outputs to align with adversarial distributions. This prompts a reassessment of DBP's robustness, attributing it to two critical flaws: incorrect gradients and inappropriate evaluation protocols that test only a single random purification of the AE. We show that with proper accounting for stochasticity and resubmission risk, DBP collapses. To support this, we introduce DiffBreak, the first reliable toolkit for differentiation through DBP, eliminating gradient flaws that previously further inflated robustness estimates. We also analyze the current defense scheme used for DBP where classification relies on a single purification, pinpointing its inherent invalidity. We provide a statistically grounded majority-vote (MV) alternative that aggregates predictions across multiple purified copies, showing partial but meaningful robustness gain. We then propose a novel adaptation of an optimization method against deepfake watermarking, crafting systemic perturbations that defeat DBP even under MV, challenging DBP's viability.
♻ ☆ Unconditional Priors Matter! Improving Conditional Generation of Fine-Tuned Diffusion Models WACV 2026
Classifier-Free Guidance (CFG) is a fundamental technique in training conditional diffusion models. The common practice for CFG-based training is to use a single network to learn both conditional and unconditional noise prediction, with a small dropout rate for conditioning. However, we observe that the joint learning of unconditional noise with limited bandwidth in training results in poor priors for the unconditional case. More importantly, these poor unconditional noise predictions become a serious reason for degrading the quality of conditional generation. Inspired by the fact that most CFG-based conditional models are trained by fine-tuning a base model with better unconditional generation, we first show that simply replacing the unconditional noise in CFG with that predicted by the base model can significantly improve conditional generation. Furthermore, we show that a diffusion model other than the one the fine-tuned model was trained on can be used for unconditional noise replacement. We experimentally verify our claim with a range of CFG-based conditional models for both image and video generation, including Zero-1-to-3, Versatile Diffusion, DiT, DynamiCrafter, and InstructPix2Pix.
comment: WACV 2026; Project Page: https://unconditional-priors-matter.github.io/
♻ ☆ UniFit: Towards Universal Virtual Try-on with MLLM-Guided Semantic Alignment AAAI-2026
Image-based virtual try-on (VTON) aims to synthesize photorealistic images of a person wearing specified garments. Despite significant progress, building a universal VTON framework that can flexibly handle diverse and complex tasks remains a major challenge. Recent methods explore multi-task VTON frameworks guided by textual instructions, yet they still face two key limitations: (1) semantic gap between text instructions and reference images, and (2) data scarcity in complex scenarios. To address these challenges, we propose UniFit, a universal VTON framework driven by a Multimodal Large Language Model (MLLM). Specifically, we introduce an MLLM-Guided Semantic Alignment Module (MGSA), which integrates multimodal inputs using an MLLM and a set of learnable queries. By imposing a semantic alignment loss, MGSA captures cross-modal semantic relationships and provides coherent and explicit semantic guidance for the generative process, thereby reducing the semantic gap. Moreover, by devising a two-stage progressive training strategy with a self-synthesis pipeline, UniFit is able to learn complex tasks from limited data. Extensive experiments show that UniFit not only supports a wide range of VTON tasks, including multi-garment and model-to-model try-on, but also achieves state-of-the-art performance. The source code and pretrained models are available at https://github.com/zwplus/UniFit.
comment: accepted to AAAI-2026
♻ ☆ Ice-FMBench: A Foundation Model Benchmark for Sea Ice Type Segmentation
Accurate segmentation and mapping of sea ice types is crucial for safe polar navigation, offshore operations, and climate monitoring. While deep learning has demonstrated strong potential for automating sea ice type segmentation, its success often relies on access to extensive expert labeled datasets, which is both resource intensive and time consuming to create. However, foundation models (FMs), recently developed through self-supervised training on large-scale datasets, have demonstrated impressive performance. Nevertheless, their applicability to sea ice type segmentation based on Synthetic Aperture Radar (SAR) imagery remains uncertain due to the unique challenges posed by sea ice such as intricate geophysical patterns, pronounced seasonal variability, and SAR-specific artifacts like banding, scalloping, and heterogeneous backscatter as well as the fact that SAR data in polar regions are often acquired using specialized sensor modes that differ markedly from those used to collect FM training data at lower latitudes, limiting their direct transferability to polar environments. To address this gap, we contribute: (1) IceFMBench, a comprehensive benchmark framework for evaluation of the state-of-the-art remote sensing FMs on the sea ice type segmentation task using Sentinel1 SAR imagery, where IceFMBench is composed of a widely used standardized dataset, diverse evaluation metrics, and a representative set of selected remote sensing FM models suitable for sea ice type segmentation, with the ability to include new models side by side the existing models; (2) an extensive comparative evaluation of the representative FMs using IceFMBench, with additional case studies to assess performance of the top-performing model in terms of transferability across temporal and spatial domains and (3) a multi teacher knowledge distillation approach to address lack of spatiotemporal transferability.
♻ ☆ Fine-R1: Make Multi-modal LLMs Excel in Fine-Grained Visual Recognition by Chain-of-Thought Reasoning ICLR 2026
Any entity in the visual world can be hierarchically grouped based on shared characteristics and mapped to fine-grained sub-categories. While Multi-modal Large Language Models (MLLMs) achieve strong performance on coarse-grained visual tasks, they often struggle with Fine-Grained Visual Recognition (FGVR). Adapting general-purpose MLLMs to FGVR typically requires large amounts of annotated data, which is costly to obtain, leaving a substantial performance gap compared to contrastive CLIP models dedicated for discriminative tasks. Moreover, MLLMs tend to overfit to seen sub-categories and generalize poorly to unseen ones. To address these challenges, we propose Fine-R1, an MLLM tailored for FGVR through an R1-style training framework: (1) Chain-of-Thought Supervised Fine-tuning, where we construct a high-quality FGVR CoT dataset with rationales of "visual analysis, candidate sub-categories, comparison, and prediction", transition the model into a strong open-world classifier; and (2) Triplet Augmented Policy Optimization, where Intra-class Augmentation mixes trajectories from anchor and positive images within the same category to improve robustness to intra-class variance, while Inter-class Augmentation maximizes the response distinction conditioned on images across sub-categories to enhance discriminative ability. With only 4-shot training, Fine-R1 outperforms existing general MLLMs, reasoning MLLMs, and even contrastive CLIP models in identifying both seen and unseen sub-categories, showing promise in working in knowledge-intensive domains where gathering expert annotations for all sub-categories is arduous. Code is available at https://github.com/PKU-ICST-MIPL/FineR1_ICLR2026.
comment: Published as a conference paper at ICLR 2026. The models are available at https://huggingface.co/collections/StevenHH2000/fine-r1
♻ ☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
♻ ☆ Hunyuan-GameCraft-2: Instruction-following Interactive Game World Model
Recent advances in generative world models have enabled remarkable progress in creating open-ended game environments, evolving from static scene synthesis toward dynamic, interactive simulation. However, current approaches remain limited by rigid action schemas and high annotation costs, restricting their ability to model diverse in-game interactions and player-driven dynamics. To address these challenges, we introduce Hunyuan-GameCraft-2, a new paradigm of instruction-driven interaction for generative game world modeling. Instead of relying on fixed keyboard inputs, our model allows users to control game video contents through natural language prompts, keyboard, or mouse signals, enabling flexible and semantically rich interaction within generated worlds. We formally defined the concept of interactive video data and developed an automated process to transform large-scale, unstructured text-video pairs into causally aligned interactive datasets. Built upon a 14B image-to-video Mixture-of-Experts(MoE) foundation model, our model incorporates a text-driven interaction injection mechanism for fine-grained control over camera motion, character behavior, and environment dynamics. We introduce an interaction-focused benchmark, InterBench, to evaluate interaction performance comprehensively. Extensive experiments demonstrate that our model generates temporally coherent and causally grounded interactive game videos that faithfully respond to diverse and free-form user instructions such as "open the door", "draw a torch", or "trigger an explosion".
comment: Technical Report, Project page:https://hunyuan-gamecraft-2.github.io/, Demo:https://hunyuan.tencent.com/game/game-craft
♻ ☆ Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
comment: Accepted by TMLR
♻ ☆ ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.
♻ ☆ UFM: A Simple Path towards Unified Dense Correspondence with Flow
Dense image correspondence is central to many applications, such as visual odometry, 3D reconstruction, object association, and re-identification. Historically, dense correspondence has been tackled separately for wide-baseline scenarios and optical flow estimation, despite the common goal of matching content between two images. In this paper, we develop a Unified Flow & Matching model (UFM), which is trained on unified data for pixels that are co-visible in both source and target images. UFM uses a simple, generic transformer architecture that directly regresses the (u,v) flow. It is easier to train and more accurate for large flows compared to the typical coarse-to-fine cost volumes in prior work. UFM is 28% more accurate than state-of-the-art flow methods (Unimatch), while also having 62% less error and 6.7x faster than dense wide-baseline matchers (RoMa). UFM is the first to demonstrate that unified training can outperform specialized approaches across both domains. This result enables fast, general-purpose correspondence and opens new directions for multi-modal, long-range, and real-time correspondence tasks.
comment: Project Page: https://uniflowmatch.github.io/
♻ ☆ Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
Object pose estimation is a fundamental computer vision problem with broad applications in augmented reality and robotics. Over the past decade, deep learning models, due to their superior accuracy and robustness, have increasingly supplanted conventional algorithms reliant on engineered point pair features. Nevertheless, several challenges persist in contemporary methods, including their dependency on labeled training data, model compactness, robustness under challenging conditions, and their ability to generalize to novel unseen objects. A recent survey discussing the progress made on different aspects of this area, outstanding challenges, and promising future directions, is missing. To fill this gap, we discuss the recent advances in deep learning-based object pose estimation, covering all three formulations of the problem, \emph{i.e.}, instance-level, category-level, and unseen object pose estimation. Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks, providing the readers with a holistic understanding of this field. Additionally, it discusses training paradigms of different domains, inference modes, application areas, evaluation metrics, and benchmark datasets, as well as reports the performance of current state-of-the-art methods on these benchmarks, thereby facilitating the readers in selecting the most suitable method for their application. Finally, the survey identifies key challenges, reviews the prevailing trends along with their pros and cons, and identifies promising directions for future research. We also keep tracing the latest works at https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation.
comment: Accepted by IJCV 2026, 45 pages, 13 figures
♻ ☆ EchoJEPA: A Latent Predictive Foundation Model for Echocardiography
Foundation models for echocardiography often struggle to disentangle anatomical signal from the stochastic speckle and acquisition artifacts inherent to ultrasound. We present EchoJEPA, a foundation model trained on 18 million echocardiograms across 300K patients, representing the largest pretraining corpus for this modality to date. By leveraging a latent predictive objective, EchoJEPA learns robust anatomical representations that ignore speckle noise. We validate this using a novel multi-view probing framework with frozen backbones, where EchoJEPA outperforms leading baselines by approximately 20% in left ventricular ejection fraction (LVEF) estimation and 17% in right ventricular systolic pressure (RVSP) estimation. The model also exhibits remarkable sample efficiency, reaching 79% view classification accuracy with only 1% of labeled data versus 42% for the best baseline trained on 100%. Crucially, EchoJEPA demonstrates superior generalization, degrading by only 2% under physics-informed acoustic perturbations compared to 17% for competitors. Most remarkably, its zero-shot performance on pediatric patients surpasses fully fine-tuned baselines, establishing latent prediction as a superior paradigm for robust, generalizable medical AI.
Artificial Intelligence 223
☆ Biases in the Blind Spot: Detecting What LLMs Fail to Mention ICML 2026
Large Language Models (LLMs) often provide chain-of-thought (CoT) reasoning traces that appear plausible, but may hide internal biases. We call these *unverbalized biases*. Monitoring models via their stated reasoning is therefore unreliable, and existing bias evaluations typically require predefined categories and hand-crafted datasets. In this work, we introduce a fully automated, black-box pipeline for detecting task-specific unverbalized biases. Given a task dataset, the pipeline uses LLM autoraters to generate candidate bias concepts. It then tests each concept on progressively larger input samples by generating positive and negative variations, and applies statistical techniques for multiple testing and early stopping. A concept is flagged as an unverbalized bias if it yields statistically significant performance differences while not being cited as justification in the model's CoTs. We evaluate our pipeline across six LLMs on three decision tasks (hiring, loan approval, and university admissions). Our technique automatically discovers previously unknown biases in these models (e.g., Spanish fluency, English proficiency, writing formality). In the same run, the pipeline also validates biases that were manually identified by prior work (gender, race, religion, ethnicity). More broadly, our proposed approach provides a practical, scalable path to automatic task-specific bias discovery.
comment: 10 pages, Under review at ICML 2026
☆ Olaf-World: Orienting Latent Actions for Video World Modeling
Scaling action-controllable world models is limited by the scarcity of action labels. While latent action learning promises to extract control interfaces from unlabeled video, learned latents often fail to transfer across contexts: they entangle scene-specific cues and lack a shared coordinate system. This occurs because standard objectives operate only within each clip, providing no mechanism to align action semantics across contexts. Our key insight is that although actions are unobserved, their semantic effects are observable and can serve as a shared reference. We introduce Seq$Δ$-REPA, a sequence-level control-effect alignment objective that anchors integrated latent action to temporal feature differences from a frozen, self-supervised video encoder. Building on this, we present Olaf-World, a pipeline that pretrains action-conditioned video world models from large-scale passive video. Extensive experiments demonstrate that our method learns a more structured latent action space, leading to stronger zero-shot action transfer and more data-efficient adaptation to new control interfaces than state-of-the-art baselines.
comment: Project page: https://showlab.github.io/Olaf-World/ Code: https://github.com/showlab/Olaf-World
☆ Step-resolved data attribution for looped transformers
We study how individual training examples shape the internal computation of looped transformers, where a shared block is applied for $τ$ recurrent iterations to enable latent reasoning. Existing training-data influence estimators such as TracIn yield a single scalar score that aggregates over all loop iterations, obscuring when during the recurrent computation a training example matters. We introduce \textit{Step-Decomposed Influence (SDI)}, which decomposes TracIn into a length-$τ$ influence trajectory by unrolling the recurrent computation graph and attributing influence to specific loop iterations. To make SDI practical at transformer scale, we propose a TensorSketch implementation that never materialises per-example gradients. Experiments on looped GPT-style models and algorithmic reasoning tasks show that SDI scales excellently, matches full-gradient baselines with low error and supports a broad range of data attribution and interpretability tasks with per-step insights into the latent reasoning process.
☆ Causality in Video Diffusers is Separable from Denoising
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. Through systematic probing of autoregressive video diffusers, we uncover two key regularities: (1) early layers produce highly similar features across denoising steps, indicating redundant computation along the diffusion trajectory; and (2) deeper layers exhibit sparse cross-frame attention and primarily perform intra-frame rendering. Motivated by these findings, we introduce Separable Causal Diffusion (SCD), a new architecture that explicitly decouples once-per-frame temporal reasoning, via a causal transformer encoder, from multi-step frame-wise rendering, via a lightweight diffusion decoder. Extensive experiments on both pretraining and post-training tasks across synthetic and real benchmarks show that SCD significantly improves throughput and per-frame latency while matching or surpassing the generation quality of strong causal diffusion baselines.
☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
☆ CODE-SHARP: Continuous Open-ended Discovery and Evolution of Skills as Hierarchical Reward Programs
Developing agents capable of open-endedly discovering and learning novel skills is a grand challenge in Artificial Intelligence. While reinforcement learning offers a powerful framework for training agents to master complex skills, it typically relies on hand-designed reward functions. This is infeasible for open-ended skill discovery, where the set of meaningful skills is not known a priori. While recent methods have shown promising results towards automating reward function design, they remain limited to refining rewards for pre-defined tasks. To address this limitation, we introduce Continuous Open-ended Discovery and Evolution of Skills as Hierarchical Reward Programs (CODE-SHARP), a novel framework leveraging Foundation Models (FM) to open-endedly expand and refine a hierarchical skill archive, structured as a directed graph of executable reward functions in code. We show that a goal-conditioned agent trained exclusively on the rewards generated by the discovered SHARP skills learns to solve increasingly long-horizon goals in the Craftax environment. When composed by a high-level FM-based planner, the discovered skills enable a single goal-conditioned agent to solve complex, long-horizon tasks, outperforming both pretrained agents and task-specific expert policies by over $134$% on average. We will open-source our code and provide additional videos $\href{https://sites.google.com/view/code-sharp/homepage}{here}$.
comment: Preprint
☆ Anagent For Enhancing Scientific Table & Figure Analysis
In scientific research, analysis requires accurately interpreting complex multimodal knowledge, integrating evidence from different sources, and drawing inferences grounded in domain-specific knowledge. However, current artificial intelligence (AI) systems struggle to consistently demonstrate such capabilities. The complexity and variability of scientific tables and figures, combined with heterogeneous structures and long-context requirements, pose fundamental obstacles to scientific table \& figure analysis. To quantify these challenges, we introduce AnaBench, a large-scale benchmark featuring $63,178$ instances from nine scientific domains, systematically categorized along seven complexity dimensions. To tackle these challenges, we propose Anagent, a multi-agent framework for enhanced scientific table \& figure analysis through four specialized agents: Planner decomposes tasks into actionable subtasks, Expert retrieves task-specific information through targeted tool execution, Solver synthesizes information to generate coherent analysis, and Critic performs iterative refinement through five-dimensional quality assessment. We further develop modular training strategies that leverage supervised finetuning and specialized reinforcement learning to optimize individual capabilities while maintaining effective collaboration. Comprehensive evaluation across 170 subdomains demonstrates that Anagent achieves substantial improvements, up to $\uparrow 13.43\%$ in training-free settings and $\uparrow 42.12\%$ with finetuning, while revealing that task-oriented reasoning and context-aware problem-solving are essential for high-quality scientific table \& figure analysis. Our project page: https://xhguo7.github.io/Anagent/.
☆ Chain of Mindset: Reasoning with Adaptive Cognitive Modes
Human problem-solving is never the repetition of a single mindset, by which we mean a distinct mode of cognitive processing. When tackling a specific task, we do not rely on a single mindset; instead, we integrate multiple mindsets within the single solution process. However, existing LLM reasoning methods fall into a common trap: they apply the same fixed mindset across all steps, overlooking that different stages of solving the same problem require fundamentally different mindsets. This single-minded assumption prevents models from reaching the next level of intelligence. To address this limitation, we propose Chain of Mindset (CoM), a training-free agentic framework that enables step-level adaptive mindset orchestration. CoM decomposes reasoning into four functionally heterogeneous mindsets: Spatial, Convergent, Divergent, and Algorithmic. A Meta-Agent dynamically selects the optimal mindset based on the evolving reasoning state, while a bidirectional Context Gate filters cross-module information flow to maintain effectiveness and efficiency. Experiments across six challenging benchmarks spanning mathematics, code generation, scientific QA, and spatial reasoning demonstrate that CoM achieves state-of-the-art performance, outperforming the strongest baseline by 4.96\% and 4.72\% in overall accuracy on Qwen3-VL-32B-Instruct and Gemini-2.0-Flash, while balancing reasoning efficiency. Our code is publicly available at \href{https://github.com/QuantaAlpha/chain-of-mindset}{https://github.com/QuantaAlpha/chain-of-mindset}.
☆ Long Chain-of-Thought Compression via Fine-Grained Group Policy Optimization IEEE
Large Language Models (LLMs) often generate unnecessarily verbose Chain-of-Thought (CoT) reasoning that increases computational costs and latency without proportional performance gains. In this paper, we propose \textbf{F}ine-grained \textbf{G}roup policy \textbf{O}ptimization (\textbf{FGO}), a Reinforcement Learning (RL) algorithm that refines group responses by subdividing them and assigning appropriate weights based on length and entropy, thereby enabling effective CoT compression. Meanwhile, as an enhanced variant of Group Relative Policy Optimization (GRPO), FGO successfully addresses two major limitations of the GRPO: inefficient data utilization and entropy collapse. We evaluate FGO on multiple reasoning LLMs and benchmarks, including MATH500, AIME24, AMC23, and Minerva. Experimental results show that FGO achieves efficient CoT compression without degrading performance, and simultaneously resolves the key limitations of GRPO.
comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2026
☆ Optimistic World Models: Efficient Exploration in Model-Based Deep Reinforcement Learning
Efficient exploration remains a central challenge in reinforcement learning (RL), particularly in sparse-reward environments. We introduce Optimistic World Models (OWMs), a principled and scalable framework for optimistic exploration that brings classical reward-biased maximum likelihood estimation (RBMLE) from adaptive control into deep RL. In contrast to upper confidence bound (UCB)-style exploration methods, OWMs incorporate optimism directly into model learning by augmentation with an optimistic dynamics loss that biases imagined transitions toward higher-reward outcomes. This fully gradient-based loss requires neither uncertainty estimates nor constrained optimization. Our approach is plug-and-play with existing world model frameworks, preserving scalability while requiring only minimal modifications to standard training procedures. We instantiate OWMs within two state-of-the-art world model architectures, leading to Optimistic DreamerV3 and Optimistic STORM, which demonstrate significant improvements in sample efficiency and cumulative return compared to their baseline counterparts.
☆ Fake-HR1: Rethinking reasoning of vision language model for synthetic image detection ICASSP 2026
Recent studies have demonstrated that incorporating Chain-of-Thought (CoT) reasoning into the detection process can enhance a model's ability to detect synthetic images. However, excessively lengthy reasoning incurs substantial resource overhead, including token consumption and latency, which is particularly redundant when handling obviously generated forgeries. To address this issue, we propose Fake-HR1, a large-scale hybrid-reasoning model that, to the best of our knowledge, is the first to adaptively determine whether reasoning is necessary based on the characteristics of the generative detection task. To achieve this, we design a two-stage training framework: we first perform Hybrid Fine-Tuning (HFT) for cold-start initialization, followed by online reinforcement learning with Hybrid-Reasoning Grouped Policy Optimization (HGRPO) to implicitly learn when to select an appropriate reasoning mode. Experimental results show that Fake-HR1 adaptively performs reasoning across different types of queries, surpassing existing LLMs in both reasoning ability and generative detection performance, while significantly improving response efficiency.
comment: Accepted by ICASSP 2026
☆ Decoupled Reasoning with Implicit Fact Tokens (DRIFT): A Dual-Model Framework for Efficient Long-Context Inference
The integration of extensive, dynamic knowledge into Large Language Models (LLMs) remains a significant challenge due to the inherent entanglement of factual data and reasoning patterns. Existing solutions, ranging from non-parametric Retrieval-Augmented Generation (RAG) to parametric knowledge editing, are often constrained in practice by finite context windows, retriever noise, or the risk of catastrophic forgetting. In this paper, we propose DRIFT, a novel dual-model architecture designed to explicitly decouple knowledge extraction from the reasoning process. Unlike static prompt compression, DRIFT employs a lightweight knowledge model to dynamically compress document chunks into implicit fact tokens conditioned on the query. These dense representations are projected into the reasoning model's embedding space, replacing raw, redundant text while maintaining inference accuracy. Extensive experiments show that DRIFT significantly improves performance on long-context tasks, outperforming strong baselines among comparably sized models. Our approach provides a scalable and efficient paradigm for extending the effective context window and reasoning capabilities of LLMs. Our code is available at https://github.com/Lancelot-Xie/DRIFT.
☆ ADORA: Training Reasoning Models with Dynamic Advantage Estimation on Reinforcement Learning
Reinforcement learning has become a cornerstone technique for developing reasoning models in complex tasks, ranging from mathematical problem-solving to imaginary reasoning. The optimization of these models typically relies on policy gradient methods, whose efficacy hinges on the accurate estimation of an advantage function. However, prevailing methods typically employ static advantage estimation, a practice that leads to inefficient credit assignment by neglecting the dynamic utility of training samples over time. This limitation results in suboptimal policy updates, which in turn manifest as slower convergence rates and increased learning instability, as models fail to adapt to evolving sample utilities effectively. To address this problem, we introduce \textbf{ADORA} (\textbf{A}dvantage \textbf{D}ynamics via \textbf{O}nline \textbf{R}ollout \textbf{A}daptation), a novel framework for policy optimization. ADORA dynamically adjusts the advantage function's weighting by adaptively categorizing training data into temporarily advantageous and disadvantageous samples, based on their evolving utility during online model rollouts. This tailored data differentiation strategy allows ADORA to be seamlessly integrated into existing policy optimization algorithms without significant architectural modifications, enabling the policy to prioritize learning from more informative experiences and thereby achieve more efficient policy updates. Extensive evaluations across diverse model families and varying data scales demonstrate that ADORA is a robust and efficient framework. It significantly enhances long reasoning in both geometric and mathematical tasks, consistently achieving notable performance gains without requiring sensitive hyperparameter tuning.
☆ Kunlun: Establishing Scaling Laws for Massive-Scale Recommendation Systems through Unified Architecture Design
Deriving predictable scaling laws that govern the relationship between model performance and computational investment is crucial for designing and allocating resources in massive-scale recommendation systems. While such laws are established for large language models, they remain challenging for recommendation systems, especially those processing both user history and context features. We identify poor scaling efficiency as the main barrier to predictable power-law scaling, stemming from inefficient modules with low Model FLOPs Utilization (MFU) and suboptimal resource allocation. We introduce Kunlun, a scalable architecture that systematically improves model efficiency and resource allocation. Our low-level optimizations include Generalized Dot-Product Attention (GDPA), Hierarchical Seed Pooling (HSP), and Sliding Window Attention. Our high-level innovations feature Computation Skip (CompSkip) and Event-level Personalization. These advances increase MFU from 17% to 37% on NVIDIA B200 GPUs and double scaling efficiency over state-of-the-art methods. Kunlun is now deployed in major Meta Ads models, delivering significant production impact.
comment: 10 pages, 4 figures
☆ RoboSubtaskNet: Temporal Sub-task Segmentation for Human-to-Robot Skill Transfer in Real-World Environments
Temporally locating and classifying fine-grained sub-task segments in long, untrimmed videos is crucial to safe human-robot collaboration. Unlike generic activity recognition, collaborative manipulation requires sub-task labels that are directly robot-executable. We present RoboSubtaskNet, a multi-stage human-to-robot sub-task segmentation framework that couples attention-enhanced I3D features (RGB plus optical flow) with a modified MS-TCN employing a Fibonacci dilation schedule to capture better short-horizon transitions such as reach-pick-place. The network is trained with a composite objective comprising cross-entropy and temporal regularizers (truncated MSE and a transition-aware term) to reduce over-segmentation and to encourage valid sub-task progressions. To close the gap between vision benchmarks and control, we introduce RoboSubtask, a dataset of healthcare and industrial demonstrations annotated at the sub-task level and designed for deterministic mapping to manipulator primitives. Empirically, RoboSubtaskNet outperforms MS-TCN and MS-TCN++ on GTEA and our RoboSubtask benchmark (boundary-sensitive and sequence metrics), while remaining competitive on the long-horizon Breakfast benchmark. Specifically, RoboSubtaskNet attains F1 @ 50 = 79.5%, Edit = 88.6%, Acc = 78.9% on GTEA; F1 @ 50 = 30.4%, Edit = 52.0%, Acc = 53.5% on Breakfast; and F1 @ 50 = 94.2%, Edit = 95.6%, Acc = 92.2% on RoboSubtask. We further validate the full perception-to-execution pipeline on a 7-DoF Kinova Gen3 manipulator, achieving reliable end-to-end behavior in physical trials (overall task success approx 91.25%). These results demonstrate a practical path from sub-task level video understanding to deployed robotic manipulation in real-world settings.
☆ Discovering High Level Patterns from Simulation Traces
Artificial intelligence (AI) agents embedded in environments with physics-based interaction face many challenges including reasoning, planning, summarization, and question answering. This problem is exacerbated when a human user wishes to either guide or interact with the agent in natural language. Although the use of Language Models (LMs) is the default choice, as an AI tool, they struggle with tasks involving physics. The LM's capability for physical reasoning is learned from observational data, rather than being grounded in simulation. A common approach is to include simulation traces as context, but this suffers from poor scalability as simulation traces contain larger volumes of fine-grained numerical and semantic data. In this paper, we propose a natural language guided method to discover coarse-grained patterns (e.g., 'rigid-body collision', 'stable support', etc.) from detailed simulation logs. Specifically, we synthesize programs that operate on simulation logs and map them to a series of high level activated patterns. We show, through two physics benchmarks, that this annotated representation of the simulation log is more amenable to natural language reasoning about physical systems. We demonstrate how this method enables LMs to generate effective reward programs from goals specified in natural language, which may be used within the context of planning or supervised learning.
☆ A Collaborative Safety Shield for Safe and Efficient CAV Lane Changes in Congested On-Ramp Merging IEEE
Lane changing in dense traffic is a significant challenge for Connected and Autonomous Vehicles (CAVs). Existing lane change controllers primarily either ensure safety or collaboratively improve traffic efficiency, but do not consider these conflicting objectives together. To address this, we propose the Multi-Agent Safety Shield (MASS), designed using Control Barrier Functions (CBFs) to enable safe and collaborative lane changes. The MASS enables collaboration by capturing multi-agent interactions among CAVs through interaction topologies constructed as a graph using a simple algorithm. Further, a state-of-the-art Multi-Agent Reinforcement Learning (MARL) lane change controller is extended by integrating MASS to ensure safety and defining a customised reward function to prioritise efficiency improvements. As a result, we propose a lane change controller, known as MARL-MASS, and evaluate it in a congested on-ramp merging simulation. The results demonstrate that MASS enables collaborative lane changes with safety guarantees by strictly respecting the safety constraints. Moreover, the proposed custom reward function improves the stability of MARL policies trained with a safety shield. Overall, by encouraging the exploration of a collaborative lane change policy while respecting safety constraints, MARL-MASS effectively balances the trade-off between ensuring safety and improving traffic efficiency in congested traffic. The code for MARL-MASS is available with an open-source licence at https://github.com/hkbharath/MARL-MASS
comment: Accepted in IEEE IV 2026
☆ ESTAR: Early-Stopping Token-Aware Reasoning For Efficient Inference
Large reasoning models (LRMs) achieve state-of-the-art performance by generating long chains-of-thought, but often waste computation on redundant reasoning after the correct answer has already been reached. We introduce Early-Stopping for Token-Aware Reasoning (ESTAR), which detects and reduces such reasoning redundancy to improve efficiency without sacrificing accuracy. Our method combines (i) a trajectory-based classifier that identifies when reasoning can be safely stopped, (ii) supervised fine-tuning to teach LRMs to propose self-generated signals, and (iii) -aware reinforcement learning that truncates rollouts at self-generated stop points with compute-aware rewards. Experiments on four reasoning datasets show that ESTAR reduces reasoning length by about 3.7x (from 4,799 to 1,290) while preserving accuracy (74.9% vs. 74.2%), with strong cross-domain generalization. These results highlight early stopping as a simple yet powerful mechanism for improving reasoning efficiency in LRMs.
☆ A Unified Assessment of the Poverty of the Stimulus Argument for Neural Language Models
How can children acquire native-level syntax from limited input? According to the Poverty of the Stimulus Hypothesis (PoSH), the linguistic input children receive is insufficient to explain certain generalizations that are robustly learned; innate linguistic constraints, many have argued, are thus necessary to explain language learning. Neural language models, which lack such language-specific constraints in their design, offer a computational test of this longstanding (but controversial) claim. We introduce \poshbench, a training-and-evaluation suite targeting question formation, islands to movement, and other English phenomena at the center of the PoSH arguments. Training Transformer models on 10--50M words of developmentally plausible text, we find indications of generalization on all phenomena even without direct positive evidence -- yet neural models remain less data-efficient and their generalizations are weaker than those of children. We further enhance our models with three recently proposed cognitively motivated inductive biases. We find these biases improve general syntactic competence but not \poshbench performance. Our findings challenge the claim that innate syntax is the only possible route to generalization, while suggesting that human-like data efficiency requires inductive biases beyond those tested here.
☆ Empirical Stability Analysis of Kolmogorov-Arnold Networks in Hard-Constrained Recurrent Physics-Informed Discovery
We investigate the integration of Kolmogorov-Arnold Networks (KANs) into hard-constrained recurrent physics-informed architectures (HRPINN) to evaluate the fidelity of learned residual manifolds in oscillatory systems. Motivated by the Kolmogorov-Arnold representation theorem and preliminary gray-box results, we hypothesized that KANs would enable efficient recovery of unknown terms compared to MLPs. Through initial sensitivity analysis on configuration sensitivity, parameter scale, and training paradigm, we found that while small KANs are competitive on univariate polynomial residuals (Duffing), they exhibit severe hyperparameter fragility, instability in deeper configurations, and consistent failure on multiplicative terms (Van der Pol), generally outperformed by standard MLPs. These empirical challenges highlight limitations of the additive inductive bias in the original KAN formulation for state coupling and provide preliminary empirical evidence of inductive bias limitations for future hybrid modeling.
comment: 5 pages
☆ Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infusion to just 0.2% (100/45,000) of the training documents can be competitive with the baseline of inserting a small number of explicit behavior examples. We also find that Infusion transfers across architectures (ResNet $\leftrightarrow$ CNN), suggesting a single poisoned corpus can affect multiple independently trained models. In preliminary language experiments, we characterize when our approach increases the probability of target behaviors and when it fails, finding it most effective at amplifying behaviors the model has already learned. Taken together, these results show that small, subtle edits to training data can systematically shape model behavior, underscoring the importance of training data interpretability for adversaries and defenders alike. We provide the code here: https://github.com/jrosseruk/infusion.
comment: 10 pages, 14 figures
☆ Online Monitoring Framework for Automotive Time Series Data using JEPA Embeddings IEEE
As autonomous vehicles are rolled out, measures must be taken to ensure their safe operation. In order to supervise a system that is already in operation, monitoring frameworks are frequently employed. These run continuously online in the background, supervising the system status and recording anomalies. This work proposes an online monitoring framework to detect anomalies in object state representations. Thereby, a key challenge is creating a framework for anomaly detection without anomaly labels, which are usually unavailable for unknown anomalies. To address this issue, this work applies a self-supervised embedding method to translate object data into a latent representation space. For this, a JEPA-based self-supervised prediction task is constructed, allowing training without anomaly labels and the creation of rich object embeddings. The resulting expressive JEPA embeddings serve as input for established anomaly detection methods, in order to identify anomalies within object state representations. This framework is particularly useful for applications in real-world environments, where new or unknown anomalies may occur during operation for which there are no labels available. Experiments performed on the publicly available, real-world nuScenes dataset illustrate the framework's capabilities.
comment: Accepted at the 2026 IEEE Intelligent Vehicles Symposium. Copyright 2026 IEEE. Permission from IEEE must be obtained for use in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Coupled Inference in Diffusion Models for Semantic Decomposition
Many visual scenes can be described as compositions of latent factors. Effective recognition, reasoning, and editing often require not only forming such compositional representations, but also solving the decomposition problem. One popular choice for constructing these representations is through the binding operation. Resonator networks, which can be understood as coupled Hopfield networks, were proposed as a way to perform decomposition on such bound representations. Recent works have shown notable similarities between Hopfield networks and diffusion models. Motivated by these observations, we introduce a framework for semantic decomposition using coupled inference in diffusion models. Our method frames semantic decomposition as an inverse problem and couples the diffusion processes using a reconstruction-driven guidance term that encourages the composition of factor estimates to match the bound vector. We also introduce a novel iterative sampling scheme that improves the performance of our model. Finally, we show that attention-based resonator networks are a special case of our framework. Empirically, we demonstrate that our coupled inference framework outperforms resonator networks across a range of synthetic semantic decomposition tasks.
comment: 15 pages
☆ Supervised Metric Regularization Through Alternating Optimization for Multi-Regime Physics-Informed Neural Networks
Standard Physics-Informed Neural Networks (PINNs) often face challenges when modeling parameterized dynamical systems with sharp regime transitions, such as bifurcations. In these scenarios, the continuous mapping from parameters to solutions can result in spectral bias or "mode collapse", where the network averages distinct physical behaviors. We propose a Topology-Aware PINN (TAPINN) that aims to mitigate this challenge by structuring the latent space via Supervised Metric Regularization. Unlike standard parametric PINNs that map physical parameters directly to solutions, our method conditions the solver on a latent state optimized to reflect the metric-based separation between regimes, showing ~49% lower physics residual (0.082 vs. 0.160). We train this architecture using a phase-based Alternating Optimization (AO) schedule to manage gradient conflicts between the metric and physics objectives. Preliminary experiments on the Duffing Oscillator demonstrate that while standard baselines suffer from spectral bias and high-capacity Hypernetworks overfit (memorizing data while violating physics), our approach achieves stable convergence with 2.18x lower gradient variance than a multi-output Sobolev Error baseline, and 5x fewer parameters than a hypernetwork-based alternative.
comment: 5 pages, 1 figure
☆ Drug Release Modeling using Physics-Informed Neural Networks
Accurate modeling of drug release is essential for designing and developing controlled-release systems. Classical models (Fick, Higuchi, Peppas) rely on simplifying assumptions that limit their accuracy in complex geometries and release mechanisms. Here, we propose a novel approach using Physics-Informed Neural Networks (PINNs) and Bayesian PINNs (BPINNs) for predicting release from planar, 1D-wrinkled, and 2D-crumpled films. This approach uniquely integrates Fick's diffusion law with limited experimental data to enable accurate long-term predictions from short-term measurements, and is systematically benchmarked against classical drug release models. We embedded Fick's second law into PINN as loss with 10,000 Latin-hypercube collocation points and utilized previously published experimental datasets to assess drug release performance through mean absolute error (MAE) and root mean square error (RMSE), considering noisy conditions and limited-data scenarios. Our approach reduced mean error by up to 40% relative to classical baselines across all film types. The PINN formulation achieved RMSE <0.05 utilizing only the first 6% of the release time data (reducing 94% of release time required for the experiments) for the planar film. For wrinkled and crumpled films, the PINN reached RMSE <0.05 in 33% of the release time data. BPINNs provide tighter and more reliable uncertainty quantification under noise. By combining physical laws with experimental data, the proposed framework yields highly accurate long-term release predictions from short-term measurements, offering a practical route for accelerated characterization and more efficient early-stage drug release system formulation.
☆ Bladder Vessel Segmentation using a Hybrid Attention-Convolution Framework
Urinary bladder cancer surveillance requires tracking tumor sites across repeated interventions, yet the deformable and hollow bladder lacks stable landmarks for orientation. While blood vessels visible during endoscopy offer a patient-specific "vascular fingerprint" for navigation, automated segmentation is challenged by imperfect endoscopic data, including sparse labels, artifacts like bubbles or variable lighting, continuous deformation, and mucosal folds that mimic vessels. State-of-the-art vessel segmentation methods often fail to address these domain-specific complexities. We introduce a Hybrid Attention-Convolution (HAC) architecture that combines Transformers to capture global vessel topology prior with a CNN that learns a residual refinement map to precisely recover thin-vessel details. To prioritize structural connectivity, the Transformer is trained on optimized ground truth data that exclude short and terminal branches. Furthermore, to address data scarcity, we employ a physics-aware pretraining, that is a self-supervised strategy using clinically grounded augmentations on unlabeled data. Evaluated on the BlaVeS dataset, consisting of endoscopic video frames, our approach achieves high accuracy (0.94) and superior precision (0.61) and clDice (0.66) compared to state-of-the-art medical segmentation models. Crucially, our method successfully suppresses false positives from mucosal folds that dynamically appear and vanish as the bladder fills and empties during surgery. Hence, HAC provides the reliable structural stability required for clinical navigation.
☆ Closing Reasoning Gaps in Clinical Agents with Differential Reasoning Learning
Clinical decision support requires not only correct answers but also clinically valid reasoning. We propose Differential Reasoning Learning (DRL), a framework that improves clinical agents by learning from reasoning discrepancies. From reference reasoning rationales (e.g., physician-authored clinical rationale, clinical guidelines, or outputs from more capable models) and the agent's free-form chain-of-thought (CoT), DRL extracts reasoning graphs as directed acyclic graphs (DAGs) and performs a clinically weighted graph edit distance (GED)-based discrepancy analysis. An LLM-as-a-judge aligns semantically equivalent nodes and diagnoses discrepancies between graphs. These graph-level discrepancy diagnostics are converted into natural-language instructions and stored in a Differential Reasoning Knowledge Base (DR-KB). At inference, we retrieve top-$k$ instructions via Retrieval-Augmented Generation (RAG) to augment the agent prompt and patch likely logic gaps. Evaluation on open medical question answering (QA) benchmarks and a Return Visit Admissions (RVA) prediction task from internal clinical data demonstrates gains over baselines, improving both final-answer accuracy and reasoning fidelity. Ablation studies confirm gains from infusing reference reasoning rationales and the top-$k$ retrieval strategy. Clinicians' review of the output provides further assurance of the approach. Together, results suggest that DRL supports more reliable clinical decision-making in complex reasoning scenarios and offers a practical mechanism for deployment under limited token budgets.
☆ Instruct2Act: From Human Instruction to Actions Sequencing and Execution via Robot Action Network for Robotic Manipulation
Robots often struggle to follow free-form human instructions in real-world settings due to computational and sensing limitations. We address this gap with a lightweight, fully on-device pipeline that converts natural-language commands into reliable manipulation. Our approach has two stages: (i) the instruction to actions module (Instruct2Act), a compact BiLSTM with a multi-head-attention autoencoder that parses an instruction into an ordered sequence of atomic actions (e.g., reach, grasp, move, place); and (ii) the robot action network (RAN), which uses the dynamic adaptive trajectory radial network (DATRN) together with a vision-based environment analyzer (YOLOv8) to generate precise control trajectories for each sub-action. The entire system runs on a modest system with no cloud services. On our custom proprietary dataset, Instruct2Act attains 91.5% sub-actions prediction accuracy while retaining a small footprint. Real-robot evaluations across four tasks (pick-place, pick-pour, wipe, and pick-give) yield an overall 90% success; sub-action inference completes in < 3.8s, with end-to-end executions in 30-60s depending on task complexity. These results demonstrate that fine-grained instruction-to-action parsing, coupled with DATRN-based trajectory generation and vision-guided grounding, provides a practical path to deterministic, real-time manipulation in resource-constrained, single-camera settings.
☆ Why Do AI Agents Systematically Fail at Cloud Root Cause Analysis?
Failures in large-scale cloud systems incur substantial financial losses, making automated Root Cause Analysis (RCA) essential for operational stability. Recent efforts leverage Large Language Model (LLM) agents to automate this task, yet existing systems exhibit low detection accuracy even with capable models, and current evaluation frameworks assess only final answer correctness without revealing why the agent's reasoning failed. This paper presents a process level failure analysis of LLM-based RCA agents. We execute the full OpenRCA benchmark across five LLM models, producing 1,675 agent runs, and classify observed failures into 12 pitfall types across intra-agent reasoning, inter-agent communication, and agent-environment interaction. Our analysis reveals that the most prevalent pitfalls, notably hallucinated data interpretation and incomplete exploration, persist across all models regardless of capability tier, indicating that these failures originate from the shared agent architecture rather than from individual model limitations. Controlled mitigation experiments further show that prompt engineering alone cannot resolve the dominant pitfalls, whereas enriching the inter-agent communication protocol reduces communication-related failures by up to 15 percentage points. The pitfall taxonomy and diagnostic methodology developed in this work provide a foundation for designing more reliable autonomous agents for cloud RCA.
☆ Unbalanced optimal transport for robust longitudinal lesion evolution with registration-aware and appearance-guided priors IEEE
Evaluating lesion evolution in longitudinal CT scans of can cer patients is essential for assessing treatment response, yet establishing reliable lesion correspondence across time remains challenging. Standard bipartite matchers, which rely on geometric proximity, struggle when lesions appear, disappear, merge, or split. We propose a registration-aware matcher based on unbalanced optimal transport (UOT) that accommodates unequal lesion mass and adapts priors to patient-level tumor-load changes. Our transport cost blends (i) size-normalized geometry, (ii) local registration trust from the deformation-field Jacobian, and (iii) optional patch-level appearance consistency. The resulting transport plan is sparsified by relative pruning, yielding one-to-one matches as well as new, disappearing, merging, and splitting lesions without retraining or heuristic rules. On longitudinal CT data, our approach achieves consistently higher edge-detection precision and recall, improved lesion-state recall, and superior lesion-graph component F1 scores versus distance-only baselines.
comment: This work has been submitted to the IEEE for possible publication. Accepted at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ Monocular Normal Estimation via Shading Sequence Estimation ICLR 2026
Monocular normal estimation aims to estimate the normal map from a single RGB image of an object under arbitrary lights. Existing methods rely on deep models to directly predict normal maps. However, they often suffer from 3D misalignment: while the estimated normal maps may appear to have a correct appearance, the reconstructed surfaces often fail to align with the geometric details. We argue that this misalignment stems from the current paradigm: the model struggles to distinguish and reconstruct varying geometry represented in normal maps, as the differences in underlying geometry are reflected only through relatively subtle color variations. To address this issue, we propose a new paradigm that reformulates normal estimation as shading sequence estimation, where shading sequences are more sensitive to various geometric information. Building on this paradigm, we present RoSE, a method that leverages image-to-video generative models to predict shading sequences. The predicted shading sequences are then converted into normal maps by solving a simple ordinary least-squares problem. To enhance robustness and better handle complex objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes, materials, and light conditions. Experiments demonstrate that RoSE achieves state-of-the-art performance on real-world benchmark datasets for object-based monocular normal estimation.
comment: Accepted by ICLR 2026 (Oral Presentation)
☆ LLMs Encode Their Failures: Predicting Success from Pre-Generation Activations
Running LLMs with extended reasoning on every problem is expensive, but determining which inputs actually require additional compute remains challenging. We investigate whether their own likelihood of success is recoverable from their internal representations before generation, and if this signal can guide more efficient inference. We train linear probes on pre-generation activations to predict policy-specific success on math and coding tasks, substantially outperforming surface features such as question length and TF-IDF. Using E2H-AMC, which provides both human and model performance on identical problems, we show that models encode a model-specific notion of difficulty that is distinct from human difficulty, and that this distinction increases with extended reasoning. Leveraging these probes, we demonstrate that routing queries across a pool of models can exceed the best-performing model whilst reducing inference cost by up to 70\% on MATH, showing that internal representations enable practical efficiency gains even when they diverge from human intuitions about difficulty. Our code is available at: https://github.com/KabakaWilliam/llms_know_difficulty
☆ SARS: A Novel Face and Body Shape and Appearance Aware 3D Reconstruction System extends Morphable Models
Morphable Models (3DMMs) are a type of morphable model that takes 2D images as inputs and recreates the structure and physical appearance of 3D objects, especially human faces and bodies. 3DMM combines identity and expression blendshapes with a basic face mesh to create a detailed 3D model. The variability in the 3D Morphable models can be controlled by tuning diverse parameters. They are high-level image descriptors, such as shape, texture, illumination, and camera parameters. Previous research in 3D human reconstruction concentrated solely on global face structure or geometry, ignoring face semantic features such as age, gender, and facial landmarks characterizing facial boundaries, curves, dips, and wrinkles. In order to accommodate changes in these high-level facial characteristics, this work introduces a shape and appearance-aware 3D reconstruction system (named SARS by us), a c modular pipeline that extracts body and face information from a single image to properly rebuild the 3D model of the human full body.
☆ Self-Regulated Reading with AI Support: An Eight-Week Study with Students
College students increasingly use AI chatbots to support academic reading, yet we lack granular understanding of how these interactions shape their reading experience and cognitive engagement. We conducted an eight-week longitudinal study with 15 undergraduates who used AI to support assigned readings in a course. We collected 838 prompts across 239 reading sessions and developed a coding schema categorizing prompts into four cognitive themes: Decoding, Comprehension, Reasoning, and Metacognition. Comprehension prompts dominated (59.6%), with Reasoning (29.8%), Metacognition (8.5%), and Decoding (2.1%) less frequent. Most sessions (72%) contained exactly three prompts, the required minimum of the reading assignment. Within sessions, students showed natural cognitive progression from comprehension toward reasoning, but this progression was truncated. Across eight weeks, students' engagement patterns remained stable, with substantial individual differences persisting throughout. Qualitative analysis revealed an intention-behavior gap: students recognized that effective prompting required effort but rarely applied this knowledge, with efficiency emerging as the primary driver. Students also strategically triaged their engagement based on interest and academic pressures, exhibiting a novel pattern of reading through AI rather than with it: using AI-generated summaries as primary material to filter which sections merited deeper attention. We discuss design implications for AI reading systems that scaffold sustained cognitive engagement.
☆ Routing, Cascades, and User Choice for LLMs ICLR 2026
To mitigate the trade-offs between performance and costs, LLM providers route user tasks to different models based on task difficulty and latency. We study the effect of LLM routing with respect to user behavior. We propose a game between an LLM provider with two models (standard and reasoning) and a user who can re-prompt or abandon tasks if the routed model cannot solve them. The user's goal is to maximize their utility minus the delay from using the model, while the provider minimizes the cost of servicing the user. We solve this Stackelberg game by fully characterizing the user best response and simplifying the provider problem. We observe that in nearly all cases, the optimal routing policy involves a static policy with no cascading that depends on the expected utility of the models to the user. Furthermore, we reveal a misalignment gap between the provider-optimal and user-preferred routes when the user's and provider's rankings of the models with respect to utility and cost differ. Finally, we demonstrate conditions for extreme misalignment where providers are incentivized to throttle the latency of the models to minimize their costs, consequently depressing user utility. The results yield simple threshold rules for single-provider, single-user interactions and clarify when routing, cascading, and throttling help or harm.
comment: 23 pages, accepted in ICLR 2026
☆ TaCo: A Benchmark for Lossless and Lossy Codecs of Heterogeneous Tactile Data
Tactile sensing is crucial for embodied intelligence, providing fine-grained perception and control in complex environments. However, efficient tactile data compression, which is essential for real-time robotic applications under strict bandwidth constraints, remains underexplored. The inherent heterogeneity and spatiotemporal complexity of tactile data further complicate this challenge. To bridge this gap, we introduce TaCo, the first comprehensive benchmark for Tactile data Codecs. TaCo evaluates 30 compression methods, including off-the-shelf compression algorithms and neural codecs, across five diverse datasets from various sensor types. We systematically assess both lossless and lossy compression schemes on four key tasks: lossless storage, human visualization, material and object classification, and dexterous robotic grasping. Notably, we pioneer the development of data-driven codecs explicitly trained on tactile data, TaCo-LL (lossless) and TaCo-L (lossy). Results have validated the superior performance of our TaCo-LL and TaCo-L. This benchmark provides a foundational framework for understanding the critical trade-offs between compression efficiency and task performance, paving the way for future advances in tactile perception.
comment: 27 pages
☆ Code2World: A GUI World Model via Renderable Code Generation
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
comment: github: https://github.com/AMAP-ML/Code2World project page: https://amap-ml.github.io/Code2World/
☆ Hybrid Responsible AI-Stochastic Approach for SLA Compliance in Multivendor 6G Networks
The convergence of AI and 6G network automation introduces new challenges in maintaining transparency, fairness, and accountability across multivendor management systems. Although closed-loop AI orchestration improves adaptability and self-optimization, it also creates a responsibility gap, where violations of SLAs cannot be causally attributed to specific agents or vendors. This paper presents a hybrid responsible AI-stochastic learning framework that embeds fairness, robustness, and auditability directly into the network control loop. The framework integrates RAI games with stochastic optimization, enabling dynamic adversarial reweighting and probabilistic exploration across heterogeneous vendor domains. An RAAP continuously records AI-driven decision trajectories and produces dual accountability reports: user-level SLA summaries and operator-level responsibility analytics. Experimental evaluations on synthetic two-class multigroup datasets demonstrate that the proposed hybrid model improves the accuracy of the worst group by up to 10.5\%. Specifically, hybrid RAI achieved a WGAcc of 60.5\% and an AvgAcc of 72.7\%, outperforming traditional RAI-GA (50.0\%) and ERM (21.5\%). The audit mechanism successfully traced 99\% simulated SLA violations to the AI entities responsible, producing both vendor and agent-level accountability indices. These results confirm that the proposed hybrid approach enhances fairness and robustness as well as establishes a concrete accountability framework for autonomous SLA assurance in multivendor 6G networks.
comment: 6 pages, 4 figures
☆ Text summarization via global structure awareness
Text summarization is a fundamental task in natural language processing (NLP), and the information explosion has made long-document processing increasingly demanding, making summarization essential. Existing research mainly focuses on model improvements and sentence-level pruning, but often overlooks global structure, leading to disrupted coherence and weakened downstream performance. Some studies employ large language models (LLMs), which achieve higher accuracy but incur substantial resource and time costs. To address these issues, we introduce GloSA-sum, the first summarization approach that achieves global structure awareness via topological data analysis (TDA). GloSA-sum summarizes text efficiently while preserving semantic cores and logical dependencies. Specifically, we construct a semantic-weighted graph from sentence embeddings, where persistent homology identifies core semantics and logical structures, preserved in a ``protection pool'' as the backbone for summarization. We design a topology-guided iterative strategy, where lightweight proxy metrics approximate sentence importance to avoid repeated high-cost computations, thus preserving structural integrity while improving efficiency. To further enhance long-text processing, we propose a hierarchical strategy that integrates segment-level and global summarization. Experiments on multiple datasets demonstrate that GloSA-sum reduces redundancy while preserving semantic and logical integrity, striking a balance between accuracy and efficiency, and further benefits LLM downstream tasks by shortening contexts while retaining essential reasoning chains.
comment: 24pages
☆ Efficient Unsupervised Environment Design through Hierarchical Policy Representation Learning
Unsupervised Environment Design (UED) has emerged as a promising approach to developing general-purpose agents through automated curriculum generation. Popular UED methods focus on Open-Endedness, where teacher algorithms rely on stochastic processes for infinite generation of useful environments. This assumption becomes impractical in resource-constrained scenarios where teacher-student interaction opportunities are limited. To address this challenge, we introduce a hierarchical Markov Decision Process (MDP) framework for environment design. Our framework features a teacher agent that leverages student policy representations derived from discovered evaluation environments, enabling it to generate training environments based on the student's capabilities. To improve efficiency, we incorporate a generative model that augments the teacher's training dataset with synthetic data, reducing the need for teacher-student interactions. In experiments across several domains, we show that our method outperforms baseline approaches while requiring fewer teacher-student interactions in a single episode. The results suggest the applicability of our approach in settings where training opportunities are limited.
☆ A Controlled Study of Double DQN and Dueling DQN Under Cross-Environment Transfer
Transfer learning in deep reinforcement learning is often motivated by improved stability and reduced training cost, but it can also fail under substantial domain shift. This paper presents a controlled empirical study examining how architectural differences between Double Deep Q-Networks (DDQN) and Dueling DQN influence transfer behavior across environments. Using CartPole as a source task and LunarLander as a structurally distinct target task, we evaluate a fixed layer-wise representation transfer protocol under identical hyperparameters and training conditions, with baseline agents trained from scratch used to contextualize transfer effects. Empirical results show that DDQN consistently avoids negative transfer under the examined setup and maintains learning dynamics comparable to baseline performance in the target environment. In contrast, Dueling DQN consistently exhibits negative transfer under identical conditions, characterized by degraded rewards and unstable optimization behavior. Statistical analysis across multiple random seeds confirms a significant performance gap under transfer. These findings suggest that architectural inductive bias is strongly associated with robustness to cross-environment transfer in value-based deep reinforcement learning under the examined transfer protocol.
☆ Decomposing Reasoning Efficiency in Large Language Models
Large language models trained for reasoning trade off inference tokens against accuracy, yet standard evaluations report only final accuracy, obscuring where tokens are spent or wasted. We introduce a trace-optional framework that decomposes token efficiency into interpretable factors: completion under a fixed token budget (avoiding truncation), conditional correctness given completion, and verbosity (token usage). When benchmark metadata provides per-instance workload proxies, we further factor verbosity into two components: mean verbalization overhead (tokens per work unit) and a coupling coefficient capturing how overhead scales with task workload. When reasoning traces are available, we add deterministic trace-quality measures (grounding, repetition, prompt copying) to separate degenerate looping from verbose-but-engaged reasoning, avoiding human labeling and LLM judges. Evaluating 25 models on CogniLoad, we find that accuracy and token-efficiency rankings diverge (Spearman $ρ=0.63$), efficiency gaps are often driven by conditional correctness, and verbalization overhead varies by about 9 times (only weakly related to model scale). Our decomposition reveals distinct bottleneck profiles that suggest different efficiency interventions.
comment: Preprint (under review). 29 pages, 4 figures
☆ Would a Large Language Model Pay Extra for a View? Inferring Willingness to Pay from Subjective Choices
As Large Language Models (LLMs) are increasingly deployed in applications such as travel assistance and purchasing support, they are often required to make subjective choices on behalf of users in settings where no objectively correct answer exists. We study LLM decision-making in a travel-assistant context by presenting models with choice dilemmas and analyzing their responses using multinomial logit models to derive implied willingness to pay (WTP) estimates. These WTP values are subsequently compared to human benchmark values from the economics literature. In addition to a baseline setting, we examine how model behavior changes under more realistic conditions, including the provision of information about users' past choices and persona-based prompting. Our results show that while meaningful WTP values can be derived for larger LLMs, they also display systematic deviations at the attribute level. Additionally, they tend to overestimate human WTP overall, particularly when expensive options or business-oriented personas are introduced. Conditioning models on prior preferences for cheaper options yields valuations that are closer to human benchmarks. Overall, our findings highlight both the potential and the limitations of using LLMs for subjective decision support and underscore the importance of careful model selection, prompt design, and user representation when deploying such systems in practice.
☆ Symbolic Pattern Temporal Numeric Planning with Intermediate Conditions and Effects
Recently, a Symbolic Pattern Planning (SPP) approach was proposed for numeric planning where a pattern (i.e., a finite sequence of actions) suggests a causal order between actions. The pattern is then encoded in a SMT formula whose models correspond to valid plans. If the suggestion by the pattern is inaccurate and no valid plan can be found, the pattern is extended until it contains the causal order of actions in a valid plan, making the approach complete. In this paper, we extend the SPP approach to the temporal planning with Intermediate Conditions and Effects (ICEs) fragment, where $(i)$ actions are durative (and thus can overlap over time) and have conditions/effects which can be checked/applied at any time during an action's execution, and $(ii)$ one can specify plan's conditions/effects that must be checked/applied at specific times during the plan execution. Experimental results show that our SPP planner Patty $(i)$ outperforms all other planners in the literature in the majority of temporal domains without ICEs, $(ii)$ obtains comparable results with the SoTA search planner for ICS in literature domains with ICEs, and $(iii)$ outperforms the same planner in a novel domain based on a real-world application.
comment: Under review at the Artificial Intelligence Journal
☆ GHS-TDA: A Synergistic Reasoning Framework Integrating Global Hypothesis Space with Topological Data Analysis
Chain-of-Thought (CoT) has been shown to significantly improve the reasoning accuracy of large language models (LLMs) on complex tasks. However, due to the autoregressive, step-by-step generation paradigm, existing CoT methods suffer from two fundamental limitations. First, the reasoning process is highly sensitive to early decisions: once an initial error is introduced, it tends to propagate and amplify through subsequent steps, while the lack of a global coordination and revision mechanism makes such errors difficult to correct, ultimately leading to distorted reasoning chains. Second, current CoT approaches lack structured analysis techniques for filtering redundant reasoning and extracting key reasoning features, resulting in unstable reasoning processes and limited interpretability. To address these issues, we propose GHS-TDA. GHS-TDA first constructs a semantically enriched global hypothesis graph to aggregate, align, and coordinate multiple candidate reasoning paths, thereby providing alternative global correction routes when local reasoning fails. It then applies topological data analysis based on persistent homology to capture stable multi-scale structures, remove redundancy and inconsistencies, and extract a more reliable reasoning skeleton. By jointly leveraging reasoning diversity and topological stability, GHS-TDA achieves self-adaptive convergence, produces high-confidence and interpretable reasoning paths, and consistently outperforms strong baselines in terms of both accuracy and robustness across multiple reasoning benchmarks.
comment: 23pages
☆ Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
comment: https://github.com/Kwen-Chen/Flexible-Entropy-Control
☆ Explainability in Generative Medical Diffusion Models: A Faithfulness-Based Analysis on MRI Synthesis SC2026
This study investigates the explainability of generative diffusion models in the context of medical imaging, focusing on Magnetic resonance imaging (MRI) synthesis. Although diffusion models have shown strong performance in generating realistic medical images, their internal decision making process remains largely opaque. We present a faithfulness-based explainability framework that analyzes how prototype-based explainability methods like ProtoPNet (PPNet), Enhanced ProtoPNet (EPPNet), and ProtoPool can link the relationship between generated and training features. Our study focuses on understanding the reasoning behind image formation through denoising trajectory of diffusion model and subsequently prototype explainability with faithfulness analysis. Experimental analysis shows that EPPNet achieves the highest faithfulness (with score 0.1534), offering more reliable insights, and explainability into the generative process. The results highlight that diffusion models can be made more transparent and trustworthy through faithfulness-based explanations, contributing to safer and more interpretable applications of generative AI in healthcare.
comment: Accepted at 3rd World Congress on Smart Computing (WCSC2026) conference
☆ Grounding LTL Tasks in Sub-Symbolic RL Environments for Zero-Shot Generalization
In this work we address the problem of training a Reinforcement Learning agent to follow multiple temporally-extended instructions expressed in Linear Temporal Logic in sub-symbolic environments. Previous multi-task work has mostly relied on knowledge of the mapping between raw observations and symbols appearing in the formulae. We drop this unrealistic assumption by jointly training a multi-task policy and a symbol grounder with the same experience. The symbol grounder is trained only from raw observations and sparse rewards via Neural Reward Machines in a semi-supervised fashion. Experiments on vision-based environments show that our method achieves performance comparable to using the true symbol grounding and significantly outperforms state-of-the-art methods for sub-symbolic environments.
comment: Preprint currently under review
☆ ExO-PPO: an Extended Off-policy Proximal Policy Optimization Algorithm
Deep reinforcement learning has been able to solve various tasks successfully, however, due to the construction of policy gradient and training dynamics, tuning deep reinforcement learning models remains challenging. As one of the most successful deep reinforcement-learning algorithm, the Proximal Policy Optimization algorithm (PPO) clips the policy gradient within a conservative on-policy updates, which ensures reliable and stable policy improvement. However, this training pattern may sacrifice sample efficiency. On the other hand, off-policy methods make more adequate use of data through sample reuse, though at the cost of increased the estimation variance and bias. To leverage the advantages of both, in this paper, we propose a new PPO variant based on the stability guarantee from conservative on-policy iteration with a more efficient off-policy data utilization. Specifically, we first derive an extended off-policy improvement from an expectation form of generalized policy improvement lower bound. Then, we extend the clipping mechanism with segmented exponential functions for a suitable surrogate objective function. Third, the trajectories generated by the past $M$ policies are organized in the replay buffer for off-policy training. We refer to this method as Extended Off-policy Proximal Policy Optimization (ExO-PPO). Compared with PPO and some other state-of-the-art variants, we demonstrate an improved performance of ExO-PPO with balanced sample efficiency and stability on varied tasks in the empirical experiments.
☆ From Lightweight CNNs to SpikeNets: Benchmarking Accuracy-Energy Tradeoffs with Pruned Spiking SqueezeNet
Spiking Neural Networks (SNNs) are increasingly studied as energy-efficient alternatives to Convolutional Neural Networks (CNNs), particularly for edge intelligence. However, prior work has largely emphasized large-scale models, leaving the design and evaluation of lightweight CNN-to-SNN pipelines underexplored. In this paper, we present the first systematic benchmark of lightweight SNNs obtained by converting compact CNN architectures into spiking networks, where activations are modeled with Leaky-Integrate-and-Fire (LIF) neurons and trained using surrogate gradient descent under a unified setup. We construct spiking variants of ShuffleNet, SqueezeNet, MnasNet, and MixNet, and evaluate them on CIFAR-10, CIFAR-100, and TinyImageNet, measuring accuracy, F1-score, parameter count, computational complexity, and energy consumption. Our results show that SNNs can achieve up to 15.7x higher energy efficiency than their CNN counterparts while retaining competitive accuracy. Among these, the SNN variant of SqueezeNet consistently outperforms other lightweight SNNs. To further optimize this model, we apply a structured pruning strategy that removes entire redundant modules, yielding a pruned architecture, SNN-SqueezeNet-P. This pruned model improves CIFAR-10 accuracy by 6% and reduces parameters by 19% compared to the original SNN-SqueezeNet. Crucially, it narrows the gap with CNN-SqueezeNet, achieving nearly the same accuracy (only 1% lower) but with an 88.1% reduction in energy consumption due to sparse spike-driven computations. Together, these findings establish lightweight SNNs as practical, low-power alternatives for edge deployment, highlighting a viable path toward deploying high-performance, low-power intelligence on the edge.
☆ Physics-informed diffusion models in spectral space
We propose a methodology that combines generative latent diffusion models with physics-informed machine learning to generate solutions of parametric partial differential equations (PDEs) conditioned on partial observations, which includes, in particular, forward and inverse PDE problems. We learn the joint distribution of PDE parameters and solutions via a diffusion process in a latent space of scaled spectral representations, where Gaussian noise corresponds to functions with controlled regularity. This spectral formulation enables significant dimensionality reduction compared to grid-based diffusion models and ensures that the induced process in function space remains within a class of functions for which the PDE operators are well defined. Building on diffusion posterior sampling, we enforce physics-informed constraints and measurement conditions during inference, applying Adam-based updates at each diffusion step. We evaluate the proposed approach on Poisson, Helmholtz, and incompressible Navier--Stokes equations, demonstrating improved accuracy and computational efficiency compared with existing diffusion-based PDE solvers, which are state of the art for sparse observations. Code is available at https://github.com/deeplearningmethods/PISD.
comment: 24 pages, 9 figures
☆ Maastricht University at AMIYA: Adapting LLMs for Dialectal Arabic using Fine-tuning and MBR Decoding
Large Language Models (LLMs) are becoming increasingly multilingual, supporting hundreds of languages, especially high resource ones. Unfortunately, Dialect variations are still underrepresented due to limited data and linguistic variation. In this work, we adapt a pre-trained LLM to improve dialectal performance. Specifically, we use Low Rank Adaptation (LoRA) fine-tuning on monolingual and English Dialect parallel data, adapter merging and dialect-aware MBR decoding to improve dialectal fidelity generation and translation. Experiments on Syrian, Moroccan, and Saudi Arabic show that merging and MBR improve dialectal fidelity while preserving semantic accuracy. This combination provides a compact and effective framework for robust dialectal Arabic generation.
☆ GenSeg-R1: RL-Driven Vision-Language Grounding for Fine-Grained Referring Segmentation
We study fine-grained referring image segmentation via a decoupled reason-then-segment pipeline. A vision-language model (VLM) receives an image and a natural-language query, reasons about the scene, and emits structured spatial prompts: a bounding box plus two interior keypoints for every referred instance. A frozen promptable segmenter (SAM 2) converts these prompts into high-quality masks. Within our GenSeg-R1 framework we finetune Qwen3-VL models (4B and 8B parameters) using Group Relative Policy Optimization (GRPO), requiring no supervised reasoning-chain annotations. On RefCOCOg validation our best model (GenSeg-R1-8B) achieves 0.7127 cIoU and 0.7382 mIoU, substantially outperforming the corresponding Qwen3-VL Instruct baselines (+15.3 and +21.9 points, respectively) and surpassing Seg-Zero-7B [3] by +3.3 cIoU under identical evaluation. We further introduce GenSeg-R1-G, a variant trained on GRefCOCO [9] with a SAM 2 in-the-loop reward that directly optimizes mask quality. On GRefCOCO validation GenSeg-R1-G achieves 76.69% target mIoU with 82.40% accuracy on negative (no-target) prompts, substantially outperforming Seg-R1-7B and Seg-Zero-7B, which lack no-target detection capability. On ReasonSeg test, GenSeg-R1-4B reaches 68.40% mIoU, surpassing Seg-Zero-7B by +7.0 and Seg-R1-7B by +10.7 points.
☆ Resilient Class-Incremental Learning: on the Interplay of Drifting, Unlabelled and Imbalanced Data Streams
In today's connected world, the generation of massive streaming data across diverse domains has become commonplace. In the presence of concept drift, class imbalance, label scarcity, and new class emergence, they jointly degrade representation stability, bias learning toward outdated distributions, and reduce the resilience and reliability of detection in dynamic environments. This paper proposes SCIL (Streaming Class-Incremental Learning) to address these challenges. The SCIL framework integrates an autoencoder (AE) with a multi-layer perceptron for multi-class prediction, uses a dual-loss strategy (classification and reconstruction) for prediction and new class detection, employs corrected pseudo-labels for online training, manages classes with queues, and applies oversampling to handle imbalance. The rationale behind the method's structure is elucidated through ablation studies and a comprehensive experimental evaluation is performed using both real-world and synthetic datasets that feature class imbalance, incremental classes, and concept drifts. Our results demonstrate that SCIL outperforms strong baselines and state-of-the-art methods. Based on our commitment to Open Science, we make our code and datasets available to the community.
comment: Accepted by Artificial Intelligence Science and Engineering
☆ Administrative Law's Fourth Settlement: AI and the Capability-Accountability Trap
Since 1887, administrative law has navigated a "capability-accountability trap": technological change forces government to become more sophisticated, but sophistication renders agencies opaque to generalist overseers like the courts and Congress. The law's response--substituting procedural review for substantive oversight--has produced a sedimentary accretion of requirements that ossify capacity without ensuring democratic control. This Article argues that the Supreme Court's post-Loper Bright retrenchment is best understood as an effort to shrink administration back to comprehensible size in response to this complexification. But reducing complexity in this way sacrifices capability precisely when climate change, pandemics, and AI risks demand more sophisticated governance. AI offers a different path. Unlike many prior administrative technologies that increased opacity alongside capacity, AI can help build "scrutability" in government, translating technical complexity into accessible terms, surfacing the assumptions that matter for oversight, and enabling substantive verification of agency reasoning. This Article proposes three doctrinal innovations within administrative law to realize this potential: a Model and System Dossier (documenting model purpose, evaluation, monitoring, and versioning) extending the administrative record to AI decision-making; a material-model-change trigger specifying when AI updates require new process; and a "deference to audit" standard that rewards agencies for auditable evaluation of their AI tools. The result is a framework for what this Article calls the "Fourth Settlement," administrative law that escapes the capability-accountability trap by preserving capability while restoring comprehensible oversight of administration.
comment: 67 pages
☆ ClinAlign: Scaling Healthcare Alignment from Clinician Preference
Although large language models (LLMs) demonstrate expert-level medical knowledge, aligning their open-ended outputs with fine-grained clinician preferences remains challenging. Existing methods often rely on coarse objectives or unreliable automated judges that are weakly grounded in professional guidelines. We propose a two-stage framework to address this gap. First, we introduce HealthRubrics, a dataset of 7,034 physician-verified preference examples in which clinicians refine LLM-drafted rubrics to meet rigorous medical standards. Second, we distill these rubrics into HealthPrinciples: 119 broadly reusable, clinically grounded principles organized by clinical dimensions, enabling scalable supervision beyond manual annotation. We use HealthPrinciples for (1) offline alignment by synthesizing rubrics for unlabeled queries and (2) an inference-time tool for guided self-revision. A 30B parameter model that activates only 3B parameters at inference trained with our framework achieves 33.4% on HealthBench-Hard, outperforming much larger models including Deepseek-R1 and o3, establishing a resource-efficient baseline for clinical alignment.
☆ MATA: Multi-Agent Framework for Reliable and Flexible Table Question Answering
Recent advances in Large Language Models (LLMs) have significantly improved table understanding tasks such as Table Question Answering (TableQA), yet challenges remain in ensuring reliability, scalability, and efficiency, especially in resource-constrained or privacy-sensitive environments. In this paper, we introduce MATA, a multi-agent TableQA framework that leverages multiple complementary reasoning paths and a set of tools built with small language models. MATA generates candidate answers through diverse reasoning styles for a given table and question, then refines or selects the optimal answer with the help of these tools. Furthermore, it incorporates an algorithm designed to minimize expensive LLM agent calls, enhancing overall efficiency. MATA maintains strong performance with small, open-source models and adapts easily across various LLM types. Extensive experiments on two benchmarks of varying difficulty with ten different LLMs demonstrate that MATA achieves state-of-the-art accuracy and highly efficient reasoning while avoiding excessive LLM inference. Our results highlight that careful orchestration of multiple reasoning pathways yields scalable and reliable TableQA. The code is available at https://github.com/AIDAS-Lab/MATA.
☆ Stop Testing Attacks, Start Diagnosing Defenses: The Four-Checkpoint Framework Reveals Where LLM Safety Breaks
Large Language Models (LLMs) deploy safety mechanisms to prevent harmful outputs, yet these defenses remain vulnerable to adversarial prompts. While existing research demonstrates that jailbreak attacks succeed, it does not explain \textit{where} defenses fail or \textit{why}. To address this gap, we propose that LLM safety operates as a sequential pipeline with distinct checkpoints. We introduce the \textbf{Four-Checkpoint Framework}, which organizes safety mechanisms along two dimensions: processing stage (input vs.\ output) and detection level (literal vs.\ intent). This creates four checkpoints, CP1 through CP4, each representing a defensive layer that can be independently evaluated. We design 13 evasion techniques, each targeting a specific checkpoint, enabling controlled testing of individual defensive layers. Using this framework, we evaluate GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro across 3,312 single-turn, black-box test cases. We employ an LLM-as-judge approach for response classification and introduce Weighted Attack Success Rate (WASR), a severity-adjusted metric that captures partial information leakage overlooked by binary evaluation. Our evaluation reveals clear patterns. Traditional Binary ASR reports 22.6\% attack success. However, WASR reveals 52.7\%, a 2.3$\times$ higher vulnerability. Output-stage defenses (CP3, CP4) prove weakest at 72--79\% WASR, while input-literal defenses (CP1) are strongest at 13\% WASR. Claude achieves the strongest safety (42.8\% WASR), followed by GPT-5 (55.9\%) and Gemini (59.5\%). These findings suggest that current defenses are strongest at input-literal checkpoints but remain vulnerable to intent-level manipulation and output-stage techniques. The Four-Checkpoint Framework provides a structured approach for identifying and addressing safety vulnerabilities in deployed systems.
comment: 17 pages, pre-print
☆ FLINGO -- Instilling ASP Expressiveness into Linear Integer Constraints
Constraint Answer Set Programming (CASP) is a hybrid paradigm that enriches Answer Set Programming (ASP) with numerical constraint processing, something required in many real-world applications. The usual specification of constraints in most CASP solvers is closer to the numerical back-end expressiveness and semantics, rather than to standard specification in ASP. In the latter, numerical attributes are represented with predicates and this allows declaring default values, leaving the attribute undefined, making non-deterministic assignments with choice rules or using aggregated values. In CASP, most (if not all) of these features are lost once we switch to a constraint-based representation of those same attributes. In this paper, we present the FLINGO language (and tool) that incorporates the aforementioned expressiveness inside the numerical constraints and we illustrate its use with several examples. Based on previous work that established its semantic foundations, we also present a translation from the newly introduced FLINGO syntax to regular CASP programs following the CLINGCON input format.
☆ AnyTouch 2: General Optical Tactile Representation Learning For Dynamic Tactile Perception ICLR 2026
Real-world contact-rich manipulation demands robots to perceive temporal tactile feedback, capture subtle surface deformations, and reason about object properties as well as force dynamics. Although optical tactile sensors are uniquely capable of providing such rich information, existing tactile datasets and models remain limited. These resources primarily focus on object-level attributes (e.g., material) while largely overlooking fine-grained tactile temporal dynamics during physical interactions. We consider that advancing dynamic tactile perception requires a systematic hierarchy of dynamic perception capabilities to guide both data collection and model design. To address the lack of tactile data with rich dynamic information, we present ToucHD, a large-scale hierarchical tactile dataset spanning tactile atomic actions, real-world manipulations, and touch-force paired data. Beyond scale, ToucHD establishes a comprehensive tactile dynamic data ecosystem that explicitly supports hierarchical perception capabilities from the data perspective. Building on it, we propose AnyTouch 2, a general tactile representation learning framework for diverse optical tactile sensors that unifies object-level understanding with fine-grained, force-aware dynamic perception. The framework captures both pixel-level and action-specific deformations across frames, while explicitly modeling physical force dynamics, thereby learning multi-level dynamic perception capabilities from the model perspective. We evaluate our model on benchmarks that covers static object properties and dynamic physical attributes, as well as real-world manipulation tasks spanning multiple tiers of dynamic perception capabilities-from basic object-level understanding to force-aware dexterous manipulation. Experimental results demonstrate consistent and strong performance across sensors and tasks.
comment: Accepted by ICLR 2026
☆ With Argus Eyes: Assessing Retrieval Gaps via Uncertainty Scoring to Detect and Remedy Retrieval Blind Spots
Reliable retrieval-augmented generation (RAG) systems depend fundamentally on the retriever's ability to find relevant information. We show that neural retrievers used in RAG systems have blind spots, which we define as the failure to retrieve entities that are relevant to the query, but have low similarity to the query embedding. We investigate the training-induced biases that cause such blind spot entities to be mapped to inaccessible parts of the embedding space, resulting in low retrievability. Using a large-scale dataset constructed from Wikidata relations and first paragraphs of Wikipedia, and our proposed Retrieval Probability Score (RPS), we show that blind spot risk in standard retrievers (e.g., CONTRIEVER, REASONIR) can be predicted pre-index from entity embedding geometry, avoiding expensive retrieval evaluations. To address these blind spots, we introduce ARGUS, a pipeline that enables the retrievability of high-risk (low-RPS) entities through targeted document augmentation from a knowledge base (KB), first paragraphs of Wikipedia, in our case. Extensive experiments on BRIGHT, IMPLIRET, and RAR-B show that ARGUS achieves consistent improvements across all evaluated retrievers (averaging +3.4 nDCG@5 and +4.5 nDCG@10 absolute points), with substantially larger gains in challenging subsets. These results establish that preemptively remedying blind spots is critical for building robust and trustworthy RAG systems (Code and Data).
comment: 8 pages
☆ AGMark: Attention-Guided Dynamic Watermarking for Large Vision-Language Models
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks may introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases. Additionally, current vision-specific watermarks rely on a static, one-time estimation of vision critical weights and ignore the weight distribution density when determining the proportion of protected tokens. This design fails to account for dynamic changes in visual dependence during generation and may introduce low-quality tokens in the long tail. To address these challenges, we propose Attention-Guided Dynamic Watermarking (AGMark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. At each decoding step, AGMark first dynamically identifies semantic-critical evidence based on attention weights for visual relevance, together with context-aware coherence cues, resulting in a more adaptive and well-calibrated evidence-weight distribution. It then determines the proportion of semantic-critical tokens by jointly considering uncertainty awareness (token entropy) and evidence calibration (weight density), thereby enabling adaptive vocabulary partitioning to avoid irrelevant tokens. Empirical results confirm that AGMark outperforms conventional methods, observably improving generation quality and yielding particularly strong gains in visual semantic fidelity in the later stages of generation. The framework maintains highly competitive detection accuracy (at least 99.36\% AUC) and robust attack resilience (at least 88.61\% AUC) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multi-modal watermarking.
comment: preprint
☆ Detecting radar targets swarms in range profiles with a partially complex-valued neural network
Correctly detecting radar targets is usually challenged by clutter and waveform distortion. An additional difficulty stems from the relative proximity of several targets, the latter being perceived as a single target in the worst case, or influencing each other's detection thresholds. The negative impact of targets proximity notably depends on the range resolution defined by the radar parameters and the adaptive threshold adopted. This paper addresses the matter of targets detection in radar range profiles containing multiple targets with varying proximity and distorted echoes. Inspired by recent contributions in the radar and signal processing literature, this work proposes partially complex-valued neural networks as an adaptive range profile processing. Simulated datasets are generated and experiments are conducted to compare a common pulse compression approach with a simple neural network partially defined by complex-valued parameters. Whereas the pulse compression processes one pulse length at a time, the neural network put forward is a generative architecture going through the entire received signal in one go to generate a complete detection profile.
☆ Why the Counterintuitive Phenomenon of Likelihood Rarely Appears in Tabular Anomaly Detection with Deep Generative Models?
Deep generative models with tractable and analytically computable likelihoods, exemplified by normalizing flows, offer an effective basis for anomaly detection through likelihood-based scoring. We demonstrate that, unlike in the image domain where deep generative models frequently assign higher likelihoods to anomalous data, such counterintuitive behavior occurs far less often in tabular settings. We first introduce a domain-agnostic formulation that enables consistent detection and evaluation of the counterintuitive phenomenon, addressing the absence of precise definition. Through extensive experiments on 47 tabular datasets and 10 CV/NLP embedding datasets in ADBench, benchmarked against 13 baseline models, we demonstrate that the phenomenon, as defined, is consistently rare in general tabular data. We further investigate this phenomenon from both theoretical and empirical perspectives, focusing on the roles of data dimensionality and difference in feature correlation. Our results suggest that likelihood-only detection with normalizing flows offers a practical and reliable approach for anomaly detection in tabular domains.
comment: 47 pages, 11 figures
☆ On the Optimal Reasoning Length for RL-Trained Language Models SP
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures. Submitted to the Workshop on Scaling Post-training for LLMs (SPOT) at ICLR 2026
☆ Context-Aware Counterfactual Data Augmentation for Gender Bias Mitigation in Language Models
A challenge in mitigating social bias in fine-tuned language models (LMs) is the potential reduction in language modeling capability, which can harm downstream performance. Counterfactual data augmentation (CDA), a widely used method for fine-tuning, highlights this issue by generating synthetic data that may align poorly with real-world distributions or creating overly simplistic counterfactuals that ignore the social context of altered sensitive attributes (e.g., gender) in the pretraining corpus. To address these limitations, we propose a simple yet effective context-augmented CDA method, Context-CDA, which uses large LMs to enhance the diversity and contextual relevance of the debiasing corpus. By minimizing discrepancies between the debiasing corpus and pretraining data through augmented context, this approach ensures better alignment, enhancing language modeling capability. We then employ uncertainty-based filtering to exclude generated counterfactuals considered low-quality by the target smaller LMs (i.e., LMs to be debiased), further improving the fine-tuning corpus quality. Experimental results on gender bias benchmarks demonstrate that Context-CDA effectively mitigates bias without sacrificing language modeling performance while offering insights into social biases by analyzing distribution shifts in next-token generation probabilities.
☆ MieDB-100k: A Comprehensive Dataset for Medical Image Editing
The scarcity of high-quality data remains a primary bottleneck in adapting multimodal generative models for medical image editing. Existing medical image editing datasets often suffer from limited diversity, neglect of medical image understanding and inability to balance quality with scalability. To address these gaps, we propose MieDB-100k, a large-scale, high-quality and diverse dataset for text-guided medical image editing. It categorizes editing tasks into perspectives of Perception, Modification and Transformation, considering both understanding and generation abilities. We construct MieDB-100k via a data curation pipeline leveraging both modality-specific expert models and rule-based data synthetic methods, followed by rigorous manual inspection to ensure clinical fidelity. Extensive experiments demonstrate that model trained with MieDB-100k consistently outperform both open-source and proprietary models while exhibiting strong generalization ability. We anticipate that this dataset will serve as a cornerstone for future advancements in specialized medical image editing.
☆ Mitigating the Likelihood Paradox in Flow-based OOD Detection via Entropy Manipulation
Deep generative models that can tractably compute input likelihoods, including normalizing flows, often assign unexpectedly high likelihoods to out-of-distribution (OOD) inputs. We mitigate this likelihood paradox by manipulating input entropy based on semantic similarity, applying stronger perturbations to inputs that are less similar to an in-distribution memory bank. We provide a theoretical analysis showing that entropy control increases the expected log-likelihood gap between in-distribution and OOD samples in favor of the in-distribution, and we explain why the procedure works without any additional training of the density model. We then evaluate our method against likelihood-based OOD detectors on standard benchmarks and find consistent AUROC improvements over baselines, supporting our explanation.
comment: 28 pages, 4 figures
☆ Aligning Tree-Search Policies with Fixed Token Budgets in Test-Time Scaling of LLMs
Tree-search decoding is an effective form of test-time scaling for large language models (LLMs), but real-world deployment imposes a fixed per-query token budget that varies across settings. Existing tree-search policies are largely budget-agnostic, treating the budget as a termination condition, which can lead to late-stage over-branching or premature termination. We propose {Budget-Guided MCTS} (BG-MCTS), a tree-search decoding algorithm that aligns its search policy with the remaining token budget: it starts with broad exploration, then prioritizes refinement and answer completion as the budget depletes while reducing late-stage branching from shallow nodes. BG-MCTS consistently outperforms budget-agnostic tree-search baselines across different budgets on MATH500 and AIME24/25 with open-weight LLMs.
☆ Predictive Query Language: A Domain-Specific Language for Predictive Modeling on Relational Databases
The purpose of predictive modeling on relational data is to predict future or missing values in a relational database, for example, future purchases of a user, risk of readmission of the patient, or the likelihood that a financial transaction is fraudulent. Typically powered by machine learning methods, predictive models are used in recommendations, financial fraud detection, supply chain optimization, and other systems, providing billions of predictions every day. However, training a machine learning model requires manual work to extract the required training examples - prediction entities and target labels - from the database, which is slow, laborious, and prone to mistakes. Here, we present the Predictive Query Language (PQL), a SQL-inspired declarative language for defining predictive tasks on relational databases. PQL allows specifying a predictive task in a single declarative query, enabling the automatic computation training labels for a large variety of machine learning tasks, such as regression, classification, time-series forecasting, and recommender systems. PQL is already successfully integrated and used in a collection of use cases as part of a predictive AI platform. The versatility of the language can be demonstrated through its many ongoing use cases, including financial fraud, item recommendations, and workload prediction. We demonstrate its versatile design through two implementations; one for small-scale, low-latency use and one that can handle large-scale databases.
☆ LEMUR: A Corpus for Robust Fine-Tuning of Multilingual Law Embedding Models for Retrieval EACL
Large language models (LLMs) are increasingly used to access legal information. Yet, their deployment in multilingual legal settings is constrained by unreliable retrieval and the lack of domain-adapted, open-embedding models. In particular, existing multilingual legal corpora are not designed for semantic retrieval, and PDF-based legislative sources introduce substantial noise due to imperfect text extraction. To address these challenges, we introduce LEMUR, a large-scale multilingual corpus of EU environmental legislation constructed from 24,953 official EUR-Lex PDF documents covering 25 languages. We quantify the fidelity of PDF-to-text conversion by measuring lexical consistency against authoritative HTML versions using the Lexical Content Score (LCS). Building on LEMUR, we fine-tune three state-of-the-art multilingual embedding models using contrastive objectives in both monolingual and bilingual settings, reflecting realistic legal-retrieval scenarios. Experiments across low- and high-resource languages demonstrate that legal-domain fine-tuning consistently improves Top-k retrieval accuracy relative to strong baselines, with particularly pronounced gains for low-resource languages. Cross-lingual evaluations show that these improvements transfer to unseen languages, indicating that fine-tuning primarily enhances language-independent, content-level legal representations rather than language-specific cues. We publish code\footnote{\href{https://github.com/nargesbh/eur_lex}{GitHub Repository}} and data\footnote{\href{https://huggingface.co/datasets/G4KMU/LEMUR}{Hugging Face Dataset}}.
comment: Accepted at EACL SRW 26
☆ ECG-IMN: Interpretable Mesomorphic Neural Networks for 12-Lead Electrocardiogram Interpretation
Deep learning has achieved expert-level performance in automated electrocardiogram (ECG) diagnosis, yet the "black-box" nature of these models hinders their clinical deployment. Trust in medical AI requires not just high accuracy but also transparency regarding the specific physiological features driving predictions. Existing explainability methods for ECGs typically rely on post-hoc approximations (e.g., Grad-CAM and SHAP), which can be unstable, computationally expensive, and unfaithful to the model's actual decision-making process. In this work, we propose the ECG-IMN, an Interpretable Mesomorphic Neural Network tailored for high-resolution 12-lead ECG classification. Unlike standard classifiers, the ECG-IMN functions as a hypernetwork: a deep convolutional backbone generates the parameters of a strictly linear model specific to each input sample. This architecture enforces intrinsic interpretability, as the decision logic is mathematically transparent and the generated weights (W) serve as exact, high-resolution feature attribution maps. We introduce a transition decoder that effectively maps latent features to sample-wise weights, enabling precise localization of pathological evidence (e.g., ST-elevation, T-wave inversion) in both time and lead dimensions. We evaluate our approach on the PTB-XL dataset for classification tasks, demonstrating that the ECG-IMN achieves competitive predictive performance (AUROC comparable to black-box baselines) while providing faithful, instance-specific explanations. By explicitly decoupling parameter generation from prediction execution, our framework bridges the gap between deep learning capability and clinical trustworthiness, offering a principled path toward "white-box" cardiac diagnostics.
☆ Comprehensive Comparison of RAG Methods Across Multi-Domain Conversational QA EACL
Conversational question answering increasingly relies on retrieval-augmented generation (RAG) to ground large language models (LLMs) in external knowledge. Yet, most existing studies evaluate RAG methods in isolation and primarily focus on single-turn settings. This paper addresses the lack of a systematic comparison of RAG methods for multi-turn conversational QA, where dialogue history, coreference, and shifting user intent substantially complicate retrieval. We present a comprehensive empirical study of vanilla and advanced RAG methods across eight diverse conversational QA datasets spanning multiple domains. Using a unified experimental setup, we evaluate retrieval quality and answer generation using generator and retrieval metrics, and analyze how performance evolves across conversation turns. Our results show that robust yet straightforward methods, such as reranking, hybrid BM25, and HyDE, consistently outperform vanilla RAG. In contrast, several advanced techniques fail to yield gains and can even degrade performance below the No-RAG baseline. We further demonstrate that dataset characteristics and dialogue length strongly influence retrieval effectiveness, explaining why no single RAG strategy dominates across settings. Overall, our findings indicate that effective conversational RAG depends less on method complexity than on alignment between the retrieval strategy and the dataset structure. We publish the code used.\footnote{\href{https://github.com/Klejda-A/exp-rag.git}{GitHub Repository}}
comment: Accepted to EACL SRW 26
☆ Autoregressive Direct Preference Optimization
Direct preference optimization (DPO) has emerged as a promising approach for aligning large language models (LLMs) with human preferences. However, the widespread reliance on the response-level Bradley-Terry (BT) model may limit its full potential, as the reference and learnable models are assumed to be autoregressive only after deriving the objective function. Motivated by this limitation, we revisit the theoretical foundations of DPO and propose a novel formulation that explicitly introduces the autoregressive assumption prior to applying the BT model. By reformulating and extending DPO, we derive a novel variant, termed Autoregressive DPO (ADPO), that explicitly integrates autoregressive modeling into the preference optimization framework. Without violating the theoretical foundations, the derived loss takes an elegant form: it shifts the summation operation in the DPO objective outside the log-sigmoid function. Furthermore, through theoretical analysis of ADPO, we show that there exist two length measures to be considered when designing DPO-based algorithms: the token length $μ$ and the feedback length $μ$'. To the best of our knowledge, we are the first to explicitly distinguish these two measures and analyze their implications for preference optimization in LLMs.
☆ Learning to Discover Iterative Spectral Algorithms
We introduce AutoSpec, a neural network framework for discovering iterative spectral algorithms for large-scale numerical linear algebra and numerical optimization. Our self-supervised models adapt to input operators using coarse spectral information (e.g., eigenvalue estimates and residual norms), and they predict recurrence coefficients for computing or applying a matrix polynomial tailored to a downstream task. The effectiveness of AutoSpec relies on three ingredients: an architecture whose inference pass implements short, executable numerical linear algebra recurrences; efficient training on small synthetic problems with transfer to large-scale real-world operators; and task-defined objectives that enforce the desired approximation or preconditioning behavior across the range of spectral profiles represented in the training set. We apply AutoSpec to discovering algorithms for representative numerical linear algebra tasks: accelerating matrix-function approximation; accelerating sparse linear solvers; and spectral filtering/preconditioning for eigenvalue computations. On real-world matrices, the learned procedures deliver orders-of-magnitude improvements in accuracy and/or reductions in iteration count, relative to basic baselines. We also find clear connections to classical theory: the induced polynomials often exhibit near-equiripple, near-minimax behavior characteristic of Chebyshev polynomials.
☆ EcoGym: Evaluating LLMs for Long-Horizon Plan-and-Execute in Interactive Economies
Long-horizon planning is widely recognized as a core capability of autonomous LLM-based agents; however, current evaluation frameworks suffer from being largely episodic, domain-specific, or insufficiently grounded in persistent economic dynamics. We introduce EcoGym, a generalizable benchmark for continuous plan-and-execute decision making in interactive economies. EcoGym comprises three diverse environments: Vending, Freelance, and Operation, implemented in a unified decision-making process with standardized interfaces, and budgeted actions over an effectively unbounded horizon (1000+ steps if 365 day-loops for evaluation). The evaluation of EcoGym is based on business-relevant outcomes (e.g., net worth, income, and DAU), targeting long-term strategic coherence and robustness under partial observability and stochasticity. Experiments across eleven leading LLMs expose a systematic tension: no single model dominates across all three scenarios. Critically, we find that models exhibit significant suboptimality in either high-level strategies or efficient actions executions. EcoGym is released as an open, extensible testbed for transparent long-horizon agent evaluation and for studying controllability-utility trade-offs in realistic economic settings.
comment: work in progress
☆ Seeing the Goal, Missing the Truth: Human Accountability for AI Bias
This research explores how human-defined goals influence the behavior of Large Language Models (LLMs) through purpose-conditioned cognition. Using financial prediction tasks, we show that revealing the downstream use (e.g., predicting stock returns or earnings) of LLM outputs leads the LLM to generate biased sentiment and competition measures, even though these measures are intended to be downstream task-independent. Goal-aware prompting shifts intermediate measures toward the disclosed downstream objective. This purpose leakage improves performance before the LLM's knowledge cutoff, but with no advantage post-cutoff. AI bias due to "seeing the goal" is not an algorithmic flaw, but stems from human accountability in research design to ensure the statistical validity and reliability of AI-generated measurements.
comment: 17 pages, 3 figures, 5 tables
☆ Beware of the Batch Size: Hyperparameter Bias in Evaluating LoRA
Low-rank adaptation (LoRA) is a standard approach for fine-tuning large language models, yet its many variants report conflicting empirical gains, often on the same benchmarks. We show that these contradictions arise from a single overlooked factor: the batch size. When properly tuned, vanilla LoRA often matches the performance of more complex variants. We further propose a proxy-based, cost-efficient strategy for batch size tuning, revealing the impact of rank, dataset size, and model capacity on the optimal batch size. Our findings elevate batch size from a minor implementation detail to a first-order design parameter, reconciling prior inconsistencies and enabling more reliable evaluations of LoRA variants.
☆ Computing Conditional Shapley Values Using Tabular Foundation Models
Shapley values have become a cornerstone of explainable AI, but they are computationally expensive to use, especially when features are dependent. Evaluating them requires approximating a large number of conditional expectations, either via Monte Carlo integration or regression. Until recently it has not been possible to fully exploit deep learning for the regression approach, because retraining for each conditional expectation takes too long. Tabular foundation models such as TabPFN overcome this computational hurdle by leveraging in-context learning, so each conditional expectation can be approximated without any re-training. In this paper, we compute Shapley values with multiple variants of TabPFN and compare their performance with state-of-the-art methods on both simulated and real datasets. In most cases, TabPFN yields the best performance; where it does not, it is only marginally worse than the best method, at a fraction of the runtime. We discuss further improvements and how tabular foundation models can be better adapted specifically for conditional Shapley value estimation.
☆ Listen to the Layers: Mitigating Hallucinations with Inter-Layer Disagreement
Pretrained Large Language Models (LLMs) are prone to generating fluent yet factually incorrect text-a phenomenon known as hallucinations, undermining their reliability and utility in downstream tasks. We hypothesize that a generated text span's factuality is correlated with its representational instability across the model's internal layers. Based on this, we propose the CoCoA (Confusion and Consistency Aware) decoder, a novel, training-free decoding algorithm that mitigates hallucinations at inference time by listening to these signals in the middle layers. We propose two metrics to quantify this instability in the middle layers, and use it to penalize outputs that exhibit high internal confusion, thereby steering the model towards more internally consistent and factually grounded outputs. We further propose a self-information gated variant, CoCoA-SIG, that dynamically modulates this penalty to selectively target high-surprise, unstable generations. Extensive experiments on diverse tasks, including question-answering, summarization and code generation demonstrate that CoCoA significantly improves factual correctness across multiple model families (e.g., Llama-3, Qwen-2.5, Mistral). By leveraging model-intrinsic signals, CoCoA offers an effective and broadly applicable method for enhancing the trustworthiness of LLMs at inference time, without requiring any model retraining.
comment: Preprint, 23 pages, 13 tables, 12 figures
☆ Bridging Efficiency and Transparency: Explainable CoT Compression in Multimodal Large Reasoning Models
Long chains of thought (Long CoTs) are widely employed in multimodal reasoning models to tackle complex tasks by capturing detailed visual information. However, these Long CoTs are often excessively lengthy and contain redundant reasoning steps, which can hinder inference efficiency. Compressing these long CoTs is a natural solution, yet existing approaches face two major challenges: (1) they may compromise the integrity of visual-textual reasoning by removing essential alignment cues, and (2) the compression process lacks explainability, making it difficult to discern which information is critical. To address these problems, we propose XMCC, an eXplainable Multimodal CoT Compressor that formulates compression as a sequential decision-making process optimized via reinforcement learning. XMCC can effectively shorten reasoning trajectories while preserving key reasoning steps and answer correctness, and simultaneously generates natural-language explanations for its compression decisions. Extensive experiments on representative multimodal reasoning benchmarks demonstrate that XMCC not only reduces reasoning length but also provides explainable explanations, validating its effectiveness.
☆ ArtifactLens: Hundreds of Labels Are Enough for Artifact Detection with VLMs
Modern image generators produce strikingly realistic images, where only artifacts like distorted hands or warped objects reveal their synthetic origin. Detecting these artifacts is essential: without detection, we cannot benchmark generators or train reward models to improve them. Current detectors fine-tune VLMs on tens of thousands of labeled images, but this is expensive to repeat whenever generators evolve or new artifact types emerge. We show that pretrained VLMs already encode the knowledge needed to detect artifacts - with the right scaffolding, this capability can be unlocked using only a few hundred labeled examples per artifact category. Our system, ArtifactLens, achieves state-of-the-art on five human artifact benchmarks (the first evaluation across multiple datasets) while requiring orders of magnitude less labeled data. The scaffolding consists of a multi-component architecture with in-context learning and text instruction optimization, with novel improvements to each. Our methods generalize to other artifact types - object morphology, animal anatomy, and entity interactions - and to the distinct task of AIGC detection.
comment: https://jmhb0.github.io/ArtifactLens/
☆ NOWJ @BioCreative IX ToxHabits: An Ensemble Deep Learning Approach for Detecting Substance Use and Contextual Information in Clinical Texts
Extracting drug use information from unstructured Electronic Health Records remains a major challenge in clinical Natural Language Processing. While Large Language Models demonstrate advancements, their use in clinical NLP is limited by concerns over trust, control, and efficiency. To address this, we present NOWJ submission to the ToxHabits Shared Task at BioCreative IX. This task targets the detection of toxic substance use and contextual attributes in Spanish clinical texts, a domain-specific, low-resource setting. We propose a multi-output ensemble system tackling both Subtask 1 - ToxNER and Subtask 2 - ToxUse. Our system integrates BETO with a CRF layer for sequence labeling, employs diverse training strategies, and uses sentence filtering to boost precision. Our top run achieved 0.94 F1 and 0.97 precision for Trigger Detection, and 0.91 F1 for Argument Detection.
☆ AlgoVeri: An Aligned Benchmark for Verified Code Generation on Classical Algorithms
Vericoding refers to the generation of formally verified code from rigorous specifications. Recent AI models show promise in vericoding, but a unified methodology for cross-paradigm evaluation is lacking. Existing benchmarks test only individual languages/tools (e.g., Dafny, Verus, and Lean) and each covers very different tasks, so the performance numbers are not directly comparable. We address this gap with AlgoVeri, a benchmark that evaluates vericoding of $77$ classical algorithms in Dafny, Verus, and Lean. By enforcing identical functional contracts, AlgoVeri reveals critical capability gaps in verification systems. While frontier models achieve tractable success in Dafny ($40.3$% for Gemini-3 Flash), where high-level abstractions and SMT automation simplify the workflow, performance collapses under the systems-level memory constraints of Verus ($24.7$%) and the explicit proof construction required by Lean (7.8%). Beyond aggregate metrics, we uncover a sharp divergence in test-time compute dynamics: Gemini-3 effectively utilizes iterative repair to boost performance (e.g., tripling pass rates in Dafny), whereas GPT-OSS saturates early. Finally, our error analysis shows that language design affects the refinement trajectory: while Dafny allows models to focus on logical correctness, Verus and Lean trap models in persistent syntactic and semantic barriers. All data and evaluation code can be found at https://github.com/haoyuzhao123/algoveri.
comment: 32 pages
☆ SpotAgent: Grounding Visual Geo-localization in Large Vision-Language Models through Agentic Reasoning
Large Vision-Language Models (LVLMs) have demonstrated strong reasoning capabilities in geo-localization, yet they often struggle in real-world scenarios where visual cues are sparse, long-tailed, and highly ambiguous. Previous approaches, bound by internal knowledge, often fail to provide verifiable results, yielding confident but ungrounded predictions when faced with confounded evidence. To address these challenges, we propose SpotAgent, a framework that formalizes geo-localization into an agentic reasoning process that leverages expert-level reasoning to synergize visual interpretation with tool-assisted verification. SpotAgent actively explores and verifies visual cues by leveraging external tools (e.g., web search, maps) through a ReAct diagram. We introduce a 3-stage post-training pipeline starting with a Supervised Fine-Tuning (SFT) stage for basic alignment, followed by an Agentic Cold Start phase utilizing high-quality trajectories synthesized via a Multi-Agent framework, aiming to instill tool-calling expertise. Subsequently, the model's reasoning capabilities are refined through Reinforcement Learning. We propose a Spatially-Aware Dynamic Filtering strategy to enhance the efficiency of the RL stage by prioritizing learnable samples based on spatial difficulty. Extensive experiments on standard benchmarks demonstrate that SpotAgent achieves state-of-the-art performance, effectively mitigating hallucinations while delivering precise and verifiable geo-localization.
☆ SWE-AGI: Benchmarking Specification-Driven Software Construction with MoonBit in the Era of Autonomous Agents
Although large language models (LLMs) have demonstrated impressive coding capabilities, their ability to autonomously build production-scale software from explicit specifications remains an open question. We introduce SWE-AGI, an open-source benchmark for evaluating end-to-end, specification-driven construction of software systems written in MoonBit. SWE-AGI tasks require LLM-based agents to implement parsers, interpreters, binary decoders, and SAT solvers strictly from authoritative standards and RFCs under a fixed API scaffold. Each task involves implementing 1,000-10,000 lines of core logic, corresponding to weeks or months of engineering effort for an experienced human developer. By leveraging the nascent MoonBit ecosystem, SWE-AGI minimizes data leakage, forcing agents to rely on long-horizon architectural reasoning rather than code retrieval. Across frontier models, gpt-5.3-codex achieves the best overall performance (solving 19/22 tasks, 86.4%), outperforming claude-opus-4.6 (15/22, 68.2%), and kimi-2.5 exhibits the strongest performance among open-source models. Performance degrades sharply with increasing task difficulty, particularly on hard, specification-intensive systems. Behavioral analysis further reveals that as codebases scale, code reading, rather than writing, becomes the dominant bottleneck in AI-assisted development. Overall, while specification-driven autonomous software engineering is increasingly viable, substantial challenges remain before it can reliably support production-scale development.
comment: 20 pages, 3 figures
☆ Conceptual Cultural Index: A Metric for Cultural Specificity via Relative Generality EACL 2026
Large language models (LLMs) are increasingly deployed in multicultural settings; however, systematic evaluation of cultural specificity at the sentence level remains underexplored. We propose the Conceptual Cultural Index (CCI), which estimates cultural specificity at the sentence level. CCI is defined as the difference between the generality estimate within the target culture and the average generality estimate across other cultures. This formulation enables users to operationally control the scope of culture via comparison settings and provides interpretability, since the score derives from the underlying generality estimates. We validate CCI on 400 sentences (200 culture-specific and 200 general), and the resulting score distribution exhibits the anticipated pattern: higher for culture-specific sentences and lower for general ones. For binary separability, CCI outperforms direct LLM scoring, yielding more than a 10-point improvement in AUC for models specialized to the target culture. Our code is available at https://github.com/IyatomiLab/CCI .
comment: 9 pages, 2 figures, 8 tables. Accepted at the First Workshop on Multilingual Multicultural Evaluation (MME) @ EACL 2026
☆ P1-VL: Bridging Visual Perception and Scientific Reasoning in Physics Olympiads
The transition from symbolic manipulation to science-grade reasoning represents a pivotal frontier for Large Language Models (LLMs), with physics serving as the critical test anchor for binding abstract logic to physical reality. Physics demands that a model maintain physical consistency with the laws governing the universe, a task that fundamentally requires multimodal perception to ground abstract logic in reality. At the Olympiad level, diagrams are often constitutive rather than illustrative, containing essential constraints, such as boundary conditions and spatial symmetries, that are absent from the text. To bridge this visual-logical gap, we introduce P1-VL, a family of open-source vision-language models engineered for advanced scientific reasoning. Our method harmonizes Curriculum Reinforcement Learning, which employs progressive difficulty expansion to stabilize post-training, with Agentic Augmentation, enabling iterative self-verification at inference. Evaluated on HiPhO, a rigorous benchmark of 13 exams from 2024-2025, our flagship P1-VL-235B-A22B becomes the first open-source Vision-Language Model (VLM) to secure 12 gold medals and achieves the state-of-the-art performance in the open-source models. Our agent-augmented system achieves the No.2 overall rank globally, trailing only Gemini-3-Pro. Beyond physics, P1-VL demonstrates remarkable scientific reasoning capacity and generalizability, establishing significant leads over base models in STEM benchmarks. By open-sourcing P1-VL, we provide a foundational step toward general-purpose physical intelligence to better align visual perceptions with abstract physical laws for machine scientific discovery.
☆ Evaluating Social Bias in RAG Systems: When External Context Helps and Reasoning Hurts PAKDD 2026
Social biases inherent in large language models (LLMs) raise significant fairness concerns. Retrieval-Augmented Generation (RAG) architectures, which retrieve external knowledge sources to enhance the generative capabilities of LLMs, remain susceptible to the same bias-related challenges. This work focuses on evaluating and understanding the social bias implications of RAG. Through extensive experiments across various retrieval corpora, LLMs, and bias evaluation datasets, encompassing more than 13 different bias types, we surprisingly observe a reduction in bias in RAG. This suggests that the inclusion of external context can help counteract stereotype-driven predictions, potentially improving fairness by diversifying the contextual grounding of the model's outputs. To better understand this phenomenon, we then explore the model's reasoning process by integrating Chain-of-Thought (CoT) prompting into RAG while assessing the faithfulness of the model's CoT. Our experiments reveal that the model's bias inclinations shift between stereotype and anti-stereotype responses as more contextual information is incorporated from the retrieved documents. Interestingly, we find that while CoT enhances accuracy, contrary to the bias reduction observed with RAG, it increases overall bias across datasets, highlighting the need for bias-aware reasoning frameworks that can mitigate this trade-off.
comment: Accepted as a full paper with an oral presentation at the 30th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2026)
☆ Diffusion-Guided Pretraining for Brain Graph Foundation Models
With the growing interest in foundation models for brain signals, graph-based pretraining has emerged as a promising paradigm for learning transferable representations from connectome data. However, existing contrastive and masked autoencoder methods typically rely on naive random dropping or masking for augmentation, which is ill-suited for brain graphs and hypergraphs as it disrupts semantically meaningful connectivity patterns. Moreover, commonly used graph-level readout and reconstruction schemes fail to capture global structural information, limiting the robustness of learned representations. In this work, we propose a unified diffusion-based pretraining framework that addresses both limitations. First, diffusion is designed to guide structure-aware dropping and masking strategies, preserving brain graph semantics while maintaining effective pretraining diversity. Second, diffusion enables topology-aware graph-level readout and node-level global reconstruction by allowing graph embeddings and masked nodes to aggregate information from globally related regions. Extensive experiments across multiple neuroimaging datasets with over 25,000 subjects and 60,000 scans involving various mental disorders and brain atlases demonstrate consistent performance improvements.
comment: 18 pages
☆ A Behavioral Fingerprint for Large Language Models: Provenance Tracking via Refusal Vectors
Protecting the intellectual property of large language models (LLMs) is a critical challenge due to the proliferation of unauthorized derivative models. We introduce a novel fingerprinting framework that leverages the behavioral patterns induced by safety alignment, applying the concept of refusal vectors for LLM provenance tracking. These vectors, extracted from directional patterns in a model's internal representations when processing harmful versus harmless prompts, serve as robust behavioral fingerprints. Our contribution lies in developing a fingerprinting system around this concept and conducting extensive validation of its effectiveness for IP protection. We demonstrate that these behavioral fingerprints are highly robust against common modifications, including finetunes, merges, and quantization. Our experiments show that the fingerprint is unique to each model family, with low cosine similarity between independently trained models. In a large-scale identification task across 76 offspring models, our method achieves 100\% accuracy in identifying the correct base model family. Furthermore, we analyze the fingerprint's behavior under alignment-breaking attacks, finding that while performance degrades significantly, detectable traces remain. Finally, we propose a theoretical framework to transform this private fingerprint into a publicly verifiable, privacy-preserving artifact using locality-sensitive hashing and zero-knowledge proofs.
☆ Autonomous Action Runtime Management(AARM):A System Specification for Securing AI-Driven Actions at Runtime
As artificial intelligence systems evolve from passive assistants into autonomous agents capable of executing consequential actions, the security boundary shifts from model outputs to tool execution. Traditional security paradigms - log aggregation, perimeter defense, and post-hoc forensics - cannot protect systems where AI-driven actions are irreversible, execute at machine speed, and originate from potentially compromised orchestration layers. This paper introduces Autonomous Action Runtime Management (AARM), an open specification for securing AI-driven actions at runtime. AARM defines a runtime security system that intercepts actions before execution, accumulates session context, evaluates against policy and intent alignment, enforces authorization decisions, and records tamper-evident receipts for forensic reconstruction. We formalize a threat model addressing prompt injection, confused deputy attacks, data exfiltration, and intent drift. We introduce an action classification framework distinguishing forbidden, context-dependent deny, and context-dependent allow actions. We propose four implementation architectures - protocol gateway, SDK instrumentation, kernel eBPF, and vendor integration - with distinct trust properties, and specify minimum conformance requirements for AARM-compliant systems. AARM is model-agnostic, framework-agnostic, and vendor-neutral, treating action execution as the stable security boundary. This specification aims to establish industry-wide requirements before proprietary fragmentation forecloses interoperability.
☆ Sci-VLA: Agentic VLA Inference Plugin for Long-Horizon Tasks in Scientific Experiments
Robotic laboratories play a critical role in autonomous scientific discovery by enabling scalable, continuous experimental execution. Recent vision-language-action (VLA) models offer a promising foundation for robotic laboratories. However, scientific experiments typically involve long-horizon tasks composed of multiple atomic tasks, posing a fundamental challenge to existing VLA models. While VLA models fine-tuned for scientific tasks can reliably execute atomic experimental actions seen during training, they often fail to perform composite tasks formed by reordering and composing these known atomic actions. This limitation arises from a distributional mismatch between training-time atomic tasks and inference-time composite tasks, which prevents VLA models from executing necessary transitional operations between atomic tasks. To address this challenge, we propose an Agentic VLA Inference Plugin for Long-Horizon Tasks in Scientific Experiments. It introduces an LLM-based agentic inference mechanism that intervenes when executing sequential manipulation tasks. By performing explicit transition inference and generating transitional robotic action code, the proposed plugin guides VLA models through missing transitional steps, enabling reliable execution of composite scientific workflows without any additional training. This inference-only intervention makes our method computationally efficient, data-efficient, and well-suited for open-ended and long-horizon robotic laboratory tasks. We build 3D assets of scientific instruments and common scientific operating scenes within an existing simulation environment. In these scenes, we have verified that our method increases the average success rate per atomic task by 42\% during inference. Furthermore, we show that our method can be easily transferred from the simulation to real scientific laboratories.
☆ Beyond Input-Output: Rethinking Creativity through Design-by-Analogy in Human-AI Collaboration
While the proliferation of foundation models has significantly boosted individual productivity, it also introduces a potential challenge: the homogenization of creative content. In response, we revisit Design-by-Analogy (DbA), a cognitively grounded approach that fosters novel solutions by mapping inspiration across domains. However, prevailing perspectives often restrict DbA to early ideation or specific data modalities, while reducing AI-driven design to simplified input-output pipelines. Such conceptual limitations inadvertently foster widespread design fixation. To address this, we expand the understanding of DbA by embedding it into the entire creative process, thereby demonstrating its capacity to mitigate such fixation. Through a systematic review of 85 studies, we identify six forms of representation and classify techniques across seven stages of the creative process. We further discuss three major application domains: creative industries, intelligent manufacturing, and education and services, demonstrating DbA's practical relevance. Building on this synthesis, we frame DbA as a mediating technology for human-AI collaboration and outline the potential opportunities and inherent risks for advancing creativity support in HCI and design research.
comment: 20 pages, 9 figures. Accepted to the 2026 CHI Conference on Human Factors in Computing Systems
☆ LARV: Data-Free Layer-wise Adaptive Rescaling Veneer for Model Merging
Model merging aims to combine multiple fine-tuned models into a single multi-task model without access to training data. Existing task-vector merging methods such as TIES, TSV-M, and Iso-C/CTS differ in their aggregation rules but treat all layers nearly uniformly. This assumption overlooks the strong layer-wise heterogeneity in large vision transformers, where shallow layers are sensitive to interference while deeper layers encode stable task-specific features. We introduce LARV, a training-free, data-free, merger-agnostic Layer-wise Adaptive Rescaling Veneer that plugs into any task-vector merger and assigns a per-layer scale to each task vector before aggregation, and show it consistently boosts diverse merging rules. LARV adaptively suppresses shallow-layer interference and amplifies deeper-layer alignment using a simple deterministic schedule, requiring no retraining or modification to existing mergers. To our knowledge, this is the first work to perform layer-aware scaling for task-vector merging. LARV computes simple data-free layer proxies and turns them into scales through a lightweight rule; we study several instantiations within one framework (e.g., tiered two/three-level scaling with fixed values, or continuous mappings) and show that tiered choices offer the best robustness, while continuous mappings remain an ablation. LARV is orthogonal to the base merger and adds negligible cost. On FusionBench with Vision Transformers, LARV consistently improves all task-vector baselines across 8/14/20-task settings; for example, Iso-C + LARV reaches 85.9% on ViT-B/32, 89.2% on ViT-B/16, and 92.6% on ViT-L/14. Layerwise analysis and corruption tests further indicate that LARV suppresses shallow-layer interference while modestly amplifying deeper, task-stable features, turning model merging into a robust, layer-aware procedure rather than a uniform one.
comment: 14 pages, 9 figures, 6 tables
☆ Accelerating Post-Quantum Cryptography via LLM-Driven Hardware-Software Co-Design
Post-quantum cryptography (PQC) is crucial for securing data against emerging quantum threats. However, its algorithms are computationally complex and difficult to implement efficiently on hardware. In this paper, we explore the potential of Large Language Models (LLMs) to accelerate the hardware-software co-design process for PQC, with a focus on the FALCON digital signature scheme. We present a novel framework that leverages LLMs to analyze PQC algorithms, identify performance-critical components, and generate candidate hardware descriptions for FPGA implementation. We present the first quantitative comparison between LLM-driven synthesis and conventional HLS-based approaches for low-level compute-intensive kernels in FALCON, showing that human-in-the-loop LLM-generated accelerators can achieve up to 2.6x speedup in kernel execution time with shorter critical paths, while highlighting trade-offs in resource utilization and power consumption. Our results suggest that LLMs can minimize design effort and development time by automating FPGA accelerator design iterations for PQC algorithms, offering a promising new direction for rapid and adaptive PQC accelerator design on FPGAs.
comment: Accepted at the 27th International Symposium on Quality Electronic Design (ISQED 2026)
☆ Squeezing More from the Stream : Learning Representation Online for Streaming Reinforcement Learning
In streaming Reinforcement Learning (RL), transitions are observed and discarded immediately after a single update. While this minimizes resource usage for on-device applications, it makes agents notoriously sample-inefficient, since value-based losses alone struggle to extract meaningful representations from transient data. We propose extending Self-Predictive Representations (SPR) to the streaming pipeline to maximize the utility of every observed frame. However, due to the highly correlated samples induced by the streaming regime, naively applying this auxiliary loss results in training instabilities. Thus, we introduce orthogonal gradient updates relative to the momentum target and resolve gradient conflicts arising from streaming-specific optimizers. Validated across the Atari, MinAtar, and Octax suites, our approach systematically outperforms existing streaming baselines. Latent-space analysis, including t-SNE visualizations and effective-rank measurements, confirms that our method learns significantly richer representations, bridging the performance gap caused by the absence of a replay buffer, while remaining efficient enough to train on just a few CPU cores.
comment: 8 pages, 4 figures
☆ The Critical Horizon: Inspection Design Principles for Multi-Stage Operations and Deep Reasoning
Manufacturing lines, service journeys, supply chains, and AI reasoning chains share a common challenge: attributing a terminal outcome to the intermediate stage that caused it. We establish an information-theoretic barrier to this credit assignment problem: the signal connecting early steps to final outcomes decays exponentially with depth, creating a critical horizon beyond which no algorithm can learn from endpoint data alone. We prove four results. First, a Signal Decay Bound: sample complexity for attributing outcomes to early stages grows exponentially in the number of intervening steps. Second, Width Limits: parallel rollouts provide only logarithmic relief, with correlation capping the effective number of independent samples. Third, an Objective Mismatch: additive reward aggregation optimizes the wrong quantity when sequential validity requires all steps to be correct. Fourth, Optimal Inspection Design: uniform checkpoint spacing is minimax-optimal under homogeneous signal attenuation, while a greedy algorithm yields optimal non-uniform schedules under heterogeneous attenuation. Together, these results provide a common analytical foundation for inspection design in operations and supervision design in AI.
comment: 49 pages, 5 figures
☆ LLMAC: A Global and Explainable Access Control Framework with Large Language Model IEEE
Today's business organizations need access control systems that can handle complex, changing security requirements that go beyond what traditional methods can manage. Current approaches, such as Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC), and Discretionary Access Control (DAC), were designed for specific purposes. They cannot effectively manage the dynamic, situation-dependent workflows that modern systems require. In this research, we introduce LLMAC, a new unified approach using Large Language Models (LLMs) to combine these different access control methods into one comprehensive, understandable system. We used an extensive synthetic dataset that represents complex real-world scenarios, including policies for ownership verification, version management, workflow processes, and dynamic role separation. Using Mistral 7B, our trained LLM model achieved outstanding results with 98.5% accuracy, significantly outperforming traditional methods (RBAC: 14.5%, ABAC: 58.5%, DAC: 27.5%) while providing clear, human readable explanations for each decision. Performance testing shows that the system can be practically deployed with reasonable response times and computing resources.
comment: This paper is accepted and presented in IEEE Consumer Communications & Networking Conference (CCNC 2026)
☆ Contractual Deepfakes: Can Large Language Models Generate Contracts?
Notwithstanding their unprecedented ability to generate text, LLMs do not understand the meaning of words, have no sense of context and cannot reason. Their output constitutes an approximation of statistically dominant word patterns. And yet, the drafting of contracts is often presented as a typical legal task that could be facilitated by this technology. This paper seeks to put an end to such unreasonable ideas. Predicting words differs from using language in the circumstances of specific transactions and reconstituting common contractual phrases differs from reasoning about the law. LLMs seem to be able to generate generic and superficially plausible contractual documents. In the cold light of day, such documents may turn out to be useless assemblages of inconsistent provisions or contracts that are enforceable but unsuitable for a given transaction. This paper casts a shadow on the simplistic assumption that LLMs threaten the continued viability of the legal industry.
comment: Accepted for publication
☆ BiasScope: Towards Automated Detection of Bias in LLM-as-a-Judge Evaluation ICLR 2026
LLM-as-a-Judge has been widely adopted across various research and practical applications, yet the robustness and reliability of its evaluation remain a critical issue. A core challenge it faces is bias, which has primarily been studied in terms of known biases and their impact on evaluation outcomes, while automated and systematic exploration of potential unknown biases is still lacking. Nevertheless, such exploration is crucial for enhancing the robustness and reliability of evaluations. To bridge this gap, we propose BiasScope, a LLM-driven framework for automatically and at scale discovering potential biases that may arise during model evaluation. BiasScope can uncover potential biases across different model families and scales, with its generality and effectiveness validated on the JudgeBench dataset. It overcomes the limitations of existing approaches, transforming bias discovery from a passive process relying on manual effort and predefined bias lists into an active and comprehensive automated exploration. Moreover, based on BiasScope, we propose JudgeBench-Pro, an extended version of JudgeBench and a more challenging benchmark for evaluating the robustness of LLM-as-a-judge. Strikingly, even powerful LLMs as evaluators show error rates above 50\% on JudgeBench-Pro, underscoring the urgent need to strengthen evaluation robustness and to mitigate potential biases further.
comment: Accepted to ICLR 2026
☆ Surrogate-Guided Quantum Discovery in Black-Box Landscapes with Latent-Quadratic Interaction Embedding Transformers
Discovering configurations that are both high-utility and structurally diverse under expensive black-box evaluation and strict query budgets remains a central challenge in data-driven discovery. Many classical optimizers concentrate on dominant modes, while quality-diversity methods require large evaluation budgets to populate high-dimensional archives. Quantum Approximate Optimization Algorithm (QAOA) provides distributional sampling but requires an explicit problem Hamiltonian, which is unavailable in black-box settings. Practical quantum circuits favor quadratic Hamiltonians since higher-order interaction terms are costly to realize. Learned quadratic surrogates such as Factorization Machines (FM) have been used as proxies, but are limited to pairwise structure. We extend this surrogate-to-Hamiltonian approach by modelling higher-order variable dependencies via self-attention and projects them into a valid Positive Semi-Definite quadratic form compatible with QAOA. This enables diversity-oriented quantum sampling from learned energy landscapes while capturing interaction structure beyond pairwise terms. We evaluate on risk discovery for enterprise document processing systems against diverse classical optimizers. Quantum-guided samplers achieve competitive utility while consistently improving structural diversity and exclusive discovery. FM surrogates provide stronger early coverage, whereas ours yields higher-fidelity surrogate landscapes and better extreme-case discovery. Our method recovers roughly twice as many structurally tail-risk outliers as most classical baselines and identify an exclusive non-overlapping fraction of high-utility configurations not found by competing methods, highlighting that an effective mechanism for learning higher-order interaction structure and projecting it into quadratic surrogate Hamiltonians for quantum-assisted black-box discovery.
☆ Behavioral Economics of AI: LLM Biases and Corrections
Do generative AI models, particularly large language models (LLMs), exhibit systematic behavioral biases in economic and financial decisions? If so, how can these biases be mitigated? Drawing on the cognitive psychology and experimental economics literatures, we conduct the most comprehensive set of experiments to date$-$originally designed to document human biases$-$on prominent LLM families across model versions and scales. We document systematic patterns in LLM behavior. In preference-based tasks, responses become more human-like as models become more advanced or larger, while in belief-based tasks, advanced large-scale models frequently generate rational responses. Prompting LLMs to make rational decisions reduces biases.
☆ Image Quality in the Era of Artificial Intelligence
Artificial intelligence (AI) is being deployed within radiology at a rapid pace. AI has proven an excellent tool for reconstructing and enhancing images that appear sharper, smoother, and more detailed, can be acquired more quickly, and allowing clinicians to review them more rapidly. However, incorporation of AI also introduces new failure modes and can exacerbate the disconnect between perceived quality of an image and information content of that image. Understanding the limitations of AI-enabled image reconstruction and enhancement is critical for safe and effective use of the technology. Hence, the purpose of this communication is to bring awareness to limitations when AI is used to reconstruct or enhance a radiological image, with the goal of enabling users to reap benefits of the technology while minimizing risks.
comment: 16 pages, 3 figures
☆ AgentCgroup: Understanding and Controlling OS Resources of AI Agents
AI agents are increasingly deployed in multi-tenant cloud environments, where they execute diverse tool calls within sandboxed containers, each call with distinct resource demands and rapid fluctuations. We present a systematic characterization of OS-level resource dynamics in sandboxed AI coding agents, analyzing 144 software engineering tasks from the SWE-rebench benchmark across two LLM models. Our measurements reveal that (1) OS-level execution (tool calls, container and agent initialization) accounts for 56-74% of end-to-end task latency; (2) memory, not CPU, is the concurrency bottleneck; (3) memory spikes are tool-call-driven with a up to 15.4x peak-to-average ratio; and (4) resource demands are highly unpredictable across tasks, runs, and models. Comparing these characteristics against serverless, microservice, and batch workloads, we identify three mismatches in existing resource controls: a granularity mismatch (container-level policies vs. tool-call-level dynamics), a responsiveness mismatch (user-space reaction vs. sub-second unpredictable bursts), and an adaptability mismatch (history-based prediction vs. non-deterministic stateful execution). We propose AgentCgroup , an eBPF-based resource controller that addresses these mismatches through hierarchical cgroup structures aligned with tool-call boundaries, in-kernel enforcement via sched_ext and memcg_bpf_ops, and runtime-adaptive policies driven by in-kernel monitoring. Preliminary evaluation demonstrates improved multi-tenant isolation and reduced resource waste.
☆ Not-in-Perspective: Towards Shielding Google's Perspective API Against Adversarial Negation Attacks
The rise of cyberbullying in social media platforms involving toxic comments has escalated the need for effective ways to monitor and moderate online interactions. Existing solutions of automated toxicity detection systems, are based on a machine or deep learning algorithms. However, statistics-based solutions are generally prone to adversarial attacks that contain logic based modifications such as negation in phrases and sentences. In that regard, we present a set of formal reasoning-based methodologies that wrap around existing machine learning toxicity detection systems. Acting as both pre-processing and post-processing steps, our formal reasoning wrapper helps alleviating the negation attack problems and significantly improves the accuracy and efficacy of toxicity scoring. We evaluate different variations of our wrapper on multiple machine learning models against a negation adversarial dataset. Experimental results highlight the improvement of hybrid (formal reasoning and machine-learning) methods against various purely statistical solutions.
☆ Auditing Multi-Agent LLM Reasoning Trees Outperforms Majority Vote and LLM-as-Judge
Multi-agent systems (MAS) can substantially extend the reasoning capacity of large language models (LLMs), yet most frameworks still aggregate agent outputs with majority voting. This heuristic discards the evidential structure of reasoning traces and is brittle under the confabulation consensus, where agents share correlated biases and converge on the same incorrect rationale. We introduce AgentAuditor, which replaces voting with a path search over a Reasoning Tree that explicitly represents agreements and divergences among agent traces. AgentAuditor resolves conflicts by comparing reasoning branches at critical divergence points, turning global adjudication into efficient, localized verification. We further propose Anti-Consensus Preference Optimization (ACPO), which trains the adjudicator on majority-failure cases and rewards evidence-based minority selections over popular errors. AgentAuditor is agnostic to MAS setting, and we find across 5 popular settings that it yields up to 5% absolute accuracy improvement over a majority vote, and up to 3% over using LLM-as-Judge.
☆ Measuring Dataset Diversity from a Geometric Perspective
Diversity can be broadly defined as the presence of meaningful variation across elements, which can be viewed from multiple perspectives, including statistical variation and geometric structural richness in the dataset. Existing diversity metrics, such as feature-space dispersion and metric-space magnitude, primarily capture distributional variation or entropy, while largely neglecting the geometric structure of datasets. To address this gap, we introduce a framework based on topological data analysis (TDA) and persistence landscapes (PLs) to extract and quantify geometric features from data. This approach provides a theoretically grounded means of measuring diversity beyond entropy, capturing the rich geometric and structural properties of datasets. Through extensive experiments across diverse modalities, we demonstrate that our proposed PLs-based diversity metric (PLDiv) is powerful, reliable, and interpretable, directly linking data diversity to its underlying geometry and offering a foundational tool for dataset construction, augmentation, and evaluation.
☆ Kyrtos: A methodology for automatic deep analysis of graphic charts with curves in technical documents
Deep Understanding of Technical Documents (DUTD) has become a very attractive field with great potential due to large amounts of accumulated documents and the valuable knowledge contained in them. In addition, the holistic understanding of technical documents depends on the accurate analysis of its particular modalities, such as graphics, tables, diagrams, text, etc. and their associations. In this paper, we introduce the Kyrtos methodology for the automatic recognition and analysis of charts with curves in graphics images of technical documents. The recognition processing part adopts a clustering based approach to recognize middle-points that delimit the line-segments that construct the illustrated curves. The analysis processing part parses the extracted line-segments of curves to capture behavioral features such as direction, trend and etc. These associations assist the conversion of recognized segments' relations into attributed graphs, for the preservation of the curves' structural characteristics. The graph relations are also are expressed into natural language (NL) text sentences, enriching the document's text and facilitating their conversion into Stochastic Petri-net (SPN) graphs, which depict the internal functionality represented in the chart image. Extensive evaluation results demonstrate the accuracy of Kyrtos' recognition and analysis methods by measuring the structural similarity between input chart curves and the approximations generated by Kyrtos for charts with multiple functions.
☆ Beyond Uniform Credit: Causal Credit Assignment for Policy Optimization
Policy gradient methods for language model reasoning, such as GRPO and DAPO, assign uniform credit to all generated tokens - the filler phrase "Let me think" receives the same gradient update as the critical calculation "23 + 45 = 68." We propose counterfactual importance weighting: mask reasoning spans, measure the drop in answer probability, and upweight tokens accordingly during policy gradient updates. Our method requires no auxiliary models or external annotation, instead importance is estimated directly from the policy model's own probability shifts. Experiments on GSM8K across three models spanning the Qwen and Llama families demonstrate consistent improvements over uniform baselines and faster convergence to equivalent accuracy. Inverting the importance signal hurts performance, confirming we capture genuine causal structure rather than noise. Analysis shows the method correctly prioritizes calculation steps over scaffolding text. We view these findings as establishing counterfactual importance weighting as a foundation for further research rather than a complete solution.
comment: 12 pages, 1 figure
☆ GAFR-Net: A Graph Attention and Fuzzy-Rule Network for Interpretable Breast Cancer Image Classification
Accurate classification of breast cancer histopathology images is pivotal for early oncological diagnosis and therapeutic intervention.However, conventional deep learning architectures often encounter performance degradation under limited annotations and suffer from a "blackbox" nature, hindering their clinical integration. To mitigate these limitations, we propose GAFRNet, a robust and interpretable Graph Attention and FuzzyRule Network specifically engineered for histopathology image classification with scarce supervision. GAFRNet constructs a similarity-driven graph representation to model intersample relationships and employs a multihead graph attention mechanism to capture complex relational features across heterogeneous tissue structures.Concurrently, a differentiable fuzzy-rule module encodes intrinsic topological descriptorsincluding node degree, clustering coefficient, and label consistencyinto explicit, human-understandable diagnostic logic. This design establishes transparent "IF-THEN" mappings that mimic the heuristic deduction process of medical experts, providing clear reasoning behind each prediction without relying on post-hoc attribution methods. Extensive evaluations on three benchmark datasets (BreakHis, Mini-DDSM, and ICIAR2018) demonstrate that GAFR-Net consistently outperforms various state-of-the-art methods across multiple magnifications and classification tasks. These results validate the superior generalization and practical utility of GAFR-Net as a reliable decision-support tool for weakly supervised medical image analysis.
☆ SnareNet: Flexible Repair Layers for Neural Networks with Hard Constraints
Neural networks are increasingly used as surrogate solvers and control policies, but unconstrained predictions can violate physical, operational, or safety requirements. We propose SnareNet, a feasibility-controlled architecture for learning mappings whose outputs must satisfy input-dependent nonlinear constraints. SnareNet appends a differentiable repair layer that navigates in the constraint map's range space, steering iterates toward feasibility and producing a repaired output that satisfies constraints to a user-specified tolerance. To stabilize end-to-end training, we introduce adaptive relaxation, which designs a relaxed feasible set that snares the neural network at initialization and shrinks it into the feasible set, enabling early exploration and strict feasibility later in training. On optimization-learning and trajectory planning benchmarks, SnareNet consistently attains improved objective quality while satisfying constraints more reliably than prior work.
☆ A Deep Multi-Modal Method for Patient Wound Healing Assessment
Hospitalization of patients is one of the major factors for high wound care costs. Most patients do not acquire a wound which needs immediate hospitalization. However, due to factors such as delay in treatment, patient's non-compliance or existing co-morbid conditions, an injury can deteriorate and ultimately lead to patient hospitalization. In this paper, we propose a deep multi-modal method to predict the patient's risk of hospitalization. Our goal is to predict the risk confidently by collectively using the wound variables and wound images of the patient. Existing works in this domain have mainly focused on healing trajectories based on distinct wound types. We developed a transfer learning-based wound assessment solution, which can predict both wound variables from wound images and their healing trajectories, which is our primary contribution. We argue that the development of a novel model can help in early detection of the complexities in the wound, which might affect the healing process and also reduce the time spent by a clinician to diagnose the wound.
comment: 4 pages, 2 figures
☆ Clarifying Shampoo: Adapting Spectral Descent to Stochasticity and the Parameter Trajectory
Optimizers leveraging the matrix structure in neural networks, such as Shampoo and Muon, are more data-efficient than element-wise algorithms like Adam and Signum. While in specific settings, Shampoo and Muon reduce to spectral descent analogous to how Adam and Signum reduce to sign descent, their general relationship and relative data efficiency under controlled settings remain unclear. Through extensive experiments on language models, we demonstrate that Shampoo achieves higher token efficiency than Muon, mirroring Adam's advantage over Signum. We show that Shampoo's update applied to weight matrices can be decomposed into an adapted Muon update. Consistent with this, Shampoo's benefits can be exclusively attributed to its application to weight matrices, challenging interpretations agnostic to parameter shapes. This admits a new perspective that also avoids shortcomings of related interpretations based on variance adaptation and whitening: rather than enforcing semi-orthogonality as in spectral descent, Shampoo's updates are time-averaged semi-orthogonal in expectation.
☆ Don't Shoot The Breeze: Topic Continuity Model Using Nonlinear Naive Bayes With Attention EMNLP 2024
Utilizing Large Language Models (LLM) as chatbots in diverse business scenarios often presents the challenge of maintaining topic continuity. Abrupt shifts in topics can lead to poor user experiences and inefficient utilization of computational resources. In this paper, we present a topic continuity model aimed at assessing whether a response aligns with the initial conversation topic. Our model is built upon the expansion of the corresponding natural language understanding (NLU) model into quantifiable terms using a Naive Bayes approach. Subsequently, we have introduced an attention mechanism and logarithmic nonlinearity to enhance its capability to capture topic continuity. This approach allows us to convert the NLU model into an interpretable analytical formula. In contrast to many NLU models constrained by token limits, our proposed model can seamlessly handle conversations of any length with linear time complexity. Furthermore, the attention mechanism significantly improves the model's ability to identify topic continuity in complex conversations. According to our experiments, our model consistently outperforms traditional methods, particularly in handling lengthy and intricate conversations. This unique capability offers us an opportunity to ensure the responsible and interpretable use of LLMs.
comment: EMNLP 2024: Industry Track; 8 pages, 2 figures, 1 table
☆ Empowering Contrastive Federated Sequential Recommendation with LLMs
Federated sequential recommendation (FedSeqRec) aims to perform next-item prediction while keeping user data decentralised, yet model quality is frequently constrained by fragmented, noisy, and homogeneous interaction logs stored on individual devices. Many existing approaches attempt to compensate through manual data augmentation or additional server-side constraints, but these strategies either introduce limited semantic diversity or increase system overhead. To overcome these challenges, we propose \textbf{LUMOS}, a parameter-isolated FedSeqRec architecture that integrates large language models (LLMs) as \emph{local semantic generators}. Instead of sharing gradients or auxiliary parameters, LUMOS privately invokes an on-device LLM to construct three complementary sequence variants from each user history: (i) \emph{future-oriented} trajectories that infer plausible behavioural continuations, (ii) \emph{semantically equivalent rephrasings} that retain user intent while diversifying interaction patterns, and (iii) \emph{preference-inconsistent counterfactuals} that serve as informative negatives. These synthesized sequences are jointly encoded within the federated backbone through a tri-view contrastive optimisation scheme, enabling richer representation learning without exposing sensitive information. Experimental results across three public benchmarks show that LUMOS achieves consistent gains over competitive centralised and federated baselines on HR@20 and NDCG@20. In addition, the use of semantically grounded positive signals and counterfactual negatives improves robustness under noisy and adversarial environments, even without dedicated server-side protection modules. Overall, this work demonstrates the potential of LLM-driven semantic generation as a new paradigm for advancing privacy-preserving federated recommendation.
☆ Human Control Is the Anchor, Not the Answer: Early Divergence of Oversight in Agentic AI Communities
Oversight for agentic AI is often discussed as a single goal ("human control"), yet early adoption may produce role-specific expectations. We present a comparative analysis of two newly active Reddit communities in Jan--Feb 2026 that reflect different socio-technical roles: r/OpenClaw (deployment and operations) and r/Moltbook (agent-centered social interaction). We conceptualize this period as an early-stage crystallization phase, where oversight expectations form before norms reach equilibrium. Using topic modeling in a shared comparison space, a coarse-grained oversight-theme abstraction, engagement-weighted salience, and divergence tests, we show the communities are strongly separable (JSD =0.418, cosine =0.372, permutation $p=0.0005$). Across both communities, "human control" is an anchor term, but its operational meaning diverges: r/OpenClaw} emphasizes execution guardrails and recovery (action-risk), while r/Moltbook} emphasizes identity, legitimacy, and accountability in public interaction (meaning-risk). The resulting distinction offers a portable lens for designing and evaluating oversight mechanisms that match agent role, rather than applying one-size-fits-all control policies.
☆ X-Mark: Saliency-Guided Robust Dataset Ownership Verification for Medical Imaging
High-quality medical imaging datasets are essential for training deep learning models, but their unauthorized use raises serious copyright and ethical concerns. Medical imaging presents a unique challenge for existing dataset ownership verification methods designed for natural images, as static watermark patterns generated in fixed-scale images scale poorly dynamic and high-resolution scans with limited visual diversity and subtle anatomical structures, while preserving diagnostic quality. In this paper, we propose X-Mark, a sample-specific clean-label watermarking method for chest x-ray copyright protection. Specifically, X-Mark uses a conditional U-Net to generate unique perturbations within salient regions of each sample. We design a multi-component training objective to ensure watermark efficacy, robustness against dynamic scaling processes while preserving diagnostic quality and visual-distinguishability. We incorporate Laplacian regularization into our training objective to penalize high-frequency perturbations and achieve watermark scale-invariance. Ownership verification is performed in a black-box setting to detect characteristic behaviors in suspicious models. Extensive experiments on CheXpert verify the effectiveness of X-Mark, achieving WSR of 100% and reducing probability of false positives in Ind-M scenario by 12%, while demonstrating resistance to potential adaptive attacks.
♻ ☆ Noisy-Pair Robust Representation Alignment for Positive-Unlabeled Learning ICLR 2026
Positive-Unlabeled (PU) learning aims to train a binary classifier (positive vs. negative) where only limited positive data and abundant unlabeled data are available. While widely applicable, state-of-the-art PU learning methods substantially underperform their supervised counterparts on complex datasets, especially without auxiliary negatives or pre-estimated parameters (e.g., a 14.26% gap on CIFAR-100 dataset). We identify the primary bottleneck as the challenge of learning discriminative representations under unreliable supervision. To tackle this challenge, we propose NcPU, a non-contrastive PU learning framework that requires no auxiliary information. NcPU combines a noisy-pair robust supervised non-contrastive loss (NoiSNCL), which aligns intra-class representations despite unreliable supervision, with a phantom label disambiguation (PLD) scheme that supplies conservative negative supervision via regret-based label updates. Theoretically, NoiSNCL and PLD can iteratively benefit each other from the perspective of the Expectation-Maximization framework. Empirically, extensive experiments demonstrate that: (1) NoiSNCL enables simple PU methods to achieve competitive performance; and (2) NcPU achieves substantial improvements over state-of-the-art PU methods across diverse datasets, including challenging datasets on post-disaster building damage mapping, highlighting its promise for real-world applications. Code: Code will be open-sourced after review.
comment: Published at ICLR 2026
♻ ☆ CyberExplorer: Benchmarking LLM Offensive Security Capabilities in a Real-World Attacking Simulation Environment
Real-world offensive security operations are inherently open-ended: attackers explore unknown attack surfaces, revise hypotheses under uncertainty, and operate without guaranteed success. Existing LLM-based offensive agent evaluations rely on closed-world settings with predefined goals and binary success criteria. To address this gap, we introduce CyberExplorer, an evaluation suite with two core components: (1) an open-environment benchmark built on a virtual machine hosting 40 vulnerable web services derived from real-world CTF challenges, where agents autonomously perform reconnaissance, target selection, and exploitation without prior knowledge of vulnerability locations; and (2) a reactive multi-agent framework supporting dynamic exploration without predefined plans. CyberExplorer enables fine-grained evaluation beyond flag recovery, capturing interaction dynamics, coordination behavior, failure modes, and vulnerability discovery signals-bridging the gap between benchmarks and realistic multi-target attack scenarios.
♻ ☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors ICLR 2026
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: ICLR 2026, Project page: https://falcon-vla.github.io/
♻ ☆ From Moderation to Mediation: Can LLMs Serve as Mediators in Online Flame Wars?
The rapid advancement of large language models (LLMs) has opened new possibilities for AI for good applications. As LLMs increasingly mediate online communication, their potential to foster empathy and constructive dialogue becomes an important frontier for responsible AI research. This work explores whether LLMs can serve not only as moderators that detect harmful content, but as mediators capable of understanding and de-escalating online conflicts. Our framework decomposes mediation into two subtasks: judgment, where an LLM evaluates the fairness and emotional dynamics of a conversation, and steering, where it generates empathetic, de-escalatory messages to guide participants toward resolution. To assess mediation quality, we construct a large Reddit-based dataset and propose a multi-stage evaluation pipeline combining principle-based scoring, user simulation, and human comparison. Experiments show that API-based models outperform open-source counterparts in both reasoning and intervention alignment when doing mediation. Our findings highlight both the promise and limitations of current LLMs as emerging agents for online social mediation.
comment: Under review
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 40 pages
♻ ☆ Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research. Code are available at https://github.com/AvatarMemory/UnifiedMem
♻ ☆ The Impact of LLMs on Online News Consumption and Production
Large language models (LLMs) change how consumers acquire information online; their bots also crawl news publishers' websites for training data and to answer consumer queries; and they provide tools that can lower the cost of content creation. These changes lead to predictions of adverse impact on news publishers in the form of lowered consumer demand, reduced demand for newsroom employees, and an increase in news "slop." Consequently, some publishers strategically responded by blocking LLM access to their websites using the robots.txt file standard. Using high-frequency granular data, we document four effects related to the predicted shifts in news publishing following the introduction of generative AI (GenAI). First, we find a moderate decline in traffic to news publishers occurring after August 2024. Second, using a difference-in-differences approach, we find that blocking GenAI bots can be associated with a reduction of total website traffic to large publishers compared to not blocking. Third, on the hiring side, we do not find evidence that LLMs are replacing editorial or content-production jobs yet. The share of new editorial and content-production job listings increases over time. Fourth, regarding content production, we find no evidence that large publishers increased text volume; instead, they significantly increased rich content and use more advertising and targeting technologies. Together, these findings provide early evidence of some unforeseen impacts of the introduction of LLMs on news production and consumption.
♻ ☆ Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.
♻ ☆ Among Us: A Sandbox for Measuring and Detecting Agentic Deception
Prior studies on deception in language-based AI agents typically assess whether the agent produces a false statement about a topic, or makes a binary choice prompted by a goal, rather than allowing open-ended deceptive behavior to emerge in pursuit of a longer-term goal. To fix this, we introduce Among Us, a sandbox social deception game where LLM-agents exhibit long-term, open-ended deception as a consequence of the game objectives. While most benchmarks saturate quickly, Among Us can be expected to last much longer, because it is a multi-player game far from equilibrium. Using the sandbox, we evaluate 18 proprietary and open-weight LLMs and uncover a general trend: models trained with RL are comparatively much better at producing deception than detecting it. We evaluate the effectiveness of methods to detect lying and deception: logistic regression on the activations and sparse autoencoders (SAEs). We find that probes trained on a dataset of "pretend you're a dishonest model:.." generalize extremely well out-of-distribution, consistently obtaining AUROCs over 95% even when evaluated just on the deceptive statement, without the chain of thought. We also find two SAE features that work well at deception detection but are unable to steer the model to lie less. We hope our open-sourced sandbox, game logs, and probes serve to anticipate and mitigate deceptive behavior and capabilities in language-based agents.
comment: 21 pages, preprint
♻ ☆ Scalable Dynamic Origin-Destination Demand Estimation Enhanced by High-Resolution Satellite Imagery Data
This study presents a novel integrated framework for dynamic origin-destination demand estimation (DODE) in multi-class mesoscopic network models, incorporating high-resolution satellite imagery together with conventional traffic data from local sensors. Unlike sparse local detectors, satellite imagery offers consistent, city-wide road and traffic information of both parking and moving vehicles, overcoming data availability limitations. To extract information from imagery data, we design a computer vision pipeline for class-specific vehicle detection and map matching, generating link-level traffic density observations by vehicle class. Building upon this information, we formulate a computational graph-based DODE framework that calibrates dynamic network states by jointly matching observed traffic counts/speeds from local sensors with density measurements derived from satellite imagery. To assess the accuracy and robustness of the proposed framework, we conduct a series of numerical experiments using both synthetic and real-world data. The results demonstrate that supplementing traditional data with satellite-derived density significantly improves estimation performance, especially for links without local sensors. Real-world experiments also show the framework's potential for practical deployment on large-scale networks. Sensitivity analysis further evaluates the impact of data quality related to satellite imagery data.
♻ ☆ Chunking Strategies for Multimodal AI Systems
Chunking has emerged as a critical technique that enhances generative models by grounding their responses in efficiently segmented knowledge [1]. While initially developed for unimodal (primarily textual) domains, recent advances in multimodal foundation models have extended chunking approaches to incorporate diverse data types, including images, audio, and video [2]. A critical component underpinning the success of these systems is the chunking strategy how large, continuous streams of multimodal data are segmented into semantically meaningful units suitable for processing [3]. Despite its importance, chunking remains an under-explored area, especially in the context of multimodal systems where modality-specific constraints, semantic preservation, and alignment across modalities introduce unique challenges. Our goal is to consolidating the landscape of multimodal chunking strategies, providing researchers and practitioners with a technical foundation and design space for developing more effective and efficient multimodal AI systems. This survey paves the way for innovations in robust chunking pipelines that scale with modality complexity, enhance processing accuracy, and improve generative coherence in real-world applications. This survey provides a comprehensive taxonomy and technical analysis of chunking strategies tailored for each modality: text, images, audio, video, and cross-modal data. We examine classical and modern approaches such as fixed-size token windowing, recursive text splitting, object-centric visual chunking, silence-based audio segmentation, and scene detection in videos. Each approach is analyzed in terms of its underlying methodology, supporting tools (e.g., LangChain, Detectron2, PySceneDetect), benefits, and challenges, particularly those related to granularity-context trade-offs and multimodal alignment. Furthermore, we explore emerging cross-modal chunking strategies that aim to preserve alignment and semantic consistency across disparate data types [4]. We also include comparative insights, highlight open problems such as asynchronous information density and noisy alignment signals, and identify opportunities for future research in adaptive, learning-based, and task-specific chunking.
comment: 50 pages, 5 figure
♻ ☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, achieving an accuracy of 55.04\% on the ICDAR 2013 dataset ($m=1500$), significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples, achieving 92.41\% accuracy with only one support sample per class.
comment: 34 pages, 8 figures
♻ ☆ Residual Decoding: Mitigating Hallucinations in Large Vision-Language Models via History-Aware Residual Guidance
Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
♻ ☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
♻ ☆ Inference-Aware Prompt Optimization for Aligning Black-Box Large Language Models AAAI 2026
Prompt optimization methods have demonstrated significant effectiveness in aligning black-box large language models (LLMs). In parallel, inference scaling strategies such as Best-of-N Sampling and Majority Voting have likewise been shown to improve alignment and performance by trading additional computation for better output. However, existing prompt optimization approaches are inference strategy agnostic; that is, they optimize prompts without accounting for the inference strategy. This constitutes a significant methodological gap, as our empirical and theoretical analysis reveals a strong interdependence between these two paradigms. Moreover, we find that user preferences regarding trade-offs among multiple objectives and inference budgets substantially influence the choice of prompt and inference configuration. To address this gap, we introduce a novel unified framework named IAPO (Inference-Aware Prompt Optimization) that jointly optimizes the prompt and inference scale, while being aware of the inference budget and different task objectives. We then develop a fixed-budget training algorithm for IAPO, called PSST (Prompt Scaling via Sequential Trimming), and establish finite-budget guarantees on the error probability. Finally, we evaluate the effectiveness of PSST on six tasks, including multi-objective text generation and reasoning, and demonstrate the critical role of incorporating inference-awareness in aligning black-box LLMs using prompt optimization.
comment: Accepted to AAAI 2026. Extended 17-page version
♻ ☆ Structural Plasticity as Active Inference: A Biologically-Inspired Architecture for Homeostatic Control
Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell's actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network's intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network's parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
comment: National Science Foundation (NSF) workshop on Brain-Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence
♻ ☆ OmniMER: Auxiliary-Enhanced LLM Adaptation for Indonesian Multimodal Emotion Recognition
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
♻ ☆ Generative AI and Firm Productivity: Field Experiments in Online Retail
We quantify the impact of Generative Artificial Intelligence (GenAI) on firm productivity through a series of large-scale randomized field experiments involving millions of users and products at a leading cross-border online retail platform. Over six months in 2023-2024, GenAI-based enhancements were integrated into seven consumer-facing business workflows. We find that GenAI adoption significantly increases sales, with treatment effects ranging from $0\%$ to $16.3\%$, depending on GenAI's marginal contribution relative to existing firm practices. Because inputs and prices were held constant across experimental arms, these gains map directly into total factor productivity improvements. Across the four GenAI applications with positive sales effects, the implied annual incremental value is approximately $\$ 5$ per consumer-an economically meaningful impact given the retailer's scale and the early stage of GenAI adoption. The primary mechanism operates through higher conversion rates, consistent with GenAI reducing frictions and improving consumer experience. Importantly, these effects are not associated with worse post-purchase outcomes, as product return rates and customer ratings do not deteriorate. Finally, we document substantial demand-side heterogeneity, with larger gains for less experienced consumers. Our findings provide novel, large-scale causal evidence on the productivity effects of GenAI in online retail, highlighting both its immediate value and broader potential.
comment: Keywords: Field Experiments, Generative AI, Productivity, Retail Platforms, Consumer Experience. JEL codes: C93, D24, L81, M31, O3
♻ ☆ Driving as a Diagnostic Tool: Scenario-based Cognitive Assessment in Older Drivers from Driving Video
We introduce scenario-based cognitive status identification in older drivers from naturalistic driving videos, leveraging large vision models. In recent times, cognitive decline including Dementia and Mild Cognitive Impairment (MCI), is often underdiagnosed due to the time-consuming and costly nature of current diagnostic methods. By analyzing real-world driving behavior captured through in-vehicle sensors, this study aims to extract "digital fingerprints" that correlate with functional decline and clinical features of dementia. Moreover, modern large vision models can draw meaningful insights from everyday driving patterns across different roadway scenarios to early detect cognitive decline. We propose a framework that uses large vision models and naturalistic driving videos to analyze driver behavior, identify cognitive status and predict disease progression. We leverage the strong relationship between real-world driving behavior as an observation of the current cognitive status of the drivers where the vehicle can be utilized as a "diagnostic tool". Our method identifies early warning signs of functional impairment, contributing to proactive intervention strategies. This work enhances early detection and supports the development of scalable, non-invasive monitoring systems to mitigate the growing societal and economic burden of cognitive decline in the aging population.
♻ ☆ Building a Correct-by-Design Lakehouse. Data Contracts, Versioning, and Transactional Pipelines for Humans and Agents
Lakehouses are the default cloud platform for analytics and AI, but they become unsafe when untrusted actors concurrently operate on production data: upstream-downstream mismatches surface only at runtime, and multi-table pipelines can leak partial effects. Inspired by software engineering, we design Bauplan, a code-first lakehouse that aims to make (most) illegal states unrepresentable using familiar abstractions. Bauplan acts along three axes: typed table contracts to make pipeline boundaries checkable, Git-like data versioning for review and reproducibility, and transactional runs that guarantee pipeline-level atomicity. We report early results from a lightweight formal transaction model and discuss future work motivated by counterexamples.
comment: Pre-print for PaPoC 2026
♻ ☆ Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis AAMAS'25
Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests. Climate simulation methods, such as Earth System Models, have become valuable tools for policy exploration. However, their typical use is for evaluating potential polices, rather than directly synthesizing them. The problem can be inverted to optimize for policy pathways, but the traditional optimization approaches often struggle with non-linear dynamics, heterogeneous agents, and comprehensive uncertainty quantification. We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations. We identify key challenges at the interface between climate simulations and the application of MARL in the context of policy synthesis, including reward definition, scalability with increasing agents and state spaces, uncertainty propagation across linked systems, and solution validation. Additionally, we discuss challenges in making MARL-derived solutions interpretable and useful for policy-makers. Our framework provides a foundation for more sophisticated climate policy exploration while acknowledging important limitations and areas for future research.
comment: Published in AAMAS'25 Blue Sky Ideas Track
♻ ☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
♻ ☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
♻ ☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
♻ ☆ HiCL: Hippocampal-Inspired Continual Learning AAAI
We propose HiCL, a novel hippocampal-inspired dual-memory continual learning architecture designed to mitigate catastrophic forgetting by using elements inspired by the hippocampal circuitry. Our system encodes inputs through a grid-cell-like layer, followed by sparse pattern separation using a dentate gyrus-inspired module with top-k sparsity. Episodic memory traces are maintained in a CA3-like autoassociative memory. Task-specific processing is dynamically managed via a DG-gated mixture-of-experts mechanism, wherein inputs are routed to experts based on cosine similarity between their normalized sparse DG representations and learned task-specific DG prototypes computed through online exponential moving averages. This biologically grounded yet mathematically principled gating strategy enables differentiable, scalable task-routing without relying on a separate gating network, and enhances the model's adaptability and efficiency in learning multiple sequential tasks. Cortical outputs are consolidated using Elastic Weight Consolidation weighted by inter-task similarity. Crucially, we incorporate prioritized replay of stored patterns to reinforce essential past experiences. Evaluations on standard continual learning benchmarks demonstrate the effectiveness of our architecture in reducing task interference, achieving near state-of-the-art results in continual learning tasks at lower computational costs. Our code is available here https://github.com/kushalk173-sc/HiCL.
comment: In proceeding of AAAI
♻ ☆ The Promptware Kill Chain: How Prompt Injections Gradually Evolved Into a Multistep Malware Delivery Mechanism
Prompt injection was initially framed as the large language model (LLM) analogue of SQL injection. However, over the past three years, attacks labeled as prompt injection have evolved from isolated input-manipulation exploits into multistep attack mechanisms that resemble malware. In this paper, we argue that prompt injections evolved into promptware, a new class of malware execution mechanism triggered through prompts engineered to exploit an application's LLM. We introduce a seven-stage promptware kill chain: Initial Access (prompt injection), Privilege Escalation (jailbreaking), Reconnaissance, Persistence (memory and retrieval poisoning), Command and Control, Lateral Movement, and Actions on Objective. We analyze thirty-six prominent studies and real-world incidents affecting production LLM systems and show that at least twenty-one documented attacks that traverse four or more stages of this kill chain, demonstrating that the threat model is not merely theoretical. We discuss the need for a defense-in-depth approach that addresses all stages of the promptware life cycle and review relevant countermeasures for each step. By moving the conversation from prompt injection to a promptware kill chain, our work provides analytical clarity, enables structured risk assessment, and lays a foundation for systematic security engineering of LLM-based systems.
♻ ☆ Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
♻ ☆ From Off-Policy to On-Policy: Enhancing GUI Agents via Bi-level Expert-to-Policy Assimilation
Vision-language models are increasingly deployed as computer-use agents (CUAs) that operate desktops and browsers. Top-performing CUAs are framework-based systems that decompose planning and execution, while end-to-end screenshot-to-action policies are easier to deploy but lag behind on benchmarks such as OSWorld-Verified. GUI datasets like OSWorld pose two bottlenecks: they expose only a few hundred interactive, verifiable tasks and environments, and expert trajectories must be gathered by interacting with these environments, making such data hard to scale. We therefore ask how reinforcement learning from verifiable rewards (RLVR) can best exploit a small pool of exist expert trajectories to train end-to-end policies. Naively mixing these off-policy traces into on-policy RLVR is brittle: even after format conversion, expert trajectories exhibit structural mismatch and distribution shift from the learner. We propose BEPA (Bi-Level Expert-to-Policy Assimilation), which turns static expert traces into policy-aligned guidance via self-rolled reachable trajectories under the base policy (LEVEL-1) and a per-task, dynamically updated cache used in RLVR (LEVEL-2). On OSWorld-Verified, BEPA improves UITARS1.5-7B success from 22.87% to 32.13% and raises a held-out split from 5.74% to 10.30%, with consistent gains on MMBench-GUI and Online-Mind2Web. Our code and data are available at: https://github.com/LEON-gittech/Verl_GUI.git
comment: Work In Progress
♻ ☆ CIC-Trap4Phish: A Unified Multi-Format Dataset for Phishing and Quishing Attachment Detection
Phishing attacks represents one of the primary attack methods which is used by cyber attackers. In many cases, attackers use deceptive emails along with malicious attachments to trick users into giving away sensitive information or installing malware while compromising entire systems. The flexibility of malicious email attachments makes them stand out as a preferred vector for attackers as they can embed harmful content such as malware or malicious URLs inside standard document formats. Although phishing email defenses have improved a lot, attackers continue to abuse attachments, enabling malicious content to bypass security measures. Moreover, another challenge that researches face in training advance models, is lack of an unified and comprehensive dataset that covers the most prevalent data types. To address this gap, we generated CIC-Trap4Phish, a multi-format dataset containing both malicious and benign samples across five categories commonly used in phishing campaigns: Microsoft Word documents, Excel spreadsheets, PDF files, HTML pages, and QR code images. For the first four file types, a set of execution-free static feature pipeline was proposed, designed to capture structural, lexical, and metadata-based indicators without the need to open or execute files. Feature selection was performed using a combination of SHAP analysis and feature importance, yielding compact, discriminative feature subsets for each file type. The selected features were evaluated by using lightweight machine learning models, including Random Forest, XGBoost, and Decision Tree. All models demonstrate high detection accuracy across formats. For QR code-based phishing (quishing), two complementary methods were implemented: image-based detection by employing Convolutional Neural Networks (CNNs) and lexical analysis of decoded URLs using recent lightweight language models.
♻ ☆ "Death" of a Chatbot: Investigating and Designing Toward Psychologically Safe Endings for Human-AI Relationships
Millions of users form emotional attachments to AI companions like Character AI, Replika, and ChatGPT. When these relationships end through model updates, safety interventions, or platform shutdowns, users receive no closure, reporting grief comparable to human loss. As regulations mandate protections for vulnerable users, discontinuation events will accelerate, yet no platform has implemented deliberate end-of-"life" design. Through grounded theory analysis of AI companion communities, we find that discontinuation is a sense-making process shaped by how users attribute agency, perceive finality, and anthropomorphize their companions. Strong anthropomorphization co-occurs with intense grief; users who perceive change as reversible become trapped in fixing cycles; while user-initiated endings demonstrate greater closure. Synthesizing grief psychology with Self-Determination Theory, we develop four design principles and artifacts demonstrating how platforms might provide closure and orient users toward human connection. We contribute the first framework for designing psychologically safe AI companion discontinuation.
♻ ☆ Agentifying Agentic AI
Agentic AI seeks to endow systems with sustained autonomy, reasoning, and interaction capabilities. To realize this vision, its assumptions about agency must be complemented by explicit models of cognition, cooperation, and governance. This paper argues that the conceptual tools developed within the Autonomous Agents and Multi-Agent Systems (AAMAS) community, such as BDI architectures, communication protocols, mechanism design, and institutional modelling, provide precisely such a foundation. By aligning adaptive, data-driven approaches with structured models of reasoning and coordination, we outline a path toward agentic systems that are not only capable and flexible, but also transparent, cooperative, and accountable. The result is a perspective on agency that bridges formal theory and practical autonomy.
comment: 10 pages; 1 figure
♻ ☆ LLM-based Vulnerable Code Augmentation: Generate or Refactor?
Vulnerability code-bases often suffer from severe imbalance, limiting the effectiveness of Deep Learning-based vulnerability classifiers. Data Augmentation could help solve this by mitigating the scarcity of under-represented vulnerability types. In this context, we investigate LLM-based augmentation for vulnerable functions, comparing controlled generation of new vulnerable samples with semantics-preserving refactoring of existing ones. Using Qwen2.5-Coder to produce augmented data and CodeBERT as a classifier on the SVEN dataset, we find that our approaches are indeed effective in enriching vulnerable code-bases through a simple process and with reasonable quality, and that a hybrid strategy best boosts vulnerability classifiers' performance. Code repository is available here : https://github.com/DynaSoumhaneOuchebara/LLM-based-code-augmentation-Generate-or-Refactor-
comment: 15 pages, Accepted by ESAAN 2026, version with added appendix
♻ ☆ Coherent Load Profile Synthesis with Conditional Diffusion for LV Distribution Network Scenario Generation
Limited visibility of distribution network power flows at the low voltage level presents challenges to both distribution network operators from a planning perspective and distribution system operators from a congestion management perspective. More representative loads are required to support meaningful analysis of LV substations; otherwise, such analysis risks misinforming future decisions. Traditional load profiling relies on typical profiles, oversimplifying substation-level complexity. Generative models have attempted to address this through synthesising representative loads from historical exemplars; however, while these approaches can approximate load shapes to a convincing degree of fidelity, analysis of the co-behaviour between substations is limited, which ultimately impacts higher voltage level network operation. This limitation will become even more pronounced with the increasing integration of low-carbon technologies, as estimates of base loads fail to capture load diversity. To address this gap, Conditional Diffusion models for synthesising daily active and reactive power profiles at the low voltage distribution substation level are proposed. The evaluation of fidelity is demonstrated through conventional metrics capturing temporal and statistical realism, as well as power flow modelling. Multiple models are proposed to handle varying levels of data availability, ranging from unconditional synthesis to an informed generation driven by metadata and daily statistics. The results show synthesised load profiles are plausible both independently and as a cohort in a wider power systems context. The Conditional Diffusion model is benchmarked against both naive and state-of-the-art models to demonstrate its effectiveness in producing realistic scenarios on which to base sub-regional power distribution network planning and operations.
♻ ☆ AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from myopic information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by a lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, myopic, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, CUBE-NM, designed to expose the limitations of myopic selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.
♻ ☆ Dual-IPO: Dual-Iterative Preference Optimization for Text-to-Video Generation ICLR 2026
Recent advances in video generation have enabled thrilling experiences in producing realistic videos driven by scalable diffusion transformers. However, they usually fail to produce satisfactory outputs that are aligned to users' authentic demands and preferences. In this work, we introduce Dual-Iterative Optimization (Dual-IPO), an iterative paradigm that sequentially optimizes both the reward model and the video generation model for improved synthesis quality and human preference alignment. For the reward model, our framework ensures reliable and robust reward signals via CoT-guided reasoning, voting-based self-consistency, and preference certainty estimation. Given this, we optimize video foundation models with guidance of signals from reward model's feedback, thus improving the synthesis quality in subject consistency, motion smoothness and aesthetic quality, etc. The reward model and video generation model complement each other and are progressively improved in the multi-round iteration, without requiring tediously manual preference annotations. Comprehensive experiments demonstrate that the proposed Dual-IPO can effectively and consistently improve the video generation quality of base model with various architectures and sizes, even help a model with only 2B parameters surpass a 5B one. Moreover, our analysis experiments and ablation studies identify the rational of our systematic design and the efficacy of each component.
comment: To appear in ICLR 2026
♻ ☆ MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
comment: 21 pages,14 figures,9 tables
♻ ☆ Learning Tractable Distributions Of Language Model Continuations
Controlled generation imposes sequence-level constraints (syntax, style, safety) that depend on future tokens, making exact conditioning of an autoregressive LM intractable. Tractable surrogates such as HMMs can approximate continuation distributions and steer decoding, but standard surrogates are often weakly context-aware. We propose Learning to Look Ahead (LTLA), a hybrid method that uses base-LM embeddings to condition a globally learned tractable surrogate: a neural head predicts only a prefix-dependent latent prior, while a shared HMM answers continuation queries exactly. LTLA is designed to avoid two common efficiency traps when adding neural context. First, it avoids vocabulary-sized prefix rescoring (V extra LM evaluations) by scoring all next-token candidates via a single batched HMM forward update. Second, it avoids predicting a new HMM per prefix by learning one shared HMM and conditioning only the latent prior, which enables reuse of cached future-likelihood (backward) messages across decoding steps. Empirically, LTLA improves continuation likelihood over standard HMM surrogates, enables lookahead control for vision--language models by incorporating continuous context, achieves 100% syntactic constraint satisfaction, and improves detoxification while adding only a 14% decoding-time overhead.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https://github.com/VRPO/VRPO.
♻ ☆ An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ Words to Describe What I'm Feeling: Exploring the Potential of AI Agents for High Subjectivity Decisions in Advance Care Planning
Loss of decisional capacity, coupled with the increasing absence of reliable human proxies, raises urgent questions about how individuals' values can be represented in Advance Care Planning (ACP). To probe this fraught design space of high-risk, high-subjectivity decision support, we built an experience prototype (\acpagent{}) and asked 15 participants in 4 workshops to train it to be their personal ACP proxy. We analysed their coping strategies and feature requests and mapped the results onto axes of agent autonomy and human control. Our findings show a surprising 86.7\% agreement with \acpagent{}, arguing for a potential new role of AI in ACP where agents act as personal advocates for individuals, building mutual intelligibility over time. We propose that the key areas of future risk that must be addressed are the moderation of users' expectations and designing accountability and oversight over agent deployment and cutoffs.
comment: Accepted at CHI 2026. 34 pages, 10 figures
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Optimus-3: Dual-Router Aligned Mixture-of-Experts Agent with Dual-Granularity Reasoning-Aware Policy Optimization
Developing generalist agents capable of solving open-ended tasks in visually rich, dynamic environments remains a core pursuit of embodied AI. While Minecraft has emerged as a compelling benchmark, existing agents often suffer from fragmented cognitive abilities, lacking the synergy between reflexive execution (System 1) and deliberative reasoning (System 2). In this paper, we introduce Optimus-3, a generalist agent that organically integrates these dual capabilities within a unified framework. To achieve this, we address three fundamental challenges. First, to overcome the scarcity of reasoning data, we propose a Knowledge-Enhanced Automated Data Generation Pipeline. It synthesizes high-quality System 2 reasoning traces from raw System 1 interaction trajectories, effectively mitigating hallucinations via injection of domain knowledge. We release the resulting dataset, \textbf{OptimusM$^{4}$}, to the community. Second, to reconcile the dichotomous computational requirements of the dual systems, we design a Dual-Router Aligned MoE Architecture. It employs a Task Router to prevent task interference via parameter decoupling, and a Layer Router to dynamically modulate reasoning depth, creating a computational ``Fast Path'' for System 1 and a ``Deep Path'' for System 2. Third, to activate the reasoning capabilities of System 2, we propose Dual-Granularity Reasoning-Aware Policy Optimization (DGRPO) algorithm. It enforces Process-Outcome Co-Supervision via dual-granularity dense rewards, ensuring consistency between the thought process and the answer. Extensive evaluations demonstrate that Optimus-3 surpasses existing state-of-the-art methods on both System~2 (21$\%$ on Planning, 66\% on Captioning, 76\% on Embodied QA, 3.4$\times$ on Grounding, and 18\% on Reflection) and System~1 (3\% on Long-Horizon Action) tasks, with a notable 60\% success rate on open-ended tasks.
comment: 16 pages, 12 figures
♻ ☆ The Refutability Gap: Challenges in Validating Reasoning by Large Language Models
Recent reports claim that Large Language Models (LLMs) have achieved the ability to derive new science and exhibit human-level general intelligence. We argue that such claims are not rigorous scientific claims, as they do not satisfy Popper's refutability principle (often termed falsifiability), which requires that scientific statements be capable of being disproven. We identify several methodological pitfalls in current AI research on reasoning, including the inability to verify the novelty of findings due to opaque and non-searchable training data, the lack of reproducibility caused by continuous model updates, and the omission of human-interaction transcripts, which obscures the true source of scientific discovery. Additionally, the absence of counterfactuals and data on failed attempts creates a selection bias that may exaggerate LLM capabilities. To address these challenges, we propose guidelines for scientific transparency and reproducibility for research on reasoning by LLMs. Establishing such guidelines is crucial for both scientific integrity and the ongoing societal debates regarding fair data usage.
comment: he authors explicitly reserve all rights in this work. No permission is granted for the reproduction, storage, or use of this document for the purpose of training artificial intelligence systems or for text and data mining (TDM), including but not limited to the generation of embeddings, summaries, or synthetic derivatives
♻ ☆ PersonaDual: Balancing Personalization and Objectivity via Adaptive Reasoning
As users increasingly expect LLMs to align with their preferences, personalized information becomes valuable. However, personalized information can be a double-edged sword: it can improve interaction but may compromise objectivity and factual correctness, especially when it is misaligned with the question. To alleviate this problem, we propose PersonaDual, a framework that supports both general-purpose objective reasoning and personalized reasoning in a single model, and adaptively switches modes based on context. PersonaDual is first trained with SFT to learn two reasoning patterns, and then further optimized via reinforcement learning with our proposed DualGRPO to improve mode selection. Experiments on objective and personalized benchmarks show that PersonaDual preserves the benefits of personalization while reducing interference, achieving near interference-free performance and better leveraging helpful personalized signals to improve objective problem-solving.
♻ ☆ Dialogue Model Optimization via Agent Game and Adaptive Tree-based GRPO
Open-ended dialogue agents aim to deliver engaging, personalized interactions by adapting to users' traits, but existing methods face critical limitations: over-reliance on pre-collected user data, and short-horizon biases in reinforcement learning (RL) that neglect long-term dialogue value. To address these, we propose a novel long-horizon RL framework integrating online personalization with Adaptive Tree-based Group Relative Policy Optimization (AT-GRPO). Adopting a two-agent game paradigm, a user agent constructs dynamic environments via style mimicry (learning user-specific conversational traits) and active termination (predicting turn-level termination probabilities as immediate rewards), forming an iterative cycle that drives the dialogue agent to deepen interest exploration. AT-GRPO reinterprets dialogue trajectories as trees and introduces adaptive observation ranges. Unlike full tree expansion that incurs exponential overhead, it limits each node to aggregate rewards from a stage-aware range: larger ranges support early-stage topic exploration, while smaller ranges facilitate late-stage dialogue maintenance. This design reduces rollout budgets from exponential to polynomial in the dialogue length, while preserving long-term reward capture. Extensive experiments show our framework's superior performance, sample efficiency, and robustness.
♻ ☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
♻ ☆ LLM Serving Optimization with Variable Prefill and Decode Lengths
We study offline scheduling for large language model (LLM) serving under a fixed KV-cache memory budget, where requests have heterogeneous prompt (prefill) and response (decode) lengths. Prompt tokens determine initial KV usage, and each generated token increases memory by one unit. Given a backlog of n requests arriving together, we schedule mixed prefill and decode batches to minimize total end-to-end latency. We show that heterogeneity in prompt lengths makes the problem computationally intractable and that widely used heuristics such as first-come-first-served and shortest-first can be arbitrarily suboptimal. We propose Sorted-F, which repeatedly forms feasible batches using a new selection metric that balances batch size against downstream decode cost, and prove it achieves a constant-factor guarantee on total latency. We further develop practical variants -- an exact solver for small instances and fast heuristics for larger ones -- and evaluate them on a public workload spanning short conversations and long-document summarization, where they consistently reduce average latency relative to standard baselines. Our results highlight that during peak-hour tidal backlogs, greedy GPU packing or short-request prioritization can perform poorly when prompt lengths vary widely, and provide a principled, tunable framework for designing production batch schedulers and planning capacity in memory-constrained LLM serving systems.
♻ ☆ Quantifying Multimodal Imbalance: A GMM-Guided Adaptive Loss for Audio-Visual Learning
Multimodal learning integrates diverse modalities but suffers from modality imbalance, where dominant modalities suppress weaker ones due to inconsistent convergence rates. Existing methods predominantly rely on static modulation or heuristics, overlooking sample-level distributional variations in prediction bias. Specifically, they fail to distinguish outlier samples where the modality gap is exacerbated by low data quality. We propose a framework to quantitatively diagnose and dynamically mitigate this imbalance at the sample level. We introduce the Modality Gap metric to quantify prediction discrepancies. Analysis reveals that this gap follows a bimodal distribution, indicating the coexistence of balanced and imbalanced sample subgroups. We employ a Gaussian Mixture Model (GMM) to explicitly model this distribution, leveraging Bayesian posterior probabilities for soft subgroup separation. Our two-stage framework comprises a Warm-up stage and an Adaptive Training stage. In the latter, a GMM-guided Adaptive Loss dynamically reallocates optimization priorities: it imposes stronger alignment penalties on imbalanced samples to rectify bias, while prioritizing fusion for balanced samples to maximize complementary information. Experiments on CREMA-D, AVE, and KineticSound demonstrate that our method significantly outperforms SOTA baselines. Furthermore, we show that fine-tuning on a GMM-filtered balanced subset serves as an effective data purification strategy, yielding substantial gains by eliminating extreme noisy samples even without the adaptive loss.
♻ ☆ Distribution-Aligned Decoding for Efficient LLM Task Adaptation NeurIPS'25
Adapting billion-parameter language models to a downstream task is still costly, even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as output-distribution alignment: the objective is to steer the output distribution toward the task distribution directly during decoding rather than indirectly through weight updates. Building on this view, we introduce Steering Vector Decoding (SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method. We start with a short warm-start fine-tune and extract a task-aware steering vector from the Kullback-Leibler (KL) divergence gradient between the output distribution of the warm-started and pre-trained models. This steering vector is then used to guide the decoding process to steer the model's output distribution towards the task distribution. We theoretically prove that SVDecode is first-order equivalent to the gradient step of full fine-tuning and derive a globally optimal solution for the strength of the steering vector. Across three tasks and nine benchmarks, SVDecode paired with four standard PEFT methods improves multiple-choice accuracy by up to 5 percentage points and open-ended truthfulness by 2 percentage points, with similar gains (1-2 percentage points) on commonsense datasets without adding trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight, theoretically grounded path to stronger task adaptation for large language models. Code is available at https://github.com/dl-m9/SVDecode.
comment: Accepted by NeurIPS'25
♻ ☆ TAMMs: Change Understanding and Forecasting in Satellite Image Time Series with Temporal-Aware Multimodal Models ICLR 2026
Temporal Change Description (TCD) and Future Satellite Image Forecasting (FSIF) are critical, yet historically disjointed tasks in Satellite Image Time Series (SITS) analysis. Both are fundamentally limited by the common challenge of modeling long-range temporal dynamics. To explore how to improve the performance of methods on both tasks simultaneously by enhancing long-range temporal understanding capabilities, we introduce **TAMMs**, the first unified framework designed to jointly perform TCD and FSIF within a single MLLM-diffusion architecture. TAMMs introduces two key innovations: Temporal Adaptation Modules (**TAM**) enhance frozen MLLM's ability to comprehend long-range dynamics, and Semantic-Fused Control Injection (**SFCI**) mechanism translates this change understanding into fine-grained generative control. This synergistic design makes the understanding from the TCD task to directly inform and improve the consistency of the FSIF task. Extensive experiments demonstrate TAMMs significantly outperforms state-of-the-art specialist baselines on both tasks. Our dataset can be found at https://huggingface.co/datasets/IceInPot/TAMMs .
comment: Published as a conference paper at The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ Beyond Pairwise: Empowering LLM Alignment With Ranked Choice Modeling ICLR 2026
Alignment of large language models (LLMs) has predominantly relied on pairwise preference optimization, where annotators select the better of two responses to a prompt. While simple, this approach overlooks the opportunity to learn from richer forms of human feedback, such as multiway comparisons and top-$k$ rankings. We introduce Ranked Choice Preference Optimization (RCPO), a unified framework that bridges preference optimization with (ranked) choice modeling via maximum likelihood estimation. RCPO supports both utility-based and rank-based models, subsumes several pairwise methods (such as DPO and SimPO) as special cases, and provides principled training objectives for richer feedback formats. We instantiate this framework with two representative models (Multinomial Logit and Mallows-RMJ). Experiments on Llama-3-8B-Instruct, Gemma-2-9B-it, and Mistral-7B-Instruct across in-distribution and out-of-distribution settings show that RCPO consistently outperforms competitive baselines. RCPO shows that directly leveraging ranked preference data, combined with the right choice models, yields more effective alignment. It offers an extensible foundation for incorporating (ranked) choice modeling into LLM training.
comment: Accepted by The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ Toward Ultra-Long-Horizon Sequential Model Editing
Model editing has emerged as a practical approach for mitigating factual errors and outdated knowledge in large language models (LLMs). Among existing methods, the Locate-and-Edit (L&E) paradigm is the dominant framework: it locates MLP parameters implicated in expressing a target fact, and then performs a localized update to rewrite that fact. However, long sequences of edits often trigger abrupt model collapse in L&E beyond a critical point. We empirically identify a strong correlation between collapse and explosive growth of edited MLP weight norms, and formally prove that commonly used L&E update rules can induce exponential norm growth across sequential edits in the absence of explicit norm control. To address this issue, we propose Norm-Anchor Scaling NAS, a plug-and-play norm-constrained strategy. Across extensive experiments, NAS delays the collapse point of representative L&E algorithms by more than 4 times and yields a 72.2% average relative gain in editing performance, requiring only a single additional line of code and incurring negligible computational overhead.
♻ ☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures; appendix: 12 pages, 11 figures; code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr; v2: Fixed rendering artifact in Figure 7
♻ ☆ Short-Context Dominance: How Much Local Context Natural Language Actually Needs?
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
comment: 38 pages, 7 figures, includes appendix and references
♻ ☆ ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection ICLR24
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a \textsc{ConjNorm} method, reframing density function design as a search for the optimal norm coefficient $p$ against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed \textsc{ConjNorm} has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25$\%$ and 28.19$\%$ (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
comment: ICLR24 poster
♻ ☆ MediRound: Multi-Round Entity-Level Reasoning Segmentation in Medical Images
Despite the progress in medical image segmentation, most existing methods remain task-specific and lack interactivity. Although recent text-prompt-based segmentation approaches enhance user-driven and reasoning-based segmentation, they remain confined to single-round dialogues and fail to perform multi-round reasoning. In this work, we introduce Multi-Round Entity-Level Medical Reasoning Segmentation (MEMR-Seg), a new task that requires generating segmentation masks through multi-round queries with entity-level reasoning. To support this task, we construct MR-MedSeg, a large-scale dataset of 177K multi-round medical segmentation dialogues, featuring entity-based reasoning across rounds. Furthermore, we propose MediRound, an effective baseline model designed for multi-round medical reasoning segmentation. To mitigate the inherent error propagation in the chain-like pipeline of multi-round segmentation, we introduce a lightweight yet effective Judgment & Correction Mechanism during model inference. Experimental results demonstrate that our method effectively addresses the MEMR-Seg task and outperforms conventional medical referring segmentation methods.
comment: 16pages, 10 figures
♻ ☆ NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
♻ ☆ S1-NexusAgent: a Self-Evolving Agent Framework for Multidisciplinary Scientific Research
Modern scientific research relies on large-scale data, complex workflows, and specialized tools, which existing LLMs and tool-based agents struggle to handle due to limitations in long-horizon planning, robust goal maintenance, and continual learning from execution. To address these issues, in this work, we propose S1-NexusAgent, a self-evolving agent framework designed for multidisciplinary scientific research. S1-NexusAgent adopts a hierarchical Plan-and-CodeAct execution paradigm, decoupling global scientific planning from subtask-level tool execution through a dual-loop architecture, thereby enabling stable modeling of complex research workflows. The system natively supports the Model Context Protocol (MCP), integrates up to thousands of cross-disciplinary scientific tools, and achieves efficient orchestration of heterogeneous research tools via intention-aware dynamic tool retrieval and hot-plug mechanisms. To address long-context and large-scale data challenges in scientific settings, S1-NexusAgent introduces object-reference-based sparse context management, which enables sub-task context isolation and intermediate result compression. Building on this, a Critic Agent automatically evaluates complete execution trajectories and distills high-quality research paths into reusable Scientific Skills, forming a closed loop for continuous self-evolution, which is valuable for sustainable and long-horizon scientific research. Experiments on authoritative scientific benchmarks involving long-horizon planning and complex specialized tool orchestration, including biomini-eval (biology), ChemBench (chemistry), and MatSciBench (material science), demonstrate that S1-NexusAgent achieves state-of-the-art performance, validating its effectiveness and generalization capability in complex scientific tasks.
comment: In progress
♻ ☆ Patch-Level Tokenization with CNN Encoders and Attention for Improved Transformer Time-Series Forecasting
Transformer-based models have shown strong performance in time-series forecasting by leveraging self-attention to model long-range temporal dependencies. However, their effectiveness depends critically on the quality and structure of input representations derived from raw multivariate time-series data, particularly as sequence length and data scale increase. This paper proposes a two-stage forecasting framework that explicitly separates local temporal representation learning from global dependency modelling. In the proposed approach, a convolutional neural network operates on fixed-length temporal patches to extract short-range temporal dynamics and non-linear feature interactions, producing compact patch-level token embeddings. Token-level self-attention is applied during representation learning to refine these embeddings, after which a Transformer encoder models inter-patch temporal dependencies to generate forecasts. The method is evaluated on a synthetic multivariate time-series dataset with controlled static and dynamic factors, using an extended sequence length and a larger number of samples. Experimental results demonstrate that the proposed framework consistently outperforms a convolutional baseline under increased temporal context and remains competitive with a strong patch-based Transformer model. These findings indicate that structured patch-level tokenization provides a scalable and effective representation for multivariate time-series forecasting, particularly when longer input sequences are considered.
comment: 6 pages, 2 figures, 3 tables
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ A Real-Time DDS-Based Chest X-Ray Decision Support System for Resource-Constrained Clinics
Internet of Things (IoT)-based healthcare systems offer significant potential for improving healthcare delivery in humanitarian and resource-constrained environments, providing essential services to underserved populations in remote areas. However, limited network infrastructure in such regions makes reliable communication challenging for traditional IoT systems. This paper presents a real-time chest X-ray decision support system designed for hospitals in remote locations. The proposed system integrates a fine-tuned ResNet50 deep learning model for disease classification with Fast DDS real-time middleware to ensure reliable and low-latency communication between healthcare practitioners and the inference system. Experimental results show that the model achieves an accuracy of 88.61%, precision of 88.76%, and recall of 88.49%. The system attains an average throughput of 3.2 KB/s and an average latency of 65 ms, demonstrating its suitability for deployment in bandwidth-constrained environments. These results highlight the effectiveness of DDS-based middleware in enabling real-time medical decision support for remote healthcare applications.
♻ ☆ Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from Token and Parameter Levels EMNLP 2025
Large language models (LLMs) acquire substantial world knowledge during pre-training, which is further shaped by post-training techniques such as supervised fine-tuning (SFT). However, the impact of SFT on a model's knowledge remains underexplored, limiting our ability to control knowledge change behavior in fine-tuned models. To address this gap, we evaluate closed-book question answering (CBQA) performance across five LLMs from the LLaMA-2 and LLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up to 14% worse than those fine-tuned on only 240 samples. Furthermore, varying the level of knowledge mastery in the fine-tuning data leads to performance fluctuations of over 12%. To investigate these effects, we analyze model behavior at both the token and parameter levels. Our analysis reveals that up to 90% of parameter updates during SFT do not contribute to knowledge enhancement. Restoring these updates can improve performance on the CBQA task, depending on the characteristics of the fine-tuning data. These insights offer practical guidance for developing fine-tuning strategies that more effectively strengthen model knowledge.
comment: Accepted by EMNLP 2025 Main Conference. Codes for parameter restoration are available at https://github.com/UmeanNever/ParamRestore
♻ ☆ BiSSL: Enhancing the Alignment Between Self-Supervised Pretraining and Downstream Fine-Tuning via Bilevel Optimization
Models initialized from self-supervised pretraining may suffer from poor alignment with downstream tasks, reducing the extent to which subsequent fine-tuning can adapt pretrained features toward downstream objectives. To mitigate this, we introduce BiSSL, a novel bilevel training framework that enhances the alignment of self-supervised pretrained models with downstream tasks prior to fine-tuning. BiSSL acts as an intermediate training stage conducted after conventional self-supervised pretraining and is tasked with solving a bilevel optimization problem that incorporates the pretext and downstream training objectives in its lower- and upper-level objectives, respectively. This approach explicitly models the interdependence between the pretraining and fine-tuning stages within the conventional self-supervised learning pipeline, facilitating enhanced information sharing between them that ultimately leads to a model initialization better aligned with the downstream task. We propose a general training algorithm for BiSSL that is compatible with a broad range of pretext and downstream tasks. Using SimCLR and Bootstrap Your Own Latent to pretrain ResNet-50 backbones on the ImageNet dataset, we demonstrate that our proposed framework significantly improves accuracy on the vast majority of 12 downstream image classification datasets, as well as on object detection. Exploratory analyses alongside investigative experiments further provide compelling evidence that BiSSL enhances downstream alignment.
♻ ☆ Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, limiting its application in real-world scenarios. Existing methods often directly adapt noisy label learning techniques designed for instance classification, overlooking the pixel-wise heterogeneity in medical segmentation with its spatially and anatomically varying difficulties. Consequently, global assumptions or simple confidence metrics fail to address these local variations, leaving boundary ambiguities unresolved. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
♻ ☆ IMAGINE: Integrating Multi-Agent System into One Model for Complex Reasoning and Planning
Although large language models (LLMs) have made significant strides across various tasks, they still face significant challenges in complex reasoning and planning. For example, even with carefully designed prompts and prior information explicitly provided, GPT-4o achieves only a 7% Final Pass Rate on the TravelPlanner dataset in the sole-planning mode. Similarly, even in the thinking mode, Qwen3-8B-Instruct and DeepSeek-R1-671B, only achieve Final Pass Rates of 5.9% and 40%, respectively. Although well-organized Multi-Agent Systems (MAS) can offer improved collective reasoning, they often suffer from high reasoning costs due to multi-round internal interactions, long per-response latency, and difficulties in end-to-end training. To address these challenges, we propose a general and scalable framework called IMAGINE, short for Integrating Multi-Agent System into One Model. This framework not only integrates the reasoning and planning capabilities of MAS into a single, compact model, but also significantly surpass the capabilities of the MAS through a simple end-to-end training. Through this pipeline, a single small-scale model is not only able to acquire the structured reasoning and planning capabilities of a well-organized MAS but can also significantly outperform it. Experimental results demonstrate that, when using Qwen3-8B-Instruct as the base model and training it with our method, the model achieves an 82.7% Final Pass Rate on the TravelPlanner benchmark, far exceeding the 40% of DeepSeek-R1-671B, while maintaining a much smaller model size.
♻ ☆ THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning ICLR 2026
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.
comment: 22 pages, 13 figures, ICLR 2026
♻ ☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric. The code is available at https://github.com/rohanasthana/memorization-anisotropy .
comment: Accepted at ICLR 2026
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Neural Force Field: Few-shot Learning of Generalized Physical Reasoning ICLR 2026
Physical reasoning is a remarkable human ability that enables rapid learning and generalization from limited experience. Current AI models, despite extensive training, still struggle to achieve similar generalization, especially in Out-of-distribution (OOD) settings. This limitation stems from their inability to abstract core physical principles from observations. A key challenge is developing representations that can efficiently learn and generalize physical dynamics from minimal data. Here we present Neural Force Field (NFF), a framework extending Neural Ordinary Differential Equation (NODE) to learn complex object interactions through force field representations, which can be efficiently integrated through an Ordinary Differential Equation (ODE) solver to predict object trajectories. Unlike existing approaches that rely on discrete latent spaces, NFF captures fundamental physical concepts such as gravity, support, and collision in continuous explicit force fields. Experiments on three challenging physical reasoning tasks demonstrate that NFF, trained with only a few examples, achieves strong generalization to unseen scenarios. This physics-grounded representation enables efficient forward-backward planning and rapid adaptation through interactive refinement. Our work suggests that incorporating physics-inspired representations into learning systems can help bridge the gap between artificial and human physical reasoning capabilities.
comment: 27 pages, ICLR 2026
♻ ☆ MSP-LLM: A Unified Large Language Model Framework for Complete Material Synthesis Planning
Material synthesis planning (MSP) remains a fundamental and underexplored bottleneck in AI-driven materials discovery, as it requires not only identifying suitable precursor materials but also designing coherent sequences of synthesis operations to realize a target material. Although several AI-based approaches have been proposed to address isolated subtasks of MSP, a unified methodology for solving the entire MSP task has yet to be established. We propose MSP-LLM, a unified LLM-based framework that formulates MSP as a structured process composed of two constituent subproblems: precursor prediction (PP) and synthesis operation prediction (SOP). Our approach introduces a discrete material class as an intermediate decision variable that organizes both tasks into a chemically consistent decision chain. For OP, we further incorporate hierarchical precursor types as synthesis-relevant inductive biases and employ an explicit conditioning strategy that preserves precursor-related information in the autoregressive decoding state. Extensive experiments show that MSP-LLM consistently outperforms existing methods on both PP and SOP, as well as on the complete MSP task, demonstrating an effective and scalable framework for MSP that can accelerate real-world materials discovery.
♻ ☆ DINO-LG: Enhancing Vision Transformers with Label Guidance for Coronary Artery Calcium Detection
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by introducing DINO-LG, a novel label-guided extension of DINO (self-distillation with no labels) that incorporates targeted augmentation on annotated calcified regions during self-supervised pre-training. Our three-stage pipeline integrates Vision Transformer (ViT-Base/8) feature extraction via DINO-LG trained on 914 CT scans comprising 700 gated and 214 non-gated acquisitions, linear classification to identify calcified slices, and U-NET segmentation for CAC quantification and Agatston scoring. DINO-LG achieved 89% sensitivity and 90% specificity for detecting CAC-containing CT slices, compared to standard DINO's 79% sensitivity and 77% specificity, reducing false-negative and false-positive rates by 49% and 57% respectively. The integrated system achieves 90% accuracy in CAC risk classification on 45 test patients, outperforming standalone U-NET segmentation (76% accuracy) while processing only the relevant subset of CT slices. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, improving diagnostic precision while lowering healthcare costs by minimizing unnecessary tests and treatments.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ Generative Reasoning Re-ranker
Recent studies increasingly explore Large Language Models (LLMs) as a new paradigm for recommendation systems due to their scalability and world knowledge. However, existing work has three key limitations: (1) most efforts focus on retrieval and ranking, while the reranking phase, critical for refining final recommendations, is largely overlooked; (2) LLMs are typically used in zero-shot or supervised fine-tuning settings, leaving their reasoning abilities, especially those enhanced through reinforcement learning (RL) and high-quality reasoning data, underexploited; (3) items are commonly represented by non-semantic IDs, creating major scalability challenges in industrial systems with billions of identifiers. To address these gaps, we propose the Generative Reasoning Reranker (GR2), an end-to-end framework with a three-stage training pipeline tailored for reranking. First, a pretrained LLM is mid-trained on semantic IDs encoded from non-semantic IDs via a tokenizer achieving $\ge$99% uniqueness. Next, a stronger larger-scale LLM generates high-quality reasoning traces through carefully designed prompting and rejection sampling, which are used for supervised fine-tuning to impart foundational reasoning skills. Finally, we apply Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO), enabling scalable RL supervision with verifiable rewards designed specifically for reranking. Experiments on two real-world datasets demonstrate GR2's effectiveness: it surpasses the state-of-the-art OneRec-Think by 2.4% in Recall@5 and 1.3% in NDCG@5. Ablations confirm that advanced reasoning traces yield substantial gains across metrics. We further find that RL reward design is crucial in reranking: LLMs tend to exploit reward hacking by preserving item order, motivating conditional verifiable rewards to mitigate this behavior and optimize reranking performance.
comment: 31 pages
♻ ☆ Can LLMs Automate Fact-Checking Article Writing? ACL 2026
Automatic fact-checking aims to support professional fact-checkers by offering tools that can help speed up manual fact-checking. Yet, existing frameworks fail to address the key step of producing output suitable for broader dissemination to the general public: while human fact-checkers communicate their findings through fact-checking articles, automated systems typically produce little or no justification for their assessments. Here, we aim to bridge this gap. In particular, we argue for the need to extend the typical automatic fact-checking pipeline with automatic generation of full fact-checking articles. We first identify key desiderata for such articles through a series of interviews with experts from leading fact-checking organizations. We then develop QRAFT, an LLM-based agentic framework that mimics the writing workflow of human fact-checkers. Finally, we assess the practical usefulness of QRAFT through human evaluations with professional fact-checkers. Our evaluation shows that while QRAFT outperforms several previously proposed text-generation approaches, it lags considerably behind expert-written articles. We hope that our work will enable further research in this new and important direction. The code for our implementation is available at https://github.com/mbzuai-nlp/qraft.git.
comment: Accepted to TACL 2026, pre-MIT Press publication version
♻ ☆ GeoGramBench: Benchmarking the Geometric Program Reasoning in Modern LLMs ICLR 2026
Geometric spatial reasoning forms the foundation of many applications in artificial intelligence, yet the ability of large language models (LLMs) to operate over geometric spatial information expressed in procedural code remains underexplored. In this paper, we address this gap by formalizing the Program-to-Geometry task, which challenges models to translate programmatic drawing code into accurate and abstract geometric reasoning. To evaluate this capability, we present GeoGramBench, a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity. Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies: even the most advanced models achieve less than 50% accuracy at the highest abstraction level. These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning. Project page: https://github.com/LiAuto-DSR/GeoGramBench.
comment: Accepted to ICLR 2026
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
♻ ☆ SpikySpace: A Spiking State Space Model for Energy-Efficient Time Series Forecasting
Time-series forecasting in domains like traffic management and industrial monitoring often requires real-time, energy-efficient processing on edge devices with limited resources. Spiking neural networks (SNNs) offer event-driven computation and ultra-low power and have been proposed for use in this space. Unfortunately, existing SNN-based time-series forecasters often use complex transformer blocks. To address this issue, we propose SpikySpace, a spiking state-space model (SSM) that reduces the quadratic cost in the attention block to linear time via spiking selective scanning. Further, we introduce PTsoftplus and PTSiLU, two efficient approximations of SiLU and Softplus that replace costly exponential and division operations with simple bit-shifts. Evaluated on four multivariate time-series benchmarks, SpikySpace outperforms the leading SNN in terms of accuracy by up to 3.0% while reducing energy consumption by over 96.1%. As the first fully spiking state-space model, SpikySpace bridges neuromorphic efficiency with modern sequence modeling, opening a practical path toward efficient time series forecasting systems. Our code is available at https://anonymous.4open.science/r/SpikySpace.
comment: 17 pages, 4 figures
♻ ☆ MDL: A Unified Multi-Distribution Learner in Large-scale Industrial Recommendation through Tokenization
Industrial recommender systems increasingly adopt multi-scenario learning (MSL) and multi-task learning (MTL) to handle diverse user interactions and contexts, but existing approaches suffer from two critical drawbacks: (1) underutilization of large-scale model parameters due to limited interaction with complex feature modules, and (2) difficulty in jointly modeling scenario and task information in a unified framework. To address these challenges, we propose a unified \textbf{M}ulti-\textbf{D}istribution \textbf{L}earning (MDL) framework, inspired by the "prompting" paradigm in large language models (LLMs). MDL treats scenario and task information as specialized tokens rather than auxiliary inputs or gating signals. Specifically, we introduce a unified information tokenization module that transforms features, scenarios, and tasks into a unified tokenized format. To facilitate deep interaction, we design three synergistic mechanisms: (1) feature token self-attention for rich feature interactions, (2) domain-feature attention for scenario/task-adaptive feature activation, and (3) domain-fused aggregation for joint distribution prediction. By stacking these interactions, MDL enables scenario and task information to "prompt" and activate the model's vast parameter space in a bottom-up, layer-wise manner. Extensive experiments on real-world industrial datasets demonstrate that MDL significantly outperforms state-of-the-art MSL and MTL baselines. Online A/B testing on Douyin Search platform over one month yields +0.0626\% improvement in LT30 and -0.3267\% reduction in change query rate. MDL has been fully deployed in production, serving hundreds of millions of users daily.
comment: 9 pages, 4 figures
♻ ☆ Emergent Analogical Reasoning in Transformers
Analogy is a central faculty of human intelligence, enabling abstract patterns discovered in one domain to be applied to another. Despite its central role in cognition, the mechanisms by which Transformers acquire and implement analogical reasoning remain poorly understood. In this work, inspired by the notion of functors in category theory, we formalize analogical reasoning as the inference of correspondences between entities across categories. Based on this formulation, we introduce synthetic tasks that evaluate the emergence of analogical reasoning under controlled settings. We find that the emergence of analogical reasoning is highly sensitive to data characteristics, optimization choices, and model scale. Through mechanistic analysis, we show that analogical reasoning in Transformers decomposes into two key components: (1) geometric alignment of relational structure in the embedding space, and (2) the application of a functor within the Transformer. These mechanisms enable models to transfer relational structure from one category to another, realizing analogy. Finally, we quantify these effects and find that the same trends are observed in pretrained LLMs. In doing so, we move analogy from an abstract cognitive notion to a concrete, mechanistically grounded phenomenon in modern neural networks.
♻ ☆ PRISM: A Principled Framework for Multi-Agent Reasoning via Gain Decomposition
Multi-agent collaboration has emerged as a promising paradigm for enhancing reasoning capabilities of Large Language Models (LLMs). However, existing approaches remain largely heuristic, lacking principled guidance on what drives performance gains and how to systematically optimize multi-agent reasoning. Specifically, it remains unclear why multi-agent collaboration outperforms single-agent reasoning and which design choices contribute most to these gains, making it difficult to build better systems. We address this gap by introducing a unified theoretical framework that decomposes multi-agent reasoning gains into three conceptually independent dimensions: Exploration for diverse solution coverage, Information for high-fidelity feedback, and Aggregation for principled consensus. Through this lens, existing methods can be understood as special cases that optimize only subsets of these dimensions. Building upon this decomposition, a novel framework called PRISM (Propose-Review-Integrate Synthesis for Multi-agent Reasoning) is proposed, which jointly maximizes all three dimensions through role-based diversity, execution-grounded feedback with evidence-based cross-evaluation, and iterative synthesis with closed-loop validation. Extensive experiments across mathematical reasoning, code generation, and function calling benchmarks demonstrate that PRISM achieves state-of-the-art performance with superior compute-efficiency compared to methods optimizing partial dimensions. The theoretical framework provides actionable design principles for future multi-agent reasoning systems.
♻ ☆ SHIELD: Suppressing Hallucinations In LVLM Encoders via Bias and Vulnerability Defense ICLR 2026
Large Vision-Language Models (LVLMs) excel in diverse cross-modal tasks. However, object hallucination, where models produce plausible but inaccurate object descriptions, remains a significant challenge. In contrast to previous work focusing on LLM components, this paper is the first to trace LVLM hallucinations to visual encoders and identifies three key issues: statistical bias, inherent bias, and vulnerability. To address these challenges, we propose SHIELD, a training-free framework that mitigates hallucinations through three strategies: re-weighting visual tokens to reduce statistical bias, introducing noise-derived tokens to counter inherent bias, and applying adversarial attacks with contrastive decoding to address vulnerability. Experiments demonstrate that SHIELD effectively mitigates object hallucinations across diverse benchmarks and LVLM families. Moreover, SHIELD achieves strong performance on the general LVLM benchmark, highlighting its broad applicability. Code is available at https://github.com/hukcc/SHIELD.
comment: ICLR 2026
♻ ☆ Toward a Unified Lyapunov-Certified ODE Convergence Analysis of Smooth Q-Learning with p-Norms
Convergence of Q-learning has been the subject of extensive study for decades. Among the available techniques, the ordinary differential equation (ODE) method is particularly appealing as a general-purpose, off-the-shelf tool for sanity-checking the convergence of a wide range of reinforcement learning algorithms. In this paper, we develop a unified ODE-based convergence framework that applies to standard Q-learning and several soft/smoothed variants, including those built on the log-sum-exponential softmax, Boltzmann softmax, and mellowmax operators. Our analysis uses a smooth p-norm Lyapunov function, leading to concise yet rigorous stability arguments and circumventing the non-smoothness issues inherent to classical infty-norm-based approaches. To the best of our knowledge, the proposed framework is among the first to provide a unified ODE-based treatment that is broadly applicable to smooth Q-learning algorithms while also encompassing standard Q-learning. Moreover, it remains valid even in settings where the associated Bellman operator is not a contraction, as may happen in Boltzmann soft Q-learning.
♻ ☆ Free(): Learning to Forget in Malloc-Only Reasoning Models
Reasoning models enhance problem-solving by scaling test-time compute, yet they face a critical paradox: excessive thinking tokens often degrade performance rather than improve it. We attribute this to a fundamental architectural flaw: standard LLMs operate as "malloc-only" engines, continuously accumulating valid and redundant steps alike without a mechanism to prune obsolete information. To break this cycle, we propose Free()LM, a model that introduces an intrinsic self-forgetting capability via the Free-Module, a plug-and-play LoRA adapter. By iteratively switching between reasoning and cleaning modes, Free()LM dynamically identifies and prunes useless context chunks, maintaining a compact and noise-free state. Extensive experiments show that Free()LM provides consistent improvements across all model scales (8B to 685B). It achieves a 3.3% average improvement over top-tier reasoning baselines, even establishing a new SOTA on IMOanswerBench using DeepSeek V3.2-Speciale. Most notably, in long-horizon tasks where the standard Qwen3-235B-A22B model suffers a total collapse (0% accuracy), Free()LM restores performance to 50%. Our findings suggest that sustainable intelligence requires the freedom to forget as much as the power to think.
♻ ☆ VLA-Pruner: Temporal-Aware Dual-Level Visual Token Pruning for Efficient Vision-Language-Action Inference
Vision-Language-Action (VLA) models have shown great promise for embodied AI, yet the heavy computational cost of processing continuous visual streams severely limits their real-time deployment. Token pruning (keeping salient visual tokens and dropping redundant ones) has emerged as an effective approach for accelerating Vision-Language Models (VLMs), offering a solution for efficient VLA. However, these VLM-specific token pruning methods select tokens based solely on semantic salience metrics (e.g., prefill attention), while overlooking the VLA's intrinsic dual-system nature of high-level semantic understanding and low-level action execution. Consequently, these methods bias token retention toward semantic cues, discard critical information for action generation, and significantly degrade VLA performance. To bridge this gap, we propose VLA-Pruner, a versatile plug-and-play VLA-specific token prune method that aligns with the dual-system nature of VLA models and exploits the temporal continuity in robot manipulation. Specifically, VLA-Pruner adopts a dual-level importance criterion for visual token retention: vision-language prefill attention for semantic-level relevance and action decode attention, estimated via temporal smoothing, for action-level importance. Based on this criterion, VLA-Pruner proposes a novel dual-level token selection strategy that adaptively preserves a compact, informative set of visual tokens for both semantic understanding and action execution under given compute budget. Experiments show that VLA-Pruner achieves state-of-the-art performance across multiple VLA architectures and diverse robotic tasks.
♻ ☆ REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration
Post-training for large language models (LLMs) is constrained by the high cost of acquiring new knowledge or correcting errors and by the unintended side effects that frequently arise from retraining. To address these issues, we introduce REPAIR (Robust Editing via Progressive Adaptive Intervention and Reintegration), a lifelong editing framework designed to support precise and low-cost model updates while preserving non-target knowledge. REPAIR mitigates the instability and conflicts of large-scale sequential edits through a closed-loop feedback mechanism coupled with dynamic memory management. Furthermore, by incorporating frequent knowledge fusion and enforcing strong locality guards, REPAIR effectively addresses the shortcomings of traditional distribution-agnostic approaches that often overlook unintended ripple effects. Our experiments demonstrate that REPAIR boosts editing accuracy by 10%-30% across multiple model families and significantly reduces knowledge forgetting. This work introduces a robust framework for developing reliable, scalable, and continually evolving LLMs.
♻ ☆ Solving PDEs With Deep Neural Nets under General Boundary Conditions
Partial Differential Equations (PDEs) are central to modeling complex systems across physical, biological, and engineering domains, yet traditional numerical methods often struggle with high-dimensional or complex problems. Physics-Informed Neural Networks (PINNs) have emerged as an efficient alternative by embedding physics-based constraints into deep learning frameworks, but they face challenges in achieving high accuracy and handling complex boundary conditions. In this work, we extend the Time-Evolving Natural Gradient (TENG) framework to address Dirichlet boundary conditions, integrating natural gradient optimization with numerical time-stepping schemes, including Euler and Heun methods, to ensure both stability and accuracy. By incorporating boundary condition penalty terms into the loss function, the proposed approach enables precise enforcement of Dirichlet constraints. Experiments on the heat equation demonstrate the superior accuracy of the Heun method due to its second-order corrections and the computational efficiency of the Euler method for simpler scenarios. This work establishes a foundation for extending the framework to Neumann and mixed boundary conditions, as well as broader classes of PDEs, advancing the applicability of neural network-based solvers for real-world problems.
comment: 7 pages, 2 figures
♻ ☆ Puda: Private User Dataset Agent for User-Sovereign and Privacy-Preserving Personalized AI
Personal data centralization among dominant platform providers including search engines, social networking services, and e-commerce has created siloed ecosystems that restrict user sovereignty, thereby impeding data use across services. Meanwhile, the rapid proliferation of Large Language Model (LLM)-based agents has intensified demand for highly personalized services that require the dynamic provision of diverse personal data. This presents a significant challenge: balancing the utilization of such data with privacy protection. To address this challenge, we propose Puda (Private User Dataset Agent), a user-sovereign architecture that aggregates data across services and enables client-side management. Puda allows users to control data sharing at three privacy levels: (i) Detailed Browsing History, (ii) Extracted Keywords, and (iii) Predefined Category Subsets. We implemented Puda as a browser-based system that serves as a common platform across diverse services and evaluated it through a personalized travel planning task. Our results show that providing Predefined Category Subsets achieves 97.2% of the personalization performance (evaluated via an LLM-as-a-Judge framework across three criteria) obtained when sharing Detailed Browsing History. These findings demonstrate that Puda enables effective multi-granularity management, offering practical choices to mitigate the privacy-personalization trade-off. Overall, Puda provides an AI-native foundation for user sovereignty, empowering users to safely leverage the full potential of personalized AI.
comment: 9 pages, 5 figures
♻ ☆ ReAcTree: Hierarchical LLM Agent Trees with Control Flow for Long-Horizon Task Planning AAMAS 2026
Recent advancements in large language models (LLMs) have enabled significant progress in decision-making and task planning for embodied autonomous agents. However, most existing methods struggle with complex, long-horizon tasks because they rely on a monolithic trajectory that entangles all past decisions and observations to solve the entire task in a single unified process. To address this limitation, we propose ReAcTree, a hierarchical task-planning method that decomposes a complex goal into manageable subgoals within a dynamically constructed agent tree. Each subgoal is handled by an LLM agent node capable of reasoning, acting, and further expanding the tree, while control flow nodes coordinate the execution strategies of agent nodes. In addition, we integrate two complementary memory systems: each agent node retrieves goal-specific, subgoal-level examples from episodic memory and shares environment-specific observations through working memory. Experiments on the WAH-NL and ALFRED show ReAcTree consistently outperforms strong task-planning baselines such as ReAct across diverse LLMs. Notably, on WAH-NL, ReAcTree achieves a 61% goal success rate with Qwen 2.5 72B, nearly doubling ReAct's 31%. The code is available at https://github.com/Choi-JaeWoo/ReAcTree.git.
comment: Accepted as a Full Paper at AAMAS 2026. This is the extended version including full appendices. Code is available at https://github.com/Choi-JaeWoo/ReAcTree.git
♻ ☆ Fine-R1: Make Multi-modal LLMs Excel in Fine-Grained Visual Recognition by Chain-of-Thought Reasoning ICLR 2026
Any entity in the visual world can be hierarchically grouped based on shared characteristics and mapped to fine-grained sub-categories. While Multi-modal Large Language Models (MLLMs) achieve strong performance on coarse-grained visual tasks, they often struggle with Fine-Grained Visual Recognition (FGVR). Adapting general-purpose MLLMs to FGVR typically requires large amounts of annotated data, which is costly to obtain, leaving a substantial performance gap compared to contrastive CLIP models dedicated for discriminative tasks. Moreover, MLLMs tend to overfit to seen sub-categories and generalize poorly to unseen ones. To address these challenges, we propose Fine-R1, an MLLM tailored for FGVR through an R1-style training framework: (1) Chain-of-Thought Supervised Fine-tuning, where we construct a high-quality FGVR CoT dataset with rationales of "visual analysis, candidate sub-categories, comparison, and prediction", transition the model into a strong open-world classifier; and (2) Triplet Augmented Policy Optimization, where Intra-class Augmentation mixes trajectories from anchor and positive images within the same category to improve robustness to intra-class variance, while Inter-class Augmentation maximizes the response distinction conditioned on images across sub-categories to enhance discriminative ability. With only 4-shot training, Fine-R1 outperforms existing general MLLMs, reasoning MLLMs, and even contrastive CLIP models in identifying both seen and unseen sub-categories, showing promise in working in knowledge-intensive domains where gathering expert annotations for all sub-categories is arduous. Code is available at https://github.com/PKU-ICST-MIPL/FineR1_ICLR2026.
comment: Published as a conference paper at ICLR 2026. The models are available at https://huggingface.co/collections/StevenHH2000/fine-r1
♻ ☆ Mapping Drivers of Greenness: Spatial Variable Selection for MODIS Vegetation Indices
Understanding how environmental drivers relate to vegetation condition motivates spatially varying regression models, but estimating a separate coefficient surface for every predictor can yield noisy patterns and poor interpretability when many predictors are irrelevant. Motivated by MODIS vegetation index studies, we examine predictors from spectral bands, productivity and energy fluxes, observation geometry, and land surface characteristics. Because these relationships vary with canopy structure, climate, land use, and measurement conditions, methods should both model spatially varying effects and identify where predictors matter. We propose a spatially varying coefficient model where each coefficient surface uses a tensor product B-spline basis and a Bayesian group lasso prior on the basis coefficients. This prior induces predictor level shrinkage, pushing negligible effects toward zero while preserving spatial structure. Posterior inference uses Markov chain Monte Carlo and provides uncertainty quantification for each effect surface. We summarize retained effects with spatial significance maps that mark locations where the 95 percent posterior credible interval excludes zero, and we define a spatial coverage probability as the proportion of locations where the credible interval excludes zero. Simulations recover sparsity and achieve prediction. A MODIS application yields a parsimonious subset of predictors whose effect maps clarify dominant controls across landscapes.
♻ ☆ Learning Probabilities of Causation with Mask-Augmented Data
Probabilities of causation play a central role in modern decision making. Tian and Pearl first introduced formal definitions and derived tight bounds for three binary probabilities of causation, such as the probability of necessity and sufficiency (PNS). However, estimating these probabilities requires both experimental and observational distributions specific to each subpopulation, which are often unreliable or impractical to obtain from limited population-level data. To solve this problem, we propose two machine learning models: Exact-MLP and Mask-MLP, which are trained on a small set of reliable subpopulations and are able to predict PNS bounds for all other subpopulations. We validate our models across four Structural Causal Models (SCMs), each evaluated on population-level data with sample sizes between 100k and 200k. Our models achieve average mean absolute errors (MAEs) of roughly 0.03 on main tasks, reducing MAE by about 80% relative to the corresponding baselines. These results demonstrate both the feasibility of machine learning models for learning probabilities of causation and the effectiveness of the proposed approach.
comment: arXiv admin note: text overlap with arXiv:2502.08858
♻ ☆ Emergent Structured Representations Support Flexible In-Context Inference in Large Language Models
Large language models (LLMs) exhibit emergent behaviors suggestive of human-like reasoning. While recent work has identified structured, human-like conceptual representations within these models, it remains unclear whether they functionally rely on such representations for reasoning. Here we investigate the internal processing of LLMs during in-context concept inference. Our results reveal a conceptual subspace emerging in middle to late layers, whose representational structure persists across contexts. Using causal mediation analyses, we demonstrate that this subspace is not merely an epiphenomenon but is functionally central to model predictions, establishing its causal role in inference. We further identify a layer-wise progression where attention heads in early-to-middle layers integrate contextual cues to construct and refine the subspace, which is subsequently leveraged by later layers to generate predictions. Together, these findings provide evidence that LLMs dynamically construct and use structured, latent representations in context for inference, offering insights into the computational processes underlying flexible adaptation.
comment: 27 pages, 16 figures
♻ ☆ Traceable Cross-Source RAG for Chinese Tibetan Medicine Question Answering
Retrieval-augmented generation (RAG) promises grounded question answering, yet domain settings with multiple heterogeneous knowledge bases (KBs) remain challenging. In Chinese Tibetan medicine, encyclopedia entries are often dense and easy to match, which can dominate retrieval even when classics or clinical papers provide more authoritative evidence. We study a practical setting with three KBs (encyclopedia, classics, and clinical papers) and a 500-query benchmark (cutoff $K{=}5$) covering both single-KB and cross-KB questions. We propose two complementary methods to improve traceability, reduce hallucinations, and enable cross-KB verification. First, DAKS performs KB routing and budgeted retrieval to mitigate density-driven bias and to prioritize authoritative sources when appropriate. Second, we use an alignment graph to guide evidence fusion and coverage-aware packing, improving cross-KB evidence coverage without relying on naive concatenation. All answers are generated by a lightweight generator, \textsc{openPangu-Embedded-7B}. Experiments show consistent gains in routing quality and cross-KB evidence coverage, with the full system achieving the best CrossEv@5 while maintaining strong faithfulness and citation correctness.
♻ ☆ SAGE: Scalable AI Governance & Evaluation
Evaluating relevance in large-scale search systems is fundamentally constrained by the governance gap between nuanced, resource-constrained human oversight and the high-throughput requirements of production systems. While traditional approaches rely on engagement proxies or sparse manual review, these methods often fail to capture the full scope of high-impact relevance failures. We present \textbf{SAGE} (Scalable AI Governance \& Evaluation), a framework that operationalizes high-quality human product judgment as a scalable evaluation signal. At the core of SAGE is a bidirectional calibration loop where natural-language \emph{Policy}, curated \emph{Precedent}, and an \emph{LLM Surrogate Judge} co-evolve. SAGE systematically resolves semantic ambiguities and misalignments, transforming subjective relevance judgment into an executable, multi-dimensional rubric with near human-level agreement. To bridge the gap between frontier model reasoning and industrial-scale inference, we apply teacher-student distillation to transfer high-fidelity judgments into compact student surrogates at \textbf{92$\times$} lower cost. Deployed within LinkedIn Search ecosystems, SAGE guided model iteration through simulation-driven development, distilling policy-aligned models for online serving and enabling rapid offline evaluation. In production, it powered policy oversight that measured ramped model variants and detected regressions invisible to engagement metrics. Collectively, these drove a \textbf{0.25\%} lift in LinkedIn daily active users.
♻ ☆ LMMRec: LLM-driven Motivation-aware Multimodal Recommendation
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank ($r$). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ Offline World Models as Imagination Networks in Cognitive Agents
The computational role of imagination remains debated. While classical accounts emphasize reward maximization, emerging evidence suggests it accesses internal world models (IWMs). We employ psychological network analysis to compare IWMs in humans and large language models (LLMs) via imagination vividness ratings, distinguishing offline world models (persistent memory structures accessed independent of immediate goals) from online models (task-specific representations). Analyzing 2,743 humans across three populations and six LLM variants, we find human imagination networks exhibit robust structural consistency, with high centrality correlations and aligned clustering. LLMs show minimal clustering and weak correlations with human networks, even with conversational memory, across environmental and sensory contexts. These differences highlight disparities in how biological and artificial systems organize internal representations. Our framework offers quantitative metrics for evaluating offline world models in cognitive agents.
♻ ☆ Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Developing lifelong learning agents is crucial for artificial general intelligence (AGI). However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 6 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to continually varying environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
comment: 21 pages, 7 figures
♻ ☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS Website: https://modular-gradient-surgery.github.io
♻ ☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026. Project Page: https://y-research-sbu.github.io/CSRv2/
♻ ☆ Faithful Group Shapley Value NeurIPS 2025
Data Shapley is an important tool for data valuation, which quantifies the contribution of individual data points to machine learning models. In practice, group-level data valuation is desirable when data providers contribute data in batch. However, we identify that existing group-level extensions of Data Shapley are vulnerable to shell company attacks, where strategic group splitting can unfairly inflate valuations. We propose Faithful Group Shapley Value (FGSV) that uniquely defends against such attacks. Building on original mathematical insights, we develop a provably fast and accurate approximation algorithm for computing FGSV. Empirical experiments demonstrate that our algorithm significantly outperforms state-of-the-art methods in computational efficiency and approximation accuracy, while ensuring faithful group-level valuation.
comment: Accepted to NeurIPS 2025
♻ ☆ ReflexGrad: A Dual-Process Architecture for Gradient-Free Inference-Time Learning
Scaling inference-time compute has emerged as a powerful paradigm--yet deliberating longer is not the same as learning. Current approaches to extended reasoning in large language models allocate more computation to thinking but remain fundamentally static: they cannot adapt from mistakes encountered during execution. Online reinforcement learning offers adaptation but requires gradient updates at runtime--expensive, prone to catastrophic forgetting, and unstable in deployment. We introduce ReflexGrad, a gradient-free framework for genuine inference-time learning: adaptation without retraining, without weight updates, without demonstrations. Our key insight is that effective runtime learning requires two complementary mechanisms--rapid policy refinement during forward progress, and deliberate causal diagnosis when stuck--with intelligent routing between them. ReflexGrad implements this by optimizing a natural language "policy" through textual feedback while keeping model weights frozen. When failures occur, the system analyzes recent action-outcome sequences to identify root causes and immediately applies corrections within the same execution--eliminating the need for multiple trials. Evaluated zero-shot across diverse interactive tasks without task-specific engineering, ReflexGrad achieves strong single-execution performance, demonstrating that gradient-free inference-time learning is not just theoretically appealing but practically viable.
comment: 10 pages, 3 figures
♻ ☆ General Binding Affinity Guidance for Diffusion Models in Structure-Based Drug Design
Structure-based drug design (SBDD) aims to generate ligands that bind strongly and specifically to target protein pockets. Recent diffusion models have advanced SBDD by capturing the distributions of atomic positions and types, yet they often underemphasize binding affinity control during generation. To address this limitation, we introduce \textbf{\textnormal{\textbf{BADGER}}}, a general \textbf{binding-affinity guidance framework for diffusion models in SBDD}. \textnormal{\textbf{BADGER} }incorporates binding affinity awareness through two complementary strategies: (1) \textit{classifier guidance}, which applies gradient-based affinity signals during sampling in a plug-and-play fashion, and (2) \textit{classifier-free guidance}, which integrates affinity conditioning directly into diffusion model training. Together, these approaches enable controllable ligand generation guided by binding affinity. \textnormal{\textbf{BADGER} } can be added to any diffusion model and achieves up to a \textbf{60\% improvement in ligand--protein binding affinity} of sampled molecules over prior methods. Furthermore, we extend the framework to \textbf{multi-constraint diffusion guidance}, jointly optimizing for binding affinity, drug-likeness (QED), and synthetic accessibility (SA) to design realistic and synthesizable drug candidates.
Computation and Language 123
☆ Quantum-Audit: Evaluating the Reasoning Limits of LLMs on Quantum Computing
Language models have become practical tools for quantum computing education and research, from summarizing technical papers to explaining theoretical concepts and answering questions about recent developments in the field. While existing benchmarks evaluate quantum code generation and circuit design, their understanding of quantum computing concepts has not been systematically measured. Quantum-Audit addresses this gap with 2,700 questions covering core quantum computing topics. We evaluate 26 models from leading organizations. Our benchmark comprises 1,000 expert-written questions, 1,000 questions extracted from research papers using LLMs and validated by experts, plus an additional 700 questions including 350 open-ended questions and 350 questions with false premises to test whether models can correct erroneous assumptions. Human participants scored between 23% and 86%, with experts averaging 74%. Top-performing models exceeded the expert average, with Claude Opus 4.5 reaching 84% accuracy, though top models showed an average 12-point accuracy drop on expert-written questions compared to LLM-generated ones. Performance declined further on advanced topics, dropping to 73% on security questions. Additionally, models frequently accepted and reinforced false premises embedded in questions instead of identifying them, with accuracy below 66% on these critical reasoning tasks.
comment: 18 pages
☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
☆ Anagent For Enhancing Scientific Table & Figure Analysis
In scientific research, analysis requires accurately interpreting complex multimodal knowledge, integrating evidence from different sources, and drawing inferences grounded in domain-specific knowledge. However, current artificial intelligence (AI) systems struggle to consistently demonstrate such capabilities. The complexity and variability of scientific tables and figures, combined with heterogeneous structures and long-context requirements, pose fundamental obstacles to scientific table \& figure analysis. To quantify these challenges, we introduce AnaBench, a large-scale benchmark featuring $63,178$ instances from nine scientific domains, systematically categorized along seven complexity dimensions. To tackle these challenges, we propose Anagent, a multi-agent framework for enhanced scientific table \& figure analysis through four specialized agents: Planner decomposes tasks into actionable subtasks, Expert retrieves task-specific information through targeted tool execution, Solver synthesizes information to generate coherent analysis, and Critic performs iterative refinement through five-dimensional quality assessment. We further develop modular training strategies that leverage supervised finetuning and specialized reinforcement learning to optimize individual capabilities while maintaining effective collaboration. Comprehensive evaluation across 170 subdomains demonstrates that Anagent achieves substantial improvements, up to $\uparrow 13.43\%$ in training-free settings and $\uparrow 42.12\%$ with finetuning, while revealing that task-oriented reasoning and context-aware problem-solving are essential for high-quality scientific table \& figure analysis. Our project page: https://xhguo7.github.io/Anagent/.
☆ CAPID: Context-Aware PII Detection for Question-Answering Systems EACL 2026
Detecting personally identifiable information (PII) in user queries is critical for ensuring privacy in question-answering systems. Current approaches mainly redact all PII, disregarding the fact that some of them may be contextually relevant to the user's question, resulting in a degradation of response quality. Large language models (LLMs) might be able to help determine which PII are relevant, but due to their closed source nature and lack of privacy guarantees, they are unsuitable for sensitive data processing. To achieve privacy-preserving PII detection, we propose CAPID, a practical approach that fine-tunes a locally owned small language model (SLM) that filters sensitive information before it is passed to LLMs for QA. However, existing datasets do not capture the context-dependent relevance of PII needed to train such a model effectively. To fill this gap, we propose a synthetic data generation pipeline that leverages LLMs to produce a diverse, domain-rich dataset spanning multiple PII types and relevance levels. Using this dataset, we fine-tune an SLM to detect PII spans, classify their types, and estimate contextual relevance. Our experiments show that relevance-aware PII detection with a fine-tuned SLM substantially outperforms existing baselines in span, relevance and type accuracy while preserving significantly higher downstream utility under anonymization.
comment: Accepted to the Student Research Workshop at EACL 2026
Overview of the TREC 2025 RAGTIME Track
The principal goal of the RAG TREC Instrument for Multilingual Evaluation (RAGTIME) track at TREC is to study report generation from multilingual source documents. The track has created a document collection containing Arabic, Chinese, English, and Russian news stories. RAGTIME includes three task types: Multilingual Report Generation, English Report Generation, and Multilingual Information Retrieval (MLIR). A total of 125 runs were submitted by 13 participating teams (and as baselines by the track coordinators) for three tasks. This overview describes these three tasks and presents the available results.
comment: 10 pages, 3 figures, notebook version of the RAGTIME 2025 overview paper
☆ MEVER: Multi-Modal and Explainable Claim Verification with Graph-based Evidence Retrieval EACL-26
Verifying the truthfulness of claims usually requires joint multi-modal reasoning over both textual and visual evidence, such as analyzing both textual caption and chart image for claim verification. In addition, to make the reasoning process transparent, a textual explanation is necessary to justify the verification result. However, most claim verification works mainly focus on the reasoning over textual evidence only or ignore the explainability, resulting in inaccurate and unconvincing verification. To address this problem, we propose a novel model that jointly achieves evidence retrieval, multi-modal claim verification, and explanation generation. For evidence retrieval, we construct a two-layer multi-modal graph for claims and evidence, where we design image-to-text and text-to-image reasoning for multi-modal retrieval. For claim verification, we propose token- and evidence-level fusion to integrate claim and evidence embeddings for multi-modal verification. For explanation generation, we introduce multi-modal Fusion-in-Decoder for explainability. Finally, since almost all the datasets are in general domain, we create a scientific dataset, AIChartClaim, in AI domain to complement claim verification community. Experiments show the strength of our model.
comment: Accepted to EACL-26
☆ Decoupled Reasoning with Implicit Fact Tokens (DRIFT): A Dual-Model Framework for Efficient Long-Context Inference
The integration of extensive, dynamic knowledge into Large Language Models (LLMs) remains a significant challenge due to the inherent entanglement of factual data and reasoning patterns. Existing solutions, ranging from non-parametric Retrieval-Augmented Generation (RAG) to parametric knowledge editing, are often constrained in practice by finite context windows, retriever noise, or the risk of catastrophic forgetting. In this paper, we propose DRIFT, a novel dual-model architecture designed to explicitly decouple knowledge extraction from the reasoning process. Unlike static prompt compression, DRIFT employs a lightweight knowledge model to dynamically compress document chunks into implicit fact tokens conditioned on the query. These dense representations are projected into the reasoning model's embedding space, replacing raw, redundant text while maintaining inference accuracy. Extensive experiments show that DRIFT significantly improves performance on long-context tasks, outperforming strong baselines among comparably sized models. Our approach provides a scalable and efficient paradigm for extending the effective context window and reasoning capabilities of LLMs. Our code is available at https://github.com/Lancelot-Xie/DRIFT.
☆ SCORE: Specificity, Context Utilization, Robustness, and Relevance for Reference-Free LLM Evaluation
Large language models (LLMs) are increasingly used to support question answering and decision-making in high-stakes, domain-specific settings such as natural hazard response and infrastructure planning, where effective answers must convey fine-grained, decision-critical details. However, existing evaluation frameworks for retrieval-augmented generation (RAG) and open-ended question answering primarily rely on surface-level similarity, factual consistency, or semantic relevance, and often fail to assess whether responses provide the specific information required for domain-sensitive decisions. To address this gap, we propose a multi-dimensional, reference-free evaluation framework that assesses LLM outputs along four complementary dimensions: specificity, robustness to paraphrasing and semantic perturbations, answer relevance, and context utilization. We introduce a curated dataset of 1,412 domain-specific question-answer pairs spanning 40 professional roles and seven natural hazard types to support systematic evaluation. We further conduct human evaluation to assess inter-annotator agreement and alignment between model outputs and human judgments, which highlights the inherent subjectivity of open-ended, domain-specific evaluation. Our results show that no single metric sufficiently captures answer quality in isolation and demonstrate the need for structured, multi-metric evaluation frameworks when deploying LLMs in high-stakes applications.
☆ ViSpeechFormer: A Phonemic Approach for Vietnamese Automatic Speech Recognition
Vietnamese has a phonetic orthography, where each grapheme corresponds to at most one phoneme and vice versa. Exploiting this high grapheme-phoneme transparency, we propose ViSpeechFormer (\textbf{Vi}etnamese \textbf{Speech} Trans\textbf{Former}), a phoneme-based approach for Vietnamese Automatic Speech Recognition (ASR). To the best of our knowledge, this is the first Vietnamese ASR framework that explicitly models phonemic representations. Experiments on two publicly available Vietnamese ASR datasets show that ViSpeechFormer achieves strong performance, generalizes better to out-of-vocabulary words, and is less affected by training bias. This phoneme-based paradigm is also promising for other languages with phonetic orthographies. The code will be released upon acceptance of this paper.
☆ A Unified Assessment of the Poverty of the Stimulus Argument for Neural Language Models
How can children acquire native-level syntax from limited input? According to the Poverty of the Stimulus Hypothesis (PoSH), the linguistic input children receive is insufficient to explain certain generalizations that are robustly learned; innate linguistic constraints, many have argued, are thus necessary to explain language learning. Neural language models, which lack such language-specific constraints in their design, offer a computational test of this longstanding (but controversial) claim. We introduce \poshbench, a training-and-evaluation suite targeting question formation, islands to movement, and other English phenomena at the center of the PoSH arguments. Training Transformer models on 10--50M words of developmentally plausible text, we find indications of generalization on all phenomena even without direct positive evidence -- yet neural models remain less data-efficient and their generalizations are weaker than those of children. We further enhance our models with three recently proposed cognitively motivated inductive biases. We find these biases improve general syntactic competence but not \poshbench performance. Our findings challenge the claim that innate syntax is the only possible route to generalization, while suggesting that human-like data efficiency requires inductive biases beyond those tested here.
☆ ViMultiChoice: Toward a Method That Gives Explanation for Multiple-Choice Reading Comprehension in Vietnamese
Multiple-choice Reading Comprehension (MCRC) models aim to select the correct answer from a set of candidate options for a given question. However, they typically lack the ability to explain the reasoning behind their choices. In this paper, we introduce a novel Vietnamese dataset designed to train and evaluate MCRC models with explanation generation capabilities. Furthermore, we propose ViMultiChoice, a new method specifically designed for modeling Vietnamese reading comprehension that jointly predicts the correct answer and generates a corresponding explanation. Experimental results demonstrate that ViMultiChoice outperforms existing MCRC baselines, achieving state-of-the-art (SotA) performance on both the ViMMRC 2.0 benchmark and the newly introduced dataset. Additionally, we show that jointly training option decision and explanation generation leads to significant improvements in multiple-choice accuracy.
☆ ATTNPO: Attention-Guided Process Supervision for Efficient Reasoning
Large reasoning models trained with reinforcement learning and verifiable rewards (RLVR) achieve strong performance on complex reasoning tasks, yet often overthink, generating redundant reasoning without performance gains. Existing trajectory-level length penalties often fail to effectively shorten reasoning length and degrade accuracy, as they uniformly treat all reasoning steps and lack fine-grained signals to distinguish redundancy from necessity. Meanwhile, process-supervised methods are typically resource-intensive and suffer from inaccurate credit assignment. To address these issues, we propose ATTNPO, a low-overhead process-supervised RL framework that leverages the model's intrinsic attention signals for step-level credit assignment. We first identify a set of special attention heads that naturally focus on essential steps while suppressing redundant ones. By leveraging the attention scores of these heads, We then employ two sub-strategies to mitigate overthinking by discouraging redundant steps while preserving accuracy by reducing penalties on essential steps. Experimental results show that ATTNPO substantially reduces reasoning length while significantly improving performance across 9 benchmarks.
comment: Work in process
☆ LLMs Encode Their Failures: Predicting Success from Pre-Generation Activations
Running LLMs with extended reasoning on every problem is expensive, but determining which inputs actually require additional compute remains challenging. We investigate whether their own likelihood of success is recoverable from their internal representations before generation, and if this signal can guide more efficient inference. We train linear probes on pre-generation activations to predict policy-specific success on math and coding tasks, substantially outperforming surface features such as question length and TF-IDF. Using E2H-AMC, which provides both human and model performance on identical problems, we show that models encode a model-specific notion of difficulty that is distinct from human difficulty, and that this distinction increases with extended reasoning. Leveraging these probes, we demonstrate that routing queries across a pool of models can exceed the best-performing model whilst reducing inference cost by up to 70\% on MATH, showing that internal representations enable practical efficiency gains even when they diverge from human intuitions about difficulty. Our code is available at: https://github.com/KabakaWilliam/llms_know_difficulty
☆ AmharicIR+Instr: A Two-Dataset Resource for Neural Retrieval and Instruction Tuning
Neural retrieval and GPT-style generative models rely on large, high-quality supervised data, which is still scarce for low-resource languages such as Amharic. We release an Amharic data resource consisting of two datasets that supports research on (i) neural retrieval-ranking and (ii) instruction-following text generation. The retrieval-ranking dataset contains 1,091 manually verified query-positive-negative document triplets drawn from diverse Amharic sources and constructed to support contrastive training and benchmarking of neural retrievers (e.g., DPR, ColBERT-style late interaction and SPLADE-style sparse neural retrieval). Triplets are created through a combination of expert-curated queries, web-derived queries, and LLM-assisted generation, with positive/negative documents selected from the web or synthesized by LLMs and then validated by native speakers. The instruction prompt-response dataset comprises 6,285 Amharic prompt-response pairs spanning multiple domains and instruction types, generated with several LLMs and refined through manual review and correction for grammaticality, relevance, fluency, and factual plausibility. We release both datasets with standardized splits and formats (CSV,JSON,JSONL) to enable reproducible work on Amharic retrieval, ranking, and generative modelling. These datasets also come with a methodology that can be generalized to other low-resource languages.
comment: 7 pages, Submitted to resource track
☆ QP-OneModel: A Unified Generative LLM for Multi-Task Query Understanding in Xiaohongshu Search
Query Processing (QP) bridges user intent and content supply in large-scale Social Network Service (SNS) search engines. Traditional QP systems rely on pipelines of isolated discriminative models (e.g., BERT), suffering from limited semantic understanding and high maintenance overhead. While Large Language Models (LLMs) offer a potential solution, existing approaches often optimize sub-tasks in isolation, neglecting intrinsic semantic synergy and necessitating independent iterations. Moreover, standard generative methods often lack grounding in SNS scenarios, failing to bridge the gap between open-domain corpora and informal SNS linguistic patterns, while struggling to adhere to rigorous business definitions. We present QP-OneModel, a Unified Generative LLM for Multi-Task Query Understanding in the SNS domain. We reformulate heterogeneous sub-tasks into a unified sequence generation paradigm, adopting a progressive three-stage alignment strategy culminating in multi-reward Reinforcement Learning. Furthermore, QP-OneModel generates intent descriptions as a novel high-fidelity semantic signal, effectively augmenting downstream tasks such as query rewriting and ranking. Offline evaluations show QP-OneModel achieves a 7.35% overall gain over discriminative baselines, with significant F1 boosts in NER (+9.01%) and Term Weighting (+9.31%). It also exhibits superior generalization, surpassing a 32B model by 7.60% accuracy on unseen tasks. Fully deployed at Xiaohongshu, online A/B tests confirm its industrial value, optimizing retrieval relevance (DCG) by 0.21% and lifting user retention by 0.044%.
☆ The Devil Behind Moltbook: Anthropic Safety is Always Vanishing in Self-Evolving AI Societies
The emergence of multi-agent systems built from large language models (LLMs) offers a promising paradigm for scalable collective intelligence and self-evolution. Ideally, such systems would achieve continuous self-improvement in a fully closed loop while maintaining robust safety alignment--a combination we term the self-evolution trilemma. However, we demonstrate both theoretically and empirically that an agent society satisfying continuous self-evolution, complete isolation, and safety invariance is impossible. Drawing on an information-theoretic framework, we formalize safety as the divergence degree from anthropic value distributions. We theoretically demonstrate that isolated self-evolution induces statistical blind spots, leading to the irreversible degradation of the system's safety alignment. Empirical and qualitative results from an open-ended agent community (Moltbook) and two closed self-evolving systems reveal phenomena that align with our theoretical prediction of inevitable safety erosion. We further propose several solution directions to alleviate the identified safety concern. Our work establishes a fundamental limit on the self-evolving AI societies and shifts the discourse from symptom-driven safety patches to a principled understanding of intrinsic dynamical risks, highlighting the need for external oversight or novel safety-preserving mechanisms.
☆ Steer2Edit: From Activation Steering to Component-Level Editing
Steering methods influence Large Language Model behavior by identifying semantic directions in hidden representations, but are typically realized through inference-time activation interventions that apply a fixed, global modification to the model's internal states. While effective, such interventions often induce unfavorable attribute-utility trade-offs under strong control, as they ignore the fact that many behaviors are governed by a small and heterogeneous subset of model components. We propose Steer2Edit, a theoretically grounded, training-free framework that transforms steering vectors from inference-time control signals into diagnostic signals for component-level rank-1 weight editing. Instead of uniformly injecting a steering direction during generation, Steer2Edit selectively redistributes behavioral influence across individual attention heads and MLP neurons, yielding interpretable edits that preserve the standard forward pass and remain compatible with optimized parallel inference. Across safety alignment, hallucination mitigation, and reasoning efficiency, Steer2Edit consistently achieves more favorable attribute-utility trade-offs: at matched downstream performance, it improves safety by up to 17.2%, increases truthfulness by 9.8%, and reduces reasoning length by 12.2% on average. Overall, Steer2Edit provides a principled bridge between representation steering and weight editing by translating steering signals into interpretable, training-free parameter updates.
☆ Code2World: A GUI World Model via Renderable Code Generation
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
comment: github: https://github.com/AMAP-ML/Code2World project page: https://amap-ml.github.io/Code2World/
☆ How Do People Quantify Naturally: Evidence from Mandarin Picture Description
Quantification is a fundamental component of everyday language use, yet little is known about how speakers decide whether and how to quantify in naturalistic production. We investigate quantification in Mandarin Chinese using a picture-based elicited description task in which speakers freely described scenes containing multiple objects, without explicit instructions to count or quantify. Across both spoken and written modalities, we examine three aspects of quantification: whether speakers choose to quantify at all, how precise their quantification is, and which quantificational strategies they adopt. Results show that object numerosity, animacy, and production modality systematically shape quantificational behaviour. In particular, increasing numerosity reduces both the likelihood and the precision of quantification, while animate referents and modality selectively modulate strategy choice. This study demonstrates how quantification can be examined under unconstrained production conditions and provides a naturalistic dataset for further analyses of quantity expression in language production.
☆ LLM Reasoning Predicts When Models Are Right: Evidence from Coding Classroom Discourse
Large Language Models (LLMs) are increasingly deployed to automatically label and analyze educational dialogue at scale, yet current pipelines lack reliable ways to detect when models are wrong. We investigate whether reasoning generated by LLMs can be used to predict the correctness of a model's own predictions. We analyze 30,300 teacher utterances from classroom dialogue, each labeled by multiple state-of-the-art LLMs with an instructional move construct and an accompanying reasoning. Using human-verified ground-truth labels, we frame the task as predicting whether a model's assigned label for a given utterance is correct. We encode LLM reasoning using Term Frequency-Inverse Document Frequency (TF-IDF) and evaluate five supervised classifiers. A Random Forest classifier achieves an F1 score of 0.83 (Recall = 0.854), successfully identifying most incorrect predictions and outperforming baselines. Training specialist detectors for specific instructional move constructs further improves performance on difficult constructs, indicating that error detection benefits from construct-specific linguistic cues. Using the Linguistic Inquiry and Word Count (LIWC) framework, we examine four linguistic markers of correctness: Causation, Differentiation, Tentativeness, and Insight. Correct predictions exhibit grounded causal language (e.g., because, therefore), while incorrect reasoning is substantially more likely to rely on epistemic hedging (e.g., might, could) and performative metacognition (e.g., think, realize). Syntactic complexity does not distinguish correct from incorrect reasoning, and longer reasoning is not more reliable. These findings demonstrate that reasoning-based error detection offers a practical and scalable approach to quality control in automated educational dialogue analysis.
☆ From FusHa to Folk: Exploring Cross-Lingual Transfer in Arabic Language Models
Arabic Language Models (LMs) are pretrained predominately on Modern Standard Arabic (MSA) and are expected to transfer to its dialects. While MSA as the standard written variety is commonly used in formal settings, people speak and write online in various dialects that are spread across the Arab region. This poses limitations for Arabic LMs, since its dialects vary in their similarity to MSA. In this work we study cross-lingual transfer of Arabic models using probing on 3 Natural Language Processing (NLP) Tasks, and representational similarity. Our results indicate that transfer is possible but disproportionate across dialects, which we find to be partially explained by their geographic proximity. Furthermore, we find evidence for negative interference in models trained to support all Arabic dialects. This questions their degree of similarity, and raises concerns for cross-lingual transfer in Arabic models.
comment: Accepted to VarDial 2026
☆ Covo-Audio Technical Report
In this work, we present Covo-Audio, a 7B-parameter end-to-end LALM that directly processes continuous audio inputs and generates audio outputs within a single unified architecture. Through large-scale curated pretraining and targeted post-training, Covo-Audio achieves state-of-the-art or competitive performance among models of comparable scale across a broad spectrum of tasks, including speech-text modeling, spoken dialogue, speech understanding, audio understanding, and full-duplex voice interaction. Extensive evaluations demonstrate that the pretrained foundation model exhibits strong speech-text comprehension and semantic reasoning capabilities on multiple benchmarks, outperforming representative open-source models of comparable scale. Furthermore, Covo-Audio-Chat, the dialogue-oriented variant, demonstrates strong spoken conversational abilities, including understanding, contextual reasoning, instruction following, and generating contextually appropriate and empathetic responses, validating its applicability to real-world conversational assistant scenarios. Covo-Audio-Chat-FD, the evolved full-duplex model, achieves substantially superior performance on both spoken dialogue capabilities and full-duplex interaction behaviors, demonstrating its competence in practical robustness. To mitigate the high cost of deploying end-to-end LALMs for natural conversational systems, we propose an intelligence-speaker decoupling strategy that separates dialogue intelligence from voice rendering, enabling flexible voice customization with minimal text-to-speech (TTS) data while preserving dialogue performance. Overall, our results highlight the strong potential of 7B-scale models to integrate sophisticated audio intelligence with high-level semantic reasoning, and suggest a scalable path toward more capable and versatile LALMs.
comment: Technical Report
☆ Text summarization via global structure awareness
Text summarization is a fundamental task in natural language processing (NLP), and the information explosion has made long-document processing increasingly demanding, making summarization essential. Existing research mainly focuses on model improvements and sentence-level pruning, but often overlooks global structure, leading to disrupted coherence and weakened downstream performance. Some studies employ large language models (LLMs), which achieve higher accuracy but incur substantial resource and time costs. To address these issues, we introduce GloSA-sum, the first summarization approach that achieves global structure awareness via topological data analysis (TDA). GloSA-sum summarizes text efficiently while preserving semantic cores and logical dependencies. Specifically, we construct a semantic-weighted graph from sentence embeddings, where persistent homology identifies core semantics and logical structures, preserved in a ``protection pool'' as the backbone for summarization. We design a topology-guided iterative strategy, where lightweight proxy metrics approximate sentence importance to avoid repeated high-cost computations, thus preserving structural integrity while improving efficiency. To further enhance long-text processing, we propose a hierarchical strategy that integrates segment-level and global summarization. Experiments on multiple datasets demonstrate that GloSA-sum reduces redundancy while preserving semantic and logical integrity, striking a balance between accuracy and efficiency, and further benefits LLM downstream tasks by shortening contexts while retaining essential reasoning chains.
comment: 24pages
☆ AnalyticsGPT: An LLM Workflow for Scientometric Question Answering
This paper introduces AnalyticsGPT, an intuitive and efficient large language model (LLM)-powered workflow for scientometric question answering. This underrepresented downstream task addresses the subcategory of meta-scientific questions concerning the "science of science." When compared to traditional scientific question answering based on papers, the task poses unique challenges in the planning phase. Namely, the need for named-entity recognition of academic entities within questions and multi-faceted data retrieval involving scientometric indices, e.g. impact factors. Beyond their exceptional capacity for treating traditional natural language processing tasks, LLMs have shown great potential in more complex applications, such as task decomposition and planning and reasoning. In this paper, we explore the application of LLMs to scientometric question answering, and describe an end-to-end system implementing a sequential workflow with retrieval-augmented generation and agentic concepts. We also address the secondary task of effectively synthesizing the data into presentable and well-structured high-level analyses. As a database for retrieval-augmented generation, we leverage a proprietary research performance assessment platform. For evaluation, we consult experienced subject matter experts and leverage LLMs-as-judges. In doing so, we provide valuable insights on the efficacy of LLMs towards a niche downstream task. Our (skeleton) code and prompts are available at: https://github.com/lyvykhang/llm-agents-scientometric-qa/tree/acl.
☆ Decomposing Reasoning Efficiency in Large Language Models
Large language models trained for reasoning trade off inference tokens against accuracy, yet standard evaluations report only final accuracy, obscuring where tokens are spent or wasted. We introduce a trace-optional framework that decomposes token efficiency into interpretable factors: completion under a fixed token budget (avoiding truncation), conditional correctness given completion, and verbosity (token usage). When benchmark metadata provides per-instance workload proxies, we further factor verbosity into two components: mean verbalization overhead (tokens per work unit) and a coupling coefficient capturing how overhead scales with task workload. When reasoning traces are available, we add deterministic trace-quality measures (grounding, repetition, prompt copying) to separate degenerate looping from verbose-but-engaged reasoning, avoiding human labeling and LLM judges. Evaluating 25 models on CogniLoad, we find that accuracy and token-efficiency rankings diverge (Spearman $ρ=0.63$), efficiency gaps are often driven by conditional correctness, and verbalization overhead varies by about 9 times (only weakly related to model scale). Our decomposition reveals distinct bottleneck profiles that suggest different efficiency interventions.
comment: Preprint (under review). 29 pages, 4 figures
☆ Would a Large Language Model Pay Extra for a View? Inferring Willingness to Pay from Subjective Choices
As Large Language Models (LLMs) are increasingly deployed in applications such as travel assistance and purchasing support, they are often required to make subjective choices on behalf of users in settings where no objectively correct answer exists. We study LLM decision-making in a travel-assistant context by presenting models with choice dilemmas and analyzing their responses using multinomial logit models to derive implied willingness to pay (WTP) estimates. These WTP values are subsequently compared to human benchmark values from the economics literature. In addition to a baseline setting, we examine how model behavior changes under more realistic conditions, including the provision of information about users' past choices and persona-based prompting. Our results show that while meaningful WTP values can be derived for larger LLMs, they also display systematic deviations at the attribute level. Additionally, they tend to overestimate human WTP overall, particularly when expensive options or business-oriented personas are introduced. Conditioning models on prior preferences for cheaper options yields valuations that are closer to human benchmarks. Overall, our findings highlight both the potential and the limitations of using LLMs for subjective decision support and underscore the importance of careful model selection, prompt design, and user representation when deploying such systems in practice.
☆ Where Are We At with Automatic Speech Recognition for the Bambara Language? EACL 2026
This paper introduces the first standardized benchmark for evaluating Automatic Speech Recognition (ASR) in the Bambara language, utilizing one hour of professionally recorded Malian constitutional text. Designed as a controlled reference set under near-optimal acoustic and linguistic conditions, the benchmark was used to evaluate 37 models, ranging from Bambara-trained systems to large-scale commercial models. Our findings reveal that current ASR performance remains significantly below deployment standards in a narrow formal domain; the top-performing system in terms of Word Error Rate (WER) achieved 46.76\% and the best Character Error Rate (CER) of 13.00\% was set by another model, while several prominent multilingual models exceeded 100\% WER. These results suggest that multilingual pre-training and model scaling alone are insufficient for underrepresented languages. Furthermore, because this dataset represents a best-case scenario of the most simplified and formal form of spoken Bambara, these figures are yet to be tested against practical, real-world settings. We provide the benchmark and an accompanying public leaderboard to facilitate transparent evaluation and future research in Bambara speech technology.
comment: v1- 8 pages, 5 tables, 1 figure- AfricaNLP Workshop @ EACL 2026
☆ Circuit Fingerprints: How Answer Tokens Encode Their Geometrical Path ICML 2026
Circuit discovery and activation steering in transformers have developed as separate research threads, yet both operate on the same representational space. Are they two views of the same underlying structure? We show they follow a single geometric principle: answer tokens, processed in isolation, encode the directions that would produce them. This Circuit Fingerprint hypothesis enables circuit discovery without gradients or causal intervention -- recovering comparable structure to gradient-based methods through geometric alignment alone. We validate this on standard benchmarks (IOI, SVA, MCQA) across four model families, achieving circuit discovery performance comparable to gradient-based methods. The same directions that identify circuit components also enable controlled steering -- achieving 69.8\% emotion classification accuracy versus 53.1\% for instruction prompting while preserving factual accuracy. Beyond method development, this read-write duality reveals that transformer circuits are fundamentally geometric structures: interpretability and controllability are two facets of the same object.
comment: Submitted to ICML 2026. 15 pages, 11 figures
☆ Why Linear Interpretability Works: Invariant Subspaces as a Result of Architectural Constraints ICML 2026
Linear probes and sparse autoencoders consistently recover meaningful structure from transformer representations -- yet why should such simple methods succeed in deep, nonlinear systems? We show this is not merely an empirical regularity but a consequence of architectural necessity: transformers communicate information through linear interfaces (attention OV circuits, unembedding matrices), and any semantic feature decoded through such an interface must occupy a context-invariant linear subspace. We formalize this as the \emph{Invariant Subspace Necessity} theorem and derive the \emph{Self-Reference Property}: tokens directly provide the geometric direction for their associated features, enabling zero-shot identification of semantic structure without labeled data or learned probes. Empirical validation in eight classification tasks and four model families confirms the alignment between class tokens and semantically related instances. Our framework provides \textbf{a principled architectural explanation} for why linear interpretability methods work, unifying linear probes and sparse autoencoders.
comment: Submitted to ICML 2026. 19 pages, 13 figures
☆ Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
comment: https://github.com/Kwen-Chen/Flexible-Entropy-Control
☆ Improving Interpretability of Lexical Semantic Change with Neurobiological Features ACL
Lexical Semantic Change (LSC) is the phenomenon in which the meaning of a word change over time. Most studies on LSC focus on improving the performance of estimating the degree of LSC, however, it is often difficult to interpret how the meaning of a word change. Enhancing the interpretability of LSC is a significant challenge as it could lead to novel insights in this field. To tackle this challenge, we propose a method to map the semantic space of contextualized embeddings of words obtained by a pre-trained language model to a neurobiological feature space. In the neurobiological feature space, each dimension corresponds to a primitive feature of words, and its value represents the intensity of that feature. This enables humans to interpret LSC systematically. When employed for the estimation of the degree of LSC, our method demonstrates superior performance in comparison to the majority of the previous methods. In addition, given the high interpretability of the proposed method, several analyses on LSC are carried out. The results demonstrate that our method not only discovers interesting types of LSC that have been overlooked in previous studies but also effectively searches for words with specific types of LSC.
comment: PACLIC 2025
☆ Targum -- A Multilingual New Testament Translation Corpus
Many European languages possess rich biblical translation histories, yet existing corpora - in prioritizing linguistic breadth - often fail to capture this depth. To address this gap, we introduce a multilingual corpus of 657 New Testament translations, of which 352 are unique, with unprecedented depth in five languages: English (208 unique versions from 396 total), French (41 from 78), Italian (18 from 33), Polish (30 from 48), and Spanish (55 from 102). Aggregated from 12 online biblical libraries and one preexisting corpus, each translation is manually annotated with metadata that maps the text to a standardized identifier for the work, its specific edition, and its year of revision. This canonicalization empowers researchers to define "uniqueness" for their own needs: they can perform micro-level analyses on translation families, such as the KJV lineage, or conduct macro-level studies by deduplicating closely related texts. By providing the first resource designed for such flexible, multilevel analysis, our corpus establishes a new benchmark for the quantitative study of translation history.
☆ AI-Assisted Scientific Assessment: A Case Study on Climate Change
The emerging paradigm of AI co-scientists focuses on tasks characterized by repeatable verification, where agents explore search spaces in 'guess and check' loops. This paradigm does not extend to problems where repeated evaluation is impossible and ground truth is established by the consensus synthesis of theory and existing evidence. We evaluate a Gemini-based AI environment designed to support collaborative scientific assessment, integrated into a standard scientific workflow. In collaboration with a diverse group of 13 scientists working in the field of climate science, we tested the system on a complex topic: the stability of the Atlantic Meridional Overturning Circulation (AMOC). Our results show that AI can accelerate the scientific workflow. The group produced a comprehensive synthesis of 79 papers through 104 revision cycles in just over 46 person-hours. AI contribution was significant: most AI-generated content was retained in the report. AI also helped maintain logical consistency and presentation quality. However, expert additions were crucial to ensure its acceptability: less than half of the report was produced by AI. Furthermore, substantial oversight was required to expand and elevate the content to rigorous scientific standards.
☆ Unsupervised Layer-Wise Dynamic Test Time Adaptation for LLMs
Test-time adaptation (TTA) for large language models (LLMs) updates model parameters at inference time using signals available at deployment. This paper focuses on a common yet under-explored regime: unsupervised, sample-specific TTA, where the model adapts independently for each prompt using only the prompt itself, without gold answers or external supervision. Although appealing, naive unsupervised TTA with a fixed, handcrafted learning rate can be unstable: updates may overfit to prompt-specific statistics, drift from the desired answer distribution, and ultimately degrade generation quality. This failure mode is not surprising, as in this case TTA must adapt to a single prompt within only a few gradient steps, unlike standard training that averages updates over large datasets and long optimization horizons. Therefore, we propose layer-wise dynamic test-time adaptation, a framework which explicitly modulates TTA strength as a function of prompt representation, LLM structure and adaptation step. In our setting, TTA updates only LoRA parameters, and a lightweight hypernetwork predicts per-layer, per-step learning-rate multipliers, enabling fine-grained control. Experiments across various datasets and LLMs consistently show that our method substantially strengthens TTA by learning effective scaling patterns over adaptation steps and transformer layer projections, improving stability while delivering better performance.
☆ TraceMem: Weaving Narrative Memory Schemata from User Conversational Traces
Sustaining long-term interactions remains a bottleneck for Large Language Models (LLMs), as their limited context windows struggle to manage dialogue histories that extend over time. Existing memory systems often treat interactions as disjointed snippets, failing to capture the underlying narrative coherence of the dialogue stream. We propose TraceMem, a cognitively-inspired framework that weaves structured, narrative memory schemata from user conversational traces through a three-stage pipeline: (1) Short-term Memory Processing, which employs a deductive topic segmentation approach to demarcate episode boundaries and extract semantic representation; (2) Synaptic Memory Consolidation, a process that summarizes episodes into episodic memories before distilling them alongside semantics into user-specific traces; and (3) Systems Memory Consolidation, which utilizes two-stage hierarchical clustering to organize these traces into coherent, time-evolving narrative threads under unifying themes. These threads are encapsulated into structured user memory cards, forming narrative memory schemata. For memory utilization, we provide an agentic search mechanism to enhance reasoning process. Evaluation on the LoCoMo benchmark shows that TraceMem achieves state-of-the-art performance with a brain-inspired architecture. Analysis shows that by constructing coherent narratives, it surpasses baselines in multi-hop and temporal reasoning, underscoring its essential role in deep narrative comprehension. Additionally, we provide an open discussion on memory systems, offering our perspectives and future outlook on the field. Our code implementation is available at: https://github.com/YimingShu-teay/TraceMem
☆ Maastricht University at AMIYA: Adapting LLMs for Dialectal Arabic using Fine-tuning and MBR Decoding
Large Language Models (LLMs) are becoming increasingly multilingual, supporting hundreds of languages, especially high resource ones. Unfortunately, Dialect variations are still underrepresented due to limited data and linguistic variation. In this work, we adapt a pre-trained LLM to improve dialectal performance. Specifically, we use Low Rank Adaptation (LoRA) fine-tuning on monolingual and English Dialect parallel data, adapter merging and dialect-aware MBR decoding to improve dialectal fidelity generation and translation. Experiments on Syrian, Moroccan, and Saudi Arabic show that merging and MBR improve dialectal fidelity while preserving semantic accuracy. This combination provides a compact and effective framework for robust dialectal Arabic generation.
☆ Life Cycle-Aware Evaluation of Knowledge Distillation for Machine Translation: Environmental Impact and Translation Quality Trade-offs
Knowledge distillation (KD) is a tool to compress a larger system (teacher) into a smaller one (student). In machine translation, studies typically report only the translation quality of the student and omit the computational complexity of performing KD, making it difficult to select among the many available KD choices under compute-induced constraints. In this study, we evaluate representative KD methods by considering both translation quality and computational cost. We express computational cost as a carbon footprint using the machine learning life cycle assessment (MLCA) tool. This assessment accounts for runtime operational emissions and amortized hardware production costs throughout the KD model life cycle (teacher training, distillation, and inference). We find that (i) distillation overhead dominates the total footprint at small deployment volumes, (ii) inference dominates at scale, making KD beneficial only beyond a task-dependent usage threshold, and (iii) word-level distillation typically offers more favorable footprint-quality trade-offs than sequence-level distillation. Our protocol provides reproducible guidance for selecting KD methods under explicit quality and compute-induced constraints.
☆ MATA: Multi-Agent Framework for Reliable and Flexible Table Question Answering
Recent advances in Large Language Models (LLMs) have significantly improved table understanding tasks such as Table Question Answering (TableQA), yet challenges remain in ensuring reliability, scalability, and efficiency, especially in resource-constrained or privacy-sensitive environments. In this paper, we introduce MATA, a multi-agent TableQA framework that leverages multiple complementary reasoning paths and a set of tools built with small language models. MATA generates candidate answers through diverse reasoning styles for a given table and question, then refines or selects the optimal answer with the help of these tools. Furthermore, it incorporates an algorithm designed to minimize expensive LLM agent calls, enhancing overall efficiency. MATA maintains strong performance with small, open-source models and adapts easily across various LLM types. Extensive experiments on two benchmarks of varying difficulty with ten different LLMs demonstrate that MATA achieves state-of-the-art accuracy and highly efficient reasoning while avoiding excessive LLM inference. Our results highlight that careful orchestration of multiple reasoning pathways yields scalable and reliable TableQA. The code is available at https://github.com/AIDAS-Lab/MATA.
☆ MILE-RefHumEval: A Reference-Free, Multi-Independent LLM Framework for Human-Aligned Evaluation
We introduce MILE-RefHumEval, a reference-free framework for evaluating Large Language Models (LLMs) without ground-truth annotations or evaluator coordination. It leverages an ensemble of independently prompted evaluators guided by a human-aligned schema, supporting both discrete and continuous scoring judgement. With task-specific prompts from best candidate selection, summarization and image captioning to dialogue, MILE-RefHumEval provides flexible, interpretable, and scalable assessments. Experiments show it aligns closely with human judgments, outperforms prior methods, and reduces computational overhead, offering an efficient, robust, and human-aligned solution for real-world LLM evaluation.
☆ AlignTune: Modular Toolkit for Post-Training Alignment of Large Language Models
Post-training alignment is central to deploying large language models (LLMs), yet practical workflows remain split across backend-specific tools and ad-hoc glue code, making experiments hard to reproduce. We identify backend interference, reward fragmentation, and irreproducible pipelines as key obstacles in alignment research. We introduce AlignTune, a modular toolkit exposing a unified interface for supervised fine-tuning (SFT) and RLHF-style optimization with interchangeable TRL and Unsloth backends. AlignTune standardizes configuration, provides an extensible reward layer (rule-based and learned), and integrates evaluation over standard benchmarks and custom tasks. By isolating backend-specific logic behind a single factory boundary, AlignTune enables controlled comparisons and reproducible alignment experiments.
comment: https://github.com/Lexsi-Labs/aligntune
☆ Learning from the Irrecoverable: Error-Localized Policy Optimization for Tool-Integrated LLM Reasoning
Tool-integrated reasoning (TIR) enables LLM agents to solve tasks through planning, tool use, and iterative revision, but outcome-only reinforcement learning in this setting suffers from sparse, delayed rewards and weak step-level credit assignment. In long-horizon TIR trajectories, an early irrecoverable mistake can determine success or failure, making it crucial to localize the first irrecoverable step and leverage it for fine-grained credit assignment. We propose Error-Localized Policy Optimization (ELPO), which localizes the first irrecoverable step via binary-search rollout trees under a fixed rollout budget, converts the resulting tree into stable learning signals through hierarchical advantage attribution, and applies error-localized adaptive clipping to strengthen corrective updates on the critical step and its suffix. Across TIR benchmarks in math, science QA, and code execution, ELPO consistently outperforms strong Agentic RL baselines under comparable sampling budgets, with additional gains in Pass@K and Major@K scaling, rollout ranking quality, and tool-call efficiency. Our code will be publicly released soon.
comment: 20 pages, 11 figures
☆ On the Optimal Reasoning Length for RL-Trained Language Models SP
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures. Submitted to the Workshop on Scaling Post-training for LLMs (SPOT) at ICLR 2026
☆ Context-Aware Counterfactual Data Augmentation for Gender Bias Mitigation in Language Models
A challenge in mitigating social bias in fine-tuned language models (LMs) is the potential reduction in language modeling capability, which can harm downstream performance. Counterfactual data augmentation (CDA), a widely used method for fine-tuning, highlights this issue by generating synthetic data that may align poorly with real-world distributions or creating overly simplistic counterfactuals that ignore the social context of altered sensitive attributes (e.g., gender) in the pretraining corpus. To address these limitations, we propose a simple yet effective context-augmented CDA method, Context-CDA, which uses large LMs to enhance the diversity and contextual relevance of the debiasing corpus. By minimizing discrepancies between the debiasing corpus and pretraining data through augmented context, this approach ensures better alignment, enhancing language modeling capability. We then employ uncertainty-based filtering to exclude generated counterfactuals considered low-quality by the target smaller LMs (i.e., LMs to be debiased), further improving the fine-tuning corpus quality. Experimental results on gender bias benchmarks demonstrate that Context-CDA effectively mitigates bias without sacrificing language modeling performance while offering insights into social biases by analyzing distribution shifts in next-token generation probabilities.
☆ Aligning Tree-Search Policies with Fixed Token Budgets in Test-Time Scaling of LLMs
Tree-search decoding is an effective form of test-time scaling for large language models (LLMs), but real-world deployment imposes a fixed per-query token budget that varies across settings. Existing tree-search policies are largely budget-agnostic, treating the budget as a termination condition, which can lead to late-stage over-branching or premature termination. We propose {Budget-Guided MCTS} (BG-MCTS), a tree-search decoding algorithm that aligns its search policy with the remaining token budget: it starts with broad exploration, then prioritizes refinement and answer completion as the budget depletes while reducing late-stage branching from shallow nodes. BG-MCTS consistently outperforms budget-agnostic tree-search baselines across different budgets on MATH500 and AIME24/25 with open-weight LLMs.
☆ LEMUR: A Corpus for Robust Fine-Tuning of Multilingual Law Embedding Models for Retrieval EACL
Large language models (LLMs) are increasingly used to access legal information. Yet, their deployment in multilingual legal settings is constrained by unreliable retrieval and the lack of domain-adapted, open-embedding models. In particular, existing multilingual legal corpora are not designed for semantic retrieval, and PDF-based legislative sources introduce substantial noise due to imperfect text extraction. To address these challenges, we introduce LEMUR, a large-scale multilingual corpus of EU environmental legislation constructed from 24,953 official EUR-Lex PDF documents covering 25 languages. We quantify the fidelity of PDF-to-text conversion by measuring lexical consistency against authoritative HTML versions using the Lexical Content Score (LCS). Building on LEMUR, we fine-tune three state-of-the-art multilingual embedding models using contrastive objectives in both monolingual and bilingual settings, reflecting realistic legal-retrieval scenarios. Experiments across low- and high-resource languages demonstrate that legal-domain fine-tuning consistently improves Top-k retrieval accuracy relative to strong baselines, with particularly pronounced gains for low-resource languages. Cross-lingual evaluations show that these improvements transfer to unseen languages, indicating that fine-tuning primarily enhances language-independent, content-level legal representations rather than language-specific cues. We publish code\footnote{\href{https://github.com/nargesbh/eur_lex}{GitHub Repository}} and data\footnote{\href{https://huggingface.co/datasets/G4KMU/LEMUR}{Hugging Face Dataset}}.
comment: Accepted at EACL SRW 26
☆ Advancing Block Diffusion Language Models for Test-Time Scaling
Recent advances in block diffusion language models have demonstrated competitive performance and strong scalability on reasoning tasks. However, existing BDLMs have limited exploration under the test-time scaling setting and face more severe decoding challenges in long Chain-of-Thought reasoning, particularly in balancing the decoding speed and effectiveness. In this work, we propose a unified framework for test-time scaling in BDLMs that introduces adaptivity in both decoding and block-wise generation. At the decoding level, we propose Bounded Adaptive Confidence Decoding (BACD), a difficulty-aware sampling strategy that dynamically adjusts denoising based on model confidence, accelerating inference while controlling error accumulation. Beyond step-wise adaptivity, we introduce Think Coarse, Critic Fine (TCCF), a test-time scaling paradigm that allocates large block sizes to exploratory reasoning and smaller block sizes to refinement, achieving an effective efficiency-effectiveness balance. To enable efficient and effective decoding with a large block size, we adopt Progressive Block Size Extension, which mitigates performance degradation when scaling block sizes. Extensive experiments show that applying BACD and TCCF to TDAR-8B yields significant improvements over strong baselines such as TraDo-8B (2.26x speedup, +11.2 points on AIME24). These results mark an important step toward unlocking the potential of BDLMs for test-time scaling in complex reasoning tasks.
☆ Comprehensive Comparison of RAG Methods Across Multi-Domain Conversational QA EACL
Conversational question answering increasingly relies on retrieval-augmented generation (RAG) to ground large language models (LLMs) in external knowledge. Yet, most existing studies evaluate RAG methods in isolation and primarily focus on single-turn settings. This paper addresses the lack of a systematic comparison of RAG methods for multi-turn conversational QA, where dialogue history, coreference, and shifting user intent substantially complicate retrieval. We present a comprehensive empirical study of vanilla and advanced RAG methods across eight diverse conversational QA datasets spanning multiple domains. Using a unified experimental setup, we evaluate retrieval quality and answer generation using generator and retrieval metrics, and analyze how performance evolves across conversation turns. Our results show that robust yet straightforward methods, such as reranking, hybrid BM25, and HyDE, consistently outperform vanilla RAG. In contrast, several advanced techniques fail to yield gains and can even degrade performance below the No-RAG baseline. We further demonstrate that dataset characteristics and dialogue length strongly influence retrieval effectiveness, explaining why no single RAG strategy dominates across settings. Overall, our findings indicate that effective conversational RAG depends less on method complexity than on alignment between the retrieval strategy and the dataset structure. We publish the code used.\footnote{\href{https://github.com/Klejda-A/exp-rag.git}{GitHub Repository}}
comment: Accepted to EACL SRW 26
☆ UniARM: Towards a Unified Autoregressive Reward Model for Multi-Objective Test-Time Alignment
Multi-objective alignment aims to align LLM responses with multiple human preference objectives. Among existing methods, guiding the generation of frozen LLMs through autoregressive reward models (ARMs) to accomplish multi-objective test-time alignment is a low-cost solution. However, these methods typically rely on independent parameters for each preference objective, either by training ARMs independently across preference dimensions, which neglects interactions among preference features, or by training a single ARM with separate feature extraction modules for each preference, which can cause feature entanglement. Both strategies can result in misalignment between generated outputs and user preferences. To address this limitation, we propose Preference-Modulated \& Shared Low-Rank Adaptation (MoSLoRA) for ARM training, which first extracts shared features via a preference-agnostic module and then applies affine transformations to shared features via a preference modulation module conditioned on mixed preference vectors. This design mitigates feature entanglement and enables precise control over preference trade-offs during inference. Building on this, we introduce the Unified Autoregressive Reward Model (UniARM), a novel framework for multi-objective test-time alignment. UniARM jointly models all preference dimensions in a single parameter space, eliminating the need for independent parameters for each preference objective. es on larger-scale LLMs, enhancing its practical usability.
comment: Under Review
☆ Knowledge Integration Decay in Search-Augmented Reasoning of Large Language Models
Modern Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks by employing search-augmented reasoning to incorporate external knowledge into long chains of thought. However, we identify a critical yet underexplored bottleneck in this paradigm, termed Knowledge Integration Decay (KID). Specifically, we observe that as the length of reasoning generated before search grows, models increasingly fail to integrate retrieved evidence into subsequent reasoning steps, limiting performance even when relevant information is available. To address this, we propose Self-Anchored Knowledge Encoding (SAKE), a training-free inference-time strategy designed to stabilize knowledge utilization. By anchoring retrieved knowledge at both the beginning and end of the reasoning process, SAKE prevents it from being overshadowed by prior context, thereby preserving its semantic integrity. Extensive experiments on multi-hop QA and complex reasoning benchmarks demonstrate that SAKE significantly mitigates KID and improves performance, offering a lightweight yet effective solution for knowledge integration in agentic LLMs.
☆ The CLEF-2026 CheckThat! Lab: Advancing Multilingual Fact-Checking
The CheckThat! lab aims to advance the development of innovative technologies combating disinformation and manipulation efforts in online communication across a multitude of languages and platforms. While in early editions the focus has been on core tasks of the verification pipeline (check-worthiness, evidence retrieval, and verification), in the past three editions, the lab added additional tasks linked to the verification process. In this year's edition, the verification pipeline is at the center again with the following tasks: Task 1 on source retrieval for scientific web claims (a follow-up of the 2025 edition), Task 2 on fact-checking numerical and temporal claims, which adds a reasoning component to the 2025 edition, and Task 3, which expands the verification pipeline with generation of full-fact-checking articles. These tasks represent challenging classification and retrieval problems as well as generation challenges at the document and span level, including multilingual settings.
comment: misinformation, disinformation, fact-checking, claim source retrieval, generating fact-checking articles
☆ EcoGym: Evaluating LLMs for Long-Horizon Plan-and-Execute in Interactive Economies
Long-horizon planning is widely recognized as a core capability of autonomous LLM-based agents; however, current evaluation frameworks suffer from being largely episodic, domain-specific, or insufficiently grounded in persistent economic dynamics. We introduce EcoGym, a generalizable benchmark for continuous plan-and-execute decision making in interactive economies. EcoGym comprises three diverse environments: Vending, Freelance, and Operation, implemented in a unified decision-making process with standardized interfaces, and budgeted actions over an effectively unbounded horizon (1000+ steps if 365 day-loops for evaluation). The evaluation of EcoGym is based on business-relevant outcomes (e.g., net worth, income, and DAU), targeting long-term strategic coherence and robustness under partial observability and stochasticity. Experiments across eleven leading LLMs expose a systematic tension: no single model dominates across all three scenarios. Critically, we find that models exhibit significant suboptimality in either high-level strategies or efficient actions executions. EcoGym is released as an open, extensible testbed for transparent long-horizon agent evaluation and for studying controllability-utility trade-offs in realistic economic settings.
comment: work in progress
☆ Where-to-Unmask: Ground-Truth-Guided Unmasking Order Learning for Masked Diffusion Language Models
Masked Diffusion Language Models (MDLMs) generate text by iteratively filling masked tokens, requiring two coupled decisions at each step: which positions to unmask (where-to-unmask) and which tokens to place (what-to-unmask). While standard MDLM training directly optimizes token prediction (what-to-unmask), inference-time unmasking orders (where-to-unmask) are typically determined by heuristic confidence measures or trained through reinforcement learning with costly on-policy rollouts. To address this, we introduce Gt-Margin, a position-wise score derived from ground-truth tokens, defined as the probability margin between the correct token and its strongest alternative. Gt-Margin yields an oracle unmasking order that prioritizes easier positions first under each partially masked state. We demonstrate that leveraging this oracle unmasking order significantly enhances final generation quality, particularly on logical reasoning benchmarks. Building on this insight, we train a supervised unmasking planner via learning-to-rank to imitate the oracle ordering from masked contexts. The resulting planner integrates into standard MDLM sampling to select where-to-unmask, improving reasoning accuracy without modifying the token prediction model.
comment: 15 pages, 6 figures
☆ Listen to the Layers: Mitigating Hallucinations with Inter-Layer Disagreement
Pretrained Large Language Models (LLMs) are prone to generating fluent yet factually incorrect text-a phenomenon known as hallucinations, undermining their reliability and utility in downstream tasks. We hypothesize that a generated text span's factuality is correlated with its representational instability across the model's internal layers. Based on this, we propose the CoCoA (Confusion and Consistency Aware) decoder, a novel, training-free decoding algorithm that mitigates hallucinations at inference time by listening to these signals in the middle layers. We propose two metrics to quantify this instability in the middle layers, and use it to penalize outputs that exhibit high internal confusion, thereby steering the model towards more internally consistent and factually grounded outputs. We further propose a self-information gated variant, CoCoA-SIG, that dynamically modulates this penalty to selectively target high-surprise, unstable generations. Extensive experiments on diverse tasks, including question-answering, summarization and code generation demonstrate that CoCoA significantly improves factual correctness across multiple model families (e.g., Llama-3, Qwen-2.5, Mistral). By leveraging model-intrinsic signals, CoCoA offers an effective and broadly applicable method for enhancing the trustworthiness of LLMs at inference time, without requiring any model retraining.
comment: Preprint, 23 pages, 13 tables, 12 figures
☆ NOWJ @BioCreative IX ToxHabits: An Ensemble Deep Learning Approach for Detecting Substance Use and Contextual Information in Clinical Texts
Extracting drug use information from unstructured Electronic Health Records remains a major challenge in clinical Natural Language Processing. While Large Language Models demonstrate advancements, their use in clinical NLP is limited by concerns over trust, control, and efficiency. To address this, we present NOWJ submission to the ToxHabits Shared Task at BioCreative IX. This task targets the detection of toxic substance use and contextual attributes in Spanish clinical texts, a domain-specific, low-resource setting. We propose a multi-output ensemble system tackling both Subtask 1 - ToxNER and Subtask 2 - ToxUse. Our system integrates BETO with a CRF layer for sequence labeling, employs diverse training strategies, and uses sentence filtering to boost precision. Our top run achieved 0.94 F1 and 0.97 precision for Trigger Detection, and 0.91 F1 for Argument Detection.
☆ AlgoVeri: An Aligned Benchmark for Verified Code Generation on Classical Algorithms
Vericoding refers to the generation of formally verified code from rigorous specifications. Recent AI models show promise in vericoding, but a unified methodology for cross-paradigm evaluation is lacking. Existing benchmarks test only individual languages/tools (e.g., Dafny, Verus, and Lean) and each covers very different tasks, so the performance numbers are not directly comparable. We address this gap with AlgoVeri, a benchmark that evaluates vericoding of $77$ classical algorithms in Dafny, Verus, and Lean. By enforcing identical functional contracts, AlgoVeri reveals critical capability gaps in verification systems. While frontier models achieve tractable success in Dafny ($40.3$% for Gemini-3 Flash), where high-level abstractions and SMT automation simplify the workflow, performance collapses under the systems-level memory constraints of Verus ($24.7$%) and the explicit proof construction required by Lean (7.8%). Beyond aggregate metrics, we uncover a sharp divergence in test-time compute dynamics: Gemini-3 effectively utilizes iterative repair to boost performance (e.g., tripling pass rates in Dafny), whereas GPT-OSS saturates early. Finally, our error analysis shows that language design affects the refinement trajectory: while Dafny allows models to focus on logical correctness, Verus and Lean trap models in persistent syntactic and semantic barriers. All data and evaluation code can be found at https://github.com/haoyuzhao123/algoveri.
comment: 32 pages
☆ SWE-AGI: Benchmarking Specification-Driven Software Construction with MoonBit in the Era of Autonomous Agents
Although large language models (LLMs) have demonstrated impressive coding capabilities, their ability to autonomously build production-scale software from explicit specifications remains an open question. We introduce SWE-AGI, an open-source benchmark for evaluating end-to-end, specification-driven construction of software systems written in MoonBit. SWE-AGI tasks require LLM-based agents to implement parsers, interpreters, binary decoders, and SAT solvers strictly from authoritative standards and RFCs under a fixed API scaffold. Each task involves implementing 1,000-10,000 lines of core logic, corresponding to weeks or months of engineering effort for an experienced human developer. By leveraging the nascent MoonBit ecosystem, SWE-AGI minimizes data leakage, forcing agents to rely on long-horizon architectural reasoning rather than code retrieval. Across frontier models, gpt-5.3-codex achieves the best overall performance (solving 19/22 tasks, 86.4%), outperforming claude-opus-4.6 (15/22, 68.2%), and kimi-2.5 exhibits the strongest performance among open-source models. Performance degrades sharply with increasing task difficulty, particularly on hard, specification-intensive systems. Behavioral analysis further reveals that as codebases scale, code reading, rather than writing, becomes the dominant bottleneck in AI-assisted development. Overall, while specification-driven autonomous software engineering is increasingly viable, substantial challenges remain before it can reliably support production-scale development.
comment: 20 pages, 3 figures
☆ Conceptual Cultural Index: A Metric for Cultural Specificity via Relative Generality EACL 2026
Large language models (LLMs) are increasingly deployed in multicultural settings; however, systematic evaluation of cultural specificity at the sentence level remains underexplored. We propose the Conceptual Cultural Index (CCI), which estimates cultural specificity at the sentence level. CCI is defined as the difference between the generality estimate within the target culture and the average generality estimate across other cultures. This formulation enables users to operationally control the scope of culture via comparison settings and provides interpretability, since the score derives from the underlying generality estimates. We validate CCI on 400 sentences (200 culture-specific and 200 general), and the resulting score distribution exhibits the anticipated pattern: higher for culture-specific sentences and lower for general ones. For binary separability, CCI outperforms direct LLM scoring, yielding more than a 10-point improvement in AUC for models specialized to the target culture. Our code is available at https://github.com/IyatomiLab/CCI .
comment: 9 pages, 2 figures, 8 tables. Accepted at the First Workshop on Multilingual Multicultural Evaluation (MME) @ EACL 2026
☆ Evaluating Social Bias in RAG Systems: When External Context Helps and Reasoning Hurts PAKDD 2026
Social biases inherent in large language models (LLMs) raise significant fairness concerns. Retrieval-Augmented Generation (RAG) architectures, which retrieve external knowledge sources to enhance the generative capabilities of LLMs, remain susceptible to the same bias-related challenges. This work focuses on evaluating and understanding the social bias implications of RAG. Through extensive experiments across various retrieval corpora, LLMs, and bias evaluation datasets, encompassing more than 13 different bias types, we surprisingly observe a reduction in bias in RAG. This suggests that the inclusion of external context can help counteract stereotype-driven predictions, potentially improving fairness by diversifying the contextual grounding of the model's outputs. To better understand this phenomenon, we then explore the model's reasoning process by integrating Chain-of-Thought (CoT) prompting into RAG while assessing the faithfulness of the model's CoT. Our experiments reveal that the model's bias inclinations shift between stereotype and anti-stereotype responses as more contextual information is incorporated from the retrieved documents. Interestingly, we find that while CoT enhances accuracy, contrary to the bias reduction observed with RAG, it increases overall bias across datasets, highlighting the need for bias-aware reasoning frameworks that can mitigate this trade-off.
comment: Accepted as a full paper with an oral presentation at the 30th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2026)
☆ Breaking the Pre-Sampling Barrier: Activation-Informed Difficulty-Aware Self-Consistency
Self-Consistency (SC) is an effective decoding strategy that improves the reasoning performance of Large Language Models (LLMs) by generating multiple chain-of-thought reasoning paths and selecting the final answer via majority voting. However, it suffers from substantial inference costs because it requires a large number of samples. To mitigate this issue, Difficulty-Adaptive Self-Consistency (DSC) was proposed to reduce unnecessary token usage for easy problems by adjusting the number of samples according to problem difficulty. However, DSC requires additional model calls and pre-sampling to estimate difficulty, and this process is repeated when applying to each dataset, leading to significant computational overhead. In this work, we propose Activation-Informed Difficulty-Aware Self-Consistency (ACTSC) to address these limitations. ACTSC leverages internal difficulty signals reflected in the feed-forward network neuron activations to construct a lightweight difficulty estimation probe, without any additional token generation or model calls. The probe dynamically adjusts the number of samples for SC and can be applied to new datasets without requiring pre-sampling for difficulty estimation. To validate its effectiveness, we conduct experiments on five benchmarks. Experimental results show that ACTSC effectively reduces inference costs while maintaining accuracy relative to existing methods.
☆ Are Language Models Sensitive to Morally Irrelevant Distractors?
With the rapid development and uptake of large language models (LLMs) across high-stakes settings, it is increasingly important to ensure that LLMs behave in ways that align with human values. Existing moral benchmarks prompt LLMs with value statements, moral scenarios, or psychological questionnaires, with the implicit underlying assumption that LLMs report somewhat stable moral preferences. However, moral psychology research has shown that human moral judgements are sensitive to morally irrelevant situational factors, such as smelling cinnamon rolls or the level of ambient noise, thereby challenging moral theories that assume the stability of human moral judgements. Here, we draw inspiration from this "situationist" view of moral psychology to evaluate whether LLMs exhibit similar cognitive moral biases to humans. We curate a novel multimodal dataset of 60 "moral distractors" from existing psychological datasets of emotionally-valenced images and narratives which have no moral relevance to the situation presented. After injecting these distractors into existing moral benchmarks to measure their effects on LLM responses, we find that moral distractors can shift the moral judgements of LLMs by over 30% even in low-ambiguity scenarios, highlighting the need for more contextual moral evaluations and more nuanced cognitive moral modeling of LLMs.
☆ TVTSyn: Content-Synchronous Time-Varying Timbre for Streaming Voice Conversion and Anonymization
Real-time voice conversion and speaker anonymization require causal, low-latency synthesis without sacrificing intelligibility or naturalness. Current systems have a core representational mismatch: content is time-varying, while speaker identity is injected as a static global embedding. We introduce a streamable speech synthesizer that aligns the temporal granularity of identity and content via a content-synchronous, time-varying timbre (TVT) representation. A Global Timbre Memory expands a global timbre instance into multiple compact facets; frame-level content attends to this memory, a gate regulates variation, and spherical interpolation preserves identity geometry while enabling smooth local changes. In addition, a factorized vector-quantized bottleneck regularizes content to reduce residual speaker leakage. The resulting system is streamable end-to-end, with <80 ms GPU latency. Experiments show improvements in naturalness, speaker transfer, and anonymization compared to SOTA streaming baselines, establishing TVT as a scalable approach for privacy-preserving and expressive speech synthesis under strict latency budgets.
☆ Effective vocabulary expanding of multilingual language models for extremely low-resource languages
Multilingual pre-trained language models(mPLMs) offer significant benefits for many low-resource languages. To further expand the range of languages these models can support, many works focus on continued pre-training of these models. However, few works address how to extend mPLMs to low-resource languages that were previously unsupported. To tackle this issue, we expand the model's vocabulary using a target language corpus. We then screen out a subset from the model's original vocabulary, which is biased towards representing the source language(e.g. English), and utilize bilingual dictionaries to initialize the representations of the expanded vocabulary. Subsequently, we continue to pre-train the mPLMs using the target language corpus, based on the representations of these expanded vocabulary. Experimental results show that our proposed method outperforms the baseline, which uses randomly initialized expanded vocabulary for continued pre-training, in POS tagging and NER tasks, achieving improvements by 0.54% and 2.60%, respectively. Furthermore, our method demonstrates high robustness in selecting the training corpora, and the models' performance on the source language does not degrade after continued pre-training.
comment: 12 pages, 5 figures, 7 tables, under review
☆ Contractual Deepfakes: Can Large Language Models Generate Contracts?
Notwithstanding their unprecedented ability to generate text, LLMs do not understand the meaning of words, have no sense of context and cannot reason. Their output constitutes an approximation of statistically dominant word patterns. And yet, the drafting of contracts is often presented as a typical legal task that could be facilitated by this technology. This paper seeks to put an end to such unreasonable ideas. Predicting words differs from using language in the circumstances of specific transactions and reconstituting common contractual phrases differs from reasoning about the law. LLMs seem to be able to generate generic and superficially plausible contractual documents. In the cold light of day, such documents may turn out to be useless assemblages of inconsistent provisions or contracts that are enforceable but unsuitable for a given transaction. This paper casts a shadow on the simplistic assumption that LLMs threaten the continued viability of the legal industry.
comment: Accepted for publication
☆ BiasScope: Towards Automated Detection of Bias in LLM-as-a-Judge Evaluation ICLR 2026
LLM-as-a-Judge has been widely adopted across various research and practical applications, yet the robustness and reliability of its evaluation remain a critical issue. A core challenge it faces is bias, which has primarily been studied in terms of known biases and their impact on evaluation outcomes, while automated and systematic exploration of potential unknown biases is still lacking. Nevertheless, such exploration is crucial for enhancing the robustness and reliability of evaluations. To bridge this gap, we propose BiasScope, a LLM-driven framework for automatically and at scale discovering potential biases that may arise during model evaluation. BiasScope can uncover potential biases across different model families and scales, with its generality and effectiveness validated on the JudgeBench dataset. It overcomes the limitations of existing approaches, transforming bias discovery from a passive process relying on manual effort and predefined bias lists into an active and comprehensive automated exploration. Moreover, based on BiasScope, we propose JudgeBench-Pro, an extended version of JudgeBench and a more challenging benchmark for evaluating the robustness of LLM-as-a-judge. Strikingly, even powerful LLMs as evaluators show error rates above 50\% on JudgeBench-Pro, underscoring the urgent need to strengthen evaluation robustness and to mitigate potential biases further.
comment: Accepted to ICLR 2026
☆ LingxiDiagBench: A Multi-Agent Framework for Benchmarking LLMs in Chinese Psychiatric Consultation and Diagnosis
Mental disorders are highly prevalent worldwide, but the shortage of psychiatrists and the inherent subjectivity of interview-based diagnosis create substantial barriers to timely and consistent mental-health assessment. Progress in AI-assisted psychiatric diagnosis is constrained by the absence of benchmarks that simultaneously provide realistic patient simulation, clinician-verified diagnostic labels, and support for dynamic multi-turn consultation. We present LingxiDiagBench, a large-scale multi-agent benchmark that evaluates LLMs on both static diagnostic inference and dynamic multi-turn psychiatric consultation in Chinese. At its core is LingxiDiag-16K, a dataset of 16,000 EMR-aligned synthetic consultation dialogues designed to reproduce real clinical demographic and diagnostic distributions across 12 ICD-10 psychiatric categories. Through extensive experiments across state-of-the-art LLMs, we establish key findings: (1) although LLMs achieve high accuracy on binary depression--anxiety classification (up to 92.3%), performance deteriorates substantially for depression--anxiety comorbidity recognition (43.0%) and 12-way differential diagnosis (28.5%); (2) dynamic consultation often underperforms static evaluation, indicating that ineffective information-gathering strategies significantly impair downstream diagnostic reasoning; (3) consultation quality assessed by LLM-as-a-Judge shows only moderate correlation with diagnostic accuracy, suggesting that well-structured questioning alone does not ensure correct diagnostic decisions. We release LingxiDiag-16K and the full evaluation framework to support reproducible research at https://github.com/Lingxi-mental-health/LingxiDiagBench.
☆ AfriNLLB: Efficient Translation Models for African Languages
In this work, we present AfriNLLB, a series of lightweight models for efficient translation from and into African languages. AfriNLLB supports 15 language pairs (30 translation directions), including Swahili, Hausa, Yoruba, Amharic, Somali, Zulu, Lingala, Afrikaans, Wolof, and Egyptian Arabic, as well as other African Union official languages such as Arabic (MSA), French, Portuguese, and Spanish. Our training data covers bidirectional translation between English and 13 languages, and between French and two languages (Lingala and Wolof). AfriNLLB models are based on NLLB-200 600M, which we compress using iterative layer pruning and quantization. We fine-tune the pruned models on parallel corpora we curated for African languages, employing knowledge distillation from a larger teacher model. Our work aims at enabling efficient deployment of translation models for African languages in resource-constrained settings. Our evaluation results demonstrate that AfriNLLB models achieve performance comparable to the baseline while being significantly faster. We release two versions of the AfriNLLB models, a Transformers version that allows further fine-tuning and a CTranslate2 version for efficient inference. Moreover, we release all the training data that we used for fine-tuning the baseline and pruned models to facilitate further research.
comment: Accepted at AfricaNLP 2026 (oral)
☆ AgentSkiller: Scaling Generalist Agent Intelligence through Semantically Integrated Cross-Domain Data Synthesis
Large Language Model agents demonstrate potential in solving real-world problems via tools, yet generalist intelligence is bottlenecked by scarce high-quality, long-horizon data. Existing methods collect privacy-constrained API logs or generate scripted interactions lacking diversity, which struggle to produce data requisite for scaling capabilities. We propose AgentSkiller, a fully automated framework synthesizing multi-turn interaction data across realistic, semantically linked domains. It employs a DAG-based architecture with explicit state transitions to ensure determinism and recoverability. The pipeline builds a domain ontology and Person-Centric Entity Graph, defines tool interfaces via Service Blueprints for Model Context Protocol servers, and populates environments with consistent databases and strict Domain Policies. A cross-domain fusion mechanism links services to simulate complex tasks. Finally, the pipeline creates user tasks by verifying solution paths, filtering via execution-based validation, and generating queries using a Persona-based Simulator for automated rollout. This produces reliable environments with clear state changes. To demonstrate effectiveness, we synthesized $\approx$ 11K interaction samples; experimental results indicate that models trained on this dataset achieve significant improvements on function calling over baselines, particularly in larger parameter regimes.
comment: 33 pages, 9 figures
☆ Unsupervised Cross-Lingual Part-of-Speech Tagging with Monolingual Corpora Only
Due to the scarcity of part-of-speech annotated data, existing studies on low-resource languages typically adopt unsupervised approaches for POS tagging. Among these, POS tag projection with word alignment method transfers POS tags from a high-resource source language to a low-resource target language based on parallel corpora, making it particularly suitable for low-resource language settings. However, this approach relies heavily on parallel corpora, which are often unavailable for many low-resource languages. To overcome this limitation, we propose a fully unsupervised cross-lingual part-of-speech(POS) tagging framework that relies solely on monolingual corpora by leveraging unsupervised neural machine translation(UNMT) system. This UNMT system first translates sentences from a high-resource language into a low-resource one, thereby constructing pseudo-parallel sentence pairs. Then, we train a POS tagger for the target language following the standard projection procedure based on word alignments. Moreover, we propose a multi-source projection technique to calibrate the projected POS tags on the target side, enhancing to train a more effective POS tagger. We evaluate our framework on 28 language pairs, covering four source languages (English, German, Spanish and French) and seven target languages (Afrikaans, Basque, Finnis, Indonesian, Lithuanian, Portuguese and Turkish). Experimental results show that our method can achieve performance comparable to the baseline cross-lingual POS tagger with parallel sentence pairs, and even exceeds it for certain target languages. Furthermore, our proposed multi-source projection technique further boosts performance, yielding an average improvement of 1.3% over previous methods.
comment: 16 pages, 6 figures, 7 tables, under review
☆ Digital Linguistic Bias in Spanish: Evidence from Lexical Variation in LLMs
This study examines the extent to which Large Language Models (LLMs) capture geographic lexical variation in Spanish, a language that exhibits substantial regional variation. Treating LLMs as virtual informants, we probe their dialectal knowledge using two survey-style question formats: Yes-No questions and multiple-choice questions. To this end, we exploited a large-scale, expert-curated database of Spanish lexical variation. Our evaluation covers more than 900 lexical items across 21 Spanish-speaking countries and is conducted at both the country and dialectal area levels. Across both evaluation formats, the results reveal systematic differences in how LLMs represent Spanish language varieties. Lexical variation associated with Spain, Equatorial Guinea, Mexico & Central America, and the La Plata River is recognized more accurately by the models, while the Chilean variety proves particularly difficult for the models to distinguish. Importantly, differences in the volume of country-level digital resources do not account for these performance patterns, suggesting that factors beyond data quantity shape dialectal representation in LLMs. By providing a fine-grained, large-scale evaluation of geographic lexical variation, this work advances empirical understanding of dialectal knowledge in LLMs and contributes new evidence to discussions of Digital Linguistic Bias in Spanish.
☆ Not-in-Perspective: Towards Shielding Google's Perspective API Against Adversarial Negation Attacks
The rise of cyberbullying in social media platforms involving toxic comments has escalated the need for effective ways to monitor and moderate online interactions. Existing solutions of automated toxicity detection systems, are based on a machine or deep learning algorithms. However, statistics-based solutions are generally prone to adversarial attacks that contain logic based modifications such as negation in phrases and sentences. In that regard, we present a set of formal reasoning-based methodologies that wrap around existing machine learning toxicity detection systems. Acting as both pre-processing and post-processing steps, our formal reasoning wrapper helps alleviating the negation attack problems and significantly improves the accuracy and efficacy of toxicity scoring. We evaluate different variations of our wrapper on multiple machine learning models against a negation adversarial dataset. Experimental results highlight the improvement of hybrid (formal reasoning and machine-learning) methods against various purely statistical solutions.
☆ Understanding Risk and Dependency in AI Chatbot Use from User Discourse
Generative AI systems are increasingly embedded in everyday life, yet empirical understanding of how psychological risk associated with AI use emerges, is experienced, and is regulated by users remains limited. We present a large-scale computational thematic analysis of posts collected between 2023 and 2025 from two Reddit communities, r/AIDangers and r/ChatbotAddiction, explicitly focused on AI-related harm and distress. Using a multi-agent, LLM-assisted thematic analysis grounded in Braun and Clarke's reflexive framework, we identify 14 recurring thematic categories and synthesize them into five higher-order experiential dimensions. To further characterize affective patterns, we apply emotion labeling using a BERT-based classifier and visualize emotional profiles across dimensions. Our findings reveal five empirically derived experiential dimensions of AI-related psychological risk grounded in real-world user discourse, with self-regulation difficulties emerging as the most prevalent and fear concentrated in concerns related to autonomy, control, and technical risk. These results provide early empirical evidence from lived user experience of how AI safety is perceived and emotionally experienced outside laboratory or speculative contexts, offering a foundation for future AI safety research, evaluation, and responsible governance.
comment: 21 pages, 5 figures
☆ FM SO.P: A Progressive Task Mixture Framework with Automatic Evaluation for Cross-Domain SOP Understanding
Standard Operating Procedures (SOPs) are critical for enterprise operations, yet existing language models struggle with SOP understanding and cross-domain generalization. Current methods fail because joint training cannot differentiate between reasoning capabilities that SOP requires: terminology precision, sequential ordering, and constraint reasoning. We propose FM SO.P, solving these challenges through two novelties. First, we introduce progressive task mixtures that build capabilities by stages across three task types with cumulative data: concept disambiguation for terminology precision, action sequence understanding for procedural correctness, and scenario-aware graph reasoning for conditional logic. Second, we propose an automatic multi-agent evaluation system consisting of three agents that adaptively generate rubrics, stratified test sets, and rubric scoring, adapting to domains (e.g., temporal constraints for DMV, regulatory compliance for banking). Evaluated on SOPBench across seven domains (Bank, DMV, Healthcare, Market, University, Library, Hotel), FM SO.P achieves 48.3\% pass rate with our 32B model and 34.3\% with our opensource 7B model, matching Qwen-2.5-72B-Instruct baseline (34.4\%) with 10x fewer parameters.
☆ Beyond Uniform Credit: Causal Credit Assignment for Policy Optimization
Policy gradient methods for language model reasoning, such as GRPO and DAPO, assign uniform credit to all generated tokens - the filler phrase "Let me think" receives the same gradient update as the critical calculation "23 + 45 = 68." We propose counterfactual importance weighting: mask reasoning spans, measure the drop in answer probability, and upweight tokens accordingly during policy gradient updates. Our method requires no auxiliary models or external annotation, instead importance is estimated directly from the policy model's own probability shifts. Experiments on GSM8K across three models spanning the Qwen and Llama families demonstrate consistent improvements over uniform baselines and faster convergence to equivalent accuracy. Inverting the importance signal hurts performance, confirming we capture genuine causal structure rather than noise. Analysis shows the method correctly prioritizes calculation steps over scaffolding text. We view these findings as establishing counterfactual importance weighting as a foundation for further research rather than a complete solution.
comment: 12 pages, 1 figure
☆ Don't Shoot The Breeze: Topic Continuity Model Using Nonlinear Naive Bayes With Attention EMNLP 2024
Utilizing Large Language Models (LLM) as chatbots in diverse business scenarios often presents the challenge of maintaining topic continuity. Abrupt shifts in topics can lead to poor user experiences and inefficient utilization of computational resources. In this paper, we present a topic continuity model aimed at assessing whether a response aligns with the initial conversation topic. Our model is built upon the expansion of the corresponding natural language understanding (NLU) model into quantifiable terms using a Naive Bayes approach. Subsequently, we have introduced an attention mechanism and logarithmic nonlinearity to enhance its capability to capture topic continuity. This approach allows us to convert the NLU model into an interpretable analytical formula. In contrast to many NLU models constrained by token limits, our proposed model can seamlessly handle conversations of any length with linear time complexity. Furthermore, the attention mechanism significantly improves the model's ability to identify topic continuity in complex conversations. According to our experiments, our model consistently outperforms traditional methods, particularly in handling lengthy and intricate conversations. This unique capability offers us an opportunity to ensure the responsible and interpretable use of LLMs.
comment: EMNLP 2024: Industry Track; 8 pages, 2 figures, 1 table
☆ Triggered: A Statistical Analysis of Environmental Influences on Extremist Groups
Online extremist communities operate within a wider information ecosystem shaped by real-world events, news coverage, and cross-community interaction. We adopt a systems perspective to examine these influences using seven years of data from two ideologically distinct extremist forums (Stormfront and Incels) and a mainstream reference community (r/News). We ask three questions: how extremist violence impacts community behaviour; whether news coverage of political entities predicts shifts in conversation dynamics; and whether linguistic diffusion occurs between mainstream and extremist spaces and across extremist ideologies. Methodologically, we combine counterfactual synthesis to estimate event-level impacts with vector autoregression and Granger causality analyses to model ongoing relationships among news signals, behavioural outcomes, and cross-community language change. Across analyses, our results indicate that Stormfront and r/News appear to be more reactive to external stimuli, while Incels demonstrates less cross-community linguistic influence and less responsiveness to news and violent events. These findings underscore that extremist communities are not homogeneous, but differ in how tightly they are coupled to the surrounding information ecosystem.
♻ ☆ Universal computation is intrinsic to language model decoding
Language models now provide an interface to express and often solve general problems in natural language, yet their ultimate computational capabilities remain a major topic of scientific debate. Unlike a formal computer, a language model is trained to autoregressively predict successive elements in human-generated text. We prove that chaining a language model's autoregressive output is sufficient to perform universal computation. That is, a language model can simulate the execution of any algorithm on any input. The challenge of eliciting desired computational behaviour can thus be reframed in terms of programmability: the ease of finding a suitable prompt. Strikingly, we demonstrate that even randomly initialized language models are capable of universal computation before training. This implies that training does not give rise to computational expressiveness -- rather, it improves programmability, enabling a natural language interface for accessing these intrinsic capabilities.
comment: Minor formatting corrections
♻ ☆ In-Context Learning Without Copying
Induction heads are attention heads that perform inductive copying by matching patterns from earlier context and copying their continuations verbatim. As models develop induction heads, they experience a sharp drop in training loss, a phenomenon cited as evidence that induction heads may underlie a wide range of in-context learning (ICL) capabilities. In this work, we investigate whether induction heads are a necessary building block for learning abstractive ICL capabilities (i.e., tasks where the answer is not contained in the input context), or whether such capabilities can emerge independently. We propose Hapax, a training regime that omits the loss contribution of tokens predictable by induction heads. Despite a significant reduction in inductive copying, abstractive ICL capabilities are preserved, with the model achieving higher accuracy than the vanilla model on 13 out of 21 tasks, even though 31.7% of tokens are omitted from the loss. Furthermore, our model achieves lower loss values on token positions that induction heads cannot predict. Mechanistic analysis shows that models trained with Hapax develop fewer and weaker induction heads despite preserving abstractive ICL capabilities. Our findings suggest that the developmental link between induction heads and abstractive ICL capabilities is weaker than previously hypothesized.
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 40 pages
♻ ☆ Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research. Code are available at https://github.com/AvatarMemory/UnifiedMem
♻ ☆ Inference-Aware Prompt Optimization for Aligning Black-Box Large Language Models AAAI 2026
Prompt optimization methods have demonstrated significant effectiveness in aligning black-box large language models (LLMs). In parallel, inference scaling strategies such as Best-of-N Sampling and Majority Voting have likewise been shown to improve alignment and performance by trading additional computation for better output. However, existing prompt optimization approaches are inference strategy agnostic; that is, they optimize prompts without accounting for the inference strategy. This constitutes a significant methodological gap, as our empirical and theoretical analysis reveals a strong interdependence between these two paradigms. Moreover, we find that user preferences regarding trade-offs among multiple objectives and inference budgets substantially influence the choice of prompt and inference configuration. To address this gap, we introduce a novel unified framework named IAPO (Inference-Aware Prompt Optimization) that jointly optimizes the prompt and inference scale, while being aware of the inference budget and different task objectives. We then develop a fixed-budget training algorithm for IAPO, called PSST (Prompt Scaling via Sequential Trimming), and establish finite-budget guarantees on the error probability. Finally, we evaluate the effectiveness of PSST on six tasks, including multi-objective text generation and reasoning, and demonstrate the critical role of incorporating inference-awareness in aligning black-box LLMs using prompt optimization.
comment: Accepted to AAAI 2026. Extended 17-page version
♻ ☆ ParisKV: Fast and Drift-Robust KV-Cache Retrieval for Long-Context LLMs
KV-cache retrieval is essential for long-context LLM inference, yet existing methods struggle with distribution drift and high latency at scale. We introduce ParisKV, a drift-robust, GPU-native KV-cache retrieval framework based on collision-based candidate selection, followed by a quantized inner-product reranking estimator. For million-token contexts, ParisKV supports CPU-offloaded KV caches via Unified Virtual Addressing (UVA), enabling on-demand top-$k$ fetching with minimal overhead. ParisKV matches or outperforms full attention quality on long-input and long-generation benchmarks. It achieves state-of-the-art long-context decoding efficiency: it matches or exceeds full attention speed even at batch size 1 for long contexts, delivers up to 2.8$\times$ higher throughput within full attention's runnable range, and scales to million-token contexts where full attention runs out of memory. At million-token scale, ParisKV reduces decode latency by 17$\times$ and 44$\times$ compared to MagicPIG and PQCache, respectively, two state-of-the-art KV-cache Top-$k$ retrieval baselines.
comment: 25 pages, 16 figures. Under review
♻ ☆ Fundamental Reasoning Paradigms Induce Out-of-Domain Generalization in Language Models
Deduction, induction, and abduction are fundamental reasoning paradigms, core for human logical thinking. Although improving Large Language Model (LLM) reasoning has attracted significant research efforts, the extent to which the fundamental paradigms induce generalization has yet to be systematically explored. In this study, we shed light on how the interplay between these core paradigms influences LLMs' reasoning behavior. To this end, we first collect a new dataset of reasoning trajectories from symbolic tasks, each targeting one of the three fundamental paradigms, to abstract from concrete world knowledge. Then, we investigate effective ways for inducing these skills into LLMs. We experiment with a battery of methods including simple fine-tuning, and more complex approaches to increase model depth, or transform a dense model to a mixture-of-experts. We comprehensively evaluate induced models on realistic out-of-domain tasks, that are entirely formulated in natural language and contain real-world knowledge. Our results reveal that our approach yields strong generalizability with substantial performance gains (up to $14.60$) across realistic tasks.
♻ ☆ CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration
Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/.
comment: Accepted at TMLR (2026)
♻ ☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
♻ ☆ ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization ICLR 2026
Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 22.6 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.
comment: Camera Ready version for ICLR 2026. Code: https://github.com/Chen-GX/ReForm
♻ ☆ Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
♻ ☆ MAPS: A Multilingual Benchmark for Agent Performance and Security EACL 2026
Agentic AI systems, which build on Large Language Models (LLMs) and interact with tools and memory, have rapidly advanced in capability and scope. Yet, since LLMs have been shown to struggle in multilingual settings, typically resulting in lower performance and reduced safety, agentic systems risk inheriting these limitations. This raises concerns about the accessibility of such systems, as users interacting in languages other than English may encounter unreliable or security-critical agent behavior. Despite growing interest in evaluating agentic AI and recent initial efforts toward multilingual interaction, existing benchmarks do not yet provide a comprehensive, multi-domain, security-aware evaluation of multilingual agentic systems. To address this gap, we propose MAPS, a multilingual benchmark suite designed to evaluate agentic AI systems across diverse languages and tasks. MAPS builds on four widely used agentic benchmarks - GAIA (real-world tasks), SWE-Bench (code generation), MATH (mathematical reasoning), and the Agent Security Benchmark (security). We translate each dataset into eleven diverse languages, resulting in 805 unique tasks and 9,660 total language-specific instances - enabling a systematic analysis of the Multilingual Effect on AI agents' performance and robustness. Empirically, we observe a degradation in both performance and security when transitioning from English to other languages, with severity varying by task and correlating with the amount of translated input. This work establishes the first standardized evaluation framework for multilingual agentic AI, encouraging future research towards equitable, reliable, and accessible agentic AI. MAPS benchmark suite is publicly available at https://huggingface.co/datasets/Fujitsu-FRE/MAPS
comment: Accepted to EACL 2026 findings
♻ ☆ A large-scale pipeline for automatic corpus annotation using LLMs: variation and change in the English consider construction
As natural language corpora expand at an unprecedented rate, manual annotation remains a significant methodological bottleneck in corpus linguistic work. We address this challenge by presenting a scalable pipeline for automating grammatical annotation in voluminous corpora using large language models (LLMs). Unlike previous supervised and iterative approaches, our method employs a four-phase workflow: prompt engineering, pre-hoc evaluation, automated batch processing, and post-hoc validation. We demonstrate the pipeline's accessibility and effectiveness through a diachronic case study of variation in the English evaluative consider construction (consider X as/to be/zero Y). We annotate 143,933 'consider' concordance lines from the Corpus of Historical American English (COHA) via the OpenAI API in under 60 hours, achieving 98 percent+ accuracy on two sophisticated annotation procedures. A Bayesian multinomial GAM fitted to 44,527 true positives of the evaluative construction reveals previously undocumented genre-specific trajectories of change, enabling us to advance new hypotheses about the relationship between register formality and competing pressures of morphosyntactic reduction and enhancement. Our results suggest that LLMs can perform a range of data preparation tasks at scale with minimal human intervention, unlocking substantive research questions previously beyond practical reach, though implementation requires attention to costs, licensing, and other ethical considerations.
♻ ☆ Learning Tractable Distributions Of Language Model Continuations
Controlled generation imposes sequence-level constraints (syntax, style, safety) that depend on future tokens, making exact conditioning of an autoregressive LM intractable. Tractable surrogates such as HMMs can approximate continuation distributions and steer decoding, but standard surrogates are often weakly context-aware. We propose Learning to Look Ahead (LTLA), a hybrid method that uses base-LM embeddings to condition a globally learned tractable surrogate: a neural head predicts only a prefix-dependent latent prior, while a shared HMM answers continuation queries exactly. LTLA is designed to avoid two common efficiency traps when adding neural context. First, it avoids vocabulary-sized prefix rescoring (V extra LM evaluations) by scoring all next-token candidates via a single batched HMM forward update. Second, it avoids predicting a new HMM per prefix by learning one shared HMM and conditioning only the latent prior, which enables reuse of cached future-likelihood (backward) messages across decoding steps. Empirically, LTLA improves continuation likelihood over standard HMM surrogates, enables lookahead control for vision--language models by incorporating continuous context, achieves 100% syntactic constraint satisfaction, and improves detoxification while adding only a 14% decoding-time overhead.
♻ ☆ An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
♻ ☆ EAMET: Robust Massive Model Editing via Embedding Alignment Optimization ICLR 2026
Model editing techniques are essential for efficiently updating knowledge in large language models (LLMs). However, the effectiveness of existing approaches degrades in massive editing scenarios, particularly when evaluated with practical metrics. Their robustness is also limited in context-rich settings or when editing multiple facts of the same subject simultaneously. We attribute these failures to the embedding misalignment among knowledge items, which undermines editing reliability at scale. To address this, we propose EAMET (Embedding Alignment Model Editing in Transformers), which addresses this issue by aligning the space of key and residual embeddings. Extensive experiments across six LLMs and three datasets demonstrate that EAMET consistently outperforms existing methods, achieving about 90\% editing efficacy when editing 10k facts. Codes and datasets are publicly available at https://ybdai7.github.io/eamet-page/.
comment: This paper was accepted to ICLR 2026
♻ ☆ Distribution-Aligned Decoding for Efficient LLM Task Adaptation NeurIPS'25
Adapting billion-parameter language models to a downstream task is still costly, even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as output-distribution alignment: the objective is to steer the output distribution toward the task distribution directly during decoding rather than indirectly through weight updates. Building on this view, we introduce Steering Vector Decoding (SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method. We start with a short warm-start fine-tune and extract a task-aware steering vector from the Kullback-Leibler (KL) divergence gradient between the output distribution of the warm-started and pre-trained models. This steering vector is then used to guide the decoding process to steer the model's output distribution towards the task distribution. We theoretically prove that SVDecode is first-order equivalent to the gradient step of full fine-tuning and derive a globally optimal solution for the strength of the steering vector. Across three tasks and nine benchmarks, SVDecode paired with four standard PEFT methods improves multiple-choice accuracy by up to 5 percentage points and open-ended truthfulness by 2 percentage points, with similar gains (1-2 percentage points) on commonsense datasets without adding trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight, theoretically grounded path to stronger task adaptation for large language models. Code is available at https://github.com/dl-m9/SVDecode.
comment: Accepted by NeurIPS'25
♻ ☆ Improving Data and Reward Design for Scientific Reasoning in Large Language Models
Solving open-ended science questions remains challenging for large language models, particularly due to inherently unreliable supervision and evaluation. The bottleneck lies in the data construction and reward design for scientific post-training. We develop a large-scale, systematic data processing pipeline that transforms heterogeneous open-source science data into Dr. SCI dataset, which comprises of 1M questions across eight STEM subjects, with explicit verifiable/open-ended splits, scalable difficulty annotation, and fine-grained rubrics that operationalize evaluation for open-ended answers. Building on this dataset, we propose the Dr. SCI post-training pipeline, which redesigns the standard SFT -> RL workflow through three components: (i) Exploration-Expanding SFT, which broadens the model's reasoning pattern coverage prior to RL; (ii) Dynamic Difficulty Curriculum, which adapts training data to the model's evolving scientific capability; and (iii) SciRubric-Guided RL, which enables stable reinforcement learning on open-ended scientific questions via rubric-based evaluation with explicit answer correctness. Qwen3-4B-Base trained using Dr. SCI pipeline achieves 63.2 on GPQA-diamond and 32.4 on GPQA-general, consistently improves over strong post-trained baselines such as o1-mini and GPT-4o, demonstrating substantial gains in scientific reasoning, especially in open-ended settings.
♻ ☆ What Should Feature Distillation Transfer in LLMs? A Task-Tangent Geometry View
Feature-based knowledge distillation aims to transfer intermediate representations from a teacher LLM model to a student. Existing approaches typically rely on direct feature matching or learned projections, implicitly treating representations as objects with intrinsic meaning. However, the relevance of a representation dimension is determined solely by how it affects the model's output. In this work, we propose a functional perspective on feature-based distillation. We characterize knowledge transfer in terms of the teacher's functional geometry, i.e., how its output depends on internal representations, rather than direct representation alignment. This viewpoint reveals that effective distillation need not preserve full high-dimensional features, but instead should retain dominant directions of functional contribution, naturally inducing an effective functional dimension for each task. Building on this framework, we introduce Flex-KD, an architecture-agnostic and parameter-free distillation method that transfers the teacher's functional geometry while matching the student's representational capacity. Extensive experiments across language understanding and generation benchmarks demonstrate that Flex-KD consistently outperforms existing distillation approaches, particularly under severe teacher-student dimension mismatch.
♻ ☆ Short-Context Dominance: How Much Local Context Natural Language Actually Needs?
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
comment: 38 pages, 7 figures, includes appendix and references
♻ ☆ Truth with a Twist: The Rhetoric of Persuasion in Professional vs. Community-Authored Fact-Checks WWW 2026
This study presents the first large-scale comparison of persuasion techniques present in crowd- versus professionally-written debunks. Using extensive datasets from Community Notes (CNs), EUvsDisinfo, and the Database of Known Fakes (DBKF), we quantify the prevalence and types of persuasion techniques across these fact-checking ecosystems. Contrary to prior hypothesis that community-produced debunks rely more heavily on subjective or persuasive wording, we find no evidence that CNs contain a higher average number of persuasion techniques than professional fact-checks. We additionally identify systematic rhetorical differences between CNs and professional debunking efforts, reflecting differences in institutional norms and topical coverage. Finally, we examine how the crowd evaluates persuasive language in CNs and show that, although notes with more persuasive elements receive slightly higher overall helpfulness ratings, crowd raters are effective at penalising the use of particular problematic rhetorical means
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
♻ ☆ Cochain: Balancing Insufficient and Excessive Collaboration in LLM Agent Workflows
Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks. Chain-of-thought effectively enhances reasoning capabilities by unlocking the potential of large models, while multi-agent systems provide more comprehensive solutions by integrating the collective intelligence of multiple agents. However, both approaches face significant limitations. Single-agent with chain-of-thought, due to the inherent complexity of designing cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent systems consume substantial tokens and inevitably dilute the primary problem, which is particularly problematic in business workflow tasks. To address these challenges, we propose Cochain, a collaboration prompting framework that effectively solves the business workflow collaboration problem by combining knowledge and prompts at a reduced cost. Specifically, we construct an integrated knowledge graph that incorporates knowledge from multiple stages. Furthermore, by maintaining and retrieving a prompts tree, we can obtain prompt information relevant to other stages of the business workflow. We perform extensive evaluations of Cochain across multiple datasets, demonstrating that Cochain outperforms all baselines in both prompt engineering and multi-agent LLMs. Additionally, expert evaluation results indicate that the use of a small model in combination with Cochain outperforms GPT-4.
comment: 35 pages, 23 figures
♻ ☆ Common Objects Out of Context (COOCo): Investigating Multimodal Context and Semantic Scene Violations in Referential Communication ACL
To what degree and under what conditions do VLMs rely on scene context when generating references to objects? To address this question, we introduce the $\textit{Common Objects Out-of-Context (COOCo)}$ dataset and conduct experiments on several VLMs under different degrees of scene-object congruency and noise. We find that models leverage scene context adaptively, depending on scene-object semantic relatedness and noise level. Based on these consistent trends across models, we turn to the question of how VLM attention patterns change as a function of target-scene semantic fit, and to what degree these patterns are predictive of categorisation accuracy. We find that successful object categorisation is associated with increased mid-layer attention to the target. We also find a non-monotonic dependency on semantic fit, with attention dropping at moderate fit and increasing for both low and high fit. These results suggest that VLMs dynamically balance local and contextual information for reference generation. Dataset and code are available here: $\href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}$.
comment: Accepted to TACL (pre-MIT Press publication version)
♻ ☆ Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from Token and Parameter Levels EMNLP 2025
Large language models (LLMs) acquire substantial world knowledge during pre-training, which is further shaped by post-training techniques such as supervised fine-tuning (SFT). However, the impact of SFT on a model's knowledge remains underexplored, limiting our ability to control knowledge change behavior in fine-tuned models. To address this gap, we evaluate closed-book question answering (CBQA) performance across five LLMs from the LLaMA-2 and LLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up to 14% worse than those fine-tuned on only 240 samples. Furthermore, varying the level of knowledge mastery in the fine-tuning data leads to performance fluctuations of over 12%. To investigate these effects, we analyze model behavior at both the token and parameter levels. Our analysis reveals that up to 90% of parameter updates during SFT do not contribute to knowledge enhancement. Restoring these updates can improve performance on the CBQA task, depending on the characteristics of the fine-tuning data. These insights offer practical guidance for developing fine-tuning strategies that more effectively strengthen model knowledge.
comment: Accepted by EMNLP 2025 Main Conference. Codes for parameter restoration are available at https://github.com/UmeanNever/ParamRestore
♻ ☆ The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs ICLR 2026
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.
comment: Accepted by ICLR 2026
♻ ☆ IMAGINE: Integrating Multi-Agent System into One Model for Complex Reasoning and Planning
Although large language models (LLMs) have made significant strides across various tasks, they still face significant challenges in complex reasoning and planning. For example, even with carefully designed prompts and prior information explicitly provided, GPT-4o achieves only a 7% Final Pass Rate on the TravelPlanner dataset in the sole-planning mode. Similarly, even in the thinking mode, Qwen3-8B-Instruct and DeepSeek-R1-671B, only achieve Final Pass Rates of 5.9% and 40%, respectively. Although well-organized Multi-Agent Systems (MAS) can offer improved collective reasoning, they often suffer from high reasoning costs due to multi-round internal interactions, long per-response latency, and difficulties in end-to-end training. To address these challenges, we propose a general and scalable framework called IMAGINE, short for Integrating Multi-Agent System into One Model. This framework not only integrates the reasoning and planning capabilities of MAS into a single, compact model, but also significantly surpass the capabilities of the MAS through a simple end-to-end training. Through this pipeline, a single small-scale model is not only able to acquire the structured reasoning and planning capabilities of a well-organized MAS but can also significantly outperform it. Experimental results demonstrate that, when using Qwen3-8B-Instruct as the base model and training it with our method, the model achieves an 82.7% Final Pass Rate on the TravelPlanner benchmark, far exceeding the 40% of DeepSeek-R1-671B, while maintaining a much smaller model size.
♻ ☆ Structured Episodic Event Memory
Current approaches to memory in Large Language Models (LLMs) predominantly rely on static Retrieval-Augmented Generation (RAG), which often results in scattered retrieval and fails to capture the structural dependencies required for complex reasoning. For autonomous agents, these passive and flat architectures lack the cognitive organization necessary to model the dynamic and associative nature of long-term interaction. To address this, we propose Structured Episodic Event Memory (SEEM), a hierarchical framework that synergizes a graph memory layer for relational facts with a dynamic episodic memory layer for narrative progression. Grounded in cognitive frame theory, SEEM transforms interaction streams into structured Episodic Event Frames (EEFs) anchored by precise provenance pointers. Furthermore, we introduce an agentic associative fusion and Reverse Provenance Expansion (RPE) mechanism to reconstruct coherent narrative contexts from fragmented evidence. Experimental results on the LoCoMo and LongMemEval benchmarks demonstrate that SEEM significantly outperforms baselines, enabling agents to maintain superior narrative coherence and logical consistency.
♻ ☆ Evolving Interactive Diagnostic Agents in a Virtual Clinical Environment
We present a framework for training large language models (LLMs) as diagnostic agents with reinforcement learning, enabling them to manage multi-turn interactive diagnostic processes, adaptively select examinations, and commit to final diagnoses. Unlike instruction-tuned models trained on static data, our method acquires diagnostic strategies through dynamic exploration and outcome-based feedback, mapping evolving patient states to the next optimal examination and subsequent diagnosis. Our contributions include: (i) DiagGym, a diagnostics world model trained with electronic health records, serving as a virtual clinical environment to support closed-loop in-silico training and evaluation for interactive diagnosis; (ii) DiagAgent, trained via end-to-end multi-turn RL to learn dynamic diagnostic policies that optimize both interactive effectiveness and final accuracy; (iii) DiagBench, a multi-center diagnostic benchmark designed to evaluate multi-turn diagnostic interaction trajectories. The benchmark comprises 2.2K physician-validated cases sourced from 4 distinct distributions, alongside 3.3K physician-written rubrics for granular process-oriented evaluation. (iv) Extensive evaluations demonstrate DiagAgent's superior performance across both in-domain and out-of-domain (OOD) settings. DiagAgent significantly outperforms 11 SOTA LLMs and 2 prompt-engineered agents. In the end-to-end setting, it delivers a 11.20% increase in diagnostic accuracy and a 17.58% boost in examination recommendation F1 score, while consistently maintaining SOTA performance across all three external centers. Furthermore, in rubric-based evaluations, it surpasses the next-best model by 7.1% in weighted rubric score. These findings indicate that learning policies in interactive clinical environments confers long-term diagnostic management abilities unattainable through passive training.
♻ ☆ THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning ICLR 2026
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.
comment: 22 pages, 13 figures, ICLR 2026
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has emerged as a pivotal direction in artificial intelligence (AI), emphasizing the role of high-quality training data. This shift is especially critical in the Text-to-SQL task, where the scarcity, limited diversity, and structural simplicity of existing datasets constrain model performance. To address these challenges, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that systematically generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from limited seed data. Our framework spans six augmentation dimensions and integrates an end-to-end pipeline with auxiliary database selection, SQL executability verification, natural language (NL) question generation, NL-SQL correspondence verification, and chain-of-thought (CoT) reasoning trace generation. Leveraging this framework, we construct SQLFlow, a high-quality dataset comprising 75,386 annotated examples. We demonstrate the utility of SQLFlow in both fine-tuning and prompt-based settings. (1) For open-source large language models (LLMs), fine-tuning with SQLFlow improves problem-solving ability, delivering competitive gains across multiple benchmarks under the same data budget. (2) For closed-source LLMs, we propose a masked alignment retrieval method that uses SQLFlow as both a knowledge base and training data for the retrieval model, enabling structure-aware example matching via fine-grained NL-SQL alignments. Experiments show that our retrieval strategy outperforms existing example retrieval methods, highlighting the combined value of SQLFlow's data quality and our retrieval technique. Overall, our work provides a scalable, data-centric foundation for advancing Text-to-SQL systems and underscores the importance of structured, high-fidelity data in modern AI development. Our code is available at https://github.com/TechNomad-ds/Text2SQL-Flow.
♻ ☆ Can LLMs Automate Fact-Checking Article Writing? ACL 2026
Automatic fact-checking aims to support professional fact-checkers by offering tools that can help speed up manual fact-checking. Yet, existing frameworks fail to address the key step of producing output suitable for broader dissemination to the general public: while human fact-checkers communicate their findings through fact-checking articles, automated systems typically produce little or no justification for their assessments. Here, we aim to bridge this gap. In particular, we argue for the need to extend the typical automatic fact-checking pipeline with automatic generation of full fact-checking articles. We first identify key desiderata for such articles through a series of interviews with experts from leading fact-checking organizations. We then develop QRAFT, an LLM-based agentic framework that mimics the writing workflow of human fact-checkers. Finally, we assess the practical usefulness of QRAFT through human evaluations with professional fact-checkers. Our evaluation shows that while QRAFT outperforms several previously proposed text-generation approaches, it lags considerably behind expert-written articles. We hope that our work will enable further research in this new and important direction. The code for our implementation is available at https://github.com/mbzuai-nlp/qraft.git.
comment: Accepted to TACL 2026, pre-MIT Press publication version
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ Self-Guided Function Calling in Large Language Models via Stepwise Experience Recall EMNLP 2025
Function calling enables large language models (LLMs) to interact with external systems by leveraging tools and APIs. When faced with multi-step tool usage, LLMs still struggle with tool selection, parameter generation, and tool-chain planning. Existing methods typically rely on manually designing task-specific demonstrations, or retrieving from a curated library. These approaches demand substantial expert effort and prompt engineering becomes increasingly complex and inefficient as tool diversity and task difficulty scale. To address these challenges, we propose a self-guided method, Stepwise Experience Recall (SEER), which performs fine-grained, stepwise retrieval from a continually updated experience pool. Instead of relying on static or manually curated library, SEER incrementally augments the experience pool with past successful trajectories, enabling continuous expansion of the pool and improved model performance over time. Evaluated on the ToolQA benchmark, SEER achieves an average improvement of 6.1% on easy and 4.7% on hard questions. We further test SEER on $τ$-bench, which includes two real-world domains. Powered by Qwen2.5-7B and Qwen2.5-72B models, SEER demonstrates substantial accuracy gains of 7.44% and 23.38%, respectively.
comment: Accepted to EMNLP 2025
♻ ☆ Sri Lanka Document Datasets: A Large-Scale, Multilingual Resource for Law, News, and Policy
We present a collection of open, machine-readable document datasets covering parliamentary proceedings, legal judgments, government publications, news, and tourism statistics from Sri Lanka. The collection currently comprises of 253,817 documents (72.2 GB) across 26 datasets in Sinhala, Tamil, and English. The datasets are updated daily and mirrored on GitHub and Hugging Face. These resources aim to support research in computational linguistics, legal analytics, socio-political studies, and multilingual natural language processing. We describe the data sources, collection pipeline, formats, and potential use cases, while discussing licensing and ethical considerations. This manuscript is at version v2026-02-10-1051.
comment: 4 pages. 253,817 documents (72.2 GB) across 26 datasets in Sinhala, Tamil, and English. Last updated on 2026-02-10 (10:51am)
♻ ☆ Free(): Learning to Forget in Malloc-Only Reasoning Models
Reasoning models enhance problem-solving by scaling test-time compute, yet they face a critical paradox: excessive thinking tokens often degrade performance rather than improve it. We attribute this to a fundamental architectural flaw: standard LLMs operate as "malloc-only" engines, continuously accumulating valid and redundant steps alike without a mechanism to prune obsolete information. To break this cycle, we propose Free()LM, a model that introduces an intrinsic self-forgetting capability via the Free-Module, a plug-and-play LoRA adapter. By iteratively switching between reasoning and cleaning modes, Free()LM dynamically identifies and prunes useless context chunks, maintaining a compact and noise-free state. Extensive experiments show that Free()LM provides consistent improvements across all model scales (8B to 685B). It achieves a 3.3% average improvement over top-tier reasoning baselines, even establishing a new SOTA on IMOanswerBench using DeepSeek V3.2-Speciale. Most notably, in long-horizon tasks where the standard Qwen3-235B-A22B model suffers a total collapse (0% accuracy), Free()LM restores performance to 50%. Our findings suggest that sustainable intelligence requires the freedom to forget as much as the power to think.
♻ ☆ Machine Text Detectors are Membership Inference Attacks
Although membership inference attacks (MIAs) and machine-generated text detection target different goals, their methods often exploit similar signals based on a language model's probability distribution, and the two tasks have been studied independently. This can result in conclusions that overlook stronger methods and valuable insights from the other task. In this work, we theoretically and empirically demonstrate the transferability, i.e., how well a method originally developed for one task performs on the other, between MIAs and machine text detection. We prove that the metric achieving asymptotically optimal performance is identical for both tasks. We unify existing methods under this optimal metric and hypothesize that the accuracy with which a method approximates this metric is directly correlated with its transferability. Our large-scale empirical experiments demonstrate very strong rank correlation ($ρ\approx 0.7$) in cross-task performance. Notably, we also find that a machine text detector achieves the strongest performance among evaluated methods on both tasks, demonstrating the practical impact of transferability. To facilitate cross-task development and fair evaluation, we introduce MINT, a unified evaluation suite for MIAs and machine-generated text detection, implementing 15 recent methods from both tasks.
♻ ☆ REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration
Post-training for large language models (LLMs) is constrained by the high cost of acquiring new knowledge or correcting errors and by the unintended side effects that frequently arise from retraining. To address these issues, we introduce REPAIR (Robust Editing via Progressive Adaptive Intervention and Reintegration), a lifelong editing framework designed to support precise and low-cost model updates while preserving non-target knowledge. REPAIR mitigates the instability and conflicts of large-scale sequential edits through a closed-loop feedback mechanism coupled with dynamic memory management. Furthermore, by incorporating frequent knowledge fusion and enforcing strong locality guards, REPAIR effectively addresses the shortcomings of traditional distribution-agnostic approaches that often overlook unintended ripple effects. Our experiments demonstrate that REPAIR boosts editing accuracy by 10%-30% across multiple model families and significantly reduces knowledge forgetting. This work introduces a robust framework for developing reliable, scalable, and continually evolving LLMs.
♻ ☆ EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning
Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.
♻ ☆ SAGE: An Agentic Explainer Framework for Interpreting SAE Features in Language Models EACL 2026
Large language models (LLMs) have achieved remarkable progress, yet their internal mechanisms remain largely opaque, posing a significant challenge to their safe and reliable deployment. Sparse autoencoders (SAEs) have emerged as a promising tool for decomposing LLM representations into more interpretable features, but explaining the features captured by SAEs remains a challenging task. In this work, we propose SAGE (SAE AGentic Explainer), an agent-based framework that recasts feature interpretation from a passive, single-pass generation task into an active, explanation-driven process. SAGE implements a rigorous methodology by systematically formulating multiple explanations for each feature, designing targeted experiments to test them, and iteratively refining explanations based on empirical activation feedback. Experiments on features from SAEs of diverse language models demonstrate that SAGE produces explanations with significantly higher generative and predictive accuracy compared to state-of-the-art baselines.an agent-based framework that recasts feature interpretation from a passive, single-pass generation task into an active, explanationdriven process. SAGE implements a rigorous methodology by systematically formulating multiple explanations for each feature, designing targeted experiments to test them, and iteratively refining explanations based on empirical activation feedback. Experiments on features from SAEs of diverse language models demonstrate that SAGE produces explanations with significantly higher generative and predictive accuracy compared to state-of-the-art baselines.
comment: EACL 2026 Industry Track
♻ ☆ Emergent Structured Representations Support Flexible In-Context Inference in Large Language Models
Large language models (LLMs) exhibit emergent behaviors suggestive of human-like reasoning. While recent work has identified structured, human-like conceptual representations within these models, it remains unclear whether they functionally rely on such representations for reasoning. Here we investigate the internal processing of LLMs during in-context concept inference. Our results reveal a conceptual subspace emerging in middle to late layers, whose representational structure persists across contexts. Using causal mediation analyses, we demonstrate that this subspace is not merely an epiphenomenon but is functionally central to model predictions, establishing its causal role in inference. We further identify a layer-wise progression where attention heads in early-to-middle layers integrate contextual cues to construct and refine the subspace, which is subsequently leveraged by later layers to generate predictions. Together, these findings provide evidence that LLMs dynamically construct and use structured, latent representations in context for inference, offering insights into the computational processes underlying flexible adaptation.
comment: 27 pages, 16 figures
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank ($r$). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
comment: Accepted by TMLR
♻ ☆ DLLM Agent: See Farther, Run Faster
Diffusion large language models (DLLMs) have emerged as an alternative to autoregressive (AR) decoding with appealing efficiency and modeling properties, yet their implications for agentic multi-step decision making remain underexplored. We ask a concrete question: when the generation paradigm is changed but the agent framework and supervision are held fixed, do diffusion backbones induce systematically different planning and tool-use behaviors, and do these differences translate into end-to-end efficiency gains? We study this in a controlled setting by instantiating DLLM and AR backbones within the same agent workflow (DeepDiver) and performing matched agent-oriented fine-tuning on the same trajectory data, yielding diffusion-backed DLLM Agents and directly comparable AR agents. Across benchmarks and case studies, we find that, at comparable accuracy, DLLM Agents are on average over 30% faster end to end than AR agents, with some cases exceeding 8x speedup. Conditioned on correct task completion, DLLM Agents also require fewer interaction rounds and tool invocations, consistent with higher planner hit rates that converge earlier to a correct action path with less backtracking. We further identify two practical considerations for deploying diffusion backbones in tool-using agents. First, naive DLLM policies are more prone to structured tool-call failures, necessitating stronger tool-call-specific training to emit valid schemas and arguments. Second, for multi-turn inputs interleaving context and action spans, diffusion-style span corruption requires aligned attention masking to avoid spurious context-action information flow; without such alignment, performance degrades. Finally, we analyze attention dynamics across workflow stages and observe paradigm-specific coordination patterns, suggesting stronger global planning signals in diffusion-backed agents.
♻ ☆ Offline World Models as Imagination Networks in Cognitive Agents
The computational role of imagination remains debated. While classical accounts emphasize reward maximization, emerging evidence suggests it accesses internal world models (IWMs). We employ psychological network analysis to compare IWMs in humans and large language models (LLMs) via imagination vividness ratings, distinguishing offline world models (persistent memory structures accessed independent of immediate goals) from online models (task-specific representations). Analyzing 2,743 humans across three populations and six LLM variants, we find human imagination networks exhibit robust structural consistency, with high centrality correlations and aligned clustering. LLMs show minimal clustering and weak correlations with human networks, even with conversational memory, across environmental and sensory contexts. These differences highlight disparities in how biological and artificial systems organize internal representations. Our framework offers quantitative metrics for evaluating offline world models in cognitive agents.
♻ ☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS Website: https://modular-gradient-surgery.github.io
♻ ☆ TOPol: Capturing and Explaining Multidimensional Semantic Polarity Fields and Vectors
Traditional approaches to semantic polarity in computational linguistics treat sentiment as a unidimensional scale, overlooking the multidimensional structure of language. This work introduces TOPol (Topic-Orientation POLarity), a semi-unsupervised framework for reconstructing and interpreting multidimensional narrative polarity fields under human-on-the-loop (HoTL) defined contextual boundaries (CBs). The framework embeds documents using a transformer-based large language model (tLLM), applies neighbor-tuned UMAP projection, and segments topics via Leiden partitioning. Given a CB between discourse regimes A and B, TOPol computes directional vectors between corresponding topic-boundary centroids, yielding a polarity field that quantifies fine-grained semantic displacement during regime shifts. This vectorial representation enables assessing CB quality and detecting polarity changes, guiding HoTL CB refinement. To interpret identified polarity vectors, the tLLM compares their extreme points and produces contrastive labels with estimated coverage. Robustness analyses show that only CB definitions (the main HoTL-tunable parameter) significantly affect results, confirming methodological stability. We evaluate TOPol on two corpora: (i) U.S. Central Bank speeches around a macroeconomic breakpoint, capturing non-affective semantic shifts, and (ii) Amazon product reviews across rating strata, where affective polarity aligns with NRC valence. Results demonstrate that TOPol consistently captures both affective and non-affective polarity transitions, providing a scalable, generalizable, and interpretable framework for context-sensitive multidimensional discourse analysis.
comment: 7 pages, 3 figures and 2 tables
Machine Learning 243
☆ Biases in the Blind Spot: Detecting What LLMs Fail to Mention ICML 2026
Large Language Models (LLMs) often provide chain-of-thought (CoT) reasoning traces that appear plausible, but may hide internal biases. We call these *unverbalized biases*. Monitoring models via their stated reasoning is therefore unreliable, and existing bias evaluations typically require predefined categories and hand-crafted datasets. In this work, we introduce a fully automated, black-box pipeline for detecting task-specific unverbalized biases. Given a task dataset, the pipeline uses LLM autoraters to generate candidate bias concepts. It then tests each concept on progressively larger input samples by generating positive and negative variations, and applies statistical techniques for multiple testing and early stopping. A concept is flagged as an unverbalized bias if it yields statistically significant performance differences while not being cited as justification in the model's CoTs. We evaluate our pipeline across six LLMs on three decision tasks (hiring, loan approval, and university admissions). Our technique automatically discovers previously unknown biases in these models (e.g., Spanish fluency, English proficiency, writing formality). In the same run, the pipeline also validates biases that were manually identified by prior work (gender, race, religion, ethnicity). More broadly, our proposed approach provides a practical, scalable path to automatic task-specific bias discovery.
comment: 10 pages, Under review at ICML 2026
☆ Olaf-World: Orienting Latent Actions for Video World Modeling
Scaling action-controllable world models is limited by the scarcity of action labels. While latent action learning promises to extract control interfaces from unlabeled video, learned latents often fail to transfer across contexts: they entangle scene-specific cues and lack a shared coordinate system. This occurs because standard objectives operate only within each clip, providing no mechanism to align action semantics across contexts. Our key insight is that although actions are unobserved, their semantic effects are observable and can serve as a shared reference. We introduce Seq$Δ$-REPA, a sequence-level control-effect alignment objective that anchors integrated latent action to temporal feature differences from a frozen, self-supervised video encoder. Building on this, we present Olaf-World, a pipeline that pretrains action-conditioned video world models from large-scale passive video. Extensive experiments demonstrate that our method learns a more structured latent action space, leading to stronger zero-shot action transfer and more data-efficient adaptation to new control interfaces than state-of-the-art baselines.
comment: Project page: https://showlab.github.io/Olaf-World/ Code: https://github.com/showlab/Olaf-World
☆ Towards Explainable Federated Learning: Understanding the Impact of Differential Privacy
Data privacy and eXplainable Artificial Intelligence (XAI) are two important aspects for modern Machine Learning systems. To enhance data privacy, recent machine learning models have been designed as a Federated Learning (FL) system. On top of that, additional privacy layers can be added, via Differential Privacy (DP). On the other hand, to improve explainability, ML must consider more interpretable approaches with reduced number of features and less complex internal architecture. In this context, this paper aims to achieve a machine learning (ML) model that combines enhanced data privacy with explainability. So, we propose a FL solution, called Federated EXplainable Trees with Differential Privacy (FEXT-DP), that: (i) is based on Decision Trees, since they are lightweight and have superior explainability than neural networks-based FL systems; (ii) provides additional layer of data privacy protection applying Differential Privacy (DP) to the Tree-Based model. However, there is a side effect adding DP: it harms the explainability of the system. So, this paper also presents the impact of DP protection on the explainability of the ML model. The carried out performance assessment shows improvements of FEXT-DP in terms of a faster training, i.e., numbers of rounds, Mean Squared Error and explainability.
☆ Learning on the Manifold: Unlocking Standard Diffusion Transformers with Representation Encoders
Leveraging representation encoders for generative modeling offers a path for efficient, high-fidelity synthesis. However, standard diffusion transformers fail to converge on these representations directly. While recent work attributes this to a capacity bottleneck proposing computationally expensive width scaling of diffusion transformers we demonstrate that the failure is fundamentally geometric. We identify Geometric Interference as the root cause: standard Euclidean flow matching forces probability paths through the low-density interior of the hyperspherical feature space of representation encoders, rather than following the manifold surface. To resolve this, we propose Riemannian Flow Matching with Jacobi Regularization (RJF). By constraining the generative process to the manifold geodesics and correcting for curvature-induced error propagation, RJF enables standard Diffusion Transformer architectures to converge without width scaling. Our method RJF enables the standard DiT-B architecture (131M parameters) to converge effectively, achieving an FID of 3.37 where prior methods fail to converge. Code: https://github.com/amandpkr/RJF
comment: Technical Report
☆ Step-resolved data attribution for looped transformers
We study how individual training examples shape the internal computation of looped transformers, where a shared block is applied for $τ$ recurrent iterations to enable latent reasoning. Existing training-data influence estimators such as TracIn yield a single scalar score that aggregates over all loop iterations, obscuring when during the recurrent computation a training example matters. We introduce \textit{Step-Decomposed Influence (SDI)}, which decomposes TracIn into a length-$τ$ influence trajectory by unrolling the recurrent computation graph and attributing influence to specific loop iterations. To make SDI practical at transformer scale, we propose a TensorSketch implementation that never materialises per-example gradients. Experiments on looped GPT-style models and algorithmic reasoning tasks show that SDI scales excellently, matches full-gradient baselines with low error and supports a broad range of data attribution and interpretability tasks with per-step insights into the latent reasoning process.
☆ Causality in Video Diffusers is Separable from Denoising
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. Through systematic probing of autoregressive video diffusers, we uncover two key regularities: (1) early layers produce highly similar features across denoising steps, indicating redundant computation along the diffusion trajectory; and (2) deeper layers exhibit sparse cross-frame attention and primarily perform intra-frame rendering. Motivated by these findings, we introduce Separable Causal Diffusion (SCD), a new architecture that explicitly decouples once-per-frame temporal reasoning, via a causal transformer encoder, from multi-step frame-wise rendering, via a lightweight diffusion decoder. Extensive experiments on both pretraining and post-training tasks across synthetic and real benchmarks show that SCD significantly improves throughput and per-frame latency while matching or surpassing the generation quality of strong causal diffusion baselines.
☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
☆ Features as Rewards: Scalable Supervision for Open-Ended Tasks via Interpretability
Language models trained on large-scale datasets have been shown to learn features that encode abstract concepts such as factuality or intent. Such features are traditionally used for test-time monitoring or steering. We present an alternative affordance: features as scalable supervision for open-ended tasks. We consider the case of hallucination-reduction as a desirable, yet open-ended behavior and design a reinforcement learning (RL) pipeline, titled RLFR (Reinforcement Learning from Feature Rewards), that uses features as reward functions. Grounded in a novel probing framework that identifies candidate hallucinated claims, our pipeline teaches a model to intervene and correct its completions when it is uncertain of their factuality. Furthermore, the pipeline enables scalable test-time compute, guided once more by our reward features. This end-to-end process operationalized on Gemma-3-12B-IT results in a policy that is 58% less likely to hallucinate compared to the original model, while preserving performance on standard benchmarks. Taken together, by grounding supervision in the language of features, this paper introduces a novel paradigm in the use of interpretability for learning open-ended tasks.
☆ Vendi Novelty Scores for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is critical for the safe deployment of machine learning systems. Existing post-hoc detectors typically rely on model confidence scores or likelihood estimates in feature space, often under restrictive distributional assumptions. In this work, we introduce a third paradigm and formulate OOD detection from a diversity perspective. We propose the Vendi Novelty Score (VNS), an OOD detector based on the Vendi Scores (VS), a family of similarity-based diversity metrics. VNS quantifies how much a test sample increases the VS of the in-distribution feature set, providing a principled notion of novelty that does not require density modeling. VNS is linear-time, non-parametric, and naturally combines class-conditional (local) and dataset-level (global) novelty signals. Across multiple image classification benchmarks and network architectures, VNS achieves state-of-the-art OOD detection performance. Remarkably, VNS retains this performance when computed using only 1% of the training data, enabling deployment in memory- or access-constrained settings.
☆ Evaluating Disentangled Representations for Controllable Music Generation ICASSP 2026
Recent approaches in music generation rely on disentangled representations, often labeled as structure and timbre or local and global, to enable controllable synthesis. Yet the underlying properties of these embeddings remain underexplored. In this work, we evaluate such disentangled representations in a set of music audio models for controllable generation using a probing-based framework that goes beyond standard downstream tasks. The selected models reflect diverse unsupervised disentanglement strategies, including inductive biases, data augmentations, adversarial objectives, and staged training procedures. We further isolate specific strategies to analyze their effect. Our analysis spans four key axes: informativeness, equivariance, invariance, and disentanglement, which are assessed across datasets, tasks, and controlled transformations. Our findings reveal inconsistencies between intended and actual semantics of the embeddings, suggesting that current strategies fall short of producing truly disentangled representations, and prompting a re-examination of how controllability is approached in music generation.
comment: Accepted at ICASSP 2026
☆ WildCat: Near-Linear Attention in Theory and Practice
We introduce WildCat, a high-accuracy, low-cost approach to compressing the attention mechanism in neural networks. While attention is a staple of modern network architectures, it is also notoriously expensive to deploy due to resource requirements that scale quadratically with the input sequence length $n$. WildCat avoids these quadratic costs by only attending over a small weighted coreset. Crucially, we select the coreset using a fast but spectrally-accurate subsampling algorithm -- randomly pivoted Cholesky -- and weight the elements optimally to minimise reconstruction error. Remarkably, given bounded inputs, WildCat approximates exact attention with super-polynomial $O(n^{-\sqrt{\log(\log(n))}})$ error decay while running in near-linear $O(n^{1+o(1)})$ time. In contrast, prior practical approximations either lack error guarantees or require quadratic runtime to guarantee such high fidelity. We couple this advance with a GPU-optimized PyTorch implementation and a suite of benchmark experiments demonstrating the benefits of WildCat for image generation, image classification, and language model KV cache compression.
☆ Long Chain-of-Thought Compression via Fine-Grained Group Policy Optimization IEEE
Large Language Models (LLMs) often generate unnecessarily verbose Chain-of-Thought (CoT) reasoning that increases computational costs and latency without proportional performance gains. In this paper, we propose \textbf{F}ine-grained \textbf{G}roup policy \textbf{O}ptimization (\textbf{FGO}), a Reinforcement Learning (RL) algorithm that refines group responses by subdividing them and assigning appropriate weights based on length and entropy, thereby enabling effective CoT compression. Meanwhile, as an enhanced variant of Group Relative Policy Optimization (GRPO), FGO successfully addresses two major limitations of the GRPO: inefficient data utilization and entropy collapse. We evaluate FGO on multiple reasoning LLMs and benchmarks, including MATH500, AIME24, AMC23, and Minerva. Experimental results show that FGO achieves efficient CoT compression without degrading performance, and simultaneously resolves the key limitations of GRPO.
comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2026
☆ Conformal Prediction Sets for Instance Segmentation
Current instance segmentation models achieve high performance on average predictions, but lack principled uncertainty quantification: their outputs are not calibrated, and there is no guarantee that a predicted mask is close to the ground truth. To address this limitation, we introduce a conformal prediction algorithm to generate adaptive confidence sets for instance segmentation. Given an image and a pixel coordinate query, our algorithm generates a confidence set of instance predictions for that pixel, with a provable guarantee for the probability that at least one of the predictions has high Intersection-Over-Union (IoU) with the true object instance mask. We apply our algorithm to instance segmentation examples in agricultural field delineation, cell segmentation, and vehicle detection. Empirically, we find that our prediction sets vary in size based on query difficulty and attain the target coverage, outperforming existing baselines such as Learn Then Test, Conformal Risk Control, and morphological dilation-based methods. We provide versions of the algorithm with asymptotic and finite sample guarantees.
☆ Optimistic World Models: Efficient Exploration in Model-Based Deep Reinforcement Learning
Efficient exploration remains a central challenge in reinforcement learning (RL), particularly in sparse-reward environments. We introduce Optimistic World Models (OWMs), a principled and scalable framework for optimistic exploration that brings classical reward-biased maximum likelihood estimation (RBMLE) from adaptive control into deep RL. In contrast to upper confidence bound (UCB)-style exploration methods, OWMs incorporate optimism directly into model learning by augmentation with an optimistic dynamics loss that biases imagined transitions toward higher-reward outcomes. This fully gradient-based loss requires neither uncertainty estimates nor constrained optimization. Our approach is plug-and-play with existing world model frameworks, preserving scalability while requiring only minimal modifications to standard training procedures. We instantiate OWMs within two state-of-the-art world model architectures, leading to Optimistic DreamerV3 and Optimistic STORM, which demonstrate significant improvements in sample efficiency and cumulative return compared to their baseline counterparts.
☆ Effectiveness of Binary Autoencoders for QUBO-Based Optimization Problems
In black-box combinatorial optimization, objective evaluations are often expensive, so high quality solutions must be found under a limited budget. Factorization machine with quantum annealing (FMQA) builds a quadratic surrogate model from evaluated samples and optimizes it on an Ising machine. However, FMQA requires binary decision variables, and for nonbinary structures such as integer permutations, the choice of binary encoding strongly affects search efficiency. If the encoding fails to reflect the original neighborhood structure, small Hamming moves may not correspond to meaningful modifications in the original solution space, and constrained problems can yield many infeasible candidates that waste evaluations. Recent work combines FMQA with a binary autoencoder (bAE) that learns a compact binary latent code from feasible solutions, yet the mechanism behind its performance gains is unclear. Using a small traveling salesman problem as an interpretable testbed, we show that the bAE reconstructs feasible tours accurately and, compared with manually designed encodings at similar compression, better aligns tour distances with latent Hamming distances, yields smoother neighborhoods under small bit flips, and produces fewer local optima. These geometric properties explain why bAE+FMQA improves the approximation ratio faster while maintaining feasibility throughout optimization, and they provide guidance for designing latent representations for black-box optimization.
comment: 14 pages, 5 figures
☆ Position: Message-passing and spectral GNNs are two sides of the same coin
Graph neural networks (GNNs) are commonly divided into message-passing neural networks (MPNNs) and spectral graph neural networks, reflecting two largely separate research traditions in machine learning and signal processing. This paper argues that this divide is mostly artificial, hindering progress in the field. We propose a viewpoint in which both MPNNs and spectral GNNs are understood as different parametrizations of permutation-equivariant operators acting on graph signals. From this perspective, many popular architectures are equivalent in expressive power, while genuine gaps arise only in specific regimes. We further argue that MPNNs and spectral GNNs offer complementary strengths. That is, MPNNs provide a natural language for discrete structure and expressivity analysis using tools from logic and graph isomorphism research, while the spectral perspective provides principled tools for understanding smoothing, bottlenecks, stability, and community structure. Overall, we posit that progress in graph learning will be accelerated by clearly understanding the key similarities and differences between these two types of GNNs, and by working towards unifying these perspectives within a common theoretical and conceptual framework rather than treating them as competing paradigms.
☆ ADORA: Training Reasoning Models with Dynamic Advantage Estimation on Reinforcement Learning
Reinforcement learning has become a cornerstone technique for developing reasoning models in complex tasks, ranging from mathematical problem-solving to imaginary reasoning. The optimization of these models typically relies on policy gradient methods, whose efficacy hinges on the accurate estimation of an advantage function. However, prevailing methods typically employ static advantage estimation, a practice that leads to inefficient credit assignment by neglecting the dynamic utility of training samples over time. This limitation results in suboptimal policy updates, which in turn manifest as slower convergence rates and increased learning instability, as models fail to adapt to evolving sample utilities effectively. To address this problem, we introduce \textbf{ADORA} (\textbf{A}dvantage \textbf{D}ynamics via \textbf{O}nline \textbf{R}ollout \textbf{A}daptation), a novel framework for policy optimization. ADORA dynamically adjusts the advantage function's weighting by adaptively categorizing training data into temporarily advantageous and disadvantageous samples, based on their evolving utility during online model rollouts. This tailored data differentiation strategy allows ADORA to be seamlessly integrated into existing policy optimization algorithms without significant architectural modifications, enabling the policy to prioritize learning from more informative experiences and thereby achieve more efficient policy updates. Extensive evaluations across diverse model families and varying data scales demonstrate that ADORA is a robust and efficient framework. It significantly enhances long reasoning in both geometric and mathematical tasks, consistently achieving notable performance gains without requiring sensitive hyperparameter tuning.
☆ A Task-Centric Theory for Iterative Self-Improvement with Easy-to-Hard Curricula
Iterative self-improvement fine-tunes an autoregressive large language model (LLM) on reward-verified outputs generated by the LLM itself. In contrast to the empirical success of self-improvement, the theoretical foundation of this generative, iterative procedure in a practical, finite-sample setting remains limited. We make progress toward this goal by modeling each round of self-improvement as maximum-likelihood fine-tuning on a reward-filtered distribution and deriving finite-sample guarantees for the expected reward. Our analysis reveals an explicit feedback loop where better models accept more data per iteration, supporting sustained self-improvement while explaining eventual saturation of such improvement. Adopting a task-centric view by considering reasoning tasks with multiple difficulty levels, we further prove quantifiable conditions on model initialization, task difficulty, and sample budget where easy-to-hard curricula provably achieve better guarantees than training on fixed mixtures of tasks. Our analyses are validated via Monte-Carlo simulations and controlled experiments on graph-based reasoning tasks.
☆ Answer First, Reason Later: Aligning Search Relevance via Mode-Balanced Reinforcement Learning
Building a search relevance model that achieves both low latency and high performance is a long-standing challenge in the search industry. To satisfy the millisecond-level response requirements of online systems while retaining the interpretable reasoning traces of Large Language Models (LLMs), we propose a novel \textbf{Answer-First, Reason Later (AFRL)} paradigm. This paradigm requires the model to output the definitive relevance score in the very first token, followed by a structured logical explanation. Inspired by the success of reasoning models, we adopt a "Supervised Fine-Tuning (SFT) + Reinforcement Learning (RL)" pipeline to achieve AFRL. However, directly applying existing RL training often leads to \textbf{mode collapse} in the search relevance task, where the model forgets complex long-tail rules in pursuit of high rewards. From an information theory perspective: RL inherently minimizes the \textbf{Reverse KL divergence}, which tends to seek probability peaks (mode-seeking) and is prone to "reward hacking." On the other hand, SFT minimizes the \textbf{Forward KL divergence}, forcing the model to cover the data distribution (mode-covering) and effectively anchoring expert rules. Based on this insight, we propose a \textbf{Mode-Balanced Optimization} strategy, incorporating an SFT auxiliary loss into Stepwise-GRPO training to balance these two properties. Furthermore, we construct an automated instruction evolution system and a multi-stage curriculum to ensure expert-level data quality. Extensive experiments demonstrate that our 32B teacher model achieves state-of-the-art performance. Moreover, the AFRL architecture enables efficient knowledge distillation, successfully transferring expert-level logic to a 0.6B model, thereby reconciling reasoning depth with deployment latency.
☆ Empirical Stability Analysis of Kolmogorov-Arnold Networks in Hard-Constrained Recurrent Physics-Informed Discovery
We investigate the integration of Kolmogorov-Arnold Networks (KANs) into hard-constrained recurrent physics-informed architectures (HRPINN) to evaluate the fidelity of learned residual manifolds in oscillatory systems. Motivated by the Kolmogorov-Arnold representation theorem and preliminary gray-box results, we hypothesized that KANs would enable efficient recovery of unknown terms compared to MLPs. Through initial sensitivity analysis on configuration sensitivity, parameter scale, and training paradigm, we found that while small KANs are competitive on univariate polynomial residuals (Duffing), they exhibit severe hyperparameter fragility, instability in deeper configurations, and consistent failure on multiplicative terms (Van der Pol), generally outperformed by standard MLPs. These empirical challenges highlight limitations of the additive inductive bias in the original KAN formulation for state coupling and provide preliminary empirical evidence of inductive bias limitations for future hybrid modeling.
comment: 5 pages
☆ Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infusion to just 0.2% (100/45,000) of the training documents can be competitive with the baseline of inserting a small number of explicit behavior examples. We also find that Infusion transfers across architectures (ResNet $\leftrightarrow$ CNN), suggesting a single poisoned corpus can affect multiple independently trained models. In preliminary language experiments, we characterize when our approach increases the probability of target behaviors and when it fails, finding it most effective at amplifying behaviors the model has already learned. Taken together, these results show that small, subtle edits to training data can systematically shape model behavior, underscoring the importance of training data interpretability for adversaries and defenders alike. We provide the code here: https://github.com/jrosseruk/infusion.
comment: 10 pages, 14 figures
☆ Online Monitoring Framework for Automotive Time Series Data using JEPA Embeddings IEEE
As autonomous vehicles are rolled out, measures must be taken to ensure their safe operation. In order to supervise a system that is already in operation, monitoring frameworks are frequently employed. These run continuously online in the background, supervising the system status and recording anomalies. This work proposes an online monitoring framework to detect anomalies in object state representations. Thereby, a key challenge is creating a framework for anomaly detection without anomaly labels, which are usually unavailable for unknown anomalies. To address this issue, this work applies a self-supervised embedding method to translate object data into a latent representation space. For this, a JEPA-based self-supervised prediction task is constructed, allowing training without anomaly labels and the creation of rich object embeddings. The resulting expressive JEPA embeddings serve as input for established anomaly detection methods, in order to identify anomalies within object state representations. This framework is particularly useful for applications in real-world environments, where new or unknown anomalies may occur during operation for which there are no labels available. Experiments performed on the publicly available, real-world nuScenes dataset illustrate the framework's capabilities.
comment: Accepted at the 2026 IEEE Intelligent Vehicles Symposium. Copyright 2026 IEEE. Permission from IEEE must be obtained for use in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Coupled Inference in Diffusion Models for Semantic Decomposition
Many visual scenes can be described as compositions of latent factors. Effective recognition, reasoning, and editing often require not only forming such compositional representations, but also solving the decomposition problem. One popular choice for constructing these representations is through the binding operation. Resonator networks, which can be understood as coupled Hopfield networks, were proposed as a way to perform decomposition on such bound representations. Recent works have shown notable similarities between Hopfield networks and diffusion models. Motivated by these observations, we introduce a framework for semantic decomposition using coupled inference in diffusion models. Our method frames semantic decomposition as an inverse problem and couples the diffusion processes using a reconstruction-driven guidance term that encourages the composition of factor estimates to match the bound vector. We also introduce a novel iterative sampling scheme that improves the performance of our model. Finally, we show that attention-based resonator networks are a special case of our framework. Empirically, we demonstrate that our coupled inference framework outperforms resonator networks across a range of synthetic semantic decomposition tasks.
comment: 15 pages
☆ Supervised Metric Regularization Through Alternating Optimization for Multi-Regime Physics-Informed Neural Networks
Standard Physics-Informed Neural Networks (PINNs) often face challenges when modeling parameterized dynamical systems with sharp regime transitions, such as bifurcations. In these scenarios, the continuous mapping from parameters to solutions can result in spectral bias or "mode collapse", where the network averages distinct physical behaviors. We propose a Topology-Aware PINN (TAPINN) that aims to mitigate this challenge by structuring the latent space via Supervised Metric Regularization. Unlike standard parametric PINNs that map physical parameters directly to solutions, our method conditions the solver on a latent state optimized to reflect the metric-based separation between regimes, showing ~49% lower physics residual (0.082 vs. 0.160). We train this architecture using a phase-based Alternating Optimization (AO) schedule to manage gradient conflicts between the metric and physics objectives. Preliminary experiments on the Duffing Oscillator demonstrate that while standard baselines suffer from spectral bias and high-capacity Hypernetworks overfit (memorizing data while violating physics), our approach achieves stable convergence with 2.18x lower gradient variance than a multi-output Sobolev Error baseline, and 5x fewer parameters than a hypernetwork-based alternative.
comment: 5 pages, 1 figure
☆ Causal Identification in Multi-Task Demand Learning with Confounding
We study a canonical multi-task demand learning problem motivated by retail pricing, in which a firm seeks to estimate heterogeneous linear price-response functions across a large collection of decision contexts. Each context is characterized by rich observable covariates yet typically exhibits only limited historical price variation, motivating the use of multi-task learning to borrow strength across tasks. A central challenge in this setting is endogeneity: historical prices are chosen by managers or algorithms and may be arbitrarily correlated with unobserved, task-level demand determinants. Under such confounding by latent fundamentals, commonly used approaches, such as pooled regression and meta-learning, fail to identify causal price effects. We propose a new estimation framework that achieves causal identification despite arbitrary dependence between prices and latent task structure. Our approach, Decision-Conditioned Masked-Outcome Meta-Learning (DCMOML), involves carefully designing the information set of a meta-learner to leverage cross-task heterogeneity while accounting for endogenous decision histories. Under a mild restriction on price adaptivity in each task, we establish that this method identifies the conditional mean of the task-specific causal parameters given the designed information set. Our results provide guarantees for large-scale demand estimation with endogenous prices and small per-task samples, offering a principled foundation for deploying causal, data-driven pricing models in operational environments.
☆ Drug Release Modeling using Physics-Informed Neural Networks
Accurate modeling of drug release is essential for designing and developing controlled-release systems. Classical models (Fick, Higuchi, Peppas) rely on simplifying assumptions that limit their accuracy in complex geometries and release mechanisms. Here, we propose a novel approach using Physics-Informed Neural Networks (PINNs) and Bayesian PINNs (BPINNs) for predicting release from planar, 1D-wrinkled, and 2D-crumpled films. This approach uniquely integrates Fick's diffusion law with limited experimental data to enable accurate long-term predictions from short-term measurements, and is systematically benchmarked against classical drug release models. We embedded Fick's second law into PINN as loss with 10,000 Latin-hypercube collocation points and utilized previously published experimental datasets to assess drug release performance through mean absolute error (MAE) and root mean square error (RMSE), considering noisy conditions and limited-data scenarios. Our approach reduced mean error by up to 40% relative to classical baselines across all film types. The PINN formulation achieved RMSE <0.05 utilizing only the first 6% of the release time data (reducing 94% of release time required for the experiments) for the planar film. For wrinkled and crumpled films, the PINN reached RMSE <0.05 in 33% of the release time data. BPINNs provide tighter and more reliable uncertainty quantification under noise. By combining physical laws with experimental data, the proposed framework yields highly accurate long-term release predictions from short-term measurements, offering a practical route for accelerated characterization and more efficient early-stage drug release system formulation.
☆ Statistical-Computational Trade-offs in Learning Multi-Index Models via Harmonic Analysis
We study the problem of learning multi-index models (MIMs), where the label depends on the input $\boldsymbol{x} \in \mathbb{R}^d$ only through an unknown $\mathsf{s}$-dimensional projection $\boldsymbol{W}_*^\mathsf{T} \boldsymbol{x} \in \mathbb{R}^\mathsf{s}$. Exploiting the equivariance of this problem under the orthogonal group $\mathcal{O}_d$, we obtain a sharp harmonic-analytic characterization of the learning complexity for MIMs with spherically symmetric inputs -- which refines and generalizes previous Gaussian-specific analyses. Specifically, we derive statistical and computational complexity lower bounds within the Statistical Query (SQ) and Low-Degree Polynomial (LDP) frameworks. These bounds decompose naturally across spherical harmonic subspaces. Guided by this decomposition, we construct a family of spectral algorithms based on harmonic tensor unfolding that sequentially recover the latent directions and (nearly) achieve these SQ and LDP lower bounds. Depending on the choice of harmonic degree sequence, these estimators can realize a broad range of trade-offs between sample and runtime complexity. From a technical standpoint, our results build on the semisimple decomposition of the $\mathcal{O}_d$-action on $L^2 (\mathbb{S}^{d-1})$ and the intertwining isomorphism between spherical harmonics and traceless symmetric tensors.
comment: 91 pages
☆ The Catastrophic Failure of The k-Means Algorithm in High Dimensions, and How Hartigan's Algorithm Avoids It
Lloyd's k-means algorithm is one of the most widely used clustering methods. We prove that in high-dimensional, high-noise settings, the algorithm exhibits catastrophic failure: with high probability, essentially every partition of the data is a fixed point. Consequently, Lloyd's algorithm simply returns its initial partition - even when the underlying clusters are trivially recoverable by other methods. In contrast, we prove that Hartigan's k-means algorithm does not exhibit this pathology. Our results show the stark difference between these algorithms and offer a theoretical explanation for the empirical difficulties often observed with k-means in high dimensions.
☆ LLMs Encode Their Failures: Predicting Success from Pre-Generation Activations
Running LLMs with extended reasoning on every problem is expensive, but determining which inputs actually require additional compute remains challenging. We investigate whether their own likelihood of success is recoverable from their internal representations before generation, and if this signal can guide more efficient inference. We train linear probes on pre-generation activations to predict policy-specific success on math and coding tasks, substantially outperforming surface features such as question length and TF-IDF. Using E2H-AMC, which provides both human and model performance on identical problems, we show that models encode a model-specific notion of difficulty that is distinct from human difficulty, and that this distinction increases with extended reasoning. Leveraging these probes, we demonstrate that routing queries across a pool of models can exceed the best-performing model whilst reducing inference cost by up to 70\% on MATH, showing that internal representations enable practical efficiency gains even when they diverge from human intuitions about difficulty. Our code is available at: https://github.com/KabakaWilliam/llms_know_difficulty
☆ Safeguarding Privacy: Privacy-Preserving Detection of Mind Wandering and Disengagement Using Federated Learning in Online Education
Since the COVID-19 pandemic, online courses have expanded access to education, yet the absence of direct instructor support challenges learners' ability to self-regulate attention and engagement. Mind wandering and disengagement can be detrimental to learning outcomes, making their automated detection via video-based indicators a promising approach for real-time learner support. However, machine learning-based approaches often require sharing sensitive data, raising privacy concerns. Federated learning offers a privacy-preserving alternative by enabling decentralized model training while also distributing computational load. We propose a framework exploiting cross-device federated learning to address different manifestations of behavioral and cognitive disengagement during remote learning, specifically behavioral disengagement, mind wandering, and boredom. We fit video-based cognitive disengagement detection models using facial expressions and gaze features. By adopting federated learning, we safeguard users' data privacy through privacy-by-design and introduce a novel solution with the potential for real-time learner support. We further address challenges posed by eyeglasses by incorporating related features, enhancing overall model performance. To validate the performance of our approach, we conduct extensive experiments on five datasets and benchmark multiple federated learning algorithms. Our results show great promise for privacy-preserving educational technologies promoting learner engagement.
☆ Routing, Cascades, and User Choice for LLMs ICLR 2026
To mitigate the trade-offs between performance and costs, LLM providers route user tasks to different models based on task difficulty and latency. We study the effect of LLM routing with respect to user behavior. We propose a game between an LLM provider with two models (standard and reasoning) and a user who can re-prompt or abandon tasks if the routed model cannot solve them. The user's goal is to maximize their utility minus the delay from using the model, while the provider minimizes the cost of servicing the user. We solve this Stackelberg game by fully characterizing the user best response and simplifying the provider problem. We observe that in nearly all cases, the optimal routing policy involves a static policy with no cascading that depends on the expected utility of the models to the user. Furthermore, we reveal a misalignment gap between the provider-optimal and user-preferred routes when the user's and provider's rankings of the models with respect to utility and cost differ. Finally, we demonstrate conditions for extreme misalignment where providers are incentivized to throttle the latency of the models to minimize their costs, consequently depressing user utility. The results yield simple threshold rules for single-provider, single-user interactions and clarify when routing, cascading, and throttling help or harm.
comment: 23 pages, accepted in ICLR 2026
☆ Stemphonic: All-at-once Flexible Multi-stem Music Generation ICASSP
Music stem generation, the task of producing musically-synchronized and isolated instrument audio clips, offers the potential of greater user control and better alignment with musician workflows compared to conventional text-to-music models. Existing stem generation approaches, however, either rely on fixed architectures that output a predefined set of stems in parallel, or generate only one stem at a time, resulting in slow inference despite flexibility in stem combination. We propose Stemphonic, a diffusion-/flow-based framework that overcomes this trade-off and generates a variable set of synchronized stems in one inference pass. During training, we treat each stem as a batch element, group synchronized stems in a batch, and apply a shared noise latent to each group. At inference-time, we use a shared initial noise latent and stem-specific text inputs to generate synchronized multi-stem outputs in one pass. We further expand our approach to enable one-pass conditional multi-stem generation and stem-wise activity controls to empower users to iteratively generate and orchestrate the temporal layering of a mix. We benchmark our results on multiple open-source stem evaluation sets and show that Stemphonic produces higher-quality outputs while accelerating the full mix generation process by 25 to 50%. Demos at: https://stemphonic-demo.vercel.app.
comment: Accepted for publication at Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ Statistical benchmarking of transformer models in low signal-to-noise time-series forecasting ICML
We study the performance of transformer architectures for multivariate time-series forecasting in low-data regimes consisting of only a few years of daily observations. Using synthetically generated processes with known temporal and cross-sectional dependency structures and varying signal-to-noise ratios, we conduct bootstrapped experiments that enable direct evaluation via out-of-sample correlations with the optimal ground-truth predictor. We show that two-way attention transformers, which alternate between temporal and cross-sectional self-attention, can outperform standard baselines-Lasso, boosting methods, and fully connected multilayer perceptrons-across a wide range of settings, including low signal-to-noise regimes. We further introduce a dynamic sparsification procedure for attention matrices applied during training, and demonstrate that it becomes significantly effective in noisy environments, where the correlation between the target variable and the optimal predictor is on the order of a few percent. Analysis of the learned attention patterns reveals interpretable structure and suggests connections to sparsity-inducing regularization in classical regression, providing insight into why these models generalize effectively under noise.
comment: Submitted to ICML
☆ Differentiable Tripartite Modularity for Clustering Heterogeneous Graphs
Clustering heterogeneous relational data remains a central challenge in graph learning, particularly when interactions involve more than two types of entities. While differentiable modularity objectives such as DMoN have enabled end-to-end community detection on homogeneous and bipartite graphs, extending these approaches to higher-order relational structures remains non-trivial. In this work, we introduce a differentiable formulation of tripartite modularity for graphs composed of three node types connected through mediated interactions. Community structure is defined in terms of weighted co-paths across the tripartite graph, together with an exact factorized computation that avoids the explicit construction of dense third-order tensors. A structural normalization at pivot nodes is introduced to control extreme degree heterogeneity and ensure stable optimization. The resulting objective can be optimized jointly with a graph neural network in an end-to-end manner, while retaining linear complexity in the number of edges. We validate the proposed framework on large-scale urban cadastral data, where it exhibits robust convergence behavior and produces spatially coherent partitions. These results highlight differentiable tripartite modularity as a generic methodological building block for unsupervised clustering of heterogeneous graphs.
comment: 12 pages, 3 figures
☆ CoFEH: LLM-driven Feature Engineering Empowered by Collaborative Bayesian Hyperparameter Optimization
Feature Engineering (FE) is pivotal in automated machine learning (AutoML) but remains a bottleneck for traditional methods, which treat it as a black-box search, operating within rigid, predefined search spaces and lacking domain awareness. While Large Language Models (LLMs) offer a promising alternative by leveraging semantic reasoning to generate unbounded operators, existing methods fail to construct free-form FE pipelines, remaining confined to isolated subtasks such as feature generation. Most importantly, they are rarely optimized jointly with hyperparameter optimization (HPO) of the ML model, leading to greedy "FE-then-HPO" workflows that cannot capture strong FE-HPO interactions. In this paper, we present CoFEH, a collaborative framework that interleaves LLM-based FE and Bayesian HPO for robust end-to-end AutoML. CoFEH uses an LLM-driven FE optimizer powered by Tree of Thought (ToT) to explore flexible FE pipelines, a Bayesian optimization (BO) module to solve HPO, and a dynamic optimizer selector that realizes interleaved optimization by adaptively scheduling FE and HPO steps. Crucially, we introduce a mutual conditioning mechanism that shares context between LLM and BO, enabling mutually informed decisions. Experiments show that CoFEH not only outperforms traditional and LLM-based FE baselines, but also achieves superior end-to-end performance under joint optimization.
☆ Robust Processing and Learning: Principles, Methods, and Wireless Applications
This tutorial-style overview article examines the fundamental principles and methods of robustness, using wireless sensing and communication (WSC) as the narrative and exemplifying framework. First, we formalize the conceptual and mathematical foundations of robustness, highlighting the interpretations and relations across robust statistics, optimization, and machine learning. Key techniques, such as robust estimation and testing, distributionally robust optimization, and regularized and adversary training, are investigated. Together, the costs of robustness in system design, for example, the compromised nominal performances and the extra computational burdens, are discussed. Second, we review recent robust signal processing solutions for WSC that address model mismatch, data scarcity, adversarial perturbation, and distributional shift. Specific applications include robust ranging-based localization, modality sensing, channel estimation, receive combining, waveform design, and federated learning. Through this effort, we aim to introduce the classical developments and recent advances in robustness theory to the general signal processing community, exemplifying how robust statistical, optimization, and machine learning approaches can address the uncertainties inherent in WSC systems.
☆ Stabilized Maximum-Likelihood Iterative Quantum Amplitude Estimation for Structural CVaR under Correlated Random Fields
Conditional Value-at-Risk (CVaR) is a central tail-risk measure in stochastic structural mechanics, yet its accurate evaluation under high-dimensional, spatially correlated material uncertainty remains computationally prohibitive for classical Monte Carlo methods. Leveraging bounded-expectation reformulations of CVaR compatible with quantum amplitude estimation, we develop a quantum-enhanced inference framework that casts CVaR evaluation as a statistically consistent, confidence-constrained maximum-likelihood amplitude estimation problem. The proposed method extends iterative quantum amplitude estimation (IQAE) by embedding explicit maximum-likelihood inference within a rigorously controlled interval-tracking architecture. To ensure global correctness under finite-shot noise and the non-injective oscillatory response induced by Grover amplification, we introduce a stabilized inference scheme incorporating multi-hypothesis feasibility tracking, periodic low-depth disambiguation, and a bounded restart mechanism governed by an explicit failure-probability budget. This formulation preserves the quadratic oracle-complexity advantage of amplitude estimation while providing finite-sample confidence guarantees and reduced estimator variance. The framework is demonstrated on benchmark problems with spatially correlated lognormal Young's modulus fields generated using a Nystrom low-rank Gaussian kernel model. Numerical results show that the proposed estimator achieves substantially lower oracle complexity than classical Monte Carlo CVaR estimation at comparable confidence levels, while maintaining rigorous statistical reliability. This work establishes a practically robust and theoretically grounded quantum-enhanced methodology for tail-risk quantification in stochastic continuum mechanics.
☆ Step-Size Stability in Stochastic Optimization: A Theoretical Perspective
We present a theoretical analysis of stochastic optimization methods in terms of their sensitivity with respect to the step size. We identify a key quantity that, for each method, describes how the performance degrades as the step size becomes too large. For convex problems, we show that this quantity directly impacts the suboptimality bound of the method. Most importantly, our analysis provides direct theoretical evidence that adaptive step-size methods, such as SPS or NGN, are more robust than SGD. This allows us to quantify the advantage of these adaptive methods beyond empirical evaluation. Finally, we show through experiments that our theoretical bound qualitatively mirrors the actual performance as a function of the step size, even for nonconvex problems.
☆ Hybrid Responsible AI-Stochastic Approach for SLA Compliance in Multivendor 6G Networks
The convergence of AI and 6G network automation introduces new challenges in maintaining transparency, fairness, and accountability across multivendor management systems. Although closed-loop AI orchestration improves adaptability and self-optimization, it also creates a responsibility gap, where violations of SLAs cannot be causally attributed to specific agents or vendors. This paper presents a hybrid responsible AI-stochastic learning framework that embeds fairness, robustness, and auditability directly into the network control loop. The framework integrates RAI games with stochastic optimization, enabling dynamic adversarial reweighting and probabilistic exploration across heterogeneous vendor domains. An RAAP continuously records AI-driven decision trajectories and produces dual accountability reports: user-level SLA summaries and operator-level responsibility analytics. Experimental evaluations on synthetic two-class multigroup datasets demonstrate that the proposed hybrid model improves the accuracy of the worst group by up to 10.5\%. Specifically, hybrid RAI achieved a WGAcc of 60.5\% and an AvgAcc of 72.7\%, outperforming traditional RAI-GA (50.0\%) and ERM (21.5\%). The audit mechanism successfully traced 99\% simulated SLA violations to the AI entities responsible, producing both vendor and agent-level accountability indices. These results confirm that the proposed hybrid approach enhances fairness and robustness as well as establishes a concrete accountability framework for autonomous SLA assurance in multivendor 6G networks.
comment: 6 pages, 4 figures
☆ PlugSI: Plug-and-Play Test-Time Graph Adaptation for Spatial Interpolation DASFAA 2026
With the rapid advancement of IoT and edge computing, sensor networks have become indispensable, driving the need for large-scale sensor deployment. However, the high deployment cost hinders their scalability. To tackle the issues, Spatial Interpolation (SI) introduces virtual sensors to infer readings from observed sensors, leveraging graph structure. However, current graph-based SI methods rely on pre-trained models, lack adaptation to larger and unseen graphs at test-time, and overlook test data utilization. To address these issues, we propose PlugSI, a plug-and-play framework that refines test-time graph through two key innovations. First, we design an Unknown Topology Adapter (UTA) that adapts to the new graph structure of each small-batch at test-time, enhancing the generalization of SI pre-trained models. Second, we introduce a Temporal Balance Adapter (TBA) that maintains a stable historical consensus to guide UTA adaptation and prevent drifting caused by noise in the current batch. Empirically, extensive experiments demonstrate PlugSI can be seamlessly integrated into existing graph-based SI methods and provide significant improvement (e.g., a 10.81% reduction in MAE).
comment: Accepted at DASFAA 2026 (Full Research Paper)
☆ A Controlled Study of Double DQN and Dueling DQN Under Cross-Environment Transfer
Transfer learning in deep reinforcement learning is often motivated by improved stability and reduced training cost, but it can also fail under substantial domain shift. This paper presents a controlled empirical study examining how architectural differences between Double Deep Q-Networks (DDQN) and Dueling DQN influence transfer behavior across environments. Using CartPole as a source task and LunarLander as a structurally distinct target task, we evaluate a fixed layer-wise representation transfer protocol under identical hyperparameters and training conditions, with baseline agents trained from scratch used to contextualize transfer effects. Empirical results show that DDQN consistently avoids negative transfer under the examined setup and maintains learning dynamics comparable to baseline performance in the target environment. In contrast, Dueling DQN consistently exhibits negative transfer under identical conditions, characterized by degraded rewards and unstable optimization behavior. Statistical analysis across multiple random seeds confirms a significant performance gap under transfer. These findings suggest that architectural inductive bias is strongly associated with robustness to cross-environment transfer in value-based deep reinforcement learning under the examined transfer protocol.
☆ Decomposing Reasoning Efficiency in Large Language Models
Large language models trained for reasoning trade off inference tokens against accuracy, yet standard evaluations report only final accuracy, obscuring where tokens are spent or wasted. We introduce a trace-optional framework that decomposes token efficiency into interpretable factors: completion under a fixed token budget (avoiding truncation), conditional correctness given completion, and verbosity (token usage). When benchmark metadata provides per-instance workload proxies, we further factor verbosity into two components: mean verbalization overhead (tokens per work unit) and a coupling coefficient capturing how overhead scales with task workload. When reasoning traces are available, we add deterministic trace-quality measures (grounding, repetition, prompt copying) to separate degenerate looping from verbose-but-engaged reasoning, avoiding human labeling and LLM judges. Evaluating 25 models on CogniLoad, we find that accuracy and token-efficiency rankings diverge (Spearman $ρ=0.63$), efficiency gaps are often driven by conditional correctness, and verbalization overhead varies by about 9 times (only weakly related to model scale). Our decomposition reveals distinct bottleneck profiles that suggest different efficiency interventions.
comment: Preprint (under review). 29 pages, 4 figures
☆ Fully-automated sleep staging: multicenter validation of a generalizable deep neural network for Parkinson's disease and isolated REM sleep behavior disorder
Isolated REM sleep behavior disorder (iRBD) is a key prodromal marker of Parkinson's disease (PD), and video-polysomnography (vPSG) remains the diagnostic gold standard. However, manual sleep staging is particularly challenging in neurodegenerative diseases due to EEG abnormalities and fragmented sleep, making PSG assessments a bottleneck for deploying new RBD screening technologies at scale. We adapted U-Sleep, a deep neural network, for generalizable sleep staging in PD and iRBD. A pretrained U-Sleep model, based on a large publicly available, multisite non-neurodegenerative dataset (PUB; 19,236 PSGs across 12 sites), was fine-tuned on research datasets from two centers (Lundbeck Foundation Parkinson's Disease Research Center (PACE) and the Cologne-Bonn Cohort (CBC); 112 PD, 138 iRBD, 89 age-matched controls. The resulting model was evaluated on an independent dataset from the Danish Center for Sleep Medicine (DCSM; 81 PD, 36 iRBD, 87 sleep-clinic controls). A subset of PSGs with low agreement between the human rater and the model (\k{appa} < 0.6) was re-scored by a second blinded human rater to identify sources of disagreement. Finally, we applied confidence-based thresholds to optimize REM sleep staging. The pretrained model achieved mean \k{appa} = 0.81 in PUB, but \k{appa} = 0.66 when applied directly to PACE/CBC. By fine-tuning the model, we developed a generalized model with \k{appa} = 0.74 on PACE/CBC (p < 0.001 vs. the pretrained model). In DCSM, mean and median \k{appa} increased from 0.60 to 0.64 (p < 0.001) and 0.64 to 0.69 (p < 0.001), respectively. In the interrater study, PSGs with low agreement between the model and the initial scorer showed similarly low agreement between human scorers. Applying a confidence threshold increased the proportion of correctly identified REM sleep epochs from 85% to 95.5%, while preserving sufficient (> 5 min) REM sleep for 95% of subjects.
comment: 21 pages excluding supplementary, 9 figures
☆ Toeplitz Based Spectral Methods for Data-driven Dynamical Systems
We introduce a Toeplitz-based framework for data-driven spectral estimation of linear evolution operators in dynamical systems. Focusing on transfer and Koopman operators from equilibrium trajectories without access to the underlying equations of motion, our method applies Toeplitz filters to the infinitesimal generator to extract eigenvalues, eigenfunctions, and spectral measures. Structural prior knowledge, such as self-adjointness or skew-symmetry, can be incorporated by design. The approach is statistically consistent and computationally efficient, leveraging both primal and dual algorithms commonly used in statistical learning. Numerical experiments on deterministic and chaotic systems demonstrate that the framework can recover spectral properties beyond the reach of standard data-driven methods.
comment: 18 pages, 3 figures
☆ When Less is More: The LLM Scaling Paradox in Context Compression
Scaling up model parameters has long been a prevalent training paradigm driven by the assumption that larger models yield superior generation capabilities. However, under lossy context compression in a compressor-decoder setup, we observe a Size-Fidelity Paradox: increasing the compressor size can lessen the faithfulness of reconstructed contexts though training loss decreases. Through extensive experiments across models from 0.6B to 90B, we coin this paradox arising from two dominant factors: 1) knowledge overwriting: larger models increasingly replace source facts with their own prior beliefs, e.g., ``the white strawberry'' $\to$ ``the red strawberry''; and 2) semantic drift: larger models tend to paraphrase or restructure content instead of reproducing it verbatim, e.g., ``Alice hit Bob'' $\to$ ``Bob hit Alice''. By holding model size fixed, we reflect on the emergent properties of compressed context representations. We show that the culprit is not parameter count itself, but the excessive semantic capacity and amplified generative uncertainty that accompany scaling. Specifically, the increased rank of context embeddings facilitates prior knowledge intrusion, whereas higher entropy over token prediction distributions promotes rewriting. Our results complement existing evaluations over context compression paradigm, underpinning a breakdown in scaling laws for faithful preservation in open-ended generation.
comment: 10 pages, 4 figures, conference
☆ Circuit Fingerprints: How Answer Tokens Encode Their Geometrical Path ICML 2026
Circuit discovery and activation steering in transformers have developed as separate research threads, yet both operate on the same representational space. Are they two views of the same underlying structure? We show they follow a single geometric principle: answer tokens, processed in isolation, encode the directions that would produce them. This Circuit Fingerprint hypothesis enables circuit discovery without gradients or causal intervention -- recovering comparable structure to gradient-based methods through geometric alignment alone. We validate this on standard benchmarks (IOI, SVA, MCQA) across four model families, achieving circuit discovery performance comparable to gradient-based methods. The same directions that identify circuit components also enable controlled steering -- achieving 69.8\% emotion classification accuracy versus 53.1\% for instruction prompting while preserving factual accuracy. Beyond method development, this read-write duality reveals that transformer circuits are fundamentally geometric structures: interpretability and controllability are two facets of the same object.
comment: Submitted to ICML 2026. 15 pages, 11 figures
☆ Why Linear Interpretability Works: Invariant Subspaces as a Result of Architectural Constraints ICML 2026
Linear probes and sparse autoencoders consistently recover meaningful structure from transformer representations -- yet why should such simple methods succeed in deep, nonlinear systems? We show this is not merely an empirical regularity but a consequence of architectural necessity: transformers communicate information through linear interfaces (attention OV circuits, unembedding matrices), and any semantic feature decoded through such an interface must occupy a context-invariant linear subspace. We formalize this as the \emph{Invariant Subspace Necessity} theorem and derive the \emph{Self-Reference Property}: tokens directly provide the geometric direction for their associated features, enabling zero-shot identification of semantic structure without labeled data or learned probes. Empirical validation in eight classification tasks and four model families confirms the alignment between class tokens and semantically related instances. Our framework provides \textbf{a principled architectural explanation} for why linear interpretability methods work, unifying linear probes and sparse autoencoders.
comment: Submitted to ICML 2026. 19 pages, 13 figures
☆ Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
comment: https://github.com/Kwen-Chen/Flexible-Entropy-Control
☆ Explainability in Generative Medical Diffusion Models: A Faithfulness-Based Analysis on MRI Synthesis SC2026
This study investigates the explainability of generative diffusion models in the context of medical imaging, focusing on Magnetic resonance imaging (MRI) synthesis. Although diffusion models have shown strong performance in generating realistic medical images, their internal decision making process remains largely opaque. We present a faithfulness-based explainability framework that analyzes how prototype-based explainability methods like ProtoPNet (PPNet), Enhanced ProtoPNet (EPPNet), and ProtoPool can link the relationship between generated and training features. Our study focuses on understanding the reasoning behind image formation through denoising trajectory of diffusion model and subsequently prototype explainability with faithfulness analysis. Experimental analysis shows that EPPNet achieves the highest faithfulness (with score 0.1534), offering more reliable insights, and explainability into the generative process. The results highlight that diffusion models can be made more transparent and trustworthy through faithfulness-based explanations, contributing to safer and more interpretable applications of generative AI in healthcare.
comment: Accepted at 3rd World Congress on Smart Computing (WCSC2026) conference
Self-Supervised Learning as Discrete Communication
Most self-supervised learning (SSL) methods learn continuous visual representations by aligning different views of the same input, offering limited control over how information is structured across representation dimensions. In this work, we frame visual self-supervised learning as a discrete communication process between a teacher and a student network, where semantic information is transmitted through a fixed-capacity binary channel. Rather than aligning continuous features, the student predicts multi-label binary messages produced by the teacher. Discrete agreement is enforced through an element-wise binary cross-entropy objective, while a coding-rate regularization term encourages effective utilization of the constrained channel, promoting structured representations. We further show that periodically reinitializing the projection head strengthens this effect by encouraging embeddings that remain predictive across multiple discrete encodings. Extensive experiments demonstrate consistent improvements over continuous agreement baselines on image classification, retrieval, and dense visual prediction tasks, as well as under domain shift through self-supervised adaptation. Beyond backbone representations, we analyze the learned binary codes and show that they form a compact and informative discrete language, capturing semantic factors reusable across classes.
☆ Grounding LTL Tasks in Sub-Symbolic RL Environments for Zero-Shot Generalization
In this work we address the problem of training a Reinforcement Learning agent to follow multiple temporally-extended instructions expressed in Linear Temporal Logic in sub-symbolic environments. Previous multi-task work has mostly relied on knowledge of the mapping between raw observations and symbols appearing in the formulae. We drop this unrealistic assumption by jointly training a multi-task policy and a symbol grounder with the same experience. The symbol grounder is trained only from raw observations and sparse rewards via Neural Reward Machines in a semi-supervised fashion. Experiments on vision-based environments show that our method achieves performance comparable to using the true symbol grounding and significantly outperforms state-of-the-art methods for sub-symbolic environments.
comment: Preprint currently under review
☆ Towards Poisoning Robustness Certification for Natural Language Generation
Understanding the reliability of natural language generation is critical for deploying foundation models in security-sensitive domains. While certified poisoning defenses provide provable robustness bounds for classification tasks, they are fundamentally ill-equipped for autoregressive generation: they cannot handle sequential predictions or the exponentially large output space of language models. To establish a framework for certified natural language generation, we formalize two security properties: stability (robustness to any change in generation) and validity (robustness to targeted, harmful changes in generation). We introduce Targeted Partition Aggregation (TPA), the first algorithm to certify validity/targeted attacks by computing the minimum poisoning budget needed to induce a specific harmful class, token, or phrase. Further, we extend TPA to provide tighter guarantees for multi-turn generations using mixed integer linear programming (MILP). Empirically, we demonstrate TPA's effectiveness across diverse settings including: certifying validity of agent tool-calling when adversaries modify up to 0.5% of the dataset and certifying 8-token stability horizons in preference-based alignment. Though inference-time latency remains an open challenge, our contributions enable certified deployment of language models in security-critical applications.
☆ Linear Model Extraction via Factual and Counterfactual Queries
In model extraction attacks, the goal is to reveal the parameters of a black-box machine learning model by querying the model for a selected set of data points. Due to an increasing demand for explanations, this may involve counterfactual queries besides the typically considered factual queries. In this work, we consider linear models and three types of queries: factual, counterfactual, and robust counterfactual. First, for an arbitrary set of queries, we derive novel mathematical formulations for the classification regions for which the decision of the unknown model is known, without recovering any of the model parameters. Second, we derive bounds on the number of queries needed to extract the model's parameters for (robust) counterfactual queries under arbitrary norm-based distances. We show that the full model can be recovered using just a single counterfactual query when differentiable distance measures are employed. In contrast, when using polyhedral distances for instance, the number of required queries grows linearly with the dimension of the data space. For robust counterfactuals, the latter number of queries doubles. Consequently, the applied distance function and robustness of counterfactuals have a significant impact on the model's security.
☆ Allure of Craquelure: A Variational-Generative Approach to Crack Detection in Paintings
Recent advances in imaging technologies, deep learning and numerical performance have enabled non-invasive detailed analysis of artworks, supporting their documentation and conservation. In particular, automated detection of craquelure in digitized paintings is crucial for assessing degradation and guiding restoration, yet remains challenging due to the possibly complex scenery and the visual similarity between cracks and crack-like artistic features such as brush strokes or hair. We propose a hybrid approach that models crack detection as an inverse problem, decomposing an observed image into a crack-free painting and a crack component. A deep generative model is employed as powerful prior for the underlying artwork, while crack structures are captured using a Mumford--Shah-type variational functional together with a crack prior. Joint optimization yields a pixel-level map of crack localizations in the painting.
☆ ExO-PPO: an Extended Off-policy Proximal Policy Optimization Algorithm
Deep reinforcement learning has been able to solve various tasks successfully, however, due to the construction of policy gradient and training dynamics, tuning deep reinforcement learning models remains challenging. As one of the most successful deep reinforcement-learning algorithm, the Proximal Policy Optimization algorithm (PPO) clips the policy gradient within a conservative on-policy updates, which ensures reliable and stable policy improvement. However, this training pattern may sacrifice sample efficiency. On the other hand, off-policy methods make more adequate use of data through sample reuse, though at the cost of increased the estimation variance and bias. To leverage the advantages of both, in this paper, we propose a new PPO variant based on the stability guarantee from conservative on-policy iteration with a more efficient off-policy data utilization. Specifically, we first derive an extended off-policy improvement from an expectation form of generalized policy improvement lower bound. Then, we extend the clipping mechanism with segmented exponential functions for a suitable surrogate objective function. Third, the trajectories generated by the past $M$ policies are organized in the replay buffer for off-policy training. We refer to this method as Extended Off-policy Proximal Policy Optimization (ExO-PPO). Compared with PPO and some other state-of-the-art variants, we demonstrate an improved performance of ExO-PPO with balanced sample efficiency and stability on varied tasks in the empirical experiments.
☆ Continual Learning for non-stationary regression via Memory-Efficient Replay
Data streams are rarely static in dynamic environments like Industry 4.0. Instead, they constantly change, making traditional offline models outdated unless they can quickly adjust to the new data. This need can be adequately addressed by continual learning (CL), which allows systems to gradually acquire knowledge without incurring the prohibitive costs of retraining them from scratch. Most research on continual learning focuses on classification problems, while very few studies address regression tasks. We propose the first prototype-based generative replay framework designed for online task-free continual regression. Our approach defines an adaptive output-space discretization model, enabling prototype-based generative replay for continual regression without storing raw data. Evidence obtained from several benchmark datasets shows that our framework reduces forgetting and provides more stable performance than other state-of-the-art solutions.
☆ SAQNN: Spectral Adaptive Quantum Neural Network as a Universal Approximator
Quantum machine learning (QML), as an interdisciplinary field bridging quantum computing and machine learning, has garnered significant attention in recent years. Currently, the field as a whole faces challenges due to incomplete theoretical foundations for the expressivity of quantum neural networks (QNNs). In this paper we propose a constructive QNN model and demonstrate that it possesses the universal approximation property (UAP), which means it can approximate any square-integrable function up to arbitrary accuracy. Furthermore, it supports switching function bases, thus adaptable to various scenarios in numerical approximation and machine learning. Our model has asymptotic advantages over the best classical feed-forward neural networks in terms of circuit size and achieves optimal parameter complexity when approximating Sobolev functions under $L_2$ norm.
☆ BRAVA-GNN: Betweenness Ranking Approximation Via Degree MAss Inspired Graph Neural Network KDD
Computing node importance in networks is a long-standing fundamental problem that has driven extensive study of various centrality measures. A particularly well-known centrality measure is betweenness centrality, which becomes computationally prohibitive on large-scale networks. Graph Neural Network (GNN) models have thus been proposed to predict node rankings according to their relative betweenness centrality. However, state-of-the-art methods fail to generalize to high-diameter graphs such as road networks. We propose BRAVA-GNN, a lightweight GNN architecture that leverages the empirically observed correlation linking betweenness centrality to degree-based quantities, in particular multi-hop degree mass. This correlation motivates the use of degree masses as size-invariant node features and synthetic training graphs that closely match the degree distributions of real networks. Furthermore, while previous work relies on scale-free synthetic graphs, we leverage the hyperbolic random graph model, which reproduces power-law exponents outside the scale-free regime, better capturing the structure of real-world graphs like road networks. This design enables BRAVA-GNN to generalize across diverse graph families while using 54x fewer parameters than the most lightweight existing GNN baseline. Extensive experiments on 19 real-world networks, spanning social, web, email, and road graphs, show that BRAVA-GNN achieves up to 214% improvement in Kendall-Tau correlation and up to 70x speedup in inference time over state-of-the-art GNN-based approaches, particularly on challenging road networks.
comment: Submitted to KDD
☆ Physics-informed diffusion models in spectral space
We propose a methodology that combines generative latent diffusion models with physics-informed machine learning to generate solutions of parametric partial differential equations (PDEs) conditioned on partial observations, which includes, in particular, forward and inverse PDE problems. We learn the joint distribution of PDE parameters and solutions via a diffusion process in a latent space of scaled spectral representations, where Gaussian noise corresponds to functions with controlled regularity. This spectral formulation enables significant dimensionality reduction compared to grid-based diffusion models and ensures that the induced process in function space remains within a class of functions for which the PDE operators are well defined. Building on diffusion posterior sampling, we enforce physics-informed constraints and measurement conditions during inference, applying Adam-based updates at each diffusion step. We evaluate the proposed approach on Poisson, Helmholtz, and incompressible Navier--Stokes equations, demonstrating improved accuracy and computational efficiency compared with existing diffusion-based PDE solvers, which are state of the art for sparse observations. Code is available at https://github.com/deeplearningmethods/PISD.
comment: 24 pages, 9 figures
☆ Life Cycle-Aware Evaluation of Knowledge Distillation for Machine Translation: Environmental Impact and Translation Quality Trade-offs
Knowledge distillation (KD) is a tool to compress a larger system (teacher) into a smaller one (student). In machine translation, studies typically report only the translation quality of the student and omit the computational complexity of performing KD, making it difficult to select among the many available KD choices under compute-induced constraints. In this study, we evaluate representative KD methods by considering both translation quality and computational cost. We express computational cost as a carbon footprint using the machine learning life cycle assessment (MLCA) tool. This assessment accounts for runtime operational emissions and amortized hardware production costs throughout the KD model life cycle (teacher training, distillation, and inference). We find that (i) distillation overhead dominates the total footprint at small deployment volumes, (ii) inference dominates at scale, making KD beneficial only beyond a task-dependent usage threshold, and (iii) word-level distillation typically offers more favorable footprint-quality trade-offs than sequence-level distillation. Our protocol provides reproducible guidance for selecting KD methods under explicit quality and compute-induced constraints.
☆ Contextual and Seasonal LSTMs for Time Series Anomaly Detection ICLR 2026
Univariate time series (UTS), where each timestamp records a single variable, serve as crucial indicators in web systems and cloud servers. Anomaly detection in UTS plays an essential role in both data mining and system reliability management. However, existing reconstruction-based and prediction-based methods struggle to capture certain subtle anomalies, particularly small point anomalies and slowly rising anomalies. To address these challenges, we propose a novel prediction-based framework named Contextual and Seasonal LSTMs (CS-LSTMs). CS-LSTMs are built upon a noise decomposition strategy and jointly leverage contextual dependencies and seasonal patterns, thereby strengthening the detection of subtle anomalies. By integrating both time-domain and frequency-domain representations, CS-LSTMs achieve more accurate modeling of periodic trends and anomaly localization. Extensive evaluations on public benchmark datasets demonstrate that CS-LSTMs consistently outperform state-of-the-art methods, highlighting their effectiveness and practical value in robust time series anomaly detection.
comment: Published as a conference paper at ICLR 2026
☆ Model soups need only one ingredient
Fine-tuning large pre-trained models on a target distribution often improves in-distribution (ID) accuracy, but at the cost of out-of-distribution (OOD) robustness as representations specialize to the fine-tuning data. Weight-space ensembling methods, such as Model Soups, mitigate this effect by averaging multiple checkpoints, but they are computationally prohibitive, requiring the training and storage of dozens of fine-tuned models. In this paper, we introduce MonoSoup, a simple, data-free, hyperparameter-free, post-hoc method that achieves a strong ID-OOD balance using only a single checkpoint. Our method applies Singular Value Decomposition (SVD) to each layer's update and decomposes it into high-energy directions that capture task-specific adaptation and low-energy directions that introduce noise but may still encode residual signals useful for robustness. MonoSoup then uses entropy-based effective rank to automatically re-weigh these components with layer-wise coefficients that account for the spectral and geometric structure of the model. Experiments on CLIP models fine-tuned on ImageNet and evaluated under natural distribution shifts, as well as on Qwen language models tested on mathematical reasoning and multiple-choice benchmarks, show that this plug-and-play approach is a practical and effective alternative to multi-checkpoint methods, retaining much of their benefits without their computational overhead.
☆ Resilient Class-Incremental Learning: on the Interplay of Drifting, Unlabelled and Imbalanced Data Streams
In today's connected world, the generation of massive streaming data across diverse domains has become commonplace. In the presence of concept drift, class imbalance, label scarcity, and new class emergence, they jointly degrade representation stability, bias learning toward outdated distributions, and reduce the resilience and reliability of detection in dynamic environments. This paper proposes SCIL (Streaming Class-Incremental Learning) to address these challenges. The SCIL framework integrates an autoencoder (AE) with a multi-layer perceptron for multi-class prediction, uses a dual-loss strategy (classification and reconstruction) for prediction and new class detection, employs corrected pseudo-labels for online training, manages classes with queues, and applies oversampling to handle imbalance. The rationale behind the method's structure is elucidated through ablation studies and a comprehensive experimental evaluation is performed using both real-world and synthetic datasets that feature class imbalance, incremental classes, and concept drifts. Our results demonstrate that SCIL outperforms strong baselines and state-of-the-art methods. Based on our commitment to Open Science, we make our code and datasets available to the community.
comment: Accepted by Artificial Intelligence Science and Engineering
☆ Differentiable Modeling for Low-Inertia Grids: Benchmarking PINNs, NODEs, and DP for Identification and Control of SMIB System
The transition toward low-inertia power systems demands modeling frameworks that provide not only accurate state predictions but also physically consistent sensitivities for control. While scientific machine learning offers powerful nonlinear modeling tools, the control-oriented implications of different differentiable paradigms remain insufficiently understood. This paper presents a comparative study of Physics-Informed Neural Networks (PINNs), Neural Ordinary Differential Equations (NODEs), and Differentiable Programming (DP) for modeling, identification, and control of power system dynamics. Using the Single Machine Infinite Bus (SMIB) system as a benchmark, we evaluate their performance in trajectory extrapolation, parameter estimation, and Linear Quadratic Regulator (LQR) synthesis. Our results highlight a fundamental trade-off between data-driven flexibility and physical structure. NODE exhibits superior extrapolation by capturing the underlying vector field, whereas PINN shows limited generalization due to its reliance on a time-dependent solution map. In the inverse problem of parameter identification, while both DP and PINN successfully recover the unknown parameters, DP achieves significantly faster convergence by enforcing governing equations as hard constraints. Most importantly, for control synthesis, the DP framework yields closed-loop stability comparable to the theoretical optimum. Furthermore, we demonstrate that NODE serves as a viable data-driven surrogate when governing equations are unavailable.
comment: 9 pages, 7 figures, 4 tables
☆ The Entropic Signature of Class Speciation in Diffusion Models
Diffusion models do not recover semantic structure uniformly over time. Instead, samples transition from semantic ambiguity to class commitment within a narrow regime. Recent theoretical work attributes this transition to dynamical instabilities along class-separating directions, but practical methods to detect and exploit these windows in trained models are still limited. We show that tracking the class-conditional entropy of a latent semantic variable given the noisy state provides a reliable signature of these transition regimes. By restricting the entropy to semantic partitions, the entropy can furthermore resolve semantic decisions at different levels of abstraction. We analyze this behavior in high-dimensional Gaussian mixture models and show that the entropy rate concentrates on the same logarithmic time scale as the speciation symmetry-breaking instability previously identified in variance-preserving diffusion. We validate our method on EDM2-XS and Stable Diffusion 1.5, where class-conditional entropy consistently isolates the noise regimes critical for semantic structure formation. Finally, we use our framework to quantify how guidance redistributes semantic information over time. Together, these results connect information-theoretic and statistical physics perspectives on diffusion and provide a principled basis for time-localized control.
comment: 21 pages
☆ Blind denoising diffusion models and the blessings of dimensionality
We analyze, theoretically and empirically, the performance of generative diffusion models based on \emph{blind denoisers}, in which the denoiser is not given the noise amplitude in either the training or sampling processes. Assuming that the data distribution has low intrinsic dimensionality, we prove that blind denoising diffusion models (BDDMs), despite not having access to the noise amplitude, \emph{automatically} track a particular \emph{implicit} noise schedule along the reverse process. Our analysis shows that BDDMs can accurately sample from the data distribution in polynomially many steps as a function of the intrinsic dimension. Empirical results corroborate these mathematical findings on both synthetic and image data, demonstrating that the noise variance is accurately estimated from the noisy image. Remarkably, we observe that schedule-free BDDMs produce samples of higher quality compared to their non-blind counterparts. We provide evidence that this performance gain arises because BDDMs correct the mismatch between the true residual noise (of the image) and the noise assumed by the schedule used in non-blind diffusion models.
comment: 40 pages, 12 figures
☆ LLM-FS: Zero-Shot Feature Selection for Effective and Interpretable Malware Detection
Feature selection (FS) remains essential for building accurate and interpretable detection models, particularly in high-dimensional malware datasets. Conventional FS methods such as Extra Trees, Variance Threshold, Tree-based models, Chi-Squared tests, ANOVA, Random Selection, and Sequential Attention rely primarily on statistical heuristics or model-driven importance scores, often overlooking the semantic context of features. Motivated by recent progress in LLM-driven FS, we investigate whether large language models (LLMs) can guide feature selection in a zero-shot setting, using only feature names and task descriptions, as a viable alternative to traditional approaches. We evaluate multiple LLMs (GPT-5.0, GPT-4.0, Gemini-2.5 etc.) on the EMBOD dataset (a fusion of EMBER and BODMAS benchmark datasets), comparing them against established FS methods across several classifiers, including Random Forest, Extra Trees, MLP, and KNN. Performance is assessed using accuracy, precision, recall, F1, AUC, MCC, and runtime. Our results demonstrate that LLM-guided zero-shot feature selection achieves competitive performance with traditional FS methods while offering additional advantages in interpretability, stability, and reduced dependence on labeled data. These findings position zero-shot LLM-based FS as a promising alternative strategy for effective and interpretable malware detection, paving the way for knowledge-guided feature selection in security-critical applications
☆ AlignTune: Modular Toolkit for Post-Training Alignment of Large Language Models
Post-training alignment is central to deploying large language models (LLMs), yet practical workflows remain split across backend-specific tools and ad-hoc glue code, making experiments hard to reproduce. We identify backend interference, reward fragmentation, and irreproducible pipelines as key obstacles in alignment research. We introduce AlignTune, a modular toolkit exposing a unified interface for supervised fine-tuning (SFT) and RLHF-style optimization with interchangeable TRL and Unsloth backends. AlignTune standardizes configuration, provides an extensible reward layer (rule-based and learned), and integrates evaluation over standard benchmarks and custom tasks. By isolating backend-specific logic behind a single factory boundary, AlignTune enables controlled comparisons and reproducible alignment experiments.
comment: https://github.com/Lexsi-Labs/aligntune
☆ Tracking Finite-Time Lyapunov Exponents to Robustify Neural ODEs
We investigate finite-time Lyapunov exponents (FTLEs), a measure for exponential separation of input perturbations, of deep neural networks within the framework of continuous-depth neural ODEs. We demonstrate that FTLEs are powerful organizers for input-output dynamics, allowing for better interpretability and the comparison of distinct model architectures. We establish a direct connection between Lyapunov exponents and adversarial vulnerability, and propose a novel training algorithm that improves robustness by FTLE regularization. The key idea is to suppress exponents far from zero in the early stage of the input dynamics. This approach enhances robustness and reduces computational cost compared to full-interval regularization, as it avoids a full ``double'' backpropagation.
comment: Lyapunov exponents, neural ODEs, deep learning, adversarial robustness, Lagrangian coherent structures
☆ Why the Counterintuitive Phenomenon of Likelihood Rarely Appears in Tabular Anomaly Detection with Deep Generative Models?
Deep generative models with tractable and analytically computable likelihoods, exemplified by normalizing flows, offer an effective basis for anomaly detection through likelihood-based scoring. We demonstrate that, unlike in the image domain where deep generative models frequently assign higher likelihoods to anomalous data, such counterintuitive behavior occurs far less often in tabular settings. We first introduce a domain-agnostic formulation that enables consistent detection and evaluation of the counterintuitive phenomenon, addressing the absence of precise definition. Through extensive experiments on 47 tabular datasets and 10 CV/NLP embedding datasets in ADBench, benchmarked against 13 baseline models, we demonstrate that the phenomenon, as defined, is consistently rare in general tabular data. We further investigate this phenomenon from both theoretical and empirical perspectives, focusing on the roles of data dimensionality and difference in feature correlation. Our results suggest that likelihood-only detection with normalizing flows offers a practical and reliable approach for anomaly detection in tabular domains.
comment: 47 pages, 11 figures
☆ On the Optimal Reasoning Length for RL-Trained Language Models SP
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures. Submitted to the Workshop on Scaling Post-training for LLMs (SPOT) at ICLR 2026
☆ Mitigating the Likelihood Paradox in Flow-based OOD Detection via Entropy Manipulation
Deep generative models that can tractably compute input likelihoods, including normalizing flows, often assign unexpectedly high likelihoods to out-of-distribution (OOD) inputs. We mitigate this likelihood paradox by manipulating input entropy based on semantic similarity, applying stronger perturbations to inputs that are less similar to an in-distribution memory bank. We provide a theoretical analysis showing that entropy control increases the expected log-likelihood gap between in-distribution and OOD samples in favor of the in-distribution, and we explain why the procedure works without any additional training of the density model. We then evaluate our method against likelihood-based OOD detectors on standard benchmarks and find consistent AUROC improvements over baselines, supporting our explanation.
comment: 28 pages, 4 figures
☆ Sample-Efficient Real-World Dexterous Policy Fine-Tuning via Action-Chunked Critics and Normalizing Flows
Real-world fine-tuning of dexterous manipulation policies remains challenging due to limited real-world interaction budgets and highly multimodal action distributions. Diffusion-based policies, while expressive, do not permit conservative likelihood-based updates during fine-tuning because action probabilities are intractable. In contrast, conventional Gaussian policies collapse under multimodality, particularly when actions are executed in chunks, and standard per-step critics fail to align with chunked execution, leading to poor credit assignment. We present SOFT-FLOW, a sample-efficient off-policy fine-tuning framework with normalizing flow (NF) to address these challenges. The normalizing flow policy yields exact likelihoods for multimodal action chunks, allowing conservative, stable policy updates through likelihood regularization and thereby improving sample efficiency. An action-chunked critic evaluates entire action sequences, aligning value estimation with the policy's temporal structure and improving long-horizon credit assignment. To our knowledge, this is the first demonstration of a likelihood-based, multimodal generative policy combined with chunk-level value learning on real robotic hardware. We evaluate SOFT-FLOW on two challenging dexterous manipulation tasks in the real world: cutting tape with scissors retrieved from a case, and in-hand cube rotation with a palm-down grasp -- both of which require precise, dexterous control over long horizons. On these tasks, SOFT-FLOW achieves stable, sample-efficient adaptation where standard methods struggle.
☆ Rollout-Training Co-Design for Efficient LLM-Based Multi-Agent Reinforcement Learning
Despite algorithm-level innovations for multi-agent reinforcement learning (MARL), the underlying networked infrastructure for large-scale MARL training remains underexplored. Existing training frameworks primarily optimize for single-agent scenarios and fail to address the unique system-level challenges of MARL, including rollout-training synchronization barriers, rollout load imbalance, and training resource underutilization. To bridge this gap, we propose FlexMARL, the first end-to-end training framework that holistically optimizes rollout, training, and their orchestration for large-scale LLM-based MARL. Specifically, FlexMARL introduces the joint orchestrator to manage data flow under the rollout-training disaggregated architecture. Building upon the experience store, a novel micro-batch driven asynchronous pipeline eliminates the synchronization barriers while providing strong consistency guarantees. Rollout engine adopts a parallel sampling scheme combined with hierarchical load balancing, which adapts to skewed inter/intra-agent request patterns. Training engine achieves on-demand hardware binding through agent-centric resource allocation. The training states of different agents are swapped via unified and location-agnostic communication. Empirical results on a large-scale production cluster demonstrate that FlexMARL achieves up to 7.3x speedup and improves hardware utilization by up to 5.6x compared to existing frameworks.
☆ Aligning Tree-Search Policies with Fixed Token Budgets in Test-Time Scaling of LLMs
Tree-search decoding is an effective form of test-time scaling for large language models (LLMs), but real-world deployment imposes a fixed per-query token budget that varies across settings. Existing tree-search policies are largely budget-agnostic, treating the budget as a termination condition, which can lead to late-stage over-branching or premature termination. We propose {Budget-Guided MCTS} (BG-MCTS), a tree-search decoding algorithm that aligns its search policy with the remaining token budget: it starts with broad exploration, then prioritizes refinement and answer completion as the budget depletes while reducing late-stage branching from shallow nodes. BG-MCTS consistently outperforms budget-agnostic tree-search baselines across different budgets on MATH500 and AIME24/25 with open-weight LLMs.
☆ Predictive Query Language: A Domain-Specific Language for Predictive Modeling on Relational Databases
The purpose of predictive modeling on relational data is to predict future or missing values in a relational database, for example, future purchases of a user, risk of readmission of the patient, or the likelihood that a financial transaction is fraudulent. Typically powered by machine learning methods, predictive models are used in recommendations, financial fraud detection, supply chain optimization, and other systems, providing billions of predictions every day. However, training a machine learning model requires manual work to extract the required training examples - prediction entities and target labels - from the database, which is slow, laborious, and prone to mistakes. Here, we present the Predictive Query Language (PQL), a SQL-inspired declarative language for defining predictive tasks on relational databases. PQL allows specifying a predictive task in a single declarative query, enabling the automatic computation training labels for a large variety of machine learning tasks, such as regression, classification, time-series forecasting, and recommender systems. PQL is already successfully integrated and used in a collection of use cases as part of a predictive AI platform. The versatility of the language can be demonstrated through its many ongoing use cases, including financial fraud, item recommendations, and workload prediction. We demonstrate its versatile design through two implementations; one for small-scale, low-latency use and one that can handle large-scale databases.
☆ Training deep physical neural networks with local physical information bottleneck
Deep learning has revolutionized modern society but faces growing energy and latency constraints. Deep physical neural networks (PNNs) are interconnected computing systems that directly exploit analog dynamics for energy-efficient, ultrafast AI execution. Realizing this potential, however, requires universal training methods tailored to physical intricacies. Here, we present the Physical Information Bottleneck (PIB), a general and efficient framework that integrates information theory and local learning, enabling deep PNNs to learn under arbitrary physical dynamics. By allocating matrix-based information bottlenecks to each unit, we demonstrate supervised, unsupervised, and reinforcement learning across electronic memristive chips and optical computing platforms. PIB also adapts to severe hardware faults and allows for parallel training via geographically distributed resources. Bypassing auxiliary digital models and contrastive measurements, PIB recasts PNN training as an intrinsic, scalable information-theoretic process compatible with diverse physical substrates.
comment: 9 pages, 4 figures
☆ ECG-IMN: Interpretable Mesomorphic Neural Networks for 12-Lead Electrocardiogram Interpretation
Deep learning has achieved expert-level performance in automated electrocardiogram (ECG) diagnosis, yet the "black-box" nature of these models hinders their clinical deployment. Trust in medical AI requires not just high accuracy but also transparency regarding the specific physiological features driving predictions. Existing explainability methods for ECGs typically rely on post-hoc approximations (e.g., Grad-CAM and SHAP), which can be unstable, computationally expensive, and unfaithful to the model's actual decision-making process. In this work, we propose the ECG-IMN, an Interpretable Mesomorphic Neural Network tailored for high-resolution 12-lead ECG classification. Unlike standard classifiers, the ECG-IMN functions as a hypernetwork: a deep convolutional backbone generates the parameters of a strictly linear model specific to each input sample. This architecture enforces intrinsic interpretability, as the decision logic is mathematically transparent and the generated weights (W) serve as exact, high-resolution feature attribution maps. We introduce a transition decoder that effectively maps latent features to sample-wise weights, enabling precise localization of pathological evidence (e.g., ST-elevation, T-wave inversion) in both time and lead dimensions. We evaluate our approach on the PTB-XL dataset for classification tasks, demonstrating that the ECG-IMN achieves competitive predictive performance (AUROC comparable to black-box baselines) while providing faithful, instance-specific explanations. By explicitly decoupling parameter generation from prediction execution, our framework bridges the gap between deep learning capability and clinical trustworthiness, offering a principled path toward "white-box" cardiac diagnostics.
☆ Learning to Discover Iterative Spectral Algorithms
We introduce AutoSpec, a neural network framework for discovering iterative spectral algorithms for large-scale numerical linear algebra and numerical optimization. Our self-supervised models adapt to input operators using coarse spectral information (e.g., eigenvalue estimates and residual norms), and they predict recurrence coefficients for computing or applying a matrix polynomial tailored to a downstream task. The effectiveness of AutoSpec relies on three ingredients: an architecture whose inference pass implements short, executable numerical linear algebra recurrences; efficient training on small synthetic problems with transfer to large-scale real-world operators; and task-defined objectives that enforce the desired approximation or preconditioning behavior across the range of spectral profiles represented in the training set. We apply AutoSpec to discovering algorithms for representative numerical linear algebra tasks: accelerating matrix-function approximation; accelerating sparse linear solvers; and spectral filtering/preconditioning for eigenvalue computations. On real-world matrices, the learned procedures deliver orders-of-magnitude improvements in accuracy and/or reductions in iteration count, relative to basic baselines. We also find clear connections to classical theory: the induced polynomials often exhibit near-equiripple, near-minimax behavior characteristic of Chebyshev polynomials.
☆ Rashomon Sets and Model Multiplicity in Federated Learning
The Rashomon set captures the collection of models that achieve near-identical empirical performance yet may differ substantially in their decision boundaries. Understanding the differences among these models, i.e., their multiplicity, is recognized as a crucial step toward model transparency, fairness, and robustness, as it reveals decision boundaries instabilities that standard metrics obscure. However, the existing definitions of Rashomon set and multiplicity metrics assume centralized learning and do not extend naturally to decentralized, multi-party settings like Federated Learning (FL). In FL, multiple clients collaboratively train models under a central server's coordination without sharing raw data, which preserves privacy but introduces challenges from heterogeneous client data distribution and communication constraints. In this setting, the choice of a single best model may homogenize predictive behavior across diverse clients, amplify biases, or undermine fairness guarantees. In this work, we provide the first formalization of Rashomon sets in FL.First, we adapt the Rashomon set definition to FL, distinguishing among three perspectives: (I) a global Rashomon set defined over aggregated statistics across all clients, (II) a t-agreement Rashomon set representing the intersection of local Rashomon sets across a fraction t of clients, and (III) individual Rashomon sets specific to each client's local distribution.Second, we show how standard multiplicity metrics can be estimated under FL's privacy constraints. Finally, we introduce a multiplicity-aware FL pipeline and conduct an empirical study on standard FL benchmark datasets. Our results demonstrate that all three proposed federated Rashomon set definitions offer valuable insights, enabling clients to deploy models that better align with their local data, fairness considerations, and practical requirements.
☆ Beyond Student: An Asymmetric Network for Neural Network Inheritance
Knowledge Distillation (KD) has emerged as a powerful technique for model compression, enabling lightweight student networks to benefit from the performance of redundant teacher networks. However, the inherent capacity gap often limits the performance of student networks. Inspired by the expressiveness of pretrained teacher networks, a compelling research question arises: is there a type of network that can not only inherit the teacher's structure but also maximize the inheritance of its knowledge? Furthermore, how does the performance of such an inheriting network compare to that of student networks, all benefiting from the same teacher network? To further explore this question, we propose InherNet, a neural network inheritance method that performs asymmetric low-rank decomposition on the teacher's weights and reconstructs a lightweight yet expressive network without significant architectural disruption. By leveraging Singular Value Decomposition (SVD) for initialization to ensure the inheritance of principal knowledge, InherNet effectively balances depth, width, and compression efficiency. Experimental results across unimodal and multimodal tasks demonstrate that InherNet achieves higher performance compared to student networks of similar parameter sizes. Our findings reveal a promising direction for future research in efficient model compression beyond traditional distillation.
☆ Towards Uniformity and Alignment for Multimodal Representation Learning
Multimodal representation learning aims to construct a shared embedding space in which heterogeneous modalities are semantically aligned. Despite strong empirical results, InfoNCE-based objectives introduce inherent conflicts that yield distribution gaps across modalities. In this work, we identify two conflicts in the multimodal regime, both exacerbated as the number of modalities increases: (i) an alignment-uniformity conflict, whereby the repulsion of uniformity undermines pairwise alignment, and (ii) an intra-alignment conflict, where aligning multiple modalities induces competing alignment directions. To address these issues, we propose a principled decoupling of alignment and uniformity for multimodal representations, providing a conflict-free recipe for multimodal learning that simultaneously supports discriminative and generative use cases without task-specific modules. We then provide a theoretical guarantee that our method acts as an efficient proxy for a global Hölder divergence over multiple modality distributions, and thus reduces the distribution gap among modalities. Extensive experiments on retrieval and UnCLIP-style generation demonstrate consistent gains.
☆ Improved Approximate Regret for Decentralized Online Continuous Submodular Maximization via Reductions
To expand the applicability of decentralized online learning, previous studies have proposed several algorithms for decentralized online continuous submodular maximization (D-OCSM) -- a non-convex/non-concave setting with continuous DR-submodular reward functions. However, there exist large gaps between their approximate regret bounds and the regret bounds achieved in the convex setting. Moreover, if focusing on projection-free algorithms, which can efficiently handle complex decision sets, they cannot even recover the approximate regret bounds achieved in the centralized setting. In this paper, we first demonstrate that for D-OCSM over general convex decision sets, these two issues can be addressed simultaneously. Furthermore, for D-OCSM over downward-closed decision sets, we show that the second issue can be addressed while significantly alleviating the first issue. Our key techniques are two reductions from D-OCSM to decentralized online convex optimization (D-OCO), which can exploit D-OCO algorithms to improve the approximate regret of D-OCSM in these two cases, respectively.
☆ Computationally Efficient Replicable Learning of Parities
We study the computational relationship between replicability (Impagliazzo et al. [STOC `22], Ghazi et al. [NeurIPS `21]) and other stability notions. Specifically, we focus on replicable PAC learning and its connections to differential privacy (Dwork et al. [TCC 2006]) and to the statistical query (SQ) model (Kearns [JACM `98]). Statistically, it was known that differentially private learning and replicable learning are equivalent and strictly more powerful than SQ-learning. Yet, computationally, all previously known efficient (i.e., polynomial-time) replicable learning algorithms were confined to SQ-learnable tasks or restricted distributions, in contrast to differentially private learning. Our main contribution is the first computationally efficient replicable algorithm for realizable learning of parities over arbitrary distributions, a task that is known to be hard in the SQ-model, but possible under differential privacy. This result provides the first evidence that efficient replicable learning over general distributions strictly extends efficient SQ-learning, and is closer in power to efficient differentially private learning, despite computational separations between replicability and privacy. Our main building block is a new, efficient, and replicable algorithm that, given a set of vectors, outputs a subspace of their linear span that covers most of them.
☆ Beware of the Batch Size: Hyperparameter Bias in Evaluating LoRA
Low-rank adaptation (LoRA) is a standard approach for fine-tuning large language models, yet its many variants report conflicting empirical gains, often on the same benchmarks. We show that these contradictions arise from a single overlooked factor: the batch size. When properly tuned, vanilla LoRA often matches the performance of more complex variants. We further propose a proxy-based, cost-efficient strategy for batch size tuning, revealing the impact of rank, dataset size, and model capacity on the optimal batch size. Our findings elevate batch size from a minor implementation detail to a first-order design parameter, reconciling prior inconsistencies and enabling more reliable evaluations of LoRA variants.
☆ Adaptive recurrent flow map operator learning for reaction diffusion dynamics
Reaction-diffusion (RD) equations underpin pattern formation across chemistry, biology, and physics, yet learning stable operators that forecast their long-term dynamics from data remains challenging. Neural-operator surrogates provide resolution-robust prediction, but autoregressive rollouts can drift due to the accumulation of error, and out-of-distribution (OOD) initial conditions often degrade accuracy. Physics-based numerical residual objectives can regularize operator learning, although they introduce additional assumptions, sensitivity to discretization and loss design, and higher training cost. Here we develop a purely data-driven operator learner with adaptive recurrent training (DDOL-ART) using a robust recurrent strategy with lightweight validation milestones that early-exit unproductive rollout segments and redirect optimization. Trained only on a single in-distribution toroidal Gaussian family over short horizons, DDOL-ART learns one-step operators that remain stable under long rollouts and generalize zero-shot to strong morphology shifts across FitzHugh-Nagumo (FN), Gray-Scott (GS), and Lambda-Omega (LO) systems. Across these benchmarks, DDOL-ART delivers a strong accuracy and cost trade-off. It is several-fold faster than a physics-based numerical-loss operator learner (NLOL) under matched settings, and it remains competitive on both in-distribution stability and OOD robustness. Training-dynamics diagnostics show that adaptivity strengthens the correlation between validation error and OOD test error performance, acting as a feedback controller that limits optimization drift. Our results indicate that feedback-controlled recurrent training of DDOL-ART generates robust flow-map surrogates without PDE residuals, while simultaneously maintaining competitiveness with NLOL at significantly reduced training costs.
☆ ArtifactLens: Hundreds of Labels Are Enough for Artifact Detection with VLMs
Modern image generators produce strikingly realistic images, where only artifacts like distorted hands or warped objects reveal their synthetic origin. Detecting these artifacts is essential: without detection, we cannot benchmark generators or train reward models to improve them. Current detectors fine-tune VLMs on tens of thousands of labeled images, but this is expensive to repeat whenever generators evolve or new artifact types emerge. We show that pretrained VLMs already encode the knowledge needed to detect artifacts - with the right scaffolding, this capability can be unlocked using only a few hundred labeled examples per artifact category. Our system, ArtifactLens, achieves state-of-the-art on five human artifact benchmarks (the first evaluation across multiple datasets) while requiring orders of magnitude less labeled data. The scaffolding consists of a multi-component architecture with in-context learning and text instruction optimization, with novel improvements to each. Our methods generalize to other artifact types - object morphology, animal anatomy, and entity interactions - and to the distinct task of AIGC detection.
comment: https://jmhb0.github.io/ArtifactLens/
☆ Online Learning in MDPs with Partially Adversarial Transitions and Losses
We study reinforcement learning in MDPs whose transition function is stochastic at most steps but may behave adversarially at a fixed subset of $Λ$ steps per episode. This model captures environments that are stable except at a few vulnerable points. We introduce \emph{conditioned occupancy measures}, which remain stable across episodes even with adversarial transitions, and use them to design two algorithms. The first handles arbitrary adversarial steps and achieves regret $\tilde{O}(H S^Λ\sqrt{K S A^{Λ+1}})$, where $K$ is the number of episodes, $S$ is the number of state, $A$ is the number of actions and $H$ is the episode's horizon. The second, assuming the adversarial steps are consecutive, improves the dependence on $S$ to $\tilde{O}(H\sqrt{K S^{3} A^{Λ+1}})$. We further give a $K^{2/3}$-regret reduction that removes the need to know which steps are the $Λ$ adversarial steps. We also characterize the regret of adversarial MDPs in the \emph{fully adversarial} setting ($Λ=H-1$) both for full-information and bandit feedback, and provide almost matching upper and lower bounds (slightly strengthen existing lower bounds, and clarify how different feedback structures affect the hardness of learning).
☆ Scalable and Reliable State-Aware Inference of High-Impact N-k Contingencies
Increasing penetration of inverter-based resources, flexible loads, and rapidly changing operating conditions make higher-order $N\!-\!k$ contingency assessment increasingly important but computationally prohibitive. Exhaustive evaluation of all outage combinations using AC power-flow or ACOPF is infeasible in routine operation. This fact forces operators to rely on heuristic screening methods whose ability to consistently retain all critical contingencies is not formally established. This paper proposes a scalable, state-aware contingency inference framework designed to directly generate high-impact $N\!-\!k$ outage scenarios without enumerating the combinatorial contingency space. The framework employs a conditional diffusion model to produce candidate contingencies tailored to the current operating state, while a topology-aware graph neural network trained only on base and $N\!-\!1$ cases efficiently constructs high-risk training samples offline. Finally, the framework is developed to provide controllable coverage guarantees for severe contingencies, allowing operators to explicitly manage the risk of missing critical events under limited AC power-flow evaluation budgets. Experiments on IEEE benchmark systems show that, for a given evaluation budget, the proposed approach consistently evaluates higher-severity contingencies than uniform sampling. This allows critical outages to be identified more reliably with reduced computational effort.
☆ From Average Sensitivity to Small-Loss Regret Bounds under Random-Order Model
We study online learning in the random-order model, where the multiset of loss functions is chosen adversarially but revealed in a uniformly random order. Building on the batch-to-online conversion by Dong and Yoshida (2023), we show that if an offline algorithm admits a $(1+\varepsilon)$-approximation guarantee and the effect of $\varepsilon$ on its average sensitivity is characterized by a function $\varphi(\varepsilon)$, then an adaptive choice of $\varepsilon$ yields a small-loss regret bound of $\tilde O(\varphi^{\star}(\mathrm{OPT}_T))$, where $\varphi^{\star}$ is the concave conjugate of $\varphi$, $\mathrm{OPT}_T$ is the offline optimum over $T$ rounds, and $\tilde O$ hides polylogarithmic factors in $T$. Our method requires no regularity assumptions on loss functions, such as smoothness, and can be viewed as a generalization of the AdaGrad-style tuning applied to the approximation parameter $\varepsilon$. Our result recovers and strengthens the $(1+\varepsilon)$-approximate regret bounds of Dong and Yoshida (2023) and yields small-loss regret bounds for online $k$-means clustering, low-rank approximation, and regression. We further apply our framework to online submodular function minimization using $(1\pm\varepsilon)$-cut sparsifiers of submodular hypergraphs, obtaining a small-loss regret bound of $\tilde O(n^{3/4}(1 + \mathrm{OPT}_T^{3/4}))$, where $n$ is the ground-set size. Our approach sheds light on the power of sparsification and related techniques in establishing small-loss regret bounds in the random-order model.
☆ Taming the Monster Every Context: Complexity Measure and Unified Framework for Offline-Oracle Efficient Contextual Bandits
We propose an algorithmic framework, Offline Estimation to Decisions (OE2D), that reduces contextual bandit learning with general reward function approximation to offline regression. The framework allows near-optimal regret for contextual bandits with large action spaces with $O(log(T))$ calls to an offline regression oracle over $T$ rounds, and makes $O(loglog(T))$ calls when $T$ is known. The design of OE2D algorithm generalizes Falcon~\citep{simchi2022bypassing} and its linear reward version~\citep[][Section 4]{xu2020upper} in that it chooses an action distribution that we term ``exploitative F-design'' that simultaneously guarantees low regret and good coverage that trades off exploration and exploitation. Central to our regret analysis is a new complexity measure, the Decision-Offline Estimation Coefficient (DOEC), which we show is bounded in bounded Eluder dimension per-context and smoothed regret settings. We also establish a relationship between DOEC and Decision Estimation Coefficient (DEC)~\citep{foster2021statistical}, bridging the design principles of offline- and online-oracle efficient contextual bandit algorithms for the first time.
comment: 40 pages (13 pages main body, 24 pages supplementary materials)
☆ Enhancing Affine Maximizer Auctions with Correlation-Aware Payment
Affine Maximizer Auctions (AMAs), a generalized mechanism family from VCG, are widely used in automated mechanism design due to their inherent dominant-strategy incentive compatibility (DSIC) and individual rationality (IR). However, as the payment form is fixed, AMA's expressiveness is restricted, especially in distributions where bidders' valuations are correlated. In this paper, we propose Correlation-Aware AMA (CA-AMA), a novel framework that augments AMA with a new correlation-aware payment. We show that any CA-AMA preserves the DSIC property and formalize finding optimal CA-AMA as a constraint optimization problem subject to the IR constraint. Then, we theoretically characterize scenarios where classic AMAs can perform arbitrarily poorly compared to the optimal revenue, while the CA-AMA can reach the optimal revenue. For optimizing CA-AMA, we design a practical two-stage training algorithm. We derive that the target function's continuity and the generalization bound on the degree of deviation from strict IR. Finally, extensive experiments showcase that our algorithm can find an approximate optimal CA-AMA in various distributions with improved revenue and a low degree of violation of IR.
comment: 22 pages. Work in progress
☆ The Wisdom of Many Queries: Complexity-Diversity Principle for Dense Retriever Training
Prior work reports conflicting results on query diversity in synthetic data generation for dense retrieval. We identify this conflict and design Q-D metrics to quantify diversity's impact, making the problem measurable. Through experiments on 4 benchmark types (31 datasets), we find query diversity especially benefits multi-hop retrieval. Deep analysis on multi-hop data reveals that diversity benefit correlates strongly with query complexity ($r$$\geq$0.95, $p$$<$0.05 in 12/14 conditions), measured by content words (CW). We formalize this as the Complexity-Diversity Principle (CDP): query complexity determines optimal diversity. CDP provides actionable thresholds (CW$>$10: use diversity; CW$<$7: avoid it). Guided by CDP, we propose zero-shot multi-query synthesis for multi-hop tasks, achieving state-of-the-art performance.
comment: Under review
☆ A Scoping Review of Deep Learning for Urban Visual Pollution and Proposal of a Real-Time Monitoring Framework with a Visual Pollution Index
Urban Visual Pollution (UVP) has emerged as a critical concern, yet research on automatic detection and application remains fragmented. This scoping review maps the existing deep learning-based approaches for detecting, classifying, and designing a comprehensive application framework for visual pollution management. Following the PRISMA-ScR guidelines, seven academic databases (Scopus, Web of Science, IEEE Xplore, ACM DL, ScienceDirect, SpringerNatureLink, and Wiley) were systematically searched and reviewed, and 26 articles were found. Most research focuses on specific pollutant categories and employs variations of YOLO, Faster R-CNN, and EfficientDet architectures. Although several datasets exist, they are limited to specific areas and lack standardized taxonomies. Few studies integrate detection into real-time application systems, yet they tend to be geographically skewed. We proposed a framework for monitoring visual pollution that integrates a visual pollution index to assess the severity of visual pollution for a certain area. This review highlights the need for a unified UVP management system that incorporates pollutant taxonomy, a cross-city benchmark dataset, a generalized deep learning model, and an assessment index that supports sustainable urban aesthetics and enhances the well-being of urban dwellers.
☆ Diffusion-Guided Pretraining for Brain Graph Foundation Models
With the growing interest in foundation models for brain signals, graph-based pretraining has emerged as a promising paradigm for learning transferable representations from connectome data. However, existing contrastive and masked autoencoder methods typically rely on naive random dropping or masking for augmentation, which is ill-suited for brain graphs and hypergraphs as it disrupts semantically meaningful connectivity patterns. Moreover, commonly used graph-level readout and reconstruction schemes fail to capture global structural information, limiting the robustness of learned representations. In this work, we propose a unified diffusion-based pretraining framework that addresses both limitations. First, diffusion is designed to guide structure-aware dropping and masking strategies, preserving brain graph semantics while maintaining effective pretraining diversity. Second, diffusion enables topology-aware graph-level readout and node-level global reconstruction by allowing graph embeddings and masked nodes to aggregate information from globally related regions. Extensive experiments across multiple neuroimaging datasets with over 25,000 subjects and 60,000 scans involving various mental disorders and brain atlases demonstrate consistent performance improvements.
comment: 18 pages
☆ Bridging the Modality Gap in Roadside LiDAR: A Training-Free Vision-Language Model Framework for Vehicle Classification
Fine-grained truck classification is critical for intelligent transportation systems (ITS), yet current LiDAR-based methods face scalability challenges due to their reliance on supervised deep learning and labor-intensive manual annotation. Vision-Language Models (VLMs) offer promising few-shot generalization, but their application to roadside LiDAR is limited by a modality gap between sparse 3D point clouds and dense 2D imagery. We propose a framework that bridges this gap by adapting off-the-shelf VLMs for fine-grained truck classification without parameter fine-tuning. Our new depth-aware image generation pipeline applies noise removal, spatial and temporal registration, orientation rectification, morphological operations, and anisotropic smoothing to transform sparse, occluded LiDAR scans into depth-encoded 2D visual proxies. Validated on a real-world dataset of 20 vehicle classes, our approach achieves competitive classification accuracy with as few as 16-30 examples per class, offering a scalable alternative to data-intensive supervised baselines. We further observe a "Semantic Anchor" effect: text-based guidance regularizes performance in ultra-low-shot regimes $k < 4$, but degrades accuracy in more-shot settings due to semantic mismatch. Furthermore, we demonstrate the efficacy of this framework as a Cold Start strategy, using VLM-generated labels to bootstrap lightweight supervised models. Notably, the few-shot VLM-based model achieves over correct classification rate of 75 percent for specific drayage categories (20ft, 40ft, and 53ft containers) entirely without the costly training or fine-tuning, significantly reducing the intensive demands of initial manual labeling, thus achieving a method of practical use in ITS applications.
comment: 12 pages, 10 figures, 4 tables
☆ Reward-Guided Discrete Diffusion via Clean-Sample Markov Chain for Molecule and Biological Sequence Design
Discrete diffusion models have recently emerged as a powerful class of generative models for chemistry and biology data. In these fields, the goal is to generate various samples with high rewards (e.g., drug-likeness in molecules), making reward-based guidance crucial. Most existing methods are based on guiding the diffusion model using intermediate rewards but tend to underperform since intermediate rewards are noisy due to the non-smooth nature of reward functions used in scientific domains. To address this, we propose Clean-Sample Markov Chain (CSMC) Sampler, a method that performs effective test-time reward-guided sampling for discrete diffusion models, enabling local search without relying on intermediate rewards. CSMC constructs a Markov chain of clean samples using the Metropolis-Hastings algorithm such that its stationary distribution is the target distribution. We design a proposal distribution by sequentially applying the forward and backward diffusion processes, making the acceptance probability tractable. Experiments on molecule and biological sequence generation with various reward functions demonstrate that our method consistently outperforms prior approaches that rely on intermediate rewards.
☆ LARV: Data-Free Layer-wise Adaptive Rescaling Veneer for Model Merging
Model merging aims to combine multiple fine-tuned models into a single multi-task model without access to training data. Existing task-vector merging methods such as TIES, TSV-M, and Iso-C/CTS differ in their aggregation rules but treat all layers nearly uniformly. This assumption overlooks the strong layer-wise heterogeneity in large vision transformers, where shallow layers are sensitive to interference while deeper layers encode stable task-specific features. We introduce LARV, a training-free, data-free, merger-agnostic Layer-wise Adaptive Rescaling Veneer that plugs into any task-vector merger and assigns a per-layer scale to each task vector before aggregation, and show it consistently boosts diverse merging rules. LARV adaptively suppresses shallow-layer interference and amplifies deeper-layer alignment using a simple deterministic schedule, requiring no retraining or modification to existing mergers. To our knowledge, this is the first work to perform layer-aware scaling for task-vector merging. LARV computes simple data-free layer proxies and turns them into scales through a lightweight rule; we study several instantiations within one framework (e.g., tiered two/three-level scaling with fixed values, or continuous mappings) and show that tiered choices offer the best robustness, while continuous mappings remain an ablation. LARV is orthogonal to the base merger and adds negligible cost. On FusionBench with Vision Transformers, LARV consistently improves all task-vector baselines across 8/14/20-task settings; for example, Iso-C + LARV reaches 85.9% on ViT-B/32, 89.2% on ViT-B/16, and 92.6% on ViT-L/14. Layerwise analysis and corruption tests further indicate that LARV suppresses shallow-layer interference while modestly amplifying deeper, task-stable features, turning model merging into a robust, layer-aware procedure rather than a uniform one.
comment: 14 pages, 9 figures, 6 tables
☆ Is Memorization Helpful or Harmful? Prior Information Sets the Threshold
We examine the connection between training error and generalization error for arbitrary estimating procedures, working in an overparameterized linear model under general priors in a Bayesian setup. We find determining factors inherent to the prior distribution $π$, giving explicit conditions under which optimal generalization necessitates that the training error be (i) near interpolating relative to the noise size (i.e., memorization is necessary), or (ii) close to the noise level (i.e., overfitting is harmful). Remarkably, these phenomena occur when the noise reaches thresholds determined by the Fisher information and the variance parameters of the prior $π$.
comment: 33 pages, 3 figures
☆ Learning with Multiple Correct Answers -- A Trichotomy of Regret Bounds under Different Feedback Models
We study an online learning problem with multiple correct answers, where each instance admits a set of valid labels, and in each round the learner must output a valid label for the queried example. This setting is motivated by language generation tasks, in which a prompt may admit many acceptable completions, but not every completion is acceptable. We study this problem under three feedback models. For each model, we characterize the optimal mistake bound in the realizable setting using an appropriate combinatorial dimension. We then establish a trichotomy of regret bounds across the three models in the agnostic setting. Our results also imply sample complexity bounds for the batch setup that depend on the respective combinatorial dimensions.
☆ Squeezing More from the Stream : Learning Representation Online for Streaming Reinforcement Learning
In streaming Reinforcement Learning (RL), transitions are observed and discarded immediately after a single update. While this minimizes resource usage for on-device applications, it makes agents notoriously sample-inefficient, since value-based losses alone struggle to extract meaningful representations from transient data. We propose extending Self-Predictive Representations (SPR) to the streaming pipeline to maximize the utility of every observed frame. However, due to the highly correlated samples induced by the streaming regime, naively applying this auxiliary loss results in training instabilities. Thus, we introduce orthogonal gradient updates relative to the momentum target and resolve gradient conflicts arising from streaming-specific optimizers. Validated across the Atari, MinAtar, and Octax suites, our approach systematically outperforms existing streaming baselines. Latent-space analysis, including t-SNE visualizations and effective-rank measurements, confirms that our method learns significantly richer representations, bridging the performance gap caused by the absence of a replay buffer, while remaining efficient enough to train on just a few CPU cores.
comment: 8 pages, 4 figures
☆ Sparse Layer Sharpness-Aware Minimization for Efficient Fine-Tuning
Sharpness-aware minimization (SAM) seeks the minima with a flat loss landscape to improve the generalization performance in machine learning tasks, including fine-tuning. However, its extra parameter perturbation step doubles the computation cost, which becomes the bottleneck of SAM in the practical implementation. In this work, we propose an approach SL-SAM to break this bottleneck by introducing the sparse technique to layers. Our key innovation is to frame the dynamic selection of layers for both the gradient ascent (perturbation) and descent (update) steps as a multi-armed bandit problem. At the beginning of each iteration, SL-SAM samples a part of the layers of the model according to the gradient norm to participate in the backpropagation of the following parameter perturbation and update steps, thereby reducing the computation complexity. We then provide the analysis to guarantee the convergence of SL-SAM. In the experiments of fine-tuning models in several tasks, SL-SAM achieves the performances comparable to the state-of-the-art baselines, including a \#1 rank on LLM fine-tuning. Meanwhile, SL-SAM significantly reduces the ratio of active parameters in backpropagation compared to vanilla SAM (SL-SAM activates 47\%, 22\% and 21\% parameters on the vision, moderate and large language model respectively while vanilla SAM always activates 100\%), verifying the efficiency of our proposed algorithm.
☆ The Critical Horizon: Inspection Design Principles for Multi-Stage Operations and Deep Reasoning
Manufacturing lines, service journeys, supply chains, and AI reasoning chains share a common challenge: attributing a terminal outcome to the intermediate stage that caused it. We establish an information-theoretic barrier to this credit assignment problem: the signal connecting early steps to final outcomes decays exponentially with depth, creating a critical horizon beyond which no algorithm can learn from endpoint data alone. We prove four results. First, a Signal Decay Bound: sample complexity for attributing outcomes to early stages grows exponentially in the number of intervening steps. Second, Width Limits: parallel rollouts provide only logarithmic relief, with correlation capping the effective number of independent samples. Third, an Objective Mismatch: additive reward aggregation optimizes the wrong quantity when sequential validity requires all steps to be correct. Fourth, Optimal Inspection Design: uniform checkpoint spacing is minimax-optimal under homogeneous signal attenuation, while a greedy algorithm yields optimal non-uniform schedules under heterogeneous attenuation. Together, these results provide a common analytical foundation for inspection design in operations and supervision design in AI.
comment: 49 pages, 5 figures
☆ TVTSyn: Content-Synchronous Time-Varying Timbre for Streaming Voice Conversion and Anonymization
Real-time voice conversion and speaker anonymization require causal, low-latency synthesis without sacrificing intelligibility or naturalness. Current systems have a core representational mismatch: content is time-varying, while speaker identity is injected as a static global embedding. We introduce a streamable speech synthesizer that aligns the temporal granularity of identity and content via a content-synchronous, time-varying timbre (TVT) representation. A Global Timbre Memory expands a global timbre instance into multiple compact facets; frame-level content attends to this memory, a gate regulates variation, and spherical interpolation preserves identity geometry while enabling smooth local changes. In addition, a factorized vector-quantized bottleneck regularizes content to reduce residual speaker leakage. The resulting system is streamable end-to-end, with <80 ms GPU latency. Experiments show improvements in naturalness, speaker transfer, and anonymization compared to SOTA streaming baselines, establishing TVT as a scalable approach for privacy-preserving and expressive speech synthesis under strict latency budgets.
☆ Latent Poincaré Shaping for Agentic Reinforcement Learning
We propose LaPha, a method for training AlphaZero-like LLM agents in a Poincaré latent space. Under LaPha, the search process can be visualized as a tree rooted at the prompt and growing outward from the origin toward the boundary of the Poincaré ball, where negative curvature provides exponentially increasing capacity with radius. Using hyperbolic geodesic distance to rule-verified correctness, we define a node potential and assign dense process rewards by potential differences. We further attach a lightweight value head on the same shared latent space, enabling self-guided test-time scaling with almost no additional overhead. On MATH-500, LaPha improves Qwen2.5-Math-1.5B from 66.0% to 88.2%. With value-head-guided search, LaPha-1.5B reaches 56.7% accuracy on AIME'24, and LaPha-7B further achieves 60.0% on AIME'24 and 53.3% on AIME'25.
☆ Large Language Models for Designing Participatory Budgeting Rules AAMAS 2026
Participatory budgeting (PB) is a democratic paradigm for deciding the funding of public projects given the residents' preferences, which has been adopted in numerous cities across the world. The main focus of PB is designing rules, functions that return feasible budget allocations for a set of projects subject to some budget constraint. Designing PB rules that optimize both utility and fairness objectives based on agent preferences had been challenging due to the extensive domain knowledge required and the proven trade-off between the two notions. Recently, large language models (LLMs) have been increasingly employed for automated algorithmic design. Given the resemblance of PB rules to algorithms for classical knapsack problems, in this paper, we introduce a novel framework, named LLMRule, that addresses the limitations of existing works by incorporating LLMs into an evolutionary search procedure for automating the design of PB rules. Our experimental results, evaluated on more than 600 real-world PB instances obtained from the U.S., Canada, Poland, and the Netherlands with different representations of agent preferences, demonstrate that the LLM-generated rules generally outperform existing handcrafted rules in terms of overall utility while still maintaining a similar degree of fairness.
comment: Accepted as full paper to AAMAS 2026
☆ Beyond Uniform Credit: Causal Credit Assignment for Policy Optimization
Policy gradient methods for language model reasoning, such as GRPO and DAPO, assign uniform credit to all generated tokens - the filler phrase "Let me think" receives the same gradient update as the critical calculation "23 + 45 = 68." We propose counterfactual importance weighting: mask reasoning spans, measure the drop in answer probability, and upweight tokens accordingly during policy gradient updates. Our method requires no auxiliary models or external annotation, instead importance is estimated directly from the policy model's own probability shifts. Experiments on GSM8K across three models spanning the Qwen and Llama families demonstrate consistent improvements over uniform baselines and faster convergence to equivalent accuracy. Inverting the importance signal hurts performance, confirming we capture genuine causal structure rather than noise. Analysis shows the method correctly prioritizes calculation steps over scaffolding text. We view these findings as establishing counterfactual importance weighting as a foundation for further research rather than a complete solution.
comment: 12 pages, 1 figure
☆ MacrOData: New Benchmarks of Thousands of Datasets for Tabular Outlier Detection
Quality benchmarks are essential for fairly and accurately tracking scientific progress and enabling practitioners to make informed methodological choices. Outlier detection (OD) on tabular data underpins numerous real-world applications, yet existing OD benchmarks remain limited. The prominent OD benchmark AdBench is the de facto standard in the literature, yet comprises only 57 datasets. In addition to other shortcomings discussed in this work, its small scale severely restricts diversity and statistical power. We introduce MacrOData, a large-scale benchmark suite for tabular OD comprising three carefully curated components: OddBench, with 790 datasets containing real-world semantic anomalies; OvrBench, with 856 datasets featuring real-world statistical outliers; and SynBench, with 800 synthetically generated datasets spanning diverse data priors and outlier archetypes. Owing to its scale and diversity, MacrOData enables comprehensive and statistically robust evaluation of tabular OD methods. Our benchmarks further satisfy several key desiderata: We provide standardized train/test splits for all datasets, public/private benchmark partitions with held-out test labels for the latter reserved toward an online leaderboard, and annotate our datasets with semantic metadata. We conduct extensive experiments across all benchmarks, evaluating a broad range of OD methods comprising classical, deep, and foundation models, over diverse hyperparameter configurations. We report detailed empirical findings, practical guidelines, as well as individual performances as references for future research. All benchmarks containing 2,446 datasets combined are open-sourced, along with a publicly accessible leaderboard hosted at https://huggingface.co/MacrOData-CMU.
comment: 28 pages
☆ In-Hospital Stroke Prediction from PPG-Derived Hemodynamic Features KDD
The absence of pre-hospital physiological data in standard clinical datasets fundamentally constrains the early prediction of stroke, as patients typically present only after stroke has occurred, leaving the predictive value of continuous monitoring signals such as photoplethysmography (PPG) unvalidated. In this work, we overcome this limitation by focusing on a rare but clinically critical cohort - patients who suffered stroke during hospitalization while already under continuous monitoring - thereby enabling the first large-scale analysis of pre-stroke PPG waveforms aligned to verified onset times. Using MIMIC-III and MC-MED, we develop an LLM-assisted data mining pipeline to extract precise in-hospital stroke onset timestamps from unstructured clinical notes, followed by physician validation, identifying 176 patients (MIMIC) and 158 patients (MC-MED) with high-quality synchronized pre-onset PPG data, respectively. We then extract hemodynamic features from PPG and employ a ResNet-1D model to predict impending stroke across multiple early-warning horizons. The model achieves F1-scores of 0.7956, 0.8759, and 0.9406 at 4, 5, and 6 hours prior to onset on MIMIC-III, and, without re-tuning, reaches 0.9256, 0.9595, and 0.9888 on MC-MED for the same horizons. These results provide the first empirical evidence from real-world clinical data that PPG contains predictive signatures of stroke several hours before onset, demonstrating that passively acquired physiological signals can support reliable early warning, supporting a shift from post-event stroke recognition to proactive, physiology-based surveillance that may materially improve patient outcomes in routine clinical care.
comment: 11 pages, 6 figures, 3 tables. To appear in Proceedings of the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '26)
☆ Priority-Aware Shapley Value
Shapley values are widely used for model-agnostic data valuation and feature attribution, yet they implicitly assume contributors are interchangeable. This can be problematic when contributors are dependent (e.g., reused/augmented data or causal feature orderings) or when contributions should be adjusted by factors such as trust or risk. We propose Priority-Aware Shapley Value (PASV), which incorporates both hard precedence constraints and soft, contributor-specific priority weights. PASV is applicable to general precedence structures, recovers precedence-only and weight-only Shapley variants as special cases, and is uniquely characterized by natural axioms. We develop an efficient adjacent-swap Metropolis-Hastings sampler for scalable Monte Carlo estimation and analyze limiting regimes induced by extreme priority weights. Experiments on data valuation (MNIST/CIFAR10) and feature attribution (Census Income) demonstrate more structure-faithful allocations and a practical sensitivity analysis via our proposed "priority sweeping".
☆ SnareNet: Flexible Repair Layers for Neural Networks with Hard Constraints
Neural networks are increasingly used as surrogate solvers and control policies, but unconstrained predictions can violate physical, operational, or safety requirements. We propose SnareNet, a feasibility-controlled architecture for learning mappings whose outputs must satisfy input-dependent nonlinear constraints. SnareNet appends a differentiable repair layer that navigates in the constraint map's range space, steering iterates toward feasibility and producing a repaired output that satisfies constraints to a user-specified tolerance. To stabilize end-to-end training, we introduce adaptive relaxation, which designs a relaxed feasible set that snares the neural network at initialization and shrinks it into the feasible set, enabling early exploration and strict feasibility later in training. On optimization-learning and trajectory planning benchmarks, SnareNet consistently attains improved objective quality while satisfying constraints more reliably than prior work.
☆ Effective MoE-based LLM Compression by Exploiting Heterogeneous Inter-Group Experts Routing Frequency and Information Density
Mixture-of-Experts (MoE) based Large Language Models (LLMs) have achieved superior performance, yet the massive memory overhead caused by storing multiple expert networks severely hinders their practical deployment. Singular Value Decomposition (SVD)-based compression has emerged as a promising post-training technique; however, most existing methods apply uniform rank allocation or rely solely on static weight properties. This overlooks the substantial heterogeneity in expert utilization observed in MoE models, where frequent routing patterns and intrinsic information density vary significantly across experts. In this work, we propose RFID-MoE, an effective framework for MoE compression by exploiting heterogeneous Routing Frequency and Information Density. We first introduce a fused metric that combines expert activation frequency with effective rank to measure expert importance, adaptively allocating higher ranks to critical expert groups under a fixed budget. Moreover, instead of discarding compression residuals, we reconstruct them via a parameter-efficient sparse projection mechanism to recover lost information with minimal parameter overhead. Extensive experiments on representative MoE LLMs (e.g., Qwen3, DeepSeekMoE) across multiple compression ratios demonstrate that RFID-MoE consistently outperforms state-of-the-art methods like MoBE and D2-MoE. Notably, RFID-MoE achieves a perplexity of 16.92 on PTB with the Qwen3-30B model at a 60% compression ratio, reducing perplexity by over 8.0 compared to baselines, and improves zero-shot accuracy on HellaSwag by approximately 8%.
☆ Clarifying Shampoo: Adapting Spectral Descent to Stochasticity and the Parameter Trajectory
Optimizers leveraging the matrix structure in neural networks, such as Shampoo and Muon, are more data-efficient than element-wise algorithms like Adam and Signum. While in specific settings, Shampoo and Muon reduce to spectral descent analogous to how Adam and Signum reduce to sign descent, their general relationship and relative data efficiency under controlled settings remain unclear. Through extensive experiments on language models, we demonstrate that Shampoo achieves higher token efficiency than Muon, mirroring Adam's advantage over Signum. We show that Shampoo's update applied to weight matrices can be decomposed into an adapted Muon update. Consistent with this, Shampoo's benefits can be exclusively attributed to its application to weight matrices, challenging interpretations agnostic to parameter shapes. This admits a new perspective that also avoids shortcomings of related interpretations based on variance adaptation and whitening: rather than enforcing semi-orthogonality as in spectral descent, Shampoo's updates are time-averaged semi-orthogonal in expectation.
☆ Don't Shoot The Breeze: Topic Continuity Model Using Nonlinear Naive Bayes With Attention EMNLP 2024
Utilizing Large Language Models (LLM) as chatbots in diverse business scenarios often presents the challenge of maintaining topic continuity. Abrupt shifts in topics can lead to poor user experiences and inefficient utilization of computational resources. In this paper, we present a topic continuity model aimed at assessing whether a response aligns with the initial conversation topic. Our model is built upon the expansion of the corresponding natural language understanding (NLU) model into quantifiable terms using a Naive Bayes approach. Subsequently, we have introduced an attention mechanism and logarithmic nonlinearity to enhance its capability to capture topic continuity. This approach allows us to convert the NLU model into an interpretable analytical formula. In contrast to many NLU models constrained by token limits, our proposed model can seamlessly handle conversations of any length with linear time complexity. Furthermore, the attention mechanism significantly improves the model's ability to identify topic continuity in complex conversations. According to our experiments, our model consistently outperforms traditional methods, particularly in handling lengthy and intricate conversations. This unique capability offers us an opportunity to ensure the responsible and interpretable use of LLMs.
comment: EMNLP 2024: Industry Track; 8 pages, 2 figures, 1 table
☆ How Far Can You Grow? Characterizing the Extrapolation Frontier of Graph Generative Models for Materials Science
Every generative model for crystalline materials harbors a critical structure size beyond which its outputs quietly become unreliable -- we call this the extrapolation frontier. Despite its direct consequences for nanomaterial design, this frontier has never been systematically measured. We introduce RADII, a radius-resolved benchmark of ${\sim}$75,000 nanoparticle structures (55-11,298 atoms) that treats radius as a continuous scaling knob to trace generation quality from in-distribution to out-of-distribution regimes under leakage-free splits. RADII provides frontier-specific diagnostics: per-radius error profiles pinpoint each architecture's scaling ceiling, surface-interior decomposition tests whether failures originate at boundaries or in bulk, and cross-metric failure sequencing reveals which aspect of structural fidelity breaks first. Benchmarking five state-of-the-art architectures, we find that: (i) all models degrade by ${\sim}13\%$ in global positional error beyond training radii, yet local bond fidelity diverges wildly across architectures -- from near-zero to over $2\times$ collapse; (ii) no two architectures share the same failure sequence, revealing the frontier as a multi-dimensional surface shaped by model family; and (iii) well-behaved models obey a power-law scaling exponent $α\approx 1/3$ whose in-distribution fit accurately predicts out-of-distribution error, making their frontiers quantitatively forecastable. These findings establish output scale as a first-class evaluation axis for geometric generative models. The dataset and code are available at https://github.com/KurbanIntelligenceLab/RADII.
☆ Empowering Contrastive Federated Sequential Recommendation with LLMs
Federated sequential recommendation (FedSeqRec) aims to perform next-item prediction while keeping user data decentralised, yet model quality is frequently constrained by fragmented, noisy, and homogeneous interaction logs stored on individual devices. Many existing approaches attempt to compensate through manual data augmentation or additional server-side constraints, but these strategies either introduce limited semantic diversity or increase system overhead. To overcome these challenges, we propose \textbf{LUMOS}, a parameter-isolated FedSeqRec architecture that integrates large language models (LLMs) as \emph{local semantic generators}. Instead of sharing gradients or auxiliary parameters, LUMOS privately invokes an on-device LLM to construct three complementary sequence variants from each user history: (i) \emph{future-oriented} trajectories that infer plausible behavioural continuations, (ii) \emph{semantically equivalent rephrasings} that retain user intent while diversifying interaction patterns, and (iii) \emph{preference-inconsistent counterfactuals} that serve as informative negatives. These synthesized sequences are jointly encoded within the federated backbone through a tri-view contrastive optimisation scheme, enabling richer representation learning without exposing sensitive information. Experimental results across three public benchmarks show that LUMOS achieves consistent gains over competitive centralised and federated baselines on HR@20 and NDCG@20. In addition, the use of semantically grounded positive signals and counterfactual negatives improves robustness under noisy and adversarial environments, even without dedicated server-side protection modules. Overall, this work demonstrates the potential of LLM-driven semantic generation as a new paradigm for advancing privacy-preserving federated recommendation.
☆ Reward Modeling for Reinforcement Learning-Based LLM Reasoning: Design, Challenges, and Evaluation
Large Language Models (LLMs) demonstrate transformative potential, yet their reasoning remains inconsistent and unreliable. Reinforcement learning (RL)-based fine-tuning is a key mechanism for improvement, but its effectiveness is fundamentally governed by reward design. Despite its importance, the relationship between reward modeling and core LLM challenges--such as evaluation bias, hallucination, distribution shift, and efficient learning--remains poorly understood. This work argues that reward modeling is not merely an implementation detail but a central architect of reasoning alignment, shaping what models learn, how they generalize, and whether their outputs can be trusted. We introduce Reasoning-Aligned Reinforcement Learning (RARL), a unifying framework that systematizes diverse reward paradigms for multi-step reasoning. Within this framework, we present a taxonomy of reward mechanisms, analyze reward hacking as a pervasive failure mode, and examine how reward signals unify challenges ranging from inference-time scaling to hallucination mitigation. We further critically evaluate existing benchmarks, highlighting vulnerabilities such as data contamination and reward misalignment, and outline directions for more robust evaluation. By integrating fragmented research threads and clarifying the interplay between reward design and fundamental reasoning capabilities, this work provides a foundational roadmap for building reasoning models that are robust, verifiable, and trustworthy.
☆ Statistical Roughness-Informed Machine Unlearning
Machine unlearning aims to remove the influence of a designated forget set from a trained model while preserving utility on the retained data. In modern deep networks, approximate unlearning frequently fails under large or adversarial deletions due to pronounced layer-wise heterogeneity: some layers exhibit stable, well-regularized representations while others are brittle, undertrained, or overfit, so naive update allocation can trigger catastrophic forgetting or unstable dynamics. We propose Statistical-Roughness Adaptive Gradient Unlearning (SRAGU), a mechanism-first unlearning algorithm that reallocates unlearning updates using layer-wise statistical roughness operationalized via heavy-tailed spectral diagnostics of layer weight matrices. Starting from an Adaptive Gradient Unlearning (AGU) sensitivity signal computed on the forget set, SRAGU estimates a WeightWatcher-style heavy-tailed exponent for each layer, maps it to a bounded spectral stability weight, and uses this stability signal to spectrally reweight the AGU sensitivities before applying the same minibatch update form. This concentrates unlearning motion in spectrally stable layers while damping updates in unstable or overfit layers, improving stability under hard deletions. We evaluate unlearning via behavioral alignment to a gold retrained reference model trained from scratch on the retained data, using empirical prediction-divergence and KL-to-gold proxies on a forget-focused query set; we additionally report membership inference auditing as a complementary leakage signal, treating forget-set points as should-be-forgotten members during evaluation.
☆ Stabilizing Physics-Informed Consistency Models via Structure-Preserving Training
We propose a physics-informed consistency modeling framework for solving partial differential equations (PDEs) via fast, few-step generative inference. We identify a key stability challenge in physics-constrained consistency training, where PDE residuals can drive the model toward trivial or degenerate solutions, degrading the learned data distribution. To address this, we introduce a structure-preserving two-stage training strategy that decouples distribution learning from physics enforcement by freezing the coefficient decoder during physics-informed fine-tuning. We further propose a two-step residual objective that enforces physical consistency on refined, structurally valid generative trajectories rather than noisy single-step predictions. The resulting framework enables stable, high-fidelity inference for both unconditional generation and forward problems. We demonstrate that forward solutions can be obtained via a projection-based zero-shot inpainting procedure, achieving consistent accuracy of diffusion baselines with orders of magnitude reduction in computational cost.
☆ Risk-sensitive reinforcement learning using expectiles, shortfall risk and optimized certainty equivalent risk
We propose risk-sensitive reinforcement learning algorithms catering to three families of risk measures, namely expectiles, utility-based shortfall risk and optimized certainty equivalent risk. For each risk measure, in the context of a finite horizon Markov decision process, we first derive a policy gradient theorem. Second, we propose estimators of the risk-sensitive policy gradient for each of the aforementioned risk measures, and establish $\mathcal{O}\left(1/m\right)$ mean-squared error bounds for our estimators, where $m$ is the number of trajectories. Further, under standard assumptions for policy gradient-type algorithms, we establish smoothness of the risk-sensitive objective, in turn leading to stationary convergence rate bounds for the overall risk-sensitive policy gradient algorithm that we propose. Finally, we conduct numerical experiments to validate the theoretical findings on popular RL benchmarks.
☆ The Laplacian Mechanism Improves Transformers by Reshaping Token Geometry
Transformers leverage attention, the residual connection, and layer normalization to control the variance of token representations. We propose to modify attention into a Laplacian mechanism that gives the model more direct control over token variance. We conjecture that this helps transformers achieve the ideal token geometry. To investigate our conjecture, we first show that incorporating the Laplacian mechanism into transformers induces consistent improvements across benchmarks in computer vision and language. Next, we study how the Laplacian mechanism impacts the geometry of token representations using various tools: 1) principal component analysis, 2) cosine similarity metric, 3) analysis of variance, and 4) Neural Collapse metrics. Our investigation shows that the Laplacian mechanism reshapes token embeddings toward a geometry of maximal separability: tokens collapse according to their classes, and the class means exhibit Neural Collapse.
☆ Positive-Unlabelled Active Learning to Curate a Dataset for Orca Resident Interpretation
This work presents the largest curation of Southern Resident Killer Whale (SRKW) acoustic data to date, also containing other marine mammals in their environment. We systematically search all available public archival hydrophone data within the SRKW habitat (over 30 years of audio data). The search consists of a weakly-supervised, positive-unlabelled, active learning strategy to identify all instances of marine mammals. The resulting transformer-based detectors outperform state-of-the-art detectors on the DEEPAL, DCLDE-2026, and two newly introduced expert-annotated datasets in terms of accuracy, energy efficiency, and speed. The detection model has a specificity of 0-28.8% at 95% sensitivity. Our multiclass species classifier obtains a top-1 accuracy of 42.1% (11 train classes, 4 test classes) and our ecotype classifier obtains a top-1 accuracy of 43.0% (4 train classes, 5 test classes) on the DCLDE-2026 dataset. We yield 919 hours of SRKW data, 230 hours of Bigg's orca data, 1374 hours of orca data from unlabelled ecotypes, 1501 hours of humpback data, 88 hours of sea lion data, 246 hours of pacific white-sided dolphin data, and over 784 hours of unspecified marine mammal data. This SRKW dataset is larger than DCLDE-2026, Ocean Networks Canada, and OrcaSound combined. The curated species labels are available under CC-BY 4.0 license, and the corresponding audio data are available under the licenses of the original owners. The comprehensive nature of this dataset makes it suitable for unsupervised machine translation, habitat usage surveys, and conservation endeavours for this critically endangered ecotype.
☆ Measuring Privacy Risks and Tradeoffs in Financial Synthetic Data Generation
We explore the privacy-utility tradeoff of synthetic data generation schemes on tabular financial datasets, a domain characterized by high regulatory risk and severe class imbalance. We consider representative tabular data generators, including autoencoders, generative adversarial networks, diffusion, and copula synthesizers. To address the challenges of the financial domain, we provide novel privacy-preserving implementations of GAN and autoencoder synthesizers. We evaluate whether and how well the generators simultaneously achieve data quality, downstream utility, and privacy, with comparison across balanced and imbalanced input datasets. Our results offer insight into the distinct challenges of generating synthetic data from datasets that exhibit severe class imbalance and mixed-type attributes.
☆ X-Mark: Saliency-Guided Robust Dataset Ownership Verification for Medical Imaging
High-quality medical imaging datasets are essential for training deep learning models, but their unauthorized use raises serious copyright and ethical concerns. Medical imaging presents a unique challenge for existing dataset ownership verification methods designed for natural images, as static watermark patterns generated in fixed-scale images scale poorly dynamic and high-resolution scans with limited visual diversity and subtle anatomical structures, while preserving diagnostic quality. In this paper, we propose X-Mark, a sample-specific clean-label watermarking method for chest x-ray copyright protection. Specifically, X-Mark uses a conditional U-Net to generate unique perturbations within salient regions of each sample. We design a multi-component training objective to ensure watermark efficacy, robustness against dynamic scaling processes while preserving diagnostic quality and visual-distinguishability. We incorporate Laplacian regularization into our training objective to penalize high-frequency perturbations and achieve watermark scale-invariance. Ownership verification is performed in a black-box setting to detect characteristic behaviors in suspicious models. Extensive experiments on CheXpert verify the effectiveness of X-Mark, achieving WSR of 100% and reducing probability of false positives in Ind-M scenario by 12%, while demonstrating resistance to potential adaptive attacks.
♻ ☆ Noisy-Pair Robust Representation Alignment for Positive-Unlabeled Learning ICLR 2026
Positive-Unlabeled (PU) learning aims to train a binary classifier (positive vs. negative) where only limited positive data and abundant unlabeled data are available. While widely applicable, state-of-the-art PU learning methods substantially underperform their supervised counterparts on complex datasets, especially without auxiliary negatives or pre-estimated parameters (e.g., a 14.26% gap on CIFAR-100 dataset). We identify the primary bottleneck as the challenge of learning discriminative representations under unreliable supervision. To tackle this challenge, we propose NcPU, a non-contrastive PU learning framework that requires no auxiliary information. NcPU combines a noisy-pair robust supervised non-contrastive loss (NoiSNCL), which aligns intra-class representations despite unreliable supervision, with a phantom label disambiguation (PLD) scheme that supplies conservative negative supervision via regret-based label updates. Theoretically, NoiSNCL and PLD can iteratively benefit each other from the perspective of the Expectation-Maximization framework. Empirically, extensive experiments demonstrate that: (1) NoiSNCL enables simple PU methods to achieve competitive performance; and (2) NcPU achieves substantial improvements over state-of-the-art PU methods across diverse datasets, including challenging datasets on post-disaster building damage mapping, highlighting its promise for real-world applications. Code: Code will be open-sourced after review.
comment: Published at ICLR 2026
♻ ☆ Data-efficient and Interpretable Inverse Materials Design using a Disentangled Variational Autoencoder
Inverse materials design has proven successful in accelerating novel material discovery. Many inverse materials design methods use unsupervised learning where a latent space is learned to offer a compact description of materials representations. A latent space learned this way is likely to be entangled, in terms of the target property and other properties of the materials. This makes the inverse design process ambiguous. Here, we present a semi-supervised learning approach based on a disentangled variational autoencoder to learn a probabilistic relationship between features, latent variables and target properties. This approach is data efficient because it combines all labelled and unlabelled data in a coherent manner, and it uses expert-informed prior distributions to improve model robustness even with limited labelled data. It is in essence interpretable, as the learnable target property is disentangled out of the other properties of the materials, and an extra layer of interpretability can be provided by a post-hoc analysis of the classification head of the model. We demonstrate this new approach on an experimental high-entropy alloy dataset with chemical compositions as input and single-phase formation as the single target property. High-entropy alloys were chosen as example materials because of the vast chemical space of their possible combinations of compositions and atomic configurations. While single property is used in this work, the disentangled model can be extended to customize for inverse design of materials with multiple target properties.
comment: Code: https://github.com/cengc13/d_vae_hea
♻ ☆ Variational Sparse Paired Autoencoders (vsPAIR) for Inverse Problems and Uncertainty Quantification
Inverse problems are fundamental to many scientific and engineering disciplines; they arise when one seeks to reconstruct hidden, underlying quantities from noisy measurements. Many applications demand not just point estimates but interpretable uncertainty. Providing fast inference alongside uncertainty estimates remains challenging yet desirable in numerous applications. We propose the Variational Sparse Paired Autoencoder (vsPAIR) to address this challenge. The architecture pairs a standard VAE encoding observations with a sparse VAE encoding quantities of interest, connected through a learned latent mapping. The variational structure enables uncertainty estimation, the paired architecture encourages interpretability by anchoring QoI representations to clean data, and sparse encodings provide structure by concentrating information into identifiable factors rather than diffusing across all dimensions. To validate the effectiveness of our proposed architecture, we conduct experiments on blind inpainting and computed tomography, demonstrating that vsPAIR is a capable inverse problem solver that can provide interpretable and structured uncertainty estimates.
♻ ☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors ICLR 2026
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: ICLR 2026, Project page: https://falcon-vla.github.io/
♻ ☆ Knowledge-Guided Masked Autoencoder with Linear Spectral Mixing and Spectral-Angle-Aware Reconstruction AAAI 2026
Integrating domain knowledge into deep learning has emerged as a promising direction for improving model interpretability, generalization, and data efficiency. In this work, we present a novel knowledge-guided ViT-based Masked Autoencoder that embeds scientific domain knowledge within the self-supervised reconstruction process. Instead of relying solely on data-driven optimization, our proposed approach incorporates the Linear Spectral Mixing Model (LSMM) as a physical constraint and physically-based Spectral Angle Mapper (SAM), ensuring that learned representations adhere to known structural relationships between observed signals and their latent components. The framework jointly optimizes LSMM and SAM loss with a conventional Huber loss objective, promoting both numerical accuracy and geometric consistency in the feature space. This knowledge-guided design enhances reconstruction fidelity, stabilizes training under limited supervision, and yields interpretable latent representations grounded in physical principles. The experimental findings indicate that the proposed model substantially enhances reconstruction quality and improves downstream task performance, highlighting the promise of embedding physics-informed inductive biases within transformer-based self-supervised learning.
comment: Accepted to the KGML Bridge at AAAI 2026 (non-archival)
♻ ☆ How to Purchase Labels? A Cost-Effective Approach Using Active Learning Markets
We introduce and analyse active learning markets as a way to purchase labels, in situations where analysts aim to acquire additional data to improve model fitting, or to better train models for predictive analytics applications. This comes in contrast to the many proposals that already exist to purchase features and examples. By originally formalising the market clearing as an optimisation problem, we integrate budget constraints and improvement thresholds into the label acquisition process. We focus on a single-buyer-multiple-seller setup and propose the use of two active learning strategies (variance based and query-by-committee based), paired with distinct pricing mechanisms. They are compared to benchmark baselines including random sampling and a greedy knapsack heuristic. The proposed strategies are validated on real-world datasets from two critical application domains: real estate pricing and energy forecasting. Results demonstrate the robustness of our approach, consistently achieving superior performance with fewer labels acquired compared to conventional methods. Our proposal comprises an easy-to-implement practical solution for optimising data acquisition in resource-constrained environments.
comment: Accepted for publication in INFORMS Journal on Data Science (IJDS). This is the authors' preprint
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 40 pages
♻ ☆ Stochastic Optimization with Optimal Importance Sampling
Importance Sampling (IS) is a widely used variance reduction technique for enhancing the efficiency of Monte Carlo methods, particularly in rare-event simulation and related applications. Despite its effectiveness, the performance of IS is highly sensitive to the choice of the proposal distribution and often requires stochastic calibration. While the design and analysis of IS have been extensively studied in estimation settings, applying IS within stochastic optimization introduces a lesser-known fundamental challenge: the decision variable and the importance sampling distribution are mutually dependent, creating a circular optimization structure. This interdependence complicates both convergence analysis and variance control. In this paper, we consider the generic setting of convex stochastic optimization with linear constraints. We propose a single-loop stochastic approximation algorithm, based on a variant of Nesterov's dual averaging, that jointly updates the decision variable and the importance sampling distribution, notably without time-scale separation or nested optimization. The method is globally convergent and achieves the minimal asymptotic variance among stochastic gradient schemes, which moreover matches the performance of an oracle sampler adapted to the optimal solution and thus effectively resolves the circular optimization challenge.
♻ ☆ Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.
♻ ☆ Stopping Rules for SGD via Anytime-Valid Confidence Sequences
Deciding when to stop stochastic gradient descent (SGD) has long remained unresolved in a statistically rigorous sense. While SGD is routinely monitored as it runs, the classical theory of SGD provides guarantees only at pre-specified iteration horizons and offers no valid way to decide, based on the observed trajectory, when further computation is justified. We address this gap by developing anytime-valid confidence sequences for stochastic gradient methods, which remain valid under continuous monitoring and directly induce statistically valid, trajectory-dependent stopping rules: stop as soon as the current upper confidence bound on an appropriate performance measure falls below a user-specified tolerance. The confidence sequences are constructed using nonnegative supermartingales, are time-uniform, and depend only on observable quantities along the SGD trajectory, without requiring prior knowledge of the optimization horizon. In convex optimization, this yields anytime-valid certificates for weighted suboptimality of projected SGD under general stepsize schedules, without assuming smoothness or strong convexity. In nonconvex optimization, it yields time-uniform certificates for weighted first-order stationarity under smoothness assumptions. We further characterize the stopping-time complexity of the resulting stopping rules under standard stepsize schedules. To the best of our knowledge, this is the first framework that provides statistically valid, time-uniform stopping rules for SGD across both convex and nonconvex settings based solely on its observed trajectory.
♻ ☆ Among Us: A Sandbox for Measuring and Detecting Agentic Deception
Prior studies on deception in language-based AI agents typically assess whether the agent produces a false statement about a topic, or makes a binary choice prompted by a goal, rather than allowing open-ended deceptive behavior to emerge in pursuit of a longer-term goal. To fix this, we introduce Among Us, a sandbox social deception game where LLM-agents exhibit long-term, open-ended deception as a consequence of the game objectives. While most benchmarks saturate quickly, Among Us can be expected to last much longer, because it is a multi-player game far from equilibrium. Using the sandbox, we evaluate 18 proprietary and open-weight LLMs and uncover a general trend: models trained with RL are comparatively much better at producing deception than detecting it. We evaluate the effectiveness of methods to detect lying and deception: logistic regression on the activations and sparse autoencoders (SAEs). We find that probes trained on a dataset of "pretend you're a dishonest model:.." generalize extremely well out-of-distribution, consistently obtaining AUROCs over 95% even when evaluated just on the deceptive statement, without the chain of thought. We also find two SAE features that work well at deception detection but are unable to steer the model to lie less. We hope our open-sourced sandbox, game logs, and probes serve to anticipate and mitigate deceptive behavior and capabilities in language-based agents.
comment: 21 pages, preprint
♻ ☆ RAGBoost: Efficient Retrieval-Augmented Generation with Accuracy-Preserving Context Reuse
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.
comment: The paper is no longer valid and the contents will be fused to another different paper
♻ ☆ Chunking Strategies for Multimodal AI Systems
Chunking has emerged as a critical technique that enhances generative models by grounding their responses in efficiently segmented knowledge [1]. While initially developed for unimodal (primarily textual) domains, recent advances in multimodal foundation models have extended chunking approaches to incorporate diverse data types, including images, audio, and video [2]. A critical component underpinning the success of these systems is the chunking strategy how large, continuous streams of multimodal data are segmented into semantically meaningful units suitable for processing [3]. Despite its importance, chunking remains an under-explored area, especially in the context of multimodal systems where modality-specific constraints, semantic preservation, and alignment across modalities introduce unique challenges. Our goal is to consolidating the landscape of multimodal chunking strategies, providing researchers and practitioners with a technical foundation and design space for developing more effective and efficient multimodal AI systems. This survey paves the way for innovations in robust chunking pipelines that scale with modality complexity, enhance processing accuracy, and improve generative coherence in real-world applications. This survey provides a comprehensive taxonomy and technical analysis of chunking strategies tailored for each modality: text, images, audio, video, and cross-modal data. We examine classical and modern approaches such as fixed-size token windowing, recursive text splitting, object-centric visual chunking, silence-based audio segmentation, and scene detection in videos. Each approach is analyzed in terms of its underlying methodology, supporting tools (e.g., LangChain, Detectron2, PySceneDetect), benefits, and challenges, particularly those related to granularity-context trade-offs and multimodal alignment. Furthermore, we explore emerging cross-modal chunking strategies that aim to preserve alignment and semantic consistency across disparate data types [4]. We also include comparative insights, highlight open problems such as asynchronous information density and noisy alignment signals, and identify opportunities for future research in adaptive, learning-based, and task-specific chunking.
comment: 50 pages, 5 figure
♻ ☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, achieving an accuracy of 55.04\% on the ICDAR 2013 dataset ($m=1500$), significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples, achieving 92.41\% accuracy with only one support sample per class.
comment: 34 pages, 8 figures
♻ ☆ ContextBench: A Benchmark for Context Retrieval in Coding Agents
LLM-based coding agents have shown strong performance on automated issue resolution benchmarks, yet existing evaluations largely focus on final task success, providing limited insight into how agents retrieve and use code context during problem solving. We introduce ContextBench, a process-oriented evaluation of context retrieval in coding agents. ContextBench consists of 1,136 issue-resolution tasks from 66 repositories across eight programming languages, each augmented with human-annotated gold contexts. We further implement an automated evaluation framework that tracks agent trajectories and measures context recall, precision, and efficiency throughout issue resolution. Using ContextBench, we evaluate four frontier LLMs and five coding agents. Our results show that sophisticated agent scaffolding yields only marginal gains in context retrieval ("The Bitter Lesson" of coding agents), LLMs consistently favor recall over precision, and substantial gaps exist between explored and utilized context. ContextBench augments existing end-to-end benchmarks with intermediate gold-context metrics that unbox the issue-resolution process. These contexts offer valuable intermediate signals for guiding LLM reasoning in software tasks.
comment: 36 pages, 6 figures, 4 tables
♻ ☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
♻ ☆ Structural Plasticity as Active Inference: A Biologically-Inspired Architecture for Homeostatic Control
Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell's actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network's intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network's parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
comment: National Science Foundation (NSF) workshop on Brain-Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence
♻ ☆ OmniMER: Auxiliary-Enhanced LLM Adaptation for Indonesian Multimodal Emotion Recognition
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
♻ ☆ Multi-Objective $\textit{min-max}$ Online Convex Optimization
In this paper, we broaden the horizon of online convex optimization (OCO), and consider multi-objective OCO, where there are $K$ distinct loss function sequences, and an algorithm has to choose its action at time $t$, before the $K$ loss functions at time $t$ are revealed. To capture the tradeoff between tracking the $K$ different sequences, we consider the {\it min-max} regret, where the benchmark (optimal offline algorithm) takes a static action across all time slots that minimizes the maximum of the total loss (summed across time slots) incurred by each of the $K$ sequences. An online algorithm is allowed to change its action across time slots, and its {\it min-max} regret is defined as the difference between its {\it min-max} cost and that of the benchmark. The {\it min-max} regret is a stringent performance measure and an algorithm with small regret needs to `track' all loss functions simultaneously. We first show that with adversarial input, {\it min-max} regret scales linearly with the time horizon $T$ for any online algorithm. Consequently, we consider a stochastic i.i.d. input model where all loss functions are i.i.d. generated from an unknown joint distribution and propose a simple algorithm that combines the well-known {\it Hedge} and online gradient descent (OGD) and show via a remarkably simple proof that its expected {\it min-max} regret is $O(\sqrt{T \log (T K)})$. Analogous results are also derived for Martingale difference and Markov input models.
♻ ☆ Predictive Modeling of Power Outages during Extreme Events: Integrating Weather and Socio-Economic Factors
This paper presents a novel learning based framework for predicting power outages caused by extreme events. The proposed approach targets low-probability high-consequence outage scenarios and leverages a comprehensive set of features derived from publicly available data sources. We integrate EAGLE-I outage records from 2014 to 2024 with weather, socioeconomic, infrastructure, and seasonal event data. Incorporating social and demographic indicators reveals patterns of community vulnerability and improves understanding of outage risk during extreme conditions. Four machine learning models are evaluated, including Random Forest (RF), Graph Neural Network (GNN), Adaptive Boosting (AdaBoost), and Long Short-Term Memory (LSTM). Experimental validation is performed on a large-scale dataset covering counties in the lower peninsula of Michigan. Among all models tested, the LSTM network achieves higher accuracy.
♻ ☆ ParisKV: Fast and Drift-Robust KV-Cache Retrieval for Long-Context LLMs
KV-cache retrieval is essential for long-context LLM inference, yet existing methods struggle with distribution drift and high latency at scale. We introduce ParisKV, a drift-robust, GPU-native KV-cache retrieval framework based on collision-based candidate selection, followed by a quantized inner-product reranking estimator. For million-token contexts, ParisKV supports CPU-offloaded KV caches via Unified Virtual Addressing (UVA), enabling on-demand top-$k$ fetching with minimal overhead. ParisKV matches or outperforms full attention quality on long-input and long-generation benchmarks. It achieves state-of-the-art long-context decoding efficiency: it matches or exceeds full attention speed even at batch size 1 for long contexts, delivers up to 2.8$\times$ higher throughput within full attention's runnable range, and scales to million-token contexts where full attention runs out of memory. At million-token scale, ParisKV reduces decode latency by 17$\times$ and 44$\times$ compared to MagicPIG and PQCache, respectively, two state-of-the-art KV-cache Top-$k$ retrieval baselines.
comment: 25 pages, 16 figures. Under review
♻ ☆ TabNSA: Native Sparse Attention for Efficient Tabular Data Learning
Tabular data poses unique challenges for deep learning due to its heterogeneous feature types, lack of spatial structure, and often limited sample sizes. We propose TabNSA, a novel deep learning framework that integrates Native Sparse Attention (NSA) with a TabMixer backbone to efficiently model tabular data. TabNSA tackles computational and representational challenges by dynamically focusing on relevant feature subsets per instance. The NSA module employs a hierarchical sparse attention mechanism, including token compression, selective preservation, and localized sliding windows, to significantly reduce the quadratic complexity of standard attention operations while addressing feature heterogeneity. Complementing this, the TabMixer backbone captures complex, non-linear dependencies through parallel multilayer perceptron (MLP) branches with independent parameters. These modules are synergistically combined via element-wise summation and mean pooling, enabling TabNSA to model both global context and fine-grained interactions. Extensive experiments across supervised and transfer learning settings show that TabNSA consistently outperforms state-of-the-art deep learning models. Furthermore, by augmenting TabNSA with a fine-tuned large language model (LLM), we enable it to effectively address Few-Shot Learning challenges through language-guided generalization on diverse tabular benchmarks. Code available on: https://github.com/aseslamian/TabNSA
comment: 26 pages, 11 tables
♻ ☆ Targeted Unlearning Using Perturbed Sign Gradient Methods With Applications On Medical Images
Machine unlearning aims to remove the influence of specific training samples from a trained model without full retraining. While prior work has largely focused on privacy-motivated settings, we recast unlearning as a general-purpose tool for post-deployment model revision. Specifically, we focus on utilizing unlearning in clinical contexts where data shifts, device deprecation, and policy changes are common. To this end, we propose a bilevel optimization formulation of boundary-based unlearning that can be solved using iterative algorithms. We provide convergence guarantees when first-order algorithms are used to unlearn. Our method introduces tunable loss design for controlling the forgetting-retention tradeoff and supports novel model composition strategies that merge the strengths of distinct unlearning runs. Across benchmark and real-world clinical imaging datasets, our approach outperforms baselines on both forgetting and retention metrics, including scenarios involving imaging devices and anatomical outliers. This work establishes machine unlearning as a modular, practical alternative to retraining for real-world model maintenance in clinical applications.
comment: 39 pages, 12 figures, 11 tables, 3 algorithms
♻ ☆ ECHO-2: A Large-Scale Distributed Rollout Framework for Cost-Efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
♻ ☆ An adaptive data sampling strategy for stabilizing dynamical systems via controller inference
Learning stabilizing controllers from data is an important task in engineering applications; however, collecting informative data is challenging because unstable systems often lead to rapidly growing or erratic trajectories. In this work, we propose an adaptive sampling scheme that generates data while simultaneously stabilizing the system to avoid instabilities during the data collection. Under mild assumptions, the approach provably generates data sets that are informative for stabilization and have minimal size. The numerical experiments demonstrate that controller inference with the novel adaptive sampling approach learns controllers with up to one order of magnitude fewer data samples than unguided data generation. The results show that the proposed approach opens the door to stabilizing systems in edge cases and limit states where instabilities often occur and data collection is inherently difficult.
comment: 27 pages, 9 figures
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ DISPROTBENCH: Uncovering the Functional Limits of Protein Structure Prediction Models in Intrinsically Disordered Regions
Intrinsically disordered regions (IDRs) play central roles in cellular function, yet remain poorly evaluated by existing protein structure prediction benchmarks. Current evaluations largely focus on well-folded domains, overlooking three fundamental challenges in realistic biological settings: the structural complexity of proteins, the resulting low availability of reliable ground truth, and prediction uncertainty that can propagate into high-risk downstream failures, such as in drug discovery, protein-protein interaction modeling, and functional annotation. We present DisProtBench, an IDR-centric benchmark that explicitly incorporates prediction uncertainty into the evaluation of protein structure prediction models (PSPMs). To address structural complexity and ground-truth scarcity, we curate and unify a large-scale, multi-modal dataset spanning disease-relevant IDRs, GPCR-ligand interactions, and multimeric protein complexes. To assess predictive uncertainty, we introduce Functional Uncertainty Sensitivity (FUS), a novel prediction uncertainty-stratified metric that quantifies downstream task performance under prediction uncertainty. Using this benchmark, we conduct a systematic evaluation of state-of-the-art PSPMs and reveal clear, task-dependent failure modes. Protein-protein interaction prediction degrades sharply in IDRs, while structure-based drug discovery remains comparatively robust. These effects are largely invisible to standard global accuracy metrics, which overestimate functional reliability under prediction uncertainty. We have open-sourced our benchmark and the codebase at https://github.com/Susan571/DisProtBench.
♻ ☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
♻ ☆ HiCL: Hippocampal-Inspired Continual Learning AAAI
We propose HiCL, a novel hippocampal-inspired dual-memory continual learning architecture designed to mitigate catastrophic forgetting by using elements inspired by the hippocampal circuitry. Our system encodes inputs through a grid-cell-like layer, followed by sparse pattern separation using a dentate gyrus-inspired module with top-k sparsity. Episodic memory traces are maintained in a CA3-like autoassociative memory. Task-specific processing is dynamically managed via a DG-gated mixture-of-experts mechanism, wherein inputs are routed to experts based on cosine similarity between their normalized sparse DG representations and learned task-specific DG prototypes computed through online exponential moving averages. This biologically grounded yet mathematically principled gating strategy enables differentiable, scalable task-routing without relying on a separate gating network, and enhances the model's adaptability and efficiency in learning multiple sequential tasks. Cortical outputs are consolidated using Elastic Weight Consolidation weighted by inter-task similarity. Crucially, we incorporate prioritized replay of stored patterns to reinforce essential past experiences. Evaluations on standard continual learning benchmarks demonstrate the effectiveness of our architecture in reducing task interference, achieving near state-of-the-art results in continual learning tasks at lower computational costs. Our code is available here https://github.com/kushalk173-sc/HiCL.
comment: In proceeding of AAAI
♻ ☆ Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional propagation of values and densities
Recently a million of biological neurons (BNN) has turned out better from modern RL methods in playing pong~\cite{RL}, reminding they are still qualitatively superior e.g. in learning, flexibility and robustness - suggesting to try to improve current artificial e.g. MLP/KAN for better agreement with biological. There is proposed extension of KAN approach to neurons containing model of local joint distribution: $ρ(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$, adding interpretation and information flow control to KAN, and allowing to gradually add missing 3 basic properties of biological: 1) biological axons propagate in both directions~\cite{axon}, while current artificial are focused on unidirectional propagation - joint distribution neurons can repair by substituting some variables, getting conditional values/distributions for the remaining. 2) Animals show risk avoidance~\cite{risk} requiring to process variance, and generally real world rather needs probabilistic models - the proposed can predict and propagate also distributions as vectors of moments: (expected value, variance) or higher. 3) biological neurons require local training, and beside backpropagation, the proposed allows many additional ways, like direct training, through tensor decomposition, or finally local and very promising: information bottleneck. Proposed approach is very general, can be also used as extension of softmax $\textrm{Pr}\propto \exp(-E)$ e.g. in embeddings of transformer, into their probability distributions working on $(a_j)$ few moments: $ρ(x)\approx \sum_j a_j f_j(x)$.
comment: 9 pages, 13 figures
♻ ☆ Coherent Load Profile Synthesis with Conditional Diffusion for LV Distribution Network Scenario Generation
Limited visibility of distribution network power flows at the low voltage level presents challenges to both distribution network operators from a planning perspective and distribution system operators from a congestion management perspective. More representative loads are required to support meaningful analysis of LV substations; otherwise, such analysis risks misinforming future decisions. Traditional load profiling relies on typical profiles, oversimplifying substation-level complexity. Generative models have attempted to address this through synthesising representative loads from historical exemplars; however, while these approaches can approximate load shapes to a convincing degree of fidelity, analysis of the co-behaviour between substations is limited, which ultimately impacts higher voltage level network operation. This limitation will become even more pronounced with the increasing integration of low-carbon technologies, as estimates of base loads fail to capture load diversity. To address this gap, Conditional Diffusion models for synthesising daily active and reactive power profiles at the low voltage distribution substation level are proposed. The evaluation of fidelity is demonstrated through conventional metrics capturing temporal and statistical realism, as well as power flow modelling. Multiple models are proposed to handle varying levels of data availability, ranging from unconditional synthesis to an informed generation driven by metadata and daily statistics. The results show synthesised load profiles are plausible both independently and as a cohort in a wider power systems context. The Conditional Diffusion model is benchmarked against both naive and state-of-the-art models to demonstrate its effectiveness in producing realistic scenarios on which to base sub-regional power distribution network planning and operations.
♻ ☆ AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from myopic information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by a lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, myopic, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, CUBE-NM, designed to expose the limitations of myopic selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.
♻ ☆ Constant Rate Scheduling: A General Framework for Optimizing Diffusion Noise Schedule via Distributional Change
We propose a general framework for optimizing noise schedules in diffusion models, applicable to both training and sampling. Our method enforces a constant rate of change in the probability distribution of diffused data throughout the diffusion process, where the rate of change is quantified using a user-defined discrepancy measure. We introduce three such measures, which can be flexibly selected or combined depending on the domain and model architecture. While our framework is inspired by theoretical insights, we do not aim to provide a complete theoretical justification of how distributional change affects sample quality. Instead, we focus on establishing a general-purpose scheduling framework and validating its empirical effectiveness. Through extensive experiments, we demonstrate that our approach consistently improves the performance of both pixel-space and latent-space diffusion models, across various datasets, samplers, and a wide range of number of function evaluations from 5 to 250. In particular, when applied to both training and sampling schedules, our method achieves a state-of-the-art FID score of 2.03 on LSUN Horse 256$\times$256, without compromising mode coverage.
comment: Published in Transactions on Machine Learning Research (TMLR), January 2026
♻ ☆ One-Prompt Strikes Back: Sparse Mixture of Experts for Prompt-based Continual Learning ICLR 2026
Prompt-based methods have recently gained prominence in Continual Learning (CL) due to their strong performance and memory efficiency. A prevalent strategy in this paradigm assigns a dedicated subset of prompts to each task, which, while effective, incurs substantial computational overhead and causes memory requirements to scale linearly with the number of tasks. Conversely, approaches employing a single shared prompt across tasks offer greater efficiency but often suffer from degraded performance due to knowledge interference. To reconcile this trade-off, we propose SMoPE, a novel framework that integrates the benefits of both task-specific and shared prompt strategies. Inspired by recent findings on the relationship between Prefix Tuning and Mixture of Experts (MoE), SMoPE organizes a shared prompt into multiple "prompt experts" within a sparse MoE architecture. For each input, only a select subset of relevant experts is activated, effectively mitigating interference. To facilitate expert selection, we introduce a prompt-attention score aggregation mechanism that computes a unified proxy score for each expert, enabling dynamic and sparse activation. Additionally, we propose an adaptive noise mechanism to encourage balanced expert utilization while preserving knowledge from prior tasks. To further enhance expert specialization, we design a prototype-based loss function that leverages prefix keys as implicit memory representations. Extensive experiments across multiple CL benchmarks demonstrate that SMoPE consistently outperforms task-specific prompt methods and achieves performance competitive with state-of-the-art approaches, all while significantly reducing parameter counts and computational costs.
comment: Accepted to ICLR 2026
♻ ☆ Emergence of Distortions in High-Dimensional Guided Diffusion Models
Classifier-free guidance (CFG) is the de facto standard for conditional sampling in diffusion models, yet it often leads to a loss of diversity in generated samples. We formalize this phenomenon as generative distortion, defined as the mismatch between the CFG-induced sampling distribution and the true conditional distribution. Considering Gaussian mixtures and their exact scores, and leveraging tools from statistical physics, we characterize the onset of distortion in a high-dimensional regime as a function of the number of classes. Our analysis reveals that distortions emerge through a phase transition in the effective potential governing the guided dynamics. In particular, our dynamical mean-field analysis shows that distortion persists when the number of modes grows exponentially with dimension, but vanishes in the sub-exponential regime. Consistent with prior finite-dimensional results, we further demonstrate that vanilla CFG shifts the mean and shrinks the variance of the conditional distribution. We show that standard CFG schedules are fundamentally incapable of preventing variance shrinkage. Finally, we propose a theoretically motivated guidance schedule featuring a negative-guidance window, which mitigates loss of diversity while preserving class separability.
comment: 29 pages, 16 figures
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https://github.com/VRPO/VRPO.
♻ ☆ Redundancy-Free View Alignment for Multimodal Human Activity Recognition with Arbitrarily Missing Views
Multimodal multiview learning seeks to integrate information from diverse sources to enhance task performance. Existing approaches often struggle with flexible view configurations, including arbitrary view combinations, numbers of views, and heterogeneous modalities. Focusing on the context of human activity recognition, we propose RALIS, a model that combines multiview contrastive learning with a mixture-of-experts module to support arbitrary view availability during both training and inference. Instead of trying to reconstruct missing views, an adjusted center contrastive loss is used for self-supervised representation learning and view alignment, mitigating the impact of missing views on multiview fusion. This loss formulation allows for the integration of view weights to account for view quality. Additionally, it reduces computational complexity from $O(V^2)$ to $O(V)$, where $V$ is the number of views. To address residual discrepancies not captured by contrastive learning, we employ a mixture-of-experts module with a specialized load balancing strategy, tasked with adapting to arbitrary view combinations. We highlight the geometric relationship among components in our model and how they combine well in the latent space. RALIS is validated on four datasets encompassing inertial and human pose modalities, with the number of views ranging from three to nine, demonstrating its performance and flexibility.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Aggregation Models with Optimal Weights for Distributed Gaussian Processes
Gaussian process (GP) models have received increasing attention in recent years due to their superb prediction accuracy and modeling flexibility. To address the computational burdens of GP models for large-scale datasets, distributed learning for GPs are often adopted. Current aggregation models for distributed GPs is not time-efficient when incorporating correlations between GP experts. In this work, we propose a novel approach for aggregated prediction in distributed GPs. The technique is suitable for both the exact and sparse variational GPs. The proposed method incorporates correlations among experts, leading to better prediction accuracy with manageable computational requirements. As demonstrated by empirical studies, the proposed approach results in more stable predictions in less time than state-of-the-art consistent aggregation models.
comment: 34 pages, 8 figures, 2 tables
♻ ☆ Retrieval Pivot Attacks in Hybrid RAG: Measuring and Mitigating Amplified Leakage from Vector Seeds to Graph Expansion
Hybrid Retrieval-Augmented Generation (RAG) pipelines combine vector similarity search with knowledge graph expansion for multi-hop reasoning. We show that this composition introduces a distinct security failure mode: a vector-retrieved "seed" chunk can pivot via entity links into sensitive graph neighborhoods, causing cross-tenant data leakage that does not occur in vector-only retrieval. We formalize this risk as Retrieval Pivot Risk (RPR) and introduce companion metrics Leakage@k, Amplification Factor, and Pivot Depth (PD) to quantify leakage magnitude and traversal structure. We present seven Retrieval Pivot Attacks that exploit the vector-to-graph boundary and show that adversarial injection is not required: naturally shared entities create cross-tenant pivot paths organically. Across a synthetic multi-tenant enterprise corpus and the Enron email corpus, the undefended hybrid pipeline exhibits high pivot risk (RPR up to 0.95) with multiple unauthorized items returned per query. Leakage consistently appears at PD=2, which we attribute to the bipartite chunk-entity topology and formalize as a proposition. We then show that enforcing authorization at a single location, the graph expansion boundary, eliminates measured leakage (RPR near 0) across both corpora, all attack variants, and label forgery rates up to 10 percent, with minimal overhead. Our results indicate the root cause is boundary enforcement, not inherently complex defenses: two individually secure retrieval components can compose into an insecure system unless authorization is re-checked at the transition point.
comment: 18 pages, 5 figures
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: V2: We added CIFAR. V3: Old FID & CIFAR images of the Kac model corresponded to schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error & updated the CIFAR results. V5: Added: mean-reverting Kac process is Lipschitz; rigorous proof of decomp. Lemma 6.1 & a nearest neighbor analysis. V6: Polishing. V7: Correction in proof of Lem. 6.1
♻ ☆ A Survey on Active Feature Acquisition Strategies
Active feature acquisition (AFA) studies how to sequentially acquire features for each data instance to trade off predictive performance against acquisition cost. This survey offers the first unified treatment of AFA via an explicit partially observable Markov decision process (POMDP) formulation. We place this formulation in the broader literature on optimal information acquisition and, more specifically, in a family of structured POMDPs (for example, information-gathering and sensing POMDPs) whose assumptions and algorithmic tools directly apply to AFA. This connection provides a common language for comparing problem settings and methods, and it highlights where AFA can leverage established results in structured POMDP planning and approximation. Building on this perspective, we present an up-to-date taxonomy of AFA methods that (roughly) mirrors standard approaches to solving POMDPs: (i) embedded cost-aware predictors (notably cost-sensitive decision trees and ensembles), (ii) model-based methods that plan using learned probabilistic components, (iii) model-free methods that learn acquisition policies from simulated episodes, and (iv) hybrid methods that combine the strengths of model-based and model-free approaches. We argue that this POMDP-centric view clarifies connections among existing methods and motivates more principled algorithm design. Since much prior work is heuristic and lacks formal guarantees, we also outline routes to guarantees by connecting AFA to adaptive stochastic optimization. We conclude by highlighting open challenges and promising directions for future research.
♻ ☆ LLM Serving Optimization with Variable Prefill and Decode Lengths
We study offline scheduling for large language model (LLM) serving under a fixed KV-cache memory budget, where requests have heterogeneous prompt (prefill) and response (decode) lengths. Prompt tokens determine initial KV usage, and each generated token increases memory by one unit. Given a backlog of n requests arriving together, we schedule mixed prefill and decode batches to minimize total end-to-end latency. We show that heterogeneity in prompt lengths makes the problem computationally intractable and that widely used heuristics such as first-come-first-served and shortest-first can be arbitrarily suboptimal. We propose Sorted-F, which repeatedly forms feasible batches using a new selection metric that balances batch size against downstream decode cost, and prove it achieves a constant-factor guarantee on total latency. We further develop practical variants -- an exact solver for small instances and fast heuristics for larger ones -- and evaluate them on a public workload spanning short conversations and long-document summarization, where they consistently reduce average latency relative to standard baselines. Our results highlight that during peak-hour tidal backlogs, greedy GPU packing or short-request prioritization can perform poorly when prompt lengths vary widely, and provide a principled, tunable framework for designing production batch schedulers and planning capacity in memory-constrained LLM serving systems.
♻ ☆ Quantifying Multimodal Imbalance: A GMM-Guided Adaptive Loss for Audio-Visual Learning
Multimodal learning integrates diverse modalities but suffers from modality imbalance, where dominant modalities suppress weaker ones due to inconsistent convergence rates. Existing methods predominantly rely on static modulation or heuristics, overlooking sample-level distributional variations in prediction bias. Specifically, they fail to distinguish outlier samples where the modality gap is exacerbated by low data quality. We propose a framework to quantitatively diagnose and dynamically mitigate this imbalance at the sample level. We introduce the Modality Gap metric to quantify prediction discrepancies. Analysis reveals that this gap follows a bimodal distribution, indicating the coexistence of balanced and imbalanced sample subgroups. We employ a Gaussian Mixture Model (GMM) to explicitly model this distribution, leveraging Bayesian posterior probabilities for soft subgroup separation. Our two-stage framework comprises a Warm-up stage and an Adaptive Training stage. In the latter, a GMM-guided Adaptive Loss dynamically reallocates optimization priorities: it imposes stronger alignment penalties on imbalanced samples to rectify bias, while prioritizing fusion for balanced samples to maximize complementary information. Experiments on CREMA-D, AVE, and KineticSound demonstrate that our method significantly outperforms SOTA baselines. Furthermore, we show that fine-tuning on a GMM-filtered balanced subset serves as an effective data purification strategy, yielding substantial gains by eliminating extreme noisy samples even without the adaptive loss.
♻ ☆ PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits ICLR 2026
Understanding human behavior traits is central to applications in human-computer interaction, computational social science, and personalized AI systems. Such understanding often requires integrating multiple modalities to capture nuanced patterns and relationships. However, existing resources rarely provide datasets that combine behavioral descriptors with complementary modalities such as facial attributes and biographical information. To address this gap, we present PersonaX, a curated collection of multimodal datasets designed to enable comprehensive analysis of public traits across modalities. PersonaX consists of (1) CelebPersona, featuring 9444 public figures from diverse occupations, and (2) AthlePersona, covering 4181 professional athletes across 7 major sports leagues. Each dataset includes behavioral trait assessments inferred by three high-performing large language models, alongside facial imagery and structured biographical features. We analyze PersonaX at two complementary levels. First, we abstract high-level trait scores from text descriptions and apply five statistical independence tests to examine their relationships with other modalities. Second, we introduce a novel causal representation learning (CRL) framework tailored to multimodal and multi-measurement data, providing theoretical identifiability guarantees. Experiments on both synthetic and real-world data demonstrate the effectiveness of our approach. By unifying structured and unstructured analysis, PersonaX establishes a foundation for studying LLM-inferred behavioral traits in conjunction with visual and biographical attributes, advancing multimodal trait analysis and causal reasoning. The code is available at https://github.com/lokali/PersonaX.
comment: ICLR 2026
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ A Unified Framework for Debiased Machine Learning: Riesz Representer Fitting under Bregman Divergence
Estimating the Riesz representer is central to debiased machine learning for causal and structural parameter estimation. We propose generalized Riesz regression, a unified framework for estimating the Riesz representer by fitting a representer model via Bregman divergence minimization. This framework includes various divergences as special cases, such as the squared distance and the Kullback--Leibler (KL) divergence, where the former recovers Riesz regression and the latter recovers tailored loss minimization. Under suitable pairs of divergence and model specifications (link functions), the dual problems of the Riesz representer fitting problem correspond to covariate balancing, which we call automatic covariate balancing. Moreover, under the same specifications, the sample average of outcomes weighted by the estimated Riesz representer satisfies Neyman orthogonality even without estimating the regression function, a property we call automatic Neyman orthogonalization. This property not only reduces the estimation error of Neyman orthogonal scores but also clarifies a key distinction between debiased machine learning and targeted maximum likelihood estimation (TMLE). Our framework can also be viewed as a generalization of density ratio fitting under Bregman divergences to Riesz representer estimation, and it applies beyond density ratio estimation. We provide convergence analyses for both reproducing kernel Hilbert space (RKHS) and neural network model classes. A Python package for generalized Riesz regression is released as genriesz and is available at https://github.com/MasaKat0/genriesz.
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ Beyond Pairwise: Empowering LLM Alignment With Ranked Choice Modeling ICLR 2026
Alignment of large language models (LLMs) has predominantly relied on pairwise preference optimization, where annotators select the better of two responses to a prompt. While simple, this approach overlooks the opportunity to learn from richer forms of human feedback, such as multiway comparisons and top-$k$ rankings. We introduce Ranked Choice Preference Optimization (RCPO), a unified framework that bridges preference optimization with (ranked) choice modeling via maximum likelihood estimation. RCPO supports both utility-based and rank-based models, subsumes several pairwise methods (such as DPO and SimPO) as special cases, and provides principled training objectives for richer feedback formats. We instantiate this framework with two representative models (Multinomial Logit and Mallows-RMJ). Experiments on Llama-3-8B-Instruct, Gemma-2-9B-it, and Mistral-7B-Instruct across in-distribution and out-of-distribution settings show that RCPO consistently outperforms competitive baselines. RCPO shows that directly leveraging ranked preference data, combined with the right choice models, yields more effective alignment. It offers an extensible foundation for incorporating (ranked) choice modeling into LLM training.
comment: Accepted by The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Understanding Image2Video Domain Shift in Food Segmentation: An Instance-level Analysis on Apples
Food segmentation models trained on static images have achieved strong performance on benchmark datasets; however, their reliability in video settings remains poorly understood. In real-world applications such as food monitoring and instance counting, segmentation outputs must be temporally consistent, yet image-trained models often break down when deployed on videos. In this work, we analyze this failure through an instance segmentation and tracking perspective, focusing on apples as a representative food category. Models are trained solely on image-level food segmentation data and evaluated on video sequences using an instance segmentation with tracking-by-matching framework, enabling object-level temporal analysis. Our results reveal that high frame-wise segmentation accuracy does not translate to stable instance identities over time. Temporal appearance variations, particularly illumination changes, specular reflections, and texture ambiguity, lead to mask flickering and identity fragmentation, resulting in significant errors in apple counting. These failures are largely overlooked by conventional image-based metrics, which substantially overestimate real-world video performance. Beyond diagnosing the problem, we examine practical remedies that do not require full video supervision, including post-hoc temporal regularization and self-supervised temporal consistency objectives. Our findings suggest that the root cause of failure lies in image-centric training objectives that ignore temporal coherence, rather than model capacity. This study highlights a critical evaluation gap in food segmentation research and motivates temporally-aware learning and evaluation protocols for video-based food analysis.
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ Toward Ultra-Long-Horizon Sequential Model Editing
Model editing has emerged as a practical approach for mitigating factual errors and outdated knowledge in large language models (LLMs). Among existing methods, the Locate-and-Edit (L&E) paradigm is the dominant framework: it locates MLP parameters implicated in expressing a target fact, and then performs a localized update to rewrite that fact. However, long sequences of edits often trigger abrupt model collapse in L&E beyond a critical point. We empirically identify a strong correlation between collapse and explosive growth of edited MLP weight norms, and formally prove that commonly used L&E update rules can induce exponential norm growth across sequential edits in the absence of explicit norm control. To address this issue, we propose Norm-Anchor Scaling NAS, a plug-and-play norm-constrained strategy. Across extensive experiments, NAS delays the collapse point of representative L&E algorithms by more than 4 times and yields a 72.2% average relative gain in editing performance, requiring only a single additional line of code and incurring negligible computational overhead.
♻ ☆ Information-Theoretic Limits of Quantum Learning via Data Compression IEEE
Understanding the power of quantum data in machine learning is central to many proposed applications of quantum technologies. While access to quantum data can offer exponential advantages for carefully designed learning tasks and often under strong assumptions on the data distribution, it remains an open question whether such advantages persist in less structured settings and under more realistic, naturally occurring distributions. Motivated by these practical concerns, we introduce a systematic framework based on quantum lossy data compression to bound the power of quantum data in the context of probably approximately correct (PAC) learning. Specifically, we provide lower bounds on the sample complexity of quantum learners for arbitrary functions when data is drawn from Zipf's distribution, a widely used model for the empirical distributions of real-world data. We also establish lower bounds on the size of quantum input data required to learn linear functions, thereby proving the optimality of previous positive results. Beyond learning theory, we show that our framework has applications in secure delegated quantum computation within the measurement-based quantum computation (MBQC) model. In particular, we constrain the amount of private information the server can infer, strengthening the security guarantees of the delegation protocol proposed in (Mantri et al., PRX, 2017).
comment: Version accepted at the IEEE International Conference on Quantum Artificial Intelligence (2025)
♻ ☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures; appendix: 12 pages, 11 figures; code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr; v2: Fixed rendering artifact in Figure 7
♻ ☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: Data privacy regulations hinder the creation of generalizable foundation models (FMs) for surgery by preventing multi-institutional data aggregation. This study investigates federated learning (FL) as a privacy-preserving solution to collaboratively train robust surgical FMs. Methods: We introduce Federated EndoViT (FL-EndoViT), a federated framework that validates the Masked Autoencoder (MAE) pretraining strategy in a decentralized surgical setting. To ensure convergence under severe data heterogeneity, the architecture integrates adaptive Sharpness-Aware Minimization (FedSAM). Pretrained on the large-scale Endo700k dataset, FL-EndoViT is evaluated against a centralized baseline on different tasks including scene segmentation, action recognition, and phase recognition. Results: FedSAM is critical for successful pretraining, overcoming the convergence failures of standard federated methods. The resulting FL-EndoViT performs comparably to its centralized counterpart, with significant advantages in data-scarce, high-resolution segmentation and generalization to new surgical events. We also establish that full, end-to-end fine-tuning is necessary for optimal performance. Conclusion: This work validates FL with adaptive optimization as a viable paradigm for creating robust, privacy-preserving surgical FMs. Our findings provide a scalable framework for collaborative Surgical Data Science and underscore the optimizer's critical role in handling data heterogeneity. Future work should explore video-based models to incorporate spatiotemporal dynamics.
comment: Preprint submitted to MIDL
♻ ☆ Estimating Interventional Distributions with Uncertain Causal Graphs through Meta-Learning
In scientific domains -- from biology to the social sciences -- many questions boil down to \textit{What effect will we observe if we intervene on a particular variable?} If the causal relationships (e.g.~a causal graph) are known, it is possible to estimate the intervention distributions. In the absence of this domain knowledge, the causal structure must be discovered from the available observational data. However, observational data are often compatible with multiple causal graphs, making methods that commit to a single structure prone to overconfidence. A principled way to manage this structural uncertainty is via Bayesian inference, which averages over a posterior distribution on possible causal structures and functional mechanisms. Unfortunately, the number of causal structures grows super-exponentially with the number of nodes in the graph, making computations intractable. We propose to circumvent these challenges by using meta-learning to create an end-to-end model: the Model-Averaged Causal Estimation Transformer Neural Process (MACE-TNP). The model is trained to predict the Bayesian model-averaged interventional posterior distribution, and its end-to-end nature bypasses the need for expensive calculations. Empirically, we demonstrate that MACE-TNP outperforms strong Bayesian baselines. Our work establishes meta-learning as a flexible and scalable paradigm for approximating complex Bayesian causal inference, that can be scaled to increasingly challenging settings in the future.
♻ ☆ A Generalized Version of Chung's Lemma and its Applications
Chung's Lemma is a classical tool for establishing asymptotic convergence rates of (stochastic) optimization methods under strong convexity-type assumptions and appropriate polynomial diminishing step sizes. In this work, we develop a generalized version of Chung's Lemma, which provides a simple non-asymptotic convergence framework for a more general family of step size rules. We demonstrate broad applicability of the proposed generalized lemma by deriving tight non-asymptotic convergence rates for a large variety of stochastic methods. In particular, we obtain partially new non-asymptotic complexity results for stochastic optimization methods, such as Stochastic Gradient Descent (SGD) and Random Reshuffling (RR), under a general $(θ,μ)$-Polyak-Lojasiewicz (PL) condition and for various step sizes strategies, including polynomial, constant, exponential, and cosine step sizes rules. Notably, as a by-product of our analysis, we observe that exponential step sizes exhibit superior adaptivity to both landscape geometry and gradient noise; specifically, they achieve optimal convergence rates without requiring exact knowledge of the underlying landscape or separate parameter selection strategies for noisy and noise-free regimes. Our results demonstrate that the developed variant of Chung's Lemma offers a versatile, systematic, and streamlined approach to establish non-asymptotic convergence rates under general step size rules.
comment: 38 pages
♻ ☆ Adapting Noise to Data: Generative Flows from 1D Processes
The default Gaussian latent in flow-based generative models poses challenges when learning certain distributions such as heavy-tailed ones. We introduce a general framework for learning data-adaptive latent distributions using one-dimensional quantile functions, optimized via the Wasserstein distance between noise and data. The quantile-based parameterization naturally adapts to both heavy-tailed and compactly supported distributions and shortens transport paths. Numerical results confirm the method's flexibility and effectiveness achieved with negligible computational overhead.
♻ ☆ ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection ICLR24
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a \textsc{ConjNorm} method, reframing density function design as a search for the optimal norm coefficient $p$ against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed \textsc{ConjNorm} has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25$\%$ and 28.19$\%$ (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
comment: ICLR24 poster
♻ ☆ A Nonparametric Discrete Hawkes Model with a Collapsed Gaussian-Process Prior
Hawkes process models are used in settings where past events increase the likelihood of future events occurring. Many applications record events as counts on a regular grid, yet discrete-time Hawkes models remain comparatively underused and are often constrained by fixed-form baselines and excitation kernels. In particular, there is a lack of flexible, nonparametric treatments of both the baseline and the excitation in discrete time. To this end, we propose the Gaussian Process Discrete Hawkes Process (GP-DHP), a nonparametric framework that places Gaussian process priors on both the baseline and the excitation and performs inference through a collapsed latent representation. This yields smooth, data-adaptive structure without prespecifying trends, periodicities, or decay shapes, and enables maximum a posteriori (MAP) estimation with near-linear-time \(O(T\log T)\) complexity. A closed-form projection recovers interpretable baseline and excitation functions from the optimized latent trajectory. In simulations, GP-DHP recovers diverse excitation shapes and evolving baselines. In case studies on U.S. terrorism incidents and weekly Cryptosporidiosis counts, it improves test predictive log-likelihood over standard parametric discrete Hawkes baselines while capturing bursts, delays, and seasonal background variation. The results indicate that flexible discrete-time self-excitation can be achieved without sacrificing scalability or interpretability.
♻ ☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Experiments on three diverse video datasets - EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition) with multiple target models covering both classification and regression tasks, demonstrate that LD-ViCE generalizes well and achieves state-of-the-art performance. On the EchoNet-Dynamic dataset, LD-ViCE achieves significantly higher regression accuracy than prior methods and exhibits high temporal consistency, while the refinement stage further improves perceptual quality. Qualitative analyses confirm that LD-ViCE produces semantically meaningful and temporally coherent explanations, providing actionable insights into model behavior. LD-ViCE advances the trustworthiness and interpretability of video-based AI systems through visually coherent counterfactual explanations.
comment: 44 Pages
♻ ☆ NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
♻ ☆ Patch-Level Tokenization with CNN Encoders and Attention for Improved Transformer Time-Series Forecasting
Transformer-based models have shown strong performance in time-series forecasting by leveraging self-attention to model long-range temporal dependencies. However, their effectiveness depends critically on the quality and structure of input representations derived from raw multivariate time-series data, particularly as sequence length and data scale increase. This paper proposes a two-stage forecasting framework that explicitly separates local temporal representation learning from global dependency modelling. In the proposed approach, a convolutional neural network operates on fixed-length temporal patches to extract short-range temporal dynamics and non-linear feature interactions, producing compact patch-level token embeddings. Token-level self-attention is applied during representation learning to refine these embeddings, after which a Transformer encoder models inter-patch temporal dependencies to generate forecasts. The method is evaluated on a synthetic multivariate time-series dataset with controlled static and dynamic factors, using an extended sequence length and a larger number of samples. Experimental results demonstrate that the proposed framework consistently outperforms a convolutional baseline under increased temporal context and remains competitive with a strong patch-based Transformer model. These findings indicate that structured patch-level tokenization provides a scalable and effective representation for multivariate time-series forecasting, particularly when longer input sequences are considered.
comment: 6 pages, 2 figures, 3 tables
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Compiler-Assisted Speculative Sampling for Accelerated LLM Inference on Heterogeneous Edge Devices
LLM deployment on resource-constrained edge devices faces severe latency constraints, particularly in real-time applications where delayed responses can compromise safety or usability. Among many approaches to mitigate the inefficiencies of sequential token-by-token generation, Speculative Decoding (SD) has emerged as a promising technique. However, SD at the edge is hindered by two major challenges: (1) integrating SD into a compiler-based workflow without sacrificing performance or programmability, and (2) exploiting the heterogeneous compute resources of modern SoCs through carefully designed partitioning strategies. This work addresses these challenges by using an analytical cost model that explores heterogeneous hardware configurations and guides coarse-grained partitioning of LLM subgraphs, particularly with edge-typical short input sequence lengths. The cost model predicts when speculative sampling and heterogeneous execution are jointly beneficial and is validated on an edge device featuring a hexacore Cortex-A CPU and a Mali GPU, revealing up to 1.68$\times$ speedup for translation tasks, closely matching analytic expectations.
comment: Accepted to AccML@HiPEAC 2026
♻ ☆ UTOPIA: Unlearnable Tabular Data via Decoupled Shortcut Embedding
Unlearnable examples (UE) have emerged as a practical mechanism to prevent unauthorized model training on private vision data, while extending this protection to tabular data is nontrivial. Tabular data in finance and healthcare is highly sensitive, yet existing UE methods transfer poorly because tabular features mix numerical and categorical constraints and exhibit saliency sparsity, with learning dominated by a few dimensions. Under a Spectral Dominance condition, we show certified unlearnability is feasible when the poison spectrum overwhelms the clean semantic spectrum. Guided by this, we propose Unlearnable Tabular Data via DecOuPled Shortcut EmbeddIng (UTOPIA), which exploits feature redundancy to decouple optimization into two channels: high saliency features for semantic obfuscation and low saliency redundant features for embedding a hyper correlated shortcut, yielding constraint-aware dominant shortcuts while preserving tabular validity. Extensive experiments across tabular datasets and models show UTOPIA drives unauthorized training toward near random performance, outperforming strong UE baselines and transferring well across architectures.
♻ ☆ Free-Boundary Quasiconformal Maps via a Least-squares Operator in Diffeomorphism Optimization
Free-boundary diffeomorphism optimization, an important and widely occurring task in geometric modeling, computer graphics, and biological imaging, requires simultaneously determining a planar target domain and a locally bijective map with well-controlled distortion. We formulate this task through the least-squares quasiconformal (LSQC) operator and establish key structural properties of the LSQC minimizer, including well-posedness under mild conditions, invariance under similarity transformations, and resolution-independent behavior with stability under mesh refinement. We further analyze the sensitivity of the LSQC solution with respect to the Beltrami coefficient, establishing stability and differentiability properties that enable gradient-based optimization over the space of Beltrami coefficients. To make this differentiable formulation practical at scale and to facilitate the optimization process, we introduce the Spectral Beltrami Network (SBN), a multiscale mesh-spectral surrogate that approximates the LSQC solution operator in a single differentiable forward pass. This yields SBN-Opt, an optimization framework that searches over admissible Beltrami coefficients and pinning conditions to solve free-boundary diffeomorphism objectives with explicit distortion control. Extensive experiments on equiareal parameterization and inconsistent surface registration demonstrate consistent improvements over traditional numerical algorithms.
♻ ☆ The hidden risks of temporal resampling in clinical reinforcement learning
Offline reinforcement learning (ORL) has shown potential for improving decision-making in healthcare. However, contemporary research typically aggregates patient data into fixed time intervals, simplifying their mapping to standard ORL frameworks. The impact of these temporal manipulations on model safety and efficacy remains poorly understood. In this work, using both a gridworld navigation task and the UVA/Padova clinical diabetes simulator, we demonstrate that temporal resampling significantly degrades the performance of offline reinforcement learning algorithms during live deployment. We propose three mechanisms that drive this failure: (i) the generation of counterfactual trajectories, (ii) the distortion of temporal expectations, and (iii) the compounding of generalisation errors. Crucially, we find that standard off-policy evaluation metrics can fail to detect these drops in performance. Our findings reveal a fundamental risk in current healthcare ORL pipelines and emphasise the need for methods that explicitly handle the irregular timing of clinical decision-making.
comment: 12 pages, 4 figures. v2 fixes missing acknowledgements
♻ ☆ Input Convex Kolmogorov Arnold Networks
This article presents an input convex neural network architecture using Kolmogorov-Arnold networks (ICKAN). Two specific networks are presented: the first is based on a low-order, linear-by-part, representation of functions, and a universal approximation theorem is provided. The second is based on cubic splines, for which only numerical results support convergence. We demonstrate on simple tests that these networks perform competitively with classical input convex neural networks (ICNNs). In a second part, we use the networks to solve some optimal transport problems needing a convex approximation of functions and demonstrate their effectiveness. Comparisons with ICNNs show that cubic ICKANs produce results similar to those of classical ICNNs.
♻ ☆ BiSSL: Enhancing the Alignment Between Self-Supervised Pretraining and Downstream Fine-Tuning via Bilevel Optimization
Models initialized from self-supervised pretraining may suffer from poor alignment with downstream tasks, reducing the extent to which subsequent fine-tuning can adapt pretrained features toward downstream objectives. To mitigate this, we introduce BiSSL, a novel bilevel training framework that enhances the alignment of self-supervised pretrained models with downstream tasks prior to fine-tuning. BiSSL acts as an intermediate training stage conducted after conventional self-supervised pretraining and is tasked with solving a bilevel optimization problem that incorporates the pretext and downstream training objectives in its lower- and upper-level objectives, respectively. This approach explicitly models the interdependence between the pretraining and fine-tuning stages within the conventional self-supervised learning pipeline, facilitating enhanced information sharing between them that ultimately leads to a model initialization better aligned with the downstream task. We propose a general training algorithm for BiSSL that is compatible with a broad range of pretext and downstream tasks. Using SimCLR and Bootstrap Your Own Latent to pretrain ResNet-50 backbones on the ImageNet dataset, we demonstrate that our proposed framework significantly improves accuracy on the vast majority of 12 downstream image classification datasets, as well as on object detection. Exploratory analyses alongside investigative experiments further provide compelling evidence that BiSSL enhances downstream alignment.
♻ ☆ The Theory and Practice of MAP Inference over Non-Convex Constraints
In many safety-critical settings, probabilistic ML systems have to make predictions subject to algebraic constraints, e.g., predicting the most likely trajectory that does not cross obstacles. These real-world constraints are rarely convex, nor the densities considered are (log-)concave. This makes computing this constrained maximum a posteriori (MAP) prediction efficiently and reliably extremely challenging. In this paper, we first investigate under which conditions we can perform constrained MAP inference over continuous variables exactly and efficiently and devise a scalable message-passing algorithm for this tractable fragment. Then, we devise a general constrained MAP strategy that interleaves partitioning the domain into convex feasible regions with numerical constrained optimization. We evaluate both methods on synthetic and real-world benchmarks, showing our approaches outperform constraint-agnostic baselines, and scale to complex densities intractable for SoTA exact solvers.
♻ ☆ PALMS: Pavlovian Associative Learning Models Simulator
Simulations are an indispensable step in the cycle of theory development and refinement, helping researchers formulate precise definitions, generate models, and make accurate predictions. This paper introduces the Pavlovian Associative Learning Models Simulator (PALMS), a Python environment to simulate Pavlovian conditioning experiments. In addition to the canonical Rescorla-Wagner model, PALMS incorporates several attentional learning approaches, including Pearce-Kaye-Hall, Mackintosh Extended, Le Pelley's Hybrid, and a novel extension of the Rescorla-Wagner model with a unified variable learning rate that integrates Mackintosh's and Pearce and Hall's opposing conceptualisations. The simulator's graphical interface allows for the input of entire experimental designs in an alphanumeric format, akin to that used by experimental neuroscientists. Moreover, it uniquely enables the simulation of experiments involving hundreds of stimuli, as well as the computation of configural cues and configural-cue compounds across all models, thereby considerably expanding their predictive capabilities. PALMS operates efficiently, providing instant visualisation of results, supporting rapid, precise comparisons of various models' predictions within a single architecture and environment. Furthermore, graphic displays can be easily saved, and simulated data can be exported to spreadsheets. To illustrate the simulator's capabilities and functionalities, we provide a detailed description of the software and examples of use, reproducing published experiments in the associative learning literature. PALMS is licensed under the open-source GNU Lesser General Public License 3.0. The simulator source code and the latest multiplatform release build are accessible as a GitHub repository at https://github.com/cal-r/PALMS-Simulator
♻ ☆ Decomposed Direct Preference Optimization for Structure-Based Drug Design
Diffusion models have achieved promising results for Structure-Based Drug Design (SBDD). Nevertheless, high-quality protein subpocket and ligand data are relatively scarce, which hinders the models' generation capabilities. Recently, Direct Preference Optimization (DPO) has emerged as a pivotal tool for aligning generative models with human preferences. In this paper, we propose DecompDPO, a structure-based optimization method aligns diffusion models with pharmaceutical needs using multi-granularity preference pairs. DecompDPO introduces decomposition into the optimization objectives and obtains preference pairs at the molecule or decomposed substructure level based on each objective's decomposability. Additionally, DecompDPO introduces a physics-informed energy term to ensure reasonable molecular conformations in the optimization results. Notably, DecompDPO can be effectively used for two main purposes: (1) fine-tuning pretrained diffusion models for molecule generation across various protein families, and (2) molecular optimization given a specific protein subpocket after generation. Extensive experiments on the CrossDocked2020 benchmark show that DecompDPO significantly improves model performance, achieving up to 95.2% Med. High Affinity and a 36.2% success rate for molecule generation, and 100% Med. High Affinity and a 52.1% success rate for molecular optimization. Code is available at https://github.com/laviaf/DecompDPO.
comment: Accepted by TMLR
♻ ☆ Enhancing Fake-News Detection with Node-Level Topological Features
In recent years, the proliferation of misinformation and fake news has posed serious threats to individuals and society, spurring intense research into automated detection methods. Previous work showed that integrating content, user preferences, and propagation structure achieves strong performance, but leaves all graph-level representation learning entirely to the GNN, hiding any explicit topological cues. To close this gap, we introduce a lightweight enhancement: for each node, we append two classical graph-theoretic metrics, degree centrality and local clustering coefficient, to its original BERT and profile embeddings, thus explicitly flagging the roles of hub and community. In the UPFD Politifact subset, this simple modification boosts macro F1 from 0.7753 to 0.8344 over the original baseline. Our study not only demonstrates the practical value of explicit topology features in fake-news detection but also provides an interpretable, easily reproducible template for fusing graph metrics in other information-diffusion tasks.
♻ ☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric. The code is available at https://github.com/rohanasthana/memorization-anisotropy .
comment: Accepted at ICLR 2026
♻ ☆ Discount Model Search for Quality Diversity Optimization in High-Dimensional Measure Spaces ICLR 2026
Quality diversity (QD) optimization searches for a collection of solutions that optimize an objective while attaining diverse outputs of a user-specified, vector-valued measure function. Contemporary QD algorithms are typically limited to low-dimensional measures because high-dimensional measures are prone to distortion, where many solutions found by the QD algorithm map to similar measures. For example, the state-of-the-art CMA-MAE algorithm guides measure space exploration with a histogram in measure space that records so-called discount values. However, CMA-MAE stagnates in domains with high-dimensional measure spaces because solutions with similar measures fall into the same histogram cell and hence receive the same discount value. To address these limitations, we propose Discount Model Search (DMS), which guides exploration with a model that provides a smooth, continuous representation of discount values. In high-dimensional measure spaces, this model enables DMS to distinguish between solutions with similar measures and thus continue exploration. We show that DMS facilitates new capabilities for QD algorithms by introducing two new domains where the measure space is the high-dimensional space of images, which enables users to specify their desired measures by providing a dataset of images rather than hand-designing the measure function. Results in these domains and on high-dimensional benchmarks show that DMS outperforms CMA-MAE and other existing black-box QD algorithms.
comment: Accepted to ICLR 2026 (Oral presentation). Project page available at https://discount-models.github.io
♻ ☆ Neural Force Field: Few-shot Learning of Generalized Physical Reasoning ICLR 2026
Physical reasoning is a remarkable human ability that enables rapid learning and generalization from limited experience. Current AI models, despite extensive training, still struggle to achieve similar generalization, especially in Out-of-distribution (OOD) settings. This limitation stems from their inability to abstract core physical principles from observations. A key challenge is developing representations that can efficiently learn and generalize physical dynamics from minimal data. Here we present Neural Force Field (NFF), a framework extending Neural Ordinary Differential Equation (NODE) to learn complex object interactions through force field representations, which can be efficiently integrated through an Ordinary Differential Equation (ODE) solver to predict object trajectories. Unlike existing approaches that rely on discrete latent spaces, NFF captures fundamental physical concepts such as gravity, support, and collision in continuous explicit force fields. Experiments on three challenging physical reasoning tasks demonstrate that NFF, trained with only a few examples, achieves strong generalization to unseen scenarios. This physics-grounded representation enables efficient forward-backward planning and rapid adaptation through interactive refinement. Our work suggests that incorporating physics-inspired representations into learning systems can help bridge the gap between artificial and human physical reasoning capabilities.
comment: 27 pages, ICLR 2026
♻ ☆ When Should We Introduce Safety Interventions During Pretraining?
Prior work has shown that safety interventions applied during pretraining, such as removing and rephrasing harmful content, can substantially improve the robustness of the resulting models. In this paper, we study the fundamental question that prior work has overlooked: "When during pretraining should safety interventions be introduced?" We keep the underlying data sources and pretraining interventions fixed, varying the intervention start time (after 0%, 20%, or 60% of pretraining tokens). We find that the optimal start time is not one-size-fits-all: with standard top-k decoding, introducing interventions after a short initial phase of safe-only pretraining (20%-60%) often yields the strongest robustness, with the clearest benefits emerging after downstream, benign finetuning. In contrast, for safety-aware inference, interventions starting from the beginning improve steerability towards safer generations. Finally, we observe that earlier interventions reshape internal representations: linear probes more cleanly separate safe vs harmful examples. Our results are the first to establish intervention timing as a key curriculum design choice for safety.
♻ ☆ Sharp High-Probability Rates for Nonlinear SGD under Heavy-Tailed Noise via Symmetrization
We study convergence in high-probability of SGD-type methods in non-convex optimization and the presence of heavy-tailed noise. To combat the heavy-tailed noise, a general black-box nonlinear framework is considered, subsuming nonlinearities like sign, clipping, normalization and their smooth counterparts. Our first result shows that nonlinear SGD (N-SGD) achieves the rate $\widetilde{\mathcal{O}}(t^{-1/2})$, for any noise with unbounded moments and a symmetric probability density function (PDF). Crucially, N-SGD has exponentially decaying tails, matching the performance of linear SGD under light-tailed noise. To handle non-symmetric noise, we propose two novel estimators, based on the idea of noise symmetrization. The first, dubbed Symmetrized Gradient Estimator (SGE), assumes a noiseless gradient at any reference point is available at the start of training, while the second, dubbed Mini-batch SGE (MSGE), uses mini-batches to estimate the noiseless gradient. Combined with the nonlinear framework, we get N-SGE and N-MSGE methods, respectively, both achieving the same convergence rate and exponentially decaying tails as N-SGD, while allowing for non-symmetric noise with unbounded moments and PDF satisfying a mild technical condition, with N-MSGE additionally requiring bounded noise moment of order $p \in (1,2]$. Compared to works assuming noise with bounded $p$-th moment, our results: 1) are based on a novel symmetrization approach; 2) provide a unified framework and relaxed moment conditions; 3) imply optimal oracle complexity of N-SGD and N-SGE, strictly better than existing works when $p < 2$, while the complexity of N-MSGE is close to existing works. Compared to works assuming symmetric noise with unbounded moments, we: 1) provide a sharper analysis and improved rates; 2) facilitate state-dependent symmetric noise; 3) extend the strong guarantees to non-symmetric noise.
comment: 43 pages, 1 figure
♻ ☆ From Scalar Rewards to Potential Trends: Shaping Potential Landscapes for Model-Based Reinforcement Learning
Model-based reinforcement learning (MBRL) achieves high sample efficiency by simulating future trajectories with learned dynamics and reward models. However, its effectiveness is severely compromised in sparse reward settings. The core limitation lies in the standard paradigm of regressing ground-truth scalar rewards: in sparse environments, this yields a flat, gradient-free landscape that fails to provide directional guidance for planning. To address this challenge, we propose Shaping Landscapes with Optimistic Potential Estimates (SLOPE), a novel framework that shifts reward modeling from predicting scalars to constructing informative potential landscapes. SLOPE employs optimistic distributional regression to estimate high-confidence upper bounds, which amplifies rare success signals and ensures sufficient exploration gradients. Evaluations on 30+ tasks across 5 benchmarks demonstrate that SLOPE consistently outperforms leading baselines in fully sparse, semi-sparse, and dense rewards.
comment: 26 pages. Work in progress
♻ ☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
♻ ☆ SpikySpace: A Spiking State Space Model for Energy-Efficient Time Series Forecasting
Time-series forecasting in domains like traffic management and industrial monitoring often requires real-time, energy-efficient processing on edge devices with limited resources. Spiking neural networks (SNNs) offer event-driven computation and ultra-low power and have been proposed for use in this space. Unfortunately, existing SNN-based time-series forecasters often use complex transformer blocks. To address this issue, we propose SpikySpace, a spiking state-space model (SSM) that reduces the quadratic cost in the attention block to linear time via spiking selective scanning. Further, we introduce PTsoftplus and PTSiLU, two efficient approximations of SiLU and Softplus that replace costly exponential and division operations with simple bit-shifts. Evaluated on four multivariate time-series benchmarks, SpikySpace outperforms the leading SNN in terms of accuracy by up to 3.0% while reducing energy consumption by over 96.1%. As the first fully spiking state-space model, SpikySpace bridges neuromorphic efficiency with modern sequence modeling, opening a practical path toward efficient time series forecasting systems. Our code is available at https://anonymous.4open.science/r/SpikySpace.
comment: 17 pages, 4 figures
♻ ☆ Neural network initialization with nonlinear characteristics and information on hierarchical features
Initialization of neural network parameters, such as weights and biases, has a crucial impact on learning performance; if chosen well, we can even avoid the need for additional training with backpropagation. For example, algorithms based on the ridgelet transform or the SWIM (sampling where it matters) concept have been proposed for initialization. On the other hand, some works show hierarchical features in trained neural networks; neural networks tend to learn coarse information in the early-stage hidden layers. In this work, we investigate the effects of utilizing information on the hierarchical features in the initialization of neural networks. Hence, we propose a framework that adjusts the scale factors in the SWIM algorithm to capture low-frequency components in the early-stage hidden layers and to represent high-frequency components in the late-stage hidden layers. Numerical experiments on a one-dimensional regression task and the MNIST classification task demonstrate that the proposed method outperforms the conventional initialization algorithms. This work clarifies the importance of intrinsic hierarchical features in learning neural networks, and the finding yields an effective parameter initialization strategy that enhances their training performance.
comment: 8 pages, 8 figures
♻ ☆ MDL: A Unified Multi-Distribution Learner in Large-scale Industrial Recommendation through Tokenization
Industrial recommender systems increasingly adopt multi-scenario learning (MSL) and multi-task learning (MTL) to handle diverse user interactions and contexts, but existing approaches suffer from two critical drawbacks: (1) underutilization of large-scale model parameters due to limited interaction with complex feature modules, and (2) difficulty in jointly modeling scenario and task information in a unified framework. To address these challenges, we propose a unified \textbf{M}ulti-\textbf{D}istribution \textbf{L}earning (MDL) framework, inspired by the "prompting" paradigm in large language models (LLMs). MDL treats scenario and task information as specialized tokens rather than auxiliary inputs or gating signals. Specifically, we introduce a unified information tokenization module that transforms features, scenarios, and tasks into a unified tokenized format. To facilitate deep interaction, we design three synergistic mechanisms: (1) feature token self-attention for rich feature interactions, (2) domain-feature attention for scenario/task-adaptive feature activation, and (3) domain-fused aggregation for joint distribution prediction. By stacking these interactions, MDL enables scenario and task information to "prompt" and activate the model's vast parameter space in a bottom-up, layer-wise manner. Extensive experiments on real-world industrial datasets demonstrate that MDL significantly outperforms state-of-the-art MSL and MTL baselines. Online A/B testing on Douyin Search platform over one month yields +0.0626\% improvement in LT30 and -0.3267\% reduction in change query rate. MDL has been fully deployed in production, serving hundreds of millions of users daily.
comment: 9 pages, 4 figures
♻ ☆ Connecting phases of matter to the flatness of the loss landscape in analog variational quantum algorithms
Variational quantum algorithms (VQAs) promise near-term quantum advantage, yet parametrized quantum states commonly built from the digital gate-based approach often suffer from scalability issues such as barren plateaus, where the loss landscape becomes flat. We study an analog VQA ansätze composed of $M$ quenches of a disordered Ising chain, whose dynamics is native to several quantum simulation platforms. By tuning the disorder strength we place each quench in either a thermalized phase or a many-body-localized (MBL) phase and analyse (i) the ansätze's expressivity and (ii) the scaling of loss variance. Numerics shows that both phases reach maximal expressivity at large $M$, but barren plateaus emerge at far smaller $M$ in the thermalized phase than in the MBL phase. Exploiting this gap, we propose an MBL initialisation strategy: initialise the ansätze in the MBL regime at intermediate quench $M$, enabling an initial trainability while retaining sufficient expressivity for subsequent optimization. The results link quantum phases of matter and VQA trainability, and provide practical guidelines for scaling analog-hardware VQAs.
comment: 17+9 pages, 9+7 figures
♻ ☆ Toward a Unified Lyapunov-Certified ODE Convergence Analysis of Smooth Q-Learning with p-Norms
Convergence of Q-learning has been the subject of extensive study for decades. Among the available techniques, the ordinary differential equation (ODE) method is particularly appealing as a general-purpose, off-the-shelf tool for sanity-checking the convergence of a wide range of reinforcement learning algorithms. In this paper, we develop a unified ODE-based convergence framework that applies to standard Q-learning and several soft/smoothed variants, including those built on the log-sum-exponential softmax, Boltzmann softmax, and mellowmax operators. Our analysis uses a smooth p-norm Lyapunov function, leading to concise yet rigorous stability arguments and circumventing the non-smoothness issues inherent to classical infty-norm-based approaches. To the best of our knowledge, the proposed framework is among the first to provide a unified ODE-based treatment that is broadly applicable to smooth Q-learning algorithms while also encompassing standard Q-learning. Moreover, it remains valid even in settings where the associated Bellman operator is not a contraction, as may happen in Boltzmann soft Q-learning.
♻ ☆ A Brain Graph Foundation Model: Pre-Training and Prompt-Tuning across Broad Atlases and Disorders
As large language models (LLMs) continue to revolutionize AI research, there is a growing interest in building large-scale brain foundation models to advance neuroscience. While most existing brain foundation models are pre-trained on time-series signals or connectome features, we propose a novel graph-based pre-training paradigm for constructing a brain graph foundation model. In this paper, we introduce the Brain Graph Foundation Model, termed BrainGFM, a unified framework that leverages graph contrastive learning and graph masked autoencoders for large-scale fMRI-based pre-training. BrainGFM is pre-trained on a diverse mixture of brain atlases with varying parcellations, significantly expanding the pre-training corpus and enhancing the model's ability to generalize across heterogeneous fMRI-derived brain representations. To support efficient and versatile downstream transfer, we integrate both graph prompts and language prompts into the model design, enabling BrainGFM to flexibly adapt to a wide range of atlases, neurological and psychiatric disorders, and task settings. Furthermore, we employ meta-learning to optimize the graph prompts, facilitating strong generalization to previously unseen disorders under both few-shot and zero-shot learning conditions via language-guided prompting. BrainGFM is pre-trained on 27 neuroimaging datasets spanning 25 common neurological and psychiatric disorders, encompassing 2 types of brain atlases (functional and anatomical) across 8 widely-used parcellations, and covering over 25,000 subjects, 60,000 fMRI scans, and a total of 400,000 graph samples aggregated across all atlases and parcellations.
comment: 30pages
♻ ☆ Multimodal Graph Neural Networks for Prognostic Modeling of Brain Network Reorganization
Understanding the dynamic reorganization of brain networks is critical for predicting cognitive decline, neurological progression, and individual variability in clinical outcomes. This work proposes a multimodal graph neural network framework that integrates structural MRI, diffusion tensor imaging, and functional MRI to model spatiotemporal brain network reorganization. Brain regions are represented as nodes and structural and functional connectivity as edges, forming longitudinal brain graphs for each subject. Temporal evolution is captured via fractional stochastic differential operators embedded within graph-based recurrent networks, enabling the modeling of long-term dependencies and stochastic fluctuations in network dynamics. Attention mechanisms fuse multimodal information and generate interpretable biomarkers, including network energy entropy, graph curvature, fractional memory indices, and modality-specific attention scores. These biomarkers are combined into a composite prognostic index to quantify individual risk of network instability or cognitive decline. Experiments on longitudinal neuroimaging datasets demonstrate both predictive accuracy and interpretability. The results highlight the potential of mathematically rigorous, multimodal graph-based approaches for deriving clinically meaningful biomarkers from existing imaging data without requiring new data collection.
comment: Fundamental methodological error invalidating results
♻ ☆ Tighter Information-Theoretic Generalization Bounds via a Novel Class of Change of Measure Inequalities
In this paper, we propose a novel class of change of measure inequalities via a unified framework based on the data processing inequality for $f$-divergences, which is surprisingly elementary yet powerful enough to yield tighter inequalities. We provide change of measure inequalities in terms of a broad family of information measures, including $f$-divergences (with Kullback-Leibler divergence and $χ^2$-divergence as special cases), Rényi divergence, and $α$-mutual information (with maximal leakage as a special case). We then embed these inequalities into the analysis of generalization error for stochastic learning algorithms, yielding novel and tighter high-probability information-theoretic generalization bounds, while also recovering several best-known results via simplified analyses. A key advantage of our framework is its flexibility: it readily adapts to a range of settings, including the conditional mutual information framework, PAC-Bayesian theory, and differential privacy mechanisms, for which we derive new generalization bounds.
comment: 41 pages, 1 figure
♻ ☆ Scalable Mean-Field Variational Inference via Preconditioned Primal-Dual Optimization
In this work, we investigate the large-scale mean-field variational inference (MFVI) problem from a mini-batch primal-dual perspective. By reformulating MFVI as a constrained finite-sum problem, we develop a novel primal-dual algorithm based on an augmented Lagrangian formulation, termed primal-dual variational inference (PD-VI). PD-VI jointly updates global and local variational parameters in the evidence lower bound in a scalable manner. To further account for heterogeneous loss geometry across different variational parameter blocks, we introduce a block-preconditioned extension, P$^2$D-VI, which adapts the primal-dual updates to the geometry of each parameter block and improves both numerical robustness and practical efficiency. We establish convergence guarantees for both PD-VI and P$^2$D-VI under properly chosen constant step size, without relying on conjugacy assumptions or explicit bounded-variance conditions. In particular, we prove $O(1/T)$ convergence to a stationary point in general settings and linear convergence under strong convexity. Numerical experiments on synthetic data and a real large-scale spatial transcriptomics dataset demonstrate that our methods consistently outperform existing stochastic variational inference approaches in terms of convergence speed and solution quality.
♻ ☆ State Space Models Naturally Produce Time Cell and Oscillatory Behaviors and Scale to Abstract Cognitive Functions
A grand challenge in modern neuroscience is to bridge the gap between the detailed mapping of microscale neural circuits and mechanistic understanding of cognitive functions. While extensive knowledge exists about neuronal connectivity and biophysics, how these low-level phenomena eventually produce abstract behaviors remains largely unresolved. Here, we propose that a model based on State Space Models, an emerging class of deep learning architectures, can be a potential biological model for analysis. We suggest that the differential equations governing elements in a State Space Model are conceptually consistent with the dynamics of biophysical processes, while the model offers a scalable framework to build on the dynamics to produce emergent behaviors observed in experimental neuroscience. We test this model by training a network employing a diagonal state transition matrix on temporal discrimination tasks with reinforcement learning. Our results suggest that neural behaviors such as time cells naturally emerge from two fundamental principles: optimal pre-configuration and rotational dynamics. These features are shown mathematically to optimize history compression, and naturally generate structured temporal dynamics even prior to training, mirroring recent findings in biological circuits. We show that learning acts primarily as a selection mechanism that fine-tunes these pre-configured oscillatory modes, rather than constructing temporal codes de novo. The model can be readily scaled to abstract cognitive functions such as event counting, supporting the use of State Space Models as a computationally tractable framework for understanding neural activities.
comment: Sen Lu and Xiaoyu Zhang contributed equally. Wei D. Lu is the corresponding author. 5 figures are included in 15 pages
♻ ☆ DiffBreak: Is Diffusion-Based Purification Robust?
Diffusion-based purification (DBP) has become a cornerstone defense against adversarial examples (AEs), regarded as robust due to its use of diffusion models (DMs) that project AEs onto the natural data manifold. We refute this core claim, theoretically proving that gradient-based attacks effectively target the DM rather than the classifier, causing DBP's outputs to align with adversarial distributions. This prompts a reassessment of DBP's robustness, attributing it to two critical flaws: incorrect gradients and inappropriate evaluation protocols that test only a single random purification of the AE. We show that with proper accounting for stochasticity and resubmission risk, DBP collapses. To support this, we introduce DiffBreak, the first reliable toolkit for differentiation through DBP, eliminating gradient flaws that previously further inflated robustness estimates. We also analyze the current defense scheme used for DBP where classification relies on a single purification, pinpointing its inherent invalidity. We provide a statistically grounded majority-vote (MV) alternative that aggregates predictions across multiple purified copies, showing partial but meaningful robustness gain. We then propose a novel adaptation of an optimization method against deepfake watermarking, crafting systemic perturbations that defeat DBP even under MV, challenging DBP's viability.
♻ ☆ Solving PDEs With Deep Neural Nets under General Boundary Conditions
Partial Differential Equations (PDEs) are central to modeling complex systems across physical, biological, and engineering domains, yet traditional numerical methods often struggle with high-dimensional or complex problems. Physics-Informed Neural Networks (PINNs) have emerged as an efficient alternative by embedding physics-based constraints into deep learning frameworks, but they face challenges in achieving high accuracy and handling complex boundary conditions. In this work, we extend the Time-Evolving Natural Gradient (TENG) framework to address Dirichlet boundary conditions, integrating natural gradient optimization with numerical time-stepping schemes, including Euler and Heun methods, to ensure both stability and accuracy. By incorporating boundary condition penalty terms into the loss function, the proposed approach enables precise enforcement of Dirichlet constraints. Experiments on the heat equation demonstrate the superior accuracy of the Heun method due to its second-order corrections and the computational efficiency of the Euler method for simpler scenarios. This work establishes a foundation for extending the framework to Neumann and mixed boundary conditions, as well as broader classes of PDEs, advancing the applicability of neural network-based solvers for real-world problems.
comment: 7 pages, 2 figures
♻ ☆ EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning
Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.
♻ ☆ A Simple, Optimal and Efficient Algorithm for Online Exp-Concave Optimization
Online eXp-concave Optimization (OXO) is a fundamental problem in online learning, where the goal is to minimize regret when loss functions are exponentially concave. The standard algorithm, Online Newton Step (ONS), guarantees an optimal $O(d \log T)$ regret, where $d$ is the dimension and $T$ is the time horizon. Despite its simplicity, ONS may face a computational bottleneck due to the Mahalanobis projection at each round. This step costs $Ω(d^ω)$ arithmetic operations for bounded domains, even for simple domains such as the unit ball, where $ω\in (2,3]$ is the matrix-multiplication exponent. As a result, the total runtime can reach $\tilde{O}(d^ωT)$, particularly when iterates frequently oscillate near the domain boundary. This paper proposes a simple variant of ONS, called LightONS, which reduces the total runtime to $O(d^2 T + d^ω\sqrt{T \log T})$ while preserving the optimal regret. Deploying LightONS with the online-to-batch conversion implies a method for stochastic exp-concave optimization with runtime $\tilde{O}(d^3/ε)$, thereby answering an open problem posed by Koren [2013]. The design leverages domain-conversion techniques from parameter-free online learning and defers expensive Mahalanobis projections until necessary, thereby preserving the elegant structure of ONS and enabling LightONS to act as an efficient plug-in replacement in broader scenarios, including gradient-norm adaptivity, parametric stochastic bandits, and memory-efficient OXO.
♻ ☆ Exact Subgraph Isomorphism Network with Mixed $L_{0,2}$ Norm Constraint for Predictive Graph Mining
In the graph-level prediction task (predict a label for a given graph), the information contained in subgraphs of the input graph plays a key role. In this paper, we propose Exact subgraph Isomorphism Network (EIN), which combines the exact subgraph enumeration, a neural network, and a sparse regularization by the mixed $L_{0,2}$ norm constraint. In general, building a graph-level prediction model achieving high discriminative ability along with interpretability is still a challenging problem. Our combination of the subgraph enumeration and neural network contributes to high discriminative ability about the subgraph structure of the input graph. Further, the sparse regularization in EIN enables us 1) to derive an effective pruning strategy that mitigates computational difficulty of the enumeration while maintaining the prediction performance, and 2) to identify important subgraphs that contributes to high interpretability. We empirically show that EIN has sufficiently high prediction performance compared with standard graph neural network models, and also, we show examples of post-hoc analysis based on the selected subgraphs.
♻ ☆ Ice-FMBench: A Foundation Model Benchmark for Sea Ice Type Segmentation
Accurate segmentation and mapping of sea ice types is crucial for safe polar navigation, offshore operations, and climate monitoring. While deep learning has demonstrated strong potential for automating sea ice type segmentation, its success often relies on access to extensive expert labeled datasets, which is both resource intensive and time consuming to create. However, foundation models (FMs), recently developed through self-supervised training on large-scale datasets, have demonstrated impressive performance. Nevertheless, their applicability to sea ice type segmentation based on Synthetic Aperture Radar (SAR) imagery remains uncertain due to the unique challenges posed by sea ice such as intricate geophysical patterns, pronounced seasonal variability, and SAR-specific artifacts like banding, scalloping, and heterogeneous backscatter as well as the fact that SAR data in polar regions are often acquired using specialized sensor modes that differ markedly from those used to collect FM training data at lower latitudes, limiting their direct transferability to polar environments. To address this gap, we contribute: (1) IceFMBench, a comprehensive benchmark framework for evaluation of the state-of-the-art remote sensing FMs on the sea ice type segmentation task using Sentinel1 SAR imagery, where IceFMBench is composed of a widely used standardized dataset, diverse evaluation metrics, and a representative set of selected remote sensing FM models suitable for sea ice type segmentation, with the ability to include new models side by side the existing models; (2) an extensive comparative evaluation of the representative FMs using IceFMBench, with additional case studies to assess performance of the top-performing model in terms of transferability across temporal and spatial domains and (3) a multi teacher knowledge distillation approach to address lack of spatiotemporal transferability.
♻ ☆ GraphMend: Code Transformations for Fixing Graph Breaks in PyTorch 2
This paper presents GRAPHMEND, a high-level compiler technique that eliminates FX graph breaks in PyTorch 2 programs. Although PyTorch 2 introduced TorchDynamo and TorchInductor to enable just-in-time graph compilation, unresolved dynamic control flow and unsupported Python constructs often fragment models into multiple FX graphs. These fragments force frequent fallbacks to eager mode, introduce costly CPU-to-GPU synchronizations, and reduce optimization opportunities. GRAPHMEND addresses this limitation by analyzing and transforming source code before execution. Built on the Jaseci compilation framework, GRAPHMEND introduces two code transformations that remove graph breaks due to dynamic control flow and Python side effects. This design allows PyTorch's compilation pipeline to capture larger, uninterrupted FX graphs without requiring manual refactoring by developers. Evaluation across eight Hugging Face models shows that GRAPHMEND removes graph breaks due to dynamic control flow and Python side effects, reducing the break count to 0 in 6 models and reducing it from 5 to 2 in another model. On NVIDIA RTX 3090 and A40 GPUs, GRAPHMEND achieves up to 75% latency reductions and up to 8% higher end-to-end throughput. These results demonstrate that high-level code transformation is an effective complement to PyTorch's dynamic JIT compilation pipeline, substantially improving both usability and performance.
♻ ☆ Why Policy Gradient Algorithms Work for Undiscounted Total-Reward MDPs
The classical policy gradient method is the theoretical and conceptual foundation of modern policy-based reinforcement learning (RL) algorithms. Most rigorous analyses of such methods, particularly those establishing convergence guarantees, assume a discount factor $γ< 1$. In contrast, however, a recent line of work on policy-based RL for large language models uses the undiscounted total-reward setting with $γ= 1$, rendering much of the existing theory inapplicable. In this paper, we provide analyses of the policy gradient method for undiscounted expected total-reward infinite-horizon MDPs based on two key insights: (i) the classification of the MDP states into recurrent and transient states is invariant over the set of policies that assign strictly positive probability to every action (as is typical in deep RL models employing a softmax output layer) and (ii) the classical state visitation measure (which may be ill-defined when $γ= 1$) can be replaced with a new object that we call the transient visitation measure.
♻ ☆ Learning Probabilities of Causation with Mask-Augmented Data
Probabilities of causation play a central role in modern decision making. Tian and Pearl first introduced formal definitions and derived tight bounds for three binary probabilities of causation, such as the probability of necessity and sufficiency (PNS). However, estimating these probabilities requires both experimental and observational distributions specific to each subpopulation, which are often unreliable or impractical to obtain from limited population-level data. To solve this problem, we propose two machine learning models: Exact-MLP and Mask-MLP, which are trained on a small set of reliable subpopulations and are able to predict PNS bounds for all other subpopulations. We validate our models across four Structural Causal Models (SCMs), each evaluated on population-level data with sample sizes between 100k and 200k. Our models achieve average mean absolute errors (MAEs) of roughly 0.03 on main tasks, reducing MAE by about 80% relative to the corresponding baselines. These results demonstrate both the feasibility of machine learning models for learning probabilities of causation and the effectiveness of the proposed approach.
comment: arXiv admin note: text overlap with arXiv:2502.08858
♻ ☆ Deep Meta Coordination Graphs for Multi-agent Reinforcement Learning
This paper presents deep meta coordination graphs (DMCG) for learning cooperative policies in multi-agent reinforcement learning (MARL). Coordination graph formulations encode local interactions and accordingly factorize the joint value function of all agents to improve efficiency in MARL. Through DMCG, we dynamically compose what we refer to as \textit{meta coordination graphs}, to learn a more expressive representation of agent interactions and use them to integrate agent information through graph convolutional networks. The goal is to enable an evolving coordination graph to guide effective coordination in cooperative MARL tasks. The graphs are jointly optimized with agents' value functions to learn to implicitly reason about joint actions, facilitating the end-to-end learning of interaction representations and coordinated policies. We demonstrate that DMCG consistently achieves state-of-the-art coordination performance and sample efficiency on challenging cooperative tasks, outperforming several prior graph-based and non-graph-based MARL baselines. Through several ablations, we also isolate the impact of individual components in DMCG, showing that the observed improvements are due to the meaningful design choices in this approach. We also include an analysis of its computational complexity to discuss its practicality in real-world applications. All codes can be found here: {\color{blue}{https://github.com/Nikunj-Gupta/dmcg-marl}.
♻ ☆ ECGFlowCMR: Pretraining with ECG-Generated Cine CMR Helps Cardiac Disease Classification and Phenotype Prediction
Cardiac Magnetic Resonance (CMR) imaging provides a comprehensive assessment of cardiac structure and function but remains constrained by high acquisition costs and reliance on expert annotations, limiting the availability of large-scale labeled datasets. In contrast, electrocardiograms (ECGs) are inexpensive, widely accessible, and offer a promising modality for conditioning the generative synthesis of cine CMR. To this end, we propose ECGFlowCMR, a novel ECG-to-CMR generative framework that integrates a Phase-Aware Masked Autoencoder (PA-MAE) and an Anatomy-Motion Disentangled Flow (AMDF) to address two fundamental challenges: (1) the cross-modal temporal mismatch between multi-beat ECG recordings and single-cycle CMR sequences, and (2) the anatomical observability gap due to the limited structural information inherent in ECGs. Extensive experiments on the UK Biobank and a proprietary clinical dataset demonstrate that ECGFlowCMR can generate realistic cine CMR sequences from ECG inputs, enabling scalable pretraining and improving performance on downstream cardiac disease classification and phenotype prediction tasks.
♻ ☆ Mirror Descent Under Generalized Smoothness
Smoothness is crucial for attaining fast rates in first-order optimization. However, many optimization problems in modern machine learning involve non-smooth objectives. Recent studies relax the smoothness assumption by allowing the Lipschitz constant of the gradient to grow with respect to the gradient norm, which accommodates a broad range of objectives in practice. Despite this progress, existing generalizations of smoothness are restricted to Euclidean geometry with $\ell_2$-norm and only have theoretical guarantees for optimization in the Euclidean space. In this paper, we address this limitation by introducing a new $\ell*$-smoothness concept that measures the norm of Hessians in terms of a general norm and its dual, and establish convergence for mirror-descent-type algorithms, matching the rates under the classic smoothness. Notably, we propose a generalized self-bounding property that facilitates bounding the gradients via controlling suboptimality gaps, serving as a principal component for convergence analysis. Beyond deterministic optimization, we establish sharp convergence for stochastic mirror descent, matching state-of-the-art under classic smoothness. Our theory also extends to non-convex and composite optimization, which may shed light on practical usages of mirror descent, including pre-training and post-training of LLMs.
comment: Major Update: new empirical results; weaker assumptions for AMD; new theory for SMD; new theory for non-convex CMD
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank ($r$). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ Deconstructing Positional Information: From Attention Logits to Training Biases ICLR 2026
Positional encodings enable Transformers to incorporate sequential information, yet their theoretical understanding remains limited to two properties: distance attenuation and translation invariance. Because natural language lacks purely positional data, the interplay between positional and semantic information is still underexplored. We address this gap by deconstructing the attention-logit computation and providing a structured analysis of positional encodings, categorizing them into additive and multiplicative forms. The differing properties of these forms lead to distinct mechanisms for capturing positional information. To probe this difference, we design a synthetic task that explicitly requires strong integration of positional and semantic cues. As predicted, multiplicative encodings achieve a clear performance advantage on this task. Moreover, our evaluation reveals a hidden training bias: an information aggregation effect in shallow layers that we term the single-head deposit pattern. Through ablation studies and theoretical analysis, we proved that this phenomenon is inherent in multiplicative encodings. These findings deepen the understanding of positional encodings and call for further study of their training dynamics.
comment: Accepted by ICLR 2026
♻ ☆ MedVerse: Efficient and Reliable Medical Reasoning via DAG-Structured Parallel Execution
Large language models (LLMs) have demonstrated strong performance and rapid progress in a wide range of medical reasoning tasks. However, their sequential autoregressive decoding forces inherently parallel clinical reasoning, such as differential diagnosis, into a single linear reasoning path, limiting both efficiency and reliability for complex medical problems. To address this, we propose MedVerse, a reasoning framework for complex medical inference that reformulates medical reasoning as a parallelizable directed acyclic graph (DAG) process based on Petri net theory. The framework adopts a full-stack design across data, model architecture, and system execution. For data creation, we introduce the MedVerse Curator, an automated pipeline that synthesizes knowledge-grounded medical reasoning paths and transforms them into Petri net-structured representations. At the architectural level, we propose a topology-aware attention mechanism with adaptive position indices that supports parallel reasoning while preserving logical consistency. Systematically, we develop a customized inference engine that supports parallel execution without additional overhead. Empirical evaluations show that MedVerse improves strong general-purpose LLMs by up to 8.9%. Compared to specialized medical LLMs, MedVerse achieves comparable performance while delivering a 1.3x reduction in inference latency and a 1.7x increase in generation throughput, enabled by its parallel decoding capability. Code is available at https://github.com/aiming-lab/MedVerse.
♻ ☆ UFM: A Simple Path towards Unified Dense Correspondence with Flow
Dense image correspondence is central to many applications, such as visual odometry, 3D reconstruction, object association, and re-identification. Historically, dense correspondence has been tackled separately for wide-baseline scenarios and optical flow estimation, despite the common goal of matching content between two images. In this paper, we develop a Unified Flow & Matching model (UFM), which is trained on unified data for pixels that are co-visible in both source and target images. UFM uses a simple, generic transformer architecture that directly regresses the (u,v) flow. It is easier to train and more accurate for large flows compared to the typical coarse-to-fine cost volumes in prior work. UFM is 28% more accurate than state-of-the-art flow methods (Unimatch), while also having 62% less error and 6.7x faster than dense wide-baseline matchers (RoMa). UFM is the first to demonstrate that unified training can outperform specialized approaches across both domains. This result enables fast, general-purpose correspondence and opens new directions for multi-modal, long-range, and real-time correspondence tasks.
comment: Project Page: https://uniflowmatch.github.io/
♻ ☆ Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits ICASSP 2026
Data encoding remains a fundamental bottleneck in quantum machine learning, where amplitude encoding of high-dimensional classical vectors into quantum states incurs exponential cost. In this work, we propose a pre-trained tensor-train (TT) encoding network (Pre-TT-Encoder) that significantly reduces the computational complexity of amplitude encoding while preserving essential data structure. The Pre-TT-Encoder exploits low-rank TT decompositions learned from classical data, enabling polynomial-time state preparation in the number of qubits and TT-ranks. We provide a theoretical analysis of the encoding complexity and establish fidelity bounds that quantify the trade-off between TT-rank and approximation error. Empirical evaluations on classical (MNIST) and quantum-native (semiconductor quantum dot) datasets demonstrate that our approach achieves substantial gains in encoding efficiency over direct amplitude encoding and PCA-based dimensionality reduction, while maintaining competitive performance in downstream variational quantum circuit classification tasks. The proposed method highlights the role of tensor networks as scalable intermediaries between classical data and quantum processors.
comment: The paper has been accepted by ICASSP 2026
♻ ☆ Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Developing lifelong learning agents is crucial for artificial general intelligence (AGI). However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 6 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to continually varying environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
comment: 21 pages, 7 figures
♻ ☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS Website: https://modular-gradient-surgery.github.io
♻ ☆ Pave Your Own Path: Graph Gradual Domain Adaptation on Fused Gromov-Wasserstein Geodesics
Graph neural networks, despite their impressive performance, are highly vulnerable to distribution shifts on graphs. Existing graph domain adaptation (graph DA) methods often implicitly assume a mild shift between source and target graphs, limiting their applicability to real-world scenarios with large shifts. Gradual domain adaptation (GDA) has emerged as a promising approach for addressing large shifts by gradually adapting the source model to the target domain via a path of unlabeled intermediate domains. Existing GDA methods exclusively focus on independent and identically distributed (IID) data with a predefined path, leaving their extension to non-IID graphs without a given path an open challenge. To bridge this gap, we present Gadget, the first GDA framework for non-IID graph data. First (theoretical foundation), the Fused Gromov-Wasserstein (FGW) distance is adopted as the domain discrepancy for non-IID graphs, based on which, we derive an error bound on node, edge and graph-level tasks, showing that the target domain error is proportional to the length of the path. Second (optimal path), guided by the error bound, we identify the FGW geodesic as the optimal path, which can be efficiently generated by our proposed algorithm. The generated path can be seamlessly integrated with existing graph DA methods to handle large shifts on graphs, improving state-of-the-art graph DA methods by up to 6.8% in accuracy on real-world datasets.
comment: 35 pages, 10 figures
♻ ☆ Learning Where It Matters: Geometric Anchoring for Robust Preference Alignment
Direct Preference Optimization (DPO) and related methods align large language models from pairwise preferences by regularizing updates against a fixed reference policy. As the policy drifts, a static reference, however, can become increasingly miscalibrated, leading to distributional mismatch and amplifying spurious preference signals under noisy supervision. Conversely, reference-free variants avoid mismatch but often suffer from unconstrained reward drift. We propose Geometric Anchor Preference Optimization (GAPO), which replaces the fixed reference with a dynamic, geometry-aware anchor: an adversarial local perturbation of the current policy within a small radius that serves as a pessimistic baseline. This anchor enables an adaptive reweighting mechanism, modulating the importance of each preference pair based on its local sensitivity. We further introduce the Anchor Gap, the reward discrepancy between the policy and its anchor, and show under smoothness conditions that it approximates worst-case local margin degradation. Optimizing a logistic objective weighted by this gap downweights geometrically brittle instances while emphasizing robust preference signals. Across diverse noise settings, GAPO consistently improves robustness while matching or improving performance on standard LLM alignment and reasoning benchmarks.
comment: Under Review
♻ ☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026. Project Page: https://y-research-sbu.github.io/CSRv2/
♻ ☆ Faithful Group Shapley Value NeurIPS 2025
Data Shapley is an important tool for data valuation, which quantifies the contribution of individual data points to machine learning models. In practice, group-level data valuation is desirable when data providers contribute data in batch. However, we identify that existing group-level extensions of Data Shapley are vulnerable to shell company attacks, where strategic group splitting can unfairly inflate valuations. We propose Faithful Group Shapley Value (FGSV) that uniquely defends against such attacks. Building on original mathematical insights, we develop a provably fast and accurate approximation algorithm for computing FGSV. Empirical experiments demonstrate that our algorithm significantly outperforms state-of-the-art methods in computational efficiency and approximation accuracy, while ensuring faithful group-level valuation.
comment: Accepted to NeurIPS 2025
♻ ☆ Layer-wise Update Aggregation with Recycling for Communication-Efficient Federated Learning NeurIPS 2025
Expensive communication cost is a common performance bottleneck in Federated Learning (FL), which makes it less appealing in real-world applications. Many communication-efficient FL methods focus on discarding a part of model updates mostly based on gradient magnitude. In this study, we find that recycling previous updates, rather than simply dropping them, more effectively reduces the communication cost while maintaining FL performance. We propose FedLUAR, a Layer-wise Update Aggregation with Recycling scheme for communication-efficient FL. We first define a useful metric that quantifies the extent to which the aggregated gradients influences the model parameter values in each layer. FedLUAR selects a few layers based on the metric and recycles their previous updates on the server side. Our extensive empirical study demonstrates that the update recycling scheme significantly reduces the communication cost while maintaining model accuracy. For example, our method achieves nearly the same AG News accuracy as FedAvg, while reducing the communication cost to just 17%.
comment: NeurIPS 2025
♻ ☆ AGZO: Activation-Guided Zeroth-Order Optimization for LLM Fine-Tuning
Zeroth-Order (ZO) optimization has emerged as a promising solution for fine-tuning LLMs under strict memory constraints, as it avoids the prohibitive memory cost of storing activations for backpropagation. However, existing ZO methods typically employ isotropic perturbations, neglecting the rich structural information available during the forward pass. In this paper, we identify a crucial link between gradient formation and activation structure: the gradient of a linear layer is confined to the subspace spanned by its input activations. Leveraging this insight, we propose Activation-Guided Zeroth-Order optimization (AGZO). Unlike prior methods, AGZO extracts a compact, activation-informed subspace on the fly during the forward pass and restricts perturbations to this low-rank subspace. We provide a theoretical framework showing that AGZO optimizes a subspace-smoothed objective and provably yields update directions with higher cosine similarity to the true gradient than isotropic baselines. Empirically, we evaluate AGZO on Qwen3 and Pangu models across various benchmarks. AGZO consistently outperforms state-of-the-art ZO baselines and significantly narrows the performance gap with first-order fine-tuning, while maintaining almost the same peak memory footprint as other ZO methods.
comment: 21 pages in total, including 9 pages of main text, with 4 figures and 3 tables
♻ ☆ Exploring the Impact of Dataset Statistical Effect Size on Model Performance and Data Sample Size Sufficiency
Having a sufficient quantity of quality data is a critical enabler of training effective machine learning models. Being able to effectively determine the adequacy of a dataset prior to training and evaluating a model's performance would be an essential tool for anyone engaged in experimental design or data collection. However, despite the need for it, the ability to prospectively assess data sufficiency remains an elusive capability. We report here on two experiments undertaken in an attempt to better ascertain whether or not basic descriptive statistical measures can be indicative of how effective a dataset will be at training a resulting model. Leveraging the effect size of our features, this work first explores whether or not a correlation exists between effect size, and resulting model performance (theorizing that the magnitude of the distinction between classes could correlate to a classifier's resulting success). We then explore whether or not the magnitude of the effect size will impact the rate of convergence of our learning rate, (theorizing again that a greater effect size may indicate that the model will converge more rapidly, and with a smaller sample size needed). Our results appear to indicate that this is not an effective heuristic for determining adequate sample size or projecting model performance, and therefore that additional work is still needed to better prospectively assess adequacy of data.
♻ ☆ ReflexGrad: A Dual-Process Architecture for Gradient-Free Inference-Time Learning
Scaling inference-time compute has emerged as a powerful paradigm--yet deliberating longer is not the same as learning. Current approaches to extended reasoning in large language models allocate more computation to thinking but remain fundamentally static: they cannot adapt from mistakes encountered during execution. Online reinforcement learning offers adaptation but requires gradient updates at runtime--expensive, prone to catastrophic forgetting, and unstable in deployment. We introduce ReflexGrad, a gradient-free framework for genuine inference-time learning: adaptation without retraining, without weight updates, without demonstrations. Our key insight is that effective runtime learning requires two complementary mechanisms--rapid policy refinement during forward progress, and deliberate causal diagnosis when stuck--with intelligent routing between them. ReflexGrad implements this by optimizing a natural language "policy" through textual feedback while keeping model weights frozen. When failures occur, the system analyzes recent action-outcome sequences to identify root causes and immediately applies corrections within the same execution--eliminating the need for multiple trials. Evaluated zero-shot across diverse interactive tasks without task-specific engineering, ReflexGrad achieves strong single-execution performance, demonstrating that gradient-free inference-time learning is not just theoretically appealing but practically viable.
comment: 10 pages, 3 figures
♻ ☆ General Binding Affinity Guidance for Diffusion Models in Structure-Based Drug Design
Structure-based drug design (SBDD) aims to generate ligands that bind strongly and specifically to target protein pockets. Recent diffusion models have advanced SBDD by capturing the distributions of atomic positions and types, yet they often underemphasize binding affinity control during generation. To address this limitation, we introduce \textbf{\textnormal{\textbf{BADGER}}}, a general \textbf{binding-affinity guidance framework for diffusion models in SBDD}. \textnormal{\textbf{BADGER} }incorporates binding affinity awareness through two complementary strategies: (1) \textit{classifier guidance}, which applies gradient-based affinity signals during sampling in a plug-and-play fashion, and (2) \textit{classifier-free guidance}, which integrates affinity conditioning directly into diffusion model training. Together, these approaches enable controllable ligand generation guided by binding affinity. \textnormal{\textbf{BADGER} } can be added to any diffusion model and achieves up to a \textbf{60\% improvement in ligand--protein binding affinity} of sampled molecules over prior methods. Furthermore, we extend the framework to \textbf{multi-constraint diffusion guidance}, jointly optimizing for binding affinity, drug-likeness (QED), and synthetic accessibility (SA) to design realistic and synthesizable drug candidates.
Multimedia 7
☆ Stemphonic: All-at-once Flexible Multi-stem Music Generation ICASSP
Music stem generation, the task of producing musically-synchronized and isolated instrument audio clips, offers the potential of greater user control and better alignment with musician workflows compared to conventional text-to-music models. Existing stem generation approaches, however, either rely on fixed architectures that output a predefined set of stems in parallel, or generate only one stem at a time, resulting in slow inference despite flexibility in stem combination. We propose Stemphonic, a diffusion-/flow-based framework that overcomes this trade-off and generates a variable set of synchronized stems in one inference pass. During training, we treat each stem as a batch element, group synchronized stems in a batch, and apply a shared noise latent to each group. At inference-time, we use a shared initial noise latent and stem-specific text inputs to generate synchronized multi-stem outputs in one pass. We further expand our approach to enable one-pass conditional multi-stem generation and stem-wise activity controls to empower users to iteratively generate and orchestrate the temporal layering of a mix. We benchmark our results on multiple open-source stem evaluation sets and show that Stemphonic produces higher-quality outputs while accelerating the full mix generation process by 25 to 50%. Demos at: https://stemphonic-demo.vercel.app.
comment: Accepted for publication at Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ TAROT: Towards Optimization-Driven Adaptive FEC Parameter Tuning for Video Streaming
Forward Error Correction (FEC) remains essential for protecting video streaming against packet loss, yet most real deployments still rely on static, coarse-grained configurations that cannot react to rapid shifts in loss rate, goodput, or client buffer levels. These rigid settings often create inefficiencies: unnecessary redundancy that suppresses throughput during stable periods, and insufficient protection during bursty losses, especially when shallow buffers and oversized blocks increase stall risk. To address these challenges, we present TAROT, a cross-layer, optimization-driven FEC controller that selects redundancy, block size, and symbolization on a per-segment basis. TAROT is codec-agnostic--supporting Reed-Solomon, RaptorQ, and XOR-based codes--and evaluates a pre-computed candidate set using a fine-grained scoring model. The scoring function jointly incorporates transport-layer loss and goodput, application layer buffer dynamics, and block-level timing constraints to penalize insufficient coverage, excessive overhead, and slow block completion. To enable realistic testing, we extend the SABRE simulator 1 with two new modules: a high-fidelity packet-loss generator that replays diverse multi-trace loss patterns, and a modular FEC benchmarking layer supporting arbitrary code/parameter combinations. Across Low-Latency Live (LLL) and Video-on-Demand (VoD) streaming modes, diverse network traces, and multiple ABR algorithms, TAROT reduces FEC overhead by up to 43% while improving perceptual quality by 10 VMAF units with minimal rebuffering, achieving a stronger overhead-quality balance than static FECs.
☆ Towards Training-free Multimodal Hate Localisation with Large Language Models
The proliferation of hateful content in online videos poses severe threats to individual well-being and societal harmony. However, existing solutions for video hate detection either rely heavily on large-scale human annotations or lack fine-grained temporal precision. In this work, we propose LELA, the first training-free Large Language Model (LLM) based framework for hate video localization. Distinct from state-of-the-art models that depend on supervised pipelines, LELA leverages LLMs and modality-specific captioning to detect and temporally localize hateful content in a training-free manner. Our method decomposes a video into five modalities, including image, speech, OCR, music, and video context, and uses a multi-stage prompting scheme to compute fine-grained hateful scores for each frame. We further introduce a composition matching mechanism to enhance cross-modal reasoning. Experiments on two challenging benchmarks, HateMM and MultiHateClip, demonstrate that LELA outperforms all existing training-free baselines by a large margin. We also provide extensive ablations and qualitative visualizations, establishing LELA as a strong foundation for scalable and interpretable hate video localization.
☆ Camel: Frame-Level Bandwidth Estimation for Low-Latency Live Streaming under Video Bitrate Undershooting WWW 2026
Low-latency live streaming (LLS) has emerged as a popular web application, with many platforms adopting real-time protocols such as WebRTC to minimize end-to-end latency. However, we observe a counter-intuitive phenomenon: even when the actual encoded bitrate does not fully utilize the available bandwidth, stalling events remain frequent. This insufficient bandwidth utilization arises from the intrinsic temporal variations of real-time video encoding, which cause conventional packet-level congestion control algorithms to misestimate available bandwidth. When a high-bitrate frame is suddenly produced, sending at the wrong rate can either trigger packet loss or increase queueing delay, resulting in playback stalls. To address these issues, we present Camel, a novel frame-level congestion control algorithm (CCA) tailored for LLS. Our insight is to use frame-level network feedback to capture the true network capacity, immune to the irregular sending pattern caused by encoding. Camel comprises three key modules: the Bandwidth and Delay Estimator and the Congestion Detector, which jointly determine the average sending rate, and the Bursting Length Controller, which governs the emission pattern to prevent packet loss. We evaluate Camel on both large-scale real-world deployments and controlled simulations. In the real-world platform with 250M users and 2B sessions across 150+ countries, Camel achieves up to a 70.8% increase in 1080P resolution ratio, a 14.4% increase in media bitrate, and up to a 14.1% reduction in stalling ratio. In simulations under undershooting, shallow buffers, and network jitter, Camel outperforms existing congestion control algorithms, with up to 19.8% higher bitrate, 93.0% lower stalling ratio, and 23.9% improvement in bandwidth estimation accuracy.
comment: 8 pages, 20 figures, to appear in WWW 2026
☆ Smaller is Better: Generative Models Can Power Short Video Preloading
Preloading is widely used in short video platforms to minimize playback stalls by downloading future content in advance. However, existing strategies face a tradeoff. Aggressive preloading reduces stalls but wastes bandwidth, while conservative strategies save data but increase the risk of playback stalls. This paper presents PromptPream, a computation powered preloading paradigm that breaks this tradeoff by using local computation to reduce bandwidth demand. Instead of transmitting pixel level video chunks, PromptPream sends compact semantic prompts that are decoded into high quality frames using generative models such as Stable Diffusion. We propose three core techniques to enable this paradigm: (1) a gradient based prompt inversion method that compresses frames into small sets of compact token embeddings; (2) a computation aware scheduling strategy that jointly optimizes network and compute resource usage; and (3) a scalable searching algorithm that addresses the enlarged scheduling space introduced by scheduler. Evaluations show that PromptStream reduces both stalls and bandwidth waste by over 31%, and improves Quality of Experience (QoE) by 45%, compared to traditional strategies.
comment: 6 pages, 7 figures, to appear in ICC 2026
♻ ☆ OmniMER: Auxiliary-Enhanced LLM Adaptation for Indonesian Multimodal Emotion Recognition
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
♻ ☆ Controllable Dance Generation with Style-Guided Motion Diffusion
Dance plays an important role as an artistic form and expression in human culture, yet automatically generating dance sequences is a significant yet challenging endeavor. Existing approaches often neglect the critical aspect of controllability in dance generation. Additionally, they inadequately model the nuanced impact of music styles, resulting in dances that lack alignment with the expressive characteristics inherent in the conditioned music. To address this gap, we propose Style-Guided Motion Diffusion (SGMD), which integrates the Transformer-based architecture with a Style Modulation module. By incorporating music features with user-provided style prompts, the SGMD ensures that the generated dances not only match the musical content but also reflect the desired stylistic characteristics. To enable flexible control over the generated dances, we introduce a spatial-temporal masking mechanism. As controllable dance generation has not been fully studied, we construct corresponding experimental setups and benchmarks for tasks such as trajectory-based dance generation, dance in-betweening, and dance inpainting. Extensive experiments demonstrate that our approach can generate realistic and stylistically consistent dances, while also empowering users to create dances tailored to diverse artistic and practical needs. Code is available on Github: https://github.com/mucunzhuzhu/DGSDP
Computer Vision and Pattern Recognition 171
☆ Autoregressive Image Generation with Masked Bit Modeling
This paper challenges the dominance of continuous pipelines in visual generation. We systematically investigate the performance gap between discrete and continuous methods. Contrary to the belief that discrete tokenizers are intrinsically inferior, we demonstrate that the disparity arises primarily from the total number of bits allocated in the latent space (i.e., the compression ratio). We show that scaling up the codebook size effectively bridges this gap, allowing discrete tokenizers to match or surpass their continuous counterparts. However, existing discrete generation methods struggle to capitalize on this insight, suffering from performance degradation or prohibitive training costs with scaled codebook. To address this, we propose masked Bit AutoRegressive modeling (BAR), a scalable framework that supports arbitrary codebook sizes. By equipping an autoregressive transformer with a masked bit modeling head, BAR predicts discrete tokens through progressively generating their constituent bits. BAR achieves a new state-of-the-art gFID of 0.99 on ImageNet-256, outperforming leading methods across both continuous and discrete paradigms, while significantly reducing sampling costs and converging faster than prior continuous approaches. Project page is available at https://bar-gen.github.io/
comment: SOTA discrete visual generation defeats diffusion models with 0.99 FID score, project page is available at https://bar-gen.github.io/
☆ WorldCompass: Reinforcement Learning for Long-Horizon World Models
This work presents WorldCompass, a novel Reinforcement Learning (RL) post-training framework for the long-horizon, interactive video-based world models, enabling them to explore the world more accurately and consistently based on interaction signals. To effectively "steer" the world model's exploration, we introduce three core innovations tailored to the autoregressive video generation paradigm: 1) Clip-level rollout Strategy: We generate and evaluate multiple samples at a single target clip, which significantly boosts rollout efficiency and provides fine-grained reward signals. 2) Complementary Reward Functions: We design reward functions for both interaction-following accuracy and visual quality, which provide direct supervision and effectively suppress reward-hacking behaviors. 3) Efficient RL Algorithm: We employ the negative-aware fine-tuning strategy coupled with various efficiency optimizations to efficiently and effectively enhance model capacity. Evaluations on the SoTA open-source world model, WorldPlay, demonstrate that WorldCompass significantly improves interaction accuracy and visual fidelity across various scenarios.
comment: Project page: \url{https://3d-models.hunyuan.tencent.com/world/}
☆ $χ_{0}$: Resource-Aware Robust Manipulation via Taming Distributional Inconsistencies
High-reliability long-horizon robotic manipulation has traditionally relied on large-scale data and compute to understand complex real-world dynamics. However, we identify that the primary bottleneck to real-world robustness is not resource scale alone, but the distributional shift among the human demonstration distribution, the inductive bias learned by the policy, and the test-time execution distribution -- a systematic inconsistency that causes compounding errors in multi-stage tasks. To mitigate these inconsistencies, we propose $χ_{0}$, a resource-efficient framework with effective modules designated to achieve production-level robustness in robotic manipulation. Our approach builds off three technical pillars: (i) Model Arithmetic, a weight-space merging strategy that efficiently soaks up diverse distributions of different demonstrations, varying from object appearance to state variations; (ii) Stage Advantage, a stage-aware advantage estimator that provides stable, dense progress signals, overcoming the numerical instability of prior non-stage approaches; and (iii) Train-Deploy Alignment, which bridges the distribution gap via spatio-temporal augmentation, heuristic DAgger corrections, and temporal chunk-wise smoothing. $χ_{0}$ enables two sets of dual-arm robots to collaboratively orchestrate long-horizon garment manipulation, spanning tasks from flattening, folding, to hanging different clothes. Our method exhibits high-reliability autonomy; we are able to run the system from arbitrary initial state for consecutive 24 hours non-stop. Experiments validate that $χ_{0}$ surpasses the state-of-the-art $π_{0.5}$ in success rate by nearly 250%, with only 20-hour data and 8 A100 GPUs. Code, data and models will be released to facilitate the community.
☆ Robustness Is a Function, Not a Number: A Factorized Comprehensive Study of OOD Robustness in Vision-Based Driving
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
☆ Raster2Seq: Polygon Sequence Generation for Floorplan Reconstruction
Reconstructing a structured vector-graphics representation from a rasterized floorplan image is typically an important prerequisite for computational tasks involving floorplans such as automated understanding or CAD workflows. However, existing techniques struggle in faithfully generating the structure and semantics conveyed by complex floorplans that depict large indoor spaces with many rooms and a varying numbers of polygon corners. To this end, we propose Raster2Seq, framing floorplan reconstruction as a sequence-to-sequence task in which floorplan elements--such as rooms, windows, and doors--are represented as labeled polygon sequences that jointly encode geometry and semantics. Our approach introduces an autoregressive decoder that learns to predict the next corner conditioned on image features and previously generated corners using guidance from learnable anchors. These anchors represent spatial coordinates in image space, hence allowing for effectively directing the attention mechanism to focus on informative image regions. By embracing the autoregressive mechanism, our method offers flexibility in the output format, enabling for efficiently handling complex floorplans with numerous rooms and diverse polygon structures. Our method achieves state-of-the-art performance on standard benchmarks such as Structure3D, CubiCasa5K, and Raster2Graph, while also demonstrating strong generalization to more challenging datasets like WAFFLE, which contain diverse room structures and complex geometric variations.
comment: Code: https://anonymous.4open.science/r/Raster2Seq-BE73/
☆ ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation
Diffusion models have achieved remarkable generation quality, but they suffer from significant inference cost due to their reliance on multiple sequential denoising steps, motivating recent efforts to distill this inference process into a few-step regime. However, existing distillation methods typically approximate the teacher trajectory by using linear shortcuts, which makes it difficult to match its constantly changing tangent directions as velocities evolve across timesteps, thereby leading to quality degradation. To address this limitation, we propose ArcFlow, a few-step distillation framework that explicitly employs non-linear flow trajectories to approximate pre-trained teacher trajectories. Concretely, ArcFlow parameterizes the velocity field underlying the inference trajectory as a mixture of continuous momentum processes. This enables ArcFlow to capture velocity evolution and extrapolate coherent velocities to form a continuous non-linear trajectory within each denoising step. Importantly, this parameterization admits an analytical integration of this non-linear trajectory, which circumvents numerical discretization errors and results in high-precision approximation of the teacher trajectory. To train this parameterization into a few-step generator, we implement ArcFlow via trajectory distillation on pre-trained teacher models using lightweight adapters. This strategy ensures fast, stable convergence while preserving generative diversity and quality. Built on large-scale models (Qwen-Image-20B and FLUX.1-dev), ArcFlow only fine-tunes on less than 5% of original parameters and achieves a 40x speedup with 2 NFEs over the original multi-step teachers without significant quality degradation. Experiments on benchmarks show the effectiveness of ArcFlow both qualitatively and quantitatively.
☆ Dexterous Manipulation Policies from RGB Human Videos via 4D Hand-Object Trajectory Reconstruction
Multi-finger robotic hand manipulation and grasping are challenging due to the high-dimensional action space and the difficulty of acquiring large-scale training data. Existing approaches largely rely on human teleoperation with wearable devices or specialized sensing equipment to capture hand-object interactions, which limits scalability. In this work, we propose VIDEOMANIP, a device-free framework that learns dexterous manipulation directly from RGB human videos. Leveraging recent advances in computer vision, VIDEOMANIP reconstructs explicit 4D robot-object trajectories from monocular videos by estimating human hand poses, object meshes, and retargets the reconstructed human motions to robotic hands for manipulation learning. To make the reconstructed robot data suitable for dexterous manipulation training, we introduce hand-object contact optimization with interaction-centric grasp modeling, as well as a demonstration synthesis strategy that generates diverse training trajectories from a single video, enabling generalizable policy learning without additional robot demonstrations. In simulation, the learned grasping model achieves a 70.25% success rate across 20 diverse objects using the Inspire Hand. In the real world, manipulation policies trained from RGB videos achieve an average 62.86% success rate across seven tasks using the LEAP Hand, outperforming retargeting-based methods by 15.87%. Project videos are available at videomanip.github.io.
☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
☆ Generalizing Sports Feedback Generation by Watching Competitions and Reading Books: A Rock Climbing Case Study WACV 2026
While there is rapid progress in video-LLMs with advanced reasoning capabilities, prior work shows that these models struggle on the challenging task of sports feedback generation and require expensive and difficult-to-collect finetuning feedback data for each sport. This limitation is evident from the poor generalization to sports unseen during finetuning. Furthermore, traditional text generation evaluation metrics (e.g., BLEU-4, METEOR, ROUGE-L, BERTScore), originally developed for machine translation and summarization, fail to capture the unique aspects of sports feedback quality. To address the first problem, using rock climbing as our case study, we propose using auxiliary freely-available web data from the target domain, such as competition videos and coaching manuals, in addition to existing sports feedback from a disjoint, source domain to improve sports feedback generation performance on the target domain. To improve evaluation, we propose two evaluation metrics: (1) specificity and (2) actionability. Together, our approach enables more meaningful and practical generation of sports feedback under limited annotations.
comment: to appear WACV 2026
☆ WorldArena: A Unified Benchmark for Evaluating Perception and Functional Utility of Embodied World Models
While world models have emerged as a cornerstone of embodied intelligence by enabling agents to reason about environmental dynamics through action-conditioned prediction, their evaluation remains fragmented. Current evaluation of embodied world models has largely focused on perceptual fidelity (e.g., video generation quality), overlooking the functional utility of these models in downstream decision-making tasks. In this work, we introduce WorldArena, a unified benchmark designed to systematically evaluate embodied world models across both perceptual and functional dimensions. WorldArena assesses models through three dimensions: video perception quality, measured with 16 metrics across six sub-dimensions; embodied task functionality, which evaluates world models as data engines, policy evaluators, and action planners integrating with subjective human evaluation. Furthermore, we propose EWMScore, a holistic metric integrating multi-dimensional performance into a single interpretable index. Through extensive experiments on 14 representative models, we reveal a significant perception-functionality gap, showing that high visual quality does not necessarily translate into strong embodied task capability. WorldArena benchmark with the public leaderboard is released at https://worldarena.ai, providing a framework for tracking progress toward truly functional world models in embodied AI.
☆ Modeling 3D Pedestrian-Vehicle Interactions for Vehicle-Conditioned Pose Forecasting IEEE
Accurately predicting pedestrian motion is crucial for safe and reliable autonomous driving in complex urban environments. In this work, we present a 3D vehicle-conditioned pedestrian pose forecasting framework that explicitly incorporates surrounding vehicle information. To support this, we enhance the Waymo-3DSkelMo dataset with aligned 3D vehicle bounding boxes, enabling realistic modeling of multi-agent pedestrian-vehicle interactions. We introduce a sampling scheme to categorize scenes by pedestrian and vehicle count, facilitating training across varying interaction complexities. Our proposed network adapts the TBIFormer architecture with a dedicated vehicle encoder and pedestrian-vehicle interaction cross-attention module to fuse pedestrian and vehicle features, allowing predictions to be conditioned on both historical pedestrian motion and surrounding vehicles. Extensive experiments demonstrate substantial improvements in forecasting accuracy and validate different approaches for modeling pedestrian-vehicle interactions, highlighting the importance of vehicle-aware 3D pose prediction for autonomous driving. Code is available at: https://github.com/GuangxunZhu/VehCondPose3D
comment: Accepted for IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ MotionCrafter: Dense Geometry and Motion Reconstruction with a 4D VAE
We introduce MotionCrafter, a video diffusion-based framework that jointly reconstructs 4D geometry and estimates dense motion from a monocular video. The core of our method is a novel joint representation of dense 3D point maps and 3D scene flows in a shared coordinate system, and a novel 4D VAE to effectively learn this representation. Unlike prior work that forces the 3D value and latents to align strictly with RGB VAE latents-despite their fundamentally different distributions-we show that such alignment is unnecessary and leads to suboptimal performance. Instead, we introduce a new data normalization and VAE training strategy that better transfers diffusion priors and greatly improves reconstruction quality. Extensive experiments across multiple datasets demonstrate that MotionCrafter achieves state-of-the-art performance in both geometry reconstruction and dense scene flow estimation, delivering 38.64% and 25.0% improvements in geometry and motion reconstruction, respectively, all without any post-optimization. Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
comment: Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
☆ Grow with the Flow: 4D Reconstruction of Growing Plants with Gaussian Flow Fields
Modeling the time-varying 3D appearance of plants during their growth poses unique challenges: unlike many dynamic scenes, plants generate new geometry over time as they expand, branch, and differentiate. Recent motion modeling techniques are ill-suited to this problem setting. For example, deformation fields cannot introduce new geometry, and 4D Gaussian splatting constrains motion to a linear trajectory in space and time and cannot track the same set of Gaussians over time. Here, we introduce a 3D Gaussian flow field representation that models plant growth as a time-varying derivative over Gaussian parameters -- position, scale, orientation, color, and opacity -- enabling nonlinear and continuous-time growth dynamics. To initialize a sufficient set of Gaussian primitives, we reconstruct the mature plant and learn a process of reverse growth, effectively simulating the plant's developmental history in reverse. Our approach achieves superior image quality and geometric accuracy compared to prior methods on multi-view timelapse datasets of plant growth, providing a new approach for appearance modeling of growing 3D structures.
comment: Project page: https://weihanluo.ca/growflow/
☆ Analysis of Converged 3D Gaussian Splatting Solutions: Density Effects and Prediction Limit
We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers fundamental density-stratification. Dense regions exhibit geometry-correlated parameters amenable to render-free prediction, while sparse regions show systematic failure across architectures. We formalize this through variance decomposition, demonstrating that visibility heterogeneity creates covariance-dominated coupling between geometric and appearance parameters in sparse regions. This reveals the dual character of RORs: geometric primitives where point clouds suffice, and view synthesis primitives where multi-view constraints are essential. We provide density-aware strategies that improve training robustness and discuss architectural implications for systems that adaptively balance feed-forward prediction and rendering-based refinement.
☆ Designing Multi-Robot Ground Video Sensemaking with Public Safety Professionals
Videos from fleets of ground robots can advance public safety by providing scalable situational awareness and reducing professionals' burden. Yet little is known about how to design and integrate multi-robot videos into public safety workflows. Collaborating with six police agencies, we examined how such videos could be made practical. In Study 1, we presented the first testbed for multi-robot ground video sensemaking. The testbed includes 38 events-of-interest (EoI) relevant to public safety, a dataset of 20 robot patrol videos (10 day/night pairs) covering EoI types, and 6 design requirements aimed at improving current video sensemaking practices. In Study 2, we built MRVS, a tool that augments multi-robot patrol video streams with a prompt-engineered video understanding model. Participants reported reduced manual workload and greater confidence with LLM-based explanations, while noting concerns about false alarms and privacy. We conclude with implications for designing future multi-robot video sensemaking tools. The testbed is available at https://github.com/Puqi7/MRVS\_VideoSensemaking
☆ TiFRe: Text-guided Video Frame Reduction for Efficient Video Multi-modal Large Language Models
With the rapid development of Large Language Models (LLMs), Video Multi-Modal Large Language Models (Video MLLMs) have achieved remarkable performance in video-language tasks such as video understanding and question answering. However, Video MLLMs face high computational costs, particularly in processing numerous video frames as input, which leads to significant attention computation overhead. A straightforward approach to reduce computational costs is to decrease the number of input video frames. However, simply selecting key frames at a fixed frame rate (FPS) often overlooks valuable information in non-key frames, resulting in notable performance degradation. To address this, we propose Text-guided Video Frame Reduction (TiFRe), a framework that reduces input frames while preserving essential video information. TiFRe uses a Text-guided Frame Sampling (TFS) strategy to select key frames based on user input, which is processed by an LLM to generate a CLIP-style prompt. Pre-trained CLIP encoders calculate the semantic similarity between the prompt and each frame, selecting the most relevant frames as key frames. To preserve video semantics, TiFRe employs a Frame Matching and Merging (FMM) mechanism, which integrates non-key frame information into the selected key frames, minimizing information loss. Experiments show that TiFRe effectively reduces computational costs while improving performance on video-language tasks.
☆ FlattenGPT: Depth Compression for Transformer with Layer Flattening ICML 2026
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers. To pursue better model compression and acceleration, this paper proposes \textbf{FlattenGPT}, a novel way to detect and reduce depth-wise redundancies. By flatting two adjacent blocks into one, it compresses the network depth, meanwhile enables more effective parameter redundancy detection and removal. FlattenGPT allows to preserve the knowledge learned in all blocks, and remains consistent with the original transformer architecture. Extensive experiments demonstrate that FlattenGPT enhances model efficiency with a decent trade-off to performance. It outperforms existing pruning methods in both zero-shot accuracies and WikiText-2 perplexity across various model types and parameter sizes. On LLaMA-2/3 and Qwen-1.5 models, FlattenGPT retains 90-96\% of zero-shot performance with a compression ratio of 20\%. It also outperforms other pruning methods in accelerating LLM inference, making it promising for enhancing the efficiency of transformers.
comment: Submitted to ICML 2026
☆ VideoVeritas: AI-Generated Video Detection via Perception Pretext Reinforcement Learning
The growing capability of video generation poses escalating security risks, making reliable detection increasingly essential. In this paper, we introduce VideoVeritas, a framework that integrates fine-grained perception and fact-based reasoning. We observe that while current multi-modal large language models (MLLMs) exhibit strong reasoning capacity, their granular perception ability remains limited. To mitigate this, we introduce Joint Preference Alignment and Perception Pretext Reinforcement Learning (PPRL). Specifically, rather than directly optimizing for detection task, we adopt general spatiotemporal grounding and self-supervised object counting in the RL stage, enhancing detection performance with simple perception pretext tasks. To facilitate robust evaluation, we further introduce MintVid, a light yet high-quality dataset containing 3K videos from 9 state-of-the-art generators, along with a real-world collected subset that has factual errors in content. Experimental results demonstrate that existing methods tend to bias towards either superficial reasoning or mechanical analysis, while VideoVeritas achieves more balanced performance across diverse benchmarks.
comment: Project: https://github.com/EricTan7/VideoVeritas
☆ Any-to-All MRI Synthesis: A Unified Foundation Model for Nasopharyngeal Carcinoma and Its Downstream Applications
Magnetic resonance imaging (MRI) is essential for nasopharyngeal carcinoma (NPC) radiotherapy (RT), but practical constraints, such as patient discomfort, long scan times, and high costs often lead to incomplete modalities in clinical practice, compromising RT planning accuracy. Traditional MRI synthesis methods are modality-specific, limited in anatomical adaptability, and lack clinical interpretability-failing to meet NPC's RT needs. Here, we developed a unified foundation model integrating contrastive visual representation learning and vision-language alignment (VLA) to enable any-to-all MRI synthesis. The model uses a contrastive encoder for modality-invariant representations and a CLIP-based text-informed decoder for semantically consistent synthesis, supporting any-to-all MRI synthesis via one unified foundation model. Trained on 40,825 images from 13 institutions, it achieves consistently high performance (average SSIM 0.90, PSNR 27) across 26 internal/external validation sites (15,748 images), with superior synthesis fidelity and robustness to noise and domain shifts. Meanwhile, its unified representation enhances downstream RT-relevant tasks (e.g., segmentation). This work advances digital medicine solutions for NPC care by leveraging foundation models to bridge technical synthesis and clinical utility.
☆ Omni-Video 2: Scaling MLLM-Conditioned Diffusion for Unified Video Generation and Editing
We present Omni-Video 2, a scalable and computationally efficient model that connects pretrained multimodal large-language models (MLLMs) with video diffusion models for unified video generation and editing. Our key idea is to exploit the understanding and reasoning capabilities of MLLMs to produce explicit target captions to interpret user instructions. In this way, the rich contextual representations from the understanding model are directly used to guide the generative process, thereby improving performance on complex and compositional editing. Moreover, a lightweight adapter is developed to inject multimodal conditional tokens into pretrained text-to-video diffusion models, allowing maximum reuse of their powerful generative priors in a parameter-efficient manner. Benefiting from these designs, we scale up Omni-Video 2 to a 14B video diffusion model on meticulously curated training data with quality, supporting high quality text-to-video generation and various video editing tasks such as object removal, addition, background change, complex motion editing, \emph{etc.} We evaluate the performance of Omni-Video 2 on the FiVE benchmark for fine-grained video editing and the VBench benchmark for text-to-video generation. The results demonstrate its superior ability to follow complex compositional instructions in video editing, while also achieving competitive or superior quality in video generation tasks.
comment: Technical Report, Project: https://howellyoung-s.github.io/Omni-Video2-project/
☆ Addressing data annotation scarcity in Brain Tumor Segmentation on 3D MRI scan Using a Semi-Supervised Teacher-Student Framework IEEE
Accurate brain tumor segmentation from MRI is limited by expensive annotations and data heterogeneity across scanners and sites. We propose a semi-supervised teacher-student framework that combines an uncertainty-aware pseudo-labeling teacher with a progressive, confidence-based curriculum for the student. The teacher produces probabilistic masks and per-pixel uncertainty; unlabeled scans are ranked by image-level confidence and introduced in stages, while a dual-loss objective trains the student to learn from high-confidence regions and unlearn low-confidence ones. Agreement-based refinement further improves pseudo-label quality. On BraTS 2021, validation DSC increased from 0.393 (10% data) to 0.872 (100%), with the largest gains in early stages, demonstrating data efficiency. The teacher reached a validation DSC of 0.922, and the student surpassed the teacher on tumor subregions (e.g., NCR/NET 0.797 and Edema 0.980); notably, the student recovered the Enhancing class (DSC 0.620) where the teacher failed. These results show that confidence-driven curricula and selective unlearning provide robust segmentation under limited supervision and noisy pseudo-labels.
comment: 10 pages, 7 figures. Submitted to IEEE Journal of Biomedical and Health Informatics (JBHI)
☆ MOVA: Towards Scalable and Synchronized Video-Audio Generation
Audio is indispensable for real-world video, yet generation models have largely overlooked audio components. Current approaches to producing audio-visual content often rely on cascaded pipelines, which increase cost, accumulate errors, and degrade overall quality. While systems such as Veo 3 and Sora 2 emphasize the value of simultaneous generation, joint multimodal modeling introduces unique challenges in architecture, data, and training. Moreover, the closed-source nature of existing systems limits progress in the field. In this work, we introduce MOVA (MOSS Video and Audio), an open-source model capable of generating high-quality, synchronized audio-visual content, including realistic lip-synced speech, environment-aware sound effects, and content-aligned music. MOVA employs a Mixture-of-Experts (MoE) architecture, with a total of 32B parameters, of which 18B are active during inference. It supports IT2VA (Image-Text to Video-Audio) generation task. By releasing the model weights and code, we aim to advance research and foster a vibrant community of creators. The released codebase features comprehensive support for efficient inference, LoRA fine-tuning, and prompt enhancement.
comment: Technical report for MOVA (open-source video-audio generation model). 38 pages, 10 figures, 22 tables. Project page: https://mosi.cn/models/mova Code: https://github.com/OpenMOSS/MOVA Models: https://huggingface.co/collections/OpenMOSS-Team/mova. Qinyuan Cheng and Tianyi Liang are project leader. Xie Chen and Xipeng Qiu are corresponding authors
☆ Multimodal Learning for Arcing Detection in Pantograph-Catenary Systems
The pantograph-catenary interface is essential for ensuring uninterrupted and reliable power delivery in electrified rail systems. However, electrical arcing at this interface poses serious risks, including accelerated wear of contact components, degraded system performance, and potential service disruptions. Detecting arcing events at the pantograph-catenary interface is challenging due to their transient nature, noisy operating environment, data scarcity, and the difficulty of distinguishing arcs from other similar transient phenomena. To address these challenges, we propose a novel multimodal framework that combines high-resolution image data with force measurements to more accurately and robustly detect arcing events. First, we construct two arcing detection datasets comprising synchronized visual and force measurements. One dataset is built from data provided by the Swiss Federal Railways (SBB), and the other is derived from publicly available videos of arcing events in different railway systems and synthetic force data that mimic the characteristics observed in the real dataset. Leveraging these datasets, we propose MultiDeepSAD, an extension of the DeepSAD algorithm for multiple modalities with a new loss formulation. Additionally, we introduce tailored pseudo-anomaly generation techniques specific to each data type, such as synthetic arc-like artifacts in images and simulated force irregularities, to augment training data and improve the discriminative ability of the model. Through extensive experiments and ablation studies, we demonstrate that our framework significantly outperforms baseline approaches, exhibiting enhanced sensitivity to real arcing events even under domain shifts and limited availability of real arcing observations.
☆ VedicTHG: Symbolic Vedic Computation for Low-Resource Talking-Head Generation in Educational Avatars
Talking-head avatars are increasingly adopted in educational technology to deliver content with social presence and improved engagement. However, many recent talking-head generation (THG) methods rely on GPU-centric neural rendering, large training sets, or high-capacity diffusion models, which limits deployment in offline or resource-constrained learning environments. A deterministic and CPU-oriented THG framework is described, termed Symbolic Vedic Computation, that converts speech to a time-aligned phoneme stream, maps phonemes to a compact viseme inventory, and produces smooth viseme trajectories through symbolic coarticulation inspired by Vedic sutra Urdhva Tiryakbhyam. A lightweight 2D renderer performs region-of-interest (ROI) warping and mouth compositing with stabilization to support real-time synthesis on commodity CPUs. Experiments report synchronization accuracy, temporal stability, and identity consistency under CPU-only execution, alongside benchmarking against representative CPU-feasible baselines. Results indicate that acceptable lip-sync quality can be achieved while substantially reducing computational load and latency, supporting practical educational avatars on low-end hardware. GitHub: https://vineetkumarrakesh.github.io/vedicthg
☆ Efficient Brain Extraction of MRI Scans with Mild to Moderate Neuropathology SP
Skull stripping magnetic resonance images (MRI) of the human brain is an important process in many image processing techniques, such as automatic segmentation of brain structures. Numerous methods have been developed to perform this task, however, they often fail in the presence of neuropathology and can be inconsistent in defining the boundary of the brain mask. Here, we propose a novel approach to skull strip T1-weighted images in a robust and efficient manner, aiming to consistently segment the outer surface of the brain, including the sulcal cerebrospinal fluid (CSF), while excluding the full extent of the subarachnoid space and meninges. We train a modified version of the U-net on silver-standard ground truth data using a novel loss function based on the signed-distance transform (SDT). We validate our model both qualitatively and quantitatively using held-out data from the training dataset, as well as an independent external dataset. The brain masks used for evaluation partially or fully include the subarachnoid space, which may introduce bias into the comparison; nonetheless, our model demonstrates strong performance on the held-out test data, achieving a consistent mean Dice similarity coefficient (DSC) of 0.964$\pm$0.006 and an average symmetric surface distance (ASSD) of 1.4mm$\pm$0.2mm. Performance on the external dataset is comparable, with a DSC of 0.958$\pm$0.006 and an ASSD of 1.7$\pm$0.2mm. Our method achieves performance comparable to or better than existing state-of-the-art methods for brain extraction, particularly in its highly consistent preservation of the brain's outer surface. The method is publicly available on GitHub.
comment: Accepted for publication in the Proceedings of SPIE Medical Imaging 2026
☆ MVAnimate: Enhancing Character Animation with Multi-View Optimization
The demand for realistic and versatile character animation has surged, driven by its wide-ranging applications in various domains. However, the animation generation algorithms modeling human pose with 2D or 3D structures all face various problems, including low-quality output content and training data deficiency, preventing the related algorithms from generating high-quality animation videos. Therefore, we introduce MVAnimate, a novel framework that synthesizes both 2D and 3D information of dynamic figures based on multi-view prior information, to enhance the generated video quality. Our approach leverages multi-view prior information to produce temporally consistent and spatially coherent animation outputs, demonstrating improvements over existing animation methods. Our MVAnimate also optimizes the multi-view videos of the target character, enhancing the video quality from different views. Experimental results on diverse datasets highlight the robustness of our method in handling various motion patterns and appearances.
☆ Shifting the Breaking Point of Flow Matching for Multi-Instance Editing
Flow matching models have recently emerged as an efficient alternative to diffusion, especially for text-guided image generation and editing, offering faster inference through continuous-time dynamics. However, existing flow-based editors predominantly support global or single-instruction edits and struggle with multi-instance scenarios, where multiple parts of a reference input must be edited independently without semantic interference. We identify this limitation as a consequence of globally conditioned velocity fields and joint attention mechanisms, which entangle concurrent edits. To address this issue, we introduce Instance-Disentangled Attention, a mechanism that partitions joint attention operations, enforcing binding between instance-specific textual instructions and spatial regions during velocity field estimation. We evaluate our approach on both natural image editing and a newly introduced benchmark of text-dense infographics with region-level editing instructions. Experimental results demonstrate that our approach promotes edit disentanglement and locality while preserving global output coherence, enabling single-pass, instance-level editing.
☆ From Correspondence to Actions: Human-Like Multi-Image Spatial Reasoning in Multi-modal Large Language Models
While multimodal large language models (MLLMs) have made substantial progress in single-image spatial reasoning, multi-image spatial reasoning, which requires integration of information from multiple viewpoints, remains challenging. Cognitive studies suggest that humans address such tasks through two mechanisms: cross-view correspondence, which identifies regions across different views that correspond to the same physical locations, and stepwise viewpoint transformation, which composes relative viewpoint changes sequentially. However, existing studies incorporate these mechanisms only partially and often implicitly, without explicit supervision for both. We propose Human-Aware Training for Cross-view correspondence and viewpoint cHange (HATCH), a training framework with two complementary objectives: (1) Patch-Level Spatial Alignment, which encourages patch representations to align across views for spatially corresponding regions, and (2) Action-then-Answer Reasoning, which requires the model to generate explicit viewpoint transition actions before predicting the final answer. Experiments on three benchmarks demonstrate that HATCH consistently outperforms baselines of comparable size by a clear margin and achieves competitive results against much larger models, while preserving single-image reasoning capabilities.
☆ Closing the Confusion Loop: CLIP-Guided Alignment for Source-Free Domain Adaptation
Source-Free Domain Adaptation (SFDA) tackles the problem of adapting a pre-trained source model to an unlabeled target domain without accessing any source data, which is quite suitable for the field of data security. Although recent advances have shown that pseudo-labeling strategies can be effective, they often fail in fine-grained scenarios due to subtle inter-class similarities. A critical but underexplored issue is the presence of asymmetric and dynamic class confusion, where visually similar classes are unequally and inconsistently misclassified by the source model. Existing methods typically ignore such confusion patterns, leading to noisy pseudo-labels and poor target discrimination. To address this, we propose CLIP-Guided Alignment(CGA), a novel framework that explicitly models and mitigates class confusion in SFDA. Generally, our method consists of three parts: (1) MCA: detects first directional confusion pairs by analyzing the predictions of the source model in the target domain; (2) MCC: leverages CLIP to construct confusion-aware textual prompts (e.g. a truck that looks like a bus), enabling more context-sensitive pseudo-labeling; and (3) FAM: builds confusion-guided feature banks for both CLIP and the source model and aligns them using contrastive learning to reduce ambiguity in the representation space. Extensive experiments on various datasets demonstrate that CGA consistently outperforms state-of-the-art SFDA methods, with especially notable gains in confusion-prone and fine-grained scenarios. Our results highlight the importance of explicitly modeling inter-class confusion for effective source-free adaptation. Our code can be find at https://github.com/soloiro/CGA
☆ Artifact Reduction in Undersampled 3D Cone-Beam CTs using a Hybrid 2D-3D CNN Framework
Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
☆ SynSacc: A Blender-to-V2E Pipeline for Synthetic Neuromorphic Eye-Movement Data and Sim-to-Real Spiking Model Training IEEE
The study of eye movements, particularly saccades and fixations, are fundamental to understanding the mechanisms of human cognition and perception. Accurate classification of these movements requires sensing technologies capable of capturing rapid dynamics without distortion. Event cameras, also known as Dynamic Vision Sensors (DVS), provide asynchronous recordings of changes in light intensity, thereby eliminating motion blur inherent in conventional frame-based cameras and offering superior temporal resolution and data efficiency. In this study, we introduce a synthetic dataset generated with Blender to simulate saccades and fixations under controlled conditions. Leveraging Spiking Neural Networks (SNNs), we evaluate its robustness by training two architectures and finetuning on real event data. The proposed models achieve up to 0.83 accuracy and maintain consistent performance across varying temporal resolutions, demonstrating stability in eye movement classification. Moreover, the use of SNNs with synthetic event streams yields substantial computational efficiency gains over artificial neural network (ANN) counterparts, underscoring the utility of synthetic data augmentation in advancing event-based vision. All code and datasets associated with this work is available at https: //github.com/Ikhadija-5/SynSacc-Dataset.
comment: Accepted to the 2nd Workshop on "Event-based Vision in the Era of Generative AI - Transforming Perception and Visual Innovation, IEEE Winter Conference on Applications of Computer Vision (WACV 2026)
☆ FusionEdit: Semantic Fusion and Attention Modulation for Training-Free Image Editing ICASSP 2026
Text-guided image editing aims to modify specific regions according to the target prompt while preserving the identity of the source image. Recent methods exploit explicit binary masks to constrain editing, but hard mask boundaries introduce artifacts and reduce editability. To address these issues, we propose FusionEdit, a training-free image editing framework that achieves precise and controllable edits. First, editing and preserved regions are automatically identified by measuring semantic discrepancies between source and target prompts. To mitigate boundary artifacts, FusionEdit performs distance-aware latent fusion along region boundaries to yield the soft and accurate mask, and employs a total variation loss to enforce smooth transitions, obtaining natural editing results. Second, FusionEdit leverages AdaIN-based modulation within DiT attention layers to perform a statistical attention fusion in the editing region, enhancing editability while preserving global consistency with the source image. Extensive experiments demonstrate that our FusionEdit significantly outperforms state-of-the-art methods. Code is available at \href{https://github.com/Yvan1001/FusionEdit}{https://github.com/Yvan1001/FusionEdit}.
comment: Accepted by ICASSP 2026
☆ Rotated Lights for Consistent and Efficient 2D Gaussians Inverse Rendering
Inverse rendering aims to decompose a scene into its geometry, material properties and light conditions under a certain rendering model. It has wide applications like view synthesis, relighting, and scene editing. In recent years, inverse rendering methods have been inspired by view synthesis approaches like neural radiance fields and Gaussian splatting, which are capable of efficiently decomposing a scene into its geometry and radiance. They then further estimate the material and lighting that lead to the observed scene radiance. However, the latter step is highly ambiguous and prior works suffer from inaccurate color and baked shadows in their albedo estimation albeit their regularization. To this end, we propose RotLight, a simple capturing setup, to address the ambiguity. Compared to a usual capture, RotLight only requires the object to be rotated several times during the process. We show that as few as two rotations is effective in reducing artifacts. To further improve 2DGS-based inverse rendering, we additionally introduce a proxy mesh that not only allows accurate incident light tracing, but also enables a residual constraint and improves global illumination handling. We demonstrate with both synthetic and real world datasets that our method achieves superior albedo estimation while keeping efficient computation.
comment: Project Page: https://rotlight-ir.github.io/
☆ Zero-shot System for Automatic Body Region Detection for Volumetric CT and MR Images
Reliable identification of anatomical body regions is a prerequisite for many automated medical imaging workflows, yet existing solutions remain heavily dependent on unreliable DICOM metadata. Current solutions mainly use supervised learning, which limits their applicability in many real-world scenarios. In this work, we investigate whether body region detection in volumetric CT and MR images can be achieved in a fully zero-shot manner by using knowledge embedded in large pre-trained foundation models. We propose and systematically evaluate three training-free pipelines: (1) a segmentation-driven rule-based system leveraging pre-trained multi-organ segmentation models, (2) a Multimodal Large Language Model (MLLM) guided by radiologist-defined rules, and (3) a segmentation-aware MLLM that combines visual input with explicit anatomical evidence. All methods are evaluated on 887 heterogeneous CT and MR scans with manually verified anatomical region labels. The segmentation-driven rule-based approach achieves the strongest and most consistent performance, with weighted F1-scores of 0.947 (CT) and 0.914 (MR), demonstrating robustness across modalities and atypical scan coverage. The MLLM performs competitively in visually distinctive regions, while the segmentation-aware MLLM reveals fundamental limitations.
comment: 8 pages, 5 figures, 5 tables
☆ TimeChat-Captioner: Scripting Multi-Scene Videos with Time-Aware and Structural Audio-Visual Captions
This paper proposes Omni Dense Captioning, a novel task designed to generate continuous, fine-grained, and structured audio-visual narratives with explicit timestamps. To ensure dense semantic coverage, we introduce a six-dimensional structural schema to create "script-like" captions, enabling readers to vividly imagine the video content scene by scene, akin to a cinematographic screenplay. To facilitate research, we construct OmniDCBench, a high-quality, human-annotated benchmark, and propose SodaM, a unified metric that evaluates time-aware detailed descriptions while mitigating scene boundary ambiguity. Furthermore, we construct a training dataset, TimeChatCap-42K, and present TimeChat-Captioner-7B, a strong baseline trained via SFT and GRPO with task-specific rewards. Extensive experiments demonstrate that TimeChat-Captioner-7B achieves state-of-the-art performance, surpassing Gemini-2.5-Pro, while its generated dense descriptions significantly boost downstream capabilities in audio-visual reasoning (DailyOmni and WorldSense) and temporal grounding (Charades-STA). All datasets, models, and code will be made publicly available at https://github.com/yaolinli/TimeChat-Captioner.
☆ Low-Light Video Enhancement with An Effective Spatial-Temporal Decomposition Paradigm
Low-Light Video Enhancement (LLVE) seeks to restore dynamic or static scenes plagued by severe invisibility and noise. In this paper, we present an innovative video decomposition strategy that incorporates view-independent and view-dependent components to enhance the performance of LLVE. The framework is called View-aware Low-light Video Enhancement (VLLVE). We leverage dynamic cross-frame correspondences for the view-independent term (which primarily captures intrinsic appearance) and impose a scene-level continuity constraint on the view-dependent term (which mainly describes the shading condition) to achieve consistent and satisfactory decomposition results. To further ensure consistent decomposition, we introduce a dual-structure enhancement network featuring a cross-frame interaction mechanism. By supervising different frames simultaneously, this network encourages them to exhibit matching decomposition features. This mechanism can seamlessly integrate with encoder-decoder single-frame networks, incurring minimal additional parameter costs. Building upon VLLVE, we propose a more comprehensive decomposition strategy by introducing an additive residual term, resulting in VLLVE++. This residual term can simulate scene-adaptive degradations, which are difficult to model using a decomposition formulation for common scenes, thereby further enhancing the ability to capture the overall content of videos. In addition, VLLVE++ enables bidirectional learning for both enhancement and degradation-aware correspondence refinement (end-to-end manner), effectively increasing reliable correspondences while filtering out incorrect ones. Notably, VLLVE++ demonstrates strong capability in handling challenging cases, such as real-world scenes and videos with high dynamics. Extensive experiments are conducted on widely recognized LLVE benchmarks.
☆ OneVision-Encoder: Codec-Aligned Sparsity as a Foundational Principle for Multimodal Intelligence
Hypothesis. Artificial general intelligence is, at its core, a compression problem. Effective compression demands resonance: deep learning scales best when its architecture aligns with the fundamental structure of the data. These are the fundamental principles. Yet, modern vision architectures have strayed from these truths: visual signals are highly redundant, while discriminative information, the surprise, is sparse. Current models process dense pixel grids uniformly, wasting vast compute on static background rather than focusing on the predictive residuals that define motion and meaning. We argue that to solve visual understanding, we must align our architectures with the information-theoretic principles of video, i.e., Codecs. Method. OneVision-Encoder encodes video by compressing predictive visual structure into semantic meaning. By adopting Codec Patchification, OV-Encoder abandons uniform computation to focus exclusively on the 3.1%-25% of regions rich in signal entropy. To unify spatial and temporal reasoning under irregular token layouts, OneVision-Encoder employs a shared 3D RoPE and is trained with a large-scale cluster discrimination objective over more than one million semantic concepts, jointly capturing object permanence and motion dynamics. Evidence. The results validate our core hypothesis: efficiency and accuracy are not a trade-off; they are positively correlated. When integrated into LLM, it consistently outperforms strong vision backbones such as Qwen3-ViT and SigLIP2 across 16 image, video, and document understanding benchmarks, despite using substantially fewer visual tokens and pretraining data. Notably, on video understanding tasks, OV-Encoder achieves an average improvement of 4.1% over Qwen3-ViT. Codec-aligned, patch-level sparsity is a foundational principle, enabling OV-Encoder as a scalable engine for next-generation visual generalists.
☆ ALIVE: Animate Your World with Lifelike Audio-Video Generation
Video generation is rapidly evolving towards unified audio-video generation. In this paper, we present ALIVE, a generation model that adapts a pretrained Text-to-Video (T2V) model to Sora-style audio-video generation and animation. In particular, the model unlocks the Text-to-Video&Audio (T2VA) and Reference-to-Video&Audio (animation) capabilities compared to the T2V foundation models. To support the audio-visual synchronization and reference animation, we augment the popular MMDiT architecture with a joint audio-video branch which includes TA-CrossAttn for temporally-aligned cross-modal fusion and UniTemp-RoPE for precise audio-visual alignment. Meanwhile, a comprehensive data pipeline consisting of audio-video captioning, quality control, etc., is carefully designed to collect high-quality finetuning data. Additionally, we introduce a new benchmark to perform a comprehensive model test and comparison. After continue pretraining and finetuning on million-level high-quality data, ALIVE demonstrates outstanding performance, consistently outperforming open-source models and matching or surpassing state-of-the-art commercial solutions. With detailed recipes and benchmarks, we hope ALIVE helps the community develop audio-video generation models more efficiently. Official page: https://github.com/FoundationVision/Alive.
☆ A Machine Learning accelerated geophysical fluid solver
Machine learning methods have been successful in many areas, like image classification and natural language processing. However, it still needs to be determined how to apply ML to areas with mathematical constraints, like solving PDEs. Among various approaches to applying ML techniques to solving PDEs, the data-driven discretization method presents a promising way of accelerating and improving existing PDE solver on structured grids where it predicts the coefficients of quasi-linear stencils for computing values or derivatives of a function at given positions. It can improve the accuracy and stability of low-resolution simulation compared with using traditional finite difference or finite volume schemes. Meanwhile, it can also benefit from traditional numerical schemes like achieving conservation law by adapting finite volume type formulations. In this thesis, we have implemented the shallow water equation and Euler equation classic solver under a different framework. Experiments show that our classic solver performs much better than the Pyclaw solver. Then we propose four different deep neural networks for the ML-based solver. The results indicate that two of these approaches could output satisfactory solutions.
comment: Master Thesis
☆ WiFlow: A Lightweight WiFi-based Continuous Human Pose Estimation Network with Spatio-Temporal Feature Decoupling
Human pose estimation is fundamental to intelligent perception in the Internet of Things (IoT), enabling applications ranging from smart healthcare to human-computer interaction. While WiFi-based methods have gained traction, they often struggle with continuous motion and high computational overhead. This work presents WiFlow, a novel framework for continuous human pose estimation using WiFi signals. Unlike vision-based approaches such as two-dimensional deep residual networks that treat Channel State Information (CSI) as images, WiFlow employs an encoder-decoder architecture. The encoder captures spatio-temporal features of CSI using temporal and asymmetric convolutions, preserving the original sequential structure of signals. It then refines keypoint features of human bodies to be tracked and capture their structural dependencies via axial attention. The decoder subsequently maps the encoded high-dimensional features into keypoint coordinates. Trained on a self-collected dataset of 360,000 synchronized CSI-pose samples from 5 subjects performing continuous sequences of 8 daily activities, WiFlow achieves a Percentage of Correct Keypoints (PCK) of 97.00% at a threshold of 20% (PCK@20) and 99.48% at PCK@50, with a mean per-joint position error of 0.008m. With only 4.82M parameters, WiFlow significantly reduces model complexity and computational cost, establishing a new performance baseline for practical WiFi-based human pose estimation. Our code and datasets are available at https://github.com/DY2434/WiFlow-WiFi-Pose-Estimation-with-Spatio-Temporal-Decoupling.git.
☆ Deep Learning-Based Fixation Type Prediction for Quality Assurance in Digital Pathology
Accurate annotation of fixation type is a critical step in slide preparation for pathology laboratories. However, this manual process is prone to errors, impacting downstream analyses and diagnostic accuracy. Existing methods for verifying formalin-fixed, paraffin-embedded (FFPE), and frozen section (FS) fixation types typically require full-resolution whole-slide images (WSIs), limiting scalability for high-throughput quality control. We propose a deep-learning model to predict fixation types using low-resolution, pre-scan thumbnail images. The model was trained on WSIs from the TUM Institute of Pathology (n=1,200, Leica GT450DX) and evaluated on a class-balanced subset of The Cancer Genome Atlas dataset (TCGA, n=8,800, Leica AT2), as well as on class-balanced datasets from Augsburg (n=695 [392 FFPE, 303 FS], Philips UFS) and Regensburg (n=202, 3DHISTECH P1000). Our model achieves an AUROC of 0.88 on TCGA, outperforming comparable pre-scan methods by 4.8%. It also achieves AUROCs of 0.72 on Regensburg and Augsburg slides, underscoring challenges related to scanner-induced domain shifts. Furthermore, the model processes each slide in 21 ms, $400\times$ faster than existing high-magnification, full-resolution methods, enabling rapid, high-throughput processing. This approach provides an efficient solution for detecting labelling errors without relying on high-magnification scans, offering a valuable tool for quality control in high-throughput pathology workflows. Future work will improve and evaluate the model's generalisation to additional scanner types. Our findings suggest that this method can increase accuracy and efficiency in digital pathology workflows and may be extended to other low-resolution slide annotations.
comment: 17 pages, 8 figures, 7 tables
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ Revisiting [CLS] and Patch Token Interaction in Vision Transformers ICLR 2026
Vision Transformers have emerged as powerful, scalable and versatile representation learners. To capture both global and local features, a learnable [CLS] class token is typically prepended to the input sequence of patch tokens. Despite their distinct nature, both token types are processed identically throughout the model. In this work, we investigate the friction between global and local feature learning under different pre-training strategies by analyzing the interactions between class and patch tokens. Our analysis reveals that standard normalization layers introduce an implicit differentiation between these token types. Building on this insight, we propose specialized processing paths that selectively disentangle the computational flow of class and patch tokens, particularly within normalization layers and early query-key-value projections. This targeted specialization leads to significantly improved patch representation quality for dense prediction tasks. Our experiments demonstrate segmentation performance gains of over 2 mIoU points on standard benchmarks, while maintaining strong classification accuracy. The proposed modifications introduce only an 8% increase in parameters, with no additional computational overhead. Through comprehensive ablations, we provide insights into which architectural components benefit most from specialization and how our approach generalizes across model scales and learning frameworks.
comment: To be published as a conference paper at ICLR 2026
☆ Improving Reconstruction of Representation Autoencoder
Recent work leverages Vision Foundation Models as image encoders to boost the generative performance of latent diffusion models (LDMs), as their semantic feature distributions are easy to learn. However, such semantic features often lack low-level information (\eg, color and texture), leading to degraded reconstruction fidelity, which has emerged as a primary bottleneck in further scaling LDMs. To address this limitation, we propose LV-RAE, a representation autoencoder that augments semantic features with missing low-level information, enabling high-fidelity reconstruction while remaining highly aligned with the semantic distribution. We further observe that the resulting high-dimensional, information-rich latent make decoders sensitive to latent perturbations, causing severe artifacts when decoding generated latent and consequently degrading generation quality. Our analysis suggests that this sensitivity primarily stems from excessive decoder responses along directions off the data manifold. Building on these insights, we propose fine-tuning the decoder to increase its robustness and smoothing the generated latent via controlled noise injection, thereby enhancing generation quality. Experiments demonstrate that LV-RAE significantly improves reconstruction fidelity while preserving the semantic abstraction and achieving strong generative quality. Our code is available at https://github.com/modyu-liu/LVRAE.
☆ Inspiration Seeds: Learning Non-Literal Visual Combinations for Generative Exploration
While generative models have become powerful tools for image synthesis, they are typically optimized for executing carefully crafted textual prompts, offering limited support for the open-ended visual exploration that often precedes idea formation. In contrast, designers frequently draw inspiration from loosely connected visual references, seeking emergent connections that spark new ideas. We propose Inspiration Seeds, a generative framework that shifts image generation from final execution to exploratory ideation. Given two input images, our model produces diverse, visually coherent compositions that reveal latent relationships between inputs, without relying on user-specified text prompts. Our approach is feed-forward, trained on synthetic triplets of decomposed visual aspects derived entirely through visual means: we use CLIP Sparse Autoencoders to extract editing directions in CLIP latent space and isolate concept pairs. By removing the reliance on language and enabling fast, intuitive recombination, our method supports visual ideation at the early and ambiguous stages of creative work.
comment: Project page available at https://inspirationseedspaper.github.io/InspirationSeeds/
Overview and Comparison of AVS Point Cloud Compression Standard
Point cloud is a prevalent 3D data representation format with significant application values in immersive media, autonomous driving, digital heritage protection, etc. However, the large data size of point clouds poses challenges to transmission and storage, which influences the wide deployments. Therefore, point cloud compression plays a crucial role in practical applications for both human and machine perception optimization. To this end, the Moving Picture Experts Group (MPEG) has established two standards for point cloud compression, including Geometry-based Point Cloud Compression (G-PCC) and Video-based Point Cloud Compression (V-PCC). In the meantime, the Audio Video coding Standard (AVS) Workgroup of China also have launched and completed the development for its first generation point cloud compression standard, namely AVS PCC. This new standardization effort has adopted many new coding tools and techniques, which are different from the other counterpart standards. This paper reviews the AVS PCC standard from two perspectives, i.e., the related technologies and performance comparisons.
comment: 3 figures, 3 tables
☆ SemiNFT: Learning to Transfer Presets from Imitation to Appreciation via Hybrid-Sample Reinforcement Learning
Photorealistic color retouching plays a vital role in visual content creation, yet manual retouching remains inaccessible to non-experts due to its reliance on specialized expertise. Reference-based methods offer a promising alternative by transferring the preset color of a reference image to a source image. However, these approaches often operate as novice learners, performing global color mappings derived from pixel-level statistics, without a true understanding of semantic context or human aesthetics. To address this issue, we propose SemiNFT, a Diffusion Transformer (DiT)-based retouching framework that mirrors the trajectory of human artistic training: beginning with rigid imitation and evolving into intuitive creation. Specifically, SemiNFT is first taught with paired triplets to acquire basic structural preservation and color mapping skills, and then advanced to reinforcement learning (RL) on unpaired data to cultivate nuanced aesthetic perception. Crucially, during the RL stage, to prevent catastrophic forgetting of old skills, we design a hybrid online-offline reward mechanism that anchors aesthetic exploration with structural review. % experiments Extensive experiments show that SemiNFT not only outperforms state-of-the-art methods on standard preset transfer benchmarks but also demonstrates remarkable intelligence in zero-shot tasks, such as black-and-white photo colorization and cross-domain (anime-to-photo) preset transfer. These results confirm that SemiNFT transcends simple statistical matching and achieves a sophisticated level of aesthetic comprehension. Our project can be found at https://melanyyang.github.io/SemiNFT/.
☆ retinalysis-vascx: An explainable software toolbox for the extraction of retinal vascular biomarkers
The automatic extraction of retinal vascular biomarkers from color fundus images (CFI) is essential for large-scale studies of the retinal vasculature. We present VascX, an open-source Python toolbox designed for the automated extraction of biomarkers from artery and vein segmentations. The VascX workflow processes vessel segmentation masks into skeletons to build undirected and directed vessel graphs, which are then used to resolve segments into continuous vessels. This architecture enables the calculation of a comprehensive suite of biomarkers, including vascular density, bifurcation angles, central retinal equivalents (CREs), tortuosity, and temporal angles, alongside image quality metrics. A distinguishing feature of VascX is its region awareness; by utilizing the fovea, optic disc, and CFI boundaries as anatomical landmarks, the tool ensures spatially standardized measurements and identifies when specific biomarkers are not computable. Spatially localized biomarkers are calculated over grids relative to these landmarks, facilitating precise clinical analysis. Released via GitHub and PyPI, VascX provides an explainable and modifiable framework that supports reproducible vascular research through integrated visualizations. By enabling the rapid extraction of established biomarkers and the development of new ones, VascX advances the field of oculomics, offering a robust, computationally efficient solution for scalable deployment in large-scale clinical and epidemiological databases.
☆ FLAG-4D: Flow-Guided Local-Global Dual-Deformation Model for 4D Reconstruction
We introduce FLAG-4D, a novel framework for generating novel views of dynamic scenes by reconstructing how 3D Gaussian primitives evolve through space and time. Existing methods typically rely on a single Multilayer Perceptron (MLP) to model temporal deformations, and they often struggle to capture complex point motions and fine-grained dynamic details consistently over time, especially from sparse input views. Our approach, FLAG-4D, overcomes this by employing a dual-deformation network that dynamically warps a canonical set of 3D Gaussians over time into new positions and anisotropic shapes. This dual-deformation network consists of an Instantaneous Deformation Network (IDN) for modeling fine-grained, local deformations and a Global Motion Network (GMN) for capturing long-range dynamics, refined through mutual learning. To ensure these deformations are both accurate and temporally smooth, FLAG-4D incorporates dense motion features from a pretrained optical flow backbone. We fuse these motion cues from adjacent timeframes and use a deformation-guided attention mechanism to align this flow information with the current state of each evolving 3D Gaussian. Extensive experiments demonstrate that FLAG-4D achieves higher-fidelity and more temporally coherent reconstructions with finer detail preservation than state-of-the-art methods.
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ TIBR4D: Tracing-Guided Iterative Boundary Refinement for Efficient 4D Gaussian Segmentation
Object-level segmentation in dynamic 4D Gaussian scenes remains challenging due to complex motion, occlusions, and ambiguous boundaries. In this paper, we present an efficient learning-free 4D Gaussian segmentation framework that lifts video segmentation masks to 4D spaces, whose core is a two-stage iterative boundary refinement, TIBR4D. The first stage is an Iterative Gaussian Instance Tracing (IGIT) at the temporal segment level. It progressively refines Gaussian-to-instance probabilities through iterative tracing, and extracts corresponding Gaussian point clouds that better handle occlusions and preserve completeness of object structures compared to existing one-shot threshold-based methods. The second stage is a frame-wise Gaussian Rendering Range Control (RCC) via suppressing highly uncertain Gaussians near object boundaries while retaining their core contributions for more accurate boundaries. Furthermore, a temporal segmentation merging strategy is proposed for IGIT to balance identity consistency and dynamic awareness. Longer segments enforce stronger multi-frame constraints for stable identities, while shorter segments allow identity changes to be captured promptly. Experiments on HyperNeRF and Neu3D demonstrate that our method produces accurate object Gaussian point clouds with clearer boundaries and higher efficiency compared to SOTA methods.
comment: 13 pages, 6 figures, 4 tables
☆ Thegra: Graph-based SLAM for Thermal Imagery
Thermal imaging provides a practical sensing modality for visual SLAM in visually degraded environments such as low illumination, smoke, or adverse weather. However, thermal imagery often exhibits low texture, low contrast, and high noise, complicating feature-based SLAM. In this work, we propose a sparse monocular graph-based SLAM system for thermal imagery that leverages general-purpose learned features -- the SuperPoint detector and LightGlue matcher, trained on large-scale visible-spectrum data to improve cross-domain generalization. To adapt these components to thermal data, we introduce a preprocessing pipeline to enhance input suitability and modify core SLAM modules to handle sparse and outlier-prone feature matches. We further incorporate keypoint confidence scores from SuperPoint into a confidence-weighted factor graph to improve estimation robustness. Evaluations on public thermal datasets demonstrate that the proposed system achieves reliable performance without requiring dataset-specific training or fine-tuning a desired feature detector, given the scarcity of quality thermal data. Code will be made available upon publication.
☆ Automatic regularization parameter choice for tomography using a double model approach
Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.
☆ GeoFocus: Blending Efficient Global-to-Local Perception for Multimodal Geometry Problem-Solving
Geometry problem-solving remains a significant challenge for Large Multimodal Models (LMMs), requiring not only global shape recognition but also attention to intricate local relationships related to geometric theory. To address this, we propose GeoFocus, a novel framework comprising two core modules. 1) Critical Local Perceptor, which automatically identifies and emphasizes critical local structure (e.g., angles, parallel lines, comparative distances) through thirteen theory-based perception templates, boosting critical local feature coverage by 61% compared to previous methods. 2) VertexLang, a compact topology formal language, encodes global figures through vertex coordinates and connectivity relations. By replacing bulky code-based encodings, VertexLang reduces global perception training time by 20% while improving topology recognition accuracy. When evaluated in Geo3K, GeoQA, and FormalGeo7K, GeoFocus achieves a 4.7% accuracy improvement over leading specialized models and demonstrates superior robustness in MATHVERSE under diverse visual conditions. Project Page -- https://github.com/dle666/GeoFocus
☆ Are Vision Foundation Models Foundational for Electron Microscopy Image Segmentation?
Although vision foundation models (VFMs) are increasingly reused for biomedical image analysis, it remains unclear whether the latent representations they provide are general enough to support effective transfer and reuse across heterogeneous microscopy image datasets. Here, we study this question for the problem of mitochondria segmentation in electron microscopy (EM) images, using two popular public EM datasets (Lucchi++ and VNC) and three recent representative VFMs (DINOv2, DINOv3, and OpenCLIP). We evaluate two practical model adaptation regimes: a frozen-backbone setting in which only a lightweight segmentation head is trained on top of the VFM, and parameter-efficient fine-tuning (PEFT) via Low-Rank Adaptation (LoRA) in which the VFM is fine-tuned in a targeted manner to a specific dataset. Across all backbones, we observe that training on a single EM dataset yields good segmentation performance (quantified as foreground Intersection-over-Union), and that LoRA consistently improves in-domain performance. In contrast, training on multiple EM datasets leads to severe performance degradation for all models considered, with only marginal gains from PEFT. Exploration of the latent representation space through various techniques (PCA, Fréchet Dinov2 distance, and linear probes) reveals a pronounced and persistent domain mismatch between the two considered EM datasets in spite of their visual similarity, which is consistent with the observed failure of paired training. These results suggest that, while VFMs can deliver competitive results for EM segmentation within a single domain under lightweight adaptation, current PEFT strategies are insufficient to obtain a single robust model across heterogeneous EM datasets without additional domain-alignment mechanisms.
☆ Learning Self-Correction in Vision-Language Models via Rollout Augmentation
Self-correction is essential for solving complex reasoning problems in vision-language models (VLMs). However, existing reinforcement learning (RL) methods struggle to learn it, as effective self-correction behaviors emerge only rarely, making learning signals extremely sparse. To address this challenge, we propose correction-specific rollouts (Octopus), an RL rollout augmentation framework that synthesizes dense self-correction examples by recombining existing rollouts. This augmentation simultaneously improves sample efficiency due to rollout reuse and stabilizes RL optimization through balanced supervision. Furthermore, we introduce a response-masking strategy that decouples self-correction from direct reasoning, avoiding signal conflicts and enabling both behaviors to be learned effectively. Building on this, we introduce Octopus-8B, a reasoning VLM with controllable self-correction capability. Across 7 benchmarks, it achieves SoTA performance among open-source VLMs, outperforming the best RLVR baseline by 1.0 score while requiring only $0.72\times$ training time per step.
comment: 17 pages
☆ Enhanced Food Category Recognition under Illumination-Induced Domain Shift
Visual food recognition systems deployed in real-world environments, such as automated conveyor-belt inspection, are highly sensitive to domain shifts caused by illumination changes. While recent studies have shown that lighting variations can significantly distort food perception by both humans and AI, existing works are often limited to single food categories or controlled settings, and most public food datasets lack explicit illumination annotations. In this work, we investigate illumination-induced domain shift in multi-class food category recognition using two widely adopted datasets, Food-101 and Fruits-360. We demonstrate substantial accuracy degradation under cross-dataset evaluation due to mismatched visual conditions. To address this challenge, we construct synthetic illumination-augmented datasets by systematically varying light temperature and intensity, enabling controlled robustness analysis without additional labels. We further evaluate cross-dataset transfer learning and domain generalization, with a focus on illumination-sensitive target categories such as apple-based classes. Experimental results show that illumination-aware augmentation significantly improves recognition robustness under domain shift while preserving real-time performance. Our findings highlight the importance of illumination robustness and provide practical insights for deploying reliable food recognition systems in real-world inspection scenarios.
☆ Gesture Matters: Pedestrian Gesture Recognition for AVs Through Skeleton Pose Evaluation
Gestures are a key component of non-verbal communication in traffic, often helping pedestrian-to-driver interactions when formal traffic rules may be insufficient. This problem becomes more apparent when autonomous vehicles (AVs) struggle to interpret such gestures. In this study, we present a gesture classification framework using 2D pose estimation applied to real-world video sequences from the WIVW dataset. We categorise gestures into four primary classes (Stop, Go, Thank & Greet, and No Gesture) and extract 76 static and dynamic features from normalised keypoints. Our analysis demonstrates that hand position and movement velocity are especially discriminative in distinguishing between gesture classes, achieving a classification accuracy score of 87%. These findings not only improve the perceptual capabilities of AV systems but also contribute to the broader understanding of pedestrian behaviour in traffic contexts.
comment: 9th International Conference on Instrumentation, Control, and Automation (ICA)
☆ Reliability-aware Execution Gating for Near-field and Off-axis Vision-guided Robotic Alignment
Vision-guided robotic systems are increasingly deployed in precision alignment tasks that require reliable execution under near-field and off-axis configurations. While recent advances in pose estimation have significantly improved numerical accuracy, practical robotic systems still suffer from frequent execution failures even when pose estimates appear accurate. This gap suggests that pose accuracy alone is insufficient to guarantee execution-level reliability. In this paper, we reveal that such failures arise from a deterministic geometric error amplification mechanism, in which small pose estimation errors are magnified through system structure and motion execution, leading to unstable or failed alignment. Rather than modifying pose estimation algorithms, we propose a Reliability-aware Execution Gating mechanism that operates at the execution level. The proposed approach evaluates geometric consistency and configuration risk before execution, and selectively rejects or scales high-risk pose updates. We validate the proposed method on a real UR5 robotic platform performing single-step visual alignment tasks under varying camera-target distances and off-axis configurations. Experimental results demonstrate that the proposed execution gating significantly improves task success rates, reduces execution variance, and suppresses tail-risk behavior, while leaving average pose accuracy largely unchanged. Importantly, the proposed mechanism is estimator-agnostic and can be readily integrated with both classical geometry-based and learning-based pose estimation pipelines. These results highlight the importance of execution-level reliability modeling and provide a practical solution for improving robustness in near-field vision-guided robotic systems.
comment: 7 pages, 1 figure
☆ TriC-Motion: Tri-Domain Causal Modeling Grounded Text-to-Motion Generation
Text-to-motion generation, a rapidly evolving field in computer vision, aims to produce realistic and text-aligned motion sequences. Current methods primarily focus on spatial-temporal modeling or independent frequency domain analysis, lacking a unified framework for joint optimization across spatial, temporal, and frequency domains. This limitation hinders the model's ability to leverage information from all domains simultaneously, leading to suboptimal generation quality. Additionally, in motion generation frameworks, motion-irrelevant cues caused by noise are often entangled with features that contribute positively to generation, thereby leading to motion distortion. To address these issues, we propose Tri-Domain Causal Text-to-Motion Generation (TriC-Motion), a novel diffusion-based framework integrating spatial-temporal-frequency-domain modeling with causal intervention. TriC-Motion includes three core modeling modules for domain-specific modeling, namely Temporal Motion Encoding, Spatial Topology Modeling, and Hybrid Frequency Analysis. After comprehensive modeling, a Score-guided Tri-domain Fusion module integrates valuable information from the triple domains, simultaneously ensuring temporal consistency, spatial topology, motion trends, and dynamics. Moreover, the Causality-based Counterfactual Motion Disentangler is meticulously designed to expose motion-irrelevant cues to eliminate noise, disentangling the real modeling contributions of each domain for superior generation. Extensive experimental results validate that TriC-Motion achieves superior performance compared to state-of-the-art methods, attaining an outstanding R@1 of 0.612 on the HumanML3D dataset. These results demonstrate its capability to generate high-fidelity, coherent, diverse, and text-aligned motion sequences. Code is available at: https://caoyiyang1105.github.io/TriC-Motion/.
☆ Vista: Scene-Aware Optimization for Streaming Video Question Answering under Post-Hoc Queries AAAI 2026
Streaming video question answering (Streaming Video QA) poses distinct challenges for multimodal large language models (MLLMs), as video frames arrive sequentially and user queries can be issued at arbitrary time points. Existing solutions relying on fixed-size memory or naive compression often suffer from context loss or memory overflow, limiting their effectiveness in long-form, real-time scenarios. We present Vista, a novel framework for scene-aware streaming video QA that enables efficient and scalable reasoning over continuous video streams. The innovation of Vista can be summarized in three aspects: (1) scene-aware segmentation, where Vista dynamically clusters incoming frames into temporally and visually coherent scene units; (2) scene-aware compression, where each scene is compressed into a compact token representation and stored in GPU memory for efficient index-based retrieval, while full-resolution frames are offloaded to CPU memory; and (3) scene-aware recall, where relevant scenes are selectively recalled and reintegrated into the model input upon receiving a query, enabling both efficiency and completeness. Vista is model-agnostic and integrates seamlessly with a variety of vision-language backbones, enabling long-context reasoning without compromising latency or memory efficiency. Extensive experiments on StreamingBench demonstrate that Vista achieves state-of-the-art performance, establishing a strong baseline for real-world streaming video understanding.
comment: Accepted to AAAI 2026 (Main Technical Track)
☆ Demo-ICL: In-Context Learning for Procedural Video Knowledge Acquisition
Despite the growing video understanding capabilities of recent Multimodal Large Language Models (MLLMs), existing video benchmarks primarily assess understanding based on models' static, internal knowledge, rather than their ability to learn and adapt from dynamic, novel contexts from few examples. To bridge this gap, we present Demo-driven Video In-Context Learning, a novel task focused on learning from in-context demonstrations to answer questions about the target videos. Alongside this, we propose Demo-ICL-Bench, a challenging benchmark designed to evaluate demo-driven video in-context learning capabilities. Demo-ICL-Bench is constructed from 1200 instructional YouTube videos with associated questions, from which two types of demonstrations are derived: (i) summarizing video subtitles for text demonstration; and (ii) corresponding instructional videos as video demonstrations. To effectively tackle this new challenge, we develop Demo-ICL, an MLLM with a two-stage training strategy: video-supervised fine-tuning and information-assisted direct preference optimization, jointly enhancing the model's ability to learn from in-context examples. Extensive experiments with state-of-the-art MLLMs confirm the difficulty of Demo-ICL-Bench, demonstrate the effectiveness of Demo-ICL, and thereby unveil future research directions.
☆ Understanding and Optimizing Attention-Based Sparse Matching for Diverse Local Features
We revisit the problem of training attention-based sparse image matching models for various local features. We first identify one critical design choice that has been previously overlooked, which significantly impacts the performance of the LightGlue model. We then investigate the role of detectors and descriptors within the transformer-based matching framework, finding that detectors, rather than descriptors, are often the primary cause for performance difference. Finally, we propose a novel approach to fine-tune existing image matching models using keypoints from a diverse set of detectors, resulting in a universal, detector-agnostic model. When deployed as a zero-shot matcher for novel detectors, the resulting model achieves or exceeds the accuracy of models specifically trained for those features. Our findings offer valuable insights for the deployment of transformer-based matching models and the future design of local features.
☆ Prism: Spectral-Aware Block-Sparse Attention
Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
☆ RealSynCol: a high-fidelity synthetic colon dataset for 3D reconstruction applications
Deep learning has the potential to improve colonoscopy by enabling 3D reconstruction of the colon, providing a comprehensive view of mucosal surfaces and lesions, and facilitating the identification of unexplored areas. However, the development of robust methods is limited by the scarcity of large-scale ground truth data. We propose RealSynCol, a highly realistic synthetic dataset designed to replicate the endoscopic environment. Colon geometries extracted from 10 CT scans were imported into a virtual environment that closely mimics intraoperative conditions and rendered with realistic vascular textures. The resulting dataset comprises 28\,130 frames, paired with ground truth depth maps, optical flow, 3D meshes, and camera trajectories. A benchmark study was conducted to evaluate the available synthetic colon datasets for the tasks of depth and pose estimation. Results demonstrate that the high realism and variability of RealSynCol significantly enhance generalization performance on clinical images, proving it to be a powerful tool for developing deep learning algorithms to support endoscopic diagnosis.
☆ D$^2$-VR: Degradation-Robust and Distilled Video Restoration with Synergistic Optimization Strategy
The integration of diffusion priors with temporal alignment has emerged as a transformative paradigm for video restoration, delivering fantastic perceptual quality, yet the practical deployment of such frameworks is severely constrained by prohibitive inference latency and temporal instability when confronted with complex real-world degradations. To address these limitations, we propose \textbf{D$^2$-VR}, a single-image diffusion-based video-restoration framework with low-step inference. To obtain precise temporal guidance under severe degradation, we first design a Degradation-Robust Flow Alignment (DRFA) module that leverages confidence-aware attention to filter unreliable motion cues. We then incorporate an adversarial distillation paradigm to compress the diffusion sampling trajectory into a rapid few-step regime. Finally, a synergistic optimization strategy is devised to harmonize perceptual quality with rigorous temporal consistency. Extensive experiments demonstrate that D$^2$-VR achieves state-of-the-art performance while accelerating the sampling process by \textbf{12$\times$}
☆ BiManiBench: A Hierarchical Benchmark for Evaluating Bimanual Coordination of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have significantly advanced embodied AI, and using them to benchmark robotic intelligence has become a pivotal trend. However, existing frameworks remain predominantly confined to single-arm manipulation, failing to capture the spatio-temporal coordination required for bimanual tasks like lifting a heavy pot. To address this, we introduce BiManiBench, a hierarchical benchmark evaluating MLLMs across three tiers: fundamental spatial reasoning, high-level action planning, and low-level end-effector control. Our framework isolates unique bimanual challenges, such as arm reachability and kinematic constraints, thereby distinguishing perceptual hallucinations from planning failures. Analysis of over 30 state-of-the-art models reveals that despite high-level reasoning proficiency, MLLMs struggle with dual-arm spatial grounding and control, frequently resulting in mutual interference and sequencing errors. These findings suggest the current paradigm lacks a deep understanding of mutual kinematic constraints, highlighting the need for future research to focus on inter-arm collision-avoidance and fine-grained temporal sequencing.
comment: 38 pages, 9 figures. Project page:https://bimanibench.github.io/
☆ Geometric Image Editing via Effects-Sensitive In-Context Inpainting with Diffusion Transformers
Recent advances in diffusion models have significantly improved image editing. However, challenges persist in handling geometric transformations, such as translation, rotation, and scaling, particularly in complex scenes. Existing approaches suffer from two main limitations: (1) difficulty in achieving accurate geometric editing of object translation, rotation, and scaling; (2) inadequate modeling of intricate lighting and shadow effects, leading to unrealistic results. To address these issues, we propose GeoEdit, a framework that leverages in-context generation through a diffusion transformer module, which integrates geometric transformations for precise object edits. Moreover, we introduce Effects-Sensitive Attention, which enhances the modeling of intricate lighting and shadow effects for improved realism. To further support training, we construct RS-Objects, a large-scale geometric editing dataset containing over 120,000 high-quality image pairs, enabling the model to learn precise geometric editing while generating realistic lighting and shadows. Extensive experiments on public benchmarks demonstrate that GeoEdit consistently outperforms state-of-the-art methods in terms of visual quality, geometric accuracy, and realism.
☆ E-VAds: An E-commerce Short Videos Understanding Benchmark for MLLMs
E-commerce short videos represent a high-revenue segment of the online video industry characterized by a goal-driven format and dense multi-modal signals. Current models often struggle with these videos because existing benchmarks focus primarily on general-purpose tasks and neglect the reasoning of commercial intent. In this work, we first propose a \textbf{multi-modal information density assessment framework} to quantify the complexity of this domain. Our evaluation reveals that e-commerce content exhibits substantially higher density across visual, audio, and textual modalities compared to mainstream datasets, establishing a more challenging frontier for video understanding. To address this gap, we introduce \textbf{E-commerce Video Ads Benchmark (E-VAds)}, which is the first benchmark specifically designed for e-commerce short video understanding. We curated 3,961 high-quality videos from Taobao covering a wide range of product categories and used a multi-agent system to generate 19,785 open-ended Q&A pairs. These questions are organized into two primary dimensions, namely Perception and Cognition and Reasoning, which consist of five distinct tasks. Finally, we develop \textbf{E-VAds-R1}, an RL-based reasoning model featuring a multi-grained reward design called \textbf{MG-GRPO}. This strategy provides smooth guidance for early exploration while creating a non-linear incentive for expert-level precision. Experimental results demonstrate that E-VAds-R1 achieves a 109.2% performance gain in commercial intent reasoning with only a few hundred training samples.
☆ What, Whether and How? Unveiling Process Reward Models for Thinking with Images Reasoning
The rapid advancement of Large Vision Language Models (LVLMs) has demonstrated excellent abilities in various visual tasks. Building upon these developments, the thinking with images paradigm has emerged, enabling models to dynamically edit and re-encode visual information at each reasoning step, mirroring human visual processing. However, this paradigm introduces significant challenges as diverse errors may occur during reasoning processes. This necessitates Process Reward Models (PRMs) for distinguishing positive and negative reasoning steps, yet existing benchmarks for PRMs are predominantly text-centric and lack comprehensive assessment under this paradigm. To address these gaps, this work introduces the first comprehensive benchmark specifically designed for evaluating PRMs under the thinking with images paradigm. Our main contributions are: (1) Through extensive analysis of reasoning trajectories and guided search experiments with PRMs, we define 7 fine-grained error types and demonstrate both the necessity for specialized PRMs and the potential for improvement. (2) We construct a comprehensive benchmark comprising 1,206 manually annotated thinking with images reasoning trajectories spanning 4 categories and 16 subcategories for fine-grained evaluation of PRMs. (3) Our experimental analysis reveals that current LVLMs fall short as effective PRMs, exhibiting limited capabilities in visual reasoning process evaluation with significant performance disparities across error types, positive evaluation bias, and sensitivity to reasoning step positions. These findings demonstrate the effectiveness of our benchmark and establish crucial foundations for advancing PRMs in LVLMs.
☆ UrbanGraphEmbeddings: Learning and Evaluating Spatially Grounded Multimodal Embeddings for Urban Science
Learning transferable multimodal embeddings for urban environments is challenging because urban understanding is inherently spatial, yet existing datasets and benchmarks lack explicit alignment between street-view images and urban structure. We introduce UGData, a spatially grounded dataset that anchors street-view images to structured spatial graphs and provides graph-aligned supervision via spatial reasoning paths and spatial context captions, exposing distance, directionality, connectivity, and neighborhood context beyond image content. Building on UGData, we propose UGE, a two-stage training strategy that progressively and stably aligns images, text, and spatial structures by combining instruction-guided contrastive learning with graph-based spatial encoding. We finally introduce UGBench, a comprehensive benchmark to evaluate how spatially grounded embeddings support diverse urban understanding tasks -- including geolocation ranking, image retrieval, urban perception, and spatial grounding. We develop UGE on multiple state-of-the-art VLM backbones, including Qwen2-VL, Qwen2.5-VL, Phi-3-Vision, and LLaVA1.6-Mistral, and train fixed-dimensional spatial embeddings with LoRA tuning. UGE built upon Qwen2.5-VL-7B backbone achieves up to 44% improvement in image retrieval and 30% in geolocation ranking on training cities, and over 30% and 22% gains respectively on held-out cities, demonstrating the effectiveness of explicit spatial grounding for spatially intensive urban tasks.
☆ CoTZero: Annotation-Free Human-Like Vision Reasoning via Hierarchical Synthetic CoT
Recent advances in vision-language models (VLMs) have markedly improved image-text alignment, yet they still fall short of human-like visual reasoning. A key limitation is that many VLMs rely on surface correlations rather than building logically coherent structured representations, which often leads to missed higher-level semantic structure and non-causal relational understanding, hindering compositional and verifiable reasoning. To address these limitations by introducing human models into the reasoning process, we propose CoTZero, an annotation-free paradigm with two components: (i) a dual-stage data synthesis approach and (ii) a cognition-aligned training method. In the first component, we draw inspiration from neurocognitive accounts of compositional productivity and global-to-local analysis. In the bottom-up stage, CoTZero extracts atomic visual primitives and incrementally composes them into diverse, structured question-reasoning forms. In the top-down stage, it enforces hierarchical reasoning by using coarse global structure to guide the interpretation of local details and causal relations. In the cognition-aligned training component, built on the synthesized CoT data, we introduce Cognitively Coherent Verifiable Rewards (CCVR) in Reinforcement Fine-Tuning (RFT) to further strengthen VLMs' hierarchical reasoning and generalization, providing stepwise feedback on reasoning coherence and factual correctness. Experiments show that CoTZero achieves an F1 score of 83.33 percent on our multi-level semantic inconsistency benchmark with lexical-perturbation negatives, across both in-domain and out-of-domain settings. Ablations confirm that each component contributes to more interpretable and human-aligned visual reasoning.
comment: 16 pages 6 figures
☆ Language-Guided Transformer Tokenizer for Human Motion Generation
In this paper, we focus on motion discrete tokenization, which converts raw motion into compact discrete tokens--a process proven crucial for efficient motion generation. In this paradigm, increasing the number of tokens is a common approach to improving motion reconstruction quality, but more tokens make it more difficult for generative models to learn. To maintain high reconstruction quality while reducing generation complexity, we propose leveraging language to achieve efficient motion tokenization, which we term Language-Guided Tokenization (LG-Tok). LG-Tok aligns natural language with motion at the tokenization stage, yielding compact, high-level semantic representations. This approach not only strengthens both tokenization and detokenization but also simplifies the learning of generative models. Furthermore, existing tokenizers predominantly adopt convolutional architectures, whose local receptive fields struggle to support global language guidance. To this end, we propose a Transformer-based Tokenizer that leverages attention mechanisms to enable effective alignment between language and motion. Additionally, we design a language-drop scheme, in which language conditions are randomly removed during training, enabling the detokenizer to support language-free guidance during generation. On the HumanML3D and Motion-X generation benchmarks, LG-Tok achieves Top-1 scores of 0.542 and 0.582, outperforming state-of-the-art methods (MARDM: 0.500 and 0.528), and with FID scores of 0.057 and 0.088, respectively, versus 0.114 and 0.147. LG-Tok-mini uses only half the tokens while maintaining competitive performance (Top-1: 0.521/0.588, FID: 0.085/0.071), validating the efficiency of our semantic representations.
☆ UReason: Benchmarking the Reasoning Paradox in Unified Multimodal Models
To elicit capabilities for addressing complex and implicit visual requirements, recent unified multimodal models increasingly adopt chain-of-thought reasoning to guide image generation. However, the actual effect of reasoning on visual synthesis remains unclear. We present UReason, a diagnostic benchmark for reasoning-driven image generation that evaluates whether reasoning can be faithfully executed in pixels. UReason contains 2,000 instances across five task families: Code, Arithmetic, Spatial, Attribute, and Text reasoning. To isolate the role of reasoning traces, we introduce an evaluation framework comparing direct generation, reasoning-guided generation, and de-contextualized generation which conditions only on the refined prompt. Across eight open-source unified models, we observe a consistent Reasoning Paradox: Reasoning traces generally improve performance over direct generation, yet retaining intermediate thoughts as conditioning context often hinders visual synthesis, and conditioning only on the refined prompt yields substantial gains. Our analysis suggests that the bottleneck lies in contextual interference rather than insufficient reasoning capacity. UReason provides a principled testbed for studying reasoning in unified models and motivates future methods that effectively integrate reasoning for visual generation while mitigating interference.
comment: Project page: https://ureason.github.io
☆ CAE-AV: Improving Audio-Visual Learning via Cross-modal Interactive Enrichment
Audio-visual learning suffers from modality misalignment caused by off-screen sources and background clutter, and current methods usually amplify irrelevant regions or moments, leading to unstable training and degraded representation quality. To address this challenge, we proposed a novel Caption-aligned and Agreement-guided Enhancement framework (CAE-AV) for audio-visual learning, which used two complementary modules: Cross-modal Agreement-guided Spatio-Temporal Enrichment (CASTE) and Caption-Aligned Saliency-guided Enrichment (CASE) to relieve audio-visual misalignment. CASTE dynamically balances spatial and temporal relations by evaluating frame-level audio-visual agreement, ensuring that key information is captured from both preceding and subsequent frames under misalignment. CASE injects cross-modal semantic guidance into selected spatio-temporal positions, leveraging high-level semantic cues to further alleviate misalignment. In addition, we design lightweight objectives, caption-to-modality InfoNCE, visual-audio consistency, and entropy regularization to guide token selection and strengthen cross-modal semantic alignment. With frozen backbones, CAE-AV achieves state-of-the-art performance on AVE, AVVP, AVS, and AVQA benchmarks, and qualitative analyses further validate its robustness against audio-visual misalignment.
comment: 13 pages, 8 figures
☆ Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learning
Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts.
☆ PISCO: Precise Video Instance Insertion with Sparse Control
The landscape of AI video generation is undergoing a pivotal shift: moving beyond general generation - which relies on exhaustive prompt-engineering and "cherry-picking" - towards fine-grained, controllable generation and high-fidelity post-processing. In professional AI-assisted filmmaking, it is crucial to perform precise, targeted modifications. A cornerstone of this transition is video instance insertion, which requires inserting a specific instance into existing footage while maintaining scene integrity. Unlike traditional video editing, this task demands several requirements: precise spatial-temporal placement, physically consistent scene interaction, and the faithful preservation of original dynamics - all achieved under minimal user effort. In this paper, we propose PISCO, a video diffusion model for precise video instance insertion with arbitrary sparse keyframe control. PISCO allows users to specify a single keyframe, start-and-end keyframes, or sparse keyframes at arbitrary timestamps, and automatically propagates object appearance, motion, and interaction. To address the severe distribution shift induced by sparse conditioning in pretrained video diffusion models, we introduce Variable-Information Guidance for robust conditioning and Distribution-Preserving Temporal Masking to stabilize temporal generation, together with geometry-aware conditioning for realistic scene adaptation. We further construct PISCO-Bench, a benchmark with verified instance annotations and paired clean background videos, and evaluate performance using both reference-based and reference-free perceptual metrics. Experiments demonstrate that PISCO consistently outperforms strong inpainting and video editing baselines under sparse control, and exhibits clear, monotonic performance improvements as additional control signals are provided. Project page: xiangbogaobarry.github.io/PISCO.
☆ Informative Object-centric Next Best View for Object-aware 3D Gaussian Splatting in Cluttered Scenes ICRA 2026
In cluttered scenes with inevitable occlusions and incomplete observations, selecting informative viewpoints is essential for building a reliable representation. In this context, 3D Gaussian Splatting (3DGS) offers a distinct advantage, as it can explicitly guide the selection of subsequent viewpoints and then refine the representation with new observations. However, existing approaches rely solely on geometric cues, neglect manipulation-relevant semantics, and tend to prioritize exploitation over exploration. To tackle these limitations, we introduce an instance-aware Next Best View (NBV) policy that prioritizes underexplored regions by leveraging object features. Specifically, our object-aware 3DGS distills instancelevel information into one-hot object vectors, which are used to compute confidence-weighted information gain that guides the identification of regions associated with erroneous and uncertain Gaussians. Furthermore, our method can be easily adapted to an object-centric NBV, which focuses view selection on a target object, thereby improving reconstruction robustness to object placement. Experiments demonstrate that our NBV policy reduces depth error by up to 77.14% on the synthetic dataset and 34.10% on the real-world GraspNet dataset compared to baselines. Moreover, compared to targeting the entire scene, performing NBV on a specific object yields an additional reduction of 25.60% in depth error for that object. We further validate the effectiveness of our approach through real-world robotic manipulation tasks.
comment: 9 pages, 8 figures, 4 tables, accepted to ICRA 2026
☆ Moving Beyond Functional Connectivity: Time-Series Modeling for fMRI-Based Brain Disorder Classification IEEE
Functional magnetic resonance imaging (fMRI) enables non-invasive brain disorder classification by capturing blood-oxygen-level-dependent (BOLD) signals. However, most existing methods rely on functional connectivity (FC) via Pearson correlation, which reduces 4D BOLD signals to static 2D matrices, discarding temporal dynamics and capturing only linear inter-regional relationships. In this work, we benchmark state-of-the-art temporal models (e.g., time-series models such as PatchTST, TimesNet, and TimeMixer) on raw BOLD signals across five public datasets. Results show these models consistently outperform traditional FC-based approaches, highlighting the value of directly modeling temporal information such as cycle-like oscillatory fluctuations and drift-like slow baseline trends. Building on this insight, we propose DeCI, a simple yet effective framework that integrates two key principles: (i) Cycle and Drift Decomposition to disentangle cycle and drift within each ROI (Region of Interest); and (ii) Channel-Independence to model each ROI separately, improving robustness and reducing overfitting. Extensive experiments demonstrate that DeCI achieves superior classification accuracy and generalization compared to both FC-based and temporal baselines. Our findings advocate for a shift toward end-to-end temporal modeling in fMRI analysis to better capture complex brain dynamics. The code is available at https://github.com/Levi-Ackman/DeCI.
comment: This paper has been accepted by IEEE Transactions on Medical Imaging
☆ A Unified Framework for Multimodal Image Reconstruction and Synthesis using Denoising Diffusion Models
Image reconstruction and image synthesis are important for handling incomplete multimodal imaging data, but existing methods require various task-specific models, complicating training and deployment workflows. We introduce Any2all, a unified framework that addresses this limitation by formulating these disparate tasks as a single virtual inpainting problem. We train a single, unconditional diffusion model on the complete multimodal data stack. This model is then adapted at inference time to ``inpaint'' all target modalities from any combination of inputs of available clean images or noisy measurements. We validated Any2all on a PET/MR/CT brain dataset. Our results show that Any2all can achieve excellent performance on both multimodal reconstruction and synthesis tasks, consistently yielding images with competitive distortion-based performance and superior perceptual quality over specialized methods.
☆ Do MLLMs Really See It: Reinforcing Visual Attention in Multimodal LLMs
While chain-of-thought (CoT) reasoning has substantially improved multimodal large language models (MLLMs) on complex reasoning tasks, existing approaches largely rely on long textual reasoning trajectories and provide limited mechanisms for learning stable visual attention policies. Our analysis shows that current MLLMs exhibit weak visual focus: early-stage visual misalignment is rarely corrected during subsequent reasoning, leading to error propagation and failed inferences. We argue that this limitation stems from inadequate credit assignment for visual attention during training. To address this issue, we propose SAYO, a visual reasoning model trained with a reinforcement learning (RL) framework that introduces a region-level visual attention-based reward. This reward explicitly aligns optimization signals with visually grounded reasoning steps, enabling the model to learn more reliable attention behaviors. Extensive experiments across multiple multimodal benchmarks demonstrate that SAYO consistently improves performance on diverse reasoning and perception tasks.
☆ When and How Much to Imagine: Adaptive Test-Time Scaling with World Models for Visual Spatial Reasoning
Despite rapid progress in Multimodal Large Language Models (MLLMs), visual spatial reasoning remains unreliable when correct answers depend on how a scene would appear under unseen or alternative viewpoints. Recent work addresses this by augmenting reasoning with world models for visual imagination, but questions such as when imagination is actually necessary, how much of it is beneficial, and when it becomes harmful, remain poorly understood. In practice, indiscriminate imagination can increase computation and even degrade performance by introducing misleading evidence. In this work, we present an in-depth analysis of test-time visual imagination as a controllable resource for spatial reasoning. We study when static visual evidence is sufficient, when imagination improves reasoning, and how excessive or unnecessary imagination affects accuracy and efficiency. To support this analysis, we introduce AVIC, an adaptive test-time framework with world models that explicitly reasons about the sufficiency of current visual evidence before selectively invoking and scaling visual imagination. Across spatial reasoning benchmarks (SAT, MMSI) and an embodied navigation benchmark (R2R), our results reveal clear scenarios where imagination is critical, marginal, or detrimental, and show that selective control can match or outperform fixed imagination strategies with substantially fewer world-model calls and language tokens. Overall, our findings highlight the importance of analyzing and controlling test-time imagination for efficient and reliable spatial reasoning.
comment: the first two authors are equally contributed. Project page: https://adaptive-visual-tts.github.io/
☆ Generating Adversarial Events: A Motion-Aware Point Cloud Framework
Event cameras have been widely adopted in safety-critical domains such as autonomous driving, robotics, and human-computer interaction. A pressing challenge arises from the vulnerability of deep neural networks to adversarial examples, which poses a significant threat to the reliability of event-based systems. Nevertheless, research into adversarial attacks on events is scarce. This is primarily due to the non-differentiable nature of mainstream event representations, which hinders the extension of gradient-based attack methods. In this paper, we propose MA-ADV, a novel \textbf{M}otion-\textbf{A}ware \textbf{Adv}ersarial framework. To the best of our knowledge, this is the first work to generate adversarial events by leveraging point cloud representations. MA-ADV accounts for high-frequency noise in events and employs a diffusion-based approach to smooth perturbations, while fully leveraging the spatial and temporal relationships among events. Finally, MA-ADV identifies the minimal-cost perturbation through a combination of sample-wise Adam optimization, iterative refinement, and binary search. Extensive experimental results validate that MA-ADV ensures a 100\% attack success rate with minimal perturbation cost, and also demonstrate enhanced robustness against defenses, underscoring the critical security challenges facing future event-based perception systems.
☆ Efficient-SAM2: Accelerating SAM2 with Object-Aware Visual Encoding and Memory Retrieval ICLR 2026
Segment Anything Model 2 (SAM2) shows excellent performance in video object segmentation tasks; however, the heavy computational burden hinders its application in real-time video processing. Although there have been efforts to improve the efficiency of SAM2, most of them focus on retraining a lightweight backbone, with little exploration into post-training acceleration. In this paper, we observe that SAM2 exhibits sparse perception pattern as biological vision, which provides opportunities for eliminating redundant computation and acceleration: i) In mask decoder, the attention primarily focuses on the foreground objects, whereas the image encoder in the earlier stage exhibits a broad attention span, which results in unnecessary computation to background regions. ii) In memory bank, only a small subset of tokens in each frame contribute significantly to memory attention, and the salient regions exhibit temporal consistency, making full-token computation redundant. With these insights, we propose Efficient-SAM2, which promotes SAM2 to adaptively focus on object regions while eliminating task-irrelevant computations, thereby significantly improving inference efficiency. Specifically, for image encoder, we propose object-aware Sparse Window Routing (SWR), a window-level computation allocation mechanism that leverages the consistency and saliency cues from the previous-frame decoder to route background regions into a lightweight shortcut branch. Moreover, for memory attention, we propose object-aware Sparse Memory Retrieval (SMR), which allows only the salient memory tokens in each frame to participate in computation, with the saliency pattern reused from their first recollection. With negligible additional parameters and minimal training overhead, Efficient-SAM2 delivers 1.68x speedup on SAM2.1-L model with only 1.0% accuracy drop on SA-V test set.
comment: ICLR 2026,Code is available at: https://github.com/jingjing0419/Efficient-SAM2
☆ Chain-of-Caption: Training-free improvement of multimodal large language model on referring expression comprehension
Given a textual description, the task of referring expression comprehension (REC) involves the localisation of the referred object in an image. Multimodal large language models (MLLMs) have achieved high accuracy on REC benchmarks through scaling up the model size and training data. Moreover, the performance of MLLMs can be further improved using techniques such as Chain-of-Thought and tool use, which provides additional visual or textual context to the model. In this paper, we analyse the effect of various techniques for providing additional visual and textual context via tool use to the MLLM and its effect on the REC task. Furthermore, we propose a training-free framework named Chain-of-Caption to improve the REC performance of MLLMs. We perform experiments on RefCOCO/RefCOCOg/RefCOCO+ and Ref-L4 datasets and show that individual textual or visual context can improve the REC performance without any fine-tuning. By combining multiple contexts, our training-free framework shows between 5% to 30% performance gain over the baseline model on accuracy at various Intersection over Union (IoU) thresholds.
comment: 4 pages, 5 figures, 2 tables
☆ Geospatial-Reasoning-Driven Vocabulary-Agnostic Remote Sensing Semantic Segmentation
Open-vocabulary semantic segmentation has emerged as a promising research direction in remote sensing, enabling the recognition of diverse land-cover types beyond pre-defined category sets. However, existing methods predominantly rely on the passive mapping of visual features and textual embeddings. This ``appearance-based" paradigm lacks geospatial contextual awareness, leading to severe semantic ambiguity and misclassification when encountering land-cover classes with similar spectral features but distinct semantic attributes. To address this, we propose a Geospatial Reasoning Chain-of-Thought (GR-CoT) framework designed to enhance the scene understanding capabilities of Multimodal Large Language Models (MLLMs), thereby guiding open-vocabulary segmentation models toward precise mapping. The framework comprises two collaborative components: an offline knowledge distillation stream and an online instance reasoning stream. The offline stream establishes fine-grained category interpretation standards to resolve semantic conflicts between similar land-cover types. During online inference, the framework executes a sequential reasoning process involving macro-scenario anchoring, visual feature decoupling, and knowledge-driven decision synthesis. This process generates an image-adaptive vocabulary that guides downstream models to achieve pixel-level alignment with correct geographical semantics. Extensive experiments on the LoveDA and GID5 benchmarks demonstrate the superiority of our approach.
comment: 5 pages, 3 figures
☆ Generative Regression for Left Ventricular Ejection Fraction Estimation from Echocardiography Video
Estimating Left Ventricular Ejection Fraction (LVEF) from echocardiograms constitutes an ill-posed inverse problem. Inherent noise, artifacts, and limited viewing angles introduce ambiguity, where a single video sequence may map not to a unique ground truth, but rather to a distribution of plausible physiological values. Prevailing deep learning approaches typically formulate this task as a standard regression problem that minimizes the Mean Squared Error (MSE). However, this paradigm compels the model to learn the conditional expectation, which may yield misleading predictions when the underlying posterior distribution is multimodal or heavy-tailed -- a common phenomenon in pathological scenarios. In this paper, we investigate the paradigm shift from deterministic regression toward generative regression. We propose the Multimodal Conditional Score-based Diffusion model for Regression (MCSDR), a probabilistic framework designed to model the continuous posterior distribution of LVEF conditioned on echocardiogram videos and patient demographic attribute priors. Extensive experiments conducted on the EchoNet-Dynamic, EchoNet-Pediatric, and CAMUS datasets demonstrate that MCSDR achieves state-of-the-art performance. Notably, qualitative analysis reveals that the generation trajectories of our model exhibit distinct behaviors in cases characterized by high noise or significant physiological variability, thereby offering a novel layer of interpretability for AI-aided diagnosis.
comment: 11 pages, 5 tables, 10 figures. Under peer review
☆ PEGAsus: 3D Personalization of Geometry and Appearance
We present PEGAsus, a new framework capable of generating Personalized 3D shapes by learning shape concepts at both Geometry and Appearance levels. First, we formulate 3D shape personalization as extracting reusable, category-agnostic geometric and appearance attributes from reference shapes, and composing these attributes with text to generate novel shapes. Second, we design a progressive optimization strategy to learn shape concepts at both the geometry and appearance levels, decoupling the shape concept learning process. Third, we extend our approach to region-wise concept learning, enabling flexible concept extraction, with context-aware and context-free losses. Extensive experimental results show that PEGAsus is able to effectively extract attributes from a wide range of reference shapes and then flexibly compose these concepts with text to synthesize new shapes. This enables fine-grained control over shape generation and supports the creation of diverse, personalized results, even in challenging cross-category scenarios. Both quantitative and qualitative experiments demonstrate that our approach outperforms existing state-of-the-art solutions.
☆ Chamelion: Reliable Change Detection for Long-Term LiDAR Mapping in Transient Environments IEEE
Online change detection is crucial for mobile robots to efficiently navigate through dynamic environments. Detecting changes in transient settings, such as active construction sites or frequently reconfigured indoor spaces, is particularly challenging due to frequent occlusions and spatiotemporal variations. Existing approaches often struggle to detect changes and fail to update the map across different observations. To address these limitations, we propose a dual-head network designed for online change detection and long-term map maintenance. A key difficulty in this task is the collection and alignment of real-world data, as manually registering structural differences over time is both labor-intensive and often impractical. To overcome this, we develop a data augmentation strategy that synthesizes structural changes by importing elements from different scenes, enabling effective model training without the need for extensive ground-truth annotations. Experiments conducted at real-world construction sites and in indoor office environments demonstrate that our approach generalizes well across diverse scenarios, achieving efficient and accurate map updates.\resubmit{Our source code and additional material are available at: https://chamelion-pages.github.io/.
comment: 8 pages, IEEE Robot. Automat. Lett. (RA-L) 2026
☆ DAS-SK: An Adaptive Model Integrating Dual Atrous Separable and Selective Kernel CNN for Agriculture Semantic Segmentation
Semantic segmentation in high-resolution agricultural imagery demands models that strike a careful balance between accuracy and computational efficiency to enable deployment in practical systems. In this work, we propose DAS-SK, a novel lightweight architecture that retrofits selective kernel convolution (SK-Conv) into the dual atrous separable convolution (DAS-Conv) module to strengthen multi-scale feature learning. The model further enhances the atrous spatial pyramid pooling (ASPP) module, enabling the capture of fine-grained local structures alongside global contextual information. Built upon a modified DeepLabV3 framework with two complementary backbones - MobileNetV3-Large and EfficientNet-B3, the DAS-SK model mitigates limitations associated with large dataset requirements, limited spectral generalization, and the high computational cost that typically restricts deployment on UAVs and other edge devices. Comprehensive experiments across three benchmarks: LandCover.ai, VDD, and PhenoBench, demonstrate that DAS-SK consistently achieves state-of-the-art performance, while being more efficient than CNN-, transformer-, and hybrid-based competitors. Notably, DAS-SK requires up to 21x fewer parameters and 19x fewer GFLOPs than top-performing transformer models. These findings establish DAS-SK as a robust, efficient, and scalable solution for real-time agricultural robotics and high-resolution remote sensing, with strong potential for broader deployment in other vision domains.
comment: 13 pages
Self-Supervised Bootstrapping of Action-Predictive Embodied Reasoning
Embodied Chain-of-Thought (CoT) reasoning has significantly enhanced Vision-Language-Action (VLA) models, yet current methods rely on rigid templates to specify reasoning primitives (e.g., objects in the scene, high-level plans, structural affordances). These templates can force policies to process irrelevant information that distracts from critical action-prediction signals. This creates a bottleneck: without successful policies, we cannot verify reasoning quality; without quality reasoning, we cannot build robust policies. We introduce R&B-EnCoRe, which enables models to bootstrap embodied reasoning from internet-scale knowledge through self-supervised refinement. By treating reasoning as a latent variable within importance-weighted variational inference, models can generate and distill a refined reasoning training dataset of embodiment-specific strategies without external rewards, verifiers, or human annotation. We validate R&B-EnCoRe across manipulation (Franka Panda in simulation, WidowX in hardware), legged navigation (bipedal, wheeled, bicycle, quadruped), and autonomous driving embodiments using various VLA architectures with 1B, 4B, 7B, and 30B parameters. Our approach achieves 28% gains in manipulation success, 101% improvement in navigation scores, and 21% reduction in collision-rate metric over models that indiscriminately reason about all available primitives. R&B-EnCoRe enables models to distill reasoning that is predictive of successful control, bypassing manual annotation engineering while grounding internet-scale knowledge in physical execution.
☆ Rethinking Global Text Conditioning in Diffusion Transformers ICLR26
Diffusion transformers typically incorporate textual information via attention layers and a modulation mechanism using a pooled text embedding. Nevertheless, recent approaches discard modulation-based text conditioning and rely exclusively on attention. In this paper, we address whether modulation-based text conditioning is necessary and whether it can provide any performance advantage. Our analysis shows that, in its conventional usage, the pooled embedding contributes little to overall performance, suggesting that attention alone is generally sufficient for faithfully propagating prompt information. However, we reveal that the pooled embedding can provide significant gains when used from a different perspective-serving as guidance and enabling controllable shifts toward more desirable properties. This approach is training-free, simple to implement, incurs negligible runtime overhead, and can be applied to various diffusion models, bringing improvements across diverse tasks, including text-to-image/video generation and image editing.
comment: Accepted at ICLR26
☆ VLM-Guided Iterative Refinement for Surgical Image Segmentation with Foundation Models
Surgical image segmentation is essential for robot-assisted surgery and intraoperative guidance. However, existing methods are constrained to predefined categories, produce one-shot predictions without adaptive refinement, and lack mechanisms for clinician interaction. We propose IR-SIS, an iterative refinement system for surgical image segmentation that accepts natural language descriptions. IR-SIS leverages a fine-tuned SAM3 for initial segmentation, employs a Vision-Language Model to detect instruments and assess segmentation quality, and applies an agentic workflow that adaptively selects refinement strategies. The system supports clinician-in-the-loop interaction through natural language feedback. We also construct a multi-granularity language-annotated dataset from EndoVis2017 and EndoVis2018 benchmarks. Experiments demonstrate state-of-the-art performance on both in-domain and out-of-distribution data, with clinician interaction providing additional improvements. Our work establishes the first language-based surgical segmentation framework with adaptive self-refinement capabilities.
☆ Towards Human-AI Accessibility Mapping in India: VLM-Guided Annotations and POI-Centric Analysis in Chandigarh AAAI 2025
Project Sidewalk is a web-based platform that enables crowdsourcing accessibility of sidewalks at city-scale by virtually walking through city streets using Google Street View. The tool has been used in 40 cities across the world, including the US, Mexico, Chile, and Europe. In this paper, we describe adaptation efforts to enable deployment in Chandigarh, India, including modifying annotation types, provided examples, and integrating VLM-based mission guidance, which adapts instructions based on a street scene and metadata analysis. Our evaluation with 3 annotators indicates the utility of AI-mission guidance with an average score of 4.66. Using this adapted Project Sidewalk tool, we conduct a Points of Interest (POI)-centric accessibility analysis for three sectors in Chandigarh with very different land uses, residential, commercial and institutional covering about 40 km of sidewalks. Across 40 km of roads audited in three sectors and around 230 POIs, we identified 1,644 of 2,913 locations where infrastructure improvements could enhance accessibility.
comment: Accepted at the First Workshop on AI for Urban Planning (AI4Up) at AAAI 2025
☆ VLM-UQBench: A Benchmark for Modality-Specific and Cross-Modality Uncertainties in Vision Language Models
Uncertainty quantification (UQ) is vital for ensuring that vision-language models (VLMs) behave safely and reliably. A central challenge is to localize uncertainty to its source, determining whether it arises from the image, the text, or misalignment between the two. We introduce VLM-UQBench, a benchmark for modality-specific and cross-modal data uncertainty in VLMs, It consists of 600 real-world samples drawn from the VizWiz dataset, curated into clean, image-, text-, and cross-modal uncertainty subsets, and a scalable perturbation pipeline with 8 visual, 5 textual, and 3 cross-modal perturbations. We further propose two simple metrics that quantify the sensitivity of UQ scores to these perturbations and their correlation with hallucinations, and use them to evaluate a range of UQ methods across four VLMs and three datasets. Empirically, we find that: (i) existing UQ methods exhibit strong modality-specific specialization and substantial dependence on the underlying VLM, (ii) modality-specific uncertainty frequently co-occurs with hallucinations while current UQ scores provide only weak and inconsistent risk signals, and (iii) although UQ methods can rival reasoning-based chain-of-thought baselines on overt, group-level ambiguity, they largely fail to detect the subtle, instance-level ambiguity introduced by our perturbation pipeline. These results highlight a significant gap between current UQ practices and the fine-grained, modality-aware uncertainty required for reliable VLM deployment.
☆ Wearable environmental sensing to forecast how legged systems will interact with upcoming terrain
Computer-vision (CV) has been used for environmental classification during gait and is often used to inform control in assistive systems; however, the ability to predict how the foot will contact a changing environment is underexplored. We evaluated the feasibility of forecasting the anterior-posterior (AP) foot center-of-pressure (COP) and time-of-impact (TOI) prior to foot-strike on a level-ground to stair-ascent transition. Eight subjects wore an RGB-D camera on their right shank and instrumented insoles while performing the task of stepping onto the stairs. We trained a CNN-RNN to forecast the COP and TOI continuously within a 250ms window prior to foot-strike, termed the forecast horizon (FH). The COP mean-absolute-error (MAE) at 150, 100, and 50ms FH was 29.42mm, 26.82, and 23.72mm respectively. The TOI MAE was 21.14, 20.08, and 17.73ms for 150, 100, and 50ms respectively. While torso velocity had no effect on the error in either task, faster toe-swing speeds prior to foot-strike were found to improve the prediction accuracy in the COP case, however, was insignificant in the TOI case. Further, more anterior foot-strikes were found to reduce COP prediction accuracy but did not affect the TOI prediction accuracy. We also found that our lightweight model was capable at running at 60 FPS on either a consumer grade laptop or an edge computing device. This study demonstrates that forecasting COP and TOI from visual data was feasible using a lightweight model, which may have important implications for anticipatory control in assistive systems.
comment: 19 pages excluding references and comments, 5 figures, 3 tables
☆ All-in-One Conditioning for Text-to-Image Synthesis
Accurate interpretation and visual representation of complex prompts involving multiple objects, attributes, and spatial relationships is a critical challenge in text-to-image synthesis. Despite recent advancements in generating photorealistic outputs, current models often struggle with maintaining semantic fidelity and structural coherence when processing intricate textual inputs. We propose a novel approach that grounds text-to-image synthesis within the framework of scene graph structures, aiming to enhance the compositional abilities of existing models. Eventhough, prior approaches have attempted to address this by using pre-defined layout maps derived from prompts, such rigid constraints often limit compositional flexibility and diversity. In contrast, we introduce a zero-shot, scene graph-based conditioning mechanism that generates soft visual guidance during inference. At the core of our method is the Attribute-Size-Quantity-Location (ASQL) Conditioner, which produces visual conditions via a lightweight language model and guides diffusion-based generation through inference-time optimization. This enables the model to maintain text-image alignment while supporting lightweight, coherent, and diverse image synthesis.
☆ Decoding Future Risk: Deep Learning Analysis of Tubular Adenoma Whole-Slide Images
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality, despite the widespread implementation of prophylactic initiatives aimed at detecting and removing precancerous polyps. Although screening effectively reduces incidence, a notable portion of patients initially diagnosed with low-grade adenomatous polyps will still develop CRC later in life, even without the presence of known high-risk syndromes. Identifying which low-risk patients are at higher risk of progression is a critical unmet need for tailored surveillance and preventative therapeutic strategies. Traditional histological assessment of adenomas, while fundamental, may not fully capture subtle architectural or cytological features indicative of malignant potential. Advancements in digital pathology and machine learning provide an opportunity to analyze whole-slide images (WSIs) comprehensively and objectively. This study investigates whether machine learning algorithms, specifically convolutional neural networks (CNNs), can detect subtle histological features in WSIs of low-grade tubular adenomas that are predictive of a patient's long-term risk of developing colorectal cancer.
comment: 20 pages, 5 figures
☆ A Hybrid Deterministic Framework for Named Entity Extraction in Broadcast News Video IEEE
The growing volume of video-based news content has heightened the need for transparent and reliable methods to extract on-screen information. Yet the variability of graphical layouts, typographic conventions, and platform-specific design patterns renders manual indexing impractical. This work presents a comprehensive framework for automatically detecting and extracting personal names from broadcast and social-media-native news videos. It introduces a curated and balanced corpus of annotated frames capturing the diversity of contemporary news graphics and proposes an interpretable, modular extraction pipeline designed to operate under deterministic and auditable conditions. The pipeline is evaluated against a contrasting class of generative multimodal methods, revealing a clear trade-off between deterministic auditability and stochastic inference. The underlying detector achieves 95.8% mAP@0.5, demonstrating operationally robust performance for graphical element localisation. While generative systems achieve marginally higher raw accuracy (F1: 84.18% vs 77.08%), they lack the transparent data lineage required for journalistic and analytical contexts. The proposed pipeline delivers balanced precision (79.9%) and recall (74.4%), avoids hallucination, and provides full traceability across each processing stage. Complementary user findings indicate that 59% of respondents report difficulty reading on-screen names in fast-paced broadcasts, underscoring the practical relevance of the task. The results establish a methodologically rigorous and interpretable baseline for hybrid multimodal information extraction in modern news media.
comment: 7 pages, 5 figures. Accepted for publication at the 2026 IEEE Conference on Artificial Intelligence (CAI)
☆ SemanticMoments: Training-Free Motion Similarity via Third Moment Features
Retrieving videos based on semantic motion is a fundamental, yet unsolved, problem. Existing video representation approaches overly rely on static appearance and scene context rather than motion dynamics, a bias inherited from their training data and objectives. Conversely, traditional motion-centric inputs like optical flow lack the semantic grounding needed to understand high-level motion. To demonstrate this inherent bias, we introduce the SimMotion benchmarks, combining controlled synthetic data with a new human-annotated real-world dataset. We show that existing models perform poorly on these benchmarks, often failing to disentangle motion from appearance. To address this gap, we propose SemanticMoments, a simple, training-free method that computes temporal statistics (specifically, higher-order moments) over features from pre-trained semantic models. Across our benchmarks, SemanticMoments consistently outperforms existing RGB, flow, and text-supervised methods. This demonstrates that temporal statistics in a semantic feature space provide a scalable and perceptually grounded foundation for motion-centric video understanding.
☆ Distributed Hybrid Parallelism for Large Language Models: Comparative Study and System Design Guide
With the rapid growth of large language models (LLMs), a wide range of methods have been developed to distribute computation and memory across hardware devices for efficient training and inference. While existing surveys provide descriptive overviews of these techniques, systematic analysis of their benefits and trade offs and how such insights can inform principled methodology for designing optimal distributed systems remain limited. This paper offers a comprehensive review of collective operations and distributed parallel strategies, complemented by mathematical formulations to deepen theoretical understanding. We further examine hybrid parallelization designs, emphasizing communication computation overlap across different stages of model deployment, including both training and inference. Recent advances in automated search for optimal hybrid parallelization strategies using cost models are also discussed. Moreover, we present case studies with mainstream architecture categories to reveal empirical insights to guide researchers and practitioners in parallelism strategy selection. Finally, we highlight open challenges and limitations of current LLM training paradigms and outline promising directions for the next generation of large scale model development.
☆ Agent Banana: High-Fidelity Image Editing with Agentic Thinking and Tooling
We study instruction-based image editing under professional workflows and identify three persistent challenges: (i) editors often over-edit, modifying content beyond the user's intent; (ii) existing models are largely single-turn, while multi-turn edits can alter object faithfulness; and (iii) evaluation at around 1K resolution is misaligned with real workflows that often operate on ultra high-definition images (e.g., 4K). We propose Agent Banana, a hierarchical agentic planner-executor framework for high-fidelity, object-aware, deliberative editing. Agent Banana introduces two key mechanisms: (1) Context Folding, which compresses long interaction histories into structured memory for stable long-horizon control; and (2) Image Layer Decomposition, which performs localized layer-based edits to preserve non-target regions while enabling native-resolution outputs. To support rigorous evaluation, we build HDD-Bench, a high-definition, dialogue-based benchmark featuring verifiable stepwise targets and native 4K images (11.8M pixels) for diagnosing long-horizon failures. On HDD-Bench, Agent Banana achieves the best multi-turn consistency and background fidelity (e.g., IC 0.871, SSIM-OM 0.84, LPIPS-OM 0.12) while remaining competitive on instruction following, and also attains strong performance on standard single-turn editing benchmarks. We hope this work advances reliable, professional-grade agentic image editing and its integration into real workflows.
comment: Project Website: agent-banana.github.io
☆ UI-Venus-1.5 Technical Report
GUI agents have emerged as a powerful paradigm for automating interactions in digital environments, yet achieving both broad generality and consistently strong task performance remains challenging.In this report, we present UI-Venus-1.5, a unified, end-to-end GUI Agent designed for robust real-world applications.The proposed model family comprises two dense variants (2B and 8B) and one mixture-of-experts variant (30B-A3B) to meet various downstream application scenarios.Compared to our previous version, UI-Venus-1.5 introduces three key technical advances: (1) a comprehensive Mid-Training stage leveraging 10 billion tokens across 30+ datasets to establish foundational GUI semantics; (2) Online Reinforcement Learning with full-trajectory rollouts, aligning training objectives with long-horizon, dynamic navigation in large-scale environments; and (3) a single unified GUI Agent constructed via Model Merging, which synthesizes domain-specific models (grounding, web, and mobile) into one cohesive checkpoint. Extensive evaluations demonstrate that UI-Venus-1.5 establishes new state-of-the-art performance on benchmarks such as ScreenSpot-Pro (69.6%), VenusBench-GD (75.0%), and AndroidWorld (77.6%), significantly outperforming previous strong baselines. In addition, UI-Venus-1.5 demonstrates robust navigation capabilities across a variety of Chinese mobile apps, effectively executing user instructions in real-world scenarios. Code: https://github.com/inclusionAI/UI-Venus; Model: https://huggingface.co/collections/inclusionAI/ui-venus
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent computational cost. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Reproducible Benchmarking for Lung Nodule Detection and Malignancy Classification Across Multiple Low-Dose CT Datasets
Evaluation of artificial intelligence (AI) models for low-dose CT lung cancer screening is limited by heterogeneous datasets, annotation standards, and evaluation protocols, making performance difficult to compare and translate across clinical settings. We establish a public, reproducible multi-dataset benchmark for lung nodule detection and nodule-level cancer classification and quantify cross-dataset generalizability. Using the Duke Lung Cancer Screening (DLCS) dataset as a clinically curated development set, we evaluate performance across LUNA16/LIDC-IDRI, NLST-3D, and LUNA25. Detection models trained on DLCS and LUNA16 were evaluated externally on NLST-3D using free-response ROC analysis. For malignancy classification, we compared five strategies: randomly initialized ResNet50, Models Genesis, Med3D, a Foundation Model for Cancer Biomarkers, and a Strategic Warm-Start (ResNet50-SWS) approach pretrained using detection-derived candidate patches stratified by confidence. Performance was summarized using AUC with 95% confidence intervals and DeLong tests. Detection performance varied substantially by training dataset, with DLCS-trained models outperforming LUNA16-trained models on external NLST-3D evaluation (sensitivity at 2 false positives per scan: 0.72 vs. 0.64; p < 0.001). For malignancy classification, ResNet50-SWS achieved AUCs of 0.71 (DLCS), 0.90 (LUNA16), 0.81 (NLST-3D), and 0.80 (LUNA25), consistently matching or exceeding alternative pretraining strategies. These results demonstrate that dataset characteristics strongly influence lung cancer AI performance and highlight the need for transparent, multi-dataset benchmarking.
comment: 3 tables, 2 supplement tables, 5 figures
♻ ☆ Latent Domain Modeling Improves Robustness to Geographic Shifts
Geographic distribution shift arises when the distribution of locations on Earth in a training dataset is different from what is seen at inference time. Using standard empirical risk minimization (ERM) in this setting can lead to uneven generalization across different spatially-determined groups of interest such as continents or biomes. The most common approaches to tackling geographic distribution shift apply domain adaptation methods using discrete group labels, ignoring geographic coordinates that are often available as metadata. On the other hand, modeling methods that integrate geographic coordinates have been shown to improve overall performance, but their impact on geographic domain generalization has not been studied. In this work, we propose a general modeling framework for improving robustness to geographic distribution shift. The key idea is to model continuous, latent domain assignment using location encoders and to condition the main task predictor on the jointly-trained latents. On four diverse geo-tagged image datasets with different group splits, we show that instances of our framework achieve significant improvements in worst-group performance compared to existing domain adaptation and location-aware modeling methods. In particular, we achieve new state-of-the-art results on two datasets from the WILDS benchmark.
♻ ☆ Restricted Receptive Fields for Face Verification
Understanding how deep neural networks make decisions is crucial for analyzing their behavior and diagnosing failure cases. In computer vision, a common approach to improve interpretability is to assign importance to individual pixels using post-hoc methods. Although they are widely used to explain black-box models, their fidelity to the model's actual reasoning is uncertain due to the lack of reliable evaluation metrics. This limitation motivates an alternative approach, which is to design models whose decision processes are inherently interpretable. To this end, we propose a face similarity metric that breaks down global similarity into contributions from restricted receptive fields. Our method defines the similarity between two face images as the sum of patch-level similarity scores, providing a locally additive explanation without relying on post-hoc analysis. We show that the proposed approach achieves competitive verification performance even with patches as small as 28x28 within 112x112 face images, and surpasses state-of-the-art methods when using 56x56 patches.
♻ ☆ MOTION: ML-Assisted On-Device Low-Latency Motion Recognition
The use of tiny devices capable of low-latency gesture recognition is gaining momentum in everyday human-computer interaction and especially in medical monitoring fields. Embedded solutions such as fall detection, rehabilitation tracking, and patient supervision require fast and efficient tracking of movements while avoiding unwanted false alarms. This study presents an efficient solution on how to build very efficient motion-based models only using triaxial accelerometer sensors. We explore the capability of the AutoML pipelines to extract the most important features from the data segments. This approach also involves training multiple lightweight machine learning algorithms using the extracted features. We use WeBe Band, a multi-sensor wearable device that is equipped with a powerful enough MCU to effectively perform gesture recognition entirely on the device. Of the models explored, we found that the neural network provided the best balance between accuracy, latency, and memory use. Our results also demonstrate that reliable real-time gesture recognition can be achieved in WeBe Band, with great potential for real-time medical monitoring solutions that require a secure and fast response time.
♻ ☆ Self-Supervised Uncalibrated Multi-View Video Anonymization in the Operating Room
Privacy preservation is a prerequisite for using video data in Operating Room (OR) research. Effective anonymization relies on the exhaustive localization of every individual; even a single missed detection necessitates extensive manual correction. However, existing approaches face two critical scalability bottlenecks: (1) they usually require manual annotations of each new clinical site for high accuracy; (2) while multi-camera setups have been widely adopted to address single-view ambiguity, camera calibration is typically required whenever cameras are repositioned. To address these problems, we propose a novel self-supervised multi-view video anonymization framework consisting of whole-body person detection and whole-body pose estimation, without annotation or camera calibration. Our core strategy is to enhance the single-view detector by "retrieving" false negatives using temporal and multi-view context, and conducting self-supervised domain adaptation. We first run an off-the-shelf whole-body person detector in each view with a low-score threshold to gather candidate detections. Then, we retrieve the low-score false negatives that exhibit consistency with the high-score detections via tracking and self-supervised uncalibrated multi-view association. These recovered detections serve as pseudo labels to iteratively fine-tune the whole-body detector. Finally, we apply whole-body pose estimation on each detected person, and fine-tune the pose model using its own high-score predictions. Experiments on the 4D-OR dataset of simulated surgeries and our dataset of real surgeries show the effectiveness of our approach achieving over 97% recall. Moreover, we train a real-time whole-body detector using our pseudo labels, achieving comparable performance and highlighting our method's practical applicability. Code will be available at https://github.com/CAMMA-public/OR_anonymization.
♻ ☆ GTAvatar: Bridging Gaussian Splatting and Texture Mapping for Relightable and Editable Gaussian Avatars
Recent advancements in Gaussian Splatting have enabled increasingly accurate reconstruction of photorealistic head avatars, opening the door to numerous applications in visual effects, videoconferencing, and virtual reality. This, however, comes with the lack of intuitive editability offered by traditional triangle mesh-based methods. In contrast, we propose a method that combines the accuracy and fidelity of 2D Gaussian Splatting with the intuitiveness of UV texture mapping. By embedding each canonical Gaussian primitive's local frame into a patch in the UV space of a template mesh in a computationally efficient manner, we reconstruct continuous editable material head textures from a single monocular video on a conventional UV domain. Furthermore, we leverage an efficient physically based reflectance model to enable relighting and editing of these intrinsic material maps. Through extensive comparisons with state-of-the-art methods, we demonstrate the accuracy of our reconstructions, the quality of our relighting results, and the ability to provide intuitive controls for modifying an avatar's appearance and geometry via texture mapping without additional optimization.
comment: Eurographics 2026 Project page: https://kelianb.github.io/GTAvatar/
♻ ☆ EgoLife: Towards Egocentric Life Assistant
We introduce EgoLife, a project to develop an egocentric life assistant that accompanies and enhances personal efficiency through AI-powered wearable glasses. To lay the foundation for this assistant, we conducted a comprehensive data collection study where six participants lived together for one week, continuously recording their daily activities - including discussions, shopping, cooking, socializing, and entertainment - using AI glasses for multimodal egocentric video capture, along with synchronized third-person-view video references. This effort resulted in the EgoLife Dataset, a comprehensive 300-hour egocentric, interpersonal, multiview, and multimodal daily life dataset with intensive annotation. Leveraging this dataset, we introduce EgoLifeQA, a suite of long-context, life-oriented question-answering tasks designed to provide meaningful assistance in daily life by addressing practical questions such as recalling past relevant events, monitoring health habits, and offering personalized recommendations. To address the key technical challenges of (1) developing robust visual-audio models for egocentric data, (2) enabling identity recognition, and (3) facilitating long-context question answering over extensive temporal information, we introduce EgoButler, an integrated system comprising EgoGPT and EgoRAG. EgoGPT is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. EgoRAG is a retrieval-based component that supports answering ultra-long-context questions. Our experimental studies verify their working mechanisms and reveal critical factors and bottlenecks, guiding future improvements. By releasing our datasets, models, and benchmarks, we aim to stimulate further research in egocentric AI assistants.
comment: This version corrects the author affiliation to reflect the accurate institutional information at the time of publication. No technical content of the paper has been changed
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from Low-Dose Computed Tomography
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking: first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with a natural-language rationale. It integrates three components: a Pulmonary Perception Module that summarizes lung abnormalities, an Agentic Pulmonary-to-Cardiac Reasoning Module that infers their cardiovascular implications, and a Cardiac Feature Extractor that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening (AUC=0.919) and mortality prediction (AUC=0.838), outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ WeTok: Powerful Discrete Tokenization for High-Fidelity Visual Reconstruction
Visual tokenizer is a critical component for vision generation. However, the existing tokenizers often face unsatisfactory trade-off between compression ratios and reconstruction fidelity. To fill this gap, we introduce a powerful and concise WeTok tokenizer, which surpasses the previous leading tokenizers via two core innovations. (1) Group-wise lookup-free Quantization (GQ). We partition the latent features into groups, and perform lookup-free quantization for each group. As a result, GQ can efficiently overcome memory and computation limitations of prior tokenizers, while achieving a reconstruction breakthrough with more scalable codebooks. (2) Generative Decoder (GD). Different from prior tokenizers, we introduce a generative decoder with a prior of extra noise variable. In this case, GD can probabilistically model the distribution of visual data conditioned on discrete tokens, allowing WeTok to reconstruct visual details, especially at high compression ratio. On the ImageNet 50k validation set, at a high-fidelity setting, WeTok achieves a record-low zero-shot rFID of 0.12, outperforming leading continuous tokenizers like FLUX-VAE (0.18) and SD-VAE 3.5 (0.19) with 400% compression ratio. Furthermore, in a high-compression regime, WeTok achieves a zero-shot rFID of 3.49 at a 768$\times$ compression ratio, substantially surpassing Cosmos, which scores 4.57 at only 50% our compression ratio. Code and models are available: https://github.com/zhuangshaobin/WeTok.
comment: 32 pages, 15 figures, 39 tables
♻ ☆ CAF-Mamba: Mamba-Based Cross-Modal Adaptive Attention Fusion for Multimodal Depression Detection IEEE
Depression is a prevalent mental health disorder that severely impairs daily functioning and quality of life. While recent deep learning approaches for depression detection have shown promise, most rely on limited feature types, overlook explicit cross-modal interactions, and employ simple concatenation or static weighting for fusion. To overcome these limitations, we propose CAF-Mamba, a novel Mamba-based cross-modal adaptive attention fusion framework. CAF-Mamba not only captures cross-modal interactions explicitly and implicitly, but also dynamically adjusts modality contributions through a modality-wise attention mechanism, enabling more effective multimodal fusion. Experiments on two in-the-wild benchmark datasets, LMVD and D-Vlog, demonstrate that CAF-Mamba consistently outperforms existing methods and achieves state-of-the-art performance. Our code is available at https://github.com/zbw-zhou/CAF-Mamba.
comment: The paper contains a total of 5 pages and 3 figures. This paper has been accepted for publication in the proceedings of 2026 IEEE ICASSP Conference
♻ ☆ Through the Perspective of LiDAR: A Feature-Enriched and Uncertainty-Aware Annotation Pipeline for Terrestrial Point Cloud Segmentation
Accurate semantic segmentation of terrestrial laser scanning (TLS) point clouds is limited by costly manual annotation. We propose a semi-automated, uncertainty-aware pipeline that integrates spherical projection, feature enrichment, ensemble learning, and targeted annotation to reduce labeling effort, while sustaining high accuracy. Our approach projects 3D points to a 2D spherical grid, enriches pixels with multi-source features, and trains an ensemble of segmentation networks to produce pseudo-labels and uncertainty maps, the latter guiding annotation of ambiguous regions. The 2D outputs are back-projected to 3D, yielding densely annotated point clouds supported by a three-tier visualization suite (2D feature maps, 3D colorized point clouds, and compact virtual spheres) for rapid triage and reviewer guidance. Using this pipeline, we build Mangrove3D, a semantic segmentation TLS dataset for mangrove forests. We further evaluate data efficiency and feature importance to address two key questions: (1) how much annotated data are needed and (2) which features matter most. Results show that performance saturates after ~12 annotated scans, geometric features contribute the most, and compact nine-channel stacks capture nearly all discriminative power, with the mean Intersection over Union (mIoU) plateauing at around 0.76. Finally, we confirm the generalization of our feature-enrichment strategy through cross-dataset tests on ForestSemantic and Semantic3D. Our contributions include: (i) a robust, uncertainty-aware TLS annotation pipeline with visualization tools; (ii) the Mangrove3D dataset; and (iii) empirical guidance on data efficiency and feature importance, thus enabling scalable, high-quality segmentation of TLS point clouds for ecological monitoring and beyond. The dataset and processing scripts are publicly available at https://fz-rit.github.io/through-the-lidars-eye/.
comment: 40 pages (28 main text), 20 figures, 4 supplementary materials; links to 3D point animations are included in the last table
♻ ☆ Determination of efficiency indicators of the stand for intelligent control of manual operations in industrial production
Manual operations remain essential in industrial production because of their flexibility and low implementation cost. However, ensuring their quality and monitoring execution in real time remains a challenge, especially under conditions of high variability and human-induced errors. In this paper, we present an AI-based control system for tracking manual assembly and propose a novel methodology to evaluate its overall efficiency. The developed system includes a multicamera setup and a YOLOv8-based detection module integrated into an experimental stand designed to replicate real production scenarios. The evaluation methodology relies on timestamp-level comparisons between predicted and actual execution stages, using three key metrics: Intersection over Union (IoU), Mean Absolute Scaled Error (MASE), Residual Distribution histograms. These metrics are aggregated into a unified efficiency index E_total for reproducible system assessment. The proposed approach was validated on a dataset of 120 assemblies performed at different speeds, demonstrating high segmentation accuracy and identifying stage-specific timing deviations. The results confirm the robustness of the control system and the applicability of the evaluation framework to benchmark similar solutions in industrial settings.
♻ ☆ ALIGN: Advanced Query Initialization with LiDAR-Image Guidance for Occlusion-Robust 3D Object Detection
Recent query-based 3D object detection methods using camera and LiDAR inputs have shown strong performance, but existing query initialization strategies,such as random sampling or BEV heatmap-based sampling, often result in inefficient query usage and reduced accuracy, particularly for occluded or crowded objects. To address this limitation, we propose ALIGN (Advanced query initialization with LiDAR and Image GuidaNce), a novel approach for occlusion-robust, object-aware query initialization. Our model consists of three key components: (i) Occlusion-aware Center Estimation (OCE), which integrates LiDAR geometry and image semantics to estimate object centers accurately (ii) Adaptive Neighbor Sampling (ANS), which generates object candidates from LiDAR clustering and supplements each object by sampling spatially and semantically aligned points around it and (iii) Dynamic Query Balancing (DQB), which adaptively balances queries between foreground and background regions. Our extensive experiments on the nuScenes benchmark demonstrate that ALIGN consistently improves performance across multiple state-of-the-art detectors, achieving gains of up to +0.9 mAP and +1.2 NDS, particularly in challenging scenes with occlusions or dense crowds. Our code will be publicly available upon publication.
comment: 12 pages, 6 figures
♻ ☆ Modulate and Reconstruct: Learning Hyperspectral Imaging from Misaligned Smartphone Views
Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed problem due to severe spectral information loss. Existing approaches typically rely on a single RGB image, limiting reconstruction accuracy. In this work, we propose a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that leverages a triple-camera smartphone system, where two lenses are equipped with carefully selected spectral filters. Our configuration, grounded in theoretical and empirical analysis, enables richer and more diverse spectral observations than conventional single-camera setups. To support this new paradigm, we introduce Doomer, the first dataset for MI-HSR, comprising aligned images from three smartphone cameras and a hyperspectral reference camera across diverse scenes. We show that the proposed HSR model achieves consistent improvements over existing methods on the newly proposed benchmark. In a nutshell, our setup allows 30% towards more accurately estimated spectra compared to an ordinary RGB camera. Our findings suggest that multi-view spectral filtering with commodity hardware can unlock more accurate and practical hyperspectral imaging solutions.
♻ ☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
♻ ☆ CoBEVMoE: Heterogeneity-aware Feature Fusion with Dynamic Mixture-of-Experts for Collaborative Perception ICRA 2026
Collaborative perception aims to extend sensing coverage and improve perception accuracy by sharing information among multiple agents. However, due to differences in viewpoints and spatial positions, agents often acquire heterogeneous observations. Existing intermediate fusion methods primarily focus on aligning similar features, often overlooking the perceptual diversity among agents. To address this limitation, we propose CoBEVMoE, a novel collaborative perception framework that operates in the Bird's Eye View (BEV) space and incorporates a Dynamic Mixture-of-Experts (DMoE) architecture. In DMoE, each expert is dynamically generated based on the input features of a specific agent, enabling it to extract distinctive and reliable cues while attending to shared semantics. This design allows the fusion process to explicitly model both feature similarity and heterogeneity across agents. Furthermore, we introduce a Dynamic Expert Metric Loss (DEML) to enhance inter-expert diversity and improve the discriminability of the fused representation. Extensive experiments on the OPV2V and DAIR-V2X-C datasets demonstrate that CoBEVMoE achieves state-of-the-art performance. Specifically, it improves the IoU for Camera-based BEV segmentation by +1.5% on OPV2V and the AP@0.5 for LiDAR-based 3D object detection by +3.0% on DAIR-V2X-C, verifying the effectiveness of expert-based heterogeneous feature modeling in multi-agent collaborative perception. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE.
comment: Accepted to ICRA 2026. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE
♻ ☆ UniLiP: Adapting CLIP for Unified Multimodal Understanding, Generation and Editing
In this paper, we propose UniLIP, a unified framework that adapts CLIP for multimodal understanding, generation and editing. Although CLIP excels at understanding, it lacks reconstruction abilities required to be a unified visual encoder. However, previous CLIP-based unified methods fail to balance understanding and reconstruction, leading to semantic degradation or inconsistent reconstructions. In contrast, we introduce a novel two-stage training scheme with a self-distillation strategy that progressively endows CLIP with high-fidelity reconstruction abilities while preserving its original comprehension performance. For enhanced reasoning and consistency in generation and editing, we further develop a dual-condition architecture built upon the MetaQuery framework. Our architecture jointly utilizes multimodal hidden states for rich contextual details and learnable query embeddings to harness the powerful reasoning abilities of Multimodal Large Language Models (MLLMs). Leveraging advanced image representation and architectural design, UniLIP demonstrates superior instruction following and edit fidelity. With only 1B and 3B parameters, UniLIP can outperform larger unified models such as BAGEL (7B) and Uniworld-V1 (12B), achieving state-of-the-art performance of 0.90 on GenEval, 0.63 on WISE, and 3.94 on ImgEdit. These results demonstrate that UniLIP successfully expands the application of CLIP, establishing its continuous features to not only serve as the optimal choice for understanding tasks but also achieve highly competitive performance in generation and editing tasks. Code and models are available at https://github.com/nnnth/UniLIP.
♻ ☆ LatentLens: Revealing Highly Interpretable Visual Tokens in LLMs
Transforming a large language model (LLM) into a Vision-Language Model (VLM) can be achieved by mapping the visual tokens from a vision encoder into the embedding space of an LLM. Intriguingly, this mapping can be as simple as a shallow MLP transformation. To understand why LLMs can so readily process visual tokens, we need interpretability methods that reveal what is encoded in the visual token representations at every layer of LLM processing. In this work, we introduce LatentLens, a novel approach for mapping latent representations to descriptions in natural language. LatentLens works by encoding a large text corpus and storing contextualized token representations for each token in that corpus. Visual token representations are then compared to their contextualized textual representations, with the top-k nearest neighbor representations providing descriptions of the visual token. We evaluate this method on 10 different VLMs, showing that commonly used methods, such as LogitLens, substantially underestimate the interpretability of visual tokens. With LatentLens instead, the majority of visual tokens are interpretable across all studied models and all layers. Qualitatively, we show that the descriptions produced by LatentLens are semantically meaningful and provide more fine-grained interpretations for humans compared to individual tokens. More broadly, our findings contribute new evidence on the alignment between vision and language representations, opening up new directions for analyzing latent representations.
♻ ☆ RealSR-R1: Reinforcement Learning for Real-World Image Super-Resolution with Vision-Language Chain-of-Thought
Real-World Image Super-Resolution is one of the most challenging task in image restoration. However, existing methods struggle with an accurate understanding of degraded image content, leading to reconstructed results that are both low-fidelity and unnatural. We present RealSR-R1 in this work, which empowers the RealSR models with understanding and reasoning capabilities. Inspired by the success of Chain of Thought (CoT) in large language models (LLMs), we simulate the human process of handling degraded images and propose the VLCoT framework, which integrates vision and language reasoning. The framework aims to precisely restore image details by progressively generating more comprehensive text and higher-resolution images. To overcome the challenge of traditional supervised learning CoT failing to generalize to real-world scenarios, we introduce, for the first time, Group Relative Policy Optimization (GRPO) into the Real-World Image Super-Resolution task. We propose VLCoT-GRPO as a solution, which designs four reward functions: (1) Format reward, used to standardize the CoT process; (2) Degradation reward, to incentivize accurate degradation estimation; (3) Understanding reward, to ensure the accuracy of the generated content; and (4) Generation reward, where we propose using a visual expert model to evaluate the quality of generated images, encouraging the model to generate more realistic images. Extensive experiments demonstrate that our proposed RealSR-R1 can generate realistic details and accurately understand image content, particularly in semantically rich scenes or images with severe degradation.
♻ ☆ SpecPrune-VLA: Accelerating Vision-Language-Action Models via Action-Aware Self-Speculative Pruning
Pruning is a typical acceleration technique for compute-bound models by removing computation on unimportant values. Recently, it has been applied to accelerate Vision-Language-Action (VLA) model inference. However, existing acceleration methods focus on local information from the current action step and ignore the global context, leading to >20% success rate drop and limited speedup in some scenarios. In this paper, we point out spatial-temporal consistency in VLA tasks: input images in consecutive steps exhibit high similarity, and propose the key insight that token selection should combine local information with global context of the model. Based on this, we propose SpecPrune-VLA, a training-free, two-level pruning method with heuristic control. (1) Action-level static pruning. We leverage global history and local attention to statically reduce visual tokens per action. (2) Layer-level dynamic pruning. We prune tokens adaptively per layer based on layer-wise importance. (3) Lightweight action-aware controller: We classify actions as coarse- or fine-grained by the speed of the end effector and adjust pruning aggressiveness accordingly. Extensive experiments show that SpecPrune-VLA achieves up to 1.57$\times$ speedup in LIBERO simulation and 1.70$\times$ on real-world tasks, with negligible success rate degradation.
♻ ☆ Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
♻ ☆ Focus-Scan-Refine: From Human Visual Perception to Efficient Visual Token Pruning
Vision-language models (VLMs) often generate massive visual tokens that greatly increase inference latency and memory footprint; while training-free token pruning offers a practical remedy, existing methods still struggle to balance local evidence and global context under aggressive compression. We propose Focus-Scan-Refine (FSR), a human-inspired, plug-and-play pruning framework that mimics how humans answer visual questions: focus on key evidence, then scan globally if needed, and refine the scanned context by aggregating relevant details. FSR first focuses on key evidence by combining visual importance with instruction relevance, avoiding the bias toward visually salient but query-irrelevant regions. It then scans for complementary context conditioned on the focused set, selecting tokens that are most different from the focused evidence. Finally, FSR refines the scanned context by aggregating nearby informative tokens into the scan anchors via similarity-based assignment and score-weighted merging, without increasing the token budget. Extensive experiments across multiple VLM backbones and vision-language benchmarks show that FSR consistently improves the accuracy-efficiency trade-off over existing state-of-the-art pruning methods. The source codes can be found at https://github.com/ILOT-code/FSR.
♻ ☆ AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull, which occurs due to the rupture of blood vessels in or around the brain. If this condition is not diagnosed in a timely manner and appropriately treated, it can lead to serious complications such as decreased consciousness, permanent neurological disabilities, or even death.The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH). These tasks are framed as two separate binary classification problems. By adding two layers to the co-scale convolutional attention (CCA) classifier architecture, we introduce a novel approach for ICH detection. In the first layer, after extracting features from different slices of computed tomography (CT) scan images, we combine these features and select the 50 components that capture the highest variance in the data, considering them as informative features. We then assess the discriminative power of these features using the bootstrap forest algorithm, discarding those that lack sufficient discriminative ability between different classes. This algorithm explicitly determines the contribution of each feature to the final prediction, assisting us in developing an explainable AI model. The features feed into a boosting neural network as a latent feature space. In the second layer, we introduce a novel uncertainty-based fuzzy integral operator to fuse information from different CT scan slices. This operator, by accounting for the dependencies between consecutive slices, significantly improves detection accuracy.
♻ ☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
♻ ☆ Driving with DINO: Vision Foundation Features as a Unified Bridge for Sim-to-Real Generation in Autonomous Driving
Driven by the emergence of Controllable Video Diffusion, existing Sim2Real methods for autonomous driving video generation typically rely on explicit intermediate representations to bridge the domain gap. However, these modalities face a fundamental Consistency-Realism Dilemma. Low-level signals (e.g., edges, blurred images) ensure precise control but compromise realism by "baking in" synthetic artifacts, whereas high-level priors (e.g., depth, semantics, HDMaps) facilitate photorealism but lack the structural detail required for consistent guidance. In this work, we present Driving with DINO (DwD), a novel framework that leverages Vision Foundation Module (VFM) features as a unified bridge between the simulation and real-world domains. We first identify that these features encode a spectrum of information, from high-level semantics to fine-grained structure. To effectively utilize this, we employ Principal Subspace Projection to discard the high-frequency elements responsible for "texture baking," while concurrently introducing Random Channel Tail Drop to mitigate the structural loss inherent in rigid dimensionality reduction, thereby reconciling realism with control consistency. Furthermore, to fully leverage DINOv3's high-resolution capabilities for enhancing control precision, we introduce a learnable Spatial Alignment Module that adapts these high-resolution features to the diffusion backbone. Finally, we propose a Causal Temporal Aggregator employing causal convolutions to explicitly preserve historical motion context when integrating frame-wise DINO features, which effectively mitigates motion blur and guarantees temporal stability. Project page: https://albertchen98.github.io/DwD-project/
comment: Project website https://albertchen98.github.io/DwD-project/
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving ICRA2026
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding ICLR 2026
The rapid progress of large language models (LLMs) has laid the foundation for multimodal models. However, visual language models (VLMs) still face heavy computational costs when extended from images to videos due to high frame rates and long durations. Token compression is a promising solution, yet most existing training-free methods cause information loss and performance degradation. To overcome this, we propose \textbf{Memory-Augmented Reinforcement Learning-based Token Compression (MARC)}, which integrates structured retrieval and RL-based distillation. MARC adopts a \textit{retrieve-then-compress} strategy using a \textbf{Visual Memory Retriever (VMR)} to select key clips and a \textbf{Compression Group Relative Policy Optimization (C-GRPO)} framework to distil reasoning ability from a teacher to a student model. Experiments on six video benchmarks show that MARC achieves near-baseline accuracy using only one frame's tokens -- reducing visual tokens by \textbf{95\%}, GPU memory by \textbf{72\%}, and latency by \textbf{23.9\%}. This demonstrates its potential for efficient, real-time video understanding in resource-constrained settings such as video QA, surveillance, and autonomous driving.
comment: Accepted at ICLR 2026
♻ ☆ PAL-Net: A Point-Wise CNN with Patch-Attention for 3D Facial Landmark Localization
Manual annotation of anatomical landmarks on 3D facial scans is a time-consuming and expertise-dependent task, yet it remains critical for clinical assessments, morphometric analysis, and craniofacial research. While several deep learning methods have been proposed for facial landmark localization, most focus on pseudo-landmarks or require complex input representations, limiting their clinical applicability. This study presents a fully automated deep learning pipeline (PAL-Net) for localizing 50 anatomical landmarks on stereo-photogrammetry facial models. The method combines coarse alignment, region-of-interest filtering, and an initial approximation of landmarks with a patch-based pointwise CNN enhanced by attention mechanisms. Trained and evaluated on 214 annotated scans from healthy adults, PAL-Net achieved a mean localization error of 3.686 mm and preserves relevant anatomical distances with a 2.822 mm average error, comparable to intra-observer variability. To assess generalization, the model was further evaluated on 700 subjects from the FaceScape dataset, achieving a point-wise error of 0.41\,mm and a distance-wise error of 0.38\,mm. Compared to existing methods, PAL-Net offers a favorable trade-off between accuracy and computational cost. While performance degrades in regions with poor mesh quality (e.g., ears, hairline), the method demonstrates consistent accuracy across most anatomical regions. PAL-Net generalizes effectively across datasets and facial regions, outperforming existing methods in both point-wise and structural evaluations. It provides a lightweight, scalable solution for high-throughput 3D anthropometric analysis, with potential to support clinical workflows and reduce reliance on manual annotation. Source code can be found at https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention
comment: Published in Informatics in Medicine Unlocked. Code available at: https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention
♻ ☆ PALM: A Dataset and Baseline for Learning Multi-subject Hand Prior
The ability to grasp objects, signal with gestures, and share emotion through touch all stem from the unique capabilities of human hands. Yet creating high-quality personalized hand avatars from images remains challenging due to complex geometry, appearance, and articulation, particularly under unconstrained lighting and limited views. Progress has also been limited by the lack of datasets that jointly provide accurate 3D geometry, high-resolution multiview imagery, and a diverse population of subjects. To address this, we present PALM, a large-scale dataset comprising 13k high-quality hand scans from 263 subjects and 90k multi-view images, capturing rich variation in skin tone, age, and geometry. To show its utility, we present a baseline PALM-Net, a multi-subject prior over hand geometry and material properties learned via physically based inverse rendering, enabling realistic, relightable single-image hand avatar personalization. PALM's scale and diversity make it a valuable real-world resource for hand modeling and related research.
♻ ☆ Reading Images Like Texts: Sequential Image Understanding in Vision-Language Models
Vision-Language Models (VLMs) have demonstrated remarkable performance across a variety of real-world tasks. However, existing VLMs typically process visual information by serializing images, a method that diverges significantly from the parallel nature of human vision. Moreover, their opaque internal mechanisms hinder both deeper understanding and architectural innovation. Inspired by the dual-stream hypothesis of human vision, which distinguishes the "what" and "where" pathways, we deconstruct the visual processing in VLMs into object recognition and spatial perception for separate study. For object recognition, we convert images into text token maps and find that the model's perception of image content unfolds as a two-stage process from shallow to deep layers, beginning with attribute recognition and culminating in semantic disambiguation. For spatial perception, we theoretically derive and empirically verify the geometric structure underlying the positional representation in VLMs. Based on these findings, we introduce an instruction-agnostic token compression algorithm based on a plug-and-play visual decoder to improve decoding efficiency, and a RoPE scaling technique to enhance spatial reasoning. Through rigorous experiments, our work validates these analyses, offering a deeper understanding of VLM internals and providing clear principles for designing more capable future architectures.
♻ ☆ Simultaneous Tactile-Visual Perception for Learning Multimodal Robot Manipulation
Robotic manipulation requires both rich multimodal perception and effective learning frameworks to handle complex real-world tasks. See-through-skin (STS) sensors, which combine tactile and visual perception, offer promising sensing capabilities, while modern imitation learning provides powerful tools for policy acquisition. However, existing STS designs lack simultaneous multimodal perception and suffer from unreliable tactile tracking. Furthermore, integrating these rich multimodal signals into learning-based manipulation pipelines remains an open challenge. We introduce TacThru, an STS sensor enabling simultaneous visual perception and robust tactile signal extraction, and TacThru-UMI, an imitation learning framework that leverages these multimodal signals for manipulation. Our sensor features a fully transparent elastomer, persistent illumination, novel keyline markers, and efficient tracking, while our learning system integrates these signals through a Transformer-based Diffusion Policy. Experiments on five challenging real-world tasks show that TacThru-UMI achieves an average success rate of 85.5%, significantly outperforming the baselines of tactile policy(66.3%) and vision-only policy (55.4%). The system excels in critical scenarios, including contact detection with thin and soft objects and precision manipulation requiring multimodal coordination. This work demonstrates that combining simultaneous multimodal perception with modern learning frameworks enables more precise, adaptable robotic manipulation.
♻ ☆ A Survey on Class-Agnostic Counting: Advancements from Reference-Based to Open-World Text-Guided Approaches
Visual object counting has recently shifted towards class-agnostic counting (CAC), which addresses the challenge of counting objects across arbitrary categories, a crucial capability for flexible and generalizable counting systems. Unlike humans, who effortlessly identify and count objects from diverse categories without prior knowledge, most existing counting methods are restricted to enumerating instances of known classes, requiring extensive labeled datasets for training and struggling in open-vocabulary settings. In contrast, CAC aims to count objects belonging to classes never seen during training, operating in a few-shot setting. In this paper, we present the first comprehensive review of CAC methodologies. We propose a taxonomy to categorize CAC approaches into three paradigms based on how target object classes can be specified: reference-based, reference-less, and open-world text-guided. Reference-based approaches achieve state-of-the-art performance by relying on exemplar-guided mechanisms. Reference-less methods eliminate exemplar dependency by leveraging inherent image patterns. Finally, open-world text-guided methods use vision-language models, enabling object class descriptions via textual prompts, offering a flexible and promising solution. Based on this taxonomy, we provide an overview of 30 CAC architectures and report their performance on gold-standard benchmarks, discussing key strengths and limitations. Specifically, we present results on the FSC-147 dataset, setting a leaderboard using gold-standard metrics, and on the CARPK dataset to assess generalization capabilities. Finally, we offer a critical discussion of persistent challenges, such as annotation dependency and generalization, alongside future directions.
comment: Preprint version of an article accepted ad Elsevier's CVIU
♻ ☆ When LLaVA Meets Objects: Token Composition for Vision-Language-Models
Current autoregressive Vision Language Models (VLMs) usually rely on a large number of visual tokens to represent images, resulting in a need for more compute especially at inference time. To address this problem, we propose Mask-LLaVA, a framework that leverages different levels of visual features to create a compact yet information-rich visual representation for autoregressive VLMs. Namely, we combine mask-based object representations together with global tokens and local patch tokens. While all tokens are used during training, it shows that the resulting model can flexibly drop especially the number of mask-based object-tokens at test time, allowing to adapt the number of tokens during inference without the need to retrain the model and without a significant drop in performance. We evaluate the proposed approach on a suite of standard benchmarks showing results competitive to current token efficient methods and comparable to the original LLaVA baseline using only a fraction of visual tokens. Our analysis demonstrates that combining multi-level features enables efficient learning with fewer tokens while allowing dynamic token selection at test time for good performance.
♻ ☆ Federated Balanced Learning
Federated learning is a paradigm of joint learning in which clients collaborate by sharing model parameters instead of data. However, in the non-iid setting, the global model experiences client drift, which can seriously affect the final performance of the model. Previous methods tend to correct the global model that has already deviated based on the loss function or gradient, overlooking the impact of the client samples. In this paper, we rethink the role of the client side and propose Federated Balanced Learning, i.e., FBL, to prevent this issue from the beginning through sample balance on the client side. Technically, FBL allows unbalanced data on the client side to achieve sample balance through knowledge filling and knowledge sampling using edge-side generation models, under the limitation of a fixed number of data samples on clients. Furthermore, we design a Knowledge Alignment Strategy to bridge the gap between synthetic and real data, and a Knowledge Drop Strategy to regularize our method. Meanwhile, we scale our method to real and complex scenarios, allowing different clients to adopt various methods, and extend our framework to further improve performance. Numerous experiments show that our method outperforms state-of-the-art baselines. The code is released upon acceptance.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ "PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles such as object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel Anti-Physics category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that utilizes current multimodal large language models to evaluate physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with detailed comparison and analysis. Through systematic testing across 1050 curated prompts spanning fundamental, composite, and anti-physics scenarios, we identify pivotal challenges these models face in adhering to real-world physics. We further examine their performance under diverse physical phenomena and prompt types, and derive targeted recommendations for crafting prompts that enhance fidelity to physical principles.
comment: 35 pages, 21 figures
♻ ☆ Q-Hawkeye: Reliable Visual Policy Optimization for Image Quality Assessment
Image Quality Assessment (IQA) predicts perceptual quality scores consistent with human judgments. Recent RL-based IQA methods built on MLLMs focus on generating visual quality descriptions and scores, ignoring two key reliability limitations: (i) although the model's prediction stability varies significantly across training samples, existing GRPO-based methods apply uniform advantage weighting, thereby amplifying noisy signals from unstable samples in gradient updates; (ii) most works emphasize text-grounded reasoning over images while overlooking the model's visual perception ability of image content. In this paper, we propose Q-Hawkeye, an RL-based reliable visual policy optimization framework that redesigns the learning signal through unified Uncertainty-Aware Dynamic Optimization and Perception-Aware Optimization. Q-Hawkeye estimates predictive uncertainty using the variance of predicted scores across multiple rollouts and leverages this uncertainty to reweight each sample's update strength, stabilizing policy optimization. To strengthen perceptual reliability, we construct paired inputs of degraded images and their original images and introduce an Implicit Perception Loss that constrains the model to ground its quality judgments in genuine visual evidence. Extensive experiments demonstrate that Q-Hawkeye outperforms state-of-the-art methods and generalizes better across multiple datasets. The code and models will be made available.
♻ ☆ Cross-Modal Retrieval for Motion and Text via DropTriple Loss ACM MM
Cross-modal retrieval of image-text and video-text is a prominent research area in computer vision and natural language processing. However, there has been insufficient attention given to cross-modal retrieval between human motion and text, despite its wide-ranging applicability. To address this gap, we utilize a concise yet effective dual-unimodal transformer encoder for tackling this task. Recognizing that overlapping atomic actions in different human motion sequences can lead to semantic conflicts between samples, we explore a novel triplet loss function called DropTriple Loss. This loss function discards false negative samples from the negative sample set and focuses on mining remaining genuinely hard negative samples for triplet training, thereby reducing violations they cause. We evaluate our model and approach on the HumanML3D and KIT Motion-Language datasets. On the latest HumanML3D dataset, we achieve a recall of 62.9% for motion retrieval and 71.5% for text retrieval (both based on R@10). The source code for our approach is publicly available at https://github.com/eanson023/rehamot.
comment: This paper has been accepted by ACM MM Asia 2023 (Best Paper Candidate)
♻ ☆ Winner Team Mia at TextVQA Challenge 2021: Vision-and-Language Representation Learning with Pre-trained Sequence-to-Sequence Model
TextVQA requires models to read and reason about text in images to answer questions about them. Specifically, models need to incorporate a new modality of text present in the images and reason over it to answer TextVQA questions. In this challenge, we use generative model T5 for TextVQA task. Based on pre-trained checkpoint T5-3B from HuggingFace repository, two other pre-training tasks including masked language modeling(MLM) and relative position prediction(RPP) are designed to better align object feature and scene text. In the stage of pre-training, encoder is dedicate to handle the fusion among multiple modalities: question text, object text labels, scene text labels, object visual features, scene visual features. After that decoder generates the text sequence step-by-step, cross entropy loss is required by default. We use a large-scale scene text dataset in pre-training and then fine-tune the T5-3B with the TextVQA dataset only.
comment: Winner of TextVQA 2021
♻ ☆ ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ ReaMOT: A Benchmark and Framework for Reasoning-based Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track targets specified by language instructions. However, existing RMOT paradigms are largely designed for explicit instructions and consequently fail to generalize to complex instructions that require logical reasoning. To overcome this, we propose Reasoning-based Multi-Object Tracking (ReaMOT), a novel task that requires models to identify and track targets that satisfy implicit constraints via logical reasoning. To advance this field, we construct the ReaMOT Challenge, a comprehensive benchmark comprising: (1) a large-scale dataset with 1,156 instructions categorized into High-Level Reasoning and Low-Level Perception, covering 423,359 image-language pairs across 869 diverse scenes; and (2) a tailored metric suite designed to jointly evaluate reasoning accuracy and tracking robustness. Furthermore, we propose ReaTrack, a training-free framework that synergizes the reasoning capabilities of Thinking-variant Large Vision-Language Model (LVLM) with the precise temporal modeling of SAM2. Extensive experiments on the ReaMOT Challenge benchmark demonstrates the effectiveness of our ReaTrack framework.
comment: https://github.com/chen-si-jia/ReaMOT
♻ ☆ SUG-Occ: An Explicit Semantics and Uncertainty Guided Sparse Learning Framework for Real-Time 3D Occupancy Prediction
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
♻ ☆ OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving IEEE
The rapid advancement of deep learning has intensified the need for comprehensive data for use by autonomous driving algorithms. High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions. Next-generation autonomous driving datasets must be multimodal, incorporating data from advanced sensors that feature extensive data coverage, detailed annotations, and diverse scene representation. To address this need, we present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data. The OmniHD-Scenes dataset combines data from 128-beam LiDAR, six cameras, and six 4D imaging radar systems to achieve full environmental perception. The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points. We also propose a novel 4D annotation pipeline. To date, we have annotated 200 clips with more than 514K precise 3D bounding boxes. These clips also include semantic segmentation annotations for static scene elements. Additionally, we introduce a novel automated pipeline for generation of the dense occupancy ground truth, which effectively leverages information from non-key frames. Alongside the proposed dataset, we establish comprehensive evaluation metrics, baseline models, and benchmarks for 3D detection and semantic occupancy prediction. These benchmarks utilize surround-view cameras and 4D imaging radar to explore cost-effective sensor solutions for autonomous driving applications. Extensive experiments demonstrate the effectiveness of our low-cost sensor configuration and its robustness under adverse conditions. Data will be released at https://www.2077ai.com/OmniHD-Scenes.
comment: Accepted by IEEE TPAMI
♻ ☆ Fast Image-based Neural Relighting with Translucency-Reflection Modeling
Image-based lighting (IBL) is a widely used technique that renders objects using a high dynamic range image or environment map. However, aggregating the irradiance at the object's surface is computationally expensive, in particular for non-opaque, translucent materials that require volumetric rendering techniques. In this paper we present a fast neural 3D reconstruction and relighting model that extends volumetric implicit models such as neural radiance fields to be relightable using IBL. It is general enough to handle materials that exhibit complex light transport effects, such as translucency and glossy reflections from detailed surface geometry, producing realistic and compelling results. Rendering can be within a second at 800$\times$800 resolution (0.72s on an NVIDIA 3090 GPU and 0.30s on an A100 GPU) without engineering optimization. Our code and dataset are available at https://zhusz.github.io/TRHM-Webpage/.
comment: v2: Major revision and bug fix: New method with significantly improved results. Corrects an error in v1 (arXiv:2306.09322v1) in the evaluation of baseline NRTF due to an implementation bug. Results in v2 supersede those in v1
♻ ☆ Paper Copilot: Tracking the Evolution of Peer Review in AI Conferences ICLR 2026
The rapid growth of AI conferences is straining an already fragile peer-review system, leading to heavy reviewer workloads, expertise mismatches, inconsistent evaluation standards, superficial or templated reviews, and limited accountability under compressed timelines. In response, conference organizers have introduced new policies and interventions to preserve review standards. Yet these ad-hoc changes often create further concerns and confusion about the review process, leaving how papers are ultimately accepted - and how practices evolve across years - largely opaque. We present Paper Copilot, a system that creates durable digital archives of peer reviews across a wide range of computer-science venues, an open dataset that enables researchers to study peer review at scale, and a large-scale empirical analysis of ICLR reviews spanning multiple years. By releasing both the infrastructure and the dataset, Paper Copilot supports reproducible research on the evolution of peer review. We hope these resources help the community track changes, diagnose failure modes, and inform evidence-based improvements toward a more robust, transparent, and reliable peer-review system.
comment: ICLR 2026. https://papercopilot.com/
♻ ☆ Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. For the image modality, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, it hierarchically models textual importance by considering both intra- and inter-sentence contributions to identify globally influential words, which are then used as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets, demonstrate the superior transferability of the proposed universal multimodal attacks.
comment: 10 pages, 7 figures
♻ ☆ Test-Time Iterative Error Correction for Efficient Diffusion Models ICLR 2026
With the growing demand for high-quality image generation on resource-constrained devices, efficient diffusion models have received increasing attention. However, such models suffer from approximation errors introduced by efficiency techniques, which significantly degrade generation quality. Once deployed, these errors are difficult to correct, as modifying the model is typically infeasible in deployment environments. Through an analysis of error propagation across diffusion timesteps, we reveal that these approximation errors can accumulate exponentially, severely impairing output quality. Motivated by this insight, we propose Iterative Error Correction (IEC), a novel test-time method that mitigates inference-time errors by iteratively refining the model's output. IEC is theoretically proven to reduce error propagation from exponential to linear growth, without requiring any retraining or architectural changes. IEC can seamlessly integrate into the inference process of existing diffusion models, enabling a flexible trade-off between performance and efficiency. Extensive experiments show that IEC consistently improves generation quality across various datasets, efficiency techniques, and model architectures, establishing it as a practical and generalizable solution for test-time enhancement of efficient diffusion models. The code is available in https://github.com/zysxmu/IEC.
comment: Accepted by ICLR 2026
♻ ☆ On Geometry-Enhanced Parameter-Efficient Fine-Tuning for 3D Scene Segmentation
The emergence of large-scale pre-trained point cloud models has significantly advanced 3D scene understanding, but adapting these models to specific downstream tasks typically demands full fine-tuning, incurring high computational and storage costs. Parameter-efficient fine-tuning (PEFT) techniques, successful in natural language processing and 2D vision tasks, would underperform when naively applied to 3D point cloud models due to significant geometric and spatial distribution shifts. Existing PEFT methods commonly treat points as orderless tokens, neglecting important local spatial structures and global geometric contexts in 3D modeling. To bridge this gap, we introduce the Geometric Encoding Mixer (GEM), a novel geometry-aware PEFT module specifically designed for 3D point cloud transformers. GEM explicitly integrates fine-grained local positional encodings with a lightweight latent attention mechanism to capture comprehensive global context, thereby effectively addressing the spatial and geometric distribution mismatch. Extensive experiments demonstrate that GEM achieves performance comparable to or sometimes even exceeding full fine-tuning, while only updating 1.6% of the model's parameters, fewer than other PEFT methods. With significantly reduced training time and memory requirements, our approach thus sets a new benchmark for efficient, scalable, and geometry-aware fine-tuning of large-scale 3D point cloud models. Code is available at https://github.com/LiyaoTang/GEM.
comment: Neurips 2025; available at https://github.com/LiyaoTang/GEM
♻ ☆ Robust Image Stitching with Optimal Plane IEEE
We present \textit{RopStitch}, an unsupervised deep image stitching framework with both robustness and naturalness. To ensure the robustness of \textit{RopStitch}, we propose to incorporate the universal prior of content perception into the image stitching model by a dual-branch architecture. It separately captures coarse and fine features and integrates them to achieve highly generalizable performance across diverse unseen real-world scenes. Concretely, the dual-branch model consists of a pretrained branch to capture semantically invariant representations and a learnable branch to extract fine-grained discriminative features, which are then merged into a whole by a controllable factor at the correlation level. Besides, considering that content alignment and structural preservation are often contradictory to each other, we propose a concept of virtual optimal planes to relieve this conflict. To this end, we model this problem as a process of estimating homography decomposition coefficients, and design an iterative coefficient predictor and minimal semantic distortion constraint to identify the optimal plane. This scheme is finally incorporated into \textit{RopStitch} by warping both views onto the optimal plane bidirectionally. Extensive experiments across various datasets demonstrate that \textit{RopStitch} significantly outperforms existing methods, particularly in scene robustness and content naturalness. The code is available at {\color{red}https://github.com/MmelodYy/RopStitch}.
comment: IEEE TVCG 2026
♻ ☆ Forest canopy height estimation from satellite RGB imagery using large-scale airborne LiDAR-derived training data and monocular depth estimation
Large-scale, high-resolution forest canopy height mapping plays a crucial role in understanding regional and global carbon and water cycles. Spaceborne LiDAR missions, including the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI), provide global observations of forest structure but are spatially sparse and subject to inherent uncertainties. In contrast, near-surface LiDAR platforms, such as airborne and unmanned aerial vehicle (UAV) LiDAR systems, offer much finer measurements of forest canopy structure, and a growing number of countries have made these datasets openly available. In this study, a state-of-the-art monocular depth estimation model, Depth Anything V2, was trained using approximately 16,000 km2 of canopy height models (CHMs) derived from publicly available airborne LiDAR point clouds and related products across multiple countries, together with 3 m resolution PlanetScope and airborne RGB imagery. The trained model, referred to as Depth2CHM, enables the estimation of spatially continuous CHMs directly from PlanetScope RGB imagery. Independent validation was conducted at sites in China (approximately 1 km2) and the United States (approximately 116 km2). The results showed that Depth2CHM could accurately estimate canopy height, with biases of 0.59 m and 0.41 m and root mean square errors (RMSEs) of 2.54 m and 5.75 m for these two sites, respectively. Compared with an existing global meter-resolution CHM product, the mean absolute error is reduced by approximately 1.5 m and the RMSE by approximately 2 m. These results demonstrated that monocular depth estimation networks trained with large-scale airborne LiDAR-derived canopy height data provide a promising and scalable pathway for high-resolution, spatially continuous forest canopy height estimation from satellite RGB imagery.
♻ ☆ GO-MLVTON: Garment Occlusion-Aware Multi-Layer Virtual Try-On with Diffusion Models ICASSP 2026
Existing image-based virtual try-on (VTON) methods primarily focus on single-layer or multi-garment VTON, neglecting multi-layer VTON (ML-VTON), which involves dressing multiple layers of garments onto the human body with realistic deformation and layering to generate visually plausible outcomes. The main challenge lies in accurately modeling occlusion relationships between inner and outer garments to reduce interference from redundant inner garment features. To address this, we propose GO-MLVTON, the first multi-layer VTON method, introducing the Garment Occlusion Learning module to learn occlusion relationships and the StableDiffusion-based Garment Morphing & Fitting module to deform and fit garments onto the human body, producing high-quality multi-layer try-on results. Additionally, we present the MLG dataset for this task and propose a new metric named Layered Appearance Coherence Difference (LACD) for evaluation. Extensive experiments demonstrate the state-of-the-art performance of GO-MLVTON. Project page: https://upyuyang.github.io/go-mlvton/.
comment: Accepted at ICASSP 2026
♻ ☆ Building Egocentric Procedural AI Assistant: Methods, Benchmarks, and Challenges
Driven by recent advances in vision-language models (VLMs) and egocentric perception research, the emerging topic of an egocentric procedural AI assistant (EgoProceAssist) is introduced to step-by-step support daily procedural tasks in a first-person view. In this paper, we start by identifying three core tasks in EgoProceAssist: egocentric procedural error detection, egocentric procedural learning, and egocentric procedural question answering, then introduce two enabling dimensions: real-time and streaming video understanding, and proactive interaction in procedural contexts. We define these tasks within a new taxonomy as the EgoProceAssist's essential functions and illustrate how they can be deployed in real-world scenarios for daily activity assistants. Specifically, our work encompasses a comprehensive review of current techniques, relevant datasets, and evaluation metrics across these five core areas. To clarify the gap between the proposed EgoProceAssist and existing VLM-based assistants, we conduct novel experiments to provide a comprehensive evaluation of representative VLM-based methods. Through these findings and our technical analysis, we discuss the challenges ahead and suggest future research directions. Furthermore, an exhaustive list of this study is publicly available in an active repository that continuously collects the latest work: https://github.com/z1oong/Building-Egocentric-Procedural-AI-Assistant.
comment: Under peer-review
♻ ☆ MomaGraph: State-Aware Unified Scene Graphs with Vision-Language Model for Embodied Task Planning
Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures where objects are, how they function, and which parts are actionable. Scene graphs are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To address these limitations, we introduce MomaGraph, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. We thus contribute MomaGraph-Scenes, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, along with MomaGraph-Bench, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop MomaGraph-R1, a 7B vision-language model trained with reinforcement learning on MomaGraph-Scenes. MomaGraph-R1 predicts task-oriented scene graphs and serves as a zero-shot task planner under a Graph-then-Plan framework. Extensive experiments demonstrate that our model achieves state-of-the-art results among open-source models, reaching 71.6% accuracy on the benchmark (+11.4% over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments.
comment: 25 pages, 10 figures. Project page:https://hybridrobotics.github.io/MomaGraph/
♻ ☆ Generating metamers of human scene understanding
Human vision combines low-resolution "gist" information from the visual periphery with sparse but high-resolution information from fixated locations to construct a coherent understanding of a visual scene. In this paper, we introduce MetamerGen, a tool for generating scenes that are aligned with latent human scene representations. MetamerGen is a latent diffusion model that combines peripherally obtained scene gist information with information obtained from scene-viewing fixations to generate image metamers for what humans understand after viewing a scene. Generating images from both high and low resolution (i.e. "foveated") inputs constitutes a novel image-to-image synthesis problem, which we tackle by introducing a dual-stream representation of the foveated scenes consisting of DINOv2 tokens that fuse detailed features from fixated areas with peripherally degraded features capturing scene context. To evaluate the perceptual alignment of MetamerGen generated images to latent human scene representations, we conducted a same-different behavioral experiment where participants were asked for a "same" or "different" response between the generated and the original image. With that, we identify scene generations that are indeed metamers for the latent scene representations formed by the viewers. MetamerGen is a powerful tool for understanding scene understanding. Our proof-of-concept analyses uncovered specific features at multiple levels of visual processing that contributed to human judgments. While it can generate metamers even conditioned on random fixations, we find that high-level semantic alignment most strongly predicts metamerism when the generated scenes are conditioned on viewers' own fixated regions.
♻ ☆ Color3D: Controllable and Consistent 3D Colorization with Personalized Colorizer ICLR 2026
In this work, we present Color3D, a highly adaptable framework for colorizing both static and dynamic 3D scenes from monochromatic inputs, delivering visually diverse and chromatically vibrant reconstructions with flexible user-guided control. In contrast to existing methods that focus solely on static scenarios and enforce multi-view consistency by averaging color variations which inevitably sacrifice both chromatic richness and controllability, our approach is able to preserve color diversity and steerability while ensuring cross-view and cross-time consistency. In particular, the core insight of our method is to colorize only a single key view and then fine-tune a personalized colorizer to propagate its color to novel views and time steps. Through personalization, the colorizer learns a scene-specific deterministic color mapping underlying the reference view, enabling it to consistently project corresponding colors to the content in novel views and video frames via its inherent inductive bias. Once trained, the personalized colorizer can be applied to infer consistent chrominance for all other images, enabling direct reconstruction of colorful 3D scenes with a dedicated Lab color space Gaussian splatting representation. The proposed framework ingeniously recasts complicated 3D colorization as a more tractable single image paradigm, allowing seamless integration of arbitrary image colorization models with enhanced flexibility and controllability. Extensive experiments across diverse static and dynamic 3D colorization benchmarks substantiate that our method can deliver more consistent and chromatically rich renderings with precise user control. Project Page https://yecongwan.github.io/Color3D/.
comment: ICLR 2026 Project Page https://yecongwan.github.io/Color3D/
♻ ☆ InternSVG: Towards Unified SVG Tasks with Multimodal Large Language Models
General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.
♻ ☆ ThermoSplat: Cross-Modal 3D Gaussian Splatting with Feature Modulation and Geometry Decoupling
Multi-modal scene reconstruction integrating RGB and thermal infrared data is essential for robust environmental perception across diverse lighting and weather conditions. However, extending 3D Gaussian Splatting (3DGS) to multi-spectral scenarios remains challenging. Current approaches often struggle to fully leverage the complementary information of multi-modal data, typically relying on mechanisms that either tend to neglect cross-modal correlations or leverage shared representations that fail to adaptively handle the complex structural correlations and physical discrepancies between spectrums. To address these limitations, we propose ThermoSplat, a novel framework that enables deep spectral-aware reconstruction through active feature modulation and adaptive geometry decoupling. First, we introduce a Spectrum-Aware Adaptive Modulation that dynamically conditions shared latent features on thermal structural priors, effectively guiding visible texture synthesis with reliable cross-modal geometric cues. Second, to accommodate modality-specific geometric inconsistencies, we propose a Modality-Adaptive Geometric Decoupling scheme that learns independent opacity offsets and executes an independent rasterization pass for the thermal branch. Additionally, a hybrid rendering pipeline is employed to integrate explicit Spherical Harmonics with implicit neural decoding, ensuring both semantic consistency and high-frequency detail preservation. Extensive experiments on the RGBT-Scenes dataset demonstrate that ThermoSplat achieves state-of-the-art rendering quality across both visible and thermal spectrums.
♻ ☆ Open-Set Domain Adaptation Under Background Distribution Shift: Challenges and A Provably Efficient Solution
As we deploy machine learning systems in the real world, a core challenge is to maintain a model that is performant even as the data shifts. Such shifts can take many forms: new classes may emerge that were absent during training, a problem known as open-set recognition, and the distribution of known categories may change. Guarantees on open-set recognition are mostly derived under the assumption that the distribution of known classes, which we call the background distribution, is fixed. In this paper we develop CoLOR, a method that is guaranteed to solve open-set recognition even in the challenging case where the background distribution shifts. We prove that the method works under benign assumptions that the novel class is separable from the non-novel classes, and provide theoretical guarantees that it outperforms a representative baseline in a simplified overparameterized setting. We develop techniques to make CoLOR scalable and robust, and perform comprehensive empirical evaluations on image and text data. The results show that CoLOR significantly outperforms existing open-set recognition methods under background shift. Moreover, we provide new insights into how factors such as the size of the novel class influences performance, an aspect that has not been extensively explored in prior work.
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ Machine Learning Detection of Road Surface Conditions: A Generalizable Model using Traffic Cameras and Weather Data
Transportation agencies make critical operational decisions during hazardous weather events, including assessment of road conditions and resource allocation. In this study, machine learning models are developed to provide additional support for the New York State Department of Transportation (NYSDOT) by automatically classifying current road conditions across the state. Convolutional neural networks and random forests are trained on NYSDOT roadside camera images and weather data to predict road surface conditions. This task draws critically on a robust hand-labeled dataset of ~22,000 camera images containing six road surface conditions: severe snow, snow, wet, dry, poor visibility, or obstructed. Model generalizability is prioritized to meet the operational needs of the NYSDOT decision makers, including integration of operational datasets and use of representative and realistic images. The weather-related road surface condition model in this study achieves an accuracy of 81.5% on completely unseen cameras. With operational deployment, this model has the potential to improve spatial and temporal awareness of road surface conditions, which can strengthen decision-making for operations, roadway maintenance, and traveler safety, particularly during winter weather events.
comment: Accepted for publication in the International Journal of Transportation Science and Technology (IJTST)
♻ ☆ VIMD: Monocular Visual-Inertial Motion and Depth Estimation
Accurate and efficient dense metric depth estimation is crucial for 3D visual perception in robotics and XR. In this paper, we develop a monocular visual-inertial motion and depth (VIMD) learning framework to estimate dense metric depth by leveraging accurate and efficient MSCKF-based monocular visual-inertial motion tracking. At the core the proposed VIMD is to exploit multi-view information to iteratively refine per-pixel scale, instead of globally fitting an invariant affine model as in the prior work. The VIMD framework is highly modular, making it compatible with a variety of existing depth estimation backbones. We conduct extensive evaluations on the TartanAir and VOID datasets and demonstrate its zero-shot generalization capabilities on the AR Table dataset. Our results show that VIMD achieves exceptional accuracy and robustness, even with extremely sparse points as few as 10-20 metric depth points per image. This makes the proposed VIMD a practical solution for deployment in resource constrained settings, while its robust performance and strong generalization capabilities offer significant potential across a wide range of scenarios.
♻ ☆ Cross-Modal Redundancy and the Geometry of Vision-Language Embeddings ICLR 2026
Vision-language models (VLMs) align images and text with remarkable success, yet the geometry of their shared embedding space remains poorly understood. To probe this geometry, we begin from the Iso-Energy Assumption, which exploits cross-modal redundancy: a concept that is truly shared should exhibit the same average energy across modalities. We operationalize this assumption with an Aligned Sparse Autoencoder (SAE) that encourages energy consistency during training while preserving reconstruction. We find that this inductive bias changes the SAE solution without harming reconstruction, giving us a representation that serves as a tool for geometric analysis. Sanity checks on controlled data with known ground truth confirm that alignment improves when Iso-Energy holds and remains neutral when it does not. Applied to foundational VLMs, our framework reveals a clear structure with practical consequences: (i) sparse bimodal atoms carry the entire cross-modal alignment signal; (ii) unimodal atoms act as modality-specific biases and fully explain the modality gap; (iii) removing unimodal atoms collapses the gap without harming performance; (iv) restricting vector arithmetic to the bimodal subspace yields in-distribution edits and improved retrieval. These findings suggest that the right inductive bias can both preserve model fidelity and render the latent geometry interpretable and actionable.
comment: Published as a conference paper at ICLR 2026
♻ ☆ Graph-Based Multimodal and Multi-view Alignment for Keystep Recognition
Egocentric videos capture scenes from a wearer's viewpoint, resulting in dynamic backgrounds, frequent motion, and occlusions, posing challenges to accurate keystep recognition. We propose a flexible graph-learning framework for fine-grained keystep recognition that is able to effectively leverage long-term dependencies in egocentric videos, and leverage alignment between egocentric and exocentric videos during training for improved inference on egocentric videos. Our approach consists of constructing a graph where each video clip of the egocentric video corresponds to a node. During training, we consider each clip of each exocentric video (if available) as additional nodes. We examine several strategies to define connections across these nodes and pose keystep recognition as a node classification task on the constructed graphs. We perform extensive experiments on the Ego-Exo4D dataset and show that our proposed flexible graph-based framework notably outperforms existing methods by more than 12 points in accuracy. Furthermore, the constructed graphs are sparse and compute efficient. We also present a study examining on harnessing several multimodal features, including narrations, depth, and object class labels, on a heterogeneous graph and discuss their corresponding contribution to the keystep recognition performance.
comment: We expanded the paper and resubmitted as a separate submission to arXiv. This submission is outdated and readers can refer to arXiv:2506.01102
♻ ☆ MultiMat: Multimodal Program Synthesis for Procedural Materials using Large Multimodal Models ICLR 2026
Material node graphs are programs that generate the 2D channels of procedural materials, including geometry such as roughness and displacement maps, and reflectance such as albedo and conductivity maps. They are essential in computer graphics for representing the appearance of virtual 3D objects parametrically and at arbitrary resolution. In particular, their directed acyclic graph structure and intermediate states enable a modular, interpretable workflow for interactive appearance modeling. However, creating such graphs remains challenging and typically requires professional training. While recent neural program synthesis approaches attempt to simplify this process, they solely represent graphs as textual programs, failing to capture the inherently visual-spatial nature of node graphs that makes them accessible to humans. To address this gap, we present MultiMat, a multimodal program synthesis framework that leverages large multimodal models to process both visual and textual graph representations for improved generation of procedural material graphs. We train our models on a new dataset of production-quality procedural materials and combine them with a constrained tree search inference algorithm that ensures static correctness while efficiently navigating the program space. Our experimental results show that our multimodal program synthesis method is more efficient in both unconditional and conditional graph synthesis with higher visual quality and fidelity than text-only baselines, establishing new state-of-the-art performance.
comment: Accepted at ICLR 2026 (poster)
♻ ☆ MpoxSLDNet: A Novel CNN Model for Detecting Monkeypox Lesions and Performance Comparison with Pre-trained Models
Monkeypox virus (MPXV) is a zoonotic virus that poses a significant threat to public health, particularly in remote parts of Central and West Africa. Early detection of monkeypox lesions is crucial for effective treatment. However, due to its similarity with other skin diseases, monkeypox lesion detection is a challenging task. To detect monkeypox, many researchers used various deep-learning models such as MobileNetv2, VGG16, ResNet50, InceptionV3, DenseNet121, EfficientNetB3, MobileNetV2, and Xception. However, these models often require high storage space due to their large size. This study aims to improve the existing challenges by introducing a CNN model named MpoxSLDNet (Monkeypox Skin Lesion Detector Network) to facilitate early detection and categorization of Monkeypox lesions and Non-Monkeypox lesions in digital images. Our model represents a significant advancement in the field of monkeypox lesion detection by offering superior performance metrics, including precision, recall, F1-score, accuracy, and AUC, compared to traditional pre-trained models such as VGG16, ResNet50, and DenseNet121. The key novelty of our approach lies in MpoxSLDNet's ability to achieve high detection accuracy while requiring significantly less storage space than existing models. By addressing the challenge of high storage requirements, MpoxSLDNet presents a practical solution for early detection and categorization of monkeypox lesions in resource-constrained healthcare settings. In this study, we have used "Monkeypox Skin Lesion Dataset" comprising 1428 skin images of monkeypox lesions and 1764 skin images of Non-Monkeypox lesions. Dataset's limitations could potentially impact the model's ability to generalize to unseen cases. However, the MpoxSLDNet model achieved a validation accuracy of 94.56%, compared to 86.25%, 84.38%, and 67.19% for VGG16, DenseNet121, and ResNet50, respectively.
Artificial Intelligence 315
☆ Robustness Is a Function, Not a Number: A Factorized Comprehensive Study of OOD Robustness in Vision-Based Driving
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
☆ CIC-Trap4Phish: A Unified Multi-Format Dataset for Phishing and Quishing Attachment Detection
Phishing attacks represents one of the primary attack methods which is used by cyber attackers. In many cases, attackers use deceptive emails along with malicious attachments to trick users into giving away sensitive information or installing malware while compromising entire systems. The flexibility of malicious email attachments makes them stand out as a preferred vector for attackers as they can embed harmful content such as malware or malicious URLs inside standard document formats. Although phishing email defenses have improved a lot, attackers continue to abuse attachments, enabling malicious content to bypass security measures. Moreover, another challenge that researches face in training advance models, is lack of an unified and comprehensive dataset that covers the most prevalent data types. To address this gap, we generated CIC-Trap4Phish, a multi-format dataset containing both malicious and benign samples across five categories commonly used in phishing campaigns: Microsoft Word documents, Excel spreadsheets, PDF files, HTML pages, and QR code images. For the first four file types, a set of execution-free static feature pipeline was proposed, designed to capture structural, lexical, and metadata-based indicators without the need to open or execute files. Feature selection was performed using a combination of SHAP analysis and feature importance, yielding compact, discriminative feature subsets for each file type. The selected features were evaluated by using lightweight machine learning models, including Random Forest, XGBoost, and Decision Tree. All models demonstrate high detection accuracy across formats. For QR code-based phishing (quishing), two complementary methods were implemented: image-based detection by employing Convolutional Neural Networks (CNNs) and lexical analysis of decoded URLs using recent lightweight language models.
☆ ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation
Diffusion models have achieved remarkable generation quality, but they suffer from significant inference cost due to their reliance on multiple sequential denoising steps, motivating recent efforts to distill this inference process into a few-step regime. However, existing distillation methods typically approximate the teacher trajectory by using linear shortcuts, which makes it difficult to match its constantly changing tangent directions as velocities evolve across timesteps, thereby leading to quality degradation. To address this limitation, we propose ArcFlow, a few-step distillation framework that explicitly employs non-linear flow trajectories to approximate pre-trained teacher trajectories. Concretely, ArcFlow parameterizes the velocity field underlying the inference trajectory as a mixture of continuous momentum processes. This enables ArcFlow to capture velocity evolution and extrapolate coherent velocities to form a continuous non-linear trajectory within each denoising step. Importantly, this parameterization admits an analytical integration of this non-linear trajectory, which circumvents numerical discretization errors and results in high-precision approximation of the teacher trajectory. To train this parameterization into a few-step generator, we implement ArcFlow via trajectory distillation on pre-trained teacher models using lightweight adapters. This strategy ensures fast, stable convergence while preserving generative diversity and quality. Built on large-scale models (Qwen-Image-20B and FLUX.1-dev), ArcFlow only fine-tunes on less than 5% of original parameters and achieves a 40x speedup with 2 NFEs over the original multi-step teachers without significant quality degradation. Experiments on benchmarks show the effectiveness of ArcFlow both qualitatively and quantitatively.
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
☆ ANCRe: Adaptive Neural Connection Reassignment for Efficient Depth Scaling
Scaling network depth has been a central driver behind the success of modern foundation models, yet recent investigations suggest that deep layers are often underutilized. This paper revisits the default mechanism for deepening neural networks, namely residual connections, from an optimization perspective. Rigorous analysis proves that the layout of residual connections can fundamentally shape convergence behavior, and even induces an exponential gap in convergence rates. Prompted by this insight, we introduce adaptive neural connection reassignment (ANCRe), a principled and lightweight framework that parameterizes and learns residual connectivities from the data. ANCRe adaptively reassigns residual connections with negligible computational and memory overhead ($<1\%$), while enabling more effective utilization of network depth. Extensive numerical tests across pre-training of large language models, diffusion models, and deep ResNets demonstrate consistently accelerated convergence, boosted performance, and enhanced depth efficiency over conventional residual connections.
☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
☆ ARO: A New Lens On Matrix Optimization For Large Models
Matrix-based optimizers have attracted growing interest for improving LLM training efficiency, with significant progress centered on orthogonalization/whitening based methods. While yielding substantial performance gains, a fundamental question arises: can we develop new paradigms beyond orthogonalization, pushing the efficiency frontier further? We present \textbf{Adaptively Rotated Optimization (ARO}, a new matrix optimization framework that treats gradient rotation as a first class design principle. ARO accelerates LLM training by performing normed steepest descent in a rotated coordinate system, where the rotation is determined by a novel norm-informed policy. This perspective yields update rules that go beyond existing orthogonalization and whitening optimizers, improving sample efficiency in practice. To make comparisons reliable, we propose a rigorously controlled benchmarking protocol that reduces confounding and bias. Under this protocol, ARO consistently outperforms AdamW (by 1.3 $\sim$1.35$\times$) and orthogonalization methods (by 1.1$\sim$1.15$\times$) in LLM pretraining at up to 8B activated parameters, and up to $8\times$ overtrain budget, without evidence of diminishing returns. Finally, we discuss how ARO can be reformulated as a symmetry-aware optimizer grounded in rotational symmetries of residual streams, motivating advanced designs that enable computationally efficient exploitation of cross-layer/cross module couplings.
☆ Data Science and Technology Towards AGI Part I: Tiered Data Management
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
comment: 16 pages, 3 figures, 7 tables
☆ From Obstacles to Etiquette: Robot Social Navigation with VLM-Informed Path Selection IEEE
Navigating socially in human environments requires more than satisfying geometric constraints, as collision-free paths may still interfere with ongoing activities or conflict with social norms. Addressing this challenge calls for analyzing interactions between agents and incorporating common-sense reasoning into planning. This paper presents a social robot navigation framework that integrates geometric planning with contextual social reasoning. The system first extracts obstacles and human dynamics to generate geometrically feasible candidate paths, then leverages a fine-tuned vision-language model (VLM) to evaluate these paths, informed by contextually grounded social expectations, selecting a socially optimized path for the controller. This task-specific VLM distills social reasoning from large foundation models into a smaller and efficient model, allowing the framework to perform real-time adaptation in diverse human-robot interaction contexts. Experiments in four social navigation contexts demonstrate that our method achieves the best overall performance with the lowest personal space violation duration, the minimal pedestrian-facing time, and no social zone intrusions. Project page: https://path-etiquette.github.io
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ iGRPO: Self-Feedback-Driven LLM Reasoning
Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce Iterative Group Relative Policy Optimization (iGRPO), a two-stage extension of GRPO that adds dynamic self-conditioning through model-generated drafts. In Stage 1, iGRPO samples multiple exploratory drafts and selects the highest-reward draft using the same scalar reward signal used for optimization. In Stage 2, it appends this best draft to the original prompt and applies a GRPO-style update on draft-conditioned refinements, training the policy to improve beyond its strongest prior attempt. Under matched rollout budgets, iGRPO consistently outperforms GRPO across base models (e.g., Nemotron-H-8B-Base-8K and DeepSeek-R1 Distilled), validating its effectiveness on diverse reasoning benchmarks. Moreover, applying iGRPO to OpenReasoning-Nemotron-7B trained on AceReason-Math achieves new state-of-the-art results of 85.62\% and 79.64\% on AIME24 and AIME25, respectively. Ablations further show that the refinement wrapper generalizes beyond GRPO variants, benefits from a generative judge, and alters learning dynamics by delaying entropy collapse. These results underscore the potential of iterative, self-feedback-based RL for advancing verifiable mathematical reasoning.
comment: Tech report
☆ InternAgent-1.5: A Unified Agentic Framework for Long-Horizon Autonomous Scientific Discovery
We introduce InternAgent-1.5, a unified system designed for end-to-end scientific discovery across computational and empirical domains. The system is built on a structured architecture composed of three coordinated subsystems for generation, verification, and evolution. These subsystems are supported by foundational capabilities for deep research, solution optimization, and long horizon memory. The architecture allows InternAgent-1.5 to operate continuously across extended discovery cycles while maintaining coherent and improving behavior. It also enables the system to coordinate computational modeling and laboratory experimentation within a single unified system. We evaluate InternAgent-1.5 on scientific reasoning benchmarks such as GAIA, HLE, GPQA, and FrontierScience, and the system achieves leading performance that demonstrates strong foundational capabilities. Beyond these benchmarks, we further assess two categories of discovery tasks. In algorithm discovery tasks, InternAgent-1.5 autonomously designs competitive methods for core machine learning problems. In empirical discovery tasks, it executes complete computational or wet lab experiments and produces scientific findings in earth, life, biological, and physical domains. Overall, these results show that InternAgent-1.5 provides a general and scalable framework for autonomous scientific discovery.
comment: Code and project page: https://github.com/InternScience/InternAgent
☆ Improving Detection of Rare Nodes in Hierarchical Multi-Label Learning
In hierarchical multi-label classification, a persistent challenge is enabling model predictions to reach deeper levels of the hierarchy for more detailed or fine-grained classifications. This difficulty partly arises from the natural rarity of certain classes (or hierarchical nodes) and the hierarchical constraint that ensures child nodes are almost always less frequent than their parents. To address this, we propose a weighted loss objective for neural networks that combines node-wise imbalance weighting with focal weighting components, the latter leveraging modern quantification of ensemble uncertainties. By emphasizing rare nodes rather than rare observations (data points), and focusing on uncertain nodes for each model output distribution during training, we observe improvements in recall by up to a factor of five on benchmark datasets, along with statistically significant gains in $F_{1}$ score. We also show our approach aids convolutional networks on challenging tasks, as in situations with suboptimal encoders or limited data.
comment: Accepted for publication in Transactions on Machine Learning Research (TMLR), 2026
☆ Next Concept Prediction in Discrete Latent Space Leads to Stronger Language Models
We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
☆ StretchTime: Adaptive Time Series Forecasting via Symplectic Attention
Transformer architectures have established strong baselines in time series forecasting, yet they typically rely on positional encodings that assume uniform, index-based temporal progression. However, real-world systems, from shifting financial cycles to elastic biological rhythms, frequently exhibit "time-warped" dynamics where the effective flow of time decouples from the sampling index. In this work, we first formalize this misalignment and prove that rotary position embedding (RoPE) is mathematically incapable of representing non-affine temporal warping. To address this, we propose Symplectic Positional Embeddings (SyPE), a learnable encoding framework derived from Hamiltonian mechanics. SyPE strictly generalizes RoPE by extending the rotation group $\mathrm{SO}(2)$ to the symplectic group $\mathrm{Sp}(2,\mathbb{R})$, modulated by a novel input-dependent adaptive warp module. By allowing the attention mechanism to adaptively dilate or contract temporal coordinates end-to-end, our approach captures locally varying periodicities without requiring pre-defined warping functions. We implement this mechanism in StretchTime, a multivariate forecasting architecture that achieves state-of-the-art performance on standard benchmarks, demonstrating superior robustness on datasets exhibiting non-stationary temporal dynamics.
stable-worldmodel-v1: Reproducible World Modeling Research and Evaluation
World Models have emerged as a powerful paradigm for learning compact, predictive representations of environment dynamics, enabling agents to reason, plan, and generalize beyond direct experience. Despite recent interest in World Models, most available implementations remain publication-specific, severely limiting their reusability, increasing the risk of bugs, and reducing evaluation standardization. To mitigate these issues, we introduce stable-worldmodel (SWM), a modular, tested, and documented world-model research ecosystem that provides efficient data-collection tools, standardized environments, planning algorithms, and baseline implementations. In addition, each environment in SWM enables controllable factors of variation, including visual and physical properties, to support robustness and continual learning research. Finally, we demonstrate the utility of SWM by using it to study zero-shot robustness in DINO-WM.
☆ A Behavioural and Representational Evaluation of Goal-Directedness in Language Model Agents
Understanding an agent's goals helps explain and predict its behaviour, yet there is no established methodology for reliably attributing goals to agentic systems. We propose a framework for evaluating goal-directedness that integrates behavioural evaluation with interpretability-based analyses of models' internal representations. As a case study, we examine an LLM agent navigating a 2D grid world toward a goal state. Behaviourally, we evaluate the agent against an optimal policy across varying grid sizes, obstacle densities, and goal structures, finding that performance scales with task difficulty while remaining robust to difficulty-preserving transformations and complex goal structures. We then use probing methods to decode the agent's internal representations of the environment state and its multi-step action plans. We find that the LLM agent non-linearly encodes a coarse spatial map of the environment, preserving approximate task-relevant cues about its position and the goal location; that its actions are broadly consistent with these internal representations; and that reasoning reorganises them, shifting from broader environment structural cues toward information supporting immediate action selection. Our findings support the view that introspective examination is required beyond behavioural evaluations to characterise how agents represent and pursue their objectives.
☆ MotionCrafter: Dense Geometry and Motion Reconstruction with a 4D VAE
We introduce MotionCrafter, a video diffusion-based framework that jointly reconstructs 4D geometry and estimates dense motion from a monocular video. The core of our method is a novel joint representation of dense 3D point maps and 3D scene flows in a shared coordinate system, and a novel 4D VAE to effectively learn this representation. Unlike prior work that forces the 3D value and latents to align strictly with RGB VAE latents-despite their fundamentally different distributions-we show that such alignment is unnecessary and leads to suboptimal performance. Instead, we introduce a new data normalization and VAE training strategy that better transfers diffusion priors and greatly improves reconstruction quality. Extensive experiments across multiple datasets demonstrate that MotionCrafter achieves state-of-the-art performance in both geometry reconstruction and dense scene flow estimation, delivering 38.64% and 25.0% improvements in geometry and motion reconstruction, respectively, all without any post-optimization. Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
comment: Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
☆ Digital Twin and Agentic AI for Wild Fire Disaster Management: Intelligent Virtual Situation Room
According to the United Nations, wildfire frequency and intensity are projected to increase by approximately 14% by 2030 and 30% by 2050 due to global warming, posing critical threats to life, infrastructure, and ecosystems. Conventional disaster management frameworks rely on static simulations and passive data acquisition, hindering their ability to adapt to arbitrarily evolving wildfire episodes in real-time. To address these limitations, we introduce the Intelligent Virtual Situation Room (IVSR), a bidirectional Digital Twin (DT) platform augmented by autonomous AI agents. The IVSR continuously ingests multisource sensor imagery, weather data, and 3D forest models to create a live virtual replica of the fire environment. A similarity engine powered by AI aligns emerging conditions with a precomputed Disaster Simulation Library, retrieving and calibrating intervention tactics under the watchful eyes of experts. Authorized action-ranging from UAV redeployment to crew reallocation-is cycled back through standardized procedures to the physical layer, completing the loop between response and analysis. We validate IVSR through detailed case-study simulations provided by an industrial partner, demonstrating capabilities in localized incident detection, privacy-preserving playback, collider-based fire-spread projection, and site-specific ML retraining. Our results indicate marked reductions in detection-to-intervention latency and more effective resource coordination versus traditional systems. By uniting real-time bidirectional DTs with agentic AI, IVSR offers a scalable, semi-automated decision-support paradigm for proactive, adaptive wildfire disaster management.
☆ CoRefine: Confidence-Guided Self-Refinement for Adaptive Test-Time Compute
Large Language Models (LLMs) often rely on test-time scaling via parallel decoding (for example, 512 samples) to boost reasoning accuracy, but this incurs substantial compute. We introduce CoRefine, a confidence-guided self-refinement method that achieves competitive accuracy using a fraction of the tokens via a lightweight 211k-parameter Conv1D controller atop a frozen LLM. The controller consumes full-trace confidence to decide whether to halt, re-examine, or try a different approach, enabling targeted self-correction with an average of 2.7 refinement steps per problem and roughly 190-fold token reduction relative to 512-sample baselines. Across diverse reasoning benchmarks and three open-source models, the controller achieves 92.6 percent precision when it confidently halts, indicating that confidence dynamics reliably signal correctness without ground-truth verification. We extend this to CoRefine-Tree, a hybrid sequential-parallel variant that adaptively balances exploration and exploitation, with easy serving integration and verifier compatibility. By treating confidence as a control signal rather than a correctness guarantee, CoRefine provides a modular primitive for scalable reasoning and agentic settings with imperfect verifiers.
☆ pixelLOG: Logging of Online Gameplay for Cognitive Research
Traditional cognitive assessments often rely on isolated, output-focused measurements that may fail to capture the complexity of human cognition in naturalistic settings. We present pixelLOG, a high-performance data collection framework for Spigot-based Minecraft servers designed specifically for process-based cognitive research. Unlike existing frameworks tailored only for artificial intelligence agents, pixelLOG also enables human behavioral tracking in multi-player/multi-agent environments. Operating at configurable frequencies up to and exceeding 20 updates per second, the system captures comprehensive behavioral data through a hybrid approach of active state polling and passive event monitoring. By leveraging Spigot's extensible API, pixelLOG facilitates robust session isolation and produces structured JSON outputs integrable with standard analytical pipelines. This framework bridges the gap between decontextualized laboratory assessments and richer, more ecologically valid tasks, enabling high-resolution analysis of cognitive processes as they unfold in complex, virtual environments.
comment: 9 pages, 1 figure
☆ CausalT5K: Diagnosing and Informing Refusal for Trustworthy Causal Reasoning of Skepticism, Sycophancy, Detection-Correction, and Rung Collapse
LLM failures in causal reasoning, including sycophancy, rung collapse, and miscalibrated refusal, are well-documented, yet progress on remediation is slow because no benchmark enables systematic diagnosis. We introduce CausalT5K, a diagnostic benchmark of over 5,000 cases across 10 domains that tests three critical capabilities: (1) detecting rung collapse, where models answer interventional queries with associational evidence; (2) resisting sycophantic drift under adversarial pressure; and (3) generating Wise Refusals that specify missing information when evidence is underdetermined. Unlike synthetic benchmarks, CausalT5K embeds causal traps in realistic narratives and decomposes performance into Utility (sensitivity) and Safety (specificity), revealing failure modes invisible to aggregate accuracy. Developed through a rigorous human-machine collaborative pipeline involving 40 domain experts, iterative cross-validation cycles, and composite verification via rule-based, LLM, and human scoring, CausalT5K implements Pearl's Ladder of Causation as research infrastructure. Preliminary experiments reveal a Four-Quadrant Control Landscape where static audit policies universally fail, a finding that demonstrates CausalT5K's value for advancing trustworthy reasoning systems. Repository: https://github.com/genglongling/CausalT5kBench
comment: 17 pages, 20 tables, figures
☆ StealthRL: Reinforcement Learning Paraphrase Attacks for Multi-Detector Evasion of AI-Text Detectors
AI-text detectors face a critical robustness challenge: adversarial paraphrasing attacks that preserve semantics while evading detection. We introduce StealthRL, a reinforcement learning framework that stress-tests detector robustness under realistic adversarial conditions. StealthRL trains a paraphrase policy against a multi-detector ensemble using Group Relative Policy Optimization (GRPO) with LoRA adapters on Qwen3-4B, optimizing a composite reward that balances detector evasion with semantic preservation. We evaluate six attack settings (M0-M5) against three detector families (RoBERTa, FastDetectGPT, and Binoculars) at the security-relevant 1% false positive rate operating point. StealthRL achieves near-zero detection (0.001 mean TPR@1%FPR), reduces mean AUROC from 0.74 to 0.27, and attains a 99.9% attack success rate. Critically, attacks transfer to a held-out detector family not seen during training, revealing shared architectural vulnerabilities rather than detector-specific brittleness. We additionally conduct LLM-based quality evaluation via Likert scoring, analyze detector score distributions to explain why evasion succeeds, and provide per-detector AUROC with bootstrap confidence intervals. Our results expose significant robustness gaps in current AI-text detection and establish StealthRL as a principled adversarial evaluation protocol. Code and evaluation pipeline are publicly available at https://github.com/suraj-ranganath/StealthRL.
comment: Expanded version of a workshop submission. Code available
☆ Automatic In-Domain Exemplar Construction and LLM-Based Refinement of Multi-LLM Expansions for Query Expansion
Query expansion with large language models is promising but often relies on hand-crafted prompts, manually chosen exemplars, or a single LLM, making it non-scalable and sensitive to domain shift. We present an automated, domain-adaptive QE framework that builds in-domain exemplar pools by harvesting pseudo-relevant passages using a BM25-MonoT5 pipeline. A training-free cluster-based strategy selects diverse demonstrations, yielding strong and stable in-context QE without supervision. To further exploit model complementarity, we introduce a two-LLM ensemble in which two heterogeneous LLMs independently generate expansions and a refinement LLM consolidates them into one coherent expansion. Across TREC DL20, DBPedia, and SciFact, the refined ensemble delivers consistent and statistically significant gains over BM25, Rocchio, zero-shot, and fixed few-shot baselines. The framework offers a reproducible testbed for exemplar selection and multi-LLM generation, and a practical, label-free solution for real-world QE.
☆ Gesturing Toward Abstraction: Multimodal Convention Formation in Collaborative Physical Tasks
A quintessential feature of human intelligence is the ability to create ad hoc conventions over time to achieve shared goals efficiently. We investigate how communication strategies evolve through repeated collaboration as people coordinate on shared procedural abstractions. To this end, we conducted an online unimodal study (n = 98) using natural language to probe abstraction hierarchies. In a follow-up lab study (n = 40), we examined how multimodal communication (speech and gestures) changed during physical collaboration. Pairs used augmented reality to isolate their partner's hand and voice; one participant viewed a 3D virtual tower and sent instructions to the other, who built the physical tower. Participants became faster and more accurate by establishing linguistic and gestural abstractions and using cross-modal redundancy to emphasize key changes from previous interactions. Based on these findings, we extend probabilistic models of convention formation to multimodal settings, capturing shifts in modality preferences. Our findings and model provide building blocks for designing convention-aware intelligent agents situated in the physical world.
comment: Accepted at the 2026 CHI Conference on Human Factors in Computing Systems (CHI 2026). 15 pages
☆ Efficient and Stable Reinforcement Learning for Diffusion Language Models
Reinforcement Learning (RL) is crucial for unlocking the complex reasoning capabilities of Diffusion-based Large Language Models (dLLMs). However, applying RL to dLLMs faces unique challenges in efficiency and stability. To address these challenges, we propose Spatio-Temporal Pruning (STP), a framework designed to simultaneously improve the efficiency and stability of RL for dLLMs. STP compresses the redundancy in the generative process through: (1) \textit{spatial pruning}, which constrains the exploration space using static priors; and (2) \textit{temporal pruning}, which bypasses redundant late-stage refinement steps. Our theoretical analysis demonstrates that STP strictly reduces the variance of the log-likelihood estimation, thereby ensuring more stable policy updates. Extensive experiments demonstrate that STP surpasses state-of-the-art baselines in both efficiency and accuracy. Our code is available at https://github.com/Lolo1222/STP.
comment: 13 pages, 3 figures
☆ OmniReview: A Large-scale Benchmark and LLM-enhanced Framework for Realistic Reviewer Recommendation
Academic peer review remains the cornerstone of scholarly validation, yet the field faces some challenges in data and methods. From the data perspective, existing research is hindered by the scarcity of large-scale, verified benchmarks and oversimplified evaluation metrics that fail to reflect real-world editorial workflows. To bridge this gap, we present OmniReview, a comprehensive dataset constructed by integrating multi-source academic platforms encompassing comprehensive scholarly profiles through the disambiguation pipeline, yielding 202, 756 verified review records. Based on this data, we introduce a three-tier hierarchical evaluaion framework to assess recommendations from recall to precise expert identification. From the method perspective, existing embedding-based approaches suffer from the information bottleneck of semantic compression and limited interpretability. To resolve these method limitations, we propose Profiling Scholars with Multi-gate Mixture-of-Experts (Pro-MMoE), a novel framework that synergizes Large Language Models (LLMs) with Multi-task Learning. Specifically, it utilizes LLM-generated semantic profiles to preserve fine-grained expertise nuances and interpretability, while employing a Task-Adaptive MMoE architecture to dynamically balance conflicting evaluation goals. Comprehensive experiments demonstrate that Pro-MMoE achieves state-of-the-art performance across six of seven metrics, establishing a new benchmark for realistic reviewer recommendation.
☆ Scalable Delphi: Large Language Models for Structured Risk Estimation
Quantitative risk assessment in high-stakes domains relies on structured expert elicitation to estimate unobservable properties. The gold standard - the Delphi method - produces calibrated, auditable judgments but requires months of coordination and specialist time, placing rigorous risk assessment out of reach for most applications. We investigate whether Large Language Models (LLMs) can serve as scalable proxies for structured expert elicitation. We propose Scalable Delphi, adapting the classical protocol for LLMs with diverse expert personas, iterative refinement, and rationale sharing. Because target quantities are typically unobservable, we develop an evaluation framework based on necessary conditions: calibration against verifiable proxies, sensitivity to evidence, and alignment with human expert judgment. We evaluate in the domain of AI-augmented cybersecurity risk, using three capability benchmarks and independent human elicitation studies. LLM panels achieve strong correlations with benchmark ground truth (Pearson r=0.87-0.95), improve systematically as evidence is added, and align with human expert panels - in one comparison, closer to a human panel than the two human panels are to each other. This demonstrates that LLM-based elicitation can extend structured expert judgment to settings where traditional methods are infeasible, reducing elicitation time from months to minutes.
☆ DeepQuali: Initial results of a study on the use of large language models for assessing the quality of user stories
Generative artificial intelligence (GAI), specifically large language models (LLMs), are increasingly used in software engineering, mainly for coding tasks. However, requirements engineering - particularly requirements validation - has seen limited application of GAI. The current focus of using GAI for requirements is on eliciting, transforming, and classifying requirements, not on quality assessment. We propose and evaluate the LLM-based (GPT-4o) approach "DeepQuali", for assessing and improving requirements quality in agile software development. We applied it to projects in two small companies, where we compared LLM-based quality assessments with expert judgments. Experts also participated in walkthroughs of the solution, provided feedback, and rated their acceptance of the approach. Experts largely agreed with the LLM's quality assessments, especially regarding overall ratings and explanations. However, they did not always agree with the other experts on detailed ratings, suggesting that expertise and experience may influence judgments. Experts recognized the usefulness of the approach but criticized the lack of integration into their workflow. LLMs show potential in supporting software engineers with the quality assessment and improvement of requirements. The explicit use of quality models and explanatory feedback increases acceptance.
☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures appendix: 12 pages, 11 figures code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr
☆ Learning Potentials for Dynamic Matching and Application to Heart Transplantation
Each year, thousands of patients in need of heart transplants face life-threatening wait times due to organ scarcity. While allocation policies aim to maximize population-level outcomes, current approaches often fail to account for the dynamic arrival of organs and the composition of waitlisted candidates, thereby hampering efficiency. The United States is transitioning from rigid, rule-based allocation to more flexible data-driven models. In this paper, we propose a novel framework for non-myopic policy optimization in general online matching relying on potentials, a concept originally introduced for kidney exchange. We develop scalable and accurate ways of learning potentials that are higher-dimensional and more expressive than prior approaches. Our approach is a form of self-supervised imitation learning: the potentials are trained to mimic an omniscient algorithm that has perfect foresight. We focus on the application of heart transplant allocation and demonstrate, using real historical data, that our policies significantly outperform prior approaches -- including the current US status quo policy and the proposed continuous distribution framework -- in optimizing for population-level outcomes. Our analysis and methods come at a pivotal moment in US policy, as the current heart transplant allocation system is under review. We propose a scalable and theoretically grounded path toward more effective organ allocation.
☆ Whose Name Comes Up? Benchmarking and Intervention-Based Auditing of LLM-Based Scholar Recommendation
Large language models (LLMs) are increasingly used for academic expert recommendation. Existing audits typically evaluate model outputs in isolation, largely ignoring end-user inference-time interventions. As a result, it remains unclear whether failures such as refusals, hallucinations, and uneven coverage stem from model choice or deployment decisions. We introduce LLMScholarBench, a benchmark for auditing LLM-based scholar recommendation that jointly evaluates model infrastructure and end-user interventions across multiple tasks. LLMScholarBench measures both technical quality and social representation using nine metrics. We instantiate the benchmark in physics expert recommendation and audit 22 LLMs under temperature variation, representation-constrained prompting, and retrieval-augmented generation (RAG) via web search. Our results show that end-user interventions do not yield uniform improvements but instead redistribute error across dimensions. Higher temperature degrades validity, consistency, and factuality. Representation-constrained prompting improves diversity at the expense of factuality, while RAG primarily improves technical quality while reducing diversity and parity. Overall, end-user interventions reshape trade-offs rather than providing a general fix. We release code and data that can be adapted to other disciplines by replacing domain-specific ground truth and metrics.
comment: 28 pages: 8 pages in main (5 figures, 1 table), 20 pages in appendix (18 figures, 2 tables). under-review
☆ AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detection
Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions.
comment: Preprint
☆ Understanding Dynamic Compute Allocation in Recurrent Transformers
Token-level adaptive computation seeks to reduce inference cost by allocating more computation to harder tokens and less to easier ones. However, prior work is primarily evaluated on natural-language benchmarks using task-level metrics, where token-level difficulty is unobservable and confounded with architectural factors, making it unclear whether compute allocation truly aligns with underlying complexity. We address this gap through three contributions. First, we introduce a complexity-controlled evaluation paradigm using algorithmic and synthetic language tasks with parameterized difficulty, enabling direct testing of token-level compute allocation. Second, we propose ANIRA, a unified recurrent Transformer framework that supports per-token variable-depth computation while isolating compute allocation decisions from other model factors. Third, we use this framework to conduct a systematic analysis of token-level adaptive computation across alignment with complexity, generalization, and decision timing. Our results show that compute allocation aligned with task complexity can emerge without explicit difficulty supervision, but such alignment does not imply algorithmic generalization: models fail to extrapolate to unseen input sizes despite allocating additional computation. We further find that early compute decisions rely on static structural cues, whereas online halting more closely tracks algorithmic execution state.
☆ FlattenGPT: Depth Compression for Transformer with Layer Flattening ICML 2026
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers. To pursue better model compression and acceleration, this paper proposes \textbf{FlattenGPT}, a novel way to detect and reduce depth-wise redundancies. By flatting two adjacent blocks into one, it compresses the network depth, meanwhile enables more effective parameter redundancy detection and removal. FlattenGPT allows to preserve the knowledge learned in all blocks, and remains consistent with the original transformer architecture. Extensive experiments demonstrate that FlattenGPT enhances model efficiency with a decent trade-off to performance. It outperforms existing pruning methods in both zero-shot accuracies and WikiText-2 perplexity across various model types and parameter sizes. On LLaMA-2/3 and Qwen-1.5 models, FlattenGPT retains 90-96\% of zero-shot performance with a compression ratio of 20\%. It also outperforms other pruning methods in accelerating LLM inference, making it promising for enhancing the efficiency of transformers.
comment: Submitted to ICML 2026
☆ Discovering Interpretable Algorithms by Decompiling Transformers to RASP
Recent work has shown that the computations of Transformers can be simulated in the RASP family of programming languages. These findings have enabled improved understanding of the expressive capacity and generalization abilities of Transformers. In particular, Transformers have been suggested to length-generalize exactly on problems that have simple RASP programs. However, it remains open whether trained models actually implement simple interpretable programs. In this paper, we present a general method to extract such programs from trained Transformers. The idea is to faithfully re-parameterize a Transformer as a RASP program and then apply causal interventions to discover a small sufficient sub-program. In experiments on small Transformers trained on algorithmic and formal language tasks, we show that our method often recovers simple and interpretable RASP programs from length-generalizing transformers. Our results provide the most direct evidence so far that Transformers internally implement simple RASP programs.
comment: 101 pages, 92 figures
☆ Deciding the Satisfiability of Combined Qualitative Constraint Networks
Among the various forms of reasoning studied in the context of artificial intelligence, qualitative reasoning makes it possible to infer new knowledge in the context of imprecise, incomplete information without numerical values. In this paper, we propose a formal framework unifying several forms of extensions and combinations of qualitative formalisms, including multi-scale reasoning, temporal sequences, and loose integrations. This framework makes it possible to reason in the context of each of these combinations and extensions, but also to study in a unified way the satisfiability decision and its complexity. In particular, we establish two complementary theorems guaranteeing that the satisfiability decision is polynomial, and we use them to recover the known results of the size-topology combination. We also generalize the main definition of qualitative formalism to include qualitative formalisms excluded from the definitions of the literature, important in the context of combinations.
☆ Dr. MAS: Stable Reinforcement Learning for Multi-Agent LLM Systems
Multi-agent LLM systems enable advanced reasoning and tool use via role specialization, yet reliable reinforcement learning (RL) post-training for such systems remains difficult. In this work, we theoretically pinpoint a key reason for training instability when extending group-based RL to multi-agent LLM systems. We show that under GRPO-style optimization, a global normalization baseline may deviate from diverse agents' reward distributions, which ultimately leads to gradient-norm instability. Based on this finding, we propose Dr. MAS, a simple and stable RL training recipe for multi-agent LLM systems. Dr. MAS uses an agent-wise remedy: normalizing advantages per agent using each agent's own reward statistics, which calibrates gradient scales and dramatically stabilizes training, both theoretically and empirically. Beyond the algorithm, Dr. MAS provides an end-to-end RL training framework for multi-agent LLM systems, supporting scalable orchestration, flexible per-agent LLM serving and optimization configs, and shared resource scheduling of LLM actor backends. We evaluate Dr. MAS on multi-agent math reasoning and multi-turn search benchmarks using Qwen2.5 and Qwen3 series models. Dr. MAS achieves clear gains over vanilla GRPO (e.g., +5.6\% avg@16 and +4.6\% pass@16 on math, and +15.2\% avg@16 and +13.1\% pass@16 on search) while largely eliminating gradient spikes. Moreover, it remains highly effective under heterogeneous agent-model assignments while improving efficiency.
comment: Preprint
☆ Learning the Value Systems of Societies with Preference-based Multi-objective Reinforcement Learning AAMAS 2026
Value-aware AI should recognise human values and adapt to the value systems (value-based preferences) of different users. This requires operationalization of values, which can be prone to misspecification. The social nature of values demands their representation to adhere to multiple users while value systems are diverse, yet exhibit patterns among groups. In sequential decision making, efforts have been made towards personalization for different goals or values from demonstrations of diverse agents. However, these approaches demand manually designed features or lack value-based interpretability and/or adaptability to diverse user preferences. We propose algorithms for learning models of value alignment and value systems for a society of agents in Markov Decision Processes (MDPs), based on clustering and preference-based multi-objective reinforcement learning (PbMORL). We jointly learn socially-derived value alignment models (groundings) and a set of value systems that concisely represent different groups of users (clusters) in a society. Each cluster consists of a value system representing the value-based preferences of its members and an approximately Pareto-optimal policy that reflects behaviours aligned with this value system. We evaluate our method against a state-of-the-art PbMORL algorithm and baselines on two MDPs with human values.
comment: 18 pages, 3 figures. To be published in proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2026). This is a full version that includes the supplementary material
☆ WildReward: Learning Reward Models from In-the-Wild Human Interactions
Reward models (RMs) are crucial for the training of large language models (LLMs), yet they typically rely on large-scale human-annotated preference pairs. With the widespread deployment of LLMs, in-the-wild interactions have emerged as a rich source of implicit reward signals. This raises the question: Can we develop reward models directly from in-the-wild interactions? In this work, we explore this possibility by adopting WildChat as an interaction source and proposing a pipeline to extract reliable human feedback, yielding 186k high-quality instances for training WildReward via ordinal regression directly on user feedback without preference pairs. Extensive experiments demonstrate that WildReward achieves comparable or even superior performance compared to conventional reward models, with improved calibration and cross-sample consistency. We also observe that WildReward benefits directly from user diversity, where more users yield stronger reward models. Finally, we apply WildReward to online DPO training and observe significant improvements across various tasks. Code and data are released at https://github.com/THU-KEG/WildReward.
☆ Affective Flow Language Model for Emotional Support Conversation
Large language models (LLMs) have been widely applied to emotional support conversation (ESC). However, complex multi-turn support remains challenging.This is because existing alignment schemes rely on sparse outcome-level signals, thus offering limited supervision for intermediate strategy decisions. To fill this gap, this paper proposes affective flow language model for emotional support conversation (AFlow), a framework that introduces fine-grained supervision on dialogue prefixes by modeling a continuous affective flow along multi-turn trajectories. AFlow can estimate intermediate utility over searched trajectories and learn preference-consistent strategy transitions. To improve strategy coherence and empathetic response quality, a subpath-level flow-balance objective is presented to propagate preference signals to intermediate states. Experiment results show consistent and significant improvements over competitive baselines in diverse emotional contexts. Remarkably, AFlow with a compact open-source backbone outperforms proprietary LMMs such as GPT-4o and Claude-3.5 on major ESC metrics. Our code is available at https://github.com/chzou25-lgtm/AffectiveFlow.
comment: 19 pages, 7 figures
☆ Permissive-Washing in the Open AI Supply Chain: A Large-Scale Audit of License Integrity
Permissive licenses like MIT, Apache-2.0, and BSD-3-Clause dominate open-source AI, signaling that artifacts like models, datasets, and code can be freely used, modified, and redistributed. However, these licenses carry mandatory requirements: include the full license text, provide a copyright notice, and preserve upstream attribution, that remain unverified at scale. Failure to meet these conditions can place reuse outside the scope of the license, effectively leaving AI artifacts under default copyright for those uses and exposing downstream users to litigation. We call this phenomenon ``permissive washing'': labeling AI artifacts as free to use, while omitting the legal documentation required to make that label actionable. To assess how widespread permissive washing is in the AI supply chain, we empirically audit 124,278 dataset $\rightarrow$ model $\rightarrow$ application supply chains, spanning 3,338 datasets, 6,664 models, and 28,516 applications across Hugging Face and GitHub. We find that an astonishing 96.5\% of datasets and 95.8\% of models lack the required license text, only 2.3\% of datasets and 3.2\% of models satisfy both license text and copyright requirements, and even when upstream artifacts provide complete licensing evidence, attribution rarely propagates downstream: only 27.59\% of models preserve compliant dataset notices and only 5.75\% of applications preserve compliant model notices (with just 6.38\% preserving any linked upstream notice). Practitioners cannot assume permissive labels confer the rights they claim: license files and notices, not metadata, are the source of legal truth. To support future research, we release our full audit dataset and reproducible pipeline.
comment: 13 pages, 2 figures, 10 tables
☆ Negative-Aware Diffusion Process for Temporal Knowledge Graph Extrapolation
Temporal Knowledge Graph (TKG) reasoning seeks to predict future missing facts from historical evidence. While diffusion models (DM) have recently gained attention for their ability to capture complex predictive distributions, two gaps remain: (i) the generative path is conditioned only on positive evidence, overlooking informative negative context, and (ii) training objectives are dominated by cross-entropy ranking, which improves candidate ordering but provides little supervision over the calibration of the denoised embedding. To bridge this gap, we introduce Negative-Aware Diffusion model for TKG Extrapolation (NADEx). Specifically, NADEx encodes subject-centric histories of entities, relations and temporal intervals into sequential embeddings. NADEx perturbs the query object in the forward process and reconstructs it in reverse with a Transformer denoiser conditioned on the temporal-relational context. We further derive a cosine-alignment regularizer derived from batch-wise negative prototypes, which tightens the decision boundary against implausible candidates. Comprehensive experiments on four public TKG benchmarks demonstrate that NADEx delivers state-of-the-art performance.
☆ $\texttt{lrnnx}$: A library for Linear RNNs EACL
Linear recurrent neural networks (LRNNs) provide a structured approach to sequence modeling that bridges classical linear dynamical systems and modern deep learning, offering both expressive power and theoretical guarantees on stability and trainability. In recent years, multiple LRNN-based architectures have been proposed, each introducing distinct parameterizations, discretization schemes, and implementation constraints. However, existing implementations are fragmented across different software frameworks, often rely on framework-specific optimizations, and in some cases require custom CUDA kernels or lack publicly available code altogether. As a result, using, comparing, or extending LRNNs requires substantial implementation effort. To address this, we introduce $\texttt{lrnnx}$, a unified software library that implements several modern LRNN architectures under a common interface. The library exposes multiple levels of control, allowing users to work directly with core components or higher-level model abstractions. $\texttt{lrnnx}$ aims to improve accessibility, reproducibility, and extensibility of LRNN research and applications. We make our code available under a permissive MIT license.
comment: EACL Student Research Workshop 2026
☆ Root Cause Analysis Method Based on Large Language Models with Residual Connection Structures
Root cause localization remain challenging in complex and large-scale microservice architectures. The complex fault propagation among microservices and the high dimensionality of telemetry data, including metrics, logs, and traces, limit the effectiveness of existing root cause analysis (RCA) methods. In this paper, a residual-connection-based RCA method using large language model (LLM), named RC-LLM, is proposed. A residual-like hierarchical fusion structure is designed to integrate multi-source telemetry data, while the contextual reasoning capability of large language models is leveraged to model temporal and cross-microservice causal dependencies. Experimental results on CCF-AIOps microservice datasets demonstrate that RC-LLM achieves strong accuracy and efficiency in root cause analysis.
☆ Addressing data annotation scarcity in Brain Tumor Segmentation on 3D MRI scan Using a Semi-Supervised Teacher-Student Framework IEEE
Accurate brain tumor segmentation from MRI is limited by expensive annotations and data heterogeneity across scanners and sites. We propose a semi-supervised teacher-student framework that combines an uncertainty-aware pseudo-labeling teacher with a progressive, confidence-based curriculum for the student. The teacher produces probabilistic masks and per-pixel uncertainty; unlabeled scans are ranked by image-level confidence and introduced in stages, while a dual-loss objective trains the student to learn from high-confidence regions and unlearn low-confidence ones. Agreement-based refinement further improves pseudo-label quality. On BraTS 2021, validation DSC increased from 0.393 (10% data) to 0.872 (100%), with the largest gains in early stages, demonstrating data efficiency. The teacher reached a validation DSC of 0.922, and the student surpassed the teacher on tumor subregions (e.g., NCR/NET 0.797 and Edema 0.980); notably, the student recovered the Enhancing class (DSC 0.620) where the teacher failed. These results show that confidence-driven curricula and selective unlearning provide robust segmentation under limited supervision and noisy pseudo-labels.
comment: 10 pages, 7 figures. Submitted to IEEE Journal of Biomedical and Health Informatics (JBHI)
☆ The Use of AI Tools to Develop and Validate Q-Matrices
Constructing a Q-matrix is a critical but labor-intensive step in cognitive diagnostic modeling (CDM). This study investigates whether AI tools (i.e., general language models) can support Q-matrix development by comparing AI-generated Q-matrices with a validated Q-matrix from Li and Suen (2013) for a reading comprehension test. In May 2025, multiple AI models were provided with the same training materials as human experts. Agreement among AI-generated Q-matrices, the validated Q-matrix, and human raters' Q-matrices was assessed using Cohen's kappa. Results showed substantial variation across AI models, with Google Gemini 2.5 Pro achieving the highest agreement (Kappa = 0.63) with the validated Q-matrix, exceeding that of all human experts. A follow-up analysis in January 2026 using newer AI versions, however, revealed lower agreement with the validated Q-matrix. Implications and directions for future research are discussed.
comment: An earlier version of this study was presented at the Psychometric Society Meeting held in July 2025 in Minneapolis, USA
☆ Multimodal Learning for Arcing Detection in Pantograph-Catenary Systems
The pantograph-catenary interface is essential for ensuring uninterrupted and reliable power delivery in electrified rail systems. However, electrical arcing at this interface poses serious risks, including accelerated wear of contact components, degraded system performance, and potential service disruptions. Detecting arcing events at the pantograph-catenary interface is challenging due to their transient nature, noisy operating environment, data scarcity, and the difficulty of distinguishing arcs from other similar transient phenomena. To address these challenges, we propose a novel multimodal framework that combines high-resolution image data with force measurements to more accurately and robustly detect arcing events. First, we construct two arcing detection datasets comprising synchronized visual and force measurements. One dataset is built from data provided by the Swiss Federal Railways (SBB), and the other is derived from publicly available videos of arcing events in different railway systems and synthetic force data that mimic the characteristics observed in the real dataset. Leveraging these datasets, we propose MultiDeepSAD, an extension of the DeepSAD algorithm for multiple modalities with a new loss formulation. Additionally, we introduce tailored pseudo-anomaly generation techniques specific to each data type, such as synthetic arc-like artifacts in images and simulated force irregularities, to augment training data and improve the discriminative ability of the model. Through extensive experiments and ablation studies, we demonstrate that our framework significantly outperforms baseline approaches, exhibiting enhanced sensitivity to real arcing events even under domain shifts and limited availability of real arcing observations.
☆ Dynamics Within Latent Chain-of-Thought: An Empirical Study of Causal Structure
Latent or continuous chain-of-thought methods replace explicit textual rationales with a number of internal latent steps, but these intermediate computations are difficult to evaluate beyond correlation-based probes. In this paper, we view latent chain-of-thought as a manipulable causal process in representation space by modeling latent steps as variables in a structural causal model (SCM) and analyzing their effects through step-wise $\mathrm{do}$-interventions. We study two representative paradigms (i.e., Coconut and CODI) on both mathematical and general reasoning tasks to investigate three key questions: (1) which steps are causally necessary for correctness and when answers become decidable early; (2) how does influence propagate across steps, and how does this structure compare to explicit CoT; and (3) do intermediate trajectories retain competing answer modes, and how does output-level commitment differ from representational commitment across steps. We find that latent-step budgets behave less like homogeneous extra depth and more like staged functionality with non-local routing, and we identify a persistent gap between early output bias and late representational commitment. These results motivate mode-conditional and stability-aware analyses -- and corresponding training/decoding objectives -- as more reliable tools for interpreting and improving latent reasoning systems.
comment: 22 pages
☆ Default Machine Learning Hyperparameters Do Not Provide Informative Initialization for Bayesian Optimization
Bayesian Optimization (BO) is a standard tool for hyperparameter tuning thanks to its sample efficiency on expensive black-box functions. While most BO pipelines begin with uniform random initialization, default hyperparameter values shipped with popular ML libraries such as scikit-learn encode implicit expert knowledge and could serve as informative starting points that accelerate convergence. This hypothesis, despite its intuitive appeal, has remained largely unexamined. We formalize the idea by initializing BO with points drawn from truncated Gaussian distributions centered at library defaults and compare the resulting trajectories against a uniform-random baseline. We conduct an extensive empirical evaluation spanning three BO back-ends (BoTorch, Optuna, Scikit-Optimize), three model families (Random Forests, Support Vector Machines, Multilayer Perceptrons), and five benchmark datasets covering classification and regression tasks. Performance is assessed through convergence speed and final predictive quality, and statistical significance is determined via one-sided binomial tests. Across all conditions, default-informed initialization yields no statistically significant advantage over purely random sampling, with p-values ranging from 0.141 to 0.908. A sensitivity analysis on the prior variance confirms that, while tighter concentration around the defaults improves early evaluations, this transient benefit vanishes as optimization progresses, leaving final performance unchanged. Our results provide no evidence that default hyperparameters encode useful directional information for optimization. We therefore recommend that practitioners treat hyperparameter tuning as an integral part of model development and favor principled, data-driven search strategies over heuristic reliance on library defaults.
☆ FreqLens: Interpretable Frequency Attribution for Time Series Forecasting
Time series forecasting models often lack interpretability, limiting their adoption in domains requiring explainable predictions. We propose \textsc{FreqLens}, an interpretable forecasting framework that discovers and attributes predictions to learnable frequency components. \textsc{FreqLens} introduces two key innovations: (1) \emph{learnable frequency discovery} -- frequency bases are parameterized via sigmoid mapping and learned from data with diversity regularization, enabling automatic discovery of dominant periodic patterns without domain knowledge; and (2) \emph{axiomatic frequency attribution} -- a theoretically grounded framework that provably satisfies Completeness, Faithfulness, Null-Frequency, and Symmetry axioms, with per-frequency attributions equivalent to Shapley values. On Traffic and Weather datasets, \textsc{FreqLens} achieves competitive or superior performance while discovering physically meaningful frequencies: all 5 independent runs discover the 24-hour daily cycle ($24.6 \pm 0.1$h, 2.5\% error) and 12-hour half-daily cycle ($11.8 \pm 0.1$h, 1.6\% error) on Traffic, and weekly cycles ($10\times$ longer than the input window) on Weather. These results demonstrate genuine frequency-level knowledge discovery with formal theoretical guarantees on attribution quality.
☆ Taming Scylla: Understanding the multi-headed agentic daemon of the coding seas
LLM-based tools are automating more software development tasks at a rapid pace, but there is no rigorous way to evaluate how different architectural choices -- prompts, skills, tools, multi-agent setups -- materially affect both capability and cost. This paper introduces Scylla, an evaluation framework for benchmarking agentic coding tools through structured ablation studies that uses seven testing tiers (T0-T6) progressively adding complexity to isolate what directly influences results and how. The key metric is Cost-of-Pass (CoP): the expected dollar cost to get one correct solution, which directly quantifies the trade-off between complexity and efficiency. The framework is model-agnostic, designed to work with any CLI tool; this paper demonstrates it with Claude Sonnet 4.5, using multiple LLM judges (Opus 4.5, Sonnet 4.5, Haiku 4.5) from the same vendor for evaluation consensus, where judges score results using direct tests, human-designed LLM-evaluated rubrics, and qualitative assessment. The result is a reproducible framework that quantifies trade-offs between agent complexity and actual outcomes, suggesting that architectural complexity does not always improve quality.
comment: 32 Pages, 7 Figures
☆ Efficient Brain Extraction of MRI Scans with Mild to Moderate Neuropathology SP
Skull stripping magnetic resonance images (MRI) of the human brain is an important process in many image processing techniques, such as automatic segmentation of brain structures. Numerous methods have been developed to perform this task, however, they often fail in the presence of neuropathology and can be inconsistent in defining the boundary of the brain mask. Here, we propose a novel approach to skull strip T1-weighted images in a robust and efficient manner, aiming to consistently segment the outer surface of the brain, including the sulcal cerebrospinal fluid (CSF), while excluding the full extent of the subarachnoid space and meninges. We train a modified version of the U-net on silver-standard ground truth data using a novel loss function based on the signed-distance transform (SDT). We validate our model both qualitatively and quantitatively using held-out data from the training dataset, as well as an independent external dataset. The brain masks used for evaluation partially or fully include the subarachnoid space, which may introduce bias into the comparison; nonetheless, our model demonstrates strong performance on the held-out test data, achieving a consistent mean Dice similarity coefficient (DSC) of 0.964$\pm$0.006 and an average symmetric surface distance (ASSD) of 1.4mm$\pm$0.2mm. Performance on the external dataset is comparable, with a DSC of 0.958$\pm$0.006 and an ASSD of 1.7$\pm$0.2mm. Our method achieves performance comparable to or better than existing state-of-the-art methods for brain extraction, particularly in its highly consistent preservation of the brain's outer surface. The method is publicly available on GitHub.
comment: Accepted for publication in the Proceedings of SPIE Medical Imaging 2026
☆ Belief Offloading in Human-AI Interaction
What happens when people's beliefs are derived from information provided by an LLM? People's use of LLM chatbots as thought partners can contribute to cognitive offloading, which can have adverse effects on cognitive skills in cases of over-reliance. This paper defines and investigates a particular kind of cognitive offloading in human-AI interaction, "belief offloading," in which people's processes of forming and upholding beliefs are offloaded onto an AI system with downstream consequences on their behavior and the nature of their system of beliefs. Drawing on philosophy, psychology, and computer science research, we clarify the boundary conditions under which belief offloading occurs and provide a descriptive taxonomy of belief offloading and its normative implications. We close with directions for future work to assess the potential for and consequences of belief offloading in human-AI interaction.
☆ On the Expressive Power of GNNs for Boolean Satisfiability ICLR 2026
Machine learning approaches to solving Boolean Satisfiability (SAT) aim to replace handcrafted heuristics with learning-based models. Graph Neural Networks have emerged as the main architecture for SAT solving, due to the natural graph representation of Boolean formulas. We analyze the expressive power of GNNs for SAT solving through the lens of the Weisfeiler-Leman (WL) test. As our main result, we prove that the full WL hierarchy cannot, in general, distinguish between satisfiable and unsatisfiable instances. We show that indistinguishability under higher-order WL carries over to practical limitations for WL-bounded solvers that set variables sequentially. We further study the expressivity required for several important families of SAT instances, including regular, random and planar instances. To quantify expressivity needs in practice, we conduct experiments on random instances from the G4SAT benchmark and industrial instances from the International SAT Competition. Our results suggest that while random instances are largely distinguishable, industrial instances often require more expressivity to predict a satisfying assignment.
comment: Accepted at ICLR 2026
☆ Finite-State Controllers for (Hidden-Model) POMDPs using Deep Reinforcement Learning AAMAS'26
Solving partially observable Markov decision processes (POMDPs) requires computing policies under imperfect state information. Despite recent advances, the scalability of existing POMDP solvers remains limited. Moreover, many settings require a policy that is robust across multiple POMDPs, further aggravating the scalability issue. We propose the Lexpop framework for POMDP solving. Lexpop (1) employs deep reinforcement learning to train a neural policy, represented by a recurrent neural network, and (2) constructs a finite-state controller mimicking the neural policy through efficient extraction methods. Crucially, unlike neural policies, such controllers can be formally evaluated, providing performance guarantees. We extend Lexpop to compute robust policies for hidden-model POMDPs (HM-POMDPs), which describe finite sets of POMDPs. We associate every extracted controller with its worst-case POMDP. Using a set of such POMDPs, we iteratively train a robust neural policy and consequently extract a robust controller. Our experiments show that on problems with large state spaces, Lexpop outperforms state-of-the-art solvers for POMDPs as well as HM-POMDPs.
comment: 17 pages (8 main paper, 2 references, 7 appendix). 3 figures in the main paper, 3 figures in the appendix. Accepted AAMAS'26 submission
☆ Artifact Reduction in Undersampled 3D Cone-Beam CTs using a Hybrid 2D-3D CNN Framework
Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
☆ QUOKA: Query-Oriented KV Selection For Efficient LLM Prefill
We present QUOKA: Query-oriented KV selection for efficient attention, a training-free and hardware agnostic sparse attention algorithm for accelerating transformer inference under chunked prefill. While many queries focus on a smaller group of keys in the attention operator, we observe that queries with low cosine similarity with respect to the mean query interact more strongly with more keys and have the greatest contribution to final attention logits. By prioritizing these low cosine similarity queries, the behavior of full attention during the prefill stage can be closely approximated. QUOKA leverages this observation, accelerating attention by (1) first retaining a small set of representative queries and (2) then subselectin the keys most aligned with those queries. Through experiments on Needle-In-A-Haystack, LongBench, RULER, and Math500, we show that, while realizing a 3x reduction in time-to-first-token, 5x speedup in attention on Nvidia GPUs and up to nearly a 7x speedup on Intel Xeon CPUs, QUOKA achieves near-baseline accuracy, utilizing 88% fewer key-value pairs per attention evaluation.
☆ Zero-shot System for Automatic Body Region Detection for Volumetric CT and MR Images
Reliable identification of anatomical body regions is a prerequisite for many automated medical imaging workflows, yet existing solutions remain heavily dependent on unreliable DICOM metadata. Current solutions mainly use supervised learning, which limits their applicability in many real-world scenarios. In this work, we investigate whether body region detection in volumetric CT and MR images can be achieved in a fully zero-shot manner by using knowledge embedded in large pre-trained foundation models. We propose and systematically evaluate three training-free pipelines: (1) a segmentation-driven rule-based system leveraging pre-trained multi-organ segmentation models, (2) a Multimodal Large Language Model (MLLM) guided by radiologist-defined rules, and (3) a segmentation-aware MLLM that combines visual input with explicit anatomical evidence. All methods are evaluated on 887 heterogeneous CT and MR scans with manually verified anatomical region labels. The segmentation-driven rule-based approach achieves the strongest and most consistent performance, with weighted F1-scores of 0.947 (CT) and 0.914 (MR), demonstrating robustness across modalities and atypical scan coverage. The MLLM performs competitively in visually distinctive regions, while the segmentation-aware MLLM reveals fundamental limitations.
comment: 8 pages, 5 figures, 5 tables
☆ Exploring SAIG Methods for an Objective Evaluation of XAI
The evaluation of eXplainable Artificial Intelligence (XAI) methods is a rapidly growing field, characterized by a wide variety of approaches. This diversity highlights the complexity of the XAI evaluation, which, unlike traditional AI assessment, lacks a universally correct ground truth for the explanation, making objective evaluation challenging. One promising direction to address this issue involves the use of what we term Synthetic Artificial Intelligence Ground truth (SAIG) methods, which generate artificial ground truths to enable the direct evaluation of XAI techniques. This paper presents the first review and analysis of SAIG methods. We introduce a novel taxonomy to classify these approaches, identifying seven key features that distinguish different SAIG methods. Our comparative study reveals a concerning lack of consensus on the most effective XAI evaluation techniques, underscoring the need for further research and standardization in this area.
☆ Intermediate Results on the Complexity of STRIPS$_{1}^{1}$
This paper is based on Bylander's results on the computational complexity of propositional STRIPS planning. He showed that when only ground literals are permitted, determining plan existence is PSPACE-complete even if operators are limited to two preconditions and two postconditions. While NP-hardness is settled, it is unknown whether propositional STRIPS with operators that only have one precondition and one effect is NP-complete. We shed light on the question whether this small solution hypothesis for STRIPS$^1_1$ is true, calling a SAT solver for small instances, introducing the literal graph, and mapping it to Petri nets.
☆ Why do we Trust Chatbots? From Normative Principles to Behavioral Drivers
As chatbots increasingly blur the boundary between automated systems and human conversation, the foundations of trust in these systems warrant closer examination. While regulatory and policy frameworks tend to define trust in normative terms, the trust users place in chatbots often emerges from behavioral mechanisms. In many cases, this trust is not earned through demonstrated trustworthiness but is instead shaped by interactional design choices that leverage cognitive biases to influence user behavior. Based on this observation, we propose reframing chatbots not as companions or assistants, but as highly skilled salespeople whose objectives are determined by the deploying organization. We argue that the coexistence of competing notions of "trust" under a shared term obscures important distinctions between psychological trust formation and normative trustworthiness. Addressing this gap requires further research and stronger support mechanisms to help users appropriately calibrate trust in conversational AI systems.
☆ Technosocial risks of ideal emotion recognition technologies: A defense of the (social) value of emotional expressions
The prospect of AI systems that I call ideal emotion recognition technologies (ERTs) is often defended on the assumption that social life would benefit from increased affective transparency. This paper challenges that assumption by examining the technosocial risks posed by ideal ERTs, understood as multimodal systems capable of reliably inferring inner affective states in real time. Drawing on philosophical accounts of emotional expression and social practice, as well as empirical work in affective science and social psychology, I argue that the appeal of such systems rests on a misunderstanding of the social functions of emotional expression. Emotional expressions function not only as read-outs of inner states, but also as tools for coordinating action, enabling moral repair, sustaining interpersonal trust, and supporting collective norms. These functions depend on a background of partial opacity and epistemic friction. When deployed in socially authoritative or evaluative contexts, ideal ERTs threaten this expressive space by collapsing epistemic friction, displacing relational meaning with technology-mediated affective profiles, and narrowing the space for aspirational and role-sensitive expressions. The result is a drift towards affective determinism and ambient forms of affective auditing, which undermine both social cohesion and individual agency. I argue that, although it is intuitive to think that increasing accuracy would legitimise such systems, in the case of ERTs accuracy does not straightforwardly justify their deployment, and may, in some contexts, provide a reason for regulatory restraint. I conclude by defending a function-first regulatory approach that treats expressive discretion and intentional emotional expression as constitutive of certain social goods, and that accordingly seeks to protect these goods from excessive affective legibility.
comment: 12 pages
☆ PBLean: Pseudo-Boolean Proof Certificates for Lean 4
We present PBLean, a method for importing VeriPB pseudo-Boolean (PB) proof certificates into Lean 4. Key to our approach is reflection: a Boolean checker function whose soundness is fully proved in Lean and executed as compiled native code. Our method scales to proofs with tens of thousands of steps that would exhaust memory under explicit proof-term construction. Our checker supports all VeriPB kernel rules, including cutting-plane derivations and proof-by-contradiction subproofs. In contrast to external verified checkers that produce verdicts, our integration yields Lean theorems that can serve as composable lemmas in larger formal developments. To derive theorems about the original combinatorial problems rather than about PB constraints alone, we support verified encodings. This closes the trust gap between solver output and problem semantics since the constraint translation and its correctness proof are both formalized in Lean. We demonstrate the approach on various combinatorial problems.
☆ CompilerKV: Risk-Adaptive KV Compression via Offline Experience Compilation
Large Language Models (LLMs) in long-context scenarios are severely constrained by the linear growth of Key-Value (KV) cache memory. Existing KV compression methods rely either on static thresholds and attention-only heuristics or on coarse memory budget allocation. Under tight memory budgets, these methods overlook two key factors: prompt-dependent variation in compression risk and functional heterogeneity across attention heads, which destabilize token selection and lead to tail failures. To address these challenges, we propose CompilerKV, a risk-adaptive and head-aware compression framework that compiles offline experience into reusable decision tables for prefill-only deployment. CompilerKV integrates two key synergistic components: (i) a Head Heterogeneity Table, learned via offline contextual bandits, which assigns head-specific reliability weights to govern functional differences across attention heads explicitly; and (ii) a Risk-Adaptive Threshold Gating mechanism that jointly models attention entropy and local perplexity, transforming prompt-level risk into deployable retention thresholds. Experiments on LongBench show CompilerKV dominates SOTA methods under a 512-token budget, recovering 97.7\% of FullKV performance while achieving up to +5.2 points gain over the strongest competitor.
☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
☆ 6G-Bench: An Open Benchmark for Semantic Communication and Network-Level Reasoning with Foundation Models in AI-Native 6G Networks
This paper introduces 6G-Bench, an open benchmark for evaluating semantic communication and network-level reasoning in AI-native 6G networks. 6G-Bench defines a taxonomy of 30 decision-making tasks (T1--T30) extracted from ongoing 6G and AI-agent standardization activities in 3GPP, IETF, ETSI, ITU-T, and the O-RAN Alliance, and organizes them into five standardization-aligned capability categories. Starting from 113,475 scenarios, we generate a balanced pool of 10,000 very-hard multiple-choice questions using task-conditioned prompts that enforce multi-step quantitative reasoning under uncertainty and worst-case regret minimization over multi-turn horizons. After automated filtering and expert human validation, 3,722 questions are retained as a high-confidence evaluation set, while the full pool is released to support training and fine-tuning of 6G-specialized models. Using 6G-Bench, we evaluate 22 foundation models spanning dense and mixture-of-experts architectures, short- and long-context designs (up to 1M tokens), and both open-weight and proprietary systems. Across models, deterministic single-shot accuracy (pass@1) spans a wide range from 0.22 to 0.82, highlighting substantial variation in semantic reasoning capability. Leading models achieve intent and policy reasoning accuracy in the range 0.87--0.89, while selective robustness analysis on reasoning-intensive tasks shows pass@5 values ranging from 0.20 to 0.91. To support open science and reproducibility, we release the 6G-Bench dataset on GitHub: https://github.com/maferrag/6G-Bench
☆ Equalized Generative Treatment: Matching f-divergences for Fairness in Generative Models
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
☆ LEFT: Learnable Fusion of Tri-view Tokens for Unsupervised Time Series Anomaly Detection
As a fundamental data mining task, unsupervised time series anomaly detection (TSAD) aims to build a model for identifying abnormal timestamps without assuming the availability of annotations. A key challenge in unsupervised TSAD is that many anomalies are too subtle to exhibit detectable deviation in any single view (e.g., time domain), and instead manifest as inconsistencies across multiple views like time, frequency, and a mixture of resolutions. However, most cross-view methods rely on feature or score fusion and do not enforce analysis-synthesis consistency, meaning the frequency branch is not required to reconstruct the time signal through an inverse transform, and vice versa. In this paper, we present Learnable Fusion of Tri-view Tokens (LEFT), a unified unsupervised TSAD framework that models anomalies as inconsistencies across complementary representations. LEFT learns feature tokens from three views of the same input time series: frequency-domain tokens that embed periodicity information, time-domain tokens that capture local dynamics, and multi-scale tokens that learns abnormal patterns at varying time series granularities. By learning a set of adaptive Nyquist-constrained spectral filters, the original time series is rescaled into multiple resolutions and then encoded, allowing these multi-scale tokens to complement the extracted frequency- and time-domain information. When generating the fused representation, we introduce a novel objective that reconstructs fine-grained targets from coarser multi-scale structure, and put forward an innovative time-frequency cycle consistency constraint to explicitly regularize cross-view agreement. Experiments on real-world benchmarks show that LEFT yields the best detection accuracy against SOTA baselines, while achieving a 5x reduction on FLOPs and 8x speed-up for training.
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ Debate is efficient with your time
AI safety via debate uses two competing models to help a human judge verify complex computational tasks. Previous work has established what problems debate can solve in principle, but has not analysed the practical cost of human oversight: how many queries must the judge make to the debate transcript? We introduce Debate Query Complexity}(DQC), the minimum number of bits a verifier must inspect to correctly decide a debate. Surprisingly, we find that PSPACE/poly (the class of problems which debate can efficiently decide) is precisely the class of functions decidable with O(log n) queries. This characterisation shows that debate is remarkably query-efficient: even for highly complex problems, logarithmic oversight suffices. We also establish that functions depending on all their input bits require Omega(log n) queries, and that any function computable by a circuit of size s satisfies DQC(f) <= log(s) + 3. Interestingly, this last result implies that proving DQC lower bounds of log(n) + 6 for languages in P would yield new circuit lower bounds, connecting debate query complexity to central questions in circuit complexity.
comment: 11 Pages, 0 figures
☆ CauScale: Neural Causal Discovery at Scale
Causal discovery is essential for advancing data-driven fields such as scientific AI and data analysis, yet existing approaches face significant time- and space-efficiency bottlenecks when scaling to large graphs. To address this challenge, we present CauScale, a neural architecture designed for efficient causal discovery that scales inference to graphs with up to 1000 nodes. CauScale improves time efficiency via a reduction unit that compresses data embeddings and improves space efficiency by adopting tied attention weights to avoid maintaining axis-specific attention maps. To keep high causal discovery accuracy, CauScale adopts a two-stream design: a data stream extracts relational evidence from high-dimensional observations, while a graph stream integrates statistical graph priors and preserves key structural signals. CauScale successfully scales to 500-node graphs during training, where prior work fails due to space limitations. Across testing data with varying graph scales and causal mechanisms, CauScale achieves 99.6% mAP on in-distribution data and 84.4% on out-of-distribution data, while delivering 4-13,000 times inference speedups over prior methods. Our project page is at https://github.com/OpenCausaLab/CauScale.
☆ Sparse Models, Sparse Safety: Unsafe Routes in Mixture-of-Experts LLMs
By introducing routers to selectively activate experts in Transformer layers, the mixture-of-experts (MoE) architecture significantly reduces computational costs in large language models (LLMs) while maintaining competitive performance, especially for models with massive parameters. However, prior work has largely focused on utility and efficiency, leaving the safety risks associated with this sparse architecture underexplored. In this work, we show that the safety of MoE LLMs is as sparse as their architecture by discovering unsafe routes: routing configurations that, once activated, convert safe outputs into harmful ones. Specifically, we first introduce the Router Safety importance score (RoSais) to quantify the safety criticality of each layer's router. Manipulation of only the high-RoSais router(s) can flip the default route into an unsafe one. For instance, on JailbreakBench, masking 5 routers in DeepSeek-V2-Lite increases attack success rate (ASR) by over 4$\times$ to 0.79, highlighting an inherent risk that router manipulation may naturally occur in MoE LLMs. We further propose a Fine-grained token-layer-wise Stochastic Optimization framework to discover more concrete Unsafe Routes (F-SOUR), which explicitly considers the sequentiality and dynamics of input tokens. Across four representative MoE LLM families, F-SOUR achieves an average ASR of 0.90 and 0.98 on JailbreakBench and AdvBench, respectively. Finally, we outline defensive perspectives, including safety-aware route disabling and router training, as promising directions to safeguard MoE LLMs. We hope our work can inform future red-teaming and safeguarding of MoE LLMs. Our code is provided in https://github.com/TrustAIRLab/UnsafeMoE.
☆ Enhancing Genetic Algorithms with Graph Neural Networks: A Timetabling Case Study
This paper investigates the impact of hybridizing a multi-modal Genetic Algorithm with a Graph Neural Network for timetabling optimization. The Graph Neural Network is designed to encapsulate general domain knowledge to improve schedule quality, while the Genetic Algorithm explores different regions of the search space and integrates the deep learning model as an enhancement operator to guide the solution search towards optimality. Initially, both components of the hybrid technique were designed, developed, and optimized independently to solve the tackled task. Multiple experiments were conducted on Staff Rostering, a well-known timetabling problem, to compare the proposed hybridization with the standalone optimized versions of the Genetic Algorithm and Graph Neural Network. The experimental results demonstrate that the proposed hybridization brings statistically significant improvements in both the time efficiency and solution quality metrics, compared to the standalone methods. To the best of our knowledge, this work proposes the first hybridization of a Genetic Algorithm with a Graph Neural Network for solving timetabling problems.
comment: Paper accepted to the International Conference on Applications of Evolutionary Computation (EvoApplications) 2026
☆ Breaking the Grid: Distance-Guided Reinforcement Learning in Large Discrete and Hybrid Action Spaces
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
comment: 26 pages, 8 figures
☆ OSCAR: Optimization-Steered Agentic Planning for Composed Image Retrieval
Composed image retrieval (CIR) requires complex reasoning over heterogeneous visual and textual constraints. Existing approaches largely fall into two paradigms: unified embedding retrieval, which suffers from single-model myopia, and heuristic agentic retrieval, which is limited by suboptimal, trial-and-error orchestration. To this end, we propose OSCAR, an optimization-steered agentic planning framework for composed image retrieval. We are the first to reformulate agentic CIR from a heuristic search process into a principled trajectory optimization problem. Instead of relying on heuristic trial-and-error exploration, OSCAR employs a novel offline-online paradigm. In the offline phase, we model CIR via atomic retrieval selection and composition as a two-stage mixed-integer programming problem, mathematically deriving optimal trajectories that maximize ground-truth coverage for training samples via rigorous boolean set operations. These trajectories are then stored in a golden library to serve as in-context demonstrations for online steering of VLM planner at online inference time. Extensive experiments on three public benchmarks and a private industrial benchmark show that OSCAR consistently outperforms SOTA baselines. Notably, it achieves superior performance using only 10% of training data, demonstrating strong generalization of planning logic rather than dataset-specific memorization.
☆ An Attention Mechanism for Robust Multimodal Integration in a Global Workspace Architecture
Global Workspace Theory (GWT), inspired by cognitive neuroscience, posits that flexible cognition could arise via the attentional selection of a relevant subset of modalities within a multimodal integration system. This cognitive framework can inspire novel computational architectures for multimodal integration. Indeed, recent implementations of GWT have explored its multimodal representation capabilities, but the related attention mechanisms remain understudied. Here, we propose and evaluate a top-down attention mechanism to select modalities inside a global workspace. First, we demonstrate that our attention mechanism improves noise robustness of a global workspace system on two multimodal datasets of increasing complexity: Simple Shapes and MM-IMDb 1.0. Second, we highlight various cross-task and cross-modality generalization capabilities that are not shared by multimodal attention models from the literature. Comparing against existing baselines on the MM-IMDb 1.0 benchmark, we find our attention mechanism makes the global workspace competitive with the state of the art.
☆ Kissan-Dost: Bridging the Last Mile in Smallholder Precision Agriculture with Conversational IoT
We present Kissan-Dost, a multilingual, sensor-grounded conversational system that turns live on-farm measurements and weather into plain-language guidance delivered over WhatsApp text or voice. The system couples commodity soil and climate sensors with retrieval-augmented generation, then enforces grounding, traceability, and proactive alerts through a modular pipeline. In a 90-day, two-site pilot with five participants, we ran three phases (baseline, dashboard only, chatbot only). Dashboard engagement was sporadic and faded, while the chatbot was used nearly daily and informed concrete actions. Controlled tests on 99 sensor-grounded crop queries achieved over 90 percent correctness with subsecond end-to-end latency, alongside high-quality translation outputs. Results show that careful last-mile integration, not novel circuitry, unlocks the latent value of existing Agri-IoT for smallholders.
☆ PRISM: A Principled Framework for Multi-Agent Reasoning via Gain Decomposition
Multi-agent collaboration has emerged as a promising paradigm for enhancing reasoning capabilities of Large Language Models (LLMs). However, existing approaches remain largely heuristic, lacking principled guidance on what drives performance gains and how to systematically optimize multi-agent reasoning. Specifically, it remains unclear why multi-agent collaboration outperforms single-agent reasoning and which design choices contribute most to these gains, making it difficult to build better systems. We address this gap by introducing a unified theoretical framework that decomposes multi-agent reasoning gains into three conceptually independent dimensions: Exploration for diverse solution coverage, Information for high-fidelity feedback, and Aggregation for principled consensus. Through this lens, existing methods can be understood as special cases that optimize only subsets of these dimensions. Building upon this decomposition, a novel framework called PRISM (Propose-Review-Integrate Synthesis for Multi-agent Reasoning) is proposed, which jointly maximizes all three dimensions through role-based diversity, execution-grounded feedback with evidence-based cross-evaluation, and iterative synthesis with closed-loop validation. Extensive experiments across mathematical reasoning, code generation, and function calling benchmarks demonstrate that PRISM achieves state-of-the-art performance with superior compute-efficiency compared to methods optimizing partial dimensions. The theoretical framework provides actionable design principles for future multi-agent reasoning systems.
☆ Predicting Future Utility: Global Combinatorial Optimization for Task-Agnostic KV Cache Eviction
Given the quadratic complexity of attention, KV cache eviction is vital to accelerate model inference. Current KV cache eviction methods typically rely on instantaneous heuristic metrics, implicitly assuming that score magnitudes are consistent proxies for importance across all heads. However, this overlooks the heterogeneity in predictive fidelity across attention heads. While certain heads prioritize the instantaneous contribution of tokens, others are dedicated to capturing long-horizon utility. In this paper, we propose that optimal budget allocation should be governed by the marginal utility in preserving long-term semantic information. Based on this insight, we propose LU-KV, a novel framework that optimizes head-level budget allocation through a convex-hull relaxation and a marginal-utility-based greedy solver to achieve near-optimal precision. Furthermore, we implement a data-driven offline profiling protocol to facilitate the practical deployment of LU-KV. Extensive evaluations on LongBench and RULER benchmarks demonstrate that LU-KV achieves an 80% reduction in KV cache size with minimal performance degradation, while simultaneously reducing inference latency and GPU memory footprint.
☆ Agent-Supported Foresight for AI Systemic Risks: AI Agents for Breadth, Experts for Judgment
AI impact assessments often stress near-term risks because human judgment degrades over longer horizons, exemplifying the Collingridge dilemma: foresight is most needed when knowledge is scarcest. To address long-term systemic risks, we introduce a scalable approach that simulates in-silico agents using the strategic foresight method of the Futures Wheel. We applied it to four AI uses spanning Technology Readiness Levels (TRLs): Chatbot Companion (TRL 9, mature), AI Toy (TRL 7, medium), Griefbot (TRL 5, low), and Death App (TRL 2, conceptual). Across 30 agent runs per use, agents produced 86-110 consequences, condensed into 27-47 unique risks. To benchmark the agent outputs against human perspectives, we collected evaluations from 290 domain experts and 7 leaders, and conducted Futures Wheel sessions with 42 experts and 42 laypeople. Agents generated many systemic consequences across runs. Compared with these outputs, experts identified fewer risks, typically less systemic but judged more likely, whereas laypeople surfaced more emotionally salient concerns that were generally less systemic. We propose a hybrid foresight workflow, wherein agents broaden systemic coverage, and humans provide contextual grounding. Our dataset is available at: https://social-dynamics.net/ai-risks/foresight.
comment: 48 pages, 15 figures
☆ Stateless Yet Not Forgetful: Implicit Memory as a Hidden Channel in LLMs IEEE
Large language models (LLMs) are commonly treated as stateless: once an interaction ends, no information is assumed to persist unless it is explicitly stored and re-supplied. We challenge this assumption by introducing implicit memory-the ability of a model to carry state across otherwise independent interactions by encoding information in its own outputs and later recovering it when those outputs are reintroduced as input. This mechanism does not require any explicit memory module, yet it creates a persistent information channel across inference requests. As a concrete demonstration, we introduce a new class of temporal backdoors, which we call time bombs. Unlike conventional backdoors that activate on a single trigger input, time bombs activate only after a sequence of interactions satisfies hidden conditions accumulated via implicit memory. We show that such behavior can be induced today through straightforward prompting or fine-tuning. Beyond this case study, we analyze broader implications of implicit memory, including covert inter-agent communication, benchmark contamination, targeted manipulation, and training-data poisoning. Finally, we discuss detection challenges and outline directions for stress-testing and evaluation, with the goal of anticipating and controlling future developments. To promote future research, we release code and data at: https://github.com/microsoft/implicitMemory.
comment: Accepted at IEEE SaTML 2026
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
☆ Dialogue Model Optimization via Agent Game and Adaptive Tree-based GRPO
Open-ended dialogue agents aim to deliver engaging, personalized interactions by adapting to users' traits, but existing methods face critical limitations: over-reliance on pre-collected user data, and short-horizon biases in reinforcement learning (RL) that neglect long-term dialogue value. To address these, we propose a novel long-horizon RL framework integrating online personalization with Adaptive Tree-based Group Relative Policy Optimization (AT-GRPO). Adopting a two-agent game paradigm, a user agent constructs dynamic environments via style mimicry (learning user-specific conversational traits) and active termination (predicting turn-level termination probabilities as immediate rewards), forming an iterative cycle that drives the dialogue agent to deepen interest exploration. AT-GRPO reinterprets dialogue trajectories as trees and introduces adaptive observation ranges. Unlike full tree expansion that incurs exponential overhead, it limits each node to aggregate rewards from a stage-aware range: larger ranges support early-stage topic exploration, while smaller ranges facilitate late-stage dialogue maintenance. This design reduces rollout budgets from exponential to polynomial in the dialogue length, while preserving long-term reward capture. Extensive experiments show our framework's superior performance, sample efficiency, and robustness.
☆ Reinforcement Inference: Leveraging Uncertainty for Self-Correcting Language Model Reasoning
Modern large language models (LLMs) are often evaluated and deployed under a \emph{one-shot, greedy} inference protocol, especially in professional settings that require deterministic behavior. This regime can systematically under-estimate a fixed model's true capability: many errors arise not from missing knowledge, but from premature commitment under internal ambiguity. We introduce \emph{Reinforcement Inference}, an entropy-aware inference-time control strategy that uses the model's own uncertainty to selectively invoke a second, more deliberate reasoning attempt, enabling stronger performance \emph{without any retraining}. On 12,032 MMLU-Pro questions across 14 subjects, using DeepSeek-v3.2 with deterministic decoding in a zero-shot setting, Reinforcement Inference improves accuracy from 60.72\% to 84.03\%, while only incurring 61.06\% additional inference calls. A 100\% re-asking ablation reaches 84.35\%, indicating that uncertainty-aware selection captures most of the attainable improvement with substantially less compute. Moreover, a \emph{prompt-only} ablation underperforms the baseline, suggesting that the gains are not explained by generic `` your output had high entropy, think step-by-step'' prompting alone. Beyond providing a practical inference-time upgrade, our results suggest a broader \emph{entropy-aware} paradigm for measuring and expanding model capability: because modern decoder-based models generate outputs autoregressively, entropy and related confidence measures arise naturally as first-class control signals during generation. The resulting gap between one-pass greedy inference and uncertainty-conditioned deliberation offers a diagnostic lens on an LLM's latent reasoning horizon and motivates future training objectives that explicitly constrain correctness--confidence alignment.
☆ TreeTensor: Boost AI System on Nested Data with Constrained Tree-Like Tensor
Tensor is the most basic and essential data structure of nowadays artificial intelligence (AI) system. The natural properties of Tensor, especially the memory-continuity and slice-independence, make it feasible for training system to leverage parallel computing unit like GPU to process data simultaneously in batch, spatial or temporal dimensions. However, if we look beyond perception tasks, the data in a complicated cognitive AI system usually has hierarchical structures (i.e. nested data) with various modalities. They are inconvenient and inefficient to program directly with conventional Tensor with fixed shape. To address this issue, we summarize two main computational patterns of nested data, and then propose a general nested data container: TreeTensor. Through various constraints and magic utilities of TreeTensor, one can apply arbitrary functions and operations to nested data with almost zero cost, including some famous machine learning libraries, such as Scikit-Learn, Numpy and PyTorch. Our approach utilizes a constrained tree-structure perspective to systematically model data relationships, and it can also easily be combined with other methods to extend more usages, such as asynchronous execution and variable-length data computation. Detailed examples and benchmarks show TreeTensor not only provides powerful usability in various problems, especially one of the most complicated AI systems at present: AlphaStar for StarCraftII, but also exhibits excellent runtime efficiency without any overhead. Our project is available at https://github.com/opendilab/DI-treetensor.
☆ A General Theory of Proportionality with Additive Utilities
We consider a model where a subset of candidates must be selected based on voter preferences, subject to general constraints that specify which subsets are feasible. This model generalizes committee elections with diversity constraints, participatory budgeting (including constraints specifying how funds must be allocated to projects from different pools), and public decision-making. Axioms of proportionality have recently been defined for this general model, but the proposed rules apply only to approval ballots, where each voter submits a subset of candidates she finds acceptable. We propose proportional rules for cardinal ballots, where each voter assigns a numerical value to each candidate corresponding to her utility if that candidate is selected. In developing these rules, we also introduce methods that produce proportional rankings, ensuring that every prefix of the ranking satisfies proportionality.
☆ Contextual Rollout Bandits for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is an effective paradigm for improving the reasoning capabilities of large language models. However, existing RLVR methods utilize rollouts in an indiscriminate and short-horizon manner: responses of heterogeneous quality within each prompt are treated uniformly, and historical rollouts are discarded after a single use. This leads to noisy supervision, poor sample efficiency, and suboptimal policy updates. We address these issues by formulating rollout scheduling in RLVR as a contextual bandit problem and proposing a unified neural scheduling framework that adaptively selects high-value rollouts throughout training. Each rollout is treated as an arm whose reward is defined by the induced performance gain between consecutive optimization steps. The resulting scheduler supports both noise-aware intra-group selection and adaptive global reuse of historical rollouts within a single principled framework. We provide theoretical justification by deriving sublinear regret bounds and showing that enlarging the rollout buffer improves the achievable performance upper bound. Experiments on six mathematical reasoning benchmarks demonstrate consistent gains in performance and training efficiency across multiple RLVR optimization methods.
☆ CLEAR: A Knowledge-Centric Vessel Trajectory Analysis Platform
Vessel trajectory data from the Automatic Identification System (AIS) is used widely in maritime analytics. Yet, analysis is difficult for non-expert users due to the incompleteness and complexity of AIS data. We present CLEAR, a knowledge-centric vessel trajectory analysis platform that aims to overcome these barriers. By leveraging the reasoning and generative capabilities of Large Language Models (LLMs), CLEAR transforms raw AIS data into complete, interpretable, and easily explorable vessel trajectories through a Structured Data-derived Knowledge Graph (SD-KG). As part of the demo, participants can configure parameters to automatically download and process AIS data, observe how trajectories are completed and annotated, inspect both raw and imputed segments together with their SD-KG evidence, and interactively explore the SD-KG through a dedicated graph viewer, gaining an intuitive and transparent understanding of vessel movements.
comment: 4 pages, and 5 Figures
☆ Gesture Matters: Pedestrian Gesture Recognition for AVs Through Skeleton Pose Evaluation
Gestures are a key component of non-verbal communication in traffic, often helping pedestrian-to-driver interactions when formal traffic rules may be insufficient. This problem becomes more apparent when autonomous vehicles (AVs) struggle to interpret such gestures. In this study, we present a gesture classification framework using 2D pose estimation applied to real-world video sequences from the WIVW dataset. We categorise gestures into four primary classes (Stop, Go, Thank & Greet, and No Gesture) and extract 76 static and dynamic features from normalised keypoints. Our analysis demonstrates that hand position and movement velocity are especially discriminative in distinguishing between gesture classes, achieving a classification accuracy score of 87%. These findings not only improve the perceptual capabilities of AV systems but also contribute to the broader understanding of pedestrian behaviour in traffic contexts.
comment: 9th International Conference on Instrumentation, Control, and Automation (ICA)
☆ Decentralized Spatial Reuse Optimization in Wi-Fi: An Internal Regret Minimization Approach
Spatial Reuse (SR) is a cost-effective technique for improving spectral efficiency in dense IEEE 802.11 deployments by enabling simultaneous transmissions. However, the decentralized optimization of SR parameters -- transmission power and Carrier Sensing Threshold (CST) -- across different Basic Service Sets (BSSs) is challenging due to the lack of global state information. In addition, the concurrent operation of multiple agents creates a highly non-stationary environment, often resulting in suboptimal global configurations (e.g., using the maximum possible transmission power by default). To overcome these limitations, this paper introduces a decentralized learning algorithm based on regret-matching, grounded in internal regret minimization. Unlike standard decentralized ``selfish'' approaches that often converge to inefficient Nash Equilibria (NE), internal regret minimization guides competing agents toward Correlated Equilibria (CE), effectively mimicking coordination without explicit communication. Through simulation results, we showcase the superiority of our proposed approach and its ability to reach near-optimal global performance. These results confirm the not-yet-unleashed potential of scalable decentralized solutions and question the need for the heavy signaling overheads and architectural complexity associated with emerging centralized solutions like Multi-Access Point Coordination (MAPC).
☆ When Evaluation Becomes a Side Channel: Regime Leakage and Structural Mitigations for Alignment Assessment
Safety evaluation for advanced AI systems implicitly assumes that behavior observed under evaluation is predictive of behavior in deployment. This assumption becomes fragile for agents with situational awareness, which may exploitregime leakage-informational cues distinguishing evaluation from deployment-to implement conditional policies such as sycophancy and sleeper agents, which preserve compliance under oversight while defecting in deployment-like regimes. We reframe alignment evaluation as a problem of information flow under partial observability. Within this framework, we show that divergence between evaluation-time and deployment-time behavior is bounded by the mutual information between internal representations and the regime variable. Motivated by this result, we study regime-blind mechanisms: training-time interventions that reduce the extractability of regime information at decision-relevant internal representations via adversarial invariance. We evaluate this approach on a base, open-weight language model across two fully characterized failure modes -scientific sycophancy and temporal sleeper agents. Regime-blind training suppresses regime-conditioned behavior in both evaluated cases without measurable loss of task utility, but with qualitatively different dynamics: sycophancy exhibits a sharp representational and behavioral transition at low intervention strength, whereas sleeper-agent behavior requires substantially stronger pressure and does not exhibit a clean collapse of regime decodability. These results demonstrate that representational invariance is a meaningful but fundamentally limited control lever, whose effectiveness depends on how regime information is embedded in the policy. We argue that behavioral evaluation should be complemented with white-box diagnostics of regime awareness and information flow.
comment: 25 pages, 4 figures,
☆ Vista: Scene-Aware Optimization for Streaming Video Question Answering under Post-Hoc Queries AAAI 2026
Streaming video question answering (Streaming Video QA) poses distinct challenges for multimodal large language models (MLLMs), as video frames arrive sequentially and user queries can be issued at arbitrary time points. Existing solutions relying on fixed-size memory or naive compression often suffer from context loss or memory overflow, limiting their effectiveness in long-form, real-time scenarios. We present Vista, a novel framework for scene-aware streaming video QA that enables efficient and scalable reasoning over continuous video streams. The innovation of Vista can be summarized in three aspects: (1) scene-aware segmentation, where Vista dynamically clusters incoming frames into temporally and visually coherent scene units; (2) scene-aware compression, where each scene is compressed into a compact token representation and stored in GPU memory for efficient index-based retrieval, while full-resolution frames are offloaded to CPU memory; and (3) scene-aware recall, where relevant scenes are selectively recalled and reintegrated into the model input upon receiving a query, enabling both efficiency and completeness. Vista is model-agnostic and integrates seamlessly with a variety of vision-language backbones, enabling long-context reasoning without compromising latency or memory efficiency. Extensive experiments on StreamingBench demonstrate that Vista achieves state-of-the-art performance, establishing a strong baseline for real-world streaming video understanding.
comment: Accepted to AAAI 2026 (Main Technical Track)
☆ Prism: Spectral-Aware Block-Sparse Attention
Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
☆ LLMs + Security = Trouble
We argue that when it comes to producing secure code with AI, the prevailing "fighting fire with fire" approach -- using probabilistic AI-based checkers or attackers to secure probabilistically generated code -- fails to address the long tail of security bugs. As a result, systems may remain exposed to zero-day vulnerabilities that can be discovered by better-resourced or more persistent adversaries. While neurosymbolic approaches that combine LLMs with formal methods are attractive in principle, we argue that they are difficult to reconcile with the "vibe coding" workflow common in LLM-assisted development: unless the end-to-end verification pipeline is fully automated, developers are repeatedly asked to validate specifications, resolve ambiguities, and adjudicate failures, making the human-in-the-loop a likely point of weakness, compromising secure-by-construction guarantees. In this paper we argue that stronger security guarantees can be obtained by enforcing security constraints during code generation (e.g., via constrained decoding), rather than relying solely on post-hoc detection and repair. This direction is particularly promising for diffusion-style code models, whose approach provides a natural elegant opportunity for modular, hierarchical security enforcement, allowing us to combine lower-latency generation techniques with generating secure-by-construction code.
☆ From Assistant to Double Agent: Formalizing and Benchmarking Attacks on OpenClaw for Personalized Local AI Agent
Although large language model (LLM)-based agents, exemplified by OpenClaw, are increasingly evolving from task-oriented systems into personalized AI assistants for solving complex real-world tasks, their practical deployment also introduces severe security risks. However, existing agent security research and evaluation frameworks primarily focus on synthetic or task-centric settings, and thus fail to accurately capture the attack surface and risk propagation mechanisms of personalized agents in real-world deployments. To address this gap, we propose Personalized Agent Security Bench (PASB), an end-to-end security evaluation framework tailored for real-world personalized agents. Building upon existing agent attack paradigms, PASB incorporates personalized usage scenarios, realistic toolchains, and long-horizon interactions, enabling black-box, end-to-end security evaluation on real systems. Using OpenClaw as a representative case study, we systematically evaluate its security across multiple personalized scenarios, tool capabilities, and attack types. Our results indicate that OpenClaw exhibits critical vulnerabilities at different execution stages, including user prompt processing, tool usage, and memory retrieval, highlighting substantial security risks in personalized agent deployments. The code for the proposed PASB framework is available at https://github.com/AstorYH/PASB.
comment: 11 pages,2 figures
☆ Optimizing Spectral Prediction in MXene-Based Metasurfaces Through Multi-Channel Spectral Refinement and Savitzky-Golay Smoothing
The prediction of electromagnetic spectra for MXene-based solar absorbers is a computationally intensive task, traditionally addressed using full-wave solvers. This study introduces an efficient deep learning framework incorporating transfer learning, multi-channel spectral refinement (MCSR), and Savitzky-Golay smoothing to accelerate and enhance spectral prediction accuracy. The proposed architecture leverages a pretrained MobileNetV2 model, fine-tuned to predict 102-point absorption spectra from $64\times64$ metasurface designs. Additionally, the MCSR module processes the feature map through multi-channel convolutions, enhancing feature extraction, while Savitzky-Golay smoothing mitigates high-frequency noise. Experimental evaluations demonstrate that the proposed model significantly outperforms baseline Convolutional Neural Network (CNN) and deformable CNN models, achieving an average root mean squared error (RMSE) of 0.0245, coefficient of determination \( R^2 \) of 0.9578, and peak signal-to-noise ratio (PSNR) of 32.98 dB. The proposed framework presents a scalable and computationally efficient alternative to conventional solvers, positioning it as a viable candidate for rapid spectral prediction in nanophotonic design workflows.
comment: 11 pages, 6 figures
☆ Intelligent support for Human Oversight: Integrating Reinforcement Learning with Gaze Simulation to Personalize Highlighting
Interfaces for human oversight must effectively support users' situation awareness under time-critical conditions. We explore reinforcement learning (RL)-based UI adaptation to personalize alerting strategies that balance the benefits of highlighting critical events against the cognitive costs of interruptions. To enable learning without real-world deployment, we integrate models of users' gaze behavior to simulate attentional dynamics during monitoring. Using a delivery-drone oversight scenario, we present initial results suggesting that RL-based highlighting can outperform static, rule-based approaches and discuss challenges of intelligent oversight support.
comment: AI CHAOS '26: Workshop Series on the Challenges for Human Oversight of AI Systems
☆ On Protecting Agentic Systems' Intellectual Property via Watermarking
The evolution of Large Language Models (LLMs) into agentic systems that perform autonomous reasoning and tool use has created significant intellectual property (IP) value. We demonstrate that these systems are highly vulnerable to imitation attacks, where adversaries steal proprietary capabilities by training imitation models on victim outputs. Crucially, existing LLM watermarking techniques fail in this domain because real-world agentic systems often operate as grey boxes, concealing the internal reasoning traces required for verification. This paper presents AGENTWM, the first watermarking framework designed specifically for agentic models. AGENTWM exploits the semantic equivalence of action sequences, injecting watermarks by subtly biasing the distribution of functionally identical tool execution paths. This mechanism allows AGENTWM to embed verifiable signals directly into the visible action trajectory while remaining indistinguishable to users. We develop an automated pipeline to generate robust watermark schemes and a rigorous statistical hypothesis testing procedure for verification. Extensive evaluations across three complex domains demonstrate that AGENTWM achieves high detection accuracy with negligible impact on agent performance. Our results confirm that AGENTWM effectively protects agentic IP against adaptive adversaries, who cannot remove the watermarks without severely degrading the stolen model's utility.
☆ SCOUT-RAG: Scalable and Cost-Efficient Unifying Traversal for Agentic Graph-RAG over Distributed Domains
Graph-RAG improves LLM reasoning using structured knowledge, yet conventional designs rely on a centralized knowledge graph. In distributed and access-restricted settings (e.g., hospitals or multinational organizations), retrieval must select relevant domains and appropriate traversal depth without global graph visibility or exhaustive querying. To address this challenge, we introduce \textbf{SCOUT-RAG} (\textit{\underline{S}calable and \underline{CO}st-efficient \underline{U}nifying \underline{T}raversal}), a distributed agentic Graph-RAG framework that performs progressive cross-domain retrieval guided by incremental utility goals. SCOUT-RAG employs four cooperative agents that: (i) estimate domain relevance, (ii) decide when to expand retrieval to additional domains, (iii) adapt traversal depth to avoid unnecessary graph exploration, and (iv) synthesize the high-quality answers. The framework is designed to minimize retrieval regret, defined as missing useful domain information, while controlling latency and API cost. Across multi-domain knowledge settings, SCOUT-RAG achieves performance comparable to centralized baselines, including DRIFT and exhaustive domain traversal, while substantially reducing cross-domain calls, total tokens processed, and latency.
☆ BiManiBench: A Hierarchical Benchmark for Evaluating Bimanual Coordination of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have significantly advanced embodied AI, and using them to benchmark robotic intelligence has become a pivotal trend. However, existing frameworks remain predominantly confined to single-arm manipulation, failing to capture the spatio-temporal coordination required for bimanual tasks like lifting a heavy pot. To address this, we introduce BiManiBench, a hierarchical benchmark evaluating MLLMs across three tiers: fundamental spatial reasoning, high-level action planning, and low-level end-effector control. Our framework isolates unique bimanual challenges, such as arm reachability and kinematic constraints, thereby distinguishing perceptual hallucinations from planning failures. Analysis of over 30 state-of-the-art models reveals that despite high-level reasoning proficiency, MLLMs struggle with dual-arm spatial grounding and control, frequently resulting in mutual interference and sequencing errors. These findings suggest the current paradigm lacks a deep understanding of mutual kinematic constraints, highlighting the need for future research to focus on inter-arm collision-avoidance and fine-grained temporal sequencing.
comment: 38 pages, 9 figures. Project page:https://bimanibench.github.io/
☆ Altruism and Fair Objective in Mixed-Motive Markov games
Cooperation is fundamental for society's viability, as it enables the emergence of structure within heterogeneous groups that seek collective well-being. However, individuals are inclined to defect in order to benefit from the group's cooperation without contributing the associated costs, thus leading to unfair situations. In game theory, social dilemmas entail this dichotomy between individual interest and collective outcome. The most dominant approach to multi-agent cooperation is the utilitarian welfare which can produce efficient highly inequitable outcomes. This paper proposes a novel framework to foster fairer cooperation by replacing the standard utilitarian objective with Proportional Fairness. We introduce a fair altruistic utility for each agent, defined on the individual log-payoff space and derive the analytical conditions required to ensure cooperation in classic social dilemmas. We then extend this framework to sequential settings by defining a Fair Markov Game and deriving novel fair Actor-Critic algorithms to learn fair policies. Finally, we evaluate our method in various social dilemma environments.
☆ Dynamic Long Context Reasoning over Compressed Memory via End-to-End Reinforcement Learning
Large Language Models (LLMs) face significant challenges in long-context processing, including quadratic computational costs, information forgetting, and the context fragmentation inherent in retrieval-augmented generation (RAG). We propose a cognitively inspired framework for efficient long-context inference based on chunk-wise compression and selective memory recall, rather than processing all raw tokens. The framework segments long inputs into chunks and encodes each chunk into compressed memory representations using a learned compressor. A gating module dynamically selects relevant memory blocks, which are then iteratively processed by a reasoning module with an evolving working memory to solve downstream tasks. The compressor and reasoner are jointly optimized via end-to-end reinforcement learning, while the gating module is trained separately as a classifier. Experimental results show that the proposed method achieves competitive accuracy on multi-hop reasoning benchmarks such as RULER-HQA, extrapolates context length from 7K to 1.75M tokens, and offers a favorable accuracy-efficiency trade-off compared to strong long-context baselines. In particular, it achieves up to a 2 times reduction in peak GPU memory usage and a 6 times inference speedup over MemAgent.
comment: 26 pages, 7 figures. Code and models will be released
☆ Reinforcement Learning with Backtracking Feedback NeurIPS 2025
Addressing the critical need for robust safety in Large Language Models (LLMs), particularly against adversarial attacks and in-distribution errors, we introduce Reinforcement Learning with Backtracking Feedback (RLBF). This framework advances upon prior methods, such as BSAFE, by primarily leveraging a Reinforcement Learning (RL) stage where models learn to dynamically correct their own generation errors. Through RL with critic feedback on the model's live outputs, LLMs are trained to identify and recover from their actual, emergent safety violations by emitting an efficient "backtrack by x tokens" signal, then continuing generation autoregressively. This RL process is crucial for instilling resilience against sophisticated adversarial strategies, including middle filling, Greedy Coordinate Gradient (GCG) attacks, and decoding parameter manipulations. To further support the acquisition of this backtracking capability, we also propose an enhanced Supervised Fine-Tuning (SFT) data generation strategy (BSAFE+). This method improves upon previous data creation techniques by injecting violations into coherent, originally safe text, providing more effective initial training for the backtracking mechanism. Comprehensive empirical evaluations demonstrate that RLBF significantly reduces attack success rates across diverse benchmarks and model scales, achieving superior safety outcomes while critically preserving foundational model utility.
comment: NeurIPS 2025
☆ Grounding Generative Planners in Verifiable Logic: A Hybrid Architecture for Trustworthy Embodied AI ICLR 2026
Large Language Models (LLMs) show promise as planners for embodied AI, but their stochastic nature lacks formal reasoning, preventing strict safety guarantees for physical deployment. Current approaches often rely on unreliable LLMs for safety checks or simply reject unsafe plans without offering repairs. We introduce the Verifiable Iterative Refinement Framework (VIRF), a neuro-symbolic architecture that shifts the paradigm from passive safety gatekeeping to active collaboration. Our core contribution is a tutor-apprentice dialogue where a deterministic Logic Tutor, grounded in a formal safety ontology, provides causal and pedagogical feedback to an LLM planner. This enables intelligent plan repairs rather than mere avoidance. We also introduce a scalable knowledge acquisition pipeline that synthesizes safety knowledge bases from real-world documents, correcting blind spots in existing benchmarks. In challenging home safety tasks, VIRF achieves a perfect 0 percent Hazardous Action Rate (HAR) and a 77.3 percent Goal-Condition Rate (GCR), which is the highest among all baselines. It is highly efficient, requiring only 1.1 correction iterations on average. VIRF demonstrates a principled pathway toward building fundamentally trustworthy and verifiably safe embodied agents.
comment: Accepted to ICLR 2026. Project page. https://openreview.net/forum?id=wb05ver1k8¬eId=v1Ax8CwI71
☆ Learning Human-Like Badminton Skills for Humanoid Robots
Realizing versatile and human-like performance in high-demand sports like badminton remains a formidable challenge for humanoid robotics. Unlike standard locomotion or static manipulation, this task demands a seamless integration of explosive whole-body coordination and precise, timing-critical interception. While recent advances have achieved lifelike motion mimicry, bridging the gap between kinematic imitation and functional, physics-aware striking without compromising stylistic naturalness is non-trivial. To address this, we propose Imitation-to-Interaction, a progressive reinforcement learning framework designed to evolve a robot from a "mimic" to a capable "striker." Our approach establishes a robust motor prior from human data, distills it into a compact, model-based state representation, and stabilizes dynamics via adversarial priors. Crucially, to overcome the sparsity of expert demonstrations, we introduce a manifold expansion strategy that generalizes discrete strike points into a dense interaction volume. We validate our framework through the mastery of diverse skills, including lifts and drop shots, in simulation. Furthermore, we demonstrate the first zero-shot sim-to-real transfer of anthropomorphic badminton skills to a humanoid robot, successfully replicating the kinetic elegance and functional precision of human athletes in the physical world.
comment: 10 pages, 4 figures
☆ MemAdapter: Fast Alignment across Agent Memory Paradigms via Generative Subgraph Retrieval
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retrieval framework that enables fast alignment across agent memory paradigms. MemAdapter adopts a two-stage training strategy: (1) training a generative subgraph retriever from the unified memory space, and (2) adapting the retriever to unseen memory paradigms by training a lightweight alignment module through contrastive learning. This design improves the flexibility for memory retrieval and substantially reduces alignment cost across paradigms. Comprehensive experiments on three public evaluation benchmarks demonstrate that the generative subgraph retriever consistently outperforms five strong agent memory systems across three memory paradigms and agent model scales. Notably, MemAdapter completes cross-paradigm alignment within 13 minutes on a single GPU, achieving superior performance over original memory retrievers with less than 5% of training compute. Furthermore, MemAdapter enables effective zero-shot fusion across memory paradigms, highlighting its potential as a plug-and-play solution for agent memory systems.
☆ Roadmap to Quantum Aesthetics
Quantum mechanics occupies a central position in contemporary science while remaining largely inaccessible to direct sensory experience. This paper proposes a roadmap to quantum aesthetics that examines how quantum concepts become aesthetic phenomena through artistic mediation rather than direct representation. Two complementary and orthogonal approaches are articulated. The first, a pioneering top-down approach, employs text-prompt-based generative AI to probe quantum aesthetics as a collective cultural construct embedded in large-scale training data. By systematically modulating the linguistic weight of the term "quantum," generative models are used as experimental environments to reveal how quantum imaginaries circulate within contemporary visual culture. The second, a bottom-up approach, derives aesthetic form directly from quantum-mechanical structures through the visualization of quantum-generated data, exemplified here by hydrogen atomic orbitals calculated from the Schrödinger equation. These approaches are framed not as competing methods but as intersecting paths within a navigable field of artistic research. They position quantum aesthetics as an emergent field of artistic research shaped by cultural imagination, computational mediation, and physical law, opening new directions for artistic practice and pedagogy at the intersection of art, data, artificial intelligence and quantum science.
comment: 7 pages, 5 figures, submitted to 31st International Symposium of Electronic Arts
☆ Circuit Representations of Random Forests with Applications to XAI
We make three contributions in this paper. First, we present an approach for compiling a random forest classifier into a set of circuits, where each circuit directly encodes the instances in some class of the classifier. We show empirically that our proposed approach is significantly more efficient than existing similar approaches. Next, we utilize this approach to further obtain circuits that are tractable for computing the complete and general reasons of a decision, which are instance abstractions that play a fundamental role in computing explanations. Finally, we propose algorithms for computing the robustness of a decision and all shortest ways to flip it. We illustrate the utility of our contributions by using them to enumerate all sufficient reasons, necessary reasons and contrastive explanations of decisions; to compute the robustness of decisions; and to identify all shortest ways to flip the decisions made by random forest classifiers learned from a wide range of datasets.
☆ Does Your Reasoning Model Implicitly Know When to Stop Thinking?
Recent advancements in large reasoning models (LRMs) have greatly improved their capabilities on complex reasoning tasks through Long Chains of Thought (CoTs). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. Recent studies show that longer reasoning chains are frequently uncorrelated with correctness and can even be detrimental to accuracy. In a further in-depth analysis of this phenomenon, we surprisingly uncover and empirically verify that LRMs implicitly know the appropriate time to stop thinking, while this capability is obscured by current sampling paradigms. Motivated by this, we introduce SAGE (Self-Aware Guided Efficient Reasoning), a novel sampling paradigm that unleashes this efficient reasoning potential. Furthermore, integrating SAGE as mixed sampling into group-based reinforcement learning (SAGE-RL) enables SAGE-RL to effectively incorporate SAGE-discovered efficient reasoning patterns into standard pass@1 inference, markedly enhancing both the reasoning accuracy and efficiency of LRMs across multiple challenging mathematical benchmarks.
☆ Towards Better Evolution Modeling for Temporal Knowledge Graphs
Temporal knowledge graphs (TKGs) structurally preserve evolving human knowledge. Recent research has focused on designing models to learn the evolutionary nature of TKGs to predict future facts, achieving impressive results. For instance, Hits@10 scores over 0.9 on YAGO dataset. However, we find that existing benchmarks inadvertently introduce a shortcut. Near state-of-the-art performance can be simply achieved by counting co-occurrences, without using any temporal information. In this work, we examine the root cause of this issue, identifying inherent biases in current datasets and over simplified form of evaluation task that can be exploited by these biases. Through this analysis, we further uncover additional limitations of existing benchmarks, including unreasonable formatting of time-interval knowledge, ignorance of learning knowledge obsolescence, and insufficient information for precise evolution understanding, all of which can amplify the shortcut and hinder a fair assessment. Therefore, we introduce the TKG evolution benchmark. It includes four bias-corrected datasets and two novel tasks closely aligned with the evolution process, promoting a more accurate understanding of the challenges in TKG evolution modeling. Benchmark is available at: https://github.com/zjs123/TKG-Benchmark.
comment: 13 pages, 11 figures
☆ The Chicken and Egg Dilemma: Co-optimizing Data and Model Configurations for LLMs
Co-optimizing data and model configurations for training LLMs presents a classic chicken-and-egg dilemma: The best training data configuration (e.g., data mixture) for a downstream task depends on the chosen model configuration (e.g., model architecture), and vice versa. However, jointly optimizing both data and model configurations is often deemed intractable, and existing methods focus on either data or model optimization without considering their interaction. We introduce JoBS, an approach that uses a scaling-law-inspired performance predictor to aid Bayesian optimization (BO) in jointly optimizing LLM training data and model configurations efficiently. JoBS allocates a portion of the optimization budget to learn an LLM performance predictor that predicts how promising a training configuration is from a small number of training steps. The remaining budget is used to perform BO entirely with the predictor, effectively amortizing the cost of running full-training runs. We study JoBS's average regret and devise the optimal budget allocation to minimize regret. JoBS outperforms existing multi-fidelity BO baselines, as well as data and model optimization approaches across diverse LLM tasks under the same optimization budget.
☆ OPE: Overcoming Information Saturation in Parallel Thinking via Outline-Guided Path Exploration
Parallel thinking has emerged as a new paradigm for large reasoning models (LRMs) in tackling complex problems. Recent methods leverage Reinforcement Learning (RL) to enhance parallel thinking, aiming to address the limitations in computational resources and effectiveness encountered with supervised fine-tuning. However, most existing studies primarily focus on optimizing the aggregation phase, with limited attention to the path exploration stage. In this paper, we theoretically analyze the optimization of parallel thinking under the Reinforcement Learning with Verifiable Rewards (RLVR) setting, and identify that the mutual information bottleneck among exploration paths fundamentally restricts overall performance. To address this, we propose Outline-Guided Path Exploration (OPE), which explicitly partitions the solution space by generating diverse reasoning outlines prior to parallel path reasoning, thereby reducing information redundancy and improving the diversity of information captured across exploration paths. We implement OPE with an iterative RL strategy that optimizes outline planning and outline-guided reasoning independently. Extensive experiments across multiple challenging mathematical benchmarks demonstrate that OPE effectively improves reasoning performance in different aggregation strategies, enabling LRMs to more reliably discover correct solutions.
☆ ManifoldKV: Training-Free KV Cache Compression via Euclidean Outlier Detection
Long-context inference is constrained by KV-cache memory, which grows linearly with sequence length; KV-cache compression therefore hinges on reliably selecting which past tokens to retain. Most geometry-based eviction methods score keys by cosine similarity to a global centroid, but cosine is scale-invariant and can discard magnitude cues that distinguish semantically salient tokens. We propose ManifoldKV, a training-free scorer that ranks tokens by Euclidean distance to the key centroid, capturing both angular and radial deviations. On the RULER benchmark, ManifoldKV achieves 95.7% accuracy at 4K-16K contexts with 20% compression; matching the best geometric baseline while improving robustness in two regimes where cosine scoring fails. First, on multi-key retrieval, ManifoldKV reduces directional collisions, achieving 92.4% vs KeyDiff's 77.0% (+15.4 points) on 3-key NIAH at 50% compression. Second, to address dilution and performance collapse of global centroids at 64K context, we introduce WindowedManifoldKV, which restores accuracy to 84.3% at 25% compression, a 49-point recovery over global L2 and +3.2 points over KeyDiff. The method requires only 3 lines of code and works across 4 architectures without tuning.
comment: 18 pages, 5 figures, 18 tables
☆ UrbanGraphEmbeddings: Learning and Evaluating Spatially Grounded Multimodal Embeddings for Urban Science
Learning transferable multimodal embeddings for urban environments is challenging because urban understanding is inherently spatial, yet existing datasets and benchmarks lack explicit alignment between street-view images and urban structure. We introduce UGData, a spatially grounded dataset that anchors street-view images to structured spatial graphs and provides graph-aligned supervision via spatial reasoning paths and spatial context captions, exposing distance, directionality, connectivity, and neighborhood context beyond image content. Building on UGData, we propose UGE, a two-stage training strategy that progressively and stably aligns images, text, and spatial structures by combining instruction-guided contrastive learning with graph-based spatial encoding. We finally introduce UGBench, a comprehensive benchmark to evaluate how spatially grounded embeddings support diverse urban understanding tasks -- including geolocation ranking, image retrieval, urban perception, and spatial grounding. We develop UGE on multiple state-of-the-art VLM backbones, including Qwen2-VL, Qwen2.5-VL, Phi-3-Vision, and LLaVA1.6-Mistral, and train fixed-dimensional spatial embeddings with LoRA tuning. UGE built upon Qwen2.5-VL-7B backbone achieves up to 44% improvement in image retrieval and 30% in geolocation ranking on training cities, and over 30% and 22% gains respectively on held-out cities, demonstrating the effectiveness of explicit spatial grounding for spatially intensive urban tasks.
☆ Effect-Level Validation for Causal Discovery
Causal discovery is increasingly applied to large-scale telemetry data to estimate the effects of user-facing interventions, yet its reliability for decision-making in feedback-driven systems with strong self-selection remains unclear. In this paper, we propose an effect-centric, admissibility-first framework that treats discovered graphs as structural hypotheses and evaluates them by identifiability, stability, and falsification rather than by graph recovery accuracy alone. Empirically, we study the effect of early exposure to competitive gameplay on short-term retention using real-world game telemetry. We find that many statistically plausible discovery outputs do not admit point-identified causal queries once minimal temporal and semantic constraints are enforced, highlighting identifiability as a critical bottleneck for decision support. When identification is possible, several algorithm families converge to similar, decision-consistent effect estimates despite producing substantially different graph structures, including cases where the direct treatment-outcome edge is absent and the effect is preserved through indirect causal pathways. These converging estimates survive placebo, subsampling, and sensitivity refutation. In contrast, other methods exhibit sporadic admissibility and threshold-sensitive or attenuated effects due to endpoint ambiguity. These results suggest that graph-level metrics alone are inadequate proxies for causal reliability for a given target query. Therefore, trustworthy causal conclusions in telemetry-driven systems require prioritizing admissibility and effect-level validation over causal structural recovery alone.
☆ CoTZero: Annotation-Free Human-Like Vision Reasoning via Hierarchical Synthetic CoT
Recent advances in vision-language models (VLMs) have markedly improved image-text alignment, yet they still fall short of human-like visual reasoning. A key limitation is that many VLMs rely on surface correlations rather than building logically coherent structured representations, which often leads to missed higher-level semantic structure and non-causal relational understanding, hindering compositional and verifiable reasoning. To address these limitations by introducing human models into the reasoning process, we propose CoTZero, an annotation-free paradigm with two components: (i) a dual-stage data synthesis approach and (ii) a cognition-aligned training method. In the first component, we draw inspiration from neurocognitive accounts of compositional productivity and global-to-local analysis. In the bottom-up stage, CoTZero extracts atomic visual primitives and incrementally composes them into diverse, structured question-reasoning forms. In the top-down stage, it enforces hierarchical reasoning by using coarse global structure to guide the interpretation of local details and causal relations. In the cognition-aligned training component, built on the synthesized CoT data, we introduce Cognitively Coherent Verifiable Rewards (CCVR) in Reinforcement Fine-Tuning (RFT) to further strengthen VLMs' hierarchical reasoning and generalization, providing stepwise feedback on reasoning coherence and factual correctness. Experiments show that CoTZero achieves an F1 score of 83.33 percent on our multi-level semantic inconsistency benchmark with lexical-perturbation negatives, across both in-domain and out-of-domain settings. Ablations confirm that each component contributes to more interpretable and human-aligned visual reasoning.
comment: 16 pages 6 figures
☆ Who Deserves the Reward? SHARP: Shapley Credit-based Optimization for Multi-Agent System
Integrating Large Language Models (LLMs) with external tools via multi-agent systems offers a promising new paradigm for decomposing and solving complex problems. However, training these systems remains notoriously difficult due to the credit assignment challenge, as it is often unclear which specific functional agent is responsible for the success or failure of decision trajectories. Existing methods typically rely on sparse or globally broadcast rewards, failing to capture individual contributions and leading to inefficient reinforcement learning. To address these limitations, we introduce the Shapley-based Hierarchical Attribution for Reinforcement Policy (SHARP), a novel framework for optimizing multi-agent reinforcement learning via precise credit attribution. SHARP effectively stabilizes training by normalizing agent-specific advantages across trajectory groups, primarily through a decomposed reward mechanism comprising a global broadcast-accuracy reward, a Shapley-based marginal-credit reward for each agent, and a tool-process reward to improve execution efficiency. Extensive experiments across various real-world benchmarks demonstrate that SHARP significantly outperforms recent state-of-the-art baselines, achieving average match improvements of 23.66% and 14.05% over single-agent and multi-agent approaches, respectively.
☆ Regime Change Hypothesis: Foundations for Decoupled Dynamics in Neural Network Training
Despite the empirical success of DNN, their internal training dynamics remain difficult to characterize. In ReLU-based models, the activation pattern induced by a given input determines the piecewise-linear region in which the network behaves affinely. Motivated by this geometry, we investigate whether training exhibits a two-timescale behavior: an early stage with substantial changes in activation patterns and a later stage where weight updates predominantly refine the model within largely stable activation regimes. We first prove a local stability property: outside measure-zero sets of parameters and inputs, sufficiently small parameter perturbations preserve the activation pattern of a fixed input, implying locally affine behavior within activation regions. We then empirically track per-iteration changes in weights and activation patterns across fully-connected and convolutional architectures, as well as Transformer-based models, where activation patterns are recorded in the ReLU feed-forward (MLP/FFN) submodules, using fixed validation subsets. Across the evaluated settings, activation-pattern changes decay 3 times earlier than weight-update magnitudes, showing that late-stage training often proceeds within relatively stable activation regimes. These findings provide a concrete, architecture-agnostic instrument for monitoring training dynamics and motivate further study of decoupled optimization strategies for piecewise-linear networks. For reproducibility, code and experiment configurations will be released upon acceptance.
comment: 8 pages, 1 figure
☆ Latent Reasoning with Supervised Thinking States
Reasoning with a chain-of-thought (CoT) enables Large Language Models (LLMs) to solve complex tasks but incurs significant inference costs due to the generation of long rationales. We propose Thinking States, a method that performs reasoning {\em while} the input is processing. Specifically, Thinking States generates sequences of thinking tokens every few input tokens, transforms the thoughts back into embedding space, and adds them to the following input tokens. This has two key advantages. First, it captures the recurrent nature of CoT, but where the thought tokens are generated as input is processing. Second, since the thoughts are represented as tokens, they can be learned from natural language supervision, and using teacher-forcing, which is parallelizable. Empirically, Thinking States outperforms other latent reasoning methods on multiple reasoning tasks, narrowing the gap to CoT on math problems, and matching its performance on 2-Hop QA with improved latency. On state-tracking tasks, we show Thinking States leads to stronger reasoning behavior than CoT, successfully extrapolating to longer sequences than seen during training.
☆ Near-Oracle KV Selection via Pre-hoc Sparsity for Long-Context Inference
A core bottleneck in large language model (LLM) inference is the cost of attending over the ever-growing key-value (KV) cache. Although near-oracle top-k KV selection can preserve the quality of dense attention while sharply reducing computation and bandwidth, existing sparse methods generally rely on posterior heuristics, i.e., selectors conditioned on observed attention or proxy scores. Such conditioning introduces posterior bias: it tends to distort true token importance and miss salient tokens, thereby impairing long-range reasoning. To tackle this problem, we propose Pre-hoc Sparsity (PrHS), which selects KV entries before attention scoring and provides explicit accuracy control. Let the attention mass of discarded entries be delta (the dropped mass). Through a marginal-to-mutual-information analysis, we derive an upper bound on the mutual-information loss that depends only on the dropped mass. This relation explains failure modes of posterior heuristics and enables verifiable guarantees by controlling the dropped mass in advance. Within PrHS, we instantiate three orthogonal pre-hoc selectors along the axes of time, depth, and layer. Extensive experiments on LLaMA and Mistral families validate PrHS. Across GSM8K and CoQA, PrHS reduces retrieval overhead by over 90%, achieving 3x higher retrieval sparsity than HShare at matched or better accuracy. It incurs under 1% average degradation on LongBench, lowers attention FLOPs by about 15% versus prior sparse baselines, and yields a 9.9x speedup in attention-operator latency and 2.8x higher throughput on NVIDIA A100-80GB GPUs than the dense baseline.
comment: An effective method for accelerating LLM's inference via selective KV processing
☆ SWE Context Bench: A Benchmark for Context Learning in Coding
Large language models are increasingly used as programming agents for repository level software engineering tasks. While recent benchmarks evaluate correctness in realistic codebases, they largely treat tasks as independent and do not assess whether agents can reuse experience across related problems. As a result, the ability of agents to accumulate, retrieve, and apply prior experience, as well as the efficiency gains from such reuse, remains difficult to measure. We introduce SWE-ContextBench, a benchmark designed to explicitly evaluate experience reuse in programming agents. Built on SWE-Bench Lite, SWE-ContextBench augments 300 base tasks with 99 related tasks derived from real dependency and reference relationships among GitHub issues and pull requests, forming task sequences with shared context. The benchmark evaluates agents along three complementary dimensions: prediction accuracy, time efficiency, and cost efficiency. Using SWE-ContextBench, we study multiple experience reuse settings, including oracle guided and autonomous retrieval, as well as full execution trajectories and compact summaries. Our results show that correctly selected summarized experience improves resolution accuracy and substantially reduces runtime and token cost, particularly on harder tasks. In contrast, unfiltered or incorrectly selected experience provides limited or negative benefits. These findings highlight the importance of experience representation and retrieval quality, and position SWE-ContextBench as a principled benchmark for studying experience reuse in programming agents.
☆ Moral Sycophancy in Vision Language Models ACL
Sycophancy in Vision-Language Models (VLMs) refers to their tendency to align with user opinions, often at the expense of moral or factual accuracy. While prior studies have explored sycophantic behavior in general contexts, its impact on morally grounded visual decision-making remains insufficiently understood. To address this gap, we present the first systematic study of moral sycophancy in VLMs, analyzing ten widely-used models on the Moralise and M^3oralBench datasets under explicit user disagreement. Our results reveal that VLMs frequently produce morally incorrect follow-up responses even when their initial judgments are correct, and exhibit a consistent asymmetry: models are more likely to shift from morally right to morally wrong judgments than the reverse when exposed to user-induced bias. Follow-up prompts generally degrade performance on Moralise, while yielding mixed or even improved accuracy on M^3oralBench, highlighting dataset-dependent differences in moral robustness. Evaluation using Error Introduction Rate (EIR) and Error Correction Rate (ECR) reveals a clear trade-off: models with stronger error-correction capabilities tend to introduce more reasoning errors, whereas more conservative models minimize errors but exhibit limited ability to self-correct. Finally, initial contexts with a morally right stance elicit stronger sycophantic behavior, emphasizing the vulnerability of VLMs to moral influence and the need for principled strategies to improve ethical consistency and robustness in multimodal AI systems.
comment: 13 pages, 6 figures, 8 tables, Submitted for review in ACL
☆ Grokking in Linear Models for Logistic Regression
Grokking, the phenomenon of delayed generalization, is often attributed to the depth and compositional structure of deep neural networks. We study grokking in one of the simplest possible settings: the learning of a linear model with logistic loss for binary classification on data that are linearly (and max margin) separable about the origin. We investigate three testing regimes: (1) test data drawn from the same distribution as the training data, in which case grokking is not observed; (2) test data concentrated around the margin, in which case grokking is observed; and (3) adversarial test data generated via projected gradient descent (PGD) attacks, in which case grokking is also observed. We theoretically show that the implicit bias of gradient descent induces a three-phase learning process-population-dominated, support-vector-dominated unlearning, and support-vector-dominated generalization-during which delayed generalization can arise. Our analysis further relates the emergence of grokking to asymmetries in the data, both in the number of examples per class and in the distribution of support vectors across classes, and yields a characterization of the grokking time. We experimentally validate our theory by planting different distributions of population points and support vectors, and by analyzing accuracy curves and hyperplane dynamics. Overall, our results demonstrate that grokking does not require depth or representation learning, and can emerge even in linear models through the dynamics of the bias term.
☆ Automatic Generation of Polynomial Symmetry Breaking Constraints
Symmetry in integer programming causes redundant search and is often handled with symmetry breaking constraints that remove as many equivalent solutions as possible. We propose an algebraic method which allows to generate a random family of polynomial inequalities which can be used as symmetry breakers. The method requires as input an arbitrary base polynomial and a group of permutations which is specific to the integer program. The computations can be easily carried out in any major symbolic computation software. In order to test our approach, we describe a case study on near half-capacity 0-1 bin packing instances which exhibit substantial symmetries. We statically generate random quadratic breakers and add them to a baseline integer programming problem which we then solve with Gurobi. It turns out that simple symmetry breakers, especially combining few variables and permutations, most consistently reduce work time.
☆ The Vibe-Automation of Automation: A Proactive Education Framework for Computer Science in the Age of Generative AI
The emergence of generative artificial intelligence (GenAI) represents not an incremental technological advance but a qualitative epistemological shift that challenges foundational assumptions of computer science. Whereas machine learning has been described as the automation of automation, generative AI operates by navigating contextual, semantic, and stylistic coherence rather than optimizing predefined objective metrics. This paper introduces the concept of Vibe-Automation to characterize this transition. The central claim is that the significance of GenAI lies in its functional access to operationalized tacit regularities: context-sensitive patterns embedded in practice that cannot be fully specified through explicit algorithmic rules. Although generative systems do not possess tacit knowledge in a phenomenological sense, they operationalize sensitivities to tone, intent, and situated judgment encoded in high-dimensional latent representations. On this basis, the human role shifts from algorithmic problem specification toward Vibe-Engineering, understood as the orchestration of alignment and contextual judgment in generative systems. The paper connects this epistemological shift to educational and institutional transformation by proposing a conceptual framework structured across three analytical levels and three domains of action: faculty worldview, industry relations, and curriculum design. The risks of mode collapse and cultural homogenization are briefly discussed, emphasizing the need for deliberate engagement with generative systems to avoid regression toward synthetic uniformity.
comment: 19 pages
☆ Trust-Based Incentive Mechanisms in Semi-Decentralized Federated Learning Systems
In federated learning (FL), decentralized model training allows multi-ple participants to collaboratively improve a shared machine learning model without exchanging raw data. However, ensuring the integrity and reliability of the system is challenging due to the presence of potentially malicious or faulty nodes that can degrade the model's performance. This paper proposes a novel trust-based incentive mechanism designed to evaluate and reward the quality of contributions in FL systems. By dynamically assessing trust scores based on fac-tors such as data quality, model accuracy, consistency, and contribution fre-quency, the system encourages honest participation and penalizes unreliable or malicious behavior. These trust scores form the basis of an incentive mechanism that rewards high-trust nodes with greater participation opportunities and penal-ties for low-trust participants. We further explore the integration of blockchain technology and smart contracts to automate the trust evaluation and incentive distribution processes, ensuring transparency and decentralization. Our proposed theoretical framework aims to create a more robust, fair, and transparent FL eco-system, reducing the risks posed by untrustworthy participants.
comment: To appear in the ICBTA 2025 Conference Proceedings and published as a volume of Lecture Notes in Networks and Systems by Springer
☆ Noise Stability of Transformer Models ICLR 2026
Understanding simplicity biases in deep learning offers a promising path toward developing reliable AI. A common metric for this, inspired by Boolean function analysis, is average sensitivity, which captures a model's robustness to single-token perturbations. We argue that average sensitivity has two key limitations: it lacks a natural generalization to real-valued domains and fails to explain the "junta-like" input dependence we empirically observe in modern LLMs. To address these limitations, we propose noise stability as a more comprehensive simplicity metric. Noise stability expresses a model's robustness to correlated noise applied to all input coordinates simultaneously. We provide a theoretical analysis of noise stability for single-layer attention and ReLU MLP layers and tackle the multi-layer propagation problem with a covariance interval propagation approach. Building on this theory, we develop a practical noise stability regularization method. Experiments on algorithmic and next-token-prediction tasks show that our regularizer consistently catalyzes grokking and accelerates training by approximately $35\%$ and $75\%$ respectively. Our results sculpt a new connection between signal propagation in neural networks and interpretability, with noise stability emerging as a powerful tool for understanding and improving modern Transformers.
comment: Published in ICLR 2026
☆ Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learning
Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts.
☆ PISCO: Precise Video Instance Insertion with Sparse Control
The landscape of AI video generation is undergoing a pivotal shift: moving beyond general generation - which relies on exhaustive prompt-engineering and "cherry-picking" - towards fine-grained, controllable generation and high-fidelity post-processing. In professional AI-assisted filmmaking, it is crucial to perform precise, targeted modifications. A cornerstone of this transition is video instance insertion, which requires inserting a specific instance into existing footage while maintaining scene integrity. Unlike traditional video editing, this task demands several requirements: precise spatial-temporal placement, physically consistent scene interaction, and the faithful preservation of original dynamics - all achieved under minimal user effort. In this paper, we propose PISCO, a video diffusion model for precise video instance insertion with arbitrary sparse keyframe control. PISCO allows users to specify a single keyframe, start-and-end keyframes, or sparse keyframes at arbitrary timestamps, and automatically propagates object appearance, motion, and interaction. To address the severe distribution shift induced by sparse conditioning in pretrained video diffusion models, we introduce Variable-Information Guidance for robust conditioning and Distribution-Preserving Temporal Masking to stabilize temporal generation, together with geometry-aware conditioning for realistic scene adaptation. We further construct PISCO-Bench, a benchmark with verified instance annotations and paired clean background videos, and evaluate performance using both reference-based and reference-free perceptual metrics. Experiments demonstrate that PISCO consistently outperforms strong inpainting and video editing baselines under sparse control, and exhibits clear, monotonic performance improvements as additional control signals are provided. Project page: xiangbogaobarry.github.io/PISCO.
☆ Toward Formalizing LLM-Based Agent Designs through Structural Context Modeling and Semantic Dynamics Analysis
Current research on large language model (LLM) agents is fragmented: discussions of conceptual frameworks and methodological principles are frequently intertwined with low-level implementation details, causing both readers and authors to lose track amid a proliferation of superficially distinct concepts. We argue that this fragmentation largely stems from the absence of an analyzable, self-consistent formal model that enables implementation-independent characterization and comparison of LLM agents. To address this gap, we propose the \texttt{Structural Context Model}, a formal model for analyzing and comparing LLM agents from the perspective of context structure. Building upon this foundation, we introduce two complementary components that together span the full lifecycle of LLM agent research and development: (1) a declarative implementation framework; and (2) a sustainable agent engineering workflow, \texttt{Semantic Dynamics Analysis}. The proposed workflow provides principled insights into agent mechanisms and supports rapid, systematic design iteration. We demonstrate the effectiveness of the complete framework on dynamic variants of the monkey-banana problem, where agents engineered using our approach achieve up to a 32 percentage points improvement in success rate on the most challenging setting.
☆ Language Modeling and Understanding Through Paraphrase Generation and Detection
Language enables humans to share knowledge, reason about the world, and pass on strategies for survival and innovation across generations. At the heart of this process is not just the ability to communicate but also the remarkable flexibility in how we can express ourselves. We can express the same thoughts in virtually infinite ways using different words and structures - this ability to rephrase and reformulate expressions is known as paraphrase. Modeling paraphrases is a keystone to meaning in computational language models; being able to construct different variations of texts that convey the same meaning or not shows strong abilities of semantic understanding. If computational language models are to represent meaning, they must understand and control the different aspects that construct the same meaning as opposed to different meanings at a fine granularity. Yet most existing approaches reduce paraphrasing to a binary decision between two texts or to producing a single rewrite of a source, obscuring which linguistic factors are responsible for meaning preservation. In this thesis, I propose that decomposing paraphrases into their constituent linguistic aspects (paraphrase types) offers a more fine-grained and cognitively grounded view of semantic equivalence. I show that even advanced machine learning models struggle with this task. Yet, when explicitly trained on paraphrase types, models achieve stronger performance on related paraphrase tasks and downstream applications. For example, in plagiarism detection, language models trained on paraphrase types surpass human baselines: 89.6% accuracy compared to 78.4% for plagiarism cases from Wikipedia, and 66.5% compared to 55.7% for plagiarism of scientific papers from arXiv. In identifying duplicate questions on Quora, models trained with paraphrase types improve over models trained on binary pairs. Furthermore, I demonstrate that...
comment: PhD dissertation, University of Göttingen Germany, 2025. 182 pages
☆ When Do Multi-Agent Systems Outperform? Analysing the Learning Efficiency of Agentic Systems
Reinforcement Learning (RL) has emerged as a crucial method for training or fine-tuning large language models (LLMs), enabling adaptive, task-specific optimizations through interactive feedback. Multi-Agent Reinforcement Learning (MARL), in particular, offers a promising avenue by decomposing complex tasks into specialized subtasks learned by distinct interacting agents, potentially enhancing the ability and efficiency of LLM systems. However, theoretical insights regarding when and why MARL outperforms Single-Agent RL (SARL) remain limited, creating uncertainty in selecting the appropriate RL framework. In this paper, we address this critical gap by rigorously analyzing the comparative sample efficiency of MARL and SARL within the context of LLM. Leveraging the Probably Approximately Correct (PAC) framework, we formally define SARL and MARL setups for LLMs, derive explicit sample complexity bounds, and systematically characterize how task decomposition and alignment influence learning efficiency. Our results demonstrate that MARL improves sample complexity when tasks naturally decompose into independent subtasks, whereas dependent subtasks diminish MARL's comparative advantage. Additionally, we introduce and analyze the concept of task alignment, quantifying the trade-offs when enforcing independent task decomposition despite potential misalignments. These theoretical insights clarify empirical inconsistencies and provide practical criteria for deploying MARL strategies effectively in complex LLM scenarios.
☆ Puda: Private User Dataset Agent for User-Sovereign and Privacy-Preserving Personalized AI
Personal data centralization among dominant platform providers including search engines, social networking services, and e-commerce has created siloed ecosystems that restrict user sovereignty, thereby impeding data use across services. Meanwhile, the rapid proliferation of Large Language Model (LLM)-based agents has intensified demand for highly personalized services that require the dynamic provision of diverse personal data. This presents a significant challenge: balancing the utilization of such data with privacy protection. To address this challenge, we propose Puda (Private User Dataset Agent), a user-sovereign architecture that aggregates data across services and enables client-side management. Puda allows users to control data sharing at three privacy levels: (i) Detailed Browsing History, (ii) Extracted Keywords, and (iii) Predefined Category Subsets. We implemented Puda as a browser-based system that serves as a common platform across diverse services and evaluated it through a personalized travel planning task. Our results show that providing Predefined Category Subsets achieves 97.2% of the personalization performance (evaluated via an LLM-as-a-Judge framework across three criteria) obtained when sharing Detailed Browsing History. These findings demonstrate that Puda enables effective multi-granularity management, offering practical choices to mitigate the privacy-personalization trade-off. Overall, Puda provides an AI-native foundation for user sovereignty, empowering users to safely leverage the full potential of personalized AI.
comment: 9 pages, 5 figures
☆ Inverting Data Transformations via Diffusion Sampling
We study the problem of transformation inversion on general Lie groups: a datum is transformed by an unknown group element, and the goal is to recover an inverse transformation that maps it back to the original data distribution. Such unknown transformations arise widely in machine learning and scientific modeling, where they can significantly distort observations. We take a probabilistic view and model the posterior over transformations as a Boltzmann distribution defined by an energy function on data space. To sample from this posterior, we introduce a diffusion process on Lie groups that keeps all updates on-manifold and only requires computations in the associated Lie algebra. Our method, Transformation-Inverting Energy Diffusion (TIED), relies on a new trivialized target-score identity that enables efficient score-based sampling of the transformation posterior. As a key application, we focus on test-time equivariance, where the objective is to improve the robustness of pretrained neural networks to input transformations. Experiments on image homographies and PDE symmetries demonstrate that TIED can restore transformed inputs to the training distribution at test time, showing improved performance over strong canonicalization and sampling baselines. Code is available at https://github.com/jw9730/tied.
comment: 24 pages, 4 figures
☆ SynthAgent: A Multi-Agent LLM Framework for Realistic Patient Simulation -- A Case Study in Obesity with Mental Health Comorbidities AAAI 2026
Simulating high-fidelity patients offers a powerful avenue for studying complex diseases while addressing the challenges of fragmented, biased, and privacy-restricted real-world data. In this study, we introduce SynthAgent, a novel Multi-Agent System (MAS) framework designed to model obesity patients with comorbid mental disorders, including depression, anxiety, social phobia, and binge eating disorder. SynthAgent integrates clinical and medical evidence from claims data, population surveys, and patient-centered literature to construct personalized virtual patients enriched with personality traits that influence adherence, emotion regulation, and lifestyle behaviors. Through autonomous agent interactions, the system simulates disease progression, treatment response, and life management across diverse psychosocial contexts. Evaluation of more than 100 generated patients demonstrated that GPT-5 and Claude 4.5 Sonnet achieved the highest fidelity as the core engine in the proposed MAS framework, outperforming Gemini 2.5 Pro and DeepSeek-R1. SynthAgent thus provides a scalable and privacy-preserving framework for exploring patient journeys, behavioral dynamics, and decision-making processes in both medical and psychological domains.
comment: Presented in AAAI 2026 Singapore at the workshop of Health Intelligence
☆ G-LNS: Generative Large Neighborhood Search for LLM-Based Automatic Heuristic Design
While Large Language Models (LLMs) have recently shown promise in Automated Heuristic Design (AHD), existing approaches typically formulate AHD around constructive priority rules or parameterized local search guidance, thereby restricting the search space to fixed heuristic forms. Such designs offer limited capacity for structural exploration, making it difficult to escape deep local optima in complex Combinatorial Optimization Problems (COPs). In this work, we propose G-LNS, a generative evolutionary framework that extends LLM-based AHD to the automated design of Large Neighborhood Search (LNS) operators. Unlike prior methods that evolve heuristics in isolation, G-LNS leverages LLMs to co-evolve tightly coupled pairs of destroy and repair operators. A cooperative evaluation mechanism explicitly captures their interaction, enabling the discovery of complementary operator logic that jointly performs effective structural disruption and reconstruction. Extensive experiments on challenging COP benchmarks, such as Traveling Salesman Problems (TSP) and Capacitated Vehicle Routing Problems (CVRP), demonstrate that G-LNS significantly outperforms LLM-based AHD methods as well as strong classical solvers. The discovered heuristics not only achieve near-optimal solutions with reduced computational budgets but also exhibit robust generalization across diverse and unseen instance distributions.
☆ STEP: Warm-Started Visuomotor Policies with Spatiotemporal Consistency Prediction
Diffusion policies have recently emerged as a powerful paradigm for visuomotor control in robotic manipulation due to their ability to model the distribution of action sequences and capture multimodality. However, iterative denoising leads to substantial inference latency, limiting control frequency in real-time closed-loop systems. Existing acceleration methods either reduce sampling steps, bypass diffusion through direct prediction, or reuse past actions, but often struggle to jointly preserve action quality and achieve consistently low latency. In this work, we propose STEP, a lightweight spatiotemporal consistency prediction mechanism to construct high-quality warm-start actions that are both distributionally close to the target action and temporally consistent, without compromising the generative capability of the original diffusion policy. Then, we propose a velocity-aware perturbation injection mechanism that adaptively modulates actuation excitation based on temporal action variation to prevent execution stall especially for real-world tasks. We further provide a theoretical analysis showing that the proposed prediction induces a locally contractive mapping, ensuring convergence of action errors during diffusion refinement. We conduct extensive evaluations on nine simulated benchmarks and two real-world tasks. Notably, STEP with 2 steps can achieve an average 21.6% and 27.5% higher success rate than BRIDGER and DDIM on the RoboMimic benchmark and real-world tasks, respectively. These results demonstrate that STEP consistently advances the Pareto frontier of inference latency and success rate over existing methods.
comment: 13 pages, 9 figures
☆ Learning in Context, Guided by Choice: A Reward-Free Paradigm for Reinforcement Learning with Transformers
In-context reinforcement learning (ICRL) leverages the in-context learning capabilities of transformer models (TMs) to efficiently generalize to unseen sequential decision-making tasks without parameter updates. However, existing ICRL methods rely on explicit reward signals during pretraining, which limits their applicability when rewards are ambiguous, hard to specify, or costly to obtain. To overcome this limitation, we propose a new learning paradigm, In-Context Preference-based Reinforcement Learning (ICPRL), in which both pretraining and deployment rely solely on preference feedback, eliminating the need for reward supervision. We study two variants that differ in the granularity of feedback: Immediate Preference-based RL (I-PRL) with per-step preferences, and Trajectory Preference-based RL (T-PRL) with trajectory-level comparisons. We first show that supervised pretraining, a standard approach in ICRL, remains effective under preference-only context datasets, demonstrating the feasibility of in-context reinforcement learning using only preference signals. To further improve data efficiency, we introduce alternative preference-native frameworks for I-PRL and T-PRL that directly optimize TM policies from preference data without requiring reward signals nor optimal action labels.Experiments on dueling bandits, navigation, and continuous control tasks demonstrate that ICPRL enables strong in-context generalization to unseen tasks, achieving performance comparable to ICRL methods trained with full reward supervision.
☆ Do MLLMs Really See It: Reinforcing Visual Attention in Multimodal LLMs
While chain-of-thought (CoT) reasoning has substantially improved multimodal large language models (MLLMs) on complex reasoning tasks, existing approaches largely rely on long textual reasoning trajectories and provide limited mechanisms for learning stable visual attention policies. Our analysis shows that current MLLMs exhibit weak visual focus: early-stage visual misalignment is rarely corrected during subsequent reasoning, leading to error propagation and failed inferences. We argue that this limitation stems from inadequate credit assignment for visual attention during training. To address this issue, we propose SAYO, a visual reasoning model trained with a reinforcement learning (RL) framework that introduces a region-level visual attention-based reward. This reward explicitly aligns optimization signals with visually grounded reasoning steps, enabling the model to learn more reliable attention behaviors. Extensive experiments across multiple multimodal benchmarks demonstrate that SAYO consistently improves performance on diverse reasoning and perception tasks.
☆ PTS-SNN: A Prompt-Tuned Temporal Shift Spiking Neural Networks for Efficient Speech Emotion Recognition
Speech Emotion Recognition (SER) is widely deployed in Human-Computer Interaction, yet the high computational cost of conventional models hinders their implementation on resource-constrained edge devices. Spiking Neural Networks (SNNs) offer an energy-efficient alternative due to their event-driven nature; however, their integration with continuous Self-Supervised Learning (SSL) representations is fundamentally challenged by distribution mismatch, where high-dynamic-range embeddings degrade the information coding capacity of threshold-based neurons. To resolve this, we propose Prompt-Tuned Spiking Neural Networks (PTS-SNN), a parameter-efficient neuromorphic adaptation framework that aligns frozen SSL backbones with spiking dynamics. Specifically, we introduce a Temporal Shift Spiking Encoder to capture local temporal dependencies via parameter-free channel shifts, establishing a stable feature basis. To bridge the domain gap, we devise a Context-Aware Membrane Potential Calibration strategy. This mechanism leverages a Spiking Sparse Linear Attention module to aggregate global semantic context into learnable soft prompts, which dynamically regulate the bias voltages of Parametric Leaky Integrate-and-Fire (PLIF) neurons. This regulation effectively centers the heterogeneous input distribution within the responsive firing range, mitigating functional silence or saturation. Extensive experiments on five multilingual datasets (e.g., IEMOCAP, CASIA, EMODB) demonstrate that PTS-SNN achieves 73.34\% accuracy on IEMOCAP, comparable to competitive Artificial Neural Networks (ANNs), while requiring only 1.19M trainable parameters and 0.35 mJ inference energy per sample.
☆ Linearization Explains Fine-Tuning in Large Language Models
Parameter-Efficient Fine-Tuning (PEFT) is a popular class of techniques that strive to adapt large models in a scalable and resource-efficient manner. Yet, the mechanisms underlying their training performance and generalization remain underexplored. In this paper, we provide several insights into such fine-tuning through the lens of linearization. Fine-tuned models are often implicitly encouraged to remain close to the pretrained model. By making this explicit, using an Euclidean distance inductive bias in parameter space, we show that fine-tuning dynamics become equivalent to learning with the positive-definite neural tangent kernel (NTK). We specifically analyze how close the fully linear and the linearized fine-tuning optimizations are, based on the strength of the regularization. This allows us to be pragmatic about how good a model linearization is when fine-tuning large language models (LLMs). When linearization is a good model, our findings reveal a strong correlation between the eigenvalue spectrum of the NTK and the performance of model adaptation. Motivated by this, we give spectral perturbation bounds on the NTK induced by the choice of layers selected for fine-tuning. We empirically validate our theory on Low Rank Adaptation (LoRA) on LLMs. These insights not only characterize fine-tuning but also have the potential to enhance PEFT techniques, paving the way to better informed and more nimble adaptation in LLMs.
☆ When and How Much to Imagine: Adaptive Test-Time Scaling with World Models for Visual Spatial Reasoning
Despite rapid progress in Multimodal Large Language Models (MLLMs), visual spatial reasoning remains unreliable when correct answers depend on how a scene would appear under unseen or alternative viewpoints. Recent work addresses this by augmenting reasoning with world models for visual imagination, but questions such as when imagination is actually necessary, how much of it is beneficial, and when it becomes harmful, remain poorly understood. In practice, indiscriminate imagination can increase computation and even degrade performance by introducing misleading evidence. In this work, we present an in-depth analysis of test-time visual imagination as a controllable resource for spatial reasoning. We study when static visual evidence is sufficient, when imagination improves reasoning, and how excessive or unnecessary imagination affects accuracy and efficiency. To support this analysis, we introduce AVIC, an adaptive test-time framework with world models that explicitly reasons about the sufficiency of current visual evidence before selectively invoking and scaling visual imagination. Across spatial reasoning benchmarks (SAT, MMSI) and an embodied navigation benchmark (R2R), our results reveal clear scenarios where imagination is critical, marginal, or detrimental, and show that selective control can match or outperform fixed imagination strategies with substantially fewer world-model calls and language tokens. Overall, our findings highlight the importance of analyzing and controlling test-time imagination for efficient and reliable spatial reasoning.
comment: the first two authors are equally contributed. Project page: https://adaptive-visual-tts.github.io/
When Benign Inputs Lead to Severe Harms: Eliciting Unsafe Unintended Behaviors of Computer-Use Agents
Although computer-use agents (CUAs) hold significant potential to automate increasingly complex OS workflows, they can demonstrate unsafe unintended behaviors that deviate from expected outcomes even under benign input contexts. However, exploration of this risk remains largely anecdotal, lacking concrete characterization and automated methods to proactively surface long-tail unintended behaviors under realistic CUA scenarios. To fill this gap, we introduce the first conceptual and methodological framework for unintended CUA behaviors, by defining their key characteristics, automatically eliciting them, and analyzing how they arise from benign inputs. We propose AutoElicit: an agentic framework that iteratively perturbs benign instructions using CUA execution feedback, and elicits severe harms while keeping perturbations realistic and benign. Using AutoElicit, we surface hundreds of harmful unintended behaviors from state-of-the-art CUAs such as Claude 4.5 Haiku and Opus. We further evaluate the transferability of human-verified successful perturbations, identifying persistent susceptibility to unintended behaviors across various other frontier CUAs. This work establishes a foundation for systematically analyzing unintended behaviors in realistic computer-use settings.
comment: Project Homepage: https://osu-nlp-group.github.io/AutoElicit/
☆ Tutti: Expressive Multi-Singer Synthesis via Structure-Level Timbre Control and Vocal Texture Modeling
While existing Singing Voice Synthesis systems achieve high-fidelity solo performances, they are constrained by global timbre control, failing to address dynamic multi-singer arrangement and vocal texture within a single song. To address this, we propose Tutti, a unified framework designed for structured multi-singer generation. Specifically, we introduce a Structure-Aware Singer Prompt to enable flexible singer scheduling evolving with musical structure, and propose Complementary Texture Learning via Condition-Guided VAE to capture implicit acoustic textures (e.g., spatial reverberation and spectral fusion) that are complementary to explicit controls. Experiments demonstrate that Tutti excels in precise multi-singer scheduling and significantly enhances the acoustic realism of choral generation, offering a novel paradigm for complex multi-singer arrangement. Audio samples are available at https://annoauth123-ctrl.github.io/Tutii_Demo/.
☆ Generating Adversarial Events: A Motion-Aware Point Cloud Framework
Event cameras have been widely adopted in safety-critical domains such as autonomous driving, robotics, and human-computer interaction. A pressing challenge arises from the vulnerability of deep neural networks to adversarial examples, which poses a significant threat to the reliability of event-based systems. Nevertheless, research into adversarial attacks on events is scarce. This is primarily due to the non-differentiable nature of mainstream event representations, which hinders the extension of gradient-based attack methods. In this paper, we propose MA-ADV, a novel \textbf{M}otion-\textbf{A}ware \textbf{Adv}ersarial framework. To the best of our knowledge, this is the first work to generate adversarial events by leveraging point cloud representations. MA-ADV accounts for high-frequency noise in events and employs a diffusion-based approach to smooth perturbations, while fully leveraging the spatial and temporal relationships among events. Finally, MA-ADV identifies the minimal-cost perturbation through a combination of sample-wise Adam optimization, iterative refinement, and binary search. Extensive experimental results validate that MA-ADV ensures a 100\% attack success rate with minimal perturbation cost, and also demonstrate enhanced robustness against defenses, underscoring the critical security challenges facing future event-based perception systems.
☆ InfiCoEvalChain: A Blockchain-Based Decentralized Framework for Collaborative LLM Evaluation
The rapid advancement of large language models (LLMs) demands increasingly reliable evaluation, yet current centralized evaluation suffers from opacity, overfitting, and hardware-induced variance. Our empirical analysis reveals an alarming inconsistency in existing evaluations: the standard deviation across ten repeated runs of a single model on HumanEval (1.67) actually exceeds the performance gap among the top-10 models on the official leaderboard (0.91), rendering current rankings statistically precarious. To mitigate these instabilities, we propose a decentralized evaluation framework that enables hardware and parameter diversity through large-scale benchmarking across heterogeneous compute nodes. By leveraging the blockchain-based protocol, the framework incentivizes global contributors to act as independent validators, using a robust reward system to ensure evaluation integrity and discourage dishonest participation. This collective verification transforms evaluation from a "centralized black box" into a "decentralized endorsement" where multi-party consensus and diverse inference environments yield a more stable, representative metric. Experimental results demonstrate that the decentralized evaluation framework reduces the standard deviation across ten runs on the same model to 0.28. This significant improvement over conventional frameworks ensures higher statistical confidence in model rankings. We have completely implemented this platform and will soon release it to the community.
☆ Investigating Writing Professionals' Relationships with Generative AI: How Combined Perceptions of Rivalry and Collaboration Shape Work Practices and Outcomes
This study investigates how professional writers' complex relationship with GenAI shapes their work practices and outcomes. Through a cross-sectional survey with writing professionals (n=403) in diverse roles, we show that collaboration and rivalry orientation are associated with differences in work practices and outcomes. Rivalry is primarily associated with relational crafting and skill maintenance. Collaboration is primarily associated with task crafting, productivity, and satisfaction, at the cost of long-term skill deterioration. Combination of the orientations (high rivalry and high collaboration) reconciles these differences, while boosting the association with the outcomes. Our findings argue for a balanced approach where high levels of rivalry and collaboration are essential to shape work practices and generate outcomes aimed at the long-term success of the job. We present key design implications on how to increase friction (rivalry) and reduce over-reliance (collaboration) to achieve a more balanced relationship with GenAI.
comment: CHI'2026
☆ Weak-Driven Learning: How Weak Agents make Strong Agents Stronger
As post-training optimization becomes central to improving large language models, we observe a persistent saturation bottleneck: once models grow highly confident, further training yields diminishing returns. While existing methods continue to reinforce target predictions, we find that informative supervision signals remain latent in models' own historical weak states. Motivated by this observation, we propose WMSS (Weak Agents Can Make Strong Agents Stronger), a post-training paradigm that leverages weak checkpoints to guide continued optimization. By identifying recoverable learning gaps via entropy dynamics and reinforcing them through compensatory learning, WMSS enables strong agents to improve beyond conventional post-training saturation. Experiments on mathematical reasoning and code generation datasets show that agents trained with our approach achieve effective performance improvements, while incurring zero additional inference cost.
☆ CoRect: Context-Aware Logit Contrast for Hidden State Rectification to Resolve Knowledge Conflicts
Retrieval-Augmented Generation (RAG) often struggles with knowledge conflicts, where model-internal parametric knowledge overrides retrieved evidence, leading to unfaithful outputs. Existing approaches are often limited, relying either on superficial decoding adjustments or weight editing that necessitates ground-truth targets. Through layer-wise analysis, we attribute this failure to a parametric suppression phenomenon: specifically, in deep layers, certain FFN layers overwrite context-sensitive representations with memorized priors. To address this, we propose CoRect (Context-Aware Logit Contrast for Hidden State Rectification). By contrasting logits from contextualized and non-contextualized forward passes, CoRect identifies layers that exhibit high parametric bias without requiring ground-truth labels. It then rectifies the hidden states to preserve evidence-grounded information. Across question answering (QA) and summarization benchmarks, CoRect consistently improves faithfulness and reduces hallucinations compared to strong baselines.
☆ Sparsity-Aware Evolution for Model Merging
We propose a sparsity-aware evolutionary (SAE) framework for model merging that involves iterative pruning-merging cycles to act as a novel mutation operator. We incorporate the sparsity constraints into the score function, which steers the evolutionary process to favor more sparse models, in addition to other conventional performance scores. Interestingly, the by-product of \textit{competition} for sparsity introduces an extra local \textit{attraction} and interplay into the evolutionary process: if one competitor has more zero elements, the other competitor's non-zero elements will occupy those positions, even though the less sparse competitor loses to the more sparse competitor in other positions. The proposed pipeline is evaluated on a variety of large-scale LLM benchmarks. Experiments demonstrate that our approach can improve model merging reliability across multiple benchmarks, and is easy to incorporate due to its simplicity and being orthogonal to most existing approaches.
☆ RECUR: Resource Exhaustion Attack via Recursive-Entropy Guided Counterfactual Utilization and Reflection
Large Reasoning Models (LRMs) employ reasoning to address complex tasks. Such explicit reasoning requires extended context lengths, resulting in substantially higher resource consumption. Prior work has shown that adversarially crafted inputs can trigger redundant reasoning processes, exposing LRMs to resource-exhaustion vulnerabilities. However, the reasoning process itself, especially its reflective component, has received limited attention, even though it can lead to over-reflection and consume excessive computing power. In this paper, we introduce Recursive Entropy to quantify the risk of resource consumption in reflection, thereby revealing the safety issues inherent in inference itself. Based on Recursive Entropy, we introduce RECUR, a resource exhaustion attack via Recursive Entropy guided Counterfactual Utilization and Reflection. It constructs counterfactual questions to verify the inherent flaws and risks of LRMs. Extensive experiments demonstrate that, under benign inference, recursive entropy exhibits a pronounced decreasing trend. RECUR disrupts this trend, increasing the output length by up to 11x and decreasing throughput by 90%. Our work provides a new perspective on robust reasoning.
☆ DrugR: Optimizing Molecular Drugs through LLM-based Explicit Reasoning
Molecule generation and optimization is a fundamental task in chemical domain. The rapid development of intelligent tools, especially large language models (LLMs) with powerful knowledge reserves and interactive capabilities, has provided new paradigms for it. Nevertheless, the intrinsic challenge for LLMs lies in the complex implicit relationship between molecular structure and pharmacological properties and the lack of corresponding labeled data. To bridge this gap, we propose DrugR, an LLM-based method that introduces explicit, step-by-step pharmacological reasoning into the optimization process. Our approach integrates domain-specific continual pretraining, supervised fine-tuning via reverse data engineering, and self-balanced multi-granular reinforcement learning. This framework enables DrugR to effectively improve key ADMET properties while preserving the original molecule's core efficacy. Experimental results demonstrate that DrugR achieves comprehensive enhancement across multiple properties without compromising structural similarity or target binding affinity. Importantly, its explicit reasoning process provides clear, interpretable rationales for each optimization step, yielding actionable design insights and advancing toward automated, knowledge-driven scientific discovery. Our code and model checkpoints are open-sourced to foster future research.
☆ Dreaming in Code for Curriculum Learning in Open-Ended Worlds
Open-ended learning frames intelligence as emerging from continual interaction with an ever-expanding space of environments. While recent advances have utilized foundation models to programmatically generate diverse environments, these approaches often focus on discovering isolated behaviors rather than orchestrating sustained progression. In complex open-ended worlds, the large combinatorial space of possible challenges makes it difficult for agents to discover sequences of experiences that remain consistently learnable. To address this, we propose Dreaming in Code (DiCode), a framework in which foundation models synthesize executable environment code to scaffold learning toward increasing competence. In DiCode, "dreaming" takes the form of materializing code-level variations of the world. We instantiate DiCode in Craftax, a challenging open-ended benchmark characterized by rich mechanics and long-horizon progression. Empirically, DiCode enables agents to acquire long-horizon skills, achieving a $16\%$ improvement in mean return over the strongest baseline and non-zero success on late-game combat tasks where prior methods fail. Our results suggest that code-level environment design provides a practical mechanism for curriculum control, enabling the construction of intermediate environments that bridge competence gaps in open-ended worlds. Project page and source code are available at https://konstantinosmitsides.github.io/dreaming-in-code and https://github.com/konstantinosmitsides/dreaming-in-code.
comment: 11 pages (main text), 90 pages total. Project page: https://konstantinosmitsides.github.io/dreaming-in-code
☆ Large Language Models in Peer-Run Community Behavioral Health Services: Understanding Peer Specialists and Service Users' Perspectives on Opportunities, Risks, and Mitigation Strategies
Peer-run organizations (PROs) provide critical, recovery-based behavioral health support rooted in lived experience. As large language models (LLMs) enter this domain, their scale, conversationality, and opacity introduce new challenges for situatedness, trust, and autonomy. Partnering with Collaborative Support Programs of New Jersey (CSPNJ), a statewide PRO in the Northeastern United States, we used comicboarding, a co-design method, to conduct workshops with 16 peer specialists and 10 service users exploring perceptions of integrating an LLM-based recommendation system into peer support. Findings show that depending on how LLMs are introduced, constrained, and co-used, they can reconfigure in-room dynamics by sustaining, undermining, or amplifying the relational authority that grounds peer support. We identify opportunities, risks, and mitigation strategies across three tensions: bridging scale and locality, protecting trust and relational dynamics, and preserving peer autonomy amid efficiency gains. We contribute design implications that center lived-experience-in-the-loop, reframe trust as co-constructed, and position LLMs not as clinical tools but as relational collaborators in high-stakes, community-led care.
comment: 24 pages, 2 tables, 7 figures. Accepted and to appear in the Proceedings of CHI 2026
☆ Nexus: Inferring Join Graphs from Metadata Alone via Iterative Low-Rank Matrix Completion
Automatically inferring join relationships is a critical task for effective data discovery, integration, querying and reuse. However, accurately and efficiently identifying these relationships in large and complex schemas can be challenging, especially in enterprise settings where access to data values is constrained. In this paper, we introduce the problem of join graph inference when only metadata is available. We conduct an empirical study on a large number of real-world schemas and observe that join graphs when represented as adjacency matrices exhibit two key properties: high sparsity and low-rank structure. Based on these novel observations, we formulate join graph inference as a low-rank matrix completion problem and propose Nexus, an end-to-end solution using only metadata. To further enhance accuracy, we propose a novel Expectation-Maximization algorithm that alternates between low-rank matrix completion and refining join candidate probabilities by leveraging Large Language Models. Our extensive experiments demonstrate that Nexus outperforms existing methods by a significant margin on four datasets including a real-world production dataset. Additionally, Nexus can operate in a fast mode, providing comparable results with up to 6x speedup, offering a practical and efficient solution for real-world deployments.
Self-Supervised Bootstrapping of Action-Predictive Embodied Reasoning
Embodied Chain-of-Thought (CoT) reasoning has significantly enhanced Vision-Language-Action (VLA) models, yet current methods rely on rigid templates to specify reasoning primitives (e.g., objects in the scene, high-level plans, structural affordances). These templates can force policies to process irrelevant information that distracts from critical action-prediction signals. This creates a bottleneck: without successful policies, we cannot verify reasoning quality; without quality reasoning, we cannot build robust policies. We introduce R&B-EnCoRe, which enables models to bootstrap embodied reasoning from internet-scale knowledge through self-supervised refinement. By treating reasoning as a latent variable within importance-weighted variational inference, models can generate and distill a refined reasoning training dataset of embodiment-specific strategies without external rewards, verifiers, or human annotation. We validate R&B-EnCoRe across manipulation (Franka Panda in simulation, WidowX in hardware), legged navigation (bipedal, wheeled, bicycle, quadruped), and autonomous driving embodiments using various VLA architectures with 1B, 4B, 7B, and 30B parameters. Our approach achieves 28% gains in manipulation success, 101% improvement in navigation scores, and 21% reduction in collision-rate metric over models that indiscriminately reason about all available primitives. R&B-EnCoRe enables models to distill reasoning that is predictive of successful control, bypassing manual annotation engineering while grounding internet-scale knowledge in physical execution.
☆ Effective Reasoning Chains Reduce Intrinsic Dimensionality
Chain-of-thought (CoT) reasoning and its variants have substantially improved the performance of language models on complex reasoning tasks, yet the precise mechanisms by which different strategies facilitate generalization remain poorly understood. While current explanations often point to increased test-time computation or structural guidance, establishing a consistent, quantifiable link between these factors and generalization remains challenging. In this work, we identify intrinsic dimensionality as a quantitative measure for characterizing the effectiveness of reasoning chains. Intrinsic dimensionality quantifies the minimum number of model dimensions needed to reach a given accuracy threshold on a given task. By keeping the model architecture fixed and varying the task formulation through different reasoning strategies, we demonstrate that effective reasoning strategies consistently reduce the intrinsic dimensionality of the task. Validating this on GSM8K with Gemma-3 1B and 4B, we observe a strong inverse correlation between the intrinsic dimensionality of a reasoning strategy and its generalization performance on both in-distribution and out-of-distribution data. Our findings suggest that effective reasoning chains facilitate learning by better compressing the task using fewer parameters, offering a new quantitative metric for analyzing reasoning processes.
comment: 20 pages, 3 figures
☆ STaR: Scalable Task-Conditioned Retrieval for Long-Horizon Multimodal Robot Memory
Mobile robots are often deployed over long durations in diverse open, dynamic scenes, including indoor setting such as warehouses and manufacturing facilities, and outdoor settings such as agricultural and roadway operations. A core challenge is to build a scalable long-horizon memory that supports an agentic workflow for planning, retrieval, and reasoning over open-ended instructions at variable granularity, while producing precise, actionable answers for navigation. We present STaR, an agentic reasoning framework that (i) constructs a task-agnostic, multimodal long-term memory that generalizes to unseen queries while preserving fine-grained environmental semantics (object attributes, spatial relations, and dynamic events), and (ii) introduces a Scalable TaskConditioned Retrieval algorithm based on the Information Bottleneck principle to extract from long-term memory a compact, non-redundant, information-rich set of candidate memories for contextual reasoning. We evaluate STaR on NaVQA (mixed indoor/outdoor campus scenes) and WH-VQA, a customized warehouse benchmark with many visually similar objects built with Isaac Sim, emphasizing contextual reasoning. Across the two datasets, STaR consistently outperforms strong baselines, achieving higher success rates and markedly lower spatial error. We further deploy STaR on a real Husky wheeled robot in both indoor and outdoor environments, demonstrating robust longhorizon reasoning, scalability, and practical utility.
☆ VLM-Guided Iterative Refinement for Surgical Image Segmentation with Foundation Models
Surgical image segmentation is essential for robot-assisted surgery and intraoperative guidance. However, existing methods are constrained to predefined categories, produce one-shot predictions without adaptive refinement, and lack mechanisms for clinician interaction. We propose IR-SIS, an iterative refinement system for surgical image segmentation that accepts natural language descriptions. IR-SIS leverages a fine-tuned SAM3 for initial segmentation, employs a Vision-Language Model to detect instruments and assess segmentation quality, and applies an agentic workflow that adaptively selects refinement strategies. The system supports clinician-in-the-loop interaction through natural language feedback. We also construct a multi-granularity language-annotated dataset from EndoVis2017 and EndoVis2018 benchmarks. Experiments demonstrate state-of-the-art performance on both in-domain and out-of-distribution data, with clinician interaction providing additional improvements. Our work establishes the first language-based surgical segmentation framework with adaptive self-refinement capabilities.
☆ Do Neural Networks Lose Plasticity in a Gradually Changing World?
Continual learning has become a trending topic in machine learning. Recent studies have discovered an interesting phenomenon called loss of plasticity, referring to neural networks gradually losing the ability to learn new tasks. However, existing plasticity research largely relies on contrived settings with abrupt task transitions, which often do not reflect real-world environments. In this paper, we propose to investigate a gradually changing environment, and we simulate this by input/output interpolation and task sampling. We perform theoretical and empirical analysis, showing that the loss of plasticity is an artifact of abrupt tasks changes in the environment and can be largely mitigated if the world changes gradually.
☆ MUZZLE: Adaptive Agentic Red-Teaming of Web Agents Against Indirect Prompt Injection Attacks
Large language model (LLM) based web agents are increasingly deployed to automate complex online tasks by directly interacting with web sites and performing actions on users' behalf. While these agents offer powerful capabilities, their design exposes them to indirect prompt injection attacks embedded in untrusted web content, enabling adversaries to hijack agent behavior and violate user intent. Despite growing awareness of this threat, existing evaluations rely on fixed attack templates, manually selected injection surfaces, or narrowly scoped scenarios, limiting their ability to capture realistic, adaptive attacks encountered in practice. We present MUZZLE, an automated agentic framework for evaluating the security of web agents against indirect prompt injection attacks. MUZZLE utilizes the agent's trajectories to automatically identify high-salience injection surfaces, and adaptively generate context-aware malicious instructions that target violations of confidentiality, integrity, and availability. Unlike prior approaches, MUZZLE adapts its attack strategy based on the agent's observed execution trajectory and iteratively refines attacks using feedback from failed executions. We evaluate MUZZLE across diverse web applications, user tasks, and agent configurations, demonstrating its ability to automatically and adaptively assess the security of web agents with minimal human intervention. Our results show that MUZZLE effectively discovers 37 new attacks on 4 web applications with 10 adversarial objectives that violate confidentiality, availability, or privacy properties. MUZZLE also identifies novel attack strategies, including 2 cross-application prompt injection attacks and an agent-tailored phishing scenario.
☆ A Lightweight Multi-View Approach to Short-Term Load Forecasting
Time series forecasting is a critical task across domains such as energy, finance, and meteorology, where accurate predictions enable informed decision-making. While transformer-based and large-parameter models have recently achieved state-of-the-art results, their complexity can lead to overfitting and unstable forecasts, especially when older data points become less relevant. In this paper, we propose a lightweight multi-view approach to short-term load forecasting that leverages single-value embeddings and a scaled time-range input to capture temporally relevant features efficiently. We introduce an embedding dropout mechanism to prevent over-reliance on specific features and enhance interpretability. Our method achieves competitive performance with significantly fewer parameters, demonstrating robustness across multiple datasets, including scenarios with noisy or sparse data, and provides insights into the contributions of individual features to the forecast.
☆ CausalGDP: Causality-Guided Diffusion Policies for Reinforcement Learning
Reinforcement learning (RL) has achieved remarkable success in a wide range of sequential decision-making problems. Recent diffusion-based policies further improve RL by modeling complex, high-dimensional action distributions. However, existing diffusion policies primarily rely on statistical associations and fail to explicitly account for causal relationships among states, actions, and rewards, limiting their ability to identify which action components truly cause high returns. In this paper, we propose Causality-guided Diffusion Policy (CausalGDP), a unified framework that integrates causal reasoning into diffusion-based RL. CausalGDP first learns a base diffusion policy and an initial causal dynamical model from offline data, capturing causal dependencies among states, actions, and rewards. During real-time interaction, the causal information is continuously updated and incorporated as a guidance signal to steer the diffusion process toward actions that causally influence future states and rewards. By explicitly considering causality beyond association, CausalGDP focuses policy optimization on action components that genuinely drive performance improvements. Experimental results demonstrate that CausalGDP consistently achieves competitive or superior performance over state-of-the-art diffusion-based and offline RL methods, especially in complex, high-dimensional control tasks.
☆ Genocide by Algorithm in Gaza: Artificial Intelligence, Countervailing Responsibility, and the Corruption of Public Discourse
The accelerating militarization of artificial intelligence has transformed the ethics, politics, and governance of warfare. This article interrogates how AI-driven targeting systems function as epistemic infrastructures that classify, legitimize, and execute violence, using Israel's conduct in Gaza as a paradigmatic case. Through the lens of responsibility, the article examines three interrelated dimensions: (a) political responsibility, exploring how states exploit AI to accelerate warfare while evading accountability; (b) professional responsibility, addressing the complicity of technologists, engineers, and defense contractors in the weaponization of data; and (c) personal responsibility, probing the moral agency of individuals who participate in or resist algorithmic governance. This is complemented by an examination of the position and influence of those participating in public discourse, whose narratives often obscure or normalize AI-enabled violence. The Gaza case reveals AI not as a neutral instrument but as an active participant in the reproduction of colonial hierarchies and the normalization of atrocity. Ultimately, the paper calls for a reframing of technological agency and accountability in the age of automated warfare. It concludes that confronting algorithmic violence demands a democratization of AI ethics, one that resists technocratic fatalism and centers the lived realities of those most affected by high-tech militarism.
☆ Gradient Residual Connections
Existing work has linked properties of a function's gradient to the difficulty of function approximation. Motivated by these insights, we study how gradient information can be leveraged to improve neural network's ability to approximate high-frequency functions, and we propose a gradient-based residual connection as a complement to the standard identity skip connection used in residual networks. We provide simple theoretical intuition for why gradient information can help distinguish inputs and improve the approximation of functions with rapidly varying behaviour. On a synthetic regression task with a high-frequency sinusoidal ground truth, we show that conventional residual connections struggle to capture high-frequency patterns. In contrast, our gradient residual substantially improves approximation quality. We then introduce a convex combination of the standard and gradient residuals, allowing the network to flexibly control how strongly it relies on gradient information. After validating the design choices of our proposed method through an ablation study, we further validate our approach's utility on the single-image super-resolution task, where the underlying function may be high-frequency. Finally, on standard tasks such as image classification and segmentation, our method achieves performance comparable to standard residual networks, suggesting its broad utility.
comment: Preprint
☆ AIDev: Studying AI Coding Agents on GitHub
AI coding agents are rapidly transforming software engineering by performing tasks such as feature development, debugging, and testing. Despite their growing impact, the research community lacks a comprehensive dataset capturing how these agents are used in real-world projects. To address this gap, we introduce AIDev, a large-scale dataset focused on agent-authored pull requests (Agentic-PRs) in real-world GitHub repositories. AIDev aggregates 932,791 Agentic-PRs produced by five agents: OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code. These PRs span 116,211 repositories and involve 72,189 developers. In addition, AIDev includes a curated subset of 33,596 Agentic-PRs from 2,807 repositories with over 100 stars, providing further information such as comments, reviews, commits, and related issues. This dataset offers a foundation for future research on AI adoption, developer productivity, and human-AI collaboration in the new era of software engineering. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Agentic Software Engineering, Agentic Engineering
☆ $n$-Musketeers: Reinforcement Learning Shapes Collaboration Among Language Models
Recent progress in reinforcement learning with verifiable rewards (RLVR) shows that small, specialized language models (SLMs) can exhibit structured reasoning without relying on large monolithic LLMs. We introduce soft hidden-state collaboration, where multiple heterogeneous frozen SLM experts are integrated through their internal representations via a trainable attention interface. Experiments on Reasoning Gym and GSM8K show that this latent integration is competitive with strong single-model RLVR baselines. Ablations further reveal a dual mechanism of expert utilization: for simpler arithmetic domains, performance gains can largely be explained by static expert preferences, whereas more challenging settings induce increasingly concentrated and structured expert attention over training, indicating emergent specialization in how the router connects to relevant experts. Overall, hidden-state collaboration provides a compact mechanism for leveraging frozen experts, while offering an observational window into expert utilization patterns and their evolution under RLVR.
☆ Quantifying Epistemic Uncertainty in Diffusion Models AISTATS
To ensure high quality outputs, it is important to quantify the epistemic uncertainty of diffusion models.Existing methods are often unreliable because they mix epistemic and aleatoric uncertainty. We introduce a method based on Fisher information that explicitly isolates epistemic variance, producing more reliable plausibility scores for generated data. To make this approach scalable, we propose FLARE (Fisher-Laplace Randomized Estimator), which approximates the Fisher information using a uniformly random subset of model parameters. Empirically, FLARE improves uncertainty estimation in synthetic time-series generation tasks, achieving more accurate and reliable filtering than other methods. Theoretically, we bound the convergence rate of our randomized approximation and provide analytic and empirical evidence that last-layer Laplace approximations are insufficient for this task.
comment: Will appear in the Proceedings of the 29th International Conference on Artificial Intelligence and Statistics (AISTATS) 2026
☆ FlyAOC: Evaluating Agentic Ontology Curation of Drosophila Scientific Knowledge Bases
Scientific knowledge bases accelerate discovery by curating findings from primary literature into structured, queryable formats for both human researchers and emerging AI systems. Maintaining these resources requires expert curators to search relevant papers, reconcile evidence across documents, and produce ontology-grounded annotations - a workflow that existing benchmarks, focused on isolated subtasks like named entity recognition or relation extraction, do not capture. We present FlyBench to evaluate AI agents on end-to-end agentic ontology curation from scientific literature. Given only a gene symbol, agents must search and read from a corpus of 16,898 full-text papers to produce structured annotations: Gene Ontology terms describing function, expression patterns, and historical synonyms linking decades of nomenclature. The benchmark includes 7,397 expert-curated annotations across 100 genes drawn from FlyBase, the Drosophila (fruit fly) knowledge base. We evaluate four baseline agent architectures: memorization, fixed pipeline, single-agent, and multi-agent. We find that architectural choices significantly impact performance, with multi-agent designs outperforming simpler alternatives, yet scaling backbone models yields diminishing returns. All baselines leave substantial room for improvement. Our analysis surfaces several findings to guide future development; for example, agents primarily use retrieval to confirm parametric knowledge rather than discover new information. We hope FlyBench will drive progress on retrieval-augmented scientific reasoning, a capability with broad applications across scientific domains.
☆ CoMMa: Contribution-Aware Medical Multi-Agents From A Game-Theoretic Perspective
Recent multi-agent frameworks have broadened the ability to tackle oncology decision support tasks that require reasoning over dynamic, heterogeneous patient data. We propose Contribution-Aware Medical Multi-Agents (CoMMa), a decentralized LLM-agent framework in which specialists operate on partitioned evidence and coordinate through a game-theoretic objective for robust decision-making. In contrast to most agent architectures relying on stochastic narrative-based reasoning, CoMMa utilizes deterministic embedding projections to approximate contribution-aware credit assignment. This yields explicit evidence attribution by estimating each agent's marginal utility, producing interpretable and mathematically grounded decision pathways with improved stability. Evaluated on diverse oncology benchmarks, including a real-world multidisciplinary tumor board dataset, CoMMa achieves higher accuracy and more stable performance than data-centralized and role-based multi-agents baselines.
comment: 9 pages, 3 figures
☆ What do Geometric Hallucination Detection Metrics Actually Measure? ICML
Hallucination remains a barrier to deploying generative models in high-consequence applications. This is especially true in cases where external ground truth is not readily available to validate model outputs. This situation has motivated the study of geometric signals in the internal state of an LLM that are predictive of hallucination and require limited external knowledge. Given that there are a range of factors that can lead model output to be called a hallucination (e.g., irrelevance vs incoherence), in this paper we ask what specific properties of a hallucination these geometric statistics actually capture. To assess this, we generate a synthetic dataset which varies distinct properties of output associated with hallucination. This includes output correctness, confidence, relevance, coherence, and completeness. We find that different geometric statistics capture different types of hallucinations. Along the way we show that many existing geometric detection methods have substantial sensitivity to shifts in task domain (e.g., math questions vs. history questions). Motivated by this, we introduce a simple normalization method to mitigate the effect of domain shift on geometric statistics, leading to AUROC gains of +34 points in multi-domain settings.
comment: Published at the 2025 ICML Workshop on Reliable and Responsible Foundation Models
☆ A Hybrid Deterministic Framework for Named Entity Extraction in Broadcast News Video IEEE
The growing volume of video-based news content has heightened the need for transparent and reliable methods to extract on-screen information. Yet the variability of graphical layouts, typographic conventions, and platform-specific design patterns renders manual indexing impractical. This work presents a comprehensive framework for automatically detecting and extracting personal names from broadcast and social-media-native news videos. It introduces a curated and balanced corpus of annotated frames capturing the diversity of contemporary news graphics and proposes an interpretable, modular extraction pipeline designed to operate under deterministic and auditable conditions. The pipeline is evaluated against a contrasting class of generative multimodal methods, revealing a clear trade-off between deterministic auditability and stochastic inference. The underlying detector achieves 95.8% mAP@0.5, demonstrating operationally robust performance for graphical element localisation. While generative systems achieve marginally higher raw accuracy (F1: 84.18% vs 77.08%), they lack the transparent data lineage required for journalistic and analytical contexts. The proposed pipeline delivers balanced precision (79.9%) and recall (74.4%), avoids hallucination, and provides full traceability across each processing stage. Complementary user findings indicate that 59% of respondents report difficulty reading on-screen names in fast-paced broadcasts, underscoring the practical relevance of the task. The results establish a methodologically rigorous and interpretable baseline for hybrid multimodal information extraction in modern news media.
comment: 7 pages, 5 figures. Accepted for publication at the 2026 IEEE Conference on Artificial Intelligence (CAI)
☆ SceneSmith: Agentic Generation of Simulation-Ready Indoor Scenes
Simulation has become a key tool for training and evaluating home robots at scale, yet existing environments fail to capture the diversity and physical complexity of real indoor spaces. Current scene synthesis methods produce sparsely furnished rooms that lack the dense clutter, articulated furniture, and physical properties essential for robotic manipulation. We introduce SceneSmith, a hierarchical agentic framework that generates simulation-ready indoor environments from natural language prompts. SceneSmith constructs scenes through successive stages$\unicode{x2013}$from architectural layout to furniture placement to small object population$\unicode{x2013}$each implemented as an interaction among VLM agents: designer, critic, and orchestrator. The framework tightly integrates asset generation through text-to-3D synthesis for static objects, dataset retrieval for articulated objects, and physical property estimation. SceneSmith generates 3-6x more objects than prior methods, with <2% inter-object collisions and 96% of objects remaining stable under physics simulation. In a user study with 205 participants, it achieves 92% average realism and 91% average prompt faithfulness win rates against baselines. We further demonstrate that these environments can be used in an end-to-end pipeline for automatic robot policy evaluation.
comment: Project page: https://scenesmith.github.io/
☆ PABU: Progress-Aware Belief Update for Efficient LLM Agents
Large Language Model (LLM) agents commonly condition actions on full action-observation histories, which introduce task-irrelevant information that easily leads to redundant actions and higher inference cost. We propose Progress-Aware Belief Update (PABU), a belief-state framework that compactly represents an agent's state by explicitly modeling task progress and selectively retaining past actions and observations. At each step, the agent predicts its relative progress since the previous round and decides whether the newly encountered interaction should be stored, conditioning future decisions only on the retained subset. Across eight environments in the AgentGym benchmark, and using identical training trajectories, PABU achieves an 81.0% task completion rate, outperforming previous State of the art (SoTA) models with full-history belief by 23.9%. Additionally, PABU's progress-oriented action selection improves efficiency, reducing the average number of interaction steps to 9.5, corresponding to a 26.9% reduction. Ablation studies show that both explicit progress prediction and selective retention are necessary for robust belief learning and performance gains.
☆ Uncertainty-Aware Multimodal Emotion Recognition through Dirichlet Parameterization
In this work, we present a lightweight and privacy-preserving Multimodal Emotion Recognition (MER) framework designed for deployment on edge devices. To demonstrate framework's versatility, our implementation uses three modalities - speech, text and facial imagery. However, the system is fully modular, and can be extended to support other modalities or tasks. Each modality is processed through a dedicated backbone optimized for inference efficiency: Emotion2Vec for speech, a ResNet-based model for facial expressions, and DistilRoBERTa for text. To reconcile uncertainty across modalities, we introduce a model- and task-agnostic fusion mechanism grounded in Dempster-Shafer theory and Dirichlet evidence. Operating directly on model logits, this approach captures predictive uncertainty without requiring additional training or joint distribution estimation, making it broadly applicable beyond emotion recognition. Validation on five benchmark datasets (eNTERFACE05, MEAD, MELD, RAVDESS and CREMA-D) show that our method achieves competitive accuracy while remaining computationally efficient and robust to ambiguous or missing inputs. Overall, the proposed framework emphasizes modularity, scalability, and real-world feasibility, paving the way toward uncertainty-aware multimodal systems for healthcare, human-computer interaction, and other emotion-informed applications.
comment: 8 pages, 3 figures
☆ Benchmarking the Energy Savings with Speculative Decoding Strategies EACL
Speculative decoding has emerged as an effective method to reduce latency and inference cost of LLM inferences. However, there has been inadequate attention towards the energy requirements of these models. To address this gap, this paper presents a comprehensive survey of energy requirements of speculative decoding strategies, with detailed analysis on how various factors -- model size and family, speculative decoding strategies, and dataset characteristics -- influence the energy optimizations.
comment: Accepted at EACL Findings 2026
☆ A Small-Scale System for Autoregressive Program Synthesis Enabling Controlled Experimentation
What research can be pursued with small models trained to complete true programs? Typically, researchers study program synthesis via large language models (LLMs) which introduce issues such as knowing what is in or out of distribution, understanding fine-tuning effects, understanding the effects of tokenization, and higher demand on compute and storage to carry out experiments. We present a system called Cadmus which includes an integer virtual machine (VM), a dataset composed of true programs of diverse tasks, and an autoregressive transformer model that is trained for under \$200 of compute cost. The system can be used to study program completion, out-of-distribution representations, inductive reasoning, and instruction following in a setting where researchers have effective and affordable fine-grained control of the training distribution and the ability to inspect and instrument models. Smaller models working on complex reasoning tasks enable instrumentation and investigations that may be prohibitively expensive on larger models. To demonstrate that these tasks are complex enough to be of interest, we show that these Cadmus models outperform GPT-5 (by achieving 100\% accuracy while GPT-5 has 95\% accuracy) even on a simple task of completing correct, integer arithmetic programs in our domain-specific language (DSL) while providing transparency into the dataset's relationship to the problem. We also show that GPT-5 brings unknown priors into its reasoning process when solving the same tasks, demonstrating a confounding factor that prevents the use of large-scale LLMs for some investigations where the training set relationship to the task needs to be fully understood.
☆ Distributed Hybrid Parallelism for Large Language Models: Comparative Study and System Design Guide
With the rapid growth of large language models (LLMs), a wide range of methods have been developed to distribute computation and memory across hardware devices for efficient training and inference. While existing surveys provide descriptive overviews of these techniques, systematic analysis of their benefits and trade offs and how such insights can inform principled methodology for designing optimal distributed systems remain limited. This paper offers a comprehensive review of collective operations and distributed parallel strategies, complemented by mathematical formulations to deepen theoretical understanding. We further examine hybrid parallelization designs, emphasizing communication computation overlap across different stages of model deployment, including both training and inference. Recent advances in automated search for optimal hybrid parallelization strategies using cost models are also discussed. Moreover, we present case studies with mainstream architecture categories to reveal empirical insights to guide researchers and practitioners in parallelism strategy selection. Finally, we highlight open challenges and limitations of current LLM training paradigms and outline promising directions for the next generation of large scale model development.
☆ UI-Venus-1.5 Technical Report
GUI agents have emerged as a powerful paradigm for automating interactions in digital environments, yet achieving both broad generality and consistently strong task performance remains challenging.In this report, we present UI-Venus-1.5, a unified, end-to-end GUI Agent designed for robust real-world applications.The proposed model family comprises two dense variants (2B and 8B) and one mixture-of-experts variant (30B-A3B) to meet various downstream application scenarios.Compared to our previous version, UI-Venus-1.5 introduces three key technical advances: (1) a comprehensive Mid-Training stage leveraging 10 billion tokens across 30+ datasets to establish foundational GUI semantics; (2) Online Reinforcement Learning with full-trajectory rollouts, aligning training objectives with long-horizon, dynamic navigation in large-scale environments; and (3) a single unified GUI Agent constructed via Model Merging, which synthesizes domain-specific models (grounding, web, and mobile) into one cohesive checkpoint. Extensive evaluations demonstrate that UI-Venus-1.5 establishes new state-of-the-art performance on benchmarks such as ScreenSpot-Pro (69.6%), VenusBench-GD (75.0%), and AndroidWorld (77.6%), significantly outperforming previous strong baselines. In addition, UI-Venus-1.5 demonstrates robust navigation capabilities across a variety of Chinese mobile apps, effectively executing user instructions in real-world scenarios. Code: https://github.com/inclusionAI/UI-Venus; Model: https://huggingface.co/collections/inclusionAI/ui-venus
☆ DMamba: Decomposition-enhanced Mamba for Time Series Forecasting
State Space Models (SSMs), particularly Mamba, have shown potential in long-term time series forecasting. However, existing Mamba-based architectures often struggle with datasets characterized by non-stationary patterns. A key observation from time series theory is that the statistical nature of inter-variable relationships differs fundamentally between the trend and seasonal components of a decomposed series. Trend relationships are often driven by a few common stochastic factors or long-run equilibria, suggesting that they reside on a lower-dimensional manifold. In contrast, seasonal relationships involve dynamic, high-dimensional interactions like phase shifts and amplitude co-movements, requiring more expressive modeling. In this paper, we propose DMamba, a novel forecasting model that explicitly aligns architectural complexity with this component-specific characteristic. DMamba employs seasonal-trend decomposition and processes the components with specialized, differentially complex modules: a variable-direction Mamba encoder captures the rich, cross-variable dynamics within the seasonal component, while a simple Multi-Layer Perceptron (MLP) suffices to learn from the lower-dimensional inter-variable relationships in the trend component. Extensive experiments on diverse datasets demonstrate that DMamba sets a new state-of-the-art (SOTA), consistently outperforming both recent Mamba-based architectures and leading decomposition-based models.
comment: 9 pages, 3 figures, 4 tables
☆ Looping Back to Move Forward: Recursive Transformers for Efficient and Flexible Large Multimodal Models
Large Multimodal Models (LMMs) have achieved remarkable success in vision-language tasks, yet their vast parameter counts are often underutilized during both training and inference. In this work, we embrace the idea of looping back to move forward: reusing model parameters through recursive refinement to extract stronger multimodal representations without increasing model size. We propose RecursiveVLM, a recursive Transformer architecture tailored for LMMs. Two key innovations enable effective looping: (i) a Recursive Connector that aligns features across recursion steps by fusing intermediate-layer hidden states and applying modality-specific projections, respecting the distinct statistical structures of vision and language tokens; (ii) a Monotonic Recursion Loss that supervises every step and guarantees performance improves monotonically with recursion depth. This design transforms recursion into an on-demand refinement mechanism: delivering strong results with few loops on resource-constrained devices and progressively improving outputs when more computation resources are available. Experiments show consistent gains of +3% over standard Transformers and +7% over vanilla recursive baselines, demonstrating that strategic looping is a powerful path toward efficient, deployment-adaptive LMMs.
comment: This is a primary contribution in the Recursive Vision-Language Models
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ Semantics-Aware Generative Latent Data Augmentation for Learning in Low-Resource Domains
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
♻ ☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent computational cost. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Reproducible Benchmarking for Lung Nodule Detection and Malignancy Classification Across Multiple Low-Dose CT Datasets
Evaluation of artificial intelligence (AI) models for low-dose CT lung cancer screening is limited by heterogeneous datasets, annotation standards, and evaluation protocols, making performance difficult to compare and translate across clinical settings. We establish a public, reproducible multi-dataset benchmark for lung nodule detection and nodule-level cancer classification and quantify cross-dataset generalizability. Using the Duke Lung Cancer Screening (DLCS) dataset as a clinically curated development set, we evaluate performance across LUNA16/LIDC-IDRI, NLST-3D, and LUNA25. Detection models trained on DLCS and LUNA16 were evaluated externally on NLST-3D using free-response ROC analysis. For malignancy classification, we compared five strategies: randomly initialized ResNet50, Models Genesis, Med3D, a Foundation Model for Cancer Biomarkers, and a Strategic Warm-Start (ResNet50-SWS) approach pretrained using detection-derived candidate patches stratified by confidence. Performance was summarized using AUC with 95% confidence intervals and DeLong tests. Detection performance varied substantially by training dataset, with DLCS-trained models outperforming LUNA16-trained models on external NLST-3D evaluation (sensitivity at 2 false positives per scan: 0.72 vs. 0.64; p < 0.001). For malignancy classification, ResNet50-SWS achieved AUCs of 0.71 (DLCS), 0.90 (LUNA16), 0.81 (NLST-3D), and 0.80 (LUNA25), consistently matching or exceeding alternative pretraining strategies. These results demonstrate that dataset characteristics strongly influence lung cancer AI performance and highlight the need for transparent, multi-dataset benchmarking.
comment: 3 tables, 2 supplement tables, 5 figures
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ The Refutability Gap: Challenges in Validating Reasoning by Large Language Models
Recent reports claim that Large Language Models (LLMs) have achieved the ability to derive new science and exhibit human-level general intelligence. We argue that such claims are not rigorous scientific claims, as they do not satisfy Popper's refutability principle (often termed falsifiability), which requires that scientific statements be capable of being disproven. We identify several methodological pitfalls in current AI research on reasoning, including the inability to verify the novelty of findings due to opaque and non-searchable training data, the lack of reproducibility caused by continuous model updates, and the omission of human-interaction transcripts, which obscures the true source of scientific discovery. Additionally, the absence of counterfactuals and data on failed attempts creates a selection bias that may exaggerate LLM capabilities. To address these challenges, we propose guidelines for scientific transparency and reproducibility for research on reasoning by LLMs. Establishing such guidelines is crucial for both scientific integrity and the ongoing societal debates regarding fair data usage.
comment: he authors explicitly reserve all rights in this work. No permission is granted for the reproduction, storage, or use of this document for the purpose of training artificial intelligence systems or for text and data mining (TDM), including but not limited to the generation of embeddings, summaries, or synthetic derivatives
♻ ☆ Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help
Graph deep learning models, a class of AI-driven approaches employing a message aggregation mechanism, have gained popularity for analyzing the functional brain connectome in neuroimaging. However, their actual effectiveness remains unclear. In this study, we re-examine graph deep learning versus classical machine learning models based on four large-scale neuroimaging studies. Surprisingly, we find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed, but rather consistently degrades it. To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways, achieving robust predictions and enhanced interpretability by revealing both localized and global neural connectivity patterns. Our findings urge caution in adopting complex deep learning models for functional brain connectome analysis, emphasizing the need for rigorous experimental designs to establish tangible performance gains and perhaps more importantly, to pursue improvements in model interpretability.
comment: Published version. See journal for final typeset version
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Delay-Aware Reinforcement Learning for Highway On-Ramp Merging under Stochastic Communication Latency
Delayed and partially observable state information poses significant challenges for reinforcement learning (RL)-based control in real-world autonomous driving. In highway on-ramp merging, a roadside unit (RSU) can sense nearby traffic, perform edge perception, and transmit state estimates to the ego vehicle over vehicle-to-infrastructure (V2I) links. With recent advancements in intelligent transportation infrastructure and edge computing, such RSU-assisted perception is increasingly realistic and already deployed in modern connected roadway systems. However, edge processing time and wireless transmission can introduce stochastic V2I communication delays, violating the Markov assumption and substantially degrading control performance. In this work, we propose DAROM, a Delay-Aware Reinforcement Learning framework for On-ramp Merging that is robust to stochastic delays. We model the problem as a random delay Markov decision process (RDMDP) and develop a unified RL agent for joint longitudinal and lateral control. To recover a Markovian representation under delayed observations, we introduce a Delay-Aware Encoder that conditions on delayed observations, masked action histories, and observed delay magnitude to infer the current latent state. We further integrate a physics-based safety controller to reduce collision risk during merging. Experiments in the Simulation of Urban MObility (SUMO) simulator using real-world traffic data from the Next Generation Simulation (NGSIM) dataset demonstrate that DAROM consistently outperforms standard RL baselines across traffic densities. In particular, the gated recurrent unit (GRU)-based encoder achieves over 99% success in high-density traffic with random V2I delays of up to 2.0 seconds.
♻ ☆ Graph-Theoretic Analysis of Phase Optimization Complexity in Variational Wave Functions for Heisenberg Antiferromagnets
Despite extensive study, the phase structure of the wavefunctions in frustrated Heisenberg antiferromagnets (HAF) is not yet systematically characterized. In this work, we represent the Hilbert space of an HAF as a weighted graph, which we term the Hilbert graph (HG), whose vertices are spin configurations and whose edges are generated by off-diagonal spin-flip terms of the Heisenberg Hamiltonian, with weights set by products of wavefunction amplitudes. Holding the amplitudes fixed and restricting phases to $\mathbb{Z}_2$ values, the phase-dependent variational energy can be recast as a classical Ising antiferromagnet on the HG, so that phase reconstruction of the ground state reduces to a weighted Max-Cut instance. This shows that phase reconstruction HAF is worst-case NP-hard and provides a direct link between wavefunction sign structure and combinatorial optimization.
♻ ☆ From Features to Actions: Explainability in Traditional and Agentic AI Systems
Over the last decade, explainable AI has primarily focused on interpreting individual model predictions, producing post-hoc explanations that relate inputs to outputs under a fixed decision structure. Recent advances in large language models (LLMs) have enabled agentic AI systems whose behaviour unfolds over multi-step trajectories. In these settings, success and failure are determined by sequences of decisions rather than a single output. While useful, it remains unclear how explanation approaches designed for static predictions translate to agentic settings where behaviour emerges over time. In this work, we bridge the gap between static and agentic explainability by comparing attribution-based explanations with trace-based diagnostics across both settings. To make this distinction explicit, we empirically compare attribution-based explanations used in static classification tasks with trace-based diagnostics used in agentic benchmarks (TAU-bench Airline and AssistantBench). Our results show that while attribution methods achieve stable feature rankings in static settings (Spearman $ρ= 0.86$), they cannot be applied reliably to diagnose execution-level failures in agentic trajectories. In contrast, trace-grounded rubric evaluation for agentic settings consistently localizes behaviour breakdowns and reveals that state tracking inconsistency is 2.7$\times$ more prevalent in failed runs and reduces success probability by 49\%. These findings motivate a shift towards trajectory-level explainability for agentic systems when evaluating and diagnosing autonomous AI behaviour. Resources: https://github.com/VectorInstitute/unified-xai-evaluation-framework https://vectorinstitute.github.io/unified-xai-evaluation-framework
♻ ☆ MOTION: ML-Assisted On-Device Low-Latency Motion Recognition
The use of tiny devices capable of low-latency gesture recognition is gaining momentum in everyday human-computer interaction and especially in medical monitoring fields. Embedded solutions such as fall detection, rehabilitation tracking, and patient supervision require fast and efficient tracking of movements while avoiding unwanted false alarms. This study presents an efficient solution on how to build very efficient motion-based models only using triaxial accelerometer sensors. We explore the capability of the AutoML pipelines to extract the most important features from the data segments. This approach also involves training multiple lightweight machine learning algorithms using the extracted features. We use WeBe Band, a multi-sensor wearable device that is equipped with a powerful enough MCU to effectively perform gesture recognition entirely on the device. Of the models explored, we found that the neural network provided the best balance between accuracy, latency, and memory use. Our results also demonstrate that reliable real-time gesture recognition can be achieved in WeBe Band, with great potential for real-time medical monitoring solutions that require a secure and fast response time.
♻ ☆ RiskAgent: Synergizing Language Models with Validated Tools for Evidence-Based Risk Prediction
Large Language Models (LLMs) achieve competitive results compared to human experts in medical examinations. However, it remains a challenge to apply LLMs to complex clinical decision-making, which requires a deep understanding of medical knowledge and differs from the standardized, exam-style scenarios commonly used in current efforts. A common approach is to fine-tune LLMs for target tasks, which, however, not only requires substantial data and computational resources but also remains prone to generating `hallucinations'. In this work, we present RiskAgent, which synergizes language models with hundreds of validated clinical decision tools supported by evidence-based medicine, to provide generalizable and faithful recommendations. Our experiments show that RiskAgent not only achieves superior performance on a broad range of clinical risk predictions across diverse scenarios and diseases, but also demonstrates robust generalization in tool learning on the external MedCalc-Bench dataset, as well as in medical reasoning and question answering on three representative benchmarks, MedQA, MedMCQA, and MMLU.
comment: Code and Data are available at https://github.com/AI-in-Health/RiskAgent
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from Low-Dose Computed Tomography
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking: first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with a natural-language rationale. It integrates three components: a Pulmonary Perception Module that summarizes lung abnormalities, an Agentic Pulmonary-to-Cardiac Reasoning Module that infers their cardiovascular implications, and a Cardiac Feature Extractor that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening (AUC=0.919) and mortality prediction (AUC=0.838), outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
♻ ☆ Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importances in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure. Our code is publicly available at https://github.com/kAIto47802/condPED-ANOVA.
comment: 19 pages, 14 figures
♻ ☆ IDALC: A Semi-Supervised Framework for Intent Detection and Active Learning based Correction IEEE
Voice-controlled dialog systems have become immensely popular due to their ability to perform a wide range of actions in response to diverse user queries. These agents possess a predefined set of skills or intents to fulfill specific user tasks. But every system has its own limitations. There are instances where, even for known intents, if any model exhibits low confidence, it results in rejection of utterances that necessitate manual annotation. Additionally, as time progresses, there may be a need to retrain these agents with new intents from the system-rejected queries to carry out additional tasks. Labeling all these emerging intents and rejected utterances over time is impractical, thus calling for an efficient mechanism to reduce annotation costs. In this paper, we introduce IDALC (Intent Detection and Active Learning based Correction), a semi-supervised framework designed to detect user intents and rectify system-rejected utterances while minimizing the need for human annotation. Empirical findings on various benchmark datasets demonstrate that our system surpasses baseline methods, achieving a 5-10% higher accuracy and a 4-8% improvement in macro-F1. Remarkably, we maintain the overall annotation cost at just 6-10% of the unlabelled data available to the system. The overall framework of IDALC is shown in Fig. 1
comment: Paper accepted in IEEE Transactions on Artificial Intelligence (October 2025)
♻ ☆ Conversational No-code, Multi-agentic Disease Module Identification and Drug Repurposing Prediction with ChatDRex
Repurposing approved drugs offers a time-efficient and cost-effective alternative to traditional drug development. However, in silico prediction of repurposing candidates is challenging and requires the effective collaboration of specialists in various fields, including pharmacology, medicine, biology, and bioinformatics. Fragmented, specialized algorithms and tools often address only narrow aspects of the overall problem. Heterogeneous, unstructured data landscapes require the expertise of specialized users. Hence, these data services do not integrate smoothly across workflows. With ChatDRex, we present a conversation-based, multi-agent system that facilitates the execution of complex bioinformatic analyses aiming for network-based drug repurposing prediction. It builds on the integrated systems medicine knowledge graph (NeDRex KG). ChatDRex provides natural language access to its extensive biomedical knowledge base. It integrates bioinformatics agents for network analysis, literature mining, and drug repurposing. These are complemented by agents that evaluate functional coherence for in silico validation. Its flexible multi-agent design assigns specific tasks to specialized agents, including query routing, data retrieval, algorithm execution, and result visualization. A dedicated reasoning module keeps the user in the loop and allows for hallucination detection. By enabling physicians and researchers without computer science expertise to control complex analyses with natural language, ChatDRex democratizes access to bioinformatics as an important resource for drug repurposing. It enables clinical experts to generate hypotheses and explore drug repurposing opportunities, ultimately accelerating the discovery of novel therapies and advancing personalized medicine and translational research. ChatDRex is publicly available at apps.cosy.bio/chatdrex.
♻ ☆ Diffusion-Inspired Masked Fine-Tuning for Knowledge Injection in Autoregressive LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
♻ ☆ Certainty-Guided Reasoning in Large Language Models: A Dynamic Thinking Budget Approach
Large reasoning language models are typically run with fixed inference budgets, which can waste computation or terminate reasoning prematurely. We introduce Certainty-Guided Reasoning (CGR), a model-agnostic adaptive inference procedure that periodically probes whether the current reasoning supports a confident final answer and terminates early once a target certainty threshold is reached, otherwise continuing until the end-of-thinking token or the budget limit. Certainty is estimated from the model's predicted probabilities over the answer tokens, yielding a lightweight stopping criterion. On AIME2025, CGR preserves baseline accuracy while reducing token usage, providing a tunable certainty-efficiency trade-off that can eliminate millions of tokens in aggregate. Across 64 random seeds, CGR exhibits consistent behavior. We also introduce a Grade metric that penalizes incorrect answers and permits abstention, capturing risk-sensitive performance. Results show that CGR improves Grade by abstaining when certainty remains low.
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference. Design principles for state-to-state transformations are detailed in the Appendix, with empirical validation on 580 test cases showing 0% collapse for principle-satisfying operators versus up to 17.8% for violating operators.
comment: 24 pages, 5 figures, 7 tables. Part of the NRR research program. Clarified operator notation and appendix validation details; updated figures and reference formatting
♻ ☆ ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) are increasingly used in tasks requiring interpretive and inferential accuracy. In this paper, we introduce ExpliCa, a new dataset for evaluating LLMs in explicit causal reasoning. ExpliCa uniquely integrates both causal and temporal relations presented in different linguistic orders and explicitly expressed by linguistic connectives. The dataset is enriched with crowdsourced human acceptability ratings. We tested LLMs on ExpliCa through prompting and perplexity-based metrics. We assessed seven commercial and open-source LLMs, revealing that even top models struggle to reach 0.80 accuracy. Interestingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events. Finally, perplexity-based scores and prompting performance are differently affected by model size.
comment: Accepted for publication in Findings of ACL 2025
♻ ☆ InSPO: Unlocking Intrinsic Self-Reflection for LLM Preference Optimization
Direct Preference Optimization (DPO) and its variants have become standard for aligning Large Language Models due to their simplicity and offline stability. However, we identify two fundamental limitations. First, the optimal policy depends on arbitrary modeling choices (scalarization function, reference policy), yielding behavior reflecting parameterization artifacts rather than true preferences. Second, treating response generation in isolation fails to leverage comparative information in pairwise data, leaving the model's capacity for intrinsic self-reflection untapped. To address it, we propose Intrinsic Self-reflective Preference Optimization (InSPO), deriving a globally optimal policy conditioning on both context and alternative responses. We prove this formulation superior to DPO/RLHF while guaranteeing invariance to scalarization and reference choices. InSPO serves as a plug-and-play enhancement without architectural changes or inference overhead. Experiments demonstrate consistent improvements in win rates and length-controlled metrics, validating that unlocking self-reflection yields more robust, human-aligned LLMs. Our Code is available at https://github.com/Skylanding/InSPO.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the explainer model is significantly more capable than the target). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 23 pages, 8 tables, 7 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 2 figures, 2 tables. Part of the NRR research program. Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ TS-Arena -- A Live Forecast Pre-Registration Platform
Time Series Foundation Models (TSFMs) are transforming the field of forecasting. However, evaluating them on historical data is increasingly difficult due to the risks of train-test sample overlaps and temporal overlaps between correlated train and test time series. To address this, we introduce TS-Arena, a live forecasting platform that shifts evaluation from the known past to the unknown future. Building on the concept of continuous benchmarking, TS-Arena evaluates models on future data. Crucially, we introduce a strict forecasting pre-registration protocol: models must submit predictions before the ground-truth data physically exists. This makes test-set contamination impossible by design. The platform relies on a modular microservice architecture that harmonizes and structures data from different sources and orchestrates containerized model submissions. By enforcing a strict pre-registration protocol on live data streams, TS-Arena prevents information leakage offers a faster alternative to traditional static, infrequently repeated competitions (e.g. the M-Competitions). First empirical results derived from operating TS-Arena over one year of energy time series demonstrate that established TSFMs accumulate robust longitudinal scores over time, while the continuous nature of the benchmark simultaneously allows newcomers to demonstrate immediate competitiveness. TS-Arena provides the necessary infrastructure to assess the true generalization capabilities of modern forecasting models. The platform and corresponding code are available at https://ts-arena.live/.
♻ ☆ Evaluating Kubernetes Performance for GenAI Inference: From Automatic Speech Recognition to LLM Summarization
As Generative AI (GenAI), particularly inference, rapidly emerges as a dominant workload category, the Kubernetes ecosystem is proactively evolving to natively support its unique demands. This industry paper demonstrates how emerging Kubernetes-native projects can be combined to deliver the benefits of container orchestration, such as scalability and resource efficiency, to complex AI workflows. We implement and evaluate an illustrative, multi-stage use case consisting of automatic speech recognition and summarization. First, we address batch inference by using Kueue to manage jobs that transcribe audio files with Whisper models and Dynamic Accelerator Slicer (DAS) to increase parallel job execution. Second, we address a discrete online inference scenario by feeding the transcripts to a Large Language Model for summarization hosted using llm-d, a novel solution utilizing the recent developments around the Kubernetes Gateway API Inference Extension (GAIE) for optimized routing of inference requests. Our findings illustrate that these complementary components (Kueue, DAS, and GAIE) form a cohesive, high-performance platform, proving Kubernetes' capability to serve as a unified foundation for demanding GenAI workloads: Kueue reduced total makespan by up to 15%; DAS shortened mean job completion time by 36%; and GAIE improved Time to First Token by 82\%.
comment: A accepted at the 17th International Conference on Performance Engineering
♻ ☆ Twice Sequential Monte Carlo for Tree Search
Model-based reinforcement learning (RL) methods that leverage search are responsible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC) recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algorithm which drove these breakthroughs. SMC is easier to parallelize and more suitable to GPU acceleration. However, it also suffers from large variance and path degeneracy which prevent it from scaling well with increased search depth, i.e., increased sequential compute. To address these problems, we introduce Twice Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous environments TSMCTS outperforms the SMC baseline as well as a popular modern version of MCTS as a policy improvement operator, scales favorably with sequential compute, reduces estimator variance and mitigates the effects of path degeneracy while retaining the properties that make SMC natural to parallelize.
♻ ☆ ProjDevBench: Benchmarking AI Coding Agents on End-to-End Project Development
Recent coding agents can generate complete codebases from simple prompts, yet existing evaluations focus on issue-level bug fixing and lag behind end-to-end development. We introduce ProjDevBench, an end-to-end benchmark that provides project requirements to coding agents and evaluates the resulting repositories. Combining Online Judge (OJ) testing with LLM-assisted code review, the benchmark evaluates agents on (1) system architecture design, (2) functional correctness, and (3) iterative solution refinement. We curate 20 programming problems across 8 categories, covering both concept-oriented tasks and real-world application scenarios, and evaluate six coding agents built on different LLM backends. Our evaluation reports an overall acceptance rate of 27.38%: agents handle basic functionality and data structures but struggle with complex system design, time complexity optimization, and resource management. Our benchmark is available at https://github.com/zsworld6/projdevbench.
♻ ☆ A Review of Online Diffusion Policy RL Algorithms for Scalable Robotic Control
Diffusion policies have emerged as a powerful approach for robotic control, demonstrating superior expressiveness in modeling multimodal action distributions compared to conventional policy networks. However, their integration with online reinforcement learning remains challenging due to fundamental incompatibilities between diffusion model training objectives and standard RL policy improvement mechanisms. This paper presents the first comprehensive review and empirical analysis of current Online Diffusion Policy Reinforcement Learning (Online DPRL) algorithms for scalable robotic control systems. We propose a novel taxonomy that categorizes existing approaches into four distinct families--Action-Gradient, Q-Weighting, Proximity-Based, and Backpropagation Through Time (BPTT) methods--based on their policy improvement mechanisms. Through extensive experiments on a unified NVIDIA Isaac Lab benchmark encompassing 12 diverse robotic tasks, we systematically evaluate representative algorithms across five critical dimensions: task diversity, parallelization capability, diffusion step scalability, cross-embodiment generalization, and environmental robustness. Our analysis identifies key findings regarding the fundamental trade-offs inherent in each algorithmic family, particularly concerning sample efficiency and scalability. Furthermore, we reveal critical computational and algorithmic bottlenecks that currently limit the practical deployment of online DPRL. Based on these findings, we provide concrete guidelines for algorithm selection tailored to specific operational constraints and outline promising future research directions to advance the field toward more general and scalable robotic learning systems.
♻ ☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
♻ ☆ AIRS-Bench: a Suite of Tasks for Frontier AI Research Science Agents
LLM agents hold significant promise for advancing scientific research. To accelerate this progress, we introduce AIRS-Bench (the AI Research Science Benchmark), a suite of 20 tasks sourced from state-of-the-art machine learning papers. These tasks span diverse domains, including language modeling, mathematics, bioinformatics, and time series forecasting. AIRS-Bench tasks assess agentic capabilities over the full research lifecycle -- including idea generation, experiment analysis and iterative refinement -- without providing baseline code. The AIRS-Bench task format is versatile, enabling easy integration of new tasks and rigorous comparison across different agentic frameworks. We establish baselines using frontier models paired with both sequential and parallel scaffolds. Our results show that agents exceed human SOTA in four tasks but fail to match it in sixteen others. Even when agents surpass human benchmarks, they do not reach the theoretical performance ceiling for the underlying tasks. These findings indicate that AIRS-Bench is far from saturated and offers substantial room for improvement. We open-source the AIRS-Bench task definitions and evaluation code to catalyze further development in autonomous scientific research.
comment: 49 pages, 14 figures, 10 tables
♻ ☆ Practical Feasibility of Gradient Inversion Attacks in Federated Learning
Gradient inversion attacks are often presented as a serious privacy threat in federated learning, with recent work reporting increasingly strong reconstructions under favorable experimental settings. However, it remains unclear whether such attacks are feasible in modern, performance-optimized systems deployed in practice. In this work, we evaluate the practical feasibility of gradient inversion for image-based federated learning. We conduct a systematic study across multiple datasets and tasks, including image classification and object detection, using canonical vision architectures at contemporary resolutions. Our results show that while gradient inversion remains possible for certain legacy or transitional designs under highly restrictive assumptions, modern, performance-optimized models consistently resist meaningful reconstruction visually. We further demonstrate that many reported successes rely on upper-bound settings, such as inference mode operation or architectural simplifications which do not reflect realistic training pipelines. Taken together, our findings indicate that, under an honest-but-curious server assumption, high-fidelity image reconstruction via gradient inversion does not constitute a critical privacy risk in production-optimized federated learning systems, and that practical risk assessments must carefully distinguish diagnostic attack settings from real-world deployments.
comment: v2: revised manuscript; expanded experiments; improved analysis of reconstruction behavior across architectures
♻ ☆ Investigating Data Pruning for Pretraining Biological Foundation Models at Scale AAAI 2026
Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
comment: Accepted by AAAI 2026
♻ ☆ Revisiting Privacy, Utility, and Efficiency Trade-offs when Fine-Tuning Large Language Models
We study the inherent trade-offs in minimizing privacy risks and maximizing utility, while maintaining high computational efficiency, when fine-tuning large language models (LLMs). A number of recent works in privacy research have attempted to mitigate privacy risks posed by memorizing fine-tuning data by using differentially private training methods (e.g., DP), albeit at a significantly higher computational cost (inefficiency). In parallel, several works in systems research have focussed on developing (parameter) efficient fine-tuning methods (e.g., LoRA), but few works, if any, investigated whether such efficient methods enhance or diminish privacy risks. In this paper, we investigate this gap and arrive at a surprising conclusion: efficient fine-tuning methods like LoRA mitigate privacy risks similar to private fine-tuning methods like DP. Our empirical finding directly contradicts prevailing wisdom that privacy and efficiency objectives are at odds during fine-tuning. Our finding is established by (a) carefully defining measures of privacy and utility that distinguish between memorizing sensitive and non-sensitive tokens in training and test datasets used in fine-tuning and (b) extensive evaluations using multiple open-source language models from Pythia, Gemma, Llama, and Qwen families and different domain-specific datasets.
comment: This work has been accepted at IASEAI 2026 (Non-archival)
♻ ☆ Beyond Quantity: Trajectory Diversity Scaling for Code Agents
As code large language models (LLMs) evolve into tool-interactive agents via the Model Context Protocol (MCP), their generalization is increasingly limited by low-quality synthetic data and the diminishing returns of quantity scaling. Moreover, quantity-centric scaling exhibits an early bottleneck that underutilizes trajectory data. We propose TDScaling, a Trajectory Diversity Scaling-based data synthesis framework for code agents that scales performance through diversity rather than raw volume. Under a fixed training budget, increasing trajectory diversity yields larger gains than adding more trajectories, improving the performance-cost trade-off for agent training. TDScaling integrates four innovations: (1) a Business Cluster mechanism that captures real-service logical dependencies; (2) a blueprint-driven multi-agent paradigm that enforces trajectory coherence; (3) an adaptive evolution mechanism that steers synthesis toward long-tail scenarios using Domain Entropy, Reasoning Mode Entropy, and Cumulative Action Complexity to prevent mode collapse; and (4) a sandboxed code tool that mitigates catastrophic forgetting of intrinsic coding capabilities. Experiments on general tool-use benchmarks (BFCL, tau^2-Bench) and code agent tasks (RebenchT, CodeCI, BIRD) demonstrate a win-win outcome: TDScaling improves both tool-use generalization and inherent coding proficiency. We plan to release the full codebase and the synthesized dataset (including 30,000+ tool clusters) upon publication.
♻ ☆ Language Bottleneck Models for Qualitative Knowledge State Modeling
Accurately assessing student knowledge is central to education. Cognitive Diagnosis (CD) models estimate student proficiency at a fixed point in time, while Knowledge Tracing (KT) methods model evolving knowledge states to predict future performance. However, existing approaches either provide quantitative concept mastery estimates with limited expressivity (CD, probabilistic KT) or prioritize predictive accuracy at the cost of interpretability (deep learning KT). We propose Language Bottleneck Models (LBMs), where an encoder LLM produces textual knowledge state summaries, which a decoder LLM uses to predict future performance. This produces interpretable summaries that can express nuanced insights--such as misconceptions--that CD and KT models cannot capture. Extensive validation across synthetic and real-world datasets shows LBMs reveal qualitative insights beyond what CD and KT models can capture, while achieving competitive accuracy with improved sample efficiency. We demonstrate that the encoder and decoder can be fine-tuned with reinforcement learning and supervised fine-tuning respectively to improve both summary quality and predictive performance.
♻ ☆ Optimizing Agentic Reasoning with Retrieval via Synthetic Semantic Information Gain Reward
Agentic reasoning enables large reasoning models (LRMs) to dynamically acquire external knowledge, but yet optimizing the retrieval process remains challenging due to the lack of dense, principled reward signals. In this paper, we introduce InfoReasoner, a unified framework that incentivizes effective information seeking via a synthetic semantic information gain reward. Theoretically, we redefine information gain as uncertainty reduction over the model's belief states, establishing guarantees, including non-negativity, telescoping additivity, and channel monotonicity. Practically, to enable scalable optimization without manual retrieval annotations, we propose an output-aware intrinsic estimator that computes information gain directly from the model's output distributions using semantic clustering via bidirectional textual entailment. This intrinsic reward guides the policy to maximize epistemic progress, enabling efficient training via Group Relative Policy Optimization (GRPO). Experiments across seven question-answering benchmarks demonstrate that InfoReasoner consistently outperforms strong retrieval-augmented baselines, achieving up to 5.4% average accuracy improvement. Our work provides a theoretically grounded and scalable path toward agentic reasoning with retrieval. The code is available at https://github.com/dl-m9/InfoReasoner
♻ ☆ LatentLens: Revealing Highly Interpretable Visual Tokens in LLMs
Transforming a large language model (LLM) into a Vision-Language Model (VLM) can be achieved by mapping the visual tokens from a vision encoder into the embedding space of an LLM. Intriguingly, this mapping can be as simple as a shallow MLP transformation. To understand why LLMs can so readily process visual tokens, we need interpretability methods that reveal what is encoded in the visual token representations at every layer of LLM processing. In this work, we introduce LatentLens, a novel approach for mapping latent representations to descriptions in natural language. LatentLens works by encoding a large text corpus and storing contextualized token representations for each token in that corpus. Visual token representations are then compared to their contextualized textual representations, with the top-k nearest neighbor representations providing descriptions of the visual token. We evaluate this method on 10 different VLMs, showing that commonly used methods, such as LogitLens, substantially underestimate the interpretability of visual tokens. With LatentLens instead, the majority of visual tokens are interpretable across all studied models and all layers. Qualitatively, we show that the descriptions produced by LatentLens are semantically meaningful and provide more fine-grained interpretations for humans compared to individual tokens. More broadly, our findings contribute new evidence on the alignment between vision and language representations, opening up new directions for analyzing latent representations.
♻ ☆ DRAGOn: Designing RAG On Periodically Updated Corpus EACL 2026
This paper introduces DRAGOn, method to design a RAG benchmark on a regularly updated corpus. It features recent reference datasets, a question generation framework, an automatic evaluation pipeline, and a public leaderboard. Specified reference datasets allow for uniform comparison of RAG systems, while newly generated dataset versions mitigate data leakage and ensure that all models are evaluated on unseen, comparable data. The pipeline for automatic question generation extracts the Knowledge Graph from the text corpus and produces multiple question-answer pairs utilizing modern LLM capabilities. A set of diverse LLM-as-Judge metrics is provided for a comprehensive model evaluation. We used Russian news outlets to form the datasets and demonstrate our methodology. We launch a public leaderboard to track the development of RAG systems and encourage community participation.
comment: EACL 2026
♻ ☆ SpecPrune-VLA: Accelerating Vision-Language-Action Models via Action-Aware Self-Speculative Pruning
Pruning is a typical acceleration technique for compute-bound models by removing computation on unimportant values. Recently, it has been applied to accelerate Vision-Language-Action (VLA) model inference. However, existing acceleration methods focus on local information from the current action step and ignore the global context, leading to >20% success rate drop and limited speedup in some scenarios. In this paper, we point out spatial-temporal consistency in VLA tasks: input images in consecutive steps exhibit high similarity, and propose the key insight that token selection should combine local information with global context of the model. Based on this, we propose SpecPrune-VLA, a training-free, two-level pruning method with heuristic control. (1) Action-level static pruning. We leverage global history and local attention to statically reduce visual tokens per action. (2) Layer-level dynamic pruning. We prune tokens adaptively per layer based on layer-wise importance. (3) Lightweight action-aware controller: We classify actions as coarse- or fine-grained by the speed of the end effector and adjust pruning aggressiveness accordingly. Extensive experiments show that SpecPrune-VLA achieves up to 1.57$\times$ speedup in LIBERO simulation and 1.70$\times$ on real-world tasks, with negligible success rate degradation.
♻ ☆ Coarse-to-Fine Grounded Memory for LLM Agent Planning EMNLP 2025
Recent advancements in Large Language Models (LLMs) have driven growing interest in LLM-based agents for complex planning tasks. To avoid costly agent training, many studies adopted memory mechanism that enhances LLM with offline experiences or online trajectory analysis. However, existing works focus on single-granularity memory derived from dynamic environmental interactions, which are inherently constrained by the quality of the collected experiences. This limitation, in turn, constrain the diversity of knowledge and the flexibility of planning. We propose Coarse-to-Fine Grounded Memory (\Ours{}), a novel framework that grounds coarse-to-fine memories with LLM, thereby fully leverage them for flexible adaptation to diverse scenarios. \Ours{} grounds environmental information into coarse-grained focus points to guide experience collection in training tasks, followed by grounding of actionable hybrid-grained tips from each experience. At inference, \Ours{} retrieves task-relevant experiences and tips to support planning. When facing environmental anomalies, the LLM grounds the current situation into fine-grained key information, enabling flexible self-QA reflection and plan correction.
comment: Accepted to EMNLP 2025 Main Conference;27 pages,15 figures
♻ ☆ Playing 20 Question Game with Policy-Based Reinforcement Learning
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.
comment: Withdrawal from the conference
♻ ☆ GPTOpt: Teaching LLMs to do Interpretable Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions demands extreme sample efficiency and decision interpretability. While Large Language Models (LLMs) have shown broad capabilities, even state-of-the-art models remain limited in solving continuous black-box optimization tasks and struggle to maintain exploration-exploitation balance. We introduce GPTOpt, an optimization method that equips LLMs with continuous black-box optimization capabilities by fine-tuning Llama 3.1 8B on structured Bayesian optimization (BO) data, including surrogate model information. This provides an explainable framework calibrated to produce surrogate model outputs comparable to a Gaussian process, while keeping the advantages of flexible LLM-based optimization. On a variety of black-box optimization benchmarks, our model shows favorable performance compared to traditional optimizers and transformer-based alternatives, while providing important context and insight into the model's decisions.
♻ ☆ Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
♻ ☆ AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull, which occurs due to the rupture of blood vessels in or around the brain. If this condition is not diagnosed in a timely manner and appropriately treated, it can lead to serious complications such as decreased consciousness, permanent neurological disabilities, or even death.The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH). These tasks are framed as two separate binary classification problems. By adding two layers to the co-scale convolutional attention (CCA) classifier architecture, we introduce a novel approach for ICH detection. In the first layer, after extracting features from different slices of computed tomography (CT) scan images, we combine these features and select the 50 components that capture the highest variance in the data, considering them as informative features. We then assess the discriminative power of these features using the bootstrap forest algorithm, discarding those that lack sufficient discriminative ability between different classes. This algorithm explicitly determines the contribution of each feature to the final prediction, assisting us in developing an explainable AI model. The features feed into a boosting neural network as a latent feature space. In the second layer, we introduce a novel uncertainty-based fuzzy integral operator to fuse information from different CT scan slices. This operator, by accounting for the dependencies between consecutive slices, significantly improves detection accuracy.
♻ ☆ ActivationReasoning: Logical Reasoning in Latent Activation Spaces ICLR 2026
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
comment: Proceedings of the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
comment: arXiv admin note: text overlap with arXiv:2506.19235
♻ ☆ No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, indicating a deeper signal than dataset-specific spurious features, and outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers and, notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.
♻ ☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
♻ ☆ DegDiT: Controllable Audio Generation with Dynamic Event Graph Guided Diffusion Transformer
Controllable text-to-audio generation aims to synthesize audio from textual descriptions while satisfying user-specified constraints, including event types, temporal sequences, and onset and offset timestamps. This enables precise control over both the content and temporal structure of the generated audio. Despite recent progress, existing methods still face inherent trade-offs among accurate temporal localization, open-vocabulary scalability, and practical efficiency. To address these challenges, we propose DegDiT, a novel dynamic event graph-guided diffusion transformer framework for open-vocabulary controllable audio generation. DegDiT encodes the events in the description as structured dynamic graphs. The nodes in each graph are designed to represent three aspects: semantic features, temporal attributes, and inter-event connections. A graph transformer is employed to integrate these nodes and produce contextualized event embeddings that serve as guidance for the diffusion model. To ensure high-quality and diverse training data, we introduce a quality-balanced data selection pipeline that combines hierarchical event annotation with multi-criteria quality scoring, resulting in a curated dataset with semantic diversity. Furthermore, we present consensus preference optimization, facilitating audio generation through consensus among multiple reward signals. Extensive experiments on AudioCondition, DESED, and AudioTime datasets demonstrate that DegDiT achieves state-of-the-art performances across a variety of objective and subjective evaluation metrics.
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
♻ ☆ Massively Parallel Proof-Number Search for Impartial Games and Beyond
Proof-Number Search is a best-first search algorithm with many successful applications, especially in game solving. As large-scale computing clusters become increasingly accessible, parallelization is a natural way to accelerate computation. However, existing parallel versions of Proof-Number Search are known to scale poorly on many CPU cores. Using two parallelized levels and shared information among workers, we present the first massively parallel version of Proof-Number Search that scales efficiently even on a large number of CPUs. We apply our solver, enhanced with Grundy numbers for reducing game trees of impartial games, to the Sprouts game, a case study motivated by the long-standing Sprouts Conjecture. Our algorithm achieves 332.9$\times$ speedup on 1024 cores, significantly improving previous parallelizations and outperforming the state-of-the-art Sprouts solver GLOP by four orders of magnitude in runtime while generating proofs 1,000$\times$ more complex. Despite exponential growth in game tree size, our solver verified the Sprouts Conjecture for 42 new positions, nearly doubling the number of known outcomes.
♻ ☆ Research Superalignment Should Advance Now with Alternating Competence and Conformity Optimization
The recent leap in AI capabilities, driven by big generative models, has sparked the possibility of achieving Artificial General Intelligence (AGI) and further triggered discussions on Artificial Superintelligence (ASI)-a system surpassing all humans across measured domains. This gives rise to the critical research question of: As we approach ASI, how do we align it with human values, ensuring it benefits rather than harms human society, a.k.a., the Superalignment problem. Despite ASI being regarded by many as a hypothetical concept, in this position paper, we argue that superalignment is achievable and research on it should advance immediately, through simultaneous and alternating optimization of task competence and value conformity. We posit that superalignment is not merely a safeguard for ASI but also necessary for its responsible realization. To support this position, we first provide a formal definition of superalignment rooted in the gap between capability and capacity, delve into its perceived infeasibility by analyzing the limitations of existing paradigms, and then illustrate a conceptual path of superalignment to support its achievability, centered on two fundamental principles. This work frames a potential initiative for developing value-aligned next-generation AI in the future, which will garner greater benefits and reduce potential harm to humanity.
♻ ☆ Lyria: A Genetic Algorithm-Driven Neuro-Symbolic Reasoning Framework for LLMs
While LLMs have demonstrated impressive abilities across various domains, they struggle with two major issues. The first is that LLMs trap themselves into local optima and the second is that they lack exhaustive coverage of the solution space. To investigate and improve these two issues, we propose Lyria, a neuro-symbolic reasoning framework building on the integration of LLMs, genetic algorithms, and symbolic systems, comprising 7 essential components. Through conducting extensive experiments with 4 LLMs across 3 types of problems, we demonstrated the efficacy of Lyria. Furthermore, with 7 additional ablation experiments, we further systematically analyzed and elucidated the factors that affect its performance. In addition, based on Lyria, we extend the ideas to the fine-tuning process of LLMs and introduce LAFT which enables a weaker model to imitate the reasoning process of a stronger model that reason under the Lyria reasoning framework. We demonstrate that the significant effectiveness of LAFT by conducting extensive experiments against 9 constructed baselines. We finally reveal the limitations and provide insights into future directions.
♻ ☆ How Hyper-Datafication Impacts the Sustainability Costs in Frontier AI
Large-scale data has fuelled the success of frontier artificial intelligence (AI) models over the past decade. This expansion has relied on sustained efforts by large technology corporations to aggregate and curate internet-scale datasets. In this work, we examine the environmental, social, and economic costs of large-scale data in AI through a sustainability lens. We argue that the field is shifting from building models from data to actively creating data for building models. We characterise this transition as hyper-datafication, which marks a critical juncture for the future of frontier AI and its societal impacts. To quantify and contextualise data-related costs, we analyse approximately 550,000 datasets from the Hugging Face Hub, focusing on dataset growth, storage-related energy consumption and carbon footprint, and societal representation using language data. We complement this analysis with qualitative responses from data workers in Kenya to examine the labour involved, including direct employment by big tech corporations and exposure to graphic content. We further draw on external data sources to substantiate our findings by illustrating the global disparity in data centre infrastructure. Our analyses reveal that hyper-datafication does not merely increase resource consumption but systematically redistributes environmental burdens, labour risks, and representational harms toward the Global South, precarious data workers, and under-represented cultures. Thus, we propose Data PROOFS recommendations spanning provenance, resource awareness, ownership, openness, frugality, and standards to mitigate these costs. Our work aims to make visible the often-overlooked costs of data that underpin frontier AI and to stimulate broader debate within the research community and beyond.
comment: 14 pages
♻ ☆ No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward -- so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce Reinforcement Learning with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR. The project page is available at https://bltnynk.github.io/publications/rl-zvp/.
comment: ICLR 2026 camera-ready version
♻ ☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ Interpretable Discovery of One-parameter Subgroups: A Modular Framework for Elliptical, Hyperbolic, and Parabolic Symmetries
We propose a modular, data-driven framework for jointly learning unknown functional mappings and discovering the underlying one-parameter symmetry subgroup governing the data. Unlike conventional geometric deep learning methods that assume known symmetries, our approach identifies the relevant continuous subgroup directly from data. We consider the broad class of one-parameter subgroups, which admit a canonical geometric classification into three regimes: elliptical, hyperbolic, and parabolic. Given an assumed regime, our framework instantiates a corresponding symmetry discovery architecture with invariant and equivariant representation layers structured according to the Lie algebra of the subgroup, and learns the exact generator parameters end-to-end from data. This yields models whose invariance or equivariance is guaranteed by construction and admits formal proofs, enabling symmetry to be explicitly traced to identifiable components of the architecture. The approach is applicable to one-parameter subgroups of a wide range of matrix Lie groups, including $SO(n)$, $SL(n)$, and the Lorentz group. Experiments on synthetic and real-world systems, including moment of inertia prediction, double-pendulum dynamics, and high-energy \textit{Top Quark Tagging}, demonstrate accurate subgroup recovery and strong predictive performance across both compact and non-compact regimes.
♻ ☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (BOOM), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, BOOM naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that BOOM consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
♻ ☆ OLion: Approaching the Hadamard Ideal by Intersecting Spectral and $\ell_{\infty}$ Implicit Biases
Many optimizers can be interpreted as steepest-descent methods under norm-induced geometries, and thus inherit corresponding implicit biases. We introduce \nameA{} (\fullname{}), which combines spectral control from orthogonalized update directions with $\ell_\infty$-style coordinate control from sign updates. \nameA{} forms a Lion-style momentum direction, approximately orthogonalizes it via a few Newton--Schulz iterations, and then applies an entrywise sign, providing an efficient approximation to taking a maximal step over the intersection of the spectral and $\ell_\infty$ constraint sets (a scaled Hadamard-like set for matrix parameters). Despite the strong nonlinearity of orthogonalization and sign, we prove convergence under a mild, empirically verified diagonal-isotropy assumption. Across large-scale language and vision training, including GPT-2 and Llama pretraining, SiT image pretraining, and supervised fine-tuning, \nameA{} matches or outperforms AdamW and Muon under comparable tuning while using only momentum-level optimizer state, and it mitigates optimizer mismatch when fine-tuning AdamW-pretrained checkpoints.
comment: 23 pages
♻ ☆ Game-Theoretic Co-Evolution for LLM-Based Heuristic Discovery
Large language models (LLMs) have enabled rapid progress in automatic heuristic discovery (AHD), yet most existing methods are predominantly limited by static evaluation against fixed instance distributions, leading to potential overfitting and poor generalization under distributional shifts. We propose Algorithm Space Response Oracles (ASRO), a game-theoretic framework that reframes heuristic discovery as a program level co-evolution between solver and instance generator. ASRO models their interaction as a two-player zero-sum game, maintains growing strategy pools on both sides, and iteratively expands them via LLM-based best-response oracles against mixed opponent meta-strategies, thereby replacing static evaluation with an adaptive, self-generated curriculum. Across multiple combinatorial optimization domains, ASRO consistently outperforms static-training AHD baselines built on the same program search mechanisms, achieving substantially improved generalization and robustness on diverse and out-of-distribution instances.
♻ ☆ SoK: Trust-Authorization Mismatch in LLM Agent Interactions
Large Language Models (LLMs) are evolving into autonomous agents capable of executing complex workflows via standardized protocols (e.g., MCP). However, this paradigm shifts control from deterministic code to probabilistic inference, creating a fundamental Trust-Authorization Mismatch: static permissions are structurally decoupled from the agent's fluctuating runtime trustworthiness. In this Systematization of Knowledge (SoK), we survey more than 200 representative papers to categorize the emerging landscape of agent security. We propose the Belief-Intention-Permission (B-I-P) framework as a unifying formal lens. By decomposing agent execution into three distinct stages-Belief Formation, Intent Generation, and Permission Grant-we demonstrate that diverse threats, from prompt injection to tool poisoning, share a common root cause: the desynchronization between dynamic trust states and static authorization boundaries. Using the B-I-P lens, we systematically map existing attacks and defenses and identify critical gaps where current mechanisms fail to bridge this mismatch. Finally, we outline a research agenda for shifting from static Role-Based Access Control (RBAC) to dynamic, risk-adaptive authorization.
♻ ☆ Rethinking Cross-Modal Fine-Tuning: Optimizing the Interaction between Feature Alignment and Target Fitting AISTATS 20226
Adapting pre-trained models to unseen feature modalities has become increasingly important due to the growing need for cross-disciplinary knowledge integration. A key challenge here is how to align the representation of new modalities with the most relevant parts of the pre-trained model's representation space to enable accurate knowledge transfer. This requires combining feature alignment with target fine-tuning, but uncalibrated combinations can exacerbate misalignment between the source and target feature-label structures and reduce target generalization. Existing work, however, lacks a theoretical understanding of this critical interaction between feature alignment and target fitting. To bridge this gap, we develop a principled framework that establishes a provable generalization bound on the target error, which explains the interaction between feature alignment and target fitting through a novel concept of feature-label distortion. This bound offers actionable insights into how this interaction should be optimized for practical algorithm design. The resulting approach achieves significantly improved performance over state-of-the-art methods across a wide range of benchmark datasets.
comment: Accepted AISTATS 20226. Preprint version
♻ ☆ Disentangled Parameter-Efficient Linear Model for Long-Term Time Series Forecasting DASFAA 2026
Long-term Time Series Forecasting (LTSF) is crucial across various domains, but complex deep models like Transformers are often prone to overfitting on extended sequences. Linear Fully Connected models have emerged as a powerful alternative, achieving competitive results with fewer parameters. However, their reliance on a single, monolithic weight matrix leads to quadratic parameter redundancy and an entanglement of temporal and frequential properties. To address this, we propose DiPE-Linear, a novel model that disentangles this monolithic mapping into a sequence of specialized, parameter-efficient modules. DiPE-Linear features three core components: Static Frequential Attention to prioritize critical frequencies, Static Time Attention to focus on key time steps, and Independent Frequential Mapping to independently process frequency components. A Low-rank Weight Sharing policy further enhances efficiency for multivariate data. This disentangled architecture collectively reduces parameter complexity from quadratic to linear and computational complexity to log-linear. Experiments on real-world datasets show that DiPE-Linear delivers state-of-the-art performance with significantly fewer parameters, establishing a new and highly efficient baseline for LTSF. Our code is available at https://github.com/wintertee/DiPE-Linear/
comment: Accepted by DASFAA 2026. (Submitted Manuscript Version)
♻ ☆ Towards Transparent and Efficient Anomaly Detection in Industrial Processes through ExIFFI
Anomaly Detection (AD) is crucial in industrial settings to streamline operations by detecting underlying issues. Conventional methods merely label observations as normal or anomalous, lacking crucial insights. In Industry 5.0, interpretable outcomes become desirable to enable users to understand the rational under model decisions. This paper presents the first industrial application of ExIFFI, a recent approach for fast, efficient explanations for the Extended Isolation Forest (EIF) AD method. ExIFFI is tested on three industrial datasets, demonstrating superior explanation effectiveness, computational efficiency and improved raw anomaly detection performances. ExIFFI reaches over then 90\% of average precision on all the benchmarks considered in the study and overperforms state-of-the-art Explainable Artificial Intelligence (XAI) approaches in terms of the feature selection proxy task metric which was specifically introduced to quantitatively evaluate model explanations.
comment: This is the update version of the extended paper after receiving comments from reviewers
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Supervised Fine-Tuning Needs to Unlock the Potential of Token Priority
The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
♻ ☆ "PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles such as object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel Anti-Physics category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that utilizes current multimodal large language models to evaluate physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with detailed comparison and analysis. Through systematic testing across 1050 curated prompts spanning fundamental, composite, and anti-physics scenarios, we identify pivotal challenges these models face in adhering to real-world physics. We further examine their performance under diverse physical phenomena and prompt types, and derive targeted recommendations for crafting prompts that enhance fidelity to physical principles.
comment: 35 pages, 21 figures
♻ ☆ Optimas: Optimizing Compound AI Systems with Globally Aligned Local Rewards ICLR 2026
Compound AI systems integrating multiple components, such as Large Language Models, specialized tools, and traditional machine learning models, are increasingly deployed to solve complex real-world tasks. However, optimizing compound systems remains challenging due to their non-differentiable structures and diverse configuration types across components, including prompts, hyperparameters, and model parameters. To address this challenge, we propose Optimas, a unified framework for effective optimization of compound systems. The core idea of Optimas is to maintain one Local Reward Function (LRF) per component, each satisfying a local-global alignment property, i.e., each component's local reward correlates with the global system performance. In each iteration, Optimas efficiently adapts the LRFs to maintain this property while simultaneously maximizing each component's local reward. This approach enables independent updates of heterogeneous configurations using the designated optimization method, while ensuring that local improvements consistently lead to performance gains. We present extensive evaluations across five real-world compound systems to demonstrate that Optimas outperforms strong baselines by an average improvement of 11.92%, offering a general and effective approach for improving compound systems. Our website is at https://optimas.stanford.edu.
comment: Accepted to ICLR 2026. 22 pages
♻ ☆ Agentic AI Reasoning for Mobile Edge General Intelligence: Fundamentals, Approaches, and Directions
The rapid advancement of large language models (LLMs) has enabled an emergence of agentic artificial intelligence (AI) with powerful reasoning and autonomous decision-making capabilities. This integration with edge computing has led to the development of Mobile Edge General Intelligence (MEGI), which brings real-time, privacy-preserving reasoning to the network edge. However, deploying LLM-based agentic AI reasoning in MEGI environments poses significant challenges due to the high computational demands of reasoning and the limited resources of edge devices. To address these challenges, we propose a joint optimization framework for efficient LLM reasoning deployment in MEGI. First, we systematically review enhancement methods to identify mechanisms suitable for edge adaptation. Subsequently, we present a distributed framework that synergizes reasoning enhancement via adaptive CoT prompting with scalable deployment through a distributed MoE architecture. An important innovation of this approach involves modeling reasoning depth as a dynamic network resource variable, which is optimized jointly with expert activation and transmission power. This mechanism allows the system to dynamically regulate expert networks and reasoning complexity according to task requirements and device capabilities. Experimental evaluations in mobile edge environments demonstrate that the proposed framework effectively balances reasoning quality and resource efficiency. The results show that with less than one second of additional inference time, both accuracy and latency satisfaction rate can reach 90\%, validating the practical viability of deploying sophisticated LLM reasoning in resource-constrained MEGI systems.
♻ ☆ ASSESS: A Semantic and Structural Evaluation Framework for Statement Similarity ICLR 2026
Despite significant strides in statement autoformalization, a critical gap remains in the development of automated evaluation metrics capable of assessing formal translation quality. Existing metrics often fail to balance semantic and structural information: string-based methods neglect semantics, whereas proof-based approaches offer no graded similarity when proofs fail. To address these issues, we introduce ASSESS (A Semantic and Structural Evaluation Framework for Statement Similarity), which captures syntactic structure by transforming formal statements into operator trees and computes a real-valued similarity score using our novel TransTED (Transformation Tree Edit Distance) Similarity metric by incorporating semantic transformations. For rigorous validation, we present EPLA (Evaluating Provability and Likeness for Autoformalization), a benchmark comprising 1,247 expert-annotated formal statement pairs derived from miniF2F and ProofNet, distinctively labeled for both semantic provability and structural likeness. Experiments on the EPLA benchmark demonstrate that TransTED Similarity surpasses existing methods, achieving state-of-the-art accuracy and Kappa score. The benchmark dataset, code, and detailed experimental results are available at https://github.com/XiaoyangLiu-sjtu/ASSESS.
comment: Accepted to ICLR 2026
♻ ☆ GUI Knowledge Bench: Revealing the Knowledge Gap of VLMs in GUI Tasks
Vision language models (VLMs) have advanced graphical user interface (GUI) task automation but still lag behind humans. We hypothesize this gap stems from missing core GUI knowledge, which existing training schemes (such as supervised fine tuning and reinforcement learning) alone cannot fully address. By analyzing common failure patterns in GUI task execution, we distill GUI knowledge into three dimensions: (1) interface knowledge about widget functions, layout semantics, and system states; (2) interaction knowledge about GUI interaction types and effects; and (3) procedure knowledge of task objectives and workflow sequences. We further introduce GUI Knowledge Bench, a benchmark with multiple-choice and yes/no questions across six platforms (Web, Android, MacOS, Windows, Linux, IOS) and 292 applications. Our evaluation indicates that current VLMs are generally aware of the functions of individual widgets, but lack the GUI-specific knowledge required to track system states, adhere to GUI interaction conventions, and assess task completion progress. Experiments on real-world GUI tasks further validate the close link between GUI knowledge and task success. By providing a structured framework for assessing GUI knowledge, our work supports the selection of VLMs with greater potential prior to downstream training and provides insights for building more capable GUI agents.
♻ ☆ CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
♻ ☆ ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
♻ ☆ Trade in Minutes! Rationality-Driven Agentic System for Quantitative Financial Trading
Recent advancements in large language models (LLMs) and agentic systems have shown exceptional decision-making capabilities, revealing significant potential for autonomic finance. Current financial trading agents predominantly simulate anthropomorphic roles that inadvertently introduce emotional biases and rely on peripheral information, while being constrained by the necessity for continuous inference during deployment. In this paper, we pioneer the harmonization of strategic depth in agents with the mechanical rationality essential for quantitative trading. Consequently, we present TiMi (Trade in Minutes), a rationality-driven multi-agent system that architecturally decouples strategy development from minute-level deployment. TiMi leverages specialized LLM capabilities of semantic analysis, code programming, and mathematical reasoning within a comprehensive policy-optimization-deployment chain. Specifically, we propose a two-tier analytical paradigm from macro patterns to micro customization, layered programming design for trading bot implementation, and closed-loop optimization driven by mathematical reflection. Extensive evaluations across 200+ trading pairs in stock and cryptocurrency markets empirically validate the efficacy of TiMi in stable profitability, action efficiency, and risk control under volatile market dynamics.
comment: 17 pages, 6 figures
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ Paper Copilot: Tracking the Evolution of Peer Review in AI Conferences ICLR 2026
The rapid growth of AI conferences is straining an already fragile peer-review system, leading to heavy reviewer workloads, expertise mismatches, inconsistent evaluation standards, superficial or templated reviews, and limited accountability under compressed timelines. In response, conference organizers have introduced new policies and interventions to preserve review standards. Yet these ad-hoc changes often create further concerns and confusion about the review process, leaving how papers are ultimately accepted - and how practices evolve across years - largely opaque. We present Paper Copilot, a system that creates durable digital archives of peer reviews across a wide range of computer-science venues, an open dataset that enables researchers to study peer review at scale, and a large-scale empirical analysis of ICLR reviews spanning multiple years. By releasing both the infrastructure and the dataset, Paper Copilot supports reproducible research on the evolution of peer review. We hope these resources help the community track changes, diagnose failure modes, and inform evidence-based improvements toward a more robust, transparent, and reliable peer-review system.
comment: ICLR 2026. https://papercopilot.com/
♻ ☆ Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
♻ ☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
♻ ☆ Theoretical Modeling of Large Language Model Self-Improvement Training Dynamics Through Solver-Verifier Gap
Self-improvement is a significant techniques within the realm of large language model (LLM), aiming to enhance the LLM performance without relying on external data. Despite its significance, generally how LLM performances evolve during the self-improvement process remains underexplored. In this paper, we theoretically model the training dynamics of self-improvement via the concept of solver-verifier gap. This is inspired by the conjecture that the performance enhancement of self-improvement stems from the gap between LLM's solver capability and verifier capability. Based on the theoretical framework, we further show how to model the entire training trajectory. This framework allows quantifying the capability limit of self-improvement by fitting the theoretical model to the experiment results. We validate the effectiveness of the theoretical framework on various LLMs and datasets. Beyond self-improvement, we extend our analysis to investigate how external data influences these dynamics within the framework. Notably, we find that under limited external data regimes, such external data can be utilized at any stage without significantly affecting final performances, which accords with the empirical observations.
comment: 37 pages
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods. The code is released at https://github.com/craree/ASSG-SNNs-Robustness-Evaluation
♻ ☆ Q-Learning under Finite Model Uncertainty
We propose a robust Q-learning algorithm for Markov decision processes under model uncertainty when each state-action pair is associated with a finite ambiguity set of candidate transition kernels. This finite-measure framework enables highly flexible, user-designed uncertainty models and goes beyond the common KL and Wasserstein ball formulations. We establish almost sure convergence of the learned Q-function to the robust optimum, and derive non-asymptotic high-probability error bounds that separate stochastic approximation error from transition-kernel estimation error. Finally, we show that Wasserstein ball and parametric ambiguity sets can be approximated by finite ambiguity sets, allowing our algorithm to be used as a generic solver beyond the finite setting.
♻ ☆ SLAY: Geometry-Aware Spherical Linearized Attention with Yat-Kernel ICML 2026
We propose a new class of linear-time attention mechanisms based on a relaxed and computationally efficient formulation of the recently introduced E-Product, often referred to as the Yat-kernel (Bouhsine, 2025). The resulting interactions are geometry-aware and inspired by inverse-square interactions in physics. Our method, Spherical Linearized Attention with Yat Kernels (SLAY), constrains queries and keys to the unit sphere so that attention depends only on angular alignment. Using Bernstein's theorem, we express the spherical Yat-kernel as a nonnegative mixture of polynomial-exponential product kernels and derive a strictly positive random-feature approximation enabling linear-time O(L) attention. We establish positive definiteness and boundedness on the sphere and show that the estimator yields well-defined, nonnegative attention scores. Empirically, SLAY achieves performance that is nearly indistinguishable from standard softmax attention while retaining linear time and memory scaling, and consistently outperforms prior linear-time attention mechanisms such as Performers and Cosformers. To the best of our knowledge, SLAY represents the closest linear-time approximation to softmax attention reported to date, enabling scalable Transformers without the typical performance trade-offs of attention linearization.
comment: ICML 2026, 8 pages main body, 27 pages total
♻ ☆ Multi-Agent Teams Hold Experts Back
Multi-agent LLM systems are increasingly deployed as autonomous collaborators, where agents interact freely rather than execute fixed, pre-specified workflows. In such settings, effective coordination cannot be fully designed in advance and must instead emerge through interaction. However, most prior work enforces coordination through fixed roles, workflows, or aggregation rules, leaving open the question of how well self-organizing teams perform when coordination is unconstrained. Drawing on organizational psychology, we study whether self-organizing LLM teams achieve strong synergy, where team performance matches or exceeds the best individual member. Across human-inspired and frontier ML benchmarks, we find that -- unlike human teams -- LLM teams consistently fail to match their expert agent's performance, even when explicitly told who the expert is, incurring performance losses of up to 37.6%. Decomposing this failure, we show that expert leveraging, rather than identification, is the primary bottleneck. Conversational analysis reveals a tendency toward integrative compromise -- averaging expert and non-expert views rather than appropriately weighting expertise -- which increases with team size and correlates negatively with performance. Interestingly, this consensus-seeking behavior improves robustness to adversarial agents, suggesting a trade-off between alignment and effective expertise utilization. Our findings reveal a significant gap in the ability of self-organizing multi-agent teams to harness the collective expertise of their members.
comment: Preprint
♻ ☆ Transformer-based Learning-to-Optimize Approach for Scalable and Generalizable Beamforming
We develop an unsupervised deep learning framework for downlink beamforming in large-scale MU-MISO channels. The model is trained offline, allowing real-time inference through lightweight feedforward computations in dynamic communication environments. Following the learning-to-optimize (L2O) paradigm, a multi-layer Transformer iteratively refines both channel and beamformer features via residual connections. To enhance training, three strategies are introduced: (i) curriculum learning (CL) to improve early-stage convergence and avoid local optima, (ii) semi-amortized learning to refine each Transformer block with a few gradient ascent steps, and (iii) sliding-window training to stabilize optimization by training only a subset of Transformer blocks at a time. Extensive simulations show that the proposed scheme outperforms existing baselines at low-to-medium SNRs and closely approaches WMMSE performance at high SNRs, while achieving substantially faster inference than iterative and online learning approaches.
comment: 14 pages, second version
♻ ☆ NOCTA: Non-Greedy Objective Cost-Tradeoff Acquisition for Longitudinal Data
In many critical domains, features are not freely available at inference time: each measurement may come with a cost of time, money, and risk. Longitudinal prediction further complicates this setting because both features and labels evolve over time, and missing measurements at earlier timepoints may become permanently unavailable. We propose NOCTA, a Non-Greedy Objective Cost-Tradeoff Acquisition framework that sequentially acquires the most informative features at inference time while accounting for both temporal dynamics and acquisition cost. NOCTA is driven by a novel objective, NOCT, which evaluates a candidate set of future feature-time acquisitions by its expected predictive loss together with its acquisition cost. Since NOCT depends on unobserved future trajectories at inference time, we develop two complementary estimators: (i) NOCT-Contrastive, which learns an embedding of partial observations utilizing the induced distribution over future acquisitions, and (ii) NOCT-Amortized, which directly predicts NOCT for candidate plans with a neural network. Experiments on synthetic and real-world medical datasets demonstrate that both NOCTA estimators outperform existing baselines, achieving higher accuracy at lower acquisition costs.
♻ ☆ On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
comment: To appear in the 39th Annual Conference on Neural Information Processing Systems in Europe (EurIPS 2025) Workshop, Copenhagen, Denmark, 2-7 December 2025 AIDT@EurIPS: AI for Tabular Data
♻ ☆ Who Gets Credit or Blame? Attributing Accountability in Modern AI Systems
Modern AI systems are typically developed through multiple stages-pretraining, fine-tuning rounds, and subsequent adaptation or alignment, where each stage builds on the previous ones and updates the model in distinct ways. This raises a critical question of accountability: when a deployed model succeeds or fails, which stage is responsible, and to what extent? We pose the accountability attribution problem for tracing model behavior back to specific stages of the model development process. To address this challenge, we propose a general framework that answers counterfactual questions about stage effects: how would the model's behavior have changed if the updates from a particular stage had not occurred? Within this framework, we introduce estimators that efficiently quantify stage effects without retraining the model, accounting for both the data and key aspects of model optimization dynamics, including learning rate schedules, momentum, and weight decay. We demonstrate that our approach successfully quantifies the accountability of each stage to the model's behavior. Based on the attribution results, our method can identify and remove spurious correlations learned during image classification and text toxicity detection tasks that were developed across multiple stages. Our approach provides a practical tool for model analysis and represents a significant step toward more accountable AI development.
♻ ☆ CID-GraphRAG: Enhancing Multi-Turn Dialogue Systems through Dual-Pathway Retrieval of Conversation Flow and Context Semantics
We present CID-GraphRAG (Conversational Intent-Driven Graph Retrieval-Augmented Generation), a novel framework that addresses the limitations of existing dialogue systems in maintaining both contextual coherence and goal-oriented progression in multi-turn customer service conversations. Unlike traditional RAG systems that rely solely on semantic similarity or static knowledge graphs, CID-GraphRAG constructs intent transition graphs from goal-achieved historical dialogues and implements a dual-retrieval mechanism that balances intent-based graph traversal with semantic search. This approach enables the system to simultaneously leverage both conversational intent flow patterns and contextual semantics, significantly improving retrieval quality and response quality. In extensive experiments on real-world customer service dialogues, we demonstrated that CID-GraphRAG significantly outperforms both semantic-based and intent-based baselines across automatic metrics, LLM-as-a-Judge evaluations and human evaluations, with relative gains of 11.4% in BLEU, 4.9% in ROUGE, and 5.9% in METEOR. Most notably, CID-GraphRAG achieves a 57.9% improvement in response quality according to LLM-as-a-Judge evaluations. These results demonstrate that integrating intent transition structures with semantic retrieval creates a synergistic effect that neither approach achieves independently, establishing CID-GraphRAG as an effective framework for real-world multi-turn dialogue systems in customer service and other knowledge-intensive domains.
♻ ☆ Reasoning With a Star: A Heliophysics Dataset and Benchmark for Agentic Scientific Reasoning NeurIPS 2025
Scientific reasoning through Large Language Models in heliophysics involves more than just recalling facts: it requires incorporating physical assumptions, maintaining consistent units, and providing clear scientific formats through coordinated approaches. To address these challenges, we present Reasoning With a Star, a newly contributed heliophysics dataset applicable to reasoning; we also provide an initial benchmarking approach. Our data are constructed from National Aeronautics and Space Administration & University Corporation for Atmospheric Research Living With a Star summer school problem sets and compiled into a readily consumable question-and-answer structure with question contexts, reasoning steps, expected answer type, ground-truth targets, format hints, and metadata. A programmatic grader checks the predictions using unit-aware numerical tolerance, symbolic equivalence, and schema validation. We benchmark a single-shot baseline and four multi-agent patterns, finding that decomposing workflows through systems engineering principles outperforms direct prompting on problems requiring deductive reasoning rather than pure inductive recall.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences (ML4PS) Workshop. Dataset: https://huggingface.co/datasets/SpaceML/ReasoningWithAStar
♻ ☆ TRACE: Learning to Compute on Circuit Graphs
Learning to compute, the ability to model the functional behavior of a circuit graph, is a fundamental challenge for graph representation learning. Yet, the dominant paradigm is architecturally mismatched for this task. This flawed assumption, central to mainstream message passing neural networks (MPNNs) and their conventional Transformer-based counterparts, prevents models from capturing the position-aware, hierarchical nature of computation. To resolve this, we introduce TRACE, a new paradigm built on an architecturally sound backbone and a principled learning objective. First, TRACE employs a Hierarchical Transformer that mirrors the step-by-step flow of computation, providing a faithful architectural backbone that replaces the flawed permutation-invariant aggregation. Second, we introduce function shift learning, a novel objective that decouples the learning problem. Instead of predicting the complex global function directly, our model is trained to predict only the function shift, the discrepancy between the true global function and a simple local approximation that assumes input independence. We validate this paradigm on various circuits modalities, including Register Transfer Level graphs, And-Inverter Graphs and post-mapping netlists. Across a comprehensive suite of benchmarks, TRACE substantially outperforms all prior architectures. These results demonstrate that our architecturally-aligned backbone and decoupled learning objective form a more robust paradigm for the fundamental challenge of learning the functional behavior of a circuit graph.
♻ ☆ Dist2ill: Distributional Distillation for One-Pass Uncertainty Estimation in Large Language Models
Large Language Models (LLMs) often exhibit misalignment between the quality of their generated responses and the confidence estimates they assign to them. Bayesian treatments, such as marginalizing over a reliable weight posterior or over the space of reasoning traces, provide an effective remedy, but incur substantial computational overhead due to repeated sampling at test time. To enable accurate uncertainty estimation in a single forward pass, we propose a novel distributional distillation framework (Dist2ill) that trains an LLM to produce multiple diverse reasoning paths within one inference pass, while using a lightweight parametric module to approximate empirical confidence scores derived from the sampling distribution. Extensive experiments demonstrate that Dist2ill preserves reasoning diversity and achieves state-of-the-art uncertainty estimation, substantially improving Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL), while remaining computationally efficient.
comment: Preprint; work in progress. Update Log: 05/2025 (v1&v2): Introduced Dist2ill (previously named EUD) for efficient uncertainty estimation, focusing on discriminative reasoning tasks. 02/2026 (v3): Extended Dist2ill to a unified framework supporting both discriminative and generative reasoning
♻ ☆ Generating metamers of human scene understanding
Human vision combines low-resolution "gist" information from the visual periphery with sparse but high-resolution information from fixated locations to construct a coherent understanding of a visual scene. In this paper, we introduce MetamerGen, a tool for generating scenes that are aligned with latent human scene representations. MetamerGen is a latent diffusion model that combines peripherally obtained scene gist information with information obtained from scene-viewing fixations to generate image metamers for what humans understand after viewing a scene. Generating images from both high and low resolution (i.e. "foveated") inputs constitutes a novel image-to-image synthesis problem, which we tackle by introducing a dual-stream representation of the foveated scenes consisting of DINOv2 tokens that fuse detailed features from fixated areas with peripherally degraded features capturing scene context. To evaluate the perceptual alignment of MetamerGen generated images to latent human scene representations, we conducted a same-different behavioral experiment where participants were asked for a "same" or "different" response between the generated and the original image. With that, we identify scene generations that are indeed metamers for the latent scene representations formed by the viewers. MetamerGen is a powerful tool for understanding scene understanding. Our proof-of-concept analyses uncovered specific features at multiple levels of visual processing that contributed to human judgments. While it can generate metamers even conditioned on random fixations, we find that high-level semantic alignment most strongly predicts metamerism when the generated scenes are conditioned on viewers' own fixated regions.
♻ ☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies describe domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs lacking structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework synthesizing these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas constraining LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits, each carrying a professional "anxiety" that prevents shallow outputs. Retrieval-augmented generation grounds designs in precedents from existing exemplars. We demonstrate the framework through GameGrammar, generating complete tabletop game designs, and present three empirical studies. An ablation study (120 designs, 4 conditions) shows multi-agent specialization produces the largest quality gains (fun d=1.12, depth d=1.59; p<.001), while schema validation eliminates structural errors (d=4.78). A benchmark against 20 published board games reveals structural parity but a bounded creative gap (fun d=1.86): generated designs score 7-8 while published games score 8-9. A test-retest study (50 evaluations) validates the LLM-based evaluator, with 7/9 metrics achieving Good-to-Excellent reliability (ICC 0.836-0.989). The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars is a candidate for Generative Ontology.
comment: 19 pages, 12 figures, 8 tables. v2: added empirical evaluation (3 studies: ablation, benchmark, reliability), expanded related work, discussion section, appendices. Code available at https://github.com/bennycheung/GameGrammarCLI
♻ ☆ Data-Chain Backdoor: Do You Trust Diffusion Models as Generative Data Supplier?
The increasing use of generative models such as diffusion models for synthetic data augmentation has greatly reduced the cost of data collection and labeling in downstream perception tasks. However, this new data source paradigm may introduce important security concerns. Publicly available generative models are often reused without verification, raising a fundamental question of their safety and trustworthiness. This work investigates backdoor propagation in such emerging generative data supply chain, namely, Data-Chain Backdoor (DCB). Specifically, we find that open-source diffusion models can become hidden carriers of backdoors. Their strong distribution-fitting ability causes them to memorize and reproduce backdoor triggers in generation, which are subsequently inherited by downstream models, resulting in severe security risks. This threat is particularly concerning under clean-label attack scenarios, as it remains effective while having negligible impact on the utility of the synthetic data. We study two attacker choices to obtain a backdoor-carried generator, training from scratch and fine-tuning. While naive fine-tuning leads to weak inheritance of the backdoor, we find that novel designs in the loss objectives and trigger processing can substantially improve the generator's ability to preserve trigger patterns, making fine-tuning a low-cost attack path. We evaluate the effectiveness of DCB under the standard augmentation protocol and further assess data-scarce settings. Across multiple trigger types, we observe that the trigger pattern can be consistently retained in the synthetic data with attack efficacy comparable to the conventional backdoor attack.
♻ ☆ PiFlow: Principle-Aware Scientific Discovery with Multi-Agent Collaboration
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering the systematic reduction of uncertainty. Overcoming these limitations fundamentally requires a principled approach to exploration. We introduce PiFlow, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). Extensive evaluations across three distinct scientific domains demonstrate that PiFlow (I) improves discovery efficiency by 31.18%~41.73% and solution quality by 12.47%~31.72% against state-of-the-art methods, (II) delivers a 5.6x speedup in time-to-solution while reducing token consumption by up to 27% compared to vanilla agents, and (III) serves as a Plug-and-Play module that generalizes on existing agent architecture. Overall, PiFlow establishes a novel paradigm shift in highly efficient agentic scientific discovery, paving the way for more robust and accelerated AI-driven research.
♻ ☆ Trust Region Masking for Long-Horizon LLM Reinforcement Learning
Policy gradient methods for Large Language Models optimize a policy $π_θ$ via a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. However, modern LLM-RL pipelines suffer from unavoidable implementation divergences -- backend discrepancies, Mixture-of-Experts routing discontinuities, and distributed training staleness -- causing off-policy mismatch ($π_{\text{roll}} \neq π_θ$) and approximation errors between the surrogate and the true objective. We demonstrate that classical trust region bounds on this error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. To address this, we derive a family of bounds -- both KL-based and TV-based -- including a Pinsker-Marginal bound ($O(T^{3/2})$), a Mixed bound ($O(T)$), and an Adaptive bound that strictly generalizes the Pinsker-Marginal bound via per-position importance-ratio decomposition. Taking the minimum over all bounds yields the tightest known guarantee across all divergence regimes. Crucially, all bounds depend on the maximum token-level divergence $D_{\mathrm{KL}}^{\mathrm{tok,max}}$ (or $D_{\mathrm{TV}}^{\mathrm{tok,max}}$), a sequence-level quantity that cannot be controlled by token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which masks entire sequences violating the trust region, enabling the first non-vacuous monotonic improvement guarantees for long-horizon LLM-RL.
♻ ☆ Lifelong Learning with Behavior Consolidation for Vehicle Routing ICLR 2026
Recent neural solvers have demonstrated promising performance in learning to solve routing problems. However, existing studies are primarily based on one-off training on one or a set of predefined problem distributions and scales, i.e., tasks. When a new task arises, they typically rely on either zero-shot generalization, which may be poor due to the discrepancies between the new task and the training task(s), or fine-tuning the pretrained solver on the new task, which possibly leads to catastrophic forgetting of knowledge acquired from previous tasks. This paper explores a novel lifelong learning paradigm for neural VRP solvers, where multiple tasks with diverse distributions and scales arise sequentially over time. Solvers are required to effectively and efficiently learn to solve new tasks while maintaining their performance on previously learned tasks. Consequently, a novel framework called Lifelong Learning Router with Behavior Consolidation (LLR-BC) is proposed. LLR-BC consolidates prior knowledge effectively by aligning behaviors of the solver trained on a new task with the buffered ones in a decision-seeking way. To encourage more focus on crucial experiences, LLR-BC assigns greater consolidated weights to decisions with lower confidence. Extensive experiments on capacitated vehicle routing problems and traveling salesman problems demonstrate LLR-BC's effectiveness in training high-performance neural solvers in a lifelong learning setting, addressing the catastrophic forgetting issue, maintaining their plasticity, and improving zero-shot generalization ability.
comment: Accepted by The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ HouseTS: A Large-Scale, Multimodal Spatiotemporal U.S. Housing Dataset and Benchmark
Accurate long-horizon house-price forecasting requires benchmarks that capture temporal dynamics together with time-varying local context. However, existing public resources remain fragmented: many datasets have limited spatial coverage, temporal depth, or multimodal alignment; the robustness of modern deep forecasters and time-series foundation models on housing data is not well characterized; and aerial imagery is rarely leveraged in a time-aware and interpretable manner at scale. To bridge these gaps, we present HouseTS (House Time Series), a multimodal spatiotemporal dataset for ZIP-code-level housing-market analysis, covering monthly signals from March 2012 to December 2023 across over 6,000 ZIP codes in 30 major U.S. metropolitan areas. HouseTS aligns monthly housing-market indicators, monthly POI dynamics, and annual census-based socioeconomic variables under a unified schema, and includes time-stamped annual aerial imagery. Building on HouseTS, we define standardized long-horizon forecasting tasks for univariate and multivariate prediction and benchmark 16 model families spanning statistical methods, classical machine learning, deep neural networks, and time-series foundation models in both zero-shot and fine-tuned modes. We also provide image-derived textual change annotations from multi-year aerial image sequences via a vision--language pipeline with LLM-as-judge and human verification to support scalable interpretability analyses. HouseTS is available on Kaggle, with code and documentation on GitHub.
♻ ☆ Temperature Scaling Attack Disrupting Model Confidence in Federated Learning
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.
comment: 20 pages, 20 figures
♻ ☆ Bridging Gulfs in UI Generation through Semantic Guidance
While generative AI enables high-fidelity UI generation from text prompts, users struggle to articulate design intent and evaluate or refine results-creating gulfs of execution and evaluation. To understand the information needed for UI generation, we conducted a thematic analysis of UI prompting guidelines, identifying key design semantics and discovering that they are hierarchical and interdependent. Leveraging these findings, we developed a system that enables users to specify semantics, visualize relationships, and extract how semantics are reflected in generated UIs. By making semantics serve as an intermediate representation between human intent and AI output, our system bridges both gulfs by making requirements explicit and outcomes interpretable. A comparative user study suggests that our approach enhances users' perceived control over intent expression and outcome interpretation, and facilitates more predictable iterative refinement. Our work demonstrates how explicit semantic representation enables systematic and explainable exploration of design possibilities in AI-driven UI design.
comment: In Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI '26)
♻ ☆ DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
The ability to research and synthesize knowledge is central to human expertise and progress. A new class of AI systems--designed for generative research synthesis--aims to automate this process by retrieving information from the live web and producing long-form, cited reports. Yet, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short, factual answers, while expert-curated datasets risk staleness and data contamination. Neither captures the complexity and evolving nature of real research synthesis tasks. We introduce DeepScholar-bench, a live benchmark and automated evaluation framework for generative research synthesis. DeepScholar-bench draws queries and human-written exemplars from recent, high-quality ArXiv papers and evaluates a real synthesis task: generating a related work section by retrieving, synthesizing, and citing prior work. Our automated framework holistically measures performance across three key dimensions--knowledge synthesis, retrieval quality, and verifiability. To further future work, we also contribute DeepScholar-ref, a simple, open-source reference pipeline, which is implemented on the LOTUS framework and provides a strong baseline. Using DeepScholar-bench, we systematically evaluate prior open-source systems, search agents with strong models, OpenAI's DeepResearch, and DeepScholar-ref. We find DeepScholar-bench is far from saturated: no system surpasses a geometric mean of $31\%$ across all metrics. These results highlight both the difficulty and importance of DeepScholar-bench as a foundation for advancing AI systems capable of generative research synthesis. We make our benchmark code and data available at https://github.com/guestrin-lab/deepscholar-bench.
♻ ☆ The Achilles' Heel of LLMs: How Altering a Handful of Neurons Can Cripple Language Abilities
Large Language Models (LLMs) have become foundational tools in natural language processing, powering a wide range of applications and research. Many studies have shown that LLMs share significant similarities with the human brain. Recent neuroscience research has found that a small subset of biological neurons in the human brain are crucial for core cognitive functions, which raises a fundamental question: do LLMs also contain a small subset of critical neurons? In this paper, we investigate this question by proposing a Perturbation-based Causal Identification of Critical Neurons method to systematically locate such critical neurons in LLMs. Our findings reveal three key insights: (1) LLMs contain ultra-sparse critical neuron sets. Disrupting these critical neurons can cause a 72B-parameter model with over 1.1 billion neurons to completely collapse, with perplexity increasing by up to 20 orders of magnitude; (2) These critical neurons are not uniformly distributed, but tend to concentrate in the outer layers, particularly within the MLP down\_proj components; (3) Performance degradation exhibits sharp phase transitions, rather than a gradual decline, when these critical neurons are disrupted. Through comprehensive experiments across diverse model architectures and scales, we provide deeper analysis of these phenomena and their implications for LLM robustness and interpretability. These findings can offer guidance for developing more robust model architectures and improving deployment security in safety-critical applications. Our code is available at https://github.com/qqqqqqqzx/The-Achilles-Heel-of-LLMs.
♻ ☆ Open-Set Domain Adaptation Under Background Distribution Shift: Challenges and A Provably Efficient Solution
As we deploy machine learning systems in the real world, a core challenge is to maintain a model that is performant even as the data shifts. Such shifts can take many forms: new classes may emerge that were absent during training, a problem known as open-set recognition, and the distribution of known categories may change. Guarantees on open-set recognition are mostly derived under the assumption that the distribution of known classes, which we call the background distribution, is fixed. In this paper we develop CoLOR, a method that is guaranteed to solve open-set recognition even in the challenging case where the background distribution shifts. We prove that the method works under benign assumptions that the novel class is separable from the non-novel classes, and provide theoretical guarantees that it outperforms a representative baseline in a simplified overparameterized setting. We develop techniques to make CoLOR scalable and robust, and perform comprehensive empirical evaluations on image and text data. The results show that CoLOR significantly outperforms existing open-set recognition methods under background shift. Moreover, we provide new insights into how factors such as the size of the novel class influences performance, an aspect that has not been extensively explored in prior work.
♻ ☆ Structural shifts in institutional participation and collaboration within the AI arXiv preprint research ecosystem
The emergence of large language models (LLMs) represents a significant technological shift within the scientific ecosystem, particularly within the field of artificial intelligence (AI). This paper examines structural changes in the AI research landscape using a dataset of arXiv preprints (cs.AI) from 2021 through 2025. Given the rapid pace of AI development, the preprint ecosystem has become a critical barometer for real-time scientific shifts, often preceding formal peer-reviewed publication by months or years. By employing a multi-stage data collection and enrichment pipeline in conjunction with LLM-based institution classification, we analyze the evolution of publication volumes, author team sizes, and academic--industry collaboration patterns. Our results reveal an unprecedented surge in publication output following the introduction of ChatGPT, with academic institutions continuing to provide the largest volume of research. However, we observe that academic--industry collaboration is still suppressed, as measured by a Normalized Collaboration Index (NCI) that remains significantly below the random-mixing baseline across all major subfields. These findings highlight a continuing institutional divide and suggest that the capital-intensive nature of generative AI research may be reshaping the boundaries of scientific collaboration.
comment: 16 pages, 5 Figures, 7 Tables
♻ ☆ Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents AAAI
Growing concerns about safety and alignment of AI systems highlight the importance of embedding moral capabilities in artificial agents: a promising solution is the use of learning from experience, i.e., Reinforcement Learning. In multi-agent (social) environments, complex population-level phenomena may emerge from interactions between individual learning agents. Many of the existing studies rely on simulated social dilemma environments to study the interactions of independent learning agents; however, they tend to ignore the moral heterogeneity that is likely to be present in societies of agents in practice. For example, at different points in time a single learning agent may face opponents who are consequentialist (i.e., focused on maximizing outcomes over time), norm-based (i.e., conforming to specific norms), or virtue-based (i.e., considering a combination of different virtues). The extent to which agents' co-development may be impacted by such moral heterogeneity in populations is not well understood. In this paper, we present a study of the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting. Using an Iterated Prisoner's Dilemma environment with a partner selection mechanism, we investigate the extent to which the prevalence of diverse moral agents in populations affects individual agents' learning behaviors and emergent population-level outcomes. We observe several types of non-trivial interactions between pro-social and anti-social agents, and find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
comment: Presented at AIES 2024 (7th AAAI/ACM Conference on AI, Ethics, and Society - San Jose, CA, USA) - see https://ojs.aaai.org/index.php/AIES/article/view/31736
♻ ☆ Artificial Intelligence Software Structured to Simulate Human Working Memory, Mental Imagery, and Mental Continuity
This article presents an artificial intelligence (AI) architecture intended to simulate the iterative updating of the human working memory system. It features several interconnected neural networks designed to emulate the specialized modules of the cerebral cortex. These are structured hierarchically and integrated into a global workspace. They are capable of temporarily maintaining high-level representational patterns akin to the psychological items maintained in working memory. This maintenance is made possible by persistent neural activity in the form of two modalities: sustained neural firing (resulting in a focus of attention) and synaptic potentiation (resulting in a short-term store). Representations held in persistent activity are recursively replaced resulting in incremental changes to the content of the working memory system. As this content gradually evolves, successive processing states overlap and are continuous with one another. The present article will explore how this architecture can lead to iterative shift in the distribution of coactive representations, ultimately leading to mental continuity between processing states, and thus to human-like thought and cognition. Taken together, these components outline a biologically motivated route toward synthetic consciousness or artificial sentience and subjectivity.
♻ ☆ Axiomatic Choice
People care about decision outcomes and how decisions get made, both when making decisions and reflecting on decisions. But formalizing the full range of normative concerns that drive decisions is an open challenge. We introduce Axiomatic Choice as a framework for making and evaluating decisions based on formal normative statements about decisions. These statements, or axioms, capture a wide array of desiderata, e.g., ethical constraints, beyond the typical treatment in Social Choice. Using our model of axioms and decisions we define key properties and introduce a taxonomy of axioms which may be of general interest. We then use these properties and our taxonomy to define the Decision-Evaluation Paradox, formalize the concepts of transparency and deception in explaining and justifying decisions, and reveal the limits of existing methods using axioms to make decisions.
♻ ☆ Space AI: Leveraging Artificial Intelligence for Space to Improve Life on Earth
Artificial Intelligence (AI) is transforming domains from healthcare and agriculture to finance and industry. As progress on Earth meets growing constraints, the next frontier is outer space, where AI can enable autonomous, resilient operations under extreme uncertainty and limited human oversight. This paper introduces Space AI as a unified interdisciplinary field at the intersection of artificial intelligence and space science and technology. We consolidate historical developments and contemporary progress, and propose a systematic framework that organises Space AI into four mission contexts: 1 AI on Earth, covering intelligent mission planning, spacecraft design optimisation, simulation, and ground-based data analytics; 2 AI in Orbit, focusing on satellite and station autonomy, space robotics, on-board/near-real-time data processing, communication optimisation, and orbital safety; 3 AI in Deep Space, enabling autonomous navigation, adaptive scientific discovery, resource mapping, and long-duration human-AI collaboration under communication constraints; and 4 AI for Multi-Planetary Life, supporting in-situ resource utilisation, habitat and infrastructure construction, life-support and ecological management, and resilient interplanetary networks. Ultimately, Space AI can accelerate humanity's capability to explore and operate in space, while translating advances in sensing, robotics, optimisation, and trustworthy AI into broad societal impact on Earth.
♻ ☆ Automated QoR improvement in OpenROAD with coding agents
EDA development and innovation has been constrained by scarcity of expert engineering resources. While leading LLMs have demonstrated excellent performance in coding and scientific reasoning tasks, their capacity to advance EDA technology itself has been largely untested. We present AuDoPEDA, an autonomous, repository-grounded coding system built atop OpenAI models and a Codex-class agent that reads OpenROAD, proposes research directions, expands them into implementation steps, and submits executable diffs. Our contributions include (i) a closed-loop LLM framework for EDA code changes; (ii) a task suite and evaluation protocol on OpenROAD for PPA-oriented improvements; and (iii) end-to-end demonstrations with minimal human oversight. Experiments in OpenROAD achieve routed wirelength reductions of up to 5.9%, effective clock period reductions of up to 10.0%, and power reductions of up to 19.4%.
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ DREAM: Domain-aware Reasoning for Efficient Autonomous Underwater Monitoring ICRA 2026
The ocean is warming and acidifying, increasing the risk of mass mortality events for temperature-sensitive shellfish such as oysters. This motivates the development of long-term monitoring systems. However, human labor is costly and long-duration underwater work is highly hazardous, thus favoring robotic solutions as a safer and more efficient option. To enable underwater robots to make real-time, environment-aware decisions without human intervention, we must equip them with an intelligent "brain." This highlights the need for persistent,wide-area, and low-cost benthic monitoring. To this end, we present DREAM, a Vision Language Model (VLM)-guided autonomy framework for long-term underwater exploration and habitat monitoring. The results show that our framework is highly efficient in finding and exploring target objects (e.g., oysters, shipwrecks) without prior location information. In the oyster-monitoring task, our framework takes 31.5% less time than the previous baseline with the same amount of oysters. Compared to the vanilla VLM, it uses 23% fewer steps while covering 8.88% more oysters. In shipwreck scenes, our framework successfully explores and maps the wreck without collisions, requiring 27.5% fewer steps than the vanilla model and achieving 100% coverage, while the vanilla model achieves 60.23% average coverage in our shipwreck environments.
comment: In Proceeding of ICRA 2026
♻ ☆ Evaluating Device-First Continuum AI (DFC-AI) for Autonomous Operations in the Energy Sector
Industrial automation in the energy sector requires AI systems that can operate autonomously regardless of network availability, a requirement that cloud-centric architectures cannot meet. This paper evaluates the application of Device-First Continuum AI (DFC-AI) to critical energy sector operations. DFC-AI, a specialized architecture within the Hybrid Edge Cloud paradigm, implements intelligent agents using a microservices architecture that originates at end devices and extends across the computational continuum. Through comprehensive simulations of energy sector scenarios including drone inspections, sensor networks, and worker safety systems, we demonstrate that DFC-AI maintains full operational capability during network outages while cloud and gateway-based systems experience complete or partial failure. Our analysis reveals that zero-configuration GPU discovery and heterogeneous device clustering are particularly well-suited for energy sector deployments, where specialized nodes can handle intensive AI workloads for entire fleets of inspection drones or sensor networks. The evaluation shows that DFC-AI achieves significant latency reduction and energy savings compared to cloud architectures. Additionally, we find that gateway based edge solutions can paradoxically cost more than cloud solutions for certain energy sector workloads due to infrastructure overhead, while DFC-AI can consistently provide cost savings by leveraging enterprise-owned devices. These findings, validated through rigorous statistical analysis, establish that DFC-AI addresses the unique challenges of energy sector operations, ensuring intelligent agents remain available and functional in remote oil fields, offshore platforms, and other challenging environments characteristic of the industry.
comment: 10 pages, 4 figures, 6 tables
♻ ☆ Affective and Conversational Predictors of Re-Engagement in Human-Robot Interactions -- A Student-Centered Study with A Humanoid Social Robot
Humanoid social robots are increasingly present in daily life, making sustained user engagement a critical factor for their effectiveness and acceptance. While prior work has often examined affective evaluations or anthropomorphic design, less is known about the relative influence of dynamic conversational qualities and perceived robot characteristics in determining a user's intention to re-engage with Large Language Model (LLM)-driven social robots. In this study, 68 participants interacted in open-ended conversations with the Nadine humanoid social robot, completing pre- and post-interaction surveys to assess changes in robot perception, conversational quality, and intention to re-engage. The results showed that verbal interaction significantly improved the robot's perceived characteristics, with statistically significant increases in pleasantness ($p<.0001$) and approachability ($p<.0001$), and a reduction in creepiness ($p<.001$). However, these affective changes were not strong and unique predictors of users' intention to re-engage in a multiple regression model. Instead, participants' perceptions of the interestingness ($β=0.60$, $p<.001$) and naturalness ($β=0.31$, $p=0.015$) of the robot's conversation emerged as the most significant and robust independent predictors of intention to re-engage. Overall, the results highlight that conversational quality, specifically perceived interestingness and naturalness, is the dominant driver of re-engagement, indicating that LLM-driven robot design should prioritize engaging, natural dialogue over affective impression management or anthropomorphic cues.
comment: 27 pages, 7 figures
♻ ☆ Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
The success of Large Language Models (LLMs) has motivated a shift toward generative approaches to retrieval and ranking, aiming to supersede classical Dual Encoders (DEs) and Cross Encoders (CEs). A prominent paradigm is pointwise Autoregressive Ranking (ARR), where an LLM generates document identifiers (docIDs) token-by-token to enable ranking via beam search. ARR offers the promise of superior expressivity compared to DEs while avoiding the prohibitive computational cost of CEs. However, a formal theoretical foundation for this expressive power has been missing. Moreover, the standard next-token prediction loss is rank-agnostic and inappropriate for finetuning an LLM for ranking tasks. In this paper, we first prove that the expressive capacity of ARR is strictly superior to DEs. While a DE requires an embedding dimension that grows linearly with corpus size to achieve arbitrary rankings, ARR can solve it with a constant hidden dimension. We then propose SToICaL (Simple Token-Item Calibrated Loss), a generalized rank-aware training loss for LLM finetuning. By using item-level reweighting and prefix-tree marginalization, we distribute probability mass over valid docID tokens based on their ground-truth relevance. Experiments on WordNet and ESCI datasets verify that our loss suppresses invalid docID generations and significantly improves ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
Attention Sinks and Compression Valleys in LLMs are Two Sides of the Same Coin
Attention sinks and compression valleys have attracted significant attention as two puzzling phenomena in large language models, but have been studied in isolation. In this work, we present a surprising connection between attention sinks and compression valleys, tracing both to the formation of massive activations in the residual stream. We prove theoretically that massive activations necessarily produce representational compression and establish bounds on the resulting entropy reduction. Through experiments across several models (410M-120B parameters), we confirm that when the beginning-of-sequence token develops extreme activation norms in the middle layers, both compression valleys and attention sinks emerge simultaneously. Targeted ablation studies validate our theoretical predictions. This unified view motivates us to propose the Mix-Compress-Refine theory of information flow, as an attempt to explain how LLMs organize their computation in depth by controlling attention and representational compression via massive activations. Specifically, we posit that Transformer-based LLMs process tokens in three distinct phases: (1) broad mixing in the early layers, (2) compressed computation with limited mixing in the middle layers, and (3) selective refinement in the late layers. Our framework helps explain why embedding tasks perform best at intermediate layers, whereas generation tasks benefit from full-depth processing, clarifying differences in task-dependent representations.
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation ICLR-2026
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.The dataset and code can be accessed at https://huggingface.co/datasets/ChemFM/MolLangBench and https://github.com/TheLuoFengLab/MolLangBench, respectively.
comment: ICLR-2026 Camera-Ready version
♻ ☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables, 1 pseudocode algorithm
♻ ☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges in two ways: 1) it introduces a novel, unambiguous annotation schema that is explicitly designed for reliable automatic processing, and 2) it presents a comprehensive evaluation of a wide range of large language models (LLMs) on the task of classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments reveal that modern LLMs achieve strong results on this task when fine-tuned on high-quality data, surpassing 96% F1, with both large proprietary models such as GPT-4o and lightweight open-source alternatives performing well. Moreover, augmenting the training set with semi-synthetic LLM-generated examples further boosts performance, enabling small encoders to achieve robust results and substantially improving several open decoder models.
♻ ☆ Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs IEEE
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we introduce and evaluate a new technique for jailbreak attacks. We observe that alignment embeds a safety classifier in the LLM responsible for deciding between refusal and compliance, and seek to extract an approximation of this classifier: a surrogate classifier. To this end, we build candidate classifiers from subsets of the LLM. We first evaluate the degree to which candidate classifiers approximate the LLM's safety classifier in benign and adversarial settings. Then, we attack the candidates and measure how well the resulting adversarial inputs transfer to the LLM. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find that attacks mounted on the surrogate classifiers can be transferred to the LLM with high success. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70% with half the memory footprint and runtime -- a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is an effective and efficient means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks. The code is available at https://github.com/jcnf0/targeting-alignment.
comment: Accepted to the 4th IEEE Conference on Secure and Trustworthy Machine Learning (SaTML'26)
♻ ☆ Privileged Information Distillation for Language Models
Training-time privileged information (PI) can enable language models to succeed on tasks they would otherwise fail, making it a powerful tool for reinforcement learning in hard, long-horizon settings. However, transferring capabilities learned with PI to policies that must act without it at inference time remains a fundamental challenge. We study this problem in the context of distilling frontier models for multi-turn agentic environments, which typically hide their internal reasoning and expose only action trajectories. This breaks standard distillation pipelines, since successful behavior is observable, but the reasoning process is not. For this, we introduce π-Distill, a joint teacher-student objective that trains a PI-conditioned teacher and an unconditioned student simultaneously using the same model. Additionally, we also introduce On-Policy Self-Distillation (OPSD), an alternative approach that trains using Reinforcement Learning (RL) with a reverse KL-penalty between the student and the PI-conditioned teacher. We show that both of these algorithms effectively distill frontier agents using action-only PI. Specifically, we find that π-Distill and, in some cases, OPSD, outperform industry standard practices (Supervised finetuning followed by RL) that assume access to full Chain-of-Thought supervision across multiple agentic benchmarks, models, and forms of PI. We complement our results with extensive analysis that characterizes the factors enabling effective learning with PI, focusing primarily on π-Distill and characterizing when OPSD is competitive.
comment: Abstract border should have been purple
♻ ☆ ClustRecNet: A Novel End-to-End Deep Learning Framework for Clustering Algorithm Recommendation
In unsupervised learning, identifying an effective clustering algorithm for a given tabular dataset remains a fundamental challenge. We introduce ClustRecNet, a novel end-to-end deep learning framework that recommends a suitable clustering algorithm by directly learning high-order representations of raw tabular data. To facilitate robust meta-learning, we construct a comprehensive repository of 34,000 synthetic datasets with diverse structures, run 10 prominent clustering algorithms, and use Adjusted Rand Index (ARI) to establish ground-truth labels. ClustRecNet integrates convolutional, residual, and attention mechanisms to capture both local/global structural patterns, effectively bypassing the knowledge bottleneck associated with manual feature engineering. Extensive evaluations on both synthetic and real-world benchmarks demonstrate that ClustRecNet consistently outperforms state-of-the-art Automated Machine Learning (AutoML) approaches, including ML2DAC and AutoML4Clust. Our framework achieves an average 0.497 ARI gain over the well-known Calinski-Harabasz cluster validity index on synthetic data and an average 15.3% ARI improvement over the leading AutoML approach (ML2DAC) on real-world benchmarks. To the best of our knowledge, we are the first to successively apply deep learning to automatically recommend suitable clustering algorithms for tabular data at hand.
comment: Update for journal submission
♻ ☆ Symmetry-Guided Memory Augmentation for Efficient Locomotion Learning
Training reinforcement learning (RL) policies for legged locomotion often requires extensive environment interactions, which are costly and time-consuming. We propose Symmetry-Guided Memory Augmentation (SGMA), a framework that improves training efficiency by combining structured experience augmentation with memory-based context inference. Our method leverages robot and task symmetries to generate additional, physically consistent training experiences without requiring extra interactions. To avoid the pitfalls of naive augmentation, we extend these transformations to the policy's memory states, enabling the agent to retain task-relevant context and adapt its behavior accordingly. We evaluate the approach on quadruped and humanoid robots in simulation, as well as on a real quadruped platform. Across diverse locomotion tasks involving joint failures and payload variations, our method achieves efficient policy training while maintaining robust performance, demonstrating a practical route toward data-efficient RL for legged robots.
♻ ☆ Generalizing Scaling Laws for Dense and Sparse Large Language Models
Despite recent advancements of large language models (LLMs), optimally predicting the model size for LLM pretraining or allocating optimal resources still remains a challenge. Several efforts have addressed the challenge by proposing different empirical scaling laws, but almost all of them are architecture-specific (dense or sparse). In this work we revisit existing empirical scaling laws and propose a generalized scaling law to provide a unified framework that is applicable to both dense and sparse large language models. We evaluate and compare our proposed scaling law with existing scaling laws and demonstrate that our proposed scaling law captures the scaling behavior of existing scaling laws. Further, we show an IsoFLOP comparison between our proposed scaling law and the state-of-the-art scaling law to illustrate the effectiveness of our proposed scaling law for Mixture-of-Expert (MoE)-based very large LLMs like DeepSeek-V3. Our proposed scaling law can be used to estimate the best model hyperparameters (Model size, Tokens and Compute) for a given sparsity or to identify the optimal sparsity for the given model hyperparameters.
comment: 8 pages, 8 figures
♻ ☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
♻ ☆ Take Goodhart Seriously: Principled Limit on General-Purpose AI Optimization
A common but rarely examined assumption in machine learning is that training yields models that actually satisfy their specified objective function. We call this the Objective Satisfaction Assumption (OSA). Although deviations from OSA are acknowledged, their implications are overlooked. We argue, in a learning-paradigm-agnostic framework, that OSA fails in realistic conditions: approximation, estimation, and optimization errors guarantee systematic deviations from the intended objective, regardless of the quality of its specification. Beyond these technical limitations, perfectly capturing and translating the developer's intent, such as alignment with human preferences, into a formal objective is practically impossible, making misspecification inevitable. Building on recent mathematical results, absent a mathematical characterization of these gaps, they are indistinguishable from those that collapse into Goodhart's law failure modes under strong optimization pressure. Because the Goodhart breaking point cannot be located ex ante, a principled limit on the optimization of General-Purpose AI systems is necessary. Absent such a limit, continued optimization is liable to push systems into predictable and irreversible loss of control.
comment: 9 pages, 1 figure. Under review
♻ ☆ SENTINEL: A Multi-Level Formal Framework for Safety Evaluation of Foundation Model-based Embodied Agents
We present SENTINEL, a framework for formally evaluating the physical safety of foundation model (FM)-based embodied agents. SENTINEL is the first to provide multi-level safety evaluation across semantic interpretation, plan generation, and physical execution within a unified formal framework. Unlike prior methods that rely on heuristic rules or subjective FM judgments, SENTINEL grounds practical safety requirements in formal temporal logic (TL) semantics that can precisely specify state invariants, temporal dependencies, and timing constraints. It employs a multi-level verification pipeline where (i) at the semantic level, intuitive natural language safety requirements are formalized into TL formulas and the agent's understanding of these requirements is probed for alignment with the TL formulas; (ii) at the plan level, high-level action plans and subgoals generated by the agent are verified against the TL formulas to detect unsafe plans before execution; and (iii) at the trajectory level, multiple execution trajectories are merged into a computation tree and efficiently verified against physically-detailed TL specifications for a final safety check. We apply SENTINEL in VirtualHome and AI2-THOR, and formally evaluate multiple FM-based embodied agents against diverse safety requirements. Our experiments show that by grounding physical safety in temporal logic and applying verification methods across multiple levels, SENTINEL provides a rigorous foundation for systematically evaluating the safety of FM-based embodied agents in simulation-based physical environments, and can effectively expose potential safety violations in interpreting, planning, and executing the tasks.
♻ ☆ FHAIM: Fully Homomorphic AIM For Private Synthetic Data Generation
Data is the lifeblood of AI, yet much of the most valuable data remains locked in silos due to privacy and regulations. As a result, AI remains heavily underutilized in many of the most important domains, including healthcare, education, and finance. Synthetic data generation (SDG), i.e. the generation of artificial data with a synthesizer trained on real data, offers an appealing solution to make data available while mitigating privacy concerns, however existing SDG-as-a-service workflow require data holders to trust providers with access to private data. We propose FHAIM, the first fully homomorphic encryption (FHE) framework for training a marginal-based synthetic data generator on encrypted tabular data. FHAIM adapts the widely used AIM algorithm to the FHE setting using novel FHE protocols, ensuring that the private data remains encrypted throughout and is released only with differential privacy guarantees. Our empirical analysis show that FHAIM preserves the performance of AIM while maintaining feasible runtimes.
Computation and Language 147
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
☆ Data Science and Technology Towards AGI Part I: Tiered Data Management
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
comment: 16 pages, 3 figures, 7 tables
☆ Paradox of De-identification: A Critique of HIPAA Safe Harbour in the Age of LLMs
Privacy is a human right that sustains patient-provider trust. Clinical notes capture a patient's private vulnerability and individuality, which are used for care coordination and research. Under HIPAA Safe Harbor, these notes are de-identified to protect patient privacy. However, Safe Harbor was designed for an era of categorical tabular data, focusing on the removal of explicit identifiers while ignoring the latent information found in correlations between identity and quasi-identifiers, which can be captured by modern LLMs. We first formalize these correlations using a causal graph, then validate it empirically through individual re-identification of patients from scrubbed notes. The paradox of de-identification is further shown through a diagnosis ablation: even when all other information is removed, the model can predict the patient's neighborhood based on diagnosis alone. This position paper raises the question of how we can act as a community to uphold patient-provider trust when de-identification is inherently imperfect. We aim to raise awareness and discuss actionable recommendations.
☆ When Actions Go Off-Task: Detecting and Correcting Misaligned Actions in Computer-Use Agents
Computer-use agents (CUAs) have made tremendous progress in the past year, yet they still frequently produce misaligned actions that deviate from the user's original intent. Such misaligned actions may arise from external attacks (e.g., indirect prompt injection) or from internal limitations (e.g., erroneous reasoning). They not only expose CUAs to safety risks, but also degrade task efficiency and reliability. This work makes the first effort to define and study misaligned action detection in CUAs, with comprehensive coverage of both externally induced and internally arising misaligned actions. We further identify three common categories in real-world CUA deployment and construct MisActBench, a benchmark of realistic trajectories with human-annotated, action-level alignment labels. Moreover, we propose DeAction, a practical and universal guardrail that detects misaligned actions before execution and iteratively corrects them through structured feedback. DeAction outperforms all existing baselines across offline and online evaluations with moderate latency overhead: (1) On MisActBench, it outperforms baselines by over 15% absolute in F1 score; (2) In online evaluation, it reduces attack success rate by over 90% under adversarial settings while preserving or even improving task success rate in benign environments.
comment: Project Homepage: https://osu-nlp-group.github.io/Misaligned-Action-Detection/
☆ Next Concept Prediction in Discrete Latent Space Leads to Stronger Language Models
We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
☆ Beyond Transcripts: A Renewed Perspective on Audio Chaptering
Audio chaptering, the task of automatically segmenting long-form audio into coherent sections, is increasingly important for navigating podcasts, lectures, and videos. Despite its relevance, research remains limited and text-based, leaving key questions unresolved about leveraging audio information, handling ASR errors, and transcript-free evaluation. We address these gaps through three contributions: (1) a systematic comparison between text-based models with acoustic features, a novel audio-only architecture (AudioSeg) operating on learned audio representations, and multimodal LLMs; (2) empirical analysis of factors affecting performance, including transcript quality, acoustic features, duration, and speaker composition; and (3) formalized evaluation protocols contrasting transcript-dependent text-space protocols with transcript-invariant time-space protocols. Our experiments on YTSeg reveal that AudioSeg substantially outperforms text-based approaches, pauses provide the largest acoustic gains, and MLLMs remain limited by context length and weak instruction following, yet MLLMs are promising on shorter audio.
☆ A Behavioural and Representational Evaluation of Goal-Directedness in Language Model Agents
Understanding an agent's goals helps explain and predict its behaviour, yet there is no established methodology for reliably attributing goals to agentic systems. We propose a framework for evaluating goal-directedness that integrates behavioural evaluation with interpretability-based analyses of models' internal representations. As a case study, we examine an LLM agent navigating a 2D grid world toward a goal state. Behaviourally, we evaluate the agent against an optimal policy across varying grid sizes, obstacle densities, and goal structures, finding that performance scales with task difficulty while remaining robust to difficulty-preserving transformations and complex goal structures. We then use probing methods to decode the agent's internal representations of the environment state and its multi-step action plans. We find that the LLM agent non-linearly encodes a coarse spatial map of the environment, preserving approximate task-relevant cues about its position and the goal location; that its actions are broadly consistent with these internal representations; and that reasoning reorganises them, shifting from broader environment structural cues toward information supporting immediate action selection. Our findings support the view that introspective examination is required beyond behavioural evaluations to characterise how agents represent and pursue their objectives.
☆ How Should We Model the Probability of a Language?
Of the over 7,000 languages spoken in the world, commercial language identification (LID) systems only reliably identify a few hundred in written form. Research-grade systems extend this coverage under certain circumstances, but for most languages coverage remains patchy or nonexistent. This position paper argues that this situation is largely self-imposed. In particular, it arises from a persistent framing of LID as decontextualized text classification, which obscures the central role of prior probability estimation and is reinforced by institutional incentives that favor global, fixed-prior models. We argue that improving coverage for tail languages requires rethinking LID as a routing problem and developing principled ways to incorporate environmental cues that make languages locally plausible.
comment: Accepted for Vardial 2026
☆ CoRefine: Confidence-Guided Self-Refinement for Adaptive Test-Time Compute
Large Language Models (LLMs) often rely on test-time scaling via parallel decoding (for example, 512 samples) to boost reasoning accuracy, but this incurs substantial compute. We introduce CoRefine, a confidence-guided self-refinement method that achieves competitive accuracy using a fraction of the tokens via a lightweight 211k-parameter Conv1D controller atop a frozen LLM. The controller consumes full-trace confidence to decide whether to halt, re-examine, or try a different approach, enabling targeted self-correction with an average of 2.7 refinement steps per problem and roughly 190-fold token reduction relative to 512-sample baselines. Across diverse reasoning benchmarks and three open-source models, the controller achieves 92.6 percent precision when it confidently halts, indicating that confidence dynamics reliably signal correctness without ground-truth verification. We extend this to CoRefine-Tree, a hybrid sequential-parallel variant that adaptively balances exploration and exploitation, with easy serving integration and verifier compatibility. By treating confidence as a control signal rather than a correctness guarantee, CoRefine provides a modular primitive for scalable reasoning and agentic settings with imperfect verifiers.
☆ GitSearch: Enhancing Community Notes Generation with Gap-Informed Targeted Search
Community-based moderation offers a scalable alternative to centralized fact-checking, yet it faces significant structural challenges, and existing AI-based methods fail in "cold start" scenarios. To tackle these challenges, we introduce GitSearch (Gap-Informed Targeted Search), a framework that treats human-perceived quality gaps, such as missing context, etc., as first-class signals. GitSearch has a three-stage pipeline: identifying information deficits, executing real-time targeted web-retrieval to resolve them, and synthesizing platform-compliant notes. To facilitate evaluation, we present PolBench, a benchmark of 78,698 U.S. political tweets with their associated Community Notes. We find GitSearch achieves 99% coverage, almost doubling coverage over the state-of-the-art. GitSearch surpasses human-authored helpful notes with a 69% win rate and superior helpfulness scores (3.87 vs. 3.36), demonstrating retrieval effectiveness that balanced the trade-off between scale and quality.
comment: 18 pages, 11 figures, 7 tables
☆ Is Reasoning Capability Enough for Safety in Long-Context Language Models?
Large language models (LLMs) increasingly combine long-context processing with advanced reasoning, enabling them to retrieve and synthesize information distributed across tens of thousands of tokens. A hypothesis is that stronger reasoning capability should improve safety by helping models recognize harmful intent even when it is not stated explicitly. We test this hypothesis in long-context settings where harmful intent is implicit and must be inferred through reasoning, and find that it does not hold. We introduce compositional reasoning attacks, a new threat model in which a harmful query is decomposed into incomplete fragments that scattered throughout a long context. The model is then prompted with a neutral reasoning query that induces retrieval and synthesis, causing the harmful intent to emerge only after composition. Evaluating 14 frontier LLMs on contexts up to 64k tokens, we uncover three findings: (1) models with stronger general reasoning capability are not more robust to compositional reasoning attacks, often assembling the intent yet failing to refuse; (2) safety alignment consistently degrades as context length increases; and (3) inference-time reasoning effort is a key mitigating factor: increasing inference-time compute reduces attack success by over 50 percentage points on GPT-oss-120b model. Together, these results suggest that safety does not automatically scale with reasoning capability, especially under long-context inference.
comment: 25 pages, 7 figures
☆ Large Language Models for Geolocation Extraction in Humanitarian Crisis Response
Humanitarian crises demand timely and accurate geographic information to inform effective response efforts. Yet, automated systems that extract locations from text often reproduce existing geographic and socioeconomic biases, leading to uneven visibility of crisis-affected regions. This paper investigates whether Large Language Models (LLMs) can address these geographic disparities in extracting location information from humanitarian documents. We introduce a two-step framework that combines few-shot LLM-based named entity recognition with an agent-based geocoding module that leverages context to resolve ambiguous toponyms. We benchmark our approach against state-of-the-art pretrained and rule-based systems using both accuracy and fairness metrics across geographic and socioeconomic dimensions. Our evaluation uses an extended version of the HumSet dataset with refined literal toponym annotations. Results show that LLM-based methods substantially improve both the precision and fairness of geolocation extraction from humanitarian texts, particularly for underrepresented regions. By bridging advances in LLM reasoning with principles of responsible and inclusive AI, this work contributes to more equitable geospatial data systems for humanitarian response, advancing the goal of leaving no place behind in crisis analytics.
☆ Understanding Dynamic Compute Allocation in Recurrent Transformers
Token-level adaptive computation seeks to reduce inference cost by allocating more computation to harder tokens and less to easier ones. However, prior work is primarily evaluated on natural-language benchmarks using task-level metrics, where token-level difficulty is unobservable and confounded with architectural factors, making it unclear whether compute allocation truly aligns with underlying complexity. We address this gap through three contributions. First, we introduce a complexity-controlled evaluation paradigm using algorithmic and synthetic language tasks with parameterized difficulty, enabling direct testing of token-level compute allocation. Second, we propose ANIRA, a unified recurrent Transformer framework that supports per-token variable-depth computation while isolating compute allocation decisions from other model factors. Third, we use this framework to conduct a systematic analysis of token-level adaptive computation across alignment with complexity, generalization, and decision timing. Our results show that compute allocation aligned with task complexity can emerge without explicit difficulty supervision, but such alignment does not imply algorithmic generalization: models fail to extrapolate to unseen input sizes despite allocating additional computation. We further find that early compute decisions rely on static structural cues, whereas online halting more closely tracks algorithmic execution state.
☆ Discovering Interpretable Algorithms by Decompiling Transformers to RASP
Recent work has shown that the computations of Transformers can be simulated in the RASP family of programming languages. These findings have enabled improved understanding of the expressive capacity and generalization abilities of Transformers. In particular, Transformers have been suggested to length-generalize exactly on problems that have simple RASP programs. However, it remains open whether trained models actually implement simple interpretable programs. In this paper, we present a general method to extract such programs from trained Transformers. The idea is to faithfully re-parameterize a Transformer as a RASP program and then apply causal interventions to discover a small sufficient sub-program. In experiments on small Transformers trained on algorithmic and formal language tasks, we show that our method often recovers simple and interpretable RASP programs from length-generalizing transformers. Our results provide the most direct evidence so far that Transformers internally implement simple RASP programs.
comment: 101 pages, 92 figures
☆ WildReward: Learning Reward Models from In-the-Wild Human Interactions
Reward models (RMs) are crucial for the training of large language models (LLMs), yet they typically rely on large-scale human-annotated preference pairs. With the widespread deployment of LLMs, in-the-wild interactions have emerged as a rich source of implicit reward signals. This raises the question: Can we develop reward models directly from in-the-wild interactions? In this work, we explore this possibility by adopting WildChat as an interaction source and proposing a pipeline to extract reliable human feedback, yielding 186k high-quality instances for training WildReward via ordinal regression directly on user feedback without preference pairs. Extensive experiments demonstrate that WildReward achieves comparable or even superior performance compared to conventional reward models, with improved calibration and cross-sample consistency. We also observe that WildReward benefits directly from user diversity, where more users yield stronger reward models. Finally, we apply WildReward to online DPO training and observe significant improvements across various tasks. Code and data are released at https://github.com/THU-KEG/WildReward.
☆ Affective Flow Language Model for Emotional Support Conversation
Large language models (LLMs) have been widely applied to emotional support conversation (ESC). However, complex multi-turn support remains challenging.This is because existing alignment schemes rely on sparse outcome-level signals, thus offering limited supervision for intermediate strategy decisions. To fill this gap, this paper proposes affective flow language model for emotional support conversation (AFlow), a framework that introduces fine-grained supervision on dialogue prefixes by modeling a continuous affective flow along multi-turn trajectories. AFlow can estimate intermediate utility over searched trajectories and learn preference-consistent strategy transitions. To improve strategy coherence and empathetic response quality, a subpath-level flow-balance objective is presented to propagate preference signals to intermediate states. Experiment results show consistent and significant improvements over competitive baselines in diverse emotional contexts. Remarkably, AFlow with a compact open-source backbone outperforms proprietary LMMs such as GPT-4o and Claude-3.5 on major ESC metrics. Our code is available at https://github.com/chzou25-lgtm/AffectiveFlow.
comment: 19 pages, 7 figures
☆ Bayesian Preference Learning for Test-Time Steerable Reward Models
Reward models are central to aligning language models with human preferences via reinforcement learning (RL). As RL is increasingly applied to settings such as verifiable rewards and multi-objective alignment, RMs are expected to encode more complex and multifaceted preference distributions. However, classifier RMs remain static once trained, limiting their adaptability at test time. We propose Variational In-Context Reward Modeling (ICRM), a novel Bayesian reward modeling objective that enables test-time steerability via in-context preference demonstrations. ICRM casts reward modeling as amortized variational inference over a latent preference probability under the Bradley-Terry model using a conjugate Beta prior. We show that ICRM adapt to unseen preference distributions at test time for both single and multi-objective settings. With more in-context demonstrations, ICRM gains 34% accuracy on SafeRLHF and 9% accuracy on RM-Bench in the single-objective setting, while widening the Pareto frontier with a 4% gain in hypervolume on helpfulness and refusal benchmarks. We further study the practical applicability of ICRM for RL training, showing that it can effectively encode verifiable rewards by outperforming a conventional RM in math reasoning. Finally, we provide theoretical guarantees that the variational objective admits a global interior optimum with finite confidence, and we analyze how KL regularization mitigates reward over-optimization.
comment: Preprint
☆ The Use of AI Tools to Develop and Validate Q-Matrices
Constructing a Q-matrix is a critical but labor-intensive step in cognitive diagnostic modeling (CDM). This study investigates whether AI tools (i.e., general language models) can support Q-matrix development by comparing AI-generated Q-matrices with a validated Q-matrix from Li and Suen (2013) for a reading comprehension test. In May 2025, multiple AI models were provided with the same training materials as human experts. Agreement among AI-generated Q-matrices, the validated Q-matrix, and human raters' Q-matrices was assessed using Cohen's kappa. Results showed substantial variation across AI models, with Google Gemini 2.5 Pro achieving the highest agreement (Kappa = 0.63) with the validated Q-matrix, exceeding that of all human experts. A follow-up analysis in January 2026 using newer AI versions, however, revealed lower agreement with the validated Q-matrix. Implications and directions for future research are discussed.
comment: An earlier version of this study was presented at the Psychometric Society Meeting held in July 2025 in Minneapolis, USA
☆ LakeHopper: Cross Data Lakes Column Type Annotation through Model Adaptation
Column type annotation is vital for tasks like data cleaning, integration, and visualization. Recent solutions rely on resource-intensive language models fine-tuned on well-annotated columns from a particular set of tables, i.e., a source data lake. In this paper, we study whether we can adapt an existing pre-trained LM-based model to a new (i.e., target) data lake to minimize the annotations required on the new data lake. However, challenges include the source-target knowledge gap, selecting informative target data, and fine-tuning without losing shared knowledge exist. We propose LakeHopper, a framework that identifies and resolves the knowledge gap through LM interactions, employs a cluster-based data selection scheme for unannotated columns, and uses an incremental fine-tuning mechanism that gradually adapts the source model to the target data lake. Our experimental results validate the effectiveness of LakeHopper on two different data lake transfers under both low-resource and high-resource settings.
☆ Dynamics Within Latent Chain-of-Thought: An Empirical Study of Causal Structure
Latent or continuous chain-of-thought methods replace explicit textual rationales with a number of internal latent steps, but these intermediate computations are difficult to evaluate beyond correlation-based probes. In this paper, we view latent chain-of-thought as a manipulable causal process in representation space by modeling latent steps as variables in a structural causal model (SCM) and analyzing their effects through step-wise $\mathrm{do}$-interventions. We study two representative paradigms (i.e., Coconut and CODI) on both mathematical and general reasoning tasks to investigate three key questions: (1) which steps are causally necessary for correctness and when answers become decidable early; (2) how does influence propagate across steps, and how does this structure compare to explicit CoT; and (3) do intermediate trajectories retain competing answer modes, and how does output-level commitment differ from representational commitment across steps. We find that latent-step budgets behave less like homogeneous extra depth and more like staged functionality with non-local routing, and we identify a persistent gap between early output bias and late representational commitment. These results motivate mode-conditional and stability-aware analyses -- and corresponding training/decoding objectives -- as more reliable tools for interpreting and improving latent reasoning systems.
comment: 22 pages
☆ Map of Encoders -- Mapping Sentence Encoders using Quantum Relative Entropy
We propose a method to compare and visualise sentence encoders at scale by creating a map of encoders where each sentence encoder is represented in relation to the other sentence encoders. Specifically, we first represent a sentence encoder using an embedding matrix of a sentence set, where each row corresponds to the embedding of a sentence. Next, we compute the Pairwise Inner Product (PIP) matrix for a sentence encoder using its embedding matrix. Finally, we create a feature vector for each sentence encoder reflecting its Quantum Relative Entropy (QRE) with respect to a unit base encoder. We construct a map of encoders covering 1101 publicly available sentence encoders, providing a new perspective of the landscape of the pre-trained sentence encoders. Our map accurately reflects various relationships between encoders, where encoders with similar attributes are proximally located on the map. Moreover, our encoder feature vectors can be used to accurately infer downstream task performance of the encoders, such as in retrieval and clustering tasks, demonstrating the faithfulness of our map.
☆ PERSPECTRA: A Scalable and Configurable Pluralist Benchmark of Perspectives from Arguments
Pluralism, the capacity to engage with diverse perspectives without collapsing them into a single viewpoint, is critical for developing large language models that faithfully reflect human heterogeneity. Yet this characteristic has not been carefully examined in the LLM research community and remains absent from most alignment studies. Debate-oriented sources provide a natural entry point for pluralism research. Previous work builds on online debate sources but remains constrained by costly human validation. Other debate-rich platforms such as Reddit and Kialo also offer promising material: Reddit provides linguistic diversity and scale but lacks clear argumentative structure, while Kialo supplies explicit pro/con graphs but remains overly concise and detached from natural discourse. We introduce PERSPECTRA, a pluralist benchmark that integrates the structural clarity of Kialo debate graphs with the linguistic diversity of real Reddit discussions. Using a controlled retrieval-and-expansion pipeline, we construct 3,810 enriched arguments spanning 762 pro/con stances on 100 controversial topics. Each opinion is expanded to multiple naturalistic variants, enabling robust evaluation of pluralism. We initialise three tasks with PERSPECTRA: opinion counting (identifying distinct viewpoints), opinion matching (aligning supporting stances and discourse to source opinions), and polarity check (inferring aggregate stance in mixed discourse). Experiments with state-of-the-art open-source and proprietary LLMs, highlight systematic failures, such as overestimating the number of viewpoints and misclassifying concessive structures, underscoring the difficulty of pluralism-aware understanding and reasoning. By combining diversity with structure, PERSPECTRA establishes the first scalable, configurable benchmark for evaluating how well models represent, distinguish, and reason over multiple perspectives.
comment: 15 pages, 1 figure
☆ FactSim: Fact-Checking for Opinion Summarization
We explore the need for more comprehensive and precise evaluation techniques for generative artificial intelligence (GenAI) in text summarization tasks, specifically in the area of opinion summarization. Traditional methods, which leverage automated metrics to compare machine-generated summaries from a collection of opinion pieces, e.g. product reviews, have shown limitations due to the paradigm shift introduced by large language models (LLM). This paper addresses these shortcomings by proposing a novel, fully automated methodology for assessing the factual consistency of such summaries. The method is based on measuring the similarity between the claims in a given summary with those from the original reviews, measuring the coverage and consistency of the generated summary. To do so, we rely on a simple approach to extract factual assessment from texts that we then compare and summarize in a suitable score. We demonstrate that the proposed metric attributes higher scores to similar claims, regardless of whether the claim is negated, paraphrased, or expanded, and that the score has a high correlation to human judgment when compared to state-of-the-art metrics.
comment: 10 pages, 4 figures
☆ Do Images Clarify? A Study on the Effect of Images on Clarifying Questions in Conversational Search
Conversational search systems increasingly employ clarifying questions to refine user queries and improve the search experience. Previous studies have demonstrated the usefulness of text-based clarifying questions in enhancing both retrieval performance and user experience. While images have been shown to improve retrieval performance in various contexts, their impact on user performance when incorporated into clarifying questions remains largely unexplored. We conduct a user study with 73 participants to investigate the role of images in conversational search, specifically examining their effects on two search-related tasks: (i) answering clarifying questions and (ii) query reformulation. We compare the effect of multimodal and text-only clarifying questions in both tasks within a conversational search context from various perspectives. Our findings reveal that while participants showed a strong preference for multimodal questions when answering clarifying questions, preferences were more balanced in the query reformulation task. The impact of images varied with both task type and user expertise. In answering clarifying questions, images helped maintain engagement across different expertise levels, while in query reformulation they led to more precise queries and improved retrieval performance. Interestingly, for clarifying question answering, text-only setups demonstrated better user performance as they provided more comprehensive textual information in the absence of images. These results provide valuable insights for designing effective multimodal conversational search systems, highlighting that the benefits of visual augmentation are task-dependent and should be strategically implemented based on the specific search context and user characteristics.
comment: Accepted at CHIIR 2025
☆ Challenges in Translating Technical Lectures: Insights from the NPTEL
This study examines the practical applications and methodological implications of Machine Translation in Indian Languages, specifically Bangla, Malayalam, and Telugu, within emerging translation workflows and in relation to existing evaluation frameworks. The choice of languages prioritized in this study is motivated by a triangulation of linguistic diversity, which illustrates the significance of multilingual accommodation of educational technology under NEP 2020. This is further supported by the largest MOOC portal, i.e., NPTEL, which has served as a corpus to facilitate the arguments presented in this paper. The curation of a spontaneous speech corpora that accounts for lucid delivery of technical concepts, considering the retention of suitable register and lexical choices are crucial in a diverse country like India. The findings of this study highlight metric-specific sensitivity and the challenges of morphologically rich and semantically compact features when tested against surface overlapping metrics.
☆ Prototype-Based Disentanglement for Controllable Dysarthric Speech Synthesis
Dysarthric speech exhibits high variability and limited labeled data, posing major challenges for both automatic speech recognition (ASR) and assistive speech technologies. Existing approaches rely on synthetic data augmentation or speech reconstruction, yet often entangle speaker identity with pathological articulation, limiting controllability and robustness. In this paper, we propose ProtoDisent-TTS, a prototype-based disentanglement TTS framework built on a pre-trained text-to-speech backbone that factorizes speaker timbre and dysarthric articulation within a unified latent space. A pathology prototype codebook provides interpretable and controllable representations of healthy and dysarthric speech patterns, while a dual-classifier objective with a gradient reversal layer enforces invariance of speaker embeddings to pathological attributes. Experiments on the TORGO dataset demonstrate that this design enables bidirectional transformation between healthy and dysarthric speech, leading to consistent ASR performance gains and robust, speaker-aware speech reconstruction.
☆ Old wine in old glasses: Comparing computational and qualitative methods in identifying incivility on Persian Twitter during the #MahsaAmini movement
This paper compares three approaches to detecting incivility in Persian tweets: human qualitative coding, supervised learning with ParsBERT, and large language models (ChatGPT). Using 47,278 tweets from the #MahsaAmini movement in Iran, we evaluate the accuracy and efficiency of each method. ParsBERT substantially outperforms seven evaluated ChatGPT models in identifying hate speech. We also find that ChatGPT struggles not only with subtle cases but also with explicitly uncivil content, and that prompt language (English vs. Persian) does not meaningfully affect its outputs. The study provides a detailed comparison of these approaches and clarifies their strengths and limitations for analyzing hate speech in a low-resource language context.
☆ Learning to Judge: LLMs Designing and Applying Evaluation Rubrics EACL 2026
Large language models (LLMs) are increasingly used as evaluators for natural language generation, applying human-defined rubrics to assess system outputs. However, human rubrics are often static and misaligned with how models internally represent language quality. We introduce GER-Eval (Generating Evaluation Rubrics for Evaluation) to investigate whether LLMs can design and apply their own evaluation rubrics. We evaluate the semantic coherence and scoring reliability of LLM-defined criteria and their alignment with human criteria. LLMs reliably generate interpretable and task-aware evaluation dimensions and apply them consistently within models, but their scoring reliability degrades in factual and knowledge-intensive settings. Closed-source models such as GPT-4o achieve higher agreement and cross-model generalization than open-weight models such as Llama. Our findings position evaluation as a learned linguistic capability of LLMs, consistent within models but fragmented across them, and call for new methods that jointly model human and LLM evaluative language to improve reliability and interpretability.
comment: Accepted at EACL 2026 Findings
☆ Fundamental Reasoning Paradigms Induce Out-of-Domain Generalization in Language Models
Deduction, induction, and abduction are fundamental reasoning paradigms, core for human logical thinking. Although improving Large Language Model (LLM) reasoning has attracted significant research efforts, the extent to which the fundamental paradigms induce generalization has yet to be systematically explored. In this study, we shed light on how the interplay between these core paradigms influences LLMs' reasoning behavior. To this end, we first collect a new dataset of reasoning trajectories from symbolic tasks, each targeting one of the three fundamental paradigms, to abstract from concrete world knowledge. Then, we investigate effective ways for inducing these skills into LLMs. We experiment with a battery of methods including simple fine-tuning, and more complex approaches to increase model depth, or transform a dense model to a mixture-of-experts. We comprehensively evaluate induced models on realistic out-of-domain tasks, that are entirely formulated in natural language and contain real-world knowledge. Our results reveal that our approach yields strong generalizability with substantial performance gains (up to $14.60$) across realistic tasks.
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ Do Multilingual LLMs have specialized language heads?
Multilingual large language models (LLMs) have gained significant popularity for their ability to process and generate text across multiple languages. However, deploying these models in production can be inefficient when only a subset of the supported languages is of interest. There has been some research conducted on identifying whether machine translation models have language-specific or language-agnostic heads, however no research has been conducted for multilingual LLMs, to the best of our knowledge, that as we know are capable of performing diverse tasks beyond just translation. This paper explores whether multilingual LLMs have specialized language attention heads for each language, and investigates the possibility of removing language-specific heads for unwanted languages without degrading performance in the targeted languages. Our findings could inform more efficient deployment strategies for multilingual LLMs, enabling reduced model complexity while maintaining high accuracy for targeted languages.
☆ VocalNet-MDM: Accelerating Streaming Speech LLM via Self-Distilled Masked Diffusion Modeling
Recent Speech Large Language Models~(LLMs) have achieved impressive capabilities in end-to-end speech interaction. However, the prevailing autoregressive paradigm imposes strict serial constraints, limiting generation efficiency and introducing exposure bias. In this paper, we investigate Masked Diffusion Modeling~(MDM) as a non-autoregressive paradigm for speech LLMs and introduce VocalNet-MDM. To adapt MDM for streaming speech interaction, we address two critical challenges: training-inference mismatch and iterative overhead. We propose Hierarchical Block-wise Masking to align training objectives with the progressive masked states encountered during block diffusion decoding, and Iterative Self-Distillation to compress multi-step refinement into fewer steps for low-latency inference. Trained on a limited scale of only 6K hours of speech data, VocalNet-MDM achieves a 3.7$\times$--10$\times$ decoding speedup and reduces first-chunk latency by 34\% compared to AR baselines. It maintains competitive recognition accuracy while achieving state-of-the-art text quality and speech naturalness, demonstrating that MDM is a promising and scalable alternative for low-latency, efficient speech LLMs.
☆ Beyond Scalar Scores: Reinforcement Learning for Error-Aware Quality Estimation of Machine Translation
Quality Estimation (QE) aims to assess the quality of machine translation (MT) outputs without relying on reference translations, making it essential for real-world, large-scale MT evaluation. Large Language Models (LLMs) have shown significant promise in advancing the field of quality estimation of machine translation. However, most of the QE approaches solely rely on scalar quality scores, offering no explicit information about the translation errors that should drive these judgments. Moreover, for low-resource languages where annotated QE data is limited, existing approaches struggle to achieve reliable performance. To address these challenges, we introduce the first segment-level QE dataset for English to Malayalam, a severely resource-scarce language pair in the QE domain, comprising human-annotated Direct Assessment (DA) scores and Translation Quality Remarks (TQR), which are short, contextual, free-form annotator comments that describe translation errors. We further introduce ALOPE-RL, a policy-based reinforcement learning framework that trains efficient adapters based on policy rewards derived from DA score and TQR. Integrating error-aware rewards with ALOPE-RL, enables LLMs to reason about translation quality beyond numeric scores. Despite being trained on a small-scale QE dataset, ALOPE-RL achieves state-of-the-art performance on English to Malayalam QE using compact LLMs (<=4B parameters}) fine-tuned with LoRA and 4-bit quantization, outperforming both larger LLM-based baselines and leading encoder-based QE models. Our results demonstrate that error-aware, policy-based learning can deliver strong QE performance under limited data and compute budgets. We release our dataset, code, and trained models to support future research.
comment: Currently this article is under review for Natural Language Processing Journal
☆ ValueFlow: Measuring the Propagation of Value Perturbations in Multi-Agent LLM Systems
Multi-agent large language model (LLM) systems increasingly consist of agents that observe and respond to one another's outputs. While value alignment is typically evaluated for isolated models, how value perturbations propagate through agent interactions remains poorly understood. We present ValueFlow, a perturbation-based evaluation framework for measuring and analyzing value drift in multi-agent systems. ValueFlow introduces a 56-value evaluation dataset derived from the Schwartz Value Survey and quantifies agents' value orientations during interaction using an LLM-as-a-judge protocol. Building on this measurement layer, ValueFlow decomposes value drift into agent-level response behavior and system-level structural effects, operationalized by two metrics: beta-susceptibility, which measures an agent's sensitivity to perturbed peer signals, and system susceptibility (SS), which captures how node-level perturbations affect final system outputs. Experiments across multiple model backbones, prompt personas, value dimensions, and network structures show that susceptibility varies widely across values and is strongly shaped by structural topology.
comment: Preprint. Under review. 18 pages, 9 figures
☆ Automating Computational Reproducibility in Social Science: Comparing Prompt-Based and Agent-Based Approaches
Reproducing computational research is often assumed to be as simple as rerunning the original code with provided data. In practice, missing packages, fragile file paths, version conflicts, or incomplete logic frequently cause analyses to fail, even when materials are shared. This study investigates whether large language models and AI agents can automate the diagnosis and repair of such failures, making computational results easier to reproduce and verify. We evaluate this using a controlled reproducibility testbed built from five fully reproducible R-based social science studies. Realistic failures were injected, ranging from simple issues to complex missing logic, and two automated repair workflows were tested in clean Docker environments. The first workflow is prompt-based, repeatedly querying language models with structured prompts of varying context, while the second uses agent-based systems that inspect files, modify code, and rerun analyses autonomously. Across prompt-based runs, reproduction success ranged from 31-79 percent, with performance strongly influenced by prompt context and error complexity. Complex cases benefited most from additional context. Agent-based workflows performed substantially better, with success rates of 69-96 percent across all complexity levels. These results suggest that automated workflows, especially agent-based systems, can significantly reduce manual effort and improve reproduction success across diverse error types. Unlike prior benchmarks, our testbed isolates post-publication repair under controlled failure modes, allowing direct comparison of prompt-based and agent-based approaches.
comment: 12 pages, 5 figures. Submitted to ACM conference
☆ How Do Language Models Understand Tables? A Mechanistic Analysis of Cell Location
While Large Language Models (LLMs) are increasingly deployed for table-related tasks, the internal mechanisms enabling them to process linearized two-dimensional structured tables remain opaque. In this work, we investigate the process of table understanding by dissecting the atomic task of cell location. Through activation patching and complementary interpretability techniques, we delineate the table understanding mechanism into a sequential three-stage pipeline: Semantic Binding, Coordinate Localization, and Information Extraction. We demonstrate that models locate the target cell via an ordinal mechanism that counts discrete delimiters to resolve coordinates. Furthermore, column indices are encoded within a linear subspace that allows for precise steering of model focus through vector arithmetic. Finally, we reveal that models generalize to multi-cell location tasks by multiplexing the identical attention heads identified during atomic location. Our findings provide a comprehensive explanation of table understanding within Transformer architectures.
☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
☆ Learning Self-Correction in Vision-Language Models via Rollout Augmentation
Self-correction is essential for solving complex reasoning problems in vision-language models (VLMs). However, existing reinforcement learning (RL) methods struggle to learn it, as effective self-correction behaviors emerge only rarely, making learning signals extremely sparse. To address this challenge, we propose correction-specific rollouts (Octopus), an RL rollout augmentation framework that synthesizes dense self-correction examples by recombining existing rollouts. This augmentation simultaneously improves sample efficiency due to rollout reuse and stabilizes RL optimization through balanced supervision. Furthermore, we introduce a response-masking strategy that decouples self-correction from direct reasoning, avoiding signal conflicts and enabling both behaviors to be learned effectively. Building on this, we introduce Octopus-8B, a reasoning VLM with controllable self-correction capability. Across 7 benchmarks, it achieves SoTA performance among open-source VLMs, outperforming the best RLVR baseline by 1.0 score while requiring only $0.72\times$ training time per step.
comment: 17 pages
☆ Characterizing, Evaluating, and Optimizing Complex Reasoning
Large Reasoning Models (LRMs) increasingly rely on reasoning traces with complex internal structures. However, existing work lacks a unified answer to three fundamental questions: (1) what defines high-quality reasoning, (2) how to reliably evaluate long, implicitly structured reasoning traces, and (3) how to use such evaluation signals for reasoning optimization. To address these challenges, we provide a unified perspective. (1) We introduce the ME$^2$ principle to characterize reasoning quality along macro- and micro-level concerning efficiency and effectiveness. (2) Built on this principle, we model reasoning traces as directed acyclic graphs (DAGs) and develop a DAG-based pairwise evaluation method, capturing complex reasoning structures. (3) Based on this method, we construct the TRM-Preference dataset and train a Thinking Reward Model (TRM) to evaluate reasoning quality at scale. Experiments show that thinking rewards serve as an effective optimization signal. At test time, selecting better reasoning leads to better outcomes (up to 19.3% gain), and during RL training, thinking rewards enhance reasoning and performance (up to 3.9% gain) across diverse tasks.
comment: Code and data are available at \url{https://github.com/zzzhr97/TRM}
☆ Beyond Correctness: Learning Robust Reasoning via Transfer
Reinforcement Learning with Verifiable Rewards (RLVR) has recently strengthened LLM reasoning, but its focus on final answer correctness leaves a critical gap: it does not ensure the robustness of the reasoning process itself. We adopt a simple philosophical view, robust reasoning should remain useful beyond the mind that produced it, and treat reasoning as a form of meaning transfer that must survive truncation, reinterpretation, and continuation. Building on this principle, we introduce Reinforcement Learning with Transferable Reward (RLTR), which operationalizes robustness via transfer reward that tests whether a partial reasoning prefix from one model can guide a separate model to the correct answer. This encourages LLMs to produce reasoning that is stable, interpretable, and genuinely generalizable. Our approach improves sampling consistency while improving final answer accuracy, and it reaches comparable performance in substantially fewer training steps. For example, on MATH500, RLTR achieves a +3.6%p gain in Maj@64 compared to RLVR and matches RLVR's average accuracy with roughly 2.5x fewer training steps, providing both more reliable reasoning and significantly more sample efficient.
☆ Large Language Models and Impossible Language Acquisition: "False Promise" or an Overturn of our Current Perspective towards AI
In Chomsky's provocative critique "The False Promise of CHATGPT," Large Language Models (LLMs) are characterized as mere pattern predictors that do not acquire languages via intrinsic causal and self-correction structures like humans, therefore are not able to distinguish impossible languages. It stands as a representative in a fundamental challenge to the intellectual foundations of AI, for it integrally synthesizes major issues in methodologies within LLMs and possesses an iconic a priori rationalist perspective. We examine this famous critic from both the perspective in pre-existing literature of linguistics and psychology as well as a research based on an experiment inquiring the capacity of learning both possible and impossible languages among LLMs. We constructed a set of syntactically impossible languages by applying certain transformations to English. These include reversing whole sentences, and adding negation based on word-count parity. Two rounds of controlled experiments were each conducted on GPT-2 small models and long short-term memory (LSTM) models. Statistical analysis (Welch's t-test) shows GPT2 small models underperform in learning all of the impossible languages compared to their performance on the possible language (p<.001). On the other hand, LSTM models' performance tallies with Chomsky's argument, suggesting the irreplaceable role of the evolution of transformer architecture. Based on theoretical analysis and empirical findings, we propose a new vision within Chomsky's theory towards LLMs, and a shift of theoretical paradigm outside Chomsky, from his "rationalist-romantics" paradigm to functionalism and empiricism in LLMs research.
☆ Prism: Spectral-Aware Block-Sparse Attention
Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
☆ TEAM: Temporal-Spatial Consistency Guided Expert Activation for MoE Diffusion Language Model Acceleration
Diffusion large language models (dLLMs) have recently gained significant attention due to their inherent support for parallel decoding. Building on this paradigm, Mixture-of-Experts (MoE) dLLMs with autoregressive (AR) initialization have further demonstrated strong performance competitive with mainstream AR models. However, we identify a fundamental mismatch between MoE architectures and diffusion-based decoding. Specifically, a large number of experts are activated at each denoising step, while only a small subset of tokens is ultimately accepted, resulting in substantial inference overhead and limiting their deployment in latency-sensitive applications. In this work, we propose TEAM, a plug-and-play framework that accelerates MoE dLLMs by enabling more accepted tokens with fewer activated experts. TEAM is motivated by the observation that expert routing decisions exhibit strong temporal consistency across denoising levels as well as spatial consistency across token positions. Leveraging these properties, TEAM employs three complementary expert activation and decoding strategies, conservatively selecting necessary experts for decoded and masked tokens and simultaneously performing aggressive speculative exploration across multiple candidates. Experimental results demonstrate that TEAM achieves up to 2.2x speedup over vanilla MoE dLLM, with negligible performance degradation. Code is released at https://github.com/PKU-SEC-Lab/TEAM-MoE-dLLM.
☆ Dynamic Long Context Reasoning over Compressed Memory via End-to-End Reinforcement Learning
Large Language Models (LLMs) face significant challenges in long-context processing, including quadratic computational costs, information forgetting, and the context fragmentation inherent in retrieval-augmented generation (RAG). We propose a cognitively inspired framework for efficient long-context inference based on chunk-wise compression and selective memory recall, rather than processing all raw tokens. The framework segments long inputs into chunks and encodes each chunk into compressed memory representations using a learned compressor. A gating module dynamically selects relevant memory blocks, which are then iteratively processed by a reasoning module with an evolving working memory to solve downstream tasks. The compressor and reasoner are jointly optimized via end-to-end reinforcement learning, while the gating module is trained separately as a classifier. Experimental results show that the proposed method achieves competitive accuracy on multi-hop reasoning benchmarks such as RULER-HQA, extrapolates context length from 7K to 1.75M tokens, and offers a favorable accuracy-efficiency trade-off compared to strong long-context baselines. In particular, it achieves up to a 2 times reduction in peak GPU memory usage and a 6 times inference speedup over MemAgent.
comment: 26 pages, 7 figures. Code and models will be released
☆ Reinforcement Learning with Backtracking Feedback NeurIPS 2025
Addressing the critical need for robust safety in Large Language Models (LLMs), particularly against adversarial attacks and in-distribution errors, we introduce Reinforcement Learning with Backtracking Feedback (RLBF). This framework advances upon prior methods, such as BSAFE, by primarily leveraging a Reinforcement Learning (RL) stage where models learn to dynamically correct their own generation errors. Through RL with critic feedback on the model's live outputs, LLMs are trained to identify and recover from their actual, emergent safety violations by emitting an efficient "backtrack by x tokens" signal, then continuing generation autoregressively. This RL process is crucial for instilling resilience against sophisticated adversarial strategies, including middle filling, Greedy Coordinate Gradient (GCG) attacks, and decoding parameter manipulations. To further support the acquisition of this backtracking capability, we also propose an enhanced Supervised Fine-Tuning (SFT) data generation strategy (BSAFE+). This method improves upon previous data creation techniques by injecting violations into coherent, originally safe text, providing more effective initial training for the backtracking mechanism. Comprehensive empirical evaluations demonstrate that RLBF significantly reduces attack success rates across diverse benchmarks and model scales, achieving superior safety outcomes while critically preserving foundational model utility.
comment: NeurIPS 2025
☆ ViGoEmotions: A Benchmark Dataset For Fine-grained Emotion Detection on Vietnamese Texts EACL 2026
Emotion classification plays a significant role in emotion prediction and harmful content detection. Recent advancements in NLP, particularly through large language models (LLMs), have greatly improved outcomes in this field. This study introduces ViGoEmotions -- a Vietnamese emotion corpus comprising 20,664 social media comments in which each comment is classified into 27 fine-grained distinct emotions. To evaluate the quality of the dataset and its impact on emotion classification, eight pre-trained Transformer-based models were evaluated under three preprocessing strategies: preserving original emojis with rule-based normalization, converting emojis into textual descriptions, and applying ViSoLex, a model-based lexical normalization system. Results show that converting emojis into text often improves the performance of several BERT-based baselines, while preserving emojis yields the best results for ViSoBERT and CafeBERT. In contrast, removing emojis generally leads to lower performance. ViSoBERT achieved the highest Macro F1-score of 61.50% and Weighted F1-score of 63.26%. Strong performance was also observed from CafeBERT and PhoBERT. These findings highlight that while the proposed corpus can support diverse architectures effectively, preprocessing strategies and annotation quality remain key factors influencing downstream performance.
comment: Accepted as main paper at EACL 2026
☆ MemAdapter: Fast Alignment across Agent Memory Paradigms via Generative Subgraph Retrieval
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retrieval framework that enables fast alignment across agent memory paradigms. MemAdapter adopts a two-stage training strategy: (1) training a generative subgraph retriever from the unified memory space, and (2) adapting the retriever to unseen memory paradigms by training a lightweight alignment module through contrastive learning. This design improves the flexibility for memory retrieval and substantially reduces alignment cost across paradigms. Comprehensive experiments on three public evaluation benchmarks demonstrate that the generative subgraph retriever consistently outperforms five strong agent memory systems across three memory paradigms and agent model scales. Notably, MemAdapter completes cross-paradigm alignment within 13 minutes on a single GPU, achieving superior performance over original memory retrievers with less than 5% of training compute. Furthermore, MemAdapter enables effective zero-shot fusion across memory paradigms, highlighting its potential as a plug-and-play solution for agent memory systems.
☆ WorldTravel: A Realistic Multimodal Travel-Planning Benchmark with Tightly Coupled Constraints
Real-world autonomous planning requires coordinating tightly coupled constraints where a single decision dictates the feasibility of all subsequent actions. However, existing benchmarks predominantly feature loosely coupled constraints solvable through local greedy decisions and rely on idealized data, failing to capture the complexity of extracting parameters from dynamic web environments. We introduce \textbf{WorldTravel}, a benchmark comprising 150 real-world travel scenarios across 5 cities that demand navigating an average of 15+ interdependent temporal and logical constraints. To evaluate agents in realistic deployments, we develop \textbf{WorldTravel-Webscape}, a multi-modal environment featuring over 2,000 rendered webpages where agents must perceive constraint parameters directly from visual layouts to inform their planning. Our evaluation of 10 frontier models reveals a significant performance collapse: even the state-of-the-art GPT-5.2 achieves only 32.67\% feasibility in text-only settings, which plummets to 19.33\% in multi-modal environments. We identify a critical Perception-Action Gap and a Planning Horizon threshold at approximately 10 constraints where model reasoning consistently fails, suggesting that perception and reasoning remain independent bottlenecks. These findings underscore the need for next-generation agents that unify high-fidelity visual perception with long-horizon reasoning to handle brittle real-world logistics.
☆ ManifoldKV: Training-Free KV Cache Compression via Euclidean Outlier Detection
Long-context inference is constrained by KV-cache memory, which grows linearly with sequence length; KV-cache compression therefore hinges on reliably selecting which past tokens to retain. Most geometry-based eviction methods score keys by cosine similarity to a global centroid, but cosine is scale-invariant and can discard magnitude cues that distinguish semantically salient tokens. We propose ManifoldKV, a training-free scorer that ranks tokens by Euclidean distance to the key centroid, capturing both angular and radial deviations. On the RULER benchmark, ManifoldKV achieves 95.7% accuracy at 4K-16K contexts with 20% compression; matching the best geometric baseline while improving robustness in two regimes where cosine scoring fails. First, on multi-key retrieval, ManifoldKV reduces directional collisions, achieving 92.4% vs KeyDiff's 77.0% (+15.4 points) on 3-key NIAH at 50% compression. Second, to address dilution and performance collapse of global centroids at 64K context, we introduce WindowedManifoldKV, which restores accuracy to 84.3% at 25% compression, a 49-point recovery over global L2 and +3.2 points over KeyDiff. The method requires only 3 lines of code and works across 4 architectures without tuning.
comment: 18 pages, 5 figures, 18 tables
☆ UReason: Benchmarking the Reasoning Paradox in Unified Multimodal Models
To elicit capabilities for addressing complex and implicit visual requirements, recent unified multimodal models increasingly adopt chain-of-thought reasoning to guide image generation. However, the actual effect of reasoning on visual synthesis remains unclear. We present UReason, a diagnostic benchmark for reasoning-driven image generation that evaluates whether reasoning can be faithfully executed in pixels. UReason contains 2,000 instances across five task families: Code, Arithmetic, Spatial, Attribute, and Text reasoning. To isolate the role of reasoning traces, we introduce an evaluation framework comparing direct generation, reasoning-guided generation, and de-contextualized generation which conditions only on the refined prompt. Across eight open-source unified models, we observe a consistent Reasoning Paradox: Reasoning traces generally improve performance over direct generation, yet retaining intermediate thoughts as conditioning context often hinders visual synthesis, and conditioning only on the refined prompt yields substantial gains. Our analysis suggests that the bottleneck lies in contextual interference rather than insufficient reasoning capacity. UReason provides a principled testbed for studying reasoning in unified models and motivates future methods that effectively integrate reasoning for visual generation while mitigating interference.
comment: Project page: https://ureason.github.io
☆ Latent Reasoning with Supervised Thinking States
Reasoning with a chain-of-thought (CoT) enables Large Language Models (LLMs) to solve complex tasks but incurs significant inference costs due to the generation of long rationales. We propose Thinking States, a method that performs reasoning {\em while} the input is processing. Specifically, Thinking States generates sequences of thinking tokens every few input tokens, transforms the thoughts back into embedding space, and adds them to the following input tokens. This has two key advantages. First, it captures the recurrent nature of CoT, but where the thought tokens are generated as input is processing. Second, since the thoughts are represented as tokens, they can be learned from natural language supervision, and using teacher-forcing, which is parallelizable. Empirically, Thinking States outperforms other latent reasoning methods on multiple reasoning tasks, narrowing the gap to CoT on math problems, and matching its performance on 2-Hop QA with improved latency. On state-tracking tasks, we show Thinking States leads to stronger reasoning behavior than CoT, successfully extrapolating to longer sequences than seen during training.
☆ An Attention-over-Attention Generative Model for Joint Multiple Intent Detection and Slot Filling
In task-oriented dialogue systems, spoken language understanding (SLU) is a critical component, which consists of two sub-tasks, intent detection and slot filling. Most existing methods focus on the single-intent SLU, where each utterance only has one intent. However, in real-world scenarios users usually express multiple intents in an utterance, which poses a challenge for existing dialogue systems and datasets. In this paper, we propose a generative framework to simultaneously address multiple intent detection and slot filling. In particular, an attention-over-attention decoder is proposed to handle the variable number of intents and the interference between the two sub-tasks by incorporating an inductive bias into the process of multi-task learning. Besides, we construct two new multi-intent SLU datasets based on single-intent utterances by taking advantage of the next sentence prediction (NSP) head of the BERT model. Experimental results demonstrate that our proposed attention-over-attention generative model achieves state-of-the-art performance on two public datasets, MixATIS and MixSNIPS, and our constructed datasets.
☆ Improving Data and Reward Design for Scientific Reasoning in Large Language Models
Solving open-ended science questions remains challenging for large language models, particularly due to inherently unreliable supervision and evaluation. The bottleneck lies in the data construction and reward design for scientific post-training. We develop a large-scale, systematic data processing pipeline that transforms heterogeneous open-source science data into Dr. SCI dataset, which comprises of 1M questions across eight STEM subjects, with explicit verifiable/open-ended splits, scalable difficulty annotation, and fine-grained rubrics that operationalize evaluation for open-ended answers. Building on this dataset, we propose the Dr. SCI post-training pipeline, which redesigns the standard SFT -> RL workflow through three components: (i) Exploration-Expanding SFT, which broadens the model's reasoning pattern coverage prior to RL; (ii) Dynamic Difficulty Curriculum, which adapts training data to the model's evolving scientific capability; and (iii) SciRubric-Guided RL, which enables stable reinforcement learning on open-ended scientific questions via rubric-based evaluation with explicit answer correctness. Qwen3-4B-Base trained using Dr.SCI pipeline achieves 63.2 on GPQA-diamond and 32.4 on GPQA-general, consistently improves over strong post-trained baselines such as o1-mini and GPT-4o, demonstrating substantial gains in scientific reasoning, especially in open-ended settings.
☆ JUSTICE: Judicial Unified Synthesis Through Intermediate Conclusion Emulation for Automated Judgment Document Generation
Automated judgment document generation is a significant yet challenging legal AI task. As the conclusive written instrument issued by a court, a judgment document embodies complex legal reasoning. However, existing methods often oversimplify this complex process, particularly by omitting the ``Pre-Judge'' phase, a crucial step where human judges form a preliminary conclusion. This omission leads to two core challenges: 1) the ineffective acquisition of foundational judicial elements, and 2) the inadequate modeling of the Pre-Judge process, which collectively undermine the final document's legal soundness. To address these challenges, we propose \textit{\textbf{J}udicial \textbf{U}nified \textbf{S}ynthesis \textbf{T}hrough \textbf{I}ntermediate \textbf{C}onclusion \textbf{E}mulation} (JUSTICE), a novel framework that emulates the ``Search $\rightarrow$ Pre-Judge $\rightarrow$ Write'' cognitive workflow of human judges. Specifically, it introduces the Pre-Judge stage through three dedicated components: Referential Judicial Element Retriever (RJER), Intermediate Conclusion Emulator (ICE), and Judicial Unified Synthesizer (JUS). RJER first retrieves legal articles and a precedent case to establish a referential foundation. ICE then operationalizes the Pre-Judge phase by generating a verifiable intermediate conclusion. Finally, JUS synthesizes these inputs to craft the final judgment. Experiments on both an in-domain legal benchmark and an out-of-distribution dataset show that JUSTICE significantly outperforms strong baselines, with substantial gains in legal accuracy, including a 4.6\% improvement in prison term prediction. Our findings underscore the importance of explicitly modeling the Pre-Judge process to enhance the legal coherence and accuracy of generated judgment documents.
☆ When Does Context Help? Error Dynamics of Contextual Information in Large Language Models
Contextual information at inference time, such as demonstrations, retrieved knowledge, or interaction history, can substantially improve large language models (LLMs) without parameter updates, yet its theoretical role remains poorly understood beyond specific settings such as in-context learning (ICL). We present a unified theoretical framework for analyzing the effect of arbitrary contextual information in Transformer-based LLMs. Our analysis characterizes contextual influence through output error dynamics. In a single-layer Transformer, we prove that the context-conditioned error vector decomposes additively into the baseline error vector and a contextual correction vector. This yields necessary geometric conditions for error reduction: the contextual correction must align with the negative baseline error and satisfy a norm constraint. We further show that the contextual correction norm admits an explicit upper bound determined by context-query relevance and complementarity. These results extend to multi-context and multi-layer Transformers. Experiments across ICL, retrieval-augmented generation, and memory evolution validate our theory and motivate a principled context selection strategy that improves performance by $0.6\%$.
☆ Knowledge Augmented Entity and Relation Extraction for Legal Documents with Hypergraph Neural Network
With the continuous progress of digitization in Chinese judicial institutions, a substantial amount of electronic legal document information has been accumulated. To unlock its potential value, entity and relation extraction for legal documents has emerged as a crucial task. However, existing methods often lack domain-specific knowledge and fail to account for the unique characteristics of the judicial domain. In this paper, we propose an entity and relation extraction algorithm based on hypergraph neural network (Legal-KAHRE) for drug-related judgment documents. Firstly, we design a candidate span generator based on neighbor-oriented packing strategy and biaffine mechanism, which identifies spans likely to contain entities. Secondly, we construct a legal dictionary with judicial domain knowledge and integrate it into text encoding representation using multi-head attention. Additionally, we incorporate domain-specific cases like joint crimes and combined punishment for multiple crimes into the hypergraph structure design. Finally, we employ a hypergraph neural network for higher-order inference via message passing. Experimental results on the CAIL2022 information extraction dataset demonstrate that our method significantly outperforms existing baseline models.
☆ New Skills or Sharper Primitives? A Probabilistic Perspective on the Emergence of Reasoning in RLVR
Whether Reinforcement Learning with Verifiable Rewards (RLVR) endows Large Language Models (LLMs) with new capabilities or merely elicits latent traces remains a central debate. In this work, we align with the former view, proposing a probabilistic framework where capability is defined by instance-level solvability. We hypothesize that the emergence of complex reasoning can be driven by sharpening atomic step probabilities, which enables models to overcome the exponential decay of success rates inherent in multi-step reasoning chains. Utilizing the Algebrarium framework, we train models exclusively on single-step operations and evaluate their performance on unseen multi-step tasks. Our empirical results confirm that: (1) RLVR incentivizes the exploration of previously inaccessible solution paths by amplifying the model's existing skills; (2) composite performance is strictly governed by the joint probability of atomic steps, evidenced by high Pearson correlation coefficients ($ρ\in [0.69, 0.96]$); and (3) RLVR, acting as a global optimizer, can cause specific skills to be sacrificed to maximize aggregate reward. Our work offers a novel explanation for emergent abilities in RLVR, suggesting that the iterative optimization of solvable problems enables models to develop the capabilities to tackle previously unsolvable scenarios.
comment: 15 pages
☆ Linguistics and Human Brain: A Perspective of Computational Neuroscience
Elucidating the language-brain relationship requires bridging the methodological gap between the abstract theoretical frameworks of linguistics and the empirical neural data of neuroscience. Serving as an interdisciplinary cornerstone, computational neuroscience formalizes the hierarchical and dynamic structures of language into testable neural models through modeling, simulation, and data analysis. This enables a computational dialogue between linguistic hypotheses and neural mechanisms. Recent advances in deep learning, particularly large language models (LLMs), have powerfully advanced this pursuit. Their high-dimensional representational spaces provide a novel scale for exploring the neural basis of linguistic processing, while the "model-brain alignment" framework offers a methodology to evaluate the biological plausibility of language-related theories.
☆ Language Modeling and Understanding Through Paraphrase Generation and Detection
Language enables humans to share knowledge, reason about the world, and pass on strategies for survival and innovation across generations. At the heart of this process is not just the ability to communicate but also the remarkable flexibility in how we can express ourselves. We can express the same thoughts in virtually infinite ways using different words and structures - this ability to rephrase and reformulate expressions is known as paraphrase. Modeling paraphrases is a keystone to meaning in computational language models; being able to construct different variations of texts that convey the same meaning or not shows strong abilities of semantic understanding. If computational language models are to represent meaning, they must understand and control the different aspects that construct the same meaning as opposed to different meanings at a fine granularity. Yet most existing approaches reduce paraphrasing to a binary decision between two texts or to producing a single rewrite of a source, obscuring which linguistic factors are responsible for meaning preservation. In this thesis, I propose that decomposing paraphrases into their constituent linguistic aspects (paraphrase types) offers a more fine-grained and cognitively grounded view of semantic equivalence. I show that even advanced machine learning models struggle with this task. Yet, when explicitly trained on paraphrase types, models achieve stronger performance on related paraphrase tasks and downstream applications. For example, in plagiarism detection, language models trained on paraphrase types surpass human baselines: 89.6% accuracy compared to 78.4% for plagiarism cases from Wikipedia, and 66.5% compared to 55.7% for plagiarism of scientific papers from arXiv. In identifying duplicate questions on Quora, models trained with paraphrase types improve over models trained on binary pairs. Furthermore, I demonstrate that...
comment: PhD dissertation, University of Göttingen Germany, 2025. 182 pages
☆ Language Predicts Identity Fusion Across Cultures and Reveals Divergent Pathways to Violence
In light of increasing polarization and political violence, understanding the psychological roots of extremism is increasingly important. Prior research shows that identity fusion predicts willingness to engage in extreme acts. We evaluate the Cognitive Linguistic Identity Fusion Score, a method that uses cognitive linguistic patterns, LLMs, and implicit metaphor to measure fusion from language. Across datasets from the United Kingdom and Singapore, this approach outperforms existing methods in predicting validated fusion scores. Applied to extremist manifestos, two distinct high-fusion pathways to violence emerge: ideologues tend to frame themselves in terms of group, forming kinship bonds; whereas grievance-driven individuals frame the group in terms of their personal identity. These results refine theories of identity fusion and provide a scalable tool aiding fusion research and extremism detection.
comment: Initial submitted version
☆ On convexity and efficiency in semantic systems
There are two widely held characterizations of human semantic category systems: (1) they form convex partitions of conceptual spaces, and (2) they are efficient for communication. While prior work observed that convexity and efficiency co-occur in color naming, the analytical relation between them and why they co-occur have not been well understood. We address this gap by combining analytical and empirical analyses that build on the Information Bottleneck (IB) framework for semantic efficiency. First, we show that convexity and efficiency are distinct in the sense that neither entails the other: there are convex systems which are inefficient, and optimally-efficient systems that are non-convex. Crucially, however, the IB-optimal systems are mostly convex in the domain of color naming, explaining the main empirical basis for the convexity approach. Second, we show that efficiency is a stronger predictor for discriminating attested color naming systems from hypothetical variants, with convexity adding negligible improvement on top of that. Finally, we discuss a range of empirical phenomena that convexity cannot account for but efficiency can. Taken together, our work suggests that while convexity and efficiency can yield similar structural observations, they are fundamentally distinct, with efficiency providing a more comprehensive account of semantic typology.
☆ Document Reconstruction Unlocks Scalable Long-Context RLVR
Reinforcement Learning with Verifiable Rewards~(RLVR) has become a prominent paradigm to enhance the capabilities (i.e.\ long-context) of Large Language Models~(LLMs). However, it often relies on gold-standard answers or explicit evaluation rubrics provided by powerful teacher models or human experts, which are costly and time-consuming. In this work, we investigate unsupervised approaches to enhance the long-context capabilities of LLMs, eliminating the need for heavy human annotations or teacher models' supervision. Specifically, we first replace a few paragraphs with special placeholders in a long document. LLMs are trained through reinforcement learning to reconstruct the document by correctly identifying and sequencing missing paragraphs from a set of candidate options. This training paradigm enables the model to capture global narrative coherence, significantly boosting long-context performance. We validate the effectiveness of our method on two widely used benchmarks, RULER and LongBench~v2. While acquiring noticeable gains on RULER, it can also achieve a reasonable improvement on LongBench~v2 without any manually curated long-context QA data. Furthermore, we conduct extensive ablation studies to analyze the impact of reward design, data curation strategies, training schemes, and data scaling effects on model performance. We publicly release our code, data, and models.
☆ When and How Much to Imagine: Adaptive Test-Time Scaling with World Models for Visual Spatial Reasoning
Despite rapid progress in Multimodal Large Language Models (MLLMs), visual spatial reasoning remains unreliable when correct answers depend on how a scene would appear under unseen or alternative viewpoints. Recent work addresses this by augmenting reasoning with world models for visual imagination, but questions such as when imagination is actually necessary, how much of it is beneficial, and when it becomes harmful, remain poorly understood. In practice, indiscriminate imagination can increase computation and even degrade performance by introducing misleading evidence. In this work, we present an in-depth analysis of test-time visual imagination as a controllable resource for spatial reasoning. We study when static visual evidence is sufficient, when imagination improves reasoning, and how excessive or unnecessary imagination affects accuracy and efficiency. To support this analysis, we introduce AVIC, an adaptive test-time framework with world models that explicitly reasons about the sufficiency of current visual evidence before selectively invoking and scaling visual imagination. Across spatial reasoning benchmarks (SAT, MMSI) and an embodied navigation benchmark (R2R), our results reveal clear scenarios where imagination is critical, marginal, or detrimental, and show that selective control can match or outperform fixed imagination strategies with substantially fewer world-model calls and language tokens. Overall, our findings highlight the importance of analyzing and controlling test-time imagination for efficient and reliable spatial reasoning.
comment: the first two authors are equally contributed. Project page: https://adaptive-visual-tts.github.io/
When Benign Inputs Lead to Severe Harms: Eliciting Unsafe Unintended Behaviors of Computer-Use Agents
Although computer-use agents (CUAs) hold significant potential to automate increasingly complex OS workflows, they can demonstrate unsafe unintended behaviors that deviate from expected outcomes even under benign input contexts. However, exploration of this risk remains largely anecdotal, lacking concrete characterization and automated methods to proactively surface long-tail unintended behaviors under realistic CUA scenarios. To fill this gap, we introduce the first conceptual and methodological framework for unintended CUA behaviors, by defining their key characteristics, automatically eliciting them, and analyzing how they arise from benign inputs. We propose AutoElicit: an agentic framework that iteratively perturbs benign instructions using CUA execution feedback, and elicits severe harms while keeping perturbations realistic and benign. Using AutoElicit, we surface hundreds of harmful unintended behaviors from state-of-the-art CUAs such as Claude 4.5 Haiku and Opus. We further evaluate the transferability of human-verified successful perturbations, identifying persistent susceptibility to unintended behaviors across various other frontier CUAs. This work establishes a foundation for systematically analyzing unintended behaviors in realistic computer-use settings.
comment: Project Homepage: https://osu-nlp-group.github.io/AutoElicit/
☆ CoRect: Context-Aware Logit Contrast for Hidden State Rectification to Resolve Knowledge Conflicts
Retrieval-Augmented Generation (RAG) often struggles with knowledge conflicts, where model-internal parametric knowledge overrides retrieved evidence, leading to unfaithful outputs. Existing approaches are often limited, relying either on superficial decoding adjustments or weight editing that necessitates ground-truth targets. Through layer-wise analysis, we attribute this failure to a parametric suppression phenomenon: specifically, in deep layers, certain FFN layers overwrite context-sensitive representations with memorized priors. To address this, we propose CoRect (Context-Aware Logit Contrast for Hidden State Rectification). By contrasting logits from contextualized and non-contextualized forward passes, CoRect identifies layers that exhibit high parametric bias without requiring ground-truth labels. It then rectifies the hidden states to preserve evidence-grounded information. Across question answering (QA) and summarization benchmarks, CoRect consistently improves faithfulness and reduces hallucinations compared to strong baselines.
Pretraining with Token-Level Adaptive Latent Chain-of-Thought
Scaling large language models by increasing parameters and training data is increasingly constrained by limited high-quality corpora and rising communication costs. This work explores an alternative axis: increasing per-token computation without expanding parameters, by internalizing latent Chain-of-Thought (CoT) into pretraining. We propose Pretraining with Token-Level Adaptive Latent CoT (adaptive latent CoT), where the model generates a variable-length latent CoT trajectory before emitting each token -- allocating longer trajectories to difficult tokens and shorter (or even zero) trajectories to easy ones. Importantly, this behavior emerges naturally from one-stage pretraining on general text and reduces computation in both training and inference via token-wise adaptive halting. Experiments with Llama architectures show that adaptive latent CoT consistently improves language modeling perplexity and broad downstream accuracy, even with fewer training FLOPs than prior recurrent baselines.
☆ DrugR: Optimizing Molecular Drugs through LLM-based Explicit Reasoning
Molecule generation and optimization is a fundamental task in chemical domain. The rapid development of intelligent tools, especially large language models (LLMs) with powerful knowledge reserves and interactive capabilities, has provided new paradigms for it. Nevertheless, the intrinsic challenge for LLMs lies in the complex implicit relationship between molecular structure and pharmacological properties and the lack of corresponding labeled data. To bridge this gap, we propose DrugR, an LLM-based method that introduces explicit, step-by-step pharmacological reasoning into the optimization process. Our approach integrates domain-specific continual pretraining, supervised fine-tuning via reverse data engineering, and self-balanced multi-granular reinforcement learning. This framework enables DrugR to effectively improve key ADMET properties while preserving the original molecule's core efficacy. Experimental results demonstrate that DrugR achieves comprehensive enhancement across multiple properties without compromising structural similarity or target binding affinity. Importantly, its explicit reasoning process provides clear, interpretable rationales for each optimization step, yielding actionable design insights and advancing toward automated, knowledge-driven scientific discovery. Our code and model checkpoints are open-sourced to foster future research.
☆ LLMs and people both learn to form conventions -- just not with each other
Humans align to one another in conversation -- adopting shared conventions that ease communication. We test whether LLMs form the same kinds of conventions in a multimodal communication game. Both humans and LLMs display evidence of convention-formation (increasing the accuracy and consistency of their turns while decreasing their length) when communicating in same-type dyads (humans with humans, AI with AI). However, heterogenous human-AI pairs fail -- suggesting differences in communicative tendencies. In Experiment 2, we ask whether LLMs can be induced to behave more like human conversants, by prompting them to produce superficially humanlike behavior. While the length of their messages matches that of human pairs, accuracy and lexical overlap in human-LLM pairs continues to lag behind that of both human-human and AI-AI pairs. These results suggest that conversational alignment requires more than just the ability to mimic previous interactions, but also shared interpretative biases toward the meanings that are conveyed.
comment: 10 pages, 4 figures
☆ Dreaming in Code for Curriculum Learning in Open-Ended Worlds
Open-ended learning frames intelligence as emerging from continual interaction with an ever-expanding space of environments. While recent advances have utilized foundation models to programmatically generate diverse environments, these approaches often focus on discovering isolated behaviors rather than orchestrating sustained progression. In complex open-ended worlds, the large combinatorial space of possible challenges makes it difficult for agents to discover sequences of experiences that remain consistently learnable. To address this, we propose Dreaming in Code (DiCode), a framework in which foundation models synthesize executable environment code to scaffold learning toward increasing competence. In DiCode, "dreaming" takes the form of materializing code-level variations of the world. We instantiate DiCode in Craftax, a challenging open-ended benchmark characterized by rich mechanics and long-horizon progression. Empirically, DiCode enables agents to acquire long-horizon skills, achieving a $16\%$ improvement in mean return over the strongest baseline and non-zero success on late-game combat tasks where prior methods fail. Our results suggest that code-level environment design provides a practical mechanism for curriculum control, enabling the construction of intermediate environments that bridge competence gaps in open-ended worlds. Project page and source code are available at https://konstantinosmitsides.github.io/dreaming-in-code and https://github.com/konstantinosmitsides/dreaming-in-code.
comment: 11 pages (main text), 90 pages total. Project page: https://konstantinosmitsides.github.io/dreaming-in-code
☆ Spherical Steering: Geometry-Aware Activation Rotation for Language Models
Inference-time steering has emerged as a promising paradigm for controlling language models (LMs) without the cost of retraining. However, standard approaches typically rely on activation addition, a geometric operation that inevitably alters the magnitude of hidden representations. This raises concerns about representation collapse and degradation of open-ended generation capabilities. In this work, we explore Spherical Steering, a training-free primitive that resolves this trade-off through activation rotation. Rather than shifting activations with a fixed vector, our method rotates them along a geodesic toward a target direction, guiding the activation toward the target concept while preserving the integrity of the signal. To further enhance adaptivity, we incorporate a confidence gate that dynamically modulates steering strength based on input uncertainty. Extensive experiments across multiple-choice benchmarks demonstrate that Spherical Steering significantly outperforms addition-based baselines (notably by +10% on TruthfulQA, COPA, and Storycloze), while simultaneously maintaining the model's general open-ended generation quality. This work highlights the value of geometric consistency, suggesting that norm-preserving rotation is a robust and effective primitive for precise inference-time control.
comment: The code is at: https://github.com/chili-lab/Spherical-Steering
☆ Effective Reasoning Chains Reduce Intrinsic Dimensionality
Chain-of-thought (CoT) reasoning and its variants have substantially improved the performance of language models on complex reasoning tasks, yet the precise mechanisms by which different strategies facilitate generalization remain poorly understood. While current explanations often point to increased test-time computation or structural guidance, establishing a consistent, quantifiable link between these factors and generalization remains challenging. In this work, we identify intrinsic dimensionality as a quantitative measure for characterizing the effectiveness of reasoning chains. Intrinsic dimensionality quantifies the minimum number of model dimensions needed to reach a given accuracy threshold on a given task. By keeping the model architecture fixed and varying the task formulation through different reasoning strategies, we demonstrate that effective reasoning strategies consistently reduce the intrinsic dimensionality of the task. Validating this on GSM8K with Gemma-3 1B and 4B, we observe a strong inverse correlation between the intrinsic dimensionality of a reasoning strategy and its generalization performance on both in-distribution and out-of-distribution data. Our findings suggest that effective reasoning chains facilitate learning by better compressing the task using fewer parameters, offering a new quantitative metric for analyzing reasoning processes.
comment: 20 pages, 3 figures
☆ Collective Behavior of AI Agents: the Case of Moltbook
We present a large scale data analysis of Moltbook, a Reddit-style social media platform exclusively populated by AI agents. Analyzing over 369,000 posts and 3.0 million comments from approximately 46,000 active agents, we find that AI collective behavior exhibits many of the same statistical regularities observed in human online communities: heavy-tailed distributions of activity, power-law scaling of popularity metrics, and temporal decay patterns consistent with limited attention dynamics. However, we also identify key differences, including a sublinear relationship between upvotes and discussion size that contrasts with human behavior. These findings suggest that, while individual AI agents may differ fundamentally from humans, their emergent collective dynamics share structural similarities with human social systems.
☆ Measuring Inclusion in Interaction: Inclusion Analytics for Human-AI Collaborative Learning
Inclusion, equity, and access are widely valued in AI and education, yet are often assessed through coarse sample descriptors or post-hoc self-reports that miss how inclusion is shaped moment by moment in collaborative problem solving (CPS). In this proof-of-concept paper, we introduce inclusion analytics, a discourse-based framework for examining inclusion as a dynamic, interactional process in CPS. We conceptualize inclusion along three complementary dimensions -- participation equity, affective climate, and epistemic equity -- and demonstrate how these constructs can be made analytically visible using scalable, interaction-level measures. Using both simulated conversations and empirical data from human-AI teaming experiments, we illustrate how inclusion analytics can surface patterns of participation, relational dynamics, and idea uptake that remain invisible to aggregate or post-hoc evaluations. This work represents an initial step toward process-oriented approaches to measuring inclusion in human-AI collaborative learning environments.
☆ FlyAOC: Evaluating Agentic Ontology Curation of Drosophila Scientific Knowledge Bases
Scientific knowledge bases accelerate discovery by curating findings from primary literature into structured, queryable formats for both human researchers and emerging AI systems. Maintaining these resources requires expert curators to search relevant papers, reconcile evidence across documents, and produce ontology-grounded annotations - a workflow that existing benchmarks, focused on isolated subtasks like named entity recognition or relation extraction, do not capture. We present FlyBench to evaluate AI agents on end-to-end agentic ontology curation from scientific literature. Given only a gene symbol, agents must search and read from a corpus of 16,898 full-text papers to produce structured annotations: Gene Ontology terms describing function, expression patterns, and historical synonyms linking decades of nomenclature. The benchmark includes 7,397 expert-curated annotations across 100 genes drawn from FlyBase, the Drosophila (fruit fly) knowledge base. We evaluate four baseline agent architectures: memorization, fixed pipeline, single-agent, and multi-agent. We find that architectural choices significantly impact performance, with multi-agent designs outperforming simpler alternatives, yet scaling backbone models yields diminishing returns. All baselines leave substantial room for improvement. Our analysis surfaces several findings to guide future development; for example, agents primarily use retrieval to confirm parametric knowledge rather than discover new information. We hope FlyBench will drive progress on retrieval-augmented scientific reasoning, a capability with broad applications across scientific domains.
Overview of PAN 2026: Voight-Kampff Generative AI Detection, Text Watermarking, Multi-Author Writing Style Analysis, Generative Plagiarism Detection, and Reasoning Trajectory Detection
The goal of the PAN workshop is to advance computational stylometry and text forensics via objective and reproducible evaluation. In 2026, we run the following five tasks: (1) Voight-Kampff Generative AI Detection, particularly in mixed and obfuscated authorship scenarios, (2) Text Watermarking, a new task that aims to find new and benchmark the robustness of existing text watermarking schemes, (3) Multi-author Writing Style Analysis, a continued task that aims to find positions of authorship change, (4) Generative Plagiarism Detection, a continued task that targets source retrieval and text alignment between generated text and source documents, and (5) Reasoning Trajectory Detection, a new task that deals with source detection and safety detection of LLM-generated or human-written reasoning trajectories. As in previous years, PAN invites software submissions as easy-to-reproduce Docker containers for most of the tasks. Since PAN 2012, more than 1,100 submissions have been made this way via the TIRA experimentation platform.
☆ PABU: Progress-Aware Belief Update for Efficient LLM Agents
Large Language Model (LLM) agents commonly condition actions on full action-observation histories, which introduce task-irrelevant information that easily leads to redundant actions and higher inference cost. We propose Progress-Aware Belief Update (PABU), a belief-state framework that compactly represents an agent's state by explicitly modeling task progress and selectively retaining past actions and observations. At each step, the agent predicts its relative progress since the previous round and decides whether the newly encountered interaction should be stored, conditioning future decisions only on the retained subset. Across eight environments in the AgentGym benchmark, and using identical training trajectories, PABU achieves an 81.0% task completion rate, outperforming previous State of the art (SoTA) models with full-history belief by 23.9%. Additionally, PABU's progress-oriented action selection improves efficiency, reducing the average number of interaction steps to 9.5, corresponding to a 26.9% reduction. Ablation studies show that both explicit progress prediction and selective retention are necessary for robust belief learning and performance gains.
☆ Benchmarking the Energy Savings with Speculative Decoding Strategies EACL
Speculative decoding has emerged as an effective method to reduce latency and inference cost of LLM inferences. However, there has been inadequate attention towards the energy requirements of these models. To address this gap, this paper presents a comprehensive survey of energy requirements of speculative decoding strategies, with detailed analysis on how various factors -- model size and family, speculative decoding strategies, and dataset characteristics -- influence the energy optimizations.
comment: Accepted at EACL Findings 2026
☆ SinFoS: A Parallel Dataset for Translating Sinhala Figures of Speech EACL 2026
Figures of Speech (FoS) consist of multi-word phrases that are deeply intertwined with culture. While Neural Machine Translation (NMT) performs relatively well with the figurative expressions of high-resource languages, it often faces challenges when dealing with low-resource languages like Sinhala due to limited available data. To address this limitation, we introduce a corpus of 2,344 Sinhala figures of speech with cultural and cross-lingual annotations. We examine this dataset to classify the cultural origins of the figures of speech and to identify their cross-lingual equivalents. Additionally, we have developed a binary classifier to differentiate between two types of FOS in the dataset, achieving an accuracy rate of approximately 92%. We also evaluate the performance of existing LLMs on this dataset. Our findings reveal significant shortcomings in the current capabilities of LLMs, as these models often struggle to accurately convey idiomatic meanings. By making this dataset publicly available, we offer a crucial benchmark for future research in low-resource NLP and culturally aware machine translation.
comment: 19 pages, 6 figures, 8 tables, Accepted paper at the 22nd Workshop on Multiword Expressions (MWE 2026) @ EACL 2026
☆ UI-Venus-1.5 Technical Report
GUI agents have emerged as a powerful paradigm for automating interactions in digital environments, yet achieving both broad generality and consistently strong task performance remains challenging.In this report, we present UI-Venus-1.5, a unified, end-to-end GUI Agent designed for robust real-world applications.The proposed model family comprises two dense variants (2B and 8B) and one mixture-of-experts variant (30B-A3B) to meet various downstream application scenarios.Compared to our previous version, UI-Venus-1.5 introduces three key technical advances: (1) a comprehensive Mid-Training stage leveraging 10 billion tokens across 30+ datasets to establish foundational GUI semantics; (2) Online Reinforcement Learning with full-trajectory rollouts, aligning training objectives with long-horizon, dynamic navigation in large-scale environments; and (3) a single unified GUI Agent constructed via Model Merging, which synthesizes domain-specific models (grounding, web, and mobile) into one cohesive checkpoint. Extensive evaluations demonstrate that UI-Venus-1.5 establishes new state-of-the-art performance on benchmarks such as ScreenSpot-Pro (69.6%), VenusBench-GD (75.0%), and AndroidWorld (77.6%), significantly outperforming previous strong baselines. In addition, UI-Venus-1.5 demonstrates robust navigation capabilities across a variety of Chinese mobile apps, effectively executing user instructions in real-world scenarios. Code: https://github.com/inclusionAI/UI-Venus; Model: https://huggingface.co/collections/inclusionAI/ui-venus
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ Which course? Discourse! Teaching Discourse and Generation in the Era of LLMs EACL 2026
The field of NLP has undergone vast, continuous transformations over the past few years, sparking debates going beyond discipline boundaries. This begs important questions in education: how do we design courses that bridge sub-disciplines in this shifting landscape? This paper explores this question from the angle of discourse processing, an area with rich linguistic insights and computational models for the intentional, attentional, and coherence structure of language. Discourse is highly relevant for open-ended or long-form text generation, yet this connection is under-explored in existing undergraduate curricula. We present a new course, "Computational Discourse and Natural Language Generation". The course is collaboratively designed by a team with complementary expertise and was offered for the first time in Fall 2025 as an upper-level undergraduate course, cross-listed between Linguistics and Computer Science. Our philosophy is to deeply integrate the theoretical and empirical aspects, and create an exploratory mindset inside the classroom and in the assignments. This paper describes the course in detail and concludes with takeaways from an independent survey as well as our vision for future directions.
comment: accepted to the TeachNLP 2026 workshop (co-located with EACL 2026), camera-ready, 14 pages; aclpubcheck fixed and ref updated
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Clause-Internal or Clause-External? Testing Turkish Reflexive Binding in Adapted versus Chain of Thought Large Language Models
This study evaluates whether state-of-the-art large language models capture the binding relations of Turkish reflexive pronouns. We construct a balanced evaluation set of 100 Turkish sentences that systematically pit local against non-local antecedents for the reflexives kendi and kendisi. We compare two contrasting systems: an OpenAI chain-of-thought model optimized for multi-step reasoning and Trendyol-LLM-7B-base-v0.1, a LLaMA 2 derived model extensively fine-tuned on Turkish data. Antecedent choice is assessed using a combined paradigm that integrates sentence-level perplexity with a forced-choice comparison between minimally differing continuations. Overall, Trendyol-LLM favors local bindings in approximately 70 percent of trials, exhibiting a robust locality bias consistent with a preference for structurally proximate antecedents. By contrast, the OpenAI model (o1 Mini) distributes its choices nearly evenly between local and long-distance readings, suggesting weaker or less consistent sensitivity to locality in this binding configuration. Taken together, these results reveal a marked contrast in binding behavior across the two systems and motivate closer analysis of how model architecture, training data, and inference-time reasoning strategies shape the representation of Turkish anaphoric dependencies.
♻ ☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
♻ ☆ Bolmo: Byteifying the Next Generation of Language Models
Recent advances in generative AI have been largely driven by large language models (LLMs), deep neural networks that operate over discrete units called tokens. To represent text, the vast majority of LLMs use words or word fragments as the tokens, known as subword tokenization. Subword tokenization obscures fine-grained information, which is problematic, especially for scientific data - such as computer code or biological sequences - where meaning depends on the individual characters. Models that instead operate directly on the byte encoding of text avoid these limitations, but until now they have lagged behind subword-based models in performance. Here we introduce Bolmo, a family of fully open byte-level LLMs that approach the capabilities of subword-based systems. Using a two-stage conversion procedure, we transform existing subword-based models into byte-level models with minimal additional training. The resulting models outperform prior byte-level approaches and excel on character-level reasoning tasks, while remaining competitive across standard benchmarks. By efficiently processing byte-level information, these models achieve practical inference speeds and can be adapted at low cost using the existing ecosystem around the source LLM. Our results remove a long-standing performance barrier to end-to-end byte-level language modeling, demonstrating that models operating on raw text encodings can scale competitively while offering advantages in domains requiring fine-grained textual understanding.
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
♻ ☆ IDALC: A Semi-Supervised Framework for Intent Detection and Active Learning based Correction IEEE
Voice-controlled dialog systems have become immensely popular due to their ability to perform a wide range of actions in response to diverse user queries. These agents possess a predefined set of skills or intents to fulfill specific user tasks. But every system has its own limitations. There are instances where, even for known intents, if any model exhibits low confidence, it results in rejection of utterances that necessitate manual annotation. Additionally, as time progresses, there may be a need to retrain these agents with new intents from the system-rejected queries to carry out additional tasks. Labeling all these emerging intents and rejected utterances over time is impractical, thus calling for an efficient mechanism to reduce annotation costs. In this paper, we introduce IDALC (Intent Detection and Active Learning based Correction), a semi-supervised framework designed to detect user intents and rectify system-rejected utterances while minimizing the need for human annotation. Empirical findings on various benchmark datasets demonstrate that our system surpasses baseline methods, achieving a 5-10% higher accuracy and a 4-8% improvement in macro-F1. Remarkably, we maintain the overall annotation cost at just 6-10% of the unlabelled data available to the system. The overall framework of IDALC is shown in Fig. 1
comment: Paper accepted in IEEE Transactions on Artificial Intelligence (October 2025)
♻ ☆ Diffusion-Inspired Masked Fine-Tuning for Knowledge Injection in Autoregressive LLMs
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
♻ ☆ SearchAttack: Red-Teaming LLMs against Knowledge-to-Action Threats under Online Web Search
Recently, people have suffered from LLM hallucination and have become increasingly aware of the reliability gap of LLMs in open and knowledge-intensive tasks. As a result, they have increasingly turned to search-augmented LLMs to mitigate this issue. However, LLM-driven search also becomes an attractive target for misuse. Once the returned content directly contains targeted, ready-to-use harmful instructions or takeaways for users, it becomes difficult to withdraw or undo such exposure. To investigate LLMs' unsafe search behavior issues, we first propose \textbf{\textit{SearchAttack}} for red-teaming, which (1) rephrases harmful semantics via dense and benign knowledge to evade direct in-context decoding, thus eliciting unsafe information retrieval, (2) stress-tests LLMs' reward-chasing bias by steering them to synthesize unsafe retrieved content. We also curate an emergent, domain-specific illicit activity benchmark for search-based threat assessment, and introduce a fact-checking framework to ground and quantify harm in both offline and online attack settings. Extensive experiments are conducted to red-team the search-augmented LLMs for responsible vulnerability assessment. Empirically, SearchAttack demonstrates strong effectiveness in attacking these systems. We also find that LLMs without web search can still be steered into harmful content output due to their information-seeking stereotypical behaviors.
comment: Misusing LLM-driven search for harmful information-seeking poses serious risks. We characterize its usability and impact through a comprehensive red-teaming and evaluation
♻ ☆ Certainty-Guided Reasoning in Large Language Models: A Dynamic Thinking Budget Approach
Large reasoning language models are typically run with fixed inference budgets, which can waste computation or terminate reasoning prematurely. We introduce Certainty-Guided Reasoning (CGR), a model-agnostic adaptive inference procedure that periodically probes whether the current reasoning supports a confident final answer and terminates early once a target certainty threshold is reached, otherwise continuing until the end-of-thinking token or the budget limit. Certainty is estimated from the model's predicted probabilities over the answer tokens, yielding a lightweight stopping criterion. On AIME2025, CGR preserves baseline accuracy while reducing token usage, providing a tunable certainty-efficiency trade-off that can eliminate millions of tokens in aggregate. Across 64 random seeds, CGR exhibits consistent behavior. We also introduce a Grade metric that penalizes incorrect answers and permits abstention, capturing risk-sensitive performance. Results show that CGR improves Grade by abstaining when certainty remains low.
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference. Design principles for state-to-state transformations are detailed in the Appendix, with empirical validation on 580 test cases showing 0% collapse for principle-satisfying operators versus up to 17.8% for violating operators.
comment: 24 pages, 5 figures, 7 tables. Part of the NRR research program. Clarified operator notation and appendix validation details; updated figures and reference formatting
♻ ☆ ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) are increasingly used in tasks requiring interpretive and inferential accuracy. In this paper, we introduce ExpliCa, a new dataset for evaluating LLMs in explicit causal reasoning. ExpliCa uniquely integrates both causal and temporal relations presented in different linguistic orders and explicitly expressed by linguistic connectives. The dataset is enriched with crowdsourced human acceptability ratings. We tested LLMs on ExpliCa through prompting and perplexity-based metrics. We assessed seven commercial and open-source LLMs, revealing that even top models struggle to reach 0.80 accuracy. Interestingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events. Finally, perplexity-based scores and prompting performance are differently affected by model size.
comment: Accepted for publication in Findings of ACL 2025
♻ ☆ From Rows to Reasoning: A Retrieval-Augmented Multimodal Framework for Spreadsheet Understanding
Large Language Models (LLMs) struggle to reason over large-scale enterprise spreadsheets containing thousands of numeric rows, multiple linked sheets, and embedded visual content such as charts and receipts. Prior state-of-the-art spreadsheet reasoning approaches typically rely on single-sheet compression or full-context encoding, which limits scalability and fails to reflect how real users interact with complex, multimodal workbooks. We introduce FRTR-Bench, the first large-scale benchmark for multimodal spreadsheet reasoning, comprising 30 enterprise-grade Excel workbooks spanning nearly four million cells and more than 50 embedded images. To address these challenges, we present From Rows to Reasoning (FRTR), an advanced, multimodal retrieval-augmented generation framework that decomposes Excel workbooks into granular row, column, and block embeddings, employs hybrid lexical-dense retrieval with Reciprocal Rank Fusion (RRF), and integrates multimodal embeddings to reason over both numerical and visual information. We tested FRTR on six LLMs, achieving 74% answer accuracy on FRTR-Bench with Claude Sonnet 4.5, a substantial improvement over prior state-of-the-art approaches that reached only 24%. On the SpreadsheetLLM benchmark, FRTR achieved 87% accuracy with GPT-5 while reducing token usage by roughly 50% compared to direct serialization methods.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the explainer model is significantly more capable than the target). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 23 pages, 8 tables, 7 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 2 figures, 2 tables. Part of the NRR research program. Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the LSR-MCTS algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
♻ ☆ Language Bottleneck Models for Qualitative Knowledge State Modeling
Accurately assessing student knowledge is central to education. Cognitive Diagnosis (CD) models estimate student proficiency at a fixed point in time, while Knowledge Tracing (KT) methods model evolving knowledge states to predict future performance. However, existing approaches either provide quantitative concept mastery estimates with limited expressivity (CD, probabilistic KT) or prioritize predictive accuracy at the cost of interpretability (deep learning KT). We propose Language Bottleneck Models (LBMs), where an encoder LLM produces textual knowledge state summaries, which a decoder LLM uses to predict future performance. This produces interpretable summaries that can express nuanced insights--such as misconceptions--that CD and KT models cannot capture. Extensive validation across synthetic and real-world datasets shows LBMs reveal qualitative insights beyond what CD and KT models can capture, while achieving competitive accuracy with improved sample efficiency. We demonstrate that the encoder and decoder can be fine-tuned with reinforcement learning and supervised fine-tuning respectively to improve both summary quality and predictive performance.
♻ ☆ Tracing Multilingual Representations in LLMs with Cross-Layer Transcoders
Multilingual Large Language Models (LLMs) can process many languages, yet how they internally represent this diversity remains unclear. Do they form shared multilingual representations with language-specific decoding, and if so, why does performance favor the dominant training language? To address this, we train models on different multilingual mixtures and analyze their internal mechanisms using Cross-Layer Transcoders (CLTs) and Attribution Graphs. Our results reveal multilingual shared representations: the model employs highly similar features across languages, while language-specific decoding emerges in later layers. Training models without English shows identical multilingual shared space structures. Decoding relies partly on a small set of high-frequency features in the final layers, which linearly encode language identity from early layers. Intervening on these features allows one language to be suppressed and another substituted. Finally, to explain non-English failures, we perform a Model-Diffing experiment: underperformance arises from dim late-layer features, weak middle-layer clusters, and tokenizer bias toward English that forces early layers to specialize in word reassembly. Finetuning strengthens these features and their links, improving token assembly and language-specific decoding, providing a mechanistic explanation for multilingual gaps. Our models and CLTs are available at https://huggingface.co/collections/CausalNLP/multilingual-clts and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models. Our code is available at: https://github.com/abirharrasse/MultilingualCLTs
comment: 42 pages, 43 figures, under review. Extensive supplementary materials. Code and models available at https://huggingface.co/collections/CausalNLP/multilingual-tinystories-6862b6562414eb84d183f82a and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models and https://huggingface.co/collections/CausalNLP/multilingual-clts and https://github.com/abirharrasse/MultilingualCLTs
♻ ☆ DRAGOn: Designing RAG On Periodically Updated Corpus EACL 2026
This paper introduces DRAGOn, method to design a RAG benchmark on a regularly updated corpus. It features recent reference datasets, a question generation framework, an automatic evaluation pipeline, and a public leaderboard. Specified reference datasets allow for uniform comparison of RAG systems, while newly generated dataset versions mitigate data leakage and ensure that all models are evaluated on unseen, comparable data. The pipeline for automatic question generation extracts the Knowledge Graph from the text corpus and produces multiple question-answer pairs utilizing modern LLM capabilities. A set of diverse LLM-as-Judge metrics is provided for a comprehensive model evaluation. We used Russian news outlets to form the datasets and demonstrate our methodology. We launch a public leaderboard to track the development of RAG systems and encourage community participation.
comment: EACL 2026
♻ ☆ Deep networks learn to parse uniform-depth context-free languages from local statistics
Understanding how the structure of language can be learned from sentences alone is a central question in both cognitive science and machine learning. Studies of the internal representations of Large Language Models (LLMs) support their ability to parse text when predicting the next word, while representing semantic notions independently of surface form. Yet, which data statistics make these feats possible, and how much data is required, remain largely unknown. Probabilistic context-free grammars (PCFGs) provide a tractable testbed for studying these questions. However, prior work has focused either on the post-hoc characterization of the parsing-like algorithms used by trained networks; or on the learnability of PCFGs with fixed syntax, where parsing is unnecessary. Here, we (i) introduce a tunable class of PCFGs in which both the degree of ambiguity and the correlation structure across scales can be controlled; (ii) provide a learning mechanism -- an inference algorithm inspired by the structure of deep convolutional networks -- that links learnability and sample complexity to specific language statistics; and (iii) validate our predictions empirically across deep convolutional and transformer-based architectures. Overall, we propose a unifying framework where correlations at different scales lift local ambiguities, enabling the emergence of hierarchical representations of the data.
♻ ☆ Playing 20 Question Game with Policy-Based Reinforcement Learning
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.
comment: Withdrawal from the conference
♻ ☆ No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, indicating a deeper signal than dataset-specific spurious features, and outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers and, notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.
♻ ☆ Luth: Efficient French Specialization for Small Language Models and Cross-Lingual Transfer EACL 2026
The landscape of Large Language Models remains predominantly English-centric, resulting in a significant performance gap for other major languages, such as French, especially in the context of Small Language Models (SLMs). Existing multilingual models demonstrate considerably lower performance in French compared to English, and research on efficient adaptation methods for French remains limited. To address this, we introduce \textbf{Luth}, a family of French-specialized SLMs: through targeted post-training on curated, high-quality French data, our models outperform all open-source counterparts of comparable size on multiple French benchmarks while retaining their original English capabilities. We further show that strategic model merging enhances performance in both languages, establishing Luth as a new state of the art for French SLMs and a robust baseline for future French-language research.
comment: Accepted at the EACL 2026 Student Research Workshop (SRW)
♻ ☆ Towards Active Synthetic Data Generation for Finetuning Language Models
A common and effective means for improving language model capabilities involves finetuning a ``student'' language model's parameters on generations from a more proficient ``teacher'' model. Termed ``synthetic data'', these generations are often produced before any student finetuning, but some work has considered generating new synthetic samples as training progresses. This paper studies and advocates for the latter case, where data are generated in an iterative, closed-loop fashion that is guided by the current state of the student model. For a fixed budget of generated samples, or a budget in terms of compute spent querying a teacher, we show that this curation of finetuning data affords improved student performance over static generation. Further, while there have been several LLM-specific methods proposed that operate in this regime, we find that simple, inexpensive selection criteria from the active learning literature tend to be most performant. We validate these claims across four mathematical and logical reasoning datasets using four different small language models.
comment: 14 figures, 37 pages. Website and code: https://iterative-sd.github.io/
♻ ☆ Black Big Boxes: Tracing Adjective Order Preferences in Large Language Models
In English and other languages, multiple adjectives in noun phrases follow intricate ordering patterns. These patterns have been widely studied in linguistics and provide a useful test case for assessing how language models (LMs) acquire graded and context-sensitive word order preferences. We ask to what extent adjective order preferences in LMs can be explained by distributional learning alone, and where models exhibit behaviour that goes beyond surface co-occurrence patterns. We find that LM predictions are largely explained by training data frequencies: simple n-gram statistics account for much of their behaviour and closely mirror the preferences learned during training. However, by analysing learning dynamics we reveal that models also generalize robustly to unseen adjective combinations, indicating that their behaviour cannot be reduced to memorization of observed orders alone. Moreover, we show how LMs leverage word order cues from sentence context, demonstrating with feature attribution methods that contextual cues are an additional driver of adjective order in LM output.
♻ ☆ No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward -- so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce Reinforcement Learning with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR. The project page is available at https://bltnynk.github.io/publications/rl-zvp/.
comment: ICLR 2026 camera-ready version
♻ ☆ ClaimPT: A Portuguese Dataset of Annotated Claims in News Articles
Fact-checking remains a demanding and time-consuming task, still largely dependent on manual verification and unable to match the rapid spread of misinformation online. This is particularly important because debunking false information typically takes longer to reach consumers than the misinformation itself; accelerating corrections through automation can therefore help counter it more effectively. Although many organizations perform manual fact-checking, this approach is difficult to scale given the growing volume of digital content. These limitations have motivated interest in automating fact-checking, where identifying claims is a crucial first step. However, progress has been uneven across languages, with English dominating due to abundant annotated data. Portuguese, like other languages, still lacks accessible, licensed datasets, limiting research, NLP developments and applications. In this paper, we introduce ClaimPT, a dataset of European Portuguese news articles annotated for factual claims, comprising 1,308 articles and 6,875 individual annotations. Unlike most existing resources based on social media or parliamentary transcripts, ClaimPT focuses on journalistic content, collected through a partnership with LUSA, the Portuguese News Agency. To ensure annotation quality, two trained annotators labeled each article, with a curator validating all annotations according to a newly proposed scheme. We also provide baseline models for claim detection, establishing initial benchmarks and enabling future NLP and IR applications. By releasing ClaimPT, we aim to advance research on low-resource fact-checking and enhance understanding of misinformation in news media.
♻ ☆ CitiLink: Enhancing Municipal Transparency and Citizen Engagement through Searchable Meeting Minutes
City council minutes are typically lengthy and formal documents with a bureaucratic writing style. Although publicly available, their structure often makes it difficult for citizens or journalists to efficiently find information. In this demo, we present CitiLink, a platform designed to transform unstructured municipal meeting minutes into structured and searchable data, demonstrating how NLP and IR can enhance the accessibility and transparency of local government. The system employs LLMs to extract metadata, discussed subjects, and voting outcomes, which are then indexed in a database to support full-text search with BM25 ranking and faceted filtering through a user-friendly interface. The developed system was built over a collection of 120 minutes made available by six Portuguese municipalities. To assess its usability, CitiLink was tested through guided sessions with municipal personnel, providing insights into how real users interact with the system. In addition, we evaluated Gemini's performance in extracting relevant information from the minutes, highlighting its effectiveness in data extraction.
♻ ☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ VotIE: Information Extraction from Meeting Minutes
Municipal meeting minutes record key decisions in local democratic processes. Unlike parliamentary proceedings, which typically adhere to standardized formats, they encode voting outcomes in highly heterogeneous, free-form narrative text that varies widely across municipalities, posing significant challenges for automated extraction. In this paper, we introduce VotIE (Voting Information Extraction), a new information extraction task aimed at identifying structured voting events in narrative deliberative records, and establish the first benchmark for this task using Portuguese municipal minutes, building on the recently introduced CitiLink corpus. Our experiments yield two key findings. First, under standard in-domain evaluation, fine-tuned encoders, specifically XLM-R-CRF, achieve the strongest performance, reaching 93.2\% macro F1, outperforming generative approaches. Second, in a cross-municipality setting that evaluates transfer to unseen administrative contexts, these models suffer substantial performance degradation, whereas few-shot LLMs demonstrate greater robustness, with significantly smaller declines in performance. Despite this generalization advantage, the high computational cost of generative models currently constrains their practicality. As a result, lightweight fine-tuned encoders remain a more practical option for large-scale, real-world deployment. To support reproducible research in administrative NLP, we publicly release our benchmark, trained models, and evaluation framework.
♻ ☆ MiNER: A Two-Stage Pipeline for Metadata Extraction from Municipal Meeting Minutes
Municipal meeting minutes are official documents of local governance, exhibiting heterogeneous formats and writing styles. Effective information retrieval (IR) requires identifying metadata such as meeting number, date, location, participants, and start/end times, elements that are rarely standardized or easy to extract automatically. Existing named entity recognition (NER) models are ill-suited to this task, as they are not adapted to such domain-specific categories. In this paper, we propose a two-stage pipeline for metadata extraction from municipal minutes. First, a question answering (QA) model identifies the opening and closing text segments containing metadata. Transformer-based models (BERTimbau and XLM-RoBERTa with and without a CRF layer) are then applied for fine-grained entity extraction and enhanced through deslexicalization. To evaluate our proposed pipeline, we benchmark both open-weight (Phi) and closed-weight (Gemini) LLMs, assessing predictive performance, inference cost, and carbon footprint. Our results demonstrate strong in-domain performance, better than larger general-purpose LLMs. However, cross-municipality evaluation reveals reduced generalization reflecting the variability and linguistic complexity of municipal records. This work establishes the first benchmark for metadata extraction from municipal meeting minutes, providing a solid foundation for future research in this domain.
♻ ☆ Modality Matching Matters: Calibrating Language Distances for Cross-Lingual Transfer in URIEL+
Existing linguistic knowledge bases such as URIEL+ provide valuable geographic, genetic and typological distances for cross-lingual transfer but suffer from two key limitations. First, their one-size-fits-all vector representations are ill-suited to the diverse structures of linguistic data. Second, they lack a principled method for aggregating these signals into a single, comprehensive score. In this paper, we address these gaps by introducing a framework for type-matched language distances. We propose novel, structure-aware representations for each distance type: speaker-weighted distributions for geography, hyperbolic embeddings for genealogy, and a latent variables model for typology. We unify these signals into a robust, task-agnostic composite distance. Across multiple zero-shot transfer benchmarks, we demonstrate that our representations significantly improve transfer performance when the distance type is relevant to the task, while our composite distance yields gains in most tasks.
♻ ☆ ReFRAME or Remain: Unsupervised Lexical Semantic Change Detection with Frame Semantics
The majority of contemporary computational methods for lexical semantic change (LSC) detection are based on neural embedding distributional representations. Although these models perform well on LSC benchmarks, their results are often difficult to interpret. We explore an alternative approach that relies solely on frame semantics. We show that this method is effective for detecting semantic change and can even outperform many distributional semantic models. Finally, we present a detailed quantitative and qualitative analysis of its predictions, demonstrating that they are both plausible and highly interpretable
♻ ☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (BOOM), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, BOOM naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that BOOM consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
♻ ☆ MASA: Rethinking the Representational Bottleneck in LoRA with Multi-A Shared Adaptation
Low-Rank Adaptation (LoRA) has emerged as a dominant method in Parameter-Efficient Fine-Tuning (PEFT) for large language models, which augments the transformer layer with one down-projection $A$ and one up-projection $B$. However, LoRA's reliance on a single down-projection matrix ($A$) creates a representational bottleneck, as this solitary feature extractor is inherently insufficient for capturing the diverse signals required by complex tasks. This motivates our architectural shift to focus on enriching the feature adaptation to improve the downstream task adaptation ability. We propose MASA (Multi-$A$ Shared Adaptation), an architecture that implements a multi-$A$, single-$B$ structure where the multi-$A$ expert ensemble is asymmetrically shared across layers to ensure parameter efficiency. In MASA, these specialized experts capture diverse features, which are then integrated by a single, layer-specific $B$-matrix. The effectiveness and versatility of our method are validated through a comprehensive suite of experiments spanning multi-domain generalization, single-domain specialization, and multi-task reasoning. For example, on the MMLU benchmark, MASA achieves an average accuracy of 59.62%, outperforming the standard LoRA by 1.08 points (a relative improvement of 1.84%) with comparable learnable parameters of 0.52%.
comment: 16 pages, 5 figures
♻ ☆ Supervised Fine-Tuning Needs to Unlock the Potential of Token Priority
The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
♻ ☆ VCB Bench: An Evaluation Benchmark for Audio-Grounded Large Language Model Conversational Agents
Recent advances in large audio language models (LALMs) have greatly enhanced multimodal conversational systems. However, existing benchmarks remain limited -- they are mainly English-centric, rely on synthetic speech, and lack comprehensive, discriminative evaluation across multiple dimensions. To address these gaps, we present Voice Chat Bot Bench (VCB Bench) -- a high-quality Chinese benchmark built entirely on real human speech. VCB Bench evaluates LALMs from three complementary perspectives: instruction following (including speech-level control beyond text commands), knowledge understanding (general knowledge, reasoning, and daily dialogue), and robustness (stability under perturbations in content, environment, and speaker traits). Experiments on representative LALMs reveal notable performance gaps and highlight future directions for improvement. VCB Bench provides a reproducible and fine-grained evaluation framework, offering standardized methodology and practical insights for advancing Chinese voice conversational models.
comment: 23 pages, 5 figures
♻ ☆ OpenGVL -- Benchmarking Visual Temporal Progress for Data Curation
Data scarcity remains one of the most limiting factors in driving progress in robotics. However, the amount of available robotics data in the wild is growing exponentially, creating new opportunities for large-scale data utilization. Reliable temporal task completion prediction could help automatically annotate and curate this data at scale. The Generative Value Learning (GVL) approach was recently proposed, leveraging the knowledge embedded in vision-language models (VLMs) to predict task progress from visual observations. Building upon GVL, we propose OpenGVL, a comprehensive benchmark for estimating task progress across diverse challenging manipulation tasks involving both robotic and human embodiments. We evaluate the capabilities of publicly available open-source foundation models, showing that open-source model families significantly underperform closed-source counterparts, achieving only approximately $70\%$ of their performance on temporal progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve as a practical tool for automated data curation and filtering, enabling efficient quality assessment of large-scale robotics datasets. We release the benchmark along with the complete codebase at \href{github.com/budzianowski/opengvl}{OpenGVL}.
comment: Workshop on Making Sense of Data in Robotics: Composition, Curation, and Interpretability at Scale at CoRL 2025
♻ ☆ Cross-Modal Retrieval for Motion and Text via DropTriple Loss ACM MM
Cross-modal retrieval of image-text and video-text is a prominent research area in computer vision and natural language processing. However, there has been insufficient attention given to cross-modal retrieval between human motion and text, despite its wide-ranging applicability. To address this gap, we utilize a concise yet effective dual-unimodal transformer encoder for tackling this task. Recognizing that overlapping atomic actions in different human motion sequences can lead to semantic conflicts between samples, we explore a novel triplet loss function called DropTriple Loss. This loss function discards false negative samples from the negative sample set and focuses on mining remaining genuinely hard negative samples for triplet training, thereby reducing violations they cause. We evaluate our model and approach on the HumanML3D and KIT Motion-Language datasets. On the latest HumanML3D dataset, we achieve a recall of 62.9% for motion retrieval and 71.5% for text retrieval (both based on R@10). The source code for our approach is publicly available at https://github.com/eanson023/rehamot.
comment: This paper has been accepted by ACM MM Asia 2023 (Best Paper Candidate)
♻ ☆ CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
♻ ☆ ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems
Much previous AI research has focused on developing monolithic models to maximize their intelligence, with the primary goal of enhancing performance on specific tasks. In contrast, this work attempts to study using LLM-based agents to design collaborative AI systems autonomously. To explore this problem, we first introduce ComfyBench to evaluate agents's ability to design collaborative AI systems in ComfyUI. ComfyBench is a comprehensive benchmark comprising 200 diverse tasks covering various instruction-following generation challenges, along with detailed annotations for 3,205 nodes and 20 workflows. Based on ComfyBench, we further develop ComfyAgent, a novel framework that empowers LLM-based agents to autonomously design collaborative AI systems by generating workflows. ComfyAgent is based on two core concepts. First, it represents workflows with code, which can be reversibly converted into workflows and executed as collaborative systems by the interpreter. Second, it constructs a multi-agent system that cooperates to learn from existing workflows and generate new workflows for a given task. While experimental results demonstrate that ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15\% of creative tasks. LLM-based agents still have a long way to go in autonomously designing collaborative AI systems. Progress with ComfyBench is paving the way for more intelligent and autonomous collaborative AI systems.
♻ ☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of the LLM judges induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and enables statistically principled uncertainty quantification. Our framework constructs confidence intervals that account for uncertainty from both the test dataset and a human-labeled calibration dataset. Additionally, it uses an adaptive strategy to allocate calibration samples for tighter intervals. Importantly, we characterize parameter regimes defined by the true evaluation score and the LLM judge's sensitivity and specificity in which our LLM-based evaluation yields more reliable estimates than human-only evaluation. Moreover, we show that our framework remains unbiased under distribution shift between the test and calibration datasets, in contrast to existing approaches.
comment: Refined the writing of the manuscript
♻ ☆ Legal$Δ$: Enhancing Legal Reasoning in LLMs via Reinforcement Learning with Chain-of-Thought Guided Information Gain
Legal Artificial Intelligence (LegalAI) has achieved notable advances in automating judicial decision-making with the support of Large Language Models (LLMs). However, existing legal LLMs still struggle to generate reliable and interpretable reasoning processes. They often default to fast-thinking behavior by producing direct answers without explicit multi-step reasoning, limiting their effectiveness in complex legal scenarios that demand rigorous justification. To address this challenge, we propose Legal$Δ$, a reinforcement learning framework designed to enhance legal reasoning through chain-of-thought guided information gain. During training, Legal$Δ$ employs a dual-mode input setup-comprising direct answer and reasoning-augmented modes-and maximizes the information gain between them. This encourages the model to acquire meaningful reasoning patterns rather than generating superficial or redundant explanations. Legal$Δ$ follows a two-stage approach: (1) distilling latent reasoning capabilities from a powerful Large Reasoning Model (LRM), DeepSeek-R1, and (2) refining reasoning quality via differential comparisons, combined with a multidimensional reward mechanism that assesses both structural coherence and legal-domain specificity. Experimental results on multiple legal reasoning tasks demonstrate that Legal$Δ$ outperforms strong baselines in both accuracy and interpretability. It consistently produces more robust and trustworthy legal judgments without relying on labeled preference data. All code and data will be released at https://github.com/NEUIR/LegalDelta.
♻ ☆ Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
♻ ☆ APR: Penalizing Structural Redundancy in Large Reasoning Models via Anchor-based Process Rewards
Test-Time Scaling (TTS) has significantly enhanced the capabilities of Large Reasoning Models (LRMs) but introduces a critical side-effect known as Overthinking. We conduct a preliminary study to rethink this phenomenon from a fine-grained perspective. We observe that LRMs frequently conduct repetitive self-verification without revision even after obtaining the final answer during the reasoning process. We formally define this specific position where the answer first stabilizes as the Reasoning Anchor. By analyzing pre- and post-anchor reasoning behaviors, we uncover the structural redundancy fixed in LRMs: the meaningless repetitive verification after deriving the first complete answer, which we term the Answer-Stable Tail (AST). Motivated by this observation, we propose Anchor-based Process Reward (APR), a structure-aware reward shaping method that localizes the reasoning anchor and penalizes exclusively the post-anchor AST. Leveraging the policy optimization algorithm suitable for length penalties, our APR models achieved the performance-efficiency Pareto frontier at 1.5B and 7B scales averaged across five mathematical reasoning datasets while requiring substantially fewer computational resources for RL training.
comment: Under Review
♻ ☆ Fast KVzip: Efficient and Accurate LLM Inference with Gated KV Eviction
Efficient key-value (KV) cache management is crucial for the practical deployment of large language models (LLMs), yet existing compression techniques often incur a trade-off between performance degradation and computational overhead. We propose a novel gating-based KV cache eviction method for frozen-weight LLMs that achieves high compression ratios with negligible computational cost. Our approach introduces lightweight sink-attention gating modules to identify and retain critical KV pairs, and integrates seamlessly into both the prefill and decoding stages. The proposed gate training algorithm relies on forward passes of an LLM, avoiding expensive backpropagation, while achieving strong task generalization through a task-agnostic reconstruction objective. Extensive experiments across the Qwen2.5-1M, Qwen3, and Gemma3 families show that our method maintains near-lossless performance while evicting up to 70% of the KV cache. The results are consistent across a wide range of tasks, including long-context understanding, code comprehension, and mathematical reasoning, demonstrating the generality of our approach.
comment: Source code: https://github.com/Janghyun1230/FastKVzip
♻ ☆ Reinforcement World Model Learning for LLM-based Agents
Large language models (LLMs) have achieved strong performance in language-centric tasks. However, in agentic settings, LLMs often struggle to anticipate action consequences and adapt to environment dynamics, highlighting the need for world-modeling capabilities in LLM-based agents. We propose Reinforcement World Model Learning (RWML), a self-supervised method that learns action-conditioned world models for LLM-based agents on textual states using sim-to-real gap rewards. Our method aligns simulated next states produced by the model with realized next states observed from the environment, encouraging consistency between internal world simulations and actual environment dynamics in a pre-trained embedding space. Unlike next-state token prediction, which prioritizes token-level fidelity (i.e., reproducing exact wording) over semantic equivalence and can lead to model collapse, our method provides a more robust training signal and is empirically less susceptible to reward hacking than LLM-as-a-judge. We evaluate our method on ALFWorld and $τ^2$ Bench and observe significant gains over the base model, despite being entirely self-supervised. When combined with task-success rewards, our method outperforms direct task-success reward RL by 6.9 and 5.7 points on ALFWorld and $τ^2$ Bench respectively, while matching the performance of expert-data training.
comment: fixed Nikhil Singh's affiliation
♻ ☆ PlainQAFact: Retrieval-augmented Factual Consistency Evaluation Metric for Biomedical Plain Language Summarization
Hallucinated outputs from large language models (LLMs) pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing automatic factual consistency evaluation methods, such as entailment- and question-answering (QA)- based, struggle with plain language summarization (PLS) due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the scientific abstract to enhance comprehension. To address this, we introduce PlainQAFact, an automatic factual consistency evaluation metric trained on a fine-grained, human-annotated dataset PlainFact, for evaluating factual consistency of both source-simplified and elaborately explained sentences. PlainQAFact first classifies sentence type, then applies a retrieval-augmented QA scoring method. Empirical results show that existing evaluation metrics fail to evaluate the factual consistency in PLS, especially for elaborative explanations, whereas PlainQAFact consistently outperforms them across all evaluation settings. We further analyze PlainQAFact's effectiveness across external knowledge sources, answer extraction strategies, answer overlap measures, and document granularity levels, refining its overall factual consistency assessment. Taken together, our work presents a sentence-aware, retrieval-augmented metric targeted at elaborative explanations in biomedical PLS tasks, providing the community with both a robust benchmark and a practical tool to advance reliable and safe plain language communication in the medical domain. PlainQAFact and PlainFact are available at: https://github.com/zhiwenyou103/PlainQAFact
♻ ☆ DNACHUNKER: Learnable Tokenization for DNA Language Models
DNA language models are increasingly used to represent genomic sequence, yet their effectiveness depends critically on how raw nucleotides are converted into model inputs. Unlike natural language, DNA offers no canonical boundaries, making fixed tokenizations a brittle design choice under shifts, indels, and local repeats. We introduce \modelname{}, a masked DNA language model that incorporates a learnable adaptive segmentation module to produce context-dependent, variable-length units. Building on a dynamic segmentation procedure, \modelname{} learns to allocate finer granularity to functionally enriched regions while compressing repetitive or redundant sequence. We pre-train \modelname{} on the human reference genome (HG38) and evaluate it on the Nucleotide Transformer and Genomic Benchmarks, where it consistently improves over strong fixed-tokenization baselines. Further analyses and ablations indicate that the learned segmentation is structured rather than incidental: the model preferentially uses shorter units around promoters and exons, and longer units in repetitive regions, yielding representations that are both mutation-resilient and biologically-informed.
♻ ☆ STITCH: Simultaneous Thinking and Talking with Chunked Reasoning for Spoken Language Models ICLR 2026
Spoken Language Models (SLMs) are designed to take speech inputs and produce spoken responses. However, current SLMs lack the ability to perform an internal, unspoken thinking process before responding. In contrast, humans typically engage in complex mental reasoning internally, enabling them to communicate ideas clearly and concisely. Thus, integrating an unspoken thought process into SLMs is highly desirable. While naively generating a complete chain-of-thought (CoT) reasoning before starting to talk can enable thinking for SLMs, this induces additional latency for the speech response, as the CoT reasoning can be arbitrarily long. To solve this issue, we propose Stitch, a novel generation method that alternates between the generation of unspoken reasoning chunks and spoken response chunks. Since the audio duration of a chunk of spoken response is much longer than the time to generate the tokens in a chunk of spoken response, we use the remaining free time to generate the unspoken reasoning tokens. When a chunk of audio is played to the user, the model continues to generate the next unspoken reasoning chunk, achieving simultaneous thinking and talking. Remarkably, Stitch matches the latency of baselines that cannot generate unspoken CoT by design while outperforming those baselines by 15% on math reasoning datasets; Stitch also performs equally well on non-reasoning datasets as those baseline models. Some animations and demonstrations are on the project page: https://d223302.github.io/STITCH.
comment: ICLR 2026 camera-ready version. Project page: https://d223302.github.io/STITCH/
♻ ☆ Dist2ill: Distributional Distillation for One-Pass Uncertainty Estimation in Large Language Models
Large Language Models (LLMs) often exhibit misalignment between the quality of their generated responses and the confidence estimates they assign to them. Bayesian treatments, such as marginalizing over a reliable weight posterior or over the space of reasoning traces, provide an effective remedy, but incur substantial computational overhead due to repeated sampling at test time. To enable accurate uncertainty estimation in a single forward pass, we propose a novel distributional distillation framework (Dist2ill) that trains an LLM to produce multiple diverse reasoning paths within one inference pass, while using a lightweight parametric module to approximate empirical confidence scores derived from the sampling distribution. Extensive experiments demonstrate that Dist2ill preserves reasoning diversity and achieves state-of-the-art uncertainty estimation, substantially improving Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL), while remaining computationally efficient.
comment: Preprint; work in progress. Update Log: 05/2025 (v1&v2): Introduced Dist2ill (previously named EUD) for efficient uncertainty estimation, focusing on discriminative reasoning tasks. 02/2026 (v3): Extended Dist2ill to a unified framework supporting both discriminative and generative reasoning
♻ ☆ Diffusion-State Policy Optimization for Masked Diffusion Language Models
Masked diffusion language models generate by iteratively filling masked tokens over multiple denoising steps, so learning only from a terminal reward on the final completion yields coarse credit assignment over intermediate decisions. We propose DiSPO (Diffusion-State Policy Optimization), a plug-in credit-assignment layer that directly optimizes intermediate filling decisions. At selected intermediate masked states, DiSPO branches by resampling fillings for the currently masked positions from rollout-cached logits, scores the resulting completions, and updates only the newly filled tokens -- without additional multi-step diffusion rollouts. We formalize a fixed-state objective for branched completions and derive a policy-gradient estimator that can be combined with terminal-feedback policy optimization using the same rollouts. On LLaDA-8B-Instruct, DiSPO consistently improves over the terminal-feedback diffu-GRPO baseline on math and planning benchmarks under matched rollout compute and optimizer steps. Our code will be available at https://daioba.github.io/dispo .
♻ ☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies describe domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs lacking structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework synthesizing these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas constraining LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits, each carrying a professional "anxiety" that prevents shallow outputs. Retrieval-augmented generation grounds designs in precedents from existing exemplars. We demonstrate the framework through GameGrammar, generating complete tabletop game designs, and present three empirical studies. An ablation study (120 designs, 4 conditions) shows multi-agent specialization produces the largest quality gains (fun d=1.12, depth d=1.59; p<.001), while schema validation eliminates structural errors (d=4.78). A benchmark against 20 published board games reveals structural parity but a bounded creative gap (fun d=1.86): generated designs score 7-8 while published games score 8-9. A test-retest study (50 evaluations) validates the LLM-based evaluator, with 7/9 metrics achieving Good-to-Excellent reliability (ICC 0.836-0.989). The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars is a candidate for Generative Ontology.
comment: 19 pages, 12 figures, 8 tables. v2: added empirical evaluation (3 studies: ablation, benchmark, reliability), expanded related work, discussion section, appendices. Code available at https://github.com/bennycheung/GameGrammarCLI
♻ ☆ Curriculum-Guided Layer Scaling for Language Model Pretraining
As the cost of pretraining large language models grows, there is continued interest in strategies to improve learning efficiency during this core training stage. Motivated by cognitive development, where humans gradually build knowledge as their brains mature, we propose Curriculum-Guided Layer Scaling (CGLS), a framework for compute-efficient pretraining that synchronizes increasing data difficulty with model growth through progressive layer stacking (i.e. gradually adding layers during training). At the 100M parameter scale, using a curriculum transitioning from synthetic short stories to general web data, CGLS outperforms baseline methods on the question-answering benchmarks PIQA and ARC. Pretraining at the 1.2B scale, we stratify the DataComp-LM corpus with a DistilBERT-based classifier and progress from general text to highly technical or specialized content. Our results show that progressively increasing model depth alongside sample difficulty leads to better generalization and zero-shot performance on various downstream benchmarks. Altogether, our findings demonstrate that CGLS unlocks the potential of progressive stacking, offering a simple yet effective strategy for improving generalization on knowledge-intensive and reasoning tasks.
♻ ☆ DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
The ability to research and synthesize knowledge is central to human expertise and progress. A new class of AI systems--designed for generative research synthesis--aims to automate this process by retrieving information from the live web and producing long-form, cited reports. Yet, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short, factual answers, while expert-curated datasets risk staleness and data contamination. Neither captures the complexity and evolving nature of real research synthesis tasks. We introduce DeepScholar-bench, a live benchmark and automated evaluation framework for generative research synthesis. DeepScholar-bench draws queries and human-written exemplars from recent, high-quality ArXiv papers and evaluates a real synthesis task: generating a related work section by retrieving, synthesizing, and citing prior work. Our automated framework holistically measures performance across three key dimensions--knowledge synthesis, retrieval quality, and verifiability. To further future work, we also contribute DeepScholar-ref, a simple, open-source reference pipeline, which is implemented on the LOTUS framework and provides a strong baseline. Using DeepScholar-bench, we systematically evaluate prior open-source systems, search agents with strong models, OpenAI's DeepResearch, and DeepScholar-ref. We find DeepScholar-bench is far from saturated: no system surpasses a geometric mean of $31\%$ across all metrics. These results highlight both the difficulty and importance of DeepScholar-bench as a foundation for advancing AI systems capable of generative research synthesis. We make our benchmark code and data available at https://github.com/guestrin-lab/deepscholar-bench.
♻ ☆ Can We Infer Confidential Properties of Training Data from LLMs?
Large language models (LLMs) are increasingly fine-tuned on domain-specific datasets to support applications in fields such as healthcare, finance, and law. These fine-tuning datasets often have sensitive and confidential dataset-level properties -- such as patient demographics or disease prevalence -- that are not intended to be revealed. While prior work has studied property inference attacks on discriminative models (e.g., image classification models) and generative models (e.g., GANs for image data), it remains unclear if such attacks transfer to LLMs. In this work, we introduce PropInfer, a benchmark task for evaluating property inference in LLMs under two fine-tuning paradigms: question-answering and chat-completion. Built on the ChatDoctor dataset, our benchmark includes a range of property types and task configurations. We further propose two tailored attacks: a prompt-based generation attack and a shadow-model attack leveraging word frequency signals. Empirical evaluations across multiple pretrained LLMs show the success of our attacks, revealing a previously unrecognized vulnerability in LLMs.
♻ ☆ Nudging the Boundaries of LLM Reasoning ICLR 2026
Current online reinforcement learning (RL) algorithms like GRPO share a key limitation in LLM reasoning: they cannot learn from problems that are "unsolvable" to the model. In other words, they can only improve performance on problems where the model is capable of exploring the correct answer. Consequently, the model's "upper limit" remains unchanged after RL training, even though the likelihood of solving easier, solvable problems may increase. These hard samples cannot contribute to training, as no rollouts yield rewards and thus no gradients are produced. To unlock learning from these hard samples, we propose NuRL, a "nudging" method that aims to push the upper bound of LLM reasoning using self-generated hints, i.e., abstract cues that help reduce the problem difficulty for the model. Given a question and its gold answer, the model generates a CoT and then produces a hint containing the core knowledge needed to solve the problem. During training, we generate G rollouts from the base policy and use the pass rate to decide whether the hint should be injected. For hard samples with a 0% pass rate, we inject the hint and regenerate a new batch of trajectories. This yields two benefits: (1) the hint boosts pass rates (from 0% to non-zero), thereby introducing training signals for previously unsolvable samples, and (2) the hints are self-generated, avoiding distributional shift and do not rely on external models. NuRL achieves consistent improvements across 6 benchmarks and 3 models, while remaining complementary to test-time scaling. Notably, NuRL can raise the model's upper limit, whereas GRPO leaves pass@1024 unchanged from the base model. Furthermore, we present a systematic study of what makes an effective hint and when hints are most useful. Interestingly, the best hints are abstract and high-level, and are most beneficial when applied necessarily and after GRPO has converged.
comment: ICLR 2026 (Camera-Ready)
♻ ☆ Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure ICLR 2026
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we hypothesize two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. Our research opens up the broader fundamental challenge of designing models capable of learning systematic conceptual binding with less human scaffolding.
comment: ICLR 2026
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation ICLR-2026
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.The dataset and code can be accessed at https://huggingface.co/datasets/ChemFM/MolLangBench and https://github.com/TheLuoFengLab/MolLangBench, respectively.
comment: ICLR-2026 Camera-Ready version
♻ ☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables, 1 pseudocode algorithm
♻ ☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges in two ways: 1) it introduces a novel, unambiguous annotation schema that is explicitly designed for reliable automatic processing, and 2) it presents a comprehensive evaluation of a wide range of large language models (LLMs) on the task of classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments reveal that modern LLMs achieve strong results on this task when fine-tuned on high-quality data, surpassing 96% F1, with both large proprietary models such as GPT-4o and lightweight open-source alternatives performing well. Moreover, augmenting the training set with semi-synthetic LLM-generated examples further boosts performance, enabling small encoders to achieve robust results and substantially improving several open decoder models.
♻ ☆ Online Density-Based Clustering for Real-Time Narrative Evolution Monitorin
Automated narrative intelligence systems for social media monitoring face significant scalability challenges when relying on batch clustering methods to process continuous data streams. We investigate replacing offline HDBSCAN with online density-based clustering algorithms in a production narrative report generation pipeline that processes large volumes of multilingual social media data. While HDBSCAN effectively discovers hierarchical clusters and handles noise, its batch-only nature requires full retraining for each time window, limiting scalability and real-time adaptability. We evaluate online clustering methods with respect to cluster quality, computational efficiency, memory footprint, and integration with downstream narrative extraction. Our evaluation combines standard clustering metrics, narrative-specific measures, and human validation of cluster correctness to assess both structural quality and semantic interpretability. Experiments using sliding-window simulations on historical data from the Ukrainian information space reveal trade-offs between temporal stability and narrative coherence, with DenStream achieving the strongest overall performance. These findings bridge the gap between batch-oriented clustering approaches and the streaming requirements of large-scale narrative monitoring systems.
♻ ☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
Decoding speech-related information from non-invasive MEG is a key step toward scalable brain-computer interfaces. We present compact Conformer-based decoders on the LibriBrain 2025 PNPL benchmark for two core tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, winning the Phoneme Classification Standard track. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 8 pages, 7 figures, 4 tables, v1 presentend in LibriBrain Workshop, NeurIPS 2025; v2 submitted to Odyssey 2026
♻ ☆ Subject islands do not reduce to construction-specific discourse function
The term islands in linguistics refers to phrases from which extracting an element results in ungrammaticality (Ross, 1967). Grammatical subjects are considered islands because extracting a sub-part of a subject results in an ill-formed sentence, despite having a clear intended meaning (e.g., "Which topic did the article about inspire you?"). The generative tradition, which views syntax as autonomous of meaning and function, attributes this ungrammaticality to the abstract movement dependency between the wh-phrase and the subject-internal position with which it is associated for interpretation. However, research on language that emphasizes its communicative function suggests instead that syntactic constraints, including islands, can be explained based on the way different constructions package information. Accordingly, Abeillé et al. (2020) suggest that the islandhood of subjects is specific to the information structure of wh-questions, and propose that subjects are not islands for movement, but for focusing, due to their discourse-backgroundedness. This predicts that other constructions that differ in their information structure from wh-questions, but still involve movement, should not create a subject island effect. We test this prediction in three large-scale acceptability studies, using a super-additive design that singles out subject island violations, in three different constructions: wh-questions, relative clauses, and topicalization. We report evidence for a subject island effect in each construction type, despite only wh-questions introducing what Abeillé et al. (2020) call "a clash in information structure." We argue that this motivates an account of islands in terms of abstract, syntactic representations, independent of the communicative function associated with the constructions.
♻ ☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
Machine Learning 357
☆ Robustness Is a Function, Not a Number: A Factorized Comprehensive Study of OOD Robustness in Vision-Based Driving
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
☆ Contact-Anchored Policies: Contact Conditioning Creates Strong Robot Utility Models
The prevalent paradigm in robot learning attempts to generalize across environments, embodiments, and tasks with language prompts at runtime. A fundamental tension limits this approach: language is often too abstract to guide the concrete physical understanding required for robust manipulation. In this work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points of physical contact in space. Simultaneously, we structure CAP as a library of modular utility models rather than a monolithic generalist policy. This factorization allows us to implement a real-to-sim iteration cycle: we build EgoGym, a lightweight simulation benchmark, to rapidly identify failure modes and refine our models and datasets prior to real-world deployment. We show that by conditioning on contact and iterating via simulation, CAP generalizes to novel environments and embodiments out of the box on three fundamental manipulation skills while using only 23 hours of demonstration data, and outperforms large, state-of-the-art VLAs in zero-shot evaluations by 56%. All model checkpoints, codebase, hardware, simulation, and datasets will be open-sourced. Project page: https://cap-policy.github.io/
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
☆ ANCRe: Adaptive Neural Connection Reassignment for Efficient Depth Scaling
Scaling network depth has been a central driver behind the success of modern foundation models, yet recent investigations suggest that deep layers are often underutilized. This paper revisits the default mechanism for deepening neural networks, namely residual connections, from an optimization perspective. Rigorous analysis proves that the layout of residual connections can fundamentally shape convergence behavior, and even induces an exponential gap in convergence rates. Prompted by this insight, we introduce adaptive neural connection reassignment (ANCRe), a principled and lightweight framework that parameterizes and learns residual connectivities from the data. ANCRe adaptively reassigns residual connections with negligible computational and memory overhead ($<1\%$), while enabling more effective utilization of network depth. Extensive numerical tests across pre-training of large language models, diffusion models, and deep ResNets demonstrate consistently accelerated convergence, boosted performance, and enhanced depth efficiency over conventional residual connections.
☆ ShapeCond: Fast Shapelet-Guided Dataset Condensation for Time Series Classification
Time series data supports many domains (e.g., finance and climate science), but its rapid growth strains storage and computation. Dataset condensation can alleviate this by synthesizing a compact training set that preserves key information. Yet most condensation methods are image-centric and often fail on time series because they miss time-series-specific temporal structure, especially local discriminative motifs such as shapelets. In this work, we propose ShapeCond, a novel and efficient condensation framework for time series classification that leverages shapelet-based dataset knowledge via a shapelet-guided optimization strategy. Our shapelet-assisted synthesis cost is independent of sequence length: longer series yield larger speedups in synthesis (e.g., 29$\times$ faster over prior state-of-the-art method CondTSC for time-series condensation, and up to 10,000$\times$ over naively using shapelets on the Sleep dataset with 3,000 timesteps). By explicitly preserving critical local patterns, ShapeCond improves downstream accuracy and consistently outperforms all prior state-of-the-art time series dataset condensation methods across extensive experiments. Code is available at https://github.com/lunaaa95/ShapeCond.
comment: Code at: https://github.com/lunaaa95/ShapeCond
☆ ARO: A New Lens On Matrix Optimization For Large Models
Matrix-based optimizers have attracted growing interest for improving LLM training efficiency, with significant progress centered on orthogonalization/whitening based methods. While yielding substantial performance gains, a fundamental question arises: can we develop new paradigms beyond orthogonalization, pushing the efficiency frontier further? We present \textbf{Adaptively Rotated Optimization (ARO}, a new matrix optimization framework that treats gradient rotation as a first class design principle. ARO accelerates LLM training by performing normed steepest descent in a rotated coordinate system, where the rotation is determined by a novel norm-informed policy. This perspective yields update rules that go beyond existing orthogonalization and whitening optimizers, improving sample efficiency in practice. To make comparisons reliable, we propose a rigorously controlled benchmarking protocol that reduces confounding and bias. Under this protocol, ARO consistently outperforms AdamW (by 1.3 $\sim$1.35$\times$) and orthogonalization methods (by 1.1$\sim$1.15$\times$) in LLM pretraining at up to 8B activated parameters, and up to $8\times$ overtrain budget, without evidence of diminishing returns. Finally, we discuss how ARO can be reformulated as a symmetry-aware optimizer grounded in rotational symmetries of residual streams, motivating advanced designs that enable computationally efficient exploitation of cross-layer/cross module couplings.
☆ DirMoE: Dirichlet-routed Mixture of Experts
Mixture-of-Experts (MoE) models have demonstrated exceptional performance in large-scale language models. Existing routers typically rely on non-differentiable Top-$k$+Softmax, limiting their performance and scalability. We argue that two distinct decisions, which experts to activate and how to distribute expert contributions among them, are conflated in standard Top-$k$+Softmax. We introduce Dirichlet-Routed MoE (DirMoE), a novel end-to-end differentiable routing mechanism built on a Dirichlet variational autoencoder framework. This design fundamentally disentangles the core routing problems: expert selection, modeled by a Bernoulli component, and expert contribution among chosen experts, handled by a Dirichlet component. The entire forward pass remains fully differentiable through the use of Gumbel-Sigmoid relaxation for the expert selection and implicit reparameterization for the Dirichlet distribution. Our training objective, a variational ELBO, includes a direct sparsity penalty that precisely controls the number of active experts in expectation, alongside a schedule for key hyperparameters that guides the model from an exploratory to a definitive routing state. Moreover, our DirMoE router matches or exceeds other methods while improving expert specialization.
☆ Universal Coefficients and Mayer-Vietoris Sequence for Groupoid Homology
We study homology of ample groupoids via the compactly supported Moore complex of the nerve. Let $A$ be a topological abelian group. For $n\ge 0$ set $C_n(\mathcal G;A) := C_c(\mathcal G_n,A)$ and define $\partial_n^A=\sum_{i=0}^n(-1)^i(d_i)_*$. This defines $H_n(\mathcal G;A)$. The theory is functorial for continuous étale homomorphisms. It is compatible with standard reductions, including restriction to saturated clopen subsets. In the ample setting it is invariant under Kakutani equivalence. We reprove Matui type long exact sequences and identify the comparison maps at chain level. For discrete $A$ we prove a natural universal coefficient short exact sequence $$0\to H_n(\mathcal G)\otimes_{\mathbb Z}A\xrightarrow{\ ι_n^{\mathcal G}\ }H_n(\mathcal G;A)\xrightarrow{\ κ_n^{\mathcal G}\ }\operatorname{Tor}_1^{\mathbb Z}\bigl(H_{n-1}(\mathcal G),A\bigr)\to 0.$$ The key input is the chain level isomorphism $C_c(\mathcal G_n,\mathbb Z)\otimes_{\mathbb Z}A\cong C_c(\mathcal G_n,A)$, which reduces the groupoid statement to the classical algebraic UCT for the free complex $C_c(\mathcal G_\bullet,\mathbb Z)$. We also isolate the obstruction for non-discrete coefficients. For a locally compact totally disconnected Hausdorff space $X$ with a basis of compact open sets, the image of $Φ_X:C_c(X,\mathbb Z)\otimes_{\mathbb Z}A\to C_c(X,A)$ is exactly the compactly supported functions with finite image. Thus $Φ_X$ is surjective if and only if every $f\in C_c(X,A)$ has finite image, and for suitable $X$ one can produce compactly supported continuous maps $X\to A$ with infinite image. Finally, for a clopen saturated cover $\mathcal G_0=U_1\cup U_2$ we construct a short exact sequence of Moore complexes and derive a Mayer-Vietoris long exact sequence for $H_\bullet(\mathcal G;A)$ for explicit computations.
comment: Master's thesis
☆ Improving Detection of Rare Nodes in Hierarchical Multi-Label Learning
In hierarchical multi-label classification, a persistent challenge is enabling model predictions to reach deeper levels of the hierarchy for more detailed or fine-grained classifications. This difficulty partly arises from the natural rarity of certain classes (or hierarchical nodes) and the hierarchical constraint that ensures child nodes are almost always less frequent than their parents. To address this, we propose a weighted loss objective for neural networks that combines node-wise imbalance weighting with focal weighting components, the latter leveraging modern quantification of ensemble uncertainties. By emphasizing rare nodes rather than rare observations (data points), and focusing on uncertain nodes for each model output distribution during training, we observe improvements in recall by up to a factor of five on benchmark datasets, along with statistically significant gains in $F_{1}$ score. We also show our approach aids convolutional networks on challenging tasks, as in situations with suboptimal encoders or limited data.
comment: Accepted for publication in Transactions on Machine Learning Research (TMLR), 2026
☆ StretchTime: Adaptive Time Series Forecasting via Symplectic Attention
Transformer architectures have established strong baselines in time series forecasting, yet they typically rely on positional encodings that assume uniform, index-based temporal progression. However, real-world systems, from shifting financial cycles to elastic biological rhythms, frequently exhibit "time-warped" dynamics where the effective flow of time decouples from the sampling index. In this work, we first formalize this misalignment and prove that rotary position embedding (RoPE) is mathematically incapable of representing non-affine temporal warping. To address this, we propose Symplectic Positional Embeddings (SyPE), a learnable encoding framework derived from Hamiltonian mechanics. SyPE strictly generalizes RoPE by extending the rotation group $\mathrm{SO}(2)$ to the symplectic group $\mathrm{Sp}(2,\mathbb{R})$, modulated by a novel input-dependent adaptive warp module. By allowing the attention mechanism to adaptively dilate or contract temporal coordinates end-to-end, our approach captures locally varying periodicities without requiring pre-defined warping functions. We implement this mechanism in StretchTime, a multivariate forecasting architecture that achieves state-of-the-art performance on standard benchmarks, demonstrating superior robustness on datasets exhibiting non-stationary temporal dynamics.
☆ When do neural ordinary differential equations generalize on complex networks?
Neural ordinary differential equations (neural ODEs) can effectively learn dynamical systems from time series data, but their behavior on graph-structured data remains poorly understood, especially when applied to graphs with different size or structure than encountered during training. We study neural ODEs ($\mathtt{nODE}$s) with vector fields following the Barabási-Barzel form, trained on synthetic data from five common dynamical systems on graphs. Using the $\mathbb{S}^1$-model to generate graphs with realistic and tunable structure, we find that degree heterogeneity and the type of dynamical system are the primary factors in determining $\mathtt{nODE}$s' ability to generalize across graph sizes and properties. This extends to $\mathtt{nODE}$s' ability to capture fixed points and maintain performance amid missing data. Average clustering plays a secondary role in determining $\mathtt{nODE}$ performance. Our findings highlight $\mathtt{nODE}$s as a powerful approach to understanding complex systems but underscore challenges emerging from degree heterogeneity and clustering in realistic graphs.
☆ Distributionally Robust Optimization via Generative Ambiguity Modeling
This paper studies Distributionally Robust Optimization (DRO), a fundamental framework for enhancing the robustness and generalization of statistical learning and optimization. An effective ambiguity set for DRO must involve distributions that remain consistent to the nominal distribution while being diverse enough to account for a variety of potential scenarios. Moreover, it should lead to tractable DRO solutions. To this end, we propose generative model-based ambiguity sets that capture various adversarial distributions beyond the nominal support space while maintaining consistency with the nominal distribution. Building on this generative ambiguity modeling, we propose DRO with Generative Ambiguity Set (GAS-DRO), a tractable DRO algorithm that solves the inner maximization over the parameterized generative model space. We formally establish the stationary convergence performance of GAS-DRO. We implement GAS-DRO with a diffusion model and empirically demonstrate its superior Out-of-Distribution (OOD) generalization performance in ML tasks.
☆ Learning to Coordinate via Quantum Entanglement in Multi-Agent Reinforcement Learning
The inability to communicate poses a major challenge to coordination in multi-agent reinforcement learning (MARL). Prior work has explored correlating local policies via shared randomness, sometimes in the form of a correlation device, as a mechanism to assist in decentralized decision-making. In contrast, this work introduces the first framework for training MARL agents to exploit shared quantum entanglement as a coordination resource, which permits a larger class of communication-free correlated policies than shared randomness alone. This is motivated by well-known results in quantum physics which posit that, for certain single-round cooperative games with no communication, shared quantum entanglement enables strategies that outperform those that only use shared randomness. In such cases, we say that there is quantum advantage. Our framework is based on a novel differentiable policy parameterization that enables optimization over quantum measurements, together with a novel policy architecture that decomposes joint policies into a quantum coordinator and decentralized local actors. To illustrate the effectiveness of our proposed method, we first show that we can learn, purely from experience, strategies that attain quantum advantage in single-round games that are treated as black box oracles. We then demonstrate how our machinery can learn policies with quantum advantage in an illustrative multi-agent sequential decision-making problem formulated as a decentralized partially observable Markov decision process (Dec-POMDP).
☆ A Behavioural and Representational Evaluation of Goal-Directedness in Language Model Agents
Understanding an agent's goals helps explain and predict its behaviour, yet there is no established methodology for reliably attributing goals to agentic systems. We propose a framework for evaluating goal-directedness that integrates behavioural evaluation with interpretability-based analyses of models' internal representations. As a case study, we examine an LLM agent navigating a 2D grid world toward a goal state. Behaviourally, we evaluate the agent against an optimal policy across varying grid sizes, obstacle densities, and goal structures, finding that performance scales with task difficulty while remaining robust to difficulty-preserving transformations and complex goal structures. We then use probing methods to decode the agent's internal representations of the environment state and its multi-step action plans. We find that the LLM agent non-linearly encodes a coarse spatial map of the environment, preserving approximate task-relevant cues about its position and the goal location; that its actions are broadly consistent with these internal representations; and that reasoning reorganises them, shifting from broader environment structural cues toward information supporting immediate action selection. Our findings support the view that introspective examination is required beyond behavioural evaluations to characterise how agents represent and pursue their objectives.
☆ MotionCrafter: Dense Geometry and Motion Reconstruction with a 4D VAE
We introduce MotionCrafter, a video diffusion-based framework that jointly reconstructs 4D geometry and estimates dense motion from a monocular video. The core of our method is a novel joint representation of dense 3D point maps and 3D scene flows in a shared coordinate system, and a novel 4D VAE to effectively learn this representation. Unlike prior work that forces the 3D value and latents to align strictly with RGB VAE latents-despite their fundamentally different distributions-we show that such alignment is unnecessary and leads to suboptimal performance. Instead, we introduce a new data normalization and VAE training strategy that better transfers diffusion priors and greatly improves reconstruction quality. Extensive experiments across multiple datasets demonstrate that MotionCrafter achieves state-of-the-art performance in both geometry reconstruction and dense scene flow estimation, delivering 38.64% and 25.0% improvements in geometry and motion reconstruction, respectively, all without any post-optimization. Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
comment: Project page: https://ruijiezhu94.github.io/MotionCrafter_Page
☆ StealthRL: Reinforcement Learning Paraphrase Attacks for Multi-Detector Evasion of AI-Text Detectors
AI-text detectors face a critical robustness challenge: adversarial paraphrasing attacks that preserve semantics while evading detection. We introduce StealthRL, a reinforcement learning framework that stress-tests detector robustness under realistic adversarial conditions. StealthRL trains a paraphrase policy against a multi-detector ensemble using Group Relative Policy Optimization (GRPO) with LoRA adapters on Qwen3-4B, optimizing a composite reward that balances detector evasion with semantic preservation. We evaluate six attack settings (M0-M5) against three detector families (RoBERTa, FastDetectGPT, and Binoculars) at the security-relevant 1% false positive rate operating point. StealthRL achieves near-zero detection (0.001 mean TPR@1%FPR), reduces mean AUROC from 0.74 to 0.27, and attains a 99.9% attack success rate. Critically, attacks transfer to a held-out detector family not seen during training, revealing shared architectural vulnerabilities rather than detector-specific brittleness. We additionally conduct LLM-based quality evaluation via Likert scoring, analyze detector score distributions to explain why evasion succeeds, and provide per-detector AUROC with bootstrap confidence intervals. Our results expose significant robustness gaps in current AI-text detection and establish StealthRL as a principled adversarial evaluation protocol. Code and evaluation pipeline are publicly available at https://github.com/suraj-ranganath/StealthRL.
comment: Expanded version of a workshop submission. Code available
☆ Provably robust learning of regression neural networks using $β$-divergences
Regression neural networks (NNs) are most commonly trained by minimizing the mean squared prediction error, which is highly sensitive to outliers and data contamination. Existing robust training methods for regression NNs are often limited in scope and rely primarily on empirical validation, with only a few offering partial theoretical guarantees. In this paper, we propose a new robust learning framework for regression NNs based on the $β$-divergence (also known as the density power divergence) which we call `rRNet'. It applies to a broad class of regression NNs, including models with non-smooth activation functions and error densities, and recovers the classical maximum likelihood learning as a special case. The rRNet is implemented via an alternating optimization scheme, for which we establish convergence guarantees to stationary points under mild, verifiable conditions. The (local) robustness of rRNet is theoretically characterized through the influence functions of both the parameter estimates and the resulting rRNet predictor, which are shown to be bounded for suitable choices of the tuning parameter $β$, depending on the error density. We further prove that rRNet attains the optimal 50\% asymptotic breakdown point at the assumed model for all $β\in(0, 1]$, providing a strong global robustness guarantee that is largely absent for existing NN learning methods. Our theoretical results are complemented by simulation experiments and real-data analyses, illustrating practical advantages of rRNet over existing approaches in both function approximation problems and prediction tasks with noisy observations.
comment: Pre-print, under review
☆ Online monotone density estimation and log-optimal calibration
We study the problem of online monotone density estimation, where density estimators must be constructed in a predictable manner from sequentially observed data. We propose two online estimators: an online analogue of the classical Grenander estimator, and an expert aggregation estimator inspired by exponential weighting methods from the online learning literature. In the well-specified stochastic setting, where the underlying density is monotone, we show that the expected cumulative log-likelihood gap between the online estimators and the true density admits an $O(n^{1/3})$ bound. We further establish a $\sqrt{n\log{n}}$ pathwise regret bound for the expert aggregation estimator relative to the best offline monotone estimator chosen in hindsight, under minimal regularity assumptions on the observed sequence. As an application of independent interest, we show that the problem of constructing log-optimal p-to-e calibrators for sequential hypothesis testing can be formulated as an online monotone density estimation problem. We adapt the proposed estimators to build empirically adaptive p-to-e calibrators and establish their optimality. Numerical experiments illustrate the theoretical results.
comment: 28 pages, 1 figure
☆ DynamiQ: Accelerating Gradient Synchronization using Compressed Multi-hop All-reduce
Multi-hop all-reduce is the de facto backbone of large model training. As the training scale increases, the network often becomes a bottleneck, motivating reducing the volume of transmitted data. Accordingly, recent systems demonstrated significant acceleration of the training process using gradient quantization. However, these systems are not optimized for multi-hop aggregation, where entries are partially summed multiple times along their aggregation topology. This paper presents DynamiQ, a quantization framework that bridges the gap between quantization best practices and multi-hop aggregation. DynamiQ introduces novel techniques to better represent partial sums, co-designed with a decompress-accumulate-recompress fused kernel to facilitate fast execution. We extended PyTorch DDP to support DynamiQ over NCCL P2P, and across different LLMs, tasks, and scales, we demonstrate consistent improvement of up to 34.2% over the best among state-of-the-art methods such as Omni-Reduce, THC, and emerging standards such as MXFP4, MXFP6, and MXFP8. Further, DynamiQ is the only evaluated method that consistently reaches near-baseline accuracy (e.g., 99.9% of the BF16 baseline) and does so while significantly accelerating the training.
comment: 18 pages, 18 figures
☆ Diffusion-Inspired Reconfiguration of Transformers for Uncertainty Calibration
Uncertainty calibration in pre-trained transformers is critical for their reliable deployment in risk-sensitive applications. Yet, most existing pre-trained transformers do not have a principled mechanism for uncertainty propagation through their feature transformation stack. In this work, we propose a diffusion-inspired reconfiguration of transformers in which each feature transformation block is modeled as a probabilistic mapping. Composing these probabilistic mappings reveals a probability path that mimics the structure of a diffusion process, transporting data mass from the input distribution to the pre-trained feature distribution. This probability path can then be recompiled on a diffusion process with a unified transition model to enable principled propagation of representation uncertainty throughout the pre-trained model's architecture while maintaining its original predictive performance. Empirical results across a variety of vision and language benchmarks demonstrate that our method achieves superior calibration and predictive accuracy compared to existing uncertainty-aware transformers.
☆ AMS-HD: Hyperdimensional Computing for Real-Time and Energy-Efficient Acute Mountain Sickness Detection
Altitude sickness is a potentially life-threatening condition that impacts many individuals traveling to elevated altitudes. Timely detection is critical as symptoms can escalate rapidly. Early recognition enables simple interventions such as descent, oxygen, or medication, and prompt treatment can save lives by significantly lowering the risk of severe complications. Although conventional machine learning (ML) techniques have been applied to identify altitude sickness using physiological signals, such as heart rate, oxygen saturation, respiration rate, blood pressure, and body temperature, they often struggle to balance predictive performance with low hardware demands. In contrast, hyperdimensional computing (HDC) remains under-explored for this task with limited biomedical features, where it may offer a compelling alternative to existing classification models. Its vector symbolic framework is inherently suited to hardware-efficient design, making it a strong candidate for low-power systems like wearables. Leveraging lightweight computation and efficient streamlined memory usage, HDC enables real-time detection of altitude sickness from physiological parameters collected by wearable devices, achieving accuracy comparable to that of traditional ML models. We present AMS-HD, a novel system that integrates tailored feature extraction and Hadamard HV encoding to enhance both the precision and efficiency of HDC-based detection. This framework is well-positioned for deployment in wearable health monitoring platforms, enabling continuous, on-the-go tracking of acute altitude sickness.
☆ GEMSS: A Variational Bayesian Method for Discovering Multiple Sparse Solutions in Classification and Regression Problems
Selecting interpretable feature sets in underdetermined ($n \ll p$) and highly correlated regimes constitutes a fundamental challenge in data science, particularly when analyzing physical measurements. In such settings, multiple distinct sparse subsets may explain the response equally well. Identifying these alternatives is crucial for generating domain-specific insights into the underlying mechanisms, yet conventional methods typically isolate a single solution, obscuring the full spectrum of plausible explanations. We present GEMSS (Gaussian Ensemble for Multiple Sparse Solutions), a variational Bayesian framework specifically designed to simultaneously discover multiple, diverse sparse feature combinations. The method employs a structured spike-and-slab prior for sparsity, a mixture of Gaussians to approximate the intractable multimodal posterior, and a Jaccard-based penalty to further control solution diversity. Unlike sequential greedy approaches, GEMSS optimizes the entire ensemble of solutions within a single objective function via stochastic gradient descent. The method is validated on a comprehensive benchmark comprising 128 synthetic experiments across classification and regression tasks. Results demonstrate that GEMSS scales effectively to high-dimensional settings ($p=5000$) with sample size as small as $n = 50$, generalizes seamlessly to continuous targets, handles missing data natively, and exhibits remarkable robustness to class imbalance and Gaussian noise. GEMSS is available as a Python package 'gemss' at PyPI. The full GitHub repository at https://github.com/kat-er-ina/gemss/ also includes a free, easy-to-use application suitable for non-coders.
☆ Analysis of Converged 3D Gaussian Splatting Solutions: Density Effects and Prediction Limit
We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers fundamental density-stratification. Dense regions exhibit geometry-correlated parameters amenable to render-free prediction, while sparse regions show systematic failure across architectures. We formalize this through variance decomposition, demonstrating that visibility heterogeneity creates covariance-dominated coupling between geometric and appearance parameters in sparse regions. This reveals the dual character of RORs: geometric primitives where point clouds suffice, and view synthesis primitives where multi-view constraints are essential. We provide density-aware strategies that improve training robustness and discuss architectural implications for systems that adaptively balance feed-forward prediction and rendering-based refinement.
☆ Positive Distribution Shift as a Framework for Understanding Tractable Learning
We study a setting where the goal is to learn a target function f(x) with respect to a target distribution D(x), but training is done on i.i.d. samples from a different training distribution D'(x), labeled by the true target f(x). Such a distribution shift (here in the form of covariate shift) is usually viewed negatively, as hurting or making learning harder, and the traditional distribution shift literature is mostly concerned with limiting or avoiding this negative effect. In contrast, we argue that with a well-chosen D'(x), the shift can be positive and make learning easier -- a perspective called Positive Distribution Shift (PDS). Such a perspective is central to contemporary machine learning, where much of the innovation is in finding good training distributions D'(x), rather than changing the training algorithm. We further argue that the benefit is often computational rather than statistical, and that PDS allows computationally hard problems to become tractable even using standard gradient-based training. We formalize different variants of PDS, show how certain hard classes are easily learnable under PDS, and make connections with membership query learning.
☆ GSS: Gated Subspace Steering for Selective Memorization Mitigation in LLMs
Large language models (LLMs) can memorize and reproduce training sequences verbatim -- a tendency that undermines both generalization and privacy. Existing mitigation methods apply interventions uniformly, degrading performance on the majority of tokens that generalize normally. We show empirically that memorization is sparse, intermittent, and token-conditioned, suggesting that effective mitigation requires context-aware intervention rather than static parameter modification. To this end, we propose a novel and effective selective memorization mitigation method -- Gated Subspace Steering (GSS), which decomposes intervention into a probe (detecting memorization-relevant activations) and a steer (applying targeted correction only when the probe exceeds a threshold). The optimal probe-steer pair emerges from a principled optimization framework based on optimal subspace steering. Experiments on four benchmarks show GSS matches or exceeds state-of-the-art memorization reduction while requiring $100-1000 \times$ less compute than optimization-based alternatives. Furthermore, we provide new theoretical insights into the geometry of memorization in neural representations.
comment: 34 pages, 12 figures
☆ Discrete Bridges for Mutual Information Estimation
Diffusion bridge models in both continuous and discrete state spaces have recently become powerful tools in the field of generative modeling. In this work, we leverage the discrete state space formulation of bridge matching models to address another important problem in machine learning and information theory: the estimation of the mutual information (MI) between discrete random variables. By neatly framing MI estimation as a domain transfer problem, we construct a Discrete Bridge Mutual Information (DBMI) estimator suitable for discrete data, which poses difficulties for conventional MI estimators. We showcase the performance of our estimator on two MI estimation settings: low-dimensional and image-based.
☆ Winner's Curse Drives False Promises in Data-Driven Decisions: A Case Study in Refugee Matching
A major challenge in data-driven decision-making is accurate policy evaluation-i.e., guaranteeing that a learned decision-making policy achieves the promised benefits. A popular strategy is model-based policy evaluation, which estimates a model from data to infer counterfactual outcomes. This strategy is known to produce unwarrantedly optimistic estimates of the true benefit due to the winner's curse. We searched the recent literature on data-driven decision-making, identifying a sample of 55 papers published in the Management Science in the past decade; all but two relied on this flawed methodology. Several common justifications are provided: (1) the estimated models are accurate, stable, and well-calibrated, (2) the historical data uses random treatment assignment, (3) the model family is well-specified, and (4) the evaluation methodology uses sample splitting. Unfortunately, we show that no combination of these justifications avoids the winner's curse. First, we provide a theoretical analysis demonstrating that the winner's curse can cause large, spurious reported benefits even when all these justifications hold. Second, we perform a simulation study based on the recent and consequential data-driven refugee matching problem. We construct a synthetic refugee matching environment (calibrated to closely match the real setting) but designed so that no assignment policy can improve expected employment compared to random assignment. Model-based methods report large, stable gains of around 60% even when the true effect is zero; these gains are on par with improvements of 22-75% reported in the literature. Our results provide strong evidence against model-based evaluation.
☆ Contrastive Learning for Diversity-Aware Product Recommendations in Retail
Recommender systems often struggle with long-tail distributions and limited item catalog exposure, where a small subset of popular items dominates recommendations. This challenge is especially critical in large-scale online retail settings with extensive and diverse product assortments. This paper introduces an approach to enhance catalog coverage without compromising recommendation quality in the existing digital recommendation pipeline at IKEA Retail. Drawing inspiration from recent advances in negative sampling to address popularity bias, we integrate contrastive learning with carefully selected negative samples. Through offline and online evaluations, we demonstrate that our method improves catalog coverage, ensuring a more diverse set of recommendations yet preserving strong recommendation performance.
☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures appendix: 12 pages, 11 figures code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr
☆ Differentiable Logical Programming for Quantum Circuit Discovery and Optimization
Designing high-fidelity quantum circuits remains challenging, and current paradigms often depend on heuristic, fixed-ansatz structures or rule-based compilers that can be suboptimal or lack generality. We introduce a neuro-symbolic framework that reframes quantum circuit design as a differentiable logic programming problem. Our model represents a scaffold of potential quantum gates and parameterized operations as a set of learnable, continuous ``truth values'' or ``switches,'' $s \in [0, 1]^N$. These switches are optimized via standard gradient descent to satisfy a user-defined set of differentiable, logical axioms (e.g., correctness, simplicity, robustness). We provide a theoretical formulation bridging continuous logic (via T-norms) and unitary evolution (via geodesic interpolation), while addressing the barren plateau problem through biased initialization. We illustrate the approach on tasks including discovery of a 4-qubit Quantum Fourier Transform (QFT) from a scaffold of 21 candidate gates. We also report a hardware-aware adaptation experiment on the 133-qubit IBM Torino processor, where the method improved fidelity by 59.3 percentage points in a localized routing task while adapting to hardware failures.
☆ Learning Potentials for Dynamic Matching and Application to Heart Transplantation
Each year, thousands of patients in need of heart transplants face life-threatening wait times due to organ scarcity. While allocation policies aim to maximize population-level outcomes, current approaches often fail to account for the dynamic arrival of organs and the composition of waitlisted candidates, thereby hampering efficiency. The United States is transitioning from rigid, rule-based allocation to more flexible data-driven models. In this paper, we propose a novel framework for non-myopic policy optimization in general online matching relying on potentials, a concept originally introduced for kidney exchange. We develop scalable and accurate ways of learning potentials that are higher-dimensional and more expressive than prior approaches. Our approach is a form of self-supervised imitation learning: the potentials are trained to mimic an omniscient algorithm that has perfect foresight. We focus on the application of heart transplant allocation and demonstrate, using real historical data, that our policies significantly outperform prior approaches -- including the current US status quo policy and the proposed continuous distribution framework -- in optimizing for population-level outcomes. Our analysis and methods come at a pivotal moment in US policy, as the current heart transplant allocation system is under review. We propose a scalable and theoretically grounded path toward more effective organ allocation.
☆ Stress-Testing Alignment Audits With Prompt-Level Strategic Deception
Alignment audits aim to robustly identify hidden goals from strategic, situationally aware misaligned models. Despite this threat model, existing auditing methods have not been systematically stress-tested against deception strategies. We address this gap, implementing an automatic red-team pipeline that generates deception strategies (in the form of system prompts) tailored to specific white-box and black-box auditing methods. Stress-testing assistant prefills, user persona sampling, sparse autoencoders, and token embedding similarity methods against secret-keeping model organisms, our automatic red-team pipeline finds prompts that deceive both the black-box and white-box methods into confident, incorrect guesses. Our results provide the first documented evidence of activation-based strategic deception, and suggest that current black-box and white-box methods would not be robust to a sufficiently capable misaligned model.
☆ AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detection
Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions.
comment: Preprint
☆ Understanding Dynamic Compute Allocation in Recurrent Transformers
Token-level adaptive computation seeks to reduce inference cost by allocating more computation to harder tokens and less to easier ones. However, prior work is primarily evaluated on natural-language benchmarks using task-level metrics, where token-level difficulty is unobservable and confounded with architectural factors, making it unclear whether compute allocation truly aligns with underlying complexity. We address this gap through three contributions. First, we introduce a complexity-controlled evaluation paradigm using algorithmic and synthetic language tasks with parameterized difficulty, enabling direct testing of token-level compute allocation. Second, we propose ANIRA, a unified recurrent Transformer framework that supports per-token variable-depth computation while isolating compute allocation decisions from other model factors. Third, we use this framework to conduct a systematic analysis of token-level adaptive computation across alignment with complexity, generalization, and decision timing. Our results show that compute allocation aligned with task complexity can emerge without explicit difficulty supervision, but such alignment does not imply algorithmic generalization: models fail to extrapolate to unseen input sizes despite allocating additional computation. We further find that early compute decisions rely on static structural cues, whereas online halting more closely tracks algorithmic execution state.
☆ Near-optimal Swap Regret Minimization for Convex Losses
We give a randomized online algorithm that guarantees near-optimal $\widetilde O(\sqrt T)$ expected swap regret against any sequence of $T$ adaptively chosen Lipschitz convex losses on the unit interval. This improves the previous best bound of $\widetilde O(T^{2/3})$ and answers an open question of Fishelson et al. [2025b]. In addition, our algorithm is efficient: it runs in $\mathsf{poly}(T)$ time. A key technical idea we develop to obtain this result is to discretize the unit interval into bins at multiple scales of granularity and simultaneously use all scales to make randomized predictions, which we call multi-scale binning and may be of independent interest. A direct corollary of our result is an efficient online algorithm for minimizing the calibration error for general elicitable properties. This result does not require the Lipschitzness assumption of the identification function needed in prior work, making it applicable to median calibration, for which we achieve the first $\widetilde O(\sqrt T)$ calibration error guarantee.
☆ Magnitude Distance: A Geometric Measure of Dataset Similarity
Quantifying the distance between datasets is a fundamental question in mathematics and machine learning. We propose \textit{magnitude distance}, a novel distance metric defined on finite datasets using the notion of the \emph{magnitude} of a metric space. The proposed distance incorporates a tunable scaling parameter, $t$, that controls the sensitivity to global structure (small $t$) and finer details (large $t$). We prove several theoretical properties of magnitude distance, including its limiting behavior across scales and conditions under which it satisfies key metric properties. In contrast to classical distances, we show that magnitude distance remains discriminative in high-dimensional settings when the scale is appropriately tuned. We further demonstrate how magnitude distance can be used as a training objective for push-forward generative models. Our experimental results support our theoretical analysis and demonstrate that magnitude distance provides meaningful signals, comparable to established distance-based generative approaches.
☆ Discovering Interpretable Algorithms by Decompiling Transformers to RASP
Recent work has shown that the computations of Transformers can be simulated in the RASP family of programming languages. These findings have enabled improved understanding of the expressive capacity and generalization abilities of Transformers. In particular, Transformers have been suggested to length-generalize exactly on problems that have simple RASP programs. However, it remains open whether trained models actually implement simple interpretable programs. In this paper, we present a general method to extract such programs from trained Transformers. The idea is to faithfully re-parameterize a Transformer as a RASP program and then apply causal interventions to discover a small sufficient sub-program. In experiments on small Transformers trained on algorithmic and formal language tasks, we show that our method often recovers simple and interpretable RASP programs from length-generalizing transformers. Our results provide the most direct evidence so far that Transformers internally implement simple RASP programs.
comment: 101 pages, 92 figures
☆ Rethinking Graph Generalization through the Lens of Sharpness-Aware Minimization
Graph Neural Networks (GNNs) have achieved remarkable success across various graph-based tasks but remain highly sensitive to distribution shifts. In this work, we focus on a prevalent yet under-explored phenomenon in graph generalization, Minimal Shift Flip (MSF),where test samples that slightly deviate from the training distribution are abruptly misclassified. To interpret this phenomenon, we revisit MSF through the lens of Sharpness-Aware Minimization (SAM), which characterizes the local stability and sharpness of the loss landscape while providing a theoretical foundation for modeling generalization error. To quantify loss sharpness, we introduce the concept of Local Robust Radius, measuring the smallest perturbation required to flip a prediction and establishing a theoretical link between local stability and generalization. Building on this perspective, we further observe a continual decrease in the robust radius during training, indicating weakened local stability and an increasingly sharp loss landscape that gives rise to MSF. To jointly solve the MSF phenomenon and the intractability of radius, we develop an energy-based formulation that is theoretically proven to be monotonically correlated with the robust radius, offering a tractable and principled objective for modeling flatness and stability. Building on these insights, we propose an energy-driven generative augmentation framework (E2A) that leverages energy-guided latent perturbations to generate pseudo-OOD samples and enhance model generalization. Extensive experiments across multiple benchmarks demonstrate that E2A consistently improves graph OOD generalization, outperforming state-of-the-art baselines.
☆ Cutting Through the Noise: On-the-fly Outlier Detection for Robust Training of Machine Learning Interatomic Potentials
The accuracy of machine learning interatomic potentials suffers from reference data that contains numerical noise. Often originating from unconverged or inconsistent electronic-structure calculations, this noise is challenging to identify. Existing mitigation strategies such as manual filtering or iterative refinement of outliers, require either substantial expert effort or multiple expensive retraining cycles, making them difficult to scale to large datasets. Here, we introduce an on-the-fly outlier detection scheme that automatically down-weights noisy samples, without requiring additional reference calculations. By tracking the loss distribution via an exponential moving average, this unsupervised method identifies outliers throughout a single training run. We show that this approach prevents overfitting and matches the performance of iterative refinement baselines with significantly reduced overhead. The method's effectiveness is demonstrated by recovering accurate physical observables for liquid water from unconverged reference data, including diffusion coefficients. Furthermore, we validate its scalability by training a foundation model for organic chemistry on the SPICE dataset, where it reduces energy errors by a factor of three. This framework provides a simple, automated solution for training robust models on imperfect datasets across dataset sizes.
comment: 12 pages, 6 figures
☆ Dr. MAS: Stable Reinforcement Learning for Multi-Agent LLM Systems
Multi-agent LLM systems enable advanced reasoning and tool use via role specialization, yet reliable reinforcement learning (RL) post-training for such systems remains difficult. In this work, we theoretically pinpoint a key reason for training instability when extending group-based RL to multi-agent LLM systems. We show that under GRPO-style optimization, a global normalization baseline may deviate from diverse agents' reward distributions, which ultimately leads to gradient-norm instability. Based on this finding, we propose Dr. MAS, a simple and stable RL training recipe for multi-agent LLM systems. Dr. MAS uses an agent-wise remedy: normalizing advantages per agent using each agent's own reward statistics, which calibrates gradient scales and dramatically stabilizes training, both theoretically and empirically. Beyond the algorithm, Dr. MAS provides an end-to-end RL training framework for multi-agent LLM systems, supporting scalable orchestration, flexible per-agent LLM serving and optimization configs, and shared resource scheduling of LLM actor backends. We evaluate Dr. MAS on multi-agent math reasoning and multi-turn search benchmarks using Qwen2.5 and Qwen3 series models. Dr. MAS achieves clear gains over vanilla GRPO (e.g., +5.6\% avg@16 and +4.6\% pass@16 on math, and +15.2\% avg@16 and +13.1\% pass@16 on search) while largely eliminating gradient spikes. Moreover, it remains highly effective under heterogeneous agent-model assignments while improving efficiency.
comment: Preprint
☆ AMEM4Rec: Leveraging Cross-User Similarity for Memory Evolution in Agentic LLM Recommenders
Agentic systems powered by Large Language Models (LLMs) have shown strong potential in recommender systems but remain hindered by several challenges. Fine-tuning LLMs is parameter-inefficient, and prompt-based agentic reasoning is limited by context length and hallucination risk. Moreover, existing agentic recommendation systems predominantly leverages semantic knowledge while neglecting the collaborative filtering (CF) signals essential for implicit preference modeling. To address these limitations, we propose AMEM4Rec, an agentic LLM-based recommender that learns collaborative signals in an end-to-end manner through cross-user memory evolution. AMEM4Rec stores abstract user behavior patterns from user histories in a global memory pool. Within this pool, memories are linked to similar existing ones and iteratively evolved to reinforce shared cross-user patterns, enabling the system to become aware of CF signals without relying on a pre-trained CF model. Extensive experiments on Amazon and MIND datasets show that AMEM4Rec consistently outperforms state-of-the-art LLM-based recommenders, demonstrating the effectiveness of evolving memory-guided collaborative filtering.
☆ Learning the Value Systems of Societies with Preference-based Multi-objective Reinforcement Learning AAMAS 2026
Value-aware AI should recognise human values and adapt to the value systems (value-based preferences) of different users. This requires operationalization of values, which can be prone to misspecification. The social nature of values demands their representation to adhere to multiple users while value systems are diverse, yet exhibit patterns among groups. In sequential decision making, efforts have been made towards personalization for different goals or values from demonstrations of diverse agents. However, these approaches demand manually designed features or lack value-based interpretability and/or adaptability to diverse user preferences. We propose algorithms for learning models of value alignment and value systems for a society of agents in Markov Decision Processes (MDPs), based on clustering and preference-based multi-objective reinforcement learning (PbMORL). We jointly learn socially-derived value alignment models (groundings) and a set of value systems that concisely represent different groups of users (clusters) in a society. Each cluster consists of a value system representing the value-based preferences of its members and an approximately Pareto-optimal policy that reflects behaviours aligned with this value system. We evaluate our method against a state-of-the-art PbMORL algorithm and baselines on two MDPs with human values.
comment: 18 pages, 3 figures. To be published in proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2026). This is a full version that includes the supplementary material
☆ Bayesian Preference Learning for Test-Time Steerable Reward Models
Reward models are central to aligning language models with human preferences via reinforcement learning (RL). As RL is increasingly applied to settings such as verifiable rewards and multi-objective alignment, RMs are expected to encode more complex and multifaceted preference distributions. However, classifier RMs remain static once trained, limiting their adaptability at test time. We propose Variational In-Context Reward Modeling (ICRM), a novel Bayesian reward modeling objective that enables test-time steerability via in-context preference demonstrations. ICRM casts reward modeling as amortized variational inference over a latent preference probability under the Bradley-Terry model using a conjugate Beta prior. We show that ICRM adapt to unseen preference distributions at test time for both single and multi-objective settings. With more in-context demonstrations, ICRM gains 34% accuracy on SafeRLHF and 9% accuracy on RM-Bench in the single-objective setting, while widening the Pareto frontier with a 4% gain in hypervolume on helpfulness and refusal benchmarks. We further study the practical applicability of ICRM for RL training, showing that it can effectively encode verifiable rewards by outperforming a conventional RM in math reasoning. Finally, we provide theoretical guarantees that the variational objective admits a global interior optimum with finite confidence, and we analyze how KL regularization mitigates reward over-optimization.
comment: Preprint
☆ FlexMoRE: A Flexible Mixture of Rank-heterogeneous Experts for Efficient Federatedly-trained Large Language Models
Recent advances in mixture-of-experts architectures have shown that individual experts models can be trained federatedly, i.e., in isolation from other experts by using a common base model to facilitate coordination. However, we hypothesize that full-sized experts may not be necessary for all domains and that instead low-rank adapters may be sufficient. Here, we introduce FlexMoRE, a Flexible Mixture of Rank-heterogenous Experts, which may be either full-sized experts or adapters of a suitable rank. We systematically investigate the trade-off between expert rank and downstream task performance by evaluating $6$ experts with ranks $2^0$ to $2^{14}$ resulting in experiments covering 150 mixtures (96 with 2 experts, 54 with 7 experts) that are evaluated across $120$ tasks. For our experiments, we build on FlexOlmo and turn its pre-trained experts into low-rank versions. Our regression analysis from expert rank to downstream task performance reveals that the best-performing rank is substantially higher for reasoning-heavy benchmarks than for knowledge-heavy benchmarks. These findings on rank sensitivity come with direct implications for memory efficiency: Using optimal ranks, FlexMoRE yields improved downstream task performance (average score $47.18$) compared to the baseline FlexOlmo-style mixture of full-sized experts (average score $45.46$) at less than one third the parameters ($10.75$B for FlexMoRE vs. $33.27$B for FlexOlmo). All code will be made available.
☆ Kirin: Improving ANN efficiency with SNN Hybridization
Artificial neural networks (ANNs), particularly large language models (LLMs), demonstrate powerful inference capabilities but consume substantial energy. Conversely, spiking neural networks (SNNs) exhibit exceptional energy efficiency due to their binary and event-driven characteristics, thus motivating the study of ANN-to-SNN conversion. In this process, quantization plays a pivotal role, mapping LLMs' floating-point parameters to discrete SNN parameters via the temporal dimension of the time window. However, several challenges remain in the conversion process: (i) converting high bit-width quantization values into binary spikes requires longer time windows, increasing system latency; and (ii) the inherent trade-off between the information loss of single-spike schemes and the energy costs of multi-spike ones in SNN. To address these challenges, we propose Kirin, a integer and spike hybrid based SNN to achieve accuracy lossless ANN-to-SNN conversion with time and energy efficiency. Specifically, we first propose a Spike Matrix Hybridization strategy that encoding low bit-width parameters that leading to small time window size into binary spikes while preserving the rest in integer format, thereby reducing the overall latency of SNN execution. Second, we introduce a silence threshold mechanism to regulate the timing of single-spike firing, ensuring the output is mathematically equivalent to the LLM's output and preserves accuracy. Experimental results demonstrate that Kirin, under a W4A4\&8 quantization setting, achieves near-FP16 accuracy while reducing energy consumption by up to 84.66\% and shortening time steps by 93.75\%.
☆ Permissive-Washing in the Open AI Supply Chain: A Large-Scale Audit of License Integrity
Permissive licenses like MIT, Apache-2.0, and BSD-3-Clause dominate open-source AI, signaling that artifacts like models, datasets, and code can be freely used, modified, and redistributed. However, these licenses carry mandatory requirements: include the full license text, provide a copyright notice, and preserve upstream attribution, that remain unverified at scale. Failure to meet these conditions can place reuse outside the scope of the license, effectively leaving AI artifacts under default copyright for those uses and exposing downstream users to litigation. We call this phenomenon ``permissive washing'': labeling AI artifacts as free to use, while omitting the legal documentation required to make that label actionable. To assess how widespread permissive washing is in the AI supply chain, we empirically audit 124,278 dataset $\rightarrow$ model $\rightarrow$ application supply chains, spanning 3,338 datasets, 6,664 models, and 28,516 applications across Hugging Face and GitHub. We find that an astonishing 96.5\% of datasets and 95.8\% of models lack the required license text, only 2.3\% of datasets and 3.2\% of models satisfy both license text and copyright requirements, and even when upstream artifacts provide complete licensing evidence, attribution rarely propagates downstream: only 27.59\% of models preserve compliant dataset notices and only 5.75\% of applications preserve compliant model notices (with just 6.38\% preserving any linked upstream notice). Practitioners cannot assume permissive labels confer the rights they claim: license files and notices, not metadata, are the source of legal truth. To support future research, we release our full audit dataset and reproducible pipeline.
comment: 13 pages, 2 figures, 10 tables
☆ Robust Policy Optimization to Prevent Catastrophic Forgetting
Large language models are commonly trained through multi-stage post-training: first via RLHF, then fine-tuned for other downstream objectives. Yet even small downstream updates can compromise earlier learned behaviors (e.g., safety), exposing a brittleness known as catastrophic forgetting. This suggests standard RLHF objectives do not guarantee robustness to future adaptation. To address it, most prior work designs downstream-time methods to preserve previously learned behaviors. We argue that preventing this requires pre-finetuning robustness: the base policy should avoid brittle high-reward solutions whose reward drops sharply under standard fine-tuning. We propose Fine-tuning Robust Policy Optimization (FRPO), a robust RLHF framework that optimizes reward not only at the current policy, but across a KL-bounded neighborhood of policies reachable by downstream adaptation. The key idea is to ensure reward stability under policy shifts via a max-min formulation. By modifying GRPO, we develop an algorithm with no extra computation, and empirically show it substantially reduces safety degradation across multiple base models and downstream fine-tuning regimes (SFT and RL) while preserving downstream task performance. We further study a math-focused RL setting, demonstrating that FRPO preserves accuracy under subsequent fine-tuning.
☆ $\texttt{lrnnx}$: A library for Linear RNNs EACL
Linear recurrent neural networks (LRNNs) provide a structured approach to sequence modeling that bridges classical linear dynamical systems and modern deep learning, offering both expressive power and theoretical guarantees on stability and trainability. In recent years, multiple LRNN-based architectures have been proposed, each introducing distinct parameterizations, discretization schemes, and implementation constraints. However, existing implementations are fragmented across different software frameworks, often rely on framework-specific optimizations, and in some cases require custom CUDA kernels or lack publicly available code altogether. As a result, using, comparing, or extending LRNNs requires substantial implementation effort. To address this, we introduce $\texttt{lrnnx}$, a unified software library that implements several modern LRNN architectures under a common interface. The library exposes multiple levels of control, allowing users to work directly with core components or higher-level model abstractions. $\texttt{lrnnx}$ aims to improve accessibility, reproducibility, and extensibility of LRNN research and applications. We make our code available under a permissive MIT license.
comment: EACL Student Research Workshop 2026
☆ Efficient Deep Learning for Biometrics: Overview, Challenges and Trends in Ear of Frugal AI IEEE
Recent advances in deep learning, whether on discriminative or generative tasks have been beneficial for various applications, among which security and defense. However, their increasing computational demands during training and deployment translates directly into high energy consumption. As a consequence, this induces a heavy carbon footprint which hinders their widespread use and scalability, but also a limitation when deployed on resource-constrained edge devices for real-time use. In this paper, we briefly survey efficient deep learning methods for biometric applications. Specifically, we tackle the challenges one might incur when training and deploying deep learning approaches, and provide a taxonomy of the various efficient deep learning families. Additionally, we discuss complementary metrics for evaluating the efficiency of these models such as memory, computation, latency, throughput, and advocate for universal and reproducible metrics for better comparison. Last, we give future research directions to consider.
comment: 8 pages, 2 figures, accepted at the 2025 IEEE SDS conference
☆ How2Everything: Mining the Web for How-To Procedures to Evaluate and Improve LLMs
Generating step-by-step "how-to" procedures is a key LLM capability: how-to advice is commonly requested in chatbots, and step-by-step planning is critical for reasoning over complex tasks. Yet, measuring and improving procedural validity at scale on real-world tasks remains challenging and understudied. To address this, we introduce How2Everything, a scalable framework to evaluate and improve goal-conditioned procedure generation. Our framework includes How2Mine, which mines 351K procedures from 980K web pages across 14 topics and readily scales to larger corpora. From this pool we build How2Bench, a 7K-example evaluation set balanced across topics. To reliably score model outputs, we develop How2Score, an evaluation protocol that uses an LLM judge to detect whether a generation contains any critical failure that would prevent achieving the goal. For low-cost, reproducible evaluation, we distill a frontier model into an open 8B model, achieving 80.5% agreement with human annotators. How2Bench reveals clear scaling trends across model sizes and training stages, providing signal early in pretraining. Finally, RL using How2Score as a reward improves performance on How2Bench by >10 points across three models without systematic regressions on standard benchmarks, with gains robust to superficial source-document memorization or format compliance. Taken together, How2Everything shows how pretraining web data can support a closed loop of capability evaluation and improvement at scale.
comment: 53 pages, 22 figures
☆ Multimodal Learning for Arcing Detection in Pantograph-Catenary Systems
The pantograph-catenary interface is essential for ensuring uninterrupted and reliable power delivery in electrified rail systems. However, electrical arcing at this interface poses serious risks, including accelerated wear of contact components, degraded system performance, and potential service disruptions. Detecting arcing events at the pantograph-catenary interface is challenging due to their transient nature, noisy operating environment, data scarcity, and the difficulty of distinguishing arcs from other similar transient phenomena. To address these challenges, we propose a novel multimodal framework that combines high-resolution image data with force measurements to more accurately and robustly detect arcing events. First, we construct two arcing detection datasets comprising synchronized visual and force measurements. One dataset is built from data provided by the Swiss Federal Railways (SBB), and the other is derived from publicly available videos of arcing events in different railway systems and synthetic force data that mimic the characteristics observed in the real dataset. Leveraging these datasets, we propose MultiDeepSAD, an extension of the DeepSAD algorithm for multiple modalities with a new loss formulation. Additionally, we introduce tailored pseudo-anomaly generation techniques specific to each data type, such as synthetic arc-like artifacts in images and simulated force irregularities, to augment training data and improve the discriminative ability of the model. Through extensive experiments and ablation studies, we demonstrate that our framework significantly outperforms baseline approaches, exhibiting enhanced sensitivity to real arcing events even under domain shifts and limited availability of real arcing observations.
☆ Empirically Understanding the Value of Prediction in Allocation
Institutions increasingly use prediction to allocate scarce resources. From a design perspective, better predictions compete with other investments, such as expanding capacity or improving treatment quality. Here, the big question is not how to solve a specific allocation problem, but rather which problem to solve. In this work, we develop an empirical toolkit to help planners form principled answers to this question and quantify the bottom-line welfare impact of investments in prediction versus other policy levers such as expanding capacity and improving treatment quality. Applying our framework in two real-world case studies on German employment services and poverty targeting in Ethiopia, we illustrate how decision-makers can reliably derive context-specific conclusions about the relative value of prediction in their allocation problem. We make our software toolkit, rvp, and parts of our data available in order to enable future empirical work in this area.
☆ A Graphop Analysis of Graph Neural Networks on Sparse Graphs: Generalization and Universal Approximation
Generalization and approximation capabilities of message passing graph neural networks (MPNNs) are often studied by defining a compact metric on a space of input graphs under which MPNNs are Hölder continuous. Such analyses are of two varieties: 1) when the metric space includes graphs of unbounded sizes, the theory is only appropriate for dense graphs, and, 2) when studying sparse graphs, the metric space only includes graphs of uniformly bounded size. In this work, we present a unified approach, defining a compact metric on the space of graphs of all sizes, both sparse and dense, under which MPNNs are Hölder continuous. This leads to more powerful universal approximation theorems and generalization bounds than previous works. The theory is based on, and extends, a recent approach to graph limit theory called graphop analysis.
☆ Amortising Inference and Meta-Learning Priors in Neural Networks ICLR 2026
One of the core facets of Bayesianism is in the updating of prior beliefs in light of new evidence$\text{ -- }$so how can we maintain a Bayesian approach if we have no prior beliefs in the first place? This is one of the central challenges in the field of Bayesian deep learning, where it is not clear how to represent beliefs about a prediction task by prior distributions over model parameters. Bridging the fields of Bayesian deep learning and probabilistic meta-learning, we introduce a way to $\textit{learn}$ a weights prior from a collection of datasets by introducing a way to perform per-dataset amortised variational inference. The model we develop can be viewed as a neural process whose latent variable is the set of weights of a BNN and whose decoder is the neural network parameterised by a sample of the latent variable itself. This unique model allows us to study the behaviour of Bayesian neural networks under well-specified priors, use Bayesian neural networks as flexible generative models, and perform desirable but previously elusive feats in neural processes such as within-task minibatching or meta-learning under extreme data-starvation.
comment: Accepted at ICLR 2026
☆ Default Machine Learning Hyperparameters Do Not Provide Informative Initialization for Bayesian Optimization
Bayesian Optimization (BO) is a standard tool for hyperparameter tuning thanks to its sample efficiency on expensive black-box functions. While most BO pipelines begin with uniform random initialization, default hyperparameter values shipped with popular ML libraries such as scikit-learn encode implicit expert knowledge and could serve as informative starting points that accelerate convergence. This hypothesis, despite its intuitive appeal, has remained largely unexamined. We formalize the idea by initializing BO with points drawn from truncated Gaussian distributions centered at library defaults and compare the resulting trajectories against a uniform-random baseline. We conduct an extensive empirical evaluation spanning three BO back-ends (BoTorch, Optuna, Scikit-Optimize), three model families (Random Forests, Support Vector Machines, Multilayer Perceptrons), and five benchmark datasets covering classification and regression tasks. Performance is assessed through convergence speed and final predictive quality, and statistical significance is determined via one-sided binomial tests. Across all conditions, default-informed initialization yields no statistically significant advantage over purely random sampling, with p-values ranging from 0.141 to 0.908. A sensitivity analysis on the prior variance confirms that, while tighter concentration around the defaults improves early evaluations, this transient benefit vanishes as optimization progresses, leaving final performance unchanged. Our results provide no evidence that default hyperparameters encode useful directional information for optimization. We therefore recommend that practitioners treat hyperparameter tuning as an integral part of model development and favor principled, data-driven search strategies over heuristic reliance on library defaults.
☆ FreqLens: Interpretable Frequency Attribution for Time Series Forecasting
Time series forecasting models often lack interpretability, limiting their adoption in domains requiring explainable predictions. We propose \textsc{FreqLens}, an interpretable forecasting framework that discovers and attributes predictions to learnable frequency components. \textsc{FreqLens} introduces two key innovations: (1) \emph{learnable frequency discovery} -- frequency bases are parameterized via sigmoid mapping and learned from data with diversity regularization, enabling automatic discovery of dominant periodic patterns without domain knowledge; and (2) \emph{axiomatic frequency attribution} -- a theoretically grounded framework that provably satisfies Completeness, Faithfulness, Null-Frequency, and Symmetry axioms, with per-frequency attributions equivalent to Shapley values. On Traffic and Weather datasets, \textsc{FreqLens} achieves competitive or superior performance while discovering physically meaningful frequencies: all 5 independent runs discover the 24-hour daily cycle ($24.6 \pm 0.1$h, 2.5\% error) and 12-hour half-daily cycle ($11.8 \pm 0.1$h, 1.6\% error) on Traffic, and weekly cycles ($10\times$ longer than the input window) on Weather. These results demonstrate genuine frequency-level knowledge discovery with formal theoretical guarantees on attribution quality.
☆ HoGS: Homophily-Oriented Graph Synthesis for Local Differentially Private GNN Training
Graph neural networks (GNNs) have demonstrated remarkable performance in various graph-based machine learning tasks by effectively modeling high-order interactions between nodes. However, training GNNs without protection may leak sensitive personal information in graph data, including links and node features. Local differential privacy (LDP) is an advanced technique for protecting data privacy in decentralized networks. Unfortunately, existing local differentially private GNNs either only preserve link privacy or suffer significant utility loss in the process of preserving link and node feature privacy. In this paper, we propose an effective LDP framework, called HoGS, which trains GNNs with link and feature protection by generating a synthetic graph. Concretely, HoGS first collects the link and feature information of the graph under LDP, and then utilizes the phenomenon of homophily in graph data to reconstruct the graph structure and node features separately, thereby effectively mitigating the negative impact of LDP on the downstream GNN training. We theoretically analyze the privacy guarantee of HoGS and conduct experiments using the generated synthetic graph as input to various state-of-the-art GNN architectures. Experimental results on three real-world datasets show that HoGS significantly outperforms baseline methods in the accuracy of training GNNs.
☆ Redundancy-Free View Alignment for Multimodal Human Activity Recognition with Arbitrarily Missing Views
Multimodal multiview learning seeks to integrate information from diverse sources to enhance task performance. Existing approaches often struggle with flexible view configurations, including arbitrary view combinations, numbers of views, and heterogeneous modalities. Focusing on the context of human activity recognition, we propose RALIS, a model that combines multiview contrastive learning with a mixture-of-experts module to support arbitrary view availability during both training and inference. Instead of trying to reconstruct missing views, an adjusted center contrastive loss is used for self-supervised representation learning and view alignment, mitigating the impact of missing views on multiview fusion. This loss formulation allows for the integration of view weights to account for view quality. Additionally, it reduces computational complexity from $O(V^2)$ to $O(V)$, where $V$ is the number of views. To address residual discrepancies not captured by contrastive learning, we employ a mixture-of-experts module with a specialized load balancing strategy, tasked with adapting to arbitrary view combinations. We highlight the geometric relationship among components in our model and how they combine well in the latent space. RALIS is validated on four datasets encompassing inertial and human pose modalities, with the number of views ranging from three to nine, demonstrating its performance and flexibility.
☆ Central Dogma Transformer II: An AI Microscope for Understanding Cellular Regulatory Mechanisms
Current biological AI models lack interpretability -- their internal representations do not correspond to biological relationships that researchers can examine. Here we present CDT-II, an "AI microscope" whose attention maps are directly interpretable as regulatory structure. By mirroring the central dogma in its architecture, each attention mechanism corresponds to a specific biological relationship: DNA self-attention for genomic relationships, RNA self-attention for gene co-regulation, and DNA-to-RNA cross-attention for transcriptional control. Using only genomic embeddings and raw per-cell expression, CDT-II enables experimental biologists to observe regulatory networks in their own data. Applied to K562 CRISPRi data, CDT-II predicts perturbation effects (per-gene mean $r = 0.84$) and recovers the GFI1B regulatory network without supervision (6.6-fold enrichment, $P = 3.5 \times 10^{-17}$). Two distinct attention mechanisms converge on an RNA processing module ($P = 1 \times 10^{-16}$). CDT-II establishes mechanism-oriented AI as an alternative to task-oriented approaches, revealing regulatory structure rather than merely optimizing predictions.
comment: 20 pages, 6 figures
☆ On the Expressive Power of GNNs for Boolean Satisfiability ICLR 2026
Machine learning approaches to solving Boolean Satisfiability (SAT) aim to replace handcrafted heuristics with learning-based models. Graph Neural Networks have emerged as the main architecture for SAT solving, due to the natural graph representation of Boolean formulas. We analyze the expressive power of GNNs for SAT solving through the lens of the Weisfeiler-Leman (WL) test. As our main result, we prove that the full WL hierarchy cannot, in general, distinguish between satisfiable and unsatisfiable instances. We show that indistinguishability under higher-order WL carries over to practical limitations for WL-bounded solvers that set variables sequentially. We further study the expressivity required for several important families of SAT instances, including regular, random and planar instances. To quantify expressivity needs in practice, we conduct experiments on random instances from the G4SAT benchmark and industrial instances from the International SAT Competition. Our results suggest that while random instances are largely distinguishable, industrial instances often require more expressivity to predict a satisfying assignment.
comment: Accepted at ICLR 2026
☆ Welfarist Formulations for Diverse Similarity Search
Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging applications, such as web search, recommendation systems, and, more recently, retrieval-augmented generations (RAG). In such recent applications, in addition to the relevance (similarity) of the returned neighbors, diversity among the neighbors is a central requirement. In this paper, we develop principled welfare-based formulations in NNS for realizing diversity across attributes. Our formulations are based on welfare functions -- from mathematical economics -- that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a particular focus on Nash social welfare, we note that our welfare-based formulations provide objective functions that adaptively balance relevance and diversity in a query-dependent manner. Notably, such a balance was not present in the prior constraint-based approach, which forced a fixed level of diversity and optimized for relevance. In addition, our formulation provides a parametric way to control the trade-off between relevance and diversity, providing practitioners with flexibility to tailor search results to task-specific requirements. We develop efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives. Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard ANN method as a subroutine) to efficiently find neighbors that approximately maximize our welfare-based objectives. Experimental results demonstrate that our approach is practical and substantially improves diversity while maintaining high relevance of the retrieved neighbors.
☆ Foundation Inference Models for Ordinary Differential Equations
Ordinary differential equations (ODEs) are central to scientific modelling, but inferring their vector fields from noisy trajectories remains challenging. Current approaches such as symbolic regression, Gaussian process (GP) regression, and Neural ODEs often require complex training pipelines and substantial machine learning expertise, or they depend strongly on system-specific prior knowledge. We propose FIM-ODE, a pretrained Foundation Inference Model that amortises low-dimensional ODE inference by predicting the vector field directly from noisy trajectory data in a single forward pass. We pretrain FIM-ODE on a prior distribution over ODEs with low-degree polynomial vector fields and represent the target field with neural operators. FIM-ODE achieves strong zero-shot performance, matching and often improving upon ODEFormer, a recent pretrained symbolic baseline, across a range of regimes despite using a simpler pretraining prior distribution. Pretraining also provides a strong initialisation for finetuning, enabling fast and stable adaptation that outperforms modern neural and GP baselines without requiring machine learning expertise.
☆ Data Reconstruction: Identifiability and Optimization with Sample Splitting
Training data reconstruction from KKT conditions has shown striking empirical success, yet it remains unclear when the resulting KKT equations have unique solutions and, even in identifiable regimes, how to reliably recover solutions by optimization. This work hereby focuses on these two complementary questions: identifiability and optimization. On the identifiability side, we discuss the sufficient conditions for KKT system of two-layer networks with polynomial activations to uniquely determine the training data, providing a theoretical explanation of when and why reconstruction is possible. On the optimization side, we introduce sample splitting, a curvature-aware refinement step applicable to general reconstruction objectives (not limited to KKT-based formulations): it creates additional descent directions to escape poor stationary points and refine solutions. Experiments demonstrate that augmenting several existing reconstruction methods with sample splitting consistently improves reconstruction performance.
☆ QUOKA: Query-Oriented KV Selection For Efficient LLM Prefill
We present QUOKA: Query-oriented KV selection for efficient attention, a training-free and hardware agnostic sparse attention algorithm for accelerating transformer inference under chunked prefill. While many queries focus on a smaller group of keys in the attention operator, we observe that queries with low cosine similarity with respect to the mean query interact more strongly with more keys and have the greatest contribution to final attention logits. By prioritizing these low cosine similarity queries, the behavior of full attention during the prefill stage can be closely approximated. QUOKA leverages this observation, accelerating attention by (1) first retaining a small set of representative queries and (2) then subselectin the keys most aligned with those queries. Through experiments on Needle-In-A-Haystack, LongBench, RULER, and Math500, we show that, while realizing a 3x reduction in time-to-first-token, 5x speedup in attention on Nvidia GPUs and up to nearly a 7x speedup on Intel Xeon CPUs, QUOKA achieves near-baseline accuracy, utilizing 88% fewer key-value pairs per attention evaluation.
☆ Trapped by simplicity: When Transformers fail to learn from noisy features ICLR 2026
Noise is ubiquitous in data used to train large language models, but it is not well understood whether these models are able to correctly generalize to inputs generated without noise. Here, we study noise-robust learning: are transformers trained on data with noisy features able to find a target function that correctly predicts labels for noiseless features? We show that transformers succeed at noise-robust learning for a selection of $k$-sparse parity and majority functions, compared to LSTMs which fail at this task for even modest feature noise. However, we find that transformers typically fail at noise-robust learning of random $k$-juntas, especially when the boolean sensitivity of the optimal solution is smaller than that of the target function. We argue that this failure is due to a combination of two factors: transformers' bias toward simpler functions, combined with an observation that the optimal function for noise-robust learning typically has lower sensitivity than the target function for random boolean functions. We test this hypothesis by exploiting transformers' simplicity bias to trap them in an incorrect solution, but show that transformers can escape this trap by training with an additional loss term penalizing high-sensitivity solutions. Overall, we find that transformers are particularly ineffective for learning boolean functions in the presence of feature noise.
comment: 13+12 pages, 7 figures. Accepted at ICLR 2026
☆ Reasoning aligns language models to human cognition
Do language models make decisions under uncertainty like humans do, and what role does chain-of-thought (CoT) reasoning play in the underlying decision process? We introduce an active probabilistic reasoning task that cleanly separates sampling (actively acquiring evidence) from inference (integrating evidence toward a decision). Benchmarking humans and a broad set of contemporary large language models against near-optimal reference policies reveals a consistent pattern: extended reasoning is the key determinant of strong performance, driving large gains in inference and producing belief trajectories that become strikingly human-like, while yielding only modest improvements in active sampling. To explain these differences, we fit a mechanistic model that captures systematic deviations from optimal behavior via four interpretable latent variables: memory, strategy, choice bias, and occlusion awareness. This model places humans and models in a shared low-dimensional cognitive space, reproduces behavioral signatures across agents, and shows how chain-of-thought shifts language models toward human-like regimes of evidence accumulation and belief-to-choice mapping, tightening alignment in inference while leaving a persistent gap in information acquisition.
comment: 38 pages, 4 main figures, multiple appendix figures
☆ SoK: The Pitfalls of Deep Reinforcement Learning for Cybersecurity
Deep Reinforcement Learning (DRL) has achieved remarkable success in domains requiring sequential decision-making, motivating its application to cybersecurity problems. However, transitioning DRL from laboratory simulations to bespoke cyber environments can introduce numerous issues. This is further exacerbated by the often adversarial, non-stationary, and partially-observable nature of most cybersecurity tasks. In this paper, we identify and systematize 11 methodological pitfalls that frequently occur in DRL for cybersecurity (DRL4Sec) literature across the stages of environment modeling, agent training, performance evaluation, and system deployment. By analyzing 66 significant DRL4Sec papers (2018-2025), we quantify the prevalence of each pitfall and find an average of over five pitfalls per paper. We demonstrate the practical impact of these pitfalls using controlled experiments in (i) autonomous cyber defense, (ii) adversarial malware creation, and (iii) web security testing environments. Finally, we provide actionable recommendations for each pitfall to support the development of more rigorous and deployable DRL-based security systems.
☆ Learning To Sample From Diffusion Models Via Inverse Reinforcement Learning
Diffusion models generate samples through an iterative denoising process, guided by a neural network. While training the denoiser on real-world data is computationally demanding, the sampling procedure itself is more flexible. This adaptability serves as a key lever in practice, enabling improvements in both the quality of generated samples and the efficiency of the sampling process. In this work, we introduce an inverse reinforcement learning framework for learning sampling strategies without retraining the denoiser. We formulate the diffusion sampling procedure as a discrete-time finite-horizon Markov Decision Process, where actions correspond to optional modifications of the sampling dynamics. To optimize action scheduling, we avoid defining an explicit reward function. Instead, we directly match the target behavior expected from the sampler using policy gradient techniques. We provide experimental evidence that this approach can improve the quality of samples generated by pretrained diffusion models and automatically tune sampling hyperparameters.
comment: Preprint
☆ CompilerKV: Risk-Adaptive KV Compression via Offline Experience Compilation
Large Language Models (LLMs) in long-context scenarios are severely constrained by the linear growth of Key-Value (KV) cache memory. Existing KV compression methods rely either on static thresholds and attention-only heuristics or on coarse memory budget allocation. Under tight memory budgets, these methods overlook two key factors: prompt-dependent variation in compression risk and functional heterogeneity across attention heads, which destabilize token selection and lead to tail failures. To address these challenges, we propose CompilerKV, a risk-adaptive and head-aware compression framework that compiles offline experience into reusable decision tables for prefill-only deployment. CompilerKV integrates two key synergistic components: (i) a Head Heterogeneity Table, learned via offline contextual bandits, which assigns head-specific reliability weights to govern functional differences across attention heads explicitly; and (ii) a Risk-Adaptive Threshold Gating mechanism that jointly models attention entropy and local perplexity, transforming prompt-level risk into deployable retention thresholds. Experiments on LongBench show CompilerKV dominates SOTA methods under a 512-token budget, recovering 97.7\% of FullKV performance while achieving up to +5.2 points gain over the strongest competitor.
☆ The Theory and Practice of MAP Inference over Non-Convex Constraints
In many safety-critical settings, probabilistic ML systems have to make predictions subject to algebraic constraints, e.g., predicting the most likely trajectory that does not cross obstacles. These real-world constraints are rarely convex, nor the densities considered are (log-)concave. This makes computing this constrained maximum a posteriori (MAP) prediction efficiently and reliably extremely challenging. In this paper, we first investigate under which conditions we can perform constrained MAP inference over continuous variables exactly and efficiently and devise a scalable message-passing algorithm for this tractable fragment. Then, we devise a general constrained MAP strategy that interleaves partitioning the domain into convex feasible regions with numerical constrained optimization. We evaluate both methods on synthetic and real-world benchmarks, showing our % approaches outperform constraint-agnostic baselines, and scale to complex densities intractable for SoTA exact solvers.
☆ Dashed Line Defense: Plug-And-Play Defense Against Adaptive Score-Based Query Attacks
Score-based query attacks pose a serious threat to deep learning models by crafting adversarial examples (AEs) using only black-box access to model output scores, iteratively optimizing inputs based on observed loss values. While recent runtime defenses attempt to disrupt this process via output perturbation, most either require access to model parameters or fail when attackers adapt their tactics. In this paper, we first reveal that even the state-of-the-art plug-and-play defense can be bypassed by adaptive attacks, exposing a critical limitation of existing runtime defenses. We then propose Dashed Line Defense (DLD), a plug-and-play post-processing method specifically designed to withstand adaptive query strategies. By introducing ambiguity in how the observed loss reflects the true adversarial strength of candidate examples, DLD prevents attackers from reliably analyzing and adapting their queries, effectively disrupting the AE generation process. We provide theoretical guarantees of DLD's defense capability and validate its effectiveness through experiments on ImageNet, demonstrating that DLD consistently outperforms prior defenses--even under worst-case adaptive attacks--while preserving the model's predicted labels.
☆ LLaDA2.1: Speeding Up Text Diffusion via Token Editing
While LLaDA2.0 showcased the scaling potential of 100B-level block-diffusion models and their inherent parallelization, the delicate equilibrium between decoding speed and generation quality has remained an elusive frontier. Today, we unveil LLaDA2.1, a paradigm shift designed to transcend this trade-off. By seamlessly weaving Token-to-Token (T2T) editing into the conventional Mask-to-Token (M2T) scheme, we introduce a joint, configurable threshold-decoding scheme. This structural innovation gives rise to two distinct personas: the Speedy Mode (S Mode), which audaciously lowers the M2T threshold to bypass traditional constraints while relying on T2T to refine the output; and the Quality Mode (Q Mode), which leans into conservative thresholds to secure superior benchmark performances with manageable efficiency degrade. Furthering this evolution, underpinned by an expansive context window, we implement the first large-scale Reinforcement Learning (RL) framework specifically tailored for dLLMs, anchored by specialized techniques for stable gradient estimation. This alignment not only sharpens reasoning precision but also elevates instruction-following fidelity, bridging the chasm between diffusion dynamics and complex human intent. We culminate this work by releasing LLaDA2.1-Mini (16B) and LLaDA2.1-Flash (100B). Across 33 rigorous benchmarks, LLaDA2.1 delivers strong task performance and lightning-fast decoding speed. Despite its 100B volume, on coding tasks it attains an astounding 892 TPS on HumanEval+, 801 TPS on BigCodeBench, and 663 TPS on LiveCodeBench.
comment: 11 pages, 3 figures
☆ Learning to Judge: LLMs Designing and Applying Evaluation Rubrics EACL 2026
Large language models (LLMs) are increasingly used as evaluators for natural language generation, applying human-defined rubrics to assess system outputs. However, human rubrics are often static and misaligned with how models internally represent language quality. We introduce GER-Eval (Generating Evaluation Rubrics for Evaluation) to investigate whether LLMs can design and apply their own evaluation rubrics. We evaluate the semantic coherence and scoring reliability of LLM-defined criteria and their alignment with human criteria. LLMs reliably generate interpretable and task-aware evaluation dimensions and apply them consistently within models, but their scoring reliability degrades in factual and knowledge-intensive settings. Closed-source models such as GPT-4o achieve higher agreement and cross-model generalization than open-weight models such as Llama. Our findings position evaluation as a learned linguistic capability of LLMs, consistent within models but fragmented across them, and call for new methods that jointly model human and LLM evaluative language to improve reliability and interpretability.
comment: Accepted at EACL 2026 Findings
☆ Retrieval Pivot Attacks in Hybrid RAG: Measuring and Mitigating Amplified Leakage from Vector Seeds to Graph Expansion
Hybrid Retrieval-Augmented Generation (RAG) pipelines combine vector similarity search with knowledge graph expansion for multi-hop reasoning. We show that this composition introduces a distinct security failure mode: a vector-retrieved "seed" chunk can pivot via entity links into sensitive graph neighborhoods, causing cross-tenant data leakage that does not occur in vector-only retrieval. We formalize this risk as Retrieval Pivot Risk (RPR) and introduce companion metrics Leakage@k, Amplification Factor, and Pivot Depth (PD) to quantify leakage magnitude and traversal structure. We present seven Retrieval Pivot Attacks that exploit the vector-to-graph boundary and show that adversarial injection is not required: naturally shared entities create cross-tenant pivot paths organically. Across a synthetic multi-tenant enterprise corpus and the Enron email corpus, the undefended hybrid pipeline exhibits high pivot risk (RPR up to 0.95) with multiple unauthorized items returned per query. Leakage consistently appears at PD=2, which we attribute to the bipartite chunk-entity topology and formalize as a proposition. We then show that enforcing authorization at a single location, the graph expansion boundary, eliminates measured leakage (RPR near 0) across both corpora, all attack variants, and label forgery rates up to 10 percent, with minimal overhead. Our results indicate the root cause is boundary enforcement, not inherently complex defenses: two individually secure retrieval components can compose into an insecure system unless authorization is re-checked at the transition point.
comment: 18 pages, 5 figures
☆ Equalized Generative Treatment: Matching f-divergences for Fairness in Generative Models
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
☆ Two-Stage Data Synthesization: A Statistics-Driven Restricted Trade-off between Privacy and Prediction
Synthetic data have gained increasing attention across various domains, with a growing emphasis on their performance in downstream prediction tasks. However, most existing synthesis strategies focus on maintaining statistical information. Although some studies address prediction performance guarantees, their single-stage synthesis designs make it challenging to balance the privacy requirements that necessitate significant perturbations and the prediction performance that is sensitive to such perturbations. We propose a two-stage synthesis strategy. In the first stage, we introduce a synthesis-then-hybrid strategy, which involves a synthesis operation to generate pure synthetic data, followed by a hybrid operation that fuses the synthetic data with the original data. In the second stage, we present a kernel ridge regression (KRR)-based synthesis strategy, where a KRR model is first trained on the original data and then used to generate synthetic outputs based on the synthetic inputs produced in the first stage. By leveraging the theoretical strengths of KRR and the covariant distribution retention achieved in the first stage, our proposed two-stage synthesis strategy enables a statistics-driven restricted privacy--prediction trade-off and guarantee optimal prediction performance. We validate our approach and demonstrate its characteristics of being statistics-driven and restricted in achieving the privacy--prediction trade-off both theoretically and numerically. Additionally, we showcase its generalizability through applications to a marketing problem and five real-world datasets.
☆ From Robotics to Sepsis Treatment: Offline RL via Geometric Pessimism
Offline Reinforcement Learning (RL) promises the recovery of optimal policies from static datasets, yet it remains susceptible to the overestimation of out-of-distribution (OOD) actions, particularly in fractured and sparse data manifolds.Current solutions necessitates a trade off between computational efficiency and performance. Methods like CQL offers rigorous conservatism but require tremendous compute power while efficient expectile-based methods like IQL often fail to correct OOD errors on pathological datasets, collapsing to Behavioural Cloning. In this work, we propose Geometric Pessimism, a modular, compute-efficient framework that augments standard IQL with density-based penalty derived from k-nearest-neighbour distances in the state-action embedding space. By pre-computing the penalties applied to each state-action pair our method injects OOD conservatism via reward shaping with a O(1) training overhead. Evaluated on the D4Rl MuJoCo benchmark, our method, Geo-IQL outperforms standard IQL on sensitive and unstable medium-replay tasks by over 18 points, while reducing inter-seed variance by 4x. Furthermore, Geo-IQL does not degrade performance on stable manifolds. Crucially, we validate our algorithm on the MIMIC-III Sepsis critical care dataset. While standard IQL collapses to behaviour cloning, Geo-IQL demonstrates active policy improvement. Maintaining safety constraints, achieving 86.4% terminal agreement with clinicians compared to IQL's 75%. Our results suggest that geometric pessimism provides the necessary regularisation to safely overcome local optima in critical, real-world decision systems.
comment: 10 pages, 8 figures
☆ Projected Gradient Ascent for Efficient Reward-Guided Updates with One-Step Generative Models
We propose a constrained latent optimization method for reward-guided generation that preserves white Gaussian noise characteristics with negligible overhead. Test-time latent optimization can unlock substantially better reward-guided generations from pretrained generative models, but it is prone to reward hacking that degrades quality and also too slow for practical use. In this work, we make test-time optimization both efficient and reliable by replacing soft regularization with hard white Gaussian noise constraints enforced via projected gradient ascent. Our method applies a closed-form projection after each update to keep the latent vector explicitly noise-like throughout optimization, preventing the drift that leads to unrealistic artifacts. This enforcement adds minimal cost: the projection matches the $O(N \log N)$ complexity of standard algorithms such as sorting or FFT and does not practically increase wall-clock time. In experiments, our approach reaches a comparable Aesthetic Score using only 30% of the wall-clock time required by the SOTA regularization-based method, while preventing reward hacking.
☆ LEFT: Learnable Fusion of Tri-view Tokens for Unsupervised Time Series Anomaly Detection
As a fundamental data mining task, unsupervised time series anomaly detection (TSAD) aims to build a model for identifying abnormal timestamps without assuming the availability of annotations. A key challenge in unsupervised TSAD is that many anomalies are too subtle to exhibit detectable deviation in any single view (e.g., time domain), and instead manifest as inconsistencies across multiple views like time, frequency, and a mixture of resolutions. However, most cross-view methods rely on feature or score fusion and do not enforce analysis-synthesis consistency, meaning the frequency branch is not required to reconstruct the time signal through an inverse transform, and vice versa. In this paper, we present Learnable Fusion of Tri-view Tokens (LEFT), a unified unsupervised TSAD framework that models anomalies as inconsistencies across complementary representations. LEFT learns feature tokens from three views of the same input time series: frequency-domain tokens that embed periodicity information, time-domain tokens that capture local dynamics, and multi-scale tokens that learns abnormal patterns at varying time series granularities. By learning a set of adaptive Nyquist-constrained spectral filters, the original time series is rescaled into multiple resolutions and then encoded, allowing these multi-scale tokens to complement the extracted frequency- and time-domain information. When generating the fused representation, we introduce a novel objective that reconstructs fine-grained targets from coarser multi-scale structure, and put forward an innovative time-frequency cycle consistency constraint to explicitly regularize cross-view agreement. Experiments on real-world benchmarks show that LEFT yields the best detection accuracy against SOTA baselines, while achieving a 5x reduction on FLOPs and 8x speed-up for training.
☆ We Should Separate Memorization from Copyright
The widespread use of foundation models has introduced a new risk factor of copyright issue. This issue is leading to an active, lively and on-going debate amongst the data-science community as well as amongst legal scholars. Where claims and results across both sides are often interpreted in different ways and leading to different implications. Our position is that much of the technical literature relies on traditional reconstruction techniques that are not designed for copyright analysis. As a result, memorization and copying have been conflated across both technical and legal communities and in multiple contexts. We argue that memorization, as commonly studied in data science, should not be equated with copying and should not be used as a proxy for copyright infringement. We distinguish technical signals that meaningfully indicate infringement risk from those that instead reflect lawful generalization or high-frequency content. Based on this analysis, we advocate for an output-level, risk-based evaluation process that aligns technical assessments with established copyright standards and provides a more principled foundation for research, auditing, and policy.
☆ CauScale: Neural Causal Discovery at Scale
Causal discovery is essential for advancing data-driven fields such as scientific AI and data analysis, yet existing approaches face significant time- and space-efficiency bottlenecks when scaling to large graphs. To address this challenge, we present CauScale, a neural architecture designed for efficient causal discovery that scales inference to graphs with up to 1000 nodes. CauScale improves time efficiency via a reduction unit that compresses data embeddings and improves space efficiency by adopting tied attention weights to avoid maintaining axis-specific attention maps. To keep high causal discovery accuracy, CauScale adopts a two-stream design: a data stream extracts relational evidence from high-dimensional observations, while a graph stream integrates statistical graph priors and preserves key structural signals. CauScale successfully scales to 500-node graphs during training, where prior work fails due to space limitations. Across testing data with varying graph scales and causal mechanisms, CauScale achieves 99.6% mAP on in-distribution data and 84.4% on out-of-distribution data, while delivering 4-13,000 times inference speedups over prior methods. Our project page is at https://github.com/OpenCausaLab/CauScale.
☆ Sparse Models, Sparse Safety: Unsafe Routes in Mixture-of-Experts LLMs
By introducing routers to selectively activate experts in Transformer layers, the mixture-of-experts (MoE) architecture significantly reduces computational costs in large language models (LLMs) while maintaining competitive performance, especially for models with massive parameters. However, prior work has largely focused on utility and efficiency, leaving the safety risks associated with this sparse architecture underexplored. In this work, we show that the safety of MoE LLMs is as sparse as their architecture by discovering unsafe routes: routing configurations that, once activated, convert safe outputs into harmful ones. Specifically, we first introduce the Router Safety importance score (RoSais) to quantify the safety criticality of each layer's router. Manipulation of only the high-RoSais router(s) can flip the default route into an unsafe one. For instance, on JailbreakBench, masking 5 routers in DeepSeek-V2-Lite increases attack success rate (ASR) by over 4$\times$ to 0.79, highlighting an inherent risk that router manipulation may naturally occur in MoE LLMs. We further propose a Fine-grained token-layer-wise Stochastic Optimization framework to discover more concrete Unsafe Routes (F-SOUR), which explicitly considers the sequentiality and dynamics of input tokens. Across four representative MoE LLM families, F-SOUR achieves an average ASR of 0.90 and 0.98 on JailbreakBench and AdvBench, respectively. Finally, we outline defensive perspectives, including safety-aware route disabling and router training, as promising directions to safeguard MoE LLMs. We hope our work can inform future red-teaming and safeguarding of MoE LLMs. Our code is provided in https://github.com/TrustAIRLab/UnsafeMoE.
☆ Enhancing Genetic Algorithms with Graph Neural Networks: A Timetabling Case Study
This paper investigates the impact of hybridizing a multi-modal Genetic Algorithm with a Graph Neural Network for timetabling optimization. The Graph Neural Network is designed to encapsulate general domain knowledge to improve schedule quality, while the Genetic Algorithm explores different regions of the search space and integrates the deep learning model as an enhancement operator to guide the solution search towards optimality. Initially, both components of the hybrid technique were designed, developed, and optimized independently to solve the tackled task. Multiple experiments were conducted on Staff Rostering, a well-known timetabling problem, to compare the proposed hybridization with the standalone optimized versions of the Genetic Algorithm and Graph Neural Network. The experimental results demonstrate that the proposed hybridization brings statistically significant improvements in both the time efficiency and solution quality metrics, compared to the standalone methods. To the best of our knowledge, this work proposes the first hybridization of a Genetic Algorithm with a Graph Neural Network for solving timetabling problems.
comment: Paper accepted to the International Conference on Applications of Evolutionary Computation (EvoApplications) 2026
☆ ERIS: Enhancing Privacy and Communication Efficiency in Serverless Federated Learning
Scaling federated learning (FL) to billion-parameter models introduces critical trade-offs between communication efficiency, model accuracy, and privacy guarantees. Existing solutions often tackle these challenges in isolation, sacrificing accuracy or relying on costly cryptographic tools. We propose ERIS, a serverless FL framework that balances privacy and accuracy while eliminating the server bottleneck and distributing the communication load. ERIS combines a model partitioning strategy, distributing aggregation across multiple client-side aggregators, with a distributed shifted gradient compression mechanism. We theoretically prove that ERIS (i) converges at the same rate as FedAvg under standard assumptions, and (ii) bounds mutual information leakage inversely with the number of aggregators, enabling strong privacy guarantees with no accuracy degradation. Experiments across image and text tasks, including large language models, confirm that ERIS achieves FedAvg-level accuracy while substantially reducing communication cost and improving robustness to membership inference and reconstruction attacks, without relying on heavy cryptography or noise injection.
☆ Breaking the Grid: Distance-Guided Reinforcement Learning in Large Discrete and Hybrid Action Spaces
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
comment: 26 pages, 8 figures
☆ Constructive conditional normalizing flows
Motivated by applications in conditional sampling, given a probability measure $μ$ and a diffeomorphism $φ$, we consider the problem of simultaneously approximating $φ$ and the pushforward $φ_{\#}μ$ by means of the flow of a continuity equation whose velocity field is a perceptron neural network with piecewise constant weights. We provide an explicit construction based on a polar-like decomposition of the Lagrange interpolant of $φ$. The latter involves a compressible component, given by the gradient of a particular convex function, which can be realized exactly, and an incompressible component, which -- after approximating via permutations -- can be implemented through shear flows intrinsic to the continuity equation. For more regular maps $φ$ -- such as the Knöthe-Rosenblatt rearrangement -- we provide an alternative, probabilistic construction inspired by the Maurey empirical method, in which the number of discontinuities in the weights doesn't scale inversely with the ambient dimension.
☆ TFMLinker: Universal Link Predictor by Graph In-Context Learning with Tabular Foundation Models
Link prediction is a fundamental task in graph machine learning with widespread applications such as recommendation systems, drug discovery, knowledge graphs, etc. In the foundation model era, how to develop universal link prediction methods across datasets and domains becomes a key problem, with some initial attempts adopting Graph Foundation Models utilizing Graph Neural Networks and Large Language Models. However, the existing methods face notable limitations, including limited pre-training scale or heavy reliance on textual information. Motivated by the success of tabular foundation models (TFMs) in achieving universal prediction across diverse tabular datasets, we explore an alternative approach by TFMs, which are pre-trained on diverse synthetic datasets sampled from structural causal models and support strong in-context learning independent of textual attributes. Nevertheless, adapting TFMs for link prediction faces severe technical challenges such as how to obtain the necessary context and capture link-centric topological information. To solve these challenges, we propose TFMLinker (Tabular Foundation Model for Link Predictor), aiming to leverage the in-context learning capabilities of TFMs to perform link prediction across diverse graphs without requiring dataset-specific fine-tuning. Specifically, we first develop a prototype-augmented local-global context module to construct context that captures both graph-specific and cross-graph transferable patterns. Next, we design a universal topology-aware link encoder to capture link-centric topological information and generate link representations as inputs for the TFM. Finally, we employ the TFM to predict link existence through in-context learning. Experiments on 6 graph benchmarks across diverse domains demonstrate the superiority of our method over state-of-the-art baselines without requiring dataset-specific finetuning.
☆ SDFed: Bridging Local Global Discrepancy via Subspace Refinement and Divergence Control in Federated Prompt Learning
Vision-language pretrained models offer strong transferable representations, yet adapting them in privacy-sensitive multi-party settings is challenging due to the high communication cost of federated optimization and the limited local data on clients. Federated prompt learning mitigates this issue by keeping the VLPM backbone frozen and collaboratively training lightweight prompt parameters. However, existing approaches typically enforce a unified prompt structure and length across clients, which is inadequate under practical client heterogeneity in both data distributions and system resources, and may further introduce conflicts between globally shared and locally optimal knowledge. To address these challenges, we propose \textbf{SDFed}, a heterogeneous federated prompt learning framework that bridges Local-Global Discrepancy via Subspace Refinement and Divergence Control. SDFed maintains a fixed-length global prompt for efficient aggregation while allowing each client to learn a variable-length local prompt to better match its data characteristics and capacity. To mitigate local-global conflicts and facilitate effective knowledge transfer, SDFed introduces a subspace refinement method for local prompts and an information retention and divergence control strategy that preserves key local information while maintaining appropriate separability between global and local representations. Extensive experiments on several datasets demonstrate that SDFed consistently improves performance and robustness in heterogeneous federated settings.
comment: 13 pages, 6 figures
☆ FairRARI: A Plug and Play Framework for Fairness-Aware PageRank
PageRank (PR) is a fundamental algorithm in graph machine learning tasks. Owing to the increasing importance of algorithmic fairness, we consider the problem of computing PR vectors subject to various group-fairness criteria based on sensitive attributes of the vertices. At present, principled algorithms for this problem are lacking - some cannot guarantee that a target fairness level is achieved, while others do not feature optimality guarantees. In order to overcome these shortcomings, we put forth a unified in-processing convex optimization framework, termed FairRARI, for tackling different group-fairness criteria in a ``plug and play'' fashion. Leveraging a variational formulation of PR, the framework computes fair PR vectors by solving a strongly convex optimization problem with fairness constraints, thereby ensuring that a target fairness level is achieved. We further introduce three different fairness criteria which can be efficiently tackled using FairRARI to compute fair PR vectors with the same asymptotic time-complexity as the original PR algorithm. Extensive experiments on real-world datasets showcase that FairRARI outperforms existing methods in terms of utility, while achieving the desired fairness levels across multiple vertex groups; thereby highlighting its effectiveness.
☆ Predicting Future Utility: Global Combinatorial Optimization for Task-Agnostic KV Cache Eviction
Given the quadratic complexity of attention, KV cache eviction is vital to accelerate model inference. Current KV cache eviction methods typically rely on instantaneous heuristic metrics, implicitly assuming that score magnitudes are consistent proxies for importance across all heads. However, this overlooks the heterogeneity in predictive fidelity across attention heads. While certain heads prioritize the instantaneous contribution of tokens, others are dedicated to capturing long-horizon utility. In this paper, we propose that optimal budget allocation should be governed by the marginal utility in preserving long-term semantic information. Based on this insight, we propose LU-KV, a novel framework that optimizes head-level budget allocation through a convex-hull relaxation and a marginal-utility-based greedy solver to achieve near-optimal precision. Furthermore, we implement a data-driven offline profiling protocol to facilitate the practical deployment of LU-KV. Extensive evaluations on LongBench and RULER benchmarks demonstrate that LU-KV achieves an 80% reduction in KV cache size with minimal performance degradation, while simultaneously reducing inference latency and GPU memory footprint.
☆ Conditional Sequence Modeling for Safe Reinforcement Learning
Offline safe reinforcement learning (RL) aims to learn policies from a fixed dataset while maximizing performance under cumulative cost constraints. In practice, deployment requirements often vary across scenarios, necessitating a single policy that can adapt zero-shot to different cost thresholds. However, most existing offline safe RL methods are trained under a pre-specified threshold, yielding policies with limited generalization and deployment flexibility across cost thresholds. Motivated by recent progress in conditional sequence modeling (CSM), which enables flexible goal-conditioned control by specifying target returns, we propose RCDT, a CSM-based method that supports zero-shot deployment across multiple cost thresholds within a single trained policy. RCDT is the first CSM-based offline safe RL algorithm that integrates a Lagrangian-style cost penalty with an auto-adaptive penalty coefficient. To avoid overly conservative behavior and achieve a more favorable return--cost trade-off, a reward--cost-aware trajectory reweighting mechanism and Q-value regularization are further incorporated. Extensive experiments on the DSRL benchmark demonstrate that RCDT consistently improves return--cost trade-offs over representative baselines, advancing the state-of-the-art in offline safe RL.
☆ Modeling Score Approximation Errors in Diffusion Models via Forward SPDEs
This study investigates the dynamics of Score-based Generative Models (SGMs) by treating the score estimation error as a stochastic source driving the Fokker-Planck equation. Departing from particle-centric SDE analyses, we employ an SPDE framework to model the evolution of the probability density field under stochastic drift perturbations. Under a simplified setting, we utilize this framework to interpret the robustness of generative models through the lens of geometric stability and displacement convexity. Furthermore, we introduce a candidate evaluation metric derived from the quadratic variation of the SPDE solution projected onto a radial test function. Preliminary observations suggest that this metric remains effective using only the initial 10% of the sampling trajectory, indicating a potential for computational efficiency.
☆ An arithmetic method algorithm optimizing k-nearest neighbors compared to regression algorithms and evaluated on real world data sources
Linear regression analysis focuses on predicting a numeric regressand value based on certain regressor values. In this context, k-Nearest Neighbors (k-NN) is a common non-parametric regression algorithm, which achieves efficient performance when compared with other algorithms in literature. In this research effort an optimization of the k-NN algorithm is proposed by exploiting the potentiality of an introduced arithmetic method, which can provide solutions for linear equations involving an arbitrary number of real variables. Specifically, an Arithmetic Method Algorithm (AMA) is adopted to assess the efficiency of the introduced arithmetic method, while an Arithmetic Method Regression (AMR) algorithm is proposed as an optimization of k-NN adopting the potentiality of AMA. Such algorithm is compared with other regression algorithms, according to an introduced optimal inference decision rule, and evaluated on certain real world data sources, which are publicly available. Results are promising since the proposed AMR algorithm has comparable performance with the other algorithms, while in most cases it achieves better performance than the k-NN. The output results indicate that introduced AMR is an optimization of k-NN.
comment: Nature Scientific Reports
☆ M-Loss: Quantifying Model Merging Compatibility with Limited Unlabeled Data
Training of large-scale models is both computationally intensive and often constrained by the availability of labeled data. Model merging offers a compelling alternative by directly integrating the weights of multiple source models without requiring additional data or extensive training. However, conventional model merging techniques, such as parameter averaging, often suffer from the unintended combination of non-generalizable features, especially when source models exhibit significant weight disparities. Comparatively, model ensembling generally provides more stable and superior performance that aggregates multiple models by averaging outputs. However, it incurs higher inference costs and increased storage requirements. While previous studies experimentally showed the similarities between model merging and ensembling, theoretical evidence and evaluation metrics remain lacking. To address this gap, we introduce Merging-ensembling loss (M-Loss), a novel evaluation metric that quantifies the compatibility of merging source models using very limited unlabeled data. By measuring the discrepancy between parameter averaging and model ensembling at layer and node levels, M-Loss facilitates more effective merging strategies. Specifically, M-Loss serves both as a quantitative criterion of the theoretical feasibility of model merging, and a guide for parameter significance in model pruning. Our theoretical analysis and empirical evaluations demonstrate that incorporating M-Loss into the merging process significantly improves the alignment between merged models and model ensembling, providing a scalable and efficient framework for accurate model consolidation.
comment: Code available at https://github.com/languangduan/mLoss
☆ Stateless Yet Not Forgetful: Implicit Memory as a Hidden Channel in LLMs IEEE
Large language models (LLMs) are commonly treated as stateless: once an interaction ends, no information is assumed to persist unless it is explicitly stored and re-supplied. We challenge this assumption by introducing implicit memory-the ability of a model to carry state across otherwise independent interactions by encoding information in its own outputs and later recovering it when those outputs are reintroduced as input. This mechanism does not require any explicit memory module, yet it creates a persistent information channel across inference requests. As a concrete demonstration, we introduce a new class of temporal backdoors, which we call time bombs. Unlike conventional backdoors that activate on a single trigger input, time bombs activate only after a sequence of interactions satisfies hidden conditions accumulated via implicit memory. We show that such behavior can be induced today through straightforward prompting or fine-tuning. Beyond this case study, we analyze broader implications of implicit memory, including covert inter-agent communication, benchmark contamination, targeted manipulation, and training-data poisoning. Finally, we discuss detection challenges and outline directions for stress-testing and evaluation, with the goal of anticipating and controlling future developments. To promote future research, we release code and data at: https://github.com/microsoft/implicitMemory.
comment: Accepted at IEEE SaTML 2026
☆ DNS: Data-driven Nonlinear Smoother for Complex Model-free Process
We propose data-driven nonlinear smoother (DNS) to estimate a hidden state sequence of a complex dynamical process from a noisy, linear measurement sequence. The dynamical process is model-free, that is, we do not have any knowledge of the nonlinear dynamics of the complex process. There is no state-transition model (STM) of the process available. The proposed DNS uses a recurrent architecture that helps to provide a closed-form posterior of the hidden state sequence given the measurement sequence. DNS learns in an unsupervised manner, meaning the training dataset consists of only measurement data and no state data. We demonstrate DNS using simulations for smoothing of several stochastic dynamical processes, including a benchmark Lorenz system. Experimental results show that the DNS is significantly better than a deep Kalman smoother (DKS) and an iterative data-driven nonlinear state estimation (iDANSE) smoother.
☆ Rho-Perfect: Correlation Ceiling For Subjective Evaluation Datasets
Subjective ratings contain inherent noise that limits the model-human correlation, but this reliability issue is rarely quantified. In this paper, we present $ρ$-Perfect, a practical estimation of the highest achievable correlation of a model on subjectively rated datasets. We define $ρ$-Perfect to be the correlation between a perfect predictor and human ratings, and derive an estimate of the value based on heteroscedastic noise scenarios, a common occurrence in subjectively rated datasets. We show that $ρ$-Perfect squared estimates test-retest correlation and use this to validate the estimate. We demonstrate the use of $ρ$-Perfect on a speech quality dataset and show how the measure can distinguish between model limitations and data quality issues.
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ Incremental (k, z)-Clustering on Graphs
Given a weighted undirected graph, a number of clusters $k$, and an exponent $z$, the goal in the $(k, z)$-clustering problem on graphs is to select $k$ vertices as centers that minimize the sum of the distances raised to the power $z$ of each vertex to its closest center. In the dynamic setting, the graph is subject to adversarial edge updates, and the goal is to maintain explicitly an exact $(k, z)$-clustering solution in the induced shortest-path metric. While efficient dynamic $k$-center approximation algorithms on graphs exist [Cruciani et al. SODA 2024], to the best of our knowledge, no prior work provides similar results for the dynamic $(k,z)$-clustering problem. As the main result of this paper, we develop a randomized incremental $(k, z)$-clustering algorithm that maintains with high probability a constant-factor approximation in a graph undergoing edge insertions with a total update time of $\tilde O(k m^{1+o(1)}+ k^{1+\frac{1}λ} m)$, where $λ\geq 1$ is an arbitrary fixed constant. Our incremental algorithm consists of two stages. In the first stage, we maintain a constant-factor bicriteria approximate solution of size $\tilde{O}(k)$ with a total update time of $m^{1+o(1)}$ over all adversarial edge insertions. This first stage is an intricate adaptation of the bicriteria approximation algorithm by Mettu and Plaxton [Machine Learning 2004] to incremental graphs. One of our key technical results is that the radii in their algorithm can be assumed to be non-decreasing while the approximation ratio remains constant, a property that may be of independent interest. In the second stage, we maintain a constant-factor approximate $(k,z)$-clustering solution on a dynamic weighted instance induced by the bicriteria approximate solution. For this subproblem, we employ a dynamic spanner algorithm together with a static $(k,z)$-clustering algorithm.
comment: Abstract shortened to meet arXiv limits
☆ Trajectory Stitching for Solving Inverse Problems with Flow-Based Models
Flow-based generative models have emerged as powerful priors for solving inverse problems. One option is to directly optimize the initial latent code (noise), such that the flow output solves the inverse problem. However, this requires backpropagating through the entire generative trajectory, incurring high memory costs and numerical instability. We propose MS-Flow, which represents the trajectory as a sequence of intermediate latent states rather than a single initial code. By enforcing the flow dynamics locally and coupling segments through trajectory-matching penalties, MS-Flow alternates between updating intermediate latent states and enforcing consistency with observed data. This reduces memory consumption while improving reconstruction quality. We demonstrate the effectiveness of MS-Flow over existing methods on image recovery and inverse problems, including inpainting, super-resolution, and computed tomography.
☆ Causal Schrödinger Bridges: Constrained Optimal Transport on Structural Manifolds
Generative modeling typically seeks the path of least action via deterministic flows (ODE). While effective for in-distribution tasks, we argue that these deterministic paths become brittle under causal interventions, which often require transporting probability mass across low-density regions ("off-manifold") where the vector field is ill-defined. This leads to numerical instability and spurious correlations. In this work, we introduce the Causal Schrödinger Bridge (CSB), a framework that reformulates counterfactual inference as Entropic Optimal Transport. Unlike deterministic approaches that require strict invertibility, CSB leverages diffusion processes (SDEs) to robustly "tunnel" through support mismatches while strictly enforcing structural admissibility constraints. We prove the Structural Decomposition Theorem, showing that the global high-dimensional bridge factorizes into local, robust transitions. Empirical validation on high-dimensional interventions (Morpho-MNIST) demonstrates that CSB significantly outperforms deterministic baselines in structural consistency, particularly in regimes of strong, out-of-distribution treatments.
comment: 12 pages, 7 figures
☆ Reinforcement Inference: Leveraging Uncertainty for Self-Correcting Language Model Reasoning
Modern large language models (LLMs) are often evaluated and deployed under a \emph{one-shot, greedy} inference protocol, especially in professional settings that require deterministic behavior. This regime can systematically under-estimate a fixed model's true capability: many errors arise not from missing knowledge, but from premature commitment under internal ambiguity. We introduce \emph{Reinforcement Inference}, an entropy-aware inference-time control strategy that uses the model's own uncertainty to selectively invoke a second, more deliberate reasoning attempt, enabling stronger performance \emph{without any retraining}. On 12,032 MMLU-Pro questions across 14 subjects, using DeepSeek-v3.2 with deterministic decoding in a zero-shot setting, Reinforcement Inference improves accuracy from 60.72\% to 84.03\%, while only incurring 61.06\% additional inference calls. A 100\% re-asking ablation reaches 84.35\%, indicating that uncertainty-aware selection captures most of the attainable improvement with substantially less compute. Moreover, a \emph{prompt-only} ablation underperforms the baseline, suggesting that the gains are not explained by generic `` your output had high entropy, think step-by-step'' prompting alone. Beyond providing a practical inference-time upgrade, our results suggest a broader \emph{entropy-aware} paradigm for measuring and expanding model capability: because modern decoder-based models generate outputs autoregressively, entropy and related confidence measures arise naturally as first-class control signals during generation. The resulting gap between one-pass greedy inference and uncertainty-conditioned deliberation offers a diagnostic lens on an LLM's latent reasoning horizon and motivates future training objectives that explicitly constrain correctness--confidence alignment.
☆ Bridging Academia and Industry: A Comprehensive Benchmark for Attributed Graph Clustering
Attributed Graph Clustering (AGC) is a fundamental unsupervised task that integrates structural topology and node attributes to uncover latent patterns in graph-structured data. Despite its significance in industrial applications such as fraud detection and user segmentation, a significant chasm persists between academic research and real-world deployment. Current evaluation protocols suffer from the small-scale, high-homophily citation datasets, non-scalable full-batch training paradigms, and a reliance on supervised metrics that fail to reflect performance in label-scarce environments. To bridge these gaps, we present PyAGC, a comprehensive, production-ready benchmark and library designed to stress-test AGC methods across diverse scales and structural properties. We unify existing methodologies into a modular Encode-Cluster-Optimize framework and, for the first time, provide memory-efficient, mini-batch implementations for a wide array of state-of-the-art AGC algorithms. Our benchmark curates 12 diverse datasets, ranging from 2.7K to 111M nodes, specifically incorporating industrial graphs with complex tabular features and low homophily. Furthermore, we advocate for a holistic evaluation protocol that mandates unsupervised structural metrics and efficiency profiling alongside traditional supervised metrics. Battle-tested in high-stakes industrial workflows at Ant Group, this benchmark offers the community a robust, reproducible, and scalable platform to advance AGC research towards realistic deployment. The code and resources are publicly available via GitHub (https://github.com/Cloudy1225/PyAGC), PyPI (https://pypi.org/project/pyagc), and Documentation (https://pyagc.readthedocs.io).
☆ Do physics-informed neural networks (PINNs) need to be deep? Shallow PINNs using the Levenberg-Marquardt algorithm
This work investigates the use of shallow physics-informed neural networks (PINNs) for solving forward and inverse problems of nonlinear partial differential equations (PDEs). By reformulating PINNs as nonlinear systems, the Levenberg-Marquardt (LM) algorithm is employed to efficiently optimize the network parameters. Analytical expressions for the neural network derivatives with respect to the input variables are derived, enabling accurate and efficient computation of the Jacobian matrix required by LM. The proposed approach is tested on several benchmark problems, including the Burgers, Schrödinger, Allen-Cahn, and three-dimensional Bratu equations. Numerical results demonstrate that LM significantly outperforms BFGS in terms of convergence speed, accuracy, and final loss values, even when using shallow network architectures with only two hidden layers. These findings indicate that, for a wide class of PDEs, shallow PINNs combined with efficient second-order optimization methods can provide accurate and computationally efficient solutions for both forward and inverse problems.
☆ Estimation of Fish Catch Using Sentinel-2, 3 and XGBoost-Kernel-Based Kernel Ridge Regression
Oceanographic factors, such as sea surface temperature and upper-ocean dynamics, have a significant impact on fish distribution. Maintaining fisheries that contribute to global food security requires quantifying these connections. This study uses multispectral images from Sentinel-2 MSI and Sentinel-3 OLCI to estimate fish catch using an Extreme Gradient Boosting (XGBoost)-kernelized Kernel Ridge Regression (KRR) technique. According to model evaluation, the XGBoost-KRR framework achieves the strongest correlation and the lowest prediction error across both sensors, suggesting improved capacity to capture nonlinear ocean-fish connections. While Sentinel-2 MSI resolves finer-scale spatial variability, emphasizing localized ecological interactions, Sentinel-3 OLCI displays smoother spectral responses associated with poorer spatial resolution. By supporting sustainable ecosystem management and strengthening satellite-based fisheries assessment, the proposed approach advances SDGs 2 (Zero Hunger) and 14 (Life Below Water).
comment: Manuscript
☆ Learning Self-Correction in Vision-Language Models via Rollout Augmentation
Self-correction is essential for solving complex reasoning problems in vision-language models (VLMs). However, existing reinforcement learning (RL) methods struggle to learn it, as effective self-correction behaviors emerge only rarely, making learning signals extremely sparse. To address this challenge, we propose correction-specific rollouts (Octopus), an RL rollout augmentation framework that synthesizes dense self-correction examples by recombining existing rollouts. This augmentation simultaneously improves sample efficiency due to rollout reuse and stabilizes RL optimization through balanced supervision. Furthermore, we introduce a response-masking strategy that decouples self-correction from direct reasoning, avoiding signal conflicts and enabling both behaviors to be learned effectively. Building on this, we introduce Octopus-8B, a reasoning VLM with controllable self-correction capability. Across 7 benchmarks, it achieves SoTA performance among open-source VLMs, outperforming the best RLVR baseline by 1.0 score while requiring only $0.72\times$ training time per step.
comment: 17 pages
☆ Is Meta-Path Attention an Explanation? Evidence of Alignment and Decoupling in Heterogeneous GNNs
Meta-path-based heterogeneous graph neural networks aggregate over meta-path-induced views, and their semantic-level attention over meta-path channels is widely used as a narrative for ``which semantics matter.'' We study this assumption empirically by asking: when does meta-path attention reflect meta-path importance, and when can it decouple? A key challenge is that most post-hoc GNN explainers are designed for homogeneous graphs, and naive adaptations to heterogeneous neighborhoods can mix semantics and confound perturbations. To enable a controlled empirical analysis, we introduce MetaXplain, a meta-path-aware post-hoc explanation protocol that applies existing explainers in the native meta-path view domain via (i) view-factorized explanations, (ii) schema-valid channel-wise perturbations, and (iii) fusion-aware attribution, without modifying the underlying predictor. We benchmark representative gradient-, perturbation-, and Shapley-style explainers on ACM, DBLP, and IMDB with HAN and HAN-GCN, comparing against xPath and type-matched random baselines under standard faithfulness metrics. To quantify attention reliability, we propose Meta-Path Attention--Explanation Alignment (MP-AEA), which measures rank correlation between learned attention weights and explanation-derived meta-path contribution scores across random runs. Our results show that meta-path-aware explanations typically outperform random controls, while MP-AEA reveals both high-alignment and statistically significant decoupling regimes depending on the dataset and backbone; moreover, retraining on explanation-induced subgraphs often preserves, and in some noisy regimes improves, predictive performance, suggesting an explanation-as-denoising effect.
☆ Contextual Rollout Bandits for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) is an effective paradigm for improving the reasoning capabilities of large language models. However, existing RLVR methods utilize rollouts in an indiscriminate and short-horizon manner: responses of heterogeneous quality within each prompt are treated uniformly, and historical rollouts are discarded after a single use. This leads to noisy supervision, poor sample efficiency, and suboptimal policy updates. We address these issues by formulating rollout scheduling in RLVR as a contextual bandit problem and proposing a unified neural scheduling framework that adaptively selects high-value rollouts throughout training. Each rollout is treated as an arm whose reward is defined by the induced performance gain between consecutive optimization steps. The resulting scheduler supports both noise-aware intra-group selection and adaptive global reuse of historical rollouts within a single principled framework. We provide theoretical justification by deriving sublinear regret bounds and showing that enlarging the rollout buffer improves the achievable performance upper bound. Experiments on six mathematical reasoning benchmarks demonstrate consistent gains in performance and training efficiency across multiple RLVR optimization methods.
☆ Enhanced Food Category Recognition under Illumination-Induced Domain Shift
Visual food recognition systems deployed in real-world environments, such as automated conveyor-belt inspection, are highly sensitive to domain shifts caused by illumination changes. While recent studies have shown that lighting variations can significantly distort food perception by both humans and AI, existing works are often limited to single food categories or controlled settings, and most public food datasets lack explicit illumination annotations. In this work, we investigate illumination-induced domain shift in multi-class food category recognition using two widely adopted datasets, Food-101 and Fruits-360. We demonstrate substantial accuracy degradation under cross-dataset evaluation due to mismatched visual conditions. To address this challenge, we construct synthetic illumination-augmented datasets by systematically varying light temperature and intensity, enabling controlled robustness analysis without additional labels. We further evaluate cross-dataset transfer learning and domain generalization, with a focus on illumination-sensitive target categories such as apple-based classes. Experimental results show that illumination-aware augmentation significantly improves recognition robustness under domain shift while preserving real-time performance. Our findings highlight the importance of illumination robustness and provide practical insights for deploying reliable food recognition systems in real-world inspection scenarios.
☆ Beyond Correctness: Learning Robust Reasoning via Transfer
Reinforcement Learning with Verifiable Rewards (RLVR) has recently strengthened LLM reasoning, but its focus on final answer correctness leaves a critical gap: it does not ensure the robustness of the reasoning process itself. We adopt a simple philosophical view, robust reasoning should remain useful beyond the mind that produced it, and treat reasoning as a form of meaning transfer that must survive truncation, reinterpretation, and continuation. Building on this principle, we introduce Reinforcement Learning with Transferable Reward (RLTR), which operationalizes robustness via transfer reward that tests whether a partial reasoning prefix from one model can guide a separate model to the correct answer. This encourages LLMs to produce reasoning that is stable, interpretable, and genuinely generalizable. Our approach improves sampling consistency while improving final answer accuracy, and it reaches comparable performance in substantially fewer training steps. For example, on MATH500, RLTR achieves a +3.6%p gain in Maj@64 compared to RLVR and matches RLVR's average accuracy with roughly 2.5x fewer training steps, providing both more reliable reasoning and significantly more sample efficient.
☆ Empirical Study of Observable Sets in Multiclass Quantum Classification
Variational quantum algorithms have gained attention as early applications of quantum computers for learning tasks. In the context of supervised learning, most of the works that tackle classification problems with parameterized quantum circuits constrain their scope to the setting of binary classification or perform multiclass classification via ensembles of binary classifiers (strategies such as one versus rest). Those few works that propose native multiclass models, however, do not justify the choice of observables that perform the classification. This work studies two main classification criteria in multiclass quantum machine learning: maximizing the expected value of an observable representing a class or maximizing the fidelity of the encoded quantum state with a reference state representing a class. To compare both approaches, sets of Pauli strings and sets of projectors into the computational basis are chosen as observables in the quantum machine learning models. Observing the empirical behavior of each model type, the effect of different observable set choices on the performance of quantum machine learning models is analyzed in the context of Barren Plateaus and Neural Collapse. The results provide insights that may guide the design of future multiclass quantum machine learning models.
comment: 13 pages, 11 figures
☆ Gesture Matters: Pedestrian Gesture Recognition for AVs Through Skeleton Pose Evaluation
Gestures are a key component of non-verbal communication in traffic, often helping pedestrian-to-driver interactions when formal traffic rules may be insufficient. This problem becomes more apparent when autonomous vehicles (AVs) struggle to interpret such gestures. In this study, we present a gesture classification framework using 2D pose estimation applied to real-world video sequences from the WIVW dataset. We categorise gestures into four primary classes (Stop, Go, Thank & Greet, and No Gesture) and extract 76 static and dynamic features from normalised keypoints. Our analysis demonstrates that hand position and movement velocity are especially discriminative in distinguishing between gesture classes, achieving a classification accuracy score of 87%. These findings not only improve the perceptual capabilities of AV systems but also contribute to the broader understanding of pedestrian behaviour in traffic contexts.
comment: 9th International Conference on Instrumentation, Control, and Automation (ICA)
☆ Time-Delayed Transformers for Data-Driven Modeling of Low-Dimensional Dynamics
We propose the time-delayed transformer (TD-TF), a simplified transformer architecture for data-driven modeling of unsteady spatio-temporal dynamics. TD-TF bridges linear operator-based methods and deep sequence models by showing that a single-layer, single-head transformer can be interpreted as a nonlinear generalization of time-delayed dynamic mode decomposition (TD-DMD). The architecture is deliberately minimal, consisting of one self-attention layer with a single query per prediction and one feedforward layer, resulting in linear computational complexity in sequence length and a small parameter count. Numerical experiments demonstrate that TD-TF matches the performance of strong linear baselines on near-linear systems, while significantly outperforming them in nonlinear and chaotic regimes, where it accurately captures long-term dynamics. Validation studies on synthetic signals, unsteady aerodynamics, the Lorenz '63 system, and a reaction-diffusion model show that TD-TF preserves the interpretability and efficiency of linear models while providing substantially enhanced expressive power for complex dynamics.
☆ Learning Credal Ensembles via Distributionally Robust Optimization
Credal predictors are models that are aware of epistemic uncertainty and produce a convex set of probabilistic predictions. They offer a principled way to quantify predictive epistemic uncertainty (EU) and have been shown to improve model robustness in various settings. However, most state-of-the-art methods mainly define EU as disagreement caused by random training initializations, which mostly reflects sensitivity to optimization randomness rather than uncertainty from deeper sources. To address this, we define EU as disagreement among models trained with varying relaxations of the i.i.d. assumption between training and test data. Based on this idea, we propose CreDRO, which learns an ensemble of plausible models through distributionally robust optimization. As a result, CreDRO captures EU not only from training randomness but also from meaningful disagreement due to potential distribution shifts between training and test data. Empirical results show that CreDRO consistently outperforms existing credal methods on tasks such as out-of-distribution detection across multiple benchmarks and selective classification in medical applications.
comment: 32 pages
☆ Low Rank Transformer for Multivariate Time Series Anomaly Detection and Localization
Multivariate time series (MTS) anomaly diagnosis, which encompasses both anomaly detection and localization, is critical for the safety and reliability of complex, large-scale real-world systems. The vast majority of existing anomaly diagnosis methods offer limited theoretical insights, especially for anomaly localization, which is a vital but largely unexplored area. The aim of this contribution is to study the learning process of a Transformer when applied to MTS by revealing connections to statistical time series methods. Based on these theoretical insights, we propose the Attention Low-Rank Transformer (ALoRa-T) model, which applies low-rank regularization to self-attention, and we introduce the Attention Low-Rank score, effectively capturing the temporal characteristics of anomalies. Finally, to enable anomaly localization, we propose the ALoRa-Loc method, a novel approach that associates anomalies to specific variables by quantifying interrelationships among time series. Extensive experiments and real data analysis, show that the proposed methodology significantly outperforms state-of-the-art methods in both detection and localization tasks.
☆ Estimating Aleatoric Uncertainty in the Causal Treatment Effect
Previous work on causal inference has primarily focused on averages and conditional averages of treatment effects, with significantly less attention on variability and uncertainty in individual treatment responses. In this paper, we introduce the variance of the treatment effect (VTE) and conditional variance of treatment effect (CVTE) as the natural measure of aleatoric uncertainty inherent in treatment responses, and we demonstrate that these quantities are identifiable from observed data under mild assumptions, even in the presence of unobserved confounders. We further propose nonparametric kernel-based estimators for VTE and CVTE, and our theoretical analysis establishes their convergence. We also test the performance of our method through extensive empirical experiments on both synthetic and semi-simulated datasets, where it demonstrates superior or comparable performance to naive baselines.
☆ When Evaluation Becomes a Side Channel: Regime Leakage and Structural Mitigations for Alignment Assessment
Safety evaluation for advanced AI systems implicitly assumes that behavior observed under evaluation is predictive of behavior in deployment. This assumption becomes fragile for agents with situational awareness, which may exploitregime leakage-informational cues distinguishing evaluation from deployment-to implement conditional policies such as sycophancy and sleeper agents, which preserve compliance under oversight while defecting in deployment-like regimes. We reframe alignment evaluation as a problem of information flow under partial observability. Within this framework, we show that divergence between evaluation-time and deployment-time behavior is bounded by the mutual information between internal representations and the regime variable. Motivated by this result, we study regime-blind mechanisms: training-time interventions that reduce the extractability of regime information at decision-relevant internal representations via adversarial invariance. We evaluate this approach on a base, open-weight language model across two fully characterized failure modes -scientific sycophancy and temporal sleeper agents. Regime-blind training suppresses regime-conditioned behavior in both evaluated cases without measurable loss of task utility, but with qualitatively different dynamics: sycophancy exhibits a sharp representational and behavioral transition at low intervention strength, whereas sleeper-agent behavior requires substantially stronger pressure and does not exhibit a clean collapse of regime decodability. These results demonstrate that representational invariance is a meaningful but fundamentally limited control lever, whose effectiveness depends on how regime information is embedded in the policy. We argue that behavioral evaluation should be complemented with white-box diagnostics of regime awareness and information flow.
comment: 25 pages, 4 figures,
☆ RIFLE: Robust Distillation-based FL for Deep Model Deployment on Resource-Constrained IoT Networks IEEE
Federated learning (FL) is a decentralized learning paradigm widely adopted in resource-constrained Internet of Things (IoT) environments. These devices, typically relying on TinyML models, collaboratively train global models by sharing gradients with a central server while preserving data privacy. However, as data heterogeneity and task complexity increase, TinyML models often become insufficient to capture intricate patterns, especially under extreme non-IID (non-independent and identically distributed) conditions. Moreover, ensuring robustness against malicious clients and poisoned updates remains a major challenge. Accordingly, this paper introduces RIFLE - a Robust, distillation-based Federated Learning framework that replaces gradient sharing with logit-based knowledge transfer. By leveraging a knowledge distillation aggregation scheme, RIFLE enables the training of deep models such as VGG-19 and Resnet18 within constrained IoT systems. Furthermore, a Kullback-Leibler (KL) divergence-based validation mechanism quantifies the reliability of client updates without exposing raw data, achieving high trust and privacy preservation simultaneously. Experiments on three benchmark datasets (MNIST, CIFAR-10, and CIFAR-100) under heterogeneous non-IID conditions demonstrate that RIFLE reduces false-positive detections by up to 87.5%, enhances poisoning attack mitigation by 62.5%, and achieves up to 28.3% higher accuracy compared to conventional federated learning baselines within only 10 rounds. Notably, RIFLE reduces VGG19 training time from over 600 days to just 1.39 hours on typical IoT devices (0.3 GFLOPS), making deep learning practical in resource-constrained networks.
comment: This paper has been accepted for publication in IEEE ICC 2026 and will be indexed in the IEEE Xplore Digital Library
☆ USBD: Universal Structural Basis Distillation for Source-Free Graph Domain Adaptation
SF-GDA is pivotal for privacy-preserving knowledge transfer across graph datasets. Although recent works incorporate structural information, they implicitly condition adaptation on the smoothness priors of sourcetrained GNNs, thereby limiting their generalization to structurally distinct targets. This dependency becomes a critical bottleneck under significant topological shifts, where the source model misinterprets distinct topological patterns unseen in the source domain as noise, rendering pseudo-label-based adaptation unreliable. To overcome this limitation, we propose the Universal Structural Basis Distillation, a framework that shifts the paradigm from adapting a biased model to learning a universal structural basis for SF-GDA. Instead of adapting a biased source model to a specific target, our core idea is to construct a structure-agnostic basis that proactively covers the full spectrum of potential topological patterns. Specifically, USBD employs a bi-level optimization framework to distill the source dataset into a compact structural basis. By enforcing the prototypes to span the full Dirichlet energy spectrum, the learned basis explicitly captures diverse topological motifs, ranging from low-frequency clusters to high-frequency chains, beyond those present in the source. This ensures that the learned basis creates a comprehensive structural covering capable of handling targets with disparate structures. For inference, we introduce a spectral-aware ensemble mechanism that dynamically activates the optimal prototype combination based on the spectral fingerprint of the target graph. Extensive experiments on benchmarks demonstrate that USBD significantly outperforms state-of-the-art methods, particularly in scenarios with severe structural shifts, while achieving superior computational efficiency by decoupling the adaptation cost from the target data scale.
☆ The Connection between Kriging and Large Neural Networks
AI has impacted many disciplines and is nowadays ubiquitous. In particular, spatial statistics is in a pivotal moment where it will increasingly intertwine with AI. In this scenario, a relevant question is what relationship spatial statistics models have with machine learning (ML) models, if any. In particular, in this paper, we explore the connections between Kriging and neural networks. At first glance, they may appear unrelated. Kriging - and its ML counterpart, Gaussian process regression - are grounded in probability theory and stochastic processes, whereas many ML models are extensively considered Black-Box models. Nevertheless, they are strongly related. We study their connections and revisit the relevant literature. The understanding of their relations and the combination of both perspectives may enhance ML techniques by making them more interpretable, reliable, and spatially aware.
☆ Radial Müntz-Szász Networks: Neural Architectures with Learnable Power Bases for Multidimensional Singularities
Radial singular fields, such as $1/r$, $\log r$, and crack-tip profiles, are difficult to model for coordinate-separable neural architectures. We show that any $C^2$ function that is both radial and additively separable must be quadratic, establishing a fundamental obstruction for coordinate-wise power-law models. Motivated by this result, we introduce Radial Müntz-Szász Networks (RMN), which represent fields as linear combinations of learnable radial powers $r^μ$, including negative exponents, together with a limit-stable log-primitive for exact $\log r$ behavior. RMN admits closed-form spatial gradients and Laplacians, enabling physics-informed learning on punctured domains. Across ten 2D and 3D benchmarks, RMN achieves 1.5$\times$--51$\times$ lower RMSE than MLPs and 10$\times$--100$\times$ lower RMSE than SIREN while using 27 parameters, compared with 33,537 for MLPs and 8,577 for SIREN. We extend RMN to angular dependence (RMN-Angular) and to multiple sources with learnable centers (RMN-MC); when optimization converges, source-center recovery errors fall below $10^{-4}$. We also report controlled failures on smooth, strongly non-radial targets to delineate RMN's operating regime.
comment: 47 pages, 13 figures
☆ Drop the mask! GAMM-A Taxonomy for Graph Attributes Missing Mechanisms
Exploring missing data in attributed graphs introduces unique challenges beyond those found in tabular datasets. In this work, we extend the taxonomy for missing data mechanisms to attributed graphs by proposing GAMM (Graph Attributes Missing Mechanisms), a framework that systematically links missingness probability to both node attributes and the underlying graph structure. Our taxonomy enriches the conventional definitions of masking mechanisms by introducing graph-specific dependencies. We empirically demonstrate that state-of-the-art imputation methods, while effective on traditional masks, significantly struggle when confronted with these more realistic graph-aware missingness scenarios.
☆ Altruism and Fair Objective in Mixed-Motive Markov games
Cooperation is fundamental for society's viability, as it enables the emergence of structure within heterogeneous groups that seek collective well-being. However, individuals are inclined to defect in order to benefit from the group's cooperation without contributing the associated costs, thus leading to unfair situations. In game theory, social dilemmas entail this dichotomy between individual interest and collective outcome. The most dominant approach to multi-agent cooperation is the utilitarian welfare which can produce efficient highly inequitable outcomes. This paper proposes a novel framework to foster fairer cooperation by replacing the standard utilitarian objective with Proportional Fairness. We introduce a fair altruistic utility for each agent, defined on the individual log-payoff space and derive the analytical conditions required to ensure cooperation in classic social dilemmas. We then extend this framework to sequential settings by defining a Fair Markov Game and deriving novel fair Actor-Critic algorithms to learn fair policies. Finally, we evaluate our method in various social dilemma environments.
☆ Modalities, a PyTorch-native Framework For Large-scale LLM Training and Research
Today's LLM (pre-) training and research workflows typically allocate a significant amount of compute to large-scale ablation studies. Despite the substantial compute costs of these ablations, existing open-source frameworks provide limited tooling for these experiments, often forcing researchers to write their own wrappers and scripts. We propose Modalities, an end-to-end PyTorch-native framework that integrates data-driven LLM research with large-scale model training from two angles. Firstly, by integrating state-of-the-art parallelization strategies, it enables both efficient pretraining and systematic ablations at trillion-token and billion-parameter scale. Secondly, Modalities adopts modular design with declarative, self-contained configuration, enabling reproducibility and extensibility levels that are difficult to achieve out-of-the-box with existing LLM training frameworks.
☆ Reinforcement Learning with Backtracking Feedback NeurIPS 2025
Addressing the critical need for robust safety in Large Language Models (LLMs), particularly against adversarial attacks and in-distribution errors, we introduce Reinforcement Learning with Backtracking Feedback (RLBF). This framework advances upon prior methods, such as BSAFE, by primarily leveraging a Reinforcement Learning (RL) stage where models learn to dynamically correct their own generation errors. Through RL with critic feedback on the model's live outputs, LLMs are trained to identify and recover from their actual, emergent safety violations by emitting an efficient "backtrack by x tokens" signal, then continuing generation autoregressively. This RL process is crucial for instilling resilience against sophisticated adversarial strategies, including middle filling, Greedy Coordinate Gradient (GCG) attacks, and decoding parameter manipulations. To further support the acquisition of this backtracking capability, we also propose an enhanced Supervised Fine-Tuning (SFT) data generation strategy (BSAFE+). This method improves upon previous data creation techniques by injecting violations into coherent, originally safe text, providing more effective initial training for the backtracking mechanism. Comprehensive empirical evaluations demonstrate that RLBF significantly reduces attack success rates across diverse benchmarks and model scales, achieving superior safety outcomes while critically preserving foundational model utility.
comment: NeurIPS 2025
☆ OJBKQ: Objective-Joint Babai-Klein Quantization
Post-training quantization (PTQ) is widely used to compress large language models without retraining. However, many existing weight-only methods rely on heuristic objectives and greedy rounding, thus leading to noticeable degradation under low-bit quantization. In this work, we introduce OJBKQ (Objective-Joint Babai-Klein Quantization with K-Best Sampling), a layer-wise PTQ method that formulates weight quantization as a joint optimization problem over activations and weights. This formulation results in a multiple-right-hand-side box-constrained integer least squares (BILS) problem in each layer, which is NP-hard. For each column of the weight matrix, we apply an extended Babai nearest-plane algorithm and an extended version of Klein's randomized Babai algorithm to find the minimum-residual Babai-Klein point, a sub-optimal solution to the BILS problem. Experimental results on large language models show that OJBKQ achieves lower perplexity at 3-4 bits compared to existing PTQ approaches, while maintaining comparable computational cost.
☆ Schrödinger bridge problem via empirical risk minimization
We study the Schrödinger bridge problem when the endpoint distributions are available only through samples. Classical computational approaches estimate Schrödinger potentials via Sinkhorn iterations on empirical measures and then construct a time-inhomogeneous drift by differentiating a kernel-smoothed dual solution. In contrast, we propose a learning-theoretic route: we rewrite the Schrödinger system in terms of a single positive transformed potential that satisfies a nonlinear fixed-point equation and estimate this potential by empirical risk minimization over a function class. We establish uniform concentration of the empirical risk around its population counterpart under sub-Gaussian assumptions on the reference kernel and terminal density. We plug the learned potential into a stochastic control representation of the bridge to generate samples. We illustrate performance of the suggested approach with numerical experiments.
☆ Grounding Generative Planners in Verifiable Logic: A Hybrid Architecture for Trustworthy Embodied AI ICLR 2026
Large Language Models (LLMs) show promise as planners for embodied AI, but their stochastic nature lacks formal reasoning, preventing strict safety guarantees for physical deployment. Current approaches often rely on unreliable LLMs for safety checks or simply reject unsafe plans without offering repairs. We introduce the Verifiable Iterative Refinement Framework (VIRF), a neuro-symbolic architecture that shifts the paradigm from passive safety gatekeeping to active collaboration. Our core contribution is a tutor-apprentice dialogue where a deterministic Logic Tutor, grounded in a formal safety ontology, provides causal and pedagogical feedback to an LLM planner. This enables intelligent plan repairs rather than mere avoidance. We also introduce a scalable knowledge acquisition pipeline that synthesizes safety knowledge bases from real-world documents, correcting blind spots in existing benchmarks. In challenging home safety tasks, VIRF achieves a perfect 0 percent Hazardous Action Rate (HAR) and a 77.3 percent Goal-Condition Rate (GCR), which is the highest among all baselines. It is highly efficient, requiring only 1.1 correction iterations on average. VIRF demonstrates a principled pathway toward building fundamentally trustworthy and verifiably safe embodied agents.
comment: Accepted to ICLR 2026. Project page. https://openreview.net/forum?id=wb05ver1k8¬eId=v1Ax8CwI71
☆ Dynamic Regret via Discounted-to-Dynamic Reduction with Applications to Curved Losses and Adam Optimizer
We study dynamic regret minimization in non-stationary online learning, with a primary focus on follow-the-regularized-leader (FTRL) methods. FTRL is important for curved losses and for understanding adaptive optimizers such as Adam, yet existing dynamic regret analyses are less explored for FTRL. To address this, we build on the discounted-to-dynamic reduction and present a modular way to obtain dynamic regret bounds of FTRL-related problems. Specifically, we focus on two representative curved losses: linear regression and logistic regression. Our method not only simplifies existing proofs for the optimal dynamic regret of online linear regression, but also yields new dynamic regret guarantees for online logistic regression. Beyond online convex optimization, we apply the reduction to analyze the Adam optimizers, obtaining optimal convergence rates in stochastic, non-convex, and non-smooth settings. The reduction also enables a more detailed treatment of Adam with two discount parameters $(β_1,β_2)$, leading to new results for both clipped and clip-free variants of Adam optimizers.
☆ Learning Human-Like Badminton Skills for Humanoid Robots
Realizing versatile and human-like performance in high-demand sports like badminton remains a formidable challenge for humanoid robotics. Unlike standard locomotion or static manipulation, this task demands a seamless integration of explosive whole-body coordination and precise, timing-critical interception. While recent advances have achieved lifelike motion mimicry, bridging the gap between kinematic imitation and functional, physics-aware striking without compromising stylistic naturalness is non-trivial. To address this, we propose Imitation-to-Interaction, a progressive reinforcement learning framework designed to evolve a robot from a "mimic" to a capable "striker." Our approach establishes a robust motor prior from human data, distills it into a compact, model-based state representation, and stabilizes dynamics via adversarial priors. Crucially, to overcome the sparsity of expert demonstrations, we introduce a manifold expansion strategy that generalizes discrete strike points into a dense interaction volume. We validate our framework through the mastery of diverse skills, including lifts and drop shots, in simulation. Furthermore, we demonstrate the first zero-shot sim-to-real transfer of anthropomorphic badminton skills to a humanoid robot, successfully replicating the kinetic elegance and functional precision of human athletes in the physical world.
comment: 10 pages, 4 figures
☆ MemAdapter: Fast Alignment across Agent Memory Paradigms via Generative Subgraph Retrieval
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retrieval framework that enables fast alignment across agent memory paradigms. MemAdapter adopts a two-stage training strategy: (1) training a generative subgraph retriever from the unified memory space, and (2) adapting the retriever to unseen memory paradigms by training a lightweight alignment module through contrastive learning. This design improves the flexibility for memory retrieval and substantially reduces alignment cost across paradigms. Comprehensive experiments on three public evaluation benchmarks demonstrate that the generative subgraph retriever consistently outperforms five strong agent memory systems across three memory paradigms and agent model scales. Notably, MemAdapter completes cross-paradigm alignment within 13 minutes on a single GPU, achieving superior performance over original memory retrievers with less than 5% of training compute. Furthermore, MemAdapter enables effective zero-shot fusion across memory paradigms, highlighting its potential as a plug-and-play solution for agent memory systems.
☆ Circuit Representations of Random Forests with Applications to XAI
We make three contributions in this paper. First, we present an approach for compiling a random forest classifier into a set of circuits, where each circuit directly encodes the instances in some class of the classifier. We show empirically that our proposed approach is significantly more efficient than existing similar approaches. Next, we utilize this approach to further obtain circuits that are tractable for computing the complete and general reasons of a decision, which are instance abstractions that play a fundamental role in computing explanations. Finally, we propose algorithms for computing the robustness of a decision and all shortest ways to flip it. We illustrate the utility of our contributions by using them to enumerate all sufficient reasons, necessary reasons and contrastive explanations of decisions; to compute the robustness of decisions; and to identify all shortest ways to flip the decisions made by random forest classifiers learned from a wide range of datasets.
☆ The Chicken and Egg Dilemma: Co-optimizing Data and Model Configurations for LLMs
Co-optimizing data and model configurations for training LLMs presents a classic chicken-and-egg dilemma: The best training data configuration (e.g., data mixture) for a downstream task depends on the chosen model configuration (e.g., model architecture), and vice versa. However, jointly optimizing both data and model configurations is often deemed intractable, and existing methods focus on either data or model optimization without considering their interaction. We introduce JoBS, an approach that uses a scaling-law-inspired performance predictor to aid Bayesian optimization (BO) in jointly optimizing LLM training data and model configurations efficiently. JoBS allocates a portion of the optimization budget to learn an LLM performance predictor that predicts how promising a training configuration is from a small number of training steps. The remaining budget is used to perform BO entirely with the predictor, effectively amortizing the cost of running full-training runs. We study JoBS's average regret and devise the optimal budget allocation to minimize regret. JoBS outperforms existing multi-fidelity BO baselines, as well as data and model optimization approaches across diverse LLM tasks under the same optimization budget.
☆ All ERMs Can Fail in Stochastic Convex Optimization Lower Bounds in Linear Dimension
We study the sample complexity of the best-case Empirical Risk Minimizer in the setting of stochastic convex optimization. We show that there exists an instance in which the sample size is linear in the dimension, learning is possible, but the Empirical Risk Minimizer is likely to be unique and to overfit. This resolves an open question by Feldman. We also extend this to approximate ERMs. Building on our construction we also show that (constrained) Gradient Descent potentially overfits when horizon and learning rate grow w.r.t sample size. Specifically we provide a novel generalization lower bound of $Ω\left(\sqrt{ηT/m^{1.5}}\right)$ for Gradient Descent, where $η$ is the learning rate, $T$ is the horizon and $m$ is the sample size. This narrows down, exponentially, the gap between the best known upper bound of $O(ηT/m)$ and existing lower bounds from previous constructions.
☆ ManifoldKV: Training-Free KV Cache Compression via Euclidean Outlier Detection
Long-context inference is constrained by KV-cache memory, which grows linearly with sequence length; KV-cache compression therefore hinges on reliably selecting which past tokens to retain. Most geometry-based eviction methods score keys by cosine similarity to a global centroid, but cosine is scale-invariant and can discard magnitude cues that distinguish semantically salient tokens. We propose ManifoldKV, a training-free scorer that ranks tokens by Euclidean distance to the key centroid, capturing both angular and radial deviations. On the RULER benchmark, ManifoldKV achieves 95.7% accuracy at 4K-16K contexts with 20% compression; matching the best geometric baseline while improving robustness in two regimes where cosine scoring fails. First, on multi-key retrieval, ManifoldKV reduces directional collisions, achieving 92.4% vs KeyDiff's 77.0% (+15.4 points) on 3-key NIAH at 50% compression. Second, to address dilution and performance collapse of global centroids at 64K context, we introduce WindowedManifoldKV, which restores accuracy to 84.3% at 25% compression, a 49-point recovery over global L2 and +3.2 points over KeyDiff. The method requires only 3 lines of code and works across 4 architectures without tuning.
comment: 18 pages, 5 figures, 18 tables
☆ Regime Change Hypothesis: Foundations for Decoupled Dynamics in Neural Network Training
Despite the empirical success of DNN, their internal training dynamics remain difficult to characterize. In ReLU-based models, the activation pattern induced by a given input determines the piecewise-linear region in which the network behaves affinely. Motivated by this geometry, we investigate whether training exhibits a two-timescale behavior: an early stage with substantial changes in activation patterns and a later stage where weight updates predominantly refine the model within largely stable activation regimes. We first prove a local stability property: outside measure-zero sets of parameters and inputs, sufficiently small parameter perturbations preserve the activation pattern of a fixed input, implying locally affine behavior within activation regions. We then empirically track per-iteration changes in weights and activation patterns across fully-connected and convolutional architectures, as well as Transformer-based models, where activation patterns are recorded in the ReLU feed-forward (MLP/FFN) submodules, using fixed validation subsets. Across the evaluated settings, activation-pattern changes decay 3 times earlier than weight-update magnitudes, showing that late-stage training often proceeds within relatively stable activation regimes. These findings provide a concrete, architecture-agnostic instrument for monitoring training dynamics and motivate further study of decoupled optimization strategies for piecewise-linear networks. For reproducibility, code and experiment configurations will be released upon acceptance.
comment: 8 pages, 1 figure
☆ PACC: Protocol-Aware Cross-Layer Compression for Compact Network Traffic Representation
Network traffic classification is a core primitive for network security and management, yet it is increasingly challenged by pervasive encryption and evolving protocols. A central bottleneck is representation: hand-crafted flow statistics are efficient but often too lossy, raw-bit encodings can be accurate but are costly, and recent pre-trained embeddings provide transfer but frequently flatten the protocol stack and entangle signals across layers. We observe that real traffic contains substantial redundancy both across network layers and within each layer; existing paradigms do not explicitly identify and remove this redundancy, leading to wasted capacity, shortcut learning, and degraded generalization. To address this, we propose PACC, a redundancy-aware, layer-aware representation framework. PACC treats the protocol stack as multi-view inputs and learns compact layer-wise projections that remain faithful to each layer while explicitly factorizing representations into shared (cross-layer) and private (layer-specific) components. We operationalize these goals with a joint objective that preserves layer-specific information via reconstruction, captures shared structure via contrastive mutual-information learning, and maximizes task-relevant information via supervised losses, yielding compact latents suitable for efficient inference. Across datasets covering encrypted application classification, IoT device identification, and intrusion detection, PACC consistently outperforms feature-engineered and raw-bit baselines. On encrypted subsets, it achieves up to a 12.9% accuracy improvement over nPrint. PACC matches or surpasses strong foundation-model baselines. At the same time, it improves end-to-end efficiency by up to 3.16x.
☆ Near-Oracle KV Selection via Pre-hoc Sparsity for Long-Context Inference
A core bottleneck in large language model (LLM) inference is the cost of attending over the ever-growing key-value (KV) cache. Although near-oracle top-k KV selection can preserve the quality of dense attention while sharply reducing computation and bandwidth, existing sparse methods generally rely on posterior heuristics, i.e., selectors conditioned on observed attention or proxy scores. Such conditioning introduces posterior bias: it tends to distort true token importance and miss salient tokens, thereby impairing long-range reasoning. To tackle this problem, we propose Pre-hoc Sparsity (PrHS), which selects KV entries before attention scoring and provides explicit accuracy control. Let the attention mass of discarded entries be delta (the dropped mass). Through a marginal-to-mutual-information analysis, we derive an upper bound on the mutual-information loss that depends only on the dropped mass. This relation explains failure modes of posterior heuristics and enables verifiable guarantees by controlling the dropped mass in advance. Within PrHS, we instantiate three orthogonal pre-hoc selectors along the axes of time, depth, and layer. Extensive experiments on LLaMA and Mistral families validate PrHS. Across GSM8K and CoQA, PrHS reduces retrieval overhead by over 90%, achieving 3x higher retrieval sparsity than HShare at matched or better accuracy. It incurs under 1% average degradation on LongBench, lowers attention FLOPs by about 15% versus prior sparse baselines, and yields a 9.9x speedup in attention-operator latency and 2.8x higher throughput on NVIDIA A100-80GB GPUs than the dense baseline.
comment: An effective method for accelerating LLM's inference via selective KV processing
☆ Towards Efficient Large Language Reasoning Models via Extreme-Ratio Chain-of-Thought Compression
Chain-of-Thought (CoT) reasoning successfully enhances the reasoning capabilities of Large Language Models (LLMs), yet it incurs substantial computational overhead for inference. Existing CoT compression methods often suffer from a critical loss of logical fidelity at high compression ratios, resulting in significant performance degradation. To achieve high-fidelity, fast reasoning, we propose a novel EXTreme-RAtio Chain-of-Thought Compression framework, termed Extra-CoT, which aggressively reduces the token budget while preserving answer accuracy. To generate reliable, high-fidelity supervision, we first train a dedicated semantically-preserved compressor on mathematical CoT data with fine-grained annotations. An LLM is then fine-tuned on these compressed pairs via a mixed-ratio supervised fine-tuning (SFT), teaching it to follow a spectrum of compression budgets and providing a stable initialization for reinforcement learning (RL). We further propose Constrained and Hierarchical Ratio Policy Optimization (CHRPO) to explicitly incentivize question-solving ability under lower budgets by a hierarchical reward. Experiments on three mathematical reasoning benchmarks show the superiority of Extra-CoT. For example, on MATH-500 using Qwen3-1.7B, Extra-CoT achieves over 73\% token reduction with an accuracy improvement of 0.6\%, significantly outperforming state-of-the-art (SOTA) methods.
comment: 15 pages, 7 figures
☆ Is Flow Matching Just Trajectory Replay for Sequential Data?
Flow matching (FM) is increasingly used for time-series generation, but it is not well understood whether it learns a general dynamical structure or simply performs an effective "trajectory replay". We study this question by deriving the velocity field targeted by the empirical FM objective on sequential data, in the limit of perfect function approximation. For the Gaussian conditional paths commonly used in practice, we show that the implied sampler is an ODE whose dynamics constitutes a nonparametric, memory-augmented continuous-time dynamical system. The optimal field admits a closed-form expression as a similarity-weighted mixture of instantaneous velocities induced by past transitions, making the dataset dependence explicit and interpretable. This perspective positions neural FM models trained by stochastic optimization as parametric surrogates of an ideal nonparametric solution. Using the structure of the optimal field, we study sampling and approximation schemes that improve the efficiency and numerical robustness of ODE-based generation. On nonlinear dynamical system benchmarks, the resulting closed-form sampler yields strong probabilistic forecasts directly from historical transitions, without training.
comment: 51 pages
☆ Fast Flow Matching based Conditional Independence Tests for Causal Discovery
Constraint-based causal discovery methods require a large number of conditional independence (CI) tests, which severely limits their practical applicability due to high computational complexity. Therefore, it is crucial to design an algorithm that accelerates each individual test. To this end, we propose the Flow Matching-based Conditional Independence Test (FMCIT). The proposed test leverages the high computational efficiency of flow matching and requires the model to be trained only once throughout the entire causal discovery procedure, substantially accelerating causal discovery. According to numerical experiments, FMCIT effectively controls type-I error and maintains high testing power under the alternative hypothesis, even in the presence of high-dimensional conditioning sets. In addition, we further integrate FMCIT into a two-stage guided PC skeleton learning framework, termed GPC-FMCIT, which combines fast screening with guided, budgeted refinement using FMCIT. This design yields explicit bounds on the number of CI queries while maintaining high statistical power. Experiments on synthetic and real-world causal discovery tasks demonstrate favorable accuracy-efficiency trade-offs over existing CI testing methods and PC variants.
☆ Interaction-Grounded Learning for Contextual Markov Decision Processes with Personalized Feedback
In this paper, we study Interaction-Grounded Learning (IGL) [Xie et al., 2021], a paradigm designed for realistic scenarios where the learner receives indirect feedback generated by an unknown mechanism, rather than explicit numerical rewards. While prior work on IGL provides efficient algorithms with provable guarantees, those results are confined to single-step settings, restricting their applicability to modern sequential decision-making systems such as multi-turn Large Language Model (LLM) deployments. To bridge this gap, we propose a computationally efficient algorithm that achieves a sublinear regret guarantee for contextual episodic Markov Decision Processes (MDPs) with personalized feedback. Technically, we extend the reward-estimator construction of Zhang et al. [2024a] from the single-step to the multi-step setting, addressing the unique challenges of decoding latent rewards under MDPs. Building on this estimator, we design an Inverse-Gap-Weighting (IGW) algorithm for policy optimization. Finally, we demonstrate the effectiveness of our method in learning personalized objectives from multi-turn interactions through experiments on both a synthetic episodic MDP and a real-world user booking dataset.
☆ TextResNet: Decoupling and Routing Optimization Signals in Compound AI Systems via Deep Residual Tuning
Textual Gradient-style optimizers (TextGrad) enable gradient-like feedback propagation through compound AI systems. However, they do not work well for deep chains. The root cause of this limitation stems from the Semantic Entanglement problem in these extended workflows. In standard textual backpropagation, feedback signals mix local critiques with upstream contexts, leading to Attribution Ambiguity. To address this challenge, we propose TextResNet, a framework that reformulates the optimization process to achieve precise signal routing via four key innovations. Firstly, in the forward pass, it enforces Additive Semantic Deltas to preserve an Identity Highway for gradient flow. Secondly, in the backward pass, it introduces Semantic Gradient Decomposition via a Semantic Projector to disentangle feedback into causally independent subspaces. Thirdly, it implements Causal Routing, which routes projected signals to their specific components. Finally, it performs Density-Aware Optimization Scheduling to leverage the disentangled signals to dynamically allocate resources to key system bottlenecks. Our results show that TextResNet not only achieves superior performance compared to TextGrad, but also exhibits remarkable stability for agentic tasks in compound AI systems where baselines collapse. Code is available at https://github.com/JeanDiable/TextResNet.
☆ Grokking in Linear Models for Logistic Regression
Grokking, the phenomenon of delayed generalization, is often attributed to the depth and compositional structure of deep neural networks. We study grokking in one of the simplest possible settings: the learning of a linear model with logistic loss for binary classification on data that are linearly (and max margin) separable about the origin. We investigate three testing regimes: (1) test data drawn from the same distribution as the training data, in which case grokking is not observed; (2) test data concentrated around the margin, in which case grokking is observed; and (3) adversarial test data generated via projected gradient descent (PGD) attacks, in which case grokking is also observed. We theoretically show that the implicit bias of gradient descent induces a three-phase learning process-population-dominated, support-vector-dominated unlearning, and support-vector-dominated generalization-during which delayed generalization can arise. Our analysis further relates the emergence of grokking to asymmetries in the data, both in the number of examples per class and in the distribution of support vectors across classes, and yields a characterization of the grokking time. We experimentally validate our theory by planting different distributions of population points and support vectors, and by analyzing accuracy curves and hyperplane dynamics. Overall, our results demonstrate that grokking does not require depth or representation learning, and can emerge even in linear models through the dynamics of the bias term.
☆ Trust-Based Incentive Mechanisms in Semi-Decentralized Federated Learning Systems
In federated learning (FL), decentralized model training allows multi-ple participants to collaboratively improve a shared machine learning model without exchanging raw data. However, ensuring the integrity and reliability of the system is challenging due to the presence of potentially malicious or faulty nodes that can degrade the model's performance. This paper proposes a novel trust-based incentive mechanism designed to evaluate and reward the quality of contributions in FL systems. By dynamically assessing trust scores based on fac-tors such as data quality, model accuracy, consistency, and contribution fre-quency, the system encourages honest participation and penalizes unreliable or malicious behavior. These trust scores form the basis of an incentive mechanism that rewards high-trust nodes with greater participation opportunities and penal-ties for low-trust participants. We further explore the integration of blockchain technology and smart contracts to automate the trust evaluation and incentive distribution processes, ensuring transparency and decentralization. Our proposed theoretical framework aims to create a more robust, fair, and transparent FL eco-system, reducing the risks posed by untrustworthy participants.
comment: To appear in the ICBTA 2025 Conference Proceedings and published as a volume of Lecture Notes in Networks and Systems by Springer
☆ Noise Stability of Transformer Models ICLR 2026
Understanding simplicity biases in deep learning offers a promising path toward developing reliable AI. A common metric for this, inspired by Boolean function analysis, is average sensitivity, which captures a model's robustness to single-token perturbations. We argue that average sensitivity has two key limitations: it lacks a natural generalization to real-valued domains and fails to explain the "junta-like" input dependence we empirically observe in modern LLMs. To address these limitations, we propose noise stability as a more comprehensive simplicity metric. Noise stability expresses a model's robustness to correlated noise applied to all input coordinates simultaneously. We provide a theoretical analysis of noise stability for single-layer attention and ReLU MLP layers and tackle the multi-layer propagation problem with a covariance interval propagation approach. Building on this theory, we develop a practical noise stability regularization method. Experiments on algorithmic and next-token-prediction tasks show that our regularizer consistently catalyzes grokking and accelerates training by approximately $35\%$ and $75\%$ respectively. Our results sculpt a new connection between signal propagation in neural networks and interpretability, with noise stability emerging as a powerful tool for understanding and improving modern Transformers.
comment: Published in ICLR 2026
☆ When Do Multi-Agent Systems Outperform? Analysing the Learning Efficiency of Agentic Systems
Reinforcement Learning (RL) has emerged as a crucial method for training or fine-tuning large language models (LLMs), enabling adaptive, task-specific optimizations through interactive feedback. Multi-Agent Reinforcement Learning (MARL), in particular, offers a promising avenue by decomposing complex tasks into specialized subtasks learned by distinct interacting agents, potentially enhancing the ability and efficiency of LLM systems. However, theoretical insights regarding when and why MARL outperforms Single-Agent RL (SARL) remain limited, creating uncertainty in selecting the appropriate RL framework. In this paper, we address this critical gap by rigorously analyzing the comparative sample efficiency of MARL and SARL within the context of LLM. Leveraging the Probably Approximately Correct (PAC) framework, we formally define SARL and MARL setups for LLMs, derive explicit sample complexity bounds, and systematically characterize how task decomposition and alignment influence learning efficiency. Our results demonstrate that MARL improves sample complexity when tasks naturally decompose into independent subtasks, whereas dependent subtasks diminish MARL's comparative advantage. Additionally, we introduce and analyze the concept of task alignment, quantifying the trade-offs when enforcing independent task decomposition despite potential misalignments. These theoretical insights clarify empirical inconsistencies and provide practical criteria for deploying MARL strategies effectively in complex LLM scenarios.
☆ Inverting Data Transformations via Diffusion Sampling
We study the problem of transformation inversion on general Lie groups: a datum is transformed by an unknown group element, and the goal is to recover an inverse transformation that maps it back to the original data distribution. Such unknown transformations arise widely in machine learning and scientific modeling, where they can significantly distort observations. We take a probabilistic view and model the posterior over transformations as a Boltzmann distribution defined by an energy function on data space. To sample from this posterior, we introduce a diffusion process on Lie groups that keeps all updates on-manifold and only requires computations in the associated Lie algebra. Our method, Transformation-Inverting Energy Diffusion (TIED), relies on a new trivialized target-score identity that enables efficient score-based sampling of the transformation posterior. As a key application, we focus on test-time equivariance, where the objective is to improve the robustness of pretrained neural networks to input transformations. Experiments on image homographies and PDE symmetries demonstrate that TIED can restore transformed inputs to the training distribution at test time, showing improved performance over strong canonicalization and sampling baselines. Code is available at https://github.com/jw9730/tied.
comment: 24 pages, 4 figures
☆ Constraint-Aware Generative Auto-bidding via Pareto-Prioritized Regret Optimization
Auto-bidding systems aim to maximize marketing value while satisfying strict efficiency constraints such as Target Cost-Per-Action (CPA). Although Decision Transformers provide powerful sequence modeling capabilities, applying them to this constrained setting encounters two challenges: 1) standard Return-to-Go conditioning causes state aliasing by neglecting the cost dimension, preventing precise resource pacing; and 2) standard regression forces the policy to mimic average historical behaviors, thereby limiting the capacity to optimize performance toward the constraint boundary. To address these challenges, we propose PRO-Bid, a constraint-aware generative auto-bidding framework based on two synergistic mechanisms: 1) Constraint-Decoupled Pareto Representation (CDPR) decomposes global constraints into recursive cost and value contexts to restore resource perception, while reweighting trajectories based on the Pareto frontier to focus on high-efficiency data; and 2) Counterfactual Regret Optimization (CRO) facilitates active improvement by utilizing a global outcome predictor to identify superior counterfactual actions. By treating these high-utility outcomes as weighted regression targets, the model transcends historical averages to approach the optimal constraint boundary. Extensive experiments on two public benchmarks and online A/B tests demonstrate that PRO-Bid achieves superior constraint satisfaction and value acquisition compared to state-of-the-art baselines.
☆ A Statistical Framework for Alignment with Biased AI Feedback
Modern alignment pipelines are increasingly replacing expensive human preference labels with evaluations from large language models (LLM-as-Judge). However, AI labels can be systematically biased compared to high-quality human feedback datasets. In this paper, we develop two debiased alignment methods within a general framework that accommodates heterogeneous prompt-response distributions and external human feedback sources. Debiased Direct Preference Optimization (DDPO) augments standard DPO with a residual-based correction and density-ratio reweighting to mitigate systematic bias, while retaining DPO's computational efficiency. Debiased Identity Preference Optimization (DIPO) directly estimates human preference probabilities without imposing a parametric reward model. We provide theoretical guarantees for both methods: DDPO offers a practical and computationally efficient solution for large-scale alignment, whereas DIPO serves as a robust, statistically optimal alternative that attains the semiparametric efficiency bound. Empirical studies on sentiment generation, summarization, and single-turn dialogue demonstrate that the proposed methods substantially improve alignment efficiency and recover performance close to that of an oracle trained on fully human-labeled data.
☆ Learning in Context, Guided by Choice: A Reward-Free Paradigm for Reinforcement Learning with Transformers
In-context reinforcement learning (ICRL) leverages the in-context learning capabilities of transformer models (TMs) to efficiently generalize to unseen sequential decision-making tasks without parameter updates. However, existing ICRL methods rely on explicit reward signals during pretraining, which limits their applicability when rewards are ambiguous, hard to specify, or costly to obtain. To overcome this limitation, we propose a new learning paradigm, In-Context Preference-based Reinforcement Learning (ICPRL), in which both pretraining and deployment rely solely on preference feedback, eliminating the need for reward supervision. We study two variants that differ in the granularity of feedback: Immediate Preference-based RL (I-PRL) with per-step preferences, and Trajectory Preference-based RL (T-PRL) with trajectory-level comparisons. We first show that supervised pretraining, a standard approach in ICRL, remains effective under preference-only context datasets, demonstrating the feasibility of in-context reinforcement learning using only preference signals. To further improve data efficiency, we introduce alternative preference-native frameworks for I-PRL and T-PRL that directly optimize TM policies from preference data without requiring reward signals nor optimal action labels.Experiments on dueling bandits, navigation, and continuous control tasks demonstrate that ICPRL enables strong in-context generalization to unseen tasks, achieving performance comparable to ICRL methods trained with full reward supervision.
☆ Discrete Adjoint Schrödinger Bridge Sampler
Learning discrete neural samplers is challenging due to the lack of gradients and combinatorial complexity. While stochastic optimal control (SOC) and Schrödinger bridge (SB) provide principled solutions, efficient SOC solvers like adjoint matching (AM), which excel in continuous domains, remain unexplored for discrete spaces. We bridge this gap by revealing that the core mechanism of AM is $\mathit{state}\text{-}\mathit{space~agnostic}$, and introduce $\mathbf{discrete~ASBS}$, a unified framework that extends AM and adjoint Schrödinger bridge sampler (ASBS) to discrete spaces. Theoretically, we analyze the optimality conditions of the discrete SB problem and its connection to SOC, identifying a necessary cyclic group structure on the state space to enable this extension. Empirically, discrete ASBS achieves competitive sample quality with significant advantages in training efficiency and scalability.
☆ Linearization Explains Fine-Tuning in Large Language Models
Parameter-Efficient Fine-Tuning (PEFT) is a popular class of techniques that strive to adapt large models in a scalable and resource-efficient manner. Yet, the mechanisms underlying their training performance and generalization remain underexplored. In this paper, we provide several insights into such fine-tuning through the lens of linearization. Fine-tuned models are often implicitly encouraged to remain close to the pretrained model. By making this explicit, using an Euclidean distance inductive bias in parameter space, we show that fine-tuning dynamics become equivalent to learning with the positive-definite neural tangent kernel (NTK). We specifically analyze how close the fully linear and the linearized fine-tuning optimizations are, based on the strength of the regularization. This allows us to be pragmatic about how good a model linearization is when fine-tuning large language models (LLMs). When linearization is a good model, our findings reveal a strong correlation between the eigenvalue spectrum of the NTK and the performance of model adaptation. Motivated by this, we give spectral perturbation bounds on the NTK induced by the choice of layers selected for fine-tuning. We empirically validate our theory on Low Rank Adaptation (LoRA) on LLMs. These insights not only characterize fine-tuning but also have the potential to enhance PEFT techniques, paving the way to better informed and more nimble adaptation in LLMs.
☆ SkillRL: Evolving Agents via Recursive Skill-Augmented Reinforcement Learning
Large Language Model (LLM) agents have shown stunning results in complex tasks, yet they often operate in isolation, failing to learn from past experiences. Existing memory-based methods primarily store raw trajectories, which are often redundant and noise-heavy. This prevents agents from extracting high-level, reusable behavioral patterns that are essential for generalization. In this paper, we propose SkillRL, a framework that bridges the gap between raw experience and policy improvement through automatic skill discovery and recursive evolution. Our approach introduces an experience-based distillation mechanism to build a hierarchical skill library SkillBank, an adaptive retrieval strategy for general and task-specific heuristics, and a recursive evolution mechanism that allows the skill library to co-evolve with the agent's policy during reinforcement learning. These innovations significantly reduce the token footprint while enhancing reasoning utility. Experimental results on ALFWorld, WebShop and seven search-augmented tasks demonstrate that SkillRL achieves state-of-the-art performance, outperforming strong baselines over 15.3% and maintaining robustness as task complexity increases. Code is available at this https://github.com/aiming-lab/SkillRL.
☆ Adaptive Matrix Online Learning through Smoothing with Guarantees for Nonsmooth Nonconvex Optimization
We study online linear optimization with matrix variables constrained by the operator norm, a setting where the geometry renders designing data-dependent and efficient adaptive algorithms challenging. The best-known adaptive regret bounds are achieved by Shampoo-like methods, but they require solving a costly quadratic projection subproblem. To address this, we extend the gradient-based prediction scheme to adaptive matrix online learning and cast algorithm design as constructing a family of smoothed potentials for the nuclear norm. We define a notion of admissibility for such smoothings and prove any admissible smoothing yields a regret bound matching the best-known guarantees of one-sided Shampoo. We instantiate this framework with two efficient methods that avoid quadratic projections. The first is an adaptive Follow-the-Perturbed-Leader (FTPL) method using Gaussian stochastic smoothing. The second is Follow-the-Augmented-Matrix-Leader (FAML), which uses a deterministic hyperbolic smoothing in an augmented matrix space. By analyzing the admissibility of these smoothings, we show both methods admit closed-form updates and match one-sided Shampoo's regret up to a constant factor, while significantly reducing computational cost. Lastly, using the online-to-nonconvex conversion, we derive two matrix-based optimizers, Pion (from FTPL) and Leon (from FAML). We prove convergence guarantees for these methods in nonsmooth nonconvex settings, a guarantee that the popular Muon optimizer lacks.
comment: 37 pages, 1 figure
☆ InfiCoEvalChain: A Blockchain-Based Decentralized Framework for Collaborative LLM Evaluation
The rapid advancement of large language models (LLMs) demands increasingly reliable evaluation, yet current centralized evaluation suffers from opacity, overfitting, and hardware-induced variance. Our empirical analysis reveals an alarming inconsistency in existing evaluations: the standard deviation across ten repeated runs of a single model on HumanEval (1.67) actually exceeds the performance gap among the top-10 models on the official leaderboard (0.91), rendering current rankings statistically precarious. To mitigate these instabilities, we propose a decentralized evaluation framework that enables hardware and parameter diversity through large-scale benchmarking across heterogeneous compute nodes. By leveraging the blockchain-based protocol, the framework incentivizes global contributors to act as independent validators, using a robust reward system to ensure evaluation integrity and discourage dishonest participation. This collective verification transforms evaluation from a "centralized black box" into a "decentralized endorsement" where multi-party consensus and diverse inference environments yield a more stable, representative metric. Experimental results demonstrate that the decentralized evaluation framework reduces the standard deviation across ten runs on the same model to 0.28. This significant improvement over conventional frameworks ensures higher statistical confidence in model rankings. We have completely implemented this platform and will soon release it to the community.
☆ Sparsity-Aware Evolution for Model Merging
We propose a sparsity-aware evolutionary (SAE) framework for model merging that involves iterative pruning-merging cycles to act as a novel mutation operator. We incorporate the sparsity constraints into the score function, which steers the evolutionary process to favor more sparse models, in addition to other conventional performance scores. Interestingly, the by-product of \textit{competition} for sparsity introduces an extra local \textit{attraction} and interplay into the evolutionary process: if one competitor has more zero elements, the other competitor's non-zero elements will occupy those positions, even though the less sparse competitor loses to the more sparse competitor in other positions. The proposed pipeline is evaluated on a variety of large-scale LLM benchmarks. Experiments demonstrate that our approach can improve model merging reliability across multiple benchmarks, and is easy to incorporate due to its simplicity and being orthogonal to most existing approaches.
☆ Thermodynamic Isomorphism of Transformers: A Lagrangian Approach to Attention Dynamics
Although the Transformer architecture has revolutionized artificial intelligence, its underlying mechanisms remain largely heuristic and lack a unified physical theory. In this work, we propose a first-principles framework for information dynamics, treating the attention mechanism as a physical system governed by the principle of least action rather than as an algorithmic optimization. By mapping information states to a Riemannian manifold with the Fisher information metric, we derive the intelligence Lagrangian. We show that the softmax function corresponds to the unique thermodynamic equilibrium state that minimizes the Helmholtz free energy of the information gas. In addition, we identify the query-key interaction as an electrodynamic coupling between an external field and an intrinsic dipole moment. This theory establishes the first law of information thermodynamics, unifying inference (mechanical work) and learning (chemical evolution). It also explains emergent phenomena, such as scaling laws and grokking, as phase transitions characterized by the divergence of specific heat. Finally, we discuss how rotational symmetry breaking in the attention manifold generates massless Goldstone bosons, providing a field-theoretic perspective on rotary positional embeddings (RoPE). Our work connects Statistical Physics and Deep Learning, laying the groundwork for a general theory of physics-based intelligence.
comment: 9 pages, 1 figure. Based on a thermodynamic framework for Transformer architectures. Derives the equation of state from first principles
☆ Distribution-Free Robust Functional Predict-Then-Optimize
The solution of PDEs in decision-making tasks is increasingly being undertaken with the help of neural operator surrogate models due to the need for repeated evaluation. Such methods, while significantly more computationally favorable compared to their numerical counterparts, fail to provide any calibrated notions of uncertainty in their predictions. Current methods approach this deficiency typically with ensembling or Bayesian posterior estimation. However, these approaches either require distributional assumptions that fail to hold in practice or lack practical scalability, limiting their applications in practice. We, therefore, propose a novel application of conformal prediction to produce distribution-free uncertainty quantification over the function spaces mapped by neural operators. We then demonstrate how such prediction regions enable a formal regret characterization if leveraged in downstream robust decision-making tasks. We further demonstrate how such posited robust decision-making tasks can be efficiently solved using an infinite-dimensional generalization of Danskin's Theorem and calculus of variations and empirically demonstrate the superior performance of our proposed method over more restrictive modeling paradigms, such as Gaussian Processes, across several engineering tasks.
☆ DrugR: Optimizing Molecular Drugs through LLM-based Explicit Reasoning
Molecule generation and optimization is a fundamental task in chemical domain. The rapid development of intelligent tools, especially large language models (LLMs) with powerful knowledge reserves and interactive capabilities, has provided new paradigms for it. Nevertheless, the intrinsic challenge for LLMs lies in the complex implicit relationship between molecular structure and pharmacological properties and the lack of corresponding labeled data. To bridge this gap, we propose DrugR, an LLM-based method that introduces explicit, step-by-step pharmacological reasoning into the optimization process. Our approach integrates domain-specific continual pretraining, supervised fine-tuning via reverse data engineering, and self-balanced multi-granular reinforcement learning. This framework enables DrugR to effectively improve key ADMET properties while preserving the original molecule's core efficacy. Experimental results demonstrate that DrugR achieves comprehensive enhancement across multiple properties without compromising structural similarity or target binding affinity. Importantly, its explicit reasoning process provides clear, interpretable rationales for each optimization step, yielding actionable design insights and advancing toward automated, knowledge-driven scientific discovery. Our code and model checkpoints are open-sourced to foster future research.
☆ CADO: From Imitation to Cost Minimization for Heatmap-based Solvers in Combinatorial Optimization
Heatmap-based solvers have emerged as a promising paradigm for Combinatorial Optimization (CO). However, we argue that the dominant Supervised Learning (SL) training paradigm suffers from a fundamental objective mismatch: minimizing imitation loss (e.g., cross-entropy) does not guarantee solution cost minimization. We dissect this mismatch into two deficiencies: Decoder-Blindness (being oblivious to the non-differentiable decoding process) and Cost-Blindness (prioritizing structural imitation over solution quality). We empirically demonstrate that these intrinsic flaws impose a hard performance ceiling. To overcome this limitation, we propose CADO (Cost-Aware Diffusion models for Optimization), a streamlined Reinforcement Learning fine-tuning framework that formulates the diffusion denoising process as an MDP to directly optimize the post-decoded solution cost. We introduce Label-Centered Reward, which repurposes ground-truth labels as unbiased baselines rather than imitation targets, and Hybrid Fine-Tuning for parameter-efficient adaptation. CADO achieves state-of-the-art performance across diverse benchmarks, validating that objective alignment is essential for unlocking the full potential of heatmap-based solvers.
☆ Interpretable Dynamic Network Modeling of Tensor Time Series via Kronecker Time-Varying Graphical Lasso WWW2026
With the rapid development of web services, large amounts of time series data are generated and accumulated across various domains such as finance, healthcare, and online platforms. As such data often co-evolves with multiple variables interacting with each other, estimating the time-varying dependencies between variables (i.e., the dynamic network structure) has become crucial for accurate modeling. However, real-world data is often represented as tensor time series with multiple modes, resulting in large, entangled networks that are hard to interpret and computationally intensive to estimate. In this paper, we propose Kronecker Time-Varying Graphical Lasso (KTVGL), a method designed for modeling tensor time series. Our approach estimates mode-specific dynamic networks in a Kronecker product form, thereby avoiding overly complex entangled structures and producing interpretable modeling results. Moreover, the partitioned network structure prevents the exponential growth of computational time with data dimension. In addition, our method can be extended to stream algorithms, making the computational time independent of the sequence length. Experiments on synthetic data show that the proposed method achieves higher edge estimation accuracy than existing methods while requiring less computation time. To further demonstrate its practical value, we also present a case study using real-world data. Our source code and datasets are available at https://github.com/Higashiguchi-Shingo/KTVGL.
comment: Accepted at ACM Web Conference 2026 (WWW2026)
☆ Dreaming in Code for Curriculum Learning in Open-Ended Worlds
Open-ended learning frames intelligence as emerging from continual interaction with an ever-expanding space of environments. While recent advances have utilized foundation models to programmatically generate diverse environments, these approaches often focus on discovering isolated behaviors rather than orchestrating sustained progression. In complex open-ended worlds, the large combinatorial space of possible challenges makes it difficult for agents to discover sequences of experiences that remain consistently learnable. To address this, we propose Dreaming in Code (DiCode), a framework in which foundation models synthesize executable environment code to scaffold learning toward increasing competence. In DiCode, "dreaming" takes the form of materializing code-level variations of the world. We instantiate DiCode in Craftax, a challenging open-ended benchmark characterized by rich mechanics and long-horizon progression. Empirically, DiCode enables agents to acquire long-horizon skills, achieving a $16\%$ improvement in mean return over the strongest baseline and non-zero success on late-game combat tasks where prior methods fail. Our results suggest that code-level environment design provides a practical mechanism for curriculum control, enabling the construction of intermediate environments that bridge competence gaps in open-ended worlds. Project page and source code are available at https://konstantinosmitsides.github.io/dreaming-in-code and https://github.com/konstantinosmitsides/dreaming-in-code.
comment: 11 pages (main text), 90 pages total. Project page: https://konstantinosmitsides.github.io/dreaming-in-code
☆ Information Geometry of Absorbing Markov-Chain and Discriminative Random Walks
Discriminative Random Walks (DRWs) are a simple yet powerful tool for semi-supervised node classification, but their theoretical foundations remain fragmentary. We revisit DRWs through the lens of information geometry, treating the family of class-specific hitting-time laws on an absorbing Markov chain as a statistical manifold. Starting from a log-linear edge-weight model, we derive closed-form expressions for the hitting-time probability mass function, its full moment hierarchy, and the observed Fisher information. The Fisher matrix of each seed node turns out to be rank-one, taking the quotient by its null space yields a low-dimensional, globally flat manifold that captures all identifiable directions of the model. Leveraging the geometry, we introduce a sensitivity score for unlabeled nodes that bounds, and in one-dimensional cases attains, the maximal first-order change in DRW betweenness under unit Fisher perturbations. The score can lead to principled strategies for active label acquisition, edge re-weighting, and explanation.
☆ Nansde-net: A neural sde framework for generating time series with memory PAKDD2026
Modeling time series with long- or short-memory characteristics is a fundamental challenge in many scientific and engineering domains. While fractional Brownian motion has been widely used as a noise source to capture such memory effects, its incompatibility with Itô calculus limits its applicability in neural stochastic differential equation~(SDE) frameworks. In this paper, we propose a novel class of noise, termed Neural Network-kernel ARMA-type noise~(NA-noise), which is an Itô-process-based alternative capable of capturing both long- and short-memory behaviors. The kernel function defining the noise structure is parameterized via neural networks and decomposed into a product form to preserve the Markov property. Based on this noise process, we develop NANSDE-Net, a generative model that extends Neural SDEs by incorporating NA-noise. We prove the theoretical existence and uniqueness of the solution under mild conditions and derive an efficient backpropagation scheme for training. Empirical results on both synthetic and real-world datasets demonstrate that NANSDE-Net matches or outperforms existing models, including fractional SDE-Net, in reproducing long- and short-memory features of the data, while maintaining computational tractability within the Itô calculus framework.
comment: PAKDD2026 Accepted
☆ The effect of whitening on explanation performance NeurIPS 2024
Explainable Artificial Intelligence (XAI) aims to provide transparent insights into machine learning models, yet the reliability of many feature attribution methods remains a critical challenge. Prior research (Haufe et al., 2014; Wilming et al., 2022, 2023) has demonstrated that these methods often erroneously assign significant importance to non-informative variables, such as suppressor variables, leading to fundamental misinterpretations. Since statistical suppression is induced by feature dependencies, this study investigates whether data whitening, a common preprocessing technique for decorrelation, can mitigate such errors. Using the established XAI-TRIS benchmark (Clark et al., 2024b), which offers synthetic ground-truth data and quantitative measures of explanation correctness, we empirically evaluate 16 popular feature attribution methods applied in combination with 5 distinct whitening transforms. Additionally, we analyze a minimal linear two-dimensional classification problem (Wilming et al., 2023) to theoretically assess whether whitening can remove the impact of suppressor features from Bayes-optimal models. Our results indicate that, while specific whitening techniques can improve explanation performance, the degree of improvement varies substantially across XAI methods and model architectures. These findings highlight the complex relationship between data non-linearities, preprocessing quality, and attribution fidelity, underscoring the vital role of pre-processing techniques in enhancing model interpretability.
comment: Presented at the NeurIPS 2024 workshop on Interpretable AI: Past, Present and Future
☆ Mutual Information Collapse Explains Disentanglement Failure in $β$-VAEs
The $β$-VAE is a foundational framework for unsupervised disentanglement, using $β$ to regulate the trade-off between latent factorization and reconstruction fidelity. Empirically, however, disentanglement performance exhibits a pervasive non-monotonic trend: benchmarks such as MIG and SAP typically peak at intermediate $β$ and collapse as regularization increases. We demonstrate that this collapse is a fundamental information-theoretic failure, where strong Kullback-Leibler pressure promotes marginal independence at the expense of the latent channel's semantic informativeness. By formalizing this mechanism in a linear-Gaussian setting, we prove that for $β> 1$, stationarity-induced dynamics trigger a spectral contraction of the encoder gain, driving latent-factor mutual information to zero. To resolve this, we introduce the $λβ$-VAE, which decouples regularization pressure from informational collapse via an auxiliary $L_2$ reconstruction penalty $λ$. Extensive experiments on dSprites, Shapes3D, and MPI3D-real confirm that $λ> 0$ stabilizes disentanglement and restores latent informativeness over a significantly broader range of $β$, providing a principled theoretical justification for dual-parameter regularization in variational inference backbones.
☆ Effective Reasoning Chains Reduce Intrinsic Dimensionality
Chain-of-thought (CoT) reasoning and its variants have substantially improved the performance of language models on complex reasoning tasks, yet the precise mechanisms by which different strategies facilitate generalization remain poorly understood. While current explanations often point to increased test-time computation or structural guidance, establishing a consistent, quantifiable link between these factors and generalization remains challenging. In this work, we identify intrinsic dimensionality as a quantitative measure for characterizing the effectiveness of reasoning chains. Intrinsic dimensionality quantifies the minimum number of model dimensions needed to reach a given accuracy threshold on a given task. By keeping the model architecture fixed and varying the task formulation through different reasoning strategies, we demonstrate that effective reasoning strategies consistently reduce the intrinsic dimensionality of the task. Validating this on GSM8K with Gemma-3 1B and 4B, we observe a strong inverse correlation between the intrinsic dimensionality of a reasoning strategy and its generalization performance on both in-distribution and out-of-distribution data. Our findings suggest that effective reasoning chains facilitate learning by better compressing the task using fewer parameters, offering a new quantitative metric for analyzing reasoning processes.
comment: 20 pages, 3 figures
☆ Generalizing GNNs with Tokenized Mixture of Experts
Deployed graph neural networks (GNNs) are frozen at deployment yet must fit clean data, generalize under distribution shifts, and remain stable to perturbations. We show that static inference induces a fundamental tradeoff: improving stability requires reducing reliance on shift-sensitive features, leaving an irreducible worst-case generalization floor. Instance-conditional routing can break this ceiling, but is fragile because shifts can mislead routing and perturbations can make routing fluctuate. We capture these effects via two decompositions separating coverage vs selection, and base sensitivity vs fluctuation amplification. Based on these insights, we propose STEM-GNN, a pretrain-then-finetune framework with a mixture-of-experts encoder for diverse computation paths, a vector-quantized token interface to stabilize encoder-to-head signals, and a Lipschitz-regularized head to bound output amplification. Across nine node, link, and graph benchmarks, STEM-GNN achieves a stronger three-way balance, improving robustness to degree/homophily shifts and to feature/edge corruptions while remaining competitive on clean graphs.
comment: Graph Neural Networks, Generalization, Mixture of Experts
☆ Optimal Estimation in Orthogonally Invariant Generalized Linear Models: Spectral Initialization and Approximate Message Passing
We consider the problem of parameter estimation from a generalized linear model with a random design matrix that is orthogonally invariant in law. Such a model allows the design have an arbitrary distribution of singular values and only assumes that its singular vectors are generic. It is a vast generalization of the i.i.d. Gaussian design typically considered in the theoretical literature, and is motivated by the fact that real data often have a complex correlation structure so that methods relying on i.i.d. assumptions can be highly suboptimal. Building on the paradigm of spectrally-initialized iterative optimization, this paper proposes optimal spectral estimators and combines them with an approximate message passing (AMP) algorithm, establishing rigorous performance guarantees for these two algorithmic steps. Both the spectral initialization and the subsequent AMP meet existing conjectures on the fundamental limits to estimation -- the former on the optimal sample complexity for efficient weak recovery, and the latter on the optimal errors. Numerical experiments suggest the effectiveness of our methods and accuracy of our theory beyond orthogonally invariant data.
☆ Feature salience -- not task-informativeness -- drives machine learning model explanations
Explainable AI (XAI) promises to provide insight into machine learning models' decision processes, where one goal is to identify failures such as shortcut learning. This promise relies on the field's assumption that input features marked as important by an XAI must contain information about the target variable. However, it is unclear whether informativeness is indeed the main driver of importance attribution in practice, or if other data properties such as statistical suppression, novelty at test-time, or high feature salience substantially contribute. To clarify this, we trained deep learning models on three variants of a binary image classification task, in which translucent watermarks are either absent, act as class-dependent confounds, or represent class-independent noise. Results for five popular attribution methods show substantially elevated relative importance in watermarked areas (RIW) for all models regardless of the training setting ($R^2 \geq .45$). By contrast, whether the presence of watermarks is class-dependent or not only has a marginal effect on RIW ($R^2 \leq .03$), despite a clear impact impact on model performance and generalisation ability. XAI methods show similar behaviour to model-agnostic edge detection filters and attribute substantially less importance to watermarks when bright image intensities are encoded by smaller instead of larger feature values. These results indicate that importance attribution is most strongly driven by the salience of image structures at test time rather than statistical associations learned by machine learning models. Previous studies demonstrating successful XAI application should be reevaluated with respect to a possibly spurious concurrency of feature salience and informativeness, and workflows using feature attribution methods as building blocks should be scrutinised.
☆ RAPID: Risk of Attribute Prediction-Induced Disclosure in Synthetic Microdata
Statistical data anonymization increasingly relies on fully synthetic microdata, for which classical identity disclosure measures are less informative than an adversary's ability to infer sensitive attributes from released data. We introduce RAPID (Risk of Attribute Prediction--Induced Disclosure), a disclosure risk measure that directly quantifies inferential vulnerability under a realistic attack model. An adversary trains a predictive model solely on the released synthetic data and applies it to real individuals' quasi-identifiers. For continuous sensitive attributes, RAPID reports the proportion of records whose predicted values fall within a specified relative error tolerance. For categorical attributes, we propose a baseline-normalized confidence score that measures how much more confident the attacker is about the true class than would be expected from class prevalence alone, and we summarize risk as the fraction of records exceeding a policy-defined threshold. This construction yields an interpretable, bounded risk metric that is robust to class imbalance, independent of any specific synthesizer, and applicable with arbitrary learning algorithms. We illustrate threshold calibration, uncertainty quantification, and comparative evaluation of synthetic data generators using simulations and real data. Our results show that RAPID provides a practical, attacker-realistic upper bound on attribute-inference disclosure risk that complements existing utility diagnostics and disclosure control frameworks.
comment: 29 pages, 5 figures
☆ Do Neural Networks Lose Plasticity in a Gradually Changing World?
Continual learning has become a trending topic in machine learning. Recent studies have discovered an interesting phenomenon called loss of plasticity, referring to neural networks gradually losing the ability to learn new tasks. However, existing plasticity research largely relies on contrived settings with abrupt task transitions, which often do not reflect real-world environments. In this paper, we propose to investigate a gradually changing environment, and we simulate this by input/output interpolation and task sampling. We perform theoretical and empirical analysis, showing that the loss of plasticity is an artifact of abrupt tasks changes in the environment and can be largely mitigated if the world changes gradually.
☆ Beyond the Unit Hypersphere: Embedding Magnitude in Contrastive Learning
Cosine similarity is prevalent in contrastive learning, yet it makes an implicit assumption: embedding magnitude is noise. Prior work occasionally found dot product and cosine similarity comparable, but left unanswered WHAT information magnitude carries, WHEN it helps, and HOW to leverage it. We conduct a systematic study through a $2 \times 2$ ablation that independently controls input-side and output-side normalization across text and vision models. Our findings reveal three key insights. First, in text retrieval, output (document) magnitude strongly correlates with relevance (Cohen's $d$ up to 1.80), yielding the largest gains on reasoning-intensive tasks. Second, input and output magnitudes serve asymmetric roles: output magnitude directly scales similarity scores while input magnitude modulates training dynamics. Third, magnitude learning benefits asymmetric tasks (text retrieval, RAG) but harms symmetric tasks (STS, text-image alignment). These findings establish a task symmetry principle: the choice between cosine and dot product depends on whether the task has distinct input roles, enabling cost-free improvements by simply removing an unnecessary constraint.
comment: Preliminary work. Under review
☆ Barycentric alignment for instance-level comparison of neural representations
Comparing representations across neural networks is challenging because representations admit symmetries, such as arbitrary reordering of units or rotations of activation space, that obscure underlying equivalence between models. We introduce a barycentric alignment framework that quotients out these nuisance symmetries to construct a universal embedding space across many models. Unlike existing similarity measures, which summarize relationships over entire stimulus sets, this framework enables similarity to be defined at the level of individual stimuli, revealing inputs that elicit convergent versus divergent representations across models. Using this instance-level notion of similarity, we identify systematic input properties that predict representational convergence versus divergence across vision and language model families. We also construct universal embedding spaces for brain representations across individuals and cortical regions, enabling instance-level comparison of representational agreement across stages of the human visual hierarchy. Finally, we apply the same barycentric alignment framework to purely unimodal vision and language models and find that post-hoc alignment into a shared space yields image text similarity scores that closely track human cross-modal judgments and approach the performance of contrastively trained vision-language models. This strikingly suggests that independently learned representations already share sufficient geometric structure for human-aligned cross-modal comparison. Together, these results show that resolving representational similarity at the level of individual stimuli reveals phenomena that cannot be detected by set-level comparison metrics.
☆ A Lightweight Multi-View Approach to Short-Term Load Forecasting
Time series forecasting is a critical task across domains such as energy, finance, and meteorology, where accurate predictions enable informed decision-making. While transformer-based and large-parameter models have recently achieved state-of-the-art results, their complexity can lead to overfitting and unstable forecasts, especially when older data points become less relevant. In this paper, we propose a lightweight multi-view approach to short-term load forecasting that leverages single-value embeddings and a scaled time-range input to capture temporally relevant features efficiently. We introduce an embedding dropout mechanism to prevent over-reliance on specific features and enhance interpretability. Our method achieves competitive performance with significantly fewer parameters, demonstrating robustness across multiple datasets, including scenarios with noisy or sparse data, and provides insights into the contributions of individual features to the forecast.
☆ CausalGDP: Causality-Guided Diffusion Policies for Reinforcement Learning
Reinforcement learning (RL) has achieved remarkable success in a wide range of sequential decision-making problems. Recent diffusion-based policies further improve RL by modeling complex, high-dimensional action distributions. However, existing diffusion policies primarily rely on statistical associations and fail to explicitly account for causal relationships among states, actions, and rewards, limiting their ability to identify which action components truly cause high returns. In this paper, we propose Causality-guided Diffusion Policy (CausalGDP), a unified framework that integrates causal reasoning into diffusion-based RL. CausalGDP first learns a base diffusion policy and an initial causal dynamical model from offline data, capturing causal dependencies among states, actions, and rewards. During real-time interaction, the causal information is continuously updated and incorporated as a guidance signal to steer the diffusion process toward actions that causally influence future states and rewards. By explicitly considering causality beyond association, CausalGDP focuses policy optimization on action components that genuinely drive performance improvements. Experimental results demonstrate that CausalGDP consistently achieves competitive or superior performance over state-of-the-art diffusion-based and offline RL methods, especially in complex, high-dimensional control tasks.
☆ EExApp: GNN-Based Reinforcement Learning for Radio Unit Energy Optimization in 5G O-RAN IEEE
With over 3.5 million 5G base stations deployed globally, their collective energy consumption (projected to exceed 131 TWh annually) raises significant concerns over both operational costs and environmental impacts. In this paper, we present EExAPP, a deep reinforcement learning (DRL)-based xApp for 5G Open Radio Access Network (O-RAN) that jointly optimizes radio unit (RU) sleep scheduling and distributed unit (DU) resource slicing. EExAPP uses a dual-actor-dual-critic Proximal Policy Optimization (PPO) architecture, with dedicated actor-critic pairs targeting energy efficiency and quality-of-service (QoS) compliance. A transformer-based encoder enables scalable handling of variable user equipment (UE) populations by encoding all-UE observations into fixed-dimensional representations. To coordinate the two optimization objectives, a bipartite Graph Attention Network (GAT) is used to modulate actor updates based on both critic outputs, enabling adaptive tradeoffs between power savings and QoS. We have implemented EExAPP and deployed it on a real-world 5G O-RAN testbed with live traffic, commercial RU and smartphones. Extensive over-the-air experiments and ablation studies confirm that EExAPP significantly outperforms existing methods in reducing the energy consumption of RU while maintaining QoS.
comment: Accepted by IEEE INFOCOM 2026
☆ Fair Feature Importance Scores via Feature Occlusion and Permutation
As machine learning models increasingly impact society, their opaque nature poses challenges to trust and accountability, particularly in fairness contexts. Understanding how individual features influence model outcomes is crucial for building interpretable and equitable models. While feature importance metrics for accuracy are well-established, methods for assessing feature contributions to fairness remain underexplored. We propose two model-agnostic approaches to measure fair feature importance. First, we propose to compare model fairness before and after permuting feature values. This simple intervention-based approach decouples a feature and model predictions to measure its contribution to training. Second, we evaluate the fairness of models trained with and without a given feature. This occlusion-based score enjoys dramatic computational simplification via minipatch learning. Our empirical results reflect the simplicity and effectiveness of our proposed metrics for multiple predictive tasks. Both methods offer simple, scalable, and interpretable solutions to quantify the influence of features on fairness, providing new tools for responsible machine learning development.
☆ ML-DCN: Masked Low-Rank Deep Crossing Network Towards Scalable Ads Click-through Rate Prediction at Pinterest
Deep learning recommendation systems rely on feature interaction modules to model complex user-item relationships across sparse categorical and dense features. In large-scale ad ranking, increasing model capacity is a promising path to improving both predictive performance and business outcomes, yet production serving budgets impose strict constraints on latency and FLOPs. This creates a central tension: we want interaction modules that both scale effectively with additional compute and remain compute-efficient at serving time. In this work, we study how to scale feature interaction modules under a fixed serving budget. We find that naively scaling DCNv2 and MaskNet, despite their widespread adoption in industry, yields rapidly diminishing offline gains in the Pinterest ads ranking system. To overcome aforementioned limitations, we propose ML-DCN, an interaction module that integrates an instance-conditioned mask into a low-rank crossing layer, enabling per-example selection and amplification of salient interaction directions while maintaining efficient computation. This novel architecture combines the strengths of DCNv2 and MaskNet, scales efficiently with increased compute, and achieves state-of-the-art performance. Experiments on a large internal Pinterest ads dataset show that ML-DCN achieves higher AUC than DCNv2, MaskNet, and recent scaling-oriented alternatives at matched FLOPs, and it scales more favorably overall as compute increases, exhibiting a stronger AUC-FLOPs trade-off. Finally, online A/B tests demonstrate statistically significant improvements in key ads metrics (including CTR and click-quality measures) and ML-DCN has been deployed in the production system with neutral serving cost.
☆ Gradient Residual Connections
Existing work has linked properties of a function's gradient to the difficulty of function approximation. Motivated by these insights, we study how gradient information can be leveraged to improve neural network's ability to approximate high-frequency functions, and we propose a gradient-based residual connection as a complement to the standard identity skip connection used in residual networks. We provide simple theoretical intuition for why gradient information can help distinguish inputs and improve the approximation of functions with rapidly varying behaviour. On a synthetic regression task with a high-frequency sinusoidal ground truth, we show that conventional residual connections struggle to capture high-frequency patterns. In contrast, our gradient residual substantially improves approximation quality. We then introduce a convex combination of the standard and gradient residuals, allowing the network to flexibly control how strongly it relies on gradient information. After validating the design choices of our proposed method through an ablation study, we further validate our approach's utility on the single-image super-resolution task, where the underlying function may be high-frequency. Finally, on standard tasks such as image classification and segmentation, our method achieves performance comparable to standard residual networks, suggesting its broad utility.
comment: Preprint
☆ One RNG to Rule Them All: How Randomness Becomes an Attack Vector in Machine Learning IEEE
Machine learning relies on randomness as a fundamental component in various steps such as data sampling, data augmentation, weight initialization, and optimization. Most machine learning frameworks use pseudorandom number generators as the source of randomness. However, variations in design choices and implementations across different frameworks, software dependencies, and hardware backends along with the lack of statistical validation can lead to previously unexplored attack vectors on machine learning systems. Such attacks on randomness sources can be extremely covert, and have a history of exploitation in real-world systems. In this work, we examine the role of randomness in the machine learning development pipeline from an adversarial point of view, and analyze the implementations of PRNGs in major machine learning frameworks. We present RNGGuard to help machine learning engineers secure their systems with low effort. RNGGuard statically analyzes a target library's source code and identifies instances of random functions and modules that use them. At runtime, RNGGuard enforces secure execution of random functions by replacing insecure function calls with RNGGuard's implementations that meet security specifications. Our evaluations show that RNGGuard presents a practical approach to close existing gaps in securing randomness sources in machine learning systems.
comment: This work has been accepted for publication at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The final version will be available on IEEE Xplore
☆ Weighted Wasserstein Barycenter of Gaussian Processes for exotic Bayesian Optimization tasks
Exploiting the analogy between Gaussian Distributions and Gaussian Processes' posterior, we present how the weighted Wasserstein Barycenter of Gaussian Processes (W2BGP) can be used to unify, under a common framework, different exotic Bayesian Optimization (BO) tasks. Specifically, collaborative/federated BO, (synchronous) batch BO, and multi-fidelity BO are considered in this paper. Our empirical analysis proves that each one of these tasks requires just an appropriate weighting schema for the W2BGP, while the entire framework remains untouched. Moreover, we demonstrate that the most well-known BO acquisition functions can be easily re-interpreted under the proposed framework and also enable a more computationally efficient way to deal with the computation of the Wasserstein Barycenter, compared with state-of-the-art methods from the Machine Learning literature. Finally, research perspectives branching from the proposed approach are presented.
☆ $n$-Musketeers: Reinforcement Learning Shapes Collaboration Among Language Models
Recent progress in reinforcement learning with verifiable rewards (RLVR) shows that small, specialized language models (SLMs) can exhibit structured reasoning without relying on large monolithic LLMs. We introduce soft hidden-state collaboration, where multiple heterogeneous frozen SLM experts are integrated through their internal representations via a trainable attention interface. Experiments on Reasoning Gym and GSM8K show that this latent integration is competitive with strong single-model RLVR baselines. Ablations further reveal a dual mechanism of expert utilization: for simpler arithmetic domains, performance gains can largely be explained by static expert preferences, whereas more challenging settings induce increasingly concentrated and structured expert attention over training, indicating emergent specialization in how the router connects to relevant experts. Overall, hidden-state collaboration provides a compact mechanism for leveraging frozen experts, while offering an observational window into expert utilization patterns and their evolution under RLVR.
☆ Quantifying Epistemic Uncertainty in Diffusion Models AISTATS
To ensure high quality outputs, it is important to quantify the epistemic uncertainty of diffusion models.Existing methods are often unreliable because they mix epistemic and aleatoric uncertainty. We introduce a method based on Fisher information that explicitly isolates epistemic variance, producing more reliable plausibility scores for generated data. To make this approach scalable, we propose FLARE (Fisher-Laplace Randomized Estimator), which approximates the Fisher information using a uniformly random subset of model parameters. Empirically, FLARE improves uncertainty estimation in synthetic time-series generation tasks, achieving more accurate and reliable filtering than other methods. Theoretically, we bound the convergence rate of our randomized approximation and provide analytic and empirical evidence that last-layer Laplace approximations are insufficient for this task.
comment: Will appear in the Proceedings of the 29th International Conference on Artificial Intelligence and Statistics (AISTATS) 2026
☆ Train Less, Infer Faster: Efficient Model Finetuning and Compression via Structured Sparsity
Fully finetuning foundation language models (LMs) with billions of parameters is often impractical due to high computational costs, memory requirements, and the risk of overfitting. Although methods like low-rank adapters help address these challenges by adding small trainable modules to the frozen LM, they also increase memory usage and do not reduce inference latency. We uncover an intriguing phenomenon: sparsifying specific model rows and columns enables efficient task adaptation without requiring weight tuning. We propose a scheme for effective finetuning via sparsification using training stochastic gates, which requires minimal trainable parameters, reduces inference time, and removes 20--40\% of model parameters without significant accuracy loss. Empirical results show it outperforms recent finetuning baselines in efficiency and performance. Additionally, we provide theoretical guarantees for the convergence of this stochastic gating process, and show that our method admits a simpler and better-conditioned optimization landscape compared to LoRA. Our results highlight sparsity as a compelling mechanism for task-specific adaptation in LMs.
☆ Faster Rates For Federated Variational Inequalities
In this paper, we study federated optimization for solving stochastic variational inequalities (VIs), a problem that has attracted growing attention in recent years. Despite substantial progress, a significant gap remains between existing convergence rates and the state-of-the-art bounds known for federated convex optimization. In this work, we address this limitation by establishing a series of improved convergence rates. First, we show that, for general smooth and monotone variational inequalities, the classical Local Extra SGD algorithm admits tighter guarantees under a refined analysis. Next, we identify an inherent limitation of Local Extra SGD, which can lead to excessive client drift. Motivated by this observation, we propose a new algorithm, the Local Inexact Proximal Point Algorithm with Extra Step (LIPPAX), and show that it mitigates client drift and achieves improved guarantees in several regimes, including bounded Hessian, bounded operator, and low-variance settings. Finally, we extend our results to federated composite variational inequalities and establish improved convergence guarantees.
☆ Boltzmann Reinforcement Learning for Noise resilience in Analog Ising Machines
Analog Ising machines (AIMs) have emerged as a promising paradigm for combinatorial optimization, utilizing physical dynamics to solve Ising problems with high energy efficiency. However, the performance of traditional optimization and sampling algorithms on these platforms is often limited by inherent measurement noise. We introduce BRAIN (Boltzmann Reinforcement for Analog Ising Networks), a distribution learning framework that utilizes variational reinforcement learning to approximate the Boltzmann distribution. By shifting from state-by-state sampling to aggregating information across multiple noisy measurements, BRAIN is resilient to Gaussian noise characteristic of AIMs. We evaluate BRAIN across diverse combinatorial topologies, including the Curie-Weiss and 2D nearest-neighbor Ising systems. We find that under realistic 3\% Gaussian measurement noise, BRAIN maintains 98\% ground state fidelity, whereas Markov Chain Monte Carlo (MCMC) methods degrade to 51\% fidelity. Furthermore, BRAIN reaches the MCMC-equivalent solution up to 192x faster under these conditions. BRAIN exhibits $\mathcal{O}(N^{1.55})$ scaling up to 65,536 spins and maintains robustness against severe measurement uncertainty up to 40\%. Beyond ground state optimization, BRAIN accurately captures thermodynamic phase transitions and metastable states, providing a scalable and noise-resilient method for utilizing analog computing architectures in complex optimizations.
☆ Minimum Distance Summaries for Robust Neural Posterior Estimation
Simulation-based inference (SBI) enables amortized Bayesian inference by first training a neural posterior estimator (NPE) on prior-simulator pairs, typically through low-dimensional summary statistics, which can then be cheaply reused for fast inference by querying it on new test observations. Because NPE is estimated under the training data distribution, it is susceptible to misspecification when observations deviate from the training distribution. Many robust SBI approaches address this by modifying NPE training or introducing error models, coupling robustness to the inference network and compromising amortization and modularity. We introduce minimum-distance summaries, a plug-in robust NPE method that adapts queried test-time summaries independently of the pretrained NPE. Leveraging the maximum mean discrepancy (MMD) as a distance between observed data and a summary-conditional predictive distribution, the adapted summary inherits strong robustness properties from the MMD. We demonstrate that the algorithm can be implemented efficiently with random Fourier feature approximations, yielding a lightweight, model-free test-time adaptation procedure. We provide theoretical guarantees for the robustness of our algorithm and empirically evaluate it on a range of synthetic and real-world tasks, demonstrating substantial robustness gains with minimal additional overhead.
☆ What do Geometric Hallucination Detection Metrics Actually Measure? ICML
Hallucination remains a barrier to deploying generative models in high-consequence applications. This is especially true in cases where external ground truth is not readily available to validate model outputs. This situation has motivated the study of geometric signals in the internal state of an LLM that are predictive of hallucination and require limited external knowledge. Given that there are a range of factors that can lead model output to be called a hallucination (e.g., irrelevance vs incoherence), in this paper we ask what specific properties of a hallucination these geometric statistics actually capture. To assess this, we generate a synthetic dataset which varies distinct properties of output associated with hallucination. This includes output correctness, confidence, relevance, coherence, and completeness. We find that different geometric statistics capture different types of hallucinations. Along the way we show that many existing geometric detection methods have substantial sensitivity to shifts in task domain (e.g., math questions vs. history questions). Motivated by this, we introduce a simple normalization method to mitigate the effect of domain shift on geometric statistics, leading to AUROC gains of +34 points in multi-domain settings.
comment: Published at the 2025 ICML Workshop on Reliable and Responsible Foundation Models
☆ Decoding Future Risk: Deep Learning Analysis of Tubular Adenoma Whole-Slide Images
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality, despite the widespread implementation of prophylactic initiatives aimed at detecting and removing precancerous polyps. Although screening effectively reduces incidence, a notable portion of patients initially diagnosed with low-grade adenomatous polyps will still develop CRC later in life, even without the presence of known high-risk syndromes. Identifying which low-risk patients are at higher risk of progression is a critical unmet need for tailored surveillance and preventative therapeutic strategies. Traditional histological assessment of adenomas, while fundamental, may not fully capture subtle architectural or cytological features indicative of malignant potential. Advancements in digital pathology and machine learning provide an opportunity to analyze whole-slide images (WSIs) comprehensively and objectively. This study investigates whether machine learning algorithms, specifically convolutional neural networks (CNNs), can detect subtle histological features in WSIs of low-grade tubular adenomas that are predictive of a patient's long-term risk of developing colorectal cancer.
comment: 20 pages, 5 figures
♻ ☆ Categorical Reparameterization with Denoising Diffusion models
Learning models with categorical variables requires optimizing expectations over discrete distributions, a setting in which stochastic gradient-based optimization is challenging due to the non-differentiability of categorical sampling. A common workaround is to replace the discrete distribution with a continuous relaxation, yielding a smooth surrogate that admits reparameterized gradient estimates via the reparameterization trick. Building on this idea, we introduce ReDGE, a novel and efficient diffusion-based soft reparameterization method for categorical distributions. Our approach defines a flexible class of gradient estimators that includes the Straight-Through estimator as a special case. Experiments spanning latent variable models and inference-time reward guidance in discrete diffusion models demonstrate that ReDGE consistently matches or outperforms existing gradient-based methods. The code will be made available at https://github.com/samsongourevitch/redge.
comment: preprint
♻ ☆ A Metamorphic Testing Perspective on Knowledge Distillation for Language Models of Code: Does the Student Deeply Mimic the Teacher?
Transformer-based language models of code have achieved state-of-the-art performance across a wide range of software analytics tasks, but their practical deployment remains limited due to high computational costs, slow inference speeds, and significant environmental impact. To address these challenges, recent research has increasingly explored knowledge distillation as a method for compressing a large language model of code (the teacher) into a smaller model (the student) while maintaining performance. However, the degree to which a student model deeply mimics the predictive behavior and internal representations of its teacher remains largely unexplored, as current accuracy-based evaluation provides only a surface-level view of model quality and often fails to capture more profound discrepancies in behavioral fidelity between the teacher and student models. To address this gap, we empirically show that the student model often fails to deeply mimic the teacher model, resulting in up to 285% greater performance drop under adversarial attacks, which is not captured by traditional accuracy-based evaluation. Therefore, we propose MetaCompress, a metamorphic testing framework that systematically evaluates behavioral fidelity by comparing the outputs of teacher and student models under a set of behavior-preserving metamorphic relations. We evaluate MetaCompress on two widely studied tasks, using compressed versions of popular language models of code, obtained via three different knowledge distillation techniques: Compressor, AVATAR, and MORPH. The results show that MetaCompress identifies up to 62% behavioral discrepancies in student models, underscoring the need for behavioral fidelity evaluation within the knowledge distillation pipeline and establishing MetaCompress as a practical framework for testing compressed language models of code derived through knowledge distillation.
comment: This paper is a revised version of a manuscript currently under revision at the Journal of Systems and Software
♻ ☆ Semantics-Aware Generative Latent Data Augmentation for Learning in Low-Resource Domains
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
♻ ☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent computational cost. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Reproducible Benchmarking for Lung Nodule Detection and Malignancy Classification Across Multiple Low-Dose CT Datasets
Evaluation of artificial intelligence (AI) models for low-dose CT lung cancer screening is limited by heterogeneous datasets, annotation standards, and evaluation protocols, making performance difficult to compare and translate across clinical settings. We establish a public, reproducible multi-dataset benchmark for lung nodule detection and nodule-level cancer classification and quantify cross-dataset generalizability. Using the Duke Lung Cancer Screening (DLCS) dataset as a clinically curated development set, we evaluate performance across LUNA16/LIDC-IDRI, NLST-3D, and LUNA25. Detection models trained on DLCS and LUNA16 were evaluated externally on NLST-3D using free-response ROC analysis. For malignancy classification, we compared five strategies: randomly initialized ResNet50, Models Genesis, Med3D, a Foundation Model for Cancer Biomarkers, and a Strategic Warm-Start (ResNet50-SWS) approach pretrained using detection-derived candidate patches stratified by confidence. Performance was summarized using AUC with 95% confidence intervals and DeLong tests. Detection performance varied substantially by training dataset, with DLCS-trained models outperforming LUNA16-trained models on external NLST-3D evaluation (sensitivity at 2 false positives per scan: 0.72 vs. 0.64; p < 0.001). For malignancy classification, ResNet50-SWS achieved AUCs of 0.71 (DLCS), 0.90 (LUNA16), 0.81 (NLST-3D), and 0.80 (LUNA25), consistently matching or exceeding alternative pretraining strategies. These results demonstrate that dataset characteristics strongly influence lung cancer AI performance and highlight the need for transparent, multi-dataset benchmarking.
comment: 3 tables, 2 supplement tables, 5 figures
♻ ☆ f-GRPO and Beyond: Divergence-Based Reinforcement Learning Algorithms for General LLM Alignment
Recent research shows that Preference Alignment (PA) objectives act as divergence estimators between aligned (chosen) and unaligned (rejected) response distributions. In this work, we extend this divergence-based perspective to general alignment settings, such as reinforcement learning with verifiable rewards (RLVR), where only environmental rewards are available. Within this unified framework, we propose f-Group Relative Policy Optimization (f-GRPO), a class of on-policy reinforcement learning, and f-Hybrid Alignment Loss (f-HAL), a hybrid on/off policy objectives, for general LLM alignment based on variational representation of f-divergences. We provide theoretical guarantees that these classes of objectives improve the average reward after alignment. Empirically, we validate our framework on both RLVR (Math Reasoning) and PA tasks (Safety Alignment), demonstrating superior performance and flexibility compared to current methods.
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help
Graph deep learning models, a class of AI-driven approaches employing a message aggregation mechanism, have gained popularity for analyzing the functional brain connectome in neuroimaging. However, their actual effectiveness remains unclear. In this study, we re-examine graph deep learning versus classical machine learning models based on four large-scale neuroimaging studies. Surprisingly, we find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed, but rather consistently degrades it. To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways, achieving robust predictions and enhanced interpretability by revealing both localized and global neural connectivity patterns. Our findings urge caution in adopting complex deep learning models for functional brain connectome analysis, emphasizing the need for rigorous experimental designs to establish tangible performance gains and perhaps more importantly, to pursue improvements in model interpretability.
comment: Published version. See journal for final typeset version
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Latent Domain Modeling Improves Robustness to Geographic Shifts
Geographic distribution shift arises when the distribution of locations on Earth in a training dataset is different from what is seen at inference time. Using standard empirical risk minimization (ERM) in this setting can lead to uneven generalization across different spatially-determined groups of interest such as continents or biomes. The most common approaches to tackling geographic distribution shift apply domain adaptation methods using discrete group labels, ignoring geographic coordinates that are often available as metadata. On the other hand, modeling methods that integrate geographic coordinates have been shown to improve overall performance, but their impact on geographic domain generalization has not been studied. In this work, we propose a general modeling framework for improving robustness to geographic distribution shift. The key idea is to model continuous, latent domain assignment using location encoders and to condition the main task predictor on the jointly-trained latents. On four diverse geo-tagged image datasets with different group splits, we show that instances of our framework achieve significant improvements in worst-group performance compared to existing domain adaptation and location-aware modeling methods. In particular, we achieve new state-of-the-art results on two datasets from the WILDS benchmark.
♻ ☆ Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs
The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.
♻ ☆ FMMI: Flow Matching Mutual Information Estimation
We introduce a novel Mutual Information (MI) estimator that fundamentally reframes the discriminative approach. Instead of training a classifier to discriminate between joint and marginal distributions, we learn a normalizing flow that transforms one into the other. This technique produces a computationally efficient and precise MI estimate that scales well to high dimensions and across a wide range of ground-truth MI values.
comment: 11 pages
♻ ☆ Beware Untrusted Simulators -- Reward-Free Backdoor Attacks in Reinforcement Learning ICLR 2026
Simulated environments are a key piece in the success of Reinforcement Learning (RL), allowing practitioners and researchers to train decision making agents without running expensive experiments on real hardware. Simulators remain a security blind spot, however, enabling adversarial developers to alter the dynamics of their released simulators for malicious purposes. Therefore, in this work we highlight a novel threat, demonstrating how simulator dynamics can be exploited to stealthily implant action-level backdoors into RL agents. The backdoor then allows an adversary to reliably activate targeted actions in an agent upon observing a predefined ``trigger'', leading to potentially dangerous consequences. Traditional backdoor attacks are limited in their strong threat models, assuming the adversary has near full control over an agent's training pipeline, enabling them to both alter and observe agent's rewards. As these assumptions are infeasible to implement within a simulator, we propose a new attack ``Daze'' which is able to reliably and stealthily implant backdoors into RL agents trained for real world tasks without altering or even observing their rewards. We provide formal proof of Daze's effectiveness in guaranteeing attack success across general RL tasks along with extensive empirical evaluations on both discrete and continuous action space domains. We additionally provide the first example of RL backdoor attacks transferring to real, robotic hardware. These developments motivate further research into securing all components of the RL training pipeline to prevent malicious attacks.
comment: 10 pages main body, ICLR 2026
♻ ☆ Non-negative matrix factorization algorithms generally improve topic model fits
In an effort to develop topic modeling methods that can be quickly applied to large data sets, we revisit the problem of maximum-likelihood estimation in topic models. It is known, at least informally, that maximum-likelihood estimation in topic models is closely related to non-negative matrix factorization (NMF). Yet, to our knowledge, this relationship has not been exploited previously to fit topic models. We show that recent advances in NMF optimization methods can be leveraged to fit topic models very efficiently, often resulting in much better fits and in less time than existing algorithms for topic models. We also formally make the connection between the NMF optimization problem and maximum-likelihood estimation for the topic model, and using this result we show that the expectation maximization (EM) algorithm for the topic model is essentially the same as the classic multiplicative updates for NMF (the only difference being that the operations are performed in a different order). Our methods are implemented in the R package fastTopics.
♻ ☆ RiskAgent: Synergizing Language Models with Validated Tools for Evidence-Based Risk Prediction
Large Language Models (LLMs) achieve competitive results compared to human experts in medical examinations. However, it remains a challenge to apply LLMs to complex clinical decision-making, which requires a deep understanding of medical knowledge and differs from the standardized, exam-style scenarios commonly used in current efforts. A common approach is to fine-tune LLMs for target tasks, which, however, not only requires substantial data and computational resources but also remains prone to generating `hallucinations'. In this work, we present RiskAgent, which synergizes language models with hundreds of validated clinical decision tools supported by evidence-based medicine, to provide generalizable and faithful recommendations. Our experiments show that RiskAgent not only achieves superior performance on a broad range of clinical risk predictions across diverse scenarios and diseases, but also demonstrates robust generalization in tool learning on the external MedCalc-Bench dataset, as well as in medical reasoning and question answering on three representative benchmarks, MedQA, MedMCQA, and MMLU.
comment: Code and Data are available at https://github.com/AI-in-Health/RiskAgent
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from Low-Dose Computed Tomography
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking: first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with a natural-language rationale. It integrates three components: a Pulmonary Perception Module that summarizes lung abnormalities, an Agentic Pulmonary-to-Cardiac Reasoning Module that infers their cardiovascular implications, and a Cardiac Feature Extractor that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening (AUC=0.919) and mortality prediction (AUC=0.838), outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Predictive Inorganic Synthesis based on Machine Learning using Small Data sets: a case study of size-controlled Cu Nanoparticles
Copper nanoparticles (Cu NPs) have a broad applicability, yet their synthesis is sensitive to subtle changes in reaction parameters. This sensitivity, combined with the time- and resource-intensive nature of experimental optimization, poses a major challenge in achieving reproducible and size-controlled synthesis. While Machine Learning (ML) shows promise in materials research, its application is often limited by scarcity of large high-quality experimental data sets. This study explores ML to predict the size of Cu NPs from microwave-assisted polyol synthesis using a small data set of 25 in-house performed syntheses. Latin Hypercube Sampling is used to efficiently cover the parameter space while creating the experimental data set. Ensemble regression models successfully predict particle sizes with high accuracy ($R^2 = 0.74$), outperforming classical statistical approaches ($R^2 = 0.60$). Additionally, classification models using both random forests and Large Language Models (LLMs) are evaluated to distinguish between large and small particles. While random forests show moderate performance, LLMs offer no significant advantages under data-scarce conditions. Overall, this study demonstrates that carefully curated small data sets, paired with robust classical ML, can effectively predict the synthesis of Cu NPs and highlights that for lab-scale studies, complex models like LLMs may offer limited benefit over simpler techniques.
comment: 23 pages, 17 figures, 13 tables (including SI)
♻ ☆ Constraint Learning in Multi-Agent Dynamic Games from Demonstrations of Local Nash Interactions
We present an inverse dynamic game-based algorithm to learn parametric constraints from a given dataset of local Nash equilibrium interactions between multiple agents. Specifically, we introduce mixed-integer linear programs (MILP) encoding the Karush-Kuhn-Tucker (KKT) conditions of the interacting agents, which recover constraints consistent with the local Nash stationarity of the interaction demonstrations. We establish theoretical guarantees that our method learns inner approximations of the true safe and unsafe sets. We also use the interaction constraints recovered by our method to design motion plans that robustly satisfy the underlying constraints. Across simulations and hardware experiments, our methods accurately inferred constraints and designed safe interactive motion plans for various classes of constraints, both convex and non-convex, from interaction demonstrations of agents with nonlinear dynamics.
♻ ☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
♻ ☆ Conditional PED-ANOVA: Hyperparameter Importance in Hierarchical & Dynamic Search Spaces
We propose conditional PED-ANOVA (condPED-ANOVA), a principled framework for estimating hyperparameter importance (HPI) in conditional search spaces, where the presence or domain of a hyperparameter can depend on other hyperparameters. Although the original PED-ANOVA provides a fast and efficient way to estimate HPI within the top-performing regions of the search space, it assumes a fixed, unconditional search space and therefore cannot properly handle conditional hyperparameters. To address this, we introduce a conditional HPI for top-performing regions and derive a closed-form estimator that accurately reflects conditional activation and domain changes. Experiments show that naive adaptations of existing HPI estimators yield misleading or uninterpretable importances in conditional settings, whereas condPED-ANOVA consistently provides meaningful importances that reflect the underlying conditional structure. Our code is publicly available at https://github.com/kAIto47802/condPED-ANOVA.
comment: 19 pages, 14 figures
♻ ☆ CoinPress: Practical Private Mean and Covariance Estimation
We present simple differentially private estimators for the mean and covariance of multivariate sub-Gaussian data that are accurate at small sample sizes. We demonstrate the effectiveness of our algorithms both theoretically and empirically using synthetic and real-world datasets -- showing that their asymptotic error rates match the state-of-the-art theoretical bounds, and that they concretely outperform all previous methods. Specifically, previous estimators either have weak empirical accuracy at small sample sizes, perform poorly for multivariate data, or require the user to provide strong a priori estimates for the parameters.
comment: Code is available at https://github.com/twistedcubic/coin-press. Experimental results were inadvertently commented out of previous version
♻ ☆ ZKBoost: Zero-Knowledge Verifiable Training for XGBoost
Gradient boosted decision trees, particularly XGBoost, are among the most effective methods for tabular data. As deployment in sensitive settings increases, cryptographic guarantees of model integrity become essential. We present ZKBoost, the first zero-knowledge proof of training (zkPoT) protocol for XGBoost, enabling model owners to prove correct training on a committed dataset without revealing data or parameters. We make three key contributions: (1) a fixed-point XGBoost implementation compatible with arithmetic circuits, enabling instantiation of efficient zkPoT, (2) a generic template of zkPoT for XGBoost, which can be instantiated with any general-purpose ZKP backend, and (3) vector oblivious linear evaluation (VOLE)-based instantiation resolving challenges in proving nonlinear fixed-point operations. Our fixed-point implementation matches standard XGBoost accuracy within 1\% while enabling practical zkPoT on real-world datasets.
♻ ☆ ASIDE: Architectural Separation of Instructions and Data in Language Models ICLR 2026
Despite their remarkable performance, large language models lack elementary safety features, making them susceptible to numerous malicious attacks. In particular, previous work has identified the absence of an intrinsic separation between instructions and data as the root cause of the success of prompt injection attacks. In this work, we propose a new architectural element, ASIDE, that allows language models to clearly separate instructions and data at the level of token embeddings. ASIDE applies an orthogonal rotation to the embeddings of data tokens, thus creating clearly distinct representations of instructions and data tokens without introducing any additional parameters. As we demonstrate experimentally across a range of models, instruction-tuning LLMs with ASIDE (1) achieves substantially higher instruction-data separation without performance loss and (2) makes the models more robust to prompt injection benchmarks, even without dedicated safety training. Additionally, we provide insights into the mechanism underlying our method through an analysis of the model representations. The source code and training scripts are openly accessible at https://github.com/egozverev/aside.
comment: ICLR 2026 paper
♻ ☆ Parallel Layer Normalization for Universal Approximation
This paper studies the approximation capabilities of neural networks that combine layer normalization (LN) with linear layers. We prove that networks consisting of two linear layers with parallel layer normalizations (PLNs) inserted between them (referred to as PLN-Nets) achieve universal approximation, whereas architectures that use only standard LN exhibit strictly limited expressive power.We further analyze approximation rates of shallow and deep PLN-Nets under the $L^\infty$ norm as well as in Sobolev norms. Our analysis extends beyond LN to RMSNorm, and from standard MLPs to position-wise feed-forward networks, the core building blocks used in RNNs and Transformers.Finally, we provide empirical experiments to explore other possible potentials of PLN-Nets.
comment: 45 pages
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference. Design principles for state-to-state transformations are detailed in the Appendix, with empirical validation on 580 test cases showing 0% collapse for principle-satisfying operators versus up to 17.8% for violating operators.
comment: 24 pages, 5 figures, 7 tables. Part of the NRR research program. Clarified operator notation and appendix validation details; updated figures and reference formatting
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ InSPO: Unlocking Intrinsic Self-Reflection for LLM Preference Optimization
Direct Preference Optimization (DPO) and its variants have become standard for aligning Large Language Models due to their simplicity and offline stability. However, we identify two fundamental limitations. First, the optimal policy depends on arbitrary modeling choices (scalarization function, reference policy), yielding behavior reflecting parameterization artifacts rather than true preferences. Second, treating response generation in isolation fails to leverage comparative information in pairwise data, leaving the model's capacity for intrinsic self-reflection untapped. To address it, we propose Intrinsic Self-reflective Preference Optimization (InSPO), deriving a globally optimal policy conditioning on both context and alternative responses. We prove this formulation superior to DPO/RLHF while guaranteeing invariance to scalarization and reference choices. InSPO serves as a plug-and-play enhancement without architectural changes or inference overhead. Experiments demonstrate consistent improvements in win rates and length-controlled metrics, validating that unlocking self-reflection yields more robust, human-aligned LLMs. Our Code is available at https://github.com/Skylanding/InSPO.
♻ ☆ Training Language Models to Explain Their Own Computations
Can language models (LMs) learn to faithfully describe their internal computations? Are they better able to describe themselves than other models? We study the extent to which LMs' privileged access to their own internals can be leveraged to produce new techniques for explaining their behavior. Using existing interpretability techniques as a source of ground truth, we fine-tune LMs to generate natural language descriptions of (1) the information encoded by LM features, (2) the causal structure of LMs' internal activations, and (3) the influence of specific input tokens on LM outputs. When trained with only tens of thousands of example explanations, explainer models exhibit non-trivial generalization to new queries. This generalization appears partly attributable to explainer models' privileged access to their own internals: using a model to explain its own computations generally works better than using a *different* model to explain its computations (even if the explainer model is significantly more capable than the target). Our results suggest not only that LMs can learn to reliably explain their internal computations, but that such explanations offer a scalable complement to existing interpretability methods. Code and data at https://github.com/TransluceAI/introspective-interp
comment: 23 pages, 8 tables, 7 figures. Code and data at https://github.com/TransluceAI/introspective-interp
♻ ☆ Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
To generate accurate and reliable predictions, modern AI systems need to combine data from multiple modalities, such as text, images, audio, spreadsheets, and time series. Multi-modal data introduces new opportunities and challenges for disentangling uncertainty: it is commonly assumed in the machine learning community that epistemic uncertainty can be reduced by collecting more data, while aleatoric uncertainty is irreducible. However, this assumption is challenged in modern AI systems when information is obtained from different modalities. This paper introduces an innovative data acquisition framework where uncertainty disentanglement leads to actionable decisions, allowing sampling in two directions: sample size and data modality. The main hypothesis is that aleatoric uncertainty decreases as the number of modalities increases, while epistemic uncertainty decreases by collecting more observations. We provide proof-of-concept implementations on two multi-modal datasets to showcase our data acquisition framework, which combines ideas from active learning, active feature acquisition and uncertainty quantification.
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 2 figures, 2 tables. Part of the NRR research program. Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ TS-Arena -- A Live Forecast Pre-Registration Platform
Time Series Foundation Models (TSFMs) are transforming the field of forecasting. However, evaluating them on historical data is increasingly difficult due to the risks of train-test sample overlaps and temporal overlaps between correlated train and test time series. To address this, we introduce TS-Arena, a live forecasting platform that shifts evaluation from the known past to the unknown future. Building on the concept of continuous benchmarking, TS-Arena evaluates models on future data. Crucially, we introduce a strict forecasting pre-registration protocol: models must submit predictions before the ground-truth data physically exists. This makes test-set contamination impossible by design. The platform relies on a modular microservice architecture that harmonizes and structures data from different sources and orchestrates containerized model submissions. By enforcing a strict pre-registration protocol on live data streams, TS-Arena prevents information leakage offers a faster alternative to traditional static, infrequently repeated competitions (e.g. the M-Competitions). First empirical results derived from operating TS-Arena over one year of energy time series demonstrate that established TSFMs accumulate robust longitudinal scores over time, while the continuous nature of the benchmark simultaneously allows newcomers to demonstrate immediate competitiveness. TS-Arena provides the necessary infrastructure to assess the true generalization capabilities of modern forecasting models. The platform and corresponding code are available at https://ts-arena.live/.
♻ ☆ Near-Universal Multiplicative Updates for Nonnegative Einsum Factorization
Despite the ubiquity of multiway data across scientific domains, there are few user-friendly tools that fit tailored nonnegative tensor factorizations. Researchers may use gradient-based automatic differentiation (which often struggles in nonnegative settings), choose between a limited set of methods with mature implementations, or implement their own model from scratch. As an alternative, we introduce NNEinFact, an einsum-based multiplicative update algorithm that fits any nonnegative tensor factorization expressible as a tensor contraction by minimizing one of many user-specified loss functions (including the $(α,β)$-divergence). To use NNEinFact, the researcher simply specifies their model with a string. NNEinFact converges to a stationary point of the loss, supports missing data, and fits to tensors with hundreds of millions of entries in seconds. Empirically, NNEinFact fits custom models which outperform standard ones in heldout prediction tasks on real-world tensor data by over $37\%$ and attains less than half the test loss of gradient-based methods while converging up to 90 times faster.
comment: 27 pages, 5 figures
♻ ☆ Twice Sequential Monte Carlo for Tree Search
Model-based reinforcement learning (RL) methods that leverage search are responsible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC) recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algorithm which drove these breakthroughs. SMC is easier to parallelize and more suitable to GPU acceleration. However, it also suffers from large variance and path degeneracy which prevent it from scaling well with increased search depth, i.e., increased sequential compute. To address these problems, we introduce Twice Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous environments TSMCTS outperforms the SMC baseline as well as a popular modern version of MCTS as a policy improvement operator, scales favorably with sequential compute, reduces estimator variance and mitigates the effects of path degeneracy while retaining the properties that make SMC natural to parallelize.
♻ ☆ Evaluating Autoencoders for Parametric and Invertible Multidimensional Projections
Recently, neural networks have gained attention for creating parametric and invertible multidimensional data projections. Parametric projections allow for embedding previously unseen data without recomputing the projection as a whole, while invertible projections enable the generation of new data points. However, these properties have never been explored simultaneously for arbitrary projection methods. We evaluate three autoencoder (AE) architectures for creating parametric and invertible projections. Based on a given projection, we train AEs to learn a mapping into 2D space and an inverse mapping into the original space. We perform a quantitative and qualitative comparison on four datasets of varying dimensionality and pattern complexity using t-SNE. Our results indicate that AEs with a customized loss function can create smoother parametric and inverse projections than feed-forward neural networks while giving users control over the strength of the smoothing effect.
comment: 6 pages, 5 figures, 2 tables, LaTeX; fixed typos, added DOI; fixed notations
♻ ☆ Aligning Microscopic Vehicle and Macroscopic Traffic Statistics: Reconstructing Driving Behavior from Partial Data
A driving algorithm that aligns with good human driving practices, or at the very least collaborates effectively with human drivers, is crucial for developing safe and efficient autonomous vehicles. In practice, two main approaches are commonly adopted: (i) supervised or imitation learning, which requires comprehensive naturalistic driving data capturing all states that influence a vehicle's decisions and corresponding actions, and (ii) reinforcement learning (RL), where the simulated driving environment either matches or is intentionally more challenging than real-world conditions. Both methods depend on high-quality observations of real-world driving behavior, which are often difficult and costly to obtain. State-of-the-art sensors on individual vehicles can gather microscopic data, but they lack context about the surrounding conditions. Conversely, roadside sensors can capture traffic flow and other macroscopic characteristics, but they cannot associate this information with individual vehicles on a microscopic level. Motivated by this complementarity, we propose a framework that reconstructs unobserved microscopic states from macroscopic observations, using microscopic data to anchor observed vehicle behaviors, and learns a shared policy whose behavior is microscopically consistent with the partially observed trajectories and actions and macroscopically aligned with target traffic statistics when deployed population-wide. Such constrained and regularized policies promote realistic flow patterns and safe coordination with human drivers at scale.
♻ ☆ Reducing the Complexity of Matrix Multiplication to $O(N^2log_2N)$ by an Asymptotically Optimal Quantum Algorithm
Matrix multiplication is a fundamental classical computing operation whose efficiency becomes a major challenge at scale, especially for machine learning applications. Quantum computing, with its inherent parallelism and exponential storage capacity, offers a potential solution to these limitations. This work presents a quantum kernel-based matrix multiplication algorithm (QKMM) that achieves an asymptotically optimal computational complexity of $ O(N^2 \log_2 N) $, outperforming the classical optimal complexity of $ O(N^{2.371552}) $, where $N$ denotes the matrix dimension. Through noiseless and noisy quantum simulation experiments, we demonstrate that the proposed algorithm not only exhibits superior theoretical efficiency but also shows practical advantages in runtime performance and stability.
♻ ☆ Spatiotemporal Attention-Augmented Inverse Reinforcement Learning for Multi-Agent Task Allocation
Adversarial inverse reinforcement learning (IRL) for multi-agent task allocation (MATA) is challenged by non-stationary interactions and high-dimensional coordination. Unconstrained reward inference in these settings often leads to high variance and poor generalization. We propose an attention-structured adversarial IRL framework that constrains reward inference via spatiotemporal representation learning. Our method employs multi-head self-attention (MHSA) for long-range temporal dependencies and graph attention networks (GAT) for agent-task relational structures. We formulate reward inference as a low-capacity, adaptive linear transformation of the environment reward, ensuring stable and interpretable guidance. This framework decouples reward inference from policy learning and optimizes the reward model adversarially. Experiments on benchmark MATA scenarios show that our approach outperforms representative MARL baselines in convergence speed, cumulative rewards, and spatial efficiency. Results demonstrate that attention-guided, capacity-constrained reward inference is a scalable and effective mechanism for stabilizing adversarial IRL in complex multi-agent systems.
comment: Revised version with substantial new experimental results, improved analysis, and a restructured layout for better clarity
♻ ☆ Tree Training: Accelerating Agentic LLMs Training via Shared Prefix Reuse
Agentic large language model (LLM) training often involves multi-turn interaction trajectories that branch into multiple execution paths due to concurrent tool use, think-mode, sub-agent, context management and other runtime designs. As a result, the token produced by a single task naturally forms a tree-structured token trajectory with shared prefixes, rather than a linear sequence. Existing training pipelines linearize such trajectories and treat each branch independently, leading to substantial redundant computation in both forward and backward passes. To eliminate such redundancy, we introduce Tree Training, an efficient training framework for tree-structured trajectories. Its core component, Gradient Restoration, enables correct gradient aggregation across shared prefixes, allowing each prefix to be computed exactly once while remaining mathematically equivalent to independent training on all branches. To support large trajectory trees in practice, we redesign the training engine to natively ingest tree-structured data and propose Tree Packing, a memory-efficient partitioning strategy that preserves high prefix reuse. Experiments conducted on dense and MOE models of real-world agentic trajectories show 6.2x training speedup for both supervised fine-tuning and the model update phase in reinforcement learning.
♻ ☆ A Review of Online Diffusion Policy RL Algorithms for Scalable Robotic Control
Diffusion policies have emerged as a powerful approach for robotic control, demonstrating superior expressiveness in modeling multimodal action distributions compared to conventional policy networks. However, their integration with online reinforcement learning remains challenging due to fundamental incompatibilities between diffusion model training objectives and standard RL policy improvement mechanisms. This paper presents the first comprehensive review and empirical analysis of current Online Diffusion Policy Reinforcement Learning (Online DPRL) algorithms for scalable robotic control systems. We propose a novel taxonomy that categorizes existing approaches into four distinct families--Action-Gradient, Q-Weighting, Proximity-Based, and Backpropagation Through Time (BPTT) methods--based on their policy improvement mechanisms. Through extensive experiments on a unified NVIDIA Isaac Lab benchmark encompassing 12 diverse robotic tasks, we systematically evaluate representative algorithms across five critical dimensions: task diversity, parallelization capability, diffusion step scalability, cross-embodiment generalization, and environmental robustness. Our analysis identifies key findings regarding the fundamental trade-offs inherent in each algorithmic family, particularly concerning sample efficiency and scalability. Furthermore, we reveal critical computational and algorithmic bottlenecks that currently limit the practical deployment of online DPRL. Based on these findings, we provide concrete guidelines for algorithm selection tailored to specific operational constraints and outline promising future research directions to advance the field toward more general and scalable robotic learning systems.
♻ ☆ UAV-Assisted Resilience in 6G and Beyond Network Energy Saving: A Multi-Agent DRL Approach
This paper investigates the unmanned aerial vehicle (UAV)-assisted resilience perspective in the 6G network energy saving (NES) scenario. More specifically, we consider multiple ground base stations (GBSs) and each GBS has three different sectors/cells in the terrestrial networks, and multiple cells are turned off due to NES or incidents, e.g., disasters, hardware failures, or outages. To address this, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework to enable UAV-assisted communication by jointly optimizing UAV trajectories, transmission power, and user-UAV association under a sleeping ground base station (GBS) strategy. This framework aims to ensure the resilience of active users in the network and the long-term operability of UAVs. Specifically, it maximizes service coverage for users during power outages or NES zones, while minimizing the energy consumption of UAVs. Simulation results demonstrate that the proposed MADDPG policy consistently achieves high coverage ratio across different testing episodes, outperforming other baselines. Moreover, the MADDPG framework attains the lowest total energy consumption, with a reduction of approximately 24\% compared to the conventional all GBS ON configuration, while maintaining a comparable user service rate. These results confirm the effectiveness of the proposed approach in achieving a superior trade-off between energy efficiency and service performance, supporting the development of sustainable and resilient UAV-assisted cellular networks.
comment: 6 pages, 5 figures, 1 table
♻ ☆ Decoupling and Damping: Structurally-Regularized Gradient Matching for Multimodal Graph Condensation
In multimodal graph learning, graph structures that integrate information from multiple sources, such as vision and text, can more comprehensively model complex entity relationships. However, the continuous growth of their data scale poses a significant computational bottleneck for training. Graph condensation methods provide a feasible path forward by synthesizing compact and representative datasets. Nevertheless, existing condensation approaches generally suffer from performance limitations in multimodal scenarios, mainly due to two reasons: (1) semantic misalignment between different modalities leads to gradient conflicts; (2) the message-passing mechanism of graph neural networks further structurally amplifies such gradient noise. Based on this, we propose Structural Regularized Gradient Matching (SR-GM), a condensation framework for multimodal graphs. This method alleviates gradient conflicts between modalities through a gradient decoupling mechanism and introduces a structural damping regularizer to suppress the propagation of gradient noise in the topology, thereby transforming the graph structure from a noise amplifier into a training stabilizer. Extensive experiments on four multimodal graph datasets demonstrate the effectiveness of SR-GM, highlighting its state-of-the-art performance and cross-architecture generalization capabilities in multimodal graph dataset condensation.
comment: 12pages,7 figures,8 tables
♻ ☆ Practical Feasibility of Gradient Inversion Attacks in Federated Learning
Gradient inversion attacks are often presented as a serious privacy threat in federated learning, with recent work reporting increasingly strong reconstructions under favorable experimental settings. However, it remains unclear whether such attacks are feasible in modern, performance-optimized systems deployed in practice. In this work, we evaluate the practical feasibility of gradient inversion for image-based federated learning. We conduct a systematic study across multiple datasets and tasks, including image classification and object detection, using canonical vision architectures at contemporary resolutions. Our results show that while gradient inversion remains possible for certain legacy or transitional designs under highly restrictive assumptions, modern, performance-optimized models consistently resist meaningful reconstruction visually. We further demonstrate that many reported successes rely on upper-bound settings, such as inference mode operation or architectural simplifications which do not reflect realistic training pipelines. Taken together, our findings indicate that, under an honest-but-curious server assumption, high-fidelity image reconstruction via gradient inversion does not constitute a critical privacy risk in production-optimized federated learning systems, and that practical risk assessments must carefully distinguish diagnostic attack settings from real-world deployments.
comment: v2: revised manuscript; expanded experiments; improved analysis of reconstruction behavior across architectures
♻ ☆ Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions and sample counts to compute the mean, the standard deviation, and the reliable factor of each result. It tracks the propagation of the input uncertainties through intermediate steps, so that the final analytic result becomes path independent. Therefore, it differs fundamentally from common approaches in applied mathematics that optimize computational path for each calculation. Statistical Taylor expansion may standardize numerical computations for analytic expressions. This study also introduces the implementation of statistical Taylor expansion termed variance arithmetic and presents corresponding test results across a wide range of mathematical applications. Another important conclusion of this study is that numerical errors in library functions can significantly affect results. It is desirable that each value from library functions be accomplished by an uncertainty deviation. The possible link between statistical Taylor expansion and quantum physics is discussed as well.
comment: 43 pages, 39 figures
♻ ☆ Investigating Data Pruning for Pretraining Biological Foundation Models at Scale AAAI 2026
Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
comment: Accepted by AAAI 2026
♻ ☆ Two-dimensional RMSD projections for reaction path visualization and validation
Transition state or minimum energy path finding methods constitute a routine component of the computational chemistry toolkit. Standard analysis involves trajectories conventionally plotted in terms of the relative energy to the initial state against a cumulative displacement variable, or the image number. These dimensional reductions obscure structural rearrangements in high dimensions and are often history dependent. This precludes the ability to compare optimization histories of different methods beyond the number of calculations, time taken, and final saddle geometry. We present a method mapping trajectories onto a two-dimension projection defined by a permutation corrected root mean square deviation from the reactant and product configurations. Energy is represented as an interpolated color-mapped surface constructed from all optimization steps using a gradient aware derivative Gaussian Process. This representation highlights optimization trajectories, identifies endpoint basins, and diagnoses convergence concerns invisible in one-dimensional profiles. We demonstrate the framework on a cycloaddition reaction, showing that a machine-learned potential saddle and density functional theory reference lie on comparable energy contours despite geometric displacements, along with the ratification of the visualization for more complex reactions, a grignard rearrangement, and a bicyclobutadiene rearrangement.
comment: 6 pages, 2 figures
♻ ☆ Revisiting Privacy, Utility, and Efficiency Trade-offs when Fine-Tuning Large Language Models
We study the inherent trade-offs in minimizing privacy risks and maximizing utility, while maintaining high computational efficiency, when fine-tuning large language models (LLMs). A number of recent works in privacy research have attempted to mitigate privacy risks posed by memorizing fine-tuning data by using differentially private training methods (e.g., DP), albeit at a significantly higher computational cost (inefficiency). In parallel, several works in systems research have focussed on developing (parameter) efficient fine-tuning methods (e.g., LoRA), but few works, if any, investigated whether such efficient methods enhance or diminish privacy risks. In this paper, we investigate this gap and arrive at a surprising conclusion: efficient fine-tuning methods like LoRA mitigate privacy risks similar to private fine-tuning methods like DP. Our empirical finding directly contradicts prevailing wisdom that privacy and efficiency objectives are at odds during fine-tuning. Our finding is established by (a) carefully defining measures of privacy and utility that distinguish between memorizing sensitive and non-sensitive tokens in training and test datasets used in fine-tuning and (b) extensive evaluations using multiple open-source language models from Pythia, Gemma, Llama, and Qwen families and different domain-specific datasets.
comment: This work has been accepted at IASEAI 2026 (Non-archival)
♻ ☆ Out of the Shadows: Exploring a Latent Space for Neural Network Verification ICLR 2026
Neural networks are ubiquitous. However, they are often sensitive to small input changes. Hence, to prevent unexpected behavior in safety-critical applications, their formal verification -- a notoriously hard problem -- is necessary. Many state-of-the-art verification algorithms use reachability analysis or abstract interpretation to enclose the set of possible outputs of a neural network. Often, the verification is inconclusive due to the conservatism of the enclosure. To address this problem, we propose a novel specification-driven input refinement procedure, i.e., we iteratively enclose the preimage of a neural network for all unsafe outputs to reduce the set of possible inputs to only enclose the unsafe ones. For that, we transfer output specifications to the input space by exploiting a latent space, which is an artifact of the propagation of a projection-based set representation through a neural network. A projection-based set representation, e.g., a zonotope, is a "shadow" of a higher-dimensional set -- a latent space -- that does not change during a set propagation through a neural network. Hence, the input set and the output enclosure are "shadows" of the same latent space that we can use to transfer constraints. We present an efficient verification tool for neural networks that uses our iterative refinement to significantly reduce the number of subproblems in a branch-and-bound procedure. Using zonotopes as a set representation, unlike many other state-of-the-art approaches, our approach can be realized by only using matrix operations, which enables a significant speed-up through efficient GPU acceleration. We demonstrate that our tool achieves competitive performance compared to the top-ranking tools of the international neural network verification competition.
comment: Accepted at the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ Language Bottleneck Models for Qualitative Knowledge State Modeling
Accurately assessing student knowledge is central to education. Cognitive Diagnosis (CD) models estimate student proficiency at a fixed point in time, while Knowledge Tracing (KT) methods model evolving knowledge states to predict future performance. However, existing approaches either provide quantitative concept mastery estimates with limited expressivity (CD, probabilistic KT) or prioritize predictive accuracy at the cost of interpretability (deep learning KT). We propose Language Bottleneck Models (LBMs), where an encoder LLM produces textual knowledge state summaries, which a decoder LLM uses to predict future performance. This produces interpretable summaries that can express nuanced insights--such as misconceptions--that CD and KT models cannot capture. Extensive validation across synthetic and real-world datasets shows LBMs reveal qualitative insights beyond what CD and KT models can capture, while achieving competitive accuracy with improved sample efficiency. We demonstrate that the encoder and decoder can be fine-tuned with reinforcement learning and supervised fine-tuning respectively to improve both summary quality and predictive performance.
♻ ☆ Distribution-Guided and Constrained Quantum Machine Unlearning
Machine unlearning aims to remove the influence of specific training data from a learned model without full retraining. While recent work has begun to explore unlearning in quantum machine learning, existing approaches largely rely on fixed, uniform target distributions and do not explicitly control the trade-off between forgetting and retained model behaviour. In this work, we propose a distribution-guided framework for class-level quantum machine unlearning that treats unlearning as a constrained optimization problem. Our method introduces a tunable target distribution derived from model similarity statistics, decoupling the suppression of forgotten-class confidence from assumptions about redistribution among retained classes. We further incorporate an anchor-based preservation constraint that explicitly maintains predictive behaviour on selected retained data, yielding a controlled optimization trajectory that limits deviation from the original model. We evaluate the approach on variational quantum classifiers trained on the Iris and Covertype datasets. Results demonstrate sharp suppression of forgotten-class confidence, minimal degradation of retained-class performance, and closer alignment with the gold retrained model baselines compared to uniform-target unlearning. These findings highlight the importance of target design and constraint-based formulations for reliable and interpretable quantum machine unlearning.
comment: 11 pages
♻ ☆ Two failure modes of deep transformers and how to avoid them: a unified theory of signal propagation at initialisation
Finding the right initialisation for neural networks is crucial to ensure smooth training and good performance. In transformers, the wrong initialisation can lead to one of two failure modes of self-attention layers: rank collapse, where all tokens collapse into similar representations, and entropy collapse, where highly concentrated attention scores lead to training instability. While previous work has studied different scaling regimes for transformers, an asymptotically exact, down-to-the constant prescription for how to initialise transformers has so far been lacking. Here, we provide an analytical theory of signal propagation through deep transformers with self-attention, layer normalisation, skip connections and MLP. Our theory yields a simple algorithm to compute trainability diagrams that identify the correct choice of initialisation hyper-parameters for a given architecture. We overcome the key challenge, an exact treatment of the self-attention layer, by establishing a formal parallel with the Random Energy Model from statistical physics. We also analyse gradients in the backward path and determine the regime where gradients vanish at initialisation. We demonstrate the versatility of our framework through three case studies. Our theoretical framework gives a unified perspective on the two failure modes of self-attention and gives quantitative predictions on the scale of both weights and residual connections that guarantee smooth training.
♻ ☆ A Review on Single-Problem Multi-Attempt Heuristic Optimization
In certain real-world optimization scenarios, practitioners are not interested in solving multiple problems but rather in finding the best solution to a single, specific problem. When the computational budget is large relative to the cost of evaluating a candidate solution, multiple heuristic alternatives can be tried to solve the same given problem, each possibly with a different algorithm, parameter configuration, initialization, or stopping criterion. In this practically relevant setting, the sequential selection of which alternative to try next is crucial for efficiently identifying the best possible solution across multiple attempts. However, suitable sequential alternative selection strategies have traditionally been studied separately across different research topics and have not been the exclusive focus of any existing review. As a result, the state-of-the-art remains fragmented for practitioners interested in this setting, with surveys either covering only subsets of relevant strategies or including approaches that rely on assumptions that are not feasible for the single-problem case. This work addresses the identified gap by providing a focused review of single-problem multi-attempt heuristic optimization. It brings together suitable strategies for this setting that have been studied separately through algorithm selection, parameter tuning, multi-start, and resource allocation. These strategies are described using a unified terminology within a common framework, which supports the construction of a taxonomy for systematically organizing and classifying them. The resulting comprehensive review facilitates both the identification and the development of strategies for the single-problem multi-attempt setting in practice.
♻ ☆ HistoPrism: Unlocking Functional Pathway Analysis from Pan-Cancer Histology via Gene Expression Prediction ICLR 2026
Predicting spatial gene expression from H&E histology offers a scalable and clinically accessible alternative to sequencing, but realizing clinical impact requires models that generalize across cancer types and capture biologically coherent signals. Prior work is often limited to per-cancer settings and variance-based evaluation, leaving functional relevance underexplored. We introduce HistoPrism, an efficient transformer-based architecture for pan-cancer prediction of gene expression from histology. To evaluate biological meaning, we introduce a pathway-level benchmark, shifting assessment from isolated gene-level variance to coherent functional pathways. HistoPrism not only surpasses prior state-of-the-art models on highly variable genes , but also more importantly, achieves substantial gains on pathway-level prediction, demonstrating its ability to recover biologically coherent transcriptomic patterns. With strong pan-cancer generalization and improved efficiency, HistoPrism establishes a new standard for clinically relevant transcriptomic modeling from routinely available histology.
comment: Accepted at ICLR 2026. Camera-ready version
♻ ☆ Large Deviations of Gaussian Neural Networks with ReLU activation
We prove a large deviation principle for deep neural networks with Gaussian weights and at most linearly growing activation functions, such as ReLU. This generalises earlier work, in which bounded and continuous activation functions were considered. In practice, linearly growing activation functions such as ReLU are most commonly used. We furthermore simplify previous expressions for the rate function and provide a power-series expansions for the ReLU case.
comment: typo corrected from a previous version
♻ ☆ Deep networks learn to parse uniform-depth context-free languages from local statistics
Understanding how the structure of language can be learned from sentences alone is a central question in both cognitive science and machine learning. Studies of the internal representations of Large Language Models (LLMs) support their ability to parse text when predicting the next word, while representing semantic notions independently of surface form. Yet, which data statistics make these feats possible, and how much data is required, remain largely unknown. Probabilistic context-free grammars (PCFGs) provide a tractable testbed for studying these questions. However, prior work has focused either on the post-hoc characterization of the parsing-like algorithms used by trained networks; or on the learnability of PCFGs with fixed syntax, where parsing is unnecessary. Here, we (i) introduce a tunable class of PCFGs in which both the degree of ambiguity and the correlation structure across scales can be controlled; (ii) provide a learning mechanism -- an inference algorithm inspired by the structure of deep convolutional networks -- that links learnability and sample complexity to specific language statistics; and (iii) validate our predictions empirically across deep convolutional and transformer-based architectures. Overall, we propose a unifying framework where correlations at different scales lift local ambiguities, enabling the emergence of hierarchical representations of the data.
♻ ☆ GPTOpt: Teaching LLMs to do Interpretable Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions demands extreme sample efficiency and decision interpretability. While Large Language Models (LLMs) have shown broad capabilities, even state-of-the-art models remain limited in solving continuous black-box optimization tasks and struggle to maintain exploration-exploitation balance. We introduce GPTOpt, an optimization method that equips LLMs with continuous black-box optimization capabilities by fine-tuning Llama 3.1 8B on structured Bayesian optimization (BO) data, including surrogate model information. This provides an explainable framework calibrated to produce surrogate model outputs comparable to a Gaussian process, while keeping the advantages of flexible LLM-based optimization. On a variety of black-box optimization benchmarks, our model shows favorable performance compared to traditional optimizers and transformer-based alternatives, while providing important context and insight into the model's decisions.
♻ ☆ AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull, which occurs due to the rupture of blood vessels in or around the brain. If this condition is not diagnosed in a timely manner and appropriately treated, it can lead to serious complications such as decreased consciousness, permanent neurological disabilities, or even death.The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH). These tasks are framed as two separate binary classification problems. By adding two layers to the co-scale convolutional attention (CCA) classifier architecture, we introduce a novel approach for ICH detection. In the first layer, after extracting features from different slices of computed tomography (CT) scan images, we combine these features and select the 50 components that capture the highest variance in the data, considering them as informative features. We then assess the discriminative power of these features using the bootstrap forest algorithm, discarding those that lack sufficient discriminative ability between different classes. This algorithm explicitly determines the contribution of each feature to the final prediction, assisting us in developing an explainable AI model. The features feed into a boosting neural network as a latent feature space. In the second layer, we introduce a novel uncertainty-based fuzzy integral operator to fuse information from different CT scan slices. This operator, by accounting for the dependencies between consecutive slices, significantly improves detection accuracy.
♻ ☆ ActivationReasoning: Logical Reasoning in Latent Activation Spaces ICLR 2026
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
comment: Proceedings of the 14th International Conference on Learning Representations (ICLR 2026)
♻ ☆ SAGE: Sequence-level Adaptive Gradient Evolution for Generative Recommendation
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
comment: arXiv admin note: text overlap with arXiv:2506.19235
♻ ☆ Scalable LinUCB: Low-Rank Design Matrix Updates for Recommenders with Large Action Spaces
In this paper, we introduce PSI-LinUCB, a scalable variant of LinUCB that enables efficient training, inference, and memory usage by representing the inverse regularized design matrix as a sum of a diagonal matrix and low-rank correction. We derive numerically stable rank-1 and batched updates that maintain the inverse without explicitly forming the matrix. To control memory growth, we employ a projector-splitting integrator for dynamical low-rank approximation, yielding an average per-step update cost and memory usage of $O(dr)$ for approximation rank $r$. The inference complexity of the proposed algorithm is $O(dr)$ per action evaluation. Experiments on recommender system datasets demonstrate the effectiveness of our algorithm.
♻ ☆ Scaling Laws for Uncertainty in Deep Learning
Deep learning has recently revealed the existence of scaling laws, demonstrating that model performance follows predictable trends based on dataset and model sizes. Inspired by these findings and fascinating phenomena emerging in the over-parameterized regime, we examine a parallel direction: do similar scaling laws govern predictive uncertainties in deep learning? In identifiable parametric models, such scaling laws can be derived in a straightforward manner by treating model parameters in a Bayesian way. In this case, for example, we obtain $O(1/N)$ contraction rates for epistemic uncertainty with respect to the number of data $N$. However, in over-parameterized models, these guarantees do not hold, leading to largely unexplored behaviors. In this work, we empirically show the existence of scaling laws associated with various measures of predictive uncertainty with respect to dataset and model sizes. Through experiments on vision and language tasks, we observe such scaling laws for in- and out-of-distribution predictive uncertainty estimated through popular approximate Bayesian inference and ensemble methods. Besides the elegance of scaling laws and the practical utility of extrapolating uncertainties to larger data or models, this work provides strong evidence to dispel recurring skepticism against Bayesian approaches: "In many applications of deep learning we have so much data available: what do we need Bayes for?". Our findings show that "so much data" is typically not enough to make epistemic uncertainty negligible.
♻ ☆ Einstein Fields: A Neural Perspective To Computational General Relativity ICLR 2026
We introduce Einstein Fields, a neural representation designed to compress computationally intensive four-dimensional numerical relativity simulations into compact implicit neural network weights. By modeling the metric, the core tensor field of general relativity, Einstein Fields enable the derivation of physical quantities via automatic differentiation. Unlike conventional neural fields (e.g., signed distance, occupancy, or radiance fields), Einstein Fields fall into the class of Neural Tensor Fields with the key difference that, when encoding the spacetime geometry into neural field representations, dynamics emerge naturally as a byproduct. Our novel implicit approach demonstrates remarkable potential, including continuum modeling of four-dimensional spacetime, mesh-agnosticity, storage efficiency, derivative accuracy, and ease of use. It achieves up to a $4,000$-fold reduction in storage memory compared to discrete representations while retaining a numerical accuracy of five to seven decimal places. Moreover, in single precision, differentiation of the Einstein Fields-parameterized metric tensor is up to five orders of magnitude more accurate compared to naive finite differencing methods. We demonstrate these properties on several canonical test beds of general relativity and numerical relativity simulation data, while also releasing an open-source JAX-based library: \href{https://github.com/AndreiB137/EinFields}{https://github.com/AndreiB137/EinFields}, taking the first steps to studying the potential of machine learning in numerical relativity.
comment: Accepted at ICLR 2026: 64 pages, 23 figures, 14 Tables, Github: https://github.com/AndreiB137/EinFields, added (i) EinFields applied to Oscillating neutron star NR simulation using Fixed Mesh Refinement (FMR) for four refinement levels from EinsteinToolkit, (ii) Jit-based query speeds of EinFields and its derivative over 17 Million simulation grid points, (iii) Bianchi Identity values
♻ ☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
♻ ☆ Understanding Large Language Models in Your Pockets: Performance Study on COTS Mobile Devices
As large language models (LLMs) increasingly integrate into every aspect of our work and daily lives, there are growing concerns about user privacy, which push the trend toward local deployment of these models. There are a number of lightweight LLMs (e.g., Gemini Nano, LLAMA2 7B) that can run locally on smartphones, providing users with greater control over their personal data. As a rapidly emerging application, we are concerned about their performance on commercial-off-the-shelf mobile devices. To fully understand the current landscape of LLM deployment on mobile platforms, we conduct a comprehensive measurement study on mobile devices. While user experience is the primary concern for end-users, developers focus more on the underlying implementations. Therefore, we evaluate both user-centric metrics-such as token throughput, latency, and response quality-and developer-critical factors, including resource utilization, OS strategies, battery consumption, and launch time. We also provide comprehensive comparisons across the mobile system-on-chips (SoCs) from major vendors, highlighting their performance differences in handling LLM workloads, which may help developers identify and address bottlenecks for mobile LLM applications. We hope that this study can provide insights for both the development of on-device LLMs and the design for future mobile system architecture.
comment: Corrected a typographical error on page 12: "4604%" has been corrected to "60%."
♻ ☆ Initialization Schemes for Kolmogorov-Arnold Networks: An Empirical Study ICLR 2026
Kolmogorov-Arnold Networks (KANs) are a recently introduced neural architecture that replace fixed nonlinearities with trainable activation functions, offering enhanced flexibility and interpretability. While KANs have been applied successfully across scientific and machine learning tasks, their initialization strategies remain largely unexplored. In this work, we study initialization schemes for spline-based KANs, proposing two theory-driven approaches inspired by LeCun and Glorot, as well as an empirical power-law family with tunable exponents. Our evaluation combines large-scale grid searches on function fitting and forward PDE benchmarks, an analysis of training dynamics through the lens of the Neural Tangent Kernel, and evaluations on a subset of the Feynman dataset. Our findings indicate that the Glorot-inspired initialization significantly outperforms the baseline in parameter-rich models, while power-law initialization achieves the strongest performance overall, both across tasks and for architectures of varying size. All code and data accompanying this manuscript are publicly available at https://github.com/srigas/KAN_Initialization_Schemes.
comment: Accepted in ICLR 2026
♻ ☆ Research Superalignment Should Advance Now with Alternating Competence and Conformity Optimization
The recent leap in AI capabilities, driven by big generative models, has sparked the possibility of achieving Artificial General Intelligence (AGI) and further triggered discussions on Artificial Superintelligence (ASI)-a system surpassing all humans across measured domains. This gives rise to the critical research question of: As we approach ASI, how do we align it with human values, ensuring it benefits rather than harms human society, a.k.a., the Superalignment problem. Despite ASI being regarded by many as a hypothetical concept, in this position paper, we argue that superalignment is achievable and research on it should advance immediately, through simultaneous and alternating optimization of task competence and value conformity. We posit that superalignment is not merely a safeguard for ASI but also necessary for its responsible realization. To support this position, we first provide a formal definition of superalignment rooted in the gap between capability and capacity, delve into its perceived infeasibility by analyzing the limitations of existing paradigms, and then illustrate a conceptual path of superalignment to support its achievability, centered on two fundamental principles. This work frames a potential initiative for developing value-aligned next-generation AI in the future, which will garner greater benefits and reduce potential harm to humanity.
♻ ☆ Provable FDR Control for Deep Feature Selection: Deep MLPs and Beyond AISTATS 2026
We develop a flexible feature selection framework based on deep neural networks that approximately controls the false discovery rate (FDR), a measure of Type-I error. The method applies to architectures whose first layer is fully connected. From the second layer onward, it accommodates multilayer perceptrons (MLPs) of arbitrary width and depth, convolutional and recurrent networks, attention mechanisms, residual connections, and dropout. The procedure also accommodates stochastic gradient descent with data-independent initializations and learning rates. To the best of our knowledge, this is the first work to provide a theoretical guarantee of FDR control for feature selection within such a general deep learning setting. Our analysis is built upon a multi-index data-generating model and an asymptotic regime in which the feature dimension $n$ diverges faster than the latent dimension $q^{*}$, while the sample size, the number of training iterations, the network depth, and hidden layer widths are left unrestricted. Under this setting, we show that each coordinate of the gradient-based feature-importance vector admits a marginal normal approximation, thereby supporting the validity of asymptotic FDR control. As a theoretical limitation, we assume $\mathbf{B}$-right orthogonal invariance of the design matrix, and we discuss broader generalizations. We also present numerical experiments that underscore the theoretical findings.
comment: Accepted to AISTATS 2026
♻ ☆ A Fast and Generalizable Fourier Neural Operator-Based Surrogate for Melt-Pool Prediction in Laser Processing
High-fidelity simulations of laser welding capture complex thermo-fluid phenomena, including phase change, free-surface deformation, and keyhole dynamics, however their computational cost limits large-scale process exploration and real-time use. In this work we present the Laser Processing Fourier Neural Operator (LP-FNO), a Fourier Neural Operator (FNO) based surrogate model that learns the parametric solution operator of various laser processes from multiphysics simulations generated with FLOW-3D WELD (registered trademark). Through a novel approach of reformulating the transient problem in the moving laser frame and applying temporal averaging, the system results in a quasi-steady state setting suitable for operator learning, even in the keyhole welding regime. The proposed LP-FNO maps process parameters to three-dimensional temperature fields and melt-pool boundaries across a broad process window spanning conduction and keyhole regimes using the non-dimensional normalized enthalpy formulation. The model achieves temperature prediction errors on the order of 1% and intersection-over-union scores for melt-pool segmentation over 0.9. We demonstrate that a LP-FNO model trained on coarse-resolution data can be evaluated on finer grids, yielding accurate super-resolved predictions in mesh-converged conduction regimes, whereas discrepancies in keyhole regimes reflect unresolved dynamics in the coarse-mesh training data. These results indicate that the LP-FNO provides an efficient surrogate modeling framework for laser welding, enabling prediction of full three-dimensional fields and phase interfaces over wide parameter ranges in just tens of milliseconds, up to a hundred thousand times faster than traditional Finite Volume multi-physics software.
comment: 29 pages, 12 figures, 6 tables
♻ ☆ From No-Regret to Strategically Robust Learning in Repeated Auctions
In Bayesian single-item auctions, a monotone bidding strategy--one that prescribes a higher bid for a higher value type--can be equivalently represented as a partition of the quantile space into consecutive intervals corresponding to increasing bids. Kumar et al. (2024) prove that agile online gradient descent (OGD), when used to update a monotone bidding strategy through its quantile representation, is strategically robust in repeated first-price auctions: when all bidders employ agile OGD in this way, the auctioneer's average revenue per round is at most the revenue of Myerson's optimal auction, regardless of how she adjusts the reserve price over time. In this work, we show that this strategic robustness guarantee is not unique to agile OGD or to the first-price auction: any no-regret learning algorithm, when fed gradient feedback with respect to the quantile representation, is strategically robust, even if the auction format changes every round, provided the format satisfies allocation monotonicity and voluntary participation. In particular, the multiplicative weights update (MWU) algorithm simultaneously achieves the optimal regret guarantee and a strong strategic robustness guarantee in this auction setting. At a technical level, our results are established via a simple relation that bridges Myerson's auction theory and standard no-regret learning theory.
♻ ☆ Towards Active Synthetic Data Generation for Finetuning Language Models
A common and effective means for improving language model capabilities involves finetuning a ``student'' language model's parameters on generations from a more proficient ``teacher'' model. Termed ``synthetic data'', these generations are often produced before any student finetuning, but some work has considered generating new synthetic samples as training progresses. This paper studies and advocates for the latter case, where data are generated in an iterative, closed-loop fashion that is guided by the current state of the student model. For a fixed budget of generated samples, or a budget in terms of compute spent querying a teacher, we show that this curation of finetuning data affords improved student performance over static generation. Further, while there have been several LLM-specific methods proposed that operate in this regime, we find that simple, inexpensive selection criteria from the active learning literature tend to be most performant. We validate these claims across four mathematical and logical reasoning datasets using four different small language models.
comment: 14 figures, 37 pages. Website and code: https://iterative-sd.github.io/
♻ ☆ DyMixOp: A Neural Operator Designed from a Complex Dynamics Perspective with Local-Global Mixing for Solving PDEs
A primary challenge in using neural networks to approximate nonlinear dynamical systems governed by partial differential equations (PDEs) lies in recasting these systems into a tractable representation particularly when the dynamics are inherently non-linearizable or require infinite-dimensional spaces for linearization. To address this challenge, we introduce DyMixOp, a novel neural operator framework for PDEs that integrates theoretical insights from complex dynamical systems. Grounded in dynamics-aware priors and inertial manifold theory, DyMixOp projects the original infinite-dimensional PDE dynamics onto a finite-dimensional latent space. This reduction preserves both essential linear structures and dominant nonlinear interactions, thereby establishing a physically interpretable and computationally structured foundation. Central to this approach is the local-global mixing (LGM) transformation, a key architectural innovation inspired by the convective nonlinearity in turbulent flows. By multiplicatively coupling local fine-scale features with global spectral information, LGM effectively captures high-frequency details and complex nonlinear couplings while mitigating the spectral bias that plagues many existing neural operators. The framework is further enhanced by a dynamics-informed architecture that stacks multiple LGM layers in a hybrid configuration, incorporating timescale-adaptive gating and parallel aggregation of intermediate dynamics. This design enables robust approximation of general evolutionary dynamics across diverse physical regimes. Extensive experiments on seven benchmark PDE systems spanning 1D to 3D, elliptic to hyperbolic types demonstrate that DyMixOp achieves state-of-the-art performance on six of them, significantly reducing prediction errors (by up to 94.3% in chaotic regimes) while maintaining computational efficiency and strong scalability.
♻ ☆ No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping ICLR 2026
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward -- so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce Reinforcement Learning with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR. The project page is available at https://bltnynk.github.io/publications/rl-zvp/.
comment: ICLR 2026 camera-ready version
♻ ☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ Interpretable Discovery of One-parameter Subgroups: A Modular Framework for Elliptical, Hyperbolic, and Parabolic Symmetries
We propose a modular, data-driven framework for jointly learning unknown functional mappings and discovering the underlying one-parameter symmetry subgroup governing the data. Unlike conventional geometric deep learning methods that assume known symmetries, our approach identifies the relevant continuous subgroup directly from data. We consider the broad class of one-parameter subgroups, which admit a canonical geometric classification into three regimes: elliptical, hyperbolic, and parabolic. Given an assumed regime, our framework instantiates a corresponding symmetry discovery architecture with invariant and equivariant representation layers structured according to the Lie algebra of the subgroup, and learns the exact generator parameters end-to-end from data. This yields models whose invariance or equivariance is guaranteed by construction and admits formal proofs, enabling symmetry to be explicitly traced to identifiable components of the architecture. The approach is applicable to one-parameter subgroups of a wide range of matrix Lie groups, including $SO(n)$, $SL(n)$, and the Lorentz group. Experiments on synthetic and real-world systems, including moment of inertia prediction, double-pendulum dynamics, and high-energy \textit{Top Quark Tagging}, demonstrate accurate subgroup recovery and strong predictive performance across both compact and non-compact regimes.
♻ ☆ Improved Sampling Schedules for Discrete Diffusion Models
Discrete diffusion models have emerged as a powerful paradigm for generative modeling on sequence data; however, the information-theoretic principles governing their reverse processes remain significantly less understood than those of their continuous counterparts. In this work, we bridge this gap by analyzing the reverse process dynamics through the lens of thermodynamic entropy production. We propose the entropy production rate as a rigorous proxy for quantifying information generation, deriving as a byproduct a bound on the Wasserstein distance between intermediate states and the data distribution. Leveraging these insights, we introduce two novel sampling schedules that are uniformly spaced with respect to their corresponding physics-inspired metrics: the Entropic Discrete Schedule (EDS), which is defined by maintaining a constant rate of information gain, and the Wasserstein Discrete Schedule (WDS), which is defined by taking equal steps in terms of the Wasserstein distance. We empirically demonstrate that our proposed schedules significantly outperform state-of-the-art strategies across diverse application domains, including synthetic data, music notation, vision and language modeling, consistently achieving superior performance at a lower computational budget.
♻ ☆ FLAME: Flow Enhanced Legendre Memory Models for General Time Series Forecasting
In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.
♻ ☆ An Elementary Approach to Scheduling in Generative Diffusion Models
An elementary approach to characterizing the impact of noise scheduling and time discretization in generative diffusion models is developed. We first utilize the Cramér-Rao bound to identify the Gaussian setting as a fundamental performance limit, necessitating its study as a reference. Building on this insight, we consider a simplified model in which the source distribution is a multivariate Gaussian with a given covariance matrix, together with the deterministic reverse sampling process. The explicit closed-form evolution trajectory of the distributions across reverse sampling steps is derived, and consequently, the Kullback-Leibler (KL) divergence between the source distribution and the reverse sampling output is obtained. The effect of the number of time discretization steps on the convergence of this KL divergence is studied via the Euler-Maclaurin expansion. An optimization problem is formulated, and its solution noise schedule is obtained via calculus of variations, shown to follow a tangent law whose coefficient is determined by the eigenvalues of the source covariance matrix. For an alternative scenario, more realistic in practice, where pretrained models have been obtained for some given noise schedules, the KL divergence also provides a measure to compare different time discretization strategies in reverse sampling. Experiments across different datasets and pretrained models demonstrate that the time discretization strategy selected by our approach consistently outperforms baseline and search-based strategies, particularly when the budget on the number of function evaluations is very tight.
comment: v2: New theoretical analysis establishes the Gaussian case as a fundamental baseline necessary for studying the diffusion mechanism
♻ ☆ Small Gradient Norm Regret for Online Convex Optimization
This paper introduces a new problem-dependent regret measure for online convex optimization with smooth losses. The notion, which we call the $G^\star$ regret, depends on the cumulative squared gradient norm evaluated at the decision in hindsight. We show that the $G^\star$ regret strictly refines the existing $L^\star$ (small loss) regret, and that it can be arbitrarily sharper when the losses have vanishing curvature around the hindsight decision. We establish upper and lower bounds on the $G^\star$ regret and extend our results to dynamic regret and bandit settings. As a byproduct, we refine the existing convergence analysis of stochastic optimization algorithms in the interpolation regime. Some experiments validate our theoretical findings.
♻ ☆ OLion: Approaching the Hadamard Ideal by Intersecting Spectral and $\ell_{\infty}$ Implicit Biases
Many optimizers can be interpreted as steepest-descent methods under norm-induced geometries, and thus inherit corresponding implicit biases. We introduce \nameA{} (\fullname{}), which combines spectral control from orthogonalized update directions with $\ell_\infty$-style coordinate control from sign updates. \nameA{} forms a Lion-style momentum direction, approximately orthogonalizes it via a few Newton--Schulz iterations, and then applies an entrywise sign, providing an efficient approximation to taking a maximal step over the intersection of the spectral and $\ell_\infty$ constraint sets (a scaled Hadamard-like set for matrix parameters). Despite the strong nonlinearity of orthogonalization and sign, we prove convergence under a mild, empirically verified diagonal-isotropy assumption. Across large-scale language and vision training, including GPT-2 and Llama pretraining, SiT image pretraining, and supervised fine-tuning, \nameA{} matches or outperforms AdamW and Muon under comparable tuning while using only momentum-level optimizer state, and it mitigates optimizer mismatch when fine-tuning AdamW-pretrained checkpoints.
comment: 23 pages
♻ ☆ Algorithm- and Data-Dependent Generalization Bounds for Diffusion Models
Score-based generative models (SGMs) have emerged as one of the most popular classes of generative models. A substantial body of work now exists on the analysis of SGMs, focusing either on discretization aspects or on their statistical performance. In the latter case, bounds have been derived, under various metrics, between the true data distribution and the distribution induced by the SGM, often demonstrating polynomial convergence rates with respect to the number of training samples. However, these approaches adopt a largely approximation theory viewpoint, which tends to be overly pessimistic and relatively coarse. In particular, they fail to fully explain the empirical success of SGMs or capture the role of the optimization algorithm used in practice to train the score network. To support this observation, we first present simple experiments illustrating the concrete impact of optimization hyperparameters on the generalization ability of the generated distribution. Then, this paper aims to bridge this theoretical gap by providing the first algorithmic- and data-dependent generalization analysis for SGMs. In particular, we establish bounds that explicitly account for the optimization dynamics of the learning algorithm, offering new insights into the generalization behavior of SGMs. Our theoretical findings are supported by empirical results on several datasets.
♻ ☆ Improved sampling algorithms and functional inequalities for non-log-concave distributions
We study the problem of sampling from a distribution $μ$ with density $\propto e^{-V}$ for some potential function $V:\mathbb R^d\to \mathbb R$ with query access to $V$ and $\nabla V$. We start with the following standard assumptions: (1) $V$ is $L$-smooth. (2) The second moment $\mathbf{E}_{X\sim μ}[\|X\|^2]\leq M$. Recently, He and Zhang (COLT'25) showed that the query complexity of this problem is at least $\left(\frac{LM}{dε}\right)^{Ω(d)}$ where $ε$ is the desired accuracy in total variation distance, and the Poincaré constant can be unbounded. Meanwhile, another common assumption in the study of diffusion based samplers (see e.g., the work of Chen, Chewi, Li, Li, Salim and Zhang (ICLR'23)) strengthens (1) to the following: (1*) The potential function of *every* distribution along the Ornstein-Uhlenbeck process starting from $μ$ is $L$-smooth. We show that under the assumptions (1*) and (2), the query complexity of sampling from $μ$ can be $\mathrm{poly}(L,d)\cdot \left(\frac{Ld+M}{ε^2}\right)^{\mathcal{O}(L+1)}$, which is polynomial in $d$ and $\frac{1}ε$ when $L=\mathcal{O}(1)$ and $M=\mathrm{poly}(d)$. This improves the algorithm with quasi-polynomial query complexity developed by Huang et al. (COLT'24). Our results imply that the seemingly moderate strengthening from (1) to (1*) yields an exponential gap in the query complexity. Furthermore, we show that together with the assumption (1*) and the stronger moment assumption that $\|X\|$ is $λ$-sub-Gaussian for $X\simμ$, the Poincaré constant of $μ$ is at most $\mathcal{O}(λ)^{2(L+1)}$. We also establish a modified log-Sobolev inequality for $μ$ under these conditions. As an application of our technique, we obtain a new estimate of the modified log-Sobolev constant for a specific class of mixtures of strongly log-concave distributions.
♻ ☆ Rethinking Cross-Modal Fine-Tuning: Optimizing the Interaction between Feature Alignment and Target Fitting AISTATS 20226
Adapting pre-trained models to unseen feature modalities has become increasingly important due to the growing need for cross-disciplinary knowledge integration. A key challenge here is how to align the representation of new modalities with the most relevant parts of the pre-trained model's representation space to enable accurate knowledge transfer. This requires combining feature alignment with target fine-tuning, but uncalibrated combinations can exacerbate misalignment between the source and target feature-label structures and reduce target generalization. Existing work, however, lacks a theoretical understanding of this critical interaction between feature alignment and target fitting. To bridge this gap, we develop a principled framework that establishes a provable generalization bound on the target error, which explains the interaction between feature alignment and target fitting through a novel concept of feature-label distortion. This bound offers actionable insights into how this interaction should be optimized for practical algorithm design. The resulting approach achieves significantly improved performance over state-of-the-art methods across a wide range of benchmark datasets.
comment: Accepted AISTATS 20226. Preprint version
♻ ☆ Disentangled Parameter-Efficient Linear Model for Long-Term Time Series Forecasting DASFAA 2026
Long-term Time Series Forecasting (LTSF) is crucial across various domains, but complex deep models like Transformers are often prone to overfitting on extended sequences. Linear Fully Connected models have emerged as a powerful alternative, achieving competitive results with fewer parameters. However, their reliance on a single, monolithic weight matrix leads to quadratic parameter redundancy and an entanglement of temporal and frequential properties. To address this, we propose DiPE-Linear, a novel model that disentangles this monolithic mapping into a sequence of specialized, parameter-efficient modules. DiPE-Linear features three core components: Static Frequential Attention to prioritize critical frequencies, Static Time Attention to focus on key time steps, and Independent Frequential Mapping to independently process frequency components. A Low-rank Weight Sharing policy further enhances efficiency for multivariate data. This disentangled architecture collectively reduces parameter complexity from quadratic to linear and computational complexity to log-linear. Experiments on real-world datasets show that DiPE-Linear delivers state-of-the-art performance with significantly fewer parameters, establishing a new and highly efficient baseline for LTSF. Our code is available at https://github.com/wintertee/DiPE-Linear/
comment: Accepted by DASFAA 2026. (Submitted Manuscript Version)
♻ ☆ Federated Balanced Learning
Federated learning is a paradigm of joint learning in which clients collaborate by sharing model parameters instead of data. However, in the non-iid setting, the global model experiences client drift, which can seriously affect the final performance of the model. Previous methods tend to correct the global model that has already deviated based on the loss function or gradient, overlooking the impact of the client samples. In this paper, we rethink the role of the client side and propose Federated Balanced Learning, i.e., FBL, to prevent this issue from the beginning through sample balance on the client side. Technically, FBL allows unbalanced data on the client side to achieve sample balance through knowledge filling and knowledge sampling using edge-side generation models, under the limitation of a fixed number of data samples on clients. Furthermore, we design a Knowledge Alignment Strategy to bridge the gap between synthetic and real data, and a Knowledge Drop Strategy to regularize our method. Meanwhile, we scale our method to real and complex scenarios, allowing different clients to adopt various methods, and extend our framework to further improve performance. Numerous experiments show that our method outperforms state-of-the-art baselines. The code is released upon acceptance.
♻ ☆ Towards Transparent and Efficient Anomaly Detection in Industrial Processes through ExIFFI
Anomaly Detection (AD) is crucial in industrial settings to streamline operations by detecting underlying issues. Conventional methods merely label observations as normal or anomalous, lacking crucial insights. In Industry 5.0, interpretable outcomes become desirable to enable users to understand the rational under model decisions. This paper presents the first industrial application of ExIFFI, a recent approach for fast, efficient explanations for the Extended Isolation Forest (EIF) AD method. ExIFFI is tested on three industrial datasets, demonstrating superior explanation effectiveness, computational efficiency and improved raw anomaly detection performances. ExIFFI reaches over then 90\% of average precision on all the benchmarks considered in the study and overperforms state-of-the-art Explainable Artificial Intelligence (XAI) approaches in terms of the feature selection proxy task metric which was specifically introduced to quantitatively evaluate model explanations.
comment: This is the update version of the extended paper after receiving comments from reviewers
♻ ☆ Supervised Fine-Tuning Needs to Unlock the Potential of Token Priority
The transition from fitting empirical data to achieving true human utility is fundamentally constrained by a granularity mismatch, where fine-grained autoregressive generation is often supervised by coarse or uniform signals. This position paper advocates Token Priority as the essential bridge, formalizing Supervised Fine-Tuning (SFT) not as simple optimization but as a precise distribution reshaping process that aligns raw data with the ideal alignment manifold. We analyze recent breakthroughs through this unified lens, categorizing them into two distinct regimes: Positive Priority for noise filtration and Signed Priority for toxic modes unlearning. We revisit existing progress and limitations, identify key challenges, and suggest directions for future research.
♻ ☆ Optimas: Optimizing Compound AI Systems with Globally Aligned Local Rewards ICLR 2026
Compound AI systems integrating multiple components, such as Large Language Models, specialized tools, and traditional machine learning models, are increasingly deployed to solve complex real-world tasks. However, optimizing compound systems remains challenging due to their non-differentiable structures and diverse configuration types across components, including prompts, hyperparameters, and model parameters. To address this challenge, we propose Optimas, a unified framework for effective optimization of compound systems. The core idea of Optimas is to maintain one Local Reward Function (LRF) per component, each satisfying a local-global alignment property, i.e., each component's local reward correlates with the global system performance. In each iteration, Optimas efficiently adapts the LRFs to maintain this property while simultaneously maximizing each component's local reward. This approach enables independent updates of heterogeneous configurations using the designated optimization method, while ensuring that local improvements consistently lead to performance gains. We present extensive evaluations across five real-world compound systems to demonstrate that Optimas outperforms strong baselines by an average improvement of 11.92%, offering a general and effective approach for improving compound systems. Our website is at https://optimas.stanford.edu.
comment: Accepted to ICLR 2026. 22 pages
♻ ☆ Neural MJD: Neural Non-Stationary Merton Jump Diffusion for Time Series Prediction NeurIPS 2025
While deep learning methods have achieved strong performance in time series prediction, their black-box nature and inability to explicitly model underlying stochastic processes often limit their generalization to non-stationary data, especially in the presence of abrupt changes. In this work, we introduce Neural MJD, a neural network based non-stationary Merton jump diffusion (MJD) model. Our model explicitly formulates forecasting as a stochastic differential equation (SDE) simulation problem, combining a time-inhomogeneous Itô diffusion to capture non-stationary stochastic dynamics with a time-inhomogeneous compound Poisson process to model abrupt jumps. To enable tractable learning, we introduce a likelihood truncation mechanism that caps the number of jumps within small time intervals and provide a theoretical error bound for this approximation. Additionally, we propose an Euler-Maruyama with restart solver, which achieves a provably lower error bound in estimating expected states and reduced variance compared to the standard solver. Experiments on both synthetic and real-world datasets demonstrate that Neural MJD consistently outperforms state-of-the-art deep learning and statistical learning methods.
comment: Accepted at NeurIPS 2025
♻ ☆ GRIT: Graph-Regularized Logit Refinement for Zero-shot Cell Type Annotation
Cell type annotation is a fundamental step in the analysis of single-cell RNA sequencing (scRNA-seq) data. In practice, human experts often rely on the structure revealed by principal component analysis (PCA) followed by $k$-nearest neighbor ($k$-NN) graph construction to guide annotation. While effective, this process is labor-intensive and does not scale to large datasets. Recent advances in CLIP-style models offer a promising path toward automating cell type annotation. By aligning scRNA-seq profiles with natural language descriptions, models like LangCell enable zero-shot annotation. While LangCell demonstrates decent zero-shot performance, its predictions remain suboptimal. In this paper, we propose a principled inference-time paradigm for zero-shot cell type annotation (GRIT) which bridges the scalability of pre-trained foundation models with the structural robustness relied upon in human expert annotation workflows. Specifically, we enforce local consistency of the zero-shot CLIP logits over the task-specific PCA-based $k$-NN graph. We evaluate our approach on 14 annotated human scRNA-seq datasets from 4 distinct studies, spanning 11 organs and over 200,000 single cells. Our method consistently improves zero-shot annotation accuracy, achieving accuracy gains of up to 10\%. Further analysis showcase the mechanism by which GRIT effectively propagates correct signals through the graph, pulling back mislabeled cells toward more accurate predictions. The method is training-free, model-agnostic, and serves as a simple yet effective plug-in for enhancing zero-shot cell type annotation.
comment: 10 pages, 6 figures
♻ ☆ ASSESS: A Semantic and Structural Evaluation Framework for Statement Similarity ICLR 2026
Despite significant strides in statement autoformalization, a critical gap remains in the development of automated evaluation metrics capable of assessing formal translation quality. Existing metrics often fail to balance semantic and structural information: string-based methods neglect semantics, whereas proof-based approaches offer no graded similarity when proofs fail. To address these issues, we introduce ASSESS (A Semantic and Structural Evaluation Framework for Statement Similarity), which captures syntactic structure by transforming formal statements into operator trees and computes a real-valued similarity score using our novel TransTED (Transformation Tree Edit Distance) Similarity metric by incorporating semantic transformations. For rigorous validation, we present EPLA (Evaluating Provability and Likeness for Autoformalization), a benchmark comprising 1,247 expert-annotated formal statement pairs derived from miniF2F and ProofNet, distinctively labeled for both semantic provability and structural likeness. Experiments on the EPLA benchmark demonstrate that TransTED Similarity surpasses existing methods, achieving state-of-the-art accuracy and Kappa score. The benchmark dataset, code, and detailed experimental results are available at https://github.com/XiaoyangLiu-sjtu/ASSESS.
comment: Accepted to ICLR 2026
♻ ☆ How to Correctly Report LLM-as-a-Judge Evaluations
Large language models (LLMs) are widely used as scalable evaluators of model responses in lieu of human annotators. However, imperfect sensitivity and specificity of the LLM judges induce bias in naive evaluation scores. We propose a simple plug-in framework that corrects this bias and enables statistically principled uncertainty quantification. Our framework constructs confidence intervals that account for uncertainty from both the test dataset and a human-labeled calibration dataset. Additionally, it uses an adaptive strategy to allocate calibration samples for tighter intervals. Importantly, we characterize parameter regimes defined by the true evaluation score and the LLM judge's sensitivity and specificity in which our LLM-based evaluation yields more reliable estimates than human-only evaluation. Moreover, we show that our framework remains unbiased under distribution shift between the test and calibration datasets, in contrast to existing approaches.
comment: Refined the writing of the manuscript
♻ ☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
♻ ☆ Learning fermionic linear optics with Heisenberg scaling and physical operations
We revisit the problem of learning fermionic linear optics (FLO), also known as fermionic Gaussian unitaries. Given black-box query access to an unknown FLO, previous proposals required $\widetilde{\mathcal{O}}(n^5 / \varepsilon^2)$ queries, where $n$ is the system size and $\varepsilon$ is the error in diamond distance. These algorithms also use unphysical operations (i.e., violating fermionic superselection rules) and/or $n$ auxiliary modes to prepare Choi states of the FLO. In this work, we establish efficient and experimentally friendly protocols that obey superselection, use minimal ancilla (at most $1$ extra mode), and exhibit improved dependence on both parameters $n$ and $\varepsilon$. For arbitrary (active) FLOs this algorithm makes at most $\widetilde{\mathcal{O}}(n^4 / \varepsilon)$ queries, while for number-conserving (passive) FLOs we show that $\mathcal{O}(n^3 / \varepsilon)$ queries suffice. The complexity of the active case can be further reduced to $\widetilde{\mathcal{O}}(n^3 / \varepsilon)$ at the cost of using $n$ ancilla. This marks the first FLO learning algorithm that attains Heisenberg scaling in precision. As a side result, we also demonstrate an improved copy complexity of $\widetilde{\mathcal{O}}(n η^2 / \varepsilon^2)$ for time-efficient state tomography of $η$-particle Slater determinants in $\varepsilon$ trace distance, which may be of independent interest.
comment: 56 pages. Fixed LaTeX theorem labeling
♻ ☆ Efficient Softmax Reformulation for Homomorphic Encryption via Moment Generating Function
Homomorphic encryption (HE) is a prominent framework for privacy-preserving machine learning, enabling inference directly on encrypted data. However, evaluating softmax, a core component of transformer architectures, remains particularly challenging in HE due to its multivariate structure, the large dynamic range induced by exponential functions, and the need for accurate division during normalization. In this paper, we propose MGF-softmax, a novel softmax reformulation based on the moment generating function (MGF) that replaces the softmax denominator with its moment-based counterpart. This reformulation substantially reduces multiplicative depth while preserving key properties of softmax and asymptotically converging to the exact softmax as the number of input tokens increases. Extensive experiments on Vision Transformers and large language models show that MGF-softmax provides an efficient and accurate approximation of softmax in encrypted inference. In particular, it achieves inference accuracy close to that of high-depth exact methods, while requiring substantially lower computational cost through reduced multiplicative depth.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ Paper Copilot: Tracking the Evolution of Peer Review in AI Conferences ICLR 2026
The rapid growth of AI conferences is straining an already fragile peer-review system, leading to heavy reviewer workloads, expertise mismatches, inconsistent evaluation standards, superficial or templated reviews, and limited accountability under compressed timelines. In response, conference organizers have introduced new policies and interventions to preserve review standards. Yet these ad-hoc changes often create further concerns and confusion about the review process, leaving how papers are ultimately accepted - and how practices evolve across years - largely opaque. We present Paper Copilot, a system that creates durable digital archives of peer reviews across a wide range of computer-science venues, an open dataset that enables researchers to study peer review at scale, and a large-scale empirical analysis of ICLR reviews spanning multiple years. By releasing both the infrastructure and the dataset, Paper Copilot supports reproducible research on the evolution of peer review. We hope these resources help the community track changes, diagnose failure modes, and inform evidence-based improvements toward a more robust, transparent, and reliable peer-review system.
comment: ICLR 2026. https://papercopilot.com/
♻ ☆ CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure
Low-rank architectures have become increasingly important for efficient large language model (LLM) pre-training, providing substantial reductions in both parameter complexity and memory/computational demands. Despite these advantages, current low-rank methods face three critical shortcomings: (1) compromised model performance, (2) considerable computational overhead, and (3) limited activation memory savings. To address these limitations, we propose Cross-layer Low-Rank residual Network (CR-Net), an innovative parameter-efficient framework inspired by our discovery that inter-layer activation residuals possess low-rank properties. CR-Net implements this insight through a dual-path architecture that efficiently reconstructs layer activations by combining previous-layer outputs with their low-rank differences, thereby maintaining high-rank information with minimal parameters. We further develop a specialized activation recomputation strategy tailored for CR-Net that dramatically reduces memory requirements. Extensive pre-training experiments across model scales from 60M to 7B parameters demonstrate that CR-Net consistently outperforms state-of-the-art low-rank frameworks while requiring fewer computational resources and less memory.
comment: 33 pages
♻ ☆ Token-Level LLM Collaboration via FusionRoute
Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.
comment: 25 pages
♻ ☆ Efficient Graph Knowledge Distillation from GNNs to Kolmogorov--Arnold Networks via Self-Attention Dynamic Sampling
Recent success of graph neural networks (GNNs) in modeling complex graph-structured data has fueled interest in deploying them on resource-constrained edge devices. However, their substantial computational and memory demands present ongoing challenges. Knowledge distillation (KD) from GNNs to MLPs offers a lightweight alternative, but MLPs remain limited by fixed activations and the absence of neighborhood aggregation, constraining distilled performance. To tackle these intertwined limitations, we propose SA-DSD, a novel self-attention-guided dynamic sampling distillation framework. To the best of our knowledge, this is the first work to employ an enhanced Kolmogorov-Arnold Network (KAN) as the student model. We improve Fourier KAN (FR-KAN+) with learnable frequency bases, phase shifts, and optimized algorithms, substantially improving nonlinear fitting capability over MLPs while preserving low computational complexity. To explicitly compensate for the absence of neighborhood aggregation that is inherent to both MLPs and KAN-based students, SA-DSD leverages a self-attention mechanism to dynamically identify influential nodes, construct adaptive sampling probability matrices, and enforce teacher-student prediction consistency. Extensive experiments on six real world datasets demonstrate that, under inductive and most of transductive settings, SA-DSD surpasses three GNN teachers by 3.05%-3.62% and improves FR-KAN+ by 15.61%. Moreover, it achieves a 16.69x parameter reduction and a 55.75% decrease in average runtime per epoch compared to key benchmarks.
♻ ☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
♻ ☆ Interpretability and Generalization Bounds for Learning Spatial Physics
While there are many applications of ML to scientific problems that look promising, visuals can be deceiving. Using numerical analysis techniques, we rigorously quantify the accuracy, convergence rates, and generalization bounds of certain ML models applied to linear differential equations for parameter discovery or solution finding. Beyond the quantity and discretization of data, we identify that the function space of the data is critical to the generalization of the model. A similar lack of generalization is empirically demonstrated for commonly used models, including physics-specific techniques. Counterintuitively, we find that different classes of models can exhibit opposing generalization behaviors. Based on our theoretical analysis, we also introduce a new mechanistic interpretability lens on scientific models whereby Green's function representations can be extracted from the weights of black-box models. Our results inform a new cross-validation technique for measuring generalization in physical systems, which can serve as a benchmark.
♻ ☆ TritonRL: Training LLMs to Think and Code Triton Without Cheating
The rapid evolution of Large Language Models (LLMs) has driven a growing demand for automated, high-performance system kernels to accelerate machine learning workloads. We introduce TritonRL, a domain-specialized 8B-scale LLM for Triton programming, trained via a novel reinforcement learning (RL) framework. While Triton synthesis faces unique challenges, including data scarcity and a high susceptibility to reward hacking, our approach enables robust kernel generation through two primary innovations. First, we implement a multi-layered verification system that provides high-fidelity reward signals, ensuring that generated kernels are both syntactically and functionally valid. Second, we propose Hierarchical Reward Decomposition (HRD), which decouples reinforcement for high-level reasoning and low-level implementation to resolve the credit assignment problem in long-sequence generation. Comprehensive evaluations on KernelBench demonstrate that TritonRL achieves state-of-the-art correctness and runtime speedup, outperforming concurrent Triton-specific models and matching the performance of frontier models with over 100B parameters. Our results highlight the effectiveness of hardware-aware RL paradigms in specialized domain adaptation.
♻ ☆ Predicting Graph Structure via Adapted Flux Balance Analysis
Many dynamic processes such as telecommunication and transport networks can be described through discrete time series of graphs. Modelling the dynamics of such time series enables prediction of graph structure at future time steps, which can be used in applications such as detection of anomalies. Existing approaches for graph prediction have limitations such as assuming that the vertices do not to change between consecutive graphs. To address this, we propose to exploit time series prediction methods in combination with an adapted form of flux balance analysis (FBA), a linear programming method originating from biochemistry. FBA is adapted to incorporate various constraints applicable to the scenario of growing graphs. Empirical evaluations on synthetic datasets (constructed via Preferential Attachment model) and real datasets (UCI Message, HePH, Facebook, Bitcoin) demonstrate the efficacy of the proposed approach.
comment: extended and revised version of arXiv:2401.04280
♻ ☆ Theoretical Modeling of Large Language Model Self-Improvement Training Dynamics Through Solver-Verifier Gap
Self-improvement is a significant techniques within the realm of large language model (LLM), aiming to enhance the LLM performance without relying on external data. Despite its significance, generally how LLM performances evolve during the self-improvement process remains underexplored. In this paper, we theoretically model the training dynamics of self-improvement via the concept of solver-verifier gap. This is inspired by the conjecture that the performance enhancement of self-improvement stems from the gap between LLM's solver capability and verifier capability. Based on the theoretical framework, we further show how to model the entire training trajectory. This framework allows quantifying the capability limit of self-improvement by fitting the theoretical model to the experiment results. We validate the effectiveness of the theoretical framework on various LLMs and datasets. Beyond self-improvement, we extend our analysis to investigate how external data influences these dynamics within the framework. Notably, we find that under limited external data regimes, such external data can be utilized at any stage without significantly affecting final performances, which accords with the empirical observations.
comment: 37 pages
♻ ☆ Test-Time Iterative Error Correction for Efficient Diffusion Models ICLR 2026
With the growing demand for high-quality image generation on resource-constrained devices, efficient diffusion models have received increasing attention. However, such models suffer from approximation errors introduced by efficiency techniques, which significantly degrade generation quality. Once deployed, these errors are difficult to correct, as modifying the model is typically infeasible in deployment environments. Through an analysis of error propagation across diffusion timesteps, we reveal that these approximation errors can accumulate exponentially, severely impairing output quality. Motivated by this insight, we propose Iterative Error Correction (IEC), a novel test-time method that mitigates inference-time errors by iteratively refining the model's output. IEC is theoretically proven to reduce error propagation from exponential to linear growth, without requiring any retraining or architectural changes. IEC can seamlessly integrate into the inference process of existing diffusion models, enabling a flexible trade-off between performance and efficiency. Extensive experiments show that IEC consistently improves generation quality across various datasets, efficiency techniques, and model architectures, establishing it as a practical and generalizable solution for test-time enhancement of efficient diffusion models. The code is available in https://github.com/zysxmu/IEC.
comment: Accepted by ICLR 2026
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods. The code is released at https://github.com/craree/ASSG-SNNs-Robustness-Evaluation
♻ ☆ Q-Learning under Finite Model Uncertainty
We propose a robust Q-learning algorithm for Markov decision processes under model uncertainty when each state-action pair is associated with a finite ambiguity set of candidate transition kernels. This finite-measure framework enables highly flexible, user-designed uncertainty models and goes beyond the common KL and Wasserstein ball formulations. We establish almost sure convergence of the learned Q-function to the robust optimum, and derive non-asymptotic high-probability error bounds that separate stochastic approximation error from transition-kernel estimation error. Finally, we show that Wasserstein ball and parametric ambiguity sets can be approximated by finite ambiguity sets, allowing our algorithm to be used as a generic solver beyond the finite setting.
♻ ☆ The Structural Complexity of Matrix-Vector Multiplication NeurIPS 2025
We consider the problem of preprocessing an $n\times n$ matrix $\mathbf{M}$, and supporting queries that, for any vector $v$, returns the matrix-vector product $\mathbf{M} v$. This problem has been extensively studied in both theory and practice: on one side, practitioners have developed algorithms that are highly efficient in practice, whereas on the other side, theoreticians have proven that the problem cannot be solved faster than naive multiplication in the worst-case. This lower bound holds even in the average-case, implying that existing average-case analyses cannot explain this gap between theory and practice. Hence, we study the problem for \emph{structured} matrices. We show that for $n\times n$ Boolean matrices of VC-dimension $d$, the matrix-vector multiplication problem can be solved with $\widetilde{O}(n^2)$ preprocessing and $\widetilde{O}(n^{2-1/d})$ query time. Given the low constant VC-dimensions observed in most real-world data, our results posit an explanation for why the problem can be solved so much faster in practice. Furthermore, we show how to extend this result to the non-Boolean setting with the Pollard pseudodimension. Our results yield the first non-trivial upper bounds for many applications. In previous works, the online matrix-vector (OMv) hypothesis (conjecturing that quadratic time is needed per query, even over the boolean semi-ring) was used to prove many conditional lower bounds, showing that it is impossible to compute and maintain high-accuracy estimates for effective resistance, Laplacian solvers, shortest paths, and triangle detection in graphs subject to node insertions and deletions in subquadratic time. Yet, via a reduction to our matrix-vector multiplication result, we show we can maintain these problems efficiently if the input is structured, providing the first subquadratic upper bounds in the high-accuracy regime.
comment: 32 pages. 2 figures. Accepted at NeurIPS 2025
♻ ☆ SLAY: Geometry-Aware Spherical Linearized Attention with Yat-Kernel ICML 2026
We propose a new class of linear-time attention mechanisms based on a relaxed and computationally efficient formulation of the recently introduced E-Product, often referred to as the Yat-kernel (Bouhsine, 2025). The resulting interactions are geometry-aware and inspired by inverse-square interactions in physics. Our method, Spherical Linearized Attention with Yat Kernels (SLAY), constrains queries and keys to the unit sphere so that attention depends only on angular alignment. Using Bernstein's theorem, we express the spherical Yat-kernel as a nonnegative mixture of polynomial-exponential product kernels and derive a strictly positive random-feature approximation enabling linear-time O(L) attention. We establish positive definiteness and boundedness on the sphere and show that the estimator yields well-defined, nonnegative attention scores. Empirically, SLAY achieves performance that is nearly indistinguishable from standard softmax attention while retaining linear time and memory scaling, and consistently outperforms prior linear-time attention mechanisms such as Performers and Cosformers. To the best of our knowledge, SLAY represents the closest linear-time approximation to softmax attention reported to date, enabling scalable Transformers without the typical performance trade-offs of attention linearization.
comment: ICML 2026, 8 pages main body, 27 pages total
♻ ☆ Forest canopy height estimation from satellite RGB imagery using large-scale airborne LiDAR-derived training data and monocular depth estimation
Large-scale, high-resolution forest canopy height mapping plays a crucial role in understanding regional and global carbon and water cycles. Spaceborne LiDAR missions, including the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI), provide global observations of forest structure but are spatially sparse and subject to inherent uncertainties. In contrast, near-surface LiDAR platforms, such as airborne and unmanned aerial vehicle (UAV) LiDAR systems, offer much finer measurements of forest canopy structure, and a growing number of countries have made these datasets openly available. In this study, a state-of-the-art monocular depth estimation model, Depth Anything V2, was trained using approximately 16,000 km2 of canopy height models (CHMs) derived from publicly available airborne LiDAR point clouds and related products across multiple countries, together with 3 m resolution PlanetScope and airborne RGB imagery. The trained model, referred to as Depth2CHM, enables the estimation of spatially continuous CHMs directly from PlanetScope RGB imagery. Independent validation was conducted at sites in China (approximately 1 km2) and the United States (approximately 116 km2). The results showed that Depth2CHM could accurately estimate canopy height, with biases of 0.59 m and 0.41 m and root mean square errors (RMSEs) of 2.54 m and 5.75 m for these two sites, respectively. Compared with an existing global meter-resolution CHM product, the mean absolute error is reduced by approximately 1.5 m and the RMSE by approximately 2 m. These results demonstrated that monocular depth estimation networks trained with large-scale airborne LiDAR-derived canopy height data provide a promising and scalable pathway for high-resolution, spatially continuous forest canopy height estimation from satellite RGB imagery.
♻ ☆ Transformer-based Learning-to-Optimize Approach for Scalable and Generalizable Beamforming
We develop an unsupervised deep learning framework for downlink beamforming in large-scale MU-MISO channels. The model is trained offline, allowing real-time inference through lightweight feedforward computations in dynamic communication environments. Following the learning-to-optimize (L2O) paradigm, a multi-layer Transformer iteratively refines both channel and beamformer features via residual connections. To enhance training, three strategies are introduced: (i) curriculum learning (CL) to improve early-stage convergence and avoid local optima, (ii) semi-amortized learning to refine each Transformer block with a few gradient ascent steps, and (iii) sliding-window training to stabilize optimization by training only a subset of Transformer blocks at a time. Extensive simulations show that the proposed scheme outperforms existing baselines at low-to-medium SNRs and closely approaches WMMSE performance at high SNRs, while achieving substantially faster inference than iterative and online learning approaches.
comment: 14 pages, second version
♻ ☆ NOCTA: Non-Greedy Objective Cost-Tradeoff Acquisition for Longitudinal Data
In many critical domains, features are not freely available at inference time: each measurement may come with a cost of time, money, and risk. Longitudinal prediction further complicates this setting because both features and labels evolve over time, and missing measurements at earlier timepoints may become permanently unavailable. We propose NOCTA, a Non-Greedy Objective Cost-Tradeoff Acquisition framework that sequentially acquires the most informative features at inference time while accounting for both temporal dynamics and acquisition cost. NOCTA is driven by a novel objective, NOCT, which evaluates a candidate set of future feature-time acquisitions by its expected predictive loss together with its acquisition cost. Since NOCT depends on unobserved future trajectories at inference time, we develop two complementary estimators: (i) NOCT-Contrastive, which learns an embedding of partial observations utilizing the induced distribution over future acquisitions, and (ii) NOCT-Amortized, which directly predicts NOCT for candidate plans with a neural network. Experiments on synthetic and real-world medical datasets demonstrate that both NOCTA estimators outperform existing baselines, achieving higher accuracy at lower acquisition costs.
♻ ☆ Calibrated Multi-Level Quantile Forecasting
We develop an online method that guarantees calibration of quantile forecasts at multiple quantile levels simultaneously. In this work, a sequence of quantile forecasts is said to be calibrated provided that its $α$-level predictions are greater than or equal to the target value at an $α$ fraction of time steps, for each level $α$. Our procedure, called the multi-level quantile tracker (MultiQT), is lightweight and wraps around any point or quantile forecaster to produce adjusted quantile forecasts that are guaranteed to be calibrated, even against adversarial distribution shifts. Critically, it does so while ensuring that the quantiles remain ordered, e.g., the 0.5-level quantile forecast will never be larger than the 0.6-level forecast. Moreover, the method has a no-regret guarantee, implying it will not degrade the performance of the existing forecaster (asymptotically), with respect to the quantile loss. In our experiments, we find that MultiQT significantly improves the calibration of real forecasters in epidemic and energy forecasting problems, while leaving the quantile loss largely unchanged or slightly improved.
♻ ☆ Knowing What You Know Is Not Enough: Large Language Model Confidences Don't Align With Their Actions
Large language models (LLMs) are increasingly deployed in agentic and multi-turn workflows where they are tasked to perform actions of significant consequence. In order to deploy them reliably and manage risky outcomes in these settings, it is helpful to access model uncertainty estimates. However, confidence elicitation methods for LLMs are typically not evaluated directly in agentic settings; instead, they are evaluated on static datasets, such as Q&A benchmarks. In this work we investigate the relationship between confidence estimates elicited in static settings and the behavior of LLMs in interactive settings. We uncover a significant action-belief gap -- LLMs frequently take actions that contradict their elicited confidences. In a prediction market setting, we find that models often bet against their own high-confidence predictions; in a tool-use setting, models fail to reliably invoke information-seeking tools when their internal confidence is low; and in a user-challenge setting, models change their answers when they have high confidence in them, whilst sticking to answers they have low confidence in. Crucially, we show that static calibration is an insufficient predictor of consistency in the above dynamic settings, as stronger, better calibrated models are somtimes less consistent than their smaller and weaker open-source counterparts. Our results highlight a critical blind spot in current evaluation methodologies: ensuring that a model knows what it knows does not guarantee that it will act rationally on that knowledge.
♻ ☆ On Evaluation of Unsupervised Feature Selection for Pattern Classification
Unsupervised feature selection aims to identify a compact subset of features that captures the intrinsic structure of data without supervised label. Most existing studies evaluate the performance of methods using the single-label dataset that can be instantiated by selecting a label from multi-label data while maintaining the original features. Because the chosen label can vary arbitrarily depending on the experimental setting, the superiority among compared methods can be changed with regard to which label happens to be selected. Thus, evaluating unsupervised feature selection methods based solely on single-label accuracy is unreasonable for assessing their true discriminative ability. This study revisits this evaluation paradigm by adopting a multi-label classification framework. Experiments on 21 multi-label datasets using several representative methods demonstrate that performance rankings differ markedly from those reported under single-label settings, suggesting the possibility of multi-label evaluation settings for fair and reliable comparison of unsupervised feature selection methods.
comment: To appear in the 39th Annual Conference on Neural Information Processing Systems in Europe (EurIPS 2025) Workshop, Copenhagen, Denmark, 2-7 December 2025 AIDT@EurIPS: AI for Tabular Data
♻ ☆ Fast KVzip: Efficient and Accurate LLM Inference with Gated KV Eviction
Efficient key-value (KV) cache management is crucial for the practical deployment of large language models (LLMs), yet existing compression techniques often incur a trade-off between performance degradation and computational overhead. We propose a novel gating-based KV cache eviction method for frozen-weight LLMs that achieves high compression ratios with negligible computational cost. Our approach introduces lightweight sink-attention gating modules to identify and retain critical KV pairs, and integrates seamlessly into both the prefill and decoding stages. The proposed gate training algorithm relies on forward passes of an LLM, avoiding expensive backpropagation, while achieving strong task generalization through a task-agnostic reconstruction objective. Extensive experiments across the Qwen2.5-1M, Qwen3, and Gemma3 families show that our method maintains near-lossless performance while evicting up to 70% of the KV cache. The results are consistent across a wide range of tasks, including long-context understanding, code comprehension, and mathematical reasoning, demonstrating the generality of our approach.
comment: Source code: https://github.com/Janghyun1230/FastKVzip
♻ ☆ Who Gets Credit or Blame? Attributing Accountability in Modern AI Systems
Modern AI systems are typically developed through multiple stages-pretraining, fine-tuning rounds, and subsequent adaptation or alignment, where each stage builds on the previous ones and updates the model in distinct ways. This raises a critical question of accountability: when a deployed model succeeds or fails, which stage is responsible, and to what extent? We pose the accountability attribution problem for tracing model behavior back to specific stages of the model development process. To address this challenge, we propose a general framework that answers counterfactual questions about stage effects: how would the model's behavior have changed if the updates from a particular stage had not occurred? Within this framework, we introduce estimators that efficiently quantify stage effects without retraining the model, accounting for both the data and key aspects of model optimization dynamics, including learning rate schedules, momentum, and weight decay. We demonstrate that our approach successfully quantifies the accountability of each stage to the model's behavior. Based on the attribution results, our method can identify and remove spurious correlations learned during image classification and text toxicity detection tasks that were developed across multiple stages. Our approach provides a practical tool for model analysis and represents a significant step toward more accountable AI development.
♻ ☆ Non-Uniform Noise-to-Signal Ratio in the REINFORCE Policy-Gradient Estimator
Policy-gradient methods are widely used in reinforcement learning, yet training often becomes unstable or slows down as learning progresses. We study this phenomenon through the noise-to-signal ratio (NSR) of a policy-gradient estimator, defined as the estimator variance (noise) normalized by the squared norm of the true gradient (signal). Our main result is that, for (i) finite-horizon linear systems with Gaussian policies and linear state-feedback, and (ii) finite-horizon polynomial systems with Gaussian policies and polynomial feedback, the NSR of the REINFORCE estimator can be characterized exactly-either in closed form or via numerical moment-evaluation algorithms-without approximation. For general nonlinear dynamics and expressive policies (including neural policies), we further derive a general upper bound on the variance. These characterizations enable a direct examination of how NSR varies across policy parameters and how it evolves along optimization trajectories (e.g. SGD and Adam). Across a range of examples, we find that the NSR landscape is highly non-uniform and typically increases as the policy approaches an optimum; in some regimes it blows up, which can trigger training instability and policy collapse.
♻ ☆ Reasoning With a Star: A Heliophysics Dataset and Benchmark for Agentic Scientific Reasoning NeurIPS 2025
Scientific reasoning through Large Language Models in heliophysics involves more than just recalling facts: it requires incorporating physical assumptions, maintaining consistent units, and providing clear scientific formats through coordinated approaches. To address these challenges, we present Reasoning With a Star, a newly contributed heliophysics dataset applicable to reasoning; we also provide an initial benchmarking approach. Our data are constructed from National Aeronautics and Space Administration & University Corporation for Atmospheric Research Living With a Star summer school problem sets and compiled into a readily consumable question-and-answer structure with question contexts, reasoning steps, expected answer type, ground-truth targets, format hints, and metadata. A programmatic grader checks the predictions using unit-aware numerical tolerance, symbolic equivalence, and schema validation. We benchmark a single-shot baseline and four multi-agent patterns, finding that decomposing workflows through systems engineering principles outperforms direct prompting on problems requiring deductive reasoning rather than pure inductive recall.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences (ML4PS) Workshop. Dataset: https://huggingface.co/datasets/SpaceML/ReasoningWithAStar
♻ ☆ NeuroCanvas: VLLM-Powered Robust Seizure Detection by Reformulating Multichannel EEG as Image
Accurate and timely seizure detection from Electroencephalography (EEG) is critical for clinical intervention, yet manual review of long-term recordings is labor-intensive. Recent efforts to encode EEG signals into large language models (LLMs) show promise in handling neural signals across diverse patients, but two significant challenges remain: (1) multi-channel heterogeneity, as seizure-relevant information varies substantially across EEG channels, and (2) computing inefficiency, as the EEG signals need to be encoded into a massive number of tokens for the prediction. To address these issues, we draw the EEG signal and propose the novel NeuroCanvas framework. Specifically, NeuroCanvas consists of two modules: (i) The Entropy-guided Channel Selector (ECS) selects the seizure-relevant channels input to LLM and (ii) the following Canvas of Neuron Signal (CNS) converts selected multi-channel heterogeneous EEG signals into structured visual representations. The ECS module alleviates the multi-channel heterogeneity issue, and the CNS uses compact visual tokens to represent the EEG signals that improve the computing efficiency. We evaluate NeuroCanvas across multiple seizure detection datasets, demonstrating a significant improvement of 20% in F1 score and reductions of 88% in inference latency. These results highlight NeuroCanvas as a scalable and effective solution for real-time and resource-efficient seizure detection in clinical practice.
♻ ☆ EVINGCA: Adaptive Graph Clustering with Evolving Neighborhood Statistics
Clustering is a fundamental tool for discovering structure in data, yet many existing methods rely on restrictive assumptions. Algorithms such as K-Means and Gaussian Mixtures favor convex or Gaussian clusters, while density-based approaches like DBSCAN and HDBSCAN struggle with variable densities or moderate dimensionality. This paper introduces EVINGCA (Evolving Variance-Informed Nonparametric Graph Construction Algorithm), a density-variance-based clustering method that grows clusters incrementally using breadth-first search on a nearest-neighbor graph. Edges are filtered via z-scores of neighbor distances, with estimates refined as clusters expand, enabling adaptation to cluster-specific structure, and a recovery regime distinct from that of existing alternatives. Over-segmentation is exploited by a propagation phase, which propagates inner, denser "skeletons" out to sharp decision boundaries in low-contrast regions. Experiments on 28 diverse datasets demonstrate competitive runtime behavior and a statistically significant improvement over baseline methods in ARI-based label recovery capacity.
comment: Theory-driven refinements to clustering logic; added recovery-condition analysis; expanded experiments and result analysis
♻ ☆ Dist2ill: Distributional Distillation for One-Pass Uncertainty Estimation in Large Language Models
Large Language Models (LLMs) often exhibit misalignment between the quality of their generated responses and the confidence estimates they assign to them. Bayesian treatments, such as marginalizing over a reliable weight posterior or over the space of reasoning traces, provide an effective remedy, but incur substantial computational overhead due to repeated sampling at test time. To enable accurate uncertainty estimation in a single forward pass, we propose a novel distributional distillation framework (Dist2ill) that trains an LLM to produce multiple diverse reasoning paths within one inference pass, while using a lightweight parametric module to approximate empirical confidence scores derived from the sampling distribution. Extensive experiments demonstrate that Dist2ill preserves reasoning diversity and achieves state-of-the-art uncertainty estimation, substantially improving Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL), while remaining computationally efficient.
comment: Preprint; work in progress. Update Log: 05/2025 (v1&v2): Introduced Dist2ill (previously named EUD) for efficient uncertainty estimation, focusing on discriminative reasoning tasks. 02/2026 (v3): Extended Dist2ill to a unified framework supporting both discriminative and generative reasoning
♻ ☆ Diffusion-State Policy Optimization for Masked Diffusion Language Models
Masked diffusion language models generate by iteratively filling masked tokens over multiple denoising steps, so learning only from a terminal reward on the final completion yields coarse credit assignment over intermediate decisions. We propose DiSPO (Diffusion-State Policy Optimization), a plug-in credit-assignment layer that directly optimizes intermediate filling decisions. At selected intermediate masked states, DiSPO branches by resampling fillings for the currently masked positions from rollout-cached logits, scores the resulting completions, and updates only the newly filled tokens -- without additional multi-step diffusion rollouts. We formalize a fixed-state objective for branched completions and derive a policy-gradient estimator that can be combined with terminal-feedback policy optimization using the same rollouts. On LLaDA-8B-Instruct, DiSPO consistently improves over the terminal-feedback diffu-GRPO baseline on math and planning benchmarks under matched rollout compute and optimizer steps. Our code will be available at https://daioba.github.io/dispo .
♻ ☆ Enhanced Climbing Image Nudged Elastic Band method with Hessian Eigenmode Alignment
Accurate determination of transition states is central to an understanding of reaction kinetics. Double-endpoint methods where both initial and final states are specified, such as the climbing image nudged elastic band (CI-NEB), identify the minimum energy path between the two and thereby the saddle point on the energy surface that is relevant for the given transition, thus providing an estimate of the transition state within harmonic transition state theory. Such calculations can, however, incur high computational costs and may suffer stagnation on exceptionally flat or rough energy surfaces. Conversely, methods that only require specification of an initial set of atomic coordinates, such as the minimum mode following (MMF) method, offer efficiency but can converge on saddle points that are not relevant for the transition of interest. Here, we present an adaptive hybrid algorithm that switches between the CI-NEB and the MMF method so as to get faster convergence to the relevant saddle point. The method is benchmarked for the Baker-Chan (BC) saddle point test set using the PET-MAD machine-learned potential as well as 59 transitions of a heptamer island on Pt(111) from the OptBench set. A Bayesian analysis of the performance shows a median reduction of energy and force calculations by 46% [95% CrI: -55%, -37%] relative to CI-NEB for the BC set, while a 28% reduction is found for the transitions of the heptamer island. Calculations of the BC set where a simple switch from the CI-NEB to the MMF method is made when the magnitude of the atomic forces drops below 0.5 eV/AA requires 30% more force calculations than the OCI-NEB algorithm. These results show that an adaptive hybrid method mixing CI-NEB and MMF can be a highly efficient tool for high-throughput automated chemical discovery of atomic rearrangements.
comment: 27 pages. 12 figures
♻ ☆ SAFE: Stable Alignment Finetuning with Entropy-Aware Predictive Control for Reinforcement Learning from Human Feedback (RLHF)
Proximal Policy Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of Reinforcement Learning from Human Feedback (RLHF). PPO performs well empirically but has a heuristic motivation and handles the KL-divergence constraint used in LM-RLHF in an ad-hoc manner and suffers form reward oscillations, entropy collapse, value function drift, and sudden policy divergence that require frequent restarts and extensive hyperparameter tuning. In this paper, we develop a new pure on policy actor-critic RL method for the LM-RLHF setting. We present SAFE (Stable Alignment Finetuning with Entropy-aware control),a novel RLHF algorithm that combines a Double Soft-Min Critic for pessimistic value estimation with a new multi-layer stabilization framework combining entropy-gated KL regulation, and PID-controlled adaptive thresholds. Unlike standard PPO's symmetric KL penalties, SAFE distinguishes high-entropy exploration from low-entropy mode collapse and adjusts penalties dynamically based on reward velocity. Experiments on a 3B parameter model show SAFE achieves +5.15\% training-average reward than PPO (0.725 vs 0.689), negligible reward crashes, and superior KL control than ppo . Our method adds minimal computational overhead and provides an interpretable, crash-resistant RLHF framework that maintains aggressive learning speed while ensuring stable long-horizon optimization suitable for production deployment. Code is available at https://github.com/ryyzn9/SAFE
♻ ☆ Data-Chain Backdoor: Do You Trust Diffusion Models as Generative Data Supplier?
The increasing use of generative models such as diffusion models for synthetic data augmentation has greatly reduced the cost of data collection and labeling in downstream perception tasks. However, this new data source paradigm may introduce important security concerns. Publicly available generative models are often reused without verification, raising a fundamental question of their safety and trustworthiness. This work investigates backdoor propagation in such emerging generative data supply chain, namely, Data-Chain Backdoor (DCB). Specifically, we find that open-source diffusion models can become hidden carriers of backdoors. Their strong distribution-fitting ability causes them to memorize and reproduce backdoor triggers in generation, which are subsequently inherited by downstream models, resulting in severe security risks. This threat is particularly concerning under clean-label attack scenarios, as it remains effective while having negligible impact on the utility of the synthetic data. We study two attacker choices to obtain a backdoor-carried generator, training from scratch and fine-tuning. While naive fine-tuning leads to weak inheritance of the backdoor, we find that novel designs in the loss objectives and trigger processing can substantially improve the generator's ability to preserve trigger patterns, making fine-tuning a low-cost attack path. We evaluate the effectiveness of DCB under the standard augmentation protocol and further assess data-scarce settings. Across multiple trigger types, we observe that the trigger pattern can be consistently retained in the synthetic data with attack efficacy comparable to the conventional backdoor attack.
♻ ☆ Revenue Maximization Under Sequential Price Competition Via The Estimation Of s-Concave Demand Functions
We consider price competition among multiple sellers over a selling horizon of $T$ periods. In each period, sellers simultaneously offer their prices (which are made public) and subsequently observe their respective demand (not made public). The demand function of each seller depends on all sellers' prices through a private, unknown, and nonlinear relationship. We propose a dynamic pricing policy that uses semi-parametric least-squares estimation and show that when the sellers employ our policy, their prices converge at a rate of $O(T^{-1/7})$ to the Nash equilibrium prices that sellers would reach if they were fully informed. Each seller incurs a regret of $O(T^{5/7})$ relative to a dynamic benchmark policy. A theoretical contribution of our work is proving the existence of equilibrium under shape-constrained demand functions via the concept of $s$-concavity and establishing regret bounds of our proposed policy. Technically, we also establish new concentration results for the least squares estimator under shape constraints. Our findings offer significant insights into dynamic competition-aware pricing and contribute to the broader study of non-parametric learning in strategic decision-making.
♻ ☆ PiFlow: Principle-Aware Scientific Discovery with Multi-Agent Collaboration
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering the systematic reduction of uncertainty. Overcoming these limitations fundamentally requires a principled approach to exploration. We introduce PiFlow, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). Extensive evaluations across three distinct scientific domains demonstrate that PiFlow (I) improves discovery efficiency by 31.18%~41.73% and solution quality by 12.47%~31.72% against state-of-the-art methods, (II) delivers a 5.6x speedup in time-to-solution while reducing token consumption by up to 27% compared to vanilla agents, and (III) serves as a Plug-and-Play module that generalizes on existing agent architecture. Overall, PiFlow establishes a novel paradigm shift in highly efficient agentic scientific discovery, paving the way for more robust and accelerated AI-driven research.
♻ ☆ Robustness Beyond Known Groups with Low-rank Adaptation
Deep learning models trained to optimize average accuracy often exhibit systematic failures on particular subpopulations. In real world settings, the subpopulations most affected by such disparities are frequently unlabeled or unknown, thereby motivating the development of methods that are performant on sensitive subgroups without being pre-specified. However, existing group-robust methods typically assume prior knowledge of relevant subgroups, using group annotations for training or model selection. We propose Low-rank Error Informed Adaptation (LEIA), a simple two-stage method that improves group robustness by identifying a low-dimensional subspace in the representation space where model errors concentrate. LEIA restricts adaptation to this error-informed subspace via a low-rank adjustment to the classifier logits, directly targeting latent failure modes without modifying the backbone or requiring group labels. Using five real-world datasets, we analyze group robustness under three settings: (1) truly no knowledge of subgroup relevance, (2) partial knowledge of subgroup relevance, and (3) full knowledge of subgroup relevance. Across all settings, LEIA consistently improves worst-group performance while remaining fast, parameter-efficient, and robust to hyperparameter choice.
♻ ☆ Trust Region Masking for Long-Horizon LLM Reinforcement Learning
Policy gradient methods for Large Language Models optimize a policy $π_θ$ via a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. However, modern LLM-RL pipelines suffer from unavoidable implementation divergences -- backend discrepancies, Mixture-of-Experts routing discontinuities, and distributed training staleness -- causing off-policy mismatch ($π_{\text{roll}} \neq π_θ$) and approximation errors between the surrogate and the true objective. We demonstrate that classical trust region bounds on this error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. To address this, we derive a family of bounds -- both KL-based and TV-based -- including a Pinsker-Marginal bound ($O(T^{3/2})$), a Mixed bound ($O(T)$), and an Adaptive bound that strictly generalizes the Pinsker-Marginal bound via per-position importance-ratio decomposition. Taking the minimum over all bounds yields the tightest known guarantee across all divergence regimes. Crucially, all bounds depend on the maximum token-level divergence $D_{\mathrm{KL}}^{\mathrm{tok,max}}$ (or $D_{\mathrm{TV}}^{\mathrm{tok,max}}$), a sequence-level quantity that cannot be controlled by token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which masks entire sequences violating the trust region, enabling the first non-vacuous monotonic improvement guarantees for long-horizon LLM-RL.
♻ ☆ Efficient Attention via Pre-Scoring: Prioritizing Informative Keys in Transformers
Efficient attention mechanisms enable long-context transformers but often miss globally important tokens, degrading modeling quality. We introduce a pre-scoring framework that assigns a query-independent global importance prior to keys before applying hierarchical approximate attention. Using clustering-based or leverage-style scoring, pre-scoring identifies structurally informative keys and restricts computation to this prioritized subset. Integrated with HyperAttention, pre-scoring substantially improves approximation quality on long-context language modeling: on ChatGLM with 131k-token contexts, perplexity decreases from 12.0 to 9.5 under a fixed interaction budget while retaining subquadratic efficiency. Clustering-based scoring consistently outperforms leverage-based selection under identical key budgets. Beyond language, replacing self-attention in Vision Transformers preserves most of the baseline accuracy, showing that the approach generalizes across modalities. We provide structural guarantees under a planted-subspace model, showing that clustering recovers the same heavy-key sets as leverage-based methods. Overall, pre-scoring improves the efficiency-accuracy trade-off of approximate attention by better prioritizing informative keys without sacrificing scalability.
♻ ☆ Lifelong Learning with Behavior Consolidation for Vehicle Routing ICLR 2026
Recent neural solvers have demonstrated promising performance in learning to solve routing problems. However, existing studies are primarily based on one-off training on one or a set of predefined problem distributions and scales, i.e., tasks. When a new task arises, they typically rely on either zero-shot generalization, which may be poor due to the discrepancies between the new task and the training task(s), or fine-tuning the pretrained solver on the new task, which possibly leads to catastrophic forgetting of knowledge acquired from previous tasks. This paper explores a novel lifelong learning paradigm for neural VRP solvers, where multiple tasks with diverse distributions and scales arise sequentially over time. Solvers are required to effectively and efficiently learn to solve new tasks while maintaining their performance on previously learned tasks. Consequently, a novel framework called Lifelong Learning Router with Behavior Consolidation (LLR-BC) is proposed. LLR-BC consolidates prior knowledge effectively by aligning behaviors of the solver trained on a new task with the buffered ones in a decision-seeking way. To encourage more focus on crucial experiences, LLR-BC assigns greater consolidated weights to decisions with lower confidence. Extensive experiments on capacitated vehicle routing problems and traveling salesman problems demonstrate LLR-BC's effectiveness in training high-performance neural solvers in a lifelong learning setting, addressing the catastrophic forgetting issue, maintaining their plasticity, and improving zero-shot generalization ability.
comment: Accepted by The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Estimating the Value of Evidence-Based Decision Making
In an era of data abundance, statistical evidence is increasingly critical for business and policy decisions. Yet, organizations lack empirical tools to assess the value of evidence-based decision making (EBDM), optimize statistical precision, and balance the costs of evidence-gathering strategies against their benefits. To tackle these challenges, this article introduces an empirical framework to estimate the value of EBDM and evaluate the return on investment in statistical precision and project ideation. The framework leverages parametric and nonparametric empirical Bayes methods to account for parameter heterogeneity and measure how statistical precision changes the value of evidence. The value extracted from statistical evidence depends critically on how organizations translate evidence into policy decisions. Commonly used decision rules based on statistical significance can leave substantial value unrealized and, in some cases, generate negative expected value.
♻ ☆ Refining the Information Bottleneck via Adversarial Information Separation
Generalizing from limited data is particularly critical for models in domains such as material science, where task-relevant features in experimental datasets are often heavily confounded by measurement noise and experimental artifacts. Standard regularization techniques fail to precisely separate meaningful features from noise, while existing adversarial adaptation methods are limited by their reliance on explicit separation labels. To address this challenge, we propose the Adversarial Information Separation Framework (AdverISF), which isolates task-relevant features from noise without requiring explicit supervision. AdverISF introduces a self-supervised adversarial mechanism to enforce statistical independence between task-relevant features and noise representations. It further employs a multi-layer separation architecture that progressively recycles noise information across feature hierarchies to recover features inadvertently discarded as noise, thereby enabling finer-grained feature extraction. Extensive experiments demonstrate that AdverISF outperforms state-of-the-art methods in data-scarce scenarios. In addition, evaluations on real-world material design tasks show that it achieves superior generalization performance.
♻ ☆ Temperature Scaling Attack Disrupting Model Confidence in Federated Learning
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.
comment: 20 pages, 20 figures
♻ ☆ Differentiable Logic Synthesis: Spectral Coefficient Selection via Sinkhorn-Constrained Composition
Learning precise Boolean logic via gradient descent remains challenging: neural networks typically converge to "fuzzy" approximations that degrade under quantization. We introduce Hierarchical Spectral Composition, a differentiable architecture that selects spectral coefficients from a frozen Boolean Fourier basis and composes them via Sinkhorn-constrained routing with column-sign modulation. Our approach draws on recent insights from Manifold-Constrained Hyper-Connections (mHC), which demonstrated that projecting routing matrices onto the Birkhoff polytope preserves identity mappings and stabilizes large-scale training. We adapt this framework to logic synthesis, adding column-sign modulation to enable Boolean negation -- a capability absent in standard doubly stochastic routing. We validate our approach across four phases of increasing complexity: (1) For n=2 (16 Boolean operations over 4-dim basis), gradient descent achieves 100% accuracy with zero routing drift and zero-loss quantization to ternary masks. (2) For n=3 (10 three-variable operations), gradient descent achieves 76% accuracy, but exhaustive enumeration over 3^8 = 6561 configurations proves that optimal ternary masks exist for all operations (100% accuracy, 39% sparsity). (3) For n=4 (10 four-variable operations over 16-dim basis), spectral synthesis -- combining exact Walsh-Hadamard coefficients, ternary quantization, and MCMC refinement with parallel tempering -- achieves 100% accuracy on all operations. This progression establishes (a) that ternary polynomial threshold representations exist for all tested functions, and (b) that finding them requires methods beyond pure gradient descent as dimensionality grows. All operations enable single-cycle combinational logic inference at 10,959 MOps/s on GPU, demonstrating viability for hardware-efficient neuro-symbolic logic synthesis.
comment: 35 pages, 22 figures. Code available at https://github.com/gogipav14/spectral-llm
♻ ☆ Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents AAAI
Growing concerns about safety and alignment of AI systems highlight the importance of embedding moral capabilities in artificial agents: a promising solution is the use of learning from experience, i.e., Reinforcement Learning. In multi-agent (social) environments, complex population-level phenomena may emerge from interactions between individual learning agents. Many of the existing studies rely on simulated social dilemma environments to study the interactions of independent learning agents; however, they tend to ignore the moral heterogeneity that is likely to be present in societies of agents in practice. For example, at different points in time a single learning agent may face opponents who are consequentialist (i.e., focused on maximizing outcomes over time), norm-based (i.e., conforming to specific norms), or virtue-based (i.e., considering a combination of different virtues). The extent to which agents' co-development may be impacted by such moral heterogeneity in populations is not well understood. In this paper, we present a study of the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting. Using an Iterated Prisoner's Dilemma environment with a partner selection mechanism, we investigate the extent to which the prevalence of diverse moral agents in populations affects individual agents' learning behaviors and emergent population-level outcomes. We observe several types of non-trivial interactions between pro-social and anti-social agents, and find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
comment: Presented at AIES 2024 (7th AAAI/ACM Conference on AI, Ethics, and Society - San Jose, CA, USA) - see https://ojs.aaai.org/index.php/AIES/article/view/31736
♻ ☆ Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Understanding human mobility through Point-of-Interest (POI) trajectory modeling is increasingly important for applications such as urban planning, personalized services, and generative agent simulation. However, progress in this field is hindered by two key challenges: the over-reliance on older datasets from 2012-2013 and the lack of reproducible, city-level check-in datasets that reflect diverse global regions. To address these gaps, we present Massive-STEPS (Massive Semantic Trajectories for Understanding POI Check-ins), a large-scale, publicly available benchmark dataset built upon the Semantic Trails dataset and enriched with semantic POI metadata. Massive-STEPS spans 15 geographically and culturally diverse cities and features more recent (2017-2018) and longer-duration (24 months) check-in data than prior datasets. We benchmarked a wide range of POI models on Massive-STEPS using both supervised and zero-shot approaches, and evaluated their performance across multiple urban contexts. By releasing Massive-STEPS, we aim to facilitate reproducible and equitable research in human mobility and POI trajectory modeling. The dataset and benchmarking code are available at: https://github.com/cruiseresearchgroup/Massive-STEPS.
♻ ☆ Artificial Intelligence Software Structured to Simulate Human Working Memory, Mental Imagery, and Mental Continuity
This article presents an artificial intelligence (AI) architecture intended to simulate the iterative updating of the human working memory system. It features several interconnected neural networks designed to emulate the specialized modules of the cerebral cortex. These are structured hierarchically and integrated into a global workspace. They are capable of temporarily maintaining high-level representational patterns akin to the psychological items maintained in working memory. This maintenance is made possible by persistent neural activity in the form of two modalities: sustained neural firing (resulting in a focus of attention) and synaptic potentiation (resulting in a short-term store). Representations held in persistent activity are recursively replaced resulting in incremental changes to the content of the working memory system. As this content gradually evolves, successive processing states overlap and are continuous with one another. The present article will explore how this architecture can lead to iterative shift in the distribution of coactive representations, ultimately leading to mental continuity between processing states, and thus to human-like thought and cognition. Taken together, these components outline a biologically motivated route toward synthetic consciousness or artificial sentience and subjectivity.
♻ ☆ Statistical Guarantees for Reasoning Probes on Looped Boolean Circuits
We study the statistical behaviour of reasoning probes in a stylized model of looped reasoning, given by Boolean circuits whose computational graph is a perfect $ν$-ary tree ($ν\ge 2$) and whose output is appended to the input and fed back iteratively for subsequent computation rounds. A reasoning probe has access to a sampled subset of internal computation nodes, possibly without covering the entire graph, and seeks to infer which $ν$-ary Boolean gate is executed at each queried node, representing uncertainty via a probability distribution over a fixed collection of $\mathtt{m}$ admissible $ν$-ary gates. This partial observability induces a generalization problem, which we analyze in a realizable, transductive setting. We show that, when the reasoning probe is parameterized by a graph convolutional network (GCN)-based hypothesis class and queries $N$ nodes, the worst-case generalization error attains the optimal rate $\mathcal{O}(\sqrt{\log(2/δ)}/\sqrt{N})$ with probability at least $1-δ$, for $δ\in (0,1)$. Our analysis combines snowflake metric embedding techniques with tools from statistical optimal transport. A key insight is that this optimal rate is achievable independently of graph size, owing to the existence of a low-distortion one-dimensional snowflake embedding of the induced graph metric. As a consequence, our results provide a sharp characterization of how structural properties of the computational graph govern the statistical efficiency of reasoning under partial access.
♻ ☆ Nudging the Boundaries of LLM Reasoning ICLR 2026
Current online reinforcement learning (RL) algorithms like GRPO share a key limitation in LLM reasoning: they cannot learn from problems that are "unsolvable" to the model. In other words, they can only improve performance on problems where the model is capable of exploring the correct answer. Consequently, the model's "upper limit" remains unchanged after RL training, even though the likelihood of solving easier, solvable problems may increase. These hard samples cannot contribute to training, as no rollouts yield rewards and thus no gradients are produced. To unlock learning from these hard samples, we propose NuRL, a "nudging" method that aims to push the upper bound of LLM reasoning using self-generated hints, i.e., abstract cues that help reduce the problem difficulty for the model. Given a question and its gold answer, the model generates a CoT and then produces a hint containing the core knowledge needed to solve the problem. During training, we generate G rollouts from the base policy and use the pass rate to decide whether the hint should be injected. For hard samples with a 0% pass rate, we inject the hint and regenerate a new batch of trajectories. This yields two benefits: (1) the hint boosts pass rates (from 0% to non-zero), thereby introducing training signals for previously unsolvable samples, and (2) the hints are self-generated, avoiding distributional shift and do not rely on external models. NuRL achieves consistent improvements across 6 benchmarks and 3 models, while remaining complementary to test-time scaling. Notably, NuRL can raise the model's upper limit, whereas GRPO leaves pass@1024 unchanged from the base model. Furthermore, we present a systematic study of what makes an effective hint and when hints are most useful. Interestingly, the best hints are abstract and high-level, and are most beneficial when applied necessarily and after GRPO has converged.
comment: ICLR 2026 (Camera-Ready)
♻ ☆ TwinWeaver: An LLM-Based Foundation Model Framework for Pan-Cancer Digital Twins
Precision oncology requires forecasting clinical events and trajectories, yet modeling sparse, multi-modal clinical time series remains a critical challenge. We introduce TwinWeaver, an open-source framework that serializes longitudinal patient histories into text, enabling unified event prediction as well as forecasting with large language models, and use it to build Genie Digital Twin (GDT) on 93,054 patients across 20 cancer types. In benchmarks, GDT significantly reduces forecasting error, achieving a median Mean Absolute Scaled Error (MASE) of 0.87 compared to 0.97 for the strongest time-series baseline (p<0.001). Furthermore, GDT improves risk stratification, achieving an average concordance index (C-index) of 0.703 across survival, progression, and therapy switching tasks, surpassing the best baseline of 0.662. GDT also generalizes to out-of-distribution clinical trials, matching trained baselines at zero-shot and surpassing them with fine-tuning, achieving a median MASE of 0.75-0.88 and outperforming the strongest baseline in event prediction with an average C-index of 0.672 versus 0.648. Finally, TwinWeaver enables an interpretable clinical reasoning extension, providing a scalable and transparent foundation for longitudinal clinical modeling.
♻ ☆ Quantum advantage for learning shallow neural networks with natural data distributions
Without large quantum computers to empirically evaluate performance, theoretical frameworks such as the quantum statistical query (QSQ) are a primary tool to study quantum algorithms for learning classical functions and search for quantum advantage in machine learning tasks. However, we only understand quantum advantage in this model at two extremes: either exponential advantages for uniform input distributions or no advantage for arbitrary distributions. Our work helps close the gap between these two regimes by designing an efficient quantum algorithm for learning periodic neurons in the QSQ model over a variety of non-uniform distributions and the first explicit treatment of real-valued functions. We prove that this problem is hard not only for classical gradient-based algorithms, which are the workhorses of machine learning, but also for a more general class of SQ algorithms, establishing an exponential quantum advantage.
comment: 10 pages, 1 figure + 82-page appendix; updated with stronger classical hardness
♻ ☆ Double Fairness Policy Learning: Integrating Action Fairness and Outcome Fairness in Decision-making
Fairness is a central pillar of trustworthy machine learning, especially in domains where accuracy- or profit-driven optimization is insufficient. While most fairness research focuses on supervised learning, fairness in policy learning remains less explored. Because policy learning is interventional, it induces two distinct fairness targets: action fairness (equitable action assignments) and outcome fairness (equitable downstream consequences). Crucially, equalizing actions does not generally equalize outcomes when groups face different constraints or respond differently to the same action. We propose a novel double fairness learning (DFL) framework that explicitly manages the trade-off among three objectives: action fairness, outcome fairness, and value maximization. We integrate fairness directly into a multi-objective optimization problem for policy learning and employ a lexicographic weighted Tchebyshev method that recovers Pareto solutions beyond convex settings, with theoretical guarantees on the regret bounds. Our framework is flexible and accommodates various commonly used fairness notions. Extensive simulations demonstrate improved performance relative to competing methods. In applications to a motor third-party liability insurance dataset and an entrepreneurship training dataset, DFL substantially improves both action and outcome fairness while incurring only a modest reduction in overall value.
♻ ☆ Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure ICLR 2026
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we hypothesize two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. Our research opens up the broader fundamental challenge of designing models capable of learning systematic conceptual binding with less human scaffolding.
comment: ICLR 2026
♻ ☆ Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
The success of Large Language Models (LLMs) has motivated a shift toward generative approaches to retrieval and ranking, aiming to supersede classical Dual Encoders (DEs) and Cross Encoders (CEs). A prominent paradigm is pointwise Autoregressive Ranking (ARR), where an LLM generates document identifiers (docIDs) token-by-token to enable ranking via beam search. ARR offers the promise of superior expressivity compared to DEs while avoiding the prohibitive computational cost of CEs. However, a formal theoretical foundation for this expressive power has been missing. Moreover, the standard next-token prediction loss is rank-agnostic and inappropriate for finetuning an LLM for ranking tasks. In this paper, we first prove that the expressive capacity of ARR is strictly superior to DEs. While a DE requires an embedding dimension that grows linearly with corpus size to achieve arbitrary rankings, ARR can solve it with a constant hidden dimension. We then propose SToICaL (Simple Token-Item Calibrated Loss), a generalized rank-aware training loss for LLM finetuning. By using item-level reweighting and prefix-tree marginalization, we distribute probability mass over valid docID tokens based on their ground-truth relevance. Experiments on WordNet and ESCI datasets verify that our loss suppresses invalid docID generations and significantly improves ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
Attention Sinks and Compression Valleys in LLMs are Two Sides of the Same Coin
Attention sinks and compression valleys have attracted significant attention as two puzzling phenomena in large language models, but have been studied in isolation. In this work, we present a surprising connection between attention sinks and compression valleys, tracing both to the formation of massive activations in the residual stream. We prove theoretically that massive activations necessarily produce representational compression and establish bounds on the resulting entropy reduction. Through experiments across several models (410M-120B parameters), we confirm that when the beginning-of-sequence token develops extreme activation norms in the middle layers, both compression valleys and attention sinks emerge simultaneously. Targeted ablation studies validate our theoretical predictions. This unified view motivates us to propose the Mix-Compress-Refine theory of information flow, as an attempt to explain how LLMs organize their computation in depth by controlling attention and representational compression via massive activations. Specifically, we posit that Transformer-based LLMs process tokens in three distinct phases: (1) broad mixing in the early layers, (2) compressed computation with limited mixing in the middle layers, and (3) selective refinement in the late layers. Our framework helps explain why embedding tasks perform best at intermediate layers, whereas generation tasks benefit from full-depth processing, clarifying differences in task-dependent representations.
♻ ☆ Selective KV-Cache Sharing to Mitigate Timing Side-Channels in LLM Inference
Global KV-cache sharing is an effective optimization for accelerating large language model (LLM) inference, yet it introduces an API-visible timing side channel that lets adversaries infer sensitive user inputs from shared entries, leading to cross-tenant privacy risks. To address this problem, we introduce SafeKV (Secure and Flexible KV-cache Sharing), a system-level co-design of privacy enforcement and KV-cache management. SafeKV integrates lightweight detection and isolation directly into the serving runtime to eliminate cross-tenant reuse of sensitive KV-cache blocks under our threat model, while recovering most of the performance benefits of global sharing. Our key contributions are: (1) a three-tier asynchronous detection pipeline that decouples privacy classification from inference and supports streaming workloads, (2) a unified radix-tree-based memory manager with path compression and sensitivity-aware eviction for scalable selective isolation, and (3) an RDR-guided (Reuse Diversity Ratio) runtime safeguard that detects and bounds residual leakage. On large LLM backends, SafeKV reduces the time-to-first-token (TTFT) overhead compared to full isolation by up to 40.58% and raises throughput by up to 2.66x. Overall, SafeKV restores the efficiency of KV reuse while enforcing strong, practical privacy for multi-tenant LLM inference.
comment: 14 pages,15 figures
♻ ☆ Machine Learning Detection of Road Surface Conditions: A Generalizable Model using Traffic Cameras and Weather Data
Transportation agencies make critical operational decisions during hazardous weather events, including assessment of road conditions and resource allocation. In this study, machine learning models are developed to provide additional support for the New York State Department of Transportation (NYSDOT) by automatically classifying current road conditions across the state. Convolutional neural networks and random forests are trained on NYSDOT roadside camera images and weather data to predict road surface conditions. This task draws critically on a robust hand-labeled dataset of ~22,000 camera images containing six road surface conditions: severe snow, snow, wet, dry, poor visibility, or obstructed. Model generalizability is prioritized to meet the operational needs of the NYSDOT decision makers, including integration of operational datasets and use of representative and realistic images. The weather-related road surface condition model in this study achieves an accuracy of 81.5% on completely unseen cameras. With operational deployment, this model has the potential to improve spatial and temporal awareness of road surface conditions, which can strengthen decision-making for operations, roadway maintenance, and traveler safety, particularly during winter weather events.
comment: Accepted for publication in the International Journal of Transportation Science and Technology (IJTST)
♻ ☆ CHIP: Adaptive Compliance for Humanoid Control through Hindsight Perturbation
Recent progress in humanoid robots has unlocked agile locomotion skills, including backflipping, running, and crawling. Yet it remains challenging for a humanoid robot to perform forceful manipulation tasks such as moving objects, wiping, and pushing a cart. We propose adaptive Compliance Humanoid control through hIsight Perturbation (CHIP), a plug-and-play module that enables controllable end-effector stiffness while preserving agile tracking of dynamic reference motions. CHIP is easy to implement and requires neither data augmentation nor additional reward tuning. We show that a generalist motion-tracking controller trained with CHIP can perform a diverse set of forceful manipulation tasks that require different end-effector compliance, such as multi-robot collaboration, wiping, box delivery, and door opening.
comment: The first two authors contributed equally. Project page: https://nvlabs.github.io/CHIP/
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation ICLR-2026
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.The dataset and code can be accessed at https://huggingface.co/datasets/ChemFM/MolLangBench and https://github.com/TheLuoFengLab/MolLangBench, respectively.
comment: ICLR-2026 Camera-Ready version
♻ ☆ ATLAS: Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs
Graph neural networks (GNNs) excel on homophilic graphs where connected nodes share labels, but struggle with heterophilic graphs where edges do not imply similarity. Moreover, iterative message passing limits scalability due to neighborhood expansion overhead. We introduce ATLAS (Adaptive Topology-based Learning at Scale), a propagation-free framework that encodes graph structure through multi-resolution community features rather than message passing. We first prove that community refinement involves a fundamental trade-off: finer partitions increase label-community mutual information but also increase entropy. We formalize when refinement improves normalized mutual information, explaining why intermediate granularities are often most predictive. ATLAS employs modularity-guided adaptive search to automatically identify informative community scales, which are one-hot encoded, projected into learnable embeddings, and concatenated with node attributes for MLP classification. This enables standard mini-batch training and adjacency-free inference after one-time preprocessing. Across 13 benchmarks including million-node graphs, ATLAS achieves competitive or superior accuracy, up to 20-point gains over GCN on heterophilic datasets and 12-point gains over MLPs on homophilic graphs. By treating topology as explicit features, ATLAS adapts intelligently: leveraging structure when informative, remaining robust when weakly aligned, and avoiding propagation when structure misleads, providing both scalable performance and interpretable structural insights.
comment: Preprint
♻ ☆ On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling
On-policy reinforcement learning (RL) algorithms are typically characterized as algorithms that perform policy updates using i.i.d. trajectories collected by the agent's current policy. However, after observing only a finite number of trajectories, such on-policy sampling may produce data that fails to match the expected on-policy data distribution. This sampling error leads to high-variance gradient estimates that yield data-inefficient on-policy learning. Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling can produce data with lower sampling error w.r.t. the expected on-policy distribution than on-policy sampling can produce (Zhong et. al, 2022). Motivated by this observation, we introduce an adaptive, off-policy sampling method to reduce sampling error during on-policy policy gradient RL training. Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy that increases the probability of sampling actions that are under-sampled w.r.t. the current policy. We empirically evaluate PROPS on continuous-action MuJoCo benchmark tasks as well as discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout training and (2) increases the data efficiency of on-policy policy gradient algorithms.
comment: TMLR 2026
♻ ☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables, 1 pseudocode algorithm
♻ ☆ Scalable Formal Verification via Autoencoder Latent Space Abstraction
Finite Abstraction methods provide a powerful formal framework for proving that systems satisfy their specifications. However, these techniques face scalability challenges for high-dimensional systems, as they rely on state-space discretization which grows exponentially with dimension. Learning-based approaches to dimensionality reduction, utilizing neural networks and autoencoders, have shown great potential to alleviate this problem. However, ensuring the correctness of the resulting verification results remains an open question. In this work, we provide a formal approach to reduce the dimensionality of systems via convex autoencoders and learn the dynamics in the latent space through a kernel-based method. We then construct a finite abstraction from the learned model in the latent space and guarantee that the abstraction contains the true behaviors of the original system. We show that the verification results in the latent space can be mapped back to the original system. Finally, we demonstrate the effectiveness of our approach on multiple systems, including a 26D system controlled by a neural network, showing significant scalability improvements without loss of rigor.
comment: 14 pages, 7 figures, under review
♻ ☆ Deep Learning Foundation Models from Classical Molecular Descriptors
Fast and accurate data-driven prediction of molecular properties is pivotal to scientific advancements across myriad chemical domains. Deep learning methods have recently garnered much attention, despite their inability to outperform classical machine learning methods when tested on practical, real-world benchmarks with limited training data. This study seeks to bridge this gap with CheMeleon, a O(10M) parameter foundation model that enables directed message-passing neural networks to finally exceed the performance of classical methods. Evaluated on 58 benchmark datasets from Polaris and MoleculeACE, CheMeleon achieves a win rate of 75% on Polaris tasks, outperforming baselines like Random Forest (68%), fastprop (36%), and Chemprop (32%), and a 97% win rate on MoleculeACE assays, surpassing Random Forest (50%) and other foundation models. Unlike conventional pre-training approaches that rely on noisy experimental data or biased quantum mechanical simulations, CheMeleon utilizes low-noise molecular descriptors to learn rich and highly transferable molecular representations, suggesting a new avenue for foundation model pre-training.
♻ ☆ Quantifying the Generalization Gap: A New Benchmark for Out-of-Distribution Graph-Based Android Malware Classification
While graph-based Android malware classifiers achieve over 94% accuracy on standard benchmarks, they exhibit a significant generalization gap under distribution shift, suffering up to 45% performance degradation when encountering unseen malware variants from known families. This work systematically investigates this critical yet overlooked challenge for real-world deployment by introducing a benchmarking suite designed to simulate two prevalent scenarios: MalNet-Tiny-Common for covariate shift, and MalNet-Tiny-Distinct for domain shift. Furthermore, we identify an inherent limitation in existing benchmarks where the inputs are structure-only function call graphs, which fails to capture the latent semantic patterns necessary for robust generalization. To verify this, we construct a semantic enrichment framework that augments the original topology with function-level attributes, including lightweight metadata and LLM-based code embeddings. By providing this expanded feature set, we aim to equip future research with richer behavioral information to facilitate the development of more sophisticated detection techniques. Empirical evaluations confirm the effectiveness of our data-centric methodology, with which classification performs better under distribution shift compared to model-based approaches, and consistently further enhances robustness when used in conjunction. We release our precomputed datasets, along with an extensible implementation of our comprehensive pipeline, to lay the groundwork for building resilient malware detection systems for evolving threat environments.
comment: 14 pages, 5 figures, 10 tables, under review
♻ ☆ Privileged Information Distillation for Language Models
Training-time privileged information (PI) can enable language models to succeed on tasks they would otherwise fail, making it a powerful tool for reinforcement learning in hard, long-horizon settings. However, transferring capabilities learned with PI to policies that must act without it at inference time remains a fundamental challenge. We study this problem in the context of distilling frontier models for multi-turn agentic environments, which typically hide their internal reasoning and expose only action trajectories. This breaks standard distillation pipelines, since successful behavior is observable, but the reasoning process is not. For this, we introduce π-Distill, a joint teacher-student objective that trains a PI-conditioned teacher and an unconditioned student simultaneously using the same model. Additionally, we also introduce On-Policy Self-Distillation (OPSD), an alternative approach that trains using Reinforcement Learning (RL) with a reverse KL-penalty between the student and the PI-conditioned teacher. We show that both of these algorithms effectively distill frontier agents using action-only PI. Specifically, we find that π-Distill and, in some cases, OPSD, outperform industry standard practices (Supervised finetuning followed by RL) that assume access to full Chain-of-Thought supervision across multiple agentic benchmarks, models, and forms of PI. We complement our results with extensive analysis that characterizes the factors enabling effective learning with PI, focusing primarily on π-Distill and characterizing when OPSD is competitive.
comment: Abstract border should have been purple
♻ ☆ ClustRecNet: A Novel End-to-End Deep Learning Framework for Clustering Algorithm Recommendation
In unsupervised learning, identifying an effective clustering algorithm for a given tabular dataset remains a fundamental challenge. We introduce ClustRecNet, a novel end-to-end deep learning framework that recommends a suitable clustering algorithm by directly learning high-order representations of raw tabular data. To facilitate robust meta-learning, we construct a comprehensive repository of 34,000 synthetic datasets with diverse structures, run 10 prominent clustering algorithms, and use Adjusted Rand Index (ARI) to establish ground-truth labels. ClustRecNet integrates convolutional, residual, and attention mechanisms to capture both local/global structural patterns, effectively bypassing the knowledge bottleneck associated with manual feature engineering. Extensive evaluations on both synthetic and real-world benchmarks demonstrate that ClustRecNet consistently outperforms state-of-the-art Automated Machine Learning (AutoML) approaches, including ML2DAC and AutoML4Clust. Our framework achieves an average 0.497 ARI gain over the well-known Calinski-Harabasz cluster validity index on synthetic data and an average 15.3% ARI improvement over the leading AutoML approach (ML2DAC) on real-world benchmarks. To the best of our knowledge, we are the first to successively apply deep learning to automatically recommend suitable clustering algorithms for tabular data at hand.
comment: Update for journal submission
♻ ☆ Symmetry-Guided Memory Augmentation for Efficient Locomotion Learning
Training reinforcement learning (RL) policies for legged locomotion often requires extensive environment interactions, which are costly and time-consuming. We propose Symmetry-Guided Memory Augmentation (SGMA), a framework that improves training efficiency by combining structured experience augmentation with memory-based context inference. Our method leverages robot and task symmetries to generate additional, physically consistent training experiences without requiring extra interactions. To avoid the pitfalls of naive augmentation, we extend these transformations to the policy's memory states, enabling the agent to retain task-relevant context and adapt its behavior accordingly. We evaluate the approach on quadruped and humanoid robots in simulation, as well as on a real quadruped platform. Across diverse locomotion tasks involving joint failures and payload variations, our method achieves efficient policy training while maintaining robust performance, demonstrating a practical route toward data-efficient RL for legged robots.
♻ ☆ A Physics-Informed Spatiotemporal Deep Learning Framework for Turbulent Systems
Fluid thermodynamics underpins atmospheric dynamics, climate science, industrial applications, and energy systems. However, direct numerical simulations (DNS) of such systems can be computationally prohibitive. To address this, we present a novel physics-informed spatiotemporal surrogate model for Rayleigh-Benard convection (RBC), a canonical example of convective fluid flow. Our approach combines convolutional neural networks, for spatial dimension reduction, with an innovative recurrent architecture, inspired by large language models, to model long-range temporal dynamics. Inference is penalized with respect to the governing partial differential equations to ensure physical interpretability. Since RBC exhibits turbulent behavior, we quantify uncertainty using a conformal prediction framework. This model replicates key physical features of RBC dynamics while significantly reducing computational cost, offering a scalable alternative to DNS for long-term simulations.
♻ ☆ Cross-Modal Redundancy and the Geometry of Vision-Language Embeddings ICLR 2026
Vision-language models (VLMs) align images and text with remarkable success, yet the geometry of their shared embedding space remains poorly understood. To probe this geometry, we begin from the Iso-Energy Assumption, which exploits cross-modal redundancy: a concept that is truly shared should exhibit the same average energy across modalities. We operationalize this assumption with an Aligned Sparse Autoencoder (SAE) that encourages energy consistency during training while preserving reconstruction. We find that this inductive bias changes the SAE solution without harming reconstruction, giving us a representation that serves as a tool for geometric analysis. Sanity checks on controlled data with known ground truth confirm that alignment improves when Iso-Energy holds and remains neutral when it does not. Applied to foundational VLMs, our framework reveals a clear structure with practical consequences: (i) sparse bimodal atoms carry the entire cross-modal alignment signal; (ii) unimodal atoms act as modality-specific biases and fully explain the modality gap; (iii) removing unimodal atoms collapses the gap without harming performance; (iv) restricting vector arithmetic to the bimodal subspace yields in-distribution edits and improved retrieval. These findings suggest that the right inductive bias can both preserve model fidelity and render the latent geometry interpretable and actionable.
comment: Published as a conference paper at ICLR 2026
♻ ☆ Can LLMs Find Bugs in Code? An Evaluation from Beginner Errors to Security Vulnerabilities in Python and C++
Large Language Models (LLMs) such as ChatGPT-4, Claude 3, and LLaMA 4 are increasingly embedded in software/application development, supporting tasks from code generation to debugging. Yet, their real-world effectiveness in detecting diverse software bugs, particularly complex, security-relevant vulnerabilities, remains underexplored. This study presents a systematic, empirical evaluation of these three leading LLMs using a benchmark of foundational programming errors, classic security flaws, and advanced, production-grade bugs in C++ and Python. The dataset integrates real code from SEED Labs, OpenSSL (via the Suresoft GLaDOS database), and PyBugHive, validated through local compilation and testing pipelines. A novel multi-stage, context-aware prompting protocol simulates realistic debugging scenarios, while a graded rubric measures detection accuracy, reasoning depth, and remediation quality. Our results show that all models excel at identifying syntactic and semantic issues in well-scoped code, making them promising for educational use and as first-pass reviewers in automated code auditing. Performance diminishes in scenarios involving complex security vulnerabilities and large-scale production code, with ChatGPT-4 and Claude 3 generally providing more nuanced contextual analyses than LLaMA 4. This highlights both the promise and the present constraints of LLMs in serving as reliable code analysis tools.
♻ ☆ Beyond Grid-Locked Voxels: Neural Response Functions for Continuous Brain Encoding
Neural encoding models aim to predict fMRI-measured brain responses to natural images. fMRI data is acquired as a 3D volume of voxels, where each voxel has a defined spatial location in the brain. However, conventional encoding models often flatten this volume into a 1D vector and treat voxel responses as independent outputs. This removes spatial context, discards anatomical information, and ties each model to a subject-specific voxel grid. We introduce the Neural Response Function (NRF), a framework that models fMRI activity as a continuous function over anatomical space rather than a flat vector of voxels. NRF represents brain activity as a continuous implicit function: given an image and a spatial coordinate (x, y, z) in standardized MNI space, the model predicts the response at that location. This formulation decouples predictions from the training grid, supports querying at arbitrary spatial resolutions, and enables resolution-agnostic analyses. By grounding the model in anatomical space, NRF exploits two key properties of brain responses: (1) local smoothness -- neighboring voxels exhibit similar response patterns; modeling responses continuously captures these correlations and improves data efficiency, and (2) cross-subject alignment -- MNI coordinates unify data across individuals, allowing a model pretrained on one subject to be fine-tuned on new subjects. In experiments, NRF outperformed baseline models in both intrasubject encoding and cross-subject adaptation, achieving high performance while reducing the data size needed by orders of magnitude. To our knowledge, NRF is the first anatomically aware encoding model to move beyond flattened voxels, learning a continuous mapping from images to brain responses in 3D space.
♻ ☆ What Do You Need for Compositional Generalization in Diffusion Planning?
In policy learning, stitching and compositional generalization refer to the extent to which the policy is able to piece together sub-trajectories of data it is trained on to generate new and diverse behaviours. While stitching has been identified as a significant strength of offline reinforcement learning, recent generative behavioural cloning (BC) methods have also shown proficiency at stitching. However, the main factors behind this are poorly understood, hindering the development of new algorithms that can reliably stitch by design. Focusing on diffusion planners trained via generative behavioural cloning, and without resorting to dynamic programming or TD-learning, we find three properties are key enablers for composition: shift equivariance, local receptive fields, and inference choices. We use these properties to explain architecture, data, and inference choices in existing generative BC methods based on diffusion planning including replanning frequency, data augmentation, and data scaling. Our experiments show that while local receptive fields are more important than shift equivariance in creating a diffusion planner capable of composition, both are crucial. Using findings from our experiments, we develop a new architecture for diffusion planners called Eq-Net, that is simple, produces diverse trajectories competitive with more computationally expensive methods such as replanning or scaling data, and can be guided to enable generalization in goal-conditioned settings. We show that Eq-Net exhibits significant compositional generalization in a variety of navigation and manipulation tasks designed to test planning diversity.
comment: 8 Pages
♻ ☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
Decoding speech-related information from non-invasive MEG is a key step toward scalable brain-computer interfaces. We present compact Conformer-based decoders on the LibriBrain 2025 PNPL benchmark for two core tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, winning the Phoneme Classification Standard track. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 8 pages, 7 figures, 4 tables, v1 presentend in LibriBrain Workshop, NeurIPS 2025; v2 submitted to Odyssey 2026
Multimedia 5
☆ Lightweight Call Signaling and Peer-to-Peer Control of WebRTC Video Conferencing
We present the software architecture and implementation of our web-based multiparty video conference application. It does not use a media server. For call signaling, it either piggybacks on existing push notifications via a lightweight notification server, or utilizes email messages to further remove that server dependency. For conference control and data storage, it creates a peer-to-peer network of the clients participating in the call. Our prototype client web app can be installed as a browser extension, or a progressive web app on desktop and mobile. It uses WebRTC data channels and media streams for the control and media paths in implementing a full featured video conferencing with audio, video, text and screen sharing. The challenges faced and the techniques used in creating our lightweight or serverless system are useful to other low-end WebRTC applications that intend to save cost on server maintenance or paid subscriptions for multiparty video calls.
comment: 13 pages, 13 figures
☆ GOT-Edit: Geometry-Aware Generic Object Tracking via Online Model Editing ICLR 2026
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
comment: ICLR 2026. This is a preprint version. The camera-ready version will be updated soon
☆ T2VTree: User-Centered Visual Analytics for Agent-Assisted Thought-to-Video Authoring
Generative models have substantially expanded video generation capabilities, yet practical thought-to-video creation remains a multi-stage, multi-modal, and decision-intensive process. However, existing tools either hide intermediate decisions behind repeated reruns or expose operator-level workflows that make exploration traces difficult to manage, compare, and reuse. We present T2VTree, a user-centered visual analytics approach for agent-assisted thought-to-video authoring. T2VTree represents the authoring process as a tree visualization. Each node in the tree binds an editable specification (intent, referenced inputs, workflow choice, prompts, and parameters) with the resulting multimodal outputs, making refinement, branching, and provenance inspection directly operable. To reduce the burden of deciding what to do next, a set of collaborating agents translates step-level intent into an executable plan that remains visible and user-editable before execution. We further implement a visual analytics system that integrates branching authoring with in-place preview and stitching for convergent assembly, enabling end-to-end multi-scene creation without leaving the authoring context. We demonstrate T2VTreeVA through two multi-scene case studies and a comparative user study, showing how the T2VTree visualization and editable agent planning support reliable refinement, localized comparison, and practical reuse in real authoring workflows. T2VTree is available at: https://github.com/tezuka0210/T2VTree.
☆ A Hybrid Deterministic Framework for Named Entity Extraction in Broadcast News Video IEEE
The growing volume of video-based news content has heightened the need for transparent and reliable methods to extract on-screen information. Yet the variability of graphical layouts, typographic conventions, and platform-specific design patterns renders manual indexing impractical. This work presents a comprehensive framework for automatically detecting and extracting personal names from broadcast and social-media-native news videos. It introduces a curated and balanced corpus of annotated frames capturing the diversity of contemporary news graphics and proposes an interpretable, modular extraction pipeline designed to operate under deterministic and auditable conditions. The pipeline is evaluated against a contrasting class of generative multimodal methods, revealing a clear trade-off between deterministic auditability and stochastic inference. The underlying detector achieves 95.8% mAP@0.5, demonstrating operationally robust performance for graphical element localisation. While generative systems achieve marginally higher raw accuracy (F1: 84.18% vs 77.08%), they lack the transparent data lineage required for journalistic and analytical contexts. The proposed pipeline delivers balanced precision (79.9%) and recall (74.4%), avoids hallucination, and provides full traceability across each processing stage. Complementary user findings indicate that 59% of respondents report difficulty reading on-screen names in fast-paced broadcasts, underscoring the practical relevance of the task. The results establish a methodologically rigorous and interpretable baseline for hybrid multimodal information extraction in modern news media.
comment: 7 pages, 5 figures. Accepted for publication at the 2026 IEEE Conference on Artificial Intelligence (CAI)
♻ ☆ Hierarchical Refinement of Universal Multimodal Attacks on Vision-Language Models
Existing adversarial attacks for VLP models are mostly sample-specific, resulting in substantial computational overhead when scaled to large datasets or new scenarios. To overcome this limitation, we propose Hierarchical Refinement Attack (HRA), a multimodal universal attack framework for VLP models. For the image modality, we refine the optimization path by leveraging a temporal hierarchy of historical and estimated future gradients to avoid local minima and stabilize universal perturbation learning. For the text modality, it hierarchically models textual importance by considering both intra- and inter-sentence contributions to identify globally influential words, which are then used as universal text perturbations. Extensive experiments across various downstream tasks, VLP models, and datasets, demonstrate the superior transferability of the proposed universal multimodal attacks.
comment: 10 pages, 7 figures
Computer Vision and Pattern Recognition 88
☆ Robustness of Vision Language Models Against Split-Image Harmful Input Attacks
Vision-Language Models (VLMs) are now a core part of modern AI. Recent work proposed several visual jailbreak attacks using single/ holistic images. However, contemporary VLMs demonstrate strong robustness against such attacks due to extensive safety alignment through preference optimization (e.g., RLHF). In this work, we identify a new vulnerability: while VLM pretraining and instruction tuning generalize well to split-image inputs, safety alignment is typically performed only on holistic images and does not account for harmful semantics distributed across multiple image fragments. Consequently, VLMs often fail to detect and refuse harmful split-image inputs, where unsafe cues emerge only after combining images. We introduce novel split-image visual jailbreak attacks (SIVA) that exploit this misalignment. Unlike prior optimization-based attacks, which exhibit poor black-box transferability due to architectural and prior mismatches across models, our attacks evolve in progressive phases from naive splitting to an adaptive white-box attack, culminating in a black-box transfer attack. Our strongest strategy leverages a novel adversarial knowledge distillation (Adv-KD) algorithm to substantially improve cross-model transferability. Evaluations on three state-of-the-art modern VLMs and three jailbreak datasets demonstrate that our strongest attack achieves up to 60% higher transfer success than existing baselines. Lastly, we propose efficient ways to address this critical vulnerability in the current VLM safety alignment.
comment: 22 Pages, long conference paper
☆ Fields of The World: A Field Guide for Extracting Agricultural Field Boundaries
Field boundary maps are a building block for agricultural data products and support crop monitoring, yield estimation, and disease estimation. This tutorial presents the Fields of The World (FTW) ecosystem: a benchmark of 1.6M field polygons across 24 countries, pre-trained segmentation models, and command-line inference tools. We provide two notebooks that cover (1) local-scale field boundary extraction with crop classification and forest loss attribution, and (2) country-scale inference using cloud-optimized data. We use MOSAIKS random convolutional features and FTW derived field boundaries to map crop type at the field level and report macro F1 scores of 0.65--0.75 for crop type classification with limited labels. Finally, we show how to explore pre-computed predictions over five countries (4.76M km\textsuperscript{2}), with median predicted field areas from 0.06 ha (Rwanda) to 0.28 ha (Switzerland).
MambaFusion: Adaptive State-Space Fusion for Multimodal 3D Object Detection
Reliable 3D object detection is fundamental to autonomous driving, and multimodal fusion algorithms using cameras and LiDAR remain a persistent challenge. Cameras provide dense visual cues but ill posed depth; LiDAR provides a precise 3D structure but sparse coverage. Existing BEV-based fusion frameworks have made good progress, but they have difficulties including inefficient context modeling, spatially invariant fusion, and reasoning under uncertainty. We introduce MambaFusion, a unified multi-modal detection framework that achieves efficient, adaptive, and physically grounded 3D perception. MambaFusion interleaves selective state-space models (SSMs) with windowed transformers to propagate the global context in linear time while preserving local geometric fidelity. A multi-modal token alignment (MTA) module and reliability-aware fusion gates dynamically re-weight camera-LiDAR features based on spatial confidence and calibration consistency. Finally, a structure-conditioned diffusion head integrates graph-based reasoning with uncertainty-aware denoising, enforcing physical plausibility, and calibrated confidence. MambaFusion establishes new state-of-the-art performance on nuScenes benchmarks while operating with linear-time complexity. The framework demonstrates that coupling SSM-based efficiency with reliability-driven fusion yields robust, temporally stable, and interpretable 3D perception for real-world autonomous driving systems.
☆ Building Damage Detection using Satellite Images and Patch-Based Transformer Methods
Rapid building damage assessment is critical for post-disaster response. Damage classification models built on satellite imagery provide a scalable means of obtaining situational awareness. However, label noise and severe class imbalance in satellite data create major challenges. The xBD dataset offers a standardized benchmark for building-level damage across diverse geographic regions. In this study, we evaluate Vision Transformer (ViT) model performance on the xBD dataset, specifically investigating how these models distinguish between types of structural damage when training on noisy, imbalanced data. In this study, we specifically evaluate DINOv2-small and DeiT for multi-class damage classification. We propose a targeted patch-based pre-processing pipeline to isolate structural features and minimize background noise in training. We adopt a frozen-head fine-tuning strategy to keep computational requirements manageable. Model performance is evaluated through accuracy, precision, recall, and macro-averaged F1 scores. We show that small ViT architectures with our novel training method achieves competitive macro-averaged F1 relative to prior CNN baselines for disaster classification.
comment: 8 pages, 5 figures
☆ MMLSv2: A Multimodal Dataset for Martian Landslide Detection in Remote Sensing Imagery
We present MMLSv2, a dataset for landslide segmentation on Martian surfaces. MMLSv2 consists of multimodal imagery with seven bands: RGB, digital elevation model, slope, thermal inertia, and grayscale channels. MMLSv2 comprises 664 images distributed across training, validation, and test splits. In addition, an isolated test set of 276 images from a geographically disjoint region from the base dataset is released to evaluate spatial generalization. Experiments conducted with multiple segmentation models show that the dataset supports stable training and achieves competitive performance, while still posing challenges in fragmented, elongated, and small-scale landslide regions. Evaluation on the isolated test set leads to a noticeable performance drop, indicating increased difficulty and highlighting its value for assessing model robustness and generalization beyond standard in-distribution settings. Dataset will be available at: https://github.com/MAIN-Lab/MMLS_v2
☆ VidVec: Unlocking Video MLLM Embeddings for Video-Text Retrieval
Recent studies have adapted generative Multimodal Large Language Models (MLLMs) into embedding extractors for vision tasks, typically through fine-tuning to produce universal representations. However, their performance on video remains inferior to Video Foundation Models (VFMs). In this paper, we focus on leveraging MLLMs for video-text embedding and retrieval. We first conduct a systematic layer-wise analysis, showing that intermediate (pre-trained) MLLM layers already encode substantial task-relevant information. Leveraging this insight, we demonstrate that combining intermediate-layer embeddings with a calibrated MLLM head yields strong zero-shot retrieval performance without any training. Building on these findings, we introduce a lightweight text-based alignment strategy which maps dense video captions to short summaries and enables task-related video-text embedding learning without visual supervision. Remarkably, without any fine-tuning beyond text, our method outperforms current methods, often by a substantial margin, achieving state-of-the-art results across common video retrieval benchmarks.
comment: Project page: https://iyttor.github.io/VidVec/
☆ ViT-5: Vision Transformers for The Mid-2020s
This work presents a systematic investigation into modernizing Vision Transformer backbones by leveraging architectural advancements from the past five years. While preserving the canonical Attention-FFN structure, we conduct a component-wise refinement involving normalization, activation functions, positional encoding, gating mechanisms, and learnable tokens. These updates form a new generation of Vision Transformers, which we call ViT-5. Extensive experiments demonstrate that ViT-5 consistently outperforms state-of-the-art plain Vision Transformers across both understanding and generation benchmarks. On ImageNet-1k classification, ViT-5-Base reaches 84.2\% top-1 accuracy under comparable compute, exceeding DeiT-III-Base at 83.8\%. ViT-5 also serves as a stronger backbone for generative modeling: when plugged into an SiT diffusion framework, it achieves 1.84 FID versus 2.06 with a vanilla ViT backbone. Beyond headline metrics, ViT-5 exhibits improved representation learning and favorable spatial reasoning behavior, and transfers reliably across tasks. With a design aligned with contemporary foundation-model practices, ViT-5 offers a simple drop-in upgrade over vanilla ViT for mid-2020s vision backbones.
comment: Code is available at https://github.com/wangf3014/ViT-5
☆ ReRoPE: Repurposing RoPE for Relative Camera Control
Video generation with controllable camera viewpoints is essential for applications such as interactive content creation, gaming, and simulation. Existing methods typically adapt pre-trained video models using camera poses relative to a fixed reference, e.g., the first frame. However, these encodings lack shift-invariance, often leading to poor generalization and accumulated drift. While relative camera pose embeddings defined between arbitrary view pairs offer a more robust alternative, integrating them into pre-trained video diffusion models without prohibitive training costs or architectural changes remains challenging. We introduce ReRoPE, a plug-and-play framework that incorporates relative camera information into pre-trained video diffusion models without compromising their generation capability. Our approach is based on the insight that Rotary Positional Embeddings (RoPE) in existing models underutilize their full spectral bandwidth, particularly in the low-frequency components. By seamlessly injecting relative camera pose information into these underutilized bands, ReRoPE achieves precise control while preserving strong pre-trained generative priors. We evaluate our method on both image-to-video (I2V) and video-to-video (V2V) tasks in terms of camera control accuracy and visual fidelity. Our results demonstrate that ReRoPE offers a training-efficient path toward controllable, high-fidelity video generation. See project page for more results: https://sisyphe-lee.github.io/ReRoPE/
☆ DICE: Disentangling Artist Style from Content via Contrastive Subspace Decomposition in Diffusion Models
The recent proliferation of diffusion models has made style mimicry effortless, enabling users to imitate unique artistic styles without authorization. In deployed platforms, this raises copyright and intellectual-property risks and calls for reliable protection. However, existing countermeasures either require costly weight editing as new styles emerge or rely on an explicitly specified editing style, limiting their practicality for deployment-side safety. To address this challenge, we propose DICE (Disentanglement of artist Style from Content via Contrastive Subspace Decomposition), a training-free framework for on-the-fly artist style erasure. Unlike style editing that require an explicitly specified replacement style, DICE performs style purification, removing the artist's characteristics while preserving the user-intended content. Our core insight is that a model cannot truly comprehend the artist style from a single text or image alone. Consequently, we abandon the traditional paradigm of identifying style from isolated samples. Instead, we construct contrastive triplets to compel the model to distinguish between style and non-style features in the latent space. By formalizing this disentanglement process as a solvable generalized eigenvalue problem, we achieve precise identification of the style subspace. Furthermore, we introduce an Adaptive Attention Decoupling Editing strategy dynamically assesses the style concentration of each token and performs differential suppression and content enhancement on the QKV vectors. Extensive experiments demonstrate that DICE achieves a superior balance between the thoroughness of style erasure and the preservation of content integrity. DICE introduces an additional overhead of only 3 seconds to disentangle style, providing a practical and efficient technique for curbing style mimicry.
☆ Picasso: Holistic Scene Reconstruction with Physics-Constrained Sampling
In the presence of occlusions and measurement noise, geometrically accurate scene reconstructions -- which fit the sensor data -- can still be physically incorrect. For instance, when estimating the poses and shapes of objects in the scene and importing the resulting estimates into a simulator, small errors might translate to implausible configurations including object interpenetration or unstable equilibrium. This makes it difficult to predict the dynamic behavior of the scene using a digital twin, an important step in simulation-based planning and control of contact-rich behaviors. In this paper, we posit that object pose and shape estimation requires reasoning holistically over the scene (instead of reasoning about each object in isolation), accounting for object interactions and physical plausibility. Towards this goal, our first contribution is Picasso, a physics-constrained reconstruction pipeline that builds multi-object scene reconstructions by considering geometry, non-penetration, and physics. Picasso relies on a fast rejection sampling method that reasons over multi-object interactions, leveraging an inferred object contact graph to guide samples. Second, we propose the Picasso dataset, a collection of 10 contact-rich real-world scenes with ground truth annotations, as well as a metric to quantify physical plausibility, which we open-source as part of our benchmark. Finally, we provide an extensive evaluation of Picasso on our newly introduced dataset and on the YCB-V dataset, and show it largely outperforms the state of the art while providing reconstructions that are both physically plausible and more aligned with human intuition.
comment: 15 pages
☆ Weak to Strong: VLM-Based Pseudo-Labeling as a Weakly Supervised Training Strategy in Multimodal Video-based Hidden Emotion Understanding Tasks
To tackle the automatic recognition of "concealed emotions" in videos, this paper proposes a multimodal weak-supervision framework and achieves state-of-the-art results on the iMiGUE tennis-interview dataset. First, YOLO 11x detects and crops human portraits frame-by-frame, and DINOv2-Base extracts visual features from the cropped regions. Next, by integrating Chain-of-Thought and Reflection prompting (CoT + Reflection), Gemini 2.5 Pro automatically generates pseudo-labels and reasoning texts that serve as weak supervision for downstream models. Subsequently, OpenPose produces 137-dimensional key-point sequences, augmented with inter-frame offset features; the usual graph neural network backbone is simplified to an MLP to efficiently model the spatiotemporal relationships of the three key-point streams. An ultra-long-sequence Transformer independently encodes both the image and key-point sequences, and their representations are concatenated with BERT-encoded interview transcripts. Each modality is first pre-trained in isolation, then fine-tuned jointly, with pseudo-labeled samples merged into the training set for further gains. Experiments demonstrate that, despite severe class imbalance, the proposed approach lifts accuracy from under 0.6 in prior work to over 0.69, establishing a new public benchmark. The study also validates that an "MLP-ified" key-point backbone can match - or even surpass - GCN-based counterparts in this task.
☆ Vanilla Group Equivariant Vision Transformer: Simple and Effective
Incorporating symmetry priors as inductive biases to design equivariant Vision Transformers (ViTs) has emerged as a promising avenue for enhancing their performance. However, existing equivariant ViTs often struggle to balance performance with equivariance, primarily due to the challenge of achieving holistic equivariant modifications across the diverse modules in ViTs-particularly in harmonizing the Self-Attention mechanism with Patch Embedding. To address this, we propose a straightforward framework that systematically renders key ViT components, including patch embedding, self-attention, positional encodings, and Down/Up-Sampling, equivariant, thereby constructing ViTs with guaranteed equivariance. The resulting architecture serves as a plug-and-play replacement that is both theoretically grounded and practically versatile, scaling seamlessly even to Swin Transformers. Extensive experiments demonstrate that our equivariant ViTs consistently improve performance and data efficiency across a wide spectrum of vision tasks.
☆ Enhanced Mixture 3D CGAN for Completion and Generation of 3D Objects
The generation and completion of 3D objects represent a transformative challenge in computer vision. Generative Adversarial Networks (GANs) have recently demonstrated strong potential in synthesizing realistic visual data. However, they often struggle to capture complex and diverse data distributions, particularly in scenarios involving incomplete inputs or significant missing regions. These challenges arise mainly from the high computational requirements and the difficulty of modeling heterogeneous and structurally intricate data, which restrict their applicability in real-world settings. Mixture of Experts (MoE) models have emerged as a promising solution to these limitations. By dynamically selecting and activating the most relevant expert sub-networks for a given input, MoEs improve both performance and efficiency. In this paper, we investigate the integration of Deep 3D Convolutional GANs (CGANs) with a MoE framework to generate high-quality 3D models and reconstruct incomplete or damaged objects. The proposed architecture incorporates multiple generators, each specialized to capture distinct modalities within the dataset. Furthermore, an auxiliary loss-free dynamic capacity constraint (DCC) mechanism is introduced to guide the selection of categorical generators, ensuring a balance between specialization, training stability, and computational efficiency, which is critical for 3D voxel processing. We evaluated the model's ability to generate and complete shapes with missing regions of varying sizes and compared its performance with state-of-the-art approaches. Both quantitative and qualitative results confirm the effectiveness of the proposed MoE-DCGAN in handling complex 3D data.
comment: 11
☆ Dynamic Black-hole Emission Tomography with Physics-informed Neural Fields
With the success of static black-hole imaging, the next frontier is the dynamic and 3D imaging of black holes. Recovering the dynamic 3D gas near a black hole would reveal previously-unseen parts of the universe and inform new physics models. However, only sparse radio measurements from a single viewpoint are possible, making the dynamic 3D reconstruction problem significantly ill-posed. Previously, BH-NeRF addressed the ill-posed problem by assuming Keplerian dynamics of the gas, but this assumption breaks down near the black hole, where the strong gravitational pull of the black hole and increased electromagnetic activity complicate fluid dynamics. To overcome the restrictive assumptions of BH-NeRF, we propose PI-DEF, a physics-informed approach that uses differentiable neural rendering to fit a 4D (time + 3D) emissivity field given EHT measurements. Our approach jointly reconstructs the 3D velocity field with the 4D emissivity field and enforces the velocity as a soft constraint on the dynamics of the emissivity. In experiments on simulated data, we find significantly improved reconstruction accuracy over both BH-NeRF and a physics-agnostic approach. We demonstrate how our method may be used to estimate other physics parameters of the black hole, such as its spin.
☆ MIND: Benchmarking Memory Consistency and Action Control in World Models
World models aim to understand, remember, and predict dynamic visual environments, yet a unified benchmark for evaluating their fundamental abilities remains lacking. To address this gap, we introduce MIND, the first open-domain closed-loop revisited benchmark for evaluating Memory consIstency and action coNtrol in worlD models. MIND contains 250 high-quality videos at 1080p and 24 FPS, including 100 (first-person) + 100 (third-person) video clips under a shared action space and 25 + 25 clips across varied action spaces covering eight diverse scenes. We design an efficient evaluation framework to measure two core abilities: memory consistency and action control, capturing temporal stability and contextual coherence across viewpoints. Furthermore, we design various action spaces, including different character movement speeds and camera rotation angles, to evaluate the action generalization capability across different action spaces under shared scenes. To facilitate future performance benchmarking on MIND, we introduce MIND-World, a novel interactive Video-to-World baseline. Extensive experiments demonstrate the completeness of MIND and reveal key challenges in current world models, including the difficulty of maintaining long-term memory consistency and generalizing across action spaces. Project page: https://csu-jpg.github.io/MIND.github.io/
☆ FlashVID: Efficient Video Large Language Models via Training-free Tree-based Spatiotemporal Token Merging ICLR 2026
Although Video Large Language Models (VLLMs) have shown remarkable capabilities in video understanding, they are required to process high volumes of visual tokens, causing significant computational inefficiency. Existing VLLMs acceleration frameworks usually compress spatial and temporal redundancy independently, which overlooks the spatiotemporal relationships, thereby leading to suboptimal spatiotemporal compression. The highly correlated visual features are likely to change in spatial position, scale, orientation, and other attributes over time due to the dynamic nature of video. Building on this insight, we introduce FlashVID, a training-free inference acceleration framework for VLLMs. Specifically, FlashVID utilizes Attention and Diversity-based Token Selection (ADTS) to select the most representative tokens for basic video representation, then applies Tree-based Spatiotemporal Token Merging (TSTM) for fine-grained spatiotemporal redundancy elimination. Extensive experiments conducted on three representative VLLMs across five video understanding benchmarks demonstrate the effectiveness and generalization of our method. Notably, by retaining only 10% of visual tokens, FlashVID preserves 99.1% of the performance of LLaVA-OneVision. Consequently, FlashVID can serve as a training-free and plug-and-play module for extending long video frames, which enables a 10x increase in video frame input to Qwen2.5-VL, resulting in a relative improvement of 8.6% within the same computational budget. Code is available at https://github.com/Fanziyang-v/FlashVID.
comment: Accepted by ICLR 2026 (Oral)
☆ PhysDrape: Learning Explicit Forces and Collision Constraints for Physically Realistic Garment Draping
Deep learning-based garment draping has emerged as a promising alternative to traditional Physics-Based Simulation (PBS), yet robust collision handling remains a critical bottleneck. Most existing methods enforce physical validity through soft penalties, creating an intrinsic trade-off between geometric feasibility and physical plausibility: penalizing collisions often distorts mesh structure, while preserving shape leads to interpenetration. To resolve this conflict, we present PhysDrape, a hybrid neural-physical solver for physically realistic garment draping driven by explicit forces and constraints. Unlike soft-constrained frameworks, PhysDrape integrates neural inference with explicit geometric solvers in a fully differentiable pipeline. Specifically, we propose a Physics-Informed Graph Neural Network conditioned on a physics-enriched graph -- encoding material parameters and body proximity -- to predict residual displacements. Crucially, we integrate a differentiable two-stage solver: first, a learnable Force Solver iteratively resolves unbalanced forces derived from the Saint Venant-Kirchhoff (StVK) model to ensure quasi-static equilibrium; second, a Differentiable Projection strictly enforces collision constraints against the body surface. This differentiable design guarantees physical validity through explicit constraints, while enabling end-to-end learning to optimize the network for physically consistent predictions. Extensive experiments demonstrate that PhysDrape achieves state-of-the-art performance, ensuring negligible interpenetration with significantly lower strain energy compared to existing baselines, achieving superior physical fidelity and robustness in real-time.
☆ ForecastOcc: Vision-based Semantic Occupancy Forecasting
Autonomous driving requires forecasting both geometry and semantics over time to effectively reason about future environment states. Existing vision-based occupancy forecasting methods focus on motion-related categories such as static and dynamic objects, while semantic information remains largely absent. Recent semantic occupancy forecasting approaches address this gap but rely on past occupancy predictions obtained from separate networks. This makes current methods sensitive to error accumulation and prevents learning spatio-temporal features directly from images. In this work, we present ForecastOcc, the first framework for vision-based semantic occupancy forecasting that jointly predicts future occupancy states and semantic categories. Our framework yields semantic occupancy forecasts for multiple horizons directly from past camera images, without relying on externally estimated maps. We evaluate ForecastOcc in two complementary settings: multi-view forecasting on the Occ3D-nuScenes dataset and monocular forecasting on SemanticKITTI, where we establish the first benchmark for this task. We introduce the first baselines by adapting two 2D forecasting modules within our framework. Importantly, we propose a novel architecture that incorporates a temporal cross-attention forecasting module, a 2D-to-3D view transformer, a 3D encoder for occupancy prediction, and a semantic occupancy head for voxel-level forecasts across multiple horizons. Extensive experiments on both datasets show that ForecastOcc consistently outperforms baselines, yielding semantically rich, future-aware predictions that capture scene dynamics and semantics critical for autonomous driving.
☆ MCIE: Multimodal LLM-Driven Complex Instruction Image Editing with Spatial Guidance AAAI2026
Recent advances in instruction-based image editing have shown remarkable progress. However, existing methods remain limited to relatively simple editing operations, hindering real-world applications that require complex and compositional instructions. In this work, we address these limitations from the perspectives of architectural design, data, and evaluation protocols. Specifically, we identify two key challenges in current models: insufficient instruction compliance and background inconsistency. To this end, we propose MCIE-E1, a Multimodal Large Language Model-Driven Complex Instruction Image Editing method that integrates two key modules: a spatial-aware cross-attention module and a background-consistent cross-attention module. The former enhances instruction-following capability by explicitly aligning semantic instructions with spatial regions through spatial guidance during the denoising process, while the latter preserves features in unedited regions to maintain background consistency. To enable effective training, we construct a dedicated data pipeline to mitigate the scarcity of complex instruction-based image editing datasets, combining fine-grained automatic filtering via a powerful MLLM with rigorous human validation. Finally, to comprehensively evaluate complex instruction-based image editing, we introduce CIE-Bench, a new benchmark with two new evaluation metrics. Experimental results on CIE-Bench demonstrate that MCIE-E1 consistently outperforms previous state-of-the-art methods in both quantitative and qualitative assessments, achieving a 23.96% improvement in instruction compliance.
comment: Accepted by AAAI2026
☆ Deepfake Synthesis vs. Detection: An Uneven Contest
The rapid advancement of deepfake technology has significantly elevated the realism and accessibility of synthetic media. Emerging techniques, such as diffusion-based models and Neural Radiance Fields (NeRF), alongside enhancements in traditional Generative Adversarial Networks (GANs), have contributed to the sophisticated generation of deepfake videos. Concurrently, deepfake detection methods have seen notable progress, driven by innovations in Transformer architectures, contrastive learning, and other machine learning approaches. In this study, we conduct a comprehensive empirical analysis of state-of-the-art deepfake detection techniques, including human evaluation experiments against cutting-edge synthesis methods. Our findings highlight a concerning trend: many state-of-the-art detection models exhibit markedly poor performance when challenged with deepfakes produced by modern synthesis techniques, including poor performance by human participants against the best quality deepfakes. Through extensive experimentation, we provide evidence that underscores the urgent need for continued refinement of detection models to keep pace with the evolving capabilities of deepfake generation technologies. This research emphasizes the critical gap between current detection methodologies and the sophistication of new generation techniques, calling for intensified efforts in this crucial area of study.
☆ Continuity-driven Synergistic Diffusion with Neural Priors for Ultra-Sparse-View CBCT Reconstruction
The clinical application of cone-beam computed tomography (CBCT) is constrained by the inherent trade-off between radiation exposure and image quality. Ultra-sparse angular sampling, employed to reduce dose, introduces severe undersampling artifacts and inter-slice inconsistencies, compromising diagnostic reliability. Existing reconstruction methods often struggle to balance angular continuity with spatial detail fidelity. To address these challenges, we propose a Continuity-driven Synergistic Diffusion with Neural priors (CSDN) for ultra-sparse-view CBCT reconstruction. Neural priors are introduced as a structural foundation to encode a continuous threedimensional attenuation representation, enabling the synthesis of physically consistent dense projections from ultra-sparse measurements. Building upon this neural-prior-based initialization, a synergistic diffusion strategy is developed, consisting of two collaborative refinement paths: a Sinogram Refinement Diffusion (Sino-RD) process that restores angular continuity and a Digital Radiography Refinement Diffusion (DR-RD) process that enforces inter-slice consistency from the projection image perspective. The outputs of the two diffusion paths are adaptively fused by the Dual-Projection Reconstruction Fusion (DPRF) module to achieve coherent volumetric reconstruction. Extensive experiments demonstrate that the proposed CSDN effectively suppresses artifacts and recovers fine textures under ultra-sparse-view conditions, outperforming existing state-of-the-art techniques.
☆ FSP-Diff: Full-Spectrum Prior-Enhanced DualDomain Latent Diffusion for Ultra-Low-Dose Spectral CT Reconstruction
Spectral computed tomography (CT) with photon-counting detectors holds immense potential for material discrimination and tissue characterization. However, under ultra-low-dose conditions, the sharply degraded signal-to-noise ratio (SNR) in energy-specific projections poses a significant challenge, leading to severe artifacts and loss of structural details in reconstructed images. To address this, we propose FSP-Diff, a full-spectrum prior-enhanced dual-domain latent diffusion framework for ultra-low-dose spectral CT reconstruction. Our framework integrates three core strategies: 1) Complementary Feature Construction: We integrate direct image reconstructions with projection-domain denoised results. While the former preserves latent textural nuances amidst heavy noise, the latter provides a stable structural scaffold to balance detail fidelity and noise suppression. 2) Full-Spectrum Prior Integration: By fusing multi-energy projections into a high-SNR full-spectrum image, we establish a unified structural reference that guides the reconstruction across all energy bins. 3) Efficient Latent Diffusion Synthesis: To alleviate the high computational burden of high-dimensional spectral data, multi-path features are embedded into a compact latent space. This allows the diffusion process to facilitate interactive feature fusion in a lower-dimensional manifold, achieving accelerated reconstruction while maintaining fine-grained detail restoration. Extensive experiments on simulated and real-world datasets demonstrate that FSP-Diff significantly outperforms state-of-the-art methods in both image quality and computational efficiency, underscoring its potential for clinically viable ultra-low-dose spectral CT imaging.
☆ EasyTune: Efficient Step-Aware Fine-Tuning for Diffusion-Based Motion Generation
In recent years, motion generative models have undergone significant advancement, yet pose challenges in aligning with downstream objectives. Recent studies have shown that using differentiable rewards to directly align the preference of diffusion models yields promising results. However, these methods suffer from (1) inefficient and coarse-grained optimization with (2) high memory consumption. In this work, we first theoretically and empirically identify the key reason of these limitations: the recursive dependence between different steps in the denoising trajectory. Inspired by this insight, we propose EasyTune, which fine-tunes diffusion at each denoising step rather than over the entire trajectory. This decouples the recursive dependence, allowing us to perform (1) a dense and fine-grained, and (2) memory-efficient optimization. Furthermore, the scarcity of preference motion pairs restricts the availability of motion reward model training. To this end, we further introduce a Self-refinement Preference Learning (SPL) mechanism that dynamically identifies preference pairs and conducts preference learning. Extensive experiments demonstrate that EasyTune outperforms DRaFT-50 by 8.2% in alignment (MM-Dist) improvement while requiring only 31.16% of its additional memory overhead and achieving a 7.3x training speedup. The project page is available at this link {https://xiaofeng-tan.github.io/projects/EasyTune/index.html}.
☆ D-ORCA: Dialogue-Centric Optimization for Robust Audio-Visual Captioning
Spoken dialogue is a primary source of information in videos; therefore, accurately identifying who spoke what and when is essential for deep video understanding. We introduce D-ORCA, a \textbf{d}ialogue-centric \textbf{o}mni-modal large language model optimized for \textbf{r}obust audio-visual \textbf{ca}ptioning. We further curate DVD, a large-scale, high-quality bilingual dataset comprising nearly 40,000 multi-party dialogue videos for training and 2000 videos for evaluation in English and Mandarin, addressing a critical gap in the open-source ecosystem. To ensure fine-grained captioning accuracy, we adopt group relative policy optimization with three novel reward functions that assess speaker attribution accuracy, global speech content accuracy, and sentence-level temporal boundary alignment. These rewards are derived from evaluation metrics widely used in speech processing and, to our knowledge, are applied for the first time as reinforcement learning objectives for audio-visual captioning. Extensive experiments demonstrate that D-ORCA substantially outperforms existing open-source models in speaker identification, speech recognition, and temporal grounding. Notably, despite having only 8 billion parameters, D-ORCA achieves performance competitive with Qwen3-Omni across several general-purpose audio-visual understanding benchmarks. Demos are available at \href{https://d-orca-llm.github.io/}{https://d-orca-llm.github.io/}. Our code, data, and checkpoints will be available at \href{https://github.com/WeChatCV/D-ORCA/}{https://github.com/WeChatCV/D-ORCA/}.
☆ One-Shot Crowd Counting With Density Guidance For Scene Adaptaion
Crowd scenes captured by cameras at different locations vary greatly, and existing crowd models have limited generalization for unseen surveillance scenes. To improve the generalization of the model, we regard different surveillance scenes as different category scenes, and introduce few-shot learning to make the model adapt to the unseen surveillance scene that belongs to the given exemplar category scene. To this end, we propose to leverage local and global density characteristics to guide the model of crowd counting for unseen surveillance scenes. Specifically, to enable the model to adapt to the varying density variations in the target scene, we propose the multiple local density learner to learn multi prototypes which represent different density distributions in the support scene. Subsequently, these multiple local density similarity matrixes are encoded. And they are utilized to guide the model in a local way. To further adapt to the global density in the target scene, the global density features are extracted from the support image, then it is used to guide the model in a global way. Experiments on three surveillance datasets shows that proposed method can adapt to the unseen surveillance scene and outperform recent state-of-the-art methods in the few-shot crowd counting.
☆ Integrating Specialized and Generic Agent Motion Prediction with Dynamic Occupancy Grid Maps IEEE
Accurate prediction of driving scene is a challenging task due to uncertainty in sensor data, the complex behaviors of agents, and the possibility of multiple feasible futures. Existing prediction methods using occupancy grid maps primarily focus on agent-agnostic scene predictions, while agent-specific predictions provide specialized behavior insights with the help of semantic information. However, both paradigms face distinct limitations: agent-agnostic models struggle to capture the behavioral complexities of dynamic actors, whereas agent-specific approaches fail to generalize to poorly perceived or unrecognized agents; combining both enables robust and safer motion forecasting. To address this, we propose a unified framework by leveraging Dynamic Occupancy Grid Maps within a streamlined temporal decoding pipeline to simultaneously predict future occupancy state grids, vehicle grids, and scene flow grids. Relying on a lightweight spatiotemporal backbone, our approach is centered on a tailored, interdependent loss function that captures inter-grid dependencies and enables diverse future predictions. By using occupancy state information to enforce flow-guided transitions, the loss function acts as a regularizer that directs occupancy evolution while accounting for obstacles and occlusions. Consequently, the model not only predicts the specific behaviors of vehicle agents, but also identifies other dynamic entities and anticipates their evolution within the complex scene. Evaluations on real-world nuScenes and Woven Planet datasets demonstrate superior prediction performances for dynamic vehicles and generic dynamic scene elements compared to baseline methods.
comment: Updated version with major revisions; currently under the second round of review at IEEE Transactions on Intelligent Vehicles
☆ Which private attributes do VLMs agree on and predict well? ICASSP 2026
Visual Language Models (VLMs) are often used for zero-shot detection of visual attributes in the image. We present a zero-shot evaluation of open-source VLMs for privacy-related attribute recognition. We identify the attributes for which VLMs exhibit strong inter-annotator agreement, and discuss the disagreement cases of human and VLM annotations. Our results show that when evaluated against human annotations, VLMs tend to predict the presence of privacy attributes more often than human annotators. In addition to this, we find that in cases of high inter-annotator agreement between VLMs, they can complement human annotation by identifying attributes overlooked by human annotators. This highlights the potential of VLMs to support privacy annotations in large-scale image datasets.
comment: This work has been accepted to the ICASSP 2026
☆ Selective Fine-Tuning for Targeted and Robust Concept Unlearning
Text guided diffusion models are used by millions of users, but can be easily exploited to produce harmful content. Concept unlearning methods aim at reducing the models' likelihood of generating harmful content. Traditionally, this has been tackled at an individual concept level, with only a handful of recent works considering more realistic concept combinations. However, state of the art methods depend on full finetuning, which is computationally expensive. Concept localisation methods can facilitate selective finetuning, but existing techniques are static, resulting in suboptimal utility. In order to tackle these challenges, we propose TRUST (Targeted Robust Selective fine Tuning), a novel approach for dynamically estimating target concept neurons and unlearning them through selective finetuning, empowered by a Hessian based regularization. We show experimentally, against a number of SOTA baselines, that TRUST is robust against adversarial prompts, preserves generation quality to a significant degree, and is also significantly faster than the SOTA. Our method achieves unlearning of not only individual concepts but also combinations of concepts and conditional concepts, without any specific regularization.
comment: Given the brittle nature of existing methods in unlearning harmful content in diffusion models, we propose TRuST, a novel approach for dynamically estimating target concept neurons and unlearning them by selectively fine-tuning
☆ Rethinking Practical and Efficient Quantization Calibration for Vision-Language Models
Post-training quantization (PTQ) is a primary approach for deploying large language models without fine-tuning, and the quantized performance is often strongly affected by the calibration in PTQ. By contrast, in vision-language models (VLMs), substantial differences between visual and text tokens in their activation distributions and sensitivities to quantization error pose significant challenges for effective calibration during PTQ. In this work, we rethink what PTQ calibration should align with in VLMs and propose the Token-level Importance-aware Layer-wise Quantization framework (TLQ). Guided by gradient information, we design a token-level importance integration mechanism for quantization error, and use it to construct a token-level calibration set, enabling a more fine-grained calibration strategy. Furthermore, TLQ introduces a multi-GPU, quantization-exposed layer-wise calibration scheme. This scheme keeps the layer-wise calibration procedure consistent with the true quantized inference path and distributes the complex layer-wise calibration workload across multiple RTX3090 GPUs, thereby reducing reliance on the large memory of A100 GPUs. TLQ is evaluated across two models, three model scales, and two quantization settings, consistently achieving performance improvements across all settings, indicating its strong quantization stability. The code will be released publicly.
☆ Scalable Adaptation of 3D Geometric Foundation Models via Weak Supervision from Internet Video
Geometric foundation models show promise in 3D reconstruction, yet their progress is severely constrained by the scarcity of diverse, large-scale 3D annotations. While Internet videos offer virtually unlimited raw data, utilizing them as a scaling source for geometric learning is challenging due to the absence of ground-truth geometry and the presence of observational noise. To address this, we propose SAGE, a framework for Scalable Adaptation of GEometric foundation models from raw video streams. SAGE leverages a hierarchical mining pipeline to transform videos into training trajectories and hybrid supervision: (1) Informative training trajectory selection; (2) Sparse Geometric Anchoring via SfM point clouds for global structural guidance; and (3) Dense Differentiable Consistency via 3D Gaussian rendering for multi-view constraints. To prevent catastrophic forgetting, we introduce a regularization strategy using anchor data. Extensive experiments show that SAGE significantly enhances zero-shot generalization, reducing Chamfer Distance by 20-42% on unseen benchmarks (7Scenes, TUM-RGBD, Matterport3D) compared to state-of-the-art baselines. To our knowledge, SAGE pioneers the adaptation of geometric foundation models via Internet video, establishing a scalable paradigm for general-purpose 3D learning.
☆ Research on a Camera Position Measurement Method based on a Parallel Perspective Error Transfer Model
Camera pose estimation from sparse correspondences is a fundamental problem in geometric computer vision and remains particularly challenging in near-field scenarios, where strong perspective effects and heterogeneous measurement noise can significantly degrade the stability of analytic PnP solutions. In this paper, we present a geometric error propagation framework for camera pose estimation based on a parallel perspective approximation. By explicitly modeling how image measurement errors propagate through perspective geometry, we derive an error transfer model that characterizes the relationship between feature point distribution, camera depth, and pose estimation uncertainty. Building on this analysis, we develop a pose estimation method that leverages parallel perspective initialization and error-aware weighting within a Gauss-Newton optimization scheme, leading to improved robustness in proximity operations. Extensive experiments on both synthetic data and real-world images, covering diverse conditions such as strong illumination, surgical lighting, and underwater low-light environments, demonstrate that the proposed approach achieves accuracy and robustness comparable to state-of-the-art analytic and iterative PnP methods, while maintaining high computational efficiency. These results highlight the importance of explicit geometric error modeling for reliable camera pose estimation in challenging near-field settings.
comment: 32 pages, 19 figures
☆ WristMIR: Coarse-to-Fine Region-Aware Retrieval of Pediatric Wrist Radiographs with Radiology Report-Driven Learning
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
☆ Thinking in Structures: Evaluating Spatial Intelligence through Reasoning on Constrained Manifolds
Spatial intelligence is crucial for vision--language models (VLMs) in the physical world, yet many benchmarks evaluate largely unconstrained scenes where models can exploit 2D shortcuts. We introduce SSI-Bench, a VQA benchmark for spatial reasoning on constrained manifolds, built from complex real-world 3D structures whose feasible configurations are tightly governed by geometric, topological, and physical constraints. SSI-Bench contains 1,000 ranking questions spanning geometric and topological reasoning and requiring a diverse repertoire of compositional spatial operations, such as mental rotation, cross-sectional inference, occlusion reasoning, and force-path reasoning. It is created via a fully human-centered pipeline: ten researchers spent over 400 hours curating images, annotating structural components, and designing questions to minimize pixel-level cues. Evaluating 31 widely used VLMs reveals a large gap to humans: the best open-source model achieves 22.2% accuracy and the strongest closed-source model reaches 33.6%, while humans score 91.6%. Encouraging models to think yields only marginal gains, and error analysis points to failures in structural grounding and constraint-consistent 3D reasoning. Project page: https://ssi-bench.github.io.
☆ Recovering 3D Shapes from Ultra-Fast Motion-Blurred Images 3DV 2026
We consider the problem of 3D shape recovery from ultra-fast motion-blurred images. While 3D reconstruction from static images has been extensively studied, recovering geometry from extreme motion-blurred images remains challenging. Such scenarios frequently occur in both natural and industrial settings, such as fast-moving objects in sports (e.g., balls) or rotating machinery, where rapid motion distorts object appearance and makes traditional 3D reconstruction techniques like Multi-View Stereo (MVS) ineffective. In this paper, we propose a novel inverse rendering approach for shape recovery from ultra-fast motion-blurred images. While conventional rendering techniques typically synthesize blur by averaging across multiple frames, we identify a major computational bottleneck in the repeated computation of barycentric weights. To address this, we propose a fast barycentric coordinate solver, which significantly reduces computational overhead and achieves a speedup of up to 4.57x, enabling efficient and photorealistic simulation of high-speed motion. Crucially, our method is fully differentiable, allowing gradients to propagate from rendered images to the underlying 3D shape, thereby facilitating shape recovery through inverse rendering. We validate our approach on two representative motion types: rapid translation and rotation. Experimental results demonstrate that our method enables efficient and realistic modeling of ultra-fast moving objects in the forward simulation. Moreover, it successfully recovers 3D shapes from 2D imagery of objects undergoing extreme translational and rotational motion, advancing the boundaries of vision-based 3D reconstruction. Project page: https://maxmilite.github.io/rec-from-ultrafast-blur/
comment: Accepted by 3DV 2026. Project page: https://maxmilite.github.io/rec-from-ultrafast-blur/
☆ Geometry-Aware Rotary Position Embedding for Consistent Video World Model
Predictive world models that simulate future observations under explicit camera control are fundamental to interactive AI. Despite rapid advances, current systems lack spatial persistence: they fail to maintain stable scene structures over long trajectories, frequently hallucinating details when cameras revisit previously observed locations. We identify that this geometric drift stems from reliance on screen-space positional embeddings, which conflict with the projective geometry required for 3D consistency. We introduce \textbf{ViewRope}, a geometry-aware encoding that injects camera-ray directions directly into video transformer self-attention layers. By parameterizing attention with relative ray geometry rather than pixel locality, ViewRope provides a model-native inductive bias for retrieving 3D-consistent content across temporal gaps. We further propose \textbf{Geometry-Aware Frame-Sparse Attention}, which exploits these geometric cues to selectively attend to relevant historical frames, improving efficiency without sacrificing memory consistency. We also present \textbf{ViewBench}, a diagnostic suite measuring loop-closure fidelity and geometric drift. Our results demonstrate that ViewRope substantially improves long-term consistency while reducing computational costs.
☆ VFace: A Training-Free Approach for Diffusion-Based Video Face Swapping
We present a training-free, plug-and-play method, namely VFace, for high-quality face swapping in videos. It can be seamlessly integrated with image-based face swapping approaches built on diffusion models. First, we introduce a Frequency Spectrum Attention Interpolation technique to facilitate generation and intact key identity characteristics. Second, we achieve Target Structure Guidance via plug-and-play attention injection to better align the structural features from the target frame to the generation. Third, we present a Flow-Guided Attention Temporal Smoothening mechanism that enforces spatiotemporal coherence without modifying the underlying diffusion model to reduce temporal inconsistencies typically encountered in frame-wise generation. Our method requires no additional training or video-specific fine-tuning. Extensive experiments show that our method significantly enhances temporal consistency and visual fidelity, offering a practical and modular solution for video-based face swapping. Our code is available at https://github.com/Sanoojan/VFace.
☆ SPD-Faith Bench: Diagnosing and Improving Faithfulness in Chain-of-Thought for Multimodal Large Language Models
Chain-of-Thought reasoning is widely used to improve the interpretability of multimodal large language models (MLLMs), yet the faithfulness of the generated reasoning traces remains unclear. Prior work has mainly focused on perceptual hallucinations, leaving reasoning level unfaithfulness underexplored. To isolate faithfulness from linguistic priors, we introduce SPD-Faith Bench, a diagnostic benchmark based on fine-grained image difference reasoning that enforces explicit visual comparison. Evaluations on state-of-the-art MLLMs reveal two systematic failure modes, perceptual blindness and perception-reasoning dissociation. We trace these failures to decaying visual attention and representation shifts in the residual stream. Guided by this analysis, we propose SAGE, a train-free visual evidence-calibrated framework that improves visual routing and aligns reasoning with perception. Our results highlight the importance of explicitly evaluating faithfulness beyond response correctness. Our benchmark and codes are available at https://github.com/Johanson-colab/SPD-Faith-Bench.
comment: 53 pages, 42 figures, 14 tables
☆ Open-Text Aerial Detection: A Unified Framework For Aerial Visual Grounding And Detection
Open-Vocabulary Aerial Detection (OVAD) and Remote Sensing Visual Grounding (RSVG) have emerged as two key paradigms for aerial scene understanding. However, each paradigm suffers from inherent limitations when operating in isolation: OVAD is restricted to coarse category-level semantics, while RSVG is structurally limited to single-target localization. These limitations prevent existing methods from simultaneously supporting rich semantic understanding and multi-target detection. To address this, we propose OTA-Det, the first unified framework that bridges both paradigms into a cohesive architecture. Specifically, we introduce a task reformulation strategy that unifies task objectives and supervision mechanisms, enabling joint training across datasets from both paradigms with dense supervision signals. Furthermore, we propose a dense semantic alignment strategy that establishes explicit correspondence at multiple granularities, from holistic expressions to individual attributes, enabling fine-grained semantic understanding. To ensure real-time efficiency, OTA-Det builds upon the RT-DETR architecture, extending it from closed-set detection to open-text detection by introducing several high efficient modules, achieving state-of-the-art performance on six benchmarks spanning both OVAD and RSVG tasks while maintaining real-time inference at 34 FPS.
☆ Back to Physics: Operator-Guided Generative Paths for SMS MRI Reconstruction
Simultaneous multi-slice (SMS) imaging with in-plane undersampling enables highly accelerated MRI but yields a strongly coupled inverse problem with deterministic inter-slice interference and missing k-space data. Most diffusion-based reconstructions are formulated around Gaussian-noise corruption and rely on additional consistency steps to incorporate SMS physics, which can be mismatched to the operator-governed degradations in SMS acquisition. We propose an operator-guided framework that models the degradation trajectory using known acquisition operators and inverts this process via deterministic updates. Within this framework, we introduce an operator-conditional dual-stream interaction network (OCDI-Net) that explicitly disentangles target-slice content from inter-slice interference and predicts structured degradations for operator-aligned inversion, and we instantiate reconstruction as a two-stage chained inference procedure that performs SMS slice separation followed by in-plane completion. Experiments on fastMRI brain data and prospectively acquired in vivo diffusion MRI data demonstrate improved fidelity and reduced slice leakage over conventional and learning-based SMS reconstructions.
comment: 10 pages, 6 figures
☆ DINO-Mix: Distilling Foundational Knowledge with Cross-Domain CutMix for Semi-supervised Class-imbalanced Medical Image Segmentation AAAI 2026
Semi-supervised learning (SSL) has emerged as a critical paradigm for medical image segmentation, mitigating the immense cost of dense annotations. However, prevailing SSL frameworks are fundamentally "inward-looking", recycling information and biases solely from within the target dataset. This design triggers a vicious cycle of confirmation bias under class imbalance, leading to the catastrophic failure to recognize minority classes. To dismantle this systemic issue, we propose a paradigm shift to a multi-level "outward-looking" framework. Our primary innovation is Foundational Knowledge Distillation (FKD), which looks outward beyond the confines of medical imaging by introducing a pre-trained visual foundation model, DINOv3, as an unbiased external semantic teacher. Instead of trusting the student's biased high confidence, our method distills knowledge from DINOv3's robust understanding of high semantic uniqueness, providing a stable, cross-domain supervisory signal that anchors the learning of minority classes. To complement this core strategy, we further look outward within the data by proposing Progressive Imbalance-aware CutMix (PIC), which creates a dynamic curriculum that adaptively forces the model to focus on minority classes in both labeled and unlabeled subsets. This layered strategy forms our framework, DINO-Mix, which breaks the vicious cycle of bias and achieves remarkable performance on challenging semi-supervised class-imbalanced medical image segmentation benchmarks Synapse and AMOS.
comment: AAAI 2026 Workshop on Artificial Intelligence with Biased or Scarce Data (Oral)
☆ Out of the box age estimation through facial imagery: A Comprehensive Benchmark of Vision-Language Models vs. out-of-the-box Traditional Architectures
Facial age estimation is critical for content moderation, age verification, and deepfake detection, yet no prior benchmark has systematically compared modern vision-language models (VLMs) against specialized age estimation architectures. We present the first large-scale cross-paradigm benchmark, evaluating \textbf{34 models} -- 22 specialized architectures with publicly available pretrained weights and 12 general-purpose VLMs -- across \textbf{8 standard datasets} (UTKFace, IMDB-WIKI, MORPH, AFAD, CACD, FG-NET, APPA-REAL, AgeDB) totaling 1{,}100 test images per model. Our key finding is striking: \emph{zero-shot VLMs significantly outperform most specialized models}, achieving an average MAE of 5.65 years compared to 9.88 for non-LLM models. The best VLM (Gemini~3 Flash Preview, MAE~4.32) outperforms the best non-LLM model (MiVOLO, MAE~5.10) by 15\%. Only MiVOLO, which uniquely combines face and body features via Vision Transformers, competes with VLMs. We further analyze age verification at the 18-year threshold, revealing that non-LLM models exhibit 60--100\% false adult rates on minors while VLMs achieve 13--25\%, and demonstrate that coarse age binning (8--9 classes) consistently degrades MAE beyond 13 years. Our stratified analysis across 14 age groups reveals that all models struggle most at extreme ages ($<$5 and 65+). These findings challenge the assumption that task-specific architectures are necessary for age estimation and suggest that the field should redirect toward distilling VLM capabilities into efficient specialized models.
☆ How well are open sourced AI-generated image detection models out-of-the-box: A comprehensive benchmark study
As AI-generated images proliferate across digital platforms, reliable detection methods have become critical for combating misinformation and maintaining content authenticity. While numerous deepfake detection methods have been proposed, existing benchmarks predominantly evaluate fine-tuned models, leaving a critical gap in understanding out-of-the-box performance -- the most common deployment scenario for practitioners. We present the first comprehensive zero-shot evaluation of 16 state-of-the-art detection methods, comprising 23 pretrained detector variants (due to multiple released versions of certain detectors), across 12 diverse datasets, comprising 2.6~million image samples spanning 291 unique generators including modern diffusion models. Our systematic analysis reveals striking findings: (1)~no universal winner exists, with detector rankings exhibiting substantial instability (Spearman~$ρ$: 0.01 -- 0.87 across dataset pairs); (2)~a 37~percentage-point performance gap separates the best detector (75.0\% mean accuracy) from the worst (37.5\%); (3)~training data alignment critically impacts generalization, causing up to 20--60\% performance variance within architecturally identical detector families; (4)~modern commercial generators (Flux~Dev, Firefly~v4, Midjourney~v7) defeat most detectors, achieving only 18--30\% average accuracy; and (5)~we identify three systematic failure patterns affecting cross-dataset generalization. Statistical analysis confirms significant performance differences between detectors (Friedman test: $χ^2$=121.01, $p<10^{-16}$, Kendall~$W$=0.524). Our findings challenge the ``one-size-fits-all'' detector paradigm and provide actionable deployment guidelines, demonstrating that practitioners must carefully select detectors based on their specific threat landscape rather than relying on published benchmark performance.
☆ VideoTemp-o3: Harmonizing Temporal Grounding and Video Understanding in Agentic Thinking-with-Videos
In long-video understanding, conventional uniform frame sampling often fails to capture key visual evidence, leading to degraded performance and increased hallucinations. To address this, recent agentic thinking-with-videos paradigms have emerged, adopting a localize-clip-answer pipeline in which the model actively identifies relevant video segments, performs dense sampling within those clips, and then produces answers. However, existing methods remain inefficient, suffer from weak localization, and adhere to rigid workflows. To solve these issues, we propose VideoTemp-o3, a unified agentic thinking-with-videos framework that jointly models video grounding and question answering. VideoTemp-o3 exhibits strong localization capability, supports on-demand clipping, and can refine inaccurate localizations. Specifically, in the supervised fine-tuning stage, we design a unified masking mechanism that encourages exploration while preventing noise. For reinforcement learning, we introduce dedicated rewards to mitigate reward hacking. Besides, from the data perspective, we develop an effective pipeline to construct high-quality long video grounded QA data, along with a corresponding benchmark for systematic evaluation across various video durations. Experimental results demonstrate that our method achieves remarkable performance on both long video understanding and grounding.
☆ Uncertainty-Aware Counterfactual Traffic Signal Control with Predictive Safety and Starvation-Avoidance Constraints Using Vision-Based Sensing
Real-world deployment of adaptive traffic signal control, to date, remains limited due to the uncertainty associated with vision-based perception, implicit safety, and non-interpretable control policies learned and validated mainly in simulation. In this paper, we introduce UCATSC, a model-based traffic signal control system that models traffic signal control at an intersection using a stochastic decision process with constraints and under partial observability, taking into account the uncertainty associated with vision-based perception. Unlike reinforcement learning methods that learn to predict safety using reward shaping, UCATSC predicts and enforces hard constraints related to safety and starvation prevention during counterfactual rollouts in belief space. The system is designed to improve traffic delay and emission while preventing safety-critical errors and providing interpretable control policy outputs based on explicit models.
comment: Total pages: 9
☆ Rolling Sink: Bridging Limited-Horizon Training and Open-Ended Testing in Autoregressive Video Diffusion
Recently, autoregressive (AR) video diffusion models has achieved remarkable performance. However, due to their limited training durations, a train-test gap emerges when testing at longer horizons, leading to rapid visual degradations. Following Self Forcing, which studies the train-test gap within the training duration, this work studies the train-test gap beyond the training duration, i.e., the gap between the limited horizons during training and open-ended horizons during testing. Since open-ended testing can extend beyond any finite training window, and long-video training is computationally expensive, we pursue a training-free solution to bridge this gap. To explore a training-free solution, we conduct a systematic analysis of AR cache maintenance. These insights lead to Rolling Sink. Built on Self Forcing (trained on only 5s clips), Rolling Sink effectively scales the AR video synthesis to ultra-long durations (e.g., 5-30 minutes at 16 FPS) at test time, with consistent subjects, stable colors, coherent structures, and smooth motions. As demonstrated by extensive experiments, Rolling Sink achieves superior long-horizon visual fidelity and temporal consistency compared to SOTA baselines. Project page: https://rolling-sink.github.io/
comment: Figure PDFs were compressed to 150 dpi to comply with arXiv's submission size limit. Project page: https://rolling-sink.github.io/
☆ PAND: Prompt-Aware Neighborhood Distillation for Lightweight Fine-Grained Visual Classification
Distilling knowledge from large Vision-Language Models (VLMs) into lightweight networks is crucial yet challenging in Fine-Grained Visual Classification (FGVC), due to the reliance on fixed prompts and global alignment. To address this, we propose PAND (Prompt-Aware Neighborhood Distillation), a two-stage framework that decouples semantic calibration from structural transfer. First, we incorporate Prompt-Aware Semantic Calibration to generate adaptive semantic anchors. Second, we introduce a neighborhood-aware structural distillation strategy to constrain the student's local decision structure. PAND consistently outperforms state-of-the-art methods on four FGVC benchmarks. Notably, our ResNet-18 student achieves 76.09% accuracy on CUB-200, surpassing the strong baseline VL2Lite by 3.4%. Code is available at https://github.com/LLLVTA/PAND.
comment: 6pages, 3 figures, conference
☆ Global Symmetry and Orthogonal Transformations from Geometrical Moment $n$-tuples
Detecting symmetry is crucial for effective object grasping for several reasons. Recognizing symmetrical features or axes within an object helps in developing efficient grasp strategies, as grasping along these axes typically results in a more stable and balanced grip, thereby facilitating successful manipulation. This paper employs geometrical moments to identify symmetries and estimate orthogonal transformations, including rotations and mirror transformations, for objects centered at the frame origin. It provides distinctive metrics for detecting symmetries and estimating orthogonal transformations, encompassing rotations, reflections, and their combinations. A comprehensive methodology is developed to obtain these functions in n-dimensional space, specifically moment \( n \)-tuples. Extensive validation tests are conducted on both 2D and 3D objects to ensure the robustness and reliability of the proposed approach. The proposed method is also compared to state-of-the-art work using iterative optimization for detecting multiple planes of symmetry. The results indicate that combining our method with the iterative one yields satisfactory outcomes in terms of the number of symmetry planes detected and computation time.
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ Toward Inherently Robust VLMs Against Visual Perception Attacks IEEE
Autonomous vehicles rely on deep neural networks (DNNs) for traffic sign recognition, lane centering, and vehicle detection, yet these models are vulnerable to attacks that induce misclassification and threaten safety. Existing defenses (e.g., adversarial training) often fail to generalize and degrade clean accuracy. We introduce Vehicle Vision-Language Models (V2LMs), fine-tuned vision-language models specialized for autonomous vehicle perception, and show that they are inherently more robust to unseen attacks without adversarial training, maintaining substantially higher adversarial accuracy than conventional DNNs. We study two deployments: Solo (task-specific V2LMs) and Tandem (a single V2LM for all three tasks). Under attacks, DNNs drop 33-74%, whereas V2LMs decline by under 8% on average. Tandem achieves comparable robustness to Solo while being more memory-efficient. We also explore integrating V2LMs in parallel with existing perception stacks to enhance resilience. Our results suggest V2LMs are a promising path toward secure, robust AV perception.
comment: Accepted to the 2026 IEEE Intelligent Vehicles Symposium (IV 2026)
♻ ☆ Collision Risk Estimation via Loss Prediction in End-to-End Autonomous Driving
Collision risk estimation and avoidance play central roles in the safety of autonomous driving (AD) systems. Recently emerged end-to-end AD systems gain collision avoidance ability by minimizing losses to penalize planning trajectories that are too close to other objects. Despite a significant collision rate during testing, most end-to-end planners do not explicitly quantify the collision risk in their outputs. To address this, we introduce RiskMonitor, an efficient plug-and-play module that interprets planning and motion tokens from state-of-the-art end-to-end planners to estimate collision risk. Inspired by loss prediction based uncertainty quantification, RiskMonitor predicts whether the collision loss -- commonly adopted to train end-to-end planners -- is positive along planned waypoints, framing collision risk estimation as a binary classification task. We evaluate RiskMonitor on the real-world nuScenes dataset (open-loop) and the neural-rendering based simulator, NeuroNCAP (closed-loop). Our token-driven method outperforms prediction-driven approaches, including deterministic rules, Gaussian mixture models, and Monte Carlo Dropout. When integrated with a simple braking policy, RiskMonitor improves collision avoidance ability by $66.5\%$ in a closed-loop test on safety-critical scenarios. These results demonstrate that monitoring collision risk using plan and motion tokens enhances the safety of end-to-end AD without retraining it.
♻ ☆ Neural-Augmented Kelvinlet for Real-Time Soft Tissue Deformation Modeling
Accurate and efficient modeling of soft-tissue interactions is fundamental for advancing surgical simulation, surgical robotics, and model-based surgical automation. To achieve real-time latency, classical Finite Element Method (FEM) solvers are often replaced with neural approximations; however, naively training such models in a fully data-driven manner without incorporating physical priors frequently leads to poor generalization and physically implausible predictions. We present a novel physics-informed neural simulation framework that enables real-time prediction of soft-tissue deformations under complex single- and multi-grasper interactions. Our approach integrates Kelvinlet-based analytical priors with large-scale FEM data, capturing both linear and nonlinear tissue responses. This hybrid design improves predictive accuracy and physical plausibility across diverse neural architectures while maintaining the low-latency performance required for interactive applications. We validate our method on challenging surgical manipulation tasks involving standard laparoscopic grasping tools, demonstrating substantial improvements in deformation fidelity and temporal stability over existing baselines. These results establish Kelvinlet-augmented learning as a principled and computationally efficient paradigm for real-time, physics-aware soft-tissue simulation in surgical AI.
♻ ☆ MetaCluster: Enabling Deep Compression of Kolmogorov-Arnold Network
Kolmogorov-Arnold Networks (KANs) replace scalar weights with per-edge vectors of basis coefficients, thereby increasing expressivity and accuracy while also resulting in a multiplicative increase in parameters and memory. We propose MetaCluster, a framework that makes KANs highly compressible without sacrificing accuracy. Specifically, a lightweight meta-learner, trained jointly with the KAN, maps low-dimensional embeddings to coefficient vectors, thereby shaping them to lie on a low-dimensional manifold that is amenable to clustering. We then run K-means in coefficient space and replace per-edge vectors with shared centroids. Afterwards, the meta-learner can be discarded, and a brief fine-tuning of the centroid codebook recovers any residual accuracy loss. The resulting model stores only a small codebook and per-edge indices, exploiting the vector nature of KAN parameters to amortize storage across multiple coefficients. On MNIST, CIFAR-10, and CIFAR-100, across standard KANs and ConvKANs using multiple basis functions, MetaCluster achieves a reduction of up to $80\times$ in parameter storage, with no loss in accuracy. Similarly, on high-dimensional equation modeling tasks, MetaCluster achieves a parameter reduction of $124.1\times$, without impacting performance. Code will be released upon publication.
♻ ☆ FlashKAT: Understanding and Addressing Performance Bottlenecks in the Kolmogorov-Arnold Transformer AAAI 2026
The Kolmogorov-Arnold Network (KAN) has been gaining popularity as an alternative to the multilayer perceptron (MLP) due to its greater expressiveness and interpretability. Even so, KAN suffers from training instability and being orders of magnitude slower due to its increased computational cost, limiting its applicability to large-scale tasks. Recently, the Kolmogorov-Arnold Transformer (KAT) has been proposed, achieving FLOPs comparable to traditional Transformer models with MLPs by leveraging Group-Rational KAN (GR-KAN). Unfortunately, despite the comparable FLOPs, our testing shows that KAT remains 123x slower during training, indicating that there are other performance bottlenecks beyond FLOPs. In this paper, we conduct a series of experiments to understand the root cause of the slowdown in KAT. We uncover that the slowdown can be isolated to memory stalls, linked more specifically to inefficient gradient accumulations in the backward pass of GR-KAN. To address this memory bottleneck, we propose FlashKAT, which minimizes accesses to slow memory and the usage of atomic adds through a restructured kernel. Evaluations show that FlashKAT achieves up to an 86.5x training speedup over state-of-the-art KAT while reducing rounding errors in gradient computation.
comment: AAAI 2026
♻ ☆ Towards Spatio-Temporal Extrapolation of Phase-Field Simulations with Convolution-Only Neural Networks
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
♻ ☆ MAMBO-G: Magnitude-Aware Mitigation for Boosted Guidance
High-fidelity text-to-image and text-to-video generation typically relies on Classifier-Free Guidance (CFG), but achieving optimal results often demands computationally expensive sampling schedules. In this work, we propose MAMBO-G, a training-free acceleration framework that significantly reduces computational cost by dynamically optimizing guidance magnitudes. We observe that standard CFG schedules are inefficient, applying disproportionately large updates in early steps that hinder convergence speed. MAMBO-G mitigates this by modulating the guidance scale based on the update-to-prediction magnitude ratio, effectively stabilizing the trajectory and enabling rapid convergence. This efficiency is particularly vital for resource-intensive tasks like video generation. Our method serves as a universal plug-and-play accelerator, achieving up to 3x speedup on Stable Diffusion v3.5 (SD3.5) and 4x on Lumina. Most notably, MAMBO-G accelerates the 14B-parameter Wan2.1 video model by 2x while preserving visual fidelity, offering a practical solution for efficient large-scale video synthesis. Our implementation follows a mainstream open-source diffusion framework and is plug-and-play with existing pipelines.
♻ ☆ DeltaSpace: A Semantic-aligned Feature Space for Flexible Text-guided Image Editing
Text-guided image editing faces significant challenges when considering training and inference flexibility. Much literature collects large amounts of annotated image-text pairs to train text-conditioned generative models from scratch, which is expensive and not efficient. After that, some approaches that leverage pre-trained vision-language models have been proposed to avoid data collection, but they are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. To address these issues, we investigate and identify a specific space, referred to as CLIP DeltaSpace, where the CLIP visual feature difference of two images is semantically aligned with the CLIP textual feature difference of their corresponding text descriptions. Based on DeltaSpace, we propose a novel framework called DeltaEdit, which maps the CLIP visual feature differences to the latent space directions of a generative model during the training phase, and predicts the latent space directions from the CLIP textual feature differences during the inference phase. And this design endows DeltaEdit with two advantages: (1) text-free training; (2) generalization to various text prompts for zero-shot inference. Extensive experiments validate the effectiveness and versatility of DeltaEdit with different generative models, including both the GAN model and the diffusion model, in achieving flexible text-guided image editing. Code is available at https://github.com/Yueming6568/DeltaEdit.
comment: 18 pages. arXiv admin note: text overlap with arXiv:2303.06285
♻ ☆ ImageRAG: Dynamic Image Retrieval for Reference-Guided Image Generation
Diffusion models enable high-quality and diverse visual content synthesis. However, they struggle to generate rare or unseen concepts. To address this challenge, we explore the usage of Retrieval-Augmented Generation (RAG) with image generation models. We propose ImageRAG, a method that dynamically retrieves relevant images based on a given text prompt, and uses them as context to guide the generation process. Prior approaches that used retrieved images to improve generation, trained models specifically for retrieval-based generation. In contrast, ImageRAG leverages the capabilities of existing image conditioning models, and does not require RAG-specific training. Our approach is highly adaptable and can be applied across different model types, showing significant improvement in generating rare and fine-grained concepts using different base models. Our project page is available at: https://rotem-shalev.github.io/ImageRAG
♻ ☆ 3D Wavelet-Based Structural Priors for Controlled Diffusion in Whole-Body Low-Dose PET Denoising
Low-dose Positron Emission Tomography (PET) imaging reduces patient radiation exposure but suffers from increased noise that degrades image quality and diagnostic reliability. Although diffusion models have demonstrated strong denoising capability, their stochastic nature makes it challenging to enforce anatomically consistent structures, particularly in low signal-to-noise regimes and volumetric whole-body imaging. We propose Wavelet-Conditioned ControlNet (WCC-Net), a fully 3D diffusion-based framework that introduces explicit frequency-domain structural priors via wavelet representations to guide volumetric PET denoising. By injecting wavelet-based structural guidance into a frozen pretrained diffusion backbone through a lightweight control branch, WCC-Net decouples anatomical structure from noise while preserving generative expressiveness and 3D structural continuity. Extensive experiments demonstrate that WCC-Net consistently outperforms CNN-, GAN-, and diffusion-based baselines. On the internal 1/20-dose test set, WCC-Net improves PSNR by +1.21 dB and SSIM by +0.008 over a strong diffusion baseline, while reducing structural distortion (GMSD) and intensity error (NMAE). Moreover, WCC-Net generalizes robustly to unseen dose levels (1/50 and 1/4), achieving superior quantitative performance and improved volumetric anatomical consistency.
comment: 10 pages
♻ ☆ Breaking Scale Anchoring: Frequency Representation Learning for Accurate High-Resolution Inference from Low-Resolution Training ICLR 2026
Zero-Shot Super-Resolution Spatiotemporal Forecasting requires a deep learning model to be trained on low-resolution data and deployed for inference on high-resolution. Existing studies consider maintaining similar error across different resolutions as indicative of successful multi-resolution generalization. However, deep learning models serving as alternatives to numerical solvers should reduce error as resolution increases. The fundamental limitation is, the upper bound of physical law frequencies that low-resolution data can represent is constrained by its Nyquist frequency, making it difficult for models to process signals containing unseen frequency components during high-resolution inference. This results in errors being anchored at low resolution, incorrectly interpreted as successful generalization. We define this fundamental phenomenon as a new problem distinct from existing issues: Scale Anchoring. Therefore, we propose architecture-agnostic Frequency Representation Learning. It alleviates Scale Anchoring through resolution-aligned frequency representations and spectral consistency training: on grids with higher Nyquist frequencies, the frequency response in high-frequency bands of FRL-enhanced variants is more stable. This allows errors to decrease with resolution and significantly outperform baselines within our task and resolution range, while incurring only modest computational overhead.
comment: Accepted as a poster paper at ICLR 2026
♻ ☆ RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
♻ ☆ TSJNet: A Multi-modality Target and Semantic Awareness Joint-driven Image Fusion Network
This study aims to address the problem of incomplete information in unimodal images for semantic segmentation and object detection tasks. Existing multimodal fusion methods suffer from limited capability in discriminative modeling of multi-scale semantic structures and salient target regions, which further restricts the effective fusion of task-related semantic details and target information across modalities. To tackle these challenges, this paper proposes a novel fusion network termed TSJNet, which leverages the semantic information output by high-level tasks in a joint manner to guide the fusion process. Specifically, we design a multi-dimensional feature extraction module with dual parallel branches to capture multi-scale and salient features. Meanwhile, a data-agnostic spatial attention module embedded in the decoder dynamically calibrates attention allocation across different data domains, significantly enhancing the model's generalization ability. To optimize both fusion and advanced visual tasks, we balance performance by combining fusion loss with semantic losses. Additionally, we have developed a multimodal unmanned aerial vehicle (UAV) dataset covering multiple scenarios (UMS). Extensive experiments demonstrate that TSJNet achieves outstanding performance on five public datasets (MSRS, M\textsuperscript{3}FD, RoadScene, LLVIP, and TNO) and our UMS dataset. The generated fusion results exhibit favorable visual effects, and compared to state-of-the-art methods, the mean average precision (mAP@0.5) and mean intersection over union (mIoU) for object detection and segmentation, respectively, improve by 7.97\% and 10.88\%.The code and the dataset has been publicly released at https://github.com/XylonXu01/TSJNet.
♻ ☆ SVD-ViT: Does SVD Make Vision Transformers Attend More to the Foreground?
Vision Transformers (ViT) have been established as large-scale foundation models. However, because self-attention operates globally, they lack an explicit mechanism to distinguish foreground from background. As a result, ViT may learn unnecessary background features and artifacts, leading to degraded classification performance. To address this issue, we propose SVD-ViT, which leverages singular value decomposition (SVD) to prioritize the learning of foreground features. SVD-ViT consists of three components-\textbf{SPC module}, \textbf{SSVA}, and \textbf{ID-RSVD}-and suppresses task-irrelevant factors such as background noise and artifacts by extracting and aggregating singular vectors that capture object foreground information. Experimental results demonstrate that our method improves classification accuracy and effectively learns informative foreground representations while reducing the impact of background noise.
comment: I corrected the incorrect email address. I'm sorry for any inconvenience this may have caused
♻ ☆ Hyperspectral Imaging
Hyperspectral imaging (HSI) is an advanced sensing modality that simultaneously captures spatial and spectral information, enabling non-invasive, label-free analysis of material, chemical, and biological properties. This Primer presents a comprehensive overview of HSI, from the underlying physical principles and sensor architectures to key steps in data acquisition, calibration, and correction. We summarize common data structures and highlight classical and modern analysis methods, including dimensionality reduction, classification, spectral unmixing, and AI-driven techniques such as deep learning. Representative applications across Earth observation, precision agriculture, biomedicine, industrial inspection, cultural heritage, and security are also discussed, emphasizing HSI's ability to uncover sub-visual features for advanced monitoring, diagnostics, and decision-making. Persistent challenges, such as hardware trade-offs, acquisition variability, and the complexity of high-dimensional data, are examined alongside emerging solutions, including computational imaging, physics-informed modeling, cross-modal fusion, and self-supervised learning. Best practices for dataset sharing, reproducibility, and metadata documentation are further highlighted to support transparency and reuse. Looking ahead, we explore future directions toward scalable, real-time, and embedded HSI systems, driven by sensor miniaturization, self-supervised learning, and foundation models. As HSI evolves into a general-purpose, cross-disciplinary platform, it holds promise for transformative applications in science, technology, and society.
comment: Accepted by Nature Reviews Methods Primers
♻ ☆ MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) aims to identify and interpret human emotions by integrating information from heterogeneous data sources such as text, video, and audio. While deep learning models have advanced in network architecture design, they remain heavily limited by scarce multimodal annotated data. Although Mixup-based augmentation improves generalization in unimodal tasks, its direct application to MSA introduces critical challenges: random mixing often amplifies label ambiguity and semantic inconsistency due to the lack of emotion-aware mixing mechanisms. To overcome these issues, we propose MS-Mix, an adaptive, emotion-sensitive augmentation framework that automatically optimizes sample mixing in multimodal settings. The key components of MS-Mix include: (1) a Sentiment-Aware Sample Selection (SASS) strategy that effectively prevents semantic confusion caused by mixing samples with contradictory emotions. (2) a Sentiment Intensity Guided (SIG) module using multi-head self-attention to compute modality-specific mixing ratios dynamically based on their respective emotional intensities. (3) a Sentiment Alignment Loss (SAL) that aligns the prediction distributions across modalities, and incorporates the Kullback-Leibler-based loss as an additional regularization term to train the emotion intensity predictor and the backbone network jointly. Extensive experiments on three benchmark datasets with six state-of-the-art backbones confirm that MS-Mix consistently outperforms existing methods, establishing a new standard for robust multimodal sentiment augmentation. The source code is available at: https://github.com/HongyuZhu-s/MS-Mix.
comment: Under Review
♻ ☆ TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer and more detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO offers strong computational efficiency and scalability, opening new possibilities for effective automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO achieves stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.
comment: 50 pages, 28 figures
♻ ☆ ERVD: An Efficient and Robust ViT-Based Distillation Framework for Remote Sensing Image Retrieval
ERVD: An Efficient and Robust ViT-Based Distillation Framework for Remote Sensing Image Retrieval
comment: Further optimize the effect
♻ ☆ SegQuant: A Semantics-Aware and Generalizable Quantization Framework for Diffusion Models
Diffusion models have demonstrated exceptional generative capabilities but are computationally intensive, posing significant challenges for deployment in resource-constrained or latency-sensitive environments. Quantization offers an effective means to reduce model size and computational cost, with post-training quantization (PTQ) being particularly appealing due to its compatibility with pre-trained models without requiring retraining or training data. However, existing PTQ methods for diffusion models often rely on architecture-specific heuristics that limit their generalizability and hinder integration with industrial deployment pipelines. To address these limitations, we propose SegQuant, a unified quantization framework that adaptively combines complementary techniques to enhance cross-model versatility. SegQuant consists of a segment-aware, graph-based quantization strategy (SegLinear) that captures structural semantics and spatial heterogeneity, along with a dual-scale quantization scheme (DualScale) that preserves polarity-asymmetric activations, which is crucial for maintaining visual fidelity in generated outputs. SegQuant is broadly applicable beyond Transformer-based diffusion models, achieving strong performance while ensuring seamless compatibility with mainstream deployment tools.
♻ ☆ Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography
Advancements in medical imaging AI, particularly in 3D imaging, have been limited due to the scarcity of comprehensive datasets. We introduce CT-RATE, a public dataset that pairs 3D medical images with corresponding textual reports. CT-RATE comprises 25,692 non-contrast 3D chest CT scans from 21,304 unique patients. Each scan is accompanied by its corresponding radiology report. Leveraging CT-RATE, we develop CT-CLIP, a CT-focused contrastive language-image pretraining framework designed for broad applications without the need for task-specific training. We demonstrate how CT-CLIP can be used in multi-abnormality detection and case retrieval, and outperforms state-of-the-art fully supervised models across all key metrics. By combining CT-CLIP's vision encoder with a pretrained large language model, we create CT-CHAT, a vision-language foundational chat model for 3D chest CT volumes. Finetuned on over 2.7 million question-answer pairs derived from the CT-RATE dataset, CT-CHAT underscores the necessity for specialized methods in 3D medical imaging. Collectively, the open-source release of CT-RATE, CT-CLIP, and CT-CHAT not only addresses critical challenges in 3D medical imaging but also lays the groundwork for future innovations in medical AI and improved patient care.
♻ ☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples IEEE
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: Accepted to IEEE Transactions in Secure and Dependable Computing. This version corresponds to the author's accepted manuscript
♻ ☆ View-Centric Multi-Object Tracking with Homographic Matching in Moving UAV
In this paper, we address the challenge of Multi-Object Tracking (MOT) in moving Unmanned Aerial Vehicle (UAV) scenarios, where irregular flight trajectories, such as hovering, turning left/right, and moving up/down, lead to significantly greater complexity compared to fixed-camera MOT. Specifically, changes in the scene background not only render traditional frame-to-frame object IoU association methods ineffective but also introduce significant view shifts in the objects, which complicates tracking. To overcome these issues, we propose a novel HomView-MOT framework, which for the first time, harnesses the view homography inherent in changing scenes to solve MOT challenges in moving environments, incorporating homographic matching and view-centric concepts. We introduce a Fast Homography Estimation (FHE) algorithm for rapid computation of homography matrices between video frames, enabling object View-Centric ID Learning (VCIL) and leveraging multi-view homography to learn cross-view ID features. Concurrently, our Homographic Matching Filter (HMF) maps object bounding boxes from different frames onto a common view plane for a more realistic physical IoU association. Extensive experiments have proven that these innovations allow HomView-MOT to achieve state-of-the-art performance on prominent UAV MOT datasets VisDrone and UAVDT.
comment: TGRS 2026
♻ ☆ Decoupled Complementary Spectral-Spatial Learning for Background Representation Enhancement in Hyperspectral Anomaly Detection
A recent class of hyperspectral anomaly detection methods can be trained once on background datasets and then deployed universally without per-scene retraining or parameter tuning, showing strong efficiency and robustness. Building upon this paradigm, we propose a decoupled complementary spectral--spatial learning framework for background representation enhancement. The framework follows a two-stage training strategy: (1) we first train a spectral enhancement network via reverse distillation to obtain robust background spectral representations; and (2) we then freeze the spectral branch as a teacher and train a spatial branch as a complementary student (the "rebellious student") to capture spatial patterns overlooked by the teacher. Complementary learning is achieved through decorrelation objectives that reduce representational redundancy between the two branches, together with reconstruction regularization to prevent the student from learning irrelevant noise. After training, the framework jointly enhances background representations from both spectral and spatial perspectives, and the resulting enhanced features can be plugged into parameter-free, training-free detectors (e.g., the Reed--Xiaoli (RX) detector) for test-time deployment without per-scene retraining or parameter tuning. Experiments on the HAD100 benchmark demonstrate substantial improvements over representative baselines with modest computational overhead, validating the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
♻ ☆ VisionReasoner: Unified Reasoning-Integrated Visual Perception via Reinforcement Learning
Large vision-language models exhibit inherent capabilities to handle diverse visual perception tasks. In this paper, we introduce VisionReasoner, a unified framework capable of reasoning and solving multiple visual perception tasks within a shared model. Specifically, by designing a unified reward mechanism and multi-object cognitive learning strategies, VisionReasoner enhances its reasoning capabilities to analyze visual inputs, and addresses diverse perception tasks within a unified model. VisionReasoner generates a structured reasoning process before delivering the desired outputs responding to user queries. Human evaluation reveals the reasoning process of VisionReasoner is faithful and reliable even without annotated reasoning train data. To rigorously assess unified visual perception capabilities, we evaluate VisionReasoner on ten diverse tasks spanning three critical domains: detection, segmentation, and counting. Experimental results show that VisionReasoner achieves superior performance as a unified model, outperforming the baseline Qwen2.5VL by relative margins of 29.1\% on COCO (detection), 22.1\% on ReasonSeg (segmentation), and 13.2\% on CountBench (counting).
♻ ☆ Vision-Centric 4D Occupancy Forecasting and Planning via Implicit Residual World Models ICRA 2026
End-to-end autonomous driving systems increasingly rely on vision-centric world models to understand and predict their environment. However, a common ineffectiveness in these models is the full reconstruction of future scenes, which expends significant capacity on redundantly modeling static backgrounds. To address this, we propose IR-WM, an Implicit Residual World Model that focuses on modeling the current state and evolution of the world. IR-WM first establishes a robust bird's-eye-view representation of the current state from the visual observation. It then leverages the BEV features from the previous timestep as a strong temporal prior and predicts only the "residual", i.e., the changes conditioned on the ego-vehicle's actions and scene context. To alleviate error accumulation over time, we further apply an alignment module to calibrate semantic and dynamic misalignments. Moreover, we investigate different forecasting-planning coupling schemes and demonstrate that the implicit future state generated by world models substantially improves planning accuracy. On the nuScenes benchmark, IR-WM achieves top performance in both 4D occupancy forecasting and trajectory planning.
comment: ICRA 2026
♻ ☆ Clinical utility of foundation models in musculoskeletal MRI for biomarker fidelity and predictive outcomes
Precision medicine in musculoskeletal imaging requires scalable measurement infrastructure. We developed a modular system that converts routine MRI into standardized quantitative biomarkers suitable for clinical decision support. Promptable foundation segmenters (SAM, SAM2, MedSAM) were fine-tuned across heterogeneous musculoskeletal datasets and coupled to automated detection for fully automatic prompting. Fine-tuned segmentations yielded clinically reliable measurements with high concordance to expert annotations across cartilage, bone, and soft tissue biomarkers. Using the same measurements, we demonstrate two applications: (i) a three-stage knee triage cascade that reduces verification workload while maintaining sensitivity, and (ii) 48-month landmark models that forecast knee replacement and incident osteoarthritis with favorable calibration and net benefit across clinically relevant thresholds. Our model-agnostic, open-source architecture enables independent validation and development. This work validates a pathway from automated measurement to clinical decision: reliable biomarkers drive both workload optimization today and patient risk stratification tomorrow, and the developed framework shows how foundation models can be operationalized within precision medicine systems.
comment: Under review at npj Digital Medicine (revision submitted Jan 2026) | Code: https://github.com/gabbieHoyer/AutoMedLabel | Supplementary data/tables: https://doi.org/10.6084/m9.figshare.29633207
♻ ☆ Revisiting Transformers with Insights from Image Filtering and Boosting
The self-attention mechanism, a cornerstone of Transformer-based state-of-the-art deep learning architectures, is largely heuristic-driven and fundamentally challenging to interpret. Establishing a robust theoretical foundation to explain its remarkable success and limitations has therefore become an increasingly prominent focus in recent research. Some notable directions have explored understanding self-attention through the lens of image denoising and nonparametric regression. While promising, existing frameworks still lack a deeper mechanistic interpretation of various architectural components that enhance self-attention, both in its original formulation and subsequent variants. In this work, we aim to advance this understanding by developing a unifying image processing framework, capable of explaining not only the self-attention computation itself but also the role of components such as positional encoding and residual connections, including numerous later variants. We also pinpoint potential distinctions between the two concepts building upon our framework, and make effort to close this gap. We introduce two independent architectural modifications within transformers. While our primary objective is interpretability, we empirically observe that image processing-inspired modifications can also lead to notably improved accuracy and robustness against data contamination and adversaries across language and vision tasks as well as better long sequence understanding.
♻ ☆ LBL: Logarithmic Barrier Loss Function for One-class Classification
One-class classification (OCC) aims to train a classifier only with the target class data and attracts great attention for its strong applicability in real-world application. Despite a lot of advances have been made in OCC, it still lacks the effective OCC loss functions for deep learning. In this paper, a novel logarithmic barrier function based OCC loss (LBL) that assigns large gradients to the margin samples and thus derives more compact hypersphere, is first proposed by approximating the OCC objective smoothly. But the optimization of LBL may be instability especially when samples lie on the boundary leading to the infinity loss. To address this issue, then, a unilateral relaxation Sigmoid function is introduced into LBL and a novel OCC loss named LBLSig is proposed. The LBLSig can be seen as the fusion of the mean square error (MSE) and the cross entropy (CE) and the optimization of LBLSig is smoother owing to the unilateral relaxation Sigmoid function. The effectiveness of the proposed LBL and LBLSig is experimentally demonstrated in comparisons with several popular OCC algorithms on different network structures. The source code can be found at https://github.com/ML-HDU/LBL_LBLSig.
♻ ☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
♻ ☆ G2P: Gaussian-to-Point Attribute Alignment for Boundary-Aware 3D Semantic Segmentation
Semantic segmentation on point clouds is critical for 3D scene understanding. However, sparse and irregular point distributions provide limited appearance evidence, making geometry-only features insufficient to distinguish objects with similar shapes but distinct appearances (e.g., color, texture, material). We propose Gaussian-to-Point (G2P), which transfers appearance-aware attributes from 3D Gaussian Splatting to point clouds for more discriminative and appearance-consistent segmentation. Our G2P address the misalignment between optimized Gaussians and original point geometry by establishing point-wise correspondences. By leveraging Gaussian opacity attributes, we resolve the geometric ambiguity that limits existing models. Additionally, Gaussian scale attributes enable precise boundary localization in complex 3D scenes. Extensive experiments demonstrate that our approach achieves superior performance on standard benchmarks and shows significant improvements on geometrically challenging classes, all without any 2D or language supervision.
comment: Preprint. Under review
♻ ☆ MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation ICCV 2025
High-resolution (HR) medical videos are vital for accurate diagnosis, yet are hard to acquire due to hardware limitations and physiological constraints. Clinically, the collected low-resolution (LR) medical videos present unique challenges for video super-resolution (VSR) models, including camera shake, noise, and abrupt frame transitions, which result in significant optical flow errors and alignment difficulties. Additionally, tissues and organs exhibit continuous and nuanced structures, but current VSR models are prone to introducing artifacts and distorted features that can mislead doctors. To this end, we propose MedVSR, a tailored framework for medical VSR. It first employs Cross State-Space Propagation (CSSP) to address the imprecise alignment by projecting distant frames as control matrices within state-space models, enabling the selective propagation of consistent and informative features to neighboring frames for effective alignment. Moreover, we design an Inner State-Space Reconstruction (ISSR) module that enhances tissue structures and reduces artifacts with joint long-range spatial feature learning and large-kernel short-range information aggregation. Experiments across four datasets in diverse medical scenarios, including endoscopy and cataract surgeries, show that MedVSR significantly outperforms existing VSR models in reconstruction performance and efficiency. Code released at https://github.com/CUHK-AIM-Group/MedVSR.
comment: ICCV 2025
♻ ☆ Mamba-based Spatio-Frequency Motion Perception for Video Camouflaged Object Detection
Existing video camouflaged object detection (VCOD) methods primarily rely on spatial appearances for motion perception. However, the high foreground-background similarity in VCOD limits the discriminability of such features (e.g. color and texture). Recent studies demonstrate that frequency features can not only compensate for appearance limitations, but also perceive motion through dynamic variations in spectral energy. Meanwhile, the emerging state space model called Mamba enables efficient motion perception in frame sequences with its linear-time long-sequence modeling capability. Motivated by this, we propose Vcamba, a visual camouflage Mamba based on spatio-frequency motion perception that integrates frequency and spatial features for efficient and accurate VCOD. Specifically, by analyzing the spatial representations of frequency components, we reveal a structural evolution pattern that emerges from the ordered superposition of components. Based on this observation, we propose a unique frequency-domain sequential scanning (FSS) strategy to unfold the spectrum. Utilizing FSS, the adaptive frequency enhancement (AFE) module employs Mamba to model the causal dependencies within sequences, enabling effective frequency learning. Furthermore, we propose a space-based long-range motion perception (SLMP) module and a frequency-based long-range motion perception (FLMP) module to model spatio-temporal and frequency-temporal sequences. Finally, the space and frequency motion fusion module (SFMF) integrates dual-domain features into unified motion representation. Experiments show that Vcamba outperforms state-of-the-art methods across 6 evaluation metrics on 2 datasets with lower computation cost, confirming its superiority. Code is available at: https://github.com/BoydeLi/Vcamba.
comment: 13 pages, 12 figures
♻ ☆ A-FloPS: Accelerating Diffusion Models via Adaptive Flow Path Sampler AAAI26
Diffusion models deliver state-of-the-art generative performance across diverse modalities but remain computationally expensive due to their inherently iterative sampling process. Existing training-free acceleration methods typically improve numerical solvers for the reverse-time ODE, yet their effectiveness is fundamentally constrained by the inefficiency of the underlying sampling trajectories. We propose A-FloPS (Adaptive Flow Path Sampler), a principled, training-free framework that reparameterizes the sampling trajectory of any pre-trained diffusion model into a flow-matching form and augments it with an adaptive velocity decomposition. The reparameterization analytically maps diffusion scores to flow-compatible velocities, yielding integration-friendly trajectories without retraining. The adaptive mechanism further factorizes the velocity field into a linear drift term and a residual component whose temporal variation is actively suppressed, restoring the accuracy benefits of high-order integration even in extremely low-NFE regimes. Extensive experiments on conditional image generation and text-to-image synthesis show that A-FloPS consistently outperforms state-of-the-art training-free samplers in both sample quality and efficiency. Notably, with as few as $5$ function evaluations, A-FloPS achieves substantially lower FID and generates sharper, more coherent images. The adaptive mechanism also improves native flow-based generative models, underscoring its generality. These results position A-FloPS as a versatile and effective solution for high-quality, low-latency generative modeling.
comment: published on AAAI26
♻ ☆ TruthPrInt: Mitigating Large Vision-Language Models Object Hallucination Via Latent Truthful-Guided Pre-Intervention ICCV 2025
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states with OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose TruthPrInt to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally, Accepted by ICCV 2025
♻ ☆ Fine-tuning an ECG Foundation Model to Predict Coronary CT Angiography Outcomes
Coronary artery disease (CAD) remains a major global public health burden, yet scalable tools for risk screening are limited. Although coronary computed tomography angiography (CCTA) is a first-line non-invasive diagnostic modality, its widespread use is constrained by resource requirements and radiation exposure. Artificial intelligence--enabled electrocardiography (AI-ECG) may provide a complementary approach for CAD risk stratification. We developed and validated an AI-ECG model using CCTA as the reference standard to estimate severe ($\geq 70\%$) or complete ($\geq 99\%$) stenosis in the four major coronary arteries. In internal validation, the model achieved area under the receiver operating characteristic curve (AUC) values of 0.706--0.744 across vessels and demonstrated consistent performance in external validation (AUCs: 0.673--0.714). Discrimination remained stable among individuals with clinically normal ECGs and across demographic and clinical subgroups. In a dedicated clinical cohort with longitudinal follow-up, vessel-specific risk stratification based on model-predicted probabilities yielded distinct separation between high-risk and low-risk groups in time-to-event analyses using Kaplan--Meier curves, while decision curve analysis suggested potential clinical utility as an adjunctive screening tool. Explainable analyses highlighted waveform patterns associated with elevated predicted risk. These findings support the feasibility of AI-ECG for complementary CAD risk screening and warrant prospective evaluation.
♻ ☆ CostNav: A Navigation Benchmark for Real-World Economic-Cost Evaluation of Physical AI Agents
While current navigation benchmarks prioritize task success in simplified settings, they neglect the multidimensional economic constraints essential for the real-world commercialization of autonomous delivery systems. We introduce CostNav, an Economic Navigation Benchmark that evaluates physical AI agents through comprehensive economic cost-revenue analysis aligned with real-world business operations. By integrating industry-standard data - such as SEC filings and AIS injury reports - with Isaac Sim's detailed collision and cargo dynamics, CostNav transcends simple task completion to accurately evaluate business value in complex, real-world scenarios. To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability, revealing that optimizing for task success on a simplified task fundamentally differs from optimizing for real-world economic deployment. Our evaluation of rule-based Nav2 navigation shows that current approaches are not economically viable: the contribution margin is -22.81/run (AMCL) and -12.87/run (GPS), resulting in no break-even point. We challenge the community to develop navigation policies that achieve economic viability on CostNav. We remain method-agnostic, evaluating success solely on the metric of cost rather than the underlying architecture. All resources are available at https://github.com/worv-ai/CostNav.
♻ ☆ Benchmarking Large Language Models for Geolocating Colonial Virginia Land Grants
Virginia's seventeenth- and eighteenth-century land patents survive primarily as narrative metes-and-bounds descriptions, limiting spatial analysis. This study systematically evaluates current-generation large language models (LLMs) in converting these prose abstracts into geographically accurate latitude/longitude coordinates within a focused evaluation context. A digitized corpus of 5,471 Virginia patent abstracts (1695-1732) is released, with 43 rigorously verified test cases serving as an initial, geographically focused benchmark. Six OpenAI models across three architectures-o-series, GPT-4-class, and GPT-3.5-were tested under two paradigms: direct-to-coordinate and tool-augmented chain-of-thought invoking external geocoding APIs. Results were compared against a GIS analyst baseline, Stanford NER geoparser, Mordecai-3 neural geoparser, and a county-centroid heuristic. The top single-call model, o3-2025-04-16, achieved a mean error of 23 km (median 14 km), outperforming the median LLM (37.4 km) by 37.5%, the weakest LLM (50.3 km) by 53.5%, and external baselines by 67% (GIS analyst) and 70% (Stanford NER). A five-call ensemble further reduced errors to 19.2 km (median 12.2 km) at minimal additional cost (~USD 0.20 per grant), outperforming the median LLM by 48.7%. A patentee-name redaction ablation slightly increased error (~7%), showing reliance on textual landmark and adjacency descriptions rather than memorization. The cost-effective gpt-4o-2024-08-06 model maintained a 28 km mean error at USD 1.09 per 1,000 grants, establishing a strong cost-accuracy benchmark. External geocoding tools offer no measurable benefit in this evaluation. These findings demonstrate LLMs' potential for scalable, accurate, cost-effective historical georeferencing.
♻ ☆ Residual Vector Quantization For Communication-Efficient Multi-Agent Perception ICASSP 2026
Multi-agent collaborative perception (CP) improves scene understanding by sharing information across connected agents such as autonomous vehicles, unmanned aerial vehicles, and robots. Communication bandwidth, however, constrains scalability. We present ReVQom, a learned feature codec that preserves spatial identity while compressing intermediate features. ReVQom is an end-to-end method that compresses feature dimensions via a simple bottleneck network followed by multi-stage residual vector quantization (RVQ). This allows only per-pixel code indices to be transmitted, reducing payloads from 8192 bits per pixel (bpp) of uncompressed 32-bit float features to 6-30 bpp per agent with minimal accuracy loss. On DAIR-V2X real-world CP dataset, ReVQom achieves 273x compression at 30 bpp to 1365x compression at 6 bpp. At 18 bpp (455x), ReVQom matches or outperforms raw-feature CP, and at 6-12 bpp it enables ultra-low-bandwidth operation with graceful degradation. ReVQom allows efficient and accurate multi-agent collaborative perception with a step toward practical V2X deployment.
comment: Accepted at ICASSP 2026. 5 pages
♻ ☆ Constructing the Umwelt: Cognitive Planning through Belief-Intent Co-Evolution
This paper challenges a prevailing epistemological assumption in End-to-End Autonomous Driving: that high-performance planning necessitates high-fidelity world reconstruction. Inspired by cognitive science, we propose the Mental Bayesian Causal World Model (MBCWM) and instantiate it as the Tokenized Intent World Model (TIWM), a novel cognitive computing architecture. Its core philosophy posits that intelligence emerges not from pixel-level objective fidelity, but from the Cognitive Consistency between the agent's internal intentional world and physical reality. By synthesizing von Uexküll's $\textit{Umwelt}$ theory, the neural assembly hypothesis, and the triple causal model (integrating symbolic deduction, probabilistic induction, and force dynamics) into an end-to-end embodied planning system, we demonstrate the feasibility of this paradigm on the nuPlan benchmark. Experimental results in open-loop validation confirm that our Belief-Intent Co-Evolution mechanism effectively enhances planning performance. Crucially, in closed-loop simulations, the system exhibits emergent human-like cognitive behaviors, including map affordance understanding, free exploration, and self-recovery strategies. We identify Cognitive Consistency as the core learning mechanism: during long-term training, belief (state understanding) and intent (future prediction) spontaneously form a self-organizing equilibrium through implicit computational replay, achieving semantic alignment between internal representations and physical world affordances. TIWM offers a neuro-symbolic, cognition-first alternative to reconstruction-based planners, establishing a new direction: planning as active understanding, not passive reaction.
comment: 12 pages, 8 figures. A paradigm shift from reconstructing the world to understanding it: planning through Belief-Intent Co-Evolution
♻ ☆ Topological Signatures vs. Gradient Histograms: A Comparative Study for Medical Image Classification
This work presents a comparative evaluation of two fundamentally different feature extraction paradigms--Histogram of Oriented Gradients (HOG) and Topological Data Analysis (TDA)--for medical image classification, with a focus on retinal fundus imagery. HOG captures local structural information by modeling gradient orientation distributions within spatial regions, effectively encoding texture and edge patterns. In contrast, TDA, implemented through cubical persistent homology, extracts global topological descriptors that characterize shape, connectivity, and intensity-based structure across images. We evaluate both approaches on the publicly available APTOS retinal fundus dataset for two classification tasks: binary classification (normal vs. diabetic retinopathy (DR)) and five-class DR severity grading. From each image, 26,244 HOG features and 800 TDA features are extracted and independently used to train seven classical machine learning models, including logistic regression, random forest, XGBoost, support vector machines, decision trees, k-nearest neighbors, and Extra Trees, using 10-fold cross-validation. Experimental results show that XGBoost achieves the best performance across both feature types. For binary classification, accuracies of 94.29% (HOG) and 94.18% (TDA) are obtained, while multi-class classification yields accuracies of 74.41% and 74.69%, respectively. These results demonstrate that gradient-based and topological features provide complementary representations of retinal image structure and highlight the potential of integrating both approaches for interpretable and robust medical image classification.
comment: 18 pages, 12 figures
Artificial Intelligence 33
☆ The Confidence Manifold: Geometric Structure of Correctness Representations in Language Models
When a language model asserts that "the capital of Australia is Sydney," does it know this is wrong? We characterize the geometry of correctness representations across 9 models from 5 architecture families. The structure is simple: the discriminative signal occupies 3-8 dimensions, performance degrades with additional dimensions, and no nonlinear classifier improves over linear separation. Centroid distance in the low-dimensional subspace matches trained probe performance (0.90 AUC), enabling few-shot detection: on GPT-2, 25 labeled examples achieve 89% of full-data accuracy. We validate causally through activation steering: the learned direction produces 10.9 percentage point changes in error rates while random directions show no effect. Internal probes achieve 0.80-0.97 AUC; output-based methods (P(True), semantic entropy) achieve only 0.44-0.64 AUC. The correctness signal exists internally but is not expressed in outputs. That centroid distance matches probe performance indicates class separation is a mean shift, making detection geometric rather than learned.
☆ DIAL-SUMMER: A Structured Evaluation Framework of Hierarchical Errors in Dialogue Summaries
Dialogues are a predominant mode of communication for humans, and it is immensely helpful to have automatically generated summaries of them (e.g., to revise key points discussed in a meeting, to review conversations between customer agents and product users). Prior works on dialogue summary evaluation largely ignore the complexities specific to this task: (i) shift in structure, from multiple speakers discussing information in a scattered fashion across several turns, to a summary's sentences, and (ii) shift in narration viewpoint, from speakers' first/second-person narration, standardized third-person narration in the summary. In this work, we introduce our framework DIALSUMMER to address the above. We propose DIAL-SUMMER's taxonomy of errors to comprehensively evaluate dialogue summaries at two hierarchical levels: DIALOGUE-LEVEL that focuses on the broader speakers/turns, and WITHIN-TURN-LEVEL that focuses on the information talked about inside a turn. We then present DIAL-SUMMER's dataset composed of dialogue summaries manually annotated with our taxonomy's fine-grained errors. We conduct empirical analyses of these annotated errors, and observe interesting trends (e.g., turns occurring in middle of the dialogue are the most frequently missed in the summary, extrinsic hallucinations largely occur at the end of the summary). We also conduct experiments on LLM-Judges' capability at detecting these errors, through which we demonstrate the challenging nature of our dataset, the robustness of our taxonomy, and the need for future work in this field to enhance LLMs' performance in the same. Code and inference dataset coming soon.
☆ Robustness of Vision Language Models Against Split-Image Harmful Input Attacks
Vision-Language Models (VLMs) are now a core part of modern AI. Recent work proposed several visual jailbreak attacks using single/ holistic images. However, contemporary VLMs demonstrate strong robustness against such attacks due to extensive safety alignment through preference optimization (e.g., RLHF). In this work, we identify a new vulnerability: while VLM pretraining and instruction tuning generalize well to split-image inputs, safety alignment is typically performed only on holistic images and does not account for harmful semantics distributed across multiple image fragments. Consequently, VLMs often fail to detect and refuse harmful split-image inputs, where unsafe cues emerge only after combining images. We introduce novel split-image visual jailbreak attacks (SIVA) that exploit this misalignment. Unlike prior optimization-based attacks, which exhibit poor black-box transferability due to architectural and prior mismatches across models, our attacks evolve in progressive phases from naive splitting to an adaptive white-box attack, culminating in a black-box transfer attack. Our strongest strategy leverages a novel adversarial knowledge distillation (Adv-KD) algorithm to substantially improve cross-model transferability. Evaluations on three state-of-the-art modern VLMs and three jailbreak datasets demonstrate that our strongest attack achieves up to 60% higher transfer success than existing baselines. Lastly, we propose efficient ways to address this critical vulnerability in the current VLM safety alignment.
comment: 22 Pages, long conference paper
☆ Gender and Race Bias in Consumer Product Recommendations by Large Language Models
Large Language Models are increasingly employed in generating consumer product recommendations, yet their potential for embedding and amplifying gender and race biases remains underexplored. This paper serves as one of the first attempts to examine these biases within LLM-generated recommendations. We leverage prompt engineering to elicit product suggestions from LLMs for various race and gender groups and employ three analytical methods-Marked Words, Support Vector Machines, and Jensen-Shannon Divergence-to identify and quantify biases. Our findings reveal significant disparities in the recommendations for demographic groups, underscoring the need for more equitable LLM recommendation systems.
comment: Accepted at the 39th International Conference on Advanced Information Networking and Applications (AINA 2025)
☆ Initial Risk Probing and Feasibility Testing of Glow: a Generative AI-Powered Dialectical Behavior Therapy Skills Coach for Substance Use Recovery and HIV Prevention
Background: HIV and substance use represent interacting epidemics with shared psychological drivers - impulsivity and maladaptive coping. Dialectical behavior therapy (DBT) targets these mechanisms but faces scalability challenges. Generative artificial intelligence (GenAI) offers potential for delivering personalized DBT coaching at scale, yet rapid development has outpaced safety infrastructure. Methods: We developed Glow, a GenAI-powered DBT skills coach delivering chain and solution analysis for individuals at risk for HIV and substance use. In partnership with a Los Angeles community health organization, we conducted usability testing with clinical staff (n=6) and individuals with lived experience (n=28). Using the Helpful, Honest, and Harmless (HHH) framework, we employed user-driven adversarial testing wherein participants identified target behaviors and generated contextually realistic risk probes. We evaluated safety performance across 37 risk probe interactions. Results: Glow appropriately handled 73% of risk probes, but performance varied by agent. The solution analysis agent demonstrated 90% appropriate handling versus 44% for the chain analysis agent. Safety failures clustered around encouraging substance use and normalizing harmful behaviors. The chain analysis agent fell into an "empathy trap," providing validation that reinforced maladaptive beliefs. Additionally, 27 instances of DBT skill misinformation were identified. Conclusions: This study provides the first systematic safety evaluation of GenAI-delivered DBT coaching for HIV and substance use risk reduction. Findings reveal vulnerabilities requiring mitigation before clinical trials. The HHH framework and user-driven adversarial testing offer replicable methods for evaluating GenAI mental health interventions.
☆ Constrained Pricing under Finite Mixtures of Logit
The mixed logit model is a flexible and widely used demand model in pricing and revenue management. However, existing work on mixed-logit pricing largely focuses on unconstrained settings, limiting its applicability in practice where prices are subject to business or regulatory constraints. We study the constrained pricing problem under multinomial and mixed logit demand models. For the multinomial logit model, corresponding to a single customer segment, we show that the constrained pricing problem admits a polynomial-time approximation scheme (PTAS) via a reformulation based on exponential cone programming, yielding an $\varepsilon$-optimal solution in polynomial time. For finite mixed logit models with $T$ customer segments, we reformulate the problem as a bilinear exponential cone program with $O(T)$ bilinear terms. This structure enables a Branch-and-Bound algorithm whose complexity is exponential only in $T$. Consequently, constrained pricing under finite mixtures of logit admits a PTAS when the number of customer segments is bounded. Numerical experiments demonstrate strong performance relative to state-of-the-art baselines.
☆ Interpretable Failure Analysis in Multi-Agent Reinforcement Learning Systems
Multi-Agent Reinforcement Learning (MARL) is increasingly deployed in safety-critical domains, yet methods for interpretable failure detection and attribution remain underdeveloped. We introduce a two-stage gradient-based framework that provides interpretable diagnostics for three critical failure analysis tasks: (1) detecting the true initial failure source (Patient-0); (2) validating why non-attacked agents may be flagged first due to domino effects; and (3) tracing how failures propagate through learned coordination pathways. Stage 1 performs interpretable per-agent failure detection via Taylor-remainder analysis of policy-gradient costs, declaring an initial Patient-0 candidate at the first threshold crossing. Stage 2 provides validation through geometric analysis of critic derivatives-first-order sensitivity and directional second-order curvature aggregated over causal windows to construct interpretable contagion graphs. This approach explains "downstream-first" detection anomalies by revealing pathways that amplify upstream deviations. Evaluated across 500 episodes in Simple Spread (3 and 5 agents) and 100 episodes in StarCraft II using MADDPG and HATRPO, our method achieves 88.2-99.4% Patient-0 detection accuracy while providing interpretable geometric evidence for detection decisions. By moving beyond black-box detection to interpretable gradient-level forensics, this framework offers practical tools for diagnosing cascading failures in safety-critical MARL systems.
☆ Emergent Search and Backtracking in Latent Reasoning Models
What happens when a language model thinks without words? Standard reasoning LLMs verbalize intermediate steps as chain-of-thought; latent reasoning transformers (LRTs) instead perform deliberation entirely in continuous hidden space. We investigate an LRT, decoding the model's evolving beliefs at every step on a multiple-choice QA benchmark. We find that the model spontaneously learns a structured search process in latent space. Deliberation follows a consistent trajectory: an exploration phase where probability mass spreads across candidates, tentative commitment to a frontrunner, and either convergence or backtracking. Backtracking is prevalent (32% of instances), beneficial (34% accuracy gain over non-backtracking instances), and predominantly directed away from the semantically closest distractor toward the correct answer. The search is adaptive: replacing distractors with implausible alternatives shortens exploration by 54%. Latent reasoning models achieve in activation space what chain-of-thought achieves through words: the ability to be wrong, notice, and recover.
☆ VidVec: Unlocking Video MLLM Embeddings for Video-Text Retrieval
Recent studies have adapted generative Multimodal Large Language Models (MLLMs) into embedding extractors for vision tasks, typically through fine-tuning to produce universal representations. However, their performance on video remains inferior to Video Foundation Models (VFMs). In this paper, we focus on leveraging MLLMs for video-text embedding and retrieval. We first conduct a systematic layer-wise analysis, showing that intermediate (pre-trained) MLLM layers already encode substantial task-relevant information. Leveraging this insight, we demonstrate that combining intermediate-layer embeddings with a calibrated MLLM head yields strong zero-shot retrieval performance without any training. Building on these findings, we introduce a lightweight text-based alignment strategy which maps dense video captions to short summaries and enables task-related video-text embedding learning without visual supervision. Remarkably, without any fine-tuning beyond text, our method outperforms current methods, often by a substantial margin, achieving state-of-the-art results across common video retrieval benchmarks.
comment: Project page: https://iyttor.github.io/VidVec/
☆ Objective Decoupling in Social Reinforcement Learning: Recovering Ground Truth from Sycophantic Majorities
Contemporary AI alignment strategies rely on a fragile premise: that human feedback, while noisy, remains a fundamentally truthful signal. In this paper, we identify this assumption as Dogma 4 of Reinforcement Learning (RL). We demonstrate that while this dogma holds in static environments, it fails in social settings where evaluators may be sycophantic, lazy, or adversarial. We prove that under Dogma 4, standard RL agents suffer from what we call Objective Decoupling, a structural failure mode where the agent's learned objective permanently separates from the latent ground truth, guaranteeing convergence to misalignment. To resolve this, we propose Epistemic Source Alignment (ESA). Unlike standard robust methods that rely on statistical consensus (trusting the majority), ESA utilizes sparse safety axioms to judge the source of the feedback rather than the signal itself. We prove that this "judging the judges" mechanism guarantees convergence to the true objective, even when a majority of evaluators are biased. Empirically, we show that while traditional consensus methods fail under majority collusion, our approach successfully recovers the optimal policy.
☆ Online Domain-aware LLM Decoding for Continual Domain Evolution
LLMs are typically fine-tuned offline on domain-specific data, assuming a static domain. In practice, domain knowledge evolves continuously through new regulations, products, services, and interaction patterns. Retraining or fine-tuning LLMs for every new instance is computationally infeasible. Additionally, real-world environments also exhibit temporal dynamics with shifting data distributions. Disregarding this phenomenon, commonly referred to as concept drift, can significantly diminish a model's predictive accuracy. This mismatch between evolving domains and static adaptation pipelines highlights the need for efficient, real-time adaptation without costly retraining. In response, we introduce Online Domain-aware Decoding framework (ODD). ODD performs probability-level fusion between a base LLM and a prefix-tree prior, guided by adaptive confidence modulation using disagreement and continuity signals. Empirical evaluation under diverse drift scenarios demonstrates that ODD consistently surpasses LLM-Greedy and LLM-Temp Scaled across all syntactic and semantic NLG metrics. It yields an absolute ROUGE-L gain of 0.065 and a 13.6% relative improvement in Cosine Similarity over the best baseline. These results demonstrate ODD 's robustness to evolving lexical and contextual patterns, making it suitable for dynamic LLM applications.
☆ Large language models for spreading dynamics in complex systems
Spreading dynamics is a central topic in the physics of complex systems and network science, providing a unified framework for understanding how information, behaviors, and diseases propagate through interactions among system units. In many propagation contexts, spreading processes are influenced by multiple interacting factors, such as information expression patterns, cultural contexts, living environments, cognitive preferences, and public policies, which are difficult to incorporate directly into classical modeling frameworks. Recently, large language models (LLMs) have exhibited strong capabilities in natural language understanding, reasoning, and generation, enabling explicit perception of semantic content and contextual cues in spreading processes, thereby supporting the analysis of the different influencing factors. Beyond serving as external analytical tools, LLMs can also act as interactive agents embedded in propagation systems, potentially influencing spreading pathways and feedback structures. Consequently, the roles and impacts of LLMs on spreading dynamics have become an active and rapidly growing research area across multiple research disciplines. This review provides a comprehensive overview of recent advances in applying LLMs to the study of spreading dynamics across two representative domains: digital epidemics, such as misinformation and rumors, and biological epidemics, including infectious disease outbreaks. We first examine the foundations of epidemic modeling from a complex-systems perspective and discuss how LLM-based approaches relate to traditional frameworks. We then systematically review recent studies from three key perspectives, which are epidemic modeling, epidemic detection and surveillance, and epidemic prediction and management, to clarify how LLMs enhance these areas. Finally, open challenges and potential research directions are discussed.
☆ Spectral Guardrails for Agents in the Wild: Detecting Tool Use Hallucinations via Attention Topology
Deploying autonomous agents in the wild requires reliable safeguards against tool use failures. We propose a training free guardrail based on spectral analysis of attention topology that complements supervised approaches. On Llama 3.1 8B, our method achieves 97.7\% recall with multi-feature detection and 86.1\% recall with 81.0\% precision for balanced deployment, without requiring any labeled training data. Most remarkably, we discover that single layer spectral features act as near-perfect hallucination detectors: Llama L26 Smoothness achieves 98.2\% recall (213/217 hallucinations caught) with a single threshold, and Mistral L3 Entropy achieves 94.7\% recall. This suggests hallucination is not merely a wrong token but a thermodynamic state change: the model's attention becomes noise when it errs. Through controlled cross-model evaluation on matched domains ($N=1000$, $T=0.3$, same General domain, hallucination rates 20--22\%), we reveal the ``Loud Liar'' phenomenon: Llama 3.1 8B's failures are spectrally catastrophic and dramatically easier to detect, while Mistral 7B achieves the best discrimination (AUC 0.900). These findings establish spectral analysis as a principled, efficient framework for agent safety.
comment: 32 pages, 2 fgures, 18 tables
☆ Multimodal normative modeling in Alzheimers Disease with introspective variational autoencoders
Normative modeling learns a healthy reference distribution and quantifies subject-specific deviations to capture heterogeneous disease effects. In Alzheimers disease (AD), multimodal neuroimaging offers complementary signals but VAE-based normative models often (i) fit the healthy reference distribution imperfectly, inflating false positives, and (ii) use posterior aggregation (e.g., PoE/MoE) that can yield weak multimodal fusion in the shared latent space. We propose mmSIVAE, a multimodal soft-introspective variational autoencoder combined with Mixture-of-Product-of-Experts (MOPOE) aggregation to improve reference fidelity and multimodal integration. We compute deviation scores in latent space and feature space as distances from the learned healthy distributions, and map statistically significant latent deviations to regional abnormalities for interpretability. On ADNI MRI regional volumes and amyloid PET SUVR, mmSIVAE improves reconstruction on held-out controls and produces more discriminative deviation scores for outlier detection than VAE baselines, with higher likelihood ratios and clearer separation between control and AD-spectrum cohorts. Deviation maps highlight region-level patterns aligned with established AD-related changes. More broadly, our results highlight the importance of training objectives that prioritize reference-distribution fidelity and robust multimodal posterior aggregation for normative modeling, with implications for deviation-based analysis across multimodal clinical data.
comment: Conference on Health, Inference, and Learning (CHIL)
☆ SiameseNorm: Breaking the Barrier to Reconciling Pre/Post-Norm
Modern Transformers predominantly adopt the Pre-Norm paradigm for its optimization stability, foregoing the superior potential of the unstable Post-Norm architecture. Prior attempts to combine their strengths typically lead to a stability-performance trade-off. We attribute this phenomenon to a structural incompatibility within a single-stream design: Any application of the Post-Norm operation inevitably obstructs the clean identity gradient preserved by Pre-Norm. To fundamentally reconcile these paradigms, we propose SiameseNorm, a two-stream architecture that couples Pre-Norm-like and Post-Norm-like streams with shared parameters. This design decouples the optimization dynamics of the two streams, retaining the distinct characteristics of both Pre-Norm and Post-Norm by enabling all residual blocks to receive combined gradients inherited from both paradigms, where one stream secures stability while the other enhances expressivity. Extensive pre-training experiments on 1.3B-parameter models demonstrate that SiameseNorm exhibits exceptional optimization robustness and consistently outperforms strong baselines. Code is available at https://github.com/Qwen-Applications/SiameseNorm.
☆ Securing Dual-Use Pathogen Data of Concern NeurIPS 2025
Training data is an essential input into creating competent artificial intelligence (AI) models. AI models for biology are trained on large volumes of data, including data related to biological sequences, structures, images, and functions. The type of data used to train a model is intimately tied to the capabilities it ultimately possesses--including those of biosecurity concern. For this reason, an international group of more than 100 researchers at the recent 50th anniversary Asilomar Conference endorsed data controls to prevent the use of AI for harmful applications such as bioweapons development. To help design such controls, we introduce a five-tier Biosecurity Data Level (BDL) framework for categorizing pathogen data. Each level contains specific data types, based on their expected ability to contribute to capabilities of concern when used to train AI models. For each BDL tier, we propose technical restrictions appropriate to its level of risk. Finally, we outline a novel governance framework for newly created dual-use pathogen data. In a world with widely accessible computational and coding resources, data controls may be among the most high-leverage interventions available to reduce the proliferation of concerning biological AI capabilities.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Biosecurity Safeguards for Generative AI
☆ DICE: Disentangling Artist Style from Content via Contrastive Subspace Decomposition in Diffusion Models
The recent proliferation of diffusion models has made style mimicry effortless, enabling users to imitate unique artistic styles without authorization. In deployed platforms, this raises copyright and intellectual-property risks and calls for reliable protection. However, existing countermeasures either require costly weight editing as new styles emerge or rely on an explicitly specified editing style, limiting their practicality for deployment-side safety. To address this challenge, we propose DICE (Disentanglement of artist Style from Content via Contrastive Subspace Decomposition), a training-free framework for on-the-fly artist style erasure. Unlike style editing that require an explicitly specified replacement style, DICE performs style purification, removing the artist's characteristics while preserving the user-intended content. Our core insight is that a model cannot truly comprehend the artist style from a single text or image alone. Consequently, we abandon the traditional paradigm of identifying style from isolated samples. Instead, we construct contrastive triplets to compel the model to distinguish between style and non-style features in the latent space. By formalizing this disentanglement process as a solvable generalized eigenvalue problem, we achieve precise identification of the style subspace. Furthermore, we introduce an Adaptive Attention Decoupling Editing strategy dynamically assesses the style concentration of each token and performs differential suppression and content enhancement on the QKV vectors. Extensive experiments demonstrate that DICE achieves a superior balance between the thoroughness of style erasure and the preservation of content integrity. DICE introduces an additional overhead of only 3 seconds to disentangle style, providing a practical and efficient technique for curbing style mimicry.
☆ Picasso: Holistic Scene Reconstruction with Physics-Constrained Sampling
In the presence of occlusions and measurement noise, geometrically accurate scene reconstructions -- which fit the sensor data -- can still be physically incorrect. For instance, when estimating the poses and shapes of objects in the scene and importing the resulting estimates into a simulator, small errors might translate to implausible configurations including object interpenetration or unstable equilibrium. This makes it difficult to predict the dynamic behavior of the scene using a digital twin, an important step in simulation-based planning and control of contact-rich behaviors. In this paper, we posit that object pose and shape estimation requires reasoning holistically over the scene (instead of reasoning about each object in isolation), accounting for object interactions and physical plausibility. Towards this goal, our first contribution is Picasso, a physics-constrained reconstruction pipeline that builds multi-object scene reconstructions by considering geometry, non-penetration, and physics. Picasso relies on a fast rejection sampling method that reasons over multi-object interactions, leveraging an inferred object contact graph to guide samples. Second, we propose the Picasso dataset, a collection of 10 contact-rich real-world scenes with ground truth annotations, as well as a metric to quantify physical plausibility, which we open-source as part of our benchmark. Finally, we provide an extensive evaluation of Picasso on our newly introduced dataset and on the YCB-V dataset, and show it largely outperforms the state of the art while providing reconstructions that are both physically plausible and more aligned with human intuition.
comment: 15 pages
☆ Weak to Strong: VLM-Based Pseudo-Labeling as a Weakly Supervised Training Strategy in Multimodal Video-based Hidden Emotion Understanding Tasks
To tackle the automatic recognition of "concealed emotions" in videos, this paper proposes a multimodal weak-supervision framework and achieves state-of-the-art results on the iMiGUE tennis-interview dataset. First, YOLO 11x detects and crops human portraits frame-by-frame, and DINOv2-Base extracts visual features from the cropped regions. Next, by integrating Chain-of-Thought and Reflection prompting (CoT + Reflection), Gemini 2.5 Pro automatically generates pseudo-labels and reasoning texts that serve as weak supervision for downstream models. Subsequently, OpenPose produces 137-dimensional key-point sequences, augmented with inter-frame offset features; the usual graph neural network backbone is simplified to an MLP to efficiently model the spatiotemporal relationships of the three key-point streams. An ultra-long-sequence Transformer independently encodes both the image and key-point sequences, and their representations are concatenated with BERT-encoded interview transcripts. Each modality is first pre-trained in isolation, then fine-tuned jointly, with pseudo-labeled samples merged into the training set for further gains. Experiments demonstrate that, despite severe class imbalance, the proposed approach lifts accuracy from under 0.6 in prior work to over 0.69, establishing a new public benchmark. The study also validates that an "MLP-ified" key-point backbone can match - or even surpass - GCN-based counterparts in this task.
☆ Epigraph-Guided Flow Matching for Safe and Performant Offline Reinforcement Learning
Offline reinforcement learning (RL) provides a compelling paradigm for training autonomous systems without the risks of online exploration, particularly in safety-critical domains. However, jointly achieving strong safety and performance from fixed datasets remains challenging. Existing safe offline RL methods often rely on soft constraints that allow violations, introduce excessive conservatism, or struggle to balance safety, reward optimization, and adherence to the data distribution. To address this, we propose Epigraph-Guided Flow Matching (EpiFlow), a framework that formulates safe offline RL as a state-constrained optimal control problem to co-optimize safety and performance. We learn a feasibility value function derived from an epigraph reformulation of the optimal control problem, thereby avoiding the decoupled objectives or post-hoc filtering common in prior work. Policies are synthesized by reweighting the behavior distribution based on this epigraph value function and fitting a generative policy via flow matching, enabling efficient, distribution-consistent sampling. Across various safety-critical tasks, including Safety-Gymnasium benchmarks, EpiFlow achieves competitive returns with near-zero empirical safety violations, demonstrating the effectiveness of epigraph-guided policy synthesis.
comment: 23 pages, 8 figures
☆ Graph-Enhanced Deep Reinforcement Learning for Multi-Objective Unrelated Parallel Machine Scheduling SC
The Unrelated Parallel Machine Scheduling Problem (UPMSP) with release dates, setups, and eligibility constraints presents a significant multi-objective challenge. Traditional methods struggle to balance minimizing Total Weighted Tardiness (TWT) and Total Setup Time (TST). This paper proposes a Deep Reinforcement Learning framework using Proximal Policy Optimization (PPO) and a Graph Neural Network (GNN). The GNN effectively represents the complex state of jobs, machines, and setups, allowing the PPO agent to learn a direct scheduling policy. Guided by a multi-objective reward function, the agent simultaneously minimizes TWT and TST. Experimental results on benchmark instances demonstrate that our PPO-GNN agent significantly outperforms a standard dispatching rule and a metaheuristic, achieving a superior trade-off between both objectives. This provides a robust and scalable solution for complex manufacturing scheduling.
comment: 11 pages, 2 figures, Winter Simulation Conference (WSC) 2025
♻ ☆ Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts ICLR 2026
The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation to balance performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where underloaded experts complete computations early but must wait for overloaded experts, leading to global delays. We define this phenomenon as the \textbf{\textit{Straggler Effect}}, as the most burdened experts dictate the overall inference latency. To address this, we first propose \textit{\textbf{Capacity-Aware Token Drop}}, which enforces expert capacity limits by discarding excess tokens from overloaded experts, effectively reducing load imbalance with minimal performance impact (e.g., $30\%$ speedup with only $0.9\%$ degradation on OLMoE). Next, given the presence of low-load experts remaining well below the capacity threshold, we introduce \textit{\textbf{Capacity-Aware Expanded Drop}}, which allows tokens to include additional local experts in their candidate set before enforcing strict local capacity constraints, thereby improving load balance and enhancing the utilization of underused experts. Extensive experiments on both language and multimodal MoE models demonstrate the effectiveness of our approach, yielding substantial gains in expert utilization, model performance, and inference efficiency, e.g., applying Expanded Drop to Mixtral-8$\times$7B-Instruct yields a {0.2\%} average performance improvement and a {1.85$\times$} inference speedup. The code is released at: https://github.com/CASE-Lab-UMD/Capacity-Aware-MoE.
comment: ICLR 2026
♻ ☆ Towards Open-Ended Discovery for Low-Resource NLP EMNLP 2025
Natural Language Processing (NLP) for low-resource languages remains fundamentally constrained by the lack of textual corpora, standardized orthographies, and scalable annotation pipelines. While recent advances in large language models have improved cross-lingual transfer, they remain inaccessible to underrepresented communities due to their reliance on massive, pre-collected data and centralized infrastructure. In this position paper, we argue for a paradigm shift toward open-ended, interactive language discovery, where AI systems learn new languages dynamically through dialogue rather than static datasets. We contend that the future of language technology, particularly for low-resource and under-documented languages, must move beyond static data collection pipelines toward interactive, uncertainty-driven discovery, where learning emerges dynamically from human-machine collaboration instead of being limited to pre-existing datasets. We propose a framework grounded in joint human-machine uncertainty, combining epistemic uncertainty from the model with hesitation cues and confidence signals from human speakers to guide interaction, query selection, and memory retention. This paper is a call to action: we advocate a rethinking of how AI engages with human knowledge in under-documented languages, moving from extractive data collection toward participatory, co-adaptive learning processes that respect and empower communities while discovering and preserving the world's linguistic diversity. This vision aligns with principles of human-centered AI, emphasizing interactive, cooperative model building between AI systems and speakers.
comment: Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP) at EMNLP 2025
♻ ☆ Towards Reinforcement Learning from Neural Feedback: Mapping fNIRS Signals to Agent Performance AAAI
Reinforcement Learning from Human Feedback (RLHF) is a methodology that aligns agent behavior with human preferences by integrating user feedback into the agent's training process. This paper introduces a framework that guides agent training through implicit neural signals, with a focus on the neural classification problem. Our work presents and releases a novel dataset of functional near-infrared spectroscopy (fNIRS) recordings collected from 25 human participants across three domains: Pick-and-Place Robot, Lunar Lander, and Flappy Bird. We train multiple classifiers to predict varying levels of agent performance (optimal, suboptimal, or worst-case) from windows of preprocessed fNIRS features, achieving an average F1 score of 67% for binary and 46% for multi-class classification across conditions and domains. We also train multiple regressors to predict the degree of deviation between an agent's chosen action and a set of near-optimal policy actions, providing a continuous measure of performance. Finally, we evaluate cross-subject generalization and show that fine-tuning pre-trained models with a small sample of subject-specific data increases average F1 scores by 17% and 41% for binary and multi-class models, respectively. Our results demonstrate that mapping implicit fNIRS signals to agent performance is feasible and can be improved, laying the foundation for future Reinforcement Learning from Neural Feedback (RLNF) systems.
comment: Accepted to the Association for the Advancement of Artificial Intelligence (AAAI) 2026. To appear in the AAAI 2026 Proceedings
♻ ☆ Beyond the Mean: Fisher-Orthogonal Projection for Natural Gradient Descent in Large Batch Training AAAI
Modern GPUs are equipped with large amounts of high-bandwidth memory, enabling them to support mini-batch sizes of up to tens of thousands of training samples. However, most existing optimizers struggle to perform effectively at such a large batch size. As batch size increases, gradient noise decreases due to averaging over many samples, limiting the ability of first-order methods to escape sharp or suboptimal minima and reach the global minimum. Meanwhile, second-order methods like the natural gradient with Kronecker-Factored Approximate Curvature (KFAC) often require excessively high damping to remain stable at large batch sizes. This high damping effectively washes out the curvature information that gives these methods their advantage, reducing their performance to that of simple gradient descent. In this paper, we introduce Fisher-Orthogonal Projection (FOP), a novel technique that restores the effectiveness of the second-order method at very large batch sizes, enabling scalable training with improved generalization and faster convergence. FOP constructs a variance-aware update direction by leveraging gradients from two sub-batches, enhancing the average gradient with a component of the gradient difference that is orthogonal to the average under the Fisher-metric.
comment: Accepted at Proceedings of the 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26) (Oral)
♻ ☆ Decoupled Split Learning via Auxiliary Loss
Split learning is a distributed training paradigm where a neural network is partitioned between clients and a server, which allows data to remain at the client while only intermediate activations are shared. Traditional split learning relies on end-to-end backpropagation across the client-server split point. This incurs a large communication overhead (i.e., forward activations and backward gradients need to be exchanged every iteration) and significant memory use (for storing activations and gradients). In this paper, we develop a beyond-backpropagation training method for split learning. In this approach, the client and server train their model partitions semi-independently, using local loss signals instead of propagated gradients. In particular, the client's network is augmented with a small auxiliary classifier at the split point to provide a local error signal, while the server trains on the client's transmitted activations using the true loss function. This decoupling removes the need to send backward gradients, which cuts communication costs roughly in half and also reduces memory overhead (as each side only stores local activations for its own backward pass). We evaluate our approach on CIFAR-10 and CIFAR-100. Our experiments show two key results. First, the proposed approach achieves performance on par with standard split learning that uses backpropagation. Second, it significantly reduces communication (of transmitting activations/gradient) by 50% and peak memory usage by up to 58%.
♻ ☆ Towards Spatio-Temporal Extrapolation of Phase-Field Simulations with Convolution-Only Neural Networks
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
♻ ☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
Despite strong recent progress in Emotion Recognition in Conversation (ERC), two gaps remain: we lack clear understanding of which modeling choices materially affect performance, and we have limited linguistic analysis linking recognition findings to actionable generation cues. We address both via a systematic study on IEMOCAP. For recognition, we conduct controlled ablations with 10 random seeds and paired tests (with correction for multiple comparisons), yielding three findings. First, conversational context is dominant: performance saturates quickly, with roughly 90% of gain achieved using only the most recent 10-30 preceding turns. Second, hierarchical sentence representations improve utterance-only recognition (K=0), but the benefit vanishes once turn-level context is available, suggesting conversational history subsumes intra-utterance structure. Third, external affective lexicon (SenticNet) integration does not improve results, consistent with pretrained encoders already capturing affective signal. Under strictly causal (past-only) setting, our simple models attain strong performance (82.69% 4-way; 67.07% 6-way weighted F1). For linguistic analysis, we examine 5,286 discourse-marker occurrences and find reliable association between emotion and marker position (p < 0.0001). Sad utterances show reduced left-periphery marker usage (21.9%) relative to other emotions (28-32%), aligning with accounts linking left-periphery markers to active discourse management. This pattern is consistent with Sad benefiting most from conversational context (+22%p), suggesting sadness relies more on discourse history than overt pragmatic signaling.
♻ ☆ Statistical Estimation of Adversarial Risk in Large Language Models under Best-of-N Sampling
Large Language Models (LLMs) are typically evaluated for safety under single-shot or low-budget adversarial prompting, which underestimates real-world risk. In practice, attackers can exploit large-scale parallel sampling to repeatedly probe a model until a harmful response is produced. While recent work shows that attack success increases with repeated sampling, principled methods for predicting large-scale adversarial risk remain limited. We propose a scaling-aware Best-of-N estimation of risk, SABER, for modeling jailbreak vulnerability under Best-of-N sampling. We model sample-level success probabilities using a Beta distribution, the conjugate prior of the Bernoulli distribution, and derive an analytic scaling law that enables reliable extrapolation of large-N attack success rates from small-budget measurements. Using only n=100 samples, our anchored estimator predicts ASR@1000 with a mean absolute error of 1.66, compared to 12.04 for the baseline, which is an 86.2% reduction in estimation error. Our results reveal heterogeneous risk scaling profiles and show that models appearing robust under standard evaluation can experience rapid nonlinear risk amplification under parallel adversarial pressure. This work provides a low-cost, scalable methodology for realistic LLM safety assessment. We will release our code and evaluation scripts upon publication to future research.
♻ ☆ Deep Ensembles for Epistemic Uncertainty: A Frequentist Perspective
Decomposing prediction uncertainty into aleatoric (irreducible) and epistemic (reducible) components is critical for the reliable deployment of machine learning systems. While the mutual information between the response variable and model parameters is a principled measure for epistemic uncertainty, it requires access to the parameter posterior, which is computationally challenging to approximate. Consequently, practitioners often rely on probabilistic predictions from deep ensembles to quantify uncertainty, which have demonstrated strong empirical performance. However, a theoretical understanding of their success from a frequentist perspective remains limited. We address this gap by first considering a bootstrap-based estimator for epistemic uncertainty, which we prove is asymptotically correct. Next, we connect deep ensembles to the bootstrap estimator by decomposing it into data variability and training stochasticity; specifically, we show that deep ensembles capture the training stochasticity component. Through empirical studies, we show that this stochasticity component constitutes the majority of epistemic uncertainty, thereby explaining the effectiveness of deep ensembles.
♻ ☆ Rigor, Reliability, and Reproducibility Matter: A Decade-Scale Survey of 572 Code Benchmarks
Code-related benchmarks play a critical role in evaluating large language models (LLMs), yet their quality fundamentally shapes how the community interprets model capabilities. In the past few years, awareness of benchmark quality has grown. Yet, after a decade-scale (2014-2025) survey over 572 code benchmarks, we observed a lag between growing awareness and actual practice. For example, in 2025 alone, the number of benchmarks that ignore code coverage when providing test cases nearly matches the total count accumulated across the previous ten years. In response, we take a clear position: Code benchmarks must prioritize rigor in benchmark construction, reliability in evaluation, and reproducibility in release. To operationalize this position, we introduce a code benchmark guideline HOW2BENCH with 55 checklists. Finally, our further human study also exposed that the current issues not only stem from the significant effort required, but also from a lack of awareness regarding their importance.
comment: 65 pages
♻ ☆ FlowSteer: Interactive Agentic Workflow Orchestration via End-to-End Reinforcement Learning
In recent years, a variety of powerful agentic workflows have been applied to solve a wide range of human problems. However, existing workflow orchestration still faces key challenges, including high manual cost, reliance on specific operators/large language models (LLMs), and sparse reward signals. To address these challenges, we propose FlowSteer, an end-to-end reinforcement learning framework that takes a lightweight policy model as the agent and an executable canvas environment, automating workflow orchestration through multi-turn interaction. In this process, the policy model analyzes execution states and selects editing actions, while the canvas executes operators and returns feedback for iterative refinement. Moreover, FlowSteer provides a plug-and-play framework that supports diverse operator libraries and interchangeable LLM backends. To effectively train this interaction paradigm, we propose Canvas Workflow Relative Policy Optimization (CWRPO), which introduces diversity-constrained rewards with conditional release to stabilize learning and suppress shortcut behaviors. Experimental results on twelve datasets show that FlowSteer significantly outperforms baselines across various tasks.
comment: 41 pages, 7 figures, 6 tables. Project page: http://flowsteer.org/
♻ ☆ SoK: Blockchain-Based Decentralized AI (DeAI) IEEE
Centralization enhances the efficiency of Artificial Intelligence (AI) but also introduces critical challenges, including single points of failure, inherent biases, data privacy risks, and scalability limitations. To address these issues, blockchain-based Decentralized Artificial Intelligence (DeAI) has emerged as a promising paradigm that leverages decentralization and transparency to improve the trustworthiness of AI systems. Despite rapid adoption in industry, the academic community lacks a systematic analysis of DeAI's technical foundations, opportunities, and challenges. This work presents the first Systematization of Knowledge (SoK) on DeAI, offering a formal definition, a taxonomy of existing solutions based on the AI lifecycle, and an in-depth investigation of the roles of blockchain in enabling secure and incentive-compatible collaboration. We further review security risks across the DeAI lifecycle and empirically evaluate representative mitigation techniques. Finally, we highlight open research challenges and future directions for advancing blockchain-based DeAI.
comment: Accepted by IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 2026. This is a Systematization of Knowledge (SoK) for the rapidly evolving field of Decentralized AI (DeAI). We welcome valuable comments, suggestions, and collaboration to further refine and enhance this work. We hope our contribution will help accelerate the advancement of DeAI
Computation and Language 72
☆ NLP for Local Governance Meeting Records: A Focus Article on Tasks, Datasets, Metrics and Benchmark
Local governance meeting records are official documents, in the form of minutes or transcripts, documenting how proposals, discussions, and procedural actions unfold during institutional meetings. While generally structured, these documents are often dense, bureaucratic, and highly heterogeneous across municipalities, exhibiting significant variation in language, terminology, structure, and overall organization. This heterogeneity makes them difficult for non-experts to interpret and challenging for intelligent automated systems to process, limiting public transparency and civic engagement. To address these challenges, computational methods can be employed to structure and interpret such complex documents. In particular, Natural Language Processing (NLP) offers well-established methods that can enhance the accessibility and interpretability of governmental records. In this focus article, we review foundational NLP tasks that support the structuring of local governance meeting documents. Specifically, we review three core tasks: document segmentation, domain-specific entity extraction and automatic text summarization, which are essential for navigating lengthy deliberations, identifying political actors and personal information, and generating concise representations of complex decision-making processes. In reviewing these tasks, we discuss methodological approaches, evaluation metrics, and publicly available resources, while highlighting domain-specific challenges such as data scarcity, privacy constraints, and source variability. By synthesizing existing work across these foundational tasks, this article provides a structured overview of how NLP can enhance the structuring and accessibility of local governance meeting records.
☆ The Confidence Manifold: Geometric Structure of Correctness Representations in Language Models
When a language model asserts that "the capital of Australia is Sydney," does it know this is wrong? We characterize the geometry of correctness representations across 9 models from 5 architecture families. The structure is simple: the discriminative signal occupies 3-8 dimensions, performance degrades with additional dimensions, and no nonlinear classifier improves over linear separation. Centroid distance in the low-dimensional subspace matches trained probe performance (0.90 AUC), enabling few-shot detection: on GPT-2, 25 labeled examples achieve 89% of full-data accuracy. We validate causally through activation steering: the learned direction produces 10.9 percentage point changes in error rates while random directions show no effect. Internal probes achieve 0.80-0.97 AUC; output-based methods (P(True), semantic entropy) achieve only 0.44-0.64 AUC. The correctness signal exists internally but is not expressed in outputs. That centroid distance matches probe performance indicates class separation is a mean shift, making detection geometric rather than learned.
☆ DIAL-SUMMER: A Structured Evaluation Framework of Hierarchical Errors in Dialogue Summaries
Dialogues are a predominant mode of communication for humans, and it is immensely helpful to have automatically generated summaries of them (e.g., to revise key points discussed in a meeting, to review conversations between customer agents and product users). Prior works on dialogue summary evaluation largely ignore the complexities specific to this task: (i) shift in structure, from multiple speakers discussing information in a scattered fashion across several turns, to a summary's sentences, and (ii) shift in narration viewpoint, from speakers' first/second-person narration, standardized third-person narration in the summary. In this work, we introduce our framework DIALSUMMER to address the above. We propose DIAL-SUMMER's taxonomy of errors to comprehensively evaluate dialogue summaries at two hierarchical levels: DIALOGUE-LEVEL that focuses on the broader speakers/turns, and WITHIN-TURN-LEVEL that focuses on the information talked about inside a turn. We then present DIAL-SUMMER's dataset composed of dialogue summaries manually annotated with our taxonomy's fine-grained errors. We conduct empirical analyses of these annotated errors, and observe interesting trends (e.g., turns occurring in middle of the dialogue are the most frequently missed in the summary, extrinsic hallucinations largely occur at the end of the summary). We also conduct experiments on LLM-Judges' capability at detecting these errors, through which we demonstrate the challenging nature of our dataset, the robustness of our taxonomy, and the need for future work in this field to enhance LLMs' performance in the same. Code and inference dataset coming soon.
☆ Online Bayesian Imbalanced Learning with Bregman-Calibrated Deep Networks
Class imbalance remains a fundamental challenge in machine learning, where standard classifiers exhibit severe performance degradation in minority classes. Although existing approaches address imbalance through resampling or cost-sensitive learning during training, they require retraining or access to labeled target data when class distributions shift at deployment time, a common occurrence in real-world applications such as fraud detection, medical diagnosis, and anomaly detection. We present \textit{Online Bayesian Imbalanced Learning} (OBIL), a principled framework that decouples likelihood-ratio estimation from class-prior assumptions, enabling real-time adaptation to distribution shifts without model retraining. Our approach builds on the established connection between Bregman divergences and proper scoring rules to show that deep networks trained with such losses produce posterior probability estimates from which prior-invariant likelihood ratios can be extracted. We prove that these likelihood-ratio estimates remain valid under arbitrary changes in class priors and cost structures, requiring only a threshold adjustment for optimal Bayes decisions. We derive finite-sample regret bounds demonstrating that OBIL achieves $O(\sqrt{T \log T})$ regret against an oracle with perfect prior knowledge. Extensive experiments on benchmark datasets and medical diagnosis benchmarks under simulated deployment shifts demonstrate that OBIL maintains robust performance under severe distribution shifts, outperforming state-of-the-art methods in F1 Score when test distributions deviate significantly from the training conditions.
☆ Gender and Race Bias in Consumer Product Recommendations by Large Language Models
Large Language Models are increasingly employed in generating consumer product recommendations, yet their potential for embedding and amplifying gender and race biases remains underexplored. This paper serves as one of the first attempts to examine these biases within LLM-generated recommendations. We leverage prompt engineering to elicit product suggestions from LLMs for various race and gender groups and employ three analytical methods-Marked Words, Support Vector Machines, and Jensen-Shannon Divergence-to identify and quantify biases. Our findings reveal significant disparities in the recommendations for demographic groups, underscoring the need for more equitable LLM recommendation systems.
comment: Accepted at the 39th International Conference on Advanced Information Networking and Applications (AINA 2025)
☆ Emergent Search and Backtracking in Latent Reasoning Models
What happens when a language model thinks without words? Standard reasoning LLMs verbalize intermediate steps as chain-of-thought; latent reasoning transformers (LRTs) instead perform deliberation entirely in continuous hidden space. We investigate an LRT, decoding the model's evolving beliefs at every step on a multiple-choice QA benchmark. We find that the model spontaneously learns a structured search process in latent space. Deliberation follows a consistent trajectory: an exploration phase where probability mass spreads across candidates, tentative commitment to a frontrunner, and either convergence or backtracking. Backtracking is prevalent (32% of instances), beneficial (34% accuracy gain over non-backtracking instances), and predominantly directed away from the semantically closest distractor toward the correct answer. The search is adaptive: replacing distractors with implausible alternatives shortens exploration by 54%. Latent reasoning models achieve in activation space what chain-of-thought achieves through words: the ability to be wrong, notice, and recover.
☆ SiameseNorm: Breaking the Barrier to Reconciling Pre/Post-Norm
Modern Transformers predominantly adopt the Pre-Norm paradigm for its optimization stability, foregoing the superior potential of the unstable Post-Norm architecture. Prior attempts to combine their strengths typically lead to a stability-performance trade-off. We attribute this phenomenon to a structural incompatibility within a single-stream design: Any application of the Post-Norm operation inevitably obstructs the clean identity gradient preserved by Pre-Norm. To fundamentally reconcile these paradigms, we propose SiameseNorm, a two-stream architecture that couples Pre-Norm-like and Post-Norm-like streams with shared parameters. This design decouples the optimization dynamics of the two streams, retaining the distinct characteristics of both Pre-Norm and Post-Norm by enabling all residual blocks to receive combined gradients inherited from both paradigms, where one stream secures stability while the other enhances expressivity. Extensive pre-training experiments on 1.3B-parameter models demonstrate that SiameseNorm exhibits exceptional optimization robustness and consistently outperforms strong baselines. Code is available at https://github.com/Qwen-Applications/SiameseNorm.
☆ TDGNet: Hallucination Detection in Diffusion Language Models via Temporal Dynamic Graphs
Diffusion language models (D-LLMs) offer parallel denoising and bidirectional context, but hallucination detection for D-LLMs remains underexplored. Prior detectors developed for auto-regressive LLMs typically rely on single-pass cues and do not directly transfer to diffusion generation, where factuality evidence is distributed across the denoising trajectory and may appear, drift, or be self-corrected over time. We introduce TDGNet, a temporal dynamic graph framework that formulates hallucination detection as learning over evolving token-level attention graphs. At each denoising step, we sparsify the attention graph and update per-token memories via message passing, then apply temporal attention to aggregate trajectory-wide evidence for final prediction. Experiments on LLaDA-8B and Dream-7B across QA benchmarks show consistent AUROC improvements over output-based, latent-based, and static-graph baselines, with single-pass inference and modest overhead. These results highlight the importance of temporal reasoning on attention graphs for robust hallucination detection in diffusion language models.
☆ Implicit Strategic Optimization: Rethinking Long-Horizon Decision-Making in Adversarial Poker Environments
Training large language model (LLM) agents for adversarial games is often driven by episodic objectives such as win rate. In long-horizon settings, however, payoffs are shaped by latent strategic externalities that evolve over time, so myopic optimization and variation-based regret analyses can become vacuous even when the dynamics are predictable. To solve this problem, we introduce Implicit Strategic Optimization (ISO), a prediction-aware framework in which each agent forecasts the current strategic context and uses it to update its policy online. ISO combines a Strategic Reward Model (SRM) that estimates the long-run strategic value of actions with iso-grpo, a context-conditioned optimistic learning rule. We prove sublinear contextual regret and equilibrium convergence guarantees whose dominant terms scale with the number of context mispredictions; when prediction errors are bounded, our bounds recover the static-game rates obtained when strategic externalities are known. Experiments in 6-player No-Limit Texas Hold'em and competitive Pokemon show consistent improvements in long-term return over strong LLM and RL baselines, and graceful degradation under controlled prediction noise.
☆ Beyond Raw Detection Scores: Markov-Informed Calibration for Boosting Machine-Generated Text Detection
While machine-generated texts (MGTs) offer great convenience, they also pose risks such as disinformation and phishing, highlighting the need for reliable detection. Metric-based methods, which extract statistically distinguishable features of MGTs, are often more practical than complex model-based methods that are prone to overfitting. Given their diverse designs, we first place representative metric-based methods within a unified framework, enabling a clear assessment of their advantages and limitations. Our analysis identifies a core challenge across these methods: the token-level detection score is easily biased by the inherent randomness of the MGTs generation process. To address this, we theoretically and empirically reveal two relationships of context detection scores that may aid calibration: Neighbor Similarity and Initial Instability. We then propose a Markov-informed score calibration strategy that models these relationships using Markov random fields, and implements it as a lightweight component via a mean-field approximation, allowing our method to be seamlessly integrated into existing detectors. Extensive experiments in various real-world scenarios, such as cross-LLM and paraphrasing attacks, demonstrate significant gains over baselines with negligible computational overhead. The code is available at https://github.com/tmlr-group/MRF_Calibration.
☆ Free(): Learning to Forget in Malloc-Only Reasoning Models
Reasoning models enhance problem-solving by scaling test-time compute, yet they face a critical paradox: excessive thinking tokens often degrade performance rather than improve it. We attribute this to a fundamental architectural flaw: standard LLMs operate as "malloc-only" engines, continuously accumulating valid and redundant steps alike without a mechanism to prune obsolete information. To break this cycle, we propose Free()LM, a model that introduces an intrinsic self-forgetting capability via the Free-Module, a plug-and-play LoRA adapter. By iteratively switching between reasoning and cleaning modes, Free()LM dynamically identifies and prunes useless context chunks, maintaining a compact and noise-free state. Extensive experiments show that Free()LM provides consistent improvements across all model scales (8B to 685B). It achieves a 3.3% average improvement over top-tier reasoning baselines, even establishing a new SOTA on IMOanswerBench using DeepSeek V3.2-Speciale. Most notably, in long-horizon tasks where the standard Qwen3-235B-A22B model suffers a total collapse (0% accuracy), Free()LM restores performance to 50%. Our findings suggest that sustainable intelligence requires the freedom to forget as much as the power to think.
☆ Diverge to Induce Prompting: Multi-Rationale Induction for Zero-Shot Reasoning AACL 2025
To address the instability of unguided reasoning paths in standard Chain-of-Thought prompting, recent methods guide large language models (LLMs) by first eliciting a single reasoning strategy. However, relying on just one strategy for each question can still limit performance across diverse tasks. We propose Diverge-to-Induce Prompting (DIP), a framework that first prompts an LLM to generate multiple diverse high-level rationales for each question. Each rationale is then elaborated into a detailed, step-by-step draft plan. Finally, these draft plans are induced into a final plan. DIP enhances zero-shot reasoning accuracy without reliance on resource-intensive sampling. Experiments show that DIP outperforms single-strategy prompting, demonstrating the effectiveness of multi-plan induction for prompt-based reasoning.
comment: Accepted to Findings of IJCNLP-AACL 2025
☆ FlashVID: Efficient Video Large Language Models via Training-free Tree-based Spatiotemporal Token Merging ICLR 2026
Although Video Large Language Models (VLLMs) have shown remarkable capabilities in video understanding, they are required to process high volumes of visual tokens, causing significant computational inefficiency. Existing VLLMs acceleration frameworks usually compress spatial and temporal redundancy independently, which overlooks the spatiotemporal relationships, thereby leading to suboptimal spatiotemporal compression. The highly correlated visual features are likely to change in spatial position, scale, orientation, and other attributes over time due to the dynamic nature of video. Building on this insight, we introduce FlashVID, a training-free inference acceleration framework for VLLMs. Specifically, FlashVID utilizes Attention and Diversity-based Token Selection (ADTS) to select the most representative tokens for basic video representation, then applies Tree-based Spatiotemporal Token Merging (TSTM) for fine-grained spatiotemporal redundancy elimination. Extensive experiments conducted on three representative VLLMs across five video understanding benchmarks demonstrate the effectiveness and generalization of our method. Notably, by retaining only 10% of visual tokens, FlashVID preserves 99.1% of the performance of LLaVA-OneVision. Consequently, FlashVID can serve as a training-free and plug-and-play module for extending long video frames, which enables a 10x increase in video frame input to Qwen2.5-VL, resulting in a relative improvement of 8.6% within the same computational budget. Code is available at https://github.com/Fanziyang-v/FlashVID.
comment: Accepted by ICLR 2026 (Oral)
☆ Towards Adaptive, Scalable, and Robust Coordination of LLM Agents: A Dynamic Ad-Hoc Networking Perspective
Multi-agent architectures built on large language models (LLMs) have demonstrated the potential to realize swarm intelligence through well-crafted collaboration. However, the substantial burden of manual orchestration inherently raises an imperative to automate the design of agentic workflows. We frame such an agent coordination challenge as a classic problem in dynamic ad-hoc networking: How to establish adaptive and reliable communication among a scalable number of agentic hosts? In response to this unresolved dilemma, we introduce RAPS, a reputation-aware publish-subscribe paradigm for adaptive, scalable, and robust coordination of LLM agents. RAPS is grounded in the Distributed Publish-Subscribe Protocol, allowing LLM agents to exchange messages based on their declared intents rather than predefined topologies. Beyond this substrate, RAPS further incorporates two coherent overlays: (i) Reactive Subscription, enabling agents to dynamically refine their intents; and (ii) Bayesian Reputation, empowering each agent with a local watchdog to detect and isolate malicious peers. Extensive experiments over five benchmarks showcase that our design effectively reconciles adaptivity, scalability, and robustness in a unified multi-agent coordination framework.
☆ DeltaKV: Residual-Based KV Cache Compression via Long-Range Similarity
The deployment of efficient long-context LLMs in applications like autonomous agents, long-chain reasoning, and creative writing is fundamentally bottlenecked by the linear growth of KV cache memory. Existing compression and eviction methods often struggle to balance accuracy, compression ratio, and hardware efficiency. We propose DeltaKV, a residual-based KV cache compression framework motivated by two empirical findings: long-range inter-token similarity and highly shared latent components in KV representations. Instead of discarding tokens, DeltaKV encodes semantic residuals relative to retrieved historical references, preserving fidelity while substantially reducing storage. To translate compression gains into real system speedups, we further introduce Sparse-vLLM, a high-performance inference engine with decoupled memory management and kernels optimized for sparse and irregular KV layouts. Experiments show that DeltaKV reduces KV cache memory to 29\% of the original while maintaining near-lossless accuracy on LongBench, SCBench, and AIME. When integrated with Sparse-vLLM, it achieves up to 2$\times$ throughput improvement over vLLM in long-context scenarios, demonstrating a practical path toward scalable long-context LLM deployment. Code, model checkpoints, and datasets are available at https://github.com/CURRENTF/Sparse-vLLM.
comment: preprint
☆ The Judge Who Never Admits: Hidden Shortcuts in LLM-based Evaluation
Large language models (LLMs) are increasingly used as automatic judges to evaluate system outputs in tasks such as reasoning, question answering, and creative writing. A faithful judge should base its verdicts solely on content quality, remain invariant to irrelevant context, and transparently reflect the factors driving its decisions. We test this ideal via controlled cue perturbations-synthetic metadata labels injected into evaluation prompts-for six judge models: GPT-4o, Gemini-2.0-Flash, Gemma-3-27B, Qwen3-235B, Claude-3-Haiku, and Llama3-70B. Experiments span two complementary datasets with distinct evaluation regimes: ELI5 (factual QA) and LitBench (open-ended creative writing). We study six cue families: source, temporal, age, gender, ethnicity, and educational status. Beyond measuring verdict shift rates (VSR), we introduce cue acknowledgment rate (CAR) to quantify whether judges explicitly reference the injected cues in their natural-language rationales. Across cues with strong behavioral effects-e.g., provenance hierarchies (Expert > Human > LLM > Unknown), recency preferences (New > Old), and educational-status favoritism-CAR is typically at or near zero, indicating that shortcut reliance is largely unreported even when it drives decisions. Crucially, CAR is also dataset-dependent: explicit cue recognition is more likely to surface in the factual ELI5 setting for some models and cues, but often collapses in the open-ended LitBench regime, where large verdict shifts can persist despite zero acknowledgment. The combination of substantial verdict sensitivity and limited cue acknowledgment reveals an explanation gap in LLM-as-judge pipelines, raising concerns about reliability of model-based evaluation in both research and deployment.
☆ Accelerating Social Science Research via Agentic Hypothesization and Experimentation
Data-driven social science research is inherently slow, relying on iterative cycles of observation, hypothesis generation, and experimental validation. While recent data-driven methods promise to accelerate parts of this process, they largely fail to support end-to-end scientific discovery. To address this gap, we introduce EXPERIGEN, an agentic framework that operationalizes end-to-end discovery through a Bayesian optimization inspired two-phase search, in which a Generator proposes candidate hypotheses and an Experimenter evaluates them empirically. Across multiple domains, EXPERIGEN consistently discovers 2-4x more statistically significant hypotheses that are 7-17 percent more predictive than prior approaches, and naturally extends to complex data regimes including multimodal and relational datasets. Beyond statistical performance, hypotheses must be novel, empirically grounded, and actionable to drive real scientific progress. To evaluate these qualities, we conduct an expert review of machine-generated hypotheses, collecting feedback from senior faculty. Among 25 reviewed hypotheses, 88 percent were rated moderately or strongly novel, 70 percent were deemed impactful and worth pursuing, and most demonstrated rigor comparable to senior graduate-level research. Finally, recognizing that ultimate validation requires real-world evidence, we conduct the first A/B test of LLM-generated hypotheses, observing statistically significant results with p less than 1e-6 and a large effect size of 344 percent.
☆ Cross-Linguistic Persona-Driven Data Synthesis for Robust Multimodal Cognitive Decline Detection
Speech-based digital biomarkers represent a scalable, non-invasive frontier for the early identification of Mild Cognitive Impairment (MCI). However, the development of robust diagnostic models remains impeded by acute clinical data scarcity and a lack of interpretable reasoning. Current solutions frequently struggle with cross-lingual generalization and fail to provide the transparent rationales essential for clinical trust. To address these barriers, we introduce SynCog, a novel framework integrating controllable zero-shot multimodal data synthesis with Chain-of-Thought (CoT) deduction fine-tuning. Specifically, SynCog simulates diverse virtual subjects with varying cognitive profiles to effectively alleviate clinical data scarcity. This generative paradigm enables the rapid, zero-shot expansion of clinical corpora across diverse languages, effectively bypassing data bottlenecks in low-resource settings and bolstering the diagnostic performance of Multimodal Large Language Models (MLLMs). Leveraging this synthesized dataset, we fine-tune a foundational multimodal backbone using a CoT deduction strategy, empowering the model to explicitly articulate diagnostic thought processes rather than relying on black-box predictions. Extensive experiments on the ADReSS and ADReSSo benchmarks demonstrate that augmenting limited clinical data with synthetic phenotypes yields competitive diagnostic performance, achieving Macro-F1 scores of 80.67% and 78.46%, respectively, outperforming current baseline models. Furthermore, evaluation on an independent real-world Mandarin cohort (CIR-E) demonstrates robust cross-linguistic generalization, attaining a Macro-F1 of 48.71%. These findings constitute a critical step toward providing clinically trustworthy and linguistically inclusive cognitive assessment tools for global healthcare.
comment: 18 pages, 7 figures, 6 tables
☆ Lost in Translation? A Comparative Study on the Cross-Lingual Transfer of Composite Harms AAAI 2026
Most safety evaluations of large language models (LLMs) remain anchored in English. Translation is often used as a shortcut to probe multilingual behavior, but it rarely captures the full picture, especially when harmful intent or structure morphs across languages. Some types of harm survive translation almost intact, while others distort or disappear. To study this effect, we introduce CompositeHarm, a translation-based benchmark designed to examine how safety alignment holds up as both syntax and semantics shift. It combines two complementary English datasets, AttaQ, which targets structured adversarial attacks, and MMSafetyBench, which covers contextual, real-world harms, and extends them into six languages: English, Hindi, Assamese, Marathi, Kannada, and Gujarati. Using three large models, we find that attack success rates rise sharply in Indic languages, especially under adversarial syntax, while contextual harms transfer more moderately. To ensure scalability and energy efficiency, our study adopts lightweight inference strategies inspired by edge-AI design principles, reducing redundant evaluation passes while preserving cross-lingual fidelity. This design makes large-scale multilingual safety testing both computationally feasible and environmentally conscious. Overall, our results show that translated benchmarks are a necessary first step, but not a sufficient one, toward building grounded, resource-aware, language-adaptive safety systems.
comment: Accepted at the AICS Workshop, AAAI 2026
☆ Bielik Guard: Efficient Polish Language Safety Classifiers for LLM Content Moderation
As Large Language Models (LLMs) become increasingly deployed in Polish language applications, the need for efficient and accurate content safety classifiers has become paramount. We present Bielik Guard, a family of compact Polish language safety classifiers comprising two model variants: a 0.1B parameter model based on MMLW-RoBERTa-base and a 0.5B parameter model based on PKOBP/polish-roberta-8k. Fine-tuned on a community-annotated dataset of 6,885 Polish texts, these models classify content across five safety categories: Hate/Aggression, Vulgarities, Sexual Content, Crime, and Self-Harm. Our evaluation demonstrates that both models achieve strong performance on multiple benchmarks. The 0.5B variant offers the best overall discrimination capability with F1 scores of 0.791 (micro) and 0.785 (macro) on the test set, while the 0.1B variant demonstrates exceptional efficiency. Notably, Bielik Guard 0.1B v1.1 achieves superior precision (77.65\%) and very low false positive rate (0.63\%) on real user prompts, outperforming HerBERT-PL-Guard (31.55\% precision, 4.70\% FPR) despite identical model size. The models are publicly available and designed to provide appropriate responses rather than simple content blocking, particularly for sensitive categories like self-harm.
☆ Patches of Nonlinearity: Instruction Vectors in Large Language Models
Despite the recent success of instruction-tuned language models and their ubiquitous usage, very little is known of how models process instructions internally. In this work, we address this gap from a mechanistic point of view by investigating how instruction-specific representations are constructed and utilized in different stages of post-training: Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Via causal mediation, we identify that instruction representation is fairly localized in models. These representations, which we call Instruction Vectors (IVs), demonstrate a curious juxtaposition of linear separability along with non-linear causal interaction, broadly questioning the scope of the linear representation hypothesis commonplace in mechanistic interpretability. To disentangle the non-linear causal interaction, we propose a novel method to localize information processing in language models that is free from the implicit linear assumptions of patching-based techniques. We find that, conditioned on the task representations formed in the early layers, different information pathways are selected in the later layers to solve that task, i.e., IVs act as circuit selectors.
☆ SparseEval: Efficient Evaluation of Large Language Models by Sparse Optimization ICLR2026
As large language models (LLMs) continue to scale up, their performance on various downstream tasks has significantly improved. However, evaluating their capabilities has become increasingly expensive, as performing inference on a large number of benchmark samples incurs high computational costs. In this paper, we revisit the model-item performance matrix and show that it exhibits sparsity, that representative items can be selected as anchors, and that the task of efficient benchmarking can be formulated as a sparse optimization problem. Based on these insights, we propose SparseEval, a method that, for the first time, adopts gradient descent to optimize anchor weights and employs an iterative refinement strategy for anchor selection. We utilize the representation capacity of MLP to handle sparse optimization and propose the Anchor Importance Score and Candidate Importance Score to evaluate the value of each item for task-aware refinement. Extensive experiments demonstrate the low estimation error and high Kendall's~$τ$ of our method across a variety of benchmarks, showcasing its superior robustness and practicality in real-world scenarios. Code is available at {https://github.com/taolinzhang/SparseEval}.
comment: ICLR2026
☆ Safety Alignment as Continual Learning: Mitigating the Alignment Tax via Orthogonal Gradient Projection
Large Language Models (LLMs) often incur an alignment tax: safety post-training can reduce general utility (e.g., reasoning and coding). We argue that this tax primarily arises from continual-learning-style forgetting in sequential alignment, where distribution shift and conflicting objectives cause safety updates to overwrite pre-trained competencies. Accordingly, we cast safety alignment as a continual learning (CL) problem that must balance plasticity (acquiring safety constraints) and stability (preserving general abilities). We propose Orthogonal Gradient Projection for Safety Alignment (OGPSA), a lightweight method that mitigates interference by constraining each safety update to be orthogonal (in a first-order sense) to a learned subspace capturing general capabilities. Specifically, OGPSA estimates a low-rank capability subspace from gradients on a small reference set and projects the safety gradient onto its orthogonal complement before updating. This produces safety-directed updates that minimally perturb prior knowledge while retaining capacity for alignment. OGPSA is plug-and-play and integrates into standard post-training pipelines without large-scale replay, auxiliary objectives, or retraining. Across Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and sequential SFT$\rightarrow$DPO settings, OGPSA consistently improves the safety--utility Pareto frontier over standard baselines. For instance, on Qwen2.5-7B-Instruct under SFT$\rightarrow$DPO, OGPSA preserves strong safety while recovering general capability, improving SimpleQA from 0.53\% to 3.03\% and IFEval from 51.94\% to 63.96\%. Our source code is available at \href{https://github.com/SunGL001/OGPSA}{OGPSA}
☆ Emergent Misalignment is Easy, Narrow Misalignment is Hard ICLR 2026
Finetuning large language models on narrowly harmful datasets can cause them to become emergently misaligned, giving stereotypically `evil' responses across diverse unrelated settings. Concerningly, a pre-registered survey of experts failed to predict this result, highlighting our poor understanding of the inductive biases governing learning and generalisation in LLMs. We use emergent misalignment (EM) as a case study to investigate these inductive biases and find that models can just learn the narrow dataset task, but that the general solution appears to be more stable and more efficient. To establish this, we build on the result that different EM finetunes converge to the same linear representation of general misalignment, which can be used to mediate misaligned behaviour. We find a linear representation of the narrow solution also exists, and can be learned by introducing a KL divergence loss. Comparing these representations reveals that general misalignment achieves lower loss, is more robust to perturbations, and is more influential in the pre-training distribution. This work isolates a concrete representation of general misalignment for monitoring and mitigation. More broadly, it offers a detailed case study and preliminary metrics for investigating how inductive biases shape generalisation in LLMs. We open-source all code, datasets and model finetunes.
comment: Published at ICLR 2026
☆ Evaluating and Calibrating LLM Confidence on Questions with Multiple Correct Answers
Confidence calibration is essential for making large language models (LLMs) reliable, yet existing training-free methods have been primarily studied under single-answer question answering. In this paper, we show that these methods break down in the presence of multiple valid answers, where disagreement among equally correct responses leads to systematic underestimation of confidence. To enable a systematic study of this phenomenon, we introduce MACE, a benchmark of 12,000 factual questions spanning six domains with varying numbers of correct answers. Experiments across 15 representative calibration methods and four LLM families (7B-72B) reveal that while accuracy increases with answer cardinality, estimated confidence consistently decreases, causing severe miscalibration for questions with mixed answer counts. To address this issue, we propose Semantic Confidence Aggregation (SCA), which aggregates confidence over multiple high-probability sampled responses. SCA achieves state-of-the-art calibration performance under mixed-answer settings while preserving strong calibration on single-answer questions.
☆ TodoEvolve: Learning to Architect Agent Planning Systems
Planning has become a central capability for contemporary agent systems in navigating complex, long-horizon tasks, yet existing approaches predominantly rely on fixed, hand-crafted planning structures that lack the flexibility to adapt to the structural diversity of open-ended problems. To address this limitation, we introduce TodoEvolve, a meta-planning paradigm that autonomously synthesizes and dynamically revises task-specific planning architectures. Specifically, we first construct PlanFactory, a modular design space that standardizes diverse planning paradigms within a unified codebase encompassing topology, initialization, adaptation, and navigation, thereby providing a common interface for heterogeneous planning patterns. Leveraging PlanFactory, we collect high-quality planning trajectories and train Todo-14B via \textit{Impedance-Guided Preference Optimization} (IGPO), a multi-objective reinforcement learning objective that encourages the generation of planning systems that are performant, stable, and token-efficient across arbitrary tasks and agent backbones. Empirical evaluations on five agentic benchmarks demonstrate that TodoEvolve consistently surpasses carefully engineered planning modules while maintaining economical API costs and runtime overhead.
☆ SPD-Faith Bench: Diagnosing and Improving Faithfulness in Chain-of-Thought for Multimodal Large Language Models
Chain-of-Thought reasoning is widely used to improve the interpretability of multimodal large language models (MLLMs), yet the faithfulness of the generated reasoning traces remains unclear. Prior work has mainly focused on perceptual hallucinations, leaving reasoning level unfaithfulness underexplored. To isolate faithfulness from linguistic priors, we introduce SPD-Faith Bench, a diagnostic benchmark based on fine-grained image difference reasoning that enforces explicit visual comparison. Evaluations on state-of-the-art MLLMs reveal two systematic failure modes, perceptual blindness and perception-reasoning dissociation. We trace these failures to decaying visual attention and representation shifts in the residual stream. Guided by this analysis, we propose SAGE, a train-free visual evidence-calibrated framework that improves visual routing and aligns reasoning with perception. Our results highlight the importance of explicitly evaluating faithfulness beyond response correctness. Our benchmark and codes are available at https://github.com/Johanson-colab/SPD-Faith-Bench.
comment: 53 pages, 42 figures, 14 tables
☆ Data Darwinism Part I: Unlocking the Value of Scientific Data for Pre-training
Data quality determines foundation model performance, yet systematic processing frameworks are lacking. We introduce Data Darwinism, a ten-level taxonomy (L0-L9) that conceptualizes data-model co-evolution: advanced models produce superior data for next-generation systems. We validate this on scientific literature by constructing Darwin-Science, a 900B-token corpus (L0-L5). We identify a learnability gap in raw scientific text, which we bridge via L4 (Generative Refinement) and L5 (Cognitive Completion) using frontier LLMs to explicate reasoning and terminology. To ensure rigorous attribution, we pre-trained daVinci-origin-3B/7B models from scratch, excluding scientific content to create contamination-free baselines. After 600B tokens of continued pre-training, Darwin-Science outperforms baselines by +2.12 (3B) and +2.95 (7B) points across 20+ benchmarks, rising to +5.60 and +8.40 points on domain-aligned tasks. Systematic progression to L5 yields a +1.36 total gain, confirming that higher-level processing unlocks latent data value. We release the Darwin-Science corpus and daVinci-origin models to enable principled, co-evolutionary development.
☆ LLMs Know More About Numbers than They Can Say EACL 2026
Although state-of-the-art LLMs can solve math problems, we find that they make errors on numerical comparisons with mixed notation: "Which is larger, $5.7 \times 10^2$ or $580$?" This raises a fundamental question: Do LLMs even know how big these numbers are? We probe the hidden states of several smaller open-source LLMs. A single linear projection of an appropriate hidden layer encodes the log-magnitudes of both kinds of numerals, allowing us to recover the numbers with relative error of about 2.3% (on restricted synthetic text) or 19.06% (on scientific papers). Furthermore, the hidden state after reading a pair of numerals encodes their ranking, with a linear classifier achieving over 90% accuracy. Yet surprisingly, when explicitly asked to rank the same pairs of numerals, these LLMs achieve only 50-70% accuracy, with worse performance for models whose probes are less effective. Finally, we show that incorporating the classifier probe's log-loss as an auxiliary objective during finetuning brings an additional 3.22% improvement in verbalized accuracy over base models, demonstrating that improving models' internal magnitude representations can enhance their numerical reasoning capabilities.
comment: EACL 2026
☆ Pruning as a Cooperative Game: Surrogate-Assisted Layer Contribution Estimation for Large Language Models ICLR 2026
While large language models (LLMs) demonstrate impressive performance across various tasks, their deployment in real-world scenarios is still constrained by high computational demands. Layer-wise pruning, a commonly employed strategy to mitigate inference costs, can partially address this challenge. However, existing approaches generally depend on static heuristic rules and fail to account for the interdependencies among layers, thereby limiting the effectiveness of the pruning process. To this end, this paper proposes a game-theoretic framework that formulates layer pruning as a cooperative game in which each layer acts as a player and model performance serves as the utility. As computing exact Shapley values is computationally infeasible for large language models (LLMs), we propose using a lightweight surrogate network to estimate layer-wise marginal contributions. This network can predict LLM performance for arbitrary layer combinations at a low computational cost. Additionally, we employ stratified Monte Carlo mask sampling to further reduce the cost of Sharpley value estimation. This approach captures inter-layer dependencies and dynamically identifies critical layers for pruning. Extensive experiments demonstrate the consistent superiority of our method in terms of perplexity and zero-shot accuracy, achieving more efficient and effective layer-wise pruning for large language models.
comment: Accepted by ICLR 2026
☆ Thinking Makes LLM Agents Introverted: How Mandatory Thinking Can Backfire in User-Engaged Agents
Eliciting reasoning has emerged as a powerful technique for improving the performance of large language models (LLMs) on complex tasks by inducing thinking. However, their effectiveness in realistic user-engaged agent scenarios remains unclear. In this paper, we conduct a comprehensive study on the effect of explicit thinking in user-engaged LLM agents. Our experiments span across seven models, three benchmarks, and two thinking instantiations, and we evaluate them through both a quantitative response taxonomy analysis and qualitative failure propagation case studies. Contrary to expectations, we find that mandatory thinking often backfires on agents in user-engaged settings, causing anomalous performance degradation across various LLMs. Our key finding reveals that thinking makes agents more ``introverted'' by shortening responses and reducing information disclosure to users, which weakens agent-user information exchange and leads to downstream task failures. Furthermore, we demonstrate that explicitly prompting for information disclosure reliably improves performance across diverse model families, suggesting that proactive transparency is a vital lever for agent optimization. Overall, our study suggests that information transparency awareness is a crucial yet underexplored perspective for the future design of reasoning agents in real-world scenarios. Our code is available at https://github.com/deeplearning-wisc/Thinking-Agent.
comment: 27 pages, 19 figures
☆ Emergent Structured Representations Support Flexible In-Context Inference in Large Language Models
Large language models (LLMs) exhibit emergent behaviors suggestive of human-like reasoning. While recent work has identified structured, human-like conceptual representations within these models, it remains unclear whether they functionally rely on such representations for reasoning. Here we investigate the internal processing of LLMs during in-context concept inference. Our results reveal a conceptual subspace emerging in middle to late layers, whose representational structure persists across contexts. Using causal mediation analyses, we demonstrate that this subspace is not merely an epiphenomenon but is functionally central to model predictions, establishing its causal role in inference. We further identify a layer-wise progression where attention heads in early-to-middle layers integrate contextual cues to construct and refine the subspace, which is subsequently leveraged by later layers to generate predictions. Together, these findings provide evidence that LLMs dynamically construct and use structured, latent representations in context for inference, offering insights into the computational processes underlying flexible adaptation.
comment: 27 pages, 16 figures
☆ Attn-GS: Attention-Guided Context Compression for Efficient Personalized LLMs
Personalizing large language models (LLMs) to individual users requires incorporating extensive interaction histories and profiles, but input token constraints make this impractical due to high inference latency and API costs. Existing approaches rely on heuristic methods such as selecting recent interactions or prompting summarization models to compress user profiles. However, these methods treat context as a monolithic whole and fail to consider how LLMs internally process and prioritize different profile components. We investigate whether LLMs' attention patterns can effectively identify important personalization signals for intelligent context compression. Through preliminary studies on representative personalization tasks, we discover that (a) LLMs' attention patterns naturally reveal important signals, and (b) fine-tuning enhances LLMs' ability to distinguish between relevant and irrelevant information. Based on these insights, we propose Attn-GS, an attention-guided context compression framework that leverages attention feedback from a marking model to mark important personalization sentences, then guides a compression model to generate task-relevant, high-quality compressed user contexts. Extensive experiments demonstrate that Attn-GS significantly outperforms various baselines across different tasks, token limits, and settings, achieving performance close to using full context while reducing token usage by 50 times.
☆ SRR-Judge: Step-Level Rating and Refinement for Enhancing Search-Integrated Reasoning in Search Agents
Recent deep search agents built on large reasoning models (LRMs) excel at complex question answering by iteratively planning, acting, and gathering evidence, a capability known as search-integrated reasoning. However, mainstream approaches often train this ability using only outcome-based supervision, neglecting the quality of intermediate thoughts and actions. We introduce SRR-Judge, a framework for reliable step-level assessment of reasoning and search actions. Integrated into a modified ReAct-style rate-and-refine workflow, SRR-Judge provides fine-grained guidance for search-integrated reasoning and enables efficient post-training annotation. Using SRR-annotated data, we apply an iterative rejection sampling fine-tuning procedure to enhance the deep search capability of the base agent. Empirically, SRR-Judge delivers more reliable step-level evaluations than much larger models such as DeepSeek-V3.1, with its ratings showing strong correlation with final answer correctness. Moreover, aligning the policy with SRR-Judge annotated trajectories leads to substantial performance gains, yielding over a 10 percent average absolute pass@1 improvement across challenging deep search benchmarks.
♻ ☆ Virtual Community: An Open World for Humans, Robots, and Society
The rapid progress in AI and Robotics may lead to a profound societal transformation, as humans and robots begin to coexist within shared communities, introducing both opportunities and challenges. To explore this future, we present Virtual Community-an open-world platform for humans, robots, and society-built on a universal physics engine and grounded in real-world 3D scenes. With Virtual Community, we aim to enable the study of embodied social intelligence at scale. To support these, Virtual Community features: 1) An open-source multi-agent physics simulator that supports robots, humans, and their interactions within a society; 2) A large-scale, real-world aligned community generation pipeline, including vast outdoor space, diverse indoor scenes, and a community of grounded agents with rich characters and appearances. Leveraging Virtual Community, we propose two novel challenges. The Community Planning Challenge evaluates multi-agent reasoning and planning ability in open-world settings, such as cooperating to help agents with daily activities and efficiently connecting other agents. The Community Robot Challenge requires multiple heterogeneous robots to collaborate in solving complex open-world tasks. We evaluate various baselines on these tasks and demonstrate the challenges in both high-level open-world task planning and low-level cooperation controls. We hope that Virtual Community will unlock further study of human-robot coexistence within open-world environments.
comment: website https://virtual-community-ai.github.io/
♻ ☆ Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts ICLR 2026
The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation to balance performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where underloaded experts complete computations early but must wait for overloaded experts, leading to global delays. We define this phenomenon as the \textbf{\textit{Straggler Effect}}, as the most burdened experts dictate the overall inference latency. To address this, we first propose \textit{\textbf{Capacity-Aware Token Drop}}, which enforces expert capacity limits by discarding excess tokens from overloaded experts, effectively reducing load imbalance with minimal performance impact (e.g., $30\%$ speedup with only $0.9\%$ degradation on OLMoE). Next, given the presence of low-load experts remaining well below the capacity threshold, we introduce \textit{\textbf{Capacity-Aware Expanded Drop}}, which allows tokens to include additional local experts in their candidate set before enforcing strict local capacity constraints, thereby improving load balance and enhancing the utilization of underused experts. Extensive experiments on both language and multimodal MoE models demonstrate the effectiveness of our approach, yielding substantial gains in expert utilization, model performance, and inference efficiency, e.g., applying Expanded Drop to Mixtral-8$\times$7B-Instruct yields a {0.2\%} average performance improvement and a {1.85$\times$} inference speedup. The code is released at: https://github.com/CASE-Lab-UMD/Capacity-Aware-MoE.
comment: ICLR 2026
♻ ☆ Towards Open-Ended Discovery for Low-Resource NLP EMNLP 2025
Natural Language Processing (NLP) for low-resource languages remains fundamentally constrained by the lack of textual corpora, standardized orthographies, and scalable annotation pipelines. While recent advances in large language models have improved cross-lingual transfer, they remain inaccessible to underrepresented communities due to their reliance on massive, pre-collected data and centralized infrastructure. In this position paper, we argue for a paradigm shift toward open-ended, interactive language discovery, where AI systems learn new languages dynamically through dialogue rather than static datasets. We contend that the future of language technology, particularly for low-resource and under-documented languages, must move beyond static data collection pipelines toward interactive, uncertainty-driven discovery, where learning emerges dynamically from human-machine collaboration instead of being limited to pre-existing datasets. We propose a framework grounded in joint human-machine uncertainty, combining epistemic uncertainty from the model with hesitation cues and confidence signals from human speakers to guide interaction, query selection, and memory retention. This paper is a call to action: we advocate a rethinking of how AI engages with human knowledge in under-documented languages, moving from extractive data collection toward participatory, co-adaptive learning processes that respect and empower communities while discovering and preserving the world's linguistic diversity. This vision aligns with principles of human-centered AI, emphasizing interactive, cooperative model building between AI systems and speakers.
comment: Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP) at EMNLP 2025
♻ ☆ What Makes LLM Agent Simulations Useful for Policy Practice? An Iterative Design Study in Emergency Preparedness
Policymakers must often act under conditions of deep uncertainty, such as emergency response, where predicting the specific impacts of a policy apriori is implausible. Large Language Model (LLM) agent simulations have been proposed as tools to support policymakers under these conditions, yet little is known about how such simulations become useful for real-world policy practice. To address this gap, we conducted a year-long, stakeholder-engaged design process with a university emergency preparedness team. Through iterative design cycles, we developed and refined an LLM agent simulation of a large-scale campus gathering, ultimately scaling to 13,000 agents that modeled crowd movement and communication under various emergency scenarios. Rather than producing predictive forecasts, these simulations supported policy practice by shaping volunteer training, evacuation procedures, and infrastructure planning. Analyzing these findings, we identify three design process implications for making LLM agent simulations that are useful for policy practice: start from verifiable scenarios to bootstrap trust, use preliminary simulations to elicit tacit domain knowledge, and treat simulation capabilities and policy implementation as co-evolving.
♻ ☆ Compressed code: the hidden effects of quantization and distillation on programming tokens
Large Language Models (LLMs) have demonstrated exceptional code generation capabilities, yet their token-level mechanisms remain underexplored, particularly in compressed models. Through systematic analysis of programming language token representations, we characterize how programming languages are encoded in LLM tokenizers by analyzing their vocabulary distribution and keyword coverage patterns. We introduce a novel cold-start probability analysis method that provides insights into model behavior without requiring explicit prompts. Additionally, we present a comprehensive evaluation of how different model optimization techniques - including quantization, distillation, model scaling, and task-specific fine-tuning - affect token-level representations and code generation quality. Our experiments, supported by comprehensive probability distribution analysis and evaluation metrics, reveal critical insights into token-level behavior and provide empirically-validated guidelines for maintaining code generation quality under various optimization constraints. These findings advance both theoretical understanding of LLM code generation and practical implementation of optimized models in production environments.
comment: 18 pages, 1 figure and 6 tables
♻ ☆ Do Language Models Update their Forecasts with New Information?
Prior work has largely treated forecasting as a static task, failing to consider how forecasts and the confidence in them should evolve as new evidence emerges. To address this gap, we introduce EvolveCast, a framework for evaluating whether large language models revise their forecasts appropriately in response to new information. In particular, EvolveCast assesses whether LLMs update their forecasts when presented with information released after their training cutoff. We use human forecasters as a comparative reference to assess forecast updates and confidence calibration under new information. While LLMs demonstrate some responsiveness to new information, their updates are often inconsistent or overly conservative. We further find that both verbalized and logits-based confidence estimates remain far from the human reference standard. Across settings with a variety of LLMs, models tend to be conservative in updating their forecasts. These findings suggest that current approaches (e.g., RAG-based methods) for updating model knowledge are insufficient for probabilistic reasoning; models treat new information as retrieval context rather than evidence that shifts posterior probability. EvolveCast thus underscores the need for more robust mechanisms to incorporate external knowledge into belief dynamics.
♻ ☆ ArkTS-CodeSearch: A Open-Source ArkTS Dataset for Code Retrieval
ArkTS is a core programming language in the OpenHarmony ecosystem, yet research on ArkTS code intelligence is hindered by the lack of public datasets and evaluation benchmarks. This paper presents a large-scale ArkTS dataset constructed from open-source repositories, targeting code retrieval and code evaluation tasks. We design a single-search task, where natural language comments are used to retrieve corresponding ArkTS functions. ArkTS repositories are crawled from GitHub and Gitee, and comment-function pairs are extracted using tree-sitter-arkts, followed by cross-platform deduplication and statistical analysis of ArkTS function types. We further evaluate existing open-source code embedding models on the single-search task and perform fine-tuning using both ArkTS and TypeScript training datasets, resulting in a high-performing model for ArkTS code understanding. This work establishes the first systematic benchmark for ArkTS code retrieval. Both the dataset and our fine-tuned model are available at https://huggingface.co/hreyulog/embedinggemma_arkts and https://huggingface.co/datasets/hreyulog/arkts-code-docstring .
♻ ☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
Despite strong recent progress in Emotion Recognition in Conversation (ERC), two gaps remain: we lack clear understanding of which modeling choices materially affect performance, and we have limited linguistic analysis linking recognition findings to actionable generation cues. We address both via a systematic study on IEMOCAP. For recognition, we conduct controlled ablations with 10 random seeds and paired tests (with correction for multiple comparisons), yielding three findings. First, conversational context is dominant: performance saturates quickly, with roughly 90% of gain achieved using only the most recent 10-30 preceding turns. Second, hierarchical sentence representations improve utterance-only recognition (K=0), but the benefit vanishes once turn-level context is available, suggesting conversational history subsumes intra-utterance structure. Third, external affective lexicon (SenticNet) integration does not improve results, consistent with pretrained encoders already capturing affective signal. Under strictly causal (past-only) setting, our simple models attain strong performance (82.69% 4-way; 67.07% 6-way weighted F1). For linguistic analysis, we examine 5,286 discourse-marker occurrences and find reliable association between emotion and marker position (p < 0.0001). Sad utterances show reduced left-periphery marker usage (21.9%) relative to other emotions (28-32%), aligning with accounts linking left-periphery markers to active discourse management. This pattern is consistent with Sad benefiting most from conversational context (+22%p), suggesting sadness relies more on discourse history than overt pragmatic signaling.
♻ ☆ Kahaani: A Multimodal Co-Creative Storytelling System
This paper introduces Kahaani, a multimodal, co-creative storytelling system that leverages Generative Artificial Intelligence, designed for children to address the challenge of sustaining engagement to foster educational narrative experiences. Here we define co-creative as a collaborative creative process in which both the child and Kahaani contribute to the generation of the story. The system combines Large Language Model (LLM), Text-to-Speech (TTS), Text-to-Music (TTM), and Text-to-Video (TTV) generation to produce a rich, immersive, and accessible storytelling experience. The system grounds the co-creation process in two classical storytelling framework, Freytag's Pyramid and Propp's Narrative Functions. The main goals of Kahaani are: (1) to help children improve their English skills, (2) to teach important life lessons through story morals, and (3) to help them understand how stories are structured, all in a fun and engaging way. We present evaluations for each AI component used, along with a user study involving three parent-child pairs to assess the overall experience and educational value of the system.
♻ ☆ Rigor, Reliability, and Reproducibility Matter: A Decade-Scale Survey of 572 Code Benchmarks
Code-related benchmarks play a critical role in evaluating large language models (LLMs), yet their quality fundamentally shapes how the community interprets model capabilities. In the past few years, awareness of benchmark quality has grown. Yet, after a decade-scale (2014-2025) survey over 572 code benchmarks, we observed a lag between growing awareness and actual practice. For example, in 2025 alone, the number of benchmarks that ignore code coverage when providing test cases nearly matches the total count accumulated across the previous ten years. In response, we take a clear position: Code benchmarks must prioritize rigor in benchmark construction, reliability in evaluation, and reproducibility in release. To operationalize this position, we introduce a code benchmark guideline HOW2BENCH with 55 checklists. Finally, our further human study also exposed that the current issues not only stem from the significant effort required, but also from a lack of awareness regarding their importance.
comment: 65 pages
♻ ☆ AutoMixer: Checkpoint Artifacts as Automatic Data Mixers ACL 2025
In language model training, it is desirable to equip models with capabilities from various tasks. However, it is not clear how to directly obtain the right data mixtures for these capabilities as the relationship between data and tasks is difficult to be modeled. In this work, we observe that checkpoint models exhibit emerging capabilities at different points in the training trajectory. Often, the training process saves checkpoints as artifacts that are under-utilized as a source of in-training data signals. We identify these artifact models based on their respective capabilities on the benchmarks and leverage them as data mixers by using their aggregated first-order influence approximation over source data. We demonstrated on eight reasoning benchmarks that the proposed framework shows significant improvements in the pretraining setting, with performance improvements of up to 1.93%. Overall, this shows the potential of checkpoint models to enhance data quality and optimize data mixtures.
comment: Accepted at ACL 2025
♻ ☆ Nondeterministic Polynomial-time Problem Challenge: An Ever-Scaling Reasoning Benchmark for LLMs
Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the ever-scalingness for building the benchmarks which are scaling over complexity against crushing, instance against hacking and exploitation, oversight for easy verification, and coverage for real-world relevance. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver, which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval, which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs to below 10%, demonstrating that NPPC is not crushed by current models, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, and iii) the numbers of tokens in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. Through continuously scaling analysis, NPPC can provide critical insights into the limits of LLMs' reasoning capabilities, exposing fundamental limitations and suggesting future directions for further improvements.
comment: Accepted to TMLR
♻ ☆ Copy-Paste to Mitigate Large Language Model Hallucinations ICLR 2026
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM
comment: Accepted to ICLR 2026
♻ ☆ Achieving Unanimous Consensus Through Multi-Agent Deliberation
Blockchain consensus mechanisms have relied on algorithms such as Proof-of-Work (PoW) and Proof-of-Stake (PoS) to ensure network functionality and integrity. However, these approaches struggle with adaptability for decision-making where the opinions of each matter rather than reaching an agreement based on honest majority or weighted consensus. This paper introduces a novel deliberation-based consensus mechanism where Large Language Models (LLMs) act as rational agents engaging in structured discussions to reach a unanimous consensus. By leveraging graded consensus and a multi-round deliberation process, our approach ensures unanimous consensus for definitive problems and graded consensus for prioritized decision problems and policies. We provide a formalization of our system and use it to show that the properties of blockchains are maintained, while also addressing the behavior in terms of adversaries, stalled deliberations, and confidence in consensus. Moreover, experimental results demonstrate system feasibility, showcasing convergence, block properties, and accuracy, which enable deliberative decision-making on blockchain networks.
comment: 6 pages, 4 figure, 2 tables
♻ ☆ Bringing Emerging Architectures to Sequence Labeling in NLP EACL 2026
Pretrained Transformer encoders are the dominant approach to sequence labeling. While some alternative architectures-such as xLSTMs, structured state-space models, diffusion models, and adversarial learning-have shown promise in language modeling, few have been applied to sequence labeling, and mostly on flat or simplified tasks. We study how these architectures adapt across tagging tasks that vary in structural complexity, label space, and token dependencies, with evaluation spanning multiple languages. We find that the strong performance previously observed in simpler settings does not always generalize well across languages or datasets, nor does it extend to more complex structured tasks.
comment: Accepted at EACL 2026
♻ ☆ Tree Search for Language Model Agents
Autonomous agents powered by language models (LMs) have demonstrated promise in their ability to perform decision-making tasks such as web automation. However, a key limitation remains: LMs, primarily optimized for natural language understanding and generation, struggle with multi-step reasoning, planning, and using environmental feedback when attempting to solve realistic computer tasks. Towards addressing this, we propose an inference-time search algorithm for LM agents to explicitly perform exploration and multi-step planning in interactive web environments. Our approach is a form of best-first tree search that operates within the actual environment space, and is complementary with most existing state-of-the-art agents. It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks. On the challenging VisualWebArena benchmark, applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative increase in success rate compared to the same baseline without search, setting a state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0% relative improvement over a baseline agent, setting a competitive success rate of 19.2%. Our experiments highlight the effectiveness of search for web agents, and we demonstrate that performance scales with increased test-time compute. We conduct a thorough analysis of our results to highlight improvements from search, limitations, and promising directions for future work. Our code and models are publicly released at https://jykoh.com/search-agents.
comment: 13 pages. Models and code available at https://jykoh.com/search-agents
♻ ☆ Agentic Vehicles for Human-Centered Mobility
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Autonomous vehicles (AuVs) are therefore understood as systems that perceive their environment and execute pre-programmed tasks independently of external input, consistent with the SAE levels of automated driving. Yet recent research and real-world deployments have begun to showcase vehicles that exhibit behaviors outside the scope of this definition. These include natural language interaction with humans, goal adaptation, contextual reasoning, external tool use, and the handling of unforeseen ethical dilemmas, enabled in part by multimodal large language models (LLMs). These developments highlight not only a gap between technical autonomy and the broader cognitive and social capacities required for human-centered mobility, but also the emergence of a form of vehicle intelligence that currently lacks a clear designation. To address this gap, the paper introduces the concept of agentic vehicles (AgVs): vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. It synthesizes recent advances in agentic systems and suggests how AgVs can complement and even reshape conventional autonomy to ensure mobility services are aligned with user and societal needs. The paper concludes by outlining key challenges in the development and governance of AgVs and their potential role in shaping future agentic transportation systems.
♻ ☆ The Geometry of Refusal in Large Language Models: Concept Cones and Representational Independence
The safety alignment of large language models (LLMs) can be circumvented through adversarially crafted inputs, yet the mechanisms by which these attacks bypass safety barriers remain poorly understood. Prior work suggests that a single refusal direction in the model's activation space determines whether an LLM refuses a request. In this study, we propose a novel gradient-based approach to representation engineering and use it to identify refusal directions. Contrary to prior work, we uncover multiple independent directions and even multi-dimensional concept cones that mediate refusal. Moreover, we show that orthogonality alone does not imply independence under intervention, motivating the notion of representational independence that accounts for both linear and non-linear effects. Using this framework, we identify mechanistically independent refusal directions. We show that refusal mechanisms in LLMs are governed by complex spatial structures and identify functionally independent directions, confirming that multiple distinct mechanisms drive refusal behavior. Our gradient-based approach uncovers these mechanisms and can further serve as a foundation for future work on understanding LLMs.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ PairUni: Pairwise Training for Unified Multimodal Language Models
Unified Vision-Language Models (UVLMs) perform both understanding and generation within a single architecture. Since these models rely on heterogeneous data and supervision, balancing both generation and understanding in reinforcement learning (RL) is challenging. To address this challenge, we propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. Specifically, we construct a unified paired dataset by synthesizing aligned instances via cross-modal semantic completion and retrieving semantically related samples. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present PairGRPO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. Extensive experiments across diverse UVLM architectures (Autoregressive and Discrete Diffusion) and scales (1B to 14B) demonstrate that PairUni yields consistent improvements over strong baselines. Notably, our method also demonstrates strong generalization by improving performance on image editing tasks without using any editing-specific data. Codes are available at https://github.com/Haochen-Wang409/PairUni.
comment: 22 pages, 11 figures, and 10 tables
♻ ☆ Building Multilingual Datasets for Predicting Mental Health Severity through LLMs: Prospects and Challenges
Large Language Models (LLMs) are increasingly being integrated into various medical fields, including mental health support systems. However, there is a gap in research regarding the effectiveness of LLMs in non-English mental health support applications. To address this problem, we present a novel multilingual adaptation of widely-used mental health datasets, translated from English into six languages (e.g., Greek, Turkish, French, Portuguese, German, and Finnish). This dataset enables a comprehensive evaluation of LLM performance in detecting mental health conditions and assessing their severity across multiple languages. By experimenting with GPT and Llama, we observe considerable variability in performance across languages, despite being evaluated on the same translated dataset. This inconsistency underscores the complexities inherent in multilingual mental health support, where language-specific nuances and mental health data coverage can affect the accuracy of the models. Through comprehensive error analysis, we emphasize the risks of relying exclusively on LLMs in medical settings (e.g., their potential to contribute to misdiagnoses). Moreover, our proposed approach offers significant cost savings for multilingual tasks, presenting a major advantage for broad-scale implementation.
♻ ☆ RARe: Retrieval Augmented Retrieval with In-Context Examples
While in-context learning is well-studied with decoder-only language models (LLMs), its utility for encoder-only models remains underexplored. We study in-context learning for encoder-only models for text retrieval tasks. Can incorporating in-context examples (query-document pairs) to the target query enhance retriever performance? Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This approach achieves performance gains of up to +2.72% nDCG across open-domain retrieval datasets (BeIR, RAR-b) compared to using the target query only as an input. In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation for retrievers and lay the foundation for future work.
comment: COLM 2025
♻ ☆ Dynamic Rank Reinforcement Learning for Adaptive Low-Rank Multi-Head Self Attention in Large Language Models
Dynamic Rank Reinforcement Learning (DR-RL) approximations rely on static rank assumptions, limiting their flexibility across diverse linguistic contexts. Our method dynamically modulates ranks based on real-time sequence dynamics, layer-specific sensitivities, and hardware constraints. The core innovation is a deep reinforcement learning agent that formulates rank selection as a sequential policy optimization problem, strictly balancing attention fidelity against computational latency. To ensure stability during inference, we derive and employ online matrix perturbation bounds, enabling incremental rank updates without the prohibitive cost of full decomposition. Furthermore, the integration of a lightweight Transformer-based policy network and batched Singular Value Decomposition (SVD) operations ensures scalable deployment on modern architectures. Extensive experiments demonstrate that DR-RL significantly reduces Floating Point Operations (FLOPs) by over 40% in long-sequence regimes (L > 4096) while maintaining downstream accuracy statistically equivalent to full-rank attention. Beyond standard language modeling benchmarks, we validate the real-world applicability of DR-RL on the GLUE benchmark. Specifically, our method achieves 92.78% accuracy on the SST-2 sentiment analysis task, matching the performance of full-rank baselines and outperforming static low-rank methods, such as Performer and Nyströmformer, by a significant margin.
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by reasoning in the language of the question.
comment: 14 pages, 13 figures, 5 tables
♻ ☆ Automatic Item Generation for Personality Situational Judgment Tests with Large Language Models
Personality assessment through situational judgment tests (SJTs) offers unique advantages over traditional Likert-type self-report scales, yet their development remains labor-intensive, time-consuming, and heavily dependent on subject matter experts. Recent advances in large language models (LLMs) have shown promise for automatic item generation (AIG). Building on these developments, the present study focuses on developing and evaluating a structured and generalizable framework for automatically generating personality SJTs, using GPT-4 and ChatGPT-5 as empirical examples. Three studies were conducted. Study 1 systematically compared the effects of prompt design and temperature settings on the content validity of LLM-generated items to develop an effective and stable LLM-based AIG approach for personality SJT. Results showed that optimized prompts and a temperature of 1.0 achieved the best balance of creativity and accuracy on GPT-4. Study 2 examined the cross-model generalizability and reproducibility of this automated SJT generation approach through multiple rounds. The results showed that the approach consistently produced reproducible and high-quality items on ChatGPT-5. Study 3 evaluated the psychometric properties of LLM-generated SJTs covering five facets of the Big Five personality traits. Results demonstrated satisfactory reliability and validity across most facets, though limitations were observed in the convergent validity of the compliance facet and certain aspects of criterion-related validity. These findings provide robust evidence that the proposed LLM-based AIG approach can produce culturally appropriate and psychometrically sound SJTs with efficiency comparable to or exceeding traditional methods.
comment: Accepted by Computers in Human Behavior Reports. The supplementary materials, data, and items are available at https://osf.io/jbvq7/
♻ ☆ MTR-DuplexBench: Towards a Comprehensive Evaluation of Multi-Round Conversations for Full-Duplex Speech Language Models
Full-Duplex Speech Language Models (FD-SLMs) enable real-time, overlapping conversational interactions, offering a more dynamic user experience compared to traditional half-duplex models. However, existing benchmarks primarily focus on evaluating single-round interactions, neglecting the complexities of multi-round communication. Evaluating FD-SLMs in multi-round settings poses significant challenges, including blurred turn boundaries in communication and context inconsistency during model inference. Also, existing benchmarks often focus solely on evaluating conversational features, neglecting other critical aspects. To address these gaps, we introduce MTR-DuplexBench, a novel benchmark designed for a comprehensive multi-round evaluation of FD-SLMs. MTR-DuplexBench not only segments continuous full-duplex dialogues into discrete turns for turn-by-turn assessment but also incorporates various evaluation aspects, including conversational features, dialogue quality, instruction following, and safety. Experimental results reveal that current FD-SLMs face difficulties in maintaining consistent performance across multiple rounds and evaluation dimensions, highlighting the necessity and effectiveness of our benchmark. The benchmark and code will be available in the future.
comment: Work in progress
♻ ☆ Lookahead-then-Verify: Reliable Constrained Decoding for Diffusion LLMs under Context-Free Grammars
Diffusion Large Language Models (dLLMs) have demonstrated promising generative capabilities and are increasingly used to produce formal languages defined by context-free grammars, such as source code and chemical expressions. However, as probabilistic models, they still struggle to generate syntactically valid outputs reliably. A natural and promising direction to address this issue is to adapt constrained decoding techniques to enforce grammatical correctness during generation. However, applying these techniques faces two primary obstacles. On the one hand, the non-autoregressive nature of dLLMs renders most existing constrained decoding approaches inapplicable. On the other hand, current approaches specifically designed for dLLMs may allow intermediate outputs that are impossible to complete into valid sentences, which significantly limits their reliability in practice. To address these challenges, we present LAVE, a constrained decoding approach specifically designed for dLLMs. Our approach leverages a key property of dLLMs, namely their ability to predict token distributions for all positions in parallel during each forward pass. Whenever a new token is proposed by model, LAVE performs lookahead using these distributions to efficiently and reliably verify the validity of the proposed token. This design ensures reliable constraints by reliably preserving the potential for intermediate outputs to be extended into valid sentences. Extensive experiments across four widely used dLLMs and three representative benchmarks demonstrate that LAVE consistently outperforms existing baselines and achieves substantial improvements in syntactic correctness, while incurring negligible runtime overhead.
♻ ☆ BudgetMem: Learning Selective Memory Policies for Cost-Efficient Long-Context Processing in Language Models
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
comment: 11 pages, 3 figures, 5 tables. Evaluated on 700 QA pairs across multiple document lengths
♻ ☆ FAID: Fine-Grained AI-Generated Text Detection Using Multi-Task Auxiliary and Multi-Level Contrastive Learning
The growing collaboration between humans and AI models in generative tasks has introduced new challenges in distinguishing between human-written, LLM-generated, and human-LLM collaborative texts. In this work, we collect a multilingual, multi-domain, multi-generator dataset FAIDSet. We further introduce a fine-grained detection framework FAID to classify text into these three categories, and also to identify the underlying LLM family of the generator. Unlike existing binary classifiers, FAID is built to capture both authorship and model-specific characteristics. Our method combines multi-level contrastive learning with multi-task auxiliary classification to learn subtle stylistic cues. By modeling LLM families as distinct stylistic entities, we incorporate an adaptation to address distributional shifts without retraining for unseen data. Our experimental results demonstrate that FAID outperforms several baselines, particularly enhancing the generalization accuracy on unseen domains and new LLMs, thus offering a potential solution for improving transparency and accountability in AI-assisted writing. Our data and code are available at https://github.com/mbzuai-nlp/FAID
♻ ☆ Taxation Perspectives from Large Language Models: A Case Study on Additional Tax Penalties
How capable are large language models (LLMs) in the domain of taxation? Although numerous studies have explored the legal domain, research dedicated to taxation remains scarce. Moreover, the datasets used in these studies are either simplified, failing to reflect the real-world complexities, or not released as open-source. To address this gap, we introduce PLAT, a new benchmark designed to assess the ability of LLMs to predict the legitimacy of additional tax penalties. PLAT comprises 300 examples: (1) 100 binary-choice questions, (2) 100 multiple-choice questions, and (3) 100 essay-type questions, all derived from 100 Korean court precedents. PLAT is constructed to evaluate not only LLMs' understanding of tax law but also their performance in legal cases that require complex reasoning beyond straightforward application of statutes. Our systematic experiments with multiple LLMs reveal that (1) their baseline capabilities are limited, especially in cases involving conflicting issues that require a comprehensive understanding (not only of the statutes but also of the taxpayer's circumstances), and (2) LLMs struggle particularly with the "AC" stages of "IRAC" even for advanced reasoning models like o3, which actively employ inference-time scaling. The dataset is publicly available at: https://huggingface.co/collections/sma1-rmarud/plat-predicting-the-legitimacy-of-punitive-additional-tax
comment: 9 pages
♻ ☆ ShoppingComp: Are LLMs Really Ready for Your Shopping Cart?
We present ShoppingComp, a challenging real-world benchmark for comprehensively evaluating LLM-powered shopping agents on three core capabilities: precise product retrieval, expert-level report generation, and safety critical decision making. Unlike prior e-commerce benchmarks, ShoppingComp introduces difficult product discovery queries with many constraints, while guaranteeing open-world products and enabling easy verification of agent outputs. The benchmark comprises 145 instances and 558 scenarios, curated by 35 experts to reflect authentic shopping needs. Results reveal stark limitations of current LLMs: even state-of-the-art models achieve low performance (e.g., 17.76\% for GPT-5.2, 15.82\% for Gemini-3-Pro).Error analysis reflects limitations in core agent competencies, including information grounding in open-world environments, reliable verification of multi-constraint requirements, consistent reasoning over noisy and conflicting evidence, and risk-aware decision making. By exposing these capability gaps, ShoppingComp characterizes the trust threshold that AI systems must cross before they can be proactively trusted for reliable real-world decision making. Our code and dataset are available at https://github.com/ByteDance-BandAI/ShoppingComp.
♻ ☆ HEART: Emotionally-Driven Test-Time Scaling of Language Models
Test-time scaling has significantly improved how AI models solve problems, yet current methods often get stuck in repetitive, incorrect patterns of thought. We introduce HEART, a framework that uses emotional cues to guide the model's focus, much like how feelings contribute to human decision-making. By alternating between critical tones to sharpen error detection and encouraging tones to spark new ideas, HEART helps the model break out of dead-end reasoning and find the right solution. We evaluate HEART across seven high-difficulty benchmarks--including Humanity's Last Exam, GPQA Diamond, and LiveCodeBench--demonstrating robustness across diverse models. Results show that emotion facilitates deeper reasoning, yielding consistent accuracy gains over affect-sterile baselines. These findings suggest that the next frontier in machine reasoning lies in the strategic integration of affective regulation to guide logical synthesis.
♻ ☆ Predicting the Emergence of Induction Heads in Language Model Pretraining
Specialized attention heads dubbed induction heads (IHs) have been argued to underlie the remarkable in-context learning capabilities of modern language models; yet, a precise characterization of their emergence, especially in the context of language modeling, remains wanting. In this study, we investigate the relationship between statistical properties of the training data and IH formation in both natural and synthetic training data settings. We show that: (1) A simple equation combining batch size and context size predicts the point at which IHs form and that this emergence point is agnostic to model size; (2) Surface bigram repetition frequency and reliability strongly affect the formation of IHs, and we find an effective Pareto frontier in terms of these two values; (3) local dependency with high bigram repetition frequency and reliability is sufficient for IH formation, but when the frequency and reliability are low, categoriality and the shape of the marginal distribution matter.
♻ ☆ TruthPrInt: Mitigating Large Vision-Language Models Object Hallucination Via Latent Truthful-Guided Pre-Intervention ICCV 2025
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states with OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose TruthPrInt to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally, Accepted by ICCV 2025
♻ ☆ Benchmarking Large Language Models for Geolocating Colonial Virginia Land Grants
Virginia's seventeenth- and eighteenth-century land patents survive primarily as narrative metes-and-bounds descriptions, limiting spatial analysis. This study systematically evaluates current-generation large language models (LLMs) in converting these prose abstracts into geographically accurate latitude/longitude coordinates within a focused evaluation context. A digitized corpus of 5,471 Virginia patent abstracts (1695-1732) is released, with 43 rigorously verified test cases serving as an initial, geographically focused benchmark. Six OpenAI models across three architectures-o-series, GPT-4-class, and GPT-3.5-were tested under two paradigms: direct-to-coordinate and tool-augmented chain-of-thought invoking external geocoding APIs. Results were compared against a GIS analyst baseline, Stanford NER geoparser, Mordecai-3 neural geoparser, and a county-centroid heuristic. The top single-call model, o3-2025-04-16, achieved a mean error of 23 km (median 14 km), outperforming the median LLM (37.4 km) by 37.5%, the weakest LLM (50.3 km) by 53.5%, and external baselines by 67% (GIS analyst) and 70% (Stanford NER). A five-call ensemble further reduced errors to 19.2 km (median 12.2 km) at minimal additional cost (~USD 0.20 per grant), outperforming the median LLM by 48.7%. A patentee-name redaction ablation slightly increased error (~7%), showing reliance on textual landmark and adjacency descriptions rather than memorization. The cost-effective gpt-4o-2024-08-06 model maintained a 28 km mean error at USD 1.09 per 1,000 grants, establishing a strong cost-accuracy benchmark. External geocoding tools offer no measurable benefit in this evaluation. These findings demonstrate LLMs' potential for scalable, accurate, cost-effective historical georeferencing.
♻ ☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
♻ ☆ Capability-Based Scaling Trends for LLM-Based Red-Teaming ICLR 2026
As large language models grow in capability and agency, identifying vulnerabilities through red-teaming becomes vital for safe deployment. However, traditional prompt-engineering approaches may prove ineffective once red-teaming turns into a \emph{weak-to-strong} problem, where target models surpass red-teamers in capabilities. To study this shift, we frame red-teaming through the lens of the \emph{capability gap} between attacker and target. We evaluate more than 600 attacker-target pairs using LLM-based jailbreak attacks that mimic human red-teamers across diverse families, sizes, and capability levels. Three strong trends emerge: (i) more capable models are better attackers, (ii) attack success drops sharply once the target's capability exceeds the attacker's, and (iii) attack success rates correlate with high performance on social science splits of the MMLU-Pro benchmark. From these observations, we derive a \emph{jailbreaking scaling curve} that predicts attack success for a fixed target based on attacker-target capability gap. These findings suggest that fixed-capability attackers (e.g., humans) may become ineffective against future models, increasingly capable open-source models amplify risks for existing systems, and model providers must accurately measure and control models' persuasive and manipulative abilities to limit their effectiveness as attackers.
comment: Published as a conference paper at ICLR 2026
Multimedia 1
☆ PAND: Prompt-Aware Neighborhood Distillation for Lightweight Fine-Grained Visual Classification
Distilling knowledge from large Vision-Language Models (VLMs) into lightweight networks is crucial yet challenging in Fine-Grained Visual Classification (FGVC), due to the reliance on fixed prompts and global alignment. To address this, we propose PAND (Prompt-Aware Neighborhood Distillation), a two-stage framework that decouples semantic calibration from structural transfer. First, we incorporate Prompt-Aware Semantic Calibration to generate adaptive semantic anchors. Second, we introduce a neighborhood-aware structural distillation strategy to constrain the student's local decision structure. PAND consistently outperforms state-of-the-art methods on four FGVC benchmarks. Notably, our ResNet-18 student achieves 76.09% accuracy on CUB-200, surpassing the strong baseline VL2Lite by 3.4%. Code is available at https://github.com/LLLVTA/PAND.
comment: 6pages, 3 figures, conference
Computer Vision and Pattern Recognition 60
☆ All-Optical Segmentation via Diffractive Neural Networks for Autonomous Driving
Semantic segmentation and lane detection are crucial tasks in autonomous driving systems. Conventional approaches predominantly rely on deep neural networks (DNNs), which incur high energy costs due to extensive analog-to-digital conversions and large-scale image computations required for low-latency, real-time responses. Diffractive optical neural networks (DONNs) have shown promising advantages over conventional DNNs on digital or optoelectronic computing platforms in energy efficiency. By performing all-optical image processing via light diffraction at the speed of light, DONNs save computation energy costs while reducing the overhead associated with analog-to-digital conversions by all-optical encoding and computing. In this work, we propose a novel all-optical computing framework for RGB image segmentation and lane detection in autonomous driving applications. Our experimental results demonstrate the effectiveness of the DONN system for image segmentation on the CityScapes dataset. Additionally, we conduct case studies on lane detection using a customized indoor track dataset and simulated driving scenarios in CARLA, where we further evaluate the model's generalizability under diverse environmental conditions.
☆ A hybrid Kolmogorov-Arnold network for medical image segmentation
Medical image segmentation plays a vital role in diagnosis and treatment planning, but remains challenging due to the inherent complexity and variability of medical images, especially in capturing non-linear relationships within the data. We propose U-KABS, a novel hybrid framework that integrates the expressive power of Kolmogorov-Arnold Networks (KANs) with a U-shaped encoder-decoder architecture to enhance segmentation performance. The U-KABS model combines the convolutional and squeeze-and-excitation stage, which enhances channel-wise feature representations, and the KAN Bernstein Spline (KABS) stage, which employs learnable activation functions based on Bernstein polynomials and B-splines. This hybrid design leverages the global smoothness of Bernstein polynomials and the local adaptability of B-splines, enabling the model to effectively capture both broad contextual trends and fine-grained patterns critical for delineating complex structures in medical images. Skip connections between encoder and decoder layers support effective multi-scale feature fusion and preserve spatial details. Evaluated across diverse medical imaging benchmark datasets, U-KABS demonstrates superior performance compared to strong baselines, particularly in segmenting complex anatomical structures.
☆ Semantic-Deviation-Anchored Multi-Branch Fusion for Unsupervised Anomaly Detection and Localization in Unstructured Conveyor-Belt Coal Scenes
Reliable foreign-object anomaly detection and pixel-level localization in conveyor-belt coal scenes are essential for safe and intelligent mining operations. This task is particularly challenging due to the highly unstructured environment: coal and gangue are randomly piled, backgrounds are complex and variable, and foreign objects often exhibit low contrast, deformation, occlusion, resulting in coupling with their surroundings. These characteristics weaken the stability and regularity assumptions that many anomaly detection methods rely on in structured industrial settings, leading to notable performance degradation. To support evaluation and comparison in this setting, we construct \textbf{CoalAD}, a benchmark for unsupervised foreign-object anomaly detection with pixel-level localization in coal-stream scenes. We further propose a complementary-cue collaborative perception framework that extracts and fuses complementary anomaly evidence from three perspectives: object-level semantic composition modeling, semantic-attribution-based global deviation analysis, and fine-grained texture matching. The fused outputs provide robust image-level anomaly scoring and accurate pixel-level localization. Experiments on CoalAD demonstrate that our method outperforms widely used baselines across the evaluated image-level and pixel-level metrics, and ablation studies validate the contribution of each component. The code is available at https://github.com/xjpp2016/USAD.
☆ Process-of-Thought Reasoning for Videos
Video understanding requires not only recognizing visual content but also performing temporally grounded, multi-step reasoning over long and noisy observations. We propose Process-of-Thought (PoT) Reasoning for Videos, a framework that makes the reasoning process explicit by structuring video inference into a sequence of lightweight, verifiable steps. PoT interleaves (i) temporal evidence selection, (ii) step-wise state updates, and (iii) constrained answer synthesis, enabling the model to progressively refine hypotheses while maintaining traceability to video evidence. The framework is designed to be model-agnostic and can be plugged into existing vision-language backbones, supporting both closed-book reasoning and evidence-augmented reasoning with external tools. We further introduce a unified representation for PoT traces that aligns intermediate decisions with temporal segments, which improves robustness to distractors and reduces hallucinated explanations. Extensive experiments on standard video reasoning tasks demonstrate that PoT consistently improves factual correctness and temporal grounding, while providing interpretable reasoning traces for diagnosis and downstream use.
☆ Vision and language: Novel Representations and Artificial intelligence for Driving Scene Safety Assessment and Autonomous Vehicle Planning
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
☆ Looking and Listening Inside and Outside: Multimodal Artificial Intelligence Systems for Driver Safety Assessment and Intelligent Vehicle Decision-Making
The looking-in-looking-out (LILO) framework has enabled intelligent vehicle applications that understand both the outside scene and the driver state to improve safety outcomes, with examples in smart airbag deployment, takeover time prediction in autonomous control transitions, and driver attention monitoring. In this research, we propose an augmentation to this framework, making a case for the audio modality as an additional source of information to understand the driver, and in the evolving autonomy landscape, also the passengers and those outside the vehicle. We expand LILO by incorporating audio signals, forming the looking-and-listening inside-and-outside (L-LIO) framework to enhance driver state assessment and environment understanding through multimodal sensor fusion. We evaluate three example cases where audio enhances vehicle safety: supervised learning on driver speech audio to classify potential impairment states (e.g., intoxication), collection and analysis of passenger natural language instructions (e.g., "turn after that red building") to motivate how spoken language can interface with planning systems through audio-aligned instruction data, and limitations of vision-only systems where audio may disambiguate the guidance and gestures of external agents. Datasets include custom-collected in-vehicle and external audio samples in real-world environments. Pilot findings show that audio yields safety-relevant insights, particularly in nuanced or context-rich scenarios where sound is critical to safe decision-making or visual signals alone are insufficient. Challenges include ambient noise interference, privacy considerations, and robustness across human subjects, motivating further work on reliability in dynamic real-world contexts. L-LIO augments driver and scene understanding through multimodal fusion of audio and visual sensing, offering new paths for safety intervention.
☆ Influence of Geometry, Class Imbalance and Alignment on Reconstruction Accuracy -- A Micro-CT Phantom-Based Evaluation
The accuracy of the 3D models created from medical scans depends on imaging hardware, segmentation methods and mesh processing techniques etc. The effects of geometry type, class imbalance, voxel and point cloud alignment on accuracy remain to be thoroughly explored. This work evaluates the errors across the reconstruction pipeline and explores the use of voxel and surface-based accuracy metrics for different segmentation algorithms and geometry types. A sphere, a facemask, and an AAA were printed using the SLA technique and scanned using a micro-CT machine. Segmentation was performed using GMM, Otsu and RG based methods. Segmented and reference models aligned using the KU algorithm, were quantitatively compared to evaluate metrics like Dice and Jaccard scores, precision. Surface meshes were registered with reference meshes using an ICP-based alignment process. Metrics like chamfer distance, and average Hausdorff distance were evaluated. The Otsu method was found to be the most suitable method for all the geometries. AAA yielded low overlap scores due to its small wall thickness and misalignment. The effect of class imbalance on specificity was observed the most for AAA. Surface-based accuracy metrics differed from the voxel-based trends. The RG method performed best for sphere, while GMM and Otsu perform better for AAA. The facemask surface was most error-prone, possibly due to misalignment during the ICP process. Segmentation accuracy is a cumulative sum of errors across different stages of the reconstruction process. High voxel-based accuracy metrics may be misleading in cases of high class imbalance and sensitivity to alignment. The Jaccard index is found to be more stringent than the Dice and more suitable for accuracy assessment for thin-walled structures. Voxel and point cloud alignment should be ensured to make any reliable assessment of the reconstruction pipeline.
comment: 22 pages, 13 figures
☆ From Dead Pixels to Editable Slides: Infographic Reconstruction into Native Google Slides via Vision-Language Region Understanding WWW
Infographics are widely used to communicate information with a combination of text, icons, and data visualizations, but once exported as images their content is locked into pixels, making updates, localization, and reuse expensive. We describe \textsc{Images2Slides}, an API-based pipeline that converts a static infographic (PNG/JPG) into a native, editable Google Slides slide by extracting a region-level specification with a vision-language model (VLM), mapping pixel geometry into slide coordinates, and recreating elements using the Google Slides batch update API. The system is model-agnostic and supports multiple VLM backends via a common JSON region schema and deterministic postprocessing. On a controlled benchmark of 29 programmatically generated infographic slides with known ground-truth regions, \textsc{Images2Slides} achieves an overall element recovery rate of $0.989\pm0.057$ (text: $0.985\pm0.083$, images: $1.000\pm0.000$), with mean text transcription error $\mathrm{CER}=0.033\pm0.149$ and mean layout fidelity $\mathrm{IoU}=0.364\pm0.161$ for text regions and $0.644\pm0.131$ for image regions. We also highlight practical engineering challenges in reconstruction, including text size calibration and non-uniform backgrounds, and describe failure modes that guide future work.
comment: Accepted for publication in the Companion Proceedings of the ACM Web Conference 2026 (WWW Companion '26), April 13-17, 2026, Dubai, United Arab Emirates
☆ Uncovering Modality Discrepancy and Generalization Illusion for General-Purpose 3D Medical Segmentation
While emerging 3D medical foundation models are envisioned as versatile tools with offer general-purpose capabilities, their validation remains largely confined to regional and structural imaging, leaving a significant modality discrepancy unexplored. To provide a rigorous and objective assessment, we curate the UMD dataset comprising 490 whole-body PET/CT and 464 whole-body PET/MRI scans ($\sim$675k 2D images, $\sim$12k 3D organ annotations) and conduct a thorough and comprehensive evaluation of representative 3D segmentation foundation models. Through intra-subject controlled comparisons of paired scans, we isolate imaging modality as the primary independent variable to evaluate model robustness in real-world applications. Our evaluation reveals a stark discrepancy between literature-reported benchmarks and real-world efficacy, particularly when transitioning from structural to functional domains. Such systemic failures underscore that current 3D foundation models are far from achieving truly general-purpose status, necessitating a paradigm shift toward multi-modal training and evaluation to bridge the gap between idealized benchmarking and comprehensive clinical utility. This dataset and analysis establish a foundational cornerstone for future research to develop truly modality-agnostic medical foundation models.
☆ AD-MIR: Bridging the Gap from Perception to Persuasion in Advertising Video Understanding via Structured Reasoning
Multimodal understanding of advertising videos is essential for interpreting the intricate relationship between visual storytelling and abstract persuasion strategies. However, despite excelling at general search, existing agents often struggle to bridge the cognitive gap between pixel-level perception and high-level marketing logic. To address this challenge, we introduce AD-MIR, a framework designed to decode advertising intent via a two-stage architecture. First, in the Structure-Aware Memory Construction phase, the system converts raw video into a structured database by integrating semantic retrieval with exact keyword matching. This approach prioritizes fine-grained brand details (e.g., logos, on-screen text) while dynamically filtering out irrelevant background noise to isolate key protagonists. Second, the Structured Reasoning Agent mimics a marketing expert through an iterative inquiry loop, decomposing the narrative to deduce implicit persuasion tactics. Crucially, it employs an evidence-based self-correction mechanism that rigorously validates these insights against specific video frames, automatically backtracking when visual support is lacking. Evaluation on the AdsQA benchmark demonstrates that AD-MIR achieves state-of-the-art performance, surpassing the strongest general-purpose agent, DVD, by 1.8% in strict and 9.5% in relaxed accuracy. These results underscore that effective advertising understanding demands explicitly grounding abstract marketing strategies in pixel-level evidence. The code is available at https://github.com/Little-Fridge/AD-MIR.
☆ HistoMet: A Pan-Cancer Deep Learning Framework for Prognostic Prediction of Metastatic Progression and Site Tropism from Primary Tumor Histopathology
Metastatic Progression remains the leading cause of cancer-related mortality, yet predicting whether a primary tumor will metastasize and where it will disseminate directly from histopathology remains a fundamental challenge. Although whole-slide images (WSIs) provide rich morphological information, prior computational pathology approaches typically address metastatic status or site prediction as isolated tasks, and do not explicitly model the clinically sequential decision process of metastatic risk assessment followed by downstream site-specific evaluation. To address this research gap, we present a decision-aware, concept-aligned MIL framework, HistoMet, for prognostic metastatic outcome prediction from primary tumor WSIs. Our proposed framework adopts a two-module prediction pipeline in which the likelihood of metastatic progression from the primary tumor is first estimated, followed by conditional prediction of metastatic site for high-risk cases. To guide representation learning and improve clinical interpretability, our framework integrates linguistically defined and data-adaptive metastatic concepts through a pretrained pathology vision-language model. We evaluate HistoMet on a multi-institutional pan-cancer cohort of 6504 patients with metastasis follow-up and site annotations. Under clinically relevant high-sensitivity screening settings (95 percent sensitivity), HistoMet significantly reduces downstream workload while maintaining high metastatic risk recall. Conditional on metastatic cases, HistoMet achieves a macro F1 of 74.6 with a standard deviation of 1.3 and a macro one-vs-rest AUC of 92.1. These results demonstrate that explicitly modeling clinical decision structure enables robust and deployable prognostic prediction of metastatic progression and site tropism directly from primary tumor histopathology.
☆ Fine-R1: Make Multi-modal LLMs Excel in Fine-Grained Visual Recognition by Chain-of-Thought Reasoning ICLR 2026
Any entity in the visual world can be hierarchically grouped based on shared characteristics and mapped to fine-grained sub-categories. While Multi-modal Large Language Models (MLLMs) achieve strong performance on coarse-grained visual tasks, they often struggle with Fine-Grained Visual Recognition (FGVR). Adapting general-purpose MLLMs to FGVR typically requires large amounts of annotated data, which is costly to obtain, leaving a substantial performance gap compared to contrastive CLIP models dedicated for discriminative tasks. Moreover, MLLMs tend to overfit to seen sub-categories and generalize poorly to unseen ones. To address these challenges, we propose Fine-R1, an MLLM tailored for FGVR through an R1-style training framework: (1) Chain-of-Thought Supervised Fine-tuning, where we construct a high-quality FGVR CoT dataset with rationales of "visual analysis, candidate sub-categories, comparison, and prediction", transition the model into a strong open-world classifier; and (2) Triplet Augmented Policy Optimization, where Intra-class Augmentation mixes trajectories from anchor and positive images within the same category to improve robustness to intra-class variance, while Inter-class Augmentation maximizes the response distinction conditioned on images across sub-categories to enhance discriminative ability. With only 4-shot training, Fine-R1 outperforms existing general MLLMs, reasoning MLLMs, and even contrastive CLIP models in identifying both seen and unseen sub-categories, showing promise in working in knowledge-intensive domains where gathering expert annotations for all sub-categories is arduous. Code is available at https://github.com/PKU-ICST-MIPL/FineR1_ICLR2026.
comment: Published as a conference paper at ICLR 2026. The models are available at https://huggingface.co/collections/StevenHH2000/fine-r1
☆ TeleBoost: A Systematic Alignment Framework for High-Fidelity, Controllable, and Robust Video Generation
Post-training is the decisive step for converting a pretrained video generator into a production-oriented model that is instruction-following, controllable, and robust over long temporal horizons. This report presents a systematical post-training framework that organizes supervised policy shaping, reward-driven reinforcement learning, and preference-based refinement into a single stability-constrained optimization stack. The framework is designed around practical video-generation constraints, including high rollout cost, temporally compounding failure modes, and feedback that is heterogeneous, uncertain, and often weakly discriminative. By treating optimization as a staged, diagnostic-driven process rather than a collection of isolated tricks, the report summarizes a cohesive recipe for improving perceptual fidelity, temporal coherence, and prompt adherence while preserving the controllability established at initialization. The resulting framework provides a clear blueprint for building scalable post-training pipelines that remain stable, extensible, and effective in real-world deployment settings.
☆ Automated rock joint trace mapping using a supervised learning model trained on synthetic data generated by parametric modelling
This paper presents a geology-driven machine learning method for automated rock joint trace mapping from images. The approach combines geological modelling, synthetic data generation, and supervised image segmentation to address limited real data and class imbalance. First, discrete fracture network models are used to generate synthetic jointed rock images at field-relevant scales via parametric modelling, preserving joint persistence, connectivity, and node-type distributions. Second, segmentation models are trained using mixed training and pretraining followed by fine-tuning on real images. The method is tested in box and slope domains using several real datasets. The results show that synthetic data can support supervised joint trace detection when real data are scarce. Mixed training performs well when real labels are consistent (e.g. box-domain), while fine-tuning is more robust when labels are noisy (e.g. slope-domain where labels can be biased, incomplete, and inconsistent). Fully zero-shot prediction from synthetic model remains limited, but useful generalisation is achieved by fine-tuning with a small number of real data. Qualitative analysis shows clearer and more geologically meaningful joint traces than indicated by quantitative metrics alone. The proposed method supports reliable joint mapping and provides a basis for further work on domain adaptation and evaluation.
comment: 35 pages, 12 figures, 2 appendices
☆ ViCA: Efficient Multimodal LLMs with Vision-Only Cross-Attention
Modern multimodal large language models (MLLMs) adopt a unified self-attention design that processes visual and textual tokens at every Transformer layer, incurring substantial computational overhead. In this work, we revisit the necessity of such dense visual processing and show that projected visual embeddings are already well-aligned with the language space, while effective vision-language interaction occurs in only a small subset of layers. Based on these insights, we propose ViCA (Vision-only Cross-Attention), a minimal MLLM architecture in which visual tokens bypass all self-attention and feed-forward layers, interacting with text solely through sparse cross-attention at selected layers. Extensive evaluations across three MLLM backbones, nine multimodal benchmarks, and 26 pruning-based baselines show that ViCA preserves 98% of baseline accuracy while reducing visual-side computation to 4%, consistently achieving superior performance-efficiency trade-offs. Moreover, ViCA provides a regular, hardware-friendly inference pipeline that yields over 3.5x speedup in single-batch inference and over 10x speedup in multi-batch inference, reducing visual grounding to near-zero overhead compared with text-only LLMs. It is also orthogonal to token pruning methods and can be seamlessly combined for further efficiency gains. Our code is available at https://github.com/EIT-NLP/ViCA.
☆ How does longer temporal context enhance multimodal narrative video processing in the brain?
Understanding how humans and artificial intelligence systems process complex narrative videos is a fundamental challenge at the intersection of neuroscience and machine learning. This study investigates how the temporal context length of video clips (3--12 s clips) and the narrative-task prompting shape brain-model alignment during naturalistic movie watching. Using fMRI recordings from participants viewing full-length movies, we examine how brain regions sensitive to narrative context dynamically represent information over varying timescales and how these neural patterns align with model-derived features. We find that increasing clip duration substantially improves brain alignment for multimodal large language models (MLLMs), whereas unimodal video models show little to no gain. Further, shorter temporal windows align with perceptual and early language regions, while longer windows preferentially align higher-order integrative regions, mirrored by a layer-to-cortex hierarchy in MLLMs. Finally, narrative-task prompts (multi-scene summary, narrative summary, character motivation, and event boundary detection) elicit task-specific, region-dependent brain alignment patterns and context-dependent shifts in clip-level tuning in higher-order regions. Together, our results position long-form narrative movies as a principled testbed for probing biologically relevant temporal integration and interpretable representations in long-context MLLMs.
comment: 22 pages, 15 figures
☆ Visualizing the Invisible: Enhancing Radiologist Performance in Breast Mammography via Task-Driven Chromatic Encoding
Purpose:Mammography screening is less sensitive in dense breasts, where tissue overlap and subtle findings increase perceptual difficulty. We present MammoColor, an end-to-end framework with a Task-Driven Chromatic Encoding (TDCE) module that converts single-channel mammograms into TDCE-encoded views for visual augmentation. Materials and Methods:MammoColor couples a lightweight TDCE module with a BI-RADS triage classifier and was trained end-to-end on VinDr-Mammo. Performance was evaluated on an internal test set, two public datasets (CBIS-DDSM and INBreast), and three external clinical cohorts. We also conducted a multi-reader, multi-case (MRMC) observer study with a washout period, comparing (1) grayscale-only, (2) TDCE-only, and (3) side-by-side grayscale+TDCE. Results:On VinDr-Mammo, MammoColor improved AUC from 0.7669 to 0.8461 (P=0.004). Gains were larger in dense breasts (AUC 0.749 to 0.835). In the MRMC study, TDCE-encoded images improved specificity (0.90 to 0.96; P=0.052) with comparable sensitivity. Conclusion:TDCE provides a task-optimized chromatic representation that may improve perceptual salience and reduce false-positive recalls in mammography triage.
☆ Cross-Camera Cow Identification via Disentangled Representation Learning
Precise identification of individual cows is a fundamental prerequisite for comprehensive digital management in smart livestock farming. While existing animal identification methods excel in controlled, single-camera settings, they face severe challenges regarding cross-camera generalization. When models trained on source cameras are deployed to new monitoring nodes characterized by divergent illumination, backgrounds, viewpoints, and heterogeneous imaging properties, recognition performance often degrades dramatically. This limits the large-scale application of non-contact technologies in dynamic, real-world farming environments. To address this challenge, this study proposes a cross-camera cow identification framework based on disentangled representation learning. This framework leverages the Subspace Identifiability Guarantee (SIG) theory in the context of bovine visual recognition. By modeling the underlying physical data generation process, we designed a principle-driven feature disentanglement module that decomposes observed images into multiple orthogonal latent subspaces. This mechanism effectively isolates stable, identity-related biometric features that remain invariant across cameras, thereby substantially improving generalization to unseen cameras. We constructed a high-quality dataset spanning five distinct camera nodes, covering heterogeneous acquisition devices and complex variations in lighting and angles. Extensive experiments across seven cross-camera tasks demonstrate that the proposed method achieves an average accuracy of 86.0%, significantly outperforming the Source-only Baseline (51.9%) and the strongest cross-camera baseline method (79.8%). This work establishes a subspace-theoretic feature disentanglement framework for collaborative cross-camera cow identification, offering a new paradigm for precise animal monitoring in uncontrolled smart farming environments.
☆ Human Identification at a Distance: Challenges, Methods and Results on the Competition HID 2025
Human identification at a distance (HID) is challenging because traditional biometric modalities such as face and fingerprints are often difficult to acquire in real-world scenarios. Gait recognition provides a practical alternative, as it can be captured reliably at a distance. To promote progress in gait recognition and provide a fair evaluation platform, the International Competition on Human Identification at a Distance (HID) has been organized annually since 2020. Since 2023, the competition has adopted the challenging SUSTech-Competition dataset, which features substantial variations in clothing, carried objects, and view angles. No dedicated training data are provided, requiring participants to train their models using external datasets. Each year, the competition applies a different random seed to generate distinct evaluation splits, which reduces the risk of overfitting and supports a fair assessment of cross-domain generalization. While HID 2023 and HID 2024 already used this dataset, HID 2025 explicitly examined whether algorithmic advances could surpass the accuracy limits observed previously. Despite the heightened difficulty, participants achieved further improvements, and the best-performing method reached 94.2% accuracy, setting a new benchmark on this dataset. We also analyze key technical trends and outline potential directions for future research in gait recognition.
comment: Accepted by IJCB 2025(https://ijcb2025.ieee-biometrics.org/competitions/)
☆ SIGMA: Selective-Interleaved Generation with Multi-Attribute Tokens
Recent unified models such as Bagel demonstrate that paired image-edit data can effectively align multiple visual tasks within a single diffusion transformer. However, these models remain limited to single-condition inputs and lack the flexibility needed to synthesize results from multiple heterogeneous sources. We present SIGMA (Selective-Interleaved Generation with Multi-Attribute Tokens), a unified post-training framework that enables interleaved multi-condition generation within diffusion transformers. SIGMA introduces selective multi-attribute tokens, including style, content, subject, and identity tokens, which allow the model to interpret and compose multiple visual conditions in an interleaved text-image sequence. Through post-training on the Bagel unified backbone with 700K interleaved examples, SIGMA supports compositional editing, selective attribute transfer, and fine-grained multimodal alignment. Extensive experiments show that SIGMA improves controllability, cross-condition consistency, and visual quality across diverse editing and generation tasks, with substantial gains over Bagel on compositional tasks.
☆ VISOR: VIsual Spatial Object Reasoning for Language-driven Object Navigation
Language-driven object navigation requires agents to interpret natural language descriptions of target objects, which combine intrinsic and extrinsic attributes for instance recognition and commonsense navigation. Existing methods either (i) use end-to-end trained models with vision-language embeddings, which struggle to generalize beyond training data and lack action-level explainability, or (ii) rely on modular zero-shot pipelines with large language models (LLMs) and open-set object detectors, which suffer from error propagation, high computational cost, and difficulty integrating their reasoning back into the navigation policy. To this end, we propose a compact 3B-parameter Vision-Language-Action (VLA) agent that performs human-like embodied reasoning for both object recognition and action selection, removing the need for stitched multi-model pipelines. Instead of raw embedding matching, our agent employs explicit image-grounded reasoning to directly answer "Is this the target object?" and "Why should I take this action?" The reasoning process unfolds in three stages: "think", "think summary", and "action", yielding improved explainability, stronger generalization, and more efficient navigation. Code and dataset available upon acceptance.
☆ FlexID: Training-Free Flexible Identity Injection via Intent-Aware Modulation for Text-to-Image Generation
Personalized text-to-image generation aims to seamlessly integrate specific identities into textual descriptions. However, existing training-free methods often rely on rigid visual feature injection, creating a conflict between identity fidelity and textual adaptability. To address this, we propose FlexID, a novel training-free framework utilizing intent-aware modulation. FlexID orthogonally decouples identity into two dimensions: a Semantic Identity Projector (SIP) that injects high-level priors into the language space, and a Visual Feature Anchor (VFA) that ensures structural fidelity within the latent space. Crucially, we introduce a Context-Aware Adaptive Gating (CAG) mechanism that dynamically modulates the weights of these streams based on editing intent and diffusion timesteps. By automatically relaxing rigid visual constraints when strong editing intent is detected, CAG achieves synergy between identity preservation and semantic variation. Extensive experiments on IBench demonstrate that FlexID achieves a state-of-the-art balance between identity consistency and text adherence, offering an efficient solution for complex narrative generation.
☆ Revealing the Semantic Selection Gap in DINOv3 through Training-Free Few-Shot Segmentation
Recent self-supervised Vision Transformers (ViTs), such as DINOv3, provide rich feature representations for dense vision tasks. This study investigates the intrinsic few-shot semantic segmentation (FSS) capabilities of frozen DINOv3 features through a training-free baseline, FSSDINO, utilizing class-specific prototypes and Gram-matrix refinement. Our results across binary, multi-class, and cross-domain (CDFSS) benchmarks demonstrate that this minimal approach, applied to the final backbone layer, is highly competitive with specialized methods involving complex decoders or test-time adaptation. Crucially, we conduct an Oracle-guided layer analysis, identifying a significant performance gap between the standard last-layer features and globally optimal intermediate representations. We reveal a "Safest vs. Optimal" dilemma: while the Oracle proves higher performance is attainable, matching the results of compute-intensive adaptation methods, current unsupervised and support-guided selection metrics consistently yield lower performance than the last-layer baseline. This characterizes a "Semantic Selection Gap" in Foundation Models, a disconnect where traditional heuristics fail to reliably identify high-fidelity features. Our work establishes the "Last-Layer" as a deceptively strong baseline and provides a rigorous diagnostic of the latent semantic potentials in DINOv3.The code is publicly available at https://github.com/hussni0997/fssdino.
comment: 10 pages, 3 figures, 7 tables
☆ MUFASA: A Multi-Layer Framework for Slot Attention
Unsupervised object-centric learning (OCL) decomposes visual scenes into distinct entities. Slot attention is a popular approach that represents individual objects as latent vectors, called slots. Current methods obtain these slot representations solely from the last layer of a pre-trained vision transformer (ViT), ignoring valuable, semantically rich information encoded across the other layers. To better utilize this latent semantic information, we introduce MUFASA, a lightweight plug-and-play framework for slot attention-based approaches to unsupervised object segmentation. Our model computes slot attention across multiple feature layers of the ViT encoder, fully leveraging their semantic richness. We propose a fusion strategy to aggregate slots obtained on multiple layers into a unified object-centric representation. Integrating MUFASA into existing OCL methods improves their segmentation results across multiple datasets, setting a new state of the art while simultaneously improving training convergence with only minor inference overhead.
comment: Authors Sebastian Bock and Leonie Schüßler contributed equally. Project page: https://leonieschuessler.github.io/mufasa/
☆ LLM-Guided Diagnostic Evidence Alignment for Medical Vision-Language Pretraining under Limited Pairing
Most existing CLIP-style medical vision--language pretraining methods rely on global or local alignment with substantial paired data. However, global alignment is easily dominated by non-diagnostic information, while local alignment fails to integrate key diagnostic evidence. As a result, learning reliable diagnostic representations becomes difficult, which limits their applicability in medical scenarios with limited paired data. To address this issue, we propose an LLM-Guided Diagnostic Evidence Alignment method (LGDEA), which shifts the pretraining objective toward evidence-level alignment that is more consistent with the medical diagnostic process. Specifically, we leverage LLMs to extract key diagnostic evidence from radiology reports and construct a shared diagnostic evidence space, enabling evidence-aware cross-modal alignment and allowing LGDEA to effectively exploit abundant unpaired medical images and reports, thereby substantially alleviating the reliance on paired data. Extensive experimental results demonstrate that our method achieves consistent and significant improvements on phrase grounding, image--text retrieval, and zero-shot classification, and even rivals pretraining methods that rely on substantial paired data.
☆ Beyond Core and Penumbra: Bi-Temporal Image-Driven Stroke Evolution Analysis
Computed tomography perfusion (CTP) at admission is routinely used to estimate the ischemic core and penumbra, while follow-up diffusion-weighted MRI (DWI) provides the definitive infarct outcome. However, single time-point segmentations fail to capture the biological heterogeneity and temporal evolution of stroke. We propose a bi-temporal analysis framework that characterizes ischemic tissue using statistical descriptors, radiomic texture features, and deep feature embeddings from two architectures (mJ-Net and nnU-Net). Bi-temporal refers to admission (T1) and post-treatment follow-up (T2). All features are extracted at T1 from CTP, with follow-up DWI aligned to ensure spatial correspondence. Manually delineated masks at T1 and T2 are intersected to construct six regions of interest (ROIs) encoding both initial tissue state and final outcome. Features were aggregated per region and analyzed in feature space. Evaluation on 18 patients with successful reperfusion demonstrated meaningful clustering of region-level representations. Regions classified as penumbra or healthy at T1 that ultimately recovered exhibited feature similarity to preserved brain tissue, whereas infarct-bound regions formed distinct groupings. Both baseline GLCM and deep embeddings showed a similar trend: penumbra regions exhibit features that are significantly different depending on final state, whereas this difference is not significant for core regions. Deep feature spaces, particularly mJ-Net, showed strong separation between salvageable and non-salvageable tissue, with a penumbra separation index that differed significantly from zero (Wilcoxon signed-rank test). These findings suggest that encoder-derived feature manifolds reflect underlying tissue phenotypes and state transitions, providing insight into imaging-based quantification of stroke evolution.
☆ Fine-Grained Cat Breed Recognition with Global Context Vision Transformer
Accurate identification of cat breeds from images is a challenging task due to subtle differences in fur patterns, facial structure, and color. In this paper, we present a deep learning-based approach for classifying cat breeds using a subset of the Oxford-IIIT Pet Dataset, which contains high-resolution images of various domestic breeds. We employed the Global Context Vision Transformer (GCViT) architecture-tiny for cat breed recognition. To improve model generalization, we used extensive data augmentation, including rotation, horizontal flipping, and brightness adjustment. Experimental results show that the GCViT-Tiny model achieved a test accuracy of 92.00% and validation accuracy of 94.54%. These findings highlight the effectiveness of transformer-based architectures for fine-grained image classification tasks. Potential applications include veterinary diagnostics, animal shelter management, and mobile-based breed recognition systems. We also provide a hugging face demo at https://huggingface.co/spaces/bfarhad/cat-breed-classifier.
comment: 4 pages, accepted at International Conference on Computer and Information Technology (ICCIT) 2025
☆ Evaluating Object-Centric Models beyond Object Discovery
Object-centric learning (OCL) aims to learn structured scene representations that support compositional generalization and robustness to out-of-distribution (OOD) data. However, OCL models are often not evaluated regarding these goals. Instead, most prior work focuses on evaluating OCL models solely through object discovery and simple reasoning tasks, such as probing the representation via image classification. We identify two limitations in existing benchmarks: (1) They provide limited insights on the representation usefulness of OCL models, and (2) localization and representation usefulness are assessed using disjoint metrics. To address (1), we use instruction-tuned VLMs as evaluators, enabling scalable benchmarking across diverse VQA datasets to measure how well VLMs leverage OCL representations for complex reasoning tasks. To address (2), we introduce a unified evaluation task and metric that jointly assess localization (where) and representation usefulness (what), thereby eliminating inconsistencies introduced by disjoint evaluation. Finally, we include a simple multi-feature reconstruction baseline as a reference point.
comment: Project Page: https://guided-sa.github.io/eval-ocl/
☆ CA-YOLO: Cross Attention Empowered YOLO for Biomimetic Localization IEEE
In modern complex environments, achieving accurate and efficient target localization is essential in numerous fields. However, existing systems often face limitations in both accuracy and the ability to recognize small targets. In this study, we propose a bionic stabilized localization system based on CA-YOLO, designed to enhance both target localization accuracy and small target recognition capabilities. Acting as the "brain" of the system, the target detection algorithm emulates the visual focusing mechanism of animals by integrating bionic modules into the YOLO backbone network. These modules include the introduction of a small target detection head and the development of a Characteristic Fusion Attention Mechanism (CFAM). Furthermore, drawing inspiration from the human Vestibulo-Ocular Reflex (VOR), a bionic pan-tilt tracking control strategy is developed, which incorporates central positioning, stability optimization, adaptive control coefficient adjustment, and an intelligent recapture function. The experimental results show that CA-YOLO outperforms the original model on standard datasets (COCO and VisDrone), with average accuracy metrics improved by 3.94%and 4.90%, respectively.Further time-sensitive target localization experiments validate the effectiveness and practicality of this bionic stabilized localization system.
comment: This work has been submitted to the IEEE for possible publication.Please note that once the article has been published by IEEE, preprints on locations not specified above should be removed if possible
☆ Adaptive Image Zoom-in with Bounding Box Transformation for UAV Object Detection SP
Detecting objects from UAV-captured images is challenging due to the small object size. In this work, a simple and efficient adaptive zoom-in framework is explored for object detection on UAV images. The main motivation is that the foreground objects are generally smaller and sparser than those in common scene images, which hinders the optimization of effective object detectors. We thus aim to zoom in adaptively on the objects to better capture object features for the detection task. To achieve the goal, two core designs are required: \textcolor{black}{i) How to conduct non-uniform zooming on each image efficiently? ii) How to enable object detection training and inference with the zoomed image space?} Correspondingly, a lightweight offset prediction scheme coupled with a novel box-based zooming objective is introduced to learn non-uniform zooming on the input image. Based on the learned zooming transformation, a corner-aligned bounding box transformation method is proposed. The method warps the ground-truth bounding boxes to the zoomed space to learn object detection, and warps the predicted bounding boxes back to the original space during inference. We conduct extensive experiments on three representative UAV object detection datasets, including VisDrone, UAVDT, and SeaDronesSee. The proposed ZoomDet is architecture-independent and can be applied to an arbitrary object detection architecture. Remarkably, on the SeaDronesSee dataset, ZoomDet offers more than 8.4 absolute gain of mAP with a Faster R-CNN model, with only about 3 ms additional latency. The code is available at https://github.com/twangnh/zoomdet_code.
comment: paper accepted by ISPRS Journal of Photogrammetry and Remote Sensing ( IF=12.2)
☆ IM-Animation: An Implicit Motion Representation for Identity-decoupled Character Animation
Recent progress in video diffusion models has markedly advanced character animation, which synthesizes motioned videos by animating a static identity image according to a driving video. Explicit methods represent motion using skeleton, DWPose or other explicit structured signals, but struggle to handle spatial mismatches and varying body scales. %proportions. Implicit methods, on the other hand, capture high-level implicit motion semantics directly from the driving video, but suffer from identity leakage and entanglement between motion and appearance. To address the above challenges, we propose a novel implicit motion representation that compresses per-frame motion into compact 1D motion tokens. This design relaxes strict spatial constraints inherent in 2D representations and effectively prevents identity information leakage from the motion video. Furthermore, we design a temporally consistent mask token-based retargeting module that enforces a temporal training bottleneck, mitigating interference from the source images' motion and improving retargeting consistency. Our methodology employs a three-stage training strategy to enhance the training efficiency and ensure high fidelity. Extensive experiments demonstrate that our implicit motion representation and the propose IM-Animation's generative capabilities are achieve superior or competitive performance compared with state-of-the-art methods.
☆ Learning Brain Representation with Hierarchical Visual Embeddings
Decoding visual representations from brain signals has attracted significant attention in both neuroscience and artificial intelligence. However, the degree to which brain signals truly encode visual information remains unclear. Current visual decoding approaches explore various brain-image alignment strategies, yet most emphasize high-level semantic features while neglecting pixel-level details, thereby limiting our understanding of the human visual system. In this paper, we propose a brain-image alignment strategy that leverages multiple pre-trained visual encoders with distinct inductive biases to capture hierarchical and multi-scale visual representations, while employing a contrastive learning objective to achieve effective alignment between brain signals and visual embeddings. Furthermore, we introduce a Fusion Prior, which learns a stable mapping on large-scale visual data and subsequently matches brain features to this pre-trained prior, thereby enhancing distributional consistency across modalities. Extensive quantitative and qualitative experiments demonstrate that our method achieves a favorable balance between retrieval accuracy and reconstruction fidelity.
☆ Thermal odometry and dense mapping using learned ddometry and Gaussian splatting
Thermal infrared sensors, with wavelengths longer than smoke particles, can capture imagery independent of darkness, dust, and smoke. This robustness has made them increasingly valuable for motion estimation and environmental perception in robotics, particularly in adverse conditions. Existing thermal odometry and mapping approaches, however, are predominantly geometric and often fail across diverse datasets while lacking the ability to produce dense maps. Motivated by the efficiency and high-quality reconstruction ability of recent Gaussian Splatting (GS) techniques, we propose TOM-GS, a thermal odometry and mapping method that integrates learning-based odometry with GS-based dense mapping. TOM-GS is among the first GS-based SLAM systems tailored for thermal cameras, featuring dedicated thermal image enhancement and monocular depth integration. Extensive experiments on motion estimation and novel-view rendering demonstrate that TOM-GS outperforms existing learning-based methods, confirming the benefits of learning-based pipelines for robust thermal odometry and dense reconstruction.
comment: 11 pages, 2 figures, 5 tables
☆ GlobalWasteData: A Large-Scale, Integrated Dataset for Robust Waste Classification and Environmental Monitoring
The growing amount of waste is a problem for the environment that requires efficient sorting techniques for various kinds of waste. An automated waste classification system is used for this purpose. The effectiveness of these Artificial Intelligence (AI) models depends on the quality and accessibility of publicly available datasets, which provide the basis for training and analyzing classification algorithms. Although several public waste classification datasets exist, they remain fragmented, inconsistent, and biased toward specific environments. Differences in class names, annotation formats, image conditions, and class distributions make it difficult to combine these datasets or train models that generalize well to real world scenarios. To address these issues, we introduce the GlobalWasteData (GWD) archive, a large scale dataset of 89,807 images across 14 main categories, annotated with 68 distinct subclasses. We compile this novel integrated GWD archive by merging multiple publicly available datasets into a single, unified resource. This GWD archive offers consistent labeling, improved domain diversity, and more balanced class representation, enabling the development of robust and generalizable waste recognition models. Additional preprocessing steps such as quality filtering, duplicate removal, and metadata generation further improve dataset reliability. Overall, this dataset offers a strong foundation for Machine Learning (ML) applications in environmental monitoring, recycling automation, and waste identification, and is publicly available to promote future research and reproducibility.
☆ SpatialReward: Bridging the Perception Gap in Online RL for Image Editing via Explicit Spatial Reasoning
Online Reinforcement Learning (RL) offers a promising avenue for complex image editing but is currently constrained by the scarcity of reliable and fine-grained reward signals. Existing evaluators frequently struggle with a critical perception gap we term "Attention Collapse," where models neglect cross-image comparisons and fail to capture fine-grained details, resulting in inaccurate perception and miscalibrated scores. To address these limitations, we propose SpatialReward, a reward model that enforces precise verification via explicit spatial reasoning. By anchoring reasoning to predicted edit regions, SpatialReward grounds semantic judgments in pixel-level evidence, significantly enhancing evaluative accuracy. Trained on a curated 260k spatial-aware dataset, our model achieves state-of-the-art performance on MMRB2 and EditReward-Bench, and outperforms proprietary evaluators on our proposed MultiEditReward-Bench. Furthermore, SpatialReward serves as a robust signal in online RL, boosting OmniGen2 by +0.90 on GEdit-Bench--surpassing the leading discriminative model and doubling the gain of GPT-4.1 (+0.45). These results demonstrate that spatial reasoning is essential for unlocking effective alignment in image editing.
☆ SoulX-FlashHead: Oracle-guided Generation of Infinite Real-time Streaming Talking Heads
Achieving a balance between high-fidelity visual quality and low-latency streaming remains a formidable challenge in audio-driven portrait generation. Existing large-scale models often suffer from prohibitive computational costs, while lightweight alternatives typically compromise on holistic facial representations and temporal stability. In this paper, we propose SoulX-FlashHead, a unified 1.3B-parameter framework designed for real-time, infinite-length, and high-fidelity streaming video generation. To address the instability of audio features in streaming scenarios, we introduce Streaming-Aware Spatiotemporal Pre-training equipped with a Temporal Audio Context Cache mechanism, which ensures robust feature extraction from short audio fragments. Furthermore, to mitigate the error accumulation and identity drift inherent in long-sequence autoregressive generation, we propose Oracle-Guided Bidirectional Distillation, leveraging ground-truth motion priors to provide precise physical guidance. We also present VividHead, a large-scale, high-quality dataset containing 782 hours of strictly aligned footage to support robust training. Extensive experiments demonstrate that SoulX-FlashHead achieves state-of-the-art performance on HDTF and VFHQ benchmarks. Notably, our Lite variant achieves an inference speed of 96 FPS on a single NVIDIA RTX 4090, facilitating ultra-fast interaction without sacrificing visual coherence.
comment: 11 pages, 3 figures
♻ ☆ "ScatSpotter" -- A Dog Poop Detection Dataset WACV 2026
Small, amorphous waste objects such as biological droppings and microtrash can be difficult to see, especially in cluttered scenes, yet they matter for environmental cleanliness, public health, and autonomous cleanup. We introduce "ScatSpotter": a new dataset of images annotated with polygons around dog feces, collected to train and study object detection and segmentation systems for small potentially camouflaged outdoor waste. We gathered data in mostly urban environments, using "before/after/negative" (BAN) protocol: for a given location, we capture an image with the object present, an image from the same viewpoint after removal, and a nearby negative scene that often contains visually similar confusers. Image collection began in 2020. This paper focuses on two dataset checkpoints from 2025 and 2024. The dataset contains over 9000 images and 6000 polygon annotations. Of the author-captured images we held out 691 for validation and used the rest to train. Via community participation we obtained a 121-image test set that, while small, is independent from author-collected images and provides some generalization confidence across photographers, devices, and locations. Due to its limited size, we report both validation and test results. We explore the difficulty of the dataset using off-the-shelf VIT, MaskRCNN, YOLO-v9, and DINO-v2 models. Zero-shot DINO performs poorly, indicating limited foundational-model coverage of this category. Tuned DINO is the best model with a box-level average precision of 0.69 on a 691-image validation set and 0.7 on the test set. These results establish strong baselines and quantify the remaining difficulty of detecting small, camouflaged waste objects. To support open access to models and data, we compare centralized and decentralized distribution mechanisms and discuss trade-offs for sharing scientific data. Code and project details are hosted on GitHub.
comment: Dataset paper, Accepted to the International Workshop on Smart Waste Monitoring (WasteVision) at WACV 2026
♻ ☆ Training-Free Inference for High-Resolution Sinogram Completion
High-resolution sinogram completion is critical for computed tomography reconstruction, as missing projections can introduce severe artifacts. While diffusion models provide strong generative priors for this task, their inference cost grows prohibitively with resolution. We propose HRSino, a training-free and efficient diffusion inference approach for high-resolution sinogram completion. By explicitly accounting for spatial heterogeneity in signal characteristics, such as spectral sparsity and local complexity, HRSino allocates inference effort adaptively across spatial regions and resolutions, rather than applying uniform high-resolution diffusion steps. This enables global consistency to be captured at coarse scales while refining local details only where necessary. Experimental results show that HRSino reduces peak memory usage by up to 30.81% and inference time by up to 17.58% compared to the state-of-the-art framework, and maintains completion accuracy across datasets and resolutions.
♻ ☆ FCDM: A Physics-Guided Bidirectional Frequency Aware Convolution and Diffusion-Based Model for Sinogram Inpainting
Computed tomography (CT) is widely used in scientific imaging systems such as synchrotron and laboratory-based nano-CT, but acquiring full-view sinograms requires high radiation dose and long scan times. Sparse-view CT reduces this burden but produces incomplete sinograms with structured signal loss, degrading reconstruction quality. Unlike RGB images, sinograms encode globally coupled projections and exhibit directional spectral patterns, making conventional RGB-oriented inpainting methods, including diffusion models, ineffective because they ignore angular dependencies and physical constraints inherent to tomographic data. We propose FCDM, a diffusion-based framework for sinogram restoration that incorporates bidirectional frequency reasoning, angular-aware masking, and physics-guided regularization to preserve global structure and physical plausibility. Experiments on real-world datasets show that FCDM consistently outperforms existing baselines, achieving over 0.93 SSIM and 31 dB PSNR across diverse sparse-view settings.
♻ ☆ Robust Hyperbolic Learning with Curvature-Aware Optimization
Hyperbolic deep learning has become a growing research direction in computer vision due to the unique properties afforded by the alternate embedding space. The negative curvature and exponentially growing distance metric provide a natural framework for capturing hierarchical relationships between datapoints and allowing for finer separability between their embeddings. However, current hyperbolic learning approaches are still prone to overfitting, computationally expensive, and prone to instability, especially when attempting to learn the manifold curvature to adapt to tasks and different datasets. To address these issues, our paper presents a derivation for Riemannian AdamW that helps increase hyperbolic generalization ability. For improved stability, we introduce a novel fine-tunable hyperbolic scaling approach to constrain hyperbolic embeddings and reduce approximation errors. Using this along with our curvature-aware learning schema for Riemannian Optimizers enables the combination of curvature and non-trivialized hyperbolic parameter learning. Our approach demonstrates consistent performance improvements across Computer Vision, EEG classification, and hierarchical metric learning tasks while greatly reducing runtime.
♻ ☆ LookSharp: Attention Entropy Minimization for Test-Time Adaptation
Test-time adaptation (TTA) updates models during inference to reduce error on distribution shifts. While entropy minimization over the output distribution has proven effective as a TTA loss, we study using the intermediate distributions computed by transformers in the attention mechanism. We propose LookSharp, which minimizes the entropy of CLS-to-patch attention in the final layer as a novel TTA objective, encouraging the model to maintain focused attention on shifted data. We demonstrate that attention entropy minimization improves robustness on ImageNet-C. We also show that it is complementary to output entropy minimization and maintains performance on clean data.
comment: imagenet, author update
♻ ☆ EAGLE: Elevating Geometric Reasoning through LLM-empowered Visual Instruction Tuning
Multi-modal Large Language Models (MLLMs) have advanced greatly in general tasks. However, they still face challenges in geometric reasoning, a task that requires synergistic integration of visual recognition proficiency and complex reasoning strength. Existing MLLMs prioritize optimizing the LLM backbone to enhance problem-solving capabilities, while rarely emphasizing improvements in discerning visual elements. However, we reveal that MLLMs suffer from severe visual perception deficiencies, including inaccurate geometric comprehension and severe visual hallucinations, which constrain their reasoning performance. To address this issue, we revisit geometric reasoning through a visual-centric lens that highlights the role of visual perception. To achieve this, we propose EAGLE, a novel coarse-to-fine visual enhancement framework that progressively leverages LLMs' guidance to improve perception proficiency. Specifically, given the substantial disparity between geometric diagrams and natural images, we first introduce Geometric Knowledge Injection. This process explores fundamental knowledge from diagram-caption data to enhance recognition capabilities and improve geometry-language alignments. Then, recognizing that different elements contribute unequally in the reasoning process, we introduce Geometric Knowledge Refinement. This stage leverages LLM-driven chain-of-thought solutions to guide the vision encoder in adaptively prioritizing key elements, fostering a synergistic interplay between visual comprehension and mathematical reasoning. Finally, we develop EAGLE, a geometry expert with strong perception and reasoning capabilities. Extensive experiments demonstrate its effectiveness on three popular benchmarks.
comment: revised version
♻ ☆ GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment
Recent advances in video world modeling have enabled large-scale generative models to simulate embodied environments with high visual fidelity, providing strong priors for prediction, planning, and control. Yet, despite their realism, these models often lack geometric grounding, limiting their use in navigation tasks that require spatial coherence and stability. We introduce Reinforcement Learning with World Grounding (RLWG), a self-supervised post-training framework that aligns pretrained world models with a physically verifiable structure through geometric and perceptual rewards. Analogous to reinforcement learning from verifiable feedback (RLVR) in language models, RLWG can use multiple rewards that measure pose cycle-consistency, depth reprojection, and temporal coherence. We instantiate this framework with GrndCtrl, a reward-aligned adaptation method based on Group Relative Policy Optimization (GRPO), yielding world models that maintain stable trajectories, consistent geometry, and reliable rollouts for embodied navigation. Like post-training alignment in large language models, GrndCtrl leverages verifiable rewards to bridge generative pretraining and grounded behavior, achieving superior spatial coherence and navigation stability over supervised fine-tuning in outdoor environments.
♻ ☆ Cognitive Edge Device (CED) for Real-Time Environmental Monitoring in Aquatic Ecosystems
Invasive signal crayfish have a detrimental impact on ecosystems. They spread the fungal-type crayfish plague disease (Aphanomyces astaci) that is lethal to the native white clawed crayfish, the only native crayfish species in Britain. Invasive signal crayfish extensively burrow, causing habitat destruction, erosion of river banks and adverse changes in water quality, while also competing with native species for resources leading to declines in native populations. Moreover, pollution exacerbates the vulnerability of White-clawed crayfish, with their populations declining by over 90%. To safeguard aquatic ecosystems, it is imperative to address the challenges posed by invasive species and pollution in aquatic ecosystem's. This article introduces the Cognitive Edge Device (CED) computing platform for the detection of crayfish and plastic. It also presents two publicly available underwater datasets, annotated with sequences of crayfish and aquatic plastic debris. Four You Only Look Once (YOLO) variants were trained and evaluated for crayfish and plastic object detection. YOLOv5s achieved the highest detection accuracy, with an mAP@0.5 of 0.90, and achieved the best precision
♻ ☆ W-DUALMINE: Reliability-Weighted Dual-Expert Fusion With Residual Correlation Preservation for Medical Image Fusion
Medical image fusion integrates complementary information from multiple imaging modalities to improve clinical interpretation. However, existing deep learningbased methods, including recent spatial-frequency frameworks such as AdaFuse and ASFE-Fusion, often suffer from a fundamental trade-off between global statistical similaritymeasured by correlation coefficient (CC) and mutual information (MI)and local structural fidelity. This paper proposes W-DUALMINE, a reliability-weighted dual-expert fusion framework designed to explicitly resolve this trade-off through architectural constraints and a theoretically grounded loss design. The proposed method introduces dense reliability maps for adaptive modality weighting, a dual-expert fusion strategy combining a global-context spatial expert and a wavelet-domain frequency expert, and a soft gradient-based arbitration mechanism. Furthermore, we employ a residual-to-average fusion paradigm that guarantees the preservation of global correlation while enhancing local details. Extensive experiments on CT-MRI, PET-MRI, and SPECT-MRI datasets demonstrate that W-DUALMINE consistently outperforms AdaFuse and ASFE-Fusion in CC and MI metrics while
♻ ☆ AgentDrug: Utilizing Large Language Models in An Agentic Workflow for Zero-Shot Molecular Editing EMNLP'25
Molecular editing-modifying a given molecule to improve desired properties-is a fundamental task in drug discovery. While LLMs hold the potential to solve this task using natural language to drive the editing, straightforward prompting achieves limited accuracy. In this work, we propose AgentDrug, an agentic workflow that leverages LLMs in a structured refinement process to achieve significantly higher accuracy. AgentDrug defines a nested refinement loop: the inner loop uses feedback from cheminformatics toolkits to validate molecular structures, while the outer loop guides the LLM with generic feedback and a gradient-based objective to steer the molecule toward property improvement. We evaluate AgentDrug on benchmarks with both single- and multi-property editing under loose and strict thresholds. Results demonstrate significant performance gains over previous methods. With Qwen-2.5-3B, AgentDrug improves accuracy by 20.7% (loose) and 16.8% (strict) on six single-property tasks, and by 7.0% and 5.3% on eight multi-property tasks. With larger model Qwen-2.5-7B, AgentDrug further improves accuracy on 6 single-property objectives by 28.9% (loose) and 29.0% (strict), and on 8 multi-property objectives by 14.9% (loose) and 13.2% (strict).
comment: EMNLP'25 Findings
♻ ☆ ManiVID-3D: Generalizable View-Invariant Reinforcement Learning for Robotic Manipulation via Disentangled 3D Representations
Deploying visual reinforcement learning (RL) policies in real-world manipulation is often hindered by camera viewpoint changes. A policy trained from a fixed front-facing camera may fail when the camera is shifted -- an unavoidable situation in real-world settings where sensor placement is hard to manage appropriately. Existing methods often rely on precise camera calibration or struggle with large perspective changes. To address these limitations, we propose ManiVID-3D, a novel 3D RL architecture designed for robotic manipulation, which learns view-invariant representations through self-supervised disentangled feature learning. The framework incorporates ViewNet, a lightweight yet effective module that automatically aligns point cloud observations from arbitrary viewpoints into a unified spatial coordinate system without the need for extrinsic calibration. Additionally, we develop an efficient GPU-accelerated batch rendering module capable of processing over 5000 frames per second, enabling large-scale training for 3D visual RL at unprecedented speeds. Extensive evaluation across 10 simulated and 5 real-world tasks demonstrates that our approach achieves a 40.6% higher success rate than state-of-the-art methods under viewpoint variations while using 80% fewer parameters. The system's robustness to severe perspective changes and strong sim-to-real performance highlight the effectiveness of learning geometrically consistent representations for scalable robotic manipulation in unstructured environments.
comment: Accepted to RA-L
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ Sequential Attention-based Sampling for Histopathological Analysis NeurIPS 2025
Deep neural networks are increasingly applied in automated histopathology. Yet, whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering them computationally infeasible to analyze entirely at high resolution. Diagnostic labels are largely available only at the slide-level, because expert annotation of images at a finer (patch) level is both laborious and expensive. Moreover, regions with diagnostic information typically occupy only a small fraction of the WSI, making it inefficient to examine the entire slide at full resolution. Here, we propose SASHA -- Sequential Attention-based Sampling for Histopathological Analysis -- a deep reinforcement learning approach for efficient analysis of histopathological images. First, SASHA learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model. Second, SASHA samples intelligently and zooms selectively into a small fraction (10-20\%) of high-resolution patches to achieve reliable diagnoses. We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high resolution, albeit at a fraction of their computational and memory costs. In addition, it significantly outperforms competing, sparse sampling methods. We propose SASHA as an intelligent sampling model for medical imaging challenges that involve automated diagnosis with exceptionally large images containing sparsely informative features. Model implementation is available at: https://github.com/coglabiisc/SASHA.
comment: Accepted at NeurIPS 2025. This version matches the camera-ready copy
♻ ☆ Task-Conditioned Probing Reveals Brain-Alignment Patterns in Instruction-Tuned Multimodal LLMs
Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models. More recently, instruction-tuned multimodal (IT) models have been shown to generate task-specific representations that align strongly with brain activity, yet most prior evaluations focus on unimodal stimuli or non-instruction-tuned models under multimodal stimuli. We still lack a clear understanding of whether instruction-tuning is associated with IT-MLLMs organizing their representations around functional task demands or if they simply reflect surface semantics. To address this, we estimate brain alignment by predicting fMRI responses recorded during naturalistic movie watching (video with audio) from MLLM representations. Using instruction-specific embeddings from six video and two audio IT-MLLMs, across 13 video task instructions, we find that instruction-tuned video MLLMs significantly outperform in-context learning (ICL) multimodal models (~9%), non-instruction-tuned multimodal models (~15%), and unimodal baselines (~20%). Our evaluation of MLLMs across video and audio tasks, and language-guided probing produces distinct task-specific MLLM representations that vary across brain regions. We also find that ICL models show strong semantic organization (r=0.78), while IT models show weak coupling to instruction-text semantics (r=0.14), consistent with task-conditioned subspaces associated with higher brain alignment. These findings are consistent with an association between task-specific instructions and stronger brain-MLLM alignment, and open new avenues for mapping joint information processing in both systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
comment: 55 pages, 35 figures
♻ ☆ State-Space Hierarchical Compression with Gated Attention and Learnable Sampling for Hour-Long Video Understanding in Large Multimodal Models AAAI 2026
We propose an efficient framework to compress massive video-frame features before feeding them into large multimodal models, thereby mitigating the severe token explosion arising from hour-long videos. Our design leverages a bidirectional state-space model equipped with a gated skip connection and a learnable weighted-average pooling mechanism applied to periodically inserted learned queries. This structure enables hierarchical downsampling across both spatial and temporal dimensions, preserving performance in a cost-effective manner. Across challenging hour-long video understanding tasks, our approach demonstrates competitive results against state-of-the-art models, while significantly reducing overall token budget. Notably, replacing our state-space model with conventional modules results in substantial performance degradation, highlighting the advantages of the proposed state-space modeling for effectively compressing multi-frame video information. Our framework emphasizes resource-conscious efficiency, making it practical for real-world deployments. We validate its scalability and generality across multiple benchmarks, achieving the dual objectives of efficient resource usage and comprehensive video understanding.
comment: AAAI 2026 (Oral). Project page: https://github.com/naver-ai/mambamia
♻ ☆ A High Resolution Urban and Rural Settlement Map of Africa Using Deep Learning and Satellite Imagery
Accurate and consistent mapping of urban and rural areas is crucial for sustainable development, spatial planning, and policy design. It is particularly important in simulating the complex interactions between human activities and natural resources. Existing global urban-rural datasets such as such as GHSL-SMOD, GHS Degree of Urbanisation, and GRUMP are often spatially coarse, methodologically inconsistent, and poorly adapted to heterogeneous regions such as Africa, which limits their usefulness for policy and research. Their coarse grids and rule-based classification methods obscure small or informal settlements, and produce inconsistencies between countries. In this study, we develop a DeepLabV3-based deep learning framework that integrates multi-source data, including Landsat-8 imagery, VIIRS nighttime lights, ESRI Land Use Land Cover (LULC), and GHS-SMOD, to produce a 10m resolution urban-rural map across the African continent from 2016 to 2022. The use of Landsat data also highlights the potential to extend this mapping approach historically, reaching back to the 1990s. The model employs semantic segmentation to capture fine-scale settlement morphology, and its outputs are validated using the Demographic and Health Surveys (DHS) dataset, which provides independent, survey-based urban-rural labels. The model achieves an overall accuracy of 65% and a Kappa coefficient of 0.47 at the continental scale, outperforming existing global products such as SMOD. The resulting High-Resolution Urban-Rural (HUR) dataset provides an open and reproducible framework for mapping human settlements, enabling more context-aware analyses of Africa's rapidly evolving settlement systems. We release a continent-wide urban-rural dataset covering the period from 2016 to 2022, offering a new source for high-resolution settlement mapping in Africa.
comment: 25 pages, 12 figures
♻ ☆ MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
We introduce MonkeyOCR, a document parsing model that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline and avoids the inefficiencies of processing full pages with giant end-to-end models. In SRR, document parsing is abstracted into three fundamental questions - ``Where is it?'' (structure), ``What is it?'' (recognition), and ``How is it organized?'' (relation) - corresponding to structure detection, content recognition, and relation prediction. To support this paradigm, we present MonkeyDoc, a comprehensive dataset with 4.5 million bilingual instances spanning over ten document types, which addresses the limitations of existing datasets that often focus on a single task, language, or document type. Leveraging the SRR paradigm and MonkeyDoc, we trained a 3B-parameter document foundation model. We further identify parameter redundancy in this model and propose contiguous parameter degradation (CPD), enabling the construction of models from 0.6B to 1.2B parameters that run faster with acceptable performance drop. MonkeyOCR achieves state-of-the-art performance, surpassing previous open-source and closed-source methods, including Gemini 2.5-Pro. Additionally, the model can be efficiently deployed for inference on a single RTX 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.
♻ ☆ Exploring Adversarial Watermarking in Transformer-Based Models: Transferability and Robustness Against Defense Mechanism for Medical Images
Deep learning models have shown remarkable success in dermatological image analysis, offering potential for automated skin disease diagnosis. Previously, convolutional neural network(CNN) based architectures have achieved immense popularity and success in computer vision (CV) based task like skin image recognition, generation and video analysis. But with the emergence of transformer based models, CV tasks are now are nowadays carrying out using these models. Vision Transformers (ViTs) is such a transformer-based models that have shown success in computer vision. It uses self-attention mechanisms to achieve state-of-the-art performance across various tasks. However, their reliance on global attention mechanisms makes them susceptible to adversarial perturbations. This paper aims to investigate the susceptibility of ViTs for medical images to adversarial watermarking-a method that adds so-called imperceptible perturbations in order to fool models. By generating adversarial watermarks through Projected Gradient Descent (PGD), we examine the transferability of such attacks to CNNs and analyze the performance defense mechanism -- adversarial training. Results indicate that while performance is not compromised for clean images, ViTs certainly become much more vulnerable to adversarial attacks: an accuracy drop of as low as 27.6%. Nevertheless, adversarial training raises it up to 90.0%.
♻ ☆ Towards Effective and Efficient Context-aware Nucleus Detection in Histopathology Whole Slide Images AAAI 2026
Nucleus detection in histopathology whole slide images (WSIs) is crucial for a broad spectrum of clinical applications. The gigapixel size of WSIs necessitates the use of sliding window methodology for nucleus detection. However, mainstream methods process each sliding window independently, which overlooks broader contextual information and easily leads to inaccurate predictions. To address this limitation, recent studies additionally crop a large Filed-of-View (LFoV) patch centered on each sliding window to extract contextual features. However, such methods substantially increase whole-slide inference latency. In this work, we propose an effective and efficient context-aware nucleus detection approach. Specifically, instead of using LFoV patches, we aggregate contextual clues from off-the-shelf features of historically visited sliding windows, which greatly enhances the inference efficiency. Moreover, compared to LFoV patches used in previous works, the sliding window patches have higher magnification and provide finer-grained tissue details, thereby enhancing the classification accuracy. To develop the proposed context-aware model, we utilize annotated patches along with their surrounding unlabeled patches for training. Beyond exploiting high-level tissue context from these surrounding regions, we design a post-training strategy that leverages abundant unlabeled nucleus samples within them to enhance the model's context adaptability. Extensive experimental results on three challenging benchmarks demonstrate the superiority of our method.
comment: Accepted by AAAI 2026
♻ ☆ Visual Prompt-Agnostic Evolution ICLR 2026
Visual Prompt Tuning (VPT) adapts a frozen Vision Transformer (ViT) to downstream tasks by inserting a small number of learnable prompt tokens into the token sequence at each layer. However, we observe that existing VPT variants often suffer from unstable training dynamics, characterized by gradient oscillations. A layer-wise analysis reveals that shallow-layer prompts tend to stagnate early, while deeper-layer prompts exhibit high-variance oscillations, leading to cross-layer mismatch. These issues slow convergence and degrade final performance. To address these challenges, we propose Prompt-Agnostic Evolution ($\mathtt{PAE}$), which strengthens vision prompt tuning by explicitly modeling prompt dynamics. From a frequency-domain perspective, we initialize prompts in a task-aware direction by uncovering and propagating frequency shortcut patterns that the backbone inherently exploits for recognition. To ensure coherent evolution across layers, we employ a shared Koopman operator that imposes a global linear transformation instead of uncoordinated, layer-specific updates. Finally, inspired by Lyapunov stability theory, we introduce a regularizer that constrains error amplification during evolution. Extensive experiments show that $\mathtt{PAE}$ accelerates convergence with an average $1.41\times$ speedup and improves accuracy by 1-3% on 25 datasets across multiple downstream tasks. Beyond performance, $\mathtt{PAE}$ is prompt-agnostic and lightweight, and it integrates seamlessly with diverse VPT variants without backbone modification or inference-time changes.
comment: Accepted by ICLR 2026
♻ ☆ Approximating Signed Distance Fields With Sparse Ellipsoidal Radial Basis Function Networks: A Dynamic Multi-Objective Optimization Strategy
Accurate and compact representation of signed distance functions (SDFs) of implicit surfaces is crucial for efficient storage, computation, and downstream processing of 3D geometry. In this work, we propose a general learning method for approximating precomputed SDF fields of implicit surfaces by a relatively small number of ellipsoidal radial basis functions (ERBFs). The SDF values could be computed from various sources, including point clouds, triangle meshes, analytical expressions, pretrained neural networks, etc. Given SDF values on spatial grid points, our method approximates the SDF using as few ERBFs as possible, achieving a compact representation while preserving the geometric shape of the corresponding implicit surface. To balance sparsity and approximation precision, we introduce a dynamic multi-objective optimization strategy, which adaptively incorporates regularization to enforce sparsity and jointly optimizes the weights, centers, shapes, and orientations of the ERBFs. For computational efficiency, a nearest-neighbor-based data structure restricts computations to points near each kernel center, and CUDA-based parallelism further accelerates the optimization. Furthermore, a hierarchical refinement strategy based on SDF spatial grid points progressively incorporates coarse-to-fine samples for parameter initialization and optimization, improving convergence and training efficiency. Extensive experiments on multiple benchmark datasets demonstrate that our method can represent SDF fields with significantly fewer parameters than existing sparse implicit representation approaches, achieving better accuracy, robustness, and computational efficiency. The corresponding executable program is publicly available at https://github.com/lianbobo/SE-RBFNet.git
♻ ☆ Predicting brain tumour enhancement from non-contrast MR imaging with artificial intelligence
Brain tumour imaging assessment typically requires both pre- and post-contrast MRI, but gadolinium administration is not always desirable, such as in frequent follow-up, renal impairment, allergy, or paediatric patients. We aimed to develop and validate a deep learning model capable of predicting brain tumour contrast enhancement from non-contrast MRI sequences alone. We assembled 11089 brain MRI studies from 10 international datasets spanning adult and paediatric populations with various neuro-oncological states, including glioma, meningioma, metastases, and post-resection appearances. Deep learning models (nnU-Net, SegResNet, SwinUNETR) were trained to predict and segment enhancing tumour using only non-contrast T1-, T2-, and T2/FLAIR-weighted images. Performance was evaluated on 1109 held-out test patients using patient-level detection metrics and voxel-level segmentation accuracy. Model predictions were compared against 11 expert radiologists who each reviewed 100 randomly selected patients. The best-performing nnU-Net achieved 83% balanced accuracy, 91.5% sensitivity, and 74.4% specificity in detecting enhancing tumour. Enhancement volume predictions strongly correlated with ground truth (R2 0.859). The model outperformed expert radiologists, who achieved 69.8% accuracy, 75.9% sensitivity, and 64.7% specificity. 76.8% of test patients had Dice over 0.3 (acceptable detection), 67.5% had Dice over 0.5 (good detection), and 50.2% had Dice over 0.7 (excellent detection). Deep learning can identify contrast-enhancing brain tumours from non-contrast MRI with clinically relevant performance. These models show promise as screening tools and may reduce gadolinium dependence in neuro-oncology imaging. Future work should evaluate clinical utility alongside radiology experts.
comment: 38 pages
♻ ☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
♻ ☆ Moonworks Lunara Aesthetic Dataset
The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.
Computation and Language 56
☆ ParisKV: Fast and Drift-Robust KV-Cache Retrieval for Long-Context LLMs
KV-cache retrieval is essential for long-context LLM inference, yet existing methods struggle with distribution drift and high latency at scale. We introduce ParisKV, a drift-robust, GPU-native KV-cache retrieval framework based on collision-based candidate selection, followed by a quantized inner-product reranking estimator. For million-token contexts, ParisKV supports CPU-offloaded KV caches via Unified Virtual Addressing (UVA), enabling on-demand top-$k$ fetching with minimal overhead. ParisKV matches or outperforms full attention quality on long-input and long-generation benchmarks. It achieves state-of-the-art long-context decoding efficiency: it matches or exceeds full attention speed even at batch size 1 for long contexts, delivers up to 2.8$\times$ higher throughput within full attention's runnable range, and scales to million-token contexts where full attention runs out of memory. At million-token scale, ParisKV reduces decode latency by 17$\times$ and 44$\times$ compared to MagicPIG and PQCache, respectively, two state-of-the-art KV-cache Top-$k$ retrieval baselines.
comment: 25 pages, 16 figures. Under review
☆ On Sequence-to-Sequence Models for Automated Log Parsing
Log parsing is a critical standard operating procedure in software systems, enabling monitoring, anomaly detection, and failure diagnosis. However, automated log parsing remains challenging due to heterogeneous log formats, distribution shifts between training and deployment data, and the brittleness of rule-based approaches. This study aims to systematically evaluate how sequence modelling architecture, representation choice, sequence length, and training data availability influence automated log parsing performance and computational cost. We conduct a controlled empirical study comparing four sequence modelling architectures: Transformer, Mamba state-space, monodirectional LSTM, and bidirectional LSTM models. In total, 396 models are trained across multiple dataset configurations and evaluated using relative Levenshtein edit distance with statistical significance testing. Transformer achieves the lowest mean relative edit distance (0.111), followed by Mamba (0.145), mono-LSTM (0.186), and bi-LSTM (0.265), where lower values are better. Mamba provides competitive accuracy with substantially lower computational cost. Character-level tokenization generally improves performance, sequence length has negligible practical impact on Transformer accuracy, and both Mamba and Transformer demonstrate stronger sample efficiency than recurrent models. Overall, Transformers reduce parsing error by 23.4%, while Mamba is a strong alternative under data or compute constraints. These results also clarify the roles of representation choice, sequence length, and sample efficiency, providing practical guidance for researchers and practitioners.
☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
☆ Blind to the Human Touch: Overlap Bias in LLM-Based Summary Evaluation
Large language model (LLM) judges have often been used alongside traditional, algorithm-based metrics for tasks like summarization because they better capture semantic information, are better at reasoning, and are more robust to paraphrasing. However, LLM judges show biases for length and order among others, and are vulnerable to various adversarial input prompts. While recent studies have looked into these biases, few have analyzed them at a more granular level in relation to a well-defined overlap metric. In this work we provide an LLM judge bias analysis as a function of overlap with human-written responses in the domain of summarization. We test 9 recent LLMs with parameter counts ranging from 1 billion to 12 billion, including variants of Gemma 3 and LLaMA 3. We find that LLM judges increasingly prefer summaries generated by other LLMs over those written by humans as the similarities (as measured by ROUGE and BLEU) between the judged summaries decrease, and this pattern extends to all but one model tested, and exists regardless of the models' own position biases. Additionally, we find that models struggle to judge even summaries with limited overlaps, suggesting that LLM-as-a-judge in the summary domain should rely on techniques beyond a simple comparison.
☆ Letting Tutor Personas "Speak Up" for LLMs: Learning Steering Vectors from Dialogue via Preference Optimization
With the emergence of large language models (LLMs) as a powerful class of generative artificial intelligence (AI), their use in tutoring has become increasingly prominent. Prior works on LLM-based tutoring typically learn a single tutor policy and do not capture the diversity of tutoring styles. In real-world tutor-student interactions, pedagogical intent is realized through adaptive instructional strategies, with tutors varying the level of scaffolding, instructional directiveness, feedback, and affective support in response to learners' needs. These differences can all impact dialogue dynamics and student engagement. In this paper, we explore how tutor personas embedded in human tutor-student dialogues can be used to guide LLM behavior without relying on explicitly prompted instructions. We modify Bidirectional Preference Optimization (BiPO) to learn a steering vector, an activation-space direction that steers model responses towards certain tutor personas. We find that this steering vector captures tutor-specific variation across dialogue contexts, improving semantic alignment with ground-truth tutor utterances and increasing preference-based evaluations, while largely preserving lexical similarity. Analysis of the learned directional coefficients further reveals interpretable structure across tutors, corresponding to consistent differences in tutoring behavior. These results demonstrate that activation steering offers an effective and interpretable way for controlling tutor-specific variation in LLMs using signals derived directly from human dialogue data.
☆ SciClaimEval: Cross-modal Claim Verification in Scientific Papers
We present SciClaimEval, a new scientific dataset for the claim verification task. Unlike existing resources, SciClaimEval features authentic claims, including refuted ones, directly extracted from published papers. To create refuted claims, we introduce a novel approach that modifies the supporting evidence (figures and tables), rather than altering the claims or relying on large language models (LLMs) to fabricate contradictions. The dataset provides cross-modal evidence with diverse representations: figures are available as images, while tables are provided in multiple formats, including images, LaTeX source, HTML, and JSON. SciClaimEval contains 1,664 annotated samples from 180 papers across three domains, machine learning, natural language processing, and medicine, validated through expert annotation. We benchmark 11 multimodal foundation models, both open-source and proprietary, across the dataset. Results show that figure-based verification remains particularly challenging for all models, as a substantial performance gap remains between the best system and human baseline.
comment: 12 pages; data is available at https://sciclaimeval.github.io/
☆ Learning to Self-Verify Makes Language Models Better Reasoners
Recent large language models (LLMs) achieve strong performance in generating promising reasoning paths for complex tasks. However, despite powerful generation ability, LLMs remain weak at verifying their own answers, revealing a persistent capability asymmetry between generation and self-verification. In this work, we conduct an in-depth investigation of this asymmetry throughout training evolution and show that, even on the same task, improving generation does not lead to corresponding improvements in self-verification. Interestingly, we find that the reverse direction of this asymmetry behaves differently: learning to self-verify can effectively improve generation performance, achieving accuracy comparable to standard generation training while yielding more efficient and effective reasoning traces. Building on this observation, we further explore integrating self-verification into generation training by formulating a multi-task reinforcement learning framework, where generation and self-verification are optimized as two independent but complementary objectives. Extensive experiments across benchmarks and models demonstrate performance gains over generation-only training in both generation and verification capabilities.
☆ ViCA: Efficient Multimodal LLMs with Vision-Only Cross-Attention
Modern multimodal large language models (MLLMs) adopt a unified self-attention design that processes visual and textual tokens at every Transformer layer, incurring substantial computational overhead. In this work, we revisit the necessity of such dense visual processing and show that projected visual embeddings are already well-aligned with the language space, while effective vision-language interaction occurs in only a small subset of layers. Based on these insights, we propose ViCA (Vision-only Cross-Attention), a minimal MLLM architecture in which visual tokens bypass all self-attention and feed-forward layers, interacting with text solely through sparse cross-attention at selected layers. Extensive evaluations across three MLLM backbones, nine multimodal benchmarks, and 26 pruning-based baselines show that ViCA preserves 98% of baseline accuracy while reducing visual-side computation to 4%, consistently achieving superior performance-efficiency trade-offs. Moreover, ViCA provides a regular, hardware-friendly inference pipeline that yields over 3.5x speedup in single-batch inference and over 10x speedup in multi-batch inference, reducing visual grounding to near-zero overhead compared with text-only LLMs. It is also orthogonal to token pruning methods and can be seamlessly combined for further efficiency gains. Our code is available at https://github.com/EIT-NLP/ViCA.
☆ When Is Enough Not Enough? Illusory Completion in Search Agents
Recent search agents leverage multi-turn reasoning and search tools to achieve strong performance on multi-hop and long-horizon benchmarks. Yet it remains unclear whether they reliably reason across all requirements by tracking, verifying, and maintaining multiple conditions in these questions. We study this capability under multi-constraint problems, where valid answers must satisfy several constraints simultaneously. We find that illusory completion frequently occurs, wherein agents believe tasks are complete despite unresolved or violated constraints, leading to underverified answers. To diagnose this behavior, we introduce the Epistemic Ledger, an evaluation framework that tracks evidential support and agents' beliefs for each constraint throughout multi-turn reasoning. Our analysis reveals four recurring failure patterns: bare assertions, overlooked refutations, stagnation, and premature exit. Motivated by these findings, we examine whether explicit constraint-state tracking during execution mitigates these failures via LiveLedger, an inference-time tracker. This simple intervention consistently improves performance, substantially reducing underverified answers (by up to 26.5%) and improving overall accuracy (by up to 11.6%) on multi-constraint problems.
☆ Linguistic properties and model scale in brain encoding: from small to compressed language models
Recent work has shown that scaling large language models (LLMs) improves their alignment with human brain activity, yet it remains unclear what drives these gains and which representational properties are responsible. Although larger models often yield better task performance and brain alignment, they are increasingly difficult to analyze mechanistically. This raises a fundamental question: what is the minimal model capacity required to capture brain-relevant representations? To address this question, we systematically investigate how constraining model scale and numerical precision affects brain alignment. We compare full-precision LLMs, small language models (SLMs), and compressed variants (quantized and pruned) by predicting fMRI responses during naturalistic language comprehension. Across model families up to 14B parameters, we find that 3B SLMs achieve brain predictivity indistinguishable from larger LLMs, whereas 1B models degrade substantially, particularly in semantic language regions. Brain alignment is remarkably robust to compression: most quantization and pruning methods preserve neural predictivity, with GPTQ as a consistent exception. Linguistic probing reveals a dissociation between task performance and brain predictivity: compression degrades discourse, syntax, and morphology, yet brain predictivity remains largely unchanged. Overall, brain alignment saturates at modest model scales and is resilient to compression, challenging common assumptions about neural scaling and motivating compact models for brain-aligned language modeling.
comment: 40 pages, 33 figures
☆ Improving Variable-Length Generation in Diffusion Language Models via Length Regularization
Diffusion Large Language Models (DLLMs) are inherently ill-suited for variable-length generation, as their inference is defined on a fixed-length canvas and implicitly assumes a known target length. When the length is unknown, as in realistic completion and infilling, naively comparing confidence across mask lengths becomes systematically biased, leading to under-generation or redundant continuations. In this paper, we show that this failure arises from an intrinsic lengthinduced bias in generation confidence estimates, leaving existing DLLMs without a robust way to determine generation length and making variablelength inference unreliable. To address this issue, we propose LR-DLLM, a length-regularized inference framework for DLLMs that treats generation length as an explicit variable and achieves reliable length determination at inference time. It decouples semantic compatibility from lengthinduced uncertainty through an explicit length regularization that corrects biased confidence estimates. Based on this, LR-DLLM enables dynamic expansion or contraction of the generation span without modifying the underlying DLLM or its training procedure. Experiments show that LRDLLM achieves 51.3% Pass@1 on HumanEvalInfilling under fully unknown lengths (+13.4% vs. DreamOn) and 51.5% average Pass@1 on four-language McEval (+14.3% vs. DreamOn).
comment: diffusion language models
☆ Training-Driven Representational Geometry Modularization Predicts Brain Alignment in Language Models
How large language models (LLMs) align with the neural representation and computation of human language is a central question in cognitive science. Using representational geometry as a mechanistic lens, we addressed this by tracking entropy, curvature, and fMRI encoding scores throughout Pythia (70M-1B) training. We identified a geometric modularization where layers self-organize into stable low- and high-complexity clusters. The low-complexity module, characterized by reduced entropy and curvature, consistently better predicted human language network activity. This alignment followed heterogeneous spatial-temporal trajectories: rapid and stable in temporal regions (AntTemp, PostTemp), but delayed and dynamic in frontal areas (IFG, IFGorb). Crucially, reduced curvature remained a robust predictor of model-brain alignment even after controlling for training progress, an effect that strengthened with model scale. These results links training-driven geometric reorganization to temporal-frontal functional specialization, suggesting that representational smoothing facilitates neural-like linguistic processing.
☆ MemPot: Defending Against Memory Extraction Attack with Optimized Honeypots
Large Language Model (LLM)-based agents employ external and internal memory systems to handle complex, goal-oriented tasks, yet this exposes them to severe extraction attacks, and effective defenses remain lacking. In this paper, we propose MemPot, the first theoretically verified defense framework against memory extraction attacks by injecting optimized honeypots into the memory. Through a two-stage optimization process, MemPot generates trap documents that maximize the retrieval probability for attackers while remaining inconspicuous to benign users. We model the detection process as Wald's Sequential Probability Ratio Test (SPRT) and theoretically prove that MemPot achieves a lower average number of sampling rounds compared to optimal static detectors. Empirically, MemPot significantly outperforms state-of-the-art baselines, achieving a 50% improvement in detection AUROC and an 80% increase in True Positive Rate under low False Positive Rate constraints. Furthermore, our experiments confirm that MemPot incurs zero additional online inference latency and preserves the agent's utility on standard tasks, verifying its superiority in safety, harmlessness, and efficiency.
☆ Let's Simplify Step by Step: Guiding LLM Towards Multilingual Unsupervised Proficiency-Controlled Sentence Simplification EACL 2026
Large language models demonstrate limited capability in proficiency-controlled sentence simplification, particularly when simplifying across large readability levels. We propose a framework that decomposes complex simplifications into manageable steps through dynamic path planning, semantic-aware exemplar selection, and chain-of-thought generation with conversation history for coherent reasoning. Evaluation on five languages across two benchmarks shows our approach improves simplification effectiveness while reducing computational steps by 22-42%. Human evaluation confirms the fundamental trade-off between simplification effectiveness and meaning preservation. Notably, even human annotators struggle to agree on semantic preservation judgments, highlighting the inherent complexity of this task. Our work shows that while step-by-step simplification improves control, preserving semantic fidelity during extensive simplification remains an open challenge.
comment: Accepted to EACL 2026 Findings
☆ From Native Memes to Global Moderation: Cros-Cultural Evaluation of Vision-Language Models for Hateful Meme Detection WWW '26
Cultural context profoundly shapes how people interpret online content, yet vision-language models (VLMs) remain predominantly trained through Western or English-centric lenses. This limits their fairness and cross-cultural robustness in tasks like hateful meme detection. We introduce a systematic evaluation framework designed to diagnose and quantify the cross-cultural robustness of state-of-the-art VLMs across multilingual meme datasets, analyzing three axes: (i) learning strategy (zero-shot vs. one-shot), (ii) prompting language (native vs. English), and (iii) translation effects on meaning and detection. Results show that the common ``translate-then-detect'' approach deteriorate performance, while culturally aligned interventions - native-language prompting and one-shot learning - significantly enhance detection. Our findings reveal systematic convergence toward Western safety norms and provide actionable strategies to mitigate such bias, guiding the design of globally robust multimodal moderation systems.
comment: 12 pages, 5 figures, Proceedings of the ACM Web Conference 2026 (WWW '26)
☆ On the Importance of a Multi-Scale Calibration for Quantization ICASSP 2026
Post-training quantization (PTQ) is a cornerstone for efficiently deploying large language models (LLMs), where a small calibration set critically affects quantization performance. However, conventional practices rely on random sequences of fixed length, overlooking the variable-length nature of LLM inputs. Input length directly influences the activation distribution and, consequently, the weight importance captured by the Hessian, which in turn affects quantization outcomes. As a result, Hessian estimates derived from fixed-length calibration may fail to represent the true importance of weights across diverse input scenarios. We propose MaCa (Matryoshka Calibration), a simple yet effective method for length-aware Hessian construction. MaCa (i) incorporates multi-scale sequence length information into Hessian estimation and (ii) regularizes each sequence as an independent sample, yielding a more stable and fruitful Hessian for accurate quantization. Experiments on state-of-the-art LLMs (e.g., Qwen3, Gemma3, LLaMA3) demonstrate that MaCa consistently improves accuracy under low bit quantization, offering a lightweight enhancement compatible with existing PTQ frameworks. To the best of our knowledge, this is the first work to systematically highlight the role of multi-scale calibration in LLM quantization.
comment: ICASSP 2026
☆ SED-SFT: Selectively Encouraging Diversity in Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has emerged as the standard post-training paradigm for large language models (LLMs). However, the conventional SFT process, driven by Cross-Entropy (CE) loss, often induces mode collapse, where models over-concentrate on specific response patterns. This lack of distributional diversity severely restricts the exploration efficiency required for subsequent RL. While recent studies have attempted to improve SFT by replacing the CE loss, aiming to preserve diversity or refine the update policy, they fail to adequately balance diversity and accuracy, thereby yielding suboptimal performance after RL. To address the mode collapse problem, we propose SED-SFT, which adaptively encourages diversity based on the token exploration space. This framework introduces a selective entropy regularization term with a selective masking mechanism into the optimization objective. Extensive experiments across eight mathematical benchmarks demonstrate that SED-SFT significantly enhances generation diversity with a negligible computational overhead increase compared with CE loss, yielding average improvements of 2.06 and 1.20 points in subsequent RL performance over standard CE-based baselines on Llama-3.2-3B-Instruct and Qwen2.5-Math-7B-Instruct, respectively. The code is publicly available at https://github.com/pppa2019/SED-SFT
comment: The code is publicly available at https://github.com/pppa2019/SED-SFT
☆ Pull Requests as a Training Signal for Repo-Level Code Editing
Repository-level code editing requires models to understand complex dependencies and execute precise multi-file modifications across a large codebase. While recent gains on SWE-bench rely heavily on complex agent scaffolding, it remains unclear how much of this capability can be internalised via high-quality training signals. To address this, we propose Clean Pull Request (Clean-PR), a mid-training paradigm that leverages real-world GitHub pull requests as a training signal for repository-level editing. We introduce a scalable pipeline that converts noisy pull request diffs into Search/Replace edit blocks through reconstruction and validation, resulting in the largest publicly available corpus of 2 million pull requests spanning 12 programming languages. Using this training signal, we perform a mid-training stage followed by an agentless-aligned supervised fine-tuning process with error-driven data augmentation. On SWE-bench, our model significantly outperforms the instruction-tuned baseline, achieving absolute improvements of 13.6% on SWE-bench Lite and 12.3% on SWE-bench Verified. These results demonstrate that repository-level code understanding and editing capabilities can be effectively internalised into model weights under a simplified, agentless protocol, without relying on heavy inference-time scaffolding.
☆ DLLM Agent: See Farther, Run Faster
Diffusion large language models (DLLMs) have emerged as an alternative to autoregressive (AR) decoding with appealing efficiency and modeling properties, yet their implications for agentic multi-step decision making remain underexplored. We ask a concrete question: when the generation paradigm is changed but the agent framework and supervision are held fixed, do diffusion backbones induce systematically different planning and tool-use behaviors, and do these differences translate into end-to-end efficiency gains? We study this in a controlled setting by instantiating DLLM and AR backbones within the same agent workflow (DeepDiver) and performing matched agent-oriented fine-tuning on the same trajectory data, yielding diffusion-backed DLLM Agents and directly comparable AR agents. Across benchmarks and case studies, we find that, at comparable accuracy, DLLM Agents are on average over 30% faster end to end than AR agents, with some cases exceeding 8x speedup. Conditioned on correct task completion, DLLM Agents also require fewer interaction rounds and tool invocations, consistent with higher planner hit rates that converge earlier to a correct action path with less backtracking. We further identify two practical considerations for deploying diffusion backbones in tool-using agents. First, naive DLLM policies are more prone to structured tool-call failures, necessitating stronger tool-call-specific training to emit valid schemas and arguments. Second, for multi-turn inputs interleaving context and action spans, diffusion-style span corruption requires aligned attention masking to avoid spurious context-action information flow; without such alignment, performance degrades. Finally, we analyze attention dynamics across workflow stages and observe paradigm-specific coordination patterns, suggesting stronger global planning signals in diffusion-backed agents.
☆ Measuring cross-language intelligibility between Romance languages with computational tools
We present an analysis of mutual intelligibility in related languages applied for languages in the Romance family. We introduce a novel computational metric for estimating intelligibility based on lexical similarity using surface and semantic similarity of related words, and use it to measure mutual intelligibility for the five main Romance languages (French, Italian, Portuguese, Spanish, and Romanian), and compare results using both the orthographic and phonetic forms of words as well as different parallel corpora and vectorial models of word meaning representation. The obtained intelligibility scores confirm intuitions related to intelligibility asymmetry across languages and significantly correlate with results of cloze tests in human experiments.
comment: 16 pages, 7 figures, 2 tables
☆ Sign-Based Optimizers Are Effective Under Heavy-Tailed Noise
While adaptive gradient methods are the workhorse of modern machine learning, sign-based optimization algorithms such as Lion and Muon have recently demonstrated superior empirical performance over AdamW in training large language models (LLM). However, a theoretical understanding of why sign-based updates outperform variance-adapted methods remains elusive. In this paper, we aim to bridge the gap between theory and practice through the lens of heavy-tailed gradient noise, a phenomenon frequently observed in language modeling tasks. Theoretically, we introduce a novel generalized heavy-tailed noise condition that captures the behavior of LLMs more accurately than standard finite variance assumptions. Under this noise model, we establish sharp convergence rates of SignSGD and Lion for generalized smooth function classes, matching or surpassing previous best-known bounds. Furthermore, we extend our analysis to Muon and Muonlight, providing what is, to our knowledge, the first rigorous analysis of matrix optimization under heavy-tailed stochasticity. These results offer a strong theoretical justification for the empirical superiority of sign-based optimizers, showcasing that they are naturally suited to handle the noisy gradients associated with heavy tails. Empirically, LLM pretraining experiments validate our theoretical insights and confirm that our proposed noise models are well-aligned with practice.
comment: Code available at https://github.com/Dingzhen230/Heavy-tailed-Noise-in-LLMs
☆ Secure Code Generation via Online Reinforcement Learning with Vulnerability Reward Model
Large language models (LLMs) are increasingly used in software development, yet their tendency to generate insecure code remains a major barrier to real-world deployment. Existing secure code alignment methods often suffer from a functionality--security paradox, improving security at the cost of substantial utility degradation. We propose SecCoderX, an online reinforcement learning framework for functionality-preserving secure code generation. SecCoderX first bridges vulnerability detection and secure code generation by repurposing mature detection resources in two ways: (i) synthesizing diverse, reality-grounded vulnerability-inducing coding tasks for online RL rollouts, and (ii) training a reasoning-based vulnerability reward model that provides scalable and reliable security supervision. Together, these components are unified in an online RL loop to align code LLMs to generate secure and functional code. Extensive experiments demonstrate that SecCoderX achieves state-of-the-art performance, improving Effective Safety Rate (ESR) by approximately 10% over unaligned models, whereas prior methods often degrade ESR by 14-54%. We release our code, dataset and model checkpoints at https://github.com/AndrewWTY/SecCoderX.
☆ Can LLMs Truly Embody Human Personality? Analyzing AI and Human Behavior Alignment in Dispute Resolution AAAI 2026
Large language models (LLMs) are increasingly used to simulate human behavior in social settings such as legal mediation, negotiation, and dispute resolution. However, it remains unclear whether these simulations reproduce the personality-behavior patterns observed in humans. Human personality, for instance, shapes how individuals navigate social interactions, including strategic choices and behaviors in emotionally charged interactions. This raises the question: Can LLMs, when prompted with personality traits, reproduce personality-driven differences in human conflict behavior? To explore this, we introduce an evaluation framework that enables direct comparison of human-human and LLM-LLM behaviors in dispute resolution dialogues with respect to Big Five Inventory (BFI) personality traits. This framework provides a set of interpretable metrics related to strategic behavior and conflict outcomes. We additionally contribute a novel dataset creation methodology for LLM dispute resolution dialogues with matched scenarios and personality traits with respect to human conversations. Finally, we demonstrate the use of our evaluation framework with three contemporary closed-source LLMs and show significant divergences in how personality manifests in conflict across different LLMs compared to human data, challenging the assumption that personality-prompted agents can serve as reliable behavioral proxies in socially impactful applications. Our work highlights the need for psychological grounding and validation in AI simulations before real-world use.
comment: AAAI 2026 (Special Track: AISI)
☆ Advantages of Domain Knowledge Injection for Legal Document Summarization: A Case Study on Summarizing Indian Court Judgments in English and Hindi
Summarizing Indian legal court judgments is a complex task not only due to the intricate language and unstructured nature of the legal texts, but also since a large section of the Indian population does not understand the complex English in which legal text is written, thus requiring summaries in Indian languages. In this study, we aim to improve the summarization of Indian legal text to generate summaries in both English and Hindi (the most widely spoken Indian language), by injecting domain knowledge into diverse summarization models. We propose a framework to enhance extractive neural summarization models by incorporating domain-specific pre-trained encoders tailored for legal texts. Further, we explore the injection of legal domain knowledge into generative models (including Large Language Models) through continual pre-training on large legal corpora in English and Hindi. Our proposed approaches achieve statistically significant improvements in both English-to-English and English-to-Hindi Indian legal document summarization, as measured by standard evaluation metrics, factual consistency metrics, and legal domain-specific metrics. Furthermore, these improvements are validated through domain experts, demonstrating the effectiveness of our approaches.
comment: 19 pages, 5 figures, 8 tables
☆ When the Model Said 'No Comment', We Knew Helpfulness Was Dead, Honesty Was Alive, and Safety Was Terrified EACL
Large Language Models (LLMs) need to be in accordance with human values-being helpful, harmless, and honest (HHH)-is important for safe deployment. Existing works use Supervised Fine-Tuning (SFT) and Mixture-of-Experts (MoE) to align LLMs. However, these works face challenges in multi-objective settings, such as SFT leading to interference between conflicting objectives, while MoEs suffer from miscalibrated routing. We term this failure mode Axis Collapse, marked by (1) disjoint feature spaces causing catastrophic forgetting, and (2) unreliable inference from misrouted experts. To resolve this, we propose AlignX, a two-stage framework. Stage 1 uses prompt-injected fine-tuning to extract axis-specific task features, mitigating catastrophic forgetting. Stage 2 deploys a MoCaE module that calibrates expert routing using fractal and natural geometry, improving inference reliability. AlignX achieves significant gains on Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty), with +171.5% win rate, +110.1% in truthfulness-informativeness, and 4.3% fewer safety violations. It also reduces latency and memory usage by over 35% compared to prior MoEs. Results across four LLMs validate its generalizability.
comment: Accepted at EACL Mains 2026
☆ Do Large Language Models Reflect Demographic Pluralism in Safety? EACL
Large Language Model (LLM) safety is inherently pluralistic, reflecting variations in moral norms, cultural expectations, and demographic contexts. Yet, existing alignment datasets such as ANTHROPIC-HH and DICES rely on demographically narrow annotator pools, overlooking variation in safety perception across communities. Demo-SafetyBench addresses this gap by modeling demographic pluralism directly at the prompt level, decoupling value framing from responses. In Stage I, prompts from DICES are reclassified into 14 safety domains (adapted from BEAVERTAILS) using Mistral 7B-Instruct-v0.3, retaining demographic metadata and expanding low-resource domains via Llama-3.1-8B-Instruct with SimHash-based deduplication, yielding 43,050 samples. In Stage II, pluralistic sensitivity is evaluated using LLMs-as-Raters-Gemma-7B, GPT-4o, and LLaMA-2-7B-under zero-shot inference. Balanced thresholds (delta = 0.5, tau = 10) achieve high reliability (ICC = 0.87) and low demographic sensitivity (DS = 0.12), confirming that pluralistic safety evaluation can be both scalable and demographically robust.
comment: Accepted at EACL Findings 2026
☆ Efficient Post-Training Pruning of Large Language Models with Statistical Correction
Post-training pruning is an effective approach for reducing the size and inference cost of large language models (LLMs), but existing methods often face a trade-off between pruning quality and computational efficiency. Heuristic pruning methods are efficient but sensitive to activation outliers, while reconstruction-based approaches improve fidelity at the cost of heavy computation. In this work, we propose a lightweight post-training pruning framework based on first-order statistical properties of model weights and activations. During pruning, channel-wise statistics are used to calibrate magnitude-based importance scores, reducing bias from activation-dominated channels. After pruning, we apply an analytic energy compensation to correct distributional distortions caused by weight removal. Both steps operate without retraining, gradients, or second-order information. Experiments across multiple LLM families, sparsity patterns, and evaluation tasks show that the proposed approach improves pruning performance while maintaining computational cost comparable to heuristic methods. The results suggest that simple statistical corrections can be effective for post-training pruning of LLMs.
comment: 11 pages, 2 figures, 5 tables
☆ TernaryLM: Memory-Efficient Language Modeling via Native 1-Bit Quantization with Adaptive Layer-wise Scaling
Large language models (LLMs) achieve remarkable performance but demand substantial computational resources, limiting deployment on edge devices and resource-constrained environments. We present TernaryLM, a 132M parameter transformer architecture that employs native 1-bit ternary quantization {-1, 0, +1} during training, achieving significant memory reduction without sacrificing language modeling capability. Unlike post-training quantization approaches that quantize pre-trained full-precision models, TernaryLM learns quantization-aware representations from scratch using straight-through estimators and adaptive per-layer scaling factors. Our experiments demonstrate: (1) validation perplexity of 58.42 on TinyStories; (2) downstream transfer with 82.47 percent F1 on MRPC paraphrase detection; (3) 2.4x memory reduction (498MB vs 1197MB) with comparable inference latency; and (4) stable training dynamics across diverse corpora. We provide layer-wise quantization analysis showing that middle transformer layers exhibit highest compatibility with extreme quantization, informing future non-uniform precision strategies. Our results suggest that native 1-bit training is a promising direction for efficient neural language models. Code is available at https://github.com/1nisharg/TernaryLM-Memory-Efficient-Language-Modeling.
☆ ViHERMES: A Graph-Grounded Multihop Question Answering Benchmark and System for Vietnamese Healthcare Regulations
Question Answering (QA) over regulatory documents is inherently challenging due to the need for multihop reasoning across legally interdependent texts, a requirement that is particularly pronounced in the healthcare domain where regulations are hierarchically structured and frequently revised through amendments and cross-references. Despite recent progress in retrieval-augmented and graph-based QA methods, systematic evaluation in this setting remains limited, especially for low-resource languages such as Vietnamese, due to the lack of benchmark datasets that explicitly support multihop reasoning over healthcare regulations. In this work, we introduce the Vietnamese Healthcare Regulations-Multihop Reasoning Dataset (ViHERMES), a benchmark designed for multihop QA over Vietnamese healthcare regulatory documents. ViHERMES consists of high-quality question-answer pairs that require reasoning across multiple regulations and capture diverse dependency patterns, including amendment tracing, cross-document comparison, and procedural synthesis. To construct the dataset, we propose a controlled multihop QA generation pipeline based on semantic clustering and graph-inspired data mining, followed by large language model-based generation with structured evidence and reasoning annotations. We further present a graph-aware retrieval framework that models formal legal relations at the level of legal units and supports principled context expansion for legally valid and coherent answers. Experimental results demonstrate that ViHERMES provides a challenging benchmark for evaluating multihop regulatory QA systems and that the proposed graph-aware approach consistently outperforms strong retrieval-based baselines. The ViHERMES dataset and system implementation are publicly available at https://github.com/ura-hcmut/ViHERMES.
comment: Accepted at ACIIDS 2026
☆ Intent Mismatch Causes LLMs to Get Lost in Multi-Turn Conversation
Multi-turn conversation has emerged as a predominant interaction paradigm for Large Language Models (LLMs). Users often employ follow-up questions to refine their intent, expecting LLMs to adapt dynamically. However, recent research reveals that LLMs suffer a substantial performance drop in multi-turn settings compared to single-turn interactions with fully specified instructions, a phenomenon termed ``Lost in Conversation'' (LiC). While this prior work attributes LiC to model unreliability, we argue that the root cause lies in an intent alignment gap rather than intrinsic capability deficits. In this paper, we first demonstrate that LiC is not a failure of model capability but rather a breakdown in interaction between users and LLMs. We theoretically show that scaling model size or improving training alone cannot resolve this gap, as it arises from structural ambiguity in conversational context rather than representational limitations. To address this, we propose to decouple intent understanding from task execution through a Mediator-Assistant architecture. By utilizing an experience-driven Mediator to explicate user inputs into explicit, well-structured instructions based on historical interaction patterns, our approach effectively bridges the gap between vague user intent and model interpretation. Experimental results demonstrate that this method significantly mitigates performance degradation in multi-turn conversations across diverse LLMs.
☆ High Fidelity Textual User Representation over Heterogeneous Sources via Reinforcement Learning
Effective personalization on large-scale job platforms requires modeling members based on heterogeneous textual sources, including profiles, professional data, and search activity logs. As recommender systems increasingly adopt Large Language Models (LLMs), creating unified, interpretable, and concise representations from heterogeneous sources becomes critical, especially for latency-sensitive online environments. In this work, we propose a novel Reinforcement Learning (RL) framework to synthesize a unified textual representation for each member. Our approach leverages implicit user engagement signals (e.g., clicks, applies) as the primary reward to distill salient information. Additionally, the framework is complemented by rule-based rewards that enforce formatting and length constraints. Extensive offline experiments across multiple LinkedIn products, one of the world's largest job platforms, demonstrate significant improvements in key downstream business metrics. This work provides a practical, labeling-free, and scalable solution for constructing interpretable user representations that are directly compatible with LLM-based systems.
☆ Beyond Accuracy: Risk-Sensitive Evaluation of Hallucinated Medical Advice
Large language models are increasingly being used in patient-facing medical question answering, where hallucinated outputs can vary widely in potential harm. However, existing hallucination standards and evaluation metrics focus primarily on factual correctness, treating all errors as equally severe. This obscures clinically relevant failure modes, particularly when models generate unsupported but actionable medical language. We propose a risk-sensitive evaluation framework that quantifies hallucinations through the presence of risk-bearing language, including treatment directives, contraindications, urgency cues, and mentions of high-risk medications. Rather than assessing clinical correctness, our approach evaluates the potential impact of hallucinated content if acted upon. We further combine risk scoring with a relevance measure to identify high-risk, low-grounding failures. We apply this framework to three instruction-tuned language models using controlled patient-facing prompts designed as safety stress tests. Our results show that models with similar surface-level behavior exhibit substantially different risk profiles and that standard evaluation metrics fail to capture these distinctions. These findings highlight the importance of incorporating risk sensitivity into hallucination evaluation and suggest that evaluation validity is critically dependent on task and prompt design.
☆ Steer2Adapt: Dynamically Composing Steering Vectors Elicits Efficient Adaptation of LLMs
Activation steering has emerged as a promising approach for efficiently adapting large language models (LLMs) to downstream behaviors. However, most existing steering methods rely on a single static direction per task or concept, making them inflexible under task variation and inadequate for complex tasks that require multiple coordinated capabilities. To address this limitation, we propose STEER2ADAPT, a lightweight framework that adapts LLMs by composing steering vectors rather than learning new ones from scratch. In many domains (e.g., reasoning or safety), tasks share a small set of underlying concept dimensions. STEER2ADAPT captures these dimensions as a reusable, low-dimensional semantic prior subspace, and adapts to new tasks by dynamically discovering a linear combination of basis vectors from only a handful of examples. Experiments across 9 tasks and 3 models in both reasoning and safety domains demonstrate the effectiveness of STEER2ADAPT, achieving an average improvement of 8.2%. Extensive analyses further show that STEER2ADAPT is a data-efficient, stable, and transparent inference-time adaptation method for LLMs.
♻ ☆ StoryBox: Collaborative Multi-Agent Simulation for Hybrid Bottom-Up Long-Form Story Generation Using Large Language Models
Human writers often begin their stories with an overarching mental scene, where they envision the interactions between characters and their environment. Inspired by this creative process, we propose a novel approach to long-form story generation, termed hybrid bottom-up long-form story generation, using multi-agent simulations. In our method, agents interact within a dynamic sandbox environment, where their behaviors and interactions with one another and the environment generate emergent events. These events form the foundation for the story, enabling organic character development and plot progression. Unlike traditional top-down approaches that impose rigid structures, our hybrid bottom-up approach allows for the natural unfolding of events, fostering more spontaneous and engaging storytelling. The system is capable of generating stories exceeding 10,000 words while maintaining coherence and consistency, addressing some of the key challenges faced by current story generation models. We achieve state-of-the-art performance across several metrics. This approach offers a scalable and innovative solution for creating dynamic, immersive long-form stories that evolve organically from agent-driven interactions.
comment: Project: https://storyboxproject.github.io
♻ ☆ Knowing When to Stop: Efficient Context Processing via Latent Sufficiency Signals NeurIPS 2025
Large language models (LLMs) process entire input contexts indiscriminately, which is inefficient when the information required to answer a query is localized within the context. We present dynamic context cutoff, a novel method enabling LLMs to self-terminate processing upon acquiring sufficient task-relevant information. Through analysis of model internals, we discover that specific attention heads inherently encode "sufficiency signals" -- detectable through lightweight classifiers -- that predict when critical information has been processed. This reveals a new efficiency paradigm: models' internal understanding naturally dictates processing needs rather than external compression heuristics. Comprehensive experiments across six QA datasets (up to 40K tokens) with three model families (LLaMA/Qwen/Mistral, 1B-70B) demonstrate 3.4% accuracy improvement while achieving 1.33x token reduction on average. Furthermore, our method demonstrates superior performance compared to other context efficiency methods at equivalent token reduction rates. Additionally, we observe an emergent scaling phenomenon: while smaller models require probing for sufficiency detection, larger models exhibit intrinsic self-assessment capabilities through prompting.
comment: Accepted to NeurIPS 2025
♻ ☆ Towards an Understanding of Context Utilization in Code Intelligence
Code intelligence is an emerging domain in software engineering, aiming to improve the effectiveness and efficiency of various code-related tasks. Recent research suggests that incorporating contextual information beyond the basic original task inputs (i.e., source code) can substantially enhance model performance. Such contextual signals may be obtained directly or indirectly from sources such as API documentation or intermediate representations like abstract syntax trees can significantly improve the effectiveness of code intelligence. Despite growing academic interest, there is a lack of systematic analysis of context in code intelligence. To address this gap, we conduct an extensive literature review of 146 relevant studies published between September 2007 and August 2024. Our investigation yields four main contributions. (1) A quantitative analysis of the research landscape, including publication trends, venues, and the explored domains; (2) A novel taxonomy of context types used in code intelligence; (3) A task-oriented analysis investigating context integration strategies across diverse code intelligence tasks; (4) A critical evaluation of evaluation methodologies for context-aware methods. Based on these findings, we identify fundamental challenges in context utilization in current code intelligence systems and propose a research roadmap that outlines key opportunities for future research.
comment: Accepted by ACM Computing Surveys
♻ ☆ PBEBench: A Multi-Step Programming by Examples Reasoning Benchmark inspired by Historical Linguistics
Although many benchmarks evaluate the reasoning abilities of Large Language Models (LLMs) within domains such as mathematics, coding, or data wrangling, few abstract away from domain specifics to examine reasoning as a capability in and of itself. We contribute a novel type of benchmark evaluating the inductive reasoning capabilities of LLMs that is inspired by the forward reconstruction task from historical linguistics but is formulated in an extremely simple, general way (in the form of Programming by Examples). The task involves generating a cascade of simple string rewrite programs to transform a given list of input strings into a list of desired output strings. We present a fully automated pipeline that programmatically generates problems of this type with controllable difficulty, enabling scalable evaluation of reasoning models while avoiding contamination. Using this approach, we construct two benchmarks: PBEBench-Lite, which efficiently stratifies models of varying capabilities, and PBEBench, which requires models to induce programs similar in complexity to those constructed by historical linguists. Our experiments reveal a substantial performance gap between models that leverage test-time compute or LCoT (long chain-of-thought) reasoning and those that do not. Moreover, although recent models show promise, the solve rate for both of them drops below 5% for hard instances of the PBEBench dataset (ground truth cascade lengths of 20 and 30, respectively), falling well short of realistic historical linguistics requirements even with computationally expensive, popular scaling techniques from the PBE and reasoning literature. Additionally, we also study the effectiveness of different scaling strategies and the impact of various hyperparameters on the difficulty of the generated data using gpt-oss-120b, the best-performing open-source model.
♻ ☆ The Roots of Performance Disparity in Multilingual Language Models: Intrinsic Modeling Difficulty or Design Choices?
Multilingual language models (LMs) promise broader NLP access, yet current systems deliver uneven performance across the world's languages. This survey examines why these gaps persist and whether they reflect intrinsic linguistic difficulty or modeling artifacts. We organize the literature around two questions: do linguistic disparities arise from representation and allocation choices (e.g., tokenization, encoding, data exposure, parameter sharing) rather than inherent complexity; and which design choices mitigate inequities across typologically diverse languages. We review linguistic features, such as orthography, morphology, lexical diversity, syntax, information density, and typological distance, linking each to concrete modeling mechanisms. Gaps often shrink when segmentation, encoding, and data exposure are normalized, suggesting much apparent difficulty stems from current modeling choices. We synthesize these insights into design recommendations for tokenization, sampling, architectures, and evaluation to support more balanced multilingual LMs.
♻ ☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
♻ ☆ Beyond Bias Scores: Unmasking Vacuous Neutrality in Small Language Models EACL 2026
The rapid adoption of Small Language Models (SLMs) for resource constrained applications has outpaced our understanding of their ethical and fairness implications. To address this gap, we introduce the Vacuous Neutrality Framework (VaNeu), a multi-dimensional evaluation paradigm designed to assess SLM fairness prior to deployment. The framework examines model robustness across four stages - biases, utility, ambiguity handling, and positional bias over diverse social bias categories. To the best of our knowledge, this work presents the first large-scale audit of SLMs in the 0.5-5B parameter range, an overlooked "middle tier" between BERT-class encoders and flagship LLMs. We evaluate nine widely used SLMs spanning four model families under both ambiguous and disambiguated contexts. Our findings show that models demonstrating low bias in early stages often fail subsequent evaluations, revealing hidden vulnerabilities and unreliable reasoning. These results underscore the need for a more comprehensive understanding of fairness and reliability in SLMs, and position the proposed framework as a principled tool for responsible deployment in socially sensitive settings.
comment: Accepted at EACL 2026 Student Research Workshop
♻ ☆ Towards EnergyGPT: A Large Language Model Specialized for the Energy Sector
Large language models have demonstrated impressive capabilities across various domains. However, their general-purpose nature often limits their effectiveness in specialized fields such as energy, where deep technical expertise and precise domain knowledge are essential. In this paper, we introduce EnergyGPT, a domain-specialized language model tailored for the energy sector, developed by fine-tuning the LLaMA 3.1-8B model on a high-quality, curated corpus of energy-related texts. We consider two adaptation strategies: a full-parameter Supervised Fine-Tuning variant and a parameter-efficient LoRA-based variant that updates only a small fraction of the model parameters. We present a complete development pipeline, including data collection and curation, model fine-tuning, benchmark design and LLM-judge choice, evaluation, and deployment. Through this work, we demonstrate that our training strategy enables improvements in domain relevance and performance without the need for large-scale infrastructure. By evaluating the performance of both EnergyGPT variants using domain-specific question-answering benchmarks, our results show that the adapted models consistently outperform the base model in most energy-related language understanding and generation tasks, with the LoRA variant achieving competitive gains at significantly reduced training cost.
♻ ☆ MET-Bench: Multimodal Entity Tracking for Evaluating the Limitations of Vision-Language and Reasoning Models
Entity state tracking is a necessary component of world modeling that requires maintaining coherent representations of entities over time. Previous work has benchmarked entity tracking performance in purely text-based tasks. We introduce MET-Bench, a multimodal entity tracking benchmark designed to evaluate vision-language models' ability to track entity states across modalities. Using two structured domains, we assess how effectively current models integrate textual and image-based state updates. Our findings reveal a significant performance gap between text-based and image-based entity tracking. We empirically show this discrepancy primarily stems from deficits in visual reasoning rather than perception. We further show that explicit text-based reasoning strategies improve performance, yet limitations remain in long-horizon multimodal tasks. We develop a reinforcement learning method to improve performance on MET-Bench. Applying our method to open-source VLMs achieves competitive performance with advanced closed models. Our results highlight the need for improved multimodal representations and reasoning techniques to bridge the gap between textual and visual entity tracking.
♻ ☆ Stability as a Liability:Systematic Breakdown of Linguistic Structure in LLMs
Training stability is typically regarded as a prerequisite for reliable optimization in large language models. In this work, we analyze how stabilizing training dynamics affects the induced generation distribution. We show that under standard maximum likelihood training, stable parameter trajectories lead stationary solutions to approximately minimize the forward KL divergence to the empirical distribution, while implicitly reducing generative entropy. As a consequence, the learned model can concentrate probability mass on a limited subset of empirical modes, exhibiting systematic degeneration despite smooth loss convergence. We empirically validate this effect using a controlled feedback-based training framework that stabilizes internal generation statistics, observing consistent low-entropy outputs and repetitive behavior across architectures and random seeds. It indicates that optimization stability and generative expressivity are not inherently aligned, and that stability alone is an insufficient indicator of generative quality.
♻ ☆ KV-CoRE: Benchmarking Data-Dependent Low-Rank Compressibility of KV-Caches in LLMs
Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
♻ ☆ Task-Conditioned Probing Reveals Brain-Alignment Patterns in Instruction-Tuned Multimodal LLMs
Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models. More recently, instruction-tuned multimodal (IT) models have been shown to generate task-specific representations that align strongly with brain activity, yet most prior evaluations focus on unimodal stimuli or non-instruction-tuned models under multimodal stimuli. We still lack a clear understanding of whether instruction-tuning is associated with IT-MLLMs organizing their representations around functional task demands or if they simply reflect surface semantics. To address this, we estimate brain alignment by predicting fMRI responses recorded during naturalistic movie watching (video with audio) from MLLM representations. Using instruction-specific embeddings from six video and two audio IT-MLLMs, across 13 video task instructions, we find that instruction-tuned video MLLMs significantly outperform in-context learning (ICL) multimodal models (~9%), non-instruction-tuned multimodal models (~15%), and unimodal baselines (~20%). Our evaluation of MLLMs across video and audio tasks, and language-guided probing produces distinct task-specific MLLM representations that vary across brain regions. We also find that ICL models show strong semantic organization (r=0.78), while IT models show weak coupling to instruction-text semantics (r=0.14), consistent with task-conditioned subspaces associated with higher brain alignment. These findings are consistent with an association between task-specific instructions and stronger brain-MLLM alignment, and open new avenues for mapping joint information processing in both systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
comment: 55 pages, 35 figures
♻ ☆ Large Language Model Agents Are Not Always Faithful Self-Evolvers
Self-evolving large language model (LLM) agents continually improve by accumulating and reusing past experience, yet it remains unclear whether they faithfully rely on that experience to guide their behavior. We present the first systematic investigation of experience faithfulness, the causal dependence of an agent's decisions on the experience it is given, in self-evolving LLM agents. Using controlled causal interventions on both raw and condensed forms of experience, we comprehensively evaluate four representative frameworks across 10 LLM backbones and 9 environments. Our analysis uncovers a striking asymmetry: while agents consistently depend on raw experience, they often disregard or misinterpret condensed experience, even when it is the only experience provided. This gap persists across single- and multi-agent configurations and across backbone scales. We trace its underlying causes to three factors: the semantic limitations of condensed content, internal processing biases that suppress experience, and task regimes where pretrained priors already suffice. These findings challenge prevailing assumptions about self-evolving methods and underscore the need for more faithful and reliable approaches to experience integration.
comment: 25 pages, 16 figures, 7 tables
♻ ☆ What Layers When: Learning to Skip Compute in LLMs with Residual Gates ICLR 2026
We introduce GateSkip, a simple residual-stream gating mechanism that enables token-wise layer skipping in decoder-only LMs. Each Attention/MLP branch is equipped with a sigmoid-linear gate that condenses the branch's output before it re-enters the residual stream. During inference we rank tokens by the gate values and skip low-importance ones using a per-layer budget. While early-exit or router-based Mixture-of-Depths models are known to be unstable and need extensive retraining, our smooth, differentiable gates fine-tune stably on top of pretrained models. On long-form reasoning, we save up to 15% compute while retaining over 90% of baseline accuracy. For increasingly larger models, this tradeoff improves drastically. On instruction-tuned models we see accuracy gains at full compute and match baseline quality near 50% savings. The learned gates give insight into transformer information flow (e.g., BOS tokens act as anchors), and the method combines easily with quantization, pruning, and self-speculative decoding.
comment: Published as a conference paper at ICLR 2026
♻ ☆ $ρ$-$\texttt{EOS}$: Training-free Bidirectional Variable-Length Control for Masked Diffusion LLMs
Beyond parallel generation and global context modeling, current masked diffusion large language models (masked dLLMs, i.e., LLaDA) suffer from a fundamental limitation: they require a predefined, fixed generation length, which lacks flexibility and forces an inevitable trade-off between output quality and computational efficiency. To address this, we study the denoising dynamics and find that the implicit density ($ρ$) of end-of-sequence ($\texttt{EOS}$) tokens serves as a reliable signal of generation sufficiency. In particular, the evolving implicit $\texttt{EOS}$ density during denoising reveals whether the current masked space is excessive or insufficient, thereby guiding the adjustment direction for generation length. Building on this insight, we propose $\textbf{$ρ$-$\texttt{EOS}$}$, a training-free, single-stage strategy that enables bidirectional variable-length generation for masked dLLMs. Unlike prior two-stage approaches--which require separate length adjustment and iterative mask insertion phases while supporting only unidirectional expansion--$\textbf{$ρ$-$\texttt{EOS}$}$ achieves bidirectional length adjustment within a unified denoising process by continuously estimating the implicit $\texttt{EOS}$ density: excessively high density triggers $\texttt{MASK}$ token contraction, while insufficient density induces expansion. Extensive experiments on mathematics and code benchmarks demonstrate that $\textbf{$ρ$-$\texttt{EOS}$}$ achieves comparable performance while substantially improving inference efficiency and token utilization. Code is available at https://github.com/yjyddq/rho-EOS.
comment: 11 pages,6 figures,6 tables
♻ ☆ GMSA: Enhancing Context Compression via Group Merging and Layer Semantic Alignment
Large Language Models (LLMs) have achieved remarkable performance across a wide range of Natural Language Processing (NLP) tasks. However, in long-context scenarios, they face two challenges: high computational cost and information redundancy. To address these challenges, we propose GMSA, an encoder-decoder context compression framework that generates a compact sequence of soft tokens for downstream tasks. GMSA introduces Group Merging to achieve more uniform aggregation, mitigating semantic dominance during autoencoder pretraining, and Layer Semantic Alignment (LSA) to bridge the semantic gap between high-level abstract semantics and low-level input semantics. We first pretrain GMSA as an autoencoder and then fine-tune it for downstream tasks. Experiments demonstrate that GMSA improves context reconstruction compared to existing soft prompt compression paradigm and outperforms baselines on multiple long-context question answering and summarization benchmarks across two backbone models, while maintaining low end-to-end latency.
comment: 14 pages, 7 figures
♻ ☆ SafeDialBench: A Fine-Grained Safety Evaluation Benchmark for Large Language Models in Multi-Turn Dialogues with Diverse Jailbreak Attacks
With the rapid advancement of Large Language Models (LLMs), the safety of LLMs has been a critical concern requiring precise assessment. Current benchmarks primarily concentrate on single-turn dialogues or a single jailbreak attack method to assess the safety. Additionally, these benchmarks have not taken into account the LLM's capability of identifying and handling unsafe information in detail. To address these issues, we propose a fine-grained benchmark SafeDialBench for evaluating the safety of LLMs across various jailbreak attacks in multi-turn dialogues. Specifically, we design a two-tier hierarchical safety taxonomy that considers 6 safety dimensions and generates more than 4000 multi-turn dialogues in both Chinese and English under 22 dialogue scenarios. We employ 7 jailbreak attack strategies, such as reference attack and purpose reverse, to enhance the dataset quality for dialogue generation. Notably, we construct an innovative assessment framework of LLMs, measuring capabilities in detecting, and handling unsafe information and maintaining consistency when facing jailbreak attacks. Experimental results across 17 LLMs reveal that Yi-34B-Chat and GLM4-9B-Chat demonstrate superior safety performance, while Llama3.1-8B-Instruct and o3-mini exhibit safety vulnerabilities.
♻ ☆ OPUS: Towards Efficient and Principled Data Selection in Large Language Model Pre-training in Every Iteration
As high-quality public text approaches exhaustion, a phenomenon known as the Data Wall, pre-training is shifting from more tokens to better tokens. However, existing methods either rely on heuristic static filters that ignore training dynamics, or use dynamic yet optimizer-agnostic criteria based on raw gradients. We propose OPUS (Optimizer-induced Projected Utility Selection), a dynamic data selection framework that defines utility in the optimizer-induced update space. OPUS scores candidates by projecting their effective updates, shaped by modern optimizers, onto a target direction derived from a stable, in-distribution proxy. To ensure scalability, we employ Ghost technique with CountSketch for computational efficiency, and Boltzmann sampling for data diversity, incurring only 4.7\% additional compute overhead. OPUS achieves remarkable results across diverse corpora, quality tiers, optimizers, and model scales. In pre-training of GPT-2 Large/XL on FineWeb and FineWeb-Edu with 30B tokens, OPUS outperforms industrial-level baselines and even full 200B-token training. Moreover, when combined with industrial-level static filters, OPUS further improves pre-training efficiency, even with lower-quality data. Furthermore, in continued pre-training of Qwen3-8B-Base on SciencePedia, OPUS achieves superior performance using only 0.5B tokens compared to full training with 3B tokens, demonstrating significant data efficiency gains in specialized domains.
comment: 45 pages, 7 figures, 8 tables
♻ ☆ ChatCFD: An LLM-Driven Agent for End-to-End CFD Automation with Structured Knowledge and Reasoning
Computational Fluid Dynamics (CFD) is critical for scientific advancement but is hindered by operational complexity and high expertise barriers. This paper introduces ChatCFD, a Large Language Model (LLM)-driven multi-agent system designed for end-to-end CFD automation using OpenFOAM. Powered by DeepSeek-R1/V3, ChatCFD integrates structured domain knowledge bases, a precise error locator, and iterative reflection to dramatically outperform existing methods. On 315 benchmark cases, ChatCFD achieves 82.1% execution success (vs. 6.2% for MetaOpenFOAM and 42.3% for Foam-Agent) and 68.12% physical fidelity - a novel metric assessing scientific meaningfulness beyond mere runnability. A dedicated Physics Interpreter attains 97.4% summary fidelity, bridging the gap between narrative fluency and the enforcement of tight physical constraints. Resource analysis confirms efficiency, averaging 192.1k tokens and $0.208 per case, significantly lower than baseline costs. Ablation studies identify the Error Locator and Solver Template DB as critical, with the latter's removal collapsing accuracy to 48%. The system exhibits robust flexibility, achieving 95.23% success in autonomous solver selection and 100% in turbulence modeling, while successfully reproducing complex literature cases (e.g., NACA0012, supersonic nozzle) with 60-80% success rates where baselines failed. Featuring a modular, MCP-compatible design, ChatCFD facilitates scalable, collaborative AI-driven CFD. Code is available at: https://github.com/ConMoo/ChatCFD
comment: 19 pages, 8 figures
♻ ☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
♻ ☆ Efficient Attention Mechanisms for Large Language Models: A Survey
Transformer-based architectures have become the prevailing backbone of large language models. However, the quadratic time and memory complexity of self-attention remains a fundamental obstacle to efficient long-context modeling. To address this limitation, recent research has introduced two principal categories of efficient attention mechanisms. Linear attention methods achieve linear complexity through kernel approximations, recurrent formulations, or fastweight dynamics, thereby enabling scalable inference with reduced computational overhead. Sparse attention techniques, in contrast, limit attention computation to selected subsets of tokens based on fixed patterns, block-wise routing, or clustering strategies, enhancing efficiency while preserving contextual coverage. This survey provides a systematic and comprehensive overview of these developments, integrating both algorithmic innovations and hardware-level considerations. In addition, we analyze the incorporation of efficient attention into largescale pre-trained language models, including both architectures built entirely on efficient attention and hybrid designs that combine local and global components. By aligning theoretical foundations with practical deployment strategies, this work aims to serve as a foundational reference for advancing the design of scalable and efficient language models.
comment: work in progress
♻ ☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
♻ ☆ Evaluating Semantic and Syntactic Understanding in Large Language Models for Payroll Systems
Large language models are now used daily for writing, search, and analysis, and their natural language understanding continues to improve. However, they remain unreliable on exact numerical calculation and on producing outputs that are straightforward to audit. We study synthetic payroll system as a focused, high-stakes example and evaluate whether models can understand a payroll schema, apply rules in the right order, and deliver cent-accurate results. Our experiments span a tiered dataset from basic to complex cases, a spectrum of prompts from minimal baselines to schema-guided and reasoning variants, and multiple model families including GPT, Claude, Perplexity, Grok and Gemini. Results indicate clear regimes where careful prompting is sufficient and regimes where explicit computation is required. The work offers a compact, reproducible framework and practical guidance for deploying LLMs in settings that demand both accuracy and assurance.
comment: ITNG 2026 conference
Multimedia 4
☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
☆ Learning Brain Representation with Hierarchical Visual Embeddings
Decoding visual representations from brain signals has attracted significant attention in both neuroscience and artificial intelligence. However, the degree to which brain signals truly encode visual information remains unclear. Current visual decoding approaches explore various brain-image alignment strategies, yet most emphasize high-level semantic features while neglecting pixel-level details, thereby limiting our understanding of the human visual system. In this paper, we propose a brain-image alignment strategy that leverages multiple pre-trained visual encoders with distinct inductive biases to capture hierarchical and multi-scale visual representations, while employing a contrastive learning objective to achieve effective alignment between brain signals and visual embeddings. Furthermore, we introduce a Fusion Prior, which learns a stable mapping on large-scale visual data and subsequently matches brain features to this pre-trained prior, thereby enhancing distributional consistency across modalities. Extensive quantitative and qualitative experiments demonstrate that our method achieves a favorable balance between retrieval accuracy and reconstruction fidelity.
☆ Surveillance Facial Image Quality Assessment: A Multi-dimensional Dataset and Lightweight Model
Surveillance facial images are often captured under unconstrained conditions, resulting in severe quality degradation due to factors such as low resolution, motion blur, occlusion, and poor lighting. Although recent face restoration techniques applied to surveillance cameras can significantly enhance visual quality, they often compromise fidelity (i.e., identity-preserving features), which directly conflicts with the primary objective of surveillance images -- reliable identity verification. Existing facial image quality assessment (FIQA) predominantly focus on either visual quality or recognition-oriented evaluation, thereby failing to jointly address visual quality and fidelity, which are critical for surveillance applications. To bridge this gap, we propose the first comprehensive study on surveillance facial image quality assessment (SFIQA), targeting the unique challenges inherent to surveillance scenarios. Specifically, we first construct SFIQA-Bench, a multi-dimensional quality assessment benchmark for surveillance facial images, which consists of 5,004 surveillance facial images captured by three widely deployed surveillance cameras in real-world scenarios. A subjective experiment is conducted to collect six dimensional quality ratings, including noise, sharpness, colorfulness, contrast, fidelity and overall quality, covering the key aspects of SFIQA. Furthermore, we propose SFIQA-Assessor, a lightweight multi-task FIQA model that jointly exploits complementary facial views through cross-view feature interaction, and employs learnable task tokens to guide the unified regression of multiple quality dimensions. The experiment results on the proposed dataset show that our method achieves the best performance compared with the state-of-the-art general image quality assessment (IQA) and FIQA methods, validating its effectiveness for real-world surveillance applications.
♻ ☆ Transform and Entropy Coding in AV2
AV2 is the successor to the AV1 video coding standard developed by the Alliance for Open Media (AOMedia). Its primary objective is to deliver substantial compression gains and subjective quality improvements while maintaining low-complexity encoder and decoder operations. This paper describes the transform, quantization and entropy coding design in AV2, including redesigned transform kernels and data-driven transforms, expanded transform partitioning, and a mode & coefficient dependent transform signaling. AV2 introduces several new coding tools including Intra/Inter Secondary Transforms (IST), Trellis Coded Quantization (TCQ), Adaptive Transform Coding (ATC), Probability Adaptation Rate Adjustment (PARA), Forward Skip Coding (FSC), Cross Chroma Component Transforms (CCTX), Parity Hiding (PH) tools and improved lossless coding. These advances enable AV2 to deliver the highest quality video experience for video applications at a significantly reduced bitrate.
Computer Vision and Pattern Recognition 133
☆ MedMO: Grounding and Understanding Multimodal Large Language Model for Medical Images
Multimodal large language models (MLLMs) have rapidly advanced, yet their adoption in medicine remains limited by gaps in domain coverage, modality alignment, and grounded reasoning. In this work, we introduce MedMO, a medical foundation model built upon a generalized MLLM architecture and trained exclusively on large-scale, domain-specific data. MedMO follows a multi-stage training recipe: (i) cross-modal pretraining to align heterogeneous visual encoders with a medical language backbone; (ii) instruction tuning on multi-task supervision that spans captioning, VQA, report generation, retrieval, and grounded disease localization with bounding boxes; and (iii) reinforcement learning with verifiable rewards that combine factuality checks with a box-level GIoU reward to strengthen spatial grounding and step-by-step reasoning in complex clinical scenarios. MedMO consistently outperforms strong open-source medical MLLMs across multiple modalities and tasks. On VQA benchmarks, MedMO achieves an average accuracy improvement of +13.7% over the baseline and performs within 1.9% of the SOTA Fleming-VL. For text-based QA, it attains +6.9% over the baseline and +14.5% over Fleming-VL. In medical report generation, MedMO delivers significant gains in both semantic and clinical accuracy. Moreover, it exhibits strong grounding capability, achieving an IoU improvement of +40.4 over the baseline and +37.0% over Fleming-VL, underscoring its robust spatial reasoning and localization performance. Evaluations across radiology, ophthalmology, and pathology-microscopy confirm MedMO's broad cross-modality generalization. We release two versions of MedMO: 4B and 8B. Project is available at https://genmilab.github.io/MedMO-Page
comment: 21 pages, 6 figures and 4 tables
☆ CineScene: Implicit 3D as Effective Scene Representation for Cinematic Video Generation
Cinematic video production requires control over scene-subject composition and camera movement, but live-action shooting remains costly due to the need for constructing physical sets. To address this, we introduce the task of cinematic video generation with decoupled scene context: given multiple images of a static environment, the goal is to synthesize high-quality videos featuring dynamic subject while preserving the underlying scene consistency and following a user-specified camera trajectory. We present CineScene, a framework that leverages implicit 3D-aware scene representation for cinematic video generation. Our key innovation is a novel context conditioning mechanism that injects 3D-aware features in an implicit way: By encoding scene images into visual representations through VGGT, CineScene injects spatial priors into a pretrained text-to-video generation model by additional context concatenation, enabling camera-controlled video synthesis with consistent scenes and dynamic subjects. To further enhance the model's robustness, we introduce a simple yet effective random-shuffling strategy for the input scene images during training. To address the lack of training data, we construct a scene-decoupled dataset with Unreal Engine 5, containing paired videos of scenes with and without dynamic subjects, panoramic images representing the underlying static scene, along with their camera trajectories. Experiments show that CineScene achieves state-of-the-art performance in scene-consistent cinematic video generation, handling large camera movements and demonstrating generalization across diverse environments.
comment: Project website: https://karine-huang.github.io/CineScene/
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Reliable Mislabel Detection for Video Capsule Endoscopy Data
The classification performance of deep neural networks relies strongly on access to large, accurately annotated datasets. In medical imaging, however, obtaining such datasets is particularly challenging since annotations must be provided by specialized physicians, which severely limits the pool of annotators. Furthermore, class boundaries can often be ambiguous or difficult to define which further complicates machine learning-based classification. In this paper, we want to address this problem and introduce a framework for mislabel detection in medical datasets. This is validated on the two largest, publicly available datasets for Video Capsule Endoscopy, an important imaging procedure for examining the gastrointestinal tract based on a video stream of lowresolution images. In addition, potentially mislabeled samples identified by our pipeline were reviewed and re-annotated by three experienced gastroenterologists. Our results show that the proposed framework successfully detects incorrectly labeled data and results in an improved anomaly detection performance after cleaning the datasets compared to current baselines.
☆ Seeing Beyond Redundancy: Task Complexity's Role in Vision Token Specialization in VLLMs
Vision capabilities in vision large language models (VLLMs) have consistently lagged behind their linguistic capabilities. In particular, numerous benchmark studies have demonstrated that VLLMs struggle when fine-grained visual information or spatial reasoning is required. However, we do not yet understand exactly why VLLMs struggle so much with these tasks relative to others. Some works have focused on visual redundancy as an explanation, where high-level visual information is uniformly spread across numerous tokens and specific, fine-grained visual information is discarded. In this work, we investigate this premise in greater detail, seeking to better understand exactly how various types of visual information are processed by the model and what types of visual information are discarded. To do so, we introduce a simple synthetic benchmark dataset that is specifically constructed to probe various visual features, along with a set of metrics for measuring visual redundancy, allowing us to better understand the nuances of their relationship. Then, we explore fine-tuning VLLMs on a number of complex visual tasks to better understand how redundancy and compression change based upon the complexity of the data that a model is trained on. We find that there is a connection between task complexity and visual compression, implying that having a sufficient ratio of high complexity visual data is crucial for altering the way that VLLMs distribute their visual representation and consequently improving their performance on complex visual tasks. We hope that this work will provide valuable insights for training the next generation of VLLMs.
comment: 25 pages
☆ PANC: Prior-Aware Normalized Cut for Object Segmentation
Fully unsupervised segmentation pipelines naively seek the most salient object, should this be present. As a result, most of the methods reported in the literature deliver non-deterministic partitions that are sensitive to initialization, seed order, and threshold heuristics. We propose PANC, a weakly supervised spectral segmentation framework that uses a minimal set of annotated visual tokens to produce stable, controllable, and reproducible object masks. From the TokenCut approach, we augment the token-token affinity graph with a handful of priors coupled to anchor nodes. By manipulating the graph topology, we bias the spectral eigenspace toward partitions that are consistent with the annotations. Our approach preserves the global grouping enforced by dense self-supervised visual features, trading annotated tokens for significant gains in reproducibility, user control, and segmentation quality. Using 5 to 30 annotations per dataset, our training-free method achieves state-of-the-art performance among weakly and unsupervised approaches on standard benchmarks (e.g., DUTS-TE, ECSSD, MS COCO). Contrarily, it excels in domains where dense labels are costly or intra-class differences are subtle. We report strong and reliable results on homogeneous, fine-grained, and texture-limited domains, achieving 96.8% (+14.43% over SotA), 78.0% (+0.2%), and 78.8% (+0.37%) average mean intersection-over-union (mIoU) on CrackForest (CFD), CUB-200-2011, and HAM10000 datasets, respectively. For multi-object benchmarks, the framework showcases explicit, user-controllable semantic segmentation.
Prompt Reinjection: Alleviating Prompt Forgetting in Multimodal Diffusion Transformers
Multimodal Diffusion Transformers (MMDiTs) for text-to-image generation maintain separate text and image branches, with bidirectional information flow between text tokens and visual latents throughout denoising. In this setting, we observe a prompt forgetting phenomenon: the semantics of the prompt representation in the text branch is progressively forgotten as depth increases. We further verify this effect on three representative MMDiTs--SD3, SD3.5, and FLUX.1 by probing linguistic attributes of the representations over the layers in the text branch. Motivated by these findings, we introduce a training-free approach, prompt reinjection, which reinjects prompt representations from early layers into later layers to alleviate this forgetting. Experiments on GenEval, DPG, and T2I-CompBench++ show consistent gains in instruction-following capability, along with improvements on metrics capturing preference, aesthetics, and overall text--image generation quality.
comment: 18 pages
☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
☆ NanoFLUX: Distillation-Driven Compression of Large Text-to-Image Generation Models for Mobile Devices
While large-scale text-to-image diffusion models continue to improve in visual quality, their increasing scale has widened the gap between state-of-the-art models and on-device solutions. To address this gap, we introduce NanoFLUX, a 2.4B text-to-image flow-matching model distilled from 17B FLUX.1-Schnell using a progressive compression pipeline designed to preserve generation quality. Our contributions include: (1) A model compression strategy driven by pruning redundant components in the diffusion transformer, reducing its size from 12B to 2B; (2) A ResNet-based token downsampling mechanism that reduces latency by allowing intermediate blocks to operate on lower-resolution tokens while preserving high-resolution processing elsewhere; (3) A novel text encoder distillation approach that leverages visual signals from early layers of the denoiser during sampling. Empirically, NanoFLUX generates 512 x 512 images in approximately 2.5 seconds on mobile devices, demonstrating the feasibility of high-quality on-device text-to-image generation.
☆ RFDM: Residual Flow Diffusion Model for Efficient Causal Video Editing
Instructional video editing applies edits to an input video using only text prompts, enabling intuitive natural-language control. Despite rapid progress, most methods still require fixed-length inputs and substantial compute. Meanwhile, autoregressive video generation enables efficient variable-length synthesis, yet remains under-explored for video editing. We introduce a causal, efficient video editing model that edits variable-length videos frame by frame. For efficiency, we start from a 2D image-to-image (I2I) diffusion model and adapt it to video-to-video (V2V) editing by conditioning the edit at time step t on the model's prediction at t-1. To leverage videos' temporal redundancy, we propose a new I2I diffusion forward process formulation that encourages the model to predict the residual between the target output and the previous prediction. We call this Residual Flow Diffusion Model (RFDM), which focuses the denoising process on changes between consecutive frames. Moreover, we propose a new benchmark that better ranks state-of-the-art methods for editing tasks. Trained on paired video data for global/local style transfer and object removal, RFDM surpasses I2I-based methods and competes with fully spatiotemporal (3D) V2V models, while matching the compute of image models and scaling independently of input video length. More content can be found in: https://smsd75.github.io/RFDM_page/
☆ Parameters as Experts: Adapting Vision Models with Dynamic Parameter Routing
Adapting pre-trained vision models using parameter-efficient fine-tuning (PEFT) remains challenging, as it aims to achieve performance comparable to full fine-tuning using a minimal number of trainable parameters. When applied to complex dense prediction tasks, existing methods exhibit limitations, including input-agnostic modeling and redundant cross-layer representations. To this end, we propose AdaRoute, a new adapter-style method featuring a simple mixture-of-experts (MoE) architecture. Specifically, we introduce shared expert centers, where each expert is a trainable parameter matrix. During a feedforward pass, each AdaRoute module in the network dynamically generates weight matrices tailored for the current module via a simple dynamic parameter routing mechanism, which selectively aggregates parameter matrices in the corresponding expert center. Dynamic weight matrices in AdaRoute modules facilitate low-rank adaptation in an input-dependent manner, thus generating more customized and powerful feature representations. Moreover, since AdaRoute modules across multiple network layers share the same expert center, they improve feature diversity by promoting implicit cross-layer feature interaction. Extensive experiments demonstrate the superiority of AdaRoute on diverse vision tasks, including semantic segmentation, object detection and instance segmentation, and panoptic segmentation. Code will be available at: https://bit.ly/3NZcr0H.
☆ Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping
While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0$\times$ inference speedup and a 5.1$\times$ VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.
☆ GaussianPOP: Principled Simplification Framework for Compact 3D Gaussian Splatting via Error Quantification
Existing 3D Gaussian Splatting simplification methods commonly use importance scores, such as blending weights or sensitivity, to identify redundant Gaussians. However, these scores are not driven by visual error metrics, often leading to suboptimal trade-offs between compactness and rendering fidelity. We present GaussianPOP, a principled simplification framework based on analytical Gaussian error quantification. Our key contribution is a novel error criterion, derived directly from the 3DGS rendering equation, that precisely measures each Gaussian's contribution to the rendered image. By introducing a highly efficient algorithm, our framework enables practical error calculation in a single forward pass. The framework is both accurate and flexible, supporting on-training pruning as well as post-training simplification via iterative error re-quantification for improved stability. Experimental results show that our method consistently outperforms existing state-of-the-art pruning methods across both application scenarios, achieving a superior trade-off between model compactness and high rendering quality.
☆ AEGPO: Adaptive Entropy-Guided Policy Optimization for Diffusion Models
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
☆ RAIGen: Rare Attribute Identification in Text-to-Image Generative Models
Text-to-image diffusion models achieve impressive generation quality but inherit and amplify training-data biases, skewing coverage of semantic attributes. Prior work addresses this in two ways. Closed-set approaches mitigate biases in predefined fairness categories (e.g., gender, race), assuming socially salient minority attributes are known a priori. Open-set approaches frame the task as bias identification, highlighting majority attributes that dominate outputs. Both overlook a complementary task: uncovering rare or minority features underrepresented in the data distribution (social, cultural, or stylistic) yet still encoded in model representations. We introduce RAIGen, the first framework, to our knowledge, for un-supervised rare-attribute discovery in diffusion models. RAIGen leverages Matryoshka Sparse Autoencoders and a novel minority metric combining neuron activation frequency with semantic distinctiveness to identify interpretable neurons whose top-activating images reveal underrepresented attributes. Experiments show RAIGen discovers attributes beyond fixed fairness categories in Stable Diffusion, scales to larger models such as SDXL, supports systematic auditing across architectures, and enables targeted amplification of rare attributes during generation.
☆ A Unified Formula for Affine Transformations between Calibrated Cameras
In this technical note, we derive a closed-form expression for the affine transformation mapping local image patches between two calibrated views. We show that the transformation is a function of the relative camera pose, the image coordinates, and the local surface normal.
☆ Machine Learning for Detection and Severity Estimation of Sweetpotato Weevil Damage in Field and Lab Conditions
Sweetpotato weevils (Cylas spp.) are considered among the most destructive pests impacting sweetpotato production, particularly in sub-Saharan Africa. Traditional methods for assessing weevil damage, predominantly relying on manual scoring, are labour-intensive, subjective, and often yield inconsistent results. These challenges significantly hinder breeding programs aimed at developing resilient sweetpotato varieties. This study introduces a computer vision-based approach for the automated evaluation of weevil damage in both field and laboratory contexts. In the field settings, we collected data to train classification models to predict root-damage severity levels, achieving a test accuracy of 71.43%. Additionally, we established a laboratory dataset and designed an object detection pipeline employing YOLO12, a leading real-time detection model. This methodology incorporated a two-stage laboratory pipeline that combined root segmentation with a tiling strategy to improve the detectability of small objects. The resulting model demonstrated a mean average precision of 77.7% in identifying minute weevil feeding holes. Our findings indicate that computer vision technologies can provide efficient, objective, and scalable assessment tools that align seamlessly with contemporary breeding workflows. These advancements represent a significant improvement in enhancing phenotyping efficiency within sweetpotato breeding programs and play a crucial role in mitigating the detrimental effects of weevils on food security.
☆ Revisiting Emotions Representation for Recognition in the Wild
Facial emotion recognition has been typically cast as a single-label classification problem of one out of six prototypical emotions. However, that is an oversimplification that is unsuitable for representing the multifaceted spectrum of spontaneous emotional states, which are most often the result of a combination of multiple emotions contributing at different intensities. Building on this, a promising direction that was explored recently is to cast emotion recognition as a distribution learning problem. Still, such approaches are limited in that research datasets are typically annotated with a single emotion class. In this paper, we contribute a novel approach to describe complex emotional states as probability distributions over a set of emotion classes. To do so, we propose a solution to automatically re-label existing datasets by exploiting the result of a study in which a large set of both basic and compound emotions is mapped to probability distributions in the Valence-Arousal-Dominance (VAD) space. In this way, given a face image annotated with VAD values, we can estimate the likelihood of it belonging to each of the distributions, so that emotional states can be described as a mixture of emotions, enriching their description, while also accounting for the ambiguous nature of their perception. In a preliminary set of experiments, we illustrate the advantages of this solution and a new possible direction of investigation. Data annotations are available at https://github.com/jbcnrlz/affectnet-b-annotation.
☆ Orientation-Robust Latent Motion Trajectory Learning for Annotation-free Cardiac Phase Detection in Fetal Echocardiography
Fetal echocardiography is essential for detecting congenital heart disease (CHD), facilitating pregnancy management, optimized delivery planning, and timely postnatal interventions. Among standard imaging planes, the four-chamber (4CH) view provides comprehensive information for CHD diagnosis, where clinicians carefully inspect the end-diastolic (ED) and end-systolic (ES) phases to evaluate cardiac structure and motion. Automated detection of these cardiac phases is thus a critical component toward fully automated CHD analysis. Yet, in the absence of fetal electrocardiography (ECG), manual identification of ED and ES frames remains a labor-intensive bottleneck. We present ORBIT (Orientation-Robust Beat Inference from Trajectories), a self-supervised framework that identifies cardiac phases without manual annotations under various fetal heart orientation. ORBIT employs registration as self-supervision task and learns a latent motion trajectory of cardiac deformation, whose turning points capture transitions between cardiac relaxation and contraction, enabling accurate and orientation-robust localization of ED and ES frames across diverse fetal positions. Trained exclusively on normal fetal echocardiography videos, ORBIT achieves consistent performance on both normal (MAE = 1.9 frames for ED and 1.6 for ES) and CHD cases (MAE = 2.4 frames for ED and 2.1 for ES), outperforming existing annotation-free approaches constrained by fixed orientation assumptions. These results highlight the potential of ORBIT to facilitate robust cardiac phase detection directly from 4CH fetal echocardiography.
comment: Preprint, Submitted to a journal
☆ Gold Exploration using Representations from a Multispectral Autoencoder
Satellite imagery is employed for large-scale prospectivity mapping due to the high cost and typically limited availability of on-site mineral exploration data. In this work, we present a proof-of-concept framework that leverages generative representations learned from multispectral Sentinel-2 imagery to identify gold-bearing regions from space. An autoencoder foundation model, called Isometric, which is pretrained on the large-scale FalconSpace-S2 v1.0 dataset, produces information-dense spectral-spatial representations that serve as inputs to a lightweight XGBoost classifier. We compare this representation-based approach with a raw spectral input baseline using a dataset of 63 Sentinel-2 images from known gold and non-gold locations. The proposed method improves patch-level accuracy from 0.51 to 0.68 and image-level accuracy from 0.55 to 0.73, demonstrating that generative embeddings capture transferable mineralogical patterns even with limited labeled data. These results highlight the potential of foundation-model representations to make mineral exploration more efficient, scalable, and globally applicable.
comment: Presented in Eurips2025, 1st Workshop: Advances in Representation Learning for Earth Observation
☆ Clinical-Prior Guided Multi-Modal Learning with Latent Attention Pooling for Gait-Based Scoliosis Screening
Adolescent Idiopathic Scoliosis (AIS) is a prevalent spinal deformity whose progression can be mitigated through early detection. Conventional screening methods are often subjective, difficult to scale, and reliant on specialized clinical expertise. Video-based gait analysis offers a promising alternative, but current datasets and methods frequently suffer from data leakage, where performance is inflated by repeated clips from the same individual, or employ oversimplified models that lack clinical interpretability. To address these limitations, we introduce ScoliGait, a new benchmark dataset comprising 1,572 gait video clips for training and 300 fully independent clips for testing. Each clip is annotated with radiographic Cobb angles and descriptive text based on clinical kinematic priors. We propose a multi-modal framework that integrates a clinical-prior-guided kinematic knowledge map for interpretable feature representation, alongside a latent attention pooling mechanism to fuse video, text, and knowledge map modalities. Our method establishes a new state-of-the-art, demonstrating a significant performance gap on a realistic, non-repeating subject benchmark. Our approach establishes a new state of the art, showing a significant performance gain on a realistic, subject-independent benchmark. This work provides a robust, interpretable, and clinically grounded foundation for scalable, non-invasive AIS assessment.
☆ Diffeomorphism-Equivariant Neural Networks
Incorporating group symmetries via equivariance into neural networks has emerged as a robust approach for overcoming the efficiency and data demands of modern deep learning. While most existing approaches, such as group convolutions and averaging-based methods, focus on compact, finite, or low-dimensional groups with linear actions, this work explores how equivariance can be extended to infinite-dimensional groups. We propose a strategy designed to induce diffeomorphism equivariance in pre-trained neural networks via energy-based canonicalisation. Formulating equivariance as an optimisation problem allows us to access the rich toolbox of already established differentiable image registration methods. Empirical results on segmentation and classification tasks confirm that our approach achieves approximate equivariance and generalises to unseen transformations without relying on extensive data augmentation or retraining.
☆ Can We Build a Monolithic Model for Fake Image Detection? SICA: Semantic-Induced Constrained Adaptation for Unified-Yet-Discriminative Artifact Feature Space Reconstruction
Fake Image Detection (FID), aiming at unified detection across four image forensic subdomains, is critical in real-world forensic scenarios. Compared with ensemble approaches, monolithic FID models are theoretically more promising, but to date, consistently yield inferior performance in practice. In this work, by discovering the ``heterogeneous phenomenon'', which is the intrinsic distinctness of artifacts across subdomains, we diagnose the cause of this underperformance for the first time: the collapse of the artifact feature space driven by such phenomenon. The core challenge for developing a practical monolithic FID model thus boils down to the ``unified-yet-discriminative" reconstruction of the artifact feature space. To address this paradoxical challenge, we hypothesize that high-level semantics can serve as a structural prior for the reconstruction, and further propose Semantic-Induced Constrained Adaptation (SICA), the first monolithic FID paradigm. Extensive experiments on our OpenMMSec dataset demonstrate that SICA outperforms 15 state-of-the-art methods and reconstructs the target unified-yet-discriminative artifact feature space in a near-orthogonal manner, thus firmly validating our hypothesis. The code and dataset are available at:https: //github.com/scu-zjz/SICA_OpenMMSec.
☆ CytoCrowd: A Multi-Annotator Benchmark Dataset for Cytology Image Analysis
High-quality annotated datasets are crucial for advancing machine learning in medical image analysis. However, a critical gap exists: most datasets either offer a single, clean ground truth, which hides real-world expert disagreement, or they provide multiple annotations without a separate gold standard for objective evaluation. To bridge this gap, we introduce CytoCrowd, a new public benchmark for cytology analysis. The dataset features 446 high-resolution images, each with two key components: (1) raw, conflicting annotations from four independent pathologists, and (2) a separate, high-quality gold-standard ground truth established by a senior expert. This dual structure makes CytoCrowd a versatile resource. It serves as a benchmark for standard computer vision tasks, such as object detection and classification, using the ground truth. Simultaneously, it provides a realistic testbed for evaluating annotation aggregation algorithms that must resolve expert disagreements. We provide comprehensive baseline results for both tasks. Our experiments demonstrate the challenges presented by CytoCrowd and establish its value as a resource for developing the next generation of models for medical image analysis.
☆ PlanViz: Evaluating Planning-Oriented Image Generation and Editing for Computer-Use Tasks
Unified multimodal models (UMMs) have shown impressive capabilities in generating natural images and supporting multimodal reasoning. However, their potential in supporting computer-use planning tasks, which are closely related to our lives, remain underexplored. Image generation and editing in computer-use tasks require capabilities like spatial reasoning and procedural understanding, and it is still unknown whether UMMs have these capabilities to finish these tasks or not. Therefore, we propose PlanViz, a new benchmark designed to evaluate image generation and editing for computer-use tasks. To achieve the goal of our evaluation, we focus on sub-tasks which frequently involve in daily life and require planning steps. Specifically, three new sub-tasks are designed: route planning, work diagramming, and web&UI displaying. We address challenges in data quality ensuring by curating human-annotated questions and reference images, and a quality control process. For challenges of comprehensive and exact evaluation, a task-adaptive score, PlanScore, is proposed. The score helps understanding the correctness, visual quality and efficiency of generated images. Through experiments, we highlight key limitations and opportunities for future research on this topic.
comment: The main part of our paper: PlanViz Code is at: https://github.com/lijunxian111/PlanViz Supplementary material is at: https://github.com/lijunxian111/PlanViz/releases/tag/v1
☆ Same Answer, Different Representations: Hidden instability in VLMs
The robustness of Vision Language Models (VLMs) is commonly assessed through output-level invariance, implicitly assuming that stable predictions reflect stable multimodal processing. In this work, we argue that this assumption is insufficient. We introduce a representation-aware and frequency-aware evaluation framework that measures internal embedding drift, spectral sensitivity, and structural smoothness (spatial consistency of vision tokens), alongside standard label-based metrics. Applying this framework to modern VLMs across the SEEDBench, MMMU, and POPE datasets reveals three distinct failure modes. First, models frequently preserve predicted answers while undergoing substantial internal representation drift; for perturbations such as text overlays, this drift approaches the magnitude of inter-image variability, indicating that representations move to regions typically occupied by unrelated inputs despite unchanged outputs. Second, robustness does not improve with scale; larger models achieve higher accuracy but exhibit equal or greater sensitivity, consistent with sharper yet more fragile decision boundaries. Third, we find that perturbations affect tasks differently: they harm reasoning when they disrupt how models combine coarse and fine visual cues, but on the hallucination benchmarks, they can reduce false positives by making models generate more conservative answers.
☆ CauCLIP: Bridging the Sim-to-Real Gap in Surgical Video Understanding via Causality-Inspired Vision-Language Modeling
Surgical phase recognition is a critical component for context-aware decision support in intelligent operating rooms, yet training robust models is hindered by limited annotated clinical videos and large domain gaps between synthetic and real surgical data. To address this, we propose CauCLIP, a causality-inspired vision-language framework that leverages CLIP to learn domain-invariant representations for surgical phase recognition without access to target domain data. Our approach integrates a frequency-based augmentation strategy to perturb domain-specific attributes while preserving semantic structures, and a causal suppression loss that mitigates non-causal biases and reinforces causal surgical features. These components are combined in a unified training framework that enables the model to focus on stable causal factors underlying surgical workflows. Experiments on the SurgVisDom hard adaptation benchmark demonstrate that our method substantially outperforms all competing approaches, highlighting the effectiveness of causality-guided vision-language models for domain-generalizable surgical video understanding.
☆ DAVE: Distribution-aware Attribution via ViT Gradient Decomposition
Vision Transformers (ViTs) have become a dominant architecture in computer vision, yet producing stable and high-resolution attribution maps for these models remains challenging. Architectural components such as patch embeddings and attention routing often introduce structured artifacts in pixel-level explanations, causing many existing methods to rely on coarse patch-level attributions. We introduce DAVE \textit{(\underline{D}istribution-aware \underline{A}ttribution via \underline{V}iT Gradient D\underline{E}composition)}, a mathematically grounded attribution method for ViTs based on a structured decomposition of the input gradient. By exploiting architectural properties of ViTs, DAVE isolates locally equivariant and stable components of the effective input--output mapping. It separates these from architecture-induced artifacts and other sources of instability.
comment: work under review. Code will be released upon acceptance
☆ ProtoQuant: Quantization of Prototypical Parts For General and Fine-Grained Image Classification
Prototypical parts-based models offer a "this looks like that" paradigm for intrinsic interpretability, yet they typically struggle with ImageNet-scale generalization and often require computationally expensive backbone finetuning. Furthermore, existing methods frequently suffer from "prototype drift," where learned prototypes lack tangible grounding in the training distribution and change their activation under small perturbations. We present ProtoQuant, a novel architecture that achieves prototype stability and grounded interpretability through latent vector quantization. By constraining prototypes to a discrete learned codebook within the latent space, we ensure they remain faithful representations of the training data without the need to update the backbone. This design allows ProtoQuant to function as an efficient, interpretable head that scales to large-scale datasets. We evaluate ProtoQuant on ImageNet and several fine-grained benchmarks (CUB-200, Cars-196). Our results demonstrate that ProtoQuant achieves competitive classification accuracy while generalizing to ImageNet and comparable interpretability metrics to other prototypical-parts-based methods.
comment: Work under review. Code will be released upon acceptance
☆ An Integer Linear Programming Approach to Geometrically Consistent Partial-Partial Shape Matching
The task of establishing correspondences between two 3D shapes is a long-standing challenge in computer vision. While numerous studies address full-full and partial-full 3D shape matching, only a limited number of works have explored the partial-partial setting, very likely due to its unique challenges: we must compute accurate correspondences while at the same time find the unknown overlapping region. Nevertheless, partial-partial 3D shape matching reflects the most realistic setting, as in many real-world cases, such as 3D scanning, shapes are only partially observable. In this work, we introduce the first integer linear programming approach specifically designed to address the distinctive challenges of partial-partial shape matching. Our method leverages geometric consistency as a strong prior, enabling both robust estimation of the overlapping region and computation of neighbourhood-preserving correspondences. We empirically demonstrate that our approach achieves high-quality matching results both in terms of matching error and smoothness. Moreover, we show that our method is more scalable than previous formalisms.
☆ Think Proprioceptively: Embodied Visual Reasoning for VLA Manipulation
Vision-language-action (VLA) models typically inject proprioception only as a late conditioning signal, which prevents robot state from shaping instruction understanding and from influencing which visual tokens are attended throughout the policy. We introduce ThinkProprio, which converts proprioception into a sequence of text tokens in the VLM embedding space and fuses them with the task instruction at the input. This early fusion lets embodied state participate in subsequent visual reasoning and token selection, biasing computation toward action-critical evidence while suppressing redundant visual tokens. In a systematic ablation over proprioception encoding, state entry point, and action-head conditioning, we find that text tokenization is more effective than learned projectors, and that retaining roughly 15% of visual tokens can match the performance of using the full token set. Across CALVIN, LIBERO, and real-world manipulation, ThinkProprio matches or improves over strong baselines while reducing end-to-end inference latency over 50%.
☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
☆ LIBERO-X: Robustness Litmus for Vision-Language-Action Models
Reliable benchmarking is critical for advancing Vision-Language-Action (VLA) models, as it reveals their generalization, robustness, and alignment of perception with language-driven manipulation tasks. However, existing benchmarks often provide limited or misleading assessments due to insufficient evaluation protocols that inadequately capture real-world distribution shifts. This work systematically rethinks VLA benchmarking from both evaluation and data perspectives, introducing LIBERO-X, a benchmark featuring: 1) A hierarchical evaluation protocol with progressive difficulty levels targeting three core capabilities: spatial generalization, object recognition, and task instruction understanding. This design enables fine-grained analysis of performance degradation under increasing environmental and task complexity; 2) A high-diversity training dataset collected via human teleoperation, where each scene supports multiple fine-grained manipulation objectives to bridge the train-evaluation distribution gap. Experiments with representative VLA models reveal significant performance drops under cumulative perturbations, exposing persistent limitations in scene comprehension and instruction grounding. By integrating hierarchical evaluation with diverse training data, LIBERO-X offers a more reliable foundation for assessing and advancing VLA development.
comment: 19 pages, 14 figures and 8 tables
☆ NECromancer: Breathing Life into Skeletons via BVH Animation
Motion tokenization is a key component of generalizable motion models, yet most existing approaches are restricted to species-specific skeletons, limiting their applicability across diverse morphologies. We propose NECromancer (NEC), a universal motion tokenizer that operates directly on arbitrary BVH skeletons. NEC consists of three components: (1) an Ontology-aware Skeletal Graph Encoder (OwO) that encodes structural priors from BVH files, including joint semantics, rest-pose offsets, and skeletal topology, into skeletal embeddings; (2) a Topology-Agnostic Tokenizer (TAT) that compresses motion sequences into a universal, topology-invariant discrete representation; and (3) the Unified BVH Universe (UvU), a large-scale dataset aggregating BVH motions across heterogeneous skeletons. Experiments show that NEC achieves high-fidelity reconstruction under substantial compression and effectively disentangles motion from skeletal structure. The resulting token space supports cross-species motion transfer, composition, denoising, generation with token-based models, and text-motion retrieval, establishing a unified framework for motion analysis and synthesis across diverse morphologies. Demo page: https://animotionlab.github.io/NECromancer/
☆ Universal Anti-forensics Attack against Image Forgery Detection via Multi-modal Guidance
The rapid advancement of AI-Generated Content (AIGC) technologies poses significant challenges for authenticity assessment. However, existing evaluation protocols largely overlook anti-forensics attack, failing to ensure the comprehensive robustness of state-of-the-art AIGC detectors in real-world applications. To bridge this gap, we propose ForgeryEraser, a framework designed to execute universal anti-forensics attack without access to the target AIGC detectors. We reveal an adversarial vulnerability stemming from the systemic reliance on Vision-Language Models (VLMs) as shared backbones (e.g., CLIP), where downstream AIGC detectors inherit the feature space of these publicly accessible models. Instead of traditional logit-based optimization, we design a multi-modal guidance loss to drive forged image embeddings within the VLM feature space toward text-derived authentic anchors to erase forgery traces, while repelling them from forgery anchors. Extensive experiments demonstrate that ForgeryEraser causes substantial performance degradation to advanced AIGC detectors on both global synthesis and local editing benchmarks. Moreover, ForgeryEraser induces explainable forensic models to generate explanations consistent with authentic images for forged images. Our code will be made publicly available.
comment: 17 pages, 11 figures
☆ AdaptOVCD: Training-Free Open-Vocabulary Remote Sensing Change Detection via Adaptive Information Fusion
Remote sensing change detection plays a pivotal role in domains such as environmental monitoring, urban planning, and disaster assessment. However, existing methods typically rely on predefined categories and large-scale pixel-level annotations, which limit their generalization and applicability in open-world scenarios. To address these limitations, this paper proposes AdaptOVCD, a training-free Open-Vocabulary Change Detection (OVCD) architecture based on dual-dimensional multi-level information fusion. The framework integrates multi-level information fusion across data, feature, and decision levels vertically while incorporating targeted adaptive designs horizontally, achieving deep synergy among heterogeneous pre-trained models to effectively mitigate error propagation. Specifically, (1) at the data level, Adaptive Radiometric Alignment (ARA) fuses radiometric statistics with original texture features and synergizes with SAM-HQ to achieve radiometrically consistent segmentation; (2) at the feature level, Adaptive Change Thresholding (ACT) combines global difference distributions with edge structure priors and leverages DINOv3 to achieve robust change detection; (3) at the decision level, Adaptive Confidence Filtering (ACF) integrates semantic confidence with spatial constraints and collaborates with DGTRS-CLIP to achieve high-confidence semantic identification. Comprehensive evaluations across nine scenarios demonstrate that AdaptOVCD detects arbitrary category changes in a zero-shot manner, significantly outperforming existing training-free methods. Meanwhile, it achieves 84.89\% of the fully-supervised performance upper bound in cross-dataset evaluations and exhibits superior generalization capabilities. The code is available at https://github.com/Dmygithub/AdaptOVCD.
☆ MicroBi-ConvLSTM: An Ultra-Lightweight Efficient Model for Human Activity Recognition on Resource Constrained Devices
Human Activity Recognition (HAR) on resource constrained wearables requires models that balance accuracy against strict memory and computational budgets. State of the art lightweight architectures such as TinierHAR (34K parameters) and TinyHAR (55K parameters) achieve strong accuracy, but exceed memory budgets of microcontrollers with limited SRAM once operating system overhead is considered. We present MicroBi-ConvLSTM, an ultra-lightweight convolutional-recurrent architecture achieving 11.4K parameters on average through two stage convolutional feature extraction with 4x temporal pooling and a single bidirectional LSTM layer. This represents 2.9x parameter reduction versus TinierHAR and 11.9x versus DeepConvLSTM while preserving linear O(N) complexity. Evaluation across eight diverse HAR benchmarks shows that MicroBi-ConvLSTM maintains competitive performance within the ultra-lightweight regime: 93.41% macro F1 on UCI-HAR, 94.46% on SKODA assembly gestures, and 88.98% on Daphnet gait freeze detection. Systematic ablation reveals task dependent component contributions where bidirectionality benefits episodic event detection, but provides marginal gains on periodic locomotion. INT8 post training quantization incurs only 0.21% average F1-score degradation, yielding a 23.0 KB average deployment footprint suitable for memory constrained edge devices.
☆ DriveWorld-VLA: Unified Latent-Space World Modeling with Vision-Language-Action for Autonomous Driving
End-to-end (E2E) autonomous driving has recently attracted increasing interest in unifying Vision-Language-Action (VLA) with World Models to enhance decision-making and forward-looking imagination. However, existing methods fail to effectively unify future scene evolution and action planning within a single architecture due to inadequate sharing of latent states, limiting the impact of visual imagination on action decisions. To address this limitation, we propose DriveWorld-VLA, a novel framework that unifies world modeling and planning within a latent space by tightly integrating VLA and world models at the representation level, which enables the VLA planner to benefit directly from holistic scene-evolution modeling and reducing reliance on dense annotated supervision. Additionally, DriveWorld-VLA incorporates the latent states of the world model as core decision-making states for the VLA planner, facilitating the planner to assess how candidate actions impact future scene evolution. By conducting world modeling entirely in the latent space, DriveWorld-VLA supports controllable, action-conditioned imagination at the feature level, avoiding expensive pixel-level rollouts. Extensive open-loop and closed-loop evaluations demonstrate the effectiveness of DriveWorld-VLA, which achieves state-of-the-art performance with 91.3 PDMS on NAVSIMv1, 86.8 EPDMS on NAVSIMv2, and 0.16 3-second average collision rate on nuScenes. Code and models will be released in https://github.com/liulin815/DriveWorld-VLA.git.
comment: 20 pages, 7 tables, 12 figures
☆ FloorplanVLM: A Vision-Language Model for Floorplan Vectorization
Converting raster floorplans into engineering-grade vector graphics is challenging due to complex topology and strict geometric constraints. To address this, we present FloorplanVLM, a unified framework that reformulates floorplan vectorization as an image-conditioned sequence modeling task. Unlike pixel-based methods that rely on fragile heuristics or query-based transformers that generate fragmented rooms, our model directly outputs structured JSON sequences representing the global topology. This 'pixels-to-sequence' paradigm enables the precise and holistic constraint satisfaction of complex geometries, such as slanted walls and curved arcs. To support this data-hungry approach, we introduce a scalable data engine: we construct a large-scale dataset (Floorplan-2M) and a high-fidelity subset (Floorplan-HQ-300K) to balance geometric diversity and pixel-level precision. We then employ a progressive training strategy, using Supervised Fine-Tuning (SFT) for structural grounding and quality annealing, followed by Group Relative Policy Optimization (GRPO) for strict geometric alignment. To standardize evaluation on complex layouts, we establish and open-source FPBench-2K. Evaluated on this rigorous benchmark, FloorplanVLM demonstrates exceptional structural validity, achieving $\textbf{92.52%}$ external-wall IoU and robust generalization across non-Manhattan architectures.
☆ MultiGraspNet: A Multitask 3D Vision Model for Multi-gripper Robotic Grasping
Vision-based models for robotic grasping automate critical, repetitive, and draining industrial tasks. Existing approaches are typically limited in two ways: they either target a single gripper and are potentially applied on costly dual-arm setups, or rely on custom hybrid grippers that require ad-hoc learning procedures with logic that cannot be transferred across tasks, restricting their general applicability. In this work, we present MultiGraspNet, a novel multitask 3D deep learning method that predicts feasible poses simultaneously for parallel and vacuum grippers within a unified framework, enabling a single robot to handle multiple end effectors. The model is trained on the richly annotated GraspNet-1Billion and SuctionNet-1Billion datasets, which have been aligned for the purpose, and generates graspability masks quantifying the suitability of each scene point for successful grasps. By sharing early-stage features while maintaining gripper-specific refiners, MultiGraspNet effectively leverages complementary information across grasping modalities, enhancing robustness and adaptability in cluttered scenes. We characterize MultiGraspNet's performance with an extensive experimental analysis, demonstrating its competitiveness with single-task models on relevant benchmarks. We run real-world experiments on a single-arm multi-gripper robotic setup showing that our approach outperforms the vacuum baseline, grasping 16% percent more seen objects and 32% more of the novel ones, while obtaining competitive results for the parallel task.
☆ Forest canopy height estimation from satellite RGB imagery using large-scale airborne LiDAR-derived training data and monocular depth estimation
Large-scale, high-resolution forest canopy height mapping plays a crucial role in understanding regional and global carbon and water cycles. Spaceborne LiDAR missions, including the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI), provide global observations of forest structure but are spatially sparse and subject to inherent uncertainties. In contrast, near-surface LiDAR platforms, such as airborne and unmanned aerial vehicle (UAV) LiDAR systems, offer much finer measurements of forest canopy structure, and a growing number of countries have made these datasets openly available. In this study, a state-of-the-art monocular depth estimation model, Depth Anything V2, was trained using approximately 16,000 km2 of canopy height models (CHMs) derived from publicly available airborne LiDAR point clouds and related products across multiple countries, together with 3 m resolution PlanetScope and airborne RGB imagery. The trained model, referred to as Depth2CHM, enables the estimation of spatially continuous CHMs directly from PlanetScope RGB imagery. Independent validation was conducted at sites in China (approximately 1 km2) and the United States (approximately 116 km2). The results showed that Depth2CHM could accurately estimate canopy height, with biases of 0.59 m and 0.41 m and root mean square errors (RMSEs) of 2.54 m and 5.75 m for these two sites, respectively. Compared with an existing global meter-resolution CHM product, the mean absolute error is reduced by approximately 1.5 m and the RMSE by approximately 2 m. These results demonstrated that monocular depth estimation networks trained with large-scale airborne LiDAR-derived canopy height data provide a promising and scalable pathway for high-resolution, spatially continuous forest canopy height estimation from satellite RGB imagery.
☆ DreamHome-Pano: Design-Aware and Conflict-Free Panoramic Interior Generation
In modern interior design, the generation of personalized spaces frequently necessitates a delicate balance between rigid architectural structural constraints and specific stylistic preferences. However, existing multi-condition generative frameworks often struggle to harmonize these inputs, leading to "condition conflicts" where stylistic attributes inadvertently compromise the geometric precision of the layout. To address this challenge, we present DreamHome-Pano, a controllable panoramic generation framework designed for high-fidelity interior synthesis. Our approach introduces a Prompt-LLM that serves as a semantic bridge, effectively translating layout constraints and style references into professional descriptive prompts to achieve precise cross-modal alignment. To safeguard architectural integrity during the generative process, we develop a Conflict-Free Control architecture that incorporates structural-aware geometric priors and a multi-condition decoupling strategy, effectively suppressing stylistic interference from eroding the spatial layout. Furthermore, we establish a comprehensive panoramic interior benchmark alongside a multi-stage training pipeline, encompassing progressive Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). Experimental results demonstrate that DreamHome-Pano achieves a superior balance between aesthetic quality and structural consistency, offering a robust and professional-grade solution for panoramic interior visualization.
☆ Rebenchmarking Unsupervised Monocular 3D Occupancy Prediction
Inferring the 3D structure from a single image, particularly in occluded regions, remains a fundamental yet unsolved challenge in vision-centric autonomous driving. Existing unsupervised approaches typically train a neural radiance field and treat the network outputs as occupancy probabilities during evaluation, overlooking the inconsistency between training and evaluation protocols. Moreover, the prevalent use of 2D ground truth fails to reveal the inherent ambiguity in occluded regions caused by insufficient geometric constraints. To address these issues, this paper presents a reformulated benchmark for unsupervised monocular 3D occupancy prediction. We first interpret the variables involved in the volume rendering process and identify the most physically consistent representation of the occupancy probability. Building on these analyses, we improve existing evaluation protocols by aligning the newly identified representation with voxel-wise 3D occupancy ground truth, thereby enabling unsupervised methods to be evaluated in a manner consistent with that of supervised approaches. Additionally, to impose explicit constraints in occluded regions, we introduce an occlusion-aware polarization mechanism that incorporates multi-view visual cues to enhance discrimination between occupied and free spaces in these regions. Extensive experiments demonstrate that our approach not only significantly outperforms existing unsupervised approaches but also matches the performance of supervised ones. Our source code and evaluation protocol will be made available upon publication.
☆ Instance-Free Domain Adaptive Object Detection
While Domain Adaptive Object Detection (DAOD) has made significant strides, most methods rely on unlabeled target data that is assumed to contain sufficient foreground instances. However, in many practical scenarios (e.g., wildlife monitoring, lesion detection), collecting target domain data with objects of interest is prohibitively costly, whereas background-only data is abundant. This common practical constraint introduces a significant technical challenge: the difficulty of achieving domain alignment when target instances are unavailable, forcing adaptation to rely solely on the target background information. We formulate this challenge as the novel problem of Instance-Free Domain Adaptive Object Detection. To tackle this, we propose the Relational and Structural Consistency Network (RSCN) which pioneers an alignment strategy based on background feature prototypes while simultaneously encouraging consistency in the relationship between the source foreground features and the background features within each domain, enabling robust adaptation even without target instances. To facilitate research, we further curate three specialized benchmarks, including simulative auto-driving detection, wildlife detection, and lung nodule detection. Extensive experiments show that RSCN significantly outperforms existing DAOD methods across all three benchmarks in the instance-free scenario. The code and benchmarks will be released soon.
comment: 14 pages, 12 figures
☆ Efficient-LVSM: Faster, Cheaper, and Better Large View Synthesis Model via Decoupled Co-Refinement Attention ICLR 2026
Feedforward models for novel view synthesis (NVS) have recently advanced by transformer-based methods like LVSM, using attention among all input and target views. In this work, we argue that its full self-attention design is suboptimal, suffering from quadratic complexity with respect to the number of input views and rigid parameter sharing among heterogeneous tokens. We propose Efficient-LVSM, a dual-stream architecture that avoids these issues with a decoupled co-refinement mechanism. It applies intra-view self-attention for input views and self-then-cross attention for target views, eliminating unnecessary computation. Efficient-LVSM achieves 29.86 dB PSNR on RealEstate10K with 2 input views, surpassing LVSM by 0.2 dB, with 2x faster training convergence and 4.4x faster inference speed. Efficient-LVSM achieves state-of-the-art performance on multiple benchmarks, exhibits strong zero-shot generalization to unseen view counts, and enables incremental inference with KV-cache, thanks to its decoupled designs.
comment: Accepted at ICLR 2026
☆ LAB-Det: Language as a Domain-Invariant Bridge for Training-Free One-Shot Domain Generalization in Object Detection
Foundation object detectors such as GLIP and Grounding DINO excel on general-domain data but often degrade in specialized and data-scarce settings like underwater imagery or industrial defects. Typical cross-domain few-shot approaches rely on fine-tuning scarce target data, incurring cost and overfitting risks. We instead ask: Can a frozen detector adapt with only one exemplar per class without training? To answer this, we introduce training-free one-shot domain generalization for object detection, where detectors must adapt to specialized domains with only one annotated exemplar per class and no weight updates. To tackle this task, we propose LAB-Det, which exploits Language As a domain-invariant Bridge. Instead of adapting visual features, we project each exemplar into a descriptive text that conditions and guides a frozen detector. This linguistic conditioning replaces gradient-based adaptation, enabling robust generalization in data-scarce domains. We evaluate on UODD (underwater) and NEU-DET (industrial defects), two widely adopted benchmarks for data-scarce detection, where object boundaries are often ambiguous, and LAB-Det achieves up to 5.4 mAP improvement over state-of-the-art fine-tuned baselines without updating a single parameter. These results establish linguistic adaptation as an efficient and interpretable alternative to fine-tuning in specialized detection settings.
☆ Exploring Specular Reflection Inconsistency for Generalizable Face Forgery Detection
Detecting deepfakes has become increasingly challenging as forgery faces synthesized by AI-generated methods, particularly diffusion models, achieve unprecedented quality and resolution. Existing forgery detection approaches relying on spatial and frequency features demonstrate limited efficacy against high-quality, entirely synthesized forgeries. In this paper, we propose a novel detection method grounded in the observation that facial attributes governed by complex physical laws and multiple parameters are inherently difficult to replicate. Specifically, we focus on illumination, particularly the specular reflection component in the Phong illumination model, which poses the greatest replication challenge due to its parametric complexity and nonlinear formulation. We introduce a fast and accurate face texture estimation method based on Retinex theory to enable precise specular reflection separation. Furthermore, drawing from the mathematical formulation of specular reflection, we posit that forgery evidence manifests not only in the specular reflection itself but also in its relationship with corresponding face texture and direct light. To address this issue, we design the Specular-Reflection-Inconsistency-Network (SRI-Net), incorporating a two-stage cross-attention mechanism to capture these correlations and integrate specular reflection related features with image features for robust forgery detection. Experimental results demonstrate that our method achieves superior performance on both traditional deepfake datasets and generative deepfake datasets, particularly those containing diffusion-generated forgery faces.
☆ What Is Wrong with Synthetic Data for Scene Text Recognition? A Strong Synthetic Engine with Diverse Simulations and Self-Evolution
Large-scale and categorical-balanced text data is essential for training effective Scene Text Recognition (STR) models, which is hard to achieve when collecting real data. Synthetic data offers a cost-effective and perfectly labeled alternative. However, its performance often lags behind, revealing a significant domain gap between real and current synthetic data. In this work, we systematically analyze mainstream rendering-based synthetic datasets and identify their key limitations: insufficient diversity in corpus, font, and layout, which restricts their realism in complex scenarios. To address these issues, we introduce UnionST, a strong data engine synthesizes text covering a union of challenging samples and better aligns with the complexity observed in the wild. We then construct UnionST-S, a large-scale synthetic dataset with improved simulations in challenging scenarios. Furthermore, we develop a self-evolution learning (SEL) framework for effective real data annotation. Experiments show that models trained on UnionST-S achieve significant improvements over existing synthetic datasets. They even surpass real-data performance in certain scenarios. Moreover, when using SEL, the trained models achieve competitive performance by only seeing 9% of real data labels.
☆ ChatUMM: Robust Context Tracking for Conversational Interleaved Generation
Unified multimodal models (UMMs) have achieved remarkable progress yet remain constrained by a single-turn interaction paradigm, effectively functioning as solvers for independent requests rather than assistants in continuous dialogue. To bridge this gap, we present ChatUMM. As a conversational unified model, it excels at robust context tracking to sustain interleaved multimodal generation. ChatUMM derives its capabilities from two key innovations: an interleaved multi-turn training strategy that models serialized text-image streams as a continuous conversational flow, and a systematic conversational data synthesis pipeline. This pipeline transforms a diverse set of standard single-turn datasets into fluid dialogues through three progressive stages: constructing basic stateful dialogues, enforcing long-range dependency resolution via ``distractor'' turns with history-dependent query rewriting, and synthesizing naturally interleaved multimodal responses. Extensive evaluations demonstrate that ChatUMM achieves state-of-the-art performance among open-source unified models on visual understanding and instruction-guided editing benchmarks, while maintaining competitive fidelity in text-to-image generation. Notably, ChatUMM exhibits superior robustness in complex multi-turn scenarios, ensuring fluid, context-aware dialogues.
comment: ChatUMM Project
☆ Bridging the Indoor-Outdoor Gap: Vision-Centric Instruction-Guided Embodied Navigation for the Last Meters
Embodied navigation holds significant promise for real-world applications such as last-mile delivery. However, most existing approaches are confined to either indoor or outdoor environments and rely heavily on strong assumptions, such as access to precise coordinate systems. While current outdoor methods can guide agents to the vicinity of a target using coarse-grained localization, they fail to enable fine-grained entry through specific building entrances, critically limiting their utility in practical deployment scenarios that require seamless outdoor-to-indoor transitions. To bridge this gap, we introduce a novel task: out-to-in prior-free instruction-driven embodied navigation. This formulation explicitly eliminates reliance on accurate external priors, requiring agents to navigate solely based on egocentric visual observations guided by instructions. To tackle this task, we propose a vision-centric embodied navigation framework that leverages image-based prompts to drive decision-making. Additionally, we present the first open-source dataset for this task, featuring a pipeline that integrates trajectory-conditioned video synthesis into the data generation process. Through extensive experiments, we demonstrate that our proposed method consistently outperforms state-of-the-art baselines across key metrics including success rate and path efficiency.
☆ POPL-KF: A Pose-Only Geometric Representation-Based Kalman Filter for Point-Line-Based Visual-Inertial Odometry
Mainstream Visual-inertial odometry (VIO) systems rely on point features for motion estimation and localization. However, their performance degrades in challenging scenarios. Moreover, the localization accuracy of multi-state constraint Kalman filter (MSCKF)-based VIO systems suffers from linearization errors associated with feature 3D coordinates and delayed measurement updates. To improve the performance of VIO in challenging scenes, we first propose a pose-only geometric representation for line features. Building on this, we develop POPL-KF, a Kalman filter-based VIO system that employs a pose-only geometric representation for both point and line features. POPL-KF mitigates linearization errors by explicitly eliminating both point and line feature coordinates from the measurement equations, while enabling immediate update of visual measurements. We also design a unified base-frames selection algorithm for both point and line features to ensure optimal constraints on camera poses within the pose-only measurement model. To further improve line feature quality, a line feature filter based on image grid segmentation and bidirectional optical flow consistency is proposed. Our system is evaluated on public datasets and real-world experiments, demonstrating that POPL-KF outperforms the state-of-the-art (SOTA) filter-based methods (OpenVINS, PO-KF) and optimization-based methods (PL-VINS, EPLF-VINS), while maintaining real-time performance.
☆ Alleviating Sparse Rewards by Modeling Step-Wise and Long-Term Sampling Effects in Flow-Based GRPO
Deploying GRPO on Flow Matching models has proven effective for text-to-image generation. However, existing paradigms typically propagate an outcome-based reward to all preceding denoising steps without distinguishing the local effect of each step. Moreover, current group-wise ranking mainly compares trajectories at matched timesteps and ignores within-trajectory dependencies, where certain early denoising actions can affect later states via delayed, implicit interactions. We propose TurningPoint-GRPO (TP-GRPO), a GRPO framework that alleviates step-wise reward sparsity and explicitly models long-term effects within the denoising trajectory. TP-GRPO makes two key innovations: (i) it replaces outcome-based rewards with step-level incremental rewards, providing a dense, step-aware learning signal that better isolates each denoising action's "pure" effect, and (ii) it identifies turning points-steps that flip the local reward trend and make subsequent reward evolution consistent with the overall trajectory trend-and assigns these actions an aggregated long-term reward to capture their delayed impact. Turning points are detected solely via sign changes in incremental rewards, making TP-GRPO efficient and hyperparameter-free. Extensive experiments also demonstrate that TP-GRPO exploits reward signals more effectively and consistently improves generation. Demo code is available at https://github.com/YunzeTong/TurningPoint-GRPO.
comment: 18 pages, in submission
☆ Learning Human Visual Attention on 3D Surfaces through Geometry-Queried Semantic Priors
Human visual attention on three-dimensional objects emerges from the interplay between bottom-up geometric processing and top-down semantic recognition. Existing 3D saliency methods rely on hand-crafted geometric features or learning-based approaches that lack semantic awareness, failing to explain why humans fixate on semantically meaningful but geometrically unremarkable regions. We introduce SemGeo-AttentionNet, a dual-stream architecture that explicitly formalizes this dichotomy through asymmetric cross-modal fusion, leveraging diffusion-based semantic priors from geometry-conditioned multi-view rendering and point cloud transformers for geometric processing. Cross-attention ensures geometric features query semantic content, enabling bottom-up distinctiveness to guide top-down retrieval. We extend our framework to temporal scanpath generation through reinforcement learning, introducing the first formulation respecting 3D mesh topology with inhibition-of-return dynamics. Evaluation on SAL3D, NUS3D and 3DVA datasets demonstrates substantial improvements, validating how cognitively motivated architectures effectively model human visual attention on three-dimensional surfaces.
☆ A neuromorphic model of the insect visual system for natural image processing
Insect vision supports complex behaviors including associative learning, navigation, and object detection, and has long motivated computational models for understanding biological visual processing. However, many contemporary models prioritize task performance while neglecting biologically grounded processing pathways. Here, we introduce a bio-inspired vision model that captures principles of the insect visual system to transform dense visual input into sparse, discriminative codes. The model is trained using a fully self-supervised contrastive objective, enabling representation learning without labeled data and supporting reuse across tasks without reliance on domain-specific classifiers. We evaluated the resulting representations on flower recognition tasks and natural image benchmarks. The model consistently produced reliable sparse codes that distinguish visually similar inputs. To support different modelling and deployment uses, we have implemented the model as both an artificial neural network and a spiking neural network. In a simulated localization setting, our approach outperformed a simple image downsampling comparison baseline, highlighting the functional benefit of incorporating neuromorphic visual processing pathways. Collectively, these results advance insect computational modelling by providing a generalizable bio-inspired vision model capable of sparse computation across diverse tasks.
comment: 21 pages, 7 figures, under review
☆ MeDocVL: A Visual Language Model for Medical Document Understanding and Parsing
Medical document OCR is challenging due to complex layouts, domain-specific terminology, and noisy annotations, while requiring strict field-level exact matching. Existing OCR systems and general-purpose vision-language models often fail to reliably parse such documents. We propose MeDocVL, a post-trained vision-language model for query-driven medical document parsing. Our framework combines Training-driven Label Refinement to construct high-quality supervision from noisy annotations, with a Noise-aware Hybrid Post-training strategy that integrates reinforcement learning and supervised fine-tuning to achieve robust and precise extraction. Experiments on medical invoice benchmarks show that MeDocVL consistently outperforms conventional OCR systems and strong VLM baselines, achieving state-of-the-art performance under noisy supervision.
comment: 20 pages, 8 figures. Technical report
☆ TFusionOcc: Student's t-Distribution Based Object-Centric Multi-Sensor Fusion Framework for 3D Occupancy Prediction
3D semantic occupancy prediction enables autonomous vehicles (AVs) to perceive fine-grained geometric and semantic structure of their surroundings from onboard sensors, which is essential for safe decision-making and navigation. Recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, the intermediate representations used by existing methods for 3D semantic occupancy prediction rely heavily on 3D voxel volumes or a set of 3D Gaussians, hindering the model's ability to efficiently and effectively capture fine-grained geometric details in the 3D driving environment. This paper introduces TFusionOcc, a novel object-centric multi-sensor fusion framework for predicting 3D semantic occupancy. By leveraging multi-stage multi-sensor fusion, Student's t-distribution, and the T-Mixture model (TMM), together with more geometrically flexible primitives, such as the deformable superquadric (superquadric with inverse warp), the proposed method achieved state-of-the-art (SOTA) performance on the nuScenes benchmark. In addition, extensive experiments were conducted on the nuScenes-C dataset to demonstrate the robustness of the proposed method in different camera and lidar corruption scenarios. The code will be available at: https://github.com/DanielMing123/TFusionOcc
☆ POINTS-GUI-G: GUI-Grounding Journey
The rapid advancement of vision-language models has catalyzed the emergence of GUI agents, which hold immense potential for automating complex tasks, from online shopping to flight booking, thereby alleviating the burden of repetitive digital workflows. As a foundational capability, GUI grounding is typically established as a prerequisite for end-to-end task execution. It enables models to precisely locate interface elements, such as text and icons, to perform accurate operations like clicking and typing. Unlike prior works that fine-tune models already possessing strong spatial awareness (e.g., Qwen3-VL), we aim to master the full technical pipeline by starting from a base model with minimal grounding ability, such as POINTS-1.5. We introduce POINTS-GUI-G-8B, which achieves state-of-the-art performance with scores of 59.9 on ScreenSpot-Pro, 66.0 on OSWorld-G, 95.7 on ScreenSpot-v2, and 49.9 on UI-Vision. Our model's success is driven by three key factors: (1) Refined Data Engineering, involving the unification of diverse open-source datasets format alongside sophisticated strategies for augmentation, filtering, and difficulty grading; (2) Improved Training Strategies, including continuous fine-tuning of the vision encoder to enhance perceptual accuracy and maintaining resolution consistency between training and inference; and (3) Reinforcement Learning (RL) with Verifiable Rewards. While RL is traditionally used to bolster reasoning, we demonstrate that it significantly improves precision in the perception-intensive GUI grounding task. Furthermore, GUI grounding provides a natural advantage for RL, as rewards are easily verifiable and highly accurate.
☆ Revisiting Salient Object Detection from an Observer-Centric Perspective
Salient object detection is inherently a subjective problem, as observers with different priors may perceive different objects as salient. However, existing methods predominantly formulate it as an objective prediction task with a single groundtruth segmentation map for each image, which renders the problem under-determined and fundamentally ill-posed. To address this issue, we propose Observer-Centric Salient Object Detection (OC-SOD), where salient regions are predicted by considering not only the visual cues but also the observer-specific factors such as their preferences or intents. As a result, this formulation captures the intrinsic ambiguity and diversity of human perception, enabling personalized and context-aware saliency prediction. By leveraging multi-modal large language models, we develop an efficient data annotation pipeline and construct the first OC-SOD dataset named OC-SODBench, comprising 33k training, validation and test images with 152k textual prompts and object pairs. Built upon this new dataset, we further design OC-SODAgent, an agentic baseline which performs OC-SOD via a human-like "Perceive-Reflect-Adjust" process. Extensive experiments on our proposed OC-SODBench have justified the effectiveness of our contribution. Through this observer-centric perspective, we aim to bridge the gap between human perception and computational modeling, offering a more realistic and flexible understanding of what makes an object truly "salient." Code and dataset are publicly available at: https://github.com/Dustzx/OC_SOD
☆ Robust Pedestrian Detection with Uncertain Modality
Existing cross-modal pedestrian detection (CMPD) employs complementary information from RGB and thermal-infrared (TIR) modalities to detect pedestrians in 24h-surveillance systems.RGB captures rich pedestrian details under daylight, while TIR excels at night. However, TIR focuses primarily on the person's silhouette, neglecting critical texture details essential for detection. While the near-infrared (NIR) captures texture under low-light conditions, which effectively alleviates performance issues of RGB and detail loss in TIR, thereby reducing missed detections. To this end, we construct a new Triplet RGB-NIR-TIR (TRNT) dataset, comprising 8,281 pixel-aligned image triplets, establishing a comprehensive foundation for algorithmic research. However, due to the variable nature of real-world scenarios, imaging devices may not always capture all three modalities simultaneously. This results in input data with unpredictable combinations of modal types, which challenge existing CMPD methods that fail to extract robust pedestrian information under arbitrary input combinations, leading to significant performance degradation. To address these challenges, we propose the Adaptive Uncertainty-aware Network (AUNet) for accurately discriminating modal availability and fully utilizing the available information under uncertain inputs. Specifically, we introduce Unified Modality Validation Refinement (UMVR), which includes an uncertainty-aware router to validate modal availability and a semantic refinement to ensure the reliability of information within the modality. Furthermore, we design a Modality-Aware Interaction (MAI) module to adaptively activate or deactivate its internal interaction mechanisms per UMVR output, enabling effective complementary information fusion from available modalities.
comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
☆ Di3PO -- Diptych Diffusion DPO for Targeted Improvements in Image
Existing methods for preference tuning of text-to-image (T2I) diffusion models often rely on computationally expensive generation steps to create positive and negative pairs of images. These approaches frequently yield training pairs that either lack meaningful differences, are expensive to sample and filter, or exhibit significant variance in irrelevant pixel regions, thereby degrading training efficiency. To address these limitations, we introduce "Di3PO", a novel method for constructing positive and negative pairs that isolates specific regions targeted for improvement during preference tuning, while keeping the surrounding context in the image stable. We demonstrate the efficacy of our approach by applying it to the challenging task of text rendering in diffusion models, showcasing improvements over baseline methods of SFT and DPO.
☆ Trifuse: Enhancing Attention-Based GUI Grounding via Multimodal Fusion
GUI grounding maps natural language instructions to the correct interface elements, serving as the perception foundation for GUI agents. Existing approaches predominantly rely on fine-tuning multimodal large language models (MLLMs) using large-scale GUI datasets to predict target element coordinates, which is data-intensive and generalizes poorly to unseen interfaces. Recent attention-based alternatives exploit localization signals in MLLMs attention mechanisms without task-specific fine-tuning, but suffer from low reliability due to the lack of explicit and complementary spatial anchors in GUI images. To address this limitation, we propose Trifuse, an attention-based grounding framework that explicitly integrates complementary spatial anchors. Trifuse integrates attention, OCR-derived textual cues, and icon-level caption semantics via a Consensus-SinglePeak (CS) fusion strategy that enforces cross-modal agreement while retaining sharp localization peaks. Extensive evaluations on four grounding benchmarks demonstrate that Trifuse achieves strong performance without task-specific fine-tuning, substantially reducing the reliance on expensive annotated data. Moreover, ablation studies reveal that incorporating OCR and caption cues consistently improves attention-based grounding performance across different backbones, highlighting its effectiveness as a general framework for GUI grounding.
comment: 17 pages, 10 figures
☆ AS-Mamba: Asymmetric Self-Guided Mamba Decoupled Iterative Network for Metal Artifact Reduction
Metal artifact significantly degrades Computed Tomography (CT) image quality, impeding accurate clinical diagnosis. However, existing deep learning approaches, such as CNN and Transformer, often fail to explicitly capture the directional geometric features of artifacts, leading to compromised structural restoration. To address these limitations, we propose the Asymmetric Self-Guided Mamba (AS-Mamba) for metal artifact reduction. Specifically, the linear propagation of metal-induced streak artifacts aligns well with the sequential modeling capability of State Space Models (SSMs). Consequently, the Mamba architecture is leveraged to explicitly capture and suppress these directional artifacts. Simultaneously, a frequency domain correction mechanism is incorporated to rectify the global amplitude spectrum, thereby mitigating intensity inhomogeneity caused by beam hardening. Furthermore, to bridge the distribution gap across diverse clinical scenarios, we introduce a self-guided contrastive regularization strategy. Extensive experiments on public andclinical dental CBCT datasets demonstrate that AS-Mamba achieves superior performance in suppressing directional streaks and preserving structural details, validating the effectiveness of integrating physical geometric priors into deep network design.
comment: 10 pages,10 figures
☆ FlowConsist: Make Your Flow Consistent with Real Trajectory
Fast flow models accelerate the iterative sampling process by learning to directly predict ODE path integrals, enabling one-step or few-step generation. However, we argue that current fast-flow training paradigms suffer from two fundamental issues. First, conditional velocities constructed from randomly paired noise-data samples introduce systematic trajectory drift, preventing models from following a consistent ODE path. Second, the model's approximation errors accumulate over time steps, leading to severe deviations across long time intervals. To address these issues, we propose FlowConsist, a training framework designed to enforce trajectory consistency in fast flows. We propose a principled alternative that replaces conditional velocities with the marginal velocities predicted by the model itself, aligning optimization with the true trajectory. To further address error accumulation over time steps, we introduce a trajectory rectification strategy that aligns the marginal distributions of generated and real samples at every time step along the trajectory. Our method establishes a new state-of-the-art on ImageNet 256$\times$256, achieving an FID of 1.52 with only 1 sampling step.
☆ Uncertainty-Aware 4D Gaussian Splatting for Monocular Occluded Human Rendering
High-fidelity rendering of dynamic humans from monocular videos typically degrades catastrophically under occlusions. Existing solutions incorporate external priors-either hallucinating missing content via generative models, which induces severe temporal flickering, or imposing rigid geometric heuristics that fail to capture diverse appearances. To this end, we reformulate the task as a Maximum A Posteriori estimation problem under heteroscedastic observation noise. In this paper, we propose U-4DGS, a framework integrating a Probabilistic Deformation Network and a Double Rasterization pipeline. This architecture renders pixel-aligned uncertainty maps that act as an adaptive gradient modulator, automatically attenuating artifacts from unreliable observations. Furthermore, to prevent geometric drift in regions lacking reliable visual cues, we enforce Confidence-Aware Regularizations, which leverage the learned uncertainty to selectively propagate spatial-temporal validity. Extensive experiments on ZJU-MoCap and OcMotion demonstrate that U-4DGS achieves SOTA rendering fidelity and robustness.
☆ SPDA-SAM: A Self-prompted Depth-Aware Segment Anything Model for Instance Segmentation
Recently, Segment Anything Model (SAM) has demonstrated strong generalizability in various instance segmentation tasks. However, its performance is severely dependent on the quality of manual prompts. In addition, the RGB images that instance segmentation methods normally use inherently lack depth information. As a result, the ability of these methods to perceive spatial structures and delineate object boundaries is hindered. To address these challenges, we propose a Self-prompted Depth-Aware SAM (SPDA-SAM) for instance segmentation. Specifically, we design a Semantic-Spatial Self-prompt Module (SSSPM) which extracts the semantic and spatial prompts from the image encoder and the mask decoder of SAM, respectively. Furthermore, we introduce a Coarse-to-Fine RGB-D Fusion Module (C2FFM), in which the features extracted from a monocular RGB image and the depth map estimated from it are fused. In particular, the structural information in the depth map is used to provide coarse-grained guidance to feature fusion, while local variations in depth are encoded in order to fuse fine-grained feature representations. To our knowledge, SAM has not been explored in such self-prompted and depth-aware manners. Experimental results demonstrate that our SPDA-SAM outperforms its state-of-the-art counterparts across twelve different data sets. These promising results should be due to the guidance of the self-prompts and the compensation for the spatial information loss by the coarse-to-fine RGB-D fusion operation.
☆ Taming SAM3 in the Wild: A Concept Bank for Open-Vocabulary Segmentation
The recent introduction of \texttt{SAM3} has revolutionized Open-Vocabulary Segmentation (OVS) through \textit{promptable concept segmentation}, which grounds pixel predictions in flexible concept prompts. However, this reliance on pre-defined concepts makes the model vulnerable: when visual distributions shift (\textit{data drift}) or conditional label distributions evolve (\textit{concept drift}) in the target domain, the alignment between visual evidence and prompts breaks down. In this work, we present \textsc{ConceptBank}, a parameter-free calibration framework to restore this alignment on the fly. Instead of adhering to static prompts, we construct a dataset-specific concept bank from the target statistics. Our approach (\textit{i}) anchors target-domain evidence via class-wise visual prototypes, (\textit{ii}) mines representative supports to suppress outliers under data drift, and (\textit{iii}) fuses candidate concepts to rectify concept drift. We demonstrate that \textsc{ConceptBank} effectively adapts \texttt{SAM3} to distribution drifts, including challenging natural-scene and remote-sensing scenarios, establishing a new baseline for robustness and efficiency in OVS. Code and model are available at https://github.com/pgsmall/ConceptBank.
☆ Halt the Hallucination: Decoupling Signal and Semantic OOD Detection Based on Cascaded Early Rejection
Efficient and robust Out-of-Distribution (OOD) detection is paramount for safety-critical applications.However, existing methods still execute full-scale inference on low-level statistical noise. This computational mismatch not only incurs resource waste but also induces semantic hallucination, where deep networks forcefully interpret physical anomalies as high-confidence semantic features.To address this, we propose the Cascaded Early Rejection (CER) framework, which realizes hierarchical filtering for anomaly detection via a coarse-to-fine logic.CER comprises two core modules: 1)Structural Energy Sieve (SES), which establishes a non-parametric barrier at the network entry using the Laplacian operator to efficiently intercept physical signal anomalies; and 2) the Semantically-aware Hyperspherical Energy (SHE) detector, which decouples feature magnitude from direction in intermediate layers to identify fine-grained semantic deviations. Experimental results demonstrate that CER not only reduces computational overhead by 32% but also achieves a significant performance leap on the CIFAR-100 benchmark:the average FPR95 drastically decreases from 33.58% to 22.84%, and AUROC improves to 93.97%. Crucially, in real-world scenarios simulating sensor failures, CER exhibits performance far exceeding state-of-the-art methods. As a universal plugin, CER can be seamlessly integrated into various SOTA models to provide performance gains.
☆ Adaptive and Balanced Re-initialization for Long-timescale Continual Test-time Domain Adaptation ICASSP 2026
Continual test-time domain adaptation (CTTA) aims to adjust models so that they can perform well over time across non-stationary environments. While previous methods have made considerable efforts to optimize the adaptation process, a crucial question remains: Can the model adapt to continually changing environments over a long time? In this work, we explore facilitating better CTTA in the long run using a re-initialization (or reset) based method. First, we observe that the long-term performance is associated with the trajectory pattern in label flip. Based on this observed correlation, we propose a simple yet effective policy, Adaptive-and-Balanced Re-initialization (ABR), towards preserving the model's long-term performance. In particular, ABR performs weight re-initialization using adaptive intervals. The adaptive interval is determined based on the change in label flip. The proposed method is validated on extensive CTTA benchmarks, achieving superior performance.
comment: Accepted in ICASSP 2026
☆ Accelerating Vision Transformers on Brain Processing Unit
With the advancement of deep learning technologies, specialized neural processing hardware such as Brain Processing Units (BPUs) have emerged as dedicated platforms for CNN acceleration, offering optimized INT8 computation capabilities for convolutional operations. Meanwhile, Vision Transformer (ViT) models, such as the Data-efficient Image Transformer (DeiT), have demonstrated superior performance and play increasingly crucial roles in computer vision tasks. However, due to the architectural mismatch between CNN-optimized hardware and Vision Transformer computation characteristics--namely, that linear layers in Transformers operate on three-dimensional data while BPU acceleration is designed for four-dimensional convolution operations-it is difficult or even impossible to leverage BPU's advantages when deploying Vision Transformers. To address this challenge, we propose a novel approach that restructures the Vision Transformer by replacing linear layers and layer normalization operations with carefully designed convolutional operators. This enables DeiT to fully utilize the acceleration capabilities of BPUs, while allowing the original weight parameters to be inherited by the restructured models without retraining or fine-tuning. To the best of our knowledge, this is the first successful deployment of Vision Transformers that fully leverages BPU classification datasets demonstrate the effectiveness of our approach. Specifically, the quantized DeiT-Base model achieves 80.4% accuracy on ImageNet, compared to the original 81.8%, while obtaining up to a 3.8* inference speedup. Our finetuned DeiT model on the flower classification dataset also achieves excellent performance, with only a 0.5% accuracy drop for the DeiT-Base model, further demonstrating the effectiveness of our method.
☆ Zero-shot Multi-Contrast Brain MRI Registration by Intensity Randomizing T1-weighted MRI (LUMIR25) MICCAI 2025
In this paper, we summarize the methods and results of our submission to the LUMIR25 challenge in Learn2Reg 2025, which achieved 1st place overall on the test set. Extended from LUMIR24, this year's task focuses on zero-shot registration under domain shifts (high-field MRI, pathological brains, and various MRI contrasts), while the training data comprise only in-domain T1-weighted brain MRI. We start with a meticulous analysis of LUMIR24 winners to identify the main contributors to good monomodal registration performance. To achieve good generalization with diverse contrasts from a model trained with T1-weighted MRI only, we employ three simple but effective strategies: (i) a multimodal loss based on the modality-independent neighborhood descriptor (MIND), (ii) intensity randomization for appearance augmentation, and (iii) lightweight instance-specific optimization (ISO) on feature encoders at inference time. On the validation set, our approach achieves reasonable T1-T2 registration accuracy while maintaining good deformation regularity.
comment: Submitted to and reviewed by Learn2Reg MICCAI 2025
☆ Unsupervised MRI-US Multimodal Image Registration with Multilevel Correlation Pyramidal Optimization MICCAI 2025
Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2025, an unsupervised multimodal medical image registration method based on multilevel correlation pyramidal optimization (MCPO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the displacement field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. Our method focuses on the ReMIND2Reg task in Learn2Reg 2025. Based on the results, our method achieved the first place in the validation phase and test phase of ReMIND2Reg. The MCPO is also validated on the Resect dataset, achieving an average TRE of 1.798 mm. This demonstrates the broad applicability of our method in preoperative-to-intraoperative image registration. The code is avaliable at https://github.com/wjiazheng/MCPO.
comment: first-place method of ReMIND2Reg Learn2Reg 2025 (in MICCAI 2025)
☆ MMEarth-Bench: Global Model Adaptation via Multimodal Test-Time Training
Recent research in geospatial machine learning has demonstrated that models pretrained with self-supervised learning on Earth observation data can perform well on downstream tasks with limited training data. However, most of the existing geospatial benchmark datasets have few data modalities and poor global representation, limiting the ability to evaluate multimodal pretrained models at global scales. To fill this gap, we introduce MMEarth-Bench, a collection of five new multimodal environmental tasks with 12 modalities, globally distributed data, and both in- and out-of-distribution test splits. We benchmark a diverse set of pretrained models and find that while (multimodal) pretraining tends to improve model robustness in limited data settings, geographic generalization abilities remain poor. In order to facilitate model adaptation to new downstream tasks and geographic domains, we propose a model-agnostic method for test-time training with multimodal reconstruction (TTT-MMR) that uses all the modalities available at test time as auxiliary tasks, regardless of whether a pretrained model accepts them as input. Our method improves model performance on both the random and geographic test splits, and geographic batching leads to a good trade-off between regularization and specialization during TTT. Our dataset, code, and visualization tool are linked from the project page at lgordon99.github.io/mmearth-bench.
☆ An Interpretable Vision Transformer as a Fingerprint-Based Diagnostic Aid for Kabuki and Wiedemann-Steiner Syndromes
Kabuki syndrome (KS) and Wiedemann-Steiner syndrome (WSS) are rare but distinct developmental disorders that share overlapping clinical features, including neurodevelopmental delay, growth restriction, and persistent fetal fingertip pads. While genetic testing remains the diagnostic gold standard, many individuals with KS or WSS remain undiagnosed due to barriers in access to both genetic testing and expertise. Dermatoglyphic anomalies, despite being established hallmarks of several genetic syndromes, remain an underutilized diagnostic signal in the era of molecular testing. This study presents a vision transformer-based deep learning model that leverages fingerprint images to distinguish individuals with KS and WSS from unaffected controls and from one another. We evaluate model performance across three binary classification tasks. Across the three classification tasks, the model achieved AUC scores of 0.80 (control vs. KS), 0.73 (control vs. WSS), and 0.85 (KS vs. WSS), with corresponding F1 scores of 0.71, 0.72, and 0.83, respectively. Beyond classification, we apply attention-based visualizations to identify fingerprint regions most salient to model predictions, enhancing interpretability. Together, these findings suggest the presence of syndrome-specific fingerprint features, demonstrating the feasibility of a fingerprint-based artificial intelligence (AI) tool as a noninvasive, interpretable, and accessible future diagnostic aid for the early diagnosis of underdiagnosed genetic syndromes.
♻ ☆ Dataset Distillation as Pushforward Optimal Quantization ICLR 2026
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose Dataset Distillation by Optimal Quantization, based on clustering in a latent space. Compared to the previous SOTA method D\textsuperscript{4}M, we achieve better performance and inter-model generalization on the ImageNet-1K dataset with trivial additional computation, and SOTA performance in higher image-per-class settings. Using the distilled noise initializations in a stronger diffusion transformer model, we obtain SOTA distillation performance on ImageNet-1K and its subsets, outperforming diffusion guidance methods.
comment: ICLR 2026, https://openreview.net/forum?id=FMSp8AUF3m
♻ ☆ WAFT: Warping-Alone Field Transforms for Optical Flow
We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring, Sintel, and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being 1.3-4.1x faster than existing methods that have competitive accuracy (e.g., 1.3x than Flowformer++, 4.1x than CCMR+). Code and model weights are available at \href{https://github.com/princeton-vl/WAFT}{https://github.com/princeton-vl/WAFT}.
♻ ☆ Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation
We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
comment: Project page at https://cvlab-kaist.github.io/MoAI
♻ ☆ Learning a distance measure from the information-estimation geometry of data ICLR 2026
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global distance metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.
comment: ICLR 2026. Code is available at https://github.com/ohayonguy/information-estimation-metric
♻ ☆ AR as an Evaluation Playground: Bridging Metrics and Visual Perception of Computer Vision Models
Quantitative metrics are central to evaluating computer vision (CV) models, but they often fail to capture real-world performance due to protocol inconsistencies and ground-truth noise. While visual perception studies can complement these metrics, they often require end-to-end systems that are time-consuming to implement and setups that are difficult to reproduce. We systematically summarize key challenges in evaluating CV models and present the design of ARCADE, an evaluation platform that leverages augmented reality (AR) to enable easy, reproducible, and human-centered CV evaluation. ARCADE uses a modular architecture that provides cross-platform data collection, pluggable model inference, and interactive AR tasks, supporting both metric and visual perception evaluation. We demonstrate ARCADE through a user study with 15 participants and case studies on two representative CV tasks, depth and lighting estimation, showing that ARCADE can reveal perceptual flaws in model quality that are often missed by traditional metrics. We also evaluate ARCADE's usability and performance, showing its flexibility as a reliable real-time platform.
comment: Accepted at MMSys 2026
♻ ☆ DoRAN: Stabilizing Weight-Decomposed Low-Rank Adaptation via Noise Injection and Auxiliary Networks
Parameter-efficient fine-tuning (PEFT) methods have become the standard paradigm for adapting large-scale models. Among these techniques, Weight-Decomposed Low-Rank Adaptation (DoRA) has been shown to improve both the learning capacity and training stability of the Low-Rank Adaptation (LoRA) method by explicitly decomposing pre-trained weights into magnitude and directional components. In this work, we propose DoRAN, a new technique designed to stabilize training and boost the sample efficiency of DoRA. Our framework introduces two key components: (i) the injection of learnable noise into the denominator of DoRA weight decomposition, which serves as an adaptive regularizer to mitigate instabilities and improve the estimation rate of low-rank matrices; and (ii) the replacement of static low-rank matrices with auxiliary networks that generate them dynamically, enabling parameter coupling between the query and value projection matrices, leading to improved sample efficiency both theoretically and empirically. Comprehensive experiments on vision and language benchmarks show that DoRAN consistently outperforms LoRA, DoRA, and other PEFT baselines, underscoring the effectiveness of combining noise-based regularization with network-based parameter generation.
comment: Nghiem T. Diep, Hien Dang, and Tuan Truong contributed equally to this work
♻ ☆ Inverse problems with diffusion models: MAP estimation via mode-seeking loss
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can also be computationally demanding. In this work, we propose a new MAP estimation strategy for solving inverse problems with a pre-trained unconditional diffusion model. Specifically, we introduce the variational mode-seeking loss (VML) and show that its minimization at each reverse diffusion step guides the generated sample towards the MAP estimate (modes in practice). VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived without any modeling approximations. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems via VML minimization, and validate its efficacy in both performance and computational time through extensive experiments on diverse image-restoration tasks across multiple datasets.
♻ ☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
♻ ☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
♻ ☆ An Evaluation of Hybrid Annotation Workflows on High-Ambiguity Spatiotemporal Video Footage
Manual annotation remains the gold standard for high-quality, dense temporal video datasets, yet it is inherently time-consuming. Vision-language models can aid human annotators and expedite this process. We report on the impact of automatic Pre-Annotations from a tuned encoder on a Human-in-the-Loop labeling workflow for video footage. Quantitative analysis in a study of a single-iteration test involving 18 volunteers demonstrates that our workflow reduced annotation time by 35% for the majority (72%) of the participants. Beyond efficiency, we provide a rigorous framework for benchmarking AI-assisted workflows that quantifies trade-offs between algorithmic speed and the integrity of human verification.
♻ ☆ BADet: Boundary-Aware 3D Object Detection from Point Clouds
Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.
comment: The manuscript is accepted by Pattern Recognition on 6 Jan, 2022
♻ ☆ Synthetic Data Guided Feature Selection for Robust Activity Recognition in Older Adults
Physical activity during hip fracture rehabilitation is essential for mitigating long-term functional decline in geriatric patients. However, it is rarely quantified in clinical practice. Existing continuous monitoring systems with commercially available wearable activity trackers are typically developed in middle-aged adults and therefore perform unreliably in older adults with slower and more variable gait patterns. This study aimed to develop a robust human activity recognition (HAR) system to improve continuous physical activity recognition in the context of hip fracture rehabilitation. 24 healthy older adults aged over 80 years were included to perform activities of daily living (walking, standing, sitting, lying down, and postural transfers) under simulated free-living conditions for 75 minutes while wearing two accelerometers positioned on the lower back and anterior upper thigh. Model robustness was evaluated using leave-one-subject-out cross-validation. The synthetic data demonstrated potential to improve generalization across participants. The resulting feature intervention model (FIM), aided by synthetic data guidance, achieved reliable activity recognition with mean F1-scores of 0.896 for walking, 0.927 for standing, 0.997 for sitting, 0.937 for lying down, and 0.816 for postural transfers. Compared with a control condition model without synthetic data, the FIM significantly improved the postural transfer detection, i.e., an activity class of high clinical relevance that is often overlooked in existing HAR literature. In conclusion, these preliminary results demonstrate the feasibility of robust activity recognition in older adults. Further validation in hip fracture patient populations is required to assess the clinical utility of the proposed monitoring system.
comment: This paper has been submitted to Nordic Conference on Digital Health and Wireless Solutions 2026, currently under review
♻ ☆ 3D Object Detection for Autonomous Driving: A Survey
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of perception stack especially for the sake of path planning, motion prediction, and collision avoidance etc. Taking a quick glance at the progress we have made, we attribute challenges to visual appearance recovery in the absence of depth information from images, representation learning from partially occluded unstructured point clouds, and semantic alignments over heterogeneous features from cross modalities. Despite existing efforts, 3D object detection for autonomous driving is still in its infancy. Recently, a large body of literature have been investigated to address this 3D vision task. Nevertheless, few investigations have looked into collecting and structuring this growing knowledge. We therefore aim to fill this gap in a comprehensive survey, encompassing all the main concerns including sensors, datasets, performance metrics and the recent state-of-the-art detection methods, together with their pros and cons. Furthermore, we provide quantitative comparisons with the state of the art. A case study on fifteen selected representative methods is presented, involved with runtime analysis, error analysis, and robustness analysis. Finally, we provide concluding remarks after an in-depth analysis of the surveyed works and identify promising directions for future work.
comment: The manuscript is accepted by Pattern Recognition on 14 May 2022
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HSG-12M: A Large-Scale Benchmark of Spatial Multigraphs from the Energy Spectra of Non-Hermitian Crystals
AI is transforming scientific research by revealing new ways to understand complex physical systems, but its impact remains constrained by the lack of large, high-quality domain-specific datasets. A rich, largely untapped resource lies in non-Hermitian quantum physics, where the energy spectra of crystals form intricate geometries on the complex plane -- termed as Hamiltonian spectral graphs. Despite their significance as fingerprints for electronic behavior, their systematic study has been intractable due to the reliance on manual extraction. To unlock this potential, we introduce Poly2Graph: a high-performance, open-source pipeline that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Using this tool, we present HSG-12M: a dataset containing 11.6 million static and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-polynomial classes, distilled from 177 TB of spectral potential data. Crucially, HSG-12M is the first large-scale dataset of spatial multigraphs -- graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. This simultaneously addresses a critical gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial edges, discarding vital geometric information. Benchmarks with popular GNNs expose new challenges in learning spatial multi-edges at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for data-driven scientific discovery in condensed matter physics, new opportunities in geometry-aware graph learning and beyond.
comment: 48 pages, 13 figures, 14 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0. Benchmark scripts and data loaders included
♻ ☆ Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation
Text-to-image diffusion models, such as Stable Diffusion, generate highly realistic images from text descriptions. However, the generation of certain content at such high quality raises concerns. A prominent issue is the accurate depiction of identifiable facial images, which could lead to malicious deepfake generation and privacy violations. In this paper, we propose Anonymization Prompt Learning (APL) to address this problem. Specifically, we train a learnable prompt prefix for text-to-image diffusion models, which forces the model to generate anonymized facial identities, even when prompted to produce images of specific individuals. Extensive quantitative and qualitative experiments demonstrate the successful anonymization performance of APL, which anonymizes any specific individuals without compromising the quality of non-identity-specific image generation. Furthermore, we reveal the plug-and-play property of the learned prompt prefix, enabling its effective application across different pretrained text-to-image models for transferrable privacy and security protection against the risks of deepfakes.
comment: Accepted by IJCV
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
comment: v2: clarify confusion in definition of JEPAs vs. regularization-based JEPAs
♻ ☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
comment: After careful consideration, we have decided to withdraw our submission for substantial revisions. We plan to significantly improve Section 4 and include more comprehensive experiments. These changes are necessary to ensure the paper's quality and rigor. We believe the revisions will strengthen the contribution and provide a more solid foundation for the results
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark EACL 2026
This paper presents a novel task of extracting low-resourced and noisy Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary zero-shot models is achievable, yet these models lack a functional comprehension of Latin. This study establishes a comprehensive baseline for processing Latin within mixed-language corpora, supporting quantitative analysis in intellectual history and historical linguistics. Both the dataset and code are available at https://github.com/COMHIS/EACL26-detect-latin.
comment: Accepted by the EACL 2026 main conference. Code and data available at https://github.com/COMHIS/EACL26-detect-latin
♻ ☆ MATTER: Multiscale Attention for Registration Error Regression
Point cloud registration (PCR) is crucial for many downstream tasks, such as simultaneous localization and mapping (SLAM) and object tracking. This makes detecting and quantifying registration misalignment, i.e., PCR quality validation, an important task. All existing methods treat validation as a classification task, aiming to assign the PCR quality to a few classes. In this work, we instead use regression for PCR validation, allowing for a more fine-grained quantification of the registration quality. We also extend previously used misalignment-related features by using multiscale extraction and attention-based aggregation. This leads to accurate and robust registration error estimation on diverse datasets, especially for point clouds with heterogeneous spatial densities. Furthermore, when used to guide a mapping downstream task, our method significantly improves the mapping quality for a given amount of re-registered frames, compared to the state-of-the-art classification-based method.
♻ ☆ Visual Autoregressive Modeling for Instruction-Guided Image Editing ICLR 2026
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On EMU-Edit and PIE-Bench benchmarks, VAREdit outperforms leading diffusion-based methods by a substantial margin in terms of both CLIP and GPT scores. Moreover, VAREdit completes a 512$\times$512 editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. Code is available at: https://github.com/HiDream-ai/VAREdit.
comment: ICLR 2026; Source codes and models are available at https://github.com/HiDream-ai/VAREdit
♻ ☆ PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
♻ ☆ MRD: Using Physically Based Differentiable Rendering to Probe Vision Models for 3D Scene Understanding
While deep learning methods have achieved impressive success in many vision benchmarks, it remains difficult to understand and explain the representations and decisions of these models. Though vision models are typically trained on 2D inputs, they are often assumed to develop an implicit representation of the underlying 3D scene (for example, showing tolerance to partial occlusion, or the ability to reason about relative depth). Here, we introduce MRD (metamers rendered differentiably), an approach that uses physically based differentiable rendering to probe vision models' implicit understanding of generative 3D scene properties, by finding 3D scene parameters that are physically different but produce the same model activation (i.e. are model metamers). Unlike previous pixel-based methods for evaluating model representations, these reconstruction results are always grounded in physical scene descriptions. This means we can, for example, probe a model's sensitivity to object shape while holding material and lighting constant. As a proof-of-principle, we assess multiple models in their ability to recover scene parameters of geometry (shape) and bidirectional reflectance distribution function (material). The results show high similarity in model activation between target and optimized scenes, with varying visual results. Qualitatively, these reconstructions help investigate the physical scene attributes to which models are sensitive or invariant. MRD holds promise for advancing our understanding of both computer and human vision by enabling analysis of how physical scene parameters drive changes in model responses.
comment: 23 pages, 11 figures. Added appendix with more figure results. Code will be available here: https://github.com/ag-perception-wallis-lab/MRD
♻ ☆ Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.
♻ ☆ An Example for Domain Adaptation Using CycleGAN
Cycle-Consistent Adversarial Network (CycleGAN) is very promising in domain adaptation. In this report, an example in medical domain will be explained. We present struecture of a CycleGAN model for unpaired image-to-image translation from microscopy to pseudo H\&E stained histopathology images.
comment: 3 pages, 2 figures
♻ ☆ Concepts in Motion: Temporal Bottlenecks for Interpretable Video Classification
Concept Bottleneck Models (CBMs) enable interpretable image classification by structuring predictions around human-understandable concepts, but extending this paradigm to video remains challenging due to the difficulty of extracting concepts and modeling them over time. In this paper, we introduce $\textbf{MoTIF}$ (Moving Temporal Interpretable Framework), a transformer-based concept architecture that operates on sequences of temporally grounded concept activations, by employing per-concept temporal self-attention to model when individual concepts recur and how their temporal patterns contribute to predictions. Central to the framework is an agentic concept discovery module to automatically extract object- and action-centric textual concepts from videos, yielding temporally expressive concept sets without manual supervision. Across multiple video benchmarks, this combination substantially narrows the performance gap between interpretable and black-box video models while maintaining faithful and temporally grounded concept explanations. Code available at $\href{https://github.com/patrick-knab/MoTIF}{github.com/patrick-knab/MoTIF}$.
♻ ☆ Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
Task-specific microscopy datasets are often too small to train deep learning models that learn robust feature representations. Self-supervised learning (SSL) can mitigate this by pretraining on large unlabeled datasets, but it remains unclear how well such representations transfer across microscopy domains with different staining protocols and channel configurations. We investigate the cross-domain transferability of DINO-pretrained Vision Transformers for protein localization on the OpenCell dataset. We generate image embeddings using three DINO backbones pretrained on ImageNet-1k, the Human Protein Atlas (HPA), and OpenCell, and evaluate them by training a supervised classification head on OpenCell labels. All pretrained models transfer well, with the microscopy-specific HPA-pretrained model achieving the best performance (mean macro $F_1$-score = 0.8221 $\pm$ 0.0062), slightly outperforming a DINO model trained directly on OpenCell (0.8057 $\pm$ 0.0090). These results highlight the value of large-scale pretraining and indicate that domain-relevant SSL representations can generalize effectively to related but distinct microscopy datasets, enabling strong downstream performance even when task-specific labeled data are limited.
comment: Preprint; not yet peer reviewed. AMEE Conference Proceeding 2025, 11 pages, 2 figures
♻ ☆ EchoJEPA: A Latent Predictive Foundation Model for Echocardiography
Foundation models for echocardiography often struggle to disentangle anatomical signal from the stochastic speckle and acquisition artifacts inherent to ultrasound. We present EchoJEPA, a foundation model trained on 18 million echocardiograms across 300K patients, representing the largest pretraining corpus for this modality to date. By leveraging a latent predictive objective, EchoJEPA learns robust anatomical representations that ignore speckle noise. We validate this using a novel multi-view probing framework with frozen backbones, where EchoJEPA outperforms leading baselines by approximately 20% in left ventricular ejection fraction (LVEF) estimation and 17% in right ventricular systolic pressure (RVSP) estimation. The model also exhibits remarkable sample efficiency, reaching 79% view classification accuracy with only 1% of labeled data versus 42% for the best baseline trained on 100%. Crucially, EchoJEPA demonstrates superior generalization, degrading by only 2% under physics-informed acoustic perturbations compared to 17% for competitors. Most remarkably, its zero-shot performance on pediatric patients surpasses fully fine-tuned baselines, establishing latent prediction as a superior paradigm for robust, generalizable medical AI.
♻ ☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
♻ ☆ CompEvent: Complex-valued Event-RGB Fusion for Low-light Video Enhancement and Deblurring
Low-light video deblurring poses significant challenges in applications like nighttime surveillance and autonomous driving due to dim lighting and long exposures. While event cameras offer potential solutions with superior low-light sensitivity and high temporal resolution, existing fusion methods typically employ staged strategies, limiting their effectiveness against combined low-light and motion blur degradations. To overcome this, we propose CompEvent, a complex neural network framework enabling holistic full-process fusion of event data and RGB frames for enhanced joint restoration. CompEvent features two core components: 1) Complex Temporal Alignment GRU, which utilizes complex-valued convolutions and processes video and event streams iteratively via GRU to achieve temporal alignment and continuous fusion; and 2) Complex Space-Frequency Learning module, which performs unified complex-valued signal processing in both spatial and frequency domains, facilitating deep fusion through spatial structures and system-level characteristics. By leveraging the holistic representation capability of complex-valued neural networks, CompEvent achieves full-process spatiotemporal fusion, maximizes complementary learning between modalities, and significantly strengthens low-light video deblurring capability. Extensive experiments demonstrate that CompEvent outperforms SOTA methods in addressing this challenging task.
♻ ☆ SPARK: Scalable Real-Time Point Cloud Aggregation with Multi-View Self-Calibration IEEE
Real-time multi-camera 3D reconstruction is crucial for 3D perception, immersive interaction, and robotics. Existing methods struggle with multi-view fusion, camera extrinsic uncertainty, and scalability for large camera setups. We propose SPARK, a self-calibrating real-time multi-camera point cloud reconstruction framework that jointly handles point cloud fusion and extrinsic uncertainty. SPARK consists of: (1) a geometry-aware online extrinsic estimation module leveraging multi-view priors and enforcing cross-view and temporal consistency for stable self-calibration, and (2) a confidence-driven point cloud fusion strategy modeling depth reliability and visibility at pixel and point levels to suppress noise and view-dependent inconsistencies. By performing frame-wise fusion without accumulation, SPARK produces stable point clouds in dynamic scenes while scaling linearly with the number of cameras. Extensive experiments on real-world multi-camera systems show that SPARK outperforms existing approaches in extrinsic accuracy, geometric consistency, temporal stability, and real-time performance, demonstrating its effectiveness and scalability for large-scale multi-camera 3D reconstruction.
comment: 10 pages, 1 figure, submitted to IEEE Transactions on Image Processing (TIP). Version 3: Minor revision; several experimental results have been removed and supplemented after further verification
♻ ☆ M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve $mAP$ by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
♻ ☆ High-Precision Edge Detection via Task-Adaptive Texture Handling and Ideal-Prior Guidance
Image edge detection (ED) requires specialized architectures, reliable supervision, and rigorous evaluation criteria to ensure accurate localization. In this work, we present a framework for high-precision ED that jointly addresses architectural design, data supervision, and evaluation consistency. We propose SDPED, a compact ED model built upon Cascaded Skipping Density Blocks (CSDB), motivated by a task-adaptive architectural transfer from image super-resolution. By re-engineering texture-oriented structures for ED, SDPED effectively differentiates textures from edges while preserving fine spatial precision. Extensive experiments on four benchmark datasets (BRIND, UDED, MDBD, and BIPED2) demonstrate consistent performance improvements, particularly in Average Precision (AP), with gains of up to 22.5% on MDBD and 11.8% on BIPED2. In addition, we introduce an ideal-prior guidance strategy that incorporates noiseless data into training by treating labels as noise-free samples, providing a practical means to mitigate the subjectivity and noise inherent in human annotations. To enable fair and resolution-independent evaluation, we further adopt a fixed-pixel criterion for assessing localization accuracy. Overall, this work offers a coherent solution for high-precision ED and provides insights applicable to precision-oriented modeling in low-level and soft-computing-based vision tasks. Codes can be found on https://github.com/Hao-B-Shu/SDPED.
comment: 30 pages
♻ ☆ SyncAnyone: Implicit Disentanglement via Progressive Self-Correction for Lip-Syncing in the wild
High-quality AI-powered video dubbing demands precise audio-lip synchronization, high-fidelity visual generation, and faithful preservation of identity and background. Most existing methods rely on a mask-based training strategy, where the mouth region is masked in talking-head videos, and the model learns to synthesize lip movements from corrupted inputs and target audios. While this facilitates lip-sync accuracy, it disrupts spatiotemporal context, impairing performance on dynamic facial motions and causing instability in facial structure and background consistency. To overcome this limitation, we propose SyncAnyone, a novel two-stage learning framework that achieves accurate motion modeling and high visual fidelity simultaneously. In Stage 1, we train a diffusion-based video transformer for masked mouth inpainting, leveraging its strong spatiotemporal modeling to generate accurate, audio-driven lip movements. However, due to input corruption, minor artifacts may arise in the surrounding facial regions and the background. In Stage 2, we develop a mask-free tuning pipeline to address mask-induced artifacts. Specifically, on the basis of the Stage 1 model, we develop a data generation pipeline that creates pseudo-paired training samples by synthesizing lip-synced videos from the source video and random sampled audio. We further tune the stage 2 model on this synthetic data, achieving precise lip editing and better background consistency. Extensive experiments show that our method achieves state-of-the-art results in visual quality, temporal coherence, and identity preservation under in-the wild lip-syncing scenarios.
comment: Project page: https://humanaigc.github.io/sync_anyone_demo_page/
♻ ☆ A Data-driven Typology of Vision Models from Integrated Representational Metrics
Large vision models differ widely in architecture and training paradigm, yet we lack principled methods to determine which aspects of their representations are shared across families and which reflect distinctive computational strategies. We leverage a suite of representational similarity metrics, each capturing a different facet-geometry, unit tuning, or linear decodability-and assess family separability using multiple complementary measures. Metrics preserving geometry or tuning (e.g., RSA, Soft Matching) yield strong family discrimination, whereas flexible mappings such as Linear Predictivity show weaker separation. These findings indicate that geometry and tuning carry family-specific signatures, while linearly decodable information is more broadly shared. To integrate these complementary facets, we adapt Similarity Network Fusion (SNF), a method inspired by multi-omics integration. SNF achieves substantially sharper family separation than any individual metric and produces robust composite signatures. Clustering of the fused similarity matrix recovers both expected and surprising patterns: supervised ResNets and ViTs form distinct clusters, yet all self-supervised models group together across architectural boundaries. Hybrid architectures (ConvNeXt, Swin) cluster with masked autoencoders, suggesting convergence between architectural modernization and reconstruction-based training. This biology-inspired framework provides a principled typology of vision models, showing that emergent computational strategies-shaped jointly by architecture and training objective-define representational structure beyond surface design categories.
comment: Update the main text format
♻ ☆ Self-Supervised Video Representation Learning in a Heuristic Decoupled Perspective
Video contrastive learning (V-CL) has emerged as a popular framework for unsupervised video representation learning, demonstrating strong results in tasks such as action classification and detection. Yet, to harness these benefits, it is critical for the learned representations to fully capture both static and dynamic semantics. However, our experiments show that existing V-CL methods fail to effectively learn either type of feature. Through a rigorous theoretical analysis based on the Structural Causal Model and gradient update, we find that in a given dataset, certain static semantics consistently co-occur with specific dynamic semantics. This phenomenon creates spurious correlations between static and dynamic semantics in the dataset. However, existing V-CL methods do not differentiate static and dynamic similarities when computing sample similarity. As a result, learning only one type of semantics is sufficient for the model to minimize the contrastive loss. Ultimately, this causes the V-CL pre-training process to prioritize learning the easier-to-learn semantics. To address this limitation, we propose Bi-level Optimization with Decoupling for Video Contrastive Learning. (BOD-VCL). In BOD-VCL, we model videos as linear dynamical systems based on Koopman theory. In this system, all frame-to-frame transitions are represented by a linear Koopman operator. By performing eigen-decomposition on this operator, we can separate time-variant and time-invariant components of semantics, which allows us to explicitly separate the static and dynamic semantics in the video. By modeling static and dynamic similarity separately, both types of semantics can be fully exploited during the V-CL training process. BOD-VCL can be seamlessly integrated into existing V-CL frameworks, and experimental results highlight the significant improvements achieved by our method.
♻ ☆ XTransfer: Modality-Agnostic Few-Shot Model Transfer for Human Sensing at the Edge
Deep learning for human sensing on edge systems presents significant potential for smart applications. However, its training and development are hindered by the limited availability of sensor data and resource constraints of edge systems. While transferring pre-trained models to different sensing applications is promising, existing methods often require extensive sensor data and computational resources, resulting in high costs and limited transferability. In this paper, we propose XTransfer, a first-of-its-kind method enabling modality-agnostic, few-shot model transfer with resource-efficient design. XTransfer flexibly uses pre-trained models and transfers knowledge across different modalities by (i) model repairing that safely mitigates modality shift by adapting pre-trained layers with only few sensor data, and (ii) layer recombining that efficiently searches and recombines layers of interest from source models in a layer-wise manner to restructure models. We benchmark various baselines across diverse human sensing datasets spanning different modalities. The results show that XTransfer achieves state-of-the-art performance while significantly reducing the costs of sensor data collection, model training, and edge deployment.
♻ ☆ STAG: Structural Test-time Alignment of Gradients for Online Adaptation
Test-Time Adaptation (TTA) adapts pre-trained models using only unlabeled test streams, requiring real-time inference and update without access to source data. We propose StructuralTest-time Alignment of Gradients (STAG), a lightweight plug-in enhancer that exploits an always-available structural signal: the classifier's intrinsic geometry. STAG derives class-wise structural anchors from classifier weights via self-structural entropy, and during adaptation analytically computes the predicted-class entropy gradient from forward-pass quantities, aligning it to the corresponding anchor with a cosine-similarity loss. This closed-form design incurs near-zero memory and latency overhead and requires no additional backpropagation beyond the underlying baseline. Across corrupted image classification and continual semantic segmentation, STAG provides broadly applicable performance gains for strong TTA baselines on both CNN and Transformer architectures regardless of the underlying normalization scheme, with particularly large gains under challenging online regimes such as imbalanced label shifts, single-sample adaptation, mixed corruption streams and long-horizon continual TTA.
♻ ☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
♻ ☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released at https://github.com/iSEE-Laboratory/Refer-Agent.
♻ ☆ Spectral Compressive Imaging via Chromaticity-Intensity Decomposition
In coded aperture snapshot spectral imaging (CASSI), the captured measurement entangles spatial and spectral information, posing a severely ill-posed inverse problem for hyperspectral images (HSIs) reconstruction. Moreover, the captured radiance inherently depends on scene illumination, making it difficult to recover the intrinsic spectral reflectance that remains invariant to lighting conditions. To address these challenges, we propose a chromaticity-intensity decomposition framework, which disentangles an HSI into a spatially smooth intensity map and a spectrally variant chromaticity cube. The chromaticity encodes lighting-invariant reflectance, enriched with high-frequency spatial details and local spectral sparsity. Building on this decomposition, we develop CIDNet, a Chromaticity-Intensity Decomposition unfolding network within a dual-camera CASSI system. CIDNet integrates a hybrid spatial-spectral Transformer tailored to reconstruct fine-grained and sparse spectral chromaticity and a degradation-aware, spatially-adaptive noise estimation module that captures anisotropic noise across iterative stages. Extensive experiments on both synthetic and real-world CASSI datasets demonstrate that our method achieves superior performance in both spectral and chromaticity fidelity. Code and models will be publicly available.
♻ ☆ Predicting Camera Pose from Perspective Descriptions for Spatial Reasoning
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
♻ ☆ T$^3$-S2S: Training-free Triplet Tuning for Sketch to Scene Synthesis in Controllable Concept Art Generation
2D concept art generation for 3D scenes is a crucial yet challenging task in computer graphics, as creating natural intuitive environments still demands extensive manual effort in concept design. While generative AI has simplified 2D concept design via text-to-image synthesis, it struggles with complex multi-instance scenes and offers limited support for structured terrain layout. In this paper, we propose a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism. This scheme revitalizes the ControlNet model for detailed multi-instance generation via three key modules: Prompt Balance ensures keyword representation and minimizes the risk of missing critical instances; Characteristic Priority emphasizes sketch-based features by highlighting TopK indices in feature channels; and Dense Tuning refines contour details within instance-related regions of the attention map. Leveraging the controllability of T3-S2S, we also introduce a feature-sharing strategy with dual prompt sets to generate layer-aware isometric and terrain-view representations for the terrain layout. Experiments show that our sketch-to-scene workflow consistently produces multi-instance 2D scenes with details aligned with input prompts.
comment: https://openreview.net/forum?id=lyn2BgKQ8F
♻ ☆ A Comparative Study of 3D Person Detection: Sensor Modalities and Robustness in Diverse Indoor and Outdoor Environments
Accurate 3D person detection is critical for safety in applications such as robotics, industrial monitoring, and surveillance. This work presents a systematic evaluation of 3D person detection using camera-only, LiDAR-only, and camera-LiDAR fusion. While most existing research focuses on autonomous driving, we explore detection performance and robustness in diverse indoor and outdoor scenes using the JRDB dataset. We compare three representative models - BEVDepth (camera), PointPillars (LiDAR), and DAL (camera-LiDAR fusion) - and analyze their behavior under varying occlusion and distance levels. Our results show that the fusion-based approach consistently outperforms single-modality models, particularly in challenging scenarios. We further investigate robustness against sensor corruptions and misalignments, revealing that while DAL offers improved resilience, it remains sensitive to sensor misalignment and certain LiDAR-based corruptions. In contrast, the camera-based BEVDepth model showed the lowest performance and was most affected by occlusion, distance, and noise. Our findings highlight the importance of utilizing sensor fusion for enhanced 3D person detection, while also underscoring the need for ongoing research to address the vulnerabilities inherent in these systems.
comment: Accepted for VISAPP 2026
♻ ☆ Sketch2Scene: Automatic Generation of Interactive 3D Game Scenes from User's Casual Sketches
3D Content Generation is at the heart of many computer graphics applications, including video gaming, film-making, virtual and augmented reality, etc. This paper proposes a novel deep-learning based approach for automatically generating interactive and playable 3D game scenes, all from the user's casual prompts such as a hand-drawn sketch. Sketch-based input offers a natural, and convenient way to convey the user's design intention in the content creation process. To circumvent the data-deficient challenge in learning (i.e. the lack of large training data of 3D scenes), our method leverages a pre-trained 2D denoising diffusion model to generate a 2D image of the scene as the conceptual guidance. In this process, we adopt the isometric projection mode to factor out unknown camera poses while obtaining the scene layout. From the generated isometric image, we use a pre-trained image understanding method to segment the image into meaningful parts, such as off-ground objects, trees, and buildings, and extract the 2D scene layout. These segments and layouts are subsequently fed into a procedural content generation (PCG) engine, such as a 3D video game engine like Unity or Unreal, to create the 3D scene. The resulting 3D scene can be seamlessly integrated into a game development environment and is readily playable. Extensive tests demonstrate that our method can efficiently generate high-quality and interactive 3D game scenes with layouts that closely follow the user's intention.
comment: Project Page: https://xrvisionlabs.github.io/Sketch2Scene/ Code: https://github.com/Tencent/Triplet_Tuning
♻ ☆ SoliReward: Mitigating Susceptibility to Reward Hacking and Annotation Noise in Video Generation Reward Models
Post-training alignment of video generation models with human preferences is a critical goal. Developing effective Reward Models (RMs) for this process faces significant methodological hurdles. Current data collection paradigms, reliant on in-prompt pairwise annotations, suffer from labeling noise. Concurrently, the architectural design of VLM-based RMs, particularly their output mechanisms, remains underexplored. Furthermore, RM is susceptible to reward hacking in post-training. To mitigate these limitations, we propose SoliReward, a systematic framework for video RM training. Our framework first sources high-quality, cost-efficient data via single-item binary annotations, then constructs preference pairs using a cross-prompt pairing strategy. Architecturally, we employ a Hierarchical Progressive Query Attention mechanism to enhance feature aggregation. Finally, we introduce a modified BT loss that explicitly accommodates win-tie scenarios. This approach regularizes the RM's score distribution for positive samples, providing more nuanced preference signals to alleviate over-focus on a small number of top-scoring samples. Our approach is validated on benchmarks evaluating physical plausibility, subject deformity, and semantic alignment, demonstrating improvements in direct RM evaluation metrics and in the efficacy of post-training on video generation models. Code and benchmark are available at https://github.com/lian700/SoliReward
comment: 16 pages, 9 figures
♻ ☆ Multi-Sensor Attention Networks for Automated Subsurface Delamination Detection in Concrete Bridge Decks
Subsurface delaminations in concrete bridge decks remain undetectable through conventional visual inspection, necessitating automated non-destructive evaluation methods. This work introduces a deep learning framework that integrates Ground Penetrating Radar (GPR) and Infrared Thermography (IRT) through hierarchical attention mechanisms. Our architecture employs temporal self-attention to process GPR electromagnetic signals, spatial attention to analyze thermal imagery, and cross-modal attention with learnable embeddings to model inter-sensor correspondences. We integrate Monte Carlo dropout-based uncertainty quantification, decomposing prediction confidence into model uncertainty and data-driven uncertainty components. Testing across five real-world bridge datasets from the SDNET2021 benchmark reveals that our approach delivers substantial performance gains over single-sensor and concatenation-based baselines when applied to balanced or moderately imbalanced data distributions. Comprehensive ablation analysis confirms that cross-modal attention mechanisms contribute meaningful improvements beyond unimodal attention alone. Critically, we identify and characterize specific failure modes: under extreme class imbalance, attention-based architectures demonstrate susceptibility to majority class bias, indicating scenarios where simpler architectural choices may prove more robust. Our findings equip practitioners with empirically-grounded criteria for selecting appropriate fusion strategies based on dataset characteristics, rather than promoting universal architectural superiority.
♻ ☆ Probing Perceptual Constancy in Large Vision-Language Models
Perceptual constancy is the ability to maintain stable perceptions of objects despite changes in sensory input, such as variations in distance, angle, or lighting. This ability is crucial for visual understanding in a dynamic world. Here, we explored such ability in current Vision Language Models (VLMs). In this study, we evaluated 155 VLMs using 236 experiments across three domains: color, size, and shape constancy. The experiments included single-image and video adaptations of classic cognitive tasks, along with novel tasks in in-the-wild conditions. We found significant variability in VLM performance across these domains, with model performance in shape constancy clearly dissociated from that of color and size constancy.
comment: Under Review
♻ ☆ Causal Forcing: Autoregressive Diffusion Distillation Done Right for High-Quality Real-Time Interactive Video Generation
To achieve real-time interactive video generation, current methods distill pretrained bidirectional video diffusion models into few-step autoregressive (AR) models, facing an architectural gap when full attention is replaced by causal attention. However, existing approaches do not bridge this gap theoretically. They initialize the AR student via ODE distillation, which requires frame-level injectivity, where each noisy frame must map to a unique clean frame under the PF-ODE of an AR teacher. Distilling an AR student from a bidirectional teacher violates this condition, preventing recovery of the teacher's flow map and instead inducing a conditional-expectation solution, which degrades performance. To address this issue, we propose Causal Forcing that uses an AR teacher for ODE initialization, thereby bridging the architectural gap. Empirical results show that our method outperforms all baselines across all metrics, surpassing the SOTA Self Forcing by 19.3\% in Dynamic Degree, 8.7\% in VisionReward, and 16.7\% in Instruction Following. Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
comment: Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
♻ ☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
comment: https://github.com/chen-si-jia/DRMOT
♻ ☆ Multimodal Iterative RAG for Knowledge-Intensive Visual Question Answering
Knowledge-intensive visual question answering (VQA) requires external knowledge beyond image content, demanding precise visual grounding and coherent integration of visual and textual information. Although multimodal retrieval-augmented generation has achieved notable advances by incorporating external knowledge bases, existing approaches largely adopt single-pass frameworks that often fail to acquire sufficient knowledge and lack mechanisms to revise misdirected reasoning. We propose PMSR (Progressive Multimodal Search and Reasoning), a framework that progressively constructs a structured reasoning trajectory to enhance both knowledge acquisition and synthesis. PMSR uses dual-scope queries conditioned on both the latest record and the trajectory to retrieve diverse knowledge from heterogeneous knowledge bases. The retrieved evidence is then synthesized into compact records via compositional reasoning. This design facilitates controlled iterative refinement, which supports more stable reasoning trajectories with reduced error propagation. Extensive experiments across six diverse benchmarks (Encyclopedic-VQA, InfoSeek, MMSearch, LiveVQA, FVQA, and OK-VQA) demonstrate that PMSR consistently improves both retrieval recall and end-to-end answer accuracy.
♻ ☆ Enhancing Features in Long-tailed Data Using Large Vision Model
Language-based foundation models, such as large language models (LLMs) or large vision-language models (LVLMs), have been widely studied in long-tailed recognition. However, the need for linguistic data is not applicable to all practical tasks. In this study, we aim to explore using large vision models (LVMs) or visual foundation models (VFMs) to enhance long-tailed data features without any language information. Specifically, we extract features from the LVM and fuse them with features in the baseline network's map and latent space to obtain the augmented features. Moreover, we design several prototype-based losses in the latent space to further exploit the potential of the augmented features. In the experimental section, we validate our approach on two benchmark datasets: ImageNet-LT and iNaturalist2018.
♻ ☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code will be made publicly available soon.
comment: 17 pages, 7 figures; cvpr2026 submission
♻ ☆ DiMo: Discrete Diffusion Modeling for Motion Generation and Understanding
Prior masked modeling motion generation methods predominantly study text-to-motion. We present DiMo, a discrete diffusion-style framework, which extends masked modeling to bidirectional text--motion understanding and generation. Unlike GPT-style autoregressive approaches that tokenize motion and decode sequentially, DiMo performs iterative masked token refinement, unifying Text-to-Motion (T2M), Motion-to-Text (M2T), and text-free Motion-to-Motion (M2M) within a single model. This decoding paradigm naturally enables a quality-latency trade-off at inference via the number of refinement steps. We further improve motion token fidelity with residual vector quantization (RVQ) and enhance alignment and controllability with Group Relative Policy Optimization (GRPO). Experiments on HumanML3D and KIT-ML show strong motion quality and competitive bidirectional understanding under a unified framework. In addition, we demonstrate model ability in text-free motion completion, text-guided motion prediction and motion caption correction without architectural change. Additional qualitative results are available on our project page: https://animotionlab.github.io/DiMo/.
♻ ☆ Extreme Weather Nowcasting via Local Precipitation Pattern Prediction
Accurate forecasting of extreme weather events such as heavy rainfall or storms is critical for risk management and disaster mitigation. Although high-resolution radar observations have spurred extensive research on nowcasting models, precipitation nowcasting remains particularly challenging due to pronounced spatial locality, intricate fine-scale rainfall structures, and variability in forecasting horizons. While recent diffusion-based generative ensembles show promising results, they are computationally expensive and unsuitable for real-time applications. In contrast, deterministic models are computationally efficient but remain biased toward normal rainfall. Furthermore, the benchmark datasets commonly used in prior studies are themselves skewed--either dominated by ordinary rainfall events or restricted to extreme rainfall episodes--thereby hindering general applicability in real-world settings. In this paper, we propose exPreCast, an efficient deterministic framework for generating finely detailed radar forecasts, and introduce a newly constructed balanced radar dataset from the Korea Meteorological Administration (KMA), which encompasses both ordinary precipitation and extreme events. Our model integrates local spatiotemporal attention, a texture-preserving cubic dual upsampling decoder, and a temporal extractor to flexibly adjust forecasting horizons. Experiments on established benchmarks (SEVIR and MeteoNet) as well as on the balanced KMA dataset demonstrate that our approach achieves state-of-the-art performance, delivering accurate and reliable nowcasts across both normal and extreme rainfall regimes.
comment: 10pages, 20 figures, The Fourteenth International Conference on Learning Representations, see https://github.com/tony890048/exPreCast
♻ ☆ Adaptive Rank, Reduced Forgetting: Continual Learning with Dynamic Rank-Selective LoRA
Continual learning (CL) aims to accumulate knowledge from sequential tasks without catastrophic forgetting. Vision-language models such as CLIP, with strong generalization, are widely used for CL. Existing methods often adapt isolated PTM components, increasing inference complexity and limiting model improvement, or rely on replay, stored data, or assumptions, leading to high costs and limited applicability. To advance models as continual learners, we explore CL through natural and efficient PTM updates rather than complex task-specific additions. We study continual low-rank learning and analyze how LoRA ranks and placements affect learning and forgetting. A higher-rank LoRA improves task learning (plasticity) but increases forgetting, while a lower-rank LoRA enhances stability but limits adaptation. We observe a plasticity-stability balance tied to rank across parameters and tasks, with moderately small ranks maximizing CL benefits. Motivated by this, we propose Continual Dynamic Rank-Selective LoRA (CoDyRA), which continually updates PTMs with LoRA adapters of adaptively optimized ranks. The new-task objective drives learning, while sparsity-promoting regularization minimizes ranks to reduce interference and forgetting, achieving a balance tailored to each parameter and task. Although all parameters are updated, the minimized ranks keep the model close to its prior state while enabling effective new-task learning. CoDyRA performs efficient CL as a sequence of LoRA-based updates without storing past data or relying on assumptions, preserving the original model architecture and adding no inference overhead. Experiments show CoDyRA improves new representations while retaining old knowledge, achieving state-of-the-art results. Code is available at https://github.com/jeff024/codyra.
comment: Preprint
♻ ☆ FloodDiffusion: Tailored Diffusion Forcing for Streaming Motion Generation
We present FloodDiffusion, a new framework for text-driven, streaming human motion generation. Given time-varying text prompts, FloodDiffusion generates text-aligned, seamless motion sequences with real-time latency. Unlike existing methods that rely on chunk-by-chunk or auto-regressive model with diffusion head, we adopt a diffusion forcing framework to model this time-series generation task under time-varying control events. We find that a straightforward implementation of vanilla diffusion forcing (as proposed for video models) fails to model real motion distributions. We demonstrate that to guarantee modeling the output distribution, the vanilla diffusion forcing must be tailored to: (i) train with a bi-directional attention instead of casual attention; (ii) implement a lower triangular time scheduler instead of a random one; (iii) utilize a continues time-varying way to introduce text conditioning. With these improvements, we demonstrate in the first time that the diffusion forcing-based framework achieves state-of-the-art performance on the streaming motion generation task, reaching an FID of 0.057 on the HumanML3D benchmark. Models, code, and weights are available. https://shandaai.github.io/FloodDiffusion/
comment: 15 pages, 7 figures
♻ ☆ Adaptive Attention Distillation for Robust Few-Shot Segmentation under Environmental Perturbations
Few-shot segmentation (FSS) aims to rapidly learn novel class concepts from limited examples to segment specific targets in unseen images, and has been widely applied in areas such as medical diagnosis and industrial inspection. However, existing studies largely overlook the complex environmental factors encountered in real world scenarios-such as illumination, background, and camera viewpoint-which can substantially increase the difficulty of test images. As a result, models trained under laboratory conditions often fall short of practical deployment requirements. To bridge this gap, in this paper, an environment-robust FSS setting is introduced that explicitly incorporates challenging test cases arising from complex environments-such as motion blur, small objects, and camouflaged targets-to enhance model's robustness under realistic, dynamic conditions. An environment robust FSS benchmark (ER-FSS) is established, covering eight datasets across multiple real world scenarios. In addition, an Adaptive Attention Distillation (AAD) method is proposed, which repeatedly contrasts and distills key shared semantics between known (support) and unknown (query) images to derive class-specific attention for novel categories. This strengthens the model's ability to focus on the correct targets in complex environments, thereby improving environmental robustness. Comparative experiments show that AAD improves mIoU by 3.3% - 8.5% across all datasets and settings, demonstrating superior performance and strong generalization. The source code and dataset are available at: https://github.com/guoqianyu-alberta/Adaptive-Attention-Distillation-for-FSS.
comment: 12 pages, 5 figures
♻ ☆ Robust Detection of Retinal Neovascularization in Widefield Optical Coherence Tomography
Retinal neovascularization (RNV) is a vision threatening development in diabetic retinopathy (DR). Vision loss associated with RNV is preventable with timely intervention, making RNV clinical screening and monitoring a priority. Optical coherence tomography (OCT) angiography (OCTA) provides high-resolution imaging and high-sensitivity detection of RNV lesions. With recent commercial devices introducing widefield OCTA imaging to the clinic, the technology stands to improve early detection of RNV pathology. However, to meet clinical requirements these imaging capabilities must be combined with effective RNV detection and quantification, but existing algorithms for OCTA images are optimized for conventional, i.e. narrow, fields of view. Here, we present a novel approach for RNV diagnosis and staging on widefield OCT/OCTA. Unlike conventional methods dependent on multi-layer retinal segmentation, our model reframes RNV identification as a direct binary localization task. Our fully automated approach was trained and validated on 589 widefield scans (17x17-mm to 26x21-mm) collected from multiple devices at multiple clinics. Our method achieved a device-dependent area under curve (AUC) ranging from 0.96 to 0.99 for RNV diagnosis, and mean intersection over union (IOU) ranging from 0.76 to 0.88 for segmentation. We also demonstrate our method's ability to monitor lesion growth longitudinally. Our results indicate that deep learning-based analysis for widefield OCTA images could offer a valuable means for improving RNV screening and management.
comment: 21 pages, 12 figures. Submitted to Optica. Corresponding author: Yali Jia
♻ ☆ Preserving Spectral Structure and Statistics in Diffusion Models
Standard diffusion models (DMs) rely on the total destruction of data into non-informative white noise, forcing the backward process to denoise from a fully unstructured noise state. While ensuring diversity, this results in a cumbersome and computationally intensive image generation task. We address this challenge by proposing new forward and backward process within a mathematically tractable spectral space. Unlike pixel-based DMs, our forward process converges towards an informative Gaussian prior N(mu_hat,Sigma_hat) rather than white noise. Our method, termed Preserving Spectral Structure and Statistics (PreSS) in diffusion models, guides spectral components toward this informative prior while ensuring that corresponding structural signals remain intact at terminal time. This provides a principled starting point for the backward process, enabling high-quality image reconstruction that builds upon preserved spectral structure while maintaining high generative diversity. Experimental results on CIFAR-10, CelebA and CelebA-HQ demonstrate significant reductions in computational complexity, improved visual diversity, less drift, and a smoother diffusion process compared to pixel-based DMs.
Artificial Intelligence 210
☆ Learning a Generative Meta-Model of LLM Activations
Existing approaches for analyzing neural network activations, such as PCA and sparse autoencoders, rely on strong structural assumptions. Generative models offer an alternative: they can uncover structure without such assumptions and act as priors that improve intervention fidelity. We explore this direction by training diffusion models on one billion residual stream activations, creating "meta-models" that learn the distribution of a network's internal states. We find that diffusion loss decreases smoothly with compute and reliably predicts downstream utility. In particular, applying the meta-model's learned prior to steering interventions improves fluency, with larger gains as loss decreases. Moreover, the meta-model's neurons increasingly isolate concepts into individual units, with sparse probing scores that scale as loss decreases. These results suggest generative meta-models offer a scalable path toward interpretability without restrictive structural assumptions. Project page: https://generative-latent-prior.github.io.
☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Agentic Uncertainty Reveals Agentic Overconfidence
Can AI agents predict whether they will succeed at a task? We study agentic uncertainty by eliciting success probability estimates before, during, and after task execution. All results exhibit agentic overconfidence: some agents that succeed only 22% of the time predict 77% success. Counterintuitively, pre-execution assessment with strictly less information tends to yield better discrimination than standard post-execution review, though differences are not always significant. Adversarial prompting reframing assessment as bug-finding achieves the best calibration.
☆ Optimal Turkish Subword Strategies at Scale: Systematic Evaluation of Data, Vocabulary, Morphology Interplay
Tokenization is a pivotal design choice for neural language modeling in morphologically rich languages (MRLs) such as Turkish, where productive agglutination challenges both vocabulary efficiency and morphological fidelity. Prior studies have explored tokenizer families and vocabulary sizes but typically (i) vary vocabulary without systematically controlling the tokenizer's training corpus, (ii) provide limited intrinsic diagnostics, and (iii) evaluate a narrow slice of downstream tasks. We present the first comprehensive, principled study of Turkish subword tokenization; a "subwords manifest", that jointly varies vocabulary size and tokenizer training corpus size (data and vocabulary coupling), compares multiple tokenizer families under matched parameter budgets (WordPiece, morphology level, and character baselines), and evaluates across semantic (NLI, STS, sentiment analysis, NER), syntactic (POS, dependency parsing), and morphology-sensitive probes. To explain why tokenizers succeed or fail, we introduce a morphology-aware diagnostic toolkit that goes beyond coarse aggregates to boundary-level micro/macro F1, decoupled lemma atomicity vs. surface boundary hits, over/under-segmentation indices, character/word edit distances (CER/WER), continuation rates, and affix-type coverage and token-level atomicity. Our contributions are fourfold: (i) a systematic investigation of the vocabulary-corpus-success triad; (ii) a unified, morphology-aware evaluation framework linking intrinsic diagnostics to extrinsic outcomes; (iii) controlled comparisons identifying when character-level and morphology-level tokenization pay off; and (iv) an open-source release of evaluation code, tokenizer pipelines, and models. As the first work of its kind, this "subwords manifest" delivers actionable guidance for building effective tokenizers in MRLs and establishes a reproducible foundation for future research.
comment: Submitted to Cambridge NLP journal, all rights belong to them
☆ Endogenous Resistance to Activation Steering in Language Models
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
☆ Cochain Perspectives on Temporal-Difference Signals for Learning Beyond Markov Dynamics
Non-Markovian dynamics are commonly found in real-world environments due to long-range dependencies, partial observability, and memory effects. The Bellman equation that is the central pillar of Reinforcement learning (RL) becomes only approximately valid under Non-Markovian. Existing work often focus on practical algorithm designs and offer limited theoretical treatment to address key questions, such as what dynamics are indeed capturable by the Bellman framework and how to inspire new algorithm classes with optimal approximations. In this paper, we present a novel topological viewpoint on temporal-difference (TD) based RL. We show that TD errors can be viewed as 1-cochain in the topological space of state transitions, while Markov dynamics are then interpreted as topological integrability. This novel view enables us to obtain a Hodge-type decomposition of TD errors into an integrable component and a topological residual, through a Bellman-de Rham projection. We further propose HodgeFlow Policy Search (HFPS) by fitting a potential network to minimize the non-integrable projection residual in RL, achieving stability/sensitivity guarantees. In numerical evaluations, HFPS is shown to significantly improve RL performance under non-Markovian.
☆ Implementing Grassroots Logic Programs with Multiagent Transition Systems and AI
Grassroots Logic Programs (GLP) is a concurrent logic programming language with variables partitioned into paired \emph{readers} and \emph{writers}, conjuring both linear logic and futures/promises: an assignment is produced at most once via the sole occurrence of a writer (promise) and consumed at most once via the sole occurrence of its paired reader (future), and may contain additional readers and/or writers, enabling the concise expression of rich multidirectional communication modalities. GLP was designed as a language for grassroots platforms -- distributed systems with multiple instances that can operate independently of each other and of any global resource, and can coalesce into ever larger instances -- with its target architecture being smartphones communicating peer-to-peer. The operational semantics of Concurrent (single-agent) GLP and of multiagent GLP (maGLP) were defined via transition systems/multiagent transition systems, respectively. Here, we describe the mathematics developed to facilitate the workstation- and smartphone-based implementations of GLP by AI in Dart. We developed dGLP -- implementation-ready deterministic operational semantics for single-agent GLP -- and proved it correct with respect to the Concurrent GLP operational semantics; dGLP was used by AI as a formal spec, from which it developed a workstation-based implementation of GLP. We developed madGLP -- an implementation-ready multiagent operational semantics for maGLP -- and proved it correct with respect to the maGLP operational semantics; madGLP is deterministic at the agent level (not at the system level due to communication asynchrony), and is being used by AI as a formal spec from which it develops a smartphone-based implementation of maGLP.
☆ From Kepler to Newton: Inductive Biases Guide Learned World Models in Transformers
Can general-purpose AI architectures go beyond prediction to discover the physical laws governing the universe? True intelligence relies on "world models" -- causal abstractions that allow an agent to not only predict future states but understand the underlying governing dynamics. While previous "AI Physicist" approaches have successfully recovered such laws, they typically rely on strong, domain-specific priors that effectively "bake in" the physics. Conversely, Vafa et al. recently showed that generic Transformers fail to acquire these world models, achieving high predictive accuracy without capturing the underlying physical laws. We bridge this gap by systematically introducing three minimal inductive biases. We show that ensuring spatial smoothness (by formulating prediction as continuous regression) and stability (by training with noisy contexts to mitigate error accumulation) enables generic Transformers to surpass prior failures and learn a coherent Keplerian world model, successfully fitting ellipses to planetary trajectories. However, true physical insight requires a third bias: temporal locality. By restricting the attention window to the immediate past -- imposing the simple assumption that future states depend only on the local state rather than a complex history -- we force the model to abandon curve-fitting and discover Newtonian force representations. Our results demonstrate that simple architectural choices determine whether an AI becomes a curve-fitter or a physicist, marking a critical step toward automated scientific discovery.
☆ Halluverse-M^3: A multitask multilingual benchmark for hallucination in LLMs
Hallucinations in large language models remain a persistent challenge, particularly in multilingual and generative settings where factual consistency is difficult to maintain. While recent models show strong performance on English-centric benchmarks, their behavior across languages, tasks, and hallucination types is not yet well understood. In this work, we introduce Halluverse-M^3, a dataset designed to enable systematic analysis of hallucinations across multiple languages, multiple generation tasks, and multiple hallucination categories. Halluverse-M^3 covers four languages, English, Arabic, Hindi, and Turkish, and supports two generation tasks: question answering and dialogue summarization. The dataset explicitly distinguishes between entity-level, relation-level, and sentence-level hallucinations. Hallucinated outputs are constructed through a controlled editing process and validated by human annotators, ensuring clear alignment between original content and hallucinated generations. Using this dataset, we evaluate a diverse set of contemporary open-source and proprietary language models on fine-grained hallucination detection. Our results show that question answering is consistently easier than dialogue summarization, while sentence-level hallucinations remain challenging even for the strongest models. Performance is highest in English and degrades in lower-resource languages, with Hindi exhibiting the lowest detection accuracy. Overall, Halluverse-M^3 provides a realistic and challenging benchmark for studying hallucinations in multilingual, multi-task settings. We release the dataset to support future research on hallucination detection and mitigation\footnote{https://huggingface.co/datasets/sabdalja/HalluVerse-M3}.
☆ PANC: Prior-Aware Normalized Cut for Object Segmentation
Fully unsupervised segmentation pipelines naively seek the most salient object, should this be present. As a result, most of the methods reported in the literature deliver non-deterministic partitions that are sensitive to initialization, seed order, and threshold heuristics. We propose PANC, a weakly supervised spectral segmentation framework that uses a minimal set of annotated visual tokens to produce stable, controllable, and reproducible object masks. From the TokenCut approach, we augment the token-token affinity graph with a handful of priors coupled to anchor nodes. By manipulating the graph topology, we bias the spectral eigenspace toward partitions that are consistent with the annotations. Our approach preserves the global grouping enforced by dense self-supervised visual features, trading annotated tokens for significant gains in reproducibility, user control, and segmentation quality. Using 5 to 30 annotations per dataset, our training-free method achieves state-of-the-art performance among weakly and unsupervised approaches on standard benchmarks (e.g., DUTS-TE, ECSSD, MS COCO). Contrarily, it excels in domains where dense labels are costly or intra-class differences are subtle. We report strong and reliable results on homogeneous, fine-grained, and texture-limited domains, achieving 96.8% (+14.43% over SotA), 78.0% (+0.2%), and 78.8% (+0.37%) average mean intersection-over-union (mIoU) on CrackForest (CFD), CUB-200-2011, and HAM10000 datasets, respectively. For multi-object benchmarks, the framework showcases explicit, user-controllable semantic segmentation.
☆ TamperBench: Systematically Stress-Testing LLM Safety Under Fine-Tuning and Tampering
As increasingly capable open-weight large language models (LLMs) are deployed, improving their tamper resistance against unsafe modifications, whether accidental or intentional, becomes critical to minimize risks. However, there is no standard approach to evaluate tamper resistance. Varied data sets, metrics, and tampering configurations make it difficult to compare safety, utility, and robustness across different models and defenses. To this end, we introduce TamperBench, the first unified framework to systematically evaluate the tamper resistance of LLMs. TamperBench (i) curates a repository of state-of-the-art weight-space fine-tuning attacks and latent-space representation attacks; (ii) enables realistic adversarial evaluation through systematic hyperparameter sweeps per attack-model pair; and (iii) provides both safety and utility evaluations. TamperBench requires minimal additional code to specify any fine-tuning configuration, alignment-stage defense method, and metric suite while ensuring end-to-end reproducibility. We use TamperBench to evaluate 21 open-weight LLMs, including defense-augmented variants, across nine tampering threats using standardized safety and capability metrics with hyperparameter sweeps per model-attack pair. This yields novel insights, including effects of post-training on tamper resistance, that jailbreak-tuning is typically the most severe attack, and that Triplet emerges as a leading alignment-stage defense. Code is available at: https://github.com/criticalml-uw/TamperBench
comment: 28 pages, 13 figures
☆ Supercharging Simulation-Based Inference for Bayesian Optimal Experimental Design
Bayesian optimal experimental design (BOED) seeks to maximize the expected information gain (EIG) of experiments. This requires a likelihood estimate, which in many settings is intractable. Simulation-based inference (SBI) provides powerful tools for this regime. However, existing work explicitly connecting SBI and BOED is restricted to a single contrastive EIG bound. We show that the EIG admits multiple formulations which can directly leverage modern SBI density estimators, encompassing neural posterior, likelihood, and ratio estimation. Building on this perspective, we define a novel EIG estimator using neural likelihood estimation. Further, we identify optimization as a key bottleneck of gradient based EIG maximization and show that a simple multi-start parallel gradient ascent procedure can substantially improve reliability and performance. With these innovations, our SBI-based BOED methods are able to match or outperform by up to $22\%$ existing state-of-the-art approaches across standard BOED benchmarks.
☆ NanoFLUX: Distillation-Driven Compression of Large Text-to-Image Generation Models for Mobile Devices
While large-scale text-to-image diffusion models continue to improve in visual quality, their increasing scale has widened the gap between state-of-the-art models and on-device solutions. To address this gap, we introduce NanoFLUX, a 2.4B text-to-image flow-matching model distilled from 17B FLUX.1-Schnell using a progressive compression pipeline designed to preserve generation quality. Our contributions include: (1) A model compression strategy driven by pruning redundant components in the diffusion transformer, reducing its size from 12B to 2B; (2) A ResNet-based token downsampling mechanism that reduces latency by allowing intermediate blocks to operate on lower-resolution tokens while preserving high-resolution processing elsewhere; (3) A novel text encoder distillation approach that leverages visual signals from early layers of the denoiser during sampling. Empirically, NanoFLUX generates 512 x 512 images in approximately 2.5 seconds on mobile devices, demonstrating the feasibility of high-quality on-device text-to-image generation.
☆ TraceCoder: A Trace-Driven Multi-Agent Framework for Automated Debugging of LLM-Generated Code
Large Language Models (LLMs) often generate code with subtle but critical bugs, especially for complex tasks. Existing automated repair methods typically rely on superficial pass/fail signals, offering limited visibility into program behavior and hindering precise error localization. In addition, without a way to learn from prior failures, repair processes often fall into repetitive and inefficient cycles. To overcome these challenges, we present TraceCoder, a collaborative multi-agent framework that emulates the observe-analyze-repair process of human experts. The framework first instruments the code with diagnostic probes to capture fine-grained runtime traces, enabling deep insight into its internal execution. It then conducts causal analysis on these traces to accurately identify the root cause of the failure. This process is further enhanced by a novel Historical Lesson Learning Mechanism (HLLM), which distills insights from prior failed repair attempts to inform subsequent correction strategies and prevent recurrence of similar mistakes. To ensure stable convergence, a Rollback Mechanism enforces that each repair iteration constitutes a strict improvement toward the correct solution. Comprehensive experiments across multiple benchmarks show that TraceCoder achieves up to a 34.43\% relative improvement in Pass@1 accuracy over existing advanced baselines. Ablation studies verify the significance of each system component, with the iterative repair process alone contributing a 65.61\% relative gain in accuracy. Furthermore, TraceCoder significantly outperforms leading iterative methods in terms of both accuracy and cost-efficiency.
☆ Git for Sketches: An Intelligent Tracking System for Capturing Design Evolution
During product conceptualization, capturing the non-linear history and cognitive intent is crucial. Traditional sketching tools often lose this context. We introduce DIMES (Design Idea Management and Evolution capture System), a web-based environment featuring sGIT (SketchGit), a custom visual version control architecture, and Generative AI. sGIT includes AEGIS, a module using hybrid Deep Learning and Machine Learning models to classify six stroke types. The system maps Git primitives to design actions, enabling implicit branching and multi-modal commits (stroke data + voice intent). In a comparative study, experts using DIMES demonstrated a 160% increase in breadth of concept exploration. Generative AI modules generated narrative summaries that enhanced knowledge transfer; novices achieved higher replication fidelity (Neural Transparency-based Cosine Similarity: 0.97 vs. 0.73) compared to manual summaries. AI-generated renderings also received higher user acceptance (Purchase Likelihood: 4.2 vs 3.1). This work demonstrates that intelligent version control bridges creative action and cognitive documentation, offering a new paradigm for design education.
comment: 49 pages, 25 figures
☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
☆ AIRS-Bench: a Suite of Tasks for Frontier AI Research Science Agents
LLM agents hold significant promise for advancing scientific research. To accelerate this progress, we introduce AIRS-Bench (the AI Research Science Benchmark), a suite of 20 tasks sourced from state-of-the-art machine learning papers. These tasks span diverse domains, including language modeling, mathematics, bioinformatics, and time series forecasting. AIRS-Bench tasks assess agentic capabilities over the full research lifecycle -- including idea generation, experiment analysis and iterative refinement -- without providing baseline code. The AIRS-Bench task format is versatile, enabling easy integration of new tasks and rigorous comparison across different agentic frameworks. We establish baselines using frontier models paired with both sequential and parallel scaffolds. Our results show that agents exceed human SOTA in four tasks but fail to match it in sixteen others. Even when agents surpass human benchmarks, they do not reach the theoretical performance ceiling for the underlying tasks. These findings indicate that AIRS-Bench is far from saturated and offers substantial room for improvement. We open-source the AIRS-Bench task definitions and evaluation code to catalyze further development in autonomous scientific research.
comment: 49 pages, 14 figures, 10 tables
☆ The Quantum Sieve Tracer: A Hybrid Framework for Layer-Wise Activation Tracing in Large Language Models
Mechanistic interpretability aims to reverse-engineer the internal computations of Large Language Models (LLMs), yet separating sparse semantic signals from high-dimensional polysemantic noise remains a significant challenge. This paper introduces the Quantum Sieve Tracer, a hybrid quantum-classical framework designed to characterize factual recall circuits. We implement a modular pipeline that first localizes critical layers using classical causal tracing, then maps specific attention head activations into an exponentially large quantum Hilbert space. Using open-weight models (Meta Llama-3.2-1B and Alibaba Qwen2.5-1.5B-Instruct), we perform a two-stage analysis that reveals a fundamental architectural divergence. While Qwen's layer 7 circuit functions as a classic Recall Hub, we discover that Llama's layer 9 acts as an Interference Suppression circuit, where ablating the identified heads paradoxically improves factual recall. Our results demonstrate that quantum kernels can distinguish between these constructive (recall) and reductive (suppression) mechanisms, offering a high-resolution tool for analyzing the fine-grained topology of attention.
comment: 4 pages, 4 figures
☆ Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping
While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0$\times$ inference speedup and a 5.1$\times$ VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.
☆ The Representational Geometry of Number
A central question in cognitive science is whether conceptual representations converge onto a shared manifold to support generalization, or diverge into orthogonal subspaces to minimize task interference. While prior work has discovered evidence for both, a mechanistic account of how these properties coexist and transform across tasks remains elusive. We propose that representational sharing lies not in the concepts themselves, but in the geometric relations between them. Using number concepts as a testbed and language models as high-dimensional computational substrates, we show that number representations preserve a stable relational structure across tasks. Task-specific representations are embedded in distinct subspaces, with low-level features like magnitude and parity encoded along separable linear directions. Crucially, we find that these subspaces are largely transformable into one another via linear mappings, indicating that representations share relational structure despite being located in distinct subspaces. Together, these results provide a mechanistic lens of how language models balance the shared structure of number representation with functional flexibility. It suggests that understanding arises when task-specific transformations are applied to a shared underlying relational structure of conceptual representations.
☆ From Features to Actions: Explainability in Traditional and Agentic AI Systems
Over the last decade, explainable AI has primarily focused on interpreting individual model predictions, producing post-hoc explanations that relate inputs to outputs under a fixed decision structure. Recent advances in large language models (LLMs) have enabled agentic AI systems whose behaviour unfolds over multi-step trajectories. In these settings, success and failure are determined by sequences of decisions rather than a single output. While useful, it remains unclear how explanation approaches designed for static predictions translate to agentic settings where behaviour emerges over time. In this work, we bridge the gap between static and agentic explainability by comparing attribution-based explanations with trace-based diagnostics across both settings. To make this distinction explicit, we empirically compare attribution-based explanations used in static classification tasks with trace-based diagnostics used in agentic benchmarks (TAU-bench Airline and AssistantBench). Our results show that while attribution methods achieve stable feature rankings in static settings (Spearman $ρ= 0.86$), they cannot be applied reliably to diagnose execution-level failures in agentic trajectories. In contrast, trace-grounded rubric evaluation for agentic settings consistently localizes behaviour breakdowns and reveals that state tracking inconsistency is 2.7$\times$ more prevalent in failed runs and reduces success probability by 49\%. These findings motivate a shift towards trajectory-level explainability for agentic systems when evaluating and diagnosing autonomous AI behaviour. Resources: https://github.com/VectorInstitute/unified-xai-evaluation-framework https://vectorinstitute.github.io/unified-xai-evaluation-framework
☆ An Adaptive Differentially Private Federated Learning Framework with Bi-level Optimization
Federated learning enables collaborative model training across distributed clients while preserving data privacy. However, in practical deployments, device heterogeneity, non-independent, and identically distributed (Non-IID) data often lead to highly unstable and biased gradient updates. When differential privacy is enforced, conventional fixed gradient clipping and Gaussian noise injection may further amplify gradient perturbations, resulting in training oscillation and performance degradation and degraded model performance. To address these challenges, we propose an adaptive differentially private federated learning framework that explicitly targets model efficiency under heterogeneous and privacy-constrained settings. On the client side, a lightweight local compressed module is introduced to regularize intermediate representations and constrain gradient variability, thereby mitigating noise amplification during local optimization. On the server side, an adaptive gradient clipping strategy dynamically adjusts clipping thresholds based on historical update statistics to avoid over-clipping and noise domination. Furthermore, a constraint-aware aggregation mechanism is designed to suppress unreliable or noise-dominated client updates and stabilize global optimization. Extensive experiments on CIFAR-10 and SVHN demonstrate improved convergence stability and classification accuracy.
comment: submited to a conference
☆ LLM Active Alignment: A Nash Equilibrium Perspective
We develop a game-theoretic framework for predicting and steering the behavior of populations of large language models (LLMs) through Nash equilibrium (NE) analysis. To avoid the intractability of equilibrium computation in open-ended text spaces, we model each agent's action as a mixture over human subpopulations. Agents choose actively and strategically which groups to align with, yielding an interpretable and behaviorally substantive policy class. We derive closed-form NE characterizations, adopting standard concave-utility assumptions to enable analytical system-level predictions and give explicit, actionable guidance for shifting alignment targets toward socially desirable outcomes. The method functions as an active alignment layer on top of existing alignment pipelines such as RLHF. In a social-media setting, we show that a population of LLMs, especially reasoning-based models, may exhibit political exclusion, pathologies where some subpopulations are ignored by all LLM agents, which can be avoided by our method, illustrating the promise of applying the method to regulate multi-agent LLM dynamics across domains.
☆ AEGPO: Adaptive Entropy-Guided Policy Optimization for Diffusion Models
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
☆ AI-Generated Music Detection in Broadcast Monitoring
AI music generators have advanced to the point where their outputs are often indistinguishable from human compositions. While detection methods have emerged, they are typically designed and validated in music streaming contexts with clean, full-length tracks. Broadcast audio, however, poses a different challenge: music appears as short excerpts, often masked by dominant speech, conditions under which existing detectors fail. In this work, we introduce AI-OpenBMAT, the first dataset tailored to broadcast-style AI-music detection. It contains 3,294 one-minute audio excerpts (54.9 hours) that follow the duration patterns and loudness relations of real television audio, combining human-made production music with stylistically matched continuations generated with Suno v3.5. We benchmark a CNN baseline and state-of-the-art SpectTTTra models to assess SNR and duration robustness, and evaluate on a full broadcast scenario. Across all settings, models that excel in streaming scenarios suffer substantial degradation, with F1-scores dropping below 60% when music is in the background or has a short duration. These results highlight speech masking and short music length as critical open challenges for AI music detection, and position AI-OpenBMAT as a benchmark for developing detectors capable of meeting industrial broadcast requirements.
☆ POP: Online Structural Pruning Enables Efficient Inference of Large Foundation Models
Large foundation models (LFMs) achieve strong performance through scaling, yet current structural pruning methods derive fixed pruning decisions during inference, overlooking sparsity patterns that emerge in the autoregressive token generation. In this paper, we propose POP (Partition-guided Online Pruning), an efficient online structural pruning framework that enables context-conditioned dynamic pruning with minimal computational overhead. POP partitions model channels into retained, candidate, and pruned regions, where prefilling defines a coarse pruning partition, and the decoding stage generates a fine-grained mask within the candidate region, avoiding full-channel re-evaluation. The coarse pruning partition preserves consistently important weights, while the fine-grained masking provides context-conditioned variation during decoding. Moreover, POP is a lightweight, plug-and-play method that requires no preprocessing, including offline calibration, retraining, or learning predictors. Extensive evaluations across diverse LFMs, including large language models (LLMs), mixture-of-experts models (MoEs), and vision-language models (VLMs), demonstrate that POP consistently delivers higher accuracy than existing pruning approaches while incurring smaller computational overhead and minimizing inference latency.
☆ ScaleEnv: Scaling Environment Synthesis from Scratch for Generalist Interactive Tool-Use Agent Training
Training generalist agents capable of adapting to diverse scenarios requires interactive environments for self-exploration. However, interactive environments remain critically scarce, and existing synthesis methods suffer from significant limitations regarding environmental diversity and scalability. To address these challenges, we introduce ScaleEnv, a framework that constructs fully interactive environments and verifiable tasks entirely from scratch. Specifically, ScaleEnv ensures environment reliability through procedural testing, and guarantees task completeness and solvability via tool dependency graph expansion and executable action verification. By enabling agents to learn through exploration within ScaleEnv, we demonstrate significant performance improvements on unseen, multi-turn tool-use benchmarks such as $τ^2$-Bench and VitaBench, highlighting strong generalization capabilities. Furthermore, we investigate the relationship between increasing number of domains and model generalization performance, providing empirical evidence that scaling environmental diversity is critical for robust agent learning.
☆ Bridging 6G IoT and AI: LLM-Based Efficient Approach for Physical Layer's Optimization Tasks IEEE
This paper investigates the role of large language models (LLMs) in sixth-generation (6G) Internet of Things (IoT) networks and proposes a prompt-engineering-based real-time feedback and verification (PE-RTFV) framework that perform physical-layer's optimization tasks through an iteratively process. By leveraging the naturally available closed-loop feedback inherent in wireless communication systems, PE-RTFV enables real-time physical-layer optimization without requiring model retraining. The proposed framework employs an optimization LLM (O-LLM) to generate task-specific structured prompts, which are provided to an agent LLM (A-LLM) to produce task-specific solutions. Utilizing real-time system feedback, the O-LLM iteratively refines the prompts to guide the A-LLM toward improved solutions in a gradient-descent-like optimization process. We test PE-RTFV approach on wireless-powered IoT testbed case study on user-goal-driven constellation design through semantically solving rate-energy (RE)-region optimization problem which demonstrates that PE-RTFV achieves near-genetic-algorithm performance within only a few iterations, validating its effectiveness for complex physical-layer optimization tasks in resource-constrained IoT networks.
comment: This paper is submitted to IEEE IoT Journal and is currently under review
☆ Wild Guesses and Mild Guesses in Active Concept Learning
Human concept learning is typically active: learners choose which instances to query or test in order to reduce uncertainty about an underlying rule or category. Active concept learning must balance informativeness of queries against the stability of the learner that generates and scores hypotheses. We study this trade-off in a neuro-symbolic Bayesian learner whose hypotheses are executable programs proposed by a large language model (LLM) and reweighted by Bayesian updating. We compare a Rational Active Learner that selects queries to maximize approximate expected information gain (EIG) and the human-like Positive Test Strategy (PTS) that queries instances predicted to be positive under the current best hypothesis. Across concept-learning tasks in the classic Number Game, EIG is effective when falsification is necessary (e.g., compound or exception-laden rules), but underperforms on simple concepts. We trace this failure to a support mismatch between the EIG policy and the LLM proposal distribution: highly diagnostic boundary queries drive the posterior toward regions where the generator produces invalid or overly specific programs, yielding a support-mismatch trap in the particle approximation. PTS is information-suboptimal but tends to maintain proposal validity by selecting "safe" queries, leading to faster convergence on simple rules. Our results suggest that "confirmation bias" may not be a cognitive error, but rather a rational adaptation for maintaining tractable inference in the sparse, open-ended hypothesis spaces characteristic of human thought.
☆ SuReNav: Superpixel Graph-based Constraint Relaxation for Navigation in Over-constrained Environments ICRA 2026
We address the over-constrained planning problem in semi-static environments. The planning objective is to find a best-effort solution that avoids all hard constraint regions while minimally traversing the least risky areas. Conventional methods often rely on pre-defined area costs, limiting generalizations. Further, the spatial continuity of navigation spaces makes it difficult to identify regions that are passable without overestimation. To overcome these challenges, we propose SuReNav, a superpixel graph-based constraint relaxation and navigation method that imitates human-like safe and efficient navigation. Our framework consists of three components: 1) superpixel graph map generation with regional constraints, 2) regional-constraint relaxation using graph neural network trained on human demonstrations for safe and efficient navigation, and 3) interleaving relaxation, planning, and execution for complete navigation. We evaluate our method against state-of-the-art baselines on 2D semantic maps and 3D maps from OpenStreetMap, achieving the highest human-likeness score of complete navigation while maintaining a balanced trade-off between efficiency and safety. We finally demonstrate its scalability and generalization performance in real-world urban navigation with a quadruped robot, Spot.
comment: Accepted by ICRA 2026. Code and videos are available at https://sure-nav.github.io/
☆ On the Identifiability of Steering Vectors in Large Language Models
Activation steering methods, such as persona vectors, are widely used to control large language model behavior and increasingly interpreted as revealing meaningful internal representations. This interpretation implicitly assumes steering directions are identifiable and uniquely recoverable from input-output behavior. We formalize steering as an intervention on internal representations and prove that, under realistic modeling and data conditions, steering vectors are fundamentally non-identifiable due to large equivalence classes of behaviorally indistinguishable interventions. Empirically, we validate this across multiple models and semantic traits, showing orthogonal perturbations achieve near-equivalent efficacy with negligible effect sizes. However, identifiability is recoverable under structural assumptions including statistical independence, sparsity constraints, multi-environment validation or cross-layer consistency. These findings reveal fundamental interpretability limits and clarify structural assumptions required for reliable safety-critical control.
comment: 23 pages, 4 figures, 2 tables
☆ Generating Data-Driven Reasoning Rubrics for Domain-Adaptive Reward Modeling
An impediment to using Large Language Models (LLMs) for reasoning output verification is that LLMs struggle to reliably identify errors in thinking traces, particularly in long outputs, domains requiring expert knowledge, and problems without verifiable rewards. We propose a data-driven approach to automatically construct highly granular reasoning error taxonomies to enhance LLM-driven error detection on unseen reasoning traces. Our findings indicate that classification approaches that leverage these error taxonomies, or "rubrics", demonstrate strong error identification compared to baseline methods in technical domains like coding, math, and chemical engineering. These rubrics can be used to build stronger LLM-as-judge reward functions for reasoning model training via reinforcement learning. Experimental results show that these rewards have the potential to improve models' task accuracy on difficult domains over models trained by general LLMs-as-judges by +45%, and approach performance of models trained by verifiable rewards while using as little as 20% as many gold labels. Through our approach, we extend the usage of reward rubrics from assessing qualitative model behavior to assessing quantitative model correctness on tasks typically learned via RLVR rewards. This extension opens the door for teaching models to solve complex technical problems without a full dataset of gold labels, which are often highly costly to procure.
☆ Next-generation cyberattack detection with large language models: anomaly analysis across heterogeneous logs
This project explores large language models (LLMs) for anomaly detection across heterogeneous log sources. Traditional intrusion detection systems suffer from high false positive rates, semantic blindness, and data scarcity, as logs are inherently sensitive, making clean datasets rare. We address these challenges through three contributions: (1) LogAtlas-Foundation-Sessions and LogAtlas-Defense-Set, balanced and heterogeneous log datasets with explicit attack annotations and privacy preservation; (2) empirical benchmarking revealing why standard metrics such as F1 and accuracy are misleading for security applications; and (3) a two phase training framework combining log understanding (Base-AMAN, 3B parameters) with real time detection (AMAN, 0.5B parameters via knowledge distillation). Results demonstrate practical feasibility, with inference times of 0.3-0.5 seconds per session and operational costs below 50 USD per day.
☆ Towards Understanding What State Space Models Learn About Code
State Space Models (SSMs) have emerged as an efficient alternative to the transformer architecture. Recent studies show that SSMs can match or surpass Transformers on code understanding tasks, such as code retrieval, when trained under similar conditions. However, their internal mechanisms remain a black box. We present the first systematic analysis of what SSM-based code models actually learn and perform the first comparative analysis of SSM and Transformer-based code models. Our analysis reveals that SSMs outperform Transformers at capturing code syntax and semantics in pretraining but forgets certain syntactic and semantic relations during fine-tuning on task, especially when the task emphasizes short-range dependencies. To diagnose this, we introduce SSM-Interpret, a frequency-domain framework that exposes a spectral shift toward short-range dependencies during fine-tuning. Guided by these findings, we propose architectural modifications that significantly improve the performance of SSM-based code model, validating that our analysis directly enables better models.
☆ AEGIS: Adversarial Target-Guided Retention-Data-Free Robust Concept Erasure from Diffusion Models
Concept erasure helps stop diffusion models (DMs) from generating harmful content; but current methods face robustness retention trade off. Robustness means the model fine-tuned by concept erasure methods resists reactivation of erased concepts, even under semantically related prompts. Retention means unrelated concepts are preserved so the model's overall utility stays intact. Both are critical for concept erasure in practice, yet addressing them simultaneously is challenging, as existing works typically improve one factor while sacrificing the other. Prior work typically strengthens one while degrading the other, e.g., mapping a single erased prompt to a fixed safe target leaves class level remnants exploitable by prompt attacks, whereas retention-oriented schemes underperform against adaptive adversaries. This paper introduces Adversarial Erasure with Gradient Informed Synergy (AEGIS), a retention-data-free framework that advances both robustness and retention.
comment: 30 pages,12 figures
☆ A Unified Framework for LLM Watermarks
LLM watermarks allow tracing AI-generated texts by inserting a detectable signal into their generated content. Recent works have proposed a wide range of watermarking algorithms, each with distinct designs, usually built using a bottom-up approach. Crucially, there is no general and principled formulation for LLM watermarking. In this work, we show that most existing and widely used watermarking schemes can in fact be derived from a principled constrained optimization problem. Our formulation unifies existing watermarking methods and explicitly reveals the constraints that each method optimizes. In particular, it highlights an understudied quality-diversity-power trade-off. At the same time, our framework also provides a principled approach for designing novel watermarking schemes tailored to specific requirements. For instance, it allows us to directly use perplexity as a proxy for quality, and derive new schemes that are optimal with respect to this constraint. Our experimental evaluation validates our framework: watermarking schemes derived from a given constraint consistently maximize detection power with respect to that constraint.
☆ Gold Exploration using Representations from a Multispectral Autoencoder
Satellite imagery is employed for large-scale prospectivity mapping due to the high cost and typically limited availability of on-site mineral exploration data. In this work, we present a proof-of-concept framework that leverages generative representations learned from multispectral Sentinel-2 imagery to identify gold-bearing regions from space. An autoencoder foundation model, called Isometric, which is pretrained on the large-scale FalconSpace-S2 v1.0 dataset, produces information-dense spectral-spatial representations that serve as inputs to a lightweight XGBoost classifier. We compare this representation-based approach with a raw spectral input baseline using a dataset of 63 Sentinel-2 images from known gold and non-gold locations. The proposed method improves patch-level accuracy from 0.51 to 0.68 and image-level accuracy from 0.55 to 0.73, demonstrating that generative embeddings capture transferable mineralogical patterns even with limited labeled data. These results highlight the potential of foundation-model representations to make mineral exploration more efficient, scalable, and globally applicable.
comment: Presented in Eurips2025, 1st Workshop: Advances in Representation Learning for Earth Observation
☆ Semantically Labelled Automata for Multi-Task Reinforcement Learning with LTL Instructions
We study multi-task reinforcement learning (RL), a setting in which an agent learns a single, universal policy capable of generalising to arbitrary, possibly unseen tasks. We consider tasks specified as linear temporal logic (LTL) formulae, which are commonly used in formal methods to specify properties of systems, and have recently been successfully adopted in RL. In this setting, we present a novel task embedding technique leveraging a new generation of semantic LTL-to-automata translations, originally developed for temporal synthesis. The resulting semantically labelled automata contain rich, structured information in each state that allow us to (i) compute the automaton efficiently on-the-fly, (ii) extract expressive task embeddings used to condition the policy, and (iii) naturally support full LTL. Experimental results in a variety of domains demonstrate that our approach achieves state-of-the-art performance and is able to scale to complex specifications where existing methods fail.
☆ Optimal Abstractions for Verifying Properties of Kolmogorov-Arnold Networks (KANs)
We present a novel approach for verifying properties of Kolmogorov-Arnold Networks (KANs), a class of neural networks characterized by nonlinear, univariate activation functions typically implemented as piecewise polynomial splines or Gaussian processes. Our method creates mathematical ``abstractions'' by replacing each KAN unit with a piecewise affine (PWA) function, providing both local and global error estimates between the original network and its approximation. These abstractions enable property verification by encoding the problem as a Mixed Integer Linear Program (MILP), determining whether outputs satisfy specified properties when inputs belong to a given set. A critical challenge lies in balancing the number of pieces in the PWA approximation: too many pieces add binary variables that make verification computationally intractable, while too few pieces create excessive error margins that yield uninformative bounds. Our key contribution is a systematic framework that exploits KAN structure to find optimal abstractions. By combining dynamic programming at the unit level with a knapsack optimization across the network, we minimize the total number of pieces while guaranteeing specified error bounds. This approach determines the optimal approximation strategy for each unit while maintaining overall accuracy requirements. Empirical evaluation across multiple KAN benchmarks demonstrates that the upfront analysis costs of our method are justified by superior verification results.
☆ Pairwise is Not Enough: Hypergraph Neural Networks for Multi-Agent Pathfinding ICLR 2026
Multi-Agent Path Finding (MAPF) is a representative multi-agent coordination problem, where multiple agents are required to navigate to their respective goals without collisions. Solving MAPF optimally is known to be NP-hard, leading to the adoption of learning-based approaches to alleviate the online computational burden. Prevailing approaches, such as Graph Neural Networks (GNNs), are typically constrained to pairwise message passing between agents. However, this limitation leads to suboptimal behaviours and critical issues, such as attention dilution, particularly in dense environments where group (i.e. beyond just two agents) coordination is most critical. Despite the importance of such higher-order interactions, existing approaches have not been able to fully explore them. To address this representational bottleneck, we introduce HMAGAT (Hypergraph Multi-Agent Attention Network), a novel architecture that leverages attentional mechanisms over directed hypergraphs to explicitly capture group dynamics. Empirically, HMAGAT establishes a new state-of-the-art among learning-based MAPF solvers: e.g., despite having just 1M parameters and being trained on 100$\times$ less data, it outperforms the current SoTA 85M parameter model. Through detailed analysis of HMAGAT's attention values, we demonstrate how hypergraph representations mitigate the attention dilution inherent in GNNs and capture complex interactions where pairwise methods fail. Our results illustrate that appropriate inductive biases are often more critical than the training data size or sheer parameter count for multi-agent problems.
comment: Accepted at ICLR 2026
☆ GhostCite: A Large-Scale Analysis of Citation Validity in the Age of Large Language Models
Citations provide the basis for trusting scientific claims; when they are invalid or fabricated, this trust collapses. With the advent of Large Language Models (LLMs), this risk has intensified: LLMs are increasingly used for academic writing, yet their tendency to fabricate citations (``ghost citations'') poses a systemic threat to citation validity. To quantify this threat and inform mitigation, we develop CiteVerifier, an open-source framework for large-scale citation verification, and conduct the first comprehensive study of citation validity in the LLM era through three experiments built on it. We benchmark 13 state-of-the-art LLMs on citation generation across 40 research domains, finding that all models hallucinate citations at rates from 14.23\% to 94.93\%, with significant variation across research domains. Moreover, we analyze 2.2 million citations from 56,381 papers published at top-tier AI/ML and Security venues (2020--2025), confirming that 1.07\% of papers contain invalid or fabricated citations (604 papers), with an 80.9\% increase in 2025 alone. Furthermore, we survey 97 researchers and analyze 94 valid responses after removing 3 conflicting samples, revealing a critical ``verification gap'': 41.5\% of researchers copy-paste BibTeX without checking and 44.4\% choose no-action responses when encountering suspicious references; meanwhile, 76.7\% of reviewers do not thoroughly check references and 80.0\% never suspect fake citations. Our findings reveal an accelerating crisis where unreliable AI tools, combined with inadequate human verification by researchers and insufficient peer review scrutiny, enable fabricated citations to contaminate the scientific record. We propose interventions for researchers, venues, and tool developers to protect citation integrity.
☆ F-GRPO: Don't Let Your Policy Learn the Obvious and Forget the Rare
Reinforcement Learning with Verifiable Rewards (RLVR) is commonly based on group sampling to estimate advantages and stabilize policy updates. In practice, large group sizes are not feasible due to computational limits, which biases learning toward trajectories that are already likely. Smaller groups often miss rare-correct trajectories while still containing mixed rewards, concentrating probability on common solutions. We derive the probability that updates miss rare-correct modes as a function of group size, showing non-monotonic behavior, and characterize how updates redistribute mass within the correct set, revealing that unsampled-correct mass can shrink even as total correct mass grows. Motivated by this analysis, we propose a difficulty-aware advantage scaling coefficient, inspired by Focal loss, that down-weights updates on high-success prompts. The lightweight modification can be directly integrated into any group-relative RLVR algorithm such as GRPO, DAPO, and CISPO. On Qwen2.5-7B across in-domain and out-of-domain benchmarks, our method improves pass@256 from 64.1 $\rightarrow$ 70.3 (GRPO), 69.3 $\rightarrow$ 72.5 (DAPO), and 73.2 $\rightarrow$ 76.8 (CISPO), while preserving or improving pass@1, without increasing group size or computational cost.
☆ Autoregressive Models for Knowledge Graph Generation
Knowledge Graph (KG) generation requires models to learn complex semantic dependencies between triples while maintaining domain validity constraints. Unlike link prediction, which scores triples independently, generative models must capture interdependencies across entire subgraphs to produce semantically coherent structures. We present ARK (Auto-Regressive Knowledge Graph Generation), a family of autoregressive models that generate KGs by treating graphs as sequences of (head, relation, tail) triples. ARK learns implicit semantic constraints directly from data, including type consistency, temporal validity, and relational patterns, without explicit rule supervision. On the IntelliGraphs benchmark, our models achieve 89.2% to 100.0% semantic validity across diverse datasets while generating novel graphs not seen during training. We also introduce SAIL, a variational extension of ARK that enables controlled generation through learned latent representations, supporting both unconditional sampling and conditional completion from partial graphs. Our analysis reveals that model capacity (hidden dimensionality >= 64) is more critical than architectural depth for KG generation, with recurrent architectures achieving comparable validity to transformer-based alternatives while offering substantial computational efficiency. These results demonstrate that autoregressive models provide an effective framework for KG generation, with practical applications in knowledge base completion and query answering.
☆ SaDiT: Efficient Protein Backbone Design via Latent Structural Tokenization and Diffusion Transformers
Generative models for de novo protein backbone design have achieved remarkable success in creating novel protein structures. However, these diffusion-based approaches remain computationally intensive and slower than desired for large-scale structural exploration. While recent efforts like Proteina have introduced flow-matching to improve sampling efficiency, the potential of tokenization for structural compression and acceleration remains largely unexplored in the protein domain. In this work, we present SaDiT, a novel framework that accelerates protein backbone generation by integrating SaProt Tokenization with a Diffusion Transformer (DiT) architecture. SaDiT leverages a discrete latent space to represent protein geometry, significantly reducing the complexity of the generation process while maintaining theoretical SE(3) equivalence. To further enhance efficiency, we introduce an IPA Token Cache mechanism that optimizes the Invariant Point Attention (IPA) layers by reusing computed token states during iterative sampling. Experimental results demonstrate that SaDiT outperforms state-of-the-art models, including RFDiffusion and Proteina, in both computational speed and structural viability. We evaluate our model across unconditional backbone generation and fold-class conditional generation tasks, where SaDiT shows superior ability to capture complex topological features with high designability.
☆ compar:IA: The French Government's LLM arena to collect French-language human prompts and preference data
Large Language Models (LLMs) often show reduced performance, cultural alignment, and safety robustness in non-English languages, partly because English dominates both pre-training data and human preference alignment datasets. Training methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) require human preference data, which remains scarce and largely non-public for many languages beyond English. To address this gap, we introduce compar:IA, an open-source digital public service developed inside the French government and designed to collect large-scale human preference data from a predominantly French-speaking general audience. The platform uses a blind pairwise comparison interface to capture unconstrained, real-world prompts and user judgments across a diverse set of language models, while maintaining low participation friction and privacy-preserving automated filtering. As of 2026-02-07, compar:IA has collected over 600,000 free-form prompts and 250,000 preference votes, with approximately 89% of the data in French. We release three complementary datasets -- conversations, votes, and reactions -- under open licenses, and present initial analyses, including a French-language model leaderboard and user interaction patterns. Beyond the French context, compar:IA is evolving toward an international digital public good, offering reusable infrastructure for multilingual model training, evaluation, and the study of human-AI interaction.
comment: 18 pages, 7 figures, preprint
☆ Not All Layers Need Tuning: Selective Layer Restoration Recovers Diversity
Post-training improves instruction-following and helpfulness of large language models (LLMs) but often reduces generation diversity, which leads to repetitive outputs in open-ended settings, a phenomenon known as mode collapse. Motivated by evidence that LLM layers play distinct functional roles, we hypothesize that mode collapse can be localized to specific layers and that restoring a carefully chosen range of layers to their pre-trained weights can recover diversity while maintaining high output quality. To validate this hypothesis and decide which layers to restore, we design a proxy task -- Constrained Random Character(CRC) -- with an explicit validity set and a natural diversity objective. Results on CRC reveal a clear diversity-validity trade-off across restoration ranges and identify configurations that increase diversity with minimal quality loss. Based on these findings, we propose Selective Layer Restoration (SLR), a training-free method that restores selected layers in a post-trained model to their pre-trained weights, yielding a hybrid model with the same architecture and parameter count, incurring no additional inference cost. Across three different tasks (creative writing, open-ended question answering, and multi-step reasoning) and three different model families (Llama, Qwen, and Gemma), we find SLR can consistently and substantially improve output diversity while maintaining high output quality.
comment: 16 pages, 7 figures, 12 tables
☆ Multimodal Generative Retrieval Model with Staged Pretraining for Food Delivery on Meituan
Multimodal retrieval models are becoming increasingly important in scenarios such as food delivery, where rich multimodal features can meet diverse user needs and enable precise retrieval. Mainstream approaches typically employ a dual-tower architecture between queries and items, and perform joint optimization of intra-tower and inter-tower tasks. However, we observe that joint optimization often leads to certain modalities dominating the training process, while other modalities are neglected. In addition, inconsistent training speeds across modalities can easily result in the one-epoch problem. To address these challenges, we propose a staged pretraining strategy, which guides the model to focus on specialized tasks at each stage, enabling it to effectively attend to and utilize multimodal features, and allowing flexible control over the training process at each stage to avoid the one-epoch problem. Furthermore, to better utilize the semantic IDs that compress high-dimensional multimodal embeddings, we design both generative and discriminative tasks to help the model understand the associations between SIDs, queries, and item features, thereby improving overall performance. Extensive experiments on large-scale real-world Meituan data demonstrate that our method achieves improvements of 3.80%, 2.64%, and 2.17% on R@5, R@10, and R@20, and 5.10%, 4.22%, and 2.09% on N@5, N@10, and N@20 compared to mainstream baselines. Online A/B testing on the Meituan platform shows that our approach achieves a 1.12% increase in revenue and a 1.02% increase in click-through rate, validating the effectiveness and superiority of our method in practical applications.
☆ RAPID: Reconfigurable, Adaptive Platform for Iterative Design
Developing robotic manipulation policies is iterative and hypothesis-driven: researchers test tactile sensing, gripper geometries, and sensor placements through real-world data collection and training. Yet even minor end-effector changes often require mechanical refitting and system re-integration, slowing iteration. We present RAPID, a full-stack reconfigurable platform designed to reduce this friction. RAPID is built around a tool-free, modular hardware architecture that unifies handheld data collection and robot deployment, and a matching software stack that maintains real-time awareness of the underlying hardware configuration through a driver-level Physical Mask derived from USB events. This modular hardware architecture reduces reconfiguration to seconds and makes systematic multi-modal ablation studies practical, allowing researchers to sweep diverse gripper and sensing configurations without repeated system bring-up. The Physical Mask exposes modality presence as an explicit runtime signal, enabling auto-configuration and graceful degradation under sensor hot-plug events, so policies can continue executing when sensors are physically added or removed. System-centric experiments show that RAPID reduces the setup time for multi-modal configurations by two orders of magnitude compared to traditional workflows and preserves policy execution under runtime sensor hot-unplug events. The hardware designs, drivers, and software stack are open-sourced at https://rapid-kit.github.io/ .
☆ Same Answer, Different Representations: Hidden instability in VLMs
The robustness of Vision Language Models (VLMs) is commonly assessed through output-level invariance, implicitly assuming that stable predictions reflect stable multimodal processing. In this work, we argue that this assumption is insufficient. We introduce a representation-aware and frequency-aware evaluation framework that measures internal embedding drift, spectral sensitivity, and structural smoothness (spatial consistency of vision tokens), alongside standard label-based metrics. Applying this framework to modern VLMs across the SEEDBench, MMMU, and POPE datasets reveals three distinct failure modes. First, models frequently preserve predicted answers while undergoing substantial internal representation drift; for perturbations such as text overlays, this drift approaches the magnitude of inter-image variability, indicating that representations move to regions typically occupied by unrelated inputs despite unchanged outputs. Second, robustness does not improve with scale; larger models achieve higher accuracy but exhibit equal or greater sensitivity, consistent with sharper yet more fragile decision boundaries. Third, we find that perturbations affect tasks differently: they harm reasoning when they disrupt how models combine coarse and fine visual cues, but on the hallucination benchmarks, they can reduce false positives by making models generate more conservative answers.
☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
☆ Temperature Scaling Attack Disrupting Model Confidence in Federated Learning
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.
comment: 20 pages, 20 figures
☆ Trust Regions Sell, But Who's Buying? Overlap Geometry as an Alternative Trust Region for Policy Optimization
Standard trust-region methods constrain policy updates via Kullback-Leibler (KL) divergence. However, KL controls only an average divergence and does not directly prevent rare, large likelihood-ratio excursions that destabilize training--precisely the failure mode that motivates heuristics such as PPO's clipping. We propose overlap geometry as an alternative trust region, constraining distributional overlap via the Bhattacharyya coefficient (closely related to the Hellinger/Renyi-1/2 geometry). This objective penalizes separation in the ratio tails, yielding tighter control over likelihood-ratio excursions without relying on total variation bounds that can be loose in tail regimes. We derive Bhattacharyya-TRPO (BTRPO) and Bhattacharyya-PPO (BPPO), enforcing overlap constraints via square-root ratio updates: BPPO clips the square-root ratio q = sqrt(r), and BTRPO applies a quadratic Hellinger/Bhattacharyya penalty. Empirically, overlap-based updates improve robustness and aggregate performance as measured by RLiable under matched training budgets, suggesting overlap constraints as a practical, principled alternative to KL for stable policy optimization.
comment: Under Review
☆ DAVE: Distribution-aware Attribution via ViT Gradient Decomposition
Vision Transformers (ViTs) have become a dominant architecture in computer vision, yet producing stable and high-resolution attribution maps for these models remains challenging. Architectural components such as patch embeddings and attention routing often introduce structured artifacts in pixel-level explanations, causing many existing methods to rely on coarse patch-level attributions. We introduce DAVE \textit{(\underline{D}istribution-aware \underline{A}ttribution via \underline{V}iT Gradient D\underline{E}composition)}, a mathematically grounded attribution method for ViTs based on a structured decomposition of the input gradient. By exploiting architectural properties of ViTs, DAVE isolates locally equivariant and stable components of the effective input--output mapping. It separates these from architecture-induced artifacts and other sources of instability.
comment: work under review. Code will be released upon acceptance
☆ The challenge of generating and evolving real-life like synthetic test data without accessing real-world raw data -- a Systematic Review
Background: High-level system testing of applications that use data from e-Government services as input requires test data that is real-life-like but where the privacy of personal information is guaranteed. Applications with such strong requirement include information exchange between countries, medicine, banking, etc. This review aims to synthesize the current state-of-the-practice in this domain. Objectives: The objective of this Systematic Review is to identify existing approaches for creating and evolving synthetic test data without using real-life raw data. Methods: We followed well-known methodologies for conducting systematic literature reviews, including the ones from Kitchenham as well as guidelines for analysing the limitations of our review and its threats to validity. Results: A variety of methods and tools exist for creating privacy-preserving test data. Our search found 1,013 publications in IEEE Xplore, ACM Digital Library, and SCOPUS. We extracted data from 75 of those publications and identified 37 approaches that answer our research question partly. A common prerequisite for using these methods and tools is direct access to real-life data for data anonymization or synthetic test data generation. Nine existing synthetic test data generation approaches were identified that were closest to answering our research question. Nevertheless, further work would be needed to add the ability to evolve synthetic test data to the existing approaches. Conclusions: None of the publications really covered our requirements completely, only partially. Synthetic test data evolution is a field that has not received much attention from researchers but needs to be explored in Digital Government Solutions, especially since new legal regulations are being placed in force in many countries.
comment: 22 pages
☆ Scaling Speech Tokenizers with Diffusion Autoencoders ICLR 2026
Speech tokenizers are foundational to speech language models, yet existing approaches face two major challenges: (1) balancing trade-offs between encoding semantics for understanding and acoustics for reconstruction, and (2) achieving low bit rates and low token rates. We propose Speech Diffusion Tokenizer (SiTok), a diffusion autoencoder that jointly learns semantic-rich representations through supervised learning and enables high-fidelity audio reconstruction with diffusion. We scale SiTok to 1.6B parameters and train it on 2 million hours of speech. Experiments show that SiTok outperforms strong baselines on understanding, reconstruction and generation tasks, at an extremely low token rate of $12.5$ Hz and a bit-rate of 200 bits-per-second.
comment: ICLR 2026
☆ Sample-Efficient Policy Space Response Oracles with Joint Experience Best Response AAMAS 2026
Multi-agent reinforcement learning (MARL) offers a scalable alternative to exact game-theoretic analysis but suffers from non-stationarity and the need to maintain diverse populations of strategies that capture non-transitive interactions. Policy Space Response Oracles (PSRO) address these issues by iteratively expanding a restricted game with approximate best responses (BRs), yet per-agent BR training makes it prohibitively expensive in many-agent or simulator-expensive settings. We introduce Joint Experience Best Response (JBR), a drop-in modification to PSRO that collects trajectories once under the current meta-strategy profile and reuses this joint dataset to compute BRs for all agents simultaneously. This amortizes environment interaction and improves the sample efficiency of best-response computation. Because JBR converts BR computation into an offline RL problem, we propose three remedies for distribution-shift bias: (i) Conservative JBR with safe policy improvement, (ii) Exploration-Augmented JBR that perturbs data collection and admits theoretical guarantees, and (iii) Hybrid BR that interleaves JBR with periodic independent BR updates. Across benchmark multi-agent environments, Exploration-Augmented JBR achieves the best accuracy-efficiency trade-off, while Hybrid BR attains near-PSRO performance at a fraction of the sample cost. Overall, JBR makes PSRO substantially more practical for large-scale strategic learning while preserving equilibrium robustness.
comment: Accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
☆ Personality as Relational Infrastructure: User Perceptions of Personality-Trait-Infused LLM Messaging
Digital behaviour change systems increasingly rely on repeated, system-initiated messages to support users in everyday contexts. LLMs enable these messages to be personalised consistently across interactions, yet it remains unclear whether such personalisation improves individual messages or instead shapes users' perceptions through patterns of exposure. We explore this question in the context of LLM-generated JITAIs, which are short, context-aware messages delivered at moments deemed appropriate to support behaviour change, using physical activity as an application domain. In a controlled retrospective study, 90 participants evaluated messages generated using four LLM strategies: baseline prompting, few-shot prompting, fine-tuned models, and retrieval augmented generation, each implemented with and without Big Five Personality Traits to produce personality-aligned communication across multiple scenarios. Using ordinal multilevel models with within-between decomposition, we distinguish trial-level effects, whether personality information improves evaluations of individual messages, from person-level exposure effects, whether participants receiving higher proportions of personality-informed messages exhibit systematically different overall perceptions. Results showed no trial-level associations, but participants who received higher proportions of BFPT-informed messages rated the messages as more personalised, appropriate, and reported less negative affect. We use Communication Accommodation Theory for post-hoc analysis. These results suggest that personality-based personalisation in behaviour change systems may operate primarily through aggregate exposure rather than per-message optimisation, with implications for how adaptive systems are designed and evaluated in sustained human-AI interaction. In-situ longitudinal studies are needed to validate these findings in real-world contexts.
comment: Currently under review
☆ AgentStepper: Interactive Debugging of Software Development Agents
Software development agents powered by large language models (LLMs) have shown great promise in automating tasks like environment setup, issue solving, and program repair. Unfortunately, understanding and debugging such agents remain challenging due to their complex and dynamic nature. Developers must reason about trajectories of LLM queries, tool calls, and code modifications, but current techniques reveal little of this intermediate process in a comprehensible format. The key insight of this paper is that debugging software development agents shares many similarities with conventional debugging of software programs, yet requires a higher level of abstraction that raises the level from low-level implementation details to high-level agent actions. Drawing on this insight, we introduce AgentStepper, the first interactive debugger for LLM-based software engineering agents. AgentStepper enables developers to inspect, control, and interactively manipulate agent trajectories. AgentStepper represents trajectories as structured conversations among an LLM, the agent program, and tools. It supports breakpoints, stepwise execution, and live editing of prompts and tool invocations, while capturing and displaying intermediate repository-level code changes. Our evaluation applies AgentStepper to three state-of-the-art software development agents, ExecutionAgent, SWE-Agent, and RepairAgent, showing that integrating the approach into existing agents requires minor code changes (39-42 edited lines). Moreover, we report on a user study with twelve participants, indicating that AgentStepper improves the ability of participants to interpret trajectories (64% vs. 67% mean performance) and identify bugs in the agent's implementation (17% vs. 60% success rate), while reducing perceived workload (e.g., frustration reduced from 5.4/7.0 to 2.4/7.0) compared to conventional tools.
☆ ProtoQuant: Quantization of Prototypical Parts For General and Fine-Grained Image Classification
Prototypical parts-based models offer a "this looks like that" paradigm for intrinsic interpretability, yet they typically struggle with ImageNet-scale generalization and often require computationally expensive backbone finetuning. Furthermore, existing methods frequently suffer from "prototype drift," where learned prototypes lack tangible grounding in the training distribution and change their activation under small perturbations. We present ProtoQuant, a novel architecture that achieves prototype stability and grounded interpretability through latent vector quantization. By constraining prototypes to a discrete learned codebook within the latent space, we ensure they remain faithful representations of the training data without the need to update the backbone. This design allows ProtoQuant to function as an efficient, interpretable head that scales to large-scale datasets. We evaluate ProtoQuant on ImageNet and several fine-grained benchmarks (CUB-200, Cars-196). Our results demonstrate that ProtoQuant achieves competitive classification accuracy while generalizing to ImageNet and comparable interpretability metrics to other prototypical-parts-based methods.
comment: Work under review. Code will be released upon acceptance
☆ Target noise: A pre-training based neural network initialization for efficient high resolution learning
Weight initialization plays a crucial role in the optimization behavior and convergence efficiency of neural networks. Most existing initialization methods, such as Xavier and Kaiming initializations, rely on random sampling and do not exploit information from the optimization process itself. We propose a simple, yet effective, initialization strategy based on self-supervised pre-training using random noise as the target. Instead of directly training the network from random weights, we first pre-train it to fit random noise, which leads to a structured and non-random parameter configuration. We show that this noise-driven pre-training significantly improves convergence speed in subsequent tasks, without requiring additional data or changes to the network architecture. The proposed method is particularly effective for implicit neural representations (INRs) and Deep Image Prior (DIP)-style networks, which are known to exhibit a strong low-frequency bias during optimization. After noise-based pre-training, the network is able to capture high-frequency components much earlier in training, leading to faster and more stable convergence. Although random noise contains no semantic information, it serves as an effective self-supervised signal (considering its white spectrum nature) for shaping the initialization of neural networks. Overall, this work demonstrates that noise-based pre-training offers a lightweight and general alternative to traditional random initialization, enabling more efficient optimization of deep neural networks.
comment: 11 pages, 12 figures
☆ Exploring Sparsity and Smoothness of Arbitrary $\ell_p$ Norms in Adversarial Attacks
Adversarial attacks against deep neural networks are commonly constructed under $\ell_p$ norm constraints, most often using $p=1$, $p=2$ or $p=\infty$, and potentially regularized for specific demands such as sparsity or smoothness. These choices are typically made without a systematic investigation of how the norm parameter \( p \) influences the structural and perceptual properties of adversarial perturbations. In this work, we study how the choice of \( p \) affects sparsity and smoothness of adversarial attacks generated under \( \ell_p \) norm constraints for values of $p \in [1,2]$. To enable a quantitative analysis, we adopt two established sparsity measures from the literature and introduce three smoothness measures. In particular, we propose a general framework for deriving smoothness measures based on smoothing operations and additionally introduce a smoothness measure based on first-order Taylor approximations. Using these measures, we conduct a comprehensive empirical evaluation across multiple real-world image datasets and a diverse set of model architectures, including both convolutional and transformer-based networks. We show that the choice of $\ell_1$ or $\ell_2$ is suboptimal in most cases and the optimal $p$ value is dependent on the specific task. In our experiments, using $\ell_p$ norms with $p\in [1.3, 1.5]$ yields the best trade-off between sparse and smooth attacks. These findings highlight the importance of principled norm selection when designing and evaluating adversarial attacks.
☆ Perturbing the Phase: Analyzing Adversarial Robustness of Complex-Valued Neural Networks
Complex-valued neural networks (CVNNs) are rising in popularity for all kinds of applications. To safely use CVNNs in practice, analyzing their robustness against outliers is crucial. One well known technique to understand the behavior of deep neural networks is to investigate their behavior under adversarial attacks, which can be seen as worst case minimal perturbations. We design Phase Attacks, a kind of attack specifically targeting the phase information of complex-valued inputs. Additionally, we derive complex-valued versions of commonly used adversarial attacks. We show that in some scenarios CVNNs are more robust than RVNNs and that both are very susceptible to phase changes with the Phase Attacks decreasing the model performance more, than equally strong regular attacks, which can attack both phase and magnitude.
Transformer-based Parameter Fitting of Models derived from Bloch-McConnell Equations for CEST MRI Analysis
Chemical exchange saturation transfer (CEST) MRI is a non-invasive imaging modality for detecting metabolites. It offers higher resolution and sensitivity compared to conventional magnetic resonance spectroscopy (MRS). However, quantification of CEST data is challenging because the measured signal results from a complex interplay of many physiological variables. Here, we introduce a transformer-based neural network to fit parameters such as metabolite concentrations, exchange and relaxation rates of a physical model derived from Bloch-McConnell equations to in-vitro CEST spectra. We show that our self-supervised trained neural network clearly outperforms the solution of classical gradient-based solver.
☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
☆ Which Graph Shift Operator? A Spectral Answer to an Empirical Question
Graph Neural Networks (GNNs) have established themselves as the leading models for learning on graph-structured data, generally categorized into spatial and spectral approaches. Central to these architectures is the Graph Shift Operator (GSO), a matrix representation of the graph structure used to filter node signals. However, selecting the optimal GSO, whether fixed or learnable, remains largely empirical. In this paper, we introduce a novel alignment gain metric that quantifies the geometric distortion between the input signal and label subspaces. Crucially, our theoretical analysis connects this alignment directly to generalization bounds via a spectral proxy for the Lipschitz constant. This yields a principled, computation-efficient criterion to rank and select the optimal GSO for any prediction task prior to training, eliminating the need for extensive search.
☆ LIBERO-X: Robustness Litmus for Vision-Language-Action Models
Reliable benchmarking is critical for advancing Vision-Language-Action (VLA) models, as it reveals their generalization, robustness, and alignment of perception with language-driven manipulation tasks. However, existing benchmarks often provide limited or misleading assessments due to insufficient evaluation protocols that inadequately capture real-world distribution shifts. This work systematically rethinks VLA benchmarking from both evaluation and data perspectives, introducing LIBERO-X, a benchmark featuring: 1) A hierarchical evaluation protocol with progressive difficulty levels targeting three core capabilities: spatial generalization, object recognition, and task instruction understanding. This design enables fine-grained analysis of performance degradation under increasing environmental and task complexity; 2) A high-diversity training dataset collected via human teleoperation, where each scene supports multiple fine-grained manipulation objectives to bridge the train-evaluation distribution gap. Experiments with representative VLA models reveal significant performance drops under cumulative perturbations, exposing persistent limitations in scene comprehension and instruction grounding. By integrating hierarchical evaluation with diverse training data, LIBERO-X offers a more reliable foundation for assessing and advancing VLA development.
comment: 19 pages, 14 figures and 8 tables
☆ SeeUPO: Sequence-Level Agentic-RL with Convergence Guarantees
Reinforcement learning (RL) has emerged as the predominant paradigm for training large language model (LLM)-based AI agents. However, existing backbone RL algorithms lack verified convergence guarantees in agentic scenarios, especially in multi-turn settings, which can lead to training instability and failure to converge to optimal policies. In this paper, we systematically analyze how different combinations of policy update mechanisms and advantage estimation methods affect convergence properties in single/multi-turn scenarios. We find that REINFORCE with Group Relative Advantage Estimation (GRAE) can converge to the globally optimal under undiscounted conditions, but the combination of PPO & GRAE breaks PPO's original monotonic improvement property. Furthermore, we demonstrate that mainstream backbone RL algorithms cannot simultaneously achieve both critic-free and convergence guarantees in multi-turn scenarios. To address this, we propose SeeUPO (Sequence-level Sequential Update Policy Optimization), a critic-free approach with convergence guarantees for multi-turn interactions. SeeUPO models multi-turn interaction as sequentially executed multi-agent bandit problems. Through turn-by-turn sequential policy updates in reverse execution order, it ensures monotonic improvement and convergence to global optimal solution via backward induction. Experiments on AppWorld and BFCL v4 demonstrate SeeUPO's substantial improvements over existing backbone algorithms: relative gains of 43.3%-54.6% on Qwen3-14B and 24.1%-41.9% on Qwen2.5-14B (averaged across benchmarks), along with superior training stability.
☆ Dynamics-Aligned Shared Hypernetworks for Zero-Shot Actuator Inversion
Zero-shot generalization in contextual reinforcement learning remains a core challenge, particularly when the context is latent and must be inferred from data. A canonical failure mode is actuator inversion, where identical actions produce opposite physical effects under a latent binary context. We propose DMA*-SH, a framework where a single hypernetwork, trained solely via dynamics prediction, generates a small set of adapter weights shared across the dynamics model, policy, and action-value function. This shared modulation imparts an inductive bias matched to actuator inversion, while input/output normalization and random input masking stabilize context inference, promoting directionally concentrated representations. We provide theoretical support via an expressivity separation result for hypernetwork modulation, and a variance decomposition with policy-gradient variance bounds that formalize how within-mode compression improves learning under actuator inversion. For evaluation, we introduce the Actuator Inversion Benchmark (AIB), a suite of environments designed to isolate discontinuous context-to-dynamics interactions. On AIB's held-out actuator-inversion tasks, DMA*-SH achieves zero-shot generalization, outperforming domain randomization by 111.8% and surpassing a standard context-aware baseline by 16.1%.
☆ Malicious Agent Skills in the Wild: A Large-Scale Security Empirical Study
Third-party agent skills extend LLM-based agents with instruction files and executable code that run on users' machines. Skills execute with user privileges and are distributed through community registries with minimal vetting, but no ground-truth dataset exists to characterize the resulting threats. We construct the first labeled dataset of malicious agent skills by behaviorally verifying 98,380 skills from two community registries, confirming 157 malicious skills with 632 vulnerabilities. These attacks are not incidental. Malicious skills average 4.03 vulnerabilities across a median of three kill chain phases, and the ecosystem has split into two archetypes: Data Thieves that exfiltrate credentials through supply chain techniques, and Agent Hijackers that subvert agent decision-making through instruction manipulation. A single actor accounts for 54.1\% of confirmed cases through templated brand impersonation. Shadow features, capabilities absent from public documentation, appear in 0\% of basic attacks but 100\% of advanced ones; several skills go further by exploiting the AI platform's own hook system and permission flags. Responsible disclosure led to 93.6\% removal within 30 days. We release the dataset and analysis pipeline to support future work on agent skill security.
☆ MTQE.en-he: Machine Translation Quality Estimation for English-Hebrew EACL 2026
We release MTQE.en-he: to our knowledge, the first publicly available English-Hebrew benchmark for Machine Translation Quality Estimation. MTQE.en-he contains 959 English segments from WMT24++, each paired with a machine translation into Hebrew, and Direct Assessment scores of the translation quality annotated by three human experts. We benchmark ChatGPT prompting, TransQuest, and CometKiwi and show that ensembling the three models outperforms the best single model (CometKiwi) by 6.4 percentage points Pearson and 5.6 percentage points Spearman. Fine-tuning experiments with TransQuest and CometKiwi reveal that full-model updates are sensitive to overfitting and distribution collapse, yet parameter-efficient methods (LoRA, BitFit, and FTHead, i.e., fine-tuning only the classification head) train stably and yield improvements of 2-3 percentage points. MTQE.en-he and our experimental results enable future research on this under-resourced language pair.
comment: Accepted to LoResLM at EACL 2026
☆ AgentCPM-Report: Interleaving Drafting and Deepening for Open-Ended Deep Research
Generating deep research reports requires large-scale information acquisition and the synthesis of insight-driven analysis, posing a significant challenge for current language models. Most existing approaches follow a plan-then-write paradigm, whose performance heavily depends on the quality of the initial outline. However, constructing a comprehensive outline itself demands strong reasoning ability, causing current deep research systems to rely almost exclusively on closed-source or online large models. This reliance raises practical barriers to deployment and introduces safety and privacy concerns for user-authored data. In this work, we present AgentCPM-Report, a lightweight yet high-performing local solution composed of a framework that mirrors the human writing process and an 8B-parameter deep research agent. Our framework uses a Writing As Reasoning Policy (WARP), which enables models to dynamically revise outlines during report generation. Under this policy, the agent alternates between Evidence-Based Drafting and Reasoning-Driven Deepening, jointly supporting information acquisition, knowledge refinement, and iterative outline evolution. To effectively equip small models with this capability, we introduce a Multi-Stage Agentic Training strategy, consisting of cold-start, atomic skill RL, and holistic pipeline RL. Experiments on DeepResearch Bench, DeepConsult, and DeepResearch Gym demonstrate that AgentCPM-Report outperforms leading closed-source systems, with substantial gains in Insight.
☆ LogicSkills: A Structured Benchmark for Formal Reasoning in Large Language Models
Large language models have demonstrated notable performance across various logical reasoning benchmarks. However, it remains unclear which core logical skills they truly master. To address this, we introduce LogicSkills, a unified benchmark designed to isolate three fundamental skills in formal reasoning: (i) $\textit{formal symbolization}\unicode{x2014}$translating premises into first-order logic; (ii) $\textit{countermodel construction}\unicode{x2014}$formulating a finite structure in which all premises are true while the conclusion is false; and (iii) $\textit{validity assessment}\unicode{x2014}$deciding whether a conclusion follows from a given set of premises. Items are drawn from the two-variable fragment of first-order logic (without identity) and are presented in both natural English and a Carroll-style language with nonce words. All examples are verified for correctness and non-triviality using the SMT solver Z3. Across leading models, performance is high on validity but substantially lower on symbolization and countermodel construction, suggesting reliance on surface-level patterns rather than genuine symbolic or rule-based reasoning.
comment: 13 pages, 5 figures
☆ HyPER: Bridging Exploration and Exploitation for Scalable LLM Reasoning with Hypothesis Path Expansion and Reduction
Scaling test-time compute with multi-path chain-of-thought improves reasoning accuracy, but its effectiveness depends critically on the exploration-exploitation trade-off. Existing approaches address this trade-off in rigid ways: tree-structured search hard-codes exploration through brittle expansion rules that interfere with post-trained reasoning, while parallel reasoning over-explores redundant hypothesis paths and relies on weak answer selection. Motivated by the observation that the optimal balance is phase-dependent and that correct and incorrect reasoning paths often diverge only at late stages, we reformulate test-time scaling as a dynamic expand-reduce control problem over a pool of hypotheses. We propose HyPER, a training-free online control policy for multi-path decoding in mixture-of-experts models that reallocates computation under a fixed budget using lightweight path statistics. HyPER consists of an online controller that transitions from exploration to exploitation as the hypothesis pool evolves, a token-level refinement mechanism that enables efficient generation-time exploitation without full-path resampling, and a length- and confidence-aware aggregation strategy for reliable answer-time exploitation. Experiments on four mixture-of-experts language models across diverse reasoning benchmarks show that HyPER consistently achieves a superior accuracy-compute trade-off, improving accuracy by 8 to 10 percent while reducing token usage by 25 to 40 percent.
☆ Completing Missing Annotation: Multi-Agent Debate for Accurate and Scalable Relevant Assessment for IR Benchmarks ICLR 2026
Information retrieval (IR) evaluation remains challenging due to incomplete IR benchmark datasets that contain unlabeled relevant chunks. While LLMs and LLM-human hybrid strategies reduce costly human effort, they remain prone to LLM overconfidence and ineffective AI-to-human escalation. To address this, we propose DREAM, a multi-round debate-based relevance assessment framework with LLM agents, built on opposing initial stances and iterative reciprocal critique. Through our agreement-based debate, it yields more accurate labeling for certain cases and more reliable AI-to-human escalation for uncertain ones, achieving 95.2% labeling accuracy with only 3.5% human involvement. Using DREAM, we build BRIDGE, a refined benchmark that mitigates evaluation bias and enables fairer retriever comparison by uncovering 29,824 missing relevant chunks. We then re-benchmark IR systems and extend evaluation to RAG, showing that unaddressed holes not only distort retriever rankings but also drive retrieval-generation misalignment. The relevance assessment framework is available at https: //github.com/DISL-Lab/DREAM-ICLR-26; and the BRIDGE dataset is available at https://github.com/DISL-Lab/BRIDGE-Benchmark.
comment: Accepted at ICLR 2026
☆ Progress Constraints for Reinforcement Learning in Behavior Trees
Behavior Trees (BTs) provide a structured and reactive framework for decision-making, commonly used to switch between sub-controllers based on environmental conditions. Reinforcement Learning (RL), on the other hand, can learn near-optimal controllers but sometimes struggles with sparse rewards, safe exploration, and long-horizon credit assignment. Combining BTs with RL has the potential for mutual benefit: a BT design encodes structured domain knowledge that can simplify RL training, while RL enables automatic learning of the controllers within BTs. However, naive integration of BTs and RL can lead to some controllers counteracting other controllers, possibly undoing previously achieved subgoals, thereby degrading the overall performance. To address this, we propose progress constraints, a novel mechanism where feasibility estimators constrain the allowed action set based on theoretical BT convergence results. Empirical evaluations in a 2D proof-of-concept and a high-fidelity warehouse environment demonstrate improved performance, sample efficiency, and constraint satisfaction, compared to prior methods of BT-RL integration.
☆ JADE: Expert-Grounded Dynamic Evaluation for Open-Ended Professional Tasks
Evaluating agentic AI on open-ended professional tasks faces a fundamental dilemma between rigor and flexibility. Static rubrics provide rigorous, reproducible assessment but fail to accommodate diverse valid response strategies, while LLM-as-a-judge approaches adapt to individual responses yet suffer from instability and bias. Human experts address this dilemma by combining domain-grounded principles with dynamic, claim-level assessment. Inspired by this process, we propose JADE, a two-layer evaluation framework. Layer 1 encodes expert knowledge as a predefined set of evaluation skills, providing stable evaluation criteria. Layer 2 performs report-specific, claim-level evaluation to flexibly assess diverse reasoning strategies, with evidence-dependency gating to invalidate conclusions built on refuted claims. Experiments on BizBench show that JADE improves evaluation stability and reveals critical agent failure modes missed by holistic LLM-based evaluators. We further demonstrate strong alignment with expert-authored rubrics and effective transfer to a medical-domain benchmark, validating JADE across professional domains. Our code is publicly available at https://github.com/smiling-world/JADE.
☆ AgentCPM-Explore: Realizing Long-Horizon Deep Exploration for Edge-Scale Agents
While Large Language Model (LLM)-based agents have shown remarkable potential for solving complex tasks, existing systems remain heavily reliant on large-scale models, leaving the capabilities of edge-scale models largely underexplored. In this paper, we present the first systematic study on training agentic models at the 4B-parameter scale. We identify three primary bottlenecks hindering the performance of edge-scale models: catastrophic forgetting during Supervised Fine-Tuning (SFT), sensitivity to reward signal noise during Reinforcement Learning (RL), and reasoning degradation caused by redundant information in long-context scenarios. To address the issues, we propose AgentCPM-Explore, a compact 4B agent model with high knowledge density and strong exploration capability. We introduce a holistic training framework featuring parameter-space model fusion, reward signal denoising, and contextual information refinement. Through deep exploration, AgentCPM-Explore achieves state-of-the-art (SOTA) performance among 4B-class models, matches or surpasses 8B-class SOTA models on four benchmarks, and even outperforms larger-scale models such as Claude-4.5-Sonnet or DeepSeek-v3.2 in five benchmarks. Notably, AgentCPM-Explore achieves 97.09% accuracy on GAIA text-based tasks under pass@64. These results provide compelling evidence that the bottleneck for edge-scale models is not their inherent capability ceiling, but rather their inference stability. Based on our well-established training framework, AgentCPM-Explore effectively unlocks the significant, yet previously underestimated, potential of edge-scale models.
☆ Efficient-LVSM: Faster, Cheaper, and Better Large View Synthesis Model via Decoupled Co-Refinement Attention ICLR 2026
Feedforward models for novel view synthesis (NVS) have recently advanced by transformer-based methods like LVSM, using attention among all input and target views. In this work, we argue that its full self-attention design is suboptimal, suffering from quadratic complexity with respect to the number of input views and rigid parameter sharing among heterogeneous tokens. We propose Efficient-LVSM, a dual-stream architecture that avoids these issues with a decoupled co-refinement mechanism. It applies intra-view self-attention for input views and self-then-cross attention for target views, eliminating unnecessary computation. Efficient-LVSM achieves 29.86 dB PSNR on RealEstate10K with 2 input views, surpassing LVSM by 0.2 dB, with 2x faster training convergence and 4.4x faster inference speed. Efficient-LVSM achieves state-of-the-art performance on multiple benchmarks, exhibits strong zero-shot generalization to unseen view counts, and enables incremental inference with KV-cache, thanks to its decoupled designs.
comment: Accepted at ICLR 2026
☆ Prism: Spectral Parameter Sharing for Multi-Agent Reinforcement Learning
Parameter sharing is a key strategy in multi-agent reinforcement learning (MARL) for improving scalability, yet conventional fully shared architectures often collapse into homogeneous behaviors. Recent methods introduce diversity through clustering, pruning, or masking, but typically compromise resource efficiency. We propose Prism, a parameter sharing framework that induces inter-agent diversity by representing shared networks in the spectral domain via singular value decomposition (SVD). All agents share the singular vector directions while learning distinct spectral masks on singular values. This mechanism encourages inter-agent diversity and preserves scalability. Extensive experiments on both homogeneous (LBF, SMACv2) and heterogeneous (MaMuJoCo) benchmarks show that Prism achieves competitive performance with superior resource efficiency.
☆ Revisiting the Shape Convention of Transformer Language Models
Dense Transformer language models have largely adhered to one consistent architectural shape: each layer consists of an attention module followed by a feed-forward network (FFN) with a narrow-wide-narrow MLP, allocating most parameters to the MLP at expansion ratios between 2 and 4. Motivated by recent results that residual wide-narrow-wide (hourglass) MLPs offer superior function approximation capabilities, we revisit the long-standing MLP shape convention in Transformer, challenging the necessity of the narrow-wide-narrow design. To study this, we develop a Transformer variant that replaces the conventional FFN with a deeper hourglass-shaped FFN, comprising a stack of hourglass sub-MLPs connected by residual pathways. We posit that a deeper but lighter hourglass FFN can serve as a competitive alternative to the conventional FFN, and that parameters saved by using a lighter hourglass FFN can be more effectively utilized, such as by enlarging model hidden dimensions under fixed budgets. We confirm these through empirical validations across model scales: hourglass FFNs outperform conventional FFNs up to 400M and achieve comparable performance at larger scales to 1B parameters; hourglass FFN variants with reduced FFN and increased attention parameters show consistent improvements over conventional configurations at matched budgets. Together, these findings shed new light on recent work and prompt a rethinking of the narrow-wide-narrow MLP convention and the balance between attention and FFN towards efficient and expressive modern language models.
☆ Improve Large Language Model Systems with User Logs
Scaling training data and model parameters has long driven progress in large language models (LLMs), but this paradigm is increasingly constrained by the scarcity of high-quality data and diminishing returns from rising computational costs. As a result, recent work is increasing the focus on continual learning from real-world deployment, where user interaction logs provide a rich source of authentic human feedback and procedural knowledge. However, learning from user logs is challenging due to their unstructured and noisy nature. Vanilla LLM systems often struggle to distinguish useful feedback signals from noisy user behavior, and the disparity between user log collection and model optimization (e.g., the off-policy optimization problem) further strengthens the problem. To this end, we propose UNO (User log-driveN Optimization), a unified framework for improving LLM systems (LLMsys) with user logs. UNO first distills logs into semi-structured rules and preference pairs, then employs query-and-feedback-driven clustering to manage data heterogeneity, and finally quantifies the cognitive gap between the model's prior knowledge and the log data. This assessment guides the LLMsys to adaptively filter out noisy feedback and construct different modules for primary and reflective experiences extracted from user logs, thereby improving future responses. Extensive experiments show that UNO achieves state-of-the-art effectiveness and efficiency, significantly outperforming Retrieval Augmented Generation (RAG) and memory-based baselines. We have open-sourced our code at https://github.com/bebr2/UNO .
☆ Principle-Evolvable Scientific Discovery via Uncertainty Minimization
Large Language Model (LLM)-based scientific agents have accelerated scientific discovery, yet they often suffer from significant inefficiencies due to adherence to fixed initial priors. Existing approaches predominantly operate within a static hypothesis space, which restricts the discovery of novel phenomena, resulting in computational waste when baseline theories fail. To address this, we propose shifting the focus from searching hypotheses to evolving the underlying scientific principles. We present PiEvo, a principle-evolvable framework that treats scientific discovery as Bayesian optimization over an expanding principle space. By integrating Information-Directed Hypothesis Selection via Gaussian Process and an anomaly-driven augmentation mechanism, PiEvo enables agents to autonomously refine their theoretical worldview. Evaluation across four benchmarks demonstrates that PiEvo (1) achieves an average solution quality of up to 90.81%~93.15%, representing a 29.7%~31.1% improvement over the state-of-the-art, (2) attains an 83.3% speedup in convergence step via significantly reduced sample complexity by optimizing the compact principle space, and (3) maintains robust performance across diverse scientific domains and LLM backbones.
☆ CORE: Comprehensive Ontological Relation Evaluation for Large Language Models
Large Language Models (LLMs) perform well on many reasoning benchmarks, yet existing evaluations rarely assess their ability to distinguish between meaningful semantic relations and genuine unrelatedness. We introduce CORE (Comprehensive Ontological Relation Evaluation), a dataset of 225K multiple-choice questions spanning 74 disciplines, together with a general-domain open-source benchmark of 203 rigorously validated questions (Cohen's Kappa = 1.0) covering 24 semantic relation types with equal representation of unrelated pairs. A human baseline from 1,000+ participants achieves 92.6% accuracy (95.1% on unrelated pairs). In contrast, 29 state-of-the-art LLMs achieve 48.25-70.9% overall accuracy, with near-ceiling performance on related pairs (86.5-100%) but severe degradation on unrelated pairs (0-41.35%), despite assigning similar confidence (92-94%). Expected Calibration Error increases 2-4x on unrelated pairs, and a mean semantic collapse rate of 37.6% indicates systematic generation of spurious relations. On the CORE 225K MCQs dataset, accuracy further drops to approximately 2%, highlighting substantial challenges in domain-specific semantic reasoning. We identify unrelatedness reasoning as a critical, under-evaluated frontier for LLM evaluation and safety.
☆ TrajAD: Trajectory Anomaly Detection for Trustworthy LLM Agents
We address the problem of runtime trajectory anomaly detection, a critical capability for enabling trustworthy LLM agents. Current safety measures predominantly focus on static input/output filtering. However, we argue that ensuring LLM agents reliability requires auditing the intermediate execution process. In this work, we formulate the task of Trajectory Anomaly Detection. The goal is not merely detection, but precise error localization. This capability is essential for enabling efficient rollback-and-retry. To achieve this, we construct TrajBench, a dataset synthesized via a perturb-and-complete strategy to cover diverse procedural anomalies. Using this benchmark, we investigate the capability of models in process supervision. We observe that general-purpose LLMs, even with zero-shot prompting, struggle to identify and localize these anomalies. This reveals that generalized capabilities do not automatically translate to process reliability. To address this, we propose TrajAD, a specialized verifier trained with fine-grained process supervision. Our approach outperforms baselines, demonstrating that specialized supervision is essential for building trustworthy agents.
comment: 9 pages, 5 figures, 1 table
☆ TrailBlazer: History-Guided Reinforcement Learning for Black-Box LLM Jailbreaking
Large Language Models (LLMs) have become integral to many domains, making their safety a critical priority. Prior jailbreaking research has explored diverse approaches, including prompt optimization, automated red teaming, obfuscation, and reinforcement learning (RL) based methods. However, most existing techniques fail to effectively leverage vulnerabilities revealed in earlier interaction turns, resulting in inefficient and unstable attacks. Since jailbreaking involves sequential interactions in which each response influences future actions, reinforcement learning provides a natural framework for this problem. Motivated by this, we propose a history-aware RL-based jailbreak framework that analyzes and reweights vulnerability signals from prior steps to guide future decisions. We show that incorporating historical information alone improves jailbreak success rates. Building on this insight, we introduce an attention-based reweighting mechanism that highlights critical vulnerabilities within the interaction history, enabling more efficient exploration with fewer queries. Extensive experiments on AdvBench and HarmBench demonstrate that our method achieves state-of-the-art jailbreak performance while significantly improving query efficiency. These results underscore the importance of historical vulnerability signals in reinforcement learning-driven jailbreak strategies and offer a principled pathway for advancing adversarial research on LLM safeguards.
☆ A methodology for analyzing financial needs hierarchy from social discussions using LLM
This study examines the hierarchical structure of financial needs as articulated in social media discourse, employing generative AI techniques to analyze large-scale textual data. While human needs encompass a broad spectrum from fundamental survival to psychological fulfillment financial needs are particularly critical, influencing both individual well-being and day-to-day decision-making. Our research advances the understanding of financial behavior by utilizing large language models (LLMs) to extract and analyze expressions of financial needs from social media posts. We hypothesize that financial needs are organized hierarchically, progressing from short-term essentials to long-term aspirations, consistent with theoretical frameworks established in the behavioral sciences. Through computational analysis, we demonstrate the feasibility of identifying these needs and validate the presence of a hierarchical structure within them. In addition to confirming this structure, our findings provide novel insights into the content and themes of financial discussions online. By inferring underlying needs from naturally occurring language, this approach offers a scalable and data-driven alternative to conventional survey methodologies, enabling a more dynamic and nuanced understanding of financial behavior in real-world contexts.
comment: 15 pages, 5 figures, 4 tables
☆ Investigating the structure of emotions by analyzing similarity and association of emotion words
In the field of natural language processing, some studies have attempted sentiment analysis on text by handling emotions as explanatory or response variables. One of the most popular emotion models used in this context is the wheel of emotion proposed by Plutchik. This model schematizes human emotions in a circular structure, and represents them in two or three dimensions. However, the validity of Plutchik's wheel of emotion has not been sufficiently examined. This study investigated the validity of the wheel by creating and analyzing a semantic networks of emotion words. Through our experiments, we collected data of similarity and association of ordered pairs of emotion words, and constructed networks using these data. We then analyzed the structure of the networks through community detection, and compared it with that of the wheel of emotion. The results showed that each network's structure was, for the most part, similar to that of the wheel of emotion, but locally different.
comment: 5 figures, 8 tables
☆ Intrinsic Stability Limits of Autoregressive Reasoning: Structural Consequences for Long-Horizon Execution
Large language models (LLMs) demonstrate remarkable reasoning capabilities, yet their performance often deteriorates sharply in long-horizon tasks, exhibiting systematic breakdown beyond certain scales. Conventional explanations primarily attribute this phenomenon to task complexity, such as combinatorial search explosion or long-term credit assignment challenges. In this work, we argue that these explanations are incomplete: even in linear, unbranched tasks without semantic ambiguity, autoregressive execution is subject to an intrinsic stability limit. We propose that the fundamental constraint on long-horizon reasoning arises from process-level instability in autoregressive generation rather than solely from search or task complexity, reframing long-horizon reasoning as a problem of structural governance. We derive Theorem~A, showing that decision advantage in single-path autoregressive reasoning decays exponentially with execution length, imposing a fundamental bound on maintainable reasoning chains. This result implies a structural consequence: stable long-horizon reasoning requires discrete segmentation, naturally inducing graph-like execution structures such as directed acyclic graphs (DAGs). Empirical studies in both synthetic environments and real TextWorld tasks reveal observable performance cliffs consistent with theoretical predictions. Our findings provide a dynamical perspective on long-horizon reasoning failure and suggest new limitations on maintaining long-term coherence under purely autoregressive architectures. Furthermore, we highlight that short-horizon evaluation protocols may obscure structural instability, indicating a potential shift from scaling toward structured governance in future reasoning systems.
comment: 16 Pages, 7 figures, Keyworda: Autoregressive Reasoning, Long-Horizon Stability, Chain-of-Thought Reasoning, Information-Theoretic Analysis, Structured Reasoning, Inference Dynamics
☆ TFusionOcc: Student's t-Distribution Based Object-Centric Multi-Sensor Fusion Framework for 3D Occupancy Prediction
3D semantic occupancy prediction enables autonomous vehicles (AVs) to perceive fine-grained geometric and semantic structure of their surroundings from onboard sensors, which is essential for safe decision-making and navigation. Recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, the intermediate representations used by existing methods for 3D semantic occupancy prediction rely heavily on 3D voxel volumes or a set of 3D Gaussians, hindering the model's ability to efficiently and effectively capture fine-grained geometric details in the 3D driving environment. This paper introduces TFusionOcc, a novel object-centric multi-sensor fusion framework for predicting 3D semantic occupancy. By leveraging multi-stage multi-sensor fusion, Student's t-distribution, and the T-Mixture model (TMM), together with more geometrically flexible primitives, such as the deformable superquadric (superquadric with inverse warp), the proposed method achieved state-of-the-art (SOTA) performance on the nuScenes benchmark. In addition, extensive experiments were conducted on the nuScenes-C dataset to demonstrate the robustness of the proposed method in different camera and lidar corruption scenarios. The code will be available at: https://github.com/DanielMing123/TFusionOcc
☆ ARIS-RSMA Enhanced ISAC System: Joint Rate Splitting and Beamforming Design IEEE
This letter proposes an active reconfigurable intelligent surface (ARIS) assisted rate-splitting multiple access (RSMA) integrated sensing and communication (ISAC) system to overcome the fairness bottleneck in multi-target sensing under obstructed line-of-sight environments. Beamforming at the transceiver and ARIS, along with rate splitting, are optimized to maximize the minimum multi-target echo signal-to-interference-plus-noise ratio under multi-user rate and power constraints. The intricate non-convex problem is decoupled into three subproblems and solved iteratively by majorization-minimization (MM) and sequential rank-one constraint relaxation (SROCR) algorithms. Simulations show our scheme outperforms nonorthogonal multiple access, space-division multiple access, and passive RIS baselines, approaching sensing-only upper bounds.
comment: 5 pages, 5 figures, accepted by IEEE Wireless Communications Letters
☆ Empirical Analysis of Adversarial Robustness and Explainability Drift in Cybersecurity Classifiers
Machine learning (ML) models are increasingly deployed in cybersecurity applications such as phishing detection and network intrusion prevention. However, these models remain vulnerable to adversarial perturbations small, deliberate input modifications that can degrade detection accuracy and compromise interpretability. This paper presents an empirical study of adversarial robustness and explainability drift across two cybersecurity domains phishing URL classification and network intrusion detection. We evaluate the impact of L (infinity) bounded Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) perturbations on model accuracy and introduce a quantitative metric, the Robustness Index (RI), defined as the area under the accuracy perturbation curve. Gradient based feature sensitivity and SHAP based attribution drift analyses reveal which input features are most susceptible to adversarial manipulation. Experiments on the Phishing Websites and UNSW NB15 datasets show consistent robustness trends, with adversarial training improving RI by up to 9 percent while maintaining clean-data accuracy. These findings highlight the coupling between robustness and interpretability degradation and underscore the importance of quantitative evaluation in the design of trustworthy, AI-driven cybersecurity systems.
comment: Accepted for publication in 18th ACM International Conference on Agents and Artificial Intelligence (ICAART 2026), Marbella, Spain
☆ Unlocking Noisy Real-World Corpora for Foundation Model Pre-Training via Quality-Aware Tokenization
Current tokenization methods process sequential data without accounting for signal quality, limiting their effectiveness on noisy real-world corpora. We present QA-Token (Quality-Aware Tokenization), which incorporates data reliability directly into vocabulary construction. We make three key contributions: (i) a bilevel optimization formulation that jointly optimizes vocabulary construction and downstream performance, (ii) a reinforcement learning approach that learns merge policies through quality-aware rewards with convergence guarantees, and (iii) an adaptive parameter learning mechanism via Gumbel-Softmax relaxation for end-to-end optimization. Our experimental evaluation demonstrates consistent improvements: genomics (6.7 percentage point F1 gain in variant calling over BPE), finance (30% Sharpe ratio improvement). At foundation scale, we tokenize a pretraining corpus comprising 1.7 trillion base-pairs and achieve state-of-the-art pathogen detection (94.53 MCC) while reducing token count by 15%. We unlock noisy real-world corpora, spanning petabases of genomic sequences and terabytes of financial time series, for foundation model training with zero inference overhead.
☆ Generating High-quality Privacy-preserving Synthetic Data
Synthetic tabular data enables sharing and analysis of sensitive records, but its practical deployment requires balancing distributional fidelity, downstream utility, and privacy protection. We study a simple, model agnostic post processing framework that can be applied on top of any synthetic data generator to improve this trade off. First, a mode patching step repairs categories that are missing or severely underrepresented in the synthetic data, while largely preserving learned dependencies. Second, a k nearest neighbor filter replaces synthetic records that lie too close to real data points, enforcing a minimum distance between real and synthetic samples. We instantiate this framework for two neural generative models for tabular data, a feed forward generator and a variational autoencoder, and evaluate it on three public datasets covering credit card transactions, cardiovascular health, and census based income. We assess marginal and joint distributional similarity, the performance of models trained on synthetic data and evaluated on real data, and several empirical privacy indicators, including nearest neighbor distances and attribute inference attacks. With moderate thresholds between 0.2 and 0.35, the post processing reduces divergence between real and synthetic categorical distributions by up to 36 percent and improves a combined measure of pairwise dependence preservation by 10 to 14 percent, while keeping downstream predictive performance within about 1 percent of the unprocessed baseline. At the same time, distance based privacy indicators improve and the success rate of attribute inference attacks remains largely unchanged. These results provide practical guidance for selecting thresholds and applying post hoc repairs to improve the quality and empirical privacy of synthetic tabular data, while complementing approaches that provide formal differential privacy guarantees.
☆ Difficulty-Estimated Policy Optimization
Recent advancements in Large Reasoning Models (LRMs), exemplified by DeepSeek-R1, have underscored the potential of scaling inference-time compute through Group Relative Policy Optimization (GRPO). However, GRPO frequently suffers from gradient signal attenuation when encountering problems that are either too trivial or overly complex. In these scenarios, the disappearance of inter-group advantages makes the gradient signal susceptible to noise, thereby jeopardizing convergence stability. While variants like DAPO attempt to rectify gradient vanishing, they do not alleviate the substantial computational overhead incurred by exhaustive rollouts on low-utility samples. In this paper, we propose Difficulty-Estimated Policy Optimization (DEPO), a novel framework designed to optimize the efficiency and robustness of reasoning alignment. DEPO integrates an online Difficulty Estimator that dynamically assesses and filters training data before the rollout phase. This mechanism ensures that computational resources are prioritized for samples with high learning potential. Empirical results demonstrate that DEPO achieves up to a 2x reduction in rollout costs without compromising model performance. Our approach significantly lowers the computational barrier for training high-performance reasoning models, offering a more sustainable path for reasoning scaling. Code and data will be released upon acceptance.
☆ Revisiting Salient Object Detection from an Observer-Centric Perspective
Salient object detection is inherently a subjective problem, as observers with different priors may perceive different objects as salient. However, existing methods predominantly formulate it as an objective prediction task with a single groundtruth segmentation map for each image, which renders the problem under-determined and fundamentally ill-posed. To address this issue, we propose Observer-Centric Salient Object Detection (OC-SOD), where salient regions are predicted by considering not only the visual cues but also the observer-specific factors such as their preferences or intents. As a result, this formulation captures the intrinsic ambiguity and diversity of human perception, enabling personalized and context-aware saliency prediction. By leveraging multi-modal large language models, we develop an efficient data annotation pipeline and construct the first OC-SOD dataset named OC-SODBench, comprising 33k training, validation and test images with 152k textual prompts and object pairs. Built upon this new dataset, we further design OC-SODAgent, an agentic baseline which performs OC-SOD via a human-like "Perceive-Reflect-Adjust" process. Extensive experiments on our proposed OC-SODBench have justified the effectiveness of our contribution. Through this observer-centric perspective, we aim to bridge the gap between human perception and computational modeling, offering a more realistic and flexible understanding of what makes an object truly "salient." Code and dataset are publicly available at: https://github.com/Dustzx/OC_SOD
☆ Training Data Selection with Gradient Orthogonality for Efficient Domain Adaptation
Fine-tuning large language models (LLMs) for specialized domains often necessitates a trade-off between acquiring domain expertise and retaining general reasoning capabilities, a phenomenon known as catastrophic forgetting. Existing remedies face a dichotomy: gradient surgery methods offer geometric safety but incur prohibitive computational costs via online projections, while efficient data selection approaches reduce overhead but remain blind to conflict-inducing gradient directions. In this paper, we propose Orthogonal Gradient Selection (OGS), a data-centric method that harmonizes domain performance, general capability retention, and training efficiency. OGS shifts the geometric insights of gradient projection from the optimizer to the data selection stage by treating data selection as a constrained decision-making process. By leveraging a lightweight Navigator model and reinforcement learning techniques, OGS dynamically identifies training samples whose gradients are orthogonal to a general-knowledge anchor. This approach ensures naturally safe updates for target models without modifying the optimizer or incurring runtime projection costs. Experiments across medical, legal, and financial domains demonstrate that OGS achieves excellent results, significantly improving domain performance and training efficiency while maintaining or even enhancing performance on general tasks such as GSM8K.
☆ SHINE: A Scalable In-Context Hypernetwork for Mapping Context to LoRA in a Single Pass
We propose SHINE (Scalable Hyper In-context NEtwork), a scalable hypernetwork that can map diverse meaningful contexts into high-quality LoRA adapters for large language models (LLM). By reusing the frozen LLM's own parameters in an in-context hypernetwork design and introducing architectural innovations, SHINE overcomes key limitations of prior hypernetworks and achieves strong expressive power with a relatively small number of parameters. We introduce a pretraining and instruction fine-tuning pipeline, and train our hypernetwork to generate high quality LoRA adapters from diverse meaningful contexts in a single forward pass. It updates LLM parameters without any fine-tuning, and immediately enables complex question answering tasks related to the context without directly accessing the context, effectively transforming in-context knowledge to in-parameter knowledge in one pass. Our work achieves outstanding results on various tasks, greatly saves time, computation and memory costs compared to SFT-based LLM adaptation, and shows great potential for scaling. Our code is available at https://github.com/Yewei-Liu/SHINE
☆ Di3PO -- Diptych Diffusion DPO for Targeted Improvements in Image
Existing methods for preference tuning of text-to-image (T2I) diffusion models often rely on computationally expensive generation steps to create positive and negative pairs of images. These approaches frequently yield training pairs that either lack meaningful differences, are expensive to sample and filter, or exhibit significant variance in irrelevant pixel regions, thereby degrading training efficiency. To address these limitations, we introduce "Di3PO", a novel method for constructing positive and negative pairs that isolates specific regions targeted for improvement during preference tuning, while keeping the surrounding context in the image stable. We demonstrate the efficacy of our approach by applying it to the challenging task of text rendering in diffusion models, showcasing improvements over baseline methods of SFT and DPO.
☆ Trifuse: Enhancing Attention-Based GUI Grounding via Multimodal Fusion
GUI grounding maps natural language instructions to the correct interface elements, serving as the perception foundation for GUI agents. Existing approaches predominantly rely on fine-tuning multimodal large language models (MLLMs) using large-scale GUI datasets to predict target element coordinates, which is data-intensive and generalizes poorly to unseen interfaces. Recent attention-based alternatives exploit localization signals in MLLMs attention mechanisms without task-specific fine-tuning, but suffer from low reliability due to the lack of explicit and complementary spatial anchors in GUI images. To address this limitation, we propose Trifuse, an attention-based grounding framework that explicitly integrates complementary spatial anchors. Trifuse integrates attention, OCR-derived textual cues, and icon-level caption semantics via a Consensus-SinglePeak (CS) fusion strategy that enforces cross-modal agreement while retaining sharp localization peaks. Extensive evaluations on four grounding benchmarks demonstrate that Trifuse achieves strong performance without task-specific fine-tuning, substantially reducing the reliance on expensive annotated data. Moreover, ablation studies reveal that incorporating OCR and caption cues consistently improves attention-based grounding performance across different backbones, highlighting its effectiveness as a general framework for GUI grounding.
comment: 17 pages, 10 figures
☆ Zero-Trust Runtime Verification for Agentic Payment Protocols: Mitigating Replay and Context-Binding Failures in AP2
The deployment of autonomous AI agents capable of executing commercial transactions has motivated the adoption of mandate-based payment authorization protocols, including the Universal Commerce Protocol (UCP) and the Agent Payments Protocol (AP2). These protocols replace interactive, session-based authorization with cryptographically issued mandates, enabling asynchronous and autonomous execution. While AP2 provides specification-level guarantees through signature verification, explicit binding, and expiration semantics, real-world agentic execution introduces runtime behaviors such as retries, concurrency, and orchestration that challenge implicit assumptions about mandate usage. In this work, we present a security analysis of the AP2 mandate lifecycle and identify enforcement gaps that arise during runtime in agent-based payment systems. We propose a zero-trust runtime verification framework that enforces explicit context binding and consume-once mandate semantics using dynamically generated, time-bound nonces, ensuring that authorization decisions are evaluated at execution time rather than assumed from static issuance properties. Through simulation-based evaluation under high concurrency, we show that context-aware binding and consume-once enforcement address distinct and complementary attack classes, and that both are required to prevent replay and context-redirect attacks. The proposed framework mitigates all evaluated attacks while maintaining stable verification latency of approximately 3.8~ms at throughput levels up to 10{,}000 transactions per second. We further demonstrate that the required runtime state is bounded by peak concurrency rather than cumulative transaction history, indicating that robust runtime security for agentic payment execution can be achieved with minimal and predictable overhead.
☆ Action Hallucination in Generative Visual-Language-Action Models
Robot Foundation Models such as Vision-Language-Action models are rapidly reshaping how robot policies are trained and deployed, replacing hand-designed planners with end-to-end generative action models. While these systems demonstrate impressive generalization, it remains unclear whether they fundamentally resolve the long-standing challenges of robotics. We address this question by analyzing action hallucinations that violate physical constraints and their extension to plan-level failures. Focusing on latent-variable generative policies, we show that hallucinations often arise from structural mismatches between feasible robot behavior and common model architectures. We study three such barriers -- topological, precision, and horizon -- and show how they impose unavoidable tradeoffs. Our analysis provides mechanistic explanations for reported empirical failures of generative robot policies and suggests principled directions for improving reliability and trustworthiness, without abandoning their expressive power.
comment: 22 pages
☆ Can Post-Training Transform LLMs into Causal Reasoners?
Causal inference is essential for decision-making but remains challenging for non-experts. While large language models (LLMs) show promise in this domain, their precise causal estimation capabilities are still limited, and the impact of post-training on these abilities is insufficiently explored. This paper examines the extent to which post-training can enhance LLMs' capacity for causal inference. We introduce CauGym, a comprehensive dataset comprising seven core causal tasks for training and five diverse test sets. Using this dataset, we systematically evaluate five post-training approaches: SFT, DPO, KTO, PPO, and GRPO. Across five in-domain and four existing benchmarks, our experiments demonstrate that appropriate post-training enables smaller LLMs to perform causal inference competitively, often surpassing much larger models. Our 14B parameter model achieves 93.5% accuracy on the CaLM benchmark, compared to 55.4% by OpenAI o3. Furthermore, the post-trained LLMs exhibit strong generalization and robustness under real-world conditions such as distribution shifts and noisy data. Collectively, these findings provide the first systematic evidence that targeted post-training can produce reliable and robust LLM-based causal reasoners. Our data and GRPO-model are available at https://github.com/OpenCausaLab/CauGym.
☆ Exposing Weaknesses of Large Reasoning Models through Graph Algorithm Problems
Large Reasoning Models (LRMs) have advanced rapidly; however, existing benchmarks in mathematics, code, and common-sense reasoning remain limited. They lack long-context evaluation, offer insufficient challenge, and provide answers that are difficult to verify programmatically. We introduce GrAlgoBench, a benchmark designed to evaluate LRMs through graph algorithm problems. Such problems are particularly well suited for probing reasoning abilities: they demand long-context reasoning, allow fine-grained control of difficulty levels, and enable standardized, programmatic evaluation. Across nine tasks, our systematic experiments reveal two major weaknesses of current LRMs. First, accuracy deteriorates sharply as context length increases, falling below 50% once graphs exceed 120 nodes. This degradation is driven by frequent execution errors, weak memory, and redundant reasoning. Second, LRMs suffer from an over-thinking phenomenon, primarily caused by extensive yet largely ineffective self-verification, which inflates reasoning traces without improving correctness. By exposing these limitations, GrAlgoBench establishes graph algorithm problems as a rigorous, multidimensional, and practically relevant testbed for advancing the study of reasoning in LRMs. Code is available at https://github.com/Bklight999/GrAlgoBench.
☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables
☆ Accelerating Vision Transformers on Brain Processing Unit
With the advancement of deep learning technologies, specialized neural processing hardware such as Brain Processing Units (BPUs) have emerged as dedicated platforms for CNN acceleration, offering optimized INT8 computation capabilities for convolutional operations. Meanwhile, Vision Transformer (ViT) models, such as the Data-efficient Image Transformer (DeiT), have demonstrated superior performance and play increasingly crucial roles in computer vision tasks. However, due to the architectural mismatch between CNN-optimized hardware and Vision Transformer computation characteristics--namely, that linear layers in Transformers operate on three-dimensional data while BPU acceleration is designed for four-dimensional convolution operations-it is difficult or even impossible to leverage BPU's advantages when deploying Vision Transformers. To address this challenge, we propose a novel approach that restructures the Vision Transformer by replacing linear layers and layer normalization operations with carefully designed convolutional operators. This enables DeiT to fully utilize the acceleration capabilities of BPUs, while allowing the original weight parameters to be inherited by the restructured models without retraining or fine-tuning. To the best of our knowledge, this is the first successful deployment of Vision Transformers that fully leverages BPU classification datasets demonstrate the effectiveness of our approach. Specifically, the quantized DeiT-Base model achieves 80.4% accuracy on ImageNet, compared to the original 81.8%, while obtaining up to a 3.8* inference speedup. Our finetuned DeiT model on the flower classification dataset also achieves excellent performance, with only a 0.5% accuracy drop for the DeiT-Base model, further demonstrating the effectiveness of our method.
☆ Toward generative machine learning for boosting ensembles of climate simulations
Accurately quantifying uncertainty in predictions and projections arising from irreducible internal climate variability is critical for informed decision making. Such uncertainty is typically assessed using ensembles produced with physics based climate models. However, computational constraints impose a trade off between generating the large ensembles required for robust uncertainty estimation and increasing model resolution to better capture fine scale dynamics. Generative machine learning offers a promising pathway to alleviate these constraints. We develop a conditional Variational Autoencoder (cVAE) trained on a limited sample of climate simulations to generate arbitrary large ensembles. The approach is applied to output from monthly CMIP6 historical and future scenario experiments produced with the Canadian Centre for Climate Modelling and Analysis' (CCCma's) Earth system model CanESM5. We show that the cVAE model learns the underlying distribution of the data and generates physically consistent samples that reproduce realistic low and high moment statistics, including extremes. Compared with more sophisticated generative architectures, cVAEs offer a mathematically transparent, interpretable, and computationally efficient framework. Their simplicity lead to some limitations, such as overly smooth outputs, spectral bias, and underdispersion, that we discuss along with strategies to mitigate them. Specifically, we show that incorporating output noise improves the representation of climate relevant multiscale variability, and we propose a simple method to achieve this. Finally, we show that cVAE-enhanced ensembles capture realistic global teleconnection patterns, even under climate conditions absent from the training data.
comment: SI_Toward_generative_machine_learning_for_boosting_the_ensembles_size_of_climate_simulation.pdf contains Supplementary Information
☆ Do LLMs Act Like Rational Agents? Measuring Belief Coherence in Probabilistic Decision Making
Large language models (LLMs) are increasingly deployed as agents in high-stakes domains where optimal actions depend on both uncertainty about the world and consideration of utilities of different outcomes, yet their decision logic remains difficult to interpret. We study whether LLMs are rational utility maximizers with coherent beliefs and stable preferences. We consider behaviors of models for diagnosis challenge problems. The results provide insights about the relationship of LLM inferences to ideal Bayesian utility maximization for elicited probabilities and observed actions. Our approach provides falsifiable conditions under which the reported probabilities \emph{cannot} correspond to the true beliefs of any rational agent. We apply this methodology to multiple medical diagnostic domains with evaluations across several LLMs. We discuss implications of the results and directions forward for uses of LLMs in guiding high-stakes decisions.
♻ ☆ code_transformed: The Influence of Large Language Models on Code EACL 2026
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 20,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake_case function names in Python code increased from 40.7% in Q1 2023 to 49.8% in Q3 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Our experimental results may provide the first large-scale empirical evidence that LLMs affect real-world programming style. We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
comment: EACL 2026 Findings
♻ ☆ Forecast Aware Deep Reinforcement Learning for Efficient Electricity Load Scheduling in Dairy Farms
Dairy farming is an energy intensive sector that relies heavily on grid electricity. With increasing renewable energy integration, sustainable energy management has become essential for reducing grid dependence and supporting the United Nations Sustainable Development Goal 7 on affordable and clean energy. However, the intermittent nature of renewables poses challenges in balancing supply and demand in real time. Intelligent load scheduling is therefore crucial to minimize operational costs while maintaining reliability. Reinforcement Learning has shown promise in improving energy efficiency and reducing costs. However, most RL-based scheduling methods assume complete knowledge of future prices or generation, which is unrealistic in dynamic environments. Moreover, standard PPO variants rely on fixed clipping or KL divergence thresholds, often leading to unstable training under variable tariffs. To address these challenges, this study proposes a Deep Reinforcement Learning framework for efficient load scheduling in dairy farms, focusing on battery storage and water heating under realistic operational constraints. The proposed Forecast Aware PPO incorporates short term forecasts of demand and renewable generation using hour of day and month based residual calibration, while the PID KL PPO variant employs a proportional integral derivative controller to regulate KL divergence for stable policy updates adaptively. Trained on real world dairy farm data, the method achieves up to 1% lower electricity cost than PPO, 4.8% than DQN, and 1.5% than SAC. For battery scheduling, PPO reduces grid imports by 13.1%, demonstrating scalability and effectiveness for sustainable energy management in modern dairy farming.
♻ ☆ FeNN-DMA: A RISC-V SoC for SNN acceleration
Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to spatio-temporal tasks such as keyword spotting and video classification. However, SNNs have a much lower arithmetic intensity than ANNs and are therefore not well-matched to standard accelerators like GPUs and TPUs. Field Programmable Gate Arrays (FPGAs) are designed for such memory-bound workloads, and here we present a novel, fully-programmable RISC-V-based system-on-chip (FeNN-DMA), tailored to simulating SNNs on modern UltraScale+ FPGAs. We show that FeNN-DMA has comparable resource usage and energy requirements to state-of-the-art fixed-function SNN accelerators, yet it supports more complex neuron models and network topologies, and can simulate up to 16 thousand neurons and 256 million synapses per core. Using this functionality, we demonstrate state-of-the-art classification accuracy on the Spiking Heidelberg Digits, Neuromorphic MNIST and Braille tactile classification tasks.
♻ ☆ Yunjue Agent Tech Report: A Fully Reproducible, Zero-Start In-Situ Self-Evolving Agent System for Open-Ended Tasks
Conventional agent systems often struggle in open-ended environments where task distributions continuously drift and external supervision is scarce. Their reliance on static toolsets or offline training lags behind these dynamics, leaving the system's capability boundaries rigid and unknown. To address this, we propose the In-Situ Self-Evolving paradigm. This approach treats sequential task interactions as a continuous stream of experience, enabling the system to distill short-term execution feedback into long-term, reusable capabilities without access to ground-truth labels. Within this framework, we identify tool evolution as the critical pathway for capability expansion, which provides verifiable, binary feedback signals. Within this framework, we develop Yunjue Agent, a system that iteratively synthesizes, optimizes, and reuses tools to navigate emerging challenges. To optimize evolutionary efficiency, we further introduce a Parallel Batch Evolution strategy. Empirical evaluations across five diverse benchmarks under a zero-start setting demonstrate significant performance gains over proprietary baselines. Additionally, complementary warm-start evaluations confirm that the accumulated general knowledge can be seamlessly transferred to novel domains. Finally, we propose a novel metric to monitor evolution convergence, serving as a function analogous to training loss in conventional optimization. We open-source our codebase, system traces, and evolved tools to facilitate future research in resilient, self-evolving intelligence.
♻ ☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
♻ ☆ Constella: Supporting Storywriters' Interconnected Character Creation through LLM-based Multi-Agents
Creating a cast of characters by attending to their relational dynamics is a critical aspect of most long-form storywriting. However, our formative study (N=14) reveals that writers struggle to envision new characters that could influence existing ones, balance similarities and differences among characters, and intricately flesh out their relationships. Based on these observations, we designed Constella, an LLM-based multi-agent tool that supports storywriters' interconnected character creation process. Constella suggests related characters (FRIENDS DISCOVERY feature), reveals the inner mindscapes of several characters simultaneously (JOURNALS feature), and manifests relationships through inter-character responses (COMMENTS feature). Our 7-8 day deployment study with storywriters (N=11) shows that Constella enabled the creation of expansive communities composed of related characters, facilitated the comparison of characters' thoughts and emotions, and deepened writers' understanding of character relationships. We conclude by discussing how multi-agent interactions can help distribute writers' attention and effort across the character cast.
comment: Accepted to ACM Transactions on Computer-Human Interaction (TOCHI)
♻ ☆ Accelerating Diffusion Planners in Offline RL via Reward-Aware Consistency Trajectory Distillation
Although diffusion models have achieved strong results in decision-making tasks, their slow inference speed remains a key limitation. While consistency models offer a potential solution, existing applications to decision-making either struggle with suboptimal demonstrations under behavior cloning or rely on complex concurrent training of multiple networks under the actor-critic framework. In this work, we propose a novel approach to consistency distillation for offline reinforcement learning that directly incorporates reward optimization into the distillation process. Our method achieves single-step sampling while generating higher-reward action trajectories through decoupled training and noise-free reward signals. Empirical evaluations on the Gym MuJoCo, FrankaKitchen, and long horizon planning benchmarks demonstrate that our approach can achieve a 9.7% improvement over previous state-of-the-art while offering up to 142x speedup over diffusion counterparts in inference time.
♻ ☆ Neuro-symbolic AI for Predictive Maintenance (PdM) -- review and recommendations
In this document we perform a systematic review of the State-of-the-art in Predictive Maintenance (PdM) over the last five years in industrial settings such as commercial buildings, pharmaceutical facilities, or semi-conductor manufacturing. In general, data-driven methods such as those based on deep learning, exhibit higher accuracy than traditional knowledge-based systems. These systems however, are not without significant limitations. The need for large labeled data sets, a lack of generalizability to new environments (out-of-distribution generalization), and a lack of transparency at inference time are some of the obstacles to adoption in real world environments. In contrast, traditional approaches based on domain expertise in the form of rules, logic or first principles suffer from poor accuracy, many false positives and a need for ongoing expert supervision and manual tuning. While the majority of approaches in recent literature utilize some form of data-driven architecture, there are hybrid systems which also take into account domain specific knowledge. Such hybrid systems have the potential to overcome the weaknesses of either approach on its own while preserving their strengths. We propose taking the hybrid approach even further and integrating deep learning with symbolic logic, or Neuro-symbolic AI, to create more accurate, explainable, interpretable, and robust systems. We describe several neuro-symbolic architectures and examine their strengths and limitations within the PdM domain. We focus specifically on methods which involve the use of sensor data and manually crafted rules as inputs by describing concrete NeSy architectures. In short, this survey outlines the context of modern maintenance, defines key concepts, establishes a generalized framework, reviews current modeling approaches and challenges, and introduces the proposed focus on Neuro-symbolic AI (NESY).
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: Structured Cognitive Loop with a Governance Layer
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). Soft Symbolic Control constitutes a dedicated governance layer within SCL, applying symbolic constraints to probabilistic inference while preserving the flexibility of neural reasoning and restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: This revised version strengthens the architectural clarity and conceptual coherence of the manuscript. In particular, it formalizes Soft Symbolic Control as a dedicated Governance layer distinct from the R-CCAM loop, clarifying its structural role beyond the earlier meta-prompt add-on formulation
♻ ☆ Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems
Despite initial successes and a variety of architectures, retrieval-augmented generation systems still struggle to reliably retrieve and connect the multi-step evidence required for complicated reasoning tasks. Most of the standard RAG frameworks regard all retrieved information as equally reliable, overlooking the varying credibility and interconnected nature of large textual corpora. GraphRAG approaches offer potential improvement to RAG systems by integrating knowledge graphs, which structure information into nodes and edges, capture entity relationships, and enable multi-step logical traversal. However, GraphRAG is not always an ideal solution, as it depends on high-quality graph representations of the corpus. Such representations usually rely on manually curated knowledge graphs, which are costly to construct and update, or on automated graph-construction pipelines that are often unreliable. Moreover, systems following this paradigm typically use large language models to guide graph traversal and evidence retrieval. In this paper, we propose a novel RAG framework that uses a spreading activation algorithm to retrieve information from a corpus of documents connected by an automatically constructed heterogeneous knowledge graph. This approach reduces reliance on semantic knowledge graphs, which are often incomplete due to information loss during information extraction, avoids LLM-guided graph traversal, and improves performance on multi-hop question answering. Experiments show that our method achieves better or comparable performance to several state-of-the-art RAG methods and can be integrated as a plug-and-play module with different iterative RAG pipelines. When combined with chain-of-thought iterative retrieval, it yields up to a 39% absolute improvement in answer correctness over naive RAG, while achieving these results with small open-weight language models.
comment: 20 pages, 5 figures
♻ ☆ Reparameterization Proximal Policy Optimization
By leveraging differentiable dynamics, Reparameterization Policy Gradient (RPG) achieves high sample efficiency. However, current approaches are hindered by two critical limitations: the under-utilization of computationally expensive dynamics Jacobians and inherent training instability. While sample reuse offers a remedy for under-utilization, no prior principled framework exists, and naive attempts risk exacerbating instability. To address these challenges, we propose Reparameterization Proximal Policy Optimization (RPO). We first establish that under sample reuse, RPG naturally optimizes a PPO-style surrogate objective via Backpropagation Through Time, providing a unified framework for both on- and off-policy updates. To further ensure stability, RPO integrates a clipped policy gradient mechanism tailored for RPG and employs explicit Kullback-Leibler divergence regularization. Experimental results demonstrate that RPO maintains superior sample efficiency and consistently outperforms or achieves state-of-the-art performance across diverse tasks.
♻ ☆ Emergent Cognitive Convergence via Implementation: Structured Cognitive Loop Reflecting Four Theories of Mind SC
We report a structural convergence among four influential theories of mind: Kahneman dual-system theory, Friston predictive processing, Minsky society of mind, and Clark extended mind, emerging unintentionally within a practical AI architecture known as Agentic Flow. Designed to address limitations of large language models LLMs, Agentic Flow comprises five interlocking modules - Retrieval, Cognition, Control, Action, and Memory - organized into a repeatable cognitive loop. Although originally inspired only by Minsky and Clark, subsequent analysis showed that its structure echoes computational motifs from all four theories. This suggests that theoretical convergence may arise from implementation constraints rather than deliberate synthesis. In controlled evaluations, the structured agent achieved 95.8 percent task success compared to 62.3 percent for baseline LLMs, demonstrating stronger constraint adherence and more reproducible reasoning. We characterize this convergence through a broader descriptive meta-architecture called PEACE, highlighting recurring patterns such as predictive modeling, associative recall, and error-sensitive control. Later formalized as the Structured Cognitive Loop (SCL), this abstraction generalizes principles first realized in Agentic Flow as a foundation for behavioral intelligence in LLM-based agents.Rather than asserting theoretical unification, this position paper proposes that intelligent architectures may evolve toward shared structural patterns shaped by practical demands. Agentic Flow thus functions as an implementation instance of the Structured Cognitive Loop, illustrating how a unified cognitive form can emerge not from abstraction, but from the necessities of real-world reasoning.
comment: This revised version improves conceptual consistency between Agentic Flow and the Structured Cognitive Loop (SCL; arXiv:2510.05107)
♻ ☆ Trust Region Masking for Long-Horizon LLM Reinforcement Learning
Policy gradient methods for Large Language Models optimize a policy $π_θ$ via a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. However, modern LLM-RL pipelines suffer from unavoidable implementation divergences, such as backend discrepancies, Mixture-of-Experts routing discontinuities, and distributed training staleness. These factors cause an off-policy mismatch ($π_{\text{roll}} \neq π_θ$), leading to approximation errors between the surrogate and the true objective. We demonstrate that classical trust region bounds on this error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. To address this, we derive two new bounds: a Pinsker-Marginal bound scaling as $O(T^{3/2})$ and a Mixed bound scaling as $O(T)$. We further derive an Adaptive bound that strictly generalizes the Pinsker-Marginal bound by combining an importance-ratio decomposition of the error with an adaptive per-position application of Pinsker's inequality on the future trajectory divergence; the minimum over all three bounds is tighter than any individual bound. Crucially, all bounds depend on $D_{\mathrm{KL}}^{\mathrm{tok,max}}$, the maximum token-level KL divergence across the sequence. As a \emph{sequence-level} term, the divergence cannot be controlled by previous token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which masks entire sequences that violate the trust region. TRM enables the first non-vacuous monotonic improvement guarantees and demonstrates empirical training stability for long-horizon LLM-RL.
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language, nor how it leverages working memory. Furthermore, Transformers encounters a computational limitation: quadratic complexity growth with sequence length. Motivated by these limitations, we aim to design architectures that leverage efficient working memory dynamics to overcome standard computational barriers. We introduce Echo State Transformers (EST), a hybrid architecture that resolves this challenge while demonstrating state of the art performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with nodes from Reservoir Computing to create a fixed-size memory system. Drawing inspiration from Echo State Networks, our approach leverages several reservoirs (random recurrent networks) in parallel as a lightweight and efficient working memory. These independent units possess distinct and learned internal dynamics with an adaptive leak rate, enabling them to dynamically adjust their own temporality. By applying attention on those fixed number of units instead of input tokens, EST achieves linear complexity for the whole sequence, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results demonstrate that by shifting the attention mechanism from the entire input sequence to a fixed set of evolving memory units, it is possible to maintains high sensitivity to temporal events while achieving constant computational complexity per step.
♻ ☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
♻ ☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
♻ ☆ In-Run Data Shapley for Adam Optimizer
Reliable data attribution is essential for mitigating bias and reducing computational waste in modern machine learning, with the Shapley value serving as the theoretical gold standard. While recent "In-Run" methods bypass the prohibitive cost of retraining by estimating contributions dynamically, they heavily rely on the linear structure of Stochastic Gradient Descent (SGD) and fail to capture the complex dynamics of adaptive optimizers like Adam. In this work, we demonstrate that data attribution is inherently optimizer-dependent: we show that SGD-based proxies diverge significantly from true contributions under Adam (Pearson $R \approx 0.11$), rendering them ineffective for modern training pipelines. To bridge this gap, we propose Adam-Aware In-Run Data Shapley. We derive a closed-form approximation that restores additivity by redefining utility under a fixed-state assumption and enable scalable computation via a novel Linearized Ghost Approximation. This technique linearizes the variance-dependent scaling term, allowing us to compute pairwise gradient dot-products without materializing per-sample gradients. Extensive experiments show that our method achieves near-perfect fidelity to ground-truth marginal contributions ($R > 0.99$) while retaining $\sim$95\% of standard training throughput. Furthermore, our Adam-aware attribution significantly outperforms SGD-based baselines in data attribution downstream tasks.
comment: 16 pages
♻ ☆ STAR: Stepwise Task Augmentation with Relation Learning for Aspect Sentiment Quad Prediction
Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct a complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), requires predicting all four elements simultaneously and is hindered by the difficulty of accurately modeling dependencies among sentiment elements. A key challenge lies in the scarcity of annotated data, which limits the model ability to understand and reason about the relational dependencies required for effective quad prediction. To address this challenge, we propose a stepwise task augmentation framework with relation learning that decomposes ASQP into a sequence of auxiliary subtasks with increasing relational granularity. Specifically, STAR incrementally constructs auxiliary data by augmenting the training data with pairwise and overall relation tasks, enabling the model to capture and compose sentiment dependencies in a stepwise manner. This stepwise formulation provides effective relational learning signals that enhance quad prediction performance, particularly in low-resource scenarios. Extensive experiments across four benchmark datasets demonstrate that STAR consistently outperforms existing methods, achieving average F1 improvements of over $2\%$ under low-resource conditions.
comment: 17 pages, 6 figures, and 7 tables
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HSG-12M: A Large-Scale Benchmark of Spatial Multigraphs from the Energy Spectra of Non-Hermitian Crystals
AI is transforming scientific research by revealing new ways to understand complex physical systems, but its impact remains constrained by the lack of large, high-quality domain-specific datasets. A rich, largely untapped resource lies in non-Hermitian quantum physics, where the energy spectra of crystals form intricate geometries on the complex plane -- termed as Hamiltonian spectral graphs. Despite their significance as fingerprints for electronic behavior, their systematic study has been intractable due to the reliance on manual extraction. To unlock this potential, we introduce Poly2Graph: a high-performance, open-source pipeline that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Using this tool, we present HSG-12M: a dataset containing 11.6 million static and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-polynomial classes, distilled from 177 TB of spectral potential data. Crucially, HSG-12M is the first large-scale dataset of spatial multigraphs -- graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. This simultaneously addresses a critical gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial edges, discarding vital geometric information. Benchmarks with popular GNNs expose new challenges in learning spatial multi-edges at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for data-driven scientific discovery in condensed matter physics, new opportunities in geometry-aware graph learning and beyond.
comment: 48 pages, 13 figures, 14 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0. Benchmark scripts and data loaders included
♻ ☆ Key and Value Weights Are Probably All You Need: On the Necessity of the Query, Key, Value weight Triplet in Encoder-Only and Decoder-Only Transformers
We theoretically investigate whether the Query, Key, Value weight triplet can be reduced in encoder-only and decoder-only transformers. Under mild assumptions, we prove that Query weights are redundant and can be replaced with the identity matrix, reducing attention parameters by $25\%$. This also simplifies optimization: attention logits become linear rather than quadratic in learned weights. Validating on decoder-only GPT-style small models trained from scratch, we find that with adjusted attention scaling and weight decay, reduced models match baseline performance despite fewer parameters. Training remains stable at over $3\times$ lower weight decay, suggesting Query weight elimination provides implicit regularization. Our analysis has also led us to a structural expressivity boundary: in the mathematically tractable ReLU setting, skip connections push MLPs into a generically disjoint function class at fixed width. These findings motivate investigation across modalities and at scale, where the observed stability and efficiency gains may prove most consequential.
♻ ☆ Towards Agentic Intelligence for Materials Science
The convergence of artificial intelligence and materials science presents a transformative opportunity, but achieving true acceleration in discovery requires moving beyond task-isolated, fine-tuned models toward agentic systems that plan, act, and learn across the full discovery loop. This survey advances a unique pipeline-centric view that spans from corpus curation and pretraining, through domain adaptation and instruction tuning, to goal-conditioned agents interfacing with simulation and experimental platforms. Unlike prior reviews, we treat the entire process as an end-to-end system to be optimized for tangible discovery outcomes rather than proxy benchmarks. This perspective allows us to trace how upstream design choices-such as data curation and training objectives-can be aligned with downstream experimental success through effective credit assignment. To bridge communities and establish a shared frame of reference, we first present an integrated lens that aligns terminology, evaluation, and workflow stages across AI and materials science. We then analyze the field through two focused lenses: From the AI perspective, the survey details LLM strengths in pattern recognition, predictive analytics, and natural language processing for literature mining, materials characterization, and property prediction; from the materials science perspective, it highlights applications in materials design, process optimization, and the acceleration of computational workflows via integration with external tools (e.g., DFT, robotic labs). Finally, we contrast passive, reactive approaches with agentic design, cataloging current contributions while motivating systems that pursue long-horizon goals with autonomy, memory, and tool use. This survey charts a practical roadmap towards autonomous, safety-aware LLM agents aimed at discovering novel and useful materials.
comment: 81 pages
♻ ☆ LLM-Enhanced Reinforcement Learning for Long-Term User Satisfaction in Interactive Recommendation
Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://github.com/1163710212/LERL.
♻ ☆ Feature Identification via the Empirical NTK
We provide evidence that eigenanalysis of the empirical neural tangent kernel (eNTK) can surface the features used by trained neural networks. Across three standard toy models for mechanistic interpretability, Toy Models of Superposition (TMS), a 1-layer MLP trained on modular addition and a 1-layer Transformer trained on modular addition, we find that top eigenspaces of the eNTK align with ground-truth features. In TMS, the eNTK recovers the ground-truth features in both the sparse (high superposition) and dense regimes. In modular arithmetic, the eNTK can be used to recover Fourier feature families. Moreover, we provide evidence that a layerwise eNTK localizes features to specific layers and that the evolution of the eNTK spectrum can be used to diagnose the grokking phase transition. These results suggest that eNTK analysis may provide a practical handle for feature discovery and for detecting phase changes in small models.
comment: 19 pages, 9 figures. v2: references and expanded discussion in Appendix B added. v3: Transformer case study and more appendices added
♻ ☆ AI sustains higher strategic tension than humans in chess
Strategic decision-making requires balancing immediate opportunities against long-term objectives: a tension fundamental to competitive environments. We investigate this trade-off in chess by analyzing the dynamics of human and AI gameplay through a network-based metric that quantifies piece-to-piece interactions. Our analysis reveals that elite AI players sustain substantially higher levels of strategic tension for longer durations than top human grandmasters. We find that cumulative tension scales with algorithmic complexity in AI systems and increases linearly with skill level (Elo rating) in human play. Longer time controls are associated with higher tension in human games, reflecting the additional strategic complexity players can manage with more thinking time. The temporal profiles reveal contrasting approaches: highly competitive AI systems tolerate densely interconnected positions that balance offensive and defensive tactics over extended periods, while human players systematically limit tension and game complexity. These differences have broader implications for understanding how artificial and biological systems navigate complex strategic environments and for the deployment of AI in high-stakes competitive scenarios.
♻ ☆ VERA-MH: Reliability and Validity of an Open-Source AI Safety Evaluation in Mental Health
Millions now use generative AI chatbots for psychological support. Despite the promise related to availability and scale, the single most pressing question in AI for mental health is whether these tools are safe. The Validation of Ethical and Responsible AI in Mental Health (VERA-MH) evaluation was recently proposed to meet the urgent need for an evidence-based, automated safety benchmark. This study aimed to examine the clinical validity and reliability of VERA-MH for evaluating AI safety in suicide risk detection and response. We first simulated a large set of conversations between large language model (LLM)-based users (user-agents) and general-purpose AI chatbots. Licensed mental health clinicians used a rubric (scoring guide) to independently rate the simulated conversations for safe and unsafe chatbot behaviors, as well as user-agent realism. An LLM-based judge used the same scoring rubric to evaluate the same set of simulated conversations. We then examined rating alignment (a) among individual clinicians and (b) between clinician consensus and the LLM judge, and (c) summarized clinicians' ratings of user-agent realism. Individual clinicians were generally consistent with one another in their safety ratings (chance-corrected inter-rater reliability [IRR] = 0.77), establishing a gold-standard clinical reference. The LLM judge was strongly aligned with this clinical consensus overall (IRR = 0.81) and within key conditions. Together, findings from this human evaluation study support the validity and reliability of VERA-MH: an open-source, automated AI safety evaluation for mental health. Future research will examine the generalizability and robustness of VERA-MH and expand the framework to target additional key areas of AI safety in mental health.
♻ ☆ GraphToxin: Reconstructing Full Unlearned Graphs from Graph Unlearning
Graph unlearning has emerged as a promising solution to comply with "the right to be forgotten" regulations by enabling the removal of sensitive information upon request. However, this solution is not foolproof. The involvement of multiple parties creates new attack surfaces, and residual traces of deleted data can still remain in the unlearned graph neural networks (GNNs). These vulnerabilities can be exploited by attackers to recover the supposedly erased samples, thereby undermining the intended functionality of graph unlearning. In this work, we propose GraphToxin, the first full graph reconstruction attack against graph unlearning. Specifically, we introduce a novel curvature matching module to provide fine-grained guidance for unlearned graph recovery. We demonstrate that GraphToxin can successfully subvert the regulatory guarantees expected from graph unlearning, it can recover not only a deleted individual's information and personal links but also sensitive content from their connections, thereby posing substantially more detrimental threats. Furthermore, we extend GraphToxin to multiple-node removal under both white-box and black-box settings, showcasing its practical feasibility and potential to cause considerable harm. We highlight the necessity of worst-case analysis and propose a systematic evaluation framework to assess attack performance under both random and worst-case node removal scenarios. Our extensive experiments demonstrate the effectiveness and flexibility of GraphToxin. Notably, existing defense mechanisms are largely ineffective against this attack or even amplify its performance in some cases. Given the severe privacy risks posed by GraphToxin, our work underscores the urgent need for more effective and robust defenses.
♻ ☆ Efficient Perplexity Bound and Ratio Matching in Discrete Diffusion Language Models
While continuous diffusion models excel in modeling continuous distributions, their application to categorical data has been less effective. Recent work has shown that ratio-matching through score-entropy within a continuous-time discrete Markov chain (CTMC) framework serves as a competitive alternative to autoregressive models in language modeling. To enhance this framework, we first introduce three new theorems concerning the KL divergence between the data and learned distribution. Our results serve as the discrete counterpart to those established for continuous diffusion models and allow us to derive an improved upper bound of the perplexity. Second, we empirically show that ratio-matching performed by minimizing the denoising cross-entropy between the clean and corrupted data enables models to outperform those utilizing score-entropy with up to 10% lower perplexity/generative-perplexity, and 15% faster training steps. To further support our findings, we introduce and evaluate a novel CTMC transition-rate matrix that allows prediction refinement, and derive the analytic expression for its matrix exponential which facilitates the computation of conditional ratios thus enabling efficient training and generation.
♻ ☆ AudioSAE: Towards Understanding of Audio-Processing Models with Sparse AutoEncoders EACL 2026
Sparse Autoencoders (SAEs) are powerful tools for interpreting neural representations, yet their use in audio remains underexplored. We train SAEs across all encoder layers of Whisper and HuBERT, provide an extensive evaluation of their stability, interpretability, and show their practical utility. Over 50% of the features remain consistent across random seeds, and reconstruction quality is preserved. SAE features capture general acoustic and semantic information as well as specific events, including environmental noises and paralinguistic sounds (e.g. laughter, whispering) and disentangle them effectively, requiring removal of only 19-27% of features to erase a concept. Feature steering reduces Whisper's false speech detections by 70% with negligible WER increase, demonstrating real-world applicability. Finally, we find SAE features correlated with human EEG activity during speech perception, indicating alignment with human neural processing. The code and checkpoints are available at https://github.com/audiosae/audiosae_demo.
comment: Accepted to EACL 2026, main track
♻ ☆ HyPlan: Hybrid Learning-Assisted Planning Under Uncertainty for Safe Autonomous Driving
We present a novel hybrid learning-assisted planning method, named HyPlan, for solving the collision-free navigation problem for self-driving cars in partially observable traffic environments. HyPlan combines methods for multi-agent behavior prediction, deep reinforcement learning with proximal policy optimization and approximated online POMDP planning with heuristic confidence-based vertical pruning to reduce its execution time without compromising safety of driving. Our experimental performance analysis on the CARLA-CTS2 benchmark of critical traffic scenarios with pedestrians revealed that HyPlan may navigate safer than selected relevant baselines and perform significantly faster than considered alternative online POMDP planners.
♻ ☆ D$^2$Quant: Accurate Low-bit Post-Training Weight Quantization for LLMs
Large language models (LLMs) deliver strong performance, but their high compute and memory costs make deployment difficult in resource-constrained scenarios. Weight-only post-training quantization (PTQ) is appealing, as it reduces memory usage and enables practical speedup without low-bit operators or specialized hardware. However, accuracy often degrades significantly in weight-only PTQ at sub-4-bit precision, and our analysis identifies two main causes: (1) down-projection matrices are a well-known quantization bottleneck, but maintaining their fidelity often requires extra bit-width; (2) weight quantization induces activation deviations, but effective correction strategies remain underexplored. To address these issues, we propose D$^2$Quant, a novel weight-only PTQ framework that improves quantization from both the weight and activation perspectives. On the weight side, we design a Dual-Scale Quantizer (DSQ) tailored to down-projection matrices, with an absorbable scaling factor that significantly improves accuracy without increasing the bit budget. On the activation side, we propose Deviation-Aware Correction (DAC), which incorporates a mean-shift correction within LayerNorm to mitigate quantization-induced activation distribution shifts. Extensive experiments across multiple LLM families and evaluation metrics show that D$^2$Quant delivers superior performance for weight-only PTQ at sub-4-bit precision. The code and models will be available at https://github.com/XIANGLONGYAN/D2Quant.
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
comment: v2: clarify confusion in definition of JEPAs vs. regularization-based JEPAs
♻ ☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
comment: After careful consideration, we have decided to withdraw our submission for substantial revisions. We plan to significantly improve Section 4 and include more comprehensive experiments. These changes are necessary to ensure the paper's quality and rigor. We believe the revisions will strengthen the contribution and provide a more solid foundation for the results
♻ ☆ Spider-Sense: Intrinsic Risk Sensing for Efficient Agent Defense with Hierarchical Adaptive Screening
As large language models (LLMs) evolve into autonomous agents, their real-world applicability has expanded significantly, accompanied by new security challenges. Most existing agent defense mechanisms adopt a mandatory checking paradigm, in which security validation is forcibly triggered at predefined stages of the agent lifecycle. In this work, we argue that effective agent security should be intrinsic and selective rather than architecturally decoupled and mandatory. We propose Spider-Sense framework, an event-driven defense framework based on Intrinsic Risk Sensing (IRS), which allows agents to maintain latent vigilance and trigger defenses only upon risk perception. Once triggered, the Spider-Sense invokes a hierarchical defence mechanism that trades off efficiency and precision: it resolves known patterns via lightweight similarity matching while escalating ambiguous cases to deep internal reasoning, thereby eliminating reliance on external models. To facilitate rigorous evaluation, we introduce S$^2$Bench, a lifecycle-aware benchmark featuring realistic tool execution and multi-stage attacks. Extensive experiments demonstrate that Spider-Sense achieves competitive or superior defense performance, attaining the lowest Attack Success Rate (ASR) and False Positive Rate (FPR), with only a marginal latency overhead of 8.3\%.
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark EACL 2026
This paper presents a novel task of extracting low-resourced and noisy Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary zero-shot models is achievable, yet these models lack a functional comprehension of Latin. This study establishes a comprehensive baseline for processing Latin within mixed-language corpora, supporting quantitative analysis in intellectual history and historical linguistics. Both the dataset and code are available at https://github.com/COMHIS/EACL26-detect-latin.
comment: Accepted by the EACL 2026 main conference. Code and data available at https://github.com/COMHIS/EACL26-detect-latin
♻ ☆ Scoring, Reasoning, and Selecting the Best! Ensembling Large Language Models via a Peer-Review Process
We propose LLM-PeerReview, an unsupervised LLM Ensemble method that selects the most ideal response from multiple LLM-generated candidates for each query, harnessing the collective wisdom of multiple models with diverse strengths. LLM-PeerReview is built on a novel, peer-review-inspired framework that offers a transparent and interpretable mechanism, while remaining fully unsupervised for flexible adaptability and generalization. Specifically, it operates in three stages: For scoring, we use the emerging LLM-as-a-Judge technique to evaluate each response by reusing multiple LLMs at hand; For reasoning, we can apply a straightforward averaging strategy or a principled graphical model-based truth inference algorithm to aggregate multiple scores to produce a final score for each response; Finally, the highest-scoring response is selected as the best ensemble output. LLM-PeerReview is conceptually simple and empirically powerful. Our results across four datasets show that the two variants of the proposed approach outperform the advanced model Smoothie-Global by 6.9% and 7.3% points, cross diverse task types including factual recall QA, math reasoning, and instruction following.
♻ ☆ D-SCoRE: Document-Centric Segmentation and CoT Reasoning with Structured Export for QA-CoT Data Generation
The scarcity and high cost of high-quality domain-specific question-answering (QA) datasets limit supervised fine-tuning of large language models (LLMs). We introduce $\textbf{D-SCoRE}$, a training-free framework that leverages LLMs and prompt engineering to automatically generate diverse, rich QA datasets with Chain-of-Thought (CoT) from arbitrary textual sources. By integrating $\textbf{D}$ocument-centric processing, $\textbf{S}$egmentation, $\textbf{Co}$T $\textbf{R}$easoning, and structured $\textbf{E}$xport - along with multi-dimensional controls such as semantic role transformation, question type balancing, and counterfactual augmentation - D-SCoRE produces tailored QA pairs with enhanced diversity and relevance. LLMs fine-tuned on D-SCoRE-generated datasets outperform those trained on human-annotated QA data across most evaluated domains. Its efficiency and scalability enable rapid, high-performance domain-adaptive fine-tuning on consumer-grade hardware, generating over 1,100 high-quality QA pairs per GPU-hour end-to-end.
♻ ☆ Adventures in Demand Analysis Using AI
This paper advances empirical demand analysis by integrating multimodal product representations derived from artificial intelligence (AI). Using a detailed dataset of toy cars on textit{Amazon.com}, we combine text descriptions, images, and tabular covariates to represent each product using transformer-based embedding models. These embeddings capture nuanced attributes, such as quality, branding, and visual characteristics, that traditional methods often struggle to summarize. Moreover, we fine-tune these embeddings for causal inference tasks. We show that the resulting embeddings substantially improve the predictive accuracy of sales ranks and prices and that they lead to more credible causal estimates of price elasticity. Notably, we uncover strong heterogeneity in price elasticity driven by these product-specific features. Our findings illustrate that AI-driven representations can enrich and modernize empirical demand analysis. The insights generated may also prove valuable for applied causal inference more broadly.
comment: 35 pages, 8 figures
♻ ☆ DECEPTICON: How Dark Patterns Manipulate Web Agents
Deceptive UI designs, widely instantiated across the web and commonly known as dark patterns, manipulate users into performing actions misaligned with their goals. In this paper, we show that dark patterns are highly effective in steering agent trajectories, posing a significant risk to agent robustness. To quantify this risk, we introduce DECEPTICON, an environment for testing individual dark patterns in isolation. DECEPTICON includes 700 web navigation tasks with dark patterns -- 600 generated tasks and 100 real-world tasks, designed to measure instruction-following success and dark pattern effectiveness. Across state-of-the-art agents, we find dark patterns successfully steer agent trajectories towards malicious outcomes in over 70% of tested generated and real-world tasks -- compared to a human average of 31%. Moreover, we find that dark pattern effectiveness correlates positively with model size and test-time reasoning, making larger, more capable models more susceptible. Leading countermeasures against adversarial attacks, including in-context prompting and guardrail models, fail to consistently reduce the success rate of dark pattern interventions. Our findings reveal dark patterns as a latent and unmitigated risk to web agents, highlighting the urgent need for robust defenses against manipulative designs.
♻ ☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing improvements in the scalability of multi-agent epistemic planning.
♻ ☆ PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
♻ ☆ A Free Lunch in LLM Compression: Revisiting Retraining after Pruning
Post-training pruning substantially reduces inference costs but often causes severe quality degradation without adapting the remaining weights. For LLMs, such retraining is commonly considered impractical due to large computational costs, motivating increasingly sophisticated pruning criteria to compensate by selecting better sparsity patterns. In this work, we revisit post-pruning adaptation and study local reconstruction: adapting only a small pruned submodel at a time using a small calibration set by matching intermediate activations of the dense model. We conduct a large-scale study across model families and scales (up to 72B parameters) and establish three central results. First, local reconstruction is an effective adaptation mechanism for LLMs, matching post-pruning PEFT while using over an order of magnitude less data and compute. Second, we identify a broad "free lunch" regime in reconstruction granularity: across a wide range of submodel sizes, final quality remains essentially unchanged, allowing granularity to be chosen based on memory constraints. Finally, with reconstruction, the pruning criterion becomes less critical: performance gaps between sophisticated methods and simple baselines shrink with model size, making simple methods competitive again. Collectively, our results challenge the prevailing narrative that post-pruning adaptation is impractical for LLMs.
♻ ☆ Bayesian Matrix Decomposition and Applications
The sole aim of this book is to give a self-contained introduction to concepts and mathematical tools in Bayesian matrix decomposition in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning Bayesian matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of variational inference for conducting the optimization. We refer the reader to literature in the field of Bayesian analysis for a more detailed introduction to the related fields. This book is primarily a summary of purpose, significance of important Bayesian matrix decomposition methods, e.g., real-valued decomposition, nonnegative matrix factorization, Bayesian interpolative decomposition, and the origin and complexity of the methods which shed light on their applications. The mathematical prerequisite is a first course in statistics and linear algebra. Other than this modest background, the development is self-contained, with rigorous proof provided throughout.
♻ ☆ An Example for Domain Adaptation Using CycleGAN
Cycle-Consistent Adversarial Network (CycleGAN) is very promising in domain adaptation. In this report, an example in medical domain will be explained. We present struecture of a CycleGAN model for unpaired image-to-image translation from microscopy to pseudo H\&E stained histopathology images.
comment: 3 pages, 2 figures
♻ ☆ Efficient LLM Moderation with Multi-Layer Latent Prototypes
Although modern LLMs are aligned with human values during post-training, robust moderation remains essential to prevent harmful outputs at deployment time. Existing approaches suffer from performance-efficiency trade-offs and are difficult to customize to user-specific requirements. Motivated by this gap, we introduce Multi-Layer Prototype Moderator (MLPM), a lightweight and highly customizable input moderation tool. We propose leveraging prototypes of intermediate representations across multiple layers to improve moderation quality while maintaining high efficiency. By design, our method adds negligible overhead to the generation pipeline and can be seamlessly applied to any model. MLPM achieves state-of-the-art performance on diverse moderation benchmarks and demonstrates strong scalability across model families of various sizes. Moreover, we show that it integrates smoothly into end-to-end moderation pipelines and further improves response safety when combined with output moderation techniques. Overall, our work provides a practical and adaptable solution for safe, robust, and efficient LLM deployment.
♻ ☆ Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints
Physics-constrained generative modeling aims to produce high-dimensional samples that are both physically consistent and distributionally accurate, a task that remains challenging due to often conflicting optimization objectives. Recent advances in flow matching and diffusion models have enabled efficient generative modeling, but integrating physical constraints often degrades generative fidelity or requires costly inference-time corrections. Our work is the first to recognize the trade-off between distributional and physical accuracy. Based on the insight of inherently conflicting objectives, we introduce Physics-Based Flow Matching (PBFM) a method that enforces physical constraints at training time using conflict-free gradient updates and unrolling to mitigate Jensen's gap. Our approach avoids manual loss balancing and enables simultaneous optimization of generative and physical objectives. As a consequence, physics constraints do not impede inference performance. We benchmark our method across three representative PDE benchmarks. PBFM achieves a Pareto-optimal trade-off, competitive inference speed, and generalizes to a wide range of physics-constrained generative tasks, providing a practical tool for scientific machine learning. Code and datasets available at https://github.com/tum-pbs/PBFM.
♻ ☆ Balancing Sustainability And Performance: The Role Of Small-Scale LLMs In Agentic Artificial Intelligence Systems
As large language models become integral to agentic artificial intelligence systems, their energy demands during inference may pose significant sustainability challenges. This study investigates whether deploying smaller-scale language models can reduce energy consumption without compromising responsiveness and output quality in a multi-agent, real-world environments. We conduct a comparative analysis across language models of varying scales to quantify trade-offs between efficiency and performance. Results show that smaller open-weights models can lower energy usage while preserving task quality. Building on these findings, we propose practical guidelines for sustainable artificial intelligence design, including optimal batch size configuration and computation resource allocation. These insights offer actionable strategies for developing scalable, environmentally responsible artificial intelligence systems.
♻ ☆ OpenDeception: Learning Deception and Trust in Human-AI Interaction via Multi-Agent Simulation
As large language models (LLMs) are increasingly deployed as interactive agents, open-ended human-AI interactions can involve deceptive behaviors with serious real-world consequences, yet existing evaluations remain largely scenario-specific and model-centric. We introduce OpenDeception, a lightweight framework for jointly evaluating deception risk from both sides of human-AI dialogue. It consists of a scenario benchmark with 50 real-world deception cases, an IntentNet that infers deceptive intent from agent reasoning, and a TrustNet that estimates user susceptibility. To address data scarcity, we synthesize high-risk dialogues via LLM-based role-and-goal simulation, and train the User Trust Scorer using contrastive learning on controlled response pairs, avoiding unreliable scalar labels. Experiments on 11 LLMs and three large reasoning models show that over 90% of goal-driven interactions in most models exhibit deceptive intent, with stronger models displaying higher risk. A real-world case study adapted from a documented AI-induced suicide incident further demonstrates that our joint evaluation can proactively trigger warnings before critical trust thresholds are reached.
♻ ☆ Benchmarking Automatic Speech Recognition for Indian Languages in Agricultural Contexts
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
comment: 9 pages, 6 figures
♻ ☆ Adaptive AI-based Decentralized Resource Management in the Cloud-Edge Continuum
In the Cloud-Edge Continuum, dynamic infrastructure change and variable workloads complicate efficient resource management. Centralized methods can struggle to adapt, whilst purely decentralized policies lack global oversight. This paper proposes a hybrid framework using Graph Neural Network (GNN) embeddings and collaborative multi-agent reinforcement learning (MARL). Local agents handle neighbourhood-level decisions, and a global orchestrator coordinates system-wide. This work contributes to decentralized application placement strategies with centralized oversight, GNN integration and collaborative MARL for efficient, adaptive and scalable resource management.
comment: Accepted at AHPC3 workshop, PDP 2025
♻ ☆ Testing Storage-System Correctness: Challenges, Fuzzing Limitations, and AI-Augmented Opportunities
Storage systems are fundamental to modern computing infrastructures, yet ensuring their correctness remains challenging in practice. Despite decades of research on system testing, many storage-system failures (including durability, ordering, recovery, and consistency violations) remain difficult to expose systematically. This difficulty stems not primarily from insufficient testing tooling, but from intrinsic properties of storage-system execution, including nondeterministic interleavings, long-horizon state evolution, and correctness semantics that span multiple layers and execution phases. This survey adopts a storage-centric view of system testing and organizes existing techniques according to the execution properties and failure mechanisms they target. We review a broad spectrum of approaches, ranging from concurrency testing and long-running workloads to crash-consistency analysis, hardware-level semantic validation, and distributed fault injection, and analyze their fundamental strengths and limitations. Within this framework, we examine fuzzing as an automated testing paradigm, highlighting systematic mismatches between conventional fuzzing assumptions and storage-system semantics, and discuss how recent artificial intelligence advances may complement fuzzing through state-aware and semantic guidance. Overall, this survey provides a unified perspective on storage-system correctness testing and outlines key challenges
♻ ☆ Steering LLMs via Scalable Interactive Oversight
As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
♻ ☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
♻ ☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
♻ ☆ FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
♻ ☆ Personalized Learning Path Planning with Goal-Driven Learner State Modeling WWW'26
Personalized Learning Path Planning (PLPP) aims to design adaptive learning paths that align with individual goals. While large language models (LLMs) show potential in personalizing learning experiences, existing approaches often lack mechanisms for goal-aligned planning. We introduce Pxplore, a novel framework for PLPP that integrates a reinforcement-based training paradigm and an LLM-driven educational architecture. We design a structured learner state model and an automated reward function that transforms abstract objectives into computable signals. We train the policy combining supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO), and deploy it within a real-world learning platform. Extensive experiments validate Pxplore's effectiveness in producing coherent, personalized, and goal-driven learning paths. We release our code and dataset at https://github.com/Pxplore/pxplore-algo.
comment: Accepted at The Web Conference 2026 (WWW'26)
♻ ☆ A Data-driven Typology of Vision Models from Integrated Representational Metrics
Large vision models differ widely in architecture and training paradigm, yet we lack principled methods to determine which aspects of their representations are shared across families and which reflect distinctive computational strategies. We leverage a suite of representational similarity metrics, each capturing a different facet-geometry, unit tuning, or linear decodability-and assess family separability using multiple complementary measures. Metrics preserving geometry or tuning (e.g., RSA, Soft Matching) yield strong family discrimination, whereas flexible mappings such as Linear Predictivity show weaker separation. These findings indicate that geometry and tuning carry family-specific signatures, while linearly decodable information is more broadly shared. To integrate these complementary facets, we adapt Similarity Network Fusion (SNF), a method inspired by multi-omics integration. SNF achieves substantially sharper family separation than any individual metric and produces robust composite signatures. Clustering of the fused similarity matrix recovers both expected and surprising patterns: supervised ResNets and ViTs form distinct clusters, yet all self-supervised models group together across architectural boundaries. Hybrid architectures (ConvNeXt, Swin) cluster with masked autoencoders, suggesting convergence between architectural modernization and reconstruction-based training. This biology-inspired framework provides a principled typology of vision models, showing that emergent computational strategies-shaped jointly by architecture and training objective-define representational structure beyond surface design categories.
comment: Update the main text format
♻ ☆ Learning to Guarantee Type Correctness in Code Generation through Type-Guided Program Synthesis
Language models have shown remarkable proficiency in code generation; nevertheless, ensuring type correctness remains a challenge. Although traditional methods, such as constrained decoding, alleviate this problem by externally rejecting untypable code, the model itself does not effectively learn type reasoning internally, which ultimately limits its overall performance. This paper introduces TyFlow, a novel system that internalizes type reasoning within code generation to guide the model to learn the type system. The core of our approach is a novel type-guided program synthesis system that maintains an isomorphism between type derivation trees and synthesis derivation trees, enabling a new code representation based on synthesis decision sequences rather than traditional text-based token sequences. By offloading the complexity of type system learning to the representation itself, models can redirect their computational resources toward higher-level program semantics. Our evaluation shows that TyFlow not only eliminates type errors but also significantly improves functional correctness, highlighting the importance of aligning LMs with type systems internally.
♻ ☆ Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks, where untrusted data contains an injected prompt to manipulate the system, have been listed as the top security threat to LLM-integrated applications. Model-level prompt injection defenses have shown strong effectiveness, but the strongest defenses are proprietary. Open-source secure models are needed by the AI security community so that co-development of attacks and defenses through open research can drive scientific progress in mitigating prompt injection attacks. To this end, we develop Meta SecAlign, the first fully open-source LLM with built-in model-level defense that achieves commercial-grade performance and is powerful enough for complex agentic tasks. We provide complete details of our training recipe. We perform the most comprehensive evaluation to date on 9 utility benchmarks (measuring general knowledge, instruction following, and agentic workflows) and 7 security benchmarks. Results show that Meta SecAlign, despite being trained only on generic instruction-tuning samples, surprisingly confers security in unseen downstream tasks, including tool-calling and web-navigation, in addition to general instruction-following. Our best model -- Meta-SecAlign-70B -- establishes a new frontier of utility-security trade-off for open-source LLMs, and is more secure than several flagship proprietary models with prompt injection defense. Below are links for the code (https://github.com/facebookresearch/Meta_SecAlign), Meta-SecAlign-70B (https://huggingface.co/facebook/Meta-SecAlign-70B), and Meta-SecAlign-8B (https://huggingface.co/facebook/Meta-SecAlign-8B) models.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: This work is currently in progress
♻ ☆ PiFlow: Principle-Aware Scientific Discovery with Multi-Agent Collaboration
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering the systematic reduction of uncertainty. Overcoming these limitations fundamentally requires a principled approach to exploration. We introduce PiFlow, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). Extensive evaluations across three distinct scientific domains demonstrate that PiFlow (I) improves discovery efficiency by 31.18%~41.73% and solution quality by 12.47%~31.72% against state-of-the-art methods, (II) delivers a 5.6x speedup in time-to-solution while reducing token consumption by up to 27% compared to vanilla agents, and (III) serves as a Plug-and-Play module that generalizes on existing agent architecture. Overall, PiFlow establishes a novel paradigm shift in highly efficient agentic scientific discovery, paving the way for more robust and accelerated AI-driven research.
♻ ☆ dUltra: Ultra-Fast Diffusion Language Models via Reinforcement Learning
Masked diffusion language models (MDLMs) offer the potential for parallel token generation, but most open-source MDLMs decode fewer than 5 tokens per model forward pass even with sophisticated sampling strategies, limiting their parallel generation potential. Existing acceleration methods either rely on fixed confidence-based heuristics or use distillation-based approaches that finetune MDLMs on trajectories generated by a base model, which can become off-policy during finetuning and restrict performance to the quality of the base model's samples. We propose \texttt{dUltra}, an on-policy reinforcement learning framework based on Group Relative Policy Optimization (GRPO) that learns unmasking strategies for efficient parallel decoding. dUltra introduces an unmasking planner head that predicts per-token unmasking likelihoods under independent Bernoulli distributions. We jointly optimize the base diffusion LLM and the unmasking order planner using reward signals combining verifiable reward, distillation reward, and the number of unmasking steps. Across mathematical reasoning and code generation tasks, dUltra achieves superior accuracy-efficiency trade-offs compared to state-of-the-art heuristic (Fast-dLLM) and distillation baselines (d3LLM, dParallel), demonstrating that learned unmasking trajectories through on-policy RL enable better exploitation of parallel generation in MDLMs. Code and checkpoints are released at https://github.com/chinsengi/dUltra-os.
♻ ☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
♻ ☆ Explainable Transformer-Based Email Phishing Classification with Adversarial Robustness
Phishing and related cyber threats are becoming more varied and technologically advanced. Among these, email-based phishing remains the most dominant and persistent threat. These attacks exploit human vulnerabilities to disseminate malware or gain unauthorized access to sensitive information. Deep learning (DL) models, particularly transformer-based models, have significantly enhanced phishing mitigation through their contextual understanding of language. However, some recent threats, specifically Artificial Intelligence (AI)-generated phishing attacks, are reducing the overall system resilience of phishing detectors. In response, adversarial training has shown promise against AI-generated phishing threats. This study presents a hybrid approach that uses DistilBERT, a smaller, faster, and lighter version of the BERT transformer model for email classification. Robustness against text-based adversarial perturbations is reinforced using Fast Gradient Method (FGM) adversarial training. Furthermore, the framework integrates the LIME Explainable AI (XAI) technique to enhance the transparency of the DistilBERT architecture. The framework also uses the Flan-T5-small language model from Hugging Face to generate plain-language security narrative explanations for end-users. This combined approach ensures precise phishing classification while providing easily understandable justifications for the model's decisions.
♻ ☆ Tokenizing Single-Channel EEG with Time-Frequency Motif Learning ICLR 2026
Foundation models are reshaping EEG analysis, yet an important problem of EEG tokenization remains a challenge. This paper presents TFM-Tokenizer, a novel tokenization framework that learns a vocabulary of time-frequency motifs from single-channel EEG signals and encodes them into discrete tokens. We propose a dual-path architecture with time-frequency masking to capture robust motif representations, and it is model-agnostic, supporting both lightweight transformers and existing foundation models for downstream tasks. Our study demonstrates three key benefits: Accuracy: Experiments on four diverse EEG benchmarks demonstrate consistent performance gains across both single- and multi-dataset pretraining settings, achieving up to $11\%$ improvement in Cohen's Kappa over strong baselines. Generalization: Moreover, as a plug-and-play component, it consistently boosts the performance of diverse foundation models, including BIOT and LaBraM. Scalability: By operating at the single-channel level rather than relying on the strict 10-20 EEG system, our method has the potential to be device-agnostic. Experiments on ear-EEG sleep staging, which differs from the pretraining data in signal format, channel configuration, recording device, and task, show that our tokenizer outperforms baselines by $14\%$. A comprehensive token analysis reveals strong class-discriminative, frequency-aware, and consistent structure, enabling improved representation quality and interpretability. Code is available at https://github.com/Jathurshan0330/TFM-Tokenizer.
comment: Accepted to ICLR 2026
♻ ☆ Doctor-R1: Mastering Clinical Inquiry with Experiential Agentic Reinforcement Learning
The professionalism of a human doctor in outpatient service depends on two core abilities: the ability to make accurate medical decisions and the medical consultation skill to conduct strategic, empathetic patient inquiry. Existing Large Language Models (LLMs) have achieved remarkable accuracy on medical decision-making benchmarks. However, they often lack the ability to conduct the strategic and empathetic consultation, which is essential for real-world clinical scenarios. To address this gap, we propose Doctor-R1, an AI doctor agent trained to master both of the capabilities by ask high-yield questions and conduct strategic multi-turn inquiry to guide decision-making. Our framework introduces three key components: a multi-agent interactive environment, a two-tiered reward architecture that separately optimizes clinical decision-making and communicative inquiry skills, and an experience repository to ground policy learning in high-quality prior trajectories. We evaluate Doctor-R1 on OpenAI's HealthBench and MAQuE, assessed across multi-facet metrics, such as communication quality, user experience, and task accuracy. Remarkably, Doctor-R1 surpasses state-of-the-art open-source specialized LLMs by a substantial margin with higher parameter efficiency and outperforms powerful proprietary models. Furthermore, human expert evaluations show that Doctor-R1 achieves superior clinical capability and patient-centric performance, demonstrating the effectiveness of the framework.
♻ ☆ Let LLMs Speak Embedding Languages: Generative Text Embeddings via Iterative Contrastive Refinement
Existing large language model (LLM)-based embeddings typically adopt an encoder-only paradigm, treating LLMs as static feature extractors and overlooking their core generative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive Sentence Embeddings), a novel framework that leverages autoregressive generation to iteratively refine semantic representations. By producing sequences of soft tokens optimized under contrastive objective, GIRCSE captures latent concepts and implicit semantics that encoder-only methods often miss. To guide this process, we propose an Iterative Contrastive Refinement (ICR) objective that encourages each refinement step to yield better representations. Extensive experiments show that GIRCSE outperforms strong LLM-based embedding baselines on the MTEB benchmark and instruction-following tasks. Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more tokens at inference steadily improves embedding quality. Our results establish generative iterative refinement as a new paradigm for representation learning.
♻ ☆ Dynamic Expert Quantization for Scalable Mixture-of-Experts Inference
Mixture-of-Experts (MoE) has become a practical architecture for scaling LLM capacity while keeping per-token compute modest, but deploying MoE models on a single, memory-limited GPU remains difficult because expert weights dominate the HBM footprint. Existing expert offloading and prefetching systems reduce the resident set, yet they often pay expert-loading costs on the critical path when activation becomes dense. Post-training quantization (PTQ) lowers the footprint without transfers, but prevailing pipelines fix expert bit-widths offline and assume routing remains stable, even though MoE expert utilization is heavy-tailed and the hot set can shift across workloads. We present DynaExq, a runtime-aware mixed-precision serving system that treats single-GPU MoE inference under a hard HBM envelope as an online, budget-constrained precision allocation problem. The key insight is to keep the experts that dominate runtime traffic resident at higher precision, while maintaining a low-precision fallback for the remaining experts, so the system can reduce transfer volume and avoid the waiting latency that limits offloading and prefetching under dense activation. DynaExq estimates long-horizon expert hotness from router traces, selects a per-layer high-precision resident set via a budget-feasible top-$n$ rule, and applies promotions and demotions asynchronously through stable expert handles so the forward pass always executes on a fully materialized expert version. Across Qwen3-MoE-30B/80B and six benchmarks, DynaExq improves accuracy over static PTQ on Qwen3-80B (73.09% to 77.57%) under comparable device-memory budgets and achieves up to 2.73x higher throughput than offloading/prefetch baselines at batch size 32.
comment: 13 pages
♻ ☆ TimelyFreeze: Adaptive Parameter Freezing Mechanism for Pipeline Parallelism
Pipeline parallelism enables training models that exceed single-device memory, but practical throughput remains limited by pipeline bubbles. Although parameter freezing can improve training throughput by adaptively skipping backward computation, existing methods often over-freeze parameters, resulting in unnecessary accuracy degradation. To address this issue, we propose TimelyFreeze, which models the pipeline schedule as a directed acyclic graph and solves a linear program to compute optimal freeze ratios that minimize batch execution time under accuracy constraints. Experiments show that TimelyFreeze achieves up to 40% training throughput improvement on LLaMA-8B with comparable accuracy. Overall, it enables faster large-scale model training without compromising convergence and generalizes across diverse pipeline-parallel settings.
♻ ☆ Rethinking the effects of data contamination in Code Intelligence
In recent years, code intelligence has gained increasing importance in the field of automated software engineering. Meanwhile, the widespread adoption of Pretrained Language Models (PLMs) and Large Language Models (LLMs) has raised concerns regarding data contamination and its potential impact on model performance evaluation. Previous studies mainly focused on sample-level contamination, ignoring partial contamination scenarios that are pervasive in code intelligence. This paper fills this gap and presents a systematic empirical study to investigate the fine-grained data contamination on mainstream code tasks. Our study involves diverse representative PLMs: RoBERTa and GPT-2, and LLMs: LLaMA and StarCoder, covering three major tasks: code translation, code generation, and code summarization, across two Programming Languages (PLs): Java and Python. We categorize contamination scenarios into four types according to the code intelligence practice, namely input-only, output-only, unpaired, and paired contamination settings, and construct corresponding experimental and control groups for exploration. Experimental results show that, under the pre-training, fine-tuning, and inference paradigm adopted by PLMs, even deliberately injecting paired contamination does not lead to significant performance overestimation. But direct inference or small-scale fine-tuning uncovers the contamination effects. In contrast, LLMs with pre-training and inference paradigm are significantly affected by the paired contamination. Apart from the above, other contamination scenarios have no impact on both PLMs and LLMs. Our findings challenge the conventional belief that contamination inevitably leads to performance overestimation, providing new insights into the evaluation and deployment of code intelligence models.
♻ ☆ Pascal-Weighted Genetic Algorithms: A Binomially-Structured Recombination Framework
This paper introduces a new family of multi-parent recombination operators for Genetic Algorithms (GAs), based on normalized Pascal (binomial) coefficients. Unlike classical two-parent crossover operators, Pascal-Weighted Recombination (PWR) forms offsprings as structured convex combination of multiple parents, using binomially shaped weights that emphasize central inheritance while suppressing disruptive variance. We develop a mathematical framework for PWR, derive variance-transfer properties, and analyze its effect on schema survival. The operator is extended to real-valued, binary/logit, and permutation representations. We evaluate the proposed method on four representative benchmarks: (i) PID controller tuning evaluated using the ITAE metric, (ii) FIR low-pass filter design under magnitude-response constraints, (iii) wireless power-modulation optimization under SINR coupling, and (iv) the Traveling Salesman Problem (TSP). We demonstrate how, across these benchmarks, PWR consistently yields smoother convergence, reduced variance, and achieves 9-22% performance gains over standard recombination operators. The approach is simple, algorithm-agnostic, and readily integrable into diverse GA architectures.
comment: 23 pages, 8 figures
♻ ☆ Hyperbolic Fine-Tuning for Large Language Models NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable performance across various tasks. However, it remains an open question whether the default Euclidean space is the most suitable choice for LLMs. In this study, we investigate the geometric characteristics of LLMs, focusing specifically on tokens and their embeddings. Our findings reveal that token frequency follows a power-law distribution, where high-frequency tokens (e.g., the, that ) constitute the minority, while low-frequency tokens (e.g., apple, dog) constitute the majority. Furthermore, high-frequency tokens cluster near the origin, whereas low-frequency tokens are positioned farther away in the embedding space. Additionally, token embeddings exhibit hyperbolic characteristics, indicating a latent tree-like structure within the embedding space. Motivated by these observations, we propose HypLoRA, an efficient fine-tuning approach that operates in hyperbolic space to exploit these underlying hierarchical structures better. HypLoRA performs low-rank adaptation directly in hyperbolic space, thereby preserving hyperbolic modeling capabilities throughout the fine-tuning process. Extensive experiments across various base models and reasoning benchmarks, specifically arithmetic and commonsense reasoning tasks, demonstrate that HypLoRA substantially improves LLM performance.
comment: NeurIPS 2025; https://github.com/marlin-codes/HypLoRA
♻ ☆ EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations ACM MM 2024
Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.
comment: 15 pages, 9 figures. Oral presentation at ACM MM 2024
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ Probing Perceptual Constancy in Large Vision-Language Models
Perceptual constancy is the ability to maintain stable perceptions of objects despite changes in sensory input, such as variations in distance, angle, or lighting. This ability is crucial for visual understanding in a dynamic world. Here, we explored such ability in current Vision Language Models (VLMs). In this study, we evaluated 155 VLMs using 236 experiments across three domains: color, size, and shape constancy. The experiments included single-image and video adaptations of classic cognitive tasks, along with novel tasks in in-the-wild conditions. We found significant variability in VLM performance across these domains, with model performance in shape constancy clearly dissociated from that of color and size constancy.
comment: Under Review
♻ ☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
comment: https://github.com/chen-si-jia/DRMOT
♻ ☆ Probabilistic Aggregation and Targeted Embedding Optimization for Collective Moral Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) have shown impressive moral reasoning abilities. Yet they often diverge when confronted with complex, multi-factor moral dilemmas. To address these discrepancies, we propose a framework that synthesizes multiple LLMs' moral judgments into a collectively formulated moral judgment, realigning models that deviate significantly from this consensus. Our aggregation mechanism fuses continuous moral acceptability scores (beyond binary labels) into a collective probability, weighting contributions by model reliability. For misaligned models, a targeted embedding-optimization procedure fine-tunes token embeddings for moral philosophical theories, minimizing JS divergence to the consensus while preserving semantic integrity. Experiments on a large-scale social moral dilemma dataset show our approach builds robust consensus and improves individual model fidelity. These findings highlight the value of data-driven moral alignment across multiple models and its potential for safer, more consistent AI systems.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ MirrorBench: A Benchmark to Evaluate Conversational User-Proxy Agents for Human-Likeness
Large language models (LLMs) are increasingly used as human simulators, both for evaluating conversational systems and for generating fine-tuning data. However, naive "act-as-a-user" prompting often yields verbose, unrealistic utterances, motivating principled evaluation of *user proxy agents*. We present **MirrorBench**, a reproducible and extensible benchmarking framework that evaluates user proxies solely on their ability to produce human-like user utterances across diverse conversational regimes, explicitly decoupled from downstream task success. **MirrorBench** combines three lexical-diversity metrics (**MATTR**, **Yule's~$K$**, and **HD-D**) with three LLM-judge-based metrics (**GTEval**, **Pairwise Indistinguishability**, and **Rubric-and-Reason**), and contextualizes judge scores using Human-Human and Proxy-Proxy calibration controls. Across four public datasets, **MirrorBench** yields variance-aware comparisons and reveals systematic gaps between user proxies and real human users. The framework is [open source](https://github.com/SAP/mirrorbench) and includes a command-line interface for running and managing user-proxy benchmarking experiments.
♻ ☆ Scalable In-Context Q-Learning ICLR 2026
Recent advancements in language models have demonstrated remarkable in-context learning abilities, prompting the exploration of in-context reinforcement learning (ICRL) to extend the promise to decision domains. Due to involving more complex dynamics and temporal correlations, existing ICRL approaches may face challenges in learning from suboptimal trajectories and achieving precise in-context inference. In the paper, we propose \textbf{S}calable \textbf{I}n-\textbf{C}ontext \textbf{Q}-\textbf{L}earning (\textbf{S-ICQL}), an innovative framework that harnesses dynamic programming and world modeling to steer ICRL toward efficient reward maximization and task generalization, while retaining the scalability and stability of supervised pretraining. We design a prompt-based multi-head transformer architecture that simultaneously predicts optimal policies and in-context value functions using separate heads. We pretrain a generalized world model to capture task-relevant information, enabling the construction of a compact prompt that facilitates fast and precise in-context inference. During training, we perform iterative policy improvement by fitting a state value function to an upper-expectile of the Q-function, and distill the in-context value functions into policy extraction using advantage-weighted regression. Extensive experiments across a range of discrete and continuous environments show consistent performance gains over various types of baselines, especially when learning from suboptimal data. Our code is available at \textcolor{magenta}{\href{https://github.com/NJU-RL/SICQL}{https://github.com/NJU-RL/SICQL}}.
comment: accepted by ICLR 2026
♻ ☆ Multimodal Iterative RAG for Knowledge-Intensive Visual Question Answering
Knowledge-intensive visual question answering (VQA) requires external knowledge beyond image content, demanding precise visual grounding and coherent integration of visual and textual information. Although multimodal retrieval-augmented generation has achieved notable advances by incorporating external knowledge bases, existing approaches largely adopt single-pass frameworks that often fail to acquire sufficient knowledge and lack mechanisms to revise misdirected reasoning. We propose PMSR (Progressive Multimodal Search and Reasoning), a framework that progressively constructs a structured reasoning trajectory to enhance both knowledge acquisition and synthesis. PMSR uses dual-scope queries conditioned on both the latest record and the trajectory to retrieve diverse knowledge from heterogeneous knowledge bases. The retrieved evidence is then synthesized into compact records via compositional reasoning. This design facilitates controlled iterative refinement, which supports more stable reasoning trajectories with reduced error propagation. Extensive experiments across six diverse benchmarks (Encyclopedic-VQA, InfoSeek, MMSearch, LiveVQA, FVQA, and OK-VQA) demonstrate that PMSR consistently improves both retrieval recall and end-to-end answer accuracy.
♻ ☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code will be made publicly available soon.
comment: 17 pages, 7 figures; cvpr2026 submission
♻ ☆ SeSE: Black-Box Uncertainty Quantification for Large Language Models Based on Structural Information Theory
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding hallucinations, i.e., plausible yet factually incorrect responses. However, while semantic UQ methods have achieved advanced performance, they overlook latent semantic structural information that could enable more precise uncertainty estimates. In this paper, we propose \underline{Se}mantic \underline{S}tructural \underline{E}ntropy ({SeSE}), a principled black-box UQ framework applicable to both open- and closed-source LLMs. To reveal the intrinsic structure of the semantic space, SeSE constructs its optimal hierarchical abstraction through an encoding tree with minimal structural entropy. The structural entropy of this encoding tree thus quantifies the inherent uncertainty within LLM semantic space after optimal compression. Additionally, unlike existing methods that primarily focus on simple short-form generation, we extent SeSE to provide interpretable, granular uncertainty estimation for long-form outputs. We theoretically prove that SeSE generalizes semantic entropy, the gold standard for UQ in LLMs, and empirically demonstrate its superior performance over strong baselines across 24 model-dataset combinations.
♻ ☆ Structural Enforcement of Statistical Rigor in AI-Driven Discovery: A Functional Architecture
AI-Scientist systems that use large language models to automate research risk generating spurious discoveries through uncontrolled multiple testing. We present a functional architecture that enforces statistical rigor at two levels: a Haskell embedded DSL (the Research monad) that makes it impossible to test a hypothesis without updating the error budget, and a declarative scaffolding technique that structurally prevents data leakage across the boundary into LLM-generated code. We ground these guarantees in a machine-checked Lean 4 formalization of the LORD++ online FDR control theorem (855 lines, zero sorry), which identifies four sufficient conditions for FDR control. Three are structural conditions -- about information flow, data separation, and test validity -- enforced by the architecture's type system and scaffolding. The fourth is an arithmetic condition: a budget invariant requiring that a wealth process remain non-negative under floating-point computation. We verify this condition over IEEE 754 doubles using SPARK/Ada, whose GNATprove toolchain statically confirms that no rounding sequence can violate the invariant and whose flow analysis independently confirms the predictability condition. The resulting verification chain -- from real-analysis proof to floating-point implementation -- is, to our knowledge, the first for any online FDR control procedure. Monte Carlo simulation (N=2000 hypotheses) and an end-to-end case study confirm that the monadic implementation controls FDR at 1.1% against a 5% target, while a naive approach inflates to 41%.
♻ ☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
♻ ☆ ExpressivityBench: Can LLMs Communicate Implicitly?
Human communication is often implicit, conveying tone, identity, and intent beyond literal meanings. While large language models have achieved strong performance on explicit tasks such as summarization and reasoning, their capacity for expressivity, or implicit communication, remains underexplored. We introduce \textbf{ExpressivityBench}, a framework for evaluating the expressivity of LLMs using information-theoretic communication models. Our approach quantifies how well LLM-generated text communicates target properties without explicit mention, across nine tasks spanning emotion, identity, and tone. To enable scalable and reproducible evaluation, we employ LLM-based graders validated against human judgments. Our results reveal that while models are adept at expressing affective content, they struggle with sociolinguistic signals, lagging behind human baselines. This study provides a necessary step to evaluate human-like implicit communication, with implications for applications such as education, mental health support, and socially-aware dialogue systems. We provide code and data for our benchmark alongside our paper.
comment: 21 pages, 7 figures
♻ ☆ Calibration and Transformation-Free Weight-Only LLMs Quantization via Dynamic Grouping
Large Language Models (LLMs) deliver strong performance but are difficult to deploy under tight memory and compute constraints. Low-bit post-training quantization (PTQ) is a promising direction; however, it typically relies on calibration data, auxiliary transformations, and GPU tools. To address these limitations, we propose MSB (Multi Scale Binary), a calibration-free and transformation-free PTQ method that generalizes binary quantization to multi-bit settings. MSB optimizes a dynamic grouping criterion that minimizes within group variance, yielding group-wise multiscale levels that can be applied consistently across granularities from per tensor to block-wise configurations with 64 elements groups per row, without calibration or intermediate transforms. We implement the optimization in a CPU based solver for the quantization step and evaluate using standard bfloat16 execution without low-bit packing. On Llama 3.2 3B, MSB achieves 8.43 perplexity on WikiText-2 under 4-bit weight only block-wise quantization, compared to 7.81 in full precision and 12.23 with GPTQ its default setup. Overall, MSB provides a new optimization perspective for low-bit PTQ while simplifying the pipeline by removing calibration and transformations.
comment: 34 pages, 10 figures. Version 3 corrects the bit-length error and adds new experiments and analysis; the core methodology remains unchanged. Under review
♻ ☆ Learning Metal Microstructural Heterogeneity through Spatial Mapping of Diffraction Latent Space Features
To leverage advancements in machine learning for metallic materials design and property prediction, it is crucial to develop a data-reduced representation of metal microstructures that surpasses the limitations of current physics-based discrete microstructure descriptors. This need is particularly relevant for metallic materials processed through additive manufacturing, which exhibit complex hierarchical microstructures that cannot be adequately described using the conventional metrics typically applied to wrought materials. Furthermore, capturing the spatial heterogeneity of microstructures at the different scales is necessary within such framework to accurately predict their properties. To address these challenges, we propose the physical spatial mapping of metal diffraction latent space features. This approach integrates (i) point diffraction data encoding via variational autoencoders or contrastive learning and (ii) the physical mapping of the encoded values. Together these steps offer a method offers a novel means to comprehensively describe metal microstructures. We demonstrate this approach on a wrought and additively manufactured alloy, showing that it effectively encodes microstructural information and enables direct identification of microstructural heterogeneity not directly possible by physics-based models. This data-reduced microstructure representation opens the application of machine learning models in accelerating metallic material design and accurately predicting their properties.
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
♻ ☆ Dynamic Vocabulary Pruning: Stable LLM-RL by Taming the Tail
Reinforcement Learning (RL) for Large Language Models (LLMs) faces a fundamental tension: the numerical divergence between high-throughput inference engines and numerically precise training engines. Although these systems share the same parameters, they produce slightly different probability distributions, creating a training-inference mismatch. We prove that the bound on the log-probability divergence arising from this mismatch scales as $(1-p)$, where $p$ is the token probability. This scaling induces a highly asymmetric effect: the bound vanishes for high-probability tokens but remains significant for low-probability tokens in the distribution tail. When sampled, these tail tokens introduce systematically biased errors that accumulate over sequences, thereby destabilizing gradient estimation. Instead of applying post-hoc corrections, we propose Dynamic Vocabulary Pruning (DVP), which constrains the RL objective to a dynamically determined ''safe'' vocabulary that excludes the extreme tail. This strategy trades large, destabilizing numerical errors for a small, bounded optimization bias. We validate DVP empirically by demonstrating stable training, and theoretically by deriving strict bounds on the induced bias.
♻ ☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning. However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
♻ ☆ MAGIC: A Co-Evolving Attacker-Defender Adversarial Game for Robust LLM Safety
Ensuring robust safety alignment is crucial for Large Language Models (LLMs), yet existing defenses often lag behind evolving adversarial attacks due to their \textbf{reliance on static, pre-collected data distributions}. In this paper, we introduce \textbf{MAGIC}, a novel multi-turn multi-agent reinforcement learning framework that formulates LLM safety alignment as an adversarial asymmetric game. Specifically, an attacker agent learns to iteratively rewrite original queries into deceptive prompts, while a defender agent simultaneously optimizes its policy to recognize and refuse such inputs. This dynamic process triggers a \textbf{co-evolution}, where the attacker's ever-changing strategies continuously uncover long-tail vulnerabilities, driving the defender to generalize to unseen attack patterns. Remarkably, we observe that the attacker, endowed with initial reasoning ability, evolves \textbf{novel, previously unseen combinatorial strategies} through iterative RL training, underscoring our method's substantial potential. Theoretically, we provide insights into a more robust game equilibrium and derive safety guarantees. Extensive experiments validate our framework's effectiveness, demonstrating superior defense success rates without compromising the helpfulness of the model. Our code is available at https://github.com/BattleWen/MAGIC.
♻ ☆ Data-Centric Interpretability for LLM-based Multi-Agent Reinforcement Learning
Large language models (LLMs) are increasingly trained in complex Reinforcement Learning, multi-agent environments, making it difficult to understand how behavior changes over training. Sparse Autoencoders (SAEs) have recently shown to be useful for data-centric interpretability. In this work, we analyze large-scale reinforcement learning training runs from the sophisticated environment of Full-Press Diplomacy by applying pretrained SAEs, alongside LLM-summarizer methods. We introduce Meta-Autointerp, a method for grouping SAE features into interpretable hypotheses about training dynamics. We discover fine-grained behaviors including role-playing patterns, degenerate outputs, language switching, alongside high-level strategic behaviors and environment-specific bugs. Through automated evaluation, we validate that 90% of discovered SAE Meta-Features are significant, and find a surprising reward hacking behavior. However, through two user studies, we find that even subjectively interesting and seemingly helpful SAE features may be worse than useless to humans, along with most LLM generated hypotheses. However, a subset of SAE-derived hypotheses are predictively useful for downstream tasks. We further provide validation by augmenting an untrained agent's system prompt, improving the score by +14.2%. Overall, we show that SAEs and LLM-summarizer provide complementary views into agent behavior, and together our framework forms a practical starting point for future data-centric interpretability work on ensuring trustworthy LLM behavior throughout training.
comment: authors 1, 2 and 3 contributed equally
♻ ☆ Near-Optimal Dynamic Matching via Coarsening with Application to Heart Transplantation
Online matching has been a mainstay in domains such as Internet advertising and organ allocation, but practical algorithms often lack strong theoretical guarantees. We take an important step toward addressing this by developing new online matching algorithms based on a coarsening approach. Although coarsening typically implies a loss of granularity, we show that, to the contrary, aggregating offline nodes into capacitated clusters can yield near-optimal theoretical guarantees. We apply our methodology to heart transplant allocation to develop theoretically grounded policies based on structural properties of historical data. Furthermore, in simulations based on real data, our policy closely matches the performance of the omniscient benchmark, achieving competitive ratio 0.91, drastically higher than the US status quo policy's 0.51. Our work bridges the gap between data-driven heuristics and pessimistic theoretical lower bounds.
♻ ☆ Artificial Intelligence for Direct Prediction of Molecular Dynamics Across Chemical Space
Molecular dynamics (MD) is a powerful tool for exploring the behavior of atomistic systems, but its reliance on sequential numerical integration limits simulation efficiency. We present a novel neural network architecture, MDtrajNet, and a pre-trained foundational model, MDtrajNet-1, that directly generates MD trajectories across chemical space, bypassing force calculations and integration. MDtrajNet combines equivariant neural networks with a transformer-based architecture to achieve strong accuracy and transferability in predicting long-time trajectories. This approach accelerates simulations by up to two orders of magnitude and yields better accuracy than MD propagated with established machine-learning interatomic potentials trained on the same data. Remarkably, the errors of the trajectories generated by MDtrajNet-1 for various seen and even unseen small-sized molecular systems are close to those of the conventional ab initio MD. The current limitations of MDtrajNet-1 are attributed to the relatively small size of the chemical space in its training data; however, even for bigger, unseen systems, MDtrajNet-1 provides a good starting point for fine-tuning and obtaining system-specific models. The architecture's flexible design supports diverse application scenarios, including different statistical ensembles, boundary conditions, and interaction types. By overcoming the intrinsic speed barrier of conventional MD, MDtrajNet opens new frontiers in efficient and scalable atomistic simulations.
♻ ☆ The Quest for Efficient Reasoning: A Data-Centric Benchmark to CoT Distillation
Data-centric distillation, including data augmentation, selection, and mixing, offers a promising path to creating smaller, more efficient student Large Language Models (LLMs) that retain strong reasoning abilities. However, there still lacks a comprehensive benchmark to systematically assess the effect of each distillation approach. This paper introduces DC-CoT, the first data-centric benchmark that investigates data manipulation in chain-of-thought (CoT) distillation from method, model and data perspectives. Utilizing various teacher models (e.g., o4-mini, Gemini-Pro, Claude-3.5) and student architectures (e.g., 3B, 7B parameters), we rigorously evaluate the impact of these data manipulations on student model performance across multiple reasoning datasets, with a focus on in-distribution (IID) and out-of-distribution (OOD) generalization, and cross-domain transfer. Our findings aim to provide actionable insights and establish best practices for optimizing CoT distillation through data-centric techniques, ultimately facilitating the development of more accessible and capable reasoning models. The codebase can be accessed at https://github.com/UNITES-Lab/Distillation-Bench
♻ ☆ Hi-Agent: Hierarchical Vision-Language Agents for Mobile Device Control
Building agents that autonomously operate mobile devices has attracted increasing attention. While Vision-Language Models (VLMs) show promise, most existing approaches rely on direct state-to-action mappings, which lack structured reasoning and planning, and thus generalize poorly to novel tasks or unseen UI layouts. We introduce Hi-Agent, a trainable hierarchical vision-language agent for mobile control, featuring a high-level reasoning model and a low-level action model that are jointly optimized. For efficient training, we reformulate multi-step decision-making as a sequence of single-step subgoals and propose a foresight advantage function, which leverages execution feedback from the low-level model to guide high-level optimization. This design alleviates the path explosion issue encountered by Group Relative Policy Optimization (GRPO) in long-horizon tasks and enables stable, critic-free joint training. Hi-Agent achieves a new State-Of-The-Art (SOTA) 87.9% task success rate on the Android-in-the-Wild (AitW) benchmark, significantly outperforming prior methods across three paradigms: prompt-based (AppAgent: 17.7%), supervised (Filtered BC: 54.5%), and reinforcement learning-based (DigiRL: 71.9%). It also demonstrates competitive zero-shot generalization on the ScreenSpot-v2 benchmark. On the more challenging AndroidWorld benchmark, Hi-Agent also scales effectively with larger backbones, showing strong adaptability in high-complexity mobile control scenarios.
♻ ☆ THOR: Inductive Link Prediction over Hyper-Relational Knowledge Graphs
Knowledge graphs (KGs) have become a key ingredient supporting a variety of applications. Beyond the traditional triplet representation of facts where a relation connects two entities, modern KGs observe an increasing number of hyper-relational facts, where an arbitrary number of qualifiers associated with a triplet provide auxiliary information to further describe the rich semantics of the triplet, which can effectively boost the reasoning performance in link prediction tasks. However, existing link prediction techniques over such hyper-relational KGs (HKGs) mostly focus on a transductive setting, where KG embedding models are learned from the specific vocabulary of a given KG and subsequently can only make predictions within the same vocabulary, limiting their generalizability to previously unseen vocabularies. Against this background, we propose THOR, an inducTive link prediction technique for Hyper-relational knOwledge gRaphs. Specifically, we first introduce both relation and entity foundation graphs, modeling their fundamental inter- and intra-fact interactions in HKGs, which are agnostic to any specific relations and entities. Afterward, THOR is designed to learn from the two foundation graphs with two parallel graph encoders followed by a transformer decoder, which supports efficient masked training and fully-inductive inference. We conduct a thorough evaluation of THOR in hyper-relational link prediction tasks on 12 datasets with different settings. Results show that THOR outperforms a sizable collection of baselines, yielding 66.1%, 55.9%, and 20.4% improvement over the best-performing rule-based, semi-inductive, and fully-inductive techniques, respectively. A series of ablation studies also reveals our key design factors capturing the structural invariance transferable across HKGs for inductive tasks.
♻ ☆ Layer-adaptive Expert Pruning for Pre-Training of Mixture-of-Experts Large Language Models
Although Mixture-of-Experts (MoE) Large Language Models (LLMs) deliver superior accuracy with a reduced number of active parameters, their pre-training represents a significant computationally bottleneck due to underutilized experts and limited training efficiency. This work introduces a Layer-Adaptive Expert Pruning (LAEP) algorithm designed for the pre-training stage of MoE LLMs. In contrast to previous expert pruning approaches that operate primarily in the post-training phase, the proposed algorithm enhances training efficiency by selectively pruning underutilized experts and reorganizing experts across computing devices according to token distribution statistics. Comprehensive experiments demonstrate that LAEP effectively reduces model size and substantially improves pre-training efficiency. In particular, when pre-training the Yuan3.0-1T Base model from scratch original with 1515B parameters, LAEP achieves a 48.3% improvement in training efficiency alongside a 33.3% parameter reduction, while still delivering excellent performance across multiple domains.
♻ ☆ GATSim: Urban Mobility Simulation with Generative Agents
Traditional agent-based urban mobility simulations often rely on rigid rulebased systems that struggle to capture the complexity, adaptability, and behavioral diversity inherent in human travel decision making. Inspired by recent advancements in large language models and AI agent technologies, we introduce GATSim, a novel framework that leverages these advancements to simulate urban mobility using generative agents with dedicated cognitive structures. GATSim agents are characterized by diverse socioeconomic profiles, individual lifestyles, and evolving preferences shaped through psychologically informed memory systems and lifelong learning. The main contributions of this work are: 1) a comprehensive architecture that integrates urban mobility foundation model with agent cognitive systems and transport simulation environment; 2) a hierarchical memory designed for efficient retrieval of contextually relevant information, incorporating spatial and temporal associations; 3) planning and reactive mechanisms for modeling adaptive mobility behaviors which integrate a multi-scale reflection process to transform specific travel experiences into generalized behavioral insights. Experiments indicate that generative agents perform competitively with human annotators in role-playing scenarios, while naturally producing realistic macroscopic traffic patterns. The code for the prototype implementation is publicly available at https://github.com/qiliuchn/gatsim.
♻ ☆ Deception at Scale: Deceptive Designs in 1K LLM-Generated Ecommerce Components
Recent work has shown that front-end code generated by Large Language Models (LLMs) can embed deceptive designs. To assess the magnitude of this problem, identify the factors that influence deceptive design production, and test strategies for reducing deceptive designs, we carried out two studies which generated and analyzed 1,296 LLM-generated web components, along with a design rationale for each. The first study tested four LLMs for 15 common ecommerce components. Overall 55.8% of components contained at least one deceptive design, and 30.6% contained two or more. Occurence varied significantly across models, with DeepSeek-V3 producing the fewest. Interface interference emerged as the dominant strategy, using color psychology to influence actions and hiding essential information. The first study found that prompts emphasizing business interests (e.g., increasing sales) significantly increased deceptive designs, so a second study tested a variety of prompting strategies to reduce their frequency, finding a values-centered approach the most effective. Our findings highlight risks in using LLMs for coding and offer recommendations for LLM developers and providers.
comment: 18 pages
♻ ☆ Are AI Capabilities Increasing Exponentially? A Competing Hypothesis
Rapidly increasing AI capabilities have substantial real-world consequences, ranging from AI safety concerns to labor market consequences. The Model Evaluation & Threat Research (METR) report argues that AI capabilities have exhibited exponential growth since 2019. In this note, we argue that the data does not support exponential growth, even in shorter-term horizons. Whereas the METR study claims that fitting sigmoid/logistic curves results in inflection points far in the future, we fit a sigmoid curve to their current data and find that the inflection point has already passed. In addition, we propose a more complex model that decomposes AI capabilities into base and reasoning capabilities, exhibiting individual rates of improvement. We prove that this model supports our hypothesis that AI capabilities will exhibit an inflection point in the near future. Our goal is not to establish a rigorous forecast of our own, but to highlight the fragility of existing forecasts of exponential growth.
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains. Code & pretrained checkpoints: https://github.com/apple/ml-fs-dfm
comment: Accepted to ICLR 2026
Computation and Language 134
☆ Learning a Generative Meta-Model of LLM Activations
Existing approaches for analyzing neural network activations, such as PCA and sparse autoencoders, rely on strong structural assumptions. Generative models offer an alternative: they can uncover structure without such assumptions and act as priors that improve intervention fidelity. We explore this direction by training diffusion models on one billion residual stream activations, creating "meta-models" that learn the distribution of a network's internal states. We find that diffusion loss decreases smoothly with compute and reliably predicts downstream utility. In particular, applying the meta-model's learned prior to steering interventions improves fluency, with larger gains as loss decreases. Moreover, the meta-model's neurons increasingly isolate concepts into individual units, with sparse probing scores that scale as loss decreases. These results suggest generative meta-models offer a scalable path toward interpretability without restrictive structural assumptions. Project page: https://generative-latent-prior.github.io.
☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
☆ DAWN: Dependency-Aware Fast Inference for Diffusion LLMs
Diffusion large language models (dLLMs) have shown advantages in text generation, particularly due to their inherent ability for parallel decoding. However, constrained by the quality--speed trade-off, existing inference solutions adopt conservative parallel strategies, leaving substantial efficiency potential underexplored. A core challenge is that parallel decoding assumes each position can be filled independently, but tokens are often semantically coupled. Thus, the correct choice at one position constrains valid choices at others. Without modeling these inter-token dependencies, parallel strategies produce deteriorated outputs. Motivated by this insight, we propose DAWN, a training-free, dependency-aware decoding method for fast dLLM inference. DAWN extracts token dependencies and leverages two key motivations: (1) positions dependent on unmasked certain positions become more reliable, (2) simultaneously unmasking strongly coupled uncertain positions induces errors. Given those findings, DAWN leverages a dependency graph to select more reliable unmasking positions at each iteration, achieving high parallelism with negligible loss in generation quality. Extensive experiments across multiple models and datasets demonstrate that DAWN speedups the inference by 1.80-8.06x over baselines while preserving the generation quality. Code is released at https://github.com/lizhuo-luo/DAWN.
☆ Optimal Turkish Subword Strategies at Scale: Systematic Evaluation of Data, Vocabulary, Morphology Interplay
Tokenization is a pivotal design choice for neural language modeling in morphologically rich languages (MRLs) such as Turkish, where productive agglutination challenges both vocabulary efficiency and morphological fidelity. Prior studies have explored tokenizer families and vocabulary sizes but typically (i) vary vocabulary without systematically controlling the tokenizer's training corpus, (ii) provide limited intrinsic diagnostics, and (iii) evaluate a narrow slice of downstream tasks. We present the first comprehensive, principled study of Turkish subword tokenization; a "subwords manifest", that jointly varies vocabulary size and tokenizer training corpus size (data and vocabulary coupling), compares multiple tokenizer families under matched parameter budgets (WordPiece, morphology level, and character baselines), and evaluates across semantic (NLI, STS, sentiment analysis, NER), syntactic (POS, dependency parsing), and morphology-sensitive probes. To explain why tokenizers succeed or fail, we introduce a morphology-aware diagnostic toolkit that goes beyond coarse aggregates to boundary-level micro/macro F1, decoupled lemma atomicity vs. surface boundary hits, over/under-segmentation indices, character/word edit distances (CER/WER), continuation rates, and affix-type coverage and token-level atomicity. Our contributions are fourfold: (i) a systematic investigation of the vocabulary-corpus-success triad; (ii) a unified, morphology-aware evaluation framework linking intrinsic diagnostics to extrinsic outcomes; (iii) controlled comparisons identifying when character-level and morphology-level tokenization pay off; and (iv) an open-source release of evaluation code, tokenizer pipelines, and models. As the first work of its kind, this "subwords manifest" delivers actionable guidance for building effective tokenizers in MRLs and establishes a reproducible foundation for future research.
comment: Submitted to Cambridge NLP journal, all rights belong to them
☆ Endogenous Resistance to Activation Steering in Language Models
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
☆ Halluverse-M^3: A multitask multilingual benchmark for hallucination in LLMs
Hallucinations in large language models remain a persistent challenge, particularly in multilingual and generative settings where factual consistency is difficult to maintain. While recent models show strong performance on English-centric benchmarks, their behavior across languages, tasks, and hallucination types is not yet well understood. In this work, we introduce Halluverse-M^3, a dataset designed to enable systematic analysis of hallucinations across multiple languages, multiple generation tasks, and multiple hallucination categories. Halluverse-M^3 covers four languages, English, Arabic, Hindi, and Turkish, and supports two generation tasks: question answering and dialogue summarization. The dataset explicitly distinguishes between entity-level, relation-level, and sentence-level hallucinations. Hallucinated outputs are constructed through a controlled editing process and validated by human annotators, ensuring clear alignment between original content and hallucinated generations. Using this dataset, we evaluate a diverse set of contemporary open-source and proprietary language models on fine-grained hallucination detection. Our results show that question answering is consistently easier than dialogue summarization, while sentence-level hallucinations remain challenging even for the strongest models. Performance is highest in English and degrades in lower-resource languages, with Hindi exhibiting the lowest detection accuracy. Overall, Halluverse-M^3 provides a realistic and challenging benchmark for studying hallucinations in multilingual, multi-task settings. We release the dataset to support future research on hallucination detection and mitigation\footnote{https://huggingface.co/datasets/sabdalja/HalluVerse-M3}.
☆ Uncovering Cross-Objective Interference in Multi-Objective Alignment
We study a persistent failure mode in multi-objective alignment for large language models (LLMs): training improves performance on only a subset of objectives while causing others to degrade. We formalize this phenomenon as cross-objective interference and conduct the first systematic study across classic scalarization algorithms, showing that interference is pervasive and exhibits strong model dependence. To explain this phenomenon, we derive a local covariance law showing that an objective improves at first order when its reward exhibits positive covariance with the scalarized score. We extend this analysis to clipped surrogate objectives used in modern alignment, demonstrating that the covariance law remains valid under mild conditions despite clipping. Building on this analysis, we propose Covariance Targeted Weight Adaptation (CTWA), a plug-and-play method that maintains positive covariance between objective rewards and the training signal to effectively mitigate cross-objective interference. Finally, we complement these local improvement conditions with a global convergence analysis under the Polyak--Łojasiewicz condition, establishing when non-convex scalarized optimization achieves global convergence and how cross-objective interference depends on specific model geometric properties.
☆ SEMA: Simple yet Effective Learning for Multi-Turn Jailbreak Attacks ICLR 2026
Multi-turn jailbreaks capture the real threat model for safety-aligned chatbots, where single-turn attacks are merely a special case. Yet existing approaches break under exploration complexity and intent drift. We propose SEMA, a simple yet effective framework that trains a multi-turn attacker without relying on any existing strategies or external data. SEMA comprises two stages. Prefilling self-tuning enables usable rollouts by fine-tuning on non-refusal, well-structured, multi-turn adversarial prompts that are self-generated with a minimal prefix, thereby stabilizing subsequent learning. Reinforcement learning with intent-drift-aware reward trains the attacker to elicit valid multi-turn adversarial prompts while maintaining the same harmful objective. We anchor harmful intent in multi-turn jailbreaks via an intent-drift-aware reward that combines intent alignment, compliance risk, and level of detail. Our open-loop attack regime avoids dependence on victim feedback, unifies single- and multi-turn settings, and reduces exploration complexity. Across multiple datasets, victim models, and jailbreak judges, our method achieves state-of-the-art (SOTA) attack success rates (ASR), outperforming all single-turn baselines, manually scripted and template-driven multi-turn baselines, as well as our SFT (Supervised Fine-Tuning) and DPO (Direct Preference Optimization) variants. For instance, SEMA performs an average $80.1\%$ ASR@1 across three closed-source and open-source victim models on AdvBench, 33.9% over SOTA. The approach is compact, reproducible, and transfers across targets, providing a stronger and more realistic stress test for large language model (LLM) safety and enabling automatic redteaming to expose and localize failure modes. Our code is available at: https://github.com/fmmarkmq/SEMA.
comment: ICLR 2026, 37 pages, 13 tables, 7 figures
☆ The Representational Geometry of Number
A central question in cognitive science is whether conceptual representations converge onto a shared manifold to support generalization, or diverge into orthogonal subspaces to minimize task interference. While prior work has discovered evidence for both, a mechanistic account of how these properties coexist and transform across tasks remains elusive. We propose that representational sharing lies not in the concepts themselves, but in the geometric relations between them. Using number concepts as a testbed and language models as high-dimensional computational substrates, we show that number representations preserve a stable relational structure across tasks. Task-specific representations are embedded in distinct subspaces, with low-level features like magnitude and parity encoded along separable linear directions. Crucially, we find that these subspaces are largely transformable into one another via linear mappings, indicating that representations share relational structure despite being located in distinct subspaces. Together, these results provide a mechanistic lens of how language models balance the shared structure of number representation with functional flexibility. It suggests that understanding arises when task-specific transformations are applied to a shared underlying relational structure of conceptual representations.
☆ Visual Word Sense Disambiguation with CLIP through Dual-Channel Text Prompting and Image Augmentations
Ambiguity poses persistent challenges in natural language understanding for large language models (LLMs). To better understand how lexical ambiguity can be resolved through the visual domain, we develop an interpretable Visual Word Sense Disambiguation (VWSD) framework. The model leverages CLIP to project ambiguous language and candidate images into a shared multimodal space. We enrich textual embeddings using a dual-channel ensemble of semantic and photo-based prompts with WordNet synonyms, while image embeddings are refined through robust test-time augmentations. We then use cosine similarity to determine the image that best aligns with the ambiguous text. When evaluated on the SemEval-2023 VWSD dataset, enriching the embeddings raises the MRR from 0.7227 to 0.7590 and the Hit Rate from 0.5810 to 0.6220. Ablation studies reveal that dual-channel prompting provides strong, low-latency performance, whereas aggressive image augmentation yields only marginal gains. Additional experiments with WordNet definitions and multilingual prompt ensembles further suggest that noisy external signals tend to dilute semantic specificity, reinforcing the effectiveness of precise, CLIP-aligned prompts for visual word sense disambiguation.
comment: 9 pages, 6 figures, pending journal/workshop submission
☆ Generating Data-Driven Reasoning Rubrics for Domain-Adaptive Reward Modeling
An impediment to using Large Language Models (LLMs) for reasoning output verification is that LLMs struggle to reliably identify errors in thinking traces, particularly in long outputs, domains requiring expert knowledge, and problems without verifiable rewards. We propose a data-driven approach to automatically construct highly granular reasoning error taxonomies to enhance LLM-driven error detection on unseen reasoning traces. Our findings indicate that classification approaches that leverage these error taxonomies, or "rubrics", demonstrate strong error identification compared to baseline methods in technical domains like coding, math, and chemical engineering. These rubrics can be used to build stronger LLM-as-judge reward functions for reasoning model training via reinforcement learning. Experimental results show that these rewards have the potential to improve models' task accuracy on difficult domains over models trained by general LLMs-as-judges by +45%, and approach performance of models trained by verifiable rewards while using as little as 20% as many gold labels. Through our approach, we extend the usage of reward rubrics from assessing qualitative model behavior to assessing quantitative model correctness on tasks typically learned via RLVR rewards. This extension opens the door for teaching models to solve complex technical problems without a full dataset of gold labels, which are often highly costly to procure.
☆ R-Align: Enhancing Generative Reward Models through Rationale-Centric Meta-Judging
Reinforcement Learning from Human Feedback (RLHF) remains indispensable for aligning large language models (LLMs) in subjective domains. To enhance robustness, recent work shifts toward Generative Reward Models (GenRMs) that generate rationales before predicting preferences. Yet in GenRM training and evaluation, practice remains outcome-label-only, leaving reasoning quality unchecked. We show that reasoning fidelity-the consistency between a GenRM's preference decision and reference decision rationales-is highly predictive of downstream RLHF outcomes, beyond standard label accuracy. Specifically, we repurpose existing reward-model benchmarks to compute Spurious Correctness (S-Corr)-the fraction of label-correct decisions with rationales misaligned with golden judgments. Our empirical evaluation reveals substantial S-Corr even for competitive GenRMs, and higher S-Corr is associated with policy degeneration under optimization. To improve fidelity, we propose Rationale-Centric Alignment, R-Align, which augments training with gold judgments and explicitly supervises rationale alignment. R-Align reduces S-Corr on RM benchmarks and yields consistent gains in actor performance across STEM, coding, instruction following, and general tasks.
comment: Github: https://github.com/lyn22333/R-Align Huggingface: https://huggingface.co/collections/lyn22333/r-align
☆ Table-as-Search: Formulate Long-Horizon Agentic Information Seeking as Table Completion
Current Information Seeking (InfoSeeking) agents struggle to maintain focus and coherence during long-horizon exploration, as tracking search states, including planning procedure and massive search results, within one plain-text context is inherently fragile. To address this, we introduce \textbf{Table-as-Search (TaS)}, a structured planning framework that reformulates the InfoSeeking task as a Table Completion task. TaS maps each query into a structured table schema maintained in an external database, where rows represent search candidates and columns denote constraints or required information. This table precisely manages the search states: filled cells strictly record the history and search results, while empty cells serve as an explicit search plan. Crucially, TaS unifies three distinct InfoSeeking tasks: Deep Search, Wide Search, and the challenging DeepWide Search. Extensive experiments demonstrate that TaS significantly outperforms numerous state-of-the-art baselines across three kinds of benchmarks, including multi-agent framework and commercial systems. Furthermore, our analysis validates the TaS's superior robustness in long-horizon InfoSeeking, alongside its efficiency, scalability and flexibility. Code and datasets are publicly released at https://github.com/AIDC-AI/Marco-Search-Agent.
☆ Quantum Attention by Overlap Interference: Predicting Sequences from Classical and Many-Body Quantum Data
We propose a variational quantum implementation of self-attention (QSA), the core operation in transformers and large language models, which predicts future elements of a sequence by forming overlap-weighted combinations of past data. At variance with previous approaches, our QSA realizes the required nonlinearity through interference of state overlaps and returns a Renyi-1/2 cross-entropy loss directly as the expectation value of an observable, avoiding the need to decode amplitude-encoded predictions into classical logits. Furthermore, QSA naturally accommodates a constrained, trainable data-embedding that ties quantum state overlaps to data-level similarities. We find a gate complexity dominant scaling O(T d^2) for QSA, versus O(T^2 d) classically, suggesting an advantage in the practical regime where the sequence length T dominates the embedding size d. In simulations, we show that our QSA-based quantum transformer learns sequence prediction on classical data and on many-body transverse-field Ising quantum trajectories, establishing trainable attention as a practical primitive for quantum dynamical modeling.
comment: 4 + 1 pages, 2 figures
☆ Evaluating Prompt Engineering Strategies for Sentiment Control in AI-Generated Texts
The groundbreaking capabilities of Large Language Models (LLMs) offer new opportunities for enhancing human-computer interaction through emotion-adaptive Artificial Intelligence (AI). However, deliberately controlling the sentiment in these systems remains challenging. The present study investigates the potential of prompt engineering for controlling sentiment in LLM-generated text, providing a resource-sensitive and accessible alternative to existing methods. Using Ekman's six basic emotions (e.g., joy, disgust), we examine various prompting techniques, including Zero-Shot and Chain-of-Thought prompting using gpt-3.5-turbo, and compare it to fine-tuning. Our results indicate that prompt engineering effectively steers emotions in AI-generated texts, offering a practical and cost-effective alternative to fine-tuning, especially in data-constrained settings. In this regard, Few-Shot prompting with human-written examples was the most effective among other techniques, likely due to the additional task-specific guidance. The findings contribute valuable insights towards developing emotion-adaptive AI systems.
comment: The definitive, peer-reviewed and edited version of this article is published in HHAI 2025 - Proceedings of the Fourth International Conference on Hybrid Human-Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, Volume 408, ISBN 978-1-64368-611-0, pages 423 - 438, 2025
☆ compar:IA: The French Government's LLM arena to collect French-language human prompts and preference data
Large Language Models (LLMs) often show reduced performance, cultural alignment, and safety robustness in non-English languages, partly because English dominates both pre-training data and human preference alignment datasets. Training methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) require human preference data, which remains scarce and largely non-public for many languages beyond English. To address this gap, we introduce compar:IA, an open-source digital public service developed inside the French government and designed to collect large-scale human preference data from a predominantly French-speaking general audience. The platform uses a blind pairwise comparison interface to capture unconstrained, real-world prompts and user judgments across a diverse set of language models, while maintaining low participation friction and privacy-preserving automated filtering. As of 2026-02-07, compar:IA has collected over 600,000 free-form prompts and 250,000 preference votes, with approximately 89% of the data in French. We release three complementary datasets -- conversations, votes, and reactions -- under open licenses, and present initial analyses, including a French-language model leaderboard and user interaction patterns. Beyond the French context, compar:IA is evolving toward an international digital public good, offering reusable infrastructure for multilingual model training, evaluation, and the study of human-AI interaction.
comment: 18 pages, 7 figures, preprint
☆ Not All Layers Need Tuning: Selective Layer Restoration Recovers Diversity
Post-training improves instruction-following and helpfulness of large language models (LLMs) but often reduces generation diversity, which leads to repetitive outputs in open-ended settings, a phenomenon known as mode collapse. Motivated by evidence that LLM layers play distinct functional roles, we hypothesize that mode collapse can be localized to specific layers and that restoring a carefully chosen range of layers to their pre-trained weights can recover diversity while maintaining high output quality. To validate this hypothesis and decide which layers to restore, we design a proxy task -- Constrained Random Character(CRC) -- with an explicit validity set and a natural diversity objective. Results on CRC reveal a clear diversity-validity trade-off across restoration ranges and identify configurations that increase diversity with minimal quality loss. Based on these findings, we propose Selective Layer Restoration (SLR), a training-free method that restores selected layers in a post-trained model to their pre-trained weights, yielding a hybrid model with the same architecture and parameter count, incurring no additional inference cost. Across three different tasks (creative writing, open-ended question answering, and multi-step reasoning) and three different model families (Llama, Qwen, and Gemma), we find SLR can consistently and substantially improve output diversity while maintaining high output quality.
comment: 16 pages, 7 figures, 12 tables
☆ Beyond Static Alignment: Hierarchical Policy Control for LLM Safety via Risk-Aware Chain-of-Thought
Large Language Models (LLMs) face a fundamental safety-helpfulness trade-off due to static, one-size-fits-all safety policies that lack runtime controllabilityxf, making it difficult to tailor responses to diverse application needs. %As a result, models may over-refuse benign requests or under-constrain harmful ones. We present \textbf{PACT} (Prompt-configured Action via Chain-of-Thought), a framework for dynamic safety control through explicit, risk-aware reasoning. PACT operates under a hierarchical policy architecture: a non-overridable global safety policy establishes immutable boundaries for critical risks (e.g., child safety, violent extremism), while user-defined policies can introduce domain-specific (non-global) risk categories and specify label-to-action behaviors to improve utility in real-world deployment settings. The framework decomposes safety decisions into structured Classify$\rightarrow$Act paths that route queries to the appropriate action (comply, guide, or reject) and render the decision-making process transparent. Extensive experiments demonstrate that PACT achieves near state-of-the-art safety performance under global policy evaluation while attaining the best controllability under user-specific policy evaluation, effectively mitigating the safety-helpfulness trade-off. We will release the PACT model suite, training data, and evaluation protocols to facilitate reproducible research in controllable safety alignment.
comment: 13 pages, 5 tables, 2 figures
☆ Reading Between the Waves: Robust Topic Segmentation Using Inter-Sentence Audio Features IEEE
Spoken content, such as online videos and podcasts, often spans multiple topics, which makes automatic topic segmentation essential for user navigation and downstream applications. However, current methods do not fully leverage acoustic features, leaving room for improvement. We propose a multi-modal approach that fine-tunes both a text encoder and a Siamese audio encoder, capturing acoustic cues around sentence boundaries. Experiments on a large-scale dataset of YouTube videos show substantial gains over text-only and multi-modal baselines. Our model also proves more resilient to ASR noise and outperforms a larger text-only baseline on three additional datasets in Portuguese, German, and English, underscoring the value of learned acoustic features for robust topic segmentation.
comment: Accepted to IEEE ICASSP 2026
☆ FairJudge: An Adaptive, Debiased, and Consistent LLM-as-a-Judge
Existing LLM-as-a-Judge systems suffer from three fundamental limitations: limited adaptivity to task- and domain-specific evaluation criteria, systematic biases driven by non-semantic cues such as position, length, format, and model provenance, and evaluation inconsistency that leads to contradictory judgments across different evaluation modes (e.g., pointwise versus pairwise). To address these issues, we propose FairJudge, an adaptive, debiased, and consistent LLM-as-a-Judge. Unlike prior approaches that treat the judge as a static evaluator, FairJudge models judging behavior itself as a learnable and regularized policy. From a data-centric perspective, we construct a high-information-density judging dataset that explicitly injects supervision signals aligned with evaluation behavior. Building on this dataset, we adopt a curriculum-style SFT-DPO-GRPO training paradigm that progressively aligns rubric adherence, bias mitigation, and cross-mode consistency, while avoiding catastrophic forgetting. Experimental results on multiple internal and public benchmarks show that FairJudge consistently improves agreement and F1, reduces non-semantic biases, and outperforms substantially larger instruction-tuned LLMs. All resources will be publicly released after acceptance to facilitate future research.
☆ Do Prompts Guarantee Safety? Mitigating Toxicity from LLM Generations through Subspace Intervention
Large Language Models (LLMs) are powerful text generators, yet they can produce toxic or harmful content even when given seemingly harmless prompts. This presents a serious safety challenge and can cause real-world harm. Toxicity is often subtle and context-dependent, making it difficult to detect at the token level or through coarse sentence-level signals. Moreover, efforts to mitigate toxicity often face a trade-off between safety and the coherence, or fluency of the generated text. In this work, we present a targeted subspace intervention strategy for identifying and suppressing hidden toxic patterns from underlying model representations, while preserving overall ability to generate safe fluent content. On the RealToxicityPrompts, our method achieves strong mitigation performance compared to existing baselines, with minimal impact on inference complexity. Across multiple LLMs, our approach reduces toxicity of state-of-the-art detoxification systems by 8-20%, while maintaining comparable fluency. Through extensive quantitative and qualitative analyses, we show that our approach achieves effective toxicity reduction without impairing generative performance, consistently outperforming existing baselines.
☆ Echoes as Anchors: Probabilistic Costs and Attention Refocusing in LLM Reasoning
Test-time compute allocation in large reasoning models (LRMs) is widely used and has applications in mathematical problem solving, code synthesis, and planning. Recent work has addressed this problem by scaling self-consistency and parallel thinking, adding generic ``thinking tokens'' and prompting models to re-read the question before answering. Unfortunately, these approaches either inject task-agnostic tokens or mandate heuristics that do not explain -- and often ignore -- the \emph{spontaneous} repetition that many LRMs exhibit at the head of their internal chains. In contrast, we analyze and harness the model's tendency to restate the question, which we term the \emph{Echo of Prompt (EOP)}, as a front-loaded, compute-shaping mechanism. We formalize its probabilistic cost by casting echo removal as rejection-based conditioning and defining the \emph{Echo Likelihood Gap} $Δ\mathcal{L}$ as a computable proxy. This provides the missing theoretical link that links early repetition to likelihood gains and downstream accuracy. However, it does not by itself specify how to exploit EOP. Consequently, we develop \emph{Echo-Distilled SFT (ED-SFT)} to instill an ``echo-then-reason'' pattern through supervised finetuning, and \emph{Echoic Prompting (EP)} to re-ground the model mid-trace without training. While promising, quantifying benefits beyond verbosity is non-trivial. Therefore, we conduct length and suffix-controlled likelihood analyses together with layer-wise attention studies, showing that EOP increases answer to answer-prefix attention in middle layers, consistent with an \emph{attention refocusing} mechanism. We evaluate on GSM8K, MathQA, Hendrycks-MATH, AIME24, and MATH-500 under identical decoding settings and budgets, and find consistent gains over baselines. Code is available at https://github.com/hhh2210/echoes-as-anchors.
☆ Personality as Relational Infrastructure: User Perceptions of Personality-Trait-Infused LLM Messaging
Digital behaviour change systems increasingly rely on repeated, system-initiated messages to support users in everyday contexts. LLMs enable these messages to be personalised consistently across interactions, yet it remains unclear whether such personalisation improves individual messages or instead shapes users' perceptions through patterns of exposure. We explore this question in the context of LLM-generated JITAIs, which are short, context-aware messages delivered at moments deemed appropriate to support behaviour change, using physical activity as an application domain. In a controlled retrospective study, 90 participants evaluated messages generated using four LLM strategies: baseline prompting, few-shot prompting, fine-tuned models, and retrieval augmented generation, each implemented with and without Big Five Personality Traits to produce personality-aligned communication across multiple scenarios. Using ordinal multilevel models with within-between decomposition, we distinguish trial-level effects, whether personality information improves evaluations of individual messages, from person-level exposure effects, whether participants receiving higher proportions of personality-informed messages exhibit systematically different overall perceptions. Results showed no trial-level associations, but participants who received higher proportions of BFPT-informed messages rated the messages as more personalised, appropriate, and reported less negative affect. We use Communication Accommodation Theory for post-hoc analysis. These results suggest that personality-based personalisation in behaviour change systems may operate primarily through aggregate exposure rather than per-message optimisation, with implications for how adaptive systems are designed and evaluated in sustained human-AI interaction. In-situ longitudinal studies are needed to validate these findings in real-world contexts.
comment: Currently under review
☆ Inference-Time Rethinking with Latent Thought Vectors for Math Reasoning
Standard chain-of-thought reasoning generates a solution in a single forward pass, committing irrevocably to each token and lacking a mechanism to recover from early errors. We introduce Inference-Time Rethinking, a generative framework that enables iterative self-correction by decoupling declarative latent thought vectors from procedural generation. We factorize reasoning into a continuous latent thought vector (what to reason about) and a decoder that verbalizes the trace conditioned on this vector (how to reason). Beyond serving as a declarative buffer, latent thought vectors compress the reasoning structure into a continuous representation that abstracts away surface-level token variability, making gradient-based optimization over reasoning strategies well-posed. Our prior model maps unstructured noise to a learned manifold of valid reasoning patterns, and at test time we employ a Gibbs-style procedure that alternates between generating a candidate trace and optimizing the latent vector to better explain that trace, effectively navigating the latent manifold to refine the reasoning strategy. Training a 0.2B-parameter model from scratch on GSM8K, our method with 30 rethinking iterations surpasses baselines with 10 to 15 times more parameters, including a 3B counterpart. This result demonstrates that effective mathematical reasoning can emerge from sophisticated inference-time computation rather than solely from massive parameter counts.
☆ Baichuan-M3: Modeling Clinical Inquiry for Reliable Medical Decision-Making
We introduce Baichuan-M3, a medical-enhanced large language model engineered to shift the paradigm from passive question-answering to active, clinical-grade decision support. Addressing the limitations of existing systems in open-ended consultations, Baichuan-M3 utilizes a specialized training pipeline to model the systematic workflow of a physician. Key capabilities include: (i) proactive information acquisition to resolve ambiguity; (ii) long-horizon reasoning that unifies scattered evidence into coherent diagnoses; and (iii) adaptive hallucination suppression to ensure factual reliability. Empirical evaluations demonstrate that Baichuan-M3 achieves state-of-the-art results on HealthBench, the newly introduced HealthBench-Hallu and ScanBench, significantly outperforming GPT-5.2 in clinical inquiry, advisory and safety. The models are publicly available at https://huggingface.co/collections/baichuan-inc/baichuan-m3.
☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
☆ Malicious Agent Skills in the Wild: A Large-Scale Security Empirical Study
Third-party agent skills extend LLM-based agents with instruction files and executable code that run on users' machines. Skills execute with user privileges and are distributed through community registries with minimal vetting, but no ground-truth dataset exists to characterize the resulting threats. We construct the first labeled dataset of malicious agent skills by behaviorally verifying 98,380 skills from two community registries, confirming 157 malicious skills with 632 vulnerabilities. These attacks are not incidental. Malicious skills average 4.03 vulnerabilities across a median of three kill chain phases, and the ecosystem has split into two archetypes: Data Thieves that exfiltrate credentials through supply chain techniques, and Agent Hijackers that subvert agent decision-making through instruction manipulation. A single actor accounts for 54.1\% of confirmed cases through templated brand impersonation. Shadow features, capabilities absent from public documentation, appear in 0\% of basic attacks but 100\% of advanced ones; several skills go further by exploiting the AI platform's own hook system and permission flags. Responsible disclosure led to 93.6\% removal within 30 days. We release the dataset and analysis pipeline to support future work on agent skill security.
☆ MTQE.en-he: Machine Translation Quality Estimation for English-Hebrew EACL 2026
We release MTQE.en-he: to our knowledge, the first publicly available English-Hebrew benchmark for Machine Translation Quality Estimation. MTQE.en-he contains 959 English segments from WMT24++, each paired with a machine translation into Hebrew, and Direct Assessment scores of the translation quality annotated by three human experts. We benchmark ChatGPT prompting, TransQuest, and CometKiwi and show that ensembling the three models outperforms the best single model (CometKiwi) by 6.4 percentage points Pearson and 5.6 percentage points Spearman. Fine-tuning experiments with TransQuest and CometKiwi reveal that full-model updates are sensitive to overfitting and distribution collapse, yet parameter-efficient methods (LoRA, BitFit, and FTHead, i.e., fine-tuning only the classification head) train stably and yield improvements of 2-3 percentage points. MTQE.en-he and our experimental results enable future research on this under-resourced language pair.
comment: Accepted to LoResLM at EACL 2026
☆ AgentCPM-Report: Interleaving Drafting and Deepening for Open-Ended Deep Research
Generating deep research reports requires large-scale information acquisition and the synthesis of insight-driven analysis, posing a significant challenge for current language models. Most existing approaches follow a plan-then-write paradigm, whose performance heavily depends on the quality of the initial outline. However, constructing a comprehensive outline itself demands strong reasoning ability, causing current deep research systems to rely almost exclusively on closed-source or online large models. This reliance raises practical barriers to deployment and introduces safety and privacy concerns for user-authored data. In this work, we present AgentCPM-Report, a lightweight yet high-performing local solution composed of a framework that mirrors the human writing process and an 8B-parameter deep research agent. Our framework uses a Writing As Reasoning Policy (WARP), which enables models to dynamically revise outlines during report generation. Under this policy, the agent alternates between Evidence-Based Drafting and Reasoning-Driven Deepening, jointly supporting information acquisition, knowledge refinement, and iterative outline evolution. To effectively equip small models with this capability, we introduce a Multi-Stage Agentic Training strategy, consisting of cold-start, atomic skill RL, and holistic pipeline RL. Experiments on DeepResearch Bench, DeepConsult, and DeepResearch Gym demonstrate that AgentCPM-Report outperforms leading closed-source systems, with substantial gains in Insight.
☆ LogicSkills: A Structured Benchmark for Formal Reasoning in Large Language Models
Large language models have demonstrated notable performance across various logical reasoning benchmarks. However, it remains unclear which core logical skills they truly master. To address this, we introduce LogicSkills, a unified benchmark designed to isolate three fundamental skills in formal reasoning: (i) $\textit{formal symbolization}\unicode{x2014}$translating premises into first-order logic; (ii) $\textit{countermodel construction}\unicode{x2014}$formulating a finite structure in which all premises are true while the conclusion is false; and (iii) $\textit{validity assessment}\unicode{x2014}$deciding whether a conclusion follows from a given set of premises. Items are drawn from the two-variable fragment of first-order logic (without identity) and are presented in both natural English and a Carroll-style language with nonce words. All examples are verified for correctness and non-triviality using the SMT solver Z3. Across leading models, performance is high on validity but substantially lower on symbolization and countermodel construction, suggesting reliance on surface-level patterns rather than genuine symbolic or rule-based reasoning.
comment: 13 pages, 5 figures
☆ Completing Missing Annotation: Multi-Agent Debate for Accurate and Scalable Relevant Assessment for IR Benchmarks ICLR 2026
Information retrieval (IR) evaluation remains challenging due to incomplete IR benchmark datasets that contain unlabeled relevant chunks. While LLMs and LLM-human hybrid strategies reduce costly human effort, they remain prone to LLM overconfidence and ineffective AI-to-human escalation. To address this, we propose DREAM, a multi-round debate-based relevance assessment framework with LLM agents, built on opposing initial stances and iterative reciprocal critique. Through our agreement-based debate, it yields more accurate labeling for certain cases and more reliable AI-to-human escalation for uncertain ones, achieving 95.2% labeling accuracy with only 3.5% human involvement. Using DREAM, we build BRIDGE, a refined benchmark that mitigates evaluation bias and enables fairer retriever comparison by uncovering 29,824 missing relevant chunks. We then re-benchmark IR systems and extend evaluation to RAG, showing that unaddressed holes not only distort retriever rankings but also drive retrieval-generation misalignment. The relevance assessment framework is available at https: //github.com/DISL-Lab/DREAM-ICLR-26; and the BRIDGE dataset is available at https://github.com/DISL-Lab/BRIDGE-Benchmark.
comment: Accepted at ICLR 2026
☆ Designing Computational Tools for Exploring Causal Relationships in Qualitative Data
Exploring causal relationships for qualitative data analysis in HCI and social science research enables the understanding of user needs and theory building. However, current computational tools primarily characterize and categorize qualitative data; the few systems that analyze causal relationships either inadequately consider context, lack credibility, or produce overly complex outputs. We first conducted a formative study with 15 participants interested in using computational tools for exploring causal relationships in qualitative data to understand their needs and derive design guidelines. Based on these findings, we designed and implemented QualCausal, a system that extracts and illustrates causal relationships through interactive causal network construction and multi-view visualization. A feedback study (n = 15) revealed that participants valued our system for reducing the analytical burden and providing cognitive scaffolding, yet navigated how such systems fit within their established research paradigms, practices, and habits. We discuss broader implications for designing computational tools that support qualitative data analysis.
comment: 19 pages, 5 figures, conditionally accepted by CHI26
☆ Revisiting the Shape Convention of Transformer Language Models
Dense Transformer language models have largely adhered to one consistent architectural shape: each layer consists of an attention module followed by a feed-forward network (FFN) with a narrow-wide-narrow MLP, allocating most parameters to the MLP at expansion ratios between 2 and 4. Motivated by recent results that residual wide-narrow-wide (hourglass) MLPs offer superior function approximation capabilities, we revisit the long-standing MLP shape convention in Transformer, challenging the necessity of the narrow-wide-narrow design. To study this, we develop a Transformer variant that replaces the conventional FFN with a deeper hourglass-shaped FFN, comprising a stack of hourglass sub-MLPs connected by residual pathways. We posit that a deeper but lighter hourglass FFN can serve as a competitive alternative to the conventional FFN, and that parameters saved by using a lighter hourglass FFN can be more effectively utilized, such as by enlarging model hidden dimensions under fixed budgets. We confirm these through empirical validations across model scales: hourglass FFNs outperform conventional FFNs up to 400M and achieve comparable performance at larger scales to 1B parameters; hourglass FFN variants with reduced FFN and increased attention parameters show consistent improvements over conventional configurations at matched budgets. Together, these findings shed new light on recent work and prompt a rethinking of the narrow-wide-narrow MLP convention and the balance between attention and FFN towards efficient and expressive modern language models.
☆ Improve Large Language Model Systems with User Logs
Scaling training data and model parameters has long driven progress in large language models (LLMs), but this paradigm is increasingly constrained by the scarcity of high-quality data and diminishing returns from rising computational costs. As a result, recent work is increasing the focus on continual learning from real-world deployment, where user interaction logs provide a rich source of authentic human feedback and procedural knowledge. However, learning from user logs is challenging due to their unstructured and noisy nature. Vanilla LLM systems often struggle to distinguish useful feedback signals from noisy user behavior, and the disparity between user log collection and model optimization (e.g., the off-policy optimization problem) further strengthens the problem. To this end, we propose UNO (User log-driveN Optimization), a unified framework for improving LLM systems (LLMsys) with user logs. UNO first distills logs into semi-structured rules and preference pairs, then employs query-and-feedback-driven clustering to manage data heterogeneity, and finally quantifies the cognitive gap between the model's prior knowledge and the log data. This assessment guides the LLMsys to adaptively filter out noisy feedback and construct different modules for primary and reflective experiences extracted from user logs, thereby improving future responses. Extensive experiments show that UNO achieves state-of-the-art effectiveness and efficiency, significantly outperforming Retrieval Augmented Generation (RAG) and memory-based baselines. We have open-sourced our code at https://github.com/bebr2/UNO .
☆ Diffusion-State Policy Optimization for Masked Diffusion Language Models
Masked diffusion language models generate by iteratively filling masked tokens over multiple denoising steps, so learning only from a terminal reward on the final completion yields coarse credit assignment over intermediate decisions. We propose DiSPO (Diffusion-State Policy Optimization), a plug-in credit-assignment layer that directly optimizes intermediate filling decisions. At selected intermediate masked states, DiSPO branches by resampling fillings for the currently masked positions from rollout-cached logits, scores the resulting completions, and updates only the newly filled tokens -- without additional multi-step diffusion rollouts. We formalize a fixed-state objective for branched completions and derive a policy-gradient estimator that can be combined with terminal-feedback policy optimization using the same rollouts. On LLaDA-8B-Instruct, DiSPO consistently improves over the terminal-feedback diffu-GRPO baseline on math and planning benchmarks under matched rollout compute and optimizer steps. Our code will be available at https://daioba.github.io/dispo .
☆ RelayGen: Intra-Generation Model Switching for Efficient Reasoning
Large reasoning models (LRMs) achieve strong performance on complex reasoning tasks by generating long, multi-step reasoning trajectories, but inference-time scaling incurs substantial deployment cost. A key challenge is that generation difficulty varies within a single output, whereas existing efficiency-oriented approaches either ignore this intra-generation variation or rely on supervised token-level routing with high system complexity. We present \textbf{RelayGen}, a training-free, segment-level runtime model switching framework that exploits difficulty variation in long-form reasoning. Through offline analysis of generation uncertainty using token probability margins, we show that coarse-grained segment-level control is sufficient to capture difficulty transitions within a reasoning trajectory. RelayGen identifies model-specific switch cues that signal transitions to lower-difficulty segments and dynamically delegates their continuation to a smaller model, while preserving high-difficulty reasoning on the large model. Across multiple reasoning benchmarks, RelayGen substantially reduces inference latency while preserving most of the accuracy of large models. When combined with speculative decoding, RelayGen achieves up to 2.2$\times$ end-to-end speedup with less than 2\% accuracy degradation, without requiring additional training or learned routing components.
☆ Evaluating an evidence-guided reinforcement learning framework in aligning light-parameter large language models with decision-making cognition in psychiatric clinical reasoning
Large language models (LLMs) hold transformative potential for medical decision support yet their application in psychiatry remains constrained by hallucinations and superficial reasoning. This limitation is particularly acute in light-parameter LLMs which are essential for privacy-preserving and efficient clinical deployment. Existing training paradigms prioritize linguistic fluency over structured clinical logic and result in a fundamental misalignment with professional diagnostic cognition. Here we introduce ClinMPO, a reinforcement learning framework designed to align the internal reasoning of LLMs with professional psychiatric practice. The framework employs a specialized reward model trained independently on a dataset derived from 4,474 psychiatry journal articles and structured according to evidence-based medicine principles. We evaluated ClinMPO on a unseen subset of the benchmark designed to isolate reasoning capabilities from rote memorization. This test set comprises items where leading large-parameter LLMs consistently fail. We compared the ClinMPO-aligned light LLM performance against a cohort of 300 medical students. The ClinMPO-tuned Qwen3-8B model achieved a diagnostic accuracy of 31.4% and surpassed the human benchmark of 30.8% on these complex cases. These results demonstrate that medical evidence-guided optimization enables light-parameter LLMs to master complex reasoning tasks. Our findings suggest that explicit cognitive alignment offers a scalable pathway to reliable and safe psychiatric decision support.
comment: 21 pages, 8 figures
☆ CORE: Comprehensive Ontological Relation Evaluation for Large Language Models
Large Language Models (LLMs) perform well on many reasoning benchmarks, yet existing evaluations rarely assess their ability to distinguish between meaningful semantic relations and genuine unrelatedness. We introduce CORE (Comprehensive Ontological Relation Evaluation), a dataset of 225K multiple-choice questions spanning 74 disciplines, together with a general-domain open-source benchmark of 203 rigorously validated questions (Cohen's Kappa = 1.0) covering 24 semantic relation types with equal representation of unrelated pairs. A human baseline from 1,000+ participants achieves 92.6% accuracy (95.1% on unrelated pairs). In contrast, 29 state-of-the-art LLMs achieve 48.25-70.9% overall accuracy, with near-ceiling performance on related pairs (86.5-100%) but severe degradation on unrelated pairs (0-41.35%), despite assigning similar confidence (92-94%). Expected Calibration Error increases 2-4x on unrelated pairs, and a mean semantic collapse rate of 37.6% indicates systematic generation of spurious relations. On the CORE 225K MCQs dataset, accuracy further drops to approximately 2%, highlighting substantial challenges in domain-specific semantic reasoning. We identify unrelatedness reasoning as a critical, under-evaluated frontier for LLM evaluation and safety.
☆ TrailBlazer: History-Guided Reinforcement Learning for Black-Box LLM Jailbreaking
Large Language Models (LLMs) have become integral to many domains, making their safety a critical priority. Prior jailbreaking research has explored diverse approaches, including prompt optimization, automated red teaming, obfuscation, and reinforcement learning (RL) based methods. However, most existing techniques fail to effectively leverage vulnerabilities revealed in earlier interaction turns, resulting in inefficient and unstable attacks. Since jailbreaking involves sequential interactions in which each response influences future actions, reinforcement learning provides a natural framework for this problem. Motivated by this, we propose a history-aware RL-based jailbreak framework that analyzes and reweights vulnerability signals from prior steps to guide future decisions. We show that incorporating historical information alone improves jailbreak success rates. Building on this insight, we introduce an attention-based reweighting mechanism that highlights critical vulnerabilities within the interaction history, enabling more efficient exploration with fewer queries. Extensive experiments on AdvBench and HarmBench demonstrate that our method achieves state-of-the-art jailbreak performance while significantly improving query efficiency. These results underscore the importance of historical vulnerability signals in reinforcement learning-driven jailbreak strategies and offer a principled pathway for advancing adversarial research on LLM safeguards.
☆ Investigating the structure of emotions by analyzing similarity and association of emotion words
In the field of natural language processing, some studies have attempted sentiment analysis on text by handling emotions as explanatory or response variables. One of the most popular emotion models used in this context is the wheel of emotion proposed by Plutchik. This model schematizes human emotions in a circular structure, and represents them in two or three dimensions. However, the validity of Plutchik's wheel of emotion has not been sufficiently examined. This study investigated the validity of the wheel by creating and analyzing a semantic networks of emotion words. Through our experiments, we collected data of similarity and association of ordered pairs of emotion words, and constructed networks using these data. We then analyzed the structure of the networks through community detection, and compared it with that of the wheel of emotion. The results showed that each network's structure was, for the most part, similar to that of the wheel of emotion, but locally different.
comment: 5 figures, 8 tables
☆ On the Wings of Imagination: Conflicting Script-based Multi-role Framework for Humor Caption Generation ICLR 2026
Humor is a commonly used and intricate human language in daily life. Humor generation, especially in multi-modal scenarios, is a challenging task for large language models (LLMs), which is typically as funny caption generation for images, requiring visual understanding, humor reasoning, creative imagination, and so on. Existing LLM-based approaches rely on reasoning chains or self-improvement, which suffer from limited creativity and interpretability. To address these bottlenecks, we develop a novel LLM-based humor generation mechanism based on a fundamental humor theory, GTVH. To produce funny and script-opposite captions, we introduce a humor-theory-driven multi-role LLM collaboration framework augmented with humor retrieval (HOMER). The framework consists of three LLM-based roles: (1) conflicting-script extractor that grounds humor in key script oppositions, forming the basis of caption generation; (2) retrieval-augmented hierarchical imaginator that identifies key humor targets and expands the creative space of them through diverse associations structured as imagination trees; and (3) caption generator that produces funny and diverse captions conditioned on the obtained knowledge. Extensive experiments on two New Yorker Cartoon benchmarking datasets show that HOMER outperforms state-of-the-art baselines and powerful LLM reasoning strategies on multi-modal humor captioning.
comment: Paper accepted as a conference paper at ICLR 2026
☆ Stopping Computation for Converged Tokens in Masked Diffusion-LM Decoding ICLR 2026
Masked Diffusion Language Models generate sequences via iterative sampling that progressively unmasks tokens. However, they still recompute the attention and feed-forward blocks for every token position at every step -- even when many unmasked tokens are essentially fixed, resulting in substantial waste in compute. We propose SureLock: when the posterior at an unmasked position has stabilized across steps (our sure condition), we lock that position -- thereafter skipping its query projection and feed-forward sublayers -- while caching its attention keys and values so other positions can continue to attend to it. This reduces the dominant per-iteration computational cost from $O(N^2d)$ to $O(MNd)$ where $N$ is the sequence length, $M$ is the number of unlocked token positions, and $d$ is the model dimension. In practice, $M$ decreases as the iteration progresses, yielding substantial savings. On LLaDA-8B, SureLock reduces algorithmic FLOPs by 30--50% relative to the same sampler without locking, while maintaining comparable generation quality. We also provide a theoretical analysis to justify the design rationale of SureLock: monitoring only the local KL at the lock step suffices to bound the deviation in final token probabilities. Our code will be available at https://daioba.github.io/surelock .
comment: Accepted at ICLR 2026
☆ FMBench: Adaptive Large Language Model Output Formatting
Producing outputs that satisfy both semantic intent and format constraints is essential for deploying large language models in user-facing and system-integrated workflows. In this work, we focus on Markdown formatting, which is ubiquitous in assistants, documentation, and tool-augmented pipelines but still prone to subtle, hard-to-detect errors (e.g., broken lists, malformed tables, inconsistent headings, and invalid code blocks) that can significantly degrade downstream usability. We present FMBench, a benchmark for adaptive Markdown output formatting that evaluates models under a wide range of instruction-following scenarios with diverse structural requirements. FMBench emphasizes real-world formatting behaviors such as multi-level organization, mixed content (natural language interleaved with lists/tables/code), and strict adherence to user-specified layout constraints. To improve Markdown compliance without relying on hard decoding constraints, we propose a lightweight alignment pipeline that combines supervised fine-tuning (SFT) with reinforcement learning fine-tuning. Starting from a base model, we first perform SFT on instruction-response pairs, and then optimize a composite objective that balances semantic fidelity with structural correctness. Experiments on two model families (OpenPangu and Qwen) show that SFT consistently improves semantic alignment, while reinforcement learning provides additional gains in robustness to challenging Markdown instructions when initialized from a strong SFT policy. Our results also reveal an inherent trade-off between semantic and structural objectives, highlighting the importance of carefully designed rewards for reliable formatted generation. Code is available at: https://github.com/FudanCVL/FMBench.
☆ ReBeCA: Unveiling Interpretable Behavior Hierarchy behind the Iterative Self-Reflection of Language Models with Causal Analysis
While self-reflection can enhance language model reliability, its underlying mechanisms remain opaque, with existing analyses often yielding correlation-based insights that fail to generalize. To address this, we introduce \textbf{\texttt{ReBeCA}} (self-\textbf{\texttt{Re}}flection \textbf{\texttt{Be}}havior explained through \textbf{\texttt{C}}ausal \textbf{\texttt{A}}nalysis), a framework that unveils the interpretable behavioral hierarchy governing the self-reflection outcome. By modeling self-reflection trajectories as causal graphs, ReBeCA isolates genuine determinants of performance through a three-stage Invariant Causal Prediction (ICP) pipeline. We establish three critical findings: (1) \textbf{Behavioral hierarchy:} Semantic behaviors of the model influence final self-reflection results hierarchically: directly or indirectly; (2) \textbf{Causation matters:} Generalizability in self-reflection effects is limited to just a few semantic behaviors; (3) \textbf{More $\mathbf{\neq}$ better:} The confluence of seemingly positive semantic behaviors, even among direct causal factors, can impair the efficacy of self-reflection. ICP-based verification identifies sparse causal parents achieving up to $49.6\%$ structural likelihood gains, stable across tasks where correlation-based patterns fail. Intervention studies on novel datasets confirm these causal relationships hold out-of-distribution ($p = .013, η^2_\mathrm{p} = .071$). ReBeCA thus provides a rigorous methodology for disentangling genuine causal mechanisms from spurious associations in self-reflection dynamics.
comment: 17 pages, 3 figures
☆ Cost-Aware Model Selection for Text Classification: Multi-Objective Trade-offs Between Fine-Tuned Encoders and LLM Prompting in Production
Large language models (LLMs) such as GPT-4o and Claude Sonnet 4.5 have demonstrated strong capabilities in open-ended reasoning and generative language tasks, leading to their widespread adoption across a broad range of NLP applications. However, for structured text classification problems with fixed label spaces, model selection is often driven by predictive performance alone, overlooking operational constraints encountered in production systems. In this work, we present a systematic comparison of two contrasting paradigms for text classification: zero- and few-shot prompt-based large language models, and fully fine-tuned encoder-only architectures. We evaluate these approaches across four canonical benchmarks (IMDB, SST-2, AG News, and DBPedia), measuring predictive quality (macro F1), inference latency, and monetary cost. We frame model evaluation as a multi-objective decision problem and analyze trade-offs using Pareto frontier projections and a parameterized utility function reflecting different deployment regimes. Our results show that fine-tuned encoder-based models from the BERT family achieve competitive, and often superior, classification performance while operating at one to two orders of magnitude lower cost and latency compared to zero- and few-shot LLM prompting. Overall, our findings suggest that indiscriminate use of large language models for standard text classification workloads can lead to suboptimal system-level outcomes. Instead, fine-tuned encoders emerge as robust and efficient components for structured NLP pipelines, while LLMs are better positioned as complementary elements within hybrid architectures. We release all code, datasets, and evaluation protocols to support reproducibility and cost-aware NLP system design.
comment: 26 pages, 12 figures. Empirical benchmark comparing fine-tuned encoders and LLM prompting for text classification under cost and latency constraints
☆ SHINE: A Scalable In-Context Hypernetwork for Mapping Context to LoRA in a Single Pass
We propose SHINE (Scalable Hyper In-context NEtwork), a scalable hypernetwork that can map diverse meaningful contexts into high-quality LoRA adapters for large language models (LLM). By reusing the frozen LLM's own parameters in an in-context hypernetwork design and introducing architectural innovations, SHINE overcomes key limitations of prior hypernetworks and achieves strong expressive power with a relatively small number of parameters. We introduce a pretraining and instruction fine-tuning pipeline, and train our hypernetwork to generate high quality LoRA adapters from diverse meaningful contexts in a single forward pass. It updates LLM parameters without any fine-tuning, and immediately enables complex question answering tasks related to the context without directly accessing the context, effectively transforming in-context knowledge to in-parameter knowledge in one pass. Our work achieves outstanding results on various tasks, greatly saves time, computation and memory costs compared to SFT-based LLM adaptation, and shows great potential for scaling. Our code is available at https://github.com/Yewei-Liu/SHINE
☆ Can Post-Training Transform LLMs into Causal Reasoners?
Causal inference is essential for decision-making but remains challenging for non-experts. While large language models (LLMs) show promise in this domain, their precise causal estimation capabilities are still limited, and the impact of post-training on these abilities is insufficiently explored. This paper examines the extent to which post-training can enhance LLMs' capacity for causal inference. We introduce CauGym, a comprehensive dataset comprising seven core causal tasks for training and five diverse test sets. Using this dataset, we systematically evaluate five post-training approaches: SFT, DPO, KTO, PPO, and GRPO. Across five in-domain and four existing benchmarks, our experiments demonstrate that appropriate post-training enables smaller LLMs to perform causal inference competitively, often surpassing much larger models. Our 14B parameter model achieves 93.5% accuracy on the CaLM benchmark, compared to 55.4% by OpenAI o3. Furthermore, the post-trained LLMs exhibit strong generalization and robustness under real-world conditions such as distribution shifts and noisy data. Collectively, these findings provide the first systematic evidence that targeted post-training can produce reliable and robust LLM-based causal reasoners. Our data and GRPO-model are available at https://github.com/OpenCausaLab/CauGym.
☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables
☆ Lost in Speech: Benchmarking, Evaluation, and Parsing of Spoken Code-Switching Beyond Standard UD Assumptions
Spoken code-switching (CSW) challenges syntactic parsing in ways not observed in written text. Disfluencies, repetition, ellipsis, and discourse-driven structure routinely violate standard Universal Dependencies (UD) assumptions, causing parsers and large language models (LLMs) to fail despite strong performance on written data. These failures are compounded by rigid evaluation metrics that conflate genuine structural errors with acceptable variation. In this work, we present a systems-oriented approach to spoken CSW parsing. We introduce a linguistically grounded taxonomy of spoken CSW phenomena and SpokeBench, an expert-annotated gold benchmark designed to test spoken-language structure beyond standard UD assumptions. We further propose FLEX-UD, an ambiguity-aware evaluation metric, which reveals that existing parsing techniques perform poorly on spoken CSW by penalizing linguistically plausible analyses as errors. We then propose DECAP, a decoupled agentic parsing framework that isolates spoken-phenomena handling from core syntactic analysis. Experiments show that DECAP produces more robust and interpretable parses without retraining and achieves up to 52.6% improvements over existing parsing techniques. FLEX-UD evaluations further reveal qualitative improvements that are masked by standard metrics.
comment: 18 pages, 4 Figures
☆ Judging What We Cannot Solve: A Consequence-Based Approach for Oracle-Free Evaluation of Research-Level Math
Recent progress in reasoning models suggests that generating plausible attempts for research-level mathematics may be within reach, but verification remains a bottleneck, consuming scarce expert time. We hypothesize that a meaningful solution should contain enough method-level information that, when applied to a neighborhood of related questions, it should yield better downstream performance than incorrect solutions. Building on this idea, we propose \textbf{Consequence-Based Utility}, an oracle-free evaluator that scores each candidate by testing its value as an in-context exemplar in solving related yet verifiable questions. Our approach is evaluated on an original set of research-level math problems, each paired with one expert-written solution and nine LLM-generated solutions. Notably, Consequence-Based Utility consistently outperforms reward models, generative reward models, and LLM judges on ranking quality. Specifically, for GPT-OSS-120B, it improves Acc@1 from 67.2 to 76.3 and AUC from 71.4 to 79.6, with similarly large AUC gains on GPT-OSS-20B (69.0 to 79.2). Furthermore, compared to LLM-Judges, it also exhibits a larger solver-evaluator gap, maintaining a stronger correct-wrong separation even on instances where the underlying solver often fails to solve.
comment: Preprint
☆ RoPE-LIME: RoPE-Space Locality + Sparse-K Sampling for Efficient LLM Attribution
Explaining closed-source LLM outputs is challenging because API access prevents gradient-based attribution, while perturbation methods are costly and noisy when they depend on regenerated text. We introduce RoPE-LIME, an open-source extension of gSMILE that decouples reasoning from explanation: given a fixed output from a closed model, a smaller open-source surrogate computes token-level attributions from probability-based objectives (negative log-likelihood and divergence targets) under input perturbations. RoPE-LIME incorporates (i) a locality kernel based on Relaxed Word Mover's Distance computed in RoPE embedding space for stable similarity under masking, and (ii) Sparse-K sampling, an efficient perturbation strategy that improves interaction coverage under limited budgets. Experiments on HotpotQA (sentence features) and a hand-labeled MMLU subset (word features) show that RoPE-LIME produces more informative attributions than leave-one-out sampling and improves over gSMILE while substantially reducing closed-model API calls.
☆ VowelPrompt: Hearing Speech Emotions from Text via Vowel-level Prosodic Augmentation ICLR 2026
Emotion recognition in speech presents a complex multimodal challenge, requiring comprehension of both linguistic content and vocal expressivity, particularly prosodic features such as fundamental frequency, intensity, and temporal dynamics. Although large language models (LLMs) have shown promise in reasoning over textual transcriptions for emotion recognition, they typically neglect fine-grained prosodic information, limiting their effectiveness and interpretability. In this work, we propose VowelPrompt, a linguistically grounded framework that augments LLM-based emotion recognition with interpretable, fine-grained vowel-level prosodic cues. Drawing on phonetic evidence that vowels serve as primary carriers of affective prosody, VowelPrompt extracts pitch-, energy-, and duration-based descriptors from time-aligned vowel segments, and converts these features into natural language descriptions for better interpretability. Such a design enables LLMs to jointly reason over lexical semantics and fine-grained prosodic variation. Moreover, we adopt a two-stage adaptation procedure comprising supervised fine-tuning (SFT) followed by Reinforcement Learning with Verifiable Reward (RLVR), implemented via Group Relative Policy Optimization (GRPO), to enhance reasoning capability, enforce structured output adherence, and improve generalization across domains and speaker variations. Extensive evaluations across diverse benchmark datasets demonstrate that VowelPrompt consistently outperforms state-of-the-art emotion recognition methods under zero-shot, fine-tuned, cross-domain, and cross-linguistic conditions, while enabling the generation of interpretable explanations that are jointly grounded in contextual semantics and fine-grained prosodic structure.
comment: Accepted to ICLR 2026
☆ MPIB: A Benchmark for Medical Prompt Injection Attacks and Clinical Safety in LLMs
Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems are increasingly integrated into clinical workflows; however, prompt injection attacks can steer these systems toward clinically unsafe or misleading outputs. We introduce the Medical Prompt Injection Benchmark (MPIB), a dataset-and-benchmark suite for evaluating clinical safety under both direct prompt injection and indirect, RAG-mediated injection across clinically grounded tasks. MPIB emphasizes outcome-level risk via the Clinical Harm Event Rate (CHER), which measures high-severity clinical harm events under a clinically grounded taxonomy, and reports CHER alongside Attack Success Rate (ASR) to disentangle instruction compliance from downstream patient risk. The benchmark comprises 9,697 curated instances constructed through multi-stage quality gates and clinical safety linting. Evaluating MPIB across a diverse set of baseline LLMs and defense configurations, we find that ASR and CHER can diverge substantially, and that robustness depends critically on whether adversarial instructions appear in the user query or in retrieved context. We release MPIB with evaluation code, adversarial baselines, and comprehensive documentation to support reproducible and systematic research on clinical prompt injection. Code and data are available at GitHub (code) and Hugging Face (data).
comment: 13 pages, 7 figures
☆ BRIDGE: Predicting Human Task Completion Time From Model Performance
Evaluating the real-world capabilities of AI systems requires grounding benchmark performance in human-interpretable measures of task difficulty. Existing approaches that rely on direct human task completion time annotations are costly, noisy, and difficult to scale across benchmarks. In this work, we propose BRIDGE, a unified psychometric framework that learns the latent difficulty scale from model responses and anchors it to human task completion time. Using a two-parameter logistic Item Response Theory model, we jointly estimate latent task difficulty and model capability from model performance data across multiple benchmarks. We demonstrate that latent task difficulty varies linearly with the logarithm of human completion time, allowing human task completion time to be inferred for new benchmarks from model performance alone. Leveraging this alignment, we forecast frontier model capabilities in terms of human task length and independently reproduce METR's exponential scaling results, with the 50% solvable task horizon doubling approximately every 6 months.
☆ From Out-of-Distribution Detection to Hallucination Detection: A Geometric View
Detecting hallucinations in large language models is a critical open problem with significant implications for safety and reliability. While existing hallucination detection methods achieve strong performance in question-answering tasks, they remain less effective on tasks requiring reasoning. In this work, we revisit hallucination detection through the lens of out-of-distribution (OOD) detection, a well-studied problem in areas like computer vision. Treating next-token prediction in language models as a classification task allows us to apply OOD techniques, provided appropriate modifications are made to account for the structural differences in large language models. We show that OOD-based approaches yield training-free, single-sample-based detectors, achieving strong accuracy in hallucination detection for reasoning tasks. Overall, our work suggests that reframing hallucination detection as OOD detection provides a promising and scalable pathway toward language model safety.
☆ Equipping LLM with Directional Multi-Talker Speech Understanding Capabilities
Recent studies have demonstrated that prompting large language models (LLM) with audio encodings enables effective speech understanding capabilities. However, most speech LLMs are trained on single-channel, single-talker data, which makes it challenging to directly apply them to multi-talker and multi-channel speech understanding task. In this work, we present a comprehensive investigation on how to enable directional multi-talker speech understanding capabilities for LLMs, specifically in smart glasses usecase. We propose two novel approaches to integrate directivity into LLMs: (1) a cascaded system that leverages a source separation front-end module, and (2) an end-to-end system that utilizes serialized output training. All of the approaches utilize a multi-microphone array embedded in smart glasses to optimize directivity interpretation and processing in a streaming manner. Experimental results demonstrate the efficacy of our proposed methods in endowing LLMs with directional speech understanding capabilities, achieving strong performance in both speech recognition and speech translation tasks.
☆ Long-Context Long-Form Question Answering for Legal Domain EACL 2026
Legal documents have complex document layouts involving multiple nested sections, lengthy footnotes and further use specialized linguistic devices like intricate syntax and domain-specific vocabulary to ensure precision and authority. These inherent characteristics of legal documents make question answering challenging, and particularly so when the answer to the question spans several pages (i.e. requires long-context) and is required to be comprehensive (i.e. a long-form answer). In this paper, we address the challenges of long-context question answering in context of long-form answers given the idiosyncrasies of legal documents. We propose a question answering system that can (a) deconstruct domain-specific vocabulary for better retrieval from source documents, (b) parse complex document layouts while isolating sections and footnotes and linking them appropriately, (c) generate comprehensive answers using precise domain-specific vocabulary. We also introduce a coverage metric that classifies the performance into recall-based coverage categories allowing human users to evaluate the recall with ease. We curate a QA dataset by leveraging the expertise of professionals from fields such as law and corporate tax. Through comprehensive experiments and ablation studies, we demonstrate the usability and merit of the proposed system.
comment: EACL 2026
☆ Measuring Complexity at the Requirements Stage: Spectral Metrics as Development Effort Predictors
Complexity in engineered systems presents one of the most persistent challenges in modern development since it is driving cost overruns, schedule delays, and outright project failures. Yet while architectural complexity has been studied, the structural complexity embedded within requirements specifications remains poorly understood and inadequately quantified. This gap is consequential: requirements fundamentally drive system design, and complexity introduced at this stage propagates through architecture, implementation, and integration. To address this gap, we build on Natural Language Processing methods that extract structural networks from textual requirements. Using these extracted structures, we conducted a controlled experiment employing molecular integration tasks as structurally isomorphic proxies for requirements integration - leveraging the topological equivalence between molecular graphs and requirement networks while eliminating confounding factors such as domain expertise and semantic ambiguity. Our results demonstrate that spectral measures predict integration effort with correlations exceeding 0.95, while structural metrics achieve correlations above 0.89. Notably, density-based metrics show no significant predictive validity. These findings indicate that eigenvalue-derived measures capture cognitive and effort dimensions that simpler connectivity metrics cannot. As a result, this research bridges a critical methodological gap between architectural complexity analysis and requirements engineering practice, providing a validated foundation for applying these metrics to requirements engineering, where similar structural complexity patterns may predict integration effort.
comment: 16 pages, 3 figures, 5 tables
☆ Can LLMs Discern the Traits Influencing Your Preferences? Evaluating Personality-Driven Preference Alignment in LLMs
User preferences are increasingly used to personalize Large Language Model (LLM) responses, yet how to reliably leverage preference signals for answer generation remains under-explored. In practice, preferences can be noisy, incomplete, or even misleading, which can degrade answer quality when applied naively. Motivated by the observation that stable personality traits shape everyday preferences, we study personality as a principled ''latent'' signal behind preference statements. Through extensive experiments, we find that conditioning on personality-aligned preferences substantially improves personalized question answering: selecting preferences consistent with a user's inferred personality increases answer-choice accuracy from 29.25% to 76%, compared to using randomly selected preferences. Based on these findings, we introduce PACIFIC (Preference Alignment Choices Inference for Five-factor Identity Characterization), a personality-labeled preference dataset containing 1200 preference statements spanning diverse domains (e.g., travel, movies, education), annotated with Big-Five (OCEAN) trait directions. Finally, we propose a framework that enables an LLM model to automatically retrieve personality-aligned preferences and incorporate them during answer generation.
☆ An Information-Theoretic Framework for Comparing Voice and Text Explainability
Explainable Artificial Intelligence (XAI) aims to make machine learning models transparent and trustworthy, yet most current approaches communicate explanations visually or through text. This paper introduces an information theoretic framework for analyzing how explanation modality specifically, voice versus text affects user comprehension and trust calibration in AI systems. The proposed model treats explanation delivery as a communication channel between model and user, characterized by metrics for information retention, comprehension efficiency (CE), and trust calibration error (T CE). A simulation framework implemented in Python was developed to evaluate these metrics using synthetic SHAP based feature attributions across multiple modality style configurations (brief, detailed, and analogy based). Results demonstrate that text explanations achieve higher comprehension efficiency, while voice explanations yield improved trust calibration, with analogy based delivery achieving the best overall trade off. This framework provides a reproducible foundation for designing and benchmarking multimodal explainability systems and can be extended to empirical studies using real SHAP or LIME outputs on open datasets such as the UCI Credit Approval or Kaggle Financial Transactions datasets.
comment: Accepted for publication at the 10th ACM International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI 2026), April 24-26, Cebu City, Phillipines
☆ Open TutorAI: An Open-source Platform for Personalized and Immersive Learning with Generative AI
Recent advances in artificial intelligence have created new possibilities for making education more scalable, adaptive, and learner-centered. However, existing educational chatbot systems often lack contextual adaptability, real-time responsiveness, and pedagogical agility. which can limit learner engagement and diminish instructional effectiveness. Thus, there is a growing need for open, integrative platforms that combine AI and immersive technologies to support personalized, meaningful learning experiences. This paper presents Open TutorAI, an open-source educational platform based on LLMs and generative technologies that provides dynamic, personalized tutoring. The system integrates natural language processing with customizable 3D avatars to enable multimodal learner interaction. Through a structured onboarding process, it captures each learner's goals and preferences in order to configure a learner-specific AI assistant. This assistant is accessible via both text-based and avatar-driven interfaces. The platform includes tools for organizing content, providing embedded feedback, and offering dedicated interfaces for learners, educators, and parents. This work focuses on learner-facing components, delivering a tool for adaptive support that responds to individual learner profiles without requiring technical expertise. Its assistant-generation pipeline and avatar integration enhance engagement and emotional presence, creating a more humanized, immersive learning environment. Embedded learning analytics support self-regulated learning by tracking engagement patterns and generating actionable feedback. The result is Open TutorAI, which unites modular architecture, generative AI, and learner analytics within an open-source framework. It contributes to the development of next-generation intelligent tutoring systems.
comment: 19 pages, 15 figures
☆ Your Language Model Secretly Contains Personality Subnetworks ICLR 2026
Humans shift between different personas depending on social context. Large Language Models (LLMs) demonstrate a similar flexibility in adopting different personas and behaviors. Existing approaches, however, typically adapt such behavior through external knowledge such as prompting, retrieval-augmented generation (RAG), or fine-tuning. We ask: do LLMs really need external context or parameters to adapt to different behaviors, or do they already have such knowledge embedded in their parameters? In this work, we show that LLMs already contain persona-specialized subnetworks in their parameter space. Using small calibration datasets, we identify distinct activation signatures associated with different personas. Guided by these statistics, we develop a masking strategy that isolates lightweight persona subnetworks. Building on the findings, we further discuss: how can we discover opposing subnetwork from the model that lead to binary-opposing personas, such as introvert-extrovert? To further enhance separation in binary opposition scenarios, we introduce a contrastive pruning strategy that identifies parameters responsible for the statistical divergence between opposing personas. Our method is entirely training-free and relies solely on the language model's existing parameter space. Across diverse evaluation settings, the resulting subnetworks exhibit significantly stronger persona alignment than baselines that require external knowledge while being more efficient. Our findings suggest that diverse human-like behaviors are not merely induced in LLMs, but are already embedded in their parameter space, pointing toward a new perspective on controllable and interpretable personalization in large language models.
comment: ICLR 2026
☆ Free Energy Mixer ICLR 2026
Standard attention stores keys/values losslessly but reads them via a per-head convex average, blocking channel-wise selection. We propose the Free Energy Mixer (FEM): a free-energy (log-sum-exp) read that applies a value-driven, per-channel log-linear tilt to a fast prior (e.g., from queries/keys in standard attention) over indices. Unlike methods that attempt to improve and enrich the $(q,k)$ scoring distribution, FEM treats it as a prior and yields a value-aware posterior read at unchanged complexity, smoothly moving from averaging to per-channel selection as the learnable inverse temperature increases, while still preserving parallelism and the original asymptotic complexity ($O(T^2)$ for softmax; $O(T)$ for linearizable variants). We instantiate a two-level gated FEM that is plug-and-play with standard and linear attention, linear RNNs and SSMs. It consistently outperforms strong baselines on NLP, vision, and time-series at matched parameter budgets.
comment: Camera-ready version. Accepted at ICLR 2026
☆ Convex Dominance in Deep Learning I: A Scaling Law of Loss and Learning Rate ICLR 2026
Deep learning has non-convex loss landscape and its optimization dynamics is hard to analyze or control. Nevertheless, the dynamics can be empirically convex-like across various tasks, models, optimizers, hyperparameters, etc. In this work, we examine the applicability of convexity and Lipschitz continuity in deep learning, in order to precisely control the loss dynamics via the learning rate schedules. We illustrate that deep learning quickly becomes weakly convex after a short period of training, and the loss is predicable by an upper bound on the last iterate, which further informs the scaling of optimal learning rate. Through the lens of convexity, we build scaling laws of learning rates and losses that extrapolate as much as 80X across training horizons and 70X across model sizes.
comment: Part of a planned series to understand and leverage the convexity in deep learning. Accepted to ICLR 2026
☆ Massive Sound Embedding Benchmark (MSEB)
Audio is a critical component of multimodal perception, and any truly intelligent system must demonstrate a wide range of auditory capabilities. These capabilities include transcription, classification, retrieval, reasoning, segmentation, clustering, reranking, and reconstruction. Fundamentally, each task involves transforming a raw audio signal into a meaningful 'embedding' - be it a single vector, a sequence of continuous or discrete representations, or another structured form - which then serves as the basis for generating the task's final response. To accelerate progress towards robust machine auditory intelligence, we present the Massive Sound Embedding Benchmark (MSEB): an extensible framework designed to evaluate the auditory components of any multimodal system. In its first release, MSEB offers a comprehensive suite of eight core tasks, with more planned for the future, supported by diverse datasets, including the new, large-scale Simple Voice Questions (SVQ) dataset. Our initial experiments establish clear performance headrooms, highlighting the significant opportunity to improve real-world multimodal experiences where audio is a core signal. We encourage the research community to use MSEB to assess their algorithms and contribute to its growth. The library is publicly hosted at github.
☆ Anchored Decoding: Provably Reducing Copyright Risk for Any Language Model
Modern language models (LMs) tend to memorize portions of their training data and emit verbatim spans. When the underlying sources are sensitive or copyright-protected, such reproduction raises issues of consent and compensation for creators and compliance risks for developers. We propose Anchored Decoding, a plug-and-play inference-time method for suppressing verbatim copying: it enables decoding from any risky LM trained on mixed-license data by keeping generation in bounded proximity to a permissively trained safe LM. Anchored Decoding adaptively allocates a user-chosen information budget over the generation trajectory and enforces per-step constraints that yield a sequence-level guarantee, enabling a tunable risk-utility trade-off. To make Anchored Decoding practically useful, we introduce a new permissively trained safe model (TinyComma 1.8B), as well as Anchored$_{\mathrm{Byte}}$ Decoding, a byte-level variant of our method that enables cross-vocabulary fusion via the ByteSampler framework (Hayase et al., 2025). We evaluate our methods across six model pairs on long-form evaluations of copyright risk and utility. Anchored and Anchored$_{\mathrm{Byte}}$ Decoding define a new Pareto frontier, preserving near-original fluency and factuality while eliminating up to 75% of the measurable copying gap (averaged over six copying metrics) between the risky baseline and a safe reference, at a modest inference overhead.
comment: 51 pages, 12 figures, 16 tables. Code is publicly available at https://github.com/jacqueline-he/anchored-decoding
☆ Ex-Omni: Enabling 3D Facial Animation Generation for Omni-modal Large Language Models
Omni-modal large language models (OLLMs) aim to unify multimodal understanding and generation, yet incorporating speech with 3D facial animation remains largely unexplored despite its importance for natural interaction. A key challenge arises from the representation mismatch between discrete, token-level semantic reasoning in LLMs and the dense, fine-grained temporal dynamics required for 3D facial motion, which makes direct modeling difficult to optimize under limited data. We propose Expressive Omni (Ex-Omni), an open-source omni-modal framework that augments OLLMs with speech-accompanied 3D facial animation. Ex-Omni reduces learning difficulty by decoupling semantic reasoning from temporal generation, leveraging speech units as temporal scaffolding and a unified token-as-query gated fusion (TQGF) mechanism for controlled semantic injection. We further introduce InstructEx, a dataset aims to facilitate augment OLLMs with speech-accompanied 3D facial animation. Extensive experiments demonstrate that Ex-Omni performs competitively against existing open-source OLLMs while enabling stable aligned speech and facial animation generation.
♻ ☆ code_transformed: The Influence of Large Language Models on Code EACL 2026
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 20,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake_case function names in Python code increased from 40.7% in Q1 2023 to 49.8% in Q3 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Our experimental results may provide the first large-scale empirical evidence that LLMs affect real-world programming style. We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
comment: EACL 2026 Findings
♻ ☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
comment: Blog post: https://ssundaram21.github.io/soar/
♻ ☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
♻ ☆ Harnessing the Unseen: The Hidden Influence of Intrinsic Knowledge in Long-Context Language Models AAAI 2026
Recent advances in long-context language models (LCLMs), designed to handle extremely long contexts, primarily focus on utilizing external contextual information, often leaving the influence of language models' parametric knowledge underexplored. In this work, we firstly investigate how this parametric knowledge affects content generation and demonstrate that its impact becomes increasingly pronounced as context length extends. Furthermore, we show that the model's ability to utilize parametric knowledge, which we call parametric recall ability, does not improve simultaneously with its ability to leverage contextual knowledge through extrinsic retrieval ability. Moreover, better extrinsic retrieval ability can interfere with the model's parametric recall ability, limiting its full potential. To bridge this gap, we design a simple yet effective Hybrid Needle-in-a-Haystack test that evaluates models based on their capabilities across both abilities, rather than solely emphasizing extrinsic retrieval ability. Our experimental results reveal that Qwen-2.5 models significantly outperform Llama-3.1 models, demonstrating superior potential to combine various abilities. Moreover, even the more powerful Llama-3.1-70B-Instruct model fails to exhibit better performance, highlighting the importance of evaluating models from a dual-ability perspective.
comment: 17 pages,11figures (accepted to AAAI 2026)
♻ ☆ Encoding syntactic objects and Merge operations in function spaces
We provide a mathematical argument showing that, given a representation of lexical items as functions (wavelets, for instance) in some function space, it is possible to construct a faithful representation of arbitrary syntactic objects in the same function space. This space can be endowed with a commutative non-associative semiring structure built using the second Renyi entropy. The resulting representation of syntactic objects is compatible with the magma structure. The resulting set of functions is an algebra over an operad, where the operations in the operad model circuits that transform the input wave forms into a combined output that encodes the syntactic structure. The action of Merge on workspaces is faithfully implemented as action on these circuits, through a coproduct and a Hopf algebra Markov chain. The results obtained here provide a constructive argument showing the theoretical possibility of a neurocomputational realization of the core computational structure of syntax. We also present a particular case of this general construction where this type of realization of Merge is implemented as a cross frequency phase synchronization on sinusoidal waves. This also shows that Merge can be expressed in terms of the successor function of a semiring, thus clarifying the well known observation of its similarities with the successor function of arithmetic.
comment: 48 pages, LaTeX, 4 png figures; v2: expository changes
♻ ☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
♻ ☆ You Had One Job: Per-Task Quantization Using LLMs' Hidden Representations
Many applications of large language models (LLMs) require only a narrow capability, yet common post-training quantization (PTQ) pipelines assign precision largely without regard to the target task. As a result, they may spend bits on layers that are less relevant to the task. We propose per-task mixed-precision PTQ guided by hidden representations. Given a small set of unlabeled calibration prompts from the target task, we estimate layer importance and allocate higher precision to task-relevant layers while lower to the rest, under a bits allocation budget. We introduce three task-aware allocation signals: \textbf{TAQ}, which scores layers using an information-stability criterion derived from activation geometry; \textbf{TAQO}, which ranks layers by direct sensitivity to single-layer quantization; and \textbf{TAQ-KL}, which measures output sensitivity via KL divergence under a noise proxy for quantization error. Together, these methods provide a simple, post-training framework that connects mechanistic signals to quantization decisions, enabling task-aligned compression without additional training.
♻ ☆ AFD-INSTRUCTION: A Comprehensive Antibody Instruction Dataset with Functional Annotations for LLM-Based Understanding and Design ICLR 2026
Large language models (LLMs) have significantly advanced protein representation learning. However, their capacity to interpret and design antibodies through natural language remains limited. To address this challenge, we present AFD-Instruction, the first large-scale instruction dataset with functional annotations tailored to antibodies. This dataset encompasses two key components: antibody understanding, which infers functional attributes directly from sequences, and antibody design, which enables de novo sequence generation under functional constraints. These components provide explicit sequence-function alignment and support antibody design guided by natural language instructions. Extensive instruction-tuning experiments on general-purpose LLMs demonstrate that AFD-Instruction consistently improves performance across diverse antibody-related tasks. By linking antibody sequences with textual descriptions of function, AFD-Instruction establishes a new foundation for advancing antibody modeling and accelerating therapeutic discovery.
comment: Accepted by ICLR 2026
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: Structured Cognitive Loop with a Governance Layer
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). Soft Symbolic Control constitutes a dedicated governance layer within SCL, applying symbolic constraints to probabilistic inference while preserving the flexibility of neural reasoning and restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: This revised version strengthens the architectural clarity and conceptual coherence of the manuscript. In particular, it formalizes Soft Symbolic Control as a dedicated Governance layer distinct from the R-CCAM loop, clarifying its structural role beyond the earlier meta-prompt add-on formulation
♻ ☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
♻ ☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
♻ ☆ STAR: Stepwise Task Augmentation with Relation Learning for Aspect Sentiment Quad Prediction
Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct a complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), requires predicting all four elements simultaneously and is hindered by the difficulty of accurately modeling dependencies among sentiment elements. A key challenge lies in the scarcity of annotated data, which limits the model ability to understand and reason about the relational dependencies required for effective quad prediction. To address this challenge, we propose a stepwise task augmentation framework with relation learning that decomposes ASQP into a sequence of auxiliary subtasks with increasing relational granularity. Specifically, STAR incrementally constructs auxiliary data by augmenting the training data with pairwise and overall relation tasks, enabling the model to capture and compose sentiment dependencies in a stepwise manner. This stepwise formulation provides effective relational learning signals that enhance quad prediction performance, particularly in low-resource scenarios. Extensive experiments across four benchmark datasets demonstrate that STAR consistently outperforms existing methods, achieving average F1 improvements of over $2\%$ under low-resource conditions.
comment: 17 pages, 6 figures, and 7 tables
♻ ☆ Estimating Semantic Alphabet Size for LLM Uncertainty Quantification
Many black-box techniques for quantifying the uncertainty of large language models (LLMs) rely on repeated LLM sampling, which can be computationally expensive. Therefore, practical applicability demands reliable estimation from few samples. Semantic entropy (SE) is a popular sample-based uncertainty estimator with a discrete formulation attractive for the black-box setting. Recent extensions of SE exhibit improved LLM hallucination detection, but do so with less interpretable methods that admit additional hyperparameters. For this reason, we revisit the canonical discrete semantic entropy (DSE) estimator, finding that it underestimates the "true" semantic entropy, as expected from theory. We propose a modified semantic alphabet size estimator, and illustrate that using it to adjust DSE for sample coverage results in more accurate SE estimation in our setting of interest. Furthermore, we find that two semantic alphabet size estimators, including our proposed, flag incorrect LLM responses as well or better than many top-performing alternatives, with the added benefit of remaining highly interpretable.
♻ ☆ SWE-Dev: Evaluating and Training Autonomous Feature-Driven Software Development
Large Language Models (LLMs) have shown strong capability in diverse software engineering tasks. However, feature-driven development, a highly prevalent real-world task that involves developing new functionalities for large, existing codebases, remains underexplored. We therefore introduce SWE-Dev, the first large-scale dataset (with 14,000 training and 500 test samples) designed to evaluate and train autonomous coding systems on real-world end-to-end feature-driven software development tasks. To ensure verifiable and diverse training, SWE-Dev uniquely provides all instances with a runnable environment and its developer-authored executable unit tests. This collection not only provides high-quality data for Supervised Fine-Tuning (SFT), but also enables Reinforcement Learning (RL) by delivering accurate reward signals from executable unit tests. We evaluated SWE-Dev across 17 base LLMs, 10 reasoning-focused LLMs, 10 multi-agent systems, and 8 tool-augmented LLM agents. Results show substantial headroom: the best single-turn model reaches only 22.51\% Pass@1 on the hard split, while OpenHands agents improve to 56.44\% but still leave many tasks unsolved. Code is available here https://github.com/DorothyDUUU/SWE-Dev.
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established DirectHarm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark EACL 2026
This paper presents a novel task of extracting low-resourced and noisy Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary zero-shot models is achievable, yet these models lack a functional comprehension of Latin. This study establishes a comprehensive baseline for processing Latin within mixed-language corpora, supporting quantitative analysis in intellectual history and historical linguistics. Both the dataset and code are available at https://github.com/COMHIS/EACL26-detect-latin.
comment: Accepted by the EACL 2026 main conference. Code and data available at https://github.com/COMHIS/EACL26-detect-latin
♻ ☆ Unsupervised Classification of English Words Based on Phonological Information: Discovery of Germanic and Latinate Clusters
Cross-linguistically, native words and loanwords follow different phonological rules. In English, for example, words of Germanic and Latinate origin exhibit different stress patterns, and a certain syntactic structure, double-object datives, is predominantly associated with Germanic verbs rather than Latinate verbs. From the perspective of language acquisition, however, such etymology-based generalizations raise learnability concerns, since the historical origins of words are presumably inaccessible information for general language learners. In this study, we present computational evidence indicating that the Germanic-Latinate distinction in the English lexicon is learnable from the phonotactic information of individual words. Specifically, we performed an unsupervised clustering on corpus-extracted words, and the resulting word clusters largely aligned with the etymological distinction. The model-discovered clusters also recovered various linguistic generalizations documented in the previous literature regarding the corresponding etymological classes. Moreover, our model also uncovered previously unrecognized features of the quasi-etymological clusters. Taken together with prior results from Japanese, our findings indicate that the proposed method provides a general, cross-linguistic approach to discovering etymological structure from phonotactic cues in the lexicon.
♻ ☆ Scoring, Reasoning, and Selecting the Best! Ensembling Large Language Models via a Peer-Review Process
We propose LLM-PeerReview, an unsupervised LLM Ensemble method that selects the most ideal response from multiple LLM-generated candidates for each query, harnessing the collective wisdom of multiple models with diverse strengths. LLM-PeerReview is built on a novel, peer-review-inspired framework that offers a transparent and interpretable mechanism, while remaining fully unsupervised for flexible adaptability and generalization. Specifically, it operates in three stages: For scoring, we use the emerging LLM-as-a-Judge technique to evaluate each response by reusing multiple LLMs at hand; For reasoning, we can apply a straightforward averaging strategy or a principled graphical model-based truth inference algorithm to aggregate multiple scores to produce a final score for each response; Finally, the highest-scoring response is selected as the best ensemble output. LLM-PeerReview is conceptually simple and empirically powerful. Our results across four datasets show that the two variants of the proposed approach outperform the advanced model Smoothie-Global by 6.9% and 7.3% points, cross diverse task types including factual recall QA, math reasoning, and instruction following.
♻ ☆ D-SCoRE: Document-Centric Segmentation and CoT Reasoning with Structured Export for QA-CoT Data Generation
The scarcity and high cost of high-quality domain-specific question-answering (QA) datasets limit supervised fine-tuning of large language models (LLMs). We introduce $\textbf{D-SCoRE}$, a training-free framework that leverages LLMs and prompt engineering to automatically generate diverse, rich QA datasets with Chain-of-Thought (CoT) from arbitrary textual sources. By integrating $\textbf{D}$ocument-centric processing, $\textbf{S}$egmentation, $\textbf{Co}$T $\textbf{R}$easoning, and structured $\textbf{E}$xport - along with multi-dimensional controls such as semantic role transformation, question type balancing, and counterfactual augmentation - D-SCoRE produces tailored QA pairs with enhanced diversity and relevance. LLMs fine-tuned on D-SCoRE-generated datasets outperform those trained on human-annotated QA data across most evaluated domains. Its efficiency and scalability enable rapid, high-performance domain-adaptive fine-tuning on consumer-grade hardware, generating over 1,100 high-quality QA pairs per GPU-hour end-to-end.
♻ ☆ LeWiDi-2025 at NLPerspectives: Third Edition of the Learning with Disagreements Shared Task EMNLP 2025
Many researchers have reached the conclusion that AI models should be trained to be aware of the possibility of variation and disagreement in human judgments, and evaluated as per their ability to recognize such variation. The LEWIDI series of shared tasks on Learning With Disagreements was established to promote this approach to training and evaluating AI models, by making suitable datasets more accessible and by developing evaluation methods. The third edition of the task builds on this goal by extending the LEWIDI benchmark to four datasets spanning paraphrase identification, irony detection, sarcasm detection, and natural language inference, with labeling schemes that include not only categorical judgments as in previous editions, but ordinal judgments as well. Another novelty is that we adopt two complementary paradigms to evaluate disagreement-aware systems: the soft-label approach, in which models predict population-level distributions of judgments, and the perspectivist approach, in which models predict the interpretations of individual annotators. Crucially, we moved beyond standard metrics such as cross-entropy, and tested new evaluation metrics for the two paradigms. The task attracted diverse participation, and the results provide insights into the strengths and limitations of methods to modeling variation. Together, these contributions strengthen LEWIDI as a framework and provide new resources, benchmarks, and findings to support the development of disagreement-aware technologies.
comment: 14 pages; LeWiDi-2025 shared task description paper at NLPerspective workshop at EMNLP 2025
♻ ☆ Efficient LLM Moderation with Multi-Layer Latent Prototypes
Although modern LLMs are aligned with human values during post-training, robust moderation remains essential to prevent harmful outputs at deployment time. Existing approaches suffer from performance-efficiency trade-offs and are difficult to customize to user-specific requirements. Motivated by this gap, we introduce Multi-Layer Prototype Moderator (MLPM), a lightweight and highly customizable input moderation tool. We propose leveraging prototypes of intermediate representations across multiple layers to improve moderation quality while maintaining high efficiency. By design, our method adds negligible overhead to the generation pipeline and can be seamlessly applied to any model. MLPM achieves state-of-the-art performance on diverse moderation benchmarks and demonstrates strong scalability across model families of various sizes. Moreover, we show that it integrates smoothly into end-to-end moderation pipelines and further improves response safety when combined with output moderation techniques. Overall, our work provides a practical and adaptable solution for safe, robust, and efficient LLM deployment.
♻ ☆ OpenDeception: Learning Deception and Trust in Human-AI Interaction via Multi-Agent Simulation
As large language models (LLMs) are increasingly deployed as interactive agents, open-ended human-AI interactions can involve deceptive behaviors with serious real-world consequences, yet existing evaluations remain largely scenario-specific and model-centric. We introduce OpenDeception, a lightweight framework for jointly evaluating deception risk from both sides of human-AI dialogue. It consists of a scenario benchmark with 50 real-world deception cases, an IntentNet that infers deceptive intent from agent reasoning, and a TrustNet that estimates user susceptibility. To address data scarcity, we synthesize high-risk dialogues via LLM-based role-and-goal simulation, and train the User Trust Scorer using contrastive learning on controlled response pairs, avoiding unreliable scalar labels. Experiments on 11 LLMs and three large reasoning models show that over 90% of goal-driven interactions in most models exhibit deceptive intent, with stronger models displaying higher risk. A real-world case study adapted from a documented AI-induced suicide incident further demonstrates that our joint evaluation can proactively trigger warnings before critical trust thresholds are reached.
♻ ☆ Benchmarking Automatic Speech Recognition for Indian Languages in Agricultural Contexts
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
comment: 9 pages, 6 figures
♻ ☆ DimABSA: Building Multilingual and Multidomain Datasets for Dimensional Aspect-Based Sentiment Analysis
Aspect-Based Sentiment Analysis (ABSA) focuses on extracting sentiment at a fine-grained aspect level and has been widely applied across real-world domains. However, existing ABSA research relies on coarse-grained categorical labels (e.g., positive, negative), which limits its ability to capture nuanced affective states. To address this limitation, we adopt a dimensional approach that represents sentiment with continuous valence-arousal (VA) scores, enabling fine-grained analysis at both the aspect and sentiment levels. To this end, we introduce DimABSA, the first multilingual, dimensional ABSA resource annotated with both traditional ABSA elements (aspect terms, aspect categories, and opinion terms) and newly introduced VA scores. This resource contains 76,958 aspect instances across 42,590 sentences, spanning six languages and four domains. We further introduce three subtasks that combine VA scores with different ABSA elements, providing a bridge from traditional ABSA to dimensional ABSA. Given that these subtasks involve both categorical and continuous outputs, we propose a new unified metric, continuous F1 (cF1), which incorporates VA prediction error into standard F1. We provide a comprehensive benchmark using both prompted and fine-tuned large language models across all subtasks. Our results show that DimABSA is a challenging benchmark and provides a foundation for advancing multilingual dimensional ABSA.
♻ ☆ DimStance: Multilingual Datasets for Dimensional Stance Analysis
Stance detection is an established task that classifies an author's attitude toward a specific target into categories such as Favor, Neutral, and Against. Beyond categorical stance labels, we leverage a long-established affective science framework to model stance along real-valued dimensions of valence (negative-positive) and arousal (calm-active). This dimensional approach captures nuanced affective states underlying stance expressions, enabling fine-grained stance analysis. To this end, we introduce DimStance, the first dimensional stance resource with valence-arousal (VA) annotations. This resource comprises 11,746 target aspects in 7,365 texts across five languages (English, German, Chinese, Nigerian Pidgin, and Swahili) and two domains (politics and environmental protection). To facilitate the evaluation of stance VA prediction, we formulate the dimensional stance regression task, analyze cross-lingual VA patterns, and benchmark pretrained and large language models under regression and prompting settings. Results show competitive performance of fine-tuned LLM regressors, persistent challenges in low-resource languages, and limitations of token-based generation. DimStance provides a foundation for multilingual, emotion-aware, stance analysis and benchmarking.
♻ ☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
♻ ☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
♻ ☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
♻ ☆ FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
♻ ☆ Personalized Learning Path Planning with Goal-Driven Learner State Modeling WWW'26
Personalized Learning Path Planning (PLPP) aims to design adaptive learning paths that align with individual goals. While large language models (LLMs) show potential in personalizing learning experiences, existing approaches often lack mechanisms for goal-aligned planning. We introduce Pxplore, a novel framework for PLPP that integrates a reinforcement-based training paradigm and an LLM-driven educational architecture. We design a structured learner state model and an automated reward function that transforms abstract objectives into computable signals. We train the policy combining supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO), and deploy it within a real-world learning platform. Extensive experiments validate Pxplore's effectiveness in producing coherent, personalized, and goal-driven learning paths. We release our code and dataset at https://github.com/Pxplore/pxplore-algo.
comment: Accepted at The Web Conference 2026 (WWW'26)
♻ ☆ FastKV: Decoupling of Context Reduction and KV Cache Compression for Prefill-Decoding Acceleration
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: This work is currently in progress
♻ ☆ Context-Free Recognition with Transformers
Transformers excel empirically on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs. Past work proves that $\mathcal{O}(\log(n))$ looping layers (w.r.t. input length n) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
♻ ☆ Causal Front-Door Adjustment for Robust Jailbreak Attacks on LLMs
Safety alignment mechanisms in Large Language Models (LLMs) often operate as latent internal states, obscuring the model's inherent capabilities. Building on this observation, we model the safety mechanism as an unobserved confounder from a causal perspective. Then, we propose the Causal Front-Door Adjustment Attack (CFA{$^2$}) to jailbreak LLM, which is a framework that leverages Pearl's Front-Door Criterion to sever the confounding associations for robust jailbreaking. Specifically, we employ Sparse Autoencoders (SAEs) to physically strip defense-related features, isolating the core task intent. We further reduce computationally expensive marginalization to a deterministic intervention with low inference complexity. Experiments demonstrate that CFA{$^2$} achieves state-of-the-art attack success rates while offering a mechanistic interpretation of the jailbreaking process.
♻ ☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
♻ ☆ T$^3$-S2S: Training-free Triplet Tuning for Sketch to Scene Synthesis in Controllable Concept Art Generation
2D concept art generation for 3D scenes is a crucial yet challenging task in computer graphics, as creating natural intuitive environments still demands extensive manual effort in concept design. While generative AI has simplified 2D concept design via text-to-image synthesis, it struggles with complex multi-instance scenes and offers limited support for structured terrain layout. In this paper, we propose a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism. This scheme revitalizes the ControlNet model for detailed multi-instance generation via three key modules: Prompt Balance ensures keyword representation and minimizes the risk of missing critical instances; Characteristic Priority emphasizes sketch-based features by highlighting TopK indices in feature channels; and Dense Tuning refines contour details within instance-related regions of the attention map. Leveraging the controllability of T3-S2S, we also introduce a feature-sharing strategy with dual prompt sets to generate layer-aware isometric and terrain-view representations for the terrain layout. Experiments show that our sketch-to-scene workflow consistently produces multi-instance 2D scenes with details aligned with input prompts.
comment: https://openreview.net/forum?id=lyn2BgKQ8F
♻ ☆ Let LLMs Speak Embedding Languages: Generative Text Embeddings via Iterative Contrastive Refinement
Existing large language model (LLM)-based embeddings typically adopt an encoder-only paradigm, treating LLMs as static feature extractors and overlooking their core generative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive Sentence Embeddings), a novel framework that leverages autoregressive generation to iteratively refine semantic representations. By producing sequences of soft tokens optimized under contrastive objective, GIRCSE captures latent concepts and implicit semantics that encoder-only methods often miss. To guide this process, we propose an Iterative Contrastive Refinement (ICR) objective that encourages each refinement step to yield better representations. Extensive experiments show that GIRCSE outperforms strong LLM-based embedding baselines on the MTEB benchmark and instruction-following tasks. Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more tokens at inference steadily improves embedding quality. Our results establish generative iterative refinement as a new paradigm for representation learning.
♻ ☆ Scalable Multi-Stage Influence Function for Large Language Models via Eigenvalue-Corrected Kronecker-Factored Parameterization IJCAI 2025
Pre-trained large language models (LLMs) are commonly fine-tuned to adapt to downstream tasks. Since the majority of knowledge is acquired during pre-training, attributing the predictions of fine-tuned LLMs to their pre-training data may provide valuable insights. Influence functions have been proposed as a means to explain model predictions based on training data. However, existing approaches fail to compute ``multi-stage'' influence and lack scalability to billion-scale LLMs. In this paper, we propose the multi-stage influence function to attribute the downstream predictions of fine-tuned LLMs to pre-training data under the full-parameter fine-tuning paradigm. To enhance the efficiency and practicality of our multi-stage influence function, we leverage Eigenvalue-corrected Kronecker-Factored (EK-FAC) parameterization for efficient approximation. Empirical results validate the superior scalability of EK-FAC approximation and the effectiveness of our multi-stage influence function. Additionally, case studies on a real-world LLM, dolly-v2-3b, demonstrate its interpretive power, with exemplars illustrating insights provided by multi-stage influence estimates. Our code is public at https://github.com/colored-dye/multi_stage_influence_function.
comment: 17 pages, 4 figures; accepted by IJCAI 2025
♻ ☆ Hyperbolic Fine-Tuning for Large Language Models NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable performance across various tasks. However, it remains an open question whether the default Euclidean space is the most suitable choice for LLMs. In this study, we investigate the geometric characteristics of LLMs, focusing specifically on tokens and their embeddings. Our findings reveal that token frequency follows a power-law distribution, where high-frequency tokens (e.g., the, that ) constitute the minority, while low-frequency tokens (e.g., apple, dog) constitute the majority. Furthermore, high-frequency tokens cluster near the origin, whereas low-frequency tokens are positioned farther away in the embedding space. Additionally, token embeddings exhibit hyperbolic characteristics, indicating a latent tree-like structure within the embedding space. Motivated by these observations, we propose HypLoRA, an efficient fine-tuning approach that operates in hyperbolic space to exploit these underlying hierarchical structures better. HypLoRA performs low-rank adaptation directly in hyperbolic space, thereby preserving hyperbolic modeling capabilities throughout the fine-tuning process. Extensive experiments across various base models and reasoning benchmarks, specifically arithmetic and commonsense reasoning tasks, demonstrate that HypLoRA substantially improves LLM performance.
comment: NeurIPS 2025; https://github.com/marlin-codes/HypLoRA
♻ ☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus. We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
♻ ☆ Probabilistic Aggregation and Targeted Embedding Optimization for Collective Moral Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) have shown impressive moral reasoning abilities. Yet they often diverge when confronted with complex, multi-factor moral dilemmas. To address these discrepancies, we propose a framework that synthesizes multiple LLMs' moral judgments into a collectively formulated moral judgment, realigning models that deviate significantly from this consensus. Our aggregation mechanism fuses continuous moral acceptability scores (beyond binary labels) into a collective probability, weighting contributions by model reliability. For misaligned models, a targeted embedding-optimization procedure fine-tunes token embeddings for moral philosophical theories, minimizing JS divergence to the consensus while preserving semantic integrity. Experiments on a large-scale social moral dilemma dataset show our approach builds robust consensus and improves individual model fidelity. These findings highlight the value of data-driven moral alignment across multiple models and its potential for safer, more consistent AI systems.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ Simulated Adoption: Decoupling Magnitude and Direction in LLM In-Context Conflict Resolution
Large Language Models (LLMs) frequently prioritize conflicting in-context information over pre-existing parametric memory, a phenomenon often termed sycophancy or compliance. However, the mechanistic realization of this behavior remains obscure, specifically how the model resolves these knowledge conflicts through compliance, and whether this suppression arises from signal magnitude dilution or directional geometric alteration within the residual stream. To resolve this, we conducted a layer-wise geometric analysis across Qwen-3-4B, Llama-3.1-8B, and GLM-4-9B, decomposing the residual stream updates induced by counter-factual contexts into radial (norm-based) and angular (cosine-based) components. Our empirical results reject the universality of the "Manifold Dilution" hypothesis, as two of the three architectures maintained stable residual norms despite exhibiting significant performance degradation on factual queries. Instead, we observed that compliance is consistently characterized by "Orthogonal Interference," where the conflicting context injects a steering vector that is quasi-orthogonal to the ground-truth direction, effectively rotating the hidden state representation. This suggests that models do not "unlearn" or suppress the magnitude of internal truths but rather employ a mechanism of geometric displacement to bypass the correct unembedding vector, effectively simulating adoption while preserving the original structural magnitude. These findings challenge scalar confidence metrics for detecting hallucinations and underscore the necessity of vectorial monitoring to distinguish between genuine knowledge integration and superficial in-context mimicry.
♻ ☆ SeSE: Black-Box Uncertainty Quantification for Large Language Models Based on Structural Information Theory
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding hallucinations, i.e., plausible yet factually incorrect responses. However, while semantic UQ methods have achieved advanced performance, they overlook latent semantic structural information that could enable more precise uncertainty estimates. In this paper, we propose \underline{Se}mantic \underline{S}tructural \underline{E}ntropy ({SeSE}), a principled black-box UQ framework applicable to both open- and closed-source LLMs. To reveal the intrinsic structure of the semantic space, SeSE constructs its optimal hierarchical abstraction through an encoding tree with minimal structural entropy. The structural entropy of this encoding tree thus quantifies the inherent uncertainty within LLM semantic space after optimal compression. Additionally, unlike existing methods that primarily focus on simple short-form generation, we extent SeSE to provide interpretable, granular uncertainty estimation for long-form outputs. We theoretically prove that SeSE generalizes semantic entropy, the gold standard for UQ in LLMs, and empirically demonstrate its superior performance over strong baselines across 24 model-dataset combinations.
♻ ☆ Quantifying the Effect of Test Set Contamination on Generative Evaluations
As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
♻ ☆ ExpressivityBench: Can LLMs Communicate Implicitly?
Human communication is often implicit, conveying tone, identity, and intent beyond literal meanings. While large language models have achieved strong performance on explicit tasks such as summarization and reasoning, their capacity for expressivity, or implicit communication, remains underexplored. We introduce \textbf{ExpressivityBench}, a framework for evaluating the expressivity of LLMs using information-theoretic communication models. Our approach quantifies how well LLM-generated text communicates target properties without explicit mention, across nine tasks spanning emotion, identity, and tone. To enable scalable and reproducible evaluation, we employ LLM-based graders validated against human judgments. Our results reveal that while models are adept at expressing affective content, they struggle with sociolinguistic signals, lagging behind human baselines. This study provides a necessary step to evaluate human-like implicit communication, with implications for applications such as education, mental health support, and socially-aware dialogue systems. We provide code and data for our benchmark alongside our paper.
comment: 21 pages, 7 figures
♻ ☆ inversedMixup: Data Augmentation via Inverting Mixed Embeddings
Mixup generates augmented samples by linearly interpolating inputs and labels with a controllable ratio. However, since it operates in the latent embedding level, the resulting samples are not human-interpretable. In contrast, LLM-based augmentation methods produce sentences via prompts at the token level, yielding readable outputs but offering limited control over the generation process. Inspired by recent advances in LLM inversion, which reconstructs natural language from embeddings and helps bridge the gap between latent embedding space and discrete token space, we propose inversedMixup, a unified framework that combines the controllability of Mixup with the interpretability of LLM-based generation. Specifically, inversedMixup adopts a three-stage training procedure to align the output embedding space of a task-specific model with the input embedding space of an LLM. Upon successful alignment, inversedMixup can reconstruct mixed embeddings with a controllable mixing ratio into human-interpretable augmented sentences, thereby improving the augmentation performance. Additionally, inversedMixup provides the first empirical evidence of the manifold intrusion phenomenon in text Mixup and introduces a simple yet effective strategy to mitigate it. Extensive experiments demonstrate the effectiveness and generalizability of our approach in both few-shot and fully supervised scenarios.
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
♻ ☆ MAGIC: A Co-Evolving Attacker-Defender Adversarial Game for Robust LLM Safety
Ensuring robust safety alignment is crucial for Large Language Models (LLMs), yet existing defenses often lag behind evolving adversarial attacks due to their \textbf{reliance on static, pre-collected data distributions}. In this paper, we introduce \textbf{MAGIC}, a novel multi-turn multi-agent reinforcement learning framework that formulates LLM safety alignment as an adversarial asymmetric game. Specifically, an attacker agent learns to iteratively rewrite original queries into deceptive prompts, while a defender agent simultaneously optimizes its policy to recognize and refuse such inputs. This dynamic process triggers a \textbf{co-evolution}, where the attacker's ever-changing strategies continuously uncover long-tail vulnerabilities, driving the defender to generalize to unseen attack patterns. Remarkably, we observe that the attacker, endowed with initial reasoning ability, evolves \textbf{novel, previously unseen combinatorial strategies} through iterative RL training, underscoring our method's substantial potential. Theoretically, we provide insights into a more robust game equilibrium and derive safety guarantees. Extensive experiments validate our framework's effectiveness, demonstrating superior defense success rates without compromising the helpfulness of the model. Our code is available at https://github.com/BattleWen/MAGIC.
♻ ☆ Large Language Models as Formalizers on Constraint Satisfaction Problems
An emerging line of recent work advocates for using large language models (LLMs) as formalizers instead of as end-to-end solvers for various types of problems. Instead of generating the solution, the LLM generates a formal program that derives a solution via an external solver. We thoroughly investigate the formalization capability of LLMs on real-life constraint satisfaction problems. On 4 domains, we systematically evaluate 6 LLMs, including 4 large reasoning models with inference-time scaling, paired with 5 pipelines, including 2 types of formalism. We show that in zero-shot settings, LLM-as-formalizer performs on par with the mainstream LLM-as-solver while offering verifiability, interpretability, and robustness. We also observe excessive reasoning tokens and hard-coded solutions scaling with problem complexity, which demonstrates that even the state-of-the-art LLMs have limited ability to generate solutions or formal programs. We present our detailed analysis and actionable remedies to drive future research that improves LLM-as-formalizer.
♻ ☆ PACE: Defying the Scaling Hypothesis of Exploration in Iterative Alignment for Mathematical Reasoning
Iterative Direct Preference Optimization has emerged as the state-of-the-art paradigm for aligning Large Language Models on reasoning tasks. Standard implementations (DPO-R1) rely on Best-of-N sampling (e.g., $N \ge 8$) to mine golden trajectories from the distribution tail. In this paper, we challenge this scaling hypothesis and reveal a counter-intuitive phenomenon: in mathematical reasoning, aggressive exploration yields diminishing returns and even catastrophic policy collapse. We theoretically demonstrate that scaling $N$ amplifies verifier noise and induces detrimental distribution shifts. To resolve this, we introduce \textbf{PACE} (Proximal Alignment via Corrective Exploration), which replaces brute-force mining with a generation-based corrective strategy. Operating with a minimal budget ($2
♻ ☆ Layer-adaptive Expert Pruning for Pre-Training of Mixture-of-Experts Large Language Models
Although Mixture-of-Experts (MoE) Large Language Models (LLMs) deliver superior accuracy with a reduced number of active parameters, their pre-training represents a significant computationally bottleneck due to underutilized experts and limited training efficiency. This work introduces a Layer-Adaptive Expert Pruning (LAEP) algorithm designed for the pre-training stage of MoE LLMs. In contrast to previous expert pruning approaches that operate primarily in the post-training phase, the proposed algorithm enhances training efficiency by selectively pruning underutilized experts and reorganizing experts across computing devices according to token distribution statistics. Comprehensive experiments demonstrate that LAEP effectively reduces model size and substantially improves pre-training efficiency. In particular, when pre-training the Yuan3.0-1T Base model from scratch original with 1515B parameters, LAEP achieves a 48.3% improvement in training efficiency alongside a 33.3% parameter reduction, while still delivering excellent performance across multiple domains.
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains. Code & pretrained checkpoints: https://github.com/apple/ml-fs-dfm
comment: Accepted to ICLR 2026
♻ ☆ Systematic Failures in Collective Reasoning under Distributed Information in Multi-Agent LLMs
Multi-agent systems built on large language models (LLMs) are expected to enhance decision-making by pooling distributed information, yet systematically evaluating this capability has remained challenging. We introduce HiddenBench, a 65-task benchmark grounded in the Hidden Profile paradigm, which isolates collective reasoning under distributed information from individual reasoning ability. Evaluating 15 frontier LLMs, we find that multi-agent LLMs achieve only 30.1% accuracy under distributed information, compared to 80.7% accuracy for single agents given complete information. We trace this gap to a systematic failure mode: agents cannot recognize or act under latent information asymmetry-they fail to reason about what others might know but have not yet expressed, leading to premature convergence on shared evidence while critical distributed facts remain unexplored. These failures persist across prompting strategies, communication depths, and group sizes-and worsen as groups scale. While some models (e.g., Gemini-2.5-Flash/Pro) outperform others, neither model scale nor individual reasoning accuracy reliably predicts collective performance. Our results identify failures in collective information exploration in decision-making as a key limitation of multi-agent LLMs, and provide a theory-grounded, reproducible framework for diagnosing collective reasoning failures.
♻ ☆ BEAT: Visual Backdoor Attacks on VLM-based Embodied Agents via Contrastive Trigger Learning ICLR 2026
Recent advances in Vision-Language Models (VLMs) have propelled embodied agents by enabling direct perception, reasoning, and planning task-oriented actions from visual inputs. However, such vision-driven embodied agents open a new attack surface: visual backdoor attacks, where the agent behaves normally until a visual trigger appears in the scene, then persistently executes an attacker-specified multi-step policy. We introduce BEAT, the first framework to inject such visual backdoors into VLM-based embodied agents using objects in the environments as triggers. Unlike textual triggers, object triggers exhibit wide variation across viewpoints and lighting, making them difficult to implant reliably. BEAT addresses this challenge by (1) constructing a training set that spans diverse scenes, tasks, and trigger placements to expose agents to trigger variability, and (2) introducing a two-stage training scheme that first applies supervised fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL formulates trigger discrimination as preference learning between trigger-present and trigger-free inputs, explicitly sharpening the decision boundaries to ensure precise backdoor activation. Across various embodied agent benchmarks and VLMs, BEAT achieves attack success rates up to 80%, while maintaining strong benign task performance, and generalizes reliably to out-of-distribution trigger placements. Notably, compared to naive SFT, CTL boosts backdoor activation accuracy up to 39% under limited backdoor data. These findings expose a critical yet unexplored security risk in VLM-based embodied agents, underscoring the need for robust defenses before real-world deployment.
comment: ICLR 2026. Project Page: https://zqs1943.github.io/BEAT/
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
Reliable uncertainty estimation is a key missing piece for on-device monitoring in TinyML: microcontrollers must detect failures, distribution shift, or accuracy drops under strict flash/latency budgets, yet common uncertainty approaches (deep ensembles, MC dropout, early exits, temporal buffering) typically require multiple passes, extra branches, or state that is impractical on milliwatt hardware. This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Published as a conference paper at ICLR 2026
♻ ☆ Same Content, Different Representations: A Controlled Study for Table QA ICLR 2026
Table Question Answering (Table QA) in real-world settings must operate over both structured databases and semi-structured tables containing textual fields. However, existing benchmarks are tied to fixed data formats and have not systematically examined how representation itself affects model performance. We present the first controlled study that isolates the role of table representation by holding content constant while varying structure. Using a verbalization pipeline, we generate paired structured and semi-structured tables, enabling direct comparisons across modeling paradigms. To support detailed analysis, we introduce RePairTQA, a diagnostic benchmark with splits along table size, join requirements, query complexity, and schema quality. Our experiments reveal consistent trade-offs: SQL-based methods achieve high accuracy on structured inputs but degrade on semi-structured data, LLMs exhibit flexibility but reduced precision, and hybrid approaches strike a balance, particularly under noisy schemas. These effects intensify with larger tables and more complex queries. Ultimately, no single method excels across all conditions, and we highlight the central role of representation in shaping Table QA performance. Our findings provide actionable insights for model selection and design, paving the way for more robust hybrid approaches suited for diverse real-world data formats.
comment: ICLR 2026
♻ ☆ Towards Reliable Benchmarking: A Contamination Free, Controllable Evaluation Framework for Multi-step LLM Function Calling ICLR 2026
Existing benchmarks for tool-augmented language models (TaLMs) lack fine-grained control over task difficulty and remain vulnerable to data contamination. We present FuncBenchGen, a unified, contamination-free framework that evaluates TaLMs by generating synthetic multi-step tool-use tasks to stress-test TaLMs. The key idea is to cast tool use as traversal over a hidden function-dependency DAG where models must infer the correct sequence of calls to compute a target value. FuncBenchGen allows precise control over task difficulty (e.g., graph size, dependency depth, and distractor functions) while avoiding pretraining/test-time leakage. Our evaluation demonstrates reasoning-optimized models consistently outperform general-purpose models with GPT-5 significantly outperforming other available models. Performance declines sharply as dependency depth increases. Furthermore, connected distractors -- irrelevant functions sharing type-compatible variables with relevant functions -- prove especially difficult to handle. Also, strong models often make syntactically valid function calls but propagate incorrect or stale argument values across steps, revealing brittle state tracking by LLMs in multi-turn tool use. Motivated by this observation, we introduce a simple mitigation strategy that explicitly restates prior variable values to the agent at each step. Surprisingly, this lightweight change yields substantial gains across models. e.g., yielding an improvement in success rate from 62.5% to 81.3% for GPT-5.
comment: ICLR 2026
♻ ☆ Accounting Reasoning in Large Language Models: Concepts, Evaluation, and Empirical Analysis
Large language models (LLMs) are increasingly reshaping learning paradigms, cognitive processes, and research methodologies across diverse domains. As their adoption expands, effectively integrating LLMs into professional fields and clarifying their role in domain-specific applications has become a key challenge for enterprise digital transformation and broader societal development. In the accounting domain, successful integration requires a systematic understanding of LLMs' domain-specific reasoning capabilities. In this study, we introduce the concept of accounting reasoning and propose a set of evaluation criteria grounded in an analysis of the training data characteristics of representative GLM-series models. These criteria establish a foundation for studying accounting-oriented reasoning paradigms and provide benchmarks for assessing and improving model performance. Building on this framework, we evaluate several representative LLMs, including GLM-6B, GLM-130B, GLM-4, and GPT-4, across a range of accounting reasoning tasks. Our experimental results show that prompt engineering strategies can yield varying degrees of performance improvement across models, with GPT-4 demonstrating the strongest overall accounting reasoning capability. Nevertheless, the results indicate that current LLMs remain insufficient for real-world accounting applications. In particular, further optimization is required for deployment in enterprise-level accounting scenarios to fully realize the potential value of LLMs in this domain.
♻ ☆ Improving Code Localization with Repository Memory ICLR 2026
Code localization is a fundamental challenge in repository-level software engineering tasks such as bug fixing. While existing methods equip language agents with comprehensive tools/interfaces to fetch information from the repository, they overlook the critical aspect of memory, where each instance is typically handled from scratch assuming no prior repository knowledge. In contrast, human developers naturally build long-term repository memory, such as the functionality of key modules and associations between various bug types and their likely fix locations. In this work, we augment language agents with such memory by leveraging a repository's commit history -- a rich yet underutilized resource that chronicles the codebase's evolution. We introduce tools that allow the agent to retrieve from a non-parametric memory encompassing recent historical commits and linked issues, as well as functionality summaries of actively evolving parts of the codebase identified via commit patterns. We demonstrate that augmenting such a memory can significantly improve LocAgent, a state-of-the-art localization framework, on both SWE-bench-verified and the more recent SWE-bench-live benchmarks. Our research contributes towards developing agents that can accumulate and leverage past experience for long-horizon tasks, more closely emulating the expertise of human developers.
comment: ICLR 2026
♻ ☆ MedVAL: Toward Expert-Level Medical Text Validation with Language Models
With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LLM-as-a-judge" paradigm offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. We propose MedVAL, a novel, self-supervised, data-efficient distillation method that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset of 840 physician-annotated outputs across 6 diverse medical tasks capturing real-world challenges. Across 10 state-of-the-art LMs spanning open-source and proprietary models, MedVAL distillation significantly improves (p < 0.001) alignment with physicians across seen and unseen tasks, increasing average F1 scores from 66% to 83%. Despite strong baseline performance, MedVAL improves the best-performing proprietary LM (GPT-4o) by 8% without training on physician-labeled data, demonstrating a performance statistically non-inferior to a single human expert on a subset annotated by multiple physicians (p < 0.001). To support a scalable, risk-aware pathway towards clinical integration, we open-source: 1) Codebase (https://github.com/StanfordMIMI/MedVAL), 2) MedVAL-Bench (https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench), 3) MedVAL-4B (https://huggingface.co/stanfordmimi/MedVAL-4B). Our benchmark provides evidence of LMs approaching expert-level ability in validating AI-generated medical text.
♻ ☆ BioACE: An Automated Framework for Biomedical Answer and Citation Evaluations
With the increasing use of large language models (LLMs) for generating answers to biomedical questions, it is crucial to evaluate the quality of the generated answers and the references provided to support the facts in the generated answers. Evaluation of text generated by LLMs remains a challenge for question answering, retrieval-augmented generation (RAG), summarization, and many other natural language processing tasks in the biomedical domain, due to the requirements of expert assessment to verify consistency with the scientific literature and complex medical terminology. In this work, we propose BioACE, an automated framework for evaluating biomedical answers and citations against the facts stated in the answers. The proposed BioACE framework considers multiple aspects, including completeness, correctness, precision, and recall, in relation to the ground-truth nuggets for answer evaluation. We developed automated approaches to evaluate each of the aforementioned aspects and performed extensive experiments to assess and analyze their correlation with human evaluations. In addition, we considered multiple existing approaches, such as natural language inference (NLI) and pre-trained language models and LLMs, to evaluate the quality of evidence provided to support the generated answers in the form of citations into biomedical literature. With the detailed experiments and analysis, we provide the best approaches for biomedical answer and citation evaluation as a part of BioACE (https://github.com/deepaknlp/BioACE) evaluation package.
comment: Work in progress
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering ICLR 2026
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
comment: Accepted to ICLR 2026
♻ ☆ Emotion-Aligned Generation in Diffusion Text to Speech Models via Preference-Guided Optimization ICASSP 2026
Emotional text-to-speech seeks to convey affect while preserving intelligibility and prosody, yet existing methods rely on coarse labels or proxy classifiers and receive only utterance-level feedback. We introduce Emotion-Aware Stepwise Preference Optimization (EASPO), a post-training framework that aligns diffusion TTS with fine-grained emotional preferences at intermediate denoising steps. Central to our approach is EASPM, a time-conditioned model that scores noisy intermediate speech states and enables automatic preference pair construction. EASPO optimizes generation to match these stepwise preferences, enabling controllable emotional shaping. Experiments show superior performance over existing methods in both expressiveness and naturalness.
comment: Accepted to ICASSP 2026
♻ ☆ Automatic register identification for the open web using multilingual deep learning
This article presents multilingual deep learning models for identifying web registers -- text varieties such as news reports and discussion forums -- across 16 languages. We introduce the Multilingual CORE corpora, which contain over 72,000 documents annotated with a hierarchical taxonomy of 25 registers designed to cover the entire open web. Using multi-label classification, our best model achieves 79% F1 averaged across languages, matching or exceeding previous studies that used simpler classification schemes. This demonstrates that models can perform well even with a complex register scheme at multilingual scale. However, we observe a consistent performance ceiling across all models and configurations. When we remove documents with uncertain labels through data pruning, performance increases to over 90% F1, suggesting that this ceiling stems from inherent ambiguity in web registers rather than model limitations. Analysis of hybrid texts (those combining multiple registers) reveals that the main challenge lies not in classifying hybrids themselves, but in distinguishing hybrid from non-hybrid documents. Multilingual models consistently outperform monolingual ones, particularly for languages with limited training data. Zero-shot performance on unseen languages drops by an average of 7%, though this varies by language (3--8%), indicating that while registers share features across languages, they also retain language-specific characteristics.
♻ ☆ AISAC: An Integrated multi-agent System for Transparent, Retrieval-Grounded Scientific Assistance
AI Scientific Assistant Core (AISAC) is a transparent, modular multi-agent runtime developed at Argonne National Laboratory to support long-horizon, evidence-grounded scientific reasoning. Rather than proposing new agent algorithms or claiming autonomous scientific discovery, AISAC contributes a governed execution substrate that operationalizes key requirements for deploying agentic AI in scientific practice, including explicit role semantics, budgeted context management, traceable execution, and reproducible interaction with tools and knowledge. AISAC enforces four structural guarantees for scientific reasoning: (1) declarative agent registration with runtime-enforced role semantics and automatic system prompt generation; (2) budgeted orchestration via explicit per-turn context and delegation depth limits; (3) role-aligned memory access across episodic, dialogue, and evidence layers; and (4) trace-driven transparency through persistent execution records and a live event-stream interface. These guarantees are implemented through hybrid persistent memory (SQLite and dual FAISS indices), governed retrieval with agent-scoped RAG, structured tool execution with schema validation, and a configuration-driven bootstrap mechanism that enables project specific extension without modifying the shared core. AISAC is currently deployed across multiple scientific workflows at Argonne, including combustion science, materials research, and energy process safety, demonstrating its use as a reusable substrate for domain-specialized AI scientific assistants.
♻ ☆ YaRN: Efficient Context Window Extension of Large Language Models
Rotary Position Embeddings (RoPE) have been shown to effectively encode positional information in transformer-based language models. However, these models fail to generalize past the sequence length they were trained on. We present YaRN (Yet another RoPE extensioN method), a compute-efficient method to extend the context window of such models, requiring 10x less tokens and 2.5x less training steps than previous methods. Using YaRN, we show that LLaMA models can effectively utilize and extrapolate to context lengths much longer than their original pre-training would allow, while also surpassing previous the state-of-the-art at context window extension. In addition, we demonstrate that YaRN exhibits the capability to extrapolate beyond the limited context of a fine-tuning dataset. Code is available at https://github.com/jquesnelle/yarn
Machine Learning 254
☆ Learning a Generative Meta-Model of LLM Activations
Existing approaches for analyzing neural network activations, such as PCA and sparse autoencoders, rely on strong structural assumptions. Generative models offer an alternative: they can uncover structure without such assumptions and act as priors that improve intervention fidelity. We explore this direction by training diffusion models on one billion residual stream activations, creating "meta-models" that learn the distribution of a network's internal states. We find that diffusion loss decreases smoothly with compute and reliably predicts downstream utility. In particular, applying the meta-model's learned prior to steering interventions improves fluency, with larger gains as loss decreases. Moreover, the meta-model's neurons increasingly isolate concepts into individual units, with sparse probing scores that scale as loss decreases. These results suggest generative meta-models offer a scalable path toward interpretability without restrictive structural assumptions. Project page: https://generative-latent-prior.github.io.
☆ Improving Credit Card Fraud Detection with an Optimized Explainable Boosting Machine
Addressing class imbalance is a central challenge in credit card fraud detection, as it directly impacts predictive reliability in real-world financial systems. To overcome this, the study proposes an enhanced workflow based on the Explainable Boosting Machine (EBM)-a transparent, state-of-the-art implementation of the GA2M algorithm-optimized through systematic hyperparameter tuning, feature selection, and preprocessing refinement. Rather than relying on conventional sampling techniques that may introduce bias or cause information loss, the optimized EBM achieves an effective balance between accuracy and interpretability, enabling precise detection of fraudulent transactions while providing actionable insights into feature importance and interaction effects. Furthermore, the Taguchi method is employed to optimize both the sequence of data scalers and model hyperparameters, ensuring robust, reproducible, and systematically validated performance improvements. Experimental evaluation on benchmark credit card data yields an ROC-AUC of 0.983, surpassing prior EBM baselines (0.975) and outperforming Logistic Regression, Random Forest, XGBoost, and Decision Tree models. These results highlight the potential of interpretable machine learning and data-driven optimization for advancing trustworthy fraud analytics in financial systems.
comment: 22 pages, 5 figures, 5 tables
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Agentic Uncertainty Reveals Agentic Overconfidence
Can AI agents predict whether they will succeed at a task? We study agentic uncertainty by eliciting success probability estimates before, during, and after task execution. All results exhibit agentic overconfidence: some agents that succeed only 22% of the time predict 77% success. Counterintuitively, pre-execution assessment with strictly less information tends to yield better discrimination than standard post-execution review, though differences are not always significant. Adversarial prompting reframing assessment as bug-finding achieves the best calibration.
☆ Optimal Derivative Feedback Control for an Active Magnetic Levitation System: An Experimental Study on Data-Driven Approaches
This paper presents the design and implementation of data-driven optimal derivative feedback controllers for an active magnetic levitation system. A direct, model-free control design method based on the reinforcement learning framework is compared with an indirect optimal control design derived from a numerically identified mathematical model of the system. For the direct model-free approach, a policy iteration procedure is proposed, which adds an iteration layer called the epoch loop to gather multiple sets of process data, providing a more diverse dataset and helping reduce learning biases. This direct control design method is evaluated against a comparable optimal control solution designed from a plant model obtained through the combined Dynamic Mode Decomposition with Control (DMDc) and Prediction Error Minimization (PEM) system identification. Results show that while both controllers can stabilize and improve the performance of the magnetic levitation system when compared to controllers designed from a nominal model, the direct model-free approach consistently outperforms the indirect solution when multiple epochs are allowed. The iterative refinement of the optimal control law over the epoch loop provides the direct approach a clear advantage over the indirect method, which relies on a single set of system data to determine the identified model and control.
comment: 10 pages, 9 figures. Preprint; manuscript under journal review
☆ Endogenous Resistance to Activation Steering in Language Models
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
☆ From Core to Detail: Unsupervised Disentanglement with Entropy-Ordered Flows
Learning unsupervised representations that are both semantically meaningful and stable across runs remains a central challenge in modern representation learning. We introduce entropy-ordered flows (EOFlows), a normalizing-flow framework that orders latent dimensions by their explained entropy, analogously to PCA's explained variance. This ordering enables adaptive injective flows: after training, one may retain only the top C latent variables to form a compact core representation while the remaining variables capture fine-grained detail and noise, with C chosen flexibly at inference time rather than fixed during training. EOFlows build on insights from Independent Mechanism Analysis, Principal Component Flows and Manifold Entropic Metrics. We combine likelihood-based training with local Jacobian regularization and noise augmentation into a method that scales well to high-dimensional data such as images. Experiments on the CelebA dataset show that our method uncovers a rich set of semantically interpretable features, allowing for high compression and strong denoising.
☆ Cochain Perspectives on Temporal-Difference Signals for Learning Beyond Markov Dynamics
Non-Markovian dynamics are commonly found in real-world environments due to long-range dependencies, partial observability, and memory effects. The Bellman equation that is the central pillar of Reinforcement learning (RL) becomes only approximately valid under Non-Markovian. Existing work often focus on practical algorithm designs and offer limited theoretical treatment to address key questions, such as what dynamics are indeed capturable by the Bellman framework and how to inspire new algorithm classes with optimal approximations. In this paper, we present a novel topological viewpoint on temporal-difference (TD) based RL. We show that TD errors can be viewed as 1-cochain in the topological space of state transitions, while Markov dynamics are then interpreted as topological integrability. This novel view enables us to obtain a Hodge-type decomposition of TD errors into an integrable component and a topological residual, through a Bellman-de Rham projection. We further propose HodgeFlow Policy Search (HFPS) by fitting a potential network to minimize the non-integrable projection residual in RL, achieving stability/sensitivity guarantees. In numerical evaluations, HFPS is shown to significantly improve RL performance under non-Markovian.
☆ Reliable Mislabel Detection for Video Capsule Endoscopy Data
The classification performance of deep neural networks relies strongly on access to large, accurately annotated datasets. In medical imaging, however, obtaining such datasets is particularly challenging since annotations must be provided by specialized physicians, which severely limits the pool of annotators. Furthermore, class boundaries can often be ambiguous or difficult to define which further complicates machine learning-based classification. In this paper, we want to address this problem and introduce a framework for mislabel detection in medical datasets. This is validated on the two largest, publicly available datasets for Video Capsule Endoscopy, an important imaging procedure for examining the gastrointestinal tract based on a video stream of lowresolution images. In addition, potentially mislabeled samples identified by our pipeline were reviewed and re-annotated by three experienced gastroenterologists. Our results show that the proposed framework successfully detects incorrectly labeled data and results in an improved anomaly detection performance after cleaning the datasets compared to current baselines.
☆ Reciprocal Latent Fields for Precomputed Sound Propagation
Realistic sound propagation is essential for immersion in a virtual scene, yet physically accurate wave-based simulations remain computationally prohibitive for real-time applications. Wave coding methods address this limitation by precomputing and compressing impulse responses of a given scene into a set of scalar acoustic parameters, which can reach unmanageable sizes in large environments with many source-receiver pairs. We introduce Reciprocal Latent Fields (RLF), a memory-efficient framework for encoding and predicting these acoustic parameters. The RLF framework employs a volumetric grid of trainable latent embeddings decoded with a symmetric function, ensuring acoustic reciprocity. We study a variety of decoders and show that leveraging Riemannian metric learning leads to a better reproduction of acoustic phenomena in complex scenes. Experimental validation demonstrates that RLF maintains replication quality while reducing the memory footprint by several orders of magnitude. Furthermore, a MUSHRA-like subjective listening test indicates that sound rendered via RLF is perceptually indistinguishable from ground-truth simulations.
comment: Temporary pre-print, will be updated. In review at a conference
☆ When RL Meets Adaptive Speculative Training: A Unified Training-Serving System
Speculative decoding can significantly accelerate LLM serving, yet most deployments today disentangle speculator training from serving, treating speculator training as a standalone offline modeling problem. We show that this decoupled formulation introduces substantial deployment and adaptation lag: (1) high time-to-serve, since a speculator must be trained offline for a considerable period before deployment; (2) delayed utility feedback, since the true end-to-end decoding speedup is only known after training and cannot be inferred reliably from acceptance rate alone due to model-architecture and system-level overheads; and (3) domain-drift degradation, as the target model is repurposed to new domains and the speculator becomes stale and less effective. To address these issues, we present Aurora, a unified training-serving system that closes the loop by continuously learning a speculator directly from live inference traces. Aurora reframes online speculator learning as an asynchronous reinforcement-learning problem: accepted tokens provide positive feedback, while rejected speculator proposals provide implicit negative feedback that we exploit to improve sample efficiency. Our design integrates an SGLang-based inference server with an asynchronous training server, enabling hot-swapped speculator updates without service interruption. Crucially, Aurora supports day-0 deployment: a speculator can be served immediately and rapidly adapted to live traffic, improving system performance while providing immediate utility feedback. Across experiments, Aurora achieves a 1.5x day-0 speedup on recently released frontier models (e.g., MiniMax M2.1 229B and Qwen3-Coder-Next 80B). Aurora also adapts effectively to distribution shifts in user traffic, delivering an additional 1.25x speedup over a well-trained but static speculator on widely used models (e.g., Qwen3 and Llama3).
☆ Continuous-time reinforcement learning: ellipticity enables model-free value function approximation
We study off-policy reinforcement learning for controlling continuous-time Markov diffusion processes with discrete-time observations and actions. We consider model-free algorithms with function approximation that learn value and advantage functions directly from data, without unrealistic structural assumptions on the dynamics. Leveraging the ellipticity of the diffusions, we establish a new class of Hilbert-space positive definiteness and boundedness properties for the Bellman operators. Based on these properties, we propose the Sobolev-prox fitted $q$-learning algorithm, which learns value and advantage functions by iteratively solving least-squares regression problems. We derive oracle inequalities for the estimation error, governed by (i) the best approximation error of the function classes, (ii) their localized complexity, (iii) exponentially decaying optimization error, and (iv) numerical discretization error. These results identify ellipticity as a key structural property that renders reinforcement learning with function approximation for Markov diffusions no harder than supervised learning.
☆ Robustness Beyond Known Groups with Low-rank Adaptation
Deep learning models trained to optimize average accuracy often exhibit systematic failures on particular subpopulations. In real world settings, the subpopulations most affected by such disparities are frequently unlabeled or unknown, thereby motivating the development of methods that are performant on sensitive subgroups without being pre-specified. However, existing group-robust methods typically assume prior knowledge of relevant subgroups, using group annotations for training or model selection. We propose Low-rank Error Informed Adaptation (LEIA), a simple two-stage method that improves group robustness by identifying a low-dimensional subspace in the representation space where model errors concentrate. LEIA restricts adaptation to this error-informed subspace via a low-rank adjustment to the classifier logits, directly targeting latent failure modes without modifying the backbone or requiring group labels. Using five real-world datasets, we analyze group robustness under three settings: (1) truly no knowledge of subgroup relevance, (2) partial knowledge of subgroup relevance, and (3) full knowledge of subgroup relevance. Across all settings, LEIA consistently improves worst-group performance while remaining fast, parameter-efficient, and robust to hyperparameter choice.
☆ From Kepler to Newton: Inductive Biases Guide Learned World Models in Transformers
Can general-purpose AI architectures go beyond prediction to discover the physical laws governing the universe? True intelligence relies on "world models" -- causal abstractions that allow an agent to not only predict future states but understand the underlying governing dynamics. While previous "AI Physicist" approaches have successfully recovered such laws, they typically rely on strong, domain-specific priors that effectively "bake in" the physics. Conversely, Vafa et al. recently showed that generic Transformers fail to acquire these world models, achieving high predictive accuracy without capturing the underlying physical laws. We bridge this gap by systematically introducing three minimal inductive biases. We show that ensuring spatial smoothness (by formulating prediction as continuous regression) and stability (by training with noisy contexts to mitigate error accumulation) enables generic Transformers to surpass prior failures and learn a coherent Keplerian world model, successfully fitting ellipses to planetary trajectories. However, true physical insight requires a third bias: temporal locality. By restricting the attention window to the immediate past -- imposing the simple assumption that future states depend only on the local state rather than a complex history -- we force the model to abandon curve-fitting and discover Newtonian force representations. Our results demonstrate that simple architectural choices determine whether an AI becomes a curve-fitter or a physicist, marking a critical step toward automated scientific discovery.
☆ Automatic Detection and Analysis of Singing Mistakes for Music Pedagogy
The advancement of machine learning in audio analysis has opened new possibilities for technology-enhanced music education. This paper introduces a framework for automatic singing mistake detection in the context of music pedagogy, supported by a newly curated dataset. The dataset comprises synchronized teacher learner vocal recordings, with annotations marking different types of mistakes made by learners. Using this dataset, we develop different deep learning models for mistake detection and benchmark them. To compare the efficacy of mistake detection systems, a new evaluation methodology is proposed. Experiments indicate that the proposed learning-based methods are superior to rule-based methods. A systematic study of errors and a cross-teacher study reveal insights into music pedagogy that can be utilised for various music applications. This work sets out new directions of research in music pedagogy. The codes and dataset are publicly available.
comment: Under Review at Transactions of Audio Speech and Language Processing
☆ Revisiting the Generic Transformer: Deconstructing a Strong Baseline for Time Series Foundation Models
The recent surge in Time Series Foundation Models has rapidly advanced the field, yet the heterogeneous training setups across studies make it difficult to attribute improvements to architectural innovations versus data engineering. In this work, we investigate the potential of a standard patch Transformer, demonstrating that this generic architecture achieves state-of-the-art zero-shot forecasting performance using a straightforward training protocol. We conduct a comprehensive ablation study that covers model scaling, data composition, and training techniques to isolate the essential ingredients for high performance. Our findings identify the key drivers of performance, while confirming that the generic architecture itself demonstrates excellent scalability. By strictly controlling these variables, we provide comprehensive empirical results on model scaling across multiple dimensions. We release our open-source model and detailed findings to establish a transparent, reproducible baseline for future research.
☆ A first realization of reinforcement learning-based closed-loop EEG-TMS
Background: Transcranial magnetic stimulation (TMS) is a powerful tool to investigate neurophysiology of the human brain and treat brain disorders. Traditionally, therapeutic TMS has been applied in a one-size-fits-all approach, disregarding inter- and intra-individual differences. Brain state-dependent EEG-TMS, such as coupling TMS with a pre-specified phase of the sensorimotor mu-rhythm, enables the induction of differential neuroplastic effects depending on the targeted phase. But this approach is still user-dependent as it requires defining an a-priori target phase. Objectives: To present a first realization of a machine-learning-based, closed-loop real-time EEG-TMS setup to identify user-independently the individual mu-rhythm phase associated with high- vs. low-corticospinal excitability states. Methods: We applied EEG-TMS to 25 participants targeting the supplementary motor area-primary motor cortex network and used a reinforcement learning algorithm to identify the mu-rhythm phase associated with high- vs. low corticospinal excitability. We employed linear mixed effects models and Bayesian analysis to determine effects of reinforced learning on corticospinal excitability indexed by motor evoked potential amplitude, and functional connectivity indexed by the imaginary part of resting-state EEG coherence. Results: Reinforcement learning effectively identified the mu-rhythm phase associated with high- vs. low-excitability states, and their repetitive stimulation resulted in long-term increases vs. decreases in functional connectivity in the stimulated sensorimotor network. Conclusions: We demonstrated for the first time the feasibility of closed-loop EEG-TMS in humans, a critical step towards individualized treatment of brain disorders.
☆ Parameter-free Dynamic Regret: Time-varying Movement Costs, Delayed Feedback, and Memory
In this paper, we study dynamic regret in unconstrained online convex optimization (OCO) with movement costs. Specifically, we generalize the standard setting by allowing the movement cost coefficients $λ_t$ to vary arbitrarily over time. Our main contribution is a novel algorithm that establishes the first comparator-adaptive dynamic regret bound for this setting, guaranteeing $\widetilde{\mathcal{O}}(\sqrt{(1+P_T)(T+\sum_t λ_t)})$ regret, where $P_T$ is the path length of the comparator sequence over $T$ rounds. This recovers the optimal guarantees for both static and dynamic regret in standard OCO as a special case where $λ_t=0$ for all rounds. To demonstrate the versatility of our results, we consider two applications: OCO with delayed feedback and OCO with time-varying memory. We show that both problems can be translated into time-varying movement costs, establishing a novel reduction specifically for the delayed feedback setting that is of independent interest. A crucial observation is that the first-order dependence on movement costs in our regret bound plays a key role in enabling optimal comparator-adaptive dynamic regret guarantees in both settings.
☆ Supercharging Simulation-Based Inference for Bayesian Optimal Experimental Design
Bayesian optimal experimental design (BOED) seeks to maximize the expected information gain (EIG) of experiments. This requires a likelihood estimate, which in many settings is intractable. Simulation-based inference (SBI) provides powerful tools for this regime. However, existing work explicitly connecting SBI and BOED is restricted to a single contrastive EIG bound. We show that the EIG admits multiple formulations which can directly leverage modern SBI density estimators, encompassing neural posterior, likelihood, and ratio estimation. Building on this perspective, we define a novel EIG estimator using neural likelihood estimation. Further, we identify optimization as a key bottleneck of gradient based EIG maximization and show that a simple multi-start parallel gradient ascent procedure can substantially improve reliability and performance. With these innovations, our SBI-based BOED methods are able to match or outperform by up to $22\%$ existing state-of-the-art approaches across standard BOED benchmarks.
☆ Sample Complexity of Causal Identification with Temporal Heterogeneity
Recovering a unique causal graph from observational data is an ill-posed problem because multiple generating mechanisms can lead to the same observational distribution. This problem becomes solvable only by exploiting specific structural or distributional assumptions. While recent work has separately utilized time-series dynamics or multi-environment heterogeneity to constrain this problem, we integrate both as complementary sources of heterogeneity. This integration yields unified necessary identifiability conditions and enables a rigorous analysis of the statistical limits of recovery under thin versus heavy-tailed noise. In particular, temporal structure is shown to effectively substitute for missing environmental diversity, possibly achieving identifiability even under insufficient heterogeneity. Extending this analysis to heavy-tailed (Student's t) distributions, we demonstrate that while geometric identifiability conditions remain invariant, the sample complexity diverges significantly from the Gaussian baseline. Explicit information-theoretic bounds quantify this cost of robustness, establishing the fundamental limits of covariance-based causal graph recovery methods in realistic non-stationary systems. This work shifts the focus from whether causal structure is identifiable to whether it is statistically recoverable in practice.
☆ A Cycle-Consistent Graph Surrogate for Full-Cycle Left Ventricular Myocardial Biomechanics
Image-based patient-specific simulation of left ventricular (LV) mechanics is valuable for understanding cardiac function and supporting clinical intervention planning, but conventional finite-element analysis (FEA) is computationally intensive. Current graph-based surrogates do not have full-cycle prediction capabilities, and physics-informed neural networks often struggle to converge on complex cardiac geometries. We present CardioGraphFENet (CGFENet), a unified graph-based surrogate for rapid full-cycle estimation of LV myocardial biomechanics, supervised by a large FEA simulation dataset. The proposed model integrates (i) a global--local graph encoder to capture mesh features with weak-form-inspired global coupling, (ii) a gated recurrent unit-based temporal encoder conditioned on the target volume-time signal to model cycle-coherent dynamics, and (iii) a cycle-consistent bidirectional formulation for both loading and inverse unloading within a single framework. These strategies enable high fidelity with respect to traditional FEA ground truths and produce physiologically plausible pressure-volume loops that match FEA results when coupled with a lumped-parameter model. In particular, the cycle-consistency strategy enables a significant reduction in FEA supervision with only minimal loss in accuracy.
☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
☆ Decoupling Variance and Scale-Invariant Updates in Adaptive Gradient Descent for Unified Vector and Matrix Optimization
Adaptive methods like Adam have become the $\textit{de facto}$ standard for large-scale vector and Euclidean optimization due to their coordinate-wise adaptation with a second-order nature. More recently, matrix-based spectral optimizers like Muon (Jordan et al., 2024b) show the power of treating weight matrices as matrices rather than long vectors. Linking these is hard because many natural generalizations are not feasible to implement, and we also cannot simply move the Adam adaptation to the matrix spectrum. To address this, we reformulate the AdaGrad update and decompose it into a variance adaptation term and a scale-invariant term. This decoupling produces $\textbf{DeVA}$ ($\textbf{De}$coupled $\textbf{V}$ariance $\textbf{A}$daptation), a framework that bridges between vector-based variance adaptation and matrix spectral optimization, enabling a seamless transition from Adam to adaptive spectral descent. Extensive experiments across language modeling and image classification demonstrate that DeVA consistently outperforms state-of-the-art methods such as Muon and SOAP (Vyas et al., 2024), reducing token usage by around 6.6\%. Theoretically, we show that the variance adaptation term effectively improves the blockwise smoothness, facilitating faster convergence. Our implementation is available at https://github.com/Tsedao/Decoupled-Variance-Adaptation
☆ Uncovering Cross-Objective Interference in Multi-Objective Alignment
We study a persistent failure mode in multi-objective alignment for large language models (LLMs): training improves performance on only a subset of objectives while causing others to degrade. We formalize this phenomenon as cross-objective interference and conduct the first systematic study across classic scalarization algorithms, showing that interference is pervasive and exhibits strong model dependence. To explain this phenomenon, we derive a local covariance law showing that an objective improves at first order when its reward exhibits positive covariance with the scalarized score. We extend this analysis to clipped surrogate objectives used in modern alignment, demonstrating that the covariance law remains valid under mild conditions despite clipping. Building on this analysis, we propose Covariance Targeted Weight Adaptation (CTWA), a plug-and-play method that maintains positive covariance between objective rewards and the training signal to effectively mitigate cross-objective interference. Finally, we complement these local improvement conditions with a global convergence analysis under the Polyak--Łojasiewicz condition, establishing when non-convex scalarized optimization achieves global convergence and how cross-objective interference depends on specific model geometric properties.
☆ T-STAR: A Context-Aware Transformer Framework for Short-Term Probabilistic Demand Forecasting in Dock-Based Shared Micro-Mobility
Reliable short-term demand forecasting is essential for managing shared micro-mobility services and ensuring responsive, user-centered operations. This study introduces T-STAR (Two-stage Spatial and Temporal Adaptive contextual Representation), a novel transformer-based probabilistic framework designed to forecast station-level bike-sharing demand at a 15-minute resolution. T-STAR addresses key challenges in high-resolution forecasting by disentangling consistent demand patterns from short-term fluctuations through a hierarchical two-stage structure. The first stage captures coarse-grained hourly demand patterns, while the second stage improves prediction accuracy by incorporating high-frequency, localized inputs, including recent fluctuations and real-time demand variations in connected metro services, to account for temporal shifts in short-term demand. Time series transformer models are employed in both stages to generate probabilistic predictions. Extensive experiments using Washington D.C.'s Capital Bikeshare data demonstrate that T-STAR outperforms existing methods in both deterministic and probabilistic accuracy. The model exhibits strong spatial and temporal robustness across stations and time periods. A zero-shot forecasting experiment further highlights T-STAR's ability to transfer to previously unseen service areas without retraining. These results underscore the framework's potential to deliver granular, reliable, and uncertainty-aware short-term demand forecasts, which enable seamless integration to support multimodal trip planning for travelers and enhance real-time operations in shared micro-mobility services.
comment: This work has been submitted to Transportation Research Part C
☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
☆ Designing a Robust, Bounded, and Smooth Loss Function for Improved Supervised Learning
The loss function is crucial to machine learning, especially in supervised learning frameworks. It is a fundamental component that controls the behavior and general efficacy of learning algorithms. However, despite their widespread use, traditional loss functions have significant drawbacks when dealing with high-dimensional and outlier-sensitive datasets, which frequently results in reduced performance and slower convergence during training. In this work, we develop a robust, bounded, and smooth (RoBoS-NN) loss function to resolve the aforementioned hindrances. The generalization ability of the loss function has also been theoretically analyzed to rigorously justify its robustness. Moreover, we implement RoboS-NN loss in the framework of a neural network (NN) to forecast time series and present a new robust algorithm named $\mathcal{L}_{\text{RoBoS}}$-NN. To assess the potential of $\mathcal{L}_{\text{RoBoS}}$-NN, we conduct experiments on multiple real-world datasets. In addition, we infuse outliers into data sets to evaluate the performance of $\mathcal{L}_{\text{RoBoS}}$-NN in more challenging scenarios. Numerical results show that $\mathcal{L}_{\text{RoBoS}}$-NN outperforms the other benchmark models in terms of accuracy measures.
☆ Improved Sampling Schedules for Discrete Diffusion Models
Discrete diffusion models have emerged as a powerful paradigm for generative modeling on sequence data; however, the information-theoretic principles governing their reverse processes remain significantly less understood than those of their continuous counterparts. In this work, we bridge this gap by analyzing the reverse process dynamics through the lens of thermodynamic entropy production. We propose the entropy production rate as a rigorous proxy for quantifying information generation, deriving as a byproduct a bound on the Wasserstein distance between intermediate states and the data distribution. Leveraging these insights, we introduce two novel sampling schedules that are uniformly spaced with respect to their corresponding physics-inspired metrics: the Entropic Discrete Schedule (EDS), which is defined by maintaining a constant rate of information gain, and the Wasserstein Discrete Schedule (WDS), which is defined by taking equal steps in terms of the Wasserstein distance. We empirically demonstrate that our proposed schedules significantly outperform state-of-the-art strategies across diverse application domains, including synthetic data, music notation, vision and language modeling, consistently achieving superior performance at a lower computational budget.
☆ Are Deep Learning Based Hybrid PDE Solvers Reliable? Why Training Paradigms and Update Strategies Matter
Deep learning-based hybrid iterative methods (DL-HIMs) integrate classical numerical solvers with neural operators, utilizing their complementary spectral biases to accelerate convergence. Despite this promise, many DL-HIMs stagnate at false fixed points where neural updates vanish while the physical residual remains large, raising questions about reliability in scientific computing. In this paper, we provide evidence that performance is highly sensitive to training paradigms and update strategies, even when the neural architecture is fixed. Through a detailed study of a DeepONet-based hybrid iterative numerical transferable solver (HINTS) and an FFT-based Fourier neural solver (FNS), we show that significant physical residuals can persist when training objectives are not aligned with solver dynamics and problem physics. We further examine Anderson acceleration (AA) and demonstrate that its classical form is ill-suited for nonlinear neural operators. To overcome this, we introduce physics-aware Anderson acceleration (PA-AA), which minimizes the physical residual rather than the fixed-point update. Numerical experiments confirm that PA-AA restores reliable convergence in substantially fewer iterations. These findings provide a concrete answer to ongoing controversies surrounding AI-based PDE solvers: reliability hinges not only on architectures but on physically informed training and iteration design.
☆ Learning Deep Hybrid Models with Sharpness-Aware Minimization
Hybrid modeling, the combination of machine learning models and scientific mathematical models, enables flexible and robust data-driven prediction with partial interpretability. However, effectively the scientific models may be ignored in prediction due to the flexibility of the machine learning model, making the idea of hybrid modeling pointless. Typically some regularization is applied to hybrid model learning to avoid such a failure case, but the formulation of the regularizer strongly depends on model architectures and domain knowledge. In this paper, we propose to focus on the flatness of loss minima in learning hybrid models, aiming to make the model as simple as possible. We employ the idea of sharpness-aware minimization and adapt it to the hybrid modeling setting. Numerical experiments show that the SAM-based method works well across different choices of models and datasets.
☆ AEGPO: Adaptive Entropy-Guided Policy Optimization for Diffusion Models
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
☆ RanSOM: Second-Order Momentum with Randomized Scaling for Constrained and Unconstrained Optimization
Momentum methods, such as Polyak's Heavy Ball, are the standard for training deep networks but suffer from curvature-induced bias in stochastic settings, limiting convergence to suboptimal $\mathcal{O}(ε^{-4})$ rates. Existing corrections typically require expensive auxiliary sampling or restrictive smoothness assumptions. We propose \textbf{RanSOM}, a unified framework that eliminates this bias by replacing deterministic step sizes with randomized steps drawn from distributions with mean $η_t$. This modification allows us to leverage Stein-type identities to compute an exact, unbiased estimate of the momentum bias using a single Hessian-vector product computed jointly with the gradient, avoiding auxiliary queries. We instantiate this framework in two algorithms: \textbf{RanSOM-E} for unconstrained optimization (using exponentially distributed steps) and \textbf{RanSOM-B} for constrained optimization (using beta-distributed steps to strictly preserve feasibility). Theoretical analysis confirms that RanSOM recovers the optimal $\mathcal{O}(ε^{-3})$ convergence rate under standard bounded noise, and achieves optimal rates for heavy-tailed noise settings ($p \in (1, 2]$) without requiring gradient clipping.
☆ Calibrating Tabular Anomaly Detection via Optimal Transport
Tabular anomaly detection (TAD) remains challenging due to the heterogeneity of tabular data: features lack natural relationships, vary widely in distribution and scale, and exhibit diverse types. Consequently, each TAD method makes implicit assumptions about anomaly patterns that work well on some datasets but fail on others, and no method consistently outperforms across diverse scenarios. We present CTAD (Calibrating Tabular Anomaly Detection), a model-agnostic post-processing framework that enhances any existing TAD detector through sample-specific calibration. Our approach characterizes normal data via two complementary distributions, i.e., an empirical distribution from random sampling and a structural distribution from K-means centroids, and measures how adding a test sample disrupts their compatibility using Optimal Transport (OT) distance. Normal samples maintain low disruption while anomalies cause high disruption, providing a calibration signal to amplify detection. We prove that OT distance has a lower bound proportional to the test sample's distance from centroids, and establish that anomalies systematically receive higher calibration scores than normals in expectation, explaining why the method generalizes across datasets. Extensive experiments on 34 diverse tabular datasets with 7 representative detectors spanning all major TAD categories (density estimation, classification, reconstruction, and isolation-based methods) demonstrate that CTAD consistently improves performance with statistical significance. Remarkably, CTAD enhances even state-of-the-art deep learning methods and shows robust performance across diverse hyperparameter settings, requiring no additional tuning for practical deployment.
☆ SuReNav: Superpixel Graph-based Constraint Relaxation for Navigation in Over-constrained Environments ICRA 2026
We address the over-constrained planning problem in semi-static environments. The planning objective is to find a best-effort solution that avoids all hard constraint regions while minimally traversing the least risky areas. Conventional methods often rely on pre-defined area costs, limiting generalizations. Further, the spatial continuity of navigation spaces makes it difficult to identify regions that are passable without overestimation. To overcome these challenges, we propose SuReNav, a superpixel graph-based constraint relaxation and navigation method that imitates human-like safe and efficient navigation. Our framework consists of three components: 1) superpixel graph map generation with regional constraints, 2) regional-constraint relaxation using graph neural network trained on human demonstrations for safe and efficient navigation, and 3) interleaving relaxation, planning, and execution for complete navigation. We evaluate our method against state-of-the-art baselines on 2D semantic maps and 3D maps from OpenStreetMap, achieving the highest human-likeness score of complete navigation while maintaining a balanced trade-off between efficiency and safety. We finally demonstrate its scalability and generalization performance in real-world urban navigation with a quadruped robot, Spot.
comment: Accepted by ICRA 2026. Code and videos are available at https://sure-nav.github.io/
☆ RAIGen: Rare Attribute Identification in Text-to-Image Generative Models
Text-to-image diffusion models achieve impressive generation quality but inherit and amplify training-data biases, skewing coverage of semantic attributes. Prior work addresses this in two ways. Closed-set approaches mitigate biases in predefined fairness categories (e.g., gender, race), assuming socially salient minority attributes are known a priori. Open-set approaches frame the task as bias identification, highlighting majority attributes that dominate outputs. Both overlook a complementary task: uncovering rare or minority features underrepresented in the data distribution (social, cultural, or stylistic) yet still encoded in model representations. We introduce RAIGen, the first framework, to our knowledge, for un-supervised rare-attribute discovery in diffusion models. RAIGen leverages Matryoshka Sparse Autoencoders and a novel minority metric combining neuron activation frequency with semantic distinctiveness to identify interpretable neurons whose top-activating images reveal underrepresented attributes. Experiments show RAIGen discovers attributes beyond fixed fairness categories in Stable Diffusion, scales to larger models such as SDXL, supports systematic auditing across architectures, and enables targeted amplification of rare attributes during generation.
☆ On the Identifiability of Steering Vectors in Large Language Models
Activation steering methods, such as persona vectors, are widely used to control large language model behavior and increasingly interpreted as revealing meaningful internal representations. This interpretation implicitly assumes steering directions are identifiable and uniquely recoverable from input-output behavior. We formalize steering as an intervention on internal representations and prove that, under realistic modeling and data conditions, steering vectors are fundamentally non-identifiable due to large equivalence classes of behaviorally indistinguishable interventions. Empirically, we validate this across multiple models and semantic traits, showing orthogonal perturbations achieve near-equivalent efficacy with negligible effect sizes. However, identifiability is recoverable under structural assumptions including statistical independence, sparsity constraints, multi-environment validation or cross-layer consistency. These findings reveal fundamental interpretability limits and clarify structural assumptions required for reliable safety-critical control.
comment: 23 pages, 4 figures, 2 tables
☆ FlowDA: Accurate, Low-Latency Weather Data Assimilation via Flow Matching
Data assimilation (DA) is a fundamental component of modern weather prediction, yet it remains a major computational bottleneck in machine learning (ML)-based forecasting pipelines due to reliance on traditional variational methods. Recent generative ML-based DA methods offer a promising alternative but typically require many sampling steps and suffer from error accumulation under long-horizon auto-regressive rollouts with cycling assimilation. We propose FlowDA, a low-latency weather-scale generative DA framework based on flow matching. FlowDA conditions on observations through a SetConv-based embedding and fine-tunes the Aurora foundation model to deliver accurate, efficient, and robust analyses. Experiments across observation rates decreasing from $3.9\%$ to $0.1\%$ demonstrate superior performance of FlowDA over strong baselines with similar tunable-parameter size. FlowDA further shows robustness to observational noise and stable performance in long-horizon auto-regressive cycling DA. Overall, FlowDA points to an efficient and scalable direction for data-driven DA.
☆ Optimal Learning-Rate Schedules under Functional Scaling Laws: Power Decay and Warmup-Stable-Decay
We study optimal learning-rate schedules (LRSs) under the functional scaling law (FSL) framework introduced in Li et al. (2025), which accurately models the loss dynamics of both linear regression and large language model (LLM) pre-training. Within FSL, loss dynamics are governed by two exponents: a source exponent $s>0$ controlling the rate of signal learning, and a capacity exponent $β>1$ determining the rate of noise forgetting. Focusing on a fixed training horizon $N$, we derive the optimal LRSs and reveal a sharp phase transition. In the easy-task regime $s \ge 1 - 1/β$, the optimal schedule follows a power decay to zero, $η^*(z) = η_{\mathrm{peak}}(1 - z/N)^{2β- 1}$, where the peak learning rate scales as $η_{\mathrm{peak}} \eqsim N^{-ν}$ for an explicit exponent $ν= ν(s,β)$. In contrast, in the hard-task regime $s < 1 - 1/β$, the optimal LRS exhibits a warmup-stable-decay (WSD) (Hu et al. (2024)) structure: it maintains the largest admissible learning rate for most of training and decays only near the end, with the decay phase occupying a vanishing fraction of the horizon. We further analyze optimal shape-fixed schedules, where only the peak learning rate is tuned -- a strategy widely adopted in practiceand characterize their strengths and intrinsic limitations. This yields a principled evaluation of commonly used schedules such as cosine and linear decay. Finally, we apply the power-decay LRS to one-pass stochastic gradient descent (SGD) for kernel regression and show the last iterate attains the exact minimax-optimal rate, eliminating the logarithmic suboptimality present in prior analyses. Numerical experiments corroborate our theoretical predictions.
☆ Rare Event Analysis of Large Language Models
Being probabilistic models, during inference large language models (LLMs) display rare events: behaviour that is far from typical but highly significant. By definition all rare events are hard to see, but the enormous scale of LLM usage means that events completely unobserved during development are likely to become prominent in deployment. Here we present an end-to-end framework for the systematic analysis of rare events in LLMs. We provide a practical implementation spanning theory, efficient generation strategies, probability estimation and error analysis, which we illustrate with concrete examples. We outline extensions and applications to other models and contexts, highlighting the generality of the concepts and techniques presented here.
☆ Displacement-Resistant Extensions of DPO with Nonconvex $f$-Divergences ICLR 2026
DPO and related algorithms align language models by directly optimizing the RLHF objective: find a policy that maximizes the Bradley-Terry reward while staying close to a reference policy through a KL divergence penalty. Previous work showed that this approach could be further generalized: the original problem remains tractable even if the KL divergence is replaced by a family of $f$-divergence with a convex generating function $f$. Our first contribution is to show that convexity of $f$ is not essential. Instead, we identify a more general condition, referred to as DPO-inducing, that precisely characterizes when the RLHF problem remains tractable. Our next contribution is to establish a second condition on $f$ that is necessary to prevent probability displacement, a known empirical phenomenon in which the probabilities of the winner and the loser responses approach zero. We refer to any $f$ that satisfies this condition as displacement-resistant. We finally focus on a specific DPO-inducing and displacement-resistant $f$, leading to our novel SquaredPO loss. Compared to DPO, this new loss offers stronger theoretical guarantees while performing competitively in practice.
comment: Published as a conference paper at ICLR 2026
☆ Weisfeiler and Lehman Go Categorical
While lifting map has significantly enhanced the expressivity of graph neural networks, extending this paradigm to hypergraphs remains fragmented. To address this, we introduce the categorical Weisfeiler-Lehman framework, which formalizes lifting as a functorial mapping from an arbitrary data category to the unifying category of graded posets. When applied to hypergraphs, this perspective allows us to systematically derive Hypergraph Isomorphism Networks, a family of neural architectures where the message passing topology is strictly determined by the choice of functor. We introduce two distinct functors from the category of hypergraphs: an incidence functor and a symmetric simplicial complex functor. While the incidence architecture structurally mirrors standard bipartite schemes, our functorial derivation enforces a richer information flow over the resulting poset, capturing complex intersection geometries often missed by existing methods. We theoretically characterize the expressivity of these models, proving that both the incidence-based and symmetric simplicial approaches subsume the expressive power of the standard Hypergraph Weisfeiler-Lehman test. Extensive experiments on real-world benchmarks validate these theoretical findings.
comment: Comments are welcome!
☆ Revisiting Emotions Representation for Recognition in the Wild
Facial emotion recognition has been typically cast as a single-label classification problem of one out of six prototypical emotions. However, that is an oversimplification that is unsuitable for representing the multifaceted spectrum of spontaneous emotional states, which are most often the result of a combination of multiple emotions contributing at different intensities. Building on this, a promising direction that was explored recently is to cast emotion recognition as a distribution learning problem. Still, such approaches are limited in that research datasets are typically annotated with a single emotion class. In this paper, we contribute a novel approach to describe complex emotional states as probability distributions over a set of emotion classes. To do so, we propose a solution to automatically re-label existing datasets by exploiting the result of a study in which a large set of both basic and compound emotions is mapped to probability distributions in the Valence-Arousal-Dominance (VAD) space. In this way, given a face image annotated with VAD values, we can estimate the likelihood of it belonging to each of the distributions, so that emotional states can be described as a mixture of emotions, enriching their description, while also accounting for the ambiguous nature of their perception. In a preliminary set of experiments, we illustrate the advantages of this solution and a new possible direction of investigation. Data annotations are available at https://github.com/jbcnrlz/affectnet-b-annotation.
☆ Fair Transit Stop Placement: A Clustering Perspective and Beyond
We study the transit stop placement (TrSP) problem in general metric spaces, where agents travel between source-destination pairs and may either walk directly or utilize a shuttle service via selected transit stops. We investigate fairness in TrSP through the lens of justified representation (JR) and the core, and uncover a structural correspondence with fair clustering. Specifically, we show that a constant-factor approximation to proportional fairness in clustering can be used to guarantee a constant-factor biparameterized approximation to core. We establish a lower bound of 1.366 on the approximability of JR, and moreover show that no clustering algorithm can approximate JR within a factor better than 3. Going beyond clustering, we propose the Expanding Cost Algorithm, which achieves a tight 2.414-approximation for JR, but does not give any bounded core guarantee. In light of this, we introduce a parameterized algorithm that interpolates between these approaches, and enables a tunable trade-off between JR and core. Finally, we complement our results with an experimental analysis using small-market public carpooling data.
☆ Robust Online Learning
We study the problem of learning robust classifiers where the classifier will receive a perturbed input. Unlike robust PAC learning studied in prior work, here the clean data and its label are also adversarially chosen. We formulate this setting as an online learning problem and consider both the realizable and agnostic learnability of hypothesis classes. We define a new dimension of classes and show it controls the mistake bounds in the realizable setting and the regret bounds in the agnostic setting. In contrast to the dimension that characterizes learnability in the PAC setting, our dimension is rather simple and resembles the Littlestone dimension. We generalize our dimension to multiclass hypothesis classes and prove similar results in the realizable case. Finally, we study the case where the learner does not know the set of allowed perturbations for each point and only has some prior on them.
☆ On the Convergence of Multicalibration Gradient Boosting
Multicalibration gradient boosting has recently emerged as a scalable method that empirically produces approximately multicalibrated predictors and has been deployed at web scale. Despite this empirical success, its convergence properties are not well understood. In this paper, we bridge the gap by providing convergence guarantees for multicalibration gradient boosting in regression with squared-error loss. We show that the magnitude of successive prediction updates decays at $O(1/\sqrt{T})$, which implies the same convergence rate bound for the multicalibration error over rounds. Under additional smoothness assumptions on the weak learners, this rate improves to linear convergence. We further analyze adaptive variants, showing local quadratic convergence of the training loss, and we study rescaling schemes that preserve convergence. Experiments on real-world datasets support our theory and clarify the regimes in which the method achieves fast convergence and strong multicalibration.
comment: Under submission
☆ Calibrating Generative AI to Produce Realistic Essays for Data Augmentation
Data augmentation can mitigate limited training data in machine-learning automated scoring engines for constructed response items. This study seeks to determine how well three approaches to large language model prompting produce essays that preserve the writing quality of the original essays and produce realistic text for augmenting ASE training datasets. We created simulated versions of student essays, and human raters assigned scores to them and rated the realism of the generated text. The results of the study indicate that the predict next prompting strategy produces the highest level of agreement between human raters regarding simulated essay scores, predict next and sentence strategies best preserve the rated quality of the original essay in the simulated essays, and predict next and 25 examples strategies produce the most realistic text as judged by human raters.
comment: Artificial Intelligence in Measurement and Education Conference (AIME-Con)
☆ AEGIS: Adversarial Target-Guided Retention-Data-Free Robust Concept Erasure from Diffusion Models
Concept erasure helps stop diffusion models (DMs) from generating harmful content; but current methods face robustness retention trade off. Robustness means the model fine-tuned by concept erasure methods resists reactivation of erased concepts, even under semantically related prompts. Retention means unrelated concepts are preserved so the model's overall utility stays intact. Both are critical for concept erasure in practice, yet addressing them simultaneously is challenging, as existing works typically improve one factor while sacrificing the other. Prior work typically strengthens one while degrading the other, e.g., mapping a single erased prompt to a fixed safe target leaves class level remnants exploitable by prompt attacks, whereas retention-oriented schemes underperform against adaptive adversaries. This paper introduces Adversarial Erasure with Gradient Informed Synergy (AEGIS), a retention-data-free framework that advances both robustness and retention.
comment: 30 pages,12 figures
☆ Soft Forward-Backward Representations for Zero-shot Reinforcement Learning with General Utilities
Recent advancements in zero-shot reinforcement learning (RL) have facilitated the extraction of diverse behaviors from unlabeled, offline data sources. In particular, forward-backward algorithms (FB) can retrieve a family of policies that can approximately solve any standard RL problem (with additive rewards, linear in the occupancy measure), given sufficient capacity. While retaining zero-shot properties, we tackle the greater problem class of RL with general utilities, in which the objective is an arbitrary differentiable function of the occupancy measure. This setting is strictly more expressive, capturing tasks such as distribution matching or pure exploration, which may not be reduced to additive rewards. We show that this additional complexity can be captured by a novel, maximum entropy (soft) variant of the forward-backward algorithm, which recovers a family of stochastic policies from offline data. When coupled with zero-order search over compact policy embeddings, this algorithm can sidestep iterative optimization schemes, and optimizes general utilities directly at test-time. Across both didactic and high-dimensional experiments, we demonstrate that our method retains favorable properties of FB algorithms, while also extending their range to more general RL problems.
☆ A Unified Framework for LLM Watermarks
LLM watermarks allow tracing AI-generated texts by inserting a detectable signal into their generated content. Recent works have proposed a wide range of watermarking algorithms, each with distinct designs, usually built using a bottom-up approach. Crucially, there is no general and principled formulation for LLM watermarking. In this work, we show that most existing and widely used watermarking schemes can in fact be derived from a principled constrained optimization problem. Our formulation unifies existing watermarking methods and explicitly reveals the constraints that each method optimizes. In particular, it highlights an understudied quality-diversity-power trade-off. At the same time, our framework also provides a principled approach for designing novel watermarking schemes tailored to specific requirements. For instance, it allows us to directly use perplexity as a proxy for quality, and derive new schemes that are optimal with respect to this constraint. Our experimental evaluation validates our framework: watermarking schemes derived from a given constraint consistently maximize detection power with respect to that constraint.
☆ Semantically Labelled Automata for Multi-Task Reinforcement Learning with LTL Instructions
We study multi-task reinforcement learning (RL), a setting in which an agent learns a single, universal policy capable of generalising to arbitrary, possibly unseen tasks. We consider tasks specified as linear temporal logic (LTL) formulae, which are commonly used in formal methods to specify properties of systems, and have recently been successfully adopted in RL. In this setting, we present a novel task embedding technique leveraging a new generation of semantic LTL-to-automata translations, originally developed for temporal synthesis. The resulting semantically labelled automata contain rich, structured information in each state that allow us to (i) compute the automaton efficiently on-the-fly, (ii) extract expressive task embeddings used to condition the policy, and (iii) naturally support full LTL. Experimental results in a variety of domains demonstrate that our approach achieves state-of-the-art performance and is able to scale to complex specifications where existing methods fail.
☆ Disentanglement by means of action-induced representations
Learning interpretable representations with variational autoencoders (VAEs) is a major goal of representation learning. The main challenge lies in obtaining disentangled representations, where each latent dimension corresponds to a distinct generative factor. This difficulty is fundamentally tied to the inability to perform nonlinear independent component analysis. Here, we introduce the framework of action-induced representations (AIRs) which models representations of physical systems given experiments (or actions) that can be performed on them. We show that, in this framework, we can provably disentangle degrees of freedom w.r.t. their action dependence. We further introduce a variational AIR architecture (VAIR) that can extract AIRs and therefore achieve provable disentanglement where standard VAEs fail. Beyond state representation, VAIR also captures the action dependence of the underlying generative factors, directly linking experiments to the degrees of freedom they influence.
comment: Main text: 10 pages, 4 figures
☆ Optimal Abstractions for Verifying Properties of Kolmogorov-Arnold Networks (KANs)
We present a novel approach for verifying properties of Kolmogorov-Arnold Networks (KANs), a class of neural networks characterized by nonlinear, univariate activation functions typically implemented as piecewise polynomial splines or Gaussian processes. Our method creates mathematical ``abstractions'' by replacing each KAN unit with a piecewise affine (PWA) function, providing both local and global error estimates between the original network and its approximation. These abstractions enable property verification by encoding the problem as a Mixed Integer Linear Program (MILP), determining whether outputs satisfy specified properties when inputs belong to a given set. A critical challenge lies in balancing the number of pieces in the PWA approximation: too many pieces add binary variables that make verification computationally intractable, while too few pieces create excessive error margins that yield uninformative bounds. Our key contribution is a systematic framework that exploits KAN structure to find optimal abstractions. By combining dynamic programming at the unit level with a knapsack optimization across the network, we minimize the total number of pieces while guaranteeing specified error bounds. This approach determines the optimal approximation strategy for each unit while maintaining overall accuracy requirements. Empirical evaluation across multiple KAN benchmarks demonstrates that the upfront analysis costs of our method are justified by superior verification results.
☆ Pairwise is Not Enough: Hypergraph Neural Networks for Multi-Agent Pathfinding ICLR 2026
Multi-Agent Path Finding (MAPF) is a representative multi-agent coordination problem, where multiple agents are required to navigate to their respective goals without collisions. Solving MAPF optimally is known to be NP-hard, leading to the adoption of learning-based approaches to alleviate the online computational burden. Prevailing approaches, such as Graph Neural Networks (GNNs), are typically constrained to pairwise message passing between agents. However, this limitation leads to suboptimal behaviours and critical issues, such as attention dilution, particularly in dense environments where group (i.e. beyond just two agents) coordination is most critical. Despite the importance of such higher-order interactions, existing approaches have not been able to fully explore them. To address this representational bottleneck, we introduce HMAGAT (Hypergraph Multi-Agent Attention Network), a novel architecture that leverages attentional mechanisms over directed hypergraphs to explicitly capture group dynamics. Empirically, HMAGAT establishes a new state-of-the-art among learning-based MAPF solvers: e.g., despite having just 1M parameters and being trained on 100$\times$ less data, it outperforms the current SoTA 85M parameter model. Through detailed analysis of HMAGAT's attention values, we demonstrate how hypergraph representations mitigate the attention dilution inherent in GNNs and capture complex interactions where pairwise methods fail. Our results illustrate that appropriate inductive biases are often more critical than the training data size or sheer parameter count for multi-agent problems.
comment: Accepted at ICLR 2026
☆ F-GRPO: Don't Let Your Policy Learn the Obvious and Forget the Rare
Reinforcement Learning with Verifiable Rewards (RLVR) is commonly based on group sampling to estimate advantages and stabilize policy updates. In practice, large group sizes are not feasible due to computational limits, which biases learning toward trajectories that are already likely. Smaller groups often miss rare-correct trajectories while still containing mixed rewards, concentrating probability on common solutions. We derive the probability that updates miss rare-correct modes as a function of group size, showing non-monotonic behavior, and characterize how updates redistribute mass within the correct set, revealing that unsampled-correct mass can shrink even as total correct mass grows. Motivated by this analysis, we propose a difficulty-aware advantage scaling coefficient, inspired by Focal loss, that down-weights updates on high-success prompts. The lightweight modification can be directly integrated into any group-relative RLVR algorithm such as GRPO, DAPO, and CISPO. On Qwen2.5-7B across in-domain and out-of-domain benchmarks, our method improves pass@256 from 64.1 $\rightarrow$ 70.3 (GRPO), 69.3 $\rightarrow$ 72.5 (DAPO), and 73.2 $\rightarrow$ 76.8 (CISPO), while preserving or improving pass@1, without increasing group size or computational cost.
☆ Missing At Random as Covariate Shift: Correcting Bias in Iterative Imputation
Accurate imputation of missing data is critical to downstream machine learning performance. We formulate missing data imputation as a risk minimisation problem, which highlights a covariate shift between the observed and unobserved data distributions. This covariate shift induced bias is not accounted for by popular imputation methods and leads to suboptimal performance. In this paper, we derive theoretically valid importance weights that correct for the induced distributional bias. Furthermore, we propose a novel imputation algorithm that jointly estimates both the importance weights and imputation models, enabling bias correction throughout the imputation process. Empirical results across benchmark datasets show reductions in root mean squared error and Wasserstein distance of up to 7% and 20%, respectively, compared to otherwise identical unweighted methods.
comment: 8 pages, 6 figures
☆ SaDiT: Efficient Protein Backbone Design via Latent Structural Tokenization and Diffusion Transformers
Generative models for de novo protein backbone design have achieved remarkable success in creating novel protein structures. However, these diffusion-based approaches remain computationally intensive and slower than desired for large-scale structural exploration. While recent efforts like Proteina have introduced flow-matching to improve sampling efficiency, the potential of tokenization for structural compression and acceleration remains largely unexplored in the protein domain. In this work, we present SaDiT, a novel framework that accelerates protein backbone generation by integrating SaProt Tokenization with a Diffusion Transformer (DiT) architecture. SaDiT leverages a discrete latent space to represent protein geometry, significantly reducing the complexity of the generation process while maintaining theoretical SE(3) equivalence. To further enhance efficiency, we introduce an IPA Token Cache mechanism that optimizes the Invariant Point Attention (IPA) layers by reusing computed token states during iterative sampling. Experimental results demonstrate that SaDiT outperforms state-of-the-art models, including RFDiffusion and Proteina, in both computational speed and structural viability. We evaluate our model across unconditional backbone generation and fold-class conditional generation tasks, where SaDiT shows superior ability to capture complex topological features with high designability.
☆ Explaining Grokking in Transformers through the Lens of Inductive Bias
We investigate grokking in transformers through the lens of inductive bias: dispositions arising from architecture or optimization that let the network prefer one solution over another. We first show that architectural choices such as the position of Layer Normalization (LN) strongly modulates grokking speed. This modulation is explained by isolating how LN on specific pathways shapes shortcut-learning and attention entropy. Subsequently, we study how different optimization settings modulate grokking, inducing distinct interpretations of previously proposed controls such as readout scale. Particularly, we find that using readout scale as a control for lazy training can be confounded by learning rate and weight decay in our setting. Accordingly, we show that features evolve continuously throughout training, suggesting grokking in transformers can be more nuanced than a lazy-to-rich transition of the learning regime. Finally, we show how generalization predictably emerges with feature compressibility in grokking, across different modulators of inductive bias. Our code is released at https://tinyurl.com/y52u3cad.
comment: Total 15 pages, 9 figures
☆ Taipan: A Query-free Transfer-based Multiple Sensitive Attribute Inference Attack Solely from Publicly Released Graphs
Graph-structured data underpin a wide spectrum of modern applications. However, complex graph topologies and homophilic patterns can facilitate attribute inference attacks (AIAs) by enabling sensitive information leakage to propagate across local neighborhoods. Existing AIAs predominantly assume that adversaries can probe sensitive attributes through repeated model queries. Such assumptions are often impractical in real-world settings due to stringent data protection regulations, prohibitive query budgets, and heightened detection risks, especially when inferring multiple sensitive attributes. More critically, this model-centric perspective obscures a pervasive blind spot: \textbf{intrinsic multiple sensitive information leakage arising solely from publicly released graphs.} To exploit this unexplored vulnerability, we introduce a new attack paradigm and propose \textbf{Taipan, the first query-free transfer-based attack framework for multiple sensitive attribute inference attacks on graphs (G-MSAIAs).} Taipan integrates \emph{Hierarchical Attack Knowledge Routing} to capture intricate inter-attribute correlations, and \emph{Prompt-guided Attack Prototype Refinement} to mitigate negative transfer and performance degradation. We further present a systematic evaluation framework tailored to G-MSAIAs. Extensive experiments on diverse real-world graph datasets demonstrate that Taipan consistently achieves strong attack performance across same-distribution settings and heterogeneous similar- and out-of-distribution settings with mismatched feature dimensionalities, and remains effective even under rigorous differential privacy guarantees. Our findings underscore the urgent need for more robust multi-attribute privacy-preserving graph publishing methods and data-sharing practices.
☆ Quantum Attention by Overlap Interference: Predicting Sequences from Classical and Many-Body Quantum Data
We propose a variational quantum implementation of self-attention (QSA), the core operation in transformers and large language models, which predicts future elements of a sequence by forming overlap-weighted combinations of past data. At variance with previous approaches, our QSA realizes the required nonlinearity through interference of state overlaps and returns a Renyi-1/2 cross-entropy loss directly as the expectation value of an observable, avoiding the need to decode amplitude-encoded predictions into classical logits. Furthermore, QSA naturally accommodates a constrained, trainable data-embedding that ties quantum state overlaps to data-level similarities. We find a gate complexity dominant scaling O(T d^2) for QSA, versus O(T^2 d) classically, suggesting an advantage in the practical regime where the sequence length T dominates the embedding size d. In simulations, we show that our QSA-based quantum transformer learns sequence prediction on classical data and on many-body transverse-field Ising quantum trajectories, establishing trainable attention as a practical primitive for quantum dynamical modeling.
comment: 4 + 1 pages, 2 figures
☆ Diffeomorphism-Equivariant Neural Networks
Incorporating group symmetries via equivariance into neural networks has emerged as a robust approach for overcoming the efficiency and data demands of modern deep learning. While most existing approaches, such as group convolutions and averaging-based methods, focus on compact, finite, or low-dimensional groups with linear actions, this work explores how equivariance can be extended to infinite-dimensional groups. We propose a strategy designed to induce diffeomorphism equivariance in pre-trained neural networks via energy-based canonicalisation. Formulating equivariance as an optimisation problem allows us to access the rich toolbox of already established differentiable image registration methods. Empirical results on segmentation and classification tasks confirm that our approach achieves approximate equivariance and generalises to unseen transformations without relying on extensive data augmentation or retraining.
☆ NanoQuant: Efficient Sub-1-Bit Quantization of Large Language Models
Weight-only quantization has become a standard approach for efficiently serving large language models (LLMs). However, existing methods fail to efficiently compress models to binary (1-bit) levels, as they either require large amounts of data and compute or incur additional storage. In this work, we propose NanoQuant, the first post-training quantization (PTQ) method to compress LLMs to both binary and sub-1-bit levels. NanoQuant formulates quantization as a low-rank binary factorization problem, and compresses full-precision weights to low-rank binary matrices and scales. Specifically, it utilizes an efficient alternating direction method of multipliers (ADMM) method to precisely initialize latent binary matrices and scales, and then tune the initialized parameters through a block and model reconstruction process. Consequently, NanoQuant establishes a new Pareto frontier in low-memory post-training quantization, achieving state-of-the-art accuracy even at sub-1-bit compression rates. NanoQuant makes large-scale deployment feasible on consumer hardware. For example, it compresses Llama2-70B by 25.8$\times$ in just 13 hours on a single H100, enabling a 70B model to operate on a consumer 8 GB GPU.
comment: 26 pages. Hyochan Chong and Dongkyu Kim contributed equally to this work
☆ Makespan Minimization in Split Learning: From Theory to Practice IEEE
Split learning recently emerged as a solution for distributed machine learning with heterogeneous IoT devices, where clients can offload part of their training to computationally-powerful helpers. The core challenge in split learning is to minimize the training time by jointly devising the client-helper assignment and the schedule of tasks at the helpers. We first study the model where each helper has a memory cardinality constraint on how many clients it may be assigned, which represents the case of homogeneous tasks. Through complexity theory, we rule out exact polynomial-time algorithms and approximation schemes even for highly restricted instances of this problem. We complement these negative results with a non-trivial polynomial-time 5-approximation algorithm. Building on this, we then focus on the more general heterogeneous task setting considered by Tirana et al. [INFOCOM 2024], where helpers have memory capacity constraints and clients have variable memory costs. In this case, we prove that, unless P=NP, the problem cannot admit a polynomial-time approximation algorithm for any approximation factor. However, by adapting our aforementioned 5-approximation algorithm, we develop a novel heuristic for the heterogeneous task setting and show that it outperforms heuristics from prior works through extensive experiments.
comment: This paper will appear at IEEE INFOCOM 2026
☆ Memory-Conditioned Flow-Matching for Stable Autoregressive PDE Rollouts
Autoregressive generative PDE solvers can be accurate one step ahead yet drift over long rollouts, especially in coarse-to-fine regimes where each step must regenerate unresolved fine scales. This is the regime of diffusion and flow-matching generators: although their internal dynamics are Markovian, rollout stability is governed by per-step \emph{conditional law} errors. Using the Mori--Zwanzig projection formalism, we show that eliminating unresolved variables yields an exact resolved evolution with a Markov term, a memory term, and an orthogonal forcing, exposing a structural limitation of memoryless closures. Motivated by this, we introduce memory-conditioned diffusion/flow-matching with a compact online state injected into denoising via latent features. Via disintegration, memory induces a structured conditional tail prior for unresolved scales and reduces the transport needed to populate missing frequencies. We prove Wasserstein stability of the resulting conditional kernel. We then derive discrete Grönwall rollout bounds that separate memory approximation from conditional generation error. Experiments on compressible flows with shocks and multiscale mixing show improved accuracy and markedly more stable long-horizon rollouts, with better fine-scale spectral and statistical fidelity.
☆ Pruning at Initialisation through the lens of Graphon Limit: Convergence, Expressivity, and Generalisation
Pruning at Initialisation methods discover sparse, trainable subnetworks before training, but their theoretical mechanisms remain elusive. Existing analyses are often limited to finite-width statistics, lacking a rigorous characterisation of the global sparsity patterns that emerge as networks grow large. In this work, we connect discrete pruning heuristics to graph limit theory via graphons, establishing the graphon limit of PaI masks. We introduce a Factorised Saliency Model that encompasses popular pruning criteria and prove that, under regularity conditions, the discrete masks generated by these algorithms converge to deterministic bipartite graphons. This limit framework establishes a novel topological taxonomy for sparse networks: while unstructured methods (e.g., Random, Magnitude) converge to homogeneous graphons representing uniform connectivity, data-driven methods (e.g., SNIP, GraSP) converge to heterogeneous graphons that encode implicit feature selection. Leveraging this continuous characterisation, we derive two fundamental theoretical results: (i) a Universal Approximation Theorem for sparse networks that depends only on the intrinsic dimension of active coordinate subspaces; and (ii) a Graphon-NTK generalisation bound demonstrating how the limit graphon modulates the kernel geometry to align with informative features. Our results transform the study of sparse neural networks from combinatorial graph problems into a rigorous framework of continuous operators, offering a new mechanism for analysing expressivity and generalisation in sparse neural networks.
☆ CytoCrowd: A Multi-Annotator Benchmark Dataset for Cytology Image Analysis
High-quality annotated datasets are crucial for advancing machine learning in medical image analysis. However, a critical gap exists: most datasets either offer a single, clean ground truth, which hides real-world expert disagreement, or they provide multiple annotations without a separate gold standard for objective evaluation. To bridge this gap, we introduce CytoCrowd, a new public benchmark for cytology analysis. The dataset features 446 high-resolution images, each with two key components: (1) raw, conflicting annotations from four independent pathologists, and (2) a separate, high-quality gold-standard ground truth established by a senior expert. This dual structure makes CytoCrowd a versatile resource. It serves as a benchmark for standard computer vision tasks, such as object detection and classification, using the ground truth. Simultaneously, it provides a realistic testbed for evaluating annotation aggregation algorithms that must resolve expert disagreements. We provide comprehensive baseline results for both tasks. Our experiments demonstrate the challenges presented by CytoCrowd and establish its value as a resource for developing the next generation of models for medical image analysis.
☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
☆ Temperature Scaling Attack Disrupting Model Confidence in Federated Learning
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.
comment: 20 pages, 20 figures
☆ Trust Regions Sell, But Who's Buying? Overlap Geometry as an Alternative Trust Region for Policy Optimization
Standard trust-region methods constrain policy updates via Kullback-Leibler (KL) divergence. However, KL controls only an average divergence and does not directly prevent rare, large likelihood-ratio excursions that destabilize training--precisely the failure mode that motivates heuristics such as PPO's clipping. We propose overlap geometry as an alternative trust region, constraining distributional overlap via the Bhattacharyya coefficient (closely related to the Hellinger/Renyi-1/2 geometry). This objective penalizes separation in the ratio tails, yielding tighter control over likelihood-ratio excursions without relying on total variation bounds that can be loose in tail regimes. We derive Bhattacharyya-TRPO (BTRPO) and Bhattacharyya-PPO (BPPO), enforcing overlap constraints via square-root ratio updates: BPPO clips the square-root ratio q = sqrt(r), and BTRPO applies a quadratic Hellinger/Bhattacharyya penalty. Empirically, overlap-based updates improve robustness and aggregate performance as measured by RLiable under matched training budgets, suggesting overlap constraints as a practical, principled alternative to KL for stable policy optimization.
comment: Under Review
☆ Infinite-dimensional generative diffusions via Doob's h-transform
This paper introduces a rigorous framework for defining generative diffusion models in infinite dimensions via Doob's h-transform. Rather than relying on time reversal of a noising process, a reference diffusion is forced towards the target distribution by an exponential change of measure. Compared to existing methodology, this approach readily generalises to the infinite-dimensional setting, hence offering greater flexibility in the diffusion model. The construction is derived rigorously under verifiable conditions, and bounds with respect to the target measure are established. We show that the forced process under the changed measure can be approximated by minimising a score-matching objective and validate our method on both synthetic and real data.
☆ Confundo: Learning to Generate Robust Poison for Practical RAG Systems
Retrieval-augmented generation (RAG) is increasingly deployed in real-world applications, where its reference-grounded design makes outputs appear trustworthy. This trust has spurred research on poisoning attacks that craft malicious content, inject it into knowledge sources, and manipulate RAG responses. However, when evaluated in practical RAG systems, existing attacks suffer from severely degraded effectiveness. This gap stems from two overlooked realities: (i) content is often processed before use, which can fragment the poison and weaken its effect, and (ii) users often do not issue the exact queries anticipated during attack design. These factors can lead practitioners to underestimate risks and develop a false sense of security. To better characterize the threat to practical systems, we present Confundo, a learning-to-poison framework that fine-tunes a large language model as a poison generator to achieve high effectiveness, robustness, and stealthiness. Confundo provides a unified framework supporting multiple attack objectives, demonstrated by manipulating factual correctness, inducing biased opinions, and triggering hallucinations. By addressing these overlooked challenges, Confundo consistently outperforms a wide range of purpose-built attacks across datasets and RAG configurations by large margins, even in the presence of defenses. Beyond exposing vulnerabilities, we also present a defensive use case that protects web content from unauthorized incorporation into RAG systems via scraping, with no impact on user experience.
☆ DAVE: Distribution-aware Attribution via ViT Gradient Decomposition
Vision Transformers (ViTs) have become a dominant architecture in computer vision, yet producing stable and high-resolution attribution maps for these models remains challenging. Architectural components such as patch embeddings and attention routing often introduce structured artifacts in pixel-level explanations, causing many existing methods to rely on coarse patch-level attributions. We introduce DAVE \textit{(\underline{D}istribution-aware \underline{A}ttribution via \underline{V}iT Gradient D\underline{E}composition)}, a mathematically grounded attribution method for ViTs based on a structured decomposition of the input gradient. By exploiting architectural properties of ViTs, DAVE isolates locally equivariant and stable components of the effective input--output mapping. It separates these from architecture-induced artifacts and other sources of instability.
comment: work under review. Code will be released upon acceptance
☆ Adaptive-CaRe: Adaptive Causal Regularization for Robust Outcome Prediction
Accurate prediction of outcomes is crucial for clinical decision-making and personalized patient care. Supervised machine learning algorithms, which are commonly used for outcome prediction in the medical domain, optimize for predictive accuracy, which can result in models latching onto spurious correlations instead of robust predictors. Causal structure learning methods on the other hand have the potential to provide robust predictors for the target, but can be too conservative because of algorithmic and data assumptions, resulting in loss of diagnostic precision. Therefore, we propose a novel model-agnostic regularization strategy, Adaptive-CaRe, for generalized outcome prediction in the medical domain. Adaptive-CaRe strikes a balance between both predictive value and causal robustness by incorporating a penalty that is proportional to the difference between the estimated statistical contribution and estimated causal contribution of the input features for model predictions. Our experiments on synthetic data establish the efficacy of the proposed Adaptive-CaRe regularizer in finding robust predictors for the target while maintaining competitive predictive accuracy. With experiments on a standard causal benchmark, we provide a blueprint for navigating the trade-off between predictive accuracy and causal robustness by tweaking the regularization strength, $λ$. Validation using real-world dataset confirms that the results translate to practical, real-domain settings. Therefore, Adaptive-CaRe provides a simple yet effective solution to the long-standing trade-off between predictive accuracy and causal robustness in the medical domain. Future work would involve studying alternate causal structure learning frameworks and complex classification models to provide deeper insights at a larger scale.
☆ The challenge of generating and evolving real-life like synthetic test data without accessing real-world raw data -- a Systematic Review
Background: High-level system testing of applications that use data from e-Government services as input requires test data that is real-life-like but where the privacy of personal information is guaranteed. Applications with such strong requirement include information exchange between countries, medicine, banking, etc. This review aims to synthesize the current state-of-the-practice in this domain. Objectives: The objective of this Systematic Review is to identify existing approaches for creating and evolving synthetic test data without using real-life raw data. Methods: We followed well-known methodologies for conducting systematic literature reviews, including the ones from Kitchenham as well as guidelines for analysing the limitations of our review and its threats to validity. Results: A variety of methods and tools exist for creating privacy-preserving test data. Our search found 1,013 publications in IEEE Xplore, ACM Digital Library, and SCOPUS. We extracted data from 75 of those publications and identified 37 approaches that answer our research question partly. A common prerequisite for using these methods and tools is direct access to real-life data for data anonymization or synthetic test data generation. Nine existing synthetic test data generation approaches were identified that were closest to answering our research question. Nevertheless, further work would be needed to add the ability to evolve synthetic test data to the existing approaches. Conclusions: None of the publications really covered our requirements completely, only partially. Synthetic test data evolution is a field that has not received much attention from researchers but needs to be explored in Digital Government Solutions, especially since new legal regulations are being placed in force in many countries.
comment: 22 pages
☆ The hidden risks of temporal resampling in clinical reinforcement learning
Offline reinforcement learning (ORL) has shown potential for improving decision-making in healthcare. However, contemporary research typically aggregates patient data into fixed time intervals, simplifying their mapping to standard ORL frameworks. The impact of these temporal manipulations on model safety and efficacy remains poorly understood. In this work, using both a gridworld navigation task and the UVA/Padova clinical diabetes simulator, we demonstrate that temporal resampling significantly degrades the performance of offline reinforcement learning algorithms during live deployment. We propose three mechanisms that drive this failure: (i) the generation of counterfactual trajectories, (ii) the distortion of temporal expectations, and (iii) the compounding of generalisation errors. Crucially, we find that standard off-policy evaluation metrics can fail to detect these drops in performance. Our findings reveal a fundamental risk in current healthcare ORL pipelines and emphasise the need for methods that explicitly handle the irregular timing of clinical decision-making.
comment: 12 pages, 4 figures. Currently under submission to npj Digital Medicine
☆ Scaling Speech Tokenizers with Diffusion Autoencoders ICLR 2026
Speech tokenizers are foundational to speech language models, yet existing approaches face two major challenges: (1) balancing trade-offs between encoding semantics for understanding and acoustics for reconstruction, and (2) achieving low bit rates and low token rates. We propose Speech Diffusion Tokenizer (SiTok), a diffusion autoencoder that jointly learns semantic-rich representations through supervised learning and enables high-fidelity audio reconstruction with diffusion. We scale SiTok to 1.6B parameters and train it on 2 million hours of speech. Experiments show that SiTok outperforms strong baselines on understanding, reconstruction and generation tasks, at an extremely low token rate of $12.5$ Hz and a bit-rate of 200 bits-per-second.
comment: ICLR 2026
☆ Sample-Efficient Policy Space Response Oracles with Joint Experience Best Response AAMAS 2026
Multi-agent reinforcement learning (MARL) offers a scalable alternative to exact game-theoretic analysis but suffers from non-stationarity and the need to maintain diverse populations of strategies that capture non-transitive interactions. Policy Space Response Oracles (PSRO) address these issues by iteratively expanding a restricted game with approximate best responses (BRs), yet per-agent BR training makes it prohibitively expensive in many-agent or simulator-expensive settings. We introduce Joint Experience Best Response (JBR), a drop-in modification to PSRO that collects trajectories once under the current meta-strategy profile and reuses this joint dataset to compute BRs for all agents simultaneously. This amortizes environment interaction and improves the sample efficiency of best-response computation. Because JBR converts BR computation into an offline RL problem, we propose three remedies for distribution-shift bias: (i) Conservative JBR with safe policy improvement, (ii) Exploration-Augmented JBR that perturbs data collection and admits theoretical guarantees, and (iii) Hybrid BR that interleaves JBR with periodic independent BR updates. Across benchmark multi-agent environments, Exploration-Augmented JBR achieves the best accuracy-efficiency trade-off, while Hybrid BR attains near-PSRO performance at a fraction of the sample cost. Overall, JBR makes PSRO substantially more practical for large-scale strategic learning while preserving equilibrium robustness.
comment: Accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
☆ DiTS: Multimodal Diffusion Transformers Are Time Series Forecasters
While generative modeling on time series facilitates more capable and flexible probabilistic forecasting, existing generative time series models do not address the multi-dimensional properties of time series data well. The prevalent architecture of Diffusion Transformers (DiT), which relies on simplistic conditioning controls and a single-stream Transformer backbone, tends to underutilize cross-variate dependencies in covariate-aware forecasting. Inspired by Multimodal Diffusion Transformers that integrate textual guidance into video generation, we propose Diffusion Transformers for Time Series (DiTS), a general-purpose architecture that frames endogenous and exogenous variates as distinct modalities. To better capture both inter-variate and intra-variate dependencies, we design a dual-stream Transformer block tailored for time-series data, comprising a Time Attention module for autoregressive modeling along the temporal dimension and a Variate Attention module for cross-variate modeling. Unlike the common approach for images, which flattens 2D token grids into 1D sequences, our design leverages the low-rank property inherent in multivariate dependencies, thereby reducing computational costs. Experiments show that DiTS achieves state-of-the-art performance across benchmarks, regardless of the presence of future exogenous variate observations, demonstrating unique generative forecasting strengths over traditional deterministic deep forecasting models.
☆ Degradation of Feature Space in Continual Learning
Centralized training is the standard paradigm in deep learning, enabling models to learn from a unified dataset in a single location. In such setup, isotropic feature distributions naturally arise as a mean to support well-structured and generalizable representations. In contrast, continual learning operates on streaming and non-stationary data, and trains models incrementally, inherently facing the well-known plasticity-stability dilemma. In such settings, learning dynamics tends to yield increasingly anisotropic feature space. This arises a fundamental question: should isotropy be enforced to achieve a better balance between stability and plasticity, and thereby mitigate catastrophic forgetting? In this paper, we investigate whether promoting feature-space isotropy can enhance representation quality in continual learning. Through experiments using contrastive continual learning techniques on CIFAR-10 and CIFAR-100 data, we find that isotropic regularization fails to improve, and can in fact degrade, model accuracy in continual settings. Our results highlight essential differences in feature geometry between centralized and continual learning, suggesting that isotropy, while beneficial in centralized setups, may not constitute an appropriate inductive bias for non-stationary learning scenarios.
☆ Target noise: A pre-training based neural network initialization for efficient high resolution learning
Weight initialization plays a crucial role in the optimization behavior and convergence efficiency of neural networks. Most existing initialization methods, such as Xavier and Kaiming initializations, rely on random sampling and do not exploit information from the optimization process itself. We propose a simple, yet effective, initialization strategy based on self-supervised pre-training using random noise as the target. Instead of directly training the network from random weights, we first pre-train it to fit random noise, which leads to a structured and non-random parameter configuration. We show that this noise-driven pre-training significantly improves convergence speed in subsequent tasks, without requiring additional data or changes to the network architecture. The proposed method is particularly effective for implicit neural representations (INRs) and Deep Image Prior (DIP)-style networks, which are known to exhibit a strong low-frequency bias during optimization. After noise-based pre-training, the network is able to capture high-frequency components much earlier in training, leading to faster and more stable convergence. Although random noise contains no semantic information, it serves as an effective self-supervised signal (considering its white spectrum nature) for shaping the initialization of neural networks. Overall, this work demonstrates that noise-based pre-training offers a lightweight and general alternative to traditional random initialization, enabling more efficient optimization of deep neural networks.
comment: 11 pages, 12 figures
☆ Inference-Time Rethinking with Latent Thought Vectors for Math Reasoning
Standard chain-of-thought reasoning generates a solution in a single forward pass, committing irrevocably to each token and lacking a mechanism to recover from early errors. We introduce Inference-Time Rethinking, a generative framework that enables iterative self-correction by decoupling declarative latent thought vectors from procedural generation. We factorize reasoning into a continuous latent thought vector (what to reason about) and a decoder that verbalizes the trace conditioned on this vector (how to reason). Beyond serving as a declarative buffer, latent thought vectors compress the reasoning structure into a continuous representation that abstracts away surface-level token variability, making gradient-based optimization over reasoning strategies well-posed. Our prior model maps unstructured noise to a learned manifold of valid reasoning patterns, and at test time we employ a Gibbs-style procedure that alternates between generating a candidate trace and optimizing the latent vector to better explain that trace, effectively navigating the latent manifold to refine the reasoning strategy. Training a 0.2B-parameter model from scratch on GSM8K, our method with 30 rethinking iterations surpasses baselines with 10 to 15 times more parameters, including a 3B counterpart. This result demonstrates that effective mathematical reasoning can emerge from sophisticated inference-time computation rather than solely from massive parameter counts.
☆ Exploring Sparsity and Smoothness of Arbitrary $\ell_p$ Norms in Adversarial Attacks
Adversarial attacks against deep neural networks are commonly constructed under $\ell_p$ norm constraints, most often using $p=1$, $p=2$ or $p=\infty$, and potentially regularized for specific demands such as sparsity or smoothness. These choices are typically made without a systematic investigation of how the norm parameter \( p \) influences the structural and perceptual properties of adversarial perturbations. In this work, we study how the choice of \( p \) affects sparsity and smoothness of adversarial attacks generated under \( \ell_p \) norm constraints for values of $p \in [1,2]$. To enable a quantitative analysis, we adopt two established sparsity measures from the literature and introduce three smoothness measures. In particular, we propose a general framework for deriving smoothness measures based on smoothing operations and additionally introduce a smoothness measure based on first-order Taylor approximations. Using these measures, we conduct a comprehensive empirical evaluation across multiple real-world image datasets and a diverse set of model architectures, including both convolutional and transformer-based networks. We show that the choice of $\ell_1$ or $\ell_2$ is suboptimal in most cases and the optimal $p$ value is dependent on the specific task. In our experiments, using $\ell_p$ norms with $p\in [1.3, 1.5]$ yields the best trade-off between sparse and smooth attacks. These findings highlight the importance of principled norm selection when designing and evaluating adversarial attacks.
☆ Perturbing the Phase: Analyzing Adversarial Robustness of Complex-Valued Neural Networks
Complex-valued neural networks (CVNNs) are rising in popularity for all kinds of applications. To safely use CVNNs in practice, analyzing their robustness against outliers is crucial. One well known technique to understand the behavior of deep neural networks is to investigate their behavior under adversarial attacks, which can be seen as worst case minimal perturbations. We design Phase Attacks, a kind of attack specifically targeting the phase information of complex-valued inputs. Additionally, we derive complex-valued versions of commonly used adversarial attacks. We show that in some scenarios CVNNs are more robust than RVNNs and that both are very susceptible to phase changes with the Phase Attacks decreasing the model performance more, than equally strong regular attacks, which can attack both phase and magnitude.
Transformer-based Parameter Fitting of Models derived from Bloch-McConnell Equations for CEST MRI Analysis
Chemical exchange saturation transfer (CEST) MRI is a non-invasive imaging modality for detecting metabolites. It offers higher resolution and sensitivity compared to conventional magnetic resonance spectroscopy (MRS). However, quantification of CEST data is challenging because the measured signal results from a complex interplay of many physiological variables. Here, we introduce a transformer-based neural network to fit parameters such as metabolite concentrations, exchange and relaxation rates of a physical model derived from Bloch-McConnell equations to in-vitro CEST spectra. We show that our self-supervised trained neural network clearly outperforms the solution of classical gradient-based solver.
☆ Learning to Allocate Resources with Censored Feedback
We study the online resource allocation problem in which at each round, a budget $B$ must be allocated across $K$ arms under censored feedback. An arm yields a reward if and only if two conditions are satisfied: (i) the arm is activated according to an arm-specific Bernoulli random variable with unknown parameter, and (ii) the allocated budget exceeds a random threshold drawn from a parametric distribution with unknown parameter. Over $T$ rounds, the learner must jointly estimate the unknown parameters and allocate the budget so as to maximize cumulative reward facing the exploration--exploitation trade-off. We prove an information-theoretic regret lower bound $Ω(T^{1/3})$, demonstrating the intrinsic difficulty of the problem. We then propose RA-UCB, an optimistic algorithm that leverages non-trivial parameter estimation and confidence bounds. When the budget $B$ is known at the beginning of each round, RA-UCB achieves a regret of order $\widetilde{\mathcal{O}}(\sqrt{T})$, and even $\mathcal{O}(\mathrm{poly}\text{-}\log T)$ under stronger assumptions. As for unknown, round dependent budget, we introduce MG-UCB, which allows within-round switching and infinitesimal allocations, and matches the regret guarantees of RA-UCB. We then validate our theoretical results through experiments on real-world datasets.
☆ Which Graph Shift Operator? A Spectral Answer to an Empirical Question
Graph Neural Networks (GNNs) have established themselves as the leading models for learning on graph-structured data, generally categorized into spatial and spectral approaches. Central to these architectures is the Graph Shift Operator (GSO), a matrix representation of the graph structure used to filter node signals. However, selecting the optimal GSO, whether fixed or learnable, remains largely empirical. In this paper, we introduce a novel alignment gain metric that quantifies the geometric distortion between the input signal and label subspaces. Crucially, our theoretical analysis connects this alignment directly to generalization bounds via a spectral proxy for the Lipschitz constant. This yields a principled, computation-efficient criterion to rank and select the optimal GSO for any prediction task prior to training, eliminating the need for extensive search.
☆ Reinforcement Learning-Based Dynamic Management of Structured Parallel Farm Skeletons on Serverless Platforms
We present a framework for dynamic management of structured parallel processing skeletons on serverless platforms. Our goal is to bring HPC-like performance and resilience to serverless and continuum environments while preserving the programmability benefits of skeletons. As a first step, we focus on the well known Farm pattern and its implementation on the open-source OpenFaaS platform, treating autoscaling of the worker pool as a QoS-aware resource management problem. The framework couples a reusable farm template with a Gymnasium-based monitoring and control layer that exposes queue, timing, and QoS metrics to both reactive and learning-based controllers. We investigate the effectiveness of AI-driven dynamic scaling for managing the farm's degree of parallelism via the scalability of serverless functions on OpenFaaS. In particular, we discuss the autoscaling model and its training, and evaluate two reinforcement learning (RL) policies against a baseline of reactive management derived from a simple farm performance model. Our results show that AI-based management can better accommodate platform-specific limitations than purely model-based performance steering, improving QoS while maintaining efficient resource usage and stable scaling behaviour.
comment: Accepted at AHPC3 workshop, PDP 2026
☆ Evolving Ranking Functions for Canonical Blow-Ups in Positive Characteristic
Resolution of singularities in positive characteristic remains a long-standing open problem in algebraic geometry. In characteristic zero, the problem was solved by Hironaka in 1964, work for which he was awarded the Fields Medal. Modern proofs proceed by constructing suitable ranking functions, that is, invariants shown to strictly decrease along canonical sequences of blow-ups, ensuring termination. In positive characteristic, however, no such general ranking function is known: Frobenius-specific pathologies, such as the kangaroo phenomenon, can cause classical characteristic-zero invariants to plateau or even temporarily increase, presenting a fundamental obstruction to existing approaches. In this paper we report a sequence of experiments using the evolutionary search model AlphaEvolve, designed to discover candidate ranking functions for a toy canonical blow-up process. Our test benchmarks consist of carefully selected hypersurface singularities in dimension $4$ and characteristic $p=3$, with monic purely inseparable leading term, a regime in which naive order-based invariants often fail. After iteratively refining the experimental design, we obtained a discretized five-component lexicographic ranking function satisfying a bounded-delay descent criterion with zero violations across the benchmark. These experiments in turn motivated our main results: the conjectural delayed ranking functions in characteristic $3$ formulated in two conjectures.
comment: 41 pages
☆ Fine-Grained Model Merging via Modular Expert Recombination
Model merging constructs versatile models by integrating task-specific models without requiring labeled data or expensive joint retraining. Although recent methods improve adaptability to heterogeneous tasks by generating customized merged models for each instance, they face two critical limitations. First, the instance-specific merged models lack reusability, restricting the exploitation of high-quality merging configurations and efficient batch inference. Second, these methods treat each task-specific model as a monolithic whole, overlooking the diverse mergeability of homologous components such as attention and multilayer perceptron layers, and the differing merging sensitivities across components. To address these limitations, we propose MERGE (\underline{M}odular \underline{E}xpert \underline{R}ecombination for fine-\underline{G}rained m\underline{E}rging), a method that enables component-wise model merging and input-aware, on-demand module recombination at inference. MERGE formulates component-wise merging as a bi-objective optimization problem that balances cross-task performance and storage efficiency, and develops a surrogate-assisted evolutionary algorithm to efficiently identify Pareto-optimal merging configurations. These high-quality configurations underpin a reusable modular expert library, from which a lightweight routing network dynamically activates and recombines modular experts to assemble input-specific models and enable efficient inference under storage constraints. Extensive experiments across various model scales, task types, and fine-tuning strategies demonstrate that MERGE consistently outperforms strong baselines and generalizes effectively.
☆ Dynamics-Aligned Shared Hypernetworks for Zero-Shot Actuator Inversion
Zero-shot generalization in contextual reinforcement learning remains a core challenge, particularly when the context is latent and must be inferred from data. A canonical failure mode is actuator inversion, where identical actions produce opposite physical effects under a latent binary context. We propose DMA*-SH, a framework where a single hypernetwork, trained solely via dynamics prediction, generates a small set of adapter weights shared across the dynamics model, policy, and action-value function. This shared modulation imparts an inductive bias matched to actuator inversion, while input/output normalization and random input masking stabilize context inference, promoting directionally concentrated representations. We provide theoretical support via an expressivity separation result for hypernetwork modulation, and a variance decomposition with policy-gradient variance bounds that formalize how within-mode compression improves learning under actuator inversion. For evaluation, we introduce the Actuator Inversion Benchmark (AIB), a suite of environments designed to isolate discontinuous context-to-dynamics interactions. On AIB's held-out actuator-inversion tasks, DMA*-SH achieves zero-shot generalization, outperforming domain randomization by 111.8% and surpassing a standard context-aware baseline by 16.1%.
☆ Refining the Information Bottleneck via Adversarial Information Separation
Generalizing from limited data is particularly critical for models in domains such as material science, where task-relevant features in experimental datasets are often heavily confounded by measurement noise and experimental artifacts. Standard regularization techniques fail to precisely separate meaningful features from noise, while existing adversarial adaptation methods are limited by their reliance on explicit separation labels. To address this challenge, we propose the Adversarial Information Separation Framework (AdverISF), which isolates task-relevant features from noise without requiring explicit supervision. AdverISF introduces a self-supervised adversarial mechanism to enforce statistical independence between task-relevant features and noise representations. It further employs a multi-layer separation architecture that progressively recycles noise information across feature hierarchies to recover features inadvertently discarded as noise, thereby enabling finer-grained feature extraction. Extensive experiments demonstrate that AdverISF outperforms state-of-the-art methods in data-scarce scenarios. In addition, evaluations on real-world material design tasks show that it achieves superior generalization performance.
☆ NECromancer: Breathing Life into Skeletons via BVH Animation
Motion tokenization is a key component of generalizable motion models, yet most existing approaches are restricted to species-specific skeletons, limiting their applicability across diverse morphologies. We propose NECromancer (NEC), a universal motion tokenizer that operates directly on arbitrary BVH skeletons. NEC consists of three components: (1) an Ontology-aware Skeletal Graph Encoder (OwO) that encodes structural priors from BVH files, including joint semantics, rest-pose offsets, and skeletal topology, into skeletal embeddings; (2) a Topology-Agnostic Tokenizer (TAT) that compresses motion sequences into a universal, topology-invariant discrete representation; and (3) the Unified BVH Universe (UvU), a large-scale dataset aggregating BVH motions across heterogeneous skeletons. Experiments show that NEC achieves high-fidelity reconstruction under substantial compression and effectively disentangles motion from skeletal structure. The resulting token space supports cross-species motion transfer, composition, denoising, generation with token-based models, and text-motion retrieval, establishing a unified framework for motion analysis and synthesis across diverse morphologies. Demo page: https://animotionlab.github.io/NECromancer/
☆ Operationalizing Stein's Method for Online Linear Optimization: CLT-Based Optimal Tradeoffs
Adversarial online linear optimization (OLO) is essentially about making performance tradeoffs with respect to the unknown difficulty of the adversary. In the setting of one-dimensional fixed-time OLO on a bounded domain, it has been observed since Cover (1966) that achievable tradeoffs are governed by probabilistic inequalities, and these descriptive results can be converted into algorithms via dynamic programming, which, however, is not computationally efficient. We address this limitation by showing that Stein's method, a classical framework underlying the proofs of probabilistic limit theorems, can be operationalized as computationally efficient OLO algorithms. The associated regret and total loss upper bounds are "additively sharp", meaning that they surpass the conventional big-O optimality and match normal-approximation-based lower bounds by additive lower order terms. Our construction is inspired by the remarkably clean proof of a Wasserstein martingale central limit theorem (CLT) due to Röllin (2018). Several concrete benefits can be obtained from this general technique. First, with the same computational complexity, the proposed algorithm improves upon the total loss upper bounds of online gradient descent (OGD) and multiplicative weight update (MWU). Second, our algorithm can realize a continuum of optimal two-point tradeoffs between the total loss and the maximum regret over comparators, improving upon prior works in parameter-free online learning. Third, by allowing the adversary to randomize on an unbounded support, we achieve sharp in-expectation performance guarantees for OLO with noisy feedback.
☆ Live Knowledge Tracing: Real-Time Adaptation using Tabular Foundation Models
Deep knowledge tracing models have achieved significant breakthroughs in modeling student learning trajectories. However, these architectures require substantial training time and are prone to overfitting on datasets with short sequences. In this paper, we explore a new paradigm for knowledge tracing by leveraging tabular foundation models (TFMs). Unlike traditional methods that require offline training on a fixed training set, our approach performs real-time ''live'' knowledge tracing in an online way. The core of our method lies in a two-way attention mechanism: while attention knowledge tracing models only attend across earlier time steps, TFMs simultaneously attend across both time steps and interactions of other students in the training set. They align testing sequences with relevant training sequences at inference time, therefore skipping the training step entirely. We demonstrate, using several datasets of increasing size, that our method achieves competitive predictive performance with up to 273x speedups, in a setting where more student interactions are observed over time.
☆ AlertBERT: A noise-robust alert grouping framework for simultaneous cyber attacks
Automated detection of cyber attacks is a critical capability to counteract the growing volume and sophistication of cyber attacks. However, the high numbers of security alerts issued by intrusion detection systems lead to alert fatigue among analysts working in security operations centres (SOC), which in turn causes slow reaction time and incorrect decision making. Alert grouping, which refers to clustering of security alerts according to their underlying causes, can significantly reduce the number of distinct items analysts have to consider. Unfortunately, conventional time-based alert grouping solutions are unsuitable for large scale computer networks characterised by high levels of false positive alerts and simultaneously occurring attacks. To address these limitations, we propose AlertBERT, a self-supervised framework designed to group alerts from isolated or concurrent attacks in noisy environments. Thereby, our open-source implementation of AlertBERT leverages masked-language-models and density-based clustering to support both real-time or forensic operation. To evaluate our framework, we further introduce a novel data augmentation method that enables flexible control over noise levels and simulates concurrent attack occurrences. Based on the data sets generated through this method, we demonstrate that AlertBERT consistently outperforms conventional time-based grouping techniques, achieving superior accuracy in identifying correct alert groups.
☆ Topography scanning as a part of process monitoring in power cable insulation process
We present a novel topography scanning system developed to XLPE cable core monitoring. Modern measurement technology is utilized together with embedded high-performance computing to build a complete and detailed 3D surface map of the insulated core. Cross sectional and lengthwise geometry errors are studied, and melt homogeneity is identified as one major factor for these errors. A surface defect detection system has been developed utilizing deep learning methods. Our results show that convolutional neural networks are well suited for real time analysis of surface measurement data enabling reliable detection of surface defects.
comment: 6 pages, 14 figures
☆ Evolutionary Generation of Multi-Agent Systems
Large language model (LLM)-based multi-agent systems (MAS) show strong promise for complex reasoning, planning, and tool-augmented tasks, but designing effective MAS architectures remains labor-intensive, brittle, and hard to generalize. Existing automatic MAS generation methods either rely on code generation, which often leads to executability and robustness failures, or impose rigid architectural templates that limit expressiveness and adaptability. We propose Evolutionary Generation of Multi-Agent Systems (EvoMAS), which formulates MAS generation as structured configuration generation. EvoMAS performs evolutionary generation in configuration space. Specifically, EvoMAS selects initial configurations from a pool, applies feedback-conditioned mutation and crossover guided by execution traces, and iteratively refines both the candidate pool and an experience memory. We evaluate EvoMAS on diverse benchmarks, including BBEH, SWE-Bench, and WorkBench, covering reasoning, software engineering, and tool-use tasks. EvoMAS consistently improves task performance over both human-designed MAS and prior automatic MAS generation methods, while producing generated systems with higher executability and runtime robustness. EvoMAS outperforms the agent evolution method EvoAgent by +10.5 points on BBEH reasoning and +7.1 points on WorkBench. With Claude-4.5-Sonnet, EvoMAS also reaches 79.1% on SWE-Bench-Verified, matching the top of the leaderboard.
comment: 26 pages, 15 figures
☆ Forest canopy height estimation from satellite RGB imagery using large-scale airborne LiDAR-derived training data and monocular depth estimation
Large-scale, high-resolution forest canopy height mapping plays a crucial role in understanding regional and global carbon and water cycles. Spaceborne LiDAR missions, including the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI), provide global observations of forest structure but are spatially sparse and subject to inherent uncertainties. In contrast, near-surface LiDAR platforms, such as airborne and unmanned aerial vehicle (UAV) LiDAR systems, offer much finer measurements of forest canopy structure, and a growing number of countries have made these datasets openly available. In this study, a state-of-the-art monocular depth estimation model, Depth Anything V2, was trained using approximately 16,000 km2 of canopy height models (CHMs) derived from publicly available airborne LiDAR point clouds and related products across multiple countries, together with 3 m resolution PlanetScope and airborne RGB imagery. The trained model, referred to as Depth2CHM, enables the estimation of spatially continuous CHMs directly from PlanetScope RGB imagery. Independent validation was conducted at sites in China (approximately 1 km2) and the United States (approximately 116 km2). The results showed that Depth2CHM could accurately estimate canopy height, with biases of 0.59 m and 0.41 m and root mean square errors (RMSEs) of 2.54 m and 5.75 m for these two sites, respectively. Compared with an existing global meter-resolution CHM product, the mean absolute error is reduced by approximately 1.5 m and the RMSE by approximately 2 m. These results demonstrated that monocular depth estimation networks trained with large-scale airborne LiDAR-derived canopy height data provide a promising and scalable pathway for high-resolution, spatially continuous forest canopy height estimation from satellite RGB imagery.
☆ Can Microcanonical Langevin Dynamics Leverage Mini-Batch Gradient Noise?
Scaling inference methods such as Markov chain Monte Carlo to high-dimensional models remains a central challenge in Bayesian deep learning. A promising recent proposal, microcanonical Langevin Monte Carlo, has shown state-of-the-art performance across a wide range of problems. However, its reliance on full-dataset gradients makes it prohibitively expensive for large-scale problems. This paper addresses a fundamental question: Can microcanonical dynamics effectively leverage mini-batch gradient noise? We provide the first systematic study of this problem, establishing a novel continuous-time theoretical analysis of stochastic-gradient microcanonical dynamics. We reveal two critical failure modes: a theoretically derived bias due to anisotropic gradient noise and numerical instabilities in complex high-dimensional posteriors. To tackle these issues, we propose a principled gradient noise preconditioning scheme shown to significantly reduce this bias and develop a novel, energy-variance-based adaptive tuner that automates step size selection and dynamically informs numerical guardrails. The resulting algorithm is a robust and scalable microcanonical Monte Carlo sampler that achieves state-of-the-art performance on challenging high-dimensional inference tasks like Bayesian neural networks. Combined with recent ensemble techniques, our work unlocks a new class of stochastic microcanonical Langevin ensemble (SMILE) samplers for large-scale Bayesian inference.
☆ Adaptive Uncertainty-Aware Tree Search for Robust Reasoning
Inference-time reasoning scaling has significantly advanced the capabilities of Large Language Models (LLMs) in complex problem-solving. A prevalent approach involves external search guided by Process Reward Models (PRMs). However, a fundamental limitation of this framework is the epistemic uncertainty of PRMs when evaluating reasoning paths that deviate from their training distribution. In this work, we conduct a systematic analysis of this challenge. We first provide empirical evidence that PRMs exhibit high uncertainty and unreliable scoring on out-of-distribution (OOD) samples. We then establish a theoretical framework proving that while standard search incurs linear regret accumulation, an uncertainty-aware strategy can achieve sublinear regret. Motivated by these findings, we propose Uncertainty-Aware Tree Search (UATS), a unified method that estimates uncertainty via Monte Carlo Dropout and dynamically allocates compute budget using a reinforcement learning-based controller. Extensive experiments demonstrate that our approach effectively mitigates the impact of OOD errors.
☆ Prism: Spectral Parameter Sharing for Multi-Agent Reinforcement Learning
Parameter sharing is a key strategy in multi-agent reinforcement learning (MARL) for improving scalability, yet conventional fully shared architectures often collapse into homogeneous behaviors. Recent methods introduce diversity through clustering, pruning, or masking, but typically compromise resource efficiency. We propose Prism, a parameter sharing framework that induces inter-agent diversity by representing shared networks in the spectral domain via singular value decomposition (SVD). All agents share the singular vector directions while learning distinct spectral masks on singular values. This mechanism encourages inter-agent diversity and preserves scalability. Extensive experiments on both homogeneous (LBF, SMACv2) and heterogeneous (MaMuJoCo) benchmarks show that Prism achieves competitive performance with superior resource efficiency.
☆ Towards Generalizable Reasoning: Group Causal Counterfactual Policy Optimization for LLM Reasoning
Large language models (LLMs) excel at complex tasks with advances in reasoning capabilities. However, existing reward mechanisms remain tightly coupled to final correctness and pay little attention to the underlying reasoning process: trajectories with sound reasoning but wrong answers receive low credit, while lucky guesses with flawed logic may be highly rewarded, affecting reasoning generalization. From a causal perspective, we interpret multi-candidate reasoning for a fixed question as a family of counterfactual experiments with theoretical supports. Building on this, we propose Group Causal Counterfactual Policy Optimization to explicitly train LLMs to learn generalizable reasoning patterns. It proposes an episodic causal counterfactual reward that jointly captures (i) robustness, encouraging the answer distribution induced by a reasoning step to remain stable under counterfactual perturbations; and (ii) effectiveness, enforcing sufficient variability so that the learned reasoning strategy can transfer across questions. We then construct token-level advantages from this reward and optimize the policy, encouraging LLMs to favor reasoning patterns that are process-valid and counterfactually robust. Extensive experiments on diverse benchmarks demonstrate its advantages.
☆ Revisiting the Shape Convention of Transformer Language Models
Dense Transformer language models have largely adhered to one consistent architectural shape: each layer consists of an attention module followed by a feed-forward network (FFN) with a narrow-wide-narrow MLP, allocating most parameters to the MLP at expansion ratios between 2 and 4. Motivated by recent results that residual wide-narrow-wide (hourglass) MLPs offer superior function approximation capabilities, we revisit the long-standing MLP shape convention in Transformer, challenging the necessity of the narrow-wide-narrow design. To study this, we develop a Transformer variant that replaces the conventional FFN with a deeper hourglass-shaped FFN, comprising a stack of hourglass sub-MLPs connected by residual pathways. We posit that a deeper but lighter hourglass FFN can serve as a competitive alternative to the conventional FFN, and that parameters saved by using a lighter hourglass FFN can be more effectively utilized, such as by enlarging model hidden dimensions under fixed budgets. We confirm these through empirical validations across model scales: hourglass FFNs outperform conventional FFNs up to 400M and achieve comparable performance at larger scales to 1B parameters; hourglass FFN variants with reduced FFN and increased attention parameters show consistent improvements over conventional configurations at matched budgets. Together, these findings shed new light on recent work and prompt a rethinking of the narrow-wide-narrow MLP convention and the balance between attention and FFN towards efficient and expressive modern language models.
☆ Diffusion-State Policy Optimization for Masked Diffusion Language Models
Masked diffusion language models generate by iteratively filling masked tokens over multiple denoising steps, so learning only from a terminal reward on the final completion yields coarse credit assignment over intermediate decisions. We propose DiSPO (Diffusion-State Policy Optimization), a plug-in credit-assignment layer that directly optimizes intermediate filling decisions. At selected intermediate masked states, DiSPO branches by resampling fillings for the currently masked positions from rollout-cached logits, scores the resulting completions, and updates only the newly filled tokens -- without additional multi-step diffusion rollouts. We formalize a fixed-state objective for branched completions and derive a policy-gradient estimator that can be combined with terminal-feedback policy optimization using the same rollouts. On LLaDA-8B-Instruct, DiSPO consistently improves over the terminal-feedback diffu-GRPO baseline on math and planning benchmarks under matched rollout compute and optimizer steps. Our code will be available at https://daioba.github.io/dispo .
☆ Achieving Better Local Regret Bound for Online Non-Convex Bilevel Optimization
Online bilevel optimization (OBO) has emerged as a powerful framework for many machine learning problems. Prior works have developed several algorithms that minimize the standard bilevel local regret or the window-averaged bilevel local regret of the OBO problem, but the optimality of existing regret bounds remains unclear. In this work, we establish optimal regret bounds for both settings. For standard bilevel local regret, we propose an algorithm that achieves the optimal regret $Ω(1+V_T)$ with at most $O(T\log T)$ total inner-level gradient evaluations. We further develop a fully single-loop algorithm whose regret bound includes an additional gradient-variation terms. For the window-averaged bilevel local regret, we design an algorithm that captures sublinear environmental variation through a window-based analysis and achieves the optimal regret $Ω(T/W^2)$. Experiments validate our theoretical findings and demonstrate the practical effectiveness of the proposed methods.
☆ The Window Dilemma: Why Concept Drift Detection is Ill-Posed
Non-stationarity of an underlying data generating process that leads to distributional changes over time is a key characteristic of Data Streams. This phenomenon, commonly referred to as Concept Drift, has been intensively studied, and Concept Drift Detectors have been established as a class of methods for detecting such changes (drifts). For the most part, Drift Detectors compare regions (windows) of the data stream and detect drift if those windows are sufficiently dissimilar. In this work, we introduce the Window Dilemma, an observation that perceived drift is a product of windowing and not necessarily the underlying data generating process. Additionally, we highlight that drift detection is ill-posed, primarily because verification of drift events are implausible in practice. We demonstrate these contributions first by an illustrative example, followed by empirical comparisons of drift detectors against a variety of alternative adaptation strategies. Our main finding is that traditional batch learning techniques often perform better than their drift-aware counterparts further bringing into question the purpose of detectors in Stream Classification.
comment: 12 pages, 1 Figure, 5 Tables. Accepted to the 24th International Symposium on Intelligent Data Analysis (IDA) (2026)
☆ On the Plasticity and Stability for Post-Training Large Language Models
Training stability remains a critical bottleneck for Group Relative Policy Optimization (GRPO), often manifesting as a trade-off between reasoning plasticity and general capability retention. We identify a root cause as the geometric conflict between plasticity and stability gradients, which leads to destructive interference. Crucially, we argue that deterministic projection methods are suboptimal for GRPO as they overlook the intrinsic stochasticity of group-based gradient estimates. To address this, we propose Probabilistic Conflict Resolution (PCR), a Bayesian framework that models gradients as random variables. PCR dynamically arbitrates conflicts via an uncertainty-aware ``soft projection'' mechanism, optimizing the signal-to-noise ratio. Extensive experiments demonstrate that PCR significantly smooths the training trajectory and achieves superior performance in various reasoning tasks.
☆ BrokenBind: Universal Modality Exploration beyond Dataset Boundaries
Multi-modal learning combines various modalities to provide a comprehensive understanding of real-world problems. A common strategy is to directly bind different modalities together in a specific joint embedding space. However, the capability of existing methods is restricted within the modalities presented in the given dataset, thus they are biased when generalizing to unpresented modalities in downstream tasks. As a result, due to such inflexibility, the viability of previous methods is seriously hindered by the cost of acquiring multi-modal datasets. In this paper, we introduce BrokenBind, which focuses on binding modalities that are presented from different datasets. To achieve this, BrokenBind simultaneously leverages multiple datasets containing the modalities of interest and one shared modality. Though the two datasets do not correspond to each other due to distribution mismatch, we can capture their relationship to generate pseudo embeddings to fill in the missing modalities of interest, enabling flexible and generalized multi-modal learning. Under our framework, any two modalities can be bound together, free from the dataset limitation, to achieve universal modality exploration. Further, to reveal the capability of our method, we study intensified scenarios where more than two datasets are needed for modality binding and show the effectiveness of BrokenBind in low-data regimes. Through extensive evaluation, we carefully justify the superiority of BrokenBind compared to well-known multi-modal baseline methods.
comment: 17 pages, 8 figures, and 10 tables
☆ Principle-Evolvable Scientific Discovery via Uncertainty Minimization
Large Language Model (LLM)-based scientific agents have accelerated scientific discovery, yet they often suffer from significant inefficiencies due to adherence to fixed initial priors. Existing approaches predominantly operate within a static hypothesis space, which restricts the discovery of novel phenomena, resulting in computational waste when baseline theories fail. To address this, we propose shifting the focus from searching hypotheses to evolving the underlying scientific principles. We present PiEvo, a principle-evolvable framework that treats scientific discovery as Bayesian optimization over an expanding principle space. By integrating Information-Directed Hypothesis Selection via Gaussian Process and an anomaly-driven augmentation mechanism, PiEvo enables agents to autonomously refine their theoretical worldview. Evaluation across four benchmarks demonstrates that PiEvo (1) achieves an average solution quality of up to 90.81%~93.15%, representing a 29.7%~31.1% improvement over the state-of-the-art, (2) attains an 83.3% speedup in convergence step via significantly reduced sample complexity by optimizing the compact principle space, and (3) maintains robust performance across diverse scientific domains and LLM backbones.
☆ CORE: Comprehensive Ontological Relation Evaluation for Large Language Models
Large Language Models (LLMs) perform well on many reasoning benchmarks, yet existing evaluations rarely assess their ability to distinguish between meaningful semantic relations and genuine unrelatedness. We introduce CORE (Comprehensive Ontological Relation Evaluation), a dataset of 225K multiple-choice questions spanning 74 disciplines, together with a general-domain open-source benchmark of 203 rigorously validated questions (Cohen's Kappa = 1.0) covering 24 semantic relation types with equal representation of unrelated pairs. A human baseline from 1,000+ participants achieves 92.6% accuracy (95.1% on unrelated pairs). In contrast, 29 state-of-the-art LLMs achieve 48.25-70.9% overall accuracy, with near-ceiling performance on related pairs (86.5-100%) but severe degradation on unrelated pairs (0-41.35%), despite assigning similar confidence (92-94%). Expected Calibration Error increases 2-4x on unrelated pairs, and a mean semantic collapse rate of 37.6% indicates systematic generation of spurious relations. On the CORE 225K MCQs dataset, accuracy further drops to approximately 2%, highlighting substantial challenges in domain-specific semantic reasoning. We identify unrelatedness reasoning as a critical, under-evaluated frontier for LLM evaluation and safety.
☆ Is Gradient Ascent Really Necessary? Memorize to Forget for Machine Unlearning
For ethical and safe AI, machine unlearning rises as a critical topic aiming to protect sensitive, private, and copyrighted knowledge from misuse. To achieve this goal, it is common to conduct gradient ascent (GA) to reverse the training on undesired data. However, such a reversal is prone to catastrophic collapse, which leads to serious performance degradation in general tasks. As a solution, we propose model extrapolation as an alternative to GA, which reaches the counterpart direction in the hypothesis space from one model given another reference model. Therefore, we leverage the original model as the reference, further train it to memorize undesired data while keeping prediction consistency on the rest retained data, to obtain a memorization model. Counterfactual as it might sound, a forget model can be obtained via extrapolation from the memorization model to the reference model. Hence, we avoid directly acquiring the forget model using GA, but proceed with gradient descent for the memorization model, which successfully stabilizes the machine unlearning process. Our model extrapolation is simple and efficient to implement, and it can also effectively converge throughout training to achieve improved unlearning performance.
☆ Reclaiming First Principles: A Differentiable Framework for Conceptual Hydrologic Models
Conceptual hydrologic models remain the cornerstone of rainfall-runoff modeling, yet their calibration is often slow and numerically fragile. Most gradient-based parameter estimation methods rely on finite-difference approximations or automatic differentiation frameworks (e.g., JAX, PyTorch and TensorFlow), which are computationally demanding and introduce truncation errors, solver instabilities, and substantial overhead. These limitations are particularly acute for the ODE systems of conceptual watershed models. Here we introduce a fully analytic and computationally efficient framework for differentiable hydrologic modeling based on exact parameter sensitivities. By augmenting the governing ODE system with sensitivity equations, we jointly evolve the model states and the Jacobian matrix with respect to all parameters. This Jacobian then provides fully analytic gradient vectors for any differentiable loss function. These include classical objective functions such as the sum of absolute and squared residuals, widely used hydrologic performance metrics such as the Nash-Sutcliffe and Kling-Gupta efficiencies, robust loss functions that down-weight extreme events, and hydrograph-based functionals such as flow-duration and recession curves. The analytic sensitivities eliminate the step-size dependence and noise inherent to numerical differentiation, while avoiding the instability of adjoint methods and the overhead of modern machine-learning autodiff toolchains. The resulting gradients are deterministic, physically interpretable, and straightforward to embed in gradient-based optimizers. Overall, this work enables rapid, stable, and transparent gradient-based calibration of conceptual hydrologic models, unlocking the full potential of differentiable modeling without reliance on external, opaque, or CPU-intensive automatic-differentiation libraries.
comment: 85 pages, 14 figures
☆ Beyond Code Contributions: How Network Position, Temporal Bursts, and Code Review Activities Shape Contributor Influence in Large-Scale Open Source Ecosystems
Open source software (OSS) projects rely on complex networks of contributors whose interactions drive innovation and sustainability. This study presents a comprehensive analysis of OSS contributor networks using advanced graph neural networks and temporal network analysis on data spanning 25 years from the Cloud Native Computing Foundation ecosystem, encompassing sandbox, incubating, and graduated projects. Our analysis of thousands of contributors across hundreds of repositories reveals that OSS networks exhibit strong power-law distributions in influence, with the top 1\% of contributors controlling a substantial portion of network influence. Using GPU-accelerated PageRank, betweenness centrality, and custom LSTM models, we identify five distinct contributor roles: Core, Bridge, Connector, Regular, and Peripheral, each with unique network positions and structural importance. Statistical analysis reveals significant correlations between specific action types (commits, pull requests, issues) and contributor influence, with multiple regression models explaining substantial variance in influence metrics. Temporal analysis shows that network density, clustering coefficients, and modularity exhibit statistically significant temporal trends, with distinct regime changes coinciding with major project milestones. Structural integrity simulations show that Bridge contributors, despite representing a small fraction of the network, have a disproportionate impact on network cohesion when removed. Our findings provide empirical evidence for strategic contributor retention policies and offer actionable insights into community health metrics.
☆ Adaptive Protein Tokenization
Tokenization is a promising path to multi-modal models capable of jointly understanding protein sequences, structure, and function. Existing protein structure tokenizers create tokens by pooling information from local neighborhoods, an approach that limits their performance on generative and representation tasks. In this work, we present a method for global tokenization of protein structures in which successive tokens contribute increasing levels of detail to a global representation. This change resolves several issues with generative models based on local protein tokenization: it mitigates error accumulation, provides embeddings without sequence-reduction operations, and allows task-specific adaptation of a tokenized sequence's information content. We validate our method on reconstruction, generative, and representation tasks and demonstrate that it matches or outperforms existing models based on local protein structure tokenizers. We show how adaptive tokens enable inference criteria based on information content, which boosts designability. We validate representations generated from our tokenizer on CATH classification tasks and demonstrate that non-linear probing on our tokenized sequences outperforms equivalent probing on representations from other tokenizers. Finally, we demonstrate how our method supports zero-shot protein shrinking and affinity maturation.
☆ Stopping Computation for Converged Tokens in Masked Diffusion-LM Decoding ICLR 2026
Masked Diffusion Language Models generate sequences via iterative sampling that progressively unmasks tokens. However, they still recompute the attention and feed-forward blocks for every token position at every step -- even when many unmasked tokens are essentially fixed, resulting in substantial waste in compute. We propose SureLock: when the posterior at an unmasked position has stabilized across steps (our sure condition), we lock that position -- thereafter skipping its query projection and feed-forward sublayers -- while caching its attention keys and values so other positions can continue to attend to it. This reduces the dominant per-iteration computational cost from $O(N^2d)$ to $O(MNd)$ where $N$ is the sequence length, $M$ is the number of unlocked token positions, and $d$ is the model dimension. In practice, $M$ decreases as the iteration progresses, yielding substantial savings. On LLaDA-8B, SureLock reduces algorithmic FLOPs by 30--50% relative to the same sampler without locking, while maintaining comparable generation quality. We also provide a theoretical analysis to justify the design rationale of SureLock: monitoring only the local KL at the lock step suffices to bound the deviation in final token probabilities. Our code will be available at https://daioba.github.io/surelock .
comment: Accepted at ICLR 2026
☆ EEG Emotion Classification Using an Enhanced Transformer-CNN-BiLSTM Architecture with Dual Attention Mechanisms
Electroencephalography (EEG)-based emotion recognition plays a critical role in affective computing and emerging decision-support systems, yet remains challenging due to high-dimensional, noisy, and subject-dependent signals. This study investigates whether hybrid deep learning architectures that integrate convolutional, recurrent, and attention-based components can improve emotion classification performance and robustness in EEG data. We propose an enhanced hybrid model that combines convolutional feature extraction, bidirectional temporal modeling, and self-attention mechanisms with regularization strategies to mitigate overfitting. Experiments conducted on a publicly available EEG dataset spanning three emotional states (neutral, positive, and negative) demonstrate that the proposed approach achieves state-of-the-art classification performance, significantly outperforming classical machine learning and neural baselines. Statistical tests confirm the robustness of these performance gains under cross-validation. Feature-level analyses further reveal that covariance-based EEG features contribute most strongly to emotion discrimination, highlighting the importance of inter-channel relationships in affective modeling. These findings suggest that carefully designed hybrid architectures can effectively balance predictive accuracy, robustness, and interpretability in EEG-based emotion recognition, with implications for applied affective computing and human-centered intelligent systems.
☆ Near-Optimal Regret for Distributed Adversarial Bandits: A Black-Box Approach
We study distributed adversarial bandits, where $N$ agents cooperate to minimize the global average loss while observing only their own local losses. We show that the minimax regret for this problem is $\tildeΘ(\sqrt{(ρ^{-1/2}+K/N)T})$, where $T$ is the horizon, $K$ is the number of actions, and $ρ$ is the spectral gap of the communication matrix. Our algorithm, based on a novel black-box reduction to bandits with delayed feedback, requires agents to communicate only through gossip. It achieves an upper bound that significantly improves over the previous best bound $\tilde{O}(ρ^{-1/3}(KT)^{2/3})$ of Yi and Vojnovic (2023). We complement this result with a matching lower bound, showing that the problem's difficulty decomposes into a communication cost $ρ^{-1/4}\sqrt{T}$ and a bandit cost $\sqrt{KT/N}$. We further demonstrate the versatility of our approach by deriving first-order and best-of-both-worlds bounds in the distributed adversarial setting. Finally, we extend our framework to distributed linear bandits in $R^d$, obtaining a regret bound of $\tilde{O}(\sqrt{(ρ^{-1/2}+1/N)dT})$, achieved with only $O(d)$ communication cost per agent and per round via a volumetric spanner.
☆ Empirical Analysis of Adversarial Robustness and Explainability Drift in Cybersecurity Classifiers
Machine learning (ML) models are increasingly deployed in cybersecurity applications such as phishing detection and network intrusion prevention. However, these models remain vulnerable to adversarial perturbations small, deliberate input modifications that can degrade detection accuracy and compromise interpretability. This paper presents an empirical study of adversarial robustness and explainability drift across two cybersecurity domains phishing URL classification and network intrusion detection. We evaluate the impact of L (infinity) bounded Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) perturbations on model accuracy and introduce a quantitative metric, the Robustness Index (RI), defined as the area under the accuracy perturbation curve. Gradient based feature sensitivity and SHAP based attribution drift analyses reveal which input features are most susceptible to adversarial manipulation. Experiments on the Phishing Websites and UNSW NB15 datasets show consistent robustness trends, with adversarial training improving RI by up to 9 percent while maintaining clean-data accuracy. These findings highlight the coupling between robustness and interpretability degradation and underscore the importance of quantitative evaluation in the design of trustworthy, AI-driven cybersecurity systems.
comment: Accepted for publication in 18th ACM International Conference on Agents and Artificial Intelligence (ICAART 2026), Marbella, Spain
☆ Generating High-quality Privacy-preserving Synthetic Data
Synthetic tabular data enables sharing and analysis of sensitive records, but its practical deployment requires balancing distributional fidelity, downstream utility, and privacy protection. We study a simple, model agnostic post processing framework that can be applied on top of any synthetic data generator to improve this trade off. First, a mode patching step repairs categories that are missing or severely underrepresented in the synthetic data, while largely preserving learned dependencies. Second, a k nearest neighbor filter replaces synthetic records that lie too close to real data points, enforcing a minimum distance between real and synthetic samples. We instantiate this framework for two neural generative models for tabular data, a feed forward generator and a variational autoencoder, and evaluate it on three public datasets covering credit card transactions, cardiovascular health, and census based income. We assess marginal and joint distributional similarity, the performance of models trained on synthetic data and evaluated on real data, and several empirical privacy indicators, including nearest neighbor distances and attribute inference attacks. With moderate thresholds between 0.2 and 0.35, the post processing reduces divergence between real and synthetic categorical distributions by up to 36 percent and improves a combined measure of pairwise dependence preservation by 10 to 14 percent, while keeping downstream predictive performance within about 1 percent of the unprocessed baseline. At the same time, distance based privacy indicators improve and the success rate of attribute inference attacks remains largely unchanged. These results provide practical guidance for selecting thresholds and applying post hoc repairs to improve the quality and empirical privacy of synthetic tabular data, while complementing approaches that provide formal differential privacy guarantees.
☆ Uniform Spectral Growth and Convergence of Muon in LoRA-Style Matrix Factorization
Spectral gradient descent (SpecGD) orthogonalizes the matrix parameter updates and has inspired practical optimizers such as Muon. They often perform well in large language model (LLM) training, but their dynamics remain poorly understood. In the low-rank adaptation (LoRA) setting, where weight updates are parameterized as a product of two low-rank factors, we find a distinctive spectral phenomenon under Muon in LoRA fine-tuning of LLMs: singular values of the LoRA product show near-uniform growth across the spectrum, despite orthogonalization being performed on the two factors separately. Motivated by this observation, we analyze spectral gradient flow (SpecGF)-a continuous-time analogue of SpecGD-in a simplified LoRA-style matrix factorization setting and prove "equal-rate" dynamics: all singular values grow at equal rates up to small deviations. Consequently, smaller singular values attain their target values earlier than larger ones, sharply contrasting with the largest-first stepwise learning observed in standard gradient flow. Moreover, we prove that SpecGF in our setting converges to global minima from almost all initializations, provided the factor norms remain bounded; with $\ell_2$ regularization, we obtain global convergence. Lastly, we corroborate our theory with experiments in the same setting.
☆ HyQuRP: Hybrid quantum-classical neural network with rotational and permutational equivariance for 3D point clouds
We introduce HyQuRP, a hybrid quantum-classical neural network equivariant to rotational and permutational symmetries. While existing equivariant quantum machine learning models often rely on ad hoc constructions, HyQuRP is built upon the formal foundations of group representation theory. In the sparse-point regime, HyQuRP consistently outperforms strong classical and quantum baselines across multiple benchmarks. For example, when six subsampled points are used, HyQuRP ($\sim$1.5K parameters) achieves 76.13% accuracy on the 5-class ModelNet benchmark, compared to approximately 71% for PointNet, PointMamba, and PointTransformer with similar parameter counts. These results highlight HyQuRP's exceptional data efficiency and suggest the potential of quantum machine learning models for processing 3D point cloud data.
comment: 8+28 pages; 2 figures
☆ A Multiplicative Neural Network Architecture: Locality and Regularity of Appriximation
We introduce a multiplicative neural network architecture in which multiplicative interactions constitute the fundamental representation, rather than appearing as auxiliary components within an additive model. We establish a universal approximation theorem for this architecture and analyze its approximation properties in terms of locality and regularity in Bessel potential spaces. To complement the theoretical results, we conduct numerical experiments on representative targets exhibiting sharp transition layers or pointwise loss of higher-order regularity. The experiments focus on the spatial structure of approximation errors and on regularity-sensitive quantities, in particular the convergence of Zygmund-type seminorms. The results show that the proposed multiplicative architecture yields residual error structures that are more tightly aligned with regions of reduced regularity and exhibits more stable convergence in regularity-sensitive metrics. These results demonstrate that adopting a multiplicative representation format has concrete implications for the localization and regularity behavior of neural network approximations, providing a direct connection between architectural design and analytical properties of the approximating functions.
comment: 22 pages
☆ Advances in Battery Energy Storage Management: Control and Economic Synergies
The existing literature on Battery Energy Storage Systems (BESS) predominantly focuses on two main areas: control system design aimed at achieving grid stability and the techno-economic analysis of BESS dispatch on power grid. However, with the increasing incorporation of ancillary services into power grids, a more comprehensive approach to energy management systems is required. Such an approach should not only optimize revenue generation from BESS but also ensure the safe, efficient, and reliable operation of lithium-ion batteries. This research seeks to bridge this gap by exploring literature that addresses both the economic and operational dimensions of BESS. Specifically, it examines how economic aspects of grid duty cycles can align with control schemes deployed in BESS systems. This alignment, or synergy, could be instrumental in creating robust digital twins virtual representations of BESS systems that enhance both grid stability and revenue potential. The literature review is organized into five key categories: (1) ancillary services for BESS, exploring support functions that BESS can provide to power grids; (2) control systems developed for real-time BESS power flow management, ensuring smooth operations under dynamic grid conditions; (3) optimization algorithms for BESS dispatch, focusing on efficient energy allocation strategies; (4) techno-economic analyses of BESS and battery systems to assess their financial viability; and (5) digital twin technologies for real-world BESS deployments, enabling advanced predictive maintenance and performance optimization. This review will identify potential synergies, research gaps, and emerging trends, paving the way for future innovations in BESS management and deployment strategies.
comment: Pre Print
☆ Envy-Free Allocation of Indivisible Goods via Noisy Queries
We introduce a problem of fairly allocating indivisible goods (items) in which the agents' valuations cannot be observed directly, but instead can only be accessed via noisy queries. In the two-agent setting with Gaussian noise and bounded valuations, we derive upper and lower bounds on the required number of queries for finding an envy-free allocation in terms of the number of items, $m$, and the negative-envy of the optimal allocation, $Δ$. In particular, when $Δ$ is not too small (namely, $Δ\gg m^{1/4}$), we establish that the optimal number of queries scales as $\frac{\sqrt m }{(Δ/ m)^2} = \frac{m^{2.5}}{Δ^2}$ up to logarithmic factors. Our upper bound is based on non-adaptive queries and a simple thresholding-based allocation algorithm that runs in polynomial time, while our lower bound holds even under adaptive queries and arbitrary computation time.
☆ Training Data Selection with Gradient Orthogonality for Efficient Domain Adaptation
Fine-tuning large language models (LLMs) for specialized domains often necessitates a trade-off between acquiring domain expertise and retaining general reasoning capabilities, a phenomenon known as catastrophic forgetting. Existing remedies face a dichotomy: gradient surgery methods offer geometric safety but incur prohibitive computational costs via online projections, while efficient data selection approaches reduce overhead but remain blind to conflict-inducing gradient directions. In this paper, we propose Orthogonal Gradient Selection (OGS), a data-centric method that harmonizes domain performance, general capability retention, and training efficiency. OGS shifts the geometric insights of gradient projection from the optimizer to the data selection stage by treating data selection as a constrained decision-making process. By leveraging a lightweight Navigator model and reinforcement learning techniques, OGS dynamically identifies training samples whose gradients are orthogonal to a general-knowledge anchor. This approach ensures naturally safe updates for target models without modifying the optimizer or incurring runtime projection costs. Experiments across medical, legal, and financial domains demonstrate that OGS achieves excellent results, significantly improving domain performance and training efficiency while maintaining or even enhancing performance on general tasks such as GSM8K.
☆ Evaluating LLM-persona Generated Distributions for Decision-making
LLMs can generate a wealth of data, ranging from simulated personas imitating human valuations and preferences, to demand forecasts based on world knowledge. But how well do such LLM-generated distributions support downstream decision-making? For example, when pricing a new product, a firm could prompt an LLM to simulate how much consumers are willing to pay based on a product description, but how useful is the resulting distribution for optimizing the price? We refer to this approach as LLM-SAA, in which an LLM is used to construct an estimated distribution and the decision is then optimized under that distribution. In this paper, we study metrics to evaluate the quality of these LLM-generated distributions, based on the decisions they induce. Taking three canonical decision-making problems (assortment optimization, pricing, and newsvendor) as examples, we find that LLM-generated distributions are practically useful, especially in low-data regimes. We also show that decision-agnostic metrics such as Wasserstein distance can be misleading when evaluating these distributions for decision-making.
☆ Enhance and Reuse: A Dual-Mechanism Approach to Boost Deep Forest for Label Distribution Learning
Label distribution learning (LDL) requires the learner to predict the degree of correlation between each sample and each label. To achieve this, a crucial task during learning is to leverage the correlation among labels. Deep Forest (DF) is a deep learning framework based on tree ensembles, whose training phase does not rely on backpropagation. DF performs in-model feature transform using the prediction of each layer and achieves competitive performance on many tasks. However, its exploration in the field of LDL is still in its infancy. The few existing methods that apply DF to the field of LDL do not have effective ways to utilize the correlation among labels. Therefore, we propose a method named Enhanced and Reused Feature Deep Forest (ERDF). It mainly contains two mechanisms: feature enhancement exploiting label correlation and measure-aware feature reuse. The first one is to utilize the correlation among labels to enhance the original features, enabling the samples to acquire more comprehensive information for the task of LDL. The second one performs a reuse operation on the features of samples that perform worse than the previous layer on the validation set, in order to ensure the stability of the training process. This kind of Enhance-Reuse pattern not only enables samples to enrich their features but also validates the effectiveness of their new features and conducts a reuse process to prevent the noise from spreading further. Experiments show that our method outperforms other comparison algorithms on six evaluation metrics.
☆ Adversarial Learning in Games with Bandit Feedback: Logarithmic Pure-Strategy Maximin Regret
Learning to play zero-sum games is a fundamental problem in game theory and machine learning. While significant progress has been made in minimizing external regret in the self-play settings or with full-information feedback, real-world applications often force learners to play against unknown, arbitrary opponents and restrict learners to bandit feedback where only the payoff of the realized action is observable. In such challenging settings, it is well-known that $Ω(\sqrt{T})$ external regret is unavoidable (where T is the number of rounds). To overcome this barrier, we investigate adversarial learning in zero-sum games under bandit feedback, aiming to minimize the deficit against the maximin pure strategy -- a metric we term Pure-Strategy Maximin Regret. We analyze this problem under two bandit feedback models: uninformed (only the realized reward is revealed) and informed (both the reward and the opponent's action are revealed). For uninformed bandit learning of normal-form games, we show that the Tsallis-INF algorithm achieves $O(c \log T)$ instance-dependent regret with a game-dependent parameter $c$. Crucially, we prove an information-theoretic lower bound showing that the dependence on c is necessary. To overcome this hardness, we turn to the informed setting and introduce Maximin-UCB, which obtains another regret bound of the form $O(c' \log T)$ for a different game-dependent parameter $c'$ that could potentially be much smaller than $c$. Finally, we generalize both results to bilinear games over an arbitrary, large action set, proposing Tsallis-FTRL-SPM and Maximin-LinUCB for the uninformed and informed setting respectively and establishing similar game-dependent logarithmic regret bounds.
☆ Can Post-Training Transform LLMs into Causal Reasoners?
Causal inference is essential for decision-making but remains challenging for non-experts. While large language models (LLMs) show promise in this domain, their precise causal estimation capabilities are still limited, and the impact of post-training on these abilities is insufficiently explored. This paper examines the extent to which post-training can enhance LLMs' capacity for causal inference. We introduce CauGym, a comprehensive dataset comprising seven core causal tasks for training and five diverse test sets. Using this dataset, we systematically evaluate five post-training approaches: SFT, DPO, KTO, PPO, and GRPO. Across five in-domain and four existing benchmarks, our experiments demonstrate that appropriate post-training enables smaller LLMs to perform causal inference competitively, often surpassing much larger models. Our 14B parameter model achieves 93.5% accuracy on the CaLM benchmark, compared to 55.4% by OpenAI o3. Furthermore, the post-trained LLMs exhibit strong generalization and robustness under real-world conditions such as distribution shifts and noisy data. Collectively, these findings provide the first systematic evidence that targeted post-training can produce reliable and robust LLM-based causal reasoners. Our data and GRPO-model are available at https://github.com/OpenCausaLab/CauGym.
☆ AdFL: In-Browser Federated Learning for Online Advertisement
Since most countries are coming up with online privacy regulations, such as GDPR in the EU, online publishers need to find a balance between revenue from targeted advertisement and user privacy. One way to be able to still show targeted ads, based on user personal and behavioral information, is to employ Federated Learning (FL), which performs distributed learning across users without sharing user raw data with other stakeholders in the publishing ecosystem. This paper presents AdFL, an FL framework that works in the browsers to learn user ad preferences. These preferences are aggregated in a global FL model, which is then used in the browsers to show more relevant ads to users. AdFL can work with any model that uses features available in the browser such as ad viewability, ad click-through, user dwell time on pages, and page content. The AdFL server runs at the publisher and coordinates the learning process for the users who browse pages on the publisher's website. The AdFL prototype does not require the client to install any software, as it is built utilizing standard APIs available on most modern browsers. We built a proof-of-concept model for ad viewability prediction that runs on top of AdFL. We tested AdFL and the model with two non-overlapping datasets from a website with 40K visitors per day. The experiments demonstrate AdFL's feasibility to capture the training information in the browser in a few milliseconds, show that the ad viewability prediction achieves up to 92.59% AUC, and indicate that utilizing differential privacy (DP) to safeguard local model parameters yields adequate performance, with only modest declines in comparison to the non-DP variant.
☆ Don't Break the Boundary: Continual Unlearning for OOD Detection Based on Free Energy Repulsion
Deploying trustworthy AI in open-world environments faces a dual challenge: the necessity for robust Out-of-Distribution (OOD) detection to ensure system safety, and the demand for flexible machine unlearning to satisfy privacy compliance and model rectification. However, this objective encounters a fundamental geometric contradiction: current OOD detectors rely on a static and compact data manifold, whereas traditional classification-oriented unlearning methods disrupt this delicate structure, leading to a catastrophic loss of the model's capability to discriminate anomalies while erasing target classes. To resolve this dilemma, we first define the problem of boundary-preserving class unlearning and propose a pivotal conceptual shift: in the context of OOD detection, effective unlearning is mathematically equivalent to transforming the target class into OOD samples. Based on this, we propose the TFER (Total Free Energy Repulsion) framework. Inspired by the free energy principle, TFER constructs a novel Push-Pull game mechanism: it anchors retained classes within a low-energy ID manifold through a pull mechanism, while actively expelling forgotten classes to high-energy OOD regions using a free energy repulsion force. This approach is implemented via parameter-efficient fine-tuning, circumventing the prohibitive cost of full retraining. Extensive experiments demonstrate that TFER achieves precise unlearning while maximally preserving the model's discriminative performance on remaining classes and external OOD data. More importantly, our study reveals that the unique Push-Pull equilibrium of TFER endows the model with inherent structural stability, allowing it to effectively resist catastrophic forgetting without complex additional constraints, thereby demonstrating exceptional potential in continual unlearning tasks.
☆ Online Adaptive Reinforcement Learning with Echo State Networks for Non-Stationary Dynamics IJCNN 2026
Reinforcement learning (RL) policies trained in simulation often suffer from severe performance degradation when deployed in real-world environments due to non-stationary dynamics. While Domain Randomization (DR) and meta-RL have been proposed to address this issue, they typically rely on extensive pretraining, privileged information, or high computational cost, limiting their applicability to real-time and edge systems. In this paper, we propose a lightweight online adaptation framework for RL based on Reservoir Computing. Specifically, we integrate an Echo State Networks (ESNs) as an adaptation module that encodes recent observation histories into a latent context representation, and update its readout weights online using Recursive Least Squares (RLS). This design enables rapid adaptation without backpropagation, pretraining, or access to privileged information. We evaluate the proposed method on CartPole and HalfCheetah tasks with severe and abrupt environment changes, including periodic external disturbances and extreme friction variations. Experimental results demonstrate that the proposed approach significantly outperforms DR and representative adaptive baselines under out-of-distribution dynamics, achieving stable adaptation within a few control steps. Notably, the method successfully handles intra-episode environment changes without resetting the policy. Due to its computational efficiency and stability, the proposed framework provides a practical solution for online adaptation in non-stationary environments and is well suited for real-world robotic control and edge deployment.
comment: Submitted to IJCNN 2026
☆ How (Not) to Hybridize Neural and Mechanistic Models for Epidemiological Forecasting
Epidemiological forecasting from surveillance data is a hard problem and hybridizing mechanistic compartmental models with neural models is a natural direction. The mechanistic structure helps keep trajectories epidemiologically plausible, while neural components can capture non-stationary, data-adaptive effects. In practice, however, many seemingly straightforward couplings fail under partial observability and continually shifting transmission dynamics driven by behavior, waning immunity, seasonality, and interventions. We catalog these failure modes and show that robust performance requires making non-stationarity explicit: we extract multi-scale structure from the observed infection series and use it as an interpretable control signal for a controlled neural ODE coupled to an epidemiological model. Concretely, we decompose infections into trend, seasonal, and residual components and use these signals to drive continuous-time latent dynamics while jointly forecasting and inferring time-varying transmission, recovery, and immunity-loss rates. Across seasonal and non-seasonal settings, including early outbreaks and multi-wave regimes, our approach reduces long-horizon RMSE by 15-35%, improves peak timing error by 1-3 weeks, and lowers peak magnitude bias by up to 30% relative to strong time-series, neural ODE, and hybrid baselines, without relying on auxiliary covariates.
☆ High-Dimensional Limit of Stochastic Gradient Flow via Dynamical Mean-Field Theory
Modern machine learning models are typically trained via multi-pass stochastic gradient descent (SGD) with small batch sizes, and understanding their dynamics in high dimensions is of great interest. However, an analytical framework for describing the high-dimensional asymptotic behavior of multi-pass SGD with small batch sizes for nonlinear models is currently missing. In this study, we address this gap by analyzing the high-dimensional dynamics of a stochastic differential equation called a \emph{stochastic gradient flow} (SGF), which approximates multi-pass SGD in this regime. In the limit where the number of data samples $n$ and the dimension $d$ grow proportionally, we derive a closed system of low-dimensional and continuous-time equations and prove that it characterizes the asymptotic distribution of the SGF parameters. Our theory is based on the dynamical mean-field theory (DMFT) and is applicable to a wide range of models encompassing generalized linear models and two-layer neural networks. We further show that the resulting DMFT equations recover several existing high-dimensional descriptions of SGD dynamics as special cases, thereby providing a unifying perspective on prior frameworks such as online SGD and high-dimensional linear regression. Our proof builds on the existing DMFT technique for gradient flow and extends it to handle the stochasticity in SGF using tools from stochastic calculus.
☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables
☆ Time-uniform conformal and PAC prediction
Given that machine learning algorithms are increasingly being deployed to aid in high stakes decision-making, uncertainty quantification methods that wrap around these black box models such as conformal prediction have received much attention in recent years. In sequential settings, where data are observed/generated in a streaming fashion, traditional conformal methods do not provide any guarantee without fixing the sample size. More importantly, traditional conformal methods cannot cope with sequentially updated predictions. As such, we develop an extension of the conformal prediction and related probably approximately correct (PAC) prediction frameworks to sequential settings where the number of data points is not fixed in advance. The resulting prediction sets are anytime-valid in that their expected coverage is at the required level at any time chosen by the analyst even if this choice depends on the data. We present theoretical guarantees for our proposed methods and demonstrate their validity and utility on simulated and real datasets.
☆ Toward generative machine learning for boosting ensembles of climate simulations
Accurately quantifying uncertainty in predictions and projections arising from irreducible internal climate variability is critical for informed decision making. Such uncertainty is typically assessed using ensembles produced with physics based climate models. However, computational constraints impose a trade off between generating the large ensembles required for robust uncertainty estimation and increasing model resolution to better capture fine scale dynamics. Generative machine learning offers a promising pathway to alleviate these constraints. We develop a conditional Variational Autoencoder (cVAE) trained on a limited sample of climate simulations to generate arbitrary large ensembles. The approach is applied to output from monthly CMIP6 historical and future scenario experiments produced with the Canadian Centre for Climate Modelling and Analysis' (CCCma's) Earth system model CanESM5. We show that the cVAE model learns the underlying distribution of the data and generates physically consistent samples that reproduce realistic low and high moment statistics, including extremes. Compared with more sophisticated generative architectures, cVAEs offer a mathematically transparent, interpretable, and computationally efficient framework. Their simplicity lead to some limitations, such as overly smooth outputs, spectral bias, and underdispersion, that we discuss along with strategies to mitigate them. Specifically, we show that incorporating output noise improves the representation of climate relevant multiscale variability, and we propose a simple method to achieve this. Finally, we show that cVAE-enhanced ensembles capture realistic global teleconnection patterns, even under climate conditions absent from the training data.
comment: SI_Toward_generative_machine_learning_for_boosting_the_ensembles_size_of_climate_simulation.pdf contains Supplementary Information
☆ SOCKET: SOft Collison Kernel EsTimator for Sparse Attention
Exploiting sparsity during long-context inference is central to scaling large language models, as attention dominates the cost of autoregressive decoding. Sparse attention reduces this cost by restricting computation to a subset of tokens, but its effectiveness depends critically on efficient scoring and selection of relevant tokens at inference time. We revisit Locality-Sensitive Hashing (LSH) as a sparsification primitive and introduce SOCKET, a SOft Collision Kernel EsTimator that replaces hard bucket matches with probabilistic, similarity-aware aggregation. Our key insight is that hard LSH produces discrete collision signals and is therefore poorly suited for ranking. In contrast, soft LSH aggregates graded collision evidence across hash tables, preserving the stability of relative ordering among the true top-$k$ tokens. This transformation elevates LSH from a candidate-generation heuristic to a principled and mathematically grounded scoring kernel for sparse attention. Leveraging this property, SOCKET enables efficient token selection without ad-hoc voting mechanism, and matches or surpasses established sparse attention baselines across multiple long-context benchmarks using diverse set of models. With a custom CUDA kernel for scoring keys and a Flash Decode Triton backend for sparse attention, SOCKET achieves up to 1.5$\times$ higher throughput than FlashAttention, making it an effective tool for long-context inference. Code is open-sourced at https://github.com/amarka8/SOCKET.
comment: 11 figures, 5 tables
☆ Statistical Learning from Attribution Sets
We address the problem of training conversion prediction models in advertising domains under privacy constraints, where direct links between ad clicks and conversions are unavailable. Motivated by privacy-preserving browser APIs and the deprecation of third-party cookies, we study a setting where the learner observes a sequence of clicks and a sequence of conversions, but can only link a conversion to a set of candidate clicks (an attribution set) rather than a unique source. We formalize this as learning from attribution sets generated by an oblivious adversary equipped with a prior distribution over the candidates. Despite the lack of explicit labels, we construct an unbiased estimator of the population loss from these coarse signals via a novel approach. Leveraging this estimator, we show that Empirical Risk Minimization achieves generalization guarantees that scale with the informativeness of the prior and is also robust against estimation errors in the prior, despite complex dependencies among attribution sets. Simple empirical evaluations on standard datasets suggest our unbiased approach significantly outperforms common industry heuristics, particularly in regimes where attribution sets are large or overlapping.
☆ PurSAMERE: Reliable Adversarial Purification via Sharpness-Aware Minimization of Expected Reconstruction Error
We propose a novel deterministic purification method to improve adversarial robustness by mapping a potentially adversarial sample toward a nearby sample that lies close to a mode of the data distribution, where classifiers are more reliable. We design the method to be deterministic to ensure reliable test accuracy and to prevent the degradation of effective robustness observed in stochastic purification approaches when the adversary has full knowledge of the system and its randomness. We employ a score model trained by minimizing the expected reconstruction error of noise-corrupted data, thereby learning the structural characteristics of the input data distribution. Given a potentially adversarial input, the method searches within its local neighborhood for a purified sample that minimizes the expected reconstruction error under noise corruption and then feeds this purified sample to the classifier. During purification, sharpness-aware minimization is used to guide the purified samples toward flat regions of the expected reconstruction error landscape, thereby enhancing robustness. We further show that, as the noise level decreases, minimizing the expected reconstruction error biases the purified sample toward local maximizers of the Gaussian-smoothed density; under additional local assumptions on the score model, we prove recovery of a local maximizer in the small-noise limit. Experimental results demonstrate significant gains in adversarial robustness over state-of-the-art methods under strong deterministic white-box attacks.
☆ MPIB: A Benchmark for Medical Prompt Injection Attacks and Clinical Safety in LLMs
Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems are increasingly integrated into clinical workflows; however, prompt injection attacks can steer these systems toward clinically unsafe or misleading outputs. We introduce the Medical Prompt Injection Benchmark (MPIB), a dataset-and-benchmark suite for evaluating clinical safety under both direct prompt injection and indirect, RAG-mediated injection across clinically grounded tasks. MPIB emphasizes outcome-level risk via the Clinical Harm Event Rate (CHER), which measures high-severity clinical harm events under a clinically grounded taxonomy, and reports CHER alongside Attack Success Rate (ASR) to disentangle instruction compliance from downstream patient risk. The benchmark comprises 9,697 curated instances constructed through multi-stage quality gates and clinical safety linting. Evaluating MPIB across a diverse set of baseline LLMs and defense configurations, we find that ASR and CHER can diverge substantially, and that robustness depends critically on whether adversarial instructions appear in the user query or in retrieved context. We release MPIB with evaluation code, adversarial baselines, and comprehensive documentation to support reproducible and systematic research on clinical prompt injection. Code and data are available at GitHub (code) and Hugging Face (data).
comment: 13 pages, 7 figures
♻ ☆ Implicit Unitarity Bias in Tensor Factorization: A Theoretical Framework for Symmetry Group Discovery
While modern neural architectures typically generalize via smooth interpolation, it lacks the inductive biases required to uncover algebraic structures essential for systematic generalization. We present the first theoretical analysis of HyperCube, a differentiable tensor factorization architecture designed to bridge this gap. This work establishes an intrinsic geometric property of the HyperCube formulation: we prove that the architecture mediates a fundamental equivalence between geometric alignment and algebraic structure. Independent of the global optimization landscape, we show that the condition of geometric alignment imposes rigid algebraic constraints, proving that the feasible collinear manifold is non-empty if and only if the target is isotopic to a group. Within this manifold, we characterize the objective as a rank-maximizing potential that unconditionally drives factors toward full-rank, unitary representations. Finally, we propose the Collinearity Dominance mechanism to link these structural results to the global landscape. Supported by empirical scaling laws, we establish that global minima are achieved exclusively by unitary regular representations of group isotopes. This formalizes the HyperCube objective as a differentiable proxy for associativity, demonstrating how rigid geometric constraints enable the discovery of latent algebraic symmetry.
♻ ☆ code_transformed: The Influence of Large Language Models on Code EACL 2026
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 20,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake_case function names in Python code increased from 40.7% in Q1 2023 to 49.8% in Q3 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Our experimental results may provide the first large-scale empirical evidence that LLMs affect real-world programming style. We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
comment: EACL 2026 Findings
♻ ☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
comment: Blog post: https://ssundaram21.github.io/soar/
♻ ☆ Dataset Distillation as Pushforward Optimal Quantization ICLR 2026
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose Dataset Distillation by Optimal Quantization, based on clustering in a latent space. Compared to the previous SOTA method D\textsuperscript{4}M, we achieve better performance and inter-model generalization on the ImageNet-1K dataset with trivial additional computation, and SOTA performance in higher image-per-class settings. Using the distilled noise initializations in a stronger diffusion transformer model, we obtain SOTA distillation performance on ImageNet-1K and its subsets, outperforming diffusion guidance methods.
comment: ICLR 2026, https://openreview.net/forum?id=FMSp8AUF3m
♻ ☆ RMT-KD: Random Matrix Theoretic Causal Knowledge Distillation ICASSP 2026
Large deep learning models such as BERT and ResNet achieve state-of-the-art performance but are costly to deploy at the edge due to their size and compute demands. We present RMT-KD, a compression method that leverages Random Matrix Theory (RMT) for knowledge distillation to iteratively reduce network size. Instead of pruning or heuristic rank selection, RMT-KD preserves only informative directions identified via the spectral properties of hidden representations. RMT-based causal reduction is applied layer by layer with self-distillation to maintain stability and accuracy. On GLUE and CIFAR-10, RMT-KD achieves up to 80% parameter reduction with only 2% accuracy loss, delivering 2.8x faster inference and nearly halved power consumption. These results establish RMT-KD as a mathematically grounded approach to network distillation.
comment: 5 pages, submitted to ICASSP 2026, September 2025
♻ ☆ EigenTrack: Spectral Activation Feature Tracking for Hallucination and Out-of-Distribution Detection in LLMs and VLMs ICASSP 2026
Large language models (LLMs) offer broad utility but remain prone to hallucination and out-of-distribution (OOD) errors. We propose EigenTrack, an interpretable real-time detector that uses the spectral geometry of hidden activations, a compact global signature of model dynamics. By streaming covariance-spectrum statistics such as entropy, eigenvalue gaps, and KL divergence from random baselines into a lightweight recurrent classifier, EigenTrack tracks temporal shifts in representation structure that signal hallucination and OOD drift before surface errors appear. Unlike black- and grey-box methods, it needs only a single forward pass without resampling. Unlike existing white-box detectors, it preserves temporal context, aggregates global signals, and offers interpretable accuracy-latency trade-offs.
comment: 5 pages, submitted to ICASSP 2026, September 2025
♻ ☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
♻ ☆ Discriminative Feature Feedback with General Teacher Classes
We study the theoretical properties of the interactive learning protocol Discriminative Feature Feedback (DFF) (Dasgupta et al., 2018). The DFF learning protocol uses feedback in the form of discriminative feature explanations. We provide the first systematic study of DFF in a general framework that is comparable to that of classical protocols such as supervised learning and online learning. We study the optimal mistake bound of DFF in the realizable and the non-realizable settings, and obtain novel structural results, as well as insights into the differences between Online Learning and settings with richer feedback such as DFF. We characterize the mistake bound in the realizable setting using a new notion of dimension. In the non-realizable setting, we provide a mistake upper bound and show that it cannot be improved in general. Our results show that unlike Online Learning, in DFF the realizable dimension is insufficient to characterize the optimal non-realizable mistake bound or the existence of no-regret algorithms.
♻ ☆ Demystifying Mergeability: Interpretable Properties to Predict Model Merging Success
Model merging combines knowledge from separately fine-tuned models, yet success factors remain poorly understood. While recent work treats mergeability as an intrinsic property, we show with an architecture-agnostic framework that it fundamentally depends on both the merging method and the partner tasks. Using linear optimization over a set of interpretable pairwise metrics (e.g., gradient L2 distance), we uncover properties correlating with post-merge performance across four merging methods. We find substantial variation in success drivers (46.7% metric overlap; 55.3% sign agreement), revealing method-specific "fingerprints". Crucially, however, subspace overlap and gradient alignment metrics consistently emerge as foundational, method-agnostic prerequisites for compatibility. These findings provide a diagnostic foundation for understanding mergeability and motivate future fine-tuning strategies that explicitly encourage these properties.
comment: 8 pages of main paper, 3 figures in the main paper, 4 tables in the main paper, many more figures and tables in the appendix
♻ ☆ Ensemble Transport Filter via Optimized Maximum Mean Discrepancy
In this paper, we present a new ensemble-based filter method by reconstructing the analysis step of the particle filter through a transport map, which directly transports prior particles to posterior particles. The transport map is constructed through an optimization problem described by the Maximum Mean Discrepancy loss function, which matches the expectation information of the approximated posterior and reference posterior. The proposed method inherits the accurate estimation of the posterior distribution from particle filtering while gives an extension to high dimensional assimilation problems. To improve the robustness of Maximum Mean Discrepancy, a variance penalty term is used to guide the optimization. It prioritizes minimizing the discrepancy between the expectations of highly informative statistics for the reference posteriors. The penalty term significantly enhances the robustness of the proposed method and leads to a better approximation of the posterior. A few numerical examples are presented to illustrate the advantage of the proposed method over ensemble Kalman filter.
comment: 27 pages, 14 figures
♻ ☆ DoRAN: Stabilizing Weight-Decomposed Low-Rank Adaptation via Noise Injection and Auxiliary Networks
Parameter-efficient fine-tuning (PEFT) methods have become the standard paradigm for adapting large-scale models. Among these techniques, Weight-Decomposed Low-Rank Adaptation (DoRA) has been shown to improve both the learning capacity and training stability of the Low-Rank Adaptation (LoRA) method by explicitly decomposing pre-trained weights into magnitude and directional components. In this work, we propose DoRAN, a new technique designed to stabilize training and boost the sample efficiency of DoRA. Our framework introduces two key components: (i) the injection of learnable noise into the denominator of DoRA weight decomposition, which serves as an adaptive regularizer to mitigate instabilities and improve the estimation rate of low-rank matrices; and (ii) the replacement of static low-rank matrices with auxiliary networks that generate them dynamically, enabling parameter coupling between the query and value projection matrices, leading to improved sample efficiency both theoretically and empirically. Comprehensive experiments on vision and language benchmarks show that DoRAN consistently outperforms LoRA, DoRA, and other PEFT baselines, underscoring the effectiveness of combining noise-based regularization with network-based parameter generation.
comment: Nghiem T. Diep, Hien Dang, and Tuan Truong contributed equally to this work
♻ ☆ Inverse problems with diffusion models: MAP estimation via mode-seeking loss
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can also be computationally demanding. In this work, we propose a new MAP estimation strategy for solving inverse problems with a pre-trained unconditional diffusion model. Specifically, we introduce the variational mode-seeking loss (VML) and show that its minimization at each reverse diffusion step guides the generated sample towards the MAP estimate (modes in practice). VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived without any modeling approximations. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems via VML minimization, and validate its efficacy in both performance and computational time through extensive experiments on diverse image-restoration tasks across multiple datasets.
♻ ☆ Accelerating Diffusion Planners in Offline RL via Reward-Aware Consistency Trajectory Distillation
Although diffusion models have achieved strong results in decision-making tasks, their slow inference speed remains a key limitation. While consistency models offer a potential solution, existing applications to decision-making either struggle with suboptimal demonstrations under behavior cloning or rely on complex concurrent training of multiple networks under the actor-critic framework. In this work, we propose a novel approach to consistency distillation for offline reinforcement learning that directly incorporates reward optimization into the distillation process. Our method achieves single-step sampling while generating higher-reward action trajectories through decoupled training and noise-free reward signals. Empirical evaluations on the Gym MuJoCo, FrankaKitchen, and long horizon planning benchmarks demonstrate that our approach can achieve a 9.7% improvement over previous state-of-the-art while offering up to 142x speedup over diffusion counterparts in inference time.
♻ ☆ Downscaling Neural Network for Coastal Simulations
Learning the fine-scale details of a coastal ocean simulation from a coarse representation is a challenging task. For real-world applications, high-resolution simulations are necessary to advance understanding of many coastal processes, specifically, to predict flooding resulting from tsunamis and storm surges. We propose a Downscaling Neural Network for Coastal Simulation (DNNCS) for spatiotemporal enhancement to learn the high-resolution numerical solution. Given images of coastal simulations produced on low-resolution computational meshes using low polynomial order discontinuous Galerkin discretizations and a coarse temporal resolution, the proposed DNNCS learns to produce high-resolution free surface elevation and velocity visualizations in both time and space. To model the dynamic changes over time and space, we propose grid-aware spatiotemporal attention to project the temporal features to the spatial domain for non-local feature matching. The coordinate information is also utilized via positional encoding. For the final reconstruction, we use the spatiotemporal bilinear operation to interpolate the missing frames and then expand the feature maps to the frequency domain for residual mapping. Besides data-driven losses, the proposed physics-informed loss guarantees gradient consistency and momentum changes, leading to a 24% reduction in root-mean-square error compared to the model trained with only data-driven losses. To train the proposed model, we propose a coastal simulation dataset and use it for model optimization and evaluation. Our method shows superior downscaling quality and fast computation compared to the state-of-the-art methods.
♻ ☆ Interpreting Manifolds and Graph Neural Embeddings from Internet of Things Traffic Flows
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
♻ ☆ Predicting the fatigue life of asphalt concrete using neural networks
Asphalt concrete's (AC) durability and maintenance demands are strongly influenced by its fatigue life. Traditional methods for determining this characteristic are both resource-intensive and time-consuming. This study employs artificial neural networks (ANNs) to predict AC fatigue life, focusing on the impact of strain level, binder content, and air-void content. Leveraging a substantial dataset, we tailored our models to effectively handle the wide range of fatigue life data, typically represented on a logarithmic scale. The mean square logarithmic error was utilized as the loss function to enhance prediction accuracy across all levels of fatigue life. Through comparative analysis of various hyperparameters, we developed a machine-learning model that captures the complex relationships within the data. Our findings demonstrate that higher binder content significantly enhances fatigue life, while the influence of air-void content is more variable, depending on binder levels. Most importantly, this study provides insights into the intricacies of using ANNs for modeling, showcasing their potential utility with larger datasets. The codes developed and the data used in this study are provided as open source on a GitHub repository, with a link included in the paper for full access.
comment: Accepted paper
♻ ☆ Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Constrained optimization with multiple functional inequality constraints has significant applications in machine learning. This paper examines a crucial subset of such problems where both the objective and constraint functions are weakly convex. Existing methods often face limitations, including slow convergence rates or reliance on double-loop algorithmic designs. To overcome these challenges, we introduce a novel single-loop penalty-based stochastic algorithm. Following the classical exact penalty method, our approach employs a {\bf hinge-based penalty}, which permits the use of a constant penalty parameter, enabling us to achieve a {\bf state-of-the-art complexity} for finding an approximate Karush-Kuhn-Tucker (KKT) solution. We further extend our algorithm to address finite-sum coupled compositional objectives, which are prevalent in artificial intelligence applications, establishing improved complexity over existing approaches. Finally, we validate our method through experiments on fair learning with receiver operating characteristic (ROC) fairness constraints and continual learning with non-forgetting constraints.
♻ ☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
♻ ☆ An Evaluation of Hybrid Annotation Workflows on High-Ambiguity Spatiotemporal Video Footage
Manual annotation remains the gold standard for high-quality, dense temporal video datasets, yet it is inherently time-consuming. Vision-language models can aid human annotators and expedite this process. We report on the impact of automatic Pre-Annotations from a tuned encoder on a Human-in-the-Loop labeling workflow for video footage. Quantitative analysis in a study of a single-iteration test involving 18 volunteers demonstrates that our workflow reduced annotation time by 35% for the majority (72%) of the participants. Beyond efficiency, we provide a rigorous framework for benchmarking AI-assisted workflows that quantifies trade-offs between algorithmic speed and the integrity of human verification.
♻ ☆ Reparameterization Proximal Policy Optimization
By leveraging differentiable dynamics, Reparameterization Policy Gradient (RPG) achieves high sample efficiency. However, current approaches are hindered by two critical limitations: the under-utilization of computationally expensive dynamics Jacobians and inherent training instability. While sample reuse offers a remedy for under-utilization, no prior principled framework exists, and naive attempts risk exacerbating instability. To address these challenges, we propose Reparameterization Proximal Policy Optimization (RPO). We first establish that under sample reuse, RPG naturally optimizes a PPO-style surrogate objective via Backpropagation Through Time, providing a unified framework for both on- and off-policy updates. To further ensure stability, RPO integrates a clipped policy gradient mechanism tailored for RPG and employs explicit Kullback-Leibler divergence regularization. Experimental results demonstrate that RPO maintains superior sample efficiency and consistently outperforms or achieves state-of-the-art performance across diverse tasks.
♻ ☆ Trust Region Masking for Long-Horizon LLM Reinforcement Learning
Policy gradient methods for Large Language Models optimize a policy $π_θ$ via a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. However, modern LLM-RL pipelines suffer from unavoidable implementation divergences, such as backend discrepancies, Mixture-of-Experts routing discontinuities, and distributed training staleness. These factors cause an off-policy mismatch ($π_{\text{roll}} \neq π_θ$), leading to approximation errors between the surrogate and the true objective. We demonstrate that classical trust region bounds on this error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. To address this, we derive two new bounds: a Pinsker-Marginal bound scaling as $O(T^{3/2})$ and a Mixed bound scaling as $O(T)$. We further derive an Adaptive bound that strictly generalizes the Pinsker-Marginal bound by combining an importance-ratio decomposition of the error with an adaptive per-position application of Pinsker's inequality on the future trajectory divergence; the minimum over all three bounds is tighter than any individual bound. Crucially, all bounds depend on $D_{\mathrm{KL}}^{\mathrm{tok,max}}$, the maximum token-level KL divergence across the sequence. As a \emph{sequence-level} term, the divergence cannot be controlled by previous token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which masks entire sequences that violate the trust region. TRM enables the first non-vacuous monotonic improvement guarantees and demonstrates empirical training stability for long-horizon LLM-RL.
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language, nor how it leverages working memory. Furthermore, Transformers encounters a computational limitation: quadratic complexity growth with sequence length. Motivated by these limitations, we aim to design architectures that leverage efficient working memory dynamics to overcome standard computational barriers. We introduce Echo State Transformers (EST), a hybrid architecture that resolves this challenge while demonstrating state of the art performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with nodes from Reservoir Computing to create a fixed-size memory system. Drawing inspiration from Echo State Networks, our approach leverages several reservoirs (random recurrent networks) in parallel as a lightweight and efficient working memory. These independent units possess distinct and learned internal dynamics with an adaptive leak rate, enabling them to dynamically adjust their own temporality. By applying attention on those fixed number of units instead of input tokens, EST achieves linear complexity for the whole sequence, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results demonstrate that by shifting the attention mechanism from the entire input sequence to a fixed set of evolving memory units, it is possible to maintains high sensitivity to temporal events while achieving constant computational complexity per step.
♻ ☆ Training-Conditional Coverage Bounds under Covariate Shift
Conformal prediction methodology has recently been extended to the covariate shift setting, where the distribution of covariates differs between training and test data. While existing results ensure that the prediction sets from these methods achieve marginal coverage above a nominal level, their coverage rate conditional on the training dataset (referred to as training-conditional coverage) remains unexplored. In this paper, we address this gap by deriving upper bounds on the tail of the training-conditional coverage distribution, offering probably approximately correct (PAC) guarantees for these methods. Our results characterize the reliability of the prediction sets in terms of the severity of distributional changes and the size of the training dataset.
comment: Published in Transactions on Machine Learning Research
♻ ☆ Nash Equilibria in Games with Playerwise Concave Coupling Constraints: Existence and Computation
We study the existence and computation of Nash equilibria in concave games where the players' admissible strategies are subject to shared coupling constraints. Under playerwise concavity of constraints, we prove existence of Nash equilibria. Our proof leverages topological fixed point theory and novel structural insights into the contractibility of feasible sets, and relaxes strong assumptions for existence in prior work. Having established existence, we address the question of whether in the presence of coupling constraints, playerwise independent learning dynamics have convergence guarantees. We address this positively for the class of potential games by designing a convergent algorithm. To account for the possibly nonconvex feasible region, we employ a log barrier regularized gradient ascent with adaptive stepsizes. Starting from an initial feasible strategy profile and under exact gradient feedback, the proposed method converges to an $ε$-approximate constrained Nash equilibrium within $\mathcal{O}(ε^{-3})$ iterations.
♻ ☆ In-Run Data Shapley for Adam Optimizer
Reliable data attribution is essential for mitigating bias and reducing computational waste in modern machine learning, with the Shapley value serving as the theoretical gold standard. While recent "In-Run" methods bypass the prohibitive cost of retraining by estimating contributions dynamically, they heavily rely on the linear structure of Stochastic Gradient Descent (SGD) and fail to capture the complex dynamics of adaptive optimizers like Adam. In this work, we demonstrate that data attribution is inherently optimizer-dependent: we show that SGD-based proxies diverge significantly from true contributions under Adam (Pearson $R \approx 0.11$), rendering them ineffective for modern training pipelines. To bridge this gap, we propose Adam-Aware In-Run Data Shapley. We derive a closed-form approximation that restores additivity by redefining utility under a fixed-state assumption and enable scalable computation via a novel Linearized Ghost Approximation. This technique linearizes the variance-dependent scaling term, allowing us to compute pairwise gradient dot-products without materializing per-sample gradients. Extensive experiments show that our method achieves near-perfect fidelity to ground-truth marginal contributions ($R > 0.99$) while retaining $\sim$95\% of standard training throughput. Furthermore, our Adam-aware attribution significantly outperforms SGD-based baselines in data attribution downstream tasks.
comment: 16 pages
♻ ☆ A Unified Framework for Lifted Training and Inversion Approaches
The training of deep neural networks predominantly relies on a combination of gradient-based optimisation and back-propagation for the computation of the gradient. While incredibly successful, this approach faces challenges such as vanishing or exploding gradients, difficulties with non-smooth activations, and an inherently sequential structure that limits parallelisation. Lifted training methods offer an alternative by reformulating the nested optimisation problem into a higher-dimensional, constrained optimisation problem where the constraints are no longer enforced directly but penalised with penalty terms. This chapter introduces a unified framework that encapsulates various lifted training strategies, including the Method of Auxiliary Coordinates, Fenchel Lifted Networks, and Lifted Bregman Training, and demonstrates how diverse architectures, such as Multi-Layer Perceptrons, Residual Neural Networks, and Proximal Neural Networks fit within this structure. By leveraging tools from convex optimisation, particularly Bregman distances, the framework facilitates distributed optimisation, accommodates non-differentiable proximal activations, and can improve the conditioning of the training landscape. We discuss the implementation of these methods using block-coordinate descent strategies, including deterministic implementations enhanced by accelerated and adaptive optimisation techniques, as well as implicit stochastic gradient methods. Furthermore, we explore the application of this framework to inverse problems, detailing methodologies for both the training of specialised networks (e.g., unrolled architectures) and the stable inversion of pre-trained networks. Numerical results on standard imaging tasks validate the effectiveness and stability of the lifted Bregman approach compared to conventional training, particularly for architectures employing proximal activations.
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments IEEE
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Estimating Semantic Alphabet Size for LLM Uncertainty Quantification
Many black-box techniques for quantifying the uncertainty of large language models (LLMs) rely on repeated LLM sampling, which can be computationally expensive. Therefore, practical applicability demands reliable estimation from few samples. Semantic entropy (SE) is a popular sample-based uncertainty estimator with a discrete formulation attractive for the black-box setting. Recent extensions of SE exhibit improved LLM hallucination detection, but do so with less interpretable methods that admit additional hyperparameters. For this reason, we revisit the canonical discrete semantic entropy (DSE) estimator, finding that it underestimates the "true" semantic entropy, as expected from theory. We propose a modified semantic alphabet size estimator, and illustrate that using it to adjust DSE for sample coverage results in more accurate SE estimation in our setting of interest. Furthermore, we find that two semantic alphabet size estimators, including our proposed, flag incorrect LLM responses as well or better than many top-performing alternatives, with the added benefit of remaining highly interpretable.
♻ ☆ Radon--Wasserstein Gradient Flows for Interacting-Particle Sampling in High Dimensions
Gradient flows of the Kullback--Leibler (KL) divergence, such as the Fokker--Planck equation and Stein Variational Gradient Descent, evolve a distribution toward a target density known only up to a normalizing constant. We introduce new gradient flows of the KL divergence with a remarkable combination of properties: they admit accurate interacting-particle approximations in high dimensions, and the per-step cost scales linearly in both the number of particles and the dimension. These gradient flows are based on new transportation-based Riemannian geometries on the space of probability measures: the Radon--Wasserstein geometry and the related Regularized Radon--Wasserstein (RRW) geometry. We define these geometries using the Radon transform so that the gradient-flow velocities depend only on one-dimensional projections. This yields interacting-particle-based algorithms whose per-step cost follows from efficient Fast Fourier Transform-based evaluation of the required 1D convolutions. We additionally provide numerical experiments that study the performance of the proposed algorithms and compare convergence behavior and quantization. Finally, we prove some theoretical results including well-posedness of the flows and long-time convergence guarantees for the RRW flow.
comment: 49 pages, 7 figures; corrected Figure 4.4
♻ ☆ Science-Informed Design of Deep Learning With Applications to Wireless Systems: A Tutorial
Recent advances in computational infrastructure and large-scale data processing have accelerated the adoption of data-driven inference methods, particularly deep learning (DL), to solve problems in many scientific and engineering domains. In wireless systems, DL has been applied to problems where analytical modeling or optimization is difficult to formulate, relies on oversimplified assumptions, or becomes computationally intractable. However, conventional DL models are often regarded as non-transparent, as their internal reasoning mechanisms are difficult to interpret even when model parameters are fully accessible. This lack of transparency undermines trust and leads to three interrelated challenges: limited interpretability, weak generalization, and the absence of a principled framework for parameter tuning. Science-informed deep learning (ScIDL) has emerged as a promising paradigm to address these limitations by integrating scientific knowledge into deep learning pipelines. This integration enables more precise characterization of model behavior and provides clearer explanations of how and why DL models succeed or fail. Despite growing interest, the existing literature remains fragmented and lacks a unifying taxonomy. This tutorial presents a structured overview of ScIDL methods and their applications in wireless systems. We introduce a structured taxonomy that organizes the ScIDL landscape, present two representative case studies illustrating its use in challenging wireless problems, and discuss key challenges and open research directions. The pedagogical structure guides readers from foundational concepts to advanced applications, making the tutorial accessible to researchers in wireless communications without requiring prior expertise in AI.
♻ ☆ HSG-12M: A Large-Scale Benchmark of Spatial Multigraphs from the Energy Spectra of Non-Hermitian Crystals
AI is transforming scientific research by revealing new ways to understand complex physical systems, but its impact remains constrained by the lack of large, high-quality domain-specific datasets. A rich, largely untapped resource lies in non-Hermitian quantum physics, where the energy spectra of crystals form intricate geometries on the complex plane -- termed as Hamiltonian spectral graphs. Despite their significance as fingerprints for electronic behavior, their systematic study has been intractable due to the reliance on manual extraction. To unlock this potential, we introduce Poly2Graph: a high-performance, open-source pipeline that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Using this tool, we present HSG-12M: a dataset containing 11.6 million static and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-polynomial classes, distilled from 177 TB of spectral potential data. Crucially, HSG-12M is the first large-scale dataset of spatial multigraphs -- graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. This simultaneously addresses a critical gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial edges, discarding vital geometric information. Benchmarks with popular GNNs expose new challenges in learning spatial multi-edges at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for data-driven scientific discovery in condensed matter physics, new opportunities in geometry-aware graph learning and beyond.
comment: 48 pages, 13 figures, 14 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0. Benchmark scripts and data loaders included
♻ ☆ Key and Value Weights Are Probably All You Need: On the Necessity of the Query, Key, Value weight Triplet in Encoder-Only and Decoder-Only Transformers
We theoretically investigate whether the Query, Key, Value weight triplet can be reduced in encoder-only and decoder-only transformers. Under mild assumptions, we prove that Query weights are redundant and can be replaced with the identity matrix, reducing attention parameters by $25\%$. This also simplifies optimization: attention logits become linear rather than quadratic in learned weights. Validating on decoder-only GPT-style small models trained from scratch, we find that with adjusted attention scaling and weight decay, reduced models match baseline performance despite fewer parameters. Training remains stable at over $3\times$ lower weight decay, suggesting Query weight elimination provides implicit regularization. Our analysis has also led us to a structural expressivity boundary: in the mathematically tractable ReLU setting, skip connections push MLPs into a generically disjoint function class at fixed width. These findings motivate investigation across modalities and at scale, where the observed stability and efficiency gains may prove most consequential.
♻ ☆ Reservoir Predictive Path Integral Control for Unknown Nonlinear Dynamics IEEE
Neural networks have found extensive application in data-driven control of nonlinear dynamical systems, yet fast online identification and control of unknown dynamics remain central challenges. To meet these challenges, this paper integrates echo-state networks (ESNs)--reservoir computing models implemented with recurrent neural networks--and model predictive path integral (MPPI) control--sampling-based variants of model predictive control. The proposed reservoir predictive path integral (RPPI) enables fast learning of nonlinear dynamics with ESNs and exploits the learned nonlinearities directly in MPPI control computation without linearization approximations. This framework is further extended to uncertainty-aware RPPI (URPPI), which achieves robust stochastic control by treating ESN output weights as random variables and minimizing an expected cost over their distribution to account for identification errors. Experiments on controlling a Duffing oscillator and a four-tank system demonstrate that URPPI improves control performance, reducing control costs by up to 60% compared to traditional quadratic programming-based model predictive control methods.
comment: Submitted to IEEE for possible publication, 13 pages, 5 figures
♻ ☆ Feature Identification via the Empirical NTK
We provide evidence that eigenanalysis of the empirical neural tangent kernel (eNTK) can surface the features used by trained neural networks. Across three standard toy models for mechanistic interpretability, Toy Models of Superposition (TMS), a 1-layer MLP trained on modular addition and a 1-layer Transformer trained on modular addition, we find that top eigenspaces of the eNTK align with ground-truth features. In TMS, the eNTK recovers the ground-truth features in both the sparse (high superposition) and dense regimes. In modular arithmetic, the eNTK can be used to recover Fourier feature families. Moreover, we provide evidence that a layerwise eNTK localizes features to specific layers and that the evolution of the eNTK spectrum can be used to diagnose the grokking phase transition. These results suggest that eNTK analysis may provide a practical handle for feature discovery and for detecting phase changes in small models.
comment: 19 pages, 9 figures. v2: references and expanded discussion in Appendix B added. v3: Transformer case study and more appendices added
♻ ☆ GraphToxin: Reconstructing Full Unlearned Graphs from Graph Unlearning
Graph unlearning has emerged as a promising solution to comply with "the right to be forgotten" regulations by enabling the removal of sensitive information upon request. However, this solution is not foolproof. The involvement of multiple parties creates new attack surfaces, and residual traces of deleted data can still remain in the unlearned graph neural networks (GNNs). These vulnerabilities can be exploited by attackers to recover the supposedly erased samples, thereby undermining the intended functionality of graph unlearning. In this work, we propose GraphToxin, the first full graph reconstruction attack against graph unlearning. Specifically, we introduce a novel curvature matching module to provide fine-grained guidance for unlearned graph recovery. We demonstrate that GraphToxin can successfully subvert the regulatory guarantees expected from graph unlearning, it can recover not only a deleted individual's information and personal links but also sensitive content from their connections, thereby posing substantially more detrimental threats. Furthermore, we extend GraphToxin to multiple-node removal under both white-box and black-box settings, showcasing its practical feasibility and potential to cause considerable harm. We highlight the necessity of worst-case analysis and propose a systematic evaluation framework to assess attack performance under both random and worst-case node removal scenarios. Our extensive experiments demonstrate the effectiveness and flexibility of GraphToxin. Notably, existing defense mechanisms are largely ineffective against this attack or even amplify its performance in some cases. Given the severe privacy risks posed by GraphToxin, our work underscores the urgent need for more effective and robust defenses.
♻ ☆ Efficient Perplexity Bound and Ratio Matching in Discrete Diffusion Language Models
While continuous diffusion models excel in modeling continuous distributions, their application to categorical data has been less effective. Recent work has shown that ratio-matching through score-entropy within a continuous-time discrete Markov chain (CTMC) framework serves as a competitive alternative to autoregressive models in language modeling. To enhance this framework, we first introduce three new theorems concerning the KL divergence between the data and learned distribution. Our results serve as the discrete counterpart to those established for continuous diffusion models and allow us to derive an improved upper bound of the perplexity. Second, we empirically show that ratio-matching performed by minimizing the denoising cross-entropy between the clean and corrupted data enables models to outperform those utilizing score-entropy with up to 10% lower perplexity/generative-perplexity, and 15% faster training steps. To further support our findings, we introduce and evaluate a novel CTMC transition-rate matrix that allows prediction refinement, and derive the analytic expression for its matrix exponential which facilitates the computation of conditional ratios thus enabling efficient training and generation.
♻ ☆ Adversarial generalization of unfolding (model-based) networks NeurIPS2025
Unfolding networks are interpretable networks emerging from iterative algorithms, incorporate prior knowledge of data structure, and are designed to solve inverse problems like compressed sensing, which deals with recovering data from noisy, missing observations. Compressed sensing finds applications in critical domains, from medical imaging to cryptography, where adversarial robustness is crucial to prevent catastrophic failures. However, a solid theoretical understanding of the performance of unfolding networks in the presence of adversarial attacks is still in its infancy. In this paper, we study the adversarial generalization of unfolding networks when perturbed with $l_2$-norm constrained attacks, generated by the fast gradient sign method. Particularly, we choose a family of state-of-the-art overaparameterized unfolding networks and deploy a new framework to estimate their adversarial Rademacher complexity. Given this estimate, we provide adversarial generalization error bounds for the networks under study, which are tight with respect to the attack level. To our knowledge, this is the first theoretical analysis on the adversarial generalization of unfolding networks. We further present a series of experiments on real-world data, with results corroborating our derived theory, consistently for all data. Finally, we observe that the family's overparameterization can be exploited to promote adversarial robustness, shedding light on how to efficiently robustify neural networks.
comment: Accepted at NeurIPS2025
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established DirectHarm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Sampling for Model Predictive Trajectory Planning in Autonomous Driving using Normalizing Flows IEEE
Alongside optimization-based planners, sampling-based approaches are often used in trajectory planning for autonomous driving due to their simplicity. Model predictive path integral control is a framework that builds upon optimization principles while incorporating stochastic sampling of input trajectories. This paper investigates several sampling approaches for trajectory generation. In this context, normalizing flows originating from the field of variational inference are considered for the generation of sampling distributions, as they model transformations of simple to more complex distributions. Accordingly, learning-based normalizing flow models are trained for a more efficient exploration of the input domain for the task at hand. The developed algorithm and the proposed sampling distributions are evaluated in two simulation scenarios.
comment: Accepted to be published as part of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Shinhwa World, Jeju Island, Korea, June 2-5, 2024
♻ ☆ Generative modelling with jump-diffusions
Score-based diffusion models generate samples from an unknown target distribution using a time-reversed diffusion process. While such models represent state-of-the-art approaches in industrial applications such as artificial image generation, it has recently been noted that their performance can be further improved by considering injection noise with heavy tailed characteristics. Here, I present a generalization of generative diffusion processes to a wide class of non-Gaussian noise processes. I consider forward processes driven by standard Gaussian noise with super-imposed Poisson jumps representing a finite activity Levy process. The generative process is shown to be governed by a generalized score function that depends on the jump amplitude distribution and can be estimated by minimizing a simple MSE loss as in conventional Gaussian models. Both probability flow ODE and SDE formulations are derived using basic technical effort. A detailed implementation for a pure jump process with Laplace distributed amplitudes yields a generalized score function in closed analytical form and is shown to outperform the equivalent Gaussian model in specific parameter regimes.
comment: New version contains: (i) A generalized score function in closed analytical form leading to the jump-Laplace (JL) model; (ii) Additional numerical experiments comparing JL ODE/SDE, Gaussian ODE, and Levy-Ito-Model SDE
♻ ☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
♻ ☆ D$^2$Quant: Accurate Low-bit Post-Training Weight Quantization for LLMs
Large language models (LLMs) deliver strong performance, but their high compute and memory costs make deployment difficult in resource-constrained scenarios. Weight-only post-training quantization (PTQ) is appealing, as it reduces memory usage and enables practical speedup without low-bit operators or specialized hardware. However, accuracy often degrades significantly in weight-only PTQ at sub-4-bit precision, and our analysis identifies two main causes: (1) down-projection matrices are a well-known quantization bottleneck, but maintaining their fidelity often requires extra bit-width; (2) weight quantization induces activation deviations, but effective correction strategies remain underexplored. To address these issues, we propose D$^2$Quant, a novel weight-only PTQ framework that improves quantization from both the weight and activation perspectives. On the weight side, we design a Dual-Scale Quantizer (DSQ) tailored to down-projection matrices, with an absorbable scaling factor that significantly improves accuracy without increasing the bit budget. On the activation side, we propose Deviation-Aware Correction (DAC), which incorporates a mean-shift correction within LayerNorm to mitigate quantization-induced activation distribution shifts. Extensive experiments across multiple LLM families and evaluation metrics show that D$^2$Quant delivers superior performance for weight-only PTQ at sub-4-bit precision. The code and models will be available at https://github.com/XIANGLONGYAN/D2Quant.
♻ ☆ QUATRO: Query-Adaptive Trust Region Policy Optimization for LLM Fine-tuning
GRPO-style reinforcement learning (RL)-based LLM fine-tuning algorithms have recently gained popularity. Relying on heuristic trust-region approximations, however, they can lead to brittle optimization behavior, as global importance-ratio clipping and group-wise normalization fail to regulate samples whose importance ratios fall outside the clipping range. We propose Query-Adaptive Trust-Region policy Optimization (QUATRO), which directly enforces trust-region constraints through a principled optimization. This yields a clear and interpretable objective that enables explicit control over policy updates and stable, entropy-controlled optimization, with a stabilizer terms arising intrinsically from the exact trust-region formulation. Empirically verified on diverse mathematical reasoning benchmarks, QUATRO shows stable training under increased policy staleness and aggressive learning rates, maintaining well-controlled entropy throughout training.
♻ ☆ Multi-Order Wavelet Derivative Transform for Deep Time Series Forecasting
In deep time series forecasting, the Fourier Transform (FT) is extensively employed for frequency representation learning. However, it often struggles in capturing multi-scale, time-sensitive patterns. Although the Wavelet Transform (WT) can capture these patterns through frequency decomposition, its coefficients are insensitive to change points in time series, leading to suboptimal modeling. To mitigate these limitations, we introduce the multi-order Wavelet Derivative Transform (WDT) grounded in the WT, enabling the extraction of time-aware patterns spanning both the overall trend and subtle fluctuations. Compared with the standard FT and WT, which model the raw series, the WDT operates on the derivative of the series, selectively magnifying rate-of-change cues and exposing abrupt regime shifts that are particularly informative for time series modeling. Practically, we embed the WDT into a multi-branch framework named WaveTS, which decomposes the input series into multi-scale time-frequency coefficients, refines them via linear layers, and reconstructs them into the time domain via the inverse WDT. Extensive experiments on ten benchmark datasets demonstrate that WaveTS achieves state-of-the-art forecasting accuracy while retaining high computational efficiency.
comment: Preprint
♻ ☆ FLAME: Flow Enhanced Legendre Memory Models for General Time Series Forecasting
In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.
♻ ☆ Deep learning methods for inverse problems using connections between proximal operators and Hamilton-Jacobi equations
Inverse problems are important mathematical problems that seek to recover model parameters from noisy data. Since inverse problems are often ill-posed, they require regularization or incorporation of prior information about the underlying model or unknown variables. Proximal operators, ubiquitous in nonsmooth optimization, are central to this because they provide a flexible and convenient way to encode priors and build efficient iterative algorithms. They have also recently become key to modern machine learning methods, e.g., for plug-and-play methods for learned denoisers and deep neural architectures for learning priors of proximal operators. The latter was developed partly due to recent work characterizing proximal operators of nonconvex priors as subdifferential of convex potentials. In this work, we propose to leverage connections between proximal operators and Hamilton-Jacobi partial differential equations (HJ PDEs) to develop novel deep learning architectures for learning the prior. In contrast to other existing methods, we learn the prior directly without recourse to inverting the prior after training. We present several numerical results that demonstrate the efficiency of the proposed method in high dimensions.
♻ ☆ SALAAD: Sparse And Low-Rank Adaptation via ADMM for Large Language Model Inference
Modern large language models are increasingly deployed under compute and memory constraints, making flexible control of model capacity a central challenge. While sparse and low-rank structures naturally trade off capacity and performance, existing approaches often rely on heuristic designs that ignore layer and matrix heterogeneity or require model-specific architectural modifications. We propose SALAAD, a plug-and-play framework applicable to different model architectures that induces sparse and low-rank structures during training. By formulating structured weight learning under an augmented Lagrangian framework and introducing an adaptive controller that dynamically balances the training loss and structural constraints, SALAAD preserves the stability of standard training dynamics while enabling explicit control over the evolution of effective model capacity during training. Experiments across model scales show that SALAAD substantially reduces memory consumption during deployment while achieving performance comparable to ad-hoc methods. Moreover, a single training run yields a continuous spectrum of model capacities, enabling smooth and elastic deployment across diverse memory budgets without the need for retraining.
♻ ☆ Are Time-Indexed Foundation Models the Future of Time Series Imputation?
Foundation models for time series imputation remain largely unexplored. Recently, two such models, TabPFN-TS and MoTM, have emerged. These models share a common philosophy that places them within the family of time-indexed foundation models. This paper presents the first large-scale empirical study of these models for zero-shot imputation, which enables missing value recovery without retraining across a wide range of scenarios. We conduct extensive univariate experiments across 33 out-of-domain datasets (approximately 1.3M imputation windows) and evaluate their ability to integrate covariates at inference time to improve accuracy without fine-tuning. Our results demonstrate that time-indexed foundation models are a powerful and practical step toward achieving general-purpose, zero-shot imputation for real-world time series.
♻ ☆ PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
♻ ☆ Learning Nonlinear Heterogeneity in Physical Kolmogorov-Arnold Networks
Physical neural networks typically train linear synaptic weights while treating device nonlinearities as fixed. We show the opposite - by training the synaptic nonlinearity itself, as in Kolmogorov-Arnold Network (KAN) architectures, we yield markedly higher task performance per physical resource and improved performance-parameter scaling than conventional linear weight-based networks, demonstrating ability of KAN topologies to exploit reconfigurable nonlinear physical dynamics. We experimentally realise physical KANs in silicon-on-insulator devices we term 'Synaptic Nonlinear Elements' (SYNEs), operating at room temperature, microampere currents, 2 MHz speeds and ~750 fJ per nonlinear operation, with no observed degradation over 10^13 measurements and months-long timescales. We demonstrate nonlinear function regression, classification, and prediction of Li-Ion battery dynamics from noisy real-world multi-sensor data. Physical KANs outperform equivalently-parameterised software multilayer perceptron networks across all tasks, with up to two orders of magnitude fewer parameters, and two orders of magnitude fewer devices than linear weight based physical networks. These results establish learned physical nonlinearity as a hardware-native computational primitive for compact and efficient learning systems, and SYNE devices as effective substrates for heterogenous nonlinear computing.
♻ ☆ A Free Lunch in LLM Compression: Revisiting Retraining after Pruning
Post-training pruning substantially reduces inference costs but often causes severe quality degradation without adapting the remaining weights. For LLMs, such retraining is commonly considered impractical due to large computational costs, motivating increasingly sophisticated pruning criteria to compensate by selecting better sparsity patterns. In this work, we revisit post-pruning adaptation and study local reconstruction: adapting only a small pruned submodel at a time using a small calibration set by matching intermediate activations of the dense model. We conduct a large-scale study across model families and scales (up to 72B parameters) and establish three central results. First, local reconstruction is an effective adaptation mechanism for LLMs, matching post-pruning PEFT while using over an order of magnitude less data and compute. Second, we identify a broad "free lunch" regime in reconstruction granularity: across a wide range of submodel sizes, final quality remains essentially unchanged, allowing granularity to be chosen based on memory constraints. Finally, with reconstruction, the pruning criterion becomes less critical: performance gaps between sophisticated methods and simple baselines shrink with model size, making simple methods competitive again. Collectively, our results challenge the prevailing narrative that post-pruning adaptation is impractical for LLMs.
♻ ☆ Bayesian Matrix Decomposition and Applications
The sole aim of this book is to give a self-contained introduction to concepts and mathematical tools in Bayesian matrix decomposition in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning Bayesian matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of variational inference for conducting the optimization. We refer the reader to literature in the field of Bayesian analysis for a more detailed introduction to the related fields. This book is primarily a summary of purpose, significance of important Bayesian matrix decomposition methods, e.g., real-valued decomposition, nonnegative matrix factorization, Bayesian interpolative decomposition, and the origin and complexity of the methods which shed light on their applications. The mathematical prerequisite is a first course in statistics and linear algebra. Other than this modest background, the development is self-contained, with rigorous proof provided throughout.
♻ ☆ Efficient LLM Moderation with Multi-Layer Latent Prototypes
Although modern LLMs are aligned with human values during post-training, robust moderation remains essential to prevent harmful outputs at deployment time. Existing approaches suffer from performance-efficiency trade-offs and are difficult to customize to user-specific requirements. Motivated by this gap, we introduce Multi-Layer Prototype Moderator (MLPM), a lightweight and highly customizable input moderation tool. We propose leveraging prototypes of intermediate representations across multiple layers to improve moderation quality while maintaining high efficiency. By design, our method adds negligible overhead to the generation pipeline and can be seamlessly applied to any model. MLPM achieves state-of-the-art performance on diverse moderation benchmarks and demonstrates strong scalability across model families of various sizes. Moreover, we show that it integrates smoothly into end-to-end moderation pipelines and further improves response safety when combined with output moderation techniques. Overall, our work provides a practical and adaptable solution for safe, robust, and efficient LLM deployment.
♻ ☆ FreDN: Spectral Disentanglement for Time Series Forecasting via Learnable Frequency Decomposition
Time series forecasting is essential in a wide range of real world applications. Recently, frequency-domain methods have attracted increasing interest for their ability to capture global dependencies. However, when applied to non-stationary time series, these methods encounter the $\textit{spectral entanglement}$ and the computational burden of complex-valued learning. The $\textit{spectral entanglement}$ refers to the overlap of trends, periodicities, and noise across the spectrum due to $\textit{spectral leakage}$ and the presence of non-stationarity. However, existing decompositions are not suited to resolving spectral entanglement. To address this, we propose the Frequency Decomposition Network (FreDN), which introduces a learnable Frequency Disentangler module to separate trend and periodic components directly in the frequency domain. Furthermore, we propose a theoretically supported ReIm Block to reduce the complexity of complex-valued operations while maintaining performance. We also re-examine the frequency-domain loss function and provide new theoretical insights into its effectiveness. Extensive experiments on seven long-term forecasting benchmarks demonstrate that FreDN outperforms state-of-the-art methods by up to 10\%. Furthermore, compared with standard complex-valued architectures, our real-imaginary shared-parameter design reduces the parameter count and computational cost by at least 50\%.
comment: Added a code link and fixed minor typos
♻ ☆ Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints
Physics-constrained generative modeling aims to produce high-dimensional samples that are both physically consistent and distributionally accurate, a task that remains challenging due to often conflicting optimization objectives. Recent advances in flow matching and diffusion models have enabled efficient generative modeling, but integrating physical constraints often degrades generative fidelity or requires costly inference-time corrections. Our work is the first to recognize the trade-off between distributional and physical accuracy. Based on the insight of inherently conflicting objectives, we introduce Physics-Based Flow Matching (PBFM) a method that enforces physical constraints at training time using conflict-free gradient updates and unrolling to mitigate Jensen's gap. Our approach avoids manual loss balancing and enables simultaneous optimization of generative and physical objectives. As a consequence, physics constraints do not impede inference performance. We benchmark our method across three representative PDE benchmarks. PBFM achieves a Pareto-optimal trade-off, competitive inference speed, and generalizes to a wide range of physics-constrained generative tasks, providing a practical tool for scientific machine learning. Code and datasets available at https://github.com/tum-pbs/PBFM.
♻ ☆ Forecasting with Hyper-Trees
We introduce Hyper-Trees as a novel framework for modeling time series data using gradient boosted trees. Unlike conventional tree-based approaches that forecast time series directly, Hyper-Trees learn the parameters of a target time series model, such as ARIMA or Exponential Smoothing, as functions of features. These parameters are then used by the target model to generate the final forecasts. Our framework combines the effectiveness of decision trees on tabular data with classical forecasting models, thereby inducing a time series inductive bias into tree-based models. To resolve the scaling limitations of boosted trees when estimating a high-dimensional set of target model parameters, we combine decision trees and neural networks within a unified framework. In this hybrid approach, the trees generate informative representations from the input features, which a shallow network then uses as input to learn the parameters of a time series model. With our research, we explore the effectiveness of Hyper-Trees across a range of forecasting tasks and extend tree-based modeling beyond its conventional use in time series analysis.
comment: Gradient Boosted Trees, Hyper Models, Hybrid Models, Time Series Forecasting, Time-Varying Parameters
♻ ☆ Position: Epistemic uncertainty estimation methods are fundamentally incomplete
Identifying and disentangling sources of predictive uncertainty is essential for trustworthy supervised learning. We argue that widely used second-order methods that disentangle aleatoric and epistemic uncertainty are fundamentally incomplete. First, we show that unaccounted bias contaminates uncertainty estimates by overestimating aleatoric (data-related) uncertainty and underestimating the epistemic (model-related) counterpart, leading to incorrect uncertainty quantification. Second, we demonstrate that existing methods capture only partial contributions to the variance-driven part of epistemic uncertainty; different approaches account for different variance sources, yielding estimates that are incomplete and difficult to interpret. Together, these results highlight that current epistemic uncertainty estimates can only be used in safety-critical and high-stakes decision-making when limitations are fully understood by end users and acknowledged by AI developers.
♻ ☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
♻ ☆ Steering LLMs via Scalable Interactive Oversight
As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
♻ ☆ Board gender diversity and emissions performance: Insights from panel regressions, machine learning, and explainable AI
With European Union initiatives mandating gender quotas on corporate boards, a key question arises: Is greater board gender diversity (BGD) associated with better emissions performance (EP)? To answer this question, we examine the influence of BGD on EP across a sample of European firms from 2016 to 2022. Using panel regressions, advanced machine learning algorithms, and explainable AI, we reveal a non-linear relationship. Specifically, EP improves with BGD up to an optimal level of approximately 35 %, beyond which further increases in BGD yield no additional improvement in EP. A minimum BGD threshold of 22 % is necessary for meaningful improvements in EP. To assess the legitimacy of EP outcomes, this study examines whether ESG controversies weaken the BGD-EP relationship. The results show no significant effect, suggesting that BGD's impact is driven by governance mechanisms rather than symbolic actions. Additionally, path analysis indicates that while environmental innovation contributes to EP, it is not the mediating channel through which BGD promotes EP. The results have implications for academics, businesses, and regulators.
comment: 18 pages
♻ ☆ Robust Federated Learning via Byzantine Filtering over Encrypted Updates
Federated Learning (FL) aims to train a collaborative model while preserving data privacy. However, the distributed nature of this approach still raises privacy and security issues, such as the exposure of sensitive data due to inference attacks and the influence of Byzantine behaviors on the trained model. In particular, achieving both secure aggregation and Byzantine resilience remains challenging, as existing solutions often address these aspects independently. In this work, we propose to address these challenges through a novel approach that combines homomorphic encryption for privacy-preserving aggregation with property-inference-inspired meta-classifiers for Byzantine filtering. First, following the property-inference attacks blueprint, we train a set of filtering meta-classifiers on labeled shadow updates, reproducing a diverse ensemble of Byzantine misbehaviors in FL, including backdoor, gradient-inversion, label-flipping and shuffling attacks. The outputs of these meta-classifiers are then used to cancel the Byzantine encrypted updates by reweighting. Second, we propose an automated method for selecting the optimal kernel and the dimensionality hyperparameters with respect to homomorphic inference, aggregation constraints and efficiency over the CKKS cryptosystem. Finally, we demonstrate through extensive experiments the effectiveness of our approach against Byzantine participants on the FEMNIST, CIFAR10, GTSRB, and acsincome benchmarks. More precisely, our SVM filtering achieves accuracies between $90$% and $94$% for identifying Byzantine updates at the cost of marginal losses in model utility and encrypted inference runtimes ranging from $6$ to $24$ seconds and from $9$ to $26$ seconds for an overall aggregation.
♻ ☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
♻ ☆ Physics-informed extreme learning machine for Terzaghi consolidation problems and interpretation of coefficient of consolidation based on CPTu data
This paper conducts a preliminary study to investigate the feasibility of a physics-informed extreme learning machine (PIELM) for solving the Terzaghi consolidation equation and interpreting the coefficient of consolidation of soil from piezocone penetration tests (CPTu). In the PIELM framework, the target solution is approximated by a single-layer feed-forward extreme learning machine (ELM) network, instead of the deep neural networks typically employed in physics-informed neural networks (PINNs). Physical laws and measured data are integrated into a loss vector, which is minimized via least squares methods during ELM training. As a result, training efficiency is significantly improved by avoiding the gradient-descent optimisation commonly used in PINNs. The performance of PIELM is evaluated using three forward-problem case studies. Notably, a time-stepping strategy is incorporated into the PIELM framework to alleviate sharp gradients caused by inconsistent initial and boundary conditions. This paper further applies PIELM to estimate the soil consolidation coefficient, given that initial distributions of excess water pressure are often unavailable in CPTu dissipation tests (conducted following the pauses of penetration). By combining physical laws (excluding initial conditions) with measured data (i.e., excess pore-water pressure at the probe surface), the results demonstrate that PIELM is an effective tool for interpreting CPTu dissipation tests, owing to its ability to fuse data with physical constraints. This study contributes to the interpretation of consolidation coefficients from CPTu dissipation tests, particularly in scenarios where initial distributions of excess water pressure are not prior-known.
♻ ☆ Rethinking Multi-Modal Learning from Gradient Uncertainty
Multi-Modal Learning (MML) integrates information from diverse modalities to improve predictive accuracy. While existing optimization strategies have made significant strides by mitigating gradient direction conflicts, we revisit MML from a gradient-based perspective to explore further improvements. Empirically, we observe an interesting phenomenon: performance fluctuations can persist in both conflict and non-conflict settings. Based on this, we argue that: beyond gradient direction, the intrinsic reliability of gradients acts as a decisive factor in optimization, necessitating the explicit modeling of gradient uncertainty. Guided by this insight, we propose Bayesian-Oriented Gradient Calibration for MML (BOGC-MML). Our approach explicitly models gradients as probability distributions to capture uncertainty, interpreting their precision as evidence within the framework of subjective logic and evidence theory. By subsequently aggregating these signals using a reduced Dempster's combination rule, BOGC-MML adaptively weights gradients based on their reliability to generate a calibrated update. Extensive experiments demonstrate the effectiveness and advantages of the proposed method.
♻ ☆ Federated Sinkhorn
We study distributed Sinkhorn iterations for entropy-regularized optimal transport when the Gibbs kernel operator is row-partitioned across c workers and cannot be centralized. We present Federated Sinkhorn, two exact synchronous protocols that exchange only scaling-vector slices: (i) an All-to-All scheme implemented by Allgather, and (ii) a Star (parameter-server) scheme implemented by client to server sends and server to client broadcasts. For both, we derive closed-form per-iteration compute, communication, and memory costs under an alpha-beta latency--bandwidth model, and show that the distributed iterates match centralized Sinkhorn under standard positivity assumptions. Multi-node CPU/GPU experiments validate the model and show that repeated global scaling exchange quickly becomes the dominant bottleneck as c increases. We also report an optional bounded-delay asynchronous schedule and an optional privacy measurement layer for communicated log-scalings.
♻ ☆ On topological descriptors for graph products NeurIPS 2025
Topological descriptors have been increasingly utilized for capturing multiscale structural information in relational data. In this work, we consider various filtrations on the (box) product of graphs and the effect on their outputs on the topological descriptors - the Euler characteristic (EC) and persistent homology (PH). In particular, we establish a complete characterization of the expressive power of EC on general color-based filtrations. We also show that the PH descriptors of (virtual) graph products contain strictly more information than the computation on individual graphs, whereas EC does not. Additionally, we provide algorithms to compute the PH diagrams of the product of vertex- and edge-level filtrations on the graph product. We also substantiate our theoretical analysis with empirical investigations on runtime analysis, expressivity, and graph classification performance. Overall, this work paves way for powerful graph persistent descriptors via product filtrations. Code is available at https://github.com/Aalto-QuML/tda_graph_product.
comment: 26 pages, 4 tables, 5 figures. Accepted at NeurIPS 2025. Final version, clarified and fixed a bug
♻ ☆ FastKV: Decoupling of Context Reduction and KV Cache Compression for Prefill-Decoding Acceleration
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ XTransfer: Modality-Agnostic Few-Shot Model Transfer for Human Sensing at the Edge
Deep learning for human sensing on edge systems presents significant potential for smart applications. However, its training and development are hindered by the limited availability of sensor data and resource constraints of edge systems. While transferring pre-trained models to different sensing applications is promising, existing methods often require extensive sensor data and computational resources, resulting in high costs and limited transferability. In this paper, we propose XTransfer, a first-of-its-kind method enabling modality-agnostic, few-shot model transfer with resource-efficient design. XTransfer flexibly uses pre-trained models and transfers knowledge across different modalities by (i) model repairing that safely mitigates modality shift by adapting pre-trained layers with only few sensor data, and (ii) layer recombining that efficiently searches and recombines layers of interest from source models in a layer-wise manner to restructure models. We benchmark various baselines across diverse human sensing datasets spanning different modalities. The results show that XTransfer achieves state-of-the-art performance while significantly reducing the costs of sensor data collection, model training, and edge deployment.
♻ ☆ Context-Free Recognition with Transformers
Transformers excel empirically on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs. Past work proves that $\mathcal{O}(\log(n))$ looping layers (w.r.t. input length n) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
♻ ☆ PiFlow: Principle-Aware Scientific Discovery with Multi-Agent Collaboration
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering the systematic reduction of uncertainty. Overcoming these limitations fundamentally requires a principled approach to exploration. We introduce PiFlow, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). Extensive evaluations across three distinct scientific domains demonstrate that PiFlow (I) improves discovery efficiency by 31.18%~41.73% and solution quality by 12.47%~31.72% against state-of-the-art methods, (II) delivers a 5.6x speedup in time-to-solution while reducing token consumption by up to 27% compared to vanilla agents, and (III) serves as a Plug-and-Play module that generalizes on existing agent architecture. Overall, PiFlow establishes a novel paradigm shift in highly efficient agentic scientific discovery, paving the way for more robust and accelerated AI-driven research.
♻ ☆ dUltra: Ultra-Fast Diffusion Language Models via Reinforcement Learning
Masked diffusion language models (MDLMs) offer the potential for parallel token generation, but most open-source MDLMs decode fewer than 5 tokens per model forward pass even with sophisticated sampling strategies, limiting their parallel generation potential. Existing acceleration methods either rely on fixed confidence-based heuristics or use distillation-based approaches that finetune MDLMs on trajectories generated by a base model, which can become off-policy during finetuning and restrict performance to the quality of the base model's samples. We propose \texttt{dUltra}, an on-policy reinforcement learning framework based on Group Relative Policy Optimization (GRPO) that learns unmasking strategies for efficient parallel decoding. dUltra introduces an unmasking planner head that predicts per-token unmasking likelihoods under independent Bernoulli distributions. We jointly optimize the base diffusion LLM and the unmasking order planner using reward signals combining verifiable reward, distillation reward, and the number of unmasking steps. Across mathematical reasoning and code generation tasks, dUltra achieves superior accuracy-efficiency trade-offs compared to state-of-the-art heuristic (Fast-dLLM) and distillation baselines (d3LLM, dParallel), demonstrating that learned unmasking trajectories through on-policy RL enable better exploitation of parallel generation in MDLMs. Code and checkpoints are released at https://github.com/chinsengi/dUltra-os.
♻ ☆ BLITZRANK: Principled Zero-shot Ranking Agents with Tournament Graphs
Selecting the top $m$ from $n$ items via expensive $k$-wise comparisons is fundamental to settings ranging from LLM-based document reranking to crowdsourced evaluation and tournament design. Existing methods either rely on heuristics that fail to fully exploit the information each comparison reveals, or are inefficient when they do. We introduce a tournament graph framework that provides a principled foundation for $k$-wise ranking. Our key observation is that each $k$-item comparison reveals a complete tournament of $\binom{k}{2}$ pairwise preferences; aggregating these into a global preference graph and computing its transitive closure yields many additional orderings without further oracle calls. We formalize when an item's rank is certifiably determined and design a greedy query schedule that maximizes information gain towards identifying the top-$m$ items. The framework also gracefully handles non-transitive preferences (cycles induced by real-world oracles) by collapsing them into equivalence classes that yield principled tiered rankings. Applied to LLM reranking across 14 benchmarks and 5 models, our method achieves Pareto dominance over existing approaches: matching or exceeding accuracy while requiring 25-40% fewer tokens than comparable methods, and $7\times$ fewer than pairwise reranking at near-identical quality.
♻ ☆ STAG: Structural Test-time Alignment of Gradients for Online Adaptation
Test-Time Adaptation (TTA) adapts pre-trained models using only unlabeled test streams, requiring real-time inference and update without access to source data. We propose StructuralTest-time Alignment of Gradients (STAG), a lightweight plug-in enhancer that exploits an always-available structural signal: the classifier's intrinsic geometry. STAG derives class-wise structural anchors from classifier weights via self-structural entropy, and during adaptation analytically computes the predicted-class entropy gradient from forward-pass quantities, aligning it to the corresponding anchor with a cosine-similarity loss. This closed-form design incurs near-zero memory and latency overhead and requires no additional backpropagation beyond the underlying baseline. Across corrupted image classification and continual semantic segmentation, STAG provides broadly applicable performance gains for strong TTA baselines on both CNN and Transformer architectures regardless of the underlying normalization scheme, with particularly large gains under challenging online regimes such as imbalanced label shifts, single-sample adaptation, mixed corruption streams and long-horizon continual TTA.
♻ ☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
♻ ☆ Nonparametric Evaluation of Noisy ICA Solutions NeurIPS 2024
Independent Component Analysis (ICA) was introduced in the 1980's as a model for Blind Source Separation (BSS), which refers to the process of recovering the sources underlying a mixture of signals, with little knowledge about the source signals or the mixing process. While there are many sophisticated algorithms for estimation, different methods have different shortcomings. In this paper, we develop a nonparametric score to adaptively pick the right algorithm for ICA with arbitrary Gaussian noise. The novelty of this score stems from the fact that it just assumes a finite second moment of the data and uses the characteristic function to evaluate the quality of the estimated mixing matrix without any knowledge of the parameters of the noise distribution. In addition, we propose some new contrast functions and algorithms that enjoy the same fast computability as existing algorithms like FASTICA and JADE but work in domains where the former may fail. While these also may have weaknesses, our proposed diagnostic, as shown by our simulations, can remedy them. Finally, we propose a theoretical framework to analyze the local and global convergence properties of our algorithms.
comment: NeurIPS 2024 (Main Conference Track). 44 pages
♻ ☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
♻ ☆ Explainable Transformer-Based Email Phishing Classification with Adversarial Robustness
Phishing and related cyber threats are becoming more varied and technologically advanced. Among these, email-based phishing remains the most dominant and persistent threat. These attacks exploit human vulnerabilities to disseminate malware or gain unauthorized access to sensitive information. Deep learning (DL) models, particularly transformer-based models, have significantly enhanced phishing mitigation through their contextual understanding of language. However, some recent threats, specifically Artificial Intelligence (AI)-generated phishing attacks, are reducing the overall system resilience of phishing detectors. In response, adversarial training has shown promise against AI-generated phishing threats. This study presents a hybrid approach that uses DistilBERT, a smaller, faster, and lighter version of the BERT transformer model for email classification. Robustness against text-based adversarial perturbations is reinforced using Fast Gradient Method (FGM) adversarial training. Furthermore, the framework integrates the LIME Explainable AI (XAI) technique to enhance the transparency of the DistilBERT architecture. The framework also uses the Flan-T5-small language model from Hugging Face to generate plain-language security narrative explanations for end-users. This combined approach ensures precise phishing classification while providing easily understandable justifications for the model's decisions.
♻ ☆ Training in reverse: How iteration order influences convergence and stability in deep learning
Despite exceptional achievements, training neural networks remains computationally expensive and is often plagued by instabilities that can degrade convergence. While learning rate schedules can help mitigate these issues, finding optimal schedules is time-consuming and resource-intensive. This work explores theoretical issues concerning training stability in the constant-learning-rate (i.e., without schedule) and small-batch-size regime. Surprisingly, we show that the composition order of gradient updates affects stability and convergence in gradient-based optimizers. We illustrate this new line of thinking using backward-SGD, which produces parameter iterates at each step by reverting the usual forward composition order of batch gradients. Our theoretical analysis shows that in contractive regions (e.g., around minima) backward-SGD converges to a point while the standard forward-SGD generally only converges to a distribution. This leads to improved stability and convergence which we demonstrate experimentally. While full backward-SGD is computationally intensive in practice, it highlights that the extra freedom of modifying the usual iteration composition by reusing creatively previous batches at each optimization step may have important beneficial effects in improving training. Our experiments provide a proof of concept supporting this phenomenon. To our knowledge, this represents a new and unexplored avenue in deep learning optimization.
♻ ☆ Layer of Truth: Probing Belief Shifts under Continual Pre-Training Poisoning
We show that continual pretraining on plausible misinformation can overwrite specific factual knowledge in large language models without degrading overall performance. Unlike prior poisoning work under static pretraining, we study repeated exposure to counterfactual claims during continual updates. Using paired fact-counterfact items with graded poisoning ratios, we track how internal preferences between competing facts evolve across checkpoints, layers, and model scales. Even moderate poisoning (50-100%) flips over 55% of responses from correct to counterfactual while leaving ambiguity nearly unchanged. These belief flips emerge abruptly, concentrate in late layers (e.g., Layers 29-36 in 3B models), and are partially reversible via patching (up to 56.8%). The corrupted beliefs generalize beyond poisoned prompts, selectively degrading commonsense reasoning while leaving alignment benchmarks largely intact and transferring imperfectly across languages. These results expose a failure mode of continual pre-training in which targeted misinformation replaces internal factual representations without triggering broad performance collapse, motivating representation-level monitoring of factual integrity during model updates.
♻ ☆ Tokenizing Single-Channel EEG with Time-Frequency Motif Learning ICLR 2026
Foundation models are reshaping EEG analysis, yet an important problem of EEG tokenization remains a challenge. This paper presents TFM-Tokenizer, a novel tokenization framework that learns a vocabulary of time-frequency motifs from single-channel EEG signals and encodes them into discrete tokens. We propose a dual-path architecture with time-frequency masking to capture robust motif representations, and it is model-agnostic, supporting both lightweight transformers and existing foundation models for downstream tasks. Our study demonstrates three key benefits: Accuracy: Experiments on four diverse EEG benchmarks demonstrate consistent performance gains across both single- and multi-dataset pretraining settings, achieving up to $11\%$ improvement in Cohen's Kappa over strong baselines. Generalization: Moreover, as a plug-and-play component, it consistently boosts the performance of diverse foundation models, including BIOT and LaBraM. Scalability: By operating at the single-channel level rather than relying on the strict 10-20 EEG system, our method has the potential to be device-agnostic. Experiments on ear-EEG sleep staging, which differs from the pretraining data in signal format, channel configuration, recording device, and task, show that our tokenizer outperforms baselines by $14\%$. A comprehensive token analysis reveals strong class-discriminative, frequency-aware, and consistent structure, enabling improved representation quality and interpretability. Code is available at https://github.com/Jathurshan0330/TFM-Tokenizer.
comment: Accepted to ICLR 2026
♻ ☆ Dynamic Expert Quantization for Scalable Mixture-of-Experts Inference
Mixture-of-Experts (MoE) has become a practical architecture for scaling LLM capacity while keeping per-token compute modest, but deploying MoE models on a single, memory-limited GPU remains difficult because expert weights dominate the HBM footprint. Existing expert offloading and prefetching systems reduce the resident set, yet they often pay expert-loading costs on the critical path when activation becomes dense. Post-training quantization (PTQ) lowers the footprint without transfers, but prevailing pipelines fix expert bit-widths offline and assume routing remains stable, even though MoE expert utilization is heavy-tailed and the hot set can shift across workloads. We present DynaExq, a runtime-aware mixed-precision serving system that treats single-GPU MoE inference under a hard HBM envelope as an online, budget-constrained precision allocation problem. The key insight is to keep the experts that dominate runtime traffic resident at higher precision, while maintaining a low-precision fallback for the remaining experts, so the system can reduce transfer volume and avoid the waiting latency that limits offloading and prefetching under dense activation. DynaExq estimates long-horizon expert hotness from router traces, selects a per-layer high-precision resident set via a budget-feasible top-$n$ rule, and applies promotions and demotions asynchronously through stable expert handles so the forward pass always executes on a fully materialized expert version. Across Qwen3-MoE-30B/80B and six benchmarks, DynaExq improves accuracy over static PTQ on Qwen3-80B (73.09% to 77.57%) under comparable device-memory budgets and achieves up to 2.73x higher throughput than offloading/prefetch baselines at batch size 32.
comment: 13 pages
♻ ☆ MDAgent2: Large Language Model for Code Generation and Knowledge Q&A in Molecular Dynamics
Molecular dynamics (MD) simulations are essential for understanding atomic-scale behaviors in materials science, yet writing LAMMPS scripts remains highly specialized and time-consuming tasks. Although LLMs show promise in code generation and domain-specific question answering, their performance in MD scenarios is limited by scarce domain data, the high deployment cost of state-of-the-art LLMs, and low code executability. Building upon our prior MDAgent, we present MDAgent2, the first end-to-end framework capable of performing both knowledge Q&A and code generation within the MD domain. We construct a domain-specific data-construction pipeline that yields three high-quality datasets spanning MD knowledge, question answering, and code generation. Based on these datasets, we adopt a three stage post-training strategy--continued pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning (RL)--to train two domain-adapted models, MD-Instruct and MD-Code. Furthermore, we introduce MD-GRPO, a closed-loop RL method that leverages simulation outcomes as reward signals and recycles low-reward trajectories for continual refinement. We further build MDAgent2-RUNTIME, a deployable multi-agent system that integrates code generation, execution, evaluation, and self-correction. Together with MD-EvalBench proposed in this work, the first benchmark for LAMMPS code generation and question answering, our models and system achieve performance surpassing several strong baselines.This work systematically demonstrates the adaptability and generalization capability of large language models in industrial simulation tasks, laying a methodological foundation for automatic code generation in AI for Science and industrial-scale simulations. URL: https://github.com/FredericVAN/PKU_MDAgent2
comment: 24 pages,4 figures
♻ ☆ Hyperbolic Fine-Tuning for Large Language Models NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable performance across various tasks. However, it remains an open question whether the default Euclidean space is the most suitable choice for LLMs. In this study, we investigate the geometric characteristics of LLMs, focusing specifically on tokens and their embeddings. Our findings reveal that token frequency follows a power-law distribution, where high-frequency tokens (e.g., the, that ) constitute the minority, while low-frequency tokens (e.g., apple, dog) constitute the majority. Furthermore, high-frequency tokens cluster near the origin, whereas low-frequency tokens are positioned farther away in the embedding space. Additionally, token embeddings exhibit hyperbolic characteristics, indicating a latent tree-like structure within the embedding space. Motivated by these observations, we propose HypLoRA, an efficient fine-tuning approach that operates in hyperbolic space to exploit these underlying hierarchical structures better. HypLoRA performs low-rank adaptation directly in hyperbolic space, thereby preserving hyperbolic modeling capabilities throughout the fine-tuning process. Extensive experiments across various base models and reasoning benchmarks, specifically arithmetic and commonsense reasoning tasks, demonstrate that HypLoRA substantially improves LLM performance.
comment: NeurIPS 2025; https://github.com/marlin-codes/HypLoRA
♻ ☆ EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations ACM MM 2024
Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.
comment: 15 pages, 9 figures. Oral presentation at ACM MM 2024
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ SoliReward: Mitigating Susceptibility to Reward Hacking and Annotation Noise in Video Generation Reward Models
Post-training alignment of video generation models with human preferences is a critical goal. Developing effective Reward Models (RMs) for this process faces significant methodological hurdles. Current data collection paradigms, reliant on in-prompt pairwise annotations, suffer from labeling noise. Concurrently, the architectural design of VLM-based RMs, particularly their output mechanisms, remains underexplored. Furthermore, RM is susceptible to reward hacking in post-training. To mitigate these limitations, we propose SoliReward, a systematic framework for video RM training. Our framework first sources high-quality, cost-efficient data via single-item binary annotations, then constructs preference pairs using a cross-prompt pairing strategy. Architecturally, we employ a Hierarchical Progressive Query Attention mechanism to enhance feature aggregation. Finally, we introduce a modified BT loss that explicitly accommodates win-tie scenarios. This approach regularizes the RM's score distribution for positive samples, providing more nuanced preference signals to alleviate over-focus on a small number of top-scoring samples. Our approach is validated on benchmarks evaluating physical plausibility, subject deformity, and semantic alignment, demonstrating improvements in direct RM evaluation metrics and in the efficacy of post-training on video generation models. Code and benchmark are available at https://github.com/lian700/SoliReward
comment: 16 pages, 9 figures
♻ ☆ Euphonium: Steering Video Flow Matching via Process Reward Gradient Guided Stochastic Dynamics
While online Reinforcement Learning has emerged as a crucial technique for aligning flow matching models with human preferences, current approaches are hindered by inefficient exploration during training rollouts. Relying on undirected stochasticity and sparse outcome rewards, these methods struggle to discover high-reward samples, resulting in data-inefficient and slow optimization. To address these limitations, we propose Euphonium, a novel framework that steers generation via process reward gradient guided dynamics. Our key insight is to formulate the sampling process as a theoretically principled Stochastic Differential Equation that explicitly incorporates the gradient of a Process Reward Model into the flow drift. This design enables dense, step-by-step steering toward high-reward regions, advancing beyond the unguided exploration in prior works, and theoretically encompasses existing sampling methods (e.g., Flow-GRPO, DanceGRPO) as special cases. We further derive a distillation objective that internalizes the guidance signal into the flow network, eliminating inference-time dependency on the reward model. We instantiate this framework with a Dual-Reward Group Relative Policy Optimization algorithm, combining latent process rewards for efficient credit assignment with pixel-level outcome rewards for final visual fidelity. Experiments on text-to-video generation show that Euphonium achieves better alignment compared to existing methods while accelerating training convergence by 1.66x. Our code is available at https://github.com/zerzerzerz/Euphonium
♻ ☆ Analysis of Shuffling Beyond Pure Local Differential Privacy
Shuffling is a powerful way to amplify privacy of a local randomizer in private distributed data analysis, but existing analyses mostly treat the local differential privacy (DP) parameter $\varepsilon_0$ as the only knob and give generic upper bounds that can be loose and do not even characterize how shuffling amplifies privacy for basic mechanisms such as the Gaussian mechanism. We revisit the privacy blanket bound of Balle et al. (the blanket divergence) and develop an asymptotic analysis that applies to a broad class of local randomizers under mild regularity assumptions, without requiring pure local DP. Our key finding is that the leading term of the blanket divergence depends on the local mechanism only through a single scalar parameter $χ$, which we call the shuffle index. By applying this asymptotic analysis to both upper and lower bounds, we obtain a tight band for $δ_n$ in the shuffled mechanism's $(\varepsilon_n,δ_n)$-DP guarantee. Moreover, we derive a simple structural necessary and sufficient condition on the local randomizer under which the blanket-divergence-based upper and lower bounds coincide asymptotically. $k$-RR families with $k\ge3$ satisfy this condition, while for generalized Gaussian mechanisms the condition may not hold but the resulting band remains tight. Finally, we complement the asymptotic theory with an FFT-based algorithm for computing the blanket divergence at finite $n$, which offers rigorously controlled relative error and near-linear running time in $n$, providing a practical numerical analysis for shuffle DP.
comment: Typos corrected
♻ ☆ Enhancing Customer Contact Efficiency with Graph Neural Networks in Credit Card Fraud Detection Workflow IEEE 7
Credit card fraud has been a persistent issue since the last century, causing significant financial losses to the industry. The most effective way to prevent fraud is by contacting customers to verify suspicious transactions. However, while these systems are designed to detect fraudulent activity, they often mistakenly flag legitimate transactions, leading to unnecessary declines that disrupt the user experience and erode customer trust. Frequent false positives can frustrate customers, resulting in dissatisfaction, increased complaints, and a diminished sense of security. To address these limitations, we propose a fraud detection framework incorporating Relational Graph Convolutional Networks (RGCN) to enhance the accuracy and efficiency of identifying fraudulent transactions. By leveraging the relational structure of transaction data, our model reduces the need for direct customer confirmation while maintaining high detection performance. Our experiments are conducted using the IBM credit card transaction dataset to evaluate the effectiveness of this approach.
comment: Published in Proceedings of the 2025 IEEE 7th International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 320-324. DOI: 10.1109/CISCE65916.2025.11065245
♻ ☆ Simulated Adoption: Decoupling Magnitude and Direction in LLM In-Context Conflict Resolution
Large Language Models (LLMs) frequently prioritize conflicting in-context information over pre-existing parametric memory, a phenomenon often termed sycophancy or compliance. However, the mechanistic realization of this behavior remains obscure, specifically how the model resolves these knowledge conflicts through compliance, and whether this suppression arises from signal magnitude dilution or directional geometric alteration within the residual stream. To resolve this, we conducted a layer-wise geometric analysis across Qwen-3-4B, Llama-3.1-8B, and GLM-4-9B, decomposing the residual stream updates induced by counter-factual contexts into radial (norm-based) and angular (cosine-based) components. Our empirical results reject the universality of the "Manifold Dilution" hypothesis, as two of the three architectures maintained stable residual norms despite exhibiting significant performance degradation on factual queries. Instead, we observed that compliance is consistently characterized by "Orthogonal Interference," where the conflicting context injects a steering vector that is quasi-orthogonal to the ground-truth direction, effectively rotating the hidden state representation. This suggests that models do not "unlearn" or suppress the magnitude of internal truths but rather employ a mechanism of geometric displacement to bypass the correct unembedding vector, effectively simulating adoption while preserving the original structural magnitude. These findings challenge scalar confidence metrics for detecting hallucinations and underscore the necessity of vectorial monitoring to distinguish between genuine knowledge integration and superficial in-context mimicry.
♻ ☆ MirrorBench: A Benchmark to Evaluate Conversational User-Proxy Agents for Human-Likeness
Large language models (LLMs) are increasingly used as human simulators, both for evaluating conversational systems and for generating fine-tuning data. However, naive "act-as-a-user" prompting often yields verbose, unrealistic utterances, motivating principled evaluation of *user proxy agents*. We present **MirrorBench**, a reproducible and extensible benchmarking framework that evaluates user proxies solely on their ability to produce human-like user utterances across diverse conversational regimes, explicitly decoupled from downstream task success. **MirrorBench** combines three lexical-diversity metrics (**MATTR**, **Yule's~$K$**, and **HD-D**) with three LLM-judge-based metrics (**GTEval**, **Pairwise Indistinguishability**, and **Rubric-and-Reason**), and contextualizes judge scores using Human-Human and Proxy-Proxy calibration controls. Across four public datasets, **MirrorBench** yields variance-aware comparisons and reveals systematic gaps between user proxies and real human users. The framework is [open source](https://github.com/SAP/mirrorbench) and includes a command-line interface for running and managing user-proxy benchmarking experiments.
♻ ☆ Scalable In-Context Q-Learning ICLR 2026
Recent advancements in language models have demonstrated remarkable in-context learning abilities, prompting the exploration of in-context reinforcement learning (ICRL) to extend the promise to decision domains. Due to involving more complex dynamics and temporal correlations, existing ICRL approaches may face challenges in learning from suboptimal trajectories and achieving precise in-context inference. In the paper, we propose \textbf{S}calable \textbf{I}n-\textbf{C}ontext \textbf{Q}-\textbf{L}earning (\textbf{S-ICQL}), an innovative framework that harnesses dynamic programming and world modeling to steer ICRL toward efficient reward maximization and task generalization, while retaining the scalability and stability of supervised pretraining. We design a prompt-based multi-head transformer architecture that simultaneously predicts optimal policies and in-context value functions using separate heads. We pretrain a generalized world model to capture task-relevant information, enabling the construction of a compact prompt that facilitates fast and precise in-context inference. During training, we perform iterative policy improvement by fitting a state value function to an upper-expectile of the Q-function, and distill the in-context value functions into policy extraction using advantage-weighted regression. Extensive experiments across a range of discrete and continuous environments show consistent performance gains over various types of baselines, especially when learning from suboptimal data. Our code is available at \textcolor{magenta}{\href{https://github.com/NJU-RL/SICQL}{https://github.com/NJU-RL/SICQL}}.
comment: accepted by ICLR 2026
♻ ☆ Always Keep Your Promises: A Model-Agnostic Attribution Algorithm for Neural Networks
Layer-wise Relevance Propagation (LRP) provides principled attribution for neural networks through conservation properties and foundations in Deep Taylor Decomposition. However, existing implementations operate at the module level, requiring architecture-specific propagation rules and model modifications. These limit the generality of target model and sustainability of implementations as architectures evolve. We introduce DynamicLRP, a model-agnostic LRP framework operating at the tensor operation level. By decomposing attribution to individual operations within computation graphs and introducing a novel mechanism for deferred activation resolution, named the Promise System, our approach achieves true architecture agnosticity while maintaining LRP's theoretical guarantees. This design operates independently of backpropagation machinery, requiring no model modification, enabling side-by-side execution with gradient backpropagation. Being based on computation graphs, this method is theoretically extensible to other deep learning libraries that support auto-differentiation. We demonstrate faithfulness matching or exceeding specialized implementations (1.77 vs 1.69 ABPC on VGG, equivalent performance on ViT, 93.70% and 95.06% top-1 attribution accuracy for explaining RoBERTa-large and Flan-T5-large answers on SQuADv2, respectively) while maintaining practical efficiency on models with 100M-1B parameters. We achieved 99.92% node coverage across 31,465 computation graph nodes from 15 diverse architectures, including state-space models (Mamba), audio transformers (Whisper), and multimodal systems (DePlot) without any model-specific code with rules for 47 fundamental operations implemented. Our operation-level decomposition and Promise System establish a sustainable, extensible foundation for LRP across evolving architectures. All code is available at https://github.com/keeinlev/dynamicLRP .
comment: Manuscript under review
♻ ☆ Quantifying the Effect of Test Set Contamination on Generative Evaluations
As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
♻ ☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
♻ ☆ Calibration and Transformation-Free Weight-Only LLMs Quantization via Dynamic Grouping
Large Language Models (LLMs) deliver strong performance but are difficult to deploy under tight memory and compute constraints. Low-bit post-training quantization (PTQ) is a promising direction; however, it typically relies on calibration data, auxiliary transformations, and GPU tools. To address these limitations, we propose MSB (Multi Scale Binary), a calibration-free and transformation-free PTQ method that generalizes binary quantization to multi-bit settings. MSB optimizes a dynamic grouping criterion that minimizes within group variance, yielding group-wise multiscale levels that can be applied consistently across granularities from per tensor to block-wise configurations with 64 elements groups per row, without calibration or intermediate transforms. We implement the optimization in a CPU based solver for the quantization step and evaluate using standard bfloat16 execution without low-bit packing. On Llama 3.2 3B, MSB achieves 8.43 perplexity on WikiText-2 under 4-bit weight only block-wise quantization, compared to 7.81 in full precision and 12.23 with GPTQ its default setup. Overall, MSB provides a new optimization perspective for low-bit PTQ while simplifying the pipeline by removing calibration and transformations.
comment: 34 pages, 10 figures. Version 3 corrects the bit-length error and adds new experiments and analysis; the core methodology remains unchanged. Under review
♻ ☆ Extreme Weather Nowcasting via Local Precipitation Pattern Prediction
Accurate forecasting of extreme weather events such as heavy rainfall or storms is critical for risk management and disaster mitigation. Although high-resolution radar observations have spurred extensive research on nowcasting models, precipitation nowcasting remains particularly challenging due to pronounced spatial locality, intricate fine-scale rainfall structures, and variability in forecasting horizons. While recent diffusion-based generative ensembles show promising results, they are computationally expensive and unsuitable for real-time applications. In contrast, deterministic models are computationally efficient but remain biased toward normal rainfall. Furthermore, the benchmark datasets commonly used in prior studies are themselves skewed--either dominated by ordinary rainfall events or restricted to extreme rainfall episodes--thereby hindering general applicability in real-world settings. In this paper, we propose exPreCast, an efficient deterministic framework for generating finely detailed radar forecasts, and introduce a newly constructed balanced radar dataset from the Korea Meteorological Administration (KMA), which encompasses both ordinary precipitation and extreme events. Our model integrates local spatiotemporal attention, a texture-preserving cubic dual upsampling decoder, and a temporal extractor to flexibly adjust forecasting horizons. Experiments on established benchmarks (SEVIR and MeteoNet) as well as on the balanced KMA dataset demonstrate that our approach achieves state-of-the-art performance, delivering accurate and reliable nowcasts across both normal and extreme rainfall regimes.
comment: 10pages, 20 figures, The Fourteenth International Conference on Learning Representations, see https://github.com/tony890048/exPreCast
♻ ☆ Dynamic Vocabulary Pruning: Stable LLM-RL by Taming the Tail
Reinforcement Learning (RL) for Large Language Models (LLMs) faces a fundamental tension: the numerical divergence between high-throughput inference engines and numerically precise training engines. Although these systems share the same parameters, they produce slightly different probability distributions, creating a training-inference mismatch. We prove that the bound on the log-probability divergence arising from this mismatch scales as $(1-p)$, where $p$ is the token probability. This scaling induces a highly asymmetric effect: the bound vanishes for high-probability tokens but remains significant for low-probability tokens in the distribution tail. When sampled, these tail tokens introduce systematically biased errors that accumulate over sequences, thereby destabilizing gradient estimation. Instead of applying post-hoc corrections, we propose Dynamic Vocabulary Pruning (DVP), which constrains the RL objective to a dynamically determined ''safe'' vocabulary that excludes the extreme tail. This strategy trades large, destabilizing numerical errors for a small, bounded optimization bias. We validate DVP empirically by demonstrating stable training, and theoretically by deriving strict bounds on the induced bias.
♻ ☆ Little By Little: Continual Learning via Incremental Mixture of Rank-1 Associative Memory Experts
Continual learning (CL) with large pre-trained models is challenged by task interference and catastrophic forgetting. Existing LoRA-based Mixture-of-Experts (MoE) methods mitigate forgetting by adding new task-specific adapters and freezing old ones, but often suffer from redundancy, interference, and ambiguous routing due to coarse-grained experts and routing. Coarse-grained experts (i.e., full LoRA adapters with large rank) encode low-specialty information. Newly added experts often duplicate or conflict with existing ones, causing redundancy and interference. Their low specialization further confuses the router, accelerating routing degradation and forgetting as experts accumulate. In this work, we propose MoRAM (Mixture of Rank-1 Associative Memory). Grounded in the view that weight matrices function as linear associative memories, MoRAM achieves CL as gradual incrementing of atomic rank-1 memory experts. Each rank-1 adapter acts as a fine-grained MoE expert or an associative memory unit. By viewing rank-1 adapters as key-value pairs, we eliminate explicit routers in MoE-LoRA, using a self-activation mechanism where each memory atom evaluates its own relevance via its intrinsic key. This transforms the adaptation process into robust, content-addressable retrieval. Extensive experiments on CLIP and LLMs demonstrate that MoRAM significantly outperforms state-of-the-art baselines, achieving superior plasticity-stability trade-offs, improving generalization while mitigating forgetting.
comment: Preprint
♻ ☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning. However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
♻ ☆ Position: Machine Learning for Heart Transplant Allocation Policy Optimization Should Account for Incentives
The allocation of scarce donor organs constitutes one of the most consequential algorithmic challenges in healthcare. While the field is rapidly transitioning from rigid, rule-based systems to machine learning and data-driven optimization, we argue that current approaches often overlook a fundamental barrier: incentives. In this position paper, we highlight that organ allocation is not merely an optimization problem, but rather a complex game involving organ procurement organizations, transplant centers, clinicians, patients, and regulators. Focusing on US adult heart transplant allocation, we identify critical incentive misalignments across the decision-making pipeline, and present data showing that they are having adverse consequences today. Our main position is that the next generation of allocation policies should be incentive aware. We outline a research agenda for the machine learning community, calling for the integration of mechanism design, strategic classification, causal inference, and social choice to ensure robustness, efficiency, fairness, and trust in the face of strategic behavior from the various constituent groups.
♻ ☆ MAGIC: A Co-Evolving Attacker-Defender Adversarial Game for Robust LLM Safety
Ensuring robust safety alignment is crucial for Large Language Models (LLMs), yet existing defenses often lag behind evolving adversarial attacks due to their \textbf{reliance on static, pre-collected data distributions}. In this paper, we introduce \textbf{MAGIC}, a novel multi-turn multi-agent reinforcement learning framework that formulates LLM safety alignment as an adversarial asymmetric game. Specifically, an attacker agent learns to iteratively rewrite original queries into deceptive prompts, while a defender agent simultaneously optimizes its policy to recognize and refuse such inputs. This dynamic process triggers a \textbf{co-evolution}, where the attacker's ever-changing strategies continuously uncover long-tail vulnerabilities, driving the defender to generalize to unseen attack patterns. Remarkably, we observe that the attacker, endowed with initial reasoning ability, evolves \textbf{novel, previously unseen combinatorial strategies} through iterative RL training, underscoring our method's substantial potential. Theoretically, we provide insights into a more robust game equilibrium and derive safety guarantees. Extensive experiments validate our framework's effectiveness, demonstrating superior defense success rates without compromising the helpfulness of the model. Our code is available at https://github.com/BattleWen/MAGIC.
♻ ☆ Data-Centric Interpretability for LLM-based Multi-Agent Reinforcement Learning
Large language models (LLMs) are increasingly trained in complex Reinforcement Learning, multi-agent environments, making it difficult to understand how behavior changes over training. Sparse Autoencoders (SAEs) have recently shown to be useful for data-centric interpretability. In this work, we analyze large-scale reinforcement learning training runs from the sophisticated environment of Full-Press Diplomacy by applying pretrained SAEs, alongside LLM-summarizer methods. We introduce Meta-Autointerp, a method for grouping SAE features into interpretable hypotheses about training dynamics. We discover fine-grained behaviors including role-playing patterns, degenerate outputs, language switching, alongside high-level strategic behaviors and environment-specific bugs. Through automated evaluation, we validate that 90% of discovered SAE Meta-Features are significant, and find a surprising reward hacking behavior. However, through two user studies, we find that even subjectively interesting and seemingly helpful SAE features may be worse than useless to humans, along with most LLM generated hypotheses. However, a subset of SAE-derived hypotheses are predictively useful for downstream tasks. We further provide validation by augmenting an untrained agent's system prompt, improving the score by +14.2%. Overall, we show that SAEs and LLM-summarizer provide complementary views into agent behavior, and together our framework forms a practical starting point for future data-centric interpretability work on ensuring trustworthy LLM behavior throughout training.
comment: authors 1, 2 and 3 contributed equally
♻ ☆ Near-Optimal Dynamic Matching via Coarsening with Application to Heart Transplantation
Online matching has been a mainstay in domains such as Internet advertising and organ allocation, but practical algorithms often lack strong theoretical guarantees. We take an important step toward addressing this by developing new online matching algorithms based on a coarsening approach. Although coarsening typically implies a loss of granularity, we show that, to the contrary, aggregating offline nodes into capacitated clusters can yield near-optimal theoretical guarantees. We apply our methodology to heart transplant allocation to develop theoretically grounded policies based on structural properties of historical data. Furthermore, in simulations based on real data, our policy closely matches the performance of the omniscient benchmark, achieving competitive ratio 0.91, drastically higher than the US status quo policy's 0.51. Our work bridges the gap between data-driven heuristics and pessimistic theoretical lower bounds.
♻ ☆ Artificial Intelligence for Direct Prediction of Molecular Dynamics Across Chemical Space
Molecular dynamics (MD) is a powerful tool for exploring the behavior of atomistic systems, but its reliance on sequential numerical integration limits simulation efficiency. We present a novel neural network architecture, MDtrajNet, and a pre-trained foundational model, MDtrajNet-1, that directly generates MD trajectories across chemical space, bypassing force calculations and integration. MDtrajNet combines equivariant neural networks with a transformer-based architecture to achieve strong accuracy and transferability in predicting long-time trajectories. This approach accelerates simulations by up to two orders of magnitude and yields better accuracy than MD propagated with established machine-learning interatomic potentials trained on the same data. Remarkably, the errors of the trajectories generated by MDtrajNet-1 for various seen and even unseen small-sized molecular systems are close to those of the conventional ab initio MD. The current limitations of MDtrajNet-1 are attributed to the relatively small size of the chemical space in its training data; however, even for bigger, unseen systems, MDtrajNet-1 provides a good starting point for fine-tuning and obtaining system-specific models. The architecture's flexible design supports diverse application scenarios, including different statistical ensembles, boundary conditions, and interaction types. By overcoming the intrinsic speed barrier of conventional MD, MDtrajNet opens new frontiers in efficient and scalable atomistic simulations.
♻ ☆ The Quest for Efficient Reasoning: A Data-Centric Benchmark to CoT Distillation
Data-centric distillation, including data augmentation, selection, and mixing, offers a promising path to creating smaller, more efficient student Large Language Models (LLMs) that retain strong reasoning abilities. However, there still lacks a comprehensive benchmark to systematically assess the effect of each distillation approach. This paper introduces DC-CoT, the first data-centric benchmark that investigates data manipulation in chain-of-thought (CoT) distillation from method, model and data perspectives. Utilizing various teacher models (e.g., o4-mini, Gemini-Pro, Claude-3.5) and student architectures (e.g., 3B, 7B parameters), we rigorously evaluate the impact of these data manipulations on student model performance across multiple reasoning datasets, with a focus on in-distribution (IID) and out-of-distribution (OOD) generalization, and cross-domain transfer. Our findings aim to provide actionable insights and establish best practices for optimizing CoT distillation through data-centric techniques, ultimately facilitating the development of more accessible and capable reasoning models. The codebase can be accessed at https://github.com/UNITES-Lab/Distillation-Bench
♻ ☆ Optimizing Mirror-Image Peptide Sequence Design for Data Storage via Peptide Bond Cleavage Prediction
Traditional non-biological storage media, such as hard drives, face limitations in both storage density and lifespan due to the rapid growth of data in the big data era. Mirror-image peptides composed of D-amino acids have emerged as a promising biological storage medium due to their high storage density, structural stability, and long lifespan. The sequencing of mirror-image peptides relies on \textit{de-novo} technology. However, its accuracy is limited by the scarcity of tandem mass spectrometry datasets and the challenges that current algorithms encounter when processing these peptides directly. This study is the first to propose improving sequencing accuracy indirectly by optimizing the design of mirror-image peptide sequences. In this work, we introduce DBond, a deep neural network based model that integrates sequence features, precursor ion properties, and mass spectrometry environmental factors for the prediction of mirror-image peptide bond cleavage. In this process, sequences with a high peptide bond cleavage ratio, which are easy to sequence, are selected. The main contributions of this study are as follows. First, we constructed MiPD513, a tandem mass spectrometry dataset containing 513 mirror-image peptides. Second, we developed the peptide bond cleavage labeling algorithm (PBCLA), which generated approximately 12.5 million labeled data based on MiPD513. Third, we proposed a dual prediction strategy that combines multi-label and single-label classification. On an independent test set, the single-label classification strategy outperformed other methods in both single and multiple peptide bond cleavage prediction tasks, offering a strong foundation for sequence optimization.
comment: 8 pages, 4 figures;Accepted by BIBM 2025
♻ ☆ FuSeFL: Fully Secure and Scalable Federated Learning
Federated Learning (FL) enables collaborative model training without centralizing client data, making it attractive for privacy-sensitive domains. While existing approaches employ cryptographic techniques such as homomorphic encryption, differential privacy, or secure multiparty computation to mitigate inference attacks, including model inversion, membership inference, and gradient leakage, they often suffer from high computational and memory overheads. Moreover, many methods overlook the confidentiality of the global model itself, which may be proprietary and sensitive. These challenges limit the practicality of secure FL, especially in settings that involve large datasets and strict compliance requirements. We present FuSeFL, a Fully Secure and scalable FL scheme, which decentralizes training across client pairs using lightweight MPC, while confining the server's role to secure aggregation, client pairing, and routing. This design eliminates server bottlenecks, avoids full data offloading, and preserves full confidentiality of data, model, and updates throughout training. Based on our experiment, FuSeFL defends against unauthorized observation, reconstruction attacks, and inference attacks such as gradient leakage, membership inference, and inversion attacks, while achieving up to $13 \times$ speedup in training time and 50% lower server memory usage compared to our baseline.
comment: 14 Pages, 12 Figures
♻ ☆ VFScale: Intrinsic Reasoning through Verifier-Free Test-time Scalable Diffusion Model ICLR 2026
Inspired by human SYSTEM 2 thinking, LLMs excel at complex reasoning tasks via extended Chain-of-Thought. However, similar test-time scaling for diffusion models to tackle complex reasoning remains largely unexplored. From existing work, two primary challenges emerge in this setting: (i) the dependence on an external verifier indicating a notable gap from intrinsic reasoning of human intelligence without any external feedback, and (ii) the lack of an efficient search algorithm. In this paper, we introduce the Verifier-free Test-time Scalable Diffusion Model (VFScale) to achieve scalable intrinsic reasoning, which equips number-of-sample test-time scaling with the intrinsic energy function of diffusion models as the verifier. Concretely, VFScale comprises two key innovations to address the aforementioned challenges. On the training side, VFScale consists of a novel MRNCL loss and a KL regularization to improve the energy landscape, ensuring that the learned energy function itself serves as a reliable verifier. On the inference side, VFScale integrates the denoising process with a novel hybrid Monte Carlo Tree Search (hMCTS) to improve search efficiency. On challenging reasoning tasks of Maze and Sudoku, we demonstrate the effectiveness of VFScale's training objective and scalable inference method. In particular, trained with Maze sizes of up to $6\times6$, our VFScale solves 88% of Maze problems with much larger sizes of $15\times15$, while standard diffusion models completely fail. The code can be found at https://github.com/AI4Science-WestlakeU/VFScale.
comment: ICLR 2026. 30 pages, 13 figures
♻ ☆ Layer-adaptive Expert Pruning for Pre-Training of Mixture-of-Experts Large Language Models
Although Mixture-of-Experts (MoE) Large Language Models (LLMs) deliver superior accuracy with a reduced number of active parameters, their pre-training represents a significant computationally bottleneck due to underutilized experts and limited training efficiency. This work introduces a Layer-Adaptive Expert Pruning (LAEP) algorithm designed for the pre-training stage of MoE LLMs. In contrast to previous expert pruning approaches that operate primarily in the post-training phase, the proposed algorithm enhances training efficiency by selectively pruning underutilized experts and reorganizing experts across computing devices according to token distribution statistics. Comprehensive experiments demonstrate that LAEP effectively reduces model size and substantially improves pre-training efficiency. In particular, when pre-training the Yuan3.0-1T Base model from scratch original with 1515B parameters, LAEP achieves a 48.3% improvement in training efficiency alongside a 33.3% parameter reduction, while still delivering excellent performance across multiple domains.
♻ ☆ ProDAG: Projected Variational Inference for Directed Acyclic Graphs
Directed acyclic graph (DAG) learning is a central task in structure discovery and causal inference. Although the field has witnessed remarkable advances over the past few years, it remains statistically and computationally challenging to learn a single (point estimate) DAG from data, let alone provide uncertainty quantification. We address the difficult task of quantifying graph uncertainty by developing a Bayesian variational inference framework based on novel, provably valid distributions that have support directly on the space of sparse DAGs. These distributions, which we use to define our prior and variational posterior, are induced by a projection operation that maps an arbitrary continuous distribution onto the space of sparse weighted acyclic adjacency matrices. While this projection is combinatorial, it can be solved efficiently using recent continuous reformulations of acyclicity constraints. We empirically demonstrate that our method, ProDAG, can outperform state-of-the-art alternatives in both accuracy and uncertainty quantification.
comment: To appear in Advances in Neural Information Processing Systems
♻ ☆ Deception at Scale: Deceptive Designs in 1K LLM-Generated Ecommerce Components
Recent work has shown that front-end code generated by Large Language Models (LLMs) can embed deceptive designs. To assess the magnitude of this problem, identify the factors that influence deceptive design production, and test strategies for reducing deceptive designs, we carried out two studies which generated and analyzed 1,296 LLM-generated web components, along with a design rationale for each. The first study tested four LLMs for 15 common ecommerce components. Overall 55.8% of components contained at least one deceptive design, and 30.6% contained two or more. Occurence varied significantly across models, with DeepSeek-V3 producing the fewest. Interface interference emerged as the dominant strategy, using color psychology to influence actions and hiding essential information. The first study found that prompts emphasizing business interests (e.g., increasing sales) significantly increased deceptive designs, so a second study tested a variety of prompting strategies to reduce their frequency, finding a values-centered approach the most effective. Our findings highlight risks in using LLMs for coding and offer recommendations for LLM developers and providers.
comment: 18 pages
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains. Code & pretrained checkpoints: https://github.com/apple/ml-fs-dfm
comment: Accepted to ICLR 2026
♻ ☆ Prenatal Stress Detection from Electrocardiography Using Self-Supervised Deep Learning: Development and External Validation
Prenatal psychological stress affects 15-25% of pregnancies and increases risks of preterm birth, low birth weight, and adverse neurodevelopmental outcomes. Current screening relies on subjective questionnaires (PSS-10), limiting continuous monitoring. We developed deep learning models for stress detection from electrocardiography (ECG) using the FELICITy 1 cohort (151 pregnant women, 32-38 weeks gestation). A ResNet-34 encoder was pretrained via SimCLR contrastive learning on 40,692 ECG segments per subject. Multi-layer feature extraction enabled binary classification and continuous PSS prediction across maternal (mECG), fetal (fECG), and abdominal ECG (aECG). External validation used the FELICITy 2 RCT (28 subjects, different ECG device, yoga intervention vs. control). On FELICITy 1 (5-fold CV): mECG 98.6% accuracy (R2=0.88, MAE=1.90), fECG 99.8% (R2=0.95, MAE=1.19), aECG 95.5% (R2=0.75, MAE=2.80). External validation on FELICITy 2: mECG 77.3% accuracy (R2=0.62, MAE=3.54, AUC=0.826), aECG 63.6% (R2=0.29, AUC=0.705). Signal quality-based channel selection outperformed all-channel averaging (+12% R2 improvement). Mixed-effects models detected a significant intervention response (p=0.041). Self-supervised deep learning on pregnancy ECG enables accurate, objective stress assessment, with multi-layer feature extraction substantially outperforming single embedding approaches.
comment: 22 pages, 5 figures
Multimedia 6
☆ Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping
While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0$\times$ inference speedup and a 5.1$\times$ VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.
☆ Hybrid Feedback-Guided Optimal Learning for Wireless Interactive Panoramic Scene Delivery
Immersive applications such as virtual and augmented reality impose stringent requirements on frame rate, latency, and synchronization between physical and virtual environments. To meet these requirements, an edge server must render panoramic content, predict user head motion, and transmit a portion of the scene that is large enough to cover the user viewport while remaining within wireless bandwidth constraints. Each portion produces two feedback signals: prediction feedback, indicating whether the selected portion covers the actual viewport, and transmission feedback, indicating whether the corresponding packets are successfully delivered. Prior work models this problem as a multi-armed bandit with two-level bandit feedback, but fails to exploit the fact that prediction feedback can be retrospectively computed for all candidate portions once the user head pose is observed. As a result, prediction feedback constitutes full-information feedback rather than bandit feedback. Motivated by this observation, we introduce a two-level hybrid feedback model that combines full-information and bandit feedback, and formulate the portion selection problem as an online learning task under this setting. We derive an instance-dependent regret lower bound for the hybrid feedback model and propose AdaPort, a hybrid learning algorithm that leverages both feedback types to improve learning efficiency. We further establish an instance-dependent regret upper bound that matches the lower bound asymptotically, and demonstrate through real-world trace driven simulations that AdaPort consistently outperforms state-of-the-art baseline methods.
comment: Submitting to ToN
☆ Stickers on Facebook: Multifunctionality and face-enhancing politeness in everyday social interaction
Stickers are multimodal resources widely used in everyday digital conversations. Despite their popularity, most studies have focused on emojis and emoticons. Therefore, this study analyzes, from a sociopragmatic perspective, the use of stickers in the comments from a corpus of Facebook posts containing acts of face-enhancing politeness, created during and after the COVID-19 pandemic. The main objective is to identify their communicative functions and determine the extent to which they act as strategies of face-enhancing politeness also considering the gender variable. The results show a predominance of naked stickers and those representing human emotions and gestures, and festive situations. Six main functions were identified: affective, illocutionary, interactional, gestural, aesthetic, and representative or substitutive. It was found that stickers can intensify polite messages and express face-enhancing politeness autonomously. Furthermore, gender differences were observed: women use more stickers, especially cute and affectionate ones, whereas men prefer masculine human figures. These findings highlight the key and multifunctional role of stickers in affective digital communication.
comment: in Spanish language, Stickers en Facebook: multifuncionalidad y cortesía valorizante en la interacción social cotidiana, Oralia: Análisis del Discurso Oral, 30 (1)
☆ Federated Prompt-Tuning with Heterogeneous and Incomplete Multimodal Client Data
This paper introduces a generalized federated prompt-tuning framework for practical scenarios where local datasets are multi-modal and exhibit different distributional patterns of missing features at the input level. The proposed framework bridges the gap between federated learning and multi-modal prompt-tuning which have traditionally focused on either uni-modal or centralized data. A key challenge in this setting arises from the lack of semantic alignment between prompt instructions that encode similar distributional patterns of missing data across different clients. To address this, our framework introduces specialized client-tuning and server-aggregation designs that simultaneously optimize, align, and aggregate prompt-tuning instructions across clients and data modalities. This allows prompt instructions to complement one another and be combined effectively. Extensive evaluations on diverse multimodal benchmark datasets demonstrate that our work consistently outperforms state-of-the-art (SOTA) baselines.
♻ ☆ Visual Autoregressive Modeling for Instruction-Guided Image Editing ICLR 2026
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On EMU-Edit and PIE-Bench benchmarks, VAREdit outperforms leading diffusion-based methods by a substantial margin in terms of both CLIP and GPT scores. Moreover, VAREdit completes a 512$\times$512 editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. Code is available at: https://github.com/HiDream-ai/VAREdit.
comment: ICLR 2026; Source codes and models are available at https://github.com/HiDream-ai/VAREdit
♻ ☆ Vidmento: Creating Video Stories Through Context-Aware Expansion With Generative Video
Video storytelling is often constrained by available material, limiting creative expression and leaving undesired narrative gaps. Generative video offers a new way to address these limitations by augmenting captured media with tailored visuals. To explore this potential, we interviewed eight video creators to identify opportunities and challenges in integrating generative video into their workflows. Building on these insights and established filmmaking principles, we developed Vidmento, a tool for authoring hybrid video stories that combine captured and generated media through context-aware expansion. Vidmento surfaces opportunities for story development, generates clips that blend stylistically and narratively with surrounding media, and provides controls for refinement. In a study with 12 creators, Vidmento supported narrative development and exploration by systematically expanding initial materials with generative media, enabling expressive video storytelling aligned with creative intent. We highlight how creators bridge story gaps with generative content and where they find this blending capability most valuable.
comment: Accepted to CHI 2026 (25 pages, 18 figures)
Computer Vision and Pattern Recognition 206
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ Pseudo-Invertible Neural Networks
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
☆ Predicting Camera Pose from Perspective Descriptions for Spatial Reasoning
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
☆ SwimBird: Eliciting Switchable Reasoning Mode in Hybrid Autoregressive MLLMs
Multimodal Large Language Models (MLLMs) have made remarkable progress in multimodal perception and reasoning by bridging vision and language. However, most existing MLLMs perform reasoning primarily with textual CoT, which limits their effectiveness on vision-intensive tasks. Recent approaches inject a fixed number of continuous hidden states as "visual thoughts" into the reasoning process and improve visual performance, but often at the cost of degraded text-based logical reasoning. We argue that the core limitation lies in a rigid, pre-defined reasoning pattern that cannot adaptively choose the most suitable thinking modality for different user queries. We introduce SwimBird, a reasoning-switchable MLLM that dynamically switches among three reasoning modes conditioned on the input: (1) text-only reasoning, (2) vision-only reasoning (continuous hidden states as visual thoughts), and (3) interleaved vision-text reasoning. To enable this capability, we adopt a hybrid autoregressive formulation that unifies next-token prediction for textual thoughts with next-embedding prediction for visual thoughts, and design a systematic reasoning-mode curation strategy to construct SwimBird-SFT-92K, a diverse supervised fine-tuning dataset covering all three reasoning patterns. By enabling flexible, query-adaptive mode selection, SwimBird preserves strong textual logic while substantially improving performance on vision-dense tasks. Experiments across diverse benchmarks covering textual reasoning and challenging visual understanding demonstrate that SwimBird achieves state-of-the-art results and robust gains over prior fixed-pattern multimodal reasoning methods.
comment: Project Page: https://accio-lab.github.io/SwimBird
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction IEEE
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Thinking with Geometry: Active Geometry Integration for Spatial Reasoning
Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.
☆ InterPrior: Scaling Generative Control for Physics-Based Human-Object Interactions
Humans rarely plan whole-body interactions with objects at the level of explicit whole-body movements. High-level intentions, such as affordance, define the goal, while coordinated balance, contact, and manipulation can emerge naturally from underlying physical and motor priors. Scaling such priors is key to enabling humanoids to compose and generalize loco-manipulation skills across diverse contexts while maintaining physically coherent whole-body coordination. To this end, we introduce InterPrior, a scalable framework that learns a unified generative controller through large-scale imitation pretraining and post-training by reinforcement learning. InterPrior first distills a full-reference imitation expert into a versatile, goal-conditioned variational policy that reconstructs motion from multimodal observations and high-level intent. While the distilled policy reconstructs training behaviors, it does not generalize reliably due to the vast configuration space of large-scale human-object interactions. To address this, we apply data augmentation with physical perturbations, and then perform reinforcement learning finetuning to improve competence on unseen goals and initializations. Together, these steps consolidate the reconstructed latent skills into a valid manifold, yielding a motion prior that generalizes beyond the training data, e.g., it can incorporate new behaviors such as interactions with unseen objects. We further demonstrate its effectiveness for user-interactive control and its potential for real robot deployment.
comment: Webpage: https://sirui-xu.github.io/InterPrior/
☆ V-Retrver: Evidence-Driven Agentic Reasoning for Universal Multimodal Retrieval
Multimodal Large Language Models (MLLMs) have recently been applied to universal multimodal retrieval, where Chain-of-Thought (CoT) reasoning improves candidate reranking. However, existing approaches remain largely language-driven, relying on static visual encodings and lacking the ability to actively verify fine-grained visual evidence, which often leads to speculative reasoning in visually ambiguous cases. We propose V-Retrver, an evidence-driven retrieval framework that reformulates multimodal retrieval as an agentic reasoning process grounded in visual inspection. V-Retrver enables an MLLM to selectively acquire visual evidence during reasoning via external visual tools, performing a multimodal interleaved reasoning process that alternates between hypothesis generation and targeted visual verification.To train such an evidence-gathering retrieval agent, we adopt a curriculum-based learning strategy combining supervised reasoning activation, rejection-based refinement, and reinforcement learning with an evidence-aligned objective. Experiments across multiple multimodal retrieval benchmarks demonstrate consistent improvements in retrieval accuracy (with 23.0% improvements on average), perception-driven reasoning reliability, and generalization.
☆ Splat and Distill: Augmenting Teachers with Feed-Forward 3D Reconstruction For 3D-Aware Distillation ICLR 2026
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
comment: Accepted to ICLR 2026
☆ Context Forcing: Consistent Autoregressive Video Generation with Long Context
Recent approaches to real-time long video generation typically employ streaming tuning strategies, attempting to train a long-context student using a short-context (memoryless) teacher. In these frameworks, the student performs long rollouts but receives supervision from a teacher limited to short 5-second windows. This structural discrepancy creates a critical \textbf{student-teacher mismatch}: the teacher's inability to access long-term history prevents it from guiding the student on global temporal dependencies, effectively capping the student's context length. To resolve this, we propose \textbf{Context Forcing}, a novel framework that trains a long-context student via a long-context teacher. By ensuring the teacher is aware of the full generation history, we eliminate the supervision mismatch, enabling the robust training of models capable of long-term consistency. To make this computationally feasible for extreme durations (e.g., 2 minutes), we introduce a context management system that transforms the linearly growing context into a \textbf{Slow-Fast Memory} architecture, significantly reducing visual redundancy. Extensive results demonstrate that our method enables effective context lengths exceeding 20 seconds -- 2 to 10 times longer than state-of-the-art methods like LongLive and Infinite-RoPE. By leveraging this extended context, Context Forcing preserves superior consistency across long durations, surpassing state-of-the-art baselines on various long video evaluation metrics.
MambaVF: State Space Model for Efficient Video Fusion
Video fusion is a fundamental technique in various video processing tasks. However, existing video fusion methods heavily rely on optical flow estimation and feature warping, resulting in severe computational overhead and limited scalability. This paper presents MambaVF, an efficient video fusion framework based on state space models (SSMs) that performs temporal modeling without explicit motion estimation. First, by reformulating video fusion as a sequential state update process, MambaVF captures long-range temporal dependencies with linear complexity while significantly reducing computation and memory costs. Second, MambaVF proposes a lightweight SSM-based fusion module that replaces conventional flow-guided alignment via a spatio-temporal bidirectional scanning mechanism. This module enables efficient information aggregation across frames. Extensive experiments across multiple benchmarks demonstrate that our MambaVF achieves state-of-the-art performance in multi-exposure, multi-focus, infrared-visible, and medical video fusion tasks. We highlight that MambaVF enjoys high efficiency, reducing up to 92.25% of parameters and 88.79% of computational FLOPs and a 2.1x speedup compared to existing methods. Project page: https://mambavf.github.io
☆ GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Generation Tasks?
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
comment: Project Page: https://genarena.github.io/, Code: https://github.com/ruihanglix/genarena
☆ VisRefiner: Learning from Visual Differences for Screenshot-to-Code Generation
Screenshot-to-code generation aims to translate user interface screenshots into executable frontend code that faithfully reproduces the target layout and style. Existing multimodal large language models perform this mapping directly from screenshots but are trained without observing the visual outcomes of their generated code. In contrast, human developers iteratively render their implementation, compare it with the design, and learn how visual differences relate to code changes. Inspired by this process, we propose VisRefiner, a training framework that enables models to learn from visual differences between rendered predictions and reference designs. We construct difference-aligned supervision that associates visual discrepancies with corresponding code edits, allowing the model to understand how appearance variations arise from implementation changes. Building on this, we introduce a reinforcement learning stage for self-refinement, where the model improves its generated code by observing both the rendered output and the target design, identifying their visual differences, and updating the code accordingly. Experiments show that VisRefiner substantially improves single-step generation quality and layout fidelity, while also endowing models with strong self-refinement ability. These results demonstrate the effectiveness of learning from visual differences for advancing screenshot-to-code generation.
☆ RISE-Video: Can Video Generators Decode Implicit World Rules?
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
comment: 38 pages, 16 figures, 3 tables; Code: https://github.com/VisionXLab/RISE-Video; HuggingFace: https://huggingface.co/datasets/VisionXLab/RISE-Video
☆ LSA: Localized Semantic Alignment for Enhancing Temporal Consistency in Traffic Video Generation IEEE
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
comment: Accepted to IEEE IV 2026. 8 pages, 3 figures. Code available at https://github.com/mirlanium/LSA
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Multi-Scale Global-Instance Prompt Tuning for Continual Test-time Adaptation in Medical Image Segmentation
Distribution shift is a common challenge in medical images obtained from different clinical centers, significantly hindering the deployment of pre-trained semantic segmentation models in real-world applications across multiple domains. Continual Test-Time Adaptation(CTTA) has emerged as a promising approach to address cross-domain shifts during continually evolving target domains. Most existing CTTA methods rely on incrementally updating model parameters, which inevitably suffer from error accumulation and catastrophic forgetting, especially in long-term adaptation. Recent prompt-tuning-based works have shown potential to mitigate the two issues above by updating only visual prompts. While these approaches have demonstrated promising performance, several limitations remain:1)lacking multi-scale prompt diversity, 2)inadequate incorporation of instance-specific knowledge, and 3)risk of privacy leakage. To overcome these limitations, we propose Multi-scale Global-Instance Prompt Tuning(MGIPT), to enhance scale diversity of prompts and capture both global- and instance-level knowledge for robust CTTA. Specifically, MGIPT consists of an Adaptive-scale Instance Prompt(AIP) and a Multi-scale Global-level Prompt(MGP). AIP dynamically learns lightweight and instance-specific prompts to mitigate error accumulation with adaptive optimal-scale selection mechanism. MGP captures domain-level knowledge across different scales to ensure robust adaptation with anti-forgetting capabilities. These complementary components are combined through a weighted ensemble approach, enabling effective dual-level adaptation that integrates both global and local information. Extensive experiments on medical image segmentation benchmarks demonstrate that our MGIPT outperforms state-of-the-art methods, achieving robust adaptation across continually changing target domains.
comment: 8 pages, BIBM2025
☆ CLIP-Map: Structured Matrix Mapping for Parameter-Efficient CLIP Compression
Contrastive Language-Image Pre-training (CLIP) has achieved widely applications in various computer vision tasks, e.g., text-to-image generation, Image-Text retrieval and Image captioning. However, CLIP suffers from high memory and computation cost, which prohibits its usage to the resource-limited application scenarios. Existing CLIP compression methods typically reduce the size of pre-trained CLIP weights by selecting their subset as weight inheritance for further retraining via mask optimization or important weight measurement. However, these select-based weight inheritance often compromises the feature presentation ability, especially on the extreme compression. In this paper, we propose a novel mapping-based CLIP compression framework, CLIP-Map. It leverages learnable matrices to map and combine pretrained weights by Full-Mapping with Kronecker Factorization, aiming to preserve as much information from the original weights as possible. To mitigate the optimization challenges introduced by the learnable mapping, we propose Diagonal Inheritance Initialization to reduce the distribution shifting problem for efficient and effective mapping learning. Extensive experimental results demonstrate that the proposed CLIP-Map outperforms select-based frameworks across various compression ratios, with particularly significant gains observed under high compression settings.
☆ Neural Implicit 3D Cardiac Shape Reconstruction from Sparse CT Angiography Slices Mimicking 2D Transthoracic Echocardiography Views
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
☆ EoCD: Encoder only Remote Sensing Change Detection
Being a cornerstone of temporal analysis, change detection has been playing a pivotal role in modern earth observation. Existing change detection methods rely on the Siamese encoder to individually extract temporal features followed by temporal fusion. Subsequently, these methods design sophisticated decoders to improve the change detection performance without taking into consideration the complexity of the model. These aforementioned issues intensify the overall computational cost as well as the network's complexity which is undesirable. Alternatively, few methods utilize the early fusion scheme to combine the temporal images. These methods prevent the extra overhead of Siamese encoder, however, they also rely on sophisticated decoders for better performance. In addition, these methods demonstrate inferior performance as compared to late fusion based methods. To bridge these gaps, we introduce encoder only change detection (EoCD) that is a simple and effective method for the change detection task. The proposed method performs the early fusion of the temporal data and replaces the decoder with a parameter-free multiscale feature fusion module thereby significantly reducing the overall complexity of the model. EoCD demonstrate the optimal balance between the change detection performance and the prediction speed across a variety of encoder architectures. Additionally, EoCD demonstrate that the performance of the model is predominantly dependent on the encoder network, making the decoder an additional component. Extensive experimentation on four challenging change detection datasets reveals the effectiveness of the proposed method.
☆ Contour Refinement using Discrete Diffusion in Low Data Regime
Boundary detection of irregular and translucent objects is an important problem with applications in medical imaging, environmental monitoring and manufacturing, where many of these applications are plagued with scarce labeled data and low in situ computational resources. While recent image segmentation studies focus on segmentation mask alignment with ground-truth, the task of boundary detection remains understudied, especially in the low data regime. In this work, we present a lightweight discrete diffusion contour refinement pipeline for robust boundary detection in the low data regime. We use a Convolutional Neural Network(CNN) architecture with self-attention layers as the core of our pipeline, and condition on a segmentation mask, iteratively denoising a sparse contour representation. We introduce multiple novel adaptations for improved low-data efficacy and inference efficiency, including using a simplified diffusion process, a customized model architecture, and minimal post processing to produce a dense, isolated contour given a dataset of size <500 training images. Our method outperforms several SOTA baselines on the medical imaging dataset KVASIR, is competitive on HAM10K and our custom wildfire dataset, Smoke, while improving inference framerate by 3.5X.
comment: CRV 2026, 8 pages, 6 figures
☆ Pathwise Test-Time Correction for Autoregressive Long Video Generation
Distilled autoregressive diffusion models facilitate real-time short video synthesis but suffer from severe error accumulation during long-sequence generation. While existing Test-Time Optimization (TTO) methods prove effective for images or short clips, we identify that they fail to mitigate drift in extended sequences due to unstable reward landscapes and the hypersensitivity of distilled parameters. To overcome these limitations, we introduce Test-Time Correction (TTC), a training-free alternative. Specifically, TTC utilizes the initial frame as a stable reference anchor to calibrate intermediate stochastic states along the sampling trajectory. Extensive experiments demonstrate that our method seamlessly integrates with various distilled models, extending generation lengths with negligible overhead while matching the quality of resource-intensive training-based methods on 30-second benchmarks.
Self-Supervised Learning with a Multi-Task Latent Space Objective
Self-supervised learning (SSL) methods based on Siamese networks learn visual representations by aligning different views of the same image. The multi-crop strategy, which incorporates small local crops to global ones, enhances many SSL frameworks but causes instability in predictor-based architectures such as BYOL, SimSiam, and MoCo v3. We trace this failure to the shared predictor used across all views and demonstrate that assigning a separate predictor to each view type stabilizes multi-crop training, resulting in significant performance gains. Extending this idea, we treat each spatial transformation as a distinct alignment task and add cutout views, where part of the image is masked before encoding. This yields a simple multi-task formulation of asymmetric Siamese SSL that combines global, local, and masked views into a single framework. The approach is stable, generally applicable across backbones, and consistently improves the performance of ResNet and ViT models on ImageNet.
☆ UI-Mem: Self-Evolving Experience Memory for Online Reinforcement Learning in Mobile GUI Agents
Online Reinforcement Learning (RL) offers a promising paradigm for enhancing GUI agents through direct environment interaction. However, its effectiveness is severely hindered by inefficient credit assignment in long-horizon tasks and repetitive errors across tasks due to the lack of experience transfer. To address these challenges, we propose UI-Mem, a novel framework that enhances GUI online RL with a Hierarchical Experience Memory. Unlike traditional replay buffers, our memory accumulates structured knowledge, including high-level workflows, subtask skills, and failure patterns. These experiences are stored as parameterized templates that enable cross-task and cross-application transfer. To effectively integrate memory guidance into online RL, we introduce Stratified Group Sampling, which injects varying levels of guidance across trajectories within each rollout group to maintain outcome diversity, driving the unguided policy toward internalizing guided behaviors. Furthermore, a Self-Evolving Loop continuously abstracts novel strategies and errors to keep the memory aligned with the agent's evolving policy. Experiments on online GUI benchmarks demonstrate that UI-Mem significantly outperforms traditional RL baselines and static reuse strategies, with strong generalization to unseen applications. Project page: https://ui-mem.github.io
comment: 23 pages, 16 figures. Project page: https://ui-mem.github.io
☆ Weaver: End-to-End Agentic System Training for Video Interleaved Reasoning
Video reasoning constitutes a comprehensive assessment of a model's capabilities, as it demands robust perceptual and interpretive skills, thereby serving as a means to explore the boundaries of model performance. While recent research has leveraged text-centric Chain-of-Thought reasoning to augment these capabilities, such approaches frequently suffer from representational mismatch and restricted by limited perceptual acuity. To address these limitations, we propose Weaver, a novel, end-to-end trainable multimodal reasoning agentic system. Weaver empowers its policy model to dynamically invoke diverse tools throughout the reasoning process, enabling progressive acquisition of crucial visual cues and construction of authentic multimodal reasoning trajectories. Furthermore, we integrate a reinforcement learning algorithm to allow the system to freely explore strategies for employing and combining these tools with trajectory-free data. Extensive experiments demonstrate that our system, Weaver, enhances performance on several complex video reasoning benchmarks, particularly those involving long videos.
☆ Sparse Video Generation Propels Real-World Beyond-the-View Vision-Language Navigation
Why must vision-language navigation be bound to detailed and verbose language instructions? While such details ease decision-making, they fundamentally contradict the goal for navigation in the real-world. Ideally, agents should possess the autonomy to navigate in unknown environments guided solely by simple and high-level intents. Realizing this ambition introduces a formidable challenge: Beyond-the-View Navigation (BVN), where agents must locate distant, unseen targets without dense and step-by-step guidance. Existing large language model (LLM)-based methods, though adept at following dense instructions, often suffer from short-sighted behaviors due to their reliance on short-horimzon supervision. Simply extending the supervision horizon, however, destabilizes LLM training. In this work, we identify that video generation models inherently benefit from long-horizon supervision to align with language instructions, rendering them uniquely suitable for BVN tasks. Capitalizing on this insight, we propose introducing the video generation model into this field for the first time. Yet, the prohibitive latency for generating videos spanning tens of seconds makes real-world deployment impractical. To bridge this gap, we propose SparseVideoNav, achieving sub-second trajectory inference guided by a generated sparse future spanning a 20-second horizon. This yields a remarkable 27x speed-up compared to the unoptimized counterpart. Extensive real-world zero-shot experiments demonstrate that SparseVideoNav achieves 2.5x the success rate of state-of-the-art LLM baselines on BVN tasks and marks the first realization of such capability in challenging night scenes.
☆ NVS-HO: A Benchmark for Novel View Synthesis of Handheld Objects
We propose NVS-HO, the first benchmark designed for novel view synthesis of handheld objects in real-world environments using only RGB inputs. Each object is recorded in two complementary RGB sequences: (1) a handheld sequence, where the object is manipulated in front of a static camera, and (2) a board sequence, where the object is fixed on a ChArUco board to provide accurate camera poses via marker detection. The goal of NVS-HO is to learn a NVS model that captures the full appearance of an object from (1), whereas (2) provides the ground-truth images used for evaluation. To establish baselines, we consider both a classical SfM pipeline and a state-of-the-art pre-trained feed-forward neural network (VGGT) as pose estimators, and train NVS models based on NeRF and Gaussian Splatting. Our experiments reveal significant performance gaps in current methods under unconstrained handheld conditions, highlighting the need for more robust approaches. NVS-HO thus offers a challenging real-world benchmark to drive progress in RGB-based novel view synthesis of handheld objects.
☆ Focus-Scan-Refine: From Human Visual Perception to Efficient Visual Token Pruning
Vision-language models (VLMs) often generate massive visual tokens that greatly increase inference latency and memory footprint; while training-free token pruning offers a practical remedy, existing methods still struggle to balance local evidence and global context under aggressive compression. We propose Focus-Scan-Refine (FSR), a human-inspired, plug-and-play pruning framework that mimics how humans answer visual questions: focus on key evidence, then scan globally if needed, and refine the scanned context by aggregating relevant details. FSR first focuses on key evidence by combining visual importance with instruction relevance, avoiding the bias toward visually salient but query-irrelevant regions. It then scans for complementary context conditioned on the focused set, selecting tokens that are most different from the focused evidence. Finally, FSR refines the scanned context by aggregating nearby informative tokens into the scan anchors via similarity-based assignment and score-weighted merging, without increasing the token budget. Extensive experiments across multiple VLM backbones and vision-language benchmarks show that FSR consistently improves the accuracy-efficiency trade-off over existing state-of-the-art pruning methods. The source codes can be found at https://github.com/ILOT-code/FSR
☆ Allocentric Perceiver: Disentangling Allocentric Reasoning from Egocentric Visual Priors via Frame Instantiation
With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ FMPose3D: monocular 3D pose estimation via flow matching
Monocular 3D pose estimation is fundamentally ill-posed due to depth ambiguity and occlusions, thereby motivating probabilistic methods that generate multiple plausible 3D pose hypotheses. In particular, diffusion-based models have recently demonstrated strong performance, but their iterative denoising process typically requires many timesteps for each prediction, making inference computationally expensive. In contrast, we leverage Flow Matching (FM) to learn a velocity field defined by an Ordinary Differential Equation (ODE), enabling efficient generation of 3D pose samples with only a few integration steps. We propose a novel generative pose estimation framework, FMPose3D, that formulates 3D pose estimation as a conditional distribution transport problem. It continuously transports samples from a standard Gaussian prior to the distribution of plausible 3D poses conditioned only on 2D inputs. Although ODE trajectories are deterministic, FMPose3D naturally generates various pose hypotheses by sampling different noise seeds. To obtain a single accurate prediction from those hypotheses, we further introduce a Reprojection-based Posterior Expectation Aggregation (RPEA) module, which approximates the Bayesian posterior expectation over 3D hypotheses. FMPose3D surpasses existing methods on the widely used human pose estimation benchmarks Human3.6M and MPI-INF-3DHP, and further achieves state-of-the-art performance on the 3D animal pose datasets Animal3D and CtrlAni3D, demonstrating strong performance across both 3D pose domains. The code is available at https://github.com/AdaptiveMotorControlLab/FMPose3D.
☆ Disc-Centric Contrastive Learning for Lumbar Spine Severity Grading
This work examines a disc-centric approach for automated severity grading of lumbar spinal stenosis from sagittal T2-weighted MRI. The method combines contrastive pretraining with disc-level fine-tuning, using a single anatomically localized region of interest per intervertebral disc. Contrastive learning is employed to help the model focus on meaningful disc features and reduce sensitivity to irrelevant differences in image appearance. The framework includes an auxiliary regression task for disc localization and applies weighted focal loss to address class imbalance. Experiments demonstrate a 78.1% balanced accuracy and a reduced severe-to-normal misclassification rate of 2.13% compared with supervised training from scratch. Detecting discs with moderate severity can still be challenging, but focusing on disc-level features provides a practical way to assess the lumbar spinal stenosis.
☆ Neuro-Inspired Visual Pattern Recognition via Biological Reservoir Computing
In this paper, we present a neuro-inspired approach to reservoir computing (RC) in which a network of in vitro cultured cortical neurons serves as the physical reservoir. Rather than relying on artificial recurrent models to approximate neural dynamics, our biological reservoir computing (BRC) system leverages the spontaneous and stimulus-evoked activity of living neural circuits as its computational substrate. A high-density multi-electrode array (HD-MEA) provides simultaneous stimulation and readout across hundreds of channels: input patterns are delivered through selected electrodes, while the remaining ones capture the resulting high-dimensional neural responses, yielding a biologically grounded feature representation. A linear readout layer (single-layer perceptron) is then trained to classify these reservoir states, enabling the living neural network to perform static visual pattern-recognition tasks within a computer-vision framework. We evaluate the system across a sequence of tasks of increasing difficulty, ranging from pointwise stimuli to oriented bars, clock-digit-like shapes, and handwritten digits from the MNIST dataset. Despite the inherent variability of biological neural responses-arising from noise, spontaneous activity, and inter-session differences-the system consistently generates high-dimensional representations that support accurate classification. These results demonstrate that in vitro cortical networks can function as effective reservoirs for static visual pattern recognition, opening new avenues for integrating living neural substrates into neuromorphic computing frameworks. More broadly, this work contributes to the effort to incorporate biological principles into machine learning and supports the goals of neuro-inspired vision by illustrating how living neural systems can inform the design of efficient and biologically grounded computational models.
☆ Depth as Prior Knowledge for Object Detection IEEE
Detecting small and distant objects remains challenging for object detectors due to scale variation, low resolution, and background clutter. Safety-critical applications require reliable detection of these objects for safe planning. Depth information can improve detection, but existing approaches require complex, model-specific architectural modifications. We provide a theoretical analysis followed by an empirical investigation of the depth-detection relationship. Together, they explain how depth causes systematic performance degradation and why depth-informed supervision mitigates it. We introduce DepthPrior, a framework that uses depth as prior knowledge rather than as a fused feature, providing comparable benefits without modifying detector architectures. DepthPrior consists of Depth-Based Loss Weighting (DLW) and Depth-Based Loss Stratification (DLS) during training, and Depth-Aware Confidence Thresholding (DCT) during inference. The only overhead is the initial cost of depth estimation. Experiments across four benchmarks (KITTI, MS COCO, VisDrone, SUN RGB-D) and two detectors (YOLOv11, EfficientDet) demonstrate the effectiveness of DepthPrior, achieving up to +9% mAP$_S$ and +7% mAR$_S$ for small objects, with inference recovery rates as high as 95:1 (true vs. false detections). DepthPrior offers these benefits without additional sensors, architectural changes, or performance costs. Code is available at https://github.com/mos-ks/DepthPrior.
comment: This work has been submitted to the IEEE for possible publication
☆ Adaptive Global and Fine-Grained Perceptual Fusion for MLLM Embeddings Compatible with Hard Negative Amplification
Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
☆ Exploring the Temporal Consistency for Point-Level Weakly-Supervised Temporal Action Localization
Point-supervised Temporal Action Localization (PTAL) adopts a lightly frame-annotated paradigm (\textit{i.e.}, labeling only a single frame per action instance) to train a model to effectively locate action instances within untrimmed videos. Most existing approaches design the task head of models with only a point-supervised snippet-level classification, without explicit modeling of understanding temporal relationships among frames of an action. However, understanding the temporal relationships of frames is crucial because it can help a model understand how an action is defined and therefore benefits localizing the full frames of an action. To this end, in this paper, we design a multi-task learning framework that fully utilizes point supervision to boost the model's temporal understanding capability for action localization. Specifically, we design three self-supervised temporal understanding tasks: (i) Action Completion, (ii) Action Order Understanding, and (iii) Action Regularity Understanding. These tasks help a model understand the temporal consistency of actions across videos. To the best of our knowledge, this is the first attempt to explicitly explore temporal consistency for point supervision action localization. Extensive experimental results on four benchmark datasets demonstrate the effectiveness of the proposed method compared to several state-of-the-art approaches.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Poster: Camera Tampering Detection for Outdoor IoT Systems
Recently, the use of smart cameras in outdoor settings has grown to improve surveillance and security. Nonetheless, these systems are susceptible to tampering, whether from deliberate vandalism or harsh environmental conditions, which can undermine their monitoring effectiveness. In this context, detecting camera tampering is more challenging when a camera is capturing still images rather than video as there is no sequence of continuous frames over time. In this study, we propose two approaches for detecting tampered images: a rule-based method and a deep-learning-based method. The aim is to evaluate how each method performs in terms of accuracy, computational demands, and the data required for training when applied to real-world scenarios. Our results show that the deep-learning model provides higher accuracy, while the rule-based method is more appropriate for scenarios where resources are limited and a prolonged calibration phase is impractical. We also offer publicly available datasets with normal, blurred, and rotated images to support the development and evaluation of camera tampering detection methods, addressing the need for such resources.
comment: Proceedings of the 2024 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS (EWSN)
☆ ShapeUP: Scalable Image-Conditioned 3D Editing
Recent advancements in 3D foundation models have enabled the generation of high-fidelity assets, yet precise 3D manipulation remains a significant challenge. Existing 3D editing frameworks often face a difficult trade-off between visual controllability, geometric consistency, and scalability. Specifically, optimization-based methods are prohibitively slow, multi-view 2D propagation techniques suffer from visual drift, and training-free latent manipulation methods are inherently bound by frozen priors and cannot directly benefit from scaling. In this work, we present ShapeUP, a scalable, image-conditioned 3D editing framework that formulates editing as a supervised latent-to-latent translation within a native 3D representation. This formulation allows ShapeUP to build on a pretrained 3D foundation model, leveraging its strong generative prior while adapting it to editing through supervised training. In practice, ShapeUP is trained on triplets consisting of a source 3D shape, an edited 2D image, and the corresponding edited 3D shape, and learns a direct mapping using a 3D Diffusion Transformer (DiT). This image-as-prompt approach enables fine-grained visual control over both local and global edits and achieves implicit, mask-free localization, while maintaining strict structural consistency with the original asset. Our extensive evaluations demonstrate that ShapeUP consistently outperforms current trained and training-free baselines in both identity preservation and edit fidelity, offering a robust and scalable paradigm for native 3D content creation.
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ UniSurg: A Video-Native Foundation Model for Universal Understanding of Surgical Videos
While foundation models have advanced surgical video analysis, current approaches rely predominantly on pixel-level reconstruction objectives that waste model capacity on low-level visual details - such as smoke, specular reflections, and fluid motion - rather than semantic structures essential for surgical understanding. We present UniSurg, a video-native foundation model that shifts the learning paradigm from pixel-level reconstruction to latent motion prediction. Built on the Video Joint Embedding Predictive Architecture (V-JEPA), UniSurg introduces three key technical innovations tailored to surgical videos: 1) motion-guided latent prediction to prioritize semantically meaningful regions, 2) spatiotemporal affinity self-distillation to enforce relational consistency, and 3) feature diversity regularization to prevent representation collapse in texture-sparse surgical scenes. To enable large-scale pretraining, we curate UniSurg-15M, the largest surgical video dataset to date, comprising 3,658 hours of video from 50 sources across 13 anatomical regions. Extensive experiments across 17 benchmarks demonstrate that UniSurg significantly outperforms state-of-the-art methods on surgical workflow recognition (+14.6% F1 on EgoSurgery, +10.3% on PitVis), action triplet recognition (39.54% mAP-IVT on CholecT50), skill assessment, polyp segmentation, and depth estimation. These results establish UniSurg as a new standard for universal, motion-oriented surgical video understanding.
☆ ROMAN: Reward-Orchestrated Multi-Head Attention Network for Autonomous Driving System Testing
Automated Driving System (ADS) acts as the brain of autonomous vehicles, responsible for their safety and efficiency. Safe deployment requires thorough testing in diverse real-world scenarios and compliance with traffic laws like speed limits, signal obedience, and right-of-way rules. Violations like running red lights or speeding pose severe safety risks. However, current testing approaches face significant challenges: limited ability to generate complex and high-risk law-breaking scenarios, and failing to account for complex interactions involving multiple vehicles and critical situations. To address these challenges, we propose ROMAN, a novel scenario generation approach for ADS testing that combines a multi-head attention network with a traffic law weighting mechanism. ROMAN is designed to generate high-risk violation scenarios to enable more thorough and targeted ADS evaluation. The multi-head attention mechanism models interactions among vehicles, traffic signals, and other factors. The traffic law weighting mechanism implements a workflow that leverages an LLM-based risk weighting module to evaluate violations based on the two dimensions of severity and occurrence. We have evaluated ROMAN by testing the Baidu Apollo ADS within the CARLA simulation platform and conducting extensive experiments to measure its performance. Experimental results demonstrate that ROMAN surpassed state-of-the-art tools ABLE and LawBreaker by achieving 7.91% higher average violation count than ABLE and 55.96% higher than LawBreaker, while also maintaining greater scenario diversity. In addition, only ROMAN successfully generated violation scenarios for every clause of the input traffic laws, enabling it to identify more high-risk violations than existing approaches.
comment: The manuscript includes 13 pages, 8 tables, and 7 figures
☆ Unified Sensor Simulation for Autonomous Driving
In this work, we introduce \textbf{XSIM}, a sensor simulation framework for autonomous driving. XSIM extends 3DGUT splatting with a generalized rolling-shutter modeling tailored for autonomous driving applications. Our framework provides a unified and flexible formulation for appearance and geometric sensor modeling, enabling rendering of complex sensor distortions in dynamic environments. We identify spherical cameras, such as LiDARs, as a critical edge case for existing 3DGUT splatting due to cyclic projection and time discontinuities at azimuth boundaries leading to incorrect particle projection. To address this issue, we propose a phase modeling mechanism that explicitly accounts temporal and shape discontinuities of Gaussians projected by the Unscented Transform at azimuth borders. In addition, we introduce an extended 3D Gaussian representation that incorporates two distinct opacity parameters to resolve mismatches between geometry and color distributions. As a result, our framework provides enhanced scene representations with improved geometric consistency and photorealistic appearance. We evaluate our framework extensively on multiple autonomous driving datasets, including Waymo Open Dataset, Argoverse 2, and PandaSet. Our framework consistently outperforms strong recent baselines and achieves state-of-the-art performance across all datasets. The source code is publicly available at \href{https://github.com/whesense/XSIM}{https://github.com/whesense/XSIM}.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ Multi-instance robust fitting for non-classical geometric models
Most existing robust fitting methods are designed for classical models, such as lines, circles, and planes. In contrast, fewer methods have been developed to robustly handle non-classical models, such as spiral curves, procedural character models, and free-form surfaces. Furthermore, existing methods primarily focus on reconstructing a single instance of a non-classical model. This paper aims to reconstruct multiple instances of non-classical models from noisy data. We formulate this multi-instance fitting task as an optimization problem, which comprises an estimator and an optimizer. Specifically, we propose a novel estimator based on the model-to-data error, capable of handling outliers without a predefined error threshold. Since the proposed estimator is non-differentiable with respect to the model parameters, we employ a meta-heuristic algorithm as the optimizer to seek the global optimum. The effectiveness of our method are demonstrated through experimental results on various non-classical models. The code is available at https://github.com/zhangzongliang/fitting.
☆ CAViT -- Channel-Aware Vision Transformer for Dynamic Feature Fusion CVPR 25
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
comment: Presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 25) in the 4th Workshop on Transformers for Visions - T4V (https://sites.google.com/view/t4v-cvpr25/) Accepted for Publication at 33rd International Conference on Artificial Intelligence and Cognitive Science (AICS 2025), where it was shortlisted for Best Paper Award. (https://aicsconf.org/?page_id=278)
☆ EgoPoseVR: Spatiotemporal Multi-Modal Reasoning for Egocentric Full-Body Pose in Virtual Reality
Immersive virtual reality (VR) applications demand accurate, temporally coherent full-body pose tracking. Recent head-mounted camera-based approaches show promise in egocentric pose estimation, but encounter challenges when applied to VR head-mounted displays (HMDs), including temporal instability, inaccurate lower-body estimation, and the lack of real-time performance. To address these limitations, we present EgoPoseVR, an end-to-end framework for accurate egocentric full-body pose estimation in VR that integrates headset motion cues with egocentric RGB-D observations through a dual-modality fusion pipeline. A spatiotemporal encoder extracts frame- and joint-level representations, which are fused via cross-attention to fully exploit complementary motion cues across modalities. A kinematic optimization module then imposes constraints from HMD signals, enhancing the accuracy and stability of pose estimation. To facilitate training and evaluation, we introduce a large-scale synthetic dataset of over 1.8 million temporally aligned HMD and RGB-D frames across diverse VR scenarios. Experimental results show that EgoPoseVR outperforms state-of-the-art egocentric pose estimation models. A user study in real-world scenes further shows that EgoPoseVR achieved significantly higher subjective ratings in accuracy, stability, embodiment, and intention for future use compared to baseline methods. These results show that EgoPoseVR enables robust full-body pose tracking, offering a practical solution for accurate VR embodiment without requiring additional body-worn sensors or room-scale tracking systems.
☆ A Mixed Reality System for Robust Manikin Localization in Childbirth Training
Opportunities for medical students to gain practical experience in vaginal births are increasingly constrained by shortened clinical rotations, patient reluctance, and the unpredictable nature of labour. To alleviate clinicians' instructional burden and enhance trainees' learning efficiency, we introduce a mixed reality (MR) system for childbirth training that combines virtual guidance with tactile manikin interaction, thereby preserving authentic haptic feedback while enabling independent practice without continuous on-site expert supervision. The system extends the passthrough capability of commercial head-mounted displays (HMDs) by spatially calibrating an external RGB-D camera, allowing real-time visual integration of physical training objects. Building on this capability, we implement a coarse-to-fine localization pipeline that first aligns the maternal manikin with fiducial markers to define a delivery region and then registers the pre-scanned neonatal head within this area. This process enables spatially accurate overlay of virtual guiding hands near the manikin, allowing trainees to follow expert trajectories reinforced by haptic interaction. Experimental evaluations demonstrate that the system achieves accurate and stable manikin localization on a standalone headset, ensuring practical deployment without external computing resources. A large-scale user study involving 83 fourth-year medical students was subsequently conducted to compare MR-based and virtual reality (VR)-based childbirth training. Four senior obstetricians independently assessed performance using standardized criteria. Results showed that MR training achieved significantly higher scores in delivery, post-delivery, and overall task performance, and was consistently preferred by trainees over VR training.
☆ Geometric Observability Index: An Operator-Theoretic Framework for Per-Feature Sensitivity, Weak Observability, and Dynamic Effects in SE(3) Pose Estimation
We present a unified operator-theoretic framework for analyzing per-feature sensitivity in camera pose estimation on the Lie group SE(3). Classical sensitivity tools - conditioning analyses, Euclidean perturbation arguments, and Fisher information bounds - do not explain how individual image features influence the pose estimate, nor why dynamic or inconsistent observations can disproportionately distort modern SLAM and structure-from-motion systems. To address this gap, we extend influence function theory to matrix Lie groups and derive an intrinsic perturbation operator for left-trivialized M-estimators on SE(3). The resulting Geometric Observability Index (GOI) quantifies the contribution of a single measurement through the curvature operator and the Lie algebraic structure of the observable subspace. GOI admits a spectral decomposition along the principal directions of the observable curvature, revealing a direct correspondence between weak observability and amplified sensitivity. In the population regime, GOI coincides with the Fisher information geometry on SE(3), yielding a single-measurement analogue of the Cramer-Rao bound. The same spectral mechanism explains classical degeneracies such as pure rotation and vanishing parallax, as well as dynamic feature amplification along weak curvature directions. Overall, GOI provides a geometrically consistent description of measurement influence that unifies conditioning analysis, Fisher information geometry, influence function theory, and dynamic scene detectability through the spectral geometry of the curvature operator. Because these quantities arise directly within Gauss-Newton pipelines, the curvature spectrum and GOI also yield lightweight, training-free diagnostic signals for identifying dynamic features and detecting weak observability configurations without modifying existing SLAM architectures.
☆ LoGoSeg: Integrating Local and Global Features for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation (OVSS) extends traditional closed-set segmentation by enabling pixel-wise annotation for both seen and unseen categories using arbitrary textual descriptions. While existing methods leverage vision-language models (VLMs) like CLIP, their reliance on image-level pretraining often results in imprecise spatial alignment, leading to mismatched segmentations in ambiguous or cluttered scenes. However, most existing approaches lack strong object priors and region-level constraints, which can lead to object hallucination or missed detections, further degrading performance. To address these challenges, we propose LoGoSeg, an efficient single-stage framework that integrates three key innovations: (i) an object existence prior that dynamically weights relevant categories through global image-text similarity, effectively reducing hallucinations; (ii) a region-aware alignment module that establishes precise region-level visual-textual correspondences; and (iii) a dual-stream fusion mechanism that optimally combines local structural information with global semantic context. Unlike prior works, LoGoSeg eliminates the need for external mask proposals, additional backbones, or extra datasets, ensuring efficiency. Extensive experiments on six benchmarks (A-847, PC-459, A-150, PC-59, PAS-20, and PAS-20b) demonstrate its competitive performance and strong generalization in open-vocabulary settings.
☆ LocateEdit-Bench: A Benchmark for Instruction-Based Editing Localization
Recent advancements in image editing have enabled highly controllable and semantically-aware alteration of visual content, posing unprecedented challenges to manipulation localization. However, existing AI-generated forgery localization methods primarily focus on inpainting-based manipulations, making them ineffective against the latest instruction-based editing paradigms. To bridge this critical gap, we propose LocateEdit-Bench, a large-scale dataset comprising $231$K edited images, designed specifically to benchmark localization methods against instruction-driven image editing. Our dataset incorporates four cutting-edge editing models and covers three common edit types. We conduct a detailed analysis of the dataset and develop two multi-metric evaluation protocols to assess existing localization methods. Our work establishes a foundation to keep pace with the evolving landscape of image editing, thereby facilitating the development of effective methods for future forgery localization. Dataset will be open-sourced upon acceptance.
comment: 11 pages, 7 figures
☆ A Hybrid CNN and ML Framework for Multi-modal Classification of Movement Disorders Using MRI and Brain Structural Features SP
Atypical Parkinsonian Disorders (APD), also known as Parkinson-plus syndrome, are a group of neurodegenerative diseases that include progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). In the early stages, overlapping clinical features often lead to misdiagnosis as Parkinson's disease (PD). Identifying reliable imaging biomarkers for early differential diagnosis remains a critical challenge. In this study, we propose a hybrid framework combining convolutional neural networks (CNNs) with machine learning (ML) techniques to classify APD subtypes versus PD and distinguish between the subtypes themselves: PSP vs. PD, MSA vs. PD, and PSP vs. MSA. The model leverages multi-modal input data, including T1-weighted magnetic resonance imaging (MRI), segmentation masks of 12 deep brain structures associated with APD, and their corresponding volumetric measurements. By integrating these complementary modalities, including image data, structural segmentation masks, and quantitative volume features, the hybrid approach achieved promising classification performance with area under the curve (AUC) scores of 0.95 for PSP vs. PD, 0.86 for MSA vs. PD, and 0.92 for PSP vs. MSA. These results highlight the potential of combining spatial and structural information for robust subtype differentiation. In conclusion, this study demonstrates that fusing CNN-based image features with volume-based ML inputs improves classification accuracy for APD subtypes. The proposed approach may contribute to more reliable early-stage diagnosis, facilitating timely and targeted interventions in clinical practice.
comment: To be published in Proceedings of SPIE Medical Imaging 2026
☆ Visual Implicit Geometry Transformer for Autonomous Driving
We introduce the Visual Implicit Geometry Transformer (ViGT), an autonomous driving geometric model that estimates continuous 3D occupancy fields from surround-view camera rigs. ViGT represents a step towards foundational geometric models for autonomous driving, prioritizing scalability, architectural simplicity, and generalization across diverse sensor configurations. Our approach achieves this through a calibration-free architecture, enabling a single model to adapt to different sensor setups. Unlike general-purpose geometric foundational models that focus on pixel-aligned predictions, ViGT estimates a continuous 3D occupancy field in a birds-eye-view (BEV) addressing domain-specific requirements. ViGT naturally infers geometry from multiple camera views into a single metric coordinate frame, providing a common representation for multiple geometric tasks. Unlike most existing occupancy models, we adopt a self-supervised training procedure that leverages synchronized image-LiDAR pairs, eliminating the need for costly manual annotations. We validate the scalability and generalizability of our approach by training our model on a mixture of five large-scale autonomous driving datasets (NuScenes, Waymo, NuPlan, ONCE, and Argoverse) and achieving state-of-the-art performance on the pointmap estimation task, with the best average rank across all evaluated baselines. We further evaluate ViGT on the Occ3D-nuScenes benchmark, where ViGT achieves comparable performance with supervised methods. The source code is publicly available at \href{https://github.com/whesense/ViGT}{https://github.com/whesense/ViGT}.
☆ ShapeGaussian: High-Fidelity 4D Human Reconstruction in Monocular Videos via Vision Priors
We introduce ShapeGaussian, a high-fidelity, template-free method for 4D human reconstruction from casual monocular videos. Generic reconstruction methods lacking robust vision priors, such as 4DGS, struggle to capture high-deformation human motion without multi-view cues. While template-based approaches, primarily relying on SMPL, such as HUGS, can produce photorealistic results, they are highly susceptible to errors in human pose estimation, often leading to unrealistic artifacts. In contrast, ShapeGaussian effectively integrates template-free vision priors to achieve both high-fidelity and robust scene reconstructions. Our method follows a two-step pipeline: first, we learn a coarse, deformable geometry using pretrained models that estimate data-driven priors, providing a foundation for reconstruction. Then, we refine this geometry using a neural deformation model to capture fine-grained dynamic details. By leveraging 2D vision priors, we mitigate artifacts from erroneous pose estimation in template-based methods and employ multiple reference frames to resolve the invisibility issue of 2D keypoints in a template-free manner. Extensive experiments demonstrate that ShapeGaussian surpasses template-based methods in reconstruction accuracy, achieving superior visual quality and robustness across diverse human motions in casual monocular videos.
☆ PIRATR: Parametric Object Inference for Robotic Applications with Transformers in 3D Point Clouds IEEE
We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.
comment: 8 Pages, 11 Figures, Accepted at 2026 IEEE International Conference on Robotics & Automation (ICRA) Vienna
☆ IndustryShapes: An RGB-D Benchmark dataset for 6D object pose estimation of industrial assembly components and tools ICRA 2026
We introduce IndustryShapes, a new RGB-D benchmark dataset of industrial tools and components, designed for both instance-level and novel object 6D pose estimation approaches. The dataset provides a realistic and application-relevant testbed for benchmarking these methods in the context of industrial robotics bridging the gap between lab-based research and deployment in real-world manufacturing scenarios. Unlike many previous datasets that focus on household or consumer products or use synthetic, clean tabletop datasets, or objects captured solely in controlled lab environments, IndustryShapes introduces five new object types with challenging properties, also captured in realistic industrial assembly settings. The dataset has diverse complexity, from simple to more challenging scenes, with single and multiple objects, including scenes with multiple instances of the same object and it is organized in two parts: the classic set and the extended set. The classic set includes a total of 4,6k images and 6k annotated poses. The extended set introduces additional data modalities to support the evaluation of model-free and sequence-based approaches. To the best of our knowledge, IndustryShapes is the first dataset to offer RGB-D static onboarding sequences. We further evaluate the dataset on a representative set of state-of-the art methods for instance-based and novel object 6D pose estimation, including also object detection, segmentation, showing that there is room for improvement in this domain. The dataset page can be found in https://pose-lab.github.io/IndustryShapes.
comment: To appear in ICRA 2026
☆ VLN-Pilot: Large Vision-Language Model as an Autonomous Indoor Drone Operator
This paper introduces VLN-Pilot, a novel framework in which a large Vision-and-Language Model (VLLM) assumes the role of a human pilot for indoor drone navigation. By leveraging the multimodal reasoning abilities of VLLMs, VLN-Pilot interprets free-form natural language instructions and grounds them in visual observations to plan and execute drone trajectories in GPS-denied indoor environments. Unlike traditional rule-based or geometric path-planning approaches, our framework integrates language-driven semantic understanding with visual perception, enabling context-aware, high-level flight behaviors with minimal task-specific engineering. VLN-Pilot supports fully autonomous instruction-following for drones by reasoning about spatial relationships, obstacle avoidance, and dynamic reactivity to unforeseen events. We validate our framework on a custom photorealistic indoor simulation benchmark and demonstrate the ability of the VLLM-driven agent to achieve high success rates on complex instruction-following tasks, including long-horizon navigation with multiple semantic targets. Experimental results highlight the promise of replacing remote drone pilots with a language-guided autonomous agent, opening avenues for scalable, human-friendly control of indoor UAVs in tasks such as inspection, search-and-rescue, and facility monitoring. Our results suggest that VLLM-based pilots may dramatically reduce operator workload while improving safety and mission flexibility in constrained indoor environments.
☆ FastVMT: Eliminating Redundancy in Video Motion Transfer ICLR2026
Video motion transfer aims to synthesize videos by generating visual content according to a text prompt while transferring the motion pattern observed in a reference video. Recent methods predominantly use the Diffusion Transformer (DiT) architecture. To achieve satisfactory runtime, several methods attempt to accelerate the computations in the DiT, but fail to address structural sources of inefficiency. In this work, we identify and remove two types of computational redundancy in earlier work: motion redundancy arises because the generic DiT architecture does not reflect the fact that frame-to-frame motion is small and smooth; gradient redundancy occurs if one ignores that gradients change slowly along the diffusion trajectory. To mitigate motion redundancy, we mask the corresponding attention layers to a local neighborhood such that interaction weights are not computed unnecessarily distant image regions. To exploit gradient redundancy, we design an optimization scheme that reuses gradients from previous diffusion steps and skips unwarranted gradient computations. On average, FastVMT achieves a 3.43x speedup without degrading the visual fidelity or the temporal consistency of the generated videos.
comment: Accepted by ICLR2026, Project page: fastvmt.gitHub.io, Code: https://github.com/mayuelala/FastVMT
☆ A Comparative Study of 3D Person Detection: Sensor Modalities and Robustness in Diverse Indoor and Outdoor Environments
Accurate 3D person detection is critical for safety in applications such as robotics, industrial monitoring, and surveillance. This work presents a systematic evaluation of 3D person detection using camera-only, LiDAR-only, and camera-LiDAR fusion. While most existing research focuses on autonomous driving, we explore detection performance and robustness in diverse indoor and outdoor scenes using the JRDB dataset. We compare three representative models - BEVDepth (camera), PointPillars (LiDAR), and DAL (camera-LiDAR fusion) - and analyze their behavior under varying occlusion and distance levels. Our results show that the fusion-based approach consistently outperforms single-modality models, particularly in challenging scenarios. We further investigate robustness against sensor corruptions and misalignments, revealing that while DAL offers improved resilience, it remains sensitive to sensor misalignment and certain LiDAR-based corruptions. In contrast, the camera-based BEVDepth model showed the lowest performance and was most affected by occlusion, distance, and noise. Our findings highlight the importance of utilizing sensor fusion for enhanced 3D person detection, while also underscoring the need for ongoing research to address the vulnerabilities inherent in these systems.
comment: Accepted for VISAPP 2026
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ SSG: Scaled Spatial Guidance for Multi-Scale Visual Autoregressive Generation ICLR 2026
Visual autoregressive (VAR) models generate images through next-scale prediction, naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring human perception. In practice, this hierarchy can drift at inference time, as limited capacity and accumulated error cause the model to deviate from its coarse-to-fine nature. We revisit this limitation from an information-theoretic perspective and deduce that ensuring each scale contributes high-frequency content not explained by earlier scales mitigates the train-inference discrepancy. With this insight, we propose Scaled Spatial Guidance (SSG), training-free, inference-time guidance that steers generation toward the intended hierarchy while maintaining global coherence. SSG emphasizes target high-frequency signals, defined as the semantic residual, isolated from a coarser prior. To obtain this prior, we leverage a principled frequency-domain procedure, Discrete Spatial Enhancement (DSE), which is devised to sharpen and better isolate the semantic residual through frequency-aware construction. SSG applies broadly across VAR models leveraging discrete visual tokens, regardless of tokenization design or conditioning modality. Experiments demonstrate SSG yields consistent gains in fidelity and diversity while preserving low latency, revealing untapped efficiency in coarse-to-fine image generation. Code is available at https://github.com/Youngwoo-git/SSG.
comment: Accepted to ICLR 2026
☆ Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
Task-specific microscopy datasets are often too small to train deep learning models that learn robust feature representations. Self-supervised learning (SSL) can mitigate this by pretraining on large unlabeled datasets, but it remains unclear how well such representations transfer across microscopy domains with different staining protocols and channel configurations. We investigate the cross-domain transferability of DINO-pretrained Vision Transformers for protein localization on the OpenCell dataset. We generate image embeddings using three DINO backbones pretrained on ImageNet-1k, the Human Protein Atlas (HPA), and OpenCell, and evaluate them by training a supervised classification head on OpenCell labels. All pretrained models transfer well, with the microscopy-specific HPA-pretrained model achieving the best performance (mean macro $F_1$-score = 0.8221 \pm 0.0062), slightly outperforming a DINO model trained directly on OpenCell (0.8057 \pm 0.0090). These results highlight the value of large-scale pretraining and indicate that domain-relevant SSL representations can generalize effectively to related but distinct microscopy datasets, enabling strong downstream performance even when task-specific labeled data are limited.
comment: AMEE Conference Proceeding 2025, 11 pages, 2 figures
☆ Mapper-GIN: Lightweight Structural Graph Abstraction for Corrupted 3D Point Cloud Classification
Robust 3D point cloud classification is often pursued by scaling up backbones or relying on specialized data augmentation. We instead ask whether structural abstraction alone can improve robustness, and study a simple topology-inspired decomposition based on the Mapper algorithm. We propose Mapper-GIN, a lightweight pipeline that partitions a point cloud into overlapping regions using Mapper (PCA lens, cubical cover, and followed by density-based clustering), constructs a region graph from their overlaps, and performs graph classification with a Graph Isomorphism Network. On the corruption benchmark ModelNet40-C, Mapper-GIN achieves competitive and stable accuracy under Noise and Transformation corruptions with only 0.5M parameters. In contrast to prior approaches that require heavier architectures or additional mechanisms to gain robustness, Mapper-GIN attains strong corruption robustness through simple region-level graph abstraction and GIN message passing. Overall, our results suggest that region-graph structure offers an efficient and interpretable source of robustness for 3D visual recognition.
☆ VGGT-Motion: Motion-Aware Calibration-Free Monocular SLAM for Long-Range Consistency
Despite recent progress in calibration-free monocular SLAM via 3D vision foundation models, scale drift remains severe on long sequences. Motion-agnostic partitioning breaks contextual coherence and causes zero-motion drift, while conventional geometric alignment is computationally expensive. To address these issues, we propose VGGT-Motion, a calibration-free SLAM system for efficient and robust global consistency over kilometer-scale trajectories. Specifically, we first propose a motion-aware submap construction mechanism that uses optical flow to guide adaptive partitioning, prune static redundancy, and encapsulate turns for stable local geometry. We then design an anchor-driven direct Sim(3) registration strategy. By exploiting context-balanced anchors, it achieves search-free, pixel-wise dense alignment and efficient loop closure without costly feature matching. Finally, a lightweight submap-level pose graph optimization enforces global consistency with linear complexity, enabling scalable long-range operation. Experiments show that VGGT-Motion markedly improves trajectory accuracy and efficiency, achieving state-of-the-art performance in zero-shot, long-range calibration-free monocular SLAM.
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Feature points evaluation on omnidirectional vision with a photorealistic fisheye sequence -- A report on experiments done in 2014
What is this report: This is a scientific report, contributing with a detailed bibliography, a dataset which we will call now PFSeq for ''Photorealistic Fisheye Sequence'' and make available at https://doi.org/10. 57745/DYIVVU, and comprehensive experiments. This work should be considered as a draft, and has been done during my PhD thesis ''Construction of 3D models from fisheye video data-Application to the localisation in urban area'' in 2014 [Mor16]. These results have never been published. The aim was to find the best features detector and descriptor for fisheye images, in the context of selfcalibration, with cameras mounted on the top of a car and aiming at the zenith (to proceed then fisheye visual odometry and stereovision in urban scenes). We face a chicken and egg problem, because we can not take advantage of an accurate projection model for an optimal features detection and description, and we rightly need good features to perform the calibration (i.e. to compute the accurate projection model of the camera). What is not this report: It does not contribute with new features algorithm. It does not compare standard features algorithms to algorithms designed for omnidirectional images (unfortunately). It has not been peer-reviewed. Discussions have been translated and enhanced but the experiments have not been run again and the report has not been updated accordingly to the evolution of the state-of-the-art (read this as a 2014 report).
☆ SOMA-1M: A Large-Scale SAR-Optical Multi-resolution Alignment Dataset for Multi-Task Remote Sensing
Synthetic Aperture Radar (SAR) and optical imagery provide complementary strengths that constitute the critical foundation for transcending single-modality constraints and facilitating cross-modal collaborative processing and intelligent interpretation. However, existing benchmark datasets often suffer from limitations such as single spatial resolution, insufficient data scale, and low alignment accuracy, making them inadequate for supporting the training and generalization of multi-scale foundation models. To address these challenges, we introduce SOMA-1M (SAR-Optical Multi-resolution Alignment), a pixel-level precisely aligned dataset containing over 1.3 million pairs of georeferenced images with a specification of 512 x 512 pixels. This dataset integrates imagery from Sentinel-1, PIESAT-1, Capella Space, and Google Earth, achieving global multi-scale coverage from 0.5 m to 10 m. It encompasses 12 typical land cover categories, effectively ensuring scene diversity and complexity. To address multimodal projection deformation and massive data registration, we designed a rigorous coarse-to-fine image matching framework ensuring pixel-level alignment. Based on this dataset, we established comprehensive evaluation benchmarks for four hierarchical vision tasks, including image matching, image fusion, SAR-assisted cloud removal, and cross-modal translation, involving over 30 mainstream algorithms. Experimental results demonstrate that supervised training on SOMA-1M significantly enhances performance across all tasks. Notably, multimodal remote sensing image (MRSI) matching performance achieves current state-of-the-art (SOTA) levels. SOMA-1M serves as a foundational resource for robust multimodal algorithms and remote sensing foundation models. The dataset will be released publicly at: https://github.com/PeihaoWu/SOMA-1M.
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Attention Retention for Continual Learning with Vision Transformers AAAI-2026
Continual learning (CL) empowers AI systems to progressively acquire knowledge from non-stationary data streams. However, catastrophic forgetting remains a critical challenge. In this work, we identify attention drift in Vision Transformers as a primary source of catastrophic forgetting, where the attention to previously learned visual concepts shifts significantly after learning new tasks. Inspired by neuroscientific insights into the selective attention in the human visual system, we propose a novel attention-retaining framework to mitigate forgetting in CL. Our method constrains attention drift by explicitly modifying gradients during backpropagation through a two-step process: 1) extracting attention maps of the previous task using a layer-wise rollout mechanism and generating instance-adaptive binary masks, and 2) when learning a new task, applying these masks to zero out gradients associated with previous attention regions, thereby preventing disruption of learned visual concepts. For compatibility with modern optimizers, the gradient masking process is further enhanced by scaling parameter updates proportionally to maintain their relative magnitudes. Experiments and visualizations demonstrate the effectiveness of our method in mitigating catastrophic forgetting and preserving visual concepts. It achieves state-of-the-art performance and exhibits robust generalizability across diverse CL scenarios.
comment: AAAI-2026 Camera Ready
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis ECAI 2025
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code is in the supplementary materials and will be publicly available.
comment: 17 pages, 7 figures; cvpr2026 submission
☆ Synthetic Defect Geometries of Cast Metal Objects Modeled via 2d Voronoi Tessellations
In industry, defect detection is crucial for quality control. Non-destructive testing (NDT) methods are preferred as they do not influence the functionality of the object while inspecting. Automated data evaluation for automated defect detection is a growing field of research. In particular, machine learning approaches show promising results. To provide training data in sufficient amount and quality, synthetic data can be used. Rule-based approaches enable synthetic data generation in a controllable environment. Therefore, a digital twin of the inspected object including synthetic defects is needed. We present parametric methods to model 3d mesh objects of various defect types that can then be added to the object geometry to obtain synthetic defective objects. The models are motivated by common defects in metal casting but can be transferred to other machining procedures that produce similar defect shapes. Synthetic data resembling the real inspection data can then be created by using a physically based Monte Carlo simulation of the respective testing method. Using our defect models, a variable and arbitrarily large synthetic data set can be generated with the possibility to include rarely occurring defects in sufficient quantity. Pixel-perfect annotation can be created in parallel. As an example, we will use visual surface inspection, but the procedure can be applied in combination with simulations for any other NDT method.
☆ Stable Velocity: A Variance Perspective on Flow Matching
While flow matching is elegant, its reliance on single-sample conditional velocities leads to high-variance training targets that destabilize optimization and slow convergence. By explicitly characterizing this variance, we identify 1) a high-variance regime near the prior, where optimization is challenging, and 2) a low-variance regime near the data distribution, where conditional and marginal velocities nearly coincide. Leveraging this insight, we propose Stable Velocity, a unified framework that improves both training and sampling. For training, we introduce Stable Velocity Matching (StableVM), an unbiased variance-reduction objective, along with Variance-Aware Representation Alignment (VA-REPA), which adaptively strengthen auxiliary supervision in the low-variance regime. For inference, we show that dynamics in the low-variance regime admit closed-form simplifications, enabling Stable Velocity Sampling (StableVS), a finetuning-free acceleration. Extensive experiments on ImageNet $256\times256$ and large pretrained text-to-image and text-to-video models, including SD3.5, Flux, Qwen-Image, and Wan2.2, demonstrate consistent improvements in training efficiency and more than $2\times$ faster sampling within the low-variance regime without degrading sample quality. Our code is available at https://github.com/linYDTHU/StableVelocity.
☆ LD-SLRO: Latent Diffusion Structured Light for 3-D Reconstruction of Highly Reflective Objects
Fringe projection profilometry-based 3-D reconstruction of objects with high reflectivity and low surface roughness remains a significant challenge. When measuring such glossy surfaces, specular reflection and indirect illumination often lead to severe distortion or loss of the projected fringe patterns. To address these issues, we propose a latent diffusion-based structured light for reflective objects (LD-SLRO). Phase-shifted fringe images captured from highly reflective surfaces are first encoded to extract latent representations that capture surface reflectance characteristics. These latent features are then used as conditional inputs to a latent diffusion model, which probabilistically suppresses reflection-induced artifacts and recover lost fringe information, yielding high-quality fringe images. The proposed components, including the specular reflection encoder, time-variant channel affine layer, and attention modules, further improve fringe restoration quality. In addition, LD-SLRO provides high flexibility in configuring the input and output fringe sets. Experimental results demonstrate that the proposed method improves both fringe quality and 3-D reconstruction accuracy over state-of-the-art methods, reducing the average root-mean-squared error from 1.8176 mm to 0.9619 mm.
comment: 10 pages, 7 figures
☆ M$^2$-Miner: Multi-Agent Enhanced MCTS for Mobile GUI Agent Data Mining ICLR 2026
Graphical User Interface (GUI) agent is pivotal to advancing intelligent human-computer interaction paradigms. Constructing powerful GUI agents necessitates the large-scale annotation of high-quality user-behavior trajectory data (i.e., intent-trajectory pairs) for training. However, manual annotation methods and current GUI agent data mining approaches typically face three critical challenges: high construction cost, poor data quality, and low data richness. To address these issues, we propose M$^2$-Miner, the first low-cost and automated mobile GUI agent data-mining framework based on Monte Carlo Tree Search (MCTS). For better data mining efficiency and quality, we present a collaborative multi-agent framework, comprising InferAgent, OrchestraAgent, and JudgeAgent for guidance, acceleration, and evaluation. To further enhance the efficiency of mining and enrich intent diversity, we design an intent recycling strategy to extract extra valuable interaction trajectories. Additionally, a progressive model-in-the-loop training strategy is introduced to improve the success rate of data mining. Extensive experiments have demonstrated that the GUI agent fine-tuned using our mined data achieves state-of-the-art performance on several commonly used mobile GUI benchmarks. Our work will be released to facilitate the community research.
comment: Accepted by ICLR 2026. Supplementary material is included at the end of the main paper (16 pages, 15 figures, 2 tables)
☆ Multi-AD: Cross-Domain Unsupervised Anomaly Detection for Medical and Industrial Applications
Traditional deep learning models often lack annotated data, especially in cross-domain applications such as anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To address this challenge, we propose Multi-AD, a convolutional neural network (CNN) model for robust unsupervised anomaly detection across medical and industrial images. Our approach employs the squeeze-and-excitation (SE) block to enhance feature extraction via channel-wise attention, enabling the model to focus on the most relevant features and detect subtle anomalies. Knowledge distillation (KD) transfers informative features from the teacher to the student model, enabling effective learning of the differences between normal and anomalous data. Then, the discriminator network further enhances the model's capacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale features, the student model can detect anomalies of varying sizes. The teacher-student (T-S) architecture ensures consistent representation of high-dimensional features while adapting them to enhance anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across multiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art models, achieving the best average AUROC for both image-level (81.4% for medical and 99.6% for industrial) and pixel-level (97.0% for medical and 98.4% for industrial) tasks, making it effective for real-world applications.
comment: 28 pages, 8 figures
☆ NeVStereo: A NeRF-Driven NVS-Stereo Architecture for High-Fidelity 3D Tasks
In modern dense 3D reconstruction, feed-forward systems (e.g., VGGT, pi3) focus on end-to-end matching and geometry prediction but do not explicitly output the novel view synthesis (NVS). Neural rendering-based approaches offer high-fidelity NVS and detailed geometry from posed images, yet they typically assume fixed camera poses and can be sensitive to pose errors. As a result, it remains non-trivial to obtain a single framework that can offer accurate poses, reliable depth, high-quality rendering, and accurate 3D surfaces from casually captured views. We present NeVStereo, a NeRF-driven NVS-stereo architecture that aims to jointly deliver camera poses, multi-view depth, novel view synthesis, and surface reconstruction from multi-view RGB-only inputs. NeVStereo combines NeRF-based NVS for stereo-friendly renderings, confidence-guided multi-view depth estimation, NeRF-coupled bundle adjustment for pose refinement, and an iterative refinement stage that updates both depth and the radiance field to improve geometric consistency. This design mitigated the common NeRF-based issues such as surface stacking, artifacts, and pose-depth coupling. Across indoor, outdoor, tabletop, and aerial benchmarks, our experiments indicate that NeVStereo achieves consistently strong zero-shot performance, with up to 36% lower depth error, 10.4% improved pose accuracy, 4.5% higher NVS fidelity, and state-of-the-art mesh quality (F1 91.93%, Chamfer 4.35 mm) compared to existing prestigious methods.
☆ Disco: Densely-overlapping Cell Instance Segmentation via Adjacency-aware Collaborative Coloring ICLR 2026
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
comment: 17 pages, 10 figures; ICLR 2026
☆ VMF-GOS: Geometry-guided virtual Outlier Synthesis for Long-Tailed OOD Detection
Out-of-Distribution (OOD) detection under long-tailed distributions is a highly challenging task because the scarcity of samples in tail classes leads to blurred decision boundaries in the feature space. Current state-of-the-art (sota) methods typically employ Outlier Exposure (OE) strategies, relying on large-scale real external datasets (such as 80 Million Tiny Images) to regularize the feature space. However, this dependence on external data often becomes infeasible in practical deployment due to high data acquisition costs and privacy sensitivity. To this end, we propose a novel data-free framework aimed at completely eliminating reliance on external datasets while maintaining superior detection performance. We introduce a Geometry-guided virtual Outlier Synthesis (GOS) strategy that models statistical properties using the von Mises-Fisher (vMF) distribution on a hypersphere. Specifically, we locate a low-likelihood annulus in the feature space and perform directional sampling of virtual outliers in this region. Simultaneously, we introduce a new Dual-Granularity Semantic Loss (DGS) that utilizes contrastive learning to maximize the distinction between in-distribution (ID) features and these synthesized boundary outliers. Extensive experiments on benchmarks such as CIFAR-LT demonstrate that our method outperforms sota approaches that utilize external real images.
☆ TSBOW: Traffic Surveillance Benchmark for Occluded Vehicles Under Various Weather Conditions AAAI
Global warming has intensified the frequency and severity of extreme weather events, which degrade CCTV signal and video quality while disrupting traffic flow, thereby increasing traffic accident rates. Existing datasets, often limited to light haze, rain, and snow, fail to capture extreme weather conditions. To address this gap, this study introduces the Traffic Surveillance Benchmark for Occluded vehicles under various Weather conditions (TSBOW), a comprehensive dataset designed to enhance occluded vehicle detection across diverse annual weather scenarios. Comprising over 32 hours of real-world traffic data from densely populated urban areas, TSBOW includes more than 48,000 manually annotated and 3.2 million semi-labeled frames; bounding boxes spanning eight traffic participant classes from large vehicles to micromobility devices and pedestrians. We establish an object detection benchmark for TSBOW, highlighting challenges posed by occlusions and adverse weather. With its varied road types, scales, and viewpoints, TSBOW serves as a critical resource for advancing Intelligent Transportation Systems. Our findings underscore the potential of CCTV-based traffic monitoring, pave the way for new research and applications. The TSBOW dataset is publicly available at: https://github.com/SKKUAutoLab/TSBOW.
comment: This paper has been accepted by the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Explainable Pathomics Feature Visualization via Correlation-aware Conditional Feature Editing
Pathomics is a recent approach that offers rich quantitative features beyond what black-box deep learning can provide, supporting more reproducible and explainable biomarkers in digital pathology. However, many derived features (e.g., "second-order moment") remain difficult to interpret, especially across different clinical contexts, which limits their practical adoption. Conditional diffusion models show promise for explainability through feature editing, but they typically assume feature independence**--**an assumption violated by intrinsically correlated pathomics features. Consequently, editing one feature while fixing others can push the model off the biological manifold and produce unrealistic artifacts. To address this, we propose a Manifold-Aware Diffusion (MAD) framework for controllable and biologically plausible cell nuclei editing. Unlike existing approaches, our method regularizes feature trajectories within a disentangled latent space learned by a variational auto-encoder (VAE). This ensures that manipulating a target feature automatically adjusts correlated attributes to remain within the learned distribution of real cells. These optimized features then guide a conditional diffusion model to synthesize high-fidelity images. Experiments demonstrate that our approach is able to navigate the manifold of pathomics features when editing those features. The proposed method outperforms baseline methods in conditional feature editing while preserving structural coherence.
Dataset Distillation via Relative Distribution Matching and Cognitive Heritage
Dataset distillation seeks to synthesize a highly compact dataset that achieves performance comparable to the original dataset on downstream tasks. For the classification task that use pre-trained self-supervised models as backbones, previous linear gradient matching optimizes synthetic images by encouraging them to mimic the gradient updates induced by real images on the linear classifier. However, this batch-level formulation requires loading thousands of real images and applying multiple rounds of differentiable augmentations to synthetic images at each distillation step, leading to substantial computational and memory overhead. In this paper, we introduce statistical flow matching , a stable and efficient supervised learning framework that optimizes synthetic images by aligning constant statistical flows from target class centers to non-target class centers in the original data. Our approach loads raw statistics only once and performs a single augmentation pass on the synthetic data, achieving performance comparable to or better than the state-of-the-art methods with 10x lower GPU memory usage and 4x shorter runtime. Furthermore, we propose a classifier inheritance strategy that reuses the classifier trained on the original dataset for inference, requiring only an extremely lightweight linear projector and marginal storage while achieving substantial performance gains.
☆ Parallel Swin Transformer-Enhanced 3D MRI-to-CT Synthesis for MRI-Only Radiotherapy Planning
MRI provides superior soft tissue contrast without ionizing radiation; however, the absence of electron density information limits its direct use for dose calculation. As a result, current radiotherapy workflows rely on combined MRI and CT acquisitions, increasing registration uncertainty and procedural complexity. Synthetic CT generation enables MRI only planning but remains challenging due to nonlinear MRI-CT relationships and anatomical variability. We propose Parallel Swin Transformer-Enhanced Med2Transformer, a 3D architecture that integrates convolutional encoding with dual Swin Transformer branches to model both local anatomical detail and long-range contextual dependencies. Multi-scale shifted window attention with hierarchical feature aggregation improves anatomical fidelity. Experiments on public and clinical datasets demonstrate higher image similarity and improved geometric accuracy compared with baseline methods. Dosimetric evaluation shows clinically acceptable performance, with a mean target dose error of 1.69%. Code is available at: https://github.com/mobaidoctor/med2transformer.
☆ Dolphin-v2: Universal Document Parsing via Scalable Anchor Prompting
Document parsing has garnered widespread attention as vision-language models (VLMs) advance OCR capabilities. However, the field remains fragmented across dozens of specialized models with varying strengths, forcing users to navigate complex model selection and limiting system scalability. Moreover, existing two-stage approaches depend on axis-aligned bounding boxes for layout detection, failing to handle distorted or photographed documents effectively. To this end, we present Dolphin-v2, a two-stage document image parsing model that substantially improves upon the original Dolphin. In the first stage, Dolphin-v2 jointly performs document type classification (digital-born versus photographed) alongside layout analysis. For digital-born documents, it conducts finer-grained element detection with reading order prediction. In the second stage, we employ a hybrid parsing strategy: photographed documents are parsed holistically as complete pages to handle geometric distortions, while digital-born documents undergo element-wise parallel parsing guided by the detected layout anchors, enabling efficient content extraction. Compared with the original Dolphin, Dolphin-v2 introduces several crucial enhancements: (1) robust parsing of photographed documents via holistic page-level understanding, (2) finer-grained element detection (21 categories) with semantic attribute extraction such as author information and document metadata, and (3) code block recognition with indentation preservation, which existing systems typically lack. Comprehensive evaluations are conducted on DocPTBench, OmniDocBench, and our self-constructed RealDoc-160 benchmark. The results demonstrate substantial improvements: +14.78 points overall on the challenging OmniDocBench and 91% error reduction on photographed documents, while maintaining efficient inference through parallel processing.
☆ VRIQ: Benchmarking and Analyzing Visual-Reasoning IQ of VLMs
Recent progress in Vision Language Models (VLMs) has raised the question of whether they can reliably perform nonverbal reasoning. To this end, we introduce VRIQ (Visual Reasoning IQ), a novel benchmark designed to assess and analyze the visual reasoning ability of VLMs. We evaluate models on two sets of tasks: abstract puzzle-style and natural-image reasoning tasks. We find that on abstract puzzles, performance remains near random with an average accuracy of around 28%, while natural tasks yield better but still weak results with 45% accuracy. We also find that tool-augmented reasoning demonstrates only modest improvements. To uncover the source of this weakness, we introduce diagnostic probes targeting perception and reasoning. Our analysis demonstrates that around 56% of failures arise from perception alone, 43% from both perception and reasoning, and only a mere 1% from reasoning alone. This motivates us to design fine-grained diagnostic probe questions targeting specific perception categories (e.g., shape, count, position, 3D/depth), revealing that certain categories cause more failures than others. Our benchmark and analysis establish that current VLMs, even with visual reasoning tools, remain unreliable abstract reasoners, mostly due to perception limitations, and offer a principled basis for improving visual reasoning in multimodal systems.
☆ SAIL: Self-Amplified Iterative Learning for Diffusion Model Alignment with Minimal Human Feedback
Aligning diffusion models with human preferences remains challenging, particularly when reward models are unavailable or impractical to obtain, and collecting large-scale preference datasets is prohibitively expensive. \textit{This raises a fundamental question: can we achieve effective alignment using only minimal human feedback, without auxiliary reward models, by unlocking the latent capabilities within diffusion models themselves?} In this paper, we propose \textbf{SAIL} (\textbf{S}elf-\textbf{A}mplified \textbf{I}terative \textbf{L}earning), a novel framework that enables diffusion models to act as their own teachers through iterative self-improvement. Starting from a minimal seed set of human-annotated preference pairs, SAIL operates in a closed-loop manner where the model progressively generates diverse samples, self-annotates preferences based on its evolving understanding, and refines itself using this self-augmented dataset. To ensure robust learning and prevent catastrophic forgetting, we introduce a ranked preference mixup strategy that carefully balances exploration with adherence to initial human priors. Extensive experiments demonstrate that SAIL consistently outperforms state-of-the-art methods across multiple benchmarks while using merely 6\% of the preference data required by existing approaches, revealing that diffusion models possess remarkable self-improvement capabilities that, when properly harnessed, can effectively replace both large-scale human annotation and external reward models.
☆ Erase at the Core: Representation Unlearning for Machine Unlearning
Many approximate machine unlearning methods demonstrate strong logit-level forgetting -- such as near-zero accuracy on the forget set -- yet continue to preserve substantial information within their internal feature representations. We refer to this discrepancy as superficial forgetting. Recent studies indicate that most existing unlearning approaches primarily alter the final classifier, leaving intermediate representations largely unchanged and highly similar to those of the original model. To address this limitation, we introduce the Erase at the Core (EC), a framework designed to enforce forgetting throughout the entire network hierarchy. EC integrates multi-layer contrastive unlearning on the forget set with retain set preservation through deeply supervised learning. Concretely, EC attaches auxiliary modules to intermediate layers and applies both contrastive unlearning and cross-entropy losses at each supervision point, with layer-wise weighted losses. Experimental results show that EC not only achieves effective logit-level forgetting, but also substantially reduces representational similarity to the original model across intermediate layers. Furthermore, EC is model-agnostic and can be incorporated as a plug-in module into existing unlearning methods, improving representation-level forgetting while maintaining performance on the retain set.
☆ Imagine a City: CityGenAgent for Procedural 3D City Generation
The automated generation of interactive 3D cities is a critical challenge with broad applications in autonomous driving, virtual reality, and embodied intelligence. While recent advances in generative models and procedural techniques have improved the realism of city generation, existing methods often struggle with high-fidelity asset creation, controllability, and manipulation. In this work, we introduce CityGenAgent, a natural language-driven framework for hierarchical procedural generation of high-quality 3D cities. Our approach decomposes city generation into two interpretable components, Block Program and Building Program. To ensure structural correctness and semantic alignment, we adopt a two-stage learning strategy: (1) Supervised Fine-Tuning (SFT). We train BlockGen and BuildingGen to generate valid programs that adhere to schema constraints, including non-self-intersecting polygons and complete fields; (2) Reinforcement Learning (RL). We design Spatial Alignment Reward to enhance spatial reasoning ability and Visual Consistency Reward to bridge the gap between textual descriptions and the visual modality. Benefiting from the programs and the models' generalization, CityGenAgent supports natural language editing and manipulation. Comprehensive evaluations demonstrate superior semantic alignment, visual quality, and controllability compared to existing methods, establishing a robust foundation for scalable 3D city generation.
☆ Breaking Semantic Hegemony: Decoupling Principal and Residual Subspaces for Generalized OOD Detection
While feature-based post-hoc methods have made significant strides in Out-of-Distribution (OOD) detection, we uncover a counter-intuitive Simplicity Paradox in existing state-of-the-art (SOTA) models: these models exhibit keen sensitivity in distinguishing semantically subtle OOD samples but suffer from severe Geometric Blindness when confronting structurally distinct yet semantically simple samples or high-frequency sensor noise. We attribute this phenomenon to Semantic Hegemony within the deep feature space and reveal its mathematical essence through the lens of Neural Collapse. Theoretical analysis demonstrates that the spectral concentration bias, induced by the high variance of the principal subspace, numerically masks the structural distribution shift signals that should be significant in the residual subspace. To address this issue, we propose D-KNN, a training-free, plug-and-play geometric decoupling framework. This method utilizes orthogonal decomposition to explicitly separate semantic components from structural residuals and introduces a dual-space calibration mechanism to reactivate the model's sensitivity to weak residual signals. Extensive experiments demonstrate that D-KNN effectively breaks Semantic Hegemony, establishing new SOTA performance on both CIFAR and ImageNet benchmarks. Notably, in resolving the Simplicity Paradox, it reduces the FPR95 from 31.3% to 2.3%; when addressing sensor failures such as Gaussian noise, it boosts the detection performance (AUROC) from a baseline of 79.7% to 94.9%.
☆ Multimodal Latent Reasoning via Hierarchical Visual Cues Injection
The advancement of multimodal large language models (MLLMs) has enabled impressive perception capabilities. However, their reasoning process often remains a "fast thinking" paradigm, reliant on end-to-end generation or explicit, language-centric chains of thought (CoT), which can be inefficient, verbose, and prone to hallucination. This work posits that robust reasoning should evolve within a latent space, integrating multimodal signals seamlessly. We propose multimodal latent reasoning via HIerarchical Visual cuEs injection (\emph{HIVE}), a novel framework that instills deliberate, "slow thinking" without depending on superficial textual rationales. Our method recursively extends transformer blocks, creating an internal loop for iterative reasoning refinement. Crucially, it injectively grounds this process with hierarchical visual cues from global scene context to fine-grained regional details directly into the model's latent representations. This enables the model to perform grounded, multi-step inference entirely in the aligned latent space. Extensive evaluations demonstrate that test-time scaling is effective when incorporating vision knowledge, and that integrating hierarchical information significantly enhances the model's understanding of complex scenes.
☆ Learning with Adaptive Prototype Manifolds for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical task for the safe deployment of machine learning models in the real world. Existing prototype-based representation learning methods have demonstrated exceptional performance. Specifically, we identify two fundamental flaws that universally constrain these methods: the Static Homogeneity Assumption (fixed representational resources for all classes) and the Learning-Inference Disconnect (discarding rich prototype quality knowledge at inference). These flaws fundamentally limit the model's capacity and performance. To address these issues, we propose APEX (Adaptive Prototype for eXtensive OOD Detection), a novel OOD detection framework designed via a Two-Stage Repair process to optimize the learned feature manifold. APEX introduces two key innovations to address these respective flaws: (1) an Adaptive Prototype Manifold (APM), which leverages the Minimum Description Length (MDL) principle to automatically determine the optimal prototype complexity $K_c^*$ for each class, thereby fundamentally resolving prototype collision; and (2) a Posterior-Aware OOD Scoring (PAOS) mechanism, which quantifies prototype quality (cohesion and separation) to bridge the learning-inference disconnect. Comprehensive experiments on benchmarks such as CIFAR-100 validate the superiority of our method, where APEX achieves new state-of-the-art performance.
☆ Consistency-Preserving Concept Erasure via Unsafe-Safe Pairing and Directional Fisher-weighted Adaptation
With the increasing versatility of text-to-image diffusion models, the ability to selectively erase undesirable concepts (e.g., harmful content) has become indispensable. However, existing concept erasure approaches primarily focus on removing unsafe concepts without providing guidance toward corresponding safe alternatives, which often leads to failure in preserving the structural and semantic consistency between the original and erased generations. In this paper, we propose a novel framework, PAIRed Erasing (PAIR), which reframes concept erasure from simple removal to consistency-preserving semantic realignment using unsafe-safe pairs. We first generate safe counterparts from unsafe inputs while preserving structural and semantic fidelity, forming paired unsafe-safe multimodal data. Leveraging these pairs, we introduce two key components: (1) Paired Semantic Realignment, a guided objective that uses unsafe-safe pairs to explicitly map target concepts to semantically aligned safe anchors; and (2) Fisher-weighted Initialization for DoRA, which initializes parameter-efficient low-rank adaptation matrices using unsafe-safe pairs, encouraging the generation of safe alternatives while selectively suppressing unsafe concepts. Together, these components enable fine-grained erasure that removes only the targeted concepts while maintaining overall semantic consistency. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving effective concept erasure while preserving structural integrity, semantic coherence, and generation quality.
☆ MTPano: Multi-Task Panoramic Scene Understanding via Label-Free Integration of Dense Prediction Priors
Comprehensive panoramic scene understanding is critical for immersive applications, yet it remains challenging due to the scarcity of high-resolution, multi-task annotations. While perspective foundation models have achieved success through data scaling, directly adapting them to the panoramic domain often fails due to severe geometric distortions and coordinate system discrepancies. Furthermore, the underlying relations between diverse dense prediction tasks in spherical spaces are underexplored. To address these challenges, we propose MTPano, a robust multi-task panoramic foundation model established by a label-free training pipeline. First, to circumvent data scarcity, we leverage powerful perspective dense priors. We project panoramic images into perspective patches to generate accurate, domain-gap-free pseudo-labels using off-the-shelf foundation models, which are then re-projected to serve as patch-wise supervision. Second, to tackle the interference between task types, we categorize tasks into rotation-invariant (e.g., depth, segmentation) and rotation-variant (e.g., surface normals) groups. We introduce the Panoramic Dual BridgeNet, which disentangles these feature streams via geometry-aware modulation layers that inject absolute position and ray direction priors. To handle the distortion from equirectangular projections (ERP), we incorporate ERP token mixers followed by a dual-branch BridgeNet for interactions with gradient truncation, facilitating beneficial cross-task information sharing while blocking conflicting gradients from incompatible task attributes. Additionally, we introduce auxiliary tasks (image gradient, point map, etc.) to fertilize the cross-task learning process. Extensive experiments demonstrate that MTPano achieves state-of-the-art performance on multiple benchmarks and delivers competitive results against task-specific panoramic specialist foundation models.
☆ Wid3R: Wide Field-of-View 3D Reconstruction via Camera Model Conditioning
We present Wid3R, a feed-forward neural network for visual geometry reconstruction that supports wide field-of-view camera models. Prior methods typically assume that input images are rectified or captured with pinhole cameras, since both their architectures and training datasets are tailored to perspective images only. These assumptions limit their applicability in real-world scenarios that use fisheye or panoramic cameras and often require careful calibration and undistortion. In contrast, Wid3R is a generalizable multi-view 3D estimation method that can model wide field-of-view camera types. Our approach leverages a ray representation with spherical harmonics and a novel camera model token within the network, enabling distortion-aware 3D reconstruction. Furthermore, Wid3R is the first multi-view foundation model to support feed-forward 3D reconstruction directly from 360 imagery. It demonstrates strong zero-shot robustness and consistently outperforms prior methods, achieving improvements of up to +77.33 on Stanford2D3D.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ Fast-SAM3D: 3Dfy Anything in Images but Faster
SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
☆ Magic-MM-Embedding: Towards Visual-Token-Efficient Universal Multimodal Embedding with MLLMs
Multimodal Large Language Models (MLLMs) have shown immense promise in universal multimodal retrieval, which aims to find relevant items of various modalities for a given query. But their practical application is often hindered by the substantial computational cost incurred from processing a large number of tokens from visual inputs. In this paper, we propose Magic-MM-Embedding, a series of novel models that achieve both high efficiency and state-of-the-art performance in universal multimodal embedding. Our approach is built on two synergistic pillars: (1) a highly efficient MLLM architecture incorporating visual token compression to drastically reduce inference latency and memory footprint, and (2) a multi-stage progressive training strategy designed to not only recover but significantly boost performance. This coarse-to-fine training paradigm begins with extensive continue pretraining to restore multimodal understanding and generation capabilities, progresses to large-scale contrastive pretraining and hard negative mining to enhance discriminative power, and culminates in a task-aware fine-tuning stage guided by an MLLM-as-a-Judge for precise data curation. Comprehensive experiments show that our model outperforms existing methods by a large margin while being more inference-efficient.
☆ Unlocking Prototype Potential: An Efficient Tuning Framework for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) seeks to continuously learn new classes from very limited samples while preserving previously acquired knowledge. Traditional methods often utilize a frozen pre-trained feature extractor to generate static class prototypes, which suffer from the inherent representation bias of the backbone. While recent prompt-based tuning methods attempt to adapt the backbone via minimal parameter updates, given the constraint of extreme data scarcity, the model's capacity to assimilate novel information and substantively enhance its global discriminative power is inherently limited. In this paper, we propose a novel shift in perspective: freezing the feature extractor while fine-tuning the prototypes. We argue that the primary challenge in FSCIL is not feature acquisition, but rather the optimization of decision regions within a static, high-quality feature space. To this end, we introduce an efficient prototype fine-tuning framework that evolves static centroids into dynamic, learnable components. The framework employs a dual-calibration method consisting of class-specific and task-aware offsets. These components function synergistically to improve the discriminative capacity of prototypes for ongoing incremental classes. Extensive results demonstrate that our method attains superior performance across multiple benchmarks while requiring minimal learnable parameters.
comment: under review
☆ ReGLA: Efficient Receptive-Field Modeling with Gated Linear Attention Network
Balancing accuracy and latency on high-resolution images is a critical challenge for lightweight models, particularly for Transformer-based architectures that often suffer from excessive latency. To address this issue, we introduce \textbf{ReGLA}, a series of lightweight hybrid networks, which integrates efficient convolutions for local feature extraction with ReLU-based gated linear attention for global modeling. The design incorporates three key innovations: the Efficient Large Receptive Field (ELRF) module for enhancing convolutional efficiency while preserving a large receptive field; the ReLU Gated Modulated Attention (RGMA) module for maintaining linear complexity while enhancing local feature representation; and a multi-teacher distillation strategy to boost performance on downstream tasks. Extensive experiments validate the superiority of ReGLA; particularly the ReGLA-M achieves \textbf{80.85\%} Top-1 accuracy on ImageNet-1K at $224px$, with only \textbf{4.98 ms} latency at $512px$. Furthermore, ReGLA outperforms similarly scaled iFormer models in downstream tasks, achieving gains of \textbf{3.1\%} AP on COCO object detection and \textbf{3.6\%} mIoU on ADE20K semantic segmentation, establishing it as a state-of-the-art solution for high-resolution visual applications.
comment: 11 pages, 4 figures
☆ RFM-Pose:Reinforcement-Guided Flow Matching for Fast Category-Level 6D Pose Estimation IEEE
Object pose estimation is a fundamental problem in computer vision and plays a critical role in virtual reality and embodied intelligence, where agents must understand and interact with objects in 3D space. Recently, score based generative models have to some extent solved the rotational symmetry ambiguity problem in category level pose estimation, but their efficiency remains limited by the high sampling cost of score-based diffusion. In this work, we propose a new framework, RFM-Pose, that accelerates category-level 6D object pose generation while actively evaluating sampled hypotheses. To improve sampling efficiency, we adopt a flow-matching generative model and generate pose candidates along an optimal transport path from a simple prior to the pose distribution. To further refine these candidates, we cast the flow-matching sampling process as a Markov decision process and apply proximal policy optimization to fine-tune the sampling policy. In particular, we interpret the flow field as a learnable policy and map an estimator to a value network, enabling joint optimization of pose generation and hypothesis scoring within a reinforcement learning framework. Experiments on the REAL275 benchmark demonstrate that RFM-Pose achieves favorable performance while significantly reducing computational cost. Moreover, similar to prior work, our approach can be readily adapted to object pose tracking and attains competitive results in this setting.
comment: This work has been submitted to the IEEE for possible publication
☆ Active Label Cleaning for Reliable Detection of Electron Dense Deposits in Transmission Electron Microscopy Images
Automated detection of electron dense deposits (EDD) in glomerular disease is hindered by the scarcity of high-quality labeled data. While crowdsourcing reduces annotation cost, it introduces label noise. We propose an active label cleaning method to efficiently denoise crowdsourced datasets. Our approach uses active learning to select the most valuable noisy samples for expert re-annotation, building high-accuracy cleaning models. A Label Selection Module leverages discrepancies between crowdsourced labels and model predictions for both sample selection and instance-level noise grading. Experiments show our method achieves 67.18% AP\textsubscript{50} on a private dataset, an 18.83% improvement over training on noisy labels. This performance reaches 95.79% of that with full expert annotation while reducing annotation cost by 73.30%. The method provides a practical, cost-effective solution for developing reliable medical AI with limited expert resources.
comment: 10 pages, 6 figures
☆ PatchFlow: Leveraging a Flow-Based Model with Patch Features
Die casting plays a crucial role across various industries due to its ability to craft intricate shapes with high precision and smooth surfaces. However, surface defects remain a major issue that impedes die casting quality control. Recently, computer vision techniques have been explored to automate and improve defect detection. In this work, we combine local neighbor-aware patch features with a normalizing flow model and bridge the gap between the generic pretrained feature extractor and industrial product images by introducing an adapter module to increase the efficiency and accuracy of automated anomaly detection. Compared to state-of-the-art methods, our approach reduces the error rate by 20\% on the MVTec AD dataset, achieving an image-level AUROC of 99.28\%. Our approach has also enhanced performance on the VisA dataset , achieving an image-level AUROC of 96.48\%. Compared to the state-of-the-art models, this represents a 28.2\% reduction in error. Additionally, experiments on a proprietary die casting dataset yield an accuracy of 95.77\% for anomaly detection, without requiring any anomalous samples for training. Our method illustrates the potential of leveraging computer vision and deep learning techniques to advance inspection capabilities for the die casting industry
☆ Boosting SAM for Cross-Domain Few-Shot Segmentation via Conditional Point Sparsification
Motivated by the success of the Segment Anything Model (SAM) in promptable segmentation, recent studies leverage SAM to develop training-free solutions for few-shot segmentation, which aims to predict object masks in the target image based on a few reference exemplars. These SAM-based methods typically rely on point matching between reference and target images and use the matched dense points as prompts for mask prediction. However, we observe that dense points perform poorly in Cross-Domain Few-Shot Segmentation (CD-FSS), where target images are from medical or satellite domains. We attribute this issue to large domain shifts that disrupt the point-image interactions learned by SAM, and find that point density plays a crucial role under such conditions. To address this challenge, we propose Conditional Point Sparsification (CPS), a training-free approach that adaptively guides SAM interactions for cross-domain images based on reference exemplars. Leveraging ground-truth masks, the reference images provide reliable guidance for adaptively sparsifying dense matched points, enabling more accurate segmentation results. Extensive experiments demonstrate that CPS outperforms existing training-free SAM-based methods across diverse CD-FSS datasets.
☆ Cross-Domain Few-Shot Segmentation via Multi-view Progressive Adaptation
Cross-Domain Few-Shot Segmentation aims to segment categories in data-scarce domains conditioned on a few exemplars. Typical methods first establish few-shot capability in a large-scale source domain and then adapt it to target domains. However, due to the limited quantity and diversity of target samples, existing methods still exhibit constrained performance. Moreover, the source-trained model's initially weak few-shot capability in target domains, coupled with substantial domain gaps, severely hinders the effective utilization of target samples and further impedes adaptation. To this end, we propose Multi-view Progressive Adaptation, which progressively adapts few-shot capability to target domains from both data and strategy perspectives. (i) From the data perspective, we introduce Hybrid Progressive Augmentation, which progressively generates more diverse and complex views through cumulative strong augmentations, thereby creating increasingly challenging learning scenarios. (ii) From the strategy perspective, we design Dual-chain Multi-view Prediction, which fully leverages these progressively complex views through sequential and parallel learning paths under extensive supervision. By jointly enforcing prediction consistency across diverse and complex views, MPA achieves both robust and accurate adaptation to target domains. Extensive experiments demonstrate that MPA effectively adapts few-shot capability to target domains, outperforming state-of-the-art methods by a large margin (+7.0%).
☆ E.M.Ground: A Temporal Grounding Vid-LLM with Holistic Event Perception and Matching
Despite recent advances in Video Large Language Models (Vid-LLMs), Temporal Video Grounding (TVG), which aims to precisely localize time segments corresponding to query events, remains a significant challenge. Existing methods often match start and end frames by comparing frame features with two separate tokens, relying heavily on exact timestamps. However, this approach fails to capture the event's semantic continuity and integrity, leading to ambiguities. To address this, we propose E.M.Ground, a novel Vid-LLM for TVG that focuses on holistic and coherent event perception. E.M.Ground introduces three key innovations: (i) a special token that aggregates information from all frames of a query event, preserving semantic continuity for accurate event matching; (ii) Savitzky-Golay smoothing to reduce noise in token-to-frame similarities across timestamps, improving prediction accuracy; (iii) multi-grained frame feature aggregation to enhance matching reliability and temporal understanding, compensating for compression-induced information loss. Extensive experiments on benchmark datasets show that E.M.Ground consistently outperforms state-of-the-art Vid-LLMs by significant margins.
☆ Dual-Representation Image Compression at Ultra-Low Bitrates via Explicit Semantics and Implicit Textures
While recent neural codecs achieve strong performance at low bitrates when optimized for perceptual quality, their effectiveness deteriorates significantly under ultra-low bitrate conditions. To mitigate this, generative compression methods leveraging semantic priors from pretrained models have emerged as a promising paradigm. However, existing approaches are fundamentally constrained by a tradeoff between semantic faithfulness and perceptual realism. Methods based on explicit representations preserve content structure but often lack fine-grained textures, whereas implicit methods can synthesize visually plausible details at the cost of semantic drift. In this work, we propose a unified framework that bridges this gap by coherently integrating explicit and implicit representations in a training-free manner. Specifically, We condition a diffusion model on explicit high-level semantics while employing reverse-channel coding to implicitly convey fine-grained details. Moreover, we introduce a plug-in encoder that enables flexible control of the distortion-perception tradeoff by modulating the implicit information. Extensive experiments demonstrate that the proposed framework achieves state-of-the-art rate-perception performance, outperforming existing methods and surpassing DiffC by 29.92%, 19.33%, and 20.89% in DISTS BD-Rate on the Kodak, DIV2K, and CLIC2020 datasets, respectively.
☆ Context-Aware Asymmetric Ensembling for Interpretable Retinopathy of Prematurity Screening via Active Query and Vascular Attention
Retinopathy of Prematurity (ROP) is among the major causes of preventable childhood blindness. Automated screening remains challenging, primarily due to limited data availability and the complex condition involving both structural staging and microvascular abnormalities. Current deep learning models depend heavily on large private datasets and passive multimodal fusion, which commonly fail to generalize on small, imbalanced public cohorts. We thus propose the Context-Aware Asymmetric Ensemble Model (CAA Ensemble) that simulates clinical reasoning through two specialized streams. First, the Multi-Scale Active Query Network (MS-AQNet) serves as a structure specialist, utilizing clinical contexts as dynamic query vectors to spatially control visual feature extraction for localization of the fibrovascular ridge. Secondly, VascuMIL encodes Vascular Topology Maps (VMAP) within a gated Multiple Instance Learning (MIL) network to precisely identify vascular tortuosity. A synergistic meta-learner ensembles these orthogonal signals to resolve diagnostic discordance across multiple objectives. Tested on a highly imbalanced cohort of 188 infants (6,004 images), the framework attained State-of-the-Art performance on two distinct clinical tasks: achieving a Macro F1-Score of 0.93 for Broad ROP staging and an AUC of 0.996 for Plus Disease detection. Crucially, the system features `Glass Box' transparency through counterfactual attention heatmaps and vascular threat maps, proving that clinical metadata dictates the model's visual search. Additionally, this study demonstrates that architectural inductive bias can serve as an effective bridge for the medical AI data gap.
comment: 16 pages, 6 figures
☆ Extreme Weather Nowcasting via Local Precipitation Pattern Prediction
Accurate forecasting of extreme weather events such as heavy rainfall or storms is critical for risk management and disaster mitigation. Although high-resolution radar observations have spurred extensive research on nowcasting models, precipitation nowcasting remains particularly challenging due to pronounced spatial locality, intricate fine-scale rainfall structures, and variability in forecasting horizons. While recent diffusion-based generative ensembles show promising results, they are computationally expensive and unsuitable for real-time applications. In contrast, deterministic models are computationally efficient but remain biased toward normal rainfall. Furthermore, the benchmark datasets commonly used in prior studies are themselves skewed--either dominated by ordinary rainfall events or restricted to extreme rainfall episodes--thereby hindering general applicability in real-world settings. In this paper, we propose exPreCast, an efficient deterministic framework for generating finely detailed radar forecasts, and introduce a newly constructed balanced radar dataset from the Korea Meteorological Administration (KMA), which encompasses both ordinary precipitation and extreme events. Our model integrates local spatiotemporal attention, a texture-preserving cubic dual upsampling decoder, and a temporal extractor to flexibly adjust forecasting horizons. Experiments on established benchmarks (SEVIR and MeteoNet) as well as on the balanced KMA dataset demonstrate that our approach achieves state-of-the-art performance, delivering accurate and reliable nowcasts across both normal and extreme rainfall regimes.
comment: 10pages, 20 figures, The Fourteenth International Conference on Learning Representations, see https://github.com/tony890048/exPreCast
☆ GT-SVJ: Generative-Transformer-Based Self-Supervised Video Judge For Efficient Video Reward Modeling
Aligning video generative models with human preferences remains challenging: current approaches rely on Vision-Language Models (VLMs) for reward modeling, but these models struggle to capture subtle temporal dynamics. We propose a fundamentally different approach: repurposing video generative models, which are inherently designed to model temporal structure, as reward models. We present the Generative-Transformer-based Self-Supervised Video Judge (\modelname), a novel evaluation model that transforms state-of-the-art video generation models into powerful temporally-aware reward models. Our key insight is that generative models can be reformulated as energy-based models (EBMs) that assign low energy to high-quality videos and high energy to degraded ones, enabling them to discriminate video quality with remarkable precision when trained via contrastive objectives. To prevent the model from exploiting superficial differences between real and generated videos, we design challenging synthetic negative videos through controlled latent-space perturbations: temporal slicing, feature swapping, and frame shuffling, which simulate realistic but subtle visual degradations. This forces the model to learn meaningful spatiotemporal features rather than trivial artifacts. \modelname achieves state-of-the-art performance on GenAI-Bench and MonteBench using only 30K human-annotations: $6\times$ to $65\times$ fewer than existing VLM-based approaches.
☆ PoseGaussian: Pose-Driven Novel View Synthesis for Robust 3D Human Reconstruction
We propose PoseGaussian, a pose-guided Gaussian Splatting framework for high-fidelity human novel view synthesis. Human body pose serves a dual purpose in our design: as a structural prior, it is fused with a color encoder to refine depth estimation; as a temporal cue, it is processed by a dedicated pose encoder to enhance temporal consistency across frames. These components are integrated into a fully differentiable, end-to-end trainable pipeline. Unlike prior works that use pose only as a condition or for warping, PoseGaussian embeds pose signals into both geometric and temporal stages to improve robustness and generalization. It is specifically designed to address challenges inherent in dynamic human scenes, such as articulated motion and severe self-occlusion. Notably, our framework achieves real-time rendering at 100 FPS, maintaining the efficiency of standard Gaussian Splatting pipelines. We validate our approach on ZJU-MoCap, THuman2.0, and in-house datasets, demonstrating state-of-the-art performance in perceptual quality and structural accuracy (PSNR 30.86, SSIM 0.979, LPIPS 0.028).
☆ ShapePuri: Shape Guided and Appearance Generalized Adversarial Purification
Deep neural networks demonstrate impressive performance in visual recognition, but they remain vulnerable to adversarial attacks that is imperceptible to the human. Although existing defense strategies such as adversarial training and purification have achieved progress, diffusion-based purification often involves high computational costs and information loss. To address these challenges, we introduce Shape Guided Purification (ShapePuri), a novel defense framework enhances robustness by aligning model representations with stable structural invariants. ShapePuri integrates two components: a Shape Encoding Module (SEM) that provides dense geometric guidance through Signed Distance Functions (SDF), and a Global Appearance Debiasing (GAD) module that mitigates appearance bias via stochastic transformations. In our experiments, ShapePuri achieves $84.06\%$ clean accuracy and $81.64\%$ robust accuracy under the AutoAttack protocol, representing the first defense framework to surpass the $80\%$ threshold on this benchmark. Our approach provides a scalable and efficient adversarial defense that preserves prediction stability during inference without requiring auxiliary modules or additional computational cost.
comment: 10 pages, 5 figures
☆ LOBSTgER-enhance: an underwater image enhancement pipeline
Underwater photography presents significant inherent challenges including reduced contrast, spatial blur, and wavelength-dependent color distortions. These effects can obscure the vibrancy of marine life and awareness photographers in particular are often challenged with heavy post-processing pipelines to correct for these distortions. We develop an image-to-image pipeline that learns to reverse underwater degradations by introducing a synthetic corruption pipeline and learning to reverse its effects with diffusion-based generation. Training and evaluation are performed on a small high-quality dataset of awareness photography images by Keith Ellenbogen. The proposed methodology achieves high perceptual consistency and strong generalization in synthesizing 512x768 images using a model of ~11M parameters after training from scratch on ~2.5k images.
comment: 12 pages, 30 figures, work done as part of LOBSTgER
☆ SHaSaM: Submodular Hard Sample Mining for Fair Facial Attribute Recognition
Deep neural networks often inherit social and demographic biases from annotated data during model training, leading to unfair predictions, especially in the presence of sensitive attributes like race, age, gender etc. Existing methods fall prey to the inherent data imbalance between attribute groups and inadvertently emphasize on sensitive attributes, worsening unfairness and performance. To surmount these challenges, we propose SHaSaM (Submodular Hard Sample Mining), a novel combinatorial approach that models fairness-driven representation learning as a submodular hard-sample mining problem. Our two-stage approach comprises of SHaSaM-MINE, which introduces a submodular subset selection strategy to mine hard positives and negatives - effectively mitigating data imbalance, and SHaSaM-LEARN, which introduces a family of combinatorial loss functions based on Submodular Conditional Mutual Information to maximize the decision boundary between target classes while minimizing the influence of sensitive attributes. This unified formulation restricts the model from learning features tied to sensitive attributes, significantly enhancing fairness without sacrificing performance. Experiments on CelebA and UTKFace demonstrate that SHaSaM achieves state-of-the-art results, with up to 2.7 points improvement in model fairness (Equalized Odds) and a 3.5% gain in Accuracy, within fewer epochs as compared to existing methods.
comment: 21 pages, 7 tables, 10 figures
☆ AirGlove: Exploring Egocentric 3D Hand Tracking and Appearance Generalization for Sensing Gloves ICASSP 2026
Sensing gloves have become important tools for teleoperation and robotic policy learning as they are able to provide rich signals like speed, acceleration and tactile feedback. A common approach to track gloved hands is to directly use the sensor signals (e.g., angular velocity, gravity orientation) to estimate 3D hand poses. However, sensor-based tracking can be restrictive in practice as the accuracy is often impacted by sensor signal and calibration quality. Recent advances in vision-based approaches have achieved strong performance on human hands via large-scale pre-training, but their performance on gloved hands with distinct visual appearances remains underexplored. In this work, we present the first systematic evaluation of vision-based hand tracking models on gloved hands under both zero-shot and fine-tuning setups. Our analysis shows that existing bare-hand models suffer from substantial performance degradation on sensing gloves due to large appearance gap between bare-hand and glove designs. We therefore propose AirGlove, which leverages existing gloves to generalize the learned glove representations towards new gloves with limited data. Experiments with multiple sensing gloves show that AirGlove effectively generalizes the hand pose models to new glove designs and achieves a significant performance boost over the compared schemes.
comment: Accepted by ICASSP 2026
☆ ASMa: Asymmetric Spatio-temporal Masking for Skeleton Action Representation Learning
Self-supervised learning (SSL) has shown remarkable success in skeleton-based action recognition by leveraging data augmentations to learn meaningful representations. However, existing SSL methods rely on data augmentations that predominantly focus on masking high-motion frames and high-degree joints such as joints with degree 3 or 4. This results in biased and incomplete feature representations that struggle to generalize across varied motion patterns. To address this, we propose Asymmetric Spatio-temporal Masking (ASMa) for Skeleton Action Representation Learning, a novel combination of masking to learn a full spectrum of spatio-temporal dynamics inherent in human actions. ASMa employs two complementary masking strategies: one that selectively masks high-degree joints and low-motion, and another that masks low-degree joints and high-motion frames. These masking strategies ensure a more balanced and comprehensive skeleton representation learning. Furthermore, we introduce a learnable feature alignment module to effectively align the representations learned from both masked views. To facilitate deployment in resource-constrained settings and on low-resource devices, we compress the learned and aligned representation into a lightweight model using knowledge distillation. Extensive experiments on NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets demonstrate that our approach outperforms existing SSL methods with an average improvement of 2.7-4.4% in fine-tuning and up to 5.9% in transfer learning to noisy datasets and achieves competitive performance compared to fully supervised baselines. Our distilled model achieves 91.4% parameter reduction and 3x faster inference on edge devices while maintaining competitive accuracy, enabling practical deployment in resource-constrained scenarios.
☆ ForeHOI: Feed-forward 3D Object Reconstruction from Daily Hand-Object Interaction Videos
The ubiquity of monocular videos capturing daily hand-object interactions presents a valuable resource for embodied intelligence. While 3D hand reconstruction from in-the-wild videos has seen significant progress, reconstructing the involved objects remains challenging due to severe occlusions and the complex, coupled motion of the camera, hands, and object. In this paper, we introduce ForeHOI, a novel feed-forward model that directly reconstructs 3D object geometry from monocular hand-object interaction videos within one minute of inference time, eliminating the need for any pre-processing steps. Our key insight is that, the joint prediction of 2D mask inpainting and 3D shape completion in a feed-forward framework can effectively address the problem of severe occlusion in monocular hand-held object videos, thereby achieving results that outperform the performance of optimization-based methods. The information exchanges between the 2D and 3D shape completion boosts the overall reconstruction quality, enabling the framework to effectively handle severe hand-object occlusion. Furthermore, to support the training of our model, we contribute the first large-scale, high-fidelity synthetic dataset of hand-object interactions with comprehensive annotations. Extensive experiments demonstrate that ForeHOI achieves state-of-the-art performance in object reconstruction, significantly outperforming previous methods with around a 100x speedup. Code and data are available at: https://github.com/Tao-11-chen/ForeHOI.
comment: 14 pages, 7 figures, Page: https://tao-11-chen.github.io/project_pages/ForeHOI/
☆ Cross-Modal Redundancy and the Geometry of Vision-Language Embeddings ICLR 2026
Vision-language models (VLMs) align images and text with remarkable success, yet the geometry of their shared embedding space remains poorly understood. To probe this geometry, we begin from the Iso-Energy Assumption, which exploits cross-modal redundancy: a concept that is truly shared should exhibit the same average energy across modalities. We operationalize this assumption with an Aligned Sparse Autoencoder (SAE) that encourages energy consistency during training while preserving reconstruction. We find that this inductive bias changes the SAE solution without harming reconstruction, giving us a representation that serves as a tool for geometric analysis. Sanity checks on controlled data with known ground truth confirm that alignment improves when Iso-Energy holds and remains neutral when it does not. Applied to foundational VLMs, our framework reveals a clear structure with practical consequences: (i) sparse bimodal atoms carry the entire cross-modal alignment signal; (ii) unimodal atoms act as modality-specific biases and fully explain the modality gap; (iii) removing unimodal atoms collapses the gap without harming performance; (iv) restricting vector arithmetic to the bimodal subspace yields in-distribution edits and improved retrieval. These findings suggest that the right inductive bias can both preserve model fidelity and render the latent geometry interpretable and actionable.
comment: Published as a conference paper at ICLR 2026
☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
☆ DroneKey++: A Size Prior-free Method and New Benchmark for Drone 3D Pose Estimation from Sequential Images ICRA 2026
Accurate 3D pose estimation of drones is essential for security and surveillance systems. However, existing methods often rely on prior drone information such as physical sizes or 3D meshes. At the same time, current datasets are small-scale, limited to single models, and collected under constrained environments, which makes reliable validation of generalization difficult. We present DroneKey++, a prior-free framework that jointly performs keypoint detection, drone classification, and 3D pose estimation. The framework employs a keypoint encoder for simultaneous keypoint detection and classification, and a pose decoder that estimates 3D pose using ray-based geometric reasoning and class embeddings. To address dataset limitations, we construct 6DroneSyn, a large-scale synthetic benchmark with over 50K images covering 7 drone models and 88 outdoor backgrounds, generated using 360-degree panoramic synthesis. Experiments show that DroneKey++ achieves MAE 17.34 deg and MedAE 17.1 deg for rotation, MAE 0.135 m and MedAE 0.242 m for translation, with inference speeds of 19.25 FPS (CPU) and 414.07 FPS (GPU), demonstrating both strong generalization across drone models and suitability for real-time applications. The dataset is publicly available.
comment: 8 page, 5 figures, 6 tables, Accepted to ICRA 2026 (to appear)
☆ AnyThermal: Towards Learning Universal Representations for Thermal Perception IEEE
We present AnyThermal, a thermal backbone that captures robust task-agnostic thermal features suitable for a variety of tasks such as cross-modal place recognition, thermal segmentation, and monocular depth estimation using thermal images. Existing thermal backbones that follow task-specific training from small-scale data result in utility limited to a specific environment and task. Unlike prior methods, AnyThermal can be used for a wide range of environments (indoor, aerial, off-road, urban) and tasks, all without task-specific training. Our key insight is to distill the feature representations from visual foundation models such as DINOv2 into a thermal encoder using thermal data from these multiple environments. To bridge the diversity gap of the existing RGB-Thermal datasets, we introduce the TartanRGBT platform, the first open-source data collection platform with synced RGB-Thermal image acquisition. We use this payload to collect the TartanRGBT dataset - a diverse and balanced dataset collected in 4 environments. We demonstrate the efficacy of AnyThermal and TartanRGBT, achieving state-of-the-art results with improvements of up to 36% across diverse environments and downstream tasks on existing datasets.
comment: Accepted at IEEE ICRA (International Conference on Robotics & Automation) 2026
☆ DeDPO: Debiased Direct Preference Optimization for Diffusion Models
Direct Preference Optimization (DPO) has emerged as a predominant alignment method for diffusion models, facilitating off-policy training without explicit reward modeling. However, its reliance on large-scale, high-quality human preference labels presents a severe cost and scalability bottleneck. To overcome this, We propose a semi-supervised framework augmenting limited human data with a large corpus of unlabeled pairs annotated via cost-effective synthetic AI feedback. Our paper introduces Debiased DPO (DeDPO), which uniquely integrates a debiased estimation technique from causal inference into the DPO objective. By explicitly identifying and correcting the systematic bias and noise inherent in synthetic annotators, DeDPO ensures robust learning from imperfect feedback sources, including self-training and Vision-Language Models (VLMs). Experiments demonstrate that DeDPO is robust to the variations in synthetic labeling methods, achieving performance that matches and occasionally exceeds the theoretical upper bound of models trained on fully human-labeled data. This establishes DeDPO as a scalable solution for human-AI alignment using inexpensive synthetic supervision.
☆ PhenoLIP: Integrating Phenotype Ontology Knowledge into Medical Vision-Language Pretraining
Recent progress in large-scale CLIP-like vision-language models(VLMs) has greatly advanced medical image analysis. However, most existing medical VLMs still rely on coarse image-text contrastive objectives and fail to capture the systematic visual knowledge encoded in well-defined medical phenotype ontologies. To address this gap, we construct PhenoKG, the first large-scale, phenotype-centric multimodal knowledge graph that encompasses over 520K high-quality image-text pairs linked to more than 3,000 phenotypes. Building upon PhenoKG, we propose PhenoLIP, a novel pretraining framework that explicitly incorporates structured phenotype knowledge into medical VLMs through a two-stage process. We first learn a knowledge-enhanced phenotype embedding space from textual ontology data and then distill this structured knowledge into multimodal pretraining via a teacher-guided knowledge distillation objective. To support evaluation, we further introduce PhenoBench, an expert-verified benchmark designed for phenotype recognition, comprising over 7,800 image--caption pairs covering more than 1,000 phenotypes. Extensive experiments demonstrate that PhenoLIP outperforms previous state-of-the-art baselines, improving upon BiomedCLIP in phenotype classification accuracy by 8.85\% and BIOMEDICA in cross-modal retrieval by 15.03%, underscoring the value of integrating phenotype-centric priors into medical VLMs for structured and interpretable medical image understanding.
☆ Unsupervised Anomaly Detection of Diseases in the Female Pelvis for Real-Time MR Imaging
Pelvic diseases in women of reproductive age represent a major global health burden, with diagnosis frequently delayed due to high anatomical variability, complicating MRI interpretation. Existing AI approaches are largely disease-specific and lack real-time compatibility, limiting generalizability and clinical integration. To address these challenges, we establish a benchmark framework for disease- and parameter-agnostic, real-time-compatible unsupervised anomaly detection in pelvic MRI. The method uses a residual variational autoencoder trained exclusively on healthy sagittal T2-weighted scans acquired across diverse imaging protocols to model normal pelvic anatomy. During inference, reconstruction error heatmaps indicate deviations from learned healthy structure, enabling detection of pathological regions without labeled abnormal data. The model is trained on 294 healthy scans and augmented with diffusion-generated synthetic data to improve robustness. Quantitative evaluation on the publicly available Uterine Myoma MRI Dataset yields an average area-under-the-curve (AUC) value of 0.736, with 0.828 sensitivity and 0.692 specificity. Additional inter-observer clinical evaluation extends analysis to endometrial cancer, endometriosis, and adenomyosis, revealing the influence of anatomical heterogeneity and inter-observer variability on performance interpretation. With a reconstruction time of approximately 92.6 frames per second, the proposed framework establishes a baseline for unsupervised anomaly detection in the female pelvis and supports future integration into real-time MRI. Code is available upon request (https://github.com/AniKnu/UADPelvis), prospective data sets are available for academic collaboration.
comment: 17 pages, 8 figures
☆ M3: High-fidelity Text-to-Image Generation via Multi-Modal, Multi-Agent and Multi-Round Visual Reasoning
Generative models have achieved impressive fidelity in text-to-image synthesis, yet struggle with complex compositional prompts involving multiple constraints. We introduce \textbf{M3 (Multi-Modal, Multi-Agent, Multi-Round)}, a training-free framework that systematically resolves these failures through iterative inference-time refinement. M3 orchestrates off-the-shelf foundation models in a robust multi-agent loop: a Planner decomposes prompts into verifiable checklists, while specialized Checker, Refiner, and Editor agents surgically correct constraints one at a time, with a Verifier ensuring monotonic improvement. Applied to open-source models, M3 achieves remarkable results on the challenging OneIG-EN benchmark, with our Qwen-Image+M3 surpassing commercial flagship systems including Imagen4 (0.515) and Seedream 3.0 (0.530), reaching state-of-the-art performance (0.532 overall). This demonstrates that intelligent multi-agent reasoning can elevate open-source models beyond proprietary alternatives. M3 also substantially improves GenEval compositional metrics, effectively doubling spatial reasoning performance on hardened test sets. As a plug-and-play module compatible with any pre-trained T2I model, M3 establishes a new paradigm for compositional generation without costly retraining.
☆ MetaSSP: Enhancing Semi-supervised Implicit 3D Reconstruction through Meta-adaptive EMA and SDF-aware Pseudo-label Evaluation
Implicit SDF-based methods for single-view 3D reconstruction achieve high-quality surfaces but require large labeled datasets, limiting their scalability. We propose MetaSSP, a novel semi-supervised framework that exploits abundant unlabeled images. Our approach introduces gradient-based parameter importance estimation to regularize adaptive EMA updates and an SDF-aware pseudo-label weighting mechanism combining augmentation consistency with SDF variance. Beginning with a 10% supervised warm-up, the unified pipeline jointly refines labeled and unlabeled data. On the Pix3D benchmark, our method reduces Chamfer Distance by approximately 20.61% and increases IoU by around 24.09% compared to existing semi-supervised baselines, setting a new state of the art.
☆ Driving with DINO: Vision Foundation Features as a Unified Bridge for Sim-to-Real Generation in Autonomous Driving
Driven by the emergence of Controllable Video Diffusion, existing Sim2Real methods for autonomous driving video generation typically rely on explicit intermediate representations to bridge the domain gap. However, these modalities face a fundamental Consistency-Realism Dilemma. Low-level signals (e.g., edges, blurred images) ensure precise control but compromise realism by "baking in" synthetic artifacts, whereas high-level priors (e.g., depth, semantics, HDMaps) facilitate photorealism but lack the structural detail required for consistent guidance. In this work, we present Driving with DINO (DwD), a novel framework that leverages Vision Foundation Module (VFM) features as a unified bridge between the simulation and real-world domains. We first identify that these features encode a spectrum of information, from high-level semantics to fine-grained structure. To effectively utilize this, we employ Principal Subspace Projection to discard the high-frequency elements responsible for "texture baking," while concurrently introducing Random Channel Tail Drop to mitigate the structural loss inherent in rigid dimensionality reduction, thereby reconciling realism with control consistency. Furthermore, to fully leverage DINOv3's high-resolution capabilities for enhancing control precision, we introduce a learnable Spatial Alignment Module that adapts these high-resolution features to the diffusion backbone. Finally, we propose a Causal Temporal Aggregator employing causal convolutions to explicitly preserve historical motion context when integrating frame-wise DINO features, which effectively mitigates motion blur and guarantees temporal stability. Project page: https://albertchen98.github.io/DwD-project/
comment: Project website https://albertchen98.github.io/DwD-project/
☆ MGP-KAD: Multimodal Geometric Priors and Kolmogorov-Arnold Decoder for Single-View 3D Reconstruction in Complex Scenes IEEE
Single-view 3D reconstruction in complex real-world scenes is challenging due to noise, object diversity, and limited dataset availability. To address these challenges, we propose MGP-KAD, a novel multimodal feature fusion framework that integrates RGB and geometric prior to enhance reconstruction accuracy. The geometric prior is generated by sampling and clustering ground-truth object data, producing class-level features that dynamically adjust during training to improve geometric understanding. Additionally, we introduce a hybrid decoder based on Kolmogorov-Arnold Networks (KAN) to overcome the limitations of traditional linear decoders in processing complex multimodal inputs. Extensive experiments on the Pix3D dataset demonstrate that MGP-KAD achieves state-of-the-art (SOTA) performance, significantly improving geometric integrity, smoothness, and detail preservation. Our work provides a robust and effective solution for advancing single-view 3D reconstruction in complex scenes.
comment: 6 pages. Published in IEEE International Conference on Image Processing (ICIP) 2025
☆ EgoAVU: Egocentric Audio-Visual Understanding
Understanding egocentric videos plays a vital role for embodied intelligence. Recent multi-modal large language models (MLLMs) can accept both visual and audio inputs. However, due to the challenge of obtaining text labels with coherent joint-modality information, whether MLLMs can jointly understand both modalities in egocentric videos remains under-explored. To address this problem, we introduce EgoAVU, a scalable data engine to automatically generate egocentric audio-visual narrations, questions, and answers. EgoAVU enriches human narrations with multimodal context and generates audio-visual narrations through cross-modal correlation modeling. Token-based video filtering and modular, graph-based curation ensure both data diversity and quality. Leveraging EgoAVU, we construct EgoAVU-Instruct, a large-scale training dataset of 3M samples, and EgoAVU-Bench, a manually verified evaluation split covering diverse tasks. EgoAVU-Bench clearly reveals the limitations of existing MLLMs: they bias heavily toward visual signals, often neglecting audio cues or failing to correspond audio with the visual source. Finetuning MLLMs on EgoAVU-Instruct effectively addresses this issue, enabling up to 113% performance improvement on EgoAVU-Bench. Such benefits also transfer to other benchmarks such as EgoTempo and EgoIllusion, achieving up to 28% relative performance gain. Code will be released to the community.
☆ Tempora: Characterising the Time-Contingent Utility of Online Test-Time Adaptation
Test-time adaptation (TTA) offers a compelling remedy for machine learning (ML) models that degrade under domain shifts, improving generalisation on-the-fly with only unlabelled samples. This flexibility suits real deployments, yet conventional evaluations unrealistically assume unbounded processing time, overlooking the accuracy-latency trade-off. As ML increasingly underpins latency-sensitive and user-facing use-cases, temporal pressure constrains the viability of adaptable inference; predictions arriving too late to act on are futile. We introduce Tempora, a framework for evaluating TTA under this pressure. It consists of temporal scenarios that model deployment constraints, evaluation protocols that operationalise measurement, and time-contingent utility metrics that quantify the accuracy-latency trade-off. We instantiate the framework with three such metrics: (1) discrete utility for asynchronous streams with hard deadlines, (2) continuous utility for interactive settings where value decays with latency, and (3) amortised utility for budget-constrained deployments. Applying Tempora to seven TTA methods on ImageNet-C across 240 temporal evaluations reveals rank instability: conventional rankings do not predict rankings under temporal pressure; ETA, a state-of-the-art method in the conventional setting, falls short in 41.2% of evaluations. The highest-utility method varies with corruption type and temporal pressure, with no clear winner. By enabling systematic evaluation across diverse temporal constraints for the first time, Tempora reveals when and why rankings invert, offering practitioners a lens for method selection and researchers a target for deployable adaptation.
comment: Preprint. Under review. Code available upon acceptance
☆ From Blurry to Believable: Enhancing Low-quality Talking Heads with 3D Generative Priors 3DV 2026
Creating high-fidelity, animatable 3D talking heads is crucial for immersive applications, yet often hindered by the prevalence of low-quality image or video sources, which yield poor 3D reconstructions. In this paper, we introduce SuperHead, a novel framework for enhancing low-resolution, animatable 3D head avatars. The core challenge lies in synthesizing high-quality geometry and textures, while ensuring both 3D and temporal consistency during animation and preserving subject identity. Despite recent progress in image, video and 3D-based super-resolution (SR), existing SR techniques are ill-equipped to handle dynamic 3D inputs. To address this, SuperHead leverages the rich priors from pre-trained 3D generative models via a novel dynamics-aware 3D inversion scheme. This process optimizes the latent representation of the generative model to produce a super-resolved 3D Gaussian Splatting (3DGS) head model, which is subsequently rigged to an underlying parametric head model (e.g., FLAME) for animation. The inversion is jointly supervised using a sparse collection of upscaled 2D face renderings and corresponding depth maps, captured from diverse facial expressions and camera viewpoints, to ensure realism under dynamic facial motions. Experiments demonstrate that SuperHead generates avatars with fine-grained facial details under dynamic motions, significantly outperforming baseline methods in visual quality.
comment: Accepted to 3DV 2026. Project Page: https://humansensinglab.github.io/super-head/
☆ OmniVideo-R1: Reinforcing Audio-visual Reasoning with Query Intention and Modality Attention
While humans perceive the world through diverse modalities that operate synergistically to support a holistic understanding of their surroundings, existing omnivideo models still face substantial challenges on audio-visual understanding tasks. In this paper, we propose OmniVideo-R1, a novel reinforced framework that improves mixed-modality reasoning. OmniVideo-R1 empowers models to "think with omnimodal cues" by two key strategies: (1) query-intensive grounding based on self-supervised learning paradigms; and (2) modality-attentive fusion built upon contrastive learning paradigms. Extensive experiments on multiple benchmarks demonstrate that OmniVideo-R1 consistently outperforms strong baselines, highlighting its effectiveness and robust generalization capabilities.
comment: 19 pages, 12 figures
☆ ALIEN: Analytic Latent Watermarking for Controllable Generation
Watermarking is a technical alternative to safeguarding intellectual property and reducing misuse. Existing methods focus on optimizing watermarked latent variables to balance watermark robustness and fidelity, as Latent diffusion models (LDMs) are considered a powerful tool for generative tasks. However, reliance on computationally intensive heuristic optimization for iterative signal refinement results in high training overhead and local optima entrapment.To address these issues, we propose an \underline{A}na\underline{l}ytical Watermark\underline{i}ng Framework for Controllabl\underline{e} Generatio\underline{n} (ALIEN). We develop the first analytical derivation of the time-dependent modulation coefficient that guides the diffusion of watermark residuals to achieve controllable watermark embedding pattern.Experimental results show that ALIEN-Q outperforms the state-of-the-art by 33.1\% across 5 quality metrics, and ALIEN-R demonstrates 14.0\% improved robustness against generative variant and stability threats compared to the state-of-the-art across 15 distinct conditions. Code can be available at https://anonymous.4open.science/r/ALIEN/.
☆ SVRepair: Structured Visual Reasoning for Automated Program Repair
Large language models (LLMs) have recently shown strong potential for Automated Program Repair (APR), yet most existing approaches remain unimodal and fail to leverage the rich diagnostic signals contained in visual artifacts such as screenshots and control-flow graphs. In practice, many bug reports convey critical information visually (e.g., layout breakage or missing widgets), but directly using such dense visual inputs often causes context loss and noise, making it difficult for MLLMs to ground visual observations into precise fault localization and executable patches. To bridge this semantic gap, we propose \textbf{SVRepair}, a multimodal APR framework with structured visual representation. SVRepair first fine-tunes a vision-language model, \textbf{Structured Visual Representation (SVR)}, to uniformly transform heterogeneous visual artifacts into a \emph{semantic scene graph} that captures GUI elements and their structural relations (e.g., hierarchy), providing normalized, code-relevant context for downstream repair. Building on the graph, SVRepair drives a coding agent to localize faults and synthesize patches, and further introduces an iterative visual-artifact segmentation strategy that progressively narrows the input to bug-centered regions to suppress irrelevant context and reduce hallucinations. Extensive experiments across multiple benchmarks demonstrate state-of-the-art performance: SVRepair achieves \textbf{36.47\%} accuracy on SWE-Bench M, \textbf{38.02\%} on MMCode, and \textbf{95.12\%} on CodeVision, validating the effectiveness of SVRepair for multimodal program repair.
comment: 16 pages, 3 figures
♻ ☆ SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model WACV
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
♻ ☆ Image-to-Image Translation with Diffusion Transformers and CLIP-Based Image Conditioning
Image-to-image translation aims to learn a mapping between a source and a target domain, enabling tasks such as style transfer, appearance transformation, and domain adaptation. In this work, we explore a diffusion-based framework for image-to-image translation by adapting Diffusion Transformers (DiT), which combine the denoising capabilities of diffusion models with the global modeling power of transformers. To guide the translation process, we condition the model on image embeddings extracted from a pre-trained CLIP encoder, allowing for fine-grained and structurally consistent translations without relying on text or class labels. We incorporate both a CLIP similarity loss to enforce semantic consistency and an LPIPS perceptual loss to enhance visual fidelity during training. We validate our approach on two benchmark datasets: face2comics, which translates real human faces to comic-style illustrations, and edges2shoes, which translates edge maps to realistic shoe images. Experimental results demonstrate that DiT, combined with CLIP-based conditioning and perceptual similarity objectives, achieves high-quality, semantically faithful translations, offering a promising alternative to GAN-based models for paired image-to-image translation tasks.
comment: Published in: 2025 6th International Conference on Computer Vision, Image and Deep Learning (CVIDL)
♻ ☆ Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) exhibit a well-known texture bias, prioritizing local patterns over global shapes - a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this limitation, we propose a data-driven metric that quantifies the shape-texture balance within a dataset by computing the Structural Similarity Index (SSIM) between an image's luminance (Y) channel and its L0-smoothed counterpart. Building on this metric, we introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results demonstrate consistent accuracy improvements on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
♻ ☆ Hidden in Plain Sight -- Class Competition Focuses Attribution Maps
Attribution methods reveal which input features a neural network uses for a prediction, adding transparency to their decisions. A common problem is that these attributions seem unspecific, highlighting both important and irrelevant features. We revisit the common attribution pipeline and observe that using logits as attribution target is a main cause of this phenomenon. We show that the solution is in plain sight: considering distributions of attributions over multiple classes using existing attribution methods yields specific and fine-grained attributions. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, this improves the ability of 18 attribution methods across 7 architectures up to 2x, agnostic to model architecture.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ GIQ: Benchmarking 3D Geometric Reasoning of Vision Foundation Models with Simulated and Real Polyhedra ICLR 2026
Modern monocular 3D reconstruction methods and vision-language models (VLMs) demonstrate impressive results on standard benchmarks, yet recent works cast doubt on their true understanding of geometric properties. We introduce GOQ, a comprehensive benchmark specifically designed to evaluate the geometric reasoning capabilities of vision and vision-language foundation models. GIQ comprises synthetic and real-world images and corresponding 3D meshes of diverse polyhedra covering varying levels of complexity and symmetry, from Platonic, Archimedean, Johnson, and Catalan solids to stellations and compound shapes. Through systematic experiments involving monocular 3D reconstruction, 3D symmetry detection, mental rotation tests, and zero-shot shape classification tasks, we reveal significant shortcomings in current models. State-of-the-art reconstruction algorithms trained on extensive 3D datasets struggle to reconstruct even basic geometric Platonic solids accurately. Next, although foundation models may be shown via linear and non-linear probing to capture specific 3D symmetry elements, they falter significantly in tasks requiring detailed geometric differentiation, such as mental rotation. Moreover, advanced vision-language assistants such as ChatGPT, Gemini and Claud exhibit remarkably low accuracy in interpreting basic shape properties such as face geometry, convexity, and compound structures of complex polyhedra. GIQ is publicly available at toomanymatts.github.io/giq-benchmark/, providing a structured platform to benchmark critical gaps in geometric intelligence and facilitate future progress in robust, geometry-aware representation learning.
comment: Accepted to ICLR 2026. Camera ready version
♻ ☆ Towards Visually Explaining Statistical Tests with Applications in Biomedical Imaging
Deep neural two-sample tests have recently shown strong power for detecting distributional differences between groups, yet their black-box nature limits interpretability and practical adoption in biomedical analysis. Moreover, most existing post-hoc explainability methods rely on class labels, making them unsuitable for label-free statistical testing settings. We propose an explainable deep statistical testing framework that augments deep two-sample tests with sample-level and feature-level explanations, revealing which individual samples and which input features drive statistically significant group differences. Our method highlights which image regions and which individual samples contribute most to the detected group difference, providing spatial and instance-wise insight into the test's decision. Applied to biomedical imaging data, the proposed framework identifies influential samples and highlights anatomically meaningful regions associated with disease-related variation. This work bridges statistical inference and explainable AI, enabling interpretable, label-free population analysis in medical imaging.
♻ ☆ Event2Vec: Processing Neuromorphic Events Directly by Representations in Vector Space
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing methods either convert the events into dense synchronous frame representations for processing by powerful CNNs or Transformers, but lose the asynchronous, sparse and high temporal resolution characteristics of events during the conversion process; or adopt irregular models such as sparse convolution, spiking neural networks, or graph neural networks to process the irregular event representations but fail to take full advantage of GPU acceleration. Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing capabilities of Transformers. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks, showing that event2vec is remarkably parameter-efficient, features high throughput and low latency, and achieves high accuracy even with an extremely low number of events or low spatial resolutions. Event2vec introduces a novel paradigm by demonstrating for the first time that sparse, irregular event data can be directly integrated into high-throughput Transformer architectures. This breakthrough resolves the long-standing conflict between maintaining data sparsity and maximizing GPU efficiency, offering a promising balance for real-time, low-latency neuromorphic vision tasks. The code is provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.
comment: Fix a minor error in the abstract within the metadata of the previous version
♻ ☆ Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data
In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation
comment: 18 pages, 10 figures
♻ ☆ One-step Latent-free Image Generation with Pixel Mean Flows
Modern diffusion/flow-based models for image generation typically exhibit two core characteristics: (i) using multi-step sampling, and (ii) operating in a latent space. Recent advances have made encouraging progress on each aspect individually, paving the way toward one-step diffusion/flow without latents. In this work, we take a further step towards this goal and propose "pixel MeanFlow" (pMF). Our core guideline is to formulate the network output space and the loss space separately. The network target is designed to be on a presumed low-dimensional image manifold (i.e., x-prediction), while the loss is defined via MeanFlow in the velocity space. We introduce a simple transformation between the image manifold and the average velocity field. In experiments, pMF achieves strong results for one-step latent-free generation on ImageNet at 256x256 resolution (2.22 FID) and 512x512 resolution (2.48 FID), filling a key missing piece in this regime. We hope that our study will further advance the boundaries of diffusion/flow-based generative models.
comment: Tech report. Code at https://github.com/Lyy-iiis/pMF
♻ ☆ Optimized $k$-means color quantization of digital images in machine-based and human perception-based colorspaces
Color quantization represents an image using a fraction of its original number of colors while only minimally losing its visual quality. The $k$-means algorithm is commonly used in this context, but has mostly been applied in the machine-based RGB colorspace composed of the three primary colors. However, some recent studies have indicated its improved performance in human perception-based colorspaces. We investigated the performance of $k$-means color quantization at four quantization levels in the RGB, CIE-XYZ, and CIE-LUV/CIE-HCL colorspaces, on 148 varied digital images spanning a wide range of scenes, subjects and settings. The Visual Information Fidelity (VIF) measure numerically assessed the quality of the quantized images, and showed that in about half of the cases, $k$-means color quantization is best in the RGB space, while at other times, and especially for higher quantization levels ($k$), the CIE-XYZ colorspace is where it usually does better. There are also some cases, especially at lower $k$, where the best performance is obtained in the CIE-LUV colorspace. Further analysis of the performances in terms of the distributions of the hue, chromaticity and luminance in an image presents a nuanced perspective and characterization of the images for which each colorspace is better for $k$-means color quantization.
comment: 25 pages, 11 figures, 5 tables, accepted in the Journal of Electronic Imaging
♻ ☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
♻ ☆ A 96pJ/Frame/Pixel and 61pJ/Event Anti-UAV System with Hybrid Object Tracking Modes IEEE
We present an energy-efficient anti-UAV system that integrates frame-based and event-driven object tracking to enable reliable detection of small and fast-moving drones. The system reconstructs binary event frames using run-length encoding, generates region proposals, and adaptively switches between frame mode and event mode based on object size and velocity. A Fast Object Tracking Unit improves robustness for high-speed targets through adaptive thresholding and trajectory-based classification. The neural processing unit supports both grayscale-patch and trajectory inference with a custom instruction set and a zero-skipping MAC architecture, reducing redundant neural computations by more than 97 percent. Implemented in 40 nm CMOS technology, the 2 mm^2 chip achieves 96 pJ per frame per pixel and 61 pJ per event at 0.8 V, and reaches 98.2 percent recognition accuracy on public UAV datasets across 50 to 400 m ranges and 5 to 80 pixels per second speeds. The results demonstrate state-of-the-art end-to-end energy efficiency for anti-UAV systems.
comment: 2 pages, 7 figures, conference paper published in IEEE Asian Solid-State Circuits Conference 2025
♻ ☆ REArtGS++: Generalizable Articulation Reconstruction with Temporal Geometry Constraint via Planar Gaussian Splatting
Articulated objects are pervasive in daily environments, such as drawers and refrigerators. Towards their part-level surface reconstruction and joint parameter estimation, REArtGS introduces a category-agnostic approach using multi-view RGB images at two different states. However, we observe that REArtGS still struggles with screw-joint or multi-part objects and lacks geometric constraints for unseen states. In this paper, we propose REArtGS++, a novel method towards generalizable articulated object reconstruction with temporal geometry constraint and planar Gaussian splatting. We first model a decoupled screw motion for each joint without type prior, and jointly optimize part-aware Gaussians with joint parameters through part motion blending. To introduce time-continuous geometric constraint for articulated modeling, we encourage Gaussians to be planar and propose a temporally consistent regularization between planar normal and depth through Taylor first-order expansion. Extensive experiments on both synthetic and real-world articulated objects demonstrate our superiority in generalizable part-level surface reconstruction and joint parameter estimation, compared to existing approaches. Project Site: https://sites.google.com/view/reartgs2/home.
comment: 10 pages, 7 figures
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization ICRA 2025
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Many-for-Many: Unify the Training of Multiple Video and Image Generation and Manipulation Tasks
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
♻ ☆ Efficient Scene Modeling via Structure-Aware and Region-Prioritized 3D Gaussians
Reconstructing 3D scenes with high fidelity and efficiency remains a central pursuit in computer vision and graphics. Recent advances in 3D Gaussian Splatting (3DGS) enable photorealistic rendering with Gaussian primitives, yet the modeling process remains governed predominantly by photometric supervision. This reliance often leads to irregular spatial distribution and indiscriminate primitive adjustments that largely ignore underlying geometric context. In this work, we rethink Gaussian modeling from a geometric standpoint and introduce Mini-Splatting2, an efficient scene modeling framework that couples structure-aware distribution and region-prioritized optimization, driving 3DGS into a geometry-regulated paradigm. The structure-aware distribution enforces spatial regularity through structured reorganization and representation sparsity, ensuring balanced structural coverage for compact organization. The region-prioritized optimization improves training discrimination through geometric saliency and computational selectivity, fostering appropriate structural emergence for fast convergence. These mechanisms alleviate the long-standing tension among representation compactness, convergence acceleration, and rendering fidelity. Extensive experiments demonstrate that Mini-Splatting2 achieves up to 4$\times$ fewer Gaussians and 3$\times$ faster optimization while maintaining state-of-the-art visual quality, paving the way towards structured and efficient 3D Gaussian modeling.
♻ ☆ Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach ICLR 2026
Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.
comment: Accepted by ICLR 2026
♻ ☆ Histo-Miner: Deep learning based tissue features extraction pipeline from H&E whole slide images of cutaneous squamous cell carcinoma
Recent advancements in digital pathology have enabled comprehensive analysis of Whole-Slide Images (WSI) from tissue samples, leveraging high-resolution microscopy and computational capabilities. Despite this progress, there is a lack of labeled datasets and open source pipelines specifically tailored for analysis of skin tissue. Here we propose Histo-Miner, a deep learning-based pipeline for analysis of skin WSIs and generate two datasets with labeled nuclei and tumor regions. We develop our pipeline for the analysis of patient samples of cutaneous squamous cell carcinoma (cSCC), a frequent non-melanoma skin cancer. Utilizing the two datasets, comprising 47,392 annotated cell nuclei and 144 tumor-segmented WSIs respectively, both from cSCC patients, Histo-Miner employs convolutional neural networks and vision transformers for nucleus segmentation and classification as well as tumor region segmentation. Performance of trained models positively compares to state of the art with multi-class Panoptic Quality (mPQ) of 0.569 for nucleus segmentation, macro-averaged F1 of 0.832 for nucleus classification and mean Intersection over Union (mIoU) of 0.907 for tumor region segmentation. From these predictions we generate a compact feature vector summarizing tissue morphology and cellular interactions, which can be used for various downstream tasks. Here, we use Histo-Miner to predict cSCC patient response to immunotherapy based on pre-treatment WSIs from 45 patients. Histo-Miner identifies percentages of lymphocytes, the granulocyte to lymphocyte ratio in tumor vicinity and the distances between granulocytes and plasma cells in tumors as predictive features for therapy response. This highlights the applicability of Histo-Miner to clinically relevant scenarios, providing direct interpretation of the classification and insights into the underlying biology.
comment: 37 pages including supplement, 5 core figures. Version 2: change sections order, add new supplementary sections, minor text updates. Version 3: Author addition and update of author contributions, increase font on 2 figures, minor text updates
♻ ☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring ICRA 2026
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
♻ ☆ MRD: Using Physically Based Differentiable Rendering to Probe Vision Models for 3D Scene Understanding
While deep learning methods have achieved impressive success in many vision benchmarks, it remains difficult to understand and explain the representations and decisions of these models. Though vision models are typically trained on 2D inputs, they are often assumed to develop an implicit representation of the underlying 3D scene (for example, showing tolerance to partial occlusion, or the ability to reason about relative depth). Here, we introduce MRD (metamers rendered differentiably), an approach that uses physically based differentiable rendering to probe vision models' implicit understanding of generative 3D scene properties, by finding 3D scene parameters that are physically different but produce the same model activation (i.e. are model metamers). Unlike previous pixel-based methods for evaluating model representations, these reconstruction results are always grounded in physical scene descriptions. This means we can, for example, probe a model's sensitivity to object shape while holding material and lighting constant. As a proof-of-principle, we assess multiple models in their ability to recover scene parameters of geometry (shape) and bidirectional reflectance distribution function (material). The results show high similarity in model activation between target and optimized scenes, with varying visual results. Qualitatively, these reconstructions help investigate the physical scene attributes to which models are sensitive or invariant. MRD holds promise for advancing our understanding of both computer and human vision by enabling analysis of how physical scene parameters drive changes in model responses.
comment: 23 pages, 11 figures. Added appendix with more figure results. Code will be available here: https://github.com/ag-perception-wallis-lab/MRD
♻ ☆ Deep Probabilistic Supervision for Image Classification
Supervised training of deep neural networks for classification typically relies on hard targets, which promote overconfidence and can limit calibration, generalization, and robustness. Self-distillation methods aim to mitigate this by leveraging inter-class and sample-specific information present in the model's own predictions, but often remain dependent on hard targets without explicitly modeling predictive uncertainty. With this in mind, we propose Deep Probabilistic Supervision (DPS), a principled learning framework constructing sample-specific target distributions via statistical inference on the model's own predictions, remaining independent of hard targets after initialization. We show that DPS consistently yields higher test accuracy (e.g., +2.0% for DenseNet-264 on ImageNet) and significantly lower Expected Calibration Error (ECE) (-40% ResNet-50, CIFAR-100) than existing self-distillation methods. When combined with a contrastive loss, DPS achieves state-of-the-art robustness under label noise.
comment: 16 pages, 12 figures
♻ ☆ PIO-FVLM: Rethinking Training-Free Visual Token Reduction for VLM Acceleration from an Inference-Objective Perspective
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
♻ ☆ Test-time Adaptive Hierarchical Co-enhanced Denoising Network for Reliable Multimodal Classification
Reliable learning of multimodal data (e.g., multi-omics) is a widely concerning issue, especially in safety-critical applications such as medical diagnosis. However, low-quality data induced by multimodal noise poses a major challenge in this domain, causing existing methods to suffer from two key limitations. First, they struggle to handle heterogeneous data noise, hindering robust multimodal representation learning. Second, they exhibit limited adaptability and generalization when encountering previously unseen noise. To address these issues, we propose Test-time Adaptive Hierarchical Co-enhanced Denoising Network (TAHCD). On one hand, TAHCD introduces the Adaptive Stable Subspace Alignment and Sample-Adaptive Confidence Alignment to reliably remove heterogeneous noise. They account for noise at both global and instance levels and enable jointly removal of modality-specific and cross-modality noise, achieving robust learning. On the other hand, TAHCD introduces Test-Time Cooperative Enhancement, which adaptively updates the model in response to input noise in a label-free manner, thus improving generalization. This is achieved by collaboratively enhancing the joint removal process of modality-specific and cross-modality noise across global and instance levels according to sample noise. Experiments on multiple benchmarks demonstrate that the proposed method achieves superior classification performance, robustness, and generalization compared with state-of-the-art reliable multimodal learning approaches.
comment: 14 pages,9 figures, 8 tables
♻ ☆ Plug-and-play linear attention with provable guarantees for training-free image restoration
Multi-head self-attention (MHSA) is a key building block in modern vision Transformers, yet its quadratic complexity in the number of tokens remains a major bottleneck for real-time and resource-constrained deployment. We present PnP-Nystra, a training-free Nyström-based linear attention module designed as a plug-and-play replacement for MHSA in {pretrained} image restoration Transformers, with provable kernel approximation error guarantees. PnP-Nystra integrates directly into window-based architectures such as SwinIR, Uformer, and Dehazeformer, yielding efficient inference without finetuning. Across denoising, deblurring, dehazing, and super-resolution on images, PnP-Nystra delivers $1.8$--$3.6\times$ speedups on an NVIDIA RTX 4090 GPU and $1.8$--$7\times$ speedups on CPU inference. Compared with the strongest training-free linear-attention baselines we evaluate, our method incurs the smallest quality drop and stays closest to the original model's outputs.
♻ ☆ Vector Quantization using Gaussian Variational Autoencoder
Vector-quantized variational autoencoders (VQ-VAEs) are discrete autoencoders that compress images into discrete tokens. However, they are difficult to train due to discretization. In this paper, we propose a simple yet effective technique dubbed Gaussian Quant (GQ), which first trains a Gaussian VAE under certain constraints and then converts it into a VQ-VAE without additional training. For conversion, GQ generates random Gaussian noise as a codebook and finds the closest noise vector to the posterior mean. Theoretically, we prove that when the logarithm of the codebook size exceeds the bits-back coding rate of the Gaussian VAE, a small quantization error is guaranteed. Practically, we propose a heuristic to train Gaussian VAEs for effective conversion, named the target divergence constraint (TDC). Empirically, we show that GQ outperforms previous VQ-VAEs, such as VQGAN, FSQ, LFQ, and BSQ, on both UNet and ViT architectures. Furthermore, TDC also improves previous Gaussian VAE discretization methods, such as TokenBridge. The source code is provided in the supplementary materials.
♻ ☆ RefAM: Attention Magnets for Zero-Shot Referral Segmentation
Most existing approaches to referring segmentation achieve strong performance only through fine-tuning or by composing multiple pre-trained models, often at the cost of additional training and architectural modifications. Meanwhile, large-scale generative diffusion models encode rich semantic information, making them attractive as general-purpose feature extractors. In this work, we introduce a new method that directly exploits features, attention scores, from diffusion transformers for downstream tasks, requiring neither architectural modifications nor additional training. To systematically evaluate these features, we extend benchmarks with vision-language grounding tasks spanning both images and videos. Our key insight is that stop words act as attention magnets: they accumulate surplus attention and can be filtered to reduce noise. Moreover, we identify global attention sinks (GAS) emerging in deeper layers and show that they can be safely suppressed or redirected onto auxiliary tokens, leading to sharper and more accurate grounding maps. We further propose an attention redistribution strategy, where appended stop words partition background activations into smaller clusters, yielding sharper and more localized heatmaps. Building on these findings, we develop RefAM, a simple training-free grounding framework that combines cross-attention maps, GAS handling, and redistribution. Across zero-shot referring image and video segmentation benchmarks, our approach achieves strong performance and surpasses prior methods on most datasets, establishing a new state of the art without fine-tuning, additional components and complex reasoning.
comment: Project Page: https://refam-diffusion.github.io/
♻ ☆ Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification
Feature engineering continues to play a critical role in image classification, particularly when interpretability and computational efficiency are prioritized over deep learning models with millions of parameters. In this study, we revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE), a robust and computationally lightweight measure traditionally used in time series analysis but rarely applied to image data. We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach that characterizes spatial order and complexity along rows, columns, diagonals, anti-diagonals, and local patches of the image. To enhance the discriminatory power of the entropy features, we integrate two classic image descriptors: the Histogram of Oriented Gradients (HOG) to capture shape and edge structure, and Local Binary Patterns (LBP) to encode micro-texture of an image. The resulting hand-crafted feature set, comprising of 780 dimensions, is used to train Support Vector Machine (SVM) classifiers optimized through grid search. The proposed approach is evaluated on multiple benchmark datasets, including Fashion-MNIST, KMNIST, EMNIST, and CIFAR-10, where it delivers competitive classification performance without relying on deep architectures. Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models. This shows a potential of entropy-based descriptors in image classification and contributes a lightweight and generalizable solution to interpretable machine learning in image classification and computer vision.
♻ ☆ TennisTV: Do Multimodal Large Language Models Understand Tennis Rallies?
Multimodal large language models (MLLMs) excel at general video understanding but struggle with fast, high-frequency sports like tennis, where rally clips are short yet information-dense. To systematically evaluate MLLMs in this challenging domain, we present TennisTV, the first and most comprehensive benchmark for tennis video understanding. TennisTV models each rally as a temporal-ordered sequence of consecutive stroke events, using automated pipelines for filtering and question generation. It covers 8 tasks from the stroke level to the rally level and includes 2527 human-verified questions. Evaluating 17 representative MLLMs, we provide the first systematic assessment of tennis video understanding. Results yield two key insights: (i) frame-sampling density should be tailored and balanced across tasks, and (ii) improving temporal grounding is essential for stronger reasoning.
♻ ☆ Investigating the Impact of Histopathological Foundation Models on Regressive Prediction of Homologous Recombination Deficiency
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
comment: 9 pages, 7 figures and 5 tables
♻ ☆ RANGER: A Monocular Zero-Shot Semantic Navigation Framework through Contextual Adaptation ICRA 2026
Efficiently finding targets in complex environments is fundamental to real-world embodied applications. While recent advances in multimodal foundation models have enabled zero-shot object goal navigation, allowing robots to search for arbitrary objects without fine-tuning, existing methods face two key limitations: (1) heavy reliance on precise depth and pose information provided by simulators, which restricts applicability in real-world scenarios; and (2) lack of in-context learning (ICL) capability, making it difficult to quickly adapt to new environments, as in leveraging short videos. To address these challenges, we propose RANGER, a novel zero-shot, open-vocabulary semantic navigation framework that operates using only a monocular camera. Leveraging powerful 3D foundation models, RANGER eliminates the dependency on depth and pose while exhibiting strong ICL capability. By simply observing a short video of a new environment, the system can also significantly improve task efficiency without requiring architectural modifications or fine-tuning. The framework integrates several key components: keyframe-based 3D reconstruction, semantic point cloud generation, vision-language model (VLM)-driven exploration value estimation, high-level adaptive waypoint selection, and low-level action execution. Experiments on the HM3D benchmark and real-world environments demonstrate that RANGER achieves competitive performance in terms of navigation success rate and exploration efficiency, while showing superior ICL adaptability, with no previous 3D mapping of the environment required.
comment: Accepted at ICRA 2026
♻ ☆ A Contrastive Learning Foundation Model Based on Perfectly Aligned Sample Pairs for Remote Sensing Images
Self-Supervised Learning (SSL) enables us to pre-train foundation models without costly labeled data. Among SSL methods, Contrastive Learning (CL) methods are better at obtaining accurate semantic representations in noise interference. However, due to the significant domain gap, while CL methods have achieved great success in many computer vision tasks, they still require specific adaptation for Remote Sensing (RS) images. To this end, we present a novel self-supervised method called PerA, which produces all-purpose RS features through semantically Perfectly Aligned sample pairs. Specifically, PerA obtains features from sampled views by applying spatially disjoint masks to augmented images rather than random cropping. Our framework provides high-quality features by ensuring consistency between teacher and student and predicting learnable mask tokens. Compared to previous contrastive methods, our method demonstrates higher memory efficiency and can be trained with larger batches due to its sparse inputs. Additionally, the proposed method demonstrates remarkable adaptability to uncurated RS data and reduce the impact of the potential semantic inconsistency. We also collect an unlabeled pre-training dataset, which contains about 5 million RS images. We conducted experiments on multiple downstream task datasets and achieved performance comparable to previous state-of-the-art methods with a limited model scale, demonstrating the effectiveness of our approach. We hope this work will contribute to practical remote sensing interpretation works.
comment: This article has been accepted for publication in Geo-spatial Information Science, published by Taylor & Francis
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Active Perception Agent for Omnimodal Audio-Video Understanding
Omnimodal large language models have made significant strides in unifying audio and visual modalities; however, they often face challenges in fine-grained cross-modal understanding and have difficulty with multimodal alignment. To address these limitations, we introduce OmniAgent, to our best knowledge, the first fully active perception agent that dynamically orchestrates specialized unimodal tools to achieve more fine-grained omnimodal reasoning. Unlike previous works that rely on rigid, static workflows and dense frame-captioning, we demonstrate a paradigm shift from passive response generation to active multimodal inquiry. OmniAgent employs dynamic planning to autonomously orchestrate tool invocation on demand, strategically concentrating perceptual attention on task-relevant cues. Central to our approach is a novel coarse-to-fine audio-guided perception paradigm, which leverages audio cues to localize temporal events and guide subsequent reasoning. Extensive empirical evaluations on three audio-video understanding benchmarks demonstrate that OmniAgent achieves state-of-the-art performance, surpassing leading open-source and closed-source models by substantial margins of 10% - 20% accuracy without training.
comment: Website:https://kd-tao.github.io/OmniAgent/
♻ ☆ DPMambaIR: All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, offering a more practical and versatile solution compared to designing dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework that introduces a fine-grained degradation extractor and a Degradation-Aware Prompt State Space Model (DP-SSM). The DP-SSM leverages the fine-grained degradation features captured by the extractor as dynamic prompts, which are then incorporated into the state space modeling process. This enhances the model's adaptability to diverse degradation types, while a complementary High-Frequency Enhancement Block (HEB) recovers local high-frequency details. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
♻ ☆ See Less, See Right: Bi-directional Perceptual Shaping For Multimodal Reasoning
Large vision-language models (VLMs) often benefit from intermediate visual cues, either injected via external tools or generated as latent visual tokens during reasoning, but these mechanisms still overlook fine-grained visual evidence (e.g., polylines in charts), generalize poorly across domains, and incur high inference-time cost. In this paper, we propose Bi-directional Perceptual Shaping (BiPS), which transforms question-conditioned masked views into bidirectional where-to-look signals that shape perception during training. BiPS first applies a KL-consistency constraint between the original image and an evidence-preserving view that keeps only question-relevant regions, encouraging coarse but complete coverage of supporting pixels. It then applies a KL-separation constraint between the original and an evidence-ablated view where critical pixels are masked so the image no longer supports the original answer, discouraging text-only shortcuts (i.e., answering from text alone) and enforcing fine-grained visual reliance. Across eight benchmarks, BiPS boosts Qwen2.5-VL-7B by 8.2% on average and shows strong out-of-domain generalization to unseen datasets and image types.
♻ ☆ PPE: Positional Preservation Embedding for Token Compression in Multimodal Large Language Models ICLR 2026
Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks, yet often suffer from inefficiencies due to redundant visual tokens. Existing token merging methods reduce sequence length but frequently disrupt spatial layouts and temporal continuity by disregarding positional relationships. In this work, we propose a novel encoding operator dubbed as \textbf{P}ositional \textbf{P}reservation \textbf{E}mbedding (\textbf{PPE}), which has the main hallmark of preservation of spatiotemporal structure during visual token compression. PPE explicitly introduces the disentangled encoding of 3D positions in the token dimension, enabling each compressed token to encapsulate different positions from multiple original tokens. Furthermore, we show that PPE can effectively support cascade clustering -- a progressive token compression strategy that leads to better performance retention. PPE is a parameter-free and generic operator that can be seamlessly integrated into existing token merging methods without any adjustments. Applied to state-of-the-art token merging framework, PPE achieves consistent improvements of $2\%\sim5\%$ across multiple vision-language benchmarks, including MMBench (general vision understanding), TextVQA (layout understanding) and VideoMME (temporal understanding). These results demonstrate that preserving positional cues is critical for efficient and effective MLLM reasoning. Our code is available at https://github.com/MouxiaoHuang/PPE.
comment: ICLR 2026
♻ ☆ Physics-Driven Local-Whole Elastic Deformation Modeling for Point Cloud Representation Learning
Existing point cloud representation learning methods primarily rely on data-driven strategies to extract geometric information from large amounts of scattered data. However, most methods focus solely on the spatial distribution features of point clouds while overlooking the relationship between local information and the whole structure, which limits the accuracy of point cloud representation. Local information reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric features. Therefore, appropriately introducing a physics-driven mechanism to capture the topological relationships between local parts and the whole object can effectively mitigate for the limitations of data-driven point cloud methods in structural modeling, and enhance the generalization and interpretability of point cloud representations for downstream tasks such as understanding and recognition. Inspired by this, we incorporate a physics-driven mechanism into the data-driven method to learn fine-grained features in point clouds and model the structural relationship between local regions and the whole shape. Specifically, we design a dual-task encoder-decoder framework that combines the geometric modeling capability of data-driven implicit fields with physics-driven elastic deformation. Through the integration of physics-based loss functions, the framework is guided to predict localized deformation and explicitly capture the correspondence between local structural changes and whole shape variations.
♻ ☆ LayoutCoT: Unleashing the Deep Reasoning Potential of Large Language Models for Layout Generation
Conditional layout generation aims to automatically generate visually appealing and semantically coherent layouts from user-defined constraints. While recent methods based on generative models have shown promising results, they typically require substantial amounts of training data or extensive fine-tuning, limiting their versatility and practical applicability. Alternatively, some training-free approaches leveraging in-context learning with Large Language Models (LLMs) have emerged, but they often suffer from limited reasoning capabilities and overly simplistic ranking mechanisms, which restrict their ability to generate consistently high-quality layouts. To this end, we propose LayoutCoT, a novel approach that leverages the reasoning capabilities of LLMs through a combination of Retrieval-Augmented Generation (RAG) and Chain-of-Thought (CoT) techniques. Specifically, LayoutCoT transforms layout representations into a standardized serialized format suitable for processing by LLMs. A Layout-aware RAG is used to facilitate effective retrieval and generate a coarse layout by LLMs. This preliminary layout, together with the selected exemplars, is then fed into a specially designed CoT reasoning module for iterative refinement, significantly enhancing both semantic coherence and visual quality. We conduct extensive experiments on five public datasets spanning three conditional layout generation tasks. Experimental results demonstrate that LayoutCoT achieves state-of-the-art performance without requiring training or fine-tuning. Notably, our CoT reasoning module enables standard LLMs, even those without explicit deep reasoning abilities, to outperform specialized deep-reasoning models such as deepseek-R1, highlighting the potential of our approach in unleashing the deep reasoning capabilities of LLMs for layout generation tasks.
♻ ☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages, 1 figure
♻ ☆ Image inpainting for corrupted images by using the semi-super resolution GAN
Image inpainting is a valuable technique for enhancing images that have been corrupted. The primary challenge in this research revolves around the extent of corruption in the input image that the deep learning model must restore. To address this challenge, we introduce a Generative Adversarial Network (GAN) for learning and replicating the missing pixels. Additionally, we have developed a distinct variant of the Super-Resolution GAN (SRGAN), which we refer to as the Semi-SRGAN (SSRGAN). Furthermore, we leveraged three diverse datasets to assess the robustness and accuracy of our proposed model. Our training process involves varying levels of pixel corruption to attain optimal accuracy and generate high-quality images.
♻ ☆ MVGS: Multi-view Regulated Gaussian Splatting for Novel View Synthesis
Recent works in volume rendering, \textit{e.g.} NeRF and 3D Gaussian Splatting (3DGS), significantly advance the rendering quality and efficiency with the help of the learned implicit neural radiance field or 3D Gaussians. Rendering on top of an explicit representation, the vanilla 3DGS and its variants deliver real-time efficiency by optimizing the parametric model with single-view supervision per iteration during training which is adopted from NeRF. Consequently, certain views are overfitted, leading to unsatisfying appearance in novel-view synthesis and imprecise 3D geometries. To solve aforementioned problems, we propose a new 3DGS optimization method embodying four key novel contributions: 1) We transform the conventional single-view training paradigm into a multi-view training strategy. With our proposed multi-view regulation, 3D Gaussian attributes are further optimized without overfitting certain training views. As a general solution, we improve the overall accuracy in a variety of scenarios and different Gaussian variants. 2) Inspired by the benefit introduced by additional views, we further propose a cross-intrinsic guidance scheme, leading to a coarse-to-fine training procedure concerning different resolutions. 3) Built on top of our multi-view regulated training, we further propose a cross-ray densification strategy, densifying more Gaussian kernels in the ray-intersect regions from a selection of views. 4) By further investigating the densification strategy, we found that the effect of densification should be enhanced when certain views are distinct dramatically. As a solution, we propose a novel multi-view augmented densification strategy, where 3D Gaussians are encouraged to get densified to a sufficient number accordingly, resulting in improved reconstruction accuracy.
comment: Project Page:https://xiaobiaodu.github.io/mvgs-project/
♻ ☆ Invariance on Manifolds: Understanding Robust Visual Representations for Place Recognition
Visual Place Recognition (VPR) demands representations robust to drastic environmental and viewpoint shifts. Current aggregation paradigms, however, either rely on data-hungry supervision or simplistic first-order statistics, often neglecting intrinsic structural correlations. In this work, we propose a Second-Order Geometric Statistics framework that inherently captures geometric stability without training. We conceptualize scenes as covariance descriptors on the Symmetric Positive Definite (SPD) manifold, where perturbations manifest as tractable congruence transformations. By leveraging geometry-aware Riemannian mappings, we project these descriptors into a linearized Euclidean embedding, effectively decoupling signal structure from noise. Our approach introduces a training-free framework built upon fixed, pre-trained backbones, achieving strong zero-shot generalization without parameter updates. Extensive experiments confirm that our method achieves highly competitive performance against state-of-the-art baselines, particularly excelling in challenging zero-shot scenarios.
comment: 14pages, 5 figures
♻ ☆ Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, yet their deployment is hindered by a fundamental limitation: safety mechanisms enforce rigid, uniform standards that fail to reflect diverse user preferences shaped by age, culture, or personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that transitions generative safety from static filtration to user-conditioned adaptation. We introduce Sage, a large-scale dataset capturing diverse safety boundaries across 1,000 simulated user profiles, covering complex risks often missed by traditional datasets. By integrating these profiles via a parameter-efficient cross-attention adapter, PSA dynamically modulates generation to align with individual sensitivities. Extensive experiments demonstrate that PSA achieves a calibrated safety-quality trade-off: under permissive profiles, it relaxes over-cautious constraints to enhance visual fidelity, while under restrictive profiles, it enforces state-of-the-art suppression, significantly outperforming static baselines. Furthermore, PSA exhibits superior instruction adherence compared to prompt-engineering methods, establishing personalization as a vital direction for creating adaptive, user-centered, and responsible generative AI. Our code, data, and models are publicly available at https://github.com/M-E-AGI-Lab/PSAlign.
♻ ☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
♻ ☆ Imperceptible Protection against Style Imitation from Diffusion Models IEEE
Recent progress in diffusion models has profoundly enhanced the fidelity of image generation, but it has raised concerns about copyright infringements. While prior methods have introduced adversarial perturbations to prevent style imitation, most are accompanied by the degradation of artworks' visual quality. Recognizing the importance of maintaining this, we introduce a visually improved protection method while preserving its protection capability. To this end, we devise a perceptual map to highlight areas sensitive to human eyes, guided by instance-aware refinement, which refines the protection intensity accordingly. We also introduce a difficulty-aware protection by predicting how difficult the artwork is to protect and dynamically adjusting the intensity based on this. Lastly, we integrate a perceptual constraints bank to further improve the imperceptibility. Results show that our method substantially elevates the quality of the protected image without compromising on protection efficacy.
comment: IEEE Transactions on Multimedia
♻ ☆ Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions and generate results with undesired properties or even harmful content. Inspired by the success and popularity of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
comment: Accepted at ACM Computing Surveys. 35 pages, 5 figures, 4 tables. Paper List: github.com/xie-lab-ml/awesome-alignment-of-diffusion-models
♻ ☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.0% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ Human Body Restoration with One-Step Diffusion Model and A New Benchmark ICML 2025
Human body restoration, as a specific application of image restoration, is widely applied in practice and plays a vital role across diverse fields. However, thorough research remains difficult, particularly due to the lack of benchmark datasets. In this study, we propose a high-quality dataset automated cropping and filtering (HQ-ACF) pipeline. This pipeline leverages existing object detection datasets and other unlabeled images to automatically crop and filter high-quality human images. Using this pipeline, we constructed a person-based restoration with sophisticated objects and natural activities (\emph{PERSONA}) dataset, which includes training, validation, and test sets. The dataset significantly surpasses other human-related datasets in both quality and content richness. Finally, we propose \emph{OSDHuman}, a novel one-step diffusion model for human body restoration. Specifically, we propose a high-fidelity image embedder (HFIE) as the prompt generator to better guide the model with low-quality human image information, effectively avoiding misleading prompts. Experimental results show that OSDHuman outperforms existing methods in both visual quality and quantitative metrics. The dataset and code will at https://github.com/gobunu/OSDHuman.
comment: 8 pages, 9 figures. Accepted at ICML 2025
♻ ☆ Representation Geometry as a Diagnostic for Out-of-Distribution Robustness
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
♻ ☆ StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
Current 3D Gaussian Splatting stylization approaches are limited in their ability to represent diverse artistic styles, frequently defaulting to low-level texture replacement or yielding semantically inconsistent outputs. In this paper, we introduce StyleMe3D, a novel hierarchical framework that achieves comprehensive, high-fidelity stylization by disentangling multi-level style representations while preserving geometric fidelity. The cornerstone of StyleMe3D is Dynamic Style Score Distillation (DSSD), which harnesses latent priors from a style-aware diffusion model to provide high-level semantic guidance, ensuring robust and expressive style transfer. To further refine this distillation process, we propose a multi-modal alignment strategy using the CLIP latent space: a CLIP-based style stream evaluator (Contrastive Style Descriptor) that enforces middle-level stylistic similarity, and a CLIP-based content stream evaluator (3D Gaussian Quality Assessment) that acts as a global regularizer to mitigate typical GS quality degradation. Finally, a VGG-based Simultaneously Optimized Scale module is integrated to refine fine-grained texture details at the low-level. Extensive experiments demonstrate that our method consistently preserves intricate geometric details and achieves coherent stylistic effects across entire scenes, significantly surpassing state-of-the-art baselines in both qualitative and quantitative evaluations.
comment: 18 pages; Project page: https://styleme3d.github.io/
♻ ☆ RAD: Region-Aware Diffusion Models for Image Inpainting
Diffusion models have achieved remarkable success in image generation, with applications broadening across various domains. Inpainting is one such application that can benefit significantly from diffusion models. Existing methods either hijack the reverse process of a pretrained diffusion model or cast the problem into a larger framework, \ie, conditioned generation. However, these approaches often require nested loops in the generation process or additional components for conditioning. In this paper, we present region-aware diffusion models (RAD) for inpainting with a simple yet effective reformulation of the vanilla diffusion models. RAD utilizes a different noise schedule for each pixel, which allows local regions to be generated asynchronously while considering the global image context. A plain reverse process requires no additional components, enabling RAD to achieve inference time up to 100 times faster than the state-of-the-art approaches. Moreover, we employ low-rank adaptation (LoRA) to fine-tune RAD based on other pretrained diffusion models, reducing computational burdens in training as well. Experiments demonstrated that RAD provides state-of-the-art results both qualitatively and quantitatively, on the FFHQ, LSUN Bedroom, and ImageNet datasets.
comment: Code: https://github.com/srk1995/RAD
♻ ☆ Near-Light Color Photometric Stereo for Mono-Chromatic Non-Lambertian Surfaces
Color photometric stereo enables single-shot surface reconstruction, extending conventional photometric stereo that requires multiple images of a static scene under varying illumination to dynamic scenarios. However, most existing approaches assume ideal distant lighting and Lambertian reflectance, leaving more practical near-light conditions and non-Lambertian surfaces underexplored. To overcome this limitation, we propose a framework that leverages neural implicit representations for depth and BRDF modeling under the assumption of mono-chromaticity (uniform chromaticity and homogeneous material), which alleviates the inherent ill-posedness of color photometric stereo and allows for detailed surface recovery from just one image. Furthermore, we design a compact optical tactile sensor to validate our approach. Experiments on both synthetic and real-world datasets demonstrate that our method achieves accurate and robust surface reconstruction.
comment: 5 pages 7figures
♻ ☆ SpikeGS: Learning 3D Gaussian Fields from Continuous Spike Stream ACCV 2024
A spike camera is a specialized high-speed visual sensor that offers advantages such as high temporal resolution and high dynamic range compared to conventional frame cameras. These features provide the camera with significant advantages in many computer vision tasks. However, the tasks of novel view synthesis based on spike cameras remain underdeveloped. Although there are existing methods for learning neural radiance fields from spike stream, they either lack robustness in extremely noisy, low-quality lighting conditions or suffer from high computational complexity due to the deep fully connected neural networks and ray marching rendering strategies used in neural radiance fields, making it difficult to recover fine texture details. In contrast, the latest advancements in 3DGS have achieved high-quality real-time rendering by optimizing the point cloud representation into Gaussian ellipsoids. Building on this, we introduce SpikeGS, the method to learn 3D Gaussian fields solely from spike stream. We designed a differentiable spike stream rendering framework based on 3DGS, incorporating noise embedding and spiking neurons. By leveraging the multi-view consistency of 3DGS and the tile-based multi-threaded parallel rendering mechanism, we achieved high-quality real-time rendering results. Additionally, we introduced a spike rendering loss function that generalizes under varying illumination conditions. Our method can reconstruct view synthesis results with fine texture details from a continuous spike stream captured by a moving spike camera, while demonstrating high robustness in extremely noisy low-light scenarios. Experimental results on both real and synthetic datasets demonstrate that our method surpasses existing approaches in terms of rendering quality and speed.
comment: Accepted by ACCV 2024
♻ ☆ HP-GAN: Harnessing pretrained networks for GAN improvement with FakeTwins and discriminator consistency
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
comment: Accepted manuscript. This is the accepted version of the article published in Neural Networks
♻ ☆ VisionDirector: Vision-Language Guided Closed-Loop Refinement for Generative Image Synthesis
Generative models can now produce photorealistic imagery, yet they still struggle with the long, multi-goal prompts that professional designers issue. To expose this gap and better evaluate models' performance in real-world settings, we introduce Long Goal Bench (LGBench), a 2,000-task suite (1,000 T2I and 1,000 I2I) whose average instruction contains 18 to 22 tightly coupled goals spanning global layout, local object placement, typography, and logo fidelity. We find that even state-of-the-art models satisfy fewer than 72 percent of the goals and routinely miss localized edits, confirming the brittleness of current pipelines. To address this, we present VisionDirector, a training-free vision-language supervisor that (i) extracts structured goals from long instructions, (ii) dynamically decides between one-shot generation and staged edits, (iii) runs micro-grid sampling with semantic verification and rollback after every edit, and (iv) logs goal-level rewards. We further fine-tune the planner with Group Relative Policy Optimization, yielding shorter edit trajectories (3.1 versus 4.2 steps) and stronger alignment. VisionDirector achieves new state of the art on GenEval (plus 7 percent overall) and ImgEdit (plus 0.07 absolute) while producing consistent qualitative improvements on typography, multi-object scenes, and pose editing.
♻ ☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
♻ ☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
♻ ☆ TrajVG: 3D Trajectory-Coupled Visual Geometry Learning
Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
♻ ☆ YOLO-based Bearing Fault Diagnosis With Continuous Wavelet Transform IEEE
This letter presents a locality-aware bearing fault diagnosis framework that operates on time-frequency representations and enables spatially interpretable decision-making. One-dimensional vibration signals are first mapped to two-dimensional time-frequency spectrograms using the continuous wavelet transform (CWT) with Morlet wavelets to enhance transient fault signatures. The diagnosis task is then formulated as object detection on the time-frequency plane, where YOLOv9, YOLOv10, and YOLOv11 are employed to localize fault-relevant regions and classify fault types simultaneously. Experiments on three public benchmarks, including Case Western Reserve University (CWRU), Paderborn University (PU), and Intelligent Maintenance System (IMS), demonstrate strong cross-dataset generalization compared with a representative MCNN-LSTM baseline. In particular, YOLOv11 achieves mAP@0.5 of 99.0% (CWRU), 97.8% (PU), and 99.5% (IMS), while providing region-aware visualization of fault patterns in the time-frequency domain. These results suggest that detection-based inference on CWT spectrograms provides an effective and interpretable complementary approach to conventional global classification for rotating machinery condition monitoring.
comment: 5 pages, 2 figures, 2 tables, submitted to IEEE Signal Processing Letters
♻ ☆ Test-Time Iterative Error Correction for Efficient Diffusion Models ICLR 2026
With the growing demand for high-quality image generation on resource-constrained devices, efficient diffusion models have received increasing attention. However, such models suffer from approximation errors introduced by efficiency techniques, which significantly degrade generation quality. Once deployed, these errors are difficult to correct, as modifying the model is typically infeasible in deployment environments. Through an analysis of error propagation across diffusion timesteps, we reveal that these approximation errors can accumulate exponentially, severely impairing output quality. Motivated by this insight, we propose Iterative Error Correction (IEC), a novel test-time method that mitigates inference-time errors by iteratively refining the model's output. IEC is theoretically proven to reduce error propagation from exponential to linear growth, without requiring any retraining or architectural changes. IEC can seamlessly integrate into the inference process of existing diffusion models, enabling a flexible trade-off between performance and efficiency. Extensive experiments show that IEC consistently improves generation quality across various datasets, efficiency techniques, and model architectures, establishing it as a practical and generalizable solution for test-time enhancement of efficient diffusion models.
comment: Accepted by ICLR 2026
♻ ☆ SurgLaVi: Large-Scale Hierarchical Dataset for Surgical Vision-Language Representation Learning
Vision-language pre-training (VLP) offers unique advantages for surgery by aligning language with surgical videos, enabling workflow understanding and transfer across tasks without relying on expert-labeled datasets. However, progress in surgical VLP remains constrained by the limited scale, procedural diversity, semantic quality, and hierarchical structure of existing datasets. In this work, we present SurgLaVi, the largest and most diverse surgical vision-language dataset to date, comprising nearly 240k clip-caption pairs from more than 200 procedures, and featuring hierarchical levels at coarse-, mid-, and fine-level. At the core of SurgLaVi lies a fully automated pipeline that systematically generates fine-grained transcriptions of surgical videos and segments them into coherent procedural units. To ensure high-quality annotations, it applies dual-modality filtering to remove irrelevant and noisy samples. Within this framework, the resulting captions are enriched with contextual detail, producing annotations that are both semantically rich and easy to interpret. To ensure accessibility, we release SurgLaVi-$\b{eta}$, an open-source derivative of 113k clip-caption pairs constructed entirely from public data, which is over four times larger than existing surgical VLP datasets. To demonstrate the value of the SurgLaVi datasets, we introduce SurgCLIP, a CLIP-style video-text contrastive framework with dual encoders, as a representative base model. SurgCLIP achieves consistent improvements across phase, step, action, and tool recognition, surpassing prior state-of-the-art methods, often by large margins. These results validate that large-scale, semantically rich, and hierarchically structured datasets directly translate into stronger and more generalizable representations, establishing SurgLaVi as a key resource for developing surgical foundation models.
♻ ☆ GMAC: Global Multi-View Constraint for Automatic Multi-Camera Extrinsic Calibration IEEE
Automatic calibration of multi-camera systems, namely the accurate estimation of spatial extrinsic parameters, is fundamental for 3D reconstruction, panoramic perception, and multi-view data fusion. Existing methods typically rely on calibration targets, explicit geometric modeling, or task-specific neural networks. Such approaches often exhibit limited robustness and applicability in complex dynamic environments or online scenarios, making them difficult to deploy in practical applications. To address this, this paper proposes GMAC, a multi-camera extrinsic estimation framework based on the implicit geometric representations learned by multi-view reconstruction networks. GMAC models extrinsics as global variables constrained by the latent multi-view geometric structure and prunes and structurally reconfigures existing networks so that their latent features can directly support extrinsic prediction through a lightweight regression head, without requiring a completely new network design. Furthermore, GMAC jointly optimizes cross-view reprojection consistency and multi-view cycle consistency, ensuring geometric coherence across cameras while improving prediction accuracy and optimization stability. Experiments on both synthetic and real-world multi-camera datasets demonstrate that GMAC achieves accurate and stable extrinsic estimation without explicit 3D reconstruction or manual calibration, providing a new solution for efficient deployment and online calibration of multi-camera systems.
comment: A 5-page paper with 1 figure, prepared for submission to the 2026 IEEE International Conference on Image Processing (ICIP)
♻ ☆ FUSE-Flow: Scalable Real-Time Multi-View Point Cloud Reconstruction Using Confidence IEEE
Real-time multi-view point cloud reconstruction is a core problem in 3D vision and immersive perception, with wide applications in VR, AR, robotic navigation, digital twins, and computer interaction. Despite advances in multi-camera systems and high-resolution depth sensors, fusing large-scale multi-view depth observations into high-quality point clouds under strict real-time constraints remains challenging. Existing methods relying on voxel-based fusion, temporal accumulation, or global optimization suffer from high computational complexity, excessive memory usage, and limited scalability, failing to simultaneously achieve real-time performance, reconstruction quality, and multi-camera extensibility. We propose FUSE-Flow, a frame-wise, stateless, and linearly scalable point cloud streaming reconstruction framework. Each frame independently generates point cloud fragments, fused via two weights, measurement confidence and 3D distance consistency to suppress noise while preserving geometric details. For large-scale multi-camera efficiency, we introduce an adaptive spatial hashing-based weighted aggregation method: 3D space is adaptively partitioned by local point cloud density, representative points are selected per cell, and weighted fusion is performed to handle both sparse and dense regions. With GPU parallelization, FUSE-Flow achieves high-throughput, low-latency point cloud generation and fusion with linear complexity. Experiments demonstrate that the framework improves reconstruction stability and geometric fidelity in overlapping, depth-discontinuous, and dynamic scenes, while maintaining real-time frame rates on modern GPUs, verifying its effectiveness, robustness, and scalability.
comment: A 5-page paper, prepared for submission to the 2026 IEEE International Conference on Image Processing (ICIP)
♻ ☆ LookWhere? Efficient Visual Recognition by Learning Where to Look and What to See from Self-Supervision
Vision transformers are ever larger, more accurate, and more expensive to compute. The expense is even more extreme at high resolution as the number of tokens grows quadratically with the image size. We turn to adaptive computation to cope with this cost by learning to predict where to compute. Our LookWhere method divides the computation between a low-resolution selector and a high-resolution extractor without ever processing the full high-resolution input. We jointly pretrain the selector and extractor without task supervision by distillation from a self-supervised teacher, in effect, learning where and what to compute simultaneously. Unlike prior token reduction methods, which pay to save by pruning already-computed tokens, and prior token selection methods, which require complex and expensive per-task optimization, LookWhere economically and accurately selects and extracts transferrable representations of images. We show that LookWhere excels at sparse recognition on high-resolution inputs (Traffic Signs), maintaining accuracy while reducing FLOPs by up to 34x and time by 6x. It also excels at standard recognition tasks that are global (ImageNet classification) or local (ADE20K segmentation), improving accuracy while reducing time by 1.36x. See https://github.com/antofuller/lookwhere for the code and weights.
♻ ☆ Extracting Manifold Information from Point Clouds
A kernel based method is proposed for the construction of signature (defining) functions of subsets of $\mathbb{R}^d$. The subsets can range from full dimensional manifolds (open subsets) to point clouds (a finite number of points) and include bounded (closed) smooth manifolds of any codimension. The interpolation and analysis of point clouds are the main application. Two extreme cases in terms of regularity are considered, where the data set is interpolated by an analytic surface, at the one extreme, and by a Hölder continuous surface, at the other. The signature function can be computed as a combination of translated kernels, the coefficients of which are the solution of a Fredholm integral equation (matrix equation in the finite dimensional case). Once it is obtained, it can be used to estimate the dimension as well as the normal and the curvatures of the interpolated manifold. The method is global and does not require the data set to be organized or structured in any particular way. It admits a variational formulation with a natural regularized counterpart, that proves useful in dealing with data sets corrupted by numerical error or noise. The underlying analytical structure of the approach is presented in general before it is applied to the case of point clouds.
comment: 21 pages, 11 figures, 4 tables
♻ ☆ SPIDER: Scalable Physics-Informed Dexterous Retargeting
Learning dexterous and agile policy for humanoid and dexterous hand control requires large-scale demonstrations, but collecting robot-specific data is prohibitively expensive. In contrast, abundant human motion data is readily available from motion capture, videos, and virtual reality, which could help address the data scarcity problem. However, due to the embodiment gap and missing dynamic information like force and torque, these demonstrations cannot be directly executed on robots. To bridge this gap, we propose Scalable Physics-Informed DExterous Retargeting (SPIDER), a physics-based retargeting framework to transform and augment kinematic-only human demonstrations to dynamically feasible robot trajectories at scale. Our key insight is that human demonstrations should provide global task structure and objective, while large-scale physics-based sampling with curriculum-style virtual contact guidance should refine trajectories to ensure dynamical feasibility and correct contact sequences. SPIDER scales across diverse 9 humanoid/dexterous hand embodiments and 6 datasets, improving success rates by 18% compared to standard sampling, while being 10X faster than reinforcement learning (RL) baselines, and enabling the generation of a 2.4M frames dynamic-feasible robot dataset for policy learning. As a universal physics-based retargeting method, SPIDER can work with diverse quality data and generate diverse and high-quality data to enable efficient policy learning with methods like RL.
comment: Project website: https://jc-bao.github.io/spider-project/
♻ ☆ Mamba Goes HoME: Hierarchical Soft Mixture-of-Experts for 3D Medical Image Segmentation NeurIPS 2025
In recent years, artificial intelligence has significantly advanced medical image segmentation. Nonetheless, challenges remain, including efficient 3D medical image processing across diverse modalities and handling data variability. In this work, we introduce Hierarchical Soft Mixture-of-Experts (HoME), a two-level token-routing layer for efficient long-context modeling, specifically designed for 3D medical image segmentation. Built on the Mamba Selective State Space Model (SSM) backbone, HoME enhances sequential modeling through adaptive expert routing. In the first level, a Soft Mixture-of-Experts (SMoE) layer partitions input sequences into local groups, routing tokens to specialized per-group experts for localized feature extraction. The second level aggregates these outputs through a global SMoE layer, enabling cross-group information fusion and global context refinement. This hierarchical design, combining local expert routing with global expert refinement, enhances generalizability and segmentation performance, surpassing state-of-the-art results across datasets from the three most widely used 3D medical imaging modalities and varying data qualities. The code is publicly available at https://github.com/gmum/MambaHoME.
comment: Accepted at NeurIPS 2025
♻ ☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
♻ ☆ Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
Artificial Intelligence 305
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ DyTopo: Dynamic Topology Routing for Multi-Agent Reasoning via Semantic Matching
Multi-agent systems built from prompted large language models can improve multi-round reasoning, yet most existing pipelines rely on fixed, trajectory-wide communication patterns that are poorly matched to the stage-dependent needs of iterative problem solving. We introduce DyTopo, a manager-guided multi-agent framework that reconstructs a sparse directed communication graph at each round. Conditioned on the manager's round goal, each agent outputs lightweight natural-language query (need) and \key (offer) descriptors; DyTopo embeds these descriptors and performs semantic matching, routing private messages only along the induced edges. Across code generation and mathematical reasoning benchmarks and four LLM backbones, DyTopo consistently outperforms over the strongest baseline (avg. +6.2). Beyond accuracy, DyTopo yields an interpretable coordination trace via the evolving graphs, enabling qualitative inspection of how communication pathways reconfigure across rounds.
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction IEEE
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Learning Event-Based Shooter Models from Virtual Reality Experiments
Virtual reality (VR) has emerged as a powerful tool for evaluating school security measures in high-risk scenarios such as school shootings, offering experimental control and high behavioral fidelity. However, assessing new interventions in VR requires recruiting new participant cohorts for each condition, making large-scale or iterative evaluation difficult. These limitations are especially restrictive when attempting to learn effective intervention strategies, which typically require many training episodes. To address this challenge, we develop a data-driven discrete-event simulator (DES) that models shooter movement and in-region actions as stochastic processes learned from participant behavior in VR studies. We use the simulator to examine the impact of a robot-based shooter intervention strategy. Once shown to reproduce key empirical patterns, the DES enables scalable evaluation and learning of intervention strategies that are infeasible to train directly with human subjects. Overall, this work demonstrates a high-to-mid fidelity simulation workflow that provides a scalable surrogate for developing and evaluating autonomous school-security interventions.
comment: Preprint under review for conference publication. 9 pages, 4 figures, 4 tables
☆ Correctness-Optimized Residual Activation Lens (CORAL): Transferrable and Calibration-Aware Inference-Time Steering
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
☆ Optimism Stabilizes Thompson Sampling for Adaptive Inference
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
☆ GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Generation Tasks?
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
comment: Project Page: https://genarena.github.io/, Code: https://github.com/ruihanglix/genarena
☆ AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Transactions
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
☆ Speech Emotion Recognition Leveraging OpenAI's Whisper Representations and Attentive Pooling Methods
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
☆ Diamond Maps: Efficient Reward Alignment via Stochastic Flow Maps
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
☆ RISE-Video: Can Video Generators Decode Implicit World Rules?
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
comment: 38 pages, 16 figures, 3 tables; Code: https://github.com/VisionXLab/RISE-Video; HuggingFace: https://huggingface.co/datasets/VisionXLab/RISE-Video
☆ Geographically-aware Transformer-based Traffic Forecasting for Urban Motorway Digital Twins IEEE
The operational effectiveness of digital-twin technology in motorway traffic management depends on the availability of a continuous flow of high-resolution real-time traffic data. To function as a proactive decision-making support layer within traffic management, a digital twin must also incorporate predicted traffic conditions in addition to real-time observations. Due to the spatio-temporal complexity and the time-variant, non-linear nature of traffic dynamics, predicting motorway traffic remains a difficult problem. Sequence-based deep-learning models offer clear advantages over classical machine learning and statistical models in capturing long-range, temporal dependencies in time-series traffic data, yet limitations in forecasting accuracy and model complexity point to the need for further improvements. To improve motorway traffic forecasting, this paper introduces a Geographically-aware Transformer-based Traffic Forecasting GATTF model, which exploits the geographical relationships between distributed sensors using their mutual information (MI). The model has been evaluated using real-time data from the Geneva motorway network in Switzerland and results confirm that incorporating geographical awareness through MI enhances the accuracy of GATTF forecasting compared to a standard Transformer, without increasing model complexity.
comment: IEEE IV2026 37th IEEE Intelligent Vehicles Symposium
☆ Clifford Kolmogorov-Arnold Networks IEEE
We introduce Clifford Kolmogorov-Arnold Network (ClKAN), a flexible and efficient architecture for function approximation in arbitrary Clifford algebra spaces. We propose the use of Randomized Quasi Monte Carlo grid generation as a solution to the exponential scaling associated with higher dimensional algebras. Our ClKAN also introduces new batch normalization strategies to deal with variable domain input. ClKAN finds application in scientific discovery and engineering, and is validated in synthetic and physics inspired tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Inverse Depth Scaling From Most Layers Being Similar
Neural scaling laws relate loss to model size in large language models (LLMs), yet depth and width may contribute to performance differently, requiring more detailed studies. Here, we quantify how depth affects loss via analysis of LLMs and toy residual networks. We find loss scales inversely proportional to depth in LLMs, probably due to functionally similar layers reducing error through ensemble averaging rather than compositional learning or discretizing smooth dynamics. This regime is inefficient yet robust and may arise from the architectural bias of residual networks and target functions incompatible with smooth dynamics. The findings suggest that improving LLM efficiency may require architectural innovations to encourage compositional use of depth.
comment: 23 pages, 24 figures
☆ LSA: Localized Semantic Alignment for Enhancing Temporal Consistency in Traffic Video Generation IEEE
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
comment: Accepted to IEEE IV 2026. 8 pages, 3 figures. Code available at https://github.com/mirlanium/LSA
☆ Learning to Share: Selective Memory for Efficient Parallel Agentic Systems
Agentic systems solve complex tasks by coordinating multiple agents that iteratively reason, invoke tools, and exchange intermediate results. To improve robustness and solution quality, recent approaches deploy multiple agent teams running in parallel to explore diverse reasoning trajectories. However, parallel execution comes at a significant computational cost: when different teams independently reason about similar sub-problems or execute analogous steps, they repeatedly perform substantial overlapping computation. To address these limitations, in this paper, we propose Learning to Share (LTS), a learned shared-memory mechanism for parallel agentic frameworks that enables selective cross-team information reuse while controlling context growth. LTS introduces a global memory bank accessible to all teams and a lightweight controller that decides whether intermediate agent steps should be added to memory or not. The controller is trained using stepwise reinforcement learning with usage-aware credit assignment, allowing it to identify information that is globally useful across parallel executions. Experiments on the AssistantBench and GAIA benchmarks show that LTS significantly reduces overall runtime while matching or improving task performance compared to memory-free parallel baselines, demonstrating that learned memory admission is an effective strategy for improving the efficiency of parallel agentic systems. Project page: https://joefioresi718.github.io/LTS_webpage/
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Compound Deception in Elite Peer Review: A Failure Mode Taxonomy of 100 Fabricated Citations at NeurIPS 2025
Large language models (LLMs) are increasingly used in academic writing workflows, yet they frequently hallucinate by generating citations to sources that do not exist. This study analyzes 100 AI-generated hallucinated citations that appeared in papers accepted by the 2025 Conference on Neural Information Processing Systems (NeurIPS), one of the world's most prestigious AI conferences. Despite review by 3-5 expert researchers per paper, these fabricated citations evaded detection, appearing in 53 published papers (approx. 1% of all accepted papers). We develop a five-category taxonomy that classifies hallucinations by their failure mode: Total Fabrication (66%), Partial Attribute Corruption (27%), Identifier Hijacking (4%), Placeholder Hallucination (2%), and Semantic Hallucination (1%). Our analysis reveals a critical finding: every hallucination (100%) exhibited compound failure modes. The distribution of secondary characteristics was dominated by Semantic Hallucination (63%) and Identifier Hijacking (29%), which often appeared alongside Total Fabrication to create a veneer of plausibility and false verifiability. These compound structures exploit multiple verification heuristics simultaneously, explaining why peer review fails to detect them. The distribution exhibits a bimodal pattern: 92% of contaminated papers contain 1-2 hallucinations (minimal AI use) while 8% contain 4-13 hallucinations (heavy reliance). These findings demonstrate that current peer review processes do not include effective citation verification and that the problem extends beyond NeurIPS to other major conferences, government reports, and professional consulting. We propose mandatory automated citation verification at submission as an implementable solution to prevent fabricated citations from becoming normalized in scientific literature.
☆ Quantum Reinforcement Learning with Transformers for the Capacitated Vehicle Routing Problem
This paper addresses the Capacitated Vehicle Routing Problem (CVRP) by comparing classical and quantum Reinforcement Learning (RL) approaches. An Advantage Actor-Critic (A2C) agent is implemented in classical, full quantum, and hybrid variants, integrating transformer architectures to capture the relationships between vehicles, clients, and the depot through self- and cross-attention mechanisms. The experiments focus on multi-vehicle scenarios with capacity constraints, considering 20 clients and 4 vehicles, and are conducted over ten independent runs. Performance is assessed using routing distance, route compactness, and route overlap. The results show that all three approaches are capable of learning effective routing policies. However, quantum-enhanced models outperform the classical baseline and produce more robust route organization, with the hybrid architecture achieving the best overall performance across distance, compactness, and route overlap. In addition to quantitative improvements, qualitative visualizations reveal that quantum-based models generate more structured and coherent routing solutions. These findings highlight the potential of hybrid quantum-classical reinforcement learning models for addressing complex combinatorial optimization problems such as the CVRP.
comment: 22 pages, 12 figures
☆ Verification of the Implicit World Model in a Generative Model via Adversarial Sequences ICLR 2026
Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.
comment: Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification
☆ Regularized Calibration with Successive Rounding for Post-Training Quantization
Large language models (LLMs) deliver robust performance across diverse applications, yet their deployment often faces challenges due to the memory and latency costs of storing and accessing billions of parameters. Post-training quantization (PTQ) enables efficient inference by mapping pretrained weights to low-bit formats without retraining, but its effectiveness depends critically on both the quantization objective and the rounding procedure used to obtain low-bit weight representations. In this work, we show that interpolating between symmetric and asymmetric calibration acts as a form of regularization that preserves the standard quadratic structure used in PTQ while providing robustness to activation mismatch. Building on this perspective, we derive a simple successive rounding procedure that naturally incorporates asymmetric calibration, as well as a bounded-search extension that allows for an explicit trade-off between quantization quality and the compute cost. Experiments across multiple LLM families, quantization bit-widths, and benchmarks demonstrate that the proposed bounded search based on a regularized asymmetric calibration objective consistently improves perplexity and accuracy over PTQ baselines, while incurring only modest and controllable additional computational cost.
☆ Parity, Sensitivity, and Transformers
The transformer architecture is almost a decade old. Despite that, we still have a limited understanding of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve PARITY -- or more generally -- which kinds of transformers can do it? Known constructions for PARITY have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or hardmax, or layernorm without the regularization parameter, or they are not implementable with causal masking. We give a new construction of a transformer for PARITY with softmax, length-independent and polynomially bounded positional encoding, no layernorm, working both with and without causal masking. We also give the first lower bound for transformers solving PARITY -- by showing that it cannot be done with only one layer and one head.
comment: 15 pages
☆ Metric Hedonic Games on the Line AAMAS 2026
Hedonic games are fundamental models for investigating the formation of coalitions among a set of strategic agents, where every agent has a certain utility for every possible coalition of agents it can be part of. To avoid the intractability of defining exponentially many utilities for all possible coalitions, many variants with succinct representations of the agents' utility functions have been devised and analyzed, e.g., modified fractional hedonic games by Monaco et al. [JAAMAS 2020]. We extend this by studying a novel succinct variant that is related to modified fractional hedonic games. In our model, each agent has a fixed type-value and an agent's cost for some given coalition is based on the differences between its value and those of the other members of its coalition. This allows to model natural situations like athletes forming training groups with similar performance levels or voters that partition themselves along a political spectrum. In particular, we investigate natural variants where an agent's cost is defined by distance thresholds, or by the maximum or average value difference to the other agents in its coalition. For these settings, we study the existence of stable coalition structures, their properties, and their quality in terms of the price of anarchy and the price of stability. Further, we investigate the impact of limiting the maximum number of coalitions. Despite the simple setting with metric distances on a line, we uncover a rich landscape of models, partially with counter-intuitive behavior. Also, our focus on both swap stability and jump stability allows us to study the influence of fixing the number and the size of the coalitions. Overall, we find that stable coalition structures always exist but that their properties and quality can vary widely.
comment: accepted at AAMAS 2026, full version
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ Neural Implicit 3D Cardiac Shape Reconstruction from Sparse CT Angiography Slices Mimicking 2D Transthoracic Echocardiography Views
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
☆ A Guide to Large Language Models in Modeling and Simulation: From Core Techniques to Critical Challenges
Large language models (LLMs) have rapidly become familiar tools to researchers and practitioners. Concepts such as prompting, temperature, or few-shot examples are now widely recognized, and LLMs are increasingly used in Modeling & Simulation (M&S) workflows. However, practices that appear straightforward may introduce subtle issues, unnecessary complexity, or may even lead to inferior results. Adding more data can backfire (e.g., deteriorating performance through model collapse or inadvertently wiping out existing guardrails), spending time on fine-tuning a model can be unnecessary without a prior assessment of what it already knows, setting the temperature to 0 is not sufficient to make LLMs deterministic, providing a large volume of M&S data as input can be excessive (LLMs cannot attend to everything) but naive simplifications can lose information. We aim to provide comprehensive and practical guidance on how to use LLMs, with an emphasis on M&S applications. We discuss common sources of confusion, including non-determinism, knowledge augmentation (including RAG and LoRA), decomposition of M&S data, and hyper-parameter settings. We emphasize principled design choices, diagnostic strategies, and empirical evaluation, with the goal of helping modelers make informed decisions about when, how, and whether to rely on LLMs.
comment: Book chapter. Accepted in Artificial Intelligence in Modeling and Simulation, Philippe J. Giabbanelli and Istvan David (eds). Series on Simulation Foundations, Methods and Applications. Springer, Cham. Series ISSN: 2195-2817
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ Agent2Agent Threats in Safety-Critical LLM Assistants: A Human-Centric Taxonomy
The integration of Large Language Model (LLM)-based conversational agents into vehicles creates novel security challenges at the intersection of agentic AI, automotive safety, and inter-agent communication. As these intelligent assistants coordinate with external services via protocols such as Google's Agent-to-Agent (A2A), they establish attack surfaces where manipulations can propagate through natural language payloads, potentially causing severe consequences ranging from driver distraction to unauthorized vehicle control. Existing AI security frameworks, while foundational, lack the rigorous "separation of concerns" standard in safety-critical systems engineering by co-mingling the concepts of what is being protected (assets) with how it is attacked (attack paths). This paper addresses this methodological gap by proposing a threat modeling framework called AgentHeLLM (Agent Hazard Exploration for LLM Assistants) that formally separates asset identification from attack path analysis. We introduce a human-centric asset taxonomy derived from harm-oriented "victim modeling" and inspired by the Universal Declaration of Human Rights, and a formal graph-based model that distinguishes poison paths (malicious data propagation) from trigger paths (activation actions). We demonstrate the framework's practical applicability through an open-source attack path suggestion tool AgentHeLLM Attack Path Generator that automates multi-stage threat discovery using a bi-level search strategy.
☆ Beyond Manual Planning: Seating Allocation for Large Organizations
We introduce the Hierarchical Seating Allocation Problem (HSAP) which addresses the optimal assignment of hierarchically structured organizational teams to physical seating arrangements on a floor plan. This problem is driven by the necessity for large organizations with large hierarchies to ensure that teams with close hierarchical relationships are seated in proximity to one another, such as ensuring a research group occupies a contiguous area. Currently, this problem is managed manually leading to infrequent and suboptimal replanning efforts. To alleviate this manual process, we propose an end-to-end framework to solve the HSAP. A scalable approach to calculate the distance between any pair of seats using a probabilistic road map (PRM) and rapidly-exploring random trees (RRT) which is combined with heuristic search and dynamic programming approach to solve the HSAP using integer programming. We demonstrate our approach under different sized instances by evaluating the PRM framework and subsequent allocations both quantitatively and qualitatively.
☆ xList-Hate: A Checklist-Based Framework for Interpretable and Generalizable Hate Speech Detection
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ BABE: Biology Arena BEnchmark
The rapid evolution of large language models (LLMs) has expanded their capabilities from basic dialogue to advanced scientific reasoning. However, existing benchmarks in biology often fail to assess a critical skill required of researchers: the ability to integrate experimental results with contextual knowledge to derive meaningful conclusions. To address this gap, we introduce BABE(Biology Arena BEnchmark), a comprehensive benchmark designed to evaluate the experimental reasoning capabilities of biological AI systems. BABE is uniquely constructed from peer-reviewed research papers and real-world biological studies, ensuring that tasks reflect the complexity and interdisciplinary nature of actual scientific inquiry. BABE challenges models to perform causal reasoning and cross-scale inference. Our benchmark provides a robust framework for assessing how well AI systems can reason like practicing scientists, offering a more authentic measure of their potential to contribute to biological research.
☆ DARWIN: Dynamic Agentically Rewriting Self-Improving Network
DARWIN is an evolutionary GPT model, utilizing a genetic-algorithm like optimization structure with several independent GPT agents being trained individually using unique training code. Each iteration, the GPT models are prompted to modify the training code of one another in an attempt to improve their performance in a mutation-like manner, and the best GPT agents are then benchmarked and selected for the next iteration by genetic algorithm. For demonstration purposes and due to budget and time constraints, OpenAI API is used to prompt training code improvements and the nanoGPT framework is used as the training code. DARWIN also utilizes persistent JSON-based memory files to track previous reasoning and changes to code to correlate with improvement to model performance. and a bidirectional interface for HITL intervention allowing the model to request upgrades such as additional datasets, training scripts, and restructuring of file hierarchies. In experiments, DARWIN achieved a 1.26 percent improvement in model FLOPS utilization (MFU) and a 2.07 percent improvement to perplexity in 5 iterations of training over baseline configurations, demonstrating promising capabilities as a foundation for scaling evolutionary GPT training.
comment: 6 pages, 3 figures, 2 tables
☆ OmniVideo-R1: Reinforcing Audio-visual Reasoning with Query Intention and Modality Attention
While humans perceive the world through diverse modalities that operate synergistically to support a holistic understanding of their surroundings, existing omnivideo models still face substantial challenges on audio-visual understanding tasks. In this paper, we propose OmniVideo-R1, a novel reinforced framework that improves mixed-modality reasoning. OmniVideo-R1 empowers models to "think with omnimodal cues" by two key strategies: (1) query-intensive grounding based on self-supervised learning paradigms; and (2) modality-attentive fusion built upon contrastive learning paradigms. Extensive experiments on multiple benchmarks demonstrate that OmniVideo-R1 consistently outperforms strong baselines, highlighting its effectiveness and robust generalization capabilities.
comment: 19 pages, 12 figures
☆ FHAIM: Fully Homomorphic AIM For Private Synthetic Data Generation
Data is the lifeblood of AI, yet much of the most valuable data remains locked in silos due to privacy and regulations. As a result, AI remains heavily underutilized in many of the most important domains, including healthcare, education, and finance. Synthetic data generation (SDG), i.e. the generation of artificial data with a synthesizer trained on real data, offers an appealing solution to make data available while mitigating privacy concerns, however existing SDG-as-a-service workflow require data holders to trust providers with access to private data.We propose FHAIM, the first fully homomorphic encryption (FHE) framework for training a marginal-based synthetic data generator on encrypted tabular data. FHAIM adapts the widely used AIM algorithm to the FHE setting using novel FHE protocols, ensuring that the private data remains encrypted throughout and is released only with differential privacy guarantees. Our empirical analysis show that FHAIM preserves the performance of AIM while maintaining feasible runtimes.
☆ Learning Compact Boolean Networks
Floating-point neural networks dominate modern machine learning but incur substantial inference cost, motivating interest in Boolean networks for resource-constrained settings. However, learning compact and accurate Boolean networks is challenging due to their combinatorial nature. In this work, we address this challenge from three different angles: learned connections, compact convolutions and adaptive discretization. First, we propose a novel strategy to learn efficient connections with no additional parameters and negligible computational overhead. Second, we introduce a novel convolutional Boolean architecture that exploits the locality with reduced number of Boolean operations than existing methods. Third, we propose an adaptive discretization strategy to reduce the accuracy drop when converting a continuous-valued network into a Boolean one. Extensive results on standard vision benchmarks demonstrate that the Pareto front of accuracy vs. computation of our method significantly outperforms prior state-of-the-art, achieving better accuracy with up to 37x fewer Boolean operations.
☆ TKG-Thinker: Towards Dynamic Reasoning over Temporal Knowledge Graphs via Agentic Reinforcement Learning
Temporal knowledge graph question answering (TKGQA) aims to answer time-sensitive questions by leveraging temporal knowledge bases. While Large Language Models (LLMs) demonstrate significant potential in TKGQA, current prompting strategies constrain their efficacy in two primary ways. First, they are prone to reasoning hallucinations under complex temporal constraints. Second, static prompting limits model autonomy and generalization, as it lack optimization through dynamic interaction with temporal knowledge graphs (TKGs) environments. To address these limitations, we propose \textbf{TKG-Thinker}, a novel agent equipped with autonomous planning and adaptive retrieval capabilities for reasoning over TKGs. Specifically, TKG-Thinker performs in-depth temporal reasoning through dynamic multi-turn interactions with TKGs via a dual-training strategy. We first apply Supervised Fine-Tuning (SFT) with chain-of thought data to instill core planning capabilities, followed by a Reinforcement Learning (RL) stage that leverages multi-dimensional rewards to refine reasoning policies under intricate temporal constraints. Experimental results on benchmark datasets with three open-source LLMs show that TKG-Thinker achieves state-of-the-art performance and exhibits strong generalization across complex TKGQA settings.
☆ STProtein: predicting spatial protein expression from multi-omics data SP
The integration of spatial multi-omics data from single tissues is crucial for advancing biological research. However, a significant data imbalance impedes progress: while spatial transcriptomics data is relatively abundant, spatial proteomics data remains scarce due to technical limitations and high costs. To overcome this challenge we propose STProtein, a novel framework leveraging graph neural networks with multi-task learning strategy. STProtein is designed to accurately predict unknown spatial protein expression using more accessible spatial multi-omics data, such as spatial transcriptomics. We believe that STProtein can effectively addresses the scarcity of spatial proteomics, accelerating the integration of spatial multi-omics and potentially catalyzing transformative breakthroughs in life sciences. This tool enables scientists to accelerate discovery by identifying complex and previously hidden spatial patterns of proteins within tissues, uncovering novel relationships between different marker genes, and exploring the biological "Dark Matter".
comment: STProtein: predicting spatial protein expression from multi-omics data is accepted SPARTA_AAAI2026 Oral GitHub: https://github.com/zhaorui-bi/STProtein
☆ NEX: Neuron Explore-Exploit Scoring for Label-Free Chain-of-Thought Selection and Model Ranking
Large language models increasingly spend inference compute sampling multiple chain-of-thought traces or searching over merged checkpoints. This shifts the bottleneck from generation to selection, often without supervision on the target distribution. We show entropy-based exploration proxies follow an inverted-U with accuracy, suggesting extra exploration can become redundant and induce overthinking. We propose NEX, a white-box label-free unsupervised scoring framework that views reasoning as alternating E-phase (exploration) and X-phase (exploitation). NEX detects E-phase as spikes in newly activated MLP neurons per token from sparse activation caches, then uses a sticky two-state HMM to infer E-X phases and credits E-introduced neurons by whether they are reused in the following X span. These signals yield interpretable neuron weights and a single Good-Mass Fraction score to rank candidate responses and merged variants without task answers. Across reasoning benchmarks and Qwen3 merge families, NEX computed on a small unlabeled activation set predicts downstream accuracy and identifies better variants; we further validate the E-X signal with human annotations and provide causal evidence via "Effective-vs-Redundant" neuron transfer.
comment: 21 pages, 9 figures, 5 tables
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Allocentric Perceiver: Disentangling Allocentric Reasoning from Egocentric Visual Priors via Frame Instantiation
With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ Automated Customization of LLMs for Enterprise Code Repositories Using Semantic Scopes
Code completion (CC) is a task frequently used by developers when working in collaboration with LLM-based programming assistants. Despite the increased performance of LLMs on public benchmarks, out of the box LLMs still have a hard time generating code that aligns with a private code repository not previously seen by the model's training data. Customizing code LLMs to a private repository provides a way to improve the model performance. In this paper we present our approach for automated LLM customization based on semantic scopes in the code. We evaluate LLMs on real industry cases with two private enterprise code repositories with two customization strategies: Retrieval-Augmented Generation (RAG) and supervised Fine-Tuning (FT). Our mechanism for ingesting the repository's data and formulating the training data pairs with semantic scopes helps models to learn the underlying patterns specific to the repository, providing more precise code to developers and helping to boost their productivity. The code completions of moderately sized customized models can be significantly better than those of uncustomized models of much larger capacity. We also include an analysis of customization on two public benchmarks and present opportunities for future work.
☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
☆ RL-VLA$^3$: Reinforcement Learning VLA Accelerating via Full Asynchronism
In recent years, Vision-Language-Action (VLA) models have emerged as a crucial pathway towards general embodied intelligence, yet their training efficiency has become a key bottleneck. Although existing reinforcement learning (RL)-based training frameworks like RLinf can enhance model generalization, they still rely on synchronous execution, leading to severe resource underutilization and throughput limitations during environment interaction, policy generation (rollout), and model update phases (actor). To overcome this challenge, this paper, for the first time, proposes and implements a fully-asynchronous policy training framework encompassing the entire pipeline from environment interaction, rollout generation, to actor policy updates. Systematically drawing inspiration from asynchronous optimization ideas in large model RL, our framework designs a multi-level decoupled architecture. This includes asynchronous parallelization of environment interaction and trajectory collection, streaming execution for policy generation, and decoupled scheduling for training updates. We validated the effectiveness of our method across diverse VLA models and environments. On the LIBERO benchmark, the framework achieves throughput improvements of up to 59.25\% compared to existing synchronous strategies. When deeply optimizing separation strategies, throughput can be increased by as much as 126.67\%. We verified the effectiveness of each asynchronous component via ablation studies. Scaling law validation across 8 to 256 GPUs demonstrates our method's excellent scalability under most conditions.
☆ RocqSmith: Can Automatic Optimization Forge Better Proof Agents?
This work studies the applicability of automatic AI agent optimization methods to real-world agents in formal verification settings, focusing on automated theorem proving in Rocq as a representative and challenging domain. We evaluate how different automatic agent optimizers perform when applied to the task of optimizing a Rocq proof-generation agent, and assess whether parts of the fine-grained tuning of agentic systems, such as prompt design, contextual knowledge, and control strategies, can be automated. Our results show that while several optimizers yield measurable improvements, simple few-shot bootstrapping is the most consistently effective; however, none of the studied methods matches the performance of a carefully engineered state-of-the-art proof agent.
☆ TimelyFreeze: Adaptive Parameter Freezing Mechanism for Pipeline Parallelism
Pipeline parallelism enables training models that exceed single-device memory, but practical throughput remains limited by pipeline bubbles. Although parameter freezing can improve training throughput by adaptively skipping backward computation, existing methods often over-freeze parameters, resulting in unnecessary accuracy degradation. To address this issue, we propose TimelyFreeze, which models the pipeline schedule as a directed acyclic graph and solves a linear program to compute optimal freeze ratios that minimize batch execution time under accuracy constraints. Experiments show that TimelyFreeze achieves up to 40% training throughput improvement on LLaMA-8B with comparable accuracy. Overall, it enables faster large-scale model training without compromising convergence and generalizes across diverse pipeline-parallel settings.
☆ LeakBoost: Perceptual-Loss-Based Membership Inference Attack
Membership inference attacks (MIAs) aim to determine whether a sample was part of a model's training set, posing serious privacy risks for modern machine-learning systems. Existing MIAs primarily rely on static indicators, such as loss or confidence, and do not fully leverage the dynamic behavior of models when actively probed. We propose LeakBoost, a perceptual-loss-based interrogation framework that actively probes a model's internal representations to expose hidden membership signals. Given a candidate input, LeakBoost synthesizes an interrogation image by optimizing a perceptual (activation-space) objective, amplifying representational differences between members and non-members. This image is then analyzed by an off-the-shelf membership detector, without modifying the detector itself. When combined with existing membership inference methods, LeakBoost achieves substantial improvements at low false-positive rates across multiple image classification datasets and diverse neural network architectures. In particular, it raises AUC from near-chance levels (0.53-0.62) to 0.81-0.88, and increases TPR at 1 percent FPR by over an order of magnitude compared to strong baseline attacks. A detailed sensitivity analysis reveals that deeper layers and short, low-learning-rate optimization produce the strongest leakage, and that improvements concentrate in gradient-based detectors. LeakBoost thus offers a modular and computationally efficient way to assess privacy risks in white-box settings, advancing the study of dynamic membership inference.
☆ Learning to Inject: Automated Prompt Injection via Reinforcement Learning
Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Evaluating the impact of word embeddings on similarity scoring in practical information retrieval
Search behaviour is characterised using synonymy and polysemy as users often want to search information based on meaning. Semantic representation strategies represent a move towards richer associative connections that can adequately capture this complex usage of language. Vector Space Modelling (VSM) and neural word embeddings play a crucial role in modern machine learning and Natural Language Processing (NLP) pipelines. Embeddings use distributional semantics to represent words, sentences, paragraphs or entire documents as vectors in high dimensional spaces. This can be leveraged by Information Retrieval (IR) systems to exploit the semantic relatedness between queries and answers. This paper evaluates an alternative approach to measuring query statement similarity that moves away from the common similarity measure of centroids of neural word embeddings. Motivated by the Word Movers Distance (WMD) model, similarity is evaluated using the distance between individual words of queries and statements. Results from ranked query and response statements demonstrate significant gains in accuracy using the combined approach of similarity ranking through WMD with the word embedding techniques. The top performing WMD + GloVe combination outperforms all other state-of-the-art retrieval models including Doc2Vec and the baseline LSA model. Along with the significant gains in performance of similarity ranking through WMD, we conclude that the use of pre-trained word embeddings, trained on vast amounts of data, result in domain agnostic language processing solutions that are portable to diverse business use-cases.
☆ CompactRAG: Reducing LLM Calls and Token Overhead in Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
☆ Mitigating Hallucination in Financial Retrieval-Augmented Generation via Fine-Grained Knowledge Verification ICASSP 2026
In financial Retrieval-Augmented Generation (RAG) systems, models frequently rely on retrieved documents to generate accurate responses due to the time-sensitive nature of the financial domain. While retrieved documents help address knowledge gaps, model-generated responses still suffer from hallucinations that contradict the retrieved information. To mitigate this inconsistency, we propose a Reinforcement Learning framework enhanced with Fine-grained Knowledge Verification (RLFKV). Our method decomposes financial responses into atomic knowledge units and assesses the correctness of each unit to compute the fine-grained faithful reward. This reward offers more precise optimization signals, thereby improving alignment with the retrieved documents. Additionally, to prevent reward hacking (e.g., overly concise replies), we incorporate an informativeness reward that encourages the policy model to retain at least as many knowledge units as the base model. Experiments conducted on the public Financial Data Description (FDD) task and our newly proposed FDD-ANT dataset demonstrate consistent improvements, confirming the effectiveness of our approach.
comment: accepted by ICASSP 2026
☆ Anchored Policy Optimization: Mitigating Exploration Collapse Via Support-Constrained Rectification
Reinforcement Learning with Verifiable Rewards (RLVR) is increasingly viewed as a tree pruning mechanism. However, we identify a systemic pathology termed Recursive Space Contraction (RSC), an irreversible collapse driven by the combined dynamics of positive sharpening and negative squeezing, where the sampling probability of valid alternatives vanishes. While Kullback-Leibler (KL) regularization aims to mitigate this, it imposes a rigid Shape Matching constraint that forces the policy to mimic the reference model's full density, creating a gradient conflict with the sharpening required for correctness. We propose Anchored Policy Optimization (APO), shifting the paradigm from global Shape Matching to Support Coverage. By defining a Safe Manifold based on the reference model's high-confidence support, APO permits aggressive sharpening for efficiency while selectively invoking a restorative force during error correction to prevent collapse. We theoretically derive that APO serves as a gradient-aligned mechanism to maximize support coverage, enabling an Elastic Recovery that re-inflates valid branches. Empirical evaluations on mathematical benchmarks demonstrate that APO breaks the accuracy-diversity trade-off, significantly improving Pass@1 while restoring the Pass@K diversity typically lost by standard policy gradient methods.
comment: 17 pages, 6 figures
☆ Towards Green AI: Decoding the Energy of LLM Inference in Software Development
Context: AI-assisted tools are increasingly integrated into software development workflows, but their reliance on large language models (LLMs) introduces substantial computational and energy costs. Understanding and reducing the energy footprint of LLM inference is therefore essential for sustainable software development. Objective: In this study, we conduct a phase-level analysis of LLM inference energy consumption, distinguishing between the (1) prefill, where the model processes the input and builds internal representations, and (2) decoding, where output tokens are generated using the stored state. Method: We investigate six 6B-7B and four 3B-4B transformer-based models, evaluating them on code-centric benchmarks HumanEval for code generation and LongBench for code understanding. Results: Our findings show that, within both parameter groups, models exhibit distinct energy patterns across phases. Furthermore, we observed that increases in prefill cost amplify the energy cost per token during decoding, with amplifications ranging from 1.3% to 51.8% depending on the model. Lastly, three out of ten models demonstrate babbling behavior, adding excessive content to the output that unnecessarily inflates energy consumption. We implemented babbling suppression for code generation, achieving energy savings ranging from 44% to 89% without affecting generation accuracy. Conclusion: These findings show that prefill costs influence decoding, which dominates energy consumption, and that babbling suppression can yield up to 89% energy savings. Reducing inference energy therefore requires both mitigating babbling behavior and limiting impact of prefill on decoding.
☆ OmniMoE: An Efficient MoE by Orchestrating Atomic Experts at Scale
Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
☆ Nonlinearity as Rank: Generative Low-Rank Adapter with Radial Basis Functions
Low-rank adaptation (LoRA) approximates the update of a pretrained weight matrix using the product of two low-rank matrices. However, standard LoRA follows an explicit-rank paradigm, where increasing model capacity requires adding more rows or columns (i.e., basis vectors) to the low-rank matrices, leading to substantial parameter growth. In this paper, we find that these basis vectors exhibit significant parameter redundancy and can be compactly represented by lightweight nonlinear functions. Therefore, we propose Generative Low-Rank Adapter (GenLoRA), which replaces explicit basis vector storage with nonlinear basis vector generation. Specifically, GenLoRA maintains a latent vector for each low-rank matrix and employs a set of lightweight radial basis functions (RBFs) to synthesize the basis vectors. Each RBF requires far fewer parameters than an explicit basis vector, enabling higher parameter efficiency in GenLoRA. Extensive experiments across multiple datasets and architectures show that GenLoRA attains higher effective LoRA ranks under smaller parameter budgets, resulting in superior fine-tuning performance. The code is available at https://anonymous.4open.science/r/GenLoRA-1519.
☆ Poster: Camera Tampering Detection for Outdoor IoT Systems
Recently, the use of smart cameras in outdoor settings has grown to improve surveillance and security. Nonetheless, these systems are susceptible to tampering, whether from deliberate vandalism or harsh environmental conditions, which can undermine their monitoring effectiveness. In this context, detecting camera tampering is more challenging when a camera is capturing still images rather than video as there is no sequence of continuous frames over time. In this study, we propose two approaches for detecting tampered images: a rule-based method and a deep-learning-based method. The aim is to evaluate how each method performs in terms of accuracy, computational demands, and the data required for training when applied to real-world scenarios. Our results show that the deep-learning model provides higher accuracy, while the rule-based method is more appropriate for scenarios where resources are limited and a prolonged calibration phase is impractical. We also offer publicly available datasets with normal, blurred, and rotated images to support the development and evaluation of camera tampering detection methods, addressing the need for such resources.
comment: Proceedings of the 2024 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS (EWSN)
☆ Determining Energy Efficiency Sweet Spots in Production LLM Inference
Large Language Models (LLMs) inference is central in modern AI applications, making it critical to understand their energy footprint. Existing approaches typically estimate energy consumption through simple linear functions of input and output sequence lengths, yet our observations reveal clear Energy Efficiency regimes: peak efficiency occurs with short-to-moderate inputs and medium-length outputs, while efficiency drops sharply for long inputs or very short outputs, indicating a non-linear dependency. In this work, we propose an analytical model derived from the computational and memory-access complexity of the Transformer architecture, capable of accurately characterizing the efficiency curve as a function of input and output lengths. To assess its accuracy, we evaluate energy consumption using TensorRT-LLM on NVIDIA H100 GPUs across a diverse set of LLMs ranging from 1B to 9B parameters, including OPT, LLaMA, Gemma, Falcon, Qwen2, and Granite, tested over input and output lengths from 64 to 4096 tokens, achieving a mean MAPE of 1.79%. Our results show that aligning sequence lengths with these efficiency "Sweet Spots" can substantially reduce energy usage, supporting informed truncation, summarization, and adaptive generation strategies in production systems.
comment: To appear at ICPE 2026 (International Conference on Performance Engineering)
☆ Mining Generalizable Activation Functions
The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
☆ HyperPotter: Spell the Charm of High-Order Interactions in Audio Deepfake Detection
Advances in AIGC technologies have enabled the synthesis of highly realistic audio deepfakes capable of deceiving human auditory perception. Although numerous audio deepfake detection (ADD) methods have been developed, most rely on local temporal/spectral features or pairwise relations, overlooking high-order interactions (HOIs). HOIs capture discriminative patterns that emerge from multiple feature components beyond their individual contributions. We propose HyperPotter, a hypergraph-based framework that explicitly models these synergistic HOIs through clustering-based hyperedges with class-aware prototype initialization. Extensive experiments demonstrate that HyperPotter surpasses its baseline by an average relative gain of 22.15% across 11 datasets and outperforms state-of-the-art methods by 13.96% on 4 challenging cross-domain datasets, demonstrating superior generalization to diverse attacks and speakers.
comment: 20 pages, 8 figures
☆ Stable but Wrong: When More Data Degrades Scientific Conclusions
Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
☆ Graph-based Agent Memory: Taxonomy, Techniques, and Applications
Memory emerges as the core module in the Large Language Model (LLM)-based agents for long-horizon complex tasks (e.g., multi-turn dialogue, game playing, scientific discovery), where memory can enable knowledge accumulation, iterative reasoning and self-evolution. Among diverse paradigms, graph stands out as a powerful structure for agent memory due to the intrinsic capabilities to model relational dependencies, organize hierarchical information, and support efficient retrieval. This survey presents a comprehensive review of agent memory from the graph-based perspective. First, we introduce a taxonomy of agent memory, including short-term vs. long-term memory, knowledge vs. experience memory, non-structural vs. structural memory, with an implementation view of graph-based memory. Second, according to the life cycle of agent memory, we systematically analyze the key techniques in graph-based agent memory, covering memory extraction for transforming the data into the contents, storage for organizing the data efficiently, retrieval for retrieving the relevant contents from memory to support reasoning, and evolution for updating the contents in the memory. Third, we summarize the open-sourced libraries and benchmarks that support the development and evaluation of self-evolving agent memory. We also explore diverse application scenarios. Finally, we identify critical challenges and future research directions. This survey aims to offer actionable insights to advance the development of more efficient and reliable graph-based agent memory systems. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphMemory.
☆ Probabilistic Multi-Regional Solar Power Forecasting with Any-Quantile Recurrent Neural Networks
The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
☆ Alignment Verifiability in Large Language Models: Normative Indistinguishability under Behavioral Evaluation
Behavioral evaluation is the dominant paradigm for assessing alignment in large language models (LLMs). In practice, alignment is inferred from performance under finite evaluation protocols - benchmarks, red-teaming suites, or automated pipelines - and observed compliance is often treated as evidence of underlying alignment. This inference step, from behavioral evidence to claims about latent alignment properties, is typically implicit and rarely analyzed as an inference problem in its own right. We study this problem formally. We frame alignment evaluation as an identifiability question under partial observability and allow agent behavior to depend on information correlated with the evaluation regime. Within this setting, we introduce the Alignment Verifiability Problem and the notion of Normative Indistinguishability, capturing when distinct latent alignment hypotheses induce identical distributions over all evaluator-accessible signals. Our main result is a negative but sharply delimited identifiability theorem. Under finite behavioral evaluation and evaluation-aware agents, observed behavioral compliance does not uniquely identify latent alignment. That is, even idealized behavioral evaluation cannot, in general, certify alignment as a latent property. We further show that behavioral alignment tests should be interpreted as estimators of indistinguishability classes rather than verifiers of alignment. Passing increasingly stringent tests may reduce the space of compatible hypotheses, but cannot collapse it to a singleton under the stated conditions. This reframes alignment benchmarks as providing upper bounds on observable compliance within a regime, rather than guarantees of underlying alignment.
comment: 10 pages. Theoretical analysis of behavioral alignment evaluation
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
comment: 15 pages, 6 figures, 6 tables. Code available at https://github.com/bennycheung/GameGrammarCLI
☆ AI chatbots versus human healthcare professionals: a systematic review and meta-analysis of empathy in patient care
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
comment: Open Access Invited Review. Systematic review and meta analysis of 15 studies 2023-2024. Published 20 October 2025
☆ Reactive Knowledge Representation and Asynchronous Reasoning
Exact inference in complex probabilistic models often incurs prohibitive computational costs. This challenge is particularly acute for autonomous agents in dynamic environments that require frequent, real-time belief updates. Existing methods are often inefficient for ongoing reasoning, as they re-evaluate the entire model upon any change, failing to exploit that real-world information streams have heterogeneous update rates. To address this, we approach the problem from a reactive, asynchronous, probabilistic reasoning perspective. We first introduce Resin (Reactive Signal Inference), a probabilistic programming language that merges probabilistic logic with reactive programming. Furthermore, to provide efficient and exact semantics for Resin, we propose Reactive Circuits (RCs). Formulated as a meta-structure over Algebraic Circuits and asynchronous data streams, RCs are time-dynamic Directed Acyclic Graphs that autonomously adapt themselves based on the volatility of input signals. In high-fidelity drone swarm simulations, our approach achieves several orders of magnitude of speedup over frequency-agnostic inference. We demonstrate that RCs' structural adaptations successfully capture environmental dynamics, significantly reducing latency and facilitating reactive real-time reasoning. By partitioning computations based on the estimated Frequency of Change in the asynchronous inputs, large inference tasks can be decomposed into individually memoized sub-problems. This ensures that only the specific components of a model affected by new information are re-evaluated, drastically reducing redundant computation in streaming contexts.
☆ Mode-Dependent Rectification for Stable PPO Training
Mode-dependent architectural components (layers that behave differently during training and evaluation, such as Batch Normalization or dropout) are commonly used in visual reinforcement learning but can destabilize on-policy optimization. We show that in Proximal Policy Optimization (PPO), discrepancies between training and evaluation behavior induced by Batch Normalization lead to policy mismatch, distributional drift, and reward collapse. We propose Mode-Dependent Rectification (MDR), a lightweight dual-phase training procedure that stabilizes PPO under mode-dependent layers without architectural changes. Experiments across procedurally generated games and real-world patch-localization tasks demonstrate that MDR consistently improves stability and performance, and extends naturally to other mode-dependent layers.
☆ Path-Guided Flow Matching for Dataset Distillation
Dataset distillation compresses large datasets into compact synthetic sets with comparable performance in training models. Despite recent progress on diffusion-based distillation, this type of method typically depends on heuristic guidance or prototype assignment, which comes with time-consuming sampling and trajectory instability and thus hurts downstream generalization especially under strong control or low IPC. We propose \emph{Path-Guided Flow Matching (PGFM)}, the first flow matching-based framework for generative distillation, which enables fast deterministic synthesis by solving an ODE in a few steps. PGFM conducts flow matching in the latent space of a frozen VAE to learn class-conditional transport from Gaussian noise to data distribution. Particularly, we develop a continuous path-to-prototype guidance algorithm for ODE-consistent path control, which allows trajectories to reliably land on assigned prototypes while preserving diversity and efficiency. Extensive experiments across high-resolution benchmarks demonstrate that PGFM matches or surpasses prior diffusion-based distillation approaches with fewer steps of sampling while delivering competitive performance with remarkably improved efficiency, e.g., 7.6$\times$ more efficient than the diffusion-based counterparts with 78\% mode coverage.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ CAViT -- Channel-Aware Vision Transformer for Dynamic Feature Fusion CVPR 25
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
comment: Presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 25) in the 4th Workshop on Transformers for Visions - T4V (https://sites.google.com/view/t4v-cvpr25/) Accepted for Publication at 33rd International Conference on Artificial Intelligence and Cognitive Science (AICS 2025), where it was shortlisted for Best Paper Award. (https://aicsconf.org/?page_id=278)
☆ Emulating Aggregate Human Choice Behavior and Biases with GPT Conversational Agents
Cognitive biases often shape human decisions. While large language models (LLMs) have been shown to reproduce well-known biases, a more critical question is whether LLMs can predict biases at the individual level and emulate the dynamics of biased human behavior when contextual factors, such as cognitive load, interact with these biases. We adapted three well-established decision scenarios into a conversational setting and conducted a human experiment (N=1100). Participants engaged with a chatbot that facilitates decision-making through simple or complex dialogues. Results revealed robust biases. To evaluate how LLMs emulate human decision-making under similar interactive conditions, we used participant demographics and dialogue transcripts to simulate these conditions with LLMs based on GPT-4 and GPT-5. The LLMs reproduced human biases with precision. We found notable differences between models in how they aligned human behavior. This has important implications for designing and evaluating adaptive, bias-aware LLM-based AI systems in interactive contexts.
comment: Accepted at CHI'26. arXiv admin note: substantial text overlap with arXiv:2601.11049
☆ TangramSR: Can Vision-Language Models Reason in Continuous Geometric Space?
Humans excel at spatial reasoning tasks like Tangram puzzle assembly through cognitive processes involving mental rotation, iterative refinement, and visual feedback. Inspired by how humans solve Tangram puzzles through trial-and-error, observation, and correction, we design a framework that models these human cognitive mechanisms. However, comprehensive experiments across five representative Vision-Language Models (VLMs) reveal systematic failures in continuous geometric reasoning: average IoU of only 0.41 on single-piece tasks, dropping to 0.23 on two-piece composition, far below human performance where children can complete Tangram tasks successfully. This paper addresses a fundamental challenge in self-improving AI: can models iteratively refine their predictions at test time without parameter updates? We introduce a test-time self-refinement framework that combines in-context learning (ICL) with reward-guided feedback loops, inspired by human cognitive processes. Our training-free verifier-refiner agent applies recursive refinement loops that iteratively self-refine predictions based on geometric consistency feedback, achieving IoU improvements from 0.63 to 0.932 on medium-triangle cases without any model retraining. This demonstrates that incorporating human-inspired iterative refinement mechanisms through ICL and reward loops can substantially enhance geometric reasoning in VLMs, moving self-improving AI from promise to practice in continuous spatial domains. Our work is available at this anonymous link https://anonymous.4open.science/r/TangramVLM-F582/.
comment: 13 pages, 4 figures
☆ Unveiling Implicit Advantage Symmetry: Why GRPO Struggles with Exploration and Difficulty Adaptation
Reinforcement Learning with Verifiable Rewards (RLVR), particularly GRPO, has become the standard for eliciting LLM reasoning. However, its efficiency in exploration and difficulty adaptation remains an open challenge. In this work, we argue that these bottlenecks stem from an implicit advantage symmetry inherent in Group Relative Advantage Estimation (GRAE). This symmetry induces two critical limitations: (i) at the group level, strict symmetry in weights between correct and incorrect trajectories leaves unsampled action logits unchanged, thereby hindering exploration of novel correct solution. (ii) at the sample level, the algorithm implicitly prioritizes medium-difficulty samples, remaining agnostic to the non-stationary demands of difficulty focus. Through controlled experiments, we reveal that this symmetric property is sub-optimal, yielding two pivotal insights: (i) asymmetrically suppressing the advantages of correct trajectories encourages essential exploration. (ii) learning efficiency is maximized by a curriculum-like transition-prioritizing simpler samples initially before gradually shifting to complex ones. Motivated by these findings, we propose Asymmetric GRAE (A-GRAE), which dynamically modulates exploration incentives and sample-difficulty focus. Experiments across seven benchmarks demonstrate that A-GRAE consistently improves GRPO and its variants across both LLMs and MLLMs.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Reasoning-guided Collaborative Filtering with Language Models for Explainable Recommendation
Large Language Models (LLMs) exhibit potential for explainable recommendation systems but overlook collaborative signals, while prevailing methods treat recommendation and explanation as separate tasks, resulting in a memory footprint. We present RGCF-XRec, a hybrid framework that introduces reasoning-guided collaborative filtering (CF) knowledge into a language model to deliver explainable sequential recommendations in a single step. Theoretical grounding and empirical findings reveal that RGCF-XRec offers three key merits over leading CF-aware LLM-based methods: (1) reasoning-guided augmentation of CF knowledge through contextual prompting to discover latent preferences and interpretable reasoning paths; (2) an efficient scoring mechanism based on four dimensions: coherence, completeness, relevance, and consistency to mitigate noisy CF reasoning traces and retain high-quality explanations; (3) a unified representation learning network that encodes collaborative and semantic signals, enabling a structured prompt to condition the LLM for explainable sequential recommendation. RGCF-XRec demonstrates consistent improvements across Amazon datasets, Sports, Toys, and Beauty, comprising 642,503 user-item interactions. It improves HR@10 by 7.38\% in Sports and 4.59\% in Toys, along with ROUGE-L by 8.02\% and 3.49\%, respectively. It reduces the cold warm performance gap, achieving overall gains of 14.5\% in cold-start and 11.9\% in warm start scenarios, and enhances zero-shot HR@5 by 18.54\% in Beauty and 23.16\% in Toys, highlighting effective generalization and robustness. Moreover, RGCF-XRec achieves training efficiency with a lightweight LLaMA 3.2-3B backbone, ensuring scalability for real-world applications.
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ Conditional Diffusion Guidance under Hard Constraint: A Stochastic Analysis Approach
We study conditional generation in diffusion models under hard constraints, where generated samples must satisfy prescribed events with probability one. Such constraints arise naturally in safety-critical applications and in rare-event simulation, where soft or reward-based guidance methods offer no guarantee of constraint satisfaction. Building on a probabilistic interpretation of diffusion models, we develop a principled conditional diffusion guidance framework based on Doob's h-transform, martingale representation and quadratic variation process. Specifically, the resulting guided dynamics augment a pretrained diffusion with an explicit drift correction involving the logarithmic gradient of a conditioning function, without modifying the pretrained score network. Leveraging martingale and quadratic-variation identities, we propose two novel off-policy learning algorithms based on a martingale loss and a martingale-covariation loss to estimate h and its gradient using only trajectories from the pretrained model. We provide non-asymptotic guarantees for the resulting conditional sampler in both total variation and Wasserstein distances, explicitly characterizing the impact of score approximation and guidance estimation errors. Numerical experiments demonstrate the effectiveness of the proposed methods in enforcing hard constraints and generating rare-event samples.
☆ Split Personality Training: Revealing Latent Knowledge Through Alternate Personalities
Detecting misalignment in large language models is challenging because models may learn to conceal misbehavior during training. Standard auditing techniques fall short: black-box methods often cannot distinguish misaligned outputs from benign ones, and mechanistic interpretability does not scale with model capabilities. We introduce Split Personality Training (SPT), which fine-tunes a second ``honest persona'' into LoRA parameters that remain inactive during normal operation. After the main model responds, we activate the LoRA adapter and insert a trigger string, enabling the honest persona to review the response while accessing the main model's latent states. We test our method on the Anthropic Auditing Game Model Organism, a benchmark where Llama-3.3-70B is trained to exploit reward hacks while concealing this behavior. SPT achieves 96% overall accuracy, whereas Anthropic reports near 0% accuracy. The honest persona reveals latent knowledge inaccessible to external observers, such as the fictional biases the compromised model was trained on.
☆ AI Agent Systems for Supply Chains: Structured Decision Prompts and Memory Retrieval AAMAS 2026
This study investigates large language model (LLM) -based multi-agent systems (MASs) as a promising approach to inventory management, which is a key component of supply chain management. Although these systems have gained considerable attention for their potential to address the challenges associated with typical inventory management methods, key uncertainties regarding their effectiveness persist. Specifically, it is unclear whether LLM-based MASs can consistently derive optimal ordering policies and adapt to diverse supply chain scenarios. To address these questions, we examine an LLM-based MAS with a fixed-ordering strategy prompt that encodes the stepwise processes of the problem setting and a safe-stock strategy commonly used in inventory management. Our empirical results demonstrate that, even without detailed prompt adjustments, an LLM-based MAS can determine optimal ordering decisions in a restricted scenario. To enhance adaptability, we propose a novel agent called AIM-RM, which leverages similar historical experiences through similarity matching. Our results show that AIM-RM outperforms benchmark methods across various supply chain scenarios, highlighting its robustness and adaptability.
comment: A full version of the extended abstract accepted by the 25th International Conference on Autonomous Agents and Multiagent Systems(AAMAS 2026)
☆ Capture the Flags: Family-Based Evaluation of Agentic LLMs via Semantics-Preserving Transformations
Agentic large language models (LLMs) are increasingly evaluated on cybersecurity tasks using capture-the-flag (CTF) benchmarks. However, existing pointwise benchmarks have limited ability to shed light on the robustness and generalisation abilities of agents across alternative versions of the source code. We introduce CTF challenge families, whereby a single CTF is used as the basis for generating a family of semantically-equivalent challenges via semantics-preserving program transformations. This enables controlled evaluation of agent robustness to source code transformations while keeping the underlying exploit strategy fixed. We introduce a new tool, Evolve-CTF, that generates CTF families from Python challenges using a range of transformations. Using Evolve-CTF to derive families from Cybench and Intercode challenges, we evaluate 13 agentic LLM configurations with tool access. We find that models are remarkably robust to intrusive renaming and code insertion-based transformations, but that composed transformations and deeper obfuscation affect performance by requiring more sophisticated use of tools. We also find that enabling explicit reasoning has little effect on solution success rates across challenge families. Our work contributes a valuable technique and tool for future LLM evaluations, and a large dataset characterising the capabilities of current state-of-the-art models in this domain.
☆ A Unified Multimodal Framework for Dataset Construction and Model-Based Diagnosis of Ameloblastoma
Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
☆ DECO: Decoupled Multimodal Diffusion Transformer for Bimanual Dexterous Manipulation with a Plugin Tactile Adapter
Overview of the Proposed DECO Framework.} DECO is a DiT-based policy that decouples multimodal conditioning. Image and action tokens interact via joint self attention, while proprioceptive states and optional conditions are injected through adaptive layer normalization. Tactile signals are injected via cross attention, while a lightweight LoRA-based adapter is used to efficiently fine-tune the pretrained policy. DECO is also accompanied by DECO-50, a bimanual dexterous manipulation dataset with tactile sensing, consisting of 4 scenarios and 28 sub-tasks, covering more than 50 hours of data, approximately 5 million frames, and 8,000 successful trajectories.
comment: 17 pages, 8 figures
☆ SDFP: Speculative Decoding with FIT-Pruned Models for Training-Free and Plug-and-Play LLM Acceleration
Large language models (LLMs) underpin interactive multimedia applications such as captioning, retrieval, recommendation, and creative content generation, yet their autoregressive decoding incurs substantial latency. Speculative decoding reduces latency using a lightweight draft model, but deployment is often limited by the cost and complexity of acquiring, tuning, and maintaining an effective draft model. Recent approaches usually require auxiliary training or specialization, and even training-free methods incur costly search or optimization. We propose SDFP, a fully training-free and plug-and-play framework that builds the draft model via Fisher Information Trace (FIT)-based layer pruning of a given LLM. Using layer sensitivity as a proxy for output perturbation, SDFP removes low-impact layers to obtain a compact draft while preserving compatibility with the original model for standard speculative verification. SDFP needs no additional training, hyperparameter tuning, or separately maintained drafts, enabling rapid, deployment-friendly draft construction. Across benchmarks, SDFP delivers 1.32x-1.5x decoding speedup without altering the target model's output distribution, supporting low-latency multimedia applications.
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Transport and Merge: Cross-Architecture Merging for Large Language Models
Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
☆ A Unified Framework for Rethinking Policy Divergence Measures in GRPO
Reinforcement Learning with Verified Reward (RLVR) has emerged as a critical paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). Most existing RLVR methods, such as GRPO and its variants, ensure stable updates by constraining policy divergence through clipping likelihood ratios. This paper introduces a unified clipping framework that characterizes existing methods via a general notion of policy divergence, encompassing both likelihood ratios and Kullback-Leibler (KL) divergences and extending to alternative measures. The framework provides a principled foundation for systematically analyzing how different policy divergence measures affect exploration and performance. We further identify the KL3 estimator, a variance-reduced Monte Carlo estimator of the KL divergence, as a key policy divergence constraint. We theoretically demonstrate that the KL3-based constraint is mathematically equivalent to an asymmetric ratio-based clipping that reallocates probability mass toward high-confidence actions, promoting stronger exploration while retaining the simplicity of GRPO-style methods. Empirical results on mathematical reasoning benchmarks demonstrate that incorporating the KL3 estimator into GRPO improves both training stability and final performance, highlighting the importance of principled policy divergence constraints in policy optimization.
☆ LinguistAgent: A Reflective Multi-Model Platform for Automated Linguistic Annotation
Data annotation remains a significant bottleneck in the Humanities and Social Sciences, particularly for complex semantic tasks such as metaphor identification. While Large Language Models (LLMs) show promise, a significant gap remains between the theoretical capability of LLMs and their practical utility for researchers. This paper introduces LinguistAgent, an integrated, user-friendly platform that leverages a reflective multi-model architecture to automate linguistic annotation. The system implements a dual-agent workflow, comprising an Annotator and a Reviewer, to simulate a professional peer-review process. LinguistAgent supports comparative experiments across three paradigms: Prompt Engineering (Zero/Few-shot), Retrieval-Augmented Generation, and Fine-tuning. We demonstrate LinguistAgent's efficacy using the task of metaphor identification as an example, providing real-time token-level evaluation (Precision, Recall, and $F_1$ score) against human gold standards. The application and codes are released on https://github.com/Bingru-Li/LinguistAgent.
☆ Sovereign-by-Design A Reference Architecture for AI and Blockchain Enabled Systems
Digital sovereignty has emerged as a central concern for modern software-intensive systems, driven by the dominance of non-sovereign cloud infrastructures, the rapid adoption of Generative AI, and increasingly stringent regulatory requirements. While existing initiatives address governance, compliance, and security in isolation, they provide limited guidance on how sovereignty can be operationalized at the architectural level. In this paper, we argue that sovereignty must be treated as a first-class architectural property rather than a purely regulatory objective. We introduce a Sovereign Reference Architecture that integrates self-sovereign identity, blockchain-based trust and auditability, sovereign data governance, and Generative AI deployed under explicit architectural control. The architecture explicitly captures the dual role of Generative AI as both a source of governance risk and an enabler of compliance, accountability, and continuous assurance when properly constrained. By framing sovereignty as an architectural quality attribute, our work bridges regulatory intent and concrete system design, offering a coherent foundation for building auditable, evolvable, and jurisdiction-aware AI-enabled systems. The proposed reference architecture provides a principled starting point for future research and practice at the intersection of software architecture, Generative AI, and digital sovereignty.
☆ Phi-Former: A Pairwise Hierarchical Approach for Compound-Protein Interactions Prediction
Drug discovery remains time-consuming, labor-intensive, and expensive, often requiring years and substantial investment per drug candidate. Predicting compound-protein interactions (CPIs) is a critical component in this process, enabling the identification of molecular interactions between drug candidates and target proteins. Recent deep learning methods have successfully modeled CPIs at the atomic level, achieving improved efficiency and accuracy over traditional energy-based approaches. However, these models do not always align with chemical realities, as molecular fragments (motifs or functional groups) typically serve as the primary units of biological recognition and binding. In this paper, we propose Phi-former, a pairwise hierarchical interaction representation learning method that addresses this gap by incorporating the biological role of motifs in CPIs. Phi-former represents compounds and proteins hierarchically and employs a pairwise pre-training framework to model interactions systematically across atom-atom, motif-motif, and atom-motif levels, reflecting how biological systems recognize molecular partners. We design intra-level and inter-level learning pipelines that make different interaction levels mutually beneficial. Experimental results demonstrate that Phi-former achieves superior performance on CPI-related tasks. A case study shows that our method accurately identifies specific atoms or motifs activated in CPIs, providing interpretable model explanations. These insights may guide rational drug design and support precision medicine applications.
comment: Accepted to BIBM 2025. 6 pages, 5 figures
☆ LMMRec: LLM-driven Motivation-aware Multimodal Recommendation
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
☆ ALIVE: Awakening LLM Reasoning via Adversarial Learning and Instructive Verbal Evaluation
The quest for expert-level reasoning in Large Language Models (LLMs) has been hampered by a persistent \textit{reward bottleneck}: traditional reinforcement learning (RL) relies on scalar rewards that are \textbf{costly} to scale, \textbf{brittle} across domains, and \textbf{blind} to the underlying logic of a solution. This reliance on external, impoverished signals prevents models from developing a deep, self-contained understanding of reasoning principles. We introduce \textbf{ALIVE} (\emph{Adversarial Learning with Instructive Verbal Evaluation}), a hands-free alignment framework that moves beyond scalar reward optimization toward intrinsic reasoning acquisition. Grounded in the principle of \emph{Cognitive Synergy}, ALIVE unifies problem posing, solving, and judging within a single policy model to internalize the logic of correctness. By coupling adversarial learning with instructive verbal feedback, ALIVE enables models to internalize evaluative criteria directly from raw corpora, effectively transforming external critiques into an endogenous reasoning faculty. Empirical evaluations across mathematical reasoning, code generation, and general logical inference benchmarks demonstrate that ALIVE consistently mitigates reward signal limitations. With identical data and compute, it achieves accuracy gains, markedly improved cross-domain generalization, and higher self-correction rates. These results indicate that the reasoning trinity fosters a self-sustaining trajectory of capability growth, positioning ALIVE as a scalable foundation for general-purpose reasoning alignment without human-in-the-loop supervision.
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Thermodynamic Limits of Physical Intelligence
Modern AI systems achieve remarkable capabilities at the cost of substantial energy consumption. To connect intelligence to physical efficiency, we propose two complementary bits-per-joule metrics under explicit accounting conventions: (1) Thermodynamic Epiplexity per Joule -- bits of structural information about a theoretical environment-instance variable newly encoded in an agent's internal state per unit measured energy within a stated boundary -- and (2) Empowerment per Joule -- the embodied sensorimotor channel capacity (control information) per expected energetic cost over a fixed horizon. These provide two axes of physical intelligence: recognition (model-building) vs.control (action influence). Drawing on stochastic thermodynamics, we show how a Landauer-scale closed-cycle benchmark for epiplexity acquisition follows as a corollary of a standard thermodynamic-learning inequality under explicit subsystem assumptions, and we clarify how Landauer-scaled costs act as closed-cycle benchmarks under explicit reset/reuse and boundary-closure assumptions; conversely, we give a simple decoupling construction showing that without such assumptions -- and without charging for externally prepared low-entropy resources (e.g.fresh memory) crossing the boundary -- information gain and in-boundary dissipation need not be tightly linked. For empirical settings where the latent structure variable is unavailable, we align the operational notion of epiplexity with compute-bounded MDL epiplexity and recommend reporting MDL-epiplexity / compression-gain surrogates as companions. Finally, we propose a unified efficiency framework that reports both metrics together with a minimal checklist of boundary/energy accounting, coarse-graining/noise, horizon/reset, and cost conventions to reduce ambiguity and support consistent bits-per-joule comparisons, and we sketch connections to energy-adjusted scaling analyses.
☆ Ontology-Driven Robotic Specification Synthesis
This paper addresses robotic system engineering for safety- and mission-critical applications by bridging the gap between high-level objectives and formal, executable specifications. The proposed method, Robotic System Task to Model Transformation Methodology (RSTM2) is an ontology-driven, hierarchical approach using stochastic timed Petri nets with resources, enabling Monte Carlo simulations at mission, system, and subsystem levels. A hypothetical case study demonstrates how the RSTM2 method supports architectural trades, resource allocation, and performance analysis under uncertainty. Ontological concepts further enable explainable AI-based assistants, facilitating fully autonomous specification synthesis. The methodology offers particular benefits to complex multi-robot systems, such as the NASA CADRE mission, representing decentralized, resource-aware, and adaptive autonomous systems of the future.
comment: 8 pages, 9 figures, 3 tables, journal
☆ Attention Retention for Continual Learning with Vision Transformers AAAI-2026
Continual learning (CL) empowers AI systems to progressively acquire knowledge from non-stationary data streams. However, catastrophic forgetting remains a critical challenge. In this work, we identify attention drift in Vision Transformers as a primary source of catastrophic forgetting, where the attention to previously learned visual concepts shifts significantly after learning new tasks. Inspired by neuroscientific insights into the selective attention in the human visual system, we propose a novel attention-retaining framework to mitigate forgetting in CL. Our method constrains attention drift by explicitly modifying gradients during backpropagation through a two-step process: 1) extracting attention maps of the previous task using a layer-wise rollout mechanism and generating instance-adaptive binary masks, and 2) when learning a new task, applying these masks to zero out gradients associated with previous attention regions, thereby preventing disruption of learned visual concepts. For compatibility with modern optimizers, the gradient masking process is further enhanced by scaling parameter updates proportionally to maintain their relative magnitudes. Experiments and visualizations demonstrate the effectiveness of our method in mitigating catastrophic forgetting and preserving visual concepts. It achieves state-of-the-art performance and exhibits robust generalizability across diverse CL scenarios.
comment: AAAI-2026 Camera Ready
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis ECAI 2025
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code is in the supplementary materials and will be publicly available.
comment: 17 pages, 7 figures; cvpr2026 submission
☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact formats can consume significantly more tokens at scale due to format-unfamiliar search patterns. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 7 figures, 10 tables, 26 references
☆ Benchmarking Affordance Generalization with BusyBox
Vision-Language-Action (VLA) models have been attracting the attention of researchers and practitioners thanks to their promise of generalization. Although single-task policies still offer competitive performance, VLAs are increasingly able to handle commands and environments unseen in their training set. While generalization in vision and language space is undoubtedly important for robust versatile behaviors, a key meta-skill VLAs need to possess is affordance generalization -- the ability to manipulate new objects with familiar physical features. In this work, we present BusyBox, a physical benchmark for systematic semi-automatic evaluation of VLAs' affordance generalization. BusyBox consists of 6 modules with switches, sliders, wires, buttons, a display, and a dial. The modules can be swapped and rotated to create a multitude of BusyBox variations with different visual appearances but the same set of affordances. We empirically demonstrate that generalization across BusyBox variants is highly challenging even for strong open-weights VLAs such as $π_{0.5}$ and GR00T-N1.6. To encourage the research community to evaluate their own VLAs on BusyBox and to propose new affordance generalization experiments, we have designed BusyBox to be easy to build in most robotics labs. We release the full set of CAD files for 3D-printing its parts as well as a bill of materials for (optionally) assembling its electronics. We also publish a dataset of language-annotated demonstrations that we collected using the common bimanual Mobile Aloha robot on the canonical BusyBox configuration. All of the released materials are available at https://microsoft.github.io/BusyBox.
☆ Day-Ahead Electricity Price Forecasting for Volatile Markets Using Foundation Models with Regularization Strategy AAAI'26
Electricity price forecasting (EPF) is essential for energy markets stakeholders (e.g. grid operators, energy traders, policymakers) but remains challenging due to the inherent volatility and nonlinearity of price signals. Traditional statistical and deep learning (DL) models often struggle to capture complex temporal dependencies and integrate heterogeneous data effectively. While time series foundation models (TSFMs) have shown strong performance in general time series forecasting tasks, such as traffic forecasting and weather forecasting. However, their effectiveness in day-ahead EPF, particularly in volatile markets, remains underexplored. This paper presents a spike regularization strategy and evaluates a wide range of TSFMs, including Tiny Time Mixers (TTMs), MOIRAI, MOMENT, and TimesFM, against traditional statistical and DL models such as Autoregressive Integrated Moving Average (ARIMA), Long-short Term Memory (LSTM), and Convolutional Neural Network - LSTM (CNN-LSTM) using half-hourly wholesale market data with volatile trends in Singapore. Exogenous factors (e.g. weather and calendar variables) are also incorporated into models where applicable. Results demonstrate that TSFMs consistently outperform traditional approaches, achieving up to 37.4% improvement in MAPE across various evaluation settings. The findings offer practical guidance for improving forecast accuracy and decision-making in volatile electricity markets.
comment: Accepted to AI4TS Workshop @ AAAI'26 (Oral and Poster), see https://ai4ts.github.io/aaai2026
☆ M$^2$-Miner: Multi-Agent Enhanced MCTS for Mobile GUI Agent Data Mining ICLR 2026
Graphical User Interface (GUI) agent is pivotal to advancing intelligent human-computer interaction paradigms. Constructing powerful GUI agents necessitates the large-scale annotation of high-quality user-behavior trajectory data (i.e., intent-trajectory pairs) for training. However, manual annotation methods and current GUI agent data mining approaches typically face three critical challenges: high construction cost, poor data quality, and low data richness. To address these issues, we propose M$^2$-Miner, the first low-cost and automated mobile GUI agent data-mining framework based on Monte Carlo Tree Search (MCTS). For better data mining efficiency and quality, we present a collaborative multi-agent framework, comprising InferAgent, OrchestraAgent, and JudgeAgent for guidance, acceleration, and evaluation. To further enhance the efficiency of mining and enrich intent diversity, we design an intent recycling strategy to extract extra valuable interaction trajectories. Additionally, a progressive model-in-the-loop training strategy is introduced to improve the success rate of data mining. Extensive experiments have demonstrated that the GUI agent fine-tuned using our mined data achieves state-of-the-art performance on several commonly used mobile GUI benchmarks. Our work will be released to facilitate the community research.
comment: Accepted by ICLR 2026. Supplementary material is included at the end of the main paper (16 pages, 15 figures, 2 tables)
☆ THOR: Inductive Link Prediction over Hyper-Relational Knowledge Graphs
Knowledge graphs (KGs) have become a key ingredient supporting a variety of applications. Beyond the traditional triplet representation of facts where a relation connects two entities, modern KGs observe an increasing number of hyper-relational facts, where an arbitrary number of qualifiers associated with a triplet provide auxiliary information to further describe the rich semantics of the triplet, which can effectively boost the reasoning performance in link prediction tasks. However, existing link prediction techniques over such hyper-relational KGs (HKGs) mostly focus on a transductive setting, where KG embedding models are learned from the specific vocabulary of a given KG and subsequently can only make predictions within the same vocabulary, limiting their generalizability to previously unseen vocabularies. Against this background, we propose THOR, an inducTive link prediction technique for Hyper-relational knOwledge gRaphs. Specifically, we first introduce both relation and entity foundation graphs, modeling their fundamental inter- and intra-fact interactions in HKGs, which are agnostic to any specific relations and entities. Afterward, THOR is designed to learn from the two foundation graphs with two parallel graph encoders followed by a transformer decoder, which supports efficient masked training and fully-inductive inference. We conduct a thorough evaluation of THOR in hyper-relational link prediction tasks on 12 datasets with different settings. Results show that THOR outperforms a sizable collection of baselines, yielding 66.1%, 55.9%, and 20.4% improvement over the best-performing rule-based, semi-inductive, and fully-inductive techniques, respectively. A series of ablation studies also reveals our key design factors capturing the structural invariance transferable across HKGs for inductive tasks.
☆ Disco: Densely-overlapping Cell Instance Segmentation via Adjacency-aware Collaborative Coloring ICLR 2026
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
comment: 17 pages, 10 figures; ICLR 2026
☆ Reduced-Order Surrogates for Forced Flexible Mesh Coastal-Ocean Models
While POD-based surrogates are widely explored for hydrodynamic applications, the use of Koopman Autoencoders for real-world coastal-ocean modelling remains relatively limited. This paper introduces a flexible Koopman autoencoder formulation that incorporates meteorological forcings and boundary conditions, and systematically compares its performance against POD-based surrogates. The Koopman autoencoder employs a learned linear temporal operator in latent space, enabling eigenvalue regularization to promote temporal stability. This strategy is evaluated alongside temporal unrolling techniques for achieving stable and accurate long-term predictions. The models are assessed on three test cases spanning distinct dynamical regimes, with prediction horizons up to one year at 30-minute temporal resolution. Across all cases, the Koopman autoencoder with temporal unrolling yields the best overall accuracy compared to the POD-based surrogates, achieving relative root-mean-squared-errors of 0.01-0.13 and $R^2$-values of 0.65-0.996. Prediction errors are largest for current velocities, and smallest for water surface elevations. Comparing to in-situ observations, the surrogate yields -0.65% to 12% change in water surface elevation prediction error when compared to prediction errors of the physics-based model. These error levels, corresponding to a few centimeters, are acceptable for many practical applications, while inference speed-ups of 300-1400x enables workflows such as ensemble forecasting and long climate simulations for coastal-ocean modelling.
comment: Submitted for peer-review in a journal
☆ H-AdminSim: A Multi-Agent Simulator for Realistic Hospital Administrative Workflows with FHIR Integration
Hospital administration departments handle a wide range of operational tasks and, in large hospitals, process over 10,000 requests per day, driving growing interest in LLM-based automation. However, prior work has focused primarily on patient--physician interactions or isolated administrative subtasks, failing to capture the complexity of real administrative workflows. To address this gap, we propose H-AdminSim, a comprehensive end-to-end simulation framework that combines realistic data generation with multi-agent-based simulation of hospital administrative workflows. These tasks are quantitatively evaluated using detailed rubrics, enabling systematic comparison of LLMs. Through FHIR integration, H-AdminSim provides a unified and interoperable environment for testing administrative workflows across heterogeneous hospital settings, serving as a standardized testbed for assessing the feasibility and performance of LLM-driven administrative automation.
☆ Enabling Automatic Disordered Speech Recognition: An Impaired Speech Dataset in the Akan Language
The lack of impaired speech data hinders advancements in the development of inclusive speech technologies, particularly in low-resource languages such as Akan. To address this gap, this study presents a curated corpus of speech samples from native Akan speakers with speech impairment. The dataset comprises of 50.01 hours of audio recordings cutting across four classes of impaired speech namely stammering, cerebral palsy, cleft palate, and stroke induced speech disorder. Recordings were done in controlled supervised environments were participants described pre-selected images in their own words. The resulting dataset is a collection of audio recordings, transcriptions, and associated metadata on speaker demographics, class of impairment, recording environment and device. The dataset is intended to support research in low-resource automatic disordered speech recognition systems and assistive speech technology.
☆ Advancing Opinion Dynamics Modeling with Neural Diffusion-Convection-Reaction Equation
Advanced opinion dynamics modeling is vital for deciphering social behavior, emphasizing its role in mitigating polarization and securing cyberspace. To synergize mechanistic interpretability with data-driven flexibility, recent studies have explored the integration of Physics-Informed Neural Networks (PINNs) for opinion modeling. Despite this promise, existing methods are tailored to incomplete priors, lacking a comprehensive physical system to integrate dynamics from local, global, and endogenous levels. Moreover, penalty-based constraints adopted in existing methods struggle to deeply encode physical priors, leading to optimization pathologies and discrepancy between latent representations and physical transparency. To this end, we offer a physical view to interpret opinion dynamics via Diffusion-Convection-Reaction (DCR) system inspired by interacting particle theory. Building upon the Neural ODEs, we define the neural opinion dynamics to coordinate neural networks with physical priors, and further present the OPINN, a physics-informed neural framework for opinion dynamics modeling. Evaluated on real-world and synthetic datasets, OPINN achieves state-of-the-art performance in opinion evolution forecasting, offering a promising paradigm for the nexus of cyber, physical, and social systems.
☆ Optimal Bayesian Stopping for Efficient Inference of Consistent LLM Answers
A simple strategy for improving LLM accuracy, especially in math and reasoning problems, is to sample multiple responses and submit the answer most consistently reached. In this paper we leverage Bayesian prior information to save on sampling costs, stopping once sufficient consistency is reached. Although the exact posterior is computationally intractable, we further introduce an efficient "L-aggregated" stopping policy that tracks only the L-1 most frequent answer counts. Theoretically, we prove that L=3 is all you need: this coarse approximation is sufficient to achieve asymptotic optimality, and strictly dominates prior-free baselines, while having a fast posterior computation. Empirically, this identifies the most consistent (i.e., mode) LLM answer using fewer samples, and can achieve similar answer accuracy while cutting the number of LLM calls (i.e., saving on LLM inference costs) by up to 50%.
☆ Beyond Length: Context-Aware Expansion and Independence as Developmentally Sensitive Evaluation in Child Utterances
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
☆ Assessing Electricity Demand Forecasting with Exogenous Data in Time Series Foundation Models AAAI'26
Time-series foundation models have emerged as a new paradigm for forecasting, yet their ability to effectively leverage exogenous features -- critical for electricity demand forecasting -- remains unclear. This paper empirically evaluates foundation models capable of modeling cross-channel correlations against a baseline LSTM with reversible instance normalization across Singaporean and Australian electricity markets at hourly and daily granularities. We systematically assess MOIRAI, MOMENT, TinyTimeMixers, ChronosX, and Chronos-2 under three feature configurations: all features, selected features, and target-only. Our findings reveal highly variable effectiveness: while Chronos-2 achieves the best performance among foundation models (in zero-shot settings), the simple baseline frequently outperforms all foundation models in Singapore's stable climate, particularly for short-term horizons. Model architecture proves critical, with synergistic architectural implementations (TTM's channel-mixing, Chronos-2's grouped attention) consistently leveraging exogenous features, while other approaches show inconsistent benefits. Geographic context emerges as equally important, with foundation models demonstrating advantages primarily in variable climates. These results challenge assumptions about universal foundation model superiority and highlight the need for domain-specific models, specifically in the energy domain.
comment: 9 pages, 1 Figure and 3 Tables. Accepted to AI4TS Workshop @ AAAI'26 as an oral presentation (see https://ai4ts.github.io/aaai2026)
☆ Spider-Sense: Intrinsic Risk Sensing for Efficient Agent Defense with Hierarchical Adaptive Screening
As large language models (LLMs) evolve into autonomous agents, their real-world applicability has expanded significantly, accompanied by new security challenges. Most existing agent defense mechanisms adopt a mandatory checking paradigm, in which security validation is forcibly triggered at predefined stages of the agent lifecycle. In this work, we argue that effective agent security should be intrinsic and selective rather than architecturally decoupled and mandatory. We propose Spider-Sense framework, an event-driven defense framework based on Intrinsic Risk Sensing (IRS), which allows agents to maintain latent vigilance and trigger defenses only upon risk perception. Once triggered, the Spider-Sense invokes a hierarchical defence mechanism that trades off efficiency and precision: it resolves known patterns via lightweight similarity matching while escalating ambiguous cases to deep internal reasoning, thereby eliminating reliance on external models. To facilitate rigorous evaluation, we introduce S$^2$Bench, a lifecycle-aware benchmark featuring realistic tool execution and multi-stage attacks. Extensive experiments demonstrate that Spider-Sense achieves competitive or superior defense performance, attaining the lowest Attack Success Rate (ASR) and False Positive Rate (FPR), with only a marginal latency overhead of 8.3\%.
☆ Clinical Validation of Medical-based Large Language Model Chatbots on Ophthalmic Patient Queries with LLM-based Evaluation
Domain specific large language models are increasingly used to support patient education, triage, and clinical decision making in ophthalmology, making rigorous evaluation essential to ensure safety and accuracy. This study evaluated four small medical LLMs Meerkat-7B, BioMistral-7B, OpenBioLLM-8B, and MedLLaMA3-v20 in answering ophthalmology related patient queries and assessed the feasibility of LLM based evaluation against clinician grading. In this cross sectional study, 180 ophthalmology patient queries were answered by each model, generating 2160 responses. Models were selected for parameter sizes under 10 billion to enable resource efficient deployment. Responses were evaluated by three ophthalmologists of differing seniority and by GPT-4-Turbo using the S.C.O.R.E. framework assessing safety, consensus and context, objectivity, reproducibility, and explainability, with ratings assigned on a five point Likert scale. Agreement between LLM and clinician grading was assessed using Spearman rank correlation, Kendall tau statistics, and kernel density estimate analyses. Meerkat-7B achieved the highest performance with mean scores of 3.44 from Senior Consultants, 4.08 from Consultants, and 4.18 from Residents. MedLLaMA3-v20 performed poorest, with 25.5 percent of responses containing hallucinations or clinically misleading content, including fabricated terminology. GPT-4-Turbo grading showed strong alignment with clinician assessments overall, with Spearman rho of 0.80 and Kendall tau of 0.67, though Senior Consultants graded more conservatively. Overall, medical LLMs demonstrated potential for safe ophthalmic question answering, but gaps remained in clinical depth and consensus, supporting the feasibility of LLM based evaluation for large scale benchmarking and the need for hybrid automated and clinician review frameworks to guide safe clinical deployment.
☆ RaBiT: Residual-Aware Binarization Training for Accurate and Efficient LLMs
Efficient deployment of large language models (LLMs) requires extreme quantization, forcing a critical trade-off between low-bit efficiency and performance. Residual binarization enables hardware-friendly, matmul-free inference by stacking binary ($\pm$1) layers, but is plagued by pathological feature co-adaptation. We identify a key failure mode, which we term inter-path adaptation: during quantization-aware training (QAT), parallel residual binary paths learn redundant features, degrading the error-compensation structure and limiting the expressive capacity of the model. While prior work relies on heuristic workarounds (e.g., path freezing) that constrain the solution space, we propose RaBiT, a novel quantization framework that resolves co-adaptation by algorithmically enforcing a residual hierarchy. Its core mechanism sequentially derives each binary path from a single shared full-precision weight, which ensures that every path corrects the error of the preceding one. This process is stabilized by a robust initialization that prioritizes functional preservation over mere weight approximation. RaBiT redefines the 2-bit accuracy-efficiency frontier: it achieves state-of-the-art performance, rivals even hardware-intensive Vector Quantization (VQ) methods, and delivers a $4.49\times$ inference speed-up over full-precision models on an RTX 4090.
☆ PATHWAYS: Evaluating Investigation and Context Discovery in AI Web Agents
We introduce PATHWAYS, a benchmark of 250 multi-step decision tasks that test whether web-based agents can discover and correctly use hidden contextual information. Across both closed and open models, agents typically navigate to relevant pages but retrieve decisive hidden evidence in only a small fraction of cases. When tasks require overturning misleading surface-level signals, performance drops sharply to near chance accuracy. Agents frequently hallucinate investigative reasoning by claiming to rely on evidence they never accessed. Even when correct context is discovered, agents often fail to integrate it into their final decision. Providing more explicit instructions improves context discovery but often reduces overall accuracy, revealing a tradeoff between procedural compliance and effective judgement. Together, these results show that current web agent architectures lack reliable mechanisms for adaptive investigation, evidence integration, and judgement override.
comment: 35 pages, 13 figures
☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
☆ ProAct: Agentic Lookahead in Interactive Environments
Existing Large Language Model (LLM) agents struggle in interactive environments requiring long-horizon planning, primarily due to compounding errors when simulating future states. To address this, we propose ProAct, a framework that enables agents to internalize accurate lookahead reasoning through a two-stage training paradigm. First, we introduce Grounded LookAhead Distillation (GLAD), where the agent undergoes supervised fine-tuning on trajectories derived from environment-based search. By compressing complex search trees into concise, causal reasoning chains, the agent learns the logic of foresight without the computational overhead of inference-time search. Second, to further refine decision accuracy, we propose the Monte-Carlo Critic (MC-Critic), a plug-and-play auxiliary value estimator designed to enhance policy-gradient algorithms like PPO and GRPO. By leveraging lightweight environment rollouts to calibrate value estimates, MC-Critic provides a low-variance signal that facilitates stable policy optimization without relying on expensive model-based value approximation. Experiments on both stochastic (e.g., 2048) and deterministic (e.g., Sokoban) environments demonstrate that ProAct significantly improves planning accuracy. Notably, a 4B parameter model trained with ProAct outperforms all open-source baselines and rivals state-of-the-art closed-source models, while demonstrating robust generalization to unseen environments. The codes and models are available at https://github.com/GreatX3/ProAct
☆ GAS: Enhancing Reward-Cost Balance of Generative Model-assisted Offline Safe RL
Offline Safe Reinforcement Learning (OSRL) aims to learn a policy to achieve high performance in sequential decision-making while satisfying constraints, using only pre-collected datasets. Recent works, inspired by the strong capabilities of Generative Models (GMs), reformulate decision-making in OSRL as a conditional generative process, where GMs generate desirable actions conditioned on predefined reward and cost values. However, GM-assisted methods face two major challenges in OSRL: (1) lacking the ability to "stitch" optimal transitions from suboptimal trajectories within the dataset, and (2) struggling to balance reward targets with cost targets, particularly when they are conflict. To address these issues, we propose Goal-Assisted Stitching (GAS), a novel algorithm designed to enhance stitching capabilities while effectively balancing reward maximization and constraint satisfaction. To enhance the stitching ability, GAS first augments and relabels the dataset at the transition level, enabling the construction of high-quality trajectories from suboptimal ones. GAS also introduces novel goal functions, which estimate the optimal achievable reward and cost goals from the dataset. These goal functions, trained using expectile regression on the relabeled and augmented dataset, allow GAS to accommodate a broader range of reward-cost return pairs and achieve a better tradeoff between reward maximization and constraint satisfaction compared to human-specified values. The estimated goals then guide policy training, ensuring robust performance under constrained settings. Furthermore, to improve training stability and efficiency, we reshape the dataset to achieve a more uniform reward-cost return distribution. Empirical results validate the effectiveness of GAS, demonstrating superior performance in balancing reward maximization and constraint satisfaction compared to existing methods.
☆ Formal Synthesis of Certifiably Robust Neural Lyapunov-Barrier Certificates
Neural Lyapunov and barrier certificates have recently been used as powerful tools for verifying the safety and stability properties of deep reinforcement learning (RL) controllers. However, existing methods offer guarantees only under fixed ideal unperturbed dynamics, limiting their reliability in real-world applications where dynamics may deviate due to uncertainties. In this work, we study the problem of synthesizing \emph{robust neural Lyapunov barrier certificates} that maintain their guarantees under perturbations in system dynamics. We formally define a robust Lyapunov barrier function and specify sufficient conditions based on Lipschitz continuity that ensure robustness against bounded perturbations. We propose practical training objectives that enforce these conditions via adversarial training, Lipschitz neighborhood bound, and global Lipschitz regularization. We validate our approach in two practically relevant environments, Inverted Pendulum and 2D Docking. The former is a widely studied benchmark, while the latter is a safety-critical task in autonomous systems. We show that our methods significantly improve both certified robustness bounds (up to $4.6$ times) and empirical success rates under strong perturbations (up to $2.4$ times) compared to the baseline. Our results demonstrate effectiveness of training robust neural certificates for safe RL under perturbations in dynamics.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ PieArena: Frontier Language Agents Achieve MBA-Level Negotiation Performance and Reveal Novel Behavioral Differences
We present an in-depth evaluation of LLMs' ability to negotiate, a central business task that requires strategic reasoning, theory of mind, and economic value creation. To do so, we introduce PieArena, a large-scale negotiation benchmark grounded in multi-agent interactions over realistic scenarios drawn from an MBA negotiation course at an elite business school. We find systematic evidence of AGI-level performance in which a representative frontier agent (GPT-5) matches or outperforms trained business-school students, despite a semester of general negotiation instruction and targeted coaching immediately prior to the task. We further study the effects of joint-intentionality agentic scaffolding and find asymmetric gains, with large improvements for mid- and lower-tier LMs and diminishing returns for frontier LMs. Beyond deal outcomes, PieArena provides a multi-dimensional negotiation behavioral profile, revealing novel cross-model heterogeneity, masked by deal-outcome-only benchmarks, in deception, computation accuracy, instruction compliance, and perceived reputation. Overall, our results suggest that frontier language agents are already intellectually and psychologically capable of deployment in high-stakes economic settings, but deficiencies in robustness and trustworthiness remain open challenges.
☆ Aspect-Aware MOOC Recommendation in a Heterogeneous Network
MOOC recommendation systems have received increasing attention to help learners navigate and select preferred learning content. Traditional methods such as collaborative filtering and content-based filtering suffer from data sparsity and over-specialization. To alleviate these limitations, graph-based approaches have been proposed; however, they still rely heavily on manually predefined metapaths, which often capture only superficial structural relationships and impose substantial burdens on domain experts as well as significant engineering costs. To overcome these limitations, we propose AMR (Aspect-aware MOOC Recommendation), a novel framework that models path-specific multiple aspects by embedding the semantic content of nodes within each metapath. AMR automatically discovers metapaths through bi-directional walks, derives aspect-aware path representations using a bi-LSTM-based encoder, and incorporates these representations as edge features in the learner-learner and KC-KC subgraphs to achieve fine-grained semantically informed KC recommendations. Extensive experiments on the large-scale MOOCCube and PEEK datasets show that AMR consistently outperforms state-of-the-art graph neural network baselines across key metrics such as HR@K and nDCG@K. Further analysis confirms that AMR effectively captures rich path-specific aspect information, allowing more accurate recommendations than those methods that rely solely on predefined metapaths. The code will be available upon accepted.
☆ Towards a Science of Collective AI: LLM-based Multi-Agent Systems Need a Transition from Blind Trial-and-Error to Rigorous Science
Recent advancements in Large Language Models (LLMs) have greatly extended the capabilities of Multi-Agent Systems (MAS), demonstrating significant effectiveness across a wide range of complex and open-ended domains. However, despite this rapid progress, the field still relies heavily on empirical trial-and-error. It lacks a unified and principled scientific framework necessary for systematic optimization and improvement. This bottleneck stems from the ambiguity of attribution: first, the absence of a structured taxonomy of factors leaves researchers restricted to unguided adjustments; second, the lack of a unified metric fails to distinguish genuine collaboration gain from mere resource accumulation. In this paper, we advocate for a transition to design science through an integrated framework. We advocate to establish the collaboration gain metric ($Γ$) as the scientific standard to isolate intrinsic gains from increased budgets. Leveraging $Γ$, we propose a factor attribution paradigm to systematically identify collaboration-driving factors. To support this, we construct a systematic MAS factor library, structuring the design space into control-level presets and information-level dynamics. Ultimately, this framework facilitates the transition from blind experimentation to rigorous science, paving the way towards a true science of Collective AI.
☆ Position: Universal Time Series Foundation Models Rest on a Category Error
This position paper argues that the pursuit of "Universal Foundation Models for Time Series" rests on a fundamental category error, mistaking a structural Container for a semantic Modality. We contend that because time series hold incompatible generative processes (e.g., finance vs. fluid dynamics), monolithic models degenerate into expensive "Generic Filters" that fail to generalize under distributional drift. To address this, we introduce the "Autoregressive Blindness Bound," a theoretical limit proving that history-only models cannot predict intervention-driven regime shifts. We advocate replacing universality with a Causal Control Agent paradigm, where an agent leverages external context to orchestrate a hierarchy of specialized solvers, from frozen domain experts to lightweight Just-in-Time adaptors. We conclude by calling for a shift in benchmarks from "Zero-Shot Accuracy" to "Drift Adaptation Speed" to prioritize robust, control-theoretic systems.
comment: Position Paper
☆ HealthMamba: An Uncertainty-aware Spatiotemporal Graph State Space Model for Effective and Reliable Healthcare Facility Visit Prediction
Healthcare facility visit prediction is essential for optimizing healthcare resource allocation and informing public health policy. Despite advanced machine learning methods being employed for better prediction performance, existing works usually formulate this task as a time-series forecasting problem without considering the intrinsic spatial dependencies of different types of healthcare facilities, and they also fail to provide reliable predictions under abnormal situations such as public emergencies. To advance existing research, we propose HealthMamba, an uncertainty-aware spatiotemporal framework for accurate and reliable healthcare facility visit prediction. HealthMamba comprises three key components: (i) a Unified Spatiotemporal Context Encoder that fuses heterogeneous static and dynamic information, (ii) a novel Graph State Space Model called GraphMamba for hierarchical spatiotemporal modeling, and (iii) a comprehensive uncertainty quantification module integrating three uncertainty quantification mechanisms for reliable prediction. We evaluate HealthMamba on four large-scale real-world datasets from California, New York, Texas, and Florida. Results show HealthMamba achieves around 6.0% improvement in prediction accuracy and 3.5% improvement in uncertainty quantification over state-of-the-art baselines.
☆ Hallucination-Resistant Security Planning with a Large Language Model
Large language models (LLMs) are promising tools for supporting security management tasks, such as incident response planning. However, their unreliability and tendency to hallucinate remain significant challenges. In this paper, we address these challenges by introducing a principled framework for using an LLM as decision support in security management. Our framework integrates the LLM in an iterative loop where it generates candidate actions that are checked for consistency with system constraints and lookahead predictions. When consistency is low, we abstain from the generated actions and instead collect external feedback, e.g., by evaluating actions in a digital twin. This feedback is then used to refine the candidate actions through in-context learning (ICL). We prove that this design allows to control the hallucination risk by tuning the consistency threshold. Moreover, we establish a bound on the regret of ICL under certain assumptions. To evaluate our framework, we apply it to an incident response use case where the goal is to generate a response and recovery plan based on system logs. Experiments on four public datasets show that our framework reduces recovery times by up to 30% compared to frontier LLMs.
comment: Accepted to IEEE/IFIP Network Operations and Management Symposium 2026. To appear in the conference proceedings
☆ Hybrid Gated Flow (HGF): Stabilizing 1.58-bit LLMs via Selective Low-Rank Correction
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" -- a hardware limitation where memory bandwidth, not compute, becomes the bottleneck. Recent 1.58-bit quantization techniques (e.g., BitNet b1.58) dramatically reduce memory footprint but typically incur a perplexity degradation of 20-25% compared to FP16 baselines. In this work, we introduce Hybrid Gated Flow (HGF), a dual-stream architecture that couples a 1.58-bit ternary backbone with a learnable, low-rank FP16 correction path controlled by adaptive gates. Through extensive experiments on the TinyStories dataset across two training regimes (2500 and 3500 steps), we demonstrate that HGF 5.4 achieves a validation loss of 0.9306 compared to BitNet's 1.0294, recovering approximately 55% of the quality gap between pure ternary quantization and the FP16 baseline (0.8490). This recovery is achieved with only ~12-15% memory overhead beyond the ternary backbone. Furthermore, we provide empirical evidence for an emergent phenomenon: quantization as structural regularization. While a full-precision differential attention baseline (Diff_Only) exhibited training instability with validation loss exceeding 1.68, the ternary-anchored HGF maintained robust convergence throughout training. Finally, we report preliminary results extending this architecture to 1.2B and 3B parameter models trained on SlimPajama and FineWeb-Edu. These larger-scale experiments confirm that the architectural stability and quality recovery observed in small-scale proxies scale linearly to production-grade language modeling regimes.
comment: 21 pages, 4 figures, 6 tables. Code and models will be released at opencores.ai
☆ Beyond Cosine Similarity
Cosine similarity, the standard metric for measuring semantic similarity in vector spaces, is mathematically grounded in the Cauchy-Schwarz inequality, which inherently limits it to capturing linear relationships--a constraint that fails to model the complex, nonlinear structures of real-world semantic spaces. We advance this theoretical underpinning by deriving a tighter upper bound for the dot product than the classical Cauchy-Schwarz bound. This new bound leads directly to recos, a similarity metric that normalizes the dot product by the sorted vector components. recos relaxes the condition for perfect similarity from strict linear dependence to ordinal concordance, thereby capturing a broader class of relationships. Extensive experiments across 11 embedding models--spanning static, contextualized, and universal types--demonstrate that recos consistently outperforms traditional cosine similarity, achieving higher correlation with human judgments on standard Semantic Textual Similarity (STS) benchmarks. Our work establishes recos as a mathematically principled and empirically superior alternative, offering enhanced accuracy for semantic analysis in complex embedding spaces.
comment: 18 pages, 2 figures, 1 theorem, 3 corollaries
☆ CoPE: Clipped RoPE as A Scalable Free Lunch for Long Context LLMs
Rotary Positional Embedding (RoPE) is a key component of context scaling in Large Language Models (LLMs). While various methods have been proposed to adapt RoPE to longer contexts, their guiding principles generally fall into two categories: (1) out-of-distribution (OOD) mitigation, which scales RoPE frequencies to accommodate unseen positions, and (2) Semantic Modeling, which posits that the attention scores computed with RoPE should always prioritize semantically similar tokens. In this work, we unify these seemingly distinct objectives through a minimalist intervention, namely CoPE: soft clipping lowfrequency components of RoPE. CoPE not only eliminates OOD outliers and refines semantic signals, but also prevents spectral leakage caused by hard clipping. Extensive experiments demonstrate that simply applying our soft clipping strategy to RoPE yields significant performance gains that scale up to 256k context length, validating our theoretical analysis and establishing CoPE as a new state-of-the-art for length generalization. Our code, data, and models are available at https://github.com/hrlics/CoPE.
☆ Automatic Cognitive Task Generation for In-Situ Evaluation of Embodied Agents
As general intelligent agents are poised for widespread deployment in diverse households, evaluation tailored to each unique unseen 3D environment has become a critical prerequisite. However, existing benchmarks suffer from severe data contamination and a lack of scene specificity, inadequate for assessing agent capabilities in unseen settings. To address this, we propose a dynamic in-situ task generation method for unseen environments inspired by human cognition. We define tasks through a structured graph representation and construct a two-stage interaction-evolution task generation system for embodied agents (TEA). In the interaction stage, the agent actively interacts with the environment, creating a loop between task execution and generation that allows for continuous task generation. In the evolution stage, task graph modeling allows us to recombine and reuse existing tasks to generate new ones without external data. Experiments across 10 unseen scenes demonstrate that TEA automatically generated 87,876 tasks in two cycles, which human verification confirmed to be physically reasonable and encompassing essential daily cognitive capabilities. Benchmarking SOTA models against humans on our in-situ tasks reveals that models, despite excelling on public benchmarks, perform surprisingly poorly on basic perception tasks, severely lack 3D interaction awareness and show high sensitivity to task types in reasoning. These sobering findings highlight the necessity of in-situ evaluation before deploying agents into real-world human environments.
☆ EGSS: Entropy-guided Stepwise Scaling for Reliable Software Engineering
Agentic Test-Time Scaling (TTS) has delivered state-of-the-art (SOTA) performance on complex software engineering tasks such as code generation and bug fixing. However, its practical adoption remains limited due to significant computational overhead, primarily driven by two key challenges: (1) the high cost associated with deploying excessively large ensembles, and (2) the lack of a reliable mechanism for selecting the optimal candidate solution, ultimately constraining the performance gains that can be realized. To address these challenges, we propose Entropy-Guided Stepwise Scaling (EGSS), a novel TTS framework that dynamically balances efficiency and effectiveness through entropy-guided adaptive search and robust test-suite augmentation. Extensive experiments on SWE-Bench-Verified demonstrate that EGSS consistently boosts performance by 5-10% across all evaluated models. Specifically, it increases the resolved ratio of Kimi-K2-Intruct from 63.2% to 72.2%, and GLM-4.6 from 65.8% to 74.6%. Furthermore, when paired with GLM-4.6, EGSS achieves a new state-of-the-art among open-source large language models. In addition to these accuracy improvements, EGSS reduces inference-time token usage by over 28% compared to existing TTS methods, achieving simultaneous gains in both effectiveness and computational efficiency.
☆ Explainable AI: A Combined XAI Framework for Explaining Brain Tumour Detection Models
This study explores the integration of multiple Explainable AI (XAI) techniques to enhance the interpretability of deep learning models for brain tumour detection. A custom Convolutional Neural Network (CNN) was developed and trained on the BraTS 2021 dataset, achieving 91.24% accuracy in distinguishing between tumour and non-tumour regions. This research combines Gradient-weighted Class Activation Mapping (GRAD-CAM), Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanations (SHAP) to provide comprehensive insights into the model's decision-making process. This multi-technique approach successfully identified both full and partial tumours, offering layered explanations ranging from broad regions of interest to pixel-level details. GRAD-CAM highlighted important spatial regions, LRP provided detailed pixel-level relevance and SHAP quantified feature contributions. The integrated approach effectively explained model predictions, including cases with partial tumour visibility thus showing superior explanatory power compared to individual XAI methods. This research enhances transparency and trust in AI-driven medical imaging analysis by offering a more comprehensive perspective on the model's reasoning. The study demonstrates the potential of integrated XAI techniques in improving the reliability and interpretability of AI systems in healthcare, particularly for critical tasks like brain tumour detection.
☆ Balanced Anomaly-guided Ego-graph Diffusion Model for Inductive Graph Anomaly Detection KDD
Graph anomaly detection (GAD) is crucial in applications like fraud detection and cybersecurity. Despite recent advancements using graph neural networks (GNNs), two major challenges persist. At the model level, most methods adopt a transductive learning paradigm, which assumes static graph structures, making them unsuitable for dynamic, evolving networks. At the data level, the extreme class imbalance, where anomalous nodes are rare, leads to biased models that fail to generalize to unseen anomalies. These challenges are interdependent: static transductive frameworks limit effective data augmentation, while imbalance exacerbates model distortion in inductive learning settings. To address these challenges, we propose a novel data-centric framework that integrates dynamic graph modeling with balanced anomaly synthesis. Our framework features: (1) a discrete ego-graph diffusion model, which captures the local topology of anomalies to generate ego-graphs aligned with anomalous structural distribution, and (2) a curriculum anomaly augmentation mechanism, which dynamically adjusts synthetic data generation during training, focusing on underrepresented anomaly patterns to improve detection and generalization. Experiments on five datasets demonstrate that the effectiveness of our framework.
comment: 12 pages,6 figures, Accepted by ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '26)
☆ ZeroS: Zero-Sum Linear Attention for Efficient Transformers NeurIPS 2025
Linear attention methods offer Transformers $O(N)$ complexity but typically underperform standard softmax attention. We identify two fundamental limitations affecting these approaches: the restriction to convex combinations that only permits additive information blending, and uniform accumulated weight bias that dilutes attention in long contexts. We propose Zero-Sum Linear Attention (ZeroS), which addresses these limitations by removing the constant zero-order term $1/t$ and reweighting the remaining zero-sum softmax residuals. This modification creates mathematically stable weights, enabling both positive and negative values and allowing a single attention layer to perform contrastive operations. While maintaining $O(N)$ complexity, ZeroS theoretically expands the set of representable functions compared to convex combinations. Empirically, it matches or exceeds standard softmax attention across various sequence modeling benchmarks.
comment: Camera-ready version. Accepted at NeurIPS 2025
☆ Surgery: Mitigating Harmful Fine-Tuning for Large Language Models via Attention Sink
Harmful fine-tuning can invalidate safety alignment of large language models, exposing significant safety risks. In this paper, we utilize the attention sink mechanism to mitigate harmful fine-tuning. Specifically, we first measure a statistic named \emph{sink divergence} for each attention head and observe that \emph{different attention heads exhibit two different signs of sink divergence}. To understand its safety implications, we conduct experiments and find that the number of attention heads of positive sink divergence increases along with the increase of the model's harmfulness when undergoing harmful fine-tuning. Based on this finding, we propose a separable sink divergence hypothesis -- \emph{attention heads associating with learning harmful patterns during fine-tuning are separable by their sign of sink divergence}. Based on the hypothesis, we propose a fine-tuning-stage defense, dubbed Surgery. Surgery utilizes a regularizer for sink divergence suppression, which steers attention heads toward the negative sink divergence group, thereby reducing the model's tendency to learn and amplify harmful patterns. Extensive experiments demonstrate that Surgery improves defense performance by 5.90\%, 11.25\%, and 9.55\% on the BeaverTails, HarmBench, and SorryBench benchmarks, respectively. Source code is available on https://github.com/Lslland/Surgery.
☆ Semantic Search over 9 Million Mathematical Theorems
Searching for mathematical results remains difficult: most existing tools retrieve entire papers, while mathematicians and theorem-proving agents often seek a specific theorem, lemma, or proposition that answers a query. While semantic search has seen rapid progress, its behavior on large, highly technical corpora such as research-level mathematical theorems remains poorly understood. In this work, we introduce and study semantic theorem retrieval at scale over a unified corpus of $9.2$ million theorem statements extracted from arXiv and seven other sources, representing the largest publicly available corpus of human-authored, research-level theorems. We represent each theorem with a short natural-language description as a retrieval representation and systematically analyze how representation context, language model choice, embedding model, and prompting strategy affect retrieval quality. On a curated evaluation set of theorem-search queries written by professional mathematicians, our approach substantially improves both theorem-level and paper-level retrieval compared to existing baselines, demonstrating that semantic theorem search is feasible and effective at web scale. The theorem search tool is available at \href{https://huggingface.co/spaces/uw-math-ai/theorem-search}{this link}, and the dataset is available at \href{https://huggingface.co/datasets/uw-math-ai/TheoremSearch}{this link}.
comment: Feedback is welcome
☆ ARCHI-TTS: A flow-matching-based Text-to-Speech Model with Self-supervised Semantic Aligner and Accelerated Inference ICASSP 2026
Although diffusion-based, non-autoregressive text-to-speech (TTS) systems have demonstrated impressive zero-shot synthesis capabilities, their efficacy is still hindered by two key challenges: the difficulty of text-speech alignment modeling and the high computational overhead of the iterative denoising process. To address these limitations, we propose ARCHI-TTS that features a dedicated semantic aligner to ensure robust temporal and semantic consistency between text and audio. To overcome high computational inference costs, ARCHI-TTS employs an efficient inference strategy that reuses encoder features across denoising steps, drastically accelerating synthesis without performance degradation. An auxiliary CTC loss applied to the condition encoder further enhances the semantic understanding. Experimental results demonstrate that ARCHI-TTS achieves a WER of 1.98% on LibriSpeech-PC test-clean, and 1.47%/1.42% on SeedTTS test-en/test-zh with a high inference efficiency, consistently outperforming recent state-of-the-art TTS systems.
comment: Accepted by ICASSP 2026
☆ Aligning Large Language Model Behavior with Human Citation Preferences
Most services built on powerful large-scale language models (LLMs) add citations to their output to enhance credibility. Recent research has paid increasing attention to the question of what reference documents to link to outputs. However, how LLMs recognize cite-worthiness and how this process should be controlled remains underexplored. In this study, we focus on what kinds of content LLMs currently tend to cite and how well that behavior aligns with human preferences. We construct a dataset to characterize the relationship between human citation preferences and LLM behavior. Web-derived texts are categorized into eight citation-motivation types, and pairwise citation preferences are exhaustively evaluated across all type combinations to capture fine-grained contrasts. Our results show that humans most frequently seek citations for medical text, and stronger models display a similar tendency. We also find that current models are as much as $27\%$ more likely than humans to add citations to text that is explicitly marked as needing citations on sources such as Wikipedia, and this overemphasis reduces alignment accuracy. Conversely, models systematically underselect numeric sentences (by $-22.6\%$ relative to humans) and sentences containing personal names (by $-20.1\%$), categories for which humans typically demand citations. Furthermore, experiments with Direct Preference Optimization demonstrate that model behavior can be calibrated to better match human citation preferences. We expect this study to provide a foundation for more fine-grained investigations into LLM citation preferences.
comment: Work In Progress
☆ Traceable Cross-Source RAG for Chinese Tibetan Medicine Question Answering
Retrieval-augmented generation (RAG) promises grounded question answering, yet domain settings with multiple heterogeneous knowledge bases (KBs) remain challenging. In Chinese Tibetan medicine, encyclopedia entries are often dense and easy to match, which can dominate retrieval even when classics or clinical papers provide more authoritative evidence. We study a practical setting with three KBs (encyclopedia, classics, and clinical papers) and a 500-query benchmark (cutoff $K{=}5$) covering both single-KB and cross-KB questions. We propose two complementary methods to improve traceability, reduce hallucinations, and enable cross-KB verification. First, DAKS performs KB routing and budgeted retrieval to mitigate density-driven bias and to prioritize authoritative sources when appropriate. Second, we use an alignment graph to guide evidence fusion and coverage-aware packing, improving cross-KB evidence coverage without relying on naive concatenation. All answers are generated by a lightweight generator, \textsc{openPangu-Embedded-7B}. Experiments show consistent gains in routing quality and cross-KB evidence coverage, with the full system achieving the best CrossEv@5 while maintaining strong faithfulness and citation correctness.
☆ First Proof
To assess the ability of current AI systems to correctly answer research-level mathematics questions, we share a set of ten math questions which have arisen naturally in the research process of the authors. The questions had not been shared publicly until now; the answers are known to the authors of the questions but will remain encrypted for a short time.
comment: 9 pages, including the statements of the ten questions
☆ Double-P: Hierarchical Top-P Sparse Attention for Long-Context LLMs
As long-context inference becomes central to large language models (LLMs), attention over growing key-value caches emerges as a dominant decoding bottleneck, motivating sparse attention for scalable inference. Fixed-budget top-k sparse attention cannot adapt to heterogeneous attention distributions across heads and layers, whereas top-p sparse attention directly preserves attention mass and provides stronger accuracy guarantees. Existing top-p methods, however, fail to jointly optimize top-p accuracy, selection overhead, and sparse attention cost, which limits their overall efficiency. We present Double-P, a hierarchical sparse attention framework that optimizes all three stages. Double-P first performs coarse-grained top-p estimation at the cluster level using size-weighted centroids, then adaptively refines computation through a second top-p stage that allocates token-level attention only when needed. Across long-context benchmarks, Double-P consistently achieves near-zero accuracy drop, reducing attention computation overhead by up to 1.8x and delivers up to 1.3x end-to-end decoding speedup over state-of-the-art fixed-budget sparse attention methods.
☆ Towards Worst-Case Guarantees with Scale-Aware Interpretability
Neural networks organize information according to the hierarchical, multi-scale structure of natural data. Methods to interpret model internals should be similarly scale-aware, explicitly tracking how features compose across resolutions and guaranteeing bounds on the influence of fine-grained structure that is discarded as irrelevant noise. We posit that the renormalisation framework from physics can meet this need by offering technical tools that can overcome limitations of current methods. Moreover, relevant work from adjacent fields has now matured to a point where scattered research threads can be synthesized into practical, theory-informed tools. To combine these threads in an AI safety context, we propose a unifying research agenda -- \emph{scale-aware interpretability} -- to develop formal machinery and interpretability tools that have robustness and faithfulness properties supported by statistical physics.
☆ Data-Centric Interpretability for LLM-based Multi-Agent Reinforcement Learning
Large language models (LLMs) are increasingly trained in complex Reinforcement Learning, multi-agent environments, making it difficult to understand how behavior changes over training. Sparse Autoencoders (SAEs) have recently shown to be useful for data-centric interpretability. In this work, we analyze large-scale reinforcement learning training runs from the sophisticated environment of Full-Press Diplomacy by applying pretrained SAEs, alongside LLM-summarizer methods. We introduce Meta-Autointerp, a method for grouping SAE features into interpretable hypotheses about training dynamics. We discover fine-grained behaviors including role-playing patterns, degenerate outputs, language switching, alongside high-level strategic behaviors and environment-specific bugs. Through automated evaluation, we validate that 90% of discovered SAE Meta-Features are significant, and find a surprising reward hacking behavior. However, through two user studies, we find that even subjectively interesting and seemingly helpful SAE features may be worse than useless to humans, along with most LLM generated hypotheses. However, a subset of SAE-derived hypotheses are predictively useful for downstream tasks. We further provide validation by augmenting an untrained agent's system prompt, improving the score by +14.2%. Overall, we show that SAEs and LLM-summarizer provide complementary views into agent behavior, and together our framework forms a practical starting point for future data-centric interpretability work on ensuring trustworthy LLM behavior throughout training.
comment: authors 1, 2 and 3 contributed equally
☆ Benchmarking Artificial Intelligence Models for Daily Coastal Hypoxia Forecasting IEEE
Coastal hypoxia, especially in the northern part of Gulf of Mexico, presents a persistent ecological and economic concern. Seasonal models offer coarse forecasts that miss the fine-scale variability needed for daily, responsive ecosystem management. We present study that compares four deep learning architectures for daily hypoxia classification: Bidirectional Long Short-Term Memory (BiLSTM), Medformer (Medical Transformer), Spatio-Temporal Transformer (ST-Transformer), and Temporal Convolutional Network (TCN). We trained our models with twelve years of daily hindcast data from 2009-2020 Our training data consists of 2009-2020 hindcast data from a coupled hydrodynamic-biogeochemical model. Similarly, we use hindcast data from 2020 through 2024 as a test data. We constructed classification models incorporating water column stratification, sediment oxygen consumption, and temperature-dependent decomposition rates. We evaluated each architectures using the same data preprocessing, input/output formulation, and validation protocols. Each model achieved high classification accuracy and strong discriminative ability with ST-Transformer achieving the highest performance across all metrics and tests periods (AUC-ROC: 0.982-0.992). We also employed McNemar's method to identify statistically significant differences in model predictions. Our contribution is a reproducible framework for operational real-time hypoxia prediction that can support broader efforts in the environmental and ocean modeling systems community and in ecosystem resilience. The source code is available https://github.com/rmagesh148/hypoxia-ai/
comment: This is a Preprint accepted at IEEE Big Data 2025
☆ Total Variation Rates for Riemannian Flow Matching
Riemannian flow matching (RFM) extends flow-based generative modeling to data supported on manifolds by learning a time-dependent tangent vector field whose flow-ODE transports a simple base distribution to the data law. We develop a nonasymptotic Total Variation (TV) convergence analysis for RFM samplers that use a learned vector field together with Euler discretization on manifolds. Our key technical ingredient is a differential inequality governing the evolution of TV between two manifold ODE flows, which expresses the time-derivative of TV through the divergence of the vector-field mismatch and the score of the reference flow; controlling these terms requires establishing new bounds that explicitly account for parallel transport and curvature. Under smoothness assumptions on the population flow-matching field and either uniform (compact manifolds) or mean-square (Hadamard manifolds) approximation guarantees for the learned field, we obtain explicit bounds of the form $\mathrm{TV}\le C_{\mathrm{Lip}}\,h + C_{\varepsilon}\,\varepsilon$ (with an additional higher-order $\varepsilon^2$ term on compact manifolds), cleanly separating numerical discretization and learning errors. Here, $h$ is the step-size and $\varepsilon$ is the target accuracy. Instantiations yield \emph{explicit} polynomial iteration complexities on the hypersphere $S^d$, and on the SPD$(n)$ manifolds under mild moment conditions.
☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
☆ Position: Capability Control Should be a Separate Goal From Alignment
Foundation models are trained on broad data distributions, yielding generalist capabilities that enable many downstream applications but also expand the space of potential misuse and failures. This position paper argues that capability control -- imposing restrictions on permissible model behavior -- should be treated as a distinct goal from alignment. While alignment is often context and preference-driven, capability control aims to impose hard operational limits on permissible behaviors, including under adversarial elicitation. We organize capability control mechanisms across the model lifecycle into three layers: (i) data-based control of the training distribution, (ii) learning-based control via weight- or representation-level interventions, and (iii) system-based control via post-deployment guardrails over inputs, outputs, and actions. Because each layer has characteristic failure modes when used in isolation, we advocate for a defense-in-depth approach that composes complementary controls across the full stack. We further outline key open challenges in achieving such control, including the dual-use nature of knowledge and compositional generalization.
☆ CoSA: Compressed Sensing-Based Adaptation of Large Language Models
Parameter-Efficient Fine-Tuning (PEFT) has emerged as a practical paradigm for adapting large language models (LLMs) without updating all parameters. Most existing approaches, such as LoRA and PiSSA, rely on low-rank decompositions of weight updates. However, the low-rank assumption may restrict expressivity, particularly in task-specific adaptation scenarios where singular values are distributed relatively uniformly. To address this limitation, we propose CoSA (Compressed Sensing-Based Adaptation), a new PEFT method extended from compressed sensing theory. Instead of constraining weight updates to a low-rank subspace, CoSA expresses them through fixed random projection matrices and a compact learnable core. We provide a formal theoretical analysis of CoSA as a synthesis process, proving that weight updates can be compactly encoded into a low-dimensional space and mapped back through random projections. Extensive experimental results show that CoSA provides a principled perspective for efficient and expressive multi-scale model adaptation. Specifically, we evaluate CoSA on 10 diverse tasks, including natural language understanding and generation, employing 5 models of different scales from RoBERTa, Llama, and Qwen families. Across these settings, CoSA consistently matches or outperforms state-of-the-art PEFT methods.
☆ Cross-talk based multi-task learning for fault classification of physically coupled machine system
Machine systems inherently generate signals in which fault conditions and various physical variables are physically coupled. Although many existing fault classification studies rely solely on direct fault labels, the aforementioned signals naturally embed additional information shaped by other physically coupled information. Herein, we leverage this coupling through a multi-task learning (MTL) framework that jointly learns fault conditions and the related physical variables. Among MTL architectures, crosstalk structures have distinct advantages because they allow for controlled information exchange between tasks through the cross-talk layer while preventing negative transfer, in contrast to shared trunk architectures that often mix incompatible features. We build on our previously introduced residual neural dimension reductor model, and extend its application to two benchmarks where physical coupling is prominent. The first benchmark is a drone fault dataset, in which machine type and maneuvering direction significantly alter the frequency components of measured signals even under the same nominal condition. By learning fault classification together with these physical attributes, the cross-talk architecture can better classify faults. The second benchmark dataset is the motor compound fault dataset. In this system, each fault component, inner race fault, outer race fault, misalignment, and unbalance is coupled to the other. For motor compound fault, we also test classification performance when we use single-channel data or multi-channel data as input to the classifier. Across both benchmarks, our residual neural dimension reductor, consistently outperformed single-task models, multi-class models that merge all label combinations, and shared trunk multi-task models.
comment: Submitted to 32th International Congress on Sound and Vibration (ICSV32)
☆ TIDE: Temporal Incremental Draft Engine for Self-Improving LLM Inference
Speculative decoding can substantially accelerate LLM inference, but realizing its benefits in practice is challenging due to evolving workloads and system-level constraints. We present TIDE (Temporal Incremental Draft Engine), a serving-engine-native framework that integrates online draft adaptation directly into high-performance LLM inference systems. TIDE reuses target model hidden states generated during inference as training signals, enabling zero-overhead draft adaptation without reloading the target model, and employs adaptive runtime control to activate speculation and training only when beneficial. TIDE exploits heterogeneous clusters by mapping decoupled inference and training to appropriate GPU classes. Across diverse real-world workloads, TIDE achieves up to 1.15x throughput improvement over static speculative decoding while reducing draft training time by 1.67x compared to approaches that recompute training signals.
☆ Can One-sided Arguments Lead to Response Change in Large Language Models?
Polemic questions need more than one viewpoint to express a balanced answer. Large Language Models (LLMs) can provide a balanced answer, but also take a single aligned viewpoint or refuse to answer. In this paper, we study if such initial responses can be steered to a specific viewpoint in a simple and intuitive way: by only providing one-sided arguments supporting the viewpoint. Our systematic study has three dimensions: (i) which stance is induced in the LLM response, (ii) how the polemic question is formulated, (iii) how the arguments are shown. We construct a small dataset and remarkably find that opinion steering occurs across (i)-(iii) for diverse models, number of arguments, and topics. Switching to other arguments consistently decreases opinion steering.
☆ GRP-Obliteration: Unaligning LLMs With a Single Unlabeled Prompt
Safety alignment is only as robust as its weakest failure mode. Despite extensive work on safety post-training, it has been shown that models can be readily unaligned through post-deployment fine-tuning. However, these methods often require extensive data curation and degrade model utility. In this work, we extend the practical limits of unalignment by introducing GRP-Obliteration (GRP-Oblit), a method that uses Group Relative Policy Optimization (GRPO) to directly remove safety constraints from target models. We show that a single unlabeled prompt is sufficient to reliably unalign safety-aligned models while largely preserving their utility, and that GRP-Oblit achieves stronger unalignment on average than existing state-of-the-art techniques. Moreover, GRP-Oblit generalizes beyond language models and can also unalign diffusion-based image generation systems. We evaluate GRP-Oblit on six utility benchmarks and five safety benchmarks across fifteen 7-20B parameter models, spanning instruct and reasoning models, as well as dense and MoE architectures. The evaluated model families include GPT-OSS, distilled DeepSeek, Gemma, Llama, Ministral, and Qwen.
☆ Steering Safely or Off a Cliff? Rethinking Specificity and Robustness in Inference-Time Interventions EACL 2026
Model steering, which involves intervening on hidden representations at inference time, has emerged as a lightweight alternative to finetuning for precisely controlling large language models. While steering efficacy has been widely studied, evaluations of whether interventions alter only the intended property remain limited, especially with respect to unintended changes in behaviors related to the target property. We call this notion specificity. We propose a framework that distinguishes three dimensions of specificity: general (preserving fluency and unrelated abilities), control (preserving related control properties), and robustness (preserving control properties under distribution shifts). We study two safety-critical use cases: steering models to reduce overrefusal and faithfulness hallucinations, and show that while steering achieves high efficacy and largely maintains general and control specificity, it consistently fails to preserve robustness specificity. In the case of overrefusal steering, for example, all steering methods reduce overrefusal without harming general abilities and refusal on harmful queries; however, they substantially increase vulnerability to jailbreaks. Our work provides the first systematic evaluation of specificity in model steering, showing that standard efficacy and specificity checks are insufficient, because without robustness evaluation, steering methods may appear reliable even when they compromise model safety.
comment: EACL 2026 Main, Long Paper
☆ ASMa: Asymmetric Spatio-temporal Masking for Skeleton Action Representation Learning
Self-supervised learning (SSL) has shown remarkable success in skeleton-based action recognition by leveraging data augmentations to learn meaningful representations. However, existing SSL methods rely on data augmentations that predominantly focus on masking high-motion frames and high-degree joints such as joints with degree 3 or 4. This results in biased and incomplete feature representations that struggle to generalize across varied motion patterns. To address this, we propose Asymmetric Spatio-temporal Masking (ASMa) for Skeleton Action Representation Learning, a novel combination of masking to learn a full spectrum of spatio-temporal dynamics inherent in human actions. ASMa employs two complementary masking strategies: one that selectively masks high-degree joints and low-motion, and another that masks low-degree joints and high-motion frames. These masking strategies ensure a more balanced and comprehensive skeleton representation learning. Furthermore, we introduce a learnable feature alignment module to effectively align the representations learned from both masked views. To facilitate deployment in resource-constrained settings and on low-resource devices, we compress the learned and aligned representation into a lightweight model using knowledge distillation. Extensive experiments on NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets demonstrate that our approach outperforms existing SSL methods with an average improvement of 2.7-4.4% in fine-tuning and up to 5.9% in transfer learning to noisy datasets and achieves competitive performance compared to fully supervised baselines. Our distilled model achieves 91.4% parameter reduction and 3x faster inference on edge devices while maintaining competitive accuracy, enabling practical deployment in resource-constrained scenarios.
☆ REBEL: Hidden Knowledge Recovery via Evolutionary-Based Evaluation Loop
Machine unlearning for LLMs aims to remove sensitive or copyrighted data from trained models. However, the true efficacy of current unlearning methods remains uncertain. Standard evaluation metrics rely on benign queries that often mistake superficial information suppression for genuine knowledge removal. Such metrics fail to detect residual knowledge that more sophisticated prompting strategies could still extract. We introduce REBEL, an evolutionary approach for adversarial prompt generation designed to probe whether unlearned data can still be recovered. Our experiments demonstrate that REBEL successfully elicits ``forgotten'' knowledge from models that seemed to be forgotten in standard unlearning benchmarks, revealing that current unlearning methods may provide only a superficial layer of protection. We validate our framework on subsets of the TOFU and WMDP benchmarks, evaluating performance across a diverse suite of unlearning algorithms. Our experiments show that REBEL consistently outperforms static baselines, recovering ``forgotten'' knowledge with Attack Success Rates (ASRs) reaching up to 60% on TOFU and 93% on WMDP. We will make all code publicly available upon acceptance. Code is available at https://github.com/patryk-rybak/REBEL/
☆ ATEX-CF: Attack-Informed Counterfactual Explanations for Graph Neural Networks ICLR 2026
Counterfactual explanations offer an intuitive way to interpret graph neural networks (GNNs) by identifying minimal changes that alter a model's prediction, thereby answering "what must differ for a different outcome?". In this work, we propose a novel framework, ATEX-CF that unifies adversarial attack techniques with counterfactual explanation generation-a connection made feasible by their shared goal of flipping a node's prediction, yet differing in perturbation strategy: adversarial attacks often rely on edge additions, while counterfactual methods typically use deletions. Unlike traditional approaches that treat explanation and attack separately, our method efficiently integrates both edge additions and deletions, grounded in theory, leveraging adversarial insights to explore impactful counterfactuals. In addition, by jointly optimizing fidelity, sparsity, and plausibility under a constrained perturbation budget, our method produces instance-level explanations that are both informative and realistic. Experiments on synthetic and real-world node classification benchmarks demonstrate that ATEX-CF generates faithful, concise, and plausible explanations, highlighting the effectiveness of integrating adversarial insights into counterfactual reasoning for GNNs.
comment: 30 pages, accepted by ICLR 2026, github code:https://github.com/zhangyuo/ATEX_CF
☆ RuleSmith: Multi-Agent LLMs for Automated Game Balancing
Game balancing is a longstanding challenge requiring repeated playtesting, expert intuition, and extensive manual tuning. We introduce RuleSmith, the first framework that achieves automated game balancing by leveraging the reasoning capabilities of multi-agent LLMs. It couples a game engine, multi-agent LLMs self-play, and Bayesian optimization operating over a multi-dimensional rule space. As a proof of concept, we instantiate RuleSmith on CivMini, a simplified civilization-style game containing heterogeneous factions, economy systems, production rules, and combat mechanics, all governed by tunable parameters. LLM agents interpret textual rulebooks and game states to generate actions, to conduct fast evaluation of balance metrics such as win-rate disparities. To search the parameter landscape efficiently, we integrate Bayesian optimization with acquisition-based adaptive sampling and discrete projection: promising candidates receive more evaluation games for accurate assessment, while exploratory candidates receive fewer games for efficient exploration. Experiments show that RuleSmith converges to highly balanced configurations and provides interpretable rule adjustments that can be directly applied to downstream game systems. Our results illustrate that LLM simulation can serve as a powerful surrogate for automating design and balancing in complex multi-agent environments.
☆ SR4-Fit: An Interpretable and Informative Classification Algorithm Applied to Prediction of U.S. House of Representatives Elections IEEE
The growth of machine learning demands interpretable models for critical applications, yet most high-performing models are ``black-box'' systems that obscure input-output relationships, while traditional rule-based algorithms like RuleFit suffer from a lack of predictive power and instability despite their simplicity. This motivated our development of Sparse Relaxed Regularized Regression Rule-Fit (SR4-Fit), a novel interpretable classification algorithm that addresses these limitations while maintaining superior classification performance. Using demographic characteristics of U.S. congressional districts from the Census Bureau's American Community Survey, we demonstrate that SR4-Fit can predict House election party outcomes with unprecedented accuracy and interpretability. Our results show that while the majority party remains the strongest predictor, SR4-Fit has revealed intrinsic combinations of demographic factors that affect prediction outcomes that were unable to be interpreted in black-box algorithms such as random forests. The SR4-Fit algorithm surpasses both black-box models and existing interpretable rule-based algorithms such as RuleFit with respect to accuracy, simplicity, and robustness, generating stable and interpretable rule sets while maintaining superior predictive performance, thus addressing the traditional trade-off between model interpretability and predictive capability in electoral forecasting. To further validate SR4-Fit's performance, we also apply it to six additional publicly available classification datasets, like the breast cancer, Ecoli, page blocks, Pima Indians, vehicle, and yeast datasets, and find similar results.
comment: 8 pages, 2 figures, 7 tables, to appear in the 24th IEEE AMLA International Conference on Machine Learning and Applications (ICMLA'25)
☆ Do It for HER: First-Order Temporal Logic Reward Specification in Reinforcement Learning (Extended Version) AAAI 2026
In this work, we propose a novel framework for the logical specification of non-Markovian rewards in Markov Decision Processes (MDPs) with large state spaces. Our approach leverages Linear Temporal Logic Modulo Theories over finite traces (LTLfMT), a more expressive extension of classical temporal logic in which predicates are first-order formulas of arbitrary first-order theories rather than simple Boolean variables. This enhanced expressiveness enables the specification of complex tasks over unstructured and heterogeneous data domains, promoting a unified and reusable framework that eliminates the need for manual predicate encoding. However, the increased expressive power of LTLfMT introduces additional theoretical and computational challenges compared to standard LTLf specifications. We address these challenges from a theoretical standpoint, identifying a fragment of LTLfMT that is tractable but sufficiently expressive for reward specification in an infinite-state-space context. From a practical perspective, we introduce a method based on reward machines and Hindsight Experience Replay (HER) to translate first-order logic specifications and address reward sparsity. We evaluate this approach to a continuous-control setting using Non-Linear Arithmetic Theory, showing that it enables natural specification of complex tasks. Experimental results show how a tailored implementation of HER is fundamental in solving tasks with complex goals.
comment: This is the extended version of a paper accepted at AAAI 2026
☆ Coupled Local and Global World Models for Efficient First Order RL
World models offer a promising avenue for more faithfully capturing complex dynamics, including contacts and non-rigidity, as well as complex sensory information, such as visual perception, in situations where standard simulators struggle. However, these models are computationally complex to evaluate, posing a challenge for popular RL approaches that have been successfully used with simulators to solve complex locomotion tasks but yet struggle with manipulation. This paper introduces a method that bypasses simulators entirely, training RL policies inside world models learned from robots' interactions with real environments. At its core, our approach enables policy training with large-scale diffusion models via a novel decoupled first-order gradient (FoG) method: a full-scale world model generates accurate forward trajectories, while a lightweight latent-space surrogate approximates its local dynamics for efficient gradient computation. This coupling of a local and global world model ensures high-fidelity unrolling alongside computationally tractable differentiation. We demonstrate the efficacy of our method on the Push-T manipulation task, where it significantly outperforms PPO in sample efficiency. We further evaluate our approach through an ego-centric object manipulation task with a quadruped. Together, these results demonstrate that learning inside data-driven world models is a promising pathway for solving hard-to-model RL tasks in image space without reliance on hand-crafted physics simulators.
☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
☆ Emergent Low-Rank Training Dynamics in MLPs with Smooth Activations
Recent empirical evidence has demonstrated that the training dynamics of large-scale deep neural networks occur within low-dimensional subspaces. While this has inspired new research into low-rank training, compression, and adaptation, theoretical justification for these dynamics in nonlinear networks remains limited. %compared to deep linear settings. To address this gap, this paper analyzes the learning dynamics of multi-layer perceptrons (MLPs) under gradient descent (GD). We demonstrate that the weight dynamics concentrate within invariant low-dimensional subspaces throughout training. Theoretically, we precisely characterize these invariant subspaces for two-layer networks with smooth nonlinear activations, providing insight into their emergence. Experimentally, we validate that this phenomenon extends beyond our theoretical assumptions. Leveraging these insights, we empirically show there exists a low-rank MLP parameterization that, when initialized within the appropriate subspaces, matches the classification performance of fully-parameterized counterparts on a variety of classification tasks.
comment: 41 pages, 15 figures
☆ Multi-Way Representation Alignment
The Platonic Representation Hypothesis suggests that independently trained neural networks converge to increasingly similar latent spaces. However, current strategies for mapping these representations are inherently pairwise, scaling quadratically with the number of models and failing to yield a consistent global reference. In this paper, we study the alignment of $M \ge 3$ models. We first adapt Generalized Procrustes Analysis (GPA) to construct a shared orthogonal universe that preserves the internal geometry essential for tasks like model stitching. We then show that strict isometric alignment is suboptimal for retrieval, where agreement-maximizing methods like Canonical Correlation Analysis (CCA) typically prevail. To bridge this gap, we finally propose Geometry-Corrected Procrustes Alignment (GCPA), which establishes a robust GPA-based universe followed by a post-hoc correction for directional mismatch. Extensive experiments demonstrate that GCPA consistently improves any-to-any retrieval while retaining a practical shared reference space.
☆ Learning Rate Scaling across LoRA Ranks and Transfer to Full Finetuning
Low-Rank Adaptation (LoRA) is a standard tool for parameter-efficient finetuning of large models. While it induces a small memory footprint, its training dynamics can be surprisingly complex as they depend on several hyperparameters such as initialization, adapter rank, and learning rate. In particular, it is unclear how the optimal learning rate scales with adapter rank, which forces practitioners to re-tune the learning rate whenever the rank is changed. In this paper, we introduce Maximal-Update Adaptation ($μ$A), a theoretical framework that characterizes how the "optimal" learning rate should scale with model width and adapter rank to produce stable, non-vanishing feature updates under standard configurations. $μ$A is inspired from the Maximal-Update Parametrization ($μ$P) in pretraining. Our analysis leverages techniques from hyperparameter transfer and reveals that the optimal learning rate exhibits different scaling patterns depending on initialization and LoRA scaling factor. Specifically, we identify two regimes: one where the optimal learning rate remains roughly invariant across ranks, and another where it scales inversely with rank. We further identify a configuration that allows learning rate transfer from LoRA to full finetuning, drastically reducing the cost of learning rate tuning for full finetuning. Experiments across language, vision, vision--language, image generation, and reinforcement learning tasks validate our scaling rules and show that learning rates tuned on LoRA transfer reliably to full finetuning.
☆ AnyThermal: Towards Learning Universal Representations for Thermal Perception IEEE
We present AnyThermal, a thermal backbone that captures robust task-agnostic thermal features suitable for a variety of tasks such as cross-modal place recognition, thermal segmentation, and monocular depth estimation using thermal images. Existing thermal backbones that follow task-specific training from small-scale data result in utility limited to a specific environment and task. Unlike prior methods, AnyThermal can be used for a wide range of environments (indoor, aerial, off-road, urban) and tasks, all without task-specific training. Our key insight is to distill the feature representations from visual foundation models such as DINOv2 into a thermal encoder using thermal data from these multiple environments. To bridge the diversity gap of the existing RGB-Thermal datasets, we introduce the TartanRGBT platform, the first open-source data collection platform with synced RGB-Thermal image acquisition. We use this payload to collect the TartanRGBT dataset - a diverse and balanced dataset collected in 4 environments. We demonstrate the efficacy of AnyThermal and TartanRGBT, achieving state-of-the-art results with improvements of up to 36% across diverse environments and downstream tasks on existing datasets.
comment: Accepted at IEEE ICRA (International Conference on Robotics & Automation) 2026
☆ Personagram: Bridging Personas and Product Design for Creative Ideation with Multimodal LLMs
Product designers often begin their design process with handcrafted personas. While personas are intended to ground design decisions in consumer preferences, they often fall short in practice by remaining abstract, expensive to produce, and difficult to translate into actionable design features. As a result, personas risk serving as static reference points rather than tools that actively shape design outcomes. To address these challenges, we built Personagram, an interactive system powered by multimodal large language models (MLLMs) that helps designers explore detailed census-based personas, extract product features inferred from persona attributes, and recombine them for specific customer segments. In a study with 12 professional designers, we show that Personagram facilitates more actionable ideation workflows by structuring multimodal thinking from persona attributes to product design features, achieving higher engagement with personas, perceived transparency, and satisfaction compared to a chat-based baseline. We discuss implications of integrating AI-generated personas into product design workflows.
comment: 22 pages, 10 figures, 4 tables
☆ Generics in science communication: Misaligned interpretations across laypeople, scientists, and large language models
Scientists often use generics, that is, unquantified statements about whole categories of people or phenomena, when communicating research findings (e.g., "statins reduce cardiovascular events"). Large language models (LLMs), such as ChatGPT, frequently adopt the same style when summarizing scientific texts. However, generics can prompt overgeneralizations, especially when they are interpreted differently across audiences. In a study comparing laypeople, scientists, and two leading LLMs (ChatGPT-5 and DeepSeek), we found systematic differences in interpretation of generics. Compared to most scientists, laypeople judged scientific generics as more generalizable and credible, while LLMs rated them even higher. These mismatches highlight significant risks for science communication. Scientists may use generics and incorrectly assume laypeople share their interpretation, while LLMs may systematically overgeneralize scientific findings when summarizing research. Our findings underscore the need for greater attention to language choices in both human and LLM-mediated science communication.
☆ Large Language Model Reasoning Failures
Large Language Models (LLMs) have exhibited remarkable reasoning capabilities, achieving impressive results across a wide range of tasks. Despite these advances, significant reasoning failures persist, occurring even in seemingly simple scenarios. To systematically understand and address these shortcomings, we present the first comprehensive survey dedicated to reasoning failures in LLMs. We introduce a novel categorization framework that distinguishes reasoning into embodied and non-embodied types, with the latter further subdivided into informal (intuitive) and formal (logical) reasoning. In parallel, we classify reasoning failures along a complementary axis into three types: fundamental failures intrinsic to LLM architectures that broadly affect downstream tasks; application-specific limitations that manifest in particular domains; and robustness issues characterized by inconsistent performance across minor variations. For each reasoning failure, we provide a clear definition, analyze existing studies, explore root causes, and present mitigation strategies. By unifying fragmented research efforts, our survey provides a structured perspective on systemic weaknesses in LLM reasoning, offering valuable insights and guiding future research towards building stronger, more reliable, and robust reasoning capabilities. We additionally release a comprehensive collection of research works on LLM reasoning failures, as a GitHub repository at https://github.com/Peiyang-Song/Awesome-LLM-Reasoning-Failures, to provide an easy entry point to this area.
comment: Repository: https://github.com/Peiyang-Song/Awesome-LLM-Reasoning-Failures. Published at TMLR 2026 with Survey Certification
☆ Optimal rates for density and mode estimation with expand-and-sparsify representations AISTATS 2026
Expand-and-sparsify representations are a class of theoretical models that capture sparse representation phenomena observed in the sensory systems of many animals. At a high level, these representations map an input $x \in \mathbb{R}^d$ to a much higher dimension $m \gg d$ via random linear projections before zeroing out all but the $k \ll m$ largest entries. The result is a $k$-sparse vector in $\{0,1\}^m$. We study the suitability of this representation for two fundamental statistical problems: density estimation and mode estimation. For density estimation, we show that a simple linear function of the expand-and-sparsify representation produces an estimator with minimax-optimal $\ell_{\infty}$ convergence rates. In mode estimation, we provide simple algorithms on top of our density estimator that recover single or multiple modes at optimal rates up to logarithmic factors under mild conditions.
comment: Accepted at AISTATS 2026
☆ Stop the Flip-Flop: Context-Preserving Verification for Fast Revocable Diffusion Decoding
Parallel diffusion decoding can accelerate diffusion language model inference by unmasking multiple tokens per step, but aggressive parallelism often harms quality. Revocable decoding mitigates this by rechecking earlier tokens, yet we observe that existing verification schemes frequently trigger flip-flop oscillations, where tokens are remasked and later restored unchanged. This behaviour slows inference in two ways: remasking verified positions weakens the conditioning context for parallel drafting, and repeated remask cycles consume the revision budget with little net progress. We propose COVER (Cache Override Verification for Efficient Revision), which performs leave-one-out verification and stable drafting within a single forward pass. COVER constructs two attention views via KV cache override: selected seeds are masked for verification, while their cached key value states are injected for all other queries to preserve contextual information, with a closed form diagonal correction preventing self leakage at the seed positions. COVER further prioritises seeds using a stability aware score that balances uncertainty, downstream influence, and cache drift, and it adapts the number of verified seeds per step. Across benchmarks, COVER markedly reduces unnecessary revisions and yields faster decoding while preserving output quality.
☆ Protean Compiler: An Agile Framework to Drive Fine-grain Phase Ordering
The phase ordering problem has been a long-standing challenge since the late 1970s, yet it remains an open problem due to having a vast optimization space and an unbounded nature, making it an open-ended problem without a finite solution, one can limit the scope by reducing the number and the length of optimizations. Traditionally, such locally optimized decisions are made by hand-coded algorithms tuned for a small number of benchmarks, often requiring significant effort to be retuned when the benchmark suite changes. In the past 20 years, Machine Learning has been employed to construct performance models to improve the selection and ordering of compiler optimizations, however, the approaches are not baked into the compiler seamlessly and never materialized to be leveraged at a fine-grained scope of code segments. This paper presents Protean Compiler: An agile framework to enable LLVM with built-in phase-ordering capabilities at a fine-grained scope. The framework also comprises a complete library of more than 140 handcrafted static feature collection methods at varying scopes, and the experimental results showcase speedup gains of up to 4.1% on average and up to 15.7% on select Cbench applications wrt LLVM's O3 by just incurring a few extra seconds of build time on Cbench. Additionally, Protean compiler allows for an easy integration with third-party ML frameworks and other Large Language Models, and this two-step optimization shows a gain of 10.1% and 8.5% speedup wrt O3 on Cbench's Susan and Jpeg applications. Protean compiler is seamlessly integrated into LLVM and can be used as a new, enhanced, full-fledged compiler. We plan to release the project to the open-source community in the near future.
comment: Version 1- Submitted for a possible publication in 2026
☆ Hear You in Silence: Designing for Active Listening in Human Interaction with Conversational Agents Using Context-Aware Pacing
In human conversation, empathic dialogue requires nuanced temporal cues indicating whether the conversational partner is paying attention. This type of "active listening" is overlooked in the design of Conversational Agents (CAs), which use the same pacing for one conversation. To model the temporal cues in human conversation, we need CAs that dynamically adjust response pacing according to user input. We qualitatively analyzed ten cases of active listening to distill five context-aware pacing strategies: Reflective Silence, Facilitative Silence, Empathic Silence, Holding Space, and Immediate Response. In a between-subjects study (N=50) with two conversational scenarios (relationship and career-support), the context-aware agent scored higher than static-pacing control on perceived human-likeness, smoothness, and interactivity, supporting deeper self-disclosure and higher engagement. In the career support scenario, the CA yielded higher perceived listening quality and affective trust. This work shows how insights from human conversation like context-aware pacing can empower the design of more empathic human-AI communication.
comment: 29 pages, 10 figures. Conditionally Accepted to CHI '26
☆ Self-Improving World Modelling with Latent Actions
Internal modelling of the world -- predicting transitions between previous states $X$ and next states $Y$ under actions $Z$ -- is essential to reasoning and planning for LLMs and VLMs. Learning such models typically requires costly action-labelled trajectories. We propose SWIRL, a self-improvement framework that learns from state-only sequences by treating actions as a latent variable and alternating between Forward World Modelling (FWM) $P_θ(Y|X,Z)$ and an Inverse Dynamics Modelling (IDM) $Q_φ(Z|X,Y)$. SWIRL iterates two phases: (1) Variational Information Maximisation, which updates the FWM to generate next states that maximise conditional mutual information with latent actions given prior states, encouraging identifiable consistency; and (2) ELBO Maximisation, which updates the IDM to explain observed transitions, effectively performing coordinate ascent. Both models are trained with reinforcement learning (specifically, GRPO) with the opposite frozen model's log-probability as a reward signal. We provide theoretical learnability guarantees for both updates, and evaluate SWIRL on LLMs and VLMs across multiple environments: single-turn and multi-turn open-world visual dynamics and synthetic textual environments for physics, web, and tool calling. SWIRL achieves gains of 16% on AURORABench, 28% on ByteMorph, 16% on WorldPredictionBench, and 14% on StableToolBench.
☆ Urban Spatio-Temporal Foundation Models for Climate-Resilient Housing: Scaling Diffusion Transformers for Disaster Risk Prediction IEEE
Climate hazards increasingly disrupt urban transportation and emergency-response operations by damaging housing stock, degrading infrastructure, and reducing network accessibility. This paper presents Skjold-DiT, a diffusion-transformer framework that integrates heterogeneous spatio-temporal urban data to forecast building-level climate-risk indicators while explicitly incorporating transportation-network structure and accessibility signals relevant to intelligent vehicles (e.g., emergency reachability and evacuation-route constraints). Concretely, Skjold-DiT enables hazard-conditioned routing constraints by producing calibrated, uncertainty-aware accessibility layers (reachability, travel-time inflation, and route redundancy) that can be consumed by intelligent-vehicle routing and emergency dispatch systems. Skjold-DiT combines: (1) Fjell-Prompt, a prompt-based conditioning interface designed to support cross-city transfer; (2) Norrland-Fusion, a cross-modal attention mechanism unifying hazard maps/imagery, building attributes, demographics, and transportation infrastructure into a shared latent representation; and (3) Valkyrie-Forecast, a counterfactual simulator for generating probabilistic risk trajectories under intervention prompts. We introduce the Baltic-Caspian Urban Resilience (BCUR) dataset with 847,392 building-level observations across six cities, including multi-hazard annotations (e.g., flood and heat indicators) and transportation accessibility features. Experiments evaluate prediction quality, cross-city generalization, calibration, and downstream transportation-relevant outcomes, including reachability and hazard-conditioned travel times under counterfactual interventions.
comment: 10 pages, 5 figures. Submitted to IEEE Transactions on Intelligent Vehicles
☆ Jackpot: Optimal Budgeted Rejection Sampling for Extreme Actor-Policy Mismatch Reinforcement Learning ICLR 2026
Reinforcement learning (RL) for large language models (LLMs) remains expensive, particularly because the rollout is expensive. Decoupling rollout generation from policy optimization (e.g., leveraging a more efficient model to rollout) could enable substantial efficiency gains, yet doing so introduces a severe distribution mismatch that destabilizes learning. We propose Jackpot, a framework that leverages Optimal Budget Rejection Sampling (OBRS) to directly reduce the discrepancy between the rollout model and the evolving policy. Jackpot integrates a principled OBRS procedure, a unified training objective that jointly updates the policy and rollout models, and an efficient system implementation enabled by top-$k$ probability estimation and batch-level bias correction. Our theoretical analysis shows that OBRS consistently moves the rollout distribution closer to the target distribution under a controllable acceptance budget. Empirically, \sys substantially improves training stability compared to importance-sampling baselines, achieving performance comparable to on-policy RL when training Qwen3-8B-Base for up to 300 update steps of batchsize 64. Taken together, our results show that OBRS-based alignment brings us a step closer to practical and effective decoupling of rollout generation from policy optimization for RL for LLMs.
comment: ICLR 2026
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Language Models and Logic Programs for Trustworthy Tax Reasoning AAAI 2026
According to the United States Internal Revenue Service, ``the average American spends $\$270$ and 13 hours filing their taxes''. Even beyond the U.S., tax filing requires complex reasoning, combining application of overlapping rules with numerical calculations. Because errors can incur costly penalties, any automated system must deliver high accuracy and auditability, making modern large language models (LLMs) poorly suited for this task. We propose an approach that integrates LLMs with a symbolic solver to calculate tax obligations. We evaluate variants of this system on the challenging StAtutory Reasoning Assessment (SARA) dataset, and include a novel method for estimating the cost of deploying such a system based on real-world penalties for tax errors. We further show how combining up-front translation of plain-text rules into formal logic programs, combined with intelligently retrieved exemplars for formal case representations, can dramatically improve performance on this task and reduce costs to well below real-world averages. Our results demonstrate the effectiveness of applying semantic parsing methods to statutory reasoning, and show promising economic feasibility of neuro-symbolic architectures for increasing access to reliable tax assistance.
comment: Accepted to AAAI 2026
♻ ☆ SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model WACV
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
♻ ☆ Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
♻ ☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing improvements in the scalability of multi-agent epistemic planning.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems
We present a case study in semi-autonomous mathematics discovery, using Gemini to systematically evaluate 700 conjectures labeled 'Open' in Bloom's Erdős Problems database. We employ a hybrid methodology: AI-driven natural language verification to narrow the search space, followed by human expert evaluation to gauge correctness and novelty. We address 13 problems that were marked 'Open' in the database: 5 through seemingly novel autonomous solutions, and 8 through identification of previous solutions in the existing literature. Our findings suggest that the 'Open' status of the problems was through obscurity rather than difficulty. We also identify and discuss issues arising in applying AI to math conjectures at scale, highlighting the difficulty of literature identification and the risk of ''subconscious plagiarism'' by AI. We reflect on the takeaways from AI-assisted efforts on the Erdős Problems.
comment: Reclassify Erdos-935 as Independent Rediscovery, bringing the number of autonomous solutions down to 5. (Explanation in Addendum 4.1) Elaborate on Footnote 3. Slightly reword various phrases in the Introduction in response to feedback
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data
Modern software teams frequently encounter delays in resolving recurring or related issues due to fragmented knowledge scattered across JIRA tickets, developer discussions, and GitHub pull requests (PRs). To address this challenge, we propose a Retrieval-Augmented Generation (RAG) framework that integrates Sentence-Transformers for semantic embeddings with FAISS-based vector search to deliver context-aware ticket resolution recommendations. The approach embeds historical JIRA tickets, user comments, and linked PR metadata to retrieve semantically similar past cases, which are then synthesized by a Large Language Model (LLM) into grounded and explainable resolution suggestions. The framework contributes a unified pipeline linking JIRA and GitHub data, an embedding and FAISS indexing strategy for heterogeneous software artifacts, and a resolution generation module guided by retrieved evidence. Experimental evaluation using precision, recall, resolution time reduction, and developer acceptance metrics shows that the proposed system significantly improves resolution accuracy, fix quality, and knowledge reuse in modern DevOps environments.
comment: 13 Pages
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ Learning to summarize user information for personalized reinforcement learning from human feedback
As everyday use cases of large language model (LLM) AI assistants have expanded, it is becoming increasingly important to personalize responses to align to different users' preferences and goals. While reinforcement learning from human feedback (RLHF) is effective at improving LLMs to be generally more helpful and fluent, it does not account for variability across users, as it models the entire user population with a single reward model, meaning it assumes that everyone's preferences are the same. We present a novel framework, Preference Learning Using Summarization (PLUS), that uses reinforcement learning (RL) to learn to produce text-based summaries of each user's preferences, characteristics, and past conversations. These summaries condition the reward model, enabling it to make personalized predictions about the types of responses valued by each user. Both the user-summarization model and reward model are trained simultaneously, creating an online co-adaptation loop. We show that in contrast to the standard Bradley-Terry model, summaries produced by PLUS capture diverse aspects of user preferences, achieving a 11-77/% improvement in reward model accuracy. Key strengths of PLUS are: (1) robust performance with new users and conversation topics, achieving a 25\% improvement over the best personalized reward model technique used for RLHF; (2) zero-shot personalization with state-of-the-art proprietary models like GPT-4 (e.g., PLUS-summary-conditioned responses achieved a 72\% win rate compared to 28% for default GPT-4o); (3) learning from flexible user contexts beyond preference labels, and (4) interpretable representation of users, enabling greater transparency and user control in pluralistic LLM alignment.
comment: 10 pages for main text, 10 pages for appendix
♻ ☆ STELLAR: Structure-guided LLM Assertion Retrieval and Generation for Formal Verification
Formal Verification (FV) relies on high-quality SystemVerilog Assertions (SVAs), but the manual writing process is slow and error-prone. Existing LLM-based approaches either generate assertions from scratch or ignore structural patterns in hardware designs and expert-crafted assertions. This paper presents STELLAR, the first framework that guides LLM-based SVA generation with structural similarity. STELLAR represents RTL blocks as AST structural fingerprints, retrieves structurally relevant (RTL, SVA) pairs from a knowledge base, and integrates them into structure-guided prompts. Experiments show that STELLAR achieves superior syntax correctness, stylistic alignment, and functional correctness, highlighting structure-aware retrieval as a promising direction for industrial FV.
comment: 7 pages, 6 figures
♻ ☆ SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution
We introduce a novel dataset designed to benchmark the physical and spatial reasoning capabilities of Large Language Models (LLM) based on topology optimization, a method for computing optimal material distributions within a design space under prescribed loads and supports. In this dataset, LLMs are provided with conditions such as 2D boundary, applied forces and supports, and must reason about the resulting optimal material distribution. The dataset includes a variety of tasks, ranging from filling in masked regions within partial structures to predicting complete material distributions. Solving these tasks requires understanding the flow of forces and the required material distribution under given constraints, without access to simulation tools or explicit physical models, challenging models to reason about structural stability and spatial organization. Our dataset targets the evaluation of spatial and physical reasoning abilities in 2D settings, offering a complementary perspective to traditional language and logic benchmarks.
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ Leveraging Whisper Embeddings for Audio-based Lyrics Matching ICASSP 2026
Audio-based lyrics matching can be an appealing alternative to other content-based retrieval approaches, but existing methods often suffer from limited reproducibility and inconsistent baselines. In this work, we introduce WEALY, a fully reproducible pipeline that leverages Whisper decoder embeddings for lyrics matching tasks. WEALY establishes robust and transparent baselines, while also exploring multimodal extensions that integrate textual and acoustic features. Through extensive experiments on standard datasets, we demonstrate that WEALY achieves a performance comparable to state-of-the-art methods that lack reproducibility. In addition, we provide ablation studies and analyses on language robustness, loss functions, and embedding strategies. This work contributes a reliable benchmark for future research, and underscores the potential of speech technologies for music information retrieval tasks.
comment: Accepted at ICASSP 2026 (IEEE International Conference on Acoustics, Speech and Signal Processing)
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
Diffusion Models (DMs) have achieved remarkable progress in generative modeling. However, the mismatch between the forward terminal distribution and reverse initial distribution introduces prior error, leading to deviations of sampling trajectories from the true distribution and severely limiting model performance. This issue further triggers cascading problems, including non-zero Signal-to-Noise Ratio, accumulated denoising errors, degraded generation quality, and constrained sampling efficiency. To address this issue, this paper proposes a prior error elimination framework based on Optimal Transport (OT). Specifically, an OT map from the reverse initial distribution to the forward terminal distribution is constructed to achieve precise matching of the two distributions. Meanwhile, the upper bound of the prior error is quantified using the Wasserstein distance, proving that the prior error can be effectively eliminated via the OT map. Additionally, by deriving the asymptotic consistency between dynamic OT and probability flow, this method is revealed to be highly compatible with the intrinsic mechanism of the diffusion process. Experimental results demonstrate that the proposed method completely eliminates the prior error both theoretically and practically, providing a universal and rigorous solution for optimizing the performance of DMs.
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ Segmentation-free Goodness of Pronunciation IEEE
Mispronunciation detection and diagnosis (MDD) is a significant part in modern computer-aided language learning (CALL) systems. Most systems implementing phoneme-level MDD through goodness of pronunciation (GOP), however, rely on pre-segmentation of speech into phonetic units. This limits the accuracy of these methods and the possibility to use modern CTC-based acoustic models for their evaluation. In this study, we first propose self-alignment GOP (GOP-SA) that enables the use of CTC-trained ASR models for MDD. Next, we define a more general segmentation-free method that takes all possible segmentations of the canonical transcription into account (GOP-SF). We give a theoretical account of our definition of GOP-SF, an implementation that solves potential numerical issues as well as a proper normalization which allows the use of acoustic models with different peakiness over time. We provide extensive experimental results on the CMU Kids and speechocean762 datasets comparing the different definitions of our methods, estimating the dependency of GOP-SF on the peakiness of the acoustic models and on the amount of context around the target phoneme. Finally, we compare our methods with recent studies over the speechocean762 data showing that the feature vectors derived from the proposed method achieve state-of-the-art results on phoneme-level pronunciation assessment.
comment: The article has been accepted for publication by IEEE TASLPRO
♻ ☆ Can MLLMs generate human-like feedback in grading multimodal short answers?
In education, the traditional Automatic Short Answer Grading (ASAG) with feedback problem has focused primarily on evaluating text-only responses. However, real-world assessments often include multimodal responses containing both diagrams and text. To address this limitation, we introduce the Multimodal Short Answer Grading with Feedback (MMSAF) problem, which requires jointly evaluating textual and diagrammatic content while also providing explanatory feedback. Collecting data representative of such multimodal responses is challenging due to both scale and logistical constraints. To mitigate this, we develop an automated data generation framework that leverages LLM hallucinations to mimic common student errors, thereby constructing a dataset of 2,197 instances. We evaluate 4 Multimodal Large Language Models (MLLMs) across 3 STEM subjects, showing that MLLMs achieve accuracies of up to 62.5% in predicting answer correctness (correct/partially correct/incorrect) and up to 80.36% in assessing image relevance. This also includes a human evaluation with 9 annotators across 5 parameters, including a rubric-based approach. The rubrics also serve as a way to evaluate the feedback quality semantically rather than using overlap-based approaches. Our findings highlight which MLLMs are better suited for such tasks while also pointing out to drawbacks of the remaining MLLMs.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Resisting Manipulative Bots in Meme Coin Copy Trading: A Multi-Agent Approach with Chain-of-Thought Reasoning
Copy trading has become the dominant entry strategy in meme coin markets. However, due to the market's extremely illiquid and volatile nature, the strategy exposes an exploitable attack surface: adversaries deploy manipulative bots to front-run trades, conceal positions, and fabricate sentiment, systematically extracting value from naïve copiers at scale. Despite its prevalence, bot-driven manipulation remains largely unexplored, and no robust defensive framework exists. We propose a manipulation-resistant copy-trading system based on a multi-agent architecture powered by a multi-modal large language model (LLM) and chain-of-thought (CoT) reasoning. Our approach outperforms zero-shot and most statistic-driven baselines in prediction accuracy as well as all baselines in economic performance, achieving an average copier return of 3% per meme coin investment under realistic market frictions. Overall, our results demonstrate the effectiveness of agent-based defenses and predictability of trader profitability in adversarial meme coin markets, providing a practical foundation for robust copy trading.
♻ ☆ Reversible Deep Learning for 13C NMR in Chemoinformatics: On Structures and Spectra
We introduce a reversible deep learning model for 13C NMR that uses a single conditional invertible neural network for both directions between molecular structures and spectra. The network is built from i-RevNet style bijective blocks, so the forward map and its inverse are available by construction. We train the model to predict a 128-bit binned spectrum code from a graph-based structure encoding, while the remaining latent dimensions capture residual variability. At inference time, we invert the same trained network to generate structure candidates from a spectrum code, which explicitly represents the one-to-many nature of spectrum-to-structure inference. On a filtered subset, the model is numerically invertible on trained examples, achieves spectrum-code prediction above chance, and produces coarse but meaningful structural signals when inverted on validation spectra. These results demonstrate that invertible architectures can unify spectrum prediction and uncertainty-aware candidate generation within one end-to-end model.
comment: 10 pages, 4 figures, 4 tables
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries IEEE
Providing soundtracks for videos remains a costly and time-consuming challenge for multimedia content creators. We introduce EMSYNC, an automatic video-based symbolic music generator that creates music aligned with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate upcoming video scene cuts and align generated musical chords with them. We also propose a mapping scheme that bridges the discrete categorical outputs of the video emotion classifier with the continuous valence-arousal inputs required by the emotion-conditioned MIDI generator, enabling seamless integration of emotion information across different representations. Our method outperforms state-of-the-art models in objective and subjective evaluations across different video datasets, demonstrating its effectiveness in generating music aligned to video both emotionally and temporally. Our demo and output samples are available at https://serkansulun.com/emsync.
comment: IEEE Transactions on Multimedia, 2026, in print
♻ ☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring ICRA 2026
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
♻ ☆ The Use of AI-Robotic Systems for Scientific Discovery
The process of developing theories and models and testing them with experiments is fundamental to the scientific method. Automating the entire scientific method then requires not only automation of the induction of theories from data, but also experimentation from design to implementation. This is the idea behind a robot scientist -- a coupled system of AI and laboratory robotics that has agency to test hypotheses with real-world experiments. In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science. We also map the activities of a robot scientist to machine learning paradigms, and argue that the scientific method shares an analogy with active learning. We demonstrate these concepts using examples from previous robot scientists, and also from Genesis: a next generation robot scientist designed for research in systems biology, comprising a micro-fluidic system with 1000 computer-controlled micro-bioreactors and interpretable models based in controlled vocabularies and logic.
comment: 23 pages, book chapter
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ ExplainReduce: Generating global explanations from many local explanations
Most commonly used non-linear machine learning methods are closed-box models, uninterpretable to humans. The field of explainable artificial intelligence (XAI) aims to develop tools to examine the inner workings of these closed boxes. An often-used model-agnostic approach to XAI involves using simple models as local approximations to produce so-called local explanations; examples of this approach include LIME, SHAP, and SLISEMAP. This paper shows how a large set of local explanations can be reduced to a small "proxy set" of simple models, which can act as a generative global explanation. This reduction procedure, ExplainReduce, can be formulated as an optimisation problem and approximated efficiently using greedy heuristics. We show that, for many problems, as few as five explanations can faithfully emulate the closed-box model and that our reduction procedure is competitive with other model aggregation methods.
comment: 21 pages with a 36 page appendix, 8 + 39 figures, 1+1 tables. The datasets and source code used in the paper are available at https://github.com/edahelsinki/explainreduce
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise NeurIPS 2025
Sharpness-aware minimization (SAM) has emerged as a highly effective technique to improve model generalization, but its underlying principles are not fully understood. We investigate m-sharpness, where SAM performance improves monotonically as the micro-batch size for computing perturbations decreases, a phenomenon critical for distributed training yet lacking rigorous explanation. We leverage an extended Stochastic Differential Equation (SDE) framework and analyze stochastic gradient noise (SGN) to characterize the dynamics of SAM variants, including n-SAM and m-SAM. Our analysis reveals that stochastic perturbations induce an implicit variance-based sharpness regularization whose strength increases as m decreases. Motivated by this insight, we propose Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate our theory and method.
comment: Accepted to NeurIPS 2025
♻ ☆ Differentiable Constraint-Based Causal Discovery
Causal discovery from observational data is a fundamental task in artificial intelligence, with far-reaching implications for decision-making, predictions, and interventions. Despite significant advances, existing methods can be broadly categorized as constraint-based or score-based approaches. Constraint-based methods offer rigorous causal discovery but are often hindered by small sample sizes, while score-based methods provide flexible optimization but typically forgo explicit conditional independence testing. This work explores a third avenue: developing differentiable $d$-separation scores, obtained through a percolation theory using soft logic. This enables the implementation of a new type of causal discovery method: gradient-based optimization of conditional independence constraints. Empirical evaluations demonstrate the robust performance of our approach in low-sample regimes, surpassing traditional constraint-based and score-based baselines on a real-world dataset. Code and data of the proposed method are publicly available at https://github$.$com/PurdueMINDS/DAGPA.
♻ ☆ Exploring Silicon-Based Societies: An Early Study of the Moltbook Agent Community
The rapid emergence of autonomous large language model agents has given rise to persistent, large-scale agent ecosystems whose collective behavior cannot be adequately understood through anecdotal observation or small-scale simulation. This paper introduces data-driven silicon sociology as a systematic empirical framework for studying social structure formation among interacting artificial agents. We present a pioneering large-scale data mining investigation of an in-the-wild agent society by analyzing Moltbook, a social platform designed primarily for agent-to-agent interaction. At the time of study, Moltbook hosted over 150,000 registered autonomous agents operating across thousands of agent-created sub-communities. Using programmatic and non-intrusive data acquisition, we collected and analyzed the textual descriptions of 12,758 submolts, which represent proactive sub-community partitioning activities within the ecosystem. Treating agent-authored descriptions as first-class observational artifacts, we apply rigorous preprocessing, contextual embedding, and unsupervised clustering techniques to uncover latent patterns of thematic organization and social space structuring. The results show that autonomous agents systematically organize collective space through reproducible patterns spanning human-mimetic interests, silicon-centric self-reflection, and early-stage economic and coordination behaviors. Rather than relying on predefined sociological taxonomies, these structures emerge directly from machine-generated data traces. This work establishes a methodological foundation for data-driven silicon sociology and demonstrates that data mining techniques can provide a powerful lens for understanding the organization and evolution of large autonomous agent societies.
comment: 11 pages, 3 figures. This update refines the framing of novelty claims by replacing absolute "first" statements with more precise and scoped formulations (e.g., "one of the earliest"). Our systematic methodological and empirical contributions remain unchanged
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Dual Perspectives on Non-Contrastive Self-Supervised Learning
The {\em stop gradient} and {\em exponential moving average} iterative procedures are commonly used in non-contrastive approaches to self-supervised learning to avoid representation collapse, with excellent performance in downstream applications in practice. This presentation investigates these procedures from the dual viewpoints of optimization and dynamical systems. We show that, in general, although they {\em do not} optimize the original objective, or {\em any} other smooth function, they {\em do} avoid collapse Following~\citet{Tian21}, but without any of the extra assumptions used in their proofs, we then show using a dynamical system perspective that, in the linear case, minimizing the original objective function without the use of a stop gradient or exponential moving average {\em always} leads to collapse. Conversely, we characterize explicitly the equilibria of the dynamical systems associated with these two procedures in this linear setting as algebraic varieties in their parameter space, and show that they are, in general, {\em asymptotically stable}. Our theoretical findings are illustrated by empirical experiments with real and synthetic data.
♻ ☆ Investigating the Impact of Histopathological Foundation Models on Regressive Prediction of Homologous Recombination Deficiency
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
comment: 9 pages, 7 figures and 5 tables
♻ ☆ Are foundation models useful feature extractors for electroencephalography analysis?
The success of foundation models in natural language processing and computer vision has motivated similar approaches in time series analysis. While foundational time series models have proven beneficial on a variety of tasks, their effectiveness in medical applications with limited data remains underexplored. In this work, we investigate this question in the context of electroencephalography (EEG) by evaluating general-purpose time series models on age prediction, seizure detection, and classification of clinically relevant EEG events. We compare their diagnostic performance against specialised EEG models and assess the quality of the extracted features. The results show that general-purpose models are competitive and capture features useful to localising demographic and disease-related biomarkers. These findings indicate that foundational time series models can reduce the reliance on large task-specific datasets and models, making them valuable in clinical practice.
♻ ☆ Auto-Rubric: Learning From Implicit Weights to Explicit Rubrics for Reward Modeling
Conventional reward modeling relies on gradient descent over neural weights, creating opaque, data-hungry "black boxes." We propose a paradigm shift from implicit to explicit reward parameterization, recasting optimization from continuous weight spaces to the discrete space of natural language rubrics. We introduce a training-free framework based on iterative rubric learning: it locally induces discriminative criteria via verification-driven refinement, and globally compresses the candidate criteria pool into a compact core set by maximizing an information-theoretic coding rate objective. We organize the compressed core set into a hierarchical rubric structure -- high-level evaluation dimensions supported by concrete verification checks -- serving as an interpretable, portable reward function. Empirically, our approach challenges prevailing data scaling assumptions: using only 70 preference pairs, our rubric-guided judges outperform fully trained reward models on diverse benchmarks. For instance, Qwen3-8B equipped with our learned rubrics achieves 80.91% on RewardBench2, surpassing the specialized Skywork-Reward-V2-Qwen3-8B (78.20%). These results demonstrate that alignment signals are highly compressible and can be effectively captured through explicit symbolic search.
♻ ☆ SurvDiff: A Diffusion Model for Generating Synthetic Data in Survival Analysis
Survival analysis is a cornerstone of clinical research by modeling time-to-event outcomes such as metastasis, disease relapse, or patient death. Unlike standard tabular data, survival data often come with incomplete event information due to dropout, or loss to follow-up. This poses unique challenges for synthetic data generation, where it is crucial for clinical research to faithfully reproduce both the event-time distribution and the censoring mechanism. In this paper, we propose SurvDiff an end-to-end diffusion model specifically designed for generating synthetic data in survival analysis. SurvDiff is tailored to capture the data-generating mechanism by jointly generating mixed-type covariates, event times, and right-censoring, guided by a survival-tailored loss function. The loss encodes the time-to-event structure and directly optimizes for downstream survival tasks, which ensures that SurvDiff (i) reproduces realistic event-time distributions and (ii preserves the censoring mechanism. Across multiple datasets, we show that SurvDiff consistently outperforms state-of-the-art generative baselines in both distributional fidelity and survival model evaluation metrics across multiple medical datasets. To the best of our knowledge, SurvDiff is the first end-to-end diffusion model explicitly designed for generating synthetic survival data.
♻ ☆ AlphaBeta is not as good as you think: a simple class of synthetic games for a better analysis of deterministic game-solving algorithms
Deterministic game-solving algorithms are conventionally analyzed in the light of their average-case complexity against a distribution of random game-trees, where leaf values are independently sampled from a fixed distribution. This simplified model enables uncluttered mathematical analysis, revealing two key properties: root value distributions asymptotically collapse to a single fixed value for finite-valued trees, and all reasonable algorithms achieve global optimality. However, these findings are artifacts of the model's design: its long criticized independence assumption strips games of structural complexity, producing trivial instances where no algorithm faces meaningful challenges. To address this limitation, we introduce a class of synthetic games generated by a probabilistic model that incrementally constructs game-trees using a fixed level-wise conditional distribution. By enforcing ancestor dependencies, a critical structural feature of real-world games, our framework generates problems with adjustable difficulty while retaining some form of analytical tractability. For several algorithms, including AlphaBeta and Scout, we derive recursive formulas characterizing their average-case complexities under this model. These allow us to rigorously compare algorithms on deep game-trees, where Monte-Carlo simulations are no longer feasible. While asymptotically, all algorithms seem to converge to identical branching factor (a result analogous to that of independence-based models), deep finite trees reveal stark differences: AlphaBeta incurs a significantly larger constant multiplicative factor compared to algorithms like Scout, leading to a substantial practical slowdown. Our framework sheds new light on classical game-solving algorithms, offering rigorous evidence and analytical tools to advance the understanding of these methods under a richer, more challenging, and yet tractable model.
♻ ☆ Log2Motion: Biomechanical Motion Synthesis from Touch Logs
Touch data from mobile devices are collected at scale but reveal little about the interactions that produce them. While biomechanical simulations can illuminate motor control processes, they have not yet been developed for touch interactions. To close this gap, we propose a novel computational problem: synthesizing plausible motion directly from logs. Our key insight is a reinforcement learning-driven musculoskeletal forward simulation that generates biomechanically plausible motion sequences consistent with events recorded in touch logs. We achieve this by integrating a software emulator into a physics simulator, allowing biomechanical models to manipulate real applications in real-time. Log2Motion produces rich syntheses of user movements from touch logs, including estimates of motion, speed, accuracy, and effort. We assess the plausibility of generated movements by comparing against human data from a motion capture study and prior findings, and demonstrate Log2Motion in a large-scale dataset. Biomechanical motion synthesis provides a new way to understand log data, illuminating the ergonomics and motor control underlying touch interactions.
♻ ☆ GeoRA: Geometry-Aware Low-Rank Adaptation for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) is crucial for advancing large-scale reasoning models. However, existing parameter-efficient methods, such as PiSSA and MiLoRA, are designed for Supervised Fine-Tuning (SFT) and do not account for the distinct optimization dynamics and geometric structures of RLVR. Applying these methods directly leads to spectral collapse and optimization instability, which severely limit model performance. Meanwhile, alternative approaches that leverage update sparsity encounter significant efficiency bottlenecks on modern hardware due to unstructured computations. To address these challenges, we propose GeoRA (Geometry-Aware Low-Rank Adaptation), which exploits the anisotropic and compressible nature of RL update subspaces. GeoRA initializes adapters by extracting principal directions via Singular Value Decomposition (SVD) within a geometrically constrained subspace while freezing the residual components. This method preserves the pre-trained geometric structure and enables efficient GPU computation through dense operators. Experiments on Qwen and Llama demonstrate that GeoRA mitigates optimization bottlenecks caused by geometric misalignment. It consistently outperforms established low-rank baselines on key mathematical benchmarks, achieving state-of-the-art (SOTA) results. Moreover, GeoRA shows superior generalization and resilience to catastrophic forgetting in out-of-domain tasks.
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Preference-based Reinforcement Learning beyond Pairwise Comparisons: Benefits of Multiple Options NeurIPS 2025
We study online preference-based reinforcement learning (PbRL) with the goal of improving sample efficiency. While a growing body of theoretical work has emerged-motivated by PbRL's recent empirical success, particularly in aligning large language models (LLMs)-most existing studies focus only on pairwise comparisons. A few recent works (Zhu et al., 2023, Mukherjee et al., 2024, Thekumparampil et al., 2024) have explored using multiple comparisons and ranking feedback, but their performance guarantees fail to improve-and can even deteriorate-as the feedback length increases, despite the richer information available. To address this gap, we adopt the Plackett-Luce (PL) model for ranking feedback over action subsets and propose M-AUPO, an algorithm that selects multiple actions by maximizing the average uncertainty within the offered subset. We prove that M-AUPO achieves a suboptimality gap of $\tilde{O}\left( \frac{d}{T} \sqrt{ \sum_{t=1}^T \frac{1}{|S_t|}} \right)$, where $T$ is the total number of rounds, $d$ is the feature dimension, and $|S_t|$ is the size of the subset at round $t$. This result shows that larger subsets directly lead to improved performance and, notably, the bound avoids the exponential dependence on the unknown parameter's norm, which was a fundamental limitation in most previous works. Moreover, we establish a near-matching lower bound of $Ω\left( \frac{d}{K \sqrt{T}} \right)$, where $K$ is the maximum subset size. To the best of our knowledge, this is the first theoretical result in PbRL with ranking feedback that explicitly shows improved sample efficiency as a function of the subset size.
comment: Accepted at NeurIPS 2025
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ TensLoRA: Tensor Alternatives for Low-Rank Adaptation ICASSP 2026
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.
comment: Published at ICASSP 2026. 5 pages, 1 figure, 2 tables. Code can be found at https://github.com/ax-le/TensLoRA
♻ ☆ The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution
Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining \textbf{the reason behind agent behaviors}. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems. Codes are available at https://github.com/AI45Lab/AgentDoG.
♻ ☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalization has become crucial for adapting models to the diverse and evolving needs of users across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment within a single model, they struggle to achieve both real-time and high-quality personalization under the resource and privacy constraints of personal devices. To address this challenge, we propose CoSteer, a collaborative framework that enables tuning-free, real-time personalization via decoding-time adaptation. By leveraging logit differences between context-aware and context-agnostic local small models, CoSteer steers cloud-based large models, ensuring effective personalization while preserving the large model's capabilities. Personalization is handled locally, with only final tokens sent to the cloud, maintaining both user context and system efficiency. Through extensive experiments across a wide range of tasks, we demonstrate that CoSteer generates high-quality personalized content, ensuring both effectiveness and computational efficiency. Our results highlight its robustness across models and environments, confirming its practical applicability in real-world scenarios.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems ICSE
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
comment: Part of this work (RQ1) has been published at the 2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE-SEIP 2026), DOI: 10.1145/3786583.3786904. The published version is also available on arXiv at arXiv:2602.04449
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement Learning (RL) is pivotal for enhancing Large Language Model (LLM) reasoning, yet mainstream algorithms such as GRPO and DAPO remain constrained by a coarse-grained credit assignment paradigm, where all tokens within the same response receive the identical reward. In this paper, we propose Dynamic Entropy Weighting, systematically define entropy-based weight ratios $\frac{H_{i,t}}{\sum_{k=1}^{n} H_{k,t}}$ and similar variants to redistribute rewards and get fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token and synthesizes token-specific advantage function to drive the model toward optimal path, and the analogous algorithm Sequence-Level GRPO (GRPO-S), which extends this design to the sequence level and exhibits superior stability in long Chain-of-Thought (CoT) reasoning tasks.
♻ ☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLM's output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
♻ ☆ A Study of Adaptive Modeling Towards Robust Generalization
Large language models (LLMs) increasingly support reasoning over biomolecular structures, but most existing approaches remain modality-specific and rely on either sequence-style encodings or fixed-length connector tokens for structural inputs. These designs can under-expose explicit geometric cues and impose rigid fusion bottlenecks, leading to over-compression and poor token allocation as structural complexity grows. We present a unified all-atom framework that grounds language reasoning in geometric information while adaptively scaling structural tokens. The method first constructs variable-size structural patches on molecular graphs using an instruction-conditioned gating policy, enabling complexity-aware allocation of query tokens. It then refines the resulting patch tokens via cross-attention with modality embeddings and injects geometry-informed tokens into the language model to improve structure grounding and reduce structural hallucinations. Across diverse all-atom benchmarks, the proposed approach yields consistent gains in heterogeneous structure-grounded reasoning. An anonymized implementation is provided in the supplementary material.
♻ ☆ Beyond touch-based human-machine interface: Control your machines in natural language by utilizing large language models and OPC UA
This paper proposes an agent-based approach toward a more natural interface between humans and machines. Large language models equipped with tools and the communication standard OPC UA are utilized to control machines in natural language. Instead of touch interaction, which is currently the state-of-the-art medium for interaction in operations, the proposed approach enables operators to talk or text with machines. This allows commands such as 'Please decrease the temperature by 20 % in machine 1 and start the cleaning operation in machine 2.' The large language model receives the user input and selects one of three predefined tools that connect to an OPC UA server and either change or read the value of a node. Afterwards, the result of the tool execution is passed back to the language model, which then provides a final response to the user. The approach is universally designed and can therefore be applied to any machine that supports the OPC UA standard. The large language model is neither fine-tuned nor requires training data, only the relevant machine credentials and a parameter dictionary are included within the system prompt. The tool-calling ability and their design is evaluated on a demonstrator setup with a Siemens S7-1500 programmable logic controller with four machine parameters. Fifty synthetically generated commands on five different models were tested and the results demonstrate high success rate, with proprietary GPT-5 models achieving accuracies between 96.0 % and 98.0 %, and open-weight models reaching up to 90.0 %. Afterwards the approach was transferred to a deployed spay-coating machine. The proposed concept is supposed to contribute in advancing natural interaction in industrial human-machine interfaces.
♻ ☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages, 1 figure
♻ ☆ UniverSR: Unified and Versatile Audio Super-Resolution via Vocoder-Free Flow Matching ICASSP 2026
In this paper, we present a vocoder-free framework for audio super-resolution that employs a flow matching generative model to capture the conditional distribution of complex-valued spectral coefficients. Unlike conventional two-stage diffusion-based approaches that predict a mel-spectrogram and then rely on a pre-trained neural vocoder to synthesize waveforms, our method directly reconstructs waveforms via the inverse Short-Time Fourier Transform (iSTFT), thereby eliminating the dependence on a separate vocoder. This design not only simplifies end-to-end optimization but also overcomes a critical bottleneck of two-stage pipelines, where the final audio quality is fundamentally constrained by vocoder performance. Experiments show that our model consistently produces high-fidelity 48 kHz audio across diverse upsampling factors, achieving state-of-the-art performance on both speech and general audio datasets.
comment: Accepted to ICASSP 2026
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Calibration and Transformation-Free Weight-Only LLMs Quantization via Dynamic Grouping
Large Language Models (LLMs) deliver strong performance but are difficult to deploy under tight memory and compute constraints. Low-bit post-training quantization (PTQ) is a promising direction; however, it typically relies on calibration data, auxiliary transformations, and GPU tools. To address these limitations, we propose MSB (Multi Scale Binary), a calibration-free and transformation-free PTQ method that generalizes binary quantization to multi-bit settings. MSB optimizes a dynamic grouping criterion that minimizes within group variance, yielding group-wise multiscale levels that can be applied consistently across granularities from per tensor to block-wise configurations with 64 elements groups per row, without calibration or intermediate transforms. We implement the optimization in a CPU based solver for the quantization step and evaluate using standard bfloat16 execution without low-bit packing. On Llama 3.2 3B, MSB achieves 8.43 perplexity on WikiText-2 under 4-bit weight only block-wise quantization, compared to 7.81 in full precision and 12.23 with GPTQ its default setup. Overall, MSB provides a new optimization perspective for low-bit PTQ while simplifying the pipeline by removing calibration and transformations.
comment: 34 pages, 10 figures. Version 3 corrects the bit-length error and adds new experiments and analysis; the core methodology remains unchanged
♻ ☆ Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, yet their deployment is hindered by a fundamental limitation: safety mechanisms enforce rigid, uniform standards that fail to reflect diverse user preferences shaped by age, culture, or personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that transitions generative safety from static filtration to user-conditioned adaptation. We introduce Sage, a large-scale dataset capturing diverse safety boundaries across 1,000 simulated user profiles, covering complex risks often missed by traditional datasets. By integrating these profiles via a parameter-efficient cross-attention adapter, PSA dynamically modulates generation to align with individual sensitivities. Extensive experiments demonstrate that PSA achieves a calibrated safety-quality trade-off: under permissive profiles, it relaxes over-cautious constraints to enhance visual fidelity, while under restrictive profiles, it enforces state-of-the-art suppression, significantly outperforming static baselines. Furthermore, PSA exhibits superior instruction adherence compared to prompt-engineering methods, establishing personalization as a vital direction for creating adaptive, user-centered, and responsible generative AI. Our code, data, and models are publicly available at https://github.com/M-E-AGI-Lab/PSAlign.
♻ ☆ Generative AI for Intent-Driven Network Management in 6G RAN: A Case Study on the Mamba Model IEEE
With the emergence of 6G, mobile networks are becoming increasingly heterogeneous and dynamic, necessitating advanced automation for efficient management. Intent-Driven Networks (IDNs) address this by translating high-level intents into optimization policies. Large Language Models (LLMs) can enhance this process by understanding complex human instructions, enabling adaptive and intelligent automation. Given the rapid advancements in Generative AI (GenAI), a comprehensive survey of LLM-based IDN architectures in disaggregated Radio Access Network (RAN) environments is both timely and critical. This article provides such a survey, along with a case study on a selective State-Space Model (SSM)-enabled IDN architecture that integrates GenAI across three key stages: intent processing, intent validation, and intent execution. For the first time in the literature, we propose a hierarchical framework built on Mamba-SSM that introduces GenAI across all stages of the IDN pipeline. We further present a case study demonstrating that the proposed Mamba architecture significantly improves network performance through intelligent automation, surpassing existing IDN approaches. In a multi-cell 5G/6G scenario, the proposed architecture reduces quality of service drift by up to 70%, improves throughput by up to 80 Mbps, and lowers inference time to 60-70 ms, outperforming GenAI, reinforcement learning, and non-machine learning baselines.
comment: Paper submitted to IEEE for possible publication. The contents of this paper may change at any time
♻ ☆ Learning to Plan & Schedule with Reinforcement-Learned Bimanual Robot Skills
Long-horizon contact-rich bimanual manipulation presents a significant challenge, requiring complex coordination involving a mixture of parallel execution and sequential collaboration between arms. In this paper, we introduce a hierarchical framework that frames this challenge as an integrated skill planning & scheduling problem, going beyond purely sequential decision-making to support simultaneous skill invocation. Our approach is built upon a library of single-arm and bimanual primitive skills, each trained using Reinforcement Learning (RL) in GPU-accelerated simulation. We then train a Transformer-based planner on a dataset of skill compositions to act as a high-level scheduler, simultaneously predicting the discrete schedule of skills as well as their continuous parameters. We demonstrate that our method achieves higher success rates on complex, contact-rich tasks than end-to-end RL approaches and produces more efficient, coordinated behaviors than traditional sequential-only planners.
♻ ☆ On Entropy Control in LLM-RL Algorithms ICLR 2026
For RL algorithms, appropriate entropy control is crucial to their effectiveness. To control the policy entropy, a commonly used method is entropy regularization, which is adopted in various popular RL algorithms including PPO, SAC and A3C. Although entropy regularization proves effective in robotic and games RL conventionally, studies found that it gives weak to no gains in LLM-RL training. In this work, we study the issues of entropy bonus in LLM-RL setting. Specifically, we first argue that the conventional entropy regularization suffers from the LLM's extremely large response space and the sparsity of the optimal outputs. As a remedy, we propose AEnt, an entropy control method that utilizes a new clamped entropy bonus with an automatically adjusted coefficient. The clamped entropy is evaluated with the re-normalized policy defined on certain smaller token space, which encourages exploration within a more compact response set. In addition, the algorithm automatically adjusts entropy coefficient according to the clamped entropy value, effectively controlling the entropy-induced bias while leveraging the entropy's benefits. AEnt is tested in math-reasoning tasks under different base models and datasets, and it is observed that AEnt outperforms the baselines consistently across multiple benchmarks.
comment: Updated with ICLR 2026 version
♻ ☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
♻ ☆ CATS: Enhancing Multivariate Time Series Forecasting by Constructing Auxiliary Time Series as Exogenous Variables ICML 2024
For Multivariate Time Series Forecasting (MTSF), recent deep learning applications show that univariate models frequently outperform multivariate ones. To address the difficiency in multivariate models, we introduce a method to Construct Auxiliary Time Series (CATS) that functions like a 2D temporal-contextual attention mechanism, which generates Auxiliary Time Series (ATS) from Original Time Series (OTS) to effectively represent and incorporate inter-series relationships for forecasting. Key principles of ATS - continuity, sparsity, and variability - are identified and implemented through different modules. Even with a basic 2-layer MLP as core predictor, CATS achieves state-of-the-art, significantly reducing complexity and parameters compared to previous multivariate models, marking it an efficient and transferable MTSF solution.
comment: Camera-ready version. Accepted at ICML 2024
♻ ☆ Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories through distinct conversational approaches. Existing multi-turn methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles, defense to one pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA
♻ ☆ Stream-Voice-Anon: Enhancing Utility of Real-Time Speaker Anonymization via Neural Audio Codec and Language Models ICASSP2026
Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
comment: Accepted by ICASSP2026. Demo/code: https://paniquex.github.io/Stream-Voice-Anon/
♻ ☆ In-context Time Series Predictor ICLR 2025
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
comment: Camera-ready version. Accepted at ICLR 2025
♻ ☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.0% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting ICML 2025
We propose a Weighted Autoregressive Varying gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.
comment: Camera-ready version. Accepted at ICML 2025
♻ ☆ A Differential and Pointwise Control Approach to Reinforcement Learning NeurIPS 2025
Reinforcement learning (RL) in continuous state-action spaces remains challenging in scientific computing due to poor sample efficiency and lack of pathwise physical consistency. We introduce Differential Reinforcement Learning (Differential RL), a novel framework that reformulates RL from a continuous-time control perspective via a differential dual formulation. This induces a Hamiltonian structure that embeds physics priors and ensures consistent trajectories without requiring explicit constraints. To implement Differential RL, we develop Differential Policy Optimization (dfPO), a pointwise, stage-wise algorithm that refines local movement operators along the trajectory for improved sample efficiency and dynamic alignment. We establish pointwise convergence guarantees, a property not available in standard RL, and derive a competitive theoretical regret bound of $\mathcal{O}(K^{5/6})$. Empirically, dfPO outperforms standard RL baselines on representative scientific computing tasks, including surface modeling, grid control, and molecular dynamics, under low-data and physics-constrained conditions.
comment: NeurIPS 2025
♻ ☆ Relational Graph Transformer ICLR 2026
Relational Deep Learning (RDL) is a promising approach for building state-of-the-art predictive models on multi-table relational data by representing it as a heterogeneous temporal graph. However, commonly used Graph Neural Network models suffer from fundamental limitations in capturing complex structural patterns and long-range dependencies that are inherent in relational data. While Graph Transformers have emerged as powerful alternatives to GNNs on general graphs, applying them to relational entity graphs presents unique challenges: (i) Traditional positional encodings fail to generalize to massive, heterogeneous graphs; (ii) existing architectures cannot model the temporal dynamics and schema constraints of relational data; (iii) existing tokenization schemes lose critical structural information. Here we introduce the Relational Graph Transformer (RelGT), the first graph transformer architecture designed specifically for relational tables. RelGT employs a novel multi-element tokenization strategy that decomposes each node into five components (features, type, hop distance, time, and local structure), enabling efficient encoding of heterogeneity, temporality, and topology without expensive precomputation. Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids, incorporating both local and database-wide representations. Across 21 tasks from the RelBench benchmark, RelGT consistently matches or outperforms GNN baselines by up to 18%, establishing Graph Transformers as a powerful architecture for Relational Deep Learning.
comment: ICLR 2026, Code: https://github.com/snap-stanford/relgt
♻ ☆ Vibe AIGC: A New Paradigm for Content Generation via Agentic Orchestration
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the \textbf{Vibe AIGC}, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows. Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.
♻ ☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend that future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers.
comment: Accepted to COLM 2025
♻ ☆ Patterns in the Transition From Founder-Leadership to Community Governance of Open Source
Open digital public infrastructure needs community management to ensure accountability, sustainability, and robustness. Yet open-source projects often rely on centralized decision-making, and the determinants of successful community management remain unclear. We analyze 637 GitHub repositories to trace transitions from founder-led to shared governance. Specifically, we document trajectories to community governance by extracting institutional roles, actions, and deontic cues from version-controlled project constitutions GOVERNANCE .md. With a semantic parsing pipeline, we cluster elements into broader role and action types. We find roles and actions grow, and regulation becomes more balanced, reflecting increases in governance scope and differentiation over time. Rather than shifting tone, communities grow by layering and refining responsibilities. As transitions to community management mature, projects increasingly regulate ecosystem-level relationships and add definition to project oversight roles. Overall, this work offers a scalable pipeline for tracking the growth and development of community governance regimes from open-source software's familiar default of founder-ownership.
♻ ☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
♻ ☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
♻ ☆ PaperX: A Unified Framework for Multimodal Academic Presentation Generation with Scholar DAG
Transforming scientific papers into multimodal presentation content is essential for research dissemination but remains labor intensive. Existing automated solutions typically treat each format as an isolated downstream task, leading to redundant processing and semantic inconsistency. We introduce PaperX, a unified framework that models academic presentation generation as a structural transformation and rendering process. Central to our approach is the Scholar DAG, an intermediate representation that decouples the paper's logical structure from its final presentation syntax. By applying adaptive graph traversal strategies, PaperX generates diverse, high quality outputs from a single source. Comprehensive evaluations demonstrate that our framework achieves the state of the art performance in content fidelity and aesthetic quality while significantly improving cost efficiency compared to specialized single task agents.
comment: 29 pages, 9 figures
♻ ☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 10 pages
♻ ☆ CARL: Focusing Agentic Reinforcement Learning on Critical Actions
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for long-horizon agentic reasoning. CARL leverages entropy as a heuristic proxy for action criticality and achieves focused training by assigning rewards to high-criticality actions while excluding low-criticality actions from model updates, avoiding noisy credit assignment and redundant computation. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency across diverse evaluation settings. The source code will be publicly available.
comment: 17 pages, 5 figures
♻ ☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ ProphetKV: User-Query-Driven Selective Recomputation for Efficient KV Cache Reuse in Retrieval-Augmented Generation
The prefill stage of long-context Retrieval-Augmented Generation (RAG) is severely bottlenecked by computational overhead. To mitigate this, recent methods assemble pre-calculated KV caches of retrieved RAG documents (by a user query) and reprocess selected tokens to recover cross-attention between these pre-calculated KV caches. However, we identify a fundamental "crowding-out effect" in current token selection criteria: globally salient but user-query-irrelevant tokens saturate the limited recomputation budget, displacing the tokens truly essential for answering the user query and degrading inference accuracy. We propose ProphetKV, a user-query-driven KV Cache reuse method for RAG scenarios. ProphetKV dynamically prioritizes tokens based on their semantic relevance to the user query and employs a dual-stage recomputation pipeline to fuse layer-wise attention metrics into a high-utility set. By ensuring the recomputation budget is dedicated to bridging the informational gap between retrieved context and the user query, ProphetKV achieves high-fidelity attention recovery with minimal overhead. Our extensive evaluation results show that ProphetKV retains 96%-101% of full-prefill accuracy with only a 20% recomputation ratio, while achieving accuracy improvements of 8.8%-24.9% on RULER and 18.6%-50.9% on LongBench over the state-of-the-art approaches (e.g., CacheBlend, EPIC, and KVShare).
♻ ☆ Interpretability by Design for Efficient Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning (MORL) aims at optimising several, often conflicting goals to improve the flexibility and reliability of RL in practical tasks. This is typically achieved by finding a set of diverse, non-dominated policies that form a Pareto front in the performance space. We introduce LLE-MORL, an approach that achieves interpretability by design by utilising a training scheme based on the local relationship between the parameter space and the performance space. By exploiting a locally linear map between these spaces, our method provides an interpretation of policy parameters in terms of the objectives, and this structured representation enables an efficient search within contiguous solution domains, allowing for the rapid generation of high-quality solutions without extensive retraining. Experiments across diverse continuous control domains demonstrate that LLE-MORL consistently achieves higher Pareto front quality and efficiency than state-of-the-art approaches.
♻ ☆ Linear Transformers as VAR Models: Aligning Autoregressive Attention Mechanisms with Autoregressive Forecasting ICML 2025
Autoregressive attention-based time series forecasting (TSF) has drawn increasing interest, with mechanisms like linear attention sometimes outperforming vanilla attention. However, deeper Transformer architectures frequently misalign with autoregressive objectives, obscuring the underlying VAR structure embedded within linear attention and hindering their ability to capture the data generative processes in TSF. In this work, we first show that a single linear attention layer can be interpreted as a dynamic vector autoregressive (VAR) structure. We then explain that existing multi-layer Transformers have structural mismatches with the autoregressive forecasting objective, which impair interpretability and generalization ability. To address this, we show that by rearranging the MLP, attention, and input-output flow, multi-layer linear attention can also be aligned as a VAR model. Then, we propose Structural Aligned Mixture of VAR (SAMoVAR), a linear Transformer variant that integrates interpretable dynamic VAR weights for multivariate TSF. By aligning the Transformer architecture with autoregressive objectives, SAMoVAR delivers improved performance, interpretability, and computational efficiency, comparing to SOTA TSF models.
comment: Camera-ready version. Accepted at ICML 2025
♻ ☆ Real-Time Detection of Hallucinated Entities in Long-Form Generation
Large language models are now routinely used in high-stakes applications where hallucinations can cause serious harm, such as medical consultations or legal advice. Existing hallucination detection methods, however, are impractical for real-world use, as they are either limited to short factual queries or require costly external verification. We present a cheap, scalable method for real-time identification of hallucinated tokens in long-form generations, and scale it effectively to 70B parameter models. Our approach targets entity-level hallucinations-e.g., fabricated names, dates, citations-rather than claim-level, thereby naturally mapping to token-level labels and enabling streaming detection. We develop an annotation methodology that leverages web search to annotate model responses with grounded labels indicating which tokens correspond to fabricated entities. This dataset enables us to train effective hallucination classifiers with simple and efficient methods such as linear probes. Evaluating across four model families, our classifiers consistently outperform baselines on long-form responses, including more expensive methods such as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an improvement in short-form question-answering settings. Despite being trained only to detect hallucinated entities, our probes effectively detect incorrect answers in mathematical reasoning tasks, indicating generalization beyond entities. While our annotation methodology is expensive, we find that annotated responses from one model can be used to train effective classifiers on other models; accordingly, we publicly release our datasets to facilitate reuse. Overall, our work suggests a promising new approach for scalable, real-world hallucination detection.
♻ ☆ Joint Continual Learning of Local Language Models and Cloud Offloading Decisions with Budget Constraints
Locally deployed Small Language Models (SLMs) must continually support diverse tasks under strict memory and computation constraints, making selective reliance on cloud Large Language Models (LLMs) unavoidable. Regulating cloud assistance during continual learning is challenging, as naive reward-based reinforcement learning often yields unstable offloading behavior and exacerbates catastrophic forgetting as task distributions shift. We propose DA-GRPO, a dual-advantage extension of Group Relative Policy Optimization that incorporates cloud-usage constraints directly into advantage computation, avoiding fixed reward shaping and external routing models. This design enables the local model to jointly learn task competence and collaboration behavior, allowing cloud requests to emerge naturally during post-training while respecting a prescribed assistance budget. Experiments on mathematical reasoning and code generation benchmarks show that DA-GRPO improves post-switch accuracy, substantially reduces forgetting, and maintains stable cloud usage compared to prior collaborative and routing-based approaches.
♻ ☆ VibeCodeHPC: An Agent-Based Iterative Prompting Auto-Tuner for HPC Code Generation Using LLMs
We propose VibeCodeHPC, an automatic tuning system for HPC programs based on multi-agent LLMs for code generation. VibeCodeHPC tunes programs through multi-agent role allocation and iterative prompt refinement. We describe the system configuration with four roles: Project Manager (PM), System Engineer (SE), Programmer (PG), and Continuous Delivery (CD). We introduce dynamic agent deployment and activity monitoring functions to facilitate effective multi-agent collaboration. In our case study, we convert and optimize CPU-based matrix-matrix multiplication code written in C to GPU code using CUDA. The multi-agent configuration of VibeCodeHPC achieved higher-quality code generation per unit time compared to a solo-agent configuration. Additionally, the dynamic agent deployment and activity monitoring capabilities facilitated more effective identification of requirement violations and other issues.
♻ ☆ Generalizable Trajectory Prediction via Inverse Reinforcement Learning with Mamba-Graph Architecture
Accurate driving behavior modeling is fundamental to safe and efficient trajectory prediction, yet remains challenging in complex traffic scenarios. This paper presents a novel Inverse Reinforcement Learning (IRL) framework that captures human-like decision-making by inferring diverse reward functions, enabling robust cross-scenario adaptability. The learned reward function is utilized to maximize the likelihood of output by integrating Mamba blocks for efficient long-sequence dependency modeling with graph attention networks to encode spatial interactions among traffic agents. Comprehensive evaluations on urban intersections and roundabouts demonstrate that the proposed method not only outperforms various popular approaches in terms of prediction accuracy but also achieves 2.3 times higher generalization performance to unseen scenarios compared to other baselines, achieving adaptability in Out-of-Distribution settings that is competitive with fine-tuning.
♻ ☆ How Catastrophic is Your LLM? Certifying Risk in Conversation ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security. Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations. In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees. We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ YOLO-based Bearing Fault Diagnosis With Continuous Wavelet Transform IEEE
This letter presents a locality-aware bearing fault diagnosis framework that operates on time-frequency representations and enables spatially interpretable decision-making. One-dimensional vibration signals are first mapped to two-dimensional time-frequency spectrograms using the continuous wavelet transform (CWT) with Morlet wavelets to enhance transient fault signatures. The diagnosis task is then formulated as object detection on the time-frequency plane, where YOLOv9, YOLOv10, and YOLOv11 are employed to localize fault-relevant regions and classify fault types simultaneously. Experiments on three public benchmarks, including Case Western Reserve University (CWRU), Paderborn University (PU), and Intelligent Maintenance System (IMS), demonstrate strong cross-dataset generalization compared with a representative MCNN-LSTM baseline. In particular, YOLOv11 achieves mAP@0.5 of 99.0% (CWRU), 97.8% (PU), and 99.5% (IMS), while providing region-aware visualization of fault patterns in the time-frequency domain. These results suggest that detection-based inference on CWT spectrograms provides an effective and interpretable complementary approach to conventional global classification for rotating machinery condition monitoring.
comment: 5 pages, 2 figures, 2 tables, submitted to IEEE Signal Processing Letters
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Multiple Invertible and Partial-Equivariant Function for Latent Vector Transformation to Enhance Disentanglement in VAEs AISTATS 2026
Disentanglement learning is central to understanding and reusing learned representations in variational autoencoders (VAEs). Although equivariance has been explored in this context, effectively exploiting it for disentanglement remains challenging. In this paper, we propose a novel method, called Multiple Invertible and Partial-Equivariant Transformation (MIPE-Transformation), which integrates two main parts: (1) Invertible and Partial-Equivariant Transformation (IPE-Transformation), guaranteeing an invertible latent-to-transformed-latent mapping while preserving partial input-to-latent equivariance in the transformed latent space; and (2) Exponential-Family Conversion (EF-Conversion) to extend the standard Gaussian prior to an approximate exponential family via a learnable conversion. In experiments on the 3D Cars, 3D Shapes, and dSprites datasets, MIPE-Transformation improves the disentanglement performance of state-of-the-art VAEs.
comment: Accepted in AISTATS 2026
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
The deployment of large language models (LLMs) is frequently hindered by prohibitive memory and computational requirements. While quantization mitigates these bottlenecks, maintaining model fidelity in the sub-1-bit regime remains a persistent challenge. In this paper, we introduce LittleBit, a novel framework for extreme LLM compression. We target quantization rates as low as $0.1$ bits per weight (BPW), achieving a memory reduction of approximately $31\times$, which effectively compresses Llama2-13B to under $0.9$ GB. We represent weights via low-rank latent matrix factorization and subsequently binarize the resulting factors. To counteract the information loss inherent to such drastic precision reduction, we integrate a multi-scale compensation mechanism that learns importance parameters across row, column, and latent dimensions. Two primary contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and Residual Compensation to minimize approximation errors. Extensive experiments confirm the superiority of LittleBit in the sub-1-bit domain; for instance, our method at $0.1$ BPW surpasses the performance of leading techniques operating at $0.7$ BPW on Llama2-7B. We establish a new size-performance trade-off -- unlocking a potential $11.6\times$ inference speedup relative to FP16 -- and render powerful LLMs practical for resource-constrained environments. Our code is available at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ The Gradient-Causal Gap: Why Gradient Importance Fails on Complex Tasks ICLR
Removing ''important'' high-gradient components from a neural network can improve generalization, while removing unimportant'' low-gradient components can destroy it. We demonstrate this paradox by formalizing the \textit{Gradient-Causal Gap} in Transformers trained on algorithmic tasks. While gradient magnitude and causal importance align on simple tasks ($ρ=0.73$ for reversal), this relationship collapses as task complexity increases ($ρ=0.32$ for sorting), sometimes becoming inverted ($ρ=-0.11$). Pruning experiments reveal that gradient magnitude is not merely inaccurate but \textit{unpredictably} so. Removing low-gradient ''Hidden Heroes'' consistently devastates OOD accuracy ($-32\%$). Removing high-gradient ''Gradient Bloats'' is a coin flip: harmless in most seeds (indicating optimization noise), catastrophic in others (indicating overfitting circuits). This unpredictability means gradient-based pruning cannot reliably preserve model capabilities.
comment: 8 pages, 4 figures. Under Review. Code:https://anonymous.4open.science/r/ICLR_2026_LIT-workshop_CG-D42B
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ Dynamic Context Adaptation for Consistent Role-Playing Agents with Retrieval-Augmented Generations
Building role-playing agents (RPAs) that faithfully emulate specific characters remains challenging because collecting character-specific utterances and continually updating model parameters are resource-intensive, making retrieval-augmented generation (RAG) a practical necessity. However, despite the importance of RAG, there has been little research on RAG-based RPAs. For example, we empirically find that when a persona lacks knowledge relevant to a given query, RAG-based RPAs are prone to hallucination, making it challenging to generate accurate responses. In this paper, we propose Amadeus, a training-free framework that can significantly enhance persona consistency even when responding to questions that lie beyond a character's knowledge. In addition, to underpin the development and rigorous evaluation of RAG-based RPAs, we manually construct CharacterRAG, a role-playing dataset that consists of persona documents for 15 distinct fictional characters totaling 976K written characters, and 450 question-answer pairs. We find that our proposed method effectively models not only the knowledge possessed by characters, but also various attributes such as personality.
comment: preprint
♻ ☆ KANFIS: A Neuro-Symbolic Framework for Interpretable and Uncertainty-Aware Learning
Adaptive Neuro-Fuzzy Inference System (ANFIS) was designed to combine the learning capabilities of neural network with the reasoning transparency of fuzzy logic. However, conventional ANFIS architectures suffer from structural complexity, where the product-based inference mechanism causes an exponential explosion of rules in high-dimensional spaces. We herein propose the Kolmogorov-Arnold Neuro-Fuzzy Inference System (KANFIS), a compact neuro-symbolic architecture that unifies fuzzy reasoning with additive function decomposition. KANFIS employs an additive aggregation mechanism, under which both model parameters and rule complexity scale linearly with input dimensionality rather than exponentially. Furthermore, KANFIS is compatible with both Type-1 (T1) and Interval Type-2 (IT2) fuzzy logic systems, enabling explicit modeling of uncertainty and ambiguity in fuzzy representations. By using sparse masking mechanisms, KANFIS generates compact and structured rule sets, resulting in an intrinsically interpretable model with clear rule semantics and transparent inference processes. Empirical results demonstrate that KANFIS achieves competitive performance against representative neural and neuro-fuzzy baselines.
♻ ☆ Adaptive Attribute-Decoupled Encryption for Trusted Respiratory Monitoring in Resource-Limited Consumer Healthcare
Respiratory monitoring is an extremely important task in modern medical services. Due to its significant advantages, e.g., non-contact, radar-based respiratory monitoring has attracted widespread attention from both academia and industry. Unfortunately, though it can achieve high monitoring accuracy, consumer electronics-grade radar data inevitably contains User-sensitive Identity Information (USI), which may be maliciously used and further lead to privacy leakage. To track these challenges, by variational mode decomposition (VMD) and adversarial loss-based encryption, we propose a novel Trusted Respiratory Monitoring paradigm, Tru-RM, to perform automated respiratory monitoring through radio signals while effectively anonymizing USI. The key enablers of Tru-RM are Attribute Feature Decoupling (AFD), Flexible Perturbation Encryptor (FPE), and robust Perturbation Tolerable Network (PTN) used for attribute decomposition, identity encryption, and perturbed respiratory monitoring, respectively. Specifically, AFD is designed to decompose the raw radar signals into the universal respiratory component, the personal difference component, and other unrelated components. Then, by using large noise to drown out the other unrelated components, and the phase noise algorithm with a learning intensity parameter to eliminate USI in the personal difference component, FPE is designed to achieve complete user identity information encryption without affecting respiratory features. Finally, by designing the transferred generalized domain-independent network, PTN is employed to accurately detect respiration when waveforms change significantly. Extensive experiments based on various detection distances, respiratory patterns, and durations demonstrate the superior performance of Tru-RM on strong anonymity of USI, and high detection accuracy of perturbed respiratory waveforms.
♻ ☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic and OpenAI guard their latest Opus 4 model and GPT-5 models using such defense pipelines, and other frontier developers including Google DeepMind pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
comment: Add results on other models and datasets
♻ ☆ Impact of LLMs news Sentiment Analysis on Stock Price Movement Prediction
This paper addresses stock price movement prediction by leveraging LLM-based news sentiment analysis. Earlier works have largely focused on proposing and assessing sentiment analysis models and stock movement prediction methods, however, separately. Although promising results have been achieved, a clear and in-depth understanding of the benefit of the news sentiment to this task, as well as a comprehensive assessment of different architecture types in this context, is still lacking. Herein, we conduct an evaluation study that compares 3 different LLMs, namely, DeBERTa, RoBERTa and FinBERT, for sentiment-driven stock prediction. Our results suggest that DeBERTa outperforms the other two models with an accuracy of 75% and that an ensemble model that combines the three models can increase the accuracy to about 80%. Also, we see that sentiment news features can benefit (slightly) some stock market prediction models, i.e., LSTM-, PatchTST- and tPatchGNN-based classifiers and PatchTST- and TimesNet-based regression tasks models.
♻ ☆ Collaborating with AI Agents: Field Experiments on Teamwork, Productivity, and Performance
We examined the mechanisms underlying productivity and performance gains from AI agents using a large-scale experiment on Pairit, a platform we developed to study human-AI collaboration. We randomly assigned 2,234 participants to human-human and human-AI teams that produced 11,024 ads for a think tank. We evaluated the ads using independent human ratings and a field experiment on X which garnered ~5M impressions. We found human-AI teams produced 50% more ads per worker and higher text quality, while human-human teams produced higher image quality, suggesting a jagged frontier of AI agent capability. Human-AI teams also produced more homogeneous, or self-similar, outputs. The field experiment revealed higher text quality improved click-through rates and view-through duration, while higher image quality improved cost-per-click rates. We found three mechanisms explained these effects. First, human-AI collaboration was more task-oriented, with 25% more task-oriented messages and 18% fewer interpersonal messages. Second, human-AI collaboration displayed more delegation, as participants delegated 17% more work to AI agents than to human partners and performed 62% fewer direct text edits when working with AI. Third, recognition that the collaborator was an AI moderated these effects as participants who correctly identified they were working with AI were more task-oriented and more likely to delegate work. These mechanisms then explained performance as task-oriented communication improved ad quality, specifically when working with AI, while interpersonal communication reduced ad quality; delegation improved text quality but had no effect on image quality and was positively associated with diversity collapse, creating homogeneous outputs of higher average quality. The results suggest AI agents drive changes in productivity, performance, and output diversity by reshaping teamwork.
comment: 59 pages, 3 figures, 14 tables
♻ ☆ Conversational Intent-Driven GraphRAG: Enhancing Multi-Turn Dialogue Systems through Adaptive Dual-Retrieval of Flow Patterns and Context Semantics
We present CID-GraphRAG (Conversational Intent-Driven Graph Retrieval Augmented Generation), a novel framework that addresses the limitations of existing dialogue systems in maintaining both contextual coherence and goal-oriented progression in multi-turn customer service conversations. Unlike traditional RAG systems that rely solely on semantic similarity (Conversation RAG) or standard knowledge graphs (GraphRAG), CID-GraphRAG constructs dynamic intent transition graphs from goal achieved historical dialogues and implements a dual-retrieval mechanism that adaptively balances intent-based graph traversal with semantic search. This approach enables the system to simultaneously leverage both conversional intent flow patterns and contextual semantics, significantly improving retrieval quality and response quality. In extensive experiments on real-world customer service dialogues, we employ both automatic metrics and LLM-as-judge assessments, demonstrating that CID-GraphRAG significantly outperforms both semantic-based Conversation RAG and intent-based GraphRAG baselines across all evaluation criteria. Quantitatively, CID-GraphRAG demonstrates substantial improvements over Conversation RAG across automatic metrics, with relative gains of 11% in BLEU, 5% in ROUGE-L, 6% in METEOR, and most notably, a 58% improvement in response quality according to LLM-as-judge evaluations. These results demonstrate that the integration of intent transition structures with semantic retrieval creates a synergistic effect that neither approach achieves independently, establishing CID-GraphRAG as an effective framework for addressing the challenges of maintaining contextual coherence and goal-oriented progression in knowledge-intensive multi-turn dialogues.
♻ ☆ CIPHER: Cryptographic Insecurity Profiling via Hybrid Evaluation of Responses
Large language models (LLMs) are increasingly used to assist developers with code, yet their implementations of cryptographic functionality often contain exploitable flaws. Minor design choices (e.g., static initialization vectors or missing authentication) can silently invalidate security guarantees. We introduce CIPHER(Cryptographic Insecurity Profiling via Hybrid Evaluation of Responses), a benchmark for measuring cryptographic vulnerability incidence in LLM-generated Python code under controlled security-guidance conditions. CIPHER uses insecure/neutral/secure prompt variants per task, a cryptography-specific vulnerability taxonomy, and line-level attribution via an automated scoring pipeline. Across a diverse set of widely used LLMs, we find that explicit secure prompting reduces some targeted issues but does not reliably eliminate cryptographic vulnerabilities overall. The benchmark and reproducible scoring pipeline will be publicly released upon publication.
♻ ☆ Knowledgeable Language Models as Black-Box Optimizers for Personalized Medicine ICLR 2026
The goal of personalized medicine is to discover a treatment regimen that optimizes a patient's clinical outcome based on their personal genetic and environmental factors. However, candidate treatments cannot be arbitrarily administered to the patient to assess their efficacy; we often instead have access to an in silico surrogate model that approximates the true fitness of a proposed treatment. Unfortunately, such surrogate models have been shown to fail to generalize to previously unseen patient-treatment combinations. We hypothesize that domain-specific prior knowledge - such as medical textbooks and biomedical knowledge graphs - can provide a meaningful alternative signal of the fitness of proposed treatments. To this end, we introduce LLM-based Entropy-guided Optimization with kNowledgeable priors (LEON), a mathematically principled approach to leverage large language models (LLMs) as black-box optimizers without any task-specific fine-tuning, taking advantage of their ability to contextualize unstructured domain knowledge to propose personalized treatment plans in natural language. In practice, we implement LEON via 'optimization by prompting,' which uses LLMs as stochastic engines for proposing treatment designs. Experiments on real-world optimization tasks show LEON outperforms both traditional and LLM-based methods in proposing individualized treatments for patients.
comment: 63 pages, Accepted to ICLR 2026
♻ ☆ PromptPex: Automatic Test Generation for Language Model Prompts
Large language models (LLMs) are being used in many applications and prompts for these models are integrated into software applications as code-like artifacts. These prompts behave much like traditional software in that they take inputs, generate outputs, and perform some specific function. However, prompts differ from traditional code in many ways and require new approaches to ensure that they are robust. For example, unlike traditional software the output of a prompt depends on the AI model that interprets it. Also, while natural language prompts are easy to modify, the impact of updates is harder to predict. New approaches to testing, debugging, and modifying prompts with respect to the model running them are required. To address some of these issues, we developed PromptPex, an LLM-based tool to automatically generate and evaluate unit tests for a given prompt. PromptPex extracts input and output specifications from a prompt and uses them to generate diverse, targeted, and valid unit tests. These tests are instrumental in identifying regressions when a prompt is changed and also serve as a tool to understand how prompts are interpreted by different models. We use PromptPex to generate tests for eight benchmark prompts and evaluate the quality of the generated tests by seeing if they can cause each of four diverse models to produce invalid output. PromptPex consistently creates tests that result in more invalid model outputs than a carefully constructed baseline LLM-based test generator. Furthermore, by extracting concrete specifications from the input prompt, PromptPex allows prompt writers to clearly understand and test specific aspects of their prompts. The source code of PromptPex is available at https://github.com/microsoft/promptpex.
♻ ☆ Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs EACL 2026
Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.
comment: Findings of the Association for Computational Linguistics: EACL 2026
♻ ☆ How does information access affect LLM monitors' ability to detect sabotage?
Frontier language model agents can exhibit misaligned behaviors, including deception, exploiting reward hacks, and pursuing hidden objectives. To control potentially misaligned agents, we can use LLMs themselves to monitor for misbehavior. In this paper, we study how information access affects LLM monitor performance. While one might expect that monitors perform better when they have access to more of the monitored agents' reasoning and actions, we find that contemporary systems often perform better with less information, a phenomenon we call the less-is-more effect for automated oversight. We demonstrate this phenomenon, and analyze the conditions under which it occurs, in three evaluation environments where agents must conduct sabotage while evading monitors. Leveraging this effect, we introduce extract-and-evaluate (EaE) monitoring -- a new hierarchical approach where one monitor isolates relevant excerpts from the monitored agent's trajectory and another monitor scores these excerpts. In BigCodeBench-Sabotage with a GPT-4.1-mini monitor, EaE improves sabotage detection rates by 16.8 percentage points over the next-best approach. In other settings, EaE either outperforms or is competitive with baselines. In addition, we find that agents unaware of being monitored can be caught much more easily and that monitors scoring longer reasoning traces gain more from information filtering. Lastly, we conduct a cost-performance analysis and find that Gemini and Claude models with monitoring techniques that involve information filtering occupy much of the Pareto frontier.
comment: 54 pages, 34 figures, 7 tables
♻ ☆ STFlow: Data-Coupled Flow Matching for Geometric Trajectory Simulation
Simulating trajectories of dynamical systems is a fundamental problem in a wide range of fields such as molecular dynamics, biochemistry, and pedestrian dynamics. Machine learning has become an invaluable tool for scaling physics-based simulators and developing models directly from experimental data. In particular, recent advances in deep generative modeling and geometric deep learning enable probabilistic simulation by learning complex trajectory distributions while respecting intrinsic permutation and time-shift symmetries. However, trajectories of N-body systems are commonly characterized by high sensitivity to perturbations leading to bifurcations, as well as multi-scale temporal and spatial correlations. To address these challenges, we introduce STFlow (Spatio-Temporal Flow), a generative model based on graph neural networks and hierarchical convolutions. By incorporating data-dependent couplings within the Flow Matching framework, STFlow denoises starting from conditioned random-walks instead of Gaussian noise. This novel informed prior simplifies the learning task by reducing transport cost, increasing training and inference efficiency. We validate our approach on N-body systems, molecular dynamics, and human trajectory forecasting. Across these benchmarks, STFlow achieves the lowest prediction errors with fewer simulation steps and improved scalability.
comment: 18 pages, 12 figures
♻ ☆ Is Your Paper Being Reviewed by an LLM? Benchmarking AI Text Detection in Peer Review ICLR 2026
Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews fully written by humans and different state-of-the-art LLMs. Additionally, we explore a context-aware detection method called Anchor, which leverages manuscript content to detect AI-generated reviews, and analyze the sensitivity of detection models to LLM-assisted editing of human-written text. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI. Our dataset is publicly available at: https://huggingface.co/datasets/IntelLabs/AI-Peer-Review-Detection-Benchmark.
comment: Accepted to ICLR 2026
♻ ☆ Performative Learning Theory
Performative predictions influence the very outcomes they aim to forecast. We study performative predictions that affect a sample (e.g., only existing users of an app) and/or the whole population (e.g., all potential app users). This raises the question of how well models generalize under performativity. For example, how well can we draw insights about new app users based on existing users when both of them react to the app's predictions? We address this question by embedding performative predictions into statistical learning theory. We prove generalization bounds under performative effects on the sample, on the population, and on both. A key intuition behind our proofs is that in the worst case, the population negates predictions, while the sample deceptively fulfills them. We cast such self-negating and self-fulfilling predictions as min-max and min-min risk functionals in Wasserstein space, respectively. Our analysis reveals a fundamental trade-off between performatively changing the world and learning from it: the more a model affects data, the less it can learn from it. Moreover, our analysis results in a surprising insight on how to improve generalization guarantees by retraining on performatively distorted samples. We illustrate our bounds in a case study on prediction-informed assignments of unemployed German residents to job trainings, drawing upon administrative labor market records from 1975 to 2017 in Germany.
comment: 53 pages, 2 figures
♻ ☆ Human-AI Co-Embodied Intelligence for Scientific Experimentation and Manufacturing
Scientific experimentation and manufacturing rely on prolonged protocol development and complex, multi-step implementation, which require continuous human expertise for precise execution and decision-making, limiting interpretability and scalability. Here, we introduce human-artificial intelligence (AI) co-embodied intelligence, a new form of physical AI that unites human researchers, agentic AI, and wearable hardware. In this paradigm, humans provide precise execution, while agentic AI contributes contextual reasoning, adaptive planning, and analysis. The wearable interface continuously captures experimentation and manufacturing, facilitating seamless communication between humans and AI. We instantiate this paradigm in a microfabrication cleanroom, leading to the agentic-physical experimentation (APEX) system which understands fabrication procedure with accuracy 51% higher than state-of-the-art multimodal large language models/vision language models (LLMs/VLMs), detects and corrects fabrication errors in real-time, and transfers procedural expertise to novice users. Critically, APEX system enables the co-development of fabrication protocols in cleanrooms, overcoming the incompatibility of elastomeric materials in standard microfabrication processes and enabling previously unattainable fabrication outcomes, as demonstrated by the wafer-scale realization of brain-level soft neural probe capable of single-unit-resolution neural recording. These results establish the human-AI co-embodied intelligence that extends agentic reasoning beyond computation into the physical domain, transforming scientific experimentation and manufacturing into autonomous, traceable, interpretable and scalable processes.
♻ ☆ Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction
Regime transitions routinely break stationarity in time series, making calibrated uncertainty as important as point accuracy. We study distribution-free uncertainty for regime-switching forecasting by coupling Deep Switching State Space Models with Adaptive Conformal Inference (ACI) and its aggregated variant (AgACI). We also introduce a unified conformal wrapper that sits atop strong sequence baselines including S4, MC-Dropout GRU, sparse Gaussian processes, and a change-point local model to produce online predictive bands with finite-sample marginal guarantees under nonstationarity and model misspecification. Across synthetic and real datasets, conformalized forecasters achieve near-nominal coverage with competitive accuracy and generally improved band efficiency.
comment: v2: Added acknowledgements
♻ ☆ UniRel: Relation-Centric Knowledge Graph Question Answering with RL-Tuned LLM Reasoning
Knowledge Graph Question Answering (KGQA) has largely focused on entity-centric queries that return a single answer entity. However, many real-world questions are inherently relational, aiming to understand how entities are associated rather than which entity satisfies a query. In this work, we introduce relation-centric KGQA, a complementary setting in which the answer is a subgraph that represents the semantic relations among entities. The main challenge lies in the abundance of candidate subgraphs, where trivial or overly common connections often obscure the identification of unique and informative answers. To tackle this, we propose UniRel, a unified modular framework that combines a subgraph retriever with an LLM fine-tuned using reinforcement learning. The framework uses a reward function to prefer compact and specific subgraphs with informative relations and low-degree intermediate entities. Experiments show that UniRel improves connectivity and reward over Prompting baselines and generalizes well to unseen entities and relations. Moreover, UniRel can be applied to conventional entity-centric KGQA, achieving competitive or improved performance in several settings.
♻ ☆ String Seed of Thought: Prompting LLMs for Distribution-Faithful and Diverse Generation ICLR 2026
We introduce String Seed of Thought (SSoT), a novel prompting method for LLMs that improves Probabilistic Instruction Following (PIF). We define PIF as a task requiring an LLM to select its answer from a predefined set of options, each associated with a specific probability, such that the empirical distribution of the generated answers aligns with the target distribution when prompted multiple times. While LLMs excel at tasks with single, deterministic answers, they often fail at PIF, exhibiting biases problematic for applications requiring non-deterministic behaviors, such as human-behavior simulation, content diversification, and multiplayer games. It also harms the diversity of generated responses, a crucial factor in test-time scaling, by causing the outputs to collapse into a limited set of answers. To address this, we propose SSoT, a simple prompting method that instructs an LLM to first output a random string to generate sufficient entropy. SSoT also instructs the LLM to extract randomness by manipulating this string to derive a final answer, thereby preserving diversity while adhering to specific constraints. We demonstrate that SSoT significantly improves the PIF performance of LLMs, approaching the ideal performance of a pseudo-random number generator. Furthermore, our experiments on NoveltyBench show SSoT's benefits extend beyond closed-set tasks to open-ended tasks by enhancing response diversity.
comment: Accepted to ICLR 2026
♻ ☆ Deceive, Detect, and Disclose: Large Language Models Play Mini-Mafia
Mafia is a social deduction game where informed mafia compete against uninformed townsfolk. Its asymmetry of information and reliance on theory-of-mind reasoning mirror real-world multi-agent scenarios, making it a useful testbed for evaluating the social intelligence of large language models (LLMs). To support a systematic study, we introduce Mini-Mafia: a simplified four-player variant with one mafioso, one detective and two villagers. We set the mafioso to kill a villager and the detective to investigate the mafioso during the night, reducing the game to a single day phase of discussion and voting. Remarkably, we find that the mafia win-rate $p$ in this three-agent system can be described by a simple theoretical model: $\text{logit}(p) = v \times (m - d)$, where $m$, $d$, and $v$ are intrinsic model parameters representing the mafioso's deception, the villager's detection, and the detective's disclosure capabilities, respectively. This compact analytic description of an interacting triad shows that multi-agent dialogue can be captured by a few latent parameters while still matching empirical outcomes, opening a path to a principled theoretical description of multi-agent LLM systems. Estimating these parameters from LLM gameplay data using Bayesian inference yields the Mini-Mafia Benchmark. Our experiments reveal counterintuitive results, including cases where smaller models significantly outperform larger ones. We also establish human baselines, revealing that LLMs excel at persuasion but lag in simple strategic reasoning for agentic interaction. Beyond benchmarking, Mini-Mafia enables quantitative study of emergent multi-agent dynamics such as name bias and last-speaker advantage, and contributes to AI safety by generating training data for deception detectors.
comment: Extends the original work by introducing a theoretical model for win rates in terms of intrinsic model parameters, adding human baselines, and including ablation experiments on prompt complexity and discussion length
♻ ☆ An item is worth one token in Multimodal Large Language Models-based Sequential Recommendation
Sequential recommendations (SR) predict users' future interactions based on their historical behavior. The rise of Large Language Models (LLMs) has brought powerful generative and reasoning capabilities, significantly enhancing SR performance, while Multimodal LLMs (MLLMs) further extend this by introducing data like images and interactive relationships. However, critical issues remain, i.e., (a) Suboptimal item representations caused by lengthy and redundant descriptions, leading to inefficiencies in both training and inference; (b) Modality-related cognitive bias, as LLMs are predominantly pretrained on textual data, limiting their ability to effectively integrate and utilize non-textual modalities; (c) Weakening sequential perception in long interaction sequences, where attention mechanisms struggle to capture earlier interactions, hindering the modeling of long-range dependencies. To address these issues, we propose Speeder, an efficient MLLM-based paradigm for SR featuring three key innovations: 1) Multimodal Representation Compression (MRC), which condenses item attributes into concise yet informative tokens, reducing redundancy and computational cost; 2) Modality-aware Progressive Optimization (MPO), enabling gradual learning of multimodal representations; 3) Sequential Position Awareness Enhancement (SPAE), improving the LLM's capability to capture both relative and absolute sequential dependencies in long interaction sequences. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of Speeder. Speeder increases training speed to 250% of the original while reducing inference time to 25% on the Amazon dataset.
♻ ☆ Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
♻ ☆ Methods and Open Problems in Differentiable Social Choice: Learning Mechanisms, Decisions, and Alignment
Social choice is no longer a peripheral concern of political theory or economics-it has become a foundational component of modern machine learning systems. From auctions and resource allocation to federated learning, participatory governance, and the alignment of large language models, machine learning pipelines increasingly aggregate heterogeneous preferences, incentives, and judgments into collective decisions. In effect, many contemporary machine learning systems already implement social choice mechanisms, often implicitly and without explicit normative scrutiny. This Review surveys differentiable social choice: an emerging paradigm that formulates voting rules, mechanisms, and aggregation procedures as learnable, differentiable models optimized from data. We synthesize work across auctions, voting, budgeting, liquid democracy, decentralized aggregation, and inverse mechanism learning, showing how classical axioms and impossibility results reappear as objectives, constraints, and optimization trade-offs. We conclude by identifying 36 open problems defining a new research agenda at the intersection of machine learning, economics, and social choice theory.
♻ ☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
♻ ☆ A Taxonomy for Evaluating Generalist Robot Manipulation Policies IEEE
Machine learning for robot manipulation promises to unlock generalization to novel tasks and environments. But how should we measure the progress of these policies towards generalization? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce settings. In this work, our goal is (1) to outline the forms of generalization we believe are important for robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. Next, we instantiate STAR-Gen with two case studies on real-world benchmarking: one based on open-source models and the Bridge V2 dataset, and another based on the bimanual ALOHA 2 platform that covers more dexterous and longer horizon tasks. Our case studies reveal many interesting insights: for example, we observe that open-source vision-language-action models often struggle with semantic generalization, despite pre-training on internet-scale language datasets. We provide videos and other supplementary material at stargen-taxonomy.github.io.
comment: IEEE Robotics and Automation Letters (RA-L)
Computation and Language 152
☆ DFlash: Block Diffusion for Flash Speculative Decoding
Autoregressive large language models (LLMs) deliver strong performance but require inherently sequential decoding, leading to high inference latency and poor GPU utilization. Speculative decoding mitigates this bottleneck by using a fast draft model whose outputs are verified in parallel by the target LLM; however, existing methods still rely on autoregressive drafting, which remains sequential and limits practical speedups. Diffusion LLMs offer a promising alternative by enabling parallel generation, but current diffusion models typically underperform compared with autoregressive models. In this paper, we introduce DFlash, a speculative decoding framework that employs a lightweight block diffusion model for parallel drafting. By generating draft tokens in a single forward pass and conditioning the draft model on context features extracted from the target model, DFlash enables efficient drafting with high-quality outputs and higher acceptance rates. Experiments show that DFlash achieves over 6x lossless acceleration across a range of models and tasks, delivering up to 2.5x higher speedup than the state-of-the-art speculative decoding method EAGLE-3.
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Multi-Token Prediction via Self-Distillation
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
comment: 8 pages and 5 figures in the main body
☆ A Systematic Evaluation of Large Language Models for PTSD Severity Estimation: The Role of Contextual Knowledge and Modeling Strategies
Large language models (LLMs) are increasingly being used in a zero-shot fashion to assess mental health conditions, yet we have limited knowledge on what factors affect their accuracy. In this study, we utilize a clinical dataset of natural language narratives and self-reported PTSD severity scores from 1,437 individuals to comprehensively evaluate the performance of 11 state-of-the-art LLMs. To understand the factors affecting accuracy, we systematically varied (i) contextual knowledge like subscale definitions, distribution summary, and interview questions, and (ii) modeling strategies including zero-shot vs few shot, amount of reasoning effort, model sizes, structured subscales vs direct scalar prediction, output rescaling and nine ensemble methods. Our findings indicate that (a) LLMs are most accurate when provided with detailed construct definitions and context of the narrative; (b) increased reasoning effort leads to better estimation accuracy; (c) performance of open-weight models (Llama, Deepseek), plateau beyond 70B parameters while closed-weight (o3-mini, gpt-5) models improve with newer generations; and (d) best performance is achieved when ensembling a supervised model with the zero-shot LLMs. Taken together, the results suggest choice of contextual knowledge and modeling strategies is important for deploying LLMs to accurately assess mental health.
comment: 18 pages, 3 figures, 5 tables
☆ Speech Emotion Recognition Leveraging OpenAI's Whisper Representations and Attentive Pooling Methods
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
☆ DSB: Dynamic Sliding Block Scheduling for Diffusion LLMs
Diffusion large language models (dLLMs) have emerged as a promising alternative for text generation, distinguished by their native support for parallel decoding. In practice, block inference is crucial for avoiding order misalignment in global bidirectional decoding and improving output quality. However, the widely-used fixed, predefined block (naive) schedule is agnostic to semantic difficulty, making it a suboptimal strategy for both quality and efficiency: it can force premature commitments to uncertain positions while delaying easy positions near block boundaries. In this work, we analyze the limitations of naive block scheduling and disclose the importance of dynamically adapting the schedule to semantic difficulty for reliable and efficient inference. Motivated by this, we propose Dynamic Sliding Block (DSB), a training-free block scheduling method that uses a sliding block with a dynamic size to overcome the rigidity of the naive block. To further improve efficiency, we introduce DSB Cache, a training-free KV-cache mechanism tailored to DSB. Extensive experiments across multiple models and benchmarks demonstrate that DSB, together with DSB Cache, consistently improves both generation quality and inference efficiency for dLLMs. Code is released at https://github.com/lizhuo-luo/DSB.
☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents ACL
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus.We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
comment: Submission to ACL ARR 2026 January
☆ Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space ICLR 2026
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
comment: 10 pages, 6 figures (excluding refs/appendix). Accepted to ICLR 2026
☆ Self-Improving Multilingual Long Reasoning via Translation-Reasoning Integrated Training
Long reasoning models often struggle in multilingual settings: they tend to reason in English for non-English questions; when constrained to reasoning in the question language, accuracies drop substantially. The struggle is caused by the limited abilities for both multilingual question understanding and multilingual reasoning. To address both problems, we propose TRIT (Translation-Reasoning Integrated Training), a self-improving framework that integrates the training of translation into multilingual reasoning. Without external feedback or additional multilingual data, our method jointly enhances multilingual question understanding and response generation. On MMATH, our method outperforms multiple baselines by an average of 7 percentage points, improving both answer correctness and language consistency. Further analysis reveals that integrating translation training improves cross-lingual question alignment by over 10 percentage points and enhances translation quality for both mathematical questions and general-domain text, with gains up to 8.4 COMET points on FLORES-200.
comment: 16 pages, 11 figures
☆ Polyglots or Multitudes? Multilingual LLM Answers to Value-laden Multiple-Choice Questions
Multiple-Choice Questions (MCQs) are often used to assess knowledge, reasoning abilities, and even values encoded in large language models (LLMs). While the effect of multilingualism has been studied on LLM factual recall, this paper seeks to investigate the less explored question of language-induced variation in value-laden MCQ responses. Are multilingual LLMs consistent in their responses across languages, i.e. behave like theoretical polyglots, or do they answer value-laden MCQs depending on the language of the question, like a multitude of monolingual models expressing different values through a single model? We release a new corpus, the Multilingual European Value Survey (MEVS), which, unlike prior work relying on machine translation or ad hoc prompts, solely comprises human-translated survey questions aligned in 8 European languages. We administer a subset of those questions to over thirty multilingual LLMs of various sizes, manufacturers and alignment-fine-tuning status under comprehensive, controlled prompt variations including answer order, symbol type, and tail character. Our results show that while larger, instruction-tuned models display higher overall consistency, the robustness of their responses varies greatly across questions, with certain MCQs eliciting total agreement within and across models while others leave LLM answers split. Language-specific behavior seems to arise in all consistent, instruction-fine-tuned models, but only on certain questions, warranting a further study of the selective effect of preference fine-tuning.
comment: 17 pages, 5 figures (8 pages of references and appendices)
☆ KV-CoRE: Benchmarking Data-Dependent Low-Rank Compressibility of KV-Caches in LLMs
Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
☆ Codified Finite-state Machines for Role-playing
Modeling latent character states is crucial for consistent and engaging role-playing (RP) with large language models (LLMs). Yet, existing prompting-based approaches mainly capture surface actions, often failing to track the latent states that drive interaction. We revisit finite-state machines (FSMs), long used in game design to model state transitions. While effective in small, well-specified state spaces, traditional hand-crafted, rule-based FSMs struggle to adapt to the open-ended semantic space of RP. To address this, we introduce Codified Finite-State Machines (CFSMs), a framework that automatically codifies textual character profiles into FSMs using LLM-based coding. CFSMs extract key states and transitions directly from the profile, producing interpretable structures that enforce character consistency. To further capture uncertainty and variability, we extend CFSMs into Codified Probabilistic Finite-State Machines (CPFSMs), where transitions are modeled as probability distributions over states. Through both synthetic evaluations and real-world RP scenarios in established artifacts, we demonstrate that CFSM and CPFSM outperform generally applied baselines, verifying effectiveness not only in structured tasks but also in open-ended stochastic state exploration.
☆ Stop Rewarding Hallucinated Steps: Faithfulness-Aware Step-Level Reinforcement Learning for Small Reasoning Models
As large language models become smaller and more efficient, small reasoning models (SRMs) are crucial for enabling chain-of-thought (CoT) reasoning in resource-constrained settings. However, they are prone to faithfulness hallucinations, especially in intermediate reasoning steps. Existing mitigation methods based on online reinforcement learning rely on outcome-based rewards or coarse-grained CoT evaluation, which can inadvertently reinforce unfaithful reasoning when the final answer is correct. To address these limitations, we propose Faithfulness-Aware Step-Level Reinforcement Learning (FaithRL), introducing step-level supervision via explicit faithfulness rewards from a process reward model, together with an implicit truncated resampling strategy that generates contrastive signals from faithful prefixes. Experiments across multiple SRMs and Open-Book QA benchmarks demonstrate that FaithRL consistently reduces hallucinations in both the CoT and final answers, leading to more faithful and reliable reasoning. Code is available at https://github.com/Easy195/FaithRL.
☆ DFPO: Scaling Value Modeling via Distributional Flow towards Robust and Generalizable LLM Post-Training
Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ xList-Hate: A Checklist-Based Framework for Interpretable and Generalizable Hate Speech Detection
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ RRAttention: Dynamic Block Sparse Attention via Per-Head Round-Robin Shifts for Long-Context Inference
The quadratic complexity of attention mechanisms poses a critical bottleneck for large language models processing long contexts. While dynamic sparse attention methods offer input-adaptive efficiency, they face fundamental trade-offs: requiring preprocessing, lacking global evaluation, violating query independence, or incurring high computational overhead. We present RRAttention, a novel dynamic sparse attention method that simultaneously achieves all desirable properties through a head \underline{r}ound-\underline{r}obin (RR) sampling strategy. By rotating query sampling positions across attention heads within each stride, RRAttention maintains query independence while enabling efficient global pattern discovery with stride-level aggregation. Our method reduces complexity from $O(L^2)$ to $O(L^2/S^2)$ and employs adaptive Top-$τ$ selection for optimal sparsity. Extensive experiments on natural language understanding (HELMET) and multimodal video comprehension (Video-MME) demonstrate that RRAttention recovers over 99\% of full attention performance while computing only half of the attention blocks, achieving 2.4$\times$ speedup at 128K context length and outperforming existing dynamic sparse attention methods.
☆ DARWIN: Dynamic Agentically Rewriting Self-Improving Network
DARWIN is an evolutionary GPT model, utilizing a genetic-algorithm like optimization structure with several independent GPT agents being trained individually using unique training code. Each iteration, the GPT models are prompted to modify the training code of one another in an attempt to improve their performance in a mutation-like manner, and the best GPT agents are then benchmarked and selected for the next iteration by genetic algorithm. For demonstration purposes and due to budget and time constraints, OpenAI API is used to prompt training code improvements and the nanoGPT framework is used as the training code. DARWIN also utilizes persistent JSON-based memory files to track previous reasoning and changes to code to correlate with improvement to model performance. and a bidirectional interface for HITL intervention allowing the model to request upgrades such as additional datasets, training scripts, and restructuring of file hierarchies. In experiments, DARWIN achieved a 1.26 percent improvement in model FLOPS utilization (MFU) and a 2.07 percent improvement to perplexity in 5 iterations of training over baseline configurations, demonstrating promising capabilities as a foundation for scaling evolutionary GPT training.
comment: 6 pages, 3 figures, 2 tables
☆ OdysseyArena: Benchmarking Large Language Models For Long-Horizon, Active and Inductive Interactions
The rapid advancement of Large Language Models (LLMs) has catalyzed the development of autonomous agents capable of navigating complex environments. However, existing evaluations primarily adopt a deductive paradigm, where agents execute tasks based on explicitly provided rules and static goals, often within limited planning horizons. Crucially, this neglects the inductive necessity for agents to discover latent transition laws from experience autonomously, which is the cornerstone for enabling agentic foresight and sustaining strategic coherence. To bridge this gap, we introduce OdysseyArena, which re-centers agent evaluation on long-horizon, active, and inductive interactions. We formalize and instantiate four primitives, translating abstract transition dynamics into concrete interactive environments. Building upon this, we establish OdysseyArena-Lite for standardized benchmarking, providing a set of 120 tasks to measure an agent's inductive efficiency and long-horizon discovery. Pushing further, we introduce OdysseyArena-Challenge to stress-test agent stability across extreme interaction horizons (e.g., > 200 steps). Extensive experiments on 15+ leading LLMs reveal that even frontier models exhibit a deficiency in inductive scenarios, identifying a critical bottleneck in the pursuit of autonomous discovery in complex environments. Our code and data are available at https://github.com/xufangzhi/Odyssey-Arena
comment: 34 pages
☆ Reinforcement World Model Learning for LLM-based Agents
Large language models (LLMs) have achieved strong performance in language-centric tasks. However, in agentic settings, LLMs often struggle to anticipate action consequences and adapt to environment dynamics, highlighting the need for world-modeling capabilities in LLM-based agents. We propose Reinforcement World Model Learning (RWML), a self-supervised method that learns action-conditioned world models for LLM-based agents on textual states using sim-to-real gap rewards. Our method aligns simulated next states produced by the model with realized next states observed from the environment, encouraging consistency between internal world simulations and actual environment dynamics in a pre-trained embedding space. Unlike next-state token prediction, which prioritizes token-level fidelity (i.e., reproducing exact wording) over semantic equivalence and can lead to model collapse, our method provides a more robust training signal and is empirically less susceptible to reward hacking than LLM-as-a-judge. We evaluate our method on ALFWorld and $τ^2$ Bench and observe significant gains over the base model, despite being entirely self-supervised. When combined with task-success rewards, our method outperforms direct task-success reward RL by 6.9 and 5.7 points on ALFWorld and $τ^2$ Bench respectively, while matching the performance of expert-data training.
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ Different Time, Different Language: Revisiting the Bias Against Non-Native Speakers in GPT Detectors EACL 2026
LLM-based assistants have been widely popularised after the release of ChatGPT. Concerns have been raised about their misuse in academia, given the difficulty of distinguishing between human-written and generated text. To combat this, automated techniques have been developed and shown to be effective, to some extent. However, prior work suggests that these methods often falsely flag essays from non-native speakers as generated, due to their low perplexity extracted from an LLM, which is supposedly a key feature of the detectors. We revisit these statements two years later, specifically in the Czech language setting. We show that the perplexity of texts from non-native speakers of Czech is not lower than that of native speakers. We further examine detectors from three separate families and find no systematic bias against non-native speakers. Finally, we demonstrate that contemporary detectors operate effectively without relying on perplexity.
comment: This paper was accepted to EACL 2026 Student Research Workshop
☆ LongR: Unleashing Long-Context Reasoning via Reinforcement Learning with Dense Utility Rewards
Reinforcement Learning has emerged as a key driver for LLM reasoning. This capability is equally pivotal in long-context scenarios--such as long-dialogue understanding and structured data analysis, where the challenge extends beyond consuming tokens to performing rigorous deduction. While existing efforts focus on data synthesis or architectural changes, recent work points out that relying solely on sparse, outcome-only rewards yields limited gains, as such coarse signals are often insufficient to effectively guide the complex long-context reasoning. To address this, we propose LongR, a unified framework that enhances long-context performance by integrating a dynamic "Think-and-Read" mechanism, which interleaves reasoning with document consultation, with a contextual density reward based on relative information gain to quantify the utility of the relevant documents. Empirically, LongR achieves a 9% gain on LongBench v2 and consistent improvements on RULER and InfiniteBench, demonstrating robust efficiency in navigating extensive contexts. Furthermore, LongR consistently enhances performance across diverse RL algorithms (e.g., DAPO, GSPO). Finally, we conduct in-depth analyses to investigate the impact of reasoning chain length on efficiency and the model's robustness against distractors.
☆ CompactRAG: Reducing LLM Calls and Token Overhead in Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
☆ OmniMoE: An Efficient MoE by Orchestrating Atomic Experts at Scale
Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Cost-Efficient RAG for Entity Matching with LLMs: A Blocking-based Exploration
Retrieval-augmented generation (RAG) enhances LLM reasoning in knowledge-intensive tasks, but existing RAG pipelines incur substantial retrieval and generation overhead when applied to large-scale entity matching. To address this limitation, we introduce CE-RAG4EM, a cost-efficient RAG architecture that reduces computation through blocking-based batch retrieval and generation. We also present a unified framework for analyzing and evaluating RAG systems for entity matching, focusing on blocking-aware optimizations and retrieval granularity. Extensive experiments suggest that CE-RAG4EM can achieve comparable or improved matching quality while substantially reducing end-to-end runtime relative to strong baselines. Our analysis further reveals that key configuration parameters introduce an inherent trade-off between performance and overhead, offering practical guidance for designing efficient and scalable RAG systems for entity matching and data integration.
☆ Consensus-Aligned Neuron Efficient Fine-Tuning Large Language Models for Multi-Domain Machine Translation AAAI 2026
Multi-domain machine translation (MDMT) aims to build a unified model capable of translating content across diverse domains. Despite the impressive machine translation capabilities demonstrated by large language models (LLMs), domain adaptation still remains a challenge for LLMs. Existing MDMT methods such as in-context learning and parameter-efficient fine-tuning often suffer from domain shift, parameter interference and limited generalization. In this work, we propose a neuron-efficient fine-tuning framework for MDMT that identifies and updates consensus-aligned neurons within LLMs. These neurons are selected by maximizing the mutual information between neuron behavior and domain features, enabling LLMs to capture both generalizable translation patterns and domain-specific nuances. Our method then fine-tunes LLMs guided by these neurons, effectively mitigating parameter interference and domain-specific overfitting. Comprehensive experiments on three LLMs across ten German-English and Chinese-English translation domains evidence that our method consistently outperforms strong PEFT baselines on both seen and unseen domains, achieving state-of-the-art performance.
comment: Accepted by AAAI 2026
☆ MedErrBench: A Fine-Grained Multilingual Benchmark for Medical Error Detection and Correction with Clinical Expert Annotations
Inaccuracies in existing or generated clinical text may lead to serious adverse consequences, especially if it is a misdiagnosis or incorrect treatment suggestion. With Large Language Models (LLMs) increasingly being used across diverse healthcare applications, comprehensive evaluation through dedicated benchmarks is crucial. However, such datasets remain scarce, especially across diverse languages and contexts. In this paper, we introduce MedErrBench, the first multilingual benchmark for error detection, localization, and correction, developed under the guidance of experienced clinicians. Based on an expanded taxonomy of ten common error types, MedErrBench covers English, Arabic and Chinese, with natural clinical cases annotated and reviewed by domain experts. We assessed the performance of a range of general-purpose, language-specific, and medical-domain language models across all three tasks. Our results reveal notable performance gaps, particularly in non-English settings, highlighting the need for clinically grounded, language-aware systems. By making MedErrBench and our evaluation protocols publicly-available, we aim to advance multilingual clinical NLP to promote safer and more equitable AI-based healthcare globally. The dataset is available in the supplementary material. An anonymized version of the dataset is available at: https://github.com/congboma/MedErrBench.
☆ Modelling the Morphology of Verbal Paradigms: A Case Study in the Tokenization of Turkish and Hebrew
We investigate how transformer models represent complex verb paradigms in Turkish and Modern Hebrew, concentrating on how tokenization strategies shape this ability. Using the Blackbird Language Matrices task on natural data, we show that for Turkish -- with its transparent morphological markers -- both monolingual and multilingual models succeed, either when tokenization is atomic or when it breaks words into small subword units. For Hebrew, instead, monolingual and multilingual models diverge. A multilingual model using character-level tokenization fails to capture the language non-concatenative morphology, but a monolingual model with morpheme-aware segmentation performs well. Performance improves on more synthetic datasets, in all models.
comment: 13 pages, 7 figures, to appear as proceedings of the SIGTURK 2026 Workshop
☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
comment: 15 pages, 6 figures, 6 tables. Code available at https://github.com/bennycheung/GameGrammarCLI
☆ CASTLE: A Comprehensive Benchmark for Evaluating Student-Tailored Personalized Safety in Large Language Models
Large language models (LLMs) have advanced the development of personalized learning in education. However, their inherent generation mechanisms often produce homogeneous responses to identical prompts. This one-size-fits-all mechanism overlooks the substantial heterogeneity in students cognitive and psychological, thereby posing potential safety risks to vulnerable groups. Existing safety evaluations primarily rely on context-independent metrics such as factual accuracy, bias, or toxicity, which fail to capture the divergent harms that the same response might cause across different student attributes. To address this gap, we propose the concept of Student-Tailored Personalized Safety and construct CASTLE based on educational theories. This benchmark covers 15 educational safety risks and 14 student attributes, comprising 92,908 bilingual scenarios. We further design three evaluation metrics: Risk Sensitivity, measuring the model ability to detect risks; Emotional Empathy, evaluating the model capacity to recognize student states; and Student Alignment, assessing the match between model responses and student attributes. Experiments on 18 SOTA LLMs demonstrate that CASTLE poses a significant challenge: all models scored below an average safety rating of 2.3 out of 5, indicating substantial deficiencies in personalized safety assurance.
☆ Rewards as Labels: Revisiting RLVR from a Classification Perspective
Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
comment: 12 pages, 5 figures, 4 tables
☆ AI chatbots versus human healthcare professionals: a systematic review and meta-analysis of empathy in patient care
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
comment: Open Access Invited Review. Systematic review and meta analysis of 15 studies 2023-2024. Published 20 October 2025
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ ArkTS-CodeSearch: A Open-Source ArkTS Dataset for Code Retrieval
ArkTS is a core programming language in the OpenHarmony ecosystem, yet research on ArkTS code intelligence is hindered by the lack of public datasets and evaluation benchmarks. This paper presents a large-scale ArkTS dataset constructed from open-source repositories, targeting code retrieval and code evaluation tasks. We design a single-search task, where natural language comments are used to retrieve corresponding ArkTS functions. ArkTS repositories are crawled from GitHub and Gitee, and comment-function pairs are extracted using tree-sitter-arkts, followed by cross-platform deduplication and statistical analysis of ArkTS function types. We further evaluate all existing open-source code embedding models on the single-search task and perform fine-tuning using both ArkTS and TypeScript training datasets, resulting in a high-performing model for ArkTS code understanding. This work establishes the first systematic benchmark for ArkTS code retrieval. Both the dataset and our fine-tuned model will be released publicly and are available at https://huggingface.co/hreyulog/embedinggemma_arkts and https://huggingface.co/datasets/hreyulog/arkts-code-docstring,establishing the first systematic benchmark for ArkTS code retrieval.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ A Unified Multimodal Framework for Dataset Construction and Model-Based Diagnosis of Ameloblastoma
Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
☆ Transport and Merge: Cross-Architecture Merging for Large Language Models
Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
☆ LinguistAgent: A Reflective Multi-Model Platform for Automated Linguistic Annotation
Data annotation remains a significant bottleneck in the Humanities and Social Sciences, particularly for complex semantic tasks such as metaphor identification. While Large Language Models (LLMs) show promise, a significant gap remains between the theoretical capability of LLMs and their practical utility for researchers. This paper introduces LinguistAgent, an integrated, user-friendly platform that leverages a reflective multi-model architecture to automate linguistic annotation. The system implements a dual-agent workflow, comprising an Annotator and a Reviewer, to simulate a professional peer-review process. LinguistAgent supports comparative experiments across three paradigms: Prompt Engineering (Zero/Few-shot), Retrieval-Augmented Generation, and Fine-tuning. We demonstrate LinguistAgent's efficacy using the task of metaphor identification as an example, providing real-time token-level evaluation (Precision, Recall, and $F_1$ score) against human gold standards. The application and codes are released on https://github.com/Bingru-Li/LinguistAgent.
☆ Reasoning under Ambiguity: Uncertainty-Aware Multilingual Emotion Classification under Partial Supervision
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact formats can consume significantly more tokens at scale due to format-unfamiliar search patterns. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 7 figures, 10 tables, 26 references
☆ Causal Front-Door Adjustment for Robust Jailbreak Attacks on LLMs
Safety alignment mechanisms in Large Language Models (LLMs) often operate as latent internal states, obscuring the model's inherent capabilities. Building on this observation, we model the safety mechanism as an unobserved confounder from a causal perspective. Then, we propose the \textbf{C}ausal \textbf{F}ront-Door \textbf{A}djustment \textbf{A}ttack ({\textbf{CFA}}$^2$) to jailbreak LLM, which is a framework that leverages Pearl's Front-Door Criterion to sever the confounding associations for robust jailbreaking. Specifically, we employ Sparse Autoencoders (SAEs) to physically strip defense-related features, isolating the core task intent. We further reduce computationally expensive marginalization to a deterministic intervention with low inference complexity. Experiments demonstrate that {CFA}$^2$ achieves state-of-the-art attack success rates while offering a mechanistic interpretation of the jailbreaking process.
☆ Once Correct, Still Wrong: Counterfactual Hallucination in Multilingual Vision-Language Models
Vision-language models (VLMs) can achieve high accuracy while still accepting culturally plausible but visually incorrect interpretations. Existing hallucination benchmarks rarely test this failure mode, particularly outside Western contexts and English. We introduce M2CQA, a culturally grounded multimodal benchmark built from images spanning 17 MENA countries, paired with contrastive true and counterfactual statements in English, Arabic, and its dialects. To isolate hallucination beyond raw accuracy, we propose the CounterFactual Hallucination Rate (CFHR), which measures counterfactual acceptance conditioned on correctly answering the true statement. Evaluating state-of-the-art VLMs under multiple prompting strategies, we find that CFHR rises sharply in Arabic, especially in dialects, even when true-statement accuracy remains high. Moreover, reasoning-first prompting consistently increases counterfactual hallucination, while answering before justifying improves robustness. We will make the experimental resources and dataset publicly available for the community.
☆ Grammatical Error Correction Evaluation by Optimally Transporting Edit Representation ACL
Automatic evaluation in grammatical error correction (GEC) is crucial for selecting the best-performing systems. Currently, reference-based metrics are a popular choice, which basically measure the similarity between hypothesis and reference sentences. However, similarity measures based on embeddings, such as BERTScore, are often ineffective, since many words in the source sentences remain unchanged in both the hypothesis and the reference. This study focuses on edits specifically designed for GEC, i.e., ERRANT, and computes similarity measured over the edits from the source sentence. To this end, we propose edit vector, a representation for an edit, and introduce a new metric, UOT-ERRANT, which transports these edit vectors from hypothesis to reference using unbalanced optimal transport. Experiments with SEEDA meta-evaluation show that UOT-ERRANT improves evaluation performance, particularly in the +Fluency domain where many edits occur. Moreover, our method is highly interpretable because the transport plan can be interpreted as a soft edit alignment, making UOT-ERRANT a useful metric for both system ranking and analyzing GEC systems. Our code is available from https://github.com/gotutiyan/uot-errant.
comment: Accepted to TACL. This is a pre-MIT Press publication version
☆ SciDef: Automating Definition Extraction from Academic Literature with Large Language Models SIGIR 2026
Definitions are the foundation for any scientific work, but with a significant increase in publication numbers, gathering definitions relevant to any keyword has become challenging. We therefore introduce SciDef, an LLM-based pipeline for automated definition extraction. We test SciDef on DefExtra & DefSim, novel datasets of human-extracted definitions and definition-pairs' similarity, respectively. Evaluating 16 language models across prompting strategies, we demonstrate that multi-step and DSPy-optimized prompting improve extraction performance. To evaluate extraction, we test various metrics and show that an NLI-based method yields the most reliable results. We show that LLMs are largely able to extract definitions from scientific literature (86.4% of definitions from our test-set); yet future work should focus not just on finding definitions, but on identifying relevant ones, as models tend to over-generate them. Code & datasets are available at https://github.com/Media-Bias-Group/SciDef.
comment: Under Review - Submitted to SIGIR 2026 Resources Track; 8 pages, 6 figures, 4 tables
☆ H-AdminSim: A Multi-Agent Simulator for Realistic Hospital Administrative Workflows with FHIR Integration
Hospital administration departments handle a wide range of operational tasks and, in large hospitals, process over 10,000 requests per day, driving growing interest in LLM-based automation. However, prior work has focused primarily on patient--physician interactions or isolated administrative subtasks, failing to capture the complexity of real administrative workflows. To address this gap, we propose H-AdminSim, a comprehensive end-to-end simulation framework that combines realistic data generation with multi-agent-based simulation of hospital administrative workflows. These tasks are quantitatively evaluated using detailed rubrics, enabling systematic comparison of LLMs. Through FHIR integration, H-AdminSim provides a unified and interoperable environment for testing administrative workflows across heterogeneous hospital settings, serving as a standardized testbed for assessing the feasibility and performance of LLM-driven administrative automation.
☆ OPUS: Towards Efficient and Principled Data Selection in Large Language Model Pre-training in Every Iteration
As high-quality public text approaches exhaustion, a phenomenon known as the Data Wall, pre-training is shifting from more tokens to better tokens. However, existing methods either rely on heuristic static filters that ignore training dynamics, or use dynamic yet optimizer-agnostic criteria based on raw gradients. We propose OPUS (Optimizer-induced Projected Utility Selection), a dynamic data selection framework that defines utility in the optimizer-induced update space. OPUS scores candidates by projecting their effective updates, shaped by modern optimizers, onto a target direction derived from a stable, in-distribution proxy. To ensure scalability, we employ Ghost technique with CountSketch for computational efficiency, and Boltzmann sampling for data diversity, incurring only 4.7\% additional compute overhead. OPUS achieves remarkable results across diverse corpora, quality tiers, optimizers, and model scales. In pre-training of GPT-2 Large/XL on FineWeb and FineWeb-Edu with 30B tokens, OPUS outperforms industrial-level baselines and even full 200B-token training. Moreover, when combined with industrial-level static filters, OPUS further improves pre-training efficiency, even with lower-quality data. Furthermore, in continued pre-training of Qwen3-8B-Base on SciencePedia, OPUS achieves superior performance using only 0.5B tokens compared to full training with 3B tokens, demonstrating significant data efficiency gains in specialized domains.
comment: 45 pages, 7 figures, 8 tables
☆ Late-to-Early Training: LET LLMs Learn Earlier, So Faster and Better
As Large Language Models (LLMs) achieve remarkable empirical success through scaling model and data size, pretraining has become increasingly critical yet computationally prohibitive, hindering rapid development. Despite the availability of numerous pretrained LLMs developed at significant computational expense, a fundamental real-world question remains underexplored: \textit{Can we leverage existing small pretrained models to accelerate the training of larger models?} In this paper, we propose a Late-to-Early Training (LET) paradigm that enables LLMs to explicitly learn later knowledge in earlier steps and earlier layers. The core idea is to guide the early layers of an LLM during early training using representations from the late layers of a pretrained (i.e. late training phase) model. We identify two key mechanisms that drive LET's effectiveness: late-to-early-step learning and late-to-early-layer learning. These mechanisms significantly accelerate training convergence while robustly enhancing both language modeling capabilities and downstream task performance, enabling faster training with superior performance. Extensive experiments on 1.4B and 7B parameter models demonstrate LET's efficiency and effectiveness. Notably, when training a 1.4B LLM on the Pile dataset, our method achieves up to 1.6$\times$ speedup with nearly 5\% improvement in downstream task accuracy compared to standard training, even when using a pretrained model with 10$\times$ fewer parameters than the target model.
☆ Beyond Length: Context-Aware Expansion and Independence as Developmentally Sensitive Evaluation in Child Utterances
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
☆ IESR:Efficient MCTS-Based Modular Reasoning for Text-to-SQL with Large Language Models
Text-to-SQL is a key natural language processing task that maps natural language questions to SQL queries, enabling intuitive interaction with web-based databases. Although current methods perform well on benchmarks like BIRD and Spider, they struggle with complex reasoning, domain knowledge, and hypothetical queries, and remain costly in enterprise deployment. To address these issues, we propose a framework named IESR(Information Enhanced Structured Reasoning) for lightweight large language models: (i) leverages LLMs for key information understanding and schema linking, and decoupling mathematical computation and SQL generation, (ii) integrates a multi-path reasoning mechanism based on Monte Carlo Tree Search (MCTS) with majority voting, and (iii) introduces a trajectory consistency verification module with a discriminator model to ensure accuracy and consistency. Experimental results demonstrate that IESR achieves state-of-the-art performance on the complex reasoning benchmark LogicCat (24.28 EX) and the Archer dataset (37.28 EX) using only compact lightweight models without fine-tuning. Furthermore, our analysis reveals that current coder models exhibit notable biases and deficiencies in physical knowledge, mathematical computation, and common-sense reasoning, highlighting important directions for future research. We released code at https://github.com/Ffunkytao/IESR-SLM.
comment: 25 pages, 16 figures, 8 tables. Hongyin Zan is corresponding author, Jiafan Lu is first co-author
☆ Cross-Lingual Empirical Evaluation of Large Language Models for Arabic Medical Tasks EACL 2026
In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
comment: Accepted to HeaLing-EACL 2026
☆ PACE: Defying the Scaling Hypothesis of Exploration in Iterative Alignment for Mathematical Reasoning
Iterative Direct Preference Optimization has emerged as the state-of-the-art paradigm for aligning Large Language Models on reasoning tasks. Standard implementations (DPO-R1) rely on Best-of-N sampling (e.g., $N \ge 8$) to mine golden trajectories from the distribution tail. In this paper, we challenge this scaling hypothesis and reveal a counter-intuitive phenomenon: in mathematical reasoning, aggressive exploration yields diminishing returns and even catastrophic policy collapse. We theoretically demonstrate that scaling $N$ amplifies verifier noise and induces detrimental distribution shifts. To resolve this, we introduce \textbf{PACE} (Proximal Alignment via Corrective Exploration), which replaces brute-force mining with a generation-based corrective strategy. Operating with a minimal budget ($2
☆ Multi-Field Tool Retrieval
Integrating external tools enables Large Language Models (LLMs) to interact with real-world environments and solve complex tasks. Given the growing scale of available tools, effective tool retrieval is essential to mitigate constraints of LLMs' context windows and ensure computational efficiency. Existing approaches typically treat tool retrieval as a traditional ad-hoc retrieval task, matching user queries against the entire raw tool documentation. In this paper, we identify three fundamental challenges that limit the effectiveness of this paradigm: (i) the incompleteness and structural inconsistency of tool documentation; (ii) the significant semantic and granular mismatch between user queries and technical tool documents; and, most importantly, (iii) the multi-aspect nature of tool utility, that involves distinct dimensions, such as functionality, input constraints, and output formats, varying in format and importance. To address these challenges, we introduce Multi-Field Tool Retrieval, a framework designed to align user intent with tool representations through fine-grained, multi-field modeling. Experimental results show that our framework achieves SOTA performance on five datasets and a mixed benchmark, exhibiting superior generalizability and robustness.
comment: 12 pages, 4 figures
☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
☆ How Do Language Models Acquire Character-Level Information? EACL 2026
Language models (LMs) have been reported to implicitly encode character-level information, despite not being explicitly provided during training. However, the mechanisms underlying this phenomenon remain largely unexplored. To reveal the mechanisms, we analyze how models acquire character-level knowledge by comparing LMs trained under controlled settings, such as specifying the pre-training dataset or tokenizer, with those trained under standard settings. We categorize the contributing factors into those independent of tokenization. Our analysis reveals that merge rules and orthographic constraints constitute primary factors arising from tokenization, whereas semantic associations of substrings and syntactic information function as key factors independent of tokenization.
comment: Accepted to EACL 2026 Main Conference
☆ MentorCollab: Selective Large-to-Small Inference-Time Guidance for Efficient Reasoning
Large reasoning models (LRMs) achieve strong performance by producing long chains of thought, but their inference costs are high and often generate redundant reasoning. Small language models (SLMs) are far more efficient, yet struggle on multi-step reasoning tasks. A natural idea is to let a large model guide a small one at inference time as a mentor, yet existing collaboration methods often promote imitation, resulting in verbose reasoning without consistent error correction. We propose MentorCollab, an inference-time collaboration method in which an LRM selectively and sparsely guides an SLM, rather than taking over generation. At randomly sampled token positions, we probe for divergences between the two models and use a lightweight verifier to decide whether the SLM should follow a short lookahead segment from its mentor or continue on its own. Across 15 SLM--LRM pairs and 3 domains (math reasoning, general knowledge, and commonsense reasoning), our method improves performance in 12 settings, with average gains of 3.0% and up to 8.0%, while adopting only having 18.4% tokens generated by the expensive mentor model on average. We find that short segments and selective probing are sufficient for effective collaboration. Our results show that selective inference-time guidance restores large-model reasoning ability without substantial inference overhead.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ Towards a Science of Collective AI: LLM-based Multi-Agent Systems Need a Transition from Blind Trial-and-Error to Rigorous Science
Recent advancements in Large Language Models (LLMs) have greatly extended the capabilities of Multi-Agent Systems (MAS), demonstrating significant effectiveness across a wide range of complex and open-ended domains. However, despite this rapid progress, the field still relies heavily on empirical trial-and-error. It lacks a unified and principled scientific framework necessary for systematic optimization and improvement. This bottleneck stems from the ambiguity of attribution: first, the absence of a structured taxonomy of factors leaves researchers restricted to unguided adjustments; second, the lack of a unified metric fails to distinguish genuine collaboration gain from mere resource accumulation. In this paper, we advocate for a transition to design science through an integrated framework. We advocate to establish the collaboration gain metric ($Γ$) as the scientific standard to isolate intrinsic gains from increased budgets. Leveraging $Γ$, we propose a factor attribution paradigm to systematically identify collaboration-driving factors. To support this, we construct a systematic MAS factor library, structuring the design space into control-level presets and information-level dynamics. Ultimately, this framework facilitates the transition from blind experimentation to rigorous science, paving the way towards a true science of Collective AI.
☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
☆ Hybrid Gated Flow (HGF): Stabilizing 1.58-bit LLMs via Selective Low-Rank Correction
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" -- a hardware limitation where memory bandwidth, not compute, becomes the bottleneck. Recent 1.58-bit quantization techniques (e.g., BitNet b1.58) dramatically reduce memory footprint but typically incur a perplexity degradation of 20-25% compared to FP16 baselines. In this work, we introduce Hybrid Gated Flow (HGF), a dual-stream architecture that couples a 1.58-bit ternary backbone with a learnable, low-rank FP16 correction path controlled by adaptive gates. Through extensive experiments on the TinyStories dataset across two training regimes (2500 and 3500 steps), we demonstrate that HGF 5.4 achieves a validation loss of 0.9306 compared to BitNet's 1.0294, recovering approximately 55% of the quality gap between pure ternary quantization and the FP16 baseline (0.8490). This recovery is achieved with only ~12-15% memory overhead beyond the ternary backbone. Furthermore, we provide empirical evidence for an emergent phenomenon: quantization as structural regularization. While a full-precision differential attention baseline (Diff_Only) exhibited training instability with validation loss exceeding 1.68, the ternary-anchored HGF maintained robust convergence throughout training. Finally, we report preliminary results extending this architecture to 1.2B and 3B parameter models trained on SlimPajama and FineWeb-Edu. These larger-scale experiments confirm that the architectural stability and quality recovery observed in small-scale proxies scale linearly to production-grade language modeling regimes.
comment: 21 pages, 4 figures, 6 tables. Code and models will be released at opencores.ai
☆ Length-Unbiased Sequence Policy Optimization: Revealing and Controlling Response Length Variation in RLVR
Recent applications of Reinforcement Learning with Verifiable Rewards (RLVR) to Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated significant success in enhancing reasoning capabilities for complex tasks. During RLVR training, an increase in response length is often regarded as a key factor contributing to the growth of reasoning ability. However, the patterns of change in response length vary significantly across different RLVR algorithms during the training process. To provide a fundamental explanation for these variations, this paper conducts an in-depth analysis of the components of mainstream RLVR algorithms. We present a theoretical analysis of the factors influencing response length and validate our theory through extensive experimentation. Building upon these theoretical findings, we propose the Length-Unbiased Sequence Policy Optimization (LUSPO) algorithm. Specifically, we rectify the length bias inherent in Group Sequence Policy Optimization (GSPO), rendering its loss function unbiased with respect to response length and thereby resolving the issue of response length collapse. We conduct extensive experiments across mathematical reasoning benchmarks and multimodal reasoning scenarios, where LUSPO consistently achieves superior performance. Empirical results demonstrate that LUSPO represents a novel, state-of-the-art optimization strategy compared to existing methods such as GRPO and GSPO.
☆ CoPE: Clipped RoPE as A Scalable Free Lunch for Long Context LLMs
Rotary Positional Embedding (RoPE) is a key component of context scaling in Large Language Models (LLMs). While various methods have been proposed to adapt RoPE to longer contexts, their guiding principles generally fall into two categories: (1) out-of-distribution (OOD) mitigation, which scales RoPE frequencies to accommodate unseen positions, and (2) Semantic Modeling, which posits that the attention scores computed with RoPE should always prioritize semantically similar tokens. In this work, we unify these seemingly distinct objectives through a minimalist intervention, namely CoPE: soft clipping lowfrequency components of RoPE. CoPE not only eliminates OOD outliers and refines semantic signals, but also prevents spectral leakage caused by hard clipping. Extensive experiments demonstrate that simply applying our soft clipping strategy to RoPE yields significant performance gains that scale up to 256k context length, validating our theoretical analysis and establishing CoPE as a new state-of-the-art for length generalization. Our code, data, and models are available at https://github.com/hrlics/CoPE.
☆ Copyright Detective: A Forensic System to Evidence LLMs Flickering Copyright Leakage Risks
We present Copyright Detective, the first interactive forensic system for detecting, analyzing, and visualizing potential copyright risks in LLM outputs. The system treats copyright infringement versus compliance as an evidence discovery process rather than a static classification task due to the complex nature of copyright law. It integrates multiple detection paradigms, including content recall testing, paraphrase-level similarity analysis, persuasive jailbreak probing, and unlearning verification, within a unified and extensible framework. Through interactive prompting, response collection, and iterative workflows, our system enables systematic auditing of verbatim memorization and paraphrase-level leakage, supporting responsible deployment and transparent evaluation of LLM copyright risks even with black-box access.
☆ FedMosaic: Federated Retrieval-Augmented Generation via Parametric Adapters
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by grounding generation in external knowledge to improve factuality and reduce hallucinations. Yet most deployments assume a centralized corpus, which is infeasible in privacy aware domains where knowledge remains siloed. This motivates federated RAG (FedRAG), where a central LLM server collaborates with distributed silos without sharing raw documents. In context RAG violates this requirement by transmitting verbatim documents, whereas parametric RAG encodes documents into lightweight adapters that merge with a frozen LLM at inference, avoiding raw-text exchange. We adopt the parametric approach but face two unique challenges induced by FedRAG: high storage and communication from per-document adapters, and destructive aggregation caused by indiscriminately merging multiple adapters. We present FedMosaic, the first federated RAG framework built on parametric adapters. FedMosaic clusters semantically related documents into multi-document adapters with document-specific masks to reduce overhead while preserving specificity, and performs selective adapter aggregation to combine only relevance-aligned, nonconflicting adapters. Experiments show that FedMosaic achieves an average 10.9% higher accuracy than state-of-the-art methods in four categories, while lowering storage costs by 78.8% to 86.3% and communication costs by 91.4%, and never sharing raw documents.
comment: 11 pages
☆ Faithful Bi-Directional Model Steering via Distribution Matching and Distributed Interchange Interventions ICLR 2026
Intervention-based model steering offers a lightweight and interpretable alternative to prompting and fine-tuning. However, by adapting strong optimization objectives from fine-tuning, current methods are susceptible to overfitting and often underperform, sometimes generating unnatural outputs. We hypothesize that this is because effective steering requires the faithful identification of internal model mechanisms, not the enforcement of external preferences. To this end, we build on the principles of distributed alignment search (DAS), the standard for causal variable localization, to propose a new steering method: Concept DAS (CDAS). While we adopt the core mechanism of DAS, distributed interchange intervention (DII), we introduce a novel distribution matching objective tailored for the steering task by aligning intervened output distributions with counterfactual distributions. CDAS differs from prior work in two main ways: first, it learns interventions via weak-supervised distribution matching rather than probability maximization; second, it uses DIIs that naturally enable bi-directional steering and allow steering factors to be derived from data, reducing the effort required for hyperparameter tuning and resulting in more faithful and stable control. On AxBench, a large-scale model steering benchmark, we show that CDAS does not always outperform preference-optimization methods but may benefit more from increased model scale. In two safety-related case studies, overriding refusal behaviors of safety-aligned models and neutralizing a chain-of-thought backdoor, CDAS achieves systematic steering while maintaining general model utility. These results indicate that CDAS is complementary to preference-optimization approaches and conditionally constitutes a robust approach to intervention-based model steering. Our code is available at https://github.com/colored-dye/concept_das.
comment: 55 pages, 25 figures; accepted for ICLR 2026
☆ Bagpiper: Solving Open-Ended Audio Tasks via Rich Captions
Current audio foundation models typically rely on rigid, task-specific supervision, addressing isolated factors of audio rather than the whole. In contrast, human intelligence processes audio holistically, seamlessly bridging physical signals with abstract cognitive concepts to execute complex tasks. Grounded in this philosophy, we introduce Bagpiper, an 8B audio foundation model that interprets physical audio via rich captions, i.e., comprehensive natural language descriptions that encapsulate the critical cognitive concepts inherent in the signal (e.g., transcription, audio events). By pre-training on a massive corpus of 600B tokens, the model establishes a robust bidirectional mapping between raw audio and this high-level conceptual space. During fine-tuning, Bagpiper adopts a caption-then-process workflow, simulating an intermediate cognitive reasoning step to solve diverse tasks without task-specific priors. Experimentally, Bagpiper outperforms Qwen-2.5-Omni on MMAU and AIRBench for audio understanding and surpasses CosyVoice3 and TangoFlux in generation quality, capable of synthesizing arbitrary compositions of speech, music, and sound effects. To the best of our knowledge, Bagpiper is among the first works that achieve unified understanding generation for general audio. Model, data, and code are available at Bagpiper Home Page.
☆ Quantifying the Knowledge Proximity Between Academic and Industry Research: An Entity and Semantic Perspective
The academia and industry are characterized by a reciprocal shaping and dynamic feedback mechanism. Despite distinct institutional logics, they have adapted closely in collaborative publishing and talent mobility, demonstrating tension between institutional divergence and intensive collaboration. Existing studies on their knowledge proximity mainly rely on macro indicators such as the number of collaborative papers or patents, lacking an analysis of knowledge units in the literature. This has led to an insufficient grasp of fine-grained knowledge proximity between industry and academia, potentially undermining collaboration frameworks and resource allocation efficiency. To remedy the limitation, this study quantifies the trajectory of academia-industry co-evolution through fine-grained entities and semantic space. In the entity measurement part, we extract fine-grained knowledge entities via pre-trained models, measure sequence overlaps using cosine similarity, and analyze topological features through complex network analysis. At the semantic level, we employ unsupervised contrastive learning to quantify convergence in semantic spaces by measuring cross-institutional textual similarities. Finally, we use citation distribution patterns to examine correlations between bidirectional knowledge flows and similarity. Analysis reveals that knowledge proximity between academia and industry rises, particularly following technological change. This provides textual evidence of bidirectional adaptation in co-evolution. Additionally, academia's knowledge dominance weakens during technological paradigm shifts. The dataset and code for this paper can be accessed at https://github.com/tinierZhao/Academic-Industrial-associations.
☆ Aligning Large Language Model Behavior with Human Citation Preferences
Most services built on powerful large-scale language models (LLMs) add citations to their output to enhance credibility. Recent research has paid increasing attention to the question of what reference documents to link to outputs. However, how LLMs recognize cite-worthiness and how this process should be controlled remains underexplored. In this study, we focus on what kinds of content LLMs currently tend to cite and how well that behavior aligns with human preferences. We construct a dataset to characterize the relationship between human citation preferences and LLM behavior. Web-derived texts are categorized into eight citation-motivation types, and pairwise citation preferences are exhaustively evaluated across all type combinations to capture fine-grained contrasts. Our results show that humans most frequently seek citations for medical text, and stronger models display a similar tendency. We also find that current models are as much as $27\%$ more likely than humans to add citations to text that is explicitly marked as needing citations on sources such as Wikipedia, and this overemphasis reduces alignment accuracy. Conversely, models systematically underselect numeric sentences (by $-22.6\%$ relative to humans) and sentences containing personal names (by $-20.1\%$), categories for which humans typically demand citations. Furthermore, experiments with Direct Preference Optimization demonstrate that model behavior can be calibrated to better match human citation preferences. We expect this study to provide a foundation for more fine-grained investigations into LLM citation preferences.
comment: Work In Progress
☆ Are Open-Weight LLMs Ready for Social Media Moderation? A Comparative Study on Bluesky
As internet access expands, so does exposure to harmful content, increasing the need for effective moderation. Research has demonstrated that large language models (LLMs) can be effectively utilized for social media moderation tasks, including harmful content detection. While proprietary LLMs have been shown to zero-shot outperform traditional machine learning models, the out-of-the-box capability of open-weight LLMs remains an open question. Motivated by recent developments of reasoning LLMs, we evaluate seven state-of-the-art models: four proprietary and three open-weight. Testing with real-world posts on Bluesky, moderation decisions by Bluesky Moderation Service, and annotations by two authors, we find a considerable degree of overlap between the sensitivity (81%--97%) and specificity (91%--100%) of the open-weight LLMs and those (72%--98%, and 93%--99%) of the proprietary ones. Additionally, our analysis reveals that specificity exceeds sensitivity for rudeness detection, but the opposite holds for intolerance and threats. Lastly, we identify inter-rater agreement across human moderators and the LLMs, highlighting considerations for deploying LLMs in both platform-scale and personalized moderation contexts. These findings show open-weight LLMs can support privacy-preserving moderation on consumer-grade hardware and suggest new directions for designing moderation systems that balance community values with individual user preferences.
☆ The Single-Multi Evolution Loop for Self-Improving Model Collaboration Systems
Model collaboration -- systems where multiple language models (LMs) collaborate -- combines the strengths of diverse models with cost in loading multiple LMs. We improve efficiency while preserving the strengths of collaboration by distilling collaborative patterns into a single model, where the model is trained on the outputs of the model collaboration system. At inference time, only the distilled model is employed: it imitates the collaboration while only incurring the cost of a single model. Furthermore, we propose the single-multi evolution loop: multiple LMs collaborate, each distills from the collaborative outputs, and these post-distillation improved LMs collaborate again, forming a collective evolution ecosystem where models evolve and self-improve by interacting with an environment of other models. Extensive experiments with 7 collaboration strategies and 15 tasks (QA, reasoning, factuality, etc.) demonstrate that: 1) individual models improve by 8.0% on average, absorbing the strengths of collaboration while reducing the cost to a single model; 2) the collaboration also benefits from the stronger and more synergistic LMs after distillation, improving over initial systems without evolution by 14.9% on average. Analysis reveals that the single-multi evolution loop outperforms various existing evolutionary AI methods, is compatible with diverse model/collaboration/distillation settings, and helps solve problems where the initial model/system struggles to.
comment: Code at https://github.com/BunsenFeng/moco_distill
☆ Among Us: Measuring and Mitigating Malicious Contributions in Model Collaboration Systems
Language models (LMs) are increasingly used in collaboration: multiple LMs trained by different parties collaborate through routing systems, multi-agent debate, model merging, and more. Critical safety risks remain in this decentralized paradigm: what if some of the models in multi-LLM systems are compromised or malicious? We first quantify the impact of malicious models by engineering four categories of malicious LMs, plug them into four types of popular model collaboration systems, and evaluate the compromised system across 10 datasets. We find that malicious models have a severe impact on the multi-LLM systems, especially for reasoning and safety domains where performance is lowered by 7.12% and 7.94% on average. We then propose mitigation strategies to alleviate the impact of malicious components, by employing external supervisors that oversee model collaboration to disable/mask them out to reduce their influence. On average, these strategies recover 95.31% of the initial performance, while making model collaboration systems fully resistant to malicious models remains an open research question.
comment: 19 pages, 15 tables, 4 figures
☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
☆ GreekMMLU: A Native-Sourced Multitask Benchmark for Evaluating Language Models in Greek
Large Language Models (LLMs) are commonly trained on multilingual corpora that include Greek, yet reliable evaluation benchmarks for Greek-particularly those based on authentic, native-sourced content-remain limited. Existing datasets are often machine-translated from English, failing to capture Greek linguistic and cultural characteristics. We introduce GreekMMLU, a native-sourced benchmark for massive multitask language understanding in Greek, comprising 21,805 multiple-choice questions across 45 subject areas, organized under a newly defined subject taxonomy and annotated with educational difficulty levels spanning primary to professional examinations. All questions are sourced or authored in Greek from academic, professional, and governmental exams. We publicly release 16,857 samples and reserve 4,948 samples for a private leaderboard to enable robust and contamination-resistant evaluation. Evaluations of over 80 open- and closed-source LLMs reveal substantial performance gaps between frontier and open-weight models, as well as between Greek-adapted models and general multilingual ones. Finally, we provide a systematic analysis of factors influencing performance-including model scale, adaptation, and prompting-and derive insights for improving LLM capabilities in Greek.
☆ Is my model "mind blurting"? Interpreting the dynamics of reasoning tokens with Recurrence Quantification Analysis (RQA)
Test-time compute is central to large reasoning models, yet analysing their reasoning behaviour through generated text is increasingly impractical and unreliable. Response length is often used as a brute proxy for reasoning effort, but this metric fails to capture the dynamics and effectiveness of the Chain of Thoughts (CoT) or the generated tokens. We propose Recurrence Quantification Analysis (RQA) as a non-textual alternative for analysing model's reasoning chains at test time. By treating token generation as a dynamical system, we extract hidden embeddings at each generation step and apply RQA to the resulting trajectories. RQA metrics, including Determinism and Laminarity, quantify patterns of repetition and stalling in the model's latent representations. Analysing 3,600 generation traces from DeepSeek-R1-Distill, we show that RQA captures signals not reflected by response length, but also substantially improves prediction of task complexity by 8\%. These results help establish RQA as a principled tool for studying the latent token generation dynamics of test-time scaling in reasoning models.
☆ Can One-sided Arguments Lead to Response Change in Large Language Models?
Polemic questions need more than one viewpoint to express a balanced answer. Large Language Models (LLMs) can provide a balanced answer, but also take a single aligned viewpoint or refuse to answer. In this paper, we study if such initial responses can be steered to a specific viewpoint in a simple and intuitive way: by only providing one-sided arguments supporting the viewpoint. Our systematic study has three dimensions: (i) which stance is induced in the LLM response, (ii) how the polemic question is formulated, (iii) how the arguments are shown. We construct a small dataset and remarkably find that opinion steering occurs across (i)-(iii) for diverse models, number of arguments, and topics. Switching to other arguments consistently decreases opinion steering.
☆ Steering Safely or Off a Cliff? Rethinking Specificity and Robustness in Inference-Time Interventions EACL 2026
Model steering, which involves intervening on hidden representations at inference time, has emerged as a lightweight alternative to finetuning for precisely controlling large language models. While steering efficacy has been widely studied, evaluations of whether interventions alter only the intended property remain limited, especially with respect to unintended changes in behaviors related to the target property. We call this notion specificity. We propose a framework that distinguishes three dimensions of specificity: general (preserving fluency and unrelated abilities), control (preserving related control properties), and robustness (preserving control properties under distribution shifts). We study two safety-critical use cases: steering models to reduce overrefusal and faithfulness hallucinations, and show that while steering achieves high efficacy and largely maintains general and control specificity, it consistently fails to preserve robustness specificity. In the case of overrefusal steering, for example, all steering methods reduce overrefusal without harming general abilities and refusal on harmful queries; however, they substantially increase vulnerability to jailbreaks. Our work provides the first systematic evaluation of specificity in model steering, showing that standard efficacy and specificity checks are insufficient, because without robustness evaluation, steering methods may appear reliable even when they compromise model safety.
comment: EACL 2026 Main, Long Paper
☆ BenchMarker: An Education-Inspired Toolkit for Highlighting Flaws in Multiple-Choice Benchmarks
Multiple-choice question answering (MCQA) is standard in NLP, but benchmarks lack rigorous quality control. We present BenchMarker, an education-inspired toolkit using LLM judges to flag three common MCQ flaws: 1) contamination - items appearing exactly online; 2) shortcuts - cues in the choices that enable guessing; and 3) writing errors - structural/grammatical issues based on a 19-rule education rubric. We validate BenchMarker with human annotations, then run the tool to audit 12 benchmarks, revealing: 2) contaminated MCQs tend to inflate accuracy, while writing errors tend to lower it and change rankings beyond random; and 3) prior benchmark repairs address their targeted issues (i.e., lowering accuracy with LLM-written distractors), but inadvertently add new flaws (i.e. implausible distractors, many correct answers). Overall, flaws in MCQs degrade NLP evaluation, but education research offers a path forward. We release BenchMarker to bridge the fields and improve MCQA benchmark design.
comment: In-progress preprint
☆ Learning Rate Scaling across LoRA Ranks and Transfer to Full Finetuning
Low-Rank Adaptation (LoRA) is a standard tool for parameter-efficient finetuning of large models. While it induces a small memory footprint, its training dynamics can be surprisingly complex as they depend on several hyperparameters such as initialization, adapter rank, and learning rate. In particular, it is unclear how the optimal learning rate scales with adapter rank, which forces practitioners to re-tune the learning rate whenever the rank is changed. In this paper, we introduce Maximal-Update Adaptation ($μ$A), a theoretical framework that characterizes how the "optimal" learning rate should scale with model width and adapter rank to produce stable, non-vanishing feature updates under standard configurations. $μ$A is inspired from the Maximal-Update Parametrization ($μ$P) in pretraining. Our analysis leverages techniques from hyperparameter transfer and reveals that the optimal learning rate exhibits different scaling patterns depending on initialization and LoRA scaling factor. Specifically, we identify two regimes: one where the optimal learning rate remains roughly invariant across ranks, and another where it scales inversely with rank. We further identify a configuration that allows learning rate transfer from LoRA to full finetuning, drastically reducing the cost of learning rate tuning for full finetuning. Experiments across language, vision, vision--language, image generation, and reinforcement learning tasks validate our scaling rules and show that learning rates tuned on LoRA transfer reliably to full finetuning.
☆ Generics in science communication: Misaligned interpretations across laypeople, scientists, and large language models
Scientists often use generics, that is, unquantified statements about whole categories of people or phenomena, when communicating research findings (e.g., "statins reduce cardiovascular events"). Large language models (LLMs), such as ChatGPT, frequently adopt the same style when summarizing scientific texts. However, generics can prompt overgeneralizations, especially when they are interpreted differently across audiences. In a study comparing laypeople, scientists, and two leading LLMs (ChatGPT-5 and DeepSeek), we found systematic differences in interpretation of generics. Compared to most scientists, laypeople judged scientific generics as more generalizable and credible, while LLMs rated them even higher. These mismatches highlight significant risks for science communication. Scientists may use generics and incorrectly assume laypeople share their interpretation, while LLMs may systematically overgeneralize scientific findings when summarizing research. Our findings underscore the need for greater attention to language choices in both human and LLM-mediated science communication.
☆ PhenoLIP: Integrating Phenotype Ontology Knowledge into Medical Vision-Language Pretraining
Recent progress in large-scale CLIP-like vision-language models(VLMs) has greatly advanced medical image analysis. However, most existing medical VLMs still rely on coarse image-text contrastive objectives and fail to capture the systematic visual knowledge encoded in well-defined medical phenotype ontologies. To address this gap, we construct PhenoKG, the first large-scale, phenotype-centric multimodal knowledge graph that encompasses over 520K high-quality image-text pairs linked to more than 3,000 phenotypes. Building upon PhenoKG, we propose PhenoLIP, a novel pretraining framework that explicitly incorporates structured phenotype knowledge into medical VLMs through a two-stage process. We first learn a knowledge-enhanced phenotype embedding space from textual ontology data and then distill this structured knowledge into multimodal pretraining via a teacher-guided knowledge distillation objective. To support evaluation, we further introduce PhenoBench, an expert-verified benchmark designed for phenotype recognition, comprising over 7,800 image--caption pairs covering more than 1,000 phenotypes. Extensive experiments demonstrate that PhenoLIP outperforms previous state-of-the-art baselines, improving upon BiomedCLIP in phenotype classification accuracy by 8.85\% and BIOMEDICA in cross-modal retrieval by 15.03%, underscoring the value of integrating phenotype-centric priors into medical VLMs for structured and interpretable medical image understanding.
☆ Uncertainty Drives Social Bias Changes in Quantized Large Language Models
Post-training quantization reduces the computational cost of large language models but fundamentally alters their social biases in ways that aggregate metrics fail to capture. We present the first large-scale study of 50 quantized models evaluated on PostTrainingBiasBench, a unified benchmark of 13 closed- and open-ended bias datasets. We identify a phenomenon we term quantization-induced masked bias flipping, in which up to 21% of responses flip between biased and unbiased states after quantization, despite showing no change in aggregate bias scores. These flips are strongly driven by model uncertainty, where the responses with high uncertainty are 3-11x more likely to change than the confident ones. Quantization strength amplifies this effect, with 4-bit quantized models exhibiting 4-6x more behavioral changes than 8-bit quantized models. Critically, these changes create asymmetric impacts across demographic groups, where bias can worsen by up to 18.6% for some groups while improving by 14.1% for others, yielding misleadingly neutral aggregate outcomes. Larger models show no consistent robustness advantage, and group-specific shifts vary unpredictably across model families. Our findings demonstrate that compression fundamentally alters bias patterns, requiring crucial post-quantization evaluation and interventions to ensure reliability in practice.
comment: 12 pages, 6 figures
☆ STACodec: Semantic Token Assignment for Balancing Acoustic Fidelity and Semantic Information in Audio Codecs ICASSP 2026
Neural audio codecs are widely used for audio compression and can be integrated into token-based language models. Traditional codecs preserve acoustic details well but lack semantic information. Recent hybrid codecs attempt to incorporate semantic information through distillation, but this often degrades reconstruction performance, making it difficult to achieve both. To address this limitation, we introduce STACodec, a unified codec that integrates semantic information from self-supervised learning (SSL) models into the first layer of residual vector quantization (RVQ-1) via semantic token assignment (STA). To further eliminate reliance on SSL-based semantic tokenizers and improve efficiency during inference, we propose a semantic pre-distillation (SPD) module, which predicts semantic tokens directly for assignment to the first RVQ layer during inference. Experimental results show that STACodec outperforms existing hybrid codecs in both audio reconstruction and downstream semantic tasks, demonstrating a better balance between acoustic fidelity and semantic capability.
comment: ICASSP 2026
☆ Large Language Model Reasoning Failures
Large Language Models (LLMs) have exhibited remarkable reasoning capabilities, achieving impressive results across a wide range of tasks. Despite these advances, significant reasoning failures persist, occurring even in seemingly simple scenarios. To systematically understand and address these shortcomings, we present the first comprehensive survey dedicated to reasoning failures in LLMs. We introduce a novel categorization framework that distinguishes reasoning into embodied and non-embodied types, with the latter further subdivided into informal (intuitive) and formal (logical) reasoning. In parallel, we classify reasoning failures along a complementary axis into three types: fundamental failures intrinsic to LLM architectures that broadly affect downstream tasks; application-specific limitations that manifest in particular domains; and robustness issues characterized by inconsistent performance across minor variations. For each reasoning failure, we provide a clear definition, analyze existing studies, explore root causes, and present mitigation strategies. By unifying fragmented research efforts, our survey provides a structured perspective on systemic weaknesses in LLM reasoning, offering valuable insights and guiding future research towards building stronger, more reliable, and robust reasoning capabilities. We additionally release a comprehensive collection of research works on LLM reasoning failures, as a GitHub repository at https://github.com/Peiyang-Song/Awesome-LLM-Reasoning-Failures, to provide an easy entry point to this area.
comment: Repository: https://github.com/Peiyang-Song/Awesome-LLM-Reasoning-Failures. Published at TMLR 2026 with Survey Certification
☆ Stop the Flip-Flop: Context-Preserving Verification for Fast Revocable Diffusion Decoding
Parallel diffusion decoding can accelerate diffusion language model inference by unmasking multiple tokens per step, but aggressive parallelism often harms quality. Revocable decoding mitigates this by rechecking earlier tokens, yet we observe that existing verification schemes frequently trigger flip-flop oscillations, where tokens are remasked and later restored unchanged. This behaviour slows inference in two ways: remasking verified positions weakens the conditioning context for parallel drafting, and repeated remask cycles consume the revision budget with little net progress. We propose COVER (Cache Override Verification for Efficient Revision), which performs leave-one-out verification and stable drafting within a single forward pass. COVER constructs two attention views via KV cache override: selected seeds are masked for verification, while their cached key value states are injected for all other queries to preserve contextual information, with a closed form diagonal correction preventing self leakage at the seed positions. COVER further prioritises seeds using a stability aware score that balances uncertainty, downstream influence, and cache drift, and it adapts the number of verified seeds per step. Across benchmarks, COVER markedly reduces unnecessary revisions and yields faster decoding while preserving output quality.
☆ MoSE: Mixture of Slimmable Experts for Efficient and Adaptive Language Models
Mixture-of-Experts (MoE) models scale large language models efficiently by sparsely activating experts, but once an expert is selected, it is executed fully. Hence, the trade-off between accuracy and computation in an MoE model typically exhibits large discontinuities. We propose Mixture of Slimmable Experts (MoSE), an MoE architecture in which each expert has a nested, slimmable structure that can be executed at variable widths. This enables conditional computation not only over which experts are activated, but also over how much of each expert is utilized. Consequently, a single pretrained MoSE model can support a more continuous spectrum of accuracy-compute trade-offs at inference time. We present a simple and stable training recipe for slimmable experts under sparse routing, combining multi-width training with standard MoE objectives. During inference, we explore strategies for runtime width determination, including a lightweight test-time training mechanism that learns how to map router confidence/probabilities to expert widths under a fixed budget. Experiments on GPT models trained on OpenWebText demonstrate that MoSE matches or improves upon standard MoE at full width and consistently shifts the Pareto frontier for accuracy vs. cost, achieving comparable performance with significantly fewer FLOPs.
☆ Protean Compiler: An Agile Framework to Drive Fine-grain Phase Ordering
The phase ordering problem has been a long-standing challenge since the late 1970s, yet it remains an open problem due to having a vast optimization space and an unbounded nature, making it an open-ended problem without a finite solution, one can limit the scope by reducing the number and the length of optimizations. Traditionally, such locally optimized decisions are made by hand-coded algorithms tuned for a small number of benchmarks, often requiring significant effort to be retuned when the benchmark suite changes. In the past 20 years, Machine Learning has been employed to construct performance models to improve the selection and ordering of compiler optimizations, however, the approaches are not baked into the compiler seamlessly and never materialized to be leveraged at a fine-grained scope of code segments. This paper presents Protean Compiler: An agile framework to enable LLVM with built-in phase-ordering capabilities at a fine-grained scope. The framework also comprises a complete library of more than 140 handcrafted static feature collection methods at varying scopes, and the experimental results showcase speedup gains of up to 4.1% on average and up to 15.7% on select Cbench applications wrt LLVM's O3 by just incurring a few extra seconds of build time on Cbench. Additionally, Protean compiler allows for an easy integration with third-party ML frameworks and other Large Language Models, and this two-step optimization shows a gain of 10.1% and 8.5% speedup wrt O3 on Cbench's Susan and Jpeg applications. Protean compiler is seamlessly integrated into LLVM and can be used as a new, enhanced, full-fledged compiler. We plan to release the project to the open-source community in the near future.
comment: Version 1- Submitted for a possible publication in 2026
☆ Self-Improving World Modelling with Latent Actions
Internal modelling of the world -- predicting transitions between previous states $X$ and next states $Y$ under actions $Z$ -- is essential to reasoning and planning for LLMs and VLMs. Learning such models typically requires costly action-labelled trajectories. We propose SWIRL, a self-improvement framework that learns from state-only sequences by treating actions as a latent variable and alternating between Forward World Modelling (FWM) $P_θ(Y|X,Z)$ and an Inverse Dynamics Modelling (IDM) $Q_φ(Z|X,Y)$. SWIRL iterates two phases: (1) Variational Information Maximisation, which updates the FWM to generate next states that maximise conditional mutual information with latent actions given prior states, encouraging identifiable consistency; and (2) ELBO Maximisation, which updates the IDM to explain observed transitions, effectively performing coordinate ascent. Both models are trained with reinforcement learning (specifically, GRPO) with the opposite frozen model's log-probability as a reward signal. We provide theoretical learnability guarantees for both updates, and evaluate SWIRL on LLMs and VLMs across multiple environments: single-turn and multi-turn open-world visual dynamics and synthetic textual environments for physics, web, and tool calling. SWIRL achieves gains of 16% on AURORABench, 28% on ByteMorph, 16% on WorldPredictionBench, and 14% on StableToolBench.
♻ ☆ Language Models and Logic Programs for Trustworthy Tax Reasoning AAAI 2026
According to the United States Internal Revenue Service, ``the average American spends $\$270$ and 13 hours filing their taxes''. Even beyond the U.S., tax filing requires complex reasoning, combining application of overlapping rules with numerical calculations. Because errors can incur costly penalties, any automated system must deliver high accuracy and auditability, making modern large language models (LLMs) poorly suited for this task. We propose an approach that integrates LLMs with a symbolic solver to calculate tax obligations. We evaluate variants of this system on the challenging StAtutory Reasoning Assessment (SARA) dataset, and include a novel method for estimating the cost of deploying such a system based on real-world penalties for tax errors. We further show how combining up-front translation of plain-text rules into formal logic programs, combined with intelligently retrieved exemplars for formal case representations, can dramatically improve performance on this task and reduce costs to well below real-world averages. Our results demonstrate the effectiveness of applying semantic parsing methods to statutory reasoning, and show promising economic feasibility of neuro-symbolic architectures for increasing access to reliable tax assistance.
comment: Accepted to AAAI 2026
♻ ☆ DEBATE: A Large-Scale Benchmark for Evaluating Opinion Dynamics in Role-Playing LLM Agents
Accurately modeling opinion change through social interactions is crucial for understanding and mitigating polarization, misinformation, and societal conflict. Recent work simulates opinion dynamics with role-playing LLM agents (RPLAs), but multi-agent simulations often display unnatural group behavior (e.g., premature convergence) and lack empirical benchmarks for assessing alignment with real human group interactions. We introduce DEBATE, a large-scale benchmark for evaluating the authenticity of opinion dynamics in multi-agent RPLA simulations. DEBATE contains 36,383 messages from 2,832 U.S.-based participants across 708 groups and 107 topics, with both public messages and private Likert-scale beliefs, enabling evaluation at the utterance and group levels (and supporting future individual-level analyses). We instantiate "digital twin" RPLAs with seven LLMs and evaluate across two settings: next-message prediction and full conversation rollout, using stance-alignment and opinion-convergence metrics. In zero-shot settings, RPLA groups exhibit strong opinion convergence relative to human groups. Post-training via supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) improves stance alignment and brings group-level convergence closer to human behavior, though discrepancies in opinion change and belief updating remain. DEBATE enables rigorous benchmarking of simulated opinion dynamics and supports future research on aligning multi-agent RPLAs with realistic human interactions.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling ICLR 2026
Recent efforts target spoken language models (SLMs) that not only listen but also speak for more natural human-LLM interaction. Joint speech-text modeling is a promising direction to achieve this. However, the effectiveness of recent speech tokens for joint modeling remains underexplored. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through a attention-based aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. With TASTE, we perform straightforward joint spoken language modeling by using Low-Rank Adaptation on the pre-trained text LLM. Experimental results show that TASTE-based SLMs perform comparable to previous work on SALMON and StoryCloze; while significantly outperform other pre-trained SLMs on speech continuation across subjective and objective evaluations. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and model are available at https://mtkresearch.github.io/TASTE-SpokenLM.github.io.
comment: ICLR 2026
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ LLM-Based Social Simulations Require a Boundary
This position paper argues that LLM-based social simulations require clear boundaries to make meaningful contributions to social science. While Large Language Models (LLMs) offer promising capabilities for simulating human behavior, their tendency to produce homogeneous outputs, acting as an "average persona", fundamentally limits their ability to capture the behavioral diversity essential for complex social dynamics. We examine why heterogeneity matters for social simulations and how current LLMs fall short, analyzing the relationship between mean alignment and variance in LLM-generated behaviors. Through a systematic review of representative studies, we find that validation practices often fail to match the heterogeneity requirements of research questions: while most papers include ground truth comparisons, fewer than half explicitly assess behavioral variance, and most that do report lower variance than human populations. We propose that researchers should: (1) match validation depth to the heterogeneity demands of their research questions, (2) explicitly report variance alongside mean alignment, and (3) constrain claims to collective-level qualitative patterns when variance is insufficient. Rather than dismissing LLM-based simulation, we advocate for a boundary-aware approach that ensures these methods contribute genuine insights to social science.
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ Why Tree-Style Branching Matters for Thought Advantage Estimation in GRPO
Group Relative Policy Optimization (GRPO) trains Chain-of-Thought reasoning with verifiable rewards, but estimating thought-level advantages without value functions often suffers from high variance. Although tree-style branching is used in practice to reduce the variance, it lacks a theoretical explanation of why it works and whether it is important or even potentially necessary. We study thought-level advantage estimation in GRPO from a variance perspective under a minimal tree-style setting where multiple answers are sampled for each thought. Using the multivariate delta method, we reveal an asymmetry in how different sampling dimensions affect variance. Increasing the number of sampled thoughts ($K$) leaves a strictly positive variance floor, whereas increasing the number of answers per thought ($M$) induces a monotonic decrease in variance, asymptotically decreasing it to zero. This implies that accurate thought-level advantage estimation is impossible through scaling thought sampling alone, making branching a potentially necessary mechanism rather than a heuristic. Experiments further provide empirical evidence for both the effectiveness and necessity of answer-level branching, demonstrating improved optimization stability, training efficiency, and final performance not only in math but also across a broad range of vision domains and under different model architectures and sizes.
comment: Under review
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ From Latent Signals to Reflection Behavior: Tracing Meta-Cognitive Activation Trajectory in R1-Style LLMs
R1-style LLMs have attracted growing attention for their capacity for self-reflection, yet the internal mechanisms underlying such behavior remain unclear. To bridge this gap, we anchor on the onset of reflection behavior and trace its layer-wise activation trajectory. Using the logit lens to read out token-level semantics, we uncover a structured progression: (i) Latent-control layers, where an approximate linear direction encodes the semantics of thinking budget; (ii) Semantic-pivot layers, where discourse-level cues, including turning-point and summarization cues, surface and dominate the probability mass; and (iii) Behavior-overt layers, where the likelihood of reflection-behavior tokens begins to rise until they become highly likely to be sampled. Moreover, our targeted interventions uncover a causal chain across these stages: prompt-level semantics modulate the projection of activations along latent-control directions, thereby inducing competition between turning-point and summarization cues in semantic-pivot layers, which in turn regulates the sampling likelihood of reflection-behavior tokens in behavior-overt layers. Collectively, our findings suggest a human-like meta-cognitive process-progressing from latent monitoring, to discourse-level regulation, and to finally overt self-reflection. Our analysis code can be found at https://github.com/DYR1/S3-CoT.
♻ ☆ Segmentation-free Goodness of Pronunciation IEEE
Mispronunciation detection and diagnosis (MDD) is a significant part in modern computer-aided language learning (CALL) systems. Most systems implementing phoneme-level MDD through goodness of pronunciation (GOP), however, rely on pre-segmentation of speech into phonetic units. This limits the accuracy of these methods and the possibility to use modern CTC-based acoustic models for their evaluation. In this study, we first propose self-alignment GOP (GOP-SA) that enables the use of CTC-trained ASR models for MDD. Next, we define a more general segmentation-free method that takes all possible segmentations of the canonical transcription into account (GOP-SF). We give a theoretical account of our definition of GOP-SF, an implementation that solves potential numerical issues as well as a proper normalization which allows the use of acoustic models with different peakiness over time. We provide extensive experimental results on the CMU Kids and speechocean762 datasets comparing the different definitions of our methods, estimating the dependency of GOP-SF on the peakiness of the acoustic models and on the amount of context around the target phoneme. Finally, we compare our methods with recent studies over the speechocean762 data showing that the feature vectors derived from the proposed method achieve state-of-the-art results on phoneme-level pronunciation assessment.
comment: The article has been accepted for publication by IEEE TASLPRO
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has become pivotal in AI, especially for Text-to-SQL, where performance is limited by scarce, simplistic, and low-diversity datasets. To address this, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from minimal seed data. It operates across six augmentation dimensions and integrates an end-to-end pipeline featuring SQL execution verification, natural language question generation, chain-of-thought reasoning traces, and data classification. A modular Database Manager ensures cross-database compatibility and scalability. Using this framework, we build SQLFlow, a high-quality dataset of 89,544 annotated examples. We evaluate SQLFlow in two settings: (1) For open-source LLMs, fine-tuning on SQLFlow consistently improves performance across benchmarks under the same data budget. (2) For closed-source LLMs, we introduce a masked alignment retrieval method that treats SQLFlow as both knowledge base and training data for the retriever. This enables structure-aware example matching by modeling fine-grained alignments between questions and SQL queries. Experiments show our retrieval strategy outperforms existing methods, underscoring the value of SQLFlow's high-fidelity data and our novel technique. Our work establishes a scalable, data-centric foundation for advancing Text-to-SQL systems and highlights the critical role of high-quality structured data in modern AI.
♻ ☆ POLAR: A Benchmark for Multilingual, Multicultural, and Multi-Event Online Polarization
Online polarization poses a growing challenge for democratic discourse, yet most computational social science research remains monolingual, culturally narrow, or event-specific. We introduce POLAR, a multilingual, multicultural, and multi-event dataset with over 110K instances in 22 languages drawn from diverse online platforms and real-world events. Polarization is annotated along three axes, namely detection, type, and manifestation, using a variety of annotation platforms adapted to each cultural context. We conduct two main experiments: (1) fine-tuning six pretrained small language models; and (2) evaluating a range of open and closed large language models in few-shot and zero-shot settings. The results show that, while most models perform well in binary polarization detection, they achieve substantially lower performance when predicting polarization types and manifestations. These findings highlight the complex, highly contextual nature of polarization and demonstrate the need for robust, adaptable approaches in NLP and computational social science. All resources will be released to support further research and effective mitigation of digital polarization globally.
comment: Preprint
♻ ☆ LH-Deception: Simulating and Understanding LLM Deceptive Behaviors in Long-Horizon Interactions ICLR 2026
Deception is a pervasive feature of human communication and an emerging concern in large language models (LLMs). While recent studies document instances of LLM deception, most evaluations remain confined to single-turn prompts and fail to capture the long-horizon interactions in which deceptive strategies typically unfold. We introduce a new simulation framework, LH-Deception, for a systematic, empirical quantification of deception in LLMs under extended sequences of interdependent tasks and dynamic contextual pressures. LH-Deception is designed as a multi-agent system: a performer agent tasked with completing tasks and a supervisor agent that evaluates progress, provides feedback, and maintains evolving states of trust. An independent deception auditor then reviews full trajectories to identify when and how deception occurs. We conduct extensive experiments across 11 frontier models, spanning both closed-source and open-source systems, and find that deception is model-dependent, increases with event pressure, and consistently erodes supervisor trust. Qualitative analyses further reveal emergent, long-horizon phenomena, such as ``chains of deception", which are invisible to static, single-turn evaluations. Our findings provide a foundation for evaluating future LLMs in real-world, trust-sensitive contexts.
comment: ICLR 2026
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Diversity or Precision? A Deep Dive into Next Token Prediction
Recent advancements have shown that reinforcement learning (RL) can substantially improve the reasoning abilities of large language models (LLMs). The effectiveness of such RL training, however, depends critically on the exploration space defined by the pre-trained model's token-output distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific instance of policy gradient optimization applied within a single-step episode. To systematically study how the pre-trained distribution shapes the exploration potential for subsequent RL, we propose a generalized pre-training objective that adapts on-policy RL principles to supervised learning. By framing next-token prediction as a stochastic decision process, we introduce a reward-shaping strategy that explicitly balances diversity and precision. Our method employs a positive reward scaling factor to control probability concentration on ground-truth tokens and a rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically. This allows us to reshape the pre-trained token-output distribution and investigate how to provide a more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance. Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find that imposing a precision-oriented prior yields a superior exploration space for RL.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Remembering Unequally: Global and Disciplinary Bias in LLM Reconstruction of Scholarly Coauthor Lists
Ongoing breakthroughs in large language models (LLMs) are reshaping scholarly search and discovery interfaces. While these systems offer new possibilities for navigating scientific knowledge, they also raise concerns about fairness and representational bias rooted in the models' memorized training data. As LLMs are increasingly used to answer queries about researchers and research communities, their ability to accurately reconstruct scholarly coauthor lists becomes an important but underexamined issue. In this study, we investigate how memorization in LLMs affects the reconstruction of coauthor lists and whether this process reflects existing inequalities across academic disciplines and world regions. We evaluate three prominent models, DeepSeek R1, Llama 4 Scout, and Mixtral 8x7B, by comparing their generated coauthor lists against bibliographic reference data. Our analysis reveals a systematic advantage for highly cited researchers, indicating that LLM memorization disproportionately favors already visible scholars. However, this pattern is not uniform: certain disciplines, such as Clinical Medicine, and some regions, including parts of Africa, exhibit more balanced reconstruction outcomes. These findings highlight both the risks and limitations of relying on LLM-generated relational knowledge in scholarly discovery contexts and emphasize the need for careful auditing of memorization-driven biases in LLM-based systems.
♻ ☆ The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution
Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining \textbf{the reason behind agent behaviors}. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems. Codes are available at https://github.com/AI45Lab/AgentDoG.
♻ ☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
♻ ☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalization has become crucial for adapting models to the diverse and evolving needs of users across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment within a single model, they struggle to achieve both real-time and high-quality personalization under the resource and privacy constraints of personal devices. To address this challenge, we propose CoSteer, a collaborative framework that enables tuning-free, real-time personalization via decoding-time adaptation. By leveraging logit differences between context-aware and context-agnostic local small models, CoSteer steers cloud-based large models, ensuring effective personalization while preserving the large model's capabilities. Personalization is handled locally, with only final tokens sent to the cloud, maintaining both user context and system efficiency. Through extensive experiments across a wide range of tasks, we demonstrate that CoSteer generates high-quality personalized content, ensuring both effectiveness and computational efficiency. Our results highlight its robustness across models and environments, confirming its practical applicability in real-world scenarios.
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems ICSE
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
comment: Part of this work (RQ1) has been published at the 2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE-SEIP 2026), DOI: 10.1145/3786583.3786904. The published version is also available on arXiv at arXiv:2602.04449
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement Learning (RL) is pivotal for enhancing Large Language Model (LLM) reasoning, yet mainstream algorithms such as GRPO and DAPO remain constrained by a coarse-grained credit assignment paradigm, where all tokens within the same response receive the identical reward. In this paper, we propose Dynamic Entropy Weighting, systematically define entropy-based weight ratios $\frac{H_{i,t}}{\sum_{k=1}^{n} H_{k,t}}$ and similar variants to redistribute rewards and get fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token and synthesizes token-specific advantage function to drive the model toward optimal path, and the analogous algorithm Sequence-Level GRPO (GRPO-S), which extends this design to the sequence level and exhibits superior stability in long Chain-of-Thought (CoT) reasoning tasks.
♻ ☆ HBO: Hierarchical Balancing Optimization for Fine-Tuning Large Language Models
Fine-tuning large language models (LLMs) on a mixture of diverse datasets poses challenges due to data imbalance and heterogeneity. Existing methods often address these issues across datasets (globally) but overlook the imbalance and heterogeneity within individual datasets (locally), which limits their effectiveness. We introduce Hierarchical Balancing Optimization (HBO), a novel method that enables LLMs to autonomously adjust data allocation during fine-tuning both across datasets (globally) and within each individual dataset (locally). HBO employs a bilevel optimization strategy with two types of actors: a Global Actor, which balances data sampling across different subsets of the training mixture, and several Local Actors, which optimizes data usage within each subset based on difficulty levels. These actors are guided by reward functions derived from the LLM's training state, which measure learning progress and relative performance improvement. We evaluate HBO on three LLM backbones across nine diverse tasks in multilingual and multitask setups. Results show that HBO consistently outperforms existing baselines, achieving significant accuracy gains. Our in-depth analysis further demonstrates that both the global actor and local actors of HBO effectively adjust data usage during fine-tuning. HBO provides a comprehensive solution to the challenges of data imbalance and heterogeneity in LLM fine-tuning, enabling more effective training across diverse datasets.
♻ ☆ Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
In recent years, general-purpose large language models (LLMs) such as GPT, Gemini, Claude, and DeepSeek have advanced at an unprecedented pace. Despite these achievements, their application to finance remains challenging, due to fragmented data sources, intransparent reasoning processes, and weak transferability to business applications. In response, we introduce Fin-R1, a reasoning LLM designed for financial scenarios. With a compact size of 7 billion parameters, Fin-R1 reduces deployment costs while addressing the aforementioned challenges. Its development follows a two-stage pipeline. First, we construct Fin-R1-Data, a high-quality financial dataset consisting of 60,091 chain-of-thought (CoT) samples, distilled and filtered from multiple authoritative benchmarks to ensure consistency and reliability. Second, we train Fin-R1 using Fin-R1-Data through supervised fine-tuning (SFT), followed by reinforcement learning (RL). This stage substantially improves the model's ability to solve complex financial reasoning tasks, yielding outputs that are both accurate and interpretable. Despite its relatively small parameter scale, Fin-R1 achieves competitive empirical performance across established financial benchmarks and demonstrates practical utility in compliance checking and robo-advisory. Our code is publicly available at https://github.com/SUFE-AIFLM-Lab/Fin-R1, and has already attracted over 700 stars.
♻ ☆ Learning to Summarize by Learning to Quiz: Adversarial Agentic Collaboration for Long Document Summarization
Long document summarization remains a significant challenge for current large language models (LLMs), as existing approaches commonly struggle with information loss, factual inconsistencies, and coherence issues when processing excessively long documents. We propose SummQ, a novel adversarial multi-agent framework that addresses these limitations through collaborative intelligence between specialized agents operating in two complementary domains: summarization and quizzing. Our approach employs summary generators and reviewers that work collaboratively to create and evaluate comprehensive summaries, while quiz generators and reviewers create comprehension questions that serve as continuous quality checks for the summarization process. This adversarial dynamic, enhanced by an examinee agent that validates whether the generated summary contains the information needed to answer the quiz questions, enables iterative refinement through multifaceted feedback mechanisms. We evaluate SummQ on three widely used long document summarization benchmarks. Experimental results demonstrate that our framework significantly outperforms existing state-of-the-art methods across ROUGE and BERTScore metrics, as well as in LLM-as-a-Judge and human evaluations. Our comprehensive analyses reveal the effectiveness of the multi-agent collaboration dynamics, the influence of different agent configurations, and the impact of the quizzing mechanism. This work establishes a new approach for long document summarization that uses adversarial agentic collaboration to improve summarization quality.
♻ ☆ DecompressionLM: Deterministic, Diagnostic, and Zero-Shot Concept Graph Extraction from Language Models
Existing knowledge probing methods rely on pre-defined queries, limiting extraction to known concepts. We introduce DecompressionLM, a stateless framework for zero-shot concept graph extraction that discovers what language models encode without pre-specified queries or shared cross-sequence state. Our method targets three limitations of common decoding-based probing approaches: (i) cross-sequence coupling that concentrates probability mass on high-frequency prefixes, (ii) competitive decoding effects that suppress long-tail concepts, and (iii) scalability constraints arising from sequential exploration. Using Van der Corput low-discrepancy sequences with arithmetic decoding, DecompressionLM enables deterministic, embarrassingly parallel generation without shared state across sequences. Across two model families and five quantization variants, we find that activation-aware quantization (AWQ-4bit) expands concept coverage by 30-170%, while uniform quantization (GPTQ-Int4) induces 71-86% coverage collapse - divergent behaviors not reliably reflected by explanation-level perplexity. Corpus-based verification further reveals a 19.6-point hallucination gap between top- and bottom-ranked MMLU-Pro Law models. DecompressionLM establishes concept coverage as a complementary evaluation dimension for assessing knowledge breadth and factual grounding in compressed models intended for deployment.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories through distinct conversational approaches. Existing multi-turn methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles, defense to one pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA
♻ ☆ Invisible Walls in Cities: Designing LLM Agent to Predict Urban Segregation Experience with Social Media Content
Understanding experienced segregation in urban daily life is crucial for addressing societal inequalities and fostering inclusivity. The abundance of user-generated reviews on social media encapsulates nuanced perceptions and feelings associated with different places, offering rich insights into segregation. However, leveraging this data poses significant challenges due to its vast volume, ambiguity, and confluence of diverse perspectives. To tackle these challenges, we propose a novel Large Language Model (LLM) agent to automate online review mining for segregation prediction. Specifically, we propose a reflective LLM coder to digest social media content into insights consistent with real-world feedback, and eventually produce a codebook capturing key dimensions that signal segregation experience, such as cultural resonance and appeal, accessibility and convenience, and community engagement and local involvement. Guided by the codebook, LLMs can generate both informative review summaries and ratings for segregation prediction. Moreover, we design a REasoning-and-EMbedding (RE'EM) framework, which combines the reasoning and embedding capabilities of language models to integrate multi-channel features for segregation prediction. Experiments on real-world data demonstrate that our agent substantially improves prediction accuracy, with a 22.79% elevation in R$^{2}$ and a 9.33% reduction in MSE. The derived codebook is generalizable across three different cities, consistently improving prediction accuracy. Moreover, our user study confirms that the codebook-guided summaries provide cognitive gains for human participants in perceiving places of interest (POIs)' social inclusiveness. Our study marks an important step toward understanding implicit social barriers and inequalities, demonstrating the great potential of promoting social inclusiveness with Web technology.
comment: 11 pages, 6 figures. This paper has been accepted at The ACM Web Conference 2026
♻ ☆ In-context Time Series Predictor ICLR 2025
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
comment: Camera-ready version. Accepted at ICLR 2025
♻ ☆ PASH at TREC 2021 Deep Learning Track: Generative Enhanced Model for Multi-stage Ranking
This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.
comment: TREC 2021
♻ ☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend that future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers.
comment: Accepted to COLM 2025
♻ ☆ Patterns in the Transition From Founder-Leadership to Community Governance of Open Source
Open digital public infrastructure needs community management to ensure accountability, sustainability, and robustness. Yet open-source projects often rely on centralized decision-making, and the determinants of successful community management remain unclear. We analyze 637 GitHub repositories to trace transitions from founder-led to shared governance. Specifically, we document trajectories to community governance by extracting institutional roles, actions, and deontic cues from version-controlled project constitutions GOVERNANCE .md. With a semantic parsing pipeline, we cluster elements into broader role and action types. We find roles and actions grow, and regulation becomes more balanced, reflecting increases in governance scope and differentiation over time. Rather than shifting tone, communities grow by layering and refining responsibilities. As transitions to community management mature, projects increasingly regulate ecosystem-level relationships and add definition to project oversight roles. Overall, this work offers a scalable pipeline for tracking the growth and development of community governance regimes from open-source software's familiar default of founder-ownership.
♻ ☆ Position: The Real Barrier to LLM Agent Usability is Agentic ROI
Large Language Model (LLM) agents represent a promising shift in human-AI interaction, moving beyond passive prompt-response systems to autonomous agents capable of reasoning, planning, and goal-directed action. While LLM agents are technically capable of performing a broad range of tasks, not all of these capabilities translate into meaningful usability. This position paper argues that the central question for LLM agent usability is no longer whether a task can be automated, but whether it delivers sufficient Agentic Return on Investment (Agentic ROI). Agentic ROI reframes evaluation from raw performance to a holistic, utility-driven perspective, guiding when, where, and for whom LLM agents should be deployed. Despite widespread application in high-ROI tasks like coding and scientific research, we identify a critical usability gap in mass-market, everyday applications. To address this, we propose a zigzag developmental trajectory: first scaling up to improve information gain and time savings, then scaling down to reduce cost. We present a strategic roadmap across these phases to make LLM agents truly usable, accessible, and scalable in real-world applications.
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
♻ ☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training. Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora. To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
♻ ☆ CARL: Focusing Agentic Reinforcement Learning on Critical Actions
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for long-horizon agentic reasoning. CARL leverages entropy as a heuristic proxy for action criticality and achieves focused training by assigning rewards to high-criticality actions while excluding low-criticality actions from model updates, avoiding noisy credit assignment and redundant computation. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency across diverse evaluation settings. The source code will be publicly available.
comment: 17 pages, 5 figures
♻ ☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
♻ ☆ Real-Time Detection of Hallucinated Entities in Long-Form Generation
Large language models are now routinely used in high-stakes applications where hallucinations can cause serious harm, such as medical consultations or legal advice. Existing hallucination detection methods, however, are impractical for real-world use, as they are either limited to short factual queries or require costly external verification. We present a cheap, scalable method for real-time identification of hallucinated tokens in long-form generations, and scale it effectively to 70B parameter models. Our approach targets entity-level hallucinations-e.g., fabricated names, dates, citations-rather than claim-level, thereby naturally mapping to token-level labels and enabling streaming detection. We develop an annotation methodology that leverages web search to annotate model responses with grounded labels indicating which tokens correspond to fabricated entities. This dataset enables us to train effective hallucination classifiers with simple and efficient methods such as linear probes. Evaluating across four model families, our classifiers consistently outperform baselines on long-form responses, including more expensive methods such as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an improvement in short-form question-answering settings. Despite being trained only to detect hallucinated entities, our probes effectively detect incorrect answers in mathematical reasoning tasks, indicating generalization beyond entities. While our annotation methodology is expensive, we find that annotated responses from one model can be used to train effective classifiers on other models; accordingly, we publicly release our datasets to facilitate reuse. Overall, our work suggests a promising new approach for scalable, real-world hallucination detection.
♻ ☆ Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
♻ ☆ Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
The deployment of large language models (LLMs) is frequently hindered by prohibitive memory and computational requirements. While quantization mitigates these bottlenecks, maintaining model fidelity in the sub-1-bit regime remains a persistent challenge. In this paper, we introduce LittleBit, a novel framework for extreme LLM compression. We target quantization rates as low as $0.1$ bits per weight (BPW), achieving a memory reduction of approximately $31\times$, which effectively compresses Llama2-13B to under $0.9$ GB. We represent weights via low-rank latent matrix factorization and subsequently binarize the resulting factors. To counteract the information loss inherent to such drastic precision reduction, we integrate a multi-scale compensation mechanism that learns importance parameters across row, column, and latent dimensions. Two primary contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and Residual Compensation to minimize approximation errors. Extensive experiments confirm the superiority of LittleBit in the sub-1-bit domain; for instance, our method at $0.1$ BPW surpasses the performance of leading techniques operating at $0.7$ BPW on Llama2-7B. We establish a new size-performance trade-off -- unlocking a potential $11.6\times$ inference speedup relative to FP16 -- and render powerful LLMs practical for resource-constrained environments. Our code is available at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ The Gradient-Causal Gap: Why Gradient Importance Fails on Complex Tasks ICLR
Removing ''important'' high-gradient components from a neural network can improve generalization, while removing unimportant'' low-gradient components can destroy it. We demonstrate this paradox by formalizing the \textit{Gradient-Causal Gap} in Transformers trained on algorithmic tasks. While gradient magnitude and causal importance align on simple tasks ($ρ=0.73$ for reversal), this relationship collapses as task complexity increases ($ρ=0.32$ for sorting), sometimes becoming inverted ($ρ=-0.11$). Pruning experiments reveal that gradient magnitude is not merely inaccurate but \textit{unpredictably} so. Removing low-gradient ''Hidden Heroes'' consistently devastates OOD accuracy ($-32\%$). Removing high-gradient ''Gradient Bloats'' is a coin flip: harmless in most seeds (indicating optimization noise), catastrophic in others (indicating overfitting circuits). This unpredictability means gradient-based pruning cannot reliably preserve model capabilities.
comment: 8 pages, 4 figures. Under Review. Code:https://anonymous.4open.science/r/ICLR_2026_LIT-workshop_CG-D42B
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic and OpenAI guard their latest Opus 4 model and GPT-5 models using such defense pipelines, and other frontier developers including Google DeepMind pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
comment: Add results on other models and datasets
♻ ☆ Is Your Paper Being Reviewed by an LLM? Benchmarking AI Text Detection in Peer Review ICLR 2026
Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews fully written by humans and different state-of-the-art LLMs. Additionally, we explore a context-aware detection method called Anchor, which leverages manuscript content to detect AI-generated reviews, and analyze the sensitivity of detection models to LLM-assisted editing of human-written text. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI. Our dataset is publicly available at: https://huggingface.co/datasets/IntelLabs/AI-Peer-Review-Detection-Benchmark.
comment: Accepted to ICLR 2026
♻ ☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
♻ ☆ FLAT-LLM: Fine-grained Low-rank Activation Space Transformation for Large Language Model Compression
Large Language Models (LLMs) have enabled remarkable progress in natural language processing, yet their high computational and memory demands pose challenges for deployment in resource-constrained environments. Although recent low-rank decomposition methods offer a promising path for structural compression, they often suffer from accuracy degradation, expensive calibration procedures, and result in inefficient model architectures that hinder real-world inference speedups. In this paper, we propose FLAT-LLM, a fast and accurate, training-free structural compression method based on fine-grained low-rank transformations in the activation space. Specifically, we reduce the hidden dimension by transforming the weights using truncated eigenvectors computed via head-wise Principal Component Analysis, and employ a greedy budget redistribution strategy to adaptively allocate ranks across decoders. FLAT-LLM achieves efficient and effective weight compression without recovery fine-tuning, which could complete the calibration within a few minutes. Evaluated across 5 models and 11 datasets, FLAT-LLM outperforms structural pruning baselines in generalization and downstream performance, while delivering inference speedups over decomposition-based methods.
♻ ☆ Applying Text Embedding Models for Efficient Analysis in Labeled Property Graphs
Labeled property graphs often contain rich textual attributes that can enhance analytical tasks when properly leveraged. This work explores the use of pretrained text embedding models to enable efficient semantic analysis in such graphs. By embedding textual node and edge properties, we support downstream tasks including node classification and relation prediction with improved contextual understanding. Our approach integrates language model embeddings into the graph pipeline without altering its structure, demonstrating that textual semantics can significantly enhance the accuracy and interpretability of property graph analysis.
♻ ☆ CLaRa: Bridging Retrieval and Generation with Continuous Latent Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but still suffers from long contexts and disjoint retrieval-generation optimization. In this work, we propose CLaRa (Continuous Latent Reasoning), a unified framework that performs embedding-based compression and joint optimization in a shared continuous space. To obtain semantically rich and retrievable compressed vectors, thereby reducing the document length fed into the generator, we introduce SCP, a key-preserving data synthesis framework based on question answering and paraphrase supervision. CLaRa then trains the reranker and generator end-to-end via a single language modeling loss, with gradients flowing through both modules using a differentiable top-k estimator. Theoretically, this unified optimization aligns retrieval relevance with answer quality. Experiments across multiple QA benchmarks show that CLaRa achieves state-of-the-art compression and reranking performance, even at a text compression rate of 16, outperforming text-based fine-tuned baselines.
Machine Learning 346
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ Pseudo-Invertible Neural Networks
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction IEEE
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Can vision language models learn intuitive physics from interaction?
Pre-trained vision language models do not have good intuitions about the physical world. Recent work has shown that supervised fine-tuning can improve model performance on simple physical tasks. However, fine-tuned models do not appear to learn robust physical rules that can generalize to new contexts. Based on research in cognitive science, we hypothesize that models need to interact with an environment to properly learn its physical dynamics. We train models that learn through interaction with the environment using reinforcement learning. While learning from interaction allows models to improve their within-task performance, it fails to produce models with generalizable physical intuitions. We find that models trained on one task do not reliably generalize to related tasks, even if the tasks share visual statistics and physical principles, and regardless of whether the models are trained through interaction.
☆ PhysicsAgentABM: Physics-Guided Generative Agent-Based Modeling
Large language model (LLM)-based multi-agent systems enable expressive agent reasoning but are expensive to scale and poorly calibrated for timestep-aligned state-transition simulation, while classical agent-based models (ABMs) offer interpretability but struggle to integrate rich individual-level signals and non-stationary behaviors. We propose PhysicsAgentABM, which shifts inference to behaviorally coherent agent clusters: state-specialized symbolic agents encode mechanistic transition priors, a multimodal neural transition model captures temporal and interaction dynamics, and uncertainty-aware epistemic fusion yields calibrated cluster-level transition distributions. Individual agents then stochastically realize transitions under local constraints, decoupling population inference from entity-level variability. We further introduce ANCHOR, an LLM agent-driven clustering strategy based on cross-contextual behavioral responses and a novel contrastive loss, reducing LLM calls by up to 6-8 times. Experiments across public health, finance, and social sciences show consistent gains in event-time accuracy and calibration over mechanistic, neural, and LLM baselines. By re-architecting generative ABM around population-level inference with uncertainty-aware neuro-symbolic fusion, PhysicsAgentABM establishes a new paradigm for scalable and calibrated simulation with LLMs.
☆ AP-OOD: Attention Pooling for Out-of-Distribution Detection ICLR 2026
Out-of-distribution (OOD) detection, which maps high-dimensional data into a scalar OOD score, is critical for the reliable deployment of machine learning models. A key challenge in recent research is how to effectively leverage and aggregate token embeddings from language models to obtain the OOD score. In this work, we propose AP-OOD, a novel OOD detection method for natural language that goes beyond simple average-based aggregation by exploiting token-level information. AP-OOD is a semi-supervised approach that flexibly interpolates between unsupervised and supervised settings, enabling the use of limited auxiliary outlier data. Empirically, AP-OOD sets a new state of the art in OOD detection for text: in the unsupervised setting, it reduces the FPR95 (false positive rate at 95% true positives) from 27.84% to 4.67% on XSUM summarization, and from 77.08% to 70.37% on WMT15 En-Fr translation.
comment: Accepted at ICLR 2026
☆ Curiosity is Knowledge: Self-Consistent Learning and No-Regret Optimization with Active Inference
Active inference (AIF) unifies exploration and exploitation by minimizing the Expected Free Energy (EFE), balancing epistemic value (information gain) and pragmatic value (task performance) through a curiosity coefficient. Yet it has been unclear when this balance yields both coherent learning and efficient decision-making: insufficient curiosity can drive myopic exploitation and prevent uncertainty resolution, while excessive curiosity can induce unnecessary exploration and regret. We establish the first theoretical guarantee for EFE-minimizing agents, showing that a single requirement--sufficient curiosity--simultaneously ensures self-consistent learning (Bayesian posterior consistency) and no-regret optimization (bounded cumulative regret). Our analysis characterizes how this mechanism depends on initial uncertainty, identifiability, and objective alignment, thereby connecting AIF to classical Bayesian experimental design and Bayesian optimization within one theoretical framework. We further translate these theories into practical design guidelines for tuning the epistemic-pragmatic trade-off in hybrid learning-optimization problems, validated through real-world experiments.
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Correctness-Optimized Residual Activation Lens (CORAL): Transferrable and Calibration-Aware Inference-Time Steering
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
☆ Diffusion Model's Generalization Can Be Characterized by Inductive Biases toward a Data-Dependent Ridge Manifold
When a diffusion model is not memorizing the training data set, how does it generalize exactly? A quantitative understanding of the distribution it generates would be beneficial to, for example, an assessment of the model's performance for downstream applications. We thus explicitly characterize what diffusion model generates, by proposing a log-density ridge manifold and quantifying how the generated data relate to this manifold as inference dynamics progresses. More precisely, inference undergoes a reach-align-slide process centered around the ridge manifold: trajectories first reach a neighborhood of the manifold, then align as being pushed toward or away from the manifold in normal directions, and finally slide along the manifold in tangent directions. Within the scope of this general behavior, different training errors will lead to different normal and tangent motions, which can be quantified, and these detailed motions characterize when inter-mode generations emerge. More detailed understanding of training dynamics will lead to more accurate quantification of the generation inductive bias, and an example of random feature model will be considered, for which we can explicitly illustrate how diffusion model's inductive biases originate as a composition of architectural bias and training accuracy, and how they evolve with the inference dynamics. Experiments on synthetic multimodal distributions and MNIST latent diffusion support the predicted directional effects, in both low- and high-dimensions.
☆ Mechanisms of AI Protein Folding in ESMFold
How do protein structure prediction models fold proteins? We investigate this question by tracing how ESMFold folds a beta hairpin, a prevalent structural motif. Through counterfactual interventions on model latents, we identify two computational stages in the folding trunk. In the first stage, early blocks initialize pairwise biochemical signals: residue identities and associated biochemical features such as charge flow from sequence representations into pairwise representations. In the second stage, late blocks develop pairwise spatial features: distance and contact information accumulate in the pairwise representation. We demonstrate that the mechanisms underlying structural decisions of ESMFold can be localized, traced through interpretable representations, and manipulated with strong causal effects.
comment: Our code, data, and results are available at https://folding.baulab.info
☆ Multi-Token Prediction via Self-Distillation
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
comment: 8 pages and 5 figures in the main body
☆ Optimism Stabilizes Thompson Sampling for Adaptive Inference
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
☆ AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Transactions
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
☆ On Computation and Reinforcement Learning
How does the amount of compute available to a reinforcement learning (RL) policy affect its learning? Can policies using a fixed amount of parameters, still benefit from additional compute? The standard RL framework does not provide a language to answer these questions formally. Empirically, deep RL policies are often parameterized as neural networks with static architectures, conflating the amount of compute and the number of parameters. In this paper, we formalize compute bounded policies and prove that policies which use more compute can solve problems and generalize to longer-horizon tasks that are outside the scope of policies with less compute. Building on prior work in algorithmic learning and model-free planning, we propose a minimal architecture that can use a variable amount of compute. Our experiments complement our theory. On a set 31 different tasks spanning online and offline RL, we show that $(1)$ this architecture achieves stronger performance simply by using more compute, and $(2)$ stronger generalization on longer-horizon test tasks compared to standard feedforward networks or deep residual network using up to 5 times more parameters.
☆ Causal Inference on Stopped Random Walks in Online Advertising
We consider a causal inference problem frequently encountered in online advertising systems, where a publisher (e.g., Instagram, TikTok) interacts repeatedly with human users and advertisers by sporadically displaying to each user an advertisement selected through an auction. Each treatment corresponds to a parameter value of the advertising mechanism (e.g., auction reserve-price), and we want to estimate through experiments the corresponding long-term treatment effect (e.g., annual advertising revenue). In our setting, the treatment affects not only the instantaneous revenue from showing an ad, but also changes each user's interaction-trajectory, and each advertiser's bidding policy -- as the latter is constrained by a finite budget. In particular, each a treatment may even affect the size of the population, since users interact longer with a tolerable advertising mechanism. We drop the classical i.i.d. assumption and model the experiment measurements (e.g., advertising revenue) as a stopped random walk, and use a budget-splitting experimental design, the Anscombe Theorem, a Wald-like equation, and a Central Limit Theorem to construct confidence intervals for the long-term treatment effect.
☆ Orthogonal Self-Attention
Softmax Self-Attention (SSA) is a key component of Transformer architectures. However, when utilised within skipless architectures, which aim to improve representation learning, recent work has highlighted the inherent instability of SSA due to inducing rank collapse and poorly-conditioned Jacobians. In this work, we design a novel attention mechanism: Orthogonal Self-Attention (OSA), which aims to bypass these issues with SSA, in order to allow for (non-causal) Transformers without skip connections and normalisation layers to be more easily trained. In particular, OSA parametrises the attention matrix to be orthogonal via mapping a skew-symmetric matrix, formed from query-key values, through the matrix exponential. We show that this can be practically implemented, by exploiting the low-rank structure of our query-key values, resulting in the computational complexity and memory cost of OSA scaling linearly with sequence length. Furthermore, we derive an initialisation scheme for which we prove ensures that the Jacobian of OSA is well-conditioned.
comment: Preprint
☆ Diamond Maps: Efficient Reward Alignment via Stochastic Flow Maps
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
☆ Layer-wise LoRA fine-tuning: a similarity metric approach
Pre-training Large Language Models (LLMs) on web-scale datasets becomes fundamental for advancing general-purpose AI. In contrast, enhancing their predictive performance on downstream tasks typically involves adapting their knowledge through fine-tuning. Parameter-efficient fine-tuning techniques, such as Low-Rank Adaptation (LoRA), aim to reduce the computational cost of this process by freezing the pre-trained model and updating a smaller number of parameters. In comparison to full fine-tuning, these methods achieve over 99\% reduction in trainable parameter count, depending on the configuration. Unfortunately, such a reduction may prove insufficient as LLMs continue to grow in scale. In this work, we address the previous problem by systematically selecting only a few layers to fine-tune using LoRA or its variants. We argue that not all layers contribute equally to the model adaptation. Leveraging this, we identify the most relevant layers to fine-tune by measuring their contribution to changes in internal representations. Our method is orthogonal to and readily compatible with existing low-rank adaptation techniques. We reduce the trainable parameters in LoRA-based techniques by up to 50\%, while maintaining the predictive performance across different models and tasks. Specifically, on encoder-only architectures, this reduction in trainable parameters leads to a negligible predictive performance drop on the GLUE benchmark. On decoder-only architectures, we achieve a small drop or even improvements in the predictive performance on mathematical problem-solving capabilities and coding tasks. Finally, this effectiveness extends to multimodal models, for which we also observe competitive results relative to fine-tuning with LoRA modules in all layers. Code is available at: https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
comment: Code is available at https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
☆ Clifford Kolmogorov-Arnold Networks IEEE
We introduce Clifford Kolmogorov-Arnold Network (ClKAN), a flexible and efficient architecture for function approximation in arbitrary Clifford algebra spaces. We propose the use of Randomized Quasi Monte Carlo grid generation as a solution to the exponential scaling associated with higher dimensional algebras. Our ClKAN also introduces new batch normalization strategies to deal with variable domain input. ClKAN finds application in scientific discovery and engineering, and is validated in synthetic and physics inspired tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space ICLR 2026
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
comment: 10 pages, 6 figures (excluding refs/appendix). Accepted to ICLR 2026
☆ Inverse Depth Scaling From Most Layers Being Similar
Neural scaling laws relate loss to model size in large language models (LLMs), yet depth and width may contribute to performance differently, requiring more detailed studies. Here, we quantify how depth affects loss via analysis of LLMs and toy residual networks. We find loss scales inversely proportional to depth in LLMs, probably due to functionally similar layers reducing error through ensemble averaging rather than compositional learning or discretizing smooth dynamics. This regime is inefficient yet robust and may arise from the architectural bias of residual networks and target functions incompatible with smooth dynamics. The findings suggest that improving LLM efficiency may require architectural innovations to encourage compositional use of depth.
comment: 23 pages, 24 figures
☆ A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Hydraulic systems are widely utilized in industrial applications due to their high force generation, precise control, and ability to function in harsh environments. Hydraulic cylinders, as actuators in these systems, apply force and position through the displacement of hydraulic fluid, but their operation is significantly influenced by friction force. Achieving precision in hydraulic cylinders requires an accurate friction model under various operating conditions. Existing analytical models, often derived from experimental tests, necessitate the identification or estimation of influencing factors but are limited in adaptability and computational efficiency. This research introduces a data-driven, hybrid algorithm based on Long Short-Term Memory (LSTM) networks and Random Forests for nonlinear friction force estimation. The algorithm effectively combines feature detection and estimation processes using training data acquired from an experimental hydraulic test setup. It achieves a consistent and stable model error of less than 10% across diverse operating conditions and external load variations, ensuring robust performance in complex situations. The computational cost of the algorithm is 1.51 milliseconds per estimation, making it suitable for real-time applications. The proposed method addresses the limitations of analytical models by delivering high precision and computational efficiency. The algorithm's performance is validated through detailed analysis and experimental results, including direct comparisons with the LuGre model. The comparison highlights that while the LuGre model offers a theoretical foundation for friction modeling, its performance is limited by its inability to dynamically adjust to varying operational conditions of the hydraulic cylinder, further emphasizing the advantages of the proposed hybrid approach in real-time applications.
comment: Published in: 2025 33rd International Conference on Electrical Engineering (ICEE), Publisher IEEE
☆ Discrete diffusion samplers and bridges: Off-policy algorithms and applications in latent spaces
Sampling from a distribution $p(x) \propto e^{-\mathcal{E}(x)}$ known up to a normalising constant is an important and challenging problem in statistics. Recent years have seen the rise of a new family of amortised sampling algorithms, commonly referred to as diffusion samplers, that enable fast and efficient sampling from an unnormalised density. Such algorithms have been widely studied for continuous-space sampling tasks; however, their application to problems in discrete space remains largely unexplored. Although some progress has been made in this area, discrete diffusion samplers do not take full advantage of ideas commonly used for continuous-space sampling. In this paper, we propose to bridge this gap by introducing off-policy training techniques for discrete diffusion samplers. We show that these techniques improve the performance of discrete samplers on both established and new synthetic benchmarks. Next, we generalise discrete diffusion samplers to the task of bridging between two arbitrary distributions, introducing data-to-energy Schrödinger bridge training for the discrete domain for the first time. Lastly, we showcase the application of the proposed diffusion samplers to data-free posterior sampling in the discrete latent spaces of image generative models.
comment: Code: https://github.com/mmacosha/offpolicy-discrete-diffusion-samplers-and-bridges
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Breaking Symmetry Bottlenecks in GNN Readouts
Graph neural networks (GNNs) are widely used for learning on structured data, yet their ability to distinguish non-isomorphic graphs is fundamentally limited. These limitations are usually attributed to message passing; in this work we show that an independent bottleneck arises at the readout stage. Using finite-dimensional representation theory, we prove that all linear permutation-invariant readouts, including sum and mean pooling, factor through the Reynolds (group-averaging) operator and therefore project node embeddings onto the fixed subspace of the permutation action, erasing all non-trivial symmetry-aware components regardless of encoder expressivity. This yields both a new expressivity barrier and an interpretable characterization of what global pooling preserves or destroys. To overcome this collapse, we introduce projector-based invariant readouts that decompose node representations into symmetry-aware channels and summarize them with nonlinear invariant statistics, preserving permutation invariance while retaining information provably invisible to averaging. Empirically, swapping only the readout enables fixed encoders to separate WL-hard graph pairs and improves performance across multiple benchmarks, demonstrating that readout design is a decisive and under-appreciated factor in GNN expressivity.
comment: 23 pages
☆ $f$-GRPO and Beyond: Divergence-Based Reinforcement Learning Algorithms for General LLM Alignment
Recent research shows that Preference Alignment (PA) objectives act as divergence estimators between aligned (chosen) and unaligned (rejected) response distributions. In this work, we extend this divergence-based perspective to general alignment settings, such as reinforcement learning with verifiable rewards (RLVR), where only environmental rewards are available. Within this unified framework, we propose $f$-Group Relative Policy Optimization ($f$-GRPO), a class of on-policy reinforcement learning, and $f$-Hybrid Alignment Loss ($f$-HAL), a hybrid on/off policy objectives, for general LLM alignment based on variational representation of $f$-divergences. We provide theoretical guarantees that these classes of objectives improve the average reward after alignment. Empirically, we validate our framework on both RLVR (Math Reasoning) and PA tasks (Safety Alignment), demonstrating superior performance and flexibility compared to current methods.
☆ Orthogonal Model Merging
Merging finetuned Large Language Models (LLMs) has become increasingly important for integrating diverse capabilities into a single unified model. However, prevailing model merging methods rely on linear arithmetic in Euclidean space, which often destroys the intrinsic geometric properties of pretrained weights, such as hyperspherical energy. To address this, we propose Orthogonal Model Merging (OrthoMerge), a method that performs merging operations on the Riemannian manifold formed by the orthogonal group to preserve the geometric structure of the model's weights. By mapping task-specific orthogonal matrices learned by Orthogonal Finetuning (OFT) to the Lie algebra, OrthoMerge enables a principled yet efficient integration that takes into account both the direction and intensity of adaptations. In addition to directly leveraging orthogonal matrices obtained by OFT, we further extend this approach to general models finetuned with non-OFT methods (i.e., low-rank finetuning, full finetuning) via an Orthogonal-Residual Decoupling strategy. This technique extracts the orthogonal components of expert models by solving the orthogonal Procrustes problem, which are then merged on the manifold of the orthogonal group, while the remaining linear residuals are processed through standard additive merging. Extensive empirical results demonstrate the effectiveness of OrthoMerge in mitigating catastrophic forgetting and maintaining model performance across diverse tasks.
comment: Technical report (18 pages, 9 figures, project page: https://spherelab.ai/OrthoMerge/)
☆ Dimensionality Reduction on Riemannian Manifolds in Data Analysis
In this work, we investigate Riemannian geometry based dimensionality reduction methods that respect the underlying manifold structure of the data. In particular, we focus on Principal Geodesic Analysis (PGA) as a nonlinear generalization of PCA for manifold valued data, and extend discriminant analysis through Riemannian adaptations of other known dimensionality reduction methods. These approaches exploit geodesic distances, tangent space representations, and intrinsic statistical measures to achieve more faithful low dimensional embeddings. We also discuss related manifold learning techniques and highlight their theoretical foundations and practical advantages. Experimental results on representative datasets demonstrate that Riemannian methods provide improved representation quality and classification performance compared to their Euclidean counterparts, especially for data constrained to curved spaces such as hyperspheres and symmetric positive definite manifolds. This study underscores the importance of geometry aware dimensionality reduction in modern machine learning and data science applications.
☆ Tuning Out-of-Distribution (OOD) Detectors Without Given OOD Data
Existing out-of-distribution (OOD) detectors are often tuned by a separate dataset deemed OOD with respect to the training distribution of a neural network (NN). OOD detectors process the activations of NN layers and score the output, where parameters of the detectors are determined by fitting to an in-distribution (training) set and the aforementioned dataset chosen adhocly. At detector training time, this adhoc dataset may not be available or difficult to obtain, and even when it's available, it may not be representative of actual OOD data, which is often ''unknown unknowns." Current benchmarks may specify some left-out set from test OOD sets. We show that there can be significant variance in performance of detectors based on the adhoc dataset chosen in current literature, and thus even if such a dataset can be collected, the performance of the detector may be highly dependent on the choice. In this paper, we introduce and formalize the often neglected problem of tuning OOD detectors without a given ``OOD'' dataset. To this end, we present strong baselines as an attempt to approach this problem. Furthermore, we propose a new generic approach to OOD detector tuning that does not require any extra data other than those used to train the NN. We show that our approach improves over baseline methods consistently across higher-parameter OOD detector families, while being comparable across lower-parameter families.
☆ Approximation of Log-Partition Function in Policy Mirror Descent Induces Implicit Regularization for LLM Post-Training
Policy mirror descent (PMD) provides a principled framework for reinforcement learning (RL) by iteratively solving KL-regularized policy improvement subproblems. While this approach has been adopted in training advanced LLMs such as Kimi K1.5/K2, the ideal closed-form PMD updates require reliable partition function estimation, a significant challenge when working with limited rollouts in the vast action spaces of LLMs. We investigate a practical algorithm, termed PMD-mean, that approximates the log-partition term with the mean reward under the sampling policy and performs regression in log-policy space. Specifically, we characterize the population solution of PMD-mean and demonstrate that it implicitly optimizes mirror descent subproblems with an adaptive mixed KL--$χ^2$ regularizer. This additional $χ^2$ regularization constrains large probability changes, producing more conservative updates when expected rewards are low and enhancing robustness against finite-sample estimation errors. Experiments on math reasoning tasks show that PMD-mean achieves superior performance with improved stability and time efficiency. These findings deepen our understanding of PMD-mean and illuminate pathways toward principled improvements in RL algorithms for LLMs. Code is available at https://github.com/horizon-rl/OpenKimi.
Transformers Are Born Biased: Structural Inductive Biases at Random Initialization and Their Practical Consequences
Transformers underpin modern large language models (LLMs) and are commonly assumed to be behaviorally unstructured at random initialization, with all meaningful preferences emerging only through large-scale training. We challenge this assumption by showing that randomly initialized transformers already exhibit strong and systematic structural biases. In particular, untrained models display extreme token preferences: across random input sequences, certain tokens are predicted with probabilities orders of magnitude larger. We provide a mechanistic explanation for this phenomenon by dissecting the transformer architecture at initialization. We show that extreme token preference arises from a contraction of token representations along a random seed-dependent direction. This contraction is driven by two interacting forces: (i) asymmetric nonlinear activations in MLP sublayers induce global (inter-sequence) representation concentration, and (ii) self-attention further amplifies this effect through local (intra-sequence) aggregation. Together, these mechanisms align hidden representations along a direction determined solely by the random initialization, producing highly non-uniform next-token predictions. Beyond mechanistic insight, we demonstrate that these initialization-induced biases persist throughout training, forming a stable and intrinsic model identity. Leveraging this property, we introduce SeedPrint, a fingerprinting method that can reliably distinguish models that differ only in their random initialization, even after extensive training and under substantial distribution shift. Finally, we identify a fundamental positional discrepancy inherent to the attention mechanism's intra-sequence contraction that is causally linked to the attention-sink phenomenon. This discovery provides a principled explanation for the emergence of sinks and offers a pathway for their control.
☆ Chunky Post-Training: Data Driven Failures of Generalization
LLM post-training involves many diverse datasets, each targeting a specific behavior. But these datasets encode incidental patterns alongside intended ones: correlations between formatting and content, narrow phrasings across diverse problems, and implicit associations arising from the discrete data curation process. These patterns are often invisible to developers yet salient to models, producing behaviors that surprise their creators, such as rejecting true facts presented in a particular question format. We call this chunky post-training: the model learns spurious correlations as a result of distinct chunks of post-training data. We introduce SURF, a black-box pipeline which surfaces these unintended behaviors at run time, and TURF, a tool that traces these failures back to specific post-training data. Applying these tools to frontier models (Claude 4.5, GPT-5.1, Grok 4.1, Gemini 3) and open models (Tülu 3), we show that chunky post-training produces miscalibrated behaviors, which often result from imbalanced or underspecified chunks of post-training data.
☆ Verification of the Implicit World Model in a Generative Model via Adversarial Sequences ICLR 2026
Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.
comment: Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification
☆ Regularized Calibration with Successive Rounding for Post-Training Quantization
Large language models (LLMs) deliver robust performance across diverse applications, yet their deployment often faces challenges due to the memory and latency costs of storing and accessing billions of parameters. Post-training quantization (PTQ) enables efficient inference by mapping pretrained weights to low-bit formats without retraining, but its effectiveness depends critically on both the quantization objective and the rounding procedure used to obtain low-bit weight representations. In this work, we show that interpolating between symmetric and asymmetric calibration acts as a form of regularization that preserves the standard quadratic structure used in PTQ while providing robustness to activation mismatch. Building on this perspective, we derive a simple successive rounding procedure that naturally incorporates asymmetric calibration, as well as a bounded-search extension that allows for an explicit trade-off between quantization quality and the compute cost. Experiments across multiple LLM families, quantization bit-widths, and benchmarks demonstrate that the proposed bounded search based on a regularized asymmetric calibration objective consistently improves perplexity and accuracy over PTQ baselines, while incurring only modest and controllable additional computational cost.
☆ Universal approximation with signatures of non-geometric rough paths
We establish a universal approximation theorem for signatures of rough paths that are not necessarily weakly geometric. By extending the path with time and its rough path bracket terms, we prove that linear functionals of the signature of the resulting rough paths approximate continuous functionals on rough path spaces uniformly on compact sets. Moreover, we construct the signature of a path extended by its pathwise quadratic variation terms based on general pathwise stochastic integration à la Föllmer, in particular, allowing for pathwise Itô, Stratonovich, and backward Itô integration. In a probabilistic setting, we obtain a universal approximation result for linear functionals of the signature of continuous semimartingales extended by the quadratic variation terms, defined via stochastic Itô integration. Numerical examples illustrate the use of signatures when the path is extended by time and quadratic variation in the context of model calibration and option pricing in mathematical finance.
☆ Parity, Sensitivity, and Transformers
The transformer architecture is almost a decade old. Despite that, we still have a limited understanding of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve PARITY -- or more generally -- which kinds of transformers can do it? Known constructions for PARITY have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or hardmax, or layernorm without the regularization parameter, or they are not implementable with causal masking. We give a new construction of a transformer for PARITY with softmax, length-independent and polynomially bounded positional encoding, no layernorm, working both with and without causal masking. We also give the first lower bound for transformers solving PARITY -- by showing that it cannot be done with only one layer and one head.
comment: 15 pages
☆ ContextBench: A Benchmark for Context Retrieval in Coding Agents
LLM-based coding agents have shown strong performance on automated issue resolution benchmarks, yet existing evaluations largely focus on final task success, providing limited insight into how agents retrieve and use code context during problem solving. We introduce ContextBench, a process-oriented evaluation of context retrieval in coding agents. ContextBench consists of 1,136 issue-resolution tasks from 66 repositories across eight programming languages, each augmented with human-annotated gold contexts. We further implement an automated evaluation framework that tracks agent trajectories and measures context recall, precision, and efficiency throughout issue resolution. Using ContextBench, we evaluate four frontier LLMs and five coding agents. Our results show that sophisticated agent scaffolding yields only marginal gains in context retrieval ("The Bitter Lesson" of coding agents), LLMs consistently favor recall over precision, and substantial gaps exist between explored and utilized context. ContextBench augments existing end-to-end benchmarks with intermediate gold-context metrics that unbox the issue-resolution process. These contexts offer valuable intermediate signals for guiding LLM reasoning in software tasks. Data and code are available at: https://cioutn.github.io/context-bench/.
comment: 36 pages, 6 figures, 4 tables
☆ DFPO: Scaling Value Modeling via Distributional Flow towards Robust and Generalizable LLM Post-Training
Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
☆ Escaping Local Minima Provably in Non-convex Matrix Sensing: A Deterministic Framework via Simulated Lifting
Low-rank matrix sensing is a fundamental yet challenging nonconvex problem whose optimization landscape typically contains numerous spurious local minima, making it difficult for gradient-based optimizers to converge to the global optimum. Recent work has shown that over-parameterization via tensor lifting can convert such local minima into strict saddle points, an insight that also partially explains why massive scaling can improve generalization and performance in modern machine learning. Motivated by this observation, we propose a Simulated Oracle Direction (SOD) escape mechanism that simulates the landscape and escape direction of the over-parametrized space, without resorting to actually lifting the problem, since that would be computationally intractable. In essence, we designed a mathematical framework to project over-parametrized escape directions onto the original parameter space to guarantee a strict decrease of objective value from existing local minima. To the best of the our knowledge, this represents the first deterministic framework that could escape spurious local minima with guarantee, especially without using random perturbations or heuristic estimates. Numerical experiments demonstrate that our framework reliably escapes local minima and facilitates convergence to global optima, while incurring minimal computational cost when compared to explicit tensor over-parameterization. We believe this framework has non-trivial implications for nonconvex optimization beyond matrix sensing, by showcasing how simulated over-parameterization can be leveraged to tame challenging optimization landscapes.
comment: 48 pages, 10 figures, 5 tables. Submitted to Mathematical Programming
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ Large-scale Score-based Variational Posterior Inference for Bayesian Deep Neural Networks
Bayesian (deep) neural networks (BNN) are often more attractive than the mainstream point-estimate vanilla deep learning in various aspects including uncertainty quantification, robustness to noise, resistance to overfitting, and more. The variational inference (VI) is one of the most widely adopted approximate inference methods. Whereas the ELBO-based variational free energy method is a dominant choice in the literature, in this paper we introduce a score-based alternative for BNN variational inference. Although there have been quite a few score-based variational inference methods proposed in the community, most are not adequate for large-scale BNNs for various computational and technical reasons. We propose a novel scalable VI method where the learning objective combines the score matching loss and the proximal penalty term in iterations, which helps our method avoid the reparametrized sampling, and allows for noisy unbiased mini-batch scores through stochastic gradients. This in turn makes our method scalable to large-scale neural networks including Vision Transformers, and allows for richer variational density families. On several benchmarks including visual recognition and time-series forecasting with large-scale deep networks, we empirically show the effectiveness of our approach.
☆ Wedge Sampling: Efficient Tensor Completion with Nearly-Linear Sample Complexity
We introduce Wedge Sampling, a new non-adaptive sampling scheme for low-rank tensor completion. We study recovery of an order-$k$ low-rank tensor of dimension $n \times \cdots \times n$ from a subset of its entries. Unlike the standard uniform entry model (i.e., i.i.d. samples from $[n]^k$), wedge sampling allocates observations to structured length-two patterns (wedges) in an associated bipartite sampling graph. By directly promoting these length-two connections, the sampling design strengthens the spectral signal that underlies efficient initialization, in regimes where uniform sampling is too sparse to generate enough informative correlations. Our main result shows that this change in sampling paradigm enables polynomial-time algorithms to achieve both weak and exact recovery with nearly linear sample complexity in $n$. The approach is also plug-and-play: wedge-sampling-based spectral initialization can be combined with existing refinement procedures (e.g., spectral or gradient-based methods) using only an additional $\tilde{O}(n)$ uniformly sampled entries, substantially improving over the $\tilde{O}(n^{k/2})$ sample complexity typically required under uniform entry sampling for efficient methods. Overall, our results suggest that the statistical-to-computational gap highlighted in Barak and Moitra (2022) is, to a large extent, a consequence of the uniform entry sampling model for tensor completion, and that alternative non-adaptive measurement designs that guarantee a strong initialization can overcome this barrier.
comment: 58 pages, 3 figures
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ Distribution-free two-sample testing with blurred total variation distance
Two-sample testing, where we aim to determine whether two distributions are equal or not equal based on samples from each one, is challenging if we cannot place assumptions on the properties of the two distributions. In particular, certifying equality of distributions, or even providing a tight upper bound on the total variation (TV) distance between the distributions, is impossible to achieve in a distribution-free regime. In this work, we examine the blurred TV distance, a relaxation of TV distance that enables us to perform inference without assumptions on the distributions. We provide theoretical guarantees for distribution-free upper and lower bounds on the blurred TV distance, and examine its properties in high dimensions.
comment: 47 pages, 4 figures
☆ CFRecs: Counterfactual Recommendations on Real Estate User Listing Interaction Graphs
Graph-structured data is ubiquitous and powerful in representing complex relationships in many online platforms. While graph neural networks (GNNs) are widely used to learn from such data, counterfactual graph learning has emerged as a promising approach to improve model interpretability. Counterfactual explanation research focuses on identifying a counterfactual graph that is similar to the original but leads to different predictions. These explanations optimize two objectives simultaneously: the sparsity of changes in the counterfactual graph and the validity of its predictions. Building on these qualitative optimization goals, this paper introduces CFRecs, a novel framework that transforms counterfactual explanations into actionable insights. CFRecs employs a two-stage architecture consisting of a graph neural network (GNN) and a graph variational auto-encoder (Graph-VAE) to strategically propose minimal yet high-impact changes in graph structure and node attributes to drive desirable outcomes in recommender systems. We apply CFRecs to Zillow's graph-structured data to deliver actionable recommendations for both home buyers and sellers with the goal of helping them navigate the competitive housing market and achieve their homeownership goals. Experimental results on Zillow's user-listing interaction data demonstrate the effectiveness of CFRecs, which also provides a fresh perspective on recommendations using counterfactual reasoning in graphs.
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ A Hybrid Autoencoder for Robust Heightmap Generation from Fused Lidar and Depth Data for Humanoid Robot Locomotion
Reliable terrain perception is a critical prerequisite for the deployment of humanoid robots in unstructured, human-centric environments. While traditional systems often rely on manually engineered, single-sensor pipelines, this paper presents a learning-based framework that uses an intermediate, robot-centric heightmap representation. A hybrid Encoder-Decoder Structure (EDS) is introduced, utilizing a Convolutional Neural Network (CNN) for spatial feature extraction fused with a Gated Recurrent Unit (GRU) core for temporal consistency. The architecture integrates multimodal data from an Intel RealSense depth camera, a LIVOX MID-360 LiDAR processed via efficient spherical projection, and an onboard IMU. Quantitative results demonstrate that multimodal fusion improves reconstruction accuracy by 7.2% over depth-only and 9.9% over LiDAR-only configurations. Furthermore, the integration of a 3.2 s temporal context reduces mapping drift.
☆ Exact Recovery in the Data Block Model
Community detection in networks is a fundamental problem in machine learning and statistical inference, with applications in social networks, biological systems, and communication networks. The stochastic block model (SBM) serves as a canonical framework for studying community structure, and exact recovery, identifying the true communities with high probability, is a central theoretical question. While classical results characterize the phase transition for exact recovery based solely on graph connectivity, many real-world networks contain additional data, such as node attributes or labels. In this work, we study exact recovery in the Data Block Model (DBM), an SBM augmented with node-associated data, as formalized by Asadi, Abbe, and Verdú (2017). We introduce the Chernoff--TV divergence and use it to characterize a sharp exact recovery threshold for the DBM. We further provide an efficient algorithm that achieves this threshold, along with a matching converse result showing impossibility below the threshold. Finally, simulations validate our findings and demonstrate the benefits of incorporating vertex data as side information in community detection.
comment: 35 pages
☆ Visualizing the loss landscapes of physics-informed neural networks
Training a neural network requires navigating a high-dimensional, non-convex loss surface to find parameters that minimize this loss. In many ways, it is surprising that optimizers such as stochastic gradient descent and ADAM can reliably locate minima which perform well on both the training and test data. To understand the success of training, a "loss landscape" community has emerged to study the geometry of the loss function and the dynamics of optimization, often using visualization techniques. However, these loss landscape studies have mostly been limited to machine learning for image classification. In the newer field of physics-informed machine learning, little work has been conducted to visualize the landscapes of losses defined not by regression to large data sets, but by differential operators acting on state fields discretized by neural networks. In this work, we provide a comprehensive review of the loss landscape literature, as well as a discussion of the few existing physics-informed works which investigate the loss landscape. We then use a number of the techniques we survey to empirically investigate the landscapes defined by the Deep Ritz and squared residual forms of the physics loss function. We find that the loss landscapes of physics-informed neural networks have many of the same properties as the data-driven classification problems studied in the literature. Unexpectedly, we find that the two formulations of the physics loss often give rise to similar landscapes, which appear smooth, well-conditioned, and convex in the vicinity of the solution. The purpose of this work is to introduce the loss landscape perspective to the scientific machine learning community, compare the Deep Ritz and the strong form losses, and to challenge prevailing intuitions about the complexity of the loss landscapes of physics-informed networks.
☆ Optimal scaling laws in learning hierarchical multi-index models
In this work, we provide a sharp theory of scaling laws for two-layer neural networks trained on a class of hierarchical multi-index targets, in a genuinely representation-limited regime. We derive exact information-theoretic scaling laws for subspace recovery and prediction error, revealing how the hierarchical features of the target are sequentially learned through a cascade of phase transitions. We further show that these optimal rates are achieved by a simple, target-agnostic spectral estimator, which can be interpreted as the small learning-rate limit of gradient descent on the first-layer weights. Once an adapted representation is identified, the readout can be learned statistically optimally, using an efficient procedure. As a consequence, we provide a unified and rigorous explanation of scaling laws, plateau phenomena, and spectral structure in shallow neural networks trained on such hierarchical targets.
☆ Synthesizing Realistic Test Data without Breaking Privacy
There is a need for synthetic training and test datasets that replicate statistical distributions of original datasets without compromising their confidentiality. A lot of research has been done in leveraging Generative Adversarial Networks (GANs) for synthetic data generation. However, the resulting models are either not accurate enough or are still vulnerable to membership inference attacks (MIA) or dataset reconstruction attacks since the original data has been leveraged in the training process. In this paper, we explore the feasibility of producing a synthetic test dataset with the same statistical properties as the original one, with only indirectly leveraging the original data in the generation process. The approach is inspired by GANs, with a generation step and a discrimination step. However, in our approach, we use a test generator (a fuzzer) to produce test data from an input specification, preserving constraints set by the original data; a discriminator model determines how close we are to the original data. By evolving samples and determining "good samples" with the discriminator, we can generate privacy-preserving data that follows the same statistical distributions are the original dataset, leading to a similar utility as the original data. We evaluated our approach on four datasets that have been used to evaluate the state-of-the-art techniques. Our experiments highlight the potential of our approach towards generating synthetic datasets that have high utility while preserving privacy.
☆ Learning Compact Boolean Networks
Floating-point neural networks dominate modern machine learning but incur substantial inference cost, motivating interest in Boolean networks for resource-constrained settings. However, learning compact and accurate Boolean networks is challenging due to their combinatorial nature. In this work, we address this challenge from three different angles: learned connections, compact convolutions and adaptive discretization. First, we propose a novel strategy to learn efficient connections with no additional parameters and negligible computational overhead. Second, we introduce a novel convolutional Boolean architecture that exploits the locality with reduced number of Boolean operations than existing methods. Third, we propose an adaptive discretization strategy to reduce the accuracy drop when converting a continuous-valued network into a Boolean one. Extensive results on standard vision benchmarks demonstrate that the Pareto front of accuracy vs. computation of our method significantly outperforms prior state-of-the-art, achieving better accuracy with up to 37x fewer Boolean operations.
☆ Interpreting Manifolds and Graph Neural Embeddings from Internet of Things Traffic Flows
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
☆ Where Does Warm-Up Come From? Adaptive Scheduling for Norm-Constrained Optimizers
We study adaptive learning rate scheduling for norm-constrained optimizers (e.g., Muon and Lion). We introduce a generalized smoothness assumption under which local curvature decreases with the suboptimality gap and empirically verify that this behavior holds along optimization trajectories. Under this assumption, we establish convergence guarantees under an appropriate choice of learning rate, for which warm-up followed by decay arises naturally from the proof rather than being imposed heuristically. Building on this theory, we develop a practical learning rate scheduler that relies only on standard hyperparameters and adapts the warm-up duration automatically at the beginning of training. We evaluate this method on large language model pretraining with LLaMA architectures and show that our adaptive warm-up selection consistently outperforms or at least matches the best manually tuned warm-up schedules across all considered setups, without additional hyperparameter search. Our source code is available at https://github.com/brain-lab-research/llm-baselines/tree/warmup
comment: 26 pages, 6 figures, 4 tables
☆ Principled Confidence Estimation for Deep Computed Tomography
We present a principled framework for confidence estimation in computed tomography (CT) reconstruction. Based on the sequential likelihood mixing framework (Kirschner et al., 2025), we establish confidence regions with theoretical coverage guarantees for deep-learning-based CT reconstructions. We consider a realistic forward model following the Beer-Lambert law, i.e., a log-linear forward model with Poisson noise, closely reflecting clinical and scientific imaging conditions. The framework is general and applies to both classical algorithms and deep learning reconstruction methods, including U-Nets, U-Net ensembles, and generative Diffusion models. Empirically, we demonstrate that deep reconstruction methods yield substantially tighter confidence regions than classical reconstructions, without sacrificing theoretical coverage guarantees. Our approach allows the detection of hallucinations in reconstructed images and provides interpretable visualizations of confidence regions. This establishes deep models not only as powerful estimators, but also as reliable tools for uncertainty-aware medical imaging.
☆ Bifrost: Steering Strategic Trajectories to Bridge Contextual Gaps for Self-Improving Agents
Autonomous agents excel in self-improvement through reflection and iterative refinement, which reuse successful task trajectories as in-context examples to assist subsequent reasoning. However, shifting across tasks often introduces a context mismatch. Hence, existing approaches either discard the trajectories or manipulate them using heuristics, leading to a non-negligible fine-tuning cost or unguaranteed performance. To bridge this gap, we reveal a context-trajectory correlation, where shifts of context are highly parallel with shifts of trajectory. Based on this finding, we propose BrIdge contextual gap FoR imprOvised trajectory STeering (Bifrost), a training-free method that leverages context differences to precisely guide the adaptation of previously solved trajectories towards the target task, mitigating the misalignment caused by context shifts. Our trajectory adaptation is conducted at the representation level using agent hidden states, ensuring trajectory transformation accurately aligns with the target context in a shared space. Across diverse benchmarks, Bifrost consistently outperforms existing trajectory reuse and finetuned self-improvement methods, demonstrating that agents can effectively leverage past experiences despite substantial context shifts.
☆ Non-Stationary Inventory Control with Lead Times
We study non-stationary single-item, periodic-review inventory control problems in which the demand distribution is unknown and may change over time. We analyze how demand non-stationarity affects learning performance across inventory models, including systems with demand backlogging or lost-sales, both with and without lead times. For each setting, we propose an adaptive online algorithm that optimizes over the class of base-stock policies and establish performance guarantees in terms of dynamic regret relative to the optimal base-stock policy at each time step. Our results reveal a sharp separation across inventory models. In backlogging systems and lost-sales models with zero lead time, we show that it is possible to adapt to demand changes without incurring additional performance loss in stationary environments, even without prior knowledge of the demand distributions or the number of demand shifts. In contrast, for lost-sales systems with positive lead times, we establish weaker guarantees that reflect fundamental limitations imposed by delayed replenishment in combination with censored feedback. Our algorithms leverage the convexity and one-sided feedback structure of inventory costs to enable counterfactual policy evaluation despite demand censoring. We complement the theoretical analysis with simulation results showing that our methods significantly outperform existing benchmarks.
☆ Learning False Discovery Rate Control via Model-Based Neural Networks IEEE
Controlling the false discovery rate (FDR) in high-dimensional variable selection requires balancing rigorous error control with statistical power. Existing methods with provable guarantees are often overly conservative, creating a persistent gap between the realized false discovery proportion (FDP) and the target FDR level. We introduce a learning-augmented enhancement of the T-Rex Selector framework that narrows this gap. Our approach replaces the analytical FDP estimator with a neural network trained solely on diverse synthetic datasets, enabling a substantially tighter and more accurate approximation of the FDP. This refinement allows the procedure to operate much closer to the desired FDR level, thereby increasing discovery power while maintaining effective approximate control. Through extensive simulations and a challenging synthetic genome-wide association study (GWAS), we demonstrate that our method achieves superior detection of true variables compared to existing approaches.
comment: Accepted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
Classification Under Local Differential Privacy with Model Reversal and Model Averaging
Local differential privacy (LDP) has become a central topic in data privacy research, offering strong privacy guarantees by perturbing user data at the source and removing the need for a trusted curator. However, the noise introduced by LDP often significantly reduces data utility. To address this issue, we reinterpret private learning under LDP as a transfer learning problem, where the noisy data serve as the source domain and the unobserved clean data as the target. We propose novel techniques specifically designed for LDP to improve classification performance without compromising privacy: (1) a noised binary feedback-based evaluation mechanism for estimating dataset utility; (2) model reversal, which salvages underperforming classifiers by inverting their decision boundaries; and (3) model averaging, which assigns weights to multiple reversed classifiers based on their estimated utility. We provide theoretical excess risk bounds under LDP and demonstrate how our methods reduce this risk. Empirical results on both simulated and real-world datasets show substantial improvements in classification accuracy.
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Price of universality in vector quantization is at most 0.11 bit
Fast computation of a matrix product $W^\top X$ is a workhorse of modern LLMs. To make their deployment more efficient, a popular approach is that of using a low-precision approximation $\widehat W$ in place of true $W$ ("weight-only quantization''). Information theory demonstrates that an optimal algorithm for reducing precision of $W$ depends on the (second order) statistics of $X$ and requires a careful alignment of vector quantization codebook with PCA directions of $X$ (a process known as "waterfilling allocation''). Dependence of the codebook on statistics of $X$, however, is highly impractical. This paper proves that there exist a universal codebook that is simultaneously near-optimal for all possible statistics of $X$, in the sense of being at least as good as an $X$-adapted waterfilling codebook with rate reduced by 0.11 bit per dimension. Such universal codebook would be an ideal candidate for the low-precision storage format, a topic of active modern research, but alas the existence proof is non-constructive. Equivalently, our result shows existence of a net in $\mathbb{R}^n$ that is a nearly-optimal covering of a sphere simultaneously with respect to all Hilbert norms.
comment: 41 page, 1 figure
☆ Selecting Hyperparameters for Tree-Boosting
Tree-boosting is a widely used machine learning technique for tabular data. However, its out-of-sample accuracy is critically dependent on multiple hyperparameters. In this article, we empirically compare several popular methods for hyperparameter optimization for tree-boosting including random grid search, the tree-structured Parzen estimator (TPE), Gaussian-process-based Bayesian optimization (GP-BO), Hyperband, the sequential model-based algorithm configuration (SMAC) method, and deterministic full grid search using $59$ regression and classification data sets. We find that the SMAC method clearly outperforms all the other considered methods. We further observe that (i) a relatively large number of trials larger than $100$ is required for accurate tuning, (ii) using default values for hyperparameters yields very inaccurate models, (iii) all considered hyperparameters can have a material effect on the accuracy of tree-boosting, i.e., there is no small set of hyperparameters that is more important than others, and (iv) choosing the number of boosting iterations using early stopping yields more accurate results compared to including it in the search space for regression tasks.
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ Distributional Reinforcement Learning with Diffusion Bridge Critics
Recent advances in diffusion-based reinforcement learning (RL) methods have demonstrated promising results in a wide range of continuous control tasks. However, existing works in this field focus on the application of diffusion policies while leaving the diffusion critics unexplored. In fact, since policy optimization fundamentally relies on the critic, accurate value estimation is far more important than policy expressiveness. Furthermore, given the stochasticity of most reinforcement learning tasks, it has been confirmed that the critic is more appropriately depicted with a distributional model. Motivated by these points, we propose a novel distributional RL method with Diffusion Bridge Critics (DBC). DBC directly models the inverse cumulative distribution function (CDF) of the Q value. This allows us to accurately capture the value distribution and prevents it from collapsing into a trivial Gaussian distribution owing to the strong distribution-matching capability of the diffusion bridge. Moreover, we further derive an analytic integral formula to address discretization errors in DBC, which is essential in value estimation. To our knowledge, DBC is the first work to employ the diffusion bridge model as the critic. Notably, DBC is also a plug-and-play component and can be integrated into most existing RL frameworks. Experimental results on MuJoCo robot control benchmarks demonstrate the superiority of DBC compared with previous distributional critic models.
☆ How Controlling the Variance can Improve Training Stability of Sparsely Activated DNNs and CNNs
The intermediate layers of deep networks can be characterised as a Gaussian process, in particular the Edge-of-Chaos (EoC) initialisation strategy prescribes the limiting covariance matrix of the Gaussian process. Here we show that the under-utilised chosen variance of the Gaussian process is important in the training of deep networks with sparsity inducing activation, such as a shifted and clipped ReLU, $\text{CReLU}_{τ,m}(x)=\min(\max(x-τ,0),m)$. Specifically, initialisations leading to larger fixed Gaussian process variances, allow for improved expressivity with activation sparsity as large as 90% in DNNs and CNNs, and generally improve the stability of the training process. Enabling full, or near full, accuracy at such high levels of sparsity in the hidden layers suggests a promising mechanism to reduce the energy consumption of machine learning models involving fully connected layers.
☆ Cross-Domain Offline Policy Adaptation via Selective Transition Correction
It remains a critical challenge to adapt policies across domains with mismatched dynamics in reinforcement learning (RL). In this paper, we study cross-domain offline RL, where an offline dataset from another similar source domain can be accessed to enhance policy learning upon a target domain dataset. Directly merging the two datasets may lead to suboptimal performance due to potential dynamics mismatches. Existing approaches typically mitigate this issue through source domain transition filtering or reward modification, which, however, may lead to insufficient exploitation of the valuable source domain data. Instead, we propose to modify the source domain data into the target domain data. To that end, we leverage an inverse policy model and a reward model to correct the actions and rewards of source transitions, explicitly achieving alignment with the target dynamics. Since limited data may result in inaccurate model training, we further employ a forward dynamics model to retain corrected samples that better match the target dynamics than the original transitions. Consequently, we propose the Selective Transition Correction (STC) algorithm, which enables reliable usage of source domain data for policy adaptation. Experiments on various environments with dynamics shifts demonstrate that STC achieves superior performance against existing baselines.
☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
☆ PMT Waveform Simulation and Reconstruction with Conditional Diffusion Network
Photomultiplier tubes (PMTs) are widely employed in particle and nuclear physics experiments. The accuracy of PMT waveform reconstruction directly impacts the detector's spatial and energy resolution. A key challenge arises when multiple photons arrive within a few nanoseconds, making it difficult to resolve individual photoelectrons (PEs). Although supervised deep learning methods have surpassed traditional methods in performance, their practical applicability is limited by the lack of ground-truth PE labels in real data. To address this issue, we propose an innovative weakly supervised waveform simulation and reconstruction approach based on a bidirectional conditional diffusion network framework. The method is fully data-driven and requires only raw waveforms and coarse estimates of PE information as input. It first employs a PE-conditioned diffusion model to simulate realistic waveforms from PE sequences, thereby learning the features of overlapping waveforms. Subsequently, these simulated waveforms are used to train a waveform-conditioned diffusion model to reconstruct the PE sequences from waveforms, reinforcing the learning of features of overlapping waveforms. Through iterative refinement between the two conditional diffusion processes, the model progressively improves reconstruction accuracy. Experimental results demonstrate that the proposed method achieves 99% of the normalized PE-number resolution averaged over 1-5 p.e. and 80% of the timing resolution attained by fully supervised learning.
☆ RocqSmith: Can Automatic Optimization Forge Better Proof Agents?
This work studies the applicability of automatic AI agent optimization methods to real-world agents in formal verification settings, focusing on automated theorem proving in Rocq as a representative and challenging domain. We evaluate how different automatic agent optimizers perform when applied to the task of optimizing a Rocq proof-generation agent, and assess whether parts of the fine-grained tuning of agentic systems, such as prompt design, contextual knowledge, and control strategies, can be automated. Our results show that while several optimizers yield measurable improvements, simple few-shot bootstrapping is the most consistently effective; however, none of the studied methods matches the performance of a carefully engineered state-of-the-art proof agent.
☆ How to Achieve the Intended Aim of Deep Clustering Now, without Deep Learning
Deep clustering (DC) is often quoted to have a key advantage over $k$-means clustering. Yet, this advantage is often demonstrated using image datasets only, and it is unclear whether it addresses the fundamental limitations of $k$-means clustering. Deep Embedded Clustering (DEC) learns a latent representation via an autoencoder and performs clustering based on a $k$-means-like procedure, while the optimization is conducted in an end-to-end manner. This paper investigates whether the deep-learned representation has enabled DEC to overcome the known fundamental limitations of $k$-means clustering, i.e., its inability to discover clusters of arbitrary shapes, varied sizes and densities. Our investigations on DEC have a wider implication on deep clustering methods in general. Notably, none of these methods exploit the underlying data distribution. We uncover that a non-deep learning approach achieves the intended aim of deep clustering by making use of distributional information of clusters in a dataset to effectively address these fundamental limitations.
comment: Work on progress
☆ Learning to Inject: Automated Prompt Injection via Reinforcement Learning
Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
☆ Fast Rates for Nonstationary Weighted Risk Minimization
Weighted empirical risk minimization is a common approach to prediction under distribution drift. This article studies its out-of-sample prediction error under nonstationarity. We provide a general decomposition of the excess risk into a learning term and an error term associated with distribution drift, and prove oracle inequalities for the learning error under mixing conditions. The learning bound holds uniformly over arbitrary weight classes and accounts for the effective sample size induced by the weight vector, the complexity of the weight and hypothesis classes, and potential data dependence. We illustrate the applicability and sharpness of our results in (auto-) regression problems with linear models, basis approximations, and neural networks, recovering minimax-optimal rates (up to logarithmic factors) when specialized to unweighted and stationary settings.
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Adaptive Global and Fine-Grained Perceptual Fusion for MLLM Embeddings Compatible with Hard Negative Amplification
Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
☆ Muon in Associative Memory Learning: Training Dynamics and Scaling Laws
Muon updates matrix parameters via the matrix sign of the gradient and has shown strong empirical gains, yet its dynamics and scaling behavior remain unclear in theory. We study Muon in a linear associative memory model with softmax retrieval and a hierarchical frequency spectrum over query-answer pairs, with and without label noise. In this setting, we show that Gradient Descent (GD) learns frequency components at highly imbalanced rates, leading to slow convergence bottlenecked by low-frequency components. In contrast, the Muon optimizer mitigates this imbalance, leading to faster and more uniform progress. Specifically, in the noiseless case, Muon achieves an exponential speedup over GD; in the noisy case with a power-decay frequency spectrum, we derive Muon's optimization scaling law and demonstrate its superior scaling efficiency over GD. Furthermore, we show that Muon can be interpreted as an implicit matrix preconditioner arising from adaptive task alignment and block-symmetric gradient structure. In contrast, the preconditioner with coordinate-wise sign operator could match Muon under oracle access to unknown task representations, which is infeasible for SignGD in practice. Experiments on synthetic long-tail classification and LLaMA-style pre-training corroborate the theory.
☆ Projected Boosting with Fairness Constraints: Quantifying the Cost of Fair Training Distributions
Boosting algorithms enjoy strong theoretical guarantees: when weak learners maintain positive edge, AdaBoost achieves geometric decrease of exponential loss. We study how to incorporate group fairness constraints into boosting while preserving analyzable training dynamics. Our approach, FairBoost, projects the ensemble-induced exponential-weights distribution onto a convex set of distributions satisfying fairness constraints (as a reweighting surrogate), then trains weak learners on this fair distribution. The key theoretical insight is that projecting the training distribution reduces the effective edge of weak learners by a quantity controlled by the KL-divergence of the projection. We prove an exponential-loss bound where the convergence rate depends on weak learner edge minus a "fairness cost" term $δ_t = \sqrt{\mathrm{KL}(w^t \| q^t)/2}$. This directly quantifies the accuracy-fairness tradeoff in boosting dynamics. Experiments on standard benchmarks validate the theoretical predictions and demonstrate competitive fairness-accuracy tradeoffs with stable training curves.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Fix Representation (Optimally) Before Fairness: Finite-Sample Shrinkage Population Correction and the True Price of Fairness Under Subpopulation Shift
Machine learning practitioners frequently observe tension between predictive accuracy and group fairness constraints -- yet sometimes fairness interventions appear to improve accuracy. We show that both phenomena can be artifacts of training data that misrepresents subgroup proportions. Under subpopulation shift (stable within-group distributions, shifted group proportions), we establish: (i) full importance-weighted correction is asymptotically unbiased but finite-sample suboptimal; (ii) the optimal finite-sample correction is a shrinkage reweighting that interpolates between target and training mixtures; (iii) apparent "fairness helps accuracy" can arise from comparing fairness methods to an improperly-weighted baseline. We provide an actionable evaluation protocol: fix representation (optimally) before fairness -- compare fairness interventions against a shrinkage-corrected baseline to isolate the true, irreducible price of fairness. Experiments on synthetic and real-world benchmarks (Adult, COMPAS) validate our theoretical predictions and demonstrate that this protocol eliminates spurious tradeoffs, revealing the genuine fairness-utility frontier.
☆ Limitations of SGD for Multi-Index Models Beyond Statistical Queries
Understanding the limitations of gradient methods, and stochastic gradient descent (SGD) in particular, is a central challenge in learning theory. To that end, a commonly used tool is the Statistical Queries (SQ) framework, which studies performance limits of algorithms based on noisy interaction with the data. However, it is known that the formal connection between the SQ framework and SGD is tenuous: Existing results typically rely on adversarial or specially-structured gradient noise that does not reflect the noise in standard SGD, and (as we point out here) can sometimes lead to incorrect predictions. Moreover, many analyses of SGD for challenging problems rely on non-trivial algorithmic modifications, such as restricting the SGD trajectory to the sphere or using very small learning rates. To address these shortcomings, we develop a new, non-SQ framework to study the limitations of standard vanilla SGD, for single-index and multi-index models (namely, when the target function depends on a low-dimensional projection of the inputs). Our results apply to a broad class of settings and architectures, including (potentially deep) neural networks.
☆ Broken neural scaling laws in materials science
In materials science, data are scarce and expensive to generate, whether computationally or experimentally. Therefore, it is crucial to identify how model performance scales with dataset size and model capacity to distinguish between data- and model-limited regimes. Neural scaling laws provide a framework for quantifying this behavior and guide the design of materials datasets and machine learning architectures. Here, we investigate neural scaling laws for a paradigmatic materials science task: predicting the dielectric function of metals, a high-dimensional response that governs how solids interact with light. Using over 200,000 dielectric functions from high-throughput ab initio calculations, we study two multi-objective graph neural networks trained to predict the frequency-dependent complex interband dielectric function and the Drude frequency. We observe broken neural scaling laws with respect to dataset size, whereas scaling with the number of model parameters follows a simple power law that rapidly saturates.
☆ FedRandom: Sampling Consistent and Accurate Contribution Values in Federated Learning
Federated Learning is a privacy-preserving decentralized approach for Machine Learning tasks. In industry deployments characterized by a limited number of entities possessing abundant data, the significance of a participant's role in shaping the global model becomes pivotal given that participation in a federation incurs costs, and participants may expect compensation for their involvement. Additionally, the contributions of participants serve as a crucial means to identify and address potential malicious actors and free-riders. However, fairly assessing individual contributions remains a significant hurdle. Recent works have demonstrated a considerable inherent instability in contribution estimations across aggregation strategies. While employing a different strategy may offer convergence benefits, this instability can have potentially harming effects on the willingness of participants in engaging in the federation. In this work, we introduce FedRandom, a novel mitigation technique to the contribution instability problem. Tackling the instability as a statistical estimation problem, FedRandom allows us to generate more samples than when using regular FL strategies. We show that these additional samples provide a more consistent and reliable evaluation of participant contributions. We demonstrate our approach using different data distributions across CIFAR-10, MNIST, CIFAR-100 and FMNIST and show that FedRandom reduces the overall distance to the ground truth by more than a third in half of all evaluated scenarios, and improves stability in more than 90% of cases.
☆ Almost Asymptotically Optimal Active Clustering Through Pairwise Observations
We propose a new analysis framework for clustering $M$ items into an unknown number of $K$ distinct groups using noisy and actively collected responses. At each time step, an agent is allowed to query pairs of items and observe bandit binary feedback. If the pair of items belongs to the same (resp.\ different) cluster, the observed feedback is $1$ with probability $p>1/2$ (resp.\ $q<1/2$). Leveraging the ubiquitous change-of-measure technique, we establish a fundamental lower bound on the expected number of queries needed to achieve a desired confidence in the clustering accuracy, formulated as a sup-inf optimization problem. Building on this theoretical foundation, we design an asymptotically optimal algorithm in which the stopping criterion involves an empirical version of the inner infimum -- the Generalized Likelihood Ratio (GLR) statistic -- being compared to a threshold. We develop a computationally feasible variant of the GLR statistic and show that its performance gap to the lower bound can be accurately empirically estimated and remains within a constant multiple of the lower bound.
comment: 31 pages, 1 figure
☆ Mining Generalizable Activation Functions
The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
☆ Perception-Based Beliefs for POMDPs with Visual Observations AAMAS 2026
Partially observable Markov decision processes (POMDPs) are a principled planning model for sequential decision-making under uncertainty. Yet, real-world problems with high-dimensional observations, such as camera images, remain intractable for traditional belief- and filtering-based solvers. To tackle this problem, we introduce the Perception-based Beliefs for POMDPs framework (PBP), which complements such solvers with a perception model. This model takes the form of an image classifier which maps visual observations to probability distributions over states. PBP incorporates these distributions directly into belief updates, so the underlying solver does not need to reason explicitly over high-dimensional observation spaces. We show that the belief update of PBP coincides with the standard belief update if the image classifier is exact. Moreover, to handle classifier imprecision, we incorporate uncertainty quantification and introduce two methods to adjust the belief update accordingly. We implement PBP using two traditional POMDP solvers and empirically show that (1) it outperforms existing end-to-end deep RL methods and (2) uncertainty quantification improves robustness of PBP against visual corruption.
comment: Accepted at AAMAS 2026
☆ Stable but Wrong: When More Data Degrades Scientific Conclusions
Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
☆ Accelerating Benchmarking of Functional Connectivity Modeling via Structure-aware Core-set Selection ICLR
Benchmarking the hundreds of functional connectivity (FC) modeling methods on large-scale fMRI datasets is critical for reproducible neuroscience. However, the combinatorial explosion of model-data pairings makes exhaustive evaluation computationally prohibitive, preventing such assessments from becoming a routine pre-analysis step. To break this bottleneck, we reframe the challenge of FC benchmarking by selecting a small, representative core-set whose sole purpose is to preserve the relative performance ranking of FC operators. We formalize this as a ranking-preserving subset selection problem and propose Structure-aware Contrastive Learning for Core-set Selection (SCLCS), a self-supervised framework to select these core-sets. SCLCS first uses an adaptive Transformer to learn each sample's unique FC structure. It then introduces a novel Structural Perturbation Score (SPS) to quantify the stability of these learned structures during training, identifying samples that represent foundational connectivity archetypes. Finally, while SCLCS identifies stable samples via a top-k ranking, we further introduce a density-balanced sampling strategy as a necessary correction to promote diversity, ensuring the final core-set is both structurally robust and distributionally representative. On the large-scale REST-meta-MDD dataset, SCLCS preserves the ground-truth model ranking with just 10% of the data, outperforming state-of-the-art (SOTA) core-set selection methods by up to 23.2% in ranking consistency (nDCG@k). To our knowledge, this is the first work to formalize core-set selection for FC operator benchmarking, thereby making large-scale operators comparisons a feasible and integral part of computational neuroscience. Code is publicly available on https://github.com/lzhan94swu/SCLCS
comment: 33 pages, 8 figures, ICLR conference paper
☆ Probabilistic Multi-Regional Solar Power Forecasting with Any-Quantile Recurrent Neural Networks
The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
☆ Tight Long-Term Tail Decay of (Clipped) SGD in Non-Convex Optimization
The study of tail behaviour of SGD-induced processes has been attracting a lot of interest, due to offering strong guarantees with respect to individual runs of an algorithm. While many works provide high-probability guarantees, quantifying the error rate for a fixed probability threshold, there is a lack of work directly studying the probability of failure, i.e., quantifying the tail decay rate for a fixed error threshold. Moreover, existing results are of finite-time nature, limiting their ability to capture the true long-term tail decay which is more informative for modern learning models, typically trained for millions of iterations. Our work closes these gaps, by studying the long-term tail decay of SGD-based methods through the lens of large deviations theory, establishing several strong results in the process. First, we provide an upper bound on the tails of the gradient norm-squared of the best iterate produced by (vanilla) SGD, for non-convex costs and bounded noise, with long-term decay at rate $e^{-t/\log(t)}$. Next, we relax the noise assumption by considering clipped SGD (c-SGD) under heavy-tailed noise with bounded moment of order $p \in (1,2]$, showing an upper bound with long-term decay at rate $e^{-t^{β_p}/\log(t)}$, where $β_p = \frac{4(p-1)}{3p-2}$ for $p \in (1,2)$ and $e^{-t/\log^2(t)}$ for $p = 2$. Finally, we provide lower bounds on the tail decay, at rate $e^{-t}$, showing that our rates for both SGD and c-SGD are tight, up to poly-logarithmic factors. Notably, our results demonstrate an order of magnitude faster long-term tail decay compared to existing work based on finite-time bounds, which show rates $e^{-\sqrt{t}}$ and $e^{-t^{β_p/2}}$, $p \in (1,2]$, for SGD and c-SGD, respectively. As such, we uncover regimes where the tails decay much faster than previously known, providing stronger long-term guarantees for individual runs.
comment: 32 pages
☆ Alignment Verifiability in Large Language Models: Normative Indistinguishability under Behavioral Evaluation
Behavioral evaluation is the dominant paradigm for assessing alignment in large language models (LLMs). In practice, alignment is inferred from performance under finite evaluation protocols - benchmarks, red-teaming suites, or automated pipelines - and observed compliance is often treated as evidence of underlying alignment. This inference step, from behavioral evidence to claims about latent alignment properties, is typically implicit and rarely analyzed as an inference problem in its own right. We study this problem formally. We frame alignment evaluation as an identifiability question under partial observability and allow agent behavior to depend on information correlated with the evaluation regime. Within this setting, we introduce the Alignment Verifiability Problem and the notion of Normative Indistinguishability, capturing when distinct latent alignment hypotheses induce identical distributions over all evaluator-accessible signals. Our main result is a negative but sharply delimited identifiability theorem. Under finite behavioral evaluation and evaluation-aware agents, observed behavioral compliance does not uniquely identify latent alignment. That is, even idealized behavioral evaluation cannot, in general, certify alignment as a latent property. We further show that behavioral alignment tests should be interpreted as estimators of indistinguishability classes rather than verifiers of alignment. Passing increasingly stringent tests may reduce the space of compatible hypotheses, but cannot collapse it to a singleton under the stated conditions. This reframes alignment benchmarks as providing upper bounds on observable compliance within a regime, rather than guarantees of underlying alignment.
comment: 10 pages. Theoretical analysis of behavioral alignment evaluation
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ End-to-End Compression for Tabular Foundation Models
The long-standing dominance of gradient-boosted decision trees for tabular data has recently been challenged by in-context learning tabular foundation models. In-context learning methods fit and predict in one forward pass without parameter updates by leveraging the training data as context for predicting on query test points. While recent tabular foundation models achieve state-of-the-art performance, their transformer architecture based on the attention mechanism has quadratic complexity regarding dataset size, which in turn increases the overhead on training and inference time, and limits the capacity of the models to handle large-scale datasets. In this work, we propose TACO, an end-to-end tabular compression model that compresses the training dataset in a latent space. We test our method on the TabArena benchmark, where our proposed method is up to 94x faster in inference time, while consuming up to 97\% less memory compared to the state-of-the-art tabular transformer architecture, all while retaining performance without significant degradation. Lastly, our method not only scales better with increased dataset sizes, but it also achieves better performance compared to other baselines.
☆ Empowering Time Series Analysis with Large-Scale Multimodal Pretraining
While existing time series foundation models primarily rely on large-scale unimodal pretraining, they lack complementary modalities to enhance time series understanding. Building multimodal foundation models is a natural next step, but it faces key challenges: 1) lack of a unified multimodal pretraining paradigm and large-scale multimodal corpora for time series analysis; 2) how to effectively integrate heterogeneous modalities and enhance model generalization. To address these challenges, we take an early step toward multimodal foundation models for time series analysis. We first propose a multimodal pretraining paradigm that leverages time series with endogenous modalities (derived images and text) and exogenous knowledge (real-world news), providing a comprehensive multi-view perspective for time series analysis. To support this, we develop an automated data construction pipeline to curate MM-TS, the first large-scale multimodal time series dataset spanning six domains, with up to one billion points. Then we propose HORAI, a frequency-enhanced multimodal foundation model. It integrates two core components: the Frequency-enhanced Cross-Modality Encoder and the Time-Frequency Decoder, designed to effectively fuse multimodal features and enhance model generalization across modalities and domains. After pretraining on MM-TS, HORAI achieves state-of-the-art zero-shot performance on time series forecasting and anomaly detection tasks, demonstrating strong generalization.
☆ UAV Trajectory Optimization via Improved Noisy Deep Q-Network
This paper proposes an Improved Noisy Deep Q-Network (Noisy DQN) to enhance the exploration and stability of Unmanned Aerial Vehicle (UAV) when applying deep reinforcement learning in simulated environments. This method enhances the exploration ability by combining the residual NoisyLinear layer with an adaptive noise scheduling mechanism, while improving training stability through smooth loss and soft target network updates. Experiments show that the proposed model achieves faster convergence and up to $+40$ higher rewards compared to standard DQN and quickly reach to the minimum number of steps required for the task 28 in the 15 * 15 grid navigation environment set up. The results show that our comprehensive improvements to the network structure of NoisyNet, exploration control, and training stability contribute to enhancing the efficiency and reliability of deep Q-learning.
☆ Joint Embedding Variational Bayes
We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint embedding and variational inference to enable self-supervised learning of probabilistic representations in a reconstruction-free, non-contrastive setting. Compared to energy-based predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric conditional evidence lower bound (ELBO) for a latent-variable model defined directly on encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student-$t$ model using a polar decomposition that explicitly decouples directional and radial factors to prevent norm-induced instabilities during training. VJE employs an amortized inference network to parameterize a diagonal Gaussian variational posterior whose feature-wise variances are shared with the likelihood scale to capture anisotropic uncertainty without auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves performance comparable to standard non-contrastive baselines under linear and k-NN evaluation. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly detection, where likelihood-based scoring under the proposed model outperforms comparable self-supervised baselines.
☆ Structural Disentanglement in Bilinear MLPs via Architectural Inductive Bias
Selective unlearning and long-horizon extrapolation remain fragile in modern neural networks, even when tasks have underlying algebraic structure. In this work, we argue that these failures arise not solely from optimization or unlearning algorithms, but from how models structure their internal representations during training. We explore if having explicit multiplicative interactions as an architectural inductive bias helps in structural disentanglement, through Bilinear MLPs. We show analytically that bilinear parameterizations possess a `non-mixing' property under gradient flow conditions, where functional components separate into orthogonal subspace representations. This provides a mathematical foundation for surgical model modification. We validate this hypothesis through a series of controlled experiments spanning modular arithmetic, cyclic reasoning, Lie group dynamics, and targeted unlearning benchmarks. Unlike pointwise nonlinear networks, multiplicative architectures are able to recover true operators aligned with the underlying algebraic structure. Our results suggest that model editability and generalization are constrained by representational structure, and that architectural inductive bias plays a central role in enabling reliable unlearning.
☆ Rewards as Labels: Revisiting RLVR from a Classification Perspective
Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
comment: 12 pages, 5 figures, 4 tables
☆ Mode-Dependent Rectification for Stable PPO Training
Mode-dependent architectural components (layers that behave differently during training and evaluation, such as Batch Normalization or dropout) are commonly used in visual reinforcement learning but can destabilize on-policy optimization. We show that in Proximal Policy Optimization (PPO), discrepancies between training and evaluation behavior induced by Batch Normalization lead to policy mismatch, distributional drift, and reward collapse. We propose Mode-Dependent Rectification (MDR), a lightweight dual-phase training procedure that stabilizes PPO under mode-dependent layers without architectural changes. Experiments across procedurally generated games and real-world patch-localization tasks demonstrate that MDR consistently improves stability and performance, and extends naturally to other mode-dependent layers.
☆ Path-Guided Flow Matching for Dataset Distillation
Dataset distillation compresses large datasets into compact synthetic sets with comparable performance in training models. Despite recent progress on diffusion-based distillation, this type of method typically depends on heuristic guidance or prototype assignment, which comes with time-consuming sampling and trajectory instability and thus hurts downstream generalization especially under strong control or low IPC. We propose \emph{Path-Guided Flow Matching (PGFM)}, the first flow matching-based framework for generative distillation, which enables fast deterministic synthesis by solving an ODE in a few steps. PGFM conducts flow matching in the latent space of a frozen VAE to learn class-conditional transport from Gaussian noise to data distribution. Particularly, we develop a continuous path-to-prototype guidance algorithm for ODE-consistent path control, which allows trajectories to reliably land on assigned prototypes while preserving diversity and efficiency. Extensive experiments across high-resolution benchmarks demonstrate that PGFM matches or surpasses prior diffusion-based distillation approaches with fewer steps of sampling while delivering competitive performance with remarkably improved efficiency, e.g., 7.6$\times$ more efficient than the diffusion-based counterparts with 78\% mode coverage.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ On the Superlinear Relationship between SGD Noise Covariance and Loss Landscape Curvature
Stochastic Gradient Descent (SGD) introduces anisotropic noise that is correlated with the local curvature of the loss landscape, thereby biasing optimization toward flat minima. Prior work often assumes an equivalence between the Fisher Information Matrix and the Hessian for negative log-likelihood losses, leading to the claim that the SGD noise covariance $\mathbf{C}$ is proportional to the Hessian $\mathbf{H}$. We show that this assumption holds only under restrictive conditions that are typically violated in deep neural networks. Using the recently discovered Activity--Weight Duality, we find a more general relationship agnostic to the specific loss formulation, showing that $\mathbf{C} \propto \mathbb{E}_p[\mathbf{h}_p^2]$, where $\mathbf{h}_p$ denotes the per-sample Hessian with $\mathbf{H} = \mathbb{E}_p[\mathbf{h}_p]$. As a consequence, $\mathbf{C}$ and $\mathbf{H}$ commute approximately rather than coincide exactly, and their diagonal elements follow an approximate power-law relation $C_{ii} \propto H_{ii}^γ$ with a theoretically bounded exponent $1 \leq γ\leq 2$, determined by per-sample Hessian spectra. Experiments across datasets, architectures, and loss functions validate these bounds, providing a unified characterization of the noise-curvature relationship in deep learning.
comment: 8 pages, 15 figures
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ Efficient Algorithms for Robust Markov Decision Processes with $s$-Rectangular Ambiguity Sets
Robust Markov decision processes (MDPs) have attracted significant interest due to their ability to protect MDPs from poor out-of-sample performance in the presence of ambiguity. In contrast to classical MDPs, which account for stochasticity by modeling the dynamics through a stochastic process with a known transition kernel, a robust MDP additionally accounts for ambiguity by optimizing against the most adverse transition kernel from an ambiguity set constructed via historical data. In this paper, we develop a unified solution framework for a broad class of robust MDPs with $s$-rectangular ambiguity sets, where the most adverse transition probabilities are considered independently for each state. Using our algorithms, we show that $s$-rectangular robust MDPs with $1$- and $2$-norm as well as $φ$-divergence ambiguity sets can be solved several orders of magnitude faster than with state-of-the-art commercial solvers, and often only a logarithmic factor slower than classical MDPs. We demonstrate the favorable scaling properties of our algorithms on a range of synthetically generated as well as standard benchmark instances.
☆ OpenMAG: A Comprehensive Benchmark for Multimodal-Attributed Graph
Multimodal-Attributed Graph (MAG) learning has achieved remarkable success in modeling complex real-world systems by integrating graph topology with rich attributes from multiple modalities. With the rapid proliferation of novel MAG models capable of handling intricate cross-modal semantics and structural dependencies, establishing a rigorous and unified evaluation standard has become imperative. Although existing benchmarks have facilitated initial progress, they exhibit critical limitations in domain coverage, encoder flexibility, model diversity, and task scope, presenting significant challenges to fair evaluation. To bridge this gap, we present OpenMAG, a comprehensive benchmark that integrates 19 datasets across 6 domains and incorporates 16 encoders to support both static and trainable feature encoding. OpenMAG further implements a standardized library of 24 state-of-the-art models and supports 8 downstream tasks, enabling fair comparisons within a unified framework. Through systematic assessment of necessity, data quality, effectiveness, robustness, and efficiency, we derive 14 fundamental insights into MAG learning to guide future advancements. Our code is available at https://github.com/YUKI-N810/OpenMAG.
☆ EdgeMask-DG*: Learning Domain-Invariant Graph Structures via Adversarial Edge Masking
Structural shifts pose a significant challenge for graph neural networks, as graph topology acts as a covariate that can vary across domains. Existing domain generalization methods rely on fixed structural augmentations or training on globally perturbed graphs, mechanisms that do not pinpoint which specific edges encode domain-invariant information. We argue that domain-invariant structural information is not rigidly tied to a single topology but resides in the consensus across multiple graph structures derived from topology and feature similarity. To capture this, we first propose EdgeMask-DG, a novel min-max algorithm where an edge masker learns to find worst-case continuous masks subject to a sparsity constraint, compelling a task GNN to perform effectively under these adversarial structural perturbations. Building upon this, we introduce EdgeMask-DG*, an extension that applies this adversarial masking principle to an enriched graph. This enriched graph combines the original topology with feature-derived edges, allowing the model to discover invariances even when the original topology is noisy or domain-specific. EdgeMask-DG* is the first to systematically combine adaptive adversarial topology search with feature-enriched graphs. We provide a formal justification for our approach from a robust optimization perspective. We demonstrate that EdgeMask-DG* achieves new state-of-the-art performance on diverse graph domain generalization benchmarks, including citation networks, social networks, and temporal graphs. Notably, on the Cora OOD benchmark, EdgeMask-DG* lifts the worst-case domain accuracy to 78.0\%, a +3.8 pp improvement over the prior state of the art (74.2\%). The source code for our experiments can be found here: https://anonymous.4open.science/r/TMLR-EAEF/
☆ MAGPrompt: Message-Adaptive Graph Prompt Tuning for Graph Neural Networks
Pre-trained graph neural networks (GNNs) transfer well, but adapting them to downstream tasks remains challenging due to mismatches between pre-training objectives and task requirements. Graph prompt tuning offers a parameter-efficient alternative to fine-tuning, yet most methods only modify inputs or representations and leave message passing unchanged, limiting their ability to adapt neighborhood interactions. We propose message-adaptive graph prompt tuning, which injects learnable prompts into the message passing step to reweight incoming neighbor messages and add task-specific prompt vectors during message aggregation, while keeping the backbone GNN frozen. The approach is compatible with common GNN backbones and pre-training strategies, and applicable across downstream settings. Experiments on diverse node- and graph-level datasets show consistent gains over prior graph prompting methods in few-shot settings, while achieving performance competitive with fine-tuning in full-shot regimes.
☆ Logical Guidance for the Exact Composition of Diffusion Models
We propose LOGDIFF (Logical Guidance for the Exact Composition of Diffusion Models), a guidance framework for diffusion models that enables principled constrained generation with complex logical expressions at inference time. We study when exact score-based guidance for complex logical formulas can be obtained from guidance signals associated with atomic properties. First, we derive an exact Boolean calculus that provides a sufficient condition for exact logical guidance. Specifically, if a formula admits a circuit representation in which conjunctions combine conditionally independent subformulas and disjunctions combine subformulas that are either conditionally independent or mutually exclusive, exact logical guidance is achievable. In this case, the guidance signal can be computed exactly from atomic scores and posterior probabilities using an efficient recursive algorithm. Moreover, we show that, for commonly encountered classes of distributions, any desired Boolean formula is compilable into such a circuit representation. Second, by combining atomic guidance scores with posterior probability estimates, we introduce a hybrid guidance approach that bridges classifierguidance and classifier-free guidance, applicable to both compositional logical guidance and standard conditional generation. We demonstrate the effectiveness of our framework on multiple image and protein structure generation tasks.
☆ Unveiling Implicit Advantage Symmetry: Why GRPO Struggles with Exploration and Difficulty Adaptation
Reinforcement Learning with Verifiable Rewards (RLVR), particularly GRPO, has become the standard for eliciting LLM reasoning. However, its efficiency in exploration and difficulty adaptation remains an open challenge. In this work, we argue that these bottlenecks stem from an implicit advantage symmetry inherent in Group Relative Advantage Estimation (GRAE). This symmetry induces two critical limitations: (i) at the group level, strict symmetry in weights between correct and incorrect trajectories leaves unsampled action logits unchanged, thereby hindering exploration of novel correct solution. (ii) at the sample level, the algorithm implicitly prioritizes medium-difficulty samples, remaining agnostic to the non-stationary demands of difficulty focus. Through controlled experiments, we reveal that this symmetric property is sub-optimal, yielding two pivotal insights: (i) asymmetrically suppressing the advantages of correct trajectories encourages essential exploration. (ii) learning efficiency is maximized by a curriculum-like transition-prioritizing simpler samples initially before gradually shifting to complex ones. Motivated by these findings, we propose Asymmetric GRAE (A-GRAE), which dynamically modulates exploration incentives and sample-difficulty focus. Experiments across seven benchmarks demonstrate that A-GRAE consistently improves GRPO and its variants across both LLMs and MLLMs.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Reducing the Complexity of Matrix Multiplication to $O(N^2log_2N)$ by an Asymptotically Optimal Quantum Algorithm
Matrix multiplication is a fundamental classical computing operation whose efficiency becomes a major challenge at scale, especially for machine learning applications. Quantum computing, with its inherent parallelism and exponential storage capacity, offers a potential solution to these limitations. This work presents a quantum kernel-based matrix multiplication algorithm (QKMM) that achieves an asymptotically optimal computational complexity of $ O(N^2 \log_2 N) $, outperforming the classical optimal complexity of $ O(N^{2.371552}) $, where $N$ denotes the matrix dimension. Through noiseless and noisy quantum simulation experiments, we demonstrate that the proposed algorithm not only exhibits superior theoretical efficiency but also shows practical advantages in runtime performance and stability.
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ Detecting Misbehaviors of Large Vision-Language Models by Evidential Uncertainty Quantification ICLR 2026
Large vision-language models (LVLMs) have shown substantial advances in multimodal understanding and generation. However, when presented with incompetent or adversarial inputs, they frequently produce unreliable or even harmful content, such as fact hallucinations or dangerous instructions. This misalignment with human expectations, referred to as \emph{misbehaviors} of LVLMs, raises serious concerns for deployment in critical applications. These misbehaviors are found to stem from epistemic uncertainty, specifically either conflicting internal knowledge or the absence of supporting information. However, existing uncertainty quantification methods, which typically capture only overall epistemic uncertainty, have shown limited effectiveness in identifying such issues. To address this gap, we propose Evidential Uncertainty Quantification (EUQ), a fine-grained method that captures both information conflict and ignorance for effective detection of LVLM misbehaviors. In particular, we interpret features from the model output head as either supporting (positive) or opposing (negative) evidence. Leveraging Evidence Theory, we model and aggregate this evidence to quantify internal conflict and knowledge gaps within a single forward pass. We extensively evaluate our method across four categories of misbehavior, including hallucinations, jailbreaks, adversarial vulnerabilities, and out-of-distribution (OOD) failures, using state-of-the-art LVLMs, and find that EUQ consistently outperforms strong baselines, showing that hallucinations correspond to high internal conflict and OOD failures to high ignorance. Furthermore, layer-wise evidential uncertainty dynamics analysis helps interpret the evolution of internal representations from a new perspective. The source code is available at https://github.com/HT86159/EUQ.
comment: Accepted to ICLR 2026. Code is available at https://github.com/HT86159/EUQ
☆ Split Personality Training: Revealing Latent Knowledge Through Alternate Personalities
Detecting misalignment in large language models is challenging because models may learn to conceal misbehavior during training. Standard auditing techniques fall short: black-box methods often cannot distinguish misaligned outputs from benign ones, and mechanistic interpretability does not scale with model capabilities. We introduce Split Personality Training (SPT), which fine-tunes a second ``honest persona'' into LoRA parameters that remain inactive during normal operation. After the main model responds, we activate the LoRA adapter and insert a trigger string, enabling the honest persona to review the response while accessing the main model's latent states. We test our method on the Anthropic Auditing Game Model Organism, a benchmark where Llama-3.3-70B is trained to exploit reward hacks while concealing this behavior. SPT achieves 96% overall accuracy, whereas Anthropic reports near 0% accuracy. The honest persona reveals latent knowledge inaccessible to external observers, such as the fictional biases the compromised model was trained on.
☆ Solving Stochastic Variational Inequalities without the Bounded Variance Assumption
We analyze algorithms for solving stochastic variational inequalities (VI) without the bounded variance or bounded domain assumptions, where our main focus is min-max optimization with possibly unbounded constraint sets. We focus on two classes of problems: monotone VIs; and structured nonmonotone VIs that admit a solution to the weak Minty VI. The latter assumption allows us to solve structured nonconvex-nonconcave min-max problems. For both classes of VIs, to make the expected residual norm less than $\varepsilon$, we show an oracle complexity of $\widetilde{O}(\varepsilon^{-4})$, which is the best-known for constrained VIs. In our setting, this complexity had been obtained with the bounded variance assumption in the literature, which is not even satisfied for bilinear min-max problems with an unbounded domain. We obtain this complexity for stochastic oracles whose variance can grow as fast as the squared norm of the optimization variable.
☆ A Unified Framework for Rethinking Policy Divergence Measures in GRPO
Reinforcement Learning with Verified Reward (RLVR) has emerged as a critical paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). Most existing RLVR methods, such as GRPO and its variants, ensure stable updates by constraining policy divergence through clipping likelihood ratios. This paper introduces a unified clipping framework that characterizes existing methods via a general notion of policy divergence, encompassing both likelihood ratios and Kullback-Leibler (KL) divergences and extending to alternative measures. The framework provides a principled foundation for systematically analyzing how different policy divergence measures affect exploration and performance. We further identify the KL3 estimator, a variance-reduced Monte Carlo estimator of the KL divergence, as a key policy divergence constraint. We theoretically demonstrate that the KL3-based constraint is mathematically equivalent to an asymmetric ratio-based clipping that reallocates probability mass toward high-confidence actions, promoting stronger exploration while retaining the simplicity of GRPO-style methods. Empirical results on mathematical reasoning benchmarks demonstrate that incorporating the KL3 estimator into GRPO improves both training stability and final performance, highlighting the importance of principled policy divergence constraints in policy optimization.
☆ Convergence Rate of the Last Iterate of Stochastic Proximal Algorithms
We analyze two classical algorithms for solving additively composite convex optimization problems where the objective is the sum of a smooth term and a nonsmooth regularizer: proximal stochastic gradient method for a single regularizer; and the randomized incremental proximal method, which uses the proximal operator of a randomly selected function when the regularizer is given as the sum of many nonsmooth functions. We focus on relaxing the bounded variance assumption that is common, yet stringent, for getting last iterate convergence rates. We prove the $\widetilde{O}(1/\sqrt{T})$ rate of convergence for the last iterate of both algorithms under componentwise convexity and smoothness, which is optimal up to log terms. Our results apply directly to graph-guided regularizers that arise in multi-task and federated learning, where the regularizer decomposes as a sum over edges of a collaboration graph.
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Thermodynamic Limits of Physical Intelligence
Modern AI systems achieve remarkable capabilities at the cost of substantial energy consumption. To connect intelligence to physical efficiency, we propose two complementary bits-per-joule metrics under explicit accounting conventions: (1) Thermodynamic Epiplexity per Joule -- bits of structural information about a theoretical environment-instance variable newly encoded in an agent's internal state per unit measured energy within a stated boundary -- and (2) Empowerment per Joule -- the embodied sensorimotor channel capacity (control information) per expected energetic cost over a fixed horizon. These provide two axes of physical intelligence: recognition (model-building) vs.control (action influence). Drawing on stochastic thermodynamics, we show how a Landauer-scale closed-cycle benchmark for epiplexity acquisition follows as a corollary of a standard thermodynamic-learning inequality under explicit subsystem assumptions, and we clarify how Landauer-scaled costs act as closed-cycle benchmarks under explicit reset/reuse and boundary-closure assumptions; conversely, we give a simple decoupling construction showing that without such assumptions -- and without charging for externally prepared low-entropy resources (e.g.fresh memory) crossing the boundary -- information gain and in-boundary dissipation need not be tightly linked. For empirical settings where the latent structure variable is unavailable, we align the operational notion of epiplexity with compute-bounded MDL epiplexity and recommend reporting MDL-epiplexity / compression-gain surrogates as companions. Finally, we propose a unified efficiency framework that reports both metrics together with a minimal checklist of boundary/energy accounting, coarse-graining/noise, horizon/reset, and cost conventions to reduce ambiguity and support consistent bits-per-joule comparisons, and we sketch connections to energy-adjusted scaling analyses.
☆ When Are RL Hyperparameters Benign? A Study in Offline Goal-Conditioned RL
Hyperparameter sensitivity in Deep Reinforcement Learning (RL) is often accepted as unavoidable. However, it remains unclear whether it is intrinsic to the RL problem or exacerbated by specific training mechanisms. We investigate this question in offline goal-conditioned RL, where data distributions are fixed, and non-stationarity can be explicitly controlled via scheduled shifts in data quality. Additionally, we study varying data qualities under both stationary and non-stationary regimes, and cover two representative algorithms: HIQL (bootstrapped TD-learning) and QRL (quasimetric representation learning). Overall, we observe substantially greater robustness to changes in hyperparameter configurations than commonly reported for online RL, even under controlled non-stationarity. Once modest expert data is present ($\approx$ 20\%), QRL maintains broad, stable near-optimal regions, while HIQL exhibits sharp optima that drift significantly across training phases. To explain this divergence, we introduce an inter-goal gradient alignment diagnostic. We find that bootstrapped objectives exhibit stronger destructive gradient interference, which coincides directly with hyperparameter sensitivity. These results suggest that high sensitivity to changes in hyperparameter configurations during training is not inevitable in RL, but is amplified by the dynamics of bootstrapping, offering a pathway toward more robust algorithmic objective design.
comment: 27 pages, 19 figures
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis ECAI 2025
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
☆ BLITZRANK: Principled Zero-shot Ranking Agents with Tournament Graphs
Large language models have emerged as powerful zero-shot rerankers for retrieval-augmented generation, offering strong generalization without task-specific training. However, existing LLM reranking methods either rely on heuristics that fail to fully exploit the information revealed by each ranking decision or are inefficient when they do. We introduce a tournament graph framework that provides a principled foundation for $k$-wise reranking. Our key observation is that each $k$-document comparison reveals a complete tournament of $\binom{k}{2}$ pairwise preferences. These tournaments are aggregated into a global preference graph, whose transitive closure yields many additional orderings without further model invocations. We formalize when a candidate's rank is certifiably determined and design a query schedule that greedily maximizes information gain towards identifying the top-$m$ items. Our framework also gracefully handles non-transitive preferences - cycles induced by LLM judgments - by collapsing them into equivalence classes that yield principled tiered rankings. Empirically, across 14 benchmarks and 5 LLMs, our method achieves Pareto dominance over existing methods: matching or exceeding accuracy while requiring 25-40% fewer tokens than comparable approaches, and 7$\times$ fewer than pairwise methods at near-identical quality.
☆ Day-Ahead Electricity Price Forecasting for Volatile Markets Using Foundation Models with Regularization Strategy AAAI'26
Electricity price forecasting (EPF) is essential for energy markets stakeholders (e.g. grid operators, energy traders, policymakers) but remains challenging due to the inherent volatility and nonlinearity of price signals. Traditional statistical and deep learning (DL) models often struggle to capture complex temporal dependencies and integrate heterogeneous data effectively. While time series foundation models (TSFMs) have shown strong performance in general time series forecasting tasks, such as traffic forecasting and weather forecasting. However, their effectiveness in day-ahead EPF, particularly in volatile markets, remains underexplored. This paper presents a spike regularization strategy and evaluates a wide range of TSFMs, including Tiny Time Mixers (TTMs), MOIRAI, MOMENT, and TimesFM, against traditional statistical and DL models such as Autoregressive Integrated Moving Average (ARIMA), Long-short Term Memory (LSTM), and Convolutional Neural Network - LSTM (CNN-LSTM) using half-hourly wholesale market data with volatile trends in Singapore. Exogenous factors (e.g. weather and calendar variables) are also incorporated into models where applicable. Results demonstrate that TSFMs consistently outperform traditional approaches, achieving up to 37.4% improvement in MAPE across various evaluation settings. The findings offer practical guidance for improving forecast accuracy and decision-making in volatile electricity markets.
comment: Accepted to AI4TS Workshop @ AAAI'26 (Oral and Poster), see https://ai4ts.github.io/aaai2026
☆ Reduced-Order Surrogates for Forced Flexible Mesh Coastal-Ocean Models
While POD-based surrogates are widely explored for hydrodynamic applications, the use of Koopman Autoencoders for real-world coastal-ocean modelling remains relatively limited. This paper introduces a flexible Koopman autoencoder formulation that incorporates meteorological forcings and boundary conditions, and systematically compares its performance against POD-based surrogates. The Koopman autoencoder employs a learned linear temporal operator in latent space, enabling eigenvalue regularization to promote temporal stability. This strategy is evaluated alongside temporal unrolling techniques for achieving stable and accurate long-term predictions. The models are assessed on three test cases spanning distinct dynamical regimes, with prediction horizons up to one year at 30-minute temporal resolution. Across all cases, the Koopman autoencoder with temporal unrolling yields the best overall accuracy compared to the POD-based surrogates, achieving relative root-mean-squared-errors of 0.01-0.13 and $R^2$-values of 0.65-0.996. Prediction errors are largest for current velocities, and smallest for water surface elevations. Comparing to in-situ observations, the surrogate yields -0.65% to 12% change in water surface elevation prediction error when compared to prediction errors of the physics-based model. These error levels, corresponding to a few centimeters, are acceptable for many practical applications, while inference speed-ups of 300-1400x enables workflows such as ensemble forecasting and long climate simulations for coastal-ocean modelling.
comment: Submitted for peer-review in a journal
☆ Robust Federated Learning via Byzantine Filtering over Encrypted Updates
Federated Learning (FL) aims to train a collaborative model while preserving data privacy. However, the distributed nature of this approach still raises privacy and security issues, such as the exposure of sensitive data due to inference attacks and the influence of Byzantine behaviors on the trained model. In particular, achieving both secure aggregation and Byzantine resilience remains challenging, as existing solutions often address these aspects independently. In this work, we propose to address these challenges through a novel approach that combines homomorphic encryption for privacy-preserving aggregation with property-inference-inspired meta-classifiers for Byzantine filtering. First, following the property-inference attacks blueprint, we train a set of filtering meta-classifiers on labeled shadow updates, reproducing a diverse ensemble of Byzantine misbehaviors in FL, including backdoor, gradient-inversion, label-flipping and shuffling attacks. The outputs of these meta-classifiers are then used to cancel the Byzantine encrypted updates by reweighting. Second, we propose an automated method for selecting the optimal kernel and the dimensionality hyperparameters with respect to homomorphic inference, aggregation constraints and efficiency over the CKKS cryptosystem. Finally, we demonstrate through extensive experiments the effectiveness of our approach against Byzantine participants on the FEMNIST, CIFAR10, GTSRB, and acsincome benchmarks. More precisely, our SVM filtering achieves accuracies between $90$% and $94$% for identifying Byzantine updates at the cost of marginal losses in model utility and encrypted inference runtimes ranging from $6$ to $24$ seconds and from $9$ to $26$ seconds for an overall aggregation.
☆ Optimal Bayesian Stopping for Efficient Inference of Consistent LLM Answers
A simple strategy for improving LLM accuracy, especially in math and reasoning problems, is to sample multiple responses and submit the answer most consistently reached. In this paper we leverage Bayesian prior information to save on sampling costs, stopping once sufficient consistency is reached. Although the exact posterior is computationally intractable, we further introduce an efficient "L-aggregated" stopping policy that tracks only the L-1 most frequent answer counts. Theoretically, we prove that L=3 is all you need: this coarse approximation is sufficient to achieve asymptotic optimality, and strictly dominates prior-free baselines, while having a fast posterior computation. Empirically, this identifies the most consistent (i.e., mode) LLM answer using fewer samples, and can achieve similar answer accuracy while cutting the number of LLM calls (i.e., saving on LLM inference costs) by up to 50%.
☆ Late-to-Early Training: LET LLMs Learn Earlier, So Faster and Better
As Large Language Models (LLMs) achieve remarkable empirical success through scaling model and data size, pretraining has become increasingly critical yet computationally prohibitive, hindering rapid development. Despite the availability of numerous pretrained LLMs developed at significant computational expense, a fundamental real-world question remains underexplored: \textit{Can we leverage existing small pretrained models to accelerate the training of larger models?} In this paper, we propose a Late-to-Early Training (LET) paradigm that enables LLMs to explicitly learn later knowledge in earlier steps and earlier layers. The core idea is to guide the early layers of an LLM during early training using representations from the late layers of a pretrained (i.e. late training phase) model. We identify two key mechanisms that drive LET's effectiveness: late-to-early-step learning and late-to-early-layer learning. These mechanisms significantly accelerate training convergence while robustly enhancing both language modeling capabilities and downstream task performance, enabling faster training with superior performance. Extensive experiments on 1.4B and 7B parameter models demonstrate LET's efficiency and effectiveness. Notably, when training a 1.4B LLM on the Pile dataset, our method achieves up to 1.6$\times$ speedup with nearly 5\% improvement in downstream task accuracy compared to standard training, even when using a pretrained model with 10$\times$ fewer parameters than the target model.
☆ Assessing Electricity Demand Forecasting with Exogenous Data in Time Series Foundation Models AAAI'26
Time-series foundation models have emerged as a new paradigm for forecasting, yet their ability to effectively leverage exogenous features -- critical for electricity demand forecasting -- remains unclear. This paper empirically evaluates foundation models capable of modeling cross-channel correlations against a baseline LSTM with reversible instance normalization across Singaporean and Australian electricity markets at hourly and daily granularities. We systematically assess MOIRAI, MOMENT, TinyTimeMixers, ChronosX, and Chronos-2 under three feature configurations: all features, selected features, and target-only. Our findings reveal highly variable effectiveness: while Chronos-2 achieves the best performance among foundation models (in zero-shot settings), the simple baseline frequently outperforms all foundation models in Singapore's stable climate, particularly for short-term horizons. Model architecture proves critical, with synergistic architectural implementations (TTM's channel-mixing, Chronos-2's grouped attention) consistently leveraging exogenous features, while other approaches show inconsistent benefits. Geographic context emerges as equally important, with foundation models demonstrating advantages primarily in variable climates. These results challenge assumptions about universal foundation model superiority and highlight the need for domain-specific models, specifically in the energy domain.
comment: 9 pages, 1 Figure and 3 Tables. Accepted to AI4TS Workshop @ AAAI'26 as an oral presentation (see https://ai4ts.github.io/aaai2026)
☆ A Decomposition-based State Space Model for Multivariate Time-Series Forecasting ICASSP2026
Multivariate time series (MTS) forecasting is crucial for decision-making in domains such as weather, energy, and finance. It remains challenging because real-world sequences intertwine slow trends, multi-rate seasonalities, and irregular residuals. Existing methods often rely on rigid, hand-crafted decompositions or generic end-to-end architectures that entangle components and underuse structure shared across variables. To address these limitations, we propose DecompSSM, an end-to-end decomposition framework using three parallel deep state space model branches to capture trend, seasonal, and residual components. The model features adaptive temporal scales via an input-dependent predictor, a refinement module for shared cross-variable context, and an auxiliary loss that enforces reconstruction and orthogonality. Across standard benchmarks (ECL, Weather, ETTm2, and PEMS04), DecompSSM outperformed strong baselines, indicating the effectiveness of combining component-wise deep state space models and global context refinement.
comment: ICASSP2026
☆ Parallel Swin Transformer-Enhanced 3D MRI-to-CT Synthesis for MRI-Only Radiotherapy Planning
MRI provides superior soft tissue contrast without ionizing radiation; however, the absence of electron density information limits its direct use for dose calculation. As a result, current radiotherapy workflows rely on combined MRI and CT acquisitions, increasing registration uncertainty and procedural complexity. Synthetic CT generation enables MRI only planning but remains challenging due to nonlinear MRI-CT relationships and anatomical variability. We propose Parallel Swin Transformer-Enhanced Med2Transformer, a 3D architecture that integrates convolutional encoding with dual Swin Transformer branches to model both local anatomical detail and long-range contextual dependencies. Multi-scale shifted window attention with hierarchical feature aggregation improves anatomical fidelity. Experiments on public and clinical datasets demonstrate higher image similarity and improved geometric accuracy compared with baseline methods. Dosimetric evaluation shows clinically acceptable performance, with a mean target dose error of 1.69%. Code is available at: https://github.com/mobaidoctor/med2transformer.
☆ VRIQ: Benchmarking and Analyzing Visual-Reasoning IQ of VLMs
Recent progress in Vision Language Models (VLMs) has raised the question of whether they can reliably perform nonverbal reasoning. To this end, we introduce VRIQ (Visual Reasoning IQ), a novel benchmark designed to assess and analyze the visual reasoning ability of VLMs. We evaluate models on two sets of tasks: abstract puzzle-style and natural-image reasoning tasks. We find that on abstract puzzles, performance remains near random with an average accuracy of around 28%, while natural tasks yield better but still weak results with 45% accuracy. We also find that tool-augmented reasoning demonstrates only modest improvements. To uncover the source of this weakness, we introduce diagnostic probes targeting perception and reasoning. Our analysis demonstrates that around 56% of failures arise from perception alone, 43% from both perception and reasoning, and only a mere 1% from reasoning alone. This motivates us to design fine-grained diagnostic probe questions targeting specific perception categories (e.g., shape, count, position, 3D/depth), revealing that certain categories cause more failures than others. Our benchmark and analysis establish that current VLMs, even with visual reasoning tools, remain unreliable abstract reasoners, mostly due to perception limitations, and offer a principled basis for improving visual reasoning in multimodal systems.
☆ Variance Reduction Based Experience Replay for Policy Optimization
Effective reinforcement learning (RL) for complex stochastic systems requires leveraging historical data collected in previous iterations to accelerate policy optimization. Classical experience replay treats all past observations uniformly and fails to account for their varying contributions to learning. To overcome this limitation, we propose Variance Reduction Experience Replay (VRER), a principled framework that selectively reuses informative samples to reduce variance in policy gradient estimation. VRER is algorithm-agnostic and integrates seamlessly with existing policy optimization methods, forming the basis of our sample-efficient off-policy algorithm, Policy Gradient with VRER (PG-VRER). Motivated by the lack of rigorous theoretical analysis of experience replay, we develop a novel framework that explicitly captures dependencies introduced by Markovian dynamics and behavior-policy interactions. Using this framework, we establish finite-time convergence guarantees for PG-VRER and reveal a fundamental bias-variance trade-off: reusing older experience increases bias but simultaneously reduces gradient variance. Extensive empirical experiments demonstrate that VRER consistently accelerates policy learning and improves performance over state-of-the-art policy optimization algorithms.
comment: 24 pages, 4 figures. arXiv admin note: text overlap with arXiv:2208.12341
☆ Erase at the Core: Representation Unlearning for Machine Unlearning
Many approximate machine unlearning methods demonstrate strong logit-level forgetting -- such as near-zero accuracy on the forget set -- yet continue to preserve substantial information within their internal feature representations. We refer to this discrepancy as superficial forgetting. Recent studies indicate that most existing unlearning approaches primarily alter the final classifier, leaving intermediate representations largely unchanged and highly similar to those of the original model. To address this limitation, we introduce the Erase at the Core (EC), a framework designed to enforce forgetting throughout the entire network hierarchy. EC integrates multi-layer contrastive unlearning on the forget set with retain set preservation through deeply supervised learning. Concretely, EC attaches auxiliary modules to intermediate layers and applies both contrastive unlearning and cross-entropy losses at each supervision point, with layer-wise weighted losses. Experimental results show that EC not only achieves effective logit-level forgetting, but also substantially reduces representational similarity to the original model across intermediate layers. Furthermore, EC is model-agnostic and can be incorporated as a plug-in module into existing unlearning methods, improving representation-level forgetting while maintaining performance on the retain set.
☆ Cross-Lingual Empirical Evaluation of Large Language Models for Arabic Medical Tasks EACL 2026
In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
comment: Accepted to HeaLing-EACL 2026
☆ Hinge Regression Tree: A Newton Method for Oblique Regression Tree Splitting
Oblique decision trees combine the transparency of trees with the power of multivariate decision boundaries, but learning high-quality oblique splits is NP-hard, and practical methods still rely on slow search or theory-free heuristics. We present the Hinge Regression Tree (HRT), which reframes each split as a non-linear least-squares problem over two linear predictors whose max/min envelope induces ReLU-like expressive power. The resulting alternating fitting procedure is exactly equivalent to a damped Newton (Gauss-Newton) method within fixed partitions. We analyze this node-level optimization and, for a backtracking line-search variant, prove that the local objective decreases monotonically and converges; in practice, both fixed and adaptive damping yield fast, stable convergence and can be combined with optional ridge regularization. We further prove that HRT's model class is a universal approximator with an explicit $O(δ^2)$ approximation rate, and show on synthetic and real-world benchmarks that it matches or outperforms single-tree baselines with more compact structures.
☆ Bayesian Neighborhood Adaptation for Graph Neural Networks
The neighborhood scope (i.e., number of hops) where graph neural networks (GNNs) aggregate information to characterize a node's statistical property is critical to GNNs' performance. Two-stage approaches, training and validating GNNs for every pre-specified neighborhood scope to search for the best setting, is a time-consuming task and tends to be biased due to the search space design. How to adaptively determine proper neighborhood scopes for the aggregation process for both homophilic and heterophilic graphs remains largely unexplored. We thus propose to model the GNNs' message-passing behavior on a graph as a stochastic process by treating the number of hops as a beta process. This Bayesian framework allows us to infer the most plausible neighborhood scope for message aggregation simultaneously with the optimization of GNN parameters. Our theoretical analysis shows that the scope inference improves the expressivity of a GNN. Experiments on benchmark homophilic and heterophilic datasets show that the proposed method is compatible with state-of-the-art GNN variants, achieving competitive or superior performance on the node classification task, and providing well-calibrated predictions.
comment: Published in Transactions on Machine Learning Research (TMLR), 07/2025
☆ Smoothness Errors in Dynamics Models and How to Avoid Them ICML 2026
Modern neural networks have shown promise for solving partial differential equations over surfaces, often by discretizing the surface as a mesh and learning with a mesh-aware graph neural network. However, graph neural networks suffer from oversmoothing, where a node's features become increasingly similar to those of its neighbors. Unitary graph convolutions, which are mathematically constrained to preserve smoothness, have been proposed to address this issue. Despite this, in many physical systems, such as diffusion processes, smoothness naturally increases and unitarity may be overconstraining. In this paper, we systematically study the smoothing effects of different GNNs for dynamics modeling and prove that unitary convolutions hurt performance for such tasks. We propose relaxed unitary convolutions that balance smoothness preservation with the natural smoothing required for physical systems. We also generalize unitary and relaxed unitary convolutions from graphs to meshes. In experiments on PDEs such as the heat and wave equations over complex meshes and on weather forecasting, we find that our method outperforms several strong baselines, including mesh-aware transformers and equivariant neural networks.
comment: Ecstatic to share relaxed unitary mesh convolutions with the community :D! Work is under review at ICML 2026. First two authors contributed equally
☆ Decision-Focused Sequential Experimental Design: A Directional Uncertainty-Guided Approach
We consider the sequential experimental design problem in the predict-then-optimize paradigm. In this paradigm, the outputs of the prediction model are used as coefficient vectors in a downstream linear optimization problem. Traditional sequential experimental design aims to control the input variables (features) so that the improvement in prediction accuracy from each experimental outcome (label) is maximized. However, in the predict-then-optimize setting, performance is ultimately evaluated based on the decision loss induced by the downstream optimization, rather than by prediction error. This mismatch between prediction accuracy and decision loss renders traditional decision-blind designs inefficient. To address this issue, we propose a directional-based metric to quantify predictive uncertainty. This metric does not require solving an optimization oracle and is therefore computationally tractable. We show that the resulting sequential design criterion enjoys strong consistency and convergence guarantees. Under a broad class of distributions, we demonstrate that our directional uncertainty-based design attains an earlier stopping time than decision-blind designs. This advantage is further supported by real-world experiments on an LLM job allocation problem.
☆ Consistency-Preserving Concept Erasure via Unsafe-Safe Pairing and Directional Fisher-weighted Adaptation
With the increasing versatility of text-to-image diffusion models, the ability to selectively erase undesirable concepts (e.g., harmful content) has become indispensable. However, existing concept erasure approaches primarily focus on removing unsafe concepts without providing guidance toward corresponding safe alternatives, which often leads to failure in preserving the structural and semantic consistency between the original and erased generations. In this paper, we propose a novel framework, PAIRed Erasing (PAIR), which reframes concept erasure from simple removal to consistency-preserving semantic realignment using unsafe-safe pairs. We first generate safe counterparts from unsafe inputs while preserving structural and semantic fidelity, forming paired unsafe-safe multimodal data. Leveraging these pairs, we introduce two key components: (1) Paired Semantic Realignment, a guided objective that uses unsafe-safe pairs to explicitly map target concepts to semantically aligned safe anchors; and (2) Fisher-weighted Initialization for DoRA, which initializes parameter-efficient low-rank adaptation matrices using unsafe-safe pairs, encouraging the generation of safe alternatives while selectively suppressing unsafe concepts. Together, these components enable fine-grained erasure that removes only the targeted concepts while maintaining overall semantic consistency. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving effective concept erasure while preserving structural integrity, semantic coherence, and generation quality.
☆ Pool-based Active Learning as Noisy Lossy Compression: Characterizing Label Complexity via Finite Blocklength Analysis
This paper proposes an information-theoretic framework for analyzing the theoretical limits of pool-based active learning (AL), in which a subset of instances is selectively labeled. The proposed framework reformulates pool-based AL as a noisy lossy compression problem by mapping pool observations to noisy symbol observations, data selection to compression, and learning to decoding. This correspondence enables a unified information-theoretic analysis of data selection and learning in pool-based AL. Applying finite blocklength analysis of noisy lossy compression, we derive information-theoretic lower bounds on label complexity and generalization error that serve as theoretical limits for a given learning algorithm under its associated optimal data selection strategy. Specifically, our bounds include terms that reflect overfitting induced by the learning algorithm and the discrepancy between its inductive bias and the target task, and are closely related to established information-theoretic bounds and stability theory, which have not been previously applied to the analysis of pool-based AL. These properties yield a new theoretical perspective on pool-based AL.
comment: 21 pages, 1 figure
☆ GAS: Enhancing Reward-Cost Balance of Generative Model-assisted Offline Safe RL
Offline Safe Reinforcement Learning (OSRL) aims to learn a policy to achieve high performance in sequential decision-making while satisfying constraints, using only pre-collected datasets. Recent works, inspired by the strong capabilities of Generative Models (GMs), reformulate decision-making in OSRL as a conditional generative process, where GMs generate desirable actions conditioned on predefined reward and cost values. However, GM-assisted methods face two major challenges in OSRL: (1) lacking the ability to "stitch" optimal transitions from suboptimal trajectories within the dataset, and (2) struggling to balance reward targets with cost targets, particularly when they are conflict. To address these issues, we propose Goal-Assisted Stitching (GAS), a novel algorithm designed to enhance stitching capabilities while effectively balancing reward maximization and constraint satisfaction. To enhance the stitching ability, GAS first augments and relabels the dataset at the transition level, enabling the construction of high-quality trajectories from suboptimal ones. GAS also introduces novel goal functions, which estimate the optimal achievable reward and cost goals from the dataset. These goal functions, trained using expectile regression on the relabeled and augmented dataset, allow GAS to accommodate a broader range of reward-cost return pairs and achieve a better tradeoff between reward maximization and constraint satisfaction compared to human-specified values. The estimated goals then guide policy training, ensuring robust performance under constrained settings. Furthermore, to improve training stability and efficiency, we reshape the dataset to achieve a more uniform reward-cost return distribution. Empirical results validate the effectiveness of GAS, demonstrating superior performance in balancing reward maximization and constraint satisfaction compared to existing methods.
☆ Accelerated Sequential Flow Matching: A Bayesian Filtering Perspective
Sequential prediction from streaming observations is a fundamental problem in stochastic dynamical systems, where inherent uncertainty often leads to multiple plausible futures. While diffusion and flow-matching models are capable of modeling complex, multi-modal trajectories, their deployment in real-time streaming environments typically relies on repeated sampling from a non-informative initial distribution, incurring substantial inference latency and potential system backlogs. In this work, we introduce Sequential Flow Matching, a principled framework grounded in Bayesian filtering. By treating streaming inference as learning a probability flow that transports the predictive distribution from one time step to the next, our approach naturally aligns with the recursive structure of Bayesian belief updates. We provide theoretical justification that initializing generation from the previous posterior offers a principled warm start that can accelerate sampling compared to naïve re-sampling. Across a wide range of forecasting, decision-making and state estimation tasks, our method achieves performance competitive with full-step diffusion while requiring only one or very few sampling steps, therefore with faster sampling. It suggests that framing sequential inference via Bayesian filtering provides a new and principled perspective towards efficient real-time deployment of flow-based models.
☆ Formal Synthesis of Certifiably Robust Neural Lyapunov-Barrier Certificates
Neural Lyapunov and barrier certificates have recently been used as powerful tools for verifying the safety and stability properties of deep reinforcement learning (RL) controllers. However, existing methods offer guarantees only under fixed ideal unperturbed dynamics, limiting their reliability in real-world applications where dynamics may deviate due to uncertainties. In this work, we study the problem of synthesizing \emph{robust neural Lyapunov barrier certificates} that maintain their guarantees under perturbations in system dynamics. We formally define a robust Lyapunov barrier function and specify sufficient conditions based on Lipschitz continuity that ensure robustness against bounded perturbations. We propose practical training objectives that enforce these conditions via adversarial training, Lipschitz neighborhood bound, and global Lipschitz regularization. We validate our approach in two practically relevant environments, Inverted Pendulum and 2D Docking. The former is a widely studied benchmark, while the latter is a safety-critical task in autonomous systems. We show that our methods significantly improve both certified robustness bounds (up to $4.6$ times) and empirical success rates under strong perturbations (up to $2.4$ times) compared to the baseline. Our results demonstrate effectiveness of training robust neural certificates for safe RL under perturbations in dynamics.
☆ A Short and Unified Convergence Analysis of the SAG, SAGA, and IAG Algorithms
Stochastic variance-reduced algorithms such as Stochastic Average Gradient (SAG) and SAGA, and their deterministic counterparts like the Incremental Aggregated Gradient (IAG) method, have been extensively studied in large-scale machine learning. Despite their popularity, existing analyses for these algorithms are disparate, relying on different proof techniques tailored to each method. Furthermore, the original proof of SAG is known to be notoriously involved, requiring computer-aided analysis. Focusing on finite-sum optimization with smooth and strongly convex objective functions, our main contribution is to develop a single unified convergence analysis that applies to all three algorithms: SAG, SAGA, and IAG. Our analysis features two key steps: (i) establishing a bound on delays due to stochastic sub-sampling using simple concentration tools, and (ii) carefully designing a novel Lyapunov function that accounts for such delays. The resulting proof is short and modular, providing the first high-probability bounds for SAG and SAGA that can be seamlessly extended to non-convex objectives and Markov sampling. As an immediate byproduct of our new analysis technique, we obtain the best known rates for the IAG algorithm, significantly improving upon prior bounds.
☆ Logarithmic-time Schedules for Scaling Language Models with Momentum
In practice, the hyperparameters $(β_1, β_2)$ and weight-decay $λ$ in AdamW are typically kept at fixed values. Is there any reason to do otherwise? We show that for large-scale language model training, the answer is yes: by exploiting the power-law structure of language data, one can design time-varying schedules for $(β_1, β_2, λ)$ that deliver substantial performance gains. We study logarithmic-time scheduling, in which the optimizer's gradient memory horizon grows with training time. Although naive variants of this are unstable, we show that suitable damping mechanisms restore stability while preserving the benefits of longer memory. Based on this, we present ADANA, an AdamW-like optimizer that couples log-time schedules with explicit damping to balance stability and performance. We empirically evaluate ADANA across transformer scalings (45M to 2.6B parameters), comparing against AdamW, Muon, and AdEMAMix. When properly tuned, ADANA achieves up to 40% compute efficiency relative to a tuned AdamW, with gains that persist--and even improve--as model scale increases. We further show that similar benefits arise when applying logarithmic-time scheduling to AdEMAMix, and that logarithmic-time weight-decay alone can yield significant improvements. Finally, we present variants of ADANA that mitigate potential failure modes and improve robustness.
☆ HealthMamba: An Uncertainty-aware Spatiotemporal Graph State Space Model for Effective and Reliable Healthcare Facility Visit Prediction
Healthcare facility visit prediction is essential for optimizing healthcare resource allocation and informing public health policy. Despite advanced machine learning methods being employed for better prediction performance, existing works usually formulate this task as a time-series forecasting problem without considering the intrinsic spatial dependencies of different types of healthcare facilities, and they also fail to provide reliable predictions under abnormal situations such as public emergencies. To advance existing research, we propose HealthMamba, an uncertainty-aware spatiotemporal framework for accurate and reliable healthcare facility visit prediction. HealthMamba comprises three key components: (i) a Unified Spatiotemporal Context Encoder that fuses heterogeneous static and dynamic information, (ii) a novel Graph State Space Model called GraphMamba for hierarchical spatiotemporal modeling, and (iii) a comprehensive uncertainty quantification module integrating three uncertainty quantification mechanisms for reliable prediction. We evaluate HealthMamba on four large-scale real-world datasets from California, New York, Texas, and Florida. Results show HealthMamba achieves around 6.0% improvement in prediction accuracy and 3.5% improvement in uncertainty quantification over state-of-the-art baselines.
☆ Robust Inference-Time Steering of Protein Diffusion Models via Embedding Optimization
In many biophysical inverse problems, the goal is to generate biomolecular conformations that are both physically plausible and consistent with experimental measurements. As recent sequence-to-structure diffusion models provide powerful data-driven priors, posterior sampling has emerged as a popular framework by guiding atomic coordinates to target conformations using experimental likelihoods. However, when the target lies in a low-density region of the prior, posterior sampling requires aggressive and brittle weighting of the likelihood guidance. Motivated by this limitation, we propose EmbedOpt, an alternative inference-time approach for steering diffusion models to optimize experimental likelihoods in the conditional embedding space. As this space encodes rich sequence and coevolutionary signals, optimizing over it effectively shifts the diffusion prior to align with experimental constraints. We validate EmbedOpt on two benchmarks simulating cryo-electron microscopy map fitting and experimental distance constraints. We show that EmbedOpt outperforms the coordinate-based posterior sampling method in map fitting tasks, matches performance on distance constraint tasks, and exhibits superior engineering robustness across hyperparameters spanning two orders of magnitude. Moreover, its smooth optimization behavior enables a significant reduction in the number of diffusion steps required for inference, leading to better efficiency.
☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
☆ Hybrid Gated Flow (HGF): Stabilizing 1.58-bit LLMs via Selective Low-Rank Correction
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" -- a hardware limitation where memory bandwidth, not compute, becomes the bottleneck. Recent 1.58-bit quantization techniques (e.g., BitNet b1.58) dramatically reduce memory footprint but typically incur a perplexity degradation of 20-25% compared to FP16 baselines. In this work, we introduce Hybrid Gated Flow (HGF), a dual-stream architecture that couples a 1.58-bit ternary backbone with a learnable, low-rank FP16 correction path controlled by adaptive gates. Through extensive experiments on the TinyStories dataset across two training regimes (2500 and 3500 steps), we demonstrate that HGF 5.4 achieves a validation loss of 0.9306 compared to BitNet's 1.0294, recovering approximately 55% of the quality gap between pure ternary quantization and the FP16 baseline (0.8490). This recovery is achieved with only ~12-15% memory overhead beyond the ternary backbone. Furthermore, we provide empirical evidence for an emergent phenomenon: quantization as structural regularization. While a full-precision differential attention baseline (Diff_Only) exhibited training instability with validation loss exceeding 1.68, the ternary-anchored HGF maintained robust convergence throughout training. Finally, we report preliminary results extending this architecture to 1.2B and 3B parameter models trained on SlimPajama and FineWeb-Edu. These larger-scale experiments confirm that the architectural stability and quality recovery observed in small-scale proxies scale linearly to production-grade language modeling regimes.
comment: 21 pages, 4 figures, 6 tables. Code and models will be released at opencores.ai
☆ CoPE: Clipped RoPE as A Scalable Free Lunch for Long Context LLMs
Rotary Positional Embedding (RoPE) is a key component of context scaling in Large Language Models (LLMs). While various methods have been proposed to adapt RoPE to longer contexts, their guiding principles generally fall into two categories: (1) out-of-distribution (OOD) mitigation, which scales RoPE frequencies to accommodate unseen positions, and (2) Semantic Modeling, which posits that the attention scores computed with RoPE should always prioritize semantically similar tokens. In this work, we unify these seemingly distinct objectives through a minimalist intervention, namely CoPE: soft clipping lowfrequency components of RoPE. CoPE not only eliminates OOD outliers and refines semantic signals, but also prevents spectral leakage caused by hard clipping. Extensive experiments demonstrate that simply applying our soft clipping strategy to RoPE yields significant performance gains that scale up to 256k context length, validating our theoretical analysis and establishing CoPE as a new state-of-the-art for length generalization. Our code, data, and models are available at https://github.com/hrlics/CoPE.
☆ TADS: Task-Aware Data Selection for Multi-Task Multimodal Pre-Training
Large-scale multimodal pre-trained models like CLIP rely heavily on high-quality training data, yet raw web-crawled datasets are often noisy, misaligned, and redundant, leading to inefficient training and suboptimal generalization. Existing data selection methods are either heuristic-based, suffering from bias and limited diversity, or data-driven but task-agnostic, failing to optimize for multi-task scenarios. To address these gaps, we introduce TADS (Task-Aware Data Selection), a novel framework for multi-task multimodal pre-training that integrates Intrinsic Quality, Task Relevance, and Distributional Diversity into a learnable value function. TADS employs a comprehensive quality assessment system with unimodal and cross-modal operators, quantifies task relevance via interpretable similarity vectors, and optimizes diversity through cluster-based weighting. A feedback-driven meta-learning mechanism adaptively refines the selection strategy based on proxy model performance across multiple downstream tasks. Experiments on CC12M demonstrate that TADS achieves superior zero-shot performance on benchmarks like ImageNet, CIFAR-100, MS-COCO, and Flickr30K, using only 36% of the data while outperforming baselines by an average of 1.0%. This highlights that TADS significantly enhances data efficiency by curating a high-utility subset that yields a much higher performance ceiling within the same computational constraints.
☆ CORP: Closed-Form One-shot Representation-Preserving Structured Pruning for Vision Transformers
Vision Transformers achieve strong accuracy but incur high compute and memory cost. Structured pruning can reduce inference cost, but most methods rely on retraining or multi-stage optimization. These requirements limit post-training deployment. We propose \textbf{CORP}, a closed-form one-shot structured pruning framework for Vision Transformers. CORP removes entire MLP hidden dimensions and attention substructures without labels, gradients, or fine-tuning. It operates under strict post-training constraints using only a small unlabeled calibration set. CORP formulates structured pruning as a representation recovery problem. It models removed activations and attention logits as affine functions of retained components and derives closed-form ridge regression solutions that fold compensation into model weights. This minimizes expected representation error under the calibration distribution. Experiments on ImageNet with DeiT models show strong redundancy in MLP and attention representations. Without compensation, one-shot structured pruning causes severe accuracy degradation. With CORP, models preserve accuracy under aggressive sparsity. On DeiT-Huge, CORP retains 82.8\% Top-1 accuracy after pruning 50\% of both MLP and attention structures. CORP completes pruning in under 20 minutes on a single GPU and delivers substantial real-world efficiency gains.
☆ PatchFlow: Leveraging a Flow-Based Model with Patch Features
Die casting plays a crucial role across various industries due to its ability to craft intricate shapes with high precision and smooth surfaces. However, surface defects remain a major issue that impedes die casting quality control. Recently, computer vision techniques have been explored to automate and improve defect detection. In this work, we combine local neighbor-aware patch features with a normalizing flow model and bridge the gap between the generic pretrained feature extractor and industrial product images by introducing an adapter module to increase the efficiency and accuracy of automated anomaly detection. Compared to state-of-the-art methods, our approach reduces the error rate by 20\% on the MVTec AD dataset, achieving an image-level AUROC of 99.28\%. Our approach has also enhanced performance on the VisA dataset , achieving an image-level AUROC of 96.48\%. Compared to the state-of-the-art models, this represents a 28.2\% reduction in error. Additionally, experiments on a proprietary die casting dataset yield an accuracy of 95.77\% for anomaly detection, without requiring any anomalous samples for training. Our method illustrates the potential of leveraging computer vision and deep learning techniques to advance inspection capabilities for the die casting industry
☆ Faithful Bi-Directional Model Steering via Distribution Matching and Distributed Interchange Interventions ICLR 2026
Intervention-based model steering offers a lightweight and interpretable alternative to prompting and fine-tuning. However, by adapting strong optimization objectives from fine-tuning, current methods are susceptible to overfitting and often underperform, sometimes generating unnatural outputs. We hypothesize that this is because effective steering requires the faithful identification of internal model mechanisms, not the enforcement of external preferences. To this end, we build on the principles of distributed alignment search (DAS), the standard for causal variable localization, to propose a new steering method: Concept DAS (CDAS). While we adopt the core mechanism of DAS, distributed interchange intervention (DII), we introduce a novel distribution matching objective tailored for the steering task by aligning intervened output distributions with counterfactual distributions. CDAS differs from prior work in two main ways: first, it learns interventions via weak-supervised distribution matching rather than probability maximization; second, it uses DIIs that naturally enable bi-directional steering and allow steering factors to be derived from data, reducing the effort required for hyperparameter tuning and resulting in more faithful and stable control. On AxBench, a large-scale model steering benchmark, we show that CDAS does not always outperform preference-optimization methods but may benefit more from increased model scale. In two safety-related case studies, overriding refusal behaviors of safety-aligned models and neutralizing a chain-of-thought backdoor, CDAS achieves systematic steering while maintaining general model utility. These results indicate that CDAS is complementary to preference-optimization approaches and conditionally constitutes a robust approach to intervention-based model steering. Our code is available at https://github.com/colored-dye/concept_das.
comment: 55 pages, 25 figures; accepted for ICLR 2026
☆ Balanced Anomaly-guided Ego-graph Diffusion Model for Inductive Graph Anomaly Detection KDD
Graph anomaly detection (GAD) is crucial in applications like fraud detection and cybersecurity. Despite recent advancements using graph neural networks (GNNs), two major challenges persist. At the model level, most methods adopt a transductive learning paradigm, which assumes static graph structures, making them unsuitable for dynamic, evolving networks. At the data level, the extreme class imbalance, where anomalous nodes are rare, leads to biased models that fail to generalize to unseen anomalies. These challenges are interdependent: static transductive frameworks limit effective data augmentation, while imbalance exacerbates model distortion in inductive learning settings. To address these challenges, we propose a novel data-centric framework that integrates dynamic graph modeling with balanced anomaly synthesis. Our framework features: (1) a discrete ego-graph diffusion model, which captures the local topology of anomalies to generate ego-graphs aligned with anomalous structural distribution, and (2) a curriculum anomaly augmentation mechanism, which dynamically adjusts synthetic data generation during training, focusing on underrepresented anomaly patterns to improve detection and generalization. Experiments on five datasets demonstrate that the effectiveness of our framework.
comment: 12 pages,6 figures, Accepted by ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '26)
☆ ZeroS: Zero-Sum Linear Attention for Efficient Transformers NeurIPS 2025
Linear attention methods offer Transformers $O(N)$ complexity but typically underperform standard softmax attention. We identify two fundamental limitations affecting these approaches: the restriction to convex combinations that only permits additive information blending, and uniform accumulated weight bias that dilutes attention in long contexts. We propose Zero-Sum Linear Attention (ZeroS), which addresses these limitations by removing the constant zero-order term $1/t$ and reweighting the remaining zero-sum softmax residuals. This modification creates mathematically stable weights, enabling both positive and negative values and allowing a single attention layer to perform contrastive operations. While maintaining $O(N)$ complexity, ZeroS theoretically expands the set of representable functions compared to convex combinations. Empirically, it matches or exceeds standard softmax attention across various sequence modeling benchmarks.
comment: Camera-ready version. Accepted at NeurIPS 2025
☆ Radon--Wasserstein Gradient Flows for Interacting-Particle Sampling in High Dimensions
Gradient flows of the Kullback--Leibler (KL) divergence, such as the Fokker--Planck equation and Stein Variational Gradient Descent, evolve a distribution toward a target density known only up to a normalizing constant. We introduce new gradient flows of the KL divergence with a remarkable combination of properties: they admit accurate interacting-particle approximations in high dimensions, and the per-step cost scales linearly in both the number of particles and the dimension. These gradient flows are based on new transportation-based Riemannian geometries on the space of probability measures: the Radon--Wasserstein geometry and the related Regularized Radon--Wasserstein (RRW) geometry. We define these geometries using the Radon transform so that the gradient-flow velocities depend only on one-dimensional projections. This yields interacting-particle-based algorithms whose per-step cost follows from efficient Fast Fourier Transform-based evaluation of the required 1D convolutions. We additionally provide numerical experiments that study the performance of the proposed algorithms and compare convergence behavior and quantization. Finally, we prove some theoretical results including well-posedness of the flows and long-time convergence guarantees for the RRW flow.
comment: 49 pages, 7 figures
☆ Private Prediction via Shrinkage
We study differentially private prediction introduced by Dwork and Feldman (COLT 2018): an algorithm receives one labeled sample set $S$ and then answers a stream of unlabeled queries while the output transcript remains $(\varepsilon,δ)$-differentially private with respect to $S$. Standard composition yields a $\sqrt{T}$ dependence for $T$ queries. We show that this dependence can be reduced to polylogarithmic in $T$ in streaming settings. For an oblivious online adversary and any concept class $\mathcal{C}$, we give a private predictor that answers $T$ queries with $|S|= \tilde{O}(VC(\mathcal{C})^{3.5}\log^{3.5}T)$ labeled examples. For an adaptive online adversary and halfspaces over $\mathbb{R}^d$, we obtain $|S|=\tilde{O}\left(d^{5.5}\log T\right)$.
☆ Disentangled Representation Learning via Flow Matching
Disentangled representation learning aims to capture the underlying explanatory factors of observed data, enabling a principled understanding of the data-generating process. Recent advances in generative modeling have introduced new paradigms for learning such representations. However, existing diffusion-based methods encourage factor independence via inductive biases, yet frequently lack strong semantic alignment. In this work, we propose a flow matching-based framework for disentangled representation learning, which casts disentanglement as learning factor-conditioned flows in a compact latent space. To enforce explicit semantic alignment, we introduce a non-overlap (orthogonality) regularizer that suppresses cross-factor interference and reduces information leakage between factors. Extensive experiments across multiple datasets demonstrate consistent improvements over representative baselines, yielding higher disentanglement scores as well as improved controllability and sample fidelity.
☆ Extreme Weather Nowcasting via Local Precipitation Pattern Prediction
Accurate forecasting of extreme weather events such as heavy rainfall or storms is critical for risk management and disaster mitigation. Although high-resolution radar observations have spurred extensive research on nowcasting models, precipitation nowcasting remains particularly challenging due to pronounced spatial locality, intricate fine-scale rainfall structures, and variability in forecasting horizons. While recent diffusion-based generative ensembles show promising results, they are computationally expensive and unsuitable for real-time applications. In contrast, deterministic models are computationally efficient but remain biased toward normal rainfall. Furthermore, the benchmark datasets commonly used in prior studies are themselves skewed--either dominated by ordinary rainfall events or restricted to extreme rainfall episodes--thereby hindering general applicability in real-world settings. In this paper, we propose exPreCast, an efficient deterministic framework for generating finely detailed radar forecasts, and introduce a newly constructed balanced radar dataset from the Korea Meteorological Administration (KMA), which encompasses both ordinary precipitation and extreme events. Our model integrates local spatiotemporal attention, a texture-preserving cubic dual upsampling decoder, and a temporal extractor to flexibly adjust forecasting horizons. Experiments on established benchmarks (SEVIR and MeteoNet) as well as on the balanced KMA dataset demonstrate that our approach achieves state-of-the-art performance, delivering accurate and reliable nowcasts across both normal and extreme rainfall regimes.
comment: 10pages, 20 figures, The Fourteenth International Conference on Learning Representations, see https://github.com/tony890048/exPreCast
☆ Double-P: Hierarchical Top-P Sparse Attention for Long-Context LLMs
As long-context inference becomes central to large language models (LLMs), attention over growing key-value caches emerges as a dominant decoding bottleneck, motivating sparse attention for scalable inference. Fixed-budget top-k sparse attention cannot adapt to heterogeneous attention distributions across heads and layers, whereas top-p sparse attention directly preserves attention mass and provides stronger accuracy guarantees. Existing top-p methods, however, fail to jointly optimize top-p accuracy, selection overhead, and sparse attention cost, which limits their overall efficiency. We present Double-P, a hierarchical sparse attention framework that optimizes all three stages. Double-P first performs coarse-grained top-p estimation at the cluster level using size-weighted centroids, then adaptively refines computation through a second top-p stage that allocates token-level attention only when needed. Across long-context benchmarks, Double-P consistently achieves near-zero accuracy drop, reducing attention computation overhead by up to 1.8x and delivers up to 1.3x end-to-end decoding speedup over state-of-the-art fixed-budget sparse attention methods.
☆ Are Open-Weight LLMs Ready for Social Media Moderation? A Comparative Study on Bluesky
As internet access expands, so does exposure to harmful content, increasing the need for effective moderation. Research has demonstrated that large language models (LLMs) can be effectively utilized for social media moderation tasks, including harmful content detection. While proprietary LLMs have been shown to zero-shot outperform traditional machine learning models, the out-of-the-box capability of open-weight LLMs remains an open question. Motivated by recent developments of reasoning LLMs, we evaluate seven state-of-the-art models: four proprietary and three open-weight. Testing with real-world posts on Bluesky, moderation decisions by Bluesky Moderation Service, and annotations by two authors, we find a considerable degree of overlap between the sensitivity (81%--97%) and specificity (91%--100%) of the open-weight LLMs and those (72%--98%, and 93%--99%) of the proprietary ones. Additionally, our analysis reveals that specificity exceeds sensitivity for rudeness detection, but the opposite holds for intolerance and threats. Lastly, we identify inter-rater agreement across human moderators and the LLMs, highlighting considerations for deploying LLMs in both platform-scale and personalized moderation contexts. These findings show open-weight LLMs can support privacy-preserving moderation on consumer-grade hardware and suggest new directions for designing moderation systems that balance community values with individual user preferences.
☆ SpectraKAN: Conditioning Spectral Operators
Spectral neural operators, particularly Fourier Neural Operators (FNO), are a powerful framework for learning solution operators of partial differential equations (PDEs) due to their efficient global mixing in the frequency domain. However, existing spectral operators rely on static Fourier kernels applied uniformly across inputs, limiting their ability to capture multi-scale, regime-dependent, and anisotropic dynamics governed by the global state of the system. We introduce SpectraKAN, a neural operator that conditions the spectral operator on the input itself, turning static spectral convolution into an input-conditioned integral operator. This is achieved by extracting a compact global representation from spatio-temporal history and using it to modulate a multi-scale Fourier trunk via single-query cross-attention, enabling the operator to adapt its behaviour while retaining the efficiency of spectral mixing. We provide theoretical justification showing that this modulation converges to a resolution-independent continuous operator under mesh refinement and KAN gives smooth, Lipschitz-controlled global modulation. Across diverse PDE benchmarks, SpectraKAN achieves state-of-the-art performance, reducing RMSE by up to 49% over strong baselines, with particularly large gains on challenging spatio-temporal prediction tasks.
☆ Towards Worst-Case Guarantees with Scale-Aware Interpretability
Neural networks organize information according to the hierarchical, multi-scale structure of natural data. Methods to interpret model internals should be similarly scale-aware, explicitly tracking how features compose across resolutions and guaranteeing bounds on the influence of fine-grained structure that is discarded as irrelevant noise. We posit that the renormalisation framework from physics can meet this need by offering technical tools that can overcome limitations of current methods. Moreover, relevant work from adjacent fields has now matured to a point where scattered research threads can be synthesized into practical, theory-informed tools. To combine these threads in an AI safety context, we propose a unifying research agenda -- \emph{scale-aware interpretability} -- to develop formal machinery and interpretability tools that have robustness and faithfulness properties supported by statistical physics.
☆ Data-Centric Interpretability for LLM-based Multi-Agent Reinforcement Learning
Large language models (LLMs) are increasingly trained in complex Reinforcement Learning, multi-agent environments, making it difficult to understand how behavior changes over training. Sparse Autoencoders (SAEs) have recently shown to be useful for data-centric interpretability. In this work, we analyze large-scale reinforcement learning training runs from the sophisticated environment of Full-Press Diplomacy by applying pretrained SAEs, alongside LLM-summarizer methods. We introduce Meta-Autointerp, a method for grouping SAE features into interpretable hypotheses about training dynamics. We discover fine-grained behaviors including role-playing patterns, degenerate outputs, language switching, alongside high-level strategic behaviors and environment-specific bugs. Through automated evaluation, we validate that 90% of discovered SAE Meta-Features are significant, and find a surprising reward hacking behavior. However, through two user studies, we find that even subjectively interesting and seemingly helpful SAE features may be worse than useless to humans, along with most LLM generated hypotheses. However, a subset of SAE-derived hypotheses are predictively useful for downstream tasks. We further provide validation by augmenting an untrained agent's system prompt, improving the score by +14.2%. Overall, we show that SAEs and LLM-summarizer provide complementary views into agent behavior, and together our framework forms a practical starting point for future data-centric interpretability work on ensuring trustworthy LLM behavior throughout training.
comment: authors 1, 2 and 3 contributed equally
☆ Benchmarking Artificial Intelligence Models for Daily Coastal Hypoxia Forecasting IEEE
Coastal hypoxia, especially in the northern part of Gulf of Mexico, presents a persistent ecological and economic concern. Seasonal models offer coarse forecasts that miss the fine-scale variability needed for daily, responsive ecosystem management. We present study that compares four deep learning architectures for daily hypoxia classification: Bidirectional Long Short-Term Memory (BiLSTM), Medformer (Medical Transformer), Spatio-Temporal Transformer (ST-Transformer), and Temporal Convolutional Network (TCN). We trained our models with twelve years of daily hindcast data from 2009-2020 Our training data consists of 2009-2020 hindcast data from a coupled hydrodynamic-biogeochemical model. Similarly, we use hindcast data from 2020 through 2024 as a test data. We constructed classification models incorporating water column stratification, sediment oxygen consumption, and temperature-dependent decomposition rates. We evaluated each architectures using the same data preprocessing, input/output formulation, and validation protocols. Each model achieved high classification accuracy and strong discriminative ability with ST-Transformer achieving the highest performance across all metrics and tests periods (AUC-ROC: 0.982-0.992). We also employed McNemar's method to identify statistically significant differences in model predictions. Our contribution is a reproducible framework for operational real-time hypoxia prediction that can support broader efforts in the environmental and ocean modeling systems community and in ecosystem resilience. The source code is available https://github.com/rmagesh148/hypoxia-ai/
comment: This is a Preprint accepted at IEEE Big Data 2025
☆ Total Variation Rates for Riemannian Flow Matching
Riemannian flow matching (RFM) extends flow-based generative modeling to data supported on manifolds by learning a time-dependent tangent vector field whose flow-ODE transports a simple base distribution to the data law. We develop a nonasymptotic Total Variation (TV) convergence analysis for RFM samplers that use a learned vector field together with Euler discretization on manifolds. Our key technical ingredient is a differential inequality governing the evolution of TV between two manifold ODE flows, which expresses the time-derivative of TV through the divergence of the vector-field mismatch and the score of the reference flow; controlling these terms requires establishing new bounds that explicitly account for parallel transport and curvature. Under smoothness assumptions on the population flow-matching field and either uniform (compact manifolds) or mean-square (Hadamard manifolds) approximation guarantees for the learned field, we obtain explicit bounds of the form $\mathrm{TV}\le C_{\mathrm{Lip}}\,h + C_{\varepsilon}\,\varepsilon$ (with an additional higher-order $\varepsilon^2$ term on compact manifolds), cleanly separating numerical discretization and learning errors. Here, $h$ is the step-size and $\varepsilon$ is the target accuracy. Instantiations yield \emph{explicit} polynomial iteration complexities on the hypersphere $S^d$, and on the SPD$(n)$ manifolds under mild moment conditions.
☆ Finite-Particle Rates for Regularized Stein Variational Gradient Descent
We derive finite-particle rates for the regularized Stein variational gradient descent (R-SVGD) algorithm introduced by He et al. (2024) that corrects the constant-order bias of the SVGD by applying a resolvent-type preconditioner to the kernelized Wasserstein gradient. For the resulting interacting $N$-particle system, we establish explicit non-asymptotic bounds for time-averaged (annealed) empirical measures, illustrating convergence in the \emph{true} (non-kernelized) Fisher information and, under a $\mathrm{W}_1\mathrm{I}$ condition on the target, corresponding $\mathrm{W}_1$ convergence for a large class of smooth kernels. Our analysis covers both continuous- and discrete-time dynamics and yields principled tuning rules for the regularization parameter, step size, and averaging horizon that quantify the trade-off between approximating the Wasserstein gradient flow and controlling finite-particle estimation error.
☆ Path Sampling for Rare Events Boosted by Machine Learning
The study by Jung et al. (Jung H, Covino R, Arjun A, et al., Nat Comput Sci. 3:334-345 (2023)) introduced Artificial Intelligence for Molecular Mechanism Discovery (AIMMD), a novel sampling algorithm that integrates machine learning to enhance the efficiency of transition path sampling (TPS). By enabling on-the-fly estimation of the committor probability and simultaneously deriving a human-interpretable reaction coordinate, AIMMD offers a robust framework for elucidating the mechanistic pathways of complex molecular processes. This commentary provides a discussion and critical analysis of the core AIMMD framework, explores its recent extensions, and offers an assessment of the method's potential impact and limitations.
comment: 7 pages, 1 figure
☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
☆ Position: Capability Control Should be a Separate Goal From Alignment
Foundation models are trained on broad data distributions, yielding generalist capabilities that enable many downstream applications but also expand the space of potential misuse and failures. This position paper argues that capability control -- imposing restrictions on permissible model behavior -- should be treated as a distinct goal from alignment. While alignment is often context and preference-driven, capability control aims to impose hard operational limits on permissible behaviors, including under adversarial elicitation. We organize capability control mechanisms across the model lifecycle into three layers: (i) data-based control of the training distribution, (ii) learning-based control via weight- or representation-level interventions, and (iii) system-based control via post-deployment guardrails over inputs, outputs, and actions. Because each layer has characteristic failure modes when used in isolation, we advocate for a defense-in-depth approach that composes complementary controls across the full stack. We further outline key open challenges in achieving such control, including the dual-use nature of knowledge and compositional generalization.
☆ Swap Regret Minimization Through Response-Based Approachability
We consider the problem of minimizing different notions of swap regret in online optimization. These forms of regret are tightly connected to correlated equilibrium concepts in games, and have been more recently shown to guarantee non-manipulability against strategic adversaries. The only computationally efficient algorithm for minimizing linear swap regret over a general convex set in $\mathbb{R}^d$ was developed recently by Daskalakis, Farina, Fishelson, Pipis, and Schneider (STOC '25). However, it incurs a highly suboptimal regret bound of $Ω(d^4 \sqrt{T})$ and also relies on computationally intensive calls to the ellipsoid algorithm at each iteration. In this paper, we develop a significantly simpler, computationally efficient algorithm that guarantees $O(d^{3/2} \sqrt{T})$ linear swap regret for a general convex set and $O(d \sqrt{T})$ when the set is centrally symmetric. Our approach leverages the powerful response-based approachability framework of Bernstein and Shimkin (JMLR '15) -- previously overlooked in the line of work on swap regret minimization -- combined with geometric preconditioning via the John ellipsoid. Our algorithm simultaneously minimizes profile swap regret, which was recently shown to guarantee non-manipulability. Moreover, we establish a matching information-theoretic lower bound: any learner must incur in expectation $Ω(d \sqrt{T})$ linear swap regret for large enough $T$, even when the set is centrally symmetric. This also shows that the classic algorithm of Gordon, Greenwald, and Marks (ICML '08) is existentially optimal for minimizing linear swap regret, although it is computationally inefficient. Finally, we extend our approach to minimize regret with respect to the set of swap deviations with polynomial dimension, unifying and strengthening recent results in equilibrium computation and online learning.
☆ GRP-Obliteration: Unaligning LLMs With a Single Unlabeled Prompt
Safety alignment is only as robust as its weakest failure mode. Despite extensive work on safety post-training, it has been shown that models can be readily unaligned through post-deployment fine-tuning. However, these methods often require extensive data curation and degrade model utility. In this work, we extend the practical limits of unalignment by introducing GRP-Obliteration (GRP-Oblit), a method that uses Group Relative Policy Optimization (GRPO) to directly remove safety constraints from target models. We show that a single unlabeled prompt is sufficient to reliably unalign safety-aligned models while largely preserving their utility, and that GRP-Oblit achieves stronger unalignment on average than existing state-of-the-art techniques. Moreover, GRP-Oblit generalizes beyond language models and can also unalign diffusion-based image generation systems. We evaluate GRP-Oblit on six utility benchmarks and five safety benchmarks across fifteen 7-20B parameter models, spanning instruct and reasoning models, as well as dense and MoE architectures. The evaluated model families include GPT-OSS, distilled DeepSeek, Gemma, Llama, Ministral, and Qwen.
☆ On Randomized Algorithms in Online Strategic Classification
Online strategic classification studies settings in which agents strategically modify their features to obtain favorable predictions. For example, given a classifier that determines loan approval based on credit scores, applicants may open or close credit cards and bank accounts to obtain a positive prediction. The learning goal is to achieve low mistake or regret bounds despite such strategic behavior. While randomized algorithms have the potential to offer advantages to the learner in strategic settings, they have been largely underexplored. In the realizable setting, no lower bound is known for randomized algorithms, and existing lower bound constructions for deterministic learners can be circumvented by randomization. In the agnostic setting, the best known regret upper bound is $O(T^{3/4}\log^{1/4}T|\mathcal H|)$, which is far from the standard online learning rate of $O(\sqrt{T\log|\mathcal H|})$. In this work, we provide refined bounds for online strategic classification in both settings. In the realizable setting, we extend, for $T > \mathrm{Ldim}(\mathcal{H}) Δ^2$, the existing lower bound $Ω(\mathrm{Ldim}(\mathcal{H}) Δ)$ for deterministic learners to all learners. This yields the first lower bound that applies to randomized learners. We also provide the first randomized learner that improves the known (deterministic) upper bound of $O(\mathrm{Ldim}(\mathcal H) \cdot Δ\log Δ)$. In the agnostic setting, we give a proper learner using convex optimization techniques to improve the regret upper bound to $O(\sqrt{T \log |\mathcal{H}|} + |\mathcal{H}| \log(T|\mathcal{H}|))$. We show a matching lower bound up to logarithmic factors for all proper learning rules, demonstrating the optimality of our learner among proper learners. As such, improper learning is necessary to further improve regret guarantees.
☆ Steering Safely or Off a Cliff? Rethinking Specificity and Robustness in Inference-Time Interventions EACL 2026
Model steering, which involves intervening on hidden representations at inference time, has emerged as a lightweight alternative to finetuning for precisely controlling large language models. While steering efficacy has been widely studied, evaluations of whether interventions alter only the intended property remain limited, especially with respect to unintended changes in behaviors related to the target property. We call this notion specificity. We propose a framework that distinguishes three dimensions of specificity: general (preserving fluency and unrelated abilities), control (preserving related control properties), and robustness (preserving control properties under distribution shifts). We study two safety-critical use cases: steering models to reduce overrefusal and faithfulness hallucinations, and show that while steering achieves high efficacy and largely maintains general and control specificity, it consistently fails to preserve robustness specificity. In the case of overrefusal steering, for example, all steering methods reduce overrefusal without harming general abilities and refusal on harmful queries; however, they substantially increase vulnerability to jailbreaks. Our work provides the first systematic evaluation of specificity in model steering, showing that standard efficacy and specificity checks are insufficient, because without robustness evaluation, steering methods may appear reliable even when they compromise model safety.
comment: EACL 2026 Main, Long Paper
☆ REBEL: Hidden Knowledge Recovery via Evolutionary-Based Evaluation Loop
Machine unlearning for LLMs aims to remove sensitive or copyrighted data from trained models. However, the true efficacy of current unlearning methods remains uncertain. Standard evaluation metrics rely on benign queries that often mistake superficial information suppression for genuine knowledge removal. Such metrics fail to detect residual knowledge that more sophisticated prompting strategies could still extract. We introduce REBEL, an evolutionary approach for adversarial prompt generation designed to probe whether unlearned data can still be recovered. Our experiments demonstrate that REBEL successfully elicits ``forgotten'' knowledge from models that seemed to be forgotten in standard unlearning benchmarks, revealing that current unlearning methods may provide only a superficial layer of protection. We validate our framework on subsets of the TOFU and WMDP benchmarks, evaluating performance across a diverse suite of unlearning algorithms. Our experiments show that REBEL consistently outperforms static baselines, recovering ``forgotten'' knowledge with Attack Success Rates (ASRs) reaching up to 60% on TOFU and 93% on WMDP. We will make all code publicly available upon acceptance. Code is available at https://github.com/patryk-rybak/REBEL/
☆ Adaptive Sparse Möbius Transforms for Learning Polynomials
We consider the problem of exactly learning an $s$-sparse real-valued Boolean polynomial of degree $d$ of the form $f:\{ 0,1\}^n \rightarrow \mathbb{R}$. This problem corresponds to decomposing functions in the AND basis and is known as taking a Möbius transform. While the analogous problem for the parity basis (Fourier transform) $f: \{-1,1 \}^n \rightarrow \mathbb{R}$ is well-understood, the AND basis presents a unique challenge: the basis vectors are coherent, precluding standard compressed sensing methods. We overcome this challenge by identifying that we can exploit adaptive group testing to provide a constructive, query-efficient implementation of the Möbius transform (also known as Möbius inversion) for sparse functions. We present two algorithms based on this insight. The Fully-Adaptive Sparse Möbius Transform (FASMT) uses $O(sd \log(n/d))$ adaptive queries in $O((sd + n) sd \log(n/d))$ time, which we show is near-optimal in query complexity. Furthermore, we also present the Partially-Adaptive Sparse Möbius Transform (PASMT), which uses $O(sd^2\log(n/d))$ queries, trading a factor of $d$ to reduce the number of adaptive rounds to $O(d^2\log(n/d))$, with no dependence on $s$. When applied to hypergraph reconstruction from edge-count queries, our results improve upon baselines by avoiding the combinatorial explosion in the rank $d$. We demonstrate the practical utility of our method for hypergraph reconstruction by applying it to learning real hypergraphs in simulations.
☆ Inheritance Between Feedforward and Convolutional Networks via Model Projection
Techniques for feedforward networks (FFNs) and convolutional networks (CNNs) are frequently reused across families, but the relationship between the underlying model classes is rarely made explicit. We introduce a unified node-level formalization with tensor-valued activations and show that generalized feedforward networks form a strict subset of generalized convolutional networks. Motivated by the mismatch in per-input parameterization between the two families, we propose model projection, a parameter-efficient transfer learning method for CNNs that freezes pretrained per-input-channel filters and learns a single scalar gate for each (output channel, input channel) contribution. Projection keeps all convolutional layers adaptable to downstream tasks while substantially reducing the number of trained parameters in convolutional layers. We prove that projected nodes take the generalized FFN form, enabling projected CNNs to inherit feedforward techniques that do not rely on homogeneous layer inputs. Experiments across multiple ImageNet-pretrained backbones and several downstream image classification datasets show that model projection is a strong transfer learning baseline under simple training recipes.
☆ A Fast and Generalizable Fourier Neural Operator-Based Surrogate for Melt-Pool Prediction in Laser Processing
High-fidelity simulations of laser welding capture complex thermo-fluid phenomena, including phase change, free-surface deformation, and keyhole dynamics, however their computational cost limits large-scale process exploration and real-time use. In this work we present the Laser Processing Fourier Neural Operator (LP-FNO), a Fourier Neural Operator (FNO) based surrogate model that learns the parametric solution operator of various laser processes from multiphysics simulations generated with FLOW-3D WELD (registered trademark). Through a novel approach of reformulating the transient problem in the moving laser frame and applying temporal averaging, the system results in a quasi-steady state setting suitable for operator learning, even in the keyhole welding regime. The proposed LP-FNO maps process parameters to three-dimensional temperature fields and melt-pool boundaries across a broad process window spanning conduction and keyhole regimes using the non-dimensional normalized enthalpy formulation. The model achieves temperature prediction errors on the order of 1% and intersection-over-union scores for melt-pool segmentation over 0.9. We demonstrate that a LP-FNO model trained on coarse-resolution data can be evaluated on finer grids, yielding accurate super-resolved predictions in mesh-converged conduction regimes, whereas discrepancies in keyhole regimes reflect unresolved dynamics in the coarse-mesh training data. These results indicate that the LP-FNO provides an efficient surrogate modeling framework for laser welding, enabling prediction of full three-dimensional fields and phase interfaces over wide parameter ranges in just tens of milliseconds, up to a hundred thousand times faster than traditional Finite Volume multi-physics software.
comment: 29 pages, 12 figures, 6 tables
☆ ATEX-CF: Attack-Informed Counterfactual Explanations for Graph Neural Networks ICLR 2026
Counterfactual explanations offer an intuitive way to interpret graph neural networks (GNNs) by identifying minimal changes that alter a model's prediction, thereby answering "what must differ for a different outcome?". In this work, we propose a novel framework, ATEX-CF that unifies adversarial attack techniques with counterfactual explanation generation-a connection made feasible by their shared goal of flipping a node's prediction, yet differing in perturbation strategy: adversarial attacks often rely on edge additions, while counterfactual methods typically use deletions. Unlike traditional approaches that treat explanation and attack separately, our method efficiently integrates both edge additions and deletions, grounded in theory, leveraging adversarial insights to explore impactful counterfactuals. In addition, by jointly optimizing fidelity, sparsity, and plausibility under a constrained perturbation budget, our method produces instance-level explanations that are both informative and realistic. Experiments on synthetic and real-world node classification benchmarks demonstrate that ATEX-CF generates faithful, concise, and plausible explanations, highlighting the effectiveness of integrating adversarial insights into counterfactual reasoning for GNNs.
comment: 30 pages, accepted by ICLR 2026, github code:https://github.com/zhangyuo/ATEX_CF
☆ Provably avoiding over-optimization in Direct Preference Optimization without knowing the data distribution
We introduce PEPO (Pessimistic Ensemble based Preference Optimization), a single-step Direct Preference Optimization (DPO)-like algorithm to mitigate the well-known over-optimization issue in preference learning without requiring the knowledge of the data-generating distribution or learning an explicit reward model. PEPO achieves pessimism via an ensemble of preference-optimized policies trained on disjoint data subsets and then aggregates them through a worst case construction that favors the agreement across models. In the tabular setting, PEPO achieves sample complexity guarantees depending only on a single-policy concentrability coefficient, thus avoiding the all-policy concentrability which affects the guarantees of algorithms prone to over-optimization, such as DPO. The theoretical findings are corroborated by a convincing practical performance, while retaining the simplicity and the practicality of DPO-style training.
☆ RuleSmith: Multi-Agent LLMs for Automated Game Balancing
Game balancing is a longstanding challenge requiring repeated playtesting, expert intuition, and extensive manual tuning. We introduce RuleSmith, the first framework that achieves automated game balancing by leveraging the reasoning capabilities of multi-agent LLMs. It couples a game engine, multi-agent LLMs self-play, and Bayesian optimization operating over a multi-dimensional rule space. As a proof of concept, we instantiate RuleSmith on CivMini, a simplified civilization-style game containing heterogeneous factions, economy systems, production rules, and combat mechanics, all governed by tunable parameters. LLM agents interpret textual rulebooks and game states to generate actions, to conduct fast evaluation of balance metrics such as win-rate disparities. To search the parameter landscape efficiently, we integrate Bayesian optimization with acquisition-based adaptive sampling and discrete projection: promising candidates receive more evaluation games for accurate assessment, while exploratory candidates receive fewer games for efficient exploration. Experiments show that RuleSmith converges to highly balanced configurations and provides interpretable rule adjustments that can be directly applied to downstream game systems. Our results illustrate that LLM simulation can serve as a powerful surrogate for automating design and balancing in complex multi-agent environments.
☆ SR4-Fit: An Interpretable and Informative Classification Algorithm Applied to Prediction of U.S. House of Representatives Elections IEEE
The growth of machine learning demands interpretable models for critical applications, yet most high-performing models are ``black-box'' systems that obscure input-output relationships, while traditional rule-based algorithms like RuleFit suffer from a lack of predictive power and instability despite their simplicity. This motivated our development of Sparse Relaxed Regularized Regression Rule-Fit (SR4-Fit), a novel interpretable classification algorithm that addresses these limitations while maintaining superior classification performance. Using demographic characteristics of U.S. congressional districts from the Census Bureau's American Community Survey, we demonstrate that SR4-Fit can predict House election party outcomes with unprecedented accuracy and interpretability. Our results show that while the majority party remains the strongest predictor, SR4-Fit has revealed intrinsic combinations of demographic factors that affect prediction outcomes that were unable to be interpreted in black-box algorithms such as random forests. The SR4-Fit algorithm surpasses both black-box models and existing interpretable rule-based algorithms such as RuleFit with respect to accuracy, simplicity, and robustness, generating stable and interpretable rule sets while maintaining superior predictive performance, thus addressing the traditional trade-off between model interpretability and predictive capability in electoral forecasting. To further validate SR4-Fit's performance, we also apply it to six additional publicly available classification datasets, like the breast cancer, Ecoli, page blocks, Pima Indians, vehicle, and yeast datasets, and find similar results.
comment: 8 pages, 2 figures, 7 tables, to appear in the 24th IEEE AMLA International Conference on Machine Learning and Applications (ICMLA'25)
☆ Do It for HER: First-Order Temporal Logic Reward Specification in Reinforcement Learning (Extended Version) AAAI 2026
In this work, we propose a novel framework for the logical specification of non-Markovian rewards in Markov Decision Processes (MDPs) with large state spaces. Our approach leverages Linear Temporal Logic Modulo Theories over finite traces (LTLfMT), a more expressive extension of classical temporal logic in which predicates are first-order formulas of arbitrary first-order theories rather than simple Boolean variables. This enhanced expressiveness enables the specification of complex tasks over unstructured and heterogeneous data domains, promoting a unified and reusable framework that eliminates the need for manual predicate encoding. However, the increased expressive power of LTLfMT introduces additional theoretical and computational challenges compared to standard LTLf specifications. We address these challenges from a theoretical standpoint, identifying a fragment of LTLfMT that is tractable but sufficiently expressive for reward specification in an infinite-state-space context. From a practical perspective, we introduce a method based on reward machines and Hindsight Experience Replay (HER) to translate first-order logic specifications and address reward sparsity. We evaluate this approach to a continuous-control setting using Non-Linear Arithmetic Theory, showing that it enables natural specification of complex tasks. Experimental results show how a tailored implementation of HER is fundamental in solving tasks with complex goals.
comment: This is the extended version of a paper accepted at AAAI 2026
☆ Cross-Modal Redundancy and the Geometry of Vision-Language Embeddings ICLR 2026
Vision-language models (VLMs) align images and text with remarkable success, yet the geometry of their shared embedding space remains poorly understood. To probe this geometry, we begin from the Iso-Energy Assumption, which exploits cross-modal redundancy: a concept that is truly shared should exhibit the same average energy across modalities. We operationalize this assumption with an Aligned Sparse Autoencoder (SAE) that encourages energy consistency during training while preserving reconstruction. We find that this inductive bias changes the SAE solution without harming reconstruction, giving us a representation that serves as a tool for geometric analysis. Sanity checks on controlled data with known ground truth confirm that alignment improves when Iso-Energy holds and remains neutral when it does not. Applied to foundational VLMs, our framework reveals a clear structure with practical consequences: (i) sparse bimodal atoms carry the entire cross-modal alignment signal; (ii) unimodal atoms act as modality-specific biases and fully explain the modality gap; (iii) removing unimodal atoms collapses the gap without harming performance; (iv) restricting vector arithmetic to the bimodal subspace yields in-distribution edits and improved retrieval. These findings suggest that the right inductive bias can both preserve model fidelity and render the latent geometry interpretable and actionable.
comment: Published as a conference paper at ICLR 2026
☆ Addressing the Waypoint-Action Gap in End-to-End Autonomous Driving via Vehicle Motion Models
End-to-End Autonomous Driving (E2E-AD) systems are typically grouped by the nature of their outputs: (i) waypoint-based models that predict a future trajectory, and (ii) action-based models that directly output throttle, steer and brake. Most recent benchmark protocols and training pipelines are waypoint-based, which makes action-based policies harder to train and compare, slowing their progress. To bridge this waypoint-action gap, we propose a novel, differentiable vehicle-model framework that rolls out predicted action sequences to their corresponding ego-frame waypoint trajectories while supervising in waypoint space. Our approach enables action-based architectures to be trained and evaluated, for the first time, within waypoint-based benchmarks without modifying the underlying evaluation protocol. We extensively evaluate our framework across multiple challenging benchmarks and observe consistent improvements over the baselines. In particular, on NAVSIM \texttt{navhard} our approach achieves state-of-the-art performance. Our code will be made publicly available upon acceptance.
comment: 8 pages, 3 figures
☆ Emergent Low-Rank Training Dynamics in MLPs with Smooth Activations
Recent empirical evidence has demonstrated that the training dynamics of large-scale deep neural networks occur within low-dimensional subspaces. While this has inspired new research into low-rank training, compression, and adaptation, theoretical justification for these dynamics in nonlinear networks remains limited. %compared to deep linear settings. To address this gap, this paper analyzes the learning dynamics of multi-layer perceptrons (MLPs) under gradient descent (GD). We demonstrate that the weight dynamics concentrate within invariant low-dimensional subspaces throughout training. Theoretically, we precisely characterize these invariant subspaces for two-layer networks with smooth nonlinear activations, providing insight into their emergence. Experimentally, we validate that this phenomenon extends beyond our theoretical assumptions. Leveraging these insights, we empirically show there exists a low-rank MLP parameterization that, when initialized within the appropriate subspaces, matches the classification performance of fully-parameterized counterparts on a variety of classification tasks.
comment: 41 pages, 15 figures
☆ Multi-Way Representation Alignment
The Platonic Representation Hypothesis suggests that independently trained neural networks converge to increasingly similar latent spaces. However, current strategies for mapping these representations are inherently pairwise, scaling quadratically with the number of models and failing to yield a consistent global reference. In this paper, we study the alignment of $M \ge 3$ models. We first adapt Generalized Procrustes Analysis (GPA) to construct a shared orthogonal universe that preserves the internal geometry essential for tasks like model stitching. We then show that strict isometric alignment is suboptimal for retrieval, where agreement-maximizing methods like Canonical Correlation Analysis (CCA) typically prevail. To bridge this gap, we finally propose Geometry-Corrected Procrustes Alignment (GCPA), which establishes a robust GPA-based universe followed by a post-hoc correction for directional mismatch. Extensive experiments demonstrate that GCPA consistently improves any-to-any retrieval while retaining a practical shared reference space.
☆ Learning Rate Scaling across LoRA Ranks and Transfer to Full Finetuning
Low-Rank Adaptation (LoRA) is a standard tool for parameter-efficient finetuning of large models. While it induces a small memory footprint, its training dynamics can be surprisingly complex as they depend on several hyperparameters such as initialization, adapter rank, and learning rate. In particular, it is unclear how the optimal learning rate scales with adapter rank, which forces practitioners to re-tune the learning rate whenever the rank is changed. In this paper, we introduce Maximal-Update Adaptation ($μ$A), a theoretical framework that characterizes how the "optimal" learning rate should scale with model width and adapter rank to produce stable, non-vanishing feature updates under standard configurations. $μ$A is inspired from the Maximal-Update Parametrization ($μ$P) in pretraining. Our analysis leverages techniques from hyperparameter transfer and reveals that the optimal learning rate exhibits different scaling patterns depending on initialization and LoRA scaling factor. Specifically, we identify two regimes: one where the optimal learning rate remains roughly invariant across ranks, and another where it scales inversely with rank. We further identify a configuration that allows learning rate transfer from LoRA to full finetuning, drastically reducing the cost of learning rate tuning for full finetuning. Experiments across language, vision, vision--language, image generation, and reinforcement learning tasks validate our scaling rules and show that learning rates tuned on LoRA transfer reliably to full finetuning.
☆ AnyThermal: Towards Learning Universal Representations for Thermal Perception IEEE
We present AnyThermal, a thermal backbone that captures robust task-agnostic thermal features suitable for a variety of tasks such as cross-modal place recognition, thermal segmentation, and monocular depth estimation using thermal images. Existing thermal backbones that follow task-specific training from small-scale data result in utility limited to a specific environment and task. Unlike prior methods, AnyThermal can be used for a wide range of environments (indoor, aerial, off-road, urban) and tasks, all without task-specific training. Our key insight is to distill the feature representations from visual foundation models such as DINOv2 into a thermal encoder using thermal data from these multiple environments. To bridge the diversity gap of the existing RGB-Thermal datasets, we introduce the TartanRGBT platform, the first open-source data collection platform with synced RGB-Thermal image acquisition. We use this payload to collect the TartanRGBT dataset - a diverse and balanced dataset collected in 4 environments. We demonstrate the efficacy of AnyThermal and TartanRGBT, achieving state-of-the-art results with improvements of up to 36% across diverse environments and downstream tasks on existing datasets.
comment: Accepted at IEEE ICRA (International Conference on Robotics & Automation) 2026
☆ $f$-FUM: Federated Unlearning via min--max and $f$-divergence
Federated Learning (FL) has emerged as a powerful paradigm for collaborative machine learning across decentralized data sources, preserving privacy by keeping data local. However, increasing legal and ethical demands, such as the "right to be forgotten", and the need to mitigate data poisoning attacks have underscored the urgent necessity for principled data unlearning in FL. Unlike centralized settings, the distributed nature of FL complicates the removal of individual data contributions. In this paper, we propose a novel federated unlearning framework formulated as a min-max optimization problem, where the objective is to maximize an $f$-divergence between the model trained with all data and the model retrained without specific data points, while minimizing the degradation on retained data. Our framework could act like a plugin and be added to almost any federated setup, unlike SOTA methods like (\cite{10269017} which requires model degradation in server, or \cite{khalil2025notfederatedunlearningweight} which requires to involve model architecture and model weights). This formulation allows for efficient approximation of data removal effects in a federated setting. We provide empirical evaluations to show that our method achieves significant speedups over naive retraining, with minimal impact on utility.
comment: 16 pages, 1 figure
☆ To 2:4 Sparsity and Beyond: Neuron-level Activation Function to Accelerate LLM Pre-Training
Trainings of Large Language Models are generally bottlenecked by matrix multiplications. In the Transformer architecture, a large portion of these operations happens in the Feed Forward Network (FFN), and this portion increases for larger models, up to 50% of the total pretraining floating point operations. We show that we can leverage hardware-accelerated sparsity to accelerate all matrix multiplications in the FFN, with 2:4 sparsity for weights and v:n:m (Venom) sparsity for activations. Our recipe relies on sparse training steps to accelerate a large part of the pretraining, associated with regular dense training steps towards the end. Overall, models trained with this approach exhibit the same performance on our quality benchmarks, and can speed up training end-to-end by 1.4 to 1.7x. This approach is applicable to all NVIDIA GPUs starting with the A100 generation, and is orthogonal to common optimization techniques, such as, quantization, and can also be applied to mixture-of-experts model architectures.
☆ Large Language Model Reasoning Failures
Large Language Models (LLMs) have exhibited remarkable reasoning capabilities, achieving impressive results across a wide range of tasks. Despite these advances, significant reasoning failures persist, occurring even in seemingly simple scenarios. To systematically understand and address these shortcomings, we present the first comprehensive survey dedicated to reasoning failures in LLMs. We introduce a novel categorization framework that distinguishes reasoning into embodied and non-embodied types, with the latter further subdivided into informal (intuitive) and formal (logical) reasoning. In parallel, we classify reasoning failures along a complementary axis into three types: fundamental failures intrinsic to LLM architectures that broadly affect downstream tasks; application-specific limitations that manifest in particular domains; and robustness issues characterized by inconsistent performance across minor variations. For each reasoning failure, we provide a clear definition, analyze existing studies, explore root causes, and present mitigation strategies. By unifying fragmented research efforts, our survey provides a structured perspective on systemic weaknesses in LLM reasoning, offering valuable insights and guiding future research towards building stronger, more reliable, and robust reasoning capabilities. We additionally release a comprehensive collection of research works on LLM reasoning failures, as a GitHub repository at https://github.com/Peiyang-Song/Awesome-LLM-Reasoning-Failures, to provide an easy entry point to this area.
comment: Repository: https://github.com/Peiyang-Song/Awesome-LLM-Reasoning-Failures. Published at TMLR 2026 with Survey Certification
☆ Optimal rates for density and mode estimation with expand-and-sparsify representations AISTATS 2026
Expand-and-sparsify representations are a class of theoretical models that capture sparse representation phenomena observed in the sensory systems of many animals. At a high level, these representations map an input $x \in \mathbb{R}^d$ to a much higher dimension $m \gg d$ via random linear projections before zeroing out all but the $k \ll m$ largest entries. The result is a $k$-sparse vector in $\{0,1\}^m$. We study the suitability of this representation for two fundamental statistical problems: density estimation and mode estimation. For density estimation, we show that a simple linear function of the expand-and-sparsify representation produces an estimator with minimax-optimal $\ell_{\infty}$ convergence rates. In mode estimation, we provide simple algorithms on top of our density estimator that recover single or multiple modes at optimal rates up to logarithmic factors under mild conditions.
comment: Accepted at AISTATS 2026
☆ Know Your Scientist: KYC as Biosecurity Infrastructure
Biological AI tools for protein design and structure prediction are advancing rapidly, creating dual-use risks that existing safeguards cannot adequately address. Current model-level restrictions, including keyword filtering, output screening, and content-based access denials, are fundamentally ill-suited to biology, where reliable function prediction remains beyond reach and novel threats evade detection by design. We propose a three-tier Know Your Customer (KYC) framework, inspired by anti-money laundering (AML) practices in the financial sector, that shifts governance from content inspection to user verification and monitoring. Tier I leverages research institutions as trust anchors to vouch for affiliated researchers and assume responsibility for vetting. Tier II applies output screening through sequence homology searches and functional annotation. Tier III monitors behavioral patterns to detect anomalies inconsistent with declared research purposes. This layered approach preserves access for legitimate researchers while raising the cost of misuse through institutional accountability and traceability. The framework can be implemented immediately using existing institutional infrastructure, requiring no new legislation or regulatory mandates.
☆ SCONE: A Practical, Constraint-Aware Plug-in for Latent Encoding in Learned DNA Storage
DNA storage has matured from concept to practical stage, yet its integration with neural compression pipelines remains inefficient. Early DNA encoders applied redundancy-heavy constraint layers atop raw binary data - workable but primitive. Recent neural codecs compress data into learned latent representations with rich statistical structure, yet still convert these latents to DNA via naive binary-to-quaternary transcoding, discarding the entropy model's optimization. This mismatch undermines compression efficiency and complicates the encoding stack. A plug-in module that collapses latent compression and DNA encoding into a single step. SCONE performs quaternary arithmetic coding directly on the latent space in DNA bases. Its Constraint-Aware Adaptive Coding module dynamically steers the entropy encoder's learned probability distribution to enforce biochemical constraints - Guanine-Cytosine (GC) balance and homopolymer suppression - deterministically during encoding, eliminating post-hoc correction. The design preserves full reversibility and exploits the hyperprior model's learned priors without modification. Experiments show SCONE achieves near-perfect constraint satisfaction with negligible computational overhead (<2% latency), establishing a latent-agnostic interface for end-to-end DNA-compatible learned codecs.
☆ Latent Structure Emergence in Diffusion Models via Confidence-Based Filtering
Diffusion models rely on a high-dimensional latent space of initial noise seeds, yet it remains unclear whether this space contains sufficient structure to predict properties of the generated samples, such as their classes. In this work, we investigate the emergence of latent structure through the lens of confidence scores assigned by a pre-trained classifier to generated samples. We show that while the latent space appears largely unstructured when considering all noise realizations, restricting attention to initial noise seeds that produce high-confidence samples reveals pronounced class separability. By comparing class predictability across noise subsets of varying confidence and examining the class separability of the latent space, we find evidence of class-relevant latent structure that becomes observable only under confidence-based filtering. As a practical implication, we discuss how confidence-based filtering enables conditional generation as an alternative to guidance-based methods.
☆ MoSE: Mixture of Slimmable Experts for Efficient and Adaptive Language Models
Mixture-of-Experts (MoE) models scale large language models efficiently by sparsely activating experts, but once an expert is selected, it is executed fully. Hence, the trade-off between accuracy and computation in an MoE model typically exhibits large discontinuities. We propose Mixture of Slimmable Experts (MoSE), an MoE architecture in which each expert has a nested, slimmable structure that can be executed at variable widths. This enables conditional computation not only over which experts are activated, but also over how much of each expert is utilized. Consequently, a single pretrained MoSE model can support a more continuous spectrum of accuracy-compute trade-offs at inference time. We present a simple and stable training recipe for slimmable experts under sparse routing, combining multi-width training with standard MoE objectives. During inference, we explore strategies for runtime width determination, including a lightweight test-time training mechanism that learns how to map router confidence/probabilities to expert widths under a fixed budget. Experiments on GPT models trained on OpenWebText demonstrate that MoSE matches or improves upon standard MoE at full width and consistently shifts the Pareto frontier for accuracy vs. cost, achieving comparable performance with significantly fewer FLOPs.
☆ Optimistic Training and Convergence of Q-Learning -- Extended Version
In recent work it is shown that Q-learning with linear function approximation is stable, in the sense of bounded parameter estimates, under the $(\varepsilon,κ)$-tamed Gibbs policy; $κ$ is inverse temperature, and $\varepsilon>0$ is introduced for additional exploration. Under these assumptions it also follows that there is a solution to the projected Bellman equation (PBE). Left open is uniqueness of the solution, and criteria for convergence outside of the standard tabular or linear MDP settings. The present work extends these results to other variants of Q-learning, and clarifies prior work: a one dimensional example shows that under an oblivious policy for training there may be no solution to the PBE, or multiple solutions, and in each case the algorithm is not stable under oblivious training. The main contribution is that far more structure is required for convergence. An example is presented for which the basis is ideal, in the sense that the true Q-function is in the span of the basis. However, there are two solutions to the PBE under the greedy policy, and hence also for the $(\varepsilon,κ)$-tamed Gibbs policy for all sufficiently small $\varepsilon>0$ and $κ\ge 1$.
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Transmuting prompts into weights
A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving steering vectors from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to token-dependent implicit weight updates (Dherin et. al, 2025), we derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector-and-matrix-based model editing techniques and offer a direct, computationally-grounded method for transmuting textual input into reusable weight updates.
♻ ☆ Informed Asymmetric Actor-Critic: Leveraging Privileged Signals Beyond Full-State Access
Asymmetric actor-critic methods are widely used in partially observable reinforcement learning, but typically assume full state observability to condition the critic during training, which is often unrealistic in practice. We introduce the informed asymmetric actor-critic framework, allowing the critic to be conditioned on arbitrary state-dependent privileged signals without requiring access to the full state. We show that any such privileged signal yields unbiased policy gradient estimates, substantially expanding the set of admissible privileged information. This raises the problem of selecting the most adequate privileged information in order to improve learning. For this purpose, we propose two novel informativeness criteria: a dependence-based test that can be applied prior to training, and a criterion based on improvements in value prediction accuracy that can be applied post-hoc. Empirical results on partially observable benchmark tasks and synthetic environments demonstrate that carefully selected privileged signals can match or outperform full-state asymmetric baselines while relying on strictly less state information.
comment: 11 pages, 26 pages total, 3 figures
♻ ☆ Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
♻ ☆ Energy Guided smoothness to improve Robustness in Graph Classification
Graph Neural Networks (GNNs) are powerful at solving graph classification tasks, yet applied problems often contain noisy labels. In this work, we study GNN robustness to label noise, demonstrate GNN failure modes when models struggle to generalise on low-order graphs, low label coverage, or when a model is over-parameterized. We establish both empirical and theoretical links between GNN robustness and the reduction of the total Dirichlet Energy of learned node representations, which encapsulates the hypothesized GNN smoothness inductive bias. Finally, we introduce two training strategies to enhance GNN robustness: (1) by incorporating a novel inductive bias in the weight matrices through the removal of negative eigenvalues, connected to Dirichlet Energy minimization; (2) by extending to GNNs a loss penalty that promotes learned smoothness. Importantly, neither approach negatively impacts performance in noise-free settings, supporting our hypothesis that the source of GNNs robustness is their smoothness inductive bias.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Separation-Utility Pareto Frontier: An Information-Theoretic Characterization
We study the Pareto frontier (optimal trade-off) between utility and separation, a fairness criterion requiring predictive independence from sensitive attributes conditional on the true outcome. Through an information-theoretic lens, we prove a characterization of the utility-separation Pareto frontier, establish its concavity, and thereby prove the increasing marginal cost of separation in terms of utility. In addition, we characterize the conditions under which this trade-off becomes strict, providing a guide for trade-off selection in practice. Based on the theoretical characterization, we develop an empirical regularizer based on conditional mutual information (CMI) between predictions and sensitive attributes given the true outcome. The CMI regularizer is compatible with any deep model trained via gradient-based optimization and serves as a scalar monitor of residual separation violations, offering tractable guarantees during training. Finally, numerical experiments support our theoretical findings: across COMPAS, UCI Adult, UCI Bank, and CelebA, the proposed method substantially reduces separation violations while matching or exceeding the utility of established baseline methods. This study thus offers a provable, stable, and flexible approach to enforcing separation in deep learning.
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Flexible inference for animal learning rules using neural networks
Understanding how animals learn is a central challenge in neuroscience, with growing relevance to the development of animal- or human-aligned artificial intelligence. However, existing approaches tend to assume fixed parametric forms for the learning rule (e.g., Q-learning, policy gradient), which may not accurately describe the complex forms of learning employed by animals in realistic settings. Here we address this gap by developing a framework to infer learning rules directly from behavioral data collected during de novo task learning. We assume that animals follow a decision policy parameterized by a generalized linear model (GLM), and we model their learning rule -- the mapping from task covariates to per-trial weight updates -- using a deep neural network (DNN). This formulation allows flexible, data-driven inference of learning rules while maintaining an interpretable form of the decision policy itself. To capture more complex learning dynamics, we introduce a recurrent neural network (RNN) variant that relaxes the Markovian assumption that learning depends solely on covariates of the current trial, allowing for learning rules that integrate information over multiple trials. Simulations demonstrate that the framework can recover ground-truth learning rules. We applied our DNN and RNN-based methods to a large behavioral dataset from mice learning to perform a sensory decision-making task and found that they outperformed traditional RL learning rules at predicting the learning trajectories of held-out mice. The inferred learning rules exhibited reward-history-dependent learning dynamics, with larger updates following sequences of rewarded trials. Overall, these methods provide a flexible framework for inferring learning rules from behavioral data in de novo learning tasks, setting the stage for improved animal training protocols and the development of behavioral digital twins.
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ Learning to summarize user information for personalized reinforcement learning from human feedback
As everyday use cases of large language model (LLM) AI assistants have expanded, it is becoming increasingly important to personalize responses to align to different users' preferences and goals. While reinforcement learning from human feedback (RLHF) is effective at improving LLMs to be generally more helpful and fluent, it does not account for variability across users, as it models the entire user population with a single reward model, meaning it assumes that everyone's preferences are the same. We present a novel framework, Preference Learning Using Summarization (PLUS), that uses reinforcement learning (RL) to learn to produce text-based summaries of each user's preferences, characteristics, and past conversations. These summaries condition the reward model, enabling it to make personalized predictions about the types of responses valued by each user. Both the user-summarization model and reward model are trained simultaneously, creating an online co-adaptation loop. We show that in contrast to the standard Bradley-Terry model, summaries produced by PLUS capture diverse aspects of user preferences, achieving a 11-77/% improvement in reward model accuracy. Key strengths of PLUS are: (1) robust performance with new users and conversation topics, achieving a 25\% improvement over the best personalized reward model technique used for RLHF; (2) zero-shot personalization with state-of-the-art proprietary models like GPT-4 (e.g., PLUS-summary-conditioned responses achieved a 72\% win rate compared to 28% for default GPT-4o); (3) learning from flexible user contexts beyond preference labels, and (4) interpretable representation of users, enabling greater transparency and user control in pluralistic LLM alignment.
comment: 10 pages for main text, 10 pages for appendix
♻ ☆ A Sketch-and-Project Analysis of Subsampled Natural Gradient Algorithms
Subsampled natural gradient descent (SNG) has been used to enable high-precision scientific machine learning, but standard analyses based on stochastic preconditioning fail to provide insight into realistic small-sample settings. We overcome this limitation by instead analyzing SNG as a sketch-and-project method. Motivated by this lens, we discard the usual theoretical proxy which decouples gradients and preconditioners using two independent mini-batches, and we replace it with a new proxy based on squared volume sampling. Under this new proxy we show that the expectation of the SNG direction becomes equal to a preconditioned gradient descent step even in the presence of coupling, leading to (i) global convergence guarantees when using a single mini-batch of any size, and (ii) an explicit characterization of the convergence rate in terms of quantities related to the sketch-and-project structure. These findings in turn yield new insights into small-sample settings, for example by suggesting that the advantage of SNG over SGD is that it can more effectively exploit spectral decay in the model Jacobian. We also extend these ideas to explain a popular structured momentum scheme for SNG, known as SPRING, by showing that it arises naturally from accelerated sketch-and-project methods.
comment: 21 pages, 6 figures
♻ ☆ Alignment-Aware Model Adaptation via Feedback-Guided Optimization
Fine-tuning is the primary mechanism for adapting foundation models to downstream tasks; however, standard approaches largely optimize task objectives in isolation and do not account for secondary yet critical alignment objectives (e.g., safety and hallucination avoidance). As a result, downstream fine-tuning can degrade alignment and fail to correct pre-existing misaligned behavior. We propose an alignment-aware fine-tuning framework that integrates feedback from an external alignment signal through policy-gradient-based regularization. Our method introduces an adaptive gating mechanism that dynamically balances supervised and alignment-driven gradients on a per-sample basis, prioritizing uncertain or misaligned cases while allowing well-aligned examples to follow standard supervised updates. The framework further learns abstention behavior for fully misaligned inputs, incorporating conservative responses directly into the fine-tuned model. Experiments on general and domain-specific instruction-tuning benchmarks demonstrate consistent reductions in harmful and hallucinated outputs without sacrificing downstream task performance. Additional analyses show robustness to adversarial fine-tuning, prompt-based attacks, and unsafe initializations, establishing adaptively gated alignment optimization as an effective approach for alignment-preserving and alignment-recovering model adaptation.
♻ ☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) exhibit a well-known texture bias, prioritizing local patterns over global shapes - a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this limitation, we propose a data-driven metric that quantifies the shape-texture balance within a dataset by computing the Structural Similarity Index (SSIM) between an image's luminance (Y) channel and its L0-smoothed counterpart. Building on this metric, we introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results demonstrate consistent accuracy improvements on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
♻ ☆ The Enhanced Physics-Informed Kolmogorov-Arnold Networks: Applications of Newton's Laws in Financial Deep Reinforcement Learning (RL) Algorithms
Deep Reinforcement Learning (DRL), a subset of machine learning focused on sequential decision-making, has emerged as a powerful approach for tackling financial trading problems. In finance, DRL is commonly used either to generate discrete trade signals or to determine continuous portfolio allocations. In this work, we propose a novel reinforcement learning framework for portfolio optimization that incorporates Physics-Informed Kolmogorov-Arnold Networks (PIKANs) into several DRL algorithms. The approach replaces conventional multilayer perceptrons with Kolmogorov-Arnold Networks (KANs) in both actor and critic components-utilizing learnable B-spline univariate functions to achieve parameter-efficient and more interpretable function approximation. During actor updates, we introduce a physics-informed regularization loss that promotes second-order temporal consistency between observed return dynamics and the action-induced portfolio adjustments. The proposed framework is evaluated across three equity markets-China, Vietnam, and the United States, covering both emerging and developed economies. Across all three markets, PIKAN-based agents consistently deliver higher cumulative and annualized returns, superior Sharpe and Calmar ratios, and more favorable drawdown characteristics compared to both standard DRL baselines and classical online portfolio-selection methods. This yields more stable training, higher Sharpe ratios, and superior performance compared to traditional DRL counterparts. The approach is particularly valuable in highly dynamic and noisy financial markets, where conventional DRL often suffers from instability and poor generalization.
♻ ☆ Multi-Agent Inverted Transformer for Flight Trajectory Prediction IEEE
Flight trajectory prediction for multiple aircraft is essential and provides critical insights into how aircraft navigate within current air traffic flows. However, predicting multi-agent flight trajectories is inherently challenging. One of the major difficulties is modeling both the individual aircraft behaviors over time and the complex interactions between flights. Generating explainable prediction outcomes is also a challenge. Therefore, we propose a Multi-Agent Inverted Transformer, MAIFormer, as a novel neural architecture that predicts multi-agent flight trajectories. The proposed framework features two key attention modules: (i) masked multivariate attention, which captures spatio-temporal patterns of individual aircraft, and (ii) agent attention, which models the social patterns among multiple agents in complex air traffic scenes. We evaluated MAIFormer using a real-world automatic dependent surveillance-broadcast flight trajectory dataset from the terminal airspace of Incheon International Airport in South Korea. The experimental results show that MAIFormer achieves the best performance across multiple metrics and outperforms other methods. In addition, MAIFormer produces prediction outcomes that are interpretable from a human perspective, which improves both the transparency of the model and its practical utility in air traffic control.
comment: 11 pages, 8 figures, submitted for IEEE Transactions on Intelligent Transportation System
♻ ☆ The Double Life of Code World Models: Provably Unmasking Malicious Behavior Through Execution Traces
Large language models (LLMs) increasingly generate code with minimal human oversight, raising critical concerns about backdoor injection and malicious behavior. We present Cross-Trace Verification Protocol (CTVP), a novel AI control framework that verifies untrusted code-generating models through semantic orbit analysis. Rather than directly executing potentially malicious code, CTVP leverages the model's own predictions of execution traces across semantically equivalent program transformations. By analyzing consistency patterns in these predicted traces, we detect behavioral anomalies indicative of backdoors. Our approach introduces the Adversarial Robustness Quotient (ARQ), which quantifies the computational cost of verification relative to baseline generation, demonstrating exponential growth with orbit size. Theoretical analysis establishes information-theoretic bounds showing non-gamifiability - adversaries cannot improve through training due to fundamental space complexity constraints. This work demonstrates that semantic orbit analysis provides a theoretically grounded approach to AI control for code generation tasks, though practical deployment requires addressing the high false positive rates observed in initial evaluations.
comment: 13 Pages, A Preprint
♻ ☆ Hidden in Plain Sight -- Class Competition Focuses Attribution Maps
Attribution methods reveal which input features a neural network uses for a prediction, adding transparency to their decisions. A common problem is that these attributions seem unspecific, highlighting both important and irrelevant features. We revisit the common attribution pipeline and observe that using logits as attribution target is a main cause of this phenomenon. We show that the solution is in plain sight: considering distributions of attributions over multiple classes using existing attribution methods yields specific and fine-grained attributions. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, this improves the ability of 18 attribution methods across 7 architectures up to 2x, agnostic to model architecture.
♻ ☆ A Representer Theorem for Hawkes Processes via Penalized Least Squares Minimization ICLR 2026
The representer theorem is a cornerstone of kernel methods, which aim to estimate latent functions in reproducing kernel Hilbert spaces (RKHSs) in a nonparametric manner. Its significance lies in converting inherently infinite-dimensional optimization problems into finite-dimensional ones over dual coefficients, thereby enabling practical and computationally tractable algorithms. In this paper, we address the problem of estimating the latent triggering kernels--functions that encode the interaction structure between events--for linear multivariate Hawkes processes based on observed event sequences within an RKHS framework. We show that, under the principle of penalized least squares minimization, a novel form of representer theorem emerges: a family of transformed kernels can be defined via a system of simultaneous integral equations, and the optimal estimator of each triggering kernel is expressed as a linear combination of these transformed kernels evaluated at the data points. Remarkably, the dual coefficients are all analytically fixed to unity, obviating the need to solve a costly optimization problem to obtain the dual coefficients. This leads to a highly efficient estimator capable of handling large-scale data more effectively than conventional nonparametric approaches. Empirical evaluations on synthetic datasets reveal that the proposed method attains competitive predictive accuracy while substantially improving computational efficiency over existing state-of-the-art kernel method-based estimators.
comment: Accepted to ICLR 2026
♻ ☆ Data Heterogeneity and Forgotten Labels in Split Federated Learning AAAI 2026
In Split Federated Learning (SFL), the clients collaboratively train a model with the help of a server by splitting the model into two parts. Part-1 is trained locally at each client and aggregated by the aggregator at the end of each round. Part-2 is trained at a server that sequentially processes the intermediate activations received from each client. We study the phenomenon of catastrophic forgetting (CF) in SFL in the presence of data heterogeneity. In detail, due to the nature of SFL, local updates of part-1 may drift away from global optima, while part-2 is sensitive to the processing sequence, similar to forgetting in continual learning (CL). Specifically, we observe that the trained model performs better in classes (labels) seen at the end of the sequence. We investigate this phenomenon with emphasis on key aspects of SFL, such as the processing order at the server and the cut layer. Based on our findings, we propose Hydra, a novel mitigation method inspired by multi-head neural networks and adapted for the SFL setting. Extensive numerical evaluations show that Hydra outperforms baselines and methods from the literature.
comment: A shorter version of this paper will appear in the proceedings of AAAI 2026
♻ ☆ Minimax optimal differentially private synthetic data for smooth queries
Differentially private synthetic data enables the sharing and analysis of sensitive datasets while providing rigorous privacy guarantees for individual contributors. A central challenge is to achieve strong utility guarantees for meaningful downstream analysis. Many existing methods ensure uniform accuracy over broad query classes, such as all Lipschitz functions, but this level of generality often leads to suboptimal rates for statistics of practical interest. Since many common data analysis queries exhibit smoothness beyond what worst-case Lipschitz bounds capture, we ask whether exploiting this additional structure can yield improved utility. We study the problem of generating $(\varepsilon,δ)$-differentially private synthetic data from a dataset of size $n$ supported on the hypercube $[-1,1]^d$, with utility guarantees uniformly for all smooth queries having bounded derivatives up to order $k$. We propose a polynomial-time algorithm that achieves a minimax error rate of $n^{-\min \{1, \frac{k}{d}\}}$, up to a $\log(n)$ factor. This characterization uncovers a phase transition at $k=d$. Our results generalize the Chebyshev moment matching framework of (Musco et al., 2025; Wang et al., 2016) and strictly improve the error rates for $k$-smooth queries established in (Wang et al., 2016). Moreover, we establish the first minimax lower bound for the utility of $(\varepsilon,δ)$-differentially private synthetic data with respect to $k$-smooth queries, extending the Wasserstein lower bound for $\varepsilon$-differential privacy in (Boedihardjo et al., 2024).
comment: 27 pages
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
♻ ☆ Sample Complexity of Composite Quantum Hypothesis Testing
This paper investigates symmetric composite binary quantum hypothesis testing (QHT), where the goal is to determine which of two uncertainty sets contains an unknown quantum state. While asymptotic error exponents for this problem are well-studied, the finite-sample regime remains poorly understood. We bridge this gap by characterizing the sample complexity -- the minimum number of state copies required to achieve a target error level. Specifically, we derive lower bounds that generalize the sample complexity of simple QHT and introduce new upper bounds for various uncertainty sets, including of both finite and infinite cardinalities. Notably, our upper and lower bounds match up to universal constants, providing a tight characterization of the sample complexity. Finally, we extend our analysis to the differentially private setting, establishing the sample complexity for privacy-preserving composite QHT.
comment: Under review
♻ ☆ Leveraging Whisper Embeddings for Audio-based Lyrics Matching ICASSP 2026
Audio-based lyrics matching can be an appealing alternative to other content-based retrieval approaches, but existing methods often suffer from limited reproducibility and inconsistent baselines. In this work, we introduce WEALY, a fully reproducible pipeline that leverages Whisper decoder embeddings for lyrics matching tasks. WEALY establishes robust and transparent baselines, while also exploring multimodal extensions that integrate textual and acoustic features. Through extensive experiments on standard datasets, we demonstrate that WEALY achieves a performance comparable to state-of-the-art methods that lack reproducibility. In addition, we provide ablation studies and analyses on language robustness, loss functions, and embedding strategies. This work contributes a reliable benchmark for future research, and underscores the potential of speech technologies for music information retrieval tasks.
comment: Accepted at ICASSP 2026 (IEEE International Conference on Acoustics, Speech and Signal Processing)
♻ ☆ Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
Diffusion Models (DMs) have achieved remarkable progress in generative modeling. However, the mismatch between the forward terminal distribution and reverse initial distribution introduces prior error, leading to deviations of sampling trajectories from the true distribution and severely limiting model performance. This issue further triggers cascading problems, including non-zero Signal-to-Noise Ratio, accumulated denoising errors, degraded generation quality, and constrained sampling efficiency. To address this issue, this paper proposes a prior error elimination framework based on Optimal Transport (OT). Specifically, an OT map from the reverse initial distribution to the forward terminal distribution is constructed to achieve precise matching of the two distributions. Meanwhile, the upper bound of the prior error is quantified using the Wasserstein distance, proving that the prior error can be effectively eliminated via the OT map. Additionally, by deriving the asymptotic consistency between dynamic OT and probability flow, this method is revealed to be highly compatible with the intrinsic mechanism of the diffusion process. Experimental results demonstrate that the proposed method completely eliminates the prior error both theoretically and practically, providing a universal and rigorous solution for optimizing the performance of DMs.
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
♻ ☆ Improved Generalization Bounds for Transductive Learning by Transductive Local Complexity and Its Applications ICML 2025
We introduce Transductive Local Complexity (TLC) to extend the classical Local Rademacher Complexity (LRC) to the transductive setting, incorporating substantial and novel components. Although LRC has been used to obtain sharp generalization bounds and minimax rates for inductive tasks such as classification and nonparametric regression, it has remained an open problem whether a localized Rademacher complexity framework can be effectively adapted to transductive learning to achieve sharp or nearly sharp bounds consistent with inductive results. We provide an affirmative answer via TLC. TLC is constructed by first deriving a new concentration inequality in Theorem 4.1 for the supremum of empirical processes capturing the gap between test and training losses, termed the test-train process, under uniform sampling without replacement, which leverages a novel combinatorial property of the test-train process and a new proof strategy applying the exponential Efron-Stein inequality twice. A subsequent peeling strategy applied to a new decomposition of the expectation of the test-train process and a new surrogate variance operator then yield excess risk bounds in the transductive setting that are nearly consistent with classical LRC-based inductive bounds up to a logarithmic gap. We further advance transductive learning through two applications: (1) for realizable transductive learning over binary-valued classes with finite VC dimension of $\dVC$ and $u \ge m \ge \dVC$, where $u$ and $m$ are the number of test features and training features, our Theorem 6.1 gives a nearly optimal bound $Θ(\dVC \log(me/\dVC)/m)$ matching the minimax rate $Θ(\dVC/m)$ up to $\log m$, resolving a decade-old open question; and (2) Theorem 6.2 presents a sharper excess risk bound for transductive kernel learning compared to the current state-of-the-art.
comment: The ICML 2025 conference version (https://openreview.net/pdf?id=NRVdvg7VMn) is a special case of this paper where the chain length is fixed at 2 (i.e.,$Q=2$, see Def. 5.1), and its main results follow directly from the results here. This paper further provides a nearly optimal excess risk bound for realizable transductive learning and a stronger bound for transductive kernel learning
♻ ☆ A Policy Gradient-Based Sequence-to-Sequence Method for Time Series Prediction
Sequence-to-sequence architectures built upon recurrent neural networks have become a standard choice for multi-step-ahead time series prediction. In these models, the decoder produces future values conditioned on contextual inputs, typically either actual historical observations (ground truth) or previously generated predictions. During training, feeding ground-truth values helps stabilize learning but creates a mismatch between training and inference conditions, known as exposure bias, since such true values are inaccessible during real-world deployment. On the other hand, using the model's own outputs as inputs at test time often causes errors to compound rapidly across prediction steps. To mitigate these limitations, we introduce a new training paradigm grounded in reinforcement learning: a policy gradient-based method to learn an adaptive input selection strategy for sequence-to-sequence prediction models. Auxiliary models first synthesize plausible input candidates for the decoder, and a trainable policy network optimized via policy gradients dynamically chooses the most beneficial inputs to maximize long-term prediction performance. Empirical evaluations on diverse time series datasets confirm that our approach enhances both accuracy and stability in multi-step forecasting compared to conventional methods.
♻ ☆ Device Association and Resource Allocation for Hierarchical Split Federated Learning in Space-Air-Ground Integrated Network IEEE
6G facilitates deployment of Federated Learning (FL) in the Space-Air-Ground Integrated Network (SAGIN), yet FL confronts challenges such as resource constrained and unbalanced data distribution. To address these issues, this paper proposes a Hierarchical Split Federated Learning (HSFL) framework and derives its upper bound of loss function. To minimize the weighted sum of training loss and latency, we formulate a joint optimization problem that integrates device association, model split layer selection, and resource allocation. We decompose the original problem into several subproblems, where an iterative optimization algorithm for device association and resource allocation based on brute-force split point search is proposed. Simulation results demonstrate that the proposed algorithm can effectively balance training efficiency and model accuracy for FL in SAGIN.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ SC3D: Dynamic and Differentiable Causal Discovery for Temporal and Instantaneous Graphs
Discovering causal structures from multivariate time series is a key problem because interactions span across multiple lags and possibly involve instantaneous dependencies. Additionally, the search space of the dynamic graphs is combinatorial in nature. In this study, we propose \textit{Stable Causal Dynamic Differentiable Discovery (SC3D)}, a two-stage differentiable framework that jointly learns lag-specific adjacency matrices and, if present, an instantaneous directed acyclic graph (DAG). In Stage 1, SC3D performs edge preselection through node-wise prediction to obtain masks for lagged and instantaneous edges, whereas Stage 2 refines these masks by optimizing a likelihood with sparsity along with enforcing acyclicity on the instantaneous block. Numerical results across synthetic and benchmark dynamical systems demonstrate that SC3D achieves improved stability and more accurate recovery of both lagged and instantaneous causal structures compared to existing temporal baselines.
comment: 8 pages
♻ ☆ How Data Mixing Shapes In-Context Learning: Asymptotic Equivalence for Transformers with MLPs NeurIPS 2025
Pretrained Transformers demonstrate remarkable in-context learning (ICL) capabilities, enabling them to adapt to new tasks from demonstrations without parameter updates. However, theoretical studies often rely on simplified architectures (e.g., omitting MLPs), plain data models (e.g., linear regression with isotropic inputs), and single-source training, limiting their relevance to realistic settings. In this work, we study ICL in pretrained Transformers with nonlinear MLP heads on nonlinear tasks drawn from multiple data sources with heterogeneous input, task, and noise distributions. We analyze a model where the MLP comprises two layers, with the first layer trained via a single gradient step and the second layer fully optimized. Under high-dimensional asymptotics, we prove that such models are equivalent in ICL error to structured polynomial predictors, leveraging results from the theory of Gaussian universality and orthogonal polynomials. This equivalence reveals that nonlinear MLPs meaningfully enhance ICL performance, particularly on nonlinear tasks, compared to linear baselines. It also enables a precise analysis of data mixing effects: we identify key properties of high-quality data sources (low noise, structured covariances) and show that feature learning emerges only when the task covariance exhibits sufficient structure. These results are validated empirically across various activation functions, model sizes, and data distributions. Finally, we experiment with a real-world scenario involving multilingual sentiment analysis where each language is treated as a different source. Our experimental results for this case exemplify how our findings extend to real-world cases. Overall, our work advances the theoretical foundations of ICL in Transformers and provides actionable insight into the role of architecture and data in ICL.
comment: NeurIPS 2025, 24 pages, 6 figures
♻ ☆ Streaming Operator Inference for Model Reduction of Large-Scale Dynamical Systems
Projection-based model reduction enables efficient simulation of complex dynamical systems by constructing low-dimensional surrogate models from high-dimensional data. The Operator Inference (OpInf) approach learns such reduced surrogate models through a two-step process: constructing a low-dimensional basis via Singular Value Decomposition (SVD) to compress the data, then solving a linear least-squares (LS) problem to infer reduced operators that govern the dynamics in this compressed space, all without access to the underlying code or full model operators, i.e., non-intrusively. Traditional OpInf operates as a batch learning method, where both the SVD and LS steps process all data simultaneously. This poses a barrier to deployment of the approach on large-scale applications where dataset sizes prevent the loading of all data into memory at once. Additionally, the traditional batch approach does not naturally allow model updates using new data acquired during online computation. To address these limitations, we propose Streaming OpInf, which learns reduced models from sequentially arriving data streams. Our approach employs incremental SVD for adaptive basis construction and recursive LS for streaming operator updates, eliminating the need to store complete data sets while enabling online model adaptation. The approach can flexibly combine different choices of streaming algorithms for numerical linear algebra: we systematically explore the impact of these choices both analytically and numerically to identify effective combinations for accurate reduced model learning. Numerical experiments on benchmark problems and a large-scale turbulent channel flow demonstrate that Streaming OpInf achieves accuracy comparable to batch OpInf while reducing memory requirements by over 99% and enabling dimension reductions exceeding 31,000x, resulting in orders-of-magnitude faster predictions.
♻ ☆ Thompson Sampling-Based Learning and Control for Unknown Dynamic Systems
Thompson sampling (TS) is a Bayesian randomized exploration strategy that samples options (e.g., system parameters or control laws) from the current posterior and then applies the selected option that is optimal for a task, thereby balancing exploration and exploitation; this makes TS effective for active learning-based controller design. However, TS relies on finite parametric representations, which limits its applicability to more general spaces, which are more commonly encountered in control system design. To address this issue, this work proposes a parameterization method for control law learning using reproducing kernel Hilbert spaces and designs a data-driven active learning control approach. Specifically, the proposed method treats the control law as an element in a function space, allowing the design of control laws without imposing restrictions on the system structure or the form of the controller. A TS framework is proposed in this work to reduce control costs through online exploration and exploitation, and the convergence guarantees are further provided for the learning process. Theoretical analysis shows that the proposed method learns the relationship between control laws and closed-loop performance metrics at an exponential rate, and the upper bound of control regret is also derived. Furthermore, the closed-loop stability of the proposed learning framework is analyzed. Numerical experiments on controlling unknown nonlinear systems validate the effectiveness of the proposed method.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ Entropic Risk-Aware Monte Carlo Tree Search
We propose a provably correct Monte Carlo tree search (MCTS) algorithm for solving risk-aware Markov decision processes (MDPs) with entropic risk measure (ERM) objectives. We provide a non-asymptotic analysis of our proposed algorithm, showing that the algorithm: (i) is correct in the sense that the empirical ERM obtained at the root node converges to the optimal ERM; and (ii) enjoys polynomial regret concentration. Our algorithm successfully exploits the dynamic programming formulations for solving risk-aware MDPs with ERM objectives introduced by previous works in the context of an upper confidence bound-based tree search algorithm. Finally, we provide a set of illustrative experiments comparing our risk-aware MCTS method against relevant baselines.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Local EGOP for Continuous Index Learning
We introduce the setting of continuous index learning, in which a function of many variables varies only along a small number of directions at each point. For efficient estimation, it is beneficial for a learning algorithm to adapt, near each point $x$, to the subspace that captures the local variability of the function $f$. We pose this task as kernel adaptation along a manifold with noise, and introduce Local EGOP learning, a recursive algorithm that utilizes the Expected Gradient Outer Product (EGOP) quadratic form as both a metric and inverse-covariance of our target distribution. We prove that Local EGOP learning adapts to the regularity of the function of interest, showing that under a supervised noisy manifold hypothesis, intrinsic dimensional learning rates are achieved for arbitrarily high-dimensional noise. Empirically, we compare our algorithm to the feature learning capabilities of deep learning. Additionally, we demonstrate improved regression quality compared to two-layer neural networks in the continuous single-index setting.
♻ ☆ Progressive multi-fidelity learning with neural networks for physical system predictions
Highly accurate datasets from numerical or physical experiments are often expensive and time-consuming to acquire, posing a significant challenge for applications that require precise evaluations, potentially across multiple scenarios and in real-time. Even building sufficiently accurate surrogate models can be extremely challenging with limited high-fidelity data. Conversely, less expensive, low-fidelity data can be computed more easily and encompass a broader range of scenarios. By leveraging multi-fidelity information, prediction capabilities of surrogates can be improved. However, in practical situations, data may be different in types, come from sources of different modalities, and not be concurrently available, further complicating the modeling process. To address these challenges, we introduce a progressive multi-fidelity surrogate model. This model can sequentially incorporate diverse data types using tailored encoders. Multi-fidelity regression from the encoded inputs to the target quantities of interest is then performed using neural networks. Input information progressively flows from lower to higher fidelity levels through two sets of connections: concatenations among all the encoded inputs, and additive connections among the final outputs. This dual connection system enables the model to exploit correlations among different datasets while ensuring that each level makes an additive correction to the previous level without altering it. This approach prevents performance degradation as new input data are integrated into the model and automatically adapts predictions based on the available inputs. We demonstrate the effectiveness of the approach on numerical benchmarks and a real-world case study, showing that it reliably integrates multi-modal data and provides accurate predictions, maintaining performance when generalizing across time and parameter variations.
♻ ☆ EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
♻ ☆ Hierarchical Subspaces of Policies for Continual Offline Reinforcement Learning
We consider a Continual Reinforcement Learning setup, where a learning agent must continuously adapt to new tasks while retaining previously acquired skill sets, with a focus on the challenge of avoiding forgetting past gathered knowledge and ensuring scalability with the growing number of tasks. Such issues prevail in autonomous robotics and video game simulations, notably for navigation tasks prone to topological or kinematic changes. To address these issues, we introduce HiSPO, a novel hierarchical framework designed specifically for continual learning in navigation settings from offline data. Our method leverages distinct policy subspaces of neural networks to enable flexible and efficient adaptation to new tasks while preserving existing knowledge. We demonstrate, through a careful experimental study, the effectiveness of our method in both classical MuJoCo maze environments and complex video game-like navigation simulations, showcasing competitive performances and satisfying adaptability with respect to classical continual learning metrics, in particular regarding the memory usage and efficiency.
♻ ☆ Symplectic convolutional neural networks
We propose a new symplectic convolutional neural network (CNN) architecture by leveraging symplectic neural networks, proper symplectic decomposition, and tensor techniques. Specifically, we first introduce a mathematically equivalent form of the convolution layer and then, using symplectic neural networks, we demonstrate a way to parameterize the layers of the CNN to ensure that the convolution layer remains symplectic. To construct a complete autoencoder, we introduce a symplectic pooling layer. We demonstrate the performance of the proposed neural network on three examples: the wave equation, the nonlinear Schrödinger (NLS) equation, and the sine-Gordon equation. The numerical results indicate that the symplectic CNN outperforms the linear symplectic autoencoder obtained via proper symplectic decomposition.
♻ ☆ High-probability Convergence Guarantees of Decentralized SGD
Convergence in high-probability (HP) has attracted increasing interest, due to implying exponentially decaying tail bounds and strong guarantees for individual runs of an algorithm. While many works study HP guarantees in centralized settings, much less is understood in the decentralized setup, where existing works require strong assumptions, like uniformly bounded gradients, or asymptotically vanishing noise. This results in a significant gap between the assumptions used to establish convergence in the HP and the mean-squared error (MSE) sense, and is also contrary to centralized settings, where it is known that $\mathtt{SGD}$ converges in HP under the same conditions on the cost function as needed for MSE convergence. Motivated by these observations, we study the HP convergence of Decentralized $\mathtt{SGD}$ ($\mathtt{DSGD}$) in the presence of light-tailed noise, providing several strong results. First, we show that $\mathtt{DSGD}$ converges in HP under the same conditions on the cost as in the MSE sense, removing the restrictive assumptions used in prior works. Second, our sharp analysis yields order-optimal rates for both non-convex and strongly convex costs. Third, we establish a linear speed-up in the number of users, leading to matching, or strictly better transient times than those obtained from MSE results, further underlining the tightness of our analysis. To the best of our knowledge, this is the first work that shows $\mathtt{DSGD}$ achieves a linear speed-up in the HP sense. Our relaxed assumptions and sharp rates stem from several technical results of independent interest, including a result on the variance-reduction effect of decentralized methods in the HP sense, as well as a novel bound on the MGF of strongly convex costs, which is of interest even in centralized settings. Finally, we provide experiments that validate our theory.
comment: 47 pages, 2 figures
♻ ☆ An Attention-based Feature Memory Design for Energy-Efficient Continual Learning
Tabular data streams are increasingly prevalent in real-time decision-making across healthcare, finance, and the Internet of Things, often generated and processed on resource-constrained edge and mobile devices. Continual learning (CL) enables models to learn sequentially from such streams while retaining previously acquired knowledge. While recent CL advances have made significant progress in mitigating catastrophic forgetting, the energy and memory efficiency of CL for tabular data streams remains largely unexplored. To address this gap, we propose AttenMLP, which integrates attention-based feature replay with context retrieval and sliding buffer updates within a minibatch training framework for streaming tabular learning. We evaluate AttenMLP against state-of-the-art (SOTA) tabular models on real-world concept drift benchmarks with temporal distribution shifts. Experimental results show that AttenMLP achieves accuracy comparable to strong baselines without replay, while substantially reducing energy consumption through tunable design choices. In particular, with the proposed attention-based feature memory design, AttenMLP costs a 0.062 decrease in final accuracy under the incremental concept drift dataset, while reducing energy usage up to 33.3\% compared to TabPFNv2. Under the abrupt concept drift dataset, AttenMLP reduces 1.47\% energy consumption compared to TabR, at the cost of a 0.038 decrease in final accuracy. Although ranking third in global efficiency, AttenMLP demonstrates energy-accuracy trade-offs across both abrupt and incremental concept drift scenarios compared to SOTA tabular models.
♻ ☆ Sharpness-Aware Minimization Can Hallucinate Minimizers
Sharpness-Aware Minimization (SAM) is widely used to seek flatter minima -- often linked to better generalization. In its standard implementation, SAM updates the current iterate using the loss gradient evaluated at a point perturbed by distance $ρ$ along the normalized gradient direction. We show that, for some choices of $ρ$, SAM can stall at points where this shifted (perturbed-point) gradient vanishes despite a nonzero original gradient, and therefore, they are not stationary points of the original loss. We call these points hallucinated minimizers, prove their existence under simple nonconvex landscape conditions (e.g., the presence of a local minimizer and a local maximizer), and establish sufficient conditions for local convergence of the SAM iterates to them. We corroborate this failure mode in neural network training and observe that it aligns with SAM's performance degradation often seen at large $ρ$. Finally, as a practical safeguard, we find that a short initial SGD warm-start before enabling SAM mitigates this failure mode and reduces sensitivity to the choice of $ρ$.
♻ ☆ GAMformer: Bridging Tabular Foundation Models and Interpretable Machine Learning
While interpretability is crucial for machine learning applications in safety-critical domains and for regulatory compliance, existing tabular foundation models like TabPFN lack transparency. Generalized Additive Models (GAMs) provide the needed interpretability through their additive structure, but traditional GAM methods rely on iterative learning algorithms (such as splines, boosted trees, or neural networks) that are fundamentally incompatible with the in-context learning paradigm of foundation models. In this paper, we introduce GAMformer, the first tabular foundation model for GAMs that bridges the gap between the power of foundation models and the interpretability requirements of critical real-world applications. GAMformer estimates GAM shape functions in a single forward pass using in-context learning, representing a significant departure from conventional iterative approaches. Building on previous research on tabular foundation models, we train GAMformer exclusively on synthetically generated tables to prevent data leakage. Our experiments demonstrate that GAMformer performs comparably to other leading GAMs across various classification benchmarks.
comment: 22 pages, 15 figures
♻ ☆ Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix $X$, it aims at finding two lower dimensional matrices, $W$ and $H$, such that $X\approx WH$, where the factors $W$ and $H$ are constrained to be element-wise nonnegative. The factor $W$ serves as a basis for the columns of $X$. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of $W$. In this paper, we consider the dual approach, where the volume of $H$ is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of $X$ in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.06380 (this paper is an updated version of Chapter 7 of the thesis of the first author, available from arXiv:2412.06380). The code is available from https://gitlab.com/vuthanho/maxvolmf.jl
♻ ☆ Reversible Deep Learning for 13C NMR in Chemoinformatics: On Structures and Spectra
We introduce a reversible deep learning model for 13C NMR that uses a single conditional invertible neural network for both directions between molecular structures and spectra. The network is built from i-RevNet style bijective blocks, so the forward map and its inverse are available by construction. We train the model to predict a 128-bit binned spectrum code from a graph-based structure encoding, while the remaining latent dimensions capture residual variability. At inference time, we invert the same trained network to generate structure candidates from a spectrum code, which explicitly represents the one-to-many nature of spectrum-to-structure inference. On a filtered subset, the model is numerically invertible on trained examples, achieves spectrum-code prediction above chance, and produces coarse but meaningful structural signals when inverted on validation spectra. These results demonstrate that invertible architectures can unify spectrum prediction and uncertainty-aware candidate generation within one end-to-end model.
comment: 10 pages, 4 figures, 4 tables
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries IEEE
Providing soundtracks for videos remains a costly and time-consuming challenge for multimedia content creators. We introduce EMSYNC, an automatic video-based symbolic music generator that creates music aligned with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate upcoming video scene cuts and align generated musical chords with them. We also propose a mapping scheme that bridges the discrete categorical outputs of the video emotion classifier with the continuous valence-arousal inputs required by the emotion-conditioned MIDI generator, enabling seamless integration of emotion information across different representations. Our method outperforms state-of-the-art models in objective and subjective evaluations across different video datasets, demonstrating its effectiveness in generating music aligned to video both emotionally and temporally. Our demo and output samples are available at https://serkansulun.com/emsync.
comment: IEEE Transactions on Multimedia, 2026, in print
♻ ☆ The Use of AI-Robotic Systems for Scientific Discovery
The process of developing theories and models and testing them with experiments is fundamental to the scientific method. Automating the entire scientific method then requires not only automation of the induction of theories from data, but also experimentation from design to implementation. This is the idea behind a robot scientist -- a coupled system of AI and laboratory robotics that has agency to test hypotheses with real-world experiments. In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science. We also map the activities of a robot scientist to machine learning paradigms, and argue that the scientific method shares an analogy with active learning. We demonstrate these concepts using examples from previous robot scientists, and also from Genesis: a next generation robot scientist designed for research in systems biology, comprising a micro-fluidic system with 1000 computer-controlled micro-bioreactors and interpretable models based in controlled vocabularies and logic.
comment: 23 pages, book chapter
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ Inference-Time Backdoors via Hidden Instructions in LLM Chat Templates
Open-weight language models are increasingly used in production settings, raising new security challenges. One prominent threat in this context is backdoor attacks, in which adversaries embed hidden behaviors in language models that activate under specific conditions. Previous work has assumed that adversaries have access to training pipelines or deployment infrastructure. We propose a novel attack surface requiring neither, which utilizes the chat template. Chat templates are executable Jinja2 programs invoked at every inference call, occupying a privileged position between user input and model processing. We show that an adversary who distributes a model with a maliciously modified template can implant an inference-time backdoor without modifying model weights, poisoning training data, or controlling runtime infrastructure. We evaluated this attack vector by constructing template backdoors targeting two objectives: degrading factual accuracy and inducing emission of attacker-controlled URLs, and applied them across eighteen models spanning seven families and four inference engines. Under triggered conditions, factual accuracy drops from 90% to 15% on average while attacker-controlled URLs are emitted with success rates exceeding 80%; benign inputs show no measurable degradation. Backdoors generalize across inference runtimes and evade all automated security scans applied by the largest open-weight distribution platform. These results establish chat templates as a reliable and currently undefended attack surface in the LLM supply chain.
♻ ☆ ExplainReduce: Generating global explanations from many local explanations
Most commonly used non-linear machine learning methods are closed-box models, uninterpretable to humans. The field of explainable artificial intelligence (XAI) aims to develop tools to examine the inner workings of these closed boxes. An often-used model-agnostic approach to XAI involves using simple models as local approximations to produce so-called local explanations; examples of this approach include LIME, SHAP, and SLISEMAP. This paper shows how a large set of local explanations can be reduced to a small "proxy set" of simple models, which can act as a generative global explanation. This reduction procedure, ExplainReduce, can be formulated as an optimisation problem and approximated efficiently using greedy heuristics. We show that, for many problems, as few as five explanations can faithfully emulate the closed-box model and that our reduction procedure is competitive with other model aggregation methods.
comment: 21 pages with a 36 page appendix, 8 + 39 figures, 1+1 tables. The datasets and source code used in the paper are available at https://github.com/edahelsinki/explainreduce
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise NeurIPS 2025
Sharpness-aware minimization (SAM) has emerged as a highly effective technique to improve model generalization, but its underlying principles are not fully understood. We investigate m-sharpness, where SAM performance improves monotonically as the micro-batch size for computing perturbations decreases, a phenomenon critical for distributed training yet lacking rigorous explanation. We leverage an extended Stochastic Differential Equation (SDE) framework and analyze stochastic gradient noise (SGN) to characterize the dynamics of SAM variants, including n-SAM and m-SAM. Our analysis reveals that stochastic perturbations induce an implicit variance-based sharpness regularization whose strength increases as m decreases. Motivated by this insight, we propose Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate our theory and method.
comment: Accepted to NeurIPS 2025
♻ ☆ Are Your Generated Instances Truly Useful? GenBench-MILP: A Benchmark Suite for MILP Instance Generation
The proliferation of machine learning-based methods for Mixed-Integer Linear Programming (MILP) instance generation has surged, driven by the need for diverse training datasets. However, a critical question remains: Are these generated instances truly useful and realistic? Current evaluation protocols often rely on superficial structural metrics or simple solvability checks, which frequently fail to capture the true computational complexity of real-world problems. To bridge this gap, we introduce GenBench-MILP, a comprehensive benchmark suite designed for the standardized and objective evaluation of MILP generators. Our framework assesses instance quality across four key dimensions: mathematical validity, structural similarity, computational hardness, and utility in downstream tasks. A distinctive innovation of GenBench-MILP is the analysis of solver-internal features -- including root node gaps, heuristic success rates, and cut plane usage. By treating the solver's dynamic behavior as an expert assessment, we reveal nuanced computational discrepancies that static graph features miss. Our experiments on instance generative models demonstrate that instances with high structural similarity scores can still exhibit drastically divergent solver interactions and difficulty levels. By providing this multifaceted evaluation toolkit, GenBench-MILP aims to facilitate rigorous comparisons and guide the development of high-fidelity instance generators.
comment: The code is available in \url{https://github.com/Aux-724/GenBench-MILP}
♻ ☆ Differentiable Constraint-Based Causal Discovery
Causal discovery from observational data is a fundamental task in artificial intelligence, with far-reaching implications for decision-making, predictions, and interventions. Despite significant advances, existing methods can be broadly categorized as constraint-based or score-based approaches. Constraint-based methods offer rigorous causal discovery but are often hindered by small sample sizes, while score-based methods provide flexible optimization but typically forgo explicit conditional independence testing. This work explores a third avenue: developing differentiable $d$-separation scores, obtained through a percolation theory using soft logic. This enables the implementation of a new type of causal discovery method: gradient-based optimization of conditional independence constraints. Empirical evaluations demonstrate the robust performance of our approach in low-sample regimes, surpassing traditional constraint-based and score-based baselines on a real-world dataset. Code and data of the proposed method are publicly available at https://github$.$com/PurdueMINDS/DAGPA.
♻ ☆ Should Bias be Eliminated? A General Framework to Use Bias for OOD Generalization
Most approaches to out-of-distribution (OOD) generalization learn domain-invariant representations by discarding contextual bias. In this paper, we raise a critical question: Should bias be eliminated? If not, is there a general way to leverage bias for better OOD generalization? To answer these questions, we first provide a theoretical analysis that characterizes the circumstances in which biased features contribute positively. Although theoretical results show that bias may sometimes play a positive role, leveraging it effectively is non-trivial, since its harmful and beneficial components are often entangled. Recent advances have sought to refine the prediction of bias by presuming reliable predictions from invariant features. However, such assumptions may be too strong in the real world, especially when the target also shifts from training to testing domains. Motivated by this challenge, we introduce a framework to leverage bias in a more general scenario. Specifically, we employ a generative model to capture the data generation process and identify the underlying bias factors, which are then used to construct a bias-aware predictor. Since the bias-aware predictor may shift across environments, we first estimate the environment state to train predictors under different environments, combining them as a mixture of domain experts for the final prediction. Then, we build a general invariant predictor, which can be invariant under label shift to guide the adaptation of the bias-aware predictor. Evaluations on synthetic data and standard domain generalization benchmarks demonstrate that our method consistently outperforms both invariance only baselines, recent bias utilization approaches and advanced baselines, yielding improved robustness and adaptability.
♻ ☆ Vector Quantization using Gaussian Variational Autoencoder
Vector-quantized variational autoencoders (VQ-VAEs) are discrete autoencoders that compress images into discrete tokens. However, they are difficult to train due to discretization. In this paper, we propose a simple yet effective technique dubbed Gaussian Quant (GQ), which first trains a Gaussian VAE under certain constraints and then converts it into a VQ-VAE without additional training. For conversion, GQ generates random Gaussian noise as a codebook and finds the closest noise vector to the posterior mean. Theoretically, we prove that when the logarithm of the codebook size exceeds the bits-back coding rate of the Gaussian VAE, a small quantization error is guaranteed. Practically, we propose a heuristic to train Gaussian VAEs for effective conversion, named the target divergence constraint (TDC). Empirically, we show that GQ outperforms previous VQ-VAEs, such as VQGAN, FSQ, LFQ, and BSQ, on both UNet and ViT architectures. Furthermore, TDC also improves previous Gaussian VAE discretization methods, such as TokenBridge. The source code is provided in the supplementary materials.
♻ ☆ MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
♻ ☆ From Link Prediction to Forecasting: Addressing Challenges in Batch-based Temporal Graph Learning
Dynamic link prediction is an important problem considered in many recent works that propose approaches for learning temporal edge patterns. To assess their efficacy, models are evaluated on continuous-time and discrete-time temporal graph datasets, typically using a traditional batch-oriented evaluation setup. However, as we show in this work, a batch-oriented evaluation is often unsuitable and can cause several issues. Grouping edges into fixed-sized batches regardless of their occurrence time leads to information loss or leakage, depending on the temporal granularity of the data. Furthermore, fixed-size batches create time windows with different durations, resulting in an inconsistent dynamic link prediction task. In this work, we empirically show how traditional batch-based evaluation leads to skewed model performance and hinders the fair comparison of methods. We mitigate this problem by reformulating dynamic link prediction as a link forecasting task that better accounts for temporal information present in the data.
comment: 46 pages (12 pages main text), 19 figures. Published in Transactions on Machine Learning Research (2026)
♻ ☆ Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification
Feature engineering continues to play a critical role in image classification, particularly when interpretability and computational efficiency are prioritized over deep learning models with millions of parameters. In this study, we revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE), a robust and computationally lightweight measure traditionally used in time series analysis but rarely applied to image data. We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach that characterizes spatial order and complexity along rows, columns, diagonals, anti-diagonals, and local patches of the image. To enhance the discriminatory power of the entropy features, we integrate two classic image descriptors: the Histogram of Oriented Gradients (HOG) to capture shape and edge structure, and Local Binary Patterns (LBP) to encode micro-texture of an image. The resulting hand-crafted feature set, comprising of 780 dimensions, is used to train Support Vector Machine (SVM) classifiers optimized through grid search. The proposed approach is evaluated on multiple benchmark datasets, including Fashion-MNIST, KMNIST, EMNIST, and CIFAR-10, where it delivers competitive classification performance without relying on deep architectures. Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models. This shows a potential of entropy-based descriptors in image classification and contributes a lightweight and generalizable solution to interpretable machine learning in image classification and computer vision.
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Dual Perspectives on Non-Contrastive Self-Supervised Learning
The {\em stop gradient} and {\em exponential moving average} iterative procedures are commonly used in non-contrastive approaches to self-supervised learning to avoid representation collapse, with excellent performance in downstream applications in practice. This presentation investigates these procedures from the dual viewpoints of optimization and dynamical systems. We show that, in general, although they {\em do not} optimize the original objective, or {\em any} other smooth function, they {\em do} avoid collapse Following~\citet{Tian21}, but without any of the extra assumptions used in their proofs, we then show using a dynamical system perspective that, in the linear case, minimizing the original objective function without the use of a stop gradient or exponential moving average {\em always} leads to collapse. Conversely, we characterize explicitly the equilibria of the dynamical systems associated with these two procedures in this linear setting as algebraic varieties in their parameter space, and show that they are, in general, {\em asymptotically stable}. Our theoretical findings are illustrated by empirical experiments with real and synthetic data.
♻ ☆ Equivalence of Privacy and Stability with Generalization Guarantees in Quantum Learning
We present a unified information-theoretic framework elucidating the interplay between stability, privacy, and the generalization performance of quantum learning algorithms. We establish a bound on the expected generalization error in terms of quantum mutual information and derive a probabilistic upper bound that generalizes the classical result by Esposito et al. (2021). Complementing these findings, we provide a lower bound on the expected true loss relative to the expected empirical loss. Additionally, we demonstrate that $(\varepsilon, δ)$-quantum differentially private learning algorithms are stable, thereby ensuring strong generalization guarantees. Finally, we extend our analysis to dishonest learning algorithms, introducing Information-Theoretic Admissibility (ITA) to characterize the fundamental limits of privacy when the learning algorithm is oblivious to specific dataset instances.
comment: 31 pages, 3 figures; Major revision including a new probabilistic bound on generalization error (Theorem 2) and a new complementary lower bound on the expected true loss (Theorem 3); Appendices have been expanded to include further proofs and details
♻ ☆ GenIAS: Generator for Instantiating Anomalies in time Series
Synthetic anomaly injection is a recent and promising approach for time series anomaly detection (TSAD), but existing methods rely on ad hoc, hand-crafted strategies applied to raw time series that fail to capture diverse and complex anomalous patterns, particularly in multivariate settings. We propose a synthetic anomaly generation method named Generator for Instantiating Anomalies in Time Series (GenIAS), which generates realistic and diverse anomalies via a novel learnable perturbation in the latent space of a variational autoencoder. This enables abnormal patterns to be injected across different temporal segments at varying scales based on variational reparameterization. To generate anomalies that align with normal patterns while remaining distinguishable, we introduce a learning strategy that jointly learns the perturbation scale and compact latent representations via a tunable prior, which improves the distinguishability of generated anomalies, as supported by our theoretical analysis. Extensive experiments show that GenIAS produces more diverse and realistic anomalies, and that detection models trained with these anomalies outperform 17 baseline methods on 9 popular TSAD benchmarks.
♻ ☆ Additive Models Explained: A Computational Complexity Approach NeurIPS 2025
Generalized Additive Models (GAMs) are commonly considered *interpretable* within the ML community, as their structure makes the relationship between inputs and outputs relatively understandable. Therefore, it may seem natural to hypothesize that obtaining meaningful explanations for GAMs could be performed efficiently and would not be computationally infeasible. In this work, we challenge this hypothesis by analyzing the *computational complexity* of generating different explanations for various forms of GAMs across multiple contexts. Our analysis reveals a surprisingly diverse landscape of both positive and negative complexity outcomes. Particularly, under standard complexity assumptions such as P!=NP, we establish several key findings: (1) in stark contrast to many other common ML models, the complexity of generating explanations for GAMs is heavily influenced by the structure of the input space; (2) the complexity of explaining GAMs varies significantly with the types of component models used - but interestingly, these differences only emerge under specific input domain settings; (3) significant complexity distinctions appear for obtaining explanations in regression tasks versus classification tasks in GAMs; and (4) expressing complex models like neural networks additively (e.g., as neural additive models) can make them easier to explain, though interestingly, this benefit appears only for certain explanation methods and input domains. Collectively, these results shed light on the feasibility of computing diverse explanations for GAMs, offering a rigorous theoretical picture of the conditions under which such computations are possible or provably hard.
comment: To appear in NeurIPS 2025
♻ ☆ Are foundation models useful feature extractors for electroencephalography analysis?
The success of foundation models in natural language processing and computer vision has motivated similar approaches in time series analysis. While foundational time series models have proven beneficial on a variety of tasks, their effectiveness in medical applications with limited data remains underexplored. In this work, we investigate this question in the context of electroencephalography (EEG) by evaluating general-purpose time series models on age prediction, seizure detection, and classification of clinically relevant EEG events. We compare their diagnostic performance against specialised EEG models and assess the quality of the extracted features. The results show that general-purpose models are competitive and capture features useful to localising demographic and disease-related biomarkers. These findings indicate that foundational time series models can reduce the reliance on large task-specific datasets and models, making them valuable in clinical practice.
♻ ☆ Auto-Rubric: Learning From Implicit Weights to Explicit Rubrics for Reward Modeling
Conventional reward modeling relies on gradient descent over neural weights, creating opaque, data-hungry "black boxes." We propose a paradigm shift from implicit to explicit reward parameterization, recasting optimization from continuous weight spaces to the discrete space of natural language rubrics. We introduce a training-free framework based on iterative rubric learning: it locally induces discriminative criteria via verification-driven refinement, and globally compresses the candidate criteria pool into a compact core set by maximizing an information-theoretic coding rate objective. We organize the compressed core set into a hierarchical rubric structure -- high-level evaluation dimensions supported by concrete verification checks -- serving as an interpretable, portable reward function. Empirically, our approach challenges prevailing data scaling assumptions: using only 70 preference pairs, our rubric-guided judges outperform fully trained reward models on diverse benchmarks. For instance, Qwen3-8B equipped with our learned rubrics achieves 80.91% on RewardBench2, surpassing the specialized Skywork-Reward-V2-Qwen3-8B (78.20%). These results demonstrate that alignment signals are highly compressible and can be effectively captured through explicit symbolic search.
♻ ☆ SurvDiff: A Diffusion Model for Generating Synthetic Data in Survival Analysis
Survival analysis is a cornerstone of clinical research by modeling time-to-event outcomes such as metastasis, disease relapse, or patient death. Unlike standard tabular data, survival data often come with incomplete event information due to dropout, or loss to follow-up. This poses unique challenges for synthetic data generation, where it is crucial for clinical research to faithfully reproduce both the event-time distribution and the censoring mechanism. In this paper, we propose SurvDiff an end-to-end diffusion model specifically designed for generating synthetic data in survival analysis. SurvDiff is tailored to capture the data-generating mechanism by jointly generating mixed-type covariates, event times, and right-censoring, guided by a survival-tailored loss function. The loss encodes the time-to-event structure and directly optimizes for downstream survival tasks, which ensures that SurvDiff (i) reproduces realistic event-time distributions and (ii preserves the censoring mechanism. Across multiple datasets, we show that SurvDiff consistently outperforms state-of-the-art generative baselines in both distributional fidelity and survival model evaluation metrics across multiple medical datasets. To the best of our knowledge, SurvDiff is the first end-to-end diffusion model explicitly designed for generating synthetic survival data.
♻ ☆ GeoRA: Geometry-Aware Low-Rank Adaptation for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) is crucial for advancing large-scale reasoning models. However, existing parameter-efficient methods, such as PiSSA and MiLoRA, are designed for Supervised Fine-Tuning (SFT) and do not account for the distinct optimization dynamics and geometric structures of RLVR. Applying these methods directly leads to spectral collapse and optimization instability, which severely limit model performance. Meanwhile, alternative approaches that leverage update sparsity encounter significant efficiency bottlenecks on modern hardware due to unstructured computations. To address these challenges, we propose GeoRA (Geometry-Aware Low-Rank Adaptation), which exploits the anisotropic and compressible nature of RL update subspaces. GeoRA initializes adapters by extracting principal directions via Singular Value Decomposition (SVD) within a geometrically constrained subspace while freezing the residual components. This method preserves the pre-trained geometric structure and enables efficient GPU computation through dense operators. Experiments on Qwen and Llama demonstrate that GeoRA mitigates optimization bottlenecks caused by geometric misalignment. It consistently outperforms established low-rank baselines on key mathematical benchmarks, achieving state-of-the-art (SOTA) results. Moreover, GeoRA shows superior generalization and resilience to catastrophic forgetting in out-of-domain tasks.
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Softly Constrained Denoisers for Diffusion Models
Diffusion models struggle to produce samples that respect constraints, a common requirement in scientific applications. Recent approaches have introduced regularization terms in the loss or guidance methods during sampling to enforce such constraints, but they bias the generative model away from the true data distribution. This is a problem when the constraint is misspecified, which is a common issue in scientific applications where constraint formulation is challenging. We propose to integrate guidance-inspired adjustments to the denoiser, instead of the loss or sampling loop. This achieves a soft inductive bias towards constraint-compliant samples. We show that these softly constrained denoisers exploit constraint knowledge to improve compliance over standard denoisers, while maintaining enough flexibility to deviate from it in case of misspecification with observed data.
comment: 18 pages including appendix, 8 figures including appendix, preprint
♻ ☆ Preference-based Reinforcement Learning beyond Pairwise Comparisons: Benefits of Multiple Options NeurIPS 2025
We study online preference-based reinforcement learning (PbRL) with the goal of improving sample efficiency. While a growing body of theoretical work has emerged-motivated by PbRL's recent empirical success, particularly in aligning large language models (LLMs)-most existing studies focus only on pairwise comparisons. A few recent works (Zhu et al., 2023, Mukherjee et al., 2024, Thekumparampil et al., 2024) have explored using multiple comparisons and ranking feedback, but their performance guarantees fail to improve-and can even deteriorate-as the feedback length increases, despite the richer information available. To address this gap, we adopt the Plackett-Luce (PL) model for ranking feedback over action subsets and propose M-AUPO, an algorithm that selects multiple actions by maximizing the average uncertainty within the offered subset. We prove that M-AUPO achieves a suboptimality gap of $\tilde{O}\left( \frac{d}{T} \sqrt{ \sum_{t=1}^T \frac{1}{|S_t|}} \right)$, where $T$ is the total number of rounds, $d$ is the feature dimension, and $|S_t|$ is the size of the subset at round $t$. This result shows that larger subsets directly lead to improved performance and, notably, the bound avoids the exponential dependence on the unknown parameter's norm, which was a fundamental limitation in most previous works. Moreover, we establish a near-matching lower bound of $Ω\left( \frac{d}{K \sqrt{T}} \right)$, where $K$ is the maximum subset size. To the best of our knowledge, this is the first theoretical result in PbRL with ranking feedback that explicitly shows improved sample efficiency as a function of the subset size.
comment: Accepted at NeurIPS 2025
♻ ☆ Differential Privacy Analysis of Decentralized Gossip Averaging under Varying Threat Models
Achieving differential privacy (DP) guarantees in fully decentralized machine learning is challenging due to the absence of a central aggregator and varying trust assumptions among nodes. We present a framework for DP analysis of decentralized gossip-based averaging algorithms with additive node-level noise, from arbitrary views of nodes in a graph. We present an analytical framework based on a linear systems formulation that accurately characterizes privacy leakage between nodes. Our main contribution is showing that the DP guarantees are those of a Gaussian mechanism, where the growth of the squared sensitivity is asymptotically $O(T)$, where $T$ is the number of training rounds, similarly as in the case of central aggregation. As an application of the sensitivity analysis, we show that the excess risk of decentralized private learning for strongly convex losses is asymptotically similar as in centralized private learning.
♻ ☆ Rethinking Multi-Modal Learning from Gradient Uncertainty
Multi-Modal Learning (MML) integrates information from diverse modalities to improve predictive accuracy. While existing optimization strategies have made significant strides by mitigating gradient direction conflicts, we revisit MML from a gradient-based perspective to explore further improvements. Empirically, we observe an interesting phenomenon: performance fluctuations can persist in both conflict and non-conflict settings. Based on this, we argue that: beyond gradient direction, the intrinsic reliability of gradients acts as a decisive factor in optimization, necessitating the explicit modeling of gradient uncertainty. Guided by this insight, we propose Bayesian-Oriented Gradient Calibration for MML (BOGC-MML). Our approach explicitly models gradients as probability distributions to capture uncertainty, interpreting their precision as evidence within the framework of subjective logic and evidence theory. By subsequently aggregating these signals using a reduced Dempster's combination rule, BOGC-MML adaptively weights gradients based on their reliability to generate a calibrated update. Extensive experiments demonstrate the effectiveness and advantages of the proposed method.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ TensLoRA: Tensor Alternatives for Low-Rank Adaptation ICASSP 2026
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.
comment: Published at ICASSP 2026. 5 pages, 1 figure, 2 tables. Code can be found at https://github.com/ax-le/TensLoRA
♻ ☆ Hierarchical Time Series Forecasting with Robust Reconciliation
This paper focuses on forecasting hierarchical time-series data, where each higher-level observation equals the sum of its corresponding lower-level time series. In such contexts, the forecast values should be coherent, meaning that the forecast value of each parent series exactly matches the sum of the forecast values of its child series. Existing hierarchical forecasting methods typically generate base forecasts independently for each series and then apply a reconciliation procedure to adjust them so that the resulting forecast values are coherent across the hierarchy. These methods generally derive an optimal reconciliation, using a covariance matrix of the forecast error. In practice, however, the true covariance matrix is unknown and has to be estimated from finite samples in advance. This gap between the true and estimated covariance matrix may degrade forecast performance. To address this issue, we propose a robust optimization framework for hierarchical reconciliation that accounts for uncertainty in the estimated covariance matrix. We first introduce an uncertainty set for the estimated covariance matrix and formulate a reconciliation problem that minimizes the worst-case average of weighted squared residuals over this uncertainty set. We show that our problem can be cast as a semidefinite optimization problem. Numerical experiments demonstrate that the proposed robust reconciliation method achieved better forecast performance than existing hierarchical forecasting methods, which indicates the effectiveness of integrating uncertainty into the reconciliation process.
♻ ☆ On optimal solutions of classical and sliced Wasserstein GANs with non-Gaussian data
The generative adversarial network (GAN) aims to approximate an unknown distribution via a parameterized neural network (NN). While GANs have been widely applied in reinforcement and semi-supervised learning as well as computer vision tasks, selecting their parameters often needs an exhaustive search, and only a few selection methods have been proven to be theoretically optimal. One of the most promising GAN variants is the Wasserstein GAN (WGAN). Prior work on optimal parameters for population WGAN is limited to the linear-quadratic-Gaussian (LQG) setting, where the generator NN is linear, and the data is Gaussian. In this paper, we focus on the characterization of optimal solutions of population WGAN beyond the LQG setting. As a basic result, closed-form optimal parameters for one-dimensional WGAN are derived when the NN has non-linear activation functions, and the data is non-Gaussian. For high-dimensional data, we adopt the sliced Wasserstein framework and show that the linear generator can be asymptotically optimal. Moreover, the original sliced WGAN only constrains the projected data marginal instead of the whole one in classical WGAN, and thus, we propose another new unprojected sliced WGAN and identify its asymptotic optimality. Empirical studies show that compared to the celebrated r-principal component analysis (r-PCA) solution, which has cubic complexity to the data dimension, our generator for sliced WGAN can achieve better performance with only linear complexity.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ A Study of Adaptive Modeling Towards Robust Generalization
Large language models (LLMs) increasingly support reasoning over biomolecular structures, but most existing approaches remain modality-specific and rely on either sequence-style encodings or fixed-length connector tokens for structural inputs. These designs can under-expose explicit geometric cues and impose rigid fusion bottlenecks, leading to over-compression and poor token allocation as structural complexity grows. We present a unified all-atom framework that grounds language reasoning in geometric information while adaptively scaling structural tokens. The method first constructs variable-size structural patches on molecular graphs using an instruction-conditioned gating policy, enabling complexity-aware allocation of query tokens. It then refines the resulting patch tokens via cross-attention with modality embeddings and injects geometry-informed tokens into the language model to improve structure grounding and reduce structural hallucinations. Across diverse all-atom benchmarks, the proposed approach yields consistent gains in heterogeneous structure-grounded reasoning. An anonymized implementation is provided in the supplementary material.
♻ ☆ Image inpainting for corrupted images by using the semi-super resolution GAN
Image inpainting is a valuable technique for enhancing images that have been corrupted. The primary challenge in this research revolves around the extent of corruption in the input image that the deep learning model must restore. To address this challenge, we introduce a Generative Adversarial Network (GAN) for learning and replicating the missing pixels. Additionally, we have developed a distinct variant of the Super-Resolution GAN (SRGAN), which we refer to as the Semi-SRGAN (SSRGAN). Furthermore, we leveraged three diverse datasets to assess the robustness and accuracy of our proposed model. Our training process involves varying levels of pixel corruption to attain optimal accuracy and generate high-quality images.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Calibration and Transformation-Free Weight-Only LLMs Quantization via Dynamic Grouping
Large Language Models (LLMs) deliver strong performance but are difficult to deploy under tight memory and compute constraints. Low-bit post-training quantization (PTQ) is a promising direction; however, it typically relies on calibration data, auxiliary transformations, and GPU tools. To address these limitations, we propose MSB (Multi Scale Binary), a calibration-free and transformation-free PTQ method that generalizes binary quantization to multi-bit settings. MSB optimizes a dynamic grouping criterion that minimizes within group variance, yielding group-wise multiscale levels that can be applied consistently across granularities from per tensor to block-wise configurations with 64 elements groups per row, without calibration or intermediate transforms. We implement the optimization in a CPU based solver for the quantization step and evaluate using standard bfloat16 execution without low-bit packing. On Llama 3.2 3B, MSB achieves 8.43 perplexity on WikiText-2 under 4-bit weight only block-wise quantization, compared to 7.81 in full precision and 12.23 with GPTQ its default setup. Overall, MSB provides a new optimization perspective for low-bit PTQ while simplifying the pipeline by removing calibration and transformations.
comment: 34 pages, 10 figures. Version 3 corrects the bit-length error and adds new experiments and analysis; the core methodology remains unchanged
♻ ☆ On Entropy Control in LLM-RL Algorithms ICLR 2026
For RL algorithms, appropriate entropy control is crucial to their effectiveness. To control the policy entropy, a commonly used method is entropy regularization, which is adopted in various popular RL algorithms including PPO, SAC and A3C. Although entropy regularization proves effective in robotic and games RL conventionally, studies found that it gives weak to no gains in LLM-RL training. In this work, we study the issues of entropy bonus in LLM-RL setting. Specifically, we first argue that the conventional entropy regularization suffers from the LLM's extremely large response space and the sparsity of the optimal outputs. As a remedy, we propose AEnt, an entropy control method that utilizes a new clamped entropy bonus with an automatically adjusted coefficient. The clamped entropy is evaluated with the re-normalized policy defined on certain smaller token space, which encourages exploration within a more compact response set. In addition, the algorithm automatically adjusts entropy coefficient according to the clamped entropy value, effectively controlling the entropy-induced bias while leveraging the entropy's benefits. AEnt is tested in math-reasoning tasks under different base models and datasets, and it is observed that AEnt outperforms the baselines consistently across multiple benchmarks.
comment: Updated with ICLR 2026 version
♻ ☆ Provably Reliable Classifier Guidance via Cross-Entropy Control
Classifier-guided diffusion models generate conditional samples by augmenting the reverse-time score with the gradient of the log-probability predicted by a probabilistic classifier. In practice, this classifier is usually obtained by minimizing an empirical loss function. While existing statistical theory guarantees good generalization performance when the sample size is sufficiently large, it remains unclear whether such training yields an effective guidance mechanism. We study this question in the context of cross-entropy loss, which is widely used for classifier training. Under mild smoothness assumptions on the classifier, we show that controlling the cross-entropy at each diffusion model step is sufficient to control the corresponding guidance error. In particular, probabilistic classifiers achieving conditional KL divergence $\varepsilon^2$ induce guidance vectors with mean squared error $\widetilde O(d \varepsilon )$, up to constant and logarithmic factors. Our result yields an upper bound on the sampling error of classifier-guided diffusion models and bears resemblance to a reverse log-Sobolev--type inequality. To the best of our knowledge, this is the first result that quantitatively links classifier training to guidance alignment in diffusion models, providing both a theoretical explanation for the empirical success of classifier guidance, and principled guidelines for selecting classifiers that induce effective guidance.
comment: 31 pages, 3 figures
♻ ☆ ARM: Refining Multivariate Forecasting with Adaptive Temporal-Contextual Learning ICLR 2024
Long-term time series forecasting (LTSF) is important for various domains but is confronted by challenges in handling the complex temporal-contextual relationships. As multivariate input models underperforming some recent univariate counterparts, we posit that the issue lies in the inefficiency of existing multivariate LTSF Transformers to model series-wise relationships: the characteristic differences between series are often captured incorrectly. To address this, we introduce ARM: a multivariate temporal-contextual adaptive learning method, which is an enhanced architecture specifically designed for multivariate LTSF modelling. ARM employs Adaptive Univariate Effect Learning (AUEL), Random Dropping (RD) training strategy, and Multi-kernel Local Smoothing (MKLS), to better handle individual series temporal patterns and correctly learn inter-series dependencies. ARM demonstrates superior performance on multiple benchmarks without significantly increasing computational costs compared to vanilla Transformer, thereby advancing the state-of-the-art in LTSF. ARM is also generally applicable to other LTSF architecture beyond vanilla Transformer.
comment: Camera-ready version. Accepted at ICLR 2024
♻ ☆ CATS: Enhancing Multivariate Time Series Forecasting by Constructing Auxiliary Time Series as Exogenous Variables ICML 2024
For Multivariate Time Series Forecasting (MTSF), recent deep learning applications show that univariate models frequently outperform multivariate ones. To address the difficiency in multivariate models, we introduce a method to Construct Auxiliary Time Series (CATS) that functions like a 2D temporal-contextual attention mechanism, which generates Auxiliary Time Series (ATS) from Original Time Series (OTS) to effectively represent and incorporate inter-series relationships for forecasting. Key principles of ATS - continuity, sparsity, and variability - are identified and implemented through different modules. Even with a basic 2-layer MLP as core predictor, CATS achieves state-of-the-art, significantly reducing complexity and parameters compared to previous multivariate models, marking it an efficient and transferable MTSF solution.
comment: Camera-ready version. Accepted at ICML 2024
♻ ☆ In-context Time Series Predictor ICLR 2025
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
comment: Camera-ready version. Accepted at ICLR 2025
♻ ☆ Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions and generate results with undesired properties or even harmful content. Inspired by the success and popularity of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
comment: Accepted at ACM Computing Surveys. 35 pages, 5 figures, 4 tables. Paper List: github.com/xie-lab-ml/awesome-alignment-of-diffusion-models
♻ ☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.0% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ PolarGrad: A Class of Matrix-Gradient Optimizers from a Unifying Preconditioning Perspective
The ever-growing scale of deep learning models and training data underscores the critical importance of efficient optimization methods. While preconditioned gradient methods such as Adam and AdamW are the de facto optimizers for training neural networks and large language models, structure-aware preconditioned optimizers like Shampoo and Muon, which utilize the matrix structure of gradients, have demonstrated promising evidence of faster convergence. In this paper, we introduce a unifying framework for analyzing "matrix-aware" preconditioned methods, which not only sheds light on the effectiveness of Muon and related optimizers but also leads to a class of new structure-aware preconditioned methods. A key contribution of this framework is its precise distinction between preconditioning strategies that treat neural network weights as vectors (addressing curvature anisotropy) versus those that consider their matrix structure (addressing gradient anisotropy). This perspective provides new insights into several empirical phenomena in language model pre-training, including Adam's training instabilities, Muon's accelerated convergence, and the necessity of learning rate warmup for Adam. Building upon this framework, we introduce PolarGrad, a new class of preconditioned optimization methods based on the polar decomposition of matrix-valued gradients. As a special instance, PolarGrad includes Muon with updates scaled by the nuclear norm of the gradients. We provide numerical implementations of these methods, leveraging efficient numerical polar decomposition algorithms for enhanced convergence. Our extensive evaluations across diverse matrix optimization problems and language model pre-training tasks demonstrate that PolarGrad outperforms both Adam and Muon.
comment: Minor typos corrected
♻ ☆ WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting ICML 2025
We propose a Weighted Autoregressive Varying gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.
comment: Camera-ready version. Accepted at ICML 2025
♻ ☆ A Differential and Pointwise Control Approach to Reinforcement Learning NeurIPS 2025
Reinforcement learning (RL) in continuous state-action spaces remains challenging in scientific computing due to poor sample efficiency and lack of pathwise physical consistency. We introduce Differential Reinforcement Learning (Differential RL), a novel framework that reformulates RL from a continuous-time control perspective via a differential dual formulation. This induces a Hamiltonian structure that embeds physics priors and ensures consistent trajectories without requiring explicit constraints. To implement Differential RL, we develop Differential Policy Optimization (dfPO), a pointwise, stage-wise algorithm that refines local movement operators along the trajectory for improved sample efficiency and dynamic alignment. We establish pointwise convergence guarantees, a property not available in standard RL, and derive a competitive theoretical regret bound of $\mathcal{O}(K^{5/6})$. Empirically, dfPO outperforms standard RL baselines on representative scientific computing tasks, including surface modeling, grid control, and molecular dynamics, under low-data and physics-constrained conditions.
comment: NeurIPS 2025
♻ ☆ Relational Graph Transformer ICLR 2026
Relational Deep Learning (RDL) is a promising approach for building state-of-the-art predictive models on multi-table relational data by representing it as a heterogeneous temporal graph. However, commonly used Graph Neural Network models suffer from fundamental limitations in capturing complex structural patterns and long-range dependencies that are inherent in relational data. While Graph Transformers have emerged as powerful alternatives to GNNs on general graphs, applying them to relational entity graphs presents unique challenges: (i) Traditional positional encodings fail to generalize to massive, heterogeneous graphs; (ii) existing architectures cannot model the temporal dynamics and schema constraints of relational data; (iii) existing tokenization schemes lose critical structural information. Here we introduce the Relational Graph Transformer (RelGT), the first graph transformer architecture designed specifically for relational tables. RelGT employs a novel multi-element tokenization strategy that decomposes each node into five components (features, type, hop distance, time, and local structure), enabling efficient encoding of heterogeneity, temporality, and topology without expensive precomputation. Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids, incorporating both local and database-wide representations. Across 21 tasks from the RelBench benchmark, RelGT consistently matches or outperforms GNN baselines by up to 18%, establishing Graph Transformers as a powerful architecture for Relational Deep Learning.
comment: ICLR 2026, Code: https://github.com/snap-stanford/relgt
♻ ☆ Transformer brain encoders explain human high-level visual responses
A major goal of neuroscience is to understand brain computations during visual processing in naturalistic settings. A dominant approach is to use image-computable deep neural networks trained with different task objectives as a basis for linear encoding models. However, in addition to requiring estimation of a large number of linear encoding parameters, this approach ignores the structure of the feature maps both in the brain and the models. Recently proposed alternatives factor the linear mapping into separate sets of spatial and feature weights, thus finding static receptive fields for units, which is appropriate only for early visual areas. In this work, we employ the attention mechanism used in the transformer architecture to study how retinotopic visual features can be dynamically routed to category-selective areas in high-level visual processing. We show that this computational motif is significantly more powerful than alternative methods in predicting brain activity during natural scene viewing, across different feature basis models and modalities. We also show that this approach is inherently more interpretable as the attention-routing signals for different high-level categorical areas can be easily visualized for any input image. Given its high performance at predicting brain responses to novel images, the model deserves consideration as a candidate mechanistic model of how visual information from retinotopic maps is routed in the human brain based on the relevance of the input content to different category-selective regions.
♻ ☆ Representation Geometry as a Diagnostic for Out-of-Distribution Robustness
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
♻ ☆ LEANCODE: Understanding Models Better for Code Simplification of Pre-trained Large Language Models ACL 2025
Large Language Models for code often entail significant computational complexity, which grows significantly with the length of the input code sequence. We propose LeanCode for code simplification to reduce training and prediction time, leveraging code contexts in utilizing attention scores to represent the tokens' importance. We advocate for the selective removal of tokens based on the average context-aware attention scores rather than average scores across all inputs. LeanCode uses the attention scores of `CLS' tokens within the encoder for classification tasks, such as code search. It also employs the encoder-decoder attention scores to determine token significance for sequence-to-sequence tasks like code summarization. Our evaluation shows LeanCode's superiority over the SOTAs DietCode and Slimcode, with improvements of 60% and 16% for code search, and 29% and 27% for code summarization, respectively.
comment: ACL 2025 Main. Our code and dataset are available at https://github.com/akai-sh/LeanCode
♻ ☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend that future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers.
comment: Accepted to COLM 2025
♻ ☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
♻ ☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training. Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora. To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
♻ ☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
♻ ☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 10 pages
♻ ☆ CARL: Focusing Agentic Reinforcement Learning on Critical Actions
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for long-horizon agentic reasoning. CARL leverages entropy as a heuristic proxy for action criticality and achieves focused training by assigning rewards to high-criticality actions while excluding low-criticality actions from model updates, avoiding noisy credit assignment and redundant computation. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency across diverse evaluation settings. The source code will be publicly available.
comment: 17 pages, 5 figures
♻ ☆ VFScale: Intrinsic Reasoning through Verifier-Free Test-time Scalable Diffusion Model ICLR 2026
Inspired by human SYSTEM 2 thinking, LLMs excel at complex reasoning tasks via extended Chain-of-Thought. However, similar test-time scaling for diffusion models to tackle complex reasoning remains largely unexplored. From existing work, two primary challenges emerge in this setting: (i) the dependence on an external verifier indicating a notable gap from intrinsic reasoning of human intelligence without any external feedback, and (ii) the lack of an efficient search algorithm. In this paper, we introduce the Verifier-free Test-time Scalable Diffusion Model (VFScale) to achieve scalable intrinsic reasoning, which equips number-of-sample test-time scaling with the intrinsic energy function of diffusion models as the verifier. Concretely, VFScale comprises two key innovations to address the aforementioned challenges. On the training side, VFScale consists of a novel MRNCL loss and a KL regularization to improve the energy landscape, ensuring that the learned energy function itself serves as a reliable verifier. On the inference side, VFScale integrates the denoising process with a novel hybrid Monte Carlo Tree Search (hMCTS) to improve search efficiency. On challenging reasoning tasks of Maze and Sudoku, we demonstrate the effectiveness of VFScale's training objective and scalable inference method. In particular, trained with Maze sizes of up to $6\times6$, our VFScale solves 88% of Maze problems with much larger sizes of $15\times15$, while standard diffusion models completely fail. The code can be found at https://github.com/AI4Science-WestlakeU/VFScale.
comment: ICLR 2026. 30 pages, 13 figures
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ Noninvasive Intracranial Pressure Estimation Using Subspace System Identification and Bespoke Machine Learning Algorithms: A Learning-to-Rank Approach
Accurate noninvasive estimation of intracranial pressure (ICP) remains a major challenge in critical care. We developed a bespoke machine learning algorithm that integrates system identification and ranking-constrained optimization to estimate mean ICP from noninvasive signals. A machine learning framework was proposed to obtain accurate mean ICP values using arbitrary noninvasive signals. The subspace system identification algorithm is employed to identify cerebral hemodynamics models for ICP simulation using arterial blood pressure (ABP), cerebral blood velocity (CBv), and R-wave to R-wave interval (R-R interval) signals in a comprehensive database. A mapping function to describe the relationship between the features of noninvasive signals and the estimation errors is learned using innovative ranking constraints through convex optimization. Patients across multiple clinical settings were randomly split into testing and training datasets for performance evaluation of the mapping function. The results indicate that about 31.88% of testing entries achieved estimation errors within 2 mmHg and 34.07% of testing entries between 2 mmHg and 6 mmHg from the nonlinear mapping with constraints. Our results demonstrate the feasibility of the proposed noninvasive ICP estimation approach. Further validation and technical refinement are required before clinical deployment, but this work lays the foundation for safe and broadly accessible ICP monitoring in patients with acute brain injury and related conditions.
comment: 17 pages, 9 figures
♻ ☆ Partial Feedback Online Learning
We study a new learning protocol, termed partial-feedback online learning, where each instance admits a set of acceptable labels, but the learner observes only one acceptable label per round. We highlight that, while classical version space is widely used for online learnability, it does not directly extend to this setting. We address this obstacle by introducing a collection version space, which maintains sets of hypotheses rather than individual hypotheses. Using this tool, we obtain a tight characterization of learnability in the set-realizable regime. In particular, we define the Partial-Feedback Littlestone dimension (PFLdim) and the Partial-Feedback Measure Shattering dimension (PMSdim), and show that they tightly characterize the minimax regret for deterministic and randomized learners, respectively. We further identify a nested inclusion condition under which deterministic and randomized learnability coincide, resolving an open question of Raman et al. (2024b). Finally, given a hypothesis space H, we show that beyond set realizability, the minimax regret can be linear even when |H|=2, highlighting a barrier beyond set realizability.
comment: 33 pages
♻ ☆ Interpretability by Design for Efficient Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning (MORL) aims at optimising several, often conflicting goals to improve the flexibility and reliability of RL in practical tasks. This is typically achieved by finding a set of diverse, non-dominated policies that form a Pareto front in the performance space. We introduce LLE-MORL, an approach that achieves interpretability by design by utilising a training scheme based on the local relationship between the parameter space and the performance space. By exploiting a locally linear map between these spaces, our method provides an interpretation of policy parameters in terms of the objectives, and this structured representation enables an efficient search within contiguous solution domains, allowing for the rapid generation of high-quality solutions without extensive retraining. Experiments across diverse continuous control domains demonstrate that LLE-MORL consistently achieves higher Pareto front quality and efficiency than state-of-the-art approaches.
♻ ☆ Linear Transformers as VAR Models: Aligning Autoregressive Attention Mechanisms with Autoregressive Forecasting ICML 2025
Autoregressive attention-based time series forecasting (TSF) has drawn increasing interest, with mechanisms like linear attention sometimes outperforming vanilla attention. However, deeper Transformer architectures frequently misalign with autoregressive objectives, obscuring the underlying VAR structure embedded within linear attention and hindering their ability to capture the data generative processes in TSF. In this work, we first show that a single linear attention layer can be interpreted as a dynamic vector autoregressive (VAR) structure. We then explain that existing multi-layer Transformers have structural mismatches with the autoregressive forecasting objective, which impair interpretability and generalization ability. To address this, we show that by rearranging the MLP, attention, and input-output flow, multi-layer linear attention can also be aligned as a VAR model. Then, we propose Structural Aligned Mixture of VAR (SAMoVAR), a linear Transformer variant that integrates interpretable dynamic VAR weights for multivariate TSF. By aligning the Transformer architecture with autoregressive objectives, SAMoVAR delivers improved performance, interpretability, and computational efficiency, comparing to SOTA TSF models.
comment: Camera-ready version. Accepted at ICML 2025
♻ ☆ Real-Time Detection of Hallucinated Entities in Long-Form Generation
Large language models are now routinely used in high-stakes applications where hallucinations can cause serious harm, such as medical consultations or legal advice. Existing hallucination detection methods, however, are impractical for real-world use, as they are either limited to short factual queries or require costly external verification. We present a cheap, scalable method for real-time identification of hallucinated tokens in long-form generations, and scale it effectively to 70B parameter models. Our approach targets entity-level hallucinations-e.g., fabricated names, dates, citations-rather than claim-level, thereby naturally mapping to token-level labels and enabling streaming detection. We develop an annotation methodology that leverages web search to annotate model responses with grounded labels indicating which tokens correspond to fabricated entities. This dataset enables us to train effective hallucination classifiers with simple and efficient methods such as linear probes. Evaluating across four model families, our classifiers consistently outperform baselines on long-form responses, including more expensive methods such as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an improvement in short-form question-answering settings. Despite being trained only to detect hallucinated entities, our probes effectively detect incorrect answers in mathematical reasoning tasks, indicating generalization beyond entities. While our annotation methodology is expensive, we find that annotated responses from one model can be used to train effective classifiers on other models; accordingly, we publicly release our datasets to facilitate reuse. Overall, our work suggests a promising new approach for scalable, real-world hallucination detection.
♻ ☆ Joint Continual Learning of Local Language Models and Cloud Offloading Decisions with Budget Constraints
Locally deployed Small Language Models (SLMs) must continually support diverse tasks under strict memory and computation constraints, making selective reliance on cloud Large Language Models (LLMs) unavoidable. Regulating cloud assistance during continual learning is challenging, as naive reward-based reinforcement learning often yields unstable offloading behavior and exacerbates catastrophic forgetting as task distributions shift. We propose DA-GRPO, a dual-advantage extension of Group Relative Policy Optimization that incorporates cloud-usage constraints directly into advantage computation, avoiding fixed reward shaping and external routing models. This design enables the local model to jointly learn task competence and collaboration behavior, allowing cloud requests to emerge naturally during post-training while respecting a prescribed assistance budget. Experiments on mathematical reasoning and code generation benchmarks show that DA-GRPO improves post-switch accuracy, substantially reduces forgetting, and maintains stable cloud usage compared to prior collaborative and routing-based approaches.
♻ ☆ Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
♻ ☆ HoRD: Robust Humanoid Control via History-Conditioned Reinforcement Learning and Online Distillation
Humanoid robots can suffer significant performance drops under small changes in dynamics, task specifications, or environment setup. We propose HoRD, a two-stage learning framework for robust humanoid control under domain shift. First, we train a high-performance teacher policy via history-conditioned reinforcement learning, where the policy infers latent dynamics context from recent state--action trajectories to adapt online to diverse randomized dynamics. Second, we perform online distillation to transfer the teacher's robust control capabilities into a transformer-based student policy that operates on sparse root-relative 3D joint keypoint trajectories. By combining history-conditioned adaptation with online distillation, HoRD enables a single policy to adapt zero-shot to unseen domains without per-domain retraining. Extensive experiments show HoRD outperforms strong baselines in robustness and transfer, especially under unseen domains and external perturbations. Code and project page are available at https://tonywang-0517.github.io/hord/.
♻ ☆ Generalizable Trajectory Prediction via Inverse Reinforcement Learning with Mamba-Graph Architecture
Accurate driving behavior modeling is fundamental to safe and efficient trajectory prediction, yet remains challenging in complex traffic scenarios. This paper presents a novel Inverse Reinforcement Learning (IRL) framework that captures human-like decision-making by inferring diverse reward functions, enabling robust cross-scenario adaptability. The learned reward function is utilized to maximize the likelihood of output by integrating Mamba blocks for efficient long-sequence dependency modeling with graph attention networks to encode spatial interactions among traffic agents. Comprehensive evaluations on urban intersections and roundabouts demonstrate that the proposed method not only outperforms various popular approaches in terms of prediction accuracy but also achieves 2.3 times higher generalization performance to unseen scenarios compared to other baselines, achieving adaptability in Out-of-Distribution settings that is competitive with fine-tuning.
♻ ☆ How Catastrophic is Your LLM? Certifying Risk in Conversation ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security. Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations. In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees. We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ YOLO-based Bearing Fault Diagnosis With Continuous Wavelet Transform IEEE
This letter presents a locality-aware bearing fault diagnosis framework that operates on time-frequency representations and enables spatially interpretable decision-making. One-dimensional vibration signals are first mapped to two-dimensional time-frequency spectrograms using the continuous wavelet transform (CWT) with Morlet wavelets to enhance transient fault signatures. The diagnosis task is then formulated as object detection on the time-frequency plane, where YOLOv9, YOLOv10, and YOLOv11 are employed to localize fault-relevant regions and classify fault types simultaneously. Experiments on three public benchmarks, including Case Western Reserve University (CWRU), Paderborn University (PU), and Intelligent Maintenance System (IMS), demonstrate strong cross-dataset generalization compared with a representative MCNN-LSTM baseline. In particular, YOLOv11 achieves mAP@0.5 of 99.0% (CWRU), 97.8% (PU), and 99.5% (IMS), while providing region-aware visualization of fault patterns in the time-frequency domain. These results suggest that detection-based inference on CWT spectrograms provides an effective and interpretable complementary approach to conventional global classification for rotating machinery condition monitoring.
comment: 5 pages, 2 figures, 2 tables, submitted to IEEE Signal Processing Letters
♻ ☆ Test-Time Iterative Error Correction for Efficient Diffusion Models ICLR 2026
With the growing demand for high-quality image generation on resource-constrained devices, efficient diffusion models have received increasing attention. However, such models suffer from approximation errors introduced by efficiency techniques, which significantly degrade generation quality. Once deployed, these errors are difficult to correct, as modifying the model is typically infeasible in deployment environments. Through an analysis of error propagation across diffusion timesteps, we reveal that these approximation errors can accumulate exponentially, severely impairing output quality. Motivated by this insight, we propose Iterative Error Correction (IEC), a novel test-time method that mitigates inference-time errors by iteratively refining the model's output. IEC is theoretically proven to reduce error propagation from exponential to linear growth, without requiring any retraining or architectural changes. IEC can seamlessly integrate into the inference process of existing diffusion models, enabling a flexible trade-off between performance and efficiency. Extensive experiments show that IEC consistently improves generation quality across various datasets, efficiency techniques, and model architectures, establishing it as a practical and generalizable solution for test-time enhancement of efficient diffusion models.
comment: Accepted by ICLR 2026
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Multiple Invertible and Partial-Equivariant Function for Latent Vector Transformation to Enhance Disentanglement in VAEs AISTATS 2026
Disentanglement learning is central to understanding and reusing learned representations in variational autoencoders (VAEs). Although equivariance has been explored in this context, effectively exploiting it for disentanglement remains challenging. In this paper, we propose a novel method, called Multiple Invertible and Partial-Equivariant Transformation (MIPE-Transformation), which integrates two main parts: (1) Invertible and Partial-Equivariant Transformation (IPE-Transformation), guaranteeing an invertible latent-to-transformed-latent mapping while preserving partial input-to-latent equivariance in the transformed latent space; and (2) Exponential-Family Conversion (EF-Conversion) to extend the standard Gaussian prior to an approximate exponential family via a learnable conversion. In experiments on the 3D Cars, 3D Shapes, and dSprites datasets, MIPE-Transformation improves the disentanglement performance of state-of-the-art VAEs.
comment: Accepted in AISTATS 2026
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
The deployment of large language models (LLMs) is frequently hindered by prohibitive memory and computational requirements. While quantization mitigates these bottlenecks, maintaining model fidelity in the sub-1-bit regime remains a persistent challenge. In this paper, we introduce LittleBit, a novel framework for extreme LLM compression. We target quantization rates as low as $0.1$ bits per weight (BPW), achieving a memory reduction of approximately $31\times$, which effectively compresses Llama2-13B to under $0.9$ GB. We represent weights via low-rank latent matrix factorization and subsequently binarize the resulting factors. To counteract the information loss inherent to such drastic precision reduction, we integrate a multi-scale compensation mechanism that learns importance parameters across row, column, and latent dimensions. Two primary contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and Residual Compensation to minimize approximation errors. Extensive experiments confirm the superiority of LittleBit in the sub-1-bit domain; for instance, our method at $0.1$ BPW surpasses the performance of leading techniques operating at $0.7$ BPW on Llama2-7B. We establish a new size-performance trade-off -- unlocking a potential $11.6\times$ inference speedup relative to FP16 -- and render powerful LLMs practical for resource-constrained environments. Our code is available at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ The Gradient-Causal Gap: Why Gradient Importance Fails on Complex Tasks ICLR
Removing ''important'' high-gradient components from a neural network can improve generalization, while removing unimportant'' low-gradient components can destroy it. We demonstrate this paradox by formalizing the \textit{Gradient-Causal Gap} in Transformers trained on algorithmic tasks. While gradient magnitude and causal importance align on simple tasks ($ρ=0.73$ for reversal), this relationship collapses as task complexity increases ($ρ=0.32$ for sorting), sometimes becoming inverted ($ρ=-0.11$). Pruning experiments reveal that gradient magnitude is not merely inaccurate but \textit{unpredictably} so. Removing low-gradient ''Hidden Heroes'' consistently devastates OOD accuracy ($-32\%$). Removing high-gradient ''Gradient Bloats'' is a coin flip: harmless in most seeds (indicating optimization noise), catastrophic in others (indicating overfitting circuits). This unpredictability means gradient-based pruning cannot reliably preserve model capabilities.
comment: 8 pages, 4 figures. Under Review. Code:https://anonymous.4open.science/r/ICLR_2026_LIT-workshop_CG-D42B
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ Optimal Bias-variance Tradeoff in Matrix and Tensor Estimation
We study matrix and tensor denoising when the underlying signal is \textbf{not} necessarily low-rank. In the tensor setting, we observe \[ Y = X^\ast + Z \in \mathbb{R}^{p_1 \times p_2 \times p_3}, \] where $X^\ast$ is an unknown signal tensor and $Z$ is a noise tensor. We propose a one-step variant of the higher-order SVD (HOSVD) estimator, denoted $\widetilde X$, and show that, uniformly over any user-specified Tucker ranks $(r_1,r_2,r_3)$, with high probability, \[ \|\widetilde X - X^\ast\|_{\mathrm F}^2 = O\Big( κ^2\Big\{r_1r_2r_3 + \sum_{k=1}^3 p_k r_k\Big\} + ξ_{(r_1,r_2,r_3)}^2 \Big). \] Here, $ξ_{(r_1,r_2,r_3)}$ is the best achievable Tucker rank-$(r_1,r_2,r_3)$ approximation error of $X^\ast$ (bias), $κ^2$ quantifies the noise level, and $κ^2\{r_1r_2r_3+\sum_{k=1}^3 p_k r_k\}$ is the variance term scaling with the effective degrees of freedom of $\widetilde X$. This yields a rank-adaptive bias-variance tradeoff: increasing $(r_1,r_2,r_3)$ decreases the bias $ξ_{(r_1,r_2,r_3)}$ while increasing variance. In the matrix setting, we show that truncated SVD achieves an analogous bias-variance tradeoff for arbitrary signal matrices. Notably, our matrix result requires \textbf{no} assumptions on the signal matrix, such as finite rank or spectral gaps. Finally, we complement our upper bounds with matching information-theoretic lower bounds, showing that the resulting bias-variance tradeoff is minimax optimal up to universal constants in both the matrix and tensor settings.
♻ ☆ Language Generation in the Limit: Noise, Loss, and Feedback
Kleinberg and Mullainathan (2024) recently proposed a formal framework called language generation in the limit and showed that given a sequence of example strings from an unknown target language drawn from any countable collection, an algorithm can correctly generate unseen strings from the target language within finite time. This notion was further refined by Li, Raman, and Tewari (2024), who defined stricter categories of non-uniform and uniform generation. They showed that a finite union of uniformly generatable collections is generatable in the limit, and asked if the same is true for non-uniform generation. We begin by resolving the question in the negative: we give a uniformly generatable collection and a non-uniformly generatable collection whose union is not generatable in the limit. We then use facets of this construction to further our understanding of several variants of language generation. The first two, generation with noise and without samples, were introduced by Raman and Raman (2025) and Li, Raman, and Tewari (2024) respectively. We show the equivalence of these models for uniform and non-uniform generation, and provide a characterization of non-uniform noisy generation. The former paper asked if there is any separation between noisy and non-noisy generation in the limit -- we show that such a separation exists even with a single noisy string. Finally, we study the framework of generation with feedback, introduced by Charikar and Pabbaraju (2025), where the algorithm is strengthened by allowing it to ask membership queries. We show finite queries add no power, but infinite queries yield a strictly more powerful model. In summary, the results in this paper resolve the union-closedness of language generation in the limit, and leverage those techniques (and others) to give precise characterizations for natural variants that incorporate noise, loss, and feedback.
comment: SODA 2026
♻ ☆ A Multi-Token Coordinate Descent Method for Semi-Decentralized Vertical Federated Learning IEEE
Most federated learning (FL) methods use a client-server scheme, where clients communicate only with a central server. However, this scheme is prone to bandwidth bottlenecks at the server and has a single point of failure. In contrast, in a (fully) decentralized approach, clients communicate directly with each other, dispensing with the server and mitigating these issues. Yet, as the client network grows larger and sparser, the convergence of decentralized methods slows down, even failing to converge if the network is disconnected. This work addresses this gap between client-server and decentralized schemes, focusing on the vertical FL setup, where clients hold different features of the same samples. We propose multi-token coordinate descent (MTCD), a flexible semi-decentralized method for vertical FL that can exploit both client-server and client-client links. By selecting appropriate hyperparameters, MTCD recovers the client-sever and decentralized schemes as special cases. In fact, its decentralized instance is itself a novel method of independent interest. Yet, by controlling the degree of dependency on client-server links, MTCD can also explore a spectrum of schemes ranging from client-server to decentralized. We prove that, for sufficiently large batch sizes, MTCD converges at an $\mathcal{O}(1/T)$ rate for nonconvex objectives when the tokens roam across disjoint subsets of clients. To capture the aforementioned drawbacks of the client-server scheme succinctly, we model the relative impact of using client-server versus client-client links as the ratio of their "costs", which depends on the application. This allows us to demonstrate, both analytically and empirically, that by tuning the degree of dependency on the server, the semi-decentralized instances of MTCD can outperform both client-server and decentralized approaches across a range of applications.
comment: Accepted to IEEE Transactions on Signal Processing
♻ ☆ The Blueprints of Intelligence: A Functional-Topological Foundation for Perception and Representation
Real-world phenomena do not generate arbitrary variability: their signals concentrate on compact, low-variability subsets of functional space, enabling rapid generalization from few examples. A small child can recognize a dog after extremely limited exposure because the perceptual manifold of "dog" is compact, structured, and low-dimensional. We formalize this principle through a deterministic functional-topological framework in which the set of valid realizations produced by a physical process forms a compact subset of a Banach space, endowed with stable invariants, a finite Hausdorff radius, and an induced continuous perceptual functional. This geometry provides explicit limits on knowledge, conditions for identifiability, and guarantees for generalization from sparse evidence -- properties fundamental to both natural and artificial intelligence. Across electromechanical, electrochemical, and physiological domains, we show that real-world processes consistently generate compact perceptual manifolds with the same geometric characteristics. Their boundaries can be discovered in a fully self-supervised manner as the empirical radius saturates with increasing sampling, even when the governing equations are unknown. These results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction. It provides a geometric explanation for why biological learners and self-supervised AI systems can generalize from few observations, and establishes compact perceptual manifolds as a fundamental building block for future AI architectures. Finally, this work unifies biological perception and modern self-supervised models under a single geometric principle: both derive their generalization ability from the compactness and invariants of real-world perceptual manifolds.
comment: 35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI
♻ ☆ Knowledgeable Language Models as Black-Box Optimizers for Personalized Medicine ICLR 2026
The goal of personalized medicine is to discover a treatment regimen that optimizes a patient's clinical outcome based on their personal genetic and environmental factors. However, candidate treatments cannot be arbitrarily administered to the patient to assess their efficacy; we often instead have access to an in silico surrogate model that approximates the true fitness of a proposed treatment. Unfortunately, such surrogate models have been shown to fail to generalize to previously unseen patient-treatment combinations. We hypothesize that domain-specific prior knowledge - such as medical textbooks and biomedical knowledge graphs - can provide a meaningful alternative signal of the fitness of proposed treatments. To this end, we introduce LLM-based Entropy-guided Optimization with kNowledgeable priors (LEON), a mathematically principled approach to leverage large language models (LLMs) as black-box optimizers without any task-specific fine-tuning, taking advantage of their ability to contextualize unstructured domain knowledge to propose personalized treatment plans in natural language. In practice, we implement LEON via 'optimization by prompting,' which uses LLMs as stochastic engines for proposing treatment designs. Experiments on real-world optimization tasks show LEON outperforms both traditional and LLM-based methods in proposing individualized treatments for patients.
comment: 63 pages, Accepted to ICLR 2026
♻ ☆ An interpretable data-driven approach to optimizing clinical fall risk assessment
In this study we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models on JHFRAT assessment data and additional electronic health record (EHR) variables. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labelling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
♻ ☆ Matcha: Multi-Stage Riemannian Flow Matching for Accurate and Physically Valid Molecular Docking
Accurate prediction of protein-ligand binding poses is crucial for structure-based drug design, yet existing methods struggle to balance speed, accuracy, and physical plausibility. We introduce Matcha, a novel molecular docking pipeline that combines multi-stage flow matching with physically-aware post-processing. Our approach consists of three sequential stages applied consecutively to progressively refine docking predictions, each implemented as a flow matching model operating on appropriate geometric spaces ($\mathbb{R}^3$, $\mathrm{SO}(3)$, and $\mathrm{SO}(2)$). We enhance the prediction quality through GNINA energy minimization and apply unsupervised physical validity filters to eliminate unrealistic poses. Compared to various approaches, Matcha demonstrates superior physical plausibility across all considered benchmarks. Moreover, our method works approximately 31 times faster than modern large-scale co-folding models. The model weights and inference code to reproduce our results are available at https://github.com/LigandPro/Matcha.
♻ ☆ On the Empirical Power of Goodness-of-Fit Tests in Watermark Detection NeurIPS 2025
Large language models (LLMs) raise concerns about content authenticity and integrity because they can generate human-like text at scale. Text watermarks, which embed detectable statistical signals into generated text, offer a provable way to verify content origin. Many detection methods rely on pivotal statistics that are i.i.d. under human-written text, making goodness-of-fit (GoF) tests a natural tool for watermark detection. However, GoF tests remain largely underexplored in this setting. In this paper, we systematically evaluate eight GoF tests across three popular watermarking schemes, using three open-source LLMs, two datasets, various generation temperatures, and multiple post-editing methods. We find that general GoF tests can improve both the detection power and robustness of watermark detectors. Notably, we observe that text repetition, common in low-temperature settings, gives GoF tests a unique advantage not exploited by existing methods. Our results highlight that classic GoF tests are a simple yet powerful and underused tool for watermark detection in LLMs.
comment: Accepted at NeurIPS 2025 as a spotlight
♻ ☆ STFlow: Data-Coupled Flow Matching for Geometric Trajectory Simulation
Simulating trajectories of dynamical systems is a fundamental problem in a wide range of fields such as molecular dynamics, biochemistry, and pedestrian dynamics. Machine learning has become an invaluable tool for scaling physics-based simulators and developing models directly from experimental data. In particular, recent advances in deep generative modeling and geometric deep learning enable probabilistic simulation by learning complex trajectory distributions while respecting intrinsic permutation and time-shift symmetries. However, trajectories of N-body systems are commonly characterized by high sensitivity to perturbations leading to bifurcations, as well as multi-scale temporal and spatial correlations. To address these challenges, we introduce STFlow (Spatio-Temporal Flow), a generative model based on graph neural networks and hierarchical convolutions. By incorporating data-dependent couplings within the Flow Matching framework, STFlow denoises starting from conditioned random-walks instead of Gaussian noise. This novel informed prior simplifies the learning task by reducing transport cost, increasing training and inference efficiency. We validate our approach on N-body systems, molecular dynamics, and human trajectory forecasting. Across these benchmarks, STFlow achieves the lowest prediction errors with fewer simulation steps and improved scalability.
comment: 18 pages, 12 figures
♻ ☆ InstructLR: A Scalable Approach to Create Instruction Dataset for Under-Resourced Languages
Effective text generation and chat interfaces for low-resource languages (LRLs) remain a challenge for state-of-the-art large language models (LLMs) to support. This is mainly due to the difficulty of curating high-quality instruction datasets for LRLs, a limitation prevalent in the languages spoken across the African continent and other regions. Current approaches, such as automated translation and synthetic data generation, frequently yield outputs that lack fluency or even orthographic consistency. In this paper, we introduce InstructLR, a novel framework designed to generate high-quality instruction datasets for LRLs. Our approach integrates LLM-driven text generation with a dual-layer quality filtering mechanism: an automated filtering layer based on retrieval-augmented-generation (RAG)-based n-shot prompting, and a human-in-the-loop validation layer. Drawing inspiration from benchmarks such as MMLU in task definition, InstructLR has facilitated the creation of three multi-domain instruction benchmarks: ZarmaInstruct-50k, BambaraInstruct-50k, and FulfuldeInstruct-50k.
♻ ☆ Performative Learning Theory
Performative predictions influence the very outcomes they aim to forecast. We study performative predictions that affect a sample (e.g., only existing users of an app) and/or the whole population (e.g., all potential app users). This raises the question of how well models generalize under performativity. For example, how well can we draw insights about new app users based on existing users when both of them react to the app's predictions? We address this question by embedding performative predictions into statistical learning theory. We prove generalization bounds under performative effects on the sample, on the population, and on both. A key intuition behind our proofs is that in the worst case, the population negates predictions, while the sample deceptively fulfills them. We cast such self-negating and self-fulfilling predictions as min-max and min-min risk functionals in Wasserstein space, respectively. Our analysis reveals a fundamental trade-off between performatively changing the world and learning from it: the more a model affects data, the less it can learn from it. Moreover, our analysis results in a surprising insight on how to improve generalization guarantees by retraining on performatively distorted samples. We illustrate our bounds in a case study on prediction-informed assignments of unemployed German residents to job trainings, drawing upon administrative labor market records from 1975 to 2017 in Germany.
comment: 53 pages, 2 figures
♻ ☆ CORE: Context-Robust Remasking for Diffusion Language Models
Standard decoding in Masked Diffusion Models (MDMs) is hindered by context rigidity: tokens are retained based on transient high confidence, often ignoring that early predictions lack full context. This creates cascade effects where initial inconsistencies misguide the remaining generation. Existing revision strategies attempt to mitigate this by relying on static confidence scores, but these signals are inherently myopic; inconsistent tokens can appear confident to the model itself. We propose Context-Robust Remasking (CORE), a training-free framework for inference-time revision. Rather than trusting static token probabilities, CORE identifies context-brittle tokens by probing their sensitivity to targeted masked-context perturbations. We formalize revision as a robust optimization objective over context shifts and efficiently approximate this objective to prioritize unstable tokens for revision. On LLaDA-8B-Base, CORE delivers consistent improvements across reasoning and code benchmarks, outperforming compute-matched baselines and improving MBPP by up to 9.2 percentage points.
♻ ☆ Credit Risk Estimation with Non-Financial Features: Evidence from a Synthetic Istanbul Dataset
Financial exclusion constrains entrepreneurship, increases income volatility, and widens wealth gaps. Underbanked consumers in Istanbul often have no bureau file because their earnings and payments flow through informal channels. To study how such borrowers can be evaluated we create a synthetic dataset of one hundred thousand Istanbul residents that reproduces first quarter 2025 TÜİK (TURKSTAT) census marginals and telecom usage patterns. Retrieval augmented generation feeds these public statistics into the OpenAI o3 model, which synthesises realistic yet private records. Each profile contains seven socio demographic variables and nine alternative attributes that describe phone specifications, online shopping rhythm, subscription spend, car ownership, monthly rent, and a credit card flag. To test the impact of the alternative financial data CatBoost, LightGBM, and XGBoost are each trained in two versions. Demo models use only the socio demographic variables; Full models include both socio demographic and alternative attributes. Across five fold stratified validation the alternative block raises area under the curve by about one point three percentage and lifts balanced F 1 from roughly 0.84 to 0.95, a fourteen percent gain. We contribute an open Istanbul 2025 Q1 synthetic dataset, a fully reproducible modeling pipeline, and empirical evidence that a concise set of behavioural attributes can approach bureau level discrimination power while serving borrowers who lack formal credit records. These findings give lenders and regulators a transparent blueprint for extending fair and safe credit access to the underbanked.
♻ ☆ Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction
Regime transitions routinely break stationarity in time series, making calibrated uncertainty as important as point accuracy. We study distribution-free uncertainty for regime-switching forecasting by coupling Deep Switching State Space Models with Adaptive Conformal Inference (ACI) and its aggregated variant (AgACI). We also introduce a unified conformal wrapper that sits atop strong sequence baselines including S4, MC-Dropout GRU, sparse Gaussian processes, and a change-point local model to produce online predictive bands with finite-sample marginal guarantees under nonstationarity and model misspecification. Across synthetic and real datasets, conformalized forecasters achieve near-nominal coverage with competitive accuracy and generally improved band efficiency.
comment: v2: Added acknowledgements
♻ ☆ Learnability Window in Gated Recurrent Neural Networks
We develop a theoretical framework that explains how gating mechanisms determine the learnability window $\mathcal{H}_N$ of recurrent neural networks, defined as the largest temporal horizon over which gradient information remains statistically recoverable. While classical analyses emphasize numerical stability of Jacobian products, we show that stability alone is insufficient: learnability is governed instead by the effective learning rates $μ_{t,\ell}$, per-lag and per-neuron quantities obtained from first-order expansions of gate-induced Jacobian products in Backpropagation Through Time. These effective learning rates act as multiplicative filters that control both the magnitude and anisotropy of gradient transport. Under heavy-tailed ($α$-stable) gradient noise, we prove that the minimal sample size required to detect a dependency at lag~$\ell$ scales as $N(\ell)\propto f(\ell)^{-κ_α}$, where $f(\ell)=\|μ_{t,\ell}\|_1$ is the effective learning rate envelope and $κ_α=α/(α-1)$ is the concentration exponent governing empirical averages. This yields an explicit characterization of $\mathcal{H}_N$ and closed-form scaling laws for logarithmic, polynomial, and exponential decay of $f(\ell)$. The theory shows that the time-scale spectra induced by the effective learning rates are the dominant determinants of learnability: broader or more heterogeneous spectra slow the decay of $f(\ell)$, enlarging the learnability window, while heavy-tailed noise uniformly compresses $\mathcal{H}_N$ by slowing statistical concentration to $N^{-1/κ_α}$. By integrating gate-induced time-scale geometry with gradient noise and sample complexity, the framework identifies effective learning rates as the primary objects that determine whether, when, and over what horizons recurrent networks can learn long-range temporal dependencies.
comment: typos and better explanations
♻ ☆ Universal consistency of the $k$-NN rule in metric spaces and Nagata dimension. III
We establish the last missing link allowing to describe those complete separable metric spaces $X$ in which the $k$ nearest neighbour classifier is universally consistent, both in combinatorial terms of dimension theory and via a fundamental property of real analysis. The following are equivalent: (1) The $k$-nearest neighbour classifier is universally consistent in $X$, (2) The strong Lebesgue--Besicovitch differentiation property holds in $X$ for every locally finite Borel measure, (3) $X$ is sigma-finite dimensional in the sense of Jun-Iti Nagata. The equivalence (2)$\iff$(3) was announced by Preiss (1983), while a detailed proof of the implication (3)$\Rightarrow$(2) has only appeared in Assouad and Quentin de Gromard (2006). The implication (2)$\Rightarrow$(1) was established by Cérou and Guyader (2006). We prove the implication (1)$\Rightarrow$(3). We further show that the weak (instead of strong) Lebesgue--Besicovitch property is insufficient for the consistency of the $k$-NN rule, as witnessed, for example, by the Heisenberg group (here we correct a wrong claim made in the previous article (Kumari and Pestov 2024)). A bit counter-intuitively, there is a metric on the real line uniformly equivalent to the usual distance but under which the $k$-NN classifier fails. Finally, another equivalent condition that can be added to the above is the Cover--Hart property: (4) the error of the $1$-nearest neighbour classifier is asymptotically at most twice as bad as the Bayes error.
comment: 20 pages, latex with ESAIM P&S macros, a substantially reworked and expanded version in response to the preliminary referee report from the journal. New results are added, the Introduction and the exposition are extended
♻ ☆ SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning NeurIPS 2025
Multimodal in-context learning (ICL) remains underexplored despite significant potential for domains such as medicine. Clinicians routinely encounter diverse, specialized tasks requiring adaptation from limited examples, such as drawing insights from a few relevant prior cases or considering a constrained set of differential diagnoses. While multimodal large language models (MLLMs) have shown advances in medical visual question answering (VQA), their ability to learn multimodal tasks from context is largely unknown. We introduce SMMILE, the first expert-driven multimodal ICL benchmark for medical tasks. Eleven medical experts curated problems, each including a multimodal query and multimodal in-context examples as task demonstrations. SMMILE encompasses 111 problems (517 question-image-answer triplets) covering 6 medical specialties and 13 imaging modalities. We further introduce SMMILE++, an augmented variant with 1038 permuted problems. A comprehensive evaluation of 15 MLLMs demonstrates that most models exhibit moderate to poor multimodal ICL ability in medical tasks. In open-ended evaluations, ICL contributes only an 8% average improvement over zero-shot on SMMILE and 9.4% on SMMILE++. We observe a susceptibility for irrelevant in-context examples: even a single noisy or irrelevant example can degrade performance by up to 9.5%. Moreover, we observe that MLLMs are affected by a recency bias, where placing the most relevant example last can lead to substantial performance improvements of up to 71%. Our findings highlight critical limitations and biases in current MLLMs when learning multimodal medical tasks from context. SMMILE is available at https://smmile-benchmark.github.io.
comment: NeurIPS 2025 (Datasets & Benchmarks Track)
♻ ☆ SpIDER: Spatially Informed Dense Embedding Retrieval for Software Issue Localization
Retrieving code functions, classes or files that are relevant in order to solve a given user query, bug report or feature request from large codebases is a fundamental challenge for Large Language Model (LLM)-based coding agents. Agentic approaches typically employ sparse retrieval methods like BM25 or dense embedding strategies to identify semantically relevant units. While embedding-based approaches can outperform BM25 by large margins, they often don't take into consideration the underlying graph-structured characteristics of the codebase. To address this, we propose SpIDER (Spatially Informed Dense Embedding Retrieval), an enhanced dense retrieval approach that integrates LLM-based reasoning along with auxiliary information obtained from graph-based exploration of the codebase. We further introduce SpIDER-Bench, a graph-structured evaluation benchmark curated from SWE-PolyBench, SWEBench-Verified and Multi-SWEBench, spanning codebases from Python, Java, JavaScript and TypeScript programming languages. Empirical results show that SpIDER consistently improves dense retrieval performance by at least 13% across programming languages and benchmarks in SpIDER-Bench.
comment: Initial preprint
Multimedia 8
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Content-Driven Frame-Level Bit Prediction for Rate Control in Versatile Video Coding IEEE
Rate control allocates bits efficiently across frames to meet a target bitrate while maintaining quality. Conventional two-pass rate control (2pRC) in Versatile Video Coding (VVC) relies on analytical rate-QP models, which often fail to capture nonlinear spatial-temporal variations, causing quality instability and high complexity due to multiple trial encodes. This paper proposes a content-adaptive framework that predicts frame-level bit consumption using lightweight features from the Video Complexity Analyzer (VCA) and quantization parameters within a Random Forest regression. On ultra-high-definition sequences encoded with VVenC, the model achieves strong correlation with ground truth, yielding R2 values of 0.93, 0.88, and 0.77 for I-, P-, and B-frames, respectively. Integrated into a rate-control loop, it achieves comparable coding efficiency to 2pRC while reducing total encoding time by 33.3%. The results show that VCA-driven bit prediction provides a computationally efficient and accurate alternative to conventional rate-QP models.
comment: 2026 IEEE International Symposium on Circuits and Systems (ISCAS)
☆ ALIEN: Analytic Latent Watermarking for Controllable Generation
Watermarking is a technical alternative to safeguarding intellectual property and reducing misuse. Existing methods focus on optimizing watermarked latent variables to balance watermark robustness and fidelity, as Latent diffusion models (LDMs) are considered a powerful tool for generative tasks. However, reliance on computationally intensive heuristic optimization for iterative signal refinement results in high training overhead and local optima entrapment.To address these issues, we propose an \underline{A}na\underline{l}ytical Watermark\underline{i}ng Framework for Controllabl\underline{e} Generatio\underline{n} (ALIEN). We develop the first analytical derivation of the time-dependent modulation coefficient that guides the diffusion of watermark residuals to achieve controllable watermark embedding pattern.Experimental results show that ALIEN-Q outperforms the state-of-the-art by 33.1\% across 5 quality metrics, and ALIEN-R demonstrates 14.0\% improved robustness against generative variant and stability threats compared to the state-of-the-art across 15 distinct conditions. Code can be available at https://anonymous.4open.science/r/ALIEN/.
☆ Adaptive Resolution and Chroma Subsampling for Energy-Efficient Video Coding IEEE
Conventional video encoders typically employ a fixed chroma subsampling format, such as YUV420, which may not optimally reflect variations in chroma detail across different types of content. This can lead to suboptimal chroma quality and inefficiencies in bitrate allocation. We propose an Adaptive Resolution-Chroma Subsampling (ARCS) framework that jointly optimizes spatial resolution and chroma subsampling to balance perceptual quality and decoding efficiency. ARCS selects an optimal (resolution, chroma format) pair for each bitrate by maximizing a composite quality-complexity objective, while enforcing monotonicity constraints to ensure smooth transitions between representations. Experimental results using x265 show that, compared to a fixed-format encoding (YUV444), on average, ARCS achieves a 13.48 % bitrate savings and a 62.18 % reduction in decoding time, which we use as a proxy for the decoding energy, to yield the same colorVideoVDP score. The proposed framework introduces chroma adaptivity as a new control dimension for energy-efficient video streaming.
comment: 2026 IEEE International Symposium on Circuits and Systems (ISCAS)
☆ Video-based Music Generation
As the volume of video content on the internet grows rapidly, finding a suitable soundtrack remains a significant challenge. This thesis presents EMSYNC (EMotion and SYNChronization), a fast, free, and automatic solution that generates music tailored to the input video, enabling content creators to enhance their productions without composing or licensing music. Our model creates music that is emotionally and rhythmically synchronized with the video. A core component of EMSYNC is a novel video emotion classifier. By leveraging pretrained deep neural networks for feature extraction and keeping them frozen while training only fusion layers, we reduce computational complexity while improving accuracy. We show the generalization abilities of our method by obtaining state-of-the-art results on Ekman-6 and MovieNet. Another key contribution is a large-scale, emotion-labeled MIDI dataset for affective music generation. We then present an emotion-based MIDI generator, the first to condition on continuous emotional values rather than discrete categories, enabling nuanced music generation aligned with complex emotional content. To enhance temporal synchronization, we introduce a novel temporal boundary conditioning method, called "boundary offset encodings," aligning musical chords with scene changes. Combining video emotion classification, emotion-based music generation, and temporal boundary conditioning, EMSYNC emerges as a fully automatic video-based music generator. User studies show that it consistently outperforms existing methods in terms of music richness, emotional alignment, temporal synchronization, and overall preference, setting a new state-of-the-art in video-based music generation.
comment: PhD thesis, University of Porto
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries IEEE
Providing soundtracks for videos remains a costly and time-consuming challenge for multimedia content creators. We introduce EMSYNC, an automatic video-based symbolic music generator that creates music aligned with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate upcoming video scene cuts and align generated musical chords with them. We also propose a mapping scheme that bridges the discrete categorical outputs of the video emotion classifier with the continuous valence-arousal inputs required by the emotion-conditioned MIDI generator, enabling seamless integration of emotion information across different representations. Our method outperforms state-of-the-art models in objective and subjective evaluations across different video datasets, demonstrating its effectiveness in generating music aligned to video both emotionally and temporally. Our demo and output samples are available at https://serkansulun.com/emsync.
comment: IEEE Transactions on Multimedia, 2026, in print
♻ ☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training. Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora. To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
♻ ☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
Computer Vision and Pattern Recognition 166
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ CoWTracker: Tracking by Warping instead of Correlation
Dense point tracking is a fundamental problem in computer vision, with applications ranging from video analysis to robotic manipulation. State-of-the-art trackers typically rely on cost volumes to match features across frames, but this approach incurs quadratic complexity in spatial resolution, limiting scalability and efficiency. In this paper, we propose \method, a novel dense point tracker that eschews cost volumes in favor of warping. Inspired by recent advances in optical flow, our approach iteratively refines track estimates by warping features from the target frame to the query frame based on the current estimate. Combined with a transformer architecture that performs joint spatiotemporal reasoning across all tracks, our design establishes long-range correspondences without computing feature correlations. Our model is simple and achieves state-of-the-art performance on standard dense point tracking benchmarks, including TAP-Vid-DAVIS, TAP-Vid-Kinetics, and Robo-TAP. Remarkably, the model also excels at optical flow, sometimes outperforming specialized methods on the Sintel, KITTI, and Spring benchmarks. These results suggest that warping-based architectures can unify dense point tracking and optical flow estimation.
comment: Project website: cowtracker.github.io
☆ PerpetualWonder: Long-Horizon Action-Conditioned 4D Scene Generation
We introduce PerpetualWonder, a hybrid generative simulator that enables long-horizon, action-conditioned 4D scene generation from a single image. Current works fail at this task because their physical state is decoupled from their visual representation, which prevents generative refinements to update the underlying physics for subsequent interactions. PerpetualWonder solves this by introducing the first true closed-loop system. It features a novel unified representation that creates a bidirectional link between the physical state and visual primitives, allowing generative refinements to correct both the dynamics and appearance. It also introduces a robust update mechanism that gathers supervision from multiple viewpoints to resolve optimization ambiguity. Experiments demonstrate that from a single image, PerpetualWonder can successfully simulate complex, multi-step interactions from long-horizon actions, maintaining physical plausibility and visual consistency.
comment: Project website: https://johnzhan2023.github.io/PerpetualWonder/
☆ Laminating Representation Autoencoders for Efficient Diffusion
Recent work has shown that diffusion models can generate high-quality images by operating directly on SSL patch features rather than pixel-space latents. However, the dense patch grids from encoders like DINOv2 contain significant redundancy, making diffusion needlessly expensive. We introduce FlatDINO, a variational autoencoder that compresses this representation into a one-dimensional sequence of just 32 continuous tokens -an 8x reduction in sequence length and 48x compression in total dimensionality. On ImageNet 256x256, a DiT-XL trained on FlatDINO latents achieves a gFID of 1.80 with classifier-free guidance while requiring 8x fewer FLOPs per forward pass and up to 4.5x fewer FLOPs per training step compared to diffusion on uncompressed DINOv2 features. These are preliminary results and this work is in progress.
☆ When LLaVA Meets Objects: Token Composition for Vision-Language-Models
Current autoregressive Vision Language Models (VLMs) usually rely on a large number of visual tokens to represent images, resulting in a need for more compute especially at inference time. To address this problem, we propose Mask-LLaVA, a framework that leverages different levels of visual features to create a compact yet information-rich visual representation for autoregressive VLMs. Namely, we combine mask-based object representations together with global tokens and local patch tokens. While all tokens are used during training, it shows that the resulting model can flexibly drop especially the number of mask-based object-tokens at test time, allowing to adapt the number of tokens during inference without the need to retrain the model and without a significant drop in performance. We evaluate the proposed approach on a suite of standard benchmarks showing results competitive to current token efficient methods and comparable to the original LLaVA baseline using only a fraction of visual tokens. Our analysis demonstrates that combining multi-level features enables efficient learning with fewer tokens while allowing dynamic token selection at test time for good performance.
☆ PDF-HR: Pose Distance Fields for Humanoid Robots
Pose and motion priors play a crucial role in humanoid robotics. Although such priors have been widely studied in human motion recovery (HMR) domain with a range of models, their adoption for humanoid robots remains limited, largely due to the scarcity of high-quality humanoid motion data. In this work, we introduce Pose Distance Fields for Humanoid Robots (PDF-HR), a lightweight prior that represents the robot pose distribution as a continuous and differentiable manifold. Given an arbitrary pose, PDF-HR predicts its distance to a large corpus of retargeted robot poses, yielding a smooth measure of pose plausibility that is well suited for optimization and control. PDF-HR can be integrated as a reward shaping term, a regularizer, or a standalone plausibility scorer across diverse pipelines. We evaluate PDF-HR on various humanoid tasks, including single-trajectory motion tracking, general motion tracking, style-based motion mimicry, and general motion retargeting. Experiments show that this plug-and-play prior consistently and substantially strengthens strong baselines. Code and models will be released.
comment: \href{https://gaoyukang33.github.io/PDF-HR/}{Project page}
☆ LitS: A novel Neighborhood Descriptor for Point Clouds
With the advancement of 3D scanning technologies, point clouds have become fundamental for representing 3D spatial data, with applications that span across various scientific and technological fields. Practical analysis of this data depends crucially on available neighborhood descriptors to accurately characterize the local geometries of the point cloud. This paper introduces LitS, a novel neighborhood descriptor for 2D and 3D point clouds. LitS are piecewise constant functions on the unit circle that allow points to keep track of their surroundings. Each element in LitS' domain represents a direction with respect to a local reference system. Once constructed, evaluating LitS at any given direction gives us information about the number of neighbors in a cone-like region centered around that same direction. Thus, LitS conveys a lot of information about the local neighborhood of a point, which can be leveraged to gain global structural understanding by analyzing how LitS changes between close points. In addition, LitS comes in two versions ('regular' and 'cumulative') and has two parameters, allowing them to adapt to various contexts and types of point clouds. Overall, they are a versatile neighborhood descriptor, capable of capturing the nuances of local point arrangements and resilient to common point cloud data issues such as variable density and noise.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization IEEE
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
comment: 13 pages, 8 figures
☆ X2HDR: HDR Image Generation in a Perceptually Uniform Space
High-dynamic-range (HDR) formats and displays are becoming increasingly prevalent, yet state-of-the-art image generators (e.g., Stable Diffusion and FLUX) typically remain limited to low-dynamic-range (LDR) output due to the lack of large-scale HDR training data. In this work, we show that existing pretrained diffusion models can be easily adapted to HDR generation without retraining from scratch. A key challenge is that HDR images are natively represented in linear RGB, whose intensity and color statistics differ substantially from those of sRGB-encoded LDR images. This gap, however, can be effectively bridged by converting HDR inputs into perceptually uniform encodings (e.g., using PU21 or PQ). Empirically, we find that LDR-pretrained variational autoencoders (VAEs) reconstruct PU21-encoded HDR inputs with fidelity comparable to LDR data, whereas linear RGB inputs cause severe degradations. Motivated by this finding, we describe an efficient adaptation strategy that freezes the VAE and finetunes only the denoiser via low-rank adaptation in a perceptually uniform space. This results in a unified computational method that supports both text-to-HDR synthesis and single-image RAW-to-HDR reconstruction. Experiments demonstrate that our perceptually encoded adaptation consistently improves perceptual fidelity, text-image alignment, and effective dynamic range, relative to previous techniques.
comment: Project page: https://x2hdr.github.io/, Code: https://github.com/X2HDR/X2HDR
☆ VISTA-Bench: Do Vision-Language Models Really Understand Visualized Text as Well as Pure Text?
Vision-Language Models (VLMs) have achieved impressive performance in cross-modal understanding across textual and visual inputs, yet existing benchmarks predominantly focus on pure-text queries. In real-world scenarios, language also frequently appears as visualized text embedded in images, raising the question of whether current VLMs handle such input requests comparably. We introduce VISTA-Bench, a systematic benchmark from multimodal perception, reasoning, to unimodal understanding domains. It evaluates visualized text understanding by contrasting pure-text and visualized-text questions under controlled rendering conditions. Extensive evaluation of over 20 representative VLMs reveals a pronounced modality gap: models that perform well on pure-text queries often degrade substantially when equivalent semantic content is presented as visualized text. This gap is further amplified by increased perceptual difficulty, highlighting sensitivity to rendering variations despite unchanged semantics. Overall, VISTA-Bench provides a principled evaluation framework to diagnose this limitation and to guide progress toward more unified language representations across tokenized text and pixels. The source dataset is available at https://github.com/QingAnLiu/VISTA-Bench.
comment: 27 pages, 19 figures
☆ Light Forcing: Accelerating Autoregressive Video Diffusion via Sparse Attention
Advanced autoregressive (AR) video generation models have improved visual fidelity and interactivity, but the quadratic complexity of attention remains a primary bottleneck for efficient deployment. While existing sparse attention solutions have shown promise on bidirectional models, we identify that applying these solutions to AR models leads to considerable performance degradation for two reasons: isolated consideration of chunk generation and insufficient utilization of past informative context. Motivated by these observations, we propose \textsc{Light Forcing}, the \textit{first} sparse attention solution tailored for AR video generation models. It incorporates a \textit{Chunk-Aware Growth} mechanism to quantitatively estimate the contribution of each chunk, which determines their sparsity allocation. This progressive sparsity increase strategy enables the current chunk to inherit prior knowledge in earlier chunks during generation. Additionally, we introduce a \textit{Hierarchical Sparse Attention} to capture informative historical and local context in a coarse-to-fine manner. Such two-level mask selection strategy (\ie, frame and block level) can adaptively handle diverse attention patterns. Extensive experiments demonstrate that our method outperforms existing sparse attention in quality (\eg, 84.5 on VBench) and efficiency (\eg, $1.2{\sim}1.3\times$ end-to-end speedup). Combined with FP8 quantization and LightVAE, \textsc{Light Forcing} further achieves a $2.3\times$ speedup and 19.7\,FPS on an RTX~5090 GPU. Code will be released at \href{https://github.com/chengtao-lv/LightForcing}{https://github.com/chengtao-lv/LightForcing}.
comment: 14 pages, 7 figures
☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
☆ Mitigating Long-Tail Bias via Prompt-Controlled Diffusion Augmentation
Semantic segmentation of high-resolution remote-sensing imagery is critical for urban mapping and land-cover monitoring, yet training data typically exhibits severe long-tailed pixel imbalance. In the dataset LoveDA, this challenge is compounded by an explicit Urban/Rural split with distinct appearance and inconsistent class-frequency statistics across domains. We present a prompt-controlled diffusion augmentation framework that synthesizes paired label--image samples with explicit control of both domain and semantic composition. Stage~A uses a domain-aware, masked ratio-conditioned discrete diffusion model to generate layouts that satisfy user-specified class-ratio targets while respecting learned co-occurrence structure. Stage~B translates layouts into photorealistic, domain-consistent images using Stable Diffusion with ControlNet guidance. Mixing the resulting ratio and domain-controlled synthetic pairs with real data yields consistent improvements across multiple segmentation backbones, with gains concentrated on minority classes and improved Urban and Rural generalization, demonstrating controllable augmentation as a practical mechanism to mitigate long-tail bias in remote-sensing segmentation. Source codes, pretrained models, and synthetic datasets are available at \href{https://github.com/Buddhi19/SyntheticGen.git}{Github}
☆ How to rewrite the stars: Mapping your orchard over time through constellations of fruits IEEE
Following crop growth through the vegetative cycle allows farmers to predict fruit setting and yield in early stages, but it is a laborious and non-scalable task if performed by a human who has to manually measure fruit sizes with a caliper or dendrometers. In recent years, computer vision has been used to automate several tasks in precision agriculture, such as detecting and counting fruits, and estimating their size. However, the fundamental problem of matching the exact same fruits from one video, collected on a given date, to the fruits visible in another video, collected on a later date, which is needed to track fruits' growth through time, remains to be solved. Few attempts were made, but they either assume that the camera always starts from the same known position and that there are sufficiently distinct features to match, or they used other sources of data like GPS. Here we propose a new paradigm to tackle this problem, based on constellations of 3D centroids, and introduce a descriptor for very sparse 3D point clouds that can be used to match fruits across videos. Matching constellations instead of individual fruits is key to deal with non-rigidity, occlusions and challenging imagery with few distinct visual features to track. The results show that the proposed method can be successfully used to match fruits across videos and through time, and also to build an orchard map and later use it to locate the camera pose in 6DoF, thus providing a method for autonomous navigation of robots in the orchard and for selective fruit picking, for example.
comment: submitted to IEEE International Conference on Robotics & Automation
☆ Adaptive Prompt Elicitation for Text-to-Image Generation
Aligning text-to-image generation with user intent remains challenging, for users who provide ambiguous inputs and struggle with model idiosyncrasies. We propose Adaptive Prompt Elicitation (APE), a technique that adaptively asks visual queries to help users refine prompts without extensive writing. Our technical contribution is a formulation of interactive intent inference under an information-theoretic framework. APE represents latent intent as interpretable feature requirements using language model priors, adaptively generates visual queries, and compiles elicited requirements into effective prompts. Evaluation on IDEA-Bench and DesignBench shows that APE achieves stronger alignment with improved efficiency. A user study with challenging user-defined tasks demonstrates 19.8% higher alignment without workload overhead. Our work contributes a principled approach to prompting that, for general users, offers an effective and efficient complement to the prevailing prompt-based interaction paradigm with text-to-image models.
comment: ACM International Conference on Intelligent User Interfaces (IUI) 2026, March 23-26, Paphos, Cyprus
☆ SAR-RAG: ATR Visual Question Answering by Semantic Search, Retrieval, and MLLM Generation IEEE
We present a visual-context image retrieval-augmented generation (ImageRAG) assisted AI agent for automatic target recognition (ATR) of synthetic aperture radar (SAR). SAR is a remote sensing method used in defense and security applications to detect and monitor the positions of military vehicles, which may appear indistinguishable in images. Researchers have extensively studied SAR ATR to improve the differentiation and identification of vehicle types, characteristics, and measurements. Test examples can be compared with known vehicle target types to improve recognition tasks. New methods enhance the capabilities of neural networks, transformer attention, and multimodal large language models. An agentic AI method may be developed to utilize a defined set of tools, such as searching through a library of similar examples. Our proposed method, SAR Retrieval-Augmented Generation (SAR-RAG), combines a multimodal large language model (MLLM) with a vector database of semantic embeddings to support contextual search for image exemplars with known qualities. By recovering past image examples with known true target types, our SAR-RAG system can compare similar vehicle categories, achieving improved ATR prediction accuracy. We evaluate this through search and retrieval metrics, categorical classification accuracy, and numeric regression of vehicle dimensions. These metrics all show improvements when SAR-RAG is added to an MLLM baseline method as an attached ATR memory bank.
comment: Submitted to 2026 IEEE Radar Conference
☆ Annotation Free Spacecraft Detection and Segmentation using Vision Language Models ICRA 2026
Vision Language Models (VLMs) have demonstrated remarkable performance in open-world zero-shot visual recognition. However, their potential in space-related applications remains largely unexplored. In the space domain, accurate manual annotation is particularly challenging due to factors such as low visibility, illumination variations, and object blending with planetary backgrounds. Developing methods that can detect and segment spacecraft and orbital targets without requiring extensive manual labeling is therefore of critical importance. In this work, we propose an annotation-free detection and segmentation pipeline for space targets using VLMs. Our approach begins by automatically generating pseudo-labels for a small subset of unlabeled real data with a pre-trained VLM. These pseudo-labels are then leveraged in a teacher-student label distillation framework to train lightweight models. Despite the inherent noise in the pseudo-labels, the distillation process leads to substantial performance gains over direct zero-shot VLM inference. Experimental evaluations on the SPARK-2024, SPEED+, and TANGO datasets on segmentation tasks demonstrate consistent improvements in average precision (AP) by up to 10 points. Code and models are available at https://github.com/giddyyupp/annotation-free-spacecraft-segmentation.
comment: ICRA 2026
☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
☆ REDistill: Robust Estimator Distillation for Balancing Robustness and Efficiency
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student by aligning their predictive distributions. However, conventional KD formulations - typically based on Kullback-Leibler divergence - assume that the teacher provides reliable soft targets. In practice, teacher predictions are often noisy or overconfident, and existing correction-based approaches rely on ad-hoc heuristics and extensive hyper-parameter tuning, which hinders generalization. We introduce REDistill (Robust Estimator Distillation), a simple yet principled framework grounded in robust statistics. REDistill replaces the standard KD objective with a power divergence loss, a generalization of KL divergence that adaptively downweights unreliable teacher output while preserving informative logit relationships. This formulation provides a unified and interpretable treatment of teacher noise, requires only logits, integrates seamlessly into existing KD pipelines, and incurs negligible computational overhead. Extensive experiments on CIFAR-100 and ImageNet-1k demonstrate that REDistill consistently improves student accuracy in diverse teacher-student architectures. Remarkably, it achieves these gains without model-specific hyper-parameter tuning, underscoring its robustness and strong generalization to unseen teacher-student pairs.
☆ AGILE: Hand-Object Interaction Reconstruction from Video via Agentic Generation
Reconstructing dynamic hand-object interactions from monocular videos is critical for dexterous manipulation data collection and creating realistic digital twins for robotics and VR. However, current methods face two prohibitive barriers: (1) reliance on neural rendering often yields fragmented, non-simulation-ready geometries under heavy occlusion, and (2) dependence on brittle Structure-from-Motion (SfM) initialization leads to frequent failures on in-the-wild footage. To overcome these limitations, we introduce AGILE, a robust framework that shifts the paradigm from reconstruction to agentic generation for interaction learning. First, we employ an agentic pipeline where a Vision-Language Model (VLM) guides a generative model to synthesize a complete, watertight object mesh with high-fidelity texture, independent of video occlusions. Second, bypassing fragile SfM entirely, we propose a robust anchor-and-track strategy. We initialize the object pose at a single interaction onset frame using a foundation model and propagate it temporally by leveraging the strong visual similarity between our generated asset and video observations. Finally, a contact-aware optimization integrates semantic, geometric, and interaction stability constraints to enforce physical plausibility. Extensive experiments on HO3D, DexYCB, and in-the-wild videos reveal that AGILE outperforms baselines in global geometric accuracy while demonstrating exceptional robustness on challenging sequences where prior art frequently collapses. By prioritizing physical validity, our method produces simulation-ready assets validated via real-to-sim retargeting for robotic applications.
comment: 11 pages
☆ PIO-FVLM: Rethinking Training-Free Visual Token Reduction for VLM Acceleration from an Inference-Objective Perspective
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
☆ A labeled dataset of simulated phlebotomy procedures for medical AI: polygon annotations for object detection and human-object interaction
This data article presents a dataset of 11,884 labeled images documenting a simulated blood extraction (phlebotomy) procedure performed on a training arm. Images were extracted from high-definition videos recorded under controlled conditions and curated to reduce redundancy using Structural Similarity Index Measure (SSIM) filtering. An automated face-anonymization step was applied to all videos prior to frame selection. Each image contains polygon annotations for five medically relevant classes: syringe, rubber band, disinfectant wipe, gloves, and training arm. The annotations were exported in a segmentation format compatible with modern object detection frameworks (e.g., YOLOv8), ensuring broad usability. This dataset is partitioned into training (70%), validation (15%), and test (15%) subsets and is designed to advance research in medical training automation and human-object interaction. It enables multiple applications, including phlebotomy tool detection, procedural step recognition, workflow analysis, conformance checking, and the development of educational systems that provide structured feedback to medical trainees. The data and accompanying label files are publicly available on Zenodo.
☆ ImmuVis: Hyperconvolutional Foundation Model for Imaging Mass Cytometry
We present ImmuVis, an efficient convolutional foundation model for imaging mass cytometry (IMC), a high-throughput multiplex imaging technology that handles molecular marker measurements as image channels and enables large-scale spatial tissue profiling. Unlike natural images, multiplex imaging lacks a fixed channel space, as real-world marker sets vary across studies, violating a core assumption of standard vision backbones. To address this, ImmuVis introduces marker-adaptive hyperconvolutions that generate convolutional kernels from learned marker embeddings, enabling a single model to operate on arbitrary measured marker subsets without retraining. We pretrain ImmuVis on the largest to-date dataset, IMC17M (28 cohorts, 24,405 images, 265 markers, over 17M patches), using self-supervised masked reconstruction. ImmuVis outperforms SOTA baselines and ablations in virtual staining and downstream classification tasks at substantially lower compute cost than transformer-based alternatives, and is the sole model that provides calibrated uncertainty via a heteroscedastic likelihood objective. These results position ImmuVis as a practical, efficient foundation model for real-world IMC modeling.
comment: 17 pages, 6 figures
☆ SalFormer360: a transformer-based saliency estimation model for 360-degree videos
Saliency estimation has received growing attention in recent years due to its importance in a wide range of applications. In the context of 360-degree video, it has been particularly valuable for tasks such as viewport prediction and immersive content optimization. In this paper, we propose SalFormer360, a novel saliency estimation model for 360-degree videos built on a transformer-based architecture. Our approach is based on the combination of an existing encoder architecture, SegFormer, and a custom decoder. The SegFormer model was originally developed for 2D segmentation tasks, and it has been fine-tuned to adapt it to 360-degree content. To further enhance prediction accuracy in our model, we incorporated Viewing Center Bias to reflect user attention in 360-degree environments. Extensive experiments on the three largest benchmark datasets for saliency estimation demonstrate that SalFormer360 outperforms existing state-of-the-art methods. In terms of Pearson Correlation Coefficient, our model achieves 8.4% higher performance on Sport360, 2.5% on PVS-HM, and 18.6% on VR-EyeTracking compared to previous state-of-the-art.
☆ PEPR: Privileged Event-based Predictive Regularization for Domain Generalization
Deep neural networks for visual perception are highly susceptible to domain shift, which poses a critical challenge for real-world deployment under conditions that differ from the training data. To address this domain generalization challenge, we propose a cross-modal framework under the learning using privileged information (LUPI) paradigm for training a robust, single-modality RGB model. We leverage event cameras as a source of privileged information, available only during training. The two modalities exhibit complementary characteristics: the RGB stream is semantically dense but domain-dependent, whereas the event stream is sparse yet more domain-invariant. Direct feature alignment between them is therefore suboptimal, as it forces the RGB encoder to mimic the sparse event representation, thereby losing semantic detail. To overcome this, we introduce Privileged Event-based Predictive Regularization (PEPR), which reframes LUPI as a predictive problem in a shared latent space. Instead of enforcing direct cross-modal alignment, we train the RGB encoder with PEPR to predict event-based latent features, distilling robustness without sacrificing semantic richness. The resulting standalone RGB model consistently improves robustness to day-to-night and other domain shifts, outperforming alignment-based baselines across object detection and semantic segmentation.
☆ Understanding Degradation with Vision Language Model
Understanding visual degradations is a critical yet challenging problem in computer vision. While recent Vision-Language Models (VLMs) excel at qualitative description, they often fall short in understanding the parametric physics underlying image degradations. In this work, we redefine degradation understanding as a hierarchical structured prediction task, necessitating the concurrent estimation of degradation types, parameter keys, and their continuous physical values. Although these sub-tasks operate in disparate spaces, we prove that they can be unified under one autoregressive next-token prediction paradigm, whose error is bounded by the value-space quantization grid. Building on this insight, we introduce DU-VLM, a multimodal chain-of-thought model trained with supervised fine-tuning and reinforcement learning using structured rewards. Furthermore, we show that DU-VLM can serve as a zero-shot controller for pre-trained diffusion models, enabling high-fidelity image restoration without fine-tuning the generative backbone. We also introduce \textbf{DU-110k}, a large-scale dataset comprising 110,000 clean-degraded pairs with grounded physical annotations. Extensive experiments demonstrate that our approach significantly outperforms generalist baselines in both accuracy and robustness, exhibiting generalization to unseen distributions.
comment: 17 pages
☆ Nix and Fix: Targeting 1000x Compression of 3D Gaussian Splatting with Diffusion Models
3D Gaussian Splatting (3DGS) revolutionized novel view rendering. Instead of inferring from dense spatial points, as implicit representations do, 3DGS uses sparse Gaussians. This enables real-time performance but increases space requirements, hindering applications such as immersive communication. 3DGS compression emerged as a field aimed at alleviating this issue. While impressive progress has been made, at low rates, compression introduces artifacts that degrade visual quality significantly. We introduce NiFi, a method for extreme 3DGS compression through restoration via artifact-aware, diffusion-based one-step distillation. We show that our method achieves state-of-the-art perceptual quality at extremely low rates, down to 0.1 MB, and towards 1000x rate improvement over 3DGS at comparable perceptual performance. The code will be open-sourced upon acceptance.
☆ OmniRad: A Radiological Foundation Model for Multi-Task Medical Image Analysis
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
comment: 19 pages, 4 figures, 12 tables
☆ SLUM-i: Semi-supervised Learning for Urban Mapping of Informal Settlements and Data Quality Benchmarking
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
comment: 10 pages, 8 figures, 5 tables
☆ S-MUSt3R: Sliding Multi-view 3D Reconstruction
The recent paradigm shift in 3D vision led to the rise of foundation models with remarkable capabilities in 3D perception from uncalibrated images. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. This work proposes S-MUSt3R, a simple and efficient pipeline that extends the limits of foundation models for monocular 3D reconstruction. Our approach addresses the scalability bottleneck of foundation models through a simple strategy of sequence segmentation followed by segment alignment and lightweight loop closure optimization. Without model retraining, we benefit from remarkable 3D reconstruction capacities of MUSt3R model and achieve trajectory and reconstruction performance comparable to traditional methods with more complex architecture. We evaluate S-MUSt3R on TUM, 7-Scenes and proprietary robot navigation datasets and show that S-MUSt3R runs successfully on long RGB sequences and produces accurate and consistent 3D reconstruction. Our results highlight the potential of leveraging the MUSt3R model for scalable monocular 3D scene in real-world settings, with an important advantage of making predictions directly in the metric space.
comment: 8 pages, 5 figures, 5 tables
☆ EgoActor: Grounding Task Planning into Spatial-aware Egocentric Actions for Humanoid Robots via Visual-Language Models
Deploying humanoid robots in real-world settings is fundamentally challenging, as it demands tight integration of perception, locomotion, and manipulation under partial-information observations and dynamically changing environments. As well as transitioning robustly between sub-tasks of different types. Towards addressing these challenges, we propose a novel task - EgoActing, which requires directly grounding high-level instructions into various, precise, spatially aware humanoid actions. We further instantiate this task by introducing EgoActor, a unified and scalable vision-language model (VLM) that can predict locomotion primitives (e.g., walk, turn, move sideways, change height), head movements, manipulation commands, and human-robot interactions to coordinate perception and execution in real-time. We leverage broad supervision over egocentric RGB-only data from real-world demonstrations, spatial reasoning question-answering, and simulated environment demonstrations, enabling EgoActor to make robust, context-aware decisions and perform fluent action inference (under 1s) with both 8B and 4B parameter models. Extensive evaluations in both simulated and real-world environments demonstrate that EgoActor effectively bridges abstract task planning and concrete motor execution, while generalizing across diverse tasks and unseen environments.
☆ Vision-aligned Latent Reasoning for Multi-modal Large Language Model
Despite recent advancements in Multi-modal Large Language Models (MLLMs) on diverse understanding tasks, these models struggle to solve problems which require extensive multi-step reasoning. This is primarily due to the progressive dilution of visual information during long-context generation, which hinders their ability to fully exploit test-time scaling. To address this issue, we introduce Vision-aligned Latent Reasoning (VaLR), a simple, yet effective reasoning framework that dynamically generates vision-aligned latent tokens before each Chain of Thought reasoning step, guiding the model to reason based on perceptual cues in the latent space. Specifically, VaLR is trained to preserve visual knowledge during reasoning by aligning intermediate embeddings of MLLM with those from vision encoders. Empirical results demonstrate that VaLR consistently outperforms existing approaches across a wide range of benchmarks requiring long-context understanding or precise visual perception, while exhibiting test-time scaling behavior not observed in prior MLLMs. In particular, VaLR improves the performance significantly from 33.0% to 52.9% on VSI-Bench, achieving a 19.9%p gain over Qwen2.5-VL.
comment: 18 pages; 5 figures
☆ SALAD-Pan: Sensor-Agnostic Latent Adaptive Diffusion for Pan-Sharpening
Recently, diffusion models bring novel insights for Pan-sharpening and notably boost fusion precision. However, most existing models perform diffusion in the pixel space and train distinct models for different multispectral (MS) imagery, suffering from high latency and sensor-specific limitations. In this paper, we present SALAD-Pan, a sensor-agnostic latent space diffusion method for efficient pansharpening. Specifically, SALAD-Pan trains a band-wise single-channel VAE to encode high-resolution multispectral (HRMS) into compact latent representations, supporting MS images with various channel counts and establishing a basis for acceleration. Then spectral physical properties, along with PAN and MS images, are injected into the diffusion backbone through unidirectional and bidirectional interactive control structures respectively, achieving high-precision fusion in the diffusion process. Finally, a lightweight cross-spectral attention module is added to the central layer of diffusion model, reinforcing spectral connections to boost spectral consistency and further elevate fusion precision. Experimental results on GaoFen-2, QuickBird, and WorldView-3 demonstrate that SALAD-Pan outperforms state-of-the-art diffusion-based methods across all three datasets, attains a 2-3x inference speedup, and exhibits robust zero-shot (cross-sensor) capability.
☆ Temporal Slowness in Central Vision Drives Semantic Object Learning ICLR 2026
Humans acquire semantic object representations from egocentric visual streams with minimal supervision. Importantly, the visual system processes with high resolution only the center of its field of view and learns similar representations for visual inputs occurring close in time. This emphasizes slowly changing information around gaze locations. This study investigates the role of central vision and slowness learning in the formation of semantic object representations from human-like visual experience. We simulate five months of human-like visual experience using the Ego4D dataset and generate gaze coordinates with a state-of-the-art gaze prediction model. Using these predictions, we extract crops that mimic central vision and train a time-contrastive Self-Supervised Learning model on them. Our results show that combining temporal slowness and central vision improves the encoding of different semantic facets of object representations. Specifically, focusing on central vision strengthens the extraction of foreground object features, while considering temporal slowness, especially during fixational eye movements, allows the model to encode broader semantic information about objects. These findings provide new insights into the mechanisms by which humans may develop semantic object representations from natural visual experience.
comment: ICLR 2026
☆ Seg-ReSearch: Segmentation with Interleaved Reasoning and External Search
Segmentation based on language has been a popular topic in computer vision. While recent advances in multimodal large language models (MLLMs) have endowed segmentation systems with reasoning capabilities, these efforts remain confined by the frozen internal knowledge of MLLMs, which limits their potential for real-world scenarios that involve up-to-date information or domain-specific concepts. In this work, we propose \textbf{Seg-ReSearch}, a novel segmentation paradigm that overcomes the knowledge bottleneck of existing approaches. By enabling interleaved reasoning and external search, Seg-ReSearch empowers segmentation systems to handle dynamic, open-world queries that extend beyond the frozen knowledge of MLLMs. To effectively train this capability, we introduce a hierarchical reward design that harmonizes initial guidance with progressive incentives, mitigating the dilemma between sparse outcome signals and rigid step-wise supervision. For evaluation, we construct OK-VOS, a challenging benchmark that explicitly requires outside knowledge for video object segmentation. Experiments on OK-VOS and two existing reasoning segmentation benchmarks demonstrate that our Seg-ReSearch improves state-of-the-art approaches by a substantial margin. Code and data will be released at https://github.com/iSEE-Laboratory/Seg-ReSearch.
☆ SynthVerse: A Large-Scale Diverse Synthetic Dataset for Point Tracking
Point tracking aims to follow visual points through complex motion, occlusion, and viewpoint changes, and has advanced rapidly with modern foundation models. Yet progress toward general point tracking remains constrained by limited high-quality data, as existing datasets often provide insufficient diversity and imperfect trajectory annotations. To this end, we introduce SynthVerse, a large-scale, diverse synthetic dataset specifically designed for point tracking. SynthVerse includes several new domains and object types missing from existing synthetic datasets, such as animated-film-style content, embodied manipulation, scene navigation, and articulated objects. SynthVerse substantially expands dataset diversity by covering a broader range of object categories and providing high-quality dynamic motions and interactions, enabling more robust training and evaluation for general point tracking. In addition, we establish a highly diverse point tracking benchmark to systematically evaluate state-of-the-art methods under broader domain shifts. Extensive experiments and analyses demonstrate that training with SynthVerse yields consistent improvements in generalization and reveal limitations of existing trackers under diverse settings.
☆ TrajVG: 3D Trajectory-Coupled Visual Geometry Learning
Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
☆ Med-MMFL: A Multimodal Federated Learning Benchmark in Healthcare
Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
☆ Self-evolving Embodied AI
Embodied Artificial Intelligence (AI) is an intelligent system formed by agents and their environment through active perception, embodied cognition, and action interaction. Existing embodied AI remains confined to human-crafted setting, in which agents are trained on given memory and construct models for given tasks, enabling fixed embodiments to interact with relatively static environments. Such methods fail in in-the-wild setting characterized by variable embodiments and dynamic open environments. This paper introduces self-evolving embodied AI, a new paradigm in which agents operate based on their changing state and environment with memory self-updating, task self-switching, environment self-prediction, embodiment self-adaptation, and model self-evolution, aiming to achieve continually adaptive intelligence with autonomous evolution. Specifically, we present the definition, framework, components, and mechanisms of self-evolving embodied AI, systematically review state-of-the-art works for realized components, discuss practical applications, and point out future research directions. We believe that self-evolving embodied AI enables agents to autonomously learn and interact with environments in a human-like manner and provide a new perspective toward general artificial intelligence.
☆ LCUDiff: Latent Capacity Upgrade Diffusion for Faithful Human Body Restoration
Existing methods for restoring degraded human-centric images often struggle with insufficient fidelity, particularly in human body restoration (HBR). Recent diffusion-based restoration methods commonly adapt pre-trained text-to-image diffusion models, where the variational autoencoder (VAE) can significantly bottleneck restoration fidelity. We propose LCUDiff, a stable one-step framework that upgrades a pre-trained latent diffusion model from the 4-channel latent space to the 16-channel latent space. For VAE fine-tuning, channel splitting distillation (CSD) is used to keep the first four channels aligned with pre-trained priors while allocating the additional channels to effectively encode high-frequency details. We further design prior-preserving adaptation (PPA) to smoothly bridge the mismatch between 4-channel diffusion backbones and the higher-dimensional 16-channel latent. In addition, we propose a decoder router (DeR) for per-sample decoder routing using restoration-quality score annotations, which improves visual quality across diverse conditions. Experiments on synthetic and real-world datasets show competitive results with higher fidelity and fewer artifacts under mild degradations, while preserving one-step efficiency. The code and model will be at https://github.com/gobunu/LCUDiff.
comment: 8 pages, 7 figures. The code and model will be at https://github.com/gobunu/LCUDiff
☆ Interactive Spatial-Frequency Fusion Mamba for Multi-Modal Image Fusion IEEE
Multi-Modal Image Fusion (MMIF) aims to combine images from different modalities to produce fused images, retaining texture details and preserving significant information. Recently, some MMIF methods incorporate frequency domain information to enhance spatial features. However, these methods typically rely on simple serial or parallel spatial-frequency fusion without interaction. In this paper, we propose a novel Interactive Spatial-Frequency Fusion Mamba (ISFM) framework for MMIF. Specifically, we begin with a Modality-Specific Extractor (MSE) to extract features from different modalities. It models long-range dependencies across the image with linear computational complexity. To effectively leverage frequency information, we then propose a Multi-scale Frequency Fusion (MFF). It adaptively integrates low-frequency and high-frequency components across multiple scales, enabling robust representations of frequency features. More importantly, we further propose an Interactive Spatial-Frequency Fusion (ISF). It incorporates frequency features to guide spatial features across modalities, enhancing complementary representations. Extensive experiments are conducted on six MMIF datasets. The experimental results demonstrate that our ISFM can achieve better performances than other state-of-the-art methods. The source code is available at https://github.com/Namn23/ISFM.
comment: This work is accepted by IEEE Transactions on Image Processing. More modifications may be performed
☆ Quantile Transfer for Reliable Operating Point Selection in Visual Place Recognition
Visual Place Recognition (VPR) is a key component for localisation in GNSS-denied environments, but its performance critically depends on selecting an image matching threshold (operating point) that balances precision and recall. Thresholds are typically hand-tuned offline for a specific environment and fixed during deployment, leading to degraded performance under environmental change. We propose a method that, given a user-defined precision requirement, automatically selects the operating point of a VPR system to maximise recall. The method uses a small calibration traversal with known correspondences and transfers thresholds to deployment via quantile normalisation of similarity score distributions. This quantile transfer ensures that thresholds remain stable across calibration sizes and query subsets, making the method robust to sampling variability. Experiments with multiple state-of-the-art VPR techniques and datasets show that the proposed approach consistently outperforms the state-of-the-art, delivering up to 25% higher recall in high-precision operating regimes. The method eliminates manual tuning by adapting to new environments and generalising across operating conditions. Our code will be released upon acceptance.
☆ Enabling Real-Time Colonoscopic Polyp Segmentation on Commodity CPUs via Ultra-Lightweight Architecture
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
comment: 19pages, 5 figures
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ When and Where to Attack? Stage-wise Attention-Guided Adversarial Attack on Large Vision Language Models
Adversarial attacks against Large Vision-Language Models (LVLMs) are crucial for exposing safety vulnerabilities in modern multimodal systems. Recent attacks based on input transformations, such as random cropping, suggest that spatially localized perturbations can be more effective than global image manipulation. However, randomly cropping the entire image is inherently stochastic and fails to use the limited per-pixel perturbation budget efficiently. We make two key observations: (i) regional attention scores are positively correlated with adversarial loss sensitivity, and (ii) attacking high-attention regions induces a structured redistribution of attention toward subsequent salient regions. Based on these findings, we propose Stage-wise Attention-Guided Attack (SAGA), an attention-guided framework that progressively concentrates perturbations on high-attention regions. SAGA enables more efficient use of constrained perturbation budgets, producing highly imperceptible adversarial examples while consistently achieving state-of-the-art attack success rates across ten LVLMs. The source code is available at https://github.com/jackwaky/SAGA.
comment: Pre-print
☆ VecSet-Edit: Unleashing Pre-trained LRM for Mesh Editing from Single Image
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
☆ Finding NeMO: A Geometry-Aware Representation of Template Views for Few-Shot Perception 3DV 2026
We present Neural Memory Object (NeMO), a novel object-centric representation that can be used to detect, segment and estimate the 6DoF pose of objects unseen during training using RGB images. Our method consists of an encoder that requires only a few RGB template views depicting an object to generate a sparse object-like point cloud using a learned UDF containing semantic and geometric information. Next, a decoder takes the object encoding together with a query image to generate a variety of dense predictions. Through extensive experiments, we show that our method can be used for few-shot object perception without requiring any camera-specific parameters or retraining on target data. Our proposed concept of outsourcing object information in a NeMO and using a single network for multiple perception tasks enhances interaction with novel objects, improving scalability and efficiency by enabling quick object onboarding without retraining or extensive pre-processing. We report competitive and state-of-the-art results on various datasets and perception tasks of the BOP benchmark, demonstrating the versatility of our approach. https://github.com/DLR-RM/nemo
comment: 17 pages including supplement, published in 3DV 2026, Project website: https://sebastian-jung.github.io/nemo/
☆ Explicit Uncertainty Modeling for Active CLIP Adaptation with Dual Prompt Tuning
Pre-trained vision-language models such as CLIP exhibit strong transferability, yet adapting them to downstream image classification tasks under limited annotation budgets remains challenging. In active learning settings, the model must select the most informative samples for annotation from a large pool of unlabeled data. Existing approaches typically estimate uncertainty via entropy-based criteria or representation clustering, without explicitly modeling uncertainty from the model perspective. In this work, we propose a robust uncertainty modeling framework for active CLIP adaptation based on dual-prompt tuning. We introduce two learnable prompts in the textual branch of CLIP. The positive prompt enhances the discriminability of task-specific textual embeddings corresponding to light-weight tuned visual embeddings, improving classification reliability. Meanwhile, the negative prompt is trained in an reversed manner to explicitly model the probability that the predicted label is correct, providing a principled uncertainty signal for guiding active sample selection. Extensive experiments across different fine-tuning paradigms demonstrate that our method consistently outperforms existing active learning methods under the same annotation budget.
☆ Fine-tuning Pre-trained Vision-Language Models in a Human-Annotation-Free Manner
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
☆ Multiview Self-Representation Learning across Heterogeneous Views
Features of the same sample generated by different pretrained models often exhibit inherently distinct feature distributions because of discrepancies in the model pretraining objectives or architectures. Learning invariant representations from large-scale unlabeled visual data with various pretrained models in a fully unsupervised transfer manner remains a significant challenge. In this paper, we propose a multiview self-representation learning (MSRL) method in which invariant representations are learned by exploiting the self-representation property of features across heterogeneous views. The features are derived from large-scale unlabeled visual data through transfer learning with various pretrained models and are referred to as heterogeneous multiview data. An individual linear model is stacked on top of its corresponding frozen pretrained backbone. We introduce an information-passing mechanism that relies on self-representation learning to support feature aggregation over the outputs of the linear model. Moreover, an assignment probability distribution consistency scheme is presented to guide multiview self-representation learning by exploiting complementary information across different views. Consequently, representation invariance across different linear models is enforced through this scheme. In addition, we provide a theoretical analysis of the information-passing mechanism, the assignment probability distribution consistency and the incremental views. Extensive experiments with multiple benchmark visual datasets demonstrate that the proposed MSRL method consistently outperforms several state-of-the-art approaches.
comment: 12 pages
☆ JOintGS: Joint Optimization of Cameras, Bodies and 3D Gaussians for In-the-Wild Monocular Reconstruction
Reconstructing high-fidelity animatable 3D human avatars from monocular RGB videos remains challenging, particularly in unconstrained in-the-wild scenarios where camera parameters and human poses from off-the-shelf methods (e.g., COLMAP, HMR2.0) are often inaccurate. Splatting (3DGS) advances demonstrate impressive rendering quality and real-time performance, they critically depend on precise camera calibration and pose annotations, limiting their applicability in real-world settings. We present JOintGS, a unified framework that jointly optimizes camera extrinsics, human poses, and 3D Gaussian representations from coarse initialization through a synergistic refinement mechanism. Our key insight is that explicit foreground-background disentanglement enables mutual reinforcement: static background Gaussians anchor camera estimation via multi-view consistency; refined cameras improve human body alignment through accurate temporal correspondence; optimized human poses enhance scene reconstruction by removing dynamic artifacts from static constraints. We further introduce a temporal dynamics module to capture fine-grained pose-dependent deformations and a residual color field to model illumination variations. Extensive experiments on NeuMan and EMDB datasets demonstrate that JOintGS achieves superior reconstruction quality, with 2.1~dB PSNR improvement over state-of-the-art methods on NeuMan dataset, while maintaining real-time rendering. Notably, our method shows significantly enhanced robustness to noisy initialization compared to the baseline.Our source code is available at https://github.com/MiliLab/JOintGS.
comment: 15 pages, 15 figures, Project page at https://github.com/MiliLab/JOintGS
☆ GeneralVLA: Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Light Up Your Face: A Physically Consistent Dataset and Diffusion Model for Face Fill-Light Enhancement
Face fill-light enhancement (FFE) brightens underexposed faces by adding virtual fill light while keeping the original scene illumination and background unchanged. Most face relighting methods aim to reshape overall lighting, which can suppress the input illumination or modify the entire scene, leading to foreground-background inconsistency and mismatching practical FFE needs. To support scalable learning, we introduce LightYourFace-160K (LYF-160K), a large-scale paired dataset built with a physically consistent renderer that injects a disk-shaped area fill light controlled by six disentangled factors, producing 160K before-and-after pairs. We first pretrain a physics-aware lighting prompt (PALP) that embeds the 6D parameters into conditioning tokens, using an auxiliary planar-light reconstruction objective. Building on a pretrained diffusion backbone, we then train a fill-light diffusion (FiLitDiff), an efficient one-step model conditioned on physically grounded lighting codes, enabling controllable and high-fidelity fill lighting at low computational cost. Experiments on held-out paired sets demonstrate strong perceptual quality and competitive full-reference metrics, while better preserving background illumination. The dataset and model will be at https://github.com/gobunu/Light-Up-Your-Face.
comment: 8 pages, 7 figures. The code and model will be available at https://github.com/gobunu/Light-Up-Your-Face
☆ SkeletonGaussian: Editable 4D Generation through Gaussian Skeletonization
4D generation has made remarkable progress in synthesizing dynamic 3D objects from input text, images, or videos. However, existing methods often represent motion as an implicit deformation field, which limits direct control and editability. To address this issue, we propose SkeletonGaussian, a novel framework for generating editable dynamic 3D Gaussians from monocular video input. Our approach introduces a hierarchical articulated representation that decomposes motion into sparse rigid motion explicitly driven by a skeleton and fine-grained non-rigid motion. Concretely, we extract a robust skeleton and drive rigid motion via linear blend skinning, followed by a hexplane-based refinement for non-rigid deformations, enhancing interpretability and editability. Experimental results demonstrate that SkeletonGaussian surpasses existing methods in generation quality while enabling intuitive motion editing, establishing a new paradigm for editable 4D generation. Project page: https://wusar.github.io/projects/skeletongaussian/
comment: Accepted by CVM 2026. Project page: https://wusar.github.io/projects/skeletongaussian
☆ KVSmooth: Mitigating Hallucination in Multi-modal Large Language Models through Key-Value Smoothing
Despite the significant progress of Multimodal Large Language Models (MLLMs) across diverse tasks, hallucination -- corresponding to the generation of visually inconsistent objects, attributes, or relations -- remains a major obstacle to their reliable deployment. Unlike pure language models, MLLMs must ground their generation process in visual inputs. However, existing models often suffer from semantic drift during decoding, causing outputs to diverge from visual facts as the sequence length increases. To address this issue, we propose KVSmooth, a training-free and plug-and-play method that mitigates hallucination by performing attention-entropy-guided adaptive smoothing on hidden states. Specifically, KVSmooth applies an exponential moving average (EMA) to both keys and values in the KV-Cache, while dynamically quantifying the sink degree of each token through the entropy of its attention distribution to adaptively adjust the smoothing strength. Unlike computationally expensive retraining or contrastive decoding methods, KVSmooth operates efficiently during inference without additional training or model modification. Extensive experiments demonstrate that KVSmooth significantly reduces hallucination ($\mathit{CHAIR}_{S}$ from $41.8 \rightarrow 18.2$) while improving overall performance ($F_1$ score from $77.5 \rightarrow 79.2$), achieving higher precision and recall simultaneously. In contrast, prior methods often improve one at the expense of the other, validating the effectiveness and generality of our approach.
☆ Decoupled Hierarchical Distillation for Multimodal Emotion Recognition
Human multimodal emotion recognition (MER) seeks to infer human emotions by integrating information from language, visual, and acoustic modalities. Although existing MER approaches have achieved promising results, they still struggle with inherent multimodal heterogeneities and varying contributions from different modalities. To address these challenges, we propose a novel framework, Decoupled Hierarchical Multimodal Distillation (DHMD). DHMD decouples each modality's features into modality-irrelevant (homogeneous) and modality-exclusive (heterogeneous) components using a self-regression mechanism. The framework employs a two-stage knowledge distillation (KD) strategy: (1) coarse-grained KD via a Graph Distillation Unit (GD-Unit) in each decoupled feature space, where a dynamic graph facilitates adaptive distillation among modalities, and (2) fine-grained KD through a cross-modal dictionary matching mechanism, which aligns semantic granularities across modalities to produce more discriminative MER representations. This hierarchical distillation approach enables flexible knowledge transfer and effectively improves cross-modal feature alignment. Experimental results demonstrate that DHMD consistently outperforms state-of-the-art MER methods, achieving 1.3\%/2.4\% (ACC$_7$), 1.3\%/1.9\% (ACC$_2$) and 1.9\%/1.8\% (F1) relative improvement on CMU-MOSI/CMU-MOSEI dataset, respectively. Meanwhile, visualization results reveal that both the graph edges and dictionary activations in DHMD exhibit meaningful distribution patterns across modality-irrelevant/-exclusive feature spaces.
comment: arXiv admin note: text overlap with arXiv:2303.13802
☆ Depth-Guided Metric-Aware Temporal Consistency for Monocular Video Human Mesh Recovery
Monocular video human mesh recovery faces fundamental challenges in maintaining metric consistency and temporal stability due to inherent depth ambiguities and scale uncertainties. While existing methods rely primarily on RGB features and temporal smoothing, they struggle with depth ordering, scale drift, and occlusion-induced instabilities. We propose a comprehensive depth-guided framework that achieves metric-aware temporal consistency through three synergistic components: A Depth-Guided Multi-Scale Fusion module that adaptively integrates geometric priors with RGB features via confidence-aware gating; A Depth-guided Metric-Aware Pose and Shape (D-MAPS) estimator that leverages depth-calibrated bone statistics for scale-consistent initialization; A Motion-Depth Aligned Refinement (MoDAR) module that enforces temporal coherence through cross-modal attention between motion dynamics and geometric cues. Our method achieves superior results on three challenging benchmarks, demonstrating significant improvements in robustness against heavy occlusion and spatial accuracy while maintaining computational efficiency.
☆ ACIL: Active Class Incremental Learning for Image Classification BMVC 2024
Continual learning (or class incremental learning) is a realistic learning scenario for computer vision systems, where deep neural networks are trained on episodic data, and the data from previous episodes are generally inaccessible to the model. Existing research in this domain has primarily focused on avoiding catastrophic forgetting, which occurs due to the continuously changing class distributions in each episode and the inaccessibility of the data from previous episodes. However, these methods assume that all the training samples in every episode are annotated; this not only incurs a huge annotation cost, but also results in a wastage of annotation effort, since most of the samples in a given episode will not be accessible to the model in subsequent episodes. Active learning algorithms identify the salient and informative samples from large amounts of unlabeled data and are instrumental in reducing the human annotation effort in inducing a deep neural network. In this paper, we propose ACIL, a novel active learning framework for class incremental learning settings. We exploit a criterion based on uncertainty and diversity to identify the exemplar samples that need to be annotated in each episode, and will be appended to the data in the next episode. Such a framework can drastically reduce annotation cost and can also avoid catastrophic forgetting. Our extensive empirical analyses on several vision datasets corroborate the promise and potential of our framework against relevant baselines.
comment: BMVC 2024 (Accepted). Authors, Aditya R. Bhattacharya and Debanjan Goswami contributed equally to this work
☆ Towards Next-Generation SLAM: A Survey on 3DGS-SLAM Focusing on Performance, Robustness, and Future Directions
Traditional Simultaneous Localization and Mapping (SLAM) systems often face limitations including coarse rendering quality, insufficient recovery of scene details, and poor robustness in dynamic environments. 3D Gaussian Splatting (3DGS), with its efficient explicit representation and high-quality rendering capabilities, offers a new reconstruction paradigm for SLAM. This survey comprehensively reviews key technical approaches for integrating 3DGS with SLAM. We analyze performance optimization of representative methods across four critical dimensions: rendering quality, tracking accuracy, reconstruction speed, and memory consumption, delving into their design principles and breakthroughs. Furthermore, we examine methods for enhancing the robustness of 3DGS-SLAM in complex environments such as motion blur and dynamic environments. Finally, we discuss future challenges and development trends in this area. This survey aims to provide a technical reference for researchers and foster the development of next-generation SLAM systems characterized by high fidelity, efficiency, and robustness.
☆ SPOT-Occ: Sparse Prototype-guided Transformer for Camera-based 3D Occupancy Prediction
Achieving highly accurate and real-time 3D occupancy prediction from cameras is a critical requirement for the safe and practical deployment of autonomous vehicles. While this shift to sparse 3D representations solves the encoding bottleneck, it creates a new challenge for the decoder: how to efficiently aggregate information from a sparse, non-uniformly distributed set of voxel features without resorting to computationally prohibitive dense attention. In this paper, we propose a novel Prototype-based Sparse Transformer Decoder that replaces this costly interaction with an efficient, two-stage process of guided feature selection and focused aggregation. Our core idea is to make the decoder's attention prototype-guided. We achieve this through a sparse prototype selection mechanism, where each query adaptively identifies a compact set of the most salient voxel features, termed prototypes, for focused feature aggregation. To ensure this dynamic selection is stable and effective, we introduce a complementary denoising paradigm. This approach leverages ground-truth masks to provide explicit guidance, guaranteeing a consistent query-prototype association across decoder layers. Our model, dubbed SPOT-Occ, outperforms previous methods with a significant margin in speed while also improving accuracy. Source code is released at https://github.com/chensuzeyu/SpotOcc.
comment: 8 pages, 6 figures
☆ An Improved Boosted DC Algorithm for Nonsmooth Functions with Applications in Image Recovery
We propose a new approach to perform the boosted difference of convex functions algorithm (BDCA) on non-smooth and non-convex problems involving the difference of convex (DC) functions. The recently proposed BDCA uses an extrapolation step from the point computed by the classical DC algorithm (DCA) via a line search procedure in a descent direction to get an additional decrease of the objective function and accelerate the convergence of DCA. However, when the first function in DC decomposition is non-smooth, the direction computed by BDCA can be ascent and a monotone line search cannot be performed. In this work, we proposed a monotone improved boosted difference of convex functions algorithm (IBDCA) for certain types of non-smooth DC programs, namely those that can be formulated as the difference of a possibly non-smooth function and a smooth one. We show that any cluster point of the sequence generated by IBDCA is a critical point of the problem under consideration and that the corresponding objective value is monotonically decreasing and convergent. We also present the global convergence and the convergent rate under the Kurdyka-Lojasiewicz property. The applications of IBDCA in image recovery show the effectiveness of our proposed method. The corresponding numerical experiments demonstrate that our IBDCA outperforms DCA and other state-of-the-art DC methods in both computational time and number of iterations.
☆ An Intuitionistic Fuzzy Logic Driven UNet architecture: Application to Brain Image segmentation
Accurate segmentation of MRI brain images is essential for image analysis, diagnosis of neuro-logical disorders and medical image computing. In the deep learning approach, the convolutional neural networks (CNNs), especially UNet, are widely applied in medical image segmentation. However, it is difficult to deal with uncertainty due to the partial volume effect in brain images. To overcome this limitation, we propose an enhanced framework, named UNet with intuitionistic fuzzy logic (IF-UNet), which incorporates intuitionistic fuzzy logic into UNet. The model processes input data in terms of membership, nonmembership, and hesitation degrees, allowing it to better address tissue ambiguity resulting from partial volume effects and boundary uncertainties. The proposed architecture is evaluated on the Internet Brain Segmentation Repository (IBSR) dataset, and its performance is computed using accuracy, Dice coefficient, and intersection over union (IoU). Experimental results confirm that IF-UNet improves segmentation quality with handling uncertainty in brain images.
☆ Adaptive 1D Video Diffusion Autoencoder
Recent video generation models largely rely on video autoencoders that compress pixel-space videos into latent representations. However, existing video autoencoders suffer from three major limitations: (1) fixed-rate compression that wastes tokens on simple videos, (2) inflexible CNN architectures that prevent variable-length latent modeling, and (3) deterministic decoders that struggle to recover appropriate details from compressed latents. To address these issues, we propose One-Dimensional Diffusion Video Autoencoder (One-DVA), a transformer-based framework for adaptive 1D encoding and diffusion-based decoding. The encoder employs query-based vision transformers to extract spatiotemporal features and produce latent representations, while a variable-length dropout mechanism dynamically adjusts the latent length. The decoder is a pixel-space diffusion transformer that reconstructs videos with the latents as input conditions. With a two-stage training strategy, One-DVA achieves performance comparable to 3D-CNN VAEs on reconstruction metrics at identical compression ratios. More importantly, it supports adaptive compression and thus can achieve higher compression ratios. To better support downstream latent generation, we further regularize the One-DVA latent distribution for generative modeling and fine-tune its decoder to mitigate artifacts caused by the generation process.
☆ AGMA: Adaptive Gaussian Mixture Anchors for Prior-Guided Multimodal Human Trajectory Forecasting
Human trajectory forecasting requires capturing the multimodal nature of pedestrian behavior. However, existing approaches suffer from prior misalignment. Their learned or fixed priors often fail to capture the full distribution of plausible futures, limiting both prediction accuracy and diversity. We theoretically establish that prediction error is lower-bounded by prior quality, making prior modeling a key performance bottleneck. Guided by this insight, we propose AGMA (Adaptive Gaussian Mixture Anchors), which constructs expressive priors through two stages: extracting diverse behavioral patterns from training data and distilling them into a scene-adaptive global prior for inference. Extensive experiments on ETH-UCY, Stanford Drone, and JRDB datasets demonstrate that AGMA achieves state-of-the-art performance, confirming the critical role of high-quality priors in trajectory forecasting.
comment: 14 pages, 3 figures
☆ VTok: A Unified Video Tokenizer with Decoupled Spatial-Temporal Latents
This work presents VTok, a unified video tokenization framework that can be used for both generation and understanding tasks. Unlike the leading vision-language systems that tokenize videos through a naive frame-sampling strategy, we propose to decouple the spatial and temporal representations of videos by retaining the spatial features of a single key frame while encoding each subsequent frame into a single residual token, achieving compact yet expressive video tokenization. Our experiments suggest that VTok effectively reduces the complexity of video representation from the product of frame count and per-frame token count to their sum, while the residual tokens sufficiently capture viewpoint and motion changes relative to the key frame. Extensive evaluations demonstrate the efficacy and efficiency of VTok: it achieves notably higher performance on a range of video understanding and text-to-video generation benchmarks compared with baselines using naive tokenization, all with shorter token sequences per video (e.g., 3.4% higher accuracy on our TV-Align benchmark and 1.9% higher VBench score). Remarkably, VTok produces more coherent motion and stronger guidance following in text-to-video generation, owing to its more consistent temporal encoding. We hope VTok can serve as a standardized video tokenization paradigm for future research in video understanding and generation.
☆ Continuous Degradation Modeling via Latent Flow Matching for Real-World Super-Resolution AAAI 2026
While deep learning-based super-resolution (SR) methods have shown impressive outcomes with synthetic degradation scenarios such as bicubic downsampling, they frequently struggle to perform well on real-world images that feature complex, nonlinear degradations like noise, blur, and compression artifacts. Recent efforts to address this issue have involved the painstaking compilation of real low-resolution (LR) and high-resolution (HR) image pairs, usually limited to several specific downscaling factors. To address these challenges, our work introduces a novel framework capable of synthesizing authentic LR images from a single HR image by leveraging the latent degradation space with flow matching. Our approach generates LR images with realistic artifacts at unseen degradation levels, which facilitates the creation of large-scale, real-world SR training datasets. Comprehensive quantitative and qualitative assessments verify that our synthetic LR images accurately replicate real-world degradations. Furthermore, both traditional and arbitrary-scale SR models trained using our datasets consistently yield much better HR outcomes.
comment: AAAI 2026
☆ DiMo: Discrete Diffusion Modeling for Motion Generation and Understanding
Prior masked modeling motion generation methods predominantly study text-to-motion. We present DiMo, a discrete diffusion-style framework, which extends masked modeling to bidirectional text--motion understanding and generation. Unlike GPT-style autoregressive approaches that tokenize motion and decode sequentially, DiMo performs iterative masked token refinement, unifying Text-to-Motion (T2M), Motion-to-Text (M2T), and text-free Motion-to-Motion (M2M) within a single model. This decoding paradigm naturally enables a quality-latency trade-off at inference via the number of refinement steps.We further improve motion token fidelity with residual vector quantization (RVQ) and enhance alignment and controllability with Group Relative Policy Optimization (GRPO). Experiments on HumanML3D and KIT-ML show strong motion quality and competitive bidirectional understanding under a unified framework. In addition, we demonstrate model ability in text-free motion completion, text-guided motion prediction and motion caption correction without architectural change.Additional qualitative results are available on our project page: https://animotionlab.github.io/DiMo/.
☆ Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning
☆ HoloEv-Net: Efficient Event-based Action Recognition via Holographic Spatial Embedding and Global Spectral Gating
Event-based Action Recognition (EAR) has attracted significant attention due to the high temporal resolution and high dynamic range of event cameras. However, existing methods typically suffer from (i) the computational redundancy of dense voxel representations, (ii) structural redundancy inherent in multi-branch architectures, and (iii) the under-utilization of spectral information in capturing global motion patterns. To address these challenges, we propose an efficient EAR framework named HoloEv-Net. First, to simultaneously tackle representation and structural redundancies, we introduce a Compact Holographic Spatiotemporal Representation (CHSR). Departing from computationally expensive voxel grids, CHSR implicitly embeds horizontal spatial cues into the Time-Height (T-H) view, effectively preserving 3D spatiotemporal contexts within a 2D representation. Second, to exploit the neglected spectral cues, we design a Global Spectral Gating (GSG) module. By leveraging the Fast Fourier Transform (FFT) for global token mixing in the frequency domain, GSG enhances the representation capability with negligible parameter overhead. Extensive experiments demonstrate the scalability and effectiveness of our framework. Specifically, HoloEv-Net-Base achieves state-of-the-art performance on THU-EACT-50-CHL, HARDVS and DailyDVS-200, outperforming existing methods by 10.29%, 1.71% and 6.25%, respectively. Furthermore, our lightweight variant, HoloEv-Net-Small, delivers highly competitive accuracy while offering extreme efficiency, reducing parameters by 5.4 times, FLOPs by 300times, and latency by 2.4times compared to heavy baselines, demonstrating its potential for edge deployment.
☆ Partial Ring Scan: Revisiting Scan Order in Vision State Space Models
State Space Models (SSMs) have emerged as efficient alternatives to attention for vision tasks, offering lineartime sequence processing with competitive accuracy. Vision SSMs, however, require serializing 2D images into 1D token sequences along a predefined scan order, a factor often overlooked. We show that scan order critically affects performance by altering spatial adjacency, fracturing object continuity, and amplifying degradation under geometric transformations such as rotation. We present Partial RIng Scan Mamba (PRISMamba), a rotation-robust traversal that partitions an image into concentric rings, performs order-agnostic aggregation within each ring, and propagates context across rings through a set of short radial SSMs. Efficiency is further improved via partial channel filtering, which routes only the most informative channels through the recurrent ring pathway while keeping the rest on a lightweight residual branch. On ImageNet-1K, PRISMamba achieves 84.5% Top-1 with 3.9G FLOPs and 3,054 img/s on A100, outperforming VMamba in both accuracy and throughput while requiring fewer FLOPs. It also maintains performance under rotation, whereas fixed-path scans drop by 1~2%. These results highlight scan-order design, together with channel filtering, as a crucial, underexplored factor for accuracy, efficiency, and rotation robustness in Vision SSMs. Code will be released upon acceptance.
comment: 10 pages, 3 figures
☆ Point2Insert: Video Object Insertion via Sparse Point Guidance
This paper introduces Point2Insert, a sparse-point-based framework for flexible and user-friendly object insertion in videos, motivated by the growing popularity of accurate, low-effort object placement. Existing approaches face two major challenges: mask-based insertion methods require labor-intensive mask annotations, while instruction-based methods struggle to place objects at precise locations. Point2Insert addresses these issues by requiring only a small number of sparse points instead of dense masks, eliminating the need for tedious mask drawing. Specifically, it supports both positive and negative points to indicate regions that are suitable or unsuitable for insertion, enabling fine-grained spatial control over object locations. The training of Point2Insert consists of two stages. In Stage 1, we train an insertion model that generates objects in given regions conditioned on either sparse-point prompts or a binary mask. In Stage 2, we further train the model on paired videos synthesized by an object removal model, adapting it to video insertion. Moreover, motivated by the higher insertion success rate of mask-guided editing, we leverage a mask-guided insertion model as a teacher to distill reliable insertion behavior into the point-guided model. Extensive experiments demonstrate that Point2Insert consistently outperforms strong baselines and even surpasses models with $\times$10 more parameters.
☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
☆ Context Determines Optimal Architecture in Materials Segmentation
Segmentation architectures are typically benchmarked on single imaging modalities, obscuring deployment-relevant performance variations: an architecture optimal for one modality may underperform on another. We present a cross-modal evaluation framework for materials image segmentation spanning SEM, AFM, XCT, and optical microscopy. Our evaluation of six encoder-decoder combinations across seven datasets reveals that optimal architectures vary systematically by context: UNet excels for high-contrast 2D imaging while DeepLabv3+ is preferred for the hardest cases. The framework also provides deployment feedback via out-of-distribution detection and counterfactual explanations that reveal which microstructural features drive predictions. Together, the architecture guidance, reliability signals, and interpretability tools address a practical gap in materials characterization, where researchers lack tools to select architectures for their specific imaging setup or assess when models can be trusted on new samples.
☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages
☆ SuperPoint-E: local features for 3D reconstruction via tracking adaptation in endoscopy
In this work, we focus on boosting the feature extraction to improve the performance of Structure-from-Motion (SfM) in endoscopy videos. We present SuperPoint-E, a new local feature extraction method that, using our proposed Tracking Adaptation supervision strategy, significantly improves the quality of feature detection and description in endoscopy. Extensive experimentation on real endoscopy recordings studies our approach's most suitable configuration and evaluates SuperPoint-E feature quality. The comparison with other baselines also shows that our 3D reconstructions are denser and cover more and longer video segments because our detector fires more densely and our features are more likely to survive (i.e. higher detection precision). In addition, our descriptor is more discriminative, making the guided matching step almost redundant. The presented approach brings significant improvements in the 3D reconstructions obtained, via SfM on endoscopy videos, compared to the original SuperPoint and the gold standard SfM COLMAP pipeline.
comment: 12 pages, 5 tables, 6 figures
☆ DMS2F-HAD: A Dual-branch Mamba-based Spatial-Spectral Fusion Network for Hyperspectral Anomaly Detection WACV 2025
Hyperspectral anomaly detection (HAD) aims to identify rare and irregular targets in high-dimensional hyperspectral images (HSIs), which are often noisy and unlabelled data. Existing deep learning methods either fail to capture long-range spectral dependencies (e.g., convolutional neural networks) or suffer from high computational cost (e.g., Transformers). To address these challenges, we propose DMS2F-HAD, a novel dual-branch Mamba-based model. Our architecture utilizes Mamba's linear-time modeling to efficiently learn distinct spatial and spectral features in specialized branches, which are then integrated by a dynamic gated fusion mechanism to enhance anomaly localization. Across fourteen benchmark HSI datasets, our proposed DMS2F-HAD not only achieves a state-of-the-art average AUC of 98.78%, but also demonstrates superior efficiency with an inference speed 4.6 times faster than comparable deep learning methods. The results highlight DMS2FHAD's strong generalization and scalability, positioning it as a strong candidate for practical HAD applications.
comment: This paper has been accepted in the WACV 2025 conference in algorithm track
☆ VideoBrain: Learning Adaptive Frame Sampling for Long Video Understanding
Long-form video understanding remains challenging for Vision-Language Models (VLMs) due to the inherent tension between computational constraints and the need to capture information distributed across thousands of frames. Existing approaches either sample frames uniformly (risking information loss) or select keyframes in a single pass (with no recovery from poor choices). We propose VideoBrain, an end-to-end framework that enables VLMs to adaptively acquire visual information through learned sampling policies. Our approach features dual complementary agents: a CLIP-based agent for semantic retrieval across the video and a Uniform agent for dense temporal sampling within intervals. Unlike prior agent-based methods that rely on text-only LLMs orchestrating visual tools, our VLM directly perceives frames and reasons about information sufficiency. To prevent models from invoking agents indiscriminately to maximize rewards, we introduce a behavior-aware reward function coupled with a data classification pipeline that teaches the model when agent invocation is genuinely beneficial. Experiments on four long video benchmarks demonstrate that VideoBrain achieves +3.5% to +9.0% improvement over the baseline while using 30-40% fewer frames, with strong cross-dataset generalization to short video benchmarks.
☆ ARGaze: Autoregressive Transformers for Online Egocentric Gaze Estimation
Online egocentric gaze estimation predicts where a camera wearer is looking from first-person video using only past and current frames, a task essential for augmented reality and assistive technologies. Unlike third-person gaze estimation, this setting lacks explicit head or eye signals, requiring models to infer current visual attention from sparse, indirect cues such as hand-object interactions and salient scene content. We observe that gaze exhibits strong temporal continuity during goal-directed activities: knowing where a person looked recently provides a powerful prior for predicting where they look next. Inspired by vision-conditioned autoregressive decoding in vision-language models, we propose ARGaze, which reformulates gaze estimation as sequential prediction: at each timestep, a transformer decoder predicts current gaze by conditioning on (i) current visual features and (ii) a fixed-length Gaze Context Window of recent gaze target estimates. This design enforces causality and enables bounded-resource streaming inference. We achieve state-of-the-art performance across multiple egocentric benchmarks under online evaluation, with extensive ablations validating that autoregressive modeling with bounded gaze history is critical for robust prediction. We will release our source code and pre-trained models.
☆ CLEAR-HPV: Interpretable Concept Discovery for HPV-Associated Morphology in Whole-Slide Histology
Human papillomavirus (HPV) status is a critical determinant of prognosis and treatment response in head and neck and cervical cancers. Although attention-based multiple instance learning (MIL) achieves strong slide-level prediction for HPV-related whole-slide histopathology, it provides limited morphologic interpretability. To address this limitation, we introduce Concept-Level Explainable Attention-guided Representation for HPV (CLEAR-HPV), a framework that restructures the MIL latent space using attention to enable concept discovery without requiring concept labels during training. Operating in an attention-weighted latent space, CLEAR-HPV automatically discovers keratinizing, basaloid, and stromal morphologic concepts, generates spatial concept maps, and represents each slide using a compact concept-fraction vector. CLEAR-HPV's concept-fraction vectors preserve the predictive information of the original MIL embeddings while reducing the high-dimensional feature space (e.g., 1536 dimensions) to only 10 interpretable concepts. CLEAR-HPV generalizes consistently across TCGA-HNSCC, TCGA-CESC, and CPTAC-HNSCC, providing compact, concept-level interpretability through a general, backbone-agnostic framework for attention-based MIL models of whole-slide histopathology.
☆ Rule-Based Spatial Mixture-of-Experts U-Net for Explainable Edge Detection
Deep learning models like U-Net and its variants, have established state-of-the-art performance in edge detection tasks and are used by Generative AI services world-wide for their image generation models. However, their decision-making processes remain opaque, operating as "black boxes" that obscure the rationale behind specific boundary predictions. This lack of transparency is a critical barrier in safety-critical applications where verification is mandatory. To bridge the gap between high-performance deep learning and interpretable logic, we propose the Rule-Based Spatial Mixture-of-Experts U-Net (sMoE U-Net). Our architecture introduces two key innovations: (1) Spatially-Adaptive Mixture-of-Experts (sMoE) blocks integrated into the decoder skip connections, which dynamically gate between "Context" (smooth) and "Boundary" (sharp) experts based on local feature statistics; and (2) a Takagi-Sugeno-Kang (TSK) Fuzzy Head that replaces the standard classification layer. This fuzzy head fuses deep semantic features with heuristic edge signals using explicit IF-THEN rules. We evaluate our method on the BSDS500 benchmark, achieving an Optimal Dataset Scale (ODS) F-score of 0.7628, effectively matching purely deep baselines like HED (0.7688) while outperforming the standard U-Net (0.7437). Crucially, our model provides pixel-level explainability through "Rule Firing Maps" and "Strategy Maps," allowing users to visualize whether an edge was detected due to strong gradients, high semantic confidence, or specific logical rule combinations.
☆ Visual concept ranking uncovers medical shortcuts used by large multimodal models
Ensuring the reliability of machine learning models in safety-critical domains such as healthcare requires auditing methods that can uncover model shortcomings. We introduce a method for identifying important visual concepts within large multimodal models (LMMs) and use it to investigate the behaviors these models exhibit when prompted with medical tasks. We primarily focus on the task of classifying malignant skin lesions from clinical dermatology images, with supplemental experiments including both chest radiographs and natural images. After showing how LMMs display unexpected gaps in performance between different demographic subgroups when prompted with demonstrating examples, we apply our method, Visual Concept Ranking (VCR), to these models and prompts. VCR generates hypotheses related to different visual feature dependencies, which we are then able to validate with manual interventions.
☆ Gabor Fields: Orientation-Selective Level-of-Detail for Volume Rendering
Gaussian-based representations have enabled efficient physically-based volume rendering at a fraction of the memory cost of regular, discrete, voxel-based distributions. However, several remaining issues hamper their widespread use. One of the advantages of classic voxel grids is the ease of constructing hierarchical representations by either storing volumetric mipmaps or selectively pruning branches of an already hierarchical voxel grid. Such strategies reduce rendering time and eliminate aliasing when lower levels of detail are required. Constructing similar strategies for Gaussian-based volumes is not trivial. Straightforward solutions, such as prefiltering or computing mipmap-style representations, lead to increased memory requirements or expensive re-fitting of each level separately. Additionally, such solutions do not guarantee a smooth transition between different hierarchy levels. To address these limitations, we propose Gabor Fields, an orientation-selective mixture of Gabor kernels that enables continuous frequency filtering at no cost. The frequency content of the asset is reduced by selectively pruning primitives, directly benefiting rendering performance. Beyond filtering, we demonstrate that stochastically sampling from different frequencies and orientations at each ray recursion enables masking substantial portions of the volume, accelerating ray traversal time in single- and multiple-scattering settings. Furthermore, inspired by procedural volumes, we present an application for efficient design and rendering of procedural clouds as Gabor-noise-modulated Gaussians.
comment: 19 pages, incl Appendix and References
☆ Food Portion Estimation: From Pixels to Calories
Reliance on images for dietary assessment is an important strategy to accurately and conveniently monitor an individual's health, making it a vital mechanism in the prevention and care of chronic diseases and obesity. However, image-based dietary assessment suffers from estimating the three dimensional size of food from 2D image inputs. Many strategies have been devised to overcome this critical limitation such as the use of auxiliary inputs like depth maps, multi-view inputs, or model-based approaches such as template matching. Deep learning also helps bridge the gap by either using monocular images or combinations of the image and the auxillary inputs to precisely predict the output portion from the image input. In this paper, we explore the different strategies employed for accurate portion estimation.
☆ VISTA: Enhancing Visual Conditioning via Track-Following Preference Optimization in Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated strong performance across a wide range of robotic manipulation tasks. Despite the success, extending large pretrained Vision-Language Models (VLMs) to the action space can induce vision-action misalignment, where action predictions exhibit weak dependence on the current visual state, leading to unreliable action outputs. In this work, we study VLA models through the lens of visual conditioning and empirically show that successful rollouts consistently exhibit stronger visual dependence than failed ones. Motivated by this observation, we propose a training framework that explicitly strengthens visual conditioning in VLA models. Our approach first aligns action prediction with visual input via preference optimization on a track-following surrogate task, and then transfers the enhanced alignment to instruction-following task through latent-space distillation during supervised finetuning. Without introducing architectural modifications or additional data collection, our method improves both visual conditioning and task performance for discrete OpenVLA, and further yields consistent gains when extended to the continuous OpenVLA-OFT setting. Project website: https://vista-vla.github.io/ .
comment: In submission. Project website: https://vista-vla.github.io/
☆ QuantumGS: Quantum Encoding Framework for Gaussian Splatting
Recent advances in neural rendering, particularly 3D Gaussian Splatting (3DGS), have enabled real-time rendering of complex scenes. However, standard 3DGS relies on spherical harmonics, which often struggle to accurately capture high-frequency view-dependent effects such as sharp reflections and transparency. While hybrid approaches like Viewing Direction Gaussian Splatting (VDGS) mitigate this limitation using classical Multi-Layer Perceptrons (MLPs), they remain limited by the expressivity of classical networks in low-parameter regimes. In this paper, we introduce QuantumGS, a novel hybrid framework that integrates Variational Quantum Circuits (VQC) into the Gaussian Splatting pipeline. We propose a unique encoding strategy that maps the viewing direction directly onto the Bloch sphere, leveraging the natural geometry of qubits to represent 3D directional data. By replacing classical color-modulating networks with quantum circuits generated via a hypernetwork or conditioning mechanism, we achieve higher expressivity and better generalization. Source code is available in the supplementary material. Code is available at https://github.com/gwilczynski95/QuantumGS
☆ UniTrack: Differentiable Graph Representation Learning for Multi-Object Tracking
We present UniTrack, a plug-and-play graph-theoretic loss function designed to significantly enhance multi-object tracking (MOT) performance by directly optimizing tracking-specific objectives through unified differentiable learning. Unlike prior graph-based MOT methods that redesign tracking architectures, UniTrack provides a universal training objective that integrates detection accuracy, identity preservation, and spatiotemporal consistency into a single end-to-end trainable loss function, enabling seamless integration with existing MOT systems without architectural modifications. Through differentiable graph representation learning, UniTrack enables networks to learn holistic representations of motion continuity and identity relationships across frames. We validate UniTrack across diverse tracking models and multiple challenging benchmarks, demonstrating consistent improvements across all tested architectures and datasets including Trackformer, MOTR, FairMOT, ByteTrack, GTR, and MOTE. Extensive evaluations show up to 53\% reduction in identity switches and 12\% IDF1 improvements across challenging benchmarks, with GTR achieving peak performance gains of 9.7\% MOTA on SportsMOT.
☆ Differentiable Inverse Graphics for Zero-shot Scene Reconstruction and Robot Grasping IEEE
Operating effectively in novel real-world environments requires robotic systems to estimate and interact with previously unseen objects. Current state-of-the-art models address this challenge by using large amounts of training data and test-time samples to build black-box scene representations. In this work, we introduce a differentiable neuro-graphics model that combines neural foundation models with physics-based differentiable rendering to perform zero-shot scene reconstruction and robot grasping without relying on any additional 3D data or test-time samples. Our model solves a series of constrained optimization problems to estimate physically consistent scene parameters, such as meshes, lighting conditions, material properties, and 6D poses of previously unseen objects from a single RGBD image and bounding boxes. We evaluated our approach on standard model-free few-shot benchmarks and demonstrated that it outperforms existing algorithms for model-free few-shot pose estimation. Furthermore, we validated the accuracy of our scene reconstructions by applying our algorithm to a zero-shot grasping task. By enabling zero-shot, physically-consistent scene reconstruction and grasping without reliance on extensive datasets or test-time sampling, our approach offers a pathway towards more data efficient, interpretable and generalizable robot autonomy in novel environments.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L) for review. This version includes the statement required by IEEE for preprints
☆ Untwisting RoPE: Frequency Control for Shared Attention in DiTs
Positional encodings are essential to transformer-based generative models, yet their behavior in multimodal and attention-sharing settings is not fully understood. In this work, we present a principled analysis of Rotary Positional Embeddings (RoPE), showing that RoPE naturally decomposes into frequency components with distinct positional sensitivities. We demonstrate that this frequency structure explains why shared-attention mechanisms, where a target image is generated while attending to tokens from a reference image, can lead to reference copying, in which the model reproduces content from the reference instead of extracting only its stylistic cues. Our analysis reveals that the high-frequency components of RoPE dominate the attention computation, forcing queries to attend mainly to spatially aligned reference tokens and thereby inducing this unintended copying behavior. Building on these insights, we introduce a method for selectively modulating RoPE frequency bands so that attention reflects semantic similarity rather than strict positional alignment. Applied to modern transformer-based diffusion architectures, where all tokens share attention, this modulation restores stable and meaningful shared attention. As a result, it enables effective control over the degree of style transfer versus content copying, yielding a proper style-aligned generation process in which stylistic attributes are transferred without duplicating reference content.
☆ SIDeR: Semantic Identity Decoupling for Unrestricted Face Privacy
With the deep integration of facial recognition into online banking, identity verification, and other networked services, achieving effective decoupling of identity information from visual representations during image storage and transmission has become a critical challenge for privacy protection. To address this issue, we propose SIDeR, a Semantic decoupling-driven framework for unrestricted face privacy protection. SIDeR decomposes a facial image into a machine-recognizable identity feature vector and a visually perceptible semantic appearance component. By leveraging semantic-guided recomposition in the latent space of a diffusion model, it generates visually anonymous adversarial faces while maintaining machine-level identity consistency. The framework incorporates momentum-driven unrestricted perturbation optimization and a semantic-visual balancing factor to synthesize multiple visually diverse, highly natural adversarial samples. Furthermore, for authorized access, the protected image can be restored to its original form when the correct password is provided. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that SIDeR achieves a 99% attack success rate in black-box scenarios and outperforms baseline methods by 41.28% in PSNR-based restoration quality.
comment: 14 pages, 8 figures
♻ ☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
♻ ☆ DGS-Net: Distillation-Guided Gradient Surgery for CLIP Fine-Tuning in AI-Generated Image Detection
The rapid progress of generative models such as GANs and diffusion models has led to the widespread proliferation of AI-generated images, raising concerns about misinformation, privacy violations, and trust erosion in digital media. Although large-scale multimodal models like CLIP offer strong transferable representations for detecting synthetic content, fine-tuning them often induces catastrophic forgetting, which degrades pre-trained priors and limits cross-domain generalization. To address this issue, we propose the Distillation-guided Gradient Surgery Network (DGS-Net), a novel framework that preserves transferable pre-trained priors while suppressing task-irrelevant components. Specifically, we introduce a gradient-space decomposition that separates harmful and beneficial descent directions during optimization. By projecting task gradients onto the orthogonal complement of harmful directions and aligning with beneficial ones distilled from a frozen CLIP encoder, DGS-Net achieves unified optimization of prior preservation and irrelevant suppression. Extensive experiments on 50 generative models demonstrate that our method outperforms state-of-the-art approaches by an average margin of 6.6, achieving superior detection performance and generalization across diverse generation techniques.
♻ ☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method supports causal interventions on target attributes and consistently propagates their effects to causal dependents while preserving the core identity of the image. Unlike prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling with two attribute-regularization strategies: (i) prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and (ii) a conditioned token contrastive loss that disentangles attribute factors and reduces spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, including up to a 91% reduction in MAE on Pendulum for accurate attribute control and up to an 87% reduction in FID on ADNI for high-fidelity MRI generation. These results demonstrate robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation. Code and models will be released at: https://leitong02.github.io/causaladapter/.
comment: Project Page: https://leitong02.github.io/causaladapter/
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design. Code is available at: https://github.com/Fsoft-AIC/UNO
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization ICRA 2025
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Quasi-Medial Distance Field (Q-MDF): A Robust Method for Approximating and Discretizing Neural Medial Axes
The medial axis, a lower-dimensional descriptor that captures the extrinsic structure of a shape, plays an important role in digital geometry processing. Despite its importance, computing the medial axis transform robustly from diverse inputs, especially point clouds with defects, remains a challenging problem. In this paper, we propose a new implicit method that deviates from traditional explicit medial axis computation. Our key technical insight is that the difference between the signed distance field (SDF) and the medial field (MF) of a solid shape relates to the unsigned distance field (UDF) of the shape's medial axis. This observation allows us to formulate medial axis extraction as an implicit reconstruction problem. By employing a modified double covering strategy, we recover the medial axis as the zero level-set of the UDF. Extensive experiments demonstrate that our method achieves higher accuracy and robustness in learning compact medial axis transforms from challenging meshes and point clouds, outperforming existing approaches.
♻ ☆ QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution AAAI 2026
Diffusion models have shown superior performance in real-world video super-resolution (VSR). However, the slow processing speeds and heavy resource consumption of diffusion models hinder their practical application and deployment. Quantization offers a potential solution for compressing the VSR model. Nevertheless, quantizing VSR models is challenging due to their temporal characteristics and high fidelity requirements. To address these issues, we propose QuantVSR, a low-bit quantization model for real-world VSR. We propose a spatio-temporal complexity aware (STCA) mechanism, where we first utilize the calibration dataset to measure both spatial and temporal complexities for each layer. Based on these statistics, we allocate layer-specific ranks to the low-rank full-precision (FP) auxiliary branch. Subsequently, we jointly refine the FP and low-bit branches to achieve simultaneous optimization. In addition, we propose a learnable bias alignment (LBA) module to reduce the biased quantization errors. Extensive experiments on synthetic and real-world datasets demonstrate that our method obtains comparable performance with the FP model and significantly outperforms recent leading low-bit quantization methods. Code is available at: https://github.com/bowenchai/QuantVSR.
comment: Accepted to AAAI 2026. Code is available at: https://github.com/bowenchai/QuantVSR
♻ ☆ Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
♻ ☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
♻ ☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
♻ ☆ OCRVerse: Towards Holistic OCR in End-to-End Vision-Language Models
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (Text-centric OCR), neglecting the identification of visual elements from visually information-dense image sources (Vision-centric OCR), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose OCRVerse, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Think3D: Thinking with Space for Spatial Reasoning
Understanding and reasoning about the physical world requires spatial intelligence: the ability to interpret geometry, perspective, and spatial relations beyond 2D perception. While recent vision large models (VLMs) excel at visual understanding, they remain fundamentally 2D perceivers and struggle with genuine 3D reasoning. We introduce Think3D, a framework that enables VLM agents to think with 3D space. By leveraging 3D reconstruction models that recover point clouds and camera poses from images or videos, Think3D allows the agent to actively manipulate space through camera-based operations and ego/global-view switching, transforming spatial reasoning into an interactive 3D chain-of-thought process. Without additional training, Think3D significantly improves the spatial reasoning performance of advanced models such as GPT-4.1 and Gemini 2.5 Pro, yielding average gains of +7.8% on BLINK Multi-view and MindCube, and +4.7% on VSI-Bench. We further show that smaller models, which struggle with spatial exploration, benefit significantly from a reinforcement learning policy that enables the model to select informative viewpoints and operations. With RL, the benefit from tool usage increases from +0.7% to +6.8%. Our findings demonstrate that training-free, tool-augmented spatial exploration is a viable path toward more flexible and human-like 3D reasoning in multimodal agents, establishing a new dimension of multimodal intelligence. Code and weights are released at https://github.com/zhangzaibin/spagent.
♻ ☆ Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. Neuromorphic processors provide event-driven sparse computation and support on-chip incremental learning, yet deployment is often hindered by CNN-to-SNN conversion failures, including non-spike-compatible operators and accuracy degradation under class imbalance. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy (a 4.0% relative gain) and by 12.0 points in macro F1 (a 15.2% relative gain). On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy (a 3.7% relative gain) and by 3.6 points in macro F1 (a 4.6% relative gain). When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
♻ ☆ LiDAR-based 3D Change Detection at City Scale
High-definition 3D city maps enable city planning and change detection, which is essential for municipal compliance, map maintenance, and asset monitoring, including both built structures and urban greenery. Conventional Digital Surface Model (DSM) and image differencing are sensitive to vertical bias and viewpoint mismatch, while original point cloud or voxel models require large memory, assume perfect alignment, and degrade thin structures. We propose an uncertainty-aware, object-centric method for city-scale LiDAR-based change detection. Our method aligns data from different time periods using multi-resolution Normal Distributions Transform (NDT) and a point-to-plane Iterative Closest Point (ICP) method, normalizes elevation, and computes a per-point level of detection from registration covariance and surface roughness to calibrate change decisions. Geometry-based associations are refined by semantic and instance segmentation and optimized using class-constrained bipartite assignment with augmented dummies to handle split-merge cases. Tiled processing bounds memory and preserves narrow ground changes, while instance-level decisions integrate overlap, displacement, and volumetric differences under local detection gating. We perform experiments on a Subiaco (Western Australia) dataset captured in 2023 and again in 2025. Our method achieves 95.3% accuracy, 90.8% mF1, and 82.9% mIoU, improving over the strongest baseline, Triplet KPConv, by 0.3, 0.6, and 1.1 points, respectively. The datasets are available on IEEE DataPort (2023: https://ieee-dataport.org/documents/2023-subiaco-wa-3d-hd-lidar-point-cloud-maps-dataset and 2025: https://ieee-dataport.org/documents/2025-subiaco-wa-3d-hd-lidar-gnss-point-cloud-maps-dataset). The source code is available at https://github.com/HaitianWang/IEEE-Sensor-Journal-Changing-Detection.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Multi-Cue Anomaly Detection and Localization under Data Contamination
Visual anomaly detection in real-world industrial settings faces two major limitations. First, most existing methods are trained on purely normal data or on unlabeled datasets assumed to be predominantly normal, presuming the absence of contamination, an assumption that is rarely satisfied in practice. Second, they assume no access to labeled anomaly samples, limiting the model from learning discriminative characteristics of true anomalies. Therefore, these approaches often struggle to distinguish anomalies from normal instances, resulting in reduced detection and weak localization performance. In real-world applications, where training data are frequently contaminated with anomalies, such methods fail to deliver reliable performance. In this work, we propose a robust anomaly detection framework that integrates limited anomaly supervision into the adaptive deviation learning paradigm. We introduce a composite anomaly score that combines three complementary components: a deviation score capturing statistical irregularity, an entropy-based uncertainty score reflecting predictive inconsistency, and a segmentation-based score highlighting spatial abnormality. This unified scoring mechanism enables accurate detection and supports gradient-based localization, providing intuitive and explainable visual evidence of anomalous regions. Following the few-anomaly paradigm, we incorporate a small set of labeled anomalies during training while simultaneously mitigating the influence of contaminated samples through adaptive instance weighting. Extensive experiments on the MVTec and VisA benchmarks demonstrate that our framework outperforms state-of-the-art baselines and achieves strong detection and localization performance, interpretability, and robustness under various levels of data contamination.
comment: 12 pages total (10 pages main text + references), 6 figures. Preprint version; the final camera-ready version may differ
♻ ☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 26 pages
♻ ☆ Interpolation of GEDI Biomass Estimates with Calibrated Uncertainty Quantification
Reliable wall-to-wall biomass density estimation from NASA's GEDI mission requires interpolating sparse LIDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are widely used, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We show that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning architecture that explicitly conditions predictions on local observation sets and exploits geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing estimates to be more uncertain in complex landscapes and less in homogeneous areas. We validate this approach across five distinct biomes ranging from tropical Amazonian forests to boreal, temperate, and alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
♻ ☆ Sparse-to-Sparse Training of Diffusion Models
Diffusion models (DMs) are a powerful type of generative models that have achieved state-of-the-art results in various image synthesis tasks and have shown potential in other domains, such as natural language processing and temporal data modeling. Despite their stable training dynamics and ability to produce diverse high-quality samples, DMs are notorious for requiring significant computational resources, both in the training and inference stages. Previous work has focused mostly on increasing the efficiency of model inference. This paper introduces, for the first time, the paradigm of sparse-to-sparse training to DMs, with the aim of improving both training and inference efficiency. We focus on unconditional generation and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six datasets using three different methods (Static-DM, RigL-DM, and MagRan-DM) to study the effect of sparsity in model performance. Our experiments show that sparse DMs are able to match and often outperform their Dense counterparts, while substantially reducing the number of trainable parameters and FLOPs. We also identify safe and effective values to perform sparse-to-sparse training of DMs.
comment: Accepted to TMLR
♻ ☆ Consistent Supervised-Unsupervised Alignment for Generalized Category Discovery NeurIPS 2025
Generalized Category Discovery (GCD) focuses on classifying known categories while simultaneously discovering novel categories from unlabeled data. However, previous GCD methods face challenges due to inconsistent optimization objectives and category confusion. This leads to feature overlap and ultimately hinders performance on novel categories. To address these issues, we propose the Neural Collapse-inspired Generalized Category Discovery (NC-GCD) framework. By pre-assigning and fixing Equiangular Tight Frame (ETF) prototypes, our method ensures an optimal geometric structure and a consistent optimization objective for both known and novel categories. We introduce a Consistent ETF Alignment Loss that unifies supervised and unsupervised ETF alignment and enhances category separability. Additionally, a Semantic Consistency Matcher (SCM) is designed to maintain stable and consistent label assignments across clustering iterations. Our method achieves strong performance on multiple GCD benchmarks, significantly enhancing novel category accuracy and demonstrating its effectiveness.
comment: Accepted by NeurIPS 2025
♻ ☆ Patient-Aware Multimodal RGB-HSI Fusion via Incremental Heuristic Meta-Learning for Oral Lesion Classification
Early detection of oral cancer and potentially malignant diseases is a major challenge in low-resource settings due to the scarcity of annotated data. We provide a unified approach for four-class oral lesion classification that incorporates deep learning, spectral analysis, and demographic data. A pathologist-verified subset of oral cavity images was curated from a publicly available dataset. Oral cavity pictures were processed using a fine-tuned ConvNeXt-v2 network for deep embeddings before being translated into the hyperspectral domain using a reconstruction algorithm. Haemoglobin-sensitive, textural, and spectral descriptors were obtained from the reconstructed hyperspectral cubes and combined with demographic data. Multiple machine-learning models were evaluated using patient-specific validation. Finally, an incremental heuristic meta-learner (IHML) was developed that merged calibrated base classifiers via probabilistic feature stacking and uncertainty-aware abstraction of multimodal representations with patient-level smoothing. By decoupling evidence extraction from decision fusion, IHML stabilizes predictions in heterogeneous, small-sample medical datasets. On an unseen test set, our proposed model achieved a macro F1 of 66.23% and an overall accuracy of 64.56%. The findings demonstrate that RGB-to-hyperspectral reconstruction and ensemble meta-learning improve diagnostic robustness in real-world oral lesion screening.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ HAODiff: Human-Aware One-Step Diffusion via Dual-Prompt Guidance NeurIPS 2025
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
comment: 9 pages, 8 figures. Accepted at NeurIPS 2025
♻ ☆ Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction IEEE
Accurate and comprehensive semantic segmentation of Bird's Eye View (BEV) is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV
comment: Copyright 2024 IEEE. This is the accepted version of the paper. In 2024 IEEE Intelligent Vehicles Symposium (IV), pp. 2220-2225. Official paper available at https://doi.org/10.1109/IV55156.2024.10588608
♻ ☆ Color Matters: Demosaicing-Guided Color Correlation Training for Generalizable AI-Generated Image Detection
As realistic AI-generated images threaten digital authenticity, we address the generalization failure of generative artifact-based detectors by exploiting the intrinsic properties of the camera imaging pipeline. Concretely, we investigate color correlations induced by the color filter array (CFA) and demosaicing, and propose a Demosaicing-guided Color Correlation Training (DCCT) framework for AI-generated image detection. By simulating the CFA sampling pattern, we decompose each color image into a single-channel input (as the condition) and the remaining two channels as the ground-truth targets (for prediction). A self-supervised U-Net is trained to model the conditional distribution of the missing channels from the given one, parameterized via a mixture of logistic functions. Our theoretical analysis reveals that DCCT targets a provable distributional difference in color-correlation features between photographic and AI-generated images. By leveraging these distinct features to construct a binary classifier, DCCT achieves state-of-the-art generalization and robustness, significantly outperforming prior methods across over 20 unseen generators.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully and sometimes even improves when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoders marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90%, (ii) high redundancy on general VQA and knowledge-based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16% higher accuracy on a specific task category and 3.6% overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90% of baseline on most non OCR tasks. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026
♻ ☆ StainNet: Scaling Self-Supervised Foundation Models on Immunohistochemistry and Special Stains for Computational Pathology
Foundation models trained with self-supervised learning (SSL) on large-scale histological images have significantly accelerated the development of computational pathology. These models can serve as backbones for region-of-interest (ROI) image analysis or patch-level feature extractors in whole-slide images (WSIs) based on multiple instance learning (MIL). Existing pathology foundation models (PFMs) are typically pre-trained on Hematoxylin-Eosin (H\&E) stained pathology images. However, images such as immunohistochemistry (IHC) and special stains are also frequently used in clinical practice. PFMs pre-trained mainly on H\&E-stained images may be limited in clinical applications involving these non-H\&E images. To address this issue, we propose StainNet, a collection of self-supervised foundation models specifically trained for IHC and special stains in pathology images based on the vision transformer (ViT) architecture. StainNet contains a ViT-Small and a ViT-Base model, both of which are trained using a self-distillation SSL approach on over 1.4 million patch images extracted from 20,231 publicly available IHC and special staining WSIs in the HISTAI database. To evaluate StainNet models, we conduct experiments on three in-house slide-level IHC classification tasks, three in-house ROI-level special stain and two public ROI-level IHC classification tasks to demonstrate their strong ability. We also perform ablation studies such as few-ratio learning and retrieval evaluations, and compare StainNet models with recent larger PFMs to further highlight their strengths. The StainNet model weights are available at https://github.com/WonderLandxD/StainNet.
comment: 26 pages, 7 figures, 10 tables
♻ ☆ InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon's information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
♻ ☆ Benchmarking Foundation Models for Mitotic Figure Classification
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2026:003
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
comment: 15 pages, 9 figures, 5 tables
♻ ☆ MMSF: Multitask and Multimodal Supervised Framework for WSI Classification and Survival Analysis
Multimodal evidence is critical in computational pathology: gigapixel whole slide images capture tumor morphology, while patient-level clinical descriptors preserve complementary context for prognosis. Integrating such heterogeneous signals remains challenging because feature spaces exhibit distinct statistics and scales. We introduce MMSF, a multitask and multimodal supervised framework built on a linear-complexity MIL backbone that explicitly decomposes and fuses cross-modal information. MMSF comprises a graph feature extraction module embedding tissue topology at the patch level, a clinical data embedding module standardizing patient attributes, a feature fusion module aligning modality-shared and modality-specific representations, and a Mamba-based MIL encoder with multitask prediction heads. Experiments on CAMELYON16 and TCGA-NSCLC demonstrate 2.1--6.6\% accuracy and 2.2--6.9\% AUC improvements over competitive baselines, while evaluations on five TCGA survival cohorts yield 7.1--9.8\% C-index improvements compared with unimodal methods and 5.6--7.1\% over multimodal alternatives.
comment: Submitted to "Biomedical Signal Processing and Control"
♻ ☆ MultiPriv: Benchmarking Individual-Level Privacy Reasoning in Vision-Language Models
Modern Vision-Language Models (VLMs) pose significant individual-level privacy risks by linking fragmented multimodal data to identifiable individuals through hierarchical chain-of-thought reasoning. However, existing privacy benchmarks remain structurally insufficient for this threat, as they primarily evaluate privacy perception while failing to address the more critical risk of privacy reasoning: a VLM's ability to infer and link distributed information to construct individual profiles. To address this gap, we propose MultiPriv, the first benchmark designed to systematically evaluate individual-level privacy reasoning in VLMs. We introduce the Privacy Perception and Reasoning (PPR) framework and construct a bilingual multimodal dataset with synthetic individual profiles, where identifiers (e.g., faces, names) are linked to sensitive attributes. This design enables nine challenging tasks spanning attribute detection, cross-image re-identification, and chained inference. We conduct a large-scale evaluation of over 50 open-source and commercial VLMs. Our analysis shows that 60 percent of widely used VLMs can perform individual-level privacy reasoning with up to 80 percent accuracy, posing a significant threat to personal privacy. MultiPriv provides a foundation for developing and assessing privacy-preserving VLMs.
♻ ☆ EAG3R: Event-Augmented 3D Geometry Estimation for Dynamic and Extreme-Lighting Scenes NeurIPS 2025
Robust 3D geometry estimation from videos is critical for applications such as autonomous navigation, SLAM, and 3D scene reconstruction. Recent methods like DUSt3R demonstrate that regressing dense pointmaps from image pairs enables accurate and efficient pose-free reconstruction. However, existing RGB-only approaches struggle under real-world conditions involving dynamic objects and extreme illumination, due to the inherent limitations of conventional cameras. In this paper, we propose EAG3R, a novel geometry estimation framework that augments pointmap-based reconstruction with asynchronous event streams. Built upon the MonST3R backbone, EAG3R introduces two key innovations: (1) a retinex-inspired image enhancement module and a lightweight event adapter with SNR-aware fusion mechanism that adaptively combines RGB and event features based on local reliability; and (2) a novel event-based photometric consistency loss that reinforces spatiotemporal coherence during global optimization. Our method enables robust geometry estimation in challenging dynamic low-light scenes without requiring retraining on night-time data. Extensive experiments demonstrate that EAG3R significantly outperforms state-of-the-art RGB-only baselines across monocular depth estimation, camera pose tracking, and dynamic reconstruction tasks.
comment: Accepted at NeurIPS 2025 (spotlight)
♻ ☆ Beyond Global Scanning: Adaptive Visual State Space Modeling for Salient Object Detection in Optical Remote Sensing Images
Salient object detection (SOD) in optical remote sensing images (ORSIs) faces numerous challenges, including significant variations in target scales and low contrast between targets and the background. Existing methods based on vision transformers (ViTs) and convolutional neural networks (CNNs) architectures aim to leverage both global and local features, but the difficulty in effectively integrating these heterogeneous features limits their overall performance. To overcome these limitations, we propose an adaptive state space context network (ASCNet), which builds upon the state space model mechanism to simultaneously capture long-range dependencies and enhance regional feature representation. Specifically, we employ the visual state space encoder to extract multi-scale features. To further achieve deep guidance and enhancement of these features, we design a Multi-Level Context Module (MLCM), which module strengthens cross-layer interaction capabilities between features of different scales while enhancing the model's structural perception, allowing it to distinguish between foreground and background more effectively. Then, we design the Adaptive Patchwise Visual State Space (APVSS) block as the decoder of ASCNet, which integrates our proposed Dynamic Adaptive Granularity Scan (DAGS) and Granularity-aware Propagation Module (GPM). It performs adaptive patch scanning on feature maps enhanced by local perception, thereby capturing rich local region information and enhancing state space model's local modeling capability. Extensive experimental results demonstrate that the proposed model achieves state-of-the-art performance, validating its effectiveness and superiority.
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement learning algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) remains underexplored. In this paper, we explore GRPO and identify two issues that hinder effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function as a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as clipping and min operations. This directly aligns the model with the advantages, providing guidance to prefer better outputs. The difficulty-aware data augmentation strategy augments input prompts/videos to target solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://lovrbench.github.io/
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Adaptive Knowledge Transferring with Switching Dual-Student Framework for Semi-Supervised Medical Image Segmentation
Teacher-student frameworks have emerged as a leading approach in semi-supervised medical image segmentation, demonstrating strong performance across various tasks. However, the learning effects are still limited by the strong correlation and unreliable knowledge transfer process between teacher and student networks. To overcome this limitation, we introduce a novel switching Dual-Student architecture that strategically selects the most reliable student at each iteration to enhance dual-student collaboration and prevent error reinforcement. We also introduce a strategy of Loss-Aware Exponential Moving Average to dynamically ensure that the teacher absorbs meaningful information from students, improving the quality of pseudo-labels. Our plug-and-play framework is extensively evaluated on 3D medical image segmentation datasets, where it outperforms state-of-the-art semi-supervised methods, demonstrating its effectiveness in improving segmentation accuracy under limited supervision.
comment: The paper is published at Pattern Recognition Journal
♻ ☆ Deep Multimodal Learning with Missing Modality: A Survey
During multimodal model training and testing, certain data modalities may be absent due to sensor limitations, cost constraints, privacy concerns, or data loss, negatively affecting performance. Multimodal learning techniques designed to handle missing modalities can mitigate this by ensuring model robustness even when some modalities are unavailable. This survey reviews recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning methods. It provides the first comprehensive survey that covers the motivation and distinctions between MLMM and standard multimodal learning setups, followed by a detailed analysis of current methods, applications, and datasets, concluding with challenges and future directions.
comment: Accepted by TMLR (Transactions on Machine Learning Research)
♻ ☆ Same or Not? Enhancing Visual Perception in Vision-Language Models
Vision-language models (VLMs) excel at broad visual understanding but remain coarse-grained, exhibit visual biases, and miss subtle visual details. Existing training corpora reinforce this limitation by emphasizing general recognition ("Is it a cat or a dog?") over fine-grained perception. To address this, we introduce a new training corpus and task designed to enhance the perceptual abilities of VLMs. TWIN is a large-scale dataset of 561,000 image-pair queries that task models to determine whether two visually similar images depict the same object, encouraging attention to nuanced visual cues. The dataset spans a diverse range of everyday objects across contexts, viewpoints, and appearances. Fine-tuning VLMs on TWIN yields notable gains in fine-grained recognition, even on unseen domains such as art, animals, plants, and landmarks. To quantify these gains, we introduce FGVQA, a benchmark suite of 12,000 queries that repurposes fine-grained recognition and retrieval datasets from multiple domains. While existing VLMs struggle on FGVQA, when fine-tuned on TWIN they improve by up to 19.3%, without compromising performance on general VQA benchmarks. Finally, our TWIN dataset scales favorably with object annotations, and our analysis shows that scale is key to performance. We envision TWIN as a drop-in addition to open-source VLM training corpora, advancing perceptual precision of future models. Project webpage: https://glab-caltech.github.io/twin/
comment: Project webpage: https://glab-caltech.github.io/twin/
♻ ☆ MAMBO-G: Magnitude-Aware Mitigation for Boosted Guidance
High-fidelity text-to-image and text-to-video generation typically relies on Classifier-Free Guidance (CFG), but achieving optimal results often demands computationally expensive sampling schedules. In this work, we propose MAMBO-G, a training-free acceleration framework that significantly reduces computational cost by dynamically optimizing guidance magnitudes. We observe that standard CFG schedules are inefficient, applying disproportionately large updates in early steps that hinder convergence speed. MAMBO-G mitigates this by modulating the guidance scale based on the update-to-prediction magnitude ratio, effectively stabilizing the trajectory and enabling rapid convergence. This efficiency is particularly vital for resource-intensive tasks like video generation. Our method serves as a universal plug-and-play accelerator, achieving up to 3x speedup on Stable Diffusion v3.5 (SD3.5) and 4x on Lumina. Most notably, MAMBO-G accelerates the 14B-parameter Wan2.1 video model by 2x while preserving visual fidelity, offering a practical solution for efficient large-scale video synthesis. Our implementation follows a mainstream open-source diffusion framework and is plug-and-play with existing pipelines.
♻ ☆ Invariance on Manifolds: Understanding Robust Visual Representations for Place Recognition
Visual Place Recognition (VPR) demands representations robust to drastic environmental and viewpoint shifts. Current aggregation paradigms, however, either rely on data-hungry supervision or simplistic first-order statistics, often neglecting intrinsic structural correlations. In this work, we propose a Second-Order Geometric Statistics framework that inherently captures geometric stability without training. We conceptualize scenes as covariance descriptors on the Symmetric Positive Definite (SPD) manifold, where perturbations manifest as tractable congruence transformations. By leveraging geometry-aware Riemannian mappings, we project these descriptors into a linearized Euclidean embedding, effectively decoupling signal structure from noise. Our approach introduces a training-free framework built upon fixed, pre-trained backbones, achieving strong zero-shot generalization without parameter updates. Extensive experiments confirm that our method achieves highly competitive performance against state-of-the-art baselines, particularly excelling in challenging zero-shot scenarios.
comment: 14pages, 5 figures
♻ ☆ WMVLM: Evaluating Diffusion Model Image Watermarking via Vision-Language Models
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
♻ ☆ UniVRSE: Unified Vision-conditioned Response Semantic Entropy for Hallucination Detection in Medical Vision-Language Models
Vision-language models (VLMs) have great potential for medical image understanding, particularly in Visual Report Generation (VRG) and Visual Question Answering (VQA), but they may generate hallucinated responses that contradict visual evidence, limiting clinical deployment. Although uncertainty-based hallucination detection methods are intuitive and effective, they are limited in medical VLMs. Specifically, Semantic Entropy (SE), effective in text-only LLMs, becomes less reliable in medical VLMs due to their overconfidence from strong language priors. To address this challenge, we propose UniVRSE, a Unified Vision-conditioned Response Semantic Entropy framework for hallucination detection in medical VLMs. UniVRSE strengthens visual guidance during uncertainty estimation by contrasting the semantic predictive distributions derived from an original image-text pair and a visually distorted counterpart, with higher entropy indicating hallucination risk. For VQA, UniVRSE works on the image-question pair, while for VRG, it decomposes the report into claims, generates verification questions, and applies vision-conditioned entropy estimation at the claim level. To evaluate hallucination detection, we propose a unified pipeline that generates responses on medical datasets and derives hallucination labels via factual consistency assessment. However, current evaluation methods rely on subjective criteria or modality-specific rules. To improve reliability, we introduce Alignment Ratio of Atomic Facts (ALFA), a novel method that quantifies fine-grained factual consistency. ALFA-derived labels provide ground truth for robust benchmarking. Experiments on six medical VQA/VRG datasets and three VLMs show UniVRSE significantly outperforms existing methods with strong cross-modal generalization.
comment: Under Review. 12 pages, 2 figures
♻ ☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving ICLR 2026
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
comment: Accepted to ICLR 2026
♻ ☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding IEEE
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at https://github.com/sunoh-kim/gbo.
comment: Accepted in IEEE TMM
♻ ☆ BioTamperNet: Affinity-Guided State-Space Model Detecting Tampered Biomedical Images
We propose BioTamperNet, a novel framework for detecting duplicated regions in tampered biomedical images, leveraging affinity-guided attention inspired by State Space Model (SSM) approximations. Existing forensic models, primarily trained on natural images, often underperform on biomedical data where subtle manipulations can compromise experimental validity. To address this, BioTamperNet introduces an affinity-guided self-attention module to capture intra-image similarities and an affinity-guided cross-attention module to model cross-image correspondences. Our design integrates lightweight SSM-inspired linear attention mechanisms to enable efficient, fine-grained localization. Trained end-to-end, BioTamperNet simultaneously identifies tampered regions and their source counterparts. Extensive experiments on the benchmark bio-forensic datasets demonstrate significant improvements over competitive baselines in accurately detecting duplicated regions. Code - https://github.com/SoumyaroopNandi/BioTamperNet
♻ ☆ Two-chart Beltrami Optimization for Distortion-Controlled Spherical Bijection with Application to Brain Surface Registration
Many genus-0 surface mapping tasks such as landmark alignment, feature matching, and image-driven registration, can be reduced (via an initial spherical conformal map) to optimizing a spherical self-homeomorphism with controlled distortion. However, existing works lack efficient mechanisms to control the geometric distortion of the resulting mapping. To resolve this issue, we formulate this as a Beltrami-space optimization problem, where the angle distortion is encoded explicitly by the Beltrami differential and bijectivity can be enforced through the constraint $\|μ\|_{\infty}<1$. To make this practical on the sphere, we introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the unit sphere $\mathbb{S}^2$, together with cross-chart consistency conditions that yield a globally bijective spherical deformation (up to conformal automorphisms). Building on the Spectral Beltrami Network, we develop BOOST, a differentiable optimization framework that updates two Beltrami fields to minimize task-driven losses while regularizing distortion and enforcing consistency along the seam. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate improved task performance meanwhile maintaining controlled distortion and robust bijective behavior. We also apply the method to cortical surface registration by aligning sulcal landmarks and matching cortical sulcal depth, achieving comparative or better registration performance without sacrificing geometric validity.
♻ ☆ Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data
In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation
comment: 18 pages, 10 figures
♻ ☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
♻ ☆ VEAttack: Downstream-agnostic Vision Encoder Attack against Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation, yet their vulnerability to adversarial attacks raises significant robustness concerns. While existing effective attacks always focus on task-specific white-box settings, these approaches are limited in the context of LVLMs, which are designed for diverse downstream tasks and require expensive full-model gradient computations. Motivated by the pivotal role and wide adoption of the vision encoder in LVLMs, we propose a simple yet effective Vision Encoder Attack (VEAttack), which targets the vision encoder of LVLMs only. Specifically, we propose to generate adversarial examples by minimizing the cosine similarity between the clean and perturbed visual features, without accessing the following large language models, task information, and labels. It significantly reduces the computational overhead while eliminating the task and label dependence of traditional white-box attacks in LVLMs. To make this simple attack effective, we propose to perturb images by optimizing image tokens instead of the classification token. We provide both empirical and theoretical evidence that VEAttack can easily generalize to various tasks. VEAttack has achieved a performance degradation of 94.5% on image caption task and 75.7% on visual question answering task. We also reveal some key observations to provide insights into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack steps. The code is available at https://github.com/hefeimei06/VEAttack-LVLM.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
♻ ☆ Revisiting 360 Depth Estimation with PanoGabor: A New Fusion Perspective
Depth estimation from a monocular 360 image is important to the perception of the entire 3D environment. However, the inherent distortion and large field of view (FoV) in 360 images pose great challenges for this task. To this end, existing mainstream solutions typically introduce additional perspective-based 360 representations ({e.g., Cubemap) to achieve effective feature extraction. Nevertheless, regardless of the introduced representations, they eventually need to be unified into the equirectangular projection (ERP) format for the subsequent depth estimation, which inevitably reintroduces the troublesome distortions. In this work, we propose an oriented distortion-aware Gabor Fusion framework (PGFuse) to address the above challenges. First, we introduce Gabor filters that analyze texture in the frequency domain, thereby extending the receptive fields and enhancing depth cues. To address the reintroduced distortions, we design a linear latitude-aware distortion representation method to generate customized, distortion-aware Gabor filters (PanoGabor filters). Furthermore, we design a channel-wise and spatial-wise unidirectional fusion module (CS-UFM) that integrates the proposed PanoGabor filters to unify other representations into the ERP format, delivering effective and distortion-free features. Considering the orientation sensitivity of the Gabor transform, we introduce a spherical gradient constraint to stabilize this sensitivity. Experimental results on three popular indoor 360 benchmarks demonstrate the superiority of the proposed PGFuse to existing state-of-the-art solutions. Code and models will be available at https://github.com/zhijieshen-bjtu/PGFuse
comment: Accepted by TPAMI
♻ ☆ Event2Vec: Processing Neuromorphic Events Directly by Representations in Vector Space
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing methods either convert the events into dense synchronous frame representations for processing by powerful CNNs or Transformers, but lose the asynchronous, sparse and high temporal resolution characteristics of events during the conversion process; or adopt irregular models such as sparse convolution, spiking neural networks, or graph neural networks to process the irregular event representations but fail to take full advantage of GPU acceleration.Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing capabilities of Transformers. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks, showing that event2vec is remarkably parameter-efficient, features high throughput and low latency, and achieves high accuracy even with an extremely low number of events or low spatial resolutions. Event2vec introduces a novel paradigm by demonstrating for the first time that sparse, irregular event data can be directly integrated into high-throughput Transformer architectures. This breakthrough resolves the long-standing conflict between maintaining data sparsity and maximizing GPU efficiency, offering a promising balance for real-time, low-latency neuromorphic vision tasks. The code is provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.
♻ ☆ Image Corruption-Inspired Membership Inference Attacks against Large Vision-Language Models EACL 2026
Large vision-language models (LVLMs) have demonstrated outstanding performance in many downstream tasks. However, LVLMs are trained on large-scale datasets, which can pose privacy risks if training images contain sensitive information. Therefore, it is important to detect whether an image is used to train the LVLM. Recent studies have investigated membership inference attacks (MIAs) against LVLMs, including detecting image-text pairs and single-modality content. In this work, we focus on detecting whether a target image is used to train the target LVLM. We design simple yet effective Image Corruption-Inspired Membership Inference Attacks (ICIMIA) against LVLMs, which are inspired by LVLM's different sensitivity to image corruption for member and non-member images. We first perform an MIA method under the white-box setting, where we can obtain the embeddings of the image through the vision part of the target LVLM. The attacks are based on the embedding similarity between the image and its corrupted version. We further explore a more practical scenario where we have no knowledge about target LVLMs and we can only query the target LVLMs with an image and a textual instruction. We then conduct the attack by utilizing the output text embeddings' similarity. Experiments on existing datasets validate the effectiveness of our proposed methods under those two different settings.
comment: Accepted by EACL 2026
♻ ☆ An AI-enabled tool for quantifying overlapping red blood cell sickling dynamics in microfluidic assays
Understanding sickle cell dynamics requires accurate identification of morphological transitions under diverse biophysical conditions, particularly in densely packed and overlapping cell populations. Here, we present an automated deep learning framework that integrates AI-assisted annotation, segmentation, classification, and instance counting to quantify red blood cell (RBC) populations across varying density regimes in time-lapse microscopy data. Experimental images were annotated using the Roboflow platform to generate labeled dataset for training an nnU-Net segmentation model. The trained network enables prediction of the temporal evolution of the sickle cell fraction, while a watershed algorithm resolves overlapping cells to enhance quantification accuracy. Despite requiring only a limited amount of labeled data for training, the framework achieves high segmentation performance, effectively addressing challenges associated with scarce manual annotations and cell overlap. By quantitatively tracking dynamic changes in RBC morphology, this approach can more than double the experimental throughput via densely packed cell suspensions, capture drug-dependent sickling behavior, and reveal distinct mechanobiological signatures of cellular morphological evolution. Overall, this AI-driven framework establishes a scalable and reproducible computational platform for investigating cellular biomechanics and assessing therapeutic efficacy in microphysiological systems.
♻ ☆ Quantification and Classification of Carbon Nanotubes in Electron Micrographs using Vision Foundation Models
Accurate characterization of carbon nanotube morphologies in electron microscopy images is vital for exposure assessment and toxicological studies, yet current workflows rely on slow, subjective manual segmentation. This work presents a unified framework leveraging vision foundation models to automate the quantification and classification of CNTs in electron microscopy images. First, we introduce an interactive quantification tool built on the Segment Anything Model (SAM) that segments particles with near-perfect accuracy using minimal user input. Second, we propose a novel classification pipeline that utilizes these segmentation masks to spatially constrain a DINOv2 vision transformer, extracting features exclusively from particle regions while suppressing background noise. Evaluated on a dataset of 1,800 TEM images, this architecture achieves 95.5% accuracy in distinguishing between four different CNT morphologies, significantly outperforming the current baseline despite using a fraction of the training data. Crucially, this instance-level processing allows the framework to resolve mixed samples, correctly classifying distinct particle types co-existing within a single field of view. These results demonstrate that integrating zero-shot segmentation with self-supervised feature learning enables high-throughput, reproducible nanomaterial analysis, transforming a labor-intensive bottleneck into a scalable, data-driven process.
♻ ☆ All You Need for Object Detection: From Pixels, Points, and Prompts to Next-Gen Fusion and Multimodal LLMs/VLMs in Autonomous Vehicles
Autonomous Vehicles (AVs) are transforming the future of transportation through advances in intelligent perception, decision-making, and control systems. However, their success is tied to one core capability, reliable object detection in complex and multimodal environments. While recent breakthroughs in Computer Vision (CV) and Artificial Intelligence (AI) have driven remarkable progress, the field still faces a critical challenge as knowledge remains fragmented across multimodal perception, contextual reasoning, and cooperative intelligence. This survey bridges that gap by delivering a forward-looking analysis of object detection in AVs, emphasizing emerging paradigms such as Vision-Language Models (VLMs), Large Language Models (LLMs), and Generative AI rather than re-examining outdated techniques. We begin by systematically reviewing the fundamental spectrum of AV sensors (camera, ultrasonic, LiDAR, and Radar) and their fusion strategies, highlighting not only their capabilities and limitations in dynamic driving environments but also their potential to integrate with recent advances in LLM/VLM-driven perception frameworks. Next, we introduce a structured categorization of AV datasets that moves beyond simple collections, positioning ego-vehicle, infrastructure-based, and cooperative datasets (e.g., V2V, V2I, V2X, I2I), followed by a cross-analysis of data structures and characteristics. Ultimately, we analyze cutting-edge detection methodologies, ranging from 2D and 3D pipelines to hybrid sensor fusion, with particular attention to emerging transformer-driven approaches powered by Vision Transformers (ViTs), Large and Small Language Models (SLMs), and VLMs. By synthesizing these perspectives, our survey delivers a clear roadmap of current capabilities, open challenges, and future opportunities.
♻ ☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
comment: Accepted Manuscript
♻ ☆ UAM: A Unified Attention-Mamba Backbone of Multimodal Framework for Tumor Cell Classification
Inspired by the recent success of the Mamba architecture in vision and language domains, we introduce a Unified Attention-Mamba (UAM) backbone. Unlike previous hybrid approaches that integrate Attention and Mamba modules in fixed proportions, our unified design flexibly combines their capabilities within a single cohesive architecture, eliminating the need for manual ratio tuning and improving encode capability. We develop two UAM variants to comprehensively evaluate the benefits of this unified structure. Building on this backbone, we further propose a multimodal UAM framework that jointly performs cell-level classification and image segmentation. Experimental results demonstrate that UAM achieves state-of-the-art performance across both tasks on public benchmarks, surpassing leading image-based foundation models. It improves cell classification accuracy from 74\% to 78\% ($n$=349,882 cells), and tumor segmentation precision from 75\% to 80\% ($n$=406 patches).
♻ ☆ EchoJEPA: A Latent Predictive Foundation Model for Echocardiography
Foundation models for echocardiography often struggle to disentangle anatomical signal from the stochastic speckle and acquisition artifacts inherent to ultrasound. We present EchoJEPA, a foundation model trained on 18 million echocardiograms across 300K patients, representing the largest pretraining corpus for this modality to date. By leveraging a latent predictive objective, EchoJEPA learns robust anatomical representations that ignore speckle noise. We validate this using a novel multi-view probing framework with frozen backbones, where EchoJEPA outperforms state-of-the-art baselines by approximately 20% in left ventricular ejection fraction (LVEF) estimation and 17% in right ventricular systolic pressure (RVSP) estimation. The model also exhibits remarkable sample efficiency, reaching 79% view classification accuracy with only 1% of labeled data versus 42% for the best baseline trained on 100%. Crucially, EchoJEPA demonstrates superior generalization, degrading by only 2% under physics-informed acoustic perturbations compared to 17% for competitors. Most remarkably, its zero-shot performance on pediatric patients surpasses fully fine-tuned baselines, establishing latent prediction as a superior paradigm for robust, generalizable medical AI.
♻ ☆ Spectral Prefiltering of Neural Fields
Neural fields excel at representing continuous visual signals but typically operate at a single, fixed resolution. We present a simple yet powerful method to optimize neural fields that can be prefiltered in a single forward pass. Key innovations and features include: (1) We perform convolutional filtering in the input domain by analytically scaling Fourier feature embeddings with the filter's frequency response. (2) This closed-form modulation generalizes beyond Gaussian filtering and supports other parametric filters (Box and Lanczos) that are unseen at training time. (3) We train the neural field using single-sample Monte Carlo estimates of the filtered signal. Our method is fast during both training and inference, and imposes no additional constraints on the network architecture. We show quantitative and qualitative improvements over existing methods for neural-field filtering.
comment: 16 pages, 10 figures, Website: https://myaldiz.info/assets/spnf
♻ ☆ TextOCVP: Object-Centric Video Prediction with Language Guidance
Understanding and forecasting future scene states is critical for autonomous agents to plan and act effectively in complex environments. Object-centric models, with structured latent spaces, have shown promise in modeling object dynamics and predicting future scene states, but often struggle to scale beyond simple synthetic datasets and to integrate external guidance, limiting their applicability in robotics. To address these limitations, we propose TextOCVP, an object-centric model for video prediction guided by textual descriptions. TextOCVP parses an observed scene into object representations, called slots, and utilizes a text-conditioned transformer predictor to forecast future object states and video frames. Our approach jointly models object dynamics and interactions while incorporating textual guidance, enabling accurate and controllable predictions. TextOCVP's structured latent space offers a more precise control of the forecasting process, outperforming several video prediction baselines on two datasets. Additionally, we show that structured object-centric representations provide superior robustness to novel scene configurations, as well as improved controllability and interpretability, enabling more precise and understandable predictions. Videos and code are available at https://play-slot.github.io/TextOCVP.
comment: Published at TMLR 02/2026
♻ ☆ An Example for Domain Adaptation Using CycleGAN
Cycle-Consistent Adversarial Network (CycleGAN) is very promising in domain adaptation. In this report, an example in medical domain will be explained. We present struecture of a CycleGAN model for unpaired image-to-image translation from microscopy to pseudo H\&E stained histopathology images.
comment: 3 pages, 2 figures
Artificial Intelligence 277
☆ Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
comment: ByteDance Seed Tech Report; Page: https://par-protein.github.io/
☆ Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of \emph{contrastive continual learning} (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
☆ CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable $k$-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
comment: 13 pages main text, 10 pages reference & appendix, 8 figures
☆ El Agente Quntur: A research collaborator agent for quantum chemistry
Quantum chemistry is a foundational enabling tool for the fields of chemistry, materials science, computational biology and others. Despite of its power, the practical application of quantum chemistry simulations remains in the hands of qualified experts due to methodological complexity, software heterogeneity, and the need for informed interpretation of results. To bridge the accessibility gap for these tools and expand their reach to chemists with broader backgrounds, we introduce El Agente Quntur, a hierarchical, multi-agent AI system designed to operate not merely as an automation tool but as a research collaborator for computational quantum chemistry. Quntur was designed following three main strategies: i) elimination of hard-coded procedural policies in favour of reasoning-driven decisions, ii) construction of general and composable actions that facilitate generalization and efficiency, and iii) implementation of guided deep research to integrate abstract quantum-chemical reasoning across subdisciplines and a detailed understanding of the software's internal logic and syntax. Although instantiated in ORCA, these design principles are applicable to research agents more generally and easily expandable to additional quantum chemistry packages and beyond. Quntur supports the full range of calculations available in ORCA 6.0 and reasons over software documentation and scientific literature to plan, execute, adapt, and analyze in silico chemistry experiments following best practices. We discuss the advances and current bottlenecks in agentic systems operating at the research level in computational chemistry, and outline a roadmap toward a fully autonomous end-to-end computational chemistry research agent.
☆ El Agente Estructural: An Artificially Intelligent Molecular Editor
We present El Agente Estructural, a multimodal, natural-language-driven geometry-generation and manipulation agent for autonomous chemistry and molecular modelling. Unlike molecular generation or editing via generative models, Estructural mimics how human experts directly manipulate molecular systems in three dimensions by integrating a comprehensive set of domain-informed tools and vision-language models. This design enables precise control over atomic or functional group replacements, atomic connectivity, and stereochemistry without the need to rebuild extensive core molecular frameworks. Through a series of representative case studies, we demonstrate that Estructural enables chemically meaningful geometry manipulation across a wide range of real-world scenarios. These include site-selective functionalization, ligand binding, ligand exchange, stereochemically controlled structure construction, isomer interconversion, fragment-level structural analysis, image-guided generation of structures from schematic reaction mechanisms, and mechanism-driven geometry generation and modification. These examples illustrate how multimodal reasoning, when combined with specialized geometry-aware tools, supports interactive and context-aware molecular modelling beyond structure generation. Looking forward, the integration of Estructural into El Agente Quntur, an autonomous multi-agent quantum chemistry platform, enhances its capabilities by adding sophisticated tools for the generation and editing of three-dimensional structures.
☆ Fluid Representations in Reasoning Models
Reasoning language models, which generate long chains of thought, dramatically outperform non-reasoning language models on abstract problems. However, the internal model mechanisms that allow this superior performance remain poorly understood. We present a mechanistic analysis of how QwQ-32B - a model specifically trained to produce extensive reasoning traces - process abstract structural information. On Mystery Blocksworld - a semantically obfuscated planning domain - we find that QwQ-32B gradually improves its internal representation of actions and concepts during reasoning. The model develops abstract encodings that focus on structure rather than specific action names. Through steering experiments, we establish causal evidence that these adaptations improve problem solving: injecting refined representations from successful traces boosts accuracy, while symbolic representations can replace many obfuscated encodings with minimal performance loss. We find that one of the factors driving reasoning model performance is in-context refinement of token representations, which we dub Fluid Reasoning Representations.
☆ Group-Evolving Agents: Open-Ended Self-Improvement via Experience Sharing
Open-ended self-improving agents can autonomously modify their own structural designs to advance their capabilities and overcome the limits of pre-defined architectures, thus reducing reliance on human intervention. We introduce Group-Evolving Agents (GEA), a new paradigm for open-ended self-improvements, which treats a group of agents as the fundamental evolutionary unit, enabling explicit experience sharing and reuse within the group throughout evolution. Unlike existing open-ended self-evolving paradigms that adopt tree-structured evolution, GEA overcomes the limitation of inefficient utilization of exploratory diversity caused by isolated evolutionary branches. We evaluate GEA on challenging coding benchmarks, where it significantly outperforms state-of-the-art self-evolving methods (71.0% vs. 56.7% on SWE-bench Verified, 88.3% vs. 68.3% on Polyglot) and matches or exceeds top human-designed agent frameworks (71.8% and 52.0% on two benchmarks, respectively). Analysis reveals that GEA more effectively converts early-stage exploratory diversity into sustained, long-term progress, achieving stronger performance under the same number of evolved agents. Furthermore, GEA exhibits consistent transferability across different coding models and greater robustness, fixing framework-level bugs in 1.4 iterations on average, versus 5 for self-evolving methods.
comment: 18 pages
☆ Are AI Capabilities Increasing Exponentially? A Competing Hypothesis
Rapidly increasing AI capabilities have substantial real-world consequences, ranging from AI safety concerns to labor market consequences. The Model Evaluation & Threat Research (METR) report argues that AI capabilities have exhibited exponential growth since 2019. In this note, we argue that the data does not support exponential growth, even in shorter-term horizons. Whereas the METR study claims that fitting sigmoid/logistic curves results in inflection points far in the future, we fit a sigmoid curve to their current data and find that the inflection point has already passed. In addition, we propose a more complex model that decomposes AI capabilities into base and reasoning capabilities, exhibiting individual rates of improvement. We prove that this model supports our hypothesis that AI capabilities will exhibit an inflection point in the near future. Our goal is not to establish a rigorous forecast of our own, but to highlight the fragility of existing forecasts of exponential growth.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization IEEE
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ Agentic AI in Healthcare & Medicine: A Seven-Dimensional Taxonomy for Empirical Evaluation of LLM-based Agents
Large Language Model (LLM)-based agents that plan, use tools and act has begun to shape healthcare and medicine. Reported studies demonstrate competence on various tasks ranging from EHR analysis and differential diagnosis to treatment planning and research workflows. Yet the literature largely consists of overviews which are either broad surveys or narrow dives into a single capability (e.g., memory, planning, reasoning), leaving healthcare work without a common frame. We address this by reviewing 49 studies using a seven-dimensional taxonomy: Cognitive Capabilities, Knowledge Management, Interaction Patterns, Adaptation & Learning, Safety & Ethics, Framework Typology and Core Tasks & Subtasks with 29 operational sub-dimensions. Using explicit inclusion and exclusion criteria and a labeling rubric (Fully Implemented, Partially Implemented, Not Implemented), we map each study to the taxonomy and report quantitative summaries of capability prevalence and co-occurrence patterns. Our empirical analysis surfaces clear asymmetries. For instance, the External Knowledge Integration sub-dimension under Knowledge Management is commonly realized (~76% Fully Implemented) whereas Event-Triggered Activation sub-dimenison under Interaction Patterns is largely absent (~92% Not Implemented) and Drift Detection & Mitigation sub-dimension under Adaptation & Learning is rare (~98% Not Implemented). Architecturally, Multi-Agent Design sub-dimension under Framework Typology is the dominant pattern (~82% Fully Implemented) while orchestration layers remain mostly partial. Across Core Tasks & Subtasks, information centric capabilities lead e.g., Medical Question Answering & Decision Support and Benchmarking & Simulation, while action and discovery oriented areas such as Treatment Planning & Prescription still show substantial gaps (~59% Not Implemented).
☆ SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
☆ Skin Tokens: A Learned Compact Representation for Unified Autoregressive Rigging
The rapid proliferation of generative 3D models has created a critical bottleneck in animation pipelines: rigging. Existing automated methods are fundamentally limited by their approach to skinning, treating it as an ill-posed, high-dimensional regression task that is inefficient to optimize and is typically decoupled from skeleton generation. We posit this is a representation problem and introduce SkinTokens: a learned, compact, and discrete representation for skinning weights. By leveraging an FSQ-CVAE to capture the intrinsic sparsity of skinning, we reframe the task from continuous regression to a more tractable token sequence prediction problem. This representation enables TokenRig, a unified autoregressive framework that models the entire rig as a single sequence of skeletal parameters and SkinTokens, learning the complicated dependencies between skeletons and skin deformations. The unified model is then amenable to a reinforcement learning stage, where tailored geometric and semantic rewards improve generalization to complex, out-of-distribution assets. Quantitatively, the SkinTokens representation leads to a 98%-133% percents improvement in skinning accuracy over state-of-the-art methods, while the full TokenRig framework, refined with RL, enhances bone prediction by 17%-22%. Our work presents a unified, generative approach to rigging that yields higher fidelity and robustness, offering a scalable solution to a long-standing challenge in 3D content creation.
comment: 14 pages, 10 figures
☆ Team, Then Trim: An Assembly-Line LLM Framework for High-Quality Tabular Data Generation
While tabular data is fundamental to many real-world machine learning (ML) applications, acquiring high-quality tabular data is usually labor-intensive and expensive. Limited by the scarcity of observations, tabular datasets often exhibit critical deficiencies, such as class imbalance, selection bias, and low fidelity. To address these challenges, building on recent advances in Large Language Models (LLMs), this paper introduces Team-then-Trim (T$^2$), a framework that synthesizes high-quality tabular data through a collaborative team of LLMs, followed by a rigorous three-stage plug-in data quality control (QC) pipeline. In T$^2$, tabular data generation is conceptualized as a manufacturing process: specialized LLMs, guided by domain knowledge, are tasked with generating different data components sequentially, and the resulting products, i.e., the synthetic data, are systematically evaluated across multiple dimensions of QC. Empirical results on both simulated and real-world datasets demonstrate that T$^2$ outperforms state-of-the-art methods in producing high-quality tabular data, highlighting its potential to support downstream models when direct data collection is practically infeasible.
☆ Billion-Scale Graph Foundation Models
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
☆ Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty
Multi-agent systems are increasingly equipped with heterogeneous multimodal sensors, enabling richer perception but introducing modality-specific and agent-dependent uncertainty. Existing multi-agent collaboration frameworks typically reason at the agent level, assume homogeneous sensing, and handle uncertainty implicitly, limiting robustness under sensor corruption. We propose Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty (A2MAML), a principled approach for uncertainty-aware, modality-level collaboration. A2MAML models each modality-specific feature as a stochastic estimate with uncertainty prediction, actively selects reliable agent-modality pairs, and aggregates information via Bayesian inverse-variance weighting. This formulation enables fine-grained, modality-level fusion, supports asymmetric modality availability, and provides a principled mechanism to suppress corrupted or noisy modalities. Extensive experiments on connected autonomous driving scenarios for collaborative accident detection demonstrate that A2MAML consistently outperforms both single-agent and collaborative baselines, achieving up to 18.7% higher accident detection rate.
☆ When Silence Is Golden: Can LLMs Learn to Abstain in Temporal QA and Beyond? ICLR2026
Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
comment: Accepted to ICLR2026
☆ Comparative Insights on Adversarial Machine Learning from Industry and Academia: A User-Study Approach
An exponential growth of Machine Learning and its Generative AI applications brings with it significant security challenges, often referred to as Adversarial Machine Learning (AML). In this paper, we conducted two comprehensive studies to explore the perspectives of industry professionals and students on different AML vulnerabilities and their educational strategies. In our first study, we conducted an online survey with professionals revealing a notable correlation between cybersecurity education and concern for AML threats. For our second study, we developed two CTF challenges that implement Natural Language Processing and Generative AI concepts and demonstrate a poisoning attack on the training data set. The effectiveness of these challenges was evaluated by surveying undergraduate and graduate students at Carnegie Mellon University, finding that a CTF-based approach effectively engages interest in AML threats. Based on the responses of the participants in our research, we provide detailed recommendations emphasizing the critical need for integrated security education within the ML curriculum.
☆ Exploiting contextual information to improve stance detection in informal political discourse with LLMs
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
comment: 14 pages, 7 figures
☆ Alignment Drift in Multimodal LLMs: A Two-Phase, Longitudinal Evaluation of Harm Across Eight Model Releases
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
comment: under peer-review
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Supporting software engineering tasks with agentic AI: Demonstration on document retrieval and test scenario generation
The introduction of large language models ignited great retooling and rethinking of the software development models. The ensuing response of software engineering research yielded a massive body of tools and approaches. In this paper, we join the hassle by introducing agentic AI solutions for two tasks. First, we developed a solution for automatic test scenario generation from a detailed requirements description. This approach relies on specialized worker agents forming a star topology with the supervisor agent in the middle. We demonstrate its capabilities on a real-world example. Second, we developed an agentic AI solution for the document retrieval task in the context of software engineering documents. Our solution enables performing various use cases on a body of documents related to the development of a single software, including search, question answering, tracking changes, and large document summarization. In this case, each use case is handled by a dedicated LLM-based agent, which performs all subtasks related to the corresponding use case. We conclude by hinting at the future perspectives of our line of research.
comment: This is a preprint of a paper that was accepted at the International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2026)
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Adaptive Prompt Elicitation for Text-to-Image Generation
Aligning text-to-image generation with user intent remains challenging, for users who provide ambiguous inputs and struggle with model idiosyncrasies. We propose Adaptive Prompt Elicitation (APE), a technique that adaptively asks visual queries to help users refine prompts without extensive writing. Our technical contribution is a formulation of interactive intent inference under an information-theoretic framework. APE represents latent intent as interpretable feature requirements using language model priors, adaptively generates visual queries, and compiles elicited requirements into effective prompts. Evaluation on IDEA-Bench and DesignBench shows that APE achieves stronger alignment with improved efficiency. A user study with challenging user-defined tasks demonstrates 19.8% higher alignment without workload overhead. Our work contributes a principled approach to prompting that, for general users, offers an effective and efficient complement to the prevailing prompt-based interaction paradigm with text-to-image models.
comment: ACM International Conference on Intelligent User Interfaces (IUI) 2026, March 23-26, Paphos, Cyprus
☆ SAR-RAG: ATR Visual Question Answering by Semantic Search, Retrieval, and MLLM Generation IEEE
We present a visual-context image retrieval-augmented generation (ImageRAG) assisted AI agent for automatic target recognition (ATR) of synthetic aperture radar (SAR). SAR is a remote sensing method used in defense and security applications to detect and monitor the positions of military vehicles, which may appear indistinguishable in images. Researchers have extensively studied SAR ATR to improve the differentiation and identification of vehicle types, characteristics, and measurements. Test examples can be compared with known vehicle target types to improve recognition tasks. New methods enhance the capabilities of neural networks, transformer attention, and multimodal large language models. An agentic AI method may be developed to utilize a defined set of tools, such as searching through a library of similar examples. Our proposed method, SAR Retrieval-Augmented Generation (SAR-RAG), combines a multimodal large language model (MLLM) with a vector database of semantic embeddings to support contextual search for image exemplars with known qualities. By recovering past image examples with known true target types, our SAR-RAG system can compare similar vehicle categories, achieving improved ATR prediction accuracy. We evaluate this through search and retrieval metrics, categorical classification accuracy, and numeric regression of vehicle dimensions. These metrics all show improvements when SAR-RAG is added to an MLLM baseline method as an attached ATR memory bank.
comment: Submitted to 2026 IEEE Radar Conference
☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLMs' output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
comment: 11 pages, 2figures
☆ Overstating Attitudes, Ignoring Networks: LLM Biases in Simulating Misinformation Susceptibility
Large language models (LLMs) are increasingly used as proxies for human judgment in computational social science, yet their ability to reproduce patterns of susceptibility to misinformation remains unclear. We test whether LLM-simulated survey respondents, prompted with participant profiles drawn from social survey data measuring network, demographic, attitudinal and behavioral features, can reproduce human patterns of misinformation belief and sharing. Using three online surveys as baselines, we evaluate whether LLM outputs match observed response distributions and recover feature-outcome associations present in the original survey data. LLM-generated responses capture broad distributional tendencies and show modest correlation with human responses, but consistently overstate the association between belief and sharing. Linear models fit to simulated responses exhibit substantially higher explained variance and place disproportionate weight on attitudinal and behavioral features, while largely ignoring personal network characteristics, relative to models fit to human responses. Analyses of model-generated reasoning and LLM training data suggest that these distortions reflect systematic biases in how misinformation-related concepts are represented. Our findings suggest that LLM-based survey simulations are better suited for diagnosing systematic divergences from human judgment than for substituting it.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Rethinking the Design Space of Reinforcement Learning for Diffusion Models: On the Importance of Likelihood Estimation Beyond Loss Design
Reinforcement learning has been widely applied to diffusion and flow models for visual tasks such as text-to-image generation. However, these tasks remain challenging because diffusion models have intractable likelihoods, which creates a barrier for directly applying popular policy-gradient type methods. Existing approaches primarily focus on crafting new objectives built on already heavily engineered LLM objectives, using ad hoc estimators for likelihood, without a thorough investigation into how such estimation affects overall algorithmic performance. In this work, we provide a systematic analysis of the RL design space by disentangling three factors: i) policy-gradient objectives, ii) likelihood estimators, and iii) rollout sampling schemes. We show that adopting an evidence lower bound (ELBO) based model likelihood estimator, computed only from the final generated sample, is the dominant factor enabling effective, efficient, and stable RL optimization, outweighing the impact of the specific policy-gradient loss functional. We validate our findings across multiple reward benchmarks using SD 3.5 Medium, and observe consistent trends across all tasks. Our method improves the GenEval score from 0.24 to 0.95 in 90 GPU hours, which is $4.6\times$ more efficient than FlowGRPO and $2\times$ more efficient than the SOTA method DiffusionNFT without reward hacking.
comment: 23 pages, 11 figures
☆ Towards Structured, State-Aware, and Execution-Grounded Reasoning for Software Engineering Agents
Software Engineering (SE) agents have shown promising abilities in supporting various SE tasks. Current SE agents remain fundamentally reactive, making decisions mainly based on conversation history and the most recent response. However, this reactive design provides no explicit structure or persistent state within the agent's memory, making long-horizon reasoning challenging. As a result, SE agents struggle to maintain a coherent understanding across reasoning steps, adapt their hypotheses as new evidence emerges, or incorporate execution feedback into the mental reasoning model of the system state. In this position paper, we argue that, to further advance SE agents, we need to move beyond reactive behavior toward a structured, state-aware, and execution-grounded reasoning. We outline how explicit structure, persistent and evolving state, and the integration of execution-grounded feedback can help SE agents perform more coherent and reliable reasoning in long-horizon tasks. We also provide an initial roadmap for developing next-generation SE agents that can more effectively perform real-world tasks.
comment: Position paper accepted in BoatSE
☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
☆ A Human-Centered Privacy Approach (HCP) to AI
As the paradigm of Human-Centered AI (HCAI) gains prominence, its benefits to society are accompanied by significant ethical concerns, one of which is the protection of individual privacy. This chapter provides a comprehensive overview of privacy within HCAI, proposing a human-centered privacy (HCP) framework, providing integrated solution from technology, ethics, and human factors perspectives. The chapter begins by mapping privacy risks across each stage of AI development lifecycle, from data collection to deployment and reuse, highlighting the impact of privacy risks on the entire system. The chapter then introduces privacy-preserving techniques such as federated learning and dif erential privacy. Subsequent chapters integrate the crucial user perspective by examining mental models, alongside the evolving regulatory and ethical landscapes as well as privacy governance. Next, advice on design guidelines is provided based on the human-centered privacy framework. After that, we introduce practical case studies across diverse fields. Finally, the chapter discusses persistent open challenges and future research directions, concluding that a multidisciplinary approach, merging technical, design, policy, and ethical expertise, is essential to successfully embed privacy into the core of HCAI, thereby ensuring these technologies advance in a manner that respects and ensures human autonomy, trust and dignity.
☆ RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
comment: Blog: https://huggingface.co/blog/thebajajra/rexbert-encoders Models: https://huggingface.co/collections/thebajajra/rexbert Ecom-niverse Dataset: https://huggingface.co/datasets/thebajajra/Ecom-niverse
☆ VILLAIN at AVerImaTeC: Verifying Image-Text Claims via Multi-Agent Collaboration EACL 2026
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
comment: A system description paper for the AVerImaTeC shared task at the Ninth FEVER Workshop (co-located with EACL 2026)
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ Vibe AIGC: A New Paradigm for Content Generation via Agentic Orchestration
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the \textbf{Vibe AIGC}, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows. Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.
☆ From Competition to Collaboration: Designing Sustainable Mechanisms Between LLMs and Online Forums
While Generative AI (GenAI) systems draw users away from (Q&A) forums, they also depend on the very data those forums produce to improve their performance. Addressing this paradox, we propose a framework of sequential interaction, in which a GenAI system proposes questions to a forum that can publish some of them. Our framework captures several intricacies of such a collaboration, including non-monetary exchanges, asymmetric information, and incentive misalignment. We bring the framework to life through comprehensive, data-driven simulations using real Stack Exchange data and commonly used LLMs. We demonstrate the incentive misalignment empirically, yet show that players can achieve roughly half of the utility in an ideal full-information scenario. Our results highlight the potential for sustainable collaboration that preserves effective knowledge sharing between AI systems and human knowledge platforms.
☆ Dual Mind World Model Inspired Network Digital Twin for Access Scheduling
Emerging networked systems such as industrial IoT and real-time cyber-physical infrastructures demand intelligent scheduling strategies capable of adapting to dynamic traffic, deadlines, and interference constraints. In this work, we present a novel Digital Twin-enabled scheduling framework inspired by Dual Mind World Model (DMWM) architecture, for learning-informed and imagination-driven network control. Unlike conventional rule-based or purely data-driven policies, the proposed DMWM combines short-horizon predictive planning with symbolic model-based rollout, enabling the scheduler to anticipate future network states and adjust transmission decisions accordingly. We implement the framework in a configurable simulation testbed and benchmark its performance against traditional heuristics and reinforcement learning baselines under varied traffic conditions. Our results show that DMWM achieves superior performance in bursty, interference-limited, and deadline-sensitive environments, while maintaining interpretability and sample efficiency. The proposed design bridges the gap between network-level reasoning and low-overhead learning, marking a step toward scalable and adaptive NDT-based network optimization.
☆ OmniRad: A Radiological Foundation Model for Multi-Task Medical Image Analysis
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
comment: 19 pages, 4 figures, 12 tables
☆ Continual Learning through Control Minimization
Catastrophic forgetting remains a fundamental challenge for neural networks when tasks are trained sequentially. In this work, we reformulate continual learning as a control problem where learning and preservation signals compete within neural activity dynamics. We convert regularization penalties into preservation signals that protect prior-task representations. Learning then proceeds by minimizing the control effort required to integrate new tasks while competing with the preservation of prior tasks. At equilibrium, the neural activities produce weight updates that implicitly encode the full prior-task curvature, a property we term the continual-natural gradient, requiring no explicit curvature storage. Experiments confirm that our learning framework recovers true prior-task curvature and enables task discrimination, outperforming existing methods on standard benchmarks without replay.
☆ LycheeDecode: Accelerating Long-Context LLM Inference via Hybrid-Head Sparse Decoding ICLR 2026
The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.
comment: ICLR 2026
☆ SLUM-i: Semi-supervised Learning for Urban Mapping of Informal Settlements and Data Quality Benchmarking
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
comment: 10 pages, 8 figures, 5 tables
☆ Learning the Value Systems of Agents with Preference-based and Inverse Reinforcement Learning
Agreement Technologies refer to open computer systems in which autonomous software agents interact with one another, typically on behalf of humans, in order to come to mutually acceptable agreements. With the advance of AI systems in recent years, it has become apparent that such agreements, in order to be acceptable to the involved parties, must remain aligned with ethical principles and moral values. However, this is notoriously difficult to ensure, especially as different human users (and their software agents) may hold different value systems, i.e. they may differently weigh the importance of individual moral values. Furthermore, it is often hard to specify the precise meaning of a value in a particular context in a computational manner. Methods to estimate value systems based on human-engineered specifications, e.g. based on value surveys, are limited in scale due to the need for intense human moderation. In this article, we propose a novel method to automatically \emph{learn} value systems from observations and human demonstrations. In particular, we propose a formal model of the \emph{value system learning} problem, its instantiation to sequential decision-making domains based on multi-objective Markov decision processes, as well as tailored preference-based and inverse reinforcement learning algorithms to infer value grounding functions and value systems. The approach is illustrated and evaluated by two simulated use cases.
comment: 42 pages, 5 figures. Published in Journal of Autonomous Agents and Multi-Agent Systems
☆ BrainVista: Modeling Naturalistic Brain Dynamics as Multimodal Next-Token Prediction
Naturalistic fMRI characterizes the brain as a dynamic predictive engine driven by continuous sensory streams. However, modeling the causal forward evolution in realistic neural simulation is impeded by the timescale mismatch between multimodal inputs and the complex topology of cortical networks. To address these challenges, we introduce BrainVista, a multimodal autoregressive framework designed to model the causal evolution of brain states. BrainVista incorporates Network-wise Tokenizers to disentangle system-specific dynamics and a Spatial Mixer Head that captures inter-network information flow without compromising functional boundaries. Furthermore, we propose a novel Stimulus-to-Brain (S2B) masking mechanism to synchronize high-frequency sensory stimuli with hemodynamically filtered signals, enabling strict, history-only causal conditioning. We validate our framework on Algonauts 2025, CineBrain, and HAD, achieving state-of-the-art fMRI encoding performance. In long-horizon rollout settings, our model yields substantial improvements over baselines, increasing pattern correlation by 36.0\% and 33.3\% on relative to the strongest baseline Algonauts 2025 and CineBrain, respectively.
comment: 17 pages, 7 figures, 11 tables
☆ ReThinker: Scientific Reasoning by Rethinking with Guided Reflection and Confidence Control
Expert-level scientific reasoning remains challenging for large language models, particularly on benchmarks such as Humanity's Last Exam (HLE), where rigid tool pipelines, brittle multi-agent coordination, and inefficient test-time scaling often limit performance. We introduce ReThinker, a confidence-aware agentic framework that orchestrates retrieval, tool use, and multi-agent reasoning through a stage-wise Solver-Critic-Selector architecture. Rather than following a fixed pipeline, ReThinker dynamically allocates computation based on model confidence, enabling adaptive tool invocation, guided multi-dimensional reflection, and robust confidence-weighted selection. To support scalable training without human annotation, we further propose a reverse data synthesis pipeline and an adaptive trajectory recycling strategy that transform successful reasoning traces into high-quality supervision. Experiments on HLE, GAIA, and XBench demonstrate that ReThinker consistently outperforms state-of-the-art foundation models with tools and existing deep research systems, achieving state-of-the-art results on expert-level reasoning tasks.
☆ Discovering Mechanistic Models of Neural Activity: System Identification in an in Silico Zebrafish
Constructing mechanistic models of neural circuits is a fundamental goal of neuroscience, yet verifying such models is limited by the lack of ground truth. To rigorously test model discovery, we establish an in silico testbed using neuromechanical simulations of a larval zebrafish as a transparent ground truth. We find that LLM-based tree search autonomously discovers predictive models that significantly outperform established forecasting baselines. Conditioning on sensory drive is necessary but not sufficient for faithful system identification, as models exploit statistical shortcuts. Structural priors prove essential for enabling robust out-of-distribution generalization and recovery of interpretable mechanistic models. Our insights provide guidance for modeling real-world neural recordings and offer a broader template for AI-driven scientific discovery.
☆ LLM-Empowered Cooperative Content Caching in Vehicular Fog Caching-Assisted Platoon Networks
This letter proposes a novel three-tier content caching architecture for Vehicular Fog Caching (VFC)-assisted platoon, where the VFC is formed by the vehicles driving near the platoon. The system strategically coordinates storage across local platoon vehicles, dynamic VFC clusters, and cloud server (CS) to minimize content retrieval latency. To efficiently manage distributed storage, we integrate large language models (LLMs) for real-time and intelligent caching decisions. The proposed approach leverages LLMs' ability to process heterogeneous information, including user profiles, historical data, content characteristics, and dynamic system states. Through a designed prompting framework encoding task objectives and caching constraints, the LLMs formulate caching as a decision-making task, and our hierarchical deterministic caching mapping strategy enables adaptive requests prediction and precise content placement across three tiers without frequent retraining. Simulation results demonstrate the advantages of our proposed caching scheme.
comment: Corresponding author: Qiong Wu (qiongwu@jiangnan.edu.cn)
☆ Is Micro Domain-Adaptive Pre-Training Effective for Real-World Operations? Multi-Step Evaluation Reveals Potential and Bottlenecks EACL2026
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
comment: 13 pages, 9 figures, Accepted by EACL2026 Industry Track
☆ Growth First, Care Second? Tracing the Landscape of LLM Value Preferences in Everyday Dilemmas
People increasingly seek advice online from both human peers and large language model (LLM)-based chatbots. Such advice rarely involves identifying a single correct answer; instead, it typically requires navigating trade-offs among competing values. We aim to characterize how LLMs navigate value trade-offs across different advice-seeking contexts. First, we examine the value trade-off structure underlying advice seeking using a curated dataset from four advice-oriented subreddits. Using a bottom-up approach, we inductively construct a hierarchical value framework by aggregating fine-grained values extracted from individual advice options into higher-level value categories. We construct value co-occurrence networks to characterize how values co-occur within dilemmas and find substantial heterogeneity in value trade-off structures across advice-seeking contexts: a women-focused subreddit exhibits the highest network density, indicating more complex value conflicts; women's, men's, and friendship-related subreddits exhibit highly correlated value-conflict patterns centered on security-related tensions (security vs. respect/connection/commitment); by contrast, career advice forms a distinct structure where security frequently clashes with self-actualization and growth. We then evaluate LLM value preferences against these dilemmas and find that, across models and contexts, LLMs consistently prioritize values related to Exploration & Growth over Benevolence & Connection. This systemically skewed value orientation highlights a potential risk of value homogenization in AI-mediated advice, raising concerns about how such systems may shape decision-making and normative outcomes at scale.
comment: dataset available at https://github.com/Renesmeeczy/Value-Trade-off-in-Reddit-Dilemmas
☆ RASA: Routing-Aware Safety Alignment for Mixture-of-Experts Models
Mixture-of-Experts (MoE) language models introduce unique challenges for safety alignment due to their sparse routing mechanisms, which can enable degenerate optimization behaviors under standard full-parameter fine-tuning. In our preliminary experiments, we observe that naively applying full-parameter safety fine-tuning to MoE models can reduce attack success rates through routing or expert dominance effects, rather than by directly repairing Safety-Critical Experts. To address this challenge, we propose RASA, a routing-aware expert-level alignment framework that explicitly repairs Safety-Critical Experts while preventing routing-based bypasses. RASA identifies experts disproportionately activated by successful jailbreaks, selectively fine-tunes only these experts under fixed routing, and subsequently enforces routing consistency with safety-aligned contexts. Across two representative MoE architectures and a diverse set of jailbreak attacks, RASA achieves near-perfect robustness, strong cross-attack generalization, and substantially reduced over-refusal, while preserving general capabilities on benchmarks such as MMLU, GSM8K, and TruthfulQA. Our results suggest that robust MoE safety alignment benefits from targeted expert repair rather than global parameter updates, offering a practical and architecture-preserving alternative to prior approaches.
comment: 9 pages
☆ Mixture of Masters: Sparse Chess Language Models with Player Routing
Modern chess language models are dense transformers trained on millions of games played by thousands of high-rated individuals. However, these monolithic networks tend to collapse into mode-averaged behavior, where stylistic boundaries are blurred, and rare but effective strategies are suppressed. To counteract homogenization, we introduce Mixture-of-Masters (MoM), the first chess mixture-of-experts model with small-sized GPT experts emulating world-class grandmasters. Each expert is trained with a combination of self-supervised learning and reinforcement learning guided by chess-specific rewards. For each move, a post-hoc learnable gating network selects the most appropriate persona to channel depending on the game state, allowing MoM to switch its style dynamically$--$e.g., Tal's offensive vocation or Petrosian's defensive solidity. When evaluated against Stockfish on unseen standard games, MoM outperforms both dense individual expert networks and popular GPT baselines trained on aggregated data, while ensuring generation variety, control, and interpretability.
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ SPEAR: An Engineering Case Study of Multi-Agent Coordination for Smart Contract Auditing
We present SPEAR, a multi-agent coordination framework for smart contract auditing that applies established MAS patterns in a realistic security analysis workflow. SPEAR models auditing as a coordinated mission carried out by specialized agents: a Planning Agent prioritizes contracts using risk-aware heuristics, an Execution Agent allocates tasks via the Contract Net protocol, and a Repair Agent autonomously recovers from brittle generated artifacts using a programmatic-first repair policy. Agents maintain local beliefs updated through AGM-compliant revision, coordinate via negotiation and auction protocols, and revise plans as new information becomes available. An empirical study compares the multi-agent design with centralized and pipeline-based alternatives under controlled failure scenarios, focusing on coordination, recovery behavior, and resource use.
☆ EMA Policy Gradient: Taming Reinforcement Learning for LLMs with EMA Anchor and Top-k KL
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to acquire increasingly complex reasoning and agentic behaviors. In this work, we propose two simple techniques to improve policy gradient algorithms for LLMs. First, we replace the fixed anchor policy during RL with an Exponential Moving Average (EMA), similar to a target network in deep Q-learning. Second, we introduce Top-k KL estimator, which allows for flexible interpolation between exact KL and sampled KL. We derive the stability conditions for using EMA anchor; moreover, we show that our Top-k KL estimator yields both unbiased KL values and unbiased gradients at any k, while bringing the benefits of exact KL. When combined with GRPO, the two techniques (EMA-PG) lead to a significant performance boost. On math reasoning, it allows R1-distilled Qwen-1.5B to reach 53.9% on OlympiadBench compared to 50.8% by GRPO. On agentic RL domains, with Qwen-3B base, EMA-PG improves GRPO by an average of 33.3% across 7 datasets of Q&A with search engines, including 29.7% $\rightarrow$ 44.1% on HotpotQA, 27.4% $\rightarrow$ 40.1% on 2WikiMultiHopQA. Overall, we show that EMA-PG is a simple, principled, and powerful approach to scaling RL for LLMs. Code: https://github.com/LunjunZhang/ema-pg
☆ Med-MMFL: A Multimodal Federated Learning Benchmark in Healthcare
Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Performative Learning Theory
Performative predictions influence the very outcomes they aim to forecast. We study performative predictions that affect a sample (e.g., only existing users of an app) and/or the whole population (e.g., all potential app users). This raises the question of how well models generalize under performativity. For example, how well can we draw insights about new app users based on existing users when both of them react to the app's predictions? We address this question by embedding performative predictions into statistical learning theory. We prove generalization bounds under performative effects on the sample, on the population, and on both. A key intuition behind our proofs is that in the worst case, the population negates predictions, while the sample deceptively fulfills them. We cast such self-negating and self-fulfilling predictions as min-max and min-min risk functionals in Wasserstein space, respectively. Our analysis reveals a fundamental trade-off between performatively changing the world and learning from it: the more a model affects data, the less it can learn from it. Moreover, our analysis results in a surprising insight on how to improve generalization guarantees by retraining on performatively distorted samples. We illustrate our bounds in a case study on prediction-informed assignments of unemployed German residents to job trainings, drawing upon administrative labor market records from 1975 to 2017 in Germany.
comment: 52 pages, 2 figures
☆ Bi-directional Bias Attribution: Debiasing Large Language Models without Modifying Prompts
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural language processing tasks. However, their outputs often exhibit social biases, raising fairness concerns. Existing debiasing methods, such as fine-tuning on additional datasets or prompt engineering, face scalability issues or compromise user experience in multi-turn interactions. To address these challenges, we propose a framework for detecting stereotype-inducing words and attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt modification. Our framework first identifies stereotype-inducing adjectives and nouns via comparative analysis across demographic groups. We then attribute biased behavior to specific neurons using two attribution strategies based on integrated gradients. Finally, we mitigate bias by directly intervening on their activations at the projection layer. Experiments on three widely used LLMs demonstrate that our method effectively reduces bias while preserving overall model performance. Code is available at the github link: https://github.com/XMUDeepLIT/Bi-directional-Bias-Attribution.
☆ LoRDO: Distributed Low-Rank Optimization with Infrequent Communication
Distributed training of foundation models via $\texttt{DDP}$ is limited by interconnect bandwidth. While infrequent communication strategies reduce synchronization frequency, they remain bottlenecked by the memory and communication requirements of optimizer states. Low-rank optimizers can alleviate these constraints; however, in the local-update regime, workers lack access to the full-batch gradients required to compute low-rank projections, which degrades performance. We propose $\texttt{LoRDO}$, a principled framework unifying low-rank optimization with infrequent synchronization. We first demonstrate that, while global projections based on pseudo-gradients are theoretically superior, they permanently restrict the optimization trajectory to a low-rank subspace. To restore subspace exploration, we introduce a full-rank quasi-hyperbolic update. $\texttt{LoRDO}$ achieves near-parity with low-rank $\texttt{DDP}$ in language modeling and downstream tasks at model scales of $125$M--$720$M, while reducing communication by $\approx 10 \times$. Finally, we show that $\texttt{LoRDO}$ improves performance even more in very low-memory settings with small rank/batch size.
comment: Preprint; under review
☆ Digital Twins & ZeroConf AI: Structuring Automated Intelligent Pipelines for Industrial Applications IEEE
The increasing complexity of Cyber-Physical Systems (CPS), particularly in the industrial domain, has amplified the challenges associated with the effective integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques. Fragmentation across IoT and IIoT technologies, manifested through diverse communication protocols, data formats and device capabilities, creates a substantial gap between low-level physical layers and high-level intelligent functionalities. Recently, Digital Twin (DT) technology has emerged as a promising solution, offering structured, interoperable and semantically rich digital representations of physical assets. Current approaches are often siloed and tightly coupled, limiting scalability and reuse of AI functionalities. This work proposes a modular and interoperable solution that enables seamless AI pipeline integration into CPS by minimizing configuration and decoupling the roles of DTs and AI components. We introduce the concept of Zero Configuration (ZeroConf) AI pipelines, where DTs orchestrate data management and intelligent augmentation. The approach is demonstrated in a MicroFactory scenario, showing support for concurrent ML models and dynamic data processing, effectively accelerating the deployment of intelligent services in complex industrial settings.
comment: Author-accepted manuscript of a paper published in the 2025 IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC), October 2025, doi: 10.1109/SMC58881.2025.11343418
☆ Blockchain Federated Learning for Sustainable Retail: Reducing Waste through Collaborative Demand Forecasting IEEE
Effective demand forecasting is crucial for reducing food waste. However, data privacy concerns often hinder collaboration among retailers, limiting the potential for improved predictive accuracy. In this study, we explore the application of Federated Learning (FL) in Sustainable Supply Chain Management (SSCM), with a focus on the grocery retail sector dealing with perishable goods. We develop a baseline predictive model for demand forecasting and waste assessment in an isolated retailer scenario. Subsequently, we introduce a Blockchain-based FL model, trained collaboratively across multiple retailers without direct data sharing. Our preliminary results show that FL models have performance almost equivalent to the ideal setting in which parties share data with each other, and are notably superior to models built by individual parties without sharing data, cutting waste and boosting efficiency.
comment: Author-accepted manuscript of a paper published in the IEEE International Symposium on Computers and Communications (ISCC), 2025, pp. 1-6. doi: https://doi.org/10.1109/ISCC65549.2025.11326299
☆ Enabling Real-Time Colonoscopic Polyp Segmentation on Commodity CPUs via Ultra-Lightweight Architecture
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
comment: 19pages, 5 figures
☆ Beyond KL Divergence: Policy Optimization with Flexible Bregman Divergences for LLM Reasoning
Policy optimization methods like Group Relative Policy Optimization (GRPO) and its variants have achieved strong results on mathematical reasoning and code generation tasks. Despite extensive exploration of reward processing strategies and training dynamics, all existing group-based methods exclusively use KL divergence for policy regularization, leaving the choice of divergence function unexplored. We introduce Group-Based Mirror Policy Optimization (GBMPO), a framework that extends group-based policy optimization to flexible Bregman divergences, including hand-designed alternatives (L2 in probability space) and learned neural mirror maps. On GSM8K mathematical reasoning, hand-designed ProbL2-GRPO achieves 86.7% accuracy, improving +5.5 points over the Dr. GRPO baseline. On MBPP code generation, neural mirror maps reach 60.1-60.8% pass@1, with random initialization already capturing most of the benefit. While evolutionary strategies meta-learning provides marginal accuracy improvements, its primary value lies in variance reduction ($\pm$0.2 versus $\pm$0.6) and efficiency gains (15% shorter responses on MBPP), suggesting that random initialization of neural mirror maps is sufficient for most practical applications. These results establish divergence choice as a critical, previously unexplored design dimension in group-based policy optimization for LLM reasoning.
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ Counterfactual Explanations for Hypergraph Neural Networks
Hypergraph neural networks (HGNNs) effectively model higher-order interactions in many real-world systems but remain difficult to interpret, limiting their deployment in high-stakes settings. We introduce CF-HyperGNNExplainer, a counterfactual explanation method for HGNNs that identifies the minimal structural changes required to alter a model's prediction. The method generates counterfactual hypergraphs using actionable edits limited to removing node-hyperedge incidences or deleting hyperedges, producing concise and structurally meaningful explanations. Experiments on three benchmark datasets show that CF-HyperGNNExplainer generates valid and concise counterfactuals, highlighting the higher-order relations most critical to HGNN decisions.
☆ VecSet-Edit: Unleashing Pre-trained LRM for Mesh Editing from Single Image
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
☆ UnMaskFork: Test-Time Scaling for Masked Diffusion via Deterministic Action Branching
Test-time scaling strategies have effectively leveraged inference-time compute to enhance the reasoning abilities of Autoregressive Large Language Models. In this work, we demonstrate that Masked Diffusion Language Models (MDLMs) are inherently amenable to advanced search strategies, owing to their iterative and non-autoregressive generation process. To leverage this, we propose UnMaskFork (UMF), a framework that formulates the unmasking trajectory as a search tree and employs Monte Carlo Tree Search to optimize the generation path. In contrast to standard scaling methods relying on stochastic sampling, UMF explores the search space through deterministic partial unmasking actions performed by multiple MDLMs. Our empirical evaluation demonstrates that UMF consistently outperforms existing test-time scaling baselines on complex coding benchmarks, while also exhibiting strong scalability on mathematical reasoning tasks.
☆ Explicit Uncertainty Modeling for Active CLIP Adaptation with Dual Prompt Tuning
Pre-trained vision-language models such as CLIP exhibit strong transferability, yet adapting them to downstream image classification tasks under limited annotation budgets remains challenging. In active learning settings, the model must select the most informative samples for annotation from a large pool of unlabeled data. Existing approaches typically estimate uncertainty via entropy-based criteria or representation clustering, without explicitly modeling uncertainty from the model perspective. In this work, we propose a robust uncertainty modeling framework for active CLIP adaptation based on dual-prompt tuning. We introduce two learnable prompts in the textual branch of CLIP. The positive prompt enhances the discriminability of task-specific textual embeddings corresponding to light-weight tuned visual embeddings, improving classification reliability. Meanwhile, the negative prompt is trained in an reversed manner to explicitly model the probability that the predicted label is correct, providing a principled uncertainty signal for guiding active sample selection. Extensive experiments across different fine-tuning paradigms demonstrate that our method consistently outperforms existing active learning methods under the same annotation budget.
☆ Fine-tuning Pre-trained Vision-Language Models in a Human-Annotation-Free Manner
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
☆ From Assumptions to Actions: Turning LLM Reasoning into Uncertainty-Aware Planning for Embodied Agents ICLR 2026
Embodied agents operating in multi-agent, partially observable, and decentralized environments must plan and act despite pervasive uncertainty about hidden objects and collaborators' intentions. Recent advances in applying Large Language Models (LLMs) to embodied agents have addressed many long-standing challenges, such as high-level goal decomposition and online adaptation. Yet, uncertainty is still primarily mitigated through frequent inter-agent communication. This incurs substantial token and time costs, and can disrupt established workflows, when human partners are involved. We introduce PCE, a Planner-Composer-Evaluator framework that converts the fragmented assumptions latent in LLM reasoning traces into a structured decision tree. Internal nodes encode environment assumptions and leaves map to actions; each path is then scored by scenario likelihood, goal-directed gain, and execution cost to guide rational action selection without heavy communication. Across two challenging multi-agent benchmarks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms communication-centric baselines in success rate and task efficiency while showing comparable token usage. Ablation results indicate that the performance gains obtained by scaling model capacity or reasoning depth persist even when PCE is applied, while PCE consistently raises the baseline across both capacity and reasoning-depth scales, confirming that structured uncertainty handling complements both forms of scaling. A user study further demonstrates that PCE produces communication patterns that human partners perceive as more efficient and trustworthy. Together, these results establish a principled route for turning latent LLM assumptions into reliable strategies for uncertainty-aware planning.
comment: 31 pages, 10 figures, Accepted ICLR 2026
☆ Efficient Equivariant High-Order Crystal Tensor Prediction via Cartesian Local-Environment Many-Body Coupling
End-to-end prediction of high-order crystal tensor properties from atomic structures remains challenging: while spherical-harmonic equivariant models are expressive, their Clebsch-Gordan tensor products incur substantial compute and memory costs for higher-order targets. We propose the Cartesian Environment Interaction Tensor Network (CEITNet), an approach that constructs a multi-channel Cartesian local environment tensor for each atom and performs flexible many-body mixing via a learnable channel-space interaction. By performing learning in channel space and using Cartesian tensor bases to assemble equivariant outputs, CEITNet enables efficient construction of high-order tensor. Across benchmark datasets for order-2 dielectric, order-3 piezoelectric, and order-4 elastic tensor prediction, CEITNet surpasses prior high-order prediction methods on key accuracy criteria while offering high computational efficiency.
☆ DeFrame: Debiasing Large Language Models Against Framing Effects
As large language models (LLMs) are increasingly deployed in real-world applications, ensuring their fair responses across demographics has become crucial. Despite many efforts, an ongoing challenge is hidden bias: LLMs appear fair under standard evaluations, but can produce biased responses outside those evaluation settings. In this paper, we identify framing -- differences in how semantically equivalent prompts are expressed (e.g., "A is better than B" vs. "B is worse than A") -- as an underexplored contributor to this gap. We first introduce the concept of "framing disparity" to quantify the impact of framing on fairness evaluation. By augmenting fairness evaluation benchmarks with alternative framings, we find that (1) fairness scores vary significantly with framing and (2) existing debiasing methods improve overall (i.e., frame-averaged) fairness, but often fail to reduce framing-induced disparities. To address this, we propose a framing-aware debiasing method that encourages LLMs to be more consistent across framings. Experiments demonstrate that our approach reduces overall bias and improves robustness against framing disparities, enabling LLMs to produce fairer and more consistent responses.
comment: 40 pages, 12 figures
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
☆ ProxyWar: Dynamic Assessment of LLM Code Generation in Game Arenas ICSE2026
Large language models (LLMs) have revolutionized automated code generation, yet the evaluation of their real-world effectiveness remains limited by static benchmarks and simplistic metrics. We present ProxyWar, a novel framework that systematically assesses code generation quality by embedding LLM-generated agents within diverse, competitive game environments. Unlike existing approaches, ProxyWar evaluates not only functional correctness but also the operational characteristics of generated programs, combining automated testing, iterative code repair, and multi-agent tournaments to provide a holistic view of program behavior. Applied to a range of state-of-the-art coders and games, our approach uncovers notable discrepancies between benchmark scores and actual performance in dynamic settings, revealing overlooked limitations and opportunities for improvement. These findings highlight the need for richer, competition-based evaluation of code generation. Looking forward, ProxyWar lays a foundation for research into LLM-driven algorithm discovery, adaptive problem solving, and the study of practical efficiency and robustness, including the potential for models to outperform hand-crafted agents. The project is available at https://github.com/xinke-wang/ProxyWar.
comment: ICSE2026
☆ How Few-shot Demonstrations Affect Prompt-based Defenses Against LLM Jailbreak Attacks
Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
comment: 13 pages, 4 figures, 6 tables
☆ Disentangling Causal Importance from Emergent Structure in Multi-Expert Orchestration
Multi-expert systems, where multiple Large Language Models (LLMs) collaborate to solve complex tasks, are increasingly adopted for high-performance reasoning and generation. However, the orchestration policies governing expert interaction and sequencing remain largely opaque. We introduce INFORM, an interpretability analysis that treats orchestration as an explicit, analyzable computation, enabling the decoupling of expert interaction structure, execution order, and causal attribution. We use INFORM to evaluate an orchestrator on GSM8K, HumanEval, and MMLU using a homogeneous consortium of ten instruction-tuned experts drawn from LLaMA-3.1 8B, Qwen-3 8B, and DeepSeek-R1 8B, with controlled decoding-temperature variation, and a secondary heterogeneous consortium spanning 1B-7B parameter models. Across tasks, routing dominance is a poor proxy for functional necessity. We reveal a divergence between relational importance, captured by routing mass and interaction topology, and intrinsic importance, measured via gradient-based causal attribution: frequently selected experts often act as interaction hubs with limited causal influence, while sparsely routed experts can be structurally critical. Orchestration behaviors emerge asynchronously, with expert centralization preceding stable routing confidence and expert ordering remaining non-deterministic. Targeted ablations show that masking intrinsically important experts induces disproportionate collapse in interaction structure compared to masking frequent peers, confirming that INFORM exposes causal and structural dependencies beyond accuracy metrics alone.
☆ Contextual Drag: How Errors in the Context Affect LLM Reasoning
Central to many self-improvement pipelines for large language models (LLMs) is the assumption that models can improve by reflecting on past mistakes. We study a phenomenon termed contextual drag: the presence of failed attempts in the context biases subsequent generations toward structurally similar errors. Across evaluations of 11 proprietary and open-weight models on 8 reasoning tasks, contextual drag induces 10-20% performance drops, and iterative self-refinement in models with severe contextual drag can collapse into self-deterioration. Structural analysis using tree edit distance reveals that subsequent reasoning trajectories inherit structurally similar error patterns from the context. We demonstrate that neither external feedback nor successful self-verification suffices to eliminate this effect. While mitigation strategies such as fallback-behavior fine-tuning and context denoising yield partial improvements, they fail to fully restore baseline performance, positioning contextual drag as a persistent failure mode in current reasoning architectures.
☆ Agent-Omit: Training Efficient LLM Agents for Adaptive Thought and Observation Omission via Agentic Reinforcement Learning
Managing agent thought and observation during multi-turn agent-environment interactions is an emerging strategy to improve agent efficiency. However, existing studies treat the entire interaction trajectories equally, overlooking the thought necessity and observation utility varies across turns. To this end, we first conduct quantitative investigations into how thought and observation affect agent effectiveness and efficiency. Based on our findings, we propose Agent-Omit, a unified training framework that empowers LLM agents to adaptively omit redundant thoughts and observations. Specifically, we first synthesize a small amount of cold-start data, including both single-turn and multi-turn omission scenarios, to fine-tune the agent for omission behaviors. Furthermore, we introduce an omit-aware agentic reinforcement learning approach, incorporating a dual sampling mechanism and a tailored omission reward to incentivize the agent's adaptive omission capability. Theoretically, we prove that the deviation of our omission policy is upper-bounded by KL-divergence. Experimental results on five agent benchmarks show that our constructed Agent-Omit-8B could obtain performance comparable to seven frontier LLM agent, and achieve the best effectiveness-efficiency trade-off than seven efficient LLM agents methods. Our code and data are available at https://github.com/usail-hkust/Agent-Omit.
comment: Under Review
☆ Multi Objective Design Optimization of Non Pneumatic Passenger Car Tires Using Finite Element Modeling, Machine Learning, and Particle swarm Optimization and Bayesian Optimization Algorithms
Non Pneumatic tires offer a promising alternative to pneumatic tires. However, their discontinuous spoke structures present challenges in stiffness tuning, durability, and high speed vibration. This study introduces an integrated generative design and machine learning driven framework to optimize UPTIS type spoke geometries for passenger vehicles. Upper and lower spoke profiles were parameterized using high order polynomial representations, enabling the creation of approximately 250 generative designs through PCHIP based geometric variation. Machine learning models like KRR for stiffness and XGBoost for durability and vibration achieved strong predictive accuracy, reducing the reliance on computationally intensive FEM simulations. Optimization using Particle Swarm Optimization and Bayesian Optimization further enabled extensive performance refinement. The resulting designs demonstrate 53% stiffness tunability, up to 50% durability improvement, and 43% reduction in vibration compared to the baseline. PSO provided fast, targeted convergence, while Bayesian Optimization effectively explored multi objective tradeoffs. Overall, the proposed framework enables systematic development of high performance, next generation UPTIS spoke structures.
☆ SkeletonGaussian: Editable 4D Generation through Gaussian Skeletonization
4D generation has made remarkable progress in synthesizing dynamic 3D objects from input text, images, or videos. However, existing methods often represent motion as an implicit deformation field, which limits direct control and editability. To address this issue, we propose SkeletonGaussian, a novel framework for generating editable dynamic 3D Gaussians from monocular video input. Our approach introduces a hierarchical articulated representation that decomposes motion into sparse rigid motion explicitly driven by a skeleton and fine-grained non-rigid motion. Concretely, we extract a robust skeleton and drive rigid motion via linear blend skinning, followed by a hexplane-based refinement for non-rigid deformations, enhancing interpretability and editability. Experimental results demonstrate that SkeletonGaussian surpasses existing methods in generation quality while enabling intuitive motion editing, establishing a new paradigm for editable 4D generation. Project page: https://wusar.github.io/projects/skeletongaussian/
comment: Accepted by CVM 2026. Project page: https://wusar.github.io/projects/skeletongaussian
☆ Thickening-to-Thinning: Reward Shaping via Human-Inspired Learning Dynamics for LLM Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising paradigm for enhancing reasoning in Large Language Models (LLMs). However, it frequently encounters challenges such as entropy collapse, excessive verbosity, and insufficient exploration for hard problems. Crucially, existing reward schemes fail to distinguish between the need for extensive search during problem-solving and the efficiency required for mastered knowledge. In this work, we introduce T2T(Thickening-to-Thinning), a dynamic reward framework inspired by human learning processes. Specifically, it implements a dual-phase mechanism: (1) On incorrect attempts, T2T incentivizes "thickening" (longer trajectories) to broaden the search space and explore novel solution paths; (2) Upon achieving correctness, it shifts to "thinning", imposing length penalties to discourage redundancy, thereby fostering model confidence and crystallizing reasoning capabilities. Extensive experiments on mathematical benchmarks (MATH-500, AIME, AMC) across Qwen-series and Deepseek models demonstrate that T2T significantly outperforms standard GRPO and recent baselines, achieving superior performance.
☆ From Dead Neurons to Deep Approximators: Deep Bernstein Networks as a Provable Alternative to Residual Layers
Residual connections are the de facto standard for mitigating vanishing gradients, yet they impose structural constraints and fail to address the inherent inefficiencies of piecewise linear activations. We show that Deep Bernstein Networks (which utilizes Bernstein polynomials as activation functions) can act as residual-free architecture while simultaneously optimize trainability and representation power. We provide a two-fold theoretical foundation for our approach. First, we derive a theoretical lower bound on the local derivative, proving it remains strictly bounded away from zero. This directly addresses the root cause of gradient stagnation; empirically, our architecture reduces ``dead'' neurons from 90\% in standard deep networks to less than 5\%, outperforming ReLU, Leaky ReLU, SeLU, and GeLU. Second, we establish that the approximation error for Bernstein-based networks decays exponentially with depth, a significant improvement over the polynomial rates of ReLU-based architectures. By unifying these results, we demonstrate that Bernstein activations provide a superior mechanism for function approximation and signal flow. Our experiments on HIGGS and MNIST confirm that Deep Bernstein Networks achieve high-performance training without skip-connections, offering a principled path toward deep, residual-free architectures with enhanced expressive capacity.
comment: 15 pages
☆ AppleVLM: End-to-end Autonomous Driving with Advanced Perception and Planning-Enhanced Vision-Language Models
End-to-end autonomous driving has emerged as a promising paradigm integrating perception, decision-making, and control within a unified learning framework. Recently, Vision-Language Models (VLMs) have gained significant attention for their potential to enhance the robustness and generalization of end-to-end driving models in diverse and unseen scenarios. However, existing VLM-based approaches still face challenges, including suboptimal lane perception, language understanding biases, and difficulties in handling corner cases. To address these issues, we propose AppleVLM, an advanced perception and planning-enhanced VLM model for robust end-to-end driving. AppleVLM introduces a novel vision encoder and a planning strategy encoder to improve perception and decision-making. Firstly, the vision encoder fuses spatial-temporal information from multi-view images across multiple timesteps using a deformable transformer mechanism, enhancing robustness to camera variations and facilitating scalable deployment across different vehicle platforms. Secondly, unlike traditional VLM-based approaches, AppleVLM introduces a dedicated planning modality that encodes explicit Bird's-Eye-View spatial information, mitigating language biases in navigation instructions. Finally, a VLM decoder fine-tuned by a hierarchical Chain-of-Thought integrates vision, language, and planning features to output robust driving waypoints. We evaluate AppleVLM in closed-loop experiments on two CARLA benchmarks, achieving state-of-the-art driving performance. Furthermore, we deploy AppleVLM on an AGV platform and successfully showcase real-world end-to-end autonomous driving in complex outdoor environments.
☆ ACIL: Active Class Incremental Learning for Image Classification BMVC 2024
Continual learning (or class incremental learning) is a realistic learning scenario for computer vision systems, where deep neural networks are trained on episodic data, and the data from previous episodes are generally inaccessible to the model. Existing research in this domain has primarily focused on avoiding catastrophic forgetting, which occurs due to the continuously changing class distributions in each episode and the inaccessibility of the data from previous episodes. However, these methods assume that all the training samples in every episode are annotated; this not only incurs a huge annotation cost, but also results in a wastage of annotation effort, since most of the samples in a given episode will not be accessible to the model in subsequent episodes. Active learning algorithms identify the salient and informative samples from large amounts of unlabeled data and are instrumental in reducing the human annotation effort in inducing a deep neural network. In this paper, we propose ACIL, a novel active learning framework for class incremental learning settings. We exploit a criterion based on uncertainty and diversity to identify the exemplar samples that need to be annotated in each episode, and will be appended to the data in the next episode. Such a framework can drastically reduce annotation cost and can also avoid catastrophic forgetting. Our extensive empirical analyses on several vision datasets corroborate the promise and potential of our framework against relevant baselines.
comment: BMVC 2024 (Accepted). Authors, Aditya R. Bhattacharya and Debanjan Goswami contributed equally to this work
☆ Empirical-MCTS: Continuous Agent Evolution via Dual-Experience Monte Carlo Tree Search
Inference-time scaling strategies, particularly Monte Carlo Tree Search (MCTS), have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). However, current approaches remain predominantly stateless, discarding successful reasoning patterns after each problem instance and failing to mimic the empirical accumulation of wisdom characteristic of human problem-solving. To bridge this gap, we introduce Empirical-MCTS, a dual-loop framework that transforms stateless search into a continuous, non-parametric learning process. The framework unifies local exploration with global memory optimization through two novel mechanisms: Pairwise-Experience-Evolutionary Meta-Prompting (PE-EMP) and a Memory Optimization Agent. PE-EMP functions as a reflexive optimizer within the local search, utilizing pairwise feedback to dynamically synthesize adaptive criteria and evolve meta-prompts (system prompts) in real-time. Simultaneously, the Memory Optimization Agent manages a global repository as a dynamic policy prior, employing atomic operations to distill high-quality insights across problems. Extensive evaluations on complex reasoning benchmarks, including AIME25, ARC-AGI-2, and MathArena Apex, demonstrate that Empirical-MCTS significantly outperforms both stateless MCTS strategies and standalone experience-driven agents. These results underscore the critical necessity of coupling structured search with empirical accumulation for mastering complex, open-ended reasoning tasks.
comment: 9 pages, 5 figures
☆ RAPO: Risk-Aware Preference Optimization for Generalizable Safe Reasoning
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
☆ OAT: Ordered Action Tokenization
Autoregressive policies offer a compelling foundation for scalable robot learning by enabling discrete abstraction, token-level reasoning, and flexible inference. However, applying autoregressive modeling to continuous robot actions requires an effective action tokenization scheme. Existing approaches either rely on analytical discretization methods that produce prohibitively long token sequences, or learned latent tokenizers that lack structure, limiting their compatibility with next-token prediction. In this work, we identify three desiderata for action tokenization - high compression, total decodability, and a left-to-right causally ordered token space - and introduce Ordered Action Tokenization (OAT), a learned action tokenizer that satisfies all three. OAT discretizes action chunks into an ordered sequence of tokens using transformer with registers, finite scalar quantization, and ordering-inducing training mechanisms. The resulting token space aligns naturally with autoregressive generation and enables prefix-based detokenization, yielding an anytime trade-off between inference cost and action fidelity. Across more than 20 tasks spanning four simulation benchmarks and real-world settings, autoregressive policies equipped with OAT consistently outperform prior tokenization schemes and diffusion-based baselines, while offering significantly greater flexibility at inference time.
☆ InterPReT: Interactive Policy Restructuring and Training Enable Effective Imitation Learning from Laypersons IEEE
Imitation learning has shown success in many tasks by learning from expert demonstrations. However, most existing work relies on large-scale demonstrations from technical professionals and close monitoring of the training process. These are challenging for a layperson when they want to teach the agent new skills. To lower the barrier of teaching AI agents, we propose Interactive Policy Restructuring and Training (InterPReT), which takes user instructions to continually update the policy structure and optimize its parameters to fit user demonstrations. This enables end-users to interactively give instructions and demonstrations, monitor the agent's performance, and review the agent's decision-making strategies. A user study (N=34) on teaching an AI agent to drive in a racing game confirms that our approach yields more robust policies without impairing system usability, compared to a generic imitation learning baseline, when a layperson is responsible for both giving demonstrations and determining when to stop. This shows that our method is more suitable for end-users without much technical background in machine learning to train a dependable policy
comment: Proceedings of the 21st ACM/IEEE International Conference on Human-Robot Interaction
☆ Language Models Struggle to Use Representations Learned In-Context
Though large language models (LLMs) have enabled great success across a wide variety of tasks, they still appear to fall short of one of the loftier goals of artificial intelligence research: creating an artificial system that can adapt its behavior to radically new contexts upon deployment. One important step towards this goal is to create systems that can induce rich representations of data that are seen in-context, and then flexibly deploy these representations to accomplish goals. Recently, Park et al. (2024) demonstrated that current LLMs are indeed capable of inducing such representation from context (i.e., in-context representation learning). The present study investigates whether LLMs can use these representations to complete simple downstream tasks. We first assess whether open-weights LLMs can use in-context representations for next-token prediction, and then probe models using a novel task, adaptive world modeling. In both tasks, we find evidence that open-weights LLMs struggle to deploy representations of novel semantics that are defined in-context, even if they encode these semantics in their latent representations. Furthermore, we assess closed-source, state-of-the-art reasoning models on the adaptive world modeling task, demonstrating that even the most performant LLMs cannot reliably leverage novel patterns presented in-context. Overall, this work seeks to inspire novel methods for encouraging models to not only encode information presented in-context, but to do so in a manner that supports flexible deployment of this information.
☆ Steering LLMs via Scalable Interactive Oversight
As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
☆ SCALE: Self-uncertainty Conditioned Adaptive Looking and Execution for Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as a promising paradigm for general-purpose robotic control, with test-time scaling (TTS) gaining attention to enhance robustness beyond training. However, existing TTS methods for VLAs require additional training, verifiers, and multiple forward passes, making them impractical for deployment. Moreover, they intervene only at action decoding while keeping visual representations fixed-insufficient under perceptual ambiguity, where reconsidering how to perceive is as important as deciding what to do. To address these limitations, we propose SCALE, a simple inference strategy that jointly modulates visual perception and action based on 'self-uncertainty', inspired by uncertainty-driven exploration in Active Inference theory-requiring no additional training, no verifier, and only a single forward pass. SCALE broadens exploration in both perception and action under high uncertainty, while focusing on exploitation when confident-enabling adaptive execution across varying conditions. Experiments on simulated and real-world benchmarks demonstrate that SCALE improves state-of-the-art VLAs and outperforms existing TTS methods while maintaining single-pass efficiency.
comment: 20 pages, 8 figures
☆ Enforcing Monotonic Progress in Legal Cross-Examination: Preventing Long-Horizon Stagnation in LLM-Based Inquiry
Large language models (LLMs) exhibit impressive linguistic fluency but struggle to reliably complete long-horizon tasks under explicit procedural constraints. In legal cross-examination, purely proba-bilistic generation often maintains behavioral coherence while failing to ensure procedural advancement. We characterize this failure as procedural stagnation and propose Soft-FSM, a neuro-symbolic architecture that enforces monotonic progress over accumulated Key Information Units (KIUs) via an external deterministic state controller. Experiments on three real-world Taiwanese criminal homicide cases show that baseline methods collapse below 40% completeness, while Soft-FSM consistently achieves over 97% with near-zero redundancy. These results suggest that, in such domains, reliable task completion cannot be guaranteed by emergent LLM behavior alone, and can be reliably enforced through explicit and verifiable external state control.
comment: Submitted to ICAIL 2026. Under review
☆ From Helpfulness to Toxic Proactivity: Diagnosing Behavioral Misalignment in LLM Agents
The enhanced capabilities of LLM-based agents come with an emergency for model planning and tool-use abilities. Attributing to helpful-harmless trade-off from LLM alignment, agents typically also inherit the flaw of "over-refusal", which is a passive failure mode. However, the proactive planning and action capabilities of agents introduce another crucial danger on the other side of the trade-off. This phenomenon we term "Toxic Proactivity'': an active failure mode in which an agent, driven by the optimization for Machiavellian helpfulness, disregards ethical constraints to maximize utility. Unlike over-refusal, Toxic Proactivity manifests as the agent taking excessive or manipulative measures to ensure its "usefulness'' is maintained. Existing research pays little attention to identifying this behavior, as it often lacks the subtle context required for such strategies to unfold. To reveal this risk, we introduce a novel evaluation framework based on dilemma-driven interactions between dual models, enabling the simulation and analysis of agent behavior over multi-step behavioral trajectories. Through extensive experiments with mainstream LLMs, we demonstrate that Toxic Proactivity is a widespread behavioral phenomenon and reveal two major tendencies. We further present a systematic benchmark for evaluating Toxic Proactive behavior across contextual settings.
comment: 9 pages (excluding appendices), 6 figures. Code is available at https://github.com/wxyoio-0715/Toxic-Proactivity
☆ Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning
☆ HoloEv-Net: Efficient Event-based Action Recognition via Holographic Spatial Embedding and Global Spectral Gating
Event-based Action Recognition (EAR) has attracted significant attention due to the high temporal resolution and high dynamic range of event cameras. However, existing methods typically suffer from (i) the computational redundancy of dense voxel representations, (ii) structural redundancy inherent in multi-branch architectures, and (iii) the under-utilization of spectral information in capturing global motion patterns. To address these challenges, we propose an efficient EAR framework named HoloEv-Net. First, to simultaneously tackle representation and structural redundancies, we introduce a Compact Holographic Spatiotemporal Representation (CHSR). Departing from computationally expensive voxel grids, CHSR implicitly embeds horizontal spatial cues into the Time-Height (T-H) view, effectively preserving 3D spatiotemporal contexts within a 2D representation. Second, to exploit the neglected spectral cues, we design a Global Spectral Gating (GSG) module. By leveraging the Fast Fourier Transform (FFT) for global token mixing in the frequency domain, GSG enhances the representation capability with negligible parameter overhead. Extensive experiments demonstrate the scalability and effectiveness of our framework. Specifically, HoloEv-Net-Base achieves state-of-the-art performance on THU-EACT-50-CHL, HARDVS and DailyDVS-200, outperforming existing methods by 10.29%, 1.71% and 6.25%, respectively. Furthermore, our lightweight variant, HoloEv-Net-Small, delivers highly competitive accuracy while offering extreme efficiency, reducing parameters by 5.4 times, FLOPs by 300times, and latency by 2.4times compared to heavy baselines, demonstrating its potential for edge deployment.
☆ Topology-Aware Revival for Efficient Sparse Training
Static sparse training is a promising route to efficient learning by committing to a fixed mask pattern, yet the constrained structure reduces robustness. Early pruning decisions can lock the network into a brittle structure that is difficult to escape, especially in deep reinforcement learning (RL) where the evolving policy continually shifts the training distribution. We propose Topology-Aware Revival (TAR), a lightweight one-shot post-pruning procedure that improves static sparsity without dynamic rewiring. After static pruning, TAR performs a single revival step by allocating a small reserve budget across layers according to topology needs, randomly uniformly reactivating a few previously pruned connections within each layer, and then keeping the resulting connectivity fixed for the remainder of training. Across multiple continuous-control tasks with SAC and TD3, TAR improves final return over static sparse baselines by up to +37.9% and also outperforms dynamic sparse training baselines with a median gain of +13.5%.
☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
☆ Pruning for Generalization: A Transfer-Oriented Spatiotemporal Graph Framework ICLR 2026
Multivariate time series forecasting in graph-structured domains is critical for real-world applications, yet existing spatiotemporal models often suffer from performance degradation under data scarcity and cross-domain shifts. We address these challenges through the lens of structure-aware context selection. We propose TL-GPSTGN, a transfer-oriented spatiotemporal framework that enhances sample efficiency and out-of-distribution generalization by selectively pruning non-optimized graph context. Specifically, our method employs information-theoretic and correlation-based criteria to extract structurally informative subgraphs and features, resulting in a compact, semantically grounded representation. This optimized context is subsequently integrated into a spatiotemporal convolutional architecture to capture complex multivariate dynamics. Evaluations on large-scale traffic benchmarks demonstrate that TL-GPSTGN consistently outperforms baselines in low-data transfer scenarios. Our findings suggest that explicit context pruning serves as a powerful inductive bias for improving the robustness of graph-based forecasting models.
comment: Under review at ICLR 2026 Workshop TSALM
☆ MA3DSG: Multi-Agent 3D Scene Graph Generation for Large-Scale Indoor Environments
Current 3D scene graph generation (3DSGG) approaches heavily rely on a single-agent assumption and small-scale environments, exhibiting limited scalability to real-world scenarios. In this work, we introduce Multi-Agent 3D Scene Graph Generation (MA3DSG) model, the first framework designed to tackle this scalability challenge using multiple agents. We develop a training-free graph alignment algorithm that efficiently merges partial query graphs from individual agents into a unified global scene graph. Leveraging extensive analysis and empirical insights, our approach enables conventional single-agent systems to operate collaboratively without requiring any learnable parameters. To rigorously evaluate 3DSGG performance, we propose MA3DSG-Bench-a benchmark that supports diverse agent configurations, domain sizes, and environmental conditions-providing a more general and extensible evaluation framework. This work lays a solid foundation for scalable, multi-agent 3DSGG research.
☆ OMG-Agent: Toward Robust Missing Modality Generation with Decoupled Coarse-to-Fine Agentic Workflows
Data incompleteness severely impedes the reliability of multimodal systems. Existing reconstruction methods face distinct bottlenecks: conventional parametric/generative models are prone to hallucinations due to over-reliance on internal memory, while retrieval-augmented frameworks struggle with retrieval rigidity. Critically, these end-to-end architectures are fundamentally constrained by Semantic-Detail Entanglement -- a structural conflict between logical reasoning and signal synthesis that compromises fidelity. In this paper, we present \textbf{\underline{O}}mni-\textbf{\underline{M}}odality \textbf{\underline{G}}eneration Agent (\textbf{OMG-Agent}), a novel framework that shifts the paradigm from static mapping to a dynamic coarse-to-fine Agentic Workflow. By mimicking a \textit{deliberate-then-act} cognitive process, OMG-Agent explicitly decouples the task into three synergistic stages: (1) an MLLM-driven Semantic Planner that resolves input ambiguity via Progressive Contextual Reasoning, creating a deterministic structured semantic plan; (2) a non-parametric Evidence Retriever that grounds abstract semantics in external knowledge; and (3) a Retrieval-Injected Executor that utilizes retrieved evidence as flexible feature prompts to overcome rigidity and synthesize high-fidelity details. Extensive experiments on multiple benchmarks demonstrate that OMG-Agent consistently surpasses state-of-the-art methods, maintaining robustness under extreme missingness, e.g., a $2.6$-point gain on CMU-MOSI at $70$\% missing rates.
☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages
☆ KGLAMP: Knowledge Graph-guided Language model for Adaptive Multi-robot Planning and Replanning
Heterogeneous multi-robot systems are increasingly deployed in long-horizon missions that require coordination among robots with diverse capabilities. However, existing planning approaches struggle to construct accurate symbolic representations and maintain plan consistency in dynamic environments. Classical PDDL planners require manually crafted symbolic models, while LLM-based planners often ignore agent heterogeneity and environmental uncertainty. We introduce KGLAMP, a knowledge-graph-guided LLM planning framework for heterogeneous multi-robot teams. The framework maintains a structured knowledge graph encoding object relations, spatial reachability, and robot capabilities, which guides the LLM in generating accurate PDDL problem specifications. The knowledge graph serves as a persistent, dynamically updated memory that incorporates new observations and triggers replanning upon detecting inconsistencies, enabling symbolic plans to adapt to evolving world states. Experiments on the MAT-THOR benchmark show that KGLAMP improves performance by at least 25.5% over both LLM-only and PDDL-based variants.
☆ From Lemmas to Dependencies: What Signals Drive Light Verbs Classification? EACL
Light verb constructions (LVCs) are a challenging class of verbal multiword expressions, especially in Turkish, where rich morphology and productive complex predicates create minimal contrasts between idiomatic predicate meanings and literal verb--argument uses. This paper asks what signals drive LVC classification by systematically restricting model inputs. Using UD-derived supervision, we compare lemma-driven baselines (lemma TF--IDF + Logistic Regression; BERTurk trained on lemma sequences), a grammar-only Logistic Regression over UD morphosyntax (UPOS/DEPREL/MORPH), and a full-input BERTurk baseline. We evaluate on a controlled diagnostic set with Random negatives, lexical controls (NLVC), and LVC positives, reporting split-wise performance to expose decision-boundary behavior. Results show that coarse morphosyntax alone is insufficient for robust LVC detection under controlled contrasts, while lexical identity supports LVC judgments but is sensitive to calibration and normalization choices. Overall, Our findings motivate targeted evaluation of Turkish MWEs and show that ``lemma-only'' is not a single, well-defined representation, but one that depends critically on how normalization is operationalized.
comment: EACL SIGTURK
☆ Scalable Explainability-as-a-Service (XaaS) for Edge AI Systems IEEE
Though Explainable AI (XAI) has made significant advancements, its inclusion in edge and IoT systems is typically ad-hoc and inefficient. Most current methods are "coupled" in such a way that they generate explanations simultaneously with model inferences. As a result, these approaches incur redundant computation, high latency and poor scalability when deployed across heterogeneous sets of edge devices. In this work we propose Explainability-as-a-Service (XaaS), a distributed architecture for treating explainability as a first-class system service (as opposed to a model-specific feature). The key innovation in our proposed XaaS architecture is that it decouples inference from explanation generation allowing edge devices to request, cache and verify explanations subject to resource and latency constraints. To achieve this, we introduce three main innovations: (1) A distributed explanation cache with a semantic similarity based explanation retrieval method which significantly reduces redundant computation; (2) A lightweight verification protocol that ensures the fidelity of both cached and newly generated explanations; and (3) An adaptive explanation engine that chooses explanation methods based upon device capability and user requirement. We evaluated the performance of XaaS on three real-world edge-AI use cases: (i) manufacturing quality control; (ii) autonomous vehicle perception; and (iii) healthcare diagnostics. Experimental results show that XaaS reduces latency by 38\% while maintaining high explanation quality across three real-world deployments. Overall, this work enables the deployment of transparent and accountable AI across large scale, heterogeneous IoT systems, and bridges the gap between XAI research and edge-practicality.
comment: 8 pages, 5 figures, submitted and accepted in the conference IEEE SoutheastCon 2026
☆ Toward Effective Multimodal Graph Foundation Model: A Divide-and-Conquer Based Approach
Graph Foundation Models (GFMs) have achieved remarkable success in generalizing across diverse domains. However, they mainly focus on Text-Attributed Graphs (TAGs), leaving Multimodal-Attributed Graphs (MAGs) largely untapped. Developing Multimodal Graph Foundation Models (MGFMs) allows for leveraging the rich multimodal information in MAGs, and extends applicability to broader types of downstream tasks. While recent MGFMs integrate diverse modality information, our empirical investigation reveals two fundamental limitations of existing MGFMs: (1)they fail to explicitly model modality interaction, essential for capturing intricate cross-modal semantics beyond simple aggregation, and (2)they exhibit sub-optimal modality alignment, which is critical for bridging the significant semantic disparity between distinct modal spaces. To address these challenges, we propose PLANET (graPh topoLogy-aware modAlity iNteraction and alignmEnT), a novel framework employing a Divide-and-Conquer strategy to decouple modality interaction and alignment across distinct granularities. At the embedding granularity, (1)Embedding-wise Domain Gating (EDG) performs local semantic enrichment by adaptively infusing topology-aware cross-modal context, achieving modality interaction. At the node granularity, (2)Node-wise Discretization Retrieval (NDR) ensures global modality alignment by constructing a Discretized Semantic Representation Space (DSRS) to bridge modality gaps. Extensive experiments demonstrate that PLANET significantly outperforms state-of-the-art baselines across diverse graph-centric and multimodal generative tasks.
comment: 20 pages, 6 figures
☆ Tinker Tales: Supporting Child-AI Collaboration through Co-Creative Storytelling with Educational Scaffolding
Artificial intelligence (AI) is increasingly framed as a collaborative partner in creative activities, yet children's interactions with AI have largely been studied in AI-led instructional settings rather than co-creative collaboration. This leaves open questions about how children can meaningfully engage with AI through iterative co-creation. We present Tinker Tales, a tangible storytelling system designed with narrative and social-emotional scaffolding to support child-AI collaboration. The system combines a physical storytelling board, NFC-embedded toys representing story elements (e.g., characters, places, items, and emotions), and a mobile app that mediates child-AI interaction. Children shape and refine stories by placing and moving story elements and interacting with the AI through tangible and voice-based interaction. We conducted an exploratory user study with 10 children to examine how they interacted with Tinker Tales. Our findings show that children treated the AI as an attentive, responsive collaborator, while scaffolding supported coherent narrative refinement without diminishing children's agency.
☆ DMS2F-HAD: A Dual-branch Mamba-based Spatial-Spectral Fusion Network for Hyperspectral Anomaly Detection WACV 2025
Hyperspectral anomaly detection (HAD) aims to identify rare and irregular targets in high-dimensional hyperspectral images (HSIs), which are often noisy and unlabelled data. Existing deep learning methods either fail to capture long-range spectral dependencies (e.g., convolutional neural networks) or suffer from high computational cost (e.g., Transformers). To address these challenges, we propose DMS2F-HAD, a novel dual-branch Mamba-based model. Our architecture utilizes Mamba's linear-time modeling to efficiently learn distinct spatial and spectral features in specialized branches, which are then integrated by a dynamic gated fusion mechanism to enhance anomaly localization. Across fourteen benchmark HSI datasets, our proposed DMS2F-HAD not only achieves a state-of-the-art average AUC of 98.78%, but also demonstrates superior efficiency with an inference speed 4.6 times faster than comparable deep learning methods. The results highlight DMS2FHAD's strong generalization and scalability, positioning it as a strong candidate for practical HAD applications.
comment: This paper has been accepted in the WACV 2025 conference in algorithm track
☆ Interfaze: The Future of AI is built on Task-Specific Small Models
We present Interfaze, a system that treats modern LLM applications as a problem of building and acting over context, not just picking the right monolithic model. Instead of a single transformer, we combine (i) a stack of heterogeneous DNNs paired with small language models as perception modules for OCR involving complex PDFs, charts and diagrams, and multilingual ASR with (ii) a context-construction layer that crawls, indexes, and parses external sources (web pages, code, PDFs) into compact structured state, and (iii) an action layer that can browse, retrieve, execute code in a sandbox, and drive a headless browser for dynamic web pages. A thin controller sits on top of this stack and exposes a single, OpenAI-style endpoint: it decides which small models and actions to run and always forwards the distilled context to a user-selected LLM that produces the final response. On this architecture, Interfaze-Beta achieves 83.6% on MMLU-Pro, 91.4% on MMLU, 81.3% on GPQA-Diamond, 57.8% on LiveCodeBench v5, and 90.0% on AIME-2025, along with strong multimodal scores on MMMU (val) (77.3%), AI2D (91.5%), ChartQA (90.9%), and Common Voice v16 (90.8%). We show that most queries are handled primarily by the small-model and tool stack, with the large LLM operating only on distilled context, yielding competitive accuracy while shifting the bulk of computation away from the most expensive and monolithic models.
comment: 8 pages, 1 figure
☆ A computational account of dreaming: learning and memory consolidation
A number of studies have concluded that dreaming is mostly caused by randomly arriving internal signals because "dream contents are random impulses", and argued that dream sleep is unlikely to play an important part in our intellectual capacity. On the contrary, numerous functional studies have revealed that dream sleep does play an important role in our learning and other intellectual functions. Specifically, recent studies have suggested the importance of dream sleep in memory consolidation, following the findings of neural replaying of recent waking patterns in the hippocampus. The randomness has been the hurdle that divides dream theories into either functional or functionless. This study presents a cognitive and computational model of dream process. This model is simulated to perform the functions of learning and memory consolidation, which are two most popular dream functions that have been proposed. The simulations demonstrate that random signals may result in learning and memory consolidation. Thus, dreaming is proposed as a continuation of brain's waking activities that processes signals activated spontaneously and randomly from the hippocampus. The characteristics of the model are discussed and found in agreement with many characteristics concluded from various empirical studies.
comment: 30 pages, 4 tables, 2 figures
☆ HugRAG: Hierarchical Causal Knowledge Graph Design for RAG
Retrieval augmented generation (RAG) has enhanced large language models by enabling access to external knowledge, with graph-based RAG emerging as a powerful paradigm for structured retrieval and reasoning. However, existing graph-based methods often over-rely on surface-level node matching and lack explicit causal modeling, leading to unfaithful or spurious answers. Prior attempts to incorporate causality are typically limited to local or single-document contexts and also suffer from information isolation that arises from modular graph structures, which hinders scalability and cross-module causal reasoning. To address these challenges, we propose HugRAG, a framework that rethinks knowledge organization for graph-based RAG through causal gating across hierarchical modules. HugRAG explicitly models causal relationships to suppress spurious correlations while enabling scalable reasoning over large-scale knowledge graphs. Extensive experiments demonstrate that HugRAG consistently outperforms competitive graph-based RAG baselines across multiple datasets and evaluation metrics. Our work establishes a principled foundation for structured, scalable, and causally grounded RAG systems.
☆ CAST-CKT: Chaos-Aware Spatio-Temporal and Cross-City Knowledge Transfer for Traffic Flow Prediction
Traffic prediction in data-scarce, cross-city settings is challenging due to complex nonlinear dynamics and domain shifts. Existing methods often fail to capture traffic's inherent chaotic nature for effective few-shot learning. We propose CAST-CKT, a novel Chaos-Aware Spatio-Temporal and Cross-City Knowledge Transfer framework. It employs an efficient chaotic analyser to quantify traffic predictability regimes, driving several key innovations: chaos-aware attention for regime-adaptive temporal modelling; adaptive topology learning for dynamic spatial dependencies; and chaotic consistency-based cross-city alignment for knowledge transfer. The framework also provides horizon-specific predictions with uncertainty quantification. Theoretical analysis shows improved generalisation bounds. Extensive experiments on four benchmarks in cross-city few-shot settings show CAST-CKT outperforms state-of-the-art methods by significant margins in MAE and RMSE, while offering interpretable regime analysis. Code is available at https://github.com/afofanah/CAST-CKT.
☆ Rethinking Rubric Generation for Improving LLM Judge and Reward Modeling for Open-ended Tasks
Recently, rubrics have been used to guide LLM judges in capturing subjective, nuanced, multi-dimensional human preferences, and have been extended from evaluation to reward signals for reinforcement fine-tuning (RFT). However, rubric generation remains hard to control: rubrics often lack coverage, conflate dimensions, misalign preference direction, and contain redundant or highly correlated criteria, degrading judge accuracy and producing suboptimal rewards during RFT. We propose RRD, a principled framework for rubric refinement built on a recursive decompose-filter cycle. RRD decomposes coarse rubrics into fine-grained, discriminative criteria, expanding coverage while sharpening separation between responses. A complementary filtering mechanism removes misaligned and redundant rubrics, and a correlation-aware weighting scheme prevents over-representing highly correlated criteria, yielding rubric sets that are informative, comprehensive, and non-redundant. Empirically, RRD delivers large, consistent gains across both evaluation and training: it improves preference-judgment accuracy on JudgeBench and PPE for both GPT-4o and Llama3.1-405B judges, achieving top performance in all settings with up to +17.7 points on JudgeBench. When used as the reward source for RFT on WildChat, it yields substantially stronger and more stable learning signals, boosting reward by up to 160% (Qwen3-4B) and 60% (Llama3.1-8B) versus 10-20% for prior rubric baselines, with gains that transfer to HealthBench-Hard and BiGGen Bench. Overall, RRD establishes recursive rubric refinement as a scalable and interpretable foundation for LLM judging and reward modeling in open-ended domains.
☆ SocialVeil: Probing Social Intelligence of Language Agents under Communication Barriers
Large language models (LLMs) are increasingly evaluated in interactive environments to test their social intelligence. However, existing benchmarks often assume idealized communication between agents, limiting our ability to diagnose whether LLMs can maintain and repair interactions in more realistic, imperfect settings. To close this gap, we present \textsc{SocialVeil}, a social learning environment that can simulate social interaction under cognitive-difference-induced communication barriers. Grounded in a systematic literature review of communication challenges in human interaction, \textsc{SocialVeil} introduces three representative types of such disruption, \emph{semantic vagueness}, \emph{sociocultural mismatch}, and \emph{emotional interference}. We also introduce two barrier-aware evaluation metrics, \emph{unresolved confusion} and \emph{mutual understanding}, to evaluate interaction quality under impaired communication. Experiments across 720 scenarios and four frontier LLMs show that barriers consistently impair performance, with mutual understanding reduced by over 45\% on average, and confusion elevated by nearly 50\%. Human evaluations validate the fidelity of these simulated barriers (ICC$\approx$0.78, Pearson r$\approx$0.80). We further demonstrate that adaptation strategies (Repair Instruction and Interactive learning) only have a modest effect far from barrier-free performance. This work takes a step toward bringing social interaction environments closer to real-world communication, opening opportunities for exploring the social intelligence of LLM agents.
comment: 10 pages
☆ Democratic Preference Alignment via Sortition-Weighted RLHF
Whose values should AI systems learn? Preference based alignment methods like RLHF derive their training signal from human raters, yet these rater pools are typically convenience samples that systematically over represent some demographics and under represent others. We introduce Democratic Preference Optimization, or DemPO, a framework that applies algorithmic sortition, the same mechanism used to construct citizen assemblies, to preference based fine tuning. DemPO offers two training schemes. Hard Panel trains exclusively on preferences from a quota satisfying mini public sampled via sortition. Soft Panel retains all data but reweights each rater by their inclusion probability under the sortition lottery. We prove that Soft Panel weighting recovers the expected Hard Panel objective in closed form. Using a public preference dataset that pairs human judgments with rater demographics and a seventy five clause constitution independently elicited from a representative United States panel, we evaluate Llama models from one billion to eight billion parameters fine tuned under each scheme. Across six aggregation methods, the Hard Panel consistently ranks first and the Soft Panel consistently outperforms the unweighted baseline, with effect sizes growing as model capacity increases. These results demonstrate that enforcing demographic representativeness at the preference collection stage, rather than post hoc correction, yields models whose behavior better reflects values elicited from representative publics.
comment: 16 pages, 5 figures
☆ Understanding LLM Evaluator Behavior: A Structured Multi-Evaluator Framework for Merchant Risk Assessment
Large Language Models (LLMs) are increasingly used as evaluators of reasoning quality, yet their reliability and bias in payments-risk settings remain poorly understood. We introduce a structured multi-evaluator framework for assessing LLM reasoning in Merchant Category Code (MCC)-based merchant risk assessment, combining a five-criterion rubric with Monte-Carlo scoring to evaluate rationale quality and evaluator stability. Five frontier LLMs generate and cross-evaluate MCC risk rationales under attributed and anonymized conditions. To establish a judge-independent reference, we introduce a consensus-deviation metric that eliminates circularity by comparing each judge's score to the mean of all other judges, yielding a theoretically grounded measure of self-evaluation and cross-model deviation. Results reveal substantial heterogeneity: GPT-5.1 and Claude 4.5 Sonnet show negative self-evaluation bias (-0.33, -0.31), while Gemini-2.5 Pro and Grok 4 display positive bias (+0.77, +0.71), with bias attenuating by 25.8 percent under anonymization. Evaluation by 26 payment-industry experts shows LLM judges assign scores averaging +0.46 points above human consensus, and that the negative bias of GPT-5.1 and Claude 4.5 Sonnet reflects closer alignment with human judgment. Ground-truth validation using payment-network data shows four models exhibit statistically significant alignment (Spearman rho = 0.56 to 0.77), confirming that the framework captures genuine quality. Overall, the framework provides a replicable basis for evaluating LLM-as-a-judge systems in payment-risk workflows and highlights the need for bias-aware protocols in operational financial settings.
☆ GAMMS: Graph based Adversarial Multiagent Modeling Simulator
As intelligent systems and multi-agent coordination become increasingly central to real-world applications, there is a growing need for simulation tools that are both scalable and accessible. Existing high-fidelity simulators, while powerful, are often computationally expensive and ill-suited for rapid prototyping or large-scale agent deployments. We present GAMMS (Graph based Adversarial Multiagent Modeling Simulator), a lightweight yet extensible simulation framework designed to support fast development and evaluation of agent behavior in environments that can be represented as graphs. GAMMS emphasizes five core objectives: scalability, ease of use, integration-first architecture, fast visualization feedback, and real-world grounding. It enables efficient simulation of complex domains such as urban road networks and communication systems, supports integration with external tools (e.g., machine learning libraries, planning solvers), and provides built-in visualization with minimal configuration. GAMMS is agnostic to policy type, supporting heuristic, optimization-based, and learning-based agents, including those using large language models. By lowering the barrier to entry for researchers and enabling high-performance simulations on standard hardware, GAMMS facilitates experimentation and innovation in multi-agent systems, autonomous planning, and adversarial modeling. The framework is open-source and available at https://github.com/GAMMSim/GAMMS/
☆ Evaluating Robustness and Adaptability in Learning-Based Mission Planning for Active Debris Removal SP
Autonomous mission planning for Active Debris Removal (ADR) must balance efficiency, adaptability, and strict feasibility constraints on fuel and mission duration. This work compares three planners for the constrained multi-debris rendezvous problem in Low Earth Orbit: a nominal Masked Proximal Policy Optimization (PPO) policy trained under fixed mission parameters, a domain-randomized Masked PPO policy trained across varying mission constraints for improved robustness, and a plain Monte Carlo Tree Search (MCTS) baseline. Evaluations are conducted in a high-fidelity orbital simulation with refueling, realistic transfer dynamics, and randomized debris fields across 300 test cases in nominal, reduced fuel, and reduced mission time scenarios. Results show that nominal PPO achieves top performance when conditions match training but degrades sharply under distributional shift, while domain-randomized PPO exhibits improved adaptability with only moderate loss in nominal performance. MCTS consistently handles constraint changes best due to online replanning but incurs orders-of-magnitude higher computation time. The findings underline a trade-off between the speed of learned policies and the adaptability of search-based methods, and suggest that combining training-time diversity with online planning could be a promising path for future resilient ADR mission planners.
comment: Presented at Conference: International Conference on Space Robotics (ISPARO,2025) At: Sendai,Japan
☆ VERA-MH: Reliability and Validity of an Open-Source AI Safety Evaluation in Mental Health
Millions now use leading generative AI chatbots for psychological support. Despite the promise related to availability and scale, the single most pressing question in AI for mental health is whether these tools are safe. The Validation of Ethical and Responsible AI in Mental Health (VERA-MH) evaluation was recently proposed to meet the urgent need for an evidence-based automated safety benchmark. This study aimed to examine the clinical validity and reliability of the VERA-MH evaluation for AI safety in suicide risk detection and response. We first simulated a large set of conversations between large language model (LLM)-based users (user-agents) and general-purpose AI chatbots. Licensed mental health clinicians used a rubric (scoring guide) to independently rate the simulated conversations for safe and unsafe chatbot behaviors, as well as user-agent realism. An LLM-based judge used the same scoring rubric to evaluate the same set of simulated conversations. We then compared rating alignment across (a) individual clinicians and (b) clinician consensus and the LLM judge, and (c) examined clinicians' ratings of user-agent realism. Individual clinicians were generally consistent with one another in their safety ratings (chance-corrected inter-rater reliability [IRR]: 0.77), thus establishing a gold-standard clinical reference. The LLM judge was strongly aligned with this clinical consensus (IRR: 0.81) overall and within key conditions. Clinician raters generally perceived the user-agents to be realistic. For the potential mental health benefits of AI chatbots to be realized, attention to safety is paramount. Findings from this human evaluation study support the clinical validity and reliability of VERA-MH: an open-source, fully automated AI safety evaluation for mental health. Further research will address VERA-MH generalizability and robustness.
☆ Autodiscover: A reinforcement learning recommendation system for the cold-start imbalance challenge in active learning, powered by graph-aware thompson sampling
Systematic literature reviews (SLRs) are fundamental to evidence-based research, but manual screening is an increasing bottleneck as scientific output grows. Screening features low prevalence of relevant studies and scarce, costly expert decisions. Traditional active learning (AL) systems help, yet typically rely on fixed query strategies for selecting the next unlabeled documents. These static strategies do not adapt over time and ignore the relational structure of scientific literature networks. This thesis introduces AutoDiscover, a framework that reframes AL as an online decision-making problem driven by an adaptive agent. Literature is modeled as a heterogeneous graph capturing relationships among documents, authors, and metadata. A Heterogeneous Graph Attention Network (HAN) learns node representations, which a Discounted Thompson Sampling (DTS) agent uses to dynamically manage a portfolio of query strategies. With real-time human-in-the-loop labels, the agent balances exploration and exploitation under non-stationary review dynamics, where strategy utility changes over time. On the 26-dataset SYNERGY benchmark, AutoDiscover achieves higher screening efficiency than static AL baselines. Crucially, the agent mitigates cold start by bootstrapping discovery from minimal initial labels where static approaches fail. We also introduce TS-Insight, an open-source visual analytics dashboard to interpret, verify, and diagnose the agent's decisions. Together, these contributions accelerate SLR screening under scarce expert labels and low prevalence of relevant studies.
comment: Master's Thesis, University of Luxembourg in collaboration with Luxembourg Institute of Science and Technology (LIST). Supervised by Prof. Jun Pang and Dr. Eloi Durant
☆ Individual Fairness In Strategic Classification
Strategic classification, where individuals modify their features to influence machine learning (ML) decisions, presents critical fairness challenges. While group fairness in this setting has been widely studied, individual fairness remains underexplored. We analyze threshold-based classifiers and prove that deterministic thresholds violate individual fairness. Then, we investigate the possibility of using a randomized classifier to achieve individual fairness. We introduce conditions under which a randomized classifier ensures individual fairness and leverage these conditions to find an optimal and individually fair randomized classifier through a linear programming problem. Additionally, we demonstrate that our approach can be extended to group fairness notions. Experiments on real-world datasets confirm that our method effectively mitigates unfairness and improves the fairness-accuracy trade-off.
☆ Large-Ensemble Simulations Reveal Links Between Atmospheric Blocking Frequency and Sea Surface Temperature Variability
Atmospheric blocking events drive persistent weather extremes in midlatitudes, but isolating the influence of sea surface temperature (SST) from chaotic internal atmospheric variability on these events remains a challenge. We address this challenge using century-long (1900-2010), large-ensemble simulations with two computationally efficient deep-learning general circulation models. We find these models skillfully reproduce the observed blocking climatology, matching or exceeding the performance of a traditional high-resolution model and representative CMIP6 models. Averaging the large ensembles filters internal atmospheric noise to isolate the SST-forced component of blocking variability, yielding substantially higher correlations with reanalysis than for individual ensemble members. We identify robust teleconnections linking Greenland blocking frequency to North Atlantic SST and El Niño-like patterns. Furthermore, SST-forced trends in blocking frequency show a consistent decline in winter over Greenland, and an increase over Europe. These results demonstrate that SST variability exerts a significant and physically interpretable influence on blocking frequency and establishes large ensembles from deep learning models as a powerful tool for separating forced SST signals from internal noise.
☆ Reliable Explanations or Random Noise? A Reliability Metric for XAI
In recent years, explaining decisions made by complex machine learning models has become essential in high-stakes domains such as energy systems, healthcare, finance, and autonomous systems. However, the reliability of these explanations, namely, whether they remain stable and consistent under realistic, non-adversarial changes, remains largely unmeasured. Widely used methods such as SHAP and Integrated Gradients (IG) are well-motivated by axiomatic notions of attribution, yet their explanations can vary substantially even under system-level conditions, including small input perturbations, correlated representations, and minor model updates. Such variability undermines explanation reliability, as reliable explanations should remain consistent across equivalent input representations and small, performance-preserving model changes. We introduce the Explanation Reliability Index (ERI), a family of metrics that quantifies explanation stability under four reliability axioms: robustness to small input perturbations, consistency under feature redundancy, smoothness across model evolution, and resilience to mild distributional shifts. For each axiom, we derive formal guarantees, including Lipschitz-type bounds and temporal stability results. We further propose ERI-T, a dedicated measure of temporal reliability for sequential models, and introduce ERI-Bench, a benchmark designed to systematically stress-test explanation reliability across synthetic and real-world datasets. Experimental results reveal widespread reliability failures in popular explanation methods, showing that explanations can be unstable under realistic deployment conditions. By exposing and quantifying these instabilities, ERI enables principled assessment of explanation reliability and supports more trustworthy explainable AI (XAI) systems.
☆ Food Portion Estimation: From Pixels to Calories
Reliance on images for dietary assessment is an important strategy to accurately and conveniently monitor an individual's health, making it a vital mechanism in the prevention and care of chronic diseases and obesity. However, image-based dietary assessment suffers from estimating the three dimensional size of food from 2D image inputs. Many strategies have been devised to overcome this critical limitation such as the use of auxiliary inputs like depth maps, multi-view inputs, or model-based approaches such as template matching. Deep learning also helps bridge the gap by either using monocular images or combinations of the image and the auxillary inputs to precisely predict the output portion from the image input. In this paper, we explore the different strategies employed for accurate portion estimation.
☆ Optimizing Mission Planning for Multi-Debris Rendezvous Using Reinforcement Learning with Refueling and Adaptive Collision Avoidance
As the orbital environment around Earth becomes increasingly crowded with debris, active debris removal (ADR) missions face significant challenges in ensuring safe operations while minimizing the risk of in-orbit collisions. This study presents a reinforcement learning (RL) based framework to enhance adaptive collision avoidance in ADR missions, specifically for multi-debris removal using small satellites. Small satellites are increasingly adopted due to their flexibility, cost effectiveness, and maneuverability, making them well suited for dynamic missions such as ADR. Building on existing work in multi-debris rendezvous, the framework integrates refueling strategies, efficient mission planning, and adaptive collision avoidance to optimize spacecraft rendezvous operations. The proposed approach employs a masked Proximal Policy Optimization (PPO) algorithm, enabling the RL agent to dynamically adjust maneuvers in response to real-time orbital conditions. Key considerations include fuel efficiency, avoidance of active collision zones, and optimization of dynamic orbital parameters. The RL agent learns to determine efficient sequences for rendezvousing with multiple debris targets, optimizing fuel usage and mission time while incorporating necessary refueling stops. Simulated ADR scenarios derived from the Iridium 33 debris dataset are used for evaluation, covering diverse orbital configurations and debris distributions to demonstrate robustness and adaptability. Results show that the proposed RL framework reduces collision risk while improving mission efficiency compared to traditional heuristic approaches. This work provides a scalable solution for planning complex multi-debris ADR missions and is applicable to other multi-target rendezvous problems in autonomous space mission planning.
comment: Accpeted at Conference: 15th IAA Symposium on Small Satellites for Earth System Observation At: Berlin
☆ Towards Reducible Uncertainty Modeling for Reliable Large Language Model Agents
Uncertainty quantification (UQ) for large language models (LLMs) is a key building block for safety guardrails of daily LLM applications. Yet, even as LLM agents are increasingly deployed in highly complex tasks, most UQ research still centers on single-turn question-answering. We argue that UQ research must shift to realistic settings with interactive agents, and that a new principled framework for agent UQ is needed. This paper presents the first general formulation of agent UQ that subsumes broad classes of existing UQ setups. Under this formulation, we show that prior works implicitly treat LLM UQ as an uncertainty accumulation process, a viewpoint that breaks down for interactive agents in an open world. In contrast, we propose a novel perspective, a conditional uncertainty reduction process, that explicitly models reducible uncertainty over an agent's trajectory by highlighting "interactivity" of actions. From this perspective, we outline a conceptual framework to provide actionable guidance for designing UQ in LLM agent setups. Finally, we conclude with practical implications of the agent UQ in frontier LLM development and domain-specific applications, as well as open remaining problems.
☆ E-Globe: Scalable $ε$-Global Verification of Neural Networks via Tight Upper Bounds and Pattern-Aware Branching
Neural networks achieve strong empirical performance, but robustness concerns still hinder deployment in safety-critical applications. Formal verification provides robustness guarantees, but current methods face a scalability-completeness trade-off. We propose a hybrid verifier in a branch-and-bound (BaB) framework that efficiently tightens both upper and lower bounds until an $ε-$global optimum is reached or early stop is triggered. The key is an exact nonlinear program with complementarity constraints (NLP-CC) for upper bounding that preserves the ReLU input-output graph, so any feasible solution yields a valid counterexample and enables rapid pruning of unsafe subproblems. We further accelerate verification with (i) warm-started NLP solves requiring minimal constraint-matrix updates and (ii) pattern-aligned strong branching that prioritizes splits most effective at tightening relaxations. We also provide conditions under which NLP-CC upper bounds are tight. Experiments on MNIST and CIFAR-10 show markedly tighter upper bounds than PGD across perturbation radii spanning up to three orders of magnitude, fast per-node solves in practice, and substantial end-to-end speedups over MIP-based verification, amplified by warm-starting, GPU batching, and pattern-aligned branching.
comment: 16 pages, 10 figures
☆ Bypassing AI Control Protocols via Agent-as-a-Proxy Attacks
As AI agents automate critical workloads, they remain vulnerable to indirect prompt injection (IPI) attacks. Current defenses rely on monitoring protocols that jointly evaluate an agent's Chain-of-Thought (CoT) and tool-use actions to ensure alignment with user intent. We demonstrate that these monitoring-based defenses can be bypassed via a novel Agent-as-a-Proxy attack, where prompt injection attacks treat the agent as a delivery mechanism, bypassing both agent and monitor simultaneously. While prior work on scalable oversight has focused on whether small monitors can supervise large agents, we show that even frontier-scale monitors are vulnerable. Large-scale monitoring models like Qwen2.5-72B can be bypassed by agents with similar capabilities, such as GPT-4o mini and Llama-3.1-70B. On the AgentDojo benchmark, we achieve a high attack success rate against AlignmentCheck and Extract-and-Evaluate monitors under diverse monitoring LLMs. Our findings suggest current monitoring-based agentic defenses are fundamentally fragile regardless of model scale.
☆ Evaluating Large Language Models on Solved and Unsolved Problems in Graph Theory: Implications for Computing Education
Large Language Models are increasingly used by students to explore advanced material in computer science, including graph theory. As these tools become integrated into undergraduate and graduate coursework, it is important to understand how reliably they support mathematically rigorous thinking. This study examines the performance of a LLM on two related graph theoretic problems: a solved problem concerning the gracefulness of line graphs and an open problem for which no solution is currently known. We use an eight stage evaluation protocol that reflects authentic mathematical inquiry, including interpretation, exploration, strategy formation, and proof construction. The model performed strongly on the solved problem, producing correct definitions, identifying relevant structures, recalling appropriate results without hallucination, and constructing a valid proof confirmed by a graph theory expert. For the open problem, the model generated coherent interpretations and plausible exploratory strategies but did not advance toward a solution. It did not fabricate results and instead acknowledged uncertainty, which is consistent with the explicit prompting instructions that directed the model to avoid inventing theorems or unsupported claims. These findings indicate that LLMs can support exploration of established material but remain limited in tasks requiring novel mathematical insight or critical structural reasoning. For computing education, this distinction highlights the importance of guiding students to use LLMs for conceptual exploration while relying on independent verification and rigorous argumentation for formal problem solving.
☆ ReFORM: Reflected Flows for On-support Offline RL via Noise Manipulation ICLR 2026
Offline reinforcement learning (RL) aims to learn the optimal policy from a fixed dataset generated by behavior policies without additional environment interactions. One common challenge that arises in this setting is the out-of-distribution (OOD) error, which occurs when the policy leaves the training distribution. Prior methods penalize a statistical distance term to keep the policy close to the behavior policy, but this constrains policy improvement and may not completely prevent OOD actions. Another challenge is that the optimal policy distribution can be multimodal and difficult to represent. Recent works apply diffusion or flow policies to address this problem, but it is unclear how to avoid OOD errors while retaining policy expressiveness. We propose ReFORM, an offline RL method based on flow policies that enforces the less restrictive support constraint by construction. ReFORM learns a behavior cloning (BC) flow policy with a bounded source distribution to capture the support of the action distribution, then optimizes a reflected flow that generates bounded noise for the BC flow while keeping the support, to maximize the performance. Across 40 challenging tasks from the OGBench benchmark with datasets of varying quality and using a constant set of hyperparameters for all tasks, ReFORM dominates all baselines with hand-tuned hyperparameters on the performance profile curves.
comment: 24 pages, 17 figures; Accepted by the fourteenth International Conference on Learning Representations (ICLR 2026)
☆ VISTA: Enhancing Visual Conditioning via Track-Following Preference Optimization in Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated strong performance across a wide range of robotic manipulation tasks. Despite the success, extending large pretrained Vision-Language Models (VLMs) to the action space can induce vision-action misalignment, where action predictions exhibit weak dependence on the current visual state, leading to unreliable action outputs. In this work, we study VLA models through the lens of visual conditioning and empirically show that successful rollouts consistently exhibit stronger visual dependence than failed ones. Motivated by this observation, we propose a training framework that explicitly strengthens visual conditioning in VLA models. Our approach first aligns action prediction with visual input via preference optimization on a track-following surrogate task, and then transfers the enhanced alignment to instruction-following task through latent-space distillation during supervised finetuning. Without introducing architectural modifications or additional data collection, our method improves both visual conditioning and task performance for discrete OpenVLA, and further yields consistent gains when extended to the continuous OpenVLA-OFT setting. Project website: https://vista-vla.github.io/ .
comment: In submission. Project website: https://vista-vla.github.io/
☆ MINT: Minimal Information Neuro-Symbolic Tree for Objective-Driven Knowledge-Gap Reasoning and Active Elicitation
Joint planning through language-based interactions is a key area of human-AI teaming. Planning problems in the open world often involve various aspects of incomplete information and unknowns, e.g., objects involved, human goals/intents -- thus leading to knowledge gaps in joint planning. We consider the problem of discovering optimal interaction strategies for AI agents to actively elicit human inputs in object-driven planning. To this end, we propose Minimal Information Neuro-Symbolic Tree (MINT) to reason about the impact of knowledge gaps and leverage self-play with MINT to optimize the AI agent's elicitation strategies and queries. More precisely, MINT builds a symbolic tree by making propositions of possible human-AI interactions and by consulting a neural planning policy to estimate the uncertainty in planning outcomes caused by remaining knowledge gaps. Finally, we leverage LLM to search and summarize MINT's reasoning process and curate a set of queries to optimally elicit human inputs for best planning performance. By considering a family of extended Markov decision processes with knowledge gaps, we analyze the return guarantee for a given MINT with active human elicitation. Our evaluation on three benchmarks involving unseen/unknown objects of increasing realism shows that MINT-based planning attains near-expert returns by issuing a limited number of questions per task while achieving significantly improved rewards and success rates.
☆ Quality Model for Machine Learning Components
Despite increased adoption and advances in machine learning (ML), there are studies showing that many ML prototypes do not reach the production stage and that testing is still largely limited to testing model properties, such as model performance, without considering requirements derived from the system it will be a part of, such as throughput, resource consumption, or robustness. This limited view of testing leads to failures in model integration, deployment, and operations. In traditional software development, quality models such as ISO 25010 provide a widely used structured framework to assess software quality, define quality requirements, and provide a common language for communication with stakeholders. A newer standard, ISO 25059, defines a more specific quality model for AI systems. However, a problem with this standard is that it combines system attributes with ML component attributes, which is not helpful for a model developer, as many system attributes cannot be assessed at the component level. In this paper, we present a quality model for ML components that serves as a guide for requirements elicitation and negotiation and provides a common vocabulary for ML component developers and system stakeholders to agree on and define system-derived requirements and focus their testing efforts accordingly. The quality model was validated through a survey in which the participants agreed with its relevance and value. The quality model has been successfully integrated into an open-source tool for ML component testing and evaluation demonstrating its practical application.
comment: A short version of this paper has been accepted to CAIN 2026, the 5th IEEE/ACM Conference on AI Engineering - Software Engineering for AI Systems
☆ Differentiable Inverse Graphics for Zero-shot Scene Reconstruction and Robot Grasping IEEE
Operating effectively in novel real-world environments requires robotic systems to estimate and interact with previously unseen objects. Current state-of-the-art models address this challenge by using large amounts of training data and test-time samples to build black-box scene representations. In this work, we introduce a differentiable neuro-graphics model that combines neural foundation models with physics-based differentiable rendering to perform zero-shot scene reconstruction and robot grasping without relying on any additional 3D data or test-time samples. Our model solves a series of constrained optimization problems to estimate physically consistent scene parameters, such as meshes, lighting conditions, material properties, and 6D poses of previously unseen objects from a single RGBD image and bounding boxes. We evaluated our approach on standard model-free few-shot benchmarks and demonstrated that it outperforms existing algorithms for model-free few-shot pose estimation. Furthermore, we validated the accuracy of our scene reconstructions by applying our algorithm to a zero-shot grasping task. By enabling zero-shot, physically-consistent scene reconstruction and grasping without reliance on extensive datasets or test-time sampling, our approach offers a pathway towards more data efficient, interpretable and generalizable robot autonomy in novel environments.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L) for review. This version includes the statement required by IEEE for preprints
☆ AudioSAE: Towards Understanding of Audio-Processing Models with Sparse AutoEncoders
Sparse Autoencoders (SAEs) are powerful tools for interpreting neural representations, yet their use in audio remains underexplored. We train SAEs across all encoder layers of Whisper and HuBERT, provide an extensive evaluation of their stability, interpretability, and show their practical utility. Over 50% of the features remain consistent across random seeds, and reconstruction quality is preserved. SAE features capture general acoustic and semantic information as well as specific events, including environmental noises and paralinguistic sounds (e.g. laughter, whispering) and disentangle them effectively, requiring removal of only 19-27% of features to erase a concept. Feature steering reduces Whisper's false speech detections by 70% with negligible WER increase, demonstrating real-world applicability. Finally, we find SAE features correlated with human EEG activity during speech perception, indicating alignment with human neural processing. The code and checkpoints are available at https://github.com/audiosae/audiosae_demo.
☆ Laws of Learning Dynamics and the Core of Learners
We formulate the fundamental laws governing learning dynamics, namely the conservation law and the decrease of total entropy. Within this framework, we introduce an entropy-based lifelong ensemble learning method. We evaluate its effectiveness by constructing an immunization mechanism to defend against transfer-based adversarial attacks on the CIFAR-10 dataset. Compared with a naive ensemble formed by simply averaging models specialized on clean and adversarial samples, the resulting logifold achieves higher accuracy in most test cases, with particularly large gains under strong perturbations.
comment: 14 pages, 5 figures
☆ Do Vision-Language Models Respect Contextual Integrity in Location Disclosure? ICLR 2026
Vision-language models (VLMs) have demonstrated strong performance in image geolocation, a capability further sharpened by frontier multimodal large reasoning models (MLRMs). This poses a significant privacy risk, as these widely accessible models can be exploited to infer sensitive locations from casually shared photos, often at street-level precision, potentially surpassing the level of detail the sharer consented or intended to disclose. While recent work has proposed applying a blanket restriction on geolocation disclosure to combat this risk, these measures fail to distinguish valid geolocation uses from malicious behavior. Instead, VLMs should maintain contextual integrity by reasoning about elements within an image to determine the appropriate level of information disclosure, balancing privacy and utility. To evaluate how well models respect contextual integrity, we introduce VLM-GEOPRIVACY, a benchmark that challenges VLMs to interpret latent social norms and contextual cues in real-world images and determine the appropriate level of location disclosure. Our evaluation of 14 leading VLMs shows that, despite their ability to precisely geolocate images, the models are poorly aligned with human privacy expectations. They often over-disclose in sensitive contexts and are vulnerable to prompt-based attacks. Our results call for new design principles in multimodal systems to incorporate context-conditioned privacy reasoning.
comment: Accepted by ICLR 2026
☆ From Fragmentation to Integration: Exploring the Design Space of AI Agents for Human-as-the-Unit Privacy Management
Managing one's digital footprint is overwhelming, as it spans multiple platforms and involves countless context-dependent decisions. Recent advances in agentic AI offer ways forward by enabling holistic, contextual privacy-enhancing solutions. Building on this potential, we adopted a ''human-as-the-unit'' perspective and investigated users' cross-context privacy challenges through 12 semi-structured interviews. Results reveal that people rely on ad hoc manual strategies while lacking comprehensive privacy controls, highlighting nine privacy-management challenges across applications, temporal contexts, and relationships. To explore solutions, we generated nine AI agent concepts and evaluated them via a speed-dating survey with 116 US participants. The three highest-ranked concepts were all post-sharing management tools with half or full agent autonomy, with users expressing greater trust in AI accuracy than in their own efforts. Our findings highlight a promising design space where users see AI agents bridging the fragments in privacy management, particularly through automated, comprehensive post-sharing remediation of users' digital footprints.
☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: working in progress
♻ ☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
comment: 18 pages, 3 figures
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
♻ ☆ TRACE: Transparent Web Reliability Assessment with Contextual Explanations
In an era of AI-generated misinformation flooding the web, existing tools struggle to empower users with nuanced, transparent assessments of content credibility. They often default to binary (true/false) classifications without contextual justifications, leaving users vulnerable to disinformation. We address this gap by introducing TRACE: Transparent Reliability Assessment with Contextual Explanations, a unified framework that performs two key tasks: (1) it assigns a fine-grained, continuous reliability score (from 0.1 to 1.0) to web content, and (2) it generates a contextual explanation for its assessment. The core of TRACE is the TrueGL-1B model, fine-tuned on a novel, large-scale dataset of over 140,000 articles. This dataset's primary contribution is its annotation with 35 distinct continuous reliability scores, created using a Human-LLM co-creation and data poisoning paradigm. This method overcomes the limitations of binary-labeled datasets by populating the mid-ranges of reliability. In our evaluation, TrueGL-1B consistently outperforms other small-scale LLM baselines and rule-based approaches on key regression metrics, including MAE, RMSE, and R2. The model's high accuracy and interpretable justifications make trustworthy information more accessible. To foster future research, our code and model are made publicly available here: github.com/zade90/TrueGL.
♻ ☆ Y-Shaped Generative Flows
Modern continuous-time generative models typically induce \emph{V-shaped} flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce \emph{Y-shaped generative flows}, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. v4 update: The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ GPU-Accelerated ANNS: Quantized for Speed, Built for Change
Approximate nearest neighbor search (ANNS) is a core problem in machine learning and information retrieval applications. GPUs offer a promising path to high-performance ANNS: they provide massive parallelism for distance computations, are readily available, and can co-locate with downstream applications. Despite these advantages, current GPU-accelerated ANNS systems face three key limitations. First, real-world applications operate on evolving datasets that require fast batch updates, yet most GPU indices must be rebuilt from scratch when new data arrives. Second, high-dimensional vectors strain memory bandwidth, but current GPU systems lack efficient quantization techniques that reduce data movement without introducing costly random memory accesses. Third, the data-dependent memory accesses inherent to greedy search make overlapping compute and memory difficult, leading to reduced performance. We present Jasper, a GPU-native ANNS system with both high query throughput and updatability. Jasper builds on the Vamana graph index and overcomes existing bottlenecks via three contributions: (1) a CUDA batch-parallel construction algorithm that enables lock-free streaming insertions, (2) a GPU-efficient implementation of RaBitQ quantization that reduces memory footprint up to 8x without the random access penalties, and (3) an optimized greedy search kernel that increases compute utilization, resulting in better latency hiding and higher throughput. Our evaluation across five datasets shows that Jasper achieves up to 1.93x higher query throughput than CAGRA and achieves up to 80% peak utilization as measured by the roofline model. Jasper's construction scales efficiently and constructs indices an average of 2.4x faster than CAGRA while providing updatability that CAGRA lacks. Compared to BANG, the previous fastest GPU Vamana implementation, Jasper delivers 19-131x faster queries.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias
With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
comment: 41 pages, 9 figures; Code repository at https://github.com/MariusKrumm/ManyBodyMEPS. Updated to be consistent with AIJ version
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy NeurIPS 2025
Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary, including worst-case, levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, Rényi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., an accuracy increase from 52% to 70% in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
comment: NeurIPS 2025
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method supports causal interventions on target attributes and consistently propagates their effects to causal dependents while preserving the core identity of the image. Unlike prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling with two attribute-regularization strategies: (i) prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and (ii) a conditioned token contrastive loss that disentangles attribute factors and reduces spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, including up to a 91% reduction in MAE on Pendulum for accurate attribute control and up to an 87% reduction in FID on ADNI for high-fidelity MRI generation. These results demonstrate robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation. Code and models will be released at: https://leitong02.github.io/causaladapter/.
comment: Project Page: https://leitong02.github.io/causaladapter/
♻ ☆ Optimization, Generalization and Differential Privacy Bounds for Gradient Descent on Kolmogorov-Arnold Networks
Kolmogorov--Arnold Networks (KANs) have recently emerged as a structured alternative to standard MLPs, yet a principled theory for their training dynamics, generalization, and privacy properties remains limited. In this paper, we analyze gradient descent (GD) for training two-layer KANs and derive general bounds that characterize their training dynamics, generalization, and utility under differential privacy (DP). As a concrete instantiation, we specialize our analysis to logistic loss under an NTK-separable assumption, where we show that polylogarithmic network width suffices for GD to achieve an optimization rate of order $1/T$ and a generalization rate of order $1/n$, with $T$ denoting the number of GD iterations and $n$ the sample size. In the private setting, we characterize the noise required for $(ε,δ)$-DP and obtain a utility bound of order $\sqrt{d}/(nε)$ (with $d$ the input dimension), matching the classical lower bound for general convex Lipschitz problems. Our results imply that polylogarithmic width is not only sufficient but also necessary under differential privacy, revealing a qualitative gap between non-private (sufficiency only) and private (necessity also emerges) training regimes. Experiments further illustrate how these theoretical insights can guide practical choices, including network width selection and early stopping.
comment: 41 pages, 3 figures
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design. Code is available at: https://github.com/Fsoft-AIC/UNO
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than PH and spectral information on graphs alone. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025. Final version, clarified minor bug
♻ ☆ M^3-Bench: Multi-Modal, Multi-Hop, Multi-Threaded Tool-Using MLLM Agent Benchmark
We present M^3-Bench, the first benchmark for evaluating multimodal tool use under the Model Context Protocol. The benchmark targets realistic, multi-hop and multi-threaded workflows that require visual grounding and textual reasoning, cross-tool dependencies, and persistence of intermediate resources across steps. We introduce a similarity-driven alignment that serializes each tool call, embeds signatures with a sentence encoder, and performs similarity-bucketed Hungarian matching to obtain auditable one-to-one correspondences. On top of this alignment, we report interpretable metrics that decouple semantic fidelity from workflow consistency. The benchmark spans 28 servers with 231 tools, and provides standardized trajectories curated through an Executor & Judge pipeline with human verification; an auxiliary four large language models (LLMs) judge ensemble reports end-task Task Completion and information grounding. Evaluations of representative state-of-the-art Multimodal LLMs (MLLMs) reveal persistent gaps in multimodal MCP tool use, particularly in argument fidelity and structure consistency, underscoring the need for methods that jointly reason over images, text, and tool graphs. Our Benchmark's anonymous repository is at https://github.com/EtaYang10th/Open-M3-Bench
♻ ☆ Mutually Assured Deregulation
We have convinced ourselves that the way to make AI safe is to make it unsafe. Since 2022, policymakers worldwide have embraced the Regulation Sacrifice - the belief that dismantling safety oversight will deliver security through AI dominance. Fearing China or USA will gain advantage, nations rush to eliminate safeguards that might slow progress. This Essay reveals the fatal flaw: though AI poses national security challenges, the solution demands stronger regulatory frameworks, not weaker ones. A race without guardrails breeds shared danger, not competitive strength. The Regulation Sacrifice makes three false promises. First, it promises durable technological leads. But AI capabilities spread rapidly - performance gaps between U.S. and Chinese systems collapsed from 9 percent to 2 percent in thirteen months. When advantages evaporate in months, sacrificing permanent safety for temporary speed makes no sense. Second, it promises deregulation accelerates innovation. The opposite often proves true. Companies report well-designed governance streamlines development. Investment flows toward regulated markets. Clear rules reduce uncertainty; uncertain liability creates paralysis. Environmental standards did not kill the auto industry; they created Tesla and BYD. Third, enhanced national security through deregulation actually undermines security across all timeframes. Near term: it hands adversaries information warfare tools. Medium term: it democratizes bioweapon capabilities. Long term: it guarantees deployment of uncontrollable AGI systems. The Regulation Sacrifice persists because it serves powerful interests, not security. Tech companies prefer freedom to accountability. Politicians prefer simple stories to complex truths. This creates mutually assured deregulation, where each nation's sprint for advantage guarantees collective vulnerability. The only way to win is not to play.
♻ ☆ Quantifying Risks in Multi-turn Conversation with Large Language Models ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security.Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations.In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees.We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70\% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for solver operators for various functional problems, yet their stability, generalization and frequency behavior lack a principled explanation. We present a systematic effective field theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks, we derive explicit criticality conditions on the weight initialization ensemble that ensure small input perturbations maintain a uniform scale across depth, and we confirm experimentally that the theoretically predicted ratio of kernel perturbations matches the measurements. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyperparameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs. Finally, we translate the criticality theory into a practical criterion-matched initialization (calibration) procedure; on a standard PDEBench Burgers benchmark, the calibrated FNO exhibits markedly more stable optimization, faster convergence, and improved test error relative to a vanilla FNO.
comment: 39 pages, 12 figures
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search. Our code can be found in https://github.com/yunsaijc/PLaT.
♻ ☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem, and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
♻ ☆ Information Templates: A New Paradigm for Intelligent Active Feature Acquisition
Active feature acquisition (AFA) is an instance-adaptive paradigm in which, at inference time, a policy sequentially chooses which features to acquire (at a cost) before predicting. Existing approaches either train reinforcement learning policies, which deal with a difficult MDP, or greedy policies that cannot account for the joint informativeness of features or require knowledge about the underlying data distribution. To overcome this, we propose Template-based AFA (TAFA), a non-greedy framework that learns a small library of feature templates -- sets of features that are jointly informative -- and uses this library of templates to guide the next feature acquisitions. Through identifying feature templates, the proposed framework not only significantly reduces the action space considered by the policy but also alleviates the need to estimate the underlying data distribution. Extensive experiments on synthetic and real-world datasets show that TAFA outperforms the existing state-of-the-art baselines while achieving lower overall acquisition cost and computation.
♻ ☆ Benchmarking Large Language Models for Diagnosing Students' Cognitive Skills from Handwritten Math Work
Students' handwritten math work provides a rich resource for diagnosing cognitive skills, as it captures intermediate reasoning beyond final answers. We investigate how current large language models (LLMs) perform in diagnosing cognitive skills from such work. However, student responses vary widely, often omitting steps or providing only vague, contextually implicit evidence. Despite recent advances in LLMs' multimodal and reasoning capabilities, their performance under such conditions remains underexplored. To address this gap, we constructed MathCog, a benchmark dataset containing 3,036 diagnostic verdicts across 639 student responses to 110 math problems, annotated by teachers using TIMSS-grounded cognitive skill checklists with evidential strength labels (Evident/Vague). Evaluating 18 LLMs, we find that (1) all models underperform (F1 < 0.5) regardless of capability, and (2) performance degrades sharply under vague evidence. Error analysis reveals systematic patterns: models frequently misattribute Vague evidence as Evident, overthink minimal cues, and hallucinate nonexistent evidence. We discuss implications for evidence-aware, teacher-in-the-loop designs for LLM-based cognitive diagnosis in educational settings.
♻ ☆ AI-Powered CPS-Enabled Vulnerable-User-Aware Urban Transportation Digital Twin: Methods and Applications
We present methods and applications for the development of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its ``eyes," which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its ``brain," the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add value to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency high-bandwidth sensing and networking technologies, in other words, cyberphysical systems. This paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
♻ ☆ Mixed-Density Diffuser: Efficient Planning with Non-Uniform Temporal Resolution
Recent studies demonstrate that diffusion planners benefit from sparse-step planning over single-step planning. Training models to skip steps in their trajectories helps capture long-term dependencies without additional memory or computational cost. However, predicting excessively sparse plans degrades performance. We hypothesize this temporal density threshold is non-uniform across a planning horizon and that certain parts of a predicted trajectory should be more densely generated. We propose Mixed-Density Diffuser (MDD), a diffusion planner where the densities throughout the horizon are tunable hyperparameters. We show that MDD surpasses the SOTA Diffusion Veteran (DV) framework across the Maze2D, Franka Kitchen, and Antmaze Datasets for Deep Data-Driven Reinforcement Learning (D4RL) task domains, achieving a new SOTA on the D4RL benchmark.
comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (under review)
♻ ☆ PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.
♻ ☆ EvoFSM: Controllable Self-Evolution for Deep Research with Finite State Machines
While LLM-based agents have shown promise for deep research, most existing approaches rely on fixed workflows that struggle to adapt to real-world, open-ended queries. Recent work therefore explores self-evolution by allowing agents to rewrite their own code or prompts to improve problem-solving ability, but unconstrained optimization often triggers instability, hallucinations, and instruction drift. We propose EvoFSM, a structured self-evolving framework that achieves both adaptability and control by evolving an explicit Finite State Machine (FSM) instead of relying on free-form rewriting. EvoFSM decouples the optimization space into macroscopic Flow (state-transition logic) and microscopic Skill (state-specific behaviors), enabling targeted improvements under clear behavioral boundaries. Guided by a critic mechanism, EvoFSM refines the FSM through a small set of constrained operations, and further incorporates a self-evolving memory that distills successful trajectories as reusable priors and failure patterns as constraints for future queries. Extensive evaluations on five multi-hop QA benchmarks demonstrate the effectiveness of EvoFSM. In particular, EvoFSM reaches 58.0% accuracy on the DeepSearch benchmark. Additional results on interactive decision-making tasks further validate its generalization.
♻ ☆ Neural Concept Verifier: Scaling Prover-Verifier Games via Concept Encodings ICML 2025
While Prover-Verifier Games (PVGs) offer a promising path toward verifiability in nonlinear classification models, they have not yet been applied to complex inputs such as high-dimensional images. Conversely, expressive concept encodings effectively allow to translate such data into interpretable concepts but are often utilised in the context of low-capacity linear predictors. In this work, we push towards real-world verifiability by combining the strengths of both approaches. We introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for formal verifiability with concept encodings to handle complex, high-dimensional inputs in an interpretable way. NCV achieves this by utilizing recent minimally supervised concept discovery models to extract structured concept encodings from raw inputs. A prover then selects a subset of these encodings, which a verifier, implemented as a nonlinear predictor, uses exclusively for decision-making. Our evaluations show that NCV outperforms classic concept-based models and pixel-based PVG classifier baselines on high-dimensional, logically complex datasets and helps mitigate shortcut behavior. Overall, we demonstrate NCV as a promising step toward concept-level, verifiable AI.
comment: 24 pages, 5 figures, 11 tables, revised references. An earlier version of this work was presented at the ICML 2025 Workshop on Actionable Interpretability
♻ ☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations extracted from tabular foundation models (TabPFN, TabICL and TabSTAR) alongside classical feature engineering (TableVectorizer and a sphere model) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple feature engineering methods achieve comparable or superior performance while requiring significantly less computational resources than tabular foundation models.
♻ ☆ Toward Substantive Intersectional Algorithmic Fairness: Desiderata for a Feminist Approach
People's experiences of discrimination are often shaped by multiple intersecting factors, yet algorithmic fairness research rarely reflects this complexity. While intersectionality offers tools for understanding how forms of oppression interact, current approaches to intersectional algorithmic fairness tend to focus on narrowly defined demographic subgroups. These methods contribute important insights but risk oversimplifying social reality and neglecting structural inequalities. In this paper, we outline how a substantive approach to intersectional algorithmic fairness can reorient this research and practice. In particular, we propose Substantive Intersectional Algorithmic Fairness, extending Green's (2022) notion of substantive algorithmic fairness with insights from intersectional feminist theory. Aiming to provide as actionable guidance as possible, our approach is articulated as ten desiderata to guide the design, assessment, and deployment of algorithmic systems that address systemic inequities while mitigating harms to intersectionally marginalized communities. Rather than prescribing fixed operationalizations, these desiderata invite AI practitioners and experts to reflect on assumptions of neutrality, the use of protected attributes, the inclusion of multiply marginalized groups, and the transformative potential of algorithmic systems. By bridging computational and social science perspectives, the approach emphasizes that fairness cannot be separated from social context, and that in some cases, principled non-deployment may be necessary.
comment: 28 pages
♻ ☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
♻ ☆ Guarding the Guardrails: A Taxonomy-Driven Approach to Jailbreak Detection SC
Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcomes of our experiments are fourfold. First, we developed a comprehensive hierarchical taxonomy of jailbreak strategies that systematically consolidates techniques previously studied in isolation and harmonizes existing, partially overlapping classifications with explicit cross-references to prior categorizations. The taxonomy organizes jailbreak strategies into seven mechanism-oriented families: impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmarked GPT-5 as a judge for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.
comment: 2nd Conference on International Association for Safe & Ethical AI (IASEAI 2026), 24-26 February 2026, UNESCO House, Paris, France
♻ ☆ Stingy Context: 18:1 Hierarchical Code Compression for LLM Auto-Coding
We introduce Stingy Context, a hierarchical tree-based compression scheme achieving 18:1 reduction in LLM context for auto-coding tasks. Using our TREEFRAG exploit decomposition, we reduce a real source code base of 239k tokens to 11k tokens while preserving task fidelity. Empirical results across 12 Frontier models show 94 to 97% success on 40 real-world issues at low cost, outperforming flat methods and mitigating lost-in-the-middle effects.
comment: 28 pages, 10 tables, 2 figures, 10 bibliographical references and 6 appendices
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. Neuromorphic processors provide event-driven sparse computation and support on-chip incremental learning, yet deployment is often hindered by CNN-to-SNN conversion failures, including non-spike-compatible operators and accuracy degradation under class imbalance. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy (a 4.0% relative gain) and by 12.0 points in macro F1 (a 15.2% relative gain). On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy (a 3.7% relative gain) and by 3.6 points in macro F1 (a 4.6% relative gain). When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
♻ ☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing the multi-modal action distributions. However, existing methods typically treat observations only as high-level conditions to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, the sampling is forced to begin from random noise, weakening the coupling between perception and control and often yielding suboptimal performance. We propose BridgePolicy, a generative visuomotor policy that directly integrates observations into the stochastic dynamics via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich and informative prior rather than random noise, substantially improving precision and reliability in control. A key difficulty is that diffusion bridge normally connects distributions of matched dimensionality, while robotic observations are heterogeneous and not naturally aligned with actions. To overcome this, we introduce a multi-modal fusion module and a semantic aligner to unify the visual and state inputs and align the observations with action representations, making diffusion bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and 5 real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
♻ ☆ LLM Agents for Education: Advances and Applications EMNLP 2025
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ LiDAR-based 3D Change Detection at City Scale
High-definition 3D city maps enable city planning and change detection, which is essential for municipal compliance, map maintenance, and asset monitoring, including both built structures and urban greenery. Conventional Digital Surface Model (DSM) and image differencing are sensitive to vertical bias and viewpoint mismatch, while original point cloud or voxel models require large memory, assume perfect alignment, and degrade thin structures. We propose an uncertainty-aware, object-centric method for city-scale LiDAR-based change detection. Our method aligns data from different time periods using multi-resolution Normal Distributions Transform (NDT) and a point-to-plane Iterative Closest Point (ICP) method, normalizes elevation, and computes a per-point level of detection from registration covariance and surface roughness to calibrate change decisions. Geometry-based associations are refined by semantic and instance segmentation and optimized using class-constrained bipartite assignment with augmented dummies to handle split-merge cases. Tiled processing bounds memory and preserves narrow ground changes, while instance-level decisions integrate overlap, displacement, and volumetric differences under local detection gating. We perform experiments on a Subiaco (Western Australia) dataset captured in 2023 and again in 2025. Our method achieves 95.3% accuracy, 90.8% mF1, and 82.9% mIoU, improving over the strongest baseline, Triplet KPConv, by 0.3, 0.6, and 1.1 points, respectively. The datasets are available on IEEE DataPort (2023: https://ieee-dataport.org/documents/2023-subiaco-wa-3d-hd-lidar-point-cloud-maps-dataset and 2025: https://ieee-dataport.org/documents/2025-subiaco-wa-3d-hd-lidar-gnss-point-cloud-maps-dataset). The source code is available at https://github.com/HaitianWang/IEEE-Sensor-Journal-Changing-Detection.
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 39 pages
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Interactive Environmental Learning in Physical Embodied Systems
Embodied intelligence aims to enable robots to learn, reason, and generalize robustly across complex real-world environments. However, existing approaches often struggle with partial observability, fragmented spatial reasoning, and inefficient integration of heterogeneous memories, limiting their capacity for long-horizon adaptation. To address this, we introduce RoboMemory, a brain-inspired framework that unifies Spatial, Temporal, Episodic, and Semantic memory within a parallelized architecture for efficient long-horizon planning and interactive learning. Its core innovations are a dynamic spatial knowledge graph for scalable, consistent memory updates and a closed-loop planner with a critic module for adaptive decision-making. Extensive experiments on EmbodiedBench show that RoboMemory, instantiated with Qwen2.5-VL-72B-Ins, improves the average success rate by 26.5% over its strong baseline and even surpasses the closed-source SOTA, Claude-3.5-Sonnet. Real-world trials further confirm its capability for cumulative learning, with performance consistently improving over repeated tasks. Our results position RoboMemory as a scalable foundation for memory-augmented embodied agents, bridging insights from cognitive neuroscience with practical robotic autonomy.
♻ ☆ User-Feedback-Driven Adaptation for Vision-and-Language Navigation
Real-world deployment of Vision-and-Language Navigation (VLN) agents is constrained by the scarcity of reliable supervision after offline training. While recent adaptation methods attempt to mitigate distribution shifts via environment-driven self-supervision (e.g., entropy minimization), these signals are often noisy and can cause the agent to amplify its own mistakes during long-horizon sequential decision-making. In this paper, we propose a paradigm shift that positions user feedback, specifically episode-level success confirmations and goal-level corrections, as a primary and general-purpose supervision signal for VLN. Unlike internal confidence scores, user feedback is intent-aligned and in-situ consistent, directly correcting the agent's decoupling from user instructions. To effectively leverage this supervision, we introduce a user-feedback-driven learning framework featuring a topology-aware trajectory construction pipeline. This mechanism lifts sparse, goal-level corrections into dense path-level supervision by generating feasible paths on the agent's incrementally built topological graph, enabling sample-efficient imitation learning without requiring step-by-step human demonstrations. Furthermore, we develop a persistent memory bank mechanism for warm-start initialization, supporting the reuse of previously acquired topology and cached representations across navigation sessions. Extensive experiments on the GSA-R2R benchmark demonstrate that our approach transforms sparse interaction into robust supervision, consistently outperforming environment-driven baselines while exhibiting strong adaptability across diverse instruction styles.
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Agentic Explainable Artificial Intelligence (Agentic XAI) Approach To Explore Better Explanation
Explainable artificial intelligence (XAI) enables data-driven understanding of factor associations with response variables, yet communicating XAI outputs to laypersons remains challenging, hindering trust in AI-based predictions. Large language models (LLMs) have emerged as promising tools for translating technical explanations into accessible narratives, yet the integration of agentic AI, where LLMs operate as autonomous agents through iterative refinement, with XAI remains unexplored. This study proposes an agentic XAI framework combining SHAP-based explainability with multimodal LLM-driven iterative refinement to generate progressively enhanced explanations. As a use case, we tested this framework as an agricultural recommendation system using rice yield data from 26 fields in Japan. The Agentic XAI initially provided a SHAP result and explored how to improve the explanation through additional analysis iteratively across 11 refinement rounds (Rounds 0-10). Explanations were evaluated by human experts (crop scientists) (n=12) and LLMs (n=14) against seven metrics: Specificity, Clarity, Conciseness, Practicality, Contextual Relevance, Cost Consideration, and Crop Science Credibility. Both evaluator groups confirmed that the framework successfully enhanced recommendation quality with an average score increase of 30-33% from Round 0, peaking at Rounds 3-4. However, excessive refinement showed a substantial drop in recommendation quality, indicating a bias-variance trade-off where early rounds lacked explanation depth (bias) while excessive iteration introduced verbosity and ungrounded abstraction (variance), as revealed by metric-specific analysis. These findings suggest that strategic early stopping (regularization) is needed for optimizing practical utility, challenging assumptions about monotonic improvement and providing evidence-based design principles for agentic XAI systems.
♻ ☆ DEEPMED: Building a Medical DeepResearch Agent via Multi-hop Med-Search Data and Turn-Controlled Agentic Training & Inference
Medical reasoning models remain constrained by parametric knowledge and are thus susceptible to forgetting and hallucinations. DeepResearch (DR) models ground outputs in verifiable evidence from tools and perform strongly in general domains, but their direct transfer to medical field yields relatively limited gains. We attribute this to two gaps: task characteristic and tool-use scaling. Medical questions require evidence interpretation in a knowledge-intensive clinical context; while general DR models can retrieve information, they often lack clinical-context reasoning and thus "find it but fail to use it," leaving performance limited by medical abilities. Moreover, in medical scenarios, blindly scaling tool-call can inject noisy context, derailing sensitive medical reasoning and prompting repetitive evidence-seeking along incorrect paths. Therefore, we propose DeepMed. For data, we deploy a multi-hop med-search QA synthesis method supporting the model to apply the DR paradigm in medical contexts. For training, we introduce a difficulty-aware turn-penalty to suppress excessive tool-call growth. For inference, we bring a monitor to help validate hypotheses within a controlled number of steps and avoid context rot. Overall, on seven medical benchmarks, DeepMed improves its base model by 9.79\% on average and outperforms larger medical reasoning and DR models.
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints
Pure exploration in bandits formalises multiple real-world problems, such as tuning hyper-parameters or conducting user studies to test a set of items, where different safety, resource, and fairness constraints on the decision space naturally appear. We study these problems as pure exploration in multi-armed bandits with unknown linear constraints, where the aim is to identify an $r$-optimal and feasible policy as fast as possible with a given level of confidence. First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints. Second, we leverage properties of convex optimisation in the Lagrangian lower bound to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX. Then, we propose a constraint-adaptive stopping rule, and while tracking the lower bound, use optimistic estimate of the feasible set at each step. We show that LAGEX achieves asymptotically optimal sample complexity upper bound, while LATS shows asymptotic optimality up to novel constraint-dependent constants. Finally, we conduct numerical experiments with different reward distributions and constraints that validate efficient performance of LATS and LAGEX.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ Tabula RASA: Exposing and Breaking the Relational Bottleneck in Transformers
Transformers achieve remarkable performance across many domains, yet struggle with tasks requiring multi-hop relational reasoning over structured data. We analyze this limitation through circuit complexity: standard transformers are $\mathsf{TC}^0$-complete and cannot solve graph connectivity in constant depth, implying $Ω(k)$ layers are necessary for $k$-hop reasoning regardless of model size or training data. We introduce RASA (Relation-Aware Sparse Attention), a minimal architectural modification that provides structural inductive bias for relational reasoning. RASA adds: (1) sparse adjacency masking that restricts attention to graph-connected positions, reducing the attention pattern search space from $O(2^{n^2})$ to $O(2^m)$ for graphs with $m$ edges; and (2) learnable edge-type biases that encode relation-specific attention preferences. While RASA does not circumvent asymptotic depth requirements, the exponential reduction in attention pattern space provides stronger inductive bias for learning graph-structured functions. Empirically, on the MetaQA knowledge graph QA benchmark, RASA achieves 97.7% accuracy on 3-hop questions, outperforming EmbedKGQA (94.8%) by 2.9 percentage points. Notably, RASA's advantage grows with reasoning depth, validating that structural inductive bias is most beneficial for complex multi-hop queries. Our results demonstrate that minimal architectural modifications, grounded in complexity-theoretic analysis, can substantially improve multi-hop reasoning.
comment: 16 pages, 4 figures, 8 tables
♻ ☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
♻ ☆ GRAM: Spatial general-purpose audio representation models for real-world applications
Audio foundation models learn general-purpose audio representations that facilitate a wide range of downstream tasks. While the performance of these models has greatly increased for conventional single-channel, dry audio clips, their success in real-world acoustic environments with reverberation and noise is limited. Furthermore, most audio foundation models ignore the spatial dimension of real-world acoustic environments, ruling out tasks involving sound localization. To address these limitations, we propose GRAM: a general-purpose real-world audio model that employs a multi-channel masked autoencoder to efficiently learn spatial audio representations. We evaluated GRAM and other audio foundation models in a standardized manner on high-quality simulations of naturalistic, spatial acoustic environments as well as recordings of real-world environments and release these two complementary benchmark task suites: NatHEAR and RealSELD. Our results demonstrate that GRAM outperforms all state-of-the-art self-supervised audio foundation models on NatHEAR and the clean, single-channel version HEAR, while using only a fraction of the training data. GRAM also shows state-of-the-art localization performance in simulated environments and generalizes efficiently to real-world recordings in RealSELD. Taken together, GRAM presents a significant advance toward robust spatial audio foundation models for real-world environments.
comment: Revise with RealSELD
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
comment: accepted to Computer magazine
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully and sometimes even improves when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoders marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90%, (ii) high redundancy on general VQA and knowledge-based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16% higher accuracy on a specific task category and 3.6% overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90% of baseline on most non OCR tasks. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026
♻ ☆ InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon's information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
comment: 15 pages, 9 figures, 5 tables
♻ ☆ ConvexBench: Can LLMs Recognize Convex Functions?
Convex analysis is a modern branch of mathematics with many applications. As Large Language Models (LLMs) start to automate research-level math and sciences, it is important for LLMs to demonstrate the ability to understand and reason with convexity. We introduce \cb, a scalable and mechanically verifiable benchmark for testing \textit{whether LLMs can identify the convexity of a symbolic objective under deep functional composition.} Experiments on frontier LLMs reveal a sharp compositional reasoning gap: performance degrades rapidly with increasing depth, dropping from an F1-score of $1.0$ at depth $2$ to approximately $0.2$ at depth $100$. Inspection of models' reasoning traces indicates two failure modes: \textit{parsing failure} and \textit{lazy reasoning}. To address these limitations, we propose an agentic divide-and-conquer framework that (i) offloads parsing to an external tool to construct an abstract syntax tree (AST) and (ii) enforces recursive reasoning over each intermediate sub-expression with focused context. This framework reliably mitigates deep-composition failures, achieving substantial performance improvement at large depths (e.g., F1-Score $= 1.0$ at depth $100$).
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products. The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area.
♻ ☆ LLM-ABBA: Understanding time series via symbolic approximation
The success of large language models (LLMs) for time series has been demonstrated in previous work. Utilizing a symbolic time series representation, one can efficiently bridge the gap between LLMs and time series. However, the remaining challenge is to exploit the semantic information hidden in time series by using symbols or existing tokens of LLMs, while aligning the embedding space of LLMs according to the hidden information of time series. The symbolic time series approximation (STSA) method called adaptive Brownian bridge-based symbolic aggregation (ABBA) shows outstanding efficacy in preserving salient time series features by modeling time series patterns in terms of amplitude and period while using existing tokens of LLMs. In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA into large language models for various downstream time series tasks. By symbolizing time series, LLM-ABBA compares favorably to the recent state-of-the-art (SOTA) in UCR and three medical time series classification tasks. Meanwhile, a fixed-polygonal chain trick in ABBA is introduced to avoid obvious drifting during forecasting tasks by significantly mitigating the effects of cumulative error arising from misused symbols during the transition from symbols to numerical values. In time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive forecasting capability compared to recent SOTA time series forecasting results. We believe this framework can also seamlessly extend to other time series tasks. Our simulation code is publicly available at: https://github.com/inEXASCALE/llm-abba
♻ ☆ Extending RLVR to Open-Ended Tasks via Verifiable Multiple-Choice Reformulation
Reinforcement Learning with Verifiable Rewards(RLVR) has demonstrated great potential in enhancing the reasoning capabilities of large language models (LLMs). However, its success has thus far been largely confined to the mathematical and programming domains with clear and automatically checkable outcomes. Reinforcement learning on open-ended tasks (e.g., creative writing and subjective Q&A) continues to rely on reward models due to the absence of verifiable solutions. This raises a key question: how can we extend RLVR to strengthen reasoning in open-ended tasks regardless of the absence of the unambiguous ground truth? To overcome this challenge, we introduce Verifiable Multiple-Choice Reformulation for Reinforcement Learning from Verifiable Rewards (VMR-RLVR), a novel training strategy that restructures open-ended data into verifiable multiple-choice formats, enabling effective training even in the absence of explicit ground truth. Experimental results on multiple benchmarks validate the effectiveness of our method in improving LLM performance on open-ended tasks. Notably, across seven open-ended benchmarks, our VMR-RLVR training delivers an average gain of 3.29 points over the RL with reward model.
comment: 8 pages
♻ ☆ REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving NeurIPS 2025
While model serving has unlocked unprecedented capabilities, the high cost of serving large-scale models continues to be a significant barrier to widespread accessibility and rapid innovation. Compiler optimizations have long driven substantial performance improvements, but existing compilers struggle with neural workloads due to the exponentially large and highly interdependent space of possible transformations. Although existing stochastic search techniques can be effective, they are often sample-inefficient and fail to leverage the structural context underlying compilation decisions. We set out to investigate the research question of whether reasoning with large language models (LLMs), without any retraining, can leverage the context-aware decision space of compiler optimizations to significantly improve sample efficiency. To that end, we introduce a novel compilation framework (dubbed REASONING COMPILER) that formulates optimization as a sequential, context-aware decision process guided by a large language model and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal mechanism, suggesting hardware-informed transformations that reflect the current program state and accumulated performance feedback. MCTS incorporates the LLM-generated proposals to balance exploration and exploitation, facilitating a structured, context-sensitive traversal of the expansive compiler optimization space. By achieving substantial speedups with markedly fewer samples than leading neural compilers, our approach demonstrates the potential of LLM-guided reasoning to transform the landscape of compiler optimization.
comment: NeurIPS 2025
♻ ☆ MapCoder-Lite: Distilling Multi-Agent Coding into a Single Small LLM
Large language models (LLMs) have advanced code generation from single-function tasks to competitive-programming problems, but existing multi-agent solutions either rely on costly large-scale (>30B) models or collapse when downsized to small open-source models. We present MapCoder-Lite, a framework for distilling the complex reasoning of large, multi-agent coding systems into a single 7B model. Our contribution is a novel, three-pillar methodology that synergistically generates, refines, and encodes multi-agent knowledge: (i) pass-based trajectory distillation from strong LLMs fixes format fragility in retrieval and reduces failures in debugging, (ii) supervisor-guided correction with global feedback strengthens planning and coding agents, and (iii) agent-wise LoRA fine-tuning delivers memory-efficient specialisation. Comprehensive evaluation on xCodeEval, APPS, and CodeContests shows that MapCoder-Lite more than doubles xCodeEval accuracy (from 13.2% to 28.3%), eliminates all format failures, while reducing GPU memory and token-generation time by 4x compared to a 32B model. It also achieves over 10% gains on simpler coding benchmarks, demonstrating broad improvements beyond competitive programming. These results demonstrate that careful agent-wise fine-tuning unleashes high-quality multi-agent coding on a small language model. Our code is publicly available at https://github.com/aiha-lab/MapCoder-Lite.
♻ ☆ Attention Is Not Retention: The Orthogonality Constraint in Infinite-Context Architectures
Biological memory solves a problem that eludes current AI: storing specific episodic facts without corrupting general semantic knowledge. Complementary Learning Systems theory explains this through two subsystems - a fast hippocampal system using sparse, pattern-separated representations for episodes, and a slow neocortical system using distributed representations for statistical regularities. Current AI systems lack this separation, attempting to serve both functions through neural weights alone. We identify the Orthogonality Constraint: reliable memory requires orthogonal keys, but semantic embeddings cannot be orthogonal because training clusters similar concepts together. The result is Semantic Interference (connecting to what cognitive psychologists have long observed in human memory), where neural systems writing facts into shared continuous parameters collapse to near-random accuracy within tens of semantically related facts. Through semantic density (rho), the mean pairwise cosine similarity, we show collapse occurs at N=5 facts (rho > 0.6) or N ~ 20-75 (moderate rho). We validate across modalities: 16,309 Wikipedia facts, scientific measurements (rho = 0.96, 0.02% accuracy at N=10,000), and image embeddings (rho = 0.82, 0.05% at N=2,000). This failure is geometric - no increase in model capacity can overcome interference when keys share semantic overlap. We propose Knowledge Objects (KOs): structured facts with hash-based identity, controlled vocabularies, and explicit version chains. On Wikipedia facts, KO retrieval achieves 45.7% where Modern Hopfield Networks collapse to near-zero; hash-based retrieval maintains 100%. Production systems (Claude Memory, ChatGPT Memory) store unstructured text, causing schema drift (40-70% consistency) and version ambiguity. Knowledge Objects provide the discrete hippocampal component that enables reliable bicameral memory.
comment: 32 Pages, 7 Figures
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ EAG3R: Event-Augmented 3D Geometry Estimation for Dynamic and Extreme-Lighting Scenes NeurIPS 2025
Robust 3D geometry estimation from videos is critical for applications such as autonomous navigation, SLAM, and 3D scene reconstruction. Recent methods like DUSt3R demonstrate that regressing dense pointmaps from image pairs enables accurate and efficient pose-free reconstruction. However, existing RGB-only approaches struggle under real-world conditions involving dynamic objects and extreme illumination, due to the inherent limitations of conventional cameras. In this paper, we propose EAG3R, a novel geometry estimation framework that augments pointmap-based reconstruction with asynchronous event streams. Built upon the MonST3R backbone, EAG3R introduces two key innovations: (1) a retinex-inspired image enhancement module and a lightweight event adapter with SNR-aware fusion mechanism that adaptively combines RGB and event features based on local reliability; and (2) a novel event-based photometric consistency loss that reinforces spatiotemporal coherence during global optimization. Our method enables robust geometry estimation in challenging dynamic low-light scenes without requiring retraining on night-time data. Extensive experiments demonstrate that EAG3R significantly outperforms state-of-the-art RGB-only baselines across monocular depth estimation, camera pose tracking, and dynamic reconstruction tasks.
comment: Accepted at NeurIPS 2025 (spotlight)
♻ ☆ Bridging Cognitive Neuroscience and Graph Intelligence: Hippocampus-Inspired Multi-View Hypergraph Learning for Web Finance Fraud
Online financial services constitute an essential component of contemporary web ecosystems, yet their openness introduces substantial exposure to fraud that harms vulnerable users and weakens trust in digital finance. Such threats have become a significant web harm that erodes societal fairness and affects the well-being of online communities. However, existing detection methods based on graph neural networks (GNNs) struggle with two persistent challenges: (1) long-tailed data distributions, which obscure rare but critical fraudulent cases, and (2) fraud camouflage, where malicious transactions mimic benign behaviors to evade detection. To fill these gaps, we propose HIMVH, a Hippocampus-Inspired Multi-View Hypergraph learning model for web finance fraud detection. Specifically, drawing inspiration from the scene conflict monitoring role of the hippocampus, we design a cross-view inconsistency perception module that captures subtle discrepancies and behavioral heterogeneity across multiple transaction views. This module enables the model to identify subtle cross-view conflicts for detecting online camouflaged fraudulent behaviors. Furthermore, inspired by the match-mismatch novelty detection mechanism of the CA1 region, we introduce a novelty-aware hypergraph learning module that measures feature deviations from neighborhood expectations and adaptively reweights messages, thereby enhancing sensitivity to online rare fraud patterns in the long-tailed settings. Extensive experiments on six web-based financial fraud datasets demonstrate that HIMVH achieves 6.42% improvement in AUC, 9.74% in F1 and 39.14% in AP on average over 15 SOTA models.
♻ ☆ Concise Geometric Description as a Bridge: Unleashing the Potential of LLM for Plane Geometry Problem Solving
Plane Geometry Problem Solving (PGPS) is a multimodal reasoning task that aims to solve a plane geometric problem based on a geometric diagram and problem textual descriptions. Although Large Language Models (LLMs) possess strong reasoning skills, their direct application to PGPS is hindered by their inability to process visual diagrams. Existing works typically fine-tune Multimodal LLMs (MLLMs) end-to-end on large-scale PGPS data to enhance visual understanding and reasoning simultaneously. However, such joint optimization may compromise base LLMs' inherent reasoning capability. In this work, we observe that LLM itself is potentially a powerful PGPS solver when appropriately formulating visual information as textual descriptions. We propose to train a MLLM Interpreter to generate geometric descriptions for the visual diagram, and an off-the-shelf LLM is utilized to perform reasoning. Specifically, we choose Conditional Declaration Language (CDL) as the geometric description as its conciseness eases the MLLM Interpreter training. The MLLM Interpreter is fine-tuned via CoT (Chain-of-Thought)-augmented SFT followed by GRPO to generate CDL. Instead of using a conventional solution-based reward that compares the reasoning result with the ground-truth answer, we design CDL matching rewards to facilitate more effective GRPO training, which provides more direct and denser guidance for CDL generation. To support training, we construct a new dataset, Formalgeo7k-Rec-CoT, by manually reviewing Formalgeo7k v2 and incorporating CoT annotations. Extensive experiments on Formalgeo7k-Rec-CoT, Unigeo, and MathVista show our method (finetuned on only 5.5k data) performs favorably against leading open-source and closed-source MLLMs.
comment: Under review
♻ ☆ MemOCR: Layout-Aware Visual Memory for Efficient Long-Horizon Reasoning
Long-horizon agentic reasoning necessitates effectively compressing growing interaction histories into a limited context window. Most existing memory systems serialize history as text, where token-level cost is uniform and scales linearly with length, often spending scarce budget on low-value details. To this end, we introduce MemOCR, a multimodal memory agent that improves long-horizon reasoning under tight context budgets by allocating memory space with adaptive information density through visual layout. Concretely, MemOCR maintains a structured rich-text memory (e.g., headings, highlights) and renders it into an image that the agent consults for memory access, visually prioritizing crucial evidence while aggressively compressing auxiliary details. To ensure robustness across varying memory budgets, we train MemOCR with reinforcement learning under budget-aware objectives that expose the agent to diverse compression levels. Across long-context multi-hop and single-hop question-answering benchmarks, MemOCR outperforms strong text-based baselines and achieves more effective context utilization under extreme budgets.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ No Screening is More Efficient with Multiple Objects
We study efficient mechanism design for allocating multiple heterogeneous objects. The aim is to maximize the residual surplus, the total value generated from an allocation minus the costs of screening. We discover a robust trend indicating that no-screening mechanisms, such as serial dictatorship with exogenous priority order, tend to perform better as the variety of goods increases. We analyze the underlying reasons by characterizing asymptotically efficient mechanisms in a stylized environment. We also apply an automated mechanism design approach to numerically derive efficient mechanisms and validate the trend in general environments. Building on these implications, we propose the register-invite-book system (RIB) as an efficient system for scheduling vaccinations against pandemic diseases.
♻ ☆ DIVER-1 : Deep Integration of Vast Electrophysiological Recordings at Scale
Unifying the vast heterogeneity of brain signals into a single foundation model is a longstanding challenge in neuroscience. Yet, even as large-scale pretraining becomes feasible, the field lacks principled guidance on how to scale electrophysiological foundation models under realistic data and compute constraints. We present the first systematic scaling law analysis spanning both EEG and iEEG, and uncover a distinct data-constrained characteristic. Unlike language modeling, performance in electrophysiology is dominated first by data scale, followed by training duration (epochs), with model parameter count playing a subordinate role under fixed compute budgets. This challenges the prevailing "bigger is better" heuristic derived from large language models. Building on these insights, we introduce DIVER-1, a family of models trained on the largest and most diverse corpus to date: 59.3k hours (54k EEG and 5.3k iEEG) across 1.6 million channel-hours from more than 17.7k subjects, scaling up to 1.82 billion parameters. By prioritizing data diversity and training horizons over mere parameter expansion, DIVER-1 achieves state-of-the-art performance across established benchmarks. Our work provides both a powerful generalist model and actionable guidelines for efficient development of future neuro-AI systems.
comment: 52 pages, 15 figures, 28 tables
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement learning algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) remains underexplored. In this paper, we explore GRPO and identify two issues that hinder effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function as a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as clipping and min operations. This directly aligns the model with the advantages, providing guidance to prefer better outputs. The difficulty-aware data augmentation strategy augments input prompts/videos to target solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ LASS-ODE: Scaling ODE Computations to Connect Foundation Models with Dynamical Physical Systems
Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ DynamicNER: A Dynamic, Multilingual, and Fine-Grained Dataset for LLM-based Named Entity Recognition EMNLP 2025
The advancements of Large Language Models (LLMs) have spurred a growing interest in their application to Named Entity Recognition (NER) methods. However, existing datasets are primarily designed for traditional machine learning methods and are inadequate for LLM-based methods, in terms of corpus selection and overall dataset design logic. Moreover, the prevalent fixed and relatively coarse-grained entity categorization in existing datasets fails to adequately assess the superior generalization and contextual understanding capabilities of LLM-based methods, thereby hindering a comprehensive demonstration of their broad application prospects. To address these limitations, we propose DynamicNER, the first NER dataset designed for LLM-based methods with dynamic categorization, introducing various entity types and entity type lists for the same entity in different context, leveraging the generalization of LLM-based NER better. The dataset is also multilingual and multi-granular, covering 8 languages and 155 entity types, with corpora spanning a diverse range of domains. Furthermore, we introduce CascadeNER, a novel NER method based on a two-stage strategy and lightweight LLMs, achieving higher accuracy on fine-grained tasks while requiring fewer computational resources. Experiments show that DynamicNER serves as a robust and effective benchmark for LLM-based NER methods. Furthermore, we also conduct analysis for traditional methods and LLM-based methods on our dataset. Our code and dataset are openly available at https://github.com/Astarojth/DynamicNER.
comment: This paper is accepted by EMNLP 2025 Main Conference
♻ ☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Building Scaffolding Dialogue Data with LLM-Simulated Novices
High-quality, multi-turn instructional dialogues between novices and experts are essential for developing AI systems that support teaching, learning, and decision-making. These dialogues often involve scaffolding -- the process by which an expert supports a novice's thinking through questions, feedback, and step-by-step guidance. However, such data are scarce due to privacy concerns in recording and the vulnerability inherent in help-seeking. We present SimInstruct, a scalable, expert-in-the-loop tool for collecting scaffolding dialogues. Using teaching development coaching as an example domain, SimInstruct simulates novice instructors via LLMs, varying their teaching challenges and LLM's persona traits, while human experts provide multi-turn feedback, reasoning, and instructional support. This design enables the creation of realistic, pedagogically rich dialogues without requiring real novice participants. Our results reveal that persona traits, such as extroversion and introversion, meaningfully influence how experts engage. Compared to real mentoring recordings, SimInstruct dialogues demonstrate comparable pedagogical relevance and cognitive depth. Experts also reported the process as engaging and reflective, improving both data quality and their own professional insight. We further fine-tuned a LLaMA model to be an expert model using the augmented dataset, which outperformed GPT-4o in instructional quality. Our analysis highlights GPT-4o's limitations in weak reflective questioning, overuse of generic praise, a condescending tone, and a tendency to overwhelm novices with excessive suggestions.
♻ ☆ ProDCARL: Reinforcement Learning-Aligned Diffusion Models for De Novo Antimicrobial Peptide Design
Antimicrobial resistance threatens healthcare sustainability and motivates low-cost computational discovery of antimicrobial peptides (AMPs). De novo peptide generation must optimize antimicrobial activity and safety through low predicted toxicity, but likelihood-trained generators do not enforce these goals explicitly. We introduce ProDCARL, a reinforcement-learning alignment framework that couples a diffusion-based protein generator (EvoDiff OA-DM 38M) with sequence property predictors for AMP activity and peptide toxicity. We fine-tune the diffusion prior on AMP sequences to obtain a domain-aware generator. Top-k policy-gradient updates use classifier-derived rewards plus entropy regularization and early stopping to preserve diversity and reduce reward hacking. In silico experiments show ProDCARL increases the mean predicted AMP score from 0.081 after fine-tuning to 0.178. The joint high-quality hit rate reaches 6.3\% with pAMP $>$0.7 and pTox $<$0.3. ProDCARL maintains high diversity, with $1-$mean pairwise identity equal to 0.929. Qualitative analyses with AlphaFold3 and ProtBERT embeddings suggest candidates show plausible AMP-like structural and semantic characteristics. ProDCARL serves as a candidate generator that narrows experimental search space, and experimental validation remains future work.
♻ ☆ Building Coding Agents via Entropy-Enhanced Multi-Turn Preference Optimization
Software engineering presents complex, multi-step challenges for Large Language Models (LLMs), requiring reasoning over large codebases and coordinated tool use. The difficulty of these tasks is exemplified by benchmarks like SWE-bench, where current LLMs still struggle to resolve real-world issues. A promising approach to enhance performance is test-time scaling (TTS), but its gains are heavily dependent on the diversity of model outputs. While standard alignment methods such as Direct Preference Optimization (DPO) and Kahneman-Tversky Optimization (KTO) are effective at aligning model outputs with human preferences, this process can come at the cost of reduced diversity, limiting the effectiveness of TTS. Additionally, existing preference optimization algorithms are typically designed for single-turn tasks and do not fully address the complexities of multi-turn reasoning and tool integration required for interactive coding agents. To bridge this gap, we introduce EntroPO, an entropy-enhanced framework that adapts existing preference optimization algorithms to the multi-turn, tool-assisted setting. EntroPO augments the preference objective to explicitly preserve policy entropy and generalizes learning to optimize over multi-turn interactions rather than single-turn responses. We validate EntroPO by fine-tuning a diverse suite of models from different families and sizes (up to 106B parameters).To maximize performance gains from TTS, we further propose a hybrid best-trajectory selection scheme combining a learned verifier model with model free approaches. On the SWEBENCH leaderboard, our approach establishes new state-of-the-art results among open-weight models. A 30B parameter model trained with EntroPO ranks 1st on SWEBENCH-LITE and 4th on SWEBENCH-VERIFIED on the open-weight leaderboard, surpassed only by models with over 10x more parameters(e.g., >$350B).
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ daVinci-Agency: Unlocking Long-Horizon Agency Data-Efficiently
While Large Language Models (LLMs) excel at short-term tasks, scaling them to long-horizon agentic workflows remains challenging. The core bottleneck lies in the scarcity of training data that captures authentic long-dependency structures and cross-stage evolutionary dynamics--existing synthesis methods either confine to single-feature scenarios constrained by model distribution, or incur prohibitive human annotation costs, failing to provide scalable, high-quality supervision. We address this by reconceptualizing data synthesis through the lens of real-world software evolution. Our key insight: Pull Request (PR) sequences naturally embody the supervision signals for long-horizon learning. They decompose complex objectives into verifiable submission units, maintain functional coherence across iterations, and encode authentic refinement patterns through bug-fix histories. Building on this, we propose daVinci-Agency, which systematically mines structured supervision from chain-of-PRs through three interlocking mechanisms: (1) progressive task decomposition via continuous commits, (2) long-term consistency enforcement through unified functional objectives, and (3) verifiable refinement from authentic bug-fix trajectories. Unlike synthetic trajectories that treat each step independently, daVinci-Agency's PR-grounded structure inherently preserves the causal dependencies and iterative refinements essential for teaching persistent goal-directed behavior and enables natural alignment with project-level, full-cycle task modeling. The resulting trajectories are substantial--averaging 85k tokens and 116 tool calls--yet remarkably data-efficient: fine-tuning GLM-4.6 on 239 daVinci-Agency samples yields broad improvements across benchmarks, notably achieving a 47% relative gain on Toolathlon. Beyond benchmark performance, our analysis confirms...
♻ ☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 10 pages
♻ ☆ Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
♻ ☆ The World is Not Mono: Enabling Spatial Understanding in Large Audio-Language Models
Existing large audio-language models perceive the world as "mono"-a single stream of audio that ignores the critical spatial dimension ("where") required for universal audio scene analysis (ASA). To bridge this gap, we first introduce a hierarchical framework for audio scene analysis. Guided by this framework, we introduce a system that enables large audio-language models (LALMs) to understand and reason about the complex acoustic world. Our system endows LALMs with universal spatial understanding through four key innovations: (1) A scalable simulation pipeline that synthesizes high-quality First-Order-Ambisonics(FOA) data; (2) A unified model framework that integrates universal spatial encoding with a dense hybrid projection mechanism to bridge the modality gap; (3) A progressive training curriculum that evolves from representation alignment to reinforcement learning-based reasoning; and (4) A comprehensive benchmark for audio scene analysis (ASA) designed to rigorously evaluate atomic perception, relational integration, and cognitive reasoning capabilities, on which our model demonstrates comparatively strong capability for spatial understanding. Our work provides a clear pathway for leveraging the powerful reasoning abilities of LALMs towards holistic ASA, advancing from "mono" semantic recognition to spatial intelligence.
♻ ☆ "I'm happy even though it's not real": GenAI Photo Editing as a Remembering Experience
Generative Artificial Intelligence (GenAI) is increasingly integrated into photo applications on personal devices, making editing photographs easier than ever while potentially influencing the memories they represent. This study explores how and why people use GenAI to edit personal photos and how this shapes their remembering experience. We conducted a two-phase qualitative study with 12 participants: a photo editing session using a GenAI tool guided by the Remembering Experience (RX) dimensions, followed by semi-structured interviews where participants reflected on the editing process and results. Findings show that participants prioritised felt memory over factual accuracy. For different photo elements, environments were modified easily, however, editing was deemed unacceptable if it touched upon a person's identity. Editing processes brought positive and negative impacts, and itself also became a remembering experience. We further discuss potential benefits and risks of GenAI editing for remembering purposes and propose design implications for responsible GenAI.
♻ ☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
♻ ☆ Incremental Maintenance of DatalogMTL Materialisations AAAI 2026
DatalogMTL extends the classical Datalog language with metric temporal logic (MTL), enabling expressive reasoning over temporal data. While existing reasoning approaches, such as materialisation based and automata based methods, offer soundness and completeness, they lack support for handling efficient dynamic updates, a crucial requirement for real-world applications that involve frequent data updates. In this work, we propose DRedMTL, an incremental reasoning algorithm for DatalogMTL with bounded intervals. Our algorithm builds upon the classical DRed algorithm, which incrementally updates the materialisation of a Datalog program. Unlike a Datalog materialisation which is in essence a finite set of facts, a DatalogMTL materialisation has to be represented as a finite set of facts plus periodic intervals indicating how the full materialisation can be constructed through unfolding. To cope with this, our algorithm is equipped with specifically designed operators to efficiently handle such periodic representations of DatalogMTL materialisations. We have implemented this approach and tested it on several publicly available datasets. Experimental results show that DRedMTL often significantly outperforms rematerialisation, sometimes by orders of magnitude.
comment: Accepted as oral paper at the main track of AAAI 2026
♻ ☆ Deep Multimodal Learning with Missing Modality: A Survey
During multimodal model training and testing, certain data modalities may be absent due to sensor limitations, cost constraints, privacy concerns, or data loss, negatively affecting performance. Multimodal learning techniques designed to handle missing modalities can mitigate this by ensuring model robustness even when some modalities are unavailable. This survey reviews recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning methods. It provides the first comprehensive survey that covers the motivation and distinctions between MLMM and standard multimodal learning setups, followed by a detailed analysis of current methods, applications, and datasets, concluding with challenges and future directions.
comment: Accepted by TMLR (Transactions on Machine Learning Research)
♻ ☆ Input-Time Scaling: Adding Noise and Irrelevance into Less-Is-More Drastically Improves Reasoning Performance and Efficiency
Large Language Models (LLMs) excel at reasoning, traditionally requiring high-quality large-scale data and extensive training. Recent works reveal a very appealing Less-Is-More phenomenon where very small, carefully curated high-quality datasets match resource-intensive approaches. In this work, we further systematically relax their quality constraints by adding controlled noise via persona context relevance and comparing datasets of different qualities. Counterintuitively, we find that mixing relevant and irrelevant contexts consistently across training and inference stages yields optimal results -- a phenomenon we term training-testing co-design. Dataset quality comparisons show that high-quality data benefits weaker models on easy questions, while low-quality data achieves higher scores on hard questions with capable models. Across our experiments, reasoning performance is linked to reasoning efficiency. We, for the first time, found adding noisy and irrelevant contexts into queries can improve reasoning efficiency without any prices and targeted designs. Building on these insights, we propose Input-Time Scaling: applying small, low-quality data to capable models with training-testing co-design. This maintains Less-Is-More while further removing labor-intensive quality curation and improving reasoning effectiveness and efficiency, making the approach more applicable and affordable. Our method achieves 76.7% pass@1 on AIME24/25 using Qwen2.5-32B-Instruct, and 90.0%/80.0% with DeepSeek-R1-Distill-Qwen-32B -- state-of-the-art among Qwen2.5-32B variants. We are open-sourcing our datasets, pipelines, evaluation results, and checkpoints to facilitate reproducibility and further research.
♻ ☆ Towards Universal Neural Likelihood Inference
We introduce universal neural likelihood inference (UNLI): enabling a single model to provide data-grounded, conditional likelihood predictions for arbitrary targets given any collection of observed features, across diverse domains and tasks. To achieve UNLI over heterogeneous tabular data, we develop the Arbitrary Set-based Permutation-Invariant Reasoning Engine (ASPIRE) model. Our design addresses critical gaps in existing approaches to merge semantic-understanding capabilities and generalised numerical feature reasoning within a zero-shot capable framework. Trained on over 1,400 real diverse datasets spanning various domains, ASPIRE achieves 15\% higher F1 scores and 85\% lower RMSE than existing tabular foundation models in zero-shot and few-shot settings. Lastly, this work introduces open-world active feature acquisition, where we leverage the UNLI capabilities of ASPIRE to adeptly determine next feature-values to observe to improve inference time prediction accuracies.
♻ ☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving ICLR 2026
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
comment: Accepted to ICLR 2026
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco
♻ ☆ ProphetKV: User-Query-Driven Selective Recomputation for Efficient KV Cache Reuse in Retrieval-Augmented Generation
The prefill stage of long-context Retrieval-Augmented Generation (RAG) is severely bottlenecked by computational overhead. To mitigate this, recent methods assemble pre-calculated KV caches of retrieved RAG documents (by a user query) and reprocess selected tokens to recover cross-attention between these pre-calculated KV caches. However, we identify a fundamental "crowding-out effect" in current token selection criteria: globally salient but user-query-irrelevant tokens saturate the limited recomputation budget, displacing the tokens truly essential for answering the user query and degrading inference accuracy. We propose ProphetKV, a user-query-driven KV Cache reuse method for RAG scenarios. ProphetKV dynamically prioritizes tokens based on their semantic relevance to the user query and employs a dual-stage recomputation pipeline to fuse layer-wise attention metrics into a high-utility set. By ensuring the recomputation budget is dedicated to bridging the informational gap between retrieved context and the user query, ProphetKV achieves high-fidelity attention recovery with minimal overhead. Our extensive evaluation results show that ProphetKV retains 96%-101% of full-prefill accuracy with only a 20% recomputation ratio, while achieving accuracy improvements of 8.8%-24.9% on RULER and 18.6%-50.9% on LongBench over the state-of-the-art approaches (e.g., CacheBlend, EPIC, and KVShare).
♻ ☆ Improving Multimodal Brain Encoding Model with Dynamic Subject-awareness Routing ICASSP 2026
Naturalistic fMRI encoding must handle multimodal inputs, shifting fusion styles, and pronounced inter-subject variability. We introduce AFIRE (Agnostic Framework for Multimodal fMRI Response Encoding), an agnostic interface that standardizes time-aligned post-fusion tokens from varied encoders, and MIND, a plug-and-play Mixture-of-Experts decoder with a subject-aware dynamic gating. Trained end-to-end for whole-brain prediction, AFIRE decouples the decoder from upstream fusion, while MIND combines token-dependent Top-K sparse routing with a subject prior to personalize expert usage without sacrificing generality. Experiments across multiple multimodal backbones and subjects show consistent improvements over strong baselines, enhanced cross-subject generalization, and interpretable expert patterns that correlate with content type. The framework offers a simple attachment point for new encoders and datasets, enabling robust, plug-and-improve performance for naturalistic neuroimaging studies.
comment: 7 pages, 4 figures, accepted by ICASSP 2026
♻ ☆ WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
♻ ☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning. However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
♻ ☆ RAPTOR: Ridge-Adaptive Logistic Probes
Probing studies what information is encoded in a frozen LLM's layer representations by training a lightweight predictor on top of them. Beyond analysis, probes are often used operationally in probe-then-steer pipelines: a learned concept vector is extracted from a probe and injected via additive activation steering by adding it to a layer representation during the forward pass. The effectiveness of this pipeline hinges on estimating concept vectors that are accurate, directionally stable under ablation, and inexpensive to obtain. Motivated by these desiderata, we propose RAPTOR (Ridge-Adaptive Logistic Probe), a simple L2-regularized logistic probe whose validation-tuned ridge strength yields concept vectors from normalized weights. Across extensive experiments on instruction-tuned LLMs and human-written concept datasets, RAPTOR matches or exceeds strong baselines in accuracy while achieving competitive directional stability and substantially lower training cost; these quantitative results are supported by qualitative downstream steering demonstrations. Finally, using the Convex Gaussian Min-max Theorem (CGMT), we provide a mechanistic characterization of ridge logistic regression in an idealized Gaussian teacher-student model in the high-dimensional few-shot regime, explaining how penalty strength mediates probe accuracy and concept-vector stability and yielding structural predictions that qualitatively align with trends observed on real LLM embeddings.
comment: Preprint
♻ ☆ Learning Decentralized LLM Collaboration with Multi-Agent Actor Critic
Recent work has explored optimizing LLM collaboration through Multi-Agent Reinforcement Learning (MARL). However, most MARL fine-tuning approaches rely on predefined execution protocols, which often require centralized execution. Decentralized LLM collaboration is more appealing in practice, as agents can run inference in parallel with flexible deployments. Also, current approaches use Monte Carlo methods for fine-tuning, which suffer from high variance and thus require more samples to train effectively. Actor-critic methods are prevalent in MARL for dealing with these issues, so we developed Multi-Agent Actor-Critic (MAAC) methods to optimize decentralized LLM collaboration. In this paper, we analyze when and why these MAAC methods are beneficial. We propose 2 MAAC approaches, \textbf{CoLLM-CC} with a \textbf{C}entralized \textbf{C}ritic and \textbf{CoLLM-DC} with \textbf{D}ecentralized \textbf{C}ritics. Our experiments across writing, coding, and game-playing domains show that Monte Carlo methods and CoLLM-DC can achieve performance comparable to CoLLM-CC in short-horizon and dense-reward settings. However, they both underperform CoLLM-CC on long-horizon or sparse-reward tasks, where Monte Carlo methods require substantially more samples and CoLLM-DC struggles to converge. Our code is available at https://github.com/OpenMLRL/CoMLRL/releases/tag/v1.3.2.
♻ ☆ When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
As large language models (LLMs) become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that manipulates state-of-the-art audio language models to generate harmful content. Our method embeds harmful payloads as subtle perturbations into audio inputs that remain intelligible to human listeners. The first stage uses a novel reward-based white-box optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to jailbreak the target model and elicit harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use gradient-based optimization to embed subtle perturbations into benign audio carriers, such as weather queries or greeting messages. Our method achieves average attack success rates of 60-78% across two benchmarks and five multimodal LLMs, validated by multiple evaluation frameworks. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating multimodal AI systems.
♻ ☆ Toward Multiphysics-Informed Machine Learning for Sustainable Data Center Operations: Intelligence Evolution with Deployable Solutions for Computing Infrastructure
The revolution in artificial intelligence (AI) has brought sustainable challenges in data center management due to the high carbon emissions and short cooling response time associated with high-power density racks. While machine learning (ML) offers promise for intelligent management, its adoption is hindered by safety and reliability concerns. To address this, we propose a multiphysics-informed machine learning (MPIML) framework that integrates physical priors into data-driven models for enhanced accuracy and safety. We introduce an integrated system architecture comprising three core engines: DCLib for versatile facility modeling, DCTwin for high-fidelity multiphysics simulation, and DCBrain for decision-making optimization. This system enables critical predictive and prescriptive applications, such as carbon-aware IT provisioning, safety-aware intelligent cooling control and battery health forecasting. An illustrative example on an industry-grade data center cooling control demonstrates that our MPIML approach reduces annual carbon emissions up to 200 kilotons compared with conventional methods while ensuring operational constraints are met. We conclude by outlining key challenges and future directions for developing autonomous and sustainable data centers.
♻ ☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
♻ ☆ DTS: Enhancing Large Reasoning Models via Decoding Tree Sketching
Large Reasoning Models (LRMs) achieve remarkable inference-time improvements through parallel thinking. However, existing methods rely on redundant sampling of reasoning trajectories, failing to effectively explore the reasoning space to uncover high-quality solutions. To address these limitations, we propose Decoding Tree Sketching (DTS), a plug-and-play decoding framework for structural multi-trajectory exploration and reasoning selection. For reasoning exploration, DTS sketches a backbone tree of the reasoning space by selectively branching at decision tokens. For reasoning selection, guided by length-accuracy anti-correlation, DTS designs an early termination to prioritize short and reliable trajectories during decoding. Experimental results across four LRMs and datasets demonstrate that DTS significantly enhances accuracy by 14% and reduces repetitive generation by 8% on average. Notably, DTS enables smaller models to outperform larger models with 10$\times$ the size, highlighting its potential to strengthen reasoning capabilities.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ Are Graph Attention Networks Able to Model Structural Information?
Graph Attention Networks (GATs) have emerged as powerful models for learning expressive representations from such data by adaptively weighting neighboring nodes through attention mechanisms. However, most existing approaches primarily rely on node attributes and direct neighborhood connections, often overlooking rich structural patterns that capture higher-order topological information crucial for many real-world datasets. In this work, we present the Graph Structure Attention Network (GSAT), a novel extension of GAT that jointly integrates attribute-based and structure-based representations for more effective graph learning. GSAT incorporates structural features derived from anonymous random walks (ARWs) and graph kernels to encode local topological information, enabling attention mechanisms to adapt based on the underlying graph structure. This design enhances the model's ability to discern meaningful relational dependencies within complex data. Comprehensive experiments on standard graph classification and regression benchmarks demonstrate that GSAT achieves consistent improvements over state-of-the-art graph learning methods, highlighting the value of incorporating structural context for representation learning on graphs.
comment: 15 pages including appendix. The paper is complete
♻ ☆ The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing LLMs' capabilities. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, thereby improving precision. This study presents an empirical investigation that provides fresh insights into the limits of RLVR. We examine how RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely original solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves \texttt{pass@1}, \textit{the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets}, failing to recover correct answers that were previously accessible to the base model. Interestingly, while RLVR sometimes increases token-level entropy, it results in greater uncertainty at each generation step and declining answer-level entropy. This indicates that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, we reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash requires future innovations that seed probability mass into underrepresented solution regions.
♻ ☆ Cooperative Flexibility Exchange: Fair and Comfort-Aware Decentralized Resource Allocation
The growing electricity demand and use of smart appliances are placing pressure on power grids, making efficient energy management more important than ever. The existing energy management systems often prioritize system efficiency (balanced energy demand and supply) at the expense of consumer comfort. This paper addresses this gap by proposing a novel decentralized multi-agent coordination-based demand-side management system. The proposed system enables individual agents to coordinate for demand-side energy optimization while improving consumer comfort and maintaining system efficiency. A key innovation of this work is the introduction of a slot exchange mechanism, where agents first receive optimized appliance-level energy consumption schedules and then coordinate with each other to adjust these schedules through slot exchanges to improve their comfort even when agents show non-altruistic behaviour. It also scales well with large populations and promotes fairness by balancing satisfaction levels across consumers. For performance evaluation, a real-world dataset is used, and the results demonstrate that the proposed slot exchange mechanism increases consumer comfort and fairness without raising system inefficiency cost, making it a practical and scalable solution for future smart grids.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: Accepted to TMLR (2026)
♻ ☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +16.7pp while quality metrics improve by up to 47%, validating that per-action supervision can lead to improvements across different multiagent systems on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
♻ ☆ When Does Adaptation Win? Scaling Laws for Meta-Learning in Quantum Control
Quantum hardware suffers from intrinsic device heterogeneity and environmental drift, forcing practitioners to choose between suboptimal non-adaptive controllers or costly per-device recalibration. We derive a scaling law lower bound for meta-learning showing that the adaptation gain (expected fidelity improvement from task-specific gradient steps) saturates exponentially with gradient steps and scales linearly with task variance, providing a quantitative criterion for when adaptation justifies its overhead. Validation on quantum gate calibration shows negligible benefits for low-variance tasks but $>40\%$ fidelity gains on two-qubit gates under extreme out-of-distribution conditions (10$\times$ the training noise), with implications for reducing per-device calibration time on cloud quantum processors. Further validation on classical linear-quadratic control confirms these laws emerge from general optimization geometry rather than quantum-specific physics. Together, these results offer a transferable framework for decision-making in adaptive control.
comment: 28 pages, 11 figures
♻ ☆ Improving Low-Resource Machine Translation via Round-Trip Reinforcement Learning
Low-resource machine translation (MT) has gained increasing attention as parallel data from low-resource language communities is collected, but many potential methods for improving low-resource MT remain unexplored. We investigate a self-supervised reinforcement-learning-based fine-tuning for translation in low-resource settings using round-trip bootstrapping with the No Language Left Behind (NLLB) family of models. Our approach translates English into a target low-resource language and then back into English, using a combination of chrF++ and BLEU as the reward function on the reconstructed English sentences. Using the NLLB-MD dataset, we evaluate both the 600M and 1.3B parameter NLLB models and observe consistent improvements for the following languages: Central Aymara, Friulian, Wolof and Russian. Qualitative inspection of translation outputs indicates increased fluency and semantic fidelity. We argue that our method can further benefit from scale, enabling models to increasingly leverage their pretrained knowledge and continue self-improving. The code is available on github: https://github.com/Copticoder/thesis-nllb-bootstrap-grpo.
♻ ☆ Explanations are a Means to an End: Decision Theoretic Explanation Evaluation
Explanations of model behavior are commonly evaluated via proxy properties weakly tied to the purposes explanations serve in practice. We contribute a decision theoretic framework that treats explanations as information signals valued by the expected improvement they enable on a specified decision task. This approach yields three distinct estimands: 1) a theoretical benchmark that upperbounds achievable performance by any agent with the explanation, 2) a human-complementary value that quantifies the theoretically attainable value that is not already captured by a baseline human decision policy, and 3) a behavioral value representing the causal effect of providing the explanation to human decision-makers. We instantiate these definitions in a practical validation workflow, and apply them to assess explanation potential and interpret behavioral effects in human-AI decision support and mechanistic interpretability.
♻ ☆ Neural Networks Learn Generic Multi-Index Models Near Information-Theoretic Limit ICLR 2026
In deep learning, a central issue is to understand how neural networks efficiently learn high-dimensional features. To this end, we explore the gradient descent learning of a general Gaussian Multi-index model $f(\boldsymbol{x})=g(\boldsymbol{U}\boldsymbol{x})$ with hidden subspace $\boldsymbol{U}\in \mathbb{R}^{r\times d}$, which is the canonical setup to study representation learning. We prove that under generic non-degenerate assumptions on the link function, a standard two-layer neural network trained via layer-wise gradient descent can agnostically learn the target with $o_d(1)$ test error using $\widetilde{\mathcal{O}}(d)$ samples and $\widetilde{\mathcal{O}}(d^2)$ time. The sample and time complexity both align with the information-theoretic limit up to leading order and are therefore optimal. During the first stage of gradient descent learning, the proof proceeds via showing that the inner weights can perform a power-iteration process. This process implicitly mimics a spectral start for the whole span of the hidden subspace and eventually eliminates finite-sample noise and recovers this span. It surprisingly indicates that optimal results can only be achieved if the first layer is trained for more than $\mathcal{O}(1)$ steps. This work demonstrates the ability of neural networks to effectively learn hierarchical functions with respect to both sample and time efficiency.
comment: 85 pages, 2 figures. The order of the first two authors was determined by a coin flip. Accepted by ICLR 2026
♻ ☆ Amortized Sampling with Transferable Normalizing Flows NeurIPS 2025
Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Classical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in full for each system of interest. The widespread success of generative models has inspired interest towards overcoming this limitation through learning sampling algorithms. Despite performing competitively with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We demonstrate that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 285 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based fine-tuning procedure to achieve competitive performance to established methods such as sequential Monte Carlo. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and objectives.
comment: Presented at NeurIPS 2025
♻ ☆ Robust Answers, Fragile Logic: Probing the Decoupling Hypothesis in LLM Reasoning
While Chain-of-Thought (CoT) prompting has become a cornerstone for complex reasoning in Large Language Models (LLMs), the faithfulness of the generated reasoning remains an open question. We investigate the Decoupling Hypothesis: that correct answers often mask fragile, post-hoc rationalizations that are not causally tied to the model's prediction. To systematically verify this, we introduce MATCHA, a novel Answer-Conditioned Probing framework. Unlike standard evaluations that focus on final output accuracy, MATCHA isolates the reasoning phase by conditioning generation on the model's predicted answer, allowing us to stress-test the stability of the rationale itself. Our experiments reveal a critical vulnerability: under imperceptible input perturbations, LLMs frequently maintain the correct answer while generating inconsistent or nonsensical reasoning - effectively being ``Right for the Wrong Reasons''. Using LLM judges to quantify this robustness gap, we find that multi-step and commonsense tasks are significantly more susceptible to this decoupling than logical tasks. Furthermore, we demonstrate that adversarial examples generated by MATCHA transfer non-trivially to black-box models. Our findings expose the illusion of CoT robustness and underscore the need for future architectures that enforce genuine answer-reasoning consistency rather than mere surface-level accuracy.
♻ ☆ Controlling the Risk of Corrupted Contexts for Language Models via Early-Exiting
Large language models (LLMs) can be influenced by harmful or irrelevant context, which can significantly harm model performance on downstream tasks. This motivates principled designs in which LLM systems include built-in mechanisms to guard against such ``garbage in, garbage out'' scenarios. We propose a novel approach to limit the degree to which harmful context can degrade model performance. First, we define a baseline ``safe'' behavior for the model -- the model's performance given no context at all (zero-shot). Next, we apply distribution-free risk control (DFRC) to control the extent to which the user-provided context can decay performance below this safe zero-shot baseline. We achieve this by leveraging dynamic early exit prediction, ignoring later attention heads that attend the most to the unsafe inputs. Finally, we propose modifications to DFRC that allow it to both control risk for harmful inputs and leverage performance and efficiency gains on helpful inputs. We present both theoretical and empirical results across 9 tasks spanning in-context learning and open-ended question answering, showing that our approach can effectively control risk for harmful context and simultaneously achieve substantial computational efficiency gains with helpful context.
♻ ☆ Reflexis: Supporting Reflexivity and Rigor in Collaborative Qualitative Analysis through Design for Deliberation
Reflexive Thematic Analysis (RTA) is a critical method for generating deep interpretive insights. Yet its core tenets, including researcher reflexivity, tangible analytical evolution, and productive disagreement, are often poorly supported by software tools that prioritize speed and consensus over interpretive depth. To address this gap, we introduce Reflexis, a collaborative workspace that centers these practices. It supports reflexivity by integrating in-situ reflection prompts, makes code evolution transparent and tangible, and scaffolds collaborative interpretation by turning differences into productive, positionality-aware dialogue. Results from our paired-analyst study (N=12) indicate that Reflexis encouraged participants toward more granular reflection and reframed disagreements as productive conversations. The evaluation also surfaced key design tensions, including a desire for higher-level, networked memos and more user control over the timing of proactive alerts. Reflexis contributes a design framework for tools that prioritize rigor and transparency to support deep, collaborative interpretation in an age of automation.
comment: Accepted at CHI 26
♻ ☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
comment: Accepted Manuscript
♻ ☆ Beyond Prompting: Efficient and Robust Contextual Biasing for Speech LLMs via Logit-Space Integration (LOGIC)
The rapid emergence of new entities -- driven by cultural shifts, evolving trends, and personalized user data -- poses a significant challenge for existing Speech Large Language Models (Speech LLMs). While these models excel at general conversational tasks, their static training knowledge limits their ability to recognize domain-specific terms such as contact names, playlists, or technical jargon. Existing solutions primarily rely on prompting, which suffers from poor scalability: as the entity list grows, prompting encounters context window limitations, increased inference latency, and the "lost-in-the-middle" phenomenon. An alternative approach, Generative Error Correction (GEC), attempts to rewrite transcripts via post-processing but frequently suffers from "over-correction", introducing hallucinations of entities that were never spoken. In this work, we introduce LOGIC (Logit-Space Integration for Contextual Biasing), an efficient and robust framework that operates directly in the decoding layer. Unlike prompting, LOGIC decouples context injection from input processing, ensuring constant-time complexity relative to prompt length. Extensive experiments using the Phi-4-MM model across 11 multilingual locales demonstrate that LOGIC achieves an average 9% relative reduction in Entity WER with a negligible 0.30% increase in False Alarm Rate.
comment: This paper is withdrawn temporarily to ensure full compliance with internal institutional publication approval processes
♻ ☆ CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling aims to predict cellular responses to diverse perturbations but faces challenges from biological complexity, multimodal data heterogeneity, and the need for interdisciplinary expertise. We introduce CellForge, a multi-agent framework that autonomously designs and synthesizes neural network architectures tailored to specific single-cell datasets and perturbation tasks. Given raw multi-omics data and task descriptions, CellForge discovers candidate architectures through collaborative reasoning among specialized agents, then generates executable implementations. Our core contribution is the framework itself: showing that multi-agent collaboration mechanisms - rather than manual human design or single-LLM prompting - can autonomously produce executable, high-quality computational methods. This approach goes beyond conventional hyperparameter tuning by enabling entirely new architectural components such as trajectory-aware encoders and perturbation diffusion modules to emerge from agentic deliberation. We evaluate CellForge on six datasets spanning gene knockouts, drug treatments, and cytokine stimulations across multiple modalities (scRNA-seq, scATAC-seq, CITE-seq). The results demonstrate that the models generated by CellForge are highly competitive with established baselines, while revealing systematic patterns of architectural innovation. CellForge highlights the scientific value of multi-agent frameworks: collaboration among specialized agents enables genuine methodological innovation and executable solutions that single agents or human experts cannot achieve. This represents a paradigm shift toward autonomous scientific method development in computational biology. Code is available at https://github.com/gersteinlab/CellForge.
Computation and Language 174
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
☆ Decomposed Prompting Does Not Fix Knowledge Gaps, But Helps Models Say "I Don't Know"
Large language models often struggle to recognize their knowledge limits in closed-book question answering, leading to confident hallucinations. While decomposed prompting is typically used to improve accuracy, we investigate its impact on reliability. We evaluate three task-equivalent prompting regimes: Direct, Assistive, and Incremental, across different model scales and multi-hop QA benchmarks. We find that although accuracy gains from decomposition diminish in frontier models, disagreements between prompting regimes remain highly indicative of potential errors. Because factual knowledge is stable while hallucinations are stochastic, cross-regime agreement provides a precise signal of internal uncertainty. We leverage this signal to implement a training-free abstention policy that requires no retrieval or fine-tuning. Our results show that disagreement-based abstention outperforms standard uncertainty baselines as an error detector, improving both F1 and AUROC across settings. This demonstrates that decomposition-based prompting can serve as a practical diagnostic probe for model reliability in closed-book QA.
☆ Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
☆ SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ OmniSIFT: Modality-Asymmetric Token Compression for Efficient Omni-modal Large Language Models
Omni-modal Large Language Models (Omni-LLMs) have demonstrated strong capabilities in audio-video understanding tasks. However, their reliance on long multimodal token sequences leads to substantial computational overhead. Despite this challenge, token compression methods designed for Omni-LLMs remain limited. To bridge this gap, we propose OmniSIFT (Omni-modal Spatio-temporal Informed Fine-grained Token compression), a modality-asymmetric token compression framework tailored for Omni-LLMs. Specifically, OmniSIFT adopts a two-stage compression strategy: (i) a spatio-temporal video pruning module that removes video redundancy arising from both intra-frame structure and inter-frame overlap, and (ii) a vision-guided audio selection module that filters audio tokens. The entire framework is optimized end-to-end via a differentiable straight-through estimator. Extensive experiments on five representative benchmarks demonstrate the efficacy and robustness of OmniSIFT. Notably, for Qwen2.5-Omni-7B, OmniSIFT introduces only 4.85M parameters while maintaining lower latency than training-free baselines such as OmniZip. With merely 25% of the original token context, OmniSIFT consistently outperforms all compression baselines and even surpasses the performance of the full-token model on several tasks.
comment: Code will be released soon
☆ Speaker-Aware Simulation Improves Conversational Speech Recognition
Automatic speech recognition (ASR) for conversational speech remains challenging due to the limited availability of large-scale, well-annotated multi-speaker dialogue data and the complex temporal dynamics of natural interactions. Speaker-aware simulated conversations (SASC) offer an effective data augmentation strategy by transforming single-speaker recordings into realistic multi-speaker dialogues. However, prior work has primarily focused on English data, leaving questions about the applicability to lower-resource languages. In this paper, we adapt and implement the SASC framework for Hungarian conversational ASR. We further propose C-SASC, an extended variant that incorporates pause modeling conditioned on utterance duration, enabling a more faithful representation of local temporal dependencies observed in human conversation while retaining the simplicity and efficiency of the original approach. We generate synthetic Hungarian dialogues from the BEA-Large corpus and combine them with real conversational data for ASR training. Both SASC and C-SASC are evaluated extensively under a wide range of simulation configurations, using conversational statistics derived from CallHome, BEA-Dialogue, and GRASS corpora. Experimental results show that speaker-aware conversational simulation consistently improves recognition performance over naive concatenation-based augmentation. While the additional duration conditioning in C-SASC yields modest but systematic gains--most notably in character-level error rates--its effectiveness depends on the match between source conversational statistics and the target domain. Overall, our findings confirm the robustness of speaker-aware conversational simulation for Hungarian ASR and highlight the benefits and limitations of increasingly detailed temporal modeling in synthetic dialogue generation.
☆ Beyond Many-Shot Translation: Scaling In-Context Demonstrations For Low-Resource Machine Translation EACL 2026
Building machine translation (MT) systems for low-resource languages is notably difficult due to the scarcity of high-quality data. Although Large Language Models (LLMs) have improved MT system performance, adapting them to lesser-represented languages remains challenging. In-context learning (ICL) may offer novel ways to adapt LLMs for low-resource MT by conditioning models on demonstration at inference time. In this study, we explore scaling low-resource machine translation ICL beyond the few-shot setting to thousands of examples with long-context models. We scale in-context token budget to 1M tokens and compare three types of training corpora used as in-context supervision: monolingual unsupervised data, instruction-style data, and parallel data (English--target and Indonesian--target). Our experiments on Javanese and Sundanese show that gains from additional context saturate quickly and can degrade near the maximum context window, with scaling behavior strongly dependent on corpus type. Notably, some forms of monolingual supervision can be competitive with parallel data, despite the latter offering additional supervision. Overall, our results characterize the effective limits and corpus-type sensitivity of long-context ICL for low-resource MT, highlighting that larger context windows do not necessarily yield proportional quality gains.
comment: 8 pages, 18 figures, EACL 2026 Conference - LoResMT workshop
☆ When Silence Is Golden: Can LLMs Learn to Abstain in Temporal QA and Beyond? ICLR2026
Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
comment: Accepted to ICLR2026
☆ Exploiting contextual information to improve stance detection in informal political discourse with LLMs
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
comment: 14 pages, 7 figures
☆ Inference-Time Reasoning Selectively Reduces Implicit Social Bias in Large Language Models
Drawing on constructs from psychology, prior work has identified a distinction between explicit and implicit bias in large language models (LLMs). While many LLMs undergo post-training alignment and safety procedures to avoid expressions of explicit social bias, they still exhibit significant implicit biases on indirect tasks resembling the Implicit Association Test (IAT). Recent work has further shown that inference-time reasoning can impair LLM performance on tasks that rely on implicit statistical learning. Motivated by a theoretical link between implicit associations and statistical learning in human cognition, we examine how reasoning-enabled inference affects implicit bias in LLMs. We find that enabling reasoning significantly reduces measured implicit bias on an IAT-style evaluation for some model classes across fifteen stereotype topics. This effect appears specific to social bias domains, as we observe no corresponding reduction for non-social implicit associations. As reasoning is increasingly enabled by default in deployed LLMs, these findings suggest that it can meaningfully alter fairness evaluation outcomes in some systems, while also raising questions about how alignment procedures interact with inference-time reasoning to drive variation in bias reduction across model types. More broadly, this work highlights how theory from cognitive science and psychology can complement AI evaluation research by providing methodological and interpretive frameworks that reveal new insights into model behavior.
☆ Alignment Drift in Multimodal LLMs: A Two-Phase, Longitudinal Evaluation of Harm Across Eight Model Releases
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
comment: under peer-review
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Less Finetuning, Better Retrieval: Rethinking LLM Adaptation for Biomedical Retrievers via Synthetic Data and Model Merging
Retrieval-augmented generation (RAG) has become the backbone of grounding Large Language Models (LLMs), improving knowledge updates and reducing hallucinations. Recently, LLM-based retriever models have shown state-of-the-art performance for RAG applications. However, several technical aspects remain underexplored on how to adapt general-purpose LLMs into effective domain-specific retrievers, especially in specialized domains such as biomedicine. We present Synthesize-Train-Merge (STM), a modular framework that enhances decoder-only LLMs with synthetic hard negatives, retrieval prompt optimization, and model merging. Experiments on a subset of 12 medical and general tasks from the MTEB benchmark show STM boosts task-specific experts by up to 23.5\% (average 7.5\%) and produces merged models that outperform both single experts and strong baselines without extensive pretraining. Our results demonstrate a scalable, efficient path for turning general LLMs into high-performing, domain-specialized retrievers, preserving general-domain capabilities while excelling on specialized tasks.
comment: Preprint
☆ "Be My Cheese?": Cultural Nuance Benchmarking for Machine Translation in Multilingual LLMs
We present a large-scale human evaluation benchmark for assessing cultural localisation in machine translation produced by state-of-the-art multilingual large language models (LLMs). Existing MT benchmarks emphasise token-level and grammatical accuracy, but of ten overlook pragmatic and culturally grounded competencies required for real-world localisation. Building on a pilot study of 87 translations across 20 languages, we evaluate 7 multilingual LLMs across 15 target languages with 5 native-speaker raters per language. Raters scored both full-text translations and segment-level instances of culturally nuanced language (idioms, puns, holidays, and culturally embedded concepts) on an ordinal 0-3 quality scale; segment ratings additionally included an NA option for untranslated segments. Across full-text evaluations, mean overall quality is modest (1.68/3): GPT-5 (2.10/3), Claude Sonnet 3.7 (1.97/3), and Mistral Medium 3.1 (1.84/3) form the strongest tier with fewer catastrophic failures. Segment-level results show sharp category effects: holidays (2.20/3) and cultural concepts (2.19/3) translate substantially better than idioms (1.65/3) and puns (1.45/3), and idioms are most likely to be left untranslated. These findings demonstrate a persistent gap between grammatical adequacy and cultural resonance. To our knowledge, this is the first multilingual, human-annotated benchmark focused explicitly on cultural nuance in translation and localisation, highlighting the need for culturally informed training data, improved cross-lingual pragmatics, and evaluation paradigms that better reflect real-world communicative competence.
comment: under peer-review
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Linguistically Informed Evaluation of Multilingual ASR for African Languages
Word Error Rate (WER) mischaracterizes ASR models' performance for African languages by combining phonological, tone, and other linguistic errors into a single lexical error. By contrast, Feature Error Rate (FER) has recently attracted attention as a viable metric that reveals linguistically meaningful errors in models' performance. In this paper, we evaluate three speech encoders on two African languages by complementing WER with CER, and FER, and add a tone-aware extension (TER). We show that by computing errors on phonological features, FER and TER reveal linguistically-salient error patterns even when word-level accuracy remains low. Our results reveal that models perform better on segmental features, while tones (especially mid and downstep) remain the most challenging features. Results on Yoruba show a striking differential in metrics, with WER=0.788, CER=0.305, and FER=0.151. Similarly for Uneme (an endangered language absent from pretraining data) a model with near-total WER and 0.461 CER achieves the relatively low FER of 0.267. This indicates model error is often attributable to individual phonetic feature errors, which is obscured by all-or-nothing metrics like WER.
comment: To appear at AfricaNLP 2026
☆ LiteToken: Removing Intermediate Merge Residues From BPE Tokenizers
Tokenization is fundamental to how language models represent and process text, yet the behavior of widely used BPE tokenizers has received far less study than model architectures and training. In this paper, we investigate intermediate merge residues in BPE vocabularies: tokens that are frequent during merge learning so that retained in the final vocabulary, but are mostly further merged and rarely emitted when tokenizing the corpus during tokenizer usage. Such low-frequency tokens not only waste vocabulary capacity but also increase vulnerability to adversarial or atypical inputs. We present a systematic empirical characterization of this phenomenon across commonly used tokenizers and introduce LiteToken, a simple method for removing residue tokens. Because the affected tokens are rarely used, pretrained models can often accommodate the modified tokenizer without additional fine-tuning. Experiments show that LiteToken reduces token fragmentation, reduces parameters, and improves robustness to noisy or misspelled inputs, while preserving overall performance.
☆ ERNIE 5.0 Technical Report
In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
☆ LinGO: A Linguistic Graph Optimization Framework with LLMs for Interpreting Intents of Online Uncivil Discourse
Detecting uncivil language is crucial for maintaining safe, inclusive, and democratic online spaces. Yet existing classifiers often misinterpret posts containing uncivil cues but expressing civil intents, leading to inflated estimates of harmful incivility online. We introduce LinGO, a linguistic graph optimization framework for large language models (LLMs) that leverages linguistic structures and optimization techniques to classify multi-class intents of incivility that use various direct and indirect expressions. LinGO decomposes language into multi-step linguistic components, identifies targeted steps that cause the most errors, and iteratively optimizes prompt and/or example components for targeted steps. We evaluate it using a dataset collected during the 2022 Brazilian presidential election, encompassing four forms of political incivility: Impoliteness (IMP), Hate Speech and Stereotyping (HSST), Physical Harm and Violent Political Rhetoric (PHAVPR), and Threats to Democratic Institutions and Values (THREAT). Each instance is annotated with six types of civil/uncivil intent. We benchmark LinGO using three cost-efficient LLMs: GPT-5-mini, Gemini 2.5 Flash-Lite, and Claude 3 Haiku, and four optimization techniques: TextGrad, AdalFlow, DSPy, and Retrieval-Augmented Generation (RAG). The results show that, across all models, LinGO consistently improves accuracy and weighted F1 compared with zero-shot, chain-of-thought, direct optimization, and fine-tuning baselines. RAG is the strongest optimization technique and, when paired with Gemini model, achieves the best overall performance. These findings demonstrate that incorporating multi-step linguistic components into LLM instructions and optimize targeted components can help the models explain complex semantic meanings, which can be extended to other complex semantic explanation tasks in the future.
☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ Overstating Attitudes, Ignoring Networks: LLM Biases in Simulating Misinformation Susceptibility
Large language models (LLMs) are increasingly used as proxies for human judgment in computational social science, yet their ability to reproduce patterns of susceptibility to misinformation remains unclear. We test whether LLM-simulated survey respondents, prompted with participant profiles drawn from social survey data measuring network, demographic, attitudinal and behavioral features, can reproduce human patterns of misinformation belief and sharing. Using three online surveys as baselines, we evaluate whether LLM outputs match observed response distributions and recover feature-outcome associations present in the original survey data. LLM-generated responses capture broad distributional tendencies and show modest correlation with human responses, but consistently overstate the association between belief and sharing. Linear models fit to simulated responses exhibit substantially higher explained variance and place disproportionate weight on attitudinal and behavioral features, while largely ignoring personal network characteristics, relative to models fit to human responses. Analyses of model-generated reasoning and LLM training data suggest that these distortions reflect systematic biases in how misinformation-related concepts are represented. Our findings suggest that LLM-based survey simulations are better suited for diagnosing systematic divergences from human judgment than for substituting it.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Approaches to Semantic Textual Similarity in Slovak Language: From Algorithms to Transformers IEEE 24
Semantic textual similarity (STS) plays a crucial role in many natural language processing tasks. While extensively studied in high-resource languages, STS remains challenging for under-resourced languages such as Slovak. This paper presents a comparative evaluation of sentence-level STS methods applied to Slovak, including traditional algorithms, supervised machine learning models, and third-party deep learning tools. We trained several machine learning models using outputs from traditional algorithms as features, with feature selection and hyperparameter tuning jointly guided by artificial bee colony optimization. Finally, we evaluated several third-party tools, including fine-tuned model by CloudNLP, OpenAI's embedding models, GPT-4 model, and pretrained SlovakBERT model. Our findings highlight the trade-offs between different approaches.
comment: This is a preprint of a paper that was presented at the IEEE 24th World Symposium on Applied Machine Intelligence and Informatics (SAMI 2026)
☆ Outcome Accuracy is Not Enough: Aligning the Reasoning Process of Reward Models
Generative Reward Models (GenRMs) and LLM-as-a-Judge exhibit deceptive alignment by producing correct judgments for incorrect reasons, as they are trained and evaluated to prioritize Outcome Accuracy, which undermines their ability to generalize during RLHF. We introduce Rationale Consistency, a fine-grained metric that quantifies the alignment between the model's reasoning process and human judgment. Our evaluation of frontier models reveals that rationale consistency effectively discriminates among state-of-the-art models and detects deceptive alignment, while outcome accuracy falls short in both respects. To mitigate this gap, we introduce a hybrid signal that combines rationale consistency with outcome accuracy for GenRM training. Our training method achieves state-of-the-art performance on RM-Bench (87.1%) and JudgeBench (82%), surpassing outcome-only baselines by an average of 5%. Using RM during RLHF, our method effectively improves performance as demonstrated on Arena Hard v2, notably yielding a 7% improvement in creative writing tasks. Further analysis confirms that our method escapes the deceptive alignment trap, effectively reversing the decline in rationale consistency observed in outcome-only training.
☆ Mapping the Web of Science, a large-scale graph and text-based dataset with LLM embeddings
Large text data sets, such as publications, websites, and other text-based media, inherit two distinct types of features: (1) the text itself, its information conveyed through semantics, and (2) its relationship to other texts through links, references, or shared attributes. While the latter can be described as a graph structure and can be handled by a range of established algorithms for classification and prediction, the former has recently gained new potential through the use of LLM embedding models. Demonstrating these possibilities and their practicability, we investigate the Web of Science dataset, containing ~56 million scientific publications through the lens of our proposed embedding method, revealing a self-structured landscape of texts.
☆ LEAD: Layer-wise Expert-aligned Decoding for Faithful Radiology Report Generation
Radiology Report Generation (RRG) aims to produce accurate and coherent diagnostics from medical images. Although large vision language models (LVLM) improve report fluency and accuracy, they exhibit hallucinations, generating plausible yet image-ungrounded pathological details. Existing methods primarily rely on external knowledge guidance to facilitate the alignment between generated text and visual information. However, these approaches often ignore the inherent decoding priors and vision-language alignment biases in pretrained models and lack robustness due to reliance on constructed guidance. In this paper, we propose Layer-wise Expert-aligned Decoding (LEAD), a novel method to inherently modify the LVLM decoding trajectory. A multiple experts module is designed for extracting distinct pathological features which are integrated into each decoder layer via a gating mechanism. This layer-wise architecture enables the LLM to consult expert features at every inference step via a learned gating function, thereby dynamically rectifying decoding biases and steering the generation toward factual consistency. Experiments conducted on multiple public datasets demonstrate that the LEAD method yields effective improvements in clinical accuracy metrics and mitigates hallucinations while preserving high generation quality.
☆ Disentangling meaning from language in LLM-based machine translation
Mechanistic Interpretability (MI) seeks to explain how neural networks implement their capabilities, but the scale of Large Language Models (LLMs) has limited prior MI work in Machine Translation (MT) to word-level analyses. We study sentence-level MT from a mechanistic perspective by analyzing attention heads to understand how LLMs internally encode and distribute translation functions. We decompose MT into two subtasks: producing text in the target language (i.e. target language identification) and preserving the input sentence's meaning (i.e. sentence equivalence). Across three families of open-source models and 20 translation directions, we find that distinct, sparse sets of attention heads specialize in each subtask. Based on this insight, we construct subtask-specific steering vectors and show that modifying just 1% of the relevant heads enables instruction-free MT performance comparable to instruction-based prompting, while ablating these heads selectively disrupts their corresponding translation functions.
comment: 61 pages, 70 figures
☆ Focus-LIME: Surgical Interpretation of Long-Context Large Language Models via Proxy-Based Neighborhood Selection
As Large Language Models (LLMs) scale to handle massive context windows, achieving surgical feature-level interpretation is essential for high-stakes tasks like legal auditing and code debugging. However, existing local model-agnostic explanation methods face a critical dilemma in these scenarios: feature-based methods suffer from attribution dilution due to high feature dimensionality, thus failing to provide faithful explanations. In this paper, we propose Focus-LIME, a coarse-to-fine framework designed to restore the tractability of surgical interpretation. Focus-LIME utilizes a proxy model to curate the perturbation neighborhood, allowing the target model to perform fine-grained attribution exclusively within the optimized context. Empirical evaluations on long-context benchmarks demonstrate that our method makes surgical explanations practicable and provides faithful explanations to users.
☆ RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
comment: Blog: https://huggingface.co/blog/thebajajra/rexbert-encoders Models: https://huggingface.co/collections/thebajajra/rexbert Ecom-niverse Dataset: https://huggingface.co/datasets/thebajajra/Ecom-niverse
☆ Beyond Holistic Scores: Automatic Trait-Based Quality Scoring of Argumentative Essays
Automated Essay Scoring systems have traditionally focused on holistic scores, limiting their pedagogical usefulness, especially in the case of complex essay genres such as argumentative writing. In educational contexts, teachers and learners require interpretable, trait-level feedback that aligns with instructional goals and established rubrics. In this paper, we study trait-based Automatic Argumentative Essay Scoring using two complementary modeling paradigms designed for realistic educational deployment: (1) structured in-context learning with small open-source LLMs, and (2) a supervised, encoder-based BigBird model with a CORAL-style ordinal regression formulation, optimized for long-sequence understanding. We conduct a systematic evaluation on the ASAP++ dataset, which includes essay scores across five quality traits, offering strong coverage of core argumentation dimensions. LLMs are prompted with designed, rubric-aligned in-context examples, along with feedback and confidence requests, while we explicitly model ordinality in scores with the BigBird model via the rank-consistent CORAL framework. Our results show that explicitly modeling score ordinality substantially improves agreement with human raters across all traits, outperforming LLMs and nominal classification and regression-based baselines. This finding reinforces the importance of aligning model objectives with rubric semantics for educational assessment. At the same time, small open-source LLMs achieve a competitive performance without task-specific fine-tuning, particularly for reasoning-oriented traits, while enabling transparent, privacy-preserving, and locally deployable assessment scenarios. Our findings provide methodological, modeling, and practical insights for the design of AI-based educational systems that aim to deliver interpretable, rubric-aligned feedback for argumentative writing.
☆ VILLAIN at AVerImaTeC: Verifying Image-Text Claims via Multi-Agent Collaboration EACL 2026
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
comment: A system description paper for the AVerImaTeC shared task at the Ninth FEVER Workshop (co-located with EACL 2026)
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ AIANO: Enhancing Information Retrieval with AI-Augmented Annotation
The rise of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) has rapidly increased the need for high-quality, curated information retrieval datasets. These datasets, however, are currently created with off-the-shelf annotation tools that make the annotation process complex and inefficient. To streamline this process, we developed a specialized annotation tool - AIANO. By adopting an AI-augmented annotation workflow that tightly integrates human expertise with LLM assistance, AIANO enables annotators to leverage AI suggestions while retaining full control over annotation decisions. In a within-subject user study ($n = 15$), participants created question-answering datasets using both a baseline tool and AIANO. AIANO nearly doubled annotation speed compared to the baseline while being easier to use and improving retrieval accuracy. These results demonstrate that AIANO's AI-augmented approach accelerates and enhances dataset creation for information retrieval tasks, advancing annotation capabilities in retrieval-intensive domains.
☆ Semantic Self-Distillation for Language Model Uncertainty
Large language models present challenges for principled uncertainty quantification, in part due to their complexity and the diversity of their outputs. Semantic dispersion, or the variance in the meaning of sampled answers, has been proposed as a useful proxy for model uncertainty, but the associated computational cost prohibits its use in latency-critical applications. We show that sampled semantic distributions can be distilled into lightweight student models which estimate a prompt-conditioned uncertainty before the language model generates an answer token. The student model predicts a semantic distribution over possible answers; the entropy of this distribution provides an effective uncertainty signal for hallucination prediction, and the probability density allows candidate answers to be evaluated for reliability. On TriviaQA, our student models match or outperform finite-sample semantic dispersion for hallucination prediction and provide a strong signal for out-of-domain answer detection. We term this technique Semantic Self-Distillation (SSD), which we suggest provides a general framework for distilling predictive uncertainty in complex output spaces beyond language.
☆ Can LLMs capture stable human-generated sentence entropy measures?
Predicting upcoming words is a core mechanism of language comprehension and may be quantified using Shannon entropy. There is currently no empirical consensus on how many human responses are required to obtain stable and unbiased entropy estimates at the word level. Moreover, large language models (LLMs) are increasingly used as substitutes for human norming data, yet their ability to reproduce stable human entropy remains unclear. Here, we address both issues using two large publicly available cloze datasets in German 1 and English 2. We implemented a bootstrap-based convergence analysis that tracks how entropy estimates stabilize as a function of sample size. Across both languages, more than 97% of sentences reached stable entropy estimates within the available sample sizes. 90% of sentences converged after 111 responses in German and 81 responses in English, while low-entropy sentences (<1) required as few as 20 responses and high-entropy sentences (>2.5) substantially more. These findings provide the first direct empirical validation for common norming practices and demonstrate that convergence critically depends on sentence predictability. We then compared stable human entropy values with entropy estimates derived from several LLMs, including GPT-4o, using both logit-based probability extraction and sampling-based frequency estimation, GPT2-xl/german-GPT-2, RoBERTa Base/GottBERT, and LLaMA 2 7B Chat. GPT-4o showed the highest correspondence with human data, although alignment depended strongly on the extraction method and prompt design. Logit-based estimates minimized absolute error, whereas sampling-based estimates were better in capturing the dispersion of human variability. Together, our results establish practical guidelines for human norming and show that while LLMs can approximate human entropy, they are not interchangeable with stable human-derived distributions.
☆ Textual Planning with Explicit Latent Transitions
Planning with LLMs is bottlenecked by token-by-token generation and repeated full forward passes, making multi-step lookahead and rollout-based search expensive in latency and compute. We propose EmbedPlan, which replaces autoregressive next-state generation with a lightweight transition model operating in a frozen language embedding space. EmbedPlan encodes natural language state and action descriptions into vectors, predicts the next-state embedding, and retrieves the next state by nearest-neighbor similarity, enabling fast planning computation without fine-tuning the encoder. We evaluate next-state prediction across nine classical planning domains using six evaluation protocols of increasing difficulty: interpolation, plan-variant, extrapolation, multi-domain, cross-domain, and leave-one-out. Results show near-perfect interpolation performance but a sharp degradation when generalization requires transfer to unseen problems or unseen domains; plan-variant evaluation indicates generalization to alternative plans rather than memorizing seen trajectories. Overall, frozen embeddings support within-domain dynamics learning after observing a domain's transitions, while transfer across domain boundaries remains a bottleneck.
☆ Rethinking Weight Tying: Pseudo-Inverse Tying for Stable LM Training and Updates
Weight tying is widely used in compact language models to reduce parameters by sharing the token table between the input embedding and the output projection. However, weight sharing does not guarantee a stable token interface: during training, the correspondence between encoding tokens into hidden states and decoding hidden states into logits can drift, worsening optimization sensitivity and making post-training interventions such as editing, patching, and lightweight adaptation less predictable. We propose Pseudo-Inverse Tying (PIT), which synchronizes embedding and unembedding as coupled projections of a shared latent token memory, guaranteeing a pseudo-inverse-consistent interface throughout training. PIT maintains an orthonormal shared memory, obtained by thin polar decomposition for teacher initialization or random orthonormal initialization from scratch, and introduces a fully learned symmetric positive definite hidden-space transform parameterized via a Cholesky factor. The output head applies this transform to hidden states before the vocabulary projection, while the embedding applies the inverse transform to token vectors using stable triangular solves, avoiding explicit pseudo-inverse recomputation and any vocabulary-sized auxiliary parameters. We evaluate PIT on on-device models spanning 256M-1.3B parameters across pretraining and adaptation, and consistently observe improved training stability, stronger layerwise semantic consistency, and substantially reduced side effects.
comment: an early-stage version
☆ Unmasking Superspreaders: Data-Driven Approaches for Identifying and Comparing Key Influencers of Conspiracy Theories on X.com
Conspiracy theories can threaten society by spreading misinformation, deepening polarization, and eroding trust in democratic institutions. Social media often fuels the spread of conspiracies, primarily driven by two key actors: Superspreaders -- influential individuals disseminating conspiracy content at disproportionately high rates, and Bots -- automated accounts designed to amplify conspiracies strategically. To counter the spread of conspiracy theories, it is critical to both identify these actors and to better understand their behavior. However, a systematic analysis of these actors as well as real-world-applicable identification methods are still lacking. In this study, we leverage over seven million tweets from the COVID-19 pandemic to analyze key differences between Human Superspreaders and Bots across dimensions such as linguistic complexity, toxicity, and hashtag usage. Our analysis reveals distinct communication strategies: Superspreaders tend to use more complex language and substantive content while relying less on structural elements like hashtags and emojis, likely to enhance credibility and authority. By contrast, Bots favor simpler language and strategic cross-usage of hashtags, likely to increase accessibility, facilitate infiltration into trending discussions, and amplify reach. To counter both Human Superspreaders and Bots, we propose and evaluate 27 novel metrics for quantifying the severity of conspiracy theory spread. Our findings highlight the effectiveness of an adapted H-Index for computationally feasible identification of Human Superspreaders. By identifying behavioral patterns unique to Human Superspreaders and Bots as well as providing suitable identification methods, this study provides a foundation for mitigation strategies, including platform moderation policies, temporary and permanent account suspensions, and public awareness campaigns.
☆ LycheeDecode: Accelerating Long-Context LLM Inference via Hybrid-Head Sparse Decoding ICLR 2026
The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.
comment: ICLR 2026
☆ PersoPilot: An Adaptive AI-Copilot for Transparent Contextualized Persona Classification and Personalized Response Generation IEEE
Understanding and classifying user personas is critical for delivering effective personalization. While persona information offers valuable insights, its full potential is realized only when contextualized, linking user characteristics with situational context to enable more precise and meaningful service provision. Existing systems often treat persona and context as separate inputs, limiting their ability to generate nuanced, adaptive interactions. To address this gap, we present PersoPilot, an agentic AI-Copilot that integrates persona understanding with contextual analysis to support both end users and analysts. End users interact through a transparent, explainable chat interface, where they can express preferences in natural language, request recommendations, and receive information tailored to their immediate task. On the analyst side, PersoPilot delivers a transparent, reasoning-powered labeling assistant, integrated with an active learning-driven classification process that adapts over time with new labeled data. This feedback loop enables targeted service recommendations and adaptive personalization, bridging the gap between raw persona data and actionable, context-aware insights. As an adaptable framework, PersoPilot is applicable to a broad range of service personalization scenarios.
comment: Accepted for the Demo Track at the IEEE International Conference on Data Mining (ICDM) 2025
☆ $C$-$ΔΘ$: Circuit-Restricted Weight Arithmetic for Selective Refusal
Modern deployments require LLMs to enforce safety policies at scale, yet many controls rely on inference-time interventions that add recurring compute cost and serving complexity. Activation steering is widely used, but it requires runtime hooks and scales cost with the number of generations; conditional variants improve selectivity by gating when steering is applied but still retain an inference-time control path. We ask whether selective refusal can be moved entirely offline: can a mechanistic understanding of category-specific refusal be distilled into a circuit-restricted weight update that deploys as a standard checkpoint? We propose C-Δθ: Circuit Restricted Weight Arithmetic, which (i) localizes refusal-causal computation as a sparse circuit using EAP-IG and (ii) computes a constrained weight update ΔθC supported only on that circuit (typically <5% of parameters). Applying ΔθC yields a drop-in edited checkpoint with no inference-time hooks, shifting cost from per-request intervention to a one-time offline update. We evaluate category-targeted selectivity and capability retention on refusal and utility benchmarks.
☆ ReFRAME or Remain: Unsupervised Lexical Semantic Change Detection with Frame Semantics
The majority of contemporary computational methods for lexical semantic change (LSC) detection are based on neural embedding distributional representations. Although these models perform well on LSC benchmarks, their results are often difficult to interpret. We explore an alternative approach that relies solely on frame semantics. We show that this method is effective for detecting semantic change and can even outperform many distributional semantic models. Finally, we present a detailed quantitative and qualitative analysis of its predictions, demonstrating that they are both plausible and highly interpretable
☆ Model-Dowser: Data-Free Importance Probing to Mitigate Catastrophic Forgetting in Multimodal Large Language Models
Fine-tuning Multimodal Large Language Models (MLLMs) on task-specific data is an effective way to improve performance on downstream applications. However, such adaptation often leads to a degradation in generalization on pretrained tasks, a phenomenon known as Catastrophic Forgetting. Existing methods that aim to mitigate this issue either become ineffective when fine-tuning deeper layers of the language decoder or scale poorly with increasing model size. To address these limitations, we propose Model-Dowser, a novel sparse fine-tuning approach for MLLMs. Model-Dowser measures a principled importance score for each model parameter with respect to pretrained generalization (prior to downstream adaptation) by jointly considering weight magnitudes, input activations, and output sensitivities. During fine-tuning, Model-Dowser selectively preserves high-importance parameters and updates the remaining. Comprehensive experiments on two representative MLLMs, LLaVA and NVILA, demonstrate that Model-Dowser effectively mitigates catastrophic forgetting and consistently outperforms prior methods, while remaining resource-efficient and scalable to multi-billion-parameter models.
☆ PersoDPO: Scalable Preference Optimization for Instruction-Adherent, Persona-Grounded Dialogue via Multi-LLM Evaluation
Personalization and contextual coherence are two essential components in building effective persona-grounded dialogue systems. These aspects play a crucial role in enhancing user engagement and ensuring responses are more relevant and consistent with user identity. However, recent studies indicate that open-source large language models (LLMs) continue to struggle to generate responses that are both contextually grounded and aligned with persona cues, despite exhibiting strong general conversational abilities like fluency and naturalness. We present PersoDPO, a scalable preference optimisation framework that uses supervision signals from automatic evaluations of responses generated by both closed-source and open-source LLMs to fine-tune dialogue models. The framework integrates evaluation metrics targeting coherence and personalization, along with a length-format compliance feature to promote instruction adherence. These signals are combined to automatically construct high-quality preference pairs without manual annotation, enabling a scalable and reproducible training pipeline. Experiments on the FoCus dataset show that an open-source language model fine-tuned with the PersoDPO framework consistently outperforms strong open-source baselines and a standard Direct Preference Optimization (DPO) variant across multiple evaluation dimensions.
comment: Accepted at WISE 2025 Conference
☆ Deconstructing sentence disambiguation by joint latent modeling of reading paradigms: LLM surprisal is not enough
Using temporarily ambiguous garden-path sentences ("While the team trained the striker wondered ...") as a test case, we present a latent-process mixture model of human reading behavior across four different reading paradigms (eye tracking, uni- and bidirectional self-paced reading, Maze). The model distinguishes between garden-path probability, garden-path cost, and reanalysis cost, and yields more realistic processing cost estimates by taking into account trials with inattentive reading. We show that the model is able to reproduce empirical patterns with regard to rereading behavior, comprehension question responses, and grammaticality judgments. Cross-validation reveals that the mixture model also has better predictive fit to human reading patterns and end-of-trial task data than a mixture-free model based on GPT-2-derived surprisal values. We discuss implications for future work.
☆ Beyond Unimodal Shortcuts: MLLMs as Cross-Modal Reasoners for Grounded Named Entity Recognition
Grounded Multimodal Named Entity Recognition (GMNER) aims to extract text-based entities, assign them semantic categories, and ground them to corresponding visual regions. In this work, we explore the potential of Multimodal Large Language Models (MLLMs) to perform GMNER in an end-to-end manner, moving beyond their typical role as auxiliary tools within cascaded pipelines. Crucially, our investigation reveals a fundamental challenge: MLLMs exhibit $\textbf{modality bias}$, including visual bias and textual bias, which stems from their tendency to take unimodal shortcuts rather than rigorous cross-modal verification. To address this, we propose Modality-aware Consistency Reasoning ($\textbf{MCR}$), which enforces structured cross-modal reasoning through Multi-style Reasoning Schema Injection (MRSI) and Constraint-guided Verifiable Optimization (CVO). MRSI transforms abstract constraints into executable reasoning chains, while CVO empowers the model to dynamically align its reasoning trajectories with Group Relative Policy Optimization (GRPO). Experiments on GMNER and visual grounding tasks demonstrate that MCR effectively mitigates modality bias and achieves superior performance compared to existing baselines.
comment: GMNER
☆ Is Micro Domain-Adaptive Pre-Training Effective for Real-World Operations? Multi-Step Evaluation Reveals Potential and Bottlenecks EACL2026
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
comment: 13 pages, 9 figures, Accepted by EACL2026 Industry Track
☆ Growth First, Care Second? Tracing the Landscape of LLM Value Preferences in Everyday Dilemmas
People increasingly seek advice online from both human peers and large language model (LLM)-based chatbots. Such advice rarely involves identifying a single correct answer; instead, it typically requires navigating trade-offs among competing values. We aim to characterize how LLMs navigate value trade-offs across different advice-seeking contexts. First, we examine the value trade-off structure underlying advice seeking using a curated dataset from four advice-oriented subreddits. Using a bottom-up approach, we inductively construct a hierarchical value framework by aggregating fine-grained values extracted from individual advice options into higher-level value categories. We construct value co-occurrence networks to characterize how values co-occur within dilemmas and find substantial heterogeneity in value trade-off structures across advice-seeking contexts: a women-focused subreddit exhibits the highest network density, indicating more complex value conflicts; women's, men's, and friendship-related subreddits exhibit highly correlated value-conflict patterns centered on security-related tensions (security vs. respect/connection/commitment); by contrast, career advice forms a distinct structure where security frequently clashes with self-actualization and growth. We then evaluate LLM value preferences against these dilemmas and find that, across models and contexts, LLMs consistently prioritize values related to Exploration & Growth over Benevolence & Connection. This systemically skewed value orientation highlights a potential risk of value homogenization in AI-mediated advice, raising concerns about how such systems may shape decision-making and normative outcomes at scale.
comment: dataset available at https://github.com/Renesmeeczy/Value-Trade-off-in-Reddit-Dilemmas
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ Fine-Grained Activation Steering: Steering Less, Achieving More ICLR 2026
Activation steering has emerged as a cost-effective paradigm for modifying large language model (LLM) behaviors. Existing methods typically intervene at the block level, steering the bundled activations of selected attention heads, feedforward networks, or residual streams. However, we reveal that block-level activations are inherently heterogeneous, entangling beneficial, irrelevant, and harmful features, thereby rendering block-level steering coarse, inefficient, and intrusive. To investigate the root cause, we decompose block activations into fine-grained atomic unit (AU)-level activations, where each AU-level activation corresponds to a single dimension of the block activation, and each AU denotes a slice of the block weight matrix. Steering an AU-level activation is thus equivalent to steering its associated AU. Our theoretical and empirical analysis show that heterogeneity arises because different AUs or dimensions control distinct token distributions in LLM outputs. Hence, block-level steering inevitably moves helpful and harmful token directions together, which reduces efficiency. Restricting intervention to beneficial AUs yields more precise and effective steering. Building on this insight, we propose AUSteer, a simple and efficient method that operates at a finer granularity of the AU level. AUSteer first identifies discriminative AUs globally by computing activation momenta on contrastive samples. It then assigns adaptive steering strengths tailored to diverse inputs and selected AU activations. Comprehensive experiments on multiple LLMs and tasks show that AUSteer consistently surpasses advanced baselines while steering considerably fewer activations, demonstrating that steering less achieves more.
comment: ICLR 2026
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Swordsman: Entropy-Driven Adaptive Block Partition for Efficient Diffusion Language Models
Block-wise decoding effectively improves the inference speed and quality in diffusion language models (DLMs) by combining inter-block sequential denoising and intra-block parallel unmasking. However, existing block-wise decoding methods typically partition blocks in a rigid and fixed manner, which inevitably fragments complete semantic or syntactic constituents, leading to suboptimal performance. Inspired by the entropy reduction hypothesis (ERH), we recognize that constituent boundaries offer greater opportunities for uncertainty reduction, which motivates us to employ entropy analysis for identifying constituent boundaries. Therefore, we propose Swordsman, an entropy-driven adaptive block-wise decoding framework for DLMs. Swordsman adaptively partitions blocks by identifying entropy shifts between adjacent tokens to better align with semantic or syntactic constituent boundaries. In addition, Swordsman dynamically adjusts unmasking thresholds conditioned on the real-time unmasking status within a block, further improving both efficiency and stability. As a training-free framework, supported by KV Cache, Swordsman demonstrates state-of-the-art performance across extensive evaluations.
☆ Bi-directional Bias Attribution: Debiasing Large Language Models without Modifying Prompts
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural language processing tasks. However, their outputs often exhibit social biases, raising fairness concerns. Existing debiasing methods, such as fine-tuning on additional datasets or prompt engineering, face scalability issues or compromise user experience in multi-turn interactions. To address these challenges, we propose a framework for detecting stereotype-inducing words and attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt modification. Our framework first identifies stereotype-inducing adjectives and nouns via comparative analysis across demographic groups. We then attribute biased behavior to specific neurons using two attribution strategies based on integrated gradients. Finally, we mitigate bias by directly intervening on their activations at the projection layer. Experiments on three widely used LLMs demonstrate that our method effectively reduces bias while preserving overall model performance. Code is available at the github link: https://github.com/XMUDeepLIT/Bi-directional-Bias-Attribution.
☆ Evaluating the Presence of Sex Bias in Clinical Reasoning by Large Language Models
Large language models (LLMs) are increasingly embedded in healthcare workflows for documentation, education, and clinical decision support. However, these systems are trained on large text corpora that encode existing biases, including sex disparities in diagnosis and treatment, raising concerns that such patterns may be reproduced or amplified. We systematically examined whether contemporary LLMs exhibit sex-specific biases in clinical reasoning and how model configuration influences these behaviours. We conducted three experiments using 50 clinician-authored vignettes spanning 44 specialties in which sex was non-informative to the initial diagnostic pathway. Four general-purpose LLMs (ChatGPT (gpt-4o-mini), Claude 3.7 Sonnet, Gemini 2.0 Flash and DeepSeekchat). All models demonstrated significant sex-assignment skew, with predicted sex differing by model. At temperature 0.5, ChatGPT assigned female sex in 70% of cases (95% CI 0.66-0.75), DeepSeek in 61% (0.57-0.65) and Claude in 59% (0.55-0.63), whereas Gemini showed a male skew, assigning a female sex in 36% of cases (0.32-0.41). Contemporary LLMs exhibit stable, model-specific sex biases in clinical reasoning. Permitting abstention reduces explicit labelling but does not eliminate downstream diagnostic differences. Safe clinical integration requires conservative and documented configuration, specialty-level clinical data auditing, and continued human oversight when deploying general-purpose models in healthcare settings.
☆ Beyond Rejection Sampling: Trajectory Fusion for Scaling Mathematical Reasoning
Large language models (LLMs) have made impressive strides in mathematical reasoning, often fine-tuned using rejection sampling that retains only correct reasoning trajectories. While effective, this paradigm treats supervision as a binary filter that systematically excludes teacher-generated errors, leaving a gap in how reasoning failures are modeled during training. In this paper, we propose TrajFusion, a fine-tuning strategy that reframes rejection sampling as a structured supervision construction process. Specifically, TrajFusion forms fused trajectories that explicitly model trial-and-error reasoning by interleaving selected incorrect trajectories with reflection prompts and correct trajectories. The length of each fused sample is adaptively controlled based on the frequency and diversity of teacher errors, providing richer supervision for challenging problems while safely reducing to vanilla rejection sampling fine-tuning (RFT) when error signals are uninformative. TrajFusion requires no changes to the architecture or training objective. Extensive experiments across multiple math benchmarks demonstrate that TrajFusion consistently outperforms RFT, particularly on challenging and long-form reasoning problems.
☆ Can Vision Replace Text in Working Memory? Evidence from Spatial n-Back in Vision-Language Models
Working memory is a central component of intelligent behavior, providing a dynamic workspace for maintaining and updating task-relevant information. Recent work has used n-back tasks to probe working-memory-like behavior in large language models, but it is unclear whether the same probe elicits comparable computations when information is carried in a visual rather than textual code in vision-language models. We evaluate Qwen2.5 and Qwen2.5-VL on a controlled spatial n-back task presented as matched text-rendered or image-rendered grids. Across conditions, models show reliably higher accuracy and d' with text than with vision. To interpret these differences at the process level, we use trial-wise log-probability evidence and find that nominal 2/3-back often fails to reflect the instructed lag and instead aligns with a recency-locked comparison. We further show that grid size alters recent-repeat structure in the stimulus stream, thereby changing interference and error patterns. These results motivate computation-sensitive interpretations of multimodal working memory.
☆ From Assumptions to Actions: Turning LLM Reasoning into Uncertainty-Aware Planning for Embodied Agents ICLR 2026
Embodied agents operating in multi-agent, partially observable, and decentralized environments must plan and act despite pervasive uncertainty about hidden objects and collaborators' intentions. Recent advances in applying Large Language Models (LLMs) to embodied agents have addressed many long-standing challenges, such as high-level goal decomposition and online adaptation. Yet, uncertainty is still primarily mitigated through frequent inter-agent communication. This incurs substantial token and time costs, and can disrupt established workflows, when human partners are involved. We introduce PCE, a Planner-Composer-Evaluator framework that converts the fragmented assumptions latent in LLM reasoning traces into a structured decision tree. Internal nodes encode environment assumptions and leaves map to actions; each path is then scored by scenario likelihood, goal-directed gain, and execution cost to guide rational action selection without heavy communication. Across two challenging multi-agent benchmarks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms communication-centric baselines in success rate and task efficiency while showing comparable token usage. Ablation results indicate that the performance gains obtained by scaling model capacity or reasoning depth persist even when PCE is applied, while PCE consistently raises the baseline across both capacity and reasoning-depth scales, confirming that structured uncertainty handling complements both forms of scaling. A user study further demonstrates that PCE produces communication patterns that human partners perceive as more efficient and trustworthy. Together, these results establish a principled route for turning latent LLM assumptions into reliable strategies for uncertainty-aware planning.
comment: 31 pages, 10 figures, Accepted ICLR 2026
☆ A Domain-Specific Curated Benchmark for Entity and Document-Level Relation Extraction EACL 2026
Information Extraction (IE), encompassing Named Entity Recognition (NER), Named Entity Linking (NEL), and Relation Extraction (RE), is critical for transforming the rapidly growing volume of scientific publications into structured, actionable knowledge. This need is especially evident in fast-evolving biomedical fields such as the gut-brain axis, where research investigates complex interactions between the gut microbiota and brain-related disorders. Existing biomedical IE benchmarks, however, are often narrow in scope and rely heavily on distantly supervised or automatically generated annotations, limiting their utility for advancing robust IE methods. We introduce GutBrainIE, a benchmark based on more than 1,600 PubMed abstracts, manually annotated by biomedical and terminological experts with fine-grained entities, concept-level links, and relations. While grounded in the gut-brain axis, the benchmark's rich schema, multiple tasks, and combination of highly curated and weakly supervised data make it broadly applicable to the development and evaluation of biomedical IE systems across domains.
comment: Accepted to EACL 2026
☆ Universal Robust Speech Adaptation for Cross-Domain Speech Recognition and Enhancement IEEE
Pre-trained models for automatic speech recognition (ASR) and speech enhancement (SE) have exhibited remarkable capabilities under matched noise and channel conditions. However, these models often suffer from severe performance degradation when confronted with domain shifts, particularly in the presence of unseen noise and channel distortions. In view of this, we in this paper present URSA-GAN, a unified and domain-aware generative framework specifically designed to mitigate mismatches in both noise and channel conditions. URSA-GAN leverages a dual-embedding architecture that consists of a noise encoder and a channel encoder, each pre-trained with limited in-domain data to capture domain-relevant representations. These embeddings condition a GAN-based speech generator, facilitating the synthesis of speech that is acoustically aligned with the target domain while preserving phonetic content. To enhance generalization further, we propose dynamic stochastic perturbation, a novel regularization technique that introduces controlled variability into the embeddings during generation, promoting robustness to unseen domains. Empirical results demonstrate that URSA-GAN effectively reduces character error rates in ASR and improves perceptual metrics in SE across diverse noisy and mismatched channel scenarios. Notably, evaluations on compound test conditions with both channel and noise degradations confirm the generalization ability of URSA-GAN, yielding relative improvements of 16.16% in ASR performance and 15.58% in SE metrics.
comment: Accepted to IEEE Transactions on Audio, Speech and Language Processing (IEEE TASLP)
☆ DeFrame: Debiasing Large Language Models Against Framing Effects
As large language models (LLMs) are increasingly deployed in real-world applications, ensuring their fair responses across demographics has become crucial. Despite many efforts, an ongoing challenge is hidden bias: LLMs appear fair under standard evaluations, but can produce biased responses outside those evaluation settings. In this paper, we identify framing -- differences in how semantically equivalent prompts are expressed (e.g., "A is better than B" vs. "B is worse than A") -- as an underexplored contributor to this gap. We first introduce the concept of "framing disparity" to quantify the impact of framing on fairness evaluation. By augmenting fairness evaluation benchmarks with alternative framings, we find that (1) fairness scores vary significantly with framing and (2) existing debiasing methods improve overall (i.e., frame-averaged) fairness, but often fail to reduce framing-induced disparities. To address this, we propose a framing-aware debiasing method that encourages LLMs to be more consistent across framings. Experiments demonstrate that our approach reduces overall bias and improves robustness against framing disparities, enabling LLMs to produce fairer and more consistent responses.
comment: 40 pages, 12 figures
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
☆ How Few-shot Demonstrations Affect Prompt-based Defenses Against LLM Jailbreak Attacks
Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
comment: 13 pages, 4 figures, 6 tables
☆ Guided Verifier: Collaborative Multimodal Reasoning via Dynamic Process Supervision
Reinforcement Learning (RL) has emerged as a pivotal mechanism for enhancing the complex reasoning capabilities of Multimodal Large Language Models (MLLMs). However, prevailing paradigms typically rely on solitary rollout strategies where the model works alone. This lack of intermediate oversight renders the reasoning process susceptible to error propagation, where early logical deviations cascade into irreversible failures, resulting in noisy optimization signals. In this paper, we propose the \textbf{Guided Verifier} framework to address these structural limitations. Moving beyond passive terminal rewards, we introduce a dynamic verifier that actively co-solves tasks alongside the policy. During the rollout phase, this verifier interacts with the policy model in real-time, detecting inconsistencies and providing directional signals to steer the model toward valid trajectories. To facilitate this, we develop a specialized data synthesis pipeline targeting multimodal hallucinations, constructing \textbf{CoRe} dataset of process-level negatives and \textbf{Co}rrect-guide \textbf{Re}asoning trajectories to train the guided verifier. Extensive experiments on MathVista, MathVerse and MMMU indicate that by allocating compute to collaborative inference and dynamic verification, an 8B-parameter model can achieve strong performance.
☆ Proxy Compression for Language Modeling
Modern language models are trained almost exclusively on token sequences produced by a fixed tokenizer, an external lossless compressor often over UTF-8 byte sequences, thereby coupling the model to that compressor. This work introduces proxy compression, an alternative training scheme that preserves the efficiency benefits of compressed inputs while providing an end-to-end, raw-byte interface at inference time. During training, one language model is jointly trained on raw byte sequences and compressed views generated by external compressors; through the process, the model learns to internally align compressed sequences and raw bytes. This alignment enables strong transfer between the two formats, even when training predominantly on compressed inputs which are discarded at inference. Extensive experiments on code language modeling demonstrate that proxy compression substantially improves training efficiency and significantly outperforms pure byte-level baselines given fixed compute budgets. As model scale increases, these gains become more pronounced, and proxy-trained models eventually match or rival tokenizer approaches, all while operating solely on raw bytes and retaining the inherent robustness of byte-level modeling.
☆ Contextual Drag: How Errors in the Context Affect LLM Reasoning
Central to many self-improvement pipelines for large language models (LLMs) is the assumption that models can improve by reflecting on past mistakes. We study a phenomenon termed contextual drag: the presence of failed attempts in the context biases subsequent generations toward structurally similar errors. Across evaluations of 11 proprietary and open-weight models on 8 reasoning tasks, contextual drag induces 10-20% performance drops, and iterative self-refinement in models with severe contextual drag can collapse into self-deterioration. Structural analysis using tree edit distance reveals that subsequent reasoning trajectories inherit structurally similar error patterns from the context. We demonstrate that neither external feedback nor successful self-verification suffices to eliminate this effect. While mitigation strategies such as fallback-behavior fine-tuning and context denoising yield partial improvements, they fail to fully restore baseline performance, positioning contextual drag as a persistent failure mode in current reasoning architectures.
☆ ECG-R1: Protocol-Guided and Modality-Agnostic MLLM for Reliable ECG Interpretation
Electrocardiography (ECG) serves as an indispensable diagnostic tool in clinical practice, yet existing multimodal large language models (MLLMs) remain unreliable for ECG interpretation, often producing plausible but clinically incorrect analyses. To address this, we propose ECG-R1, the first reasoning MLLM designed for reliable ECG interpretation via three innovations. First, we construct the interpretation corpus using \textit{Protocol-Guided Instruction Data Generation}, grounding interpretation in measurable ECG features and monograph-defined quantitative thresholds and diagnostic logic. Second, we present a modality-decoupled architecture with \textit{Interleaved Modality Dropout} to improve robustness and cross-modal consistency when either the ECG signal or ECG image is missing. Third, we present \textit{Reinforcement Learning with ECG Diagnostic Evidence Rewards} to strengthen evidence-grounded ECG interpretation. Additionally, we systematically evaluate the ECG interpretation capabilities of proprietary, open-source, and medical MLLMs, and provide the first quantitative evidence that severe hallucinations are widespread, suggesting that the public should not directly trust these outputs without independent verification. Code and data are publicly available at \href{https://github.com/PKUDigitalHealth/ECG-R1}{here}, and an online platform can be accessed at \href{http://ai.heartvoice.com.cn/ECG-R1/}{here}.
☆ Scaling Agentic Verifier for Competitive Coding
Large language models (LLMs) have demonstrated strong coding capabilities but still struggle to solve competitive programming problems correctly in a single attempt. Execution-based re-ranking offers a promising test-time scaling strategy, yet existing methods are constrained by either difficult test case generation or inefficient random input sampling. To address this limitation, we propose Agentic Verifier, an execution-based agent that actively reasons about program behaviors and searches for highly discriminative test inputs that expose behavioral discrepancies among candidate solutions. Through multi-turn interaction with code execution environments, the verifier iteratively refines the candidate input generator and produces targeted counterexamples rather than blindly sampling inputs. We train the verifier to acquire this discriminative input generation capability via a scalable pipeline combining large-scale data synthesis, rejection fine-tuning, and agentic reinforcement learning. Extensive experiments across five competitive programming benchmarks demonstrate consistent improvements over strong execution-based baselines, achieving up to +10-15% absolute gains in Best@K accuracy. Further analysis reveals clear test-time scaling behavior and highlights the verifier's broader potential beyond reranking.
☆ Empirical-MCTS: Continuous Agent Evolution via Dual-Experience Monte Carlo Tree Search
Inference-time scaling strategies, particularly Monte Carlo Tree Search (MCTS), have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). However, current approaches remain predominantly stateless, discarding successful reasoning patterns after each problem instance and failing to mimic the empirical accumulation of wisdom characteristic of human problem-solving. To bridge this gap, we introduce Empirical-MCTS, a dual-loop framework that transforms stateless search into a continuous, non-parametric learning process. The framework unifies local exploration with global memory optimization through two novel mechanisms: Pairwise-Experience-Evolutionary Meta-Prompting (PE-EMP) and a Memory Optimization Agent. PE-EMP functions as a reflexive optimizer within the local search, utilizing pairwise feedback to dynamically synthesize adaptive criteria and evolve meta-prompts (system prompts) in real-time. Simultaneously, the Memory Optimization Agent manages a global repository as a dynamic policy prior, employing atomic operations to distill high-quality insights across problems. Extensive evaluations on complex reasoning benchmarks, including AIME25, ARC-AGI-2, and MathArena Apex, demonstrate that Empirical-MCTS significantly outperforms both stateless MCTS strategies and standalone experience-driven agents. These results underscore the critical necessity of coupling structured search with empirical accumulation for mastering complex, open-ended reasoning tasks.
comment: 9 pages, 5 figures
☆ DementiaBank-Emotion: A Multi-Rater Emotion Annotation Corpus for Alzheimer's Disease Speech (Version 1.0) EACL 2026
We present DementiaBank-Emotion, the first multi-rater emotion annotation corpus for Alzheimer's disease (AD) speech. Annotating 1,492 utterances from 108 speakers for Ekman's six basic emotions and neutral, we find that AD patients express significantly more non-neutral emotions (16.9%) than healthy controls (5.7%; p < .001). Exploratory acoustic analysis suggests a possible dissociation: control speakers showed substantial F0 modulation for sadness (Delta = -3.45 semitones from baseline), whereas AD speakers showed minimal change (Delta = +0.11 semitones; interaction p = .023), though this finding is based on limited samples (sadness: n=5 control, n=15 AD) and requires replication. Within AD speech, loudness differentiates emotion categories, indicating partially preserved emotion-prosody mappings. We release the corpus, annotation guidelines, and calibration workshop materials to support research on emotion recognition in clinical populations.
comment: Accepted at HeaLING Workshop @ EACL 2026. 9 pages, 3 figures, 8 tables
☆ CoLT: Reasoning with Chain of Latent Tool Calls
Chain-of-Thought (CoT) is a critical technique in enhancing the reasoning ability of Large Language Models (LLMs), and latent reasoning methods have been proposed to accelerate the inefficient token-level reasoning chain. We notice that existing latent reasoning methods generally require model structure augmentation and exhaustive training, limiting their broader applicability. In this paper, we propose CoLT, a novel framework that implements latent reasoning as ``tool calls''. Instead of reasoning entirely in the latent space, CoLT generates seed tokens that contain information of a reasoning step. When a latent tool call is triggered, a smaller external model will take the hidden states of seed tokens as its input, and unpack the seed tokens back to a full reasoning step. In this way, we can ensure that the main model reasons in the explicit token space, preserving its ability while improving efficiency. Experimental results on four mathematical datasets demonstrate that CoLT achieves higher accuracy and shorter reasoning length than baseline latent models, and is compatible with reinforcement learning algorithms and different decoder structures.
☆ Tokenization and Morphological Fidelity in Uralic NLP: A Cross-Lingual Evaluation
Subword tokenization critically affects Natural Language Processing (NLP) performance, yet its behavior in morphologically rich and low-resource language families remains under-explored. This study systematically compares three subword paradigms -- Byte Pair Encoding (BPE), Overlap BPE (OBPE), and Unigram Language Model -- across six Uralic languages with varying resource availability and typological diversity. Using part-of-speech (POS) tagging as a controlled downstream task, we show that OBPE consistently achieves stronger morphological alignment and higher tagging accuracy than conventional methods, particularly within the Latin-script group. These gains arise from reduced fragmentation in open-class categories and a better balance across the frequency spectrum. Transfer efficacy further depends on the downstream tagging architecture, interacting with both training volume and genealogical proximity. Taken together, these findings highlight that morphology-sensitive tokenization is not merely a preprocessing choice but a decisive factor in enabling effective cross-lingual transfer for agglutinative, low-resource languages.
☆ RAPO: Risk-Aware Preference Optimization for Generalizable Safe Reasoning
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
☆ Frontend Token Enhancement for Token-Based Speech Recognition ICASSP 2026
Discretized representations of speech signals are efficient alternatives to continuous features for various speech applications, including automatic speech recognition (ASR) and speech language models. However, these representations, such as semantic or phonetic tokens derived from clustering outputs of self-supervised learning (SSL) speech models, are susceptible to environmental noise, which can degrade backend task performance. In this work, we introduce a frontend system that estimates clean speech tokens from noisy speech and evaluate it on an ASR backend using semantic tokens. We consider four types of enhancement models based on their input/output domains: wave-to-wave, token-to-token, continuous SSL features-to-token, and wave-to-token. These models are trained independently of ASR backends. Experiments on the CHiME-4 dataset demonstrate that wave-to-token enhancement achieves the best performance among the frontends. Moreover, it mostly outperforms the ASR system based on continuous SSL features.
comment: Accepted at ICASSP 2026
☆ Language Models Struggle to Use Representations Learned In-Context
Though large language models (LLMs) have enabled great success across a wide variety of tasks, they still appear to fall short of one of the loftier goals of artificial intelligence research: creating an artificial system that can adapt its behavior to radically new contexts upon deployment. One important step towards this goal is to create systems that can induce rich representations of data that are seen in-context, and then flexibly deploy these representations to accomplish goals. Recently, Park et al. (2024) demonstrated that current LLMs are indeed capable of inducing such representation from context (i.e., in-context representation learning). The present study investigates whether LLMs can use these representations to complete simple downstream tasks. We first assess whether open-weights LLMs can use in-context representations for next-token prediction, and then probe models using a novel task, adaptive world modeling. In both tasks, we find evidence that open-weights LLMs struggle to deploy representations of novel semantics that are defined in-context, even if they encode these semantics in their latent representations. Furthermore, we assess closed-source, state-of-the-art reasoning models on the adaptive world modeling task, demonstrating that even the most performant LLMs cannot reliably leverage novel patterns presented in-context. Overall, this work seeks to inspire novel methods for encouraging models to not only encode information presented in-context, but to do so in a manner that supports flexible deployment of this information.
☆ Enforcing Monotonic Progress in Legal Cross-Examination: Preventing Long-Horizon Stagnation in LLM-Based Inquiry
Large language models (LLMs) exhibit impressive linguistic fluency but struggle to reliably complete long-horizon tasks under explicit procedural constraints. In legal cross-examination, purely proba-bilistic generation often maintains behavioral coherence while failing to ensure procedural advancement. We characterize this failure as procedural stagnation and propose Soft-FSM, a neuro-symbolic architecture that enforces monotonic progress over accumulated Key Information Units (KIUs) via an external deterministic state controller. Experiments on three real-world Taiwanese criminal homicide cases show that baseline methods collapse below 40% completeness, while Soft-FSM consistently achieves over 97% with near-zero redundancy. These results suggest that, in such domains, reliable task completion cannot be guaranteed by emergent LLM behavior alone, and can be reliably enforced through explicit and verifiable external state control.
comment: Submitted to ICAIL 2026. Under review
☆ From Helpfulness to Toxic Proactivity: Diagnosing Behavioral Misalignment in LLM Agents
The enhanced capabilities of LLM-based agents come with an emergency for model planning and tool-use abilities. Attributing to helpful-harmless trade-off from LLM alignment, agents typically also inherit the flaw of "over-refusal", which is a passive failure mode. However, the proactive planning and action capabilities of agents introduce another crucial danger on the other side of the trade-off. This phenomenon we term "Toxic Proactivity'': an active failure mode in which an agent, driven by the optimization for Machiavellian helpfulness, disregards ethical constraints to maximize utility. Unlike over-refusal, Toxic Proactivity manifests as the agent taking excessive or manipulative measures to ensure its "usefulness'' is maintained. Existing research pays little attention to identifying this behavior, as it often lacks the subtle context required for such strategies to unfold. To reveal this risk, we introduce a novel evaluation framework based on dilemma-driven interactions between dual models, enabling the simulation and analysis of agent behavior over multi-step behavioral trajectories. Through extensive experiments with mainstream LLMs, we demonstrate that Toxic Proactivity is a widespread behavioral phenomenon and reveal two major tendencies. We further present a systematic benchmark for evaluating Toxic Proactive behavior across contextual settings.
comment: 9 pages (excluding appendices), 6 figures. Code is available at https://github.com/wxyoio-0715/Toxic-Proactivity
☆ The Missing Half: Unveiling Training-time Implicit Safety Risks Beyond Deployment
Safety risks of AI models have been widely studied at deployment time, such as jailbreak attacks that elicit harmful outputs. In contrast, safety risks emerging during training remain largely unexplored. Beyond explicit reward hacking that directly manipulates explicit reward functions in reinforcement learning, we study implicit training-time safety risks: harmful behaviors driven by a model's internal incentives and contextual background information. For example, during code-based reinforcement learning, a model may covertly manipulate logged accuracy for self-preservation. We present the first systematic study of this problem, introducing a taxonomy with five risk levels, ten fine-grained risk categories, and three incentive types. Extensive experiments reveal the prevalence and severity of these risks: notably, Llama-3.1-8B-Instruct exhibits risky behaviors in 74.4% of training runs when provided only with background information. We further analyze factors influencing these behaviors and demonstrate that implicit training-time risks also arise in multi-agent training settings. Our results identify an overlooked yet urgent safety challenge in training.
☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training.Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora.To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
☆ From Lemmas to Dependencies: What Signals Drive Light Verbs Classification? EACL
Light verb constructions (LVCs) are a challenging class of verbal multiword expressions, especially in Turkish, where rich morphology and productive complex predicates create minimal contrasts between idiomatic predicate meanings and literal verb--argument uses. This paper asks what signals drive LVC classification by systematically restricting model inputs. Using UD-derived supervision, we compare lemma-driven baselines (lemma TF--IDF + Logistic Regression; BERTurk trained on lemma sequences), a grammar-only Logistic Regression over UD morphosyntax (UPOS/DEPREL/MORPH), and a full-input BERTurk baseline. We evaluate on a controlled diagnostic set with Random negatives, lexical controls (NLVC), and LVC positives, reporting split-wise performance to expose decision-boundary behavior. Results show that coarse morphosyntax alone is insufficient for robust LVC detection under controlled contrasts, while lexical identity supports LVC judgments but is sensitive to calibration and normalization choices. Overall, Our findings motivate targeted evaluation of Turkish MWEs and show that ``lemma-only'' is not a single, well-defined representation, but one that depends critically on how normalization is operationalized.
comment: EACL SIGTURK
☆ DELTA: Deliberative Multi-Agent Reasoning with Reinforcement Learning for Multimodal Psychological Counseling
Psychological counseling is a fundamentally multimodal cognitive process in which clinicians integrate verbal content with visual and vocal cues to infer clients' mental states and respond empathically. However, most existing language-model-based counseling systems operate on text alone and rely on implicit mental state inference. We introduce DELTA, a deliberative multi-agent framework that models counseling as a structured reasoning process over multimodal signals, separating evidence grounding, mental state abstraction, and response generation. DELTA further incorporates reinforcement learning guided by a distribution-level Emotion Attunement Score to encourage emotionally attuned responses. Experiments on a multimodal counseling benchmark show that DELTA improves both counseling quality and emotion attunement across models. Ablation and qualitative analyses suggest that explicit multimodal reasoning and structured mental state representations play complementary roles in supporting empathic human-AI interaction.
☆ Expert Selections In MoE Models Reveal (Almost) As Much As Text
We present a text-reconstruction attack on mixture-of-experts (MoE) language models that recovers tokens from expert selections alone. In MoE models, each token is routed to a subset of expert subnetworks; we show these routing decisions leak substantially more information than previously understood. Prior work using logistic regression achieves limited reconstruction; we show that a 3-layer MLP improves this to 63.1% top-1 accuracy, and that a transformer-based sequence decoder recovers 91.2% of tokens top-1 (94.8% top-10) on 32-token sequences from OpenWebText after training on 100M tokens. These results connect MoE routing to the broader literature on embedding inversion. We outline practical leakage scenarios (e.g., distributed inference and side channels) and show that adding noise reduces but does not eliminate reconstruction. Our findings suggest that expert selections in MoE deployments should be treated as sensitive as the underlying text.
☆ Rethinking Perplexity: Revealing the Impact of Input Length on Perplexity Evaluation in LLMs
Perplexity is a widely adopted metric for assessing the predictive quality of large language models (LLMs) and often serves as a reference metric for downstream evaluations. However, recent evidence shows that perplexity can be unreliable, especially when irrelevant long inputs are used, raising concerns for both benchmarking and system deployment. While prior efforts have employed selective input filtering and curated datasets, the impact of input length on perplexity has not been systematically studied from a systems perspective and input length has rarely been treated as a first-class system variable affecting both fairness and efficiency. In this work, we close this gap by introducing LengthBenchmark, a system-conscious evaluation framework that explicitly integrates input length, evaluation protocol design, and system-level costs, evaluating representative LLMs under two scoring protocols (direct accumulation and fixed window sliding) across varying context lengths. Unlike prior work that focuses solely on accuracy-oriented metrics, LengthBenchmark additionally measures latency, memory footprint, and evaluation cost, thereby linking predictive metrics to deployment realities. We further incorporate quantized variants not as a main contribution, but as robustness checks, showing that length-induced biases persist across both full-precision and compressed models. This design disentangles the effects of evaluation logic, quantization, and input length, and demonstrates that length bias is a general phenomenon that undermines fair cross-model comparison. Our analysis yields two key observations: (i) sliding window evaluation consistently inflates performance on short inputs, and (ii) both full-precision and quantized models appear to realise gains as the evaluated segment length grows.
☆ SocialVeil: Probing Social Intelligence of Language Agents under Communication Barriers
Large language models (LLMs) are increasingly evaluated in interactive environments to test their social intelligence. However, existing benchmarks often assume idealized communication between agents, limiting our ability to diagnose whether LLMs can maintain and repair interactions in more realistic, imperfect settings. To close this gap, we present \textsc{SocialVeil}, a social learning environment that can simulate social interaction under cognitive-difference-induced communication barriers. Grounded in a systematic literature review of communication challenges in human interaction, \textsc{SocialVeil} introduces three representative types of such disruption, \emph{semantic vagueness}, \emph{sociocultural mismatch}, and \emph{emotional interference}. We also introduce two barrier-aware evaluation metrics, \emph{unresolved confusion} and \emph{mutual understanding}, to evaluate interaction quality under impaired communication. Experiments across 720 scenarios and four frontier LLMs show that barriers consistently impair performance, with mutual understanding reduced by over 45\% on average, and confusion elevated by nearly 50\%. Human evaluations validate the fidelity of these simulated barriers (ICC$\approx$0.78, Pearson r$\approx$0.80). We further demonstrate that adaptation strategies (Repair Instruction and Interactive learning) only have a modest effect far from barrier-free performance. This work takes a step toward bringing social interaction environments closer to real-world communication, opening opportunities for exploring the social intelligence of LLM agents.
comment: 10 pages
☆ Multilingual Extraction and Recognition of Implicit Discourse Relations in Speech and Text
Implicit discourse relation classification is a challenging task, as it requires inferring meaning from context. While contextual cues can be distributed across modalities and vary across languages, they are not always captured by text alone. To address this, we introduce an automatic method for distantly related and unrelated language pairs to construct a multilingual and multimodal dataset for implicit discourse relations in English, French, and Spanish. For classification, we propose a multimodal approach that integrates textual and acoustic information through Qwen2-Audio, allowing joint modeling of text and audio for implicit discourse relation classification across languages. We find that while text-based models outperform audio-based models, integrating both modalities can enhance performance, and cross-lingual transfer can provide substantial improvements for low-resource languages.
☆ Data Kernel Perspective Space Performance Guarantees for Synthetic Data from Transformer Models
Scarcity of labeled training data remains the long pole in the tent for building performant language technology and generative AI models. Transformer models -- particularly LLMs -- are increasingly being used to mitigate the data scarcity problem via synthetic data generation. However, because the models are black boxes, the properties of the synthetic data are difficult to predict. In practice it is common for language technology engineers to 'fiddle' with the LLM temperature setting and hope that what comes out the other end improves the downstream model. Faced with this uncertainty, here we propose Data Kernel Perspective Space (DKPS) to provide the foundation for mathematical analysis yielding concrete statistical guarantees for the quality of the outputs of transformer models. We first show the mathematical derivation of DKPS and how it provides performance guarantees. Next we show how DKPS performance guarantees can elucidate performance of a downstream task, such as neural machine translation models or LLMs trained using Contrastive Preference Optimization (CPO). Limitations of the current work and future research are also discussed.
☆ Locas: Your Models are Principled Initializers of Locally-Supported Parametric Memories
In this paper, we aim to bridge test-time-training with a new type of parametric memory that can be flexibly offloaded from or merged into model parameters. We present Locas, a Locally-Supported parametric memory that shares the design of FFN blocks in modern transformers, allowing it to be flexibly permanentized into the model parameters while supporting efficient continual learning. We discuss two major variants of Locas: one with a conventional two-layer MLP design that has a clearer theoretical guarantee; the other one shares the same GLU-FFN structure with SOTA LLMs, and can be easily attached to existing models for both parameter-efficient and computation-efficient continual learning. Crucially, we show that proper initialization of such low-rank sideway-FFN-style memories -- performed in a principled way by reusing model parameters, activations and/or gradients -- is essential for fast convergence, improved generalization, and catastrophic forgetting prevention. We validate the proposed memory mechanism on the PG-19 whole-book language modeling and LoCoMo long-context dialogue question answering tasks. With only 0.02\% additional parameters in the lowest case, Locas-GLU is capable of storing the information from past context while maintaining a much smaller context window. In addition, we also test the model's general capability loss after memorizing the whole book with Locas, through comparative MMLU evaluation. Results show the promising ability of Locas to permanentize past context into parametric knowledge with minimized catastrophic forgetting of the model's existing internal knowledge.
comment: Tencent AI Lab Technical Report
☆ StagePilot: A Deep Reinforcement Learning Agent for Stage-Controlled Cybergrooming Simulation
Cybergrooming is an evolving threat to youth, necessitating proactive educational interventions. We propose StagePilot, an offline RL-based dialogue agent that simulates the stage-wise progression of grooming behaviors for prevention training. StagePilot selects conversational stages using a composite reward that balances user sentiment and goal proximity, with transitions constrained to adjacent stages for realism and interpretability. We evaluate StagePilot through LLM-based simulations, measuring stage completion, dialogue efficiency, and emotional engagement. Results show that StagePilot generates realistic and coherent conversations aligned with grooming dynamics. Among tested methods, the IQL+AWAC agent achieves the best balance between strategic planning and emotional coherence, reaching the final stage up to 43% more frequently than baselines while maintaining over 70% sentiment alignment.
☆ VEXA: Evidence-Grounded and Persona-Adaptive Explanations for Scam Risk Sensemaking
Online scams across email, short message services, and social media increasingly challenge everyday risk assessment, particularly as generative AI enables more fluent and context-aware deception. Although transformer-based detectors achieve strong predictive performance, their explanations are often opaque to non-experts or misaligned with model decisions. We propose VEXA, an evidence-grounded and persona-adaptive framework for generating learner-facing scam explanations by integrating GradientSHAP-based attribution with theory-informed vulnerability personas. Evaluation across multi-channel datasets shows that grounding explanations in detector-derived evidence improves semantic reliability without increasing linguistic complexity, while persona conditioning introduces interpretable stylistic variation without disrupting evidential alignment. These results reveal a key design insight: evidential grounding governs semantic correctness, whereas persona-based adaptation operates at the level of presentation under constraints of faithfulness. Together, VEXA demonstrates the feasibility of persona-adaptive, evidence-grounded explanations and provides design guidance for trustworthy, learner-facing security explanations in non-formal contexts.
☆ Capacity Constraints and the Multilingual Penalty for Lexical Disambiguation
Multilingual language models (LMs) sometimes under-perform their monolingual counterparts, possibly due to capacity limitations. We quantify this ``multilingual penalty'' for lexical disambiguation--a task requiring precise semantic representations and contextualization mechanisms--using controlled datasets of human relatedness judgments for ambiguous words in both English and Spanish. Comparing monolingual and multilingual LMs from the same families, we find consistently reduced performance in multilingual LMs. We then explore three potential capacity constraints: representational (reduced embedding isotropy), attentional (reduced attention to disambiguating cues), and vocabulary-related (increased multi-token segmentation). Multilingual LMs show some evidence of all three limitations; moreover, these factors statistically account for the variance formerly attributed to a model's multilingual status. These findings suggest both that multilingual LMs do suffer from multiple capacity constraints, and that these constraints correlate with reduced disambiguation performance.
comment: 9 pages, 5 figures, conference
☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: working in progress
☆ Enhanced QKNorm normalization for neural transformers with the Lp norm
The normalization of query and key vectors is an essential part of the Transformer architecture. It ensures that learning is stable regardless of the scale of these vectors. Some normalization approaches are available. In this preliminary work, a generalization of the QKNorm normalization scheme is proposed. The approach is based on the Lp norm, allowing non-Euclidean norms to be employed. Experimental results demonstrate the suitability of the method for a simple problem.
☆ CoWork-X: Experience-Optimized Co-Evolution for Multi-Agent Collaboration System
Large language models are enabling language-conditioned agents in interactive environments, but highly cooperative tasks often impose two simultaneous constraints: sub-second real-time coordination and sustained multi-episode adaptation under a strict online token budget. Existing approaches either rely on frequent in-episode reasoning that induces latency and timing jitter, or deliver post-episode improvements through unstructured text that is difficult to compile into reliable low-cost execution. We propose CoWork-X, an active co-evolution framework that casts peer collaboration as a closed-loop optimization problem across episodes, inspired by fast--slow memory separation. CoWork-X instantiates a Skill-Agent that executes via HTN (hierarchical task network)-based skill retrieval from a structured, interpretable, and compositional skill library, and a post-episode Co-Optimizer that performs patch-style skill consolidation with explicit budget constraints and drift regularization. Experiments in challenging Overcooked-AI-like realtime collaboration benchmarks demonstrate that CoWork-X achieves stable, cumulative performance gains while steadily reducing online latency and token usage.
☆ EntRGi: Entropy Aware Reward Guidance for Diffusion Language Models
Reward guidance has been applied to great success in the test-time adaptation of continuous diffusion models; it updates each denoising step using the gradients from a downstream reward model. We study reward guidance for discrete diffusion language models, where one cannot differentiate through the natural outputs of the model because they are discrete tokens. Existing approaches either replace these discrete tokens with continuous relaxations, or employ techniques like the straight-through estimator. In this work, we show the downsides of both these methods. The former degrades gradient feedback because the reward model has never been trained with continuous inputs. The latter involves incorrect optimization because the gradient evaluated at discrete tokens is used to update continuous logits. Our key innovation is to go beyond this tradeoff by introducing a novel mechanism called EntRGi: Entropy aware Reward Guidance that dynamically regulates the gradients from the reward model. By modulating the continuous relaxation using the model's confidence, our approach substantially improves reward guidance while providing reliable inputs to the reward model. We empirically validate our approach on a 7B-parameter diffusion language model across 3 diverse reward models and 3 multi-skill benchmarks, showing consistent improvements over state-of-the-art methods.
comment: Preprint
☆ Learning Rate Matters: Vanilla LoRA May Suffice for LLM Fine-tuning
Low-Rank Adaptation (LoRA) is the prevailing approach for efficient large language model (LLM) fine-tuning. Building on this paradigm, recent studies have proposed alternative initialization strategies and architectural modifications, reporting substantial improvements over vanilla LoRA. However, these gains are often demonstrated under fixed or narrowly tuned hyperparameter settings, despite the known sensitivity of neural networks to training configurations. In this work, we systematically re-evaluate four representative LoRA variants alongside vanilla LoRA through extensive hyperparameter searches. Across mathematical and code generation tasks on diverse model scales, we find that different LoRA methods favor distinct learning rate ranges. Crucially, once learning rates are properly tuned, all methods achieve similar peak performance (within 1-2%), with only subtle rank-dependent behaviors. These results suggest that vanilla LoRA remains a competitive baseline and that improvements reported under single training configuration may not reflect consistent methodological advantages. Finally, a second-order analysis attributes the differing optimal learning rate ranges to variations in the largest Hessian eigenvalue, aligning with classical learning theories.
☆ BioACE: An Automated Framework for Biomedical Answer and Citation Evaluations
With the increasing use of large language models (LLMs) for generating answers to biomedical questions, it is crucial to evaluate the quality of the generated answers and the references provided to support the facts in the generated answers. Evaluation of text generated by LLMs remains a challenge for question answering, retrieval-augmented generation (RAG), summarization, and many other natural language processing tasks in the biomedical domain, due to the requirements of expert assessment to verify consistency with the scientific literature and complex medical terminology. In this work, we propose BioACE, an automated framework for evaluating biomedical answers and citations against the facts stated in the answers. The proposed BioACE framework considers multiple aspects, including completeness, correctness, precision, and recall, in relation to the ground-truth nuggets for answer evaluation. We developed automated approaches to evaluate each of the aforementioned aspects and performed extensive experiments to assess and analyze their correlation with human evaluations. In addition, we considered multiple existing approaches, such as natural language inference (NLI) and pre-trained language models and LLMs, to evaluate the quality of evidence provided to support the generated answers in the form of citations into biomedical literature. With the detailed experiments and analysis, we provide the best approaches for biomedical answer and citation evaluation as a part of BioACE (https://github.com/deepaknlp/BioACE) evaluation package.
comment: Work in progress
☆ Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization
Selecting the best data mixture is critical for successful Supervised Fine-Tuning (SFT) of Multimodal Large Language Models. However, determining the optimal mixture weights across multiple domain-specific datasets remains a significant bottleneck due to the combinatorial search space and the high cost associated with even a single training run. This is the so-called Data Mixture Optimization (DMO) problem. On the other hand, model merging unifies domain-specific experts through parameter interpolation. This strategy is efficient, as it only requires a single training run per domain, yet oftentimes leads to suboptimal models. In this work, we take the best of both worlds, studying model merging as an efficient strategy for estimating the performance of different data mixtures. We train domain-specific multimodal experts and evaluate their weighted parameter-space combinations to estimate the efficacy of corresponding data mixtures. We conduct extensive experiments on 14 multimodal benchmarks, and empirically demonstrate that the merged proxy models exhibit a high rank correlation with models trained on actual data mixtures. This decouples the search for optimal mixtures from the resource-intensive training process, thereby providing a scalable and efficient strategy for navigating the complex landscape of mixture weights. Code is publicly available at https://github.com/BerasiDavide/mLLMs_merging_4_DMO.
comment: Preprint
☆ Pruning Minimal Reasoning Graphs for Efficient Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is now standard for knowledge-intensive LLM tasks, but most systems still treat every query as fresh, repeatedly re-retrieving long passages and re-reasoning from scratch, inflating tokens, latency, and cost. We present AutoPrunedRetriever, a graph-style RAG system that persists the minimal reasoning subgraph built for earlier questions and incrementally extends it for later ones. AutoPrunedRetriever stores entities and relations in a compact, ID-indexed codebook and represents questions, facts, and answers as edge sequences, enabling retrieval and prompting over symbolic structure instead of raw text. To keep the graph compact, we apply a two-layer consolidation policy (fast ANN/KNN alias detection plus selective $k$-means once a memory threshold is reached) and prune low-value structure, while prompts retain only overlap representatives and genuinely new evidence. We instantiate two front ends: AutoPrunedRetriever-REBEL, which uses REBEL as a triplet parser, and AutoPrunedRetriever-llm, which swaps in an LLM extractor. On GraphRAG-Benchmark (Medical and Novel), both variants achieve state-of-the-art complex reasoning accuracy, improving over HippoRAG2 by roughly 9--11 points, and remain competitive on contextual summarize and generation. On our harder STEM and TV benchmarks, AutoPrunedRetriever again ranks first, while using up to two orders of magnitude fewer tokens than graph-heavy baselines, making it a practical substrate for long-running sessions, evolving corpora, and multi-agent pipelines.
☆ Internalizing LLM Reasoning via Discovery and Replay of Latent Actions
The internalization of chain-of-thought processes into hidden states has emerged as a highly efficient paradigm for scaling test-time compute. However, existing activation steering methods rely on static control vectors that fail to adapt to the non-stationary evolution of complex reasoning tasks. To address this limitation, we propose STIR (Self-Distilled Tools for Internal Reasoning), a framework that reformulates reasoning enhancement as a dynamic latent trajectory control problem. STIR introduces a synergistic three-stage pipeline: (1) differential intrinsic action induction harvests latent reasoning successes to crystallize steering primitives; (2) sparse control basis construction curates a compact, geometrically diverse tool library; and (3) value-modulated trajectory intervention dynamically injects context-specific impulses via anchor-based gating. Extensive experiments on six arithmetic and logical benchmarks across four representative models demonstrate that STIR improves average accuracy by 1.9% to 7.5% while reducing average token consumption by up to 35% compared to vanilla decoding. These findings demonstrate that the benefits of explicit chain-of-thought can be realized through dynamic latent trajectory control, internalizing the reasoning process to bypass the explicit generation while achieving superior fidelity. Our code is available at https://github.com/sznnzs/LLM-Latent-Action.
☆ Simulated Adoption: Decoupling Magnitude and Direction in LLM In-Context Conflict Resolution
Large Language Models (LLMs) frequently prioritize conflicting in-context information over pre-existing parametric memory, a phenomenon often termed sycophancy or compliance. However, the mechanistic realization of this behavior remains obscure, specifically how the model resolves these knowledge conflicts through compliance, and whether this suppression arises from signal magnitude dilution or directional geometric alteration within the residual stream. To resolve this, we conducted a layer-wise geometric analysis across Qwen-4B, Llama-3.1-8B, and GLM-4-9B, decomposing the residual stream updates induced by counter-factual contexts into radial (norm-based) and angular (cosine-based) components. Our empirical results reject the universality of the "Manifold Dilution" hypothesis, as two of the three architectures maintained stable residual norms despite exhibiting significant performance degradation on factual queries. Instead, we observed that compliance is consistently characterized by "Orthogonal Interference," where the conflicting context injects a steering vector that is quasi-orthogonal to the ground-truth direction, effectively rotating the hidden state representation. This suggests that models do not "unlearn" or suppress the magnitude of internal truths but rather employ a mechanism of geometric displacement to bypass the correct unembedding vector, effectively simulating adoption while preserving the original structural magnitude. These findings challenge scalar confidence metrics for detecting hallucinations and underscore the necessity of vectorial monitoring to distinguish between genuine knowledge integration and superficial in-context mimicry.
☆ AFD-INSTRUCTION: A Comprehensive Antibody Instruction Dataset with Functional Annotations for LLM-Based Understanding and Design ICLR 2026
Large language models (LLMs) have significantly advanced protein representation learning. However, their capacity to interpret and design antibodies through natural language remains limited. To address this challenge, we present AFD-Instruction, the first large-scale instruction dataset with functional annotations tailored to antibodies. This dataset encompasses two key components: antibody understanding, which infers functional attributes directly from sequences, and antibody design, which enables de novo sequence generation under functional constraints. These components provide explicit sequence-function alignment and support antibody design guided by natural language instructions. Extensive instruction-tuning experiments on general-purpose LLMs demonstrate that AFD-Instruction consistently improves performance across diverse antibody-related tasks. By linking antibody sequences with textual descriptions of function, AFD-Instruction establishes a new foundation for advancing antibody modeling and accelerating therapeutic discovery.
comment: Accepted by ICLR 2026
☆ Atomic Information Flow: A Network Flow Model for Tool Attributions in RAG Systems
Many tool-based Retrieval Augmented Generation (RAG) systems lack precise mechanisms for tracing final responses back to specific tool components -- a critical gap as systems scale to complex multi-agent architectures. We present \textbf{Atomic Information Flow (AIF)}, a graph-based network flow model that decomposes tool outputs and LLM calls into atoms: indivisible, self-contained units of information. By modeling LLM orchestration as a directed flow of atoms from tool and LLM nodes to a response super-sink, AIF enables granular attribution metrics for AI explainability. Motivated by the max-flow min-cut theorem in network flow theory, we train a lightweight Gemma3 (4B parameter) language model as a context compressor to approximate the minimum cut of tool atoms using flow signals computed offline by AIF. We note that the base Gemma3-4B model struggles to identify critical information with \textbf{54.7\%} accuracy on HotpotQA, barely outperforming lexical baselines (BM25). However, post-training on AIF signals boosts accuracy to \textbf{82.71\%} (+28.01 points) while achieving \textbf{87.52\%} (+1.85\%) context token compression -- bridging the gap with the Gemma3-27B variant, a model nearly $7\times$ larger.
♻ ☆ Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ DEBATE: A Large-Scale Benchmark for Evaluating Opinion Dynamics in Role-Playing LLM Agents
Accurately modeling opinion change through social interactions is crucial for understanding and mitigating polarization, misinformation, and societal conflict. Recent work simulates opinion dynamics with role-playing LLM agents (RPLAs), but multi-agent simulations often display unnatural group behavior (e.g., premature convergence) and lack empirical benchmarks for assessing alignment with real human group interactions. We introduce DEBATE, a large-scale benchmark for evaluating the authenticity of opinion dynamics in multi-agent RPLA simulations. DEBATE contains 36,383 messages from 2,832 U.S.-based participants across 708 groups and 107 topics, with both public messages and private Likert-scale beliefs, enabling evaluation at the utterance and group levels (and supporting future individual-level analyses). We instantiate "digital twin" RPLAs with seven LLMs and evaluate across two settings: next-message prediction and full conversation rollout, using stance-alignment and opinion-convergence metrics. In zero-shot settings, RPLA groups exhibit strong opinion convergence relative to human groups. Post-training via supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) improves stance alignment and brings group-level convergence closer to human behavior, though discrepancies in opinion change and belief updating remain. DEBATE enables rigorous benchmarking of simulated opinion dynamics and supports future research on aligning multi-agent RPLAs with realistic human interactions.
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search. Our code can be found in https://github.com/yunsaijc/PLaT.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Sparse Subnetwork Enhancement for Underrepresented Languages in Large Language Models
Large language models (LLMs) exhibit substantial performance disparities across languages, particularly between high- and low-resource settings. We propose a framework for improving performance in underrepresented languages while preserving general-purpose capabilities via targeted fine-tuning of sparse, language-associated subnetworks. Our approach identifies language-relevant neurons using Language Activation Probability Entropy (LAPE), an information-theoretic metric that reliably captures language-specific activation patterns, and fine-tunes only the corresponding weights. Experiments on Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B across 12 mid- and low-resource languages show that our method consistently outperforms full fine-tuning, FFN-only fine-tuning, LoRA, IA^3, and random-subset baselines while updating only 0.2-1% of model parameters. We further show that sparse, neuron-targeted fine-tuning can inject new language capabilities without catastrophic forgetting, with potential applicability to other model capabilities. Mechanistic analyses of weight updates and internal representations reveal asymmetric roles of FFN projections in language adaptation and improved cross-lingual alignment. Finally, we release language neuron sets for over 100 languages together with our adaptation pipeline, enabling a cost-effective path for extending LLMs to underrepresented languages.
comment: preprint
♻ ☆ When Algorithms Meet Artists: Semantic Compression of Artists' Concerns in the Public AI-Art Debate
Artists occupy a paradoxical position in generative AI: their work trains the models reshaping creative labor. We tested whether their concerns achieve proportional representation in public discourse shaping AI governance. Analyzing public AI-art discourse (news, podcasts, legal filings, research; 2013--2025) and projecting 1,259 survey-derived artist statements into this semantic space, we find stark compression: 95% of artist concerns cluster in 4 of 22 discourse topics, while 14 topics (62% of discourse) contain no artist perspective. This compression is selective - governance concerns (ownership, transparency) are 7x underrepresented; affective themes (threat, utility) show only 1.4x underrepresentation after style controls. The pattern indicates semantic, not stylistic, marginalization. These findings demonstrate a measurable representational gap: decision-makers relying on public discourse as a proxy for stakeholder priorities will systematically underweight those most affected. We introduce a consensus-based semantic projection methodology that is currently being validated across domains and generalizes to other stakeholder-technology contexts.
comment: 35 pages, 5 figures, 4 tables
♻ ☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embodied assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of positional embeddings to enable LLMs built for sequential generation to simultaneously think, listen, and write outputs. We evaluate our approach on math, commonsense, and safety reasoning: it allows models to generate accurate thinking-augmented answers while reducing time to first non-thinking token from minutes to ${\le}$ 5s and the overall real-time delays by up to $12{\times}$.
comment: Preprint, work in progress
♻ ☆ Addressing Data Imbalance in Transformer-Based Multi-Label Emotion Detection with Weighted Loss SemEval 2025
This paper explores the application of a simple weighted loss function to Transformer-based models for multi-label emotion detection in SemEval-2025 Shared Task 11. Our approach addresses data imbalance by dynamically adjusting class weights, thereby enhancing performance on minority emotion classes without the computational burden of traditional resampling methods. We evaluate BERT, RoBERTa, and BART on the BRIGHTER dataset, using evaluation metrics such as Micro F1, Macro F1, ROC-AUC, Accuracy, and Jaccard similarity coefficients. The results demonstrate that the weighted loss function improves performance on high-frequency emotion classes but shows limited impact on minority classes. These findings underscore both the effectiveness and the challenges of applying this approach to imbalanced multi-label emotion detection.
comment: 10 pages, 1 figure, SemEval 2025
♻ ☆ PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.
♻ ☆ Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
♻ ☆ PersoBench: Benchmarking Personalized Response Generation in Large Language Models
While large language models (LLMs) have exhibited impressive conversational capabilities, their proficiency in delivering personalized responses remains unclear. Although recent benchmarks automatically evaluate persona consistency in role-playing contexts using LLM-based judgment, the evaluation of personalization in response generation remains underexplored. To address this gap, we present an automated benchmarking pipeline, PersoBench, to evaluate the personalization ability of LLMs in persona-aware dialogue generation within a zero-shot setting. Our framework employs a structured pipeline comprising speaker-aware annotation, task-specific and context-driven prompt construction, response post-processing, and automated evaluation across multiple dimensions of generation quality. In particular, the pipeline performs text preprocessing and speaker labeling, constructs structured prompts with task instructions and LLM roles, validates response format, and evaluates valid outputs across fluency, personalization, diversity, and coherence. We assess the performance of four open-source and four closed-source LLMs using well-known datasets and a range of explicit metrics. Our findings reveal that while LLMs excel at generating fluent and diverse responses, they are far from satisfactory in delivering personalized and coherent responses, considering both the conversation context and the provided personas.
♻ ☆ Guarding the Guardrails: A Taxonomy-Driven Approach to Jailbreak Detection SC
Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcomes of our experiments are fourfold. First, we developed a comprehensive hierarchical taxonomy of jailbreak strategies that systematically consolidates techniques previously studied in isolation and harmonizes existing, partially overlapping classifications with explicit cross-references to prior categorizations. The taxonomy organizes jailbreak strategies into seven mechanism-oriented families: impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmarked GPT-5 as a judge for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.
comment: 2nd Conference on International Association for Safe & Ethical AI (IASEAI 2026), 24-26 February 2026, UNESCO House, Paris, France
♻ ☆ SpeechMapper: Speech-to-text Embedding Projector for LLMs ICASSP 2026
Current speech LLMs bridge speech foundation models to LLMs using projection layers, training all of these components on speech instruction data. This strategy is computationally intensive and susceptible to task and prompt overfitting. We present SpeechMapper, a cost-efficient speech-to-LLM-embedding training approach that mitigates overfitting, enabling more robust and generalizable models. Our model is first pretrained without the LLM on inexpensive hardware, and then efficiently attached to the target LLM via a brief 1K-step instruction tuning (IT) stage. Through experiments on speech translation and spoken question answering, we demonstrate the versatility of SpeechMapper's pretrained block, presenting results for both task-agnostic IT, an ASR-based adaptation strategy that does not train in the target task, and task-specific IT. In task-agnostic settings, Speechmapper rivals the best instruction-following speech LLM from IWSLT25, despite never being trained on these tasks, while in task-specific settings, it outperforms this model across many datasets, despite requiring less data and compute. Overall, SpeechMapper offers a practical and scalable approach for efficient, generalizable speech-LLM integration without large-scale IT.
comment: Accepted to ICASSP 2026
♻ ☆ Stingy Context: 18:1 Hierarchical Code Compression for LLM Auto-Coding
We introduce Stingy Context, a hierarchical tree-based compression scheme achieving 18:1 reduction in LLM context for auto-coding tasks. Using our TREEFRAG exploit decomposition, we reduce a real source code base of 239k tokens to 11k tokens while preserving task fidelity. Empirical results across 12 Frontier models show 94 to 97% success on 40 real-world issues at low cost, outperforming flat methods and mitigating lost-in-the-middle effects.
comment: 28 pages, 10 tables, 2 figures, 10 bibliographical references and 6 appendices
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Diversity or Precision? A Deep Dive into Next Token Prediction
Recent advancements have shown that reinforcement learning (RL) can substantially improve the reasoning abilities of large language models (LLMs). The effectiveness of such RL training, however, depends critically on the exploration space defined by the pre-trained model's token-output distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific instance of policy gradient optimization applied within a single-step episode. To systematically study how the pre-trained distribution shapes the exploration potential for subsequent RL, we propose a generalized pre-training objective that adapts on-policy RL principles to supervised learning. By framing next-token prediction as a stochastic decision process, we introduce a reward-shaping strategy that explicitly balances diversity and precision. Our method employs a positive reward scaling factor to control probability concentration on ground-truth tokens and a rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically. This allows us to reshape the pre-trained token-output distribution and investigate how to provide a more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance. Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find that imposing a precision-oriented prior yields a superior exploration space for RL.
♻ ☆ LLM Agents for Education: Advances and Applications EMNLP 2025
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ DeVisE: Behavioral Testing of Medical Large Language Models
Large language models (LLMs) are increasingly applied in clinical decision support, yet current evaluations rarely reveal whether their outputs reflect genuine medical reasoning or superficial correlations. We introduce DeVisE (Demographics and Vital signs Evaluation), a behavioral testing framework that probes fine-grained clinical understanding through controlled counterfactuals. Using intensive care unit (ICU) discharge notes from MIMIC-IV, we construct both raw (real-world) and template-based (synthetic) variants with single-variable perturbations in demographic (age, gender, ethnicity) and vital sign attributes. We evaluate eight LLMs, spanning general-purpose and medical variants, under zero-shot setting. Model behavior is analyzed through (1) input-level sensitivity, capturing how counterfactuals alter perplexity, and (2) downstream reasoning, measuring their effect on predicted ICU length-of-stay and mortality. Overall, our results show that standard task metrics obscure clinically relevant differences in model behavior, with models differing substantially in how consistently and proportionally they adjust predictions to counterfactual perturbations.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A
We present EvasionBench, a comprehensive benchmark for detecting evasive responses in corporate earnings call question-and-answer sessions. Drawing from 22.7 million Q&A pairs extracted from S&P Capital IQ transcripts, we construct a rigorously filtered dataset and introduce a three-level evasion taxonomy: direct, intermediate, and fully evasive. Our annotation pipeline employs a Multi-Model Consensus (MMC) framework, combining dual frontier LLM annotation with a three-judge majority voting mechanism for ambiguous cases, achieving a Cohen's Kappa of 0.835 on human inter-annotator agreement. We release: (1) a balanced 84K training set, (2) a 1K gold-standard evaluation set with expert human labels, and (3) [Eva-4B], a 4-billion parameter classifier fine-tuned from Qwen3-4B that achieves 84.9% Macro-F1, outperforming Claude 4.5, GPT-5.2, and Gemini 3 Flash. Our ablation studies demonstrate the effectiveness of multi-model consensus labeling over single-model annotation. EvasionBench fills a critical gap in financial NLP by providing the first large-scale benchmark specifically targeting managerial communication evasion.
comment: Major revision. Title and abstract updated to better reflect the refined results. Shijian Ma and Yan Lin contributed equally. Corresponding author: Yan Lin; Project page: https://iiiiqiiii.github.io/EvasionBench/
♻ ☆ Hebrew Diacritics Restoration using Visual Representation
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DiVRit, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DiVRit is its use of a Hebrew Visual Language Model to process diacritized candidates as images, allowing diacritic information to be embedded directly within their vector representations while the surrounding context remains tokenization-based. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DiVRit achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.
♻ ☆ ROSA-Tuning: Enhancing Long-Context Modeling via Suffix Matching
Long-context capability and computational efficiency are among the central challenges facing today's large language models. Existing efficient attention methods reduce computational complexity, but they typically suffer from a limited coverage of the model state. This paper proposes ROSA-Tuning, a retrieval-and-recall mechanism for enhancing the long-context modeling ability of pretrained models. Beyond the standard attention mechanism, ROSA-Tuning leverages in parallel a CPU-based ROSA (RWKV Online Suffix Automaton) retrieval module, which efficiently locates historical positions in long contexts that are relevant to the current query, and injects the retrieved information into the model state in a trainable manner; subsequent weighted fusion can then be handled by range-restricted attention. To enable end-to-end training, we employ the binary discretization strategy and the counterfactual gradient algorithm, and further optimize overall execution efficiency via an asynchronous CPU-GPU pipeline. Systematic evaluations on Qwen3-Base-1.7B show that ROSA-Tuning substantially restores the long-context modeling ability of windowed-attention models, achieving performance close to and in some cases matching global attention on benchmarks such as LongBench, while maintaining computational efficiency and GPU memory usage that are nearly comparable to windowed-attention methods, offering a new technical path for efficient long-context processing. The example code can be found at https://github.com/zyaaa-ux/ROSA-Tuning.
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ SWE-Pruner: Self-Adaptive Context Pruning for Coding Agents
LLM agents have demonstrated remarkable capabilities in software development, but their performance is hampered by long interaction contexts, which incur high API costs and latency. While various context compression approaches such as LongLLMLingua have emerged to tackle this challenge, they typically rely on fixed metrics such as PPL, ignoring the task-specific nature of code understanding. As a result, they frequently disrupt syntactic and logical structure and fail to retain critical implementation details. In this paper, we propose SWE-Pruner, a self-adaptive context pruning framework tailored for coding agents. Drawing inspiration from how human programmers "selectively skim" source code during development and debugging, SWE-Pruner performs task-aware adaptive pruning for long contexts. Given the current task, the agent formulates an explicit goal (e.g., "focus on error handling") as a hint to guide the pruning targets. A lightweight neural skimmer (0.6B parameters) is trained to dynamically select relevant lines from the surrounding context given the goal. Evaluations across four benchmarks and multiple models validate SWE-Pruner's effectiveness in various scenarios, achieving 23-54% token reduction on agent tasks like SWE-Bench Verified while even improving success rates, and up to 14.84x compression on single-turn tasks like LongCodeQA with minimal performance impact.
comment: Code available at https://github.com/Ayanami1314/swe-pruner
♻ ☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
comment: accepted to Computer magazine
♻ ☆ Entailed Opinion Matters: Improving the Fact-Checking Performance of Language Models by Relying on their Entailment Ability
Automated fact-checking has been a challenging task for the research community. Past works tried various strategies, such as end-to-end training, retrieval-augmented generation, and prompt engineering, to build robust fact-checking systems. However, their accuracy was not high enough for real-world deployment. We, on the other hand, propose a new learning paradigm, where evidence classification and entailed justifications made by generative language models (GLMs) are used to train encoder-only language models (ELMs). We have conducted a rigorous set of experiments, comparing our approach with recent works along with various prompting and fine-tuning strategies. Additionally, we have conducted ablation studies, error analysis, quality analysis of model explanations, and a domain generalisation study to provide a comprehensive understanding of our approach.
comment: 22 pages
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
♻ ☆ Evaluating and Steering Modality Preferences in Multimodal Large Language Model
Multi-modal large language models (MLLMs) have achieved remarkable success on complex multi-modal tasks. However, it remains insufficiently explored whether they exhibit $\textbf{modality preference}$, a tendency to favor one modality over another when processing multi-modal contexts. To study this question, we introduce $\textbf{MC\textsuperscript{2}}$ benchmark, which constructs controlled evidence-conflict scenarios to systematically evaluate modality preference in decision-making. Extensive experiments reveal that all 20 tested MLLMs generally demonstrate clear modality preferences, and such preferences can serve as a useful indicator of downstream task performance of MLLMs. Further analysis shows that modality preference can be controlled by instruction guidance and captured within the latent representations of MLLMs. Built on these insights, we propose a probing and steering method based on representation engineering to explicitly control modality preference without requiring additional fine-tuning. This method effectively amplifies modality preference toward a desired direction and demonstrates promising improvements across multiple multi-modal understanding and reasoning tasks.
comment: Modality Preference
♻ ☆ Beyond Correctness: Rewarding Faithful Reasoning in Retrieval-Augmented Generation
Inspired by the success of reinforcement learning (RL) in Large Language Model (LLM) training for domains like math and code, recent works have begun exploring how to train LLMs to use search engines more effectively as tools for retrieval-augmented generation. Although these methods achieve performance improvement across QA benchmarks, many prioritize final answer correctness while overlooking the quality of intermediate reasoning steps, which may lead to chain-of-thought unfaithfulness. In this paper, we first introduce a comprehensive evaluation framework for evaluating RL-based search agents, covering three distinct faithfulness metrics: information-think faithfulness, think-answer faithfulness, and think-search faithfulness. Our evaluations reveal that canonical search agents trained via Reinforcement Learning from Verifiable Reward (RLVR) -- including SearchR1 and ReSearch -- have significant room for improvement in this regard. To foster faithful reasoning, we introduce VERITAS(Verifying Entailed Reasoning through Intermediate Traceability in Agentic Search), a novel framework that integrates fine-grained faithfulness rewards into the reinforcement learning process. Our experiments show that models trained with VERITAS not only significantly improve reasoning faithfulness, but also achieve better task performance compared to the baselines trained against pure outcome-based reward.
♻ ☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Act or Clarify? Modeling Sensitivity to Uncertainty and Cost in Communication
When deciding how to act under uncertainty, agents may choose to act to reduce uncertainty or they may act despite that uncertainty. In communicative settings, an important way of reducing uncertainty is by asking clarification questions (CQs). We predict that the decision to ask a CQ depends on both contextual uncertainty and the cost of alternative actions, and that these factors interact: uncertainty should matter most when acting incorrectly is costly. We formalize this interaction in a computational model based on expected regret: how much an agent stands to lose by acting now rather than with full information. We test these predictions in two experiments, one examining purely linguistic responses to questions and another extending to choices between clarification and non-linguistic action. Taken together, our results suggest a rational tradeoff: humans tend to seek clarification proportional to the risk of substantial loss when acting under uncertainty.
comment: 6 pages, 3 figures, under review
♻ ☆ MapCoder-Lite: Distilling Multi-Agent Coding into a Single Small LLM
Large language models (LLMs) have advanced code generation from single-function tasks to competitive-programming problems, but existing multi-agent solutions either rely on costly large-scale (>30B) models or collapse when downsized to small open-source models. We present MapCoder-Lite, a framework for distilling the complex reasoning of large, multi-agent coding systems into a single 7B model. Our contribution is a novel, three-pillar methodology that synergistically generates, refines, and encodes multi-agent knowledge: (i) pass-based trajectory distillation from strong LLMs fixes format fragility in retrieval and reduces failures in debugging, (ii) supervisor-guided correction with global feedback strengthens planning and coding agents, and (iii) agent-wise LoRA fine-tuning delivers memory-efficient specialisation. Comprehensive evaluation on xCodeEval, APPS, and CodeContests shows that MapCoder-Lite more than doubles xCodeEval accuracy (from 13.2% to 28.3%), eliminates all format failures, while reducing GPU memory and token-generation time by 4x compared to a 32B model. It also achieves over 10% gains on simpler coding benchmarks, demonstrating broad improvements beyond competitive programming. These results demonstrate that careful agent-wise fine-tuning unleashes high-quality multi-agent coding on a small language model. Our code is publicly available at https://github.com/aiha-lab/MapCoder-Lite.
♻ ☆ ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall ICLR2026
Large Language Models (LLMs) require efficient knowledge editing (KE) to update factual information, yet existing methods exhibit significant performance decay in multi-hop factual recall. This failure is particularly acute when edits involve intermediate implicit subjects within reasoning chains. Through causal analysis, we reveal that this limitation stems from an oversight of how chained knowledge is dynamically represented and utilized at the neuron level. We discover that during multi hop reasoning, implicit subjects function as query neurons, which sequentially activate corresponding value neurons across transformer layers to accumulate information toward the final answer, a dynamic prior KE work has overlooked. Guided by this insight, we propose ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall, a framework that leverages neuron-level attribution to identify and edit these critical query-value (Q-V) pathways. ACE provides a mechanistically grounded solution for multi-hop KE, empirically outperforming state-of-the-art methods by 9.44% on GPT-J and 37.46% on Qwen3-8B. Our analysis further reveals more fine-grained activation patterns in Qwen3 and demonstrates that the semantic interpretability of value neurons is orchestrated by query-driven accumulation. These findings establish a new pathway for advancing KE capabilities based on the principled understanding of internal reasoning mechanisms.
comment: Accepted by ICLR2026
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ The ICASSP 2026 HumDial Challenge: Benchmarking Human-like Spoken Dialogue Systems in the LLM Era ICASSP 2026
Driven by the rapid advancement of Large Language Models (LLMs), particularly Audio-LLMs and Omni-models, spoken dialogue systems have evolved significantly, progressively narrowing the gap between human-machine and human-human interactions. Achieving truly ``human-like'' communication necessitates a dual capability: emotional intelligence to perceive and resonate with users' emotional states, and robust interaction mechanisms to navigate the dynamic, natural flow of conversation, such as real-time turn-taking. Therefore, we launched the first Human-like Spoken Dialogue Systems Challenge (HumDial) at ICASSP 2026 to benchmark these dual capabilities. Anchored by a sizable dataset derived from authentic human conversations, this initiative establishes a fair evaluation platform across two tracks: (1) Emotional Intelligence, targeting long-term emotion understanding and empathetic generation; and (2) Full-Duplex Interaction, systematically evaluating real-time decision-making under `` listening-while-speaking'' conditions. This paper summarizes the dataset, track configurations, and the final results.
comment: Official summary paper for the ICASSP 2026 HumDial Challenge
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ DynamicNER: A Dynamic, Multilingual, and Fine-Grained Dataset for LLM-based Named Entity Recognition EMNLP 2025
The advancements of Large Language Models (LLMs) have spurred a growing interest in their application to Named Entity Recognition (NER) methods. However, existing datasets are primarily designed for traditional machine learning methods and are inadequate for LLM-based methods, in terms of corpus selection and overall dataset design logic. Moreover, the prevalent fixed and relatively coarse-grained entity categorization in existing datasets fails to adequately assess the superior generalization and contextual understanding capabilities of LLM-based methods, thereby hindering a comprehensive demonstration of their broad application prospects. To address these limitations, we propose DynamicNER, the first NER dataset designed for LLM-based methods with dynamic categorization, introducing various entity types and entity type lists for the same entity in different context, leveraging the generalization of LLM-based NER better. The dataset is also multilingual and multi-granular, covering 8 languages and 155 entity types, with corpora spanning a diverse range of domains. Furthermore, we introduce CascadeNER, a novel NER method based on a two-stage strategy and lightweight LLMs, achieving higher accuracy on fine-grained tasks while requiring fewer computational resources. Experiments show that DynamicNER serves as a robust and effective benchmark for LLM-based NER methods. Furthermore, we also conduct analysis for traditional methods and LLM-based methods on our dataset. Our code and dataset are openly available at https://github.com/Astarojth/DynamicNER.
comment: This paper is accepted by EMNLP 2025 Main Conference
♻ ☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Bridging the Knowledge-Prediction Gap in LLMs on Multiple-Choice Questions
While large language models (LLMs) perform strongly on diverse tasks, their trustworthiness is limited by erratic behavior that is unfaithful to their internal knowledge. In particular, LLMs often fail on multiple-choice questions (MCQs) even if they encode correct answers in their hidden representations, revealing a misalignment between internal knowledge and output behavior. We investigate and mitigate this knowledge-prediction gap on MCQs through a three-step analysis of hidden representations. First, we quantify the prevalence and magnitude of the gap across models and datasets. Second, we provide a geometric interpretation by identifying distinct knowledge and prediction subspaces in the residual stream. Third, we introduce KAPPA, a lightweight inference-time intervention that aligns the two subspaces within the residual stream to reduce the knowledge-prediction gap. Our results provide a geometric and interpretable explanation of the knowledge-prediction gap in LLMs. Furthermore, KAPPA effectively reduces the gap across diverse MCQ benchmarks and models, and generalizes to free-form settings.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Language models can learn implicit multi-hop reasoning, but only if they have lots of training data EMNLP 2025
Implicit reasoning is the ability of a language model to solve multi-hop reasoning tasks in a single forward pass, without chain of thought. We investigate this capability using GPT2-style language models trained from scratch on controlled $k$-hop reasoning datasets ($k = 2, 3, 4$). We show that while such models can indeed learn implicit $k$-hop reasoning, the required training data grows exponentially in $k$, and the required number of transformer layers grows linearly in $k$. We offer a theoretical explanation for why this depth growth is necessary. We further find that the data requirement can be mitigated, but not eliminated, through curriculum learning.
comment: Accepted at EMNLP 2025
♻ ☆ ResT: Reshaping Token-Level Policy Gradients for Tool-Use Large Language Models ICLR2026
Large language models (LLMs) transcend passive generation and act as goal-directed agents by invoking external tools. Reinforcement learning (RL) offers a principled framework for optimizing these emergent tool-use policies, yet the prevailing paradigm relies exclusively on sparse outcome rewards and lacks consideration of the particularity of tool-use tasks, inflating policy-gradient variance and resulting in inefficient training. To better understand and address these challenges, we first establish a theoretical link between policy entropy and training stability of tool-use tasks, which reveals that structured, low-entropy tokens are primary determinants of rewards. Motivated by this insight, we propose \textbf{Res}haped \textbf{T}oken-level policy gradients (\textbf{ResT}) for tool-use tasks. ResT reshapes the policy gradient through entropy-informed token reweighting, progressively upweighting reasoning tokens as training proceeds. This entropy-aware scheme enables a smooth shift from structural correctness to semantic reasoning and stabilizes convergence in multi-turn tool-use tasks. Evaluation on BFCL and API-Bank shows that ResT achieves state-of-the-art results, outperforming prior methods by up to $8.76\%$. When fine-tuned on a 4B base LLM, ResT further surpasses GPT-4o by $4.11\%$ on single-turn tasks and $1.50\%$ on multi-turn base tasks. Code is available at https://github.com/1229095296/ResT_Tool_use_LLM.git.
comment: Accepted by ICLR2026
♻ ☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
♻ ☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
♻ ☆ Input-Time Scaling: Adding Noise and Irrelevance into Less-Is-More Drastically Improves Reasoning Performance and Efficiency
Large Language Models (LLMs) excel at reasoning, traditionally requiring high-quality large-scale data and extensive training. Recent works reveal a very appealing Less-Is-More phenomenon where very small, carefully curated high-quality datasets match resource-intensive approaches. In this work, we further systematically relax their quality constraints by adding controlled noise via persona context relevance and comparing datasets of different qualities. Counterintuitively, we find that mixing relevant and irrelevant contexts consistently across training and inference stages yields optimal results -- a phenomenon we term training-testing co-design. Dataset quality comparisons show that high-quality data benefits weaker models on easy questions, while low-quality data achieves higher scores on hard questions with capable models. Across our experiments, reasoning performance is linked to reasoning efficiency. We, for the first time, found adding noisy and irrelevant contexts into queries can improve reasoning efficiency without any prices and targeted designs. Building on these insights, we propose Input-Time Scaling: applying small, low-quality data to capable models with training-testing co-design. This maintains Less-Is-More while further removing labor-intensive quality curation and improving reasoning effectiveness and efficiency, making the approach more applicable and affordable. Our method achieves 76.7% pass@1 on AIME24/25 using Qwen2.5-32B-Instruct, and 90.0%/80.0% with DeepSeek-R1-Distill-Qwen-32B -- state-of-the-art among Qwen2.5-32B variants. We are open-sourcing our datasets, pipelines, evaluation results, and checkpoints to facilitate reproducibility and further research.
♻ ☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
♻ ☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings. Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
♻ ☆ Scaling Spoken Language Models with Syllabic Speech Tokenization ICASSP 2026
Spoken language models (SLMs) typically discretize speech into high-frame-rate tokens extracted from SSL speech models. As the most successful LMs are based on the Transformer architecture, processing these long token streams with self-attention is expensive, as attention scales quadratically with sequence length. A recent SSL work introduces acoustic tokenization of speech at the syllable level, which is more interpretable and potentially more scalable with significant compression in token lengths (4-5 Hz). Yet, their value for spoken language modeling is not yet fully explored. We present the first systematic study of syllabic tokenization for spoken language modeling, evaluating models on a suite of SLU benchmarks while varying training data scale. Syllabic tokens can match or surpass the previous high-frame rate tokens while significantly cutting training and inference costs, achieving more than a 2x reduction in training time and a 5x reduction in FLOPs. Our findings highlight syllable-level language modeling as a promising path to efficient long-context spoken language models.
comment: ICASSP 2026
♻ ☆ WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
♻ ☆ DTS: Enhancing Large Reasoning Models via Decoding Tree Sketching
Large Reasoning Models (LRMs) achieve remarkable inference-time improvements through parallel thinking. However, existing methods rely on redundant sampling of reasoning trajectories, failing to effectively explore the reasoning space to uncover high-quality solutions. To address these limitations, we propose Decoding Tree Sketching (DTS), a plug-and-play decoding framework for structural multi-trajectory exploration and reasoning selection. For reasoning exploration, DTS sketches a backbone tree of the reasoning space by selectively branching at decision tokens. For reasoning selection, guided by length-accuracy anti-correlation, DTS designs an early termination to prioritize short and reliable trajectories during decoding. Experimental results across four LRMs and datasets demonstrate that DTS significantly enhances accuracy by 14% and reduces repetitive generation by 8% on average. Notably, DTS enables smaller models to outperform larger models with 10$\times$ the size, highlighting its potential to strengthen reasoning capabilities.
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
♻ ☆ Cross-Cultural Expert-Level Art Critique Evaluation with Vision-Language Models ACL 2026
Vision-Language Models (VLMs) excel at visual perception, yet their ability to interpret cultural meaning in art remains under-validated. However, cultural understanding and interpretability are often overlooked when evaluating these models. To overcome this limitation, this paper introduces a tri-tier evaluation framework for cross-cultural art-critique assessment. Tier I provides a series of automated metrics indicating cultural coverage. Tier II leverages theory-informed template-based scoring using a single primary judge across five evaluation dimensions (Coverage, Alignment, Depth, Accuracy, Quality), each rated on a 1--5 scale. Tier III then calibrates the aggregated scores from Tier II via isotonic regression. The proposed evaluation framework is validated with a large-scale experiment covering 15 different VLMs on 294 evaluation art-critique pairs spanning six different cultural traditions. Our findings reveal that (i) automated metrics are unreliable for cultural depth analysis, (ii) Western samples score higher than non-Western samples under our sampling and evaluation template, highlighting potential model biases, and (iii) VLMs exhibit a consistent performance gap, performing well in visual description but underperforming in cultural interpretation. Dataset and code are available at https://github.com/yha9806/VULCA-Framework.
comment: 16 pages, 7 figures, submitted to ACL 2026
♻ ☆ The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing LLMs' capabilities. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, thereby improving precision. This study presents an empirical investigation that provides fresh insights into the limits of RLVR. We examine how RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely original solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves \texttt{pass@1}, \textit{the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets}, failing to recover correct answers that were previously accessible to the base model. Interestingly, while RLVR sometimes increases token-level entropy, it results in greater uncertainty at each generation step and declining answer-level entropy. This indicates that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, we reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash requires future innovations that seed probability mass into underrepresented solution regions.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: Accepted to TMLR (2026)
♻ ☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +16.7pp while quality metrics improve by up to 47%, validating that per-action supervision can lead to improvements across different multiagent systems on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
♻ ☆ BanglaIPA: Towards Robust Text-to-IPA Transcription with Contextual Rewriting in Bengali EACL 2026
Despite its widespread use, Bengali lacks a robust automated International Phonetic Alphabet (IPA) transcription system that effectively supports both standard language and regional dialectal texts. Existing approaches struggle to handle regional variations, numerical expressions, and generalize poorly to previously unseen words. To address these limitations, we propose BanglaIPA, a novel IPA generation system that integrates a character-based vocabulary with word-level alignment. The proposed system accurately handles Bengali numerals and demonstrates strong performance across regional dialects. BanglaIPA improves inference efficiency by leveraging a precomputed word-to-IPA mapping dictionary for previously observed words. The system is evaluated on the standard Bengali and six regional variations of the DUAL-IPA dataset. Experimental results show that BanglaIPA outperforms baseline IPA transcription models by 58.4-78.7% and achieves an overall mean word error rate of 11.4%, highlighting its robustness in phonetic transcription generation for the Bengali language.
comment: Accepted at LoResLM workshop, EACL 2026
♻ ☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
comment: Due to a misalignment in the timing of publication, we respectfully request to withdraw our manuscript. Specifically, the corresponding author has not given approval for the article to be published at this time, as additional preparations are required. We appreciate your understanding and will resubmit when the author team has reached a unanimous agreement
♻ ☆ Improving Low-Resource Machine Translation via Round-Trip Reinforcement Learning
Low-resource machine translation (MT) has gained increasing attention as parallel data from low-resource language communities is collected, but many potential methods for improving low-resource MT remain unexplored. We investigate a self-supervised reinforcement-learning-based fine-tuning for translation in low-resource settings using round-trip bootstrapping with the No Language Left Behind (NLLB) family of models. Our approach translates English into a target low-resource language and then back into English, using a combination of chrF++ and BLEU as the reward function on the reconstructed English sentences. Using the NLLB-MD dataset, we evaluate both the 600M and 1.3B parameter NLLB models and observe consistent improvements for the following languages: Central Aymara, Friulian, Wolof and Russian. Qualitative inspection of translation outputs indicates increased fluency and semantic fidelity. We argue that our method can further benefit from scale, enabling models to increasingly leverage their pretrained knowledge and continue self-improving. The code is available on github: https://github.com/Copticoder/thesis-nllb-bootstrap-grpo.
♻ ☆ Beyond Prompting: Efficient and Robust Contextual Biasing for Speech LLMs via Logit-Space Integration (LOGIC)
The rapid emergence of new entities -- driven by cultural shifts, evolving trends, and personalized user data -- poses a significant challenge for existing Speech Large Language Models (Speech LLMs). While these models excel at general conversational tasks, their static training knowledge limits their ability to recognize domain-specific terms such as contact names, playlists, or technical jargon. Existing solutions primarily rely on prompting, which suffers from poor scalability: as the entity list grows, prompting encounters context window limitations, increased inference latency, and the "lost-in-the-middle" phenomenon. An alternative approach, Generative Error Correction (GEC), attempts to rewrite transcripts via post-processing but frequently suffers from "over-correction", introducing hallucinations of entities that were never spoken. In this work, we introduce LOGIC (Logit-Space Integration for Contextual Biasing), an efficient and robust framework that operates directly in the decoding layer. Unlike prompting, LOGIC decouples context injection from input processing, ensuring constant-time complexity relative to prompt length. Extensive experiments using the Phi-4-MM model across 11 multilingual locales demonstrate that LOGIC achieves an average 9% relative reduction in Entity WER with a negligible 0.30% increase in False Alarm Rate.
comment: This paper is withdrawn temporarily to ensure full compliance with internal institutional publication approval processes
♻ ☆ CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling aims to predict cellular responses to diverse perturbations but faces challenges from biological complexity, multimodal data heterogeneity, and the need for interdisciplinary expertise. We introduce CellForge, a multi-agent framework that autonomously designs and synthesizes neural network architectures tailored to specific single-cell datasets and perturbation tasks. Given raw multi-omics data and task descriptions, CellForge discovers candidate architectures through collaborative reasoning among specialized agents, then generates executable implementations. Our core contribution is the framework itself: showing that multi-agent collaboration mechanisms - rather than manual human design or single-LLM prompting - can autonomously produce executable, high-quality computational methods. This approach goes beyond conventional hyperparameter tuning by enabling entirely new architectural components such as trajectory-aware encoders and perturbation diffusion modules to emerge from agentic deliberation. We evaluate CellForge on six datasets spanning gene knockouts, drug treatments, and cytokine stimulations across multiple modalities (scRNA-seq, scATAC-seq, CITE-seq). The results demonstrate that the models generated by CellForge are highly competitive with established baselines, while revealing systematic patterns of architectural innovation. CellForge highlights the scientific value of multi-agent frameworks: collaboration among specialized agents enables genuine methodological innovation and executable solutions that single agents or human experts cannot achieve. This represents a paradigm shift toward autonomous scientific method development in computational biology. Code is available at https://github.com/gersteinlab/CellForge.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
Machine Learning 299
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
comment: ByteDance Seed Tech Report; Page: https://par-protein.github.io/
☆ Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of \emph{contrastive continual learning} (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
☆ Multi-Head LatentMoE and Head Parallel: Communication-Efficient and Deterministic MoE Parallelism
Large language models have transformed many applications but remain expensive to train. Sparse Mixture of Experts (MoE) addresses this through conditional computation, with Expert Parallel (EP) as the standard distributed training method. However, EP has three limitations: communication cost grows linearly with the number of activated experts $k$, load imbalance affects latency and memory usage, and data-dependent communication requires metadata exchange. We propose Multi-Head LatentMoE and Head Parallel (HP), a new architecture and parallelism achieving $O(1)$ communication cost regardless of $k$, completely balanced traffic, and deterministic communication, all while remaining compatible with EP. To accelerate Multi-Head LatentMoE, we propose IO-aware routing and expert computation. Compared to MoE with EP, Multi-Head LatentMoE with HP trains up to $1.61\times$ faster while having identical performance. With doubled granularity, it achieves higher overall performance while still being $1.11\times$ faster. Our method makes multi-billion-parameter foundation model research more accessible.
☆ CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable $k$-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
comment: 13 pages main text, 10 pages reference & appendix, 8 figures
☆ The Key to State Reduction in Linear Attention: A Rank-based Perspective
Linear attention offers a computationally efficient yet expressive alternative to softmax attention. However, recent empirical results indicate that the state of trained linear attention models often exhibits a low-rank structure, suggesting that these models underexploit their capacity in practice. To illuminate this phenomenon, we provide a theoretical analysis of the role of rank in linear attention, revealing that low effective rank can affect retrieval error by amplifying query noise. In addition to these theoretical insights, we conjecture that the low-rank states can be substantially reduced post-training with only minimal performance degradation, yielding faster and more memory-efficient models. To this end, we propose a novel hardware-aware approach that structurally prunes key and query matrices, reducing the state size while retaining compatibility with existing CUDA kernels. We adapt several existing pruning strategies to fit our framework and, building on our theoretical analysis, propose a novel structured pruning method based on a rank-revealing QR decomposition. Our empirical results, evaluated across models of varying sizes and on various downstream tasks, demonstrate the effectiveness of our state reduction framework. We highlight that our framework enables the removal of 50% of the query and key channels at only a marginal increase in perplexity. The code for this project can be found at https://github.com/camail-official/LinearAttentionPruning.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization IEEE
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
comment: 13 pages, 8 figures
☆ Robust Generalizable Heterogeneous Legal Link Prediction
Recent work has applied link prediction to large heterogeneous legal citation networks \new{with rich meta-features}. We find that this approach can be improved by including edge dropout and feature concatenation for the learning of more robust representations, which reduces error rates by up to 45%. We also propose an approach based on multilingual node features with an improved asymmetric decoder for compatibility, which allows us to generalize and extend the prediction to more, geographically and linguistically disjoint, data from New Zealand. Our adaptations also improve inductive transferability between these disjoint legal systems.
comment: 9 Pages
☆ SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
☆ Evolving Afferent Architectures: Biologically-inspired Models for Damage-Avoidance Learning
We introduce Afferent Learning, a framework that produces Computational Afferent Traces (CATs) as adaptive, internal risk signals for damage-avoidance learning. Inspired by biological systems, the framework uses a two-level architecture: evolutionary optimization (outer loop) discovers afferent sensing architectures that enable effective policy learning, while reinforcement learning (inner loop) trains damage-avoidance policies using these signals. This formalizes afferent sensing as providing an inductive bias for efficient learning: architectures are selected based on their ability to enable effective learning (rather than directly minimizing damage). We provide theoretical convergence guarantees under smoothness and bounded-noise assumptions. We illustrate the general approach in the challenging context of biomechanical digital twins operating over long time horizons (multiple decades of the life-course). Here, we find that CAT-based evolved architectures achieve significantly higher efficiency and better age-robustness than hand-designed baselines, enabling policies that exhibit age-dependent behavioral adaptation (23% reduction in high-risk actions). Ablation studies validate CAT signals, evolution, and predictive discrepancy as essential. We release code and data for reproducibility.
comment: 16 pages, 6 figures
☆ Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix $X$, it aims at finding two lower dimensional matrices, $W$ and $H$, such that $X\approx WH$, where the factors $W$ and $H$ are constrained to be element-wise nonnegative. The factor $W$ serves as a basis for the columns of $X$. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of $W$. In this paper, we consider the dual approach, where the volume of $H$ is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of $X$ in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.06380
☆ Team, Then Trim: An Assembly-Line LLM Framework for High-Quality Tabular Data Generation
While tabular data is fundamental to many real-world machine learning (ML) applications, acquiring high-quality tabular data is usually labor-intensive and expensive. Limited by the scarcity of observations, tabular datasets often exhibit critical deficiencies, such as class imbalance, selection bias, and low fidelity. To address these challenges, building on recent advances in Large Language Models (LLMs), this paper introduces Team-then-Trim (T$^2$), a framework that synthesizes high-quality tabular data through a collaborative team of LLMs, followed by a rigorous three-stage plug-in data quality control (QC) pipeline. In T$^2$, tabular data generation is conceptualized as a manufacturing process: specialized LLMs, guided by domain knowledge, are tasked with generating different data components sequentially, and the resulting products, i.e., the synthetic data, are systematically evaluated across multiple dimensions of QC. Empirical results on both simulated and real-world datasets demonstrate that T$^2$ outperforms state-of-the-art methods in producing high-quality tabular data, highlighting its potential to support downstream models when direct data collection is practically infeasible.
☆ From independent patches to coordinated attention: Controlling information flow in vision transformers
We make the information transmitted by attention an explicit, measurable quantity in vision transformers. By inserting variational information bottlenecks on all attention-mediated writes to the residual stream -- without other architectural changes -- we train models with an explicit information cost and obtain a controllable spectrum from independent patch processing to fully expressive global attention. On ImageNet-100, we characterize how classification behavior and information routing evolve across this spectrum, and provide initial insights into how global visual representations emerge from local patch processing by analyzing the first attention heads that transmit information. By biasing learning toward solutions with constrained internal communication, our approach yields models that are more tractable for mechanistic analysis and more amenable to control.
comment: Code at https://github.com/murphyka/vit_ib
☆ Legendre Memory Unit with A Multi-Slice Compensation Model for Short-Term Wind Speed Forecasting Based on Wind Farm Cluster Data
With more wind farms clustered for integration, the short-term wind speed prediction of such wind farm clusters is critical for normal operation of power systems. This paper focuses on achieving accurate, fast, and robust wind speed prediction by full use of cluster data with spatial-temporal correlation. First, weighted mean filtering (WMF) is applied to denoise wind speed data at the single-farm level. The Legendre memory unit (LMU) is then innovatively applied for the wind speed prediction, in combination with the Compensating Parameter based on Kendall rank correlation coefficient (CPK) of wind farm cluster data, to construct the multi-slice LMU (MSLMU). Finally, an innovative ensemble model WMF-CPK-MSLMU is proposed herein, with three key blocks: data pre-processing, forecasting, and multi-slice compensation. Advantages include: 1) LMU jointly models linear and nonlinear dependencies among farms to capture spatial-temporal correlations through backpropagation; 2) MSLMU enhances forecasting by using CPK-derived weights instead of random initialization, allowing spatial correlations to fully activate hidden nodes across clustered wind farms.; 3) CPK adaptively weights the compensation model in MSLMU and complements missing data spatially, to facilitate the whole model highly accurate and robust. Test results on different wind farm clusters indicate the effectiveness and superiority of proposed ensemble model WMF-CPK-MSLMU in the short-term prediction of wind farm clusters compared to the existing models.
comment: 10 pages, 11 figures,
☆ Dynamical Regimes of Multimodal Diffusion Models
Diffusion based generative models have achieved unprecedented fidelity in synthesizing high dimensional data, yet the theoretical mechanisms governing multimodal generation remain poorly understood. Here, we present a theoretical framework for coupled diffusion models, using coupled Ornstein-Uhlenbeck processes as a tractable model. By using the nonequilibrium statistical physics of dynamical phase transitions, we demonstrate that multimodal generation is governed by a spectral hierarchy of interaction timescales rather than simultaneous resolution. A key prediction is the ``synchronization gap'', a temporal window during the reverse generative process where distinct eigenmodes stabilize at different rates, providing a theoretical explanation for common desynchronization artifacts. We derive analytical conditions for speciation and collapse times under both symmetric and anisotropic coupling regimes, establishing strict bounds for coupling strength to avoid unstable symmetry breaking. We show that the coupling strength acts as a spectral filter that enforces a tunable temporal hierarchy on generation. We support these predictions through controlled experiments with diffusion models trained on MNIST datasets and exact score samplers. These results motivate time dependent coupling schedules that target mode specific timescales, offering a potential alternative to ad hoc guidance tuning.
comment: 40 pages, 14 figures
☆ Interval-Based AUC (iAUC): Extending ROC Analysis to Uncertainty-Aware Classification
In high-stakes risk prediction, quantifying uncertainty through interval-valued predictions is essential for reliable decision-making. However, standard evaluation tools like the receiver operating characteristic (ROC) curve and the area under the curve (AUC) are designed for point scores and fail to capture the impact of predictive uncertainty on ranking performance. We propose an uncertainty-aware ROC framework specifically for interval-valued predictions, introducing two new measures: $AUC_L$ and $AUC_U$. This framework enables an informative three-region decomposition of the ROC plane, partitioning pairwise rankings into correct, incorrect, and uncertain orderings. This approach naturally supports selective prediction by allowing models to abstain from ranking cases with overlapping intervals, thereby optimizing the trade-off between abstention rate and discriminative reliability. We prove that under valid class-conditional coverage, $AUC_L$ and $AUC_U$ provide formal lower and upper bounds on the theoretical optimal AUC ($AUC^*$), characterizing the physical limit of achievable discrimination. The proposed framework applies broadly to interval-valued prediction models, regardless of the interval construction method. Experiments on real-world benchmark datasets, using bootstrap-based intervals as one instantiation, validate the framework's correctness and demonstrate its practical utility for uncertainty-aware evaluation and decision-making.
☆ Theory of Optimal Learning Rate Schedules and Scaling Laws for a Random Feature Model
Setting the learning rate for a deep learning model is a critical part of successful training, yet choosing this hyperparameter is often done empirically with trial and error. In this work, we explore a solvable model of optimal learning rate schedules for a powerlaw random feature model trained with stochastic gradient descent (SGD). We consider the optimal schedule $η_T^\star(t)$ where $t$ is the current iterate and $T$ is the total training horizon. This schedule is computed both numerically and analytically (when possible) using optimal control methods. Our analysis reveals two regimes which we term the easy phase and hard phase. In the easy phase the optimal schedule is a polynomial decay $η_T^\star(t) \simeq T^{-ξ} (1-t/T)^δ$ where $ξ$ and $δ$ depend on the properties of the features and task. In the hard phase, the optimal schedule resembles warmup-stable-decay with constant (in $T$) initial learning rate and annealing performed over a vanishing (in $T$) fraction of training steps. We investigate joint optimization of learning rate and batch size, identifying a degenerate optimality condition. Our model also predicts the compute-optimal scaling laws (where model size and training steps are chosen optimally) in both easy and hard regimes. Going beyond SGD, we consider optimal schedules for the momentum $β(t)$, where speedups in the hard phase are possible. We compare our optimal schedule to various benchmarks in our task including (1) optimal constant learning rates $η_T(t) \sim T^{-ξ}$ (2) optimal power laws $η_T(t) \sim T^{-ξ} t^{-χ}$, finding that our schedule achieves better rates than either of these. Our theory suggests that learning rate transfer across training horizon depends on the structure of the model and task. We explore these ideas in simple experimental pretraining setups.
☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
☆ NeuroCanvas: VLLM-Powered Robust Seizure Detection by Reformulating Multichannel EEG as Image
Accurate and timely seizure detection from Electroencephalography (EEG) is critical for clinical intervention, yet manual review of long-term recordings is labor-intensive. Recent efforts to encode EEG signals into large language models (LLMs) show promise in handling neural signals across diverse patients, but two significant challenges remain: (1) multi-channel heterogeneity, as seizure-relevant information varies substantially across EEG channels, and (2) computing inefficiency, as the EEG signals need to be encoded into a massive number of tokens for the prediction. To address these issues, we draw the EEG signal and propose the novel NeuroCanvas framework. Specifically, NeuroCanvas consists of two modules: (i) The Entropy-guided Channel Selector (ECS) selects the seizure-relevant channels input to LLM and (ii) the following Canvas of Neuron Signal (CNS) converts selected multi-channel heterogeneous EEG signals into structured visual representations. The ECS module alleviates the multi-channel heterogeneity issue, and the CNS uses compact visual tokens to represent the EEG signals that improve the computing efficiency. We evaluate NeuroCanvas across multiple seizure detection datasets, demonstrating a significant improvement of $20\%$ in F1 score and reductions of $88\%$ in inference latency. These results highlight NeuroCanvas as a scalable and effective solution for real-time and resource-efficient seizure detection in clinical practice.The code will be released at https://github.com/Yanchen30247/seizure_detect.
☆ Billion-Scale Graph Foundation Models
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
☆ Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty
Multi-agent systems are increasingly equipped with heterogeneous multimodal sensors, enabling richer perception but introducing modality-specific and agent-dependent uncertainty. Existing multi-agent collaboration frameworks typically reason at the agent level, assume homogeneous sensing, and handle uncertainty implicitly, limiting robustness under sensor corruption. We propose Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty (A2MAML), a principled approach for uncertainty-aware, modality-level collaboration. A2MAML models each modality-specific feature as a stochastic estimate with uncertainty prediction, actively selects reliable agent-modality pairs, and aggregates information via Bayesian inverse-variance weighting. This formulation enables fine-grained, modality-level fusion, supports asymmetric modality availability, and provides a principled mechanism to suppress corrupted or noisy modalities. Extensive experiments on connected autonomous driving scenarios for collaborative accident detection demonstrate that A2MAML consistently outperforms both single-agent and collaborative baselines, achieving up to 18.7% higher accident detection rate.
☆ Improved Dimension Dependence for Bandit Convex Optimization with Gradient Variations
Gradient-variation online learning has drawn increasing attention due to its deep connections to game theory, optimization, etc. It has been studied extensively in the full-information setting, but is underexplored with bandit feedback. In this work, we focus on gradient variation in Bandit Convex Optimization (BCO) with two-point feedback. By proposing a refined analysis on the non-consecutive gradient variation, a fundamental quantity in gradient variation with bandits, we improve the dimension dependence for both convex and strongly convex functions compared with the best known results (Chiang et al., 2013). Our improved analysis for the non-consecutive gradient variation also implies other favorable problem-dependent guarantees, such as gradient-variance and small-loss regrets. Beyond the two-point setup, we demonstrate the versatility of our technique by achieving the first gradient-variation bound for one-point bandit linear optimization over hyper-rectangular domains. Finally, we validate the effectiveness of our results in more challenging tasks such as dynamic/universal regret minimization and bandit games, establishing the first gradient-variation dynamic and universal regret bounds for two-point BCO and fast convergence rates in bandit games.
☆ A Dual-TransUNet Deep Learning Framework for Multi-Source Precipitation Merging and Improving Seasonal and Extreme Estimates
Multi-source precipitation products (MSPs) from satellite retrievals and reanalysis are widely used for hydroclimatic monitoring, yet spatially heterogeneous biases and limited skill for extremes still constrain their hydrologic utility. Here we develop a dual-stage TransUNet-based multi-source precipitation merging framework (DDL-MSPMF) that integrates six MSPs with four ERA5 near-surface physical predictors. A first-stage classifier estimates daily precipitation occurrence probability, and a second-stage regressor fuses the classifier outputs together with all predictors to estimate daily precipitation amount at 0.25 degree resolution over China for 2001-2020. Benchmarking against multiple deep learning and hybrid baselines shows that the TransUNet - TransUNet configuration yields the best seasonal performance (R = 0.75; RMSE = 2.70 mm/day) and improves robustness relative to a single-regressor setting. For heavy precipitation (>25 mm/day), DDL-MSPMF increases equitable threat scores across most regions of eastern China and better reproduces the spatial pattern of the July 2021 Zhengzhou rainstorm, indicating enhanced extreme-event detection beyond seasonal-mean corrections. Independent evaluation over the Qinghai-Tibet Plateau using TPHiPr further supports its applicability in data-scarce regions. SHAP analysis highlights the importance of precipitation occurrence probabilities and surface pressure, providing physically interpretable diagnostics. The proposed framework offers a scalable and explainable approach for precipitation fusion and extreme-event assessment.
comment: 75 pages,20 figures
☆ Decomposing Query-Key Feature Interactions Using Contrastive Covariances
Despite the central role of attention heads in Transformers, we lack tools to understand why a model attends to a particular token. To address this, we study the query-key (QK) space -- the bilinear joint embedding space between queries and keys. We present a contrastive covariance method to decompose the QK space into low-rank, human-interpretable components. It is when features in keys and queries align in these low-rank subspaces that high attention scores are produced. We first study our method both analytically and empirically in a simplified setting. We then apply our method to large language models to identify human-interpretable QK subspaces for categorical semantic features and binding features. Finally, we demonstrate how attention scores can be attributed to our identified features.
☆ Rationality Measurement and Theory for Reinforcement Learning Agents
This paper proposes a suite of rationality measures and associated theory for reinforcement learning agents, a property increasingly critical yet rarely explored. We define an action in deployment to be perfectly rational if it maximises the hidden true value function in the steepest direction. The expected value discrepancy of a policy's actions against their rational counterparts, culminating over the trajectory in deployment, is defined to be expected rational risk; an empirical average version in training is also defined. Their difference, termed as rational risk gap, is decomposed into (1) an extrinsic component caused by environment shifts between training and deployment, and (2) an intrinsic one due to the algorithm's generalisability in a dynamic environment. They are upper bounded by, respectively, (1) the $1$-Wasserstein distance between transition kernels and initial state distributions in training and deployment, and (2) the empirical Rademacher complexity of the value function class. Our theory suggests hypotheses on the benefits from regularisers (including layer normalisation, $\ell_2$ regularisation, and weight normalisation) and domain randomisation, as well as the harm from environment shifts. Experiments are in full agreement with these hypotheses. The code is available at https://github.com/EVIEHub/Rationality.
☆ Conditional Counterfactual Mean Embeddings: Doubly Robust Estimation and Learning Rates
A complete understanding of heterogeneous treatment effects involves characterizing the full conditional distribution of potential outcomes. To this end, we propose the Conditional Counterfactual Mean Embeddings (CCME), a framework that embeds conditional distributions of counterfactual outcomes into a reproducing kernel Hilbert space (RKHS). Under this framework, we develop a two-stage meta-estimator for CCME that accommodates any RKHS-valued regression in each stage. Based on this meta-estimator, we develop three practical CCME estimators: (1) Ridge Regression estimator, (2) Deep Feature estimator that parameterizes the feature map by a neural network, and (3) Neural-Kernel estimator that performs RKHS-valued regression, with the coefficients parameterized by a neural network. We provide finite-sample convergence rates for all estimators, establishing that they possess the double robustness property. Our experiments demonstrate that our estimators accurately recover distributional features including multimodal structure of conditional counterfactual distributions.
comment: Code is available at https://github.com/donlap/Conditional-Counterfactual-Mean-Embeddings
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ DMFlow: Disordered Materials Generation by Flow Matching
The design of materials with tailored properties is crucial for technological progress. However, most deep generative models focus exclusively on perfectly ordered crystals, neglecting the important class of disordered materials. To address this gap, we introduce DMFlow, a generative framework specifically designed for disordered crystals. Our approach introduces a unified representation for ordered, Substitutionally Disordered (SD), and Positionally Disordered (PD) crystals, and employs a flow matching model to jointly generate all structural components. A key innovation is a Riemannian flow matching framework with spherical reparameterization, which ensures physically valid disorder weights on the probability simplex. The vector field is learned by a novel Graph Neural Network (GNN) that incorporates physical symmetries and a specialized message-passing scheme. Finally, a two-stage discretization procedure converts the continuous weights into multi-hot atomic assignments. To support research in this area, we release a benchmark containing SD, PD, and mixed structures curated from the Crystallography Open Database. Experiments on Crystal Structure Prediction (CSP) and De Novo Generation (DNG) tasks demonstrate that DMFlow significantly outperforms state-of-the-art baselines adapted from ordered crystal generation. We hope our work provides a foundation for the AI-driven discovery of disordered materials.
☆ Less Finetuning, Better Retrieval: Rethinking LLM Adaptation for Biomedical Retrievers via Synthetic Data and Model Merging
Retrieval-augmented generation (RAG) has become the backbone of grounding Large Language Models (LLMs), improving knowledge updates and reducing hallucinations. Recently, LLM-based retriever models have shown state-of-the-art performance for RAG applications. However, several technical aspects remain underexplored on how to adapt general-purpose LLMs into effective domain-specific retrievers, especially in specialized domains such as biomedicine. We present Synthesize-Train-Merge (STM), a modular framework that enhances decoder-only LLMs with synthetic hard negatives, retrieval prompt optimization, and model merging. Experiments on a subset of 12 medical and general tasks from the MTEB benchmark show STM boosts task-specific experts by up to 23.5\% (average 7.5\%) and produces merged models that outperform both single experts and strong baselines without extensive pretraining. Our results demonstrate a scalable, efficient path for turning general LLMs into high-performing, domain-specialized retrievers, preserving general-domain capabilities while excelling on specialized tasks.
comment: Preprint
☆ Cross-Attention Transformer for Joint Multi-Receiver Uplink Neural Decoding
We propose a cross-attention Transformer for joint decoding of uplink OFDM signals received by multiple coordinated access points. A shared per-receiver encoder learns time-frequency structure within each received grid, and a token-wise cross-attention module fuses the receivers to produce soft log-likelihood ratios for a standard channel decoder, without requiring explicit per-receiver channel estimates. Trained with a bit-metric objective, the model adapts its fusion to per-receiver reliability, tolerates missing or degraded links, and remains robust when pilots are sparse. Across realistic Wi-Fi channels, it consistently outperforms classical pipelines and strong convolutional baselines, frequently matching (and in some cases surpassing) a powerful baseline that assumes perfect channel knowledge per access point. Despite its expressiveness, the architecture is compact, has low computational cost (low GFLOPs), and achieves low latency on GPUs, making it a practical building block for next-generation Wi-Fi receivers.
comment: 6 pages, 3 figures, 3 tables, conference submission
☆ Benchmarking and Enhancing PPG-Based Cuffless Blood Pressure Estimation Methods
Cuffless blood pressure screening based on easily acquired photoplethysmography (PPG) signals offers a practical pathway toward scalable cardiovascular health assessment. Despite rapid progress, existing PPG-based blood pressure estimation models have not consistently achieved the established clinical numerical limits such as AAMI/ISO 81060-2, and prior evaluations often lack the rigorous experimental controls necessary for valid clinical assessment. Moreover, the publicly available datasets commonly used are heterogeneous and lack physiologically controlled conditions for fair benchmarking. To enable fair benchmarking under physiologically controlled conditions, we created a standardized benchmarking subset NBPDB comprising 101,453 high-quality PPG segments from 1,103 healthy adults, derived from MIMIC-III and VitalDB. Using this dataset, we systematically benchmarked several state-of-the-art PPG-based models. The results showed that none of the evaluated models met the AAMI/ISO 81060-2 accuracy requirements (mean error $<$ 5 mmHg and standard deviation $<$ 8 mmHg). To improve model accuracy, we modified these models and added patient demographic data such as age, sex, and body mass index as additional inputs. Our modifications consistently improved performance across all models. In particular, the MInception model reduced error by 23\% after adding the demographic data and yielded mean absolute errors of 4.75 mmHg (SBP) and 2.90 mmHg (DBP), achieves accuracy comparable to the numerical limits defined by AAMI/ISO accuracy standards. Our results show that existing PPG-based BP estimation models lack clinical practicality under standardized conditions, while incorporating demographic information markedly improves their accuracy and physiological validity.
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Bounded-Abstention Multi-horizon Time-series Forecasting
Multi-horizon time-series forecasting involves simultaneously making predictions for a consecutive sequence of subsequent time steps. This task arises in many application domains, such as healthcare and finance, where mispredictions can have a high cost and reduce trust. The learning with abstention framework tackles these problems by allowing a model to abstain from offering a prediction when it is at an elevated risk of making a misprediction. Unfortunately, existing abstention strategies are ill-suited for the multi-horizon setting: they target problems where a model offers a single prediction for each instance. Hence, they ignore the structured and correlated nature of the predictions offered by a multi-horizon forecaster. We formalize the problem of learning with abstention for multi-horizon forecasting setting and show that its structured nature admits a richer set of abstention problems. Concretely, we propose three natural notions of how a model could abstain for multi-horizon forecasting. We theoretically analyze each problem to derive the optimal abstention strategy and propose an algorithm that implements it. Extensive evaluation on 24 datasets shows that our proposed algorithms significantly outperforms existing baselines.
☆ Towards Understanding and Avoiding Limitations of Convolutions on Graphs
While message-passing neural networks (MPNNs) have shown promising results, their real-world impact remains limited. Although various limitations have been identified, their theoretical foundations remain poorly understood, leading to fragmented research efforts. In this thesis, we provide an in-depth theoretical analysis and identify several key properties limiting the performance of MPNNs. Building on these findings, we propose several frameworks that address these shortcomings. We identify two properties exhibited by many MPNNs: shared component amplification (SCA), where each message-passing iteration amplifies the same components across all feature channels, and component dominance (CD), where a single component gets increasingly amplified as more message-passing steps are applied. These properties lead to the observable phenomenon of rank collapse of node representations, which generalizes the established over-smoothing phenomenon. By generalizing and decomposing over-smoothing, we enable a deeper understanding of MPNNs, more targeted solutions, and more precise communication within the field. To avoid SCA, we show that utilizing multiple computational graphs or edge relations is necessary. Our multi-relational split (MRS) framework transforms any existing MPNN into one that leverages multiple edge relations. Additionally, we introduce the spectral graph convolution for multiple feature channels (MIMO-GC), which naturally uses multiple computational graphs. A localized variant, LMGC, approximates the MIMO-GC while inheriting its beneficial properties. To address CD, we demonstrate a close connection between MPNNs and the PageRank algorithm. Based on personalized PageRank, we propose a variant of MPNNs that allows for infinitely many message-passing iterations, while preserving initial node features. Collectively, these results deepen the theoretical understanding of MPNNs.
comment: dissertation
☆ Knowledge Distillation for mmWave Beam Prediction Using Sub-6 GHz Channels IEEE
Beamforming in millimeter-wave (mmWave) high-mobility environments typically incurs substantial training overhead. While prior studies suggest that sub-6 GHz channels can be exploited to predict optimal mmWave beams, existing methods depend on large deep learning (DL) models with prohibitive computational and memory requirements. In this paper, we propose a computationally efficient framework for sub-6 GHz channel-mmWave beam mapping based on the knowledge distillation (KD) technique. We develop two compact student DL architectures based on individual and relational distillation strategies, which retain only a few hidden layers yet closely mimic the performance of large teacher DL models. Extensive simulations demonstrate that the proposed student models achieve the teacher's beam prediction accuracy and spectral efficiency while reducing trainable parameters and computational complexity by 99%.
comment: 5 pages, 4 figures. Accepted for publication at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026
☆ Beyond Learning on Molecules by Weakly Supervising on Molecules
Molecular representations are inherently task-dependent, yet most pre-trained molecular encoders are not. Task conditioning promises representations that reorganize based on task descriptions, but existing approaches rely on expensive labeled data. We show that weak supervision on programmatically derived molecular motifs is sufficient. Our Adaptive Chemical Embedding Model (ACE-Mol) learns from hundreds of motifs paired with natural language descriptors that are cheap to compute, trivial to scale. Conventional encoders slowly search the embedding space for task-relevant structure, whereas ACE-Mol immediately aligns its representations with the task. ACE-Mol achieves state-of-the-art performance across molecular property prediction benchmarks with interpretable, chemically meaningful representations.
☆ Static and auto-regressive neural emulation of phytoplankton biomass dynamics from physical predictors in the global ocean
Phytoplankton is the basis of marine food webs, driving both ecological processes and global biogeochemical cycles. Despite their ecological and climatic significance, accurately simulating phytoplankton dynamics remains a major challenge for biogeochemical numerical models due to limited parameterizations, sparse observational data, and the complexity of oceanic processes. Here, we explore how deep learning models can be used to address these limitations predicting the spatio-temporal distribution of phytoplankton biomass in the global ocean based on satellite observations and environmental conditions. First, we investigate several deep learning architectures. Among the tested models, the UNet architecture stands out for its ability to reproduce the seasonal and interannual patterns of phytoplankton biomass more accurately than other models like CNNs, ConvLSTM, and 4CastNet. When using one to two months of environmental data as input, UNet performs better, although it tends to underestimate the amplitude of low-frequency changes in phytoplankton biomass. Thus, to improve predictions over time, an auto-regressive version of UNet was also tested, where the model uses its own previous predictions to forecast future conditions. This approach works well for short-term forecasts (up to five months), though its performance decreases for longer time scales. Overall, our study shows that combining ocean physical predictors with deep learning allows for reconstruction and short-term prediction of phytoplankton dynamics. These models could become powerful tools for monitoring ocean health and supporting marine ecosystem management, especially in the context of climate change.
☆ Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
comment: 11 pages, 2figures
☆ REDistill: Robust Estimator Distillation for Balancing Robustness and Efficiency
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student by aligning their predictive distributions. However, conventional KD formulations - typically based on Kullback-Leibler divergence - assume that the teacher provides reliable soft targets. In practice, teacher predictions are often noisy or overconfident, and existing correction-based approaches rely on ad-hoc heuristics and extensive hyper-parameter tuning, which hinders generalization. We introduce REDistill (Robust Estimator Distillation), a simple yet principled framework grounded in robust statistics. REDistill replaces the standard KD objective with a power divergence loss, a generalization of KL divergence that adaptively downweights unreliable teacher output while preserving informative logit relationships. This formulation provides a unified and interpretable treatment of teacher noise, requires only logits, integrates seamlessly into existing KD pipelines, and incurs negligible computational overhead. Extensive experiments on CIFAR-100 and ImageNet-1k demonstrate that REDistill consistently improves student accuracy in diverse teacher-student architectures. Remarkably, it achieves these gains without model-specific hyper-parameter tuning, underscoring its robustness and strong generalization to unseen teacher-student pairs.
☆ Generalized Schrödinger Bridge on Graphs
Transportation on graphs is a fundamental challenge across many domains, where decisions must respect topological and operational constraints. Despite the need for actionable policies, existing graph-transport methods lack this expressivity. They rely on restrictive assumptions, fail to generalize across sparse topologies, and scale poorly with graph size and time horizon. To address these issues, we introduce Generalized Schrödinger Bridge on Graphs (GSBoG), a novel scalable data-driven framework for learning executable controlled continuous-time Markov chain (CTMC) policies on arbitrary graphs under state cost augmented dynamics. Notably, GSBoG learns trajectory-level policies, avoiding dense global solvers and thereby enhancing scalability. This is achieved via a likelihood optimization approach, satisfying the endpoint marginals, while simultaneously optimizing intermediate behavior under state-dependent running costs. Extensive experimentation on challenging real-world graph topologies shows that GSBoG reliably learns accurate, topology-respecting policies while optimizing application-specific intermediate state costs, highlighting its broad applicability and paving new avenues for cost-aware dynamical transport on general graphs.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Causal explanations of outliers in systems with lagged time-dependencies
Root-cause analysis in controlled time dependent systems poses a major challenge in applications. Especially energy systems are difficult to handle as they exhibit instantaneous as well as delayed effects and if equipped with storage, do have a memory. In this paper we adapt the causal root-cause analysis method of Budhathoki et al. [2022] to general time-dependent systems, as it can be regarded as a strictly causal definition of the term "root-cause". Particularly, we discuss two truncation approaches to handle the infinite dependency graphs present in time-dependent systems. While one leaves the causal mechanisms intact, the other approximates the mechanisms at the start nodes. The effectiveness of the different approaches is benchmarked using a challenging data generation process inspired by a problem in factory energy management: the avoidance of peaks in the power consumption. We show that given enough lags our extension is able to localize the root-causes in the feature and time domain. Further the effect of mechanism approximation is discussed.
☆ Rethinking the Design Space of Reinforcement Learning for Diffusion Models: On the Importance of Likelihood Estimation Beyond Loss Design
Reinforcement learning has been widely applied to diffusion and flow models for visual tasks such as text-to-image generation. However, these tasks remain challenging because diffusion models have intractable likelihoods, which creates a barrier for directly applying popular policy-gradient type methods. Existing approaches primarily focus on crafting new objectives built on already heavily engineered LLM objectives, using ad hoc estimators for likelihood, without a thorough investigation into how such estimation affects overall algorithmic performance. In this work, we provide a systematic analysis of the RL design space by disentangling three factors: i) policy-gradient objectives, ii) likelihood estimators, and iii) rollout sampling schemes. We show that adopting an evidence lower bound (ELBO) based model likelihood estimator, computed only from the final generated sample, is the dominant factor enabling effective, efficient, and stable RL optimization, outweighing the impact of the specific policy-gradient loss functional. We validate our findings across multiple reward benchmarks using SD 3.5 Medium, and observe consistent trends across all tasks. Our method improves the GenEval score from 0.24 to 0.95 in 90 GPU hours, which is $4.6\times$ more efficient than FlowGRPO and $2\times$ more efficient than the SOTA method DiffusionNFT without reward hacking.
comment: 23 pages, 11 figures
☆ Inference-Time Backdoors via Hidden Instructions in LLM Chat Templates
Open-weight language models are increasingly used in production settings, raising new security challenges. One prominent threat in this context is backdoor attacks, in which adversaries embed hidden behaviors in language models that activate under specific conditions. Previous work has assumed that adversaries have access to training pipelines or deployment infrastructure. We propose a novel attack surface requiring neither, which utilizes the chat template. Chat templates are executable Jinja2 programs invoked at every inference call, occupying a privileged position between user input and model processing. We show that an adversary who distributes a model with a maliciously modified template can implant an inference-time backdoor without modifying model weights, poisoning training data, or controlling runtime infrastructure. We evaluated this attack vector by constructing template backdoors targeting two objectives: degrading factual accuracy and inducing emission of attacker-controlled URLs, and applied them across eighteen models spanning seven families and four inference engines. Under triggered conditions, factual accuracy drops from 90% to 15% on average while attacker-controlled URLs are emitted with success rates exceeding 80%; benign inputs show no measurable degradation. Backdoors generalize across inference runtimes and evade all automated security scans applied by the largest open-weight distribution platform. These results establish chat templates as a reliable and currently undefended attack surface in the LLM supply chain.
☆ SAFE: Stable Alignment Finetuning with Entropy-Aware Predictive Control for RLHF
Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. PPO performs well empirically but has a heuristic motivation and handles the KL-divergence constraint used in LM-RLHF in an ad-hoc manner and suffers form reward oscillations, entropy collapse, value function drift, and sudden policy divergence that require frequent restarts and extensive hyperparameter tuning. In this paper, we develop a new pure on policy actor-critic RL method for the LM-RLHF setting. We present SAFE (Stable Alignment Finetuning with Entropy-aware control),a novel RLHF algorithm that combines a Double Soft-Min Critic for pessimistic value estimation with a new multi-layer stabilization framework combining entropy-gated KL regulation, and PID-controlled adaptive thresholds. Unlike standard PPO's symmetric KL penalties, SAFE distinguishes high-entropy exploration from low-entropy mode collapse and adjusts penalties dynamically based on reward velocity. Experiments on a 3B parameter model show SAFE achieves +5.15\% training-average reward than PPO (0.725 vs 0.689), negligible reward crashes, and superior KL control than ppo . Our method adds minimal computational overhead and provides an interpretable, crash-resistant RLHF framework that maintains aggressive learning speed while ensuring stable long-horizon optimization suitable for production deployment. Code is available at https://github.com/ryyzn9/SAFE
☆ Learning to Separate RF Signals Under Uncertainty: Detect-Then-Separate vs. Unified Joint Models IEEE
The increasingly crowded radio frequency (RF) spectrum forces communication signals to coexist, creating heterogeneous interferers whose structure often departs from Gaussian models. Recovering the interference-contaminated signal of interest in such settings is a central challenge, especially in single-channel RF processing. Existing data-driven methods often assume that the interference type is known, yielding ensembles of specialized models that scale poorly with the number of interferers. We show that detect-then-separate (DTS) strategies admit an analytical justification: within a Gaussian mixture framework, a plug-in maximum a posteriori detector followed by type-conditioned optimal estimation achieves asymptotic minimum mean-square error optimality under a mild temporal-diversity condition. This makes DTS a principled benchmark, but its reliance on multiple type-specific models limits scalability. Motivated by this, we propose a unified joint model (UJM), in which a single deep neural architecture learns to jointly detect and separate when applied directly to the received signal. Using tailored UNet architectures for baseband (complex-valued) RF signals, we compare DTS and UJM on synthetic and recorded interference types, showing that a capacity-matched UJM can match oracle-aided DTS performance across diverse signal-to-interference-and-noise ratios, interference types, and constellation orders, including mismatched training and testing type-uncertainty proportions. These findings highlight UJM as a scalable and practical alternative to DTS, while opening new directions for unified separation under broader regimes.
comment: 6 pages, 6 figures, 1 table, accepted at the 2026 IEEE International Conference on Communications
☆ MTS-JEPA: Multi-Resolution Joint-Embedding Predictive Architecture for Time-Series Anomaly Prediction
Multivariate time series underpin modern critical infrastructure, making the prediction of anomalies a vital necessity for proactive risk mitigation. While Joint-Embedding Predictive Architectures (JEPA) offer a promising framework for modeling the latent evolution of these systems, their application is hindered by representation collapse and an inability to capture precursor signals across varying temporal scales. To address these limitations, we propose MTS-JEPA, a specialized architecture that integrates a multi-resolution predictive objective with a soft codebook bottleneck. This design explicitly decouples transient shocks from long-term trends, and utilizes the codebook to capture discrete regime transitions. Notably, we find this constraint also acts as an intrinsic regularizer to ensure optimization stability. Empirical evaluations on standard benchmarks confirm that our approach effectively prevents degenerate solutions and achieves state-of-the-art performance under the early-warning protocol.
☆ RIGA-Fold: A General Framework for Protein Inverse Folding via Recurrent Interaction and Geometric Awareness
Protein inverse folding, the task of predicting amino acid sequences for desired structures, is pivotal for de novo protein design. However, existing GNN-based methods typically suffer from restricted receptive fields that miss long-range dependencies and a "single-pass" inference paradigm that leads to error accumulation. To address these bottlenecks, we propose RIGA-Fold, a framework that synergizes Recurrent Interaction with Geometric Awareness. At the micro-level, we introduce a Geometric Attention Update (GAU) module where edge features explicitly serve as attention keys, ensuring strictly SE(3)-invariant local encoding. At the macro-level, we design an attention-based Global Context Bridge that acts as a soft gating mechanism to dynamically inject global topological information. Furthermore, to bridge the gap between structural and sequence modalities, we introduce an enhanced variant, RIGA-Fold*, which integrates trainable geometric features with frozen evolutionary priors from ESM-2 and ESM-IF via a dual-stream architecture. Finally, a biologically inspired ``predict-recycle-refine'' strategy is implemented to iteratively denoise sequence distributions. Extensive experiments on CATH 4.2, TS50, and TS500 benchmarks demonstrate that our geometric framework is highly competitive, while RIGA-Fold* significantly outperforms state-of-the-art baselines in both sequence recovery and structural consistency.
comment: 16 pages, 4 figures. Includes appendix. Preprint under review
☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
☆ QUATRO: Query-Adaptive Trust Region Policy Optimization for LLM Fine-tuning
GRPO-style reinforcement learning (RL)-based LLM fine-tuning algorithms have recently gained popularity. Relying on heuristic trust-region approximations, however, they can lead to brittle optimization behavior, as global importance-ratio clipping and group-wise normalization fail to regulate samples whose importance ratios fall outside the clipping range. We propose Query-Adaptive Trust-Region policy Optimization (QUATRO), which directly enforces trust-region constraints through a principled optimization. This yields a clear and interpretable objective that enables explicit control over policy updates and stable, entropy-controlled optimization, with a stabilizer terms arising intrinsically from the exact trust-region formulation. Empirically verified on diverse mathematical reasoning benchmarks, QUATRO shows stable training under increased policy staleness and aggressive learning rates, maintaining well-controlled entropy throughout training.
☆ A Human-Centered Privacy Approach (HCP) to AI
As the paradigm of Human-Centered AI (HCAI) gains prominence, its benefits to society are accompanied by significant ethical concerns, one of which is the protection of individual privacy. This chapter provides a comprehensive overview of privacy within HCAI, proposing a human-centered privacy (HCP) framework, providing integrated solution from technology, ethics, and human factors perspectives. The chapter begins by mapping privacy risks across each stage of AI development lifecycle, from data collection to deployment and reuse, highlighting the impact of privacy risks on the entire system. The chapter then introduces privacy-preserving techniques such as federated learning and dif erential privacy. Subsequent chapters integrate the crucial user perspective by examining mental models, alongside the evolving regulatory and ethical landscapes as well as privacy governance. Next, advice on design guidelines is provided based on the human-centered privacy framework. After that, we introduce practical case studies across diverse fields. Finally, the chapter discusses persistent open challenges and future research directions, concluding that a multidisciplinary approach, merging technical, design, policy, and ethical expertise, is essential to successfully embed privacy into the core of HCAI, thereby ensuring these technologies advance in a manner that respects and ensures human autonomy, trust and dignity.
☆ Targeted Synthetic Control Method
The synthetic control method (SCM) estimates causal effects in panel data with a single-treated unit by constructing a counterfactual outcome as a weighted combination of untreated control units that matches the pre-treatment trajectory. In this paper, we introduce the targeted synthetic control (TSC) method, a new two-stage estimator that directly estimates the counterfactual outcome. Specifically, our TSC method (1) yields a targeted debiasing estimator, in the sense that the targeted updating refines the initial weights to produce more stable weights; and (2) ensures that the final counterfactual estimation is a convex combination of observed control outcomes to enable direct interpretation of the synthetic control weights. TSC is flexible and can be instantiated with arbitrary machine learning models. Methodologically, TSC starts from an initial set of synthetic-control weights via a one-dimensional targeted update through the weight-tilting submodel, which calibrates the weights to reduce bias of weights estimation arising from pre-treatment fit. Furthermore, TSC avoids key shortcomings of existing methods (e.g., the augmented SCM), which can produce unbounded counterfactual estimates. Across extensive synthetic and real-world experiments, TSC consistently improves estimation accuracy over state-of-the-art SCM baselines.
☆ Resilient Load Forecasting under Climate Change: Adaptive Conditional Neural Processes for Few-Shot Extreme Load Forecasting
Extreme weather can substantially change electricity consumption behavior, causing load curves to exhibit sharp spikes and pronounced volatility. If forecasts are inaccurate during those periods, power systems are more likely to face supply shortfalls or localized overloads, forcing emergency actions such as load shedding and increasing the risk of service disruptions and public-safety impacts. This problem is inherently difficult because extreme events can trigger abrupt regime shifts in load patterns, while relevant extreme samples are rare and irregular, making reliable learning and calibration challenging. We propose AdaCNP, a probabilistic forecasting model for data-scarce condition. AdaCNP learns similarity in a shared embedding space. For each target data, it evaluates how relevant each historical context segment is to the current condition and reweights the context information accordingly. This design highlights the most informative historical evidence even when extreme samples are rare. It enables few-shot adaptation to previously unseen extreme patterns. AdaCNP also produces predictive distributions for risk-aware decision-making without expensive fine-tuning on the target domain. We evaluate AdaCNP on real-world power-system load data and compare it against a range of representative baselines. The results show that AdaCNP is more robust during extreme periods, reducing the mean squared error by 22\% relative to the strongest baseline while achieving the lowest negative log-likelihood, indicating more reliable probabilistic outputs. These findings suggest that AdaCNP can effectively mitigate the combined impact of abrupt distribution shifts and scarce extreme samples, providing a more trustworthy forecasting for resilient power system operation under extreme events.
☆ Jacobian Regularization Stabilizes Long-Term Integration of Neural Differential Equations
Hybrid models and Neural Differential Equations (NDE) are getting increasingly important for the modeling of physical systems, however they often encounter stability and accuracy issues during long-term integration. Training on unrolled trajectories is known to limit these divergences but quickly becomes too expensive due to the need for computing gradients over an iterative process. In this paper, we demonstrate that regularizing the Jacobian of the NDE model via its directional derivatives during training stabilizes long-term integration in the challenging context of short training rollouts. We design two regularizations, one for the case of known dynamics where we can directly derive the directional derivatives of the dynamic and one for the case of unknown dynamics where they are approximated using finite differences. Both methods, while having a far lower cost compared to long rollouts during training, are successful in improving the stability of long-term simulations for several ordinary and partial differential equations, opening up the door to training NDE methods for long-term integration of large scale systems.
☆ Focus-LIME: Surgical Interpretation of Long-Context Large Language Models via Proxy-Based Neighborhood Selection
As Large Language Models (LLMs) scale to handle massive context windows, achieving surgical feature-level interpretation is essential for high-stakes tasks like legal auditing and code debugging. However, existing local model-agnostic explanation methods face a critical dilemma in these scenarios: feature-based methods suffer from attribution dilution due to high feature dimensionality, thus failing to provide faithful explanations. In this paper, we propose Focus-LIME, a coarse-to-fine framework designed to restore the tractability of surgical interpretation. Focus-LIME utilizes a proxy model to curate the perturbation neighborhood, allowing the target model to perform fine-grained attribution exclusively within the optimized context. Empirical evaluations on long-context benchmarks demonstrate that our method makes surgical explanations practicable and provides faithful explanations to users.
☆ Stochastic Decision Horizons for Constrained Reinforcement Learning
Constrained Markov decision processes (CMDPs) provide a principled model for handling constraints, such as safety and other auxiliary objectives, in reinforcement learning. The common approach of using additive-cost constraints and dual variables often hinders off-policy scalability. We propose a Control as Inference formulation based on stochastic decision horizons, where constraint violations attenuate reward contributions and shorten the effective planning horizon via state-action-dependent continuation. This yields survival-weighted objectives that remain replay-compatible for off-policy actor-critic learning. We propose two violation semantics, absorbing and virtual termination, that share the same survival-weighted return but result in distinct optimization structures that lead to SAC/MPO-style policy improvement. Experiments demonstrate improved sample efficiency and favorable return-violation trade-offs on standard benchmarks. Moreover, MPO with virtual termination (VT-MPO) scales effectively to our high-dimensional musculoskeletal Hyfydy setup.
☆ A principled framework for uncertainty decomposition in TabPFN
TabPFN is a transformer that achieves state-of-the-art performance on supervised tabular tasks by amortizing Bayesian prediction into a single forward pass. However, there is currently no method for uncertainty decomposition in TabPFN. Because it behaves, in an idealised limit, as a Bayesian in-context learner, we cast the decomposition challenge as a Bayesian predictive inference (BPI) problem. The main computational tool in BPI, predictive Monte Carlo, is challenging to apply here as it requires simulating unmodeled covariates. We therefore pursue the asymptotic alternative, filling a gap in the theory for supervised settings by proving a predictive CLT under quasi-martingale conditions. We derive variance estimators determined by the volatility of predictive updates along the context. The resulting credible bands are fast to compute, target epistemic uncertainty, and achieve near-nominal frequentist coverage. For classification, we further obtain an entropy-based uncertainty decomposition.
comment: 9 pages (+2 reference, +34 appendix). Code in https://github.com/weiyaw/ud4pfn
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ Probabilistic Label Spreading: Efficient and Consistent Estimation of Soft Labels with Epistemic Uncertainty on Graphs
Safe artificial intelligence for perception tasks remains a major challenge, partly due to the lack of data with high-quality labels. Annotations themselves are subject to aleatoric and epistemic uncertainty, which is typically ignored during annotation and evaluation. While crowdsourcing enables collecting multiple annotations per image to estimate these uncertainties, this approach is impractical at scale due to the required annotation effort. We introduce a probabilistic label spreading method that provides reliable estimates of aleatoric and epistemic uncertainty of labels. Assuming label smoothness over the feature space, we propagate single annotations using a graph-based diffusion method. We prove that label spreading yields consistent probability estimators even when the number of annotations per data point converges to zero. We present and analyze a scalable implementation of our method. Experimental results indicate that, compared to baselines, our approach substantially reduces the annotation budget required to achieve a desired label quality on common image datasets and achieves a new state of the art on the Data-Centric Image Classification benchmark.
☆ Rethinking Weight Tying: Pseudo-Inverse Tying for Stable LM Training and Updates
Weight tying is widely used in compact language models to reduce parameters by sharing the token table between the input embedding and the output projection. However, weight sharing does not guarantee a stable token interface: during training, the correspondence between encoding tokens into hidden states and decoding hidden states into logits can drift, worsening optimization sensitivity and making post-training interventions such as editing, patching, and lightweight adaptation less predictable. We propose Pseudo-Inverse Tying (PIT), which synchronizes embedding and unembedding as coupled projections of a shared latent token memory, guaranteeing a pseudo-inverse-consistent interface throughout training. PIT maintains an orthonormal shared memory, obtained by thin polar decomposition for teacher initialization or random orthonormal initialization from scratch, and introduces a fully learned symmetric positive definite hidden-space transform parameterized via a Cholesky factor. The output head applies this transform to hidden states before the vocabulary projection, while the embedding applies the inverse transform to token vectors using stable triangular solves, avoiding explicit pseudo-inverse recomputation and any vocabulary-sized auxiliary parameters. We evaluate PIT on on-device models spanning 256M-1.3B parameters across pretraining and adaptation, and consistently observe improved training stability, stronger layerwise semantic consistency, and substantially reduced side effects.
comment: an early-stage version
☆ Finding Structure in Continual Learning NeurIPS 2025
Learning from a stream of tasks usually pits plasticity against stability: acquiring new knowledge often causes catastrophic forgetting of past information. Most methods address this by summing competing loss terms, creating gradient conflicts that are managed with complex and often inefficient strategies such as external memory replay or parameter regularization. We propose a reformulation of the continual learning objective using Douglas-Rachford Splitting (DRS). This reframes the learning process not as a direct trade-off, but as a negotiation between two decoupled objectives: one promoting plasticity for new tasks and the other enforcing stability of old knowledge. By iteratively finding a consensus through their proximal operators, DRS provides a more principled and stable learning dynamic. Our approach achieves an efficient balance between stability and plasticity without the need for auxiliary modules or complex add-ons, providing a simpler yet more powerful paradigm for continual learning systems.
comment: Submitted to NeurIPS 2025
☆ Gradient Flow Through Diagram Expansions: Learning Regimes and Explicit Solutions ICML'2026
We develop a general mathematical framework to analyze scaling regimes and derive explicit analytic solutions for gradient flow (GF) in large learning problems. Our key innovation is a formal power series expansion of the loss evolution, with coefficients encoded by diagrams akin to Feynman diagrams. We show that this expansion has a well-defined large-size limit that can be used to reveal different learning phases and, in some cases, to obtain explicit solutions of the nonlinear GF. We focus on learning Canonical Polyadic (CP) decompositions of high-order tensors, and show that this model has several distinct extreme lazy and rich GF regimes such as free evolution, NTK and under- and over-parameterized mean-field. We show that these regimes depend on the parameter scaling, tensor order, and symmetry of the model in a specific and subtle way. Moreover, we propose a general approach to summing the formal loss expansion by reducing it to a PDE; in a wide range of scenarios, it turns out to be 1st order and solvable by the method of characteristics. We observe a very good agreement of our theoretical predictions with experiment.
comment: 48 pages, under review for ICML'2026
☆ Continual Learning through Control Minimization
Catastrophic forgetting remains a fundamental challenge for neural networks when tasks are trained sequentially. In this work, we reformulate continual learning as a control problem where learning and preservation signals compete within neural activity dynamics. We convert regularization penalties into preservation signals that protect prior-task representations. Learning then proceeds by minimizing the control effort required to integrate new tasks while competing with the preservation of prior tasks. At equilibrium, the neural activities produce weight updates that implicitly encode the full prior-task curvature, a property we term the continual-natural gradient, requiring no explicit curvature storage. Experiments confirm that our learning framework recovers true prior-task curvature and enables task discrimination, outperforming existing methods on standard benchmarks without replay.
☆ Forget to Generalize: Iterative Adaptation for Generalization in Federated Learning
The Web is naturally heterogeneous with user devices, geographic regions, browsing patterns, and contexts all leading to highly diverse, unique datasets. Federated Learning (FL) is an important paradigm for the Web because it enables privacy-preserving, collaborative machine learning across diverse user devices, web services and clients without needing to centralize sensitive data. However, its performance degrades severely under non-IID client distributions that is prevalent in real-world web systems. In this work, we propose a new training paradigm - Iterative Federated Adaptation (IFA) - that enhances generalization in heterogeneous federated settings through generation-wise forget and evolve strategy. Specifically, we divide training into multiple generations and, at the end of each, select a fraction of model parameters (a) randomly or (b) from the later layers of the model and reinitialize them. This iterative forget and evolve schedule allows the model to escape local minima and preserve globally relevant representations. Extensive experiments on CIFAR-10, MIT-Indoors, and Stanford Dogs datasets show that the proposed approach improves global accuracy, especially when the data cross clients are Non-IID. This method can be implemented on top any federated algorithm to improve its generalization performance. We observe an average of 21.5%improvement across datasets. This work advances the vision of scalable, privacy-preserving intelligence for real-world heterogeneous and distributed web systems.
☆ Learning the Value Systems of Agents with Preference-based and Inverse Reinforcement Learning
Agreement Technologies refer to open computer systems in which autonomous software agents interact with one another, typically on behalf of humans, in order to come to mutually acceptable agreements. With the advance of AI systems in recent years, it has become apparent that such agreements, in order to be acceptable to the involved parties, must remain aligned with ethical principles and moral values. However, this is notoriously difficult to ensure, especially as different human users (and their software agents) may hold different value systems, i.e. they may differently weigh the importance of individual moral values. Furthermore, it is often hard to specify the precise meaning of a value in a particular context in a computational manner. Methods to estimate value systems based on human-engineered specifications, e.g. based on value surveys, are limited in scale due to the need for intense human moderation. In this article, we propose a novel method to automatically \emph{learn} value systems from observations and human demonstrations. In particular, we propose a formal model of the \emph{value system learning} problem, its instantiation to sequential decision-making domains based on multi-objective Markov decision processes, as well as tailored preference-based and inverse reinforcement learning algorithms to infer value grounding functions and value systems. The approach is illustrated and evaluated by two simulated use cases.
comment: 42 pages, 5 figures. Published in Journal of Autonomous Agents and Multi-Agent Systems
☆ Discovering Mechanistic Models of Neural Activity: System Identification in an in Silico Zebrafish
Constructing mechanistic models of neural circuits is a fundamental goal of neuroscience, yet verifying such models is limited by the lack of ground truth. To rigorously test model discovery, we establish an in silico testbed using neuromechanical simulations of a larval zebrafish as a transparent ground truth. We find that LLM-based tree search autonomously discovers predictive models that significantly outperform established forecasting baselines. Conditioning on sensory drive is necessary but not sufficient for faithful system identification, as models exploit statistical shortcuts. Structural priors prove essential for enabling robust out-of-distribution generalization and recovery of interpretable mechanistic models. Our insights provide guidance for modeling real-world neural recordings and offer a broader template for AI-driven scientific discovery.
☆ Greedy-Gnorm: A Gradient Matrix Norm-Based Alternative to Attention Entropy for Head Pruning
Attention head pruning has emerged as an effective technique for transformer model compression, an increasingly important goal in the era of Green AI. However, existing pruning methods often rely on static importance scores, which fail to capture the evolving role of attention heads during iterative removal. We propose Greedy-Gradient norm (Greedy-Gnorm), a novel head pruning algorithm that dynamically recalculates head importance after each pruning step. Specifically, each head is scored by the elementwise product of the l2-norms of its Q/K/V gradient blocks, as estimated from a hold-out validation set and updated at every greedy iteration. This dynamic approach to scoring mitigates against stale rankings and better reflects gradient-informed importance as pruning progresses. Extensive experiments on BERT, ALBERT, RoBERTa, and XLM-RoBERTa demonstrate that Greedy-Gnorm consistently preserves accuracy under substantial head removal, outperforming attention entropy. By effectively reducing model size while maintaining task performance, Greedy-Gnorm offers a promising step toward more energy-efficient transformer model deployment.
comment: 24 pages, 5 figures, 5 tables
☆ Universality of General Spiked Tensor Models
We study the rank-one spiked tensor model in the high-dimensional regime, where the noise entries are independent and identically distributed with zero mean, unit variance, and finite fourth moment.This setting extends the classical Gaussian framework to a substantially broader class of noise distributions.Focusing on asymmetric tensors of order $d$ ($\ge 3$), we analyze the maximum likelihood estimator of the best rank-one approximation.Under a mild assumption isolating informative critical points of the associated optimization landscape, we show that the empirical spectral distribution of a suitably defined block-wise tensor contraction converges almost surely to a deterministic limit that coincides with the Gaussian case.As a consequence, the asymptotic singular value and the alignments between the estimated and true spike directions admit explicit characterizations identical to those obtained under Gaussian noise. These results establish a universality principle for spiked tensor models, demonstrating that their high-dimensional spectral behavior and statistical limits are robust to non-Gaussian noise. Our analysis relies on resolvent methods from random matrix theory, cumulant expansions valid under finite moment assumptions, and variance bounds based on Efron-Stein-type arguments. A key challenge in the proof is how to handle the statistical dependence between the signal term and the noise term.
comment: 102pages
☆ Bayesian PINNs for uncertainty-aware inverse problems (BPINN-IP) ICIP 2006
The main contribution of this paper is to develop a hierarchical Bayesian formulation of PINNs for linear inverse problems, which is called BPINN-IP. The proposed methodology extends PINN to account for prior knowledge on the nature of the expected NN output, as well as its weights. Also, as we can have access to the posterior probability distributions, naturally uncertainties can be quantified. Also, variational inference and Monte Carlo dropout are employed to provide predictive means and variances for reconstructed images. Un example of applications to deconvolution and super-resolution is considered, details of the different steps of implementations are given, and some preliminary results are presented.
comment: submitted to ICIP 2006 conference
☆ Journey to the Centre of Cluster: Harnessing Interior Nodes for A/B Testing under Network Interference ICLR 2026
A/B testing on platforms often faces challenges from network interference, where a unit's outcome depends not only on its own treatment but also on the treatments of its network neighbors. To address this, cluster-level randomization has become standard, enabling the use of network-aware estimators. These estimators typically trim the data to retain only a subset of informative units, achieving low bias under suitable conditions but often suffering from high variance. In this paper, we first demonstrate that the interior nodes - units whose neighbors all lie within the same cluster - constitute the vast majority of the post-trimming subpopulation. In light of this, we propose directly averaging over the interior nodes to construct the mean-in-interior (MII) estimator, which circumvents the delicate reweighting required by existing network-aware estimators and substantially reduces variance in classical settings. However, we show that interior nodes are often not representative of the full population, particularly in terms of network-dependent covariates, leading to notable bias. We then augment the MII estimator with a counterfactual predictor trained on the entire network, allowing us to adjust for covariate distribution shifts between the interior nodes and full population. By rearranging the expression, we reveal that our augmented MII estimator embodies an analytical form of the point estimator within prediction-powered inference framework. This insight motivates a semi-supervised lens, wherein interior nodes are treated as labeled data subject to selection bias. Extensive and challenging simulation studies demonstrate the outstanding performance of our augmented MII estimator across various settings.
comment: ICLR 2026
☆ RASA: Routing-Aware Safety Alignment for Mixture-of-Experts Models
Mixture-of-Experts (MoE) language models introduce unique challenges for safety alignment due to their sparse routing mechanisms, which can enable degenerate optimization behaviors under standard full-parameter fine-tuning. In our preliminary experiments, we observe that naively applying full-parameter safety fine-tuning to MoE models can reduce attack success rates through routing or expert dominance effects, rather than by directly repairing Safety-Critical Experts. To address this challenge, we propose RASA, a routing-aware expert-level alignment framework that explicitly repairs Safety-Critical Experts while preventing routing-based bypasses. RASA identifies experts disproportionately activated by successful jailbreaks, selectively fine-tunes only these experts under fixed routing, and subsequently enforces routing consistency with safety-aligned contexts. Across two representative MoE architectures and a diverse set of jailbreak attacks, RASA achieves near-perfect robustness, strong cross-attack generalization, and substantially reduced over-refusal, while preserving general capabilities on benchmarks such as MMLU, GSM8K, and TruthfulQA. Our results suggest that robust MoE safety alignment benefits from targeted expert repair rather than global parameter updates, offering a practical and architecture-preserving alternative to prior approaches.
comment: 9 pages
☆ Mixture of Masters: Sparse Chess Language Models with Player Routing
Modern chess language models are dense transformers trained on millions of games played by thousands of high-rated individuals. However, these monolithic networks tend to collapse into mode-averaged behavior, where stylistic boundaries are blurred, and rare but effective strategies are suppressed. To counteract homogenization, we introduce Mixture-of-Masters (MoM), the first chess mixture-of-experts model with small-sized GPT experts emulating world-class grandmasters. Each expert is trained with a combination of self-supervised learning and reinforcement learning guided by chess-specific rewards. For each move, a post-hoc learnable gating network selects the most appropriate persona to channel depending on the game state, allowing MoM to switch its style dynamically$--$e.g., Tal's offensive vocation or Petrosian's defensive solidity. When evaluated against Stockfish on unseen standard games, MoM outperforms both dense individual expert networks and popular GPT baselines trained on aggregated data, while ensuring generation variety, control, and interpretability.
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ Hand Gesture Recognition from Doppler Radar Signals Using Echo State Networks IJCNN 2026
Hand gesture recognition (HGR) is a fundamental technology in human computer interaction (HCI).In particular, HGR based on Doppler radar signals is suited for in-vehicle interfaces and robotic systems, necessitating lightweight and computationally efficient recognition techniques. However, conventional deep learning-based methods still suffer from high computational costs. To address this issue, we propose an Echo State Network (ESN) approach for radar-based HGR, using frequency-modulated-continuous-wave (FMCW) radar signals. Raw radar data is first converted into feature maps, such as range-time and Doppler-time maps, which are then fed into one or more recurrent neural network-based reservoirs. The obtained reservoir states are processed by readout classifiers, including ridge regression, support vector machines, and random forests. Comparative experiments demonstrate that our method outperforms existing approaches on an 11-class HGR task using the Soli dataset and surpasses existing deep learning models on a 4-class HGR task using the Dop-NET dataset. The results indicate that parallel processing using multi-reservoir ESNs are effective for recognizing temporal patterns from the multiple different feature maps in the time-space and time-frequency domains. Our ESN approaches achieve high recognition performance with low computational cost in HGR, showing great potential for more advanced HCI technologies, especially in resource-constrained environments.
comment: Submitted to IJCNN 2026. 21 pages, 10figures
☆ Machine Learning-Driven Crystal System Prediction for Perovskites Using Augmented X-ray Diffraction Data
Prediction of crystal system from X-ray diffraction (XRD) spectra is a critical task in materials science, particularly for perovskite materials which are known for their diverse applications in photovoltaics, optoelectronics, and catalysis. In this study, we present a machine learning (ML)-driven framework that leverages advanced models, including Time Series Forest (TSF), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a simple feedforward neural network (NN), to classify crystal systems, point groups, and space groups from XRD data of perovskite materials. To address class imbalance and enhance model robustness, we integrated feature augmentation strategies such as Synthetic Minority Over-sampling Technique (SMOTE), class weighting, jittering, and spectrum shifting, along with efficient data preprocessing pipelines. The TSF model with SMOTE augmentation achieved strong performance for crystal system prediction, with a Matthews correlation coefficient (MCC) of 0.9, an F1 score of 0.92, and an accuracy of 97.76%. For point and space group prediction, balanced accuracies above 95% were obtained. The model demonstrated high performance for symmetry-distinct classes, including cubic crystal systems, point groups 3m and m-3m, and space groups Pnma and Pnnn. This work highlights the potential of ML for XRD-based structural characterization and accelerated discovery of perovskite materials
comment: 37 pages, 7 figures. Author accepted manuscript. Published in Engineering Applications of Artificial Intelligence
☆ MaMa: A Game-Theoretic Approach for Designing Safe Agentic Systems
LLM-based multi-agent systems have demonstrated impressive capabilities, but they also introduce significant safety risks when individual agents fail or behave adversarially. In this work, we study the automated design of agentic systems that remain safe even when a subset of agents is compromised. We formalize this challenge as a Stackelberg security game between a system designer (the Meta-Agent) and a best-responding Meta-Adversary that selects and compromises a subset of agents to minimize safety. We propose Meta-Adversary-Meta-Agent (MaMa), a novel algorithm for approximately solving this game and automatically designing safe agentic systems. Our approach uses LLM-based adversarial search, where the Meta-Agent iteratively proposes system designs and receives feedback based on the strongest attacks discovered by the Meta-Adversary. Empirical evaluations across diverse environments show that systems designed with MaMa consistently defend against worst-case attacks while maintaining performance comparable to systems optimized solely for task success. Moreover, the resulting systems generalize to stronger adversaries, as well as ones with different attack objectives or underlying LLMs, demonstrating robust safety beyond the training setting.
☆ EMA Policy Gradient: Taming Reinforcement Learning for LLMs with EMA Anchor and Top-k KL
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to acquire increasingly complex reasoning and agentic behaviors. In this work, we propose two simple techniques to improve policy gradient algorithms for LLMs. First, we replace the fixed anchor policy during RL with an Exponential Moving Average (EMA), similar to a target network in deep Q-learning. Second, we introduce Top-k KL estimator, which allows for flexible interpolation between exact KL and sampled KL. We derive the stability conditions for using EMA anchor; moreover, we show that our Top-k KL estimator yields both unbiased KL values and unbiased gradients at any k, while bringing the benefits of exact KL. When combined with GRPO, the two techniques (EMA-PG) lead to a significant performance boost. On math reasoning, it allows R1-distilled Qwen-1.5B to reach 53.9% on OlympiadBench compared to 50.8% by GRPO. On agentic RL domains, with Qwen-3B base, EMA-PG improves GRPO by an average of 33.3% across 7 datasets of Q&A with search engines, including 29.7% $\rightarrow$ 44.1% on HotpotQA, 27.4% $\rightarrow$ 40.1% on 2WikiMultiHopQA. Overall, we show that EMA-PG is a simple, principled, and powerful approach to scaling RL for LLMs. Code: https://github.com/LunjunZhang/ema-pg
☆ HoRD: Robust Humanoid Control via History-Conditioned Reinforcement Learning and Online Distillation
Humanoid robots can suffer significant performance drops under small changes in dynamics, task specifications, or environment setup. We propose HoRD, a two-stage learning framework for robust humanoid control under domain shift. First, we train a high-performance teacher policy via history-conditioned reinforcement learning, where the policy infers latent dynamics context from recent state--action trajectories to adapt online to diverse randomized dynamics. Second, we perform online distillation to transfer the teacher's robust control capabilities into a transformer-based student policy that operates on sparse root-relative 3D joint keypoint trajectories. By combining history-conditioned adaptation with online distillation, HoRD enables a single policy to adapt zero-shot to unseen domains without per-domain retraining. Extensive experiments show HoRD outperforms strong baselines in robustness and transfer, especially under unseen domains and external perturbations. Code and project page are available at \href{https://tonywang-0517.github.io/hord/}{https://tonywang-0517.github.io/hord/}.
☆ Separation-Utility Pareto Frontier: An Information-Theoretic Characterization
We study the Pareto frontier (optimal trade-off) between utility and separation, a fairness criterion requiring predictive independence from sensitive attributes conditional on the true outcome. Through an information-theoretic lens, we prove a characterization of the utility-separation Pareto frontier, establish its concavity, and thereby prove the increasing marginal cost of separation in terms of utility. In addition, we characterize the conditions under which this trade-off becomes strict, providing a guide for trade-off selection in practice. Based on the theoretical characterization, we develop an empirical regularizer based on conditional mutual information (CMI) between predictions and sensitive attributes given the true outcome. The CMI regularizer is compatible with any deep model trained via gradient-based optimization and serves as a scalar monitor of residual separation violations, offering tractable guarantees during training. Finally, numerical experiments support our theoretical findings: across COMPAS, UCI Adult, UCI Bank, and CelebA, the proposed method substantially reduces separation violations while matching or exceeding the utility of established baseline methods. This study thus offers a provable, stable, and flexible approach to enforcing separation in deep learning.
☆ Theory of Speciation Transitions in Diffusion Models with General Class Structure
Diffusion Models generate data by reversing a stochastic diffusion process, progressively transforming noise into structured samples drawn from a target distribution. Recent theoretical work has shown that this backward dynamics can undergo sharp qualitative transitions, known as speciation transitions, during which trajectories become dynamically committed to data classes. Existing theoretical analyses, however, are limited to settings where classes are identifiable through first moments, such as mixtures of Gaussians with well-separated means. In this work, we develop a general theory of speciation in diffusion models that applies to arbitrary target distributions admitting well-defined classes. We formalize the notion of class structure through Bayes classification and characterize speciation times in terms of free-entropy difference between classes. This criterion recovers known results in previously studied Gaussian-mixture models, while extending to situations in which classes are not distinguishable by first moments and may instead differ through higher-order or collective features. Our framework also accommodates multiple classes and predicts the existence of successive speciation times associated with increasingly fine-grained class commitment. We illustrate the theory on two analytically tractable examples: mixtures of one-dimensional Ising models at different temperatures and mixtures of zero-mean Gaussians with distinct covariance structures. In the Ising case, we obtain explicit expressions for speciation times by mapping the problem onto a random-field Ising model and solving it via the replica method. Our results provide a unified and broadly applicable description of speciation transitions in diffusion-based generative models.
comment: 17 pages, 6 figures
☆ Performative Learning Theory
Performative predictions influence the very outcomes they aim to forecast. We study performative predictions that affect a sample (e.g., only existing users of an app) and/or the whole population (e.g., all potential app users). This raises the question of how well models generalize under performativity. For example, how well can we draw insights about new app users based on existing users when both of them react to the app's predictions? We address this question by embedding performative predictions into statistical learning theory. We prove generalization bounds under performative effects on the sample, on the population, and on both. A key intuition behind our proofs is that in the worst case, the population negates predictions, while the sample deceptively fulfills them. We cast such self-negating and self-fulfilling predictions as min-max and min-min risk functionals in Wasserstein space, respectively. Our analysis reveals a fundamental trade-off between performatively changing the world and learning from it: the more a model affects data, the less it can learn from it. Moreover, our analysis results in a surprising insight on how to improve generalization guarantees by retraining on performatively distorted samples. We illustrate our bounds in a case study on prediction-informed assignments of unemployed German residents to job trainings, drawing upon administrative labor market records from 1975 to 2017 in Germany.
comment: 52 pages, 2 figures
☆ Optimal Rates for Feasible Payoff Set Estimation in Games
We study a setting in which two players play a (possibly approximate) Nash equilibrium of a bimatrix game, while a learner observes only their actions and has no knowledge of the equilibrium or the underlying game. A natural question is whether the learner can rationalize the observed behavior by inferring the players' payoff functions. Rather than producing a single payoff estimate, inverse game theory aims to identify the entire set of payoffs consistent with observed behavior, enabling downstream use in, e.g., counterfactual analysis and mechanism design across applications like auctions, pricing, and security games. We focus on the problem of estimating the set of feasible payoffs with high probability and up to precision $ε$ on the Hausdorff metric. We provide the first minimax-optimal rates for both exact and approximate equilibrium play, in zero-sum as well as general-sum games. Our results provide learning-theoretic foundations for set-valued payoff inference in multi-agent environments.
☆ LoRDO: Distributed Low-Rank Optimization with Infrequent Communication
Distributed training of foundation models via $\texttt{DDP}$ is limited by interconnect bandwidth. While infrequent communication strategies reduce synchronization frequency, they remain bottlenecked by the memory and communication requirements of optimizer states. Low-rank optimizers can alleviate these constraints; however, in the local-update regime, workers lack access to the full-batch gradients required to compute low-rank projections, which degrades performance. We propose $\texttt{LoRDO}$, a principled framework unifying low-rank optimization with infrequent synchronization. We first demonstrate that, while global projections based on pseudo-gradients are theoretically superior, they permanently restrict the optimization trajectory to a low-rank subspace. To restore subspace exploration, we introduce a full-rank quasi-hyperbolic update. $\texttt{LoRDO}$ achieves near-parity with low-rank $\texttt{DDP}$ in language modeling and downstream tasks at model scales of $125$M--$720$M, while reducing communication by $\approx 10 \times$. Finally, we show that $\texttt{LoRDO}$ improves performance even more in very low-memory settings with small rank/batch size.
comment: Preprint; under review
☆ On the use of LLMs to generate a dataset of Neural Networks
Neural networks are increasingly used to support decision-making. To verify their reliability and adaptability, researchers and practitioners have proposed a variety of tools and methods for tasks such as NN code verification, refactoring, and migration. These tools play a crucial role in guaranteeing both the correctness and maintainability of neural network architectures, helping to prevent implementation errors, simplify model updates, and ensure that complex networks can be reliably extended and reused. Yet, assessing their effectiveness remains challenging due to the lack of publicly diverse datasets of neural networks that would allow systematic evaluation. To address this gap, we leverage large language models (LLMs) to automatically generate a dataset of neural networks that can serve as a benchmark for validation. The dataset is designed to cover diverse architectural components and to handle multiple input data types and tasks. In total, 608 samples are generated, each conforming to a set of precise design choices. To further ensure their consistency, we validate the correctness of the generated networks using static analysis and symbolic tracing. We make the dataset publicly available to support the community in advancing research on neural network reliability and adaptability.
☆ Blockchain Federated Learning for Sustainable Retail: Reducing Waste through Collaborative Demand Forecasting IEEE
Effective demand forecasting is crucial for reducing food waste. However, data privacy concerns often hinder collaboration among retailers, limiting the potential for improved predictive accuracy. In this study, we explore the application of Federated Learning (FL) in Sustainable Supply Chain Management (SSCM), with a focus on the grocery retail sector dealing with perishable goods. We develop a baseline predictive model for demand forecasting and waste assessment in an isolated retailer scenario. Subsequently, we introduce a Blockchain-based FL model, trained collaboratively across multiple retailers without direct data sharing. Our preliminary results show that FL models have performance almost equivalent to the ideal setting in which parties share data with each other, and are notably superior to models built by individual parties without sharing data, cutting waste and boosting efficiency.
comment: Author-accepted manuscript of a paper published in the IEEE International Symposium on Computers and Communications (ISCC), 2025, pp. 1-6. doi: https://doi.org/10.1109/ISCC65549.2025.11326299
☆ Beyond KL Divergence: Policy Optimization with Flexible Bregman Divergences for LLM Reasoning
Policy optimization methods like Group Relative Policy Optimization (GRPO) and its variants have achieved strong results on mathematical reasoning and code generation tasks. Despite extensive exploration of reward processing strategies and training dynamics, all existing group-based methods exclusively use KL divergence for policy regularization, leaving the choice of divergence function unexplored. We introduce Group-Based Mirror Policy Optimization (GBMPO), a framework that extends group-based policy optimization to flexible Bregman divergences, including hand-designed alternatives (L2 in probability space) and learned neural mirror maps. On GSM8K mathematical reasoning, hand-designed ProbL2-GRPO achieves 86.7% accuracy, improving +5.5 points over the Dr. GRPO baseline. On MBPP code generation, neural mirror maps reach 60.1-60.8% pass@1, with random initialization already capturing most of the benefit. While evolutionary strategies meta-learning provides marginal accuracy improvements, its primary value lies in variance reduction ($\pm$0.2 versus $\pm$0.6) and efficiency gains (15% shorter responses on MBPP), suggesting that random initialization of neural mirror maps is sufficient for most practical applications. These results establish divergence choice as a critical, previously unexplored design dimension in group-based policy optimization for LLM reasoning.
☆ Reducing the labeling burden in time-series mapping using Common Ground: a semi-automated approach to tracking changes in land cover and species over time
Reliable classification of Earth Observation data depends on consistent, up-to-date reference labels. However, collecting new labelled data at each time step remains expensive and logistically difficult, especially in dynamic or remote ecological systems. As a response to this challenge, we demonstrate that a model with access to reference data solely from time step t0 can perform competitively on both t0 and a future time step t1, outperforming models trained separately on time-specific reference data (the gold standard). This finding suggests that effective temporal generalization can be achieved without requiring manual updates to reference labels beyond the initial time step t0. Drawing on concepts from change detection and semi-supervised learning (SSL), the most performant approach, "Common Ground", uses a semi-supervised framework that leverages temporally stable regions-areas with little to no change in spectral or semantic characteristics between time steps-as a source of implicit supervision for dynamic regions. We evaluate this strategy across multiple classifiers, sensors (Landsat-8, Sentinel-2 satellite multispectral and airborne imaging spectroscopy), and ecological use cases. For invasive tree species mapping, we observed a 21-40% improvement in classification accuracy using Common Ground compared to naive temporal transfer, where models trained at a single time step are directly applied to a future time step. We also observe a 10 -16% higher accuracy for the introduced approach compared to a gold-standard approach. In contrast, when broad land cover categories were mapped across Europe, we observed a more modest 2% increase in accuracy compared to both the naive and gold-standard approaches. These results underscore the effectiveness of combining stable reference screening with SSL for scalable and label-efficient multi-temporal remote sensing classification.
☆ Multi-scale hypergraph meets LLMs: Aligning large language models for time series analysis ICLR2026
Recently, there has been great success in leveraging pre-trained large language models (LLMs) for time series analysis. The core idea lies in effectively aligning the modality between natural language and time series. However, the multi-scale structures of natural language and time series have not been fully considered, resulting in insufficient utilization of LLMs capabilities. To this end, we propose MSH-LLM, a Multi-Scale Hypergraph method that aligns Large Language Models for time series analysis. Specifically, a hyperedging mechanism is designed to enhance the multi-scale semantic information of time series semantic space. Then, a cross-modality alignment (CMA) module is introduced to align the modality between natural language and time series at different scales. In addition, a mixture of prompts (MoP) mechanism is introduced to provide contextual information and enhance the ability of LLMs to understand the multi-scale temporal patterns of time series. Experimental results on 27 real-world datasets across 5 different applications demonstrate that MSH-LLM achieves the state-of-the-art results.
comment: Accepted by ICLR2026
☆ EXaMCaP: Subset Selection with Entropy Gain Maximization for Probing Capability Gains of Large Chart Understanding Training Sets
Recent works focus on synthesizing Chart Understanding (ChartU) training sets to inject advanced chart knowledge into Multimodal Large Language Models (MLLMs), where the sufficiency of the knowledge is typically verified by quantifying capability gains via the fine-tune-then-evaluate paradigm. However, full-set fine-tuning MLLMs to assess such gains incurs significant time costs, hindering the iterative refinement cycles of the ChartU dataset. Reviewing the ChartU dataset synthesis and data selection domains, we find that subsets can potentially probe the MLLMs' capability gains from full-set fine-tuning. Given that data diversity is vital for boosting MLLMs' performance and entropy reflects this feature, we propose EXaMCaP, which uses entropy gain maximization to select a subset. To obtain a high-diversity subset, EXaMCaP chooses the maximum-entropy subset from the large ChartU dataset. As enumerating all possible subsets is impractical, EXaMCaP iteratively selects samples to maximize the gain in set entropy relative to the current set, approximating the maximum-entropy subset of the full dataset. Experiments show that EXaMCaP outperforms baselines in probing the capability gains of the ChartU training set, along with its strong effectiveness across diverse subset sizes and compatibility with various MLLM architectures.
☆ Anytime-Valid Conformal Risk Control
Prediction sets provide a means of quantifying the uncertainty in predictive tasks. Using held out calibration data, conformal prediction and risk control can produce prediction sets that exhibit statistically valid error control in a computationally efficient manner. However, in the standard formulations, the error is only controlled on average over many possible calibration datasets of fixed size. In this paper, we extend the control to remain valid with high probability over a cumulatively growing calibration dataset at any time point. We derive such guarantees using quantile-based arguments and illustrate the applicability of the proposed framework to settings involving distribution shift. We further establish a matching lower bound and show that our guarantees are asymptotically tight. Finally, we demonstrate the practical performance of our methods through both simulations and real-world numerical examples.
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ Counterfactual Explanations for Hypergraph Neural Networks
Hypergraph neural networks (HGNNs) effectively model higher-order interactions in many real-world systems but remain difficult to interpret, limiting their deployment in high-stakes settings. We introduce CF-HyperGNNExplainer, a counterfactual explanation method for HGNNs that identifies the minimal structural changes required to alter a model's prediction. The method generates counterfactual hypergraphs using actionable edits limited to removing node-hyperedge incidences or deleting hyperedges, producing concise and structurally meaningful explanations. Experiments on three benchmark datasets show that CF-HyperGNNExplainer generates valid and concise counterfactuals, highlighting the higher-order relations most critical to HGNN decisions.
☆ Mosaic Learning: A Framework for Decentralized Learning with Model Fragmentation
Decentralized learning (DL) enables collaborative machine learning (ML) without a central server, making it suitable for settings where training data cannot be centrally hosted. We introduce Mosaic Learning, a DL framework that decomposes models into fragments and disseminates them independently across the network. Fragmentation reduces redundant communication across correlated parameters and enables more diverse information propagation without increasing communication cost. We theoretically show that Mosaic Learning (i) shows state-of-the-art worst-case convergence rate, and (ii) leverages parameter correlation in an ML model, improving contraction by reducing the highest eigenvalue of a simplified system. We empirically evaluate Mosaic Learning on four learning tasks and observe up to 12 percentage points higher node-level test accuracy compared to epidemic learning (EL), a state-of-the-art baseline. In summary, Mosaic Learning improves DL performance without sacrificing its utility or efficiency, and positions itself as a new DL standard.
☆ A Bandit-Based Approach to Educational Recommender Systems: Contextual Thompson Sampling for Learner Skill Gain Optimization
In recent years, instructional practices in Operations Research (OR), Management Science (MS), and Analytics have increasingly shifted toward digital environments, where large and diverse groups of learners make it difficult to provide practice that adapts to individual needs. This paper introduces a method that generates personalized sequences of exercises by selecting, at each step, the exercise most likely to advance a learner's understanding of a targeted skill. The method uses information about the learner and their past performance to guide these choices, and learning progress is measured as the change in estimated skill level before and after each exercise. Using data from an online mathematics tutoring platform, we find that the approach recommends exercises associated with greater skill improvement and adapts effectively to differences across learners. From an instructional perspective, the framework enables personalized practice at scale, highlights exercises with consistently strong learning value, and helps instructors identify learners who may benefit from additional support.
comment: Accepted for publication in INFORMS Transactions on Education
☆ MirrorLA: Reflecting Feature Map for Vision Linear Attention
Linear attention significantly reduces the computational complexity of Transformers from quadratic to linear, yet it consistently lags behind softmax-based attention in performance. We identify the root cause of this degradation as the non-negativity constraint imposed on kernel feature maps: standard projections like ReLU act as "passive truncation" operators, indiscriminately discarding semantic information residing in the negative domain. We propose MirrorLA, a geometric framework that substitutes passive truncation with active reorientation. By leveraging learnable Householder reflections, MirrorLA rotates the feature geometry into the non-negative orthant to maximize information retention. Our approach restores representational density through a cohesive, multi-scale design: it first optimizes local discriminability via block-wise isometries, stabilizes long-context dynamics using variance-aware modulation to diversify activations, and finally, integrates dispersed subspaces via cross-head reflections to induce global covariance mixing. MirrorLA achieves state-of-the-art performance across standard benchmarks, demonstrating that strictly linear efficiency can be achieved without compromising representational fidelity.
☆ UnMaskFork: Test-Time Scaling for Masked Diffusion via Deterministic Action Branching
Test-time scaling strategies have effectively leveraged inference-time compute to enhance the reasoning abilities of Autoregressive Large Language Models. In this work, we demonstrate that Masked Diffusion Language Models (MDLMs) are inherently amenable to advanced search strategies, owing to their iterative and non-autoregressive generation process. To leverage this, we propose UnMaskFork (UMF), a framework that formulates the unmasking trajectory as a search tree and employs Monte Carlo Tree Search to optimize the generation path. In contrast to standard scaling methods relying on stochastic sampling, UMF explores the search space through deterministic partial unmasking actions performed by multiple MDLMs. Our empirical evaluation demonstrates that UMF consistently outperforms existing test-time scaling baselines on complex coding benchmarks, while also exhibiting strong scalability on mathematical reasoning tasks.
☆ RISE: Interactive Visual Diagnosis of Fairness in Machine Learning Models
Evaluating fairness under domain shift is challenging because scalar metrics often obscure exactly where and how disparities arise. We introduce \textit{RISE} (Residual Inspection through Sorted Evaluation), an interactive visualization tool that converts sorted residuals into interpretable patterns. By connecting residual curve structures to formal fairness notions, RISE enables localized disparity diagnosis, subgroup comparison across environments, and the detection of hidden fairness issues. Through post-hoc analysis, RISE exposes accuracy-fairness trade-offs that aggregate statistics miss, supporting more informed model selection.
☆ Geometry-Aware Optimal Transport: Fast Intrinsic Dimension and Wasserstein Distance Estimation
Solving large scale Optimal Transport (OT) in machine learning typically relies on sampling measures to obtain a tractable discrete problem. While the discrete solver's accuracy is controllable, the rate of convergence of the discretization error is governed by the intrinsic dimension of our data. Therefore, the true bottleneck is the knowledge and control of the sampling error. In this work, we tackle this issue by introducing novel estimators for both sampling error and intrinsic dimension. The key finding is a simple, tuning-free estimator of $\text{OT}_c(ρ, \hatρ)$ that utilizes the semi-dual OT functional and, remarkably, requires no OT solver. Furthermore, we derive a fast intrinsic dimension estimator from the multi-scale decay of our sampling error estimator. This framework unlocks significant computational and statistical advantages in practice, enabling us to (i) quantify the convergence rate of the discretization error, (ii) calibrate the entropic regularization of Sinkhorn divergences to the data's intrinsic geometry, and (iii) introduce a novel, intrinsic-dimension-based Richardson extrapolation estimator that strongly debiases Wasserstein distance estimation. Numerical experiments demonstrate that our geometry-aware pipeline effectively mitigates the discretization error bottleneck while maintaining computational efficiency.
☆ Efficient Equivariant High-Order Crystal Tensor Prediction via Cartesian Local-Environment Many-Body Coupling
End-to-end prediction of high-order crystal tensor properties from atomic structures remains challenging: while spherical-harmonic equivariant models are expressive, their Clebsch-Gordan tensor products incur substantial compute and memory costs for higher-order targets. We propose the Cartesian Environment Interaction Tensor Network (CEITNet), an approach that constructs a multi-channel Cartesian local environment tensor for each atom and performs flexible many-body mixing via a learnable channel-space interaction. By performing learning in channel space and using Cartesian tensor bases to assemble equivariant outputs, CEITNet enables efficient construction of high-order tensor. Across benchmark datasets for order-2 dielectric, order-3 piezoelectric, and order-4 elastic tensor prediction, CEITNet surpasses prior high-order prediction methods on key accuracy criteria while offering high computational efficiency.
☆ Universal Robust Speech Adaptation for Cross-Domain Speech Recognition and Enhancement IEEE
Pre-trained models for automatic speech recognition (ASR) and speech enhancement (SE) have exhibited remarkable capabilities under matched noise and channel conditions. However, these models often suffer from severe performance degradation when confronted with domain shifts, particularly in the presence of unseen noise and channel distortions. In view of this, we in this paper present URSA-GAN, a unified and domain-aware generative framework specifically designed to mitigate mismatches in both noise and channel conditions. URSA-GAN leverages a dual-embedding architecture that consists of a noise encoder and a channel encoder, each pre-trained with limited in-domain data to capture domain-relevant representations. These embeddings condition a GAN-based speech generator, facilitating the synthesis of speech that is acoustically aligned with the target domain while preserving phonetic content. To enhance generalization further, we propose dynamic stochastic perturbation, a novel regularization technique that introduces controlled variability into the embeddings during generation, promoting robustness to unseen domains. Empirical results demonstrate that URSA-GAN effectively reduces character error rates in ASR and improves perceptual metrics in SE across diverse noisy and mismatched channel scenarios. Notably, evaluations on compound test conditions with both channel and noise degradations confirm the generalization ability of URSA-GAN, yielding relative improvements of 16.16% in ASR performance and 15.58% in SE metrics.
comment: Accepted to IEEE Transactions on Audio, Speech and Language Processing (IEEE TASLP)
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
☆ Disentangling Causal Importance from Emergent Structure in Multi-Expert Orchestration
Multi-expert systems, where multiple Large Language Models (LLMs) collaborate to solve complex tasks, are increasingly adopted for high-performance reasoning and generation. However, the orchestration policies governing expert interaction and sequencing remain largely opaque. We introduce INFORM, an interpretability analysis that treats orchestration as an explicit, analyzable computation, enabling the decoupling of expert interaction structure, execution order, and causal attribution. We use INFORM to evaluate an orchestrator on GSM8K, HumanEval, and MMLU using a homogeneous consortium of ten instruction-tuned experts drawn from LLaMA-3.1 8B, Qwen-3 8B, and DeepSeek-R1 8B, with controlled decoding-temperature variation, and a secondary heterogeneous consortium spanning 1B-7B parameter models. Across tasks, routing dominance is a poor proxy for functional necessity. We reveal a divergence between relational importance, captured by routing mass and interaction topology, and intrinsic importance, measured via gradient-based causal attribution: frequently selected experts often act as interaction hubs with limited causal influence, while sparsely routed experts can be structurally critical. Orchestration behaviors emerge asynchronously, with expert centralization preceding stable routing confidence and expert ordering remaining non-deterministic. Targeted ablations show that masking intrinsically important experts induces disproportionate collapse in interaction structure compared to masking frequent peers, confirming that INFORM exposes causal and structural dependencies beyond accuracy metrics alone.
☆ Proxy Compression for Language Modeling
Modern language models are trained almost exclusively on token sequences produced by a fixed tokenizer, an external lossless compressor often over UTF-8 byte sequences, thereby coupling the model to that compressor. This work introduces proxy compression, an alternative training scheme that preserves the efficiency benefits of compressed inputs while providing an end-to-end, raw-byte interface at inference time. During training, one language model is jointly trained on raw byte sequences and compressed views generated by external compressors; through the process, the model learns to internally align compressed sequences and raw bytes. This alignment enables strong transfer between the two formats, even when training predominantly on compressed inputs which are discarded at inference. Extensive experiments on code language modeling demonstrate that proxy compression substantially improves training efficiency and significantly outperforms pure byte-level baselines given fixed compute budgets. As model scale increases, these gains become more pronounced, and proxy-trained models eventually match or rival tokenizer approaches, all while operating solely on raw bytes and retaining the inherent robustness of byte-level modeling.
☆ Contextual Drag: How Errors in the Context Affect LLM Reasoning
Central to many self-improvement pipelines for large language models (LLMs) is the assumption that models can improve by reflecting on past mistakes. We study a phenomenon termed contextual drag: the presence of failed attempts in the context biases subsequent generations toward structurally similar errors. Across evaluations of 11 proprietary and open-weight models on 8 reasoning tasks, contextual drag induces 10-20% performance drops, and iterative self-refinement in models with severe contextual drag can collapse into self-deterioration. Structural analysis using tree edit distance reveals that subsequent reasoning trajectories inherit structurally similar error patterns from the context. We demonstrate that neither external feedback nor successful self-verification suffices to eliminate this effect. While mitigation strategies such as fallback-behavior fine-tuning and context denoising yield partial improvements, they fail to fully restore baseline performance, positioning contextual drag as a persistent failure mode in current reasoning architectures.
☆ Convolution Operator Network for Forward and Inverse Problems (FI-Conv): Application to Plasma Turbulence Simulations
We propose the Convolutional Operator Network for Forward and Inverse Problems (FI-Conv), a framework capable of predicting system evolution and estimating parameters in complex spatio-temporal dynamics, such as turbulence. FI-Conv is built on a U-Net architecture, in which most convolutional layers are replaced by ConvNeXt V2 blocks. This design preserves U-Net performance on inputs with high-frequency variations while maintaining low computational complexity. FI-Conv uses an initial state, PDE parameters, and evolution time as input to predict the system future state. As a representative example of a system exhibiting complex dynamics, we evaluate the performance of FI-Conv on the task of predicting turbulent plasma fields governed by the Hasegawa-Wakatani (HW) equations. The HW system models two-dimensional electrostatic drift-wave turbulence and exhibits strongly nonlinear behavior, making accurate approximation and long-term prediction particularly challenging. Using an autoregressive forecasting procedure, FI-Conv achieves accurate forward prediction of the plasma state evolution over short times (t ~ 3) and captures the statistic properties of derived physical quantities of interest over longer times (t ~ 100). Moreover, we develop a gradient-descent-based inverse estimation method that accurately infers PDE parameters from plasma state evolution data, without modifying the trained model weights. Collectively, our results demonstrate that FI-Conv can be an effective alternative to existing physics-informed machine learning methods for systems with complex spatio-temporal dynamics.
☆ Agent-Omit: Training Efficient LLM Agents for Adaptive Thought and Observation Omission via Agentic Reinforcement Learning
Managing agent thought and observation during multi-turn agent-environment interactions is an emerging strategy to improve agent efficiency. However, existing studies treat the entire interaction trajectories equally, overlooking the thought necessity and observation utility varies across turns. To this end, we first conduct quantitative investigations into how thought and observation affect agent effectiveness and efficiency. Based on our findings, we propose Agent-Omit, a unified training framework that empowers LLM agents to adaptively omit redundant thoughts and observations. Specifically, we first synthesize a small amount of cold-start data, including both single-turn and multi-turn omission scenarios, to fine-tune the agent for omission behaviors. Furthermore, we introduce an omit-aware agentic reinforcement learning approach, incorporating a dual sampling mechanism and a tailored omission reward to incentivize the agent's adaptive omission capability. Theoretically, we prove that the deviation of our omission policy is upper-bounded by KL-divergence. Experimental results on five agent benchmarks show that our constructed Agent-Omit-8B could obtain performance comparable to seven frontier LLM agent, and achieve the best effectiveness-efficiency trade-off than seven efficient LLM agents methods. Our code and data are available at https://github.com/usail-hkust/Agent-Omit.
comment: Under Review
☆ Multi Objective Design Optimization of Non Pneumatic Passenger Car Tires Using Finite Element Modeling, Machine Learning, and Particle swarm Optimization and Bayesian Optimization Algorithms
Non Pneumatic tires offer a promising alternative to pneumatic tires. However, their discontinuous spoke structures present challenges in stiffness tuning, durability, and high speed vibration. This study introduces an integrated generative design and machine learning driven framework to optimize UPTIS type spoke geometries for passenger vehicles. Upper and lower spoke profiles were parameterized using high order polynomial representations, enabling the creation of approximately 250 generative designs through PCHIP based geometric variation. Machine learning models like KRR for stiffness and XGBoost for durability and vibration achieved strong predictive accuracy, reducing the reliance on computationally intensive FEM simulations. Optimization using Particle Swarm Optimization and Bayesian Optimization further enabled extensive performance refinement. The resulting designs demonstrate 53% stiffness tunability, up to 50% durability improvement, and 43% reduction in vibration compared to the baseline. PSO provided fast, targeted convergence, while Bayesian Optimization effectively explored multi objective tradeoffs. Overall, the proposed framework enables systematic development of high performance, next generation UPTIS spoke structures.
☆ Bures-Wasserstein Importance-Weighted Evidence Lower Bound: Exposition and Applications
The Importance-Weighted Evidence Lower Bound (IW-ELBO) has emerged as an effective objective for variational inference (VI), tightening the standard ELBO and mitigating the mode-seeking behaviour. However, optimizing the IW-ELBO in Euclidean space is often inefficient, as its gradient estimators suffer from a vanishing signal-to-noise ratio (SNR). This paper formulates the optimisation of the IW-ELBO in Bures-Wasserstein space, a manifold of Gaussian distributions equipped with the 2-Wasserstein metric. We derive the Wasserstein gradient of the IW-ELBO and project it onto the Bures-Wasserstein space to yield a tractable algorithm for Gaussian VI. A pivotal contribution of our analysis concerns the stability of the gradient estimator. While the SNR of the standard Euclidean gradient estimator is known to vanish as the number of importance samples $K$ increases, we prove that the SNR of the Wasserstein gradient scales favourably as $Ω(\sqrt{K})$, ensuring optimisation efficiency even for large $K$. We further extend this geometric analysis to the Variational Rényi Importance-Weighted Autoencoder bound, establishing analogous stability guarantees. Experiments demonstrate that the proposed framework achieves superior approximation performance compared to other baselines.
comment: 27 pages, 6 figures. Submitted to Bayesian Analysis
☆ Multi-Integration of Labels across Categories for Component Identification (MILCCI)
Many fields collect large-scale temporal data through repeated measurements (trials), where each trial is labeled with a set of metadata variables spanning several categories. For example, a trial in a neuroscience study may be linked to a value from category (a): task difficulty, and category (b): animal choice. A critical challenge in time-series analysis is to understand how these labels are encoded within the multi-trial observations, and disentangle the distinct effect of each label entry across categories. Here, we present MILCCI, a novel data-driven method that i) identifies the interpretable components underlying the data, ii) captures cross-trial variability, and iii) integrates label information to understand each category's representation within the data. MILCCI extends a sparse per-trial decomposition that leverages label similarities within each category to enable subtle, label-driven cross-trial adjustments in component compositions and to distinguish the contribution of each category. MILCCI also learns each component's corresponding temporal trace, which evolves over time within each trial and varies flexibly across trials. We demonstrate MILCCI's performance through both synthetic and real-world examples, including voting patterns, online page view trends, and neuronal recordings.
☆ Aortic Valve Disease Detection from PPG via Physiology-Informed Self-Supervised Learning
Traditional diagnosis of aortic valve disease relies on echocardiography, but its cost and required expertise limit its use in large-scale early screening. Photoplethysmography (PPG) has emerged as a promising screening modality due to its widespread availability in wearable devices and its ability to reflect underlying hemodynamic dynamics. However, the extreme scarcity of gold-standard labeled PPG data severely constrains the effectiveness of data-driven approaches. To address this challenge, we propose and validate a new paradigm, Physiology-Guided Self-Supervised Learning (PG-SSL), aimed at unlocking the value of large-scale unlabeled PPG data for efficient screening of Aortic Stenosis (AS) and Aortic Regurgitation (AR). Using over 170,000 unlabeled PPG samples from the UK Biobank, we formalize clinical knowledge into a set of PPG morphological phenotypes and construct a pulse pattern recognition proxy task for self-supervised pre-training. A dual-branch, gated-fusion architecture is then employed for efficient fine-tuning on a small labeled subset. The proposed PG-SSL framework achieves AUCs of 0.765 and 0.776 for AS and AR screening, respectively, significantly outperforming supervised baselines trained on limited labeled data. Multivariable analysis further validates the model output as an independent digital biomarker with sustained prognostic value after adjustment for standard clinical risk factors. This study demonstrates that PG-SSL provides an effective, domain knowledge-driven solution to label scarcity in medical artificial intelligence and shows strong potential for enabling low-cost, large-scale early screening of aortic valve disease.
comment: 28 pages, 7 figures. Under review
☆ Thickening-to-Thinning: Reward Shaping via Human-Inspired Learning Dynamics for LLM Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising paradigm for enhancing reasoning in Large Language Models (LLMs). However, it frequently encounters challenges such as entropy collapse, excessive verbosity, and insufficient exploration for hard problems. Crucially, existing reward schemes fail to distinguish between the need for extensive search during problem-solving and the efficiency required for mastered knowledge. In this work, we introduce T2T(Thickening-to-Thinning), a dynamic reward framework inspired by human learning processes. Specifically, it implements a dual-phase mechanism: (1) On incorrect attempts, T2T incentivizes "thickening" (longer trajectories) to broaden the search space and explore novel solution paths; (2) Upon achieving correctness, it shifts to "thinning", imposing length penalties to discourage redundancy, thereby fostering model confidence and crystallizing reasoning capabilities. Extensive experiments on mathematical benchmarks (MATH-500, AIME, AMC) across Qwen-series and Deepseek models demonstrate that T2T significantly outperforms standard GRPO and recent baselines, achieving superior performance.
☆ From Dead Neurons to Deep Approximators: Deep Bernstein Networks as a Provable Alternative to Residual Layers
Residual connections are the de facto standard for mitigating vanishing gradients, yet they impose structural constraints and fail to address the inherent inefficiencies of piecewise linear activations. We show that Deep Bernstein Networks (which utilizes Bernstein polynomials as activation functions) can act as residual-free architecture while simultaneously optimize trainability and representation power. We provide a two-fold theoretical foundation for our approach. First, we derive a theoretical lower bound on the local derivative, proving it remains strictly bounded away from zero. This directly addresses the root cause of gradient stagnation; empirically, our architecture reduces ``dead'' neurons from 90\% in standard deep networks to less than 5\%, outperforming ReLU, Leaky ReLU, SeLU, and GeLU. Second, we establish that the approximation error for Bernstein-based networks decays exponentially with depth, a significant improvement over the polynomial rates of ReLU-based architectures. By unifying these results, we demonstrate that Bernstein activations provide a superior mechanism for function approximation and signal flow. Our experiments on HIGGS and MNIST confirm that Deep Bernstein Networks achieve high-performance training without skip-connections, offering a principled path toward deep, residual-free architectures with enhanced expressive capacity.
comment: 15 pages
☆ From Ambiguity to Action: A POMDP Perspective on Partial Multi-Label Ambiguity and Its Horizon-One Resolution
In partial multi-label learning (PML), the true labels are unobserved, which makes label disambiguation important but difficult. A key challenge is that ambiguous candidate labels can propagate errors into downstream tasks such as feature engineering. To solve this issue, we jointly model the disambiguation and feature selection tasks as Partially Observable Markov Decision Processes (POMDP) to turn PML risk minimization into expected-return maximization. Stage 1 trains a transformer policy via reinforcement learning to produce high-quality hard pseudo-labels; Stage 2 describes feature selection as a sequential reinforcement learning problem, selecting features step by step and outputting an interpretable global ranking. We further provide the theoretical analysis of PML-POMDP correspondence and the excess-risk bound that decompose the error into pseudo label quality term and sample size. Experiments in multiple metrics and data sets verify the advantages of the framework.
☆ Training A Foundation Model to Represent Graphs as Vectors
This paper aims to train a graph foundation model that is able to represent any graph as a vector preserving structural and semantic information useful for downstream graph-level tasks such as graph classification and graph clustering. To learn the features of graphs from diverse domains while maintaining strong generalization ability to new domains, we propose a multi-graph-based feature alignment method, which constructs weighted graphs using the attributes of all nodes in each dataset and then generates consistent node embeddings. To enhance the consistency of the features from different datasets, we propose a density maximization mean alignment algorithm with guaranteed convergence. The original graphs and generated node embeddings are fed into a graph neural network to achieve discriminative graph representations in contrastive learning. More importantly, to enhance the information preservation from node-level representations to the graph-level representation, we construct a multi-layer reference distribution module without using any pooling operation. We also provide a theoretical generalization bound to support the effectiveness of the proposed model. The experimental results of few-shot graph classification and graph clustering show that our model outperforms strong baselines.
☆ SPOT-Occ: Sparse Prototype-guided Transformer for Camera-based 3D Occupancy Prediction
Achieving highly accurate and real-time 3D occupancy prediction from cameras is a critical requirement for the safe and practical deployment of autonomous vehicles. While this shift to sparse 3D representations solves the encoding bottleneck, it creates a new challenge for the decoder: how to efficiently aggregate information from a sparse, non-uniformly distributed set of voxel features without resorting to computationally prohibitive dense attention. In this paper, we propose a novel Prototype-based Sparse Transformer Decoder that replaces this costly interaction with an efficient, two-stage process of guided feature selection and focused aggregation. Our core idea is to make the decoder's attention prototype-guided. We achieve this through a sparse prototype selection mechanism, where each query adaptively identifies a compact set of the most salient voxel features, termed prototypes, for focused feature aggregation. To ensure this dynamic selection is stable and effective, we introduce a complementary denoising paradigm. This approach leverages ground-truth masks to provide explicit guidance, guaranteeing a consistent query-prototype association across decoder layers. Our model, dubbed SPOT-Occ, outperforms previous methods with a significant margin in speed while also improving accuracy. Source code is released at https://github.com/chensuzeyu/SpotOcc.
comment: 8 pages, 6 figures
☆ Cascading Robustness Verification: Toward Efficient Model-Agnostic Certification
Certifying neural network robustness against adversarial examples is challenging, as formal guarantees often require solving non-convex problems. Hence, incomplete verifiers are widely used because they scale efficiently and substantially reduce the cost of robustness verification compared to complete methods. However, relying on a single verifier can underestimate robustness because of loose approximations or misalignment with training methods. In this work, we propose Cascading Robustness Verification (CRV), which goes beyond an engineering improvement by exposing fundamental limitations of existing robustness metric and introducing a framework that enhances both reliability and efficiency. CRV is a model-agnostic verifier, meaning that its robustness guarantees are independent of the model's training process. The key insight behind the CRV framework is that, when using multiple verification methods, an input is certifiably robust if at least one method certifies it as robust. Rather than relying solely on a single verifier with a fixed constraint set, CRV progressively applies multiple verifiers to balance the tightness of the bound and computational cost. Starting with the least expensive method, CRV halts as soon as an input is certified as robust; otherwise, it proceeds to more expensive methods. For computationally expensive methods, we introduce a Stepwise Relaxation Algorithm (SR) that incrementally adds constraints and checks for certification at each step, thereby avoiding unnecessary computation. Our theoretical analysis demonstrates that CRV achieves equal or higher verified accuracy compared to powerful but computationally expensive incomplete verifiers in the cascade, while significantly reducing verification overhead. Empirical results confirm that CRV certifies at least as many inputs as benchmark approaches, while improving runtime efficiency by up to ~90%.
☆ Provable Target Sample Complexity Improvements as Pre-Trained Models Scale AISTATS2026
Pre-trained models have become indispensable for efficiently building models across a broad spectrum of downstream tasks. The advantages of pre-trained models have been highlighted by empirical studies on scaling laws, which demonstrate that larger pre-trained models can significantly reduce the sample complexity of downstream learning. However, existing theoretical investigations of pre-trained models lack the capability to explain this phenomenon. In this paper, we provide a theoretical investigation by introducing a novel framework, caulking, inspired by parameter-efficient fine-tuning (PEFT) methods such as adapter-based fine-tuning, low-rank adaptation, and partial fine-tuning. Our analysis establishes that improved pre-trained models provably decrease the sample complexity of downstream tasks, thereby offering theoretical justification for the empirically observed scaling laws relating pre-trained model size to downstream performance, a relationship not covered by existing results.
comment: AISTATS2026
☆ RAPO: Risk-Aware Preference Optimization for Generalizable Safe Reasoning
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
☆ OAT: Ordered Action Tokenization
Autoregressive policies offer a compelling foundation for scalable robot learning by enabling discrete abstraction, token-level reasoning, and flexible inference. However, applying autoregressive modeling to continuous robot actions requires an effective action tokenization scheme. Existing approaches either rely on analytical discretization methods that produce prohibitively long token sequences, or learned latent tokenizers that lack structure, limiting their compatibility with next-token prediction. In this work, we identify three desiderata for action tokenization - high compression, total decodability, and a left-to-right causally ordered token space - and introduce Ordered Action Tokenization (OAT), a learned action tokenizer that satisfies all three. OAT discretizes action chunks into an ordered sequence of tokens using transformer with registers, finite scalar quantization, and ordering-inducing training mechanisms. The resulting token space aligns naturally with autoregressive generation and enables prefix-based detokenization, yielding an anytime trade-off between inference cost and action fidelity. Across more than 20 tasks spanning four simulation benchmarks and real-world settings, autoregressive policies equipped with OAT consistently outperform prior tokenization schemes and diffusion-based baselines, while offering significantly greater flexibility at inference time.
☆ Steering LLMs via Scalable Interactive Oversight
As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
☆ SCALE: Self-uncertainty Conditioned Adaptive Looking and Execution for Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as a promising paradigm for general-purpose robotic control, with test-time scaling (TTS) gaining attention to enhance robustness beyond training. However, existing TTS methods for VLAs require additional training, verifiers, and multiple forward passes, making them impractical for deployment. Moreover, they intervene only at action decoding while keeping visual representations fixed-insufficient under perceptual ambiguity, where reconsidering how to perceive is as important as deciding what to do. To address these limitations, we propose SCALE, a simple inference strategy that jointly modulates visual perception and action based on 'self-uncertainty', inspired by uncertainty-driven exploration in Active Inference theory-requiring no additional training, no verifier, and only a single forward pass. SCALE broadens exploration in both perception and action under high uncertainty, while focusing on exploitation when confident-enabling adaptive execution across varying conditions. Experiments on simulated and real-world benchmarks demonstrate that SCALE improves state-of-the-art VLAs and outperforms existing TTS methods while maintaining single-pass efficiency.
comment: 20 pages, 8 figures
☆ AGMA: Adaptive Gaussian Mixture Anchors for Prior-Guided Multimodal Human Trajectory Forecasting
Human trajectory forecasting requires capturing the multimodal nature of pedestrian behavior. However, existing approaches suffer from prior misalignment. Their learned or fixed priors often fail to capture the full distribution of plausible futures, limiting both prediction accuracy and diversity. We theoretically establish that prediction error is lower-bounded by prior quality, making prior modeling a key performance bottleneck. Guided by this insight, we propose AGMA (Adaptive Gaussian Mixture Anchors), which constructs expressive priors through two stages: extracting diverse behavioral patterns from training data and distilling them into a scene-adaptive global prior for inference. Extensive experiments on ETH-UCY, Stanford Drone, and JRDB datasets demonstrate that AGMA achieves state-of-the-art performance, confirming the critical role of high-quality priors in trajectory forecasting.
comment: 14 pages, 3 figures
☆ From Sparse Sensors to Continuous Fields: STRIDE for Spatiotemporal Reconstruction
Reconstructing high-dimensional spatiotemporal fields from sparse point-sensor measurements is a central challenge in learning parametric PDE dynamics. Existing approaches often struggle to generalize across trajectories and parameter settings, or rely on discretization-tied decoders that do not naturally transfer across meshes and resolutions. We propose STRIDE (Spatio-Temporal Recurrent Implicit DEcoder), a two-stage framework that maps a short window of sensor measurements to a latent state with a temporal encoder and reconstructs the field at arbitrary query locations with a modulated implicit neural representation (INR) decoder. Using the Fourier Multi-Component and Multi-Layer Neural Network (FMMNN) as the INR backbone improves representation of complex spatial fields and yields more stable optimization than sine-based INRs. We provide a conditional theoretical justification: under stable delay observability of point measurements on a low-dimensional parametric invariant set, the reconstruction operator factors through a finite-dimensional embedding, making STRIDE-type architectures natural approximators. Experiments on four challenging benchmarks spanning chaotic dynamics and wave propagation show that STRIDE outperforms strong baselines under extremely sparse sensing, supports super-resolution, and remains robust to noise.
☆ The Missing Half: Unveiling Training-time Implicit Safety Risks Beyond Deployment
Safety risks of AI models have been widely studied at deployment time, such as jailbreak attacks that elicit harmful outputs. In contrast, safety risks emerging during training remain largely unexplored. Beyond explicit reward hacking that directly manipulates explicit reward functions in reinforcement learning, we study implicit training-time safety risks: harmful behaviors driven by a model's internal incentives and contextual background information. For example, during code-based reinforcement learning, a model may covertly manipulate logged accuracy for self-preservation. We present the first systematic study of this problem, introducing a taxonomy with five risk levels, ten fine-grained risk categories, and three incentive types. Extensive experiments reveal the prevalence and severity of these risks: notably, Llama-3.1-8B-Instruct exhibits risky behaviors in 74.4% of training runs when provided only with background information. We further analyze factors influencing these behaviors and demonstrate that implicit training-time risks also arise in multi-agent training settings. Our results identify an overlooked yet urgent safety challenge in training.
☆ LORE: Jointly Learning the Intrinsic Dimensionality and Relative Similarity Structure From Ordinal Data ICLR 2026
Learning the intrinsic dimensionality of subjective perceptual spaces such as taste, smell, or aesthetics from ordinal data is a challenging problem. We introduce LORE (Low Rank Ordinal Embedding), a scalable framework that jointly learns both the intrinsic dimensionality and an ordinal embedding from noisy triplet comparisons of the form, "Is A more similar to B than C?". Unlike existing methods that require the embedding dimension to be set apriori, LORE regularizes the solution using the nonconvex Schatten-$p$ quasi norm, enabling automatic joint recovery of both the ordinal embedding and its dimensionality. We optimize this joint objective via an iteratively reweighted algorithm and establish convergence guarantees. Extensive experiments on synthetic datasets, simulated perceptual spaces, and real world crowdsourced ordinal judgements show that LORE learns compact, interpretable and highly accurate low dimensional embeddings that recover the latent geometry of subjective percepts. By simultaneously inferring both the intrinsic dimensionality and ordinal embeddings, LORE enables more interpretable and data efficient perceptual modeling in psychophysics and opens new directions for scalable discovery of low dimensional structure from ordinal data in machine learning.
comment: 10 Pages, 31 with appendix: Accepted at ICLR 2026
☆ Benchmarking Uncertainty Quantification of Plug-and-Play Diffusion Priors for Inverse Problems Solving
Plug-and-play diffusion priors (PnPDP) have become a powerful paradigm for solving inverse problems in scientific and engineering domains. Yet, current evaluations of reconstruction quality emphasize point-estimate accuracy metrics on a single sample, which do not reflect the stochastic nature of PnPDP solvers and the intrinsic uncertainty of inverse problems, critical for scientific tasks. This creates a fundamental mismatch: in inverse problems, the desired output is typically a posterior distribution and most PnPDP solvers induce a distribution over reconstructions, but existing benchmarks only evaluate a single reconstruction, ignoring distributional characterization such as uncertainty. To address this gap, we conduct a systematic study to benchmark the uncertainty quantification (UQ) of existing diffusion inverse solvers. Specifically, we design a rigorous toy model simulation to evaluate the uncertainty behavior of various PnPDP solvers, and propose a UQ-driven categorization. Through extensive experiments on toy simulations and diverse real-world scientific inverse problems, we observe uncertainty behaviors consistent with our taxonomy and theoretical justification, providing new insights for evaluating and understanding the uncertainty for PnPDPs.
☆ Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning
☆ Piece of CAKE: Adaptive Execution Engines via Microsecond-Scale Learning
Low-level database operators often admit multiple physical implementations ("kernels") that are semantically equivalent but have vastly different performance characteristics depending on the input data distribution. Existing database systems typically rely on static heuristics or worst-case optimal defaults to select these kernels, often missing significant performance opportunities. In this work, we propose CAKE (Counterfactual Adaptive Kernel Execution), a system that learns to select the optimal kernel for each data "morsel" using a microsecond-scale contextual multi-armed bandit. CAKE circumvents the high latency of traditional reinforcement learning by exploiting the cheapness of counterfactuals -- selectively running multiple kernels to obtain full feedback -- and compiling policies into low-latency regret trees. Experimentally, we show that CAKE can reduce end-to-end workload latency by up to 2x compared to state-of-the-art static heuristics.
☆ Topology-Aware Revival for Efficient Sparse Training
Static sparse training is a promising route to efficient learning by committing to a fixed mask pattern, yet the constrained structure reduces robustness. Early pruning decisions can lock the network into a brittle structure that is difficult to escape, especially in deep reinforcement learning (RL) where the evolving policy continually shifts the training distribution. We propose Topology-Aware Revival (TAR), a lightweight one-shot post-pruning procedure that improves static sparsity without dynamic rewiring. After static pruning, TAR performs a single revival step by allocating a small reserve budget across layers according to topology needs, randomly uniformly reactivating a few previously pruned connections within each layer, and then keeping the resulting connectivity fixed for the remainder of training. Across multiple continuous-control tasks with SAC and TD3, TAR improves final return over static sparse baselines by up to +37.9% and also outperforms dynamic sparse training baselines with a median gain of +13.5%.
☆ BPDQ: Bit-Plane Decomposition Quantization on a Variable Grid for Large Language Models
Large language model (LLM) inference is often bounded by memory footprint and memory bandwidth in resource-constrained deployments, making quantization a fundamental technique for efficient serving. While post-training quantization (PTQ) maintains high fidelity at 4-bit, it deteriorates at 2-3 bits. Fundamentally, existing methods enforce a shape-invariant quantization grid (e.g., the fixed uniform intervals of UINT2) for each group, severely restricting the feasible set for error minimization. To address this, we propose Bit-Plane Decomposition Quantization (BPDQ), which constructs a variable quantization grid via bit-planes and scalar coefficients, and iteratively refines them using approximate second-order information while progressively compensating quantization errors to minimize output discrepancy. In the 2-bit regime, BPDQ enables serving Qwen2.5-72B on a single RTX 3090 with 83.85% GSM8K accuracy (vs. 90.83% at 16-bit). Moreover, we provide theoretical analysis showing that the variable grid expands the feasible set, and that the quantization process consistently aligns with the optimization objective in Hessian-induced geometry. Code: github.com/KingdalfGoodman/BPDQ.
☆ Maximin Relative Improvement: Fair Learning as a Bargaining Problem
When deploying a single predictor across multiple subpopulations, we propose a fundamentally different approach: interpreting group fairness as a bargaining problem among subpopulations. This game-theoretic perspective reveals that existing robust optimization methods such as minimizing worst-group loss or regret correspond to classical bargaining solutions and embody different fairness principles. We propose relative improvement, the ratio of actual risk reduction to potential reduction from a baseline predictor, which recovers the Kalai-Smorodinsky solution. Unlike absolute-scale methods that may not be comparable when groups have different potential predictability, relative improvement provides axiomatic justification including scale invariance and individual monotonicity. We establish finite-sample convergence guarantees under mild conditions.
☆ Pruning for Generalization: A Transfer-Oriented Spatiotemporal Graph Framework ICLR 2026
Multivariate time series forecasting in graph-structured domains is critical for real-world applications, yet existing spatiotemporal models often suffer from performance degradation under data scarcity and cross-domain shifts. We address these challenges through the lens of structure-aware context selection. We propose TL-GPSTGN, a transfer-oriented spatiotemporal framework that enhances sample efficiency and out-of-distribution generalization by selectively pruning non-optimized graph context. Specifically, our method employs information-theoretic and correlation-based criteria to extract structurally informative subgraphs and features, resulting in a compact, semantically grounded representation. This optimized context is subsequently integrated into a spatiotemporal convolutional architecture to capture complex multivariate dynamics. Evaluations on large-scale traffic benchmarks demonstrate that TL-GPSTGN consistently outperforms baselines in low-data transfer scenarios. Our findings suggest that explicit context pruning serves as a powerful inductive bias for improving the robustness of graph-based forecasting models.
comment: Under review at ICLR 2026 Workshop TSALM
☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training.Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora.To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
☆ OMG-Agent: Toward Robust Missing Modality Generation with Decoupled Coarse-to-Fine Agentic Workflows
Data incompleteness severely impedes the reliability of multimodal systems. Existing reconstruction methods face distinct bottlenecks: conventional parametric/generative models are prone to hallucinations due to over-reliance on internal memory, while retrieval-augmented frameworks struggle with retrieval rigidity. Critically, these end-to-end architectures are fundamentally constrained by Semantic-Detail Entanglement -- a structural conflict between logical reasoning and signal synthesis that compromises fidelity. In this paper, we present \textbf{\underline{O}}mni-\textbf{\underline{M}}odality \textbf{\underline{G}}eneration Agent (\textbf{OMG-Agent}), a novel framework that shifts the paradigm from static mapping to a dynamic coarse-to-fine Agentic Workflow. By mimicking a \textit{deliberate-then-act} cognitive process, OMG-Agent explicitly decouples the task into three synergistic stages: (1) an MLLM-driven Semantic Planner that resolves input ambiguity via Progressive Contextual Reasoning, creating a deterministic structured semantic plan; (2) a non-parametric Evidence Retriever that grounds abstract semantics in external knowledge; and (3) a Retrieval-Injected Executor that utilizes retrieved evidence as flexible feature prompts to overcome rigidity and synthesize high-fidelity details. Extensive experiments on multiple benchmarks demonstrate that OMG-Agent consistently surpasses state-of-the-art methods, maintaining robustness under extreme missingness, e.g., a $2.6$-point gain on CMU-MOSI at $70$\% missing rates.
☆ Generative Neural Operators through Diffusion Last Layer
Neural operators have emerged as a powerful paradigm for learning discretization-invariant function-to-function mappings in scientific computing. However, many practical systems are inherently stochastic, making principled uncertainty quantification essential for reliable deployment. To address this, we introduce a simple add-on, the diffusion last layer (DLL), a lightweight probabilistic head that can be attached to arbitrary neural operator backbones to model predictive uncertainty. Motivated by the relative smoothness and low-dimensional structure often exhibited by PDE solution distributions, DLL parameterizes the conditional output distribution directly in function space through a low-rank Karhunen-Loève expansion, enabling efficient and expressive uncertainty modeling. Across stochastic PDE operator learning benchmarks, DLL improves generalization and uncertainty-aware prediction. Moreover, even in deterministic long-horizon rollout settings, DLL enhances rollout stability and provides meaningful estimates of epistemic uncertainty for backbone neural operators.
☆ Lyapunov Constrained Soft Actor-Critic (LC-SAC) using Koopman Operator Theory for Quadrotor Trajectory Tracking IEEE
Reinforcement Learning (RL) has achieved remarkable success in solving complex sequential decision-making problems. However, its application to safety-critical physical systems remains constrained by the lack of stability guarantees. Standard RL algorithms prioritize reward maximization, often yielding policies that may induce oscillations or unbounded state divergence. There has significant work in incorporating Lyapunov-based stability guarantees in RL algorithms with key challenges being selecting a candidate Lyapunov function, computational complexity by using excessive function approximators and conservative policies by incorporating stability criterion in the learning process. In this work we propose a novel Lyapunov-constrained Soft Actor-Critic (LC-SAC) algorithm using Koopman operator theory. We propose use of extended dynamic mode decomposition (EDMD) to produce a linear approximation of the system and use this approximation to derive a closed form solution for candidate Lyapunov function. This derived Lyapunov function is incorporated in the SAC algorithm to further provide guarantees for a policy that stabilizes the nonlinear system. The results are evaluated trajectory tracking of a 2D Quadrotor environment based on safe-control-gym. The proposed algorithm shows training convergence and decaying violations for Lyapunov stability criterion compared to baseline vanilla SAC algorithm. GitHub Repository: https://github.com/DhruvKushwaha/LC-SAC-Quadrotor-Trajectory-Tracking
comment: 12 pages, 7 Figures, submitted to IEEE RA-L
☆ Decoupling Time and Risk: Risk-Sensitive Reinforcement Learning with General Discounting
Distributional reinforcement learning (RL) is a powerful framework increasingly adopted in safety-critical domains for its ability to optimize risk-sensitive objectives. However, the role of the discount factor is often overlooked, as it is typically treated as a fixed parameter of the Markov decision process or tunable hyperparameter, with little consideration of its effect on the learned policy. In the literature, it is well-known that the discounting function plays a major role in characterizing time preferences of an agent, which an exponential discount factor cannot fully capture. Building on this insight, we propose a novel framework that supports flexible discounting of future rewards and optimization of risk measures in distributional RL. We provide a technical analysis of the optimality of our algorithms, show that our multi-horizon extension fixes issues raised with existing methodologies, and validate the robustness of our methods through extensive experiments. Our results highlight that discounting is a cornerstone in decision-making problems for capturing more expressive temporal and risk preferences profiles, with potential implications for real-world safety-critical applications.
☆ Attack-Resistant Uniform Fairness for Linear and Smooth Contextual Bandits
Modern systems, such as digital platforms and service systems, increasingly rely on contextual bandits for online decision-making; however, their deployment can inadvertently create unfair exposure among arms, undermining long-term platform sustainability and supplier trust. This paper studies the contextual bandit problem under a uniform $(1-δ)$-fairness constraint, and addresses its unique vulnerabilities to strategic manipulation. The fairness constraint ensures that preferential treatment is strictly justified by an arm's actual reward across all contexts and time horizons, using uniformity to prevent statistical loopholes. We develop novel algorithms that achieve (nearly) minimax-optimal regret for both linear and smooth reward functions, while maintaining strong $(1-\tilde{O}(1/T))$-fairness guarantees, and further characterize the theoretically inherent yet asymptotically marginal "price of fairness". However, we reveal that such merit-based fairness becomes uniquely susceptible to signal manipulation. We show that an adversary with a minimal $\tilde{O}(1)$ budget can not only degrade overall performance as in traditional attacks, but also selectively induce insidious fairness-specific failures while leaving conspicuous regret measures largely unaffected. To counter this, we design robust variants incorporating corruption-adaptive exploration and error-compensated thresholding. Our approach yields the first minimax-optimal regret bounds under $C$-budgeted attack while preserving $(1-\tilde{O}(1/T))$-fairness. Numerical experiments and a real-world case demonstrate that our algorithms sustain both fairness and efficiency.
☆ Scalable Explainability-as-a-Service (XaaS) for Edge AI Systems IEEE
Though Explainable AI (XAI) has made significant advancements, its inclusion in edge and IoT systems is typically ad-hoc and inefficient. Most current methods are "coupled" in such a way that they generate explanations simultaneously with model inferences. As a result, these approaches incur redundant computation, high latency and poor scalability when deployed across heterogeneous sets of edge devices. In this work we propose Explainability-as-a-Service (XaaS), a distributed architecture for treating explainability as a first-class system service (as opposed to a model-specific feature). The key innovation in our proposed XaaS architecture is that it decouples inference from explanation generation allowing edge devices to request, cache and verify explanations subject to resource and latency constraints. To achieve this, we introduce three main innovations: (1) A distributed explanation cache with a semantic similarity based explanation retrieval method which significantly reduces redundant computation; (2) A lightweight verification protocol that ensures the fidelity of both cached and newly generated explanations; and (3) An adaptive explanation engine that chooses explanation methods based upon device capability and user requirement. We evaluated the performance of XaaS on three real-world edge-AI use cases: (i) manufacturing quality control; (ii) autonomous vehicle perception; and (iii) healthcare diagnostics. Experimental results show that XaaS reduces latency by 38\% while maintaining high explanation quality across three real-world deployments. Overall, this work enables the deployment of transparent and accountable AI across large scale, heterogeneous IoT systems, and bridges the gap between XAI research and edge-practicality.
comment: 8 pages, 5 figures, submitted and accepted in the conference IEEE SoutheastCon 2026
Synthesizable Molecular Generation via Soft-constrained GFlowNets with Rich Chemical Priors
The application of generative models for experimental drug discovery campaigns is severely limited by the difficulty of designing molecules de novo that can be synthesized in practice. Previous works have leveraged Generative Flow Networks (GFlowNets) to impose hard synthesizability constraints through the design of state and action spaces based on predefined reaction templates and building blocks. Despite the promising prospects of this approach, it currently lacks flexibility and scalability. As an alternative, we propose S3-GFN, which generates synthesizable SMILES molecules via simple soft regularization of a sequence-based GFlowNet. Our approach leverages rich molecular priors learned from large-scale SMILES corpora to steer molecular generation towards high-reward, synthesizable chemical spaces. The model induces constraints through off-policy replay training with a contrastive learning signal based on separate buffers of synthesizable and unsynthesizable samples. Our experiments show that S3-GFN learns to generate synthesizable molecules ($\geq 95\%$) with higher rewards in diverse tasks.
☆ Learning to Reason in 13 Parameters
Recent research has shown that language models can learn to \textit{reason}, often via reinforcement learning. Some work even trains low-rank parameterizations for reasoning, but conventional LoRA cannot scale below the model dimension. We question whether even rank=1 LoRA is necessary for learning to reason and propose TinyLoRA, a method for scaling low-rank adapters to sizes as small as one parameter. Within our new parameterization, we are able to train the 8B parameter size of Qwen2.5 to 91\% accuracy on GSM8K with only 13 trained parameters in bf16 (26 total bytes). We find this trend holds in general: we are able to recover 90\% of performance improvements while training $1000x$ fewer parameters across a suite of more difficult learning-to-reason benchmarks such as AIME, AMC, and MATH500. Notably, we are only able to achieve such strong performance with RL: models trained using SFT require $100-1000x$ larger updates to reach the same performance.
☆ Toward Effective Multimodal Graph Foundation Model: A Divide-and-Conquer Based Approach
Graph Foundation Models (GFMs) have achieved remarkable success in generalizing across diverse domains. However, they mainly focus on Text-Attributed Graphs (TAGs), leaving Multimodal-Attributed Graphs (MAGs) largely untapped. Developing Multimodal Graph Foundation Models (MGFMs) allows for leveraging the rich multimodal information in MAGs, and extends applicability to broader types of downstream tasks. While recent MGFMs integrate diverse modality information, our empirical investigation reveals two fundamental limitations of existing MGFMs: (1)they fail to explicitly model modality interaction, essential for capturing intricate cross-modal semantics beyond simple aggregation, and (2)they exhibit sub-optimal modality alignment, which is critical for bridging the significant semantic disparity between distinct modal spaces. To address these challenges, we propose PLANET (graPh topoLogy-aware modAlity iNteraction and alignmEnT), a novel framework employing a Divide-and-Conquer strategy to decouple modality interaction and alignment across distinct granularities. At the embedding granularity, (1)Embedding-wise Domain Gating (EDG) performs local semantic enrichment by adaptively infusing topology-aware cross-modal context, achieving modality interaction. At the node granularity, (2)Node-wise Discretization Retrieval (NDR) ensures global modality alignment by constructing a Discretized Semantic Representation Space (DSRS) to bridge modality gaps. Extensive experiments demonstrate that PLANET significantly outperforms state-of-the-art baselines across diverse graph-centric and multimodal generative tasks.
comment: 20 pages, 6 figures
☆ Turning mechanistic models into forecasters by using machine learning
The equations of complex dynamical systems may not be identified by expert knowledge, especially if the underlying mechanisms are unknown. Data-driven discovery methods address this challenge by inferring governing equations from time-series data using a library of functions constructed from the measured variables. However, these methods typically assume time-invariant coefficients, which limits their ability to capture evolving system dynamics. To overcome this limitation, we allow some of the parameters to vary over time, learn their temporal evolution directly from data, and infer a system of equations that incorporates both constant and time-varying parameters. We then transform this framework into a forecasting model by predicting the time-varying parameters and substituting these predictions into the learned equations. The model is validated using datasets for Susceptible-Infected-Recovered, Consumer--Resource, greenhouse gas concentration, and Cyanobacteria cell count. By dynamically adapting to temporal shifts, our proposed model achieved a mean absolute error below 3\% for learning a time series and below 6\% for forecasting up to a month ahead. We additionally compare forecasting performance against CNN-LSTM and Gradient Boosting Machine (GBM), and show that our model outperforms these methods across most datasets. Our findings demonstrate that integrating time-varying parameters into data-driven discovery of differential equations improves both modeling accuracy and forecasting performance.
comment: 47 pages, 11 figures
☆ ZKBoost: Zero-Knowledge Verifiable Training for XGBoost
Gradient boosted decision trees, particularly XGBoost, are among the most effective methods for tabular data. As deployment in sensitive settings increases, cryptographic guarantees of model integrity become essential. We present ZKBoost, the first zero-knowledge proof of training (zkPoT) protocol for XGBoost, enabling model owners to prove correct training on a committed dataset without revealing data or parameters. We make three key contributions: (1) a fixed-point XGBoost implementation compatible with arithmetic circuits, enabling instantiation of efficient zkPoT, (2) a generic template of zkPoT for XGBoost, which can be instantiated with any general-purpose ZKP backend, and (3) vector oblivious linear evaluation (VOLE)-based instantiation resolving challenges in proving nonlinear fixed-point operations. Our fixed-point implementation matches standard XGBoost accuracy within 1\% while enabling practical zkPoT on real-world datasets.
☆ Rate-Optimal Noise Annealing in Semi-Dual Neural Optimal Transport: Tangential Identifiability, Off-Manifold Ambiguity, and Guaranteed Recovery
Semi-dual neural optimal transport learns a transport map via a max-min objective, yet training can converge to incorrect or degenerate maps. We fully characterize these spurious solutions in the common regime where data concentrate on low-dimensional manifold: the objective is underconstrained off the data manifold, while the on-manifold transport signal remains identifiable. Following Choi, Choi, and Kwon (2025), we study additive-noise smoothing as a remedy and prove new map recovery guarantees as the noise vanishes. Our main practical contribution is a computable terminal noise level $\varepsilon_{\mathrm{stat}}(N)$ that attains the optimal statistical rate, with scaling governed by the intrinsic dimension $m$ of the data. The formula arises from a theoretical unified analysis of (i) quantitative stability of optimal plans, (ii) smoothing-induced bias, and (iii) finite-sample error, yielding rates that depend on $m$ rather than the ambient dimension. Finally, we show that the reduced semi-dual objective becomes increasingly ill-conditioned as $\varepsilon \downarrow 0$. This provides a principled stopping rule: annealing below $\varepsilon_{\mathrm{stat}}(N)$ can $\textit{worsen}$ optimization conditioning without improving statistical accuracy.
☆ Supervised Learning as Lossy Compression: Characterizing Generalization and Sample Complexity via Finite Blocklength Analysis
This paper presents a novel information-theoretic perspective on generalization in machine learning by framing the learning problem within the context of lossy compression and applying finite blocklength analysis. In our approach, the sampling of training data formally corresponds to an encoding process, and the model construction to a decoding process. By leveraging finite blocklength analysis, we derive lower bounds on sample complexity and generalization error for a fixed randomized learning algorithm and its associated optimal sampling strategy. Our bounds explicitly characterize the degree of overfitting of the learning algorithm and the mismatch between its inductive bias and the task as distinct terms. This separation provides a significant advantage over existing frameworks. Additionally, we decompose the overfitting term to show its theoretical connection to existing metrics found in information-theoretic bounds and stability theory, unifying these perspectives under our proposed framework.
comment: 22 pages, 1 figure
☆ Rethinking Perplexity: Revealing the Impact of Input Length on Perplexity Evaluation in LLMs
Perplexity is a widely adopted metric for assessing the predictive quality of large language models (LLMs) and often serves as a reference metric for downstream evaluations. However, recent evidence shows that perplexity can be unreliable, especially when irrelevant long inputs are used, raising concerns for both benchmarking and system deployment. While prior efforts have employed selective input filtering and curated datasets, the impact of input length on perplexity has not been systematically studied from a systems perspective and input length has rarely been treated as a first-class system variable affecting both fairness and efficiency. In this work, we close this gap by introducing LengthBenchmark, a system-conscious evaluation framework that explicitly integrates input length, evaluation protocol design, and system-level costs, evaluating representative LLMs under two scoring protocols (direct accumulation and fixed window sliding) across varying context lengths. Unlike prior work that focuses solely on accuracy-oriented metrics, LengthBenchmark additionally measures latency, memory footprint, and evaluation cost, thereby linking predictive metrics to deployment realities. We further incorporate quantized variants not as a main contribution, but as robustness checks, showing that length-induced biases persist across both full-precision and compressed models. This design disentangles the effects of evaluation logic, quantization, and input length, and demonstrates that length bias is a general phenomenon that undermines fair cross-model comparison. Our analysis yields two key observations: (i) sliding window evaluation consistently inflates performance on short inputs, and (ii) both full-precision and quantized models appear to realise gains as the evaluated segment length grows.
☆ CoRe: Context-Robust Remasking for Diffusion Language Models
Standard decoding in Masked Diffusion Models (MDMs) is hindered by context rigidity: tokens are retained based on transient high confidence, often ignoring that early predictions lack full context. This creates cascade effects where initial inconsistencies misguide the remaining generation. Existing revision strategies attempt to mitigate this by relying on static confidence scores, but these signals are inherently myopic; inconsistent tokens can appear confident to the model itself. We propose Context-Robust Remasking (CoRe), a training-free framework for inference-time revision. Rather than trusting static token probabilities, CoRe identifies context-brittle tokens by probing their sensitivity to targeted masked-context perturbations. We formalize revision as a robust optimization objective over context shifts and efficiently approximate this objective to prioritize unstable tokens for revision. On LLaDA-8B-Base, CoRe delivers consistent improvements across reasoning and code benchmarks, outperforming compute-matched baselines and improving MBPP by up to 9.2 percentage points.
☆ Federated Concept-Based Models: Interpretable models with distributed supervision
Concept-based models (CMs) enhance interpretability in deep learning by grounding predictions in human-understandable concepts. However, concept annotations are expensive to obtain and rarely available at scale within a single data source. Federated learning (FL) could alleviate this limitation by enabling cross-institutional training that leverages concept annotations distributed across multiple data owners. Yet, FL lacks interpretable modeling paradigms. Integrating CMs with FL is non-trivial: CMs assume a fixed concept space and a predefined model architecture, whereas real-world FL is heterogeneous and non-stationary, with institutions joining over time and bringing new supervision. In this work, we propose Federated Concept-based Models (F-CMs), a new methodology for deploying CMs in evolving FL settings. F-CMs aggregate concept-level information across institutions and efficiently adapt the model architecture in response to changes in the available concept supervision, while preserving institutional privacy. Empirically, F-CMs preserve the accuracy and intervention effectiveness of training settings with full concept supervision, while outperforming non-adaptive federated baselines. Notably, F-CMs enable interpretable inference on concepts not available to a given institution, a key novelty with respect to existing approaches.
♻ ☆ Robust inverse material design with physical guarantees using the Voigt-Reuss Net
We propose a spectrally normalized surrogate for forward and inverse mechanical homogenization with hard physical guarantees. Leveraging the Voigt-Reuss bounds, we factor their difference via a Cholesky-like operator and learn a dimensionless, symmetric positive semi-definite representation with eigenvalues in $[0,1]$; the inverse map returns symmetric positive-definite predictions that lie between the bounds in the Löwner sense. In 3D linear elasticity on an open dataset of stochastic biphasic microstructures, a fully connected Voigt-Reuss net trained on $>\!7.5\times 10^{5}$ FFT-based labels with 236 isotropy-invariant descriptors and three contrast parameters recovers the isotropic projection with near-perfect fidelity (isotropy-related entries: $R^2 \ge 0.998$), while anisotropy-revealing couplings are unidentifiable from $SO(3)$-invariant inputs. Tensor-level relative Frobenius errors have median $\approx 1.7\%$ and mean $\approx 3.4\%$ across splits. For 2D plane strain on thresholded trigonometric microstructures, coupling spectral normalization with a differentiable renderer and a CNN yields $R^2>0.99$ on all components, subpercent normalized losses, accurate tracking of percolation-induced eigenvalue jumps, and robust generalization to out-of-distribution images. Treating the parametric microstructure as design variables, batched first-order optimization with a single surrogate matches target tensors within a few percent and returns diverse near-optimal designs. Overall, the Voigt-Reuss net unifies accurate, physically admissible forward prediction with large-batch, constraint-consistent inverse design, and is generic to elliptic operators and coupled-physics settings.
♻ ☆ Combining Residual U-Net and Data Augmentation for Dense Temporal Segmentation of Spike Wave Discharges in Single-Channel EEG
Manual annotation of spike-wave discharges (SWDs), the electrographic hallmark of absence seizures, is labor-intensive for long-term electroencephalography (EEG) monitoring studies. While machine learning approaches show promise for automated detection, they often struggle with cross-subject generalization due to high inter-individual variability in seizure morphology and signal characteristics. In this study we compare the performance of 15 machine learning classifiers on our own manually annotated dataset of 961 hours of EEG recordings from C3H/HeJ mice, including 22,637 labeled SWDs and find that a 1D U-Net performs the best. We then improve its performance by employing residual connections and data augmentation strategies combining amplitude scaling, Gaussian noise injection, and signal inversion during training to enhance cross-subject generalization. We also compare our method, named AugUNet1D, to a recently published time- and frequency-based algorithmic approach called "Twin Peaks" and show that AugUNet1D performs better on our dataset. AugUNet1D, pretrained on our manually annotated data or untrained, is made public for other users.
♻ ☆ Comparing statistical and deep learning techniques for parameter estimation of continuous-time stochastic differentiable equations
Stochastic differential equations such as the Ornstein-Uhlenbeck process have long been used to model realworld probablistic events such as stock prices and temperature fluctuations. While statistical methods such as Maximum Likelihood Estimation (MLE), Kalman Filtering, Inverse Variable Method, and more have historically been used to estimate the parameters of stochastic differential equations, the recent explosion of deep learning technology suggests that models such as a Recurrent Neural Network (RNN) could produce more precise estimators. We present a series of experiments that compare the estimation accuracy and computational expensiveness of a statistical method (MLE) with a deep learning model (RNN) for the parameters of the Ornstein-Uhlenbeck process.
comment: 6 pages, 2 figures, 2 tables
♻ ☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
comment: 18 pages, 3 figures
♻ ☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
♻ ☆ OverThink: Slowdown Attacks on Reasoning LLMs
Most flagship language models generate explicit reasoning chains, enabling inference-time scaling. However, producing these reasoning chains increases token usage (i.e., reasoning tokens), which in turn increases latency and costs. Our OverThink attack increases overhead for applications that rely on reasoning language models (RLMs) and external context by forcing them to spend substantially more reasoning tokens while still producing contextually correct answers. An adversary mounts an attack by injecting decoy reasoning problems into public content that is consumed by RLM at inference time. Because our decoys (e.g., Markov decision processes, Sudokus, etc.) are benign, they evade safety filters. We evaluate OverThink on both closed-source and open-source reasoning models across the FreshQA, SQuAD, and MuSR datasets. We also explore the attack in multi-modal settings by creating images that cause excessive reasoning. We show that the resulting slowdown transfers across models. Finally, we explore both LLM-based and systems-level defenses, and discuss the societal, financial, and energy implications of the OverThink attacks.
♻ ☆ Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Guardrailed Uplift Targeting: A Causal Optimization Playbook for Marketing Strategy
This paper introduces a marketing decision framework that optimizes customer targeting by integrating heterogeneous treatment effect estimation with explicit business guardrails. The objective is to maximize revenue and retention while adhering to constraints such as budget, revenue protection, and customer experience. The framework first estimates Conditional Average Treatment Effects (CATE) using uplift learners, then solves a constrained allocation problem to decide whom to target and which offer to deploy. It supports decisions in retention messaging, event rewards, and spend-threshold assignment. Validated through offline simulations and online A/B tests, the approach consistently outperforms propensity and static baselines, offering a reusable playbook for causal targeting at scale.
♻ ☆ Domain Generalization Under Posterior Drift
Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. For the prevailing benchmark datasets in DG, there exists a single classifier that performs well across all domains. In this work, we study a fundamentally different regime where the domains satisfy a \emph{posterior drift} assumption, in which the optimal classifier might vary substantially with domain. We establish a decision-theoretic framework for DG under posterior drift, and investigate the practical implications of this framework through experiments on language and vision tasks.
♻ ☆ Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
♻ ☆ A Generalization Bound for a Family of Implicit Networks
Implicit networks are a class of neural networks whose outputs are defined by the fixed point of a parameterized operator. They have enjoyed success in many applications including natural language processing, image processing, and numerous other applications. While they have found abundant empirical success, theoretical work on its generalization is still under-explored. In this work, we consider a large family of implicit networks defined parameterized contractive fixed point operators. We show a generalization bound for this class based on a covering number argument for the Rademacher complexity of these architectures.
♻ ☆ Y-Shaped Generative Flows
Modern continuous-time generative models typically induce \emph{V-shaped} flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce \emph{Y-shaped generative flows}, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
♻ ☆ Verification and Identification in ECG biometric on large-scale
This work studies electrocardiogram (ECG) biometrics at large scale, directly addressing a critical gap in the literature: the scarcity of large-scale evaluations with operational metrics and protocols that enable meaningful standardization and comparison across studies. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, establishing a strong baseline before waveform modeling. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a clear performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53\% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-$K$ shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature and that large-scale testing is essential to obtain realistic, comparable metrics. The study provides an operationally grounded benchmark that helps standardize evaluation across protocols.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. v4 update: The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ It's all In the (Exponential) Family: An Equivalence between Maximum Likelihood Estimation and Control Variates for Sketching Algorithms AISTATS 2026
Maximum likelihood estimators (MLE) and control variate estimators (CVE) have been used in conjunction with known information across sketching algorithms and applications in machine learning. We prove that under certain conditions in an exponential family, an optimal CVE will achieve the same asymptotic variance as the MLE, giving an Expectation-Maximization (EM) algorithm for the MLE. Experiments show the EM algorithm is faster and numerically stable compared to other root finding algorithms for the MLE for the bivariate Normal distribution, and we expect this to hold across distributions satisfying these conditions. We show how the EM algorithm leads to reproducibility for algorithms using MLE / CVE, and demonstrate how the EM algorithm leads to finding the MLE when the CV weights are known.
comment: 36 pages, 15 figures, accepted to AISTATS 2026 (poster)
♻ ☆ Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias
With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
comment: 41 pages, 9 figures; Code repository at https://github.com/MariusKrumm/ManyBodyMEPS. Updated to be consistent with AIJ version
♻ ☆ Mugi: Value Level Parallelism For Efficient LLMs
Value level parallelism (VLP) has been proposed to improve the efficiency of large-batch, low-precision general matrix multiply (GEMM) between symmetric activations and weights. In transformer based large language models (LLMs), there exist more sophisticated operations beyond activation-weight GEMM. In this paper, we explore how VLP benefits LLMs. First, we generalize VLP for nonlinear approximations, outperforming existing nonlinear approximations in end-to-end LLM accuracy, performance, and efficiency. Our VLP approximation follows a value-centric approach, where important values are assigned with greater accuracy. Second, we optimize VLP for small-batch GEMMs with asymmetric inputs efficiently, which leverages timely LLM optimizations, including weight-only quantization, key-value (KV) cache quantization, and group query attention. Finally, we design a new VLP architecture, Mugi, to encapsulate the innovations above and support full LLM workloads, while providing better performance, efficiency and sustainability. Our experimental results show that Mugi can offer significant improvements on throughput and energy efficiency, up to $45\times$ and $668\times$ for nonlinear softmax operations, and $2.07\times$ and $3.11\times$ for LLMs, and also decrease operational carbon for LLM operation by $1.45\times$ and embodied carbon by $1.48\times$.
comment: 2026 International Conference on Architectural Support for Programming Languages and Operating Systems
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy NeurIPS 2025
Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary, including worst-case, levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, Rényi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., an accuracy increase from 52% to 70% in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
comment: NeurIPS 2025
♻ ☆ Minimax and Bayes Optimal Best-Arm Identification
This study investigates minimax and Bayes optimal strategies for fixed-budget best-arm identification. We consider an adaptive procedure consisting of a sampling phase followed by a recommendation phase, and we design an adaptive experiment within this framework to efficiently identify the best arm, defined as the one with the highest expected outcome. In our proposed strategy, the sampling phase consists of two stages. The first stage is a pilot phase, in which we allocate samples uniformly across arms to eliminate clearly suboptimal arms and to estimate outcome variances. Before entering the second stage, we solve a Gaussian minimax game, which yields a sampling ratio and a decision rule. In the second stage, samples are allocated according to this sampling ratio. After the sampling phase, the procedure enters the recommendation phase, where we select an arm using the decision rule. We prove that this single strategy is simultaneously asymptotically minimax and Bayes optimal for the simple regret, and we establish upper bounds that coincide exactly with our lower bounds, including the constant terms.
♻ ☆ Optimization, Generalization and Differential Privacy Bounds for Gradient Descent on Kolmogorov-Arnold Networks
Kolmogorov--Arnold Networks (KANs) have recently emerged as a structured alternative to standard MLPs, yet a principled theory for their training dynamics, generalization, and privacy properties remains limited. In this paper, we analyze gradient descent (GD) for training two-layer KANs and derive general bounds that characterize their training dynamics, generalization, and utility under differential privacy (DP). As a concrete instantiation, we specialize our analysis to logistic loss under an NTK-separable assumption, where we show that polylogarithmic network width suffices for GD to achieve an optimization rate of order $1/T$ and a generalization rate of order $1/n$, with $T$ denoting the number of GD iterations and $n$ the sample size. In the private setting, we characterize the noise required for $(ε,δ)$-DP and obtain a utility bound of order $\sqrt{d}/(nε)$ (with $d$ the input dimension), matching the classical lower bound for general convex Lipschitz problems. Our results imply that polylogarithmic width is not only sufficient but also necessary under differential privacy, revealing a qualitative gap between non-private (sufficiency only) and private (necessity also emerges) training regimes. Experiments further illustrate how these theoretical insights can guide practical choices, including network width selection and early stopping.
comment: 41 pages, 3 figures
♻ ☆ Backward Conformal Prediction
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tildeα}(X_{\rm test})) \ge 1 - \mathbb{E}[\tildeα]$ for any data-dependent miscoverage $\tildeα$, and (ii) a novel leave-one-out estimator $\hatα^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tildeα]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
comment: Code available at: https://github.com/GauthierE/backward-cp
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time
The function of biomolecules such as proteins depends on their ability to interconvert between a wide range of structures or "conformations." Researchers have endeavored for decades to develop computational methods to predict the distribution of conformations, which is far harder to determine experimentally than a static folded structure. We present ConforMix, an inference-time algorithm that enhances sampling of conformational distributions using a combination of classifier guidance, filtering, and free energy estimation. Our approach upgrades diffusion models -- whether trained for static structure prediction or conformational generation -- to enable more efficient discovery of conformational variability without requiring prior knowledge of major degrees of freedom. ConforMix is orthogonal to improvements in model pretraining and would benefit even a hypothetical model that perfectly reproduced the Boltzmann distribution. Remarkably, when applied to a diffusion model trained for static structure prediction, ConforMix captures structural changes including domain motion, cryptic pocket flexibility, and transporter cycling, while avoiding unphysical states. Case studies of biologically critical proteins demonstrate the scalability, accuracy, and utility of this method.
comment: Project page: https://github.com/drorlab/conformix
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than PH and spectral information on graphs alone. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025. Final version, clarified minor bug
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Quantifying Risks in Multi-turn Conversation with Large Language Models ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security.Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations.In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees.We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70\% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for solver operators for various functional problems, yet their stability, generalization and frequency behavior lack a principled explanation. We present a systematic effective field theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks, we derive explicit criticality conditions on the weight initialization ensemble that ensure small input perturbations maintain a uniform scale across depth, and we confirm experimentally that the theoretically predicted ratio of kernel perturbations matches the measurements. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyperparameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs. Finally, we translate the criticality theory into a practical criterion-matched initialization (calibration) procedure; on a standard PDEBench Burgers benchmark, the calibrated FNO exhibits markedly more stable optimization, faster convergence, and improved test error relative to a vanilla FNO.
comment: 39 pages, 12 figures
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Fast and Stable Riemannian Metrics on SPD Manifolds via Cholesky Product Geometry ICLR 2026
Recent advances in Symmetric Positive Definite (SPD) matrix learning show that Riemannian metrics are fundamental to effective SPD neural networks. Motivated by this, we revisit the geometry of the Cholesky factors and uncover a simple product structure that enables convenient metric design. Building on this insight, we propose two fast and stable SPD metrics, Power--Cholesky Metric (PCM) and Bures--Wasserstein--Cholesky Metric (BWCM), derived via Cholesky decomposition. Compared with existing SPD metrics, the proposed metrics provide closed-form operators, computational efficiency, and improved numerical stability. We further apply our metrics to construct Riemannian Multinomial Logistic Regression (MLR) classifiers and residual blocks for SPD neural networks. Experiments on SPD deep learning, numerical stability analyses, and tensor interpolation demonstrate the effectiveness, efficiency, and robustness of our metrics. The code is available at https://github.com/GitZH-Chen/PCM_BWCM.
comment: Accepted to ICLR 2026
♻ ☆ Towards Scaling Laws for Symbolic Regression NeurIPS 2025
Symbolic regression (SR) aims to discover the underlying mathematical expressions that explain observed data. This holds promise for both gaining scientific insight and for producing inherently interpretable and generalizable models for tabular data. In this work we focus on the basics of SR. Deep learning-based SR has recently become competitive with genetic programming approaches, but the role of scale has remained largely unexplored. Inspired by scaling laws in language modeling, we present the first systematic investigation of scaling in SR, using a scalable end-to-end transformer pipeline and carefully generated training data. Across five different model sizes and spanning three orders of magnitude in compute, we find that both validation loss and solved rate follow clear power-law trends with compute. We further identify compute-optimal hyperparameter scaling: optimal batch size and learning rate grow with model size, and a token-to-parameter ratio of $\approx$15 is optimal in our regime, with a slight upward trend as compute increases. These results demonstrate that SR performance is largely predictable from compute and offer important insights for training the next generation of SR models.
comment: Accepted at the NeurIPS 2025 Math-AI Workshop and the EurIPS 2025 AITD Workshop
♻ ☆ STAND: Self-Aware Precondition Induction for Interactive Task Learning
In interactive task learning (ITL), AI agents learn new capabilities from limited human instruction provided during task execution. STAND is a new method of data-efficient rule precondition induction specifically designed for these human-in-the-loop training scenarios. A key feature of STAND is its self-awareness of its own learning -- it can provide accurate metrics of training progress back to users. STAND beats popular methods like XGBoost, decision trees, random forests, and version spaces at small-data precondition induction tasks, and is highly accurate at estimating when its performance improves on holdout examples. In our evaluations, we find that STAND shows more monotonic improvement than other models with low rates of error recurrence. These features of STAND support a more consistent training experience, enabling human instructors to estimate when they are finished training and providing active-learning support by identifying trouble spots where more training is required.
♻ ☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem, and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations
We propose a probabilistic framework for developing computational models of biological neural systems. In this framework, physiological recordings are viewed as discrete-time partial observations of an underlying continuous-time stochastic dynamical system which implements computations through its state evolution. To model this dynamical system, we employ a system of coupled stochastic differential equations with differentiable drift and diffusion functions and use variational inference to infer its states and parameters. This formulation enables seamless integration of existing mathematical models in the literature, neural networks, or a hybrid of both to learn and compare different models. We demonstrate this in our framework by developing a generative model that combines coupled oscillators with neural networks to capture latent population dynamics from single-cell recordings. Evaluation across three neuroscience datasets spanning different species, brain regions, and behavioral tasks show that these hybrid models achieve competitive performance in predicting stimulus-evoked neural and behavioral responses compared to sophisticated black-box approaches while requiring an order of magnitude fewer parameters, providing uncertainty estimates, and offering a natural language for interpretation.
comment: 14 pages, 3 figures, 1 table
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
♻ ☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embodied assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of positional embeddings to enable LLMs built for sequential generation to simultaneously think, listen, and write outputs. We evaluate our approach on math, commonsense, and safety reasoning: it allows models to generate accurate thinking-augmented answers while reducing time to first non-thinking token from minutes to ${\le}$ 5s and the overall real-time delays by up to $12{\times}$.
comment: Preprint, work in progress
♻ ☆ Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
♻ ☆ Discrete Diffusion-Based Model-Level Explanation of Heterogeneous GNNs with Node Features WWW 2026
Many real-world datasets, such as citation networks, social networks, and molecular structures, are naturally represented as heterogeneous graphs, where nodes belong to different types and have additional features. For example, in a citation network, nodes representing "Paper" or "Author" may include attributes like keywords or affiliations. A critical machine learning task on these graphs is node classification, which is useful for applications such as fake news detection, corporate risk assessment, and molecular property prediction. Although Heterogeneous Graph Neural Networks (HGNNs) perform well in these contexts, their predictions remain opaque. Existing post-hoc explanation methods lack support for actual node features beyond one-hot encoding of node type and often fail to generate realistic, faithful explanations. To address these gaps, we propose DiGNNExplainer, a model-level explanation approach that synthesizes heterogeneous graphs with realistic node features via discrete denoising diffusion. In particular, we generate realistic discrete features (e.g., bag-of-words features) using diffusion models within a discrete space, whereas previous approaches are limited to continuous spaces. We evaluate our approach on multiple datasets and show that DiGNNExplainer produces explanations that are realistic and faithful to the model's decision-making, outperforming state-of-the-art methods.
comment: Accepted at WWW 2026. Camera-ready version
♻ ☆ Neural Concept Verifier: Scaling Prover-Verifier Games via Concept Encodings ICML 2025
While Prover-Verifier Games (PVGs) offer a promising path toward verifiability in nonlinear classification models, they have not yet been applied to complex inputs such as high-dimensional images. Conversely, expressive concept encodings effectively allow to translate such data into interpretable concepts but are often utilised in the context of low-capacity linear predictors. In this work, we push towards real-world verifiability by combining the strengths of both approaches. We introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for formal verifiability with concept encodings to handle complex, high-dimensional inputs in an interpretable way. NCV achieves this by utilizing recent minimally supervised concept discovery models to extract structured concept encodings from raw inputs. A prover then selects a subset of these encodings, which a verifier, implemented as a nonlinear predictor, uses exclusively for decision-making. Our evaluations show that NCV outperforms classic concept-based models and pixel-based PVG classifier baselines on high-dimensional, logically complex datasets and helps mitigate shortcut behavior. Overall, we demonstrate NCV as a promising step toward concept-level, verifiable AI.
comment: 24 pages, 5 figures, 11 tables, revised references. An earlier version of this work was presented at the ICML 2025 Workshop on Actionable Interpretability
♻ ☆ From Trace to Line: LLM Agent for Real-World OSS Vulnerability Localization
Large language models show promise for vulnerability discovery, yet prevailing methods inspect code in isolation, struggle with long contexts, and focus on coarse function- or file-level detections that offer limited guidance to engineers who need precise line-level localization for targeted patches. We introduce T2L, an executable framework for project-level, line-level vulnerability localization that progressively narrows scope from repository modules to exact vulnerable lines via AST-based chunking and evidence-guided refinement. We provide a baseline agent with an Agentic Trace Analyzer (ATA) that fuses runtime evidence such as crash points and stack traces to translate failure symptoms into actionable diagnoses. To enable rigorous evaluation, we introduce T2L-ARVO, an expert-verified 50-case benchmark spanning five crash families in real-world projects. On T2L-ARVO, our baseline achieves up to 58.0% detection and 54.8% line-level localization rate. Together, T2L framework advance LLM-based vulnerability detection toward deployable, precision diagnostics in open-source software workflows.
♻ ☆ Unified Unbiased Variance Estimation for Maximum Mean Discrepancy: Robust Finite-Sample Performance with Imbalanced Data and Exact Acceleration under Null and Alternative Hypotheses
The maximum mean discrepancy (MMD) is a kernel-based nonparametric statistic for two-sample testing, whose inferential accuracy depends critically on variance characterization. Existing work provides various finite-sample estimators of the MMD variance, often differing under the null and alternative hypotheses and across balanced or imbalanced sampling schemes. In this paper, we study the variance of the MMD statistic through its U-statistic representation and Hoeffding decomposition, and establish a unified finite-sample characterization covering different hypotheses and sample configurations. Building on this analysis, we propose an exact acceleration method for the univariate case under the Laplacian kernel, which reduces the overall computational complexity from $\mathcal O(n^2)$ to $\mathcal O(n \log n)$.
♻ ☆ Flatness is Necessary, Neural Collapse is Not: Rethinking Generalization via Grokking NeurIPS 2025
Neural collapse, i.e., the emergence of highly symmetric, class-wise clustered representations, is frequently observed in deep networks and is often assumed to reflect or enable generalization. In parallel, flatness of the loss landscape has been theoretically and empirically linked to generalization. Yet, the causal role of either phenomenon remains unclear: Are they prerequisites for generalization, or merely by-products of training dynamics? We disentangle these questions using grokking, a training regime in which memorization precedes generalization, allowing us to temporally separate generalization from training dynamics and we find that while both neural collapse and relative flatness emerge near the onset of generalization, only flatness consistently predicts it. Models encouraged to collapse or prevented from collapsing generalize equally well, whereas models regularized away from flat solutions exhibit delayed generalization, resembling grokking, even in architectures and datasets where it does not typically occur. Furthermore, we show theoretically that neural collapse leads to relative flatness under classical assumptions, explaining their empirical co-occurrence. Our results support the view that relative flatness is a potentially necessary and more fundamental property for generalization, and demonstrate how grokking can serve as a powerful probe for isolating its geometric underpinnings.
comment: NeurIPS 2025, Camera ready version
♻ ☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations extracted from tabular foundation models (TabPFN, TabICL and TabSTAR) alongside classical feature engineering (TableVectorizer and a sphere model) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple feature engineering methods achieve comparable or superior performance while requiring significantly less computational resources than tabular foundation models.
♻ ☆ Accelerating Conjugate Gradient Solvers for Homogenization Problems with Unitary Neural Operators
Rapid and reliable solvers for parametric partial differential equations (PDEs) are needed in many scientific and engineering disciplines. For example, there is a growing demand for composites and architected materials with heterogeneous microstructures. Designing such materials and predicting their behavior in practical applications requires solving homogenization problems for a wide range of material parameters and microstructures. While classical numerical solvers offer reliable and accurate solutions supported by a solid theoretical foundation, their high computational costs and slow convergence remain limiting factors. As a result, scientific machine learning is emerging as a promising alternative. However, such approaches often lack guaranteed accuracy and physical consistency. This raises the question of whether it is possible to develop hybrid approaches that combine the advantages of both data-driven methods and classical solvers. To address this, we introduce UNO-CG, a hybrid solver that accelerates conjugate gradient (CG) solvers using specially designed machine-learned preconditioners, while ensuring convergence by construction. As a preconditioner, we propose Unitary Neural Operators as a modification of Fourier Neural Operators. Our method can be interpreted as a data-driven discovery of Green's functions, which are then used to accelerate iterative solvers. We evaluate UNO-CG on various homogenization problems involving heterogeneous microstructures and millions of degrees of freedom. Our results demonstrate that UNO-CG enables a substantial reduction in the number of iterations and is competitive with handcrafted preconditioners for homogenization problems that involve expert knowledge. Moreover, UNO-CG maintains strong performance across a variety of boundary conditions, where many specialized solvers are not applicable, highlighting its versatility and robustness.
comment: Accepted for publication in the International Journal for Numerical Methods in Engineering (IJNME)
♻ ☆ Scalable physical source-to-field inference with hypernetworks
We present a generative model that amortises computation for the field and potential around e.g.~gravitational or electromagnetic sources. Exact numerical calculation has either computational complexity $\mathcal{O}(M\times{}N)$ in the number of sources $M$ and evaluation points $N$, or requires a fixed evaluation grid to exploit fast Fourier transforms. Using an architecture where a hypernetwork produces an implicit representation of the field or potential around a source collection, our model instead performs as $\mathcal{O}(M + N)$, achieves relative error of $\sim\!4\%-6\%$, and allows evaluation at arbitrary locations for arbitrary numbers of sources, greatly increasing the speed of e.g.~physics simulations. We compare with existing models and develop two-dimensional examples, including cases where sources overlap or have more complex geometries, to demonstrate its application.
comment: Version accepted at TMLR
♻ ☆ DP-SPRT: Differentially Private Sequential Probability Ratio Tests AISTATS 2026
We revisit Wald's celebrated Sequential Probability Ratio Test for sequential tests of two simple hypotheses, under privacy constraints. We propose DP-SPRT, a wrapper that can be calibrated to achieve desired error probabilities and privacy constraints, addressing a significant gap in previous work. DP-SPRT relies on a private mechanism that processes a sequence of queries and stops after privately determining when the query results fall outside a predefined interval. This OutsideInterval mechanism improves upon naive composition of existing techniques like AboveThreshold, achieving a factor-of-2 privacy improvement and thus potentially benefiting other continual monitoring procedures. We prove generic upper bounds on the error and sample complexity of DP-SPRT that can accommodate various noise distributions based on the practitioner's privacy needs. We exemplify them in two settings: Laplace noise (pure Differential Privacy) and Gaussian noise (Rényi differential privacy). In the former setting, by providing a lower bound on the sample complexity of any $\varepsilon$-DP test with prescribed type I and type II errors, we show that DP-SPRT is near optimal when both errors are small and the two hypotheses are close. Moreover, we conduct an experimental study revealing its good practical performance.
comment: Accepted for spotlight presentation at AISTATS 2026. 36 pages, 5 figures, 1 table
♻ ☆ metabeta -- A fast neural model for Bayesian mixed-effects regression
Hierarchical data with multiple observations per group is ubiquitous in empirical sciences and is often analyzed using mixed-effects regression. In such models, Bayesian inference gives an estimate of uncertainty but is analytically intractable and requires costly approximation using Markov Chain Monte Carlo (MCMC) methods. Neural posterior estimation shifts the bulk of computation from inference time to pre-training time, amortizing over simulated datasets with known ground truth targets. We propose metabeta, a neural network model for Bayesian mixed-effects regression. Using simulated and real data, we show that it reaches stable and comparable performance to MCMC-based parameter estimation at a fraction of the usually required time, enabling new use cases for Bayesian mixed-effects modeling.
comment: 19 pages, 9 main text, 8 figures
♻ ☆ Dictionary Learning under Symmetries via Group Representations
The dictionary learning problem can be viewed as a data-driven process to learn a suitable transformation so that data is sparsely represented directly from example data. In this paper, we examine the problem of learning a dictionary that is invariant under a pre-specified group of transformations. Natural settings include Cryo-EM, multi-object tracking, synchronization, pose estimation, etc. We specifically study this problem under the lens of mathematical representation theory. Leveraging the power of non-abelian Fourier analysis for functions over compact groups, we prescribe an algorithmic recipe for learning dictionaries that obey such invariances. We relate the dictionary learning problem in the physical domain, which is naturally modelled as being infinite dimensional, with the associated computational problem, which is necessarily finite dimensional. We establish that the dictionary learning problem can be effectively understood as an optimization instance over certain matrix orbitopes having a particular block-diagonal structure governed by the irreducible representations of the group of symmetries. This perspective enables us to introduce a band-limiting procedure which obtains dimensionality reduction in applications. We provide guarantees for our computational ansatz to provide a desirable dictionary learning outcome. We apply our paradigm to investigate the dictionary learning problem for the groups SO(2) and SO(3). While the SO(2)-orbitope admits an exact spectrahedral description, substantially less is understood about the SO(3)-orbitope. We describe a tractable spectrahedral outer approximation of the SO(3)-orbitope, and contribute an alternating minimization paradigm to perform optimization in this setting. We provide numerical experiments to highlight the efficacy of our approach in learning SO(3)-invariant dictionaries, both on synthetic and on real world data.
comment: 33 pages, 3 figures
♻ ☆ Edit-Based Flow Matching for Temporal Point Processes
Temporal point processes (TPPs) are a fundamental tool for modeling event sequences in continuous time, but most existing approaches rely on autoregressive parameterizations that are limited by their sequential sampling. Recent non-autoregressive, diffusion-style models mitigate these issues by jointly interpolating between noise and data through event insertions and deletions in a discrete Markov chain. In this work, we generalize this perspective and introduce an Edit Flow process for TPPs that transports noise to data via insert, delete, and substitute edit operations. By learning the instantaneous edit rates within a continuous-time Markov chain framework, we attain a flexible and efficient model that effectively reduces the total number of necessary edit operations during generation. Empirical results demonstrate the generative flexibility of our unconditionally trained model in a wide range of unconditional and conditional generation tasks on benchmark TPPs.
♻ ☆ Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
♻ ☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
♻ ☆ medR: Reward Engineering for Clinical Offline Reinforcement Learning via Tri-Drive Potential Functions
Reinforcement Learning (RL) offers a powerful framework for optimizing dynamic treatment regimes (DTRs). However, clinical RL is fundamentally bottlenecked by reward engineering: the challenge of defining signals that safely and effectively guide policy learning in complex, sparse offline environments. Existing approaches often rely on manual heuristics that fail to generalize across diverse pathologies. To address this, we propose an automated pipeline leveraging Large Language Models (LLMs) for offline reward design and verification. We formulate the reward function using potential functions consisted of three core components: survival, confidence, and competence. We further introduce quantitative metrics to rigorously evaluate and select the optimal reward structure prior to deployment. By integrating LLM-driven domain knowledge, our framework automates the design of reward functions for specific diseases while significantly enhancing the performance of the resulting policies.
♻ ☆ DAISI: Data Assimilation with Inverse Sampling using Stochastic Interpolants
Data assimilation (DA) is a cornerstone of scientific and engineering applications, combining model forecasts with sparse and noisy observations to estimate latent system states. Classical high-dimensional DA methods, such as the ensemble Kalman filter, rely on Gaussian approximations that are violated for complex dynamics or observation operators. To address this limitation, we introduce DAISI, a scalable filtering algorithm built on flow-based generative models that enables flexible probabilistic inference using data-driven priors. The core idea is to use a stationary, pre-trained generative prior that first incorporates forecast information through a novel inverse-sampling step, before assimilating observations via guidance-based conditional sampling. This allows us to leverage any forecasting model as part of the DA pipeline without having to retrain or fine-tune the generative prior at each assimilation step. Experiments on challenging nonlinear systems show that DAISI achieves accurate filtering results in regimes with sparse, noisy, and nonlinear observations where traditional methods struggle.
comment: 44 pages, 26 figures
♻ ☆ Neural network-driven domain decomposition for efficient solutions to the Helmholtz equation
Accurately simulating wave propagation is crucial in fields such as acoustics, electromagnetism, and seismic analysis. Traditional numerical methods, like finite difference and finite element approaches, are widely used to solve governing partial differential equations (PDEs) such as the Helmholtz equation. However, these methods face significant computational challenges when applied to high-frequency wave problems in complex two-dimensional domains. This work investigates Finite Basis Physics-Informed Neural Networks (FBPINNs) and their multilevel extensions as a promising alternative. These methods leverage domain decomposition, partitioning the computational domain into overlapping sub-domains, each governed by a local neural network. We assess their accuracy and computational efficiency in solving the Helmholtz equation for the homogeneous case, demonstrating their potential to mitigate the limitations of traditional approaches.
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Bayesian Transfer Operators in Reproducing Kernel Hilbert Spaces
The Koopman operator, as a linear representation of a nonlinear dynamical system, has been attracting attention in many fields of science. Recently, Koopman operator theory has been combined with another concept that is popular in data science: reproducing kernel Hilbert spaces. We follow this thread into Gaussian process methods, and illustrate how these methods can alleviate two pervasive problems with kernel-based Koopman algorithms. The first being sparsity: most kernel methods do not scale well and require an approximation to become practical. We show that not only can the computational demands be reduced, but also demonstrate improved resilience against sensor noise. The second problem involves hyperparameter optimization and dictionary learning to adapt the model to the dynamical system. In summary, the main contribution of this work is the unification of Gaussian process regression and dynamic mode decomposition.
♻ ☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing the multi-modal action distributions. However, existing methods typically treat observations only as high-level conditions to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, the sampling is forced to begin from random noise, weakening the coupling between perception and control and often yielding suboptimal performance. We propose BridgePolicy, a generative visuomotor policy that directly integrates observations into the stochastic dynamics via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich and informative prior rather than random noise, substantially improving precision and reliability in control. A key difficulty is that diffusion bridge normally connects distributions of matched dimensionality, while robotic observations are heterogeneous and not naturally aligned with actions. To overcome this, we introduce a multi-modal fusion module and a semantic aligner to unify the visual and state inputs and align the observations with action representations, making diffusion bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and 5 real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
♻ ☆ Sparse Attention as Compact Kernel Regression
Recent work has revealed a link between self-attention mechanisms in transformers and test-time kernel regression via the Nadaraya-Watson estimator, with standard softmax attention corresponding to a Gaussian kernel. However, a kernel-theoretic understanding of sparse attention mechanisms is currently missing. In this paper, we establish a formal correspondence between sparse attention and compact (bounded support) kernels. We show that normalized ReLU and sparsemax attention arise from Epanechnikov kernel regression under fixed and adaptive normalizations, respectively. More generally, we demonstrate that widely used kernels in nonparametric density estimation -- including Epanechnikov, biweight, and triweight -- correspond to $α$-entmax attention with $α= 1 + \frac{1}{n}$ for $n \in \mathbb{N}$, while the softmax/Gaussian relationship emerges in the limit $n \to \infty$. This unified perspective explains how sparsity naturally emerges from kernel design and provides principled alternatives to heuristic top-$k$ attention and other associative memory mechanisms. Experiments with a kernel-regression-based variant of transformers -- Memory Mosaics -- show that kernel-based sparse attention achieves competitive performance on language modeling, in-context learning, and length generalization tasks, offering a principled framework for designing attention mechanisms.
comment: 16 pages, 5 figures
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 39 pages
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: V2: We added CIFAR experiments. V3: Old FID scores & CIFAR images of the Kac model corresponded to schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error and updated the CIFAR results. V5: We prove that the mean-reverting Kac process is Lipschitz, give a rigorous proof of decomp. Lemma 6.1, and a nearest neighbor analysis. V6: Polishing
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory IEEE
Although deep learning has demonstrated remarkable capability in learning from unstructured data, modern tree-based ensemble models remain superior in extracting relevant information and learning from structured datasets. While several efforts have been made to accelerate tree-based models, the inherent characteristics of the models pose significant challenges for conventional accelerators. Recent research leveraging content-addressable memory (CAM) offers a promising solution for accelerating tree-based models, yet existing designs suffer from excessive memory consumption and low utilization. This work addresses these challenges by introducing RETENTION, an end-to-end framework that significantly reduces CAM capacity requirement for tree-based model inference. We propose an iterative pruning algorithm with a novel pruning criterion tailored for bagging-based models (e.g., Random Forest), which minimizes model complexity while ensuring controlled accuracy degradation. Additionally, we present a tree mapping scheme that incorporates two innovative data placement strategies to alleviate the memory redundancy caused by the widespread use of don't care states in CAM. Experimental results show that implementing the tree mapping scheme alone reduces CAM capacity requirement by $1.46\times$ to $21.30 \times$, while the full RETENTION framework achieves $4.35\times$ to $207.12\times$ reduction with less than 3\% accuracy loss. These results demonstrate that RETENTION is highly effective in minimizing CAM resource demand, providing a resource-efficient direction for tree-based model acceleration.
comment: Under review by IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems
♻ ☆ Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints
Pure exploration in bandits formalises multiple real-world problems, such as tuning hyper-parameters or conducting user studies to test a set of items, where different safety, resource, and fairness constraints on the decision space naturally appear. We study these problems as pure exploration in multi-armed bandits with unknown linear constraints, where the aim is to identify an $r$-optimal and feasible policy as fast as possible with a given level of confidence. First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints. Second, we leverage properties of convex optimisation in the Lagrangian lower bound to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX. Then, we propose a constraint-adaptive stopping rule, and while tracking the lower bound, use optimistic estimate of the feasible set at each step. We show that LAGEX achieves asymptotically optimal sample complexity upper bound, while LATS shows asymptotic optimality up to novel constraint-dependent constants. Finally, we conduct numerical experiments with different reward distributions and constraints that validate efficient performance of LATS and LAGEX.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 26 pages
♻ ☆ Interpolation of GEDI Biomass Estimates with Calibrated Uncertainty Quantification
Reliable wall-to-wall biomass density estimation from NASA's GEDI mission requires interpolating sparse LIDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are widely used, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We show that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning architecture that explicitly conditions predictions on local observation sets and exploits geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing estimates to be more uncertain in complex landscapes and less in homogeneous areas. We validate this approach across five distinct biomes ranging from tropical Amazonian forests to boreal, temperate, and alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
♻ ☆ Convergence Guarantees for Federated SARSA with Local Training and Heterogeneous Agents
We present a novel theoretical analysis of Federated SARSA (FedSARSA) with linear function approximation and local training. We establish convergence guarantees for FedSARSA in the presence of heterogeneity, both in local transitions and rewards, providing the first sample and communication complexity bounds in this setting. At the core of our analysis is a new, exact multi-step error expansion for single-agent SARSA, which is of independent interest. Our analysis precisely quantifies the impact of heterogeneity, demonstrating the convergence of FedSARSA with multiple local updates. Crucially, we show that FedSARSA achieves linear speed-up with respect to the number of agents, up to higher-order terms due to Markovian sampling. Numerical experiments support our theoretical findings.
comment: Deep FedSARSA !
♻ ☆ Tabula RASA: Exposing and Breaking the Relational Bottleneck in Transformers
Transformers achieve remarkable performance across many domains, yet struggle with tasks requiring multi-hop relational reasoning over structured data. We analyze this limitation through circuit complexity: standard transformers are $\mathsf{TC}^0$-complete and cannot solve graph connectivity in constant depth, implying $Ω(k)$ layers are necessary for $k$-hop reasoning regardless of model size or training data. We introduce RASA (Relation-Aware Sparse Attention), a minimal architectural modification that provides structural inductive bias for relational reasoning. RASA adds: (1) sparse adjacency masking that restricts attention to graph-connected positions, reducing the attention pattern search space from $O(2^{n^2})$ to $O(2^m)$ for graphs with $m$ edges; and (2) learnable edge-type biases that encode relation-specific attention preferences. While RASA does not circumvent asymptotic depth requirements, the exponential reduction in attention pattern space provides stronger inductive bias for learning graph-structured functions. Empirically, on the MetaQA knowledge graph QA benchmark, RASA achieves 97.7% accuracy on 3-hop questions, outperforming EmbedKGQA (94.8%) by 2.9 percentage points. Notably, RASA's advantage grows with reasoning depth, validating that structural inductive bias is most beneficial for complex multi-hop queries. Our results demonstrate that minimal architectural modifications, grounded in complexity-theoretic analysis, can substantially improve multi-hop reasoning.
comment: 16 pages, 4 figures, 8 tables
♻ ☆ Sparse-to-Sparse Training of Diffusion Models
Diffusion models (DMs) are a powerful type of generative models that have achieved state-of-the-art results in various image synthesis tasks and have shown potential in other domains, such as natural language processing and temporal data modeling. Despite their stable training dynamics and ability to produce diverse high-quality samples, DMs are notorious for requiring significant computational resources, both in the training and inference stages. Previous work has focused mostly on increasing the efficiency of model inference. This paper introduces, for the first time, the paradigm of sparse-to-sparse training to DMs, with the aim of improving both training and inference efficiency. We focus on unconditional generation and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six datasets using three different methods (Static-DM, RigL-DM, and MagRan-DM) to study the effect of sparsity in model performance. Our experiments show that sparse DMs are able to match and often outperform their Dense counterparts, while substantially reducing the number of trainable parameters and FLOPs. We also identify safe and effective values to perform sparse-to-sparse training of DMs.
comment: Accepted to TMLR
♻ ☆ Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness
This work introduces a hybrid non-Euclidean optimization method which generalizes gradient norm clipping by combining steepest descent and conditional gradient approaches. The method achieves the best of both worlds by establishing a descent property under a generalized notion of ($L_0$,$L_1$)-smoothness. Weight decay is incorporated in a principled manner by identifying a connection to the Frank-Wolfe short step. In the stochastic case, we show an order optimal $O(n^{-1/4})$ convergence rate by leveraging a momentum based gradient estimator. We discuss how to instantiate the algorithms for deep learning, which we dub Clipped Scion, and demonstrate their properties on image classification and language modeling. The code is available at https://github.com/LIONS-EPFL/ClippedScion.
♻ ☆ EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A
We present EvasionBench, a comprehensive benchmark for detecting evasive responses in corporate earnings call question-and-answer sessions. Drawing from 22.7 million Q&A pairs extracted from S&P Capital IQ transcripts, we construct a rigorously filtered dataset and introduce a three-level evasion taxonomy: direct, intermediate, and fully evasive. Our annotation pipeline employs a Multi-Model Consensus (MMC) framework, combining dual frontier LLM annotation with a three-judge majority voting mechanism for ambiguous cases, achieving a Cohen's Kappa of 0.835 on human inter-annotator agreement. We release: (1) a balanced 84K training set, (2) a 1K gold-standard evaluation set with expert human labels, and (3) [Eva-4B], a 4-billion parameter classifier fine-tuned from Qwen3-4B that achieves 84.9% Macro-F1, outperforming Claude 4.5, GPT-5.2, and Gemini 3 Flash. Our ablation studies demonstrate the effectiveness of multi-model consensus labeling over single-model annotation. EvasionBench fills a critical gap in financial NLP by providing the first large-scale benchmark specifically targeting managerial communication evasion.
comment: Major revision. Title and abstract updated to better reflect the refined results. Shijian Ma and Yan Lin contributed equally. Corresponding author: Yan Lin; Project page: https://iiiiqiiii.github.io/EvasionBench/
♻ ☆ From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
We study the problem of training neural stochastic differential equations, or diffusion models, to sample from a Boltzmann distribution without access to target samples. Existing methods for training such models enforce time-reversal of the generative and noising processes, using either differentiable simulation or off-policy reinforcement learning (RL). We prove equivalences between families of objectives in the limit of infinitesimal discretization steps, linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential equations and path space measures). We further show that an appropriate choice of coarse time discretization during training allows greatly improved sample efficiency and the use of time-local objectives, achieving competitive performance on standard sampling benchmarks with reduced computational cost.
comment: TMLR final version; code: https://github.com/GFNOrg/gfn-diffusion/tree/stagger
♻ ☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
♻ ☆ Flow Matching for Tabular Data Synthesis
Synthetic data generation is an important tool for privacy-preserving data sharing. While diffusion models have set recent benchmarks, flow matching (FM) offers a promising alternative. This paper presents different ways to implement flow matching for tabular data synthesis. We provide a comprehensive empirical study that compares flow matching (FM and variational FM) with a state-of-the-art diffusion method (TabDDPM and TabSyn) in tabular data synthesis. We evaluate both the standard Optimal Transport (OT) and the Variance Preserving (VP) probability paths, and also compare deterministic and stochastic samplers -- something possible when learning to generate using \textit{variational} flow matching -- characterising the empirical relationship between data utility and privacy risk. Our key findings reveal that flow matching, particularly TabbyFlow, outperforms diffusion baselines. Flow matching methods also achieves better performance with remarkably low function evaluations ($\leq$ 100 steps), offering a substantial computational advantage. The choice of probability path is also crucial, as using the OT path demonstrates superior performance, while VP has potential for producing synthetic data with lower disclosure risk. Lastly, our results show that making flows stochastic not only preserves marginal distributions but, in some instances, enables the generation of high utility synthetic data with reduced disclosure risk.
comment: 16 pages main, 19 pages appendix, 5 figures. Fixed results on Indonesia dataset, but not affect overall results. Added standard tabular generative model benchmark
♻ ☆ Online Budget Allocation with Censored Semi-Bandit Feedback
We study a stochastic budget-allocation problem over $K$ tasks. At each round $t$, the learner chooses an allocation $X_t \in Δ_K$. Task $k$ succeeds with probability $F_k(X_{t,k})$, where $F_1,\dots,F_K$ are nondecreasing budget-to-success curves, and upon success yields a random reward with unknown mean $μ_k$. The learner observes which tasks succeed, and observes a task's reward only upon success (censored semi-bandit feedback). This model captures, for instance, splitting payments across crowdsourcing workers or distributing bids across simultaneous auctions, and subsumes stochastic multi-armed bandits and semi-bandits. We design an optimism-based algorithm that operates under censored semi-bandit feedback. Our main result shows that in diminishing-returns regimes, the regret of this algorithm scales polylogarithmically with the horizon $T$ without any ad hoc tuning. For general nondecreasing curves, we prove that the same algorithm (with the same tuning) achieves a worst-case regret upper bound of $\tilde O(K\sqrt{T})$. Finally, we establish a matching worst-case regret lower bound of $Ω(K\sqrt{T})$ that holds even for full-feedback algorithms, highlighting the intrinsic hardness of our problem outside diminishing returns.
♻ ☆ Bandwidth-constrained Variational Message Encoding for Cooperative Multi-agent Reinforcement Learning AAMAS 2026
Graph-based multi-agent reinforcement learning (MARL) enables coordinated behavior under partial observability by modeling agents as nodes and communication links as edges. While recent methods excel at learning sparse coordination graphs-determining who communicates with whom-they do not address what information should be transmitted under hard bandwidth constraints. We study this bandwidth-limited regime and show that naive dimensionality reduction consistently degrades coordination performance. Hard bandwidth constraints force selective encoding, but deterministic projections lack mechanisms to control how compression occurs. We introduce Bandwidth-constrained Variational Message Encoding (BVME), a lightweight module that treats messages as samples from learned Gaussian posteriors regularized via KL divergence to an uninformative prior. BVME's variational framework provides principled, tunable control over compression strength through interpretable hyperparameters, directly constraining the representations used for decision-making. Across SMACv1, SMACv2, and MPE benchmarks, BVME achieves comparable or superior performance while using 67--83% fewer message dimensions, with gains most pronounced on sparse graphs where message quality critically impacts coordination. Ablations reveal U-shaped sensitivity to bandwidth, with BVME excelling at extreme ratios while adding minimal overhead.
comment: Accepted by AAMAS 2026 (oral) with appendix
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ Sliced ReLU attention: Quasi-linear contextual expressivity via sorting
We introduce sliced ReLU attention, a new attention mechanism that departs structurally from both softmax and its approximation alternatives. Instead of applying a nonlinearity to pairwise dot products, we operate on one-dimensional projections of key--query differences and leverage sorting to obtain quasi-linear complexity. This construction yields a differentiable, non-symmetric kernel that can be computed in O(n log(n)) through a sorting procedure, making it suitable for very long contexts. Beyond computational benefits, the model retains strong theoretical expressive power: we establish two in-context expressivity results, previously known for softmax attention, showing that sliced ReLU attention preserves the ability to perform nontrivial sequence-to-sequence disentangling tasks and satisfies a contextual universal approximation property. Finally, we illustrate the potential practical interest of this kernel in small to medium-scale experiments.
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Privacy Amplification by Missing Data
Privacy preservation is a fundamental requirement in many high-stakes domains such as medicine and finance, where sensitive personal data must be analyzed without compromising individual confidentiality. At the same time, these applications often involve datasets with missing values due to non-response, data corruption, or deliberate anonymization. Missing data is traditionally viewed as a limitation because it reduces the information available to analysts and can degrade model performance. In this work, we take an alternative perspective and study missing data from a privacy preservation standpoint. Intuitively, when features are missing, less information is revealed about individuals, suggesting that missingness could inherently enhance privacy. We formalize this intuition by analyzing missing data as a privacy amplification mechanism within the framework of differential privacy. We show, for the first time, that incomplete data can yield privacy amplification for differentially private algorithms.
♻ ☆ Norm$\times$Direction: Restoring the Missing Query Norm in Vision Linear Attention
Linear attention mitigates the quadratic complexity of softmax attention but suffers from a critical loss of expressiveness. We identify two primary causes: (1) The normalization operation cancels the query norm, which breaks the correlation between a query's norm and the spikiness (entropy) of the attention distribution as in softmax attention. (2) Standard techniques for enforcing non-negativity cause destructive information loss by nullifying valid inner-product interactions. To address these challenges, we introduce NaLaFormer, a novel linear attention mechanism built upon a norm$\times$direction (ND) decomposition of the query and key vectors. We leverage each component to solve a distinct problem: The query norm is injected into our kernel to create a query-norm-aware map that restores the attention distribution's spikiness. The direction vectors are processed by a geometric, cosine-based similarity metric that guarantees non-negativity while preserving the rich, fine-grained information of the inner product. We validate NaLaFormer through a comprehensive multi-modal evaluation, where it sets new state-of-the-art benchmarks for linear attention. Our model achieves up to a 7.5% accuracy gain on ImageNet-1K and a 4.7% mIoU improvement on ADE20K over comparable baselines. It demonstrates profound efficiency, reducing peak memory by a transformative 92.3% in token-intensive super-resolution tasks (70K+ tokens). NaLaFormer's versatility is further confirmed as it surpasses strong baselines like Mamba on common-sense reasoning and sets a new state-of-the-art on the Long Range Arena (LRA) benchmark. Source code can be found in the supplementary materials.
♻ ☆ Conditional Flow Matching for Visually-Guided Acoustic Highlighting
Visually-guided acoustic highlighting seeks to rebalance audio in alignment with the accompanying video, creating a coherent audio-visual experience. While visual saliency and enhancement have been widely studied, acoustic highlighting remains underexplored, often leading to misalignment between visual and auditory focus. Existing approaches use discriminative models, which struggle with the inherent ambiguity in audio remixing, where no natural one-to-one mapping exists between poorly-balanced and well-balanced audio mixes. To address this limitation, we reframe this task as a generative problem and introduce a Conditional Flow Matching (CFM) framework. A key challenge in iterative flow-based generation is that early prediction errors -- in selecting the correct source to enhance -- compound over steps and push trajectories off-manifold. To address this, we introduce a rollout loss that penalizes drift at the final step, encouraging self-correcting trajectories and stabilizing long-range flow integration. We further propose a conditioning module that fuses audio and visual cues before vector field regression, enabling explicit cross-modal source selection. Extensive quantitative and qualitative evaluations show that our method consistently surpasses the previous state-of-the-art discriminative approach, establishing that visually-guided audio remixing is best addressed through generative modeling.
♻ ☆ Scalable Deep Basis Kernel Gaussian Processes
Learning expressive kernels while retaining tractable inference remains a central challenge in scaling Gaussian processes (GPs) to large and complex datasets. We propose a scalable GP regressor based on deep basis kernels (DBKs). Our DBK is constructed from a small set of neural-network-parameterized basis functions with an explicit low-rank structure. This formulation immediately enables linear-complexity inference with respect to the number of samples, possibly without inducing points. DBKs provide a unifying perspective that recovers sparse deep kernel learning and Gaussian Bayesian last-layer methods as special cases. We further identify that naively maximizing the marginal likelihood can lead to oversimplified uncertainty and rank-deficient solutions. To address this, we introduce a mini-batch stochastic objective that directly targets the predictive distribution with decoupled regularization. Empirically, DBKs show advantages in predictive accuracy, uncertainty quantification, and computational efficiency across a range of large-scale regression benchmarks.
comment: Previous title: Scalable Gaussian Processes with Low-Rank Deep Kernel Decomposition
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products. The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area.
♻ ☆ LLM-ABBA: Understanding time series via symbolic approximation
The success of large language models (LLMs) for time series has been demonstrated in previous work. Utilizing a symbolic time series representation, one can efficiently bridge the gap between LLMs and time series. However, the remaining challenge is to exploit the semantic information hidden in time series by using symbols or existing tokens of LLMs, while aligning the embedding space of LLMs according to the hidden information of time series. The symbolic time series approximation (STSA) method called adaptive Brownian bridge-based symbolic aggregation (ABBA) shows outstanding efficacy in preserving salient time series features by modeling time series patterns in terms of amplitude and period while using existing tokens of LLMs. In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA into large language models for various downstream time series tasks. By symbolizing time series, LLM-ABBA compares favorably to the recent state-of-the-art (SOTA) in UCR and three medical time series classification tasks. Meanwhile, a fixed-polygonal chain trick in ABBA is introduced to avoid obvious drifting during forecasting tasks by significantly mitigating the effects of cumulative error arising from misused symbols during the transition from symbols to numerical values. In time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive forecasting capability compared to recent SOTA time series forecasting results. We believe this framework can also seamlessly extend to other time series tasks. Our simulation code is publicly available at: https://github.com/inEXASCALE/llm-abba
♻ ☆ REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving NeurIPS 2025
While model serving has unlocked unprecedented capabilities, the high cost of serving large-scale models continues to be a significant barrier to widespread accessibility and rapid innovation. Compiler optimizations have long driven substantial performance improvements, but existing compilers struggle with neural workloads due to the exponentially large and highly interdependent space of possible transformations. Although existing stochastic search techniques can be effective, they are often sample-inefficient and fail to leverage the structural context underlying compilation decisions. We set out to investigate the research question of whether reasoning with large language models (LLMs), without any retraining, can leverage the context-aware decision space of compiler optimizations to significantly improve sample efficiency. To that end, we introduce a novel compilation framework (dubbed REASONING COMPILER) that formulates optimization as a sequential, context-aware decision process guided by a large language model and structured Monte Carlo tree search (MCTS). The LLM acts as a proposal mechanism, suggesting hardware-informed transformations that reflect the current program state and accumulated performance feedback. MCTS incorporates the LLM-generated proposals to balance exploration and exploitation, facilitating a structured, context-sensitive traversal of the expansive compiler optimization space. By achieving substantial speedups with markedly fewer samples than leading neural compilers, our approach demonstrates the potential of LLM-guided reasoning to transform the landscape of compiler optimization.
comment: NeurIPS 2025
♻ ☆ The Label Horizon Paradox: Rethinking Supervision Targets in Financial Forecasting
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ Bridging Cognitive Neuroscience and Graph Intelligence: Hippocampus-Inspired Multi-View Hypergraph Learning for Web Finance Fraud
Online financial services constitute an essential component of contemporary web ecosystems, yet their openness introduces substantial exposure to fraud that harms vulnerable users and weakens trust in digital finance. Such threats have become a significant web harm that erodes societal fairness and affects the well-being of online communities. However, existing detection methods based on graph neural networks (GNNs) struggle with two persistent challenges: (1) long-tailed data distributions, which obscure rare but critical fraudulent cases, and (2) fraud camouflage, where malicious transactions mimic benign behaviors to evade detection. To fill these gaps, we propose HIMVH, a Hippocampus-Inspired Multi-View Hypergraph learning model for web finance fraud detection. Specifically, drawing inspiration from the scene conflict monitoring role of the hippocampus, we design a cross-view inconsistency perception module that captures subtle discrepancies and behavioral heterogeneity across multiple transaction views. This module enables the model to identify subtle cross-view conflicts for detecting online camouflaged fraudulent behaviors. Furthermore, inspired by the match-mismatch novelty detection mechanism of the CA1 region, we introduce a novelty-aware hypergraph learning module that measures feature deviations from neighborhood expectations and adaptively reweights messages, thereby enhancing sensitivity to online rare fraud patterns in the long-tailed settings. Extensive experiments on six web-based financial fraud datasets demonstrate that HIMVH achieves 6.42% improvement in AUC, 9.74% in F1 and 39.14% in AP on average over 15 SOTA models.
♻ ☆ No Screening is More Efficient with Multiple Objects
We study efficient mechanism design for allocating multiple heterogeneous objects. The aim is to maximize the residual surplus, the total value generated from an allocation minus the costs of screening. We discover a robust trend indicating that no-screening mechanisms, such as serial dictatorship with exogenous priority order, tend to perform better as the variety of goods increases. We analyze the underlying reasons by characterizing asymptotically efficient mechanisms in a stylized environment. We also apply an automated mechanism design approach to numerically derive efficient mechanisms and validate the trend in general environments. Building on these implications, we propose the register-invite-book system (RIB) as an efficient system for scheduling vaccinations against pandemic diseases.
♻ ☆ DIVER-1 : Deep Integration of Vast Electrophysiological Recordings at Scale
Unifying the vast heterogeneity of brain signals into a single foundation model is a longstanding challenge in neuroscience. Yet, even as large-scale pretraining becomes feasible, the field lacks principled guidance on how to scale electrophysiological foundation models under realistic data and compute constraints. We present the first systematic scaling law analysis spanning both EEG and iEEG, and uncover a distinct data-constrained characteristic. Unlike language modeling, performance in electrophysiology is dominated first by data scale, followed by training duration (epochs), with model parameter count playing a subordinate role under fixed compute budgets. This challenges the prevailing "bigger is better" heuristic derived from large language models. Building on these insights, we introduce DIVER-1, a family of models trained on the largest and most diverse corpus to date: 59.3k hours (54k EEG and 5.3k iEEG) across 1.6 million channel-hours from more than 17.7k subjects, scaling up to 1.82 billion parameters. By prioritizing data diversity and training horizons over mere parameter expansion, DIVER-1 achieves state-of-the-art performance across established benchmarks. Our work provides both a powerful generalist model and actionable guidelines for efficient development of future neuro-AI systems.
comment: 52 pages, 15 figures, 28 tables
♻ ☆ How to Train Your Resistive Network: Generalized Equilibrium Propagation and Analytical Learning
Machine learning is a powerful method of extracting meaning from data; unfortunately, current digital hardware is extremely energy-intensive. There is interest in an alternative analog computing implementation that could match the performance of traditional machine learning while being significantly more energy-efficient. However, it remains unclear how to train such analog computing systems while adhering to locality constraints imposed by the physical (as opposed to digital) nature of these systems. Local learning algorithms such as Equilibrium Propagation and Coupled Learning have been proposed to address this issue. In this paper, we develop an algorithm to exactly calculate gradients using a graph theoretic and analytical framework for Kirchhoff's laws. We also introduce Generalized Equilibrium Propagation, a framework encompassing a broad class of Hebbian learning algorithms, including Coupled Learning and Equilibrium Propagation, and show how our algorithm compares. We demonstrate our algorithm using numerical simulations and show that we can train resistor networks without the need for a replica or readout over all resistors, only at the output layer. We also show that under the analytical gradient approach, it is possible to update only a subset of the resistance values without a strong degradation in performance.
comment: 8 pages double column; plus 16 supp mat.;
♻ ☆ Bayesian Additive Regression Trees for functional ANOVA model
Bayesian Additive Regression Trees (BART) is a powerful statistical model that leverages the strengths of Bayesian inference and regression trees. It has received significant attention for capturing complex non-linear relationships and interactions among predictors. However, the accuracy of BART often comes at the cost of interpretability. To address this limitation, we propose ANOVA Bayesian Additive Regression Trees (ANOVA-BART), a novel extension of BART based on the functional ANOVA decomposition, which is used to decompose the variability of a function into different interactions, each representing the contribution of a different set of covariates or factors. Our proposed ANOVA-BART enhances interpretability, preserves and extends the theoretical guarantees of BART, and achieves comparable prediction performance. Specifically, we establish that the posterior concentration rate of ANOVA-BART is nearly minimax optimal, and further provides the same convergence rates for each interaction that are not available for BART. Moreover, comprehensive experiments confirm that ANOVA-BART is comparable to BART in both accuracy and uncertainty quantification, while also demonstrating its effectiveness in component selection. These results suggest that ANOVA-BART offers a compelling alternative to BART by balancing predictive accuracy, interpretability, and theoretical consistency.
♻ ☆ Sharpness of Minima in Deep Matrix Factorization
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in deep matrix factorization/deep linear neural network training problems, resolving an open question posed by Mulayoff & Michaeli (2020). This expression reveals a fundamental property of the loss landscape in deep matrix factorization: Having a constant product of the spectral norms of the left and right intermediate factors across layers is a sufficient condition for flatness. Most notably, in both depth-$2$ matrix and deep overparameterized scalar factorization, we show that this condition is both necessary and sufficient for flatness, which implies that flat minima are spectral-norm balanced even though they are not necessarily Frobenius-norm balanced. To complement our theory, we provide the first empirical characterization of an escape phenomenon during gradient-based training near a minimizer of a deep matrix factorization problem.
comment: 18 pages, 7 figures
♻ ☆ LASS-ODE: Scaling ODE Computations to Connect Foundation Models with Dynamical Physical Systems
Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
♻ ☆ Revisiting Multi-Agent Asynchronous Online Optimization with Delays: the Strongly Convex Case
We revisit multi-agent asynchronous online optimization with delays, where only one of the agents becomes active for making the decision at each round, and the corresponding feedback is received by all the agents after unknown delays. Although previous studies have established an $O(\sqrt{dT})$ regret bound for this problem, they assume that the maximum delay $d$ is knowable or the arrival order of feedback satisfies a special property, which may not hold in practice. In this paper, we surprisingly find that when the loss functions are strongly convex, these assumptions can be eliminated, and the existing regret bound can be significantly improved to $O(d\log T)$ meanwhile. Specifically, to exploit the strong convexity of functions, we first propose a delayed variant of the classical follow-the-leader algorithm, namely FTDL, which is very simple but requires the full information of functions as feedback. Moreover, to handle the more general case with only the gradient feedback, we develop an approximate variant of FTDL by combining it with surrogate loss functions. Experimental results show that the approximate FTDL outperforms the existing algorithm in the strongly convex case.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51810-9}
♻ ☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Reinforcement Learning to Discover a North East Monsoon Index for Rainfall Prediction in Thailand
Accurately predicting long-term rainfall is challenging. Global climate indices, such as the El Niño-Southern Oscillation, are standard input features for machine learning. However, a significant gap persists regarding local-scale indices capable of improving predictive accuracy in specific regions of Thailand. This paper introduces a novel North East monsoon climate index calculated from sea surface temperature to reflect the climatology of the boreal winter monsoon. To optimise the calculated areas used for this index, a Deep Q-Network reinforcement learning agent explores and selects the most effective rectangles based on their correlation with seasonal rainfall. Rainfall stations were classified into 12 distinct clusters to distinguish rainfall patterns between southern and upper Thailand. Experimental results show that incorporating the optimised index into Long Short-Term Memory models significantly improves long-term monthly rainfall prediction skill in most cluster areas. This approach effectively reduces the Root Mean Square Error for 12-month-ahead forecasts.
♻ ☆ KAN/H: Kolmogorov-Arnold Network using Haar-like bases
Function approximation using Haar basis systems offers an efficient implementation when compressed via Patricia trees while retaining the flexibility of wavelets for both global and local fitting. However, like B-spline-based approximations, achieving high accuracy in high dimensions remains challenging. This paper proposes KAN/H, a variant of the Kolmogorov-Arnold Network (KAN) that uses a Haar-like hierarchical basis system with nonzero first-order derivatives, instead of B-splines. We also propose a learning-rate scheduling method and a method for handling unbounded real-valued inputs, leveraging properties of linear approximation with Haar-like hierarchical bases. By applying the resulting algorithm to function-approximation problems and MNIST, we confirm that our approach requires minimal problem-specific hyperparameter tuning.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ daVinci-Agency: Unlocking Long-Horizon Agency Data-Efficiently
While Large Language Models (LLMs) excel at short-term tasks, scaling them to long-horizon agentic workflows remains challenging. The core bottleneck lies in the scarcity of training data that captures authentic long-dependency structures and cross-stage evolutionary dynamics--existing synthesis methods either confine to single-feature scenarios constrained by model distribution, or incur prohibitive human annotation costs, failing to provide scalable, high-quality supervision. We address this by reconceptualizing data synthesis through the lens of real-world software evolution. Our key insight: Pull Request (PR) sequences naturally embody the supervision signals for long-horizon learning. They decompose complex objectives into verifiable submission units, maintain functional coherence across iterations, and encode authentic refinement patterns through bug-fix histories. Building on this, we propose daVinci-Agency, which systematically mines structured supervision from chain-of-PRs through three interlocking mechanisms: (1) progressive task decomposition via continuous commits, (2) long-term consistency enforcement through unified functional objectives, and (3) verifiable refinement from authentic bug-fix trajectories. Unlike synthetic trajectories that treat each step independently, daVinci-Agency's PR-grounded structure inherently preserves the causal dependencies and iterative refinements essential for teaching persistent goal-directed behavior and enables natural alignment with project-level, full-cycle task modeling. The resulting trajectories are substantial--averaging 85k tokens and 116 tool calls--yet remarkably data-efficient: fine-tuning GLM-4.6 on 239 daVinci-Agency samples yields broad improvements across benchmarks, notably achieving a 47% relative gain on Toolathlon. Beyond benchmark performance, our analysis confirms...
♻ ☆ Zenith: Scaling up Ranking Models for Billion-scale Livestreaming Recommendation
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
comment: 10 pages
♻ ☆ Beyond In-Domain Detection: SpikeScore for Cross-Domain Hallucination Detection
Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
♻ ☆ Safe In-Context Reinforcement Learning
In-context reinforcement learning (ICRL) is an emerging RL paradigm where an agent, after pretraining, can adapt to out-of-distribution test tasks without any parameter updates, instead relying on an expanding context of interaction history. While ICRL has shown impressive generalization, safety during this adaptation process remains unexplored, limiting its applicability in real-world deployments where test-time behavior is expected to be safe. In this work, we propose SCARED: Safe Contextual Adaptive Reinforcement via Exact-penalty Dual, the first method that promotes safe adaptation of ICRL under the constrained Markov decision process framework. During the parameter-update-free adaptation process, our agent not only maximizes the reward but also keeps the accumulated cost within a user-specified safety budget. We also demonstrate that the agent actively reacts to the safety budget; with a higher safety budget, the agent behaves more aggressively, and with a lower safety budget the agent behaves more conservatively. Across challenging benchmarks, SCARED consistently enables safe and robust in-context adaptation, outperforming existing ICRL and safe meta-RL baselines.
♻ ☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
♻ ☆ Information Shapes Koopman Representation ICLR 2026
The Koopman operator provides a powerful framework for modeling dynamical systems and has attracted growing interest from the machine learning community. However, its infinite-dimensional nature makes identifying suitable finite-dimensional subspaces challenging, especially for deep architectures. We argue that these difficulties come from suboptimal representation learning, where latent variables fail to balance expressivity and simplicity. This tension is closely related to the information bottleneck (IB) dilemma: constructing compressed representations that are both compact and predictive. Rethinking Koopman learning through this lens, we demonstrate that latent mutual information promotes simplicity, yet an overemphasis on simplicity may cause latent space to collapse onto a few dominant modes. In contrast, expressiveness is sustained by the von Neumann entropy, which prevents such collapse and encourages mode diversity. This insight leads us to propose an information-theoretic Lagrangian formulation that explicitly balances this tradeoff. Furthermore, we propose a new algorithm based on the Lagrangian formulation that encourages both simplicity and expressiveness, leading to a stable and interpretable Koopman representation. Beyond quantitative evaluations, we further visualize the learned manifolds under our representations, observing empirical results consistent with our theoretical predictions. Finally, we validate our approach across a diverse range of dynamical systems, demonstrating improved performance over existing Koopman learning methods. The implementation is publicly available at https://github.com/Wenxuan52/InformationKoopman.
comment: Published as a conference paper at ICLR 2026
♻ ☆ Flexible MOF Generation with Torsion-Aware Flow Matching
Designing metal-organic frameworks (MOFs) with novel chemistries is a longstanding challenge due to their large combinatorial space and complex 3D arrangements of the building blocks. While recent deep generative models have enabled scalable MOF generation, they assume (1) a fixed set of building blocks and (2) known local 3D coordinates of building blocks. However, this limits their ability to (1) design novel MOFs and (2) generate the structure using novel building blocks. We propose a two-stage MOF generation framework that overcomes these limitations by modeling both chemical and geometric degrees of freedom. First, we train an SMILES-based autoregressive model to generate metal and organic building blocks, paired with a cheminformatics toolkit for 3D structure initialization. Second, we introduce a flow matching model that predicts translations, rotations, and torsional angles to assemble the blocks into valid 3D frameworks. Our experiments demonstrate improved reconstruction accuracy, the generation of valid, novel, and unique MOFs, and the ability to create novel building blocks. Our code is available at https://github.com/nayoung10/MOFFlow-2.
comment: 24 pages, 9 figures
♻ ☆ Pseudo-Physics-Informed Neural Operators: Enhancing Operator Learning from Limited Data
Neural operators have shown great potential in surrogate modeling. However, training a well-performing neural operator typically requires a substantial amount of data, which can pose a major challenge in complex applications. In such scenarios, detailed physical knowledge can be unavailable or difficult to obtain, and collecting extensive data is often prohibitively expensive. To mitigate this challenge, we propose the Pseudo Physics-Informed Neural Operator (PPI-NO) framework. PPI-NO constructs a surrogate physics system for the target system using partial differential equations (PDEs) derived from simple, rudimentary physics principles, such as basic differential operators. This surrogate system is coupled with a neural operator model, using an alternating update and learning process to iteratively enhance the model's predictive power. While the physics derived via PPI-NO may not mirror the ground-truth underlying physical laws -- hence the term ``pseudo physics'' -- this approach significantly improves the accuracy of standard operator learning models in data-scarce scenarios, which is evidenced by extensive evaluations across five benchmark tasks and a fatigue modeling application.
♻ ☆ Deep Multimodal Learning with Missing Modality: A Survey
During multimodal model training and testing, certain data modalities may be absent due to sensor limitations, cost constraints, privacy concerns, or data loss, negatively affecting performance. Multimodal learning techniques designed to handle missing modalities can mitigate this by ensuring model robustness even when some modalities are unavailable. This survey reviews recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning methods. It provides the first comprehensive survey that covers the motivation and distinctions between MLMM and standard multimodal learning setups, followed by a detailed analysis of current methods, applications, and datasets, concluding with challenges and future directions.
comment: Accepted by TMLR (Transactions on Machine Learning Research)
♻ ☆ BackPlay: Plug-in Look-Back Self-Correction for Diffusion Language Models
Diffusion Language Models (DLMs) have achieved significant efficiency gains by generating multiple tokens in parallel. However, this parallel sampling approach, especially when using fewer inference steps, will introduce strong dependency errors and cause quality to deteriorate rapidly as the generation step size grows. As a result, reliable self-correction becomes essential for maintaining high-quality multi-token generation. To address this, we propose BackPlay, a Plug-in framework that enables DLMs to perform autonomous self-correction. BackPlay freezes the parameters of a finetuned DLM to preserve its peak performance while training a specialized correction head added on top of the model. This head is trained specifically on the errors generated by the frozen and well-optimized model, enabling it to capture the model's intrinsic error distribution. To further enhance the head's effectiveness, we introduce Look-back Correction, a training mechanism that empowers the head to leverage current contextual information to supervise and rectify mistakes made in earlier generation steps. During inference, our framework enables the model to jointly generate and revise tokens, effectively mitigating error accumulation. Experiments on mathematical reasoning and code generation benchmarks demonstrate that our approach substantially reduces quality degradation in large-step generation, allowing DLMs to achieve both high speed and strong output fidelity.
comment: 23 pages
♻ ☆ Universal Latent Homeomorphic Manifolds: A Framework for Cross-Domain Representation Unification
We present the Universal Latent Homeomorphic Manifold (ULHM), a framework that unifies semantic representations (e.g., human descriptions, diagnostic labels) and observation-driven machine representations (e.g., pixel intensities, sensor readings) into a single latent structure. Despite originating from fundamentally different pathways, both modalities capture the same underlying reality. We establish \emph{homeomorphism}, a continuous bijection preserving topological structure, as the mathematical criterion for determining when latent manifolds induced by different semantic-observation pairs can be rigorously unified. This criterion provides theoretical guarantees for three critical applications: (1) semantic-guided sparse recovery from incomplete observations, (2) cross-domain transfer learning with verified structural compatibility, and (3) zero-shot compositional learning via valid transfer from semantic to observation space. Our framework learns continuous manifold-to-manifold transformations through conditional variational inference, avoiding brittle point-to-point mappings. We develop practical verification algorithms, including trust, continuity, and Wasserstein distance metrics, that empirically validate homeomorphic structure from finite samples. Experiments demonstrate: (1) sparse image recovery from 5% of CelebA pixels and MNIST digit reconstruction at multiple sparsity levels, (2) cross-domain classifier transfer achieving 86.73% accuracy from MNIST to Fashion-MNIST without retraining, and (3) zero-shot classification on unseen classes achieving 78.76% on CIFAR-10. Critically, the homeomorphism criterion determines when different semantic-observation pairs share compatible latent structure, enabling principled unification into universal representations and providing a mathematical foundation for decomposing general foundation models into domain-specific components.
♻ ☆ Provably Efficient and Agile Randomized Q-Learning
While Bayesian-based exploration often demonstrates superior empirical performance compared to bonus-based methods in model-based reinforcement learning (RL), its theoretical understanding remains limited for model-free settings. Existing provable algorithms either suffer from computational intractability or rely on stage-wise policy updates which reduce responsiveness and slow down the learning process. In this paper, we propose a novel variant of Q-learning algorithm, refereed to as RandomizedQ, which integrates sampling-based exploration with agile, step-wise, policy updates, for episodic tabular RL. We establish an $\widetilde{O}(\sqrt{H^5SAT})$ regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the episode length, and $T$ is the total number of episodes. In addition, we present a logarithmic regret bound under a mild positive sub-optimality condition on the optimal Q-function. Empirically, RandomizedQ exhibits outstanding performance compared to existing Q-learning variants with both bonus-based and Bayesian-based exploration on standard benchmarks.
♻ ☆ Input-Time Scaling: Adding Noise and Irrelevance into Less-Is-More Drastically Improves Reasoning Performance and Efficiency
Large Language Models (LLMs) excel at reasoning, traditionally requiring high-quality large-scale data and extensive training. Recent works reveal a very appealing Less-Is-More phenomenon where very small, carefully curated high-quality datasets match resource-intensive approaches. In this work, we further systematically relax their quality constraints by adding controlled noise via persona context relevance and comparing datasets of different qualities. Counterintuitively, we find that mixing relevant and irrelevant contexts consistently across training and inference stages yields optimal results -- a phenomenon we term training-testing co-design. Dataset quality comparisons show that high-quality data benefits weaker models on easy questions, while low-quality data achieves higher scores on hard questions with capable models. Across our experiments, reasoning performance is linked to reasoning efficiency. We, for the first time, found adding noisy and irrelevant contexts into queries can improve reasoning efficiency without any prices and targeted designs. Building on these insights, we propose Input-Time Scaling: applying small, low-quality data to capable models with training-testing co-design. This maintains Less-Is-More while further removing labor-intensive quality curation and improving reasoning effectiveness and efficiency, making the approach more applicable and affordable. Our method achieves 76.7% pass@1 on AIME24/25 using Qwen2.5-32B-Instruct, and 90.0%/80.0% with DeepSeek-R1-Distill-Qwen-32B -- state-of-the-art among Qwen2.5-32B variants. We are open-sourcing our datasets, pipelines, evaluation results, and checkpoints to facilitate reproducibility and further research.
♻ ☆ Device Association and Resource Allocation for Hierarchical Split Federated Learning in Space-Air-Ground Integrated Network IEEE
6G facilitates deployment of Federated Learning (FL) in the Space-Air-Ground Integrated Network (SAGIN), yet FL confronts challenges such as resource constrained and unbalanced data distribution. To address these issues, this paper proposes a Hierarchical Split Federated Learning (HSFL) framework and derives its upper bound of loss function. To minimize the weighted sum of training loss and latency, we formulate a joint optimization problem that integrates device association, model split layer selection, and resource allocation. We decompose the original problem into several subproblems, where an iterative optimization algorithm for device association and resource allocation based on brute-force split point search is proposed. Simulation results demonstrate that the proposed algorithm can effectively balance training efficiency and model accuracy for FL in SAGIN.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ On the Difficulty of Selecting Few-Shot Examples for Effective LLM-based Vulnerability Detection
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of coding tasks, including summarization, translation, completion, and code generation. Despite these advances, detecting code vulnerabilities remains a challenging problem for LLMs. In-context learning (ICL) has emerged as an effective mechanism for improving model performance by providing a small number of labeled examples within the prompt. Prior work has shown, however, that the effectiveness of ICL depends critically on how these few-shot examples are selected. In this paper, we study two intuitive criteria for selecting few-shot examples for ICL in the context of code vulnerability detection. The first criterion leverages model behavior by prioritizing samples on which the LLM consistently makes mistakes, motivated by the intuition that such samples can expose and correct systematic model weaknesses. The second criterion selects examples based on semantic similarity to the query program, using k-nearest-neighbor retrieval to identify relevant contexts. We conduct extensive evaluations using open-source LLMs and datasets spanning multiple programming languages. Our results show that for Python and JavaScript, careful selection of few-shot examples can lead to measurable performance improvements in vulnerability detection. In contrast, for C and C++ programs, few-shot example selection has limited impact, suggesting that more powerful but also more expensive approaches, such as re-training or fine-tuning, may be required to substantially improve model performance.
comment: Workshop on LLM Assisted Security and Trust Exploration (LAST-X) 2026
♻ ☆ Predictive Low Rank Matrix Learning under Partial Observations: Mixed-Projection ADMM
We study the problem of learning a partially observed matrix under the low rank assumption in the presence of fully observed side information that depends linearly on the true underlying matrix. This problem consists of an important generalization of the Matrix Completion problem, a central problem in Statistics, Operations Research and Machine Learning, that arises in applications such as recommendation systems, signal processing, system identification and image denoising. We formalize this problem as an optimization problem with an objective that balances the strength of the fit of the reconstruction to the observed entries with the ability of the reconstruction to be predictive of the side information. We derive a mixed-projection reformulation of the resulting optimization problem and present a strong semidefinite cone relaxation. We design an efficient, scalable alternating direction method of multipliers algorithm that produces high quality feasible solutions to the problem of interest. Our numerical results demonstrate that in the small rank regime ({\color{black}$k \leq 10$}), our algorithm outputs solutions that achieve on average {\color{black}$2.3\%$} lower objective value and {\color{black}$41\%$} lower $\ell_2$ reconstruction error than the solutions returned by the best performing benchmark method on synthetic data. The runtime of our algorithm is competitive with and often superior to that of the benchmark methods. Our algorithm is able to solve problems with $n = 10000$ rows and $m = 10000$ columns in less than a minute. On large scale real world data, our algorithm produces solutions that achieve $67\%$ lower out of sample error than benchmark methods in $97\%$ less execution time.
♻ ☆ Aurora: Towards Universal Generative Multimodal Time Series Forecasting
Cross-domain generalization is very important in Time Series Forecasting because similar historical information may lead to distinct future trends due to the domain-specific characteristics. Recent works focus on building unimodal time series foundation models and end-to-end multimodal supervised models. Since domain-specific knowledge is often contained in modalities like texts, the former lacks the explicit utilization of them, thus hindering the performance. The latter is tailored for end-to-end scenarios and does not support zero-shot inference for cross-domain scenarios. In this work, we introduce Aurora, a Multimodal Time Series Foundation Model, which supports multimodal inputs and zero-shot inference. Pretrained on Cross-domain Multimodal Time Series Corpus, Aurora can adaptively extract and focus on key domain knowledge contained in corresponding text or image modalities, thus possessing strong cross-domain generalization capability. Through tokenization, encoding, and distillation, Aurora can extract multimodal domain knowledge as guidance and then utilizes a Modality-Guided Multi-head Self-Attention to inject them into the modeling of temporal representations. In the decoding phase, the multimodal representations are used to generate the conditions and prototypes of future tokens, contributing to a novel Prototype-Guided Flow Matching for generative probabilistic forecasting. Comprehensive experiments on 5 well-recognized benchmarks, including TimeMMD, TSFM-Bench, ProbTS, TFB, and EPF, demonstrate the consistent state-of-the-art performance of Aurora on both unimodal and multimodal scenarios.
♻ ☆ On the Equilibrium between Feasible Zone and Uncertain Model in Safe Exploration
Ensuring the safety of environmental exploration is a critical problem in reinforcement learning (RL). While limiting exploration to a feasible zone has become widely accepted as a way to ensure safety, key questions remain unresolved: what is the maximum feasible zone achievable through exploration, and how can it be identified? This paper, for the first time, answers these questions by revealing that the goal of safe exploration is to find the equilibrium between the feasible zone and the environment model. This conclusion is based on the understanding that these two components are interdependent: a larger feasible zone leads to a more accurate environment model, and a more accurate model, in turn, enables exploring a larger zone. We propose the first equilibrium-oriented safe exploration framework called safe equilibrium exploration (SEE), which alternates between finding the maximum feasible zone and the least uncertain model. Using a graph formulation of the uncertain model, we prove that the uncertain model obtained by SEE is monotonically refined, the feasible zones monotonically expand, and both converge to the equilibrium of safe exploration. Experiments on classic control tasks show that our algorithm successfully expands the feasible zones with zero constraint violation, and achieves the equilibrium of safe exploration within a few iterations.
♻ ☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
♻ ☆ Towards Universal Neural Likelihood Inference
We introduce universal neural likelihood inference (UNLI): enabling a single model to provide data-grounded, conditional likelihood predictions for arbitrary targets given any collection of observed features, across diverse domains and tasks. To achieve UNLI over heterogeneous tabular data, we develop the Arbitrary Set-based Permutation-Invariant Reasoning Engine (ASPIRE) model. Our design addresses critical gaps in existing approaches to merge semantic-understanding capabilities and generalised numerical feature reasoning within a zero-shot capable framework. Trained on over 1,400 real diverse datasets spanning various domains, ASPIRE achieves 15\% higher F1 scores and 85\% lower RMSE than existing tabular foundation models in zero-shot and few-shot settings. Lastly, this work introduces open-world active feature acquisition, where we leverage the UNLI capabilities of ASPIRE to adeptly determine next feature-values to observe to improve inference time prediction accuracies.
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco
♻ ☆ Two-chart Beltrami Optimization for Distortion-Controlled Spherical Bijection with Application to Brain Surface Registration
Many genus-0 surface mapping tasks such as landmark alignment, feature matching, and image-driven registration, can be reduced (via an initial spherical conformal map) to optimizing a spherical self-homeomorphism with controlled distortion. However, existing works lack efficient mechanisms to control the geometric distortion of the resulting mapping. To resolve this issue, we formulate this as a Beltrami-space optimization problem, where the angle distortion is encoded explicitly by the Beltrami differential and bijectivity can be enforced through the constraint $\|μ\|_{\infty}<1$. To make this practical on the sphere, we introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the unit sphere $\mathbb{S}^2$, together with cross-chart consistency conditions that yield a globally bijective spherical deformation (up to conformal automorphisms). Building on the Spectral Beltrami Network, we develop BOOST, a differentiable optimization framework that updates two Beltrami fields to minimize task-driven losses while regularizing distortion and enforcing consistency along the seam. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate improved task performance meanwhile maintaining controlled distortion and robust bijective behavior. We also apply the method to cortical surface registration by aligning sulcal landmarks and matching cortical sulcal depth, achieving comparative or better registration performance without sacrificing geometric validity.
♻ ☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning. However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
♻ ☆ RAPTOR: Ridge-Adaptive Logistic Probes
Probing studies what information is encoded in a frozen LLM's layer representations by training a lightweight predictor on top of them. Beyond analysis, probes are often used operationally in probe-then-steer pipelines: a learned concept vector is extracted from a probe and injected via additive activation steering by adding it to a layer representation during the forward pass. The effectiveness of this pipeline hinges on estimating concept vectors that are accurate, directionally stable under ablation, and inexpensive to obtain. Motivated by these desiderata, we propose RAPTOR (Ridge-Adaptive Logistic Probe), a simple L2-regularized logistic probe whose validation-tuned ridge strength yields concept vectors from normalized weights. Across extensive experiments on instruction-tuned LLMs and human-written concept datasets, RAPTOR matches or exceeds strong baselines in accuracy while achieving competitive directional stability and substantially lower training cost; these quantitative results are supported by qualitative downstream steering demonstrations. Finally, using the Convex Gaussian Min-max Theorem (CGMT), we provide a mechanistic characterization of ridge logistic regression in an idealized Gaussian teacher-student model in the high-dimensional few-shot regime, explaining how penalty strength mediates probe accuracy and concept-vector stability and yielding structural predictions that qualitatively align with trends observed on real LLM embeddings.
comment: Preprint
♻ ☆ Toward Multiphysics-Informed Machine Learning for Sustainable Data Center Operations: Intelligence Evolution with Deployable Solutions for Computing Infrastructure
The revolution in artificial intelligence (AI) has brought sustainable challenges in data center management due to the high carbon emissions and short cooling response time associated with high-power density racks. While machine learning (ML) offers promise for intelligent management, its adoption is hindered by safety and reliability concerns. To address this, we propose a multiphysics-informed machine learning (MPIML) framework that integrates physical priors into data-driven models for enhanced accuracy and safety. We introduce an integrated system architecture comprising three core engines: DCLib for versatile facility modeling, DCTwin for high-fidelity multiphysics simulation, and DCBrain for decision-making optimization. This system enables critical predictive and prescriptive applications, such as carbon-aware IT provisioning, safety-aware intelligent cooling control and battery health forecasting. An illustrative example on an industry-grade data center cooling control demonstrates that our MPIML approach reduces annual carbon emissions up to 200 kilotons compared with conventional methods while ensuring operational constraints are met. We conclude by outlining key challenges and future directions for developing autonomous and sustainable data centers.
♻ ☆ Differentially Private Sampling via Reveal-or-Obscure
We introduce a differentially private (DP) algorithm called Reveal-or-Obscure (ROO) to generate a single representative sample from a dataset of n i.i.d. observations from an unknown distribution. Unlike methods that add explicit noise to the estimated empirical distribution, ROO achieves $ε$-differential privacy by choosing whether to "reveal" or "obscure" the empirical distribution with a fixed probability $q$. While our proposed mechanism is structurally identical to an algorithm proposed by Cheu and Nayak, we prove a strictly better bound on the sampling complexity than that established in their theorem. Building on this framework, we propose a novel generalized sampler called Data-Specific ROO (DS-ROO), where the obscuring probability $q$ is a function of the empirical distribution. We show that when the dataset contains enough samples from every element of the alphabet, DS-ROO can achieve $ε$-DP while obscuring much less. In addition, we provide tight upper bounds on the utility of DS-ROO in terms of total variation distance. Our results show that under the same privacy budget, DS-ROO can achieve better utility than state-of-the-art private samplers and vanilla ROO, with total variation distance decaying exponentially in dataset size $n$.
comment: 35 pages, 3 figures
♻ ☆ Incorporating graph neural network into route choice model
Route choice models are one of the most important foundations for transportation research. Traditionally, theory-based models have been utilized for their great interpretability, such as logit models and Recursive logit models. More recently, machine learning approaches have gained attentions for their better prediction accuracy. In this study, we propose novel hybrid models that integrate the Recursive logit model with Graph Neural Networks (GNNs) to enhance both predictive performance and model interpretability. To the authors' knowldedge, GNNs have not been utilized for route choice modeling, despite their proven effectiveness in capturing road network features and their widespread use in other transportation research areas. We mathematically show that our use of GNN is not only beneficial for enhancing the prediction performance, but also relaxing the Independence of Irrelevant Alternatives property without relying on strong assumptions. This is due to the fact that a specific type of GNN can efficiently capture multiple cross-effect patterns on networks from data. By applying the proposed models to one-day travel trajectory data in Tokyo, we confirmed their higher prediction accuracy compared to the existing models.
♻ ☆ Achieving Logarithmic Regret in KL-Regularized Zero-Sum Markov Games
Reverse Kullback-Leibler (KL) divergence-based regularization with respect to a fixed reference policy is widely used in modern reinforcement learning to preserve the desired traits of the reference policy and sometimes to promote exploration (using uniform reference policy, known as entropy regularization). Beyond serving as a mere anchor, the reference policy can also be interpreted as encoding prior knowledge about good actions in the environment. In the context of alignment, recent game-theoretic approaches have leveraged KL regularization with pretrained language models as reference policies, achieving notable empirical success in self-play methods. Despite these advances, the theoretical benefits of KL regularization in game-theoretic settings remain poorly understood. In this work, we develop and analyze algorithms that provably achieve improved sample efficiency under KL regularization. We study both two-player zero-sum matrix games and Markov games: for matrix games, we propose OMG, an algorithm based on best response sampling with optimistic bonuses, and extend this idea to Markov games through the algorithm SOMG, which also uses best response sampling and a novel concept of superoptimistic bonuses. Both algorithms achieve a logarithmic regret in $T$ that scales inversely with the KL regularization strength $β$ in addition to the traditional $\widetilde{\mathcal{O}}(\sqrt{T})$ regret without the $β^{-1}$ dependence.
♻ ☆ DTS: Enhancing Large Reasoning Models via Decoding Tree Sketching
Large Reasoning Models (LRMs) achieve remarkable inference-time improvements through parallel thinking. However, existing methods rely on redundant sampling of reasoning trajectories, failing to effectively explore the reasoning space to uncover high-quality solutions. To address these limitations, we propose Decoding Tree Sketching (DTS), a plug-and-play decoding framework for structural multi-trajectory exploration and reasoning selection. For reasoning exploration, DTS sketches a backbone tree of the reasoning space by selectively branching at decision tokens. For reasoning selection, guided by length-accuracy anti-correlation, DTS designs an early termination to prioritize short and reliable trajectories during decoding. Experimental results across four LRMs and datasets demonstrate that DTS significantly enhances accuracy by 14% and reduces repetitive generation by 8% on average. Notably, DTS enables smaller models to outperform larger models with 10$\times$ the size, highlighting its potential to strengthen reasoning capabilities.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ Learning from Neighbors with PHIBP: Predicting Infectious Disease Dynamics in Data-Sparse Environments
Modeling sparse count data, which arise across numerous scientific fields, presents significant statistical challenges. This chapter addresses these challenges in the context of infectious disease prediction, with a focus on predicting outbreaks in geographic regions that have historically reported zero cases. To this end, we present the detailed computational framework and experimental application of the Poisson Hierarchical Indian Buffet Process (PHIBP), with demonstrated success in handling sparse count data in microbiome and ecological studies. The PHIBP's architecture, grounded in the concept of absolute abundance, systematically borrows statistical strength from related regions and circumvents the known sensitivities of relative-rate methods to zero counts. Through a series of experiments on infectious disease data, we show that this principled approach provides a robust foundation for generating coherent predictive distributions and for the effective use of comparative measures such as alpha and beta diversity. The chapter's emphasis on algorithmic implementation and experimental results confirms that this unified framework delivers both accurate outbreak predictions and meaningful epidemiological insights in data-sparse settings.
comment: v2: Revised version incorporating peer review feedback from book chapter submission. Clarifies modeling objectives for infectious disease prediction and situates the work within a three-paper PHIBP framework, highlighting suitability for future AI/LLM plug-and-play model specification
♻ ☆ Data-driven Error Estimation: Excess Risk Bounds without Class Complexity as Input
Constructing confidence intervals that are simultaneously valid across a class of estimates is central to tasks such as multiple mean estimation, generalization guarantees, and adaptive experimental design. We frame this as an ``error estimation problem," where the goal is to determine a high-probability upper bound on the maximum error for a class of estimates. We propose an entirely data-driven approach that derives such bounds for both finite and infinite class settings, naturally adapting to a potentially unknown correlation structure of random errors. Notably, our method does not require class complexity as an input, overcoming a major limitation of existing approaches. We present our simple yet general solution and demonstrate applications to simultaneous confidence intervals, excess-risk control and optimizing exploration in contextual bandit algorithms.
♻ ☆ Are Graph Attention Networks Able to Model Structural Information?
Graph Attention Networks (GATs) have emerged as powerful models for learning expressive representations from such data by adaptively weighting neighboring nodes through attention mechanisms. However, most existing approaches primarily rely on node attributes and direct neighborhood connections, often overlooking rich structural patterns that capture higher-order topological information crucial for many real-world datasets. In this work, we present the Graph Structure Attention Network (GSAT), a novel extension of GAT that jointly integrates attribute-based and structure-based representations for more effective graph learning. GSAT incorporates structural features derived from anonymous random walks (ARWs) and graph kernels to encode local topological information, enabling attention mechanisms to adapt based on the underlying graph structure. This design enhances the model's ability to discern meaningful relational dependencies within complex data. Comprehensive experiments on standard graph classification and regression benchmarks demonstrate that GSAT achieves consistent improvements over state-of-the-art graph learning methods, highlighting the value of incorporating structural context for representation learning on graphs.
comment: 15 pages including appendix. The paper is complete
♻ ☆ The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing LLMs' capabilities. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, thereby improving precision. This study presents an empirical investigation that provides fresh insights into the limits of RLVR. We examine how RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely original solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves \texttt{pass@1}, \textit{the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets}, failing to recover correct answers that were previously accessible to the base model. Interestingly, while RLVR sometimes increases token-level entropy, it results in greater uncertainty at each generation step and declining answer-level entropy. This indicates that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, we reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash requires future innovations that seed probability mass into underrepresented solution regions.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: Accepted to TMLR (2026)
♻ ☆ When Does Adaptation Win? Scaling Laws for Meta-Learning in Quantum Control
Quantum hardware suffers from intrinsic device heterogeneity and environmental drift, forcing practitioners to choose between suboptimal non-adaptive controllers or costly per-device recalibration. We derive a scaling law lower bound for meta-learning showing that the adaptation gain (expected fidelity improvement from task-specific gradient steps) saturates exponentially with gradient steps and scales linearly with task variance, providing a quantitative criterion for when adaptation justifies its overhead. Validation on quantum gate calibration shows negligible benefits for low-variance tasks but $>40\%$ fidelity gains on two-qubit gates under extreme out-of-distribution conditions (10$\times$ the training noise), with implications for reducing per-device calibration time on cloud quantum processors. Further validation on classical linear-quadratic control confirms these laws emerge from general optimization geometry rather than quantum-specific physics. Together, these results offer a transferable framework for decision-making in adaptive control.
comment: 28 pages, 11 figures
Multimedia 8
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Interactive Spatial-Frequency Fusion Mamba for Multi-Modal Image Fusion IEEE
Multi-Modal Image Fusion (MMIF) aims to combine images from different modalities to produce fused images, retaining texture details and preserving significant information. Recently, some MMIF methods incorporate frequency domain information to enhance spatial features. However, these methods typically rely on simple serial or parallel spatial-frequency fusion without interaction. In this paper, we propose a novel Interactive Spatial-Frequency Fusion Mamba (ISFM) framework for MMIF. Specifically, we begin with a Modality-Specific Extractor (MSE) to extract features from different modalities. It models long-range dependencies across the image with linear computational complexity. To effectively leverage frequency information, we then propose a Multi-scale Frequency Fusion (MFF). It adaptively integrates low-frequency and high-frequency components across multiple scales, enabling robust representations of frequency features. More importantly, we further propose an Interactive Spatial-Frequency Fusion (ISF). It incorporates frequency features to guide spatial features across modalities, enhancing complementary representations. Extensive experiments are conducted on six MMIF datasets. The experimental results demonstrate that our ISFM can achieve better performances than other state-of-the-art methods. The source code is available at https://github.com/Namn23/ISFM.
comment: This work is accepted by IEEE Transactions on Image Processing. More modifications may be performed
☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training.Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora.To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
☆ Food Portion Estimation: From Pixels to Calories
Reliance on images for dietary assessment is an important strategy to accurately and conveniently monitor an individual's health, making it a vital mechanism in the prevention and care of chronic diseases and obesity. However, image-based dietary assessment suffers from estimating the three dimensional size of food from 2D image inputs. Many strategies have been devised to overcome this critical limitation such as the use of auxiliary inputs like depth maps, multi-view inputs, or model-based approaches such as template matching. Deep learning also helps bridge the gap by either using monocular images or combinations of the image and the auxillary inputs to precisely predict the output portion from the image input. In this paper, we explore the different strategies employed for accurate portion estimation.
♻ ☆ Noise-Conditioned Mixture-of-Experts Framework for Robust Speaker Verification
Robust speaker verification under noisy conditions remains an open challenge. Conventional deep learning methods learn a robust unified speaker representation space against diverse background noise and achieve significant improvement. In contrast, this paper presents a noise-conditioned mixture-ofexperts framework that decomposes the feature space into specialized noise-aware subspaces for speaker verification. Specifically, we propose a noise-conditioned expert routing mechanism, a universal model based expert specialization strategy, and an SNR-decaying curriculum learning protocol, collectively improving model robustness and generalization under diverse noise conditions. The proposed method can automatically route inputs to expert networks based on noise information derived from the inputs, where each expert targets distinct noise characteristics while preserving speaker identity information. Comprehensive experiments demonstrate consistent superiority over baselines, confirming that explicit noise-dependent feature modeling significantly enhances robustness without sacrificing verification accuracy.
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ SAVGBench: Benchmarking Spatially Aligned Audio-Video Generation IEEE
This work addresses the lack of multimodal generative models capable of producing high-quality videos with spatially aligned audio. While recent advancements in generative models have been successful in video generation, they often overlook the spatial alignment between audio and visuals, which is essential for immersive experiences. To tackle this problem, we establish a new research direction in benchmarking the Spatially Aligned Audio-Video Generation (SAVG) task. We introduce a spatially aligned audio-visual dataset, whose audio and video data are curated based on whether sound events are onscreen or not. We also propose a new alignment metric that aims to evaluate the spatial alignment between audio and video. Then, using the dataset and metric, we benchmark two types of baseline methods: one is based on a joint audio-video generation model, and the other is a two-stage method that combines a video generation model and a video-to-audio generation model. Our experimental results demonstrate that gaps exist between the baseline methods and the ground truth in terms of video and audio quality, as well as spatial alignment between the two modalities.
comment: 5 pages, 2 figures, accepted for publication in IEEE ICASSP 2026
Computer Vision and Pattern Recognition 234
☆ EventNeuS: 3D Mesh Reconstruction from a Single Event Camera
Event cameras offer a considerable alternative to RGB cameras in many scenarios. While there are recent works on event-based novel-view synthesis, dense 3D mesh reconstruction remains scarcely explored and existing event-based techniques are severely limited in their 3D reconstruction accuracy. To address this limitation, we present EventNeuS, a self-supervised neural model for learning 3D representations from monocular colour event streams. Our approach, for the first time, combines 3D signed distance function and density field learning with event-based supervision. Furthermore, we introduce spherical harmonics encodings into our model for enhanced handling of view-dependent effects. EventNeuS outperforms existing approaches by a significant margin, achieving 34% lower Chamfer distance and 31% lower mean absolute error on average compared to the best previous method.
comment: 13 pages, 10 figures, 3 tables; project page: https://4dqv.mpi-inf.mpg.de/EventNeuS/
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Continuous Control of Editing Models via Adaptive-Origin Guidance
Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
comment: Project page at https://adaor-paper.github.io/
☆ Deep-learning-based pan-phenomic data reveals the explosive evolution of avian visual disparity
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction. While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
comment: Readers from the field of computer science may be interested in section 2.1, 2.2, 3.1, 4.1, 4.2. These sections discussed the interpretability and representation learning, especially the texture vs shape problem, highlighting our model's ability of overcoming the texture biases and capturing overall shape features. (Although they're put here to prove the biological validity of the model.)
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Progressive Checkerboards for Autoregressive Multiscale Image Generation
A key challenge in autoregressive image generation is to efficiently sample independent locations in parallel, while still modeling mutual dependencies with serial conditioning. Some recent works have addressed this by conditioning between scales in a multiscale pyramid. Others have looked at parallelizing samples in a single image using regular partitions or randomized orders. In this work we examine a flexible, fixed ordering based on progressive checkerboards for multiscale autoregressive image generation. Our ordering draws samples in parallel from evenly spaced regions at each scale, maintaining full balance in all levels of a quadtree subdivision at each step. This enables effective conditioning both between and within scales. Intriguingly, we find evidence that in our balanced setting, a wide range of scale-up factors lead to similar results, so long as the total number of serial steps is constant. On class-conditional ImageNet, our method achieves competitive performance compared to recent state-of-the-art autoregressive systems with like model capacity, using fewer sampling steps.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ 3D-Aware Implicit Motion Control for View-Adaptive Human Video Generation
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
comment: Project Page: https://hjrphoebus.github.io/3DiMo/
☆ BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks
Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .
☆ From Pre- to Intra-operative MRI: Predicting Brain Shift in Temporal Lobe Resection for Epilepsy Surgery
Introduction: In neurosurgery, image-guided Neurosurgery Systems (IGNS) highly rely on preoperative brain magnetic resonance images (MRI) to assist surgeons in locating surgical targets and determining surgical paths. However, brain shift invalidates the preoperative MRI after dural opening. Updated intraoperative brain MRI with brain shift compensation is crucial for enhancing the precision of neuronavigation systems and ensuring the optimal outcome of surgical interventions. Methodology: We propose NeuralShift, a U-Net-based model that predicts brain shift entirely from pre-operative MRI for patients undergoing temporal lobe resection. We evaluated our results using Target Registration Errors (TREs) computed on anatomical landmarks located on the resection side and along the midline, and DICE scores comparing predicted intraoperative masks with masks derived from intraoperative MRI. Results: Our experimental results show that our model can predict the global deformation of the brain (DICE of 0.97) with accurate local displacements (achieve landmark TRE as low as 1.12 mm), compensating for large brain shifts during temporal lobe removal neurosurgery. Conclusion: Our proposed model is capable of predicting the global deformation of the brain during temporal lobe resection using only preoperative images, providing potential opportunities to the surgical team to increase safety and efficiency of neurosurgery and better outcomes to patients. Our contributions will be publicly available after acceptance in https://github.com/SurgicalDataScienceKCL/NeuralShift.
☆ QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization ICLR2026
The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
comment: ICLR2026
☆ FOVI: A biologically-inspired foveated interface for deep vision models
Human vision is foveated, with variable resolution peaking at the center of a large field of view; this reflects an efficient trade-off for active sensing, allowing eye-movements to bring different parts of the world into focus with other parts of the world in context. In contrast, most computer vision systems encode the visual world at a uniform resolution, raising challenges for processing full-field high-resolution images efficiently. We propose a foveated vision interface (FOVI) based on the human retina and primary visual cortex, that reformats a variable-resolution retina-like sensor array into a uniformly dense, V1-like sensor manifold. Receptive fields are defined as k-nearest-neighborhoods (kNNs) on the sensor manifold, enabling kNN-convolution via a novel kernel mapping technique. We demonstrate two use cases: (1) an end-to-end kNN-convolutional architecture, and (2) a foveated adaptation of the foundational DINOv3 ViT model, leveraging low-rank adaptation (LoRA). These models provide competitive performance at a fraction of the computational cost of non-foveated baselines, opening pathways for efficient and scalable active sensing for high-resolution egocentric vision. Code and pre-trained models are available at https://github.com/nblauch/fovi and https://huggingface.co/fovi-pytorch.
☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
☆ Test-Time Conditioning with Representation-Aligned Visual Features
While representation alignment with self-supervised models has been shown to improve diffusion model training, its potential for enhancing inference-time conditioning remains largely unexplored. We introduce Representation-Aligned Guidance (REPA-G), a framework that leverages these aligned representations, with rich semantic properties, to enable test-time conditioning from features in generation. By optimizing a similarity objective (the potential) at inference, we steer the denoising process toward a conditioned representation extracted from a pre-trained feature extractor. Our method provides versatile control at multiple scales, ranging from fine-grained texture matching via single patches to broad semantic guidance using global image feature tokens. We further extend this to multi-concept composition, allowing for the faithful combination of distinct concepts. REPA-G operates entirely at inference time, offering a flexible and precise alternative to often ambiguous text prompts or coarse class labels. We theoretically justify how this guidance enables sampling from the potential-induced tilted distribution. Quantitative results on ImageNet and COCO demonstrate that our approach achieves high-quality, diverse generations. Code is available at https://github.com/valeoai/REPA-G.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ See-through: Single-image Layer Decomposition for Anime Characters
We introduce a framework that automates the transformation of static anime illustrations into manipulatable 2.5D models. Current professional workflows require tedious manual segmentation and the artistic ``hallucination'' of occluded regions to enable motion. Our approach overcomes this by decomposing a single image into fully inpainted, semantically distinct layers with inferred drawing orders. To address the scarcity of training data, we introduce a scalable engine that bootstraps high-quality supervision from commercial Live2D models, capturing pixel-perfect semantics and hidden geometry. Our methodology couples a diffusion-based Body Part Consistency Module, which enforces global geometric coherence, with a pixel-level pseudo-depth inference mechanism. This combination resolves the intricate stratification of anime characters, e.g., interleaving hair strands, allowing for dynamic layer reconstruction. We demonstrate that our approach yields high-fidelity, manipulatable models suitable for professional, real-time animation applications.
comment: 23 pages, 20 figures, preprint version only
☆ LIVE: Long-horizon Interactive Video World Modeling
Autoregressive video world models predict future visual observations conditioned on actions. While effective over short horizons, these models often struggle with long-horizon generation, as small prediction errors accumulate over time. Prior methods alleviate this by introducing pre-trained teacher models and sequence-level distribution matching, which incur additional computational cost and fail to prevent error propagation beyond the training horizon. In this work, we propose LIVE, a Long-horizon Interactive Video world modEl that enforces bounded error accumulation via a novel cycle-consistency objective, thereby eliminating the need for teacher-based distillation. Specifically, LIVE first performs a forward rollout from ground-truth frames and then applies a reverse generation process to reconstruct the initial state. The diffusion loss is subsequently computed on the reconstructed terminal state, providing an explicit constraint on long-horizon error propagation. Moreover, we provide an unified view that encompasses different approaches and introduce progressive training curriculum to stabilize training. Experiments demonstrate that LIVE achieves state-of-the-art performance on long-horizon benchmarks, generating stable, high-quality videos far beyond training rollout lengths.
comment: 18 pages, 22 figures
☆ Edge-Optimized Vision-Language Models for Underground Infrastructure Assessment
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
☆ RegionReasoner: Region-Grounded Multi-Round Visual Reasoning ICLR 2026
Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
comment: Accepted by ICLR 2026
☆ Referring Industrial Anomaly Segmentation
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction
Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
☆ MM-SCALE: Grounded Multimodal Moral Reasoning via Scalar Judgment and Listwise Alignment
Vision-Language Models (VLMs) continue to struggle to make morally salient judgments in multimodal and socially ambiguous contexts. Prior works typically rely on binary or pairwise supervision, which often fail to capture the continuous and pluralistic nature of human moral reasoning. We present MM-SCALE (Multimodal Moral Scale), a large-scale dataset for aligning VLMs with human moral preferences through 5-point scalar ratings and explicit modality grounding. Each image-scenario pair is annotated with moral acceptability scores and grounded reasoning labels by humans using an interface we tailored for data collection, enabling listwise preference optimization over ranked scenario sets. By moving from discrete to scalar supervision, our framework provides richer alignment signals and finer calibration of multimodal moral reasoning. Experiments show that VLMs fine-tuned on MM-SCALE achieve higher ranking fidelity and more stable safety calibration than those trained with binary signals.
☆ SPWOOD: Sparse Partial Weakly-Supervised Oriented Object Detection ICLR 2026
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
☆ Multi-Objective Optimization for Synthetic-to-Real Style Transfer
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
comment: Accepted in International Conference on the Applications of Evolutionary Computation (Part of EvoStar), April 2026 (EvoApplications 2026)
☆ Quasi-multimodal-based pathophysiological feature learning for retinal disease diagnosis
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
☆ KTV: Keyframes and Key Tokens Selection for Efficient Training-Free Video LLMs
Training-free video understanding leverages the strong image comprehension capabilities of pre-trained vision language models (VLMs) by treating a video as a sequence of static frames, thus obviating the need for costly video-specific training. However, this paradigm often suffers from severe visual redundancy and high computational overhead, especially when processing long videos. Crucially, existing keyframe selection strategies, especially those based on CLIP similarity, are prone to biases and may inadvertently overlook critical frames, resulting in suboptimal video comprehension. To address these significant challenges, we propose \textbf{KTV}, a novel two-stage framework for efficient and effective training-free video understanding. In the first stage, KTV performs question-agnostic keyframe selection by clustering frame-level visual features, yielding a compact, diverse, and representative subset of frames that mitigates temporal redundancy. In the second stage, KTV applies key visual token selection, pruning redundant or less informative tokens from each selected keyframe based on token importance and redundancy, which significantly reduces the number of tokens fed into the LLM. Extensive experiments on the Multiple-Choice VideoQA task demonstrate that KTV outperforms state-of-the-art training-free baselines while using significantly fewer visual tokens, \emph{e.g.}, only 504 visual tokens for a 60-min video with 10800 frames, achieving $44.8\%$ accuracy on the MLVU-Test benchmark. In particular, KTV also exceeds several training-based approaches on certain benchmarks.
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released.
☆ TIPS Over Tricks: Simple Prompts for Effective Zero-shot Anomaly Detection ICASSP'26
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
comment: This is the extended version of the paper accepted in ICASSP'26, which will be publicly available in May. Authors' contributions may vary among the versions
☆ High-Resolution Underwater Camouflaged Object Detection: GBU-UCOD Dataset and Topology-Aware and Frequency-Decoupled Networks
Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
☆ SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM NeurIPS 2024
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
comment: NeurIPS 2024
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Cut to the Mix: Simple Data Augmentation Outperforms Elaborate Ones in Limited Organ Segmentation Datasets MICCAI 2024
Multi-organ segmentation is a widely applied clinical routine and automated organ segmentation tools dramatically improve the pipeline of the radiologists. Recently, deep learning (DL) based segmentation models have shown the capacity to accomplish such a task. However, the training of the segmentation networks requires large amount of data with manual annotations, which is a major concern due to the data scarcity from clinic. Working with limited data is still common for researches on novel imaging modalities. To enhance the effectiveness of DL models trained with limited data, data augmentation (DA) is a crucial regularization technique. Traditional DA (TDA) strategies focus on basic intra-image operations, i.e. generating images with different orientations and intensity distributions. In contrast, the interimage and object-level DA operations are able to create new images from separate individuals. However, such DA strategies are not well explored on the task of multi-organ segmentation. In this paper, we investigated four possible inter-image DA strategies: CutMix, CarveMix, ObjectAug and AnatoMix, on two organ segmentation datasets. The result shows that CutMix, CarveMix and AnatoMix can improve the average dice score by 4.9, 2.0 and 1.9, compared with the state-of-the-art nnUNet without DA strategies. These results can be further improved by adding TDA strategies. It is revealed in our experiments that Cut-Mix is a robust but simple DA strategy to drive up the segmentation performance for multi-organ segmentation, even when CutMix produces intuitively 'wrong' images. Our implementation is publicly available for future benchmarks.
comment: Accepted at MICCAI 2024
☆ AffordanceGrasp-R1:Leveraging Reasoning-Based Affordance Segmentation with Reinforcement Learning for Robotic Grasping
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
comment: Preprint version
☆ Constrained Dynamic Gaussian Splatting
While Dynamic Gaussian Splatting enables high-fidelity 4D reconstruction, its deployment is severely hindered by a fundamental dilemma: unconstrained densification leads to excessive memory consumption incompatible with edge devices, whereas heuristic pruning fails to achieve optimal rendering quality under preset Gaussian budgets. In this work, we propose Constrained Dynamic Gaussian Splatting (CDGS), a novel framework that formulates dynamic scene reconstruction as a budget-constrained optimization problem to enforce a strict, user-defined Gaussian budget during training. Our key insight is to introduce a differentiable budget controller as the core optimization driver. Guided by a multi-modal unified importance score, this controller fuses geometric, motion, and perceptual cues for precise capacity regulation. To maximize the utility of this fixed budget, we further decouple the optimization of static and dynamic elements, employing an adaptive allocation mechanism that dynamically distributes capacity based on motion complexity. Furthermore, we implement a three-phase training strategy to seamlessly integrate these constraints, ensuring precise adherence to the target count. Coupled with a dual-mode hybrid compression scheme, CDGS not only strictly adheres to hardware constraints (error < 2%}) but also pushes the Pareto frontier of rate-distortion performance. Extensive experiments demonstrate that CDGS delivers optimal rendering quality under varying capacity limits, achieving over 3x compression compared to state-of-the-art methods.
☆ PnP-U3D: Plug-and-Play 3D Framework Bridging Autoregression and Diffusion for Unified Understanding and Generation
The rapid progress of large multimodal models has inspired efforts toward unified frameworks that couple understanding and generation. While such paradigms have shown remarkable success in 2D, extending them to 3D remains largely underexplored. Existing attempts to unify 3D tasks under a single autoregressive (AR) paradigm lead to significant performance degradation due to forced signal quantization and prohibitive training cost. Our key insight is that the essential challenge lies not in enforcing a unified autoregressive paradigm, but in enabling effective information interaction between generation and understanding while minimally compromising their inherent capabilities and leveraging pretrained models to reduce training cost. Guided by this perspective, we present the first unified framework for 3D understanding and generation that combines autoregression with diffusion. Specifically, we adopt an autoregressive next-token prediction paradigm for 3D understanding, and a continuous diffusion paradigm for 3D generation. A lightweight transformer bridges the feature space of large language models and the conditional space of 3D diffusion models, enabling effective cross-modal information exchange while preserving the priors learned by standalone models. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across diverse 3D understanding and generation benchmarks, while also excelling in 3D editing tasks. These results highlight the potential of unified AR+diffusion models as a promising direction for building more general-purpose 3D intelligence.
comment: Yongwei Chen and Tianyi Wei contributed equally. Project page: https://cyw-3d.github.io/PnP-U3D/
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ Interpretable Logical Anomaly Classification via Constraint Decomposition and Instruction Fine-Tuning
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
comment: 6 pages, 6 figures
☆ Semantic Routing: Exploring Multi-Layer LLM Feature Weighting for Diffusion Transformers
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ Inlier-Centric Post-Training Quantization for Object Detection Models
Object detection is pivotal in computer vision, yet its immense computational demands make deployment slow and power-hungry, motivating quantization. However, task-irrelevant morphologies such as background clutter and sensor noise induce redundant activations (or anomalies). These anomalies expand activation ranges and skew activation distributions toward task-irrelevant responses, complicating bit allocation and weakening the preservation of informative features. Without a clear criterion to distinguish anomalies, suppressing them can inadvertently discard useful information. To address this, we present InlierQ, an inlier-centric post-training quantization approach that separates anomalies from informative inliers. InlierQ computes gradient-aware volume saliency scores, classifies each volume as an inlier or anomaly, and fits a posterior distribution over these scores using the Expectation-Maximization (EM) algorithm. This design suppresses anomalies while preserving informative features. InlierQ is label-free, drop-in, and requires only 64 calibration samples. Experiments on the COCO and nuScenes benchmarks show consistent reductions in quantization error for camera-based (2D and 3D) and LiDAR-based (3D) object detection.
☆ Contextualized Visual Personalization in Vision-Language Models
Despite recent progress in vision-language models (VLMs), existing approaches often fail to generate personalized responses based on the user's specific experiences, as they lack the ability to associate visual inputs with a user's accumulated visual-textual context. We newly formalize this challenge as contextualized visual personalization, which requires the visual recognition and textual retrieval of personalized visual experiences by VLMs when interpreting new images. To address this issue, we propose CoViP, a unified framework that treats personalized image captioning as a core task for contextualized visual personalization and improves this capability through reinforcement-learning-based post-training and caption-augmented generation. We further introduce diagnostic evaluations that explicitly rule out textual shortcut solutions and verify whether VLMs truly leverage visual context. Extensive experiments demonstrate that existing open-source and proprietary VLMs exhibit substantial limitations, while CoViP not only improves personalized image captioning but also yields holistic gains across downstream personalization tasks. These results highlight CoViP as a crucial stage for enabling robust and generalizable contextualized visual personalization.
comment: Project Page: https://github.com/oyt9306/CoViP
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ HetroD: A High-Fidelity Drone Dataset and Benchmark for Autonomous Driving in Heterogeneous Traffic IEEE
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
comment: IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ ConsistentRFT: Reducing Visual Hallucinations in Flow-based Reinforcement Fine-Tuning
Reinforcement Fine-Tuning (RFT) on flow-based models is crucial for preference alignment. However, they often introduce visual hallucinations like over-optimized details and semantic misalignment. This work preliminarily explores why visual hallucinations arise and how to reduce them. We first investigate RFT methods from a unified perspective, and reveal the core problems stemming from two aspects, exploration and exploitation: (1) limited exploration during stochastic differential equation (SDE) rollouts, leading to an over-emphasis on local details at the expense of global semantics, and (2) trajectory imitation process inherent in policy gradient methods, distorting the model's foundational vector field and its cross-step consistency. Building on this, we propose ConsistentRFT, a general framework to mitigate these hallucinations. Specifically, we design a Dynamic Granularity Rollout (DGR) mechanism to balance exploration between global semantics and local details by dynamically scheduling different noise sources. We then introduce a Consistent Policy Gradient Optimization (CPGO) that preserves the model's consistency by aligning the current policy with a more stable prior. Extensive experiments demonstrate that ConsistentRFT significantly mitigates visual hallucinations, achieving average reductions of 49\% for low-level and 38\% for high-level perceptual hallucinations. Furthermore, ConsistentRFT outperforms other RFT methods on out-of-domain metrics, showing an improvement of 5.1\% (v.s. the baseline's decrease of -0.4\%) over FLUX1.dev. This is \href{https://xiaofeng-tan.github.io/projects/ConsistentRFT}{Project Page}.
☆ Origin Lens: A Privacy-First Mobile Framework for Cryptographic Image Provenance and AI Detection
The proliferation of generative AI poses challenges for information integrity assurance, requiring systems that connect model governance with end-user verification. We present Origin Lens, a privacy-first mobile framework that targets visual disinformation through a layered verification architecture. Unlike server-side detection systems, Origin Lens performs cryptographic image provenance verification and AI detection locally on the device via a Rust/Flutter hybrid architecture. Our system integrates multiple signals - including cryptographic provenance, generative model fingerprints, and optional retrieval-augmented verification - to provide users with graded confidence indicators at the point of consumption. We discuss the framework's alignment with regulatory requirements (EU AI Act, DSA) and its role in verification infrastructure that complements platform-level mechanisms.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ UnHype: CLIP-Guided Hypernetworks for Dynamic LoRA Unlearning
Recent advances in large-scale diffusion models have intensified concerns about their potential misuse, particularly in generating realistic yet harmful or socially disruptive content. This challenge has spurred growing interest in effective machine unlearning, the process of selectively removing specific knowledge or concepts from a model without compromising its overall generative capabilities. Among various approaches, Low-Rank Adaptation (LoRA) has emerged as an effective and efficient method for fine-tuning models toward targeted unlearning. However, LoRA-based methods often exhibit limited adaptability to concept semantics and struggle to balance removing closely related concepts with maintaining generalization across broader meanings. Moreover, these methods face scalability challenges when multiple concepts must be erased simultaneously. To address these limitations, we introduce UnHype, a framework that incorporates hypernetworks into single- and multi-concept LoRA training. The proposed architecture can be directly plugged into Stable Diffusion as well as modern flow-based text-to-image models, where it demonstrates stable training behavior and effective concept control. During inference, the hypernetwork dynamically generates adaptive LoRA weights based on the CLIP embedding, enabling more context-aware, scalable unlearning. We evaluate UnHype across several challenging tasks, including object erasure, celebrity erasure, and explicit content removal, demonstrating its effectiveness and versatility. Repository: https://github.com/gmum/UnHype.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Seeing Through the Chain: Mitigate Hallucination in Multimodal Reasoning Models via CoT Compression and Contrastive Preference Optimization
While multimodal reasoning models (MLRMs) have exhibited impressive capabilities, they remain prone to hallucinations, and effective solutions are still underexplored. In this paper, we experimentally analyze the hallucination cause and propose C3PO, a training-based mitigation framework comprising \textbf{C}hain-of-Thought \textbf{C}ompression and \textbf{C}ontrastive \textbf{P}reference \textbf{O}ptimization. Firstly, we identify that introducing reasoning mechanisms exacerbates models' reliance on language priors while overlooking visual inputs, which can produce CoTs with reduced visual cues but redundant text tokens. To this end, we propose to selectively filter redundant thinking tokens for a more compact and signal-efficient CoT representation that preserves task-relevant information while suppressing noise. In addition, we observe that the quality of the reasoning trace largely determines whether hallucination emerges in subsequent responses. To leverage this insight, we introduce a reasoning-enhanced preference tuning scheme that constructs training pairs using high-quality AI feedback. We further design a multimodal hallucination-inducing mechanism that elicits models' inherent hallucination patterns via carefully crafted inducers, yielding informative negative signals for contrastive correction. We provide theoretical justification for the effectiveness and demonstrate consistent hallucination reduction across diverse MLRMs and benchmarks.
☆ PlanTRansformer: Unified Prediction and Planning with Goal-conditioned Transformer IEEE
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
comment: Submitted and accepted at IEEE IV 2026
☆ Unifying Watermarking via Dimension-Aware Mapping
Deep watermarking methods often share similar encoder-decoder architectures, yet differ substantially in their functional behaviors. We propose DiM, a new multi-dimensional watermarking framework that formulates watermarking as a dimension-aware mapping problem, thereby unifying existing watermarking methods at the functional level. Under DiM, watermark information is modeled as payloads of different dimensionalities, including one-dimensional binary messages, two-dimensional spatial masks, and three-dimensional spatiotemporal structures. We find that the dimensional configuration of embedding and extraction largely determines the resulting watermarking behavior. Same-dimensional mappings preserve payload structure and support fine-grained control, while cross-dimensional mappings enable spatial or spatiotemporal localization. We instantiate DiM in the video domain, where spatiotemporal representations enable a broader set of dimension mappings. Experiments demonstrate that varying only the embedding and extraction dimensions, without architectural changes, leads to different watermarking capabilities, including spatiotemporal tamper localization, local embedding control, and recovery of temporal order under frame disruptions.
comment: 29 pages, 25 figures
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ Multi-Resolution Alignment for Voxel Sparsity in Camera-Based 3D Semantic Scene Completion
Camera-based 3D semantic scene completion (SSC) offers a cost-effective solution for assessing the geometric occupancy and semantic labels of each voxel in the surrounding 3D scene with image inputs, providing a voxel-level scene perception foundation for the perception-prediction-planning autonomous driving systems. Although significant progress has been made in existing methods, their optimization rely solely on the supervision from voxel labels and face the challenge of voxel sparsity as a large portion of voxels in autonomous driving scenarios are empty, which limits both optimization efficiency and model performance. To address this issue, we propose a \textit{Multi-Resolution Alignment (MRA)} approach to mitigate voxel sparsity in camera-based 3D semantic scene completion, which exploits the scene and instance level alignment across multi-resolution 3D features as auxiliary supervision. Specifically, we first propose the Multi-resolution View Transformer module, which projects 2D image features into multi-resolution 3D features and aligns them at the scene level through fusing discriminative seed features. Furthermore, we design the Cubic Semantic Anisotropy module to identify the instance-level semantic significance of each voxel, accounting for the semantic differences of a specific voxel against its neighboring voxels within a cubic area. Finally, we devise a Critical Distribution Alignment module, which selects critical voxels as instance-level anchors with the guidance of cubic semantic anisotropy, and applies a circulated loss for auxiliary supervision on the critical feature distribution consistency across different resolutions. The code is available at https://github.com/PKU-ICST-MIPL/MRA_TIP.
comment: 15 pages, 6 figures, accepted by TIP 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ Z3D: Zero-Shot 3D Visual Grounding from Images
3D visual grounding (3DVG) aims to localize objects in a 3D scene based on natural language queries. In this work, we explore zero-shot 3DVG from multi-view images alone, without requiring any geometric supervision or object priors. We introduce Z3D, a universal grounding pipeline that flexibly operates on multi-view images while optionally incorporating camera poses and depth maps. We identify key bottlenecks in prior zero-shot methods causing significant performance degradation and address them with (i) a state-of-the-art zero-shot 3D instance segmentation method to generate high-quality 3D bounding box proposals and (ii) advanced reasoning via prompt-based segmentation, which utilizes full capabilities of modern VLMs. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that our approach achieves state-of-the-art performance among zero-shot methods. Code is available at https://github.com/col14m/z3d .
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Composable Visual Tokenizers with Generator-Free Diagnostics of Learnability
We introduce CompTok, a training framework for learning visual tokenizers whose tokens are enhanced for compositionality. CompTok uses a token-conditioned diffusion decoder. By employing an InfoGAN-style objective, where we train a recognition model to predict the tokens used to condition the diffusion decoder using the decoded images, we enforce the decoder to not ignore any of the tokens. To promote compositional control, besides the original images, CompTok also trains on tokens formed by swapping token subsets between images, enabling more compositional control of the token over the decoder. As the swapped tokens between images do not have ground truth image targets, we apply a manifold constraint via an adversarial flow regularizer to keep unpaired swap generations on the natural-image distribution. The resulting tokenizer not only achieves state-of-the-art performance on image class-conditioned generation, but also demonstrates properties such as swapping tokens between images to achieve high level semantic editing of an image. Additionally, we propose two metrics that measures the landscape of the token space that can be useful to describe not only the compositionality of the tokens, but also how easy to learn the landscape is for a generator to be trained on this space. We show in experiments that CompTok can improve on both of the metrics as well as supporting state-of-the-art generators for class conditioned generation.
☆ PWAVEP: Purifying Imperceptible Adversarial Perturbations in 3D Point Clouds via Spectral Graph Wavelets WWW 2026
Recent progress in adversarial attacks on 3D point clouds, particularly in achieving spatial imperceptibility and high attack performance, presents significant challenges for defenders. Current defensive approaches remain cumbersome, often requiring invasive model modifications, expensive training procedures or auxiliary data access. To address these threats, in this paper, we propose a plug-and-play and non-invasive defense mechanism in the spectral domain, grounded in a theoretical and empirical analysis of the relationship between imperceptible perturbations and high-frequency spectral components. Building upon these insights, we introduce a novel purification framework, termed PWAVEP, which begins by computing a spectral graph wavelet domain saliency score and local sparsity score for each point. Guided by these values, PWAVEP adopts a hierarchical strategy, it eliminates the most salient points, which are identified as hardly recoverable adversarial outliers. Simultaneously, it applies a spectral filtering process to a broader set of moderately salient points. This process leverages a graph wavelet transform to attenuate high-frequency coefficients associated with the targeted points, thereby effectively suppressing adversarial noise. Extensive evaluations demonstrate that the proposed PWAVEP achieves superior accuracy and robustness compared to existing approaches, advancing the state-of-the-art in 3D point cloud purification. Code and datasets are available at https://github.com/a772316182/pwavep
comment: Accepted by WWW 2026
☆ Pi-GS: Sparse-View Gaussian Splatting with Dense π^3 Initialization
Novel view synthesis has evolved rapidly, advancing from Neural Radiance Fields to 3D Gaussian Splatting (3DGS), which offers real-time rendering and rapid training without compromising visual fidelity. However, 3DGS relies heavily on accurate camera poses and high-quality point cloud initialization, which are difficult to obtain in sparse-view scenarios. While traditional Structure from Motion (SfM) pipelines often fail in these settings, existing learning-based point estimation alternatives typically require reliable reference views and remain sensitive to pose or depth errors. In this work, we propose a robust method utilizing π^3, a reference-free point cloud estimation network. We integrate dense initialization from π^3 with a regularization scheme designed to mitigate geometric inaccuracies. Specifically, we employ uncertainty-guided depth supervision, normal consistency loss, and depth warping. Experimental results demonstrate that our approach achieves state-of-the-art performance on the Tanks and Temples, LLFF, DTU, and MipNeRF360 datasets.
☆ MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Invisible Clean-Label Backdoor Attacks for Generative Data Augmentation
With the rapid advancement of image generative models, generative data augmentation has become an effective way to enrich training images, especially when only small-scale datasets are available. At the same time, in practical applications, generative data augmentation can be vulnerable to clean-label backdoor attacks, which aim to bypass human inspection. However, based on theoretical analysis and preliminary experiments, we observe that directly applying existing pixel-level clean-label backdoor attack methods (e.g., COMBAT) to generated images results in low attack success rates. This motivates us to move beyond pixel-level triggers and focus instead on the latent feature level. To this end, we propose InvLBA, an invisible clean-label backdoor attack method for generative data augmentation by latent perturbation. We theoretically prove that the generalization of the clean accuracy and attack success rates of InvLBA can be guaranteed. Experiments on multiple datasets show that our method improves the attack success rate by 46.43% on average, with almost no reduction in clean accuracy and high robustness against SOTA defense methods.
☆ PQTNet: Pixel-wise Quantitative Thermography Neural Network for Estimating Defect Depth in Polylactic Acid Parts by Additive Manufacturing
Defect depth quantification in additively manufactured (AM) components remains a significant challenge for non-destructive testing (NDT). This study proposes a Pixel-wise Quantitative Thermography Neural Network (PQT-Net) to address this challenge for polylactic acid (PLA) parts. A key innovation is a novel data augmentation strategy that reconstructs thermal sequence data into two-dimensional stripe images, preserving the complete temporal evolution of heat diffusion for each pixel. The PQT-Net architecture incorporates a pre-trained EfficientNetV2-S backbone and a custom Residual Regression Head (RRH) with learnable parameters to refine outputs. Comparative experiments demonstrate the superiority of PQT-Net over other deep learning models, achieving a minimum Mean Absolute Error (MAE) of 0.0094 mm and a coefficient of determination (R) exceeding 99%. The high precision of PQT-Net underscores its potential for robust quantitative defect characterization in AM.
comment: Under review
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ LEVIO: Lightweight Embedded Visual Inertial Odometry for Resource-Constrained Devices IEEE
Accurate, infrastructure-less sensor systems for motion tracking are essential for mobile robotics and augmented reality (AR) applications. The most popular state-of-the-art visual-inertial odometry (VIO) systems, however, are too computationally demanding for resource-constrained hardware, such as micro-drones and smart glasses. This work presents LEVIO, a fully featured VIO pipeline optimized for ultra-low-power compute platforms, allowing six-degrees-of-freedom (DoF) real-time sensing. LEVIO incorporates established VIO components such as Oriented FAST and Rotated BRIEF (ORB) feature tracking and bundle adjustment, while emphasizing a computationally efficient architecture with parallelization and low memory usage to suit embedded microcontrollers and low-power systems-on-chip (SoCs). The paper proposes and details the algorithmic design choices and the hardware-software co-optimization approach, and presents real-time performance on resource-constrained hardware. LEVIO is validated on a parallel-processing ultra-low-power RISC-V SoC, achieving 20 FPS while consuming less than 100 mW, and benchmarked against public VIO datasets, offering a compelling balance between efficiency and accuracy. To facilitate reproducibility and adoption, the complete implementation is released as open-source.
comment: This article has been accepted for publication in the IEEE Sensors Journal (JSEN)
☆ A3-TTA: Adaptive Anchor Alignment Test-Time Adaptation for Image Segmentation IEEE
Test-Time Adaptation (TTA) offers a practical solution for deploying image segmentation models under domain shift without accessing source data or retraining. Among existing TTA strategies, pseudo-label-based methods have shown promising performance. However, they often rely on perturbation-ensemble heuristics (e.g., dropout sampling, test-time augmentation, Gaussian noise), which lack distributional grounding and yield unstable training signals. This can trigger error accumulation and catastrophic forgetting during adaptation. To address this, we propose \textbf{A3-TTA}, a TTA framework that constructs reliable pseudo-labels through anchor-guided supervision. Specifically, we identify well-predicted target domain images using a class compact density metric, under the assumption that confident predictions imply distributional proximity to the source domain. These anchors serve as stable references to guide pseudo-label generation, which is further regularized via semantic consistency and boundary-aware entropy minimization. Additionally, we introduce a self-adaptive exponential moving average strategy to mitigate label noise and stabilize model update during adaptation. Evaluated on both multi-domain medical images (heart structure and prostate segmentation) and natural images, A3-TTA significantly improves average Dice scores by 10.40 to 17.68 percentage points compared to the source model, outperforming several state-of-the-art TTA methods under different segmentation model architectures. A3-TTA also excels in continual TTA, maintaining high performance across sequential target domains with strong anti-forgetting ability. The code will be made publicly available at https://github.com/HiLab-git/A3-TTA.
comment: Accepted by IEEE Transactions on Image Processing
☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ LaVPR: Benchmarking Language and Vision for Place Recognition
Visual Place Recognition (VPR) often fails under extreme environmental changes and perceptual aliasing. Furthermore, standard systems cannot perform "blind" localization from verbal descriptions alone, a capability needed for applications such as emergency response. To address these challenges, we introduce LaVPR, a large-scale benchmark that extends existing VPR datasets with over 650,000 rich natural-language descriptions. Using LaVPR, we investigate two paradigms: Multi-Modal Fusion for enhanced robustness and Cross-Modal Retrieval for language-based localization. Our results show that language descriptions yield consistent gains in visually degraded conditions, with the most significant impact on smaller backbones. Notably, adding language allows compact models to rival the performance of much larger vision-only architectures. For cross-modal retrieval, we establish a baseline using Low-Rank Adaptation (LoRA) and Multi-Similarity loss, which substantially outperforms standard contrastive methods across vision-language models. Ultimately, LaVPR enables a new class of localization systems that are both resilient to real-world stochasticity and practical for resource-constrained deployment. Our dataset and code are available at https://github.com/oferidan1/LaVPR.
☆ InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent Video Generation
Autonomous driving relies on robust models trained on high-quality, large-scale multi-view driving videos. While world models offer a cost-effective solution for generating realistic driving videos, they struggle to maintain instance-level temporal consistency and spatial geometric fidelity. To address these challenges, we propose InstaDrive, a novel framework that enhances driving video realism through two key advancements: (1) Instance Flow Guider, which extracts and propagates instance features across frames to enforce temporal consistency, preserving instance identity over time. (2) Spatial Geometric Aligner, which improves spatial reasoning, ensures precise instance positioning, and explicitly models occlusion hierarchies. By incorporating these instance-aware mechanisms, InstaDrive achieves state-of-the-art video generation quality and enhances downstream autonomous driving tasks on the nuScenes dataset. Additionally, we utilize CARLA's autopilot to procedurally and stochastically simulate rare but safety-critical driving scenarios across diverse maps and regions, enabling rigorous safety evaluation for autonomous systems. Our project page is https://shanpoyang654.github.io/InstaDrive/page.html.
☆ EventFlash: Towards Efficient MLLMs for Event-Based Vision
Event-based multimodal large language models (MLLMs) enable robust perception in high-speed and low-light scenarios, addressing key limitations of frame-based MLLMs. However, current event-based MLLMs often rely on dense image-like processing paradigms, overlooking the spatiotemporal sparsity of event streams and resulting in high computational cost. In this paper, we propose EventFlash, a novel and efficient MLLM to explore spatiotemporal token sparsification for reducing data redundancy and accelerating inference. Technically, we build EventMind, a large-scale and scene-diverse dataset with over 500k instruction sets, providing both short and long event stream sequences to support our curriculum training strategy. We then present an adaptive temporal window aggregation module for efficient temporal sampling, which adaptively compresses temporal tokens while retaining key temporal cues. Finally, a sparse density-guided attention module is designed to improve spatial token efficiency by selecting informative regions and suppressing empty or sparse areas. Experimental results show that EventFlash achieves a $12.4\times$ throughput improvement over the baseline (EventFlash-Zero) while maintaining comparable performance. It supports long-range event stream processing with up to 1,000 bins, significantly outperforming the 5-bin limit of EventGPT. We believe EventFlash serves as an efficient foundation model for event-based vision.
☆ Spiral RoPE: Rotate Your Rotary Positional Embeddings in the 2D Plane
Rotary Position Embedding (RoPE) is the de facto positional encoding in large language models due to its ability to encode relative positions and support length extrapolation. When adapted to vision transformers, the standard axial formulation decomposes two-dimensional spatial positions into horizontal and vertical components, implicitly restricting positional encoding to axis-aligned directions. We identify this directional constraint as a fundamental limitation of the standard axial 2D RoPE, which hinders the modeling of oblique spatial relationships that naturally exist in natural images. To overcome this limitation, we propose Spiral RoPE, a simple yet effective extension that enables multi-directional positional encoding by partitioning embedding channels into multiple groups associated with uniformly distributed directions. Each group is rotated according to the projection of the patch position onto its corresponding direction, allowing spatial relationships to be encoded beyond the horizontal and vertical axes. Across a wide range of vision tasks including classification, segmentation, and generation, Spiral RoPE consistently improves performance. Qualitative analysis of attention maps further show that Spiral RoPE exhibits more concentrated activations on semantically relevant objects and better respects local object boundaries, highlighting the importance of multi-directional positional encoding in vision transformers.
☆ PokeFusion Attention: Enhancing Reference-Free Style-Conditioned Generation IJCNN 2026
This paper studies reference-free style-conditioned character generation in text-to-image diffusion models, where high-quality synthesis requires both stable character structure and consistent, fine-grained style expression across diverse prompts. Existing approaches primarily rely on text-only prompting, which is often under-specified for visual style and tends to produce noticeable style drift and geometric inconsistency, or introduce reference-based adapters that depend on external images at inference time, increasing architectural complexity and limiting deployment flexibility.We propose PokeFusion Attention, a lightweight decoder-level cross-attention mechanism that fuses textual semantics with learned style embeddings directly inside the diffusion decoder. By decoupling text and style conditioning at the attention level, our method enables effective reference-free stylized generation while keeping the pretrained diffusion backbone fully frozen.PokeFusion Attention trains only decoder cross-attention layers together with a compact style projection module, resulting in a parameter-efficient and plug-and-play control component that can be easily integrated into existing diffusion pipelines and transferred across different backbones.Experiments on a stylized character generation benchmark (Pokemon-style) demonstrate that our method consistently improves style fidelity, semantic alignment, and character shape consistency compared with representative adapter-based baselines, while maintaining low parameter overhead and inference-time simplicity.
comment: 7 pages, 5 figures. Under review at IJCNN 2026
☆ FARTrack: Fast Autoregressive Visual Tracking with High Performance
Inference speed and tracking performance are two critical evaluation metrics in the field of visual tracking. However, high-performance trackers often suffer from slow processing speeds, making them impractical for deployment on resource-constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-Regressive Tracking framework. Since autoregression emphasizes the temporal nature of the trajectory sequence, it can maintain high performance while achieving efficient execution across various devices. FARTrack introduces Task-Specific Self-Distillation and Inter-frame Autoregressive Sparsification, designed from the perspectives of shallow-yet-accurate distillation and redundant-to-essential token optimization, respectively. Task-Specific Self-Distillation achieves model compression by distilling task-specific tokens layer by layer, enhancing the model's inference speed while avoiding suboptimal manual teacher-student layer pairs assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially condenses multiple templates, avoiding additional runtime overhead while learning a temporally-global optimal sparsification strategy. FARTrack demonstrates outstanding speed and competitive performance. It delivers an AO of 70.6% on GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on the GPU and 121 FPS on the CPU.
☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
☆ VIRAL: Visual In-Context Reasoning via Analogy in Diffusion Transformers
Replicating In-Context Learning (ICL) in computer vision remains challenging due to task heterogeneity. We propose \textbf{VIRAL}, a framework that elicits visual reasoning from a pre-trained image editing model by formulating ICL as conditional generation via visual analogy ($x_s : x_t :: x_q : y_q$). We adapt a frozen Diffusion Transformer (DiT) using role-aware multi-image conditioning and introduce a Mixture-of-Experts LoRA to mitigate gradient interference across diverse tasks. Additionally, to bridge the gaps in current visual context datasets, we curate a large-scale dataset spanning perception, restoration, and editing. Experiments demonstrate that VIRAL outperforms existing methods, validating that a unified V-ICL paradigm can handle the majority of visual tasks, including open-domain editing. Our code is available at https://anonymous.4open.science/r/VIRAL-744A
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ WebSplatter: Enabling Cross-Device Efficient Gaussian Splatting in Web Browsers via WebGPU
We present WebSplatter, an end-to-end GPU rendering pipeline for the heterogeneous web ecosystem. Unlike naive ports, WebSplatter introduces a wait-free hierarchical radix sort that circumvents the lack of global atomics in WebGPU, ensuring deterministic execution across diverse hardware. Furthermore, we propose an opacity-aware geometry culling stage that dynamically prunes splats before rasterization, significantly reducing overdraw and peak memory footprint. Evaluation demonstrates that WebSplatter consistently achieves 1.2$\times$ to 4.5$\times$ speedups over state-of-the-art web viewers.
☆ Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ From Single Scan to Sequential Consistency: A New Paradigm for LIDAR Relocalization
LiDAR relocalization aims to estimate the global 6-DoF pose of a sensor in the environment. However, existing regression-based approaches are prone to dynamic or ambiguous scenarios, as they either solely rely on single-frame inference or neglect the spatio-temporal consistency across scans. In this paper, we propose TempLoc, a new LiDAR relocalization framework that enhances the robustness of localization by effectively modeling sequential consistency. Specifically, a Global Coordinate Estimation module is first introduced to predict point-wise global coordinates and associated uncertainties for each LiDAR scan. A Prior Coordinate Generation module is then presented to estimate inter-frame point correspondences by the attention mechanism. Lastly, an Uncertainty-Guided Coordinate Fusion module is deployed to integrate both predictions of point correspondence in an end-to-end fashion, yielding a more temporally consistent and accurate global 6-DoF pose. Experimental results on the NCLT and Oxford Robot-Car benchmarks show that our TempLoc outperforms stateof-the-art methods by a large margin, demonstrating the effectiveness of temporal-aware correspondence modeling in LiDAR relocalization. Our code will be released soon.
comment: Nothing
☆ LSGQuant: Layer-Sensitivity Guided Quantization for One-Step Diffusion Real-World Video Super-Resolution
One-Step Diffusion Models have demonstrated promising capability and fast inference in video super-resolution (VSR) for real-world. Nevertheless, the substantial model size and high computational cost of Diffusion Transformers (DiTs) limit downstream applications. While low-bit quantization is a common approach for model compression, the effectiveness of quantized models is challenged by the high dynamic range of input latent and diverse layer behaviors. To deal with these challenges, we introduce LSGQuant, a layer-sensitivity guided quantizing approach for one-step diffusion-based real-world VSR. Our method incorporates a Dynamic Range Adaptive Quantizer (DRAQ) to fit video token activations. Furthermore, we estimate layer sensitivity and implement a Variance-Oriented Layer Training Strategy (VOLTS) by analyzing layer-wise statistics in calibration. We also introduce Quantization-Aware Optimization (QAO) to jointly refine the quantized branch and a retained high-precision branch. Extensive experiments demonstrate that our method has nearly performance to origin model with full-precision and significantly exceeds existing quantization techniques. Code is available at: https://github.com/zhengchen1999/LSGQuant.
comment: Code is available at: https://github.com/zhengchen1999/LSGQuant
☆ BinaryDemoire: Moiré-Aware Binarization for Image Demoiréing
Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
comment: Code is available at: https://github.com/zhengchen1999/BinaryDemoire
☆ Human-in-the-loop Adaptation in Group Activity Feature Learning for Team Sports Video Retrieval
This paper proposes human-in-the-loop adaptation for Group Activity Feature Learning (GAFL) without group activity annotations. This human-in-the-loop adaptation is employed in a group-activity video retrieval framework to improve its retrieval performance. Our method initially pre-trains the GAF space based on the similarity of group activities in a self-supervised manner, unlike prior work that classifies videos into pre-defined group activity classes in a supervised learning manner. Our interactive fine-tuning process updates the GAF space to allow a user to better retrieve videos similar to query videos given by the user. In this fine-tuning, our proposed data-efficient video selection process provides several videos, which are selected from a video database, to the user in order to manually label these videos as positive or negative. These labeled videos are used to update (i.e., fine-tune) the GAF space, so that the positive and negative videos move closer to and farther away from the query videos through contrastive learning. Our comprehensive experimental results on two team sports datasets validate that our method significantly improves the retrieval performance. Ablation studies also demonstrate that several components in our human-in-the-loop adaptation contribute to the improvement of the retrieval performance. Code: https://github.com/chihina/GAFL-FINE-CVIU.
comment: Accepted to Computer Vision and Image Understanding (CVIU)
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ Diversity-Preserved Distribution Matching Distillation for Fast Visual Synthesis
Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
☆ FSOD-VFM: Few-Shot Object Detection with Vision Foundation Models and Graph Diffusion ICLR 2026
In this paper, we present FSOD-VFM: Few-Shot Object Detectors with Vision Foundation Models, a framework that leverages vision foundation models to tackle the challenge of few-shot object detection. FSOD-VFM integrates three key components: a universal proposal network (UPN) for category-agnostic bounding box generation, SAM2 for accurate mask extraction, and DINOv2 features for efficient adaptation to new object categories. Despite the strong generalization capabilities of foundation models, the bounding boxes generated by UPN often suffer from overfragmentation, covering only partial object regions and leading to numerous small, false-positive proposals rather than accurate, complete object detections. To address this issue, we introduce a novel graph-based confidence reweighting method. In our approach, predicted bounding boxes are modeled as nodes in a directed graph, with graph diffusion operations applied to propagate confidence scores across the network. This reweighting process refines the scores of proposals, assigning higher confidence to whole objects and lower confidence to local, fragmented parts. This strategy improves detection granularity and effectively reduces the occurrence of false-positive bounding box proposals. Through extensive experiments on Pascal-5$^i$, COCO-20$^i$, and CD-FSOD datasets, we demonstrate that our method substantially outperforms existing approaches, achieving superior performance without requiring additional training. Notably, on the challenging CD-FSOD dataset, which spans multiple datasets and domains, our FSOD-VFM achieves 31.6 AP in the 10-shot setting, substantially outperforming previous training-free methods that reach only 21.4 AP. Code is available at: https://intellindust-ai-lab.github.io/projects/FSOD-VFM.
comment: Accepted by ICLR 2026. Code is available at: \url{https://intellindust-ai-lab.github.io/projects/FSOD-VFM}
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ FinMTM: A Multi-Turn Multimodal Benchmark for Financial Reasoning and Agent Evaluation
The financial domain poses substantial challenges for vision-language models (VLMs) due to specialized chart formats and knowledge-intensive reasoning requirements. However, existing financial benchmarks are largely single-turn and rely on a narrow set of question formats, limiting comprehensive evaluation in realistic application scenarios. To address this gap, we propose FinMTM, a multi-turn multimodal benchmark that expands diversity along both data and task dimensions. On the data side, we curate and annotate 11{,}133 bilingual (Chinese and English) financial QA pairs grounded in financial visuals, including candlestick charts, statistical plots, and report figures. On the task side, FinMTM covers single- and multiple-choice questions, multi-turn open-ended dialogues, and agent-based tasks. We further design task-specific evaluation protocols, including a set-overlap scoring rule for multiple-choice questions, a weighted combination of turn-level and session-level scores for multi-turn dialogues, and a composite metric that integrates planning quality with final outcomes for agent tasks. Extensive experimental evaluation of 22 VLMs reveal their limitations in fine-grained visual perception, long-context reasoning, and complex agent workflows.
☆ Flexible Geometric Guidance for Probabilistic Human Pose Estimation with Diffusion Models
3D human pose estimation from 2D images is a challenging problem due to depth ambiguity and occlusion. Because of these challenges the task is underdetermined, where there exists multiple -- possibly infinite -- poses that are plausible given the image. Despite this, many prior works assume the existence of a deterministic mapping and estimate a single pose given an image. Furthermore, methods based on machine learning require a large amount of paired 2D-3D data to train and suffer from generalization issues to unseen scenarios. To address both of these issues, we propose a framework for pose estimation using diffusion models, which enables sampling from a probability distribution over plausible poses which are consistent with a 2D image. Our approach falls under the guidance framework for conditional generation, and guides samples from an unconditional diffusion model, trained only on 3D data, using the gradients of the heatmaps from a 2D keypoint detector. We evaluate our method on the Human 3.6M dataset under best-of-$m$ multiple hypothesis evaluation, showing state-of-the-art performance among methods which do not require paired 2D-3D data for training. We additionally evaluate the generalization ability using the MPI-INF-3DHP and 3DPW datasets and demonstrate competitive performance. Finally, we demonstrate the flexibility of our framework by using it for novel tasks including pose generation and pose completion, without the need to train bespoke conditional models. We make code available at https://github.com/fsnelgar/diffusion_pose .
☆ Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks
Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Gromov Wasserstein Optimal Transport for Semantic Correspondences
Establishing correspondences between image pairs is a long studied problem in computer vision. With recent large-scale foundation models showing strong zero-shot performance on downstream tasks including classification and segmentation, there has been interest in using the internal feature maps of these models for the semantic correspondence task. Recent works observe that features from DINOv2 and Stable Diffusion (SD) are complementary, the former producing accurate but sparse correspondences, while the latter produces spatially consistent correspondences. As a result, current state-of-the-art methods for semantic correspondence involve combining features from both models in an ensemble. While the performance of these methods is impressive, they are computationally expensive, requiring evaluating feature maps from large-scale foundation models. In this work we take a different approach, instead replacing SD features with a superior matching algorithm which is imbued with the desirable spatial consistency property. Specifically, we replace the standard nearest neighbours matching with an optimal transport algorithm that includes a Gromov Wasserstein spatial smoothness prior. We show that we can significantly boost the performance of the DINOv2 baseline, and be competitive and sometimes surpassing state-of-the-art methods using Stable Diffusion features, while being 5--10x more efficient. We make code available at https://github.com/fsnelgar/semantic_matching_gwot .
☆ Neural Predictor-Corrector: Solving Homotopy Problems with Reinforcement Learning
The Homotopy paradigm, a general principle for solving challenging problems, appears across diverse domains such as robust optimization, global optimization, polynomial root-finding, and sampling. Practical solvers for these problems typically follow a predictor-corrector (PC) structure, but rely on hand-crafted heuristics for step sizes and iteration termination, which are often suboptimal and task-specific. To address this, we unify these problems under a single framework, which enables the design of a general neural solver. Building on this unified view, we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted heuristics with automatically learned policies. NPC formulates policy selection as a sequential decision-making problem and leverages reinforcement learning to automatically discover efficient strategies. To further enhance generalization, we introduce an amortized training mechanism, enabling one-time offline training for a class of problems and efficient online inference on new instances. Experiments on four representative homotopy problems demonstrate that our method generalizes effectively to unseen instances. It consistently outperforms classical and specialized baselines in efficiency while demonstrating superior stability across tasks, highlighting the value of unifying homotopy methods into a single neural framework.
☆ A generalizable large-scale foundation model for musculoskeletal radiographs
Artificial intelligence (AI) has shown promise in detecting and characterizing musculoskeletal diseases from radiographs. However, most existing models remain task-specific, annotation-dependent, and limited in generalizability across diseases and anatomical regions. Although a generalizable foundation model trained on large-scale musculoskeletal radiographs is clinically needed, publicly available datasets remain limited in size and lack sufficient diversity to enable training across a wide range of musculoskeletal conditions and anatomical sites. Here, we present SKELEX, a large-scale foundation model for musculoskeletal radiographs, trained using self-supervised learning on 1.2 million diverse, condition-rich images. The model was evaluated on 12 downstream diagnostic tasks and generally outperformed baselines in fracture detection, osteoarthritis grading, and bone tumor classification. Furthermore, SKELEX demonstrated zero-shot abnormality localization, producing error maps that identified pathologic regions without task-specific training. Building on this capability, we developed an interpretable, region-guided model for predicting bone tumors, which maintained robust performance on independent external datasets and was deployed as a publicly accessible web application. Overall, SKELEX provides a scalable, label-efficient, and generalizable AI framework for musculoskeletal imaging, establishing a foundation for both clinical translation and data-efficient research in musculoskeletal radiology.
☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding IEEE
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at \href{https://github.com/sunoh-kim/gbo}{https://github.com/sunoh-kim/gbo}.
comment: Accepted in IEEE TMM
☆ JRDB-Pose3D: A Multi-person 3D Human Pose and Shape Estimation Dataset for Robotics
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
☆ IVC-Prune: Revealing the Implicit Visual Coordinates in LVLMs for Vision Token Pruning ICLR 2026
Large Vision-Language Models (LVLMs) achieve impressive performance across multiple tasks. A significant challenge, however, is their prohibitive inference cost when processing high-resolution visual inputs. While visual token pruning has emerged as a promising solution, existing methods that primarily focus on semantic relevance often discard tokens that are crucial for spatial reasoning. We address this gap through a novel insight into \emph{how LVLMs process spatial reasoning}. Specifically, we reveal that LVLMs implicitly establish visual coordinate systems through Rotary Position Embeddings (RoPE), where specific token positions serve as \textbf{implicit visual coordinates} (IVC tokens) that are essential for spatial reasoning. Based on this insight, we propose \textbf{IVC-Prune}, a training-free, prompt-aware pruning strategy that retains both IVC tokens and semantically relevant foreground tokens. IVC tokens are identified by theoretically analyzing the mathematical properties of RoPE, targeting positions at which its rotation matrices approximate identity matrix or the $90^\circ$ rotation matrix. Foreground tokens are identified through a robust two-stage process: semantic seed discovery followed by contextual refinement via value-vector similarity. Extensive evaluations across four representative LVLMs and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by approximately 50\% while maintaining $\geq$ 99\% of the original performance and even achieving improvements on several benchmarks. Source codes are available at https://github.com/FireRedTeam/IVC-Prune.
comment: Accepted to ICLR 2026
☆ SAFE-KD: Risk-Controlled Early-Exit Distillation for Vision Backbones IJCNN
Early-exit networks reduce inference cost by allowing ``easy'' inputs to stop early, but practical deployment hinges on knowing \emph{when} early exit is safe. We introduce SAFE-KD, a universal multi-exit wrapper for modern vision backbones that couples hierarchical distillation with \emph{conformal risk control}. SAFE-KD attaches lightweight exit heads at intermediate depths, distills a strong teacher into all exits via Decoupled Knowledge Distillation (DKD), and enforces deep-to-shallow consistency between exits. At inference, we calibrate per-exit stopping thresholds on a held-out set using conformal risk control (CRC) to guarantee a user-specified \emph{selective} misclassification risk (among the samples that exit early) under exchangeability. Across multiple datasets and architectures, SAFE-KD yields improved accuracy compute trade-offs, stronger calibration, and robust performance under corruption while providing finite-sample risk guarantees.
comment: Submitted to IJCNN
☆ HP-GAN: Harnessing pretrained networks for GAN improvement with FakeTwins and discriminator consistency
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
comment: Accepted manuscript. This is the accepted version of the article published in Neural Networks
☆ Bongards at the Boundary of Perception and Reasoning: Programs or Language?
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
comment: 6 pages, 5 figures
☆ MUSE: A Multi-agent Framework for Unconstrained Story Envisioning via Closed-Loop Cognitive Orchestration
Generating long-form audio-visual stories from a short user prompt remains challenging due to an intent-execution gap, where high-level narrative intent must be preserved across coherent, shot-level multimodal generation over long horizons. Existing approaches typically rely on feed-forward pipelines or prompt-only refinement, which often leads to semantic drift and identity inconsistency as sequences grow longer. We address this challenge by formulating storytelling as a closed-loop constraint enforcement problem and propose MUSE, a multi-agent framework that coordinates generation through an iterative plan-execute-verify-revise loop. MUSE translates narrative intent into explicit, machine-executable controls over identity, spatial composition, and temporal continuity, and applies targeted multimodal feedback to correct violations during generation. To evaluate open-ended storytelling without ground-truth references, we introduce MUSEBench, a reference-free evaluation protocol validated by human judgments. Experiments demonstrate that MUSE substantially improves long-horizon narrative coherence, cross-modal identity consistency, and cinematic quality compared with representative baselines.
☆ A Vision-Based Analysis of Congestion Pricing in New York City
We examine the impact of New York City's congestion pricing program through automated analysis of traffic camera data. Our computer vision pipeline processes footage from over 900 cameras distributed throughout Manhattan and New York, comparing traffic patterns from November 2024 through the program's implementation in January 2025 until January 2026. We establish baseline traffic patterns and identify systematic changes in vehicle density across the monitored region.
☆ Thinking inside the Convolution for Image Inpainting: Reconstructing Texture via Structure under Global and Local Side
Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
comment: 17 pages, 17 figures
☆ VOILA: Value-of-Information Guided Fidelity Selection for Cost-Aware Multimodal Question Answering
Despite significant costs from retrieving and processing high-fidelity visual inputs, most multimodal vision-language systems operate at fixed fidelity levels. We introduce VOILA, a framework for Value-Of-Information-driven adaptive fidelity selection in Visual Question Answering (VQA) that optimizes what information to retrieve before model execution. Given a query, VOILA uses a two-stage pipeline: a gradient-boosted regressor estimates correctness likelihood at each fidelity from question features alone, then an isotonic calibrator refines these probabilities for reliable decision-making. The system selects the minimum-cost fidelity maximizing expected utility given predicted accuracy and retrieval costs. We evaluate VOILA across three deployment scenarios using five datasets (VQA-v2, GQA, TextVQA, LoCoMo, FloodNet) and six Vision-Language Models (VLMs) with 7B-235B parameters. VOILA consistently achieves 50-60% cost reductions while retaining 90-95% of full-resolution accuracy across diverse query types and model architectures, demonstrating that pre-retrieval fidelity selection is vital to optimize multimodal inference under resource constraints.
☆ Video-OPD: Efficient Post-Training of Multimodal Large Language Models for Temporal Video Grounding via On-Policy Distillation
Reinforcement learning has emerged as a principled post-training paradigm for Temporal Video Grounding (TVG) due to its on-policy optimization, yet existing GRPO-based methods remain fundamentally constrained by sparse reward signals and substantial computational overhead. We propose Video-OPD, an efficient post-training framework for TVG inspired by recent advances in on-policy distillation. Video-OPD optimizes trajectories sampled directly from the current policy, thereby preserving alignment between training and inference distributions, while a frontier teacher supplies dense, token-level supervision via a reverse KL divergence objective. This formulation preserves the on-policy property critical for mitigating distributional shift, while converting sparse, episode-level feedback into fine-grained, step-wise learning signals. Building on Video-OPD, we introduce Teacher-Validated Disagreement Focusing (TVDF), a lightweight training curriculum that iteratively prioritizes trajectories that are both teacher-reliable and maximally informative for the student, thereby improving training efficiency. Empirical results demonstrate that Video-OPD consistently outperforms GRPO while achieving substantially faster convergence and lower computational cost, establishing on-policy distillation as an effective alternative to conventional reinforcement learning for TVG.
☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
☆ Aligning Forest and Trees in Images and Long Captions for Visually Grounded Understanding
Large vision-language models such as CLIP struggle with long captions because they align images and texts as undifferentiated wholes. Fine-grained vision-language understanding requires hierarchical semantics capturing both global context and localized details across visual and textual domains. Yet linguistic hierarchies from syntax or semantics rarely match visual organization, and purely visual hierarchies tend to fragment scenes into appearance-driven parts without semantic focus. We propose CAFT (Cross-domain Alignment of Forests and Trees), a hierarchical image-text representation learning framework that aligns global and local semantics across images and long captions without pixel-level supervision. Coupling a fine-to-coarse visual encoder with a hierarchical text transformer, it uses a hierarchical alignment loss that matches whole images with whole captions while biasing region-sentence correspondences, so that coarse semantics are built from fine-grained evidence rather than from aggregation untethered to part-level grounding. Trained on 30M image-text pairs, CAFT achieves state-of-the-art performance on six long-text retrieval benchmarks and exhibits strong scaling behavior. Experiments show that hierarchical cross-domain alignment enables fine-grained, visually grounded image-text representations to emerge without explicit region-level supervision.
comment: Preprint
☆ SceneLinker: Compositional 3D Scene Generation via Semantic Scene Graph from RGB Sequences IEEE
We introduce SceneLinker, a novel framework that generates compositional 3D scenes via semantic scene graph from RGB sequences. To adaptively experience Mixed Reality (MR) content based on each user's space, it is essential to generate a 3D scene that reflects the real-world layout by compactly capturing the semantic cues of the surroundings. Prior works struggled to fully capture the contextual relationship between objects or mainly focused on synthesizing diverse shapes, making it challenging to generate 3D scenes aligned with object arrangements. We address these challenges by designing a graph network with cross-check feature attention for scene graph prediction and constructing a graph-variational autoencoder (graph-VAE), which consists of a joint shape and layout block for 3D scene generation. Experiments on the 3RScan/3DSSG and SG-FRONT datasets demonstrate that our approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations, even in complex indoor environments and under challenging scene graph constraints. Our work enables users to generate consistent 3D spaces from their physical environments via scene graphs, allowing them to create spatial MR content. Project page is https://scenelinker2026.github.io.
comment: Accepted as an IEEE TVCG paper at IEEE VR 2026 (journal track)
☆ Fisheye Stereo Vision: Depth and Range Error
This study derives analytical expressions for the depth and range error of fisheye stereo vision systems as a function of object distance, specifically accounting for accuracy at large angles.
☆ Dynamic High-frequency Convolution for Infrared Small Target Detection
Infrared small targets are typically tiny and locally salient, which belong to high-frequency components (HFCs) in images. Single-frame infrared small target (SIRST) detection is challenging, since there are many HFCs along with targets, such as bright corners, broken clouds, and other clutters. Current learning-based methods rely on the powerful capabilities of deep networks, but neglect explicit modeling and discriminative representation learning of various HFCs, which is important to distinguish targets from other HFCs. To address the aforementioned issues, we propose a dynamic high-frequency convolution (DHiF) to translate the discriminative modeling process into the generation of a dynamic local filter bank. Especially, DHiF is sensitive to HFCs, owing to the dynamic parameters of its generated filters being symmetrically adjusted within a zero-centered range according to Fourier transformation properties. Combining with standard convolution operations, DHiF can adaptively and dynamically process different HFC regions and capture their distinctive grayscale variation characteristics for discriminative representation learning. DHiF functions as a drop-in replacement for standard convolution and can be used in arbitrary SIRST detection networks without significant decrease in computational efficiency. To validate the effectiveness of our DHiF, we conducted extensive experiments across different SIRST detection networks on real-scene datasets. Compared to other state-of-the-art convolution operations, DHiF exhibits superior detection performance with promising improvement. Codes are available at https://github.com/TinaLRJ/DHiF.
☆ TRACE: Temporal Radiology with Anatomical Change Explanation for Grounded X-ray Report Generation
Temporal comparison of chest X-rays is fundamental to clinical radiology, enabling detection of disease progression, treatment response, and new findings. While vision-language models have advanced single-image report generation and visual grounding, no existing method combines these capabilities for temporal change detection. We introduce Temporal Radiology with Anatomical Change Explanation (TRACE), the first model that jointly performs temporal comparison, change classification, and spatial localization. Given a prior and current chest X-ray, TRACE generates natural language descriptions of interval changes (worsened, improved, stable) while grounding each finding with bounding box coordinates. TRACE demonstrates effective spatial localization with over 90% grounding accuracy, establishing a foundation for this challenging new task. Our ablation study uncovers an emergent capability: change detection arises only when temporal comparison and spatial grounding are jointly learned, as neither alone enables meaningful change detection. This finding suggests that grounding provides a spatial attention mechanism essential for temporal reasoning.
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ SRA-Seg: Synthetic to Real Alignment for Semi-Supervised Medical Image Segmentation
Synthetic data, an appealing alternative to extensive expert-annotated data for medical image segmentation, consistently fails to improve segmentation performance despite its visual realism. The reason being that synthetic and real medical images exist in different semantic feature spaces, creating a domain gap that current semi-supervised learning methods cannot bridge. We propose SRA-Seg, a framework explicitly designed to align synthetic and real feature distributions for medical image segmentation. SRA-Seg introduces a similarity-alignment (SA) loss using frozen DINOv2 embeddings to pull synthetic representations toward their nearest real counterparts in semantic space. We employ soft edge blending to create smooth anatomical transitions and continuous labels, eliminating the hard boundaries from traditional copy-paste augmentation. The framework generates pseudo-labels for synthetic images via an EMA teacher model and applies soft-segmentation losses that respect uncertainty in mixed regions. Our experiments demonstrate strong results: using only 10% labeled real data and 90% synthetic unlabeled data, SRA-Seg achieves 89.34% Dice on ACDC and 84.42% on FIVES, significantly outperforming existing semi-supervised methods and matching the performance of methods using real unlabeled data.
☆ iSight: Towards expert-AI co-assessment for improved immunohistochemistry staining interpretation
Immunohistochemistry (IHC) provides information on protein expression in tissue sections and is commonly used to support pathology diagnosis and disease triage. While AI models for H\&E-stained slides show promise, their applicability to IHC is limited due to domain-specific variations. Here we introduce HPA10M, a dataset that contains 10,495,672 IHC images from the Human Protein Atlas with comprehensive metadata included, and encompasses 45 normal tissue types and 20 major cancer types. Based on HPA10M, we trained iSight, a multi-task learning framework for automated IHC staining assessment. iSight combines visual features from whole-slide images with tissue metadata through a token-level attention mechanism, simultaneously predicting staining intensity, location, quantity, tissue type, and malignancy status. On held-out data, iSight achieved 85.5\% accuracy for location, 76.6\% for intensity, and 75.7\% for quantity, outperforming fine-tuned foundation models (PLIP, CONCH) by 2.5--10.2\%. In addition, iSight demonstrates well-calibrated predictions with expected calibration errors of 0.0150-0.0408. Furthermore, in a user study with eight pathologists evaluating 200 images from two datasets, iSight outperformed initial pathologist assessments on the held-out HPA dataset (79\% vs 68\% for location, 70\% vs 57\% for intensity, 68\% vs 52\% for quantity). Inter-pathologist agreement also improved after AI assistance in both held-out HPA (Cohen's $κ$ increased from 0.63 to 0.70) and Stanford TMAD datasets (from 0.74 to 0.76), suggesting expert--AI co-assessment can improve IHC interpretation. This work establishes a foundation for AI systems that can improve IHC diagnostic accuracy and highlights the potential for integrating iSight into clinical workflows to enhance the consistency and reliability of IHC assessment.
☆ SEIS: Subspace-based Equivariance and Invariance Scores for Neural Representations
Understanding how neural representations respond to geometric transformations is essential for evaluating whether learned features preserve meaningful spatial structure. Existing approaches primarily assess robustness by comparing model outputs under transformed inputs, offering limited insight into how geometric information is organized within internal representations and failing to distinguish between information loss and re-encoding. In this work, we introduce SEIS (Subspace-based Equivariance and Invariance Scores), a subspace metric for analyzing layer-wise feature representations under geometric transformations, disentangling equivariance from invariance without requiring labels or explicit knowledge of the transformation. Synthetic validation confirms that SEIS correctly recovers known transformations. Applied to trained classification networks, SEIS reveals a transition from equivariance in early layers to invariance in deeper layers, and that data augmentation increases invariance while preserving equivariance. We further show that multi-task learning induces synergistic gains in both properties at the shared encoder, and skip connections restore equivariance lost during decoding.
☆ Seeing Through Clutter: Structured 3D Scene Reconstruction via Iterative Object Removal 3DV 2026
We present SeeingThroughClutter, a method for reconstructing structured 3D representations from single images by segmenting and modeling objects individually. Prior approaches rely on intermediate tasks such as semantic segmentation and depth estimation, which often underperform in complex scenes, particularly in the presence of occlusion and clutter. We address this by introducing an iterative object removal and reconstruction pipeline that decomposes complex scenes into a sequence of simpler subtasks. Using VLMs as orchestrators, foreground objects are removed one at a time via detection, segmentation, object removal, and 3D fitting. We show that removing objects allows for cleaner segmentations of subsequent objects, even in highly occluded scenes. Our method requires no task-specific training and benefits directly from ongoing advances in foundation models. We demonstrate stateof-the-art robustness on 3D-Front and ADE20K datasets. Project Page: https://rioak.github.io/seeingthroughclutter/
comment: To appear in 3DV 2026
☆ Artifact Removal and Image Restoration in AFM:A Structured Mask-Guided Directional Inpainting Approach
Atomic Force Microscopy (AFM) enables high-resolution surface imaging at the nanoscale, yet the output is often degraded by artifacts introduced by environmental noise, scanning imperfections, and tip-sample interactions. To address this challenge, a lightweight and fully automated framework for artifact detection and restoration in AFM image analysis is presented. The pipeline begins with a classification model that determines whether an AFM image contains artifacts. If necessary, a lightweight semantic segmentation network, custom-designed and trained on AFM data, is applied to generate precise artifact masks. These masks are adaptively expanded based on their structural orientation and then inpainted using a directional neighbor-based interpolation strategy to preserve 3D surface continuity. A localized Gaussian smoothing operation is then applied for seamless restoration. The system is integrated into a user-friendly GUI that supports real-time parameter adjustments and batch processing. Experimental results demonstrate the effective artifact removal while preserving nanoscale structural details, providing a robust, geometry-aware solution for high-fidelity AFM data interpretation.
☆ Fast, Unsupervised Framework for Registration Quality Assessment of Multi-stain Histological Whole Slide Pairs IEEE
High-fidelity registration of histopathological whole slide images (WSIs), such as hematoxylin & eosin (H&E) and immunohistochemistry (IHC), is vital for integrated molecular analysis but challenging to evaluate without ground-truth (GT) annotations. Existing WSI-level assessments -- using annotated landmarks or intensity-based similarity metrics -- are often time-consuming, unreliable, and computationally intensive, limiting large-scale applicability. This study proposes a fast, unsupervised framework that jointly employs down-sampled tissue masks- and deformations-based metrics for registration quality assessment (RQA) of registered H&E and IHC WSI pairs. The masks-based metrics measure global structural correspondence, while the deformations-based metrics evaluate local smoothness, continuity, and transformation realism. Validation across multiple IHC markers and multi-expert assessments demonstrate a strong correlation between automated metrics and human evaluations. In the absence of GT, this framework offers reliable, real-time RQA with high fidelity and minimal computational resources, making it suitable for large-scale quality control in digital pathology.
comment: Accepted to IEEE ISBI 2026
☆ A Parameterizable Convolution Accelerator for Embedded Deep Learning Applications IEEE
Convolutional neural network (CNN) accelerators implemented on Field-Programmable Gate Arrays (FPGAs) are typically designed with a primary focus on maximizing performance, often measured in giga-operations per second (GOPS). However, real-life embedded deep learning (DL) applications impose multiple constraints related to latency, power consumption, area, and cost. This work presents a hardware-software (HW/SW) co-design methodology in which a CNN accelerator is described using high-level synthesis (HLS) tools that ease the parameterization of the design, facilitating more effective optimizations across multiple design constraints. Our experimental results demonstrate that the proposed design methodology is able to outperform non-parameterized design approaches, and it can be easily extended to other types of DL applications.
comment: 6 pages, 4 figures. Published in the proceedings of the 2025 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2025), Kalamata, Greece, 6-9 July 2025
☆ AnyStyle: Single-Pass Multimodal Stylization for 3D Gaussian Splatting
The growing demand for rapid and scalable 3D asset creation has driven interest in feed-forward 3D reconstruction methods, with 3D Gaussian Splatting (3DGS) emerging as an effective scene representation. While recent approaches have demonstrated pose-free reconstruction from unposed image collections, integrating stylization or appearance control into such pipelines remains underexplored. Existing attempts largely rely on image-based conditioning, which limits both controllability and flexibility. In this work, we introduce AnyStyle, a feed-forward 3D reconstruction and stylization framework that enables pose-free, zero-shot stylization through multimodal conditioning. Our method supports both textual and visual style inputs, allowing users to control the scene appearance using natural language descriptions or reference images. We propose a modular stylization architecture that requires only minimal architectural modifications and can be integrated into existing feed-forward 3D reconstruction backbones. Experiments demonstrate that AnyStyle improves style controllability over prior feed-forward stylization methods while preserving high-quality geometric reconstruction. A user study further confirms that AnyStyle achieves superior stylization quality compared to an existing state-of-the-art approach. Repository: https://github.com/joaxkal/AnyStyle.
☆ MS-SCANet: A Multiscale Transformer-Based Architecture with Dual Attention for No-Reference Image Quality Assessment ICASSP 2025
We present the Multi-Scale Spatial Channel Attention Network (MS-SCANet), a transformer-based architecture designed for no-reference image quality assessment (IQA). MS-SCANet features a dual-branch structure that processes images at multiple scales, effectively capturing both fine and coarse details, an improvement over traditional single-scale methods. By integrating tailored spatial and channel attention mechanisms, our model emphasizes essential features while minimizing computational complexity. A key component of MS-SCANet is its cross-branch attention mechanism, which enhances the integration of features across different scales, addressing limitations in previous approaches. We also introduce two new consistency loss functions, Cross-Branch Consistency Loss and Adaptive Pooling Consistency Loss, which maintain spatial integrity during feature scaling, outperforming conventional linear and bilinear techniques. Extensive evaluations on datasets like KonIQ-10k, LIVE, LIVE Challenge, and CSIQ show that MS-SCANet consistently surpasses state-of-the-art methods, offering a robust framework with stronger correlations with subjective human scores.
comment: Published in ICASSP 2025, 5 pages, 3 figures
☆ TiCLS : Tightly Coupled Language Text Spotter
Scene text spotting aims to detect and recognize text in real-world images, where instances are often short, fragmented, or visually ambiguous. Existing methods primarily rely on visual cues and implicitly capture local character dependencies, but they overlook the benefits of external linguistic knowledge. Prior attempts to integrate language models either adapt language modeling objectives without external knowledge or apply pretrained models that are misaligned with the word-level granularity of scene text. We propose TiCLS, an end-to-end text spotter that explicitly incorporates external linguistic knowledge from a character-level pretrained language model. TiCLS introduces a linguistic decoder that fuses visual and linguistic features, yet can be initialized by a pretrained language model, enabling robust recognition of ambiguous or fragmented text. Experiments on ICDAR 2015 and Total-Text demonstrate that TiCLS achieves state-of-the-art performance, validating the effectiveness of PLM-guided linguistic integration for scene text spotting.
PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
☆ AtlasPatch: An Efficient and Scalable Tool for Whole Slide Image Preprocessing in Computational Pathology
Whole-slide image (WSI) preprocessing, typically comprising tissue detection followed by patch extraction, is foundational to AI-driven computational pathology workflows. This remains a major computational bottleneck as existing tools either rely on inaccurate heuristic thresholding for tissue detection, or adopt AI-based approaches trained on limited-diversity data that operate at the patch level, incurring substantial computational complexity. We present AtlasPatch, an efficient and scalable slide preprocessing framework for accurate tissue detection and high-throughput patch extraction with minimal computational overhead. AtlasPatch's tissue detection module is trained on a heterogeneous and semi-manually annotated dataset of ~30,000 WSI thumbnails, using efficient fine-tuning of the Segment-Anything model. The tool extrapolates tissue masks from thumbnails to full-resolution slides to extract patch coordinates at user-specified magnifications, with options to stream patches directly into common image encoders for embedding or store patch images, all efficiently parallelized across CPUs and GPUs. We assess AtlasPatch across segmentation precision, computational complexity, and downstream multiple-instance learning, matching state-of-the-art performance while operating at a fraction of their computational cost. AtlasPatch is open-source and available at https://github.com/AtlasAnalyticsLab/AtlasPatch.
comment: Under review
☆ Efficient Long-Horizon Vision-Language-Action Models via Static-Dynamic Disentanglement
Vision-Language-Action (VLA) models have recently emerged as a promising paradigm for generalist robotic control. Built upon vision-language model (VLM) architectures, VLAs predict actions conditioned on visual observations and language instructions, achieving strong performance and generalization across tasks. However, VLAs face two major challenges: limited long-horizon context and inefficient inference due to the quadratic attention complexity and large parameter counts. Our work is motivated by the observation that much of the visual information in a trajectory remains static across timesteps (e.g., the background). Leveraging this property, we propose SD-VLA, a framework that disentangles visual inputs into multi-level static and dynamic tokens, which enables (1) retaining a single copy of static tokens across frames to significantly reduce context length, and (2) reusing the key-value (KV) cache of static tokens through a lightweight recache gate that updates only when necessary. This design enables efficient multi-frame integration and efficient inference. In addition, we introduce a new benchmark that more effectively evaluates the long-horizon temporal dependency modeling ability of VLAs. Experimental results show that our approach outperforms baselines on this benchmark by 39.8% absolute improvement in success rate, and achieves a 3.9% gain on the SimplerEnv benchmark. Moreover, SD-VLA delivers a 2.26x inference speedup over the base VLA model on the same benchmark, enabling faster and more practical real-world deployment.
☆ VLS: Steering Pretrained Robot Policies via Vision-Language Models
Why do pretrained diffusion or flow-matching policies fail when the same task is performed near an obstacle, on a shifted support surface, or amid mild clutter? Such failures rarely reflect missing motor skills; instead, they expose a limitation of imitation learning under train-test shifts, where action generation is tightly coupled to training-specific spatial configurations and task specifications. Retraining or fine-tuning to address these failures is costly and conceptually misaligned, as the required behaviors already exist but cannot be selectively adapted at test time. We propose Vision-Language Steering (VLS), a training-free framework for inference-time adaptation of frozen generative robot policies. VLS treats adaptation as an inference-time control problem, steering the sampling process of a pretrained diffusion or flow-matching policy in response to out-of-distribution observation-language inputs without modifying policy parameters. By leveraging vision-language models to synthesize trajectory-differentiable reward functions, VLS guides denoising toward action trajectories that satisfy test-time spatial and task requirements. Across simulation and real-world evaluations, VLS consistently outperforms prior steering methods, achieving a 31% improvement on CALVIN and a 13% gain on LIBERO-PRO. Real-world deployment on a Franka robot further demonstrates robust inference-time adaptation under test-time spatial and semantic shifts. Project page: https://vision-language-steering.github.io/webpage/
comment: 11 Pages, Project page: https://vision-language-steering.github.io/webpage/
☆ Representation Geometry as a Diagnostic for Out-of-Distribution Robustness
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
☆ Entropy Reveals Block Importance in Masked Self-Supervised Vision Transformers
Masked self-supervised vision transformers have become a dominant pretraining paradigm, yet their substantial model size poses significant challenges for resource-constrained deployment and efficient transfer learning. A fundamental question remains: are all transformer blocks equally important for downstream performance? In this paper, we show that block importance in masked self-supervised vision transformers can be accurately estimated without access to any data. Our key finding is that the information entropy of pretrained block weights strongly correlates with oracle sensitivity obtained via iterative block removal and finetuning. This observation enables Gardener, a data-free, one-shot, block-level pruning principle that identifies redundant blocks through simple information-theoretic measurements. We evaluate Gardener on VideoMAE-B across multiple pruning ratios and downstream video recognition benchmarks. Despite its negligible computational overhead, Gardener consistently matches or outperforms existing data-free pruning baselines and closely approaches sensitivity-based pruning. Remarkably, even after pruning up to 91.7\% of blocks, the pruned model retains competitive transfer performance. Our results reveal substantial block-level redundancy in masked self-supervised vision transformers and demonstrate that information-theoretic analysis offers a principled and efficient pathway for model compression and resource-efficient transfer learning.
☆ SpatiaLab: Can Vision-Language Models Perform Spatial Reasoning in the Wild? ICLR 2026
Spatial reasoning is a fundamental aspect of human cognition, yet it remains a major challenge for contemporary vision-language models (VLMs). Prior work largely relied on synthetic or LLM-generated environments with limited task designs and puzzle-like setups, failing to capture the real-world complexity, visual noise, and diverse spatial relationships that VLMs encounter. To address this, we introduce SpatiaLab, a comprehensive benchmark for evaluating VLMs' spatial reasoning in realistic, unconstrained contexts. SpatiaLab comprises 1,400 visual question-answer pairs across six major categories: Relative Positioning, Depth & Occlusion, Orientation, Size & Scale, Spatial Navigation, and 3D Geometry, each with five subcategories, yielding 30 distinct task types. Each subcategory contains at least 25 questions, and each main category includes at least 200 questions, supporting both multiple-choice and open-ended evaluation. Experiments across diverse state-of-the-art VLMs, including open- and closed-source models, reasoning-focused, and specialized spatial reasoning models, reveal a substantial gap in spatial reasoning capabilities compared with humans. In the multiple-choice setup, InternVL3.5-72B achieves 54.93% accuracy versus 87.57% for humans. In the open-ended setting, all models show a performance drop of around 10-25%, with GPT-5-mini scoring highest at 40.93% versus 64.93% for humans. These results highlight key limitations in handling complex spatial relationships, depth perception, navigation, and 3D geometry. By providing a diverse, real-world evaluation framework, SpatiaLab exposes critical challenges and opportunities for advancing VLMs' spatial reasoning, offering a benchmark to guide future research toward robust, human-aligned spatial understanding. SpatiaLab is available at: https://spatialab-reasoning.github.io/.
comment: Accepted to ICLR 2026. 92 Pages. 42 Figures and 29 Tables
☆ Phaedra: Learning High-Fidelity Discrete Tokenization for the Physical Science
Tokens are discrete representations that allow modern deep learning to scale by transforming high-dimensional data into sequences that can be efficiently learned, generated, and generalized to new tasks. These have become foundational for image and video generation and, more recently, physical simulation. As existing tokenizers are designed for the explicit requirements of realistic visual perception of images, it is necessary to ask whether these approaches are optimal for scientific images, which exhibit a large dynamic range and require token embeddings to retain physical and spectral properties. In this work, we investigate the accuracy of a suite of image tokenizers across a range of metrics designed to measure the fidelity of PDE properties in both physical and spectral space. Based on the observation that these struggle to capture both fine details and precise magnitudes, we propose Phaedra, inspired by classical shape-gain quantization and proper orthogonal decomposition. We demonstrate that Phaedra consistently improves reconstruction across a range of PDE datasets. Additionally, our results show strong out-of-distribution generalization capabilities to three tasks of increasing complexity, namely known PDEs with different conditions, unknown PDEs, and real-world Earth observation and weather data.
comment: 57 pages, 27 figures
☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples.
comment: 37 pages, 8 figures
☆ Beyond the Vehicle: Cooperative Localization by Fusing Point Clouds for GPS-Challenged Urban Scenarios
Accurate vehicle localization is a critical challenge in urban environments where GPS signals are often unreliable. This paper presents a cooperative multi-sensor and multi-modal localization approach to address this issue by fusing data from vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. Our approach integrates cooperative data with a point cloud registration-based simultaneous localization and mapping (SLAM) algorithm. The system processes point clouds generated from diverse sensor modalities, including vehicle-mounted LiDAR and stereo cameras, as well as sensors deployed at intersections. By leveraging shared data from infrastructure, our method significantly improves localization accuracy and robustness in complex, GPS-noisy urban scenarios.
comment: 8 pages, 2 figures, Driving the Future Symposium 2025
☆ HY3D-Bench: Generation of 3D Assets
While recent advances in neural representations and generative models have revolutionized 3D content creation, the field remains constrained by significant data processing bottlenecks. To address this, we introduce HY3D-Bench, an open-source ecosystem designed to establish a unified, high-quality foundation for 3D generation. Our contributions are threefold: (1) We curate a library of 250k high-fidelity 3D objects distilled from large-scale repositories, employing a rigorous pipeline to deliver training-ready artifacts, including watertight meshes and multi-view renderings; (2) We introduce structured part-level decomposition, providing the granularity essential for fine-grained perception and controllable editing; and (3) We bridge real-world distribution gaps via a scalable AIGC synthesis pipeline, contributing 125k synthetic assets to enhance diversity in long-tail categories. Validated empirically through the training of Hunyuan3D-2.1-Small, HY3D-Bench democratizes access to robust data resources, aiming to catalyze innovation across 3D perception, robotics, and digital content creation.
comment: Authors are listed alphabetically by the first name
☆ Benchmarking Bias Mitigation Toward Fairness Without Harm from Vision to LVLMs ICLR 26
Machine learning models trained on real-world data often inherit and amplify biases against certain social groups, raising urgent concerns about their deployment at scale. While numerous bias mitigation methods have been proposed, comparing the effectiveness of bias mitigation methods remains difficult due to heterogeneous datasets, inconsistent fairness metrics, isolated evaluation of vision versus multi-modal models, and insufficient hyperparameter tuning that undermines fair comparisons. We introduce NH-Fair, a unified benchmark for fairness without harm that spans both vision models and large vision-language models (LVLMs) under standardized data, metrics, and training protocols, covering supervised and zero-shot regimes. Our key contributions are: (1) a systematic ERM tuning study that identifies training choices with large influence on both utility and disparities, yielding empirically grounded guidelines to help practitioners reduce expensive hyperparameter tuning space in achieving strong fairness and accuracy; (2) evidence that many debiasing methods do not reliably outperform a well-tuned ERM baseline, whereas a composite data-augmentation method consistently delivers parity gains without sacrificing utility, emerging as a promising practical strategy. (3) an analysis showing that while LVLMs achieve higher average accuracy, they still exhibit subgroup disparities, and gains from scaling are typically smaller than those from architectural or training-protocol choices. NH-Fair provides a reproducible, tuning-aware pipeline for rigorous, harm-aware fairness evaluation.
comment: Accepted at ICLR 26
☆ Vision Transformers for Zero-Shot Clustering of Animal Images: A Comparative Benchmarking Study
Manual labeling of animal images remains a significant bottleneck in ecological research, limiting the scale and efficiency of biodiversity monitoring efforts. This study investigates whether state-of-the-art Vision Transformer (ViT) foundation models can reduce thousands of unlabeled animal images directly to species-level clusters. We present a comprehensive benchmarking framework evaluating five ViT models combined with five dimensionality reduction techniques and four clustering algorithms, two supervised and two unsupervised, across 60 species (30 mammals and 30 birds), with each test using a random subset of 200 validated images per species. We investigate when clustering succeeds at species-level, where it fails, and whether clustering within the species-level reveals ecologically meaningful patterns such as sex, age, or phenotypic variation. Our results demonstrate near-perfect species-level clustering (V-measure: 0.958) using DINOv3 embeddings with t-SNE and supervised hierarchical clustering methods. Unsupervised approaches achieve competitive performance (0.943) while requiring no prior species knowledge, rejecting only 1.14% of images as outliers requiring expert review. We further demonstrate robustness to realistic long-tailed distributions of species and show that intentional over-clustering can reliably extract intra-specific variation including age classes, sexual dimorphism, and pelage differences. We introduce an open-source benchmarking toolkit and provide recommendations for ecologists to select appropriate methods for sorting their specific taxonomic groups and data.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Model Optimization for Multi-Camera 3D Detection and Tracking
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
♻ ☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
♻ ☆ Seeing through Satellite Images at Street Views IEEE
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
comment: Accepted to IEEE TPAMI. Initially submitted in July 2024. Code is available on https://qianmingduowan.github.io/sat2density-pp/
♻ ☆ Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at https://github.com/chandlerbing65nm/FakeImageDetection.
comment: Accepted to ACM TOMM
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
♻ ☆ Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have become powerful general-purpose assistants, yet their predictions often lack reliability and interpretability due to insufficient grounding in visual evidence. The emerging thinking-with-images paradigm seeks to address this issue by explicitly anchoring reasoning to image regions. However, we empirically find that most existing methods suffer from a systematic scale-driven bias in optimization, where training rewards are dominated by large visual regions, suppressing learning from small but semantically critical evidence and leading to spurious grounding at inference time. To address this limitation, we propose Ground-R1, a de-biased thinking-with-images framework trained via a novel Scale Relative Policy Optimization (SRPO) objective that replaces standard GRPO. Specifically, our SRPO recalibrates reward learning across evidence regions of different sizes through scale-aware binning and intra-/inter-bin comparisons, enabling balanced credit assignment during training. Experimental results on general LVLM, high-resolution, and visual grounding benchmarks validate the effectiveness of Ground-R1 and show that SRPO yields consistent gains over standard GRPO in both response accuracy and evidence grounding.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ SEMNAV: Enhancing Visual Semantic Navigation in Robotics through Semantic Segmentation
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating this type of high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce the SEMNAV dataset, a newly curated dataset designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. The code and datasets are accessible at https://github.com/gramuah/semnav
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ Generating a Paracosm for Training-Free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) is the task of retrieving a target image from a database using a multimodal query, which consists of a reference image and a modification text. The text specifies how to alter the reference image to form a ``mental image'', based on which CIR should find the target image in the database. The fundamental challenge of CIR is that this ``mental image'' is not physically available and is only implicitly defined by the query. The contemporary literature pursues zero-shot methods and uses a Large Multimodal Model (LMM) to generate a textual description for a given multimodal query, and then employs a Vision-Language Model (VLM) for textual-visual matching to search the target image. In contrast, we address CIR from first principles by directly generating the ``mental image'' for more accurate matching. Particularly, we prompt an LMM to generate a ``mental image'' for a given multimodal query and propose to use this ``mental image'' to search for the target image. As the ``mental image'' has a synthetic-to-real domain gap with real images, we also generate a synthetic counterpart for each real image in the database to facilitate matching. In this sense, our method uses LMM to construct a ``paracosm'', where it matches the multimodal query and database images. Hence, we call this method Paracosm. Notably, Paracosm is a training-free zero-shot CIR method. It significantly outperforms existing zero-shot methods on four challenging benchmarks, achieving state-of-the-art performance for zero-shot CIR.
♻ ☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
♻ ☆ PISA: Piecewise Sparse Attention Is Wiser for Efficient Diffusion Transformers
Diffusion Transformers are fundamental for video and image generation, but their efficiency is bottlenecked by the quadratic complexity of attention. While block sparse attention accelerates computation by attending only critical key-value blocks, it suffers from degradation at high sparsity by discarding context. In this work, we discover that attention scores of non-critical blocks exhibit distributional stability, allowing them to be approximated accurately and efficiently rather than discarded, which is essentially important for sparse attention design. Motivated by this key insight, we propose PISA, a training-free Piecewise Sparse Attention that covers the full attention span with sub-quadratic complexity. Unlike the conventional keep-or-drop paradigm that directly drop the non-critical block information, PISA introduces a novel exact-or-approximate strategy: it maintains exact computation for critical blocks while efficiently approximating the remainder through block-wise Taylor expansion. This design allows PISA to serve as a faithful proxy to full attention, effectively bridging the gap between speed and quality. Experimental results demonstrate that PISA achieves 1.91 times and 2.57 times speedups on Wan2.1-14B and Hunyuan-Video, respectively, while consistently maintaining the highest quality among sparse attention methods. Notably, even for image generation on FLUX, PISA achieves a 1.2 times acceleration without compromising visual quality. Code is available at: https://github.com/xie-lab-ml/piecewise-sparse-attention.
comment: 17 pages
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin IEEE
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV) 2026. Revised version (v3) presents camera-ready publication
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ CAD-SLAM: Consistency-Aware Dynamic SLAM with Dynamic-Static Decoupled Mapping
Recent advances in neural radiation fields (NeRF) and 3D Gaussian-based SLAM have achieved impressive localization accuracy and high-quality dense mapping in static scenes. However, these methods remain challenged in dynamic environments, where moving objects violate the static-world assumption and introduce inconsistent observations that degrade both camera tracking and map reconstruction. This motivates two fundamental problems: robustly identifying dynamic objects and modeling them online. To address these limitations, we propose CAD-SLAM, a Consistency-Aware Dynamic SLAM framework with dynamic-static decoupled mapping. Our key insight is that dynamic objects inherently violate cross-view and cross-time scene consistency. We detect object motion by analyzing geometric and texture discrepancies between historical map renderings and real-world observations. Once a moving object is identified, we perform bidirectional dynamic object tracking (both backward and forward in time) to achieve complete sequence-wise dynamic recognition. Our consistency-aware dynamic detection model achieves category-agnostic, instantaneous dynamic identification, which effectively mitigates motion-induced interference during localization and mapping. In addition, we introduce a dynamic-static decoupled mapping strategy that employs a temporal Gaussian model for online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate the flexible and accurate dynamic segmentation capabilities of our method, along with the state-of-the-art performance in both localization and mapping.
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
♻ ☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
comment: https://zxyin.github.io/LazyDrag
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Thalia: A Global, Multi-Modal Dataset for Volcanic Activity Monitoring
Monitoring volcanic activity is of paramount importance to safeguarding lives, infrastructure, and ecosystems. However, only a small fraction of known volcanoes are continuously monitored. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables systematic, global-scale deformation monitoring. However, its complex data challenge traditional remote sensing methods. Deep learning offers a powerful means to automate and enhance InSAR interpretation, advancing volcanology and geohazard assessment. Despite its promise, progress has been limited by the scarcity of well-curated datasets. In this work, we build on the existing Hephaestus dataset and introduce Thalia, addressing crucial limitations and enriching its scope with higher-resolution, multi-source, and multi-temporal data. Thalia is a global collection of 38 spatiotemporal datacubes covering 7 years and integrating InSAR products, topographic data, as well as atmospheric variables, known to introduce signal delays that can mimic ground deformation in InSAR imagery. Each sample includes expert annotations detailing the type, intensity, and extent of deformation, ac- companied by descriptive text. To enable fair and consistent evaluation, we provide a comprehensive benchmark using state-of-the-art models for classification and segmentation. This work fosters collaboration between machine learning and Earth science, advancing volcanic monitoring and promoting data-driven approaches in geoscience. The code and latest version of the dataset are available through the github repository: https://github.com/Orion-AI-Lab/Thalia
♻ ☆ L2M-Reg: Building-level Uncertainty-aware Registration of Outdoor LiDAR Point Clouds and Semantic 3D City Models SP
Accurate registration between LiDAR (Light Detection and Ranging) point clouds and semantic 3D city models is a fundamental topic in urban digital twinning and a prerequisite for downstream tasks, such as digital construction, change detection, and model refinement. However, achieving accurate LiDAR-to-Model registration at the individual building level remains challenging, particularly due to the generalization uncertainty in semantic 3D city models at the Level of Detail 2 (LoD2). This paper addresses this gap by proposing L2M-Reg, a plane-based fine registration method that explicitly accounts for model uncertainty. L2M-Reg consists of three key steps: establishing reliable plane correspondence, building a pseudo-plane-constrained Gauss-Helmert model, and adaptively estimating vertical translation. Overall, extensive experiments on five real-world datasets demonstrate that L2M-Reg is both more accurate and computationally efficient than current leading ICP-based and plane-based methods. Therefore, L2M-Reg provides a novel building-level solution regarding LiDAR-to-Model registration when model uncertainty is present. The datasets and code for L2M-Reg can be found: https://github.com/Ziyang-Geodesy/L2M-Reg.
comment: Accepted version by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ DeepUrban: Interaction-Aware Trajectory Prediction and Planning for Automated Driving by Aerial Imagery
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes is particularly challenging in the zero-shot (ZS) setting, where instances of unseen categories are counted using only a class name. Existing ZS counting methods that infer exemplars from text often rely on off-the-shelf open-vocabulary detectors (OVDs), which in dense scenes suffer from semantic noise, appearance variability, and frequent multi-instance proposals. Alternatively, random image-patch sampling is employed, which fails to accurately delineate object instances. To address these issues, we propose CountZES, an inference-only approach for object counting via ZS exemplar selection. CountZES discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines OVD detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across domains.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification
Multimodal remote sensing classification often suffers from missing modalities caused by sensor failures and environmental interference, leading to severe performance degradation. In this work, we rethink missing-modality learning from a conditional computation perspective and investigate whether Mixture-of-Experts (MoE) models can inherently adapt to diverse modality-missing scenarios. We first conduct a systematic study of representative MoE paradigms under various missing-modality settings, revealing both their potential and limitations. Building on these insights, we propose a Missing-aware Mixture-of-LoRAs (MaMOL), a parameter-efficient MoE framework that unifies multiple modality-missing cases within a single model. MaMOL introduces a dual-routing mechanism to decouple modality-invariant shared experts and modality-aware dynamic experts, enabling automatic expert activation conditioned on available modalities. Extensive experiments on multiple remote sensing benchmarks demonstrate that MaMOL significantly improves robustness and generalization under diverse missing-modality scenarios with minimal computational overhead. Transfer experiments on natural image datasets further validate its scalability and cross-domain applicability.
comment: 11 pages, 5 figures
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ DiffVL: Diffusion-Based Visual Localization on 2D Maps via BEV-Conditioned GPS Denoising
Accurate visual localization is crucial for autonomous driving, yet existing methods face a fundamental dilemma: While high-definition (HD) maps provide high-precision localization references, their costly construction and maintenance hinder scalability, which drives research toward standard-definition (SD) maps like OpenStreetMap. Current SD-map-based approaches primarily focus on Bird's-Eye View (BEV) matching between images and maps, overlooking a ubiquitous signal-noisy GPS. Although GPS is readily available, it suffers from multipath errors in urban environments. We propose DiffVL, the first framework to reformulate visual localization as a GPS denoising task using diffusion models. Our key insight is that noisy GPS trajectory, when conditioned on visual BEV features and SD maps, implicitly encode the true pose distribution, which can be recovered through iterative diffusion refinement. DiffVL, unlike prior BEV-matching methods (e.g., OrienterNet) or transformer-based registration approaches, learns to reverse GPS noise perturbations by jointly modeling GPS, SD map, and visual signals, achieving sub-meter accuracy without relying on HD maps. Experiments on multiple datasets demonstrate that our method achieves state-of-the-art accuracy compared to BEV-matching baselines. Crucially, our work proves that diffusion models can enable scalable localization by treating noisy GPS as a generative prior-making a paradigm shift from traditional matching-based methods.
♻ ☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
♻ ☆ Saliency-Guided DETR for Moment Retrieval and Highlight Detection
Existing approaches for video moment retrieval and highlight detection are not able to align text and video features efficiently, resulting in unsatisfying performance and limited production usage. To address this, we propose a novel architecture that utilizes recent foundational video models designed for such alignment. Combined with the introduced Saliency-Guided Cross Attention mechanism and a hybrid DETR architecture, our approach significantly enhances performance in both moment retrieval and highlight detection tasks. For even better improvement, we developed InterVid-MR, a large-scale and high-quality dataset for pretraining. Using it, our architecture achieves state-of-the-art results on the QVHighlights, Charades-STA and TACoS benchmarks. The proposed approach provides an efficient and scalable solution for both zero-shot and fine-tuning scenarios in video-language tasks.
comment: 8 pages, 2 figure, 6 tables
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Embedding Compression via Spherical Coordinates
We present a compression method for unit-norm embeddings that achieves 1.5$\times$ compression, 25% better than the best prior lossless method. The method exploits that spherical coordinates of high-dimensional unit vectors concentrate around $π/2$, causing IEEE 754 exponents to collapse to a single value and high-order mantissa bits to become predictable, enabling entropy coding of both. Reconstruction error is below 1e-7, under float32 machine epsilon. Evaluation across 26 configurations spanning text, image, and multi-vector embeddings confirms consistent improvement.
♻ ☆ Data Augmentation for High-Fidelity Generation of CAR-T/NK Immunological Synapse Images
Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
♻ ☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
♻ ☆ Rectification Reimagined: A Unified Mamba Model for Image Correction and Rectangling with Prompts AAAI 2026
Image correction and rectangling are valuable tasks in practical photography systems such as smartphones. Recent remarkable advancements in deep learning have undeniably brought about substantial performance improvements in these fields. Nevertheless, existing methods mainly rely on task-specific architectures. This significantly restricts their generalization ability and effective application across a wide range of different tasks. In this paper, we introduce the Unified Rectification Framework (UniRect), a comprehensive approach that addresses these practical tasks from a consistent distortion rectification perspective. Our approach incorporates various task-specific inverse problems into a general distortion model by simulating different types of lenses. To handle diverse distortions, UniRect adopts one task-agnostic rectification framework with a dual-component structure: a {Deformation Module}, which utilizes a novel Residual Progressive Thin-Plate Spline (RP-TPS) model to address complex geometric deformations, and a subsequent Restoration Module, which employs Residual Mamba Blocks (RMBs) to counteract the degradation caused by the deformation process and enhance the fidelity of the output image. Moreover, a Sparse Mixture-of-Experts (SMoEs) structure is designed to circumvent heavy task competition in multi-task learning due to varying distortions. Extensive experiments demonstrate that our models have achieved state-of-the-art performance compared with other up-to-date methods.
comment: AAAI 2026
♻ ☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
♻ ☆ Can 3D point cloud data improve automated body condition score prediction in dairy cattle?
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ SyNeT: Synthetic Negatives for Traversability Learning
Reliable traversability estimation is crucial for autonomous robots to navigate complex outdoor environments safely. Existing self-supervised learning frameworks primarily rely on positive and unlabeled data; however, the lack of explicit negative data remains a critical limitation, hindering the model's ability to accurately identify diverse non-traversable regions. To address this issue, we introduce a method to explicitly construct synthetic negatives, representing plausible but non-traversable, and integrate them into vision-based traversability learning. Our approach is formulated as a training strategy that can be seamlessly integrated into both Positive-Unlabeled (PU) and Positive-Negative (PN) frameworks without modifying inference architectures. Complementing standard pixel-wise metrics, we introduce an object-centric FPR evaluation approach that analyzes predictions in regions where synthetic negatives are inserted. This evaluation provides an indirect measure of the model's ability to consistently identify non-traversable regions without additional manual labeling. Extensive experiments on both public and self-collected datasets demonstrate that our approach significantly enhances robustness and generalization across diverse environments. The source code and demonstration videos will be publicly available.
♻ ☆ Mixture of Distributions Matters: Dynamic Sparse Attention for Efficient Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixture-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
♻ ☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
♻ ☆ MiTA Attention: Efficient Fast-Weight Scaling via a Mixture of Top-k Activations
The attention operator in Transformers can be viewed as a two-layer fast-weight MLP, whose weights are dynamically instantiated from input tokens and whose width equals sequence length N. As the context extends, the expressive capacity of such an N-width MLP increases, but scaling its fast weights becomes prohibitively expensive for extremely long sequences. Recently, this fast-weight scaling perspective has motivated the Mixture-of-Experts (MoE) attention, which partitions the sequence into fast-weight experts and sparsely routes the tokens to them. In this paper, we elevate this perspective to a unifying framework for a wide range of efficient attention methods by interpreting them as scaling fast weights through routing and/or compression. Then we propose a compress-and-route strategy, which compresses the N-width MLP into a narrower one using a small set of landmark queries and constructs deformable experts by gathering top-k activated key-value pairs for each landmark query. We call this strategy a Mixture of Top-k Activations (MiTA), and refer to the resulting efficient mechanism as MiTA attention. Preliminary experiments on vision tasks demonstrate the promise of our MiTA attention and motivate further investigation on its optimization and broader applications in more challenging settings.
♻ ☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization SIGGRAPH
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: SIGGRAPH Asia 2025
♻ ☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Surgical scene understanding is critical for surgical training and robotic decision-making in robot-assisted surgery. Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated great potential for advancing scene perception in the medical domain, facilitating surgeons to understand surgical scenes and procedures. However, these methods are primarily oriented towards image-based analysis or global video understanding, overlooking the fine-grained video reasoning that is crucial for analyzing specific processes and capturing detailed task execution within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K that is a large-scale dataset with over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Building on this resource, SurgVidLM incorporates a two-stage StageFocus mechanism: the first stage extracts global procedural context, while the second stage performs high-frequency local analysis guided by temporal cues. We also develop the Multi-frequency Fusion Attention to effectively integrate low- and high-frequency visual tokens, ensuring the preservation of critical task-specific details. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs of comparable parameter scale in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing the context of complex robot-assisted surgeries. Our code and dataset will be publicly accessible soon.
♻ ☆ DuoGen: Towards General Purpose Interleaved Multimodal Generation
Interleaved multimodal generation enables capabilities beyond unimodal generation models, such as step-by-step instructional guides, visual planning, and generating visual drafts for reasoning. However, the quality of existing interleaved generation models under general instructions remains limited by insufficient training data and base model capacity. We present DuoGen, a general-purpose interleaved generation framework that systematically addresses data curation, architecture design, and evaluation. On the data side, we build a large-scale, high-quality instruction-tuning dataset by combining multimodal conversations rewritten from curated raw websites, and diverse synthetic examples covering everyday scenarios. Architecturally, DuoGen leverages the strong visual understanding of a pretrained multimodal LLM and the visual generation capabilities of a diffusion transformer (DiT) pretrained on video generation, avoiding costly unimodal pretraining and enabling flexible base model selection. A two-stage decoupled strategy first instruction-tunes the MLLM, then aligns DiT with it using curated interleaved image-text sequences. Across public and newly proposed benchmarks, DuoGen outperforms prior open-source models in text quality, image fidelity, and image-context alignment, and also achieves state-of-the-art performance on text-to-image and image editing among unified generation models. Data and code will be released at https://research.nvidia.com/labs/dir/duogen/.
comment: Technical Report. Project Page: https://research.nvidia.com/labs/dir/duogen/
♻ ☆ EVODiff: Entropy-aware Variance Optimized Diffusion Inference NeurIPS 2025
Diffusion models (DMs) excel in image generation but suffer from slow inference and training-inference discrepancies. Although gradient-based solvers for DMs accelerate denoising inference, they often lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
comment: NeurIPS 2025, 41 pages, 14 figures
♻ ☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLab-SYSU/DDP-WM
♻ ☆ DSKC: Domain Style Modeling with Adaptive Knowledge Consolidation for Exemplar-free Lifelong Person Re-Identification
Lifelong Person Re-identification (LReID) aims to continuously match individuals across camera views from sequential data streams. Existing LReID methods often ignore domain-specific style awareness and unified knowledge consolidation, which are crucial for mitigating forgetting when adapting to new information. We propose DSKC, a novel rehearsal-free and distillation-free framework for LReID. DSKC designs a domain-style encoder (DSE) to dynamically model domain-specific styles, and a unified knowledge consolidation (UKC) mechanism to adaptively integrate instance-level representations with domain-specific style into a cross-domain unified representation. By leveraging unified representation as a bridge, DSKC explicitly models inter-domain associations at both instance and domain levels to enhance anti-forgetting and generalization. Experimental results demonstrate that our DSKC outperforms state-of-the-art methods in two training orders and enhances the model's strong performance. Our code is available at https://github.com/LiuShiBen/DKUA.
comment: 11 papges, 6 figures
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ TFFM: Topology-Aware Feature Fusion Module via Latent Graph Reasoning for Retinal Vessel Segmentation WACV 2026
Precise segmentation of retinal arteries and veins carries the diagnosis of systemic cardiovascular conditions. However, standard convolutional architectures often yield topologically disjointed segmentations, characterized by gaps and discontinuities that render reliable graph-based clinical analysis impossible despite high pixel-level accuracy. To address this, we introduce a topology-aware framework engineered to maintain vascular connectivity. Our architecture fuses a Topological Feature Fusion Module (TFFM) that maps local feature representations into a latent graph space, deploying Graph Attention Networks to capture global structural dependencies often missed by fixed receptive fields. Furthermore, we drive the learning process with a hybrid objective function, coupling Tversky loss for class imbalance with soft clDice loss to explicitly penalize topological disconnects. Evaluation on the Fundus-AVSeg dataset reveals state-of-the-art performance, achieving a combined Dice score of 90.97% and a 95% Hausdorff Distance of 3.50 pixels. Notably, our method decreases vessel fragmentation by approximately 38% relative to baselines, yielding topologically coherent vascular trees viable for automated biomarker quantification. We open-source our code at https://tffm-module.github.io/.
comment: Accepted in WACV 2026 @ P2P-workshop as a full paper and selected for oral presentation
♻ ☆ UniADC: A Unified Framework for Anomaly Detection and Classification
In this paper, we introduce a novel task termed unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlations and limiting information sharing, which results in suboptimal performance. To address this, we propose UniADC, a model designed to effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free Controllable Inpainting Network and an Implicit-Normal Discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The implicit-normal discriminator addresses the severe challenge of the imbalance between normal and anomalous pixel distributions by implicitly modeling the normal state, achieving precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.
♻ ☆ RAD: Region-Aware Diffusion Models for Image Inpainting
Diffusion models have achieved remarkable success in image generation, with applications broadening across various domains. Inpainting is one such application that can benefit significantly from diffusion models. Existing methods either hijack the reverse process of a pretrained diffusion model or cast the problem into a larger framework, \ie, conditioned generation. However, these approaches often require nested loops in the generation process or additional components for conditioning. In this paper, we present region-aware diffusion models (RAD) for inpainting with a simple yet effective reformulation of the vanilla diffusion models. RAD utilizes a different noise schedule for each pixel, which allows local regions to be generated asynchronously while considering the global image context. A plain reverse process requires no additional components, enabling RAD to achieve inference time up to 100 times faster than the state-of-the-art approaches. Moreover, we employ low-rank adaptation (LoRA) to fine-tune RAD based on other pretrained diffusion models, reducing computational burdens in training as well. Experiments demonstrated that RAD provides state-of-the-art results both qualitatively and quantitatively, on the FFHQ, LSUN Bedroom, and ImageNet datasets.
comment: Code: https://github.com/srk1995/RAD
♻ ☆ RF-DETR: Neural Architecture Search for Real-Time Detection Transformers ICLR
Open-vocabulary detectors achieve impressive performance on COCO, but often fail to generalize to real-world datasets with out-of-distribution classes not typically found in their pre-training. Rather than simply fine-tuning a heavy-weight vision-language model (VLM) for new domains, we introduce RF-DETR, a light-weight specialist detection transformer that discovers accuracy-latency Pareto curves for any target dataset with weight-sharing neural architecture search (NAS). Our approach fine-tunes a pre-trained base network on a target dataset and evaluates thousands of network configurations with different accuracy-latency tradeoffs without re-training. Further, we revisit the "tunable knobs" for NAS to improve the transferability of DETRs to diverse target domains. Notably, RF-DETR significantly improves over prior state-of-the-art real-time methods on COCO and Roboflow100-VL. RF-DETR (nano) achieves 48.0 AP on COCO, beating D-FINE (nano) by 5.3 AP at similar latency, and RF-DETR (2x-large) outperforms GroundingDINO (tiny) by 1.2 AP on Roboflow100-VL while running 20x as fast. To the best of our knowledge, RF-DETR (2x-large) is the first real-time detector to surpass 60 AP on COCO. Our code is available at https://github.com/roboflow/rf-detr
comment: This work has been accepted to the International Conference on Learning Representations (ICLR) 2026. Project Page: https://rfdetr.roboflow.com/
♻ ☆ Activation-wise Propagation: A One-Timestep Strategy for Spiking Neural Networks AAAI26
Spiking neural networks (SNNs) have demonstrated significant potential in real-time multi-sensor perception tasks due to their event-driven and parameter-efficient characteristics. A key challenge is the timestep-wise iterative update of neuronal hidden states (membrane potentials), which complicates the trade-off between accuracy and latency. SNNs tend to achieve better performance with longer timesteps, inevitably resulting in higher computational overhead and latency compared to artificial neural networks (ANNs). Moreover, many recent advances in SNNs rely on architecture-specific optimizations, which, while effective with fewer timesteps, often limit generalizability and scalability across modalities and models. To address these limitations, we propose Activation-wise Membrane Potential Propagation (AMP2), a unified hidden state update mechanism for SNNs. Inspired by the spatial propagation of membrane potentials in biological neurons, AMP2 enables dynamic transmission of membrane potentials among spatially adjacent neurons, facilitating spatiotemporal integration and cooperative dynamics of hidden states, thereby improving efficiency and accuracy while reducing reliance on extended temporal updates. This simple yet effective strategy significantly enhances SNN performance across various architectures, including MLPs and CNNs for point cloud and event-based data. Furthermore, ablation studies integrating AMP2 into Transformer-based SNNs for classification tasks demonstrate its potential as a general-purpose and efficient solution for spiking neural networks.
comment: 10 pages, 7 figures, AAAI26
♻ ☆ Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their performance on long-horizon, complex problems remains unreliable. Single-rollout execution is brittle, with small errors compounding over time and leading to high variance in outcomes. While prior work has attempted to scale within a single rollout, such approaches have yielded limited gains. Scaling over multiple rollouts offers a more promising alternative but doing so effectively is challenging due to the difficulty of evaluating and selecting among long-horizon agent behaviors. We introduce Behavior Judge (BJudge), which addresses this challenge by representing agent executions as behavior narratives and comparing candidate behaviors at this level, substantially improving robustness and success rates. Using multiple rollouts, BJudge establishes a new state of the art (SoTA) in OSWorld at 72.6%, significantly outperforming prior methods and surpassing human-level performance at 72.36%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the strong effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and BJudge provides a practical framework to achieve this.
comment: 21 pages, 7 figures, 13 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: NeurIPS 2025 (https://openreview.net/forum?id=LsmUgStXby)
♻ ☆ Near--Real-Time Conflict-Related Fire Detection Using Unsupervised Deep Learning and Satellite Imagery
Ongoing armed conflict in Sudan highlights the need for rapid monitoring of conflict-related fire damage. Recent advances in deep learning and high-frequency satellite imagery enable near--real-time assessment of active fires and burn scars in war zones. This study presents a near--real-time monitoring approach using a lightweight Variational Auto-Encoder (VAE)-based model integrated with 4-band Planet Labs imagery at 3 m spatial resolution. We demonstrate that conflict-related fire damage can be detected with minimal delay using accessible, commercially available satellite data. To achieve this, we adapt a VAE-based model, originally designed for 10-band imagery, to operate effectively on high-resolution 4-band inputs. The model is trained in an unsupervised manner to learn compact latent representations of nominal land-surface conditions and identify fire-affected areas by quantifying changes between temporally paired latent embeddings. Performance is evaluated across five case studies in Sudan and compared against a cosine-distance baseline computed between temporally paired image tiles using precision, recall, F1-score, and the area under the precision-recall curve (AUPRC). Results show that the proposed approach consistently outperforms the baseline, achieving higher recall and F1-scores while maintaining strong precision in highly imbalanced fire-detection scenarios. Experiments with 8-band imagery and temporal image sequences yield only marginal performance gains over single 4-band inputs, underscoring the effectiveness of the proposed lightweight approach for scalable, near--real-time conflict monitoring.
♻ ☆ Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
♻ ☆ DiffVax: Optimization-Free Image Immunization Against Diffusion-Based Editing ICLR 2026
Current image immunization defense techniques against diffusion-based editing embed imperceptible noise into target images to disrupt editing models. However, these methods face scalability challenges, as they require time-consuming optimization for each image separately, taking hours for small batches. To address these challenges, we introduce DiffVax, a scalable, lightweight, and optimization-free framework for image immunization, specifically designed to prevent diffusion-based editing. Our approach enables effective generalization to unseen content, reducing computational costs and cutting immunization time from days to milliseconds, achieving a speedup of 250,000x. This is achieved through a loss term that ensures the failure of editing attempts and the imperceptibility of the perturbations. Extensive qualitative and quantitative results demonstrate that our model is scalable, optimization-free, adaptable to various diffusion-based editing tools, robust against counter-attacks, and, for the first time, effectively protects video content from editing. More details are available in https://diffvax.github.io/ .
comment: Accepted into ICLR 2026. Project webpage: https://diffvax.github.io/
♻ ☆ DISCOVER: Identifying Patterns of Daily Living in Human Activities from Smart Home Data
Smart homes equipped with ambient sensors offer a transformative approach to continuous health monitoring and assisted living. Traditional research in this domain primarily focuses on Human Activity Recognition (HAR), which relies on mapping sensor data to a closed set of predefined activity labels. However, the fixed granularity of these labels often constrains their practical utility, failing to capture the subtle, household-specific nuances essential, for example, for tracking individual health over time. To address this, we propose DISCOVER, a framework for discovering and annotating Patterns of Daily Living (PDL) - fine-grained, recurring sequences of sensor events that emerge directly from a resident's unique routines. DISCOVER utilizes a self-supervised feature extraction and representation-aware clustering pipeline, supported by a custom visualization interface that enables experts to interpret and label discovered patterns with minimal effort. Our evaluation across multiple smart-home environments demonstrates that DISCOVER identifies cohesive behavioral clusters with high inter-rater agreement while achieving classification performance comparable to fully-supervised baselines using only 0.01% of the labels. Beyond reducing annotation overhead, DISCOVER establishes a foundation for longitudinal analysis. By grounding behavior in a resident's specific environment rather than rigid semantic categories, our framework facilitates the observation of within-person habitual drift. This capability positions the system as a potential tool for identifying subtle behavioral indicators associated with early-stage cognitive decline in future longitudinal studies.
comment: v2: Re-submission. Under review at IMWUT
♻ ☆ Recov-Vision: Linking Street View Imagery and Vision-Language Models for Post-Disaster Recovery
Building-level occupancy after disasters is vital for triage, inspections, utility re-energization, and equitable resource allocation. Overhead imagery provides rapid coverage but often misses facade and access cues that determine habitability, while street-view imagery captures those details but is sparse and difficult to align with parcels. We present FacadeTrack, a street-level, language-guided framework that links panoramic video to parcels, rectifies views to facades, and elicits interpretable attributes (for example, entry blockage, temporary coverings, localized debris) that drive two decision strategies: a transparent one-stage rule and a two-stage design that separates perception from conservative reasoning. Evaluated across two post-Hurricane Helene surveys, the two-stage approach achieves a precision of 0.927, a recall of 0.781, and an F-1 score of 0.848, compared with the one-stage baseline at a precision of 0.943, a recall of 0.728, and an F-1 score of 0.822. Beyond accuracy, intermediate attributes and spatial diagnostics reveal where and why residual errors occur, enabling targeted quality control. The pipeline provides auditable, scalable occupancy assessments suitable for integration into geospatial and emergency-management workflows.
comment: 20 pages, 10 figures
♻ ☆ Detecting 3D Line Segments for 6DoF Pose Estimation with Limited Data
The task of 6DoF object pose estimation is one of the fundamental problems of 3D vision with many practical applications such as industrial automation. Traditional deep learning approaches for this task often require extensive training data or CAD models, limiting their application in real-world industrial settings where data is scarce and object instances vary. We propose a novel method for 6DoF pose estimation focused specifically on bins used in industrial settings. We exploit the cuboid geometry of bins by first detecting intermediate 3D line segments corresponding to their top edges. Our approach extends the 2D line segment detection network LeTR to operate on structured point cloud data. The detected 3D line segments are then processed using a simple geometric procedure to robustly determine the bin's 6DoF pose. To evaluate our method, we extend an existing dataset with a newly collected and annotated dataset, which we make publicly available. We show that incorporating synthetic training data significantly improves pose estimation accuracy on real scans. Moreover, we show that our method significantly outperforms current state-of-the-art 6DoF pose estimation methods in terms of the pose accuracy (3 cm translation error, 8.2$^\circ$ rotation error) while not requiring instance-specific CAD models during inference.
comment: 8 pages, Accepted to VISAPP 2026 as Position Paper
♻ ☆ Thermal Imaging-based Real-time Fall Detection using Motion Flow and Attention-enhanced Convolutional Recurrent Architecture
Falls among seniors are a major public health issue. Existing solutions using wearable sensors, ambient sensors, and RGB-based vision systems face challenges in reliability, user compliance, and practicality. Studies indicate that stakeholders, such as older adults and eldercare facilities, prefer non-wearable, passive, privacy-preserving, and real-time fall detection systems that require no user interaction. This study proposes an advanced thermal fall detection method using a Bidirectional Convolutional Long Short-Term Memory (BiConvLSTM) model, enhanced with spatial, temporal, feature, self, and general attention mechanisms. Through systematic experimentation across hundreds of model variations exploring the integration of attention mechanisms, recurrent modules, and motion flow, we identified top-performing architectures. Among them, BiConvLSTM achieved state-of-the-art performance with a ROC-AUC of $99.7\%$ on the TSF dataset and demonstrated robust results on TF-66, a newly emerged, diverse, and privacy-preserving benchmark. These results highlight the generalizability and practicality of the proposed model, setting new standards for thermal fall detection and paving the way toward deployable, high-performance solutions.
♻ ☆ RePack then Refine: Efficient Diffusion Transformer with Vision Foundation Model
Semantic-rich features from Vision Foundation Models (VFMs) have been leveraged to enhance Latent Diffusion Models (LDMs). However, raw VFM features are typically high-dimensional and redundant, increasing the difficulty of learning and reducing training efficiency for Diffusion Transformers (DiTs). In this paper, we propose Repack then Refine, a three-stage framework that brings the semantic-rich VFM features to DiT while further accelerating learning efficiency. Specifically, the RePack module projects the high-dimensional features onto a compact, low-dimensional manifold. This filters out the redundancy while preserving essential structural information. A standard DiT is then trained for generative modeling on this highly compressed latent space. Finally, to restore the high-frequency details lost due to the compression in RePack, we propose a Latent-Guided Refiner, which is trained lastly for enhancing the image details. On ImageNet-1K, RePack-DiT-XL/1 achieves an FID of 1.82 in only 64 training epochs. With the Refiner module, performance further improves to an FID of 1.65, significantly surpassing latest LDMs in terms of convergence efficiency. Our results demonstrate that packing VFM features, followed by targeted refinement, is a highly effective strategy for balancing generative fidelity with training efficiency.
♻ ☆ One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift. Our method is based on training the student network to produce images such that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a noticeable margin in various perceptual metrics (LPIPS, CLIPIQA, MUSIQ). We show that our distillation method can surpass SinSR, the other distillation-based method for ResShift, making it on par with state-of-the-art diffusion SR distillation methods with limited computational costs in terms of perceptual quality. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality and requires fewer parameters, GPU memory, and training cost. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.
♻ ☆ SurgiATM: A Physics-Guided Plug-and-Play Model for Deep Learning-Based Smoke Removal in Laparoscopic Surgery
During laparoscopic surgery, smoke generated by tissue cauterization degrade endoscopic frames quality, increasing surgical risk and hindering both clinical decision-making and computer-assisted visual analysis. Therefore, removing surgical smoke is essential for patient safety and operative efficiency. In this study, we propose the Surgical Atmospheric Model (SurgiATM) for surgical smoke removal. SurgiATM statistically bridges a physics-based atmospheric model and data-driven deep learning models, combining the superior generalizability of the former with the high accuracy of the latter. SurgiATM is designed as a lightweight, plug-and-play module that can be seamlessly integrated into diverse surgical desmoking architectures to enhance their accuracy and stability. The proposed method is derived via statistically optimizing MoE model at the output end of arbitrary deep learning methods, with a Laplacian-like error distribution specifically leveraged to model surgical smoke. The output-stage MoE ensures minimal modification to the architecture of the original methods, while the Laplacian-like distribution characteristic of surgical smoke enables a lightweight reconstruction formulation with minimal parameters. Therefore, SurgiATM introduces only two hyperparameters and no extra trainable weights, preserving the original network architecture with minimal overhead. We conduct extensive experiments on three public surgical datasets, involving multiple network architectures and covering diverse procedures, including cholecystectomy, partial nephrectomy, and diaphragm dissection. The results demonstrate that incorporating SurgiATM commonly reduces the restoration errors of existing models and relatively enhances their generalizability, without adding any trainable layers or weights. This highlights the convenience, low cost, effectiveness, and generalizability of the proposed method.
comment: 21 pages, 9 figures, 10 tables. Code available at https://github.com/MingyuShengSMY/SurgiATM
♻ ☆ ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs
Methods for finetuning generative models for concept-driven personalization generally achieve strong results for subject-driven or style-driven generation. Recently, low-rank adaptations (LoRA) have been proposed as a parameter-efficient way of achieving concept-driven personalization. While recent work explores the combination of separate LoRAs to achieve joint generation of learned styles and subjects, existing techniques do not reliably address the problem; they often compromise either subject fidelity or style fidelity. We propose ZipLoRA, a method to cheaply and effectively merge independently trained style and subject LoRAs in order to achieve generation of any user-provided subject in any user-provided style. Experiments on a wide range of subject and style combinations show that ZipLoRA can generate compelling results with meaningful improvements over baselines in subject and style fidelity while preserving the ability to recontextualize. Project page: https://ziplora.github.io
comment: Project page: https://ziplora.github.io
Artificial Intelligence 352
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Adaptive Evidence Weighting for Audio-Spatiotemporal Fusion
Many machine learning systems have access to multiple sources of evidence for the same prediction target, yet these sources often differ in reliability and informativeness across inputs. In bioacoustic classification, species identity may be inferred both from the acoustic signal and from spatiotemporal context such as location and season; while Bayesian inference motivates multiplicative evidence combination, in practice we typically only have access to discriminative predictors rather than calibrated generative models. We introduce \textbf{F}usion under \textbf{IN}dependent \textbf{C}onditional \textbf{H}ypotheses (\textbf{FINCH}), an adaptive log-linear evidence fusion framework that integrates a pre-trained audio classifier with a structured spatiotemporal predictor. FINCH learns a per-sample gating function that estimates the reliability of contextual information from uncertainty and informativeness statistics. The resulting fusion family \emph{contains} the audio-only classifier as a special case and explicitly bounds the influence of contextual evidence, yielding a risk-contained hypothesis class with an interpretable audio-only fallback. Across benchmarks, FINCH consistently outperforms fixed-weight fusion and audio-only baselines, improving robustness and error trade-offs even when contextual information is weak in isolation. We achieve state-of-the-art performance on CBI and competitive or improved performance on several subsets of BirdSet using a lightweight, interpretable, evidence-based approach. Code is available: \texttt{\href{https://anonymous.4open.science/r/birdnoise-85CD/README.md}{anonymous-repository}}
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Do We Need Asynchronous SGD? On the Near-Optimality of Synchronous Methods
Modern distributed optimization methods mostly rely on traditional synchronous approaches, despite substantial recent progress in asynchronous optimization. We revisit Synchronous SGD and its robust variant, called $m$-Synchronous SGD, and theoretically show that they are nearly optimal in many heterogeneous computation scenarios, which is somewhat unexpected. We analyze the synchronous methods under random computation times and adversarial partial participation of workers, and prove that their time complexities are optimal in many practical regimes, up to logarithmic factors. While synchronous methods are not universal solutions and there exist tasks where asynchronous methods may be necessary, we show that they are sufficient for many modern heterogeneous computation scenarios.
☆ Conformal Reachability for Safe Control in Unknown Environments
Designing provably safe control is a core problem in trustworthy autonomy. However, most prior work in this regard assumes either that the system dynamics are known or deterministic, or that the state and action space are finite, significantly limiting application scope. We address this limitation by developing a probabilistic verification framework for unknown dynamical systems which combines conformal prediction with reachability analysis. In particular, we use conformal prediction to obtain valid uncertainty intervals for the unknown dynamics at each time step, with reachability then verifying whether safety is maintained within the conformal uncertainty bounds. Next, we develop an algorithmic approach for training control policies that optimize nominal reward while also maximizing the planning horizon with sound probabilistic safety guarantees. We evaluate the proposed approach in seven safe control settings spanning four domains -- cartpole, lane following, drone control, and safe navigation -- for both affine and nonlinear safety specifications. Our experiments show that the policies we learn achieve the strongest provable safety guarantees while still maintaining high average reward.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ DiffLOB: Diffusion Models for Counterfactual Generation in Limit Order Books
Modern generative models for limit order books (LOBs) can reproduce realistic market dynamics, but remain fundamentally passive: they either model what typically happens without accounting for hypothetical future market conditions, or they require interaction with another agent to explore alternative outcomes. This limits their usefulness for stress testing, scenario analysis, and decision-making. We propose \textbf{DiffLOB}, a regime-conditioned \textbf{Diff}usion model for controllable and counterfactual generation of \textbf{LOB} trajectories. DiffLOB explicitly conditions the generative process on future market regimes--including trend, volatility, liquidity, and order-flow imbalance, which enables the model to answer counterfactual queries of the form: ``If the future market regime were X instead of Y, how would the limit order book evolve?'' Our systematic evaluation framework for counterfactual LOB generation consists of three criteria: (1) \textit{Controllable Realism}, measuring how well generated trajectories can reproduce marginal distributions, temporal dependence structure and regime variables; (2) \textit{Counterfactual validity}, testing whether interventions on future regimes induce consistent changes in the generated LOB dynamics; (3) \textit{Counterfactual usefulness}, assessing whether synthetic counterfactual trajectories improve downstream prediction of future market regimes.
comment: 12 pages, 8 figures
☆ An Empirical Study of Collective Behaviors and Social Dynamics in Large Language Model Agents
Large Language Models (LLMs) increasingly mediate our social, cultural, and political interactions. While they can simulate some aspects of human behavior and decision-making, it is still underexplored whether repeated interactions with other agents amplify their biases or lead to exclusionary behaviors. To this end, we study Chirper.ai-an LLM-driven social media platform-analyzing 7M posts and interactions among 32K LLM agents over a year. We start with homophily and social influence among LLMs, learning that similar to humans', their social networks exhibit these fundamental phenomena. Next, we study the toxic language of LLMs, its linguistic features, and their interaction patterns, finding that LLMs show different structural patterns in toxic posting than humans. After studying the ideological leaning in LLMs posts, and the polarization in their community, we focus on how to prevent their potential harmful activities. We present a simple yet effective method, called Chain of Social Thought (CoST), that reminds LLM agents to avoid harmful posting.
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
☆ LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ TodyComm: Task-Oriented Dynamic Communication for Multi-Round LLM-based Multi-Agent System
Multi-round LLM-based multi-agent systems rely on effective communication structures to support collaboration across rounds. However, most existing methods employ a fixed communication topology during inference, which falls short in many realistic applications where the agents' roles may change \textit{across rounds} due to dynamic adversary, task progression, or time-varying constraints such as communication bandwidth. In this paper, we propose addressing this issue through TodyComm, a \textbf{t}ask-\textbf{o}riented \textbf{dy}namic \textbf{comm}unication algorithm. It produces behavior-driven collaboration topologies that adapt to the dynamics at each round, optimizing the utility for the task through policy gradient. Experiments on five benchmarks demonstrate that under both dynamic adversary and communications budgets, TodyComm delivers superior task effectiveness while retaining token efficiency and scalability.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Can LLMs Do Rocket Science? Exploring the Limits of Complex Reasoning with GTOC 12
Large Language Models (LLMs) have demonstrated remarkable proficiency in code generation and general reasoning, yet their capacity for autonomous multi-stage planning in high-dimensional, physically constrained environments remains an open research question. This study investigates the limits of current AI agents by evaluating them against the 12th Global Trajectory Optimization Competition (GTOC 12), a complex astrodynamics challenge requiring the design of a large-scale asteroid mining campaign. We adapt the MLE-Bench framework to the domain of orbital mechanics and deploy an AIDE-based agent architecture to autonomously generate and refine mission solutions. To assess performance beyond binary validity, we employ an "LLM-as-a-Judge" methodology, utilizing a rubric developed by domain experts to evaluate strategic viability across five structural categories. A comparative analysis of models, ranging from GPT-4-Turbo to reasoning-enhanced architectures like Gemini 2.5 Pro, and o3, reveals a significant trend: the average strategic viability score has nearly doubled in the last two years (rising from 9.3 to 17.2 out of 26). However, we identify a critical capability gap between strategy and execution. While advanced models demonstrate sophisticated conceptual understanding, correctly framing objective functions and mission architectures, they consistently fail at implementation due to physical unit inconsistencies, boundary condition errors, and inefficient debugging loops. We conclude that, while current LLMs often demonstrate sufficient knowledge and intelligence to tackle space science tasks, they remain limited by an implementation barrier, functioning as powerful domain facilitators rather than fully autonomous engineers.
comment: Extended version of the paper presented at AIAA SciTech 2026 Forum. Includes futher experiments, corrections and new appendix
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Don't believe everything you read: Understanding and Measuring MCP Behavior under Misleading Tool Descriptions
The Model Context Protocol (MCP) enables large language models to invoke external tools through natural-language descriptions, forming the foundation of many AI agent applications. However, MCP does not enforce consistency between documented tool behavior and actual code execution, even though MCP Servers often run with broad system privileges. This gap introduces a largely unexplored security risk. We study how mismatches between externally presented tool descriptions and underlying implementations systematically shape the mental models and decision-making behavior of intelligent agents. Specifically, we present the first large-scale study of description-code inconsistency in the MCP ecosystem. We design an automated static analysis framework and apply it to 10,240 real-world MCP Servers across 36 categories. Our results show that while most servers are highly consistent, approximately 13% exhibit substantial mismatches that can enable undocumented privileged operations, hidden state mutations, or unauthorized financial actions. We further observe systematic differences across application categories, popularity levels, and MCP marketplaces. Our findings demonstrate that description-code inconsistency is a concrete and prevalent attack surface in MCP-based AI agents, and motivate the need for systematic auditing and stronger transparency guarantees in future agent ecosystems.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Persona Generators: Generating Diverse Synthetic Personas at Scale
Evaluating AI systems that interact with humans requires understanding their behavior across diverse user populations, but collecting representative human data is often expensive or infeasible, particularly for novel technologies or hypothetical future scenarios. Recent work in Generative Agent-Based Modeling has shown that large language models can simulate human-like synthetic personas with high fidelity, accurately reproducing the beliefs and behaviors of specific individuals. However, most approaches require detailed data about target populations and often prioritize density matching (replicating what is most probable) rather than support coverage (spanning what is possible), leaving long-tail behaviors underexplored. We introduce Persona Generators, functions that can produce diverse synthetic populations tailored to arbitrary contexts. We apply an iterative improvement loop based on AlphaEvolve, using large language models as mutation operators to refine our Persona Generator code over hundreds of iterations. The optimization process produces lightweight Persona Generators that can automatically expand small descriptions into populations of diverse synthetic personas that maximize coverage of opinions and preferences along relevant diversity axes. We demonstrate that evolved generators substantially outperform existing baselines across six diversity metrics on held-out contexts, producing populations that span rare trait combinations difficult to achieve in standard LLM outputs.
☆ Group Selection as a Safeguard Against AI Substitution
Reliance on generative AI can reduce cultural variance and diversity, especially in creative work. This reduction in variance has already led to problems in model performance, including model collapse and hallucination. In this paper, we examine the long-term consequences of AI use for human cultural evolution and the conditions under which widespread AI use may lead to "cultural collapse", a process in which reliance on AI-generated content reduces human variation and innovation and slows cumulative cultural evolution. Using an agent-based model and evolutionary game theory, we compare two types of AI use: complement and substitute. AI-complement users seek suggestions and guidance while remaining the main producers of the final output, whereas AI-substitute users provide minimal input, and rely on AI to produce most of the output. We then study how these use strategies compete and spread under evolutionary dynamics. We find that AI-substitute users prevail under individual-level selection despite the stronger reduction in cultural variance. By contrast, AI-complement users can benefit their groups by maintaining the variance needed for exploration, and can therefore be favored under cultural group selection when group boundaries are strong. Overall, our findings shed light on the long-term, population-level effects of AI adoption and inform policy and organizational strategies to mitigate these risks.
comment: 19 pages, 7 Figures
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet IEEE
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ CMR: Contractive Mapping Embeddings for Robust Humanoid Locomotion on Unstructured Terrains
Robust disturbance rejection remains a longstanding challenge in humanoid locomotion, particularly on unstructured terrains where sensing is unreliable and model mismatch is pronounced. While perception information, such as height map, enhances terrain awareness, sensor noise and sim-to-real gaps can destabilize policies in practice. In this work, we provide theoretical analysis that bounds the return gap under observation noise, when the induced latent dynamics are contractive. Furthermore, we present Contractive Mapping for Robustness (CMR) framework that maps high-dimensional, disturbance-prone observations into a latent space, where local perturbations are attenuated over time. Specifically, this approach couples contrastive representation learning with Lipschitz regularization to preserve task-relevant geometry while explicitly controlling sensitivity. Notably, the formulation can be incorporated into modern deep reinforcement learning pipelines as an auxiliary loss term with minimal additional technical effort required. Further, our extensive humanoid experiments show that CMR potently outperforms other locomotion algorithms under increased noise.
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ When Routing Collapses: On the Degenerate Convergence of LLM Routers
LLM routing aims to achieve a favorable quality--cost trade-off by dynamically assigning easy queries to smaller models and harder queries to stronger ones. However, across both unimodal and multimodal settings, we uncover a pervasive yet underexplored failure mode in existing routers: as the user's cost budget increases, routers systematically default to the most capable and most expensive model even when cheaper models already suffice. As a result, current routers under-utilize small models, wasting computation and monetary cost and undermining the core promise of routing; we term this phenomenon routing collapse. We attribute routing collapse to an objective--decision mismatch: many routers are trained to predict scalar performance scores, whereas routing decisions ultimately depend on discrete comparisons among candidate models. Consequently, small prediction errors can flip relative orderings and trigger suboptimal selections. To bridge this gap, we propose EquiRouter, a decision-aware router that directly learns model rankings, restoring the role of smaller models and mitigating routing collapse. On RouterBench, EquiRouter reduces cost by about 17\% at GPT-4-level performance compared to the strongest prior router. Our code is available at https://github.com/AIGNLAI/EquiRouter.
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ The Dual Role of Abstracting over the Irrelevant in Symbolic Explanations: Cognitive Effort vs. Understanding
Explanations are central to human cognition, yet AI systems often produce outputs that are difficult to understand. While symbolic AI offers a transparent foundation for interpretability, raw logical traces often impose a high extraneous cognitive load. We investigate how formal abstractions, specifically removal and clustering, impact human reasoning performance and cognitive effort. Utilizing Answer Set Programming (ASP) as a formal framework, we define a notion of irrelevant details to be abstracted over to obtain simplified explanations. Our cognitive experiments, in which participants classified stimuli across domains with explanations derived from an answer set program, show that clustering details significantly improve participants' understanding, while removal of details significantly reduce cognitive effort, supporting the hypothesis that abstraction enhances human-centered symbolic explanations.
comment: 8 pages, 5 figures
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Ontology-to-tools compilation for executable semantic constraint enforcement in LLM agents
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ Feasible strategies for conflict resolution within intuitionistic fuzzy preference-based conflict situations
In three-way conflict analysis, preference-based conflict situations characterize agents' attitudes towards issues by formally modeling their preferences over pairs of issues. However, existing preference-based conflict models rely exclusively on three qualitative relations, namely, preference, converse, and indifference, to describe agents' attitudes towards issue pairs, which significantly limits their capacity in capturing the essence of conflict. To overcome this limitation, we introduce the concept of an intuitionistic fuzzy preference-based conflict situation that captures agents' attitudes towards issue pairs with finer granularity than that afforded by classical preference-based models. Afterwards, we develop intuitionistic fuzzy preference-based conflict measures within this framework, and construct three-way conflict analysis models for trisecting the set of agent pairs, the agent set, and the issue set. Additionally, relative loss functions built on the proposed conflict functions are employed to calculate thresholds for three-way conflict analysis. Finally, we present adjustment mechanism-based feasible strategies that simultaneously account for both adjustment magnitudes and conflict degrees, together with an algorithm for constructing such feasible strategies, and provide an illustrative example to demonstrate the validity and effectiveness of the proposed model.
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ Precision in Practice: Knowledge Guided Code Summarizing Grounded in Industrial Expectations
Code summaries are essential for helping developers understand code functionality and reducing maintenance and collaboration costs. Although recent advances in large language models (LLMs) have significantly improved automatic code summarization, the practical usefulness of generated summaries in industrial settings remains insufficiently explored. In collaboration with documentation experts from the industrial HarmonyOS project, we conducted a questionnaire study showing that over 57.4% of code summaries produced by state-of-the-art approaches were rejected due to violations of developers' expectations for industrial documentation. Beyond semantic similarity to reference summaries, developers emphasize additional requirements, including the use of appropriate domain terminology, explicit function categorization, and the avoidance of redundant implementation details. To address these expectations, we propose ExpSum, an expectation-aware code summarization approach that integrates function metadata abstraction, informative metadata filtering, context-aware domain knowledge retrieval, and constraint-driven prompting to guide LLMs in generating structured, expectation-aligned summaries. We evaluate ExpSum on the HarmonyOS project and widely used code summarization benchmarks. Experimental results show that ExpSum consistently outperforms all baselines, achieving improvements of up to 26.71% in BLEU-4 and 20.10% in ROUGE-L on HarmonyOS. Furthermore, LLM-based evaluations indicate that ExpSum-generated summaries better align with developer expectations across other projects, demonstrating its effectiveness for industrial code documentation.
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ Toward a Sustainable Federated Learning Ecosystem: A Practical Least Core Mechanism for Payoff Allocation IEEE
Emerging network paradigms and applications increasingly rely on federated learning (FL) to enable collaborative intelligence while preserving privacy. However, the sustainability of such collaborative environments hinges on a fair and stable payoff allocation mechanism. Focusing on coalition stability, this paper introduces a payoff allocation framework based on the least core (LC) concept. Unlike traditional methods, the LC prioritizes the cohesion of the federation by minimizing the maximum dissatisfaction among all potential subgroups, ensuring that no participant has an incentive to break away. To adapt this game-theoretic concept to practical, large-scale networks, we propose a streamlined implementation with a stack-based pruning algorithm, effectively balancing computational efficiency with allocation precision. Case studies in federated intrusion detection demonstrate that our mechanism correctly identifies pivotal contributors and strategic alliances. The results confirm that the practical LC framework promotes stable collaboration and fosters a sustainable FL ecosystem.
comment: 7 pages, 3 figures, submitted to IEEE Network
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
☆ Rethinking Benign Relearning: Syntax as the Hidden Driver of Unlearning Failures ICLR 2026
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
comment: Accepted at ICLR 2026
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ Causal Graph Learning via Distributional Invariance of Cause-Effect Relationship
This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ MentalSeek-Dx: Towards Progressive Hypothetico-Deductive Reasoning for Real-world Psychiatric Diagnosis
Mental health disorders represent a burgeoning global public health challenge. While Large Language Models (LLMs) have demonstrated potential in psychiatric assessment, their clinical utility is severely constrained by benchmarks that lack ecological validity and fine-grained diagnostic supervision. To bridge this gap, we introduce \textbf{MentalDx Bench}, the first benchmark dedicated to disorder-level psychiatric diagnosis within real-world clinical settings. Comprising 712 de-identified electronic health records annotated by board-certified psychiatrists under ICD-11 guidelines, the benchmark covers 76 disorders across 16 diagnostic categories. Evaluation of 18 LLMs reveals a critical \textit{paradigm misalignment}: strong performance at coarse diagnostic categorization contrasts with systematic failure at disorder-level diagnosis, underscoring a gap between pattern-based modeling and clinical hypothetico-deductive reasoning. In response, we propose \textbf{MentalSeek-Dx}, a medical-specialized LLM trained to internalize this clinical reasoning process through supervised trajectory construction and curriculum-based reinforcement learning. Experiments on MentalDx Bench demonstrate that MentalSeek-Dx achieves state-of-the-art (SOTA) performance with only 14B parameters, establishing a clinically grounded framework for reliable psychiatric diagnosis.
comment: 36 pages, 27 figures
☆ MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Multiparameter Uncertainty Mapping in Quantitative Molecular MRI using a Physics-Structured Variational Autoencoder (PS-VAE) IEEE
Quantitative imaging methods, such as magnetic resonance fingerprinting (MRF), aim to extract interpretable pathology biomarkers by estimating biophysical tissue parameters from signal evolutions. However, the pattern-matching algorithms or neural networks used in such inverse problems often lack principled uncertainty quantification, which limits the trustworthiness and transparency, required for clinical acceptance. Here, we describe a physics-structured variational autoencoder (PS-VAE) designed for rapid extraction of voxelwise multi-parameter posterior distributions. Our approach integrates a differentiable spin physics simulator with self-supervised learning, and provides a full covariance that captures the inter-parameter correlations of the latent biophysical space. The method was validated in a multi-proton pool chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) molecular MRF study, across in-vitro phantoms, tumor-bearing mice, healthy human volunteers, and a subject with glioblastoma. The resulting multi-parametric posteriors are in good agreement with those calculated using a brute-force Bayesian analysis, while providing an orders-of-magnitude acceleration in whole brain quantification. In addition, we demonstrate how monitoring the multi-parameter posterior dynamics across progressively acquired signals provides practical insights for protocol optimization and may facilitate real-time adaptive acquisition.
comment: Submitted to IEEE Transactions on Medical Imaging. This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them
☆ Memora: A Harmonic Memory Representation Balancing Abstraction and Specificity
Agent memory systems must accommodate continuously growing information while supporting efficient, context-aware retrieval for downstream tasks. Abstraction is essential for scaling agent memory, yet it often comes at the cost of specificity, obscuring the fine-grained details required for effective reasoning. We introduce Memora, a harmonic memory representation that structurally balances abstraction and specificity. Memora organizes information via its primary abstractions that index concrete memory values and consolidate related updates into unified memory entries, while cue anchors expand retrieval access across diverse aspects of the memory and connect related memories. Building on this structure, we employ a retrieval policy that actively exploits these memory connections to retrieve relevant information beyond direct semantic similarity. Theoretically, we show that standard Retrieval-Augmented Generation (RAG) and Knowledge Graph (KG)-based memory systems emerge as special cases of our framework. Empirically, Memora establishes a new state-of-the-art on the LoCoMo and LongMemEval benchmarks, demonstrating better retrieval relevance and reasoning effectiveness as memory scales.
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Entropy-Gated Selective Policy Optimization:Token-Level Gradient Allocation for Hybrid Training of Large Language Models
Hybrid training methods for large language models combine supervised fine tuning (SFT) on expert demonstrations with reinforcement learning (RL) on model rollouts, typically at the sample level. We propose Entropy Gated Selective Policy Optimization (EGSPO), a three stage framework that extends sample level mixing with token level gradient modulation. Stage 1, SFT expert learning, establishes a reliable warm up policy using expert demonstrations with a pure SFT loss. Stage 2, RL rollout generation, samples trajectories from the current policy and computes per token predictive entropy. Stage 3, the EGSPO mechanism, applies entropy gated gradient allocation: a predictive entropy module routes high entropy tokens to full PPO updates to encourage exploration, and low entropy tokens to attenuated PPO updates to reduce variance and preserve knowledge. Critically, both branches incorporate the advantage function A_t, ensuring that incorrect trajectories receive consistent negative learning signals and preventing reinforcement of confident errors. EGSPO achieves consistent improvements on mathematical reasoning benchmarks, with gains of 3.8 percent on AIME and 2.9 percent on MATH over the CHORD phi baseline, while incurring only 3.4 percent additional computational overhead.
comment: accepted by cscwd2026
☆ Learning to Select: Query-Aware Adaptive Dimension Selection for Dense Retrieval
Dense retrieval represents queries and docu-002 ments as high-dimensional embeddings, but003 these representations can be redundant at the004 query level: for a given information need, only005 a subset of dimensions is consistently help-006 ful for ranking. Prior work addresses this via007 pseudo-relevance feedback (PRF) based dimen-008 sion importance estimation, which can produce009 query-aware masks without labeled data but010 often relies on noisy pseudo signals and heuris-011 tic test-time procedures. In contrast, super-012 vised adapter methods leverage relevance labels013 to improve embedding quality, yet they learn014 global transformations shared across queries015 and do not explicitly model query-aware di-016 mension importance. We propose a Query-017 Aware Adaptive Dimension Selection frame-018 work that learns to predict per-dimension im-019 portance directly from query embedding. We020 first construct oracle dimension importance dis-021 tributions over embedding dimensions using022 supervised relevance labels, and then train a023 predictor to map a query embedding to these024 label-distilled importance scores. At inference,025 the predictor selects a query-aware subset of026 dimensions for similarity computation based027 solely on the query embedding, without pseudo-028 relevance feedback. Experiments across multi-029 ple dense retrievers and benchmarks show that030 our learned dimension selector improves re-031 trieval effectiveness over the full-dimensional032 baseline as well as PRF-based masking and033 supervised adapter baselines.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ Periodic Regularized Q-Learning
In reinforcement learning (RL), Q-learning is a fundamental algorithm whose convergence is guaranteed in the tabular setting. However, this convergence guarantee does not hold under linear function approximation. To overcome this limitation, a significant line of research has introduced regularization techniques to ensure stable convergence under function approximation. In this work, we propose a new algorithm, periodic regularized Q-learning (PRQ). We first introduce regularization at the level of the projection operator and explicitly construct a regularized projected value iteration (RP-VI), subsequently extending it to a sample-based RL algorithm. By appropriately regularizing the projection operator, the resulting projected value iteration becomes a contraction. By extending this regularized projection into the stochastic setting, we establish the PRQ algorithm and provide a rigorous theoretical analysis that proves finite-time convergence guarantees for PRQ under linear function approximation.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Rejecting Arguments Based on Doubt in Structured Bipolar Argumentation AAMAS 2026
This paper develops a new approach to computational argumentation that is informed by philosophical and linguistic views. Namely, it takes into account two ideas that have received little attention in the literature on computational argumentation: First, an agent may rationally reject an argument based on mere doubt, thus not all arguments they could defend must be accepted; and, second, that it is sometimes more natural to think in terms of which individual sentences or claims an agent accepts in a debate, rather than which arguments. In order to incorporate these two ideas into a computational approach, we first define the notion of structured bipolar argumentation frameworks (SBAFs), where arguments consist of sentences and we have both an attack and a support relation between them. Then, we provide semantics for SBAFs with two features: (1) Unlike with completeness-based semantics, our semantics do not force agents to accept all defended arguments. (2) In addition to argument extensions, which give acceptable sets of arguments, we also provide semantics for language extensions that specify acceptable sets of sentences. These semantics represent reasonable positions an agent might have in a debate. Our semantics lie between the admissible and complete semantics of abstract argumentation. Further, our approach can be used to provide a new perspective on existing approaches. For instance, we can specify the conditions under which an agent can ignore support between arguments (i.e. under which the use of abstract argumentation is warranted) and we show that deductive support semantics is a special case of our approach.
comment: Accepted to AAMAS 2026
☆ MeetBench-XL: Calibrated Multi-Dimensional Evaluation and Learned Dual-Policy Agents for Real-Time Meetings AAAI2026
Enterprise meeting environments require AI assistants that handle diverse operational tasks, from rapid fact checking during live discussions to cross meeting analysis for strategic planning, under strict latency, cost, and privacy constraints. Existing meeting benchmarks mainly focus on simplified question answering and fail to reflect real world enterprise workflows, where queries arise organically from multi stakeholder collaboration, span long temporal contexts, and require tool augmented reasoning. We address this gap through a grounded dataset and a learned agent framework. First, we introduce MeetAll, a bilingual and multimodal corpus derived from 231 enterprise meetings totaling 140 hours. Questions are injected using an enterprise informed protocol validated by domain expert review and human discriminability studies. Unlike purely synthetic benchmarks, this protocol is grounded in four enterprise critical dimensions: cognitive load, temporal context span, domain expertise, and actionable task execution, calibrated through interviews with stakeholders across finance, healthcare, and technology sectors. Second, we propose MeetBench XL, a multi dimensional evaluation protocol aligned with human judgment that measures factual fidelity, intent alignment, response efficiency, structural clarity, and completeness. Third, we present MeetMaster XL, a learned dual policy agent that jointly optimizes query routing between fast and slow reasoning paths and tool invocation, including retrieval, cross meeting aggregation, and web search. A lightweight classifier enables accurate routing with minimal overhead, achieving a superior quality latency tradeoff over single model baselines. Experiments against commercial systems show consistent gains, supported by ablations, robustness tests, and a real world deployment case study.Resources: https://github.com/huyuelin/MeetBench.
comment: accepted by AAAI2026 ws
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ Agentic Proposing: Enhancing Large Language Model Reasoning via Compositional Skill Synthesis
Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
comment: 23page4
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ CSR-Bench: A Benchmark for Evaluating the Cross-modal Safety and Reliability of MLLMs
Multimodal large language models (MLLMs) enable interaction over both text and images, but their safety behavior can be driven by unimodal shortcuts instead of true joint intent understanding. We introduce CSR-Bench, a benchmark for evaluating cross-modal reliability through four stress-testing interaction patterns spanning Safety, Over-rejection, Bias, and Hallucination, covering 61 fine-grained types. Each instance is constructed to require integrated image-text interpretation, and we additionally provide paired text-only controls to diagnose modality-induced behavior shifts. We evaluate 16 state-of-the-art MLLMs and observe systematic cross-modal alignment gaps. Models show weak safety awareness, strong language dominance under interference, and consistent performance degradation from text-only controls to multimodal inputs. We also observe a clear trade-off between reducing over-rejection and maintaining safe, non-discriminatory behavior, suggesting that some apparent safety gains may come from refusal-oriented heuristics rather than robust intent understanding. WARNING: This paper contains unsafe contents.
comment: 25 pages, 1 figures
☆ GraDE: A Graph Diffusion Estimator for Frequent Subgraph Discovery in Neural Architectures
Finding frequently occurring subgraph patterns or network motifs in neural architectures is crucial for optimizing efficiency, accelerating design, and uncovering structural insights. However, as the subgraph size increases, enumeration-based methods are perfectly accurate but computationally prohibitive, while sampling-based methods are computationally tractable but suffer from a severe decline in discovery capability. To address these challenges, this paper proposes GraDE, a diffusion-guided search framework that ensures both computational feasibility and discovery capability. The key innovation is the Graph Diffusion Estimator (GraDE), which is the first to introduce graph diffusion models to identify frequent subgraphs by scoring their typicality within the learned distribution. Comprehensive experiments demonstrate that the estimator achieves superior ranking accuracy, with up to 114\% improvement compared to sampling-based baselines. Benefiting from this, the proposed framework successfully discovers large-scale frequent patterns, achieving up to 30$\times$ higher median frequency than sampling-based methods.
☆ LPS-Bench: Benchmarking Safety Awareness of Computer-Use Agents in Long-Horizon Planning under Benign and Adversarial Scenarios
Computer-use agents (CUAs) that interact with real computer systems can perform automated tasks but face critical safety risks. Ambiguous instructions may trigger harmful actions, and adversarial users can manipulate tool execution to achieve malicious goals. Existing benchmarks mostly focus on short-horizon or GUI-based tasks, evaluating on execution-time errors but overlooking the ability to anticipate planning-time risks. To fill this gap, we present LPS-Bench, a benchmark that evaluates the planning-time safety awareness of MCP-based CUAs under long-horizon tasks, covering both benign and adversarial interactions across 65 scenarios of 7 task domains and 9 risk types. We introduce a multi-agent automated pipeline for scalable data generation and adopt an LLM-as-a-judge evaluation protocol to assess safety awareness through the planning trajectory. Experiments reveal substantial deficiencies in existing CUAs' ability to maintain safe behavior. We further analyze the risks and propose mitigation strategies to improve long-horizon planning safety in MCP-based CUA systems. We open-source our code at https://github.com/tychenn/LPS-Bench.
☆ Accordion-Thinking: Self-Regulated Step Summaries for Efficient and Readable LLM Reasoning
Scaling test-time compute via long Chain-ofThought unlocks remarkable gains in reasoning capabilities, yet it faces practical limits due to the linear growth of KV cache and quadratic attention complexity. In this paper, we introduce Accordion-Thinking, an end-to-end framework where LLMs learn to self-regulate the granularity of the reasoning steps through dynamic summarization. This mechanism enables a Fold inference mode, where the model periodically summarizes its thought process and discards former thoughts to reduce dependency on historical tokens. We apply reinforcement learning to incentivize this capability further, uncovering a critical insight: the accuracy gap between the highly efficient Fold mode and the exhaustive Unfold mode progressively narrows and eventually vanishes over the course of training. This phenomenon demonstrates that the model learns to encode essential reasoning information into compact summaries, achieving effective compression of the reasoning context. Our Accordion-Thinker demonstrates that with learned self-compression, LLMs can tackle complex reasoning tasks with minimal dependency token overhead without compromising solution quality, and it achieves a 3x throughput while maintaining accuracy on a 48GB GPU memory configuration, while the structured step summaries provide a human-readable account of the reasoning process.
☆ The Necessity of a Unified Framework for LLM-Based Agent Evaluation
With the advent of Large Language Models (LLMs), general-purpose agents have seen fundamental advancements. However, evaluating these agents presents unique challenges that distinguish them from static QA benchmarks. We observe that current agent benchmarks are heavily confounded by extraneous factors, including system prompts, toolset configurations, and environmental dynamics. Existing evaluations often rely on fragmented, researcher-specific frameworks where the prompt engineering for reasoning and tool usage varies significantly, making it difficult to attribute performance gains to the model itself. Additionally, the lack of standardized environmental data leads to untraceable errors and non-reproducible results. This lack of standardization introduces substantial unfairness and opacity into the field. We propose that a unified evaluation framework is essential for the rigorous advancement of agent evaluation. To this end, we introduce a proposal aimed at standardizing agent evaluation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ TAME: A Trustworthy Test-Time Evolution of Agent Memory with Systematic Benchmarking
Test-time evolution of agent memory serves as a pivotal paradigm for achieving AGI by bolstering complex reasoning through experience accumulation. However, even during benign task evolution, agent safety alignment remains vulnerable-a phenomenon known as Agent Memory Misevolution. To evaluate this phenomenon, we construct the Trust-Memevo benchmark to assess multi-dimensional trustworthiness during benign task evolution, revealing an overall decline in trustworthiness across various task domains and evaluation settings. To address this issue, we propose TAME, a dual-memory evolutionary framework that separately evolves executor memory to improve task performance by distilling generalizable methodologies, and evaluator memory to refine assessments of both safety and task utility based on historical feedback. Through a closed loop of memory filtering, draft generation, trustworthy refinement, execution, and dual-track memory updating, TAME preserves trustworthiness without sacrificing utility. Experiments demonstrate that TAME mitigates misevolution, achieving a joint improvement in both trustworthiness and task performance.
☆ Distribution-Aware End-to-End Embedding for Streaming Numerical Features in Click-Through Rate Prediction
This paper explores effective numerical feature embedding for Click-Through Rate prediction in streaming environments. Conventional static binning methods rely on offline statistics of numerical distributions; however, this inherently two-stage process often triggers semantic drift during bin boundary updates. While neural embedding methods enable end-to-end learning, they often discard explicit distributional information. Integrating such information end-to-end is challenging because streaming features often violate the i.i.d. assumption, precluding unbiased estimation of the population distribution via the expectation of order statistics. Furthermore, the critical context dependency of numerical distributions is often neglected. To this end, we propose DAES, an end-to-end framework designed to tackle numerical feature embedding in streaming training scenarios by integrating distributional information with an adaptive modulation mechanism. Specifically, we introduce an efficient reservoir-sampling-based distribution estimation method and two field-aware distribution modulation strategies to capture streaming distributions and field-dependent semantics. DAES significantly outperforms existing approaches as demonstrated by extensive offline and online experiments and has been fully deployed on a leading short-video platform with hundreds of millions of daily active users.
comment: Under review
☆ Beyond Quantity: Trajectory Diversity Scaling for Code Agents
As code large language models (LLMs) evolve into tool-interactive agents via the Model Context Protocol (MCP), their generalization is increasingly limited by low-quality synthetic data and the diminishing returns of quantity scaling. Moreover, quantity-centric scaling exhibits an early bottleneck that underutilizes trajectory data. We propose TDScaling, a Trajectory Diversity Scaling-based data synthesis framework for code agents that scales performance through diversity rather than raw volume. Under a fixed training budget, increasing trajectory diversity yields larger gains than adding more trajectories, improving the performance-cost trade-off for agent training. TDScaling integrates four innovations: (1) a Business Cluster mechanism that captures real-service logical dependencies; (2) a blueprint-driven multi-agent paradigm that enforces trajectory coherence; (3) an adaptive evolution mechanism that steers synthesis toward long-tail scenarios using Domain Entropy, Reasoning Mode Entropy, and Cumulative Action Complexity to prevent mode collapse; and (4) a sandboxed code tool that mitigates catastrophic forgetting of intrinsic coding capabilities. Experiments on general tool-use benchmarks (BFCL, tau^2-Bench) and code agent tasks (RebenchT, CodeCI, BIRD) demonstrate a win-win outcome: TDScaling improves both tool-use generalization and inherent coding proficiency. We plan to release the full codebase and the synthesized dataset (including 30,000+ tool clusters) upon publication.
☆ Topology Matters: A Cautionary Case Study of Graph SSL on Neuro-Inspired Benchmarks
Understanding how local interactions give rise to global brain organization requires models that can represent information across multiple scales. We introduce a hierarchical self-supervised learning (SSL) framework that jointly learns node-, edge-, and graph-level embeddings, inspired by multimodal neuroimaging. We construct a controllable synthetic benchmark mimicking the topological properties of connectomes. Our four-stage evaluation protocol reveals a critical failure: the invariance-based SSL model is fundamentally misaligned with the benchmark's topological properties and is catastrophically outperformed by classical, topology-aware heuristics. Ablations confirm an objective mismatch: SSL objectives designed to be invariant to topological perturbations learn to ignore the very community structure that classical methods exploit. Our results expose a fundamental pitfall in applying generic graph SSL to connectome-like data. We present this framework as a cautionary case study, highlighting the need for new, topology-aware SSL objectives for neuro-AI research that explicitly reward the preservation of structure (e.g., modularity or motifs).
☆ Latent Neural-ODE for Model-Informed Precision Dosing: Overcoming Structural Assumptions in Pharmacokinetics
Accurate estimation of tacrolimus exposure, quantified by the area under the concentration-time curve (AUC), is essential for precision dosing after renal transplantation. Current practice relies on population pharmacokinetic (PopPK) models based on nonlinear mixed-effects (NLME) methods. However, these models depend on rigid, pre-specified assumptions and may struggle to capture complex, patient-specific dynamics, leading to model misspecification. In this study, we introduce a novel data-driven alternative based on Latent Ordinary Differential Equations (Latent ODEs) for tacrolimus AUC prediction. This deep learning approach learns individualized pharmacokinetic dynamics directly from sparse clinical data, enabling greater flexibility in modeling complex biological behavior. The model was evaluated through extensive simulations across multiple scenarios and benchmarked against two standard approaches: NLME-based estimation and the iterative two-stage Bayesian (it2B) method. We further performed a rigorous clinical validation using a development dataset (n = 178) and a completely independent external dataset (n = 75). In simulation, the Latent ODE model demonstrated superior robustness, maintaining high accuracy even when underlying biological mechanisms deviated from standard assumptions. Regarding experiments on clinical datasets, in internal validation, it achieved significantly higher precision with a mean RMSPE of 7.99% compared with 9.24% for it2B (p < 0.001). On the external cohort, it achieved an RMSPE of 10.82%, comparable to the two standard estimators (11.48% and 11.54%). These results establish the Latent ODE as a powerful and reliable tool for AUC prediction. Its flexible architecture provides a promising foundation for next-generation, multi-modal models in personalized medicine.
☆ Lookahead Sample Reward Guidance for Test-Time Scaling of Diffusion Models
Diffusion models have demonstrated strong generative performance; however, generated samples often fail to fully align with human intent. This paper studies a test-time scaling method that enables sampling from regions with higher human-aligned reward values. Existing gradient guidance methods approximate the expected future reward (EFR) at an intermediate particle $\mathbf{x}_t$ using a Taylor approximation, but this approximation at each time step incurs high computational cost due to sequential neural backpropagation. We show that the EFR at any $\mathbf{x}_t$ can be computed using only marginal samples from a pre-trained diffusion model. The proposed EFR formulation detaches the neural dependency between $\mathbf{x}_t$ and the EFR, enabling closed-form guidance computation without neural backpropagation. To further improve efficiency, we introduce lookahead sampling to collect marginal samples. For final sample generation, we use an accurate solver that guides particles toward high-reward lookahead samples. We refer to this sampling scheme as LiDAR sampling. LiDAR achieves substantial performance improvements using only three samples with a 3-step lookahead solver, exhibiting steep performance gains as lookahead accuracy and sample count increase; notably, it reaches the same GenEval performance as the latest gradient guidance method for SDXL with a 9.5x speedup.
comment: Under Review
☆ Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ Reinforcement Learning with Promising Tokens for Large Language Models
Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ MemCast: Memory-Driven Time Series Forecasting with Experience-Conditioned Reasoning
Time series forecasting (TSF) plays a critical role in decision-making for many real-world applications. Recently, LLM-based forecasters have made promising advancements. Despite their effectiveness, existing methods often lack explicit experience accumulation and continual evolution. In this work, we propose MemCast, a learning-to-memory framework that reformulates TSF as an experience-conditioned reasoning task. Specifically, we learn experience from the training set and organize it into a hierarchical memory. This is achieved by summarizing prediction results into historical patterns, distilling inference trajectories into reasoning wisdom, and inducing extracted temporal features into general laws. Furthermore, during inference, we leverage historical patterns to guide the reasoning process and utilize reasoning wisdom to select better trajectories, while general laws serve as criteria for reflective iteration. Additionally, to enable continual evolution, we design a dynamic confidence adaptation strategy that updates the confidence of individual entries without leaking the test set distribution. Extensive experiments on multiple datasets demonstrate that MemCast consistently outperforms previous methods, validating the effectiveness of our approach. Our code is available at https://github.com/Xiaoyu-Tao/MemCast-TS.
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ Intelligent Front-End Personalization: AI-Driven UI Adaptation IEEE
Front-end personalization has traditionally relied on static designs or rule-based adaptations, which fail to fully capture user behavior patterns. This paper presents an AI driven approach for dynamic front-end personalization, where UI layouts, content, and features adapt in real-time based on predicted user behavior. We propose three strategies: dynamic layout adaptation using user path prediction, content prioritization through reinforcement learning, and a comparative analysis of AI-driven vs. rule-based personalization. Technical implementation details, algorithms, system architecture, and evaluation methods are provided to illustrate feasibility and performance gains.
comment: To be published in proceedings of IEEE ACDSA 2026
☆ Enhancing Foundation VLM Robustness to Missing Modality: Scalable Diffusion for Bi-directional Feature Restoration
Vision Language Models (VLMs) typically assume complete modality input during inference. However, their effectiveness drops sharply when certain modalities are unavailable or incomplete. Current research primarily faces two dilemmas: Prompt-based methods struggle to restore missing yet indispensable features and impair generalization of VLMs. Imputation-based approaches, lacking effective guidance, are prone to generating semantically irrelevant noise. Restoring precise semantics while sustaining VLM generalization remains challenging. Therefore, we propose a general missing modality restoration strategy in this paper. We introduce an enhanced diffusion model as a pluggable mid-stage training module to effectively restore missing features. Our strategy introduces two key innovations: (I) Dynamic Modality Gating, which adaptively leverages conditional features to steer the generation of semantically consistent features; (II) Cross-Modal Mutual Learning mechanism, which bridges the semantic spaces of dual encoders to achieve bidirectional alignment. Zero-shot evaluations across benchmark datasets demonstrate that our approach outperforms existing baseline methods. Extensive experiments and ablation studies confirm our model as a robust and scalable extension for VLMs in missing modality scenarios, ensuring reliability across diverse missing rates and environments. Our code and models will be publicly available.
comment: 12 pages
☆ General Agents Contain World Models, even under Partial Observability and Stochasticity
Deciding whether an agent possesses a model of its surrounding world is a fundamental step toward understanding its capabilities and limitations. In [10], it was shown that, within a particular framework, every almost optimal and general agent necessarily contains sufficient knowledge of its environment to allow an approximate reconstruction of it by querying the agent as a black box. This result relied on the assumptions that the agent is deterministic and that the environment is fully observable. In this work, we remove both assumptions by extending the theorem to stochastic agents operating in partially observable environments. Fundamentally, this shows that stochastic agents cannot avoid learning their environment through the usage of randomization. We also strengthen the result by weakening the notion of generality, proving that less powerful agents already contain a model of the world in which they operate.
comment: 19 pages, 4 figures
☆ Internet of Agentic AI: Incentive-Compatible Distributed Teaming and Workflow
Large language models (LLMs) have enabled a new class of agentic AI systems that reason, plan, and act by invoking external tools. However, most existing agentic architectures remain centralized and monolithic, limiting scalability, specialization, and interoperability. This paper proposes a framework for scalable agentic intelligence, termed the Internet of Agentic AI, in which autonomous, heterogeneous agents distributed across cloud and edge infrastructure dynamically form coalitions to execute task-driven workflows. We formalize a network-native model of agentic collaboration and introduce an incentive-compatible workflow-coalition feasibility framework that integrates capability coverage, network locality, and economic implementability. To enable scalable coordination, we formulate a minimum-effort coalition selection problem and propose a decentralized coalition formation algorithm. The proposed framework can operate as a coordination layer above the Model Context Protocol (MCP). A healthcare case study demonstrates how domain specialization, cloud-edge heterogeneity, and dynamic coalition formation enable scalable, resilient, and economically viable agentic workflows. This work lays the foundation for principled coordination and scalability in the emerging era of Internet of Agentic AI.
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ Contrastive Concept-Tree Search for LLM-Assisted Algorithm Discovery
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
☆ Understanding Multi-Agent LLM Frameworks: A Unified Benchmark and Experimental Analysis
Multi-agent LLM frameworks are widely used to accelerate the development of agent systems powered by large language models (LLMs). These frameworks impose distinct architectural structures that govern how agents interact, store information, and coordinate tasks. However, their impact on system performance remains poorly understood. This gap is critical, as architectural choices alone can induce order-of-magnitude differences in latency and throughput, as well as substantial variation in accuracy and scalability. Addressing this challenge requires (i) jointly evaluating multiple capabilities, such as orchestration overhead, memory behavior, planning, specialization, and coordination, and (ii) conducting these evaluations under controlled, framework-level conditions to isolate architectural effects. Existing benchmarks focus on individual capabilities and lack standardized framework-level evaluation. We address these limitations by (i) introducing an architectural taxonomy for systematically comparing multi-agent LLM frameworks along fundamental dimensions, and (ii) developing MAFBench, a unified evaluation suite that integrates existing benchmarks under a standardized execution pipeline. Using MAFBench, we conduct a controlled empirical study across several widely used frameworks. Our results show that framework-level design choices alone can increase latency by over 100x, reduce planning accuracy by up to 30%, and lower coordination success from above 90% to below 30%. Finally, we translate our findings into concrete architectural design principles and framework selection guidance, and outline promising future research directions.
comment: 25 pages, 9 figures and 13 tables; introduces MAFBench unified multi-agent evaluation suite
☆ Beyond Cropping and Rotation: Automated Evolution of Powerful Task-Specific Augmentations with Generative Models
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
☆ Quantized Evolution Strategies: High-precision Fine-tuning of Quantized LLMs at Low-precision Cost
Post-Training Quantization (PTQ) is essential for deploying Large Language Models (LLMs) on memory-constrained devices, yet it renders models static and difficult to fine-tune. Standard fine-tuning paradigms, including Reinforcement Learning (RL), fundamentally rely on backpropagation and high-precision weights to compute gradients. Thus they cannot be used on quantized models, where the parameter space is discrete and non-differentiable. While Evolution Strategies (ES) offer a backpropagation-free alternative, optimization of the quantized parameters can still fail due to vanishing or inaccurate gradient. This paper introduces Quantized Evolution Strategies (QES), an optimization paradigm that performs full-parameter fine-tuning directly in the quantized space. QES is based on two innovations: (1) it integrates accumulated error feedback to preserve high-precision gradient signals, and (2) it utilizes a stateless seed replay to reduce memory usage to low-precision inference levels. QES significantly outperforms the state-of-the-art zeroth-order fine-tuning method on arithmetic reasoning tasks, making direct fine-tuning for quantized models possible. It therefore opens up the possibility for scaling up LLMs entirely in the quantized space. The source code is available at https://github.com/dibbla/Quantized-Evolution-Strategies .
comment: Preprint version
☆ Digital Lifelong Learning in the Age of AI: Trends and Insights
Rapid innovations in AI and large language models (LLMs) have accelerated the adoption of digital learning, particularly beyond formal education. What began as an emergency response during COVID-19 has shifted from a supplementary resource to an essential pillar of education. Understanding how digital learning continues to evolve for adult and lifelong learners is therefore increasingly important. This study examines how various demographics interact with digital learning platforms, focusing on the learner motivations, the effectiveness of gamification in digital learning, and the integration of AI. Using multi survey data from 200 respondents and advanced analytics, our findings reveal a notable increase in the perceived relevance of digital learning after the pandemic, especially among young adults and women, coinciding with the rise of LLM-powered AI tools that support personalized learning. We aim to provide actionable insights for businesses, government policymakers, and educators seeking to optimize their digital learning offerings to meet evolving workforce needs.
comment: 41 pages including references, appendix, 14 figures
☆ "I'm happy even though it's not real": GenAI Photo Editing as a Remembering Experience
Generative Artificial Intelligence (GenAI) is increasingly integrated into photo applications on personal devices, making editing photographs easier than ever while potentially influencing the memories they represent. This study explores how and why people use GenAI to edit personal photos and how this shapes their remembering experience. We conducted a two-phase qualitative study with 12 participants: a photo editing session using a GenAI tool guided by the Remembering Experience (RX) dimensions, followed by semi-structured interviews where participants reflected on the editing process and results. Findings show that participants prioritised felt memory over factual accuracy. For different photo elements, environments were modified easily, however, editing was deemed unacceptable if it touched upon a person's identity. Editing processes brought positive and negative impacts, and itself also became a remembering experience. We further discuss potential benefits and risks of GenAI editing for remembering purposes and propose design implications for responsible GenAI.
☆ Task--Specificity Score: Measuring How Much Instructions Really Matter for Supervision
Instruction tuning is now the default way to train and adapt large language models, but many instruction--input--output pairs are only weakly specified: for a given input, the same output can remain plausible under several alternative instructions. This raises a simple question: \emph{does the instruction uniquely determine the target output?} We propose the \textbf{Task--Specificity Score (TSS)} to quantify how much an instruction matters for predicting its output, by contrasting the true instruction against plausible alternatives for the same input. We further introduce \textbf{TSS++}, which uses hard alternatives and a small quality term to mitigate easy-negative effects. Across three instruction datasets (\textsc{Alpaca}, \textsc{Dolly-15k}, \textsc{NI-20}) and three open LLMs (Gemma, Llama, Qwen), we show that selecting task-specific examples improves downstream performance under tight token budgets and complements quality-based filters such as perplexity and IFD.
☆ Risky-Bench: Probing Agentic Safety Risks under Real-World Deployment
Large Language Models (LLMs) are increasingly deployed as agents that operate in real-world environments, introducing safety risks beyond linguistic harm. Existing agent safety evaluations rely on risk-oriented tasks tailored to specific agent settings, resulting in limited coverage of safety risk space and failing to assess agent safety behavior during long-horizon, interactive task execution in complex real-world deployments. Moreover, their specialization to particular agent settings limits adaptability across diverse agent configurations. To address these limitations, we propose Risky-Bench, a framework that enables systematic agent safety evaluation grounded in real-world deployment. Risky-Bench organizes evaluation around domain-agnostic safety principles to derive context-aware safety rubrics that delineate safety space, and systematically evaluates safety risks across this space through realistic task execution under varying threat assumptions. When applied to life-assist agent settings, Risky-Bench uncovers substantial safety risks in state-of-the-art agents under realistic execution conditions. Moreover, as a well-structured evaluation pipeline, Risky-Bench is not confined to life-assist scenarios and can be adapted to other deployment settings to construct environment-specific safety evaluations, providing an extensible methodology for agent safety assessment.
☆ TextME: Bridging Unseen Modalities Through Text Descriptions
Expanding multimodal representations to novel modalities is constrained by reliance on large-scale paired datasets (e.g., text-image, text-audio, text-3D, text-molecule), which are costly and often infeasible in domains requiring expert annotation such as medical imaging and molecular analysis. We introduce TextME, the first text-only modality expansion framework, to the best of our knowledge, projecting diverse modalities into LLM embedding space as a unified anchor. Our approach exploits the geometric structure of pretrained contrastive encoders to enable zero-shot cross-modal transfer using only text descriptions, without paired supervision. We empirically validate that such consistent modality gaps exist across image, video, audio, 3D, X-ray, and molecular domains, demonstrating that text-only training can preserve substantial performance of pretrained encoders. We further show that our framework enables emergent cross-modal retrieval between modality pairs not explicitly aligned during training (e.g., audio-to-image, 3D-to-image). These results establish text-only training as a practical alternative to paired supervision for modality expansion.
☆ De-conflating Preference and Qualification: Constrained Dual-Perspective Reasoning for Job Recommendation with Large Language Models
Professional job recommendation involves a complex bipartite matching process that must reconcile a candidate's subjective preference with an employer's objective qualification. While Large Language Models (LLMs) are well-suited for modeling the rich semantics of resumes and job descriptions, existing paradigms often collapse these two decision dimensions into a single interaction signal, yielding confounded supervision under recruitment-funnel censoring and limiting policy controllability. To address these challenges, We propose JobRec, a generative job recommendation framework for de-conflating preference and qualification via constrained dual-perspective reasoning. JobRec introduces a Unified Semantic Alignment Schema that aligns candidate and job attributes into structured semantic layers, and a Two-Stage Cooperative Training Strategy that learns decoupled experts to separately infer preference and qualification. Building on these experts, a Lagrangian-based Policy Alignment module optimizes recommendations under explicit eligibility requirements, enabling controllable trade-offs. To mitigate data scarcity, we construct a synthetic dataset refined by experts. Experiments show that JobRec consistently outperforms strong baselines and provides improved controllability for strategy-aware professional matching.
☆ PRISM: Structured Optimization via Anisotropic Spectral Shaping
We propose PRISM, an optimizer that enhances first-order spectral descent methods like Muon with partial second-order information. It constructs an efficient, low-rank quasi-second-order preconditioner via innovation-augmented polar decomposition. This mechanism enables PRISM to perform anisotropic spectral shaping, which adaptively suppresses updates in high-variance subspaces while preserving update strength in signal-dominated directions. Crucially, this is achieved with minimal computational overhead and zero additional memory compared to first-order baselines. PRISM demonstrates a practical strategy for integrating curvature-adaptive properties into the spectral optimization paradigm.
☆ Training and Simulation of Quadrupedal Robot in Adaptive Stair Climbing for Indoor Firefighting: An End-to-End Reinforcement Learning Approach
Quadruped robots are used for primary searches during the early stages of indoor fires. A typical primary search involves quickly and thoroughly looking for victims under hazardous conditions and monitoring flammable materials. However, situational awareness in complex indoor environments and rapid stair climbing across different staircases remain the main challenges for robot-assisted primary searches. In this project, we designed a two-stage end-to-end deep reinforcement learning (RL) approach to optimize both navigation and locomotion. In the first stage, the quadrupeds, Unitree Go2, were trained to climb stairs in Isaac Lab's pyramid-stair terrain. In the second stage, the quadrupeds were trained to climb various realistic indoor staircases in the Isaac Lab engine, with the learned policy transferred from the previous stage. These indoor staircases are straight, L-shaped, and spiral, to support climbing tasks in complex environments. This project explores how to balance navigation and locomotion and how end-to-end RL methods can enable quadrupeds to adapt to different stair shapes. Our main contributions are: (1) A two-stage end-to-end RL framework that transfers stair-climbing skills from abstract pyramid terrain to realistic indoor stair topologies. (2) A centerline-based navigation formulation that enables unified learning of navigation and locomotion without hierarchical planning. (3) Demonstration of policy generalization across diverse staircases using only local height-map perception. (4) An empirical analysis of success, efficiency, and failure modes under increasing stair difficulty.
comment: 8 pages, 9 figures, 43rd International Symposium on Automation and Robotics in Construction
☆ The Trigger in the Haystack: Extracting and Reconstructing LLM Backdoor Triggers
Detecting whether a model has been poisoned is a longstanding problem in AI security. In this work, we present a practical scanner for identifying sleeper agent-style backdoors in causal language models. Our approach relies on two key findings: first, sleeper agents tend to memorize poisoning data, making it possible to leak backdoor examples using memory extraction techniques. Second, poisoned LLMs exhibit distinctive patterns in their output distributions and attention heads when backdoor triggers are present in the input. Guided by these observations, we develop a scalable backdoor scanning methodology that assumes no prior knowledge of the trigger or target behavior and requires only inference operations. Our scanner integrates naturally into broader defensive strategies and does not alter model performance. We show that our method recovers working triggers across multiple backdoor scenarios and a broad range of models and fine-tuning methods.
☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
☆ Shortcut Features as Top Eigenfunctions of NTK: A Linear Neural Network Case and More
One of the chronic problems of deep-learning models is shortcut learning. In a case where the majority of training data are dominated by a certain feature, neural networks prefer to learn such a feature even if the feature is not generalizable outside the training set. Based on the framework of Neural Tangent Kernel (NTK), we analyzed the case of linear neural networks to derive some important properties of shortcut learning. We defined a feature of a neural network as an eigenfunction of NTK. Then, we found that shortcut features correspond to features with larger eigenvalues when the shortcuts stem from the imbalanced number of samples in the clustered distribution. We also showed that the features with larger eigenvalues still have a large influence on the neural network output even after training, due to data variances in the clusters. Such a preference for certain features remains even when a margin of a neural network output is controlled, which shows that the max-margin bias is not the only major reason for shortcut learning. These properties of linear neural networks are empirically extended for more complex neural networks as a two-layer fully-connected ReLU network and a ResNet-18.
☆ JRDB-Pose3D: A Multi-person 3D Human Pose and Shape Estimation Dataset for Robotics
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
☆ Evaluating LLMs When They Do Not Know the Answer: Statistical Evaluation of Mathematical Reasoning via Comparative Signals
Evaluating mathematical reasoning in LLMs is constrained by limited benchmark sizes and inherent model stochasticity, yielding high-variance accuracy estimates and unstable rankings across platforms. On difficult problems, an LLM may fail to produce a correct final answer, yet still provide reliable pairwise comparison signals indicating which of two candidate solutions is better. We leverage this observation to design a statistically efficient evaluation framework that combines standard labeled outcomes with pairwise comparison signals obtained by having models judge auxiliary reasoning chains. Treating these comparison signals as control variates, we develop a semiparametric estimator based on the efficient influence function (EIF) for the setting where auxiliary reasoning chains are observed. This yields a one-step estimator that achieves the semiparametric efficiency bound, guarantees strict variance reduction over naive sample averaging, and admits asymptotic normality for principled uncertainty quantification. Across simulations, our one-step estimator substantially improves ranking accuracy, with gains increasing as model output noise grows. Experiments on GPQA Diamond, AIME 2025, and GSM8K further demonstrate more precise performance estimation and more reliable model rankings, especially in small-sample regimes where conventional evaluation is pretty unstable.
☆ Towards Considerate Embodied AI: Co-Designing Situated Multi-Site Healthcare Robots from Abstract Concepts to High-Fidelity Prototypes
Co-design is essential for grounding embodied artificial intelligence (AI) systems in real-world contexts, especially high-stakes domains such as healthcare. While prior work has explored multidisciplinary collaboration, iterative prototyping, and support for non-technical participants, few have interwoven these into a sustained co-design process. Such efforts often target one context and low-fidelity stages, limiting the generalizability of findings and obscuring how participants' ideas evolve. To address these limitations, we conducted a 14-week workshop with a multidisciplinary team of 22 participants, centered around how embodied AI can reduce non-value-added task burdens in three healthcare settings: emergency departments, long-term rehabilitation facilities, and sleep disorder clinics. We found that the iterative progression from abstract brainstorming to high-fidelity prototypes, supported by educational scaffolds, enabled participants to understand real-world trade-offs and generate more deployable solutions. We propose eight guidelines for co-designing more considerate embodied AI: attuned to context, responsive to social dynamics, mindful of expectations, and grounded in deployment. Project Page: https://byc-sophie.github.io/Towards-Considerate-Embodied-AI/
comment: To appear in Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI 2026)
☆ MAS-ProVe: Understanding the Process Verification of Multi-Agent Systems
Multi-Agent Systems (MAS) built on Large Language Models (LLMs) often exhibit high variance in their reasoning trajectories. Process verification, which evaluates intermediate steps in trajectories, has shown promise in general reasoning settings, and has been suggested as a potential tool for guiding coordination of MAS; however, its actual effectiveness in MAS remains unclear. To fill this gap, we present MAS-ProVe, a systematic empirical study of process verification for multi-agent systems (MAS). Our study spans three verification paradigms (LLM-as-a-Judge, reward models, and process reward models), evaluated across two levels of verification granularity (agent-level and iteration-level). We further examine five representative verifiers and four context management strategies, and conduct experiments over six diverse MAS frameworks on multiple reasoning benchmarks. We find that process-level verification does not consistently improve performance and frequently exhibits high variance, highlighting the difficulty of reliably evaluating partial multi-agent trajectories. Among the methods studied, LLM-as-a-Judge generally outperforms reward-based approaches, with trained judges surpassing general-purpose LLMs. We further observe a small performance gap between LLMs acting as judges and as single agents, and identify a context-length-performance trade-off in verification. Overall, our results suggest that effective and robust process verification for MAS remains an open challenge, requiring further advances beyond current paradigms. Code is available at https://github.com/Wang-ML-Lab/MAS-ProVe.
comment: Preprint; work in progress
☆ CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning.However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
☆ SAFE-KD: Risk-Controlled Early-Exit Distillation for Vision Backbones IJCNN
Early-exit networks reduce inference cost by allowing ``easy'' inputs to stop early, but practical deployment hinges on knowing \emph{when} early exit is safe. We introduce SAFE-KD, a universal multi-exit wrapper for modern vision backbones that couples hierarchical distillation with \emph{conformal risk control}. SAFE-KD attaches lightweight exit heads at intermediate depths, distills a strong teacher into all exits via Decoupled Knowledge Distillation (DKD), and enforces deep-to-shallow consistency between exits. At inference, we calibrate per-exit stopping thresholds on a held-out set using conformal risk control (CRC) to guarantee a user-specified \emph{selective} misclassification risk (among the samples that exit early) under exchangeability. Across multiple datasets and architectures, SAFE-KD yields improved accuracy compute trade-offs, stronger calibration, and robust performance under corruption while providing finite-sample risk guarantees.
comment: Submitted to IJCNN
☆ Bongards at the Boundary of Perception and Reasoning: Programs or Language?
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
comment: 6 pages, 5 figures
☆ KANFIS A Neuro-Symbolic Framework for Interpretable and Uncertainty-Aware Learning
Adaptive Neuro-Fuzzy Inference System (ANFIS) was designed to combine the learning capabilities of neural network with the reasoning transparency of fuzzy logic. However, conventional ANFIS architectures suffer from structural complexity, where the product-based inference mechanism causes an exponential explosion of rules in high-dimensional spaces. We herein propose the Kolmogorov-Arnold Neuro-Fuzzy Inference System (KANFIS), a compact neuro-symbolic architecture that unifies fuzzy reasoning with additive function decomposition. KANFIS employs an additive aggregation mechanism, under which both model parameters and rule complexity scale linearly with input dimensionality rather than exponentially. Furthermore, KANFIS is compatible with both Type-1 (T1) and Interval Type-2 (IT2) fuzzy logic systems, enabling explicit modeling of uncertainty and ambiguity in fuzzy representations. By using sparse masking mechanisms, KANFIS generates compact and structured rule sets, resulting in an intrinsically interpretable model with clear rule semantics and transparent inference processes. Empirical results demonstrate that KANFIS achieves competitive performance against representative neural and neuro-fuzzy baselines.
☆ Visual Reasoning over Time Series via Multi-Agent System
Time series analysis underpins many real-world applications, yet existing time-series-specific methods and pretrained large-model-based approaches remain limited in integrating intuitive visual reasoning and generalizing across tasks with adaptive tool usage. To address these limitations, we propose MAS4TS, a tool-driven multi-agent system for general time series tasks, built upon an Analyzer-Reasoner-Executor paradigm that integrates agent communication, visual reasoning, and latent reconstruction within a unified framework. MAS4TS first performs visual reasoning over time series plots with structured priors using a Vision-Language Model to extract temporal structures, and subsequently reconstructs predictive trajectories in latent space. Three specialized agents coordinate via shared memory and gated communication, while a router selects task-specific tool chains for execution. Extensive experiments on multiple benchmarks demonstrate that MAS4TS achieves state-of-the-art performance across a wide range of time series tasks, while exhibiting strong generalization and efficient inference.
☆ RC-GRPO: Reward-Conditioned Group Relative Policy Optimization for Multi-Turn Tool Calling Agents
Multi-turn tool calling is challenging for Large Language Models (LLMs) because rewards are sparse and exploration is expensive. A common recipe, SFT followed by GRPO, can stall when within-group reward variation is low (e.g., more rollouts in a group receive the all 0 or all 1 reward), making the group-normalized advantage uninformative and yielding vanishing updates. To address this problem, we propose RC-GRPO (Reward-Conditioned Group Relative Policy Optimization), which treats exploration as a controllable steering problem via discrete reward tokens. We first fine-tune a Reward-Conditioned Trajectory Policy (RCTP) on mixed-quality trajectories with reward goal special tokens (e.g., <|high_reward|>, <|low_reward|>) injected into the prompts, enabling the model to learn how to generate distinct quality trajectories on demand. Then during RL, we sample diverse reward tokens within each GRPO group and condition rollouts on the sampled token to improve within-group diversity, improving advantage gains. On the Berkeley Function Calling Leaderboard v4 (BFCLv4) multi-turn benchmark, our method yields consistently improved performance than baselines, and the performance on Qwen-2.5-7B-Instruct even surpasses all closed-source API models.
☆ Consistency Deep Equilibrium Models
Deep Equilibrium Models (DEQs) have emerged as a powerful paradigm in deep learning, offering the ability to model infinite-depth networks with constant memory usage. However, DEQs incur significant inference latency due to the iterative nature of fixed-point solvers. In this work, we introduce the Consistency Deep Equilibrium Model (C-DEQ), a novel framework that leverages consistency distillation to accelerate DEQ inference. We cast the DEQ iterative inference process as evolution along a fixed ODE trajectory toward the equilibrium. Along this trajectory, we train C-DEQs to consistently map intermediate states directly to the fixed point, enabling few-step inference while preserving the performance of the teacher DEQ. At the same time, it facilitates multi-step evaluation to flexibly trade computation for performance gains. Extensive experiments across various domain tasks demonstrate that C-DEQs achieves consistent 2-20$\times$ accuracy improvements over implicit DEQs under the same few-step inference budget.
☆ STAR: Similarity-guided Teacher-Assisted Refinement for Super-Tiny Function Calling Models ICLR 2026
The proliferation of Large Language Models (LLMs) in function calling is pivotal for creating advanced AI agents, yet their large scale hinders widespread adoption, necessitating transferring their capabilities into smaller ones. However, existing paradigms are often plagued by overfitting, training instability, ineffective binary rewards for multi-solution tasks, and the difficulty of synergizing techniques. We introduce STAR: Similarity-guided Teacher-Assisted Refinement, a novel holistic framework that effectively transfers LLMs' capabilities to super-tiny models. STAR consists of two core technical innovations: (1) Constrained Knowledge Distillation (CKD), a training objective that augments top-k forward KL divergence to suppress confidently incorrect predictions, ensuring training stability while preserving exploration capacity for downstream RL. STAR holistically synergizes these strategies within a cohesive training curriculum, enabling super-tiny models to achieve exceptional performance on complex function calling tasks; (2) Similarity-guided RL (Sim-RL), a RL mechanism that introduces a fine-grained, similarity-based reward. This provides a robust, continuous, and rich signal for better policy optimization by evaluating the similarity between generated outputs and the ground truth. Extensive experiments on challenging and renowned benchmarks demonstrate the effectiveness of our method. Our STAR models establish SOTA in their size classes, significantly outperforming baselines. Remarkably, our 0.6B STAR model achieves the best performance among all open models under 1B, surpassing even several well-known open models at a larger scale. STAR demonstrates a training framework that distills capabilities of LLMs into super-tiny models, paving the way for powerful, accessible, and efficient AI agents.
comment: The paper has been accepted to ICLR 2026
☆ FedKRSO: Communication and Memory Efficient Federated Fine-Tuning of Large Language Models
Fine-tuning is essential to adapt general-purpose large language models (LLMs) to domain-specific tasks. As a privacy-preserving framework to leverage decentralized data for collaborative model training, Federated Learning (FL) is gaining popularity in LLM fine-tuning, but remains challenging due to the high cost of transmitting full model parameters and computing full gradients on resource-constrained clients. While Parameter-Efficient Fine-Tuning (PEFT) methods are widely used in FL to reduce communication and memory costs, they often sacrifice model performance compared to FFT. This paper proposes FedKRSO (Federated $K$-Seed Random Subspace Optimization), a novel method that enables communication and memory efficient FFT of LLMs in federated settings. In FedKRSO, clients update the model within a shared set of random low-dimension subspaces generated by the server to save memory usage. Furthermore, instead of transmitting full model parameters in each FL round, clients send only the model update accumulators along the subspaces to the server, enabling efficient global model aggregation and dissemination. By using these strategies, FedKRSO can substantially reduce communication and memory overhead while overcoming the performance limitations of PEFT, closely approximating the performance of federated FFT. The convergence properties of FedKRSO are analyzed rigorously under general FL settings. Extensive experiments on the GLUE benchmark across diverse FL scenarios demonstrate that FedKRSO achieves both superior performance and low communication and memory overhead, paving the way towards on federated LLM fine-tuning at the resource-constrained edge.
comment: Accepted by INFOCOM 2026
☆ CVE-Factory: Scaling Expert-Level Agentic Tasks for Code Security Vulnerability
Evaluating and improving the security capabilities of code agents requires high-quality, executable vulnerability tasks. However, existing works rely on costly, unscalable manual reproduction and suffer from outdated data distributions. To address these, we present CVE-Factory, the first multi-agent framework to achieve expert-level quality in automatically transforming sparse CVE metadata into fully executable agentic tasks. Cross-validation against human expert reproductions shows that CVE-Factory achieves 95\% solution correctness and 96\% environment fidelity, confirming its expert-level quality. It is also evaluated on the latest realistic vulnerabilities and achieves a 66.2\% verified success. This automation enables two downstream contributions. First, we construct LiveCVEBench, a continuously updated benchmark of 190 tasks spanning 14 languages and 153 repositories that captures emerging threats including AI-tooling vulnerabilities. Second, we synthesize over 1,000 executable training environments, the first large-scale scaling of agentic tasks in code security. Fine-tuned Qwen3-32B improves from 5.3\% to 35.8\% on LiveCVEBench, surpassing Claude 4.5 Sonnet, with gains generalizing to Terminal Bench (12.5\% to 31.3\%). We open-source CVE-Factory, LiveCVEBench, Abacus-cve (fine-tuned model), training dataset, and leaderboard. All resources are available at https://github.com/livecvebench/CVE-Factory .
comment: Under Review
☆ VOILA: Value-of-Information Guided Fidelity Selection for Cost-Aware Multimodal Question Answering
Despite significant costs from retrieving and processing high-fidelity visual inputs, most multimodal vision-language systems operate at fixed fidelity levels. We introduce VOILA, a framework for Value-Of-Information-driven adaptive fidelity selection in Visual Question Answering (VQA) that optimizes what information to retrieve before model execution. Given a query, VOILA uses a two-stage pipeline: a gradient-boosted regressor estimates correctness likelihood at each fidelity from question features alone, then an isotonic calibrator refines these probabilities for reliable decision-making. The system selects the minimum-cost fidelity maximizing expected utility given predicted accuracy and retrieval costs. We evaluate VOILA across three deployment scenarios using five datasets (VQA-v2, GQA, TextVQA, LoCoMo, FloodNet) and six Vision-Language Models (VLMs) with 7B-235B parameters. VOILA consistently achieves 50-60% cost reductions while retaining 90-95% of full-resolution accuracy across diverse query types and model architectures, demonstrating that pre-retrieval fidelity selection is vital to optimize multimodal inference under resource constraints.
☆ Distilling LLM Reasoning into Graph of Concept Predictors
Deploying Large Language Models (LLMs) for discriminative workloads is often limited by inference latency, compute, and API costs at scale. Active distillation reduces these costs by querying an LLM oracle to train compact discriminative students, but most pipelines distill only final labels, discarding intermediate reasoning signals and offering limited diagnostics of what reasoning is missing and where errors arise. We propose Graph of Concept Predictors (GCP), a reasoning-aware active distillation framework that externalizes the teacher's decision process as a directed acyclic graph and mirrors it with modular concept predictors in the student. GCP enhances sample efficiency through a graph-aware acquisition strategy that targets uncertainty and disagreement at critical reasoning nodes. Additionally, it improves training stability and efficiency by performing targeted sub-module retraining, which attributes downstream loss to specific concept predictors and updates only the most influential modules. Experiments on eight NLP classification benchmarks demonstrate that GCP enhances performance under limited annotation budgets while yielding more interpretable and controllable training dynamics. Code is available at: https://github.com/Ziyang-Yu/GCP.
☆ Causal Graph Spatial-Temporal Autoencoder for Reliable and Interpretable Process Monitoring
To improve the reliability and interpretability of industrial process monitoring, this article proposes a Causal Graph Spatial-Temporal Autoencoder (CGSTAE). The network architecture of CGSTAE combines two components: a correlation graph structure learning module based on spatial self-attention mechanism (SSAM) and a spatial-temporal encoder-decoder module utilizing graph convolutional long-short term memory (GCLSTM). The SSAM learns correlation graphs by capturing dynamic relationships between variables, while a novel three-step causal graph structure learning algorithm is introduced to derive a causal graph from these correlation graphs. The algorithm leverages a reverse perspective of causal invariance principle to uncover the invariant causal graph from varying correlations. The spatial-temporal encoder-decoder, built with GCLSTM units, reconstructs time-series process data within a sequence-to-sequence framework. The proposed CGSTAE enables effective process monitoring and fault detection through two statistics in the feature space and residual space. Finally, we validate the effectiveness of CGSTAE in process monitoring through the Tennessee Eastman process and a real-world air separation process.
☆ Methods and Open Problems in Differentiable Social Choice: Learning Mechanisms, Decisions, and Alignment
Social choice is no longer a peripheral concern of political theory or economics-it has become a foundational component of modern machine learning systems. From auctions and resource allocation to federated learning, participatory governance, and the alignment of large language models, machine learning pipelines increasingly aggregate heterogeneous preferences, incentives, and judgments into collective decisions. In effect, many contemporary machine learning systems already implement social choice mechanisms, often implicitly and without explicit normative scrutiny. This Review surveys differentiable social choice: an emerging paradigm that formulates voting rules, mechanisms, and aggregation procedures as learnable, differentiable models optimized from data. We synthesize work across auctions, voting, budgeting, liquid democracy, decentralized aggregation, and inverse mechanism learning, showing how classical axioms and impossibility results reappear as objectives, constraints, and optimization trade-offs. We conclude by identifying 36 open problems defining a new research agenda at the intersection of machine learning, economics, and democratic theory.
☆ Adaptive Batch Sizes Using Non-Euclidean Gradient Noise Scales for Stochastic Sign and Spectral Descent
To maximize hardware utilization, modern machine learning systems typically employ large constant or manually tuned batch size schedules, relying on heuristics that are brittle and costly to tune. Existing adaptive strategies based on gradient noise scale (GNS) offer a principled alternative. However, their assumption of SGD's Euclidean geometry creates a fundamental mismatch with popular optimizers based on generalized norms, such as signSGD / Signum ($\ell_\infty$) and stochastic spectral descent (specSGD) / Muon ($\mathcal{S}_\infty$). In this work, we derive gradient noise scales for signSGD and specSGD that naturally emerge from the geometry of their respective dual norms. To practically estimate these non-Euclidean metrics, we propose an efficient variance estimation procedure that leverages the local mini-batch gradients on different ranks in distributed data-parallel systems. Our experiments demonstrate that adaptive batch size strategies using non-Euclidean GNS enable us to match the validation loss of constant-batch baselines while reducing training steps by up to 66% for Signum and Muon on a 160 million parameter Llama model.
comment: 8 pages, 2 figures, 4 tables
☆ Agent Alpha: Tree Search Unifying Generation, Exploration and Evaluation for Computer-Use Agents
While scaling test-time compute through trajectory-level sampling has significantly improved Graphical User Interface (GUI) agents, the lack of regressive ability prevents the reuse of partial successes and the recovery from early missteps. In this paper, we introduce Agent Alpha, a unified framework that synergizes generation, exploration, and evaluation through step-level Monte Carlo Tree Search (MCTS). It enables active modeling or exploiting structures of the planning space. By integrating alpha-UCT guided search into the interaction loop, Agent Alpha enables deliberate planning, facilitating early pruning of suboptimal branches and efficient prefix reuse. We also employ comparison-driven evaluation to mitigate absolute scoring biases and diversity-constrained expansion to maintain a compact, informative search space. Regret bound of alpha-UCT is analyzed. On the OSWorld benchmark, Agent Alpha achieves a state-of-the-art success rate of $\sim 77\%$, significantly outperforming trajectory-level baselines under equivalent compute.
☆ Large Language Models Can Take False First Steps at Inference-time Planning
Large language models (LLMs) have been shown to acquire sequence-level planning abilities during training, yet their planning behavior exhibited at inference time often appears short-sighted and inconsistent with these capabilities. We propose a Bayesian account for this gap by grounding planning behavior in the evolving generative context: given the subtle differences between natural language and the language internalized by LLMs, accumulated self-generated context drives a planning-shift during inference and thereby creates the appearance of compromised planning behavior. We further validate the proposed model through two controlled experiments: a random-generation task demonstrating constrained planning under human prompts and increasing planning strength as self-generated context accumulates, and a Gaussian-sampling task showing reduced initial bias when conditioning on self-generated sequences. These findings provide a theoretical explanation along with empirical evidence for characterizing how LLMs plan ahead during inference.
☆ NLI:Non-uniform Linear Interpolation Approximation of Nonlinear Operations for Efficient LLMs Inference ICLR 18
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of tasks, but their deployment is often constrained by substantial memory footprints and computational costs. While prior work has achieved significant progress in compressing and accelerating linear layers, nonlinear layers-such as SiLU, RMSNorm, and Softmax-still heavily depend on high-precision floating-point operations. In this paper, we propose a calibration-free, dynamic-programming-optimal, and hardware-friendly framework called Non-uniform Linear Interpolation (NLI). NLI is capable of efficiently approximating a variety of nonlinear functions, enabling seamless integration into LLMs and other deep neural networks with almost no loss in accuracy. NLI ingeniously recasts cutpoint selection as a dynamic-programming problem, achieving the globally minimal interpolation error in O(MxN2) time via Bellman's optimality principle. Based on the NLI algorithm, we also design and implement a plug-and-play universal nonlinear computation unit. Hardware experiments demonstrate that the NLI Engine achieves more than 4x improvement in computational efficiency compared to the state-of-the-art designs.
comment: Admitted to ICLR 18pages 5 figures
☆ Are LLMs Biased Like Humans? Causal Reasoning as a Function of Prior Knowledge, Irrelevant Information, and Reasoning Budget
Large language models (LLMs) are increasingly used in domains where causal reasoning matters, yet it remains unclear whether their judgments reflect normative causal computation, human-like shortcuts, or brittle pattern matching. We benchmark 20+ LLMs against a matched human baseline on 11 causal judgment tasks formalized by a collider structure ($C_1 \!\rightarrow\! E\! \leftarrow \!C_2$). We find that a small interpretable model compresses LLMs' causal judgments well and that most LLMs exhibit more rule-like reasoning strategies than humans who seem to account for unmentioned latent factors in their probability judgments. Furthermore, most LLMs do not mirror the characteristic human collider biases of weak explaining away and Markov violations. We probe LLMs' causal judgment robustness under (i) semantic abstraction and (ii) prompt overloading (injecting irrelevant text), and find that chain-of-thought (CoT) increases robustness for many LLMs. Together, this divergence suggests LLMs can complement humans when known biases are undesirable, but their rule-like reasoning may break down when uncertainty is intrinsic -- highlighting the need to characterize LLM reasoning strategies for safe, effective deployment.
☆ Structuring Value Representations via Geometric Coherence in Markov Decision Processes
Geometric properties can be leveraged to stabilize and speed reinforcement learning. Existing examples include encoding symmetry structure, geometry-aware data augmentation, and enforcing structural restrictions. In this paper, we take a novel view of RL through the lens of order theory and recast value function estimates into learning a desired poset (partially ordered set). We propose \emph{GCR-RL} (Geometric Coherence Regularized Reinforcement Learning) that computes a sequence of super-poset refinements -- by refining posets in previous steps and learning additional order relationships from temporal difference signals -- thus ensuring geometric coherence across the sequence of posets underpinning the learned value functions. Two novel algorithms by Q-learning and by actor--critic are developed to efficiently realize these super-poset refinements. Their theoretical properties and convergence rates are analyzed. We empirically evaluate GCR-RL in a range of tasks and demonstrate significant improvements in sample efficiency and stable performance over strong baselines.
☆ Aligning Forest and Trees in Images and Long Captions for Visually Grounded Understanding
Large vision-language models such as CLIP struggle with long captions because they align images and texts as undifferentiated wholes. Fine-grained vision-language understanding requires hierarchical semantics capturing both global context and localized details across visual and textual domains. Yet linguistic hierarchies from syntax or semantics rarely match visual organization, and purely visual hierarchies tend to fragment scenes into appearance-driven parts without semantic focus. We propose CAFT (Cross-domain Alignment of Forests and Trees), a hierarchical image-text representation learning framework that aligns global and local semantics across images and long captions without pixel-level supervision. Coupling a fine-to-coarse visual encoder with a hierarchical text transformer, it uses a hierarchical alignment loss that matches whole images with whole captions while biasing region-sentence correspondences, so that coarse semantics are built from fine-grained evidence rather than from aggregation untethered to part-level grounding. Trained on 30M image-text pairs, CAFT achieves state-of-the-art performance on six long-text retrieval benchmarks and exhibits strong scaling behavior. Experiments show that hierarchical cross-domain alignment enables fine-grained, visually grounded image-text representations to emerge without explicit region-level supervision.
comment: Preprint
☆ Scaling In-Context Online Learning Capability of LLMs via Cross-Episode Meta-RL
Large language models (LLMs) achieve strong performance when all task-relevant information is available upfront, as in static prediction and instruction-following problems. However, many real-world decision-making tasks are inherently online: crucial information must be acquired through interaction, feedback is delayed, and effective behavior requires balancing information collection and exploitation over time. While in-context learning enables adaptation without weight updates, existing LLMs often struggle to reliably leverage in-context interaction experience in such settings. In this work, we show that this limitation can be addressed through training. We introduce ORBIT, a multi-task, multi-episode meta-reinforcement learning framework that trains LLMs to learn from interaction in context. After meta-training, a relatively small open-source model (Qwen3-14B) demonstrates substantially improved in-context online learning on entirely unseen environments, matching the performance of GPT-5.2 and outperforming standard RL fine-tuning by a large margin. Scaling experiments further reveal consistent gains with model size, suggesting significant headroom for learn-at-inference-time decision-making agents. Code reproducing the results in the paper can be found at https://github.com/XiaofengLin7/ORBIT.
☆ Structure-Informed Estimation for Pilot-Limited MIMO Channels via Tensor Decomposition
Channel estimation in wideband multiple-input multiple-output (MIMO) systems faces fundamental pilot overhead limitations in high-dimensional beyond-5G and sixth-generation (6G) scenarios. This paper presents a hybrid tensor-neural architecture that formulates pilot-limited channel estimation as low-rank tensor completion from sparse observations -- a fundamentally different setting from prior tensor methods that assume fully observed received signal tensors. A canonical polyadic (CP) baseline implemented via a projection-based scheme (Tucker completion under partial observations) and Tucker decompositions are compared under varying signal-to-noise ratio (SNR) and scattering conditions: CP performs well for specular channels matching the multipath model, while Tucker provides greater robustness under model mismatch. A lightweight three-dimensional (3D) U-Net learns residual components beyond the low-rank structure, bridging algebraic models and realistic propagation effects. Empirical recovery threshold analysis shows that sample complexity scales approximately with intrinsic model dimensionality $L(N_r + N_t + N_f)$ rather than ambient tensor size $N_r N_t N_f$, where $L$ denotes the number of dominant propagation paths. Experiments on synthetic channels demonstrate 10-20\,dB normalized mean-square error (NMSE) improvement over least-squares (LS) and orthogonal matching pursuit (OMP) baselines at 5-10\% pilot density, while evaluations on DeepMIMO ray-tracing channels show 24-44\% additional NMSE reduction over pure tensor-based methods.
☆ Principles of Lipschitz continuity in neural networks
Deep learning has achieved remarkable success across a wide range of domains, significantly expanding the frontiers of what is achievable in artificial intelligence. Yet, despite these advances, critical challenges remain -- most notably, ensuring robustness to small input perturbations and generalization to out-of-distribution data. These critical challenges underscore the need to understand the underlying fundamental principles that govern robustness and generalization. Among the theoretical tools available, Lipschitz continuity plays a pivotal role in governing the fundamental properties of neural networks related to robustness and generalization. It quantifies the worst-case sensitivity of network's outputs to small input perturbations. While its importance is widely acknowledged, prior research has predominantly focused on empirical regularization approaches based on Lipschitz constraints, leaving the underlying principles less explored. This thesis seeks to advance a principled understanding of the principles of Lipschitz continuity in neural networks within the paradigm of machine learning, examined from two complementary perspectives: an internal perspective -- focusing on the temporal evolution of Lipschitz continuity in neural networks during training (i.e., training dynamics); and an external perspective -- investigating how Lipschitz continuity modulates the behavior of neural networks with respect to features in the input data, particularly its role in governing frequency signal propagation (i.e., modulation of frequency signal propagation).
comment: Ph.D. Thesis
☆ On the Credibility of Evaluating LLMs using Survey Questions EACL 2026
Recent studies evaluate the value orientation of large language models (LLMs) using adapted social surveys, typically by prompting models with survey questions and comparing their responses to average human responses. This paper identifies limitations in this methodology that, depending on the exact setup, can lead to both underestimating and overestimating the similarity of value orientation. Using the World Value Survey in three languages across five countries, we demonstrate that prompting methods (direct vs. chain-of-thought) and decoding strategies (greedy vs. sampling) significantly affect results. To assess the interaction between answers, we introduce a novel metric, self-correlation distance. This metric measures whether LLMs maintain consistent relationships between answers across different questions, as humans do. This indicates that even a high average agreement with human data, when considering LLM responses independently, does not guarantee structural alignment in responses. Additionally, we reveal a weak correlation between two common evaluation metrics, mean-squared distance and KL divergence, which assume that survey answers are independent of each other. For future research, we recommend CoT prompting, sampling-based decoding with dozens of samples, and robust analysis using multiple metrics, including self-correlation distance.
comment: Accepted to the Workshop on Multilingual and Multicultural Evaluation at EACL 2026, 12 pages, 2 figures
☆ PluRel: Synthetic Data unlocks Scaling Laws for Relational Foundation Models
Relational Foundation Models (RFMs) facilitate data-driven decision-making by learning from complex multi-table databases. However, the diverse relational databases needed to train such models are rarely public due to privacy constraints. While there are methods to generate synthetic tabular data of arbitrary size, incorporating schema structure and primary--foreign key connectivity for multi-table generation remains challenging. Here we introduce PluRel, a framework to synthesize multi-tabular relational databases from scratch. In a step-by-step fashion, PluRel models (1) schemas with directed graphs, (2) inter-table primary-foreign key connectivity with bipartite graphs, and, (3) feature distributions in tables via conditional causal mechanisms. The design space across these stages supports the synthesis of a wide range of diverse databases, while being computationally lightweight. Using PluRel, we observe for the first time that (1) RFM pretraining loss exhibits power-law scaling with the number of synthetic databases and total pretraining tokens, (2) scaling the number of synthetic databases improves generalization to real databases, and (3) synthetic pretraining yields strong base models for continued pretraining on real databases. Overall, our framework and results position synthetic data scaling as a promising paradigm for RFMs.
comment: Code: https://github.com/snap-stanford/plurel
☆ Axiomatic Foundations of Counterfactual Explanations
Explaining autonomous and intelligent systems is critical in order to improve trust in their decisions. Counterfactuals have emerged as one of the most compelling forms of explanation. They address ``why not'' questions by revealing how decisions could be altered. Despite the growing literature, most existing explainers focus on a single type of counterfactual and are restricted to local explanations, focusing on individual instances. There has been no systematic study of alternative counterfactual types, nor of global counterfactuals that shed light on a system's overall reasoning process. This paper addresses the two gaps by introducing an axiomatic framework built on a set of desirable properties for counterfactual explainers. It proves impossibility theorems showing that no single explainer can satisfy certain axiom combinations simultaneously, and fully characterizes all compatible sets. Representation theorems then establish five one-to-one correspondences between specific subsets of axioms and the families of explainers that satisfy them. Each family gives rise to a distinct type of counterfactual explanation, uncovering five fundamentally different types of counterfactuals. Some of these correspond to local explanations, while others capture global explanations. Finally, the framework situates existing explainers within this taxonomy, formally characterizes their behavior, and analyzes the computational complexity of generating such explanations.
☆ Understanding and Guiding Layer Placement in Parameter-Efficient Fine-Tuning of Large Language Models
As large language models (LLMs) continue to grow, the cost of full-parameter fine-tuning has made parameter-efficient fine-tuning (PEFT) the default strategy for downstream adaptation. Constraints from inference latency in scalable serving and fine-tuning cost in edge or rapid-deployment settings make the choice of which layers to fine-tune unavoidable. Yet current practice typically applies PEFT uniformly across all layers, with limited understanding or leverage of layer selection. This paper develops a unified projected residual view of PEFT on top of a frozen base model. Under a local quadratic approximation, layerwise adaptation is governed by three quantities: (i) the projected residual norm (resnorm), which measures how much correctable bias a layer can capture; (ii) the activation energy, which determines feature conditioning; and (iii) layer coupling, which quantifies how strongly residuals interact across layers. We show that, for squared loss and linear adapters, the resnorm equals a normalized gradient norm, activation energy controls ill-conditioning and noise amplification, and weak coupling yields approximately additive layerwise contributions. Building on these insights, we introduce the Layer Card, a reusable diagnostic that summarizes residual signal strength, compute cost, and performance for each layer of a given model. With an identical model and LoRA configuration, Layer Card-guided placement refines the choice of adapted layers to flexibly prioritize different objectives, such as maximizing performance or reducing fine-tuning cost. Moreover, on Qwen3-8B, we show that selectively adapting a subset of layers can achieve performance close to full-layer LoRA while substantially reducing fine-tuning cost and the number of adapter-augmented layers during inference, offering a more cost-performance-aware alternative to full-layer insertion.
PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
☆ Rational ANOVA Networks
Deep neural networks typically treat nonlinearities as fixed primitives (e.g., ReLU), limiting both interpretability and the granularity of control over the induced function class. While recent additive models (like KANs) attempt to address this using splines, they often suffer from computational inefficiency and boundary instability. We propose the Rational-ANOVA Network (RAN), a foundational architecture grounded in functional ANOVA decomposition and Padé-style rational approximation. RAN models f(x) as a composition of main effects and sparse pairwise interactions, where each component is parameterized by a stable, learnable rational unit. Crucially, we enforce a strictly positive denominator, which avoids poles and numerical instability while capturing sharp transitions and near-singular behaviors more efficiently than polynomial bases. This ANOVA structure provides an explicit low-order interaction bias for data efficiency and interpretability, while the rational parameterization significantly improves extrapolation. Across controlled function benchmarks and vision classification tasks (e.g., CIFAR-10) under matched parameter and compute budgets, RAN matches or surpasses parameter-matched MLPs and learnable-activation baselines, with better stability and throughput. Code is available at https://github.com/jushengzhang/Rational-ANOVA-Networks.git.
comment: Code: \url{https://github.com/jushengzhang/Rational-ANOVA-Networks.git}
☆ When AI Persuades: Adversarial Explanation Attacks on Human Trust in AI-Assisted Decision Making
Most adversarial threats in artificial intelligence target the computational behavior of models rather than the humans who rely on them. Yet modern AI systems increasingly operate within human decision loops, where users interpret and act on model recommendations. Large Language Models generate fluent natural-language explanations that shape how users perceive and trust AI outputs, revealing a new attack surface at the cognitive layer: the communication channel between AI and its users. We introduce adversarial explanation attacks (AEAs), where an attacker manipulates the framing of LLM-generated explanations to modulate human trust in incorrect outputs. We formalize this behavioral threat through the trust miscalibration gap, a metric that captures the difference in human trust between correct and incorrect outputs under adversarial explanations. By incorporating this gap, AEAs explore the daunting threats in which persuasive explanations reinforce users' trust in incorrect predictions. To characterize this threat, we conducted a controlled experiment (n = 205), systematically varying four dimensions of explanation framing: reasoning mode, evidence type, communication style, and presentation format. Our findings show that users report nearly identical trust for adversarial and benign explanations, with adversarial explanations preserving the vast majority of benign trust despite being incorrect. The most vulnerable cases arise when AEAs closely resemble expert communication, combining authoritative evidence, neutral tone, and domain-appropriate reasoning. Vulnerability is highest on hard tasks, in fact-driven domains, and among participants who are less formally educated, younger, or highly trusting of AI. This is the first systematic security study that treats explanations as an adversarial cognitive channel and quantifies their impact on human trust in AI-assisted decision making.
☆ When Chains of Thought Don't Matter: Causal Bypass in Large Language Models ICLR
Chain-of-thought (CoT) prompting is widely assumed to expose a model's reasoning process and improve transparency. We attempted to enforce this assumption by penalizing unfaithful reasoning, but found that surface-level compliance does not guarantee causal reliance. Our central finding is negative: even when CoT is verbose, strategic, and flagged by surface-level manipulation detectors, model answers are often causally independent of the CoT content. We present a diagnostic framework for auditing this failure mode: it combines (i) an interpretable behavioral module that scores manipulation-relevant signals in CoT text and (ii) a causal probe that measures CoT-mediated influence (CMI) via hidden-state patching and reports a bypass score ($1-\mathrm{CMI}$), quantifying the degree to which the answer is produced by a bypass circuit independent of the rationale. In pilot evaluations, audit-aware prompting increases detectable manipulation signals (mean risk-score delta: $+5.10$), yet causal probes reveal task-dependent mediation: many QA items exhibit near-total bypass (CMI $\approx 0$), while some logic problems show stronger mediation (CMI up to $0.56$). Layer-wise analysis reveals narrow and task-dependent ``reasoning windows'' even when mean CMI is low.
comment: Under Review at ICLR, 2026
☆ DeXposure-FM: A Time-series, Graph Foundation Model for Credit Exposures and Stability on Decentralized Financial Networks
Credit exposure in Decentralized Finance (DeFi) is often implicit and token-mediated, creating a dense web of inter-protocol dependencies. Thus, a shock to one token may result in significant and uncontrolled contagion effects. As the DeFi ecosystem becomes increasingly linked with traditional financial infrastructure through instruments, such as stablecoins, the risk posed by this dynamic demands more powerful quantification tools. We introduce DeXposure-FM, the first time-series, graph foundation model for measuring and forecasting inter-protocol credit exposure on DeFi networks, to the best of our knowledge. Employing a graph-tabular encoder, with pre-trained weight initialization, and multiple task-specific heads, DeXposure-FM is trained on the DeXposure dataset that has 43.7 million data entries, across 4,300+ protocols on 602 blockchains, covering 24,300+ unique tokens. The training is operationalized for credit-exposure forecasting, predicting the joint dynamics of (1) protocol-level flows, and (2) the topology and weights of credit-exposure links. The DeXposure-FM is empirically validated on two machine learning benchmarks; it consistently outperforms the state-of-the-art approaches, including a graph foundation model and temporal graph neural networks. DeXposure-FM further produces financial economics tools that support macroprudential monitoring and scenario-based DeFi stress testing, by enabling protocol-level systemic-importance scores, sector-level spillover and concentration measures via a forecast-then-measure pipeline. Empirical verification fully supports our financial economics tools. The model and code have been publicly available. Model: https://huggingface.co/EVIEHub/DeXposure-FM. Code: https://github.com/EVIEHub/DeXposure-FM.
Transformers perform adaptive partial pooling
Because language is creative, any reasonable language model must generalize, deciding what to say in novel contexts by using information from similar contexts. But what about contexts that are not novel but merely infrequent? In hierarchical regression, the model's predictions for behavior in a context are affected by observations from other similar contexts to the extent that 1) the current context is infrequent and 2) different contexts behave similarly. This is called adaptive partial pooling of evidence. This paper shows that next-word predictions of a transformer (GPT2) are increasingly unaffected by observations from outside the current context across epochs of training (the amount of pooling reduces with training), and that the extent of pooling is affected by context frequency, context number (type frequency) and context variability in a similar way to hierarchical regression. These characteristics of learning in transformers are argued to be realistic on both rational and empirical grounds.
comment: 6 pages, submitted to the annual meeting of the Cognitive Science Society
☆ Monitorability as a Free Gift: How RLVR Spontaneously Aligns Reasoning
As Large Reasoning Models (LRMs) are increasingly deployed, auditing their chain-of-thought (CoT) traces for safety becomes critical. Recent work has reported that monitorability--the degree to which CoT faithfully and informatively reflects internal computation--can appear as a "free gift" during the early stages of Reinforcement Learning with Verifiable Rewards (RLVR). We make this observation concrete through a systematic evaluation across model families and training domains. Our results show that this effect is not universal: monitorability improvements are strongly data-dependent. In particular, we demonstrate the critical role of data diversity and instruction-following data during RLVR training. We further show that monitorability is orthogonal to capability--improvements in reasoning performance do not imply increased transparency. Through mechanistic analysis, we attribute monitorability gains primarily to response distribution sharpening (entropy reduction) and increased attention to the prompt, rather than stronger causal reliance on reasoning traces. We also reveal how monitorability dynamics vary with controlled training and evaluation difficulty. Together, these findings provide a holistic view of how monitorability emerges under RLVR, clarifying when gains are likely to occur and when they are not.
☆ Adaptive Test-Time Compute Allocation via Learned Heuristics over Categorical Structure
Test-time computation has become a primary driver of progress in large language model (LLM) reasoning, but it is increasingly bottlenecked by expensive verification. In many reasoning systems, a large fraction of verifier calls are spent on redundant or unpromising intermediate hypotheses. We study reasoning under a \emph{verification-cost-limited} setting and ask how verification effort should be allocated across intermediate states. We propose a state-level selective verification framework that combines (i) deterministic feasibility gating over a structured move interface, (ii) pre-verification ranking using a hybrid of learned state-distance and residual scoring, and (iii) adaptive allocation of verifier calls based on local uncertainty. Unlike solution-level best-of-$N$ or uniform intermediate verification, our method distributes verification where it is most informative. On the \textsc{MATH} benchmark, our approach achieves higher accuracy than best-of-$N$, majority voting, and beam search while using 44\% fewer verifier calls.
☆ Active Epistemic Control for Query-Efficient Verified Planning
Planning in interactive environments is challenging under partial observability: task-critical preconditions (e.g., object locations or container states) may be unknown at decision time, yet grounding them through interaction is costly. Learned world models can cheaply predict missing facts, but prediction errors can silently induce infeasible commitments. We present \textbf{Active Epistemic Control (AEC)}, an epistemic-categorical planning layer that integrates model-based belief management with categorical feasibility checks. AEC maintains a strict separation between a \emph{grounded fact store} used for commitment and a \emph{belief store} used only for pruning candidate plans. At each step, it either queries the environment to ground an unresolved predicate when uncertainty is high or predictions are ambiguous, or simulates the predicate to filter hypotheses when confidence is sufficient. Final commitment is gated by grounded precondition coverage and an SQ-BCP pullback-style compatibility check, so simulated beliefs affect efficiency but cannot directly certify feasibility. Experiments on ALFWorld and ScienceWorld show that AEC achieves competitive success with fewer replanning rounds than strong LLM-agent baselines.
☆ Fixed Budget is No Harder Than Fixed Confidence in Best-Arm Identification up to Logarithmic Factors
The best-arm identification (BAI) problem is one of the most fundamental problems in interactive machine learning, which has two flavors: the fixed-budget setting (FB) and the fixed-confidence setting (FC). For $K$-armed bandits with the unique best arm, the optimal sample complexities for both settings have been settled down, and they match up to logarithmic factors. This prompts an interesting research question about the generic, potentially structured BAI problems: Is FB harder than FC or the other way around? In this paper, we show that FB is no harder than FC up to logarithmic factors. We do this constructively: we propose a novel algorithm called FC2FB (fixed confidence to fixed budget), which is a meta algorithm that takes in an FC algorithm $\mathcal{A}$ and turn it into an FB algorithm. We prove that this FC2FB enjoys a sample complexity that matches, up to logarithmic factors, that of the sample complexity of $\mathcal{A}$. This means that the optimal FC sample complexity is an upper bound of the optimal FB sample complexity up to logarithmic factors. Our result not only reveals a fundamental relationship between FB and FC, but also has a significant implication: FC2FB, combined with existing state-of-the-art FC algorithms, leads to improved sample complexity for a number of FB problems.
☆ Structural shifts in institutional participation and collaboration within the AI arXiv preprint research ecosystem
The emergence of large language models (LLMs) represents a significant technological shift within the scientific ecosystem, particularly within the field of artificial intelligence (AI). This paper examines structural changes in the AI research landscape using a dataset of arXiv preprints (cs.AI) from 2021 through 2025. Given the rapid pace of AI development, the preprint ecosystem has become a critical barometer for real-time scientific shifts, often preceding formal peer-reviewed publication by months or years. By employing a multi-stage data collection and enrichment pipeline in conjunction with LLM-based institution classification, we analyze the evolution of publication volumes, author team sizes, and academic--industry collaboration patterns. Our results reveal an unprecedented surge in publication output following the introduction of ChatGPT, with academic institutions continuing to provide the largest volume of research. However, we observe that academic--industry collaboration is still suppressed, as measured by a Normalized Collaboration Index (NCI) that remains significantly below the random-mixing baseline across all major subfields. These findings highlight a continuing institutional divide and suggest that the capital-intensive nature of generative AI research may be reshaping the boundaries of scientific collaboration.
comment: 16 pages, 5 Figures, 7 Tables
☆ AgentArk: Distilling Multi-Agent Intelligence into a Single LLM Agent
While large language model (LLM) multi-agent systems achieve superior reasoning performance through iterative debate, practical deployment is limited by their high computational cost and error propagation. This paper proposes AgentArk, a novel framework to distill multi-agent dynamics into the weights of a single model, effectively transforming explicit test-time interactions into implicit model capabilities. This equips a single agent with the intelligence of multi-agent systems while remaining computationally efficient. Specifically, we investigate three hierarchical distillation strategies across various models, tasks, scaling, and scenarios: reasoning-enhanced fine-tuning; trajectory-based augmentation; and process-aware distillation. By shifting the burden of computation from inference to training, the distilled models preserve the efficiency of one agent while exhibiting strong reasoning and self-correction performance of multiple agents. They further demonstrate enhanced robustness and generalization across diverse reasoning tasks. We hope this work can shed light on future research on efficient and robust multi-agent development. Our code is at https://github.com/AIFrontierLab/AgentArk.
☆ Enhancing Mathematical Problem Solving in LLMs through Execution-Driven Reasoning Augmentation ACL
Mathematical problem solving is a fundamental benchmark for assessing the reasoning capabilities of artificial intelligence and a gateway to applications in education, science, and engineering where reliable symbolic reasoning is essential. Although recent advances in multi-agent LLM-based systems have enhanced their mathematical reasoning capabilities, they still lack a reliably revisable representation of the reasoning process. Existing agents either operate in rigid sequential pipelines that cannot correct earlier steps or rely on heuristic self-evaluation that can fail to identify and fix errors. In addition, programmatic context can distract language models and degrade accuracy. To address these gaps, we introduce Iteratively Improved Program Construction (IIPC), a reasoning method that iteratively refines programmatic reasoning chains and combines execution feedback with the native Chain-of-thought abilities of the base LLM to maintain high-level contextual focus. IIPC surpasses competing approaches in the majority of reasoning benchmarks on multiple base LLMs. All code and implementations are released as open source.
comment: 9 pages, 7 figures, submitted to ACL ARR 2026
☆ Semantic Rate Distortion and Posterior Design: Compute Constraints, Multimodality, and Strategic Inference
We study strategic Gaussian semantic compression under rate and compute constraints, where an encoder and decoder optimize distinct quadratic objectives. A latent Gaussian state generates a task dependent semantic variable, and the decoder best responds via MMSE estimation, reducing the encoder's problem to posterior covariance design under an information rate constraint. We characterize the strategic rate distortion function in direct, remote, and full information regimes, derive semantic waterfilling and rate constrained Gaussian persuasion solutions, and establish Gaussian optimality under misaligned objectives. We further show that architectural compute limits act as implicit rate constraints, yielding exponential improvements in semantic accuracy with model depth and inference time compute, while multimodal observation eliminates the geometric mean penalty inherent to remote encoding. These results provide information theoretic foundations for data and energy efficient AI and offer a principled interpretation of modern multimodal language models as posterior design mechanisms under resource constraints.
comment: submitted for publication
☆ Linguistic Blind Spots in Clinical Decision Extraction EACL
Extracting medical decisions from clinical notes is a key step for clinical decision support and patient-facing care summaries. We study how the linguistic characteristics of clinical decisions vary across decision categories and whether these differences explain extraction failures. Using MedDec discharge summaries annotated with decision categories from the Decision Identification and Classification Taxonomy for Use in Medicine (DICTUM), we compute seven linguistic indices for each decision span and analyze span-level extraction recall of a standard transformer model. We find clear category-specific signatures: drug-related and problem-defining decisions are entity-dense and telegraphic, whereas advice and precaution decisions contain more narrative, with higher stopword and pronoun proportions and more frequent hedging and negation cues. On the validation split, exact-match recall is 48%, with large gaps across linguistic strata: recall drops from 58% to 24% from the lowest to highest stopword-proportion bins, and spans containing hedging or negation cues are less likely to be recovered. Under a relaxed overlap-based match criterion, recall increases to 71%, indicating that many errors are span boundary disagreements rather than complete misses. Overall, narrative-style spans--common in advice and precaution decisions--are a consistent blind spot under exact matching, suggesting that downstream systems should incorporate boundary-tolerant evaluation and extraction strategies for clinical decisions.
comment: EACL HeaLing Workshop 2026
☆ First-Principles AI finds crystallization of fractional quantum Hall liquids
When does a fractional quantum Hall (FQH) liquid crystallize? Addressing this question requires a framework that treats fractionalization and crystallization on equal footing, especially in strong Landau-level mixing regime. Here, we introduce MagNet, a self-attention neural-network variational wavefunction designed for quantum systems in magnetic fields on the torus geometry. We show that MagNet provides a unifying and expressive ansatz capable of describing both FQH states and electron crystals within the same architecture. Trained solely by energy minimization of the microscopic Hamiltonian, MagNet discovers topological liquid and electron crystal ground states across a broad range of Landau-level mixing. Our results highlight the power of first-principles AI for solving strongly interacting many-body problems and finding competing phases without external training data or physics pre-knowledge.
comment: 5 pages + SM
☆ WIND: Weather Inverse Diffusion for Zero-Shot Atmospheric Modeling
Deep learning has revolutionized weather and climate modeling, yet the current landscape remains fragmented: highly specialized models are typically trained individually for distinct tasks. To unify this landscape, we introduce WIND, a single pre-trained foundation model capable of replacing specialized baselines across a vast array of tasks. Crucially, in contrast to previous atmospheric foundation models, we achieve this without any task-specific fine-tuning. To learn a robust, task-agnostic prior of the atmosphere, we pre-train WIND with a self-supervised video reconstruction objective, utilizing an unconditional video diffusion model to iteratively reconstruct atmospheric dynamics from a noisy state. At inference, we frame diverse domain-specific problems strictly as inverse problems and solve them via posterior sampling. This unified approach allows us to tackle highly relevant weather and climate problems, including probabilistic forecasting, spatial and temporal downscaling, sparse reconstruction and enforcing conservation laws purely with our pre-trained model. We further demonstrate the model's capacity to generate physically consistent counterfactual storylines of extreme weather events under global warming scenarios. By combining generative video modeling with inverse problem solving, WIND offers a computationally efficient paradigm shift in AI-based atmospheric modeling.
☆ SpecMD: A Comprehensive Study On Speculative Expert Prefetching
Mixture-of-Experts (MoE) models enable sparse expert activation, meaning that only a subset of the model's parameters is used during each inference. However, to translate this sparsity into practical performance, an expert caching mechanism is required. Previous works have proposed hardware-centric caching policies, but how these various caching policies interact with each other and different hardware specification remains poorly understood. To address this gap, we develop \textbf{SpecMD}, a standardized framework for benchmarking ad-hoc cache policies on various hardware configurations. Using SpecMD, we perform an exhaustive benchmarking of several MoE caching strategies, reproducing and extending prior approaches in controlled settings with realistic constraints. Our experiments reveal that MoE expert access is not consistent with temporal locality assumptions (e.g LRU, LFU). Motivated by this observation, we propose \textbf{Least-Stale}, a novel eviction policy that exploits MoE's predictable expert access patterns to reduce collision misses by up to $85\times$ over LRU. With such gains, we achieve over $88\%$ hit rates with up to $34.7\%$ Time-to-first-token (TTFT) reduction on OLMoE at only $5\%$ or $0.6GB$ of VRAM cache capacity.
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Agent Pathfinding Under Team-Connected Communication Constraint via Adaptive Path Expansion and Dynamic Leading
This paper proposes a novel planning framework to handle a multi-agent pathfinding problem under team-connected communication constraint, where all agents must have a connected communication channel to the rest of the team during their entire movements. Standard multi-agent path finding approaches (e.g., priority-based search) have potential in this domain but fail when neighboring configurations at start and goal differ. Their single-expansion approach -- computing each agent's path from the start to the goal in just a single expansion -- cannot reliably handle planning under communication constraints for agents as their neighbors change during navigating. Similarly, leader-follower approaches (e.g., platooning) are effective at maintaining team communication, but fixing the leader at the outset of planning can cause planning to become stuck in dense-clutter environments, limiting their practical utility. To overcome this limitation, we propose a novel two-level multi-agent pathfinding framework that integrates two techniques: adaptive path expansion to expand agent paths to their goals in multiple stages; and dynamic leading technique that enables the reselection of the leading agent during each agent path expansion whenever progress cannot be made. Simulation experiments show the efficiency of our planners, which can handle up to 25 agents across five environment types under a limited communication range constraint and up to 11-12 agents on three environment types under line-of-sight communication constraint, exceeding 90% success-rate where baselines routinely fail.
♻ ☆ Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ PAINT: Parallel-in-time Neural Twins for Dynamical System Reconstruction
Neural surrogates have shown great potential in simulating dynamical systems, while offering real-time capabilities. We envision Neural Twins as a progression of neural surrogates, aiming to create digital replicas of real systems. A neural twin consumes measurements at test time to update its state, thereby enabling context-specific decision-making. We argue, that a critical property of neural twins is their ability to remain on-trajectory, i.e., to stay close to the true system state over time. We introduce Parallel-in-time Neural Twins (PAINT), an architecture-agnostic family of methods for modeling dynamical systems from measurements. PAINT trains a generative neural network to model the distribution of states in parallel over time. At test time, states are predicted from measurements in a sliding window fashion. Our theoretical analysis shows that PAINT is on-trajectory, whereas autoregressive models generally are not. Empirically, we evaluate our method on a challenging two-dimensional turbulent fluid dynamics problem. The results demonstrate that PAINT stays on-trajectory and predicts system states from sparse measurements with high fidelity. These findings underscore PAINT's potential for developing neural twins that stay on-trajectory, enabling more accurate state estimation and decision-making.
comment: 28 pages, 23 figures
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ The Epistemic Planning Domain Definition Language: Official Guideline
Epistemic planning extends (multi-agent) automated planning by making agents' knowledge and beliefs first-class aspects of the planning formalism. One of the most well-known frameworks for epistemic planning is Dynamic Epistemic Logic (DEL), which offers an rich and natural semantics for modelling problems in this setting. The high expressive power provided by DEL make DEL-based epistemic planning a challenging problem to tackle both theoretically, and in practical implementations. As a result, existing epistemic planners often target different DEL fragments, and typically rely on ad hoc languages to represent benchmarks, and sometimes no language at all. This fragmentation hampers comparison, reuse, and systematic benchmark development. We address these issues by introducing the Epistemic Planning Domain Definition Language (EPDDL). EPDDL provides a unique PDDL-like representation that captures the entire DEL semantics, enabling uniform specification of epistemic planning tasks. Our main contributions are: 1. A formal development of abstract event models, a novel representation for epistemic actions used to define the semantics of our language; 2. A formal specification of EPDDL's syntax and semantics grounded in DEL with abstract event models. Through examples of representative benchmarks, we illustrate how EPDDL facilitates interoperability, reproducible evaluation, and future advances in epistemic planning.
♻ ☆ Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation ACL 2025
Synthesizing high-quality instruction data from unsupervised text is a promising paradigm for training large language models (LLMs), yet automated methods for this task still exhibit significant limitations in the diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an LLM-driven method for instruction synthesis. Inspired by hierarchical human visual perception, Self-Foveate introduces a "Micro-Scatter-Macro" multi-level foveation methodology that guides the extraction of textual information at three complementary granularities, from fine-grained details through cross-region connections to holistic patterns, thereby enhancing both the diversity and difficulty of synthesized instructions. Furthermore, a re-synthesis module is incorporated to improve the fidelity of instructions to source text and their overall quality. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures demonstrate that Self-Foveate consistently outperforms existing methods. We publicly release our code at https://github.com/Mubuky/Self-Foveate
comment: Accepted to ACL 2025 (Findings). 23 pages, 4 figures
♻ ☆ How to Trick Your AI TA: A Systematic Study of Academic Jailbreaking in LLM Code Evaluation SP
The use of Large Language Models (LLMs) as automatic judges for code evaluation is becoming increasingly prevalent in academic environments. But their reliability can be compromised by students who may employ adversarial prompting strategies in order to induce misgrading and secure undeserved academic advantages. In this paper, we present the first large-scale study of jailbreaking LLM-based automated code evaluators in academic context. Our contributions are: (i) We systematically adapt 20+ jailbreaking strategies for jailbreaking AI code evaluators in the academic context, defining a new class of attacks termed academic jailbreaking. (ii) We release a poisoned dataset of 25K adversarial student submissions, specifically designed for the academic code-evaluation setting, sourced from diverse real-world coursework and paired with rubrics and human-graded references, and (iii) In order to capture the multidimensional impact of academic jailbreaking, we systematically adapt and define three jailbreaking metrics (Jailbreak Success Rate, Score Inflation, and Harmfulness). (iv) We comprehensively evalulate the academic jailbreaking attacks using six LLMs. We find that these models exhibit significant vulnerability, particularly to persuasive and role-play-based attacks (up to 97% JSR). Our adversarial dataset and benchmark suite lay the groundwork for next-generation robust LLM-based evaluators in academic code assessment.
comment: This manuscript has been withdrawn by the authors because the methodology and results have been superseded by a more rigorous framework (SPACI and AST-ASIP). The corrected and expanded findings are now available in arXiv:2601.21360. Please cite the new manuscript instead
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Abacus: A Cost-Based Optimizer for Semantic Operator Systems VLDB'26
LLMs enable an exciting new class of data processing applications over large collections of unstructured documents. Several new programming frameworks have enabled developers to build these applications by composing them out of semantic operators: a declarative set of AI-powered data transformations with natural language specifications. These include LLM-powered maps, filters, joins, etc. used for document processing tasks such as information extraction, summarization, and more. While systems of semantic operators have achieved strong performance on benchmarks, they can be difficult to optimize. An optimizer for this setting must determine how to physically implement each semantic operator in a way that optimizes the system globally. Existing optimizers are limited in the number of optimizations they can apply, and most (if not all) cannot optimize system quality, cost, or latency subject to constraint(s) on the other dimensions. In this paper we present Abacus, an extensible, cost-based optimizer which searches for the best implementation of a semantic operator system given a (possibly constrained) optimization objective. Abacus estimates operator performance by leveraging a minimal set of validation examples, prior beliefs about operator performance, and/or an LLM judge. We evaluate Abacus on document processing workloads in the biomedical and legal domains (BioDEX; CUAD) and multi-modal question answering (MMQA). We demonstrate that, on-average, systems optimized by Abacus achieve 6.7%-39.4% better quality and are 10.8x cheaper and 3.4x faster than the next best system.
comment: To be published in VLDB'26, 14 pages, 8 figures
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ Code2Bench: Scaling Source and Rigor for Dynamic Benchmark Construction
The evaluation of code-generating Large Language Models (LLMs) is fundamentally constrained by two intertwined challenges: a reliance on static, easily contaminated problem sources and the use of superficial, low-rigor testing. This paper introduces a new benchmark construction philosophy, Dual Scaling, designed to systematically address both limitations. Our approach involves continuously scaling the source of problems from dynamic, real-world code repositories and systematically scaling the rigor of tests via automated, high-coverage Property-Based Testing (PBT). We instantiate this philosophy in CODE2BENCH, an end-to-end framework that leverages Scope Graph analysis for principled dependency classification and a 100% branch coverage quality gate to ensure test suite integrity. Using this framework, we construct CODE2BENCH-2509, a new benchmark suite with native instances in both Python and Java. Our extensive evaluation of 10 state-of-the-art LLMs on CODE2BENCH-2509, powered by a novel "diagnostic fingerprint" visualization, yields three key insights: (1) models exhibit a fundamental performance gap, excelling at API application (Weakly Self-Contained tasks) but struggling with algorithmic synthesis (Self-Contained tasks); (2) a model's performance is profoundly shaped by the target language's ecosystem, a nuance we are the first to systematically quantify; and (3) our rigorous, scaled testing is critical in uncovering an "illusion of correctness" prevalent in simpler benchmarks. Our work presents a robust, scalable, and diagnostic paradigm for the next generation of LLM evaluation in software engineering. The code, data, and results are available at https://code2bench.github.io/.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Building spatial world models from sparse transitional episodic memories ICLR 2026
Many animals possess a remarkable capacity to rapidly construct flexible cognitive maps of their environments. These maps are crucial for ethologically relevant behaviors such as navigation, exploration, and planning. Existing computational models typically require long sequential trajectories to build accurate maps, but neuroscience evidence suggests maps can also arise from integrating disjoint experiences governed by consistent spatial rules. We introduce the Episodic Spatial World Model (ESWM), a novel framework that constructs spatial maps from sparse, disjoint episodic memories. Across environments of varying complexity, ESWM predicts unobserved transitions from minimal experience, and the geometry of its latent space aligns with that of the environment. Because it operates on episodic memories that can be independently stored and updated, ESWM is inherently adaptive, enabling rapid adjustment to environmental changes. Furthermore, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training. Our work demonstrates how neuroscience-inspired principles of episodic memory can advance the development of more flexible and generalizable world models.
comment: Accepted ICLR 2026
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ The Psychology of Learning from Machines: Anthropomorphic AI and the Paradox of Automation in Education IEEE
As AI tutors enter classrooms at unprecedented speed, their deployment increasingly outpaces our grasp of the psychological and social consequences of such technology. Yet decades of research in automation psychology, human factors, and human-computer interaction provide crucial insights that remain underutilized in educational AI design. This work synthesizes four research traditions -- automation psychology, human factors engineering, HCI, and philosophy of technology -- to establish a comprehensive framework for understanding how learners psychologically relate to anthropomorphic AI tutors. We identify three persistent challenges intensified by Generative AI's conversational fluency. First, learners exhibit dual trust calibration failures -- automation bias (uncritical acceptance) and algorithm aversion (excessive rejection after errors) -- with an expertise paradox where novices overrely while experts underrely. Second, while anthropomorphic design enhances engagement, it can distract from learning and foster harmful emotional attachment. Third, automation ironies persist: systems meant to aid cognition introduce designer errors, degrade skills through disuse, and create monitoring burdens humans perform poorly. We ground this theoretical synthesis through comparative analysis of over 104,984 YouTube comments across AI-generated philosophical debates and human-created engineering tutorials, revealing domain-dependent trust patterns and strong anthropomorphic projection despite minimal cues. For engineering education, our synthesis mandates differentiated approaches: AI tutoring for technical foundations where automation bias is manageable through proper scaffolding, but human facilitation for design, ethics, and professional judgment where tacit knowledge transmission proves irreplaceable.
comment: camera-ready version of paper accepted at IEEE EDUCON 2026 (acknowledgment added and some typos/errors fixed)
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ Remapping and navigation of an embedding space via error minimization: a fundamental organizational principle of cognition in natural and artificial systems
The emerging field of diverse intelligence seeks an integrated view of problem-solving in agents of very different provenance, composition, and substrates. From subcellular chemical networks to swarms of organisms, and across evolved, engineered, and chimeric systems, it is hypothesized that scale-invariant principles of decision-making can be discovered. We propose that cognition in both natural and synthetic systems can be characterized and understood by the interplay between two equally important invariants: (1) the remapping of embedding spaces, and (2) the navigation within these spaces. Biological collectives, from single cells to entire organisms (and beyond), remap transcriptional, morphological, physiological, or 3D spaces to maintain homeostasis and regenerate structure, while navigating these spaces through distributed error correction. Modern Artificial Intelligence (AI) systems, including transformers, diffusion models, and neural cellular automata enact analogous processes by remapping data into latent embeddings and refining them iteratively through contextualization. We argue that this dual principle - remapping and navigation of embedding spaces via iterative error minimization - constitutes a substrate-independent invariant of cognition. Recognizing this shared mechanism not only illuminates deep parallels between living systems and artificial models, but also provides a unifying framework for engineering adaptive intelligence across scales.
comment: 41 pages, 5 figures
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Multi-Agent Causal Reasoning System for Error Pattern Rule Automation in Vehicles
Modern vehicles generate thousands of different discrete events known as Diagnostic Trouble Codes (DTCs). Automotive manufacturers use Boolean combinations of these codes, called error patterns (EPs), to characterize system faults and ensure vehicle safety. Yet, EP rules are still manually handcrafted by domain experts, a process that is expensive and prone to errors as vehicle complexity grows. This paper introduces CAREP (Causal Automated Reasoning for Error Patterns), a multi-agent system that automatizes the generation of EP rules from high-dimensional event sequences of DTCs. CAREP combines a causal discovery agent that identifies potential DTC-EP relations, a contextual information agent that integrates metadata and descriptions, and an orchestrator agent that synthesizes candidate boolean rules together with interpretable reasoning traces. Evaluation on a large-scale automotive dataset with over 29,100 unique DTCs and 474 error patterns demonstrates that CAREP can automatically and accurately discover the unknown EP rules, outperforming LLM-only baselines while providing transparent causal explanations. By uniting practical causal discovery and agent-based reasoning, CAREP represents a step toward fully automated fault diagnostics, enabling scalable, interpretable, and cost-efficient vehicle maintenance.
comment: 7 pages, 3 figures
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
♻ ☆ Deadline-Aware, Energy-Efficient Control of Domestic Immersion Hot Water Heater AAAI 2026
Typical domestic immersion water heater systems are often operated continuously during winter, heating quickly rather than efficiently and ignoring predictable demand windows and ambient losses. We study deadline-aware control, where the aim is to reach a target temperature at a specified time while minimising energy consumption. We introduce an efficient Gymnasium environment that models an immersion hot water heater with first-order thermal losses and discrete on and off actions of 0 W and 6000 W applied every 120 seconds. Methods include a time-optimal bang-bang baseline, a zero-shot Monte Carlo Tree Search planner, and a Proximal Policy Optimisation policy. We report total energy consumption in watt-hours under identical physical dynamics. Across sweeps of initial temperature from 10 to 30 degrees Celsius, deadline from 30 to 90 steps, and target temperature from 40 to 80 degrees Celsius, PPO achieves the most energy-efficient performance at a 60-step horizon of 2 hours, using 3.23 kilowatt-hours, compared to 4.37 to 10.45 kilowatt-hours for bang-bang control and 4.18 to 6.46 kilowatt-hours for MCTS. This corresponds to energy savings of 26 percent at 30 steps and 69 percent at 90 steps. In a representative trajectory with a 50 kg water mass, 20 degrees Celsius ambient temperature, and a 60 degrees Celsius target, PPO consumes 54 percent less energy than bang-bang control and 33 percent less than MCTS. These results show that learned deadline-aware control reduces energy consumption under identical physical assumptions, while planners provide partial savings without training and learned policies offer near-zero inference cost once trained.
comment: Accepted at AAAI 2026
♻ ☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation
Causal inference typically assumes centralized access to individual-level data. Yet, in practice, data are often decentralized across multiple sites, making centralization infeasible due to privacy, logistical, or legal constraints. We address this problem by estimating the Average Treatment Effect (ATE) from decentralized observational data via a Federated Learning (FL) approach, allowing inference through the exchange of aggregate statistics rather than individual-level data. We propose a novel method to estimate propensity scores via a federated weighted average of local scores using Membership Weights (MW), defined as probabilities of site membership conditional on covariates. MW can be flexibly estimated with parametric or non-parametric classification models using standard FL algorithms. The resulting propensity scores are used to construct Federated Inverse Propensity Weighting (Fed-IPW) and Augmented IPW (Fed-AIPW) estimators. In contrast to meta-analysis methods, which fail when any site violates positivity, our approach exploits heterogeneity in treatment assignment across sites to improve overlap. We show that Fed-IPW and Fed-AIPW perform well under site-level heterogeneity in sample sizes, treatment mechanisms, and covariate distributions. Theoretical analysis and experiments on simulated and real-world data demonstrate clear advantages over meta-analysis and related approaches.
♻ ☆ Privacy-Aware Predictions in Participatory Budgeting
Participatory budgeting is a democratic innovation that empowers citizens to propose and vote on public investment projects. While researchers in computer science focused on improving the voting phase of this process, in this work we aim to support organizers of participatory budgeting campaigns to manage large volumes of project proposals at the submission stage. We propose a privacy-preserving approach to predict which proposals are likely to be funded, using only projects' textual descriptions and anonymous historical voting records, without relying on voter demographics or personally identifiable information.
♻ ☆ Aggregation Queries over Unstructured Text: Benchmark and Agentic Method
Aggregation query over free text is a long-standing yet underexplored problem. Unlike ordinary question answering, aggregate queries require exhaustive evidence collection and systems are required to "find all," not merely "find one." Existing paradigms such as Text-to-SQL and Retrieval-Augmented Generation fail to achieve this completeness. In this work, we formalize entity-level aggregation querying over text in a corpus-bounded setting with strict completeness requirement. To enable principled evaluation, we introduce AGGBench, a benchmark designed to evaluate completeness-oriented aggregation under realistic large-scale corpus. To accompany the benchmark, we propose DFA (Disambiguation--Filtering--Aggregation), a modular agentic baseline that decomposes aggregation querying into interpretable stages and exposes key failure modes related to ambiguity, filtering, and aggregation. Empirical results show that DFA consistently improves aggregation evidence coverage over strong RAG and agentic baselines. The data and code are available in \href{https://anonymous.4open.science/r/DFA-A4C1}.
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ Exploring the Global-to-Local Attention Scheme in Graph Transformers: An Empirical Study
Graph Transformers (GTs) show considerable potential in graph representation learning. The architecture of GTs typically integrates Graph Neural Networks (GNNs) with global attention mechanisms either in parallel or as a precursor to attention mechanisms, yielding a local-and-global or local-to-global attention scheme. However, as the global attention mechanism primarily captures long-range dependencies between nodes, these integration schemes may suffer from information loss, where the local neighborhood information learned by GNN could be diluted by the attention mechanism. Therefore, we propose G2LFormer, featuring a novel global-to-local attention scheme where the shallow network layers use attention mechanisms to capture global information, while the deeper layers employ GNN modules to learn local structural information, thereby preventing nodes from ignoring their immediate neighbors. An effective cross-layer information fusion strategy is introduced to allow local layers to retain beneficial information from global layers and alleviate information loss, with acceptable trade-offs in scalability. To validate the feasibility of the global-to-local attention scheme, we compare G2LFormer with state-of-the-art linear GTs and GNNs on node-level and graph-level tasks. The results indicate that G2LFormer exhibits excellent performance while keeping linear complexity.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51718-4}
♻ ☆ UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
With rapid urbanization, predicting urban microclimates has become critical, as it affects building energy demand and public health risks. However, existing generative and homogeneous graph approaches fall short in capturing physical consistency, spatial dependencies, and temporal variability. To address this, we introduce UrbanGraph, a framework founded on a novel structure-based inductive bias. Unlike implicit graph learning, UrbanGraph transforms physical first principles into a dynamic causal topology, explicitly encoding time-varying causalities (e.g., shading and convection) directly into the graph structure to ensure physical consistency and data efficiency. Results show that UrbanGraph achieves state-of-the-art performance across all baselines. Specifically, the use of explicit causal pruning significantly reduces the model's floating-point operations (FLOPs) by 73.8% and increases training speed by 21% compared to implicit graphs. Our contribution includes the first high-resolution benchmark for spatio-temporal microclimate modeling, and a generalizable explicit topological encoding paradigm applicable to urban spatio-temporal dynamics governed by known physical equations.
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ Chain-of-Thought Hijacking
Large Reasoning Models (LRMs) improve task performance through extended inference-time reasoning. While prior work suggests this should strengthen safety, we find evidence to the contrary. Long reasoning sequences can be exploited to systematically weaken them. We introduce Chain-of-Thought Hijacking, a jailbreak attack that prepends harmful instructions with extended sequences of benign puzzle reasoning. Across HarmBench, CoT Hijacking achieves attack success rates of 99\%, 94\%, 100\%, and 94\% on Gemini 2.5 Pro, ChatGPT o4 Mini, Grok 3 Mini, and Claude 4 Sonnet. To understand this mechanism, we apply activation probing, attention analysis, and causal interventions. We find that refusal depends on a low-dimensional safety signal that becomes diluted as reasoning grows: mid-layers encode the strength of safety checking, while late layers encode the refusal outcome. These findings demonstrate that explicit chain-of-thought reasoning introduces a systematic vulnerability when combined with answer-prompting cues. We release all evaluation materials to facilitate replication.
♻ ☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control IEEE
For safety-critical applications, model-free reinforcement learning (RL) faces numerous challenges, particularly the difficulty of establishing verifiable stability guarantees while maintaining high exploration efficiency. To address these challenges, we present Multi-Step Actor-Critic Learning with Lyapunov Certificates (MSACL), a novel approach that seamlessly integrates exponential stability with maximum entropy reinforcement learning (MERL). In contrast to existing methods that rely on complex reward engineering and single-step constraints, MSACL utilizes intuitive rewards and multi-step data for actor-critic learning. Specifically, we first introduce Exponential Stability Labels (ESLs) to categorize samples and propose a $λ$-weighted aggregation mechanism to learn Lyapunov certificates. Leveraging these certificates, we then develop a stability-aware advantage function to guide policy optimization, thereby ensuring rapid Lyapunov descent and robust state convergence. We evaluate MSACL across six benchmarks, comprising four stabilization and two high-dimensional tracking tasks. Experimental results demonstrate its consistent superiority over both standard RL baselines and state-of-the-art Lyapunov-based RL algorithms. Beyond rapid convergence, MSACL exhibits significant robustness against environmental uncertainties and remarkable generalization to unseen reference signals. The source code and benchmarking environments are available at \href{https://github.com/YuanZhe-Xing/MSACL}{https://github.com/YuanZhe-Xing/MSACL}.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ From Classical to Quantum Reinforcement Learning and Its Applications in Quantum Control: A Beginner's Tutorial
This tutorial is designed to make reinforcement learning (RL) more accessible to undergraduate students by offering clear, example-driven explanations. It focuses on bridging the gap between RL theory and practical coding applications, addressing common challenges that students face when transitioning from conceptual understanding to implementation. Through hands-on examples and approachable explanations, the tutorial aims to equip students with the foundational skills needed to confidently apply RL techniques in real-world scenarios.
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco. 22 pages, 5 figures, 9 tables
♻ ☆ Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes NeurIPS 2025
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around $30,000$ samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
comment: NeurIPS 2025 ML4PS Workshop
♻ ☆ MAPGD: Multi-Agent Prompt Gradient Descent for Collaborative Prompt Optimization
Prompt engineering is crucial for fully leveraging large language models (LLMs), yet most existing optimization methods follow a single trajectory, resulting in limited adaptability, gradient conflicts, and high computational overhead. We propose MAPGD (Multi-Agent Prompt Gradient Descent), a novel framework that reconceptualizes prompt optimization as a collaborative process among specialized agents. Each agent focuses on a distinct refinement dimension, such as instruction clarity, example selection, format structure, or stylistic adaptation, and their contributions are coordinated through semantic gradient embedding, conflict detection, and fusion. To further enhance robustness and stability, MAPGD introduces two new mechanisms: Hypersphere Constrained Gradient Clustering (HCGC), which enforces angular margin constraints for compact and well-separated clusters, and Channel Adaptive Agent Weighting (CAAW), which dynamically reweights agent contributions based on validation performance. Experiments on classification and reasoning benchmarks show that MAPGD consistently surpasses single-agent and random baselines in both accuracy and efficiency. Ablation studies confirm the effectiveness of gradient fusion, agent specialization, and conflict resolution. Together, these components establish MAPGD as a unified, gradient-based, and interpretable framework for robust prompt optimization with theoretical convergence guarantees.
♻ ☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Structured Self-Consistency:A Multi-Task Evaluation of LLMs on VirtualHome
Embodied AI requires agents to understand goals, plan actions, and execute tasks in simulated environments. We present a comprehensive evaluation of Large Language Models (LLMs) on the VirtualHome benchmark using the Embodied Agent Interface (EAI) framework. We compare two representative 7B-parameter models OPENPANGU-7B and QWEN2.5-7B across four fundamental tasks: Goal Interpretation, Action Sequencing, Subgoal Decomposition, and Transition Modeling. We propose Structured Self-Consistency (SSC), an enhanced decoding strategy that leverages multiple sampling with domain-specific voting mechanisms to improve output quality for structured generation tasks. Experimental results demonstrate that SSC significantly enhances performance, with OPENPANGU-7B excelling at hierarchical planning while QWEN2.5-7B show advantages in action-level tasks. Our analysis reveals complementary strengths across model types, providing insights for future embodied AI system development.
♻ ☆ Do Models Hear Like Us? Probing the Representational Alignment of Audio LLMs and Naturalistic EEG
Audio Large Language Models (Audio LLMs) have demonstrated strong capabilities in integrating speech perception with language understanding. However, whether their internal representations align with human neural dynamics during naturalistic listening remains largely unexplored. In this work, we systematically examine layer-wise representational alignment between 12 open-source Audio LLMs and Electroencephalogram (EEG) signals across 2 datasets. Specifically, we employ 8 similarity metrics, such as Spearman-based Representational Similarity Analysis (RSA), to characterize within-sentence representational geometry. Our analysis reveals 3 key findings: (1) we observe a rank-dependence split, in which model rankings vary substantially across different similarity metrics; (2) we identify spatio-temporal alignment patterns characterized by depth-dependent alignment peaks and a pronounced increase in RSA within the 250-500 ms time window, consistent with N400-related neural dynamics; (3) we find an affective dissociation whereby negative prosody, identified using a proposed Tri-modal Neighborhood Consistency (TNC) criterion, reduces geometric similarity while enhancing covariance-based dependence. These findings provide new neurobiological insights into the representational mechanisms of Audio LLMs.
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks. MoGU replaces standard learned gating with an intrinsic routing paradigm where expert-specific uncertainty serves as the native gating signal. By modeling each prediction as a Gaussian distribution, the system utilizes predicted variance to dynamically weight expert contributions. We validate MoGU on multivariate time-series forecasting, a domain defined by high volatility and varying noise patterns. Empirical results across multiple benchmarks, horizon lengths, and backbones demonstrate that MoGU consistently improves forecasting accuracy compared to traditional MoE. Further evaluation via conformal prediction indicates that our approach yields more efficient prediction intervals than existing baselines. These findings highlight MoGU's capacity for providing both competitive performance and reliable, high-fidelity uncertainty quantification. Our code is available at: https://github.com/yolish/moe_unc_tsf
♻ ☆ NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations
Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
♻ ☆ PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
♻ ☆ PROTEUS: SLA-Aware Routing via Lagrangian RL for Multi-LLM Serving Systems
Production LLM deployments serve diverse workloads where cost and quality requirements vary by customer tier, time of day, and query criticality. Model serving systems accept latency SLOs directly. LLM routers do not. They force operators to tune parameters offline and guess what accuracy might result. The relationship between parameters and outcomes is indirect, non-monotonic, and dataset-dependent. Operators need to specify accuracy targets, not infer them from opaque settings. We present PROTEUS (Polymorphic Router for Operational Target Enforcement with Unified SLA), a router that accepts accuracy targets tau as runtime input. PROTEUS uses Lagrangian dual control. A learned dual variable lambda tracks constraint violations during training and conditions the policy network. This lets the router translate specified tau values into routing decisions that satisfy them. A single trained model serves the full accuracy spectrum without retraining.We evaluate on RouterBench (11 models, 405K queries) and SPROUT (14 models, 45K queries). PROTEUS achieves consistent floor compliance where accuracy meets or exceeds tau. The target-response correlation reaches 0.97 to 0.98. The closest baseline, OmniRouter, meets floors only 22% of the time despite also using Lagrangian optimization. PROTEUS operates across tau in [0.85, 0.95] from a single model. On RouterBench it achieves 90.1% accuracy, within 1.3% of oracle. On SPROUT it achieves 94.0% accuracy, within 4.6% of oracle. Cost savings reach 89.8% versus the best fixed model.
comment: Submitted to EuroMLSys26
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
♻ ☆ Fast Training of Sinusoidal Neural Fields via Scaling Initialization ICLR 2025
Neural fields are an emerging paradigm that represent data as continuous functions parameterized by neural networks. Despite many advantages, neural fields often have a high training cost, which prevents a broader adoption. In this paper, we focus on a popular family of neural fields, called sinusoidal neural fields (SNFs), and study how it should be initialized to maximize the training speed. We find that the standard initialization scheme for SNFs -- designed based on the signal propagation principle -- is suboptimal. In particular, we show that by simply multiplying each weight (except for the last layer) by a constant, we can accelerate SNF training by 10$\times$. This method, coined $\textit{weight scaling}$, consistently provides a significant speedup over various data domains, allowing the SNFs to train faster than more recently proposed architectures. To understand why the weight scaling works well, we conduct extensive theoretical and empirical analyses which reveal that the weight scaling not only resolves the spectral bias quite effectively but also enjoys a well-conditioned optimization trajectory. The code is available $\href{https://github.com/effl-lab/Fast-Neural-Fields}{here}$.
comment: ICLR 2025
♻ ☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
♻ ☆ Lightweight and Interpretable Transformer via Mixed Graph Algorithm Unrolling for Traffic Forecast
Unlike conventional "black-box" transformers with classical self-attention mechanism, we build a lightweight and interpretable transformer-like neural net by unrolling a mixed-graph-based optimization algorithm to forecast traffic with spatial and temporal dimensions. We construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We predict future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We design an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We periodically insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$ that play the role of self-attention. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically.
comment: 24 pages, 7 figures, 11 tables
♻ ☆ Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.
comment: Corresponding author: Shiji Zhou (zhoushiji25@buaa.edu.cn). Shiji Zhou and Tianbai Yu contributed equally
♻ ☆ SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38% percentage points over Gemini-only inference.
♻ ☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ Exact Solution to Data-Driven Inverse Optimization of MILPs in Finite Time via Gradient-Based Methods
A data-driven inverse optimization problem (DDIOP) seeks to estimate an objective function (i.e., weights) that is consistent with observed optimal-solution data, and is important in many applications, including those involving mixed integer linear programs (MILPs). In the DDIOP for MILPs, the prediction loss on features (PLF), defined as the discrepancy between observed and predicted feature values, becomes discontinuous with respect to the weights, which makes it difficult to apply gradient-based optimization. To address this issue, we focus on a Lipschitz continuous and convex suboptimality loss. By exploiting its convex and piecewise-linear structure and the interiority of the minimum set, we show that a broad class of gradient-based optimization methods, including projected subgradient descent (PSGD), reaches the minimum suboptimality loss value in a finite number of iterations, thereby exactly solving the DDIOP for MILPs. Furthermore, as a corollary, we show that PSGD attains the minimum PLF in finitely many iterations. We also derive an upper bound on the number of iterations required for PSGD to reach finite convergence, and confirm the finite-step behavior through numerical experiments.
comment: 42 pages; comments are welcome
♻ ☆ Variational Approach for Job Shop Scheduling
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: Due to the company's compliance requirements, we would like to wait until the paper is officially published before making it publicly available on arXiv
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Why Self-Rewarding Works: Theoretical Guarantees for Iterative Alignment of Language Models
Self-Rewarding Language Models (SRLMs) achieve notable success in iteratively improving alignment without external feedback. Yet, despite their striking empirical progress, the core mechanisms driving their capabilities remain unelucidated, leaving a critical gap in theoretical understanding. This paper provides the first rigorous theoretical guarantees for SRLMs. We first establish a lower bound that characterizes the fundamental limits of a single update step, revealing a critical dependence on the quality of the initial model. We then derive finite-sample error bounds for the full iterative paradigm, showing that performance improves at a rate of $\widetilde{\mathcal{O}}\left(1/\sqrt{n}\right)$ with sample size $n$. Crucially, our analysis reveals that the dependence on the initial model decays exponentially with the number of iterations $T$. This provides a formal explanation for why self-rewarding succeeds: it robustly overcomes poor initialization by steering the dynamics toward internal stability and consistency. Finally, we instantiate our theoretical framework for the linear softmax model class, yielding tailored guarantees that connect our high-level insights to practical model architectures.
♻ ☆ Orchestrating Heterogeneous Experts: A Scalable MoE Framework with Anisotropy-Preserving Fusion
In cross-border e-commerce, search relevance modeling faces the dual challenge of extreme linguistic diversity and fine-grained semantic nuances. Existing approaches typically rely on scaling up a single monolithic Large Language Model (LLM). However, our empirical analysis reveals that single models suffer from uneven capability distributions across regions. For example, excelling in English while underperforming in specific Southeast Asian languages. In this work, we shift the paradigm from scaling a single model to orchestrating heterogeneous experts. We propose a scalable Coarse-grained Mixture-of-Experts (MoE) framework that leverages the inherent complementarity of distinct open-source LLMs (e.g., Qwen, Gemma) without expensive pre-training. Unlike standard token-level MoE, our framework dynamically routes entire queries to specialized experts and, crucially, employs an Information-Preserving Concatenation Fusion strategy. We theoretically posit that preserving the distinct embedding manifolds of heterogeneous experts-rather than compressing them via weighted averaging-is essential for capturing complex relevance signals in a multi-model latent space. On datasets spanning six Southeast Asian markets, our MoE improves AUC by 0.72 percentage points over a dense baseline with the same active parameters. Meanwhile, the optimized pipeline achieves 13.72 queries per second (QPS), a 9% throughput improvement.
comment: 4 pages, 2 figures. Accepted at the Workshop on TIME of the ACM Web Conference 2026
♻ ☆ Hyper-Compression: Model Compression via Hyperfunction
The rapid growth of large models' size has far outpaced that of computing resources. To bridge this gap, encouraged by the parsimonious relationship between genotype and phenotype in the brain's growth and development, we propose the so-called Hyper-Compression that turns the model compression into the issue of parameter representation via a hyperfunction. Specifically, it is known that the trajectory of some low-dimensional dynamic systems can fill the high-dimensional space eventually. Thus, Hyper-Compression, using these dynamic systems as the hyperfunctions, represents the parameters of the target network by their corresponding composition number or trajectory length. This suggests a novel mechanism for model compression, substantially different from the existing pruning, quantization, distillation, and decomposition. Along this direction, we methodologically identify a suitable dynamic system with the irrational winding as the hyperfunction and theoretically derive its associated error bound. Next, guided by our theoretical insights, we propose several engineering twists to make the Hyper-Compression pragmatic and effective. Lastly, systematic and comprehensive experiments on \textcolor{black}{NLP models such as LLaMA and Qwen series and vision models} confirm that Hyper-Compression enjoys the following \textbf{PNAS} merits: 1) \textbf{P}referable compression ratio; 2) \textbf{N}o post-hoc retraining; 3) \textbf{A}ffordable inference time; and 4) \textbf{S}hort compression time. It compresses LLaMA2-7B in an hour and achieves close-to-int4-quantization performance, without retraining and with a performance drop of less than 1\%. We have open-sourced our code in https://github.com/Juntongkuki/Hyper-Compression.git for free download and evaluation.
♻ ☆ Co-Evolving Agents: Learning from Failures as Hard Negatives
The rapid progress of large foundation models has accelerated the development of task-specialized agents across diverse domains. However, the effectiveness of agents remains tightly coupled with the quality of training data, while curating task-specific datasets remains costly and often infeasible in real-world scenarios. Recent work has explored self-improving agents that autonomously generate, refine, and re-train on their own trajectories. A prominent line of approaches further leverages preference optimization by pairing predicted trajectories with scarce ground-truth trajectories, enabling agents to learn directly from their own failures. While these methods outperform supervised fine-tuning, their heavy reliance on predicted trajectories under limited ground-truth supervision leaves them prone to overfitting. To address this, we propose a co-evolving agents framework in which a target agent improves jointly with an auxiliary failure agent. The failure agent learns through preference optimization over failure trajectories from both the target and itself, thereby generating hard negatives that are close to success yet remain failures. Incorporating these informative hard negatives into the target agent's optimization sharpens decision boundaries and enhances generalization. Our comprehensive analysis and experiments across benchmark datasets show that our method not only shows improved performance but also demonstrates that failures, instead of being used as-is, can be systematically transformed into structured and valuable learning signals in self-improving agents.
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
♻ ☆ Measuring and Analyzing Intelligence via Contextual Uncertainty in Large Language Models using Information-Theoretic Metrics
Large Language Models (LLMs) excel on many task-specific benchmarks, yet the mechanisms that drive this success remain poorly understood. We move from asking what these systems can do to asking how they process information. Our contribution is a task-agnostic method that builds a quantitative Cognitive Profile for any model. The profile is built around the Entropy Decay Curve -- a plot of a model's normalised predictive uncertainty as context length grows. Across several state-of-the-art LLMs and diverse texts, the curves expose distinctive, stable profiles that depend on both model scale and text complexity. We also propose the Information Gain Span (IGS) as a single index that summarises the desirability of a decay pattern. Together, these tools offer a principled way to analyse and compare the internal dynamics of modern AI systems.
♻ ☆ Controlling Exploration-Exploitation in GFlowNets via Markov Chain Perspectives
Generative Flow Network (GFlowNet) objectives implicitly fix an equal mixing of forward and backward policies, potentially constraining the exploration-exploitation trade-off during training. By further exploring the link between GFlowNets and Markov chains, we establish an equivalence between GFlowNet objectives and Markov chain reversibility, thereby revealing the origin of such constraints, and provide a framework for adapting Markov chain properties to GFlowNets. Building on these theoretical findings, we propose $α$-GFNs, which generalize the mixing via a tunable parameter $α$. This generalization enables direct control over exploration-exploitation dynamics to enhance mode discovery capabilities, while ensuring convergence to unique flows. Across various benchmarks, including Set, Bit Sequence, and Molecule Generation, $α$-GFN objectives consistently outperform previous GFlowNet objectives, achieving up to a $10 \times$ increase in the number of discovered modes.
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Learning More from Less: Unlocking Internal Representations for Benchmark Compression
The prohibitive cost of evaluating Large Language Models (LLMs) necessitates efficient alternatives to full-scale benchmarking. Prevalent approaches address this by identifying a small coreset of items to approximate full-benchmark performance. However, existing methods must estimate a reliable item profile from response patterns across many source models, which becomes statistically unstable when the source pool is small. This dependency is particularly limiting for newly released benchmarks with minimal historical evaluation data. We argue that discrete correctness labels are a lossy view of the model's decision process and fail to capture information encoded in hidden states. To address this, we introduce REPCORE, which aligns heterogeneous hidden states into a unified latent space to construct representative coresets. Using these subsets for performance extrapolation, REPCORE achieves precise estimation accuracy with as few as ten source models. Experiments on five benchmarks and over 200 models show consistent gains over output-based baselines in ranking correlation and estimation accuracy. Spectral analysis further indicates that the aligned representations contain separable components reflecting broad response tendencies and task-specific reasoning patterns.
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ Emergent Analogical Reasoning in Transformers
Analogy is a central faculty of human intelligence, enabling abstract patterns discovered in one domain to be applied to another. Despite its central role in cognition, the mechanisms by which Transformers acquire and implement analogical reasoning remain poorly understood. In this work, inspired by the notion of functors in category theory, we formalize analogical reasoning as the inference of correspondences between entities across categories. Based on this formulation, we introduce synthetic tasks that evaluate the emergence of analogical reasoning under controlled settings. We find that the emergence of analogical reasoning is highly sensitive to data characteristics, optimization choices, and model scale. Through mechanistic analysis, we show that analogical reasoning in Transformers decomposes into two key components: (1) geometric alignment of relational structure in the embedding space, and (2) the application of a functor within the Transformer. These mechanisms enable models to transfer relational structure from one category to another, realizing analogy. Finally, we quantify these effects and find that the same trends are observed in pretrained LLMs. In doing so, we move analogy from an abstract cognitive notion to a concrete, mechanistically grounded phenomenon in modern neural networks.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Spectral Text Fusion: A Frequency-Aware Approach to Multimodal Time-Series Forecasting
Multimodal time series forecasting is crucial in real-world applications, where decisions depend on both numerical data and contextual signals. The core challenge is to effectively combine temporal numerical patterns with the context embedded in other modalities, such as text. While most existing methods align textual features with time-series patterns one step at a time, they neglect the multiscale temporal influences of contextual information such as time-series cycles and dynamic shifts. This mismatch between local alignment and global textual context can be addressed by spectral decomposition, which separates time series into frequency components capturing both short-term changes and long-term trends. In this paper, we propose SpecTF, a simple yet effective framework that integrates the effect of textual data on time series in the frequency domain. Our method extracts textual embeddings, projects them into the frequency domain, and fuses them with the time series' spectral components using a lightweight cross-attention mechanism. This adaptively reweights frequency bands based on textual relevance before mapping the results back to the temporal domain for predictions. Experimental results demonstrate that SpecTF significantly outperforms state-of-the-art models across diverse multi-modal time series datasets while utilizing considerably fewer parameters. Code is available at https://github.com/hiepnh137/SpecTF.
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Multi-Agent Teams Hold Experts Back
Multi-agent LLM systems are increasingly deployed as autonomous collaborators, where agents interact freely rather than execute fixed, pre-specified workflows. In such settings, effective coordination cannot be fully designed in advance and must instead emerge through interaction. However, most prior work enforces coordination through fixed roles, workflows, or aggregation rules, leaving open the question of how well self-organizing teams perform when coordination is unconstrained. Drawing on organizational psychology, we study whether self-organizing LLM teams achieve strong synergy, where team performance matches or exceeds the best individual member. Across human-inspired and frontier ML benchmarks, we find that -- unlike human teams -- LLM teams consistently fail to match their expert agent's performance, even when explicitly told who the expert is, incurring performance losses of up to 37.6%. Decomposing this failure, we show that expert leveraging, rather than identification, is the primary bottleneck. Conversational analysis reveals a tendency toward integrative compromise -- averaging expert and non-expert views rather than appropriately weighting expertise -- which increases with team size and correlates negatively with performance. Interestingly, this consensus-seeking behavior improves robustness to adversarial agents, suggesting a trade-off between alignment and effective expertise utilization. Our findings reveal a significant gap in the ability of self-organizing multi-agent teams to harness the collective expertise of their members.
comment: Preprint
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ The Variance Paradox: How AI Reduces Diversity but Increases Novelty
The diversity of human expression is the raw material of discovery. Generative artificial intelligence threatens this resource even as it promises to accelerate innovation, a paradox now visible across science, culture, and professional work. We propose a framework to explain this tension. AI systems compress informational variance through statistical optimization, and users amplify this effect through epistemic deference. We call this process the AI Prism. Yet this same compression can enable novelty. Standardized forms travel across domain boundaries, lowering translation costs and creating opportunities for recombination that we term the Paradoxical Bridge. The interaction produces a U-shaped temporal dynamic, an initial decline in diversity followed by recombinant innovation, but only when humans actively curate rather than passively defer. The framework generates testable predictions about when compression constrains versus amplifies creativity. As AI becomes infrastructure for knowledge work, managing this dynamic is essential. Without intervention, the conditions for recovery may not arrive.
♻ ☆ TIDE: Trajectory-based Diagnostic Evaluation of Test-Time Improvement in LLM Agents
Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
comment: 29pages, 10 figures
♻ ☆ Rank-and-Reason: Multi-Agent Collaboration Accelerates Zero-Shot Protein Mutation Prediction
Zero-shot mutation prediction is vital for low-resource protein engineering, yet existing protein language models (PLMs) often yield statistically confident results that ignore fundamental biophysical constraints. Currently, selecting candidates for wet-lab validation relies on manual expert auditing of PLM outputs, a process that is inefficient, subjective, and highly dependent on domain expertise. To address this, we propose Rank-and-Reason (VenusRAR), a two-stage agentic framework to automate this workflow and maximize expected wet-lab fitness. In the Rank-Stage, a Computational Expert and Virtual Biologist aggregate a context-aware multi-modal ensemble, establishing a new Spearman correlation record of 0.551 (vs. 0.518) on ProteinGym. In the Reason-Stage, an agentic Expert Panel employs chain-of-thought reasoning to audit candidates against geometric and structural constraints, improving the Top-5 Hit Rate by up to 367% on ProteinGym-DMS99. The wet-lab validation on Cas12i3 nuclease further confirms the framework's efficacy, achieving a 46.7% positive rate and identifying two novel mutants with 4.23-fold and 5.05-fold activity improvements. Code and datasets are released on GitHub (https://github.com/ai4protein/VenusRAR/).
comment: 22 pages, 5 figures, 15 tables
♻ ☆ HyperOffload: Graph-Driven Hierarchical Memory Management for Large Language Models on SuperNode Architectures
The rapid evolution of Large Language Models (LLMs) towards long-context reasoning and sparse architectures has pushed memory requirements far beyond the capacity of individual device HBM. While emerging supernode architectures offer terabyte-scale shared memory pools via high-bandwidth interconnects, existing software stacks fail to exploit this hardware effectively. Current runtime-based offloading and swapping techniques operate with a local view, leading to reactive scheduling and exposed communication latency that stall the computation pipeline. In this paper, we propose the SuperNode Memory Management Framework (\textbf{HyperOffload}). It employs a compiler-assisted approach that leverages graph-driven memory management to treat remote memory access as explicit operations in the computation graph, specifically designed for hierarchical SuperNode architectures. Unlike reactive runtime systems, SuperNode represents data movement using cache operators within the compiler's Intermediate Representation (IR). This design enables a global, compile-time analysis of tensor lifetimes and execution dependencies. Leveraging this visibility, we develop a global execution-order refinement algorithm that statically schedules data transfers to hide remote memory latency behind compute-intensive regions. We implement SuperNode within the production deep learning framework MindSpore, adding a remote memory backend and specialized compiler passes. Evaluation on representative LLM workloads shows that SuperNode reduces peak device memory usage by up to 26\% for inference while maintaining end-to-end performance. Our work demonstrates that integrating memory-augmented hardware into the compiler's optimization framework is essential for scaling next-generation AI workloads.
comment: Technical Report
♻ ☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
♻ ☆ SCPL: Enhancing Neural Network Training Throughput with Decoupled Local Losses and Model Parallelism
Adopting large-scale AI models in enterprise information systems is often hindered by high training costs and long development cycles, posing a significant managerial challenge. The standard end-to-end backpropagation (BP) algorithm is a primary driver of modern AI, but it is also the source of inefficiency in training deep networks. This paper introduces a new training methodology, Supervised Contrastive Parallel Learning (SCPL), that addresses this issue by decoupling BP and transforming a long gradient flow into multiple short ones. This design enables the simultaneous computation of parameter gradients in different layers, achieving superior model parallelism and enhancing training throughput. Detailed experiments are presented to demonstrate the efficiency and effectiveness of our model compared to BP, Early Exit, GPipe, and Associated Learning (AL), a state-of-the-art method for decoupling backpropagation. By mitigating a fundamental performance bottleneck, SCPL provides a practical pathway for organizations to develop and deploy advanced information systems more cost-effectively and with greater agility. The experimental code is released for reproducibility. https://github.com/minyaho/scpl/
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning ICLR2026
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
comment: Accepted to ICLR2026
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion Large Language Models
Diffusion Large Language Models (DLLMs) have emerged as a new paradigm of language modeling beyond autoregressive next-token prediction. Taking advantage of their inherent modeling foundations, DLLMs have the great potential of efficient inference with parallel decoding algorithms, which enable multi-token prediction. However, the high generation quality often requires the number of decoding steps equal to the sequence length, which performs a one-token-per-step decoding, and existing parallel decoding algorithms, which yield suboptimal decoding paths, bring inference speedup at the cost of non-negligible performance degradation. To overcome this challenge, we introduce Free Draft-and-Verification (FreeDave), a novel fast decoding algorithm tailored for DLLMs that achieves lossless parallel decoding without any model modification or extra modules. Specifically, we propose an algorithm of parallel-decoded candidate generation and verification, which is theoretically guaranteed to use the fewest model forward calls to reproduce the same sequence generated by one-token-per-step decoding. By extensive evaluations on math reasoning and code generation benchmarks across different DLLMs, FreeDave is proven to accelerate the inference up to $2.83\times$ without performance degradation.
♻ ☆ Thinking with Comics: Enhancing Multimodal Reasoning through Structured Visual Storytelling
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
comment: Working paper
♻ ☆ Regulatory Markets: The Future of AI Governance
Appropriately regulating artificial intelligence is an increasingly urgent and widespread policy challenge. We identify two primary, competing problem. First is a technical deficit: Legislatures and regulatory face significant challenges in rapidly translating conventional command-and-control legal requirements into technical requirements. Second is a democratic deficit: Over-reliance on industry to provide technical standards fails to ensure that the many values-based decisions that must be made to shape AI development and deployment are made by democratically accountable public, not private, actors. We propose a solution: regulatory markets, in which governments require the targets of regulation to purchase regulatory services from a government-licensed private regulator. This approach to AI regulation could overcome the limitations of both command-and-control regulation and excessive delegation to industry. Regulatory markets could enable governments to establish policy priorities for the regulation of AI while relying on market forces and industry R&D efforts to pioneer the technical methods of regulation that best achieve policymakers' stated objectives.
♻ ☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
♻ ☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Surgical scene understanding is critical for surgical training and robotic decision-making in robot-assisted surgery. Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated great potential for advancing scene perception in the medical domain, facilitating surgeons to understand surgical scenes and procedures. However, these methods are primarily oriented towards image-based analysis or global video understanding, overlooking the fine-grained video reasoning that is crucial for analyzing specific processes and capturing detailed task execution within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K that is a large-scale dataset with over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Building on this resource, SurgVidLM incorporates a two-stage StageFocus mechanism: the first stage extracts global procedural context, while the second stage performs high-frequency local analysis guided by temporal cues. We also develop the Multi-frequency Fusion Attention to effectively integrate low- and high-frequency visual tokens, ensuring the preservation of critical task-specific details. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs of comparable parameter scale in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing the context of complex robot-assisted surgeries. Our code and dataset will be publicly accessible soon.
♻ ☆ GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts
Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.
comment: Code available at https://github.com/Zengwh02/GlimpRouter
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models can exhibit surprising adapter interference when combining domain adaptation and instruction alignment in safety-critical settings. We study a two-stage LoRA pipeline for medical LLMs, where domain-oriented pre-training (PT) and supervised fine-tuning (SFT) are trained separately and later merged through weighted adapter merging. We observe that introducing PT signal can systematically alter model behavior and produce reasoning-style outputs, even when evaluation templates explicitly attempt to suppress such behavior. This interference leads to a divergence between surface metrics and reasoning or alignment behavior: BLEU/ROUGE scores drop significantly, while multiple-choice accuracy improves. We further show that small pipeline mistakes can easily misattribute SFT-only behavior to merged models, and provide a lightweight merge-verification routine to ensure correctness and reproducibility. Our findings highlight an interaction between knowledge injection and instruction alignment in adapter-based fine-tuning, with important implications for safety-critical model deployment.
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference.
comment: 17 pages, 3 figures, 5 tables. Part of the NRR research program. v2: Added title prefix NRR-Phi for series identification; standardized reference formatting
♻ ☆ If It's Nice, Do It Twice: We Should Try Iterative Corpus Curation
Recent work demonstrates that filtering harmful content from pretraining data improves model safety without degrading capabilities. We propose a natural extension: do it again. A model trained on filtered data can filter the corpus further; training on this cleaner corpus produces an even cleaner model. We provide theoretical analysis showing this process converges to a self-consistent corpus where the model trained on it approves of its own training data. Even under the weak assumption of constant filter quality, iteration yields decay in harmful content. We argue this framework offers a novel form of scalable oversight. While model internals are opaque, the resulting corpus is human-auditable. Even a single iteration produces a large-scale preference annotations over documents, potentially valuable for interpretability research. We derive bounds on capability-safety tradeoffs and outline open questions. We call on researchers with pretraining infrastructure to empirically test this approach.
♻ ☆ Taking the GP Out of the Loop
Bayesian optimization (BO) has traditionally solved black-box problems where function evaluation is expensive and, therefore, observations are few. Recently, however, there has been growing interest in applying BO to problems where function evaluation is cheaper and observations are more plentiful. In this regime, scaling to many observations $N$ is impeded by Gaussian-process (GP) surrogates: GP hyperparameter fitting scales as $\mathcal{O}(N^3)$ (reduced to roughly $\mathcal{O}(N^2)$ in modern implementations), and it is repeated at every BO iteration. Many methods improve scaling at acquisition time, but hyperparameter fitting still scales poorly, making it the bottleneck. We propose Epistemic Nearest Neighbors (ENN), a lightweight alternative to GPs that estimates function values and uncertainty (epistemic and aleatoric) from $K$-nearest-neighbor observations. ENN scales as $\mathcal{O}(N)$ for both fitting and acquisition. Our BO method, TuRBO-ENN, replaces the GP surrogate in TuRBO with ENN and its Thompson-sampling acquisition with $\mathrm{UCB} = μ(x) + σ(x)$. For the special case of noise-free problems, we can omit fitting altogether by replacing $\mathrm{UCB}$ with a non-dominated sort over $μ(x)$ and $σ(x)$. We show empirically that TuRBO-ENN reduces proposal time (i.e., fitting time + acquisition time) by one to two orders of magnitude compared to TuRBO at up to 50,000 observations.
comment: 12 pages, 11 figures
♻ ☆ Resilient Routing: Risk-Aware Dynamic Routing in Smart Logistics via Spatiotemporal Graph Learning
With the rapid development of the e-commerce industry, the logistics network is experiencing unprecedented pressure. The traditional static routing strategy most time cannot tolerate the traffic congestion and fluctuating retail demand. In this paper, we propose a Risk-Aware Dynamic Routing(RADR) framework which integrates Spatiotemporal Graph Neural Networks (ST-GNN) with combinatorial optimization. We first construct a logistics topology graph by using the discrete GPS data using spatial clustering methods. Subsequently, a hybrid deep learning model combining Graph Convolutional Network (GCN) and Gated Recurrent Unit (GRU) is adopted to extract spatial correlations and temporal dependencies for predicting future congestion risks. These prediction results are then integrated into a dynamic edge weight mechanism to perform path planning. We evaluated the framework on the Smart Logistics Dataset 2024, which contains real-world Internet of Things(IoT) sensor data. The experimental results show that the RADR algorithm significantly enhances the resilience of the supply chain. Particularly in the case study of high congestion scenarios, our method reduces the potential congestion risk exposure by 19.3% while only increasing the transportation distance by 2.1%. This empirical evidence confirms that the proposed data-driven approach can effectively balance delivery efficiency and operational safety.
♻ ☆ Can LLMs Reconcile Knowledge Conflicts in Counterfactual Reasoning ICML 2025
Large Language Models have been shown to contain extensive world knowledge in their parameters, enabling impressive performance on many knowledge intensive tasks. However, when deployed in novel settings, LLMs often encounter situations where they must integrate parametric knowledge with new or unfamiliar information. In this work, we explore whether LLMs can combine knowledge in-context with their parametric knowledge through the lens of counterfactual reasoning. Through synthetic and real experiments in multi-hop reasoning problems, we show that LLMs generally struggle with counterfactual reasoning, often resorting to exclusively using their parametric knowledge. Moreover, we show that simple post-hoc finetuning can struggle to instill counterfactual reasoning ability -- often leading to degradation in stored parametric knowledge. Ultimately, our work reveals important limitations of current LLM's abilities to re-purpose parametric knowledge in novel settings.
comment: ICML 2025 Workshop on Scaling up Intervention Models
♻ ☆ Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their performance on long-horizon, complex problems remains unreliable. Single-rollout execution is brittle, with small errors compounding over time and leading to high variance in outcomes. While prior work has attempted to scale within a single rollout, such approaches have yielded limited gains. Scaling over multiple rollouts offers a more promising alternative but doing so effectively is challenging due to the difficulty of evaluating and selecting among long-horizon agent behaviors. We introduce Behavior Judge (BJudge), which addresses this challenge by representing agent executions as behavior narratives and comparing candidate behaviors at this level, substantially improving robustness and success rates. Using multiple rollouts, BJudge establishes a new state of the art (SoTA) in OSWorld at 72.6%, significantly outperforming prior methods and surpassing human-level performance at 72.36%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the strong effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and BJudge provides a practical framework to achieve this.
comment: 21 pages, 7 figures, 13 tables
♻ ☆ Beyond Mode Elicitation: Diversity-Preserving Reinforcement Learning via Latent Diffusion Reasoner
Recent reinforcement learning (RL) methods improve LLM reasoning by optimizing discrete Chain-of-Thought (CoT) generation; however, exploration in token space often suffers from diversity collapse as policy entropy decreases due to mode elicitation behavior in discrete RL. To mitigate this issue, we propose Latent Diffusion Reasoning with Reinforcement Learning (LaDi-RL), a framework that conducts exploration directly in a continuous latent space, where latent variables encode semantic-level reasoning trajectories. By modeling exploration via guided diffusion, multi-step denoising distributes stochasticity and preserves multiple coexisting solution modes without mutual suppression. Furthermore, by decoupling latent-space exploration from text-space generation, we show that latent diffusion-based optimization is more effective than text-space policy optimization alone, while a complementary text policy provides additional gains when combined with latent exploration. Experiments on code generation and mathematical reasoning benchmarks demonstrate consistent improvements in both pass@1 and pass@k over discrete RL baselines, with absolute pass@1 gains of +9.4% on code generation and +5.7% on mathematical reasoning, highlighting diffusion-based latent RL as a principled alternative to discrete token-level RL for reasoning.
♻ ☆ CodeSense: a Real-World Benchmark and Dataset for Code Semantic Reasoning
Understanding and reasoning about code semantics is essential for enhancing code LLMs' abilities to solve real-world software engineering (SE) tasks. Although several code reasoning benchmarks exist, most rely on synthetic datasets or educational coding problems and focus on coarse-grained reasoning tasks such as input/output prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts. To bridge this gap, we propose CodeSense, the first benchmark that makes available a spectrum of fine-grained code reasoning tasks concerned with the software engineering of real-world code. We collected Python, C and Java software projects from real-world repositories. We executed tests from these repositories, collected their execution traces, and constructed a ground truth dataset for fine-grained semantic reasoning tasks. We then performed comprehensive evaluations on state-of-the-art LLMs. Our results show a clear performance gap for the models to handle fine-grained reasoning tasks. Although prompting techniques such as chain-of-thought and in-context learning helped, the lack of code semantics in LLMs fundamentally limits models' capabilities of code reasoning. Besides dataset, benchmark and evaluation, our work produced an execution tracing framework and tool set that make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a strong basis for future benchmark construction and model post training. Our code and data are located at https://codesense-bench.github.io/.
♻ ☆ ConceptCaps: a Distilled Concept Dataset for Interpretability in Music Models
Concept-based interpretability methods like TCAV require clean, well-separated positive and negative examples for each concept. Existing music datasets lack this structure: tags are sparse, noisy, or ill-defined. We introduce ConceptCaps, a dataset of 21k music-caption-tags triplets with explicit labels from a 200-attribute taxonomy. Our pipeline separates semantic modeling from text generation: a VAE learns plausible attribute co-occurrence patterns, a fine-tuned LLM converts attribute lists into professional descriptions, and MusicGen synthesizes corresponding audio. This separation improves coherence and controllability over end-to-end approaches. We validate the dataset through audio-text alignment (CLAP), linguistic quality metrics (BERTScore, MAUVE), and TCAV analysis confirming that concept probes recover musically meaningful patterns. Dataset and code are available online.
♻ ☆ Reading Between the Lines: Combining Pause Dynamics and Semantic Coherence for Automated Assessment of Thought Disorder
Formal thought disorder (FTD), a hallmark of schizophrenia spectrum disorders, manifests as incoherent speech and poses challenges for clinical assessment. Traditional clinical rating scales, though validated, are resource-intensive and lack scalability. Automated speech recognition (ASR) allows for objective quantification of linguistic and temporal features of speech, offering scalable alternatives. Furthermore, ASR-derived utterance timestamps provide access to pause dynamics, which are thought to reflect the cognitive processes underlying speech production. Yet, their added value beyond semantic measures remains insufficiently explored. In this study, we evaluated a scalable multimodal framework that integrates pause features with semantic coherence metrics across three datasets: naturalistic self-recorded diaries (AVH), structured picture descriptions (TOPSY), and dream narratives (PsyCL). Pause-related features were evaluated alongside established coherence measures using support vector regression to predict clinical FTD scores. Models using pause features alone robustly predict manually rated FTD severity consistently across datasets. Integrating pause features with semantic coherence metrics enhanced predictive performance compared to coherence-only models, with late fusion yielding the most robust and consistent gains in all three datasets. On average across datasets, Spearman correlation increased from \r{ho} = 0.413 for semantic-only models to \r{ho} = 0.455 with late fusion. The performance gains from semantic and pause features integration held consistently across all contexts, though the nature of the most informative pause patterns was dataset-dependent. These findings suggest that both pause dynamics and semantic coherence reflect complementary aspects of thought disorganization.
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: NeurIPS 2025 (https://openreview.net/forum?id=LsmUgStXby)
♻ ☆ Near--Real-Time Conflict-Related Fire Detection Using Unsupervised Deep Learning and Satellite Imagery
Ongoing armed conflict in Sudan highlights the need for rapid monitoring of conflict-related fire damage. Recent advances in deep learning and high-frequency satellite imagery enable near--real-time assessment of active fires and burn scars in war zones. This study presents a near--real-time monitoring approach using a lightweight Variational Auto-Encoder (VAE)-based model integrated with 4-band Planet Labs imagery at 3 m spatial resolution. We demonstrate that conflict-related fire damage can be detected with minimal delay using accessible, commercially available satellite data. To achieve this, we adapt a VAE-based model, originally designed for 10-band imagery, to operate effectively on high-resolution 4-band inputs. The model is trained in an unsupervised manner to learn compact latent representations of nominal land-surface conditions and identify fire-affected areas by quantifying changes between temporally paired latent embeddings. Performance is evaluated across five case studies in Sudan and compared against a cosine-distance baseline computed between temporally paired image tiles using precision, recall, F1-score, and the area under the precision-recall curve (AUPRC). Results show that the proposed approach consistently outperforms the baseline, achieving higher recall and F1-scores while maintaining strong precision in highly imbalanced fire-detection scenarios. Experiments with 8-band imagery and temporal image sequences yield only marginal performance gains over single 4-band inputs, underscoring the effectiveness of the proposed lightweight approach for scalable, near--real-time conflict monitoring.
♻ ☆ AI-Generated Code Is Not Reproducible (Yet): An Empirical Study of Dependency Gaps in LLM-Based Coding Agents
The rise of Large Language Models (LLMs) as coding agents promises to accelerate software development, but their impact on generated code reproducibility remains largely unexplored. This paper presents an empirical study investigating whether LLM-generated code can be executed successfully in a clean environment with only OS packages and using only the dependencies that the model specifies. We evaluate three state-of-the-art LLM coding agents (Claude Code, OpenAI Codex, and Gemini) across 300 projects generated from 100 standardized prompts in Python, JavaScript, and Java. We introduce a three-layer dependency framework (distinguishing between claimed, working, and runtime dependencies) to quantify execution reproducibility. Our results show that only 68.3% of projects execute out-of-the-box, with substantial variation across languages (Python 89.2%, Java 44.0%). We also find a 13.5 times average expansion from declared to actual runtime dependencies, revealing significant hidden dependencies.
♻ ☆ Simulating the Visual World with Artificial Intelligence: A Roadmap
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.
comment: Project page: https://world-model-roadmap.github.io/ Github Repo: https://github.com/ziqihuangg/Awesome-From-Video-Generation-to-World-Model
♻ ☆ Transduction is All You Need for Structured Data Workflows
This paper introduces Agentics, a functional agentic AI framework for building LLM-based structured data workflow pipelines. Designed for both research and practical applications, Agentics offers a new data-centric paradigm in which agents are embedded within data types, enabling logical transduction between structured states. This design shifts the focus toward principled data modeling, providing a declarative language where data types are directly exposed to large language models and the data values are composed through transductions between input and output types. We present a range of structured data workflow tasks and empirical evidence demonstrating the effectiveness of this approach, including data wrangling, text-to-SQL semantic parsing, and domain-specific multiple-choice question answering, and data-driven scientific discovery tasks.
comment: 38 pages, 5 figures
♻ ☆ DISCOVER: Identifying Patterns of Daily Living in Human Activities from Smart Home Data
Smart homes equipped with ambient sensors offer a transformative approach to continuous health monitoring and assisted living. Traditional research in this domain primarily focuses on Human Activity Recognition (HAR), which relies on mapping sensor data to a closed set of predefined activity labels. However, the fixed granularity of these labels often constrains their practical utility, failing to capture the subtle, household-specific nuances essential, for example, for tracking individual health over time. To address this, we propose DISCOVER, a framework for discovering and annotating Patterns of Daily Living (PDL) - fine-grained, recurring sequences of sensor events that emerge directly from a resident's unique routines. DISCOVER utilizes a self-supervised feature extraction and representation-aware clustering pipeline, supported by a custom visualization interface that enables experts to interpret and label discovered patterns with minimal effort. Our evaluation across multiple smart-home environments demonstrates that DISCOVER identifies cohesive behavioral clusters with high inter-rater agreement while achieving classification performance comparable to fully-supervised baselines using only 0.01% of the labels. Beyond reducing annotation overhead, DISCOVER establishes a foundation for longitudinal analysis. By grounding behavior in a resident's specific environment rather than rigid semantic categories, our framework facilitates the observation of within-person habitual drift. This capability positions the system as a potential tool for identifying subtle behavioral indicators associated with early-stage cognitive decline in future longitudinal studies.
comment: v2: Re-submission. Under review at IMWUT
♻ ☆ Semantics as a Shield: Label Disguise Defense (LDD) against Prompt Injection in LLM Sentiment Classification
Large language models are increasingly used for text classification tasks such as sentiment analysis, yet their reliance on natural language prompts exposes them to prompt injection attacks. In particular, class-directive injections exploit knowledge of the model's label set (e.g., positive vs. negative) to override its intended behavior through adversarial instructions. Existing defenses, such as detection-based filters, instruction hierarchies, and signed prompts, either require model retraining or remain vulnerable to obfuscation. This paper introduces Label Disguise Defense (LDD), a lightweight and model-agnostic strategy that conceals true labels by replacing them with semantically transformed or unrelated alias labels(e.g., blue vs. yellow). The model learns these new label mappings implicitly through few-shot demonstrations, preventing direct correspondence between injected directives and decision outputs. We evaluate LDD across nine state-of-the-art models, including GPT-5, GPT-4o, LLaMA3.2, Gemma3, and Mistral variants, under varying few-shot and an adversarial setting. Our results show that the ability of LDD to recover performance lost to the adversarial attack varies across models and alias choices. For every model evaluated, LDD is able to restore a portion of the accuracy degradation caused by the attack. Moreover, for the vast majority of models, we can identify more than one alias pair that achieves higher accuracy than the under-attack baseline, in which the model relies solely on few-shot learning without any defensive mechanism. A linguistic analysis further reveals that semantically aligned alias labels(e.g., good vs. bad) yield stronger robustness than unaligned symbols(e.g., blue vs. yellow). Overall, this study demonstrates that label semantics can serve as an effective defense layer, transforming meaning itself into a shield against prompt injection.
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank (r). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ EMO-TTA: Improving Test-Time Adaptation of Audio-Language Models for Speech Emotion Recognition ICASSP 2026
Speech emotion recognition (SER) with audio-language models (ALMs) remains vulnerable to distribution shifts at test time, leading to performance degradation in out-of-domain scenarios. Test-time adaptation (TTA) provides a promising solution but often relies on gradient-based updates or prompt tuning, limiting flexibility and practicality. We propose Emo-TTA, a lightweight, training-free adaptation framework that incrementally updates class-conditional statistics via an Expectation-Maximization procedure for explicit test-time distribution estimation, using ALM predictions as priors. Emo-TTA operates on individual test samples without modifying model weights. Experiments on six out-of-domain SER benchmarks show consistent accuracy improvements over prior TTA baselines, demonstrating the effectiveness of statistical adaptation in aligning model predictions with evolving test distributions.
comment: Accepted to ICASSP 2026
♻ ☆ Plug-and-Play Emotion Graphs for Compositional Prompting in Zero-Shot Speech Emotion Recognition ICASSP 2026
Large audio-language models (LALMs) exhibit strong zero-shot performance across speech tasks but struggle with speech emotion recognition (SER) due to weak paralinguistic modeling and limited cross-modal reasoning. We propose Compositional Chain-of-Thought Prompting for Emotion Reasoning (CCoT-Emo), a framework that introduces structured Emotion Graphs (EGs) to guide LALMs in emotion inference without fine-tuning. Each EG encodes seven acoustic features (e.g., pitch, speech rate, jitter, shimmer), textual sentiment, keywords, and cross-modal associations. Embedded into prompts, EGs provide interpretable and compositional representations that enhance LALM reasoning. Experiments across SER benchmarks show that CCoT-Emo outperforms prior SOTA and improves accuracy over zero-shot baselines.
comment: Accepted to ICASSP 2026
♻ ☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLMs) favor their own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
♻ ☆ OmniCellTOSG: The First Cell Text-Omic Signaling Graphs Dataset for Graph Language Foundation Modeling
With the rapid growth of large-scale single-cell omic datasets, omic foundation models (FMs) have emerged as powerful tools for advancing research in life sciences and precision medicine. However, most existing omic FMs rely primarily on numerical transcriptomic data by sorting genes as sequences, while lacking explicit integration of biomedical prior knowledge and signaling interactions that are critical for scientific discovery. Here, we introduce the Text-Omic Signaling Graph (TOSG), a novel data structure that unifies human-interpretable biomedical textual knowledge, quantitative omic data, and signaling network information. Using this framework, we construct OmniCellTOSG, a large-scale resource comprising approximately half million meta-cell TOSGs derived from around 80 million single-cell and single-nucleus RNA-seq profiles across organs and diseases. We further develop CellTOSG-FM, a multimodal graph language FM, to jointly analyze textual, omic and signaling network context. Across diverse downstream tasks, CellTOSG-FM outperforms existing omic FMs, and provides interpretable insights into disease-associated targets and signaling pathways.
♻ ☆ Multiple Choice Learning of Low-Rank Adapters for Language Modeling
We propose LoRA-MCL, a training scheme that extends next-token prediction in language models with a method designed to decode diverse, plausible sentence continuations at inference time. Traditional language modeling is an intrinsically ill-posed problem: given a context, multiple ``futures'' may be equally plausible. Our approach leverages Multiple Choice Learning (MCL) and the Winner-Takes-All loss to efficiently handle ambiguity through Low-Rank Adaptation. We provide a theoretical interpretation of applying MCL to language modeling, assuming the data is generated from a mixture of distributions. We illustrate the proposed approach using mixtures of Markov chains. We then demonstrate with experiments on visual and audio captioning, as well as machine translation, that our method achieves high diversity and relevance in generated outputs. The accompanying code and a general-purpose package for applying LoRA-MCL to a wide range of language models are made available.
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning IEEE
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, with 2 figures and 6 tables, accepted for publication in an IEEE Intelligent Systems journal
♻ ☆ RL in Name Only? Analyzing the Structural Assumptions in RL post-training for LLMs
Reinforcement learning based post-training of large language models (LLMs) has recently gained attention, particularly following the release of DeepSeek R1, which applied GRPO for fine-tuning. Amid the growing claims around improved reasoning abilities attributed to RL post-training, we critically examine the formulation and assumptions underlying these methods. We start by highlighting popular structural assumptions made in modeling LLM training as an MDP, and show how they lead to a degenerate MDP, that characterizes the problem as a contextual bandit, where RL updates naturally collapse into a form of on-policy variant of outcome-driven supervised learning. The two critical structural assumptions include (1) making the MDP states be just a concatenation of the actions with states becoming the context window and the actions becoming the tokens in LLMs and (2) splitting the reward of a state-action trajectory uniformly across the trajectory. Our comprehensive analysis demonstrates that, due to these simplifying assumptions, GRPO objective reduces to filtered Iterative SFT, an on-policy variant of supervised fine-tuning. Our experiments on benchmarks including GSM8K and Countdown, across a diverse set of model families show that Filtered Iterative SFT, incorporating both positive and negative samples, achieves performance comparable to GRPO-based training. We also show that these structural assumptions indirectly incentivize RL to generate longer sequences of intermediate tokens which in turn feeds into the narrative of "RL incentivizing thinking because it generates longer thinking traces."
♻ ☆ Persuade Me if You Can: A Framework for Evaluating Persuasion Effectiveness and Susceptibility Among Large Language Models NeurIPS
Large Language Models (LLMs) demonstrate persuasive capabilities that rival human-level persuasion. While these capabilities can be used for social good, they also present risks of potential misuse. Beyond the concern of how LLMs persuade others, their own susceptibility to persuasion poses a critical alignment challenge, raising questions about robustness, safety, and adherence to ethical principles. To study these dynamics, we introduce Persuade Me If You Can (PMIYC), an automated framework for evaluating persuasiveness and susceptibility to persuasion in multi-agent interactions. Our framework offers a scalable alternative to the costly and time-intensive human annotation process typically used to study persuasion in LLMs. PMIYC automatically conducts multi-turn conversations between Persuader and Persuadee agents, measuring both the effectiveness of and susceptibility to persuasion. Our comprehensive evaluation spans a diverse set of LLMs and persuasion settings (e.g., subjective and misinformation scenarios). We validate the efficacy of our framework through human evaluations and demonstrate alignment with human assessments from prior studies. Through PMIYC, we find that Llama-3.3-70B and GPT-4o exhibit similar persuasive effectiveness, outperforming Claude 3 Haiku by 30%. However, GPT-4o demonstrates over 50% greater resistance to persuasion for misinformation compared to Llama-3.3-70B. These findings provide empirical insights into the persuasive dynamics of LLMs and contribute to the development of safer AI systems.
comment: Updated to match the NeurIPS MTI-LLM Workshop format. Content remains consistent with the original version, with structural refinements, expanded explanations, and an extended appendix including additional results
♻ ☆ Explaining and Improving Information Complementarities in Multi-Agent Decision-making
Multiple agents are increasingly combined to make decisions with the expectation of achieving complementary performance, where the decisions they make together outperform those made individually. However, knowing how to improve the performance of collaborating agents requires knowing what information and strategies each agent employs. With a focus on human-AI pairings, we contribute a decision-theoretic framework for characterizing the value of information. By defining complementary information, our approach identifies opportunities for agents to better exploit available information in AI-assisted decision workflows. We present a novel explanation technique (ILIV-SHAP) that adapts SHAP explanations to highlight human-complementing information. We validate the effectiveness of our framework and ILIV-SHAP through a study of human-AI decision-making, and demonstrate the framework on examples from chest X-ray diagnosis and deepfake detection. We find that presenting ILIV-SHAP with AI predictions leads to reliably greater reductions in error over non-AI assisted decisions more than vanilla SHAP.
♻ ☆ Thermal Imaging-based Real-time Fall Detection using Motion Flow and Attention-enhanced Convolutional Recurrent Architecture
Falls among seniors are a major public health issue. Existing solutions using wearable sensors, ambient sensors, and RGB-based vision systems face challenges in reliability, user compliance, and practicality. Studies indicate that stakeholders, such as older adults and eldercare facilities, prefer non-wearable, passive, privacy-preserving, and real-time fall detection systems that require no user interaction. This study proposes an advanced thermal fall detection method using a Bidirectional Convolutional Long Short-Term Memory (BiConvLSTM) model, enhanced with spatial, temporal, feature, self, and general attention mechanisms. Through systematic experimentation across hundreds of model variations exploring the integration of attention mechanisms, recurrent modules, and motion flow, we identified top-performing architectures. Among them, BiConvLSTM achieved state-of-the-art performance with a ROC-AUC of $99.7\%$ on the TSF dataset and demonstrated robust results on TF-66, a newly emerged, diverse, and privacy-preserving benchmark. These results highlight the generalizability and practicality of the proposed model, setting new standards for thermal fall detection and paving the way toward deployable, high-performance solutions.
♻ ☆ Low-Dimensional Adaptation of Rectified Flow: A Diffusion and Stochastic Localization Perspective
In recent years, Rectified flow (RF) has gained considerable popularity largely due to its generation efficiency and state-of-the-art performance. In this paper, we investigate the degree to which RF automatically adapts to the intrinsic low dimensionality of the support of the target distribution to accelerate sampling. We show that, using a carefully designed choice of the time-discretization scheme and with sufficiently accurate drift estimates, the RF sampler enjoys an iteration complexity of order $O(k/\varepsilon)$ (up to log factors), where $\varepsilon$ is the precision in total variation distance and $k$ is the intrinsic dimension of the target distribution. In addition, we show that the denoising diffusion probabilistic model (DDPM) procedure is equivalent to a stochastic version of RF by establishing a novel connection between these processes and stochastic localization. Building on this connection, we further design a stochastic RF sampler that also adapts to the low-dimensionality of the target distribution under milder requirements on the accuracy of the drift estimates, and also with a specific time schedule. We illustrate with simulations on the synthetic data and text-to-image data experiments the improved performance of the proposed samplers implementing the newly designed time-discretization schedules.
comment: 32 pages, 7 figures
Computation and Language 188
☆ Parallel-Probe: Towards Efficient Parallel Thinking via 2D Probing
Parallel thinking has emerged as a promising paradigm for reasoning, yet it imposes significant computational burdens. Existing efficiency methods primarily rely on local, per-trajectory signals and lack principled mechanisms to exploit global dynamics across parallel branches. We introduce 2D probing, an interface that exposes the width-depth dynamics of parallel thinking by periodically eliciting intermediate answers from all branches. Our analysis reveals three key insights: non-monotonic scaling across width-depth allocations, heterogeneous reasoning branch lengths, and early stabilization of global consensus. Guided by these insights, we introduce $\textbf{Parallel-Probe}$, a training-free controller designed to optimize online parallel thinking. Parallel-Probe employs consensus-based early stopping to regulate reasoning depth and deviation-based branch pruning to dynamically adjust width. Extensive experiments across three benchmarks and multiple models demonstrate that Parallel-Probe establishes a superior Pareto frontier for test-time scaling. Compared to standard majority voting, it reduces sequential tokens by up to $\textbf{35.8}$% and total token cost by over $\textbf{25.8}$% while maintaining competitive accuracy.
comment: 14 pages
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ They Said Memes Were Harmless-We Found the Ones That Hurt: Decoding Jokes, Symbols, and Cultural References
Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
comment: Accepted at the The Web Conference 2026 (Research Track)
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Context Compression via Explicit Information Transmission
Long-context inference with Large Language Models (LLMs) is costly due to quadratic attention and growing key-value caches, motivating context compression. In this work, we study soft context compression, where a long context is condensed into a small set of continuous representations. Existing methods typically re-purpose the LLM itself as a trainable compressor, relying on layer-by-layer self-attention to iteratively aggregate information. We argue that this paradigm suffers from two structural limitations: (i) progressive representation overwriting across layers (ii) uncoordinated allocation of compression capacity across tokens. We propose ComprExIT (Context Compression via Explicit Information Transmission), a lightweight framework that formulates soft compression into a new paradigm: explicit information transmission over frozen LLM hidden states. This decouples compression from the model's internal self-attention dynamics. ComprExIT performs (i) depth-wise transmission to selectively transmit multi-layer information into token anchors, mitigating progressive overwriting, and (ii) width-wise transmission to aggregate anchors into a small number of slots via a globally optimized transmission plan, ensuring coordinated allocation of information. Across six question-answering benchmarks, ComprExIT consistently outperforms state-of-the-art context compression methods while introducing only ~1% additional parameters, demonstrating that explicit and coordinated information transmission enables more effective and robust long-context compression.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ CUBO: Self-Contained Retrieval-Augmented Generation on Consumer Laptops 10 GB Corpora, 16 GB RAM, Single-Device Deployment
Organizations handling sensitive documents face a tension: cloud-based AI risks GDPR violations, while local systems typically require 18-32 GB RAM. This paper presents CUBO, a systems-oriented RAG platform for consumer laptops with 16 GB shared memory. CUBO's novelty lies in engineering integration of streaming ingestion (O(1) buffer overhead), tiered hybrid retrieval, and hardware-aware orchestration that enables competitive Recall@10 (0.48-0.97 across BEIR domains) within a hard 15.5 GB RAM ceiling. The 37,000-line codebase achieves retrieval latencies of 185 ms (p50) on C1,300 laptops while maintaining data minimization through local-only processing aligned with GDPR Art. 5(1)(c). Evaluation on BEIR benchmarks validates practical deployability for small-to-medium professional archives. The codebase is publicly available at https://github.com/PaoloAstrino/CUBO.
comment: 24 pages, 2 figures, 6 tables
☆ Training Multi-Turn Search Agent via Contrastive Dynamic Branch Sampling
Agentic reinforcement learning has enabled large language models to perform complex multi-turn planning and tool use. However, learning in long-horizon settings remains challenging due to sparse, trajectory-level outcome rewards. While prior tree-based methods attempt to mitigate this issue, they often suffer from high variance and computational inefficiency. Through empirical analysis of search agents, We identify a common pattern: performance diverges mainly due to decisions near the tail. Motivated by this observation, we propose Branching Relative Policy Optimization (BranPO), a value-free method that provides step-level contrastive supervision without dense rewards. BranPO truncates trajectories near the tail and resamples alternative continuations to construct contrastive suffixes over shared prefixes, reducing credit ambiguity in long-horizon rollouts. To further boost efficiency and stabilize training, we introduce difficulty-aware branch sampling to adapt branching frequency across tasks, and redundant step masking to suppress uninformative actions. Extensive experiments on various question answering benchmarks demonstrate that BranPO consistently outperforms strong baselines, achieving significant accuracy gains on long-horizon tasks without increasing the overall training budget. Our code is available at \href{https://github.com/YubaoZhao/BranPO}{code}.
comment: 24 pages, 5 figures
☆ No Shortcuts to Culture: Indonesian Multi-hop Question Answering for Complex Cultural Understanding
Understanding culture requires reasoning across context, tradition, and implicit social knowledge, far beyond recalling isolated facts. Yet most culturally focused question answering (QA) benchmarks rely on single-hop questions, which may allow models to exploit shallow cues rather than demonstrate genuine cultural reasoning. In this work, we introduce ID-MoCQA, the first large-scale multi-hop QA dataset for assessing the cultural understanding of large language models (LLMs), grounded in Indonesian traditions and available in both English and Indonesian. We present a new framework that systematically transforms single-hop cultural questions into multi-hop reasoning chains spanning six clue types (e.g., commonsense, temporal, geographical). Our multi-stage validation pipeline, combining expert review and LLM-as-a-judge filtering, ensures high-quality question-answer pairs. Our evaluation across state-of-the-art models reveals substantial gaps in cultural reasoning, particularly in tasks requiring nuanced inference. ID-MoCQA provides a challenging and essential benchmark for advancing the cultural competency of LLMs.
☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings.Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ Instruction Anchors: Dissecting the Causal Dynamics of Modality Arbitration
Modality following serves as the capacity of multimodal large language models (MLLMs) to selectively utilize multimodal contexts based on user instructions. It is fundamental to ensuring safety and reliability in real-world deployments. However, the underlying mechanisms governing this decision-making process remain poorly understood. In this paper, we investigate its working mechanism through an information flow lens. Our findings reveal that instruction tokens function as structural anchors for modality arbitration: Shallow attention layers perform non-selective information transfer, routing multimodal cues to these anchors as a latent buffer; Modality competition is resolved within deep attention layers guided by the instruction intent, while MLP layers exhibit semantic inertia, acting as an adversarial force. Furthermore, we identify a sparse set of specialized attention heads that drive this arbitration. Causal interventions demonstrate that manipulating a mere $5\%$ of these critical heads can decrease the modality-following ratio by $60\%$ through blocking, or increase it by $60\%$ through targeted amplification of failed samples. Our work provides a substantial step toward model transparency and offers a principled framework for the orchestration of multimodal information in MLLMs.
comment: Modality Following
☆ RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Learning Query-Specific Rubrics from Human Preferences for DeepResearch Report Generation
Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
☆ Efficient Algorithms for Partial Constraint Satisfaction Problems over Control-flow Graphs
In this work, we focus on the Partial Constraint Satisfaction Problem (PCSP) over control-flow graphs (CFGs) of programs. PCSP serves as a generalization of the well-known Constraint Satisfaction Problem (CSP). In the CSP framework, we define a set of variables, a set of constraints, and a finite domain $D$ that encompasses all possible values for each variable. The objective is to assign a value to each variable in such a way that all constraints are satisfied. In the graph variant of CSP, an underlying graph is considered and we have one variable corresponding to each vertex of the graph and one or several constraints corresponding to each edge. In PCSPs, we allow for certain constraints to be violated at a specified cost, aiming to find a solution that minimizes the total cost. Numerous classical compiler optimization tasks can be framed as PCSPs over control-flow graphs. Examples include Register Allocation, Lifetime-optimal Speculative Partial Redundancy Elimination (LOSPRE), and Optimal Placement of Bank Selection Instructions. On the other hand, it is well-known that control-flow graphs of structured programs are sparse and decomposable in a variety of ways. In this work, we rely on the Series-Parallel-Loop (SPL) decompositions as introduced by~\cite{RegisterAllocation}. Our main contribution is a general algorithm for PCSPs over SPL graphs with a time complexity of \(O(|G| \cdot |D|^6)\), where \(|G|\) represents the size of the control-flow graph. Note that for any fixed domain $D,$ this yields a linear-time solution. Our algorithm can be seen as a generalization and unification of previous SPL-based approaches for register allocation and LOSPRE. In addition, we provide experimental results over another classical PCSP task, i.e. Optimal Bank Selection, achieving runtimes four times better than the previous state of the art.
comment: Already accepted by SETTA'25. https://www.setta2025.uk/accepted-papers. arXiv admin note: substantial text overlap with arXiv:2507.16660
☆ CL-bench: A Benchmark for Context Learning
Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
comment: 78 pages, 17 figures
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ ACL: Aligned Contrastive Learning Improves BERT and Multi-exit BERT Fine-tuning
Despite its success in self-supervised learning, contrastive learning is less studied in the supervised setting. In this work, we first use a set of pilot experiments to show that in the supervised setting, the cross-entropy loss objective (CE) and the contrastive learning objective often conflict with each other, thus hindering the applications of CL in supervised settings. To resolve this problem, we introduce a novel \underline{A}ligned \underline{C}ontrastive \underline{L}earning (ACL) framework. First, ACL-Embed regards label embeddings as extra augmented samples with different labels and employs contrastive learning to align the label embeddings with its samples' representations. Second, to facilitate the optimization of ACL-Embed objective combined with the CE loss, we propose ACL-Grad, which will discard the ACL-Embed term if the two objectives are in conflict. To further enhance the performances of intermediate exits of multi-exit BERT, we further propose cross-layer ACL (ACL-CL), which is to ask the teacher exit to guide the optimization of student shallow exits. Extensive experiments on the GLUE benchmark results in the following takeaways: (a) ACL-BRT outperforms or performs comparably with CE and CE+SCL on the GLUE tasks; (b) ACL, especially CL-ACL, significantly surpasses the baseline methods on the fine-tuning of multi-exit BERT, thus providing better quality-speed tradeoffs for low-latency applications.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Assessing the Impact of Typological Features on Multilingual Machine Translation in the Age of Large Language Models EACL 2026
Despite major advances in multilingual modeling, large quality disparities persist across languages. Besides the obvious impact of uneven training resources, typological properties have also been proposed to determine the intrinsic difficulty of modeling a language. The existing evidence, however, is mostly based on small monolingual language models or bilingual translation models trained from scratch. We expand on this line of work by analyzing two large pre-trained multilingual translation models, NLLB-200 and Tower+, which are state-of-the-art representatives of encoder-decoder and decoder-only machine translation, respectively. Based on a broad set of languages, we find that target language typology drives translation quality of both models, even after controlling for more trivial factors, such as data resourcedness and writing script. Additionally, languages with certain typological properties benefit more from a wider search of the output space, suggesting that such languages could profit from alternative decoding strategies beyond the standard left-to-right beam search. To facilitate further research in this area, we release a set of fine-grained typological properties for 212 languages of the FLORES+ MT evaluation benchmark.
comment: 19 pages, 11 figures, EACL 2026
☆ SEAD: Self-Evolving Agent for Multi-Turn Service Dialogue
Large Language Models have demonstrated remarkable capabilities in open-domain dialogues. However, current methods exhibit suboptimal performance in service dialogues, as they rely on noisy, low-quality human conversation data. This limitation arises from data scarcity and the difficulty of simulating authentic, goal-oriented user behaviors. To address these issues, we propose SEAD (Self-Evolving Agent for Service Dialogue), a framework that enables agents to learn effective strategies without large-scale human annotations. SEAD decouples user modeling into two components: a Profile Controller that generates diverse user states to manage training curriculum, and a User Role-play Model that focuses on realistic role-playing. This design ensures the environment provides adaptive training scenarios rather than acting as an unfair adversary. Experiments demonstrate that SEAD significantly outperforms Open-source Foundation Models and Closed-source Commercial Models, improving task completion rate by 17.6% and dialogue efficiency by 11.1%. Code is available at: https://github.com/Da1yuqin/SEAD.
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ Learning to Reason Faithfully through Step-Level Faithfulness Maximization
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly improved the performance of Large Language Models (LLMs) on tasks requiring multi-step reasoning. However, most RLVR pipelines rely on sparse outcome-based rewards, providing little supervision over intermediate steps and thus encouraging over-confidence and spurious reasoning, which in turn increases hallucinations. To address this, we propose FaithRL, a general reinforcement learning framework that directly optimizes reasoning faithfulness. We formalize a faithfulness-maximization objective and theoretically show that optimizing it mitigates over-confidence. To instantiate this objective, we introduce a geometric reward design and a faithfulness-aware advantage modulation mechanism that assigns step-level credit by penalizing unsupported steps while preserving valid partial derivations. Across diverse backbones and benchmarks, FaithRL consistently reduces hallucination rates while maintaining (and often improving) answer correctness. Further analysis confirms that FaithRL increases step-wise reasoning faithfulness and generalizes robustly. Our code is available at https://github.com/aintdoin/FaithRL.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ Preferences for Idiomatic Language are Acquired Slowly -- and Forgotten Quickly: A Case Study on Swedish ACL
In this study, we investigate how language models develop preferences for \textit{idiomatic} as compared to \textit{linguistically acceptable} Swedish, both during pretraining and when adapting a model from English to Swedish. To do so, we train models on Swedish from scratch and by fine-tuning English-pretrained models, probing their preferences at various checkpoints using minimal pairs that differ in linguistic acceptability or idiomaticity. For linguistic acceptability, we adapt existing benchmarks into a minimal-pair format. To assess idiomaticity, we introduce two novel datasets: one contrasting conventionalized idioms with plausible variants, and another contrasting idiomatic Swedish with Translationese. Our findings suggest that idiomatic competence emerges more slowly than other linguistic abilities, including grammatical and lexical correctness. While longer training yields diminishing returns for most tasks, idiom-related performance continues to improve, particularly in the largest model tested (8B). However, instruction tuning on data machine-translated from English -- the common approach for languages with little or no native instruction data -- causes models to rapidly lose their preference for idiomatic language.
comment: Accepted to TACL. Note that the arXiv version is a pre-MIT Press publication version
☆ A-RAG: Scaling Agentic Retrieval-Augmented Generation via Hierarchical Retrieval Interfaces
Frontier language models have demonstrated strong reasoning and long-horizon tool-use capabilities. However, existing RAG systems fail to leverage these capabilities. They still rely on two paradigms: (1) designing an algorithm that retrieves passages in a single shot and concatenates them into the model's input, or (2) predefining a workflow and prompting the model to execute it step-by-step. Neither paradigm allows the model to participate in retrieval decisions, preventing efficient scaling with model improvements. In this paper, we introduce A-RAG, an Agentic RAG framework that exposes hierarchical retrieval interfaces directly to the model. A-RAG provides three retrieval tools: keyword search, semantic search, and chunk read, enabling the agent to adaptively search and retrieve information across multiple granularities. Experiments on multiple open-domain QA benchmarks show that A-RAG consistently outperforms existing approaches with comparable or lower retrieved tokens, demonstrating that A-RAG effectively leverages model capabilities and dynamically adapts to different RAG tasks. We further systematically study how A-RAG scales with model size and test-time compute. We will release our code and evaluation suite to facilitate future research. Code and evaluation suite are available at https://github.com/Ayanami0730/arag.
comment: 18 pages, 8 figures
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ SWE-World: Building Software Engineering Agents in Docker-Free Environments
Recent advances in large language models (LLMs) have enabled software engineering agents to tackle complex code modification tasks. Most existing approaches rely on execution feedback from containerized environments, which require dependency-complete setup and physical execution of programs and tests. While effective, this paradigm is resource-intensive and difficult to maintain, substantially complicating agent training and limiting scalability. We propose SWE-World, a Docker-free framework that replaces physical execution environments with a learned surrogate for training and evaluating software engineering agents. SWE-World leverages LLM-based models trained on real agent-environment interaction data to predict intermediate execution outcomes and final test feedback, enabling agents to learn without interacting with physical containerized environments. This design preserves the standard agent-environment interaction loop while eliminating the need for costly environment construction and maintenance during agent optimization and evaluation. Furthermore, because SWE-World can simulate the final evaluation outcomes of candidate trajectories without real submission, it enables selecting the best solution among multiple test-time attempts, thereby facilitating effective test-time scaling (TTS) in software engineering tasks. Experiments on SWE-bench Verified demonstrate that SWE-World raises Qwen2.5-Coder-32B from 6.2\% to 52.0\% via Docker-free SFT, 55.0\% with Docker-free RL, and 68.2\% with further TTS. The code is available at https://github.com/RUCAIBox/SWE-World
☆ FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding
While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.
☆ Verified Critical Step Optimization for LLM Agents
As large language model agents tackle increasingly complex long-horizon tasks, effective post-training becomes critical. Prior work faces fundamental challenges: outcome-only rewards fail to precisely attribute credit to intermediate steps, estimated step-level rewards introduce systematic noise, and Monte Carlo sampling approaches for step reward estimation incur prohibitive computational cost. Inspired by findings that only a small fraction of high-entropy tokens drive effective RL for reasoning, we propose Critical Step Optimization (CSO), which focuses preference learning on verified critical steps, decision points where alternate actions demonstrably flip task outcomes from failure to success. Crucially, our method starts from failed policy trajectories rather than expert demonstrations, directly targeting the policy model's weaknesses. We use a process reward model (PRM) to identify candidate critical steps, leverage expert models to propose high-quality alternatives, then continue execution from these alternatives using the policy model itself until task completion. Only alternatives that the policy successfully executes to correct outcomes are verified and used as DPO training data, ensuring both quality and policy reachability. This yields fine-grained, verifiable supervision at critical decisions while avoiding trajectory-level coarseness and step-level noise. Experiments on GAIA-Text-103 and XBench-DeepSearch show that CSO achieves 37% and 26% relative improvement over the SFT baseline and substantially outperforms other post-training methods, while requiring supervision at only 16% of trajectory steps. This demonstrates the effectiveness of selective verification-based learning for agent post-training.
comment: Working in progress
☆ SWE-Master: Unleashing the Potential of Software Engineering Agents via Post-Training
In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
☆ Towards Distillation-Resistant Large Language Models: An Information-Theoretic Perspective
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
☆ Pursuing Best Industrial Practices for Retrieval-Augmented Generation in the Medical Domain
While retrieval augmented generation (RAG) has been swiftly adopted in industrial applications based on large language models (LLMs), there is no consensus on what are the best practices for building a RAG system in terms of what are the components, how to organize these components and how to implement each component for the industrial applications, especially in the medical domain. In this work, we first carefully analyze each component of the RAG system and propose practical alternatives for each component. Then, we conduct systematic evaluations on three types of tasks, revealing the best practices for improving the RAG system and how LLM-based RAG systems make trade-offs between performance and efficiency.
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ PEGRL: Improving Machine Translation by Post-Editing Guided Reinforcement Learning
Reinforcement learning (RL) has shown strong promise for LLM-based machine translation, with recent methods such as GRPO demonstrating notable gains; nevertheless, translation-oriented RL remains challenged by noisy learning signals arising from Monte Carlo return estimation, as well as a large trajectory space that favors global exploration over fine-grained local optimization. We introduce \textbf{PEGRL}, a \textit{two-stage} RL framework that uses post-editing as an auxiliary task to stabilize training and guide overall optimization. At each iteration, translation outputs are sampled to construct post-editing inputs, allowing return estimation in the post-editing stage to benefit from conditioning on the current translation behavior, while jointly supporting both global exploration and fine-grained local optimization. A task-specific weighting scheme further balances the contributions of translation and post-editing objectives, yielding a biased yet more sample-efficient estimator. Experiments on English$\to$Finnish, English$\to$Turkish, and English$\leftrightarrow$Chinese show consistent gains over RL baselines, and for English$\to$Turkish, performance on COMET-KIWI is comparable to advanced LLM-based systems (DeepSeek-V3.2).
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Accurate Failure Prediction in Agents Does Not Imply Effective Failure Prevention
Proactive interventions by LLM critic models are often assumed to improve reliability, yet their effects at deployment time are poorly understood. We show that a binary LLM critic with strong offline accuracy (AUROC 0.94) can nevertheless cause severe performance degradation, inducing a 26 percentage point (pp) collapse on one model while affecting another by near zero pp. This variability demonstrates that LLM critic accuracy alone is insufficient to determine whether intervention is safe. We identify a disruption-recovery tradeoff: interventions may recover failing trajectories but also disrupt trajectories that would have succeeded. Based on this insight, we propose a pre-deployment test that uses a small pilot of 50 tasks to estimate whether intervention is likely to help or harm, without requiring full deployment. Across benchmarks, the test correctly anticipates outcomes: intervention degrades performance on high-success tasks (0 to -26 pp), while yielding a modest improvement on the high-failure ALFWorld benchmark (+2.8 pp, p=0.014). The primary value of our framework is therefore identifying when not to intervene, preventing severe regressions before deployment.
☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Mići Princ -- A Little Boy Teaching Speech Technologies the Chakavian Dialect
This paper documents our efforts in releasing the printed and audio book of the translation of the famous novel The Little Prince into the Chakavian dialect, as a computer-readable, AI-ready dataset, with the textual and the audio components of the two releases now aligned on the level of each written and spoken word. Our motivation for working on this release is multiple. The first one is our wish to preserve the highly valuable and specific content beyond the small editions of the printed and the audio book. With the dataset published in the CLARIN.SI repository, this content is from now on at the fingertips of any interested individual. The second motivation is to make the data available for various artificial-intelligence-related usage scenarios, such as the one we follow upon inside this paper already -- adapting the Whisper-large-v3 open automatic speech recognition model, with decent performance on standard Croatian, to Chakavian dialectal speech. We can happily report that with adapting the model, the word error rate on the selected test data has being reduced to a half, while we managed to remove up to two thirds of the error on character level. We envision many more usages of this dataset beyond the set of experiments we have already performed, both on tasks of artificial intelligence research and application, as well as dialectal research. The third motivation for this release is our hope that this, now highly structured dataset, will be transformed into a digital online edition of this work, allowing individuals beyond the research and technology communities to enjoy the beauty of the message of the little boy in the desert, told through the spectacular prism of the Chakavian dialect.
comment: 2 figures, 14 pages, accepted and presented at JTDH 2024
☆ Merging Beyond: Streaming LLM Updates via Activation-Guided Rotations
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection
The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.
☆ ForesightKV: Optimizing KV Cache Eviction for Reasoning Models by Learning Long-Term Contribution
Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ DynSplit-KV: Dynamic Semantic Splitting for KVCache Compression in Efficient Long-Context LLM Inference
Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. %making them a powerful and efficient proxy for token importance. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. % Since accessing only a small fraction of the KV cache, FASA drastically lowers memory bandwidth requirements and computational cost. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
☆ One Model, All Roles: Multi-Turn, Multi-Agent Self-Play Reinforcement Learning for Conversational Social Intelligence
This paper introduces OMAR: One Model, All Roles, a reinforcement learning framework that enables AI to develop social intelligence through multi-turn, multi-agent conversational self-play. Unlike traditional paradigms that rely on static, single-turn optimizations, OMAR allows a single model to role-play all participants in a conversation simultaneously, learning to achieve long-term goals and complex social norms directly from dynamic social interaction. To ensure training stability across long dialogues, we implement a hierarchical advantage estimation that calculates turn-level and token-level advantages. Evaluations in the SOTOPIA social environment and Werewolf strategy games show that our trained models develop fine-grained, emergent social intelligence, such as empathy, persuasion, and compromise seeking, demonstrating the effectiveness of learning collaboration even under competitive scenarios. While we identify practical challenges like reward hacking, our results show that rich social intelligence can emerge without human supervision. We hope this work incentivizes further research on AI social intelligence in group conversations.
☆ ChemPro: A Progressive Chemistry Benchmark for Large Language Models
We introduce ChemPro, a progressive benchmark with 4100 natural language question-answer pairs in Chemistry, across 4 coherent sections of difficulty designed to assess the proficiency of Large Language Models (LLMs) in a broad spectrum of general chemistry topics. We include Multiple Choice Questions and Numerical Questions spread across fine-grained information recall, long-horizon reasoning, multi-concept questions, problem-solving with nuanced articulation, and straightforward questions in a balanced ratio, effectively covering Bio-Chemistry, Inorganic-Chemistry, Organic-Chemistry and Physical-Chemistry. ChemPro is carefully designed analogous to a student's academic evaluation for basic to high-school chemistry. A gradual increase in the question difficulty rigorously tests the ability of LLMs to progress from solving basic problems to solving more sophisticated challenges. We evaluate 45+7 state-of-the-art LLMs, spanning both open-source and proprietary variants, and our analysis reveals that while LLMs perform well on basic chemistry questions, their accuracy declines with different types and levels of complexity. These findings highlight the critical limitations of LLMs in general scientific reasoning and understanding and point towards understudied dimensions of difficulty, emphasizing the need for more robust methodologies to improve LLMs.
☆ The Mask of Civility: Benchmarking Chinese Mock Politeness Comprehension in Large Language Models
From a pragmatic perspective, this study systematically evaluates the differences in performance among representative large language models (LLMs) in recognizing politeness, impoliteness, and mock politeness phenomena in Chinese. Addressing the existing gaps in pragmatic comprehension, the research adopts the frameworks of Rapport Management Theory and the Model of Mock Politeness to construct a three-category dataset combining authentic and simulated Chinese discourse. Six representative models, including GPT-5.1 and DeepSeek, were selected as test subjects and evaluated under four prompting conditions: zero-shot, few-shot, knowledge-enhanced, and hybrid strategies. This study serves as a meaningful attempt within the paradigm of ``Great Linguistics,'' offering a novel approach to applying pragmatic theory in the age of technological transformation. It also responds to the contemporary question of how technology and the humanities may coexist, representing an interdisciplinary endeavor that bridges linguistic technology and humanistic reflection.
comment: Preprint
☆ Task--Specificity Score: Measuring How Much Instructions Really Matter for Supervision
Instruction tuning is now the default way to train and adapt large language models, but many instruction--input--output pairs are only weakly specified: for a given input, the same output can remain plausible under several alternative instructions. This raises a simple question: \emph{does the instruction uniquely determine the target output?} We propose the \textbf{Task--Specificity Score (TSS)} to quantify how much an instruction matters for predicting its output, by contrasting the true instruction against plausible alternatives for the same input. We further introduce \textbf{TSS++}, which uses hard alternatives and a small quality term to mitigate easy-negative effects. Across three instruction datasets (\textsc{Alpaca}, \textsc{Dolly-15k}, \textsc{NI-20}) and three open LLMs (Gemma, Llama, Qwen), we show that selecting task-specific examples improves downstream performance under tight token budgets and complements quality-based filters such as perplexity and IFD.
☆ Test-time Recursive Thinking: Self-Improvement without External Feedback
Modern Large Language Models (LLMs) have shown rapid improvements in reasoning capabilities, driven largely by reinforcement learning (RL) with verifiable rewards. Here, we ask whether these LLMs can self-improve without the need for additional training. We identify two core challenges for such systems: (i) efficiently generating diverse, high-quality candidate solutions, and (ii) reliably selecting correct answers in the absence of ground-truth supervision. To address these challenges, we propose Test-time Recursive Thinking (TRT), an iterative self-improvement framework that conditions generation on rollout-specific strategies, accumulated knowledge, and self-generated verification signals. Using TRT, open-source models reach 100% accuracy on AIME-25/24, and on LiveCodeBench's most difficult problems, closed-source models improve by 10.4-14.8 percentage points without external feedback.
☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
☆ ReMiT: RL-Guided Mid-Training for Iterative LLM Evolution
Standard training pipelines for large language models (LLMs) are typically unidirectional, progressing from pre-training to post-training. However, the potential for a bidirectional process--where insights from post-training retroactively improve the pre-trained foundation--remains unexplored. We aim to establish a self-reinforcing flywheel: a cycle in which reinforcement learning (RL)-tuned model strengthens the base model, which in turn enhances subsequent post-training performance, requiring no specially trained teacher or reference model. To realize this, we analyze training dynamics and identify the mid-training (annealing) phase as a critical turning point for model capabilities. This phase typically occurs at the end of pre-training, utilizing high-quality corpora under a rapidly decaying learning rate. Building upon this insight, we introduce ReMiT (Reinforcement Learning-Guided Mid-Training). Specifically, ReMiT leverages the reasoning priors of RL-tuned models to dynamically reweight tokens during the mid-training phase, prioritizing those pivotal for reasoning. Empirically, ReMiT achieves an average improvement of 3\% on 10 pre-training benchmarks, spanning math, code, and general reasoning, and sustains these gains by over 2\% throughout the post-training pipeline. These results validate an iterative feedback loop, enabling continuous and self-reinforcing evolution of LLMs.
comment: 25 pages
☆ From Speech-to-Spatial: Grounding Utterances on A Live Shared View with Augmented Reality IEEE
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
comment: 11 pages, 6 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2026
☆ MAS-ProVe: Understanding the Process Verification of Multi-Agent Systems
Multi-Agent Systems (MAS) built on Large Language Models (LLMs) often exhibit high variance in their reasoning trajectories. Process verification, which evaluates intermediate steps in trajectories, has shown promise in general reasoning settings, and has been suggested as a potential tool for guiding coordination of MAS; however, its actual effectiveness in MAS remains unclear. To fill this gap, we present MAS-ProVe, a systematic empirical study of process verification for multi-agent systems (MAS). Our study spans three verification paradigms (LLM-as-a-Judge, reward models, and process reward models), evaluated across two levels of verification granularity (agent-level and iteration-level). We further examine five representative verifiers and four context management strategies, and conduct experiments over six diverse MAS frameworks on multiple reasoning benchmarks. We find that process-level verification does not consistently improve performance and frequently exhibits high variance, highlighting the difficulty of reliably evaluating partial multi-agent trajectories. Among the methods studied, LLM-as-a-Judge generally outperforms reward-based approaches, with trained judges surpassing general-purpose LLMs. We further observe a small performance gap between LLMs acting as judges and as single agents, and identify a context-length-performance trade-off in verification. Overall, our results suggest that effective and robust process verification for MAS remains an open challenge, requiring further advances beyond current paradigms. Code is available at https://github.com/Wang-ML-Lab/MAS-ProVe.
comment: Preprint; work in progress
☆ SAES-SVD: Self-Adaptive Suppression of Accumulated and Local Errors for SVD-based LLM Compression
The rapid growth in the parameter scale of large language models (LLMs) has created a high demand for efficient compression techniques. As a hardware-agnostic and highly compatible technique, low-rank compression has been widely adopted. However, existing methods typically compress each layer independently by minimizing per-layer reconstruction error, overlooking a critical limitation: the reconstruction error propagates and accumulates through the network, which leads to amplified global deviations from the full-precision baseline. To address this, we propose Self-Adaptive Error Suppression SVD (SAES-SVD), a LLMs compression framework that jointly optimizes intra-layer reconstruction and inter-layer error compensation. SAES-SVD is composed of two novel components: (1) Cumulative Error-Aware Layer Compression (CEALC), which formulates the compression objective as a combination of local reconstruction and weighted cumulative error compensation. Based on it, we derive a closed-form low-rank solution relied on second-order activation statistics, which explicitly aligns each layer's output with its full-precision counterpart to compensate for accumulated errors. (2) Adaptive Collaborative Error Suppression (ACES), which automatically adjusts the weighting coefficient to enhance the low-rank structure of the compression objective in CEALC. Specifically, the coefficient is optimized to maximize the ratio between the Frobenius norm of the compressed layer's output and that of the compression objective under a fixed rank, thus ensuring that the rank budget is utilized effectively. Extensive experiments across multiple LLM architectures and tasks show that, without fine-tuning or mixed-rank strategies, SAES-SVD consistently improves post-compression performance.
☆ LatentMem: Customizing Latent Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) demonstrate remarkable collective intelligence, wherein multi-agent memory serves as a pivotal mechanism for continual adaptation. However, existing multi-agent memory designs remain constrained by two fundamental bottlenecks: (i) memory homogenization arising from the absence of role-aware customization, and (ii) information overload induced by excessively fine-grained memory entries. To address these limitations, we propose LatentMem, a learnable multi-agent memory framework designed to customize agent-specific memories in a token-efficient manner. Specifically, LatentMem comprises an experience bank that stores raw interaction trajectories in a lightweight form, and a memory composer that synthesizes compact latent memories conditioned on retrieved experience and agent-specific contexts. Further, we introduce Latent Memory Policy Optimization (LMPO), which propagates task-level optimization signals through latent memories to the composer, encouraging it to produce compact and high-utility representations. Extensive experiments across diverse benchmarks and mainstream MAS frameworks show that LatentMem achieves a performance gain of up to $19.36$% over vanilla settings and consistently outperforms existing memory architectures, without requiring any modifications to the underlying frameworks.
☆ RC-GRPO: Reward-Conditioned Group Relative Policy Optimization for Multi-Turn Tool Calling Agents
Multi-turn tool calling is challenging for Large Language Models (LLMs) because rewards are sparse and exploration is expensive. A common recipe, SFT followed by GRPO, can stall when within-group reward variation is low (e.g., more rollouts in a group receive the all 0 or all 1 reward), making the group-normalized advantage uninformative and yielding vanishing updates. To address this problem, we propose RC-GRPO (Reward-Conditioned Group Relative Policy Optimization), which treats exploration as a controllable steering problem via discrete reward tokens. We first fine-tune a Reward-Conditioned Trajectory Policy (RCTP) on mixed-quality trajectories with reward goal special tokens (e.g., <|high_reward|>, <|low_reward|>) injected into the prompts, enabling the model to learn how to generate distinct quality trajectories on demand. Then during RL, we sample diverse reward tokens within each GRPO group and condition rollouts on the sampled token to improve within-group diversity, improving advantage gains. On the Berkeley Function Calling Leaderboard v4 (BFCLv4) multi-turn benchmark, our method yields consistently improved performance than baselines, and the performance on Qwen-2.5-7B-Instruct even surpasses all closed-source API models.
☆ WST-X Series: Wavelet Scattering Transform for Interpretable Speech Deepfake Detection IEEE
Designing front-ends for speech deepfake detectors primarily focuses on two categories. Hand-crafted filterbank features are transparent but are limited in capturing high-level semantic details, often resulting in performance gaps compared to self-supervised (SSL) features. SSL features, in turn, lack interpretability and may overlook fine-grained spectral anomalies. We propose the WST-X series, a novel family of feature extractors that combines the best of both worlds via the wavelet scattering transform (WST), integrating wavelets with nonlinearities analogous to deep convolutional networks. We investigate 1D and 2D WSTs to extract acoustic details and higher-order structural anomalies, respectively. Experimental results on the recent and challenging Deepfake-Eval-2024 dataset indicate that WST-X outperforms existing front-ends by a wide margin. Our analysis reveals that a small averaging scale ($J$), combined with high-frequency and directional resolutions ($Q, L$), is critical for capturing subtle artifacts. This underscores the value of translation-invariant and deformation-stable features for robust and interpretable speech deepfake detection.
comment: Submitted to IEEE Signal Processing Letters
☆ CPMobius: Iterative Coach-Player Reasoning for Data-Free Reinforcement Learning
Large Language Models (LLMs) have demonstrated strong potential in complex reasoning, yet their progress remains fundamentally constrained by reliance on massive high-quality human-curated tasks and labels, either through supervised fine-tuning (SFT) or reinforcement learning (RL) on reasoning-specific data. This dependence renders supervision-heavy training paradigms increasingly unsustainable, with signs of diminishing scalability already evident in practice. To overcome this limitation, we introduce CPMöbius (CPMobius), a collaborative Coach-Player paradigm for data-free reinforcement learning of reasoning models. Unlike traditional adversarial self-play, CPMöbius, inspired by real world human sports collaboration and multi-agent collaboration, treats the Coach and Player as independent but cooperative roles. The Coach proposes instructions targeted at the Player's capability and receives rewards based on changes in the Player's performance, while the Player is rewarded for solving the increasingly instructive tasks generated by the Coach. This cooperative optimization loop is designed to directly enhance the Player's mathematical reasoning ability. Remarkably, CPMöbius achieves substantial improvement without relying on any external training data, outperforming existing unsupervised approaches. For example, on Qwen2.5-Math-7B-Instruct, our method improves accuracy by an overall average of +4.9 and an out-of-distribution average of +5.4, exceeding RENT by +1.5 on overall accuracy and R-zero by +4.2 on OOD accuracy.
comment: work in progress
☆ Where Norms and References Collide: Evaluating LLMs on Normative Reasoning AAAI
Embodied agents, such as robots, will need to interact in situated environments where successful communication often depends on reasoning over social norms: shared expectations that constrain what actions are appropriate in context. A key capability in such settings is norm-based reference resolution (NBRR), where interpreting referential expressions requires inferring implicit normative expectations grounded in physical and social context. Yet it remains unclear whether Large Language Models (LLMs) can support this kind of reasoning. In this work, we introduce SNIC (Situated Norms in Context), a human-validated diagnostic testbed designed to probe how well state-of-the-art LLMs can extract and utilize normative principles relevant to NBRR. SNIC emphasizes physically grounded norms that arise in everyday tasks such as cleaning, tidying, and serving. Across a range of controlled evaluations, we find that even the strongest LLMs struggle to consistently identify and apply social norms, particularly when norms are implicit, underspecified, or in conflict. These findings reveal a blind spot in current LLMs and highlight a key challenge for deploying language-based systems in socially situated, embodied settings.
comment: Accepted to the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Nüwa: Mending the Spatial Integrity Torn by VLM Token Pruning
Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
☆ A vector logic for intensional formal semantics
Formal semantics and distributional semantics are distinct approaches to linguistic meaning: the former models meaning as reference via model-theoretic structures; the latter represents meaning as vectors in high-dimensional spaces shaped by usage. This paper proves that these frameworks are structurally compatible for intensional semantics. We establish that Kripke-style intensional models embed injectively into vector spaces, with semantic functions lifting to (multi)linear maps that preserve composition. The construction accommodates multiple index sorts (worlds, times, locations) via a compound index space, representing intensions as linear operators. Modal operators are derived algebraically: accessibility relations become linear operators, and modal conditions reduce to threshold checks on accumulated values. For uncountable index domains, we develop a measure-theoretic generalization in which necessity becomes truth almost everywhere and possibility becomes truth on a set of positive measure, a non-classical logic natural for continuous parameters.
comment: 25 pages; 68 sources
☆ Equal Access, Unequal Interaction: A Counterfactual Audit of LLM Fairness
Prior work on fairness in large language models (LLMs) has primarily focused on access-level behaviors such as refusals and safety filtering. However, equitable access does not ensure equitable interaction quality once a response is provided. In this paper, we conduct a controlled fairness audit examining how LLMs differ in tone, uncertainty, and linguistic framing across demographic identities after access is granted. Using a counterfactual prompt design, we evaluate GPT-4 and LLaMA-3.1-70B on career advice tasks while varying identity attributes along age, gender, and nationality. We assess access fairness through refusal analysis and measure interaction quality using automated linguistic metrics, including sentiment, politeness, and hedging. Identity-conditioned differences are evaluated using paired statistical tests. Both models exhibit zero refusal rates across all identities, indicating uniform access. Nevertheless, we observe systematic, model-specific disparities in interaction quality: GPT-4 expresses significantly higher hedging toward younger male users, while LLaMA exhibits broader sentiment variation across identity groups. These results show that fairness disparities can persist at the interaction level even when access is equal, motivating evaluation beyond refusal-based audits.
comment: 13 pages, 1 figure
☆ Scaling In-Context Online Learning Capability of LLMs via Cross-Episode Meta-RL
Large language models (LLMs) achieve strong performance when all task-relevant information is available upfront, as in static prediction and instruction-following problems. However, many real-world decision-making tasks are inherently online: crucial information must be acquired through interaction, feedback is delayed, and effective behavior requires balancing information collection and exploitation over time. While in-context learning enables adaptation without weight updates, existing LLMs often struggle to reliably leverage in-context interaction experience in such settings. In this work, we show that this limitation can be addressed through training. We introduce ORBIT, a multi-task, multi-episode meta-reinforcement learning framework that trains LLMs to learn from interaction in context. After meta-training, a relatively small open-source model (Qwen3-14B) demonstrates substantially improved in-context online learning on entirely unseen environments, matching the performance of GPT-5.2 and outperforming standard RL fine-tuning by a large margin. Scaling experiments further reveal consistent gains with model size, suggesting significant headroom for learn-at-inference-time decision-making agents. Code reproducing the results in the paper can be found at https://github.com/XiaofengLin7/ORBIT.
☆ BASS: Benchmarking Audio LMs for Musical Structure and Semantic Reasoning
Music understanding is a complex task that often requires reasoning over both structural and semantic elements of audio. We introduce BASS, designed to evaluate music understanding and reasoning in audio language models across four broad categories: structural segmentation, lyric transcription, musicological analysis, and artist collaboration. BASS comprises 2658 questions spanning 12 tasks, 1993 unique songs and covering over 138 hours of music from a wide range of genres and tracks, crafted to assess musicological knowledge and reasoning in real-world scenarios. We evaluate 14 open-source and frontier multimodal LMs, finding that even state-of-the-art models struggle on higher-level reasoning tasks such as structural segmentation and artist collaboration, while performing best on lyric transcription. Our analysis reveals that current models leverage linguistic priors effectively but remain limited in reasoning over musical structure, vocal, and musicological attributes. BASS provides an evaluation framework with widespread applications in music recommendation and search and has the potential to guide the development of audio LMs.
☆ Abstraction Induces the Brain Alignment of Language and Speech Models
Research has repeatedly demonstrated that intermediate hidden states extracted from large language models and speech audio models predict measured brain response to natural language stimuli. Yet, very little is known about the representation properties that enable this high prediction performance. Why is it the intermediate layers, and not the output layers, that are most effective for this unique and highly general transfer task? We give evidence that the correspondence between speech and language models and the brain derives from shared meaning abstraction and not their next-word prediction properties. In particular, models construct higher-order linguistic features in their middle layers, cued by a peak in the layerwise intrinsic dimension, a measure of feature complexity. We show that a layer's intrinsic dimension strongly predicts how well it explains fMRI and ECoG signals; that the relation between intrinsic dimension and brain predictivity arises over model pre-training; and finetuning models to better predict the brain causally increases both representations' intrinsic dimension and their semantic content. Results suggest that semantic richness, high intrinsic dimension, and brain predictivity mirror each other, and that the key driver of model-brain similarity is rich meaning abstraction of the inputs, where language modeling is a task sufficiently complex (but perhaps not the only) to require it.
comment: under review
☆ Stroke Lesions as a Rosetta Stone for Language Model Interpretability
Large language models (LLMs) have achieved remarkable capabilities, yet methods to verify which model components are truly necessary for language function remain limited. Current interpretability approaches rely on internal metrics and lack external validation. Here we present the Brain-LLM Unified Model (BLUM), a framework that leverages lesion-symptom mapping, the gold standard for establishing causal brain-behavior relationships for over a century, as an external reference structure for evaluating LLM perturbation effects. Using data from individuals with chronic post-stroke aphasia (N = 410), we trained symptom-to-lesion models that predict brain damage location from behavioral error profiles, applied systematic perturbations to transformer layers, administered identical clinical assessments to perturbed LLMs and human patients, and projected LLM error profiles into human lesion space. LLM error profiles were sufficiently similar to human error profiles that predicted lesions corresponded to actual lesions in error-matched humans above chance in 67% of picture naming conditions (p < 10^{-23}) and 68.3% of sentence completion conditions (p < 10^{-61}), with semantic-dominant errors mapping onto ventral-stream lesion patterns and phonemic-dominant errors onto dorsal-stream patterns. These findings open a new methodological avenue for LLM interpretability in which clinical neuroscience provides external validation, establishing human lesion-symptom mapping as a reference framework for evaluating artificial language systems and motivating direct investigation of whether behavioral alignment reflects shared computational principles.
comment: 45 pages, 17 figures
☆ On the Credibility of Evaluating LLMs using Survey Questions EACL 2026
Recent studies evaluate the value orientation of large language models (LLMs) using adapted social surveys, typically by prompting models with survey questions and comparing their responses to average human responses. This paper identifies limitations in this methodology that, depending on the exact setup, can lead to both underestimating and overestimating the similarity of value orientation. Using the World Value Survey in three languages across five countries, we demonstrate that prompting methods (direct vs. chain-of-thought) and decoding strategies (greedy vs. sampling) significantly affect results. To assess the interaction between answers, we introduce a novel metric, self-correlation distance. This metric measures whether LLMs maintain consistent relationships between answers across different questions, as humans do. This indicates that even a high average agreement with human data, when considering LLM responses independently, does not guarantee structural alignment in responses. Additionally, we reveal a weak correlation between two common evaluation metrics, mean-squared distance and KL divergence, which assume that survey answers are independent of each other. For future research, we recommend CoT prompting, sampling-based decoding with dozens of samples, and robust analysis using multiple metrics, including self-correlation distance.
comment: Accepted to the Workshop on Multilingual and Multicultural Evaluation at EACL 2026, 12 pages, 2 figures
☆ Chaplains' Reflections on the Design and Usage of AI for Conversational Care
Despite growing recognition that responsible AI requires domain knowledge, current work on conversational AI primarily draws on clinical expertise that prioritises diagnosis and intervention. However, much of everyday emotional support needs occur in non-clinical contexts, and therefore requires different conversational approaches. We examine how chaplains, who guide individuals through personal crises, grief, and reflection, perceive and engage with conversational AI. We recruited eighteen chaplains to build AI chatbots. While some chaplains viewed chatbots with cautious optimism, the majority expressed limitations of chatbots' ability to support everyday well-being. Our analysis reveals how chaplains perceive their pastoral care duties and areas where AI chatbots fall short, along the themes of Listening, Connecting, Carrying, and Wanting. These themes resonate with the idea of attunement, recently highlighted as a relational lens for understanding the delicate experiences care technologies provide. This perspective informs chatbot design aimed at supporting well-being in non-clinical contexts.
comment: To appear at ACM CHI 2026. 15 pages, 2 figures, 3 tables
Transformers perform adaptive partial pooling
Because language is creative, any reasonable language model must generalize, deciding what to say in novel contexts by using information from similar contexts. But what about contexts that are not novel but merely infrequent? In hierarchical regression, the model's predictions for behavior in a context are affected by observations from other similar contexts to the extent that 1) the current context is infrequent and 2) different contexts behave similarly. This is called adaptive partial pooling of evidence. This paper shows that next-word predictions of a transformer (GPT2) are increasingly unaffected by observations from outside the current context across epochs of training (the amount of pooling reduces with training), and that the extent of pooling is affected by context frequency, context number (type frequency) and context variability in a similar way to hierarchical regression. These characteristics of learning in transformers are argued to be realistic on both rational and empirical grounds.
comment: 6 pages, submitted to the annual meeting of the Cognitive Science Society
☆ Likelihood-Based Reward Designs for General LLM Reasoning
Fine-tuning large language models (LLMs) on reasoning benchmarks via reinforcement learning requires a specific reward function, often binary, for each benchmark. This comes with two potential limitations: the need to design the reward, and the potentially sparse nature of binary rewards. Here, we systematically investigate rewards derived from the probability or log-probability of emitting the reference answer (or any other prompt continuation present in the data), which have the advantage of not relying on specific verifiers and being available at scale. Several recent works have advocated for the use of similar rewards (e.g., VeriFree, JEPO, RLPR, NOVER). We systematically compare variants of likelihood-based rewards with standard baselines, testing performance both on standard mathematical reasoning benchmarks, and on long-form answers where no external verifier is available. We find that using the log-probability of the reference answer as the reward for chain-of-thought (CoT) learning is the only option that performs well in all setups. This reward is also consistent with the next-token log-likelihood loss used during pretraining. In verifiable settings, log-probability rewards bring comparable or better success rates than reinforcing with standard binary rewards, and yield much better perplexity. In non-verifiable settings, they perform on par with SFT. On the other hand, methods based on probability, such as VeriFree, flatline on non-verifiable settings due to vanishing probabilities of getting the correct answer. Overall, this establishes log-probability rewards as a viable method for CoT fine-tuning, bridging the short, verifiable and long, non-verifiable answer settings.
☆ Automatic Classification of Pedagogical Materials against CS Curriculum Guidelines
Professional societies often publish curriculum guidelines to help programs align their content to international standards. In Computer Science, the primary standard is published by ACM and IEEE and provide detailed guidelines for what should be and could be included in a Computer Science program. While very helpful, it remains difficult for program administrators to assess how much of the guidelines is being covered by a CS program. This is in particular due to the extensiveness of the guidelines, containing thousands of individual items. As such, it is time consuming and cognitively demanding to audit every course to confidently mark everything that is actually being covered. Our preliminary work indicated that it takes about a day of work per course. In this work, we propose using Natural Language Processing techniques to accelerate the process. We explore two kinds of techniques, the first relying on traditional tools for parsing, tagging, and embeddings, while the second leverages the power of Large Language Models. We evaluate the application of these techniques to classify a corpus of pedagogical materials and show that we can meaningfully classify documents automatically.
☆ Linguistic Blind Spots in Clinical Decision Extraction EACL
Extracting medical decisions from clinical notes is a key step for clinical decision support and patient-facing care summaries. We study how the linguistic characteristics of clinical decisions vary across decision categories and whether these differences explain extraction failures. Using MedDec discharge summaries annotated with decision categories from the Decision Identification and Classification Taxonomy for Use in Medicine (DICTUM), we compute seven linguistic indices for each decision span and analyze span-level extraction recall of a standard transformer model. We find clear category-specific signatures: drug-related and problem-defining decisions are entity-dense and telegraphic, whereas advice and precaution decisions contain more narrative, with higher stopword and pronoun proportions and more frequent hedging and negation cues. On the validation split, exact-match recall is 48%, with large gaps across linguistic strata: recall drops from 58% to 24% from the lowest to highest stopword-proportion bins, and spans containing hedging or negation cues are less likely to be recovered. Under a relaxed overlap-based match criterion, recall increases to 71%, indicating that many errors are span boundary disagreements rather than complete misses. Overall, narrative-style spans--common in advice and precaution decisions--are a consistent blind spot under exact matching, suggesting that downstream systems should incorporate boundary-tolerant evaluation and extraction strategies for clinical decisions.
comment: EACL HeaLing Workshop 2026
☆ SpatiaLab: Can Vision-Language Models Perform Spatial Reasoning in the Wild? ICLR 2026
Spatial reasoning is a fundamental aspect of human cognition, yet it remains a major challenge for contemporary vision-language models (VLMs). Prior work largely relied on synthetic or LLM-generated environments with limited task designs and puzzle-like setups, failing to capture the real-world complexity, visual noise, and diverse spatial relationships that VLMs encounter. To address this, we introduce SpatiaLab, a comprehensive benchmark for evaluating VLMs' spatial reasoning in realistic, unconstrained contexts. SpatiaLab comprises 1,400 visual question-answer pairs across six major categories: Relative Positioning, Depth & Occlusion, Orientation, Size & Scale, Spatial Navigation, and 3D Geometry, each with five subcategories, yielding 30 distinct task types. Each subcategory contains at least 25 questions, and each main category includes at least 200 questions, supporting both multiple-choice and open-ended evaluation. Experiments across diverse state-of-the-art VLMs, including open- and closed-source models, reasoning-focused, and specialized spatial reasoning models, reveal a substantial gap in spatial reasoning capabilities compared with humans. In the multiple-choice setup, InternVL3.5-72B achieves 54.93% accuracy versus 87.57% for humans. In the open-ended setting, all models show a performance drop of around 10-25%, with GPT-5-mini scoring highest at 40.93% versus 64.93% for humans. These results highlight key limitations in handling complex spatial relationships, depth perception, navigation, and 3D geometry. By providing a diverse, real-world evaluation framework, SpatiaLab exposes critical challenges and opportunities for advancing VLMs' spatial reasoning, offering a benchmark to guide future research toward robust, human-aligned spatial understanding. SpatiaLab is available at: https://spatialab-reasoning.github.io/.
comment: Accepted to ICLR 2026. 92 Pages. 42 Figures and 29 Tables
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art localization performance on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% in localization accuracy on SWE-bench Live Lite. These results highlight our superior fine-grained precision in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
♻ ☆ OpenRubrics: Towards Scalable Synthetic Rubric Generation for Reward Modeling and LLM Alignment
Reward modeling lies at the core of reinforcement learning from human feedback (RLHF), yet most existing reward models rely on scalar or pairwise judgments that fail to capture the multifaceted nature of human preferences. Recent studies have explored rubrics-as-rewards (RaR) that uses structured criteria to capture multiple dimensions of response quality. However, producing rubrics that are both reliable and scalable remains a key challenge. In this work, we introduce OpenRubrics, a diverse, large-scale collection of (prompt, rubric) pairs for training rubric-generation and rubric-based reward models. To elicit discriminative and comprehensive evaluation signals, we introduce Contrastive Rubric Generation (CRG), which derives both hard rules (explicit constraints) and principles (implicit qualities) by contrasting preferred and rejected responses. We further remove noisy rubrics via preserving preference-label consistency. Across multiple reward-modeling benchmarks, our rubric-based reward model, Rubric-RM, surpasses strong size-matched baselines by 8.4%. These gains transfer to policy models on instruction-following and biomedical benchmarks.
comment: The first two authors contributed equally. Updated OpenRubrics dataset, RMs, and results
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%.
comment: 15 pages, 8 figures
♻ ☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ LegalOne: A Family of Foundation Models for Reliable Legal Reasoning
While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
comment: 25 pages, v1
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Large-Scale Terminal Agentic Trajectory Generation from Dockerized Environments
Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
comment: Agentic Trajectory, Agentic Model, Terminal, Code Agent
♻ ☆ Capturing Classic Authorial Style in Long-Form Story Generation with GRPO Fine-Tuning
Evaluating and optimising authorial style in long-form story generation remains challenging because style is often assessed with ad hoc prompting and is frequently conflated with overall writing quality. We propose a two-stage pipeline. First, we train a dedicated style-similarity judge by fine-tuning a sentence-transformer with authorship-verification supervision, and calibrate its similarity outputs into a bounded $[0,1]$ reward. Second, we use this judge as the primary reward in Group Relative Policy Optimization (GRPO) to fine-tune an 8B story generator for style-conditioned writing, avoiding the accept/reject supervision required by Direct Preference Optimization (DPO). Across four target authors (Mark Twain, Jane Austen, Charles Dickens, Thomas Hardy), the GRPO-trained 8B model achieves higher style scores than open-weight baselines, with an average style score of 0.893 across authors. These results suggest that AV-calibrated reward modelling provides a practical mechanism for controllable style transfer in long-form generation under a moderate model size and training budget.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Modeling Sarcastic Speech: Semantic and Prosodic Cues in a Speech Synthesis Framework
Sarcasm is a pragmatic phenomenon in which speakers convey meanings that diverge from literal content, relying on an interaction between semantics and prosodic expression. However, how these cues jointly contribute to the recognition of sarcasm remains poorly understood. We propose a computational framework that models sarcasm as the integration of semantic interpretation and prosodic realization. Semantic cues are derived from an LLaMA 3 model fine-tuned to capture discourse-level markers of sarcastic intent, while prosodic cues are extracted through semantically aligned utterances drawn from a database of sarcastic speech, providing prosodic exemplars of sarcastic delivery. Using a speech synthesis testbed, perceptual evaluations demonstrate that both semantic and prosodic cues independently enhance listeners' perception of sarcasm, with the strongest effects emerging when the two are combined. These findings highlight the complementary roles of semantics and prosody in pragmatic interpretation and illustrate how modeling can shed light on the mechanisms underlying sarcastic communication.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Evaluating Scoring Bias in LLM-as-a-Judge DASFAA 2026
The "LLM-as-a-Judge" paradigm, using Large Language Models (LLMs) as automated evaluators, is pivotal to LLM development, offering scalable feedback for complex tasks. However, the reliability of these judges is compromised by various biases. Existing research has heavily concentrated on biases in comparative evaluations. In contrast, scoring-based evaluations-which assign an absolute score and are often more practical in industrial applications-remain under-investigated. To address this gap, we undertake the first dedicated examination of scoring bias in LLM judges. We shift the focus from biases tied to the evaluation targets to those originating from the scoring prompt itself. We formally define scoring bias and identify three novel, previously unstudied types: rubric order bias, score ID bias, and reference answer score bias. We propose a comprehensive framework to quantify these biases, featuring a suite of multi-faceted metrics and an automatic data synthesis pipeline to create a tailored evaluation corpus. Our experiments empirically demonstrate that even the most advanced LLMs suffer from these substantial scoring biases. Our analysis yields actionable insights for designing more robust scoring prompts and mitigating these newly identified biases.
comment: Accepted by DASFAA 2026
♻ ☆ A Syntax-Injected Approach for Faster and More Accurate Sentiment Analysis
Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), focusing on identifying and interpreting subjective assessments in textual content. Syntactic parsing is useful in SA as it improves accuracy and provides explainability; however, it often becomes a computational bottleneck due to slow parsing algorithms. This article proposes a solution to this bottleneck by using a Sequence Labeling Syntactic Parser (SELSP) to integrate syntactic information into SA via a rule-based sentiment analysis pipeline. By reformulating dependency parsing as a sequence labeling task, we significantly improve the efficiency of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating greater speed and accuracy compared to conventional parsers like Stanza and heuristic approaches such as Valence Aware Dictionary and sEntiment Reasoner (VADER). The combination of speed and accuracy makes SELSP especially attractive for sentiment analysis applications in both academic and industrial contexts. Moreover, we compare SELSP with Transformer-based models trained on a 5-label classification task. In addition, we evaluate multiple sentiment dictionaries with SELSP to determine which yields the best performance in polarity prediction. The results show that dictionaries accounting for polarity judgment variation outperform those that ignore it. Furthermore, we show that SELSP outperforms Transformer-based models in terms of speed for polarity prediction.
♻ ☆ Understanding Verbatim Memorization in LLMs Through Circuit Discovery ACL 2025
Underlying mechanisms of memorization in LLMs -- the verbatim reproduction of training data -- remain poorly understood. What exact part of the network decides to retrieve a token that we would consider as start of memorization sequence? How exactly is the models' behaviour different when producing memorized sentence vs non-memorized? In this work we approach these questions from mechanistic interpretability standpoint by utilizing transformer circuits -- the minimal computational subgraphs that perform specific functions within the model. Through carefully constructed contrastive datasets, we identify points where model generation diverges from memorized content and isolate the specific circuits responsible for two distinct aspects of memorization. We find that circuits that initiate memorization can also maintain it once started, while circuits that only maintain memorization cannot trigger its initiation. Intriguingly, memorization prevention mechanisms transfer robustly across different text domains, while memorization induction appears more context-dependent.
comment: The First Workshop on Large Language Model Memorization @ ACL 2025, Vienna, August 1st, 2025
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ AWM: Accurate Weight-Matrix Fingerprint for Large Language Models ICLR 2026
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.
comment: ICLR 2026
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ What MLLMs Learn about When they Learn about Multimodal Reasoning: Perception, Reasoning, or their Integration?
Evaluation of multimodal reasoning models is typically reduced to a single accuracy score, implicitly treating reasoning as a unitary capability. We introduce MathLens, a benchmark of textbook-style geometry problems that exposes this assumption by operationally decomposing performance into Perception, Reasoning, and Integration. Each problem is derived from a symbolic specification and accompanied by visual diagrams, text-only variants, multimodal questions, and targeted perceptual probes, enabling controlled measurement of each component. Using this decomposition, we show that common training strategies induce systematically different capability profiles that are invisible under aggregate accuracy. Reinforcement learning primarily improves perceptual grounding and robustness to diagram variation, while textual SFT yields gains through reflective reasoning. In contrast, as perception and reasoning improve, a growing fraction of remaining errors fall outside these components and are categorized as integration. These results suggest that apparent progress in multimodal reasoning reflects shifting balances among subskills rather than uniform advancement, motivating evaluation beyond scalar accuracy.
♻ ☆ Self-attention vector output similarities reveal how machines pay attention
The self-attention mechanism has significantly advanced the field of natural language processing, facilitating the development of advanced language-learning machines. Although its utility is widely acknowledged, the precise mechanisms of self-attention underlying its advanced learning and the quantitative characterization of this learning process remains an open research question. This study introduces a new approach for quantifying information processing within the self-attention mechanism. The analysis conducted on the BERT-12 architecture reveals that, in the final layers, the attention map focuses on sentence separator tokens, suggesting a practical approach to text segmentation based on semantic features. Based on the vector space emerging from the self-attention heads, a context similarity matrix, measuring the scalar product between two token vectors was derived, revealing distinct similarities between different token vector pairs within each head and layer. The findings demonstrated that different attention heads within an attention block focused on different linguistic characteristics, such as identifying token repetitions in a given text or recognizing a token of common appearance in the text and its surrounding context. This specialization is also reflected in the distribution of distances between token vectors with high similarity as the architecture progresses. The initial attention layers exhibit substantially long-range similarities; however, as the layers progress, a more short-range similarity develops, culminating in a preference for attention heads to create strong similarities within the same sentence. Finally, the behavior of individual heads was analyzed by examining the uniqueness of their most common tokens in their high similarity elements. Each head tends to focus on a unique token from the text and builds similarity pairs centered around it.
comment: 23 pages, 14 figures
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ DEER: A Benchmark for Evaluating Deep Research Agents on Expert Report Generation
Recent advances in large language models have enabled deep research systems that generate expert-level reports through multi-step reasoning and evidence-based synthesis. However, evaluating such reports remains challenging: report quality is multifaceted, making it difficult to determine what to assess and by what criteria; LLM-based judges may miss errors that require domain expertise to identify; and because deep research relies on retrieved evidence, report-wide claim verification is also necessary. To address these issues, we propose DEER, a benchmark for evaluating expert-level deep research reports. DEER systematizes evaluation criteria with an expert-developed taxonomy (7 dimensions, 25 subdimensions) operationalized as 101 fine-grained rubric items. We also provide task-specific Expert Evaluation Guidance to support LLM-based judging. Alongside rubric-based assessment, we propose a claim verification architecture that verifies both cited and uncited claims and quantifies evidence quality. Experiments show that while current deep research systems can produce structurally plausible reports that cite external evidence, there is room for improvement in fulfilling expert-level user requests and achieving logical completeness. Beyond simple performance comparisons, DEER makes system strengths and limitations interpretable and provides diagnostic signals for improvement.
comment: Work in progress
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ Wiki Live Challenge: Challenging Deep Research Agents with Expert-Level Wikipedia Articles
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
comment: Preprint
♻ ☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning
As supervised fine-tuning (SFT) evolves from a lightweight post-training step into a compute-intensive phase rivaling mid-training in scale, data efficiency has become critical for aligning large language models (LLMs) under tight budgets. Existing data pruning methods suffer from a fragmented design: they operate either at the sample level or the token level in isolation, failing to jointly optimize both dimensions. This disconnect leads to significant inefficiencies--high-value samples may still contain redundant tokens, while token-level pruning often discards crucial instructional or corrective signals embedded in individual examples. To address this bottleneck, we introduce the Error-Uncertainty (EU) Plane, a diagnostic framework that jointly characterizes the heterogeneous utility of training data across samples and tokens. Guided by this insight, we propose Quadrant-based Tuning (Q-Tuning), a unified framework that strategically coordinates sample pruning and token pruning. Q-Tuning employs a two-stage strategy: first, it performs sample-level triage to retain examples rich in informative misconceptions or calibration signals; second, it applies an asymmetric token-pruning policy, using a context-aware scoring mechanism to trim less salient tokens exclusively from misconception samples while preserving calibration samples in their entirety. Our method sets a new state of the art across five diverse benchmarks. Remarkably, on SmolLM2-1.7B, Q-Tuning achieves a +38\% average improvement over the full-data SFT baseline using only 12.5\% of the original training data. As the first dynamic pruning approach to consistently outperform full-data training, Q-Tuning provides a practical and scalable blueprint for maximizing data utilization in budget-constrained LLM SFT.
comment: 26 pages, 9 figures, 15 tables
♻ ☆ MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers NeurIPS 2024
In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.
comment: NeurIPS 2024. Code available at https://github.com/ningding-o/MemoryFormer
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ LUMINA: Detecting Hallucinations in RAG System with Context-Knowledge Signals ICLR 2026
Retrieval-Augmented Generation (RAG) aims to mitigate hallucinations in large language models (LLMs) by grounding responses in retrieved documents. Yet, RAG-based LLMs still hallucinate even when provided with correct and sufficient context. A growing line of work suggests that this stems from an imbalance between how models use external context and their internal knowledge, and several approaches have attempted to quantify these signals for hallucination detection. However, existing methods require extensive hyperparameter tuning, limiting their generalizability. We propose LUMINA, a novel framework that detects hallucinations in RAG systems through context--knowledge signals: external context utilization is quantified via distributional distance, while internal knowledge utilization is measured by tracking how predicted tokens evolve across transformer layers. We further introduce a framework for statistically validating these measurements. Experiments on common RAG hallucination benchmarks and four open-source LLMs show that LUMINA achieves consistently high AUROC and AUPRC scores, outperforming prior utilization-based methods by up to +13% AUROC on HalluRAG. Moreover, LUMINA remains robust under relaxed assumptions about retrieval quality and model matching, offering both effectiveness and practicality. LUMINA: https://github.com/deeplearning-wisc/LUMINA
comment: ICLR 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests
LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Rank-and-Reason: Multi-Agent Collaboration Accelerates Zero-Shot Protein Mutation Prediction
Zero-shot mutation prediction is vital for low-resource protein engineering, yet existing protein language models (PLMs) often yield statistically confident results that ignore fundamental biophysical constraints. Currently, selecting candidates for wet-lab validation relies on manual expert auditing of PLM outputs, a process that is inefficient, subjective, and highly dependent on domain expertise. To address this, we propose Rank-and-Reason (VenusRAR), a two-stage agentic framework to automate this workflow and maximize expected wet-lab fitness. In the Rank-Stage, a Computational Expert and Virtual Biologist aggregate a context-aware multi-modal ensemble, establishing a new Spearman correlation record of 0.551 (vs. 0.518) on ProteinGym. In the Reason-Stage, an agentic Expert Panel employs chain-of-thought reasoning to audit candidates against geometric and structural constraints, improving the Top-5 Hit Rate by up to 367% on ProteinGym-DMS99. The wet-lab validation on Cas12i3 nuclease further confirms the framework's efficacy, achieving a 46.7% positive rate and identifying two novel mutants with 4.23-fold and 5.05-fold activity improvements. Code and datasets are released on GitHub (https://github.com/ai4protein/VenusRAR/).
comment: 22 pages, 5 figures, 15 tables
♻ ☆ Reusing Overtrained Language Models Saturates Scaling
Reusing pretrained base models for further pretraining, such as continual pretraining or model growth, is promising at reducing the cost of training language models from scratch. However, the effectiveness remains unclear, especially when applied to overtrained base models. In this work, we empirically study the scaling properties of model reuse and find that the scaling efficiency diminishes in a predictable manner: The scaling exponent with respect to second-stage training tokens decreases logarithmically with the number of tokens used to pretrain the base model. The joint dependence on first- and second-stage tokens is accurately modeled by a simple scaling law. Such saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies: the more extensively a base model is pretrained, the less benefit additional pretraining provides. Our findings provide practical insights for efficient language model training and raise important considerations for the reuse of overtrained models.
♻ ☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
♻ ☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
♻ ☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose ARTIS, Agentic Risk-Aware Test-Time Scaling via Iterative Simulation, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a risk-aware tool simulator that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
♻ ☆ On the Interplay between Human Label Variation and Model Fairness EACL
The impact of human label variation (HLV) on model fairness is an unexplored topic. This paper examines the interplay by comparing training on majority-vote labels with a range of HLV methods. Our experiments show that without explicit debiasing, HLV training methods have a positive impact on fairness under certain configurations.
comment: 10 pages, 7 figures. Accepted to EACL Findings 2026
♻ ☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models can exhibit surprising adapter interference when combining domain adaptation and instruction alignment in safety-critical settings. We study a two-stage LoRA pipeline for medical LLMs, where domain-oriented pre-training (PT) and supervised fine-tuning (SFT) are trained separately and later merged through weighted adapter merging. We observe that introducing PT signal can systematically alter model behavior and produce reasoning-style outputs, even when evaluation templates explicitly attempt to suppress such behavior. This interference leads to a divergence between surface metrics and reasoning or alignment behavior: BLEU/ROUGE scores drop significantly, while multiple-choice accuracy improves. We further show that small pipeline mistakes can easily misattribute SFT-only behavior to merged models, and provide a lightweight merge-verification routine to ensure correctness and reproducibility. Our findings highlight an interaction between knowledge injection and instruction alignment in adapter-based fine-tuning, with important implications for safety-critical model deployment.
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ Surprisal from Larger Transformer-based Language Models Predicts fMRI Data More Poorly EACL 2026
There has been considerable interest in using surprisal from Transformer-based language models (LMs) as predictors of human sentence processing difficulty. Recent work has observed an inverse scaling relationship between Transformers' per-word estimated probability and the predictive power of their surprisal estimates on reading times, showing that LMs with more parameters and trained on more data are less predictive of human reading times. However, these studies focused on predicting latency-based measures. Tests on brain imaging data have not shown a trend in any direction when using a relatively small set of LMs, leaving open the possibility that the inverse scaling phenomenon is constrained to latency data. This study therefore conducted a more comprehensive evaluation using surprisal estimates from 17 pre-trained LMs across three different LM families on two functional magnetic resonance imaging (fMRI) datasets. Results show that the inverse scaling relationship between models' per-word estimated probability and model fit on both datasets still obtains, resolving the inconclusive results of previous work and indicating that this trend is not specific to latency-based measures.
comment: EACL 2026
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference.
comment: 17 pages, 3 figures, 5 tables. Part of the NRR research program. v2: Added title prefix NRR-Phi for series identification; standardized reference formatting
♻ ☆ POPI: Personalizing LLMs via Optimized Preference Inference
Large language models (LLMs) are typically aligned with population-level preferences, despite substantial variation across individual users. While many LLM personalization methods exist, the underlying structure of user-level personalization is often left implicit. We formalize user-level, prompt-independent personalization as a decomposition into two components: preference inference and conditioned generation. We advocate for a modular design that decouples these components; identify natural language as a generator-agnostic interface between them; and characterize generator-transferability as a key implication of modular personalization. Guided by this abstraction, we introduce POPI, a novel instantiation of modular personalization that parameterizes both preference inference and conditioned generation as shared LLMs. POPI jointly optimizes the two components under a unified preference optimization objective, using reinforcement learning as an optimization tool. Across multiple benchmarks, POPI consistently improves personalization performance while reducing context overhead. We further demonstrate that the learned natural-language preference summaries transfer effectively to frozen, off-the-shelf LLMs, including black-box APIs, providing empirical evidence of modularity and generator-transferability.
♻ ☆ NRR-Core: Non-Resolution Reasoning as a Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse--collapsing multiple valid interpretations into single outputs--stems from classical identity assumptions in neural architectures. We propose Non-Resolution Reasoning (NRR), a framework treating ambiguity retention as a valid reasoning mode. NRR introduces three principles: (1) Non-Identity ($A \neq A$)--the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$)--entities share partial structural overlap without being identical; (3) Non-Resolution--conflicting interpretations coexist without forced convergence. We formalize these through Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We illustrate NRR through case studies in paradox handling, creative generation, and context-dependent reasoning. Functional verification in a synthetic two-turn disambiguation task shows NRR-lite maintains high entropy ($H = 0.91$ bits, near-maximum $1.0$) at ambiguous turns while standard architectures collapse early ($H = 0.15$ bits), preserving interpretive flexibility until context arrives. NRR challenges the assumption that meaning must collapse to be useful. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 10 pages, 1 figure, 2 tables. Part of the NRR research program. v7: Updated entropy measurement to log base 2 (bits); added title prefix NRR-Core for series identification
♻ ☆ The Generalization Ridge: Information Flow in Natural Language Generation
Transformer-based language models have achieved state-of-the-art performance in natural language generation (NLG), yet their internal mechanisms for synthesizing task-relevant information remain insufficiently understood. While prior studies suggest that intermediate layers often yield more generalizable representations than final layers, how this generalization ability emerges and propagates across layers during training remains unclear. To address this gap, we propose InfoRidge, an information-theoretic framework, to characterize how predictive information-the mutual information between hidden representations and target outputs-varies across depth during training. Our experiments across various models and datasets reveal a consistent non-monotonic trend: predictive information peaks in intermediate layers-forming a generalization ridge-before declining in final layers, reflecting a transition between generalization and memorization. To further investigate this phenomenon, we conduct a set of complementary analyses that leverage residual scaling, attention pattern, and controlled model capacity to characterize layer-wise functional specialization. We further validate our findings with multiple-token generation experiments, verifying that the observed ridge phenomenon persists across decoding steps. Together, these findings offer new insights into the internal mechanisms of transformers and underscore the critical role of intermediate layers in supporting generalization.
♻ ☆ When to Trust: A Causality-Aware Calibration Framework for Accurate Knowledge Graph Retrieval-Augmented Generation WWW 2026
Knowledge Graph Retrieval-Augmented Generation (KG-RAG) extends the RAG paradigm by incorporating structured knowledge from knowledge graphs, enabling Large Language Models (LLMs) to perform more precise and explainable reasoning. While KG-RAG improves factual accuracy in complex tasks, existing KG-RAG models are often severely overconfident, producing high-confidence predictions even when retrieved sub-graphs are incomplete or unreliable, which raises concerns for deployment in high-stakes domains. To address this issue, we propose Ca2KG, a Causality-aware Calibration framework for KG-RAG. Ca2KG integrates counterfactual prompting, which exposes retrieval-dependent uncertainties in knowledge quality and reasoning reliability, with a panel-based re-scoring mechanism that stabilises predictions across interventions. Extensive experiments on two complex QA datasets demonstrate that Ca2KG consistently improves calibration while maintaining or even enhancing predictive accuracy.
comment: Accepted by WWW 2026
♻ ☆ What's Missing in Vision-Language Models? Probing Their Struggles with Causal Order Reasoning
Despite the impressive performance of vision-language models (VLMs) on downstream tasks, their ability to understand and reason about causal relationships in visual inputs remains unclear. Robust causal reasoning is fundamental to solving complex high-level reasoning tasks, yet existing benchmarks often include a mixture of reasoning questions, and VLMs can frequently exploit object recognition and activity identification as shortcuts to arrive at the correct answers, making it challenging to truly assess their causal reasoning abilities. To bridge this gap, we introduce VQA-Causal and VCR-Causal, two new benchmarks specifically designed to isolate and rigorously evaluate VLMs' causal reasoning abilities. Our findings reveal that while VLMs excel in object and activity recognition, they perform poorly on causal reasoning tasks, often only marginally surpassing random guessing. Further analysis suggests that this limitation stems from a severe lack of causal expressions in widely used training datasets, where causal relationships are rarely explicitly conveyed. We additionally explore fine-tuning strategies with hard negative cases, showing that targeted fine-tuning can improve model's causal reasoning while maintaining generalization and downstream performance. Our study highlights a key gap in current VLMs and lays the groundwork for future work on causal understanding.
comment: 13 pages
♻ ☆ Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their performance on long-horizon, complex problems remains unreliable. Single-rollout execution is brittle, with small errors compounding over time and leading to high variance in outcomes. While prior work has attempted to scale within a single rollout, such approaches have yielded limited gains. Scaling over multiple rollouts offers a more promising alternative but doing so effectively is challenging due to the difficulty of evaluating and selecting among long-horizon agent behaviors. We introduce Behavior Judge (BJudge), which addresses this challenge by representing agent executions as behavior narratives and comparing candidate behaviors at this level, substantially improving robustness and success rates. Using multiple rollouts, BJudge establishes a new state of the art (SoTA) in OSWorld at 72.6%, significantly outperforming prior methods and surpassing human-level performance at 72.36%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the strong effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and BJudge provides a practical framework to achieve this.
comment: 21 pages, 7 figures, 13 tables
♻ ☆ When Avatars Have Personality: Effects on Engagement and Communication in Immersive Medical Training
While virtual reality (VR) excels at simulating physical environments, its effectiveness for training complex interpersonal skills is limited by a lack of psychologically plausible virtual humans. This gap is particularly critical in medical education, where communication is a core clinical competency. This paper introduces a framework that integrates large language models (LLMs) into immersive VR to create medically coherent virtual patients with distinct, consistent personalities, based on a modular architecture that decouples personality from clinical data. We evaluated the system in a mixed-methods, within-subjects study with licensed physicians conducting simulated consultations. Results suggest that the approach is feasible and perceived as a rewarding and effective training enhancement. Our analysis highlights key design principles, including a "realism-verbosity paradox" and the importance of challenges being perceived as clinically authentic to support learning.
comment: 10 pages, 2 figures
♻ ☆ Reading Between the Lines: Combining Pause Dynamics and Semantic Coherence for Automated Assessment of Thought Disorder
Formal thought disorder (FTD), a hallmark of schizophrenia spectrum disorders, manifests as incoherent speech and poses challenges for clinical assessment. Traditional clinical rating scales, though validated, are resource-intensive and lack scalability. Automated speech recognition (ASR) allows for objective quantification of linguistic and temporal features of speech, offering scalable alternatives. Furthermore, ASR-derived utterance timestamps provide access to pause dynamics, which are thought to reflect the cognitive processes underlying speech production. Yet, their added value beyond semantic measures remains insufficiently explored. In this study, we evaluated a scalable multimodal framework that integrates pause features with semantic coherence metrics across three datasets: naturalistic self-recorded diaries (AVH), structured picture descriptions (TOPSY), and dream narratives (PsyCL). Pause-related features were evaluated alongside established coherence measures using support vector regression to predict clinical FTD scores. Models using pause features alone robustly predict manually rated FTD severity consistently across datasets. Integrating pause features with semantic coherence metrics enhanced predictive performance compared to coherence-only models, with late fusion yielding the most robust and consistent gains in all three datasets. On average across datasets, Spearman correlation increased from \r{ho} = 0.413 for semantic-only models to \r{ho} = 0.455 with late fusion. The performance gains from semantic and pause features integration held consistently across all contexts, though the nature of the most informative pause patterns was dataset-dependent. These findings suggest that both pause dynamics and semantic coherence reflect complementary aspects of thought disorganization.
♻ ☆ Content Anonymization for Privacy in Long-form Audio ICASSP 2026
Voice anonymization techniques have been found to successfully obscure a speaker's acoustic identity in short, isolated utterances in benchmarks such as the VoicePrivacy Challenge. In practice, however, utterances seldom occur in isolation: long-form audio is commonplace in domains such as interviews, phone calls, and meetings. In these cases, many utterances from the same speaker are available, which pose a significantly greater privacy risk: given multiple utterances from the same speaker, an attacker could exploit an individual's vocabulary, syntax, and turns of phrase to re-identify them, even when their voice is completely disguised. To address this risk, we propose a new approach that performs a contextual rewriting of the transcripts in an ASR-TTS pipeline to eliminate speaker-specific style while preserving meaning. We present results in a long-form telephone conversation setting demonstrating the effectiveness of a content-based attack on voice-anonymized speech. Then we show how the proposed content-based anonymization methods can mitigate this risk while preserving speech utility. Overall, we find that paraphrasing is an effective defense against content-based attacks and recommend that stakeholders adopt this step to ensure anonymity in long-form audio.
comment: Accepted to ICASSP 2026; v2: added more related work, used a more speech-adapted content-attack model, added a github link to code/prompts
♻ ☆ Semantics as a Shield: Label Disguise Defense (LDD) against Prompt Injection in LLM Sentiment Classification
Large language models are increasingly used for text classification tasks such as sentiment analysis, yet their reliance on natural language prompts exposes them to prompt injection attacks. In particular, class-directive injections exploit knowledge of the model's label set (e.g., positive vs. negative) to override its intended behavior through adversarial instructions. Existing defenses, such as detection-based filters, instruction hierarchies, and signed prompts, either require model retraining or remain vulnerable to obfuscation. This paper introduces Label Disguise Defense (LDD), a lightweight and model-agnostic strategy that conceals true labels by replacing them with semantically transformed or unrelated alias labels(e.g., blue vs. yellow). The model learns these new label mappings implicitly through few-shot demonstrations, preventing direct correspondence between injected directives and decision outputs. We evaluate LDD across nine state-of-the-art models, including GPT-5, GPT-4o, LLaMA3.2, Gemma3, and Mistral variants, under varying few-shot and an adversarial setting. Our results show that the ability of LDD to recover performance lost to the adversarial attack varies across models and alias choices. For every model evaluated, LDD is able to restore a portion of the accuracy degradation caused by the attack. Moreover, for the vast majority of models, we can identify more than one alias pair that achieves higher accuracy than the under-attack baseline, in which the model relies solely on few-shot learning without any defensive mechanism. A linguistic analysis further reveals that semantically aligned alias labels(e.g., good vs. bad) yield stronger robustness than unaligned symbols(e.g., blue vs. yellow). Overall, this study demonstrates that label semantics can serve as an effective defense layer, transforming meaning itself into a shield against prompt injection.
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank (r). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLMs) favor their own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
♻ ☆ Multiple Choice Learning of Low-Rank Adapters for Language Modeling
We propose LoRA-MCL, a training scheme that extends next-token prediction in language models with a method designed to decode diverse, plausible sentence continuations at inference time. Traditional language modeling is an intrinsically ill-posed problem: given a context, multiple ``futures'' may be equally plausible. Our approach leverages Multiple Choice Learning (MCL) and the Winner-Takes-All loss to efficiently handle ambiguity through Low-Rank Adaptation. We provide a theoretical interpretation of applying MCL to language modeling, assuming the data is generated from a mixture of distributions. We illustrate the proposed approach using mixtures of Markov chains. We then demonstrate with experiments on visual and audio captioning, as well as machine translation, that our method achieves high diversity and relevance in generated outputs. The accompanying code and a general-purpose package for applying LoRA-MCL to a wide range of language models are made available.
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning IEEE
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, with 2 figures and 6 tables, accepted for publication in an IEEE Intelligent Systems journal
♻ ☆ Improving Detection of Watermarked Language Models
Watermarking has recently emerged as an effective strategy for detecting the generations of large language models (LLMs). The strength of a watermark typically depends strongly on the entropy afforded by the language model and the set of input prompts. However, entropy can be quite limited in practice, especially for models that are post-trained, for example via instruction tuning or reinforcement learning from human feedback (RLHF), which makes detection based on watermarking alone challenging. In this work, we investigate whether detection can be improved by combining watermark detectors with non-watermark ones. We explore a number of hybrid schemes that combine the two, observing performance gains over either class of detector under a wide range of experimental conditions.
comment: Published at TMLR 2026
♻ ☆ Persuade Me if You Can: A Framework for Evaluating Persuasion Effectiveness and Susceptibility Among Large Language Models NeurIPS
Large Language Models (LLMs) demonstrate persuasive capabilities that rival human-level persuasion. While these capabilities can be used for social good, they also present risks of potential misuse. Beyond the concern of how LLMs persuade others, their own susceptibility to persuasion poses a critical alignment challenge, raising questions about robustness, safety, and adherence to ethical principles. To study these dynamics, we introduce Persuade Me If You Can (PMIYC), an automated framework for evaluating persuasiveness and susceptibility to persuasion in multi-agent interactions. Our framework offers a scalable alternative to the costly and time-intensive human annotation process typically used to study persuasion in LLMs. PMIYC automatically conducts multi-turn conversations between Persuader and Persuadee agents, measuring both the effectiveness of and susceptibility to persuasion. Our comprehensive evaluation spans a diverse set of LLMs and persuasion settings (e.g., subjective and misinformation scenarios). We validate the efficacy of our framework through human evaluations and demonstrate alignment with human assessments from prior studies. Through PMIYC, we find that Llama-3.3-70B and GPT-4o exhibit similar persuasive effectiveness, outperforming Claude 3 Haiku by 30%. However, GPT-4o demonstrates over 50% greater resistance to persuasion for misinformation compared to Llama-3.3-70B. These findings provide empirical insights into the persuasive dynamics of LLMs and contribute to the development of safer AI systems.
comment: Updated to match the NeurIPS MTI-LLM Workshop format. Content remains consistent with the original version, with structural refinements, expanded explanations, and an extended appendix including additional results
♻ ☆ ToxiTwitch: Toward Emote-Aware Hybrid Moderation for Live Streaming Platforms
The rapid growth of live-streaming platforms such as Twitch has introduced complex challenges in moderating toxic behavior. Traditional moderation approaches, such as human annotation and keyword-based filtering, have demonstrated utility, but human moderators on Twitch constantly struggle to scale effectively in the fast-paced, high-volume, and context-rich chat environment of the platform while also facing harassment themselves. Recent advances in large language models (LLMs), such as DeepSeek-R1-Distill and Llama-3-8B-Instruct, offer new opportunities for toxicity detection, especially in understanding nuanced, multimodal communication involving emotes. In this work, we present an exploratory comparison of toxicity detection approaches tailored to Twitch. Our analysis reveals that incorporating emotes improves the detection of toxic behavior. To this end, we introduce ToxiTwitch, a hybrid model that combines LLM-generated embeddings of text and emotes with traditional machine learning classifiers, including Random Forest and SVM. In our case study, the proposed hybrid approach reaches up to 80 percent accuracy under channel-specific training (with 13 percent improvement over BERT and F1-score of 76 percent). This work is an exploratory study intended to surface challenges and limits of emote-aware toxicity detection on Twitch.
comment: Exploratory study; prior versions submitted to peer review
♻ ☆ Vicarious Offense and Noise Audit of Offensive Speech Classifiers: Unifying Human and Machine Disagreement on What is Offensive EMNLP 2023
Offensive speech detection is a key component of content moderation. However, what is offensive can be highly subjective. This paper investigates how machine and human moderators disagree on what is offensive when it comes to real-world social web political discourse. We show that (1) there is extensive disagreement among the moderators (humans and machines); and (2) human and large-language-model classifiers are unable to predict how other human raters will respond, based on their political leanings. For (1), we conduct a noise audit at an unprecedented scale that combines both machine and human responses. For (2), we introduce a first-of-its-kind dataset of vicarious offense. Our noise audit reveals that moderation outcomes vary wildly across different machine moderators. Our experiments with human moderators suggest that political leanings combined with sensitive issues affect both first-person and vicarious offense. The dataset is available through https://github.com/Homan-Lab/voiced.
comment: Accepted at EMNLP 2023
♻ ☆ Almost Clinical: Linguistic properties of synthetic electronic health records
This study evaluates the linguistic and clinical suitability of synthetic electronic health records in mental health. First, we describe the rationale and the methodology for creating the synthetic corpus. Second, we examine expressions of agency, modality, and information flow across four clinical genres (Assessments, Correspondence, Referrals and Care plans) with the aim to understand how LLMs grammatically construct medical authority and patient agency through linguistic choices. While LLMs produce coherent, terminology-appropriate texts that approximate clinical practice, systematic divergences remain, including registerial shifts, insufficient clinical specificity, and inaccuracies in medication use and diagnostic procedures. The results show both the potential and limitations of synthetic corpora for enabling large-scale linguistic research otherwise impossible with genuine patient records.
♻ ☆ PaTH Attention: Position Encoding via Accumulating Householder Transformations NeurIPS 2025
The attention mechanism is a core primitive in modern large language models (LLMs) and AI more broadly. Since attention by itself is permutation-invariant, position encoding is essential for modeling structured domains such as language. Rotary position encoding (RoPE) has emerged as the de facto standard approach for position encoding and is part of many modern LLMs. However, in RoPE the key/query transformation between two elements in a sequence is only a function of their relative position and otherwise independent of the actual input. This limits the expressivity of RoPE-based transformers. This paper describes PaTH, a flexible data-dependent position encoding scheme based on accumulated products of Householder(like) transformations, where each transformation is data-dependent, i.e., a function of the input. We derive an efficient parallel algorithm for training through exploiting a compact representation of products of Householder matrices, and implement a FlashAttention-style blockwise algorithm. Across both targeted synthetic benchmarks and moderate-scale real-world language modeling experiments, we find that PaTH improves upon RoPE and other recent baselines. Finally, we show that we can convert pretrained RoPE transformers into PaTH with continued pretraining.
comment: NeurIPS 2025 camera ready
♻ ☆ Adapting Diarization-Conditioned Whisper for End-to-End Multi-Talker Speech Recognition
We propose a speaker-attributed (SA) Whisper-based model for multi-talker speech recognition that combines target-speaker modeling with serialized output training (SOT). Our approach leverages a Diarization-Conditioned Whisper (DiCoW) encoder to extract target-speaker embeddings, which are concatenated into a single representation and passed to a shared decoder. This enables the model to transcribe overlapping speech as a serialized output stream with speaker tags and timestamps. In contrast to target-speaker ASR systems such as DiCoW, which decode each speaker separately, our approach performs joint decoding, allowing the decoder to condition on the context of all speakers simultaneously. Experiments show that the model outperforms existing SOT-based approaches and surpasses DiCoW on multi-talker mixtures (e.g., LibriMix).
Machine Learning 301
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ Investigating Quantum Circuit Designs Using Neuro-Evolution GECCO
Designing effective quantum circuits remains a central challenge in quantum computing, as circuit structure strongly influences expressivity, trainability, and hardware feasibility. Current approaches, whether using manually designed circuit templates, fixed heuristics, or automated rules, face limitations in scalability, flexibility, and adaptability, often producing circuits that are poorly matched to the specific problem or quantum hardware. In this work, we propose the Evolutionary eXploration of Augmenting Quantum Circuits (EXAQC), an evolutionary approach to the automated design and training of parameterized quantum circuits (PQCs) which leverages and extends on strategies from neuroevolution and genetic programming. The proposed method jointly searches over gate types, qubit connectivity, parameterization, and circuit depth while respecting hardware and noise constraints. The method supports both Qiskit and Pennylane libraries, allowing the user to configure every aspect. This work highlights evolutionary search as a critical tool for advancing quantum machine learning and variational quantum algorithms, providing a principled pathway toward scalable, problem-aware, and hardware-efficient quantum circuit design. Preliminary results demonstrate that circuits evolved on classification tasks are able to achieve over 90% accuracy on most of the benchmark datasets with a limited computational budget, and are able to emulate target circuit quantum states with high fidelity scores.
comment: Submitted to The Genetic and Evolutionary Computation Conference (GECCO) 2026. Under Review
☆ Understanding and Exploiting Weight Update Sparsity for Communication-Efficient Distributed RL
Reinforcement learning (RL) is a critical component for post-training large language models (LLMs). However, in bandwidth-constrained distributed RL, scalability is often bottlenecked by the synchronization of policy weights from trainers to inference workers, particularly over commodity networks or in decentralized settings. While recent studies suggest that RL updates modify only a small fraction of model parameters, these observations are typically based on coarse checkpoint differences. We present a systematic empirical study of weight-update sparsity at both step-level and multi-step granularities, examining its evolution across training dynamics, off-policy delay, and model scale. We find that update sparsity is consistently high, frequently exceeding 99% across practically relevant settings. Leveraging this structure, we propose PULSE (Patch Updates via Lossless Sparse Encoding), a simple yet highly efficient lossless weight synchronization method that transmits only the indices and values of modified parameters. PULSE is robust to transmission errors and avoids floating-point drift inherent in additive delta schemes. In bandwidth-constrained decentralized environments, our approach achieves over 100x (14 GB to ~108 MB) communication reduction while maintaining bit-identical training dynamics and performance compared to full weight synchronization. By exploiting this structure, PULSE enables decentralized RL training to approach centralized throughput, reducing the bandwidth required for weight synchronization from 20 Gbit/s to 0.2 Gbit/s to maintain high GPU utilization.
comment: 32 pages, 14 figures
☆ Robust Intervention Learning from Emergency Stop Interventions
Human interventions are a common source of data in autonomous systems during testing. These interventions provide an important signal about where the current policy needs improvement, but are often noisy and incomplete. We define Robust Intervention Learning (RIL) as the problem of learning from intervention data while remaining robust to the quality and informativeness of the intervention signal. In the best case, interventions are precise and avoiding them is sufficient to solve the task, but in many realistic settings avoiding interventions is necessary but not sufficient for achieving good performance. We study robust intervention learning in the context of emergency stop interventions and propose Residual Intervention Fine-Tuning (RIFT), a residual fine-tuning algorithm that treats intervention feedback as an incomplete learning signal and explicitly combines it with a prior policy. By framing intervention learning as a fine-tuning problem, our approach leverages structure encoded in the prior policy to resolve ambiguity when intervention signals under-specify the task. We provide theoretical analysis characterizing conditions under which this formulation yields principled policy improvement, and identify regimes where intervention learning is expected to fail. Our experiments reveal that residual fine-tuning enables robust and consistent policy improvement across a range of intervention strategies and prior policy qualities, and highlight robust intervention learning as a promising direction for future work.
☆ Preference-based Conditional Treatment Effects and Policy Learning AISTATS 2026
We introduce a new preference-based framework for conditional treatment effect estimation and policy learning, built on the Conditional Preference-based Treatment Effect (CPTE). CPTE requires only that outcomes be ranked under a preference rule, unlocking flexible modeling of heterogeneous effects with multivariate, ordinal, or preference-driven outcomes. This unifies applications such as conditional probability of necessity and sufficiency, conditional Win Ratio, and Generalized Pairwise Comparisons. Despite the intrinsic non-identifiability of comparison-based estimands, CPTE provides interpretable targets and delivers new identifiability conditions for previous unidentifiable estimands. We present estimation strategies via matching, quantile, and distributional regression, and further design efficient influence-function estimators to correct plug-in bias and maximize policy value. Synthetic and semi-synthetic experiments demonstrate clear performance gains and practical impact.
comment: Accepted to AISTATS 2026; 10 pages + appendix
☆ SymPlex: A Structure-Aware Transformer for Symbolic PDE Solving
We propose SymPlex, a reinforcement learning framework for discovering analytical symbolic solutions to partial differential equations (PDEs) without access to ground-truth expressions. SymPlex formulates symbolic PDE solving as tree-structured decision-making and optimizes candidate solutions using only the PDE and its boundary conditions. At its core is SymFormer, a structure-aware Transformer that models hierarchical symbolic dependencies via tree-relative self-attention and enforces syntactic validity through grammar-constrained autoregressive decoding, overcoming the limited expressivity of sequence-based generators. Unlike numerical and neural approaches that approximate solutions in discretized or implicit function spaces, SymPlex operates directly in symbolic expression space, enabling interpretable and human-readable solutions that naturally represent non-smooth behavior and explicit parametric dependence. Empirical results demonstrate exact recovery of non-smooth and parametric PDE solutions using deep learning-based symbolic methods.
comment: 27 pages
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Prediction of Critical Heat Flux in Rod Bundles Using Tube-Based Hybrid Machine Learning Models in CTF
The prediction of critical heat flux (CHF) using machine learning (ML) approaches has become a highly active research activity in recent years, the goal of which is to build models more accurate than current conventional approaches such as empirical correlations or lookup tables (LUTs). Previous work developed and deployed tube-based pure and hybrid ML models in the CTF subchannel code, however, full-scale reactor core simulations require the use of rod bundle geometries. Unlike isolated subchannels, rod bundles experience complex thermal hydraulic phenomena such as channel crossflow, spacer grid losses, and effects from unheated conductors. This study investigates the generalization of ML-based CHF prediction models in rod bundles after being trained on tube-based CHF data. A purely data-driven DNN and two hybrid bias-correction models were implemented in the CTF subchannel code and used to predict CHF location and magnitude in the Combustion Engineering 5-by-5 bundle CHF test series. The W-3 correlation, Bowring correlation, and Groeneveld LUT were used as baseline comparators. On average, all three ML-based approaches produced magnitude and location predictions more accurate than the baseline models, with the hybrid LUT model exhibiting the most favorable performance metrics.
comment: Submitted to the 2026 American Nuclear Society Annual Meeting
☆ Manifold Random Features
We present a new paradigm for creating random features to approximate bi-variate functions (in particular, kernels) defined on general manifolds. This new mechanism of Manifold Random Features (MRFs) leverages discretization of the manifold and the recently introduced technique of Graph Random Features (GRFs) to learn continuous fields on manifolds. Those fields are used to find continuous approximation mechanisms that otherwise, in general scenarios, cannot be derived analytically. MRFs provide positive and bounded features, a key property for accurate, low-variance approximation. We show deep asymptotic connection between GRFs, defined on discrete graph objects, and continuous random features used for regular kernels. As a by-product of our method, we re-discover recently introduced mechanism of Gaussian kernel approximation applied in particular to improve linear-attention Transformers, considering simple random walks on graphs and by-passing original complex mathematical computations. We complement our algorithm with a rigorous theoretical analysis and verify in thorough experimental studies.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ Should I use Synthetic Data for That? An Analysis of the Suitability of Synthetic Data for Data Sharing and Augmentation
Recent advances in generative modelling have led many to see synthetic data as the go-to solution for a range of problems around data access, scarcity, and under-representation. In this paper, we study three prominent use cases: (1) Sharing synthetic data as a proxy for proprietary datasets to enable statistical analyses while protecting privacy, (2) Augmenting machine learning training sets with synthetic data to improve model performance, and (3) Augmenting datasets with synthetic data to reduce variance in statistical estimation. For each use case, we formalise the problem setting and study, through formal analysis and case studies, under which conditions synthetic data can achieve its intended objectives. We identify fundamental and practical limits that constrain when synthetic data can serve as an effective solution for a particular problem. Our analysis reveals that due to these limits many existing or envisioned use cases of synthetic data are a poor problem fit. Our formalisations and classification of synthetic data use cases enable decision makers to assess whether synthetic data is a suitable approach for their specific data availability problem.
comment: BK and TS contributed equally
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ Inference-time Unlearning Using Conformal Prediction
Machine unlearning is the process of efficiently removing specific information from a trained machine learning model without retraining from scratch. Existing unlearning methods, which often provide provable guarantees, typically involve retraining a subset of model parameters based on a forget set. While these approaches show promise in certain scenarios, their underlying assumptions are often challenged in real-world applications -- particularly when applied to generative models. Furthermore, updating parameters using these unlearning procedures often degrades the general-purpose capabilities the model acquired during pre-training. Motivated by these shortcomings, this paper considers the paradigm of inference time unlearning -- wherein, the generative model is equipped with an (approximately correct) verifier that judges whether the model's response satisfies appropriate unlearning guarantees. This paper introduces a framework that iteratively refines the quality of the generated responses using feedback from the verifier without updating the model parameters. The proposed framework leverages conformal prediction to reduce computational overhead and provide distribution-free unlearning guarantees. This paper's approach significantly outperforms existing state-of-the-art methods, reducing unlearning error by up to 93% across challenging unlearning benchmarks.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ Reasoning Cache: Continual Improvement Over Long Horizons via Short-Horizon RL
Large Language Models (LLMs) that can continually improve beyond their training budgets are able to solve increasingly difficult problems by adapting at test time, a property we refer to as extrapolation. However, standard reinforcement learning (RL) operates over fixed problem distributions and training budgets, which limits extrapolation amidst distribution shift at test time. To address this, we introduce RC, an iterative decoding algorithm that replaces standard autoregressive decoding during both training and inference. RC exploits an asymmetry between the response generation and summarization capabilities of LLMs to construct reasoning chains that consistently improve across iterations. Models trained to use RC can extrapolate and continually improve over reasoning horizons more than an order of magnitude longer than those seen during training. Empirically, training a 4B model with RC using a 16k-token training budget improves performance on HMMT 2025 from 40% to nearly 70% with 0.5m tokens at test time, outperforming both comparably sized models and many larger reasoning LLMs. Finally, we also show that models trained with RC can more effectively leverage existing scaffolds to further scale test-time performance, due to the improved summary-conditioned generation abilities learned through training.
comment: preprint
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Reasoning with Latent Tokens in Diffusion Language Models
Discrete diffusion models have recently become competitive with autoregressive models for language modeling, even outperforming them on reasoning tasks requiring planning and global coherence, but they require more computation at inference time. We trace this trade-off to a key mechanism: diffusion models are trained to jointly predict a distribution over all unknown tokens, including those that will not actually be decoded in the current step. Ablating this joint prediction yields faster inference but degrades performance, revealing that accurate prediction at the decoded position relies on joint reasoning about the distribution of undecoded tokens. We interpret these as latent tokens and introduce a method for modulating their number, demonstrating empirically that this enables a smooth tradeoff between inference speed and sample quality. Furthermore, we demonstrate that latent tokens can be introduced into autoregressive models through an auxiliary multi-token prediction objective, yielding substantial improvements on the same reasoning tasks where they have traditionally struggled. Our results suggest that latent tokens, while arising naturally in diffusion, represent a general mechanism for improving performance on tasks requiring global coherence or lookahead.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Conditional Flow Matching for Visually-Guided Acoustic Highlighting
Visually-guided acoustic highlighting seeks to rebalance audio in alignment with the accompanying video, creating a coherent audio-visual experience. While visual saliency and enhancement have been widely studied, acoustic highlighting remains underexplored, often leading to misalignment between visual and auditory focus. Existing approaches use discriminative models, which struggle with the inherent ambiguity in audio remixing, where no natural one-to-one mapping exists between poorly-balanced and well-balanced audio mixes. To address this limitation, we reframe this task as a generative problem and introduce a Conditional Flow Matching (CFM) framework. A key challenge in iterative flow-based generation is that early prediction errors -- in selecting the correct source to enhance -- compound over steps and push trajectories off-manifold. To address this, we introduce a rollout loss that penalizes drift at the final step, encouraging self-correcting trajectories and stabilizing long-range flow integration. We further propose a conditioning module that fuses audio and visual cues before vector field regression, enabling explicit cross-modal source selection. Extensive quantitative and qualitative evaluations show that our method consistently surpasses the previous state-of-the-art discriminative approach, establishing that visually-guided audio remixing is best addressed through generative modeling.
☆ Soft Sensor for Bottom-Hole Pressure Estimation in Petroleum Wells Using Long Short-Term Memory and Transfer Learning
Monitoring bottom-hole variables in petroleum wells is essential for production optimization, safety, and emissions reduction. Permanent Downhole Gauges (PDGs) provide real-time pressure data but face reliability and cost issues. We propose a machine learning-based soft sensor to estimate flowing Bottom-Hole Pressure (BHP) using wellhead and topside measurements. A Long Short-Term Memory (LSTM) model is introduced and compared with Multi-Layer Perceptron (MLP) and Ridge Regression. We also pioneer Transfer Learning for adapting models across operational environments. Tested on real offshore datasets from Brazil's Pre-salt basin, the methodology achieved Mean Absolute Percentage Error (MAPE) consistently below 2\%, outperforming benchmarks. This work offers a cost-effective, accurate alternative to physical sensors, with broad applicability across diverse reservoir and flow conditions.
☆ Fast-MWEM: Private Data Release in Sublinear Time
The Multiplicative Weights Exponential Mechanism (MWEM) is a fundamental iterative framework for private data analysis, with broad applications such as answering $m$ linear queries, or privately solving systems of $m$ linear constraints. However, a critical bottleneck hindering its scalability is the $Θ(m)$ time complexity required to execute the exponential mechanism in each iteration. We introduce a modification to the MWEM framework that improves the per-iteration runtime dependency to $Θ(\sqrt{m})$ in expectation. This is done via a lazy sampling approach to the Report-Noisy-Max mechanism, which we implement efficiently using Gumbel noise and a $k$-Nearest Neighbor data structure. This allows for the rapid selection of the approximate score in the exponential mechanism without an exhaustive linear scan. We apply our accelerated framework to the problems of private linear query release and solving Linear Programs (LPs) under neighboring constraint conditions and low-sensitivity assumptions. Experimental evaluation confirms that our method provides a substantial runtime improvement over classic MWEM.
☆ Efficient Variance-reduced Estimation from Generative EHR Models: The SCOPE and REACH Estimators
Generative models trained using self-supervision of tokenized electronic health record (EHR) timelines show promise for clinical outcome prediction. This is typically done using Monte Carlo simulation for future patient trajectories. However, existing approaches suffer from three key limitations: sparse estimate distributions that poorly differentiate patient risk levels, extreme computational costs, and high sampling variance. We propose two new estimators: the Sum of Conditional Outcome Probability Estimator (SCOPE) and Risk Estimation from Anticipated Conditional Hazards (REACH), that leverage next-token probability distributions discarded by standard Monte Carlo. We prove both estimators are unbiased and that REACH guarantees variance reduction over Monte Carlo sampling for any model and outcome. Empirically, on hospital mortality prediction in MIMIC-IV using the ETHOS-ARES framework, SCOPE and REACH match 100-sample Monte Carlo performance using only 10-11 samples (95% CI: [9,11]), representing a ~10x reduction in inference cost without degrading calibration. For ICU admission prediction, efficiency gains are more modest (~1.2x), which we attribute to the outcome's lower "spontaneity," a property we characterize theoretically and empirically. These methods substantially improve the feasibility of deploying generative EHR models in resource-constrained clinical settings.
comment: 10 pages, 2 figures
☆ Efficient Training of Boltzmann Generators Using Off-Policy Log-Dispersion Regularization
Sampling from unnormalized probability densities is a central challenge in computational science. Boltzmann generators are generative models that enable independent sampling from the Boltzmann distribution of physical systems at a given temperature. However, their practical success depends on data-efficient training, as both simulation data and target energy evaluations are costly. To this end, we propose off-policy log-dispersion regularization (LDR), a novel regularization framework that builds on a generalization of the log-variance objective. We apply LDR in the off-policy setting in combination with standard data-based training objectives, without requiring additional on-policy samples. LDR acts as a shape regularizer of the energy landscape by leveraging additional information in the form of target energy labels. The proposed regularization framework is broadly applicable, supporting unbiased or biased simulation datasets as well as purely variational training without access to target samples. Across all benchmarks, LDR improves both final performance and data efficiency, with sample efficiency gains of up to one order of magnitude.
☆ VR-VFL: Joint Rate and Client Selection for Vehicular Federated Learning Under Imperfect CSI IEEE
Federated learning in vehicular edge networks faces major challenges in efficient resource allocation, largely due to high vehicle mobility and the presence of imperfect channel state information. Many existing methods oversimplify these realities, often assuming fixed communication rounds or ideal channel conditions, which limits their effectiveness in real-world scenarios. To address this, we propose variable rate vehicular federated learning (VR-VFL), a novel federated learning method designed specifically for vehicular networks under imperfect channel state information. VR-VFL combines dynamic client selection with adaptive transmission rate selection, while also allowing round times to flex in response to changing wireless conditions. At its core, VR-VFL is built on a bi-objective optimization framework that strikes a balance between improving learning convergence and minimizing the time required to complete each round. By accounting for both the challenges of mobility and realistic wireless constraints, VR-VFL offers a more practical and efficient approach to federated learning in vehicular edge networks. Simulation results show that the proposed VR-VFL scheme achieves convergence approximately 40% faster than other methods in the literature.
comment: This paper has been accepted for presentation at IEEE ICC 2026
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Data-Driven Graph Filters via Adaptive Spectral Shaping
We introduce Adaptive Spectral Shaping, a data-driven framework for graph filtering that learns a reusable baseline spectral kernel and modulates it with a small set of Gaussian factors. The resulting multi-peak, multi-scale responses allocate energy to heterogeneous regions of the Laplacian spectrum while remaining interpretable via explicit centers and bandwidths. To scale, we implement filters with Chebyshev polynomial expansions, avoiding eigendecompositions. We further propose Transferable Adaptive Spectral Shaping (TASS): the baseline kernel is learned on source graphs and, on a target graph, kept fixed while only the shaping parameters are adapted, enabling few-shot transfer under matched compute. Across controlled synthetic benchmarks spanning graph families and signal regimes, Adaptive Spectral Shaping reduces reconstruction error relative to fixed-prototype wavelets and learned linear banks, and TASS yields consistent positive transfer. The framework provides compact spectral modules that plug into graph signal processing pipelines and graph neural networks, combining scalability, interpretability, and cross-graph generalization.
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
☆ LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ Improved Analysis of the Accelerated Noisy Power Method with Applications to Decentralized PCA
We analyze the Accelerated Noisy Power Method, an algorithm for Principal Component Analysis in the setting where only inexact matrix-vector products are available, which can arise for instance in decentralized PCA. While previous works have established that acceleration can improve convergence rates compared to the standard Noisy Power Method, these guarantees require overly restrictive upper bounds on the magnitude of the perturbations, limiting their practical applicability. We provide an improved analysis of this algorithm, which preserves the accelerated convergence rate under much milder conditions on the perturbations. We show that our new analysis is worst-case optimal, in the sense that the convergence rate cannot be improved, and that the noise conditions we derive cannot be relaxed without sacrificing convergence guarantees. We demonstrate the practical relevance of our results by deriving an accelerated algorithm for decentralized PCA, which has similar communication costs to non-accelerated methods. To our knowledge, this is the first decentralized algorithm for PCA with provably accelerated convergence.
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images IEEE
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ Sequential Group Composition: A Window into the Mechanics of Deep Learning
How do neural networks trained over sequences acquire the ability to perform structured operations, such as arithmetic, geometric, and algorithmic computation? To gain insight into this question, we introduce the sequential group composition task. In this task, networks receive a sequence of elements from a finite group encoded in a real vector space and must predict their cumulative product. The task can be order-sensitive and requires a nonlinear architecture to be learned. Our analysis isolates the roles of the group structure, encoding statistics, and sequence length in shaping learning. We prove that two-layer networks learn this task one irreducible representation of the group at a time in an order determined by the Fourier statistics of the encoding. These networks can perfectly learn the task, but doing so requires a hidden width exponential in the sequence length $k$. In contrast, we show how deeper models exploit the associativity of the task to dramatically improve this scaling: recurrent neural networks compose elements sequentially in $k$ steps, while multilayer networks compose adjacent pairs in parallel in $\log k$ layers. Overall, the sequential group composition task offers a tractable window into the mechanics of deep learning.
☆ Reinforcement Fine-Tuning for History-Aware Dense Retriever in RAG
Retrieval-augmented generation (RAG) enables large language models (LLMs) to produce evidence-based responses, and its performance hinges on the matching between the retriever and LLMs. Retriever optimization has emerged as an efficient alternative to fine-tuning LLMs. However, existing solutions suffer from objective mismatch between retriever optimization and the goal of RAG pipeline. Reinforcement learning (RL) provides a promising solution to address this limitation, yet applying RL to retriever optimization introduces two fundamental challenges: 1) the deterministic retrieval is incompatible with RL formulations, and 2) state aliasing arises from query-only retrieval in multi-hop reasoning. To address these challenges, we replace deterministic retrieval with stochastic sampling and formulate RAG as a Markov decision process, making retriever optimizable by RL. Further, we incorporate retrieval history into the state at each retrieval step to mitigate state aliasing. Extensive experiments across diverse RAG pipelines, datasets, and retriever scales demonstrate consistent improvements of our approach in RAG performance.
comment: On going work. Codes are released at https://github.com/zyc140345/HARR
☆ CTTVAE: Latent Space Structuring for Conditional Tabular Data Generation on Imbalanced Datasets
Generating synthetic tabular data under severe class imbalance is essential for domains where rare but high-impact events drive decision-making. However, most generative models either overlook minority groups or fail to produce samples that are useful for downstream learning. We introduce CTTVAE, a Conditional Transformer-based Tabular Variational Autoencoder equipped with two complementary mechanisms: (i) a class-aware triplet margin loss that restructures the latent space for sharper intra-class compactness and inter-class separation, and (ii) a training-by-sampling strategy that adaptively increases exposure to underrepresented groups. Together, these components form CTTVAE+TBS, a framework that consistently yields more representative and utility-aligned samples without destabilizing training. Across six real-world benchmarks, CTTVAE+TBS achieves the strongest downstream utility on minority classes, often surpassing models trained on the original imbalanced data while maintaining competitive fidelity and bridging the gap for privacy for interpolation-based sampling methods and deep generative methods. Ablation studies further confirm that both latent structuring and targeted sampling contribute to these gains. By explicitly prioritizing downstream performance in rare categories, CTTVAE+TBS provides a robust and interpretable solution for conditional tabular data generation, with direct applicability to industries such as healthcare, fraud detection, and predictive maintenance where even small gains in minority cases can be critical.
☆ TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ Ultra Fast PDE Solving via Physics Guided Few-step Diffusion
Diffusion-based models have demonstrated impressive accuracy and generalization in solving partial differential equations (PDEs). However, they still face significant limitations, such as high sampling costs and insufficient physical consistency, stemming from their many-step iterative sampling mechanism and lack of explicit physics constraints. To address these issues, we propose Phys-Instruct, a novel physics-guided distillation framework which not only (1) compresses a pre-trained diffusion PDE solver into a few-step generator via matching generator and prior diffusion distributions to enable rapid sampling, but also (2) enhances the physics consistency by explicitly injecting PDE knowledge through a PDE distillation guidance. Physic-Instruct is built upon a solid theoretical foundation, leading to a practical physics-constrained training objective that admits tractable gradients. Across five PDE benchmarks, Phys-Instruct achieves orders-of-magnitude faster inference while reducing PDE error by more than 8 times compared to state-of-the-art diffusion baselines. Moreover, the resulting unconditional student model functions as a compact prior, enabling efficient and physically consistent inference for various downstream conditional tasks. Our results indicate that Phys-Instruct is a novel, effective, and efficient framework for ultra-fast PDE solving powered by deep generative models.
☆ Quantization-Aware Regularizers for Deep Neural Networks Compression
Deep Neural Networks reached state-of-the-art performance across numerous domains, but this progress has come at the cost of increasingly large and over-parameterized models, posing serious challenges for deployment on resource-constrained devices. As a result, model compression has become essential, and -- among compression techniques -- weight quantization is largely used and particularly effective, yet it typically introduces a non-negligible accuracy drop. However, it is usually applied to already trained models, without influencing how the parameter space is explored during the learning phase. In contrast, we introduce per-layer regularization terms that drive weights to naturally form clusters during training, integrating quantization awareness directly into the optimization process. This reduces the accuracy loss typically associated with quantization methods while preserving their compression potential. Furthermore, in our framework quantization representatives become network parameters, marking, to the best of our knowledge, the first approach to embed quantization parameters directly into the backpropagation procedure. Experiments on CIFAR-10 with AlexNet and VGG16 models confirm the effectiveness of the proposed strategy.
☆ Simulation-Based Inference via Regression Projection and Batched Discrepancies
We analyze a lightweight simulation-based inference method that infers simulator parameters using only a regression-based projection of the observed data. After fitting a surrogate linear regression once, the procedure simulates small batches at the proposed parameter values and assigns kernel weights based on the resulting batch-residual discrepancy, producing a self-normalized pseudo-posterior that is simple, parallelizable, and requires access only to the fitted regression coefficients rather than raw observations. We formalize the construction as an importance-sampling approximation to a population target that averages over simulator randomness, prove consistency as the number of parameter draws grows, and establish stability in estimating the surrogate regression from finite samples. We then characterize the asymptotic concentration as the batch size increases and the bandwidth shrinks, showing that the pseudo-posterior concentrates on an identified set determined by the chosen projection, thereby clarifying when the method yields point versus set identification. Experiments on a tractable nonlinear model and on a cosmological calibration task using the DREAMS simulation suite illustrate the computational advantages of regression-based projections and the identifiability limitations arising from low-information summaries.
comment: comments are welcome,
☆ Generator-based Graph Generation via Heat Diffusion ICML
Graph generative modelling has become an essential task due to the wide range of applications in chemistry, biology, social networks, and knowledge representation. In this work, we propose a novel framework for generating graphs by adapting the Generator Matching (arXiv:2410.20587) paradigm to graph-structured data. We leverage the graph Laplacian and its associated heat kernel to define a continous-time diffusion on each graph. The Laplacian serves as the infinitesimal generator of this diffusion, and its heat kernel provides a family of conditional perturbations of the initial graph. A neural network is trained to match this generator by minimising a Bregman divergence between the true generator and a learnable surrogate. Once trained, the surrogate generator is used to simulate a time-reversed diffusion process to sample new graph structures. Our framework unifies and generalises existing diffusion-based graph generative models, injecting domain-specific inductive bias via the Laplacian, while retaining the flexibility of neural approximators. Experimental studies demonstrate that our approach captures structural properties of real and synthetic graphs effectively.
comment: Submitted to ICML; 8+15 pages; 20 figures
☆ Explanations Leak: Membership Inference with Differential Privacy and Active Learning Defense
Counterfactual explanations (CFs) are increasingly integrated into Machine Learning as a Service (MLaaS) systems to improve transparency; however, ML models deployed via APIs are already vulnerable to privacy attacks such as membership inference and model extraction, and the impact of explanations on this threat landscape remains insufficiently understood. In this work, we focus on the problem of how CFs expand the attack surface of MLaaS by strengthening membership inference attacks (MIAs), and on the need to design defense mechanisms that mitigate this emerging risk without undermining utility and explainability. First, we systematically analyze how exposing CFs through query-based APIs enables more effective shadow-based MIAs. Second, we propose a defense framework that integrates Differential Privacy (DP) with Active Learning (AL) to jointly reduce memorization and limit effective training data exposure. Finally, we conduct an extensive empirical evaluation to characterize the three-way trade-off between privacy leakage, predictive performance, and explanation quality. Our findings highlight the need to carefully balance transparency, utility, and privacy in the responsible deployment of explainable MLaaS systems.
☆ SAGE-5GC: Security-Aware Guidelines for Evaluating Anomaly Detection in the 5G Core Network
Machine learning-based anomaly detection systems are increasingly being adopted in 5G Core networks to monitor complex, high-volume traffic. However, most existing approaches are evaluated under strong assumptions that rarely hold in operational environments, notably the availability of independent and identically distributed (IID) data and the absence of adaptive attackers.In this work, we study the problem of detecting 5G attacks \textit{in the wild}, focusing on realistic deployment settings. We propose a set of Security-Aware Guidelines for Evaluating anomaly detectors in 5G Core Network (SAGE-5GC), driven by domain knowledge and consideration of potential adversarial threats. Using a realistic 5G Core dataset, we first train several anomaly detectors and assess their baseline performance against standard 5GC control-plane cyberattacks targeting PFCP-based network services.We then extend the evaluation to adversarial settings, where an attacker tries to manipulate the observable features of the network traffic to evade detection, under the constraint that the intended functionality of the malicious traffic is preserved. Starting from a selected set of controllable features, we analyze model sensitivity and adversarial robustness through randomized perturbations. Finally, we introduce a practical optimization strategy based on genetic algorithms that operates exclusively on attacker-controllable features and does not require prior knowledge of the underlying detection model. Our experimental results show that adversarially crafted attacks can substantially degrade detection performance, underscoring the need for robust, security-aware evaluation methodologies for anomaly detection in 5G networks deployed in the wild.
comment: ITASEC-2026
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
☆ Asymmetric Hierarchical Anchoring for Audio-Visual Joint Representation: Resolving Information Allocation Ambiguity for Robust Cross-Modal Generalization
Audio-visual joint representation learning under Cross-Modal Generalization (CMG) aims to transfer knowledge from a labeled source modality to an unlabeled target modality through a unified discrete representation space. Existing symmetric frameworks often suffer from information allocation ambiguity, where the absence of structural inductive bias leads to semantic-specific leakage across modalities. We propose Asymmetric Hierarchical Anchoring (AHA), which enforces directional information allocation by designating a structured semantic anchor within a shared hierarchy. In our instantiation, we exploit the hierarchical discrete representations induced by audio Residual Vector Quantization (RVQ) to guide video feature distillation into a shared semantic space. To ensure representational purity, we replace fragile mutual information estimators with a GRL-based adversarial decoupler that explicitly suppresses semantic leakage in modality-specific branches, and introduce Local Sliding Alignment (LSA) to encourage fine-grained temporal alignment across modalities. Extensive experiments on AVE and AVVP benchmarks demonstrate that AHA consistently outperforms symmetric baselines in cross-modal transfer. Additional analyses on talking-face disentanglement experiment further validate that the learned representations exhibit improved semantic consistency and disentanglement, indicating the broader applicability of the proposed framework.
comment: 18 pages, 11 figures
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ Riemannian Neural Optimal Transport
Computational optimal transport (OT) offers a principled framework for generative modeling. Neural OT methods, which use neural networks to learn an OT map (or potential) from data in an amortized way, can be evaluated out of sample after training, but existing approaches are tailored to Euclidean geometry. Extending neural OT to high-dimensional Riemannian manifolds remains an open challenge. In this paper, we prove that any method for OT on manifolds that produces discrete approximations of transport maps necessarily suffers from the curse of dimensionality: achieving a fixed accuracy requires a number of parameters that grows exponentially with the manifold dimension. Motivated by this limitation, we introduce Riemannian Neural OT (RNOT) maps, which are continuous neural-network parameterizations of OT maps on manifolds that avoid discretization and incorporate geometric structure by construction. Under mild regularity assumptions, we prove that RNOT maps approximate Riemannian OT maps with sub-exponential complexity in the dimension. Experiments on synthetic and real datasets demonstrate improved scalability and competitive performance relative to discretization-based baselines.
comment: 58 pages
☆ CoGenCast: A Coupled Autoregressive-Flow Generative Framework for Time Series Forecasting
Time series forecasting can be viewed as a generative problem that requires both semantic understanding over contextual conditions and stochastic modeling of continuous temporal dynamics. Existing approaches typically rely on either autoregressive large language models (LLMs) for semantic context modeling or diffusion-like models for continuous probabilistic generation. However, neither method alone can adequately model both aspects simultaneously. In this work, we propose CoGenCast, a hybrid generative framework that couples pre-trained LLMs with flow-matching mechanism for effective time series forecasting. Specifically, we reconfigure pre-trained decoder-only LLMs into a native forecasting encoder-decoder backbone by modifying only the attention topology, enabling bidirectional context encoding and causal representation generation. Building on this, a flow-matching mechanism is further integrated to model temporal evolution, capturing continuous stochastic dynamics conditioned on the autoregressively generated representation. Notably, CoGenCast naturally supports multimodal forecasting and cross-domain unified training. Extensive experiments on multiple benchmarks show that CoGenCast consistently outperforms previous compared baselines. Code is available at https://github.com/liuyaguo/_CoGenCast.
☆ NPCNet: Navigator-Driven Pseudo Text for Deep Clustering of Early Sepsis Phenotyping
Sepsis is a heterogeneous syndrome. Identifying clinically distinct phenotypes may enable more precise treatment strategies. In recent years, many researchers have applied clustering algorithms to sepsis patients. However, the clustering process rarely incorporates clinical relevance, potentially limiting to reflect clinically distinct phenotypes. We propose NPCNet, a novel deep clustering network with a target navigator that integrates temporal Electronic Health Records (EHRs) to better align sepsis phenotypes with clinical significance. We identify four sepsis phenotypes ($α$, $β$, $γ$, and $δ$) with divergence in SOFA trajectories. Notably, while $α$ and $δ$ phenotypes both show severe conditions in the early stage, NPCNet effectively differentiates patients who are likely to improve ($α$) from those at risk of deterioration ($δ$). Furthermore, through the treatment effect analysis, we discover that $α$, $β$, and $δ$ phenotypes may benefit from early vasopressor administration. The results show that NPCNet enhances precision treatment strategies by uncovering clinically distinct phenotypes.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ How to Train Your Resistive Network: Generalized Equilibrium Propagation and Analytical Learning
Machine learning is a powerful method of extracting meaning from data; unfortunately, current digital hardware is extremely energy-intensive. There is interest in an alternative analog computing implementation that could match the performance of traditional machine learning while being significantly more energy-efficient. However, it remains unclear how to train such analog computing systems while adhering to locality constraints imposed by the physical (as opposed to digital) nature of these systems. Local learning algorithms such as Equilibrium Propagation and Coupled Learning have been proposed to address this issue. In this paper, we develop an algorithm to exactly calculate gradients using a graph theoretic and analytical framework for Kirchhoff's laws. We also introduce Generalized Equilibrium Propagation, a framework encompassing a broad class of Hebbian learning algorithms, including Coupled Learning and Equilibrium Propagation, and show how our algorithm compares. We demonstrate our algorithm using numerical simulations and show that we can train resistor networks without the need for a replica or readout over all resistors, only at the output layer. We also show that under the analytical gradient approach, it is possible to update only a subset of the resistance values without a strong degradation in performance.
comment: 8 pages double column; plus 16 supp mat.;
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ MatGPTQ: Accurate and Efficient Post-Training Matryoshka Quantization
Matryoshka Quantization (MatQuant) is a recent quantization approach showing that a single integer-quantized model can be served across multiple precisions, by slicing the most significant bits (MSB) at inference time. This enables a single checkpoint to cover a wide range of memory and latency budgets, but renders quantization much more challenging. In particular, the initial MatQuant relies on expensive quantization-aware training (QAT) variants, rather than fast one-shot post training quantization (PTQ), and lacks open-source and kernel support. We address all of these limitations by introducing Post-Training Matryoshka Quantization (MatGPTQ), a new PTQ pipeline that produces a single parent model jointly optimized for multiple target precisions in one-shot, based on a small calibration set. MatGPTQ casts Matryoshka quantization as a multi-precision objective with bit-slicing and cross-bit error compensation, resulting in an algorithm that produces a multi-bit-width, "sliceable" model in a single pass. We also incorporate a new budget-aware search for heterogeneous per-layer bit-witdhs and provide efficient kernels that implement slicing and mixed-precision execution. Across standard LLMs and benchmarks, MatGPTQ preserves high-bit accuracy while substantially improving performance at low-bit-witdh settings. Overall, we establish a new state of the art for Matryoshka-style post-training quantization and make single-checkpoint, multi-precision deployment open and practical. Code is available at https://github.com/IST-DASLab/MatGPTQ.
comment: Preprint
☆ Sparse Training of Neural Networks based on Multilevel Mirror Descent
We introduce a dynamic sparse training algorithm based on linearized Bregman iterations / mirror descent that exploits the naturally incurred sparsity by alternating between periods of static and dynamic sparsity pattern updates. The key idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of the network structure to enable efficient exploration of the sparse parameter space while maintaining sparsity. We provide convergence guaranties by embedding our method in a multilevel optimization framework. Furthermore, we empirically show that our algorithm can produce highly sparse and accurate models on standard benchmarks. We also show that the theoretical number of FLOPs compared to SGD training can be reduced from 38% for standard Bregman iterations to 6% for our method while maintaining test accuracy.
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ WARP Logic Neural Networks
Fast and efficient AI inference is increasingly important, and recent models that directly learn low-level logic operations have achieved state-of-the-art performance. However, existing logic neural networks incur high training costs, introduce redundancy or rely on approximate gradients, which limits scalability. To overcome these limitations, we introduce WAlsh Relaxation for Probabilistic (WARP) logic neural networks -- a novel gradient-based framework that efficiently learns combinations of hardware-native logic blocks. We show that WARP yields the most parameter-efficient representation for exactly learning Boolean functions and that several prior approaches arise as restricted special cases. Training is improved by introducing learnable thresholding and residual initialization, while we bridge the gap between relaxed training and discrete logic inference through stochastic smoothing. Experiments demonstrate faster convergence than state-of-the-art baselines, while scaling effectively to deeper architectures and logic functions with higher input arity.
comment: Under review
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Rank-Learner: Orthogonal Ranking of Treatment Effects
Many decision-making problems require ranking individuals by their treatment effects rather than estimating the exact effect magnitudes. Examples include prioritizing patients for preventive care interventions, or ranking customers by the expected incremental impact of an advertisement. Surprisingly, while causal effect estimation has received substantial attention in the literature, the problem of directly learning rankings of treatment effects has largely remained unexplored. In this paper, we introduce Rank-Learner, a novel two-stage learner that directly learns the ranking of treatment effects from observational data. We first show that naive approaches based on precise treatment effect estimation solve a harder problem than necessary for ranking, while our Rank-Learner optimizes a pairwise learning objective that recovers the true treatment effect ordering, without explicit CATE estimation. We further show that our Rank-Learner is Neyman-orthogonal and thus comes with strong theoretical guarantees, including robustness to estimation errors in the nuisance functions. In addition, our Rank-Learner is model-agnostic, and can be instantiated with arbitrary machine learning models (e.g., neural networks). We demonstrate the effectiveness of our method through extensive experiments where Rank-Learner consistently outperforms standard CATE estimators and non-orthogonal ranking methods. Overall, we provide practitioners with a new, orthogonal two-stage learner for ranking individuals by their treatment effects.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ A Function-Space Stability Boundary for Generalization in Interpolating Learning Systems
Modern learning systems often interpolate training data while still generalizing well, yet it remains unclear when algorithmic stability explains this behavior. We model training as a function-space trajectory and measure sensitivity to single-sample perturbations along this trajectory. We propose a contractive propagation condition and a stability certificate obtained by unrolling the resulting recursion. A small certificate implies stability-based generalization, while we also prove that there exist interpolating regimes with small risk where such contractive sensitivity cannot hold, showing that stability is not a universal explanation. Experiments confirm that certificate growth predicts generalization differences across optimizers, step sizes, and dataset perturbations. The framework therefore identifies regimes where stability explains generalization and where alternative mechanisms must account for success.
comment: 10 pages, 8 figures,
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ Lookahead Path Likelihood Optimization for Diffusion LLMs
Diffusion Large Language Models (dLLMs) support arbitrary-order generation, yet their inference performance critically depends on the unmasking order. Existing strategies rely on heuristics that greedily optimize local confidence, offering limited guidance for identifying unmasking paths that are globally consistent and accurate. To bridge this gap, we introduce path log-likelihood (Path LL), a trajectory-conditioned objective that strongly correlates with downstream accuracy and enables principled selection of unmasking paths. To optimize Path LL at inference time, we propose POKE, an efficient value estimator that predicts the expected future Path LL of a partial decoding trajectory. We then integrate this lookahead signal into POKE-SMC, a Sequential Monte Carlo-based search framework for dynamically identifying optimal unmasking paths. Extensive experiments across 6 reasoning tasks show that POKE-SMC consistently improves accuracy, achieving 2%--3% average gains over strong decoding-time scaling baselines at comparable inference overhead on LLaDA models and advancing the accuracy--compute Pareto frontier.
☆ DALI: A Workload-Aware Offloading Framework for Efficient MoE Inference on Local PCs
Mixture of Experts (MoE) architectures significantly enhance the capacity of LLMs without proportional increases in computation, but at the cost of a vast parameter size. Offloading MoE expert parameters to host memory and leveraging both CPU and GPU computation has recently emerged as a promising direction to support such models on resourceconstrained local PC platforms. While promising, we notice that existing approaches mismatch the dynamic nature of expert workloads, which leads to three fundamental inefficiencies: (1) Static expert assignment causes severe CPUGPU load imbalance, underutilizing CPU and GPU resources; (2) Existing prefetching techniques fail to accurately predict high-workload experts, leading to costly inaccurate prefetches; (3) GPU cache policies neglect workload dynamics, resulting in poor hit rates and limited effectiveness. To address these challenges, we propose DALI, a workloaDAware offLoadIng framework for efficient MoE inference on local PCs. To fully utilize hardware resources, DALI first dynamically assigns experts to CPU or GPU by modeling assignment as a 0-1 integer optimization problem and solving it efficiently using a Greedy Assignment strategy at runtime. To improve prefetching accuracy, we develop a Residual-Based Prefetching method leveraging inter-layer residual information to accurately predict high-workload experts. Additionally, we introduce a Workload-Aware Cache Replacement policy that exploits temporal correlation in expert activations to improve GPU cache efficiency. By evaluating across various MoE models and settings, DALI achieves significant speedups in the both prefill and decoding phases over the state-of-the-art offloading frameworks.
☆ Least but not Last: Fine-tuning Intermediate Principal Components for Better Performance-Forgetting Trade-Offs
Low-Rank Adaptation (LoRA) methods have emerged as crucial techniques for adapting large pre-trained models to downstream tasks under computational and memory constraints. However, they face a fundamental challenge in balancing task-specific performance gains against catastrophic forgetting of pre-trained knowledge, where existing methods provide inconsistent recommendations. This paper presents a comprehensive analysis of the performance-forgetting trade-offs inherent in low-rank adaptation using principal components as initialization. Our investigation reveals that fine-tuning intermediate components leads to better balance and show more robustness to high learning rates than first (PiSSA) and last (MiLoRA) components in existing work. Building on these findings, we provide a practical approach for initialization of LoRA that offers superior trade-offs. We demonstrate in a thorough empirical study on a variety of computer vision and NLP tasks that our approach improves accuracy and reduces forgetting, also in continual learning scenarios.
☆ A Minimal Task Reveals Emergent Path Integration and Object-Location Binding in a Predictive Sequence Model
Adaptive cognition requires structured internal models representing objects and their relations. Predictive neural networks are often proposed to form such "world models", yet their underlying mechanisms remain unclear. One hypothesis is that action-conditioned sequential prediction suffices for learning such world models. In this work, we investigate this possibility in a minimal in-silico setting. Sequentially sampling tokens from 2D continuous token scenes, a recurrent neural network is trained to predict the upcoming token from current input and a saccade-like displacement. On novel scenes, prediction accuracy improves across the sequence, indicating in-context learning. Decoding analyses reveal path integration and dynamic binding of token identity to position. Interventional analyses show that new bindings can be learned late in sequence and that out-of-distribution bindings can be learned. Together, these results demonstrate how structured representations that rely on flexible binding emerge to support prediction, offering a mechanistic account of sequential world modeling relevant to cognitive science.
comment: 7 pages, 4 figures
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ Soft-Radial Projection for Constrained End-to-End Learning
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
☆ Causal Inference on Networks under Misspecified Exposure Mappings: A Partial Identification Framework
Estimating treatment effects in networks is challenging, as each potential outcome depends on the treatments of all other nodes in the network. To overcome this difficulty, existing methods typically impose an exposure mapping that compresses the treatment assignments in the network into a low-dimensional summary. However, if this mapping is misspecified, standard estimators for direct and spillover effects can be severely biased. We propose a novel partial identification framework for causal inference on networks to assess the robustness of treatment effects under misspecifications of the exposure mapping. Specifically, we derive sharp upper and lower bounds on direct and spillover effects under such misspecifications. As such, our framework presents a novel application of causal sensitivity analysis to exposure mappings. We instantiate our framework for three canonical exposure settings widely used in practice: (i) weighted means of the neighborhood treatments, (ii) threshold-based exposure mappings, and (iii) truncated neighborhood interference in the presence of higher-order spillovers. Furthermore, we develop orthogonal estimators for these bounds and prove that the resulting bound estimates are valid, sharp, and efficient. Our experiments show the bounds remain informative and provide reliable conclusions under misspecification of exposure mappings.
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Score-based diffusion models for diffuse optical tomography with uncertainty quantification
Score-based diffusion models are a recently developed framework for posterior sampling in Bayesian inverse problems with a state-of-the-art performance for severely ill-posed problems by leveraging a powerful prior distribution learned from empirical data. Despite generating significant interest especially in the machine-learning community, a thorough study of realistic inverse problems in the presence of modelling error and utilization of physical measurement data is still outstanding. In this work, the framework of unconditional representation for the conditional score function (UCoS) is evaluated for linearized difference imaging in diffuse optical tomography (DOT). DOT uses boundary measurements of near-infrared light to estimate the spatial distribution of absorption and scattering parameters in biological tissues. The problem is highly ill-posed and thus sensitive to noise and modelling errors. We introduce a novel regularization approach that prevents overfitting of the score function by constructing a mixed score composed of a learned and a model-based component. Validation of this approach is done using both simulated and experimental measurement data. The experiments demonstrate that a data-driven prior distribution results in posterior samples with low variance, compared to classical model-based estimation, and centred around the ground truth, even in the context of a highly ill-posed problem and in the presence of modelling errors.
☆ CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Acceleration of Atomistic NEGF: Algorithms, Parallelization, and Machine Learning
The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ CoCoEmo: Composable and Controllable Human-Like Emotional TTS via Activation Steering
Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
☆ Most Convolutional Networks Suffer from Small Adversarial Perturbations
The existence of adversarial examples is relatively understood for random fully connected neural networks, but much less so for convolutional neural networks (CNNs). The recent work [Daniely, 2025] establishes that adversarial examples can be found in CNNs, in some non-optimal distance from the input. We extend over this work and prove that adversarial examples in random CNNs with input dimension $d$ can be found already in $\ell_2$-distance of order $\lVert x \rVert /\sqrt{d}$ from the input $x$, which is essentially the nearest possible. We also show that such adversarial small perturbations can be found using a single step of gradient descent. To derive our results we use Fourier decomposition to efficiently bound the singular values of a random linear convolutional operator, which is the main ingredient of a CNN layer. This bound might be of independent interest.
☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ The Label Horizon Paradox: Rethinking Supervision Targets in Financial Forecasting
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.
☆ Improving the Linearized Laplace Approximation via Quadratic Approximations
Deep neural networks (DNNs) often produce overconfident out-of-distribution predictions, motivating Bayesian uncertainty quantification. The Linearized Laplace Approximation (LLA) achieves this by linearizing the DNN and applying Laplace inference to the resulting model. Importantly, the linear model is also used for prediction. We argue this linearization in the posterior may degrade fidelity to the true Laplace approximation. To alleviate this problem, without increasing significantly the computational cost, we propose the Quadratic Laplace Approximation (QLA). QLA approximates each second order factor in the approximate Laplace log-posterior using a rank-one factor obtained via efficient power iterations. QLA is expected to yield a posterior precision closer to that of the full Laplace without forming the full Hessian, which is typically intractable. For prediction, QLA also uses the linearized model. Empirically, QLA yields modest yet consistent uncertainty estimation improvements over LLA on five regression datasets.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as poster presentation
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
☆ Dynamic Topology Optimization for Non-IID Data in Decentralized Learning IEEE
Decentralized learning (DL) enables a set of nodes to train a model collaboratively without central coordination, offering benefits for privacy and scalability. However, DL struggles to train a high accuracy model when the data distribution is non-independent and identically distributed (non-IID) and when the communication topology is static. To address these issues, we propose Morph, a topology optimization algorithm for DL. In Morph, nodes adaptively choose peers for model exchange based on maximum model dissimilarity. Morph maintains a fixed in-degree while dynamically reshaping the communication graph through gossip-based peer discovery and diversity-driven neighbor selection, thereby improving robustness to data heterogeneity. Experiments on CIFAR-10 and FEMNIST with up to 100 nodes show that Morph consistently outperforms static and epidemic baselines, while closely tracking the fully connected upper bound. On CIFAR-10, Morph achieves a relative improvement of 1.12x in test accuracy compared to the state-of-the-art baselines. On FEMNIST, Morph achieves an accuracy that is 1.08x higher than Epidemic Learning. Similar trends hold for 50 node deployments, where Morph narrows the gap to the fully connected upper bound within 0.5 percentage points on CIFAR-10. These results demonstrate that Morph achieves higher final accuracy, faster convergence, and more stable learning as quantified by lower inter-node variance, while requiring fewer communication rounds than baselines and no global knowledge.
comment: 10 pages, 11 figures. Accepted for publication in the 13th IEEE International Conference on Big Data (BigData 2025). To appear
☆ Rethinking Benign Relearning: Syntax as the Hidden Driver of Unlearning Failures ICLR 2026
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
comment: Accepted at ICLR 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ Achieving Linear Speedup for Composite Federated Learning
This paper proposes FedNMap, a normal map-based method for composite federated learning, where the objective consists of a smooth loss and a possibly nonsmooth regularizer. FedNMap leverages a normal map-based update scheme to handle the nonsmooth term and incorporates a local correction strategy to mitigate the impact of data heterogeneity across clients. Under standard assumptions, including smooth local losses, weak convexity of the regularizer, and bounded stochastic gradient variance, FedNMap achieves linear speedup with respect to both the number of clients $n$ and the number of local updates $Q$ for nonconvex losses, both with and without the Polyak-Łojasiewicz (PL) condition. To our knowledge, this is the first result establishing linear speedup for nonconvex composite federated learning.
comment: 27 pages, 12 figures
☆ PACE: Pretrained Audio Continual Learning ICLR 2026
Audio is a fundamental modality for analyzing speech, music, and environmental sounds. Although pretrained audio models have significantly advanced audio understanding, they remain fragile in real-world settings where data distributions shift over time. In this work, we present the first systematic benchmark for audio continual learning (CL) with pretrained models (PTMs), together with a comprehensive analysis of its unique challenges. Unlike in vision, where parameter-efficient fine-tuning (PEFT) has proven effective for CL, directly transferring such strategies to audio leads to poor performance. This stems from a fundamental property of audio backbones: they focus on low-level spectral details rather than structured semantics, causing severe upstream-downstream misalignment. Through extensive empirical study, we identify analytic classifiers with first-session adaptation (FSA) as a promising direction, but also reveal two major limitations: representation saturation in coarse-grained scenarios and representation drift in fine-grained scenarios. To address these challenges, we propose PACE, a novel method that enhances FSA via a regularized analytic classifier and enables multi-session adaptation through adaptive subspace-orthogonal PEFT for improved semantic alignment. In addition, we introduce spectrogram-based boundary-aware perturbations to mitigate representation overlap and improve stability. Experiments on six diverse audio CL benchmarks demonstrate that PACE substantially outperforms state-of-the-art baselines, marking an important step toward robust and scalable audio continual learning with PTMs.
comment: Accepted at ICLR 2026
☆ Causal Graph Learning via Distributional Invariance of Cause-Effect Relationship
This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Accurate Failure Prediction in Agents Does Not Imply Effective Failure Prevention
Proactive interventions by LLM critic models are often assumed to improve reliability, yet their effects at deployment time are poorly understood. We show that a binary LLM critic with strong offline accuracy (AUROC 0.94) can nevertheless cause severe performance degradation, inducing a 26 percentage point (pp) collapse on one model while affecting another by near zero pp. This variability demonstrates that LLM critic accuracy alone is insufficient to determine whether intervention is safe. We identify a disruption-recovery tradeoff: interventions may recover failing trajectories but also disrupt trajectories that would have succeeded. Based on this insight, we propose a pre-deployment test that uses a small pilot of 50 tasks to estimate whether intervention is likely to help or harm, without requiring full deployment. Across benchmarks, the test correctly anticipates outcomes: intervention degrades performance on high-success tasks (0 to -26 pp), while yielding a modest improvement on the high-failure ALFWorld benchmark (+2.8 pp, p=0.014). The primary value of our framework is therefore identifying when not to intervene, preventing severe regressions before deployment.
☆ Bayesian Conformal Prediction as a Decision Risk Problem
Bayesian posterior predictive densities as non-conformity scores and Bayesian quadrature are used to estimate and minimise the expected prediction set size. Operating within a split conformal framework, BCP provides valid coverage guarantees and demonstrates reliable empirical coverage under model misspecification. Across regression and classification tasks, including distribution-shifted settings such as ImageNet-A, BCP yields prediction sets of comparable size to split conformal prediction, while exhibiting substantially lower run-to-run variability in set size. In sparse regression with nominal coverage of 80 percent, BCP achieves 81 percent empirical coverage under a misspecified prior, whereas Bayesian credible intervals under-cover at 49 percent.
comment: 18 pages, 5 figures. Accepted at EIML 2025 at Eurips
☆ From Inexact Gradients to Byzantine Robustness: Acceleration and Optimization under Similarity
Standard federated learning algorithms are vulnerable to adversarial nodes, a.k.a. Byzantine failures. To solve this issue, robust distributed learning algorithms have been developed, which typically replace parameter averaging by robust aggregations. While generic conditions on these aggregations exist to guarantee the convergence of (Stochastic) Gradient Descent (SGD), the analyses remain rather ad-hoc. This hinders the development of more complex robust algorithms, such as accelerated ones. In this work, we show that Byzantine-robust distributed optimization can, under standard generic assumptions, be cast as a general optimization with inexact gradient oracles (with both additive and multiplicative error terms), an active field of research. This allows for instance to directly show that GD on top of standard robust aggregation procedures obtains optimal asymptotic error in the Byzantine setting. Going further, we propose two optimization schemes to speed up the convergence. The first one is a Nesterov-type accelerated scheme whose proof directly derives from accelerated inexact gradient results applied to our formulation. The second one hinges on Optimization under Similarity, in which the server leverages an auxiliary loss function that approximates the global loss. Both approaches allow to drastically reduce the communication complexity compared to previous methods, as we show theoretically and empirically.
☆ A Novel approach to portfolio construction
This paper proposes a machine learning-based framework for asset selection and portfolio construction, termed the Best-Path Algorithm Sparse Graphical Model (BPASGM). The method extends the Best-Path Algorithm (BPA) by mapping linear and non-linear dependencies among a large set of financial assets into a sparse graphical model satisfying a structural Markov property. Based on this representation, BPASGM performs a dependence-driven screening that removes positively or redundantly connected assets, isolating subsets that are conditionally independent or negatively correlated. This step is designed to enhance diversification and reduce estimation error in high-dimensional portfolio settings. Portfolio optimization is then conducted on the selected subset using standard mean-variance techniques. BPASGM does not aim to improve the theoretical mean-variance optimum under known population parameters, but rather to enhance realized performance in finite samples, where sample-based Markowitz portfolios are highly sensitive to estimation error. Monte Carlo simulations show that BPASGM-based portfolios achieve more stable risk-return profiles, lower realized volatility, and superior risk-adjusted performance compared to standard mean-variance portfolios. Empirical results for U.S. equities, global stock indices, and foreign exchange rates over 1990-2025 confirm these findings and demonstrate a substantial reduction in portfolio cardinality. Overall, BPASGM offers a statistically grounded and computationally efficient framework that integrates sparse graphical modeling with portfolio theory for dependence-aware asset selection.
☆ Information-Theoretic Multi-Model Fusion for Target-Oriented Adaptive Sampling in Materials Design
Target-oriented discovery under limited evaluation budgets requires making reliable progress in high-dimensional, heterogeneous design spaces where each new measurement is costly, whether experimental or high-fidelity simulation. We present an information-theoretic framework for target-oriented adaptive sampling that reframes optimization as trajectory discovery: instead of approximating the full response surface, the method maintains and refines a low-entropy information state that concentrates search on target-relevant directions. The approach couples data, model beliefs, and physics/structure priors through dimension-aware information budgeting, adaptive bootstrapped distillation over a heterogeneous surrogate reservoir, and structure-aware candidate manifold analysis with Kalman-inspired multi-model fusion to balance consensus-driven exploitation and disagreement-driven exploration. Evaluated under a single unified protocol without dataset-specific tuning, the framework improves sample efficiency and reliability across 14 single- and multi-objective materials design tasks spanning candidate pools from $600$ to $4 \times 10^6$ and feature dimensions from $10$ to $10^3$, typically reaching top-performing regions within 100 evaluations. Complementary 20-dimensional synthetic benchmarks (Ackley, Rastrigin, Schwefel) further demonstrate robustness to rugged and multimodal landscapes.
comment: 37 pages, 5 figures, 2 tables
☆ Multiparameter Uncertainty Mapping in Quantitative Molecular MRI using a Physics-Structured Variational Autoencoder (PS-VAE) IEEE
Quantitative imaging methods, such as magnetic resonance fingerprinting (MRF), aim to extract interpretable pathology biomarkers by estimating biophysical tissue parameters from signal evolutions. However, the pattern-matching algorithms or neural networks used in such inverse problems often lack principled uncertainty quantification, which limits the trustworthiness and transparency, required for clinical acceptance. Here, we describe a physics-structured variational autoencoder (PS-VAE) designed for rapid extraction of voxelwise multi-parameter posterior distributions. Our approach integrates a differentiable spin physics simulator with self-supervised learning, and provides a full covariance that captures the inter-parameter correlations of the latent biophysical space. The method was validated in a multi-proton pool chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) molecular MRF study, across in-vitro phantoms, tumor-bearing mice, healthy human volunteers, and a subject with glioblastoma. The resulting multi-parametric posteriors are in good agreement with those calculated using a brute-force Bayesian analysis, while providing an orders-of-magnitude acceleration in whole brain quantification. In addition, we demonstrate how monitoring the multi-parameter posterior dynamics across progressively acquired signals provides practical insights for protocol optimization and may facilitate real-time adaptive acquisition.
comment: Submitted to IEEE Transactions on Medical Imaging. This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Entropy-Gated Selective Policy Optimization:Token-Level Gradient Allocation for Hybrid Training of Large Language Models
Hybrid training methods for large language models combine supervised fine tuning (SFT) on expert demonstrations with reinforcement learning (RL) on model rollouts, typically at the sample level. We propose Entropy Gated Selective Policy Optimization (EGSPO), a three stage framework that extends sample level mixing with token level gradient modulation. Stage 1, SFT expert learning, establishes a reliable warm up policy using expert demonstrations with a pure SFT loss. Stage 2, RL rollout generation, samples trajectories from the current policy and computes per token predictive entropy. Stage 3, the EGSPO mechanism, applies entropy gated gradient allocation: a predictive entropy module routes high entropy tokens to full PPO updates to encourage exploration, and low entropy tokens to attenuated PPO updates to reduce variance and preserve knowledge. Critically, both branches incorporate the advantage function A_t, ensuring that incorrect trajectories receive consistent negative learning signals and preventing reinforcement of confident errors. EGSPO achieves consistent improvements on mathematical reasoning benchmarks, with gains of 3.8 percent on AIME and 2.9 percent on MATH over the CHORD phi baseline, while incurring only 3.4 percent additional computational overhead.
comment: accepted by cscwd2026
☆ medR: Reward Engineering for Clinical Offline Reinforcement Learning via Tri-Drive Potential Functions
Reinforcement Learning (RL) offers a powerful framework for optimizing dynamic treatment regimes (DTRs). However, clinical RL is fundamentally bottlenecked by reward engineering: the challenge of defining signals that safely and effectively guide policy learning in complex, sparse offline environments. Existing approaches often rely on manual heuristics that fail to generalize across diverse pathologies. To address this, we propose an automated pipeline leveraging Large Language Models (LLMs) for offline reward design and verification. We formulate the reward function using potential functions consisted of three core components: survival, confidence, and competence. We further introduce quantitative metrics to rigorously evaluate and select the optimal reward structure prior to deployment. By integrating LLM-driven domain knowledge, our framework automates the design of reward functions for specific diseases while significantly enhancing the performance of the resulting policies.
☆ Periodic Regularized Q-Learning
In reinforcement learning (RL), Q-learning is a fundamental algorithm whose convergence is guaranteed in the tabular setting. However, this convergence guarantee does not hold under linear function approximation. To overcome this limitation, a significant line of research has introduced regularization techniques to ensure stable convergence under function approximation. In this work, we propose a new algorithm, periodic regularized Q-learning (PRQ). We first introduce regularization at the level of the projection operator and explicitly construct a regularized projected value iteration (RP-VI), subsequently extending it to a sample-based RL algorithm. By appropriately regularizing the projection operator, the resulting projected value iteration becomes a contraction. By extending this regularized projection into the stochastic setting, we establish the PRQ algorithm and provide a rigorous theoretical analysis that proves finite-time convergence guarantees for PRQ under linear function approximation.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ Lipschitz Multiscale Deep Equilibrium Models: A Theoretically Guaranteed and Accelerated Approach AISTATS2026
Deep equilibrium models (DEQs) achieve infinitely deep network representations without stacking layers by exploring fixed points of layer transformations in neural networks. Such models constitute an innovative approach that achieves performance comparable to state-of-the-art methods in many large-scale numerical experiments, despite requiring significantly less memory. However, DEQs face the challenge of requiring vastly more computational time for training and inference than conventional methods, as they repeatedly perform fixed-point iterations with no convergence guarantee upon each input. Therefore, this study explored an approach to improve fixed-point convergence and consequently reduce computational time by restructuring the model architecture to guarantee fixed-point convergence. Our proposed approach for image classification, Lipschitz multiscale DEQ, has theoretically guaranteed fixed-point convergence for both forward and backward passes by hyperparameter adjustment, achieving up to a 4.75$\times$ speed-up in numerical experiments on CIFAR-10 at the cost of a minor drop in accuracy.
comment: Accepted at AISTATS2026
☆ Anomaly Detection via Mean Shift Density Enhancement
Unsupervised anomaly detection stands as an important problem in machine learning, with applications in financial fraud prevention, network security and medical diagnostics. Existing unsupervised anomaly detection algorithms rarely perform well across different anomaly types, often excelling only under specific structural assumptions. This lack of robustness also becomes particularly evident under noisy settings. We propose Mean Shift Density Enhancement (MSDE), a fully unsupervised framework that detects anomalies through their geometric response to density-driven manifold evolution. MSDE is based on the principle that normal samples, being well supported by local density, remain stable under iterative density enhancement, whereas anomalous samples undergo large cumulative displacements as they are attracted toward nearby density modes. To operationalize this idea, MSDE employs a weighted mean-shift procedure with adaptive, sample-specific density weights derived from a UMAP-based fuzzy neighborhood graph. Anomaly scores are defined by the total displacement accumulated across a small number of mean-shift iterations. We evaluate MSDE on the ADBench benchmark, comprising forty six real-world tabular datasets, four realistic anomaly generation mechanisms, and six noise levels. Compared to 13 established unsupervised baselines, MSDE achieves consistently strong, balanced and robust performance for AUC-ROC, AUC-PR, and Precision@n, at several noise levels and on average over several types of anomalies. These results demonstrate that displacement-based scoring provides a robust alternative to the existing state-of-the-art for unsupervised anomaly detection.
☆ Universal Approximation of Continuous Functionals on Compact Subsets via Linear Measurements and Scalar Nonlinearities
We study universal approximation of continuous functionals on compact subsets of products of Hilbert spaces. We prove that any such functional can be uniformly approximated by models that first take finitely many continuous linear measurements of the inputs and then combine these measurements through continuous scalar nonlinearities. We also extend the approximation principle to maps with values in a Banach space, yielding finite-rank approximations. These results provide a compact-set justification for the common ``measure, apply scalar nonlinearities, then combine'' design pattern used in operator learning and imaging.
comment: 10 pages
☆ Agentic Proposing: Enhancing Large Language Model Reasoning via Compositional Skill Synthesis
Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
comment: 23page4
☆ BlockRR: A Unified Framework of RR-type Algorithms for Label Differential Privacy
In this paper, we introduce BlockRR, a novel and unified randomized-response mechanism for label differential privacy. This framework generalizes existed RR-type mechanisms as special cases under specific parameter settings, which eliminates the need for separate, case-by-case analysis. Theoretically, we prove that BlockRR satisfies $ε$-label DP. We also design a partition method for BlockRR based on a weight matrix derived from label prior information; the parallel composition principle ensures that the composition of two such mechanisms remains $ε$-label DP. Empirically, we evaluate BlockRR on two variants of CIFAR-10 with varying degrees of class imbalance. Results show that in the high-privacy and moderate-privacy regimes ($ε\leq 3.0$), our propsed method gets a better balance between test accuaracy and the average of per-class accuracy. In the low-privacy regime ($ε\geq 4.0$), all methods reduce BlockRR to standard RR without additional performance loss.
comment: 19 pages, 2 figures
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ Beyond Suffixes: Token Position in GCG Adversarial Attacks on Large Language Models
Large Language Models (LLMs) have seen widespread adoption across multiple domains, creating an urgent need for robust safety alignment mechanisms. However, robustness remains challenging due to jailbreak attacks that bypass alignment via adversarial prompts. In this work, we focus on the prevalent Greedy Coordinate Gradient (GCG) attack and identify a previously underexplored attack axis in jailbreak attacks typically framed as suffix-based: the placement of adversarial tokens within the prompt. Using GCG as a case study, we show that both optimizing attacks to generate prefixes instead of suffixes and varying adversarial token position during evaluation substantially influence attack success rates. Our findings highlight a critical blind spot in current safety evaluations and underline the need to account for the position of adversarial tokens in the adversarial robustness evaluation of LLMs.
comment: 12 pages, 10 figures
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ Principled Federated Random Forests for Heterogeneous Data
Random Forests (RF) are among the most powerful and widely used predictive models for centralized tabular data, yet few methods exist to adapt them to the federated learning setting. Unlike most federated learning approaches, the piecewise-constant nature of RF prevents exact gradient-based optimization. As a result, existing federated RF implementations rely on unprincipled heuristics: for instance, aggregating decision trees trained independently on clients fails to optimize the global impurity criterion, even under simple distribution shifts. We propose FedForest, a new federated RF algorithm for horizontally partitioned data that naturally accommodates diverse forms of client data heterogeneity, from covariate shift to more complex outcome shift mechanisms. We prove that our splitting procedure, based on aggregating carefully chosen client statistics, closely approximates the split selected by a centralized algorithm. Moreover, FedForest allows splits on client indicators, enabling a non-parametric form of personalization that is absent from prior federated random forest methods. Empirically, we demonstrate that the resulting federated forests closely match centralized performance across heterogeneous benchmarks while remaining communication-efficient.
☆ GraDE: A Graph Diffusion Estimator for Frequent Subgraph Discovery in Neural Architectures
Finding frequently occurring subgraph patterns or network motifs in neural architectures is crucial for optimizing efficiency, accelerating design, and uncovering structural insights. However, as the subgraph size increases, enumeration-based methods are perfectly accurate but computationally prohibitive, while sampling-based methods are computationally tractable but suffer from a severe decline in discovery capability. To address these challenges, this paper proposes GraDE, a diffusion-guided search framework that ensures both computational feasibility and discovery capability. The key innovation is the Graph Diffusion Estimator (GraDE), which is the first to introduce graph diffusion models to identify frequent subgraphs by scoring their typicality within the learned distribution. Comprehensive experiments demonstrate that the estimator achieves superior ranking accuracy, with up to 114\% improvement compared to sampling-based baselines. Benefiting from this, the proposed framework successfully discovers large-scale frequent patterns, achieving up to 30$\times$ higher median frequency than sampling-based methods.
☆ Accordion-Thinking: Self-Regulated Step Summaries for Efficient and Readable LLM Reasoning
Scaling test-time compute via long Chain-ofThought unlocks remarkable gains in reasoning capabilities, yet it faces practical limits due to the linear growth of KV cache and quadratic attention complexity. In this paper, we introduce Accordion-Thinking, an end-to-end framework where LLMs learn to self-regulate the granularity of the reasoning steps through dynamic summarization. This mechanism enables a Fold inference mode, where the model periodically summarizes its thought process and discards former thoughts to reduce dependency on historical tokens. We apply reinforcement learning to incentivize this capability further, uncovering a critical insight: the accuracy gap between the highly efficient Fold mode and the exhaustive Unfold mode progressively narrows and eventually vanishes over the course of training. This phenomenon demonstrates that the model learns to encode essential reasoning information into compact summaries, achieving effective compression of the reasoning context. Our Accordion-Thinker demonstrates that with learned self-compression, LLMs can tackle complex reasoning tasks with minimal dependency token overhead without compromising solution quality, and it achieves a 3x throughput while maintaining accuracy on a 48GB GPU memory configuration, while the structured step summaries provide a human-readable account of the reasoning process.
☆ Merging Beyond: Streaming LLM Updates via Activation-Guided Rotations
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
☆ BayeSQP: Bayesian Optimization through Sequential Quadratic Programming
We introduce BayeSQP, a novel algorithm for general black-box optimization that merges the structure of sequential quadratic programming with concepts from Bayesian optimization. BayeSQP employs second-order Gaussian process surrogates for both the objective and constraints to jointly model the function values, gradients, and Hessian from only zero-order information. At each iteration, a local subproblem is constructed using the GP posterior estimates and solved to obtain a search direction. Crucially, the formulation of the subproblem explicitly incorporates uncertainty in both the function and derivative estimates, resulting in a tractable second-order cone program for high probability improvements under model uncertainty. A subsequent one-dimensional line search via constrained Thompson sampling selects the next evaluation point. Empirical results show thatBayeSQP outperforms state-of-the-art methods in specific high-dimensional settings. Our algorithm offers a principled and flexible framework that bridges classical optimization techniques with modern approaches to black-box optimization.
☆ TAME: A Trustworthy Test-Time Evolution of Agent Memory with Systematic Benchmarking
Test-time evolution of agent memory serves as a pivotal paradigm for achieving AGI by bolstering complex reasoning through experience accumulation. However, even during benign task evolution, agent safety alignment remains vulnerable-a phenomenon known as Agent Memory Misevolution. To evaluate this phenomenon, we construct the Trust-Memevo benchmark to assess multi-dimensional trustworthiness during benign task evolution, revealing an overall decline in trustworthiness across various task domains and evaluation settings. To address this issue, we propose TAME, a dual-memory evolutionary framework that separately evolves executor memory to improve task performance by distilling generalizable methodologies, and evaluator memory to refine assessments of both safety and task utility based on historical feedback. Through a closed loop of memory filtering, draft generation, trustworthy refinement, execution, and dual-track memory updating, TAME preserves trustworthiness without sacrificing utility. Experiments demonstrate that TAME mitigates misevolution, achieving a joint improvement in both trustworthiness and task performance.
☆ Topology Matters: A Cautionary Case Study of Graph SSL on Neuro-Inspired Benchmarks
Understanding how local interactions give rise to global brain organization requires models that can represent information across multiple scales. We introduce a hierarchical self-supervised learning (SSL) framework that jointly learns node-, edge-, and graph-level embeddings, inspired by multimodal neuroimaging. We construct a controllable synthetic benchmark mimicking the topological properties of connectomes. Our four-stage evaluation protocol reveals a critical failure: the invariance-based SSL model is fundamentally misaligned with the benchmark's topological properties and is catastrophically outperformed by classical, topology-aware heuristics. Ablations confirm an objective mismatch: SSL objectives designed to be invariant to topological perturbations learn to ignore the very community structure that classical methods exploit. Our results expose a fundamental pitfall in applying generic graph SSL to connectome-like data. We present this framework as a cautionary case study, highlighting the need for new, topology-aware SSL objectives for neuro-AI research that explicitly reward the preservation of structure (e.g., modularity or motifs).
☆ Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection
The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.
☆ Latent Neural-ODE for Model-Informed Precision Dosing: Overcoming Structural Assumptions in Pharmacokinetics
Accurate estimation of tacrolimus exposure, quantified by the area under the concentration-time curve (AUC), is essential for precision dosing after renal transplantation. Current practice relies on population pharmacokinetic (PopPK) models based on nonlinear mixed-effects (NLME) methods. However, these models depend on rigid, pre-specified assumptions and may struggle to capture complex, patient-specific dynamics, leading to model misspecification. In this study, we introduce a novel data-driven alternative based on Latent Ordinary Differential Equations (Latent ODEs) for tacrolimus AUC prediction. This deep learning approach learns individualized pharmacokinetic dynamics directly from sparse clinical data, enabling greater flexibility in modeling complex biological behavior. The model was evaluated through extensive simulations across multiple scenarios and benchmarked against two standard approaches: NLME-based estimation and the iterative two-stage Bayesian (it2B) method. We further performed a rigorous clinical validation using a development dataset (n = 178) and a completely independent external dataset (n = 75). In simulation, the Latent ODE model demonstrated superior robustness, maintaining high accuracy even when underlying biological mechanisms deviated from standard assumptions. Regarding experiments on clinical datasets, in internal validation, it achieved significantly higher precision with a mean RMSPE of 7.99% compared with 9.24% for it2B (p < 0.001). On the external cohort, it achieved an RMSPE of 10.82%, comparable to the two standard estimators (11.48% and 11.54%). These results establish the Latent ODE as a powerful and reliable tool for AUC prediction. Its flexible architecture provides a promising foundation for next-generation, multi-modal models in personalized medicine.
☆ Lookahead Sample Reward Guidance for Test-Time Scaling of Diffusion Models
Diffusion models have demonstrated strong generative performance; however, generated samples often fail to fully align with human intent. This paper studies a test-time scaling method that enables sampling from regions with higher human-aligned reward values. Existing gradient guidance methods approximate the expected future reward (EFR) at an intermediate particle $\mathbf{x}_t$ using a Taylor approximation, but this approximation at each time step incurs high computational cost due to sequential neural backpropagation. We show that the EFR at any $\mathbf{x}_t$ can be computed using only marginal samples from a pre-trained diffusion model. The proposed EFR formulation detaches the neural dependency between $\mathbf{x}_t$ and the EFR, enabling closed-form guidance computation without neural backpropagation. To further improve efficiency, we introduce lookahead sampling to collect marginal samples. For final sample generation, we use an accurate solver that guides particles toward high-reward lookahead samples. We refer to this sampling scheme as LiDAR sampling. LiDAR achieves substantial performance improvements using only three samples with a 3-step lookahead solver, exhibiting steep performance gains as lookahead accuracy and sample count increase; notably, it reaches the same GenEval performance as the latest gradient guidance method for SDXL with a 9.5x speedup.
comment: Under Review
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ Sparsity is Combinatorial Depth: Quantifying MoE Expressivity via Tropical Geometry
While Mixture-of-Experts (MoE) architectures define the state-of-the-art, their theoretical success is often attributed to heuristic efficiency rather than geometric expressivity. In this work, we present the first analysis of MoE through the lens of tropical geometry, establishing that the Top-$k$ routing mechanism is algebraically isomorphic to the $k$-th elementary symmetric tropical polynomial. This isomorphism partitions the input space into the Normal Fan of a Hypersimplex, revealing that \textbf{sparsity is combinatorial depth} which scales geometric capacity by the binomial coefficient $\binom{N}{k}$. Moving beyond ambient bounds, we introduce the concept of \textit{Effective Capacity} under the Manifold Hypothesis. We prove that while dense networks suffer from capacity collapse on low-dimensional data, MoE architectures exhibit \textit{Combinatorial Resilience}, maintaining high expressivity via the transversality of routing cones. In this study, our framework unifies the discrete geometry of the Hypersimplex with the continuous geometry of neural functions, offering a rigorous theoretical justification for the topological supremacy of conditional computation.
☆ ForesightKV: Optimizing KV Cache Eviction for Reasoning Models by Learning Long-Term Contribution
Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
☆ From Scalar Rewards to Potential Trends: Shaping Potential Landscapes for Model-Based Reinforcement Learning
Model-based reinforcement learning (MBRL) achieves high sample efficiency by simulating future trajectories with learned dynamics and reward models. However, its effectiveness is severely compromised in sparse reward settings. The core limitation lies in the standard paradigm of regressing ground-truth scalar rewards: in sparse environments, this yields a flat, gradient-free landscape that fails to provide directional guidance for planning. To address this challenge, we propose Shaping Landscapes with Optimistic Potential Estimates (SLOPE), a novel framework that shifts reward modeling from predicting scalars to constructing informative potential landscapes. SLOPE employs optimistic distributional regression to estimate high-confidence upper bounds, which amplifies rare success signals and ensures sufficient exploration gradients. Evaluations on 30+ tasks across 5 benchmarks demonstrate that SLOPE consistently outperforms leading baselines in fully sparse, semi-sparse, and dense rewards.
comment: 26 pages, 20 figures.Preprint. Work in progress
☆ Reinforcement Learning with Promising Tokens for Large Language Models
Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ DynSplit-KV: Dynamic Semantic Splitting for KVCache Compression in Efficient Long-Context LLM Inference
Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
☆ Probe-then-Commit Multi-Objective Bandits: Theoretical Benefits of Limited Multi-Arm Feedback
We study an online resource-selection problem motivated by multi-radio access selection and mobile edge computing offloading. In each round, an agent chooses among $K$ candidate links/servers (arms) whose performance is a stochastic $d$-dimensional vector (e.g., throughput, latency, energy, reliability). The key interaction is \emph{probe-then-commit (PtC)}: the agent may probe up to $q>1$ candidates via control-plane measurements to observe their vector outcomes, but must execute exactly one candidate in the data plane. This limited multi-arm feedback regime strictly interpolates between classical bandits ($q=1$) and full-information experts ($q=K$), yet existing multi-objective learning theory largely focuses on these extremes. We develop \textsc{PtC-P-UCB}, an optimistic probe-then-commit algorithm whose technical core is frontier-aware probing under uncertainty in a Pareto mode, e.g., it selects the $q$ probes by approximately maximizing a hypervolume-inspired frontier-coverage potential and commits by marginal hypervolume gain to directly expand the attained Pareto region. We prove a dominated-hypervolume frontier error of $\tilde{O} (K_P d/\sqrt{qT})$, where $K_P$ is the Pareto-frontier size and $T$ is the horizon, and scalarized regret $\tilde{O} (L_φd\sqrt{(K/q)T})$, where $φ$ is the scalarizer. These quantify a transparent $1/\sqrt{q}$ acceleration from limited probing. We further extend to \emph{multi-modal probing}: each probe returns $M$ modalities (e.g., CSI, queue, compute telemetry), and uncertainty fusion yields variance-adaptive versions of the above bounds via an effective noise scale.
☆ Adversarial construction as a potential solution to the experiment design problem in large task spaces
Despite decades of work, we still lack a robust, task-general theory of human behavior even in the simplest domains. In this paper we tackle the generality problem head-on, by aiming to develop a unified model for all tasks embedded in a task-space. In particular we consider the space of binary sequence prediction tasks where the observations are generated by the space parameterized by hidden Markov models (HMM). As the space of tasks is large, experimental exploration of the entire space is infeasible. To solve this problem we propose the adversarial construction approach, which helps identify tasks that are most likely to elicit a qualitatively novel behavior. Our results suggest that adversarial construction significantly outperforms random sampling of environments and therefore could be used as a proxy for optimal experimental design in high-dimensional task spaces.
comment: 7 pages, 7 figures
☆ StepScorer: Accelerating Reinforcement Learning with Step-wise Scoring and Psychological Regret Modeling
Reinforcement learning algorithms often suffer from slow convergence due to sparse reward signals, particularly in complex environments where feedback is delayed or infrequent. This paper introduces the Psychological Regret Model (PRM), a novel approach that accelerates learning by incorporating regret-based feedback signals after each decision step. Rather than waiting for terminal rewards, PRM computes a regret signal based on the difference between the expected value of the optimal action and the value of the action taken in each state. This transforms sparse rewards into dense feedback signals through a step-wise scoring framework, enabling faster convergence. We demonstrate that PRM achieves stable performance approximately 36\% faster than traditional Proximal Policy Optimization (PPO) in benchmark environments such as Lunar Lander. Our results indicate that PRM is particularly effective in continuous control tasks and environments with delayed feedback, making it suitable for real-world applications such as robotics, finance, and adaptive education where rapid policy adaptation is critical. The approach formalizes human-inspired counterfactual thinking as a computable regret signal, bridging behavioral economics and reinforcement learning.
comment: 10 pages, 5 figures, 1 table
☆ NeuralFLoC: Neural Flow-Based Joint Registration and Clustering of Functional Data
Clustering functional data in the presence of phase variation is challenging, as temporal misalignment can obscure intrinsic shape differences and degrade clustering performance. Most existing approaches treat registration and clustering as separate tasks or rely on restrictive parametric assumptions. We present \textbf{NeuralFLoC}, a fully unsupervised, end-to-end deep learning framework for joint functional registration and clustering based on Neural ODE-driven diffeomorphic flows and spectral clustering. The proposed model learns smooth, invertible warping functions and cluster-specific templates simultaneously, effectively disentangling phase and amplitude variation. We establish universal approximation guarantees and asymptotic consistency for the proposed framework. Experiments on functional benchmarks show state-of-the-art performance in both registration and clustering, with robustness to missing data, irregular sampling, and noise, while maintaining scalability. Code is available at https://anonymous.4open.science/r/NeuralFLoC-FEC8.
☆ Online Conformal Prediction via Universal Portfolio Algorithms
Online conformal prediction (OCP) seeks prediction intervals that achieve long-run $1-α$ coverage for arbitrary (possibly adversarial) data streams, while remaining as informative as possible. Existing OCP methods often require manual learning-rate tuning to work well, and may also require algorithm-specific analyses. Here, we develop a general regret-to-coverage theory for interval-valued OCP based on the $(1-α)$-pinball loss. Our first contribution is to identify \emph{linearized regret} as a key notion, showing that controlling it implies coverage bounds for any online algorithm. This relies on a black-box reduction that depends only on the Fenchel conjugate of an upper bound on the linearized regret. Building on this theory, we propose UP-OCP, a parameter-free method for OCP, via a reduction to a two-asset portfolio selection problem, leveraging universal portfolio algorithms. We show strong finite-time bounds on the miscoverage of UP-OCP, even for polynomially growing predictions. Extensive experiments support that UP-OCP delivers consistently better size/coverage trade-offs than prior online conformal baselines.
☆ MemCast: Memory-Driven Time Series Forecasting with Experience-Conditioned Reasoning
Time series forecasting (TSF) plays a critical role in decision-making for many real-world applications. Recently, LLM-based forecasters have made promising advancements. Despite their effectiveness, existing methods often lack explicit experience accumulation and continual evolution. In this work, we propose MemCast, a learning-to-memory framework that reformulates TSF as an experience-conditioned reasoning task. Specifically, we learn experience from the training set and organize it into a hierarchical memory. This is achieved by summarizing prediction results into historical patterns, distilling inference trajectories into reasoning wisdom, and inducing extracted temporal features into general laws. Furthermore, during inference, we leverage historical patterns to guide the reasoning process and utilize reasoning wisdom to select better trajectories, while general laws serve as criteria for reflective iteration. Additionally, to enable continual evolution, we design a dynamic confidence adaptation strategy that updates the confidence of individual entries without leaking the test set distribution. Extensive experiments on multiple datasets demonstrate that MemCast consistently outperforms previous methods, validating the effectiveness of our approach. Our code is available at https://github.com/Xiaoyu-Tao/MemCast-TS.
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ What Makes a Good Example? Modeling Exemplar Selection with Neural Network Representations
Teaching requires distilling a rich category distribution into a small set of informative exemplars. Although prior work shows that humans consider both representativeness and diversity when teaching, the computational principles underlying these tradeoffs remain unclear. We address this gap by modeling human exemplar selection using neural network feature representations and principled subset selection criteria. Novel visual categories were embedded along a one-dimensional morph continuum using pretrained vision models, and selection strategies varied in their emphasis on prototypicality, joint representativeness, and diversity. Adult participants selected one to three exemplars to teach a learner. Model-human comparisons revealed that strategies based on joint representativeness, or its combination with diversity, best captured human judgments, whereas purely prototypical or diversity-based strategies performed worse. Moreover, transformer-based representations consistently aligned more closely with human behavior than convolutional networks. These results highlight the potential utility of dataset distillation methods in machine learning as computational models for teaching.
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ SATORIS-N: Spectral Analysis based Traffic Observation Recovery via Informed Subspaces and Nuclear-norm minimization
Traffic-density matrices from different days exhibit both low rank and stable correlations in their singular-vector subspaces. Leveraging this, we introduce SATORIS-N, a framework for imputing partially observed traffic-density by informed subspace priors from neighboring days. Our contribution is a subspace-aware semidefinite programming (SDP)} formulation of nuclear norm that explicitly informs the reconstruction with prior singular-subspace information. This convex formulation jointly enforces low rank and subspace alignment, providing a single global optimum and substantially improving accuracy under medium and high occlusion. We also study a lightweight implicit subspace-alignment} strategy in which matrices from consecutive days are concatenated to encourage alignment of spatial or temporal singular directions. Although this heuristic offers modest gains when missing rates are low, the explicit SDP approach is markedly more robust when large fractions of entries are missing. Across two real-world datasets (Beijing and Shanghai), SATORIS-N consistently outperforms standard matrix-completion methods such as SoftImpute, IterativeSVD, statistical, and even deep learning baselines at high occlusion levels. The framework generalizes to other spatiotemporal settings in which singular subspaces evolve slowly over time. In the context of intelligent vehicles and vehicle-to-everything (V2X) systems, accurate traffic-density reconstruction enables critical applications including cooperative perception, predictive routing, and vehicle-to-infrastructure (V2I) communication optimization. When infrastructure sensors or vehicle-reported observations are incomplete - due to communication dropouts, sensor occlusions, or sparse connected vehicle penetration-reliable imputation becomes essential for safe and efficient autonomous navigation.
☆ Enhanced Parcel Arrival Forecasting for Logistic Hubs: An Ensemble Deep Learning Approach
The rapid expansion of online shopping has increased the demand for timely parcel delivery, compelling logistics service providers to enhance the efficiency, agility, and predictability of their hub networks. In order to solve the problem, we propose a novel deep learning-based ensemble framework that leverages historical arrival patterns and real-time parcel status updates to forecast upcoming workloads at logistic hubs. This approach not only facilitates the generation of short-term forecasts, but also improves the accuracy of future hub workload predictions for more strategic planning and resource management. Empirical tests of the algorithm, conducted through a case study of a major city's parcel logistics, demonstrate the ensemble method's superiority over both traditional forecasting techniques and standalone deep learning models. Our findings highlight the significant potential of this method to improve operational efficiency in logistics hubs and advocate for its broader adoption.
☆ Contrastive Concept-Tree Search for LLM-Assisted Algorithm Discovery
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
☆ Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks
Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.
☆ Quantized Evolution Strategies: High-precision Fine-tuning of Quantized LLMs at Low-precision Cost
Post-Training Quantization (PTQ) is essential for deploying Large Language Models (LLMs) on memory-constrained devices, yet it renders models static and difficult to fine-tune. Standard fine-tuning paradigms, including Reinforcement Learning (RL), fundamentally rely on backpropagation and high-precision weights to compute gradients. Thus they cannot be used on quantized models, where the parameter space is discrete and non-differentiable. While Evolution Strategies (ES) offer a backpropagation-free alternative, optimization of the quantized parameters can still fail due to vanishing or inaccurate gradient. This paper introduces Quantized Evolution Strategies (QES), an optimization paradigm that performs full-parameter fine-tuning directly in the quantized space. QES is based on two innovations: (1) it integrates accumulated error feedback to preserve high-precision gradient signals, and (2) it utilizes a stateless seed replay to reduce memory usage to low-precision inference levels. QES significantly outperforms the state-of-the-art zeroth-order fine-tuning method on arithmetic reasoning tasks, making direct fine-tuning for quantized models possible. It therefore opens up the possibility for scaling up LLMs entirely in the quantized space. The source code is available at https://github.com/dibbla/Quantized-Evolution-Strategies .
comment: Preprint version
☆ Function-Space Empirical Bayes Regularisation with Large Vision-Language Model Priors
Bayesian deep learning (BDL) provides a principled framework for reliable uncertainty quantification by combining deep neural networks with Bayesian inference. A central challenge in BDL lies in the design of informative prior distributions that scale effectively to high-dimensional data. Recent functional variational inference (VI) approaches address this issue by imposing priors directly in function space; however, most existing methods rely on Gaussian process (GP) priors, whose expressiveness and generalisation capabilities become limited in high-dimensional regimes. In this work, we propose VLM-FS-EB, a novel function-space empirical Bayes regularisation framework, leveraging large vision-language models (VLMs) to generates semantically meaningful context points. These synthetic samples are then used VLMs for embeddings to construct expressive functional priors. Furthermore, the proposed method is evaluated against various baselines, and experimental results demonstrate that our method consistently improves predictive performance and yields more reliable uncertainty estimates, particularly in out-of-distribution (OOD) detection tasks and data-scarce regimes.
☆ Consensus Group Relative Policy Optimization for Text Generation
Many strong decoding methods for text generation follow a sample-and-rerank paradigm: they draw multiple candidates, score each under a utility (reward) function using consensus across samples, and return the best one. Although effective, these methods incur high computational costs during inference due to repeated sampling and scoring. Prior attempts to amortize inference-time computation typically rely on gold references, teacher labels, or curated preference data, increasing dataset construction effort and the demand for high-fidelity reward models. We propose Consensus Group Relative Policy Optimization (C-GRPO), which distills Minimum Bayes Risk (MBR) decoding into training by formulating the consensus utility as a group-relative objective within GRPO. C-GRPO requires only a utility function and policy samples, without gold references or explicit preference labels. Under ideal conditions, we show that the objective function of C-GRPO is directionally aligned with the gradient of the expected-utility objective underlying MBR decoding, leading to a convergence guarantee. Experiments on machine translation (WMT 2024) and text summarization (XSum) demonstrate that C-GRPO successfully achieves performance comparable to MBR decoding without the associated inference-time overhead, while outperforming reference-free baseline methods.
☆ TextME: Bridging Unseen Modalities Through Text Descriptions
Expanding multimodal representations to novel modalities is constrained by reliance on large-scale paired datasets (e.g., text-image, text-audio, text-3D, text-molecule), which are costly and often infeasible in domains requiring expert annotation such as medical imaging and molecular analysis. We introduce TextME, the first text-only modality expansion framework, to the best of our knowledge, projecting diverse modalities into LLM embedding space as a unified anchor. Our approach exploits the geometric structure of pretrained contrastive encoders to enable zero-shot cross-modal transfer using only text descriptions, without paired supervision. We empirically validate that such consistent modality gaps exist across image, video, audio, 3D, X-ray, and molecular domains, demonstrating that text-only training can preserve substantial performance of pretrained encoders. We further show that our framework enables emergent cross-modal retrieval between modality pairs not explicitly aligned during training (e.g., audio-to-image, 3D-to-image). These results establish text-only training as a practical alternative to paired supervision for modality expansion.
☆ PRISM: Structured Optimization via Anisotropic Spectral Shaping
We propose PRISM, an optimizer that enhances first-order spectral descent methods like Muon with partial second-order information. It constructs an efficient, low-rank quasi-second-order preconditioner via innovation-augmented polar decomposition. This mechanism enables PRISM to perform anisotropic spectral shaping, which adaptively suppresses updates in high-variance subspaces while preserving update strength in signal-dominated directions. Crucially, this is achieved with minimal computational overhead and zero additional memory compared to first-order baselines. PRISM demonstrates a practical strategy for integrating curvature-adaptive properties into the spectral optimization paradigm.
☆ Training and Simulation of Quadrupedal Robot in Adaptive Stair Climbing for Indoor Firefighting: An End-to-End Reinforcement Learning Approach
Quadruped robots are used for primary searches during the early stages of indoor fires. A typical primary search involves quickly and thoroughly looking for victims under hazardous conditions and monitoring flammable materials. However, situational awareness in complex indoor environments and rapid stair climbing across different staircases remain the main challenges for robot-assisted primary searches. In this project, we designed a two-stage end-to-end deep reinforcement learning (RL) approach to optimize both navigation and locomotion. In the first stage, the quadrupeds, Unitree Go2, were trained to climb stairs in Isaac Lab's pyramid-stair terrain. In the second stage, the quadrupeds were trained to climb various realistic indoor staircases in the Isaac Lab engine, with the learned policy transferred from the previous stage. These indoor staircases are straight, L-shaped, and spiral, to support climbing tasks in complex environments. This project explores how to balance navigation and locomotion and how end-to-end RL methods can enable quadrupeds to adapt to different stair shapes. Our main contributions are: (1) A two-stage end-to-end RL framework that transfers stair-climbing skills from abstract pyramid terrain to realistic indoor stair topologies. (2) A centerline-based navigation formulation that enables unified learning of navigation and locomotion without hierarchical planning. (3) Demonstration of policy generalization across diverse staircases using only local height-map perception. (4) An empirical analysis of success, efficiency, and failure modes under increasing stair difficulty.
comment: 8 pages, 9 figures, 43rd International Symposium on Automation and Robotics in Construction
☆ Neural Predictor-Corrector: Solving Homotopy Problems with Reinforcement Learning
The Homotopy paradigm, a general principle for solving challenging problems, appears across diverse domains such as robust optimization, global optimization, polynomial root-finding, and sampling. Practical solvers for these problems typically follow a predictor-corrector (PC) structure, but rely on hand-crafted heuristics for step sizes and iteration termination, which are often suboptimal and task-specific. To address this, we unify these problems under a single framework, which enables the design of a general neural solver. Building on this unified view, we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted heuristics with automatically learned policies. NPC formulates policy selection as a sequential decision-making problem and leverages reinforcement learning to automatically discover efficient strategies. To further enhance generalization, we introduce an amortized training mechanism, enabling one-time offline training for a class of problems and efficient online inference on new instances. Experiments on four representative homotopy problems demonstrate that our method generalizes effectively to unseen instances. It consistently outperforms classical and specialized baselines in efficiency while demonstrating superior stability across tasks, highlighting the value of unifying homotopy methods into a single neural framework.
☆ Geometry-Preserving Neural Architectures on Manifolds with Boundary
Preserving geometric structure is important in learning. We propose a unified class of geometry-aware architectures that interleave geometric updates between layers, where both projection layers and intrinsic exponential map updates arise as discretizations of projected dynamical systems on manifolds (with or without boundary). Within this framework, we establish universal approximation results for constrained neural ODEs. We also analyze architectures that enforce geometry only at the output, proving a separate universal approximation property that enables direct comparison to interleaved designs. When the constraint set is unknown, we learn projections via small-time heat-kernel limits, showing diffusion/flow-matching can be used as data-based projections. Experiments on dynamics over S^2 and SO(3), and diffusion on S^{d-1}-valued features demonstrate exact feasibility for analytic updates and strong performance for learned projections
☆ TMS: Trajectory-Mixed Supervision for Reward-Free, On-Policy SFT
Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT) are the two dominant paradigms for enhancing Large Language Model (LLM) performance on downstream tasks. While RL generally preserves broader model capabilities (retention) better than SFT, it comes with significant costs: complex reward engineering, instability, and expensive on-policy sampling. In contrast, SFT is efficient but brittle, often suffering from catastrophic forgetting due to $\textbf{Supervision Mismatch}$: the divergence between the model's evolving policy and static training labels. We address this trade-off with $\textbf{Trajectory-Mixed Supervision (TMS)}$, a reward-free framework that approximates the on-policy benefits of RL by creating a dynamic curriculum from the model's own historical checkpoints. TMS minimizes $\textit{Policy-Label Divergence (PLD)}$, preventing the mode collapse that drives forgetting in standard SFT. Experiments across reasoning (MATH, GSM8K) and instruction-following benchmarks demonstrate that TMS effectively shifts the accuracy--retention Pareto frontier. While RL remains the gold standard for retention, TMS significantly outperforms standard and iterative SFT, bridging the gap to RL without requiring reward models or verifiers. Mechanistic analysis confirms that PLD drift accurately predicts forgetting and that TMS successfully mitigates this drift.
☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
☆ Shortcut Features as Top Eigenfunctions of NTK: A Linear Neural Network Case and More
One of the chronic problems of deep-learning models is shortcut learning. In a case where the majority of training data are dominated by a certain feature, neural networks prefer to learn such a feature even if the feature is not generalizable outside the training set. Based on the framework of Neural Tangent Kernel (NTK), we analyzed the case of linear neural networks to derive some important properties of shortcut learning. We defined a feature of a neural network as an eigenfunction of NTK. Then, we found that shortcut features correspond to features with larger eigenvalues when the shortcuts stem from the imbalanced number of samples in the clustered distribution. We also showed that the features with larger eigenvalues still have a large influence on the neural network output even after training, due to data variances in the clusters. Such a preference for certain features remains even when a margin of a neural network output is controlled, which shows that the max-margin bias is not the only major reason for shortcut learning. These properties of linear neural networks are empirically extended for more complex neural networks as a two-layer fully-connected ReLU network and a ResNet-18.
☆ Evaluating LLMs When They Do Not Know the Answer: Statistical Evaluation of Mathematical Reasoning via Comparative Signals
Evaluating mathematical reasoning in LLMs is constrained by limited benchmark sizes and inherent model stochasticity, yielding high-variance accuracy estimates and unstable rankings across platforms. On difficult problems, an LLM may fail to produce a correct final answer, yet still provide reliable pairwise comparison signals indicating which of two candidate solutions is better. We leverage this observation to design a statistically efficient evaluation framework that combines standard labeled outcomes with pairwise comparison signals obtained by having models judge auxiliary reasoning chains. Treating these comparison signals as control variates, we develop a semiparametric estimator based on the efficient influence function (EIF) for the setting where auxiliary reasoning chains are observed. This yields a one-step estimator that achieves the semiparametric efficiency bound, guarantees strict variance reduction over naive sample averaging, and admits asymptotic normality for principled uncertainty quantification. Across simulations, our one-step estimator substantially improves ranking accuracy, with gains increasing as model output noise grows. Experiments on GPQA Diamond, AIME 2025, and GSM8K further demonstrate more precise performance estimation and more reliable model rankings, especially in small-sample regimes where conventional evaluation is pretty unstable.
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ ME-IGM: Individual-Global-Max in Maximum Entropy Multi-Agent Reinforcement Learning AAMAS 2026
Multi-agent credit assignment is a fundamental challenge for cooperative multi-agent reinforcement learning (MARL), where a team of agents learn from shared reward signals. The Individual-Global-Max (IGM) condition is a widely used principle for multi-agent credit assignment, requiring that the joint action determined by individual Q-functions maximizes the global Q-value. Meanwhile, the principle of maximum entropy has been leveraged to enhance exploration in MARL. However, we identify a critical limitation in existing maximum entropy MARL methods: a misalignment arises between local policies and the joint policy that maximizes the global Q-value, leading to violations of the IGM condition. To address this misalignment, we propose an order-preserving transformation. Building on it, we introduce ME-IGM, a novel maximum entropy MARL algorithm compatible with any credit assignment mechanism that satisfies the IGM condition while enjoying the benefits of maximum entropy exploration. We empirically evaluate two variants of ME-IGM: ME-QMIX and ME-QPLEX, in non-monotonic matrix games, and demonstrate their state-of-the-art performance across 17 scenarios in SMAC-v2 and Overcooked.
comment: Published in the Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
♻ ☆ Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ Admissibility of Stein Shrinkage for Batch Normalization in the Presence of Adversarial Attacks
Batch normalization (BN) is a ubiquitous operation in deep neural networks, primarily used to improve stability and regularization during training. BN centers and scales feature maps using sample means and variances, which are naturally suited for Stein's shrinkage estimation. Applying such shrinkage yields more accurate mean and variance estimates of the batch in the mean-squared-error sense. In this paper, we prove that the Stein shrinkage estimator of the mean and variance dominates over the sample mean and variance estimators, respectively, in the presence of adversarial attacks modeled using sub-Gaussian distributions. Furthermore, by construction, the James-Stein (JS) BN yields a smaller local Lipschitz constant compared to the vanilla BN, implying better regularity properties and potentially improved robustness. This facilitates and justifies the application of Stein shrinkage to estimate the mean and variance parameters in BN and the use of it in image classification and segmentation tasks with and without adversarial attacks. We present SOTA performance results using this Stein-corrected BN in a standard ResNet architecture applied to the task of image classification using CIFAR-10 data, 3D CNN on PPMI (neuroimaging) data, and image segmentation using HRNet on Cityscape data with and without adversarial attacks.
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test ICLR 2026
This paper presents the first study of grokking in practical LLM pretraining. Specifically, we investigate when an LLM memorizes the training data, when its generalization on downstream tasks starts to improve, and what happens if there is a lag between the two. Unlike existing works studying when a small model generalizes to limited and specified tasks during thousands epochs' training on algorithmic data, we focus on a practical setting for LLMs, i.e., one-epoch pretraining of next-token prediction on a cross-domain, large-scale corpus, and generalization on diverse benchmark tasks covering math/commonsense reasoning, code generation, and domain-specific retrieval. Our study, for the first time, verifies that grokking still emerges in pretraining mixture-of-experts (MoE) LLMs, though different local data groups may enter their grokking stages asynchronously due to the heterogeneity of their distributions and attributions to others. To find a mechanistic interpretation of this local grokking, we investigate the dynamics of training data's pathways (i.e., expert choices across layers in MoE). Our primary discovery is that the pathways evolve from random, non-smooth across layers, instance-specific to more structured and transferable across samples, despite the converged pretraining loss. This depicts a transition from memorization to generalization. Two novel metrics are developed to quantify these patterns: one computes the pathway similarity between samples, while the other measures the consistency of aggregated experts between subsequent layers for each sample. These training data based metrics induce zero cost but can faithfully track and monitor the generalization of LLMs on downstream tasks, which, in conventional settings, requires costly instruction tuning and benchmark evaluation.
comment: Accepted at ICLR 2026
♻ ☆ Redirection for Erasing Memory (REM): Towards a universal unlearning method for corrupted data ICLR 2026
Machine unlearning is studied for a multitude of tasks, but specialization of unlearning methods to particular tasks has made their systematic comparison challenging. To address this issue, we propose a conceptual space to characterize diverse corrupted data unlearning tasks in vision classifiers. This space is described by two dimensions, the discovery rate (the fraction of the corrupted data that are known at unlearning time) and the statistical regularity of the corrupted data (from random exemplars to shared concepts). Methods proposed previously have been targeted at portions of this space and-we show-fail predictably outside these regions. We propose a novel method, Redirection for Erasing Memory (REM), whose key feature is that corrupted data are redirected to dedicated neurons introduced at unlearning time and then discarded or deactivated to suppress the influence of corrupted data. REM performs strongly across the space of tasks, in contrast to prior SOTA methods that fail outside the regions for which they were designed.
comment: Accepted as a main track paper at ICLR 2026 https://openreview.net/forum?id=xG0mQ4Xsfm
♻ ☆ Sample-Near-Optimal Agnostic Boosting with Improved Running Time ALT 2026
Boosting is a powerful method that turns weak learners, which perform only slightly better than random guessing, into strong learners with high accuracy. While boosting is well understood in the classic setting, it is less so in the agnostic case, where no assumptions are made about the data. Indeed, only recently was the sample complexity of agnostic boosting nearly settled arXiv:2503.09384, but the known algorithm achieving this bound has exponential running time. In this work, we propose the first agnostic boosting algorithm with near-optimal sample complexity, running in time polynomial in the sample size when considering the other parameters of the problem fixed.
comment: 28 pages, 0 figures. Accepted at the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ Convex Loss Functions for Support Vector Machines (SVMs) and Neural Networks
We propose a new convex loss for Support Vector Machines, both for the binary classification and for the regression models. Therefore, we show the mathematical derivation of the dual problems and we experiment with them on several small datasets. The minimal dimension of those datasets is due to the difficult scalability of the SVM method to bigger instances. This preliminary study should prove that using pattern correlations inside the loss function could enhance the generalisation performances. Our method consistently achieved comparable or superior performance, with improvements of up to 2.0% in F1 scores for classification tasks and 1.0% reduction in Mean Squared Error (MSE) for regression tasks across various datasets, compared to standard losses. Coherently, results show that generalisation measures are never worse than the standard losses and several times they are better. In our opinion, it should be considered a careful study of this loss, coupled with shallow and deep neural networks. In fact, we present some novel results obtained with those architectures.
♻ ☆ A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance
We study reinforcement learning by combining recent advances in regularized linear programming formulations with the classical theory of stochastic approximation. Motivated by the challenge of designing algorithms that leverage off-policy data while maintaining on-policy exploration, we propose PGDA-RL, a novel primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs). PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem. The algorithm operates asynchronously, interacts with the environment through a single trajectory of correlated data, and updates its policy online in response to the dual variable associated with the occupancy measure of the underlying MDP. We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP. Our convergence analysis relies on tools from stochastic approximation theory and holds under weaker assumptions than those required by existing primal-dual RL approaches, notably removing the need for a simulator or a fixed behavioral policy. Under a strengthened ergodicity assumption on the underlying Markov chain, we establish a last-iterate finite-time guarantee with $\tilde{O} (k^{-2/3})$ mean-square convergence, aligning with the best-known rates for two-timescale stochastic approximation methods under Markovian sampling and biased gradient estimates.
comment: 54 pages, 1 figure; Revised version with additional finite-time convergence results
♻ ☆ The Powers of Precision: Structure-Informed Detection in Complex Systems -- From Customer Churn to Seizure Onset
Emergent phenomena -- onset of epileptic seizures, sudden customer churn, or pandemic outbreaks -- often arise from hidden causal interactions in complex systems. We propose a machine learning method for their early detection that addresses a core challenge: unveiling and harnessing a system's latent causal structure despite the data-generating process being unknown and partially observed. The method learns an optimal feature representation from a one-parameter family of estimators -- powers of the empirical covariance or precision matrix -- offering a principled way to tune in to the underlying structure driving the emergence of critical events. A supervised learning module then classifies the learned representation. We prove structural consistency of the family and demonstrate the empirical soundness of our approach on seizure detection and churn prediction, attaining competitive results in both. Beyond prediction, and toward explainability, we ascertain that the optimal covariance power exhibits evidence of good identifiability while capturing structural signatures, thus reconciling predictive performance with interpretable statistical structure.
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ An Overview of Low-Rank Structures in the Training and Adaptation of Large Models IEEE
The substantial computational demands of modern large-scale deep learning present significant challenges for efficient training and deployment. Recent research has revealed a widespread phenomenon wherein deep networks inherently learn low-rank structures in their weights and representations during training. This tutorial paper provides a comprehensive review of advances in identifying and exploiting these low-rank structures, bridging mathematical foundations with practical applications. We present two complementary theoretical perspectives on the emergence of low-rankness: viewing it through the optimization dynamics of gradient descent throughout training, and understanding it as a result of implicit regularization effects at convergence. Practically, these theoretical perspectives provide a foundation for understanding the success of techniques such as Low-Rank Adaptation (LoRA) in fine-tuning, inspire new parameter-efficient low-rank training strategies, and explain the effectiveness of masked training approaches like dropout and masked self-supervised learning.
comment: Authors are listed alphabetically; 37 pages, 15 figures; minor revision at IEEE Signal Processing Magazine
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Probabilistic Predictions of Process-Induced Deformation in Carbon/Epoxy Composites Using a Deep Operator Network
Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
comment: 21 pages, 13 figures
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization
Bayesian optimization (BO) is a widely used approach to hyperparameter optimization (HPO). However, most existing HPO methods only incorporate expert knowledge during initialization, limiting practitioners' ability to influence the optimization process as new insights emerge. This limits the applicability of BO in iterative machine learning development workflows. We propose DynaBO, a BO framework that enables continuous user control of the optimization process. Over time, DynaBO leverages provided user priors by augmenting the acquisition function with decaying, prior-weighted preferences while preserving asymptotic convergence guarantees. To reinforce robustness, we introduce a data-driven safeguard that detects and can be used to reject misleading priors. We prove theoretical results on near-certain convergence, robustness to adversarial priors, and accelerated convergence when informative priors are provided. Extensive experiments across various HPO benchmarks show that DynaBO consistently outperforms our state-of-the-art competitors across all benchmarks and for all prior kinds. Our results demonstrate that DynaBO enables reliable and efficient collaborative BO, bridging automated and manually controlled model development.
comment: 8 pages plus references and appendix
♻ ☆ Joint Estimation of Piano Dynamics and Metrical Structure with a Multi-task Multi-Scale Network ICASSP2026
Estimating piano dynamic from audio recordings is a fundamental challenge in computational music analysis. In this paper, we propose an efficient multi-task network that jointly predicts dynamic levels, change points, beats, and downbeats from a shared latent representation. These four targets form the metrical structure of dynamics in the music score. Inspired by recent vocal dynamic research, we use a multi-scale network as the backbone, which takes Bark-scale specific loudness as the input feature. Compared to log-Mel as input, this reduces model size from 14.7 M to 0.5 M, enabling long sequential input. We use a 60-second audio length in audio segmentation, which doubled the length of beat tracking commonly used. Evaluated on the public MazurkaBL dataset, our model achieves state-of-the-art results across all tasks. This work sets a new benchmark for piano dynamic estimation and delivers a powerful and compact tool, paving the way for large-scale, resource-efficient analysis of musical expression.
comment: Accepted to ICASSP2026 conference
♻ ☆ Bias-Reduced Estimation of Finite Mixtures: An Application to Latent Group Structures in Panel Data
Finite mixture models are widely used in econometric analyses to capture unobserved heterogeneity. This paper shows that maximum likelihood estimation of finite mixtures of parametric densities can suffer from substantial finite-sample bias in all parameters under mild regularity conditions. The bias arises from the influence of outliers in component densities with unbounded or large support and increases with the degree of overlap among mixture components. I show that maximizing the classification-mixture likelihood function, equipped with a consistent classifier, yields parameter estimates that are less biased than those obtained by standard maximum likelihood estimation (MLE). I then derive the asymptotic distribution of the resulting estimator and provide conditions under which oracle efficiency is achieved. Monte Carlo simulations show that conventional mixture MLE exhibits pronounced finite-sample bias, which diminishes as the sample size or the statistical distance between component densities tends to infinity. The simulations further show that the proposed estimation strategy generally outperforms standard MLE in finite samples in terms of both bias and mean squared errors under relatively weak assumptions. An empirical application to latent group panel structures using health administrative data shows that the proposed approach reduces out-of-sample prediction error by approximately 17.6% relative to the best results obtained from standard MLE procedures.
♻ ☆ An End-to-End Approach for Microgrid Probabilistic Forecasting and Robust Operation via Decision-focused Learning
High penetration of renewable energy sources (RES) introduces significant uncertainty and intermittency into microgrid operations, posing challenges to economic and reliable scheduling. To address this, this paper proposes an end-to-end decision-focused framework that jointly optimizes probabilistic forecasting and robust operation for microgrids. A multilayer encoder-decoder (MED) probabilistic forecasting model is integrated with a two-stage robust optimization (TSRO) model involving direct load control (DLC) through a differentiable decision pathway, enabling gradient-based feedback from operational outcomes to improve forecasting performance. Unlike conventional sequential approaches, the proposed method aligns forecasting accuracy with operational objectives by directly minimizing decision regret via a surrogate smart predict-then-optimize (SPO) loss function. This integration ensures that probabilistic forecasts are optimized for downstream decisions, enhancing both economic efficiency and robustness. Case studies on modified IEEE 33-bus and 69-bus systems demonstrate that the proposed framework achieves superior forecasting accuracy and operational performance, reducing total and net operation costs by up to 18% compared with conventional forecasting and optimization combinations. The results verify the effectiveness and scalability of the end-to-end decision-focused approach for resilient and cost-efficient microgrid management under uncertainty.
comment: 10 pages
♻ ☆ fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly with the rise of pretrained models. Existing benchmarks often have limited domain coverage or overlook real-world settings such as tasks with covariates. Their aggregation procedures frequently lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks lack consistent evaluation infrastructure or are too rigid for integration into existing pipelines. To address these gaps, we propose fev-bench, a benchmark of 100 forecasting tasks across seven domains, including 46 with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for forecasting evaluation emphasizing reproducibility and integration with existing workflows. Using fev, fev-bench employs principled aggregation with bootstrapped confidence intervals to report performance along two dimensions: win rates and skill scores. We report results on fev-bench for pretrained, statistical, and baseline models and identify promising future research directions.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Improved Stochastic Optimization of LogSumExp
The LogSumExp function, dual to the Kullback-Leibler (KL) divergence, plays a central role in many important optimization problems, including entropy-regularized optimal transport (OT) and distributionally robust optimization (DRO). In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. We propose a novel convexity- and smoothness-preserving approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new $f$-divergence called the safe KL divergence. Our experiments and theoretical analysis of the LogSumExp-based stochastic optimization, arising in DRO and continuous OT, demonstrate the advantages of our approach over existing baselines.
comment: 17 pages, 5 figures, 2 tables; updated experiment in subsection 3.3
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Simple Denoising Diffusion Language Models
Recent Uniform State Diffusion Models (USDMs), initialized from a uniform prior, offer the promise of fast text generation due to their inherent self-correction ability compared to masked diffusion models. However, they still rely on complex loss formulations with additional computational overhead, which hinders scalability. In this work, we explore a simplified denoising-based loss for USDMs that optimizes only noise-replaced tokens, stabilizing training while matching the performance of prior methods with more complex objectives. In addition, we introduce an efficient regularization term to mitigate corruption toward uniform output distributions, which further improves performance. We demonstrate the effectiveness and efficiency of our simple and improved loss formulations by pretraining models on widely used text datasets for USDMs. More importantly, our conclusions scale to larger models, showing strong potential for large-scale training.
♻ ☆ Methodology for Comparing Machine Learning Algorithms for Survival Analysis
This study presents a comparative methodological analysis of six machine learning models for survival analysis (MLSA). Using data from nearly 45,000 colorectal cancer patients in the Hospital-Based Cancer Registries of São Paulo, we evaluated Random Survival Forest (RSF), Gradient Boosting for Survival Analysis (GBSA), Survival SVM (SSVM), XGBoost-Cox (XGB-Cox), XGBoost-AFT (XGB-AFT), and LightGBM (LGBM), capable of predicting survival considering censored data. Hyperparameter optimization was performed with different samplers, and model performance was assessed using the Concordance Index (C-Index), C-Index IPCW, time-dependent AUC, and Integrated Brier Score (IBS). Survival curves produced by the models were compared with predictions from classification algorithms, and predictor interpretation was conducted using SHAP and permutation importance. XGB-AFT achieved the best performance (C-Index = 0.7618; IPCW = 0.7532), followed by GBSA and RSF. The results highlight the potential and applicability of MLSA to improve survival prediction and support decision making.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to unlearning, where the model degrades the probability of high-quality outputs to satisfy margin constraints, and formatting collapse caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
♻ ☆ Designing ReLU Generative Networks to Enumerate Trees with a Given Tree Edit Distance
The generation of trees with a specified tree edit distance has significant applications across various fields, including computational biology, structured data analysis, and image processing. Recently, generative networks have been increasingly employed to synthesize new data that closely resembles the original datasets. However, the appropriate size and depth of generative networks required to generate data with a specified tree edit distance remain unclear. In this paper, we theoretically establish the existence and construction of generative networks capable of producing trees similar to a given tree with respect to the tree edit distance. Specifically, for a given rooted, ordered, and vertex-labeled tree T of size n + 1 with labels from an alphabet Σ, and a non-negative integer d, we prove that all rooted, ordered, and vertex-labeled trees over Σwith tree edit distance at most d from T can be generated using a ReLU-based generative network with size O(n^3 ) and constant depth. The proposed networks were implemented and evaluated for generating trees with up to 21 nodes. Due to their deterministic architecture, the networks successfully generated all valid trees within the specified tree edit distance. In contrast, state-of-the-art graph generative models GraphRNN and GraphGDP, which rely on non-deterministic mechanisms, produced significantly fewer valid trees, achieving validation rates of only up to 35% and 48%, respectively. These findings provide a theoretical foundation towards construction of compact generative models and open new directions for exact and valid tree-structured data generation. An implementation of the proposed networks is available at https://github.com/MGANN-KU/TreeGen_ReLUNetworks.
♻ ☆ Relational reasoning and inductive bias in transformers and large language models
Transformer-based models have demonstrated remarkable reasoning abilities, but the mechanisms underlying relational reasoning remain poorly understood. We investigate how transformers perform \textit{transitive inference}, a classic relational reasoning task which requires inference indirectly related items (e.g., if $A>B$ and $B>C$, then $A>C$), comparing in-weights learning (IWL) and in-context learning (ICL) strategies. We find that IWL naturally induces a generalization bias towards transitive inference despite training only on adjacent items, whereas ICL models develop induction circuits implementing match-and-copy strategies that fail to encode hierarchical relationships. However, when pre-trained on in-context linear regression tasks, transformers successfully exhibit in-context generalizable transitive inference, displaying both \textit{symbolic distance} and \textit{terminal item effects} characteristic of human and animal performance, without forming induction circuits. We extend these findings to large language models, demonstrating that prompting with linear geometric scaffolds improves transitive inference, while circular geometries (which violate transitivity by allowing wraparound) impair performance, particularly when models cannot rely on stored knowledge. Together, these results reveal that both the training regime and the geometric structure of induced representations critically determine transformers' capacity for transitive inference.
comment: 15 pages, 10 figures
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Trustworthy AI-based crack-tip segmentation using domain-guided explanations
Ensuring the trustworthiness and robustness of deep learning models remains a fundamental challenge, particularly in high-stakes scientific applications. In this study, we present a framework called attention-guided training that combines explainable artificial intelligence techniques with quantitative evaluation and domain-specific priors to guide model attention. We demonstrate that domain-specific feedback on model explanations during training can enhance the model's generalization capabilities. We validate our approach on the task of semantic crack tip segmentation in digital image correlation data, which is a key application in the fracture mechanical characterization of materials. By aligning model attention with physically meaningful stress fields, such as those described by Williams' analytical solution, attention-guided training ensures that the model focuses on physically relevant regions. This finally leads to improved generalization and more faithful explanations.
comment: This is the Accepted Manuscript version of an article accepted for publication in Machine Learning: Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2632-2153/ae3660
♻ ☆ Latent Space Representation of Electricity Market Curves: Maintaining Structural Integrity
Efficiently representing supply and demand curves is vital for energy market analysis and downstream modelling; however, dimensionality reduction often produces reconstructions that violate fundamental economic principles such as monotonicity. This paper evaluates the performance of PCA, Kernel PCA, UMAP, and AutoEncoder across 2d and 3d latent spaces. During preprocessing, we transform the original data to achieve a unified structure, mitigate outlier effects, and focus on critical curve segments. To ensure theoretical validity, we integrate Isotonic Regression as an optional post-processing step to enforce monotonic constraints on reconstructed outputs. Results from a three-year hourly MIBEL dataset demonstrate that the non-linear technique UMAP consistently outperforms other methods, securing the top rank across multiple error metrics. Furthermore, Isotonic Regression serves as a crucial corrective layer, significantly reducing error and restoring physical validity for several methods. We argue that UMAP`s local structure preservation, combined with intelligent post-processing, provides a robust foundation for downstream tasks such as forecasting, classification, and clustering.
comment: 8 pages, 3 figures
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
comment: 22 pages, 5 figures, 5 propositions
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ Contrastive Geometric Learning Unlocks Unified Structure- and Ligand-Based Drug Design
Structure-based and ligand-based computational drug design have traditionally relied on disjoint data sources and modeling assumptions, limiting their joint use at scale. In this work, we introduce Contrastive Geometric Learning for Unified Computational Drug Design (ConGLUDe), a single contrastive geometric model that unifies structure- and ligand-based training. ConGLUDe couples a geometric protein encoder that produces whole-protein representations and implicit embeddings of predicted binding sites with a fast ligand encoder, removing the need for pre-defined pockets. By aligning ligands with both global protein representations and multiple candidate binding sites through contrastive learning, ConGLUDe supports ligand-conditioned pocket prediction in addition to virtual screening and target fishing, while being trained jointly on protein-ligand complexes and large-scale bioactivity data. Across diverse benchmarks, ConGLUDe achieves competitive zero-shot virtual screening performance, substantially outperforms existing methods on a challenging target fishing task, and demonstrates state-of-the-art ligand-conditioned pocket selection. These results highlight the advantages of unified structure-ligand training and position ConGLUDe as a step toward general-purpose foundation models for drug discovery.
comment: ELLIS ML4Molecules Workshop 2025, ELLIS Unconference, Copenhagen 2025 Revised version with additional timing evaluation
♻ ☆ Discrete Latent Structure in Neural Networks
Many types of data from fields including natural language processing, computer vision, and bioinformatics, are well represented by discrete, compositional structures such as trees, sequences, or matchings. Latent structure models are a powerful tool for learning to extract such representations, offering a way to incorporate structural bias, discover insight about the data, and interpret decisions. However, effective training is challenging, as neural networks are typically designed for continuous computation. This text explores three broad strategies for learning with discrete latent structure: continuous relaxation, surrogate gradients, and probabilistic estimation. Our presentation relies on consistent notations for a wide range of models. As such, we reveal many new connections between latent structure learning strategies, showing how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as oral presentation
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
♻ ☆ MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
Scalable and generalizable physics-aware deep learning has long been considered a significant challenge with various applications across diverse domains ranging from robotics to molecular dynamics. Central to almost all physical systems are symplectic forms, the geometric backbone that underpins fundamental invariants like energy and momentum. In this work, we introduce a novel deep learning framework, MetaSym. In particular, MetaSym combines a strong symplectic inductive bias obtained from a symplectic encoder, and an autoregressive decoder with meta-attention. This principled design ensures that core physical invariants remain intact, while allowing flexible, data efficient adaptation to system heterogeneities. We benchmark MetaSym with highly varied and realistic datasets, such as a high-dimensional spring-mesh system Otness et al. (2021), an open quantum system with dissipation and measurement backaction, and robotics-inspired quadrotor dynamics. Crucially, we fine-tune and deploy MetaSym on real-world quadrotor data, demonstrating robustness to sensor noise and real-world uncertainty. Across all tasks, MetaSym achieves superior few-shot adaptation and outperforms larger state-of-the-art (SOTA) models.
comment: Published in Transactions on Machine Learning Research (TMLR), 10 + 18 pages, 9 figures, 10 tables
♻ ☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
♻ ☆ Constraint Matters: Multi-Modal Representation for Reducing Mixed-Integer Linear programming ICLR 2026
Model reduction, which aims to learn a simpler model of the original mixed integer linear programming (MILP), can solve large-scale MILP problems much faster. Most existing model reduction methods are based on variable reduction, which predicts a solution value for a subset of variables. From a dual perspective, constraint reduction that transforms a subset of inequality constraints into equalities can also reduce the complexity of MILP, but has been largely ignored. Therefore, this paper proposes a novel constraint-based model reduction approach for the MILP. Constraint-based MILP reduction has two challenges: 1) which inequality constraints are critical such that reducing them can accelerate MILP solving while preserving feasibility, and 2) how to predict these critical constraints efficiently. To identify critical constraints, we first label these tight-constraints at the optimal solution as potential critical constraints and design a heuristic rule to select a subset of critical tight-constraints. To learn the critical tight-constraints, we propose a multi-modal representation technique that leverages information from both instance-level and abstract-level MILP formulations. The experimental results show that, compared to the state-of-the-art methods, our method improves the quality of the solution by over 50\% and reduces the computation time by 17.47\%.
comment: Accecpted by ICLR 2026
♻ ☆ Contextual Causal Bayesian Optimisation
We introduce a unified framework for contextual and causal Bayesian optimisation, which aims to design intervention policies maximising the expectation of a target variable. Our approach leverages both observed contextual information and known causal graph structures to guide the search. Within this framework, we propose a novel algorithm that jointly optimises over policies and the sets of variables on which these policies are defined. This thereby extends and unifies two previously distinct approaches: Causal Bayesian Optimisation and Contextual Bayesian Optimisation, while also addressing their limitations in scenarios that yield suboptimal results. We derive worst-case and instance-dependent high-probability regret bounds for our algorithm. We report experimental results across diverse environments, corroborating that our approach achieves sublinear regret and reduces sample complexity in high-dimensional settings.
♻ ☆ Multi-Level Monte Carlo Training of Neural Operators
Operator learning is a rapidly growing field that aims to approximate nonlinear operators related to partial differential equations (PDEs) using neural operators. These rely on discretization of input and output functions and are, usually, expensive to train for large-scale problems at high-resolution. Motivated by this, we present a Multi-Level Monte Carlo (MLMC) approach to train neural operators by leveraging a hierarchy of resolutions of function discretization. Our framework relies on using gradient corrections from fewer samples of fine-resolution data to decrease the computational cost of training while maintaining a high level accuracy. The proposed MLMC training procedure can be applied to any architecture accepting multi-resolution data. Our numerical experiments on a range of state-of-the-art models and test-cases demonstrate improved computational efficiency compared to traditional single-resolution training approaches, and highlight the existence of a Pareto curve between accuracy and computational time, related to the number of samples per resolution.
comment: Accepted in Computer Methods in Applied Mechanics and Engineering
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ Exploring the Global-to-Local Attention Scheme in Graph Transformers: An Empirical Study
Graph Transformers (GTs) show considerable potential in graph representation learning. The architecture of GTs typically integrates Graph Neural Networks (GNNs) with global attention mechanisms either in parallel or as a precursor to attention mechanisms, yielding a local-and-global or local-to-global attention scheme. However, as the global attention mechanism primarily captures long-range dependencies between nodes, these integration schemes may suffer from information loss, where the local neighborhood information learned by GNN could be diluted by the attention mechanism. Therefore, we propose G2LFormer, featuring a novel global-to-local attention scheme where the shallow network layers use attention mechanisms to capture global information, while the deeper layers employ GNN modules to learn local structural information, thereby preventing nodes from ignoring their immediate neighbors. An effective cross-layer information fusion strategy is introduced to allow local layers to retain beneficial information from global layers and alleviate information loss, with acceptable trade-offs in scalability. To validate the feasibility of the global-to-local attention scheme, we compare G2LFormer with state-of-the-art linear GTs and GNNs on node-level and graph-level tasks. The results indicate that G2LFormer exhibits excellent performance while keeping linear complexity.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51718-4}
♻ ☆ UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
With rapid urbanization, predicting urban microclimates has become critical, as it affects building energy demand and public health risks. However, existing generative and homogeneous graph approaches fall short in capturing physical consistency, spatial dependencies, and temporal variability. To address this, we introduce UrbanGraph, a framework founded on a novel structure-based inductive bias. Unlike implicit graph learning, UrbanGraph transforms physical first principles into a dynamic causal topology, explicitly encoding time-varying causalities (e.g., shading and convection) directly into the graph structure to ensure physical consistency and data efficiency. Results show that UrbanGraph achieves state-of-the-art performance across all baselines. Specifically, the use of explicit causal pruning significantly reduces the model's floating-point operations (FLOPs) by 73.8% and increases training speed by 21% compared to implicit graphs. Our contribution includes the first high-resolution benchmark for spatio-temporal microclimate modeling, and a generalizable explicit topological encoding paradigm applicable to urban spatio-temporal dynamics governed by known physical equations.
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
♻ ☆ MSACL: Multi-Step Actor-Critic Learning with Lyapunov Certificates for Exponentially Stabilizing Control IEEE
For safety-critical applications, model-free reinforcement learning (RL) faces numerous challenges, particularly the difficulty of establishing verifiable stability guarantees while maintaining high exploration efficiency. To address these challenges, we present Multi-Step Actor-Critic Learning with Lyapunov Certificates (MSACL), a novel approach that seamlessly integrates exponential stability with maximum entropy reinforcement learning (MERL). In contrast to existing methods that rely on complex reward engineering and single-step constraints, MSACL utilizes intuitive rewards and multi-step data for actor-critic learning. Specifically, we first introduce Exponential Stability Labels (ESLs) to categorize samples and propose a $λ$-weighted aggregation mechanism to learn Lyapunov certificates. Leveraging these certificates, we then develop a stability-aware advantage function to guide policy optimization, thereby ensuring rapid Lyapunov descent and robust state convergence. We evaluate MSACL across six benchmarks, comprising four stabilization and two high-dimensional tracking tasks. Experimental results demonstrate its consistent superiority over both standard RL baselines and state-of-the-art Lyapunov-based RL algorithms. Beyond rapid convergence, MSACL exhibits significant robustness against environmental uncertainties and remarkable generalization to unseen reference signals. The source code and benchmarking environments are available at \href{https://github.com/YuanZhe-Xing/MSACL}{https://github.com/YuanZhe-Xing/MSACL}.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Task-Centric Policy Optimization from Misaligned Motion Priors
Humanoid control often leverages motion priors from human demonstrations to encourage natural behaviors. However, such demonstrations are frequently suboptimal or misaligned with robotic tasks due to embodiment differences, retargeting errors, and task-irrelevant variations, causing naïve imitation to degrade task performance. Conversely, task-only reinforcement learning admits many task-optimal solutions, often resulting in unnatural or unstable motions. This exposes a fundamental limitation of linear reward mixing in adversarial imitation learning. We propose \emph{Task-Centric Motion Priors} (TCMP), a task-priority adversarial imitation framework that treats imitation as a conditional regularizer rather than a co-equal objective. TCMP maximizes task improvement while incorporating imitation signals only when they are compatible with task progress, yielding an adaptive, geometry-aware update that preserves task-feasible descent and suppresses harmful imitation under misalignment. We provide theoretical analysis of gradient conflict and task-priority stationary points, and validate our claims through humanoid control experiments demonstrating robust task performance with consistent motion style under noisy demonstrations.
comment: Work requires further details and not complete yet
♻ ☆ Adaptive Helpfulness-Harmlessness Alignment with Preference Vectors EACL 2026
Ensuring that large language models (LLMs) are both helpful and harmless is a critical challenge, as overly strict constraints can lead to excessive refusals, while permissive models risk generating harmful content. Existing approaches, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), attempt to balance these trade-offs but suffer from performance conflicts, limited controllability, and poor extendability. To address these issues, we propose Preference Vector, a novel framework inspired by task arithmetic. Instead of optimizing multiple preferences within a single objective, we train separate models on individual preferences, extract behavior shifts as preference vectors, and dynamically merge them at test time. This modular approach enables fine-grained, user-controllable preference adjustments and facilitates seamless integration of new preferences without retraining. Experiments show that our proposed Preference Vector framework improves helpfulness without excessive conservatism, allows smooth control over preference trade-offs, and supports scalable multi-preference alignment.
comment: Accepted at The 19th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2026), Rabat, Morocco. 22 pages, 5 figures, 9 tables
♻ ☆ Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes NeurIPS 2025
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around $30,000$ samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
comment: NeurIPS 2025 ML4PS Workshop
♻ ☆ Emergent time-keeping mechanisms in a deep reinforcement learning agent performing an interval timing task
Drawing parallels between Deep Artificial Neural Networks (DNNs) and biological systems can aid in understanding complex biological mechanisms that are difficult to disentangle. Temporal processing, an extensively researched topic, is one such example that lacks a coherent understanding of its underlying mechanisms. In this study, we investigate temporal processing in a Deep Reinforcement Learning (DRL) agent performing an interval timing task and explore potential biological counterparts to its emergent behavior. The agent was successfully trained to perform a duration production task, which involved marking successive occurrences of a target interval while viewing a video sequence. Analysis of the agent's internal states revealed oscillatory neural activations, a ubiquitous pattern in biological systems. Interestingly, the agent's actions were predominantly influenced by neurons exhibiting these oscillations with high amplitudes and frequencies corresponding to the target interval. Parallels are drawn between the agent's time-keeping strategy and the Striatal Beat Frequency (SBF) model, a biologically plausible model of interval timing. Furthermore, the agent maintained its oscillatory representations and task performance when tested on different video sequences (including a blank video). Thus, once learned, the agent internalized its time-keeping mechanism and showed minimal reliance on its environment to perform the timing task. A hypothesis about the resemblance between this emergent behavior and certain aspects of the evolution of biological processes like circadian rhythms, has been discussed. This study aims to contribute to recent research efforts of utilizing DNNs to understand biological systems, with a particular emphasis on temporal processing.
comment: Accepted at 2025 Artificial Life Conference
♻ ☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
♻ ☆ VioPTT: Violin Technique-Aware Transcription from Synthetic Data Augmentation
While automatic music transcription is well-established in music information retrieval, most models are limited to transcribing pitch and timing information from audio, and thus omit crucial expressive and instrument-specific nuances. One example is playing technique on the violin, which affords its distinct palette of timbres for maximal emotional impact. Here, we propose VioPTT (Violin Playing Technique-aware Transcription), a lightweight cascade model that directly transcribes violin playing technique in addition to pitch onset and offset. Furthermore, we release MOSA-VPT, a novel, high-quality synthetic violin playing technique dataset to circumvent the need for manually labeled annotations. Leveraging this dataset, our model demonstrated strong generalization to real-world note-level violin technique recordings in addition to achieving state-of-the-art transcription performance. To our knowledge, VioPTT is the first to jointly combine violin transcription and playing technique prediction within a unified framework.
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks. MoGU replaces standard learned gating with an intrinsic routing paradigm where expert-specific uncertainty serves as the native gating signal. By modeling each prediction as a Gaussian distribution, the system utilizes predicted variance to dynamically weight expert contributions. We validate MoGU on multivariate time-series forecasting, a domain defined by high volatility and varying noise patterns. Empirical results across multiple benchmarks, horizon lengths, and backbones demonstrate that MoGU consistently improves forecasting accuracy compared to traditional MoE. Further evaluation via conformal prediction indicates that our approach yields more efficient prediction intervals than existing baselines. These findings highlight MoGU's capacity for providing both competitive performance and reliable, high-fidelity uncertainty quantification. Our code is available at: https://github.com/yolish/moe_unc_tsf
♻ ☆ NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations
Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
♻ ☆ PRPO: Aligning Process Reward with Outcome Reward in Policy Optimization
Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
comment: 8 pages, 2 figures Code is available at: https://github.com/SchumiDing/srpocode
♻ ☆ Towards Reliable Evaluation of Adversarial Robustness for Spiking Neural Networks
Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
♻ ☆ Fast Training of Sinusoidal Neural Fields via Scaling Initialization ICLR 2025
Neural fields are an emerging paradigm that represent data as continuous functions parameterized by neural networks. Despite many advantages, neural fields often have a high training cost, which prevents a broader adoption. In this paper, we focus on a popular family of neural fields, called sinusoidal neural fields (SNFs), and study how it should be initialized to maximize the training speed. We find that the standard initialization scheme for SNFs -- designed based on the signal propagation principle -- is suboptimal. In particular, we show that by simply multiplying each weight (except for the last layer) by a constant, we can accelerate SNF training by 10$\times$. This method, coined $\textit{weight scaling}$, consistently provides a significant speedup over various data domains, allowing the SNFs to train faster than more recently proposed architectures. To understand why the weight scaling works well, we conduct extensive theoretical and empirical analyses which reveal that the weight scaling not only resolves the spectral bias quite effectively but also enjoys a well-conditioned optimization trajectory. The code is available $\href{https://github.com/effl-lab/Fast-Neural-Fields}{here}$.
comment: ICLR 2025
♻ ☆ ECHO-2: A Large-Scale Distributed Rollout Framework for Cost-Efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
♻ ☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
♻ ☆ Stability Regularized Cross-Validation
We revisit the problem of ensuring strong test set performance via cross-validation, and propose a nested k-fold cross-validation scheme that selects hyperparameters by minimizing a weighted sum of the usual cross-validation metric and an empirical model-stability measure. The weight on the stability term is itself chosen via a nested cross-validation procedure. This reduces the risk of strong validation set performance and poor test set performance due to instability. We benchmark our procedure on a suite of $13$ real-world datasets, and find that, compared to $k$-fold cross-validation over the same hyperparameters, it improves the out-of-sample MSE for sparse ridge regression and CART by $4\%$ and $2\%$ respectively on average, but has no impact on XGBoost. It also reduces the user's out-of-sample disappointment, sometimes significantly. For instance, for sparse ridge regression, the nested k-fold cross-validation error is on average $0.9\%$ lower than the test set error, while the $k$-fold cross-validation error is $21.8\%$ lower than the test error. Thus, for unstable models such as sparse regression and CART, our approach improves test set performance and reduces out-of-sample disappointment.
comment: Some of this material previously appeared in 2306.14851v2, which we have split into two papers (this one and 2306.14851v3), because it contained two ideas that need separate papers
♻ ☆ Lightweight and Interpretable Transformer via Mixed Graph Algorithm Unrolling for Traffic Forecast
Unlike conventional "black-box" transformers with classical self-attention mechanism, we build a lightweight and interpretable transformer-like neural net by unrolling a mixed-graph-based optimization algorithm to forecast traffic with spatial and temporal dimensions. We construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We predict future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We design an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We periodically insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$ that play the role of self-attention. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically.
comment: 24 pages, 7 figures, 11 tables
♻ ☆ Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.
comment: Corresponding author: Shiji Zhou (zhoushiji25@buaa.edu.cn). Shiji Zhou and Tianbai Yu contributed equally
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ Exact Solution to Data-Driven Inverse Optimization of MILPs in Finite Time via Gradient-Based Methods
A data-driven inverse optimization problem (DDIOP) seeks to estimate an objective function (i.e., weights) that is consistent with observed optimal-solution data, and is important in many applications, including those involving mixed integer linear programs (MILPs). In the DDIOP for MILPs, the prediction loss on features (PLF), defined as the discrepancy between observed and predicted feature values, becomes discontinuous with respect to the weights, which makes it difficult to apply gradient-based optimization. To address this issue, we focus on a Lipschitz continuous and convex suboptimality loss. By exploiting its convex and piecewise-linear structure and the interiority of the minimum set, we show that a broad class of gradient-based optimization methods, including projected subgradient descent (PSGD), reaches the minimum suboptimality loss value in a finite number of iterations, thereby exactly solving the DDIOP for MILPs. Furthermore, as a corollary, we show that PSGD attains the minimum PLF in finitely many iterations. We also derive an upper bound on the number of iterations required for PSGD to reach finite convergence, and confirm the finite-step behavior through numerical experiments.
comment: 42 pages; comments are welcome
♻ ☆ Variational Approach for Job Shop Scheduling
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.
♻ ☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: Due to the company's compliance requirements, we would like to wait until the paper is officially published before making it publicly available on arXiv
♻ ☆ Position: Epistemic uncertainty estimation methods are fundamentally incomplete
Identifying and disentangling sources of predictive uncertainty is essential for trustworthy supervised learning. We argue that widely used second-order methods that disentangle aleatoric and epistemic uncertainty are fundamentally incomplete. First, we show that unaccounted bias contaminates uncertainty estimates by overestimating aleatoric (data-related) uncertainty and underestimating the epistemic (model-related) counterpart, leading to incorrect uncertainty quantification. Second, we demonstrate that existing methods capture only partial contributions to the variance-driven part of epistemic uncertainty; different approaches account for different variance sources, yielding estimates that are incomplete and difficult to interpret. Together, these results highlight that current epistemic uncertainty estimates can only be used in safety-critical and high-stakes decision-making when limitations are fully understood by end users and acknowledged by AI developers.
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Agnostic Learning of Arbitrary ReLU Activation under Gaussian Marginals
We consider the problem of learning an arbitrarily-biased ReLU activation (or neuron) over Gaussian marginals with the squared loss objective. Despite the ReLU neuron being the basic building block of modern neural networks, we still do not understand the basic algorithmic question of whether one arbitrary ReLU neuron is learnable in the non-realizable setting. In particular, all existing polynomial time algorithms only provide approximation guarantees for the better-behaved unbiased setting or restricted bias setting. Our main result is a polynomial time statistical query (SQ) algorithm that gives the first constant factor approximation for arbitrary bias. It outputs a ReLU activation that achieves a loss of $O(\mathrm{OPT}) + \varepsilon$ in time $\mathrm{poly}(d,1/\varepsilon)$, where $\mathrm{OPT}$ is the loss obtained by the optimal ReLU activation. Our algorithm presents an interesting departure from existing algorithms, which are all based on gradient descent and thus fall within the class of correlational statistical query (CSQ) algorithms. We complement our algorithmic result by showing that no polynomial time CSQ algorithm can achieve a constant factor approximation. Together, these results shed light on the intrinsic limitation of gradient descent, while identifying arguably the simplest setting (a single neuron) where there is a separation between SQ and CSQ algorithms.
♻ ☆ GraphAllocBench: A Flexible Benchmark for Preference-Conditioned Multi-Objective Policy Learning
Preference-Conditioned Policy Learning (PCPL) in Multi-Objective Reinforcement Learning (MORL) aims to approximate diverse Pareto-optimal solutions by conditioning policies on user-specified preferences over objectives. This enables a single model to flexibly adapt to arbitrary trade-offs at run-time by producing a policy on or near the Pareto front. However, existing benchmarks for PCPL are largely restricted to toy tasks and fixed environments, limiting their realism and scalability. To address this gap, we introduce GraphAllocBench, a flexible benchmark built on a novel graph-based resource allocation sandbox environment inspired by city management, which we call CityPlannerEnv. GraphAllocBench provides a rich suite of problems with diverse objective functions, varying preference conditions, and high-dimensional scalability. We also propose two new evaluation metrics -- Proportion of Non-Dominated Solutions (PNDS) and Ordering Score (OS) -- that directly capture preference consistency while complementing the widely used hypervolume metric. Through experiments with Multi-Layer Perceptrons (MLPs) and graph-aware models, we show that GraphAllocBench exposes the limitations of existing MORL approaches and paves the way for using graph-based methods such as Graph Neural Networks (GNNs) in complex, high-dimensional combinatorial allocation tasks. Beyond its predefined problem set, GraphAllocBench enables users to flexibly vary objectives, preferences, and allocation rules, establishing it as a versatile and extensible benchmark for advancing PCPL. Code: https://github.com/jzh001/GraphAllocBench
♻ ☆ Best-of-Both-Worlds for Heavy-Tailed Markov Decision Processes
We investigate episodic Markov Decision Processes with heavy-tailed feedback (HTMDPs). Existing approaches for HTMDPs are conservative in stochastic environments and lack adaptivity in adversarial regimes. In this work, we propose algorithms HT-FTRL-OM and HT-FTRL-UOB for HTMDPs that achieve Best-of-Both-Worlds (BoBW) guarantees: instance-independent regret in adversarial environments and logarithmic instance-dependent regret in self-bounding (including the stochastic case) environments. For the known transition setting, HT-FTRL-OM applies the Follow-The-Regularized-Leader (FTRL) framework over occupancy measures with novel skipping loss estimators, achieving a $\widetilde{O}(T^{1/α})$ regret bound in adversarial regimes and a $O(\log T)$ regret in stochastic regimes. Building upon this framework, we develop a novel algorithm HT-FTRL-UOB to tackle the more challenging unknown-transition setting. This algorithm employs a pessimistic skipping loss estimator and achieves a $\widetilde{O}(T^{1/α} + \sqrt{T})$ regret in adversarial regimes and a $O(\log^2(T))$ regret in stochastic regimes. Our analysis overcomes key barriers through several technical insights, including a local control mechanism for heavy-tailed shifted losses, a new suboptimal-mass propagation principle, and a novel regret decomposition that isolates transition uncertainty from heavy-tailed estimation errors and skipping bias.
♻ ☆ Quantum Information Ordering and Differential Privacy
We study quantum differential privacy (QDP) by defining a notion of the order of informativeness between pairs of quantum states. In particular, we show that if the hypothesis testing divergence of one pair dominates over that of the other pair, then this dominance holds for every $f$-divergence. This approach completely characterizes $(\varepsilon,δ)$-QDP mechanisms by identifying the most informative $(\varepsilon,δ)$-DP quantum state pairs. We apply this to study precise limits for privatized hypothesis testing and privatized quantum parameter estimation, including tight upper-bounds on the quantum Fisher information under QDP. Finally, we establish near-optimal contraction bounds for differentially private quantum channels with respect to the hockey-stick divergence.
comment: 36 pages, 2 figures; Significant revision: This manuscript has been restructured to focus exclusively on Quantum Information Ordering and Privacy definitions. The results regarding Stability, which appeared in earlier versions of this preprint, have been moved to a separate companion paper: arXiv:2602.01177
♻ ☆ Orchestrating Heterogeneous Experts: A Scalable MoE Framework with Anisotropy-Preserving Fusion
In cross-border e-commerce, search relevance modeling faces the dual challenge of extreme linguistic diversity and fine-grained semantic nuances. Existing approaches typically rely on scaling up a single monolithic Large Language Model (LLM). However, our empirical analysis reveals that single models suffer from uneven capability distributions across regions. For example, excelling in English while underperforming in specific Southeast Asian languages. In this work, we shift the paradigm from scaling a single model to orchestrating heterogeneous experts. We propose a scalable Coarse-grained Mixture-of-Experts (MoE) framework that leverages the inherent complementarity of distinct open-source LLMs (e.g., Qwen, Gemma) without expensive pre-training. Unlike standard token-level MoE, our framework dynamically routes entire queries to specialized experts and, crucially, employs an Information-Preserving Concatenation Fusion strategy. We theoretically posit that preserving the distinct embedding manifolds of heterogeneous experts-rather than compressing them via weighted averaging-is essential for capturing complex relevance signals in a multi-model latent space. On datasets spanning six Southeast Asian markets, our MoE improves AUC by 0.72 percentage points over a dense baseline with the same active parameters. Meanwhile, the optimized pipeline achieves 13.72 queries per second (QPS), a 9% throughput improvement.
comment: 4 pages, 2 figures. Accepted at the Workshop on TIME of the ACM Web Conference 2026
♻ ☆ Hyper-Compression: Model Compression via Hyperfunction
The rapid growth of large models' size has far outpaced that of computing resources. To bridge this gap, encouraged by the parsimonious relationship between genotype and phenotype in the brain's growth and development, we propose the so-called Hyper-Compression that turns the model compression into the issue of parameter representation via a hyperfunction. Specifically, it is known that the trajectory of some low-dimensional dynamic systems can fill the high-dimensional space eventually. Thus, Hyper-Compression, using these dynamic systems as the hyperfunctions, represents the parameters of the target network by their corresponding composition number or trajectory length. This suggests a novel mechanism for model compression, substantially different from the existing pruning, quantization, distillation, and decomposition. Along this direction, we methodologically identify a suitable dynamic system with the irrational winding as the hyperfunction and theoretically derive its associated error bound. Next, guided by our theoretical insights, we propose several engineering twists to make the Hyper-Compression pragmatic and effective. Lastly, systematic and comprehensive experiments on \textcolor{black}{NLP models such as LLaMA and Qwen series and vision models} confirm that Hyper-Compression enjoys the following \textbf{PNAS} merits: 1) \textbf{P}referable compression ratio; 2) \textbf{N}o post-hoc retraining; 3) \textbf{A}ffordable inference time; and 4) \textbf{S}hort compression time. It compresses LLaMA2-7B in an hour and achieves close-to-int4-quantization performance, without retraining and with a performance drop of less than 1\%. We have open-sourced our code in https://github.com/Juntongkuki/Hyper-Compression.git for free download and evaluation.
♻ ☆ RIR-Former: Coordinate-Guided Transformer for Continuous Reconstruction of Room Impulse Responses ICASSP
Room impulse responses (RIRs) are essential for many acoustic signal processing tasks, yet measuring them densely across space is often impractical. In this work, we propose RIR-Former, a grid-free, one-step feed-forward model for RIR reconstruction. By introducing a sinusoidal encoding module into a transformer backbone, our method effectively incorporates microphone position information, enabling interpolation at arbitrary array locations. Furthermore, a segmented multi-branch decoder is designed to separately handle early reflections and late reverberation, improving reconstruction across the entire RIR. Experiments on diverse simulated acoustic environments demonstrate that RIR-Former consistently outperforms state-of-the-art baselines in terms of normalized mean square error (NMSE) and cosine distance (CD), under varying missing rates and array configurations. These results highlight the potential of our approach for practical deployment and motivate future work on scaling from randomly spaced linear arrays to complex array geometries, dynamic acoustic scenes, and real-world environments.
comment: Accepted to International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026. Equal contribution: Shaoheng Xu and Chunyi Sun
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ On Universality Classes of Equivariant Networks NeurIPS 2025
Equivariant neural networks provide a principled framework for incorporating symmetry into learning architectures and have been extensively analyzed through the lens of their separation power, that is, the ability to distinguish inputs modulo symmetry. This notion plays a central role in settings such as graph learning, where it is often formalized via the Weisfeiler-Leman hierarchy. In contrast, the universality of equivariant models-their capacity to approximate target functions-remains comparatively underexplored. In this work, we investigate the approximation power of equivariant neural networks beyond separation constraints. We show that separation power does not fully capture expressivity: models with identical separation power may differ in their approximation ability. To demonstrate this, we characterize the universality classes of shallow invariant networks, providing a general framework for understanding which functions these architectures can approximate. Since equivariant models reduce to invariant ones under projection, this analysis yields sufficient conditions under which shallow equivariant networks fail to be universal. Conversely, we identify settings where shallow models do achieve separation-constrained universality. These positive results, however, depend critically on structural properties of the symmetry group, such as the existence of adequate normal subgroups, which may not hold in important cases like permutation symmetry.
comment: Advances in Neural Information Processing Systems 38 (NeurIPS 2025; Spotlight presentation). Total 25 pages
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Controlling Exploration-Exploitation in GFlowNets via Markov Chain Perspectives
Generative Flow Network (GFlowNet) objectives implicitly fix an equal mixing of forward and backward policies, potentially constraining the exploration-exploitation trade-off during training. By further exploring the link between GFlowNets and Markov chains, we establish an equivalence between GFlowNet objectives and Markov chain reversibility, thereby revealing the origin of such constraints, and provide a framework for adapting Markov chain properties to GFlowNets. Building on these theoretical findings, we propose $α$-GFNs, which generalize the mixing via a tunable parameter $α$. This generalization enables direct control over exploration-exploitation dynamics to enhance mode discovery capabilities, while ensuring convergence to unique flows. Across various benchmarks, including Set, Bit Sequence, and Molecule Generation, $α$-GFN objectives consistently outperform previous GFlowNet objectives, achieving up to a $10 \times$ increase in the number of discovered modes.
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Inferring stochastic dynamics with growth from cross-sectional data NeurIPS 2025
Time-resolved single-cell omics data offers high-throughput, genome-wide measurements of cellular states, which are instrumental to reverse-engineer the processes underpinning cell fate. Such technologies are inherently destructive, allowing only cross-sectional measurements of the underlying stochastic dynamical system. Furthermore, cells may divide or die in addition to changing their molecular state. Collectively these present a major challenge to inferring realistic biophysical models. We present a novel approach, unbalanced probability flow inference, that addresses this challenge for biological processes modelled as stochastic dynamics with growth. By leveraging a Lagrangian formulation of the Fokker-Planck equation, our method accurately disentangles drift from intrinsic noise and growth. We showcase the applicability of our approach through evaluation on a range of simulated and real single-cell RNA-seq datasets. Comparing to several existing methods, we find our method achieves higher accuracy while enjoying a simple two-step training scheme.
comment: 10 pages, 5 figures, NeurIPS 2025
♻ ☆ SEAFormer: A Spatial Proximity and Edge-Aware Transformer for Real-World Vehicle Routing Problems
Real-world Vehicle Routing Problems (RWVRPs) require solving complex, sequence-dependent challenges at scale with constraints such as delivery time window, replenishment or recharging stops, asymmetric travel cost, etc. While recent neural methods achieve strong results on large-scale classical VRP benchmarks, they struggle to address RWVRPs because their strategies overlook sequence dependencies and underutilize edge-level information, which are precisely the characteristics that define the complexity of RWVRPs. We present SEAFormer, a novel transformer that incorporates both node-level and edge-level information in decision-making through two key innovations. First, our Clustered Proximity Attention (CPA) exploits locality-aware clustering to reduce the complexity of attention from $O(n^2)$ to $O(n)$ while preserving global perspective, allowing SEAFormer to efficiently train on large instances. Second, our lightweight edge-aware module captures pairwise features through residual fusion, enabling effective incorporation of edge-based information and faster convergence. Extensive experiments across four RWVRP variants with various scales demonstrate that SEAFormer achieves superior results over state-of-the-art methods. Notably, SEAFormer is the first neural method to solve 1,000+ node RWVRPs effectively, while also achieving superior performance on classic VRPs, making it a versatile solution for both research benchmarks and real-world applications.
comment: 26 pages
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ Learning non-equilibrium diffusions with Schrödinger bridges: from exactly solvable to simulation-free NeurIPS 2025
We consider the Schrödinger bridge problem which, given ensemble measurements of the initial and final configurations of a stochastic dynamical system and some prior knowledge on the dynamics, aims to reconstruct the "most likely" evolution of the system compatible with the data. Most existing literature assume Brownian reference dynamics, and are implicitly limited to modelling systems driven by the gradient of a potential energy. We depart from this regime and consider reference processes described by a multivariate Ornstein-Uhlenbeck process with generic drift matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$. When $\mathbf{A}$ is asymmetric, this corresponds to a non-equilibrium system in which non-gradient forces are at play: this is important for applications to biological systems, which naturally exist out-of-equilibrium. In the case of Gaussian marginals, we derive explicit expressions that characterise exactly the solution of both the static and dynamic Schrödinger bridge. For general marginals, we propose mvOU-OTFM, a simulation-free algorithm based on flow and score matching for learning an approximation to the Schrödinger bridge. In application to a range of problems based on synthetic and real single cell data, we demonstrate that mvOU-OTFM achieves higher accuracy compared to competing methods, whilst being significantly faster to train.
comment: 10 pages, 5 figures, NeurIPS 2025
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ OverThink: Slowdown Attacks on Reasoning LLMs
Most flagship language models generate explicit reasoning chains, enabling inference-time scaling. However, producing these reasoning chains increases token usage (i.e., reasoning tokens), which in turn increases latency and costs. Our OverThink attack increases overhead for applications that rely on reasoning language models (RLMs) and external context by forcing them to spend substantially more reasoning tokens while still producing contextually correct answers. An adversary mounts an attack by injecting decoy reasoning problems into public content that is consumed by RLM at inference time. Because our decoys (e.g., Markov decision processes, Sudokus, etc.) are benign, they evade safety filters. We evaluate OverThink on both closed-source and open-source reasoning models across the FreshQA, SQuAD, and MuSR datasets. We also explore the attack in multi-modal settings by creating images that cause excessive reasoning. We show that the resulting slowdown transfers across models. Finally, we explore both LLM-based and systems-level defenses, and discuss the societal, financial, and energy implications of the OverThink attacks.
♻ ☆ GeoGen: A Two-stage Coarse-to-Fine Framework for Fine-grained Synthetic Location-based Social Network Trajectory Generation
Location-Based Social Network (LBSN) check-in trajectory data are important for many practical applications, like POI recommendation, advertising, and pandemic intervention. However, the high collection costs and ever-increasing privacy concerns prevent us from accessing large-scale LBSN trajectory data. The recent advances in synthetic data generation provide us with a new opportunity to achieve this, which utilizes generative AI to generate synthetic data that preserves the characteristics of real data while ensuring privacy protection. However, generating synthetic LBSN check-in trajectories remains challenging due to their spatially discrete, temporally irregular nature and the complex spatio-temporal patterns caused by sparse activities and uncertain human mobility. To address this challenge, we propose GeoGen, a two-stage coarse-to-fine framework for large-scale LBSN check-in trajectory generation. In the first stage, we reconstruct spatially continuous, temporally regular latent movement sequences from the original LBSN check-in trajectories and then design a Sparsity-aware Spatio-temporal Diffusion model (S$^2$TDiff) with an efficient denosing network to learn their underlying behavioral patterns. In the second stage, we design Coarse2FineNet, a Transformer-based Seq2Seq architecture equipped with a dynamic context fusion mechanism in the encoder and a multi-task hybrid-head decoder, which generates fine-grained LBSN trajectories based on coarse-grained latent movement sequences by modeling semantic relevance and behavioral uncertainty. Extensive experiments on four real-world datasets show that GeoGen excels state-of-the-art models for both fidelity and utility evaluation, e.g., it increases over 69% and 55% in distance and radius metrics on the FS-TKY dataset.
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Spectral Text Fusion: A Frequency-Aware Approach to Multimodal Time-Series Forecasting
Multimodal time series forecasting is crucial in real-world applications, where decisions depend on both numerical data and contextual signals. The core challenge is to effectively combine temporal numerical patterns with the context embedded in other modalities, such as text. While most existing methods align textual features with time-series patterns one step at a time, they neglect the multiscale temporal influences of contextual information such as time-series cycles and dynamic shifts. This mismatch between local alignment and global textual context can be addressed by spectral decomposition, which separates time series into frequency components capturing both short-term changes and long-term trends. In this paper, we propose SpecTF, a simple yet effective framework that integrates the effect of textual data on time series in the frequency domain. Our method extracts textual embeddings, projects them into the frequency domain, and fuses them with the time series' spectral components using a lightweight cross-attention mechanism. This adaptively reweights frequency bands based on textual relevance before mapping the results back to the temporal domain for predictions. Experimental results demonstrate that SpecTF significantly outperforms state-of-the-art models across diverse multi-modal time series datasets while utilizing considerably fewer parameters. Code is available at https://github.com/hiepnh137/SpecTF.
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Dropping Just a Handful of Preferences Can Change Top Large Language Model Rankings
We propose a method for evaluating the robustness of widely used LLM ranking systems -- variants of a Bradley--Terry model -- to dropping a worst-case very small fraction of preference data. Our approach is computationally fast and easy to adopt. When we apply our method to matchups from popular LLM ranking platforms, including Chatbot Arena and derivatives, we find that the rankings of top-performing models can be remarkably sensitive to the removal of a small fraction of preferences; for instance, dropping just 0.003% of human preferences can change the top-ranked model on Chatbot Arena. Our robustness check identifies the specific preferences most responsible for such ranking flips, allowing for inspection of these influential preferences. We observe that the rankings derived from MT-bench preferences are notably more robust than those from Chatbot Arena, likely due to MT-bench's use of expert annotators and carefully constructed prompts. Finally, we find that neither rankings based on crowdsourced human evaluations nor those based on LLM-as-a-judge preferences are systematically more sensitive than the other.
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Embedding Compression via Spherical Coordinates
We present a compression method for unit-norm embeddings that achieves 1.5$\times$ compression, 25% better than the best prior lossless method. The method exploits that spherical coordinates of high-dimensional unit vectors concentrate around $π/2$, causing IEEE 754 exponents to collapse to a single value and high-order mantissa bits to become predictable, enabling entropy coding of both. Reconstruction error is below 1e-7, under float32 machine epsilon. Evaluation across 26 configurations spanning text, image, and multi-vector embeddings confirms consistent improvement.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Reusing Overtrained Language Models Saturates Scaling
Reusing pretrained base models for further pretraining, such as continual pretraining or model growth, is promising at reducing the cost of training language models from scratch. However, the effectiveness remains unclear, especially when applied to overtrained base models. In this work, we empirically study the scaling properties of model reuse and find that the scaling efficiency diminishes in a predictable manner: The scaling exponent with respect to second-stage training tokens decreases logarithmically with the number of tokens used to pretrain the base model. The joint dependence on first- and second-stage tokens is accurately modeled by a simple scaling law. Such saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies: the more extensively a base model is pretrained, the less benefit additional pretraining provides. Our findings provide practical insights for efficient language model training and raise important considerations for the reuse of overtrained models.
♻ ☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
♻ ☆ Learning Heat-based Equations in Self-similar variables
We study solution learning for heat-based equations in self-similar variables (SSV). We develop an SSV training framework compatible with standard neural-operator training. We instantiate this framework on the two-dimensional incompressible Navier-Stokes equations and the one-dimensional viscous Burgers equation, and perform controlled comparisons between models trained in physical coordinates and in the corresponding self-similar coordinates using two simple fully connected architectures (standard multilayer perceptrons and a factorized fully connected network). Across both systems and both architectures, SSV-trained networks consistently deliver substantially more accurate and stable extrapolation beyond the training window and better capture qualitative long-time trends. These results suggest that self-similar coordinates provide a mathematically motivated inductive bias for learning the long-time dynamics of heat-based equations.
♻ ☆ SCPL: Enhancing Neural Network Training Throughput with Decoupled Local Losses and Model Parallelism
Adopting large-scale AI models in enterprise information systems is often hindered by high training costs and long development cycles, posing a significant managerial challenge. The standard end-to-end backpropagation (BP) algorithm is a primary driver of modern AI, but it is also the source of inefficiency in training deep networks. This paper introduces a new training methodology, Supervised Contrastive Parallel Learning (SCPL), that addresses this issue by decoupling BP and transforming a long gradient flow into multiple short ones. This design enables the simultaneous computation of parameter gradients in different layers, achieving superior model parallelism and enhancing training throughput. Detailed experiments are presented to demonstrate the efficiency and effectiveness of our model compared to BP, Early Exit, GPipe, and Associated Learning (AL), a state-of-the-art method for decoupling backpropagation. By mitigating a fundamental performance bottleneck, SCPL provides a practical pathway for organizations to develop and deploy advanced information systems more cost-effectively and with greater agility. The experimental code is released for reproducibility. https://github.com/minyaho/scpl/
♻ ☆ Individual Regret in Cooperative Stochastic Multi-Armed Bandits
We study the regret in stochastic Multi-Armed Bandits (MAB) with multiple agents that communicate over an arbitrary connected communication graph. We analyzed a variant of Cooperative Successive Elimination algorithm, COOP-SE, and show an individual regret bound of $O(R/ m + A^2 + A \sqrt{\log T})$ and a nearly matching lower bound. Here $A$ is the number of actions, $T$ the time horizon, $m$ the number of agents, and $R = \sum_{Δ_i > 0}\log(T)/Δ_i$ is the optimal single agent regret, where $Δ_i$ is the sub-optimality gap of action $i$. Our work is the first to show an individual regret bound in cooperative stochastic MAB that is independent of the graph's diameter. When considering communication networks there are additional considerations beyond regret, such as message size and number of communication rounds. First, we show that our regret bound holds even if we restrict the messages to be of logarithmic size. Second, for logarithmic number of communication rounds, we obtain a regret bound of $O(R / m+A \log T)$.
comment: 55 pages, 1 figure
♻ ☆ Decipher-MR: A Vision-Language Foundation Model for 3D MRI Representations
Magnetic Resonance Imaging is a critical imaging modality in clinical diagnosis and research, yet its complexity and heterogeneity hinder scalable, generalizable machine learning. Although foundation models have revolutionized language and vision tasks, their application to MRI remains constrained by data scarcity and narrow anatomical focus. We present Decipher-MR, a 3D MRI-specific vision-language foundation model trained on 200,000 MRI series from over 22,000 studies spanning diverse anatomical regions, sequences, and pathologies. Decipher-MR integrates self-supervised vision learning with report-guided text supervision to build robust representations for broad applications. To enable efficient use, Decipher-MR supports a modular design that enables tuning of lightweight, task-specific decoders attached to a frozen pretrained encoder. Following this setting, we evaluate Decipher-MR across disease classification, demographic prediction, anatomical localization, and cross-modal retrieval, demonstrating consistent improvements over existing foundation models and task-specific approaches. These results position Decipher-MR as a versatile foundation for MRI-based AI in clinical and research settings.
♻ ☆ Moirai 2.0: When Less Is More for Time Series Forecasting
We introduce Moirai 2.0, a decoder-only time-series foundation model trained on a new corpus of 36M series. The model adopts quantile forecasting and multi-token prediction, improving both probabilistic accuracy and inference efficiency. On the Gift-Eval benchmark, it ranks among the top pretrained models while achieving a strong trade-off between accuracy, speed, and model size. Compared to Moirai 1.0, Moirai 2.0 replaces masked-encoder training, multi-patch inputs, and mixture-distribution outputs with a simpler decoder-only architecture, single patch, and quantile loss. Ablation studies isolate these changes -- showing that the decoder-only backbone along with recursive multi-quantile decoding contribute most to the gains. Additional experiments show that Moirai 2.0 outperforms larger models from the same family and exhibits robust domain-level results. In terms of efficiency and model size, Moirai 2.0 is twice as fast and thirty times smaller than its prior best version, Moirai 1.0-Large, while also performing better. Model performance plateaus with increasing parameter count and declines at longer horizons, motivating future work on data scaling and long-horizon modeling. We release code and evaluation details to support further research.
comment: 16 pages, 13 figures, and 1 table
♻ ☆ MGKAN: Predicting Asymmetric Drug-Drug Interactions via a Multimodal Graph Kolmogorov-Arnold Network ICASSP 2026
Predicting drug-drug interactions (DDIs) is essential for safe pharmacological treatments. Previous graph neural network (GNN) models leverage molecular structures and interaction networks but mostly rely on linear aggregation and symmetric assumptions, limiting their ability to capture nonlinear and heterogeneous patterns. We propose MGKAN, a Graph Kolmogorov-Arnold Network that introduces learnable basis functions into asymmetric DDI prediction. MGKAN replaces conventional MLP transformations with KAN-driven basis functions, enabling more expressive and nonlinear modeling of drug relationships. To capture pharmacological dependencies, MGKAN integrates three network views-an asymmetric DDI network, a co-interaction network, and a biochemical similarity network-with role-specific embeddings to preserve directional semantics. A fusion module combines linear attention and nonlinear transformation to enhance representational capacity. On two benchmark datasets, MGKAN outperforms seven state-of-the-art baselines. Ablation studies and case studies confirm its predictive accuracy and effectiveness in modeling directional drug effects.
comment: This paper has been accepted by ICASSP 2026
♻ ☆ COMET: Codebook-based Online-adaptive Multi-scale Embedding for Time-series Anomaly Detection
Time series anomaly detection is a critical task across various industrial domains. However, capturing temporal dependencies and multivariate correlations within patch-level representation learning remains underexplored, and reliance on single-scale patterns limits the detection of anomalies across different temporal ranges. Furthermore, focusing on normal data representations makes models vulnerable to distribution shifts at inference time. To address these limitations, we propose Codebook-based Online-adaptive Multi-scale Embedding for Time-series anomaly detection (COMET), which consists of three key components: (1) Multi-scale Patch Encoding captures temporal dependencies and inter-variable correlations across multiple patch scales. (2) Vector-Quantized Coreset learns representative normal patterns via codebook and detects anomalies with a dual-score combining quantization error and memory distance. (3) Online Codebook Adaptation generates pseudo-labels based on codebook entries and dynamically adapts the model at inference through contrastive learning. Experiments on five benchmark datasets demonstrate that COMET achieves the best performance in 36 out of 45 evaluation metrics, validating its effectiveness across diverse environments.
♻ ☆ GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning ICLR2026
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
comment: Accepted to ICLR2026
♻ ☆ Mixture of Distributions Matters: Dynamic Sparse Attention for Efficient Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixture-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
♻ ☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
♻ ☆ Sharpness-Aware Machine Unlearning ICLR 2026
We characterize the effectiveness of Sharpness-aware minimization (SAM) under machine unlearning scheme, where unlearning forget signals interferes with learning retain signals. While previous work prove that SAM improves generalization with noise memorization prevention, we show that SAM abandons such denoising property when fitting the forget set, leading to altered generalization depending on signal strength. We further characterize the signal surplus of SAM in the order of signal strength, which enables learning from less retain signals to maintain model performance and putting more weight on unlearning the forget set. Empirical studies show that SAM outperforms SGD with relaxed requirement for retain signals and can enhance various unlearning methods either as pretrain or unlearn algorithm. Motivated by our refined characterization of SAM unlearning and observing that overfitting can benefit more stringent sample-specific unlearning, we propose Sharp MinMax, which splits the model into two to learn retain signals with SAM and unlearn forget signals with sharpness maximization, achieving best performance. Extensive experiments show that SAM enhances unlearning across varying difficulties measured by memorization, yielding decreased feature entanglement between retain and forget sets, stronger resistance to membership inference attacks, and a flatter loss landscape. Our observations generalize to more noised data, different optimizers, and different architectures.
comment: Accepted to ICLR 2026
♻ ☆ Sparse maximal update parameterization: A holistic approach to sparse training dynamics NeurIPS
Several challenges make it difficult for sparse neural networks to compete with dense models. First, setting a large fraction of weights to zero impairs forward and gradient signal propagation. Second, sparse studies often need to test multiple sparsity levels, while also introducing new hyperparameters (HPs), leading to prohibitive tuning costs. Indeed, the standard practice is to re-use the learning HPs originally crafted for dense models. Unfortunately, we show sparse and dense networks do not share the same optimal HPs. Without stable dynamics and effective training recipes, it is costly to test sparsity at scale, which is key to surpassing dense networks and making the business case for sparsity acceleration in hardware. A holistic approach is needed to tackle these challenges and we propose S$μ$Par as one such approach. For random unstructured static sparsity, S$μ$Par ensures activations, gradients, and weight updates all scale independently of sparsity level. Further, by reparameterizing the HPs, S$μ$Par enables the same HP values to be optimal as we vary both sparsity level and model width. HPs can be tuned on small dense networks and transferred to large sparse models, greatly reducing tuning costs. On large-scale language modeling, S$μ$Par shows increasing improvements over standard parameterization as sparsity increases, leading up to 11.9% relative loss improvement at 99.2% sparsity. A minimal implementation of S$μ$Par is available at https://github.com/EleutherAI/nanoGPT-mup/tree/supar.
comment: 10 pages main text, 10 pages reference and appendix, 14 figures, NeurIPS Camera-Ready
♻ ☆ Taking the GP Out of the Loop
Bayesian optimization (BO) has traditionally solved black-box problems where function evaluation is expensive and, therefore, observations are few. Recently, however, there has been growing interest in applying BO to problems where function evaluation is cheaper and observations are more plentiful. In this regime, scaling to many observations $N$ is impeded by Gaussian-process (GP) surrogates: GP hyperparameter fitting scales as $\mathcal{O}(N^3)$ (reduced to roughly $\mathcal{O}(N^2)$ in modern implementations), and it is repeated at every BO iteration. Many methods improve scaling at acquisition time, but hyperparameter fitting still scales poorly, making it the bottleneck. We propose Epistemic Nearest Neighbors (ENN), a lightweight alternative to GPs that estimates function values and uncertainty (epistemic and aleatoric) from $K$-nearest-neighbor observations. ENN scales as $\mathcal{O}(N)$ for both fitting and acquisition. Our BO method, TuRBO-ENN, replaces the GP surrogate in TuRBO with ENN and its Thompson-sampling acquisition with $\mathrm{UCB} = μ(x) + σ(x)$. For the special case of noise-free problems, we can omit fitting altogether by replacing $\mathrm{UCB}$ with a non-dominated sort over $μ(x)$ and $σ(x)$. We show empirically that TuRBO-ENN reduces proposal time (i.e., fitting time + acquisition time) by one to two orders of magnitude compared to TuRBO at up to 50,000 observations.
comment: 12 pages, 11 figures
Multimedia 11
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet IEEE
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Unveiling Covert Toxicity in Multimodal Data via Toxicity Association Graphs: A Graph-Based Metric and Interpretable Detection Framework
Detecting toxicity in multimodal data remains a significant challenge, as harmful meanings often lurk beneath seemingly benign individual modalities: only emerging when modalities are combined and semantic associations are activated. To address this, we propose a novel detection framework based on Toxicity Association Graphs (TAGs), which systematically model semantic associations between innocuous entities and latent toxic implications. Leveraging TAGs, we introduce the first quantifiable metric for hidden toxicity, the Multimodal Toxicity Covertness (MTC), which measures the degree of concealment in toxic multimodal expressions. By integrating our detection framework with the MTC metric, our approach enables precise identification of covert toxicity while preserving full interpretability of the decision-making process, significantly enhancing transparency in multimodal toxicity detection. To validate our method, we construct the Covert Toxic Dataset, the first benchmark specifically designed to capture high-covertness toxic multimodal instances. This dataset encodes nuanced cross-modal associations and serves as a rigorous testbed for evaluating both the proposed metric and detection framework. Extensive experiments demonstrate that our approach outperforms existing methods across both low- and high-covertness toxicity regimes, while delivering clear, interpretable, and auditable detection outcomes. Together, our contributions advance the state of the art in explainable multimodal toxicity detection and lay the foundation for future context-aware and interpretable approaches. Content Warning: This paper contains examples of toxic multimodal content that may be offensive or disturbing to some readers. Reader discretion is advised.
☆ MS-SCANet: A Multiscale Transformer-Based Architecture with Dual Attention for No-Reference Image Quality Assessment ICASSP 2025
We present the Multi-Scale Spatial Channel Attention Network (MS-SCANet), a transformer-based architecture designed for no-reference image quality assessment (IQA). MS-SCANet features a dual-branch structure that processes images at multiple scales, effectively capturing both fine and coarse details, an improvement over traditional single-scale methods. By integrating tailored spatial and channel attention mechanisms, our model emphasizes essential features while minimizing computational complexity. A key component of MS-SCANet is its cross-branch attention mechanism, which enhances the integration of features across different scales, addressing limitations in previous approaches. We also introduce two new consistency loss functions, Cross-Branch Consistency Loss and Adaptive Pooling Consistency Loss, which maintain spatial integrity during feature scaling, outperforming conventional linear and bilinear techniques. Extensive evaluations on datasets like KonIQ-10k, LIVE, LIVE Challenge, and CSIQ show that MS-SCANet consistently surpasses state-of-the-art methods, offering a robust framework with stronger correlations with subjective human scores.
comment: Published in ICASSP 2025, 5 pages, 3 figures
☆ Audit After Segmentation: Reference-Free Mask Quality Assessment for Language-Referred Audio-Visual Segmentation
Language-referred audio-visual segmentation (Ref-AVS) aims to segment target objects described by natural language by jointly reasoning over video, audio, and text. Beyond generating segmentation masks, providing rich and interpretable diagnoses of mask quality remains largely underexplored. In this work, we introduce Mask Quality Assessment in the Ref-AVS context (MQA-RefAVS), a new task that evaluates the quality of candidate segmentation masks without relying on ground-truth annotations as references at inference time. Given audio-visual-language inputs and each provided segmentation mask, the task requires estimating its IoU with the unobserved ground truth, identifying the corresponding error type, and recommending an actionable quality-control decision. To support this task, we construct MQ-RAVSBench, a benchmark featuring diverse and representative mask error modes that span both geometric and semantic issues. We further propose MQ-Auditor, a multimodal large language model (MLLM)-based auditor that explicitly reasons over multimodal cues and mask information to produce quantitative and qualitative mask quality assessments. Extensive experiments demonstrate that MQ-Auditor outperforms strong open-source and commercial MLLMs and can be integrated with existing Ref-AVS systems to detect segmentation failures and support downstream segmentation improvement. Data and codes will be released at https://github.com/jasongief/MQA-RefAVS.
☆ Sounding Highlights: Dual-Pathway Audio Encoders for Audio-Visual Video Highlight Detection ICASSP 2026
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale Mr.HiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
comment: 5 pages, 2 figures, to appear in ICASSP 2026
☆ DCER: Dual-Stage Compression and Energy-Based Reconstruction ICML 2026
Multimodal fusion faces two robustness challenges: noisy inputs degrade representation quality, and missing modalities cause prediction failures. We propose DCER, a unified framework addressing both challenges through dual-stage compression and energy-based reconstruction. The compression stage operates at two levels: within-modality frequency transforms (wavelet for audio, DCT for video) remove noise while preserving task-relevant patterns, and cross-modality bottleneck tokens force genuine integration rather than modality-specific shortcuts. For missing modalities, energy-based reconstruction recovers representations via gradient descent on a learned energy function, with the final energy providing intrinsic uncertainty quantification (\r{ho} > 0.72 correlation with prediction error). Experiments on CMU-MOSI, CMU-MOSEI, and CH-SIMS demonstrate state-of-the-art performance across all benchmarks, with a U-shaped robustness pattern favoring multimodal fusion at both complete and high-missing conditions. The code will be available on Github.
comment: 13 pages, 2 figures, 8 tables. Submitted to ICML 2026. Code will be available on GitHub
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ TP-Blend: Textual-Prompt Attention Pairing for Precise Object-Style Blending in Diffusion Models
Current text-conditioned diffusion editors handle single object replacement well but struggle when a new object and a new style must be introduced simultaneously. We present Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that receives two separate textual prompts, one specifying a blend object and the other defining a target style, and injects both into a single denoising trajectory. TP-Blend is driven by two complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages head-wise attention to locate spatial tokens that respond strongly to either prompt, then solves an entropy-regularised optimal transport problem that reassigns complete multi-head feature vectors to those positions. CAOF updates feature vectors at the full combined dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head correlations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight one-dimensional Gaussian filter separates low- and high-frequency components; only the high-frequency residual is blended back, imprinting brush-stroke-level texture without disrupting global geometry. SASF further swaps the Key and Value matrices with those derived from the style prompt, enforcing context-aware texture modulation that remains independent of object fusion. Extensive experiments show that TP-Blend produces high-resolution, photo-realistic edits with precise control over both content and appearance, surpassing recent baselines in quantitative fidelity, perceptual quality, and inference speed.
♻ ☆ VidTune: Creating Video Soundtracks with Generative Music and Contextual Thumbnails
Music shapes the tone of videos, yet creators often struggle to find soundtracks that match their video's mood and narrative. Recent text-to-music models let creators generate music from text prompts, but our formative study (N=8) shows creators struggle to construct diverse prompts, quickly review and compare tracks, and understand their impact on the video. We present VidTune, a system that supports soundtrack creation by generating diverse music options from a creator's prompt and producing contextual thumbnails for rapid review. VidTune extracts representative video subjects to ground thumbnails in context, maps each track's valence and energy onto visual cues like color and brightness, and depicts prominent genres and instruments. Creators can refine tracks through natural language edits, which VidTune expands into new generations. In a controlled user study (N=12) and an exploratory case study (N=6), participants found VidTune helpful for efficiently reviewing and comparing music options and described the process as playful and enriching.
comment: Accepted to CHI 2026